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Introduction

Certaines équations aux dérivées parielles sont caractérisées par le fait que leurs coefficients sont de valeurs très différentes dans certaines parties du domaine d'étude, où ils sont posés de manière à ce que leur rapport devient assez grand. À titre d'exemple, nous pouvons citer le cas du problème de diffusion [22] :

-div (a \lu) = f dans D, où a = 1 dans une partie fixe du domaine D et a tend vers l'infini dans Da, le reste de cette partie dans D. Pour ce cas, il n'est pas difficile d'obtenir le problème limite. D'une manière similaire, il n'est pas difficile de déterminer le problème limite du problème ci-dessus si a demeure fixe mais le sous-domaine se comprime en une hypersurface lisse de codimension 1, voir par exemple [28]. Mais la situation devient plus compliquée si le paramètre a tend vers l'infini quand le domaine Da se rétrécit.

Le sujet de cette thèse est l'étude de certaines propriétés du comportement limite dans des équations aux dérivées partielles du second ordre dont la solution satisfait au niveau de la surface de séparation entre deux domaines à des conditions de transmission. Plus précisément, l'étude du comportement limite des solutions de ces équations aux dérivées partielles quand certains paramètres tendent vers certaines valeurs limites permet d'établir un sens précis de certaines propriétés physiques tels que le potentiel électrique dans un corps infiniment conducteur est constant.

1 Plus exactement, établir dans quel sens le comportement d'un corps de grande conductivité est proche de celui d'un coprs idéal de conductivité infinie.

Plusieurs applications ont motivé cette étude. Nous citons par exemple les problèmes de conductivité thermique en la présence de l'électrostatique ou de magnétostatique. Un problème limite, issu du collage de deux corps solides linéairement élastiques où la colle est schématisée par une couche mince à des coefficients d'ordre petit par rapport à ceux des deux adhérents, a été traité dans [17] dont la question principale qui s'y posait était comment modéliser le comportement du matériel adhésif incorporé entre les deux adhérents. Tandis que dans [18] seule la limite quand J --+ 0 a été étudiée en utilisant la méthode du développement asymptotique. Aussi, beaucoup de tels problèmes ont été étudiés d'un point de vue mathématique conduisant à des résultats d'existence et d'unicité et à des propriétés de régularité des solutions, nous pouvons citer par exemple [24] et [30].

Ou encore, l'étude d'une couche mince élastique insérée entre deux matérieux élastiques et possédant des propriétés d'un ordre de grandeur différent de celles de ces deux matériaux, s'est largement développée à la suite des travaux de [22], [11], et [13]. Peu après,dans [6] les auteurs ont étudié le comportement limite d'une couche tri-dimensionnelle d'épaisseur Jet de régidité d'ordre~• Plus précisement, la couche mince considérée est de la forme S x) -J, J[ où S est une surface bi-dimensionnelle projectable et les matériaux sont linéairement élastiques et anisotropes.

Le problème limite obtenu est un problème de transmission de type Vencel entre deux corps linéairement élastiques anisotropes.

Nous savons aussi que des problèmes de transmissions à travers des couches minces de grande conductivité ont été étudiés dans [22,35,36].

L'objectif des travaux susmentionnés était l'étude du comportement limite de la couche mince d'épaisseur tendant vers zéro et à conductivité cr Au troisième chapitre, après avoir établi l'analyse qui nous permet d' étudier le comportement limite des équations aux dérivées partielles, nous donnons trois différentes applications du carde abstrait pour des problèmes de transmission, à coefficient CT -----+ oo dans les sous-domaines 0 0 approchant une surface régulièreS, impliquant le problème de l'élasticité isotrope (système de Lamé), le problème d'élasticité anisotrope générale et le problème de diffusion anisotropique. Pour ces trois applications, les problèmes limites sont analysés; en particulier, nous montrons que l'un de ces problèmes limites est un couplage entre deux problèmes différents. Par exemple, pour le cas de l'élasticité isotrope, le problème limite obtenu est un couplage entre le système de Lamé et le système de Stokes.

Dans le quatrième chapitre, nous exposons certaines situations particulières où l'espace W(S) peut être caractérisée.

Dans le cinquième chapitre, nous définissons et étudions le système de Maxwell tri-dimensionnel. Nous montrons pour ce cas que seule la limite lorsque la conductivité CT tend vers l'infini est réalisable. Aussi, nous mettons en évidence l'impossibilité du passage à la limite lorsque J converge vers zéro puisque la norme de l'espace fonctionnel considéré en est dépendante.

Dans le sixième chapitre, nous reprenons le système de Maxwell mais en dimension deux que nous transformons en un problème de perturbation singulière via un changement d'échelle. Ce procédé nous a permis de Table des matières rendre possible le passage à la limite quand b tend vers zéro.

Cette thèse a fait l'objet d'un article co-écrit avec S. Nicaise et A. Maghnoudji, publié dans Advances in Differentia [ Equations [21].

Chapitre 1.

Nota ti ons et Rappels

Dans ce chapitre, nous dressons une liste des principales notations utilisées tout au long de cette thèse. D'autres plus spécifiques, seront introduites dans le texte. Nous rappelons également divers résultats généraux qui pour la plupart sont accompagnés de références à la bibliographie et seront utilisés dans le texte de manière plus ou moins détaillée. ~aui

IV U = L.. -a .' i=l xl
rot U = (au3 _ au2, au1 _ au3, au2 _ aul)T ax2 ax3 ax3 axl axl ax2 . Ces opérateurs sont bien définis lorsque u, resp. u, appartient à l'espace C 0 (0), resp. C 0 (0)3.

Dans le cas où u, resp. u, est une distribution, ses dérivées sont toujours des distributions et on vérifie sans peine que <Vu, v>=< u, div v>,

1.2. L'espace L 2 <div u, v>= -< u, \lv>, < rot u, v > = < u, rot v >, pour tout u E C 0 (0)', u E (C 0 (0)') 3 , v E C 0 (0) et v E C 0 (0) 3 . :1.2 L'espace L 2
Soit 0 c RN un ensemble mesurable au sens de Lebesgue. On désigne par 

L 2 ( 0) = {f: 0 ------+ R : fest mesurable et Jo 1!1 2 < oo} et on définit la norme de f dans L 2 ( 0) par 1 Il f llo,o= (Jo 1!1 2 ) 2 • L'espace L 2 (0) est un espace de Hilbert pour le produit scalaire (f, g) = j 0 J(x)g(x) dx. :1.3 Espace H 1 ( 0) Définition :l.J.l. 1 ( ) _ { 2 ( ) . . _ du 2 ( ) } H 0 -u E L 0 . Vz -1, ... , N, -d E L 0 . Xi Remarque :1.3.2.

Autrement dit,

Remarque 1.5.3. HJ(RN) = H 1 (RN); si 0 f=. RN, HJ(O) c H 1 (0) en général.

C 0 (0) est dense dans HJ(O) pour la norme H 1 (0). HJ(O) est un fermé de H 1 (0).

Théorème 1.5-4-HJ ( 0) est un espace de Hilbert pour le produit scalaire de Hl.

1.5. Espace HJ( 0) Théorème 1.5.5 (inégalité de Poincaré [10]). Soit 0 un domaine lipschitzien de RN. Il existe une constante Co telle que Remarque 1.5.6. L'inégalité de Poincaré est en vérité valide lorsque l'ouvert 0 est de mesure finie ou bien lorsque 0 est borné dans une seule.

Notion de trace

Pour une fonction u E C 0 ( 0), la trace de u sur i10 est définie par

'Y: C 0 ( O) ----* C 0 (i10) u f----------+ ulao•
qui est une application linéaire. En d'autres termes, à une application définie sur un ouvert 0, elle associe la restriction de cette application au bord de l'ouvert.

Lemme 1.5.7. Soit 0 un ouvert borné à frontière i10 lipschitzienne alors [application trace ' Y : C 0 ( 0) -------t C 0 (i10) est linéaire continue et se prolonge donc en une unique application linéaire continue 'Y: H 1 (0) -------t H 1 1 2 (aO)

Pour la démonstration voir [26].

Proposition 1.5.8. Soit 0 un ouvert lipschitzien de RN.

HJ(O) = { u E H 1 (0), 'Y(u) = 0}.
Autrement dit, HJ(O) est l'ensemble des fonctions de H 1 (0) qui s'annulent sur le bord de 0 (quand ce bord est défini).

Lemme 1.5.9. L'expression H 0 (0) c H 111 (0).

Théorème :1.6.4 (voir [? ]). Soit 0 un ouvert de RN de bord ao continu. Alors C 0 (0) est dense dans H 111 (0), pour tout m ~O.

:1.7 Formes bilinéaires

Soit V un espace de Hilbert.

Définition :1.7.1. Une forme bilinéaire sur un espace de Hilbert V est une application qui associe à un couple ( u, v

) E V x V un scalaire noté b(u, v) et satisfaisant: • b(f31u1 + {3zu2, v)= f3tb(u1, v)+ f3zb(uz, v), Vu1, u2, v EV, et {31, f3z E R • b(u, f31v1 + f3zvz) = f31b(u, Vt) + f3zb(u, vz), Vu, v1, Vz EV, et f3t, f3z E R.
Dans notre analyse, nous avons besoin de rappeler les notions de convergence faible et convergence forte. 

u E V tel que VvE V, lim (un, v) = (u, v). n ----->oo
Ici, (u, v) désigne le produit scalaire sur V. Théorème 1.7.8 (Lax-Milgram). Soit V un espace de Hilbert muni de la norme 

Il • li v• Supposons de plus que b( •, •) : V x V ~ JR est une forme bilinéaire continue et coercive et soit L E V'. Alors, il existe un unique u E V solution de b(u, v)= L(v), pour tout v EV.
Il u Il Us ---+ 0 quand J ---+ 0, b) le reste r 0 = b 0 -b satisfait à i) Il existe une constante positive C indépendante de o tel que iro(u, v)l ~Cil u llu 6 l l v iiv , Vu, v EV,
ii) pour toute suite (w 0 ) 0 E V convergeant faiblement vers zéro dans V, nous avons:

iro(wo, v)i ~ 0 quand o-----+ 0, 'ivE V.
Remarque 2.1.2. Dans le cas des formes bilinéaires b 0 symétriques, la condition ii) est une conséquence directe de i). La forme bilinéaire r 0 défini par

