Léo Ducas

Michele Mosca

María Naya-Plasencia

Simon Perdrix

Divesh Aggarwal

Xavier Bonnetain

Rémi Bricout

Yanlin Chen

Kamil Khadiev

Rajendra Kumar

Phong Q Nguyen

André Schrottenloher

María Naya

Simona Etinski

Zeinab Galal

Sander Gribling

Alex Grilo

Yassine Hamoudi

Jonas Landman

Baptiste Louf

Alessandro Luongo

Etienne Mallet

Simon Mauras

Alexandre Nolin

Ami Paz

Mikaël Rabie

Olivier Stietel

Anupa Sunny

Daniel Szilagyi

Zhouningxin Wang

Nick Spooner

Arjan Cornelissen

Miruna Rosca

Radu Titiu

Stephan Gocht

Joseph Swernofsky

Christian Majenz

Alexandru Cojocaru

Hamoon Mousavi

Vitor Pereira

Gilyén András

Pierre-Cyril Aubin

Cyril Bernard

Dexiong Chen

Ana-Maria Cretu

Christine Finas

Antoine Doche

Shuai Fang

Arnaud Gallant

Yunzhi Gao

Manuel Gaulhiac

Antony Goh

Jérémy Goh

Amal Hamdani

Daniel Haziza

Chia-Man Hung

Jade Jiang

Ezékiel Kahn

Houzhi Li

Hugo Marival

Adina Nedelcu

Maud Szusterman

Xavière De Truchis

Joseph-André Turk

Bogdan Ursu

Aurélien Velleret

Yang Yu

Yiyang Yu

Xiangpeng Zhang

Alexandre Zhou

En dehors de tous ces cadres, je remercie

Keywords: Computational Complexity, Quantum algorithms, Post-quantum cryptography, Lattice-based crytography, Shortest Vector Problem, Random Subset-Sum Problem [ANS18] Yoshinori

Je tiens d'abord à remercier Frédéric Magniez, mon directeur de thèse, qui m'a accompagnée pendant ces trois dernières années avec beaucoup de patience et de pédagogie. Merci pour tout le temps que tu m'as consacré malgré ton rôle super occupé de directeur du labo et merci pour tous les bons conseils que tu m

Résumé

La cryptographie post-quantique est une branche de la cryptographie qui vise à concevoir des systèmes cryptographiques non quantiques (c'est-à-dire classiques), qui sont protégés contre un adversaire possédant un ordinateur quantique. Dans cette thèse, nous nous concentrons sur l'étude de deux problèmes fondamentaux pour la cryptographie post-quantique : le problème du plus court vecteur (SVP) et le problème de la somme de sous-ensembles aléatoires.

Le SVP demande de trouver le plus court vecteur non nul d'un réseaux euclidien donné. Il sert de jauge pour quantifier la sécurité de la cryptographie reposant sur les réseaux euclidiens, qui est considérée comme prometteuse pour l'ère post-quantique. Les principales approches pour résoudre le SVP sont les algorithmes de tamisage, qui utilisent un temps et un espace exponentiels, et les algorithmes d'énumération, qui utilisent un temps superexponentiel et un espace polynomial. Même si les algorithmes de tamisage sont asymptotiquement les algorithmes connus les plus rapides pour le SVP, la complexité en mémoire, en grande dimension, a historiquement été un facteur limitant pour exécuter ces algorithmes. Certains travaux récents ont montré comment utiliser de nouvelles astuces pour rendre possible l'utilisation du tamisage sur des réseaux euclidiens à haute dimension dans la pratique et bénéficier de leur temps de fonctionnement efficace. Néanmoins, la question de l'obtention d'un algorithme qui réalise le « meilleur des deux mondes », c'est-à-dire un algorithme qui fonctionne en temps exponentiel et ne nécessite qu'une quantité polynomiale de mémoire, reste ouverte depuis longtemps. En l'absence d'un tel algorithme, il est souhaitable d'avoir un compromis entre le temps et la quantité de mémoire requise qui interpole entre les meilleurs algorithmes de tamisage actuels et les meilleurs algorithmes d'énumération actuels.

Dans cette thèse, nous donnons tout d'abord un compromis temps-mémoire prouvable qui interpole approximativement entre les garanties de ressources des algorithmes de tamisage et celles des algorithmes d'énumération. Nous montrons ensuite l'algorithme quantique prouvable le plus rapide connu qui résout le SVP en temps 2 0.9535n`opnq et en mémoire classique 2 0.5n`opnq avec seulement un nombre polypnq de qubits. Nous montrons également le meilleur algorithme prouvable classique connu dont la complexité en mémoire est de 2 0.5n`opnq .

Quant aux algorithmes d'énumération, on pensait auparavant qu'ils pouvaient bénéficier d'une accélération quadratique quantique grâce à l'algorithme de Grover. Nous montrons que cette accélération quadratique peut effectivement être obtenue pour l'algorithme d'énumération de base et ses variantes d'élagage cylindrique et discret, mais avec des algorithmes quantiques plus sophistiqués tels que la marche quantique sur les arbres. Notre accélération quantique s'applique également à l'élagage extrême où l'on répète le processus d'énumération sur plusieurs bases réduites : une approche naïve ne ferait que réduire le coût classique de mt (où m est le nombre de bases et t est le coût d'un seul processus d'énumération) à m ? t opérations quantiques, mais nous le ramenons à ? mt.

v Le problème de la somme de sous-ensembles aléatoires sous-tend également certains schémas cryptographiques visant à la sécurité post-quantique, bien qu'il soit principalement de nature académique. Dans un contexte de cryptanalyse, il sert souvent d'outil car de nombreux problèmes sur lesquels se fonde la cryptographie moderne peuvent être exprimés comme des variantes (vectorielles) du problème de la somme de sous-ensembles. Plus récemment, il a également été démontré qu'il peut être utilisé comme élément de base dans certains algorithmes de décalage caché quantique, qui ont des applications dans la cryptanalyse quantique de schémas symétriques et de schémas reposant sur les isogénies.

Dans cette thèse, nous présentons de nouveaux algorithmes classiques et quantiques pour la résolution du problème de la somme de sous-ensembles aléatoires. Nous obtenons d'abord l'algorithme classique le plus rapide connu en temps r O `20.283n ˘. Ensuite, nous améliorons l'état de l'art des algorithmes quantiques pour ce problème dans plusieurs directions. Nous concevons un algorithme avec un temps asymptotique r O `20.236n ˘, avec l'avantage d'utiliser une mémoire classique avec accès aléatoire quantique. Les algorithmes connus précédemment utilisaient des marches quantique, et nécessitaient une mémoire quantique avec accès aléatoire quantique. Nous proposons également des marches quantiques plus rapides pour ce problème en temps r O `20.216n ˘. Ce temps dépend d'une heuristique concernant le temps de mise à jour dans les marches quantiques. Les algorithmes précédents pour ce problème dépendaient eux aussi de cette heuristique. Nous montrons comment surmonter partiellement cette heuristique, et nous obtenons un algorithme quantique de temps r O `20.218n ˘ne nécessitant que les heuristiques standard du problème de la somme de sous-ensembles aléatoires.

Mots clefs: Complexité de calcul, Algorithmes quantiques, Cryptographie post-quantique, Cryptographie basée sur les réseaux euclidiéns, Problème du plus court vector, Problème de la somme de sous-ensembles

Abstract

Post-quantum cryptography refers to a branch of cryptography aimed at designing nonquantum (ie. classical) cryptographic systems which are secure against an adversary having a quantum computer. In this thesis we focus on the study of two fondamental problems for post-quantum cryptography: the Shortest Vector problem (SVP) and the random Subset-Sum problem.

The SVP asks to find the shortest non-zero vector of a given lattice. It serves as a gauge to quantify the security of lattice-based cryptography which is widely considered to be promising for the post-quantum era. The main approaches to solve the SVP are the sieving algorithms, which use exponential time and space, and the enumeration algorithms, which use superexponential time and polynomial space. Even though sieving algorithms are asymptotically the fastest known algorithms for SVP, the memory requirement, in high dimension, has historically been a limiting factor to run these algorithms. Some recent works have shown how to use new tricks to make it possible to use sieving on high-dimensional lattices in practice and benefit from their efficient running time. Nevertheless, it has been a long standing open question to obtain an algorithm that achieves the "best of both worlds", i.e. an algorithm that runs in exponential time and requires only polynomial amount of memory. In the absence of such an algorithm, it is desirable to have a smooth tradeoff between time and memory requirement that interpolates between the current best sieving algorithms and the current best enumeration algorithms.

In this thesis, we first give a provable time memory trade-off which roughly interpolates between the resource guarantees of sieving algorithms and those of enumeration algorithms. We then show the fastest state-of-the-art provable quantum algorithm that solves SVP using 2 0.9535n`opnq time and requires 2 0.5n`opnq classical memory but only polypnq qubits. We also provide the fastest classical algorithm in the provable setting whose memory is 2 0.5n`opnq .

As for the enumeration algorithms, it was previously commonly believed that they can benefit from a quantum quadratic speed-up using Grover's algorithm. We show that the quadratic speed-up can indeed be achieved for lattice enumeration and its cylinder and discrete pruning variants, but with more sophisticated quantum algorithms such as quantum walk on trees. Our quantum speed-up applies further to extreme pruning where one repeats enumeration over many reduced bases: a naive approach would only decrease the classical cost mt (where m is the number of bases and t is the number of operations of a single enumeration) to m ? t quantum operations, but we bring it down to ? mt. The random subset-sum problem also underlies some cryptographic schemes aiming at post-quantum security, although it is mostly of academic nature. In a cryptanalysis context, it often serves as a cryptanalytic tool as many problems on which modern cryptography is build can be expressed as some (vectorial) versions of the subset sum problem. More vii recently it is also shown that it can be used as a building block in some quantum hidden shift algorithms, which have applications in quantum cryptanalysis of isogeny-based and symmetric cryptographic schemes.

In this thesis, we present new classical and quantum algorithms for solving random subsetsum instances. We first show the fastest state-of-the-art classical algorithm using r O `20.283n time. Next, we improve the state of the art of quantum algorithms for this problem in several directions. We devise an algorithm with asymptotic running time r O `20.236n ˘, with the advantage of using classical memory with quantum random access. The previously known algorithms all used the quantum walk framework, and required quantum memory with quantum random access. We also propose faster quantum walks for subset-sum with time complexity r O `20.216n ˘. This time is dependent on a heuristic on quantum walk updates that is also required by the previous algorithms. We show how to partially overcome this heuristic, and we obtain a quantum algorithm with time r O `20.218n ˘requiring only the standard subset-sum heuristics.

Introduction

Cryptography is the study of techniques for secure communication in the presence of malicious third parties. One of the main goals of cryptography is to guarantee the confidentiality of messages, by encrypting them before transmission. Historically, the first encryption procedures belong to the category of symmetric key encryption schemes, where the sender and the receiver share a common key to encrypt and decrypt the message. To do so, they either need to meet in person, or use a trusted third party, before being able to communicate safely. These requirements are clearly too restrictive for today's use of cryptography. Fortunately, Diffie and Hellman invented the idea of public key cryptographic in 1976 [START_REF] Diffie | New directions in cryptography[END_REF]. The principle is that each user now has its own secret key, which it keeps for itself, but it also has a public key, which it makes publicly available. The public key enables others to encrypt a message that only the user with the corresponding secret key will be able to decrypt. Public key encryption schemes are usually far less efficient than symmetric key ones. In today's cryptographic communication protocols, a public key scheme is typically used at the beginning of the conversation to exchange a shared secret symmetric key between two users. A symmetric key scheme is used with this shared secret symmetric key for the rest of the conversation. The security of public key encryption schemes is typically based on some mathematical assumptions, i.e. under the assumption that some mathematical problems are hard to solve, one can prove that no attacker (for a certain model of attacker) can recover the underlying message if it only knows the encrypted message and the public key. For the Diffie-Hellman protocol mentioned above, the hard problem that it relies on is the discrete logarithm problem. The presumed hardness of this problem (in practice on elliptic curves) has since been used for many other cryptographic constructions. Another very important problem for cryptography is integer factorization. The famous RSA encryption scheme that we are still using today is based on a problem related to it.

In the 1970s and 80s, the notion of quantum computer was suggested by several physicists such as Richard Feynman, Paul Benioff, David Deutsch or Charles H. Bennett. Feynman's idea was that using a quantum computer to simulate quantum phenomenon could be much more suitable than current computers, for which this problem is insurmountable. This idea remained ignored for a long time, as the realization of such a computer seemed improbable, and the applications were restricted. Everything changed in 1994, when Peter Shor's seminal work [START_REF] Shor | Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer[END_REF] showed that a quantum computer could effectively solve the usual problems of public key cryptography (namely factorization and discrete logarithm), and therefore break most cryptography deployed on the internet. This launched the development of quantum computing, and post-quantum cryptography.

Post-quantum cryptography refers to a branch of cryptography aimed at designing nonquantum, ie. classical cryptographic systems which are secure against an adversary having access to a quantum computer. For public key cryptography, alternatives to RSA and Diffie-Hellman are needed because of Shor's quantum attacks that run in time polynomial in the size of the key. Long considered a rather marginal subject, post-quantum cryptography has now been on the international scene for several years, with first the announcement by the NSA in 2015 of its transition to post-quantum cryptography, then the launch in 2016 by NIST of an international competition to standardize post-quantum cryptosystems [NIS]. Many companies are interested in the viability of post-quantum cryptography: for example, Google experimented for several months a post-quantum version (based on Euclidean lattices) of the famous TLS protocol massively deployed on the Internet [GOO].

To date, there are several candidates for post-quantum cryptography, mainly latticebased, code-based, hash-based, and multivariate cryptography (based on polynomial systems with several variables), and more recently, supersingular elliptic curve isogeny cryptography. Although these candidates are for the most part relatively old (dating back to the invention of the RSA), they raise some questions. All of these candidates suffer from significantly longer key sizes than RSA and elliptical curve cryptography, and are thus less efficient. Furthermore, their long-term security remains open, for quantum but also classic adversaries: many of these systems have been broken in practice, especially in code-based and multivariate cryptography. As for hash-based cryptography, we only know how to construct signature schemes from it, but not encryption schemes. Furthermore, only a limited number of signatures can be signed using each private key. Lattice-based cryptography thus seems to be the most promising postquantum candidate. Among the round 3 finalists of the NIST Post-Quantum Cryptography Standardization procedure, 3 out of 4 Public-key Encryption and Key-establishment schemes and 2 out of 3 Digital Signature schemes are lattice-based.

Euclidean lattices can not only be used to construct various cryptographic primitives such as hash functions [START_REF] Lyubashevsky | Swifft: A modest proposal for fft hashing[END_REF], signatures [START_REF] Gentry | Trapdoors for hard lattices and new cryptographic constructions[END_REF][START_REF] Lyubashevsky | Lattice signatures without trapdoors[END_REF], encryption schemes [START_REF] Regev | Lattice-based cryptography[END_REF][START_REF] Gentry | Trapdoors for hard lattices and new cryptographic constructions[END_REF], pseudo random functions [START_REF] Banerjee | Pseudorandom functions and lattices[END_REF], but also to build more sophisticated cryptographic primi- tives including fully homomorphic encryption schemes (FHE) [START_REF] Gentry | Fully homomorphic encryption using ideal lattices[END_REF], identity based encryption (IBE) [START_REF] Gentry | Trapdoors for hard lattices and new cryptographic constructions[END_REF][START_REF] Cash | Bonsai trees, or how to delegate a lattice basis[END_REF], attribute based encryption (ABE) [START_REF] Agrawal | Functional encryption for inner product predicates from learning with errors[END_REF], group signatures [START_REF] Gordon | A group signature scheme from lattice assumptions[END_REF] and so on. Most of those primitives are based on two mathematical problems known as the Short Integer Solution problem (SIS) [START_REF] Ajtai | Generating hard instances of lattice problems[END_REF] and the Learning with Errors problem (LWE) [START_REF] Regev | On lattices, learning with errors, random linear codes, and cryptography[END_REF]. These problems can be seen as randomized variants of two fundamental problems on lattices: the Shortest Vector Problem (SVP) and the Closest Vector Problem (CVP). Moreover, most strategies for cryptanalysing the previous cryptographic primitives rely on lattice reduction techniques known as the BKZ algorithm. BKZ internally uses an algorithm to solve (near) exact SVP in lower-dimensional lattices. Therefore, understanding the complexity SVP is critical to choosing security parameters of cryptographic primitives. In this thesis, we will study several approaches to solve SVP, and CVP to a lesser extent.

Lattices. A (Euclidean) lattice L is a discrete subgroup of R m , or equivalently the set Lpb 1 , . . . , b n q " t ř n i"1 x i b i : x i P Zu of all integer combinations of n linearly independent vectors b 1 , . . . , b n P R m . Such b i form a basis of L. All the bases have the same number n of elements, called the dimension or rank of L. The lattice L is said to be full-rank if n " m (see figure 1.1).

One of the fundamental algorithmic problems related to lattices is to find a shortest nonzero element of an arbitrary lattice (with respect to its Euclidean norm), given an arbitrary basis of this lattice. This problem is referred to as the shortest vector problem (SVP) (see Figure 1.2). A natural approximate version of this problem exists, where the problem consists in finding a non-zero vector of the lattice whose Euclidean norm is no more than γ times the norm of a shortest non-zero vector. This problem is referred to as the γ-approximate shortest vector problem (γ-approx-SVP) (see Figure 1.3). Starting from the '80s, the use of approximate and exact solvers for SVP (and other lattice problems) gained prominence for their applications in algorithmic number theory [START_REF] Lenstra | Factoring polynomials with rational coefficients[END_REF], convex optimization [Jr.83,[START_REF] Kannan | Minkowski's convex body theorem and integer programming[END_REF][START_REF] Frank | An application of simultaneous diophantine approximation in combinatorial optimization[END_REF], coding theory [dB89], and cryptanalysis tool [START_REF] Shamir | A polynomial-time algorithm for breaking the basic merkle-hellman cryptosystem[END_REF][START_REF] Brickell | Breaking iterated knapsacks[END_REF][START_REF] Lagarias | Solving low-density subset sum problems[END_REF].

The SVP is a well studied computational problem in both its exact and approximate versions.

It is known to be NP-hard to approximate within any constant factor by a randomized reduction, and hard to approximate within a factor n c{ log log n for some c ą 0 under reasonable complexitytheoretic assumptions (NP Ę RSUBEXP) [START_REF] Ajtai | The shortest vector problem in l2 is np-hard for randomized reductions (extended abstract)[END_REF][START_REF] Micciancio | The shortest vector in a lattice is hard to approximate to within some constant[END_REF][START_REF] Khot | Hardness of approximating the shortest vector problem in lattices[END_REF][START_REF] Haviv | Tensor-based hardness of the shortest vector problem to within almost polynomial factors[END_REF]. For an approximation factor 2 Opnq , one can solve SVP in time polynomial in n using the celebrated LLL lattice basis reduction algorithm [START_REF] Lenstra | Factoring polynomials with rational coefficients[END_REF]. In cryptography, we are interested in approximating SVP within factors polynomial in n. The fastest known algorithms for this regime rely on (a variant of) the BKZ lattice basis reduction algorithm [Sch87, SE94a, AKS01, GN08, HPS11, ALNS20, LN20], which can be seen as a generalization of the LLL algorithm and gives a Opβ n{β q approximation in 2 Opβq polypnq time for any 2 ď β ď n. The smallest approximation factor for which the BKZ algorithm runs in polynomial time is 2

Op n log log n log n q , which is better than the LLL algorithm.

As one would expect from the hardness results above, all known algorithms for solving exact SVP require at least exponential time. In fact, the fastest known algorithms also require exponential space. There has been some recent evidence [START_REF] Aggarwal | gap/s) eth hardness of svp[END_REF] showing that one cannot hope to get a 2 opnq time algorithm for SVP if one believes reasonable complexity theoretic conjectures such as the (Gap) Exponential Time Hypothesis. Most of the known algorithms for SVP can be broadly classified into two classes: (i) the algorithms that require memory polynomial in n but run in time n Opnq and (ii) the algorithms that require memory 2 Opnq and run in time 2 Opnq .

The first class, initiated by Kannan [Kan87, Hel85, HS07, MW15], combines lattice basis reduction with exhaustive enumeration inside Euclidean balls. While enumerating vectors requires 2 Opn log nq time, it is much more space-efficient than other kinds of algorithms for exact SVP. These algorithms can be further made much faster in practice using some heuristic techniques, in particular the pruning technique [START_REF] Schnorr | Lattice basis reduction: Improved practical algorithms and solving subset sum problems[END_REF][START_REF] Gama | Lattice enumeration using extreme pruning[END_REF][START_REF] Chen | Réduction de réseau et sécurité concrète du chiffrement complètement homomorphe[END_REF].

Another class of algorithms, and currently the fastest, is based on sieving. First developed by Ajtai, Kumar, and Sivakumar [START_REF] Ajtai | A sieve algorithm for the shortest lattice vector problem[END_REF], they generate many lattices vectors and then divideand-sieve to create shorter and shorter vectors iteratively. A sequence of improvements [Reg04, PS09, ADRS15, AS18b], has led to a 2 n`opnq time and space algorithm by sieving the lattice vectors and carefully controlling the distribution of output, thereby after several sieving steps outputting a set of lattice vectors that contains the shortest vector with overwhelming probability. There are also variants [START_REF] Phong | Sieve algorithms for the shortest vector problem are practical[END_REF][START_REF] Micciancio | Faster exponential time algorithms for the shortest vector problem[END_REF] of the sieving algorithms mentioned above that, under some heuristic assumptions, give a p4{3q n`opnq time complexity and a p4{3q n{2`opnq memory complexity. They assume, for example, that the direction of the vectors is uniform on the unit sphere, and the vectors in the sieved lists are independent. A long line of work, including [START_REF] Becker | Solving shortest and closest vector problems: The decomposition approach[END_REF][START_REF] Laarhoven | Search problems in cryptography[END_REF][START_REF] Laarhoven | Sieving for shortest vectors in lattices using angular localitysensitive hashing[END_REF][START_REF] Becker | New directions in nearest neighbor searching with applications to lattice sieving[END_REF] decreases this time complexity down to p3{2q n{2`opnq while still keeping the same memory complexity (also p4{3q n{2`opnq). Other variants (tuple-sieving) are designed to lower the memory complexity [START_REF] Shi Bai | Tuple lattice sieving[END_REF][START_REF] Herold | Improved algorithms for the approximate k-list problem in euclidean norm[END_REF], still under heuristic assumptions.

Another important problem related to lattices is the closest vector problem (CVP). Given an arbitrary basis of a lattice L and a target point t in the space, one needs to find a point of L closest to t (see figure 1.4). In the approximate variant of this problem, called γ-approx-CVP, the goal is to find a point of L at distance at most γ ¨distpL, tq from t, where γ ě 1 and distpL, tq is the minimal distance between t and a point of L (see Figure 1.5). The best algorithms to solve γ-approx-CVP are asymptotically as efficient as for γ-approx-SVP. In other words, the best algorithm to solve exact CVP has a complexity exponential in the dimension n of the lattice and the smallest approximation factor for which we have a polynomial time Subset Sum. In this thesis, we also study the subset-sum problem. The subset-sum problem, also known as knapsack problem is the following: given n integers a " pa 1 , . . . a n q and a target integer S, find an n-bit vector e " pe 1 , . . . e n q P t0, 1u n such that e ¨a " ř i e i a i " S. The density of the knapsack instance is defined as d " n{plog 2 max i a i q and, for a random instance a, it is related to the number of solutions that one can expect.

The decision version of the subset-sum problem is NP-complete [START_REF] Garey | Computers and Intractability: A Guide to the Theory of NP-Completeness[END_REF]. In the low density case, we can transform it to the problem of finding a particular short vector in an integer lattice, and apply the LLL lattice reduction algorithm to solve it in polynomial time [START_REF] Lagarias | Solving low-density subset sum problems[END_REF]. In the high density case, subexponential time algorithms also exist using Wagner's algorithm [START_REF] Lyubashevsky | The parity problem in the presence of noise, decoding random linear codes, and the subset sum problem[END_REF] which is in some sense a more general version of the BKW algorithm [START_REF] Blum | Noise-tolerant learning, the parity problem, and the statistical query model[END_REF] also used to solve the LWE problem [ACF `15]. When the density is close to 1, the best algorithms known are exponential-time, which is why we name these instances "hard" knapsacks.

In cryptographic applications, one usually encounters random instances rather than worst case instances. Such instances of the subset-sum problem are defined by choosing a " pa 1 , . . . a n q uniformly at random from pZ{M Zq n for some integer M and setting S " e ¨a mod M for a binary e P t0, 1u n where half of the coordinates are equal to one. Note that we are now focusing on the modular version of the subset-sum problem, where we want to find a solution for S " e ¨a mod M . Up to polynomial factors, solving modular knapsacks and knapsacks over the integers is equivalent: any algorithm that realizes one task can be used to solve the other. The hardest case where the density equals 1 corresponds to M " 2 n . In a breakthrough paper, Howgrave-Graham and Joux [START_REF] Howgrave | New generic algorithms for hard knapsacks[END_REF] showed how to solve these specific random instances in time 2 0.337n , breaking the Horowitz-Sahni bound of 2 0.5n for worst case instances [START_REF] Horowitz | Computing partitions with applications to the knapsack problem[END_REF]. This bound was later improved by Becker, Coron and Joux [START_REF] Becker | Improved generic algorithms for hard knapsacks[END_REF] down to 2 0.291n time and memory, which was the best known runtime before the work in this thesis. In the quantum setting, [START_REF] Daniel | Quantum algorithms for the subset-sum problem[END_REF] and [START_REF] Helm | Subset sum quantumly in 1.17 n[END_REF] are the corresponding quantum algorithms of [START_REF] Horowitz | Computing partitions with applications to the knapsack problem[END_REF] and [START_REF] Becker | Improved generic algorithms for hard knapsacks[END_REF]. They run in respective time 2 0.241n and 2 0.226n and use quantum walks on Johnson graphs.

The random subset-sum problem underlies some cryptographic schemes aiming at postquantum security (see e.g. [START_REF] Lyubashevsky | Public-key cryptographic primitives provably as secure as subset sum[END_REF]), although it is mostly of academic nature. In a cryptanalysis context, it often serves as a cryptanalytic tool as many problems on which modern cryptography is built can be expressed as some (vectorial) versions of the subset sum problem. This is the case for the syndrome decoding problem in code-based cryptography, where the fastest known algorithms [START_REF] Becker | Decoding random binary linear codes in 2 n{20 : How 1 `1 " 0 improves information set decoding[END_REF][START_REF] Both | Decoding linear codes with high error rate and its impact for lpn security[END_REF] heavily rely on the fastest algorithms known to solve the subset-sum problem. It is also the case for the short integer solution problem and for the learning parity with noise problem (LPN) [START_REF] Alekhnovich | More on average case vs approximation complexity[END_REF]. More recently it was also shown that the subset-sum problem can be used as a building block in some quantum hidden shift algorithms [START_REF] Bonnetain | Improved low-qubit hidden shift algorithms[END_REF], which have applications in quantum cryptanalysis of isogeny-based [START_REF] Bonnetain | Quantum security analysis of CSIDH[END_REF] and symmetric cryptographic schemes [START_REF] Bonnetain | Hidden shift quantum cryptanalysis and implications[END_REF].

Contributions

During my PhD, I have been interested in the difficulty of problems related to lattices. Namely, I have focused on both provable and heuristic algorithms for solving SVP in classical and quantum settings. Some of my results also apply to CVP. I also worked on the random subset-sum problem and developed better classical and quantum algorithms for it. The quantum algorithms I have developed fall into three categories, depending the type of quantum memory they use: plain quantum circuits (where we only use a set of universal quantum gates on qubits), classical memory with quantum random access (QRACM) and quantum memory with quantum random access (QRAQM). While low depth construction of QRACM has been proposed (albeit with a blow up in the number of required qubits), no physical architecture with low depth has been proposed for QRAQM. Typically, Grover search requires QRACM but MNRS-type quantum walks need QRAQM [START_REF] Magniez | Search via quantum walk[END_REF]. It is of interest to design algorithms with the minimum possible requirements on the quantum memory models. Whenever possible, I have tried to only use the plain quantum circuit model or the more realistic QRACM model. See Section 2.2.2 for a more detailed discussion on different types of quantum memory.

Provable Time-Space Trade-off for SVP

We first present in Chapter 3 a new randomized algorithm for SVP that provides a smooth tradeoff between the time complexity and memory requirement without any heuristic assumptions. This algorithm is obtained by giving a new randomized algorithm for sampling lattice vectors from the Discrete Gaussian distribution up to the smoothing parameter that runs in time q 11n`opnq and requires polypqq ¨q16n{q 2 space, where q can be any integer in r4, ? ns. The smoothing parameter quantifies how smooth the Discrete Gaussian distribution is: The smaller the parameter is, the more discrete the distribution is and the harder it is to sampler from it. Using the standard reduction from Bounded Distance Decoding (BDD) with preprocessing (where an algorithm solving the problem is allowed unlimited preprocessing time on the lattice before the algorithm receives the target vector) to Discrete Gaussian Sampling (DGS) from [START_REF] Dadush | On the closest vector problem with a distance guarantee[END_REF] and a reduction from SVP to BDD given in [START_REF] Chen | Space-efficient classical and quantum algorithms for the shortest vector problem[END_REF], we obtain a randomized algorithm that solves SVP in time q 11n`opnq and in space polypnq ¨q 16n q 2 . If we take k " q 2 , then the time complexity of our SVP algorithm becomes k 5.5n`opnq and the space complexity polypnq ¨kp8n{kq . Our trade-off without any heuristic assumptions is thus the same (up to a constant in the exponents) as what was claimed1 by Kirchner and Fouque [START_REF] Kirchner | Time-memory trade-off for lattice enumeration in a ball[END_REF] and proven in [START_REF] Herold | Improved algorithms for the approximate k-list problem in euclidean norm[END_REF] under heuristic assumptions.

Our trade-off for the DGS is obtained by extending the classical coset-based sieving algorithm of [START_REF] Aggarwal | Solving the shortest vector problem in 2 n time using discrete gaussian sampling: Extended abstract[END_REF]. Instead of efficiently pairing vectors in the same cosets of L{2L to obtain smaller ones (which takes a lot of space), we try to combine many vectors at random until we find one in qL. Combining vectors at random is very space efficient but potentially very time inefficient. The main observation is that if we combine sufficiently many vectors, then the sum behaves likes a uniformly distributed variable over the cosets of L{qL and hence, on average, we will not have to wait too long to successfully combine vectors. Indeed, above the smoothing parameter, the distribution over the cosets of a random sample from the discrete Gaussian distribution is almost uniform. Furthermore, again above the smoothing parameter, the sum of independent discrete Gaussian variables is very close to a discrete Gaussian distribution.

Faster Provable Classical and Quantum Algorithms for SVP

In Chapter 4, we present the fastest quantum algorithm without any heuristic assumptions for SVP. To date, the fastest classical provable algorithm for SVP [START_REF] Aggarwal | Solving the shortest vector problem in 2 n time using discrete gaussian sampling: Extended abstract[END_REF] runs in time and space 2 n`opnq . Previously, no faster provable quantum algorithm was known. We show a quantum algorithm that solves SVP in time 2 0.9532n`opnq and classical space 2 0.5n`opnq with an additional number of qubits polynomial in n. Our algorithm is a follow-up work of [START_REF] Chen | Space-efficient classical and quantum algorithms for the shortest vector problem[END_REF] in which the authors provided a quantum algorithm in time 2 1.2553n`opnq and space 2 0.5n`opnq . [START_REF] Chen | Space-efficient classical and quantum algorithms for the shortest vector problem[END_REF] provided a reduction from SVP to BDD. We improve over [START_REF] Chen | Space-efficient classical and quantum algorithms for the shortest vector problem[END_REF] by constructing a better BDD oracle that costs less on each query. The BDD oracle is obtained by first producing many samples from a discrete Gaussian distribution above the smoothing parameter and then applying a classical reduction from BDD to DGS. The quality of the reduction fundamentally depends on the width s of the Gaussian, which needs to be equal to the smoothing parameter η ε of the lattice for some ε. Unfortunately, the most efficient DGS sampler above the smoothing parameter stops at ? 2η 1{2 . The solution proposed by [START_REF] Chen | Space-efficient classical and quantum algorithms for the shortest vector problem[END_REF] is to find ε such that η ε ą ? 2η 1{2 , unfortunately this requires to choose a much smaller ε than necessary. We avoid this step by construction a super lattice L 1 of L such that η ε pL 1 q ď η ε pLq{ ? 2. This way, by using the best DGS sampler, we can reach ? 2η ε pL 1 q " η ε pLq without changing the parameter ε. We need an extra rejection sampling step to only keep vectors in L but not in L 1 but the impact on the complexity is small.

We also present a classical randomized algorithm for SVP that improves over the algorithm from [START_REF] Chen | Space-efficient classical and quantum algorithms for the shortest vector problem[END_REF] and results in the fastest classical algorithm that has a space complexity 2 0.5n`opnq . We improve over [START_REF] Chen | Space-efficient classical and quantum algorithms for the shortest vector problem[END_REF] by showing how to reduce the number of queries to the BDD oracles by making smarter queries. Our algorithm solves SVP in time 2 1.730n`opnq and space 2 0.5n`opnq . The classical technique to reduce SVP to BDD involves constructing a α-BDD oracle and then using this oracle to enumerate all lattice points in a sufficiently large ball. Intuitively speaking, if α " 1{p for some integer p then we will need to make p n queries to enumerate all points. Previous work, including our quantum algorithm, construct a 1{3-BDD oracle and hence make 3 n queries. Ideally, we would like to take p " 2 but we cannot build a 1{2-BDD oracle. Our main observation is that instead of enumerating all points inside a large ball, it is more efficient to enumerate all points inside many smaller balls that, together, cover the large ball. By doing so, each small ball only requires 2 n queries and by carefully choosing the radius α, we can use less than p3{2q n balls, resulting in an overall net gain.

The time complexity of these two results are obtained using a known upper bound of a quantity βpLq related to the kissing number of a lattice (see Section 2.4) which is 2 0.402n . In practice most lattices have a much smaller βpLq which is often 2 opnq . In that case, our classical

Time Complexity

Space Complexity Reference

n n 2e `opnq polypnq [Kan87, HS07] 2 n`opnq 2 n`opnq [ADRS15] 2 2.05n`opnq 2 0.5n`opnq [CCL18]
2 1.7397n`opnq 2 0.5n`opnq This thesis, [ACKS21] Table 1.1: Classical randomized provable algorithms for the shortest vector problem.

Time Complexity Space Complexity Reference

2 1.799n`opnq 2 1.286n`opnq classical memory with quantum random access (QRACM) + polypnq qubits [START_REF] Laarhoven | Finding shortest lattice vectors faster using quantum search[END_REF] 2 1.2553n`opnq 2 0.5n`opnq classical memory + polypnq qubits [START_REF] Chen | Space-efficient classical and quantum algorithms for the shortest vector problem[END_REF] 2 0.9535n`opnq 2 0.5n`opnq classical memory + polypnq qubits This thesis, [ACKS21] Table 1.2: Quantum provable algorithms for the shortest vector problem. [START_REF] Laarhoven | Finding shortest lattice vectors faster using quantum search[END_REF] uses the QRACM model. [START_REF] Chen | Space-efficient classical and quantum algorithms for the shortest vector problem[END_REF] and our quantum algorithm need only polynomial qubits and 2 0.5n`opnq classical space.

algorithm runs in time 2 1.292n and our quantum algorithm runs in time 2 0.750n . More generally, we study the dependency of the complexity of the algorithms on the quantity βpLq.

We summarize known provable classical randomized algorithms and quantum algorithms respectively in Table 1.1 and Table 1.2. Note that classical algorithms can also be seen as quantum algorithms without using any quantum power.

Quantum Quadratic Speed-up for Enumeration Algorithms for SVP and CVP

In Chapter 5, we show that lattice enumeration and its cylinder and discrete pruning variants can all be quadratically sped up on a quantum computer, unlike sieving. This is done by a careful interpretation and analysis of enumeration as tree algorithms. Interestingly, we show that this speedup also applies to extreme pruning [START_REF] Gama | Lattice enumeration using extreme pruning[END_REF] where one repeats enumeration over many reduced bases: a naive approach would only decrease the classical cost mt (where m is the number of bases and t is the number of operations of a single enumeration) to m ? t quantum operations, but we bring it down to ? mt. First, we clarify the application of Montanaro's algorithm [START_REF] Montanaro | Quantum walk speedup of backtracking algorithms[END_REF] to enumeration with cylinder pruning: the analysis of [START_REF] Montanaro | Quantum walk speedup of backtracking algorithms[END_REF] assumes that the degree of the tree is bounded by a constant, which is tailored for constraint satisfaction problems, but is not the setting of lattice enumeration. To tackle enumeration, we add basic tools such as binary tree conversion and dichotomy: we obtain that if a lattice enumeration (with or without cylinder pruning) searches over a tree with T nodes, the best solution can be found by a quantum algorithm using roughly ? T poly-time operations, where there is a polynomial overhead, which can be decreased if one is only interested in finding one solution. This formalizes earlier brief remarks of [START_REF] Alkim | Postquantum key exchange -A new hope[END_REF][START_REF] Del Pino | The whole is less than the sum of its parts: Constructing more efficient lattice-based AKEs[END_REF]ABB `17] and applies to both SVP and CVP.

Our main result is that the quantum quadratic speed-up also applies to the recent discrete pruning enumeration introduced by Aono and Nguyen [START_REF] Aono | Random sampling revisited: Lattice enumeration with discrete pruning[END_REF] as a generalization of Schnorr's sampling algorithm [START_REF] Peter | Lattice reduction by random sampling and birthday methods[END_REF]. To do so, we tweak discrete pruning and use an additional quantum algorithm, namely that of Ambainis and Kokainis [START_REF] Ambainis | Quantum algorithm for tree size estimation, with applications to backtracking and 2-player games[END_REF] from STOC '17 to estimate the size of trees. Roughly speaking, given a parameter T , discrete pruning selects T branches (optimizing a certain metric) in a larger tree, and derives T candidate short lattice vectors from them. Our quantum variant directly finds the best candidate in roughly ? T operations. As mentioned previously, we show that the quadratic speed-up of both enumerations also applies to the extreme pruning setting (required to exploit the full power of pruning): if one runs cylinder pruning over m trees, a quantum enumeration can run in ? T poly-time operations where T is the sum of the m numbers of nodes, rather than ? mT naively; and there is a similar phenomenon for discrete pruning.

Enumeration algorithms are an instance of the general algorithmic technique called branch and bound. After our paper, [START_REF] Montanaro | Quantum speedup of branch-and-bound algorithms[END_REF] proposed a quantum speedup of branch and bound algorithms which basically uses the same ingredients as in Section 5.5.

As a side result, we develop two tweaks to discrete pruning [START_REF] Aono | Random sampling revisited: Lattice enumeration with discrete pruning[END_REF], to make it more powerful and more efficient. The first tweak enables to solve CVP in such a way that most of the technical tools introduced in [AN17] can be reused. This works for the approximation form of CVP, but also its exact version formalized by the Bounded Distance Decoding problem (BDD), which appears in many cryptographic applications such as LWE. In BDD, the input is a lattice basis and a lattice point shifted by some small noise whose distribution is crucial. We show how to handle the most important noise distributions, such as LWE's Gaussian distribution and finite distributions used in GGH [START_REF] Goldreich | Public-key cryptosystems from lattice reduction problems[END_REF] and lattice attacks on DSA [START_REF] Phong | The insecurity of the digital signature algorithm with partially known nonces[END_REF]. Enumeration, which was historically only described for SVP, can trivially be adapted to CVP, and so does [START_REF] Gama | Lattice enumeration using extreme pruning[END_REF]'s cylinder pruning [START_REF] Liu | Solving BDD by enumeration: An update[END_REF]. However, discrete pruning [START_REF] Aono | Random sampling revisited: Lattice enumeration with discrete pruning[END_REF] appears to be less simple.

The second tweak deals with the selection of optimal discrete pruning parameters, and is crucial for our quantum variant. Intuitively, given an integer T ą 0, the problem is to find the T "best" integral vectors t P N n which minimize some objective function f ptq. Aono and Nguyen [START_REF] Aono | Random sampling revisited: Lattice enumeration with discrete pruning[END_REF] introduced a fast practical algorithm to do so for a very special useful choice of f , but the algorithm was heuristic: no good bound on the running time was known. We show that their algorithm can actually behave badly in the worst case, i.e. it may take exponential time. But we also show that by a careful modification, the algorithm becomes provably efficient and even optimal for that f , and heuristically for more general choices of f : the running time becomes essentially T operations.

Our theoretical analysis has been validated by experiments, which shows that in practical BDD situations, discrete pruning is as efficient as cylinder pruning. Since discrete pruning has interesting features (such as an easier parallelization and an easier generation of parameters), it might become the method of choice for large-scale blockwise lattice reduction.

Better Quantum and Classical Algorithms for the Random Subset Sum Problem

In Chapter 6, we improve classical and quantum subset sum algorithms based on representations. Such algorithms work by representing the knapsack solution in many different ways, as a sum of vectors in t0, 1u n or t´1, 0, 1u n . See Section 6.1 for more details. We write these algorithms as sequences of "merge-and-filter" operations, where lists of subknapsacks are first merged with respect to an arbitrary constraint, then filtered to remove the subknapsacks that cannot be part of a solution.

First, we propose a more time-efficient classical subset-sum algorithm based on representations. We relax the constraints of BCJ and introduce "2"s in the representations, obtaining a better time complexity exponent of 0.283.

Most of our contributions concern quantum algorithms. As a generic tool, we introduce quantum filtering, which speeds up the filtering of representations with a quantum search. We use this improvement in all our new quantum algorithms.

We give an improved quantum walk based on quantum filtering and our extended t´1, 0, 1, 2u representations. Our best runtime exponent is 0.216, under the quantum walk update heuristic of [START_REF] Helm | Subset sum quantumly in 1.17 n[END_REF], which uses the average update time rather than the worst update time in the MNRS quantum walk framework. Next, we show how to overcome this heuristic, by designing a new data structure for the vertices in the quantum walk, and a new update procedure with guaranteed time. We remove this heuristic from the previous algorithms [START_REF] Daniel | Quantum algorithms for the subset-sum problem[END_REF][START_REF] Helm | Subset sum quantumly in 1.17 n[END_REF] with no additional cost. However, we find that removing it from our quantum walk increases its cost to 0.218.

All previously known quantum algorithms for the subset sum problems use quantum walks on Johnson graphs, thus require quantum memory with quantum random access (QRAQM). No quantum algorithms using a weaker quantum memory model, such as classical memory with quantum random access (QRACM) was known. We devise a new quantum subset-sum algorithm based on HGJ, with time r O `20.236n ˘. It is the first quantum time speedup on classical algorithms that is not based on a quantum walk. The algorithm performs instead a depth-first traversal of the HGJ tree, using quantum search as its only building block. Hence, by construction, it does not require the additional heuristic of [START_REF] Helm | Subset sum quantumly in 1.17 n[END_REF] and it only uses QRACM, giving also the first quantum time speedup for subset-sum in this memory model.

A summary of our contributions is given in Table 1.32 . All these complexity exponents are obtained by numerical optimization. Our code is available at https://github.com/xbonnetain/optimization-subset-sum .

Other Work

During my PhD studies, I was also involved in another project that has resulted into a publication. In a joint work with Ambainis et al [ABI `20], we studied the quantum query complexity of the two following problems:

Quantum complexity of regular languages. Consider the problem of recognizing whether an n-bit string belongs to a given regular language. This models a variety of Table 1.3: Time exponents of previous and new algorithms for subset-sum, classical and quantum, rounded upwards. We note that the removal of Heuristic 6.17 in [START_REF] Daniel | Quantum algorithms for the subset-sum problem[END_REF][START_REF] Helm | Subset sum quantumly in 1.17 n[END_REF] comes from our new analysis in Section 6.6.5. QW: Quantum Walk. QS: Quantum Search. CF: Constraint filtering (not studied in this thesis). QF: Quantum filtering. computational tasks that can be described by regular languages. In the quantum case, the most commonly used model for studying the complexity of various problems is the query model. For this setting, Aaronson, Grier and Schaeffer [START_REF] Scott Aaronson | A quantum query complexity trichotomy for regular languages[END_REF] recently showed that any regular language L has one of three possible quantum query complexities on inputs of length n: Θp1q if the language can be decided by looking at Op1q first or last symbols of the word; Θp ? nq if the best way to decide L is Grover's search (for example, for the language consisting of all words containing at least one letter a); Θpnq for languages in which we can embed counting modulo some number p which has quantum query complexity Θpnq.