1 rl r 6 (u, v)= vfJ u(o) Jo v(x) dx, Vu, v E HJ(ü, 1)
converge vers zéro au sens de Kata: en effet, pour tout u, v E HJ(ü, 1)

nous avons 1 ro(u, v) 1 = )6 1 u(o) iifo 1 v(x) dx 1 0 0 ~ )J ifo u'(x) dx iifo 1 v(x) dx 1 0 0 0 ~cfa 1 u'(x) 1 2 dx) 112 (fo 1 1 v(x) 1 2 dx) 112 ~ 0 quand 0-----+ o.
Mais, sa convergence forte au sens de la définition 2.1.1 n'a pas lieu puisque la propriété ii) n'est pas satisfaite. En effet, considérons la suite (w6)6 défini dans H6(0, 1) par

w6(x) = 1 D'un côté, nous avons: 0, si 0 <x< r5. si r5 ~ x < 2r5. si 2r5 ~x < 1.
1 w6 I~J(o, 1) = 1, et d'un autre côté cette suite converge vers zéro faiblement dans H6(0, 1), parce que pour tout v E H6(0, 1) nous avons

(w6, v)Ha(o, l) = fo 1 w~(x)v'(x)dx {26 {26 ~(Jo 1 w~(x) 1 2 dx) 112 (J 0 1 v'(x) 1 2 dx) 1 1 2 026 0 ~(la 1 v'(x) 1 2 dx) 112 ---+ 0 lorsque r5---+ O.
Pour v E H6 ( 0, 1), nous avons

1 rl J2 rl r6(w6, v) = V5w6(r5) Jo v(x) dx = 2 Jo v(x) dx.
Ce qui montre que l'hypothèse ii) de la définition 

a 6 (u, v) = a 6 (u, v)+ cra 6 (u, v), 'ïfu, v EV.
(Hz) a~1) et a~2) sont positives i.e., aY)(u, u) ;::=: 0, VuE V, j = 1, 2, et uniformément continues par rapport à b dans V x V. De plus, a~2) est supposée symétrique.

(HJ) La somme a~l) + a~2) est uniformément coercive par rapport à b, i.e., la constante de coercivité est indépendente de b .

. 1 (1)

(2))

Remarque z..z..1.. y (a 0 + a 0 ( •, •) définit une norme équivalente a la norme usuelle de l'espace V.

(H4) Quand b --+ 0, (a~2)) 0 ~0 et (a~1)) 0 ~a où a est une forme bili- néaire continue et coercive dans tout l'espace V.

Problèmes auxiliaires

Pour l'étude des différents problèmes liés aux formes bilinéaires a §, a~1), a~2) et a, nous avons besoin de définir des espaces fonctionnels.

Définition z..J.1.. Pour tout b > 0, nous désignons par V 0 l'espace des éléments

v de V vérifiant a~2) (v, v) = O.
Notons par W la fermeture dans V de l'union des espaces V 0 pour tout b, i.e., --v W=UVo.

o>O Les espaces V 0 sont supposés emboîtés dans le sens suivant

Vo' c V 0 , Vb, b' tel que b' > b.
( 

a~2\u, u)+2a~2)(u, v)+a~2)(v, v) (a~2)est symétrique) 2a~2)(u, v) < 2a~2)(u, u)a~2)(v, v) (inégalité de Cauchy-Schwarz) 0
Vu que a~2) est positive, nous déduisons que a~2) (u +v, u +v) =O.

Ce qui prouve que u +v E V 3 .

De plus, les V 3 sont des fermés de V, puisqu'ils sont l'image réciproque par l'application continue u 1--------t a~2)(u, u) du fermé {0}.

Vs et W sont des espaces de Hilbert munis de la norme induite de celle de V.

Pour f E V' donnée, nous nous intéressons à étudier les différents problèmes variationnels suivants:

Trouver u3 E V tel que aS( uS", v)=< f, v>, VvE V.
(2.2)

Trouver u 8 E V 8 tel que

(1) ( ) -

a 3 u 0 , v -< f, v >, VvE V 3 .
(2.3)

Trouver u E W tel que a(u, v)=< f, v>, VvE W.

(2.4)

Trouver u* E V tel que a(u*, v)=< f, v>, VvE V.
(2.5) < < f, ub"-u 0 > -ai 1 ) (u 0 , ub"-u 0 ) En raison de la convergence faible (2.15) et de la bilinéarité de ail), nous avons

Existence et unicité

< f, u3" -U 0 > ~ 0 as [J ~ +oo, et (1) ( (T ) -(1) ( (T)
(1) ( ) a 0 u 0 , u 0 -u 0 -a 0 u 0 , u 0 -a 0 u 0 , u 0 =ai 1 )(u 0 , ub)-<f, us>

(2.18)

~ < f, us>-< f, u 0 >=O.
Ceci prouve que la norme de ub"-u 0 dans V tend vers zéro, quand [J tend vers oo.

Passons maintenant à démontrer la limite (2.10). En prenant dans (2.3) la fonction test v = u 0 , élément de V 0 , et en tenant compte de l'inégalité

(2.8) et de la V-ellipticité de la forme bilinéaire ai 1 ) sur V 0 , nous verrons que la suite (u 0 ) est bornée dans V. Donc, il existe une sous suite que nous noterons toujours par ( u 0 ) et îi E V telles que

u 0 ~ îi faiblement dans V quand b ~ O. (2.19)
Comme ii est la limite de fonctions dans V 0 et vu la définition de l'espace W, nous en déduisons que ii E W.

De l'hypothèse (If4) faite sur la forme bilinéaire a~l) et la propriété d'emboîtement des espaces V 0 (voir (2.1)), nous obtenons 

En prenant W 0 = u 0 -îi, (1) (1) (1) ~ r 0 (u 0 , v)= r 0 (w 0 , v)+ r 0 (u, v).
a(u 0 , v) --+ a(îi, v) et Ainsi îi E W satisfait à a(îi, v) =< f, v>, \lv E v,., ,J'> O.
Lorsque 6' tend vers zéro, nous déduisons que îi est solution de (2.4).

De l'unicité de la solution, nous avons îi = u.

Prouvons maintenant la convergence forte : soient u 0 E V 0 solution de (2.3) et u E W solution de (2-4). Considérons une suite w 0 , 6 > 0 qui converge vers u dans V fort et est telle que pour tout b, w 0 appartient à V 0 . Par la définition de W, une telle suite existe bien. Il est clair pour tout 6, u 0 -w 0 E V 0 . En appliquant (2.3) à u 0 -w 0 et en tenant compte de la coercivité de a~1 ), on obtient

C\\ Uc)-Wc) \\~ < a~l) (ub-Wc), U 0 -Wc5) a~1 )(u 0 , u 0 -w 0 )-a~l)(w 0 -u, u 0 -w 0 ) -a~1 ) (u, u 0 -w 0 ) < a~l)(u 0 , uc5-w 0 ) -a~l)(w 0 -u, u 0 -w 0 ) -a(u, u 0 -w 0 ) -r~1 )(u, u 0 -w 0 ) < < f, u,.-W 0 > -a~1)(w 0 -u, u 0 -w 0 ) -< f, u 0 -w 0 > -r~1 )(u, u 0 -w 0 ) < C1\\ w,.-u \\v\\ u,.-Wo \\v+ C2\\ u \\u 6 \\ u,.-w,. \\v, cl et c2 sont deux constantes positives indépendantes de b.
En utilisant la convergence de la suite w 6 vers u et l'hypothèse, nous obtenons

Il UJ-WJ llv::; c-1 C'II WJ-u i l v+ c-1 C"II u lluJ ----+ 0 lorsque b----+ o.
(2.20) Par conséquent, la convergence forte de u 6 vers u dans V est établie.

Finalement, nous démontrons la limite (2.11). Soit CT > 0 fixé. Puisque u5 est la solution de (2.2), alors pour v = u5 dans (2.2) nous trouverons, en vertu de fE V' et de (2.8) que {u5', Vb > 0} reste bornée dans V. Et donc, il existe une sous suite que nous noterons encore par ( u6) 6 telle que u5' ----+ ii faiblement dans V quand 6 ----+ O.

(2.21) En faisant tendre 6 vers zéro dans (2.2), et grâce à la convergence (2.21) et l'hypothèse (H4), nous verrons que ii est bien la solution du problème (2.5). Par suite, ii= u*.

Pour la convergence forte, nous introduisons la différence u5-u*, c'est un élément de V, dans (2.2), ce qui conduit à Et donc, 

< a5'(u5, u5-u*)-a5'(u*, u5-u*) < aJ"(u6, u5-u*)-a~1 )(u*, u5-u*) -cra~2) ( u*, uJ" -u*) < aJ"(uJ", u5-u*)-a(u*, u5-u*) -r~l)(u*, u<J-u*)-cra~2)(u*, u<J-u*) < < f, u<J -u* > -< f, u<J -u* > -r~l)(u*, u<J-u*)-cra~2)(u*, u5-u*) < C'(

Système de Lamé

Nous nous intéressons à l'étude du comportement limite du problème de transmission correspondant au système de Lamé avec des coefficients de Lamé discontinus le long de l'interface àOs (voir (3.1)).

Considérons un milieu élastique anisotrope D avec des constantes de

Lamé Ào, tto dans Ds et À, tt dans Os.

Nous supposons que les deux paramètres b et À convergent séparément vers zéro et vers l'infini respectivement.

Ainsi, le problème limite est un couplage entre le système de Lamé et le problème de Stokes. Ce phénomène, même si attendu, semble être nouveau.

Système de Lamé

Dans le cas où le sous domaine D 5 est vide, il est bien connu que la limite 

3.2.:1 Position du problème

Soit u : D ----+E JR 3 le champ de déplacement.

Pour f E L 2 (D) 3 la densité de force volumique exercée sur D. Donc le champ de déplacement u satisfait aux équations et aux conditions de transmission et aux limites suivantes :

-div ( !7( u)) 

f dans D,
E(u) = 2(Vu + vut) ou encore E(u) = (Eij(u))ij' 1 ~ i,
V(0 6 ) = {u E HJ(D) 3 : div u = 0 dans 0 6 },
• W(S) l'adhérence dans HJ(D) 3 de l'ensemble de fonctions u E HJ(D? qui sont à divergence nulle dans un voisinage de la fissure S :

-:---:---Hl ( D )3

W(S) = U V(0 6 ) 0 • 5>0
• HJ(Og) 3 := {ulo 3 : u E HJ(D) 3 }. Cette notation ne signifie en aucun cas que les fonctions de HJ ( 0 6 ) 3 sont nulles sur ao 6 .

Les espaces V(0 5 ) et W(S) sont des espaces de Hilbert pour les normes induites de celle de HJ(D) 3 . H6(0 6 ) 3 est aussi un espace de Hilbert dont la norme correspondante est 1 • 1 1 , 03 .

La formulation variationnelle classique du système de Lamé (3.1) est la suivante [9,14] :

Trouver u~ E HJ ( D ) 3 tel que pour tout v E H6 ( D ) 3 , fu (2JIE(u~): E(v) +X div u~ div v)dx = fufv dx, ( 3.5) 
OÙ T : 8 signifie la notation standard pour la contraction de deux tenseurs qui correspond au produit scalaire standard entre deux matrices:

3 T: e = L Tijeij• i,j=l
Dans un souci de simplicité, nous posons

a~(u, v)= fu (2JIE(u) : E(v) +X div u div v)dx. (3.6)
La composition particulière du domaine D et la discontinuité des coefficients de Lamé fi et À nous conduisent à décomposer la forme bilinéaire 32 Chapitre 3• Applications à certains problèmes de transmission a~ en la somme de deux formes bilinéaires :

A (1) (2) a 0 (u, v)= a 0 (u, v)+ Aa 0 (u, v) où a~l)(u,v)=2~o f e(u):e(v)dx+2~ f e(u):e(v)dx+Ao f divudivvdx, lob lob lob et a~2)(u,v)= r divudivvdx. lob (3.8) (3-9)
Il est aisé de montrer que les deux formes bilinéaires a~1 ) et a~2) 

v f------t ( L Il Eij(v) 11~, 0 ) := Il e(v) lkn i, j=l définie une norme sur HJ(o)n équivalente à la norme v f------t Il v lko• Proposition 3.2.3. La forme bilinéaire (a~1 ) + a~2)) est uniformément coercive en b dans (HJ(D) 3 ) 2 .

Preuve:

Il est clair que les formes bilinéaires a~1 ) et a~2) sont continues sur (HJ (D) 3 ) 2 , par conséquent leur somme a~l) + a~2) est aussi continue sur le même espace. Il en est de même pour la forme a~.

De plus, l'inégalité (3.10) nous permet de déduire la coercivité uniforme en b de la somme a~l) + a~2) :

{ 2Jil e(u) l 2 dx+Ao { 1 divu l 2 dx+ { 1 divu l 2 dx Jo los los Ce qui prouve que a~1) ~a quand b ~O.

> C lv 1 e(u) l 2 dx, (C = 2min(JL 0 , JL)) Cil e( u)
De façon similaire, nous montrons que la forme a~2) converge fortement vers zéro.

•

Les passages à la limite À ~ oo et b ~ 0 dans (3.5) étant permis, nous obtenons les trois formulations faibles (3.11), (3.12) et (3.13) suivantes:

• Trouver u.5 E V ( 0.5) tel que { (2JJoE(u6): E(v) + Àodiv U.5 div v) dx + 2JJ { e(u.5) : e(v) dx = loo loo (3.11) i.e • Trouver u E W ( S) tel que 2JJ-o lv E(u) : E(v) dx + A 0 Jo div u div v dx = j 0 fv dx, VvE W(S), (J.12) i.e a(u, v) = (f, v), VvE W(S). • Trouver u* E HJ(D) 3 tel que 27J-o lv E(u*): E(v) dx + Ào lv div u* div v dx = foJv dx, VvE H6(D) 3 , (J.lJ) i.e a(u*, v) = (f, v), VvE HJ(D?.

Passages aux limites

Dans le cadre du système de Lamé, les différentes hypothèses (H1), (H2), (H3) et (H4) sont vérifiées. Ainsi et grâce à la Proposition 2.4.2 et au Théorème 2.5.1, nous avons les résultats ci-dessous sur les comportements limites des problèmes (3.5), (3.11), (3.12), (3.13) :

Proposition 3.2.7. Les problèmes (J.s), (3.11), (3.12) et (3.13) admettent des solutions uniques dans HJ(D) 3 , V(0 3 ), W(S) et H6(D) 3 respectivement. À

Im U 0 = U 0 À----+00 lim u 3 = u 0----+0
dans Ha (D) 

(D) 3 x L 2 (0b) 3 tel que { ai 1 ) (ûb, v)-b(p3, ~v) = < f, v>, b(q, Ub) = Ü, où la forme b ( q, v) est donnée par 'ï!v E HJ (D?, 'ïl q E L 2 (Ob), b(q, v) = f q div v dx.
loJ Le problème (3.14) est bien défini puisque:

• La forme bilinéaire (u, v)~-------+ ai 1 )(u, v) est coercive sur V(Ob): cette propriété est déjà vérifiée dans la section précédente. Il zr 11~6(D)

• La forme (q, v) E L 2 (0b) x HJ(D) 3 ~-------+ b(q, v) satisfait à
fos 1 q 1 2 dx + oe 2 1 Ds 1 < r 1 q \2 dx + 81J 1 q 12 dx los 1 Ds 1 Os < Cg fo 6 1 q 1 2 dx avec Cg= max{l, 1 1 ~; 1 1} < c; Il q lliz(Os) .
Puisque ê{ est à moyenne nulle dans D, alors d'après le Corollaire I.2.4 de [19], il existe une constante positive C et une fonction 

v E HJ ( D ) 3 telles que Et donc b(q, v) 1 q div v dx Os r q2dx los Il q IIL2(0s) Il q IIL2(0s) > Cs Il zr Il LÔ(D) Il q Il L2(0s) > CsC~1 II v IIHJ(D)311 q 11Lz(o 6 )• Ce qui implique b(q, v) 1 Il v Il 2 ,BII q IILz(
{ i . n ~ } Ile IIL2(n) ~ C(O) 1 edx 1 + I: Il~ Il , 0 i=l uX1 H-l(O) (J.20)
pour toute dans L 2 (0).

Système de Lamé

De l'égalité (3.16), nous avons (J.21)

Pour v E HJ ( 0 0 ) 3 , son extension par zéro à l'extérieur de 0 0 ; v appartient à HJ (D?.

Alors, en prenant v comme fonction test dans (3.21), nous obtenons

r 2JJE(u~-Ûo) : E(v) dx =-r (Adiv u~ + Po)div v dx. (J.22)

los los

En vertu de la convergence (3.19), le premier terme de l'identité intégrale (3.22) converge vers zéro. Et donc, il en est de même du second terme.

Maintenant, le théorème de la divergence entraîne l'identité suivante :

VvE HJ(0 0 ), < \7(Adiv u~ + p0), v >H l(Os)-HJ(Os) =fos 2JJE(u~-Û0) : r(v) dx.

(J.23) Par conséquent < \7(Adiv u~ +Po), v >H-l(Os)-Ht(Os) sup o v;iO 1/ v IIH6(0s) !J 2JJE(u~-Û 0 ) : r(v) dx 1 sup 06 v;iO Il v IIHa(Os) < Cil u~-Ûo IIHJ(Os) < Cl/ u~-û5 I!Ha(o) -----* 0 quand A-----* oo.
Ainsi, nous pouvons conclure que ou de manière équivalente -aa (Àdiv ut) -t _aa Pb Vi= 1, 2, 3 fort dans H-1 (0.b) quand À -t 00. 

Cijkl = Cjikl = Cijlk = Ck!ijt dans 0 0 , dans 0 0 , 3 3 3Mo > 0, \P E R 3 x 3 : '"' 7 7 > M '"' 1 7 1 2 <;:, 1-.J Cijk/<;:,kl<;:,ij _ 0 1-.J <;:,ij • i,j,k,l = 1 i,j= 1 (3•

Preuve:

La forme bilinéaire ars est symétrique puisque le tenseur C satisfiait à la propriété de symétrie (J.Js).

Sa coercivité est un résultat immédiat de la propriété (3.36). 

•

•

Pour les même raisons géométriques du domaine D, la forme bilinéaire ars est décompossable en la somme de deux formes bilinéaires a~l) et a~2)

qui dépendent uniquement de t5 : 

(T ) (1) (2) ) a 0 (u, v =a 0 (u, v)+cra 0 (u, v, (J.J9) avec a~2)(u, v)= { Bt:(u): t:(v) dx.

Preuve:

Ce résultat est dû à la propriété de symétrie (3.36) et à l'inégalité de Korn (3.10).

• À ce stade, nous pouvons donner les trois formulations limites qui apparaissent en faisant tendre r5 vers zéro et/ ou if vers l'infini séparément :

• Trouver us E V (Os) tel que La procédure décrite dans la sous-section 2.2.2, nous permetd'interpréter le problème (3.42) de la manière suivante :

{ C 0 E(us) : E(v) dx + { C 1 E(us): E(v) dx = { fv dx, \/v E V(Os), ~ ~ k (342) où V(Os) ={v= (v 1 , v2, v 3 ) E HJ(D) 3 : BE(v) = 0
-div(C 0 E(ub)) 

f dans Db, -div(C 1 E(ub)) + div(Bpb) f dans Ob, BE( Ub) 0 dans Ob,

3•4 Problèmes de diffusion anisotropique

Considérons le problème de diffusion anisotrope suivant : Comme dans les problèmes traités précédemment, la forme bilinéaire aJ' se ré-ecrit en la somme de deux formes bilinéaires a~1) et a~2) : Nous avons réussi à démonter que, dans le cas où la fissureS est une surface régulière vérifiant des conditions géométriques précises que nous décrivons ci-dessous, les espaces W(S) correspondant à des choix appropriés du tenseur B, coïncident avec l'espace fonctionnel total. Pour appuyer notre théorie, nous présentons des contre-exemples aussi.

Étant donné f E L 2 (D), nous cherchons une fonction u D f-----+ R solution de -div(CVu) u los (C 0 V(ulo 6 )) • n u f dans D,
(T( ) (1)( ) (2) ab u, v =ab u, v + crab (u, v)

4.:1 Cas du système de diffusion

Dans le cas de la diffusion (cf. section 2.3) on a Bv(x) = Ox 1 v. Caractérisons W(S) lorsque ce dernier est la fermeture de {v E HJ(D) : Bv(x) = 0 dans un voisinage de S} dans H6 ( D). Ici, l'hypothèse faite sur S peut se traduire comme suit:

(Hs) 3oeo > 0: Voe t.q 1 oe 1 < oeo; SIX n S = 0 et SIX c D, où SIX est la translatée de S d'un vecteur de module oe, dans le direction de x 1 .