As shown in [START_REF] Scott Aaronson | A quantum query complexity trichotomy for regular languages[END_REF], a language being of complexity Õp ? nq (which includes the first two cases above) is equivalent to it being star-free. Star-free languages are defined as the languages which have regular expressions not containing the Kleene star (if it is allowed to use the complement operation). Star-free languages are one of the most commonly studied subclasses of regular languages and there are many equivalent characterizations of them. One of the star-free languages mentioned in [START_REF] Scott Aaronson | A quantum query complexity trichotomy for regular languages[END_REF] is the Dyck language (with one type of parenthesis) with a constant bounded height. The Dyck language is the set of balanced strings of parentheses (and). If at no point the number of opening parentheses exceeds the number of closing parentheses by more than k, we denote the problem of determining if an input of length n belongs to this language by Dyck k,n . The language is a fundamental example of a context-free language that is not regular. When more types of parenthesis are allowed, the famous Chomsky-Schützenberger representation theorem shows that any context-free language is the homomorphic image of the intersection of a Dyck language and a regular language.

Our results. We show that an exponential dependence of the complexity on k is unavoidable. Namely, for the balanced parentheses language:

• there exists c ą 1 such that, for all k ď log n, the quantum query complexity is Ωpc k ? nq;

• if k " c log n for an appropriate constant c, the quantum query complexity is Ωpn 1´ε q.

Thus, the exponential dependence on k is unavoidable and distinguishing sequences of balanced parentheses of length n and depth log n is almost as hard as distinguishing sequences of length n and arbitrary depth.

Similar lower bounds have recently been independently proven by Buhrman et al. [START_REF] Buhrman | The quantum strong exponential-time hypothesis[END_REF]. Additionally, we give an explicit algorithm for the decision problem Dyck k,n with O `?nplog nq 0.5k ˘quantum queries. The algorithm also works when k is not a constant and is better than the trivial upper bound of n when k " o ´logpnq log log n ¯.

Finding paths on a grid. The second problem that we consider is graph connectivity on subgraphs of the 2D grid. Consider a 2D grid with vertices pi, jq, i P t0, 1, . . . , nu, j P t0, 1, . . . , ku and edges from pi, jq to pi `1, jq and pi, j `1q. The grid can be either directed (with edges in the directions of increasing coordinates) or undirected. We are given an unknown subgraph G of the 2D grid and we can perform queries to variables x u (where u is an edge of the grid) defined by x u " 1 if u belongs to G and 0 otherwise. The task is to determine whether G contains a path from p0, 0q to pn, kq.

Our interest in this problem is driven by the edit distance problem. In the edit distance problem, we are given two strings x and y and have to determine the smallest number of operations (replacing one symbol by another, removing a symbol or inserting a new symbol) with which one can transform x to y. If |x| ď n, |y| ď k, the edit distance is solvable in time Opnkq by dynamic programming [START_REF] Robert | The string-to-string correction problem[END_REF]. If n " k then, under the strong exponential time hypothesis (SETH), there is no classical algorithm computing edit distance in time Opn 2´ε q for ε ą 0 [BI15] and the dynamic programming algorithm is essentially optimal.

However, SETH does not apply to quantum algorithms. Namely, SETH asserts that there is no algorithm for general instances of SAT that is substantially better than naive search. Quantumly, a simple use of Grover's search gives a quadratic advantage over naive search. This leads to the question: can this quadratic advantage be extended to edit distance (and other problems that have lower bounds based on SETH)?

Since edit distance is quite important in classical algorithms, the question about its quantum complexity has attracted a substantial interest from various researchers. Boroujeni et al. [BEG `18] invented a better-than-classical quantum algorithm for approximating the edit distance which was later superseded by a better classical algorithm of [CDG `18]. However, there has been no quantum algorithms computing the edit distance exactly (which is the most important case).

The main idea of the classical algorithm for edit distance is as follows:

• We construct a weighted version of the directed 2D grid (with edge weights 0 and 1) that encodes the edit distance problem for strings x and y, with the edit distance being equal to the length of the shortest directed path from p0, 0q to pn, kq.

• We solve the shortest path problem on this graph and obtain the edit distance.

As a first step, we can study the question of whether the shortest path is of length 0 or more than 0. Then, we can view edges of length 0 as present and edges of length 1 as absent. The question "Is there a path of length of 0?" then becomes "Is there a path from p0, 0q to pn, kq in which all edges are present?". A lower bound for this problem would imply a similar lower bound for the shortest path problem and a quantum algorithm for it may contain ideas that would be useful for a shortest path quantum algorithm.

Our results. We use our lower bound on the balanced parentheses language to show an Ωpn 1.5´ε q lower bound for the connectivity problem on the directed 2D grid. This shows a limit on quantum algorithms for finding edit distance through the reduction to shortest paths. More generally, for an n ˆk grid (n ą k), our proof gives a lower bound of Ωpp ? nkq 1´ε q. The trivial upper bound is Opnkq queries, since there are Opnkq variables. There is no nontrivial quantum algorithm, except for the case when k is very small. Then, the connectivity problem can be solved with Op ? n log k nq quantum queries [Kl , e17]3 but this bound becomes trivial already for k " Ωp log n log log n q. For the undirected 2D grid, we show a lower bound of Ωppnkq 1´ε q, whenever k ě log n. Thus, the naive algorithm is almost optimal in this case. We also extend both of these results to higher dimensions, obtaining a lower bound of Ωppn 1 n 2 . . . n d q 1´ε q for an undirected n 1 ˆn2 ˆ. . . ˆnd grid in d dimensions and a lower bound of Ωpn pd`1q{2´ε q for a directed n ˆn ˆ. . . ˆn grid in d dimensions.

In a recent work, an Ωpn 1.5 q lower bound for edit distance was shown by Buhrman et al. [START_REF] Buhrman | The quantum strong exponential-time hypothesis[END_REF], assuming a quantum version of the Strong Exponential Time hypothesis (QSETH). As part of this result they give an Ωpn 1.5 q query lower bound for a different path problem on a 2D grid. Then QSETH is invoked to prove that no quantum algorithm can be faster than the best algorithm for this shortest path problem. Neither of the two results follow directly one from another, as different shortest path problems are used.

Chapter 2 Preliminaries

Basic Notations

N is the set of non negative integers. Z is the set of integers. R is the set of real numbers. C is the set of complex numbers. Z n is the ring of residue classes modulo n. The vectors are written in bold. For any finite set U , its number of elements is #U . For any measurable subset S Ď R n , its volume is volpSq. The Euclidean norm of a vector v P R n is }v}. We denote by B n pc, Rq the n-dimensional Euclidean ball of radius R and center c, whose volume is volpB n pRqq " R n π n{2 Γpn{2`1q . If c is omitted, we mean c " 0. The distance between a point x and a set S is defined by distpx, Sq :" inft}x ´y} : y P Su. We denote by Epq the expectation and Vpq the variance of a random variable. We denote by ln the natural logarithm and log the logarithm in base 10. We make frequent use of the usual o and O notation for asymptotics. We also use the soft-O notation that removes polylogarithmic factors: f pnq " r Opgpnqq if and only if Dk P N such that f pnq " Opgpnq log k pgpnqqq. The Hamming weight of a vector e P R n is the number of coefficients that are different from the zero.

Quantum Computing

0 Image from SMBC's "The Talk" and Scott Aaronson.

Introduction

In this thesis, when it comes to quantum algorithms, we always assume that we are working in some Hilbert space H of some finite-dimension n, and we use Dirac's bra-ket notation. A vector x " px 1 , ¨¨¨, x n q P H is denoted as |xy " Σ i x i |iy, where p|iyq iPt0,¨¨¨,n´1u is the canonical basis of H . This notation comes from the inner product xx|yy, which can be seen as a linear form xx| applied to a vector |yy.

A qubit is a unit vector in the Hilbert space C 2 with two basis vectors t|0y, |1yu. It can be denoted as |φy " α 0 |0y `α1 |1y, where α 0 , α 1 are complex numbers such that |α 0 | 2 `|α 1 | 2 " 1. We can measure |φy in the basis t|0y, |1yu, this will output |0y with probability |α 0 | 2 and |1y with probability |α 1 | 2 . The α i 's are called the amplitudes of the |iy's in |φy.

We can combine different Hilbert spaces using tensor product: if |0y, |1y, ¨¨¨, |n ´1y are an orthonormal basis of space H A and |0y, |1y, ¨¨¨, |m ´1y are an orthonormal basis of space H B , then the tensor product space H " H A b H B is an nm-dimensional space spanned by the set of states t|iy b |jy | i P t0, ¨¨¨, n ´1u, j P t0, ¨¨¨, m ´1uu. We often write |iy|jy instead of |iy b |jy for convenience. This allows us to consider systems with n qubits in the Hilbert space C 2 n " pC 2 q bn . Intuitively, a quantum state in this space can be viewed as a superposition of the 2 n possible values of n classical bits. More formally, a quantum state |φy is of the form ř w"w 1 ¨¨¨wnPt0,1u n α w |wy where |wy " |w 1 y b ¨¨¨b |w n y. We can measure |φy in the basis p|wyq w"w 1 ¨¨¨wnPt0,1u n which is called the computational basis: it will output |wy with probability |α w | 2 .

Instead of measuring |φy, we can also apply some operation to it and change it to some other state |ψy " ř i β i |iy. Quantum mechanics only allows unitary operators. Any unitary transformation is a reversible operation. For a unitary operator U , we denote by U : its conjugate transpose. Since U is unitary, U : " U ´1. This quantum reversible computation may seem at odds with how we define classical circuits, using irreversible gates such as OR and AND. But in fact, any classical computation can be made reversible by replacing any irreversible gate x Þ Ñ f pxq by the reversible gate px, yq Þ Ñ px, y `f pxqq, and running it on the input px, 0q and producing px, f pxqq. In other words, we can make classical computation reversible by storing all intermediate steps of the computation. This modification is not free of cost, as Corollary 2.2 shows.

Quantum gates.

In the following, we present some elementary quantum unitary operators that acts on a small number of qubits. We call them quantum gates and they can be represented by matrices in the canonical basis |0y, |1y. The Hadamard gate is The Toffoli gate, a three-qubit gate, is defined for any a, b, c P t0, 1u by Toffoli|ay|by|cy "

H " 1 ? 2 and
|ay|by|1 ' cy if a " b " 1; |ay|by|cy otherwise.
Universality. It is known that the set of all 1-qubit operations together with the 2-qubit CNOT gate is universal, meaning that any unitary operator can be built from these gates. However, in practice, we cannot build all 1-qubit operators to infinite precision since there are continuously many of them. We restrict ourselves to a universal set of gates in the sense of approximation, meaning that any unitary can be approximated arbitrarily well using only these gates. This is the case for the set of gates H, CNOT and T. The Toffoli gate together with ancilla preparation is universal for classical computation. This means that any classical circuit can be implemented by a quantum one. It comes from the fact that the NAND gate is universal for classical computing and can be implemented by a Toffoli gate: Toffoli|ay|by|1y " |ay|by|NANDpa, bqy. However, the total number of quantum elementary gates used can be higher than the classical one because of the reversibility of the quantum computation (see Corollary 2.2).

Quantum circuit model.

In the quantum circuit model, the time complexity is the circuit size, which is the total number of elementary quantum gates. The space complexity is the number of qubits used. We will assume that the elementary quantum gates come from a fixed universal set. Up to constant factors, the complexity does not depend on the universal set that we have chosen.

Given a function f : t0, 1u n Ñ t0, 1u m , we say that a quantum circuit, implementing a unitary U that acts on n ` `m qubits, computes f with probability α if for every x, a measurement on the last m qubits of U |xy ˇˇ0 D |0 m y outputs f pxq with probability at least α. The exact location of the qubits that we measure for the output actually does not matter, since we can also apply SWAP gates (implementable by elementary gates) to swap them to the m last positions. The extra qubits that are not part of the input/output are called ancilla qubits (or work space).

Quantum query model. We sometimes use the standard form of the quantum query model: given a unitary O, we say that a circuit computes f with oracle access to O if by augmenting the model with the unitary O, we can construct a circuit computing f . The number of queries on O is the number of unitary O in the circuit. If we find an efficient algorithm for a problem in query complexity and we are given an explicit circuit realizing the black-box transformation of the oracle O, we will have an efficient algorithm for an explicit computational problem.

Quantum algorithm. So far, we have focused on circuits computing a function with a fixed inputs/outputs size. In general, the input/output size of a problem is not fixed and we need a family of circuits. Furthermore, it is common to alternate between phases of classical computations and quantum computations. In principle, it is always possible to turn a classical computation into a quantum one and combine all quantum algorithms into one quantum circuit with a single measurement at the end. Nevertheless, this transformation has a non-negligible cost (Corollary 2.2) that we want to avoid.

We say that a quantum algorithm computes a function F : t0, 1u ˚Ñ t0, 1u ˚with probability α if there is a classical algorithm A with quantum evaluation that outputs F pwq with probability α on input w. By quantum evaluation we mean that the algorithm can, any number of times during the computation, build a quantum circuit and evaluate it, that is measure the state U |0y where U is the unitary implemented by the circuit. The time complexity T pnq is the classical time complexity of A plus the time complexity of the circuits (that is the number of gates). The classical space complexity Spnq is the space complexity of A (ignoring quantum evaluations). The quantum space complexity Qpnq is the maximal space complexity of all circuits (that is the maximum number of qubits used). In the natural way, we say that a quantum algorithm has oracle access to O if it produces circuits with oracle access to O. The query complexity of the algorithm is the sum of the query complexity of the circuits.

It is sometimes necessary to consider relations instead of functions, for instance in search problems where there are several possible answers. Given a relation R Ď t0, 1u ˚ˆt0, 1u ˚, we say a quantum algorithm solves the relation problem R with probability α if there is a quantum algorithm computing a function F : t0, 1u ˚Ñ t0, 1u ˚with probability α such that px, F pxqq P R for all inputs x. Now that the quantum model of computation is properly defined, we can express the fact that every classical computation can be implemented by a quantum computer, although at a non-negligible cost.

Theorem 2.1 [START_REF] Bennett | Time/space trade-offs for reversible computation[END_REF][START_REF] Levin | A note on bennett's time-space tradeoff for reversible computation[END_REF]). Given any ε ą 0 and any classical computation with running time T and space complexity S, there exists an equivalent reversible classical computation with running time OpT 1`ε {S ε q and space complexity OpSp1 `lnpT {Sqqq.

Corollary 2.2. Given any ε ą 0 and any classical computation with running time T and space complexity S, there exists an equivalent quantum circuit of size OpT 1`ε {S ε q using OpSp1 `lnpT {Sqqq qubits. Quantum Errors. Quantum algorithms are probabilistic in nature and therefore prone to return wrong results with small probability. But quantum circuits also suffer from two more intrinsic sources of errors in quantum circuits: universal gates approximation and noise. Recall that a set of gate is universal if any unitary operator can be approximated arbitrarily well. Hence, by definition, a quantum circuit built from universal gates will only be an approximation of the true transformation that we analyze. Furthermore, quantum circuits do not exist in isolation and are subject to decoherence when interacting with their environments. This process, as well as other quantum noises, can be modeled by several types of faults or noise and is the subject of active research. See e.g. [START_REF] Hann | The resilience of quantum random access memory to generic noise[END_REF] for example for a study on the effects of decoherence on QRACM (defined in the next section) in full generality. One important question in this area is whether one can build efficient quantum error correction to achieve fault-tolerant quantum computations (see e.g. [START_REF] Gottesman | An introduction to quantum error correction and faulttolerant quantum computation[END_REF] for an introduction on this topic). In this thesis, we will ignore all errors in quantum circuits. This assumption is justified by the theoretical nature of the problems studied and the fact that the cost of error correction is negligible compared to the cost of our algorithms (which is always exponential).

Access to Memory

All the quantum algorithms considered in this thesis run in the quantum circuit model. "Baseline" quantum circuits are simply built using a universal quantum gate set. A requirement for many quantum algorithms to process data efficiently is to be able to access classical data in quantum superposition. Such algorithms use quantum random-access memory, often denoted as qRAM, and require the circuit model to be augmented with the so-called "qRAM gate". These qRAM gates are assumed to have a time complexity polylogarithmic in the amount of classical data stored, so that each call is not time consuming. This model is inspired by the classical RAM model where we usually assume memory access in time Op1q. Algorithms for subset-sum, lattice sieving and generic decoding problem using qRAM gates achieve time speedups with respect to their classical counterparts.

Given an input register 1 ď i ď r, which represents the index of a memory cell, and many quantum registers |x 1 , . . . x r y, which represent stored data, the qRAM gate fetches the data from register x i , possibly in superposition:

|iy|x 1 , . . . x r y|yy Þ Ñ |iy|x 1 , . . . x r y|y ' x i y .
This then enables various quantum data structures, such as the ones depicted in [START_REF] Daniel | Quantum algorithms for the subset-sum problem[END_REF] and [START_REF] Ambainis | Quantum Walk Algorithm for Element Distinctness[END_REF], with fast access, even if the queries and the data are superpositions. Following the terminology of [START_REF] Kuperberg | Another subexponential-time quantum algorithm for the dihedral hidden subgroup problem[END_REF], we consider three types of qRAMs:

• If the input i is classical, then this is the plain quantum circuit model. We can implement it using a universal quantum gate set.

• If the x j are classical, we have classical memory with quantum random access (QRACM). The qRAM gate becomes |iy|yy Þ Ñ |iy|y ' x i y .

• In general, we have quantum memory with quantum random access (QRAQM). This is the most powerful quantum memory model where the data are also in superposition.

It is possible to implement a QRACM using a universal quantum gate set, albeit at a considerable cost. Given a classical data set tx 1 , ¨¨¨, x r u, one can construct, in time Õprq, a circuit using Õprq qubits that implements a QRACM for this data set. The obtained circuit then allows query in the form |iy|yy Þ Ñ |iy|y ' x i y and has circuit depth Oppolylogprqq [GLM08, KP20, MGM20, HLGJ20]. To the best of our knowledge, no physical architecture of circuit depth Oppolylogprqq has been proposed for the QRAQM model. Note that even low depth implementation of QRACM has at least Ωprq gates, hence has time complexity at least Ωprq by our definition. Therefore, the assumption that the qRAM gates have time complexity polylogprq is very strong and corresponds to parallel evaluation of the circuit.

All known quantum algorithms for subset-sum with a quantum time speedup over the best classical one require QRAQM. For comparison, speedups on heuristic lattice sieving algorithms exist in the QRACM model [START_REF] Laarhoven | Finding shortest lattice vectors faster using quantum search[END_REF][START_REF] Kirshanova | Quantum algorithms for the approximate k-list problem and their application to lattice sieving[END_REF], including the best one to date [START_REF] Laarhoven | Search problems in cryptography[END_REF].

Quantum Search

One of the most well-known quantum algorithms is Grover's unstructured search algorithm [START_REF] Lov | A Fast Quantum Mechanical Algorithm for Database Search[END_REF]. Suppose we have a set of objects named t0, 1, . . . , N ´1u, of which some are targets. We say that an oracle O identifies the targets if, in the classical (resp. quantum) setting, Opiq " 1 (resp. O|iy " ´|iy) when i is a target and Opiq " 0 (resp. O|iy " |iy) otherwise. Given such an oracle O, the goal is to find a target j P t0, 1, . . . , N ´1u by making queries to the oracle O. Note that this is a relation problem.

It is very common in quantum search problems to assume that the oracle identifies targets by swapping the phase: O|iy " p´1q b i |iy where b i " 1 for targets and b i " 0 for other objects. At the same time, many quantum algorithms1 (and QRACM in particular) provide a transformation O 1 such that O 1 |iy|0y " |iy|b i y. The latter can always be transformed into the former by applying O 1 to the state |´y " 1 ? 2 p|0y ´|1yq and discarding the second qubit. In the search problem, one tries to minimize the number of queries to the oracle. In the classical case, one needs OpN q queries to solve such a problem. Grover, on the other hand, provides a quantum algorithm, that solves the search problem with only Op ? N q queries [Gro96b] when there is one target, and Op a N {tq when there are exactly t targets. When the number of targets is unknown, Brassard et al. [START_REF] Boyer | Tight Bounds on Quantum Searching[END_REF] provided a modified Grover algorithm that solves the search problem with Op a N {tq expected queries and Op ? N q queries in the worst case with some arbitrarily small probability of failure. Furthermore, virtually all quantum search algorithms not only return a solution to the search problem, but one solution among the t possibilities, uniformly at random. This property can be used to find all solutions (see Remark 2.5). We present here a generalization of Grover's algorithm called amplitude amplification [START_REF] Brassard | Quantum amplitude amplification and estimation[END_REF].

Theorem 2.3 (Amplitude amplification, from [START_REF] Brassard | Quantum amplitude amplification and estimation[END_REF]). Suppose we have a set of N objects of which some are targets. Let O be a quantum oracle that identifies the targets. Let A be a quantum circuit using no intermediate measurements, ie A is reversible. Let a be the initial success probability of A, that is the probability that a measurement of A|0y outputs a target. There exists a quantum algorithm that calls O ´a1{a ¯times A, A : and O, uses as many qubits as A and O, and outputs a target with probability greater than 1 ´a.

Grover's algorithm is a particular case of this theorem where A produces a uniform superposition of all objects, in which case a " 1 N . The theorem then states that we can find a target with probability 1 ´1 N using Op ? N q calls to the oracle O f . As we will use quantum search as a subprocedure, we make some remarks to justify that, up to additional polynomial factors in time, we can consider it runs with no errors and allows to return all the solutions efficiently.

Remark 2.4 (Error in a sequence of quantum searches). Throughout this thesis, we will assume that a quantum search in a search space of size S with T solutions runs in exact time a S{T . In practice, there is a constant overhead, but since S and T are always exponential for the problems considered in this thesis, the difference is negligible. Furthermore, this is a probabilistic procedure and it will return a wrong result with a probability of the order a T {S. As we can test if an error occurs, by checking if the returned object is marked, we can make it negligible by redoing the quantum search polynomially many times.

Remark 2.5 (Finding all solutions). Assume that a quantum search algorithm returns a solution among the T possibilities, selected uniformly at random. Finding all solutions is then an instance of the coupon collector problem with T coupons [START_REF] Newman | The double dixie cup problem[END_REF]; all coupons are collected after OpT logpT qq trials on average. However, in the QRACM model, this logarithmic factor disappears: we can run the search of Lemma 2.3 with a new test function that returns 0 if the output of A is incorrect, or if it is correct but has already been found. The change to the runtime is negligible, and thus, we collect all solutions with only OpT q searches. It is also possible to find the minimum of a set of elements stored in the QRACM model using less queries than in the classical case.

Theorem 2.6 ([DH96], Theorem 1). Let O be a quantum oracle such that O|iy|0y " |iy|x i y for some N numbers x 1 , . . . , x N . Then there exists a quantum algorithm that finds an index j such that x j is the minimum among all x i with probability at least 1{2 and with Op ? N q queries to O.

In particular, the assumption of the previous theorem can immediately be satisfied in the QRACM model, by using a qRAM to store x 1 , . . . , x N .

Quantum Walk Algorithms

Quantum walks can be used to generalize quantum search. They allow to obtain polynomial speedups on many partially structured problems, with sometimes optimal results (e.g. Ambainis' algorithm for element distinctness [START_REF] Ambainis | Quantum Walk Algorithm for Element Distinctness[END_REF]). In this section, we will consider walks in the MNRS framework [START_REF] Magniez | Search via quantum walk[END_REF].

Let G " pV, Eq be an undirected, connected, regular2 graph, such that some vertices of G are "marked". Let ε be the fraction of marked vertices, that is a vertex chosen uniformly at random has a probability ε of being marked. The eigenvalues of a graph are the eigenvalues of its adjacency matrix. Let δ be the spectral gap of G, which is defined as the difference between its two largest eigenvalues.

In a classical random walk on G, we can start from any vertex and reach the stationary distribution in approximately 1 δ random walk steps. Then, such a random vertex is marked with probability ε. Assume that we have a procedure Setup that samples a uniform vertex to start with in time S, Check that verifies if a vertex is marked or not in time C and Update that performs a walk step in time U, then we will have found a marked vertex in expected time S `1 ε `1 δ U `C˘. Quantum walks reproduce the same process, except that their internal state is not a vertex of G, but a superposition of vertices. The walk starts in the uniform superposition ř vPV |vy, which must be generated by the quantum version of the Setup procedure. It repeats a 1{ε iterations using U and C that, similarly to amplitude amplification, move the amplitude towards the marked vertices. An update produces, from a vertex, the superposition of its neighbors. Each iteration does not need to repeat 1 δ vertex updates and, instead, takes a time equivalent to a 1{δ updates to achieve an almost uniform distribution.

Theorem 2.7 (Quantum walk [START_REF] Magniez | Search via quantum walk[END_REF]). Let G " pV, Eq be a regular graph with spectral gap δ ą 0. Let ε ą 0 be a lower bound on the probability that a vertex chosen uniformly at random of G is marked. For a random walk on G, let S, U, C be the setup, update and checking cost. Then there exists a quantum algorithm that with constant probability finds a marked vertex in time

S `1 ? ε ˆ1 ? δ U `C˙.

Quantum Walk on Trees

In the MNRS framework, the graph is assumed to be known in advance, and moreover the initial state of the quantum walk is the stationary distribution of the corresponding random walk. Since the graph is also assumed to be regular for our purposes, the stationary distribution is simply the uniform distribution among all vertices.

Here we would like to use quantum walks in a context where the input graph is a tree defined implicitly by a backtracking algorithm and hence is not known in advance, and where the walk starts at the root of the tree. Furthermore, the tree may no longer be regular. Quantum Tree Algorithms. We consider a tree T of an unknown structure with a given root r, to which we are given local classical or quantum query access in the following way:

1. we are given an oracle which, given a node v, returns the number of children dpvq for this node (if dpvq " 0, v is called a leaf); 2. we are given an oracle which, given a node v and i P rdpvqs, returns the i-th child of v.

We denote by V pT q its set of nodes, LpT q its set of leaves, dpT q " max vPV pT q dpvq its degree and npT q an upper-bound of its depth. When there is no ambiguity, we use d and n directly without the argument T . We also denote by #T the number of nodes of the tree T . Trees of unknown structure can come up in backtracking algorithms. Backtracking is a classical algorithm for solving problems such as constraint satisfaction problems (CSP), by performing a tree search in depth-first order. For CSP, each node represents a partial assignment and its children say how to extend this partial assignement. There is an oracle P : V pT q Ñ ttrue, f alse, indeterminateu verifying whether the constraint is satisfied, such that Ppvq P ttrue, f alseu iff v is a leaf. A node v P V pT q is called marked if Ppvq " true. Here, T is the tree corresponding to a backtracking algorithm listing all solutions of the CSP. Note however, that a classical backtracking algorithm might find a solution in substantially less than #T steps. Montanaro [START_REF] Montanaro | Quantum walk speedup of backtracking algorithms[END_REF] studied the quantum case:

Theorem 2.8 ([Mon15]

). There is a quantum algorithm ExistSolutionpT , T, P, n, εq which given ε ą 0, a tree T such that dpT q " Op1q, a black box function P, and upper bounds T and n on the number of nodes and the depth of T , determines if T contains a marked node by making Op ? T n logp1{εqq queries to T and to the black box function P, with a probability of correct answer ě 1 ´ε. It uses Op1q auxiliary operations per query and uses polypnq qubits.

Theorem 2.9 ([Mon15]

). There is a quantum algorithm FindSolutionpT , P, n, εq which, given ε ą 0, a tree T such that dpT q " Op1q, a black box function P, and an upper bound n on the depth of T , outputs x such that Ppxq is true, or "not found" if no such x exists by making Op ? #T n 3{2 logpnq logp1{εqq queries to T and to the black box function P, with correctness probability at least 1 ´ε. It uses Op1q auxiliary operations per query and uses polypnq qubits.

Notice that Th. 2.9 does not require an upper-bound on #T as input.

Remark 2.10. Montanaro's algorithm has the following drawback. Since classical backtracking algorithms are usually optimized to search the most promising branches first, a classical search algorithm may find a marked vertex after examining T 1 ! #T nodes of the tree. Since the running time of Montanaro's algorithm depends on #T , the quantum speedup that it achieves can be much less than quadratic (or there might be no speedup at all). This problem is dealt with in [START_REF] Ambainis | Quantum algorithm for tree size estimation, with applications to backtracking and 2-player games[END_REF] where the authors give a quantum algorithm making Õp ? T 1 n 3{2 q queries to find one marked node, where T 1 is the number of nodes actually visited by the classical algorithm. We will not need this improved algorithm in this thesis.

Remark 2.11. A unified framework for quantum walk has recently been proposed in [START_REF] Apers | A unified framework of quantum walk search[END_REF] where both the MNRS quantum walk framework and the quantum backtracking algorithms on trees are included. Ambainis and Kokainis [START_REF] Ambainis | Quantum algorithm for tree size estimation, with applications to backtracking and 2-player games[END_REF] gave a quantum algorithm to estimate the size of a tree, under the same local black box query access model, with input a tree T and a candidate upper bound T 0 on #T . The algorithm must output an estimate for #T , i.e. either a number of T ď T 0 or a claim "T contains more than T 0 vertices". The estimate is δ-correct if:

1. the estimate is T ď T 0 which satisfies |T ´T | ď δT where T is the actual number of vertices;

2. the estimate is "T contains more than T 0 vertices" and the actual number of vertices T satisfies p1 `δqT ą T 0 .

An algorithm solves the tree size estimation problem up to precision 1 ˘δ with correctness probability at least 1 ´ε if for any T and any T 0 , the probability that it outputs a δ-correct estimate is at least 1 ´ε.

Theorem 2.12 ([AK17]

). There is a quantum algorithm TreeSizeEstimationpT , T 0 , δ, εq which, given ε ą 0, a tree T , and upper bounds d and n on the degree and the depth of T , solves tree size estimation up to precision 1 ˘δ, with correctness probability at least 1 ´ε.

It makes O

´?nT 0 δ 1.5 d log 2 p 1 ε q ¯queries to T and OplogpT 0 qq non-query gates per query. The algorithm uses polypn, logpdq, logpT 0 q, logpδq, logplogp1{εqqq qubits.

Probability

Probability distributions. Given two random variables X and Y on a set E, we denote by d SD the statistical distance between X and Y , which is defined by

d SD pX, Y q " 1 2 ÿ zPE ˇˇPr X rX " zs ´Pr Y rY " zs ˇ" ÿ zPE : Pr X rX"zsąPr Y rY "zs ´Pr X rX " zs ´Pr Y rY " zs ¯.
We write X is ε-close to Y to denote that the statistical distance between X and Y is at most ε. Given a finite set E, we denote by U E a uniform random variable on E, i.e. for all x P E,

Pr U E rU E " xs " 1 |E| .
Data processing inequality. When analyzing the output distribution of an algorithm, it is often convenient to assume that the input distribution is ideal (e.g. uniform). On the other hand, we will want to run the algorithm on non-ideal input distribution (e.g. with a slight deviation from uniform). In this case, the output distribution will deviate from the ideal output distribution and it is important to quantify this divergence. The statistical distance satisfies the following useful inequality, known as the data processing inequality:

d SD pf pXq, f pY qq ď d SD pX, Y q
for any two distributions X and Y and any (possibly randomized) algorithm f . In other words, the error does not increase under the application of f .

Gaussian distribution.

The cumulative distribution function (CDF) of the Gaussian distribution of expectation 0 and variance σ 2 is 1 2 p1 `erfp x σ ?

2 qq where the error function is erfpzq :" 2 ? π ş z 0 e ´t2 dt. The multivariate Gaussian distribution over R m of parameter σ selects each coordinate with a Gaussian distribution.

We need the following lemma on the distribution of the vector inner product which directly follows from the Leftover Hash Lemma [START_REF] Impagliazzo | Pseudo-random generation from one-way functions[END_REF].

Lemma 2.13. Let G be a finite abelian group, f be a positive integer and Y Ď t0, 1u f . Define the inner product x¨, ¨y : G f ˆY Ñ G by xx, yy " ř i x i y i for all x P G f , y P Y. Let X, Y be independent and uniform random variables on G f , Y respectively. Then

d SD ppxX, Y y, Xq, pU G , Xqq ď 1 2 ¨d |G| |Y| ,
where U G is uniform in G and independent of X.

We will also need the Chernoff-Hoeffding bound [START_REF] Hoeffding | Probability inequalities for sums of bounded random variables[END_REF].

Lemma 2.14. Let X 1 , . . . , X M be the independent and identically distributed random boolean variables of expectation p. Then for ε ą 0,

Pr « 1 M M ÿ i"1 X i ď pp1 ´δq ff ď ˆe´δ p1 ´δq 1´δ
˙pM .

Lattices

Lattices. A lattice L is a discrete subgroup of R m , or equivalently a set Lpb 1 , . . . , b n q " t ř n i"1 x i b i : x i P Zu of all integer combinations of n linearly independent vectors B " tb 1 , . . . , b n u Ă R m . Such b i 's form a basis of L. Bases are not unique, one lattice basis may be transformed into another one by applying an arbitrary unimodular transformation. All the bases have the same number n of elements, called the dimension or rank of L, and the same n-dimensional volume of the parallelepiped t ř n i"1 a i b i : a i P r0, 1qu they generate. We call this volume the co-volume of L, denoted by covolpLq. It is also sometimes call the determinant of the lattice, denoted by det L. This quantity is equal to the square root of the determinant of the Gram matrix B T B: covolpLq " det L " ?

det B T B. The lattice L is said to be full-rank if n " m. When the lattice is full rank, B is a square matrix and we have covolpLq " det L " | detpBq|.

We denote by λ 1 pLq the first minimum of L, defined as the length of a shortest non-zero vector of L.

For a rank n lattice L Ă R m , the dual lattice, denoted L ˚, is defined as the set of all points in spanpLq that have integer inner products with all lattice points, L ˚" tw P spanpLq : @y P L, xw, yy P Zu .

Similarly, for a lattice basis B " pb 1 , . . . , b n q, we define the dual basis B ˚" pb 1 , . . . , b nq to be the unique set of vectors in spanpLq satisfying xb i , b j y " 1 if i " j, and 0, otherwise. It can be shown that L ˚is itself a rank n lattice and B ˚is a basis of L

˚.

In what follows, unless explicitely stated, we consider full rank lattices.

Orthogonalization. For a basis B " pb 1 , . . . , b n q of a lattice L and i P t1, . . . , nu, we denote by π i the orthogonal projection on spanpb 1 , . . . , b i´1 q K . The Gram-Schmidt orthogonalization of the basis B is defined as the sequence of orthogonal vectors B ‹ " pb ‹ 1 , . . . , b ‹ n q, where b ‹ i :" π i pb i q. We can write each b i as b ‹ i `ři´1 j"1 µ i,j b ‹ j for some unique µ i,1 , . . . , µ i,i´1 P R. Thus, we may represent the µ i,j 's by a lower-triangular matrix µ with unit diagonal. π i pLq is a lattice of rank n `1 ´i generated by π i pb i q, . . . , π i pb n q, with covolpπ i pLqq "

ś n j"i › › b ‹ j › › .
Gaussian Heuristic. The classical Gaussian Heuristic provides an estimate on the number of lattice points inside a "nice enough" set:

Heuristic 2.15. Given a full-rank lattice L Ď R n and a measurable set S Ď R n , the number of points in S X L is approximately volpSq{covolpLq.

Both rigorous results and counter-examples are known (see [START_REF] Aono | Random sampling revisited: Lattice enumeration with discrete pruning[END_REF]). One should therefore experimentally verify its use, especially for pruned enumeration which relies on strong versions of the heuristic, where the set S is not fixed, depending on a basis of L.

Discrete Gaussian Distribution.

For any s ą 0, define ρ s pxq " expp´π x 2 {s 2 q for all x P R n . We write ρ for ρ 1 . For a discrete set S, we extend ρ to sets by ρ s pSq " ř xPS ρ s pxq. Given a lattice L, the discrete Gaussian D L,s is the distribution over L such that the probability of a vector y P L is proportional to ρ s pyq:

Pr X"D L,s rX " ys " ρ s pyq ρ s pLq .
Kissing Number and related quantities. For any lattice L Ă R n and d ą 0, let N pL, rq denote the number of nonzero lattice vectors of length at most r. A natural question is to bound this quantity in terms of r. When r ă λ 1 pLq, only the origin lies inside the ball so N pL, rq " 0. When r " λ 1 pLq, this quantity is known as the kissing number τ pLq of the lattice: τ pLq " tx P R n : }x} " λ 1 pLqu.

Finally when r Ñ 8, N pL, rq " r n volpBnp1qq det L `opr n q by the geometric interpretation of the determinant of a lattice. The precise behavior for intermediate values of r, however, is unclear and for that reason we introduce the quantity γpLq " inftγ : @r ě 1, N pL, rλ 1 pLqq ď γ ¨rn u.

(2.1)

It is clear by the definition that γpLq ě τ pLq. The best known upper bound on this quantity comes from the breakthrough work of Kabatyanskii and Levenshtein [START_REF] Grigorii | evich Kabatiansky and Vladimir Iosifovich Levenshtein. On bounds for packings on a sphere and in space[END_REF] which implies [START_REF] Pujol | Solving the shortest lattice vector problem in time 2 2[END_REF] that γpLq ď 2 0.401n`opnq .

The same work also implies that τ pLq ď 2 0.401n`opnq although we will not need it in this thesis.

Recently, in a breakthrough result, Serge Vlăduţ [START_REF] Vlăduţ | Lattices with exponentially large kissing numbers[END_REF] gave a construction of an infinite set of lattices such that their kissing number is greater than 2 0.0338n`opnq . This is the first (and only known) construction of a family of lattices with kissing number 2 Ωpnq . Given this result (and the fact that it was hard to find such a family of lattices), one might conjecture that τ pLq " c n`opnq for some constant c much smaller than 2 0.401 . Moreover, in practice most lattices have a much smaller kissing number which is often 2 opnq . Given the close connection between τ pLq and γpLq, it is not unreasonable to conjecture that γpLq is also a 2 opnq for most lattices. In view of the fact that γpLq can be anywhere between 1 and 2 0.401n`op1q , we will study the dependence of the time complexity of our algorithms on γpLq by introducing βpLq " γpLq 1{n .

(2.2)

The upper bound above can then be reformulated as βpLq ď 2 0.401`op1q for any lattice L.

Lattice problems.

The following problem plays a central role in this thesis.

Definition 2.16. For δ " δpnq ě 0, σ a function that maps lattices to non-negative real numbers, and m " mpnq P N, δ-DGS m σ (the Discrete Gaussian Sampling problem) is defined as follows: The input is a basis B for a lattice L Ă R n and a parameter s ą σpLq. The goal is to output a sequence of m vectors whose joint distribution is δ-close to m independent samples from D L,s .

We omit the parameter δ if δ " 0, and the parameter m if m " 1. We stress that δ bounds the statistical distance between the joint distribution of the output vectors and m independent samples from D L,s .

Definition 2.17. The search problem SVP (Shortest Vector Problem) is defined as follows:

The input is a basis B for a lattice L Ă R n . The goal is to output a nonzero vector y P L with minimum l 2 -norm, that is }y} " λ 1 pLq.

Definition 2.18. The search problem γ-approx-SVP (γ-Approximate Shortest Vector Problem) is defined as follows: The input is a basis B for a lattice L Ă R n and γ ą 1. The goal is to output a nonzero vector y P L such that }y} ď γλ 1 pLq.

Definition 2.19. The search problem CVP (Closest Vector Problem) is defined as follows:

The input is a basis B for a lattice L Ă R n and a target vector t P R n . The goal is to output a vector y P L such that }y ´t} " distpt, Lq.

Definition 2.20. The search problem γ-approx-CVP (γ-Approximate Closest Vector Problem) is defined as follows: The input is a basis B for a lattice L Ă R n , a target vector t P R n and γ ą 1. The goal is to output a vector y P L such that }y ´t} ď γdistpt, Lq.

Definition 2.21. For α " αpnq ă 1{2, the search problem α-BDD (Bounded Distance Decoding) is defined as follows: The input is a basis B for a lattice L Ă R n and a target vector t P R n with distpt, Lq ď α¨λ 1 pLq. The goal is to output a vector y P L with }y´t} " distpt, Lq.

Note that while the other problems become more difficult as the approximation factor γ becomes smaller, α-BDD becomes more difficult as α gets larger.

For convenience, when we discuss the running time of algorithms solving the above problems, we will often ignore polynomial factors in the bit-length of the individual input basis vectors (i.e. we consider only the dependence on the ambient dimension n).

Smoothing parameter. For a lattice L and ε ą 0, the smoothing parameter η ε pLq is the smallest s such that ρ 1{s pL ˚q ď 1 `ε. Intuitively, this parameter provides the width beyond which the discrete Gaussian measure on a lattice behaves like a continuous one. The smoothing parameter has the following well-known property, namely that above the smoothing parameter, the discrete Gaussian measure is essentially invariant under shifts.

Lemma 2.22 ([Reg05, Claim 3.8]). For any lattice L Ă R n , c P R n , ε ą 0, and s ě η ε pLq,

1 ´ε 1 `ε ď ρ s pL `cq ρ s pLq ď 1 .
Corollary 2.23. Let L Ă R n be a lattice, q be a positive integer, and let s ě η ε pqLq. Let C be a random coset in L{qL sampled such that for all c P L{qL, PrrC " qL `cs " ρspqL`cq ρspLq . Also, let U be a coset in L{qL sampled uniformly at random. Then

d SD pC, U q ď 2ε .
Proof. By Lemma 2.22, we have that

ρ s pqLq ě ρ s pqL `cq ě 1 ´ε 1 `ε ρ s pqLq ,
for any c P L{qL and hence,

q n ρ s pqLq ě ÿ cPL{qL ρ s pqL `cq " ρ s pLq Therefore, ρ s pqL `cq ρ s pLq ě 1 ´ε 1 `ε ¨ρs pqLq ρ s pLq ě 1 ´ε 1 `ε ¨1 q n .
We conclude that

d SD pC, U q " ÿ cPL{qL : PrrC"csăPrrU "cs pPrrU " cs ´PrrC " csq ď ÿ cPL{qL : PrrC"csăPrrU "cs PrrU " cs ˆ1 ´1 ´ε 1 `ε ď ÿ cPL{qL PrrU " cs 2ε 1 `ε ď 2ε 1 `ε , as needed. Lemma 2.24 ([CDLP13, Lemma 2.4]). For any lattice L Ă R n , ε P p0, 1q and k ą 1, we have kη ε pLq ą η ε k 2 pLq
The following lemma shows that there is a relation between the first minimum of a lattice and the smoothing parameter of its dual lattice.

Lemma 2.25 (Variant of [ADRS15, Lemma 6.1]). For any lattice L Ă R n and ε P p0, 1q,

c lnp1{εq π ă λ 1 pLqη ε pL ˚q ă c βpLq 2 n 2πe ¨ε´1{n ¨p1 `op1qq, (2.3)
and if ε ď pe{βpLq 2 `op1qq ´n 2 , we also have

c lnp1{εq π ă λ 1 pLqη ε pL ˚q ă c lnp1{εq `n ln βpLq `opnq π .
(2.4)

as n tends to infinity.

Remark 2.26. As noted in [START_REF] Aggarwal | Solving the shortest vector problem in 2 n time using discrete gaussian sampling: Extended abstract[END_REF] below Lemma 6.1, the inequality (2.3) actually holds for all ε P p0, 1q so we dropped the condition in the first case.