Théorème 4.:1.:1. Sous l'hypothèse (Hs), l'espace W(S) coïncide avec l'espace HJ(D).

Preuve:

Comme W(S) est un sous espace fermé de HJ(D), il suffit juste de montrer que W(S)j_, l'orthogonal de W(S) dans HJ(D), est réduit à {0}.

Soit u E HJ(D) et soit v E W(S) tel que ul_ v. Comme par définition W(S) = U V(0 0 ) alors pour 6 très petit (et on note 6 «),nous déduisons

0 que v E V(0 0 ).
v étant orthogonal à u dans HJ ( D) alors nous avons :

fo \lu• \lv dx = 0, \lv E V(0 0 ), \16 « .
Tout d'abord supposons que v est dans C 0 (D \ S). Alors v s'annule dans un voisinage de la fissure S.

En particulier, v = 0 dans 0 6 pour tout 6 assez petit.

Donc v E V(0 0 ) pour ces b.

Par conséquent, en prenant v E C 0 (D \ S) dans (4.1), nous obtenons 1'1u = 0 dans D \ S au sens des distributions.

Si maintenant, nous considérons v E C 0 dans un voisinage de S. Fixons cp E C 0 (S).

Pour tout a: tel que 1 a: 1 < a:o, nous définissons une nouvelle fonction cp de la manière suivante : éjS(x +a: e\) = cp(x), pour tout xE S.

La relation (4.2) définit cp dans 8oe 0 où 8oe 0 est un voisinage deS défini par 8oe 0 = {X +IX e\, X E 5 et la: 1 < IXo}. Pour v E V 0 , nous remarquons que sa trace sur S appartient à fi 1 1 2 (S). 

Cas du système de Lamé

Dans le cas du système de Lamé, l'espace W(S) est la fermeture dans HJ(D) 3 de l'espace {v E HJ(D?: div v= 0 dans un voisinage deS}, ce qui différe des cas de la diffusion et de l'élasticité où nous avons remplacé la contrainte àx 1 = 0 par div v= 0 au voisinage de la fissure S.

Ainsi l'hypothèse faite sur S se reformule de la façon suivante :

(H6) :::li = 1, 2, 3, 3tto > 0 : Vtt, ltt 1 < tto; S~ n S = 0 et S~ c D.
Ici, S~ désigne la translatée deS d'un vecteur de module tt dans la direction 7i, i = 1, 2, 3. 

Preuve:

L'idée de la démonstration est la même que celle du Théorème Ce qui implique que v est un élément de W1 ( S).

Puisque W(S) est l'union des V(Os), alors W(S) est indu dans W 1 (S).

Cela prouve que W(S) est strictement inclus dans HJ(D). Posons: 

cp(x2) = vls(xl, x2, c) = v(x2, c), tfJ(xl, x2) = [dnCT(u)](xl, x2, c).

Préliminaires et notations

Soit 0 un domaine de R 3 .

Notons par H 1 (0) 3 l'espace de Sobolev usuel muni de la norme habituelle notée par Il •ll 1 ,o. Les propriétés de ces espaces sont données dans [1,26].

On note par H(rot, 0) l'espace des fonctions complexes u E L 2 (0)

3 vérifiant rot u E L 2 (0) 3 c'est-à-dire
Il est muni de la norme du graphe L'espace H 0 (rot, 0) est définie par densité comme suit Ho(rot, 0) = fermeture de (Ct(0)) 3 dans H(rot, 0).

C'est donc un espace de Hilbert équipé de la norme induite de celle de H(rot, 0).

Proposition 5.1.1. ([27, th. 3.26]) Si 0 est un domaine lipschitzien borné, alors (C 00 (0)) 3 est dense dans H(rot, 0).

Pour la démonstration voir la référence.

Opérateurs traces :

Soit ao le bord de 0. On suppose que ao est suffisament régulier. On définit l'espace trace suivant:

Hi(àO) = {uiao: u E H 1 (0)}.

On désigne par H-i (àO) l'espace dual de Hi (àO).

On définit aussi où divaa, resp. rotaa, représente la divergence surfacique, resp. le rotationnel surfacique. 'Yt: H(rot, 0)------+ H-2(div, àO)

1 'YT: H(rot, 0) ------+ (H-2 (div, àO) )'
Pour tout u, v E H(rot, 0), on a la formule de Green

(rot u, v)-(u, rot v) =< 'Yt(v), f'y(u) >.
(5.1) , 

Equations de Maxwell

Réduction du système de Maxwell

Nous éliminons le champ magnétique H à partir du système d'équations

(5.2) ci-dessus en divisant la première équation par ft et en prenant le rotationnel, nous obtenons En appliquant la divergence au système réduit (5.3) ou à la deuxième équation du système (5.2), nous obtenons div(iwE-cr)E = 0 dans D, puisque nous avons div Jo= 0 dans D.

rot rt-1 rot E + (iwcr-w 2 E) E = -iw Jo dans D, (5.3 
Comme iwE-cr est égale aux deux constantes non nulles iwE 1 + cr 1 dans

0 0 et iwEo dans D 0 , alors il en vient { div E = 0 div E = 0

Conditions aux limites

Les équations (5.2) ou (5. (5.6) Afin d'assurer que ce problème aux limites est bien posé, nous devons toujours supposer que w n'est pas une fréquence de résonance Nous définissons une fréquence de résonance pour qu'il existe un champ électrique E solution non triviale de (5.3) avec la condition (5.6). Le cas que nous considérons est celui du régime à basse fréquence c'est-à-dire qu'il existe wo > 0, une valeur assez petite qui sera précisée dans la suite, telle que 0 < w < wo.

Notre but porte aussi sur l'étude du caractère limite de la solution du problème de transmission de Maxwell (5.3), (5.4), (5.5), (5.6) quand CT tend vers l'infini ou b tend vers zéro.

5•3 Formulation faible

L'espace fonctionnel approprié à notre problème (5.3), (5.4), (5.5), (5.6) est Y5(D) défini par

Y5(D) = {E E Ho(rot, D): div Elno E L 2 (0s), div Eloo E L 2 (Ds), { E 1 D J • n ds = 0}.
lan"

C'est un espace de Hilbert pour la norme

( 2 2 . 2 . 2 ) l/ 2 1\ E IIY 0 (D) = Il E llo,D +Il rotE llo,o +Il divE llo,D" +Il divE llo,n" • (5.7)
Dans toute la suite, H ne désigne plus le champ magnétique mais une fonction test.

De l'ecriture distributionnelle (5.3) et grâce à la formule de Green (5.1) et aux différentes conditions d'interface et de bord, nous déduisons l'identité intégrale suivante :

{ (JJ-1 rot E •rotH-w 2 c:E • H)dx + iwCT { E • Hdx = k }~ -iw Jo !oH dx, \JE, HE Y 5 (D) .
(5.8)

Notons par a<J la forme sesquilinéaire associée à (5.8) où

ab(E, H) = { (JJ-1 rot E •rotH-w 2 eE • H)dx + iwCT { E • Hdx, (5.9) k }~ et par(•,•) le produit hermitien défini sur L 2 (D) 3 par 3 (f, g) := fr f • g dx = fr [. /jgj dx. D D j=l
Par suite, le problème faible équivalent se lit comme suit :

Trouver E E Ys(D) tel que a<J = -iw(lo, H), VH E Ys(D).

(5.10)

La forme a<J est décomposable en la somme de deux formes sesquilinéaires:

avec et a~2)(E, H) = 1 E • Hdx.
Os La somme a~l) + a~2) n'est pas coercive sur Y 6 (D) d'où la nécessité de la régulariser en lui ajoutant les deux termes (div •,div •) Ds et (div •,div •)os puisque la continuité de la divergence n'est pas assurée le long de l'interface aos :

a §,R(E, H) := a~l)(E, H) + iwcra~2)(E, H)
+s { div Elvsdiv Hlvsdx + s 1 div Elosdiv Hlo 6 dx .

lvs Os a~~~(E, H) +iwcra~2)(E, H),
où s est un paramètre positif arbitraire fixé.

Ainsi la formulation faible convenable à la résolution de notre problème

(5.3), (5-4), (5.5), (5.6) est la suivante :

Trouver Eb" E Ys ( D) tel que ab_R(Eb", H) = -iw <Jo, H >, VH E Ys(D),

(5.11) où as,R est la forme sesquilinéaire régularisée de ab". • Théorème 5•3•2. Sous les hypothèses du lemme 5•3•1, il résulte:

Lemme 5•3•1• Soient Eo,
1. Il existe une solution unique Ef pour le problème (5.11).

2. Pour un choix approprié du paramétre s, la solution satisfait à toutes les équations (5.3), (5.4), (5.5), (5.6).

Preuve:

1. La coercivité de la forme sesquilinéaire af R sur l'espace Ys(D) Ceci conduit à

-w 2 t:o f E~ •V cpdx + f s div E~.div V cpdx = -iw f Jo• V cpdx.

~ ~ ~

Grâce à la formule de Green et aux propriétés de la densité du courant source Jo, nous obtenons Un argument similaire dans 0.5 conduit à la deuxième équation de (5-4)

2 .

puisque (~cp+ w eo;zwCT cp) traverse tout L 2 (0 3 ) pour cp E HJ(D 3 , ~).

Maintenant, pour H = V cp avec cp E HJ ( D) comme fonction test dans L'équation réstante de (5.5) est obtenue de manière standard.

Vu que E'J E Ys ( D), donc c'est un élément de Ho (rot, D). Alors E'J est à trace tangentielle nulle sur le bord extérieur de D. D'où la relation (5.6) .

• 

Os Os Os

(5.17 sur S.

où la première condition de transmission sur S vient de la continuité du rotationnel. Par l'inégalité de Cauchy-Schwarz et la coercivité de a, on a (6.g).

Espaces fonctionnels et formulation faible

En prenant X = V cp avec cp E H6 ( 0) solution de div \lep= f,

avec f E L 2 ( 0) quelconque, on obtient fo div tp div \7 cp = O.
Ce qui est équivalent à fo div tp f dx = 0, '1/f E L 2 (0) Ce qui démontre l'identité (6.7).

{ t/J • T ds lao O.

• Corollaire 6.3•3• Si 0 est un domaine régulier ou a bord lipschitzien et convexe, alors, et comme XN(O) = H 1 (0) 2 n XN(O), pouru E L 2 (0) vérifiant (6.6), on peut trouver tp E H 1 (0) 2 n XN(O) vérifiant (6.J), (6.8) et (6.9).

On pose rot u E L 2 (Ds), div(ulo 0 ) E L 2 (Do), div(ulo 6 ) E L 2 (0s), u 0 T = 0 sur êJD 3 , 

Z(O, E) = { tjJ E L 2 (0) 2 : rot tjJ E L 2 (0), div (Zt/J) E L 2 (0),
si, i = 1, 2, 3, 4, on a { -div 'V cp = -div( v -tp) cp = 0 E L 2 (V),
suravnaDs, où V est un voisinage de Sif i = 1, 2, 3, 4.

Par les résultats standards de régularité elliptique, on a où V' est un autre voisinage se si stictement indu dans V (V' cc V).

ii) Près du sommet s 5 (resp s 6 ), par localisation on a -div EV (IJ4>Io 6 nv)

E L 2 (0 6 n V), -div E'V(1Jo/lo 0 nv) E L 2 (D 0 n V), [l' Jo/] = 0 surS n V, (6.22) ['EV(IJo/) • n] = [ZIJ(V-tp) • n] surS n V, l'Jo/ = 0 sur av naDs.
où V est un voisinage de ss (resp s6) et IJ E C 0 (IR 2 ) tel que supp lJ cV.

On prend IJ une fonction de radiale c'est-à-dire

IJ = lJ(r)
où (r, e) sont les coordonnées polaires centrés en s 5 (resp s 6 ).

Comme IJ est continue, on a

[ZIJ(V-tp).n] = IJ[Z(v-tp).n].
Par suite Pour faire plus court, on pose

[ZlJ(v-tp) • n] = -IJ[Etp • n], surS n V.
{ U] lJC/JioJnv, U2 lJC/JivonV• Alors (6.22) s'écrit -divÊVUI E L 2 (0s n V), -div EVu2 E L 2 (Do n V), [u] = 0 sur 5 n V, [EVu.n] = g sur 5 n V,

U=0

sur aDs n V, où gE ifl/ 2 (5 n V).

En faisant une réflexion impaire sur aDs, c'est-à-dire:

Bs (6.23) îi _ { u(x1, xz) -u( -x1, xz)
On aura que îi vérifie le problème :

-div EVîi1

-div EVîiz

[û] = 0 si x1 > 0, si x 1 <O.
surS,

[EVu.n] = g sur S.

(6.24)

Pour ce problème, l'interface est régulière et donc on trouve que ss ----+---__.::: Àfin de rendre, nous sommes amenés à unifier le domaine d'étude D 5 , plus précisément la partie mobile 0 0 . ,, .. ,, .. ,_,,,,, .... ,,.. ''''""""""" .. '"'"""""-"~:::.__ __ 0 Oo(Eo, Jlo, cr= 0)

:,•••••••••••••••••••---•-••-•••••• ••••••••••••••••- :; Figure. 4

6.4.:1 Changement d'échelle

s "'•••••••••••••-•--••-•••••-•••••m•••••----~•••'"""" .... _,
Figure 5 Ce changement de variable rend l'espace fonctionnel Z ( 0 0 ) ainsi que sa norme indépendants du paramétre b. Z(0 0 ) devient Z(O) donné par: Ainsi, toutes les solutions de la première équation de (6.44) sont alors données par :

Z(O) = {E E L 2 (0) 2 : rot Elo E L 2 (0o), div Elo E L 2 (0), div Eloo E L 2 (0o
; Il F llo,v 0 +Il \lep llo,v 0 • Ce qui donne Il E llo,D 0 < Il F llxN(Do) + lc/Jh,Do < C2[[E[[z(D 0 ,ro) < C2[[[rot E[[o,Do +[[div E[[o,D 0 + [[E[v 0 .n[[J{I/2( 5 ),] (6. 
(6.so)

Portant (6.50) dans la deuxième équation de (6.44), il vient: D'après la deuxième équation de (6-43), la forme H f------+ -a 2 (E 0 , H) est nulle sur Non N1. Par conséquent, il existe un unique E 1 E (Non N 1 )j_ n

No tel que De la même fa çon, on vérifiera que le système (6-45) détermine Ej, j 2: 2 de manière unique.

•

Les Ej, j 2: 0 étant déterminéde façon unique nous donnent un unique E(b, y) = L bjEjj?.O

Estimation d'erreur

Dans cette section, nous adaptons le résultat établit par J. L. Lions dans [25] pour le Laplacien au cas du problème de Maxwell. 

  Table des matières convergenant vers l'infini et supposée incluse dans un milieu de conductivité égale à 1. Il semble que le comportement limite soit décrit par un problème aux limites bien posé mais pas standard. Dans [13] un problème similaire pour des équations d'élasticité linéaires isotropes dans un milieu élastique à été traité montrant que la mince couche élastique devient une plaque incluse dans un corps élastique tri-dimensionnel. Les principaux objectifs de rna thèse sont: D'une part, illustrer une analyse systématique et générale nous permettant d'établir le comportement limite des équations aux dérivées partielles à un paramètre, noté CT, convergeant vers l'infini dans un sousdomaine d'épaisseur b tendant vers zéro et contenant dans son intérieur une hypersurface régulière de codimension 1. D'autre part, caractériser les espaces fonctionnels correspondants aux différents problèmes limites obtenus selon la forme géométrique de l'hypersurface. Dans ce contexte, ce travail est composé de six chapitres dont le contenu peut se résumer comme suit : Dans le premier chapitre, nous rappelons quelques notations et résultats sur les espaces de Hilbert et les formes bilinéaires que nous avons utilisés tout au long de cette thèse. Dans le deuxième chapitre, nous présentons un cadre abstrait général aussi grand que possible permettant de caractériser les problèmes limites obtenus suite aux passages à la limite quand les deux pararnétres b et CT tendent vers 0 et oo respectivement. Nous mettons en évidence que ces

1.. 1 .

 1 Nota ti ons générales Ici nous donnons les notations utilisées dans cette thèse et pour plus de détails nous renvoyons le lecteur aux références correspondantes dans avec des conditions aux limites du type Dirichlet Gradient Divergence Rotationnel d'un champ de vecteurs Rotationnel d'un champ scalaire Espace de Hilbert muni de la norme Il . llv Espace dual topologique de V Crochet de dualité entre V et V' Un ouvert de IRN Espace des fonctions coo à support compact dans 0 1..1..1. Rappel sur les opérateurs différentiels Dans le cas tri-dimensionnel, les principaux opérateurs différentiels, le gradient, la divergence et le rotationel, sont donnés par d .

  Remarque 2.1.3. Si b 0 ~b, alors b 0 converge vers b au sens de Kata, voir L'implication réciproque est en général fausse, en voici un contreexemple: Exemple 2.1-4. Considérons l'espace de Hilbert HJ(ü, 1) muni du produit scalaire usuel (u, v) HJ(o, l) := h 1 u'v' dx, et de la norme associée

  l+cr)ll u* llu 6 ll u<J -u* llv• Il u5-u* llv::; C"(l +cr) liu* lluo----+ 0 quand b----+ O.

  Puisque u* est dépendante de O", alors les deux passages à la limite O"--+ oo et b--+ 0 ne commutent que si et seulement si u* = u ou encore si et seulement si W =V. Remarque 2.5.3. En divisant l'équation (2.2) par CT et en posant a: = CT-1 , nous obtenons l'équation (2.23) Alors, nous sommes dans une situation similaire à celle étudiée dans [25,Chap. I, section. 2] si ce n'est que dans le cas que nous traitons ici, le second terme de (2.23) dépend du petit paramètre a:. Mais à l'évidence, l'analyse faite dans[25] nous permettra de récupérer le résultat limite (2.9)•2.6 Con cl us ionDans ce chapitre, nous avons apporté les hypothèses nécessaires et suffisantes pour la construction du cadre général, le plus large possible, qui nous permet d'établir les différents comportements limites des solutions de certains problèmes aux limites. Aussi, nous avons montré que les solutions de ces problèmes vérifient des résultats de convergence forte. Nous avons pu mettre en évidence que les deux passages à la limite b --+ 0 et O"--+ +oo ne sont pas en général permutables entre eux. Enfin, nous avons pu déduire également une condition nécessaire et suffisante qui nous garantit la commutativité de ces deux passages à la limite.Dans ce chapitre, nous nous intéressons à l'étude de certains problèmes de transmission posés dans un domaine avec couche mince.

3.: 1

 1 Introduction Considèrons un domaine borné et régulier D de l'espace euclidien R 3 représentant un corps rempli par un matériau quelconque et contenant dans son intérieur une portion de surface régulière S. Nous définissons une suite de sous-domaines tri-dimensionnels 0 0 d'epaisseur b et contenant la surface S et contenue dans D par 0 0 = {x E D : d (x, S) < b}. 0 0 représente une inclusion mince remplie par un autre matériau. Nous supposerons que les 0 0 tendent vers S au sens suivant: La mesure de 0 0 tend vers zéro lorsque b -----+ 0 et pour tout point x tt S, x tt 0 0 pour tout b suffisamment petit. Par a0 0 , nous désignons le contour de 0 0 et par aD celui du de D. Aussi, nous désignons par D 0 de domaine D \0 0 c'est-à-dire l'ouvert compris entre àD et à0 0 (voir Figure 1 ci-dessous).