Remark 2.27. In Lemma 6.1 of [START_REF] Aggarwal | Solving the shortest vector problem in 2 n time using discrete gaussian sampling: Extended abstract[END_REF], β comes from Lemma 4.2 of the same paper and only needs to satisfy the equation |L X T r | ď β n`opnq r n for all r where T r " tx P R n : r ď }x} ď p1 `1 n qru, assuming the lattice is normalized so that λ 1 pLq " 1. A trivial upper bound on |L X T r | is N pL, r 1 q, the number of point in L of radius at most r 1 " p1 `1 n qr. By our definitions (2.1) and (2.2), this is bounded by γpLq `p1 `1 n qr ˘n ď βpLq n er n and therefore we can replace β by our βpLq.

Micciancio and Peikert [START_REF] Micciancio | Hardness of SIS and LWE with small parameters[END_REF] showed the following result about the distribution resulting from the sum of many Gaussian samples. Essentially, above the smoothing parameter, the sum of independent Gaussian samples is very close to a Gaussian distribution.

Theorem 2.28 ([MP13, Theorem 3.3]). Let L be an n-dimensional lattice, z P Z m a nonzero integer vector, s i ě ? 2}z} 8 ¨ηε pLq, and L `ci arbitrary cosets of L for i " 1 ¨¨¨, m. Let y i be independent vectors with distributions D L`c i ,s i , respectively. Then the distribution of y "

ř m i"1 z i y i is mε close to D Y,s
, where Y " gcdpzqL `řm i"1 z i c i , and s "

a ř pz i s i q 2 .
We will need the following theorems to sample vectors from a discrete Gaussian distribution with a large width.

Theorem 2.29 ([ADRS15, Proposition 2.17]). For any ε ď 0.99, there is a randomized algorithm that takes as input a lattice L P R n , M P Z ą0 (the desired number of output vectors), and s ą 2 n log log n{ log n ¨ηε pLq, and outputs M independent samples from D L,s in time M ¨polypnq.

We need to recall the definition of the honest Discrete Gaussian Sampling problem, introduced in [ADRS15].

Definition 2.30 ([ADRS15, Definition 5.1]). For ε ě 0, σ a function that maps lattices to non-negative real numbers, and m P N, the honest Discrete Gaussian Sampling problem ε-hDGS m σ is defined as follows: the input is a basis B for a lattice L Ă R n and a parameter s ą 0. The goal is for the output distribution to be ε´close to D m 1 L,s for some independent random variable m 1 ě 0. If s ą σpLq then m 1 must be equal to m. Theorem 2.31 ([ADRS15, Theorem 5.11]). Let σ be the function that maps a lattice L to ? 2η 1{2 pLq. Then, there is an algorithm that solves expp´Ωpκqq-hDGS 2 n{2 σ in time 2 n{2`polylogpκq`opnq for an κ ě Ωpnq.

Lemma 2.32 ([ADRS15, Lemma 5.12]).

There is a randomized polynomial-time algorithm that takes as input a lattice L Ă R n of rank n and an integer a with n{2 ď a ă n and returns a super lattice L 1 Ą L of index 2 a with L 1 Ď L{2 such that for any ε P p0, 1q, we have η ε 1 pL 1 q ď η ε pLq{ ? 2 with probability at least 1{2 where ε 1 :" 2ε 2 `2pn{2q`1´a p1 `εq.

More context about the above results is available in Section 3.1. We will also make heavy use of the following reduction from α-BDD to DGS that was shown in [START_REF] Dadush | On the closest vector problem with a distance guarantee[END_REF].

Theorem 2.33 ([DRS14, Theorem 3.1]). For any ε P p0, 1{200q, let φpLq " ? lnp1{εq{π´op1q 2ηεpL ˚q

.

Then there exists an algorithm that solves CVP φ using m ¨polypnq arithmetic operations where m " Op n logp1{εq ? ε q. Moreover, the preprocessing consists of m vectors sampled from D L ˚,ηεpL ˚q.

Remark 2.34. We are going to use this reduction in the superpolynomial regime: typically m will be exponential in n. This leaves unclear the space complexity of the reduction. The reduction works by evaluating a polynomial number of times functions of the form ř m i"1 f i pxq where each f i is a polynomial time computable function that depends on the i th DGS sample. Furthermore, all the complexities above are in terms of arithmetic operations, not bit complexity. If we assume that all the DGS samples have polypnq bit-size then the reduction has time complexity m ¨polypnq and space complexity Oppolypnq `log mq excluding the storage space of the m vectors provided by the DGS. Finally, as noted in the proof of the theorem in [START_REF] Dadush | On the closest vector problem with a distance guarantee[END_REF], only the preprocessing is probabilistic and with probability at least 1 ´2´Ωpnq over the choice of the samples, the algorithm will deterministically solve all CVP φ instances.

One drawback of the theorem above is that it requires a sampler for the discrete Gaussian distribution exactly at the smoothing parameter η ε pLq which is generally not known. For these reasons, we provide a workaround in the form of Theorem 2.40 in the next section.

Finally, the following theorem proved in [START_REF] Chen | Space-efficient classical and quantum algorithms for the shortest vector problem[END_REF] shows how to solve SVP by an exponential number of calls to a α-BDD oracle.

Theorem 2.35 ([CCL18, Theorem 8]). Given a basis matrix B Ă R nˆn for lattice LpBq Ă R n , a target vector t P R n , an α-BDD oracle BDD α with α ă 0.5, and an integer scalar p ą 0. Let

f α p : Z n p Ñ R n be f α p psq " ´p ¨BDD α pL, pB s ´tq{pq `B s. If distpt, Lq ď αλ 1 pLq, then the list m " tf α p psq | s P Z n
p u contains all lattice points at distance less than or equal to pαλ 1 pLq to t.

Remark 2.36. In the original statement in [START_REF] Chen | Space-efficient classical and quantum algorithms for the shortest vector problem[END_REF], the list m contains all lattice points at distance less than pαλ 1 pLq to t. However by inspecting the proofs, the list m also contains all lattice points at distance pαλ 1 pLq to t.

Reduction from CVP to DGS

The goal of this section is to improve Theorem 2.33 to not requires a sampler for the discrete Gaussian distribution exactly at the smoothing parameter η ε pLq. Indeed, we usually do not know η ε pLq and it is a nontrivial problem to even estimate it [START_REF] Chung | On the lattice smoothing parameter problem[END_REF]. It was claimed in [ADRS15, Theorem 7.3] that the reduction still holds if we only provide a DGS oracle above the smoothing parameter. Unfortunately, this is not entirely satisfactory for two reasons: [START_REF] Aggarwal | Solving the shortest vector problem in 2 n time using discrete gaussian sampling: Extended abstract[END_REF] contains no proof3 and the modified statement does not make it clear that the parameters of the DGS instance do not depend on the CVP instance, like in Theorem 2.33. For these reasons, we provide a self-contained proof in the form of Theorem 2.40 in the next section. We first prove some technical lemmas on the discrete Gaussian distribution.

Lemma 2.37. For any lattice L Ă R n , s ą 0 and r ě s ? n{λ 1 pLq,

ρ s pLzB n prλ 1 pLqq ď r n βpLq n`opnq ρ s pLzt0uq r 2 .
Proof. Let t " 1 `1{n, R " rλ 1 pLq, r i " Rt i and T i " B n pr i`1 qzB n pr i q for all i P N. Then by definition of βpLq,

|L X T i | ď |L X B n pr i`1 q| ď βpLq n`opnq prt i`1 q n
It follows that

ρ s pLzB n pRqq " 8 ÿ i"0 ρ s pL X T i q ď 8 ÿ i"0 |L X T i |e ´π r 2 i s 2 ď βpLq n`opnq 8 ÿ i"0 prt i`1 q n e ´π R 2 s 2 t 2i looooooooomooooooooon "f piq where f piq " prt i`1 q n e ´π R 2 s 2 t 2i
. But check that for all i P N, ě ´βpL ˚qn`opnq r n ¯1´t 2 ´ε ´βpL ˚qn`opnq r n ε r 2 ¯t2 by (2.5), Lemma 2.37 and since ρ 1{s pL ˚zt0uq " ε. Now observe that t 2 ´1 ď 3{M and ´βpL ˚qn`opnq r n ¯´3{M " e ´3n 1´c pln βpL ˚q`op1q`c ln nq " e ´3n 1´c Opln nq " e ´op1q since c ą 1. We also have that

f pi `1q f piq " t n e ´π R 2 s 2 t 2i pt 2 ´1q ď e 1´2π
βpL ˚qn`opnq r n ε r 2 " e n ln βpL ˚q`nc lnpnq`opnq´pr 2 ´1q ln 1 ε ε ď e Opn ln nq´n 2c ε since ε ď 1{e ď e op1q ε
for large enough n. It follows that ρ 1{ts pL ˚zt0uq ě e op1q pεe op1q q t 2 ě ε t 2 e op1q since t ď 2. Therefore we must have η ε t 2 e op1q pLq ě ts.

In order to state our theorem, we need to introduce a small variant on the notion of an honest Gaussian sampler. We note that any discrete Gaussian sampler can trivially be turned into a semi-honest sampler. The reason we need a semi-honest sampler is that we do not know the value of η ε in general so we cannot guarantee that all calls will satisfy s ě σ when σ " η ε .

Definition 2.39. For ε ě 0, σ a function that maps lattices to non-negative real numbers, and m P N, the semi-honest Discrete Gaussian Sampling problem ε-shDGS m σ is defined as follows: the input is basis B for a lattice L Ă R n and a parameter s ą 0. The goal is for the output distribution to be ε´close to D m L,s when s ě σpLq, and can be any distribution of m lattices vectors otherwise.

Theorem 2.40. For any α ą 0, any ε ď minpe ´nα , 1{200q, let φpLq " ?

lnp1{εq{π´op1q 2ηεpL ˚q
. There exists an algorithm that, on input L and with constant probability, constructs a deterministic CVP φ oracle for L by doing polypnq calls to a 0.5-shDGS m ηε sampler on the lattice L ˚and requires storage space for m ¨polypnq lattice vectors, where m " Op n lnp1{εq ? ε q. Each call to the oracle uses m ¨polypnq arithmetic operations and storage space for Oppolypnq `ln mq lattice vectors excluding the storage space of the preprocessing. Remark 2.41. Similarly to Remark 2.34, if we assume that all the DGS samples have polypnq bitsize then the reduction has time complexity m¨polypnq and space complexity Oppolypnq`ln mq excluding the storage space of the m vectors provided by the DGS. Furthermore, if basis vectors of L have bit-size polypnq then we can ensure that all DGS samples have polypnq bit-size by first generating more samples (say twice the amount) and throwing away all samples of norm larger than exppΩpn 2 qq. Since the vectors are sampled from a Gaussian with width at most exppOpnqq (since the basis vectors have size at most 2 opnq , the error induced by throwing away the tail of the distribution is smaller than 2 ´Ωpn 2 q .

Proof of Theorem 2.40. First we note that we can easily identify an interval I " ra, bs such that η ε pL ˚q P ra, bs and b a ď 2 n`opnq . Indeed, by e.g. [Reg05, Lemma 2.11 and Claim 2.13] one has a lnp1{εqπ ď λ 1 pLqη ε pL ˚q ď ? n so η ε pL ˚q P 1 λ 1 pLq rc, ds where d c "

b n lnp1{εq " Op ? nq since ε ď 1{200. Furthermore, by running the LLL algorithm on L and taking the length of the shortest basis vector, we obtain a length such that 2 ´n ď λ 1 pLq ď . It follows that η ε pL ˚q P ra, bs :"

r c , 2 n d s and b a " 2 n d c " 2 n`opnq . Now let c " 2`α, δ " 1`1 n c and N " Q lnpb{aq ln δ U
. Check that N " polypnq since b a " 2 n`opnq . Furthermore, if we let s i " aδ i for i " 1, . . . , N then there must exists some i 0 such that

1 δ s i 0 ď η ε pL ˚q ď s i 0 .
(2.6)

The preprocessing stage of the algorithm consists in calling the shDGS m σ sampler with parameter s i to obtain a lists L i of m vectors, for each i " 1, . . . , N , and storing all the lists. This requires N " polypnq calls and we need to store m ¨polypnq vectors.

We now describe the oracle for CVP φ . On input t P R n , for each i " 1, . . . , N , the oracle calls the algorithm of Theorem 2.33 on input t and provides the list L i to the algorithm in place of the DGS samples. Hence, for each i, we either obtain a lattice vector y i or the algorithm from Theorem 2.33 fails and we let y i " 0. Finally, the oracle returns the point closest to t in the list y 1 , . . . , y N . The running time is clear so it remains to prove that the algorithm actually solves CVP φ on L.

We first note that when called on s i 0 , the shDGS m σ sampler will return m vectors that are 0.5´close to m samples from D m L,s since s i 0 ě σpLq " η ε pL ˚q by (2.6). Furthermore, by Lemma 2.38 we have tη ε pL ˚q ď η ε t 2 e op1q pL ˚q where t " 1 `1 n c " δ. It follows by (2.6) that

η ε pLq ď s i 0 ď δη ε pL ˚q ď η ε δ 2 e op1q pL ˚q.
But the map ε Þ Ñ η ε pLq is continuous and decreasing, so it follows that

s i 0 " η ε 1 pL ˚q for some ε δ 2 e op1q ď ε 1 ď ε.
Therefore by Theorem 2.33 and Remark 2.34, with constant probability over the choice of L i 0 , the (deterministic) algorithm of Theorem 2.33 solves CVP ψ when given L i 0 , where ψpLq "

a lnp1{ε 1 q{π ´op1q 2η ε 1 pL ˚q assuming that m " |L i 0 | ě m 1 :" Op n lnp1{ε 1 q ? ε 1
q which holds because

n lnp1{ε 1 q ? ε 1 ď nδ 2 lnp1{εq `opnq ? ε δ 2 e op1q ď n lnp1{εq `n1´c lnp1{εq `opnq ? εε n ´c{2 e op1q
" O ˆn lnp1{εq ? ε ṡince n 1´c ln ε " n 1´c`α " op1q and ε n ´c{2 " e n α´c {2 " e op1q . It follows that, with constant probability over the preprocessing, our oracle solves CVP ψ . Check that ε δ 2 e op1q ě ε δ 2 `op1q since ε ă 1 e and thus by Lemma 2.24,

η ε δ 2 e op1q pL ˚q ď η ε δ 2 `op1q pL ˚q ď pδ 2 `op1qqη ε pL ˚q ď p1 `op1qqη ε pL ˚q since δ " 1 `op1q. Hence we have ψpLq ě a lnp1{εq{π ´op1q 2p1 `op1qqη ε pL ˚q " φpLq.

Chapter 3 Discrete Gaussian Sampling and the Shortest Vector Problem

The work in this chapter has been published at STACS 2021 [ACKS21] and is a joint work with Divesh Aggarwal, Yanlin Chen and Rajendra Kumar. It also appears in part in Rajendra Kumar's PhD thesis [START_REF] Kumar | Exponential Time/Space Algorithms and Reductions for Lattice Problems[END_REF]. This chapter contains more introductory material over the published version.

Introduction

A major class of algorithms to solve the Shortest Vector Problem is based on sieving. The idea is to start with (exponentially) many lattices vectors and then combine several vectors together to create shorter and shorter vectors. After sufficiently many iterations, the resulting list will hopefully contain a shortest vector. There are several very different ways in which vectors can be combined to create shorter vectors. The simplest one is to simply look for pairs of vectors that are approximately antipodal: the sum will then be closer to the origin than the original vectors [START_REF] Phong | Sieve algorithms for the shortest vector problem are practical[END_REF]. This process can then be refined in many ways [MV10, BGJ13, Laa15a, Laa15b, BDGL16]. These approaches generally rely on some heuristics to analyse their performance. For example, they assume that the direction of the vectors is uniform on the unit sphere, and the vectors in the sieved lists are independent. The process described above is purely geometric: we litterally generate shorter vectors by combining lattice vectors. Instead of maintaining a geometric invariant (length), one can aim to maintain a probabilistic invariant (i.e. a distribution) that is loosely related to the length of vectors. Such an invariant is the discrete Gaussian distribution: its parameter (the width) is statistically related to the length of vectors drawn according to this distribution. One can modify the sieving step so that if the list contains vectors drawn from a discrete Gaussian of width σ then the resulting vectors should still follow a discrete Gaussian but of smaller parameter, typically ασ for α ă 1. This approach has been very successful and has led [Reg04, PS09, ADRS15, AS18b] to the currently fastest provable algorithm for SVP, running in time 2 n`opnq , which is based on discrete Gaussian sampling.

Even though sieving algorithms are asymptotically the fastest known algorithms for SVP, the memory requirement, in high dimension, has historically been a limiting factor to run these algorithms. Some recent works [START_REF] Ducas | Shortest vector from lattice sieving: A few dimensions for free[END_REF]ADH `19] have shown how to use new tricks to make it possible to use sieving on high-dimensional lattices in practice and benefit from their efficient running time [SVP].

Nevertheless, it would be ideal and has been a long standing open question to obtain an algorithm that achieves the "best of both worlds", i.e. an algorithm that runs in time 2 Opnq as in sieving and requires memory polynomial in n as in enumeration. In the absence of such an algorithm, it is desirable to have a smooth trade-off between time and memory requirement that interpolates between the current best sieving algorithms and the current best enumeration algorithms.

To this end, Bai, Laarhoven, and Stehlé [START_REF] Shi Bai | Tuple lattice sieving[END_REF] proposed the tuple sieving algorithm, providing such a trade-off based on heuristic assumptions mentionned above. This algorithm was later proven to have time and space complexity k n`opnq and k n{k`opnq , under the same heuristic assumptions [START_REF] Herold | Improved algorithms for the approximate k-list problem in euclidean norm[END_REF]. One can vary the parameter k to obtain a smooth time/space trade-off. However, as noted in [HK17, p. 22], their analysis only applies to "fixed k". In particular, they cannot obtain the regime of subexponential space and superexponential time. Furthermore, it is desirable to obtain a provable variant of this algorithm that does not rely on any heuristics.

Kirchner and Fouque [START_REF] Kirchner | Time-memory trade-off for lattice enumeration in a ball[END_REF] attempted to do this. They claim an algorithm for solving SVP in time q Θpnq and in space q Θpn{qq for any positive integer q ą 1. Unfortunately, their analysis falls short of supporting their claimed result, and the correctness of the algorithm is not clear. We refer the reader to Section 3.5 for more details.

In the rest of this chapter, we describe a provable time/space trade-off for discrete Gaussian sampling. Using this trade-off, we obtain a provable time/space trade-off for SVP. A detailed description of our contributions is available in Section 1.1.1.

Gaussian Sampling and the SVP

In order to understand discrete Gaussian sampling, and how it applies to the SVP, it useful to visualise what such a distribution looks like (see Figure 3.1). Its shape is strongly affected by the parameter s (the width). Similarly to the continuous Gaussian distribution, a smaller parameter will produce a "tigher" distribution around the origin. Unlike the continuous Gaussian, and under a certain threshold (called the smoothing parameter η ε , see Section 2.4), the distribution will start to loose certain properties and become "less smooth". The parameter s represents a trade-off in different ways: in its shape, in the applications of the distribution and in how easy it is to sample (see Figure 3.2). The problem of sampling the discrete Gaussian distribution (known as DGS) therefore has many applications beyond the shortest vector problem. We now informally review how a DGS-based algorithm for SVP works. The first step of any such algorithm is to generate vectors according to a discrete Gaussian of very large width. When the width is sufficiently large (typically exponentially bigger than what is necessary to solve SVP), the discrete Gaussian is so smooth that one can essentially generate according to continuous Gaussian distribution and round to produce to a lattice vector. The width of the Gaussian obtained this way depends on the quality of the basis. One can obtain a suitably reduced basis in polynomial time by the LLL algorithm [Kle00, GPV08, BLP `13, ADRS15]. See Theorem 2.29 for more details. When solving the SVP, one will typically generate an exponential number of vectors according to this distribution. The second step is to repeatedly "sieve" this list to reduce the parameter s, usually down to the smoothing parameter. Indeed, for reasons explained below, it is much easier to sieve when s is above the smoothing parameter. The third step depends on the algorithm: one can either continue to sieve below the smoothing parameter, which requires great care [START_REF] Aggarwal | Solving the shortest vector problem in 2 n time using discrete gaussian sampling: Extended abstract[END_REF], or use this sampler to construct an oracle for the BDD problem [DRS14, ADRS15]: Given an algorithm for DGS a constant factor c above the smoothing parameter, we can solve the problem of BDD where the target vector is within distance αλ 1 pLq of the lattice, where the constant α ă 0.5 depends on the constant c. Additionally, using [START_REF] Chen | Space-efficient classical and quantum algorithms for the shortest vector problem[END_REF], one can enumerate all lattice points within distance qδ to a target t by querying q n times a BDD oracle with decoding distance δ (or q n{2 times if we are given a quantum BDD oracle). Thus, by choosing q " rλ 1 pLq{δs and t " 0, an algorithm for BDD immediately gives us an algorithm for SVP.

L " Z, s " 7 L " Z 2 , s " 7 L " Z ˆ4Z, s " 7
We now review the second step above in more details: sieving vectors to reduce the parameter s above the smoothing parameter. Without any loss of generality, we can always assume that L is a full-rank lattice. The key argument of any such algorithm is that combining discrete Gaussian distributions still produces a discrete Gaussian, when above the smoothing parameter. Here, the concept of coset usually plays an important role. Recall that if L Ă R n is a lattice, we can consider the quotient L{2L " tx `2L : x P Lu. This quotient is finite of size exactly 2 n and each coset x `2L essentially encodes the parities of the coordinates of the vectors modulo 2L. In other words, if b 1 , . . . , b n is a basis of L, then a lattice vector ř n i"1 x i b i belongs to a coset that only depends on the parities x 1 pmod 2q, . . . , x n pmod 2q. One idea to reduce the length of vectors is to take the average of two vectors. However the average is usually not a lattice vector but more can be said if we consider cosets. Indeed let c `L be a coset of L{2L, if x, y P c `2L then x `y 2 P L.

Furthermore, as the lemma below shows, this operation preserves the Gaussian distribution while reducing the parameter s to s{ ? 2.

Lemma 3.1 ([ADRS15]

). Let L be a lattice and X 1 , X 2 be two independent variables sampled from D L,s with s ą 0, then for any y P L,

Pr pX 1 ,X 2 q"D 2 L,s rpX 1 `X2 q{2 " y|X 1 `X2 P 2Ls " Pr Z"D L,s{ ? 2
rZ " ys.

This result suggests the following sieving algorithm, proposed by Aggarwal et al [START_REF] Aggarwal | Solving the shortest vector problem in 2 n time using discrete gaussian sampling: Extended abstract[END_REF].

While superficially trivial, we point out that the complete analysis of this algorithm is quite sophisticated.

Algorithm 3.1 PairAndAverage(L)

Input: L is a list of vectors in L 1: L 1 Ð empty list 2: for each unpaired vector x in L do 3:

if there exists another unpaired vector y with x `y P 2L then 4:

add px `yq{2 to L 1 5:

end if 6: end for 7: return L 1 Analysis of the algorithm. Unfortunately, the algorithm above produces the wrong distribution despite the lemma. The problem comes from the fact that in the lemma above, X 1 and X 2 are two independent variables, hence the probability of X 1 and X 2 to be in the same coset c `2L (a necessary and sufficient condition for X 1 `X2 to be in 2L) is proportional to ρ s pc `2Lq 2 , where ρ s is the Gaussian mass function (see Section 2.4). On the other hand, the algorithm above has a different behaviour: the number of pairs of vectors in the coset c `2L will be proportional to the number of times this coset appears in the list, that is ρ s pc `2Lq instead of ρ s pc `2Lq 2 . This mismatch between the "squared distribution" that we want and the "unsquared" distribution that we get is the main technical challenge in [START_REF] Aggarwal | Solving the shortest vector problem in 2 n time using discrete gaussian sampling: Extended abstract[END_REF]. It is overcome by the use of a "square sampler" that only works above the smoothing parameter. In a later article, the authors introduced the notion of "mixture of Gaussians" and showed that this algorithm, while not producing a discrete Gaussian, still produces a distribution that can be used to solve the SVP in time 2 n [START_REF] Aggarwal | Just take the average! an embarrassingly simple 2ˆn-time algorithm for SVP (and CVP)[END_REF].

An interesting observation for us is that, at the cost of introducing a small error on the distribution, the algorithm above actually works whenever the parameter s is above the smoothing parameter. This is where the smoothness of the distribution comes in: a well-known consequence (Lemma 2.22) of s being above the smoothing parameter is that all cosets c `2L have the same weight (up to a small factor ε). It follows that the "squared distribution" problem disappears because all cosets have the same weight (up to ε) and so does the "square distribution".

Reducing the memory usage. Another drawback of Algorithm 3.1 (and its variants) is that the memory usage is clearly exponential in the dimension: we need to remember one vector per coset to efficiently pair them and there are 2 n cosets. Furthermore, to even have a chance at pairing two vectors, we need a list of size at least 2 n , otherwise all vectors could be a different cosets. This problem can be mitigated somewhat by the use of towers of lattice [START_REF] Aggarwal | Solving the shortest vector problem in 2 n time using discrete gaussian sampling: Extended abstract[END_REF] but it only brings the memory usage down to 2 n{2 with no obvious way to improve it further. There is of course, an obvious but extremely inefficient way to reducing the memory usage: simply select two elements of the list at random and pair them if they are in the same coset, otherwise try again (see Algorithm 3.2). The complexity of this algorithm is terrible: end if 9: end while 10: return L 1 since all cosets have the same weight above the smoothing parameter, we expect that it will take 2 n trials to get two vectors x and y which sum is in L. Hence the algorithm will take an expected time 2 n |L| compared to |L| in the previous algorithm. On the other hand, it does not use any memory besides the one used to store the list, but the list still needs to be of size at least 2 n which is exponential. Therefore a natural question is whether we can have a smooth trade-off between Algorithm 3.1 and Algorithm 3.2. Improving memory usage. One way to improve the space complexity, and that we pursue in this work, is to sum more than two vectors. Assume now that |L| ą 2 n{2 (compared to 2 n previously) and pick a random element x in L. Now consider the |L| 2 possible sums of two vectors (excluding x): they will fall into the 2 n cosets. But since |L| 2 ą 2 n , and since the sum of two discrete Gaussians of parameter s above the smoothing parameter is very close to a discrete Gaussian of parameter ? 2s (Theorem 2.28), we can expect one sum per coset. Therefore one of those sums y `z falls in the same coset as that of x and the sum x `y `z P 2L can now be divided by two to obtain a vector of L. Theorem 2.28 again guarantees that this sum is statistically close to being a Gaussian of parameter ? 3s on 2L, hence px `y `zq{2 P L will be close to a discrete Gaussian of parameter ? 3s{2 on L. Note that we have managed to reduce the space requirement on the list from 2 n down to 2 n{2 . Also note that while it works for three vectors, it does not work with four. Indeed, the sum of four Gaussians of parameter s will be close to a Gaussian of parameter 2s, therefore dividing by two will again yield a Guassian of parameter s: we are not reducing the size of the vectors anymore.

Algorithm 3.2 ExtremelyNaivePairAndAverage(L) Input: L is a list of vectors in L 1: L 1 Ð
A smooth time/memory trade-off. Going further requires one more idea: we can go beyond 2L and look for vectors in qL for some parameter q ě 2. If we sum d `1 vectors then the sum will be close to a Gaussian of parameter ? d `1s{q after dividing by q, again by Theorem 2.28. If we proceed as before, picking a first element at random and then looking for d vectors which sum is in the same coset, then there are roughly `|L| d ˘« |L| d possible sums. Therefore, we only need |L| Á q n{d samples to find a collision on average (since there are q n cosets in L{qL) and we can pick any d P r1, q 2 ´2s to ensure that we reduce the parameter of the Gaussian. If we always choose a list of size |L| « q n{d then the time complexity will be roughly |L| d « q n while the space complexity is dominated by the size of the list, hence q n{d . Setting q " 3 and d " 1, we obtain a 3 n time and space algorithm. Setting d " q 2 ´2 for any q, we obtain a q n time algorithm in space q n{q 2 . In particular, for q " ? n, we obtain a n n algorithm in space polypnq.

In the following, we will explore this approach in details and see that there are significant technical challenges to overcome to make it work. In particular, the fact that we remove samples from the list after each match perturbs the uniformity of the list and of the cosets. Even though the error is small (exponentially so), this becomes a problem when we repeat this operation an exponential number of times. As a result, the trade-off that we obtain is not quite as good as the simplistic analysis above suggests.

Algorithm for Discrete Gaussian Sampling

We now present the main result of this chapter. For convenience, when we discuss the running time of the algorithms in this chapter, we ignore polynomial factors in the bit-length of the individual input basis vectors (i.e. we consider only the dependence on the ambient dimension n). Theorem 3.2. Let n P N, q ě 2, d P r1, ns be positive integers, and let ε ą 0. Let C be any positive integer. Let L be a lattice of rank n, and let s ě 2 ? dqη ε pLq. There is an algorithm that, given N " 160d 2 ¨C ¨qn{d independent samples from D L,s , outputs a list of vectors that is p4ε 2d N `11Cq ´5n{2 q-close to Cq n{d independent vectors from D L, ?

8d`1 q s . The algorithm runs in time C ¨p10e ¨dq 8d ¨q8n`n{d`opnq and requires memory polypdq ¨qn{d .

Proof. We prove the result for C " 1, and the general result follows by repeating the algorithm. Let tx 1 , . . . , x N u be the N input vectors and let tc 1 , . . . , c N u be the corresponding cosets in L{qL. We will analyze Algorithm 3.3; note that it produces samples in a streaming fashion. The time complexity of the algorithm is

N 2 ¨ˆN {2 8d ˙ď N 2 ˆeN 16d ˙8d ď p10e ¨dq 8d ¨q8n`n{d`opnq ,
and memory requirement of the algorithm is immediate. We now show correctness: we will make repeated use of the data processing inequality (see Section 2.3) and accumulate the error terms until the end of the proof. Let ε 1 " ε 2d so that s ě ? 2η ε 1 pqLq by Lemma 2.24. First, we can assume that the vectors x i for i P rN s are obtained by first sampling c i P L{qL such that Prrc i " cs " PrrD L,s P qL `cs and then sampling the vector x i according to D qL`c i ,s . Indeed, let X " D L,s and C be a Algorithm 3.3 TradeOffSieve(L)

Input: L " tx 1 , . . . , x N u is a list of N vectors in L 1: L 1 Ð tx 1 , . . . , x N 2 u 2: L 2 Ð tx N 2 `1, . . . , x N u 3: Q Ð 0 4: while Q ă q n{d and L 1 is not empty do 5:
v Ð be the first vector in L 1 .

6:

Find 8d vectors (by trying all 8d-tuples) x i 1 , . . . , x i 8d from L 2 s.t. c i 1 `¨¨¨`c i 8d ´v P qL.

7:

if such vectors exist then 8:

Output the vector

x i 1 `¨¨¨`x i 8d ´v q P L 9: Q Ð Q `1. 10: Remove vectors x i 1 , ¨¨¨, x i 8d from L 2 11: end if 12:
Remove vector v from L 1 13: end while random coset in L{qL sampled such that PrrC " qL `cs " ρspqL`cq ρspLq , then for any x P L,

PrrX " xs " ρ s pxq ρ s pLq " ρ s pqL `cq ρ s pLq ρ s pxq ρ s pqL `cq " PrrC " cs Pr Y "D qL`c,s rY " xs
where c " qL `x. Moreover, by Corollary 2.23, this distribution is 2ε 1 N -close to sampling c i for i P rN s, independently and uniformly from L{qL, and then sampling the vectors x i according to D qL`c i ,s . We now assume that the input is sampled from this distribution. Second, we can assume that the algorithm initially gets only the corresponding cosets as input, and the vectors x i j P qL `ci j for j P r8ds, and v P qL `c are sampled from D qL`c i j ,s and D qL`c,s only before such a tuple is needed in Step 4 of the algorithm. Indeed, notice that the test at line 6 does not actually depend on the particular value of the x i j and v but only on their cosets. Since any input vector is used only once in Step 4, these samples are independent of all prior steps. This implies, by Theorem 2.28, that the vector obtained in Step 4 of the algorithm is 2ε 1 -close to being distributed as D L,s ? 8d`1 q .

It remains to show that our algorithm finds q n{d vectors (with high probability). Let N 1 " N 2 be an integer, X be a random variable uniform over pL{qLq N 1 , and let Y be a random variable independent of X and uniform over vectors in t0, 1u N 1 with Hamming weight 8d. The number of such vectors is

ˆN 1 8d ˙ě ˆN 1 8d ˙8d ě q 8n . (3.1)
Let U be a uniformly random coset of L{qL. By Lemma 2.13 and (3.1), we have

d SD ppxX, Y y, Xq, pU, Xqq ď 1 2 ¨c q n q 8n " 1 2 q ´7n{2 .
By Markov inequality we have

Pr xÐX " d SD pxx, Y y, U q ě q ´n 10  ď 10 q ´n E xÐX rd SD pxx, Y y, U qs " 20 q ´n d SD ppxX, Y y, Xq, pU, Xqq ď 20 q ´n ¨1 2 q ´7n{2 " 10q ´5n{2 .
Hence, with probability at least 1 ´10q ´5n{2 over the choice of x Ð X, we have that d SD pxx, Y y, U q ď q ´n 10 and thus for any v P L{qL,

q ´n `q´n 10 ą Prrxx, Y y " v mod qLs ą q ´n ´q´n 10 . (3.2)
It follows that, by introducing a statistical distance of at most 10q ´5n{2 on the input, we can assume that the input vectors in list L 2 satisfy (3.2). Notice that after the algorithm found i vectors for any i ă q n{d , it has removed 8id vectors from L 2 . We will show that for each vector from L 1 (which is uniformly sampled from L{qL) with constant probability we will find 8d-vectors in Step 3. After i ă q n{d output vectors have been found, there are M " N 1 ´8id vectors remaining in the list L 2 . There are `M 8d ˘different 8d-combinations possible with vectors remaining in L 2 .

ˆN 1 8d ˙{ˆM 8d ˙" N 1 ¨¨¨pN 1 ´8d `1q M ¨¨¨pM ´8d `1q ă ˆN 1 ´8d N 1 ´8dpi `1q ˙8d ă ˜1 `8dq n{d N 1 ´8dq n{d ´8d ¸8d " ˜1 `1 10d ´1 ´1 q n{d ¸8d since N 1 " 80d 2 q n{d for C " 1 ď ˆ1 `1 10d ´3{2 ˙8d ă 5 2 . (3.3)
At the beginning of the algorithm, there are `N1 8d ˘combinations, and hence by (3.2), each of the q n cosets appears at least 0.9q ´n`N 1 8d ˘times. After i ă q n{d output vectors have been found, there are only `M 8d ˘combinations left, and `N1

8d ˘´`M 8d ˘possible combinations have been removed. We say that a coset c disappears if there is no set of 8d vectors in L 2 that add to c. In order for a coset to disappear, all of the at least 0.9q ´n`N 1 8d ˘combinations from the initial list must be removed. Hence, the number of cosets that disappear is at most

p N 1 8d q´p M 8d q 0.9q ´np N 1
8d q ă 3{5 0.9 q n " 2 3 q n distinct cosets by (3.3). Hence with probability at least 1{3, we find 8d vectors x i 1 , . . . , x i 8d from L 2 such that x i 1 `¨¨¨`x i 8d ´v P qL. By Chernoff-Hoeffding bound with probability greater than 1 ´e´d 2 q n{d , the algorithm finds at least q n{d vectors. In total, the statistical distance from the desired distribution is 2ε 1 N `2ε 1 q n{d `10 ¨q´5n{2 `e´d 2 q n{d ď 4ε 1 N `11 ¨q´5n{2 .

Corollary 3.3. Let n P N, q P r4, ? ns be an integer, and let ε " q ´32n{q 2 . Let L be a lattice of rank n, and let s ě η ε pLq. There is an algorithm that outputs a list of vectors that is q ´Ωpnq -close to q 16n{q 2 independent vectors from D L,s . The algorithm runs in time q 13n`opnq and requires memory polypnq ¨q16n{q 2 . Proof. Choose d so that 16d ´16 ă q 2 ď 16d, which is possible when q ě 4, and let α " q{ ? 8d `1 -this is the ratio by which we decrease the Gaussian width in Theorem 3.2and note that α ě 1.2.

Let p " r2 ? dqs ă q 2 and k be the smallest integer such that α k ¨p ě 2 n log log n{ log n . Thus k " Opn log log n{ log nq. Let g " α k ps ě 2 n log log n{ log n ¨ηε pLq. By Theorem 2.29, in time N 0 ¨polypnq, we get N 0 " p160d 2 q k q n{d samples from D L,g .

We now iterate k times the algorithm from Theorem 3.2. Initially we have N 0 vectors. At the beginning of the i-th iteration for i ď k ´1, we have N i :" N 0 ¨p160d 2 q ´i vectors that are ∆ i -close to being independently distributed from D L,α ´ig , where α ´ig ě αp ¨ηε pLq. Hence, we can apply Theorem 3.2 and get N i`1 " N i {160d 2 vectors that are ∆ i`1 -close to being independently distributed from D L,α ´pi`1q g , where ∆ i`1 ď ∆ i `4ε 2d N i `11p160d 2 q k´i q ´5n{2 . At each iteration we had N i ě 160d 2 q n{d vectors, a necessary condition to apply Theorem 3.2. Therefore after k iterations, we have at least N k " N 0 {p160d 2 q k " q n{d samples that are ∆ k -close to being independently distributed from D L,α ´k g , where

∆ k ď 11q ´5n{2 k ÿ i"1 p160d 2 q k´i `k´1 ÿ i"0 4ε 2d N i ď 11p160d 2 q k q ´5n{2 `4q ´4n q n{d k´1 ÿ i"0 p160d 2 q k´i
since 16d ě q 2 ď ´11q ´5n{2 `4q ´4n`n{d ¯p160d 2 q k`1 " q ´5n{2`opnq since p160d 2 q k`1 " q opnq . Any vector distributed as D L,ps is in pL with probability at least p ´n. We repeat the algorithm 2p n " Opq 2n q times to obtain p n ¨2 ¨qn{d vectors that are 2p n q ´5n{2`opnq " q ´n{2`opnq close to 2p n ¨qn{d independent samples from D L,ps . Of these samples obtained, we only keep vectors that fall in pL and divide them by p. Let M " p n ¨2¨q n{d . By Chernoff-Hoeffding (Lemma 2.14) with P " p ´n, and δ " 1 2 , the probability to obtain less than p1 ´δqP M " q n{d samples is at most

´e´δ p1´δq 1´δ
¯P M ď e ´1 10 q n{d . Furthermore, d ď q 2 `16 16 and q Þ Ñ ln q 16`q 2 is decreasing for q ě 4, hence for q ď ? n, q n{d ě e 16n ln q 16`q 2 ě e 16n ln ? n 16`n ě e 16 ln ? n´op1q " Ωpn 8 q.

Hence with probability greater than 1 ´e´1 10 q n{d " 1 ´q´Ωpn 8 q , we get q n{d vectors from the distribution D L,s . The statistical distance from the desired distribution is q ´Ωpn 8 q `q´n{2`opnq ď q ´n{2`opnq . We repeat this for q 16n{q 2 q n{d times, to get q 16n{q 2 vectors. The total statistical distance from the desired distribution is q 16n{q 2 q n{d ¨q´n{2`opnq ď q ´Ωpnq . The total running time is bounded by q 2n ˜q16n{q 2 q n{d ¸˜polypnq ¨N0 `k´1 ÿ i"0 p10edq 8d ¨p160d 2 q k´i q 8n`n{d`opnq ¸ď q 13n`opnq .

The memory usage is slightly more involved: we can think of the k iterations as a pipeline with k intermediate lists and we observe that as soon as a list (at any level) has more than 160d 2 q 16n{q 2 elements, we can apply Theorem 3.2 to produce q 16n{q 2 vectors at the next level. Hence, we can ensure that at any time, each level contains at most 160d 2 q 16n{q 2 vectors, so in total we only need to store at most k ¨160d 2 q 16n{q 2 " polypnqq 16n{q 2 vectors, to which we add the memory usage of the algorithm of Theorem 3.2 which is bounded by polypnq ¨qn{d ď polypnq ¨q16n{q 2 . Finally, we run the filter (pL) on the fly at the end of the k iterations to avoid storing useless samples. This tradeoff works for any q ě 4, and the running time can be bounded by q cn `opnq for some constants c that we have not tried to optimize.

Algorithms for BDD and SVP

In the previous section, we obtained a trade-off for Discrete Gaussian Sampling. By using existing reductions from BDD and SVP to DGS, we will show how to obtain a trade-off for those problems.

Theorem 3.4. Let n P N, q P r4, ? ns be a positive integer. Let L be a lattice of rank n, there exists an algorithm that creates a 0.1{q-BDD oracle in time q 13n`opnq and space polypnq¨q 16n{q 2 . Every call to this oracle takes time polypnqq 16n{q 2 . Proof. Let ε " q ´32n q 2

and s ě η ε pL ˚q. From Corollary 3.3, there exists an algorithm that outputs q 16n{q 2 vectors whose distribution is statistically close to D L ˚,s in time q 13n`opnq and space polypnq ¨q16n{q 2 . By repeating this algorithm polypnq times, we can therefore build a DGS polypnqq 16n {q 2 ηε oracle such that each call takes time q 13n`opnq and space polypnq ¨q16n{q 2 . By Theorem 2.40 and Remark 2.41 we can construct a α´BDD such that each call takes time m ¨polypnq and space polypnq, where α " φpLq{λ 1 pLq " ? lnp1{εq{π´op1q 2ηεpL ˚qλ 1 pLq and m " Op n logp1{εq ? ε q " Op n 2 q 2 q 16n{q 2 log qq ď polypnqq 16n{q 2 . The preprocessing consists of polypnq calls to the DGS m ηε sampler described above and requires space m ¨polypnq. Hence the total complexity is polypnqq 13n`opnq " q 13n`opnq in time and m ¨polypnq " polypnqq 16n{q 2 in space. By using inequality (2.3), in Lemma 2.25, we have that

λ 1 pLqη ε pL ˚q ă c βpLq 2 n 2πe ¨ε´1{n p1 `op1qq.
Hence we can guarantee that αpLq ě d lnp1{εq 2npβ 2 {eqε ´2{n ¨p1 ´op1qq ě 1 q d 32 ¨e ¨ln q 2β 2 q 64{q 2 ¨p1 ´op1qq ě p10qq ´1.

Theorem 3.5. Let n P N, q P r4, ? ns be a positive integer. Let L be a lattice of rank n. There is a randomized algorithm that solves SVP in time q 13n`opnq and in space polypnq ¨q 16n q 2 . Proof. By Theorem 3.4, we can construct a 0.1 q -BDD oracle in time q 13n`opnq and in space polypnq ¨q 16n q 2 . Each execution of the BBD oracle now takes polypnqq 16n{q 2 time. By Theorem 2.35, with p10qq n queries to 0.1 q -BDD oracle, we can find the shortest vector. The total time complexity is q 13n`opnq `polypnqq 16n{q 2 ¨p10qq n " q 13n`opnq .

Remark 3.6. If we take q " ? n, Theorem 3.5 gives a SVP algorithm that takes n Opnq time and polypnq space. When q is a large enough constant, for any constant ε ą 0, there exists a constant C " Cpεq ą 2, such that there is a 2 Cn time and 2 εn space algorithm for DGS, and SVP. In particular, the time complexity of the algorithm in this regime is worse than the best known sieving algorithms.

Comparison with previous time/space trade-offs

We now compare our trade-off for SVP with other trade-offs in the litterature.

Kirchner and Fouque [START_REF] Kirchner | Time-memory trade-off for lattice enumeration in a ball[END_REF] begin their algorithm by sampling an exponential number of vectors from the discrete Gaussian distribution D L,s and then using a pigeon-hole principle, show that there are two distinct sums of d vectors (for an appropriate d) that are equal mod qL, for some large enough integer q. This results in a t´1, 0, 1u combination of input lattice vectors (of Hamming weight at most 2d) in qL; a similar idea was used in [START_REF] Shi Bai | Tuple lattice sieving[END_REF] to construct their tuple sieving algorithm. In both algorithms, it is difficult to control (i) the distribution of the resulting vectors, (ii) the dependence between resulting vectors.