Figure 1 :

 1 Figure 1 : D = Ds U Os

À

  ----+ oo correspond à la limite d'élasticité incompressible et le problème obtenu est le problème de Stokes, voir par exemple [8] et [37]. Lors du passage à la limite 15 ----+ 0, le sous-domaine mince élastique Og devient une surface incluse dans un corps élastique tridimensionnel. La structure limite entière devient un problème tridimensionnel couplé avec un autre bi-dimensionnel. Dans le cas bidimensionnel, une telle limite a été examinée dans [4] où l'objectif était d'obtenir un développement asymptotique du champ de déplacement surfacique quand l'épaisseur tend vers zéro. Aussi, dans [5] ils ont considèré un conducteur électrique dans lequel la conductivité présente des inhomogénéités sous forme de couches minces d'épaisseur 2€ et où ils ont proposé une justification rigoureuse des termes principaux du développement asymptotique des tensions au bord en régime stationnaire, lorsque e ----+ O. Tandis que dans [7], la couche mince élastique a été insérée entre deux matériaux élastiques. Un problème similaire a été étudiée dans [13], où l'auteur s'est intéressé à l'étude du comportement limite lorsque 15 converge vers zéro et rt tend vers l'infini simultanément.

  u\v 6 ).Ji !7( u los ).Ji sur ao(j, (J.l) u 0 sur aD.où le tenseur des contraintes 0' "( u) est défini par cr(u) = 2JiE(u) +X( div u)Id. (3.2) Les constantes positives Ji et X sont appellées coefficients de Lamé. Nous supposons que où 0 <fil < fi2 et A1 >O. Aussi, Ji et X sont constantes par morceaux: dans Ds dans Os ~ { Ao et À= A avec fio, fi, A, Ao des constantes positives et indépendantes de t5. E( u) est le tenseur de déformation linéarisé c'est-à-dire 1

j ~ 3 n

 3 est le vecteur normal unitaire extérieur à iJOs et Id est la matrice identité. Pour ce problème de transmission, nous souhaitons faire tendre t5 vers zéro et A vers l'infini, séparément. Quand t5, l'épaisseur du sous-domaine Os, tend vers zéro, Os rétrécira jusqu'à "disparaître" tandis que son complémentaire Ds se dilatera et le matériau correspondant occupera le domaine D tout entier. L'espace fonctionnel naturel pour la résolution du problème (3.1) est l'espace de Hilbert HJ ( D) 3 tel que muni de la norme Définition 3.2.1. • Pour tout b > 0, nous désignons par V(0 6 ) le sous espace fermé de HJ ( D? des fonctions à divergence nulle dans Og c'est-à-dire

l

  la condition inf-sup. C'est une condition nécessaire à l'existence, l'unicité et la stabilité de la solution : En effet pour q E L 2 ( 0 6 ) quelconque, nous posons =~loo q dx, où l est une constante réelle. ê{ E Lô(D), autrement dit : ê{ est un élément de L 2 (D) et à moyenne nulle i,e., k ê{(x) dx =O.Par l'inégalité de Cauchy-Schwarz, nous obtenons

  os) avec ,B = CsC~ . HÔ(D)3 Cette dernière inégalité confirme que b répond à la condition infsup. Ainsi, le problème (3.14) est bien-posé. Pour prouver que (3.5) converge vers (3.14), nous devons démontrer, en se référant à [37 ], que 1. ut; la solution de (3.11), converge en norme vers Û 0 ; la solution de (3.14), dans HJ(D) 3 .

  uJ converge en norme vers Pb dans L 2 (Ob). Nous commençons par établir la première convergence. De la soustraction de la première identité de (3.14) et (3.5), nous obtenons En choisissant la fonction test v = u~ -ûb et puisque le fluide est incompressible dans Ob c'est-à-dire que div ûb = 0 dans Ob, (3.16) devient La coercivité de a~l) nous conduit à Ici, a: représente la constante de coercivité de la forme a~l) sur V(Ob) qui est effectivement indépendante de b. Par conséquent u~----+ ûb fort dans HJ(D? quand À----+ +oo. (3.19) Afin d'établir la deuxième convergence, nous avons besoin du lemme ci-dessous. Pour la démonstration, voir [37] : Lemme 3.2.9. Soit 0 un domaine lipschitzien, borné de IRn. Alors, il existe une constante C = C(O) qui dépend uniquement de 0 telle que

  part, pour une fonction test fixée v E HJ ( D) telle que div v = 1 dans 0. 0 et grâce à (3.16) et(3.19), nous avons f (Àdiv ut+ p 0 ) dx -t 0 lorsque À -t oo.(3.26) lo.J Le Lemme 3.2.9 nous permet d'écrireIl Àdiv ut+ Po IILz(o.J) : : : : ; C(0. 0 ) { 1 f (Àdiv ut+ Pb)dx 1 +tIl _aa (Àdiv ut+ Pb) Il } . Grâce à (3.25) et (3.26), le second membre de l'inégalité (3.27) tend vers zéro quand À tend vers oo. Ce qui entraîne (J.28)Ceci prouve la deuxième convergence.La seconde identité de (3.14) signifie que Û 0 appartient à V(0. 0 ). En considérant la réstriction de la première identité de (3.14) à v E V(0. 0 ), nous déduisons que Û 0 est la solution de (3.11). Donc ûb = u 0 . Maintenant, l'utilisation d'arguments standard (en utilisant des fonctions test v dans la première identité de (3.14) dans V(D 0 ), V(0. 0 ) respectivement et donc V(D)), nous en déduisons que la formulation forte du problème variationnel (3.11) est 3cr(uo/Ds) n -2JIE(u 0 1ns) n-p 0 n sur ano, uo 0 sur aD, où cr(u 0 ) = 2J1oE(u 0 ) + Aodiv u 0 Id. Comme nous l'avons mentionné précédemment, le problème limite (3.29) de (3.14) lorsque À -J . 0 est un couplage entre le système de Lamé dans D 0 et le système de Stokes dans 0 0 . Problème (3.12) : Nous ne pouvons pas donner une interprétation complète du problème (3.12) puisque nous ne pouvons pas caractériser l'espace de Hilbert W(S) sur lequel il est défini. Comme nous le verrons dans le quatrième chapitre, cette caractérisation est fortement lié à la géométrie de la fissure. Toutefois, pour le moment, nous ne pouvons dire que la solution u satisfait à { -div [2~of( u) + Aodiv u Id~ Problème (3.12) : f dans D\S, 0 sur aD. Le problème limite (3.13) correspond au problème de Lamé ordinaire avec les coefficients de Lamé A 0 et Jio définis sur l'ensemble du domaine D avec une condition aux limites du type Dirichlet: { -div(2JioE(u*) + A 0 div u* Id) u* f dans D, 0 sur aD. (J.J1) Remarque 3.2.1.0. De toute évidence les limites A ----> oo et b ----> 0 commutent si et seulement si W(S) = HJ(Dt , 3• 3 Elasticité anisotrope générale Dans cette section, nous étendons l'analyse précédente aux équations d'élasticité anisotropes générales. Nous supposons que le domaine D représente une région occupée par un matériau élastique et que l'inclusion o, est faite d'un autre matériau élastique. Autrement dit, nous étudions le problème d'une inclusion élastique de grande rigidité dans un domaine tri-dimensionnel. Cette inclusion est vue comme un domaine de type plaque. Dans [7], ils l'ont plutôt vue comme un domaine géométrique de type coque. Pour une force volumique f dans D donnée, le champ des déplacements u : D f---------t R 3 , généré par f dans le corps contenant l'inclusion Os, résout le système d'élasticité anisotrope linéarisé général suivant :-div( cr( u)) est le tenseur de déformation symétrique.Le champ des contraintes cr( u) est donné sous sa forme générale : cr(u) = CE(u), tenseur de rigidité (ou d'élasticité) C est une matrice d'ordre 6 x 6 3•3• Élasticité anisotrope générale dont les composantes sont d'ordre quatre. À savoir il est donné par et satisfait à co = (c~kz) ci = (c[Jkz)

  35) Remarque 3.3.1. C est une matrice symétrique et définie positive. La propriété est assurée par la loi de la conservation de l'énergie. Comme exemple illustratif, nous supposons que le tenseur de rigidité C 1 définie dans 0 3 se répartit comme suit: avec un tenseur B qui satisfait encore à la propriété de la symétrie (3.35) et CT est un paramétre réel positif déstiné à tendre vers l'infini. Nous prenons, par exemple B = (bijkl) avec bnn = 1 et bijkl = 0 pour les autres indices ou bien B = ( t5ijl5kz), correspondant respectivement à la contrainte (voir ci-dessous) d 1 u 1 = 0 ou div u = 0 dans 0 0 .3•3•1 Espaces et formulation variationnelleL'espace fonctionnel naturel relatif au problème (3.32) est l'espace de Hilbert standard HJ(D) 3 muni de sa norme naturelle. La formulation variationnelle de notre problème (3.32) consiste à chercher u5 E HJ(D) 3 solution de (3•37) où nous avons posé Proposition J.J.z. La forme bilinéaire aCS est symétrique et est uniformément coercive dans Hô ( D) 3 .

  Théorème 3•3.J. Le problème admet une unique solution dans H6(Dt Preuve: La forme bilinéaire ars est évidemment continue sur HÔ ( D) 3 et d'après la Proposition J.J.2, elle est uniformément coercive. D'autre part, \:lv E HÔ(D) 3 ,1 < f, v> 1::; 11/llo,ollviii,o• Donc f est continue sur Hô (Dt Le théorème de Lax-Milgran assure l'existence et l'unicité d'une solution au problème (3.37).

  La somme (a~l) + a~2)) est coercive sur l'espace HJ(D) 3 Cette dernière propriété est une conséquence de la propriété (3.36) et de la Poroposition 2+1. Quand l'épaisseur r5 des Os tend vers zéro, nous montrons avec facilité que a~2) ~0 et a~l) ~a, où la forme bilinéaire a est définie comme suit: a(u, v)= lv C 0 E(u): E(v) dx, Vu, v E HJ(D/, et est positive, symétrique, continue dans HJ ( D) 3 . Proposition 3• 3•5• La forme a est coercive sur HJ ( D) 3 .