Bai et al [START_REF] Shi Bai | Tuple lattice sieving[END_REF] get around the above issues by making a heuristic assumption that the resulting vectors behave like independent samples from a "nice enough" distribution. [START_REF] Herold | Improved algorithms for the approximate k-list problem in euclidean norm[END_REF] proved that this heuristic indeed leads to the time-memory tradeoff conjectured in [START_REF] Shi Bai | Tuple lattice sieving[END_REF], but don't prove correctness. As noted in [HK17, p. 22], their analysis only applies to "fixed k" which in our context means q " Op1q. In particular, they cannot obtain the regime of subexponential space and superexponential time.

Kirchner and Fouque, on the other hand, use the pigeon-hole principle to argue that there exist coefficients α 1 , . . . , α 2d P t´1, 0, 1u and 2d lattice vectors in the set of input vectors v 1 , . . . , v 2d such that

ř 2d i"1 α i v i q P L. It is then stated that ř 2d i"1 α i v i q
has a nice enough Discrete Gaussian distribution. We observe that while the resulting distribution obtained will indeed be close to a discrete Gaussian distribution, we have no control over the parameter s of this distribution and it can be anywhere between 1{q and ? 2d{q depending on the number of nonzero coordinates in pα 1 , . . . , α q q. For instance, let v 1 , ¨¨¨, v 5 be input vectors which are all from D L,s for some large s and we want to find the collision in qL for some positive integer q. Suppose that we find a combination w 1 " v 1 `v2 ´pv 1 `v3 q P qL and another combination w 2 " v 2 `v3 ´pv 4 `v5 q P qL, then by Theorem 2.28, one would expect that w 1 {q " D L, ? 2s{q

and w 2 {q " D L, ?

4s{q . This means that the output of the exhaustive search algorithm by Kirchner and Fouque will behave like samples taken from discrete Gaussian distributions with different parameters, making it difficult to keep track of the standard deviation after several steps of the algorithm, and to obtain samples from the Discrete Gaussian distribution at the desired parameter above the smoothing parameter. We overcome this issue by showing that there is a combination of the input vectors with a fixed Hamming weight that is in qL.

There are other technical details that were overlooked in [START_REF] Kirchner | Time-memory trade-off for lattice enumeration in a ball[END_REF]. In particular, one needs be careful with respect to the errors, both in the probability of failure and the statistical distance of the input/output. Indeed the algorithm performs an exponential number of steps, it is not enough to show that the algorithm succeeds with "overwhelming probability" and that the output has a "negligible statistical distance" from the desired output. However, none of the claimed error bounds in [START_REF] Kirchner | Time-memory trade-off for lattice enumeration in a ball[END_REF] are proven and almost the entire proof of the Exhaustive Search (Theorem 3.4) is left to the reader.

Chapter 4 New Space Efficient Provable Quantum and Classical Algorithms for the SVP

For convenience, in this chapter, we will ignore polynomial factors in the bit-length of the individual input basis vectors of a lattice and only consider the dependence on the ambient dimension n. Since all our algorithm have running time at least 2 Ωpnq , this is the same as assuming that the bit-length of the basis vectors is 2 opnq . Since the basis vectors are usually taken to be of size polynomial in the dimension, this assumption induces no real loss of generality.

The work in this chapter has been published at STACS 2021 [ACKS21] and is a joint work with Divesh Aggarwal, Yanlin Chen and Rajendra Kumar. It also appears in part in Rajendra Kumar's PhD thesis [START_REF] Kumar | Exponential Time/Space Algorithms and Reductions for Lattice Problems[END_REF]. This chapter contains several improvements over the published version and has been significantly rewritten.

Introduction

In a recent work, Chen et al [START_REF] Chen | Space-efficient classical and quantum algorithms for the shortest vector problem[END_REF] proposed an algorithm for SVP based on Discrete Gaussian sampling (DGS) in [START_REF] Aggarwal | Solving the shortest vector problem in 2 n time using discrete gaussian sampling: Extended abstract[END_REF]. Recall that DGS consists in producing samples according to the discrete Gaussian distribution (see Definition 2.16 and Section 2.4). Their algorithm runs in time 2 2.05n`opnq and the memory requirement is 2 0.5n`opnq . The quantum variant of their algorithm runs in time 2 1.2553n`opnq , has the same classical space complexity and uses only polypnq numbers of qubits. Both their classical and quantum algorithms previously had the best space complexity among known provable algorithms that run in time 2 Opnq . In this chapter, we improve upon their results and provide faster classical and quantum algorithms for SVP. Let us first recall the randomized reduction from SVP to BDD shown in [START_REF] Chen | Space-efficient classical and quantum algorithms for the shortest vector problem[END_REF]. Recall that an α-BDD oracle takes as input a lattice L, a target vector t with distpt, Lq ď αλ 1 pLq and outputs a vector y P L such that }y ´t} " distpt, Lq (see Definition 2.21).

Theorem ([CCL18, Theorem 8]). Given a basis matrix B Ă R nˆn for lattice LpBq Ă R n , a target vector t P R n , an α-BDD oracle BDD α with α ă 0.5, and an integer scalar p ą 0. Let

f α p : Z n p Ñ R n be f α p psq " ´p ¨BDD α pL, pB s ´tq{pq `B s.
If distpt, Lq ď αλ 1 pLq, then the list m " tf α p psq | s P Z n p u contains all lattice points at distance less than or equal to pαλ 1 pLq to t.

The BDD oracle built in [START_REF] Dadush | On the closest vector problem with a distance guarantee[END_REF] by discrete Gaussian samples has decoding distance αλ 1 pLq for α ă 1{2 (there is a trade-off between α and the number of DGS samples needed), 49 and therefore, if we choose t to be 0, then p has to be at least 3 to ensure that the shortest vector is one of the vectors output by the list m.

In order to solve SVP with p " 3, it is sufficient to use a BDD oracle with decoding coefficient α equal to 1{3. In [START_REF] Chen | Space-efficient classical and quantum algorithms for the shortest vector problem[END_REF], the authors use the reduction from BDD to DGS by [START_REF] Dadush | On the closest vector problem with a distance guarantee[END_REF] and use the Gaussian sampler of [START_REF] Aggarwal | Solving the shortest vector problem in 2 n time using discrete gaussian sampling: Extended abstract[END_REF] to obtain many samples with standard deviation equal to ? 2η 1{2 . This allows them to construct a 0.391-BDD but each query to the BDD oracle uses many DGS samples. This is wasteful since we really only need a 1{3-BDD. The reason why it is so expensive is that in the analysis they need to find ε such that η ε ą ? 2η 1{2 to apply the reduction, and it requires them to take ε much smaller than would be strictly necessary to construct a 1{3-BDD oracle; this smaller ε explains the bigger decoding radius.

We will improve the time complexity of the algorithm in two ways. First we show how to improve the BDD oracle so that each query becomes cheaper. We do so by building a DGS sampler directly at the smoothing parameter to avoid the ? 2 factor that makes the decoding radius unnecessarily large (and hence the BDD too expensive). Second, we show how to reduce the number of queries to the BDD oracle. Recall that in [START_REF] Chen | Space-efficient classical and quantum algorithms for the shortest vector problem[END_REF], one needs to query p n " 3 n times the 0.391-BDD to construct the list m in the classical setting and p n{2 " 3 n{2 times in the quantum setting by the quantum minimum finding algorithm in Theorem 2.6. By making smarter queries, we show how to take p " 2 above (and therefore greatly reduce the number of queries). A detailed description of our contributions is available in Section 1.1.2.

For convenience, in this chapter, we will ignore polynomial factors in the bit-length of the individual input basis vectors (i.e. we consider only the dependence on the ambient dimension n) when discussing the complexity of algorithms for DGS, BDD or SVP.

Improved algorithms for BDD

We obtain a BDD oracle with decoding distance α by using the same reduction as above but making each call cheaper. This is achieved by building a sampler that directly samples at the smoothing parameter, hence avoiding the ? 2 factor, allowing us to take a bigger ε. In [START_REF] Aggarwal | Solving the shortest vector problem in 2 n time using discrete gaussian sampling: Extended abstract[END_REF], it was shown how to construct a dense lattice L 1 whose smoothing parameter ηpL 1 q is ? 2 times smaller than the original lattice, and that contains all lattice points of the original lattice. Suppose that we first use such a dense lattice to construct a corresponding discrete Gaussian sampler with standard deviation equal to s " ? 2ηpL 1 q. We then do the rejection sampling on condition that the output is in the original lattice L. We thus have constructed a discrete Gaussian sampler of L whose standard deviation is ? 2ηpL 1 q " ηpLq. Nevertheless, |L 1 {L| will be at least 2 0.5n , which implies that this procedure needs at least 2 0.5n input vectors to produce an output vector.

The complexity of our BDD algorithms heavily depends on the quantity βpLq which is related to the kissing number of the lattice (see Section 2.4). For this reason, we first provide complexity bounds that depend on βpLq and then obtain complexity bounds in the worst case (βpLq ď 2 0.401`op1q) as corollaries. We first show how to efficient sample a discrete Gaussian at the smoothing parameter.

Lemma 4.1.

There is a probabilistic algorithm that, given a lattice L Ă R n , m P Z `and s ě η 1{3 pLq as input, outputs m samples from a distribution pm ¨2´Ωpn2 q q-close to D L,s in expected time m ¨2n{2`opnq and space pm `2n{2 q ¨2opnq . Furthermore, all samples have polypnq bit-size.

Proof. Let a " n 2 `4. We repeat the following until we output m vectors. We use the algorithm in Lemma 2.32 to obtain a lattice L1 Ą L of index 2 a . We then run the algorithm from Theorem 2.31 with input pL 1 , sq to obtain a list of vectors from L 1 . We output the vectors in this list that belong to L. The correctness of the algorithm, assuming it outputs anything, is clear as long as the samples obtained from Theorem 2.31 are (sufficiently) independent, which we will prove below.

By Theorem 2.31, we obtain, in time and space 2 pn{2q`opnq , M ď 2 n{2 vectors that are 2 ´Ωpn 2 q -close to M vectors independently sampled from D L 1 ,s . The theorem guarantees that M " 2 n{2 if s ě ? 2η 1{2 pL 1 q. Also, by Lemma 2.32, with probability at least 1{2, we have s ě η 1{3 pLq ě ? 2η 1{2 pL 1 q. Note that when s ă ? 2η 1{2 pL 1 q, the samples obtained from Theorem 2.31 are still 2 ´Ωpn 2 q -close to M vectors independently sampled from D L 1 ,s but M could be much lower than 2 n{2 or even 0. On the other hand, if s ě ? 2η 1{2 pL 1 q then M " 2 n{2 . Assume that s ě ? 2η 1{2 pL 1 q, which happens with probability at least 1{2. From these M " 2 n{2 vectors, we will reject the vectors which are not in lattice L. It is easy to see that the probability that a vector sampled from the distribution D L 1 ,s is in L is at least ρ s pLq{ρ s pL 1 q ě 1 2 a using Lemma 2.22. Thus, the probability that we obtain at least one vector from L (which is distributed as D L,s) is at least

1 2 ´1 ´p1 ´1{2 a q 2 n{2 ¯" 1 2 ´1 ´p1 ´1{2 n{2`4 q 2 n{2 ¯ě 1 2 ¨´1 ´e´2 n{2 {2 n{2`4 ¯" 1 2 p1 ´e´1{16 q.
It implies that after rejection of vectors, with constant probability we will get at least one vector from D L,s . Thus, the expected number of times we need to repeat the algorithm is Opmq until we obtain vectors y 1 , . . . , y m whose distribution is statistically close to being independently distributed from D L,s . The time and space complexity is clear from the algorithm. We can ensure that all samples have polypnq bit-size by first generating more samples (say twice the amount) and throwing away all samples of norm larger than exppΩpn 2 qq. Since the vectors are sampled from a Gaussian with width at most 1 exppOpnqq, the error induced by throwing away the tail of the distribution is smaller than 2 ´Ωpn 2 q .

BDD when ε is small

In order to go further, we will make heavy use of Theorem 2.40 and Lemma 2.25 to relate the smoothing parameter to other parameters of the lattice. A small difficulty when applying Lemma 2.25 is the case distinction on ε. We will start by using inequality (2.4) which will require to take very small values of ε when sampling the discrete Gaussian. Lemma 4.2. For any sufficiently large n, any lattice L Ă R n and any A such that 1 2 ln 2 b `op1q ď A ď 1, there exists a randomized algorithm that creates a α-BDD oracle in time 2 pA`1qn{2`opnq and space 2 0.5n`opnq , where α " 1 2 b A A`b and b " log 2 βpLq. Every call to this oracle takes time 2 An{2`opnq and space polypnq, excluding the space of the preprocessed data.

Proof. Let ε " 2 ´An , A ď 1 to be fixed later. We know that η ε pL ˚q ą η 1{3 pL ˚q for any sufficiently large n (n ą 1

A log 2 3) by the monotonicity of the smoothing parameter function. Hence the DGS m η 1{3 sampler from Lemma 4.1 can be used as a DGS m ηε sampler, for any m P N. By Theorem 2.40 and Remark 2.41 we can construct a α´BDD such that each call takes time m ¨polypnq " 2 An{2`opnq and space polypnq, where α " φpLq{λ 1 pLq " ? lnp1{εq{π´op1q 2ηεpL ˚qλ 1 pLq and m " Op n logp1{εq ? ε q " 2 An{2`opnq . The preprocessing consists of polypnq calls to the DGS m ηε sampler described above and requires space m ¨polypnq. Hence the total complexity is polypnq ¨m ¨2n{2`opnq " 2 pA`1qn{2`opnq in time and 2 An{2`opnq ď 2 n{2`opnq in space. By using Lemma 2.25, inequality (2.4), only valid when ε ď pe{βpLq 2 `op1qq ´n 2 , we have that

λ 1 pLqη ε pL ˚q ă c lnp1{εq `n ln βpLq `opnq π .
Hence we can guarantee that α "

a lnp1{εq{π ´op1q 2η ε pL ˚qλ 1 ą a lnp1{εq{π ´op1q 2 b lnp1{εq`n ln βpLq`opnq π " 1 2 d lnp1{εq `op1q lnp1{εq `n ln βpLq " 1 2 b A A`b `op1q
where b " log 2 βpLq. Furthermore, as noted above, this inequality is only valid when ε ď pe{β 2 `op1qq ´n 2 , that is A ě 1 2 ln 2 ´b `op1q. Finally, note that since b ď 0.401, we must have A ě 0.32 and the inequality holds as soon as n ě 5 ě 1 A log 2 3. Finally note that Theorem 2.40 requires ε ď 1{200 which holds as soon as n ě 17 ě 1 A ln 200.

We can reformulate the previous lemma by expressing the complexity in terms of α instead of some arbitrary constant A.

Corollary 4.3. For any n ě 5, any lattice L Ă R n and any α such that 1 2 ?

1 ´2b ln 2 òp1q ď α ă 1 2 b 1 1`b , there exists a randomized algorithm that creates a α-BDD oracle in time 2 pA`1qn{2`opnq and space 2 0.5n`opnq such that every call to this oracle takes time 2 An{2`opnq , and space polypnq, excluding the space of the preprocessed data, where A " 4bα 2 1´4α 2 and b " log 2 βpLq.

Proof. Apply Lemma 4.2 for some A to be fixed later. Observe that α "

1 2 b A A`b so A " 4bα 2 1´4α 2 . Now the constraints 1 2 ln 2 ´b `op1q ď A ď 1 become 1 2 ln 2 ´b `op1q ď 4bα 2 1´4α 2 ô p 1 2 ln 2 ´b `op1qqp1 ´4α 2 q ď 4bα 2 ô 1 4 ln 2 ´b 2 `op1q ď α 2 ln 2 ô 1 2 ? 1 ´2b ln 2 `op1q ď α and 4bα 2 1´4α 2 ď 1 ô 4p1 `bqα 2 ď 1 ô α ď 1 2 b 1 1`b .

BDD when ε is large

The inequality (2.4) in Lemma 2.25 tells us that if we take an extremely small ε to compute the BDD oracle, we can find a BDD oracle with αpLq almost 1{2. However the time complexity for each call of the oracle will be very costly. On the other hand, if we use the inequality (2.3) in Lemma 2.25 with a larger ε, each call of the oracle will take much less time, but the constraint on the decoding coefficient α will be different. It is therefore important to study this second regime as well. Note that inequality (2.3) actually applies to all ε P p0, 1q but is mostly useful when ε is large.

Lemma 4.4. For any sufficiently large n, any lattice L Ă R n and any 1 n log 2 3 ď A ď 1, there exists a randomized algorithm that creates a α-BDD oracle in time 2 pA`1qn{2`opnq and space 2 0.5n`opnq , where α " 2 ´A?

A ?
2e ln 2 2βpLq ´op1q. Every call to this oracle takes time 2 An{2`opnq and space polypnq, excluding the space of the preprocessed data.

Proof. Let ε " 2 ´An , A ď 1 to be fixed later. We know that η ε pL ˚q ą η 1{3 pL ˚q for any sufficiently large n (n ą 1

A log 2 3) by the monotonicity of the smoothing parameter function. Hence the DGS m η 1{3 sampler from Lemma 4.1 can be used as a DGS m ηε sampler, for any m P N. By Theorem 2.40 and Remark 2.41 we can construct a α´BDD such that each call takes time m ¨polypnq " 2 An{2`opnq and space polypnq, where α " φpLq{λ 1 pLq " ? lnp1{εq{π´op1q 2ηεpL ˚qλ 1 pLq and m " Op n logp1{εq ? ε q " 2 An{2`opnq . The preprocessing consists of polypnq calls to the DGS m ηε sampler described above and requires space m ¨polypnq. Hence the total complexity is polypnq ¨m ¨2n{2`opnq " 2 pA`1qn{2`opnq in time and 2 An{2`opnq ď 2 n{2`opnq in space. By using inequality (2.3), in Lemma 2.25, we have that

λ 1 pLqη ε pL ˚q ă c βpLq 2 n 2πe ¨ε´1{n p1 `op1qq.
Hence we can guarantee that α "

a lnp1{εq{π ´op1q 2η ε pL ˚qλ 1 pLq ą 1 2 d 2e ln 1 ε ´op1q n ¨βpLq ´1ε 1 n ¨p1´op1qq " 2 ´A?
A ¨?2e ln 2 2βpLq ´op1q.

Corollary 4.5. For any n ě 2, any integer m ą 0, any lattice L Ă R n and any ? e ln 3 ?

2nβpLq ď α ď 1 2βpLq
, where b " log 2 βpLq, there exists a randomized algorithm that creates pα `op1qq-BDD oracle in time 2 pA`1qn{2`opnq and space 2 n{2`opnq , such that each call takes time 2 An{2`opnq and space polypnq, excluding the space of the preprocessed data, where

A " ´1 2 ln 2 W p´4 α 2 βpLq 2 e q
where W is the principal branch of the Lambert W function. Furthermore, the above expression of A is a continuous and increasing function of βpLq.

Proof. By Lemma 4.4, we can build an oracle for any 1 n log 2 3 ď A ď 1 such that the decoding radius is α " 2 ´A? A ?

2e ln 2 2βpLq ´op1q. Hence, we want to find A such that 2 ´A?

A ?
2e ln 2 2βpLq

" α and

1 n log 2 3 ď A ď 1. Let f : A Þ Ñ 2 ´A?
A so that the first condition is equivalent to Assuming this is the case, (4.2) can admit up to two solutions. However, since the complexity increases with A, we want the solution that minimizes A, i.e. that maximizes y. The largest of the (up to) two solutions of (4.2) is always given by be the principal branch W of the Lambert W function: y " W p´4 α 2 βpLq 2 e q that is A " ´1 2 ln 2 W p´4 α 2 βpLq 2 e q (4.4)

f pAq " 2αβpLq ? 2e ln 2 . (4
and always satisfies y ě ´1. In particular, we always have A ď 1 2 ln 2 . Now check that f is strictly increasing over r0, 1 2 ln 2 s. Hence, the condition 1 n log 2 3 ď A is equivalent to

f p 1 n log 2 3q ď f pAq ô f p 1 n log 2 3q 2 ď ´2αβpLq ? 2e ln 2 ¯2 by (4.1) ô 2 ´2 n log 2 3 1 n log 2 3 ď 2α 2 βpLq 2 e ln 2 ô e ln 3 2nβpLq 2 9 ´1 n ď α 2 ð e ln 3 2nβpLq 2 ď α 2 . (4.5)
In summary, we can always take A as in (4.4) assuming (4.3) and (4.5) hold.

Putting everything together

We have analyzed the construction of α-BDDs in two regimes, based on Lemma 4.1. It is not a priori clear which construction is better and in fact we will see that it depends in a nontrivial way on the relation between α and βpLq.

Theorem 4.6. For any sufficiently large n, any m ą 0, any ? e ln 3 ? 2nβpLq ď α ă 1 2 b 1 1`b and any lattice L Ă R n , there exists a randomized algorithm that creates a pα `op1qq-BDD oracle in time 2 pA`1qn{2`opnq and space 2 n{2 , such that each call takes time 2 An{2`opnq and space polypnq, excluding the space of the preprocessed data, where

A " # ´1 2 ln 2 W p´4 α 2 βpLq 2 e q when b ă 1´4α 2 2 ln 2 4α 2 1´4α 2 b when b ě 1´4α 2 2 ln 2
where W is the principal branch of the Lambert W function and b " log 2 βpLq. Furthermore, the above expression of A is a continuous and increasing function of b.

Proof. Let 1 ´2b ln 2 ď α, in which case the complexity will depend on A " A 1 pα, bq :" 4bα 2 1´4α 2 . By Corollary 4.5, we can build an α-BDD if α ă 1 2 ?

1 ´2b ln 2, in which case the complexity will depend on A " A 2 pα, bq :" ´1 2 ln 2 W p´4 α 2 βpLq 2 e q. In both cases, the BDD oracle can be created in time 2 pA`1qn{2`opnq , space 2 0.5n`opnq and each call takes time 2 An{2`opnq . Now observe that

α ă 1 2 ? 1 ´2b ln 2 ô 4α 2 ă 1 ´2b ln 2 ô b ă 1´4α 2 2 ln 2 . Let b ˚:" 1´4α 2
2 ln 2 , then there are two cases:

• If b ě b ˚then 1 2 ?
1 ´2b ln 2 ď α so only Corollary 4.3 applies and we can build a α-BDD. In this case the complexity exponent is A 1 pα, bq " 4α 2 1´4α 2 b.

• If b ă b ˚then α ă 1 2 ? 1 ´2b ln 2 so Corollary 4.5 applies but Corollary 4.3 does not for this particular value of α. However, we can apply Corollary 4.3 to build a α 1 -BDD oracle with α 1 ě α min 1 pbq :" 1 2 ? 1 ´2b ln 2 ą α. We will show that the α-BDD of Corollary 4.5 is always more efficient than the α 1 -BDD of Corollary 4.3 in this case and the complexity exponent will thus be A 2 pα, bq " ´1 2 ln 2 W p´4 α 2 βpLq 2 e q.

Assume that b ă b ˚, we claim that A 1 pα, bq ě A 2 pα 1 , bq for any α 1 ě α min 1 pbq. Indeed, on the one hand A 2 is an increasing function of b so A 2 pα, bq ă A 2 pα, 5 18 ln 2 q " ´1 2 ln 2 W p´4α 2 e ´4α 2 q " 4α 2 2 ln 2 " 2α 2 ln 2 since W pxe x q " x.

On the other hand, A 1 is an increasing function of α so

A 1 pα, bq ě A 1 pα min 1 pbq, bq " 1´2b ln 2 2 ln 2
which is a decreasing function of b, therefore

A 1 pα, bq ě A 1 pα min 1 pb ˚q, b ˚q " 1´2b ˚ln 2 2 ln 2
" 2α 2 ln 2 ą A 2 pα, bq. Corollary 4.7. For any sufficiently large integer n, any integer m ą 0, any lattice L Ă R n there exists a randomized algorithm that creates a 1{3-BDD oracle in time 2 0.6604n`opnq and space 2 0.5n`opnq such that very call to this oracle takes time 2 0.1604n`opnq and space polypnq, excluding the space of the preprocessed data.

Proof. By Theorem 4.6, the value of A increases with b " log 2 βpLq. Since b ď 0.401 `op1q and 0.401 ě 5 18 ln 2 , we always have A ď 4 5 0.401 `op1q ď 0.3208 `op1q and we obtain the result.

Quantum algorithm for SVP

From [START_REF] Chen | Space-efficient classical and quantum algorithms for the shortest vector problem[END_REF], we can enumerate all vectors of length p ¨1 3 λ 1 pLq by making p n calls to a 1{3-BDD oracle. Although naively searching for the minimum in the set of vectors of length less than or equal to p ¨1 3 λ 1 pLq, will find the origin with high probability, one can work around this issue by shifting the zero vector. Choosing an arbitrary nonzero lattice vector as the shift, we are guaranteed to obtain a vector of length at least λ 1 for p ě 3. Hence by combining the 1{3-BDD oracle from Theorem 4.6 and the quantum minimum finding algorithm from Theorem 2.6, we can find the shortest vector.

Theorem 4.8. For sufficiently large n, there is a quantum algorithm that solves SVP in time 2 pA`log 2 3`εqn{2`opnq and classical-space 2 0.5n`opnq with a polynomial number of qubits, where and b " log 2 βpLq. In particular, there is a quantum algorithm that solves SVP in time 2 0.9529n`opnq and classical-space 2 0.5n`opnq with a polynomial number of qubits.

A " # ´1 2 ln 2 W p´4
Proof. Let B be a basis of the lattice, BDD 1{3 be a 1{3-BDD oracle and let f : Z n 3 Ñ L be f psq " ´3 ¨BDD 1{3 pL, pBsq{3q `Bs. The algorithm works on three quantum registers and our goal is to build a superposition of states of the form |sy|f psqy|xy where x " }f psq} most of the time (see the definition of U below). First apply Theorem 4.6 to construct 1{3-BDD oracle. This oracle runs in time 2 An{2`opnq and space polypnq excluding the preprocessed data. Hence, we can construct a classical circuit of size 2 An{2`opnq and space polypnq for this oracle, by hard-coding the preprocessed data in the circuit. Let ε ą 0 and apply Corollary 2.2 to construct a quantum circuit O BDD of size 2 pA`εqn{2`opnq on polypnq qubits that satisfies O BDD |sy|0y " |sy|f psqy for all s P Z n 3 . We then construct another quantum circuit U satisfying

U p|ωy|0yq " # |ωy|}ω}y if ω ‰ 0 |ωy|}Be 1 } `1y if ω " 0,
Here e 1 P Z n is a vector whose first coordinate is one and the rest are zero. We then consider the following quantum circuit (we have not drawn ancilla qubits): This circuit O has size 2 pA`εqn{2`opnq , satisfies O|sy|0y|0y " |sy|f psqy|}f psq}y if f psq ‰ 0 and O|sy|0y|0y " |sy|f psqy|}Be 1 } `1y and uses polypnq qubits. We can now apply the quantum minimum finding algorithm from Theorem 2.6 on the first and third registers and the index s 1 of a shortest vector in this list. The output of the algorithm will be f ps 1 q. As a result of applying the quantum minimum finding algorithm from Theorem 2.6, the quantum algorithm takes time 3 0.5n ¨2pA`εqn{2`opnq " 2 pA`log 2 3`εqn{2`opnq and classical space 2 0.5n`opnq with a polynomial number of qubits. Lastly, we show that the quantum algorithm will output a shortest non-zero vector with constant probability. Since }Be 1 } `1 ą λ 1 pLq, with at least 1{2 probability one will find the index i such that f piq is a shortest nonzero vector by using the quantum minimum finding algorithm. Therefore it suffices to show that there is an index i P Z n 3 such that }f piq} " λ 1 pLq. By Theorem 2.35, the list tf psq|s P Z n 3 u contains all lattice points in a ball of radius 3 ¨1 3 λ 1 pLq " λ 1 pLq from 0, including the lattice vector with length λ 1 pLq. Hence with at least 1{2 probability, the algorithm outputs a non-zero shortest lattice vector.

O
By the proof of Corollary 4.7, we can always take A ď 0.3208 `op1q in the construction of the 1{3-BDD. Hence by taking a suitably small ε, the exponent of the running time becomes pA `log 2 3 `εqn{2 `opnq " 0.9529n `opnq.

Solving SVP by spherical caps on the sphere

We now explain how to reduce the number of queries to the α-BDD oracle. Consider a uniformly random target vector t such that αp1 ´1 n qλ 1 pLq ď }t} ă αλ 1 pLq, it satisfies the condition of Theorem 2.35, i.e. distpL, tq ď αλ 1 pLq. We enumerate all lattice vectors within distance 2αλ 1 pLq of t and keep only the shortest nonzero one. We show that for any α ě 1 3 , we will get the shortest nonzero vector of the lattice with probability at least 2 ´cn`opnq for some c that depends on α. By repeating this 2 cn`opnq times, the algorithm will succeed with constant probability. The optimal choice of α is not obvious and is deferred to Section 4.5. Theorem 4.9. Assume we can create an α-BDD oracle, with α ě 1 3 , in time T c , space S c such that each call takes time T o . Then there is a randomized algorithm that solves, with constant probability, SVP in space S c and time

T c `2n`opnq T o sin n φ
where cos φ " 1`s 2 ´4α 2 2s and s " minpα, ? 1 ´4α 2 q. Furthermore, there is a quantum algorithm that solves SVP in classical space S c using a polynomial number of qubit and time

T c `2n{2`opnq T o sin n{2 φ .
Proof. On input lattice LpBq, use the LLL algorithm [START_REF] Lenstra | Factoring polynomials with rational coefficients[END_REF] to get a number d (the norm of the first vector of the basis) that satisfies λ 1 pLq ď d ď 2 n{2 λ 1 pLq. For i " 1, . . . , n 2 , let d i " d{p1 `1 n q i . There exists a j such that λ 1 pLq ď d j ď p1 `1 n qλ 1 pLq. We repeat the following procedure for all i " 1, . . . , n 2 : Fix N P N to be fixed later. For j " 1 to N , pick a uniformly random vector v ij on the surface of the ball of radius rp1 ´1 n qd i . By Theorem 2.35, we can enumerate 2 n lattice points using the function f ij : Z n 2 Ñ L defined by To prove the correctness of the algorithm, it suffices to show that there exists an i P rn 2 s for which the algorithm finds the shortest vector with high probability. Recall that there exists an i such that λ 1 pLq ď d i ď p1 `1 n qλ 1 pLq and let that index be k. We will show that for a uniformly random vector v of length rp1 ´1 n qd k , if we enumerate 2 n vectors by the function

f ij pxq " B x ´2 ¨BDD α pL,
d i Ð dp1 `1 n q ´i 5: r Ð minpα, ? 1 ´4α 2 q 6: cos φ Ð 1`r 2 ´4α 2 2r 7: N Ð Anpλ 1 q V n´1 pλ
f : Z n 2 Ñ L, f pxq " B x ´2 ¨BDD α pL, pB x ´vq{2q,
then with probability δ, whose expression is derived in the next paragraph, there exists x P Z n 2 such that f pxq is the shortest nonzero lattice vector; we will then choose N " 1{δ so that repeating N times this process finds the shortest vector with probability bounded from below by a constant.

To that aim, we show that we can cover the sphere of radius λ 1 by N balls of radius 2αλ 1 whose centers are at distance rp1 ´1 n qd k ď rλ 1 from the origin (see Figure 4.1 where we took r " α). We have two concentric circles of radius rp1 ´1 n qd k and λ 1 , and let P be a uniformly random point on the surface of the ball of radius rp1 ´1 n qd k . A ball of radius 2αλ 1 at center P will cover the spherical cap with angle φ of the ball of radius λ 1 . For convenience, write r " sλ 1 for some s. We can calculate the optimal choice of r by noting that if we take the center of the caps to be at distance r then the angle φ satisfies cos φ "

λ 2 1 `r2 ´4α 2 λ 2 1 2rλ 1
" f psq by the law of cosines, where f pxq " 1`x 2 ´4α 2 2x . We want to maximize the angle φ, since the area we can cover increases with φ. For minimizing cospφq, we minimize f . Note however that we will apply Theorem 2.35 to enumerate all points inside a ball and this requires the center of the ball to be at distance at most αλ 1 from the origin. Therefore we want to minimize f over r0, αs. Check that f pxq is decreasing until ?

1 ´4α 2 and then increasing. We conclude that the optimal radius is when s " minpα, ? 1 ´4α 2 q. Now observe that the surface area of any such cap is lower bounded by the surface area of the base of the cap, which is a pn ´1q-dimensional sphere of radius λ 1 sin φ. Hence the number of spherical caps required to cover the surface of sphere is in the order of N :" A n pλ 1 q{V n´1 pλ 1 sin φq where A n (resp. V n) is the surface area (resp. volume) of a n-dimensional sphere:

A n pλ 1 q " 2π n{2 λ n´1 1 Γpn{2q , V n´1 pλ 1 sin φq " π pn´1q{2 λ n´1 1 sin n´1 φ Γppn `1q{2q . (4.7)
Thus we have

N " A n pλ 1 q V n´1 pλ 1 sin φq " 2 opnq sin n´1 φ .
If we randomly choose the center v of the sphere, the corresponding spherical caps will cover the shortest vector with probability at least 1{N . By Theorem 2.35, the list tf pxq | x P Z n 2 u will contain all lattice points within radius 2αd k from v. Hence, the list will contain a shortest vector with probability 1{N . By repeating this process N times, we can find the shortest vector with constant probability. Therefore, an upper bound of the total time complexity of our method can be expressed as

T c `2n`opnq T o sin n φ .
In the quantum case, we can apply the quantum minimum finding algorithm in Theorem 2.6 to speed up the spherical cap search algorithm: we can build a circuit to generate the random vectors v ij above and therefore build a circuit that associates to every pi, j, sq the lattice vector f ij psq. By a similar argument to that in proof of Theorem 4.8, we then apply the quantum minimum finding algorithm on the set of pi, j, sq P rn 2 s ˆrN s ˆr2 n s and obtain the shortest vector of that list by making ? n 2 N 2 n " 2 n{2`opnq ? N queries to the BDD oracle. The same argument as above shows that the shortest nonzero vector of the lattice is in that list with constant probability.

Corollary 4.10. There is a randomized algorithm that solves SVP in time 2 1.7397n`opnq and in space 2 0.5n`opnq with constant probability.

Proof. Apply Theorem 4.6 with 2 α " 0.4103: since 0 ď b " log 2 βpLq ď 0.401, we indeed have that α ă 1 2 b 1 1`b so we can create a pα `op1qq-BDD in time T c " 2 pA`1qn{2`opnq , space S c " 2 0.5n`opnq such that each call takes time T o " 2 An{2`opnq where A " Apbq is given by Theorem 4.6. The theorem also guarantees that Apbq increases with b so A ď Ap0.401q. But 0.401 ě 1´4α 2 2 ln 2 « 0.2356 so Ap0.401q " 4α 2 1´4α 2 0.401 « 0.8267 by Theorem 4.6. Apply Theorem 4.9 to get a randomized algorithm that solves SVP in space S c and in time

T :" T c `2n`opnq T o sin n φ
where cos φ " 1`s 2 ´4α 2 2s and s " minpα, ? 1 ´4α 2 q. Therefore, 1 sin φ « 1.2537 and T " 2 pA`1qn{2`opnq `2n`An{2´n log 2 sin φ`opnq " 2 1.7397n`opnq .

Dependency of the SVP on a quantity related to the kissing number

In the previous sections, we obtained several algorithms for SVP and bounded their complexity using the only known bound on the quantity βpLq, which is related to the lattice kissing number (see Section 2.2): βpLq ď 2 0.402 . The complexity of those algorithms is highly affected by this quantity and since βpLq can be anywhere between 0 and 2 0.402 (see Section 2.4), we will study the dependence of the time complexity in βpLq. Recall that b " log 2 βpLq.

In order to avoid doing the analysis twice, we introduce a factor ν that is 1 for classical algorithms and 1 2 for quantum algorithms. We now can reformulate the time complexity in Theorem 4.9 as

T c `2νn`opnq T o sin νn φ (4.8)
where cos φ " 1`s 2 ´4α 2 2s and s " minpα, ? 1 ´4α 2 q. We instantiate the algorithm in Theorem 4.9 with α-BDD provided by Theorem 4.6 which satisfies T c " 2 pA`1q{n`opnq , T o " 2 An{2`opnq and S c " 2 0.5n`opnq where A "

´1 2 ln 2 W p´4 α 2 βpLq 2 e q when b ă 1´4α 2 2 ln 2 4α 2 1´4α 2 b when b ě 1´4α 2 2 ln 2
. 2 The optimal value of α was found numerically, see Section 4.5.

Since ν P t 1 2 , 1u, we can simplify the expression of the time complexity to 2 pA{2`νqn`opnq sin νn φ . (4.9)

However, the optimal choice of α is not obvious: by increasing the decoding radius, we reduce the number of queries but increase the cost of each queries. Since there seems to be no closed-form expression for the optimal value of α, we express as an optimization program. Formally, we have T " 2 c 1 pb,νqn`opnq where cpb, νq " min

αPr 1 3 , 1 2 q A 2 `ν ´ν 2 log 2 p1 ´cos 2 φq
where A and cos φ are given by the expressions above that depend on α. We numerically computed the graph of this function and plotted the result on Figures 4.2 and 4.3 for the classical and quantum algorithms respectively.

For completeness, we can also consider a classical version of our quantum algorithm in Section 4.3 and we then obtain algorithm in time 2 c 3 pν,bqn`opnq where .

c 1 pν, bq " ν log 2 3 `1 2 # ´1 2 ln 2 W p´4
We also plotted the resulting graph on Figure 4.2 and Figure 4.3 to compare against the spherical caps algorithms. In particular, we obtain the following result when γpLq " βpLq n is subexponential in n:

Theorem 4.11. For any family pL n q n of full-rank lattices such that L n Ď R n and βpL n q n " 2 opnq , there is a classical (resp. quantum) algorithm that solves the SVP on L n in time 2 1.292n`opnq (resp. 2 0.750n`opnq), in space 2 0.5n (plus polypnq qubits in the quantum case).

Chapter 5 Enumeration Algorithms for the Shortest Vector Problem

The work in this chapter has been published at ASIACRYPT 2018 [START_REF] Aono | Quantum lattice enumeration and tweaking discrete pruning[END_REF] and is a joint work with Yoshinori Aono and Phong Nguyen.

Introduction

Enumeration is the simplest algorithm to solve SVP/CVP: it outputs L X B, given a lattice L and an n-dimensional ball B Ď R n . Dating back to the early 1980s [START_REF] Pohst | On the computation of lattice vectors of minimal length, successive minima and reduced bases with applications[END_REF][START_REF] Kannan | Improved algorithms for integer programming and related lattice problems[END_REF], it has been significantly improved in practice in the past twenty years, thanks to pruning methods introduced by Schnorr et al. [START_REF] Schnorr | Lattice basis reduction: improved practical algorithms and solving subset sum problems[END_REF][START_REF] Schnorr | Attacking the Chor-Rivest cryptosystem by improved lattice reduction[END_REF][START_REF] Peter | Lattice reduction by random sampling and birthday methods[END_REF], and later revisited and generalized as cylinder pruning [START_REF] Gama | Lattice enumeration using extreme pruning[END_REF] and discrete pruning [START_REF] Aono | Random sampling revisited: Lattice enumeration with discrete pruning[END_REF]: these methods offer a trade-off by enumerating over a subset S Ď B, at the expense of missing solutions. In cylinder pruning [START_REF] Gama | Lattice enumeration using extreme pruning[END_REF], S is the intersection of n cylinders. In discrete pruning [START_REF] Aono | Random sampling revisited: Lattice enumeration with discrete pruning[END_REF], S is the intersection of B with the union P of many disjoint boxes. One may only be interested in finding one point in L X S (provided it exists), or the 'best' point in L X S, i.e. a point minimizing the distance to a target (zero for SVP or given as input for CVP). Enumeration and cylinder pruning compute L X S by a depth-first search of a tree with super-exponentially many nodes. Discrete pruning is different, but the computation of S also relies on a depth-first search in a tree.

Discrete Pruning. This technique relies on the selection of finite number of disjoint boxes that define a set P which is called a pruning set. One then enumerates points in L X B X P . The particular choice of P is very important for the complexity of this method. It is common to define P from a partition C: given a set of tags T Ď Z n , each tag t P T defines a set Cptq that contains exactly one lattice point (that is easy to compute from t). We then select a finite subset U Ă T of tags that define P " Ť tPU Cptq. Babai's partition and the natural partition are the most natural choices for C because they define what is called universal partition, a property that makes them suitable to solve CVP using this technique. Once the partition has been fixed, it remains to choose U in such way to maximize the success probability of the algorithm. A typical strategy is to fix an integer m, quantifying the effort one is willing to spend on the method, and to search for the best m boxes, where the "quality" of each box is quantified by a function gptq that evaluates its success probability. Since that cost can be difficult to compute, it is sometimes replaced by simpler functions that have experimentally been confirmed to corrolate well with the exact cost. To the best of our knowledge, no formal analysis on how to choose m has been conducted. Hence, in practice, the entire complexity of the algorithm is expressed as a function of m, which is taken as big as possible given the available computing resources.

Quadratic Quantum Speed-up. Enumeration algorithms can naturally be viewed as doing a depth-first search on a (super-exponential in n) tree. Some leaves are marked when they contain a lattice point and the goal is either to find one marked node or all of them. Note that the tree is usually only defined locally: given a node, the algorithm can determine its children. Given such an algorithm, we can apply quantum algorithms such as Montanaro's [START_REF] Montanaro | Quantum walk speedup of backtracking algorithms[END_REF] to find a marked one in time proportional to ? t where t is the size of the tree. Since a classical algorithm might have to search entire tree, this can provide a quantum quadratic speed-up. In reality, one cannot just apply naively Montanaro's algorithm because some important technical details such as the degree of the tree and estimates on size of the tree need to be examined first. Furthermore, in the case of extreme pruning [START_REF] Gama | Lattice enumeration using extreme pruning[END_REF], the enumeration process usually only succeeds with small probability and will be repeated a large number of times. A naive approach would be to repeat the process k times to obtain a k ? t complexity, but we will see that we can obtain a much better speedup.

Contributions. We show that lattice enumeration and its cylinder and discrete pruning variants can all be quadratically sped up on a quantum computer. Interestingly, we show that this speedup also applies to extreme pruning where one repeats enumeration over many reduced bases: a naive approach would only decrease to k ? t quantum operations, but we bring it down to ? kt. In doing so, we also clarify the application of Montanaro's algorithm [START_REF] Montanaro | Quantum walk speedup of backtracking algorithms[END_REF] to enumeration with cylinder pruning, which was incomplete. We also develop two tweaks to discrete pruning. The first one enables to solve CVP and BDD (and in particular LWE-type instances). The second deals with the selection of optimal discrete pruning parameters, and is crucial for our quantum variant: We design a provably efficient (and even optimal in some cases) algorithm to find the best m tags when gptq satisfies certain conditions. Our theoretical analysis has also been validated by experiments. A detailed description of our contributions is available in Section 1.1.3.

Enumeration Algorithms and Pruning

Let L be a full-rank lattice in R n . Given a target u P Q n , a basis B " pb 1 , . . . , b n q of L and a radius R ą 0, enumeration [START_REF] Pohst | On the computation of lattice vectors of minimal length, successive minima and reduced bases with applications[END_REF][START_REF] Kannan | Improved algorithms for integer programming and related lattice problems[END_REF] outputs L X S where S " B n pu, Rq: by comparing all the distances to u, one extracts a lattice vector closest to u. The enumeration requires to generalize the problem slightly as follows: given a (shifted) lattice u `L and a ball S, output pu `Lq X S. The algorithm performs a recursive search using projections, to reduce the dimension of the lattice. First we compute the projection on the last coordinate of the Gram-Schmidt basis: π n pu `Lq is an one-dimensional shifted lattice and π n pSq is an one-dimensional ball, and we can easily enumerate π n pu `Lq X π n pSq. Then, for each z P π n ppu `Lq X Sq, we consider the hyperplane H z " tx P R n : π n pxq " zu and we observe that pu `Lq X H z is a pn ´1q´dimensional shifted lattice and S X H z is a pn ´1q´dimensional ball, so it suffices to recursively enumerate the intersection. Concretely, it can be viewed as a depth-first search of the enumeration tree T : the nodes at depth n `1 ´k are the points of π k pLq X S. Figure 5.1 illustrates this process on an example.

The running-time of enumeration depends on R and B, but is typically super-exponential in n, even if L X S is small. Indeed, at the i th recursion step the one-dimensional intersection will yield 1 `t2r{ › › b ‹ i › › u points, where r is the radius of the ball (which depends on the previous choices). Since the radius of the ball only decreases during the recursion, we have r ď R , so in particular, the tree will have at most

ś n i"1 p1 `t2R{ › › b ‹ i › › uq nodes.
A rigorous bound on the number of nodes exists. For instance, if the basis is LLL-reduced, and R " }b 1 }, then it is well-known that the number of nodes is at most 2 Opn 2 q . Also [START_REF] Hanrot | Improved analysis of kannan's shortest lattice vector algorithm[END_REF] showed that if the basis is so-called quasi-HKZ-reduced, and R " }b 1 }, then the number of nodes is at most n n{2e`opnq . with a ball of radius R " 5, and the corresponding enumeration tree T . The first level of the tree corresponds to the possible choices of x 2 " π 2 pvq, the projection on Rb ‹ 2 , for any v P L X B 2 pRq. The enumeration algorithm then proceeds recursively: for each choice z of x 2 , one can consider the intersection of L with the hyperplane x 2 " z: this is a (possibly shifted) one-dimensional lattice. The intersection of the ball of radius R with this hyperplane also produces a one-dimensional ball of smaller radius (which depends on z). Hence for each x 2 , we have a new one-dimensional enumeration sub-problem on a shifted lattice. The second level of the tree corresponds to the enumerated lattice points in each new sub-problem.

Pruned Enumeration

Pruned enumeration, introduced by [SE94b, SH95] and formalized by [GNR10, AN17], uses a pruning set P Ď R n and outputs L X pu `P q. The advantage is that for suitable choices of P , enumerating L X pu `P q is much cheaper than L X S, and if we further intersect L X pu `P q with S, we may have found non-trivial points of L X S. Note that we use u `P rather than P , because it is natural to make P independent of u, and it is what happens when one uses the pruning of [START_REF] Gama | Lattice enumeration using extreme pruning[END_REF] to search for close vectors. Following [START_REF] Gama | Lattice enumeration using extreme pruning[END_REF], we view the pruning set P as a random variable: it depends on the choice of basis B. When the pruned enumeration fails, we can simply repeat the process with many different P 's until we solve the problem. We distinguish two cases, which were considered separately in [AN17, GNR10]: Approximation setting: Here, we are interested in finding any point in L X S X pu `P q by enumerating L X pu `P q then intersecting it with the ball S, so we define the success probability as:

Pr succ " Pr P,u
pL X S X pu `P q ‰ Hq, (5.1) which is the probability that it outputs at least one point in L X S. By (slightly) adapting the reasoning of [START_REF] Aono | Random sampling revisited: Lattice enumeration with discrete pruning[END_REF] based on the Gaussian heuristic, we estimate that (5.1) is heuristically Pr succ « minp1, volpS X pu `P qq{covolpLqq, (5.2)

and that the number of elements of L X S X pu `P q is roughly volpS X pu `P qq{covolpLq.

Unique setting: Here, we know that the target u is unusually close to the lattice, that is L X S is a singleton, and we want to find the closest lattice point to u: this is the so-called Bounded Distance Decoding problem (BDD), whose hardness is used in most lattice-based encryption schemes. Thus, u is of the form u " v `e where v P L and e P R n is very short, and we want to recover v. [START_REF] Gama | Lattice enumeration using extreme pruning[END_REF] studied the exact SVP case, where one wants to recover a shortest lattice vector (in our setting, if the target u P L, the BDD solution would be u, but one could alternatively ask for the closest distinct lattice point, which can be reduced to finding a shortest lattice vector). We are only interested in finding the closest lattice point v P L, so we define the success probability as:

Pr succ " Pr P,u pv P L X pu `P qq, (5.3) because we are considering the probability that the solution v belongs to the enumerated set L X pu `P q. Usually, the target u is derived from the noise e, which has a known distribution, then we can rewrite (5.3) as:

Pr succ " Pr P,e p0 P e `P q " Pr P,e p´e P P q.

(5.4)

In the context of SVP, we would instead define Pr succ " Pr P pv P P q where v is a shortest lattice vector. In general, it is always possible to make u depend solely on e: one can take a canonical basis of L, like the HNF, and use it to reduce u modulo L, which only depends on e. Whether Pr P,e p´e P P q can be evaluated depends on the choice of P and the distribution of the noise e. For instance, if the distribution of ´e is uniform over some measurable set E, then: Pr P,e p´e P P q " volpE X P q volpEq .

We analyze the most important noise distributions in Section 5.2.6.

We have discussed ways to estimate the success probability of pruned enumeration. In summary, to estimate the running time of the full algorithm, we need the following information, which depends on the choice of pruning:

• an estimate of the cost of enumerating L X S X pu `P q,

• an estimate of the cost of computing the (random) reduced basis B,

• in the approximate setting: an estimate of volpS X pu `P qq,

• in the unique setting: an estimate of volpE X P q.

Cylinder Pruning

The first pruning set P ever used is the following generalization [START_REF] Gama | Lattice enumeration using extreme pruning[END_REF] of [START_REF] Schnorr | Lattice basis reduction: improved practical algorithms and solving subset sum problems[END_REF][START_REF] Schnorr | Attacking the Chor-Rivest cryptosystem by improved lattice reduction[END_REF]. Fix a bounding function f : t1, . . . , nu Ñ r0, 1s, a radius R ą 0 a lattice basis B " pb 1 , . . . , b n q and define P f pB, Rq " tx P R n s.t. }π n`1´i px ´uq} ď f piqR for all 1 ď i ď nu,

(5.5)

where the π i 's are the Gram-Schmidt projections defined by B. We call cylinder pruning this form of enumeration, because P f pB, Rq is an intersection of cylinders: each inequality }π n`1´i px ´uq} ď f piqR defines a cylinder. Gama et al. [START_REF] Gama | Lattice enumeration using extreme pruning[END_REF] showed how to efficiently compute tight lower and upper bounds for volpP f pB, Rqq, thanks to the Dirichlet distribution and special integrals. Then we can do the same for volpP f pB, Rq X Sq if S is any zero-centered ball. Using the shape of P f pB, Rq, [GNR10] also estimated of the cost of enumerating L X S X P f pB, Rq, using the Gaussian heuristic on projected lattices π i pLq: these estimates are usually accurate in practice, and they can also be used in the CVP case [START_REF] Liu | Solving BDD by enumeration: An update[END_REF]. To optimize the whole selection of parameters, one finally needs to take into account the cost of computing the (random) reduced basis B: for instance, this is done in [START_REF] Chen | BKZ 2.0: better lattice security estimates[END_REF][START_REF] Aono | Improved progressive BKZ algorithms and their precise cost estimation by sharp simulator[END_REF]. In Section 5.3, we show a quantum quadratic speed-up of cylinder pruning.

Discrete Pruning

Discrete pruning is based on lattice partitions defined as follows. An L-partition is a partition C of R n such that:

• The partition is countable: R n " Ť tPT Cptq where T is a countable set, and CptqXCpt 1 q " H whenever t ‰ t 1 .

• Each cell Cptq contains a single lattice point, which can be found efficiently: given any t P T , one can "open" the cell Cptq, i.e. compute Cptq X L in polynomial time. In other words, the partition defines a function g : T Ñ L where Cptq X L " tgptqu, and one can compute g in polynomial time.

Two useful L-partitions, illustrated in Figure 5.2 and defined below, were presented in [AN17]: Babai's partition where T " Z n and each cell Cptq is a box of volume covolpLq; and the natural partition where T " N n and each cell Cptq is a union of non-overlapping boxes, with total volume covolpLq. Universal Lattice Partitions. While sufficient for the SVP, L-partitions are not sufficient in general for our framework: if P " Ť tPU Cptq, then L X pP `uq " Ť tPU pL X pCptq `uqq but the number of elements in L X pCptq `uq is unclear, and it is also unclear how to compute LXpCptq`uq efficiently. To fix this, we could compute instead LXP XS " Ť tPU pLXCptqqXS, but that creates two issues:

b 1 b 2 b ‹ 2 O b 1 b 2 b ‹ 2 O p0,
• In the unique setting, it is unclear how we would evaluate success probabilities. Given a tag t and a target u " v `e where e is the noise and v P L, we would need to estimate the probability that v P Cptq, i.e. u ´e P Cptq.

• We would need to select the tag set U depending on the target u, without knowing how to evaluate success probabilities.

The most natural solution is to subtract u to the lattice L as follows. We say that an L-partition C is universal if for all u P Q n , the shifted partition C `u is an L-partition. In particular, this means that for any u P Q n , each cell Cptq contains a single point in L ´u " tv ´u, v P Lu, which can be found efficiently: given any t P T and u P Q n , one can "open" the cell u `Cptq, i.e. compute pu `Cptqq X L in polynomial time.

Unfortunately, an L-partition is not necessarily universal, even in dimension one. Indeed, consider the L-partition C with T " Z defined as follows: Cp0q " r´1{2, 1{2s; For any k ą 0, Cpkq " pk ´1{2, k `1{2s; For any k ă 0, Cpkq " rk ´1{2, k `1{2q. It can be checked that C is not universal: the shifted cell Cp0q `1{2 contains two lattice points, namely 0 and 1. Fortunately, we will show Babai's partition and the natural partition are actually universal, see Section 5.2.7 for the proofs. Lemma 5.1 (Babai's partition). Let B be a basis of a full-rank lattice L in Z n . Let T " Z n and for any t P T , C Z ptq " tB ‹ `D where D " t ř n i"1 x i b ‹ i s.t. ´1{2 ď x i ă 1{2u. Then Babai's partition pC Z , T q is universal. Lemma 5.2 (Natural partition). Let B be a basis of a full-rank lattice L in Z n . Let T " N n and for any t " pt 1 , . . . , t n q P T , C N ptq " t

ř n i"1 x i b ‹ i s.t. ´pt i `1q{2 ă x i ď ´ti {2 or t i {2 ă x i ď pt i `1q{2u.
Then the natural partition pC N , T q is universal.

Discrete Pruning. Once a universal partition pC, T q has been selected, discrete pruning is obtained by selecting the pruning set P as the union of finitely many cells Cptq, namely P " Ť tPU Cptq for some finite U Ď T . Then L X pu `P q " Ť tPU pL X pu `Cptqqq can be enumerated by opening each cell u `Cptq for t P U : see Algorithm 5.1.

In theory one would like to select the cells Cptq which maximize volpCptq X Sq: [AN17] shows how to compute volpCptq X Sq, but an exhaustive search to derive the best volpCptq X Sq exactly would be too expensive. We discuss the selection of tags in Section 5.2.5.

Algorithm 5.1 Closest Vector Discrete Pruning from Universal Lattice Partitions

Input: A target vector u P Q n , a universal lattice partition pC, T q, a finite subset U Ď T and if we are in the approximation setting, a radius R. Output: L X pu `pS X P qq where S " B n pRq and P " Ť tPU Cptq. 1: R " H 2: for t P U do 3:

Compute L X pu `Cptqq by opening u `Cptq: in the approx setting, check if the output vector is within distance ď R to u, then add the vector to the set R. In the unique setting, check if the output vector is the solution. 4: end for 5: Return R.

Success Probability

In Section 5.2.1, we saw that the probability of success needs to be evaluated to understand the complexity the pruned enumeration. In the case of discrete pruning, this probability depends on the selection of tags. In this section, we consider a general framework under which we can optimize the selection of tags for discrete pruning. We distinguish two cases:

Approximation setting: based on (5.2), the success probability can be derived from volpS X pu `P qq " ÿ tPU volpB n pRq X Cptqq.

(5.6) This is exactly the same situation as in the SVP case already tackled by [START_REF] Aono | Random sampling revisited: Lattice enumeration with discrete pruning[END_REF]. They showed how to compute volpB n pRq X Cptqq for Babai's partition and the natural partition by focusing on the intersection of a ball with a box H " tpx 1 , . . . , x n q P R n s.t. α i ď x i ď β i u: In the case of Babai's partition, each cell C Z ptq is a box. In the case of the natural partition, each cell C N ptq is the union of 2 j symmetric (nonoverlapping) boxes, where j is the number of non-zero coefficients of t. It follows that volpC N ptq X B n pRqq " 2 j volpH X Sq, where H is any of these 2 j boxes. They also showed how to approximate a sum ř tPU volpB n pRq X Cptqq in practice, without having to compute separately each volume.

Unique setting: Based on (5.4), if the noise vector is e, then the success probability is It therefore suffices to compute the cell probability Pr P,e pe P Cptqq, instead of an intersection volume. Similarly to the approximation setting, we might be able to approximate the sum ř tPU Pr P,e pe P Cptqq without having to compute individually each probability. In Section 5.2.6, we focus on the natural partition: we discuss ways to compute the cell probability Pr P,e pe P Cptqq depending on the distribution of the noise e.

In both cases, we see that the success probability is of the form:

Pr succ " ÿ tPU f ptq, (5.8)
for some function f : T Ñ r0, 1s such that ř tPT f ptq " 1, where (5.8) is rigorous for the unique setting, and heuristic for the approximation setting due to the Gaussian heuristic. If ever the computation of f is too slow to compute individually each term of ř tPU f ptq, we can use the statistical inference techniques of [START_REF] Aono | Random sampling revisited: Lattice enumeration with discrete pruning[END_REF] to approximate (5.8) from the computation of a small number of f ptq. Note that if we know that the probability is reasonably large, say ą 0.01, we can alternatively use Monte-Carlo sampling to approximate it.

Selecting Tags

We would like to select the finite set U of tags to maximize Pr succ given by (5.8). Let us assume that we have a function f : T Ñ R `such that ř tPT f ptq converges. If (5.8) provably holds, then ř tPT f ptq " 1, so the sum indeed converges. Since T is infinite, this implies that for any B ą 0, the set tt P T s.t. f ptq ą Bu is finite, which proves the following elementary result: Lemma 5.3. Let T be an infinite countable set. Let f : T Ñ R `be a function such that ř tPT f ptq converges. Then for any integer m ą 0, there is a finite subset U Ď T of cardinal m such that f ptq ď min uPU f puq for all t P T zU . Such a subset U maximizes ř uPU f puq among all m-size subsets of T .

Any such subset U would maximize Pr succ among all m-size subsets of T , so we would ideally want to select such a U for any given m. And m quantifies the effort we want to spend on discrete pruning, since the bit-complexity of discrete pruning is exactly m poly-time operations.

Now that we know that optimal subsets U exist, we discuss how to find such subsets U efficiently. In the approximation setting of [START_REF] Aono | Random sampling revisited: Lattice enumeration with discrete pruning[END_REF], the actual function f is related to volumes: we want to select the k cells which maximize volpB n pRq X Cptqq among all the cells. This is too expensive to do exactly, but [START_REF] Aono | Random sampling revisited: Lattice enumeration with discrete pruning[END_REF] provides a fast heuristic method for the natural partition, by selecting the cells Cptq minimizing EtC N ptqu: given as input m, it is possible to compute efficiently in practice the tags of the m cells which minimize

EtC N ptqu " n ÿ i"1 ˆt2 i 4 `ti 4 `1 12 ˙}b ‹ i } 2 .
In other words, this is the same as replacing the function f related to volumes by the function

hptq " e ´řn i"1 ˆt2 i 4 `ti 4 `1 12 ˙}b ‹ i } 2
, and it can be verified that ř tPN n hptq converges. In practice (see [START_REF] Aono | Random sampling revisited: Lattice enumeration with discrete pruning[END_REF]), the m cells maximizing hptq (i.e. minimizing EtC N ptqu) are almost the same as the cells maximizing volpB n pRq X Cptqq. However, the method of [START_REF] Aono | Random sampling revisited: Lattice enumeration with discrete pruning[END_REF] was only heuristic. In Section 5.4, we modify that method to make it fully provable: for any integer m ą 0, we can provably find the best m cells in essentially m polynomial-time operations and polynomial space (the m solutions are output as a stream).

Noise Distributions in the Unique Setting

We discuss how to evaluate the success probability of BDD discrete pruning in the unique setting for the natural partition. This can easily be adapted to Babai's partition, because it also relies on boxes. Following (5.7), it suffices to evaluate: pptq " Pr P,e pe P ´Cptqq,

(5.9)

where P is the (random) pruning set, e is the BDD noise and Cptq is the cell of the tag t. We now analyze the most frequent distributions for e.

LWE and Gaussian Noise.

The most important BDD case is LWE [START_REF] Regev | On lattices, learning with errors, random linear codes, and cryptography[END_REF]. However, there are many variants of LWE using different distributions of the noise e. We will use the continuous Gaussian distribution over R n , like in [START_REF] Regev | On lattices, learning with errors, random linear codes, and cryptography[END_REF]. Many schemes actually use a discrete distribution, such as some discrete Gaussian distribution over Z n (or something easier to implement): because this is harder to analyze, some cryptanalysis papers such as [START_REF] Lindner | Better key sizes (and attacks) for lwe-based encryption[END_REF][START_REF] Liu | Solving BDD by enumeration: An update[END_REF] prefer to ignore this difference, and perform experiments to check if it matches with the theoretical analysis. The main benefit of the Gaussian distribution over R n is that for any basis, each coordinate is a one-dimensional Gaussian.

Lemma 5.4. Let t " pt 1 , . . . , t n q P N n be a tag of the natural partition C N pq with basis B " pb 1 , . . . , b n q. If the noise e follows the multivariate Gaussian distribution over R n with parameter σ, then:

pptq " n ź i"1 ˆerf ˆ1 ? 2σ ¨ti `1 2 ¨}b ‹ i } ˙´erf ˆ1 ? 2σ ¨ti 2 ¨}b ‹ i } ˙˙(5.10)
Proof. Each cell is a product of 2 n boxes, so the CDF of the Gaussian distribution gives:

pptq " 2 n n ź i"1 1 2 ˆerf ˆ1 ? 2σ ¨ti `1 2 ¨}b ‹ i } ˙´erf ˆ1 ? 2σ ¨ti 2 ¨}b ‹ i } ˙" n ź i"1 ˆerf ˆ1 ? 2σ ¨ti `1 2 ¨}b ‹ i } ˙´erf ˆ1 ? 2σ ¨ti 2 ¨}b ‹ i } ˙5.2.6.2

Spherical Noise.

If the noise e is uniformly distributed over a centered ball, we can reuse the analysis of [AN17]:

Lemma 5.5. Let pC, T q be a universal L-partition. Let t P T be a tag. If the noise e is uniformly distributed over the n-dimensional centered ball of radius R, then:

pptq " volpCptq X B n pRqq volpB n pRqq (5.11)
For both Babai's partition C Z and the natural partition C N , Cptq is the union of disjoint symmetric boxes, so the evaluation of (5.11) is reduced to the computation of the volume of a ball-box intersection, which was done in [START_REF] Aono | Random sampling revisited: Lattice enumeration with discrete pruning[END_REF].

Product of Finite Distributions.

We now consider a general distribution D for the noise e where each coordinate e i is independently sampled from the uniform distribution over some finite set. This includes the box distribution, which is the uniform distribution over a set of the form ś n i"1 ta i , . . . , b i u. The continuous Gaussian distribution and the uniform distribution over a ball are both invariant by rotation. But if the noise distribution D is not invariant by rotation, the tag probability pptq may take different values for the same p}b ‹ 1 }, . . . , }b ‹ n }q, which is problematic for analysing the success probability. To tackle this issue, we reuse the following heuristic assumption introduced in [GNR10]:

Universality proof of Babai's and the natural partition

In this section, we show that Babai's partition and the natural partition are universal.

Proof of universality of Babai's partition (Lemma 5.1). We already know from [AN17] that pC Z , T q is a L-partition. To show that it is actually universal, it suffices to show that for all u P Q n , pu `CZ ptqq X L is always a singleton, which can be found in polynomial time. To see this, note that Babai's nearest plane algorithm [START_REF] Babai | On Lovász' lattice reduction and the nearest lattice point problem[END_REF] implies that for any t P Z n and any u P R n , there is a unique v P L such that v ´u ´tB ‹ P D, and that v can be found in polynomial time when u P Q n . It follows that pu `CZ ptqq X L " tvu.

Algorithm 5.2 Universal cell opening for Babai's partition from Babai's Nearest Plane algorithm [START_REF] Babai | On Lovász' lattice reduction and the nearest lattice point problem[END_REF] Input: A tag t P Z n , a target u P Q n , and a basis B " pb 1 , . . . , b n q P Q n of a lattice L, with Gram-Schmidt orthogonalization B ‹ . Output: v P L such that tvu " L X pu `CZ ptqq 1: v Ð 0 and w Ð u `tB ‹ 2: for i :" n downto 1 do 3:

Compute the integer c closest to

xb ‹ i , wy{xb ‹ i , b ‹ i y 4:
w Ð w ´cb i and v Ð v `cb i 5: end for 6: Return v Proof of universality of Babai's partition (Lemma 5.2). We already know that pC N , T q is an L-partition. Let u P Q n : we can write u "

ř n i"1 u i b ‹ i .
Then we only need to show that the shifted cell u `CN ptq " t

ř n i"1 pu i `xi qb ‹ i s.t. ´pt i `1q{2 ă x i ď ´ti {2 or t i {2 ă x i ď pt i `
1q{2u contains only one lattice point which can be found in polynomial time using Algorithm 5.3. Consider the projection π over the orthogonal supplement to the subspace spanned by b 1 , . . . , b n´1 . Then:

πpu `CN ptqq " tpu n `xn qb ‹ n s.t. ´pt n `1q{2 ă x n ď ´tn {2 or t n {2 ă x n ď pt n `1q{2u.
Notice that the union pu n ´pt n `1q{2, u n ´tn {2s Ť pu n `tn {2, u n `pt n `1q{2s only contains one integer: this is because the number of integers in an interval of the form px, ys is tyu ´txu when x ě y. And that integer can be found in polynomial time, as shown by Algorithm 5.3. This shows that πpu `CN ptqq X πpLq is a singleton, which can be found in polynomial time. Algorithm 5.3 iterates this process using projections orthogonally to b 1 , . . . , b i .

Algorithm 5.3 Universal cell opening for the natural partition: adaptation of [AN17, Algorithm 3]

Input: A tag t P N n , a target u " ř n i"1 u i b ‹ i P Q n , and a basis B " pb 1 , . . . , b n q P Q n of a lattice L, with Gram-Schmidt matrix µ. Output: v P L such that tvu " L X pu `CN ptqq 1: for i :" n downto 1 do 2: y Ð ´řn j"i`1 v j µ j,i and v i Ð tu i `y `0.5u

3: if v i ă u i `y then 4: v i Ð v i ´p´1q t i rt i {2s 5: else 6: v i Ð v i `p´1q t i rt i {2s 7:
end if 8: end for 9: Return

ř n i"1 v i b i

Quantum speed-up of Cylinder Pruning

Tools

The analysis of quantum tree algorithms requires the tree to have constant degree d " Op1q. Without this assumption, there is an extra polypdq term in the complexity bound like in Theorem 2.12. Instead, it is more efficient to first convert the tree into a binary tree, so that the overhead is limited to polyplog dq. We will use the following conversion (illustrated by Figure 5.3):

Theorem 5.8. One can transform any tree T of depth n and degree d into a binary one T 2 so that: T 2 can be explored locally; T and T 2 have roughly the same number of nodes, namely #T ď #T 2 ď 2#T ; the leaves of T and T 2 are identical; the depth of T 2 is ď n log d. Moreover, a black-box function P over T can be adapted to a black box P 2 for T 2 , so that the marked nodes of T and T 2 are the same. One query to P 2 requires at most one query to P with additional Oplog dq auxiliary operations.

Proof. For any node N P T which is not a leaf, we want to transform the subtree N plus its children into a binary subtree in T . By making queries to the black box, we know the number of children dpN q of N . We also know the i-th child of N for all 1 ď i ď dpN q. There is thus a bijection f N between r|0, ¨¨¨, dpN q ´1|s and the children of N . We define l N " rlog 2 pdpN qqs.

For each node of the tree N , we encode the corresponding node in T 2 in the same way.

For those nodes which are in the local binary sub-tree in T 2 corresponding to the local sub-tree N +its children, and which does not correspond to N or its children, we can encode them as: EpN q|ppx 1 P t0, 1u, ¨¨¨, x i P t0, 1u, ˚, ¨¨¨, ˚qq where EpN q is the encoding of the node N , where i ď l N and where the number in base 10 corresponding to px 1 , ¨¨¨, x i , 0, ¨¨¨, 0q in base 2 is smaller than dpN q ´1. Note that in the representation in base 2 px 1 , ¨¨¨, x i , 0, ¨¨¨, 0q, the heaviest bit is on the left.

Given an encoding of a node N 2 in T 2 which is in the local binary sub-tree in T 2 corresponding to the local sub-tree N plus its children in T , we can easily build a black box which gives the children of this node by using the function f N and the value dpN q. We omit the details here. Depending on if the node N 2 corresponds to a node in T or not, a query on the node N 2 requires a query on T or not. If N 2 does not correspond to a node in T , we need Oplogpdqq auxiliary operations on the extra encoding to see if its children correspond to nodes in T . These operations can then be quantized using Corollary 2.2 with potentially additional workspace of size at most polynomial of the initial memory space.

According to our construction, the leaves of both trees are identical.

We will now prove that: #T ď #T 2 ď 2#T . The left-hand inequality is obvious. If a node N of T is a leaf or has a single child, the subtree of N plus its child (in case that it exists) will not change in T 2 . If N has at least two children, the subtree of N +its children will be transformed into a binary subtree in T 2 . Assume that N has k ě 2 children, the corresponding subtree in T 2 has 2k ´1 nodes. It has 2k ´2 ă 2k nodes if we do not count the root corrsponding to N itself. Thus the k children of N are transformed into 2k ´2 nodes in T 2 if k ě 2. By combining the previous two cases, we obtain that #T 2 ď 2#T .

In the context of enumeration with pruning, instead of enumerating the whole set L X S, we may only be interested in the 'best' vector in L X S, i.e. minimizing some distance. In terms of tree, this means that given a tree T with marked leafs defined by a predicate P, we want to find a marked leaf minimizing an integral function g which is defined on the marked leaves of T . We know that LpT q " LpT 2 q. g is thus also defined on the marked leaves of T 2 . We denote by g V the predicate which returns true on a node N if and only if it is a marked leaf and gpN q ď V . We first find a parameter R such that there is at least one marked leaf N such that gpN q ď R. Then we decrease R by dichotomy using Theorem 2.9 with different marking functions. We thus obtain FindMin1pT , P, g, R, d, εq (Algorithm 5.4), which is a general algorithm to find a leaf minimizing the function g with error probability ε, using the binary tree T 2 . Theorem 5.9. Let ε ą 0. Let T be a tree with its marked leaves defined by a predicate P. Let d be an upper-bound on the degree of T . Let g be an integral function defined on the marked leaves such that gpN q ď R has at least one solution over all of the marked leaves. Then Algorithm 5.4 outputs N P T such that g takes its minimum on N among all of the Algorithm 5.4 Finding a minimum: FindMin1pT , P, g, R, d, εq Input: A tree T with marked leaves defined by the predicate P. An integral function g defined on the marked leaves of T . A parameter R, such that gpN q ď R has at least one solution over all of the marked leaves. An upper-bound d of the number of children of a node in T . Output: A marked leaf N such that g takes its minimum on N among all the marked leaves explored by the backtracking algorithm. 1: T 2 Ð the corresponding binary tree of T . If we know an upper-bound T on the number of nodes in the tree T , we can speed up the algorithm by replacing FindSolution by ExistSolution in lines 4, 5: the new algorithm FindMin2pT , P, g, R, d, T, εq is given and analyzed in the followings.

1 2: N Ð R, N 1 Ð 0, Round Ð rlog 2 Rs, v Ð p0, ¨¨¨, 0q 3: while N 1 ă N ´1 do 4: Call FindSolutionpT 2 , g tpN `N 1 q{2s , n log d, ε{Roundq 5: if FindSolutionpT 2 , g tpN `N 1 q{2s , n log d, ε{Roundq returns x then 6: v Ð x, N Ð tpN `N 1 q{2s 7: else 8: N 1 Ð tpN `N
Theorem 5.10. Let ε ą 0. Let T be a tree with its marked leaves defined by a predicate P Let g be an integral function defined on the marked leaves such that gpN q ď R has at least one solution over all of the marked leaves and an upper-bound d of the number of children of a Algorithm 5.5 Finding a minimum, given an upper-bound of the tree-size: FindMin2pT , P, g, R, d, T, εq Input: A tree T with marked leaves defined by the predicate P. An integral function g defined on the marked leaves of T . A parameter R, such that gpN q ď R has at least one solution over all of the marked leaves. An upper-bound d of the number of children of a node in T . Output: A marked leaf N such that g takes its minimum on N among all the marked leaves explored by the backtracking algorithm.

1: T 2 Ð the corresponding binary tree of T 2: N Ð R, N 1 Ð 0 3: Round Ð rlog 2 pRqs `1 4: v Ð p0, ¨¨¨, 0q 5: while N 1 ă N ´1 do 6:
Call ExistSolutionpT 2 , T, g tpN `N 1 q{2s , n logpdq, ε{Roundq 7:

if ExistSolutionpT 2 , T, g tpN `N 1 q{2s , n logpdq, ε{Roundq returns "marked node exists" then 8: queries on T and on g. Each query on T requires Oplogpdqq auxiliary operations. Each call of ExistSolution and FindSolution requires polypn logpdqq qubits. In total the algorithm needs polypn logpdq, logpRqq qubits.

N Ð tpN `N 1 q{2s 9: else 10: N 1 Ð tpN `N

Application to Cylinder Pruning

Lemma 5.11. Let pb 1 , ¨¨¨, b n q be an LLL-reduced basis. Let T be the backtracking tree corresponding to the cylinder pruning algorithm for SVP with radius R ď }b 1 } and bounding function f . Then the degree of the tree satisfies: dpT q ď 2 n .

Proof. In T , the number of children of a node N of depth k can be upper-bounded by

d k " 2f pkq }b 1 } }b ‹ n´k`1 } `1 ď 2 pn´kq{2`1 `1.
The result follows from the fact that an LLL-reduced basis satisfies: }b 1 } 2 }b ‹ i } 2 ď 2 i´1 for all 1 ď i ď n. Theorem 5.12. There is a quantum algorithm which, given ε ą 0, an LLL-reduced basis B " pb 1 , ¨¨¨, b n q of a lattice L in Z n , a radius R ď }b 1 } and a bounding function f : t1, ¨¨¨, nu Ñ r0, 1s, outputs with correctness probability ě 1 ´ε:

1. a non-zero vector v in L X P f pB, Rq, in time Op ? T n 3 polyplogpnq, logp1{εqqqq, if L X P f pB, Rq Ę t0u.

2. all vectors in L X P f pB, Rq, in time Op#pL X P f pB, Rqq ? T n 3 logpnq polyplogp#pL X P f pB, Rqq, logp1{εqqq.

a shortest non-zero vector v in LXP f pB, Rq, in time Op

? T n 3 β polyplogpnq, logp1{εq, logpβqqq, if L X P f pB, Rq Ę t0u. Here β is the bitsize of the vectors of B.

Here T is the total number of nodes in the enumeration tree T searched by the cylinder pruning algorithm over P f pB, Rq.

Proof. Let T be the enumeration tree searched by the cylinder pruning algorithm in which a node of depth i, where 1 ď i ď n, is encoded as p˚, ¨¨¨, ˚, x n´i`1 , ¨¨¨, ¨¨¨, x n q and where the root is encoded as p˚, ¨¨¨, ˚q. Let T 2 be the corresponding binary tree. Let P be a predicate which returns true only on the nodes encoded as px 1 , ¨¨¨, x n q in T 2 (i.e. the leaves of T 2 , where all the variables are assigned), such that } ř n i"1 x i b i } 2 ď R 2 and px 1 , ¨¨¨, x n q ‰ p0, ¨¨¨, 0q. For 1, if L X P f pB, Rq ‰ H, we apply FindSolutionpT 2 , P, n log d, εq. For 2, we find all marked nodes by simply repeating the algorithm FindSolution, modifying the oracle operator to strike out previously seen marked elements, which requires space complexity Op#pL X P f pB, Rqqq.

For 3, if L X P f pB, Rq ‰ H, we apply Theorem 5.9 to FindMin1pT , P, } ¨}2 , R 2 , 2 n `1, εq. In T 2 , the height of the tree can be upper-bounded by n log d " Opn 2 q. We also have Round " Opβq. The time complexity is Op ? T n 3 β polyplogpnq, logp1{εq, logpβqqq.

We can also apply the quantum tree algorithms to extreme pruning. If we run cylinder pruning over m trees, we can combine these trees into a global one and apply the quantum tree algorithms on it. Theorem 5.13 (Quantum speed-up for SVP extreme pruning). There is a quantum algorithm which, given ε ą 0, m LLL-reduced bases B 1 , ¨¨¨B m of a lattice L in Z n ,a radius R ď min i }b 1,i } where b 1,i is the first vector of B i and a bounding function f : t1, ¨¨¨, nu Ñ r0, 1s, outputs with correctness probability ě 1 ´ε a shortest non-zero vector v in L X pYP f pB i , Rqq, in time Op ? T n 3 β polyplogpnq, logp1{εq, logpβq, logpmqqq, if L X pYP f pB i , Rq Ę t0u. Here β is a bound on the bitsize of vectors of B i 's, T is the sum of number of nodes in the enumeration trees T i searched by cylinder pruning over P f pB i , Rq for all 1 ď i ď m.

In the case of CVP with target vector u, we use the cylinder pruning algorithm with radius R ď a ř n i"1 }b ‹ i } 2 {2 and bounding function f . The degree of the tree is now upperbounded by d " max a ř n i"1 }b ‹ i } 2 {}b ‹ j } `1. We have log d " Opβ `nq where β is the bitsize of the vectors of the basis B. We can obtain a similar theorem as Theorem 5.12 with different overheads. For exemple for the first case, the time complexity becomes Op ? T n 3{2 pn βq 3{2 polyplogpnq, logp1{εq, logpβqqqq.

For the extreme pruning for CVP the time complexity is Op ?

T n 3{2 pn `βq 3{2 β polyplogpnq, logp1{εq, logpβq, logpmqqq

Linear Optimization for Discrete Pruning

We saw in Section 5.2.6 how to compute or approximate the probability pptq that the cell of the tag t contains the BDD solution. From Lemma 5.3, we know that for any integer m ą 0, there are m tags which maximize pptq in the sense that any other tag must have a lower pptq.

To select optimal parameters for BDD discrete pruning, we want to find these m tags as fast as possible, possibly in m operations and polynomial-space (by outputting the result as a stream).

Reduction to Linear Optimization

We distinguish two cases:

• Selection based on expectation. Experiments performed in [START_REF] Aono | Random sampling revisited: Lattice enumeration with discrete pruning[END_REF] show that in practice, the m tags t which maximize volpC N ptq X B n pRqq are essentially the ones which minimize the expectation EtC N ptqu where EtCu :" E xPC p}x} 2 q over the uniform distribution. Corollary 3 in [START_REF] Aono | Random sampling revisited: Lattice enumeration with discrete pruning[END_REF] shows that this expectation is:

EtC N ptqu " n ÿ i"1 ˆt2 i 4 `ti 4 `1 12 ˙}b ‹ i } 2 .
So we can assume that for a noise uniformly distributed over a ball (see Lemma 5.5), the m tags t maximizing pptq are the tags minimizing EtC N ptqu.

• Gaussian noise. If the noise distribution is the continuous multivariate Gaussian distribution, Lemma 5.4 shows that pptq is given by (5.10). This implies that the m tags t which maximize pptq are the ones which minimize ´log pptq

In both cases, we want to find the m tags t P N n which minimize an objective function g of the form gptq " ř n i"1 f pi, t i q, where f pi, t i q ě 0. The fact that the objective function can be decomposed as a sum of individual positive functions in each coordinate allows us to view this problem as a linear optimization. We will see that in the case that g has integral outputs, it is possible to provably find the best m tags which minimize such a function g in essentially m operations. If g is not integral, it is nevertheless possible to enumerate all solutions such that gptq ď R where R is an input, in time linear in the number of solutions. A special case is the problem of enumerating smooth numbers below a given number.

In practice, it is more efficient to rely on the expectation, because it is faster to evaluate. Figure 5.4 shows how similar are the best tags with respect to one indicator compared to another: to compare two sets A and B formed by the best M tags, the graph displays #pA X Bq{M . For instance, the top curve confirms the experimental result of [AN17] that the Figure 5.4: Similarity between optimal sets of tags, depending on the objective function. m tags t which maximize volpC N ptq X B n pRqq are almost the same as the ones which minimize the expectation EtC N ptqu. The top second curve shows that the best tags that maximize the LWE probability are very close to those minimizing the expectation. The bottom two curves compare with the finite noise distribution arising in GGH challenges [START_REF] Goldreich | Public-key cryptosystems from lattice reduction problems[END_REF]. In all cases, at most 10% of the best tags are different, and more importantly, we report that the global success probabilities are always very close, with a relative error typically ď 1%.

We conclude that in practice, the expectation is a very good indicator to select the best tags for the distributions studied in Section 5.2.6.

Limits of Orthogonal Enumeration

Aono and Nguyen [AN17, Section 6] presented a heuristic method to solve this linear optimization problem in the special case: gptq " EtC N ptqu "

ř n i"1 ´t2 i 4 `ti 4 `1 12 ¯}b ‹ i } 2
, by noticing that EtC N ptqu was the squared distance between a target point and a special lattice with a known orthogonal basis. This allowed to find all t P N n such that EtC N ptqu ď R for any R, using a variant [AN17, Algorithm 6] of enumeration. And by using a binary search based on an early-abort variant, it was also possible to find an R yielding slightly more than m solutions.

[AN17, Section 6] reported that this algorithm worked very well in practice: if is the number of t P N n such that EtC N ptqu ď R, the number of nodes L of the enumeration algorithm [AN17, Algorithm 6] seemed to be bounded by Op nq, perhaps even ˆn. This was in contrast with the usual situation where the number of nodes of the enumeration tree is exponentially larger than the number of solutions. However, no rigorous result could be proved in [START_REF] Aono | Random sampling revisited: Lattice enumeration with discrete pruning[END_REF], leaving it as an open problem to show the efficiency of [AN17, Algorithm 6].

Surprisingly, we solve this open problem of [START_REF] Aono | Random sampling revisited: Lattice enumeration with discrete pruning[END_REF] in the negative. More precisely, we show that there are cases where the number of nodes L of enumeration [AN17, Algorithm 6] is exponentially larger than the number of solutions . To see this, consider the orthogonal lattice Z n with the canonical basis. Then: EtC N ptqu "

ř n i"1 ´t2 i 4
`ti 4 `1 12 ¯. But we have:

Lemma 5.14. Let R " n 12 `1 2 and n 1 " tn{10u. Then the number of t P N n such that

ř n i"1 ´t2 i 4 `ti 4 `1 12 ¯ď R is exactly n `1. But the number 1 of px n´n 1 `1, . . . , x n q P N n 1 such that ř n i"n´n 1 `1´x 2 i 4 `xi 4 `1 12 ¯ď R is ě 2 n 1 .
Proof. For the choice R " n 12 `1 2 , we have

ř n i"1 ´t2 i 4
`ti 4 `1 12 ¯ď R if and only if all the t i 's are equal to zero, except at most one, which must be equal to one.

Furthermore, for any px n´n 1 `1, . . . , x n q P t0, 1u n 1 , we have:

n ÿ i"n´n 1 `1ˆx 2 i 4 `xi 4 `1 12 ˙ď n 1 ˆ1 2 `1 12 ˙ď n 10 7 12 " 7n 120 ă R.
It follows in this case that the number of nodes L of the enumeration algorithm [AN17, Algorithm 6] for that R is at least exponential in n, though the number of solutions is linear in n.

Solving Linear Optimization

We show that a slight modification of orthogonal enumeration can solve the more general problem of linear optimization essentially optimally. This is based on two key ideas. The first idea is that when solving linear optimization, we may assume without loss of generality that each function f pi, q is sorted by increasing value, with a starting value equal to zero, which changes the tree: f pi, 0q " 0 and f pi, jq ď f pi, j 1 q whenever j ď j 1 . Indeed, it suffices to sort the values of f pi, q if necessary and subtract the minimal value: however, note that for both the expectation EtC N ptqu "

ř n i"1 ´t2 i 4 `ti 4 `1 12 ¯}b ‹ i } 2 and for ´řn i"1 log ´erf ´1 ? 2σ ¨ti `1 2 ¨}b ‹ i } ¯´erf ´1 ? 2σ ¨ti 2 ¨}b ‹ i }
¯¯, the values of f pi, q are already sorted. For instance,

t 2 i 4 `ti
4 `1 12 is an increasing function of t i . The second idea is that we may assume to simplify that f has integral values, which allows us to bound the running time of dichotomy. This is not directly true for the expectation

EtC N ptqu " ř n i"1 ´t2 i 4 `ti 4 `1 12 ¯}b ‹ i } 2 .
However, because we deal with integer lattices, the basis B is integral, the }b ‹ i } 2 's are rational numbers with denominator covolpLpb 1 , . . . , b i´1 qq 2 , so we Let M be the number of pv 1 , . . . , v n q P N n such that ř n i"1 f pi, v i q ď R. If M ď N , then Algorithm 5.7 will perform the same operations as Algorithm 5.6 (except Line 6), so the cost is OpnM `1q ď OpnN `1q arithmetic operations. Otherwise, M ą N , which means that the while loop will stop after exactly N iterations, and the total number of operations is therefore OpN q.

Our main result states that if the function f is integral, given any M , Algorithm 5.8 finds the best N assignments in time M where M ď N ď pn `1qM : Theorem 5.17. Assume that f : t1, . . . , nu ˆN Ñ N satisfies f pi, 0q " 0 and f pi, jq ă f pi, j 1 q for all i and j ą j 1 . Assume that f pi, jq ď j Op1q 2 n Op1q . Given as input a number M ą 1, Algorithm 5.8 outputs the N assignments pv 1 , . . . , v n q P N n which minimize ř n i"1 f pi, v i q in time Opnpn `1qM q `nOp1q `Oplog 2 M q, where the number N satisfies: M ď N ď pn `1qM .

Proof. We have the following invariant at the beginning of each loop iteration: the number of pv 1 , . . . , v n q P N n such that ř n i"1 f pi, v i q ď R 0 is ă M , and the the number of pv 1 , . . . , v n q P N n such that

ř n i"1 f pi, v i q ď R 1 is ě M .
Initially, this holds because the number of pv 1 , . . . , v n q P N n such that ř n i"1 f pi, v i q ď 0 is 1 and the number of pv 1 , . . . , v n q P N n such that

ř n i"1 f pi, v i q ď ř n
i"1 f pi, rM 1{n sq is ě pM 1{n q n " M . Furthermore, the loop preserves the invariant by definition of the loop. Since the length R 1 ´R0 decreases by a factor two, it follows that the number of loop iterations is ď log 2 p ř n i"1 f pi, rM 1{n sqq. After the loop, we must have R 0 " R 1 ´1. Let N 1 (resp. N 0) be the number of pv 1 , . . . , v n q P N n such that ř n i"1 f pi, v i q ď R 1 (resp. R 0) after the loop. By the invariant, we know that N 0 ă M ď N 1 . We claim that pN 1 ´N0 q ď nM , which implies that N 1 ď pn `1qM . Notice that N 1 ´N0 is the number of pv 1 , . . . , v n q P N n such that ř n i"1 f pi, v i q " R 1 . For any such assignment, one of the v i 's must be ě 1: if we decrement that v i , we get a cost ă R 1 , so it must be ď R 0 because R 0 " R 1 ´1, which means that this assignment is counted by N 0 . Since we have at most n possibilities for i, it follows that N 1 ´N0 ď nM . Furthermore, Algorithm 5.8 uses negligible space, except that the output is linear in M : the best tags are actually output as a stream. If we sort the N tags, which requires space, we could output exactly the best M tags.