•

  Trouver u E W(S) tel que lv C 0 E(u): E(v) dx = lvfv dx, VvE W(S),(3.43) où W(S) est la fermeture dans HJ(D) 3 de l'espace {v E HJ(D) 3 :BE(v) = 0 dans un voisinage deS}. • Trouver u* E HJ(D) 3 tel que lv C 0 E(u*): E(v) dx = fvJv dx, VvE H6(D( (3.44) Les différentes formes bilinèaires ab", a~l), afl, et a vérifient les hypothèses (H1), (H2), (H3), et (H4), par conséquent, la Proposition 2.4.2 ainsi que le Théorème 2.5.1 sont applicables. D'où les résultats d'existence et d'unicité des solutions : Proposition 3.3.6. Les problèmes (3.37), (3.42), (3.43) et (3.44) admettent des solutions uniques dans H6(D) 3 , V(0 6 ), W(S) et HJ(D) 3 respectivement.Aussi, nous avons la possibilité d'envisager les trois passages à la limite suivants: Théorème 3•3•7• soient uc;, u 0 , u et u* les solutions uniques respectives des problèmes (3.37), (3.42), (3.43) et (3.44). Alors, ces solutions satisfont aux propriétés limites suivantes : Le problème (3-42) est un problème de transmission non standard entre D 0 et 0 0 : En effet puisque V ( 0 0 ) est défini par la contrainte BE(v) = 0 dans 0 0 nous pouvons introduire le multiplicateur de Lagrange Po E P 0 C L 2 (0 0 ) 3 x 3 , où P5 est défini comme étant l'image de l'application suivante Puisque B 0 est linéaire, continue et surjective sur P 0 , elle devient bijective sur l'espace quotient HJ ( D ) 3 1 K. 3•3• Élasticité anisotrope générale K =ker 85 est le noyau de 8 0 , nous le notons V(Os) =K. Par le théorème du graphe fermé [10], l'inverse de l'application est aussi continue. En d'autres termes, il existe une constante positive C(b) (elle est en fonction de b) telle que pour tout p E P 5 , il existe un unique it = ( u + k)kEK E H6 ( D) 3 1 K tel que Puisque K est un sous espace fermé de H6 ( D )3, nous avons llitiiHJ(D)3/K = t~f liu+ kiiH6(D)3 = liu-IhuiiHJ(D)3' où Ihu est la projection orthogonale de u sur K. Par conséquent, la fonction v(p) = u -TI Ku satisfait à Maintenant, nous introduisons la forme bilinéaire b définie sur P5 x H6(D? comme suit: b(q, v) = { q: Br(v) dx. los La forme b satisfait à la condition inf-sup : En effet, pour tout p E P5, soit v(p) l'élément de H6(D)3 satisfaisant à (3.45). Avec ce choix, nous pouvons écrire b(p, v(p)) liv(p)JIHJ(o)3 Alors, nous pouvons considérer le problème de point selle : Trouver (ûs, P5) E H6(D? x Ps tel que { a~l)(ûs, v)-b(fis, v) = < f, v>, VvE H6(D) 3 , (3•46) b(q, û 5 ) = 0, Vq EPs. Ce problème admet une solution unique dans HJ(D) 3 x Pb parce que a~l) est coercive sur V(Ob) et que b satisfait la condition inf-sup. Si nous nous limitons dans la première identité de (3-46) à des fonctions tests dans V (Ob), nous remarquerons que ûb E V (Ob) est la solution du problème (3.42), et donc Ûb = ub.

  los) n-Bpb n sur aoJ, un couplage d'une équation d'élasticité posée sur D 5 avec un système du type Stokes dans Ob qui nous parait être un phénomène nouveau. Notons en outre la différence principale avec l'exemple précédent (système de Lamé) est que l'espace Pb n'est pas donné explicitement. Problème (3.43) : Le problème faible (3.43) correspond à un problème défini sur le domaine D\S. Pour le même motif indiqué dans l'exemple de Lamé, nous ne pouvons pas lui donner une interprétation précise. Nous pouvons dire au moins que sa solution u vérifie f dans D\S, 0 sur ao.(3•47) Problème (3.43) : Le problème fort correspondant à la formulation faible (3.44) est le problème de Dirichlet ordinaire : { -div(C 0 t:(u*)) = f dans D, u* = 0 sur ao.

  Nous supposons que le coefficient C 1 est décomposable de la manière suivante où B est une matrice symétrique d'ordre 3 x 3 indépendante de r5 et de CT.Remarque 3+"~• Les deux cas C 0 = Id et C 1 = CTld ont été traités dans[22]. Ici, nous montrons que notre cadre abstrait permet de traiter des problèmes généraux concernant la diffusion anisotrope.

  variationnel adapté au problème (3.49) est l'espace de Hilbert standard HJ(D) = {u E H 1 (D): u = 0 sur ()D} muni de la norme 1 • h,v=ll \7• llo,D• Le problème généralisé équivalent au problème (3-49) consiste à chercher une fonction uc; E HJ ( D) telle que aJ"(uJ", v)=< f, v>, \lv E HJ(D). avec < f, v>= j 0 fv dx, \lv E HJ(D) est une forme linéaire bornée, et aJ"(u, v)= fv C\7u •\lv dx est une forme bilinéaire. Proposition 3•4•2• La forme aJ" est uniformement coercive sur HJ ( 'inégalité de Cauchy-Schwarz, nous démontrons que aJ" est continue sur HJ ( D). D'autre part, la propriété (3.50) assure son caractère coercif. • Remarque 3•4-3-Du théorème de Lax-Milgram, nous déduisons l' existence et l'unicité d'une solution pour la formulation (3.51).

  u, v)= 1 B\lu •\lv dx. OJ Les deux formes a~1 ) et a~2) ne dépendent que du paramètre b. Il est facile de démontrer que les deux formes bilinéaires a~1 ), a?) sont positives, symétriques, continues et que leur somme est coercive sur HJ ( D). Cette dernière propriété est une conséquence de le propriété (3.50), vérifiée par la matrice C. Lorsque b -0, nous montrons comme précédemment que a~2) -0 fort et que a~l) -a fort aussi, où a est la forme bilinéaire définie par a(u, v) = fo C 0 \lu •\lv dx. Cette forme bilinéaire a est évidemment continue, symétrique et coercitives sur HJ(D). Selon notre cadre abstrait, nous pouvons alors introduire les espaces de Hilbert: W(S) la fermeture de l'espace {v E HJ(D) B\lv 0 dans un voisinage de S} dans HJ ( D), et V(0 0 ) ={v E HJ(D): B\lv = 0 dans 0 6 }. Les trois formulations variationnelles faibles obtenues lors des passages à la limite quand b -0 et C J -oo sont comme suit: • Trouver u 6 E V ( 0 6 ) tel que • Trouver u E W(S) tel que f C 0 \lu •\lv dx = f fv dx, \:lv E W(S). .fo lv (3.58) • Trouver u* E HJ(D) tel que lv C 0 \7u* •\lv dx = foJv dx, VvE HJ(D). (3.59) Toutes les hypothèses (H1), (Hz), (H3) et (H4) étant satisfaites, nous obtenons les résultats suivants : Théorème 3•4-4• les problèmes (3.51), (3.57), (3.58) et (3.59) possédent des solutions unique u'f, us, u et u* dans HJ (D), V(Os), W(S) et HJ(D) respectivement. Ces solutions verifies les propriétés limites suivantes lim 1\ uJ"-us \\H1(D) = 0, Pour cet exemple, nous avons des interprétations fortes semblables à celles faites dans le cas de l'élasticité générale. Pour le premier problème (3.57) on rencontre la même difficulté que précédemment en raison de la contrainte générale BVu = 0 dans Os. Dans ce cas, nous avons besoin d'introduire l'espace Ps c L 2 (0s) 3 défini comme l'image de l'application Par suite, nous pouvons considérer le problème de point selle : Trouver (ûs, fJs) E HJ (D) x Ps tel que { a~l)(ûs, v)-b(ps, v)b(q, ûs)où b(q, v) = { q • BVv dx.lob mêmes arguments que ceux de la section 2.2 conduisent à un problème de point selle bien posé. Donc la formulation forte de (3.57) est 3+ Ce problème est en fait un couplage entre une équation de diffusion dans Ds, avec un système de type Stokes dans Os. Encore une fois cela semble être un phénomène nouveau. À ce stade, le problème (3.58) ne peut être pleinement interprété puisque le comportement de la trace normale le long de la fissure S n'est pas connu. Enfin, le problème (3.59) n'est rien d'autre que la formulation faible du problème Comme nous l'avons mentionné dans les paragraphes précédents, la caractérisation des espaces W(S) est fortement liée à la forme géométrique de la fissure S.

Prolongeons cp à

 à D\8oe 0 en la multipliant par une fonction de troncature X de classe CJO, égale à 1 dans ef et s'annulant dans D\8oeo• Notons la nouvelle fonction par -: : : : . { xéfS cp= 0 dans eoeot dans D\8oeo• 4.1. Cas du système de diffusion Alors, qy E C~(D). De plus et grâce à l'hypothèse (Hs) qs est constante dans la direction e' 1 SUr ef, c'est-à-dire, aX]qs-0 Sur ef. Ceci implique que qs appartient à V(0 0 ), pout tout <5 assez petit. Pour la fonction test v = qs dans (4.1) et puisque la trace normale 1}~, j = 1, 2 i.e; de part et d'autre de la fissure S a un prolongement continu unique dans fi 1 1 2 (S)' (voir [29, Thm 1.42]), alors par l'application de la formule de Green (voir [29, Lem 1.39]), nous en déduisons que < [ ~~] , cp > fi112(S)' x fil!2(S) = 0, \1 cp E C~ ( S), (4-4) où [•] est le saut à travers la surface S. Comme C~(S) est dense dans fi 1 1 2 (S) (voir Théorème 1.6-4), le saut [g~ J à travers S est nul (comme un élément de fi 1 1 2 (S)'). Maintenant et par le Lemme 2.3 de [15], l'espace Vo = {v E HJ(D): v= 0 dans un voisinage de aS} est dense dans HJ ( D).

C

  'est pourquoi nous pouvons appliquer la même formule de Green citée ci-dessus et utilisant le fait que u est harmonique dans D \ S et (4.4), nous en déduisons que fo \lu• \lv dx = 0, \lv E V 0 . Par la densité nous avons montré que u est orthogonale à l'ensemble de HJ ( D) et est donc égal à zéro. • Remarque 4.1.2. Le Théorème 4.1.1 reste valable pour le cas de fonctions à valeurs vectorielles. Donc pour le cas de l'élasticité anisotrope, de manière identique à la démonstration ci-dessus et en utilisant la formule de Green généralisée : fo CT(u): E(v) dx =-la div(CT(u))vdx+ < [anCT(u)], v >(fil/2(s)3)'xfil/2(S)3 , (4•5) sB Chapitre 4• Caractérisation des espaces W(S) nous établissons l'égalité entre W(S) la fermeture dans HJ(D) 3 de l'espace {v E HJ ( D ) 3 : dx 1 v 1 = 0 dans un voisinage de S} et HJ( D ) 3 .

  Sous l'hypothèse (H6), l'espace W(S) coïncide avec l'espace HJ(D) 3 .

  u IIH(rot, o)= Il u llo,o + Il rotu llo,o • Par H(rot, rot, D), nous désignons l'espace de Hilbert défini par H(rot, rot, 0) = { u E H(rot, 0) : rot rot u E L 2 ( 0) 3 }.

  Définition 5.1.2..[12, 27] Pouru E (C 00 (0)) 3 , on définit les opérateurs traces suivants: et -y(u) := ulao, 'Yn(u) := u.nlao, 'Yt(u) := n x ulao -yy(u) := (n x ulao) x n, où n est le vecteur normal unitaire extérieur à 0.

5. 2 .