Quantum Speed-up of Discrete Pruning

We present a quadratic quantum speed-up for discrete pruning, namely: Theorem 5.18. There is a quantum algorithm which, given ε ą 0, a number M ą 0, and an LLL-reduced basis B of a full-rank lattice L in Z n , outputs the shortest non-zero vector in L X P in time Opn 2 ? M q polyplogpnq, logpM q, logp1{εq, βq with error probability ε. Here, β denotes the bitsize of the vectors of B, P " Ť tPU C N ptq where C N is the natural partition with respect to B, U is formed by the N tags t minimizing EtC N ptqu, for some M ď N ď 32n 2 M with probability at least 1 ´ε{2. If the algorithm is further given a target u P Z n , it also outputs the shortest vector in pL ´uq X P .

By comparison, opening all the cells returned by Algorithm 5.8 of Section 5.4 does the same in OpM q poly-time operations, except that the upper bound on N is slightly lower.

Algorithm 5.6 Enumeration of low-cost assignments

Input: A function f : t1, . . . , nu ˆN Ñ R ě0 such that f pi, 0q " 0 and f pi, jq ě f pi, j 1 q for all i and j ą j 1 ; a bound R ą 0. Output: All pv 1 , . . . , v n q P N n such that ř n i"1 f pi, v i q ď R. 1: v 1 " v 2 " ¨¨¨" v n " 0 and ρ n`1 " 0 and k " n 2: while true do 3:

ρ k " ρ k`1 `f pk, v k q // cost of the tag p0, . . . , 0, v k , . . . , v n q 4: if ρ k ď R then 5: if k " 1 then 6:
return pv 1 , . . . , v n q; (solution found)

7: v k Ð v k `1 8: else 9: k Ð k ´1 and v k Ð 0 //
v k Ð v k `1 17: end if 18:

end if 19: end while

The proof of Theorem 5.18 has two parts: first, we show how to determine the best N cells without computing them, for some N close to M , with high probability; then we find the best candidate inside these N cells. Both rely on a tree interpretation. Algorithm 5.6 can be seen as a backtracking algorithm on a tree T pRq, where each node can be encoded as p˚, ¨¨¨, ˚, v k , ¨¨¨, v n q. The root is encoded as p˚, ¨¨¨, ˚q. Given a node p˚, ¨¨¨, ˚,

v k , ¨¨¨, v n q, if k " 1, then it is a leaf. If ř n i"k f pi, v i q ą R, then it is also a leaf. If ř n i"k f pi, v i q ď R
, then its children are p˚, ¨¨¨, ˚, v k´1 , v k , ¨¨¨, v n q, where v k´1 can take all integer values between 0 and ρ v k ,¨¨¨,vn . Here ρ v k ,¨¨¨,vn is the smallest integer such that f pi ´1, ρ v k ,¨¨¨,vn q `řn i"k f pi, v i q ą R. In case of discrete pruning, f is quadratic. We can compute ρ v k ,¨¨¨,vn and build the black-box on T pRq.

Determining the best cells implicitly

Given a number M ą 0, Algorithm 5.8 finds (in time essentially M) the best N vectors t P N n (for some N close to M) minimizing EtC N ptqu "

ř n i"1 ´t2 i 4
`ti 4 `1 12 ¯}b ‹ i } 2 by minimizing instead the function:

gpv 1 , ¨¨¨, v n q " n ÿ i"1 f pi, v i q " n ÿ i"1 v i pv i `1q}b ‹ i } 2 " n ÿ i"1 α i v i pv i `1q.
This is done by finding a suitable radius R by dichotomy, based on logarithmically many calls to Algorithm 5.7 until the number of solutions is close to M , and eventually enumerating the

Algorithm 5.7 Counting low-cost assignments

Input: A function f : t1, . . . , nu ˆN Ñ R ě0 such that f pi, 0q " 0 and f pi, jq ě f pi, j 1 q for all i and j ą j 1 ; a bound R ą 0 and a number M ě 0. Output: Decide if the number of pv 1 , . . . , v n q P N n such that

ř n i"1 f pi, v i q ď R is ě M or ă M . 1: v 1 " v 2 " ¨¨¨" v n "
0 and ρ n`1 " 0 and k " n and m " 0 2: while m ă M do 3:

ρ k " ρ k`1 `f pk, v k q // cost of the tag p0, . . . , 0, v k , . . . , v n q 4: if ρ k ď R then 5: if k " 1 then 6: m Ð m `1 and v k Ð v k `1 (one more solution) 7: else 8: k Ð k ´1 and v k Ð 0 //
v k Ð v k ` 1 16: end if 17:
end if 18: end while 19: return m ě M Algorithm 5.8 Enumeration of lowest-cost assignments Input: A function f : t1, . . . , nu ˆN Ñ R ě0 such that f pi, 0q " 0 and f pi, jq ě f pi, j 1 q for all i and j ą j 1 ; a number M ą 0. Output: Output the N assignments pv 1 , . . . , v n q P N n that minimize

ř n i"1 f pi, v i q, where M ď N ď nM . 1: R 0 Ð 0 and R 1 Ð ř n i"1 f pi, rM 1{n sq; 2: while R 0 ă R 1 ´1 do 3:
Call Algorithm 5.7 with R " tpR 0 `R1 q{2s and M 4:

if number of solutions ě M then 5: R 1 Ð R 6: else 7: R 0 Ð R 8:
end if 9: end while 10: Call Algorithm 5.6 with R 1 . marked leaves of a search tree by Algorithm 5.6. Both Algorithm 5.6 and Algorithm 5.7 can be viewed as algorithms exploring a tree T pRq depending on a radius R ą 0: Algorithm 5.7 decides if the number #SpT pRqq of marked leaves (i.e. the number of outputs returned by Algorithm 5.6) is ě or ă than an input number; Algorithm 5.6 returns all the marked leaves.

This tree interpretation gives rise to Algorithm 5.9, which is our quantum analogue of Algorithm 5.8 with the following differences: we are only interested in finding a suitable radius R such that N " #SpT pRqq is close to M up to a factor of 32n 2 , with correctness probability at least 1 ´ε{2, because enumerating all the marked leaves would prevent any quadratic speed up. We replace Algorithm 5.7 by the quantum tree size estimation algorithm of [START_REF] Ambainis | Quantum algorithm for tree size estimation, with applications to backtracking and 2-player games[END_REF]: this gives a quadratic speed up, but approximation errors slightly worsens the upper bound on N . The input pα 1 , ¨¨¨, α n q of Algorithm 5.9 corresponds to p}b ‹ 1 } 2 , ¨¨¨, }b ‹ n } 2 q, where pb 1 , ¨¨¨, b n q is an integer basis. We know that p}b ‹ 1 } 2 , ¨¨¨, }b ‹ n } 2 q P Q n , but by suitable multiplication preserving polynomial sizes, we may assume that p}b ‹ 1 } 2 , ¨¨¨, }b ‹ n } 2 q P N n . The order between the }b ‹ i } 2 's doesn't matter in our analysis. We can assume that }b ‹ 1 } 2 ď ¨¨¨ď }b ‹ n } 2 . We show Algorithm 5.9 Computing implicitly the best cells quantumly Input: ε, M ą 0 and pα 1 , ¨¨¨, α n q P N n with α 1 ď ¨¨¨ď α n such that the input f : t1, ¨¨¨, nu ˆN Ñ N of Algorithm 5.6 satisfies f pi, xq " α i xpx `1q Output: R such that M ď #SpT pRqq ď 32n 2 M with probability ě 1 ´ε 1: r Ð rlog 2 p ř n i"1 f pi, rp4nM q 1{n sqqs and R Ð

ř n i"1 f pi, rp4nM q 1{n sq and R 0 Ð 0 and R 1 Ð R 2: while R 1 ´R0 ą 1 do 3: Call TreeSizeEstimationpT 2 pRq, 16n 2 M, 1{2, εr{2, 2q 4:
if the answer is "T 2 pRq contains more than 16n 2 M vertices" then 5:

R 1 Ð R and R Ð tpR 0 `R1 q{2s 6:
else if the answer is "T 2 pRq contains T vertices" with T ă 3p2n ´1qM then end if 11: end while 12: Return R 0 that Algorithm 5.9 finds a radius R corresponding to the best M cells in approximately ? M quantum operations:

Theorem 5.19. The output R of Algorithm 5.9 satisfies M ď #SpT pRqq ď 32n 2 M with probability ě 1 ´ε{2. Algorithm 5.9 runs in quantum time Opn 2 ? M polyplogpnq, logpM q, logp1{εq, βqq where β is the bitsize of the basis vectors pb 1 , ¨¨¨, b n q. The algorithm needs Oppolypn, logpM q, logp1{εqqq qubits.

In order to prove the theorem, we will need the two following lemmas:

Lemma 5.20. For all R P N, we have #T 2 pRq´2 2p2n´1q ď #SpT 2 pRqq ď #T 2 pRq. We also have #T 2 pR `1q ď 2n#T 2 pRq.

In case that the algorithm returns R after the while loop, we have R 1 " R 0 `1. The estimation of TreeSizeEstimationpT pR 1 qq with the parameters as in the while loop is "T pR 1 q contains more than 16n 2 M vertices". Since the precision parameter is 1{2, we have #T 2 pR 1 q ě 16n 2 M 1`1{2 ą 8n 2 M . The estimation of TreeSizeEstimationpT pR 0 qq with the parameters as in the while loop is "T pR 0 q contains T vertices" with T ă r3p2n ´1qM s. Since the precision parameter is 1{2, we have #T 2 pR 0 q ď 3p2n´1qM 1´1{2 " 6p2n ´1qM . By using Lemma 5.20, we know that for all R P N, #T pR `1q ď 2n#T pRq.Thus, there exists R ą 0 such that 2p2n ´1qM ď #T 2 pRq ď 4np2n ´1qM ă 8n 2 M . This R should be R 0 .

We proved that in each case, Algorithm 5.9 outputs R such that 2p2n ´1qM ď #T pRq ď 32n 2 M . Therefore, R satisfies M ď #SpT pRqq ď 32n 2 M with probability at least 1 ´ε/2.

The number of queries to the trees is Op a n logpdq16n 2 M log 2 pRound{εq˚Roundq " Opn 2 ? M polyplogpnq, logpM q, logp1{εq, βqq. Since each query needs Oplogp16n 2 M qq " polyplogpnq, logpM qq non-query transformations, the time complexity of Algorithm 5.9 is Opn 2 ? M polyplogpnq, logpM q, logp1{εq, βqq. The algorithm needs Oppolypn, logpM q, logp1{εqqq qubits by using Theorem 2.12.

Finding the best lattice vector

We now know R such that the number N of pv 1 , ¨¨¨, v n q P N n which satisfies

ř n i"1 f pi, v i q ď R is in rM, 32n 2 M
s with probability at least 1 ´ε{2. All these solutions are leaves of the tree T pRq and they form the set U of the best N tags minimizing t minimizing EtC N ptqu. Let P " Ť tPU C N ptq where C N is the natural partition with respect to the input basis B. We would like to find a shortest non-zero vector in L X P for the SVP setting, or the shortest vector in pL ´uq X P in the CVP setting, when we are further given target u P Z n . To do this, we notice that it suffices to apply FindMin2 (in App), provided that the basis pb 1 , ¨¨¨, b n q is LLL-reduced. More precisely, we call FindMin2pT pRq, P, h, }b 1 } 2 , d, 32n 2 M, ε{2q. Here P is the predicate which returns true on a node iff it is a leaf encoded as px 1 , ¨¨¨, x n q such that gpx 1 , ¨¨¨, x n q " ř n i"1 f pi, x i q ď R. h V px 1 , ¨¨¨, x n q is the predicate which indicates if the square of the norm of the lattice vector in the cell of tag px 1 , ¨¨¨, x n q is ď V . The time complexity is Opn 2 ? M polyplogpnq, logpM q, logp1{εq, βqq. Since the subroutine of determining the best cells and the one of finding a shortest non-zero vector, both have an error probability ε{2, by union bound, the total error probability is ε. We thus have proved Theorem 5.18.

The Case of Extreme Pruning

In this section, we explain how to tackle the extreme pruning case, where one wants to run discrete pruning over many reduced bases. We only give a proof sketches since the main ideas are the same as previously.

Given m LLL-reduced bases pB 1 , ¨¨¨, B m q of the same integer lattice L of rank n, we define for each basis B i a function g i :

N n Ñ Q such that g i px 1 , ¨¨¨, x n q " ř n j"1 }b ‹ i,j } 2 x i px i `1q, where pb ‹ i,1 , ¨¨¨, b ‹ i,n
q is the Gram-Schmidt orthogonalization of the basis B i . Here, we want to first find the polypnqM best cells with respect to all of the functions g i altogether, and then find the shortest vector in these cells. Both steps have complexity Op ? M polypn, log M, log 1{ε, βqq, where ε is the total error probability and where β is the bitsize of the vectors of the input bases.

Theorem 5.22. There is a quantum algorithm which, given ε ą 0, a number M ą 0, and m LLL-reduced bases pB 1 , ¨¨¨, B m q of an n-rank integer lattice L, outputs the shortest non-zero vector in L X P in time Op ? M polypn, log M, log 1{ε, βqq with error probability ε. Here, β denotes the maximum bitsize of the vectors of all given bases, P " Ť pi,tqPU C N pi, tq where C N pi, ¨q is the natural partition with respect to B i , U is formed by the N tuples pi, tq P t1, ¨¨¨, mu ˆNn minimizing g i ptq among all tuples, for some N " polypnq¨M with probability at least 1´ε{2. If the algorithm is further given a target u P Z n , it also outputs the shortest vector in pL ´uq X P .

The main idea of the proof is the following. For each basis B i , there is a backtracking tree with respect to the function g i as we explained in the previous section. We put all these trees together and obtain one single tree. We first apply the TreeSizeEstimation algorithm several times to find a good common radius R for all functions g i by dichotomy, such that the total number of good cells in all trees is polypnq ¨M . After that, we apply FindMin2 to find the shortest vector among all these cells. Remark that in the previous section, we required the function g to have integral values, and this was achieved by multiplying all }b ‹ i } 2 by a common denominator. Instead, we here want to keep the output rational, which is proved sufficient by the following lemma: Lemma 5.23. Given a basis pb 1 , ¨¨¨, b n q of an integer lattice L, g :

N n Ñ Q such that gpx 1 , ¨¨¨, x n q " ř n i"1 }b ‹ i } 2 x i px i `1q
, we denote T pRq the backtracking tree for finding all solutions of gpx 1 , ¨¨¨, x n q ď R, T 2 pRq the corresponding binary tree. For all R P R `, #SpT 2 pR`δqq ď 2n#SpT 2 pRqq, where δ "

1 ś n i"1 ∆ i and ∆ i " covolpb 1 , ¨¨¨, b i q 2 " ś i j"1 }b ‹ i } 2 .
The proof of this lemma is the same as the proof of Lemma 5.20 by noticing that ś n i"1 ∆ i is a common denominator of all }b ‹ i } 2 . For each basis B i , we define δ i as in Lemma 5.23. In the dichotomy step, we stop when the difference of the two terms is smaller than min jPt1,¨¨¨,mu δ j . The other steps are the same as in the previous section.

Impact

In this section, we compare the asymptotical complexity of quantum enumeration with extreme cylinder pruning and quantum sieving. We stress that this is just a first step, since we omitted the polynomial overhead factors and only use the asymptotic formula. Note that the polynomial factors in quantum sieve have not been investigated either. Such factors play an important role in security estimates and further studies will be necessary to get a full picture. If one is interested in more precise estimates, such as the number of quantum gates, one would need to assess the quantum cost of the algorithm of Montanaro [START_REF] Montanaro | Quantum walk speedup of backtracking algorithms[END_REF] and that of Ambainis and Kokainis [START_REF] Ambainis | Quantum algorithm for tree size estimation, with applications to backtracking and 2-player games[END_REF]. Furthermore, one needs to assess the explicit quantum circuit complexity of the oracle which gives local access to the tree used in the enumeration. Another point which is worth noticing is that quantum sieving algorithms use QRACM gates whereas quantum enumeration with extreme cylinder pruning is only in the plain quantum circuit model. The cost of cylinder pruning depends on the quality of the basis used. [START_REF] Chen | BKZ 2.0: better lattice security estimates[END_REF][START_REF] Aono | Improved progressive BKZ algorithms and their precise cost estimation by sharp simulator[END_REF] discussed two models of strongly reduced bases: the HKZ model which is closer to the stateof-the-art, and the Rankin model which provides conservative bounds by anticipating progress in lattice reduction. In Figure 5.5, the red and yellow curves show ? #bases ˚N where N is an upper bound cost, i.e., number of nodes of enumeration with extreme pruning with probability 1{#bases. The upper bounds for HKZ/Rankin bases are computed by the method of [START_REF] Aono | Lower bounds on lattice enumeration with extreme pruning[END_REF]. The dotted blue curve corresponds to the asymptotical best known quantum sieving complexity without polynomial factor which is 2 0.265n .

Quantum enumeration with extreme pruning for solving the shortest vector problem would be faster than quantum sieve up to higher dimensions than previously thought, around 300 if we assume that 10 10 quasi-HKZ-bases can be obtained for a total cost similar to the total cost of quantum enumeration on the same number of quasi-HKZ-bases, or beyond 400 if 10 10 Rankin-bases can be used instead. In a recent work [START_REF] Albrecht | Lattice reduction with approximate enumeration oracles: Practical algorithms and concrete performance[END_REF], using recent technical progress on speeding-up lattice enumeration in BKZ, ie, relaxing (the search radius of) enumeration and extended preprocessing which preprocesses in a larger rank than the enumeration rank k, the authors provide a faster BKZ algorithm using lattice enumeration which achieves the same root Hermite factor (RHF) with respect to k2 as previous BKZ algorithms. Their updated extrapolation of the crossover rank between a square-root cost estimate for quantum enumeration using our algorithm and the Core-SVP cost estimate (2 0.265k) for quantum sieving is 547.

Furthermore, we note that our quantum speedup might actually be more than quadratic. Indeed, the number T of enumeration nodes is a random variable: the average quantum running time is Ep ? T q, which is ď a EpT q and potentially much less (e.g. a log-normal distribution). It would be useful to identify the distribution of T : it cannot be log-normal for LLL bases (unlike what seems to be suggested in [START_REF] Yu | Second order statistical behavior of LLL and BKZ[END_REF]), because it would violate the provable running time 2 Opn 2 q of enumeration with LLL bases. Indeed, in [START_REF] Yu | Second order statistical behavior of LLL and BKZ[END_REF], the authors showed that the complexity of enumeration on a random n-dimensional BKZ k -reduced basis should be of the shape exppn 2 xpkq `ypkq ˘n1.5 l ¨zpkqq except a fraction at most expp´l 2 {2q of random bases, for some constants xpkq, ypkq, zpkq depending on k. However there seems to be a mistake, because Chebyshev's inequality only guarantees the result for a fraction at most 1 ´1{l 2 of random bases. By taking l " Op ? nq,

we obtain that the enumaration on LLL-reduced basis (k " 2) has complexity 2 Opn 2 q only for a guaranteed fraction 1 ´1{Ωpnq of random basis.

Chapter 6

The Subset Sum Problem

The work in this chapter has been published at ASIACRYPT 2020 [BBSS20] and is a joint work with Xavier Bonnetain, Rémi Bricout and André Schrottenloher.

Introduction

In this chapter, we study the subset-sum problem, also known as knapsack problem: given n integers a " pa 1 , . . . a n q and a target integer S, find an n-bit vector e " pe 1 , . . . e n q P t0, 1u n such that e ¨a " ř i e i a i " S. The density of the knapsack instance is defined as d " n{plog 2 max i a i q and, for a random instance a, it is related to the number of solutions that one can expect. We focus on the case where d " 1, where expectedly a single solution exists. Instead of naively looking for the solution e via exhaustive search, in time 2 n , Horowitz and Sahni [START_REF] Horowitz | Computing partitions with applications to the knapsack problem[END_REF] proposed to use a meet-in-the-middle approach in 2 n{2 time and memory. The idea is to find a collision between two lists of 2 n{2 subknapsacks, i.e. to merge these two lists for a single solution. Schroeppel and Shamir [START_REF] Schroeppel | A T " Op2 n{2 q, S " Op2 n{4 q algorithm for certain np-complete problems[END_REF] later improved this to a 4-list merge, in which the memory complexity can be reduced down to 2 n{4 . The Representation Technique. At EUROCRYPT 2010, Howgrave-Graham and Joux [START_REF] Howgrave | New generic algorithms for hard knapsacks[END_REF] (HGJ) proposed a heuristic algorithm solving random subset-sum instances in time r O `20.337n ˘, thereby breaking the 2 n{2 bound. Their key idea was to represent the knapsack solution in many different ways, as a sum of vectors in t0, 1u n . This representation technique increases the search space size, allowing to merge more lists, with new arbitrary constraints, thereby allowing for a more time-efficient algorithm. The time complexity exponent is obtained by numerical optimization of the list sizes and constraints, assuming that the individual elements obtained in the merging steps are well-distributed. This is the standard heuristic of classical and quantum subset-sum algorithms. Later, Becker, Coron and Joux [START_REF] Becker | Improved generic algorithms for hard knapsacks[END_REF] (BCJ) improved the asymptotic runtime down to r O `20.291n ˘by allowing even more representations, with vectors in t´1, 0, 1u n .

The BCJ representation technique is not only a tool for subset-sums: it has been used to speed up generic decoding algorithms, classically [MMT11, BJMM12, MO15] and quantumly [START_REF] Kachigar | Quantum information set decoding algorithms[END_REF]. Therefore, the subset-sum problem serves as the simplest application of representations, and improving our understanding of the classical and quantum algorithms may have consequences on these other generic problems.

93

Quantum Algorithms for the Subset-Sum Problem. Cryptosystems based on hard subset-sums are natural candidates for post-quantum cryptography, but to understand precisely their security, we have to study the best generic algorithms for solving subset-sums. The first quantum time speedup for this problem was obtained in [START_REF] Daniel | Quantum algorithms for the subset-sum problem[END_REF], with a quantum time r O `20.241n ˘. The algorithm was based on the HGJ algorithm. Later on, [START_REF] Helm | Subset sum quantumly in 1.17 n[END_REF] devised an algorithm based on BCJ, running in time r O `20.226n ˘. Both algorithms use the corresponding classical merging structure, wrapped in a quantum walk on a Johnson graph, in the MNRS quantum walk framework [START_REF] Magniez | Search via quantum walk[END_REF]. However, they suffer from two limitations.

First, both use the model of quantum memory with quantum random-access (QRAQM), which is stronger than the standard quantum circuit model, as it allows fast lookups in superposition of all the qubits in the circuit. The QRAQM model is used in most quantum walk algorithms to date. With a more restrictive model, i.e. classical memory with quantum random-access (QRACM), no quantum time speedup over BCJ was previously known. This is not the case for some other hard problems in post-quantum cryptography, e.g. heuristic lattice sieving for the Shortest Vector Problem, where the best quantum algorithms to date require only QRACM [START_REF] Laarhoven | Search problems in cryptography[END_REF].

Second, both use a conjecture (implicit in [START_REF] Daniel | Quantum algorithms for the subset-sum problem[END_REF], made explicit in [START_REF] Helm | Subset sum quantumly in 1.17 n[END_REF]) about quantum walk updates. In short, the quantum walk maintains a data structure, that contains a merging tree similar to HGJ (resp. BCJ), with lists of smaller size. A quantum walk step is made of updates that change an element in the lowest-level lists and requires to modify the upper levels accordingly, i.e. to track the partial collisions that must be removed or added. In order to be efficient, the update needs to run in polynomial time. Moreover, the resulting data structure shall be a function of the lowest-level list, and not depend on the path taken in the walk. The conjecture states that it should be possible to guarantee sound updates without impacting the time complexity exponent. However, it does not seem an easy task and the current literature on subset-sums lacks further justification or workarounds.

Contributions. We improve classical and quantum subset-sum algorithms based on representations. We write these algorithms as sequences of "merge-and-filter" operations, where lists of subknapsacks are first merged with respect to an arbitrary constraint, then filtered to remove the subknapsacks that cannot be part of a solution. In the classical setting, we propose a more time-efficient subset-sum algorithm based on representations. In the quantum setting, we introduce quantum filtering, which speeds up the filtering of representations with a quantum search. We obtain the first quantum time speedup that is not based on quantum walks and only requires the QRACM model. We also give an improved quantum walk based on quantum filtering and we show how to partially overcome the quantum walk update heuristic, by designing a new data structure for the vertices in the quantum walk. A detailed description of our contributions is available in Section 1.1.4.

List Merging and Classical Subset-sum Algorithms

In this section, we remain in the classical realm. We first introduce the HGJ t0, 1u representation technique, then the BCJ extended t´1, 0, 1u representations and finally our extended t´1, 0, 1, 2u representations and detail our improvements over BCJ. In doing so, we will introduce the list filtering and merging technique that we use in the rest of this chapter.

Hereafter and in the rest of this chapter, all time and memory complexities, classical and quantum, are exponential in n. We use neglpnq for any function that vanishes inverseexponentially in n. We often replace asymptotic exponential time and memory complexities (e.g. r Op2 αn q) by their exponents (e.g. α). We use capital letters (e.g. L) and corresponding letters (e.g.) to denote the same value, in log 2 and relatively to n: " log 2 pLq{n. The problem we will solve is defined as follows: Definition 6.1 (Random subset-sum instance of weight n{2). Let a be chosen uniformly at random from pZ N q n , where N » 2 n . Let e be chosen uniformly at random 1 from t0, 1u n with Hamming weight n{2. Let t " a ¨e pmod N q. Then a, t is a random subset-sum instance. A solution is a vector e 1 such that a ¨e1 " t pmod N q.

The HGJ algorithm

The representation technique of Howgrave-Graham and Joux [START_REF] Howgrave | New generic algorithms for hard knapsacks[END_REF] consists in generalizing the problem to look for knapsacks with specific distributions of "0s" and "1s". The intuition is that if we have two random knapsacks with a proportion β of "1s" then the sum will have a proportion 2β of "1s", unless some collisions occur, i.e. the two vectors have a "1" at the same position. The final result must have a distribution β " 1 2 of "1s" and the HGJ algorithm will obtain the result recursively from 8 lists with a proportion β " 1 8 of "1s". At the same time, the algorithm will not only add two solutions but also change the modulo constraint: the final result must give t modulo N but we will typically obtain it from a vector giving s modulo N 1 and another vector giving t ´s modulo N 1 , where N {N 1 is well-chosen and s is chosen at random. Because of collisions (and to avoid bad cases), it is necessary to generalize the problem from "looking for one solution" to "looking for many solutions". In summary, during intermediate steps of the computations, the HGJ algorithm is solving the following more general problem: given n and β, a modular constraint N 1 and a target s, find many e with Hamming weight βn such that e ¨a " s mod N 1 . Definition 6.2 (Distributions of knapsacks (HGJ)). A knapsack or subknapsack is a vector e P t0, 1u n . The set of e with βn "1" and p1 ´βqn "0" is denoted D n rβs.

Note that we always add vectors over the integers, and thus, the sum of two vectors of D n r˚s may contain unwanted symbols 2 and is not necessarily a knapsack. In what follows, we will assume that we can efficiently sample from D n rβs for any β, see Section 6.2.5 for more details. We will also need the following estimate on the number of knapsacks. Property 6.3 (Size of knapsack sets). We have

1 n log 2 |D n rβs| » hpβq
where hpxq " ´x log 2 x ´p1 ´xq log 2 p1 ´xq is the Hamming entropy.

1 With the notations of this section, this is equivalent to sampling from from D n r0, 1{2, 0s.

Merging and filtering.

In the algorithm, we repeatedly sample vectors with certain distributions D n r˚s and then combine them. Let D 1 " D n rβ 1 s, D 2 " D n rβ 2 s be two input distributions and D " D n rβs a target. Given two lists

L 1 P D |L 1 | 1 and L 2 P D |L 2 |
2 , we define:

• the merged list L " L 1 ' c L 2 containing all vectors e " e 1 `e2 such that: e 1 P L 1 , e 2 P L 2 , pe 1 `e2 q ¨a " s mod M , s ď M is an arbitrary integer and M « 2 cn (we write L 1 ' c L 2 because s is an arbitrary value, whose choice is without incidence on the algorithm)

• the filtered list L f " pLXt0, 1u n q Ď L, containing the vectors with the target distribution of "0s" and "1s".

In general, L is exponentially bigger than L f and does not need to be written down, as vectors can be filtered on the fly. The algorithms then repeat the merge-and-filter operation on multiple levels, moving towards the distribution D n r1{2s while increasing the bit-length of the modular constraint, until we satisfy e ¨a " t mod 2 n and obtain a solution. Note that this merging-and-filtering view that we adopt, where the merged list is repeatedly sampled before an element passes the filter, has some similarities with the ideas developed in the withdrawn article [START_REF] Esser | Better sample -random subset sum in 2 0.255n and its impact on decoding random linear codes[END_REF].

The standard subset-sum heuristic assumes that vectors in L f are drawn independently, uniformly at random from D. It simplifies the complexity analysis of both classical and quantum algorithms studied in this paper. Note that this heuristic, which is backed by experiments, actually leads to provable probabilistic algorithms in the classical setting (see [START_REF] Becker | Improved generic algorithms for hard knapsacks[END_REF]Theorem 2]). We adopt the version of [START_REF] Helm | Subset sum quantumly in 1.17 n[END_REF]. Filtering Representations. We let " p1{nq log 2 |L|, and so on for 1 , 2 , f . By Heuristic 6.4, the average sizes of L 1 , L 2 , L and L f are related by:

• " 1 ` 2 ´c

• f " `pf, where pf is negative and 2 pfn is the probability that a pair pe 1 , e 2 q, drawn uniformly at random from D 1 ˆD2 , satisfies pe 1 `e2 q P D.

In particular, the occurrence of collisions in L f is a negligible phenomenon, unless f approaches (log 2 |D|{nq ´c, which is the maximum number of vectors in D with constraint c. For a given random knapsack problem, with high probability, the size of any list built by sampling, merging and filtering remains very close to its average (by a Chernoff bound and a union bound on all lists).

Here, pf depends only on D 1 , D 2 and D. Working with this filtering probability is especially useful for writing down our algorithm in Section 6.4. The formula for t0, 1u representations is given by the following lemma. Classically, the time complexity of the merge-and-filter operation is related to the size of the merged list. See Lemma 6.6 for more details. Lemma 6.5 (Filtering HGJ-style representations). Let e 1 P D n rαs and e 2 P D n rβs. The probability that e 1 `e2 P D n rα `βs is 2 pf 1 pα,βqn , with binpω, αq " hpα{ωqω and pf 1 pα, βq " binp1 ´α, βq ´hpβq " binp1 ´β, αq ´hpαq if α `β ď 1, and the probability is 0 otherwise.

Proof. The probability that a e 1 `e2 survives the filtering is: Indeed, given a choice of αn bit positions among n, the other βn bit positions must be compatible, hence chosen among the p1 ´αqn remaining positions. By taking the log 2 , we obtain the formula for the filtering probability.

Lemma 6.6 (Classical merging with filtering). Let L 1 and L 2 be two sorted lists stored in classical memory with random access. In log 2 , relatively to n, and discarding logarithmic factors, merging and filtering L 1 and L 2 costs a time maxpminp 1 , 2 q, 1 ` 2 ´cq and memory maxp 1 , 2 , f q, assuming that we must store the filtered output list.

Proof. Assuming sorted lists, there are two symmetric ways to produce a stream of elements of L 1 ' c L 2 : we can go through the elements of L 1 , and for each one, find the matching elements in L 2 by dichotomy search (time 1 `maxp0, 2 ´cq) or we can exchange the role of L 1 and L 2 . Although we do not need to store L 1 ' c L 2 , we need to examine all its elements in order to filter them.

HGJ algorithm.

We are now ready to recall the algorithm of Howgrave-Graham and Joux [START_REF] Howgrave | New generic algorithms for hard knapsacks[END_REF], with the corrected time complexity pointed out in [START_REF] Becker | Improved generic algorithms for hard knapsacks[END_REF]. Recall that the basic operation in HGJ is to merge two lists of subknapsacks with a constraint t on cn bits, that is, from two lists L 1 and L 2 , obtain the list L 1 " te 1 `e2 , e 1 P L 1 , e 2 P L 2 , pe 1 `e2 q ¨a " t mod 2 cn u. Furthermore, we are interested in the filtered list of such representations, in which we remove duplicate representations and sums e " e 1 `e2 where e is not a binary vector. The length of the filtered list L determines how many representations will survive the constraint t.

In HGJ, all lists at a given level have the same size.

The algorithm builds a merging tree of lists of subknapsacks, with four levels, numbered 3 down to 0. Level j contains 2 j lists. In total, 8 lists are merged together into one. This process is illustrated in Figure 6.1.

L 0 , 1 D n r 1 2 s . . . L 1 0 , c 1 D n r 1 4 s . . . L 2 0 , c 2 D n r 1 8 s L 3 0 D n{2 r1{8s ˆt0 n{2 u L 3 1 t0 n{2 u ˆDn{2 r1{8s
Figure 6.1: The HGJ algorithm (duplicate lists are omitted) Level 3. We build 8 lists denoted L3 0 . . . L 3 7 . They contain all subknapsacks of weight n 16 on n 2 bits, either left or right:

" L 3 2i " D n{2 r1{8s ˆt0 n{2 u L 3 2i`1 " t0 n{2 u ˆDn{2 r1{8s
From Property 6.3, these level-3 lists have size 3 " hp1{8q{2. As the positions set to 1 cannot interfere, these is no filtering when merging L 3 2i and L 3 2i`1 .

Level 2. We merge the lists pairwise with a (random) constraint on c 2 n bits, and obtain 4 filtered lists. The size of the filtered lists plays a role in the memory complexity of the algorithm, but the time complexity depends on the size of the unfiltered lists.

In practice, when we say "with a constraint on c j n bits", we assume that given the subset-sum objective t modulo 2 n , random values r j i such that ř i r j i " t mod 2 c j n are selected at level j, and the r j i have c j n bits only. Hence, at this step, we have selected 4 integers on c 2 n bits r1 0 , r 1 1 , r 1 2 , r 1 3 such that r 1 0 `r1

1 `r1 2 `r1 3 " t mod 2 c 2 n . The 4 level-2 lists L 2 0 , L 2 1 , L 2 2 , L 2
3 have size 2 " php1{8q ´c2 q, they contain subknapsacks of weight n 8 on n bits.

Remark 6.7. The precise values of these r i are irrelevant, since they cancel out each other in the end. They are selected at random during a run of the algorithm, and although there could be "bad" values of them that affect significantly the computation, this is not expected to happen.

Level 1. We merge the lists pairwise with pc 1 ´c2 qn new bits of constraint, ensuring that the constraint is compatible with the previous ones. We obtain two filtered lists L 1 0 , L 1 1 , containing subknapsacks of weight n{4. They have size:

1 " 2 2 ´pc 1 ´c2 q `pf 1 p1{8, 1{8q where pf 1 p1{8, 1{8q is given by Lemma 6.5. Level 0. We find a solution to the subset-sum problem with the complete constraint on n bits.

This means that the list L 0 must have expected length 2 0 n " 1 so 0 " 0. Note that there remains p1 ´c1 qn bits of constraint to satisfy, and the filtering term is similar as before, so:

0 " 2 1 ´p1 ´c1 q `pf 1 p1{4, 1{4q .

By Lemma 6.6, the time complexity of this algorithm is determined by the sizes of the unfiltered lists: maxp 3 , 2 3 ´c2 , 2 2 ´pc 1 ´c2 q, 2 1 ´p1 ´c1 qq. The memory complexity depends on the sizes of the filtered lists: maxp 3 , 2 , 1 q. By a numerical optimization, one obtains a time exponent of 0.337n with the following parameters:

The BCJ Algorithm

The HGJ algorithm uses representations to increase artificially the search space. The algorithm of Becker, Coron and Joux [START_REF] Becker | Improved generic algorithms for hard knapsacks[END_REF] improves the runtime exponent down to 0.291 by allowing even more freedom in the representations, which can now contain "´1". The "´1" have to cancel out progressively, to ensure the validity of the final knapsack solution. We need to extend our notion of distribution of knapsack to present this algorithm. Definition 6.8 (Distributions of knapsacks (BCJ)). A knapsack or subknapsack is a vector e P t´1, 0, 1, 2u n . The set of e with αn "-1", pα `βqn "1" and p1 ´2α ´βqn "0" is denoted D n rα, βs. This coincides with the notation D n rα, βs from [START_REF] Helm | Subset sum quantumly in 1.17 n[END_REF].

In what follows, we will again assume that we can efficiently sample from D n rα, βs for any α and β, see Section 6.2.5 for more details. We also need the following estimate on the number of such representation Property 6.9 (Size of knapsack sets). We have

1 n log 2 |D n rα, βs| » gpα, α `βq
where gpx, yq " ´x log 2 x ´y log 2 y ´p1 ´x ´yq log 2 p1 ´x ´yq is the 2-way entropy.

The BCJ algorithm is also based on merging and filtering certain distributions D n r˚, ˚s. Let D 1 " D n rα 1 , β 1 s, D 2 " D n rα 2 , β 2 s be two input distributions and D " D n rα, βs a target. Given two lists

L 1 P D |L 1 | 1 and L 2 P D |L 2 |
2 , we denote by L " L 1 ' c L 2 the merged list and by L f " pL X t´1, 0, 1u n q Ď L the filtered list. Note that the filtering is different from before because "-1" is now an acceptable value. We let " p1{nq log 2 |L|, and so on for 1 , 2 , f . We assume that Heuristic 6.4 applies to this new representation and we obtain the same estimates " 1 ` 2 ´c and f " `pf where pf is the filtering probability. In the following lemma we compute the filtering probabilty by assuming only symmetric input distributions for simplicity. Indeed, we only use symmetric input distributions in practice in the algorithms, since the formula are already complicated in this case. Thus the following lemma is not more general than Lemma 6.5. Lemma 6.10 (Filtering BCJ-style representations). Let e 1 , e 2 P D n rα, βs and γ ď 2α. Then the logarithm of the probability that e 1 `e2 P D n rγ, 2βs is: Taking the logarithm and the standard approximations, its derivative is log ´β`α´x x 2α´γ´x γ´α`x α´x β`γ´α`x ¯. This term is strictly decreasing for 0 ă x ă γ ´α, and equals 0 for x " α´γ{2. Hence, this is the maximum, which correspond to the balanced case. It is equal, up to a polynomial loss, to the total number of compatible vectors. Hence, the log of the number of compatible vectors is binpβ `α, α ´γ{2q `binpα, α ´γ{2q `trinp1 ´β ´2α, γ{2, β `γ{2q. As there are trinp1, β `α, αq vectors in D n rα, βs, the lemma holds.

pf 2 pα,
The BCJ algorithm follows the same structure as the HGJ algorithm, represented in Figure 6.1, but the parameters of the distributions are different and not immediately clear. While the original construction had a complexity exponent of 0.291n, we notice that it is possible to improve it slightly. We relax the constraints j `cj " gpα j , 1{2 j`1 q enforced in [START_REF] Becker | Improved generic algorithms for hard knapsacks[END_REF], as only the inequalities j `cj ď gpα j , 1{2 j`1 q are necessary. This idea is implicitly used in [START_REF] Bricout | Ternary syndrome decoding with large weight[END_REF], in the context of syndrome decoding. When optimizing the parameters under these new constraints, we bring the asymptotic time exponent down to 0.289n with the following parameters: α 1 " 0.0348, α 2 " 0.0317, α 3 " 0.0196 1 " 0.2286, 2 " 0.2753, 3 " 0.2891, 4 " 0.2730 c 1 " 0.8074, c 2 " 0.5460, c 3 " 0.2568 p 0 " ´0.2647, p 1 " ´0.0605, p 2 " ´0.0138

We will use this improvement in the next section where we increase the representation further.

Our Extended Representation

We now introduce our new t´1, 0, 1, 2u representation and detail our improvements our BCJ. The introduction of a new symbol requires us to extend again our notion of distribution of knapsacks. Definition 6.11 (Distributions of knapsacks). A knapsack or subknapsack is a vector e P t´1, 0, 1, 2u n . The set of e with αn "-1", pα `β ´2γqn "1", γn "2" and p1 ´2α ´β `γqn "0" is denoted D n rα, β, γs. If γ " 0, we may omit the third parameter and it coincides with D n rα, βs.

In Section 6.2.5, we show how to efficiently sample classicaly and quantumly from D n rα, β, γs for any α, β and γ. We also need an the following estimate on the number of such representations. Property 6.12 (Size of knapsack sets). We have

1 n log 2 |D n rα, β, γs| » f pα, α `β ´2γ, γq
where f px, y, zq " ´x log 2 x ´y log 2 y ´z log 2 z ´p1 ´x ´y ´zq log 2 p1 ´x ´y ´zq is the 3-way entropy.

We extend the merging and filtering of lists to this new representation and we assume that Heuristic 6.4 applies to this new representation. Since the filtering step includes one more symbol, the filtering probability needs to be re-computed. This becomes much more challenging than with the t´1, 0, 1u representation and we again focus only on symmetric input distribution. Lemma 6.13 (Filtering representations using "2"s). Let e 1 , e 2 P D n rα 1 , β, γ 1 s and α 0 , γ 0 ě 0.

Let us define :

"

x min " maxp0, α 1 `β ´1´α 0 `γ0

2

, γ 1 ´γ0 {2q x max " minpα 1 ´α0 {2, α 0 {2 `β1 ´γ0 , γ 1 q . If x min ď x max , then the logarithm of the probability that e 1 `e2 P D n rα 0 , 2β, γ 0 s is at least:

pf 3 pα 0 , β, γ 0 , α 1 , γ 1 q " max xPrx min ,xmaxs trinpα 1 , x, α 0 {2qt rinpα 1 `β ´2γ 1 , γ 0 ´2γ 1 `2x, β ´γ0 ´x `α0 {2q `binpγ 1 , xqq uadrinp1 ´β ´2α 1 `γ1, γ 1 ´x, α 0 {2, β ´γ0 ´x `α0 {2qq uadrinp1, α 1 , α 1 `β ´2γ 1 , γ 1 q
where quadrinpω, α, β, γq " f pα{ω, β{ω, γ{ωqω is the quadrinomial. Furthermore, quadrinpω, α, β, γq » Proof. To avoid the explosion of the number of variables, we restrain ourselves to the symmetric cases (for which there are as many 1s given by 0 `1 as 1s given by 1 `0, etc.) Given some e 1 P D n rα 1 , β, γ 1 s, we compute the number of compatible e 2 P D n rα 1 , β, γ 1 s. These vectors can be sorted according to the number xn of positions where a ´1 from e 1 cancels out a 2 from e 2 . For e 1 `e2 to be in D n rα 0 , 2β, γ 0 s, we must have :

• p´1q `p0q|p0q `p´1q : α 0 n{2 times • p´1q `p1q|p1q `p´1q : pα 1 ´x ´α0 {2qn times

• p´1q `p2q|p2q `p´1q : xn times

• p1q `p0q|p0q `p1q : pα 0 {2 `β ´γ0 ´xqn times

• p2q `p0q|p0q `p2q : pγ 1 ´xqn times

• p1q `p1q : pγ 0 ´2γ 1 `2xqn times

• p0q `p0q : p1 ´α0 `γ0 ´2α 1 ´2β `2xqn times (i.e. the remaining)

Thus, in e 1 (which contains α 1 "´1"s), α 0 n{2 of the "´1"s must match a "0", pα 1 ´x ´α0 {2qn of the "´1"s must match a "1" and the remaining nx must match a "2". Therefore, there are `α1 n α 0 n{2,xn ˘possible choices for the coordinates of e 2 matching the "´1"s of e 1 . Similarly, there are `pα 1 `β´2γ 1 qn pγ 0 ´2γ 1 `2xqn,pβ´γ 0 ´x`α 0 {2qn ˘possibilities for the coordinates of e 2 matching the "1"s, `γ1 n xn for the coordinates matching the "2"s, and `p1´β´2α 1 `γ1qn pγ 1 ´xqn,α 0 n{2,pβ´γ 0 ´x`α 0 {2qn ˘for the coordinates matching the "0"s.