 2 Équations de Maxwell Théorème 5.1.3. [27, chap. 31 Soit àO un domaine lipschitzien borné. Alors Ho(rot, 0) = {u E H(rot, 0): 'Yt(u) = 0}.

5. 2 . 1

 21 Présentation des équations Considérons D un domaine borné de IR 3 à bord régulier et occupé par un matériau diélectrique. Nous supposons que D contient dans son intérieur une inclusion 0 6 de petite taille J constituée d'un matériau diélectrique différent et contenant à son tour une simple courbe régulière 5, voir figure 1. Les caractéristiques électromagnétiques d'un milieu diélectrique sont les données de sa permittivité électrique E et de sa perméabilié magnétique 1-l• Nous supposons que le domaine D est plongé dans le vide, autrement dit, nous su posons qu'en dehors de D la permitivité et la perméabilité sont celles du vide. En régime harmonique et au sens des distributions dans D, les équations de Maxwell s'ecrivent : { rotE+ ÎWJ-1. H rotH-(iwt:+if) E 0 dans D, Jo dans D. E (x) E C 3 est la partie électrique et H (x) E C 3 est la partie magnétique du champ électromagnetique et w ~ 0 est la fréquence d'onde fixée. Jo désigne la densité du courant source supposé dans L 2 (D), à support inclus dans DJ, et à divergence nulle dans D c'est-à-dire, supp (Jo) c Db div Jo= 0, dans D. Autrement dit, nous considérons le cas d'absence de charge élecrtique libre. La permittivité électrique E, la perméabilité magnétique 1-l et la conductivité if sont des fonctions strictement positives, constantes par morceaux et données par : ) _ { (EJ, J-1.1, ifJ), dans 0 0, (E, fl, (T -(Eo, J-Lo, 0), dans 0 0 . Remarque 5.2.1. Nous imposons aux champs E et H d'être dans H(rot, D) respectivement. Du point de vue des équations de Maxwell l'espace H(rot, D) est d'une importance capitale car il correspond à l'espace des solutions (d'énergie finie).

  3) ne donnent pas une description complète du champ électromagnetique puisque ces équations ne sont pas satisfaites au niveau de l'interface aob où flo et Eo sont discontinus (voir Fig. 1), ce Chapitre 5• Système de Maxwell qui impose des conditions de transmission supplémentaires. Comme conséquence de l'écriture des équations de Maxwell au sens distributionnel sur le domaine global D et à la structure de ce dernier, nous obtenons les relations de saut à travers la surface intérieure commune sur ans, (5.5) Puisque la conductivité CT est nulle à l'intérieur de la partie D\O.s alors nous imposons une condition aux limites au sens physique : celle d'un conducteur parfait donnant l'annulation de la composante tangentielle du champ électrique au niveau du bord extérieur aD E x n = 0 sur aD.

'

  a été démontrée dans le Lemme 5.3.1 et le Lemme de Lax-Milgram nous permet de conclure. 2. Le deuxième résultat du Théorème 5.3.2 précise qu'il existe une équivalence entre le problème de transmission de Maxwell et sa formulation faible associée. Les arguments sont assez proches de ceux du Théorème 2.3 dans [16]. Ici et par souci de perfection, nous apportons plus de détails. En premier, dans (5.11) nous prenons comme fonction test H = V cp avec cp E HJ ( D 3 , ~) et est prolongeable par zéro à l'extérieur de D 3 où HJ(D 3 , ~)est le sous espace de cp E HJ(D 3 ) telle que 6cp E L 2 (D 3 ).

2{

  div Eb(~cp + w Eo cp)dx = 0, Vcp E HJ(D.5, ~).

  Notons que si -~2 30 n'est pas une valeur propre pour l'opérateur (~oin D.5), alors pour tout ljJ E L 2 (D.5) il existe cp E HJ(D 3 , ~) solution du problème d'où la première équation de (5.4).

( 5 .

 5 11), et puisque divE~ lo 6 = 0 et divE~ lo 6 = 0, nous obtenons f wt:oE~\lcp dx + f (wt:.5-ùr)E~\lcp dx = i f Jo• \lep dx. }~ }~ k De la formule de Green, nous déduisons { wt:o(E~Io 6 • n)cp dx + { (iCT-Wt:.5)(E~In 6 • n)cp dx = 0, h~ hno 5+ La limite ce qui donne la dernière équation (5.5).

diV

  Es(~cp + -cp)dx = 0, V cp E H 0 (Do, ~). hypothèse disant que -~ <a n'est pas une valeur propre pour le problème de Dirichlet (~oir' 0 0 ), nous obtenons div Es = 0 dans 0 0 . rotH-wEs E 0 •Hdx=-iw Jo•Hdx,VHEY0 6 ).

)

  Figure. 2

  xE C 0 (0) 2 quelconque, on a fo (rot tjJ-u)rot x dx = 0 et donc rot( rot tjJ-u) = 0, dans O. Ce qui implique rot tjJ -u = C, dans O. où C E lR est une constante. Mais par (6.6) et la formule de Green, on a fo (rot tjJ-u) dx Donc c =0.

  • T = 0 sur dO} où E E U 0 (0) est à valeurs complexes tel que Re Z(x) ~ E > 0, \lx E O. Théorème 6.3-4-[voir Th 3•4 [15]] Supposons que 0 est simplement connexe.Alors pour tout vE Z ( 0, E) il existe tjJ E X N ( 0) et cp E H6 ( 0) solutions de -div(Ncp) = -div[Z(vt/J)], dans 0 (6.12)Ce qui prouve l'identité (6013)0 L'égalité (6012) découle simplement de (6013)0 Pour conclure l'estimation (6014), on remarque que1 cp h,o < llviiL2(o) + lltJ!IIL2(0) < llvllu(o) + lltJillz(o, E)oCette estimée ainsi que (6016) prouvent (6014)0• ll convient de considérer l'espace fonctionnel approprié à l'étude de la formulation variationnelle régularisée corréspondante au problème fort (6°2) -(6os) :

  Figure. 3 (Zoom sur s 5 )

  Unifions le domaine D 0 et ceci par le changement d'échelle qui transforme le point x(x1, x2) de 0 0 en y(x1, b-1 x2) et garde Do invariant, voir Figure 3 ci-dessous : 6-4-Développement asymptotique du champ éléctrique 1

6. 4 . 2 Ç

 42 Figure 4

6. 5 .

 5 Estimation d'erreurToutes les solutions de (6.51) sont données par : La troisième équation de (6-44) donne alors qui définit È 1 de manière unique dans No n N 1 . Ainsi, toute solution E1 E Z(D) de (6-44) est donnée par:

•

  Keywords Limit behaviors, thin layers, transmission problems, Maxwell' s system. par un changement d'échelle en un problème de perturbation singulière dont nous faisons une analyse asymptotique.Mots-clésComportement limite, couche mince, problèmes de transmission, système de Maxwell. Titre Comportement limite de certains problèmes aux limites avec de grands et/ ou petits paramètres Résumé A ce jour, aucune analyse systématique et générale des équations aux dérivées partielles où un paramètre tend vers l'infini dans un sous-domaine contenant une hypersurface régulière de codimension 1 n'a été effectuée. Afin de traiter ce type de problèmes pour une famille de formes bilinéaires dépendant de deux paramètres 5 et (J où le premier converge vers zéro et le second vers l'infini respectivement et séparément, nous présentons dans cette thèse, un cadre abstrait général aussi large que possible permettant de caractériser les problèmes limites obtenus suite aux passages à la limite de (Jet 5. Nous mettons en évidence le fait que ces deux passages à la limite ne commutent pas entre eux, sauf pour des cas particuliers, qui sont précisés dans le manuscrit, et pour lesquels une condition nécessaire et suffisante garantissant la commutativité est déduite et des résultats de convergence forte sont aussi prouvés. Pour illustrer notre cadre abstrait, nous donnons différents exemples illustratifs pour des problèmes de transmission, pour un premier temps du type elliptique impliquant deux systèmes de l'élasticité le premier isotrope et le second plus général et un autre problème de diffusion, à un paramètre tend vers l'infini et/ ou d'une partie du domaine est amenée à converger vers Lme surface de codimension 1. Ces passages à la limite mènent à des problèmes de transmission nouveaux, comme par exemple un couplage entre le système de Lamé et le système de Stokes. Pour finir, nous nous sommes interessés au système de Maxwell tridimensionnel (non elliptique). Pour cet exemple seul la limite quand (J tend vers l'infini est possible. La difficulté pour le passage à la limite quand 5 tend vers zéro vient du fait que les espaces emboîtés sont munis de normes dépendants du paramètre 5. Afin de surmonter cet inconvénient, au moins en dimension deux, nous avons transformé le problème
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 des deux limites ne commutent pas entre elles, sauf pour des cas particuliers et pour lesquels une condition nécessaire et suffisante garantissant la commutativité est déduite. Aussi, nous avons prouvé des résultats de convergence forte.

Présentation du problème

  

			2.1.1 n'est plus vérifiée
	dès que v n'est pas de moyenne nulle.	
	2.2 Soient cr et r5 deux paramètres réels et positifs. Nous supposons que cr est
	destiné à tendre vers l'infini et que r5 est destiné à tendre vers zéro.
	Soient (aS) 6 une famille de formes bilinéaires satisfaisant à :
	(H1) ag dépend de cr et r5 et est une combinaison linéaire de deux formes
	bilinéaires a~l) et a~2) supposées être indépendantes de cr:
	(T	(1)	(2)

Passages à la limite

  Il f llvrll v llv, \:lv EV.

	2-5-Passages à la limite	Chapitre 2. Comportements limites : Cadre général
	Tout d'abord, nous remarquons qu'il y a une équivalence entre l'hypo-f E V' et donc de l'inégalité : Tenant compte de (2.15), nous obtenons que ii 0 est l'unique solution du lim Il uc5-u llv = 0, b----->0 (2.10) problème (2.3). Donc ii 0 = u 0 . Ainsi le résultat (2.9) est vérifié au sens 1< f, v >[:S (2.8) faible.
	thèse (H3) et la coercivité de la forme bilinéraire a:5. Il nous reste à prouver la coercivité des formes a~1), a~2) et a dans leurs lim Il uc;-u* llv =O. (2.11) c5 ----->0 Proposition 2.4.1.. Les deux propriétés suivantes sont équivalentes espaces correspondants pour pouvoir utiliser le lemme de Lax-Milgram, Pour la démonstration de la convergence forte, nous appliquons aJ" à