The total number of possibilities is : Ṫhis quantity is defined only for x min ď x ď x max . If x is outside of these bounds, one of these multinomials (at least) is zero and there is no compatible e 2 . As xn must be an integer, there are only a linear number of possible choices for x. Therefore the number of all possible e 2 is given, up to a polynomial factor, by the number of e 2 s for the best x.

In order to obtain a probability, we divide the number of compatible e 2 by `n α 1 n,pα 1 `β´2γ 1 qn,γ 1 nq ˘, which is the size of D n rα 1 , β, γ 1 s. We observe here that the logarithm of the probability that e 2 is compatible with e 1 is exactly pf 3 pα 0 , β, γ 0 , α 1 , γ 1 q.

We only considered the symmetric cases, assuming that we can neglect the contribution of the asymmetric cases. If we cannot, it means that we underestimated the probability for e 1 and e 2 to be compatible, and we could improve further the parameters by taking into account the asymmetric cases as well.

The algorithm. We build a merging tree with five levels, numbered 4 down to 0. Level j contains 2 j lists. In total, 16 lists are merged together into one. It is represented in Figure 6.2. Level 4. We build 16 lists L 4 0 . . . L 4 15 . They contain complete distributions on n 2 bits, either left or right, with n 32 `α3 n 2 ´γ3 n "1", α 3 n 2 "-1" and γ 3 n 2 "2":

L 0 , 1 D n r0, 1 2 , 0s . . . L 1 0 , c 1 D n rα 1 , 1 4 , γ 1 s . . . L 2 0 , c 2 D n rα 2 , 1 8 , γ 2 s . . . L 3 0 , c 3 D n rα 3 , 1 16 , γ 3 s L 4 0 D n{2 rα 3 , 1{16, γ 3 s ˆt0 n{2 u L 4 1 t0 n{2 u ˆDn{2 rα 3 , 1{16, γ 3 s
" L 4 2i " D n{2 rα 3 , 1{16, γ 3 s ˆt0 n{2 u L 4 2i`1 " t0 n{2 u ˆDn{2 rα 3 , 1{16, γ 3 s
As before, this avoids filtering at the first level. These lists have size: 4 " f pα 3 , 1{16 ὰ3 ´2γ 3 , γ 3 q{2. Level 3. We merge into 8 lists L 3 0 . . . L 3 7 , with a constraint on c 3 bits. As there is no filtering, these lists have size: 3 " f pα 3 , 1{16 `α3 ´2γ 3 , γ 3 q ´c3 . Level 2. We now merge and filter. We force a target distribution D n rα 2 , 1{8, γ 2 s, with α 2 and γ 2 to be optimized later. There is a first filtering probability p 2 given by Lemma 6.13. We have 2 " 2 3 ´pc 2 ´c3 q `p2 .

Level 1. Similarly, we have: 1 " 2 2 ´pc 1 ´c2 q `p1 .

Level 0. We have 0 " 2 1 ´p1 ´c1 q `p0 " 0, since the goal is to obtain one solution in the list L 0 .

With these constraints, we find a time r O `20.2830n ˘(rounded upwards) with the following parameters: α 1 " 0.0340, α 2 " 0.0311, α 3 " 0.0202, γ 1 " 0.0041, γ 2 " 0.0006, γ 3 " 0.0001 c 1 " 0.8067, c 2 " 0.5509, c 3 " 0.2680, p 0 " ´0.2829, p 1 " ´0.0447, p 2 " ´0.0135 1 " 0.2382, 2 " 0.2694, 3 " 0.2829, 4 " 0.2755

Correctness of the Algorithms

While the operation of merging and filtering is the same as in previous works, our complexity analysis differs from [HJ10, BCJ11, BJLM13, HM18]. We enforce the constraint that the final list contains a single solution, hence if it is of size 2 n 0 , we constrain 0 " 0. Next, we limit the sizes of the lists so that they do not contain duplicate vectors: these are saturation constraints. A list of size 2 n , of vectors sampled from a distribution D, with a constraint of cn bits, has the constraint: ď 1 n log 2 |D| ´c. This says that there are not more than |D|{2 cn vectors e such that e ¨a " r pmod 2 cn q for the (randomly chosen) arbitrary constraint r.

Previous works focus on the solution vector e and compute the number of representations of e, that is, the number of ways it can be decomposed as a sum: e " e 1 `. . . `et of vectors satisfying the constraints on the distributions. Then, they compare this with the probability that a given representation passes the arbitrary constraints imposed by the algorithm. As their lists contains all the subknapsacks that fulfil the constraint, this really reflects the number of duplicates, and it suffices to enforce that the number of representations is equal to the inverse probability that a representation fulfils the constraint. For smaller lists, it suffices to add the probability that a representation compatible with the constraint is indeed in the list.

The two approaches are strictly equivalent, as the probability that the sum of two subknapsacks is valid is exactly the number of representations of the sum, divided by the number of pairs of subknapsacks. Therefore the correctness of our algorithm follows from the analysis from [HJ10, BCJ11, BJLM13, HM18].

Sampling from a distribution of knapsacks

Throughout this chapter, we assume that we can classically sample uniformly at random from D n rα, β, γs in time polypnq. Since αn, βn and γn will in general not be integers, we suppose to have them rounded to the nearest integer. This comes from the following efficient bijection between representations and integers.

It is well known that there exists a bijection between " 0, `n m ˘˘and n-bit vectors of Hamming weight m, and this bijection can be computed in polynomial time in n [START_REF] Schalkwijk | An algorithm for source coding[END_REF]. In our case, m " βn and such vectors are subknapsacks from D n r0, βs. If i 1 , . . . i m are the bit-positions of the m "1" in this vector, we map it to the m-tuple of integers: pi 1 , . . . i m q, and define the bijection as:

φ : pi 1 , . . . i m q Þ Ñ ˆim ´1 m ˙`. . . `ˆi 1 ´1 1
ẇhere `i j ˘has supposedly been precomputed for all i ď n, j ď m. In order to compute the inverse φ ´1, we find for each j ď t the unique integer i j such that `ij

´1 m ˘ď x ď `ij m ˘.
We can generalize this to an arbitrary number of nonzero symbols (3 in our extended algorithm: "1", "-1" and "2"), that we denote 1, 2, . . . t. Let k 1 , . . . k t be the counts of each symbol in the vector v. We map it to a tuple of tuples: pi 1 1 , . . . i 1 k 1 q, . . ., pi t 1 , . . . i t kt q where the first vector represents the positions of the "1" among the n bit positions, the second vector represents the positions of the "2" after having removed the "1", and so on. Consequently, we have 0 ď i 1 j ď n ´1, 0 ď i 2 j ď n ´1 ´k1 , etc. Next, we map each of these t tuples individually to an integer, as was done above: φ j pi j 1 , . . . i j k j q " x j where 0 ď x j ď `n´k 1 ...´k j´1 k j ˘. Finally, we compute:

φpvq " x 1 `ˆn k 1 ˙x2 `ˆn k 1 , k 2 ˙x3 `. . . `ˆn k 1 , . . . k t ˙xt " x 1 `ˆn k 1 ˙ˆx 2 `ˆn ´k1 k 2 ˙ˆx 3 `. . . `ˆn ´k1 . . . ´kt´2 k t´1 ˙xt ˙. . . ˙.
By the bounds on the x j , we remark that 0 ď φpvq ď `n k 1 ,...kt ˘´1. Furthermore, we observe that one can easily retrieve the x j by successive euclidean divisions, and use the bijections φ j to finish the computation. Lemma 6.14. Let n, k 1 , . . . k t be t `1 integers such that k 1 `. . . `kt ď n. There exists a quantum unitary, realized with polypnq gates, that on input a number j in " 0, `n k 1 ,...kt ˘¯, writes on its output register the j-th vector φ ´1pjq P t0, . . . , tu n having, for each 1 ď i ď t, exactly k i occurrences of the symbol "i". There exists another unitary which writes, on input v, the integer value φpvq.

Using this unitary in combination with a Quantum Fourier Transform, we can efficiently produce superpositions of subsets of D n rα, β, γs, using polypnq quantum gates, by taking arbitrary integer intervals. We can thus perform a quantum search among representations.

Previous Quantum Algorithms for Subset-sum

In this section, we recall previous quantum algorithms for subset-sum. As we consider all our algorithms from the point of view of asymptotic complexities, and neglect polynomial factors in n, a high-level overview is often enough, and we will use quantum building blocks (quantum search and quantum walks) as black boxes.

Solving Subset-sum with Quantum Walks

In 2013, Bernstein, Jeffery, Lange and Meurer [START_REF] Daniel | Quantum algorithms for the subset-sum problem[END_REF] constructed quantum subset sum algorithms inspired by Schroeppel-Shamir [START_REF] Schroeppel | A T " Op2 n{2 q, S " Op2 n{4 q algorithm for certain np-complete problems[END_REF] and HGJ [START_REF] Howgrave | New generic algorithms for hard knapsacks[END_REF]. We briefly explain the idea of their quantum walk for HGJ. The graph G that they consider is a product Johnson graph. We recall formal definitions from [START_REF] Kachigar | Quantum information set decoding algorithms[END_REF]. Definition 6.15 (Johnson graph). A Johnson graph JpN, Rq is an undirected graph whose vertices are the subsets of R elements among a set of size N , and there is an edge between two vertices S and S 1 iff |S X S 1 | " R ´1, in other words, if S 1 can be obtained from S by replacing an element. Its spectral gap is given by δ " N RpN ´Rq . Theorem 6.16 (Cartesian product of Johnson graphs [START_REF] Kachigar | Quantum information set decoding algorithms[END_REF]). Let J m pN, Rq be defined as the cartesian product of m Johnson graphs JpN, Rq, i.e., a vertex in J m pN, Rq is a tuple of m subsets S 1 , . . . S m and there is an edge between S 1 , . . . S m and S 1 1 , . . . S 1 m iff all subsets are equal at all indices except one index i, which satisfies

|S i X S 1 i | " R ´1.
Then it has `N R ˘m vertices and its spectral gap is greater than 1 m N RpN ´Rq .

In [START_REF] Daniel | Quantum algorithms for the subset-sum problem[END_REF], a vertex contains a product of 8 sublists L 13 0 Ă L 3 0 , . . . , L 13 7 Ă L 3 7 of a smaller size than the classical lists: ă 3 . There is an edge between two vertices if we can transform one into the other by replacing only one element in one of the sublists. The spectral gap of such a graph is (in log 2 , relative to n) ´ .

In addition, each vertex has an internal data structure which reproduces the HGJ merging tree, from level 3 to level 0. Since the initial lists are smaller, the list L 0 is now of expected size 8p ´ 3 q (in log 2 , relative to n), i.e. the walk needs to run for 4p 3 ´ q steps. Each step requires {2 updates.

In the Setup procedure, we simply start from all choices for the sublists and build the tree by merging and filtering. Assuming that the merged lists have decreasing sizes, the setup time is . The vertex is marked if it contains a solution at level 0. Hence, checking if a vertex is marked takes time C " 1, but the update procedure needs to ensure the consistency of the data structure. Indeed, when updating, we remove an element e from one of the lists L 13 i and replace it by a e 1 from L 3 i . We then have to track all subknapsacks in the upper levels where e intervened, to remove them, and to add the new collisions where e 1 intervenes.

Assuming that the update can run in polypnq, an optimization with the new parameter yields an exponent 0.241. In [START_REF] Daniel | Quantum algorithms for the subset-sum problem[END_REF], the parameters are such that on average, a subknapsack intervenes only in a single sum at the next level. The authors propose to simply limit the number of elements to be updated at each level, in order to guarantee a constant update time.

Quantum Walk Based on BCJ. In [HM18], Helm and May quantize, in the same way, the BCJ algorithm. They add "-1" symbols and a new level in the merging tree data structure, reaching a time exponent of 0.226. But they remark that this result depends on a conjecture, or a heuristic, that was implicit in [START_REF] Daniel | Quantum algorithms for the subset-sum problem[END_REF]. Heuristic 6.17 (Helm-May). In these quantum walk subset-sum algorithms, an update with expected constant time U can be replaced by an update with exact time U without affecting the runtime of the algorithm, up to a polynomial factor. Indeed, it is easy to construct "bad" vertices and edges for which an exact update, i.e. the complete reconstruction of the merging tree, will take exponential time: by adding a single new subknapsack e, we find an exponential number of pairs e `e1 to include at the next level. So we would like to update only a few elements among them. But in the MNRS framework, the data structure of a vertex must depend solely on the vertex itself (i.e. on the lowest-level lists in the merging tree). And if we do as proposed in [START_REF] Daniel | Quantum algorithms for the subset-sum problem[END_REF], we add a dependency on the path that leads to the vertex, and lose the consistency of the walk.

In a related context, the problem of "quantum search with variable times" was studied by Ambainis [START_REF] Ambainis | Quantum search with variable times[END_REF]. In a quantum search for some x such that f pxq " 1, in a set of size N , if the time to evaluate f on x is always 1, then the search requires time O `?N ˘. Ambainis showed that if the elements have different evaluation times t 1 , . . . t N , then the search now requires time r Op a t 2 1 `. . . `t2 N q, the geometric mean of t 1 , . . . t N . As quantum search can be seen as a particular type of quantum walk, this shows that Heuristic 6.17 is wrong in general, as we can artificially create a gap between the geometric mean and expectation of the update time U; but also, that it may be difficult to actually overcome. In this paper, we will obtain different heuristic and non-heuristic times.

Quantum Asymmetric HGJ

In this section, we give the first quantum algorithm for the subset-sum problem, in the QRACM model, with an asymptotic complexity smaller than BCJ.

Quantum Match-and-Filter

We open this section with some technical lemmas that replace the classical merge-and-filter Lemma 6.6. In this section, we will consider a merging tree as in the HGJ algorithm, but this tree will be built using quantum search. The following lemmas bound the expected time of merge-and-filter and match-and-filter operations performed quantumly, in the QRACM model. This will have consequences both in this section and in the next one.

First, we remark that we can use a much more simple data structure than the ones in [START_REF] Ambainis | Quantum Walk Algorithm for Element Distinctness[END_REF][START_REF] Daniel | Quantum algorithms for the subset-sum problem[END_REF]. In this data structure, we store pairs e, e ¨a indexed by e ¨a mod M for some M » 2 m . Definition 6.18 (Unique modulus list). A unique modulus list is a qRAM data structure LpM q that stores at most M entries pe, e ¨aq, indexed by e ¨a mod M , and supports the following operations:

• Insertion: inserts the entry pe, e ¨aq if the modulus is not already occupied;

• Deletion: deletes pe, e ¨aq (not necessary in this section)

• Query in superposition: returns the superposition of all entries pe, e ¨aq with some modular condition on e ¨a, e.g. e ¨a " t mod M 1 for some t and some modulus M 1 .

Note that all of these operations, including the query in superposition of all the entries with a given modulus, cost Op1q qRAM gates only. For the latter, we need only some Hadamard gates to prepare the adequate superposition of indices. Furthermore, the list remains sorted by design.

Next, we write a lemma for quantum matching with filtering, in which one of the lists is not written down. We start from a unitary that produces the uniform superposition of the elements of a list L 1 , and we wrap it into an amplitude amplification, in order to obtain a unitary that produces the uniform superposition of the elements of the merged-and-filtered list. Lemma 6.19 (Quantum matching with filtering). Let L 2 be a list stored in QRACM (with the unique modulus list data structure of Definition 6.18). Assume we are given a unitary U that produces in time t L 1 the uniform superposition of L 1 " x 0 , . . . x 2 m ´1 where x i " pe i , e i ¨aq. We merge L 1 and L 2 with a modular condition of cn bits and a filtering probability p. Let L be the merged list and L f the filtered list. Assume |L f | ě 1. Then there exists a unitary U 1 producing the uniform superposition of L f in time:

O ´tL 1 ? p maxp a 2 cn {|L 2 |, 1q ¯.
Notice that this is also the time complexity to produce a single random element of L f . If we want to produce and store the whole list L f , it suffices to multiply this complexity by the number of elements in L f (i.e. p|L 1 ||L 2 |{2 cn). We would obtain:

O ˆtL 1 ? p max ˆ|L 1 | b |L 2 | 2 cn , |L 1 ||L 2 | 2 cn ˙˙.
Proof. Since L 2 is stored in a unique modulus list, all its elements have distinct moduli. Note that the expected sizes of L and L f follow from Heuristic 6.4. Although the number of iterations of quantum search should depend on the real sizes of these lists, the concentration around the average is so high (given by Chernoff bounds) that the error remains negligible if we run the search with the expected number of iterations. We separate three cases.

• If |L 2 | ă 2 cn , then we have no choice but to make a quantum search on elements of L 1 that match the modular constraint and pass the filtering step, in time:

O ´tL 1 b 2 cn L 2 p ¯. • If |L 2 | ą 2 cn but |L 2 | ă 2 cn {p
, an element of L 1 will always pass the modular constraint, with more than one candidate, but in general all these candidates will be filtered out. Given an element of L 1 , producing the superposition of these candidates is done in time 1, so finding the one that passes the filter, if there is one, takes time a |L 2 |{2 cn . Next, we wrap this in a quantum search to find the "good" elements of L 1 (passing the two conditions), with O ´a2 cn {pL 2 ¯iterations. The total time is: The total time in all cases is: O ´tL 1 ? p maxp a 2 cn {|L 2 |, 1q ¯. Note that classically, the coupon collector problem would have added a polynomial factor, but this is not the case here thanks to QRACM (Remark 2.5).

O ˆc 2 cn L 2 p ˆ´a |L 2 |{2 cn ˆtL 1 ¯" t L 1 ? p ˙. • If |L 2 | ą 2 cn {p
In the QRACM model, we have the following corollary for merging and filtering two lists of equal size. This result will be helpful in Section 6.4.3 and 6.5. Corollary 6.20. Consider two lists L 1 , L 2 of size |L 1 | " |L 2 | " |L| exponential in n. We merge L 1 and L 2 with a modular condition of cn bits, and filter with a probability p. Assume that 2 cn ă |L|. Then L f can be written down in quantum time: O ´?p |L| 2 2 cn ¯.

Proof. We do a quantum search to find each element of L f . We have t L 1 " Op1q since it is a mere QRACM query, and we use Lemma 6.19.

Revisiting HGJ

We now introduce our new algorithm for subset-sum in the QRACM model.

Our starting point is the HGJ algorithm. Similarly to [NS20], we use a merging tree in which the lists at a given level may have different sizes. Classically, this does not improve the time complexity. However, quantumly, we will use quantum filtering. Since our algorithm does not require to write data in superposition, only to read from classical registers with quantum random access, we require only QRACM instead of QRAQM.

In the following, we consider that all lists, except L 3 0 , L 2 0 , L 1 0 , L 0 , are built with classical merges. The final list L 0 , containing (expectedly) a single element, and a branch leading to it, are part of a nested quantum search. Each list L 3 0 , L 2 0 , L 1 0 , L 0 corresponds either to a search space, the solutions of a search, or both. We represent this situation on Fig. 6.3. Our procedure runs as follows:

1. (Classical step): build the intermediate lists L 3 1 , L 2 1 , L 1 1 and store them using a unique modulus list data structure (Definition 6.18).

2. (Quantum step): do a quantum search on L 3 0 . To test a vector e P L 3 0 :

• Find e 3 P L 3 1 such that e `e3 passes the c 2 0 n-bit modular constraint (assume that there is at most one such solution). There is no filtering here.

• Find e 2 P L 2 1 such that pe `e3 q `e2 passes the additional pc 1 ´c2 0 qn-bit constraint. • If it also passes the filtering step, find e 1 P L 1 1 such that pe `e3 `e2 q `e1 is a solution to the knapsack problem (and passes the filter).

Structural constraints are imposed on the tree, in order to guarantee that there exists a knapsack solution. The only difference between the quantum and classical settings is in the optimization goal: the final time complexity.

Structural Constraints. We now introduce the variables and the structural constraints that determine the shape of the tree in Fig. 6.3. The asymmetry happens both in the weights at level 0 and at the constraints at level 1 and 2. We write j i " plog 2 |L j i |q{n. With the lists built classically, we expect a symmetry to be respected, so we have: 3 2 " 3 3 , 3 4 " 3 5 " 3 6 " 3 7 , 2 2 " 2 3 . We also tweak the left-right split at level 0: lists from L 3 2 to L 3 7 have a standard balanced left-right split; however, we introduce a parameter r that determines the proportion of positions set to zero in list L 3 0 : in L 3 0 , the vectors weigh cnp1 ´rq on a support of size Remark 6.21 (More improvements). We have tried increasing the tree depth or changing the tree structure, but it does not seem to bring any improvement. In theory, we could allow for more general representations involving "-1" and "2". However, computing the filtering probability, when merging two lists of subknapsacks in D n rα, β, γs with different distributions becomes much more technical. We managed to compute it for D n rα, βs, but the number of parameters was too high for our numerical optimizer, which failed to converge.

Quantum Time-Memory Tradeoff

In the original HGJ algorithm, the lists at level 3 contain full distributions D n{2 r0, 1{8s. By reducing their sizes to a smaller exponential, one can still run the merging steps, but the final list L 0 is of expected size exponentially small in n. Hence, one must redo the tree many times. This general time-memory tradeoff is outlined in [START_REF] Howgrave | New generic algorithms for hard knapsacks[END_REF] and is also reminiscent of Schroeppel and Shamir's algorithm [START_REF] Schroeppel | A T " Op2 n{2 q, S " Op2 n{4 q algorithm for certain np-complete problems[END_REF], which can actually be seen as repeating 2 n{4 times a merge of lists of size 2 n{4 , that yields 2 ´n{4 solutions on average.

Asymmetric Tradeoff.

The tradeoff that we propose is adapted to the QRACM model. It consists in increasing the asymmetry of the tree: we reduce the sizes of the intermediate lists L 3 1 , L 2 1 , L 1 1 in order to use less memory; this in turn increases the size of L 3 0 , L 2 0 and L 1 0 in order to ensure that a solution exists. We find that this tradeoff is close to the time-memory product curve T M " 2 n{2 , and actually slightly better (the optimal point when m " 0.2356 has T M " 2 0.4712n). This is shown on Figure 6.4. At m " 0, we start at 2 n{2 , where L 3 0 contains all vectors of Hamming weight n{2. Fact 6.22. For any memory constraint m ď 0.2356 (in log 2 and proportion of n), the optimal time complexity in the quantum asymmetric HGJ algorithm of Section 6.4.3 is lower than

r O `2n{2´m ˘.
Improving the QRACM usage. In trying to reduce the quantum or quantum-accessible hardware used by our algorithm, it makes sense to draw a line between QRACM and classical RAM, i.e. between the part of the memory that is actually accessed quantumly, and the memory that is used only classically. We now try to enforce the constraint only on the QRACM, using possibly more RAM. In this context, we cannot produce the list L 1 1 via quantum filtering. The memory constraint on lists L 3 1 , L 2 1 , L The difference remains only marginal, as can be seen in Table 6.2, but it shows a tradeoff between quantum and classical resources.

New Algorithms Based on Quantum Walks

In this section, we improve the algorithm by Helm and May [START_REF] Helm | Subset sum quantumly in 1.17 n[END_REF] based on BCJ and the MNRS quantum walk framework. Our algorithm is a quantum walk on a product Johnson graph, as in Section 6.3.1. There are two new ideas involved.

Asymmetric 5th level

In our new algorithm, we can afford one more level than BCJ. We then have a 6-level merging tree, with levels numbered 5 down to 0. Lists at level i all have the same size i , except at level 5. Recall that the merging tree, and all its lists, is the additional data structure attached to a node in the Johnson graph. In the original algorithm of [START_REF] Helm | Subset sum quantumly in 1.17 n[END_REF], there are 5 levels, and a node is a collection of 16 lists, each list being a subset of size 4 among the gp1{16 `α3 , α 3 q{2 vectors having the right distribution.

In our new algorithm, at level 5, we separate the lists into "left" lists of size l 5 and "right" lists of size r 5 . The quantum walk will only be performed on the left lists, while the right ones are full enumerations. Each list at level 4 is obtained by merging a "left" and a "right" list. The left-right-split at level 5 is then asymmetric: vectors in one of the left lists L l 5 are sampled from D ηn rα 4 , 1{32, γ 4 s ˆt0 p1´ηqn u and the right lists L r 5 contain all the vectors from t0 ηn uˆD p1´ηqn rα 4 , 1{32, γ 4 s. This yields a new constraint: r 5 " f p1{32`α 4 ´2γ 4 , α 4 , γ 4 qp1´ηq. While this asymmetry does not bring any advantage classically, it helps in reducing the update time. We enforce the constraint r 5 " c 4 , so that for each element of L l 5 , there is on average one matching element in L r 5 . So updating the list L 4 at level 4 is done on average time 1. Then we also have 4 " l 5 . With this construction, r 5 and l 5 are actually unneeded parameters. We only need the constraints c 4 p" r 5 q " f p1{32`α 4 ´2γ 4 , α 4 , γ 4 qp1´ηq and 4 p" l 5 q ď f p1{32`α 4 ´2γ, α 4 , γ 4 qη. The total setup time is now:

S " max ˆc4 , 4
lo omo on

Lv. 5 and 4

, 2 4 ´pc 3 ´c4 q loooooooomoooooooon Level 3

, 2 3 ´pc 2 ´c3 q loooooooomoooooooon Level 2

, 2 2 ´pc 1 ´c2 q loooooooomoooooooon

Level 1 , 1 `maxp 1 ´p1 ´c1 q, 0q loooooooooooooooomoooooooooooooooon Level 0 ȧnd the expected update time for level 5 (inserting a new element in a list L l 5 at the bottom of the tree) and at level 4 (inserting a new element in L 4) is 1. The spectral gap of the graph is δ " ´ l 5 and the proportion of marked vertices is ε " ´ 0 .

Saturation Constraints. In the quantum walk, we have 0 ă 0, since we expect only some proportion of the nodes to be marked (to contain a solution). This proportion is hence 0 . The saturation constraints are modified as follows:

l 5 ď 0 16 `f p 1 32 `α4 ´2γ 4 , α 4 , γ 4 qη, 4 ď 0 16 `f p 1 32 `α4 ´2γ 4 , α 4 , γ 4 q ´c4 3 ď 0 8 `f p 1 16 `α3 ´2γ 3 , α 3 , γ 3 q ´c3 , 2 ď 0 4 `f p 1 8 `α2 ´2γ 2 , α 2 , γ 2 q ´c2 1 ď 0 2 `f p1{4 `α1 ´2γ 1 , α 1 , γ 1 q ´c1
Indeed, the classical walk will go through a total of ´ 0 trees before finding a solution. Hence, it needs to go through ´ 0 {16 different lists at level 5 (and 4), which is why we need to introduce 0 in the saturation constraint: there must be enough elements, not only in L l 5 , but in the whole search space that will be spanned by the walk. These constraints ensure the existence of marked vertices in the walk.

Better Setup and Updates using quantum search

Along the lines of Lemma 6.19 and corollary 6.20, we now show how to use a quantum search to speed up the Setup and Update steps in the quantum walk. As the structure of the graph is unchanged, we still have ε " ´ 0 and a spectral gap δ " ´ l 5 .

Setup. Let p i , p1 ď i ď 3q be the filtering probabilities at level i, i.e. the (logarithms of the) probabilities that an element that satisfies the modulo condition resp. at level i also has the desired distribution of 0s, 1s, ´1s and 2s, and appears in list L i . Notice that p i ď 0. Due to the left-right split, there is no filtering at level 4. We use quantum filtering (Corollary 6.20) to speed up the computation of lists at levels 3, 2 and 1 in the setup, reducing in general a time 2 ´c to 2 ´c `pf{2. It does not apply for level 0, since L 0 has a negative expected size. At this level, we will simply perform a quantum search over L 1 . If there is too much constraint, i.e. p1 ´c1 q ą 1 , then for a given element in L 1 , there is on average less than one modular candidate. If p1 ´c1 q ă 1 , there is on average more than one (although less than one with the filter) and we have to do another quantum search on them all. This is why the setup time at level 0, in full generality, becomes p 1 `maxp 1 ´p1 ´c1 q, 0qq{2. The setup time can thus be improved to: S " max ˆc4 , 4 lo omo on

Lv. 5 and 4

, 2 4 ´pc 3 ´c4 q `p3 {2 looooooooooooomooooooooooooon Level 3

, 2 3 ´pc 2 ´c3 q `p2 {2 looooooooooooomooooooooooooon Level 2

, 2 2 ´pc 1 ´c2 q `p1 {2 looooooooooooomooooooooooooon Level 1

, p 1 `maxp 1 ´p1 ´c1 q, 0qq{2 loooooooooooooooooomoooooooooooooooooon Level 0

˙.

Update. Our update will also use a quantum search. First of all, recall that the updates of levels 5 and 4 are performed in (expected) time 1. Having added an element in L 4 , we need to update the upper level. There are on average 4 ´pc 3 ´c4 q candidates satisfying the modular condition. To avoid a blowup in the time complexity, we forbid to have more than one element inserted in L 3 on average, which means: 4 ´pc 3 ´c4 q `p3 ď 0 ðñ 3 ď 4 . We then find this element, if it exists, with a quantum search among the 4 ´pc 3 ´c4 q candidates. Similarly, as at most one element is updated in L 3 , we can move on to the upper levels 2, 1 and 0 and use the same argument. We forbid to have more than one element inserted in L 2 on average: 3 ´pc 2 ´c3 q `p2 ď 0 ðñ 2 ď 3 , and in L 1 : 1 ď 2 . At level 0, a quantum search may not be needed, hence a time maxp 1 ´p1 ´c1 q, 0q{2. The expected update time becomes:

U " max ˆ0, p 4 ´pc 3 ´c4 qq{2 loooooooooomoooooooooon Level 3 , p 3 ´pc 2 ´c3 qq{2 loooooooooomoooooooooon Level 2 , p 2 ´pc 1 ´c2 qq{2 loooooooooomoooooooooon Level 1
, p 1 ´p1 ´c1 qq{2 looooooooomooooooooon Level 0 ˙.

Parameters

Using the following parameters, we found an algorithm that runs in time r O `20.2156n ˘:

0 " ´0.1916, 1 " 0.1996, 2 " 0.2030, 3 " 0.2110, 4 p" l 5 q " 0.2110 c 1 " 0.6190, c2 " 0.4445, c3 " 0.2506, c 4 p" r 5 q " 0.0487 α 1 " 0.0176, α 2 " 0.0153, α 3 " 0.0131, α 4 " 0.0087 γ 1 " 0.0019, γ 2 " γ 3 " γ 4 " 0, η " 0.8448 There are many different parameters that achieve the same time. The above set achieves the lowest memory that we found, at r O `20.2110n ˘. Note that time and memory complexities are different in this quantum walk, contrary to previous works, since the update procedure has now a (small) exponential cost. Remark 6.24 (Time-memory tradeoffs). Quantum walks have a natural time-memory tradeoff which consists in reducing the vertex size. Smaller vertices have a smaller chance of being marked, and the walk goes on for a longer time. This is also applicable to our algorithms, but requires a re-optimization with a memory constraint.

Mitigating Quantum Walk Heuristics for Subset-Sum

In this section, we provide a modified quantum walk NEW-QW for any quantum walk subset-sum algorithm QW, including [BJLM13, HM18] and ours, that will no longer rely on Heuristic 6.17. In NEW-QW, the Johnson graph is the same, but the vertex data structure and the update procedure are different (Section 6.6.2). It allows us to guarantee the update time, at the expense of losing some marked vertices. In Section 6.6.4, we will show that most marked vertices in QW remain marked.

New Data Structure for Storing Lists

The main requirement of the vertex data structure is to store lists of subknapsacks with modular constraints in QRAQM. For each list, we will use two data structures. The first one is the combination of a hash table and a skip list given in [START_REF] Ambainis | Quantum Walk Algorithm for Element Distinctness[END_REF] (abbreviated skip list below) and the second one is a Bucket-modulus list data structure, adapted from Definition 6.18, that we define below.

Hash Table and Skip

List. We use the data structure of [START_REF] Ambainis | Quantum Walk Algorithm for Element Distinctness[END_REF] to store lists of entries pe, e ¨aq, sorted by knapsack value e ¨a. The data structure for M entries, that we denote SLpM q, uses r OpM q qRAM memory cells and supports the following operations: inserting an entry in the list, deleting an entry from the list and producing the uniform superposition of entries in the list. All these operations require time polylogpM q.

We resort to this data structure because the proposal of "radix trees" in [START_REF] Daniel | Quantum algorithms for the subset-sum problem[END_REF] is less detailed. It is defined relatively to a choice of polylogpM q " polypnq hash functions selected from a family of independent hash functions of the entries (we refer to [START_REF] Ambainis | Quantum Walk Algorithm for Element Distinctness[END_REF] for more details). For a given choice of hash functions, the insertion or deletion operations can fail. Thus, the data structure is equipped with a superposition of such choices. Instead of storing SLpM q, we store: ř h |hy|SL h pM qy where SL h is the data structure flavored with the choice of hash functions h. Insertions and deletions are performed depending on h. This allows for a globally negligible error: if sufficiently many hash functions are used, the insertion and deletion of any element add a global error vector of amplitude op2 ´nq regardless of the current state of the data. The standard "hybrid argument" from [START_REF] Bennett | Strengths and weaknesses of quantum computing[END_REF] and [Amb07, Lemma 5] can then be used in the context of an MNRS quantum walk. Proposition 6.25 ([Amb07], Lemma 5, adapted). Consider an MNRS quantum walk with a "perfect" (theoretical) update unitary U , managing data structures, and an "imperfect" update unitary U 1 such that, for any basis state |xy:

U 1 |xy " U |xy `|δ x y
where |δ x y is an error vector of amplitude bounded by op2 ´nq for any x. Then running the walk with U 1 instead of U , after T steps, the final "imperfect" state |ψ 1 y deviates from the "perfect" state |ψy by: }|ψ 1 y ´|ψy} ď op2 ´nT q.

This holds as a general principle: in the update unitary, any perfect procedure can be replaced by an imperfect one as long as its error is negligible (with respect to the total number of updates) and data-independent. In contrast, the problem with Heuristic 6.17 is that a generic constant-time update induces data-dependent errors (bad cases) that do not seem easy to overcome. Bucket-modulus List. Let B " polypnq be a "bucket size" that will be chosen later. The bucket-modulus list is a tool for making our update time data-independent: it limits the number of vectors that can have a given modulus (where moduli are of the same order as the list size). Definition 6.26 (Bucket-modulus list). A Bucket-modulus list BLpB, M q is a qRAM data structure that stores at most B ˆM entries pe, e ¨aq, with at most B entries sharing the same modulus e ¨a mod M . Thus, BLpB, M q contains M "buckets". Buckets are indexed by moduli, and kept sorted. It supports the following operations:

• Insertion: insert pe, e ¨aq. If the bucket at index e ¨a mod M contains B elements, empty the bucket. Otherwise, sort it using a simple sorting circuit.

• Deletion: remove an entry from the corresponding bucket.

• Query in superposition: similar as in Definition 6.18.

In our new quantum walks, each list will be stored in a skip list SLpM q associated with a bucket-modulus BLpB, M q. Each time we insert or delete an element from SLpM q, we update the bucket-modulus list accordingly, according to the following rules.

Upon deletion of an element e in SLpM q, let e ¨a " T mod M , there are three cases for BLpB, M q:

• If |te 1 P SLpM q, e 1 ¨a " T u| ą B `1, then bucket number T in BLpB, M q stays empty;

• If |te 1 P SLpM q, e 1 ¨a " T u| " B `1, then removing e makes the number of elements reach the bound B, so we add them all in the bucket at index T ;

• If |te 1 P SLpM q, e 1 ¨a " T u| ď B, then we remove e from its bucket.

Upon insertion of an element e in SLpM q, there are also three cases for BLpB, M q:

• If |te 1 P SLpM q, e 1 ¨a " T u| " B, then we empty the bucket at index T ;

• If |te 1 P SLpM q, e 1 ¨a " T u| ă B, then we add e to the bucket at index T in BLpB, M q;

• If |te 1 P SLpM q, e 1 ¨a " T u| ą B, then the bucket is empty and remains empty.

In all cases, there are at most B insertions or deletions in a single bucket. Note that BLpB, M q Ď SLpM q but that some elements of SLpM q will be dropped.

Remark 6.27. The mapping from a skip list of size M (considered as perfect), which does not "forget" any of its elements, to a corresponding bucket-modulus list with M buckets, which forgets some of the previous elements, is deterministic. Given a skip list L, a corresponding bucket modulus list L 1 can be obtained by inserting all elements of L into an empty bucket modulus list.

New Data Structure for Vertices

The algorithms that we consider use multiple levels of merging. However, we will focus only on a single level. Our arguments can be generalized to any constant number of merges (with an increase in the polynomial factors involved). Recall that the product Johnson graph on which we run the quantum walk is unchanged, only the data structure is adapted.

In the following, we will consider the merging of two lists L l and L r of subknapsacks of respective sizes l and r , with a modular constraint c and a filtering probability pf. The merged list is denoted L c " L l ' c L r and the filtered list is denoted L f . We assume that pairs pe 1 , e 2 q in L c must satisfy pe 1 `e2 q ¨a " 0 mod 2 cn (the generalization to any value modulo any moduli is straightforward).

On the positive side, our new data structure can be updated, by design, with a fixed time that is data-independent. On the negative side, we will not build the complete list L f , and miss some of the solutions. As we drop a fraction of the vectors, some nodes that were previously marked will potentially appear unmarked, but this fraction is polynomial at most. We defer a formal proof of this fact to Section 6.6.4 and focus on the runtime.

We will focus on the case where l " r and either L l or L r are updated, which happens at all levels in our quantum walk, except the first level. Because there is no filtering at the first level, it is actually much simpler to study with the same arguments. In previous quantum walks, we had c " 2 ´c ď , i.e. ď c; now we will have 2 ´c ě and 2 ´c `pf ď .

Recall that our heuristic time complexity analysis assumes an update time p ´cq{2. Indeed, the update of an element in L l or L r modifies on average p ´cq elements in L l ' c L r , among which we expect at most one filtered pair pe 1 , e 2 q (by the inequality 2 ´c `pf ď). We find this solution with a quantum search. In the following, we modify the data structure of vertices in order to guarantee the best update time possible, up to additional polynomial factors. We will see however that it does not reach p ´cq{2. We now define our intermediate lists and sublists, before giving the update procedure and its time complexity.

Definitions. Both lists L l , L r are of size M » 2 n . We store them in skip lists. In both L r and L l , for each T ď M , we expect on average only one element e such that e ¨a " T mod M . We introduce two Bucket-modulus lists (Definition 6.26) L 1 l pB, M q and L 1 r pB, M q that we will write as L 1 l and L 1 r for simplicity, indexed by e ¨a mod M , with an arbitrary bound B " polypnq for the bucket sizes. They are attached to L l and L r as detailed in Section 6.6.1. When an element in L l or L r is modified, they are modified accordingly.

In L 1 l and L 1 r , we consider the sublists of subknapsacks having the same modulo C mod 2 cn , and we denote by L 1 l,C and L 1 r,C these sublists. They can be easily considered separately since the vectors are sorted by knapsack weight. By design of the bucket-modulus lists, L 1 l,C and L 1 r,C both have size at most B2 p ´cqn . We have:

L 1 l ' c L 1 r " ď 0ďCď2 cn ´1 L 1 l,C ˆL1 r,C .
Next, we have a case disjunction to make. The most complicated case is when 2 ´2c`pf ą 0, that is, each product L 1 l,C

ˆL1

r,C for a given C yields more than one filtered pair on average. In that case, we define sublists L 1 l,C,i of L 1 l,C and sublists L 1 r,C,j of L 1 r,C using a new arbitrary modular constraint, so that each of these sublists is of size ´pf{2 (at most). There are ´c `pf{2 sublists (exactly). The rationale of this cut is that a product L 1 l,C,i

ˆL1

r,C,j for a given i, j now yields on average a single filtered pair (or less). When 2 ´2c `pf ď 0, we don't perform this last cut and consider the product L 1 l,C ˆL1 r,C immediately. By a slight abuse of notation, we denote: pL 1 l,C,i

ˆL1

r,C,j q f the set of filtered pairs from L 1 l,C,i ˆL1 r,C,j , and we have:

L f " ď 0ďCď2 cn ´1 ď i,j
pL 1 l,C,i ˆL1 r,C,j q f . Algorithm 6.1 Update algorithm: given L l , L r of size , we insert or delete an element in L l and update the filtered list L f accordingly. We focus here on the case 2 ´2c `pf ą 0.

Data: skip lists for L l , L r , L f , bucket-modulus lists L 1 l , L 1 r 1:

Ź The bucket-modulus list for L f will be updated later Input: an insertion / deletion instruction for L l Output: updates L l , L 1 l , L f accordingly 2: Insert or delete in L l Ź only one element to update 3: Update the bucket-modulus structure L 1 then remove all pL 1 l,C,i ˆL1 r,C,j q f from L f 14: if s ď B and s 1 ď B 15:

then update L f with the (at most) B new or removed pairs Algorithm and Complexity. Algorithm 6.1 details our update procedure. We now compute its time complexity and explain why it remains data-independent. Recall that we want to avoid the "bad cases" where an update goes on for too long: this is the case where an update in L l (or L r) creates too many updates in L f . In Algorithm 6.1, we avoid this by deliberately limiting the number of elements that can be updated. We can see that L f will be smaller than the "perfect" one for two reasons: ' the bucket-modulus data structure loses some vectors, since the buckets are dropped when they overflow. ' filtered pairs are lost. Indeed, the algorithm ensures that in L f , at most B solutions e l `er come from a cross-product L 1 l,C,i

ˆL1

r,C,j . This makes the update procedure history-independent and its time complexity dataindependent. Indeed: Lemma 6.28. The state of the data structures L l , L r , L f after Algorithm 6.1 depends only on L l , L r , L f before and on the element that was inserted / deleted.

We omit a formal proof, as it follows from our definition of the bucket-modulus list and of Algorithm 6.1. Lemma 6.29. With a good choice of B, Algorithm 6.1 runs with a data-independent error in op2 n q. The time complexity of Algorithm 6.1 is r O `2p ´cqn ˘and an update modifies r O `2maxp ´c`pf{2,0qn ˘elements in the filtered list L f at the next level (respectively ´c and maxp ´c `pf{2, 0q in log scale).

Proof. We check step by step the time complexity of Algorithm 6.1:

• Insertion and deletion from the skip list for L l is done in polypnq, with a global error that can be omitted.

• The bucket-modulus list L 1 l is updated in time OpBq " polypnq without errors. At most B elements must be inserted or removed.

• For each insertion or removal in L 1 l , we select the corresponding sublist L 1 l,C,i (or simply L 1 l,C if 2 ´2c `pf ď 0). We look at the sublists L 1 r,C,j and we estimate the number of filtered pairs in the products L 1 l,C,i

ˆL1

r,C,j (of size ´pf), checking whether it is smaller or bigger than B. We explain in the next section (Section 6.6.3) how to do that reversibly in time r O `B ˆ2´pfn{2 ˘(´pf{2 in log scale). There are ´c `pf{2 classical iterations, thus the total time is ´c.

• Depending whether we have found more or less than B filtered pairs, we will have to remove or to add all of them in L f . This means that B ˆ2p ´c`pf{2qn insertion or deletion instructions will be passed over to L f .

There are two sources of data-independent errors: first, the skip list data structure (see Section 6.6.1). Second, the procedure in the next section (Section 6.6.3). Both can be made exponentially small at the price of a polynomial overhead. Note that B will be set in order to get a sufficiently small probability of error (see the next section), and can be a global Opnq. However, the polynomial overhead of our update unitary grows with the number of levels.

Estimating a Number of Solutions Reversibly

We give a reversible procedure that, given a search space X with good elements G Ď X, finds whether |G| ą B using r OpBq independent Grover searches in X. This procedure uses a coupon collector instead of quantum counting [START_REF] Brassard | Quantum counting[END_REF], because B is considered to be a constant, and we are interested in a good success probability rather than a quadratic speedup. Lemma 6.30. Let X be a search space of exact size 2 αn and G Ď X be a "good" subspace of exact size unknown. There exists a quantum algorithm that given superposition access to X, finds whether |G| ě B or not in time r O `B? X ˘and with a negligible probability of error.

Proof. Although |G| is not known, we use the idea (see e.g. [START_REF] Brassard | Quantum amplitude amplification and estimation[END_REF]) that we can perform quantum searches with an approximate number of iterations and still obtain solutions with a good probability. More precisely, there exists a number t, depending on |G| (unknown) and |X| (known) such that after t iterations, the state will be exactly the uniform superposition of G. This ideal t is not an integer; it is between 1 and r π 4 a |X|s (we assume that there is at least a solution, otherwise we will also detect this). Since we don't know t, we will instead approximate it by a t 1 such that t 2 ď t 1 ď 3t 2 . If we perform t 1 iterations with such a good t 1 , we will fall on a state with a constant global amplitude b (roughly 1 ? 2) on elements of G. Thus, we perform many different searches with different iteration numbers, ranging from 0, 1 to r π 4 a |X|s, and increasing exponentially. This ensures us that regardless of the value of t, one of these numbers will be an approximation sufficient for us.

Since we want the algorithm to work with a global error negligible and independent of |G|, we set c " O ´ln a |X| ¯the number of different searches and perform c 1 B copies of each. Thus, we have a total of cc 1 B independent states |ψ i y for 1 ď i ď c. One of these packets approximates the good t at best, but we don't know which one. We see the state i p|ψ i y bcB q as a superposition over tuples of X cc 1 B : ÿ x 1 ,...x cc 1 B α x 1 ,...x cc 1 B |x 1 y . . . |x cc 1 B y .

If |G| ă B, then this qubit is always 0: we can immediately uncompute the quantum searches and we have obtained the result. If |G| ě B, then some of these tuples contain B distinct solutions, but not all. We must ensure that their proportion is overwhelming, so that after uncomputing, the algorithm actually adds an error vector of negligible amplitude. To do that, we will only focus on the block of c 1 B states that corresponds to the good t, since for them, we have a lower bound on the probability of finding a solution. The other states, that we dismiss, can only improve our success in finding B distinct solutions. So we now focus on c 1 B-tuples only.

Let us consider |G| " B which is the worst case. First, we will look at the proportion of c 1 Btuples that contain p1´c 2 qc 1 bB solutions: this is the probability to succeed at least p1´c 2 qc 1 bB times after c 1 B independent trials of probability b each, and it is higher than 1´expp´c 2 c 1 Bb{2q by a Chernoff bound. Next, assuming that there are p1 ´c2 qc 1 bB independent solutions, we check the probability that they span all the B distinct solutions that there are in total. This is related to the coupon collector problem. The probability to miss at least a coupon among B after c p3q B ln B trials is lower than B ´cp3q `1. Thus, we may take c p3q " Opnq, c 2 " 1 2 and c 1 " Opnq for a total probability of failure in op2 ´nq.

Fraction of Marked Vertices

Now that we have computed the update time of NEW-QW, it remains to compute its fraction ε new of marked vertices. We will show that ε new " ε ´1 ´1 polypnq ¯with overwhelming probability on the random subset-sum instance, where ε is the previous fraction in QW.

Consider a marked vertex in QW. There is a path in the data structure leading to the solution, hence a constant number of subknapsacks e 1 , . . . , e t such that the vertex will remain marked if and only if none of them is "accidentally" discarded by our new data structure. Thus, if G is the graph of the walk, we want to upper bound: We focus on some level in the tree, on a list L of average size 2 n , and on a single vector e 0 that must appear in L. Subknapsacks in L are taken from B Ď D n rα, β, γs. We study the event that e 0 is accidentally discarded from L. This can happen for two reasons:

• we have |te P L, e¨a " e 0 ¨a mod 2 n u| ą B: the vector is dropped at the bucket-modulus level;

• at the next level, there are more than B pairs from some product of lists L 1 l,C,i ˆL1 r,C,j to which the vector e 0 belongs, that will pass the filter.

We remark the following to make our computations easier.

Fact 6.31. We can replace the L from our new data structure NEW-QW by a list of exact size 2 n , which is a sublist from the list L in QW.

At successive levels, our new data structure discards more and more vectors. Hence, the actual lists are smaller than in QW. However, removing a vector e from a list, if it does not unmark the vertex, does not increase the probability of unmarking it at the next level, since e does not belong to the unique solution. Fact 6.32. When a vertex in NEW-QW is sampled uniformly at random, given a list L at some merging level, we can assume that the elements of L are sampled uniformly at random from their distribution B (with a modular constraint). This fact translates Heuristic 6.4 as a global property of the Johnson graph. At the first level, nodes contain lists of exponential size which are sampled without replacement. However, when sampling with replacement, the probability of collisions is exponentially low. Thus, we can replace Pr vPG by Pr vPG 1 where G 1 is a "completed" graph containing all lists sampled uniformly at random with replacement. This adds only a negligible number of vertices and does not impact the probability of being discarded. ´ 3 ´pc 2 ´c3 q`p 2 2 ¯`y max ´ 2 ´pc 1 ´c2 q `p1 2 ¯`y maxp 1 ´p1 ´c1 qq loomoon

Number of Vectors

Final quantum search among all updated elements Ẇe obtain the time exponent 0.2182 (rounded upwards) with the following parameters (rounded). The memory exponent is 0.2182 as well.

0 " ´0.2021, 1 " 0.1883, 2 " 0.2102, 3 " 0.2182, 4 " 0.2182 c 3 " 0.2182, c 2 " 0.4283, c 1 " 0.6305, p 0 " ´0.2093, p 1 " ´0.0298, p 2 " ´0.0160 α 1 " 0.0172, α 2 " 0.0145, α 3 " 0.0107, γ 1 " 0.0020

Chapter 7 Conclusion

In this chapter, we summarize the main contributions of this thesis and present some future directions that could be explored.

An important aspect of all practical SVP algorithm is that they rely on heuristics to analyze their complexity. In particular, there is a significant gap between the best heuristic and provable algorithms for SVP. While provable algorithms are less of an interest for cryptography, since the choice of security parameters are based on heuristics that are much faster, they are still interesting from a theoretical perspective. The (provable) complexity of the SVP is still far from being well-understood. In Chapter 3 we managed to obtain a provable trade-off between time and memory for the SVP. However, we did not optimize the constants in the exponents since their origin in our proofs cannot be explained easily: They must satisfy nontrivial lower and upper bounds for the proofs to work. A more thorough analysis of our algorithm would be of interest to compare our trade-off with the best sieving algorithms and the best enumeration algorithms in the two extremes. Furthermore, even the best provable algorithm remains somewhat of a mystery [START_REF] Aggarwal | Solving the shortest vector problem in 2 n time using discrete gaussian sampling: Extended abstract[END_REF][START_REF] Aggarwal | Just take the average! an embarrassingly simple 2ˆn-time algorithm for SVP (and CVP)[END_REF]. Its 2 n running time is based on Discrete Gaussian Sampling (DGS), a prominent tool in lattice-based cryptography. The algorithm works by sampling a Gaussian with parameter roughly λ 1 pLq ? n , a task made difficult by the fact that this parameter can be quite below the smoothing parameter η ε pLq of the lattice. There are more efficient algorithms to sample discrete Gaussian above the smoothing parameter, notably a 2 n{2 algorithm by the same authors, using towers of lattices [START_REF] Aggarwal | Solving the shortest vector problem in 2 n time using discrete gaussian sampling: Extended abstract[END_REF]. While η ε pLq can be in the order of λ n pLq in the worst case, we expect a random lattice to have smoothing parameter in the order of λ 1 pLq ? n , hence within the reach of more efficient algorithms. Therefore a natural question is whether DGS and hence SVP is easier for random lattices.

In Chapter 4, we obtained the fastest quantum algorithm without any heuristic assumptions for SVP and the fastest classical algorithm that has a space complexity 2 0.5n`opnq . An intriguing feature of our algorithms is that their complexities depends on a quantity related to kissing number of the lattice. While the only known upper bound on this number is exponential (2 0.401n`opnq), very little is known about kissing numbers in general. So far it is only known that some family of lattices can have a barely exponential kissing number (2 0.0338n) and most practical lattices have a sub-exponential (2 opnq) kissing number. This suggests that more algorithms could benefit from a similar analysis to ours and that some provable algorithms are more competitive in practice than imagined. One may also imagine a link between the lattice kissing number and the gap of a lattice defined as the quotient of successive minima. Lattices with a gap appear when solving the Learning With Errors (LWE) problem with the embedding technique and there have been some studies on the SVP problem in this setting [WLW]. Finally, the exact relationship between the kissing number and the quantity βpLq 127 that we introduced is unclear, more work will be needed to clarify the situation.

Enumeration is another important technique to solve SVP and CVP, and it has been significantly improved in practice thanks to cylinder pruning, discrete and extreme pruning methods. In Chapter 5, we obtained a quantum quadratic speed-up for both cylinder pruning and discrete pruning and developed several several tweaks to make discrete pruning more efficient and powerful. Whereas a lower bound for the extreme cylinder pruning is given in [START_REF] Aono | Lower bounds on lattice enumeration with extreme pruning[END_REF], no study of the limitations of discrete pruning exists. Recent work has shown that enumeration with cylinder pruning can be used to improve the complexity of lattice reduction algorithms [ABF `20]. It remains open whether further improvements can be obtained by using discrete pruning instead.

Another important feature of our results in Chapter 4 and Chapter 6 is the type of quantum memory used. There are three types of quantum memories, in increasing order of strength: plain qubit, quantum accessible classical memory (QRACM) and quantum accessible quantum memory (QRAQM). The QRAQM model is used in most quantum walk algorithms to date, but its practical time-efficient realizations are still unclear. The QRACM model is omnipresent in Quantum Machine Learning algorithms (see for example [START_REF] Prakash | Quantum Algorithms for Linear Algebra and Machine Learning[END_REF]). All previously-known quantum algorithms for the SVP relied on QRACM whereas our algorithms in Chapter 4 only use plain qubits. We similarly improved algorithms for the random subset sum problem by demonstrating an algorithm using QRACM whose complexity is comparable with the state-ofart using QRAQM. We also obtained the fastest algorithm for this problem using QRAQM. A natural question is whether our improvements in SVP and subset-sum algorithms can be replicated in coding theory where only QRAQM algorithms exist for quantum information set decoding, due to the nested structure of the k-sum problem inside the search of the information set. Another interesting direction is to look at quantum algorithms for the Short Integer Solution problem (SIS) which shares some similar structure with the random subset sum problem.

In Chapter 6 we successfully removed a heuristic used in quantum walk in previous algorithms for decoding and subset sum, namely an update with expected constant time U can be replaced by an update with exact time U without affecting the runtime of the algorithm, up to a polynomial factor. We designed a new data structure for the vertices in the quantum walk, 0 Image from Physics World march 2013.

and a new update procedure with guaranteed time to prove the correctness of this statement. However in our best QRAQM algorithm, we introduced a technique to speed up the filtering of representations with a quantum search. Our new data structure does not guarantee that the update can be done in constant time for algorithms using this technique. One can imagine another approach where we study the quantum walk with imperfect setup and updates and try to bound the amplitude of the bad states for each step of the walk and show than in the end the imperfect quantum walk returns a marked vertex with constant probability. Another possible way to resolve this issue is to use learning graphs [START_REF] Carette | Extended learning graphs for triangle finding[END_REF] for which the expected update time seems to appear naturally in the analyses without introducing heuristics.

Notations and Acronyms

Notations (latin letters)

Figure 1

 1 Figure 1.1: A 2D lattice with a basis pb 1 , b 2 q at the origin O.

Figure 1

 1 Figure 1.4: A lattice, a target vector t and a closest lattice vector to t.

 CNOT|1y|by " |1y|1 ´by. The CNOT gate can be represented by the following matrix form in the basis |0y b |0y, |0y b |1y, |1y b |0y, |1y b |1y:

Figure 3 . 1 :

 31 Figure 3.1: Examples of discrete Gaussian distribution in one and two dimensions with different parameters.

Figure 3

 3 Figure 3.2: Trade-off of the discrete Gaussian depending on its parameter s.

?

 and b " log 2 βpLq. By Corollary 4.3, we can build an α-BDD if 1 2 ?

βpLq 2 9e q when b ă 5 18

 18

 or |}Be 1 } `1y

Figure 4

 4 Figure 4.1: One can cover the sphere of radius λ 1 by balls of radius 2αλ 1 , where 1 3 ď α ă 1 2 , whose centers (here P) are at distance r from the origin O. Each such ball covers a spherical cap of half-angle φ.

βpLq 2 9e q when b ă 5 18

 18

Figure 4

 4 Figure 4.2: (Exponent cpbq of the) time complexity of the classical version of the quantum algorithm in Section 4.3 and the spherical capping algorithm, plotted against b " log 2 βpLq. The complexity of the algorithms is 2 cpbqn`opnq .

Figure 5 . 1 :

 51 Figure 5.1: Example of enumeration in a lattice spanned by b 1 , b 2 with a ball of radius R " 5, and the corresponding enumeration tree T . The first level of the tree corresponds to the possible choices of x 2 " π 2 pvq, the projection on Rb ‹ 2 , for any v P L X B 2 pRq. The enumeration algorithm then proceeds recursively: for each choice z of x 2 , one can consider the intersection of L with the hyperplane x 2 " z: this is a (possibly shifted) one-dimensional lattice. The intersection of the ball of radius R with this hyperplane also produces a one-dimensional ball of smaller radius (which depends on z). Hence for each x 2 , we have a new one-dimensional enumeration sub-problem on a shifted lattice. The second level of the tree corresponds to the enumerated lattice points in each new sub-problem.

Figure 5 . 2 :

 52 Figure 5.2: Example lattice with its corresponding Babai's and natural partition. The different cells have different colors and are tagged.

Heuristic 5. 6

 6 ([GNR10, Heuristic 3]). The distribution of the normalized Gram-Schmidt orthogonalization pb ‹ 1 {||b ‹ 1 ||, . . . , b ‹ n {||b ‹ n ||q of a random reduced basis pb 1 , . . . , b n q looks like that of a uniformly distributed orthogonal matrix. We obtain: Lemma 5.7. Let C N be the natural partition. Let t P N n be a tag. If the distribution of the noise e has finite support, then under Heuristic 5.6: where E Ď R ě0 denotes the finite set formed by all possible values of }e} and S n denotes the n-dimensional unit sphere. Proof. It suffices to decompose the noise e as e " }e} ˆe }e} . The variable }e} only takes finitely many values, and because of Heuristic 5

(Figure 5 . 3 :

 53 Figure 5.3: An example of the transformation in Theorem 5.8

R 0 Ð

 0 R and R Ð tpR 0 `R1 q{2s

Figure 5

 5 Figure 5.5: Q-sieve vs Q-enum: (Left) Using HKZ bases (Right) Using Rankin bases

Heuristic 6. 4 .

 4 If input vectors are uniformly distributed in D 1 ˆD2 , then the filtered pairs are uniformly distributed in D (more precisely, among the subset of vectors in D satisfying the modular condition).

ÿ x ˆα1 n α 0

 0 n{2, xn ˙ˆpα 1 `β ´2γ 1 qn pγ 0 ´2γ 1 `2xqn, pβ ´γ0 ´x `α0 {2qn γ1 n xn ˙ˆp1 ´β ´2α 1 `γ1qn pγ 1 ´xqn, α 0 n{2, pβ ´γ0 ´x `α0 {2qn

Figure 6 . 2 :

 62 Figure 6.2: Our improved algorithm (duplicate lists are omitted).

lŹ

 at most B elements to update each element e to insert / delete in L 1 l Ź B " polypnq iterations 4: Select its corresponding sublist L 1 l,C,i5: Let L 2 l,C,i " L 1 l,C,i Y teu or L 1 l,C,i zteu each sublist L 1 r,C,j Ź ´c `pf{2 iterations 6: Estimate s " |pL 1 l,C,i ˆL1 r,C,j q f | Ź time r O `B ˆ2´pfn{2 7: Estimate s 1 " |pL 2 l,C,i ˆL1 r,C,j q f | Ź time r O `B ˆ2´pfn{2 ŹIn the case of an insertion, s 1 ě s and s 1 ď s for a deletion 8: if s ą B and s 1 ď B Ź The removal of e makes the number of filtered pairs acceptable9: then L f Ð L f Y pL 2 l,C,i ˆL1 r,C,j q f 10: if s ą Band s 1 ą B 11: then do nothing 12: if s ď B and s 1 ą B Ź The insertion of e overflows the filtered pairs 13:

 Pr vPG ˆv is marked in QW and not marked in NEW-QW ˙ď ÿ e i ,1ďiďtPrvPG ˆei P v in QW e i R v in NEW-QW ˙.

 empty list 2: while L contains at least 2 n `1 elements do

	3:	x Ð a random element from L
	4:	y Ð a random element from L
	5:	if x `y P 2L then
	6:	add px `yq{2 to L 1
	7:	

remove x and y from L 8:

 pB x ´vij q{2q. (4.6) At each step we only store the shortest nonzero vector. At the end, we output the shortest among them. The running time of the algorithm is straightforward. we make 2 n queries to a α-BDD oracle that takes time T o , we further repeat this n 2 N times. Therefore the algorithm takes time T c `2n ¨n2 N ¨To and space S c . This entire procedure is summarized in Algorithm 4.1. Solving SVP by spherical caps on the sphere Input: basis B of a lattice L Ă R

	Algorithm 4.1

n Input: an α-BDD oracle (for a well-chosen α) Output: a shortest non-zero vector of L 1: use LLL to get a number d that satisfies λ 1 pLq ď d ď 2 n{2 λ 1 pLq. 2: z Ð any basis vector 3: for i " 1, . . . , n 2 do 4:

 Call FindSolutionpT 2 , g N , n logpdq, ε{Roundq 14: if FindSolutionpT 2 , g N , n logpdq, ε{Roundq returns x then . Then FindMin2pT , P, g, R, d, T, εq outputs a marked leaf N , such that g takes its minimum on N among all of the marked leaves of T , with probability at least 1 ´ε. It requires Op a T n logpdq logpprlog 2 pRqsq{εqrlog 2 pRqs `?T pn logpdqq 3{2 logpn logpdqq logpprlog 2 pRqsq{εqq queries on the tree T and on g. Each query on T requires Oplogpdqq auxiliary operations. The algorithm needs polypn logpdq, logpRqq qubits.Proof. The correctness of the algorithm is easy to prove. We will compute the query complexity. There are in total Round ´1 " rlog 2 pRqs calls on ExistSolution and one call on FindSolution. According to Theorem 2.8, for each call of ExistSolution, we need Op a T n logpdq logpRound{εqq queries on T 2 and on g. According to Theorem 2.9, the call on FindSolution requires Op ? T pn logpdqq 3{2 logpn logpdqq logpRound{εqq queries on the local structure of the tree T 2 and on g. In total, we need logpdq logpprlog 2 pRqsq{εqrlog 2 pRqs `?T pn logpdqq 3{2 logpn logpdqq logpprlog 2 pRqsq{εqq queries on T 2 and on g. According to Theorem 5.8, in total, we need Op a T n logpdq logpprlog 2 pRqsq{εqrlog 2 pRqs `?T pn logpdqq 3{2 logpn logpdqq logpprlog 2 pRqsq{εqq

		1 q{2s
	11:	end if
	12: end while
	13: 15:	v Ð x
	16:	return v
	17: else
	18:	return
	19: end if
	node in T Op

a T n logpdq logpRound{εq ˚pRound ´1qq `?T pn logpdqq 3{2 logpn logpdqq logpRound{εqq " Op a T n logpdq logpprlog 2 pRqs `1q{εqrlog 2 pRqs `?T pn logpdqq 3{2 logpn logpdqq logpprlog 2 pRqs `1q{εqq " Op a T n

 going down the tree

	10:	end if
	11:	else
	12:	k Ð k `1 // going up the tree
	13:	if k " n `1 then
	14:	exit (no more solutions)
	15:	else
	16:	

 going down the tree

	9:	end if
	10:	else
	11:	k Ð k `1 // going up the tree
	12:	if k " n `1 then
	13:	return m ă M // no more solutions
	14:	else
	15:	

 β, γq " binpβ `α, α ´γ{2q `binpα, α ´γ{2q In order to estimate the success probability, we need to estimate the number of wellformed representations, and how they can be decomposed. Given a fixed vector e 1 P D n rα, βs, we count the number of compatible e 2 such that xn positions with a -1 from e 2 are cancelled by a 1 from e 1 . As e 1 `e2 P D n rγ, 2βs, there are `pβ`αqn

	`trinp1 ´β ´2α, γ{2, β `γ{2q ´trinp1, β `α, αq
	where trinpω, α, βq " gpα{ω, β{ωqω is the trinomial. Furthermore trinpω, α, βq » 1 n log 2	αn,βn `ωn	˘.
	Proof. xn	p2α´γ´xqnq ˘`αn ˘`p1´β´2αqn pα´xqn,pβ`γ´α`xqn	such
	vectors.		

 , an element of L 1 yields on average more than one filtered candidate.

	Producing the superposition of the modular candidates is done in time Op1q thanks to the data structure, then finding the superposition of filtered candidates requires 1{ ? p iterations. The total time is: O `tL 1 { ? p ˘.

Table 6 .

 6 1: Optimization results for the quantum asymmetric HGJ algorithm (in log 2 and relative to n), rounded to four digits. The time complexity is an upper bound.

	Variant	Time	a	b	c	3 0	3 1	3 2	3 4	2 0	1 0
	Classical	0.3370 0.1249 0.11 0.1401 0.3026 0.2267 0.25 0.2598 0.3369 0.3114
	Section 6.4.2 0.2374 0.0951 0.0951 0.2146 0.4621 0.2367 0.2267 0.2267 0.4746 0.4395
	Section 6.4.3 0.2356 0.0969 0.0952 0.2110 0.4691 0.2356 0.2267 0.2296 0.4695 0.4368

 For any QRACM constraint m ď 0.2356, the optimal time complexity obtained by using more RAM is always smaller than the best optimization of Section 6.4.3.

	" r ˘) O `2tn	0.4 0.5				Optimization of Sec. 6.4.3 t `m " 1 2
	Time t (T	0.3			
		0.2	0	0.1	0.2	0.3
		Memory constraint m (M " 2 mn)
	Figure 6.4: Quantum time-memory tradeoff of the asymmetric HGJ algorithm
	Fact 6.23.				
	L 3 4 , L 3 5 , L 3 6 , L 3 7 , L 2 2 , L 2 3 .			1 1 still holds; however, we can increase the size of lists

Table 6 .

 6 2: Time-memory tradeoffs (QRACM) for three variants of our asymmetric HGJ algorithm, obtained by numerical optimization, and rounded upwards. The last variant uses more classical RAM than the QRACM constraint.

	QRACM Section 6.4.2	Section 6.4.3 With more RAM
	bound Time Memory Time Memory Time Memory
	0.0500 0.4433 0.0501 0.4433 0.0501 0.4412 0.0650
	0.1000 0.3896 0.1000 0.3896 0.1000 0.3860 0.1259
	0.1500 0.3348 0.1501 0.3348 0.1501 0.3301 0.1894
	0.3000 0.2374 0.2373 0.2356 0.2356 0.2373 0.2373

 Having the Same Modulus. Let N » 2 n and M be a divisor of N . Given a particular e 0 P B and a vector a P Z n a rX f paqs `ÿ ePBzte 0 u E a rX e paqs `ÿ e,f Pzte 0 u E a rX e paqX f paqs Finally, we have V a pY paqq " E a rY paq 2 s ´Ea rY paqs 2 Pr e 1 ,¨¨¨,e |L| "U nif pBq Under the condition of Y paq " y, for all i P r1, |L|s, X e i paq can be seen as a random variable following Berp y |B| q, since e i s' are randomly chosen from B. Here Berppq is a Bernoulli distribution of parameter p. Number of elements to update at level 1 `y maxp 2 ´pc 1 ´c2 qq,

	ˆ					
	U " y max	3 ´pc 2 ´c3 q looooooomooooooon ,	y maxp 3 ´pc 2 ´c3 q looooooooooooooomooooooooooooooon `p2 q 2
		1 2	Level 2 ď 2E a rY paqs ´1 `p|B| ´1q ď 1 `2 |B| ´1 M `p|B| ´1q |B| ´1 `3M |B| ´1 `3M M 2 M 2 ´y max
						ď	M 2 `p|B| ´1qp|B| ´1 `5M q M 2	.
							ď	M 2 `p|B| ´1qp|B| ´1 `5M q ´p|B| `M ´1q 2 M 2
							"	3p|B| ´1qM M 2
							"	3p|B| ´1q M	.
							»
							|L|
							ÿ
							-	i"1	X e i paq ă B	´1fi fl ą 1	´1 polypnq	(6.3)
	Proof.					
				»	
						|L|
						ÿ
	Pr e 1 ,¨¨¨,e |L| "U nif pBq -	i"1	X e i paq ă B	´1fi fl
							»	fi
				|B|			|L|
				ÿ			ÿ
		"	y"1	Pr e 1 ,¨¨¨,e |L| "U nif pBq	i"1 -	X e i paq ă B ´1|Y paq " y	fl PrrY paq " ys

N , For e P B, define X e paq " # 1 if e ¨a " e 0 ¨a pmod M q 0 otherwise " ÿ f PB E Thus E a rY paqs « V a pY paqq when we look at their order of magnitude. According to Tchebychev's inequality, Pr a r|Y paq ´Ea rY paqs| ą E a rY paqss ď V a pY paqq E a rY paqs 2 " neglpnq which completes the proof. Lemma 6.34. If |B| " M » |L|, then for a 1 ´neglpnq proportion of a P Z n N , and with an appropriate B " Opnq:

 set of complex numbers, p. 17 EpXq expected value, p. 17 EtCu squared norm expected value, p. 17 N set of non-negative integers, p. 17 R set of real numbers, p. 17 VpXq variance, p. 17 Z set of integers, p. 17 Z n ring of residue classes modulo n, p. 17 Discrete Gaussian Sampling problem, p. 28 QRACM classical memory with quantum random access, p. 21 QRAQM quantum memory with quantum random access, p. 21 SVP Shortest Vector Problem, p. 28 γ-approx-SVP γ-Approximate Shortest Vector Problem, p. 29

	V pT q		set of nodes of a tree, p. 24
	Notations (greek letters)
	γpLq	quantity related to the kissing number, p. 28
	βpLq	quantity related to the kissing number, p. 28
	η ε pLq	smoothing parameter, p. 29
	λ 1 pLq	length of a shortest non-zero vector, p. 27
	ρ s pxq, ρ s pLq Gaussian mass function, p. 27
	π i pvq	orthogonal projection, p. 27
	τ pLq	kissing number, p. 28
	binpω, αq		binomial, p. 97
	b ‹ B ˚basis dual, p. 27 i Gram-Schmidt orthogonalization, p. 27 Notations (blackboard letters)
	B n pRq		Euclidean ball, p. 17
	B ‹		Gram-Schmidt orthogonalization, p. 27
	covolpLq		covolume of a lattice, p. 27
	d SD pX, Y q		statistical distance, p. 26
	distpx, Sq		distance, p. 17
	dpT q		degree of a tree, p. 24
	D n rα, βs		(sub)knapsack, p. 100
	D n rα, β, γs		(sub)knapsack, p. 100
	D L,s		discrete Gaussian distribution, p. 27
	f px, y, zq gpx, yq Acronyms		3-way entropy, p. 100 2-way entropy, p. 99
	hpxq		hamming entropy of x, p. 95
	L 1 ' c L 2 α-BDD	merged list, p. 96 Bounded Distance Decoding, p. 29
	L f CVP	filtered list, p. 96 Closest Vector Problem, p. 29
	Lpb 1 , . . . , b n q γ-approx-CVP γ-Approximate Closest Vector Problem, p. 29 lattice span, p. 27 L ˚lattice dual, p. 27 δ-DGS m σ
	LpT q		set of leaves of a tree, p. 24
	neglpnq		negligible function, p. 95
	npT q		depth of a tree, p. 24
	opf pnqq		"small o" notation, p. 17
	Opf pnqq		"big O" notation, p. 17
	Õpf pnqq		"soft O" notation, p. 17
	pf 1 pα, βq		HGK filtering probability, p. 97
	pf 2 pα, β, γq		BCJ filtering probability, p. 99
	pf 3 pα 0 , β, γ 0 , α 1 , γ 1 q new filtering probability, p. 101
	quadrinpω, α, β, γq	quadrinomial, p. 101
	trinpω, α, βq		trinomial, p. 99
	#T		number of nodes of the tree, p. 24
	U :		conjugate transpose, p. 18
	volp¨q		volume, p. 17
			145

C

Image from Physics World's "Alice and Bob communicate without transferring a single photon".

[START_REF] Kirchner | Time-memory trade-off for lattice enumeration in a ball[END_REF] never passed peer review. We will discuss their results in Section 3.5

After this work, Alexander May has informed us that the thesis[START_REF] Böhme | Verbesserte subset-sum algorithmen[END_REF] contains unpublished results using more symbols, with the best exponent of 0.2871 obtained with the symbol set t´2, ´1, 0, 1, 2u.

Aaronson et al. [AGS18] also give a bound of Op ?n log m´1 nq but in this case m is the rank of the syntactic monoid which can be exponentially larger than k.

This is in fact what we obtain when we transform a classical circuit into a quantum circuit.

This is sufficient for our purposes and simplifies the analysis. The MNRS framework does not need this assumption.

All the authors of[START_REF] Dadush | On the closest vector problem with a distance guarantee[END_REF] are all in [ADRS15] so the statement is still probably true.

Here we are using our assumption that the basis vectors have size at most

opnq .

The access to T2 is guaranteed by Theorem 5.8 via the access to T .

The RHF essentially caracterizes how well a lattice basis is reduced.

" 0.311,

" 0.305,

" 0.265 c 1 " 0.5, c 2 " 0.226

If we have, say,

3λ " x pmod M q then λ " x{3 pmod M {3q, which is only possible if x and M are divisible by 3, and then λ P tx{3, px `M q{3, px `2M q{3u.

Remerciements

List of Publications

can transform the expectation into an integer, by multiplying with a suitable polynomial-size integer.

First, we present a slight modification Algorithm 5.6 of [AN17, Algorithm 6], whose running time is provably essentially proportional to the number of solutions: Theorem 5.15. Assume that f : t1, . . . , nu ˆN Ñ R satisfies f pi, 0q " 0 and f pi, jq ě f pi, j 1 q for all i and j ą j 1 . Given as input a number R ą 0, Algorithm 5.6 outputs all pv 1 , . . . , v n q P N n such that ř n i"1 f pi, v i q ď R using OpnN `1q arithmetic operations and ď p2n ´1qN `1 calls to the function f pq, where the number N is the number of pv 1 , . . . , v n q P N n such that ř n i"1 f pi, v i q ď R. Proof. To analyze the complexity of Algorithm 5.6, let n k denote the number of times we enter Lines 3-18, depending on the value of k, which is ě 1 and ď n at each Line 3. Then n k can be decomposed as n k " a k `bk , where a k (resp. b k) denotes the number of times we enter Lines 5-10 (resp. Lines 12 -17). Notice that a n`1 " 0 and a 1 is exactly the number N of pv 1 , . . . , v n q P N n such that ř n i"1 f pi, v i q ď R. And if 1 ă i ď n, then a i is the number of times that the variable k is decremented from i to i ´1. Similarly, b n " 1, and if 1 ď i ď n, then b i is the number of times that the variable k is incremented from i to i `1. By Line 1 (resp. 14), the initial (resp. final) value of k is n (resp. n `1). Therefore, for any 1 ď i ď n ´1, the number of times k is incremented from i to i `1 must be equal to the number of times k is decremented from i `1 to i, in other words: b i " a i`1 . Thus, the total number of loop iterations is:

Note that because f pi, 0q " 0, any partial assignment ř n i"i 0 f pi, v i q ď R can be extended to a larger partial assignment ř n i"1 f pi, v i q ď R, which implies that a 1 ě a 2 ě . . . a n . It follows that the total number of loop iterations is:

For each loop iteration (Lines 3-18), the number of arithmetic operations performed is Op1q and the number of calls to f pq is exactly one. It follows that the total number of arithmetic operations is OpnN `1q and the number of calls to f pq is ď p2n ´1qN `1.

We showed that the number of nodes in the search tree is linear in the number of solutions. Next, we present Algorithm 5.7, which is a counting version of Algorithm 5.6: Theorem 5.16. Assume that f : t1, . . . , nu ˆN Ñ R satisfies f pi, 0q " 0 and f pi, jq ě f pi, j 1 q for all i and j ą j 1 . Given as input two numbers R ą 0 and M ą 0, Algorithm 5.7 decides if is N ě M or N ă M , where N is the number of pv 1 , . . . , v n q P N n such that ř n i"1 f pi, v i q ď R. Furthermore, if N ě M , the number of arithmetic operations is OpN q, and otherwise, the number of arithmetic operations is OpnN `1q, and the algorithms outputs N .

Proof. Similarly to the proof of Theorem 5.15, let n k denote the number of times we enter Lines 3-17, depending on the value of k, which is ě 1 and ď n at each Line 3. Then n k can be decomposed as n k " a k `bk , where a k (resp. b k) denotes the number of times we enter Lines 5-9 (resp. Lines 11-16).

Proof of Lemma 5.20. Under the transformation, the number of tags that we find in the tree with the parameter R won't change, i.e. #SpT pRqq " #SpT 2 pRqq.

Since we have: #T pRq´1 2n´1 ď #SpT pRqq ď #T pRq and we also know: #T pRq ď #T 2 pRq ď 2#T pRq

We thus have #T 2 pRq´2 2p2n´1q ď #SpT 2 pRqq ď #T 2 pRq Now we will prove the second inequality. If there exists p˚, ¨¨¨, ˚, v k , ¨¨¨, v n q P T pRq where v k ‰ 0 such that ř n j"k f pj, v j q " R `1, then p˚, ¨¨¨, ˚, v k `1, ¨¨¨, v n q P T pR `1qzT pRq. And for all i P r|1, k ´1|s, p˚, ¨¨¨, ˚, v i P t0, 1u, 0, ¨¨¨, 0, v k , ¨¨¨, v n q P T pR `1qzT pRq.

p˚, ¨¨¨, ˚, v k `1, ¨¨¨, v n q generates two nodes in T 2 pR `1qzT 2 pRq. Each p˚, ¨¨¨, ˚, v i P t0, 1u, 0, ¨¨¨, 0, v k , ¨¨¨, v n q generates one node in T 2 pR `1qzT 2 pRq.

On the other hand, a node in T 2 pR`1qzT 2 pRq can only be derived from a node p˚, ¨¨¨, ˚, v k , ¨¨¨, v n q P T pRq (and thus from the equivalent node in T 2 pRq) such that ř n j"k f pj, v j q " R `1 and v k ‰ 0, by using the above processus.

Therefore, #T 2 pR `1q ď 2n#T 2 pRq.

Lemma 5.21. d can be upper-bounded by

Proof of Lemma 5.21. At the beginning, R "

Since α 1 ď ¨¨¨ď α n , we also have: for all 1 ď j ď n, R ă gp0, ¨¨¨, 0,

α 1 rp4nM q 1{n sq, 0, ¨¨¨, 0q where

sq is on the j th position. Since R decreases during the execution of the algorithm, d can be upper-bounded by

Proof of Theorem 5.19. We will prove that the output R satisfies 2p2n ´1qM ď #T 2 pRq ď 32n 2 M with probability at least 1 ´ε{2. Since we have #T pRq´2 2p2n´1q ď #SpT 2 pRqq ď #T 2 pRq, this proves that M ď #SpT pRqq ď 32n 2 M with probability at least 1 ´ε{2.

Since the algorithm will end after at most Round " rlog 2 p ř n i"1 f pi, rp4nM q 1{n sqqs calls of the tree size estimation algorithm with correctness probability at least 1 ´ε{2prlog 2 p ř n i"1 f pi, rp4nM q 1{n sqqsq, by using the union bound, the correctness probability of our algorithm is at least 1 ´ε{2. Now we can assume that all the answers of the tree size estimation algorithm are correct.

In the following we will omit the last four parameters in TreeSizeEstimation for the clarity of the proof.

In case that the algorithm returns R inside the while loop, the output of the first TreeSizeEstimationpT 2 pRqq is "T 2 pRq contains T vertices" with 3p2n ´1qM ď T ď 16n 2 M . Since the tree size estimation is up to precision 1 ˘1{2, the real tree size should be in the interval r 3p2n´1qN 1`1{2 , 16n 2 M 1´1{2 s Ă r2p2n ´1qM, 32n 2 M s. np1 ´rq, instead of cn{2 on a support of size n{2. In total we have c `b `2a " 1 2 , as the weight of the solution is supposed to be exactly n{2.

Then we note that:

• The lists at level 3 have a maximal size depending on the corresponding weight of their vectors:

• The lists at level 2 cannot contain more representations than the filtered list of all subknapsacks of corresponding weight:

• Same at levels 1 and 0:

• The merging at level 2 is exact (there is no filtering):

• At level 1, with a constraint c 1 ě c 2 0 , c 2 1 that subsumes the previous ones:

• And finally at level 0:

Classical Optimization. All the previous constraints depend on the problem, not on the computation model. Now we can get to the time complexity in the classical setting, that we want to minimize:

The last term corresponds to the exhaustive search on 3 0 . In order to keep the same freedom as before, it is possible that an element of L 3 0 matches against several elements of L 3 1 , all of which yield a potential solution that has to be matched against L 2 1 , etc. Hence for each element of L 3 0 , we find the expected maxp 3 1 ´c2 0 , 0q candidates matching the constraint c 1 0 . For each of these candidates, we find the expected maxp 2 1 ´c1 `c2 0 , 0q candidates matching the constraint c 1 . For each of these candidates, if it passes the filter, we search for a collision in L 1 1 ; this explains the maxppf 1 pb, cq ` 1 1 ´p1 ´c1 q, 0q term. In the end, we check if the final candidates pass the filter on the last level.

We verified that optimizing the classical time under our constraints gives the time complexity of HGJ.

Quantum Optimization. The time complexity for producing the intermediate lists is unchanged. The only difference is the way we find the element in L 3 0 that will lead to a solution, which is a nested sequence of quantum searches.

• We can produce the superposition of all elements in L 2 0 in time

• By Lemma 6.19, we can produce the superposition of all elements in L 1 0 in time

• Finally, we expect that there are ` 2 0 ` 2 1 ´c1 `c2 0 `pf 1 pb, cq ˘elements in L 1 0 , which gives the number of iterations of the quantum search.

The time of this search is:

1 2

˘˘W

e obtain a quantum time complexity exponent of 0.2374 with this method (the detailed parameters are given in Table 6.1).

Improvement via Quantum Filtering

Let us keep the tree structure of Figure 6.3 and its structural constraints. The final quantum search step is already made efficient with respect to the filtering of representations, as we only pay half of the filtering term pf 1 pb, cq. However, we can look towards the intermediate lists in the tree, i.e. L 3 1 , L 2 1 , L 1 1 . The merging at the first level is exact: due to the left-right split, there is no filtering of representations, hence the complexity is determined by the size of the output list. However, the construction of L 1 1 contains a filtering step. Thus, we can use Corollary 6.20 to produce the elements of L 1 1 faster and reduce the time complexity from: 2 2 ` 2 3 ´c1 `c2

1 `1 2 pf 1 pa, aq. By optimizing with this time complexity, we obtain a time exponent 0.2356 (the detailed parameters are given in Table 6.1). The corresponding memory is 0.2356 (given by the list L 3 1).

We will first prove a result on the average number of vectors having the same modulus as e 0 , then we will use this in a Chernoff bound. Define Y pB, e 0 ; aq " cardte P B, a ¨e " a ¨e0 pmod M qu.

where M divides N » 2 n . For simplicity, we write Y paq for Y pB, e 0 ; aq in the following. We are interested in Y paq as a random variable when a is drawn uniformly from Z n N . Lemma 6.33. If |B| " M , then with probability 1 ´neglpnq,

Proof. Following [START_REF] Phong | Distribution of modular sums and the security of the server aided exponentiation[END_REF], for any z P C, define Epzq " expp2πiz{M q. It satisfies the identity

for any u P Z. We have

Epλa ¨pe ´e0 qq.

Therefore for any e ‰ e 0 , E a rX e paqs "

Epλa ¨pe ´e0 qq

where in the last step, we used that if e ‰ e 0 , there exists i P r1, ns such that e i ‰ e i 0 , where e i is the ith component of e and hence of the i th sum in the product is zero by (6.2) since λ ‰ 0 pmod M q. It follows by linearity that E a rY paqs " E a rX e paqs `ÿ ePBzte 0 u E a rX e paqs " 1 `|B| ´1 M since e 0 P B. Similarly for any e, f P Bzte 0 u, E a rX e paqX f paqs "

Epµa ¨pf ´e0 qq ¸ 6.6. Mitigating Quantum Walk Heuristics for Subset-Sum

1 " λe `µf " pλ `µqe 0 mod M ‰ by (6.2). If λ " 0 then the equation λe `µf " pλ `µqe 0 mod M becomes µf " µe 0 but since f ‰ e 0 , the only solution is µ " 0. A symmetric reasoning shows that if µ " 0 then λ " 0 is the only solution. Hence, given e ‰ e 0 , we have

where F e " pλ, µ, f q P t1, . . . , M ´1u 2 ˆBzte 0 u : λe `µf " pλ `µqe 0 mod M (.

We now claim that this set is not too large. Assume that pλ, µ, f q P F e , recall that λ, µ ‰ 0 and since e ‰ e 0 then there exists i such that e i ‰ e i 0 so in particular λpe i ´ei 0 q " µpf i ´ei 0 q. But recall that e, f , e 0 P B Ď t´1, 0, 1, 2u n hence e i ´ei 0 P t´3, ´2, ´1, 1, 2, 3u. It follows that if we fix µ then there are at most 3 possible values 2 for λ. We note in passing that the constant 3 is not magical: if we had B Ď t´a, . . . , au n then it be bounded by 2a. Now assume that pλ, µ, f q, pλ, µ, gq P F e with f ‰ g, then we must have µpf ´gq " 0 mod M ñ f ´g " 0 mod M {µ ñ Dk ‰ 0.@i, g i " f i `kM {µ which is only possible if µ divides M . In particular, we must have M {µ ě 2, in other words all coordinates of f and g are at least at distance 2. This is clearly impossible because B Ď D n rα, β, γs: the distribution of "-1", "0", "1", "2" in one of f or g would be wrong. In summary, we have that:

• for every µ, f , there are at most 3 possible values of λ such that pλ, µ, f q P F e ,

• for every λ and µ, there is at most one value of f such that pλ, µ, f q P F e .

It

Chernoff's inequality gives that for any δ ě 1:

Hence, when M " |L|, by taking B linear in n, we obtain that the probability of being unmarked due to this e 0 is less than 1 polypnq .

For the number of filtered pairs, we use the fact that the vectors at each level are sampled uniformly at random from their distribution. If this is the case, then a Chernoff bound (similar to the proof of Lemma 6.34) limits the deviation of the number of filtered pairs in L 1 l,C,i ˆL1 r,C,j from its expectation (which is 1 by construction): the probability that there are more than B `1 pairs is smaller than e ´pB`1q{3 . By taking a sufficiently big B " Opnq, we can take a union bound over all products of lists L 1 l,C,i

ˆL1

r,C,j in which e 0 intervenes. We also take a union bound over the intermediate subknapsacks that we are considering. The loss of vertices remains inverse polynomial.

Time Complexities without Heuristic 2

Previous quantum subset-sum algorithms [START_REF] Daniel | Quantum algorithms for the subset-sum problem[END_REF][START_REF] Helm | Subset sum quantumly in 1.17 n[END_REF] have the same time complexities without Heuristic 6.17, as they fall in parameter ranges where the bucket-modulus data structure is enough. However, this is not the case of our new quantum walk. We keep the same set of constraints and optimize with a new update time. Although using the extended t´1, 0, 1, 2u representations brings an improvement, neither do the fifth level, nor the left-right split. This simplifies our constraints. Let y maxp¨q " maxp¨, 0q. The guaranteed update time becomes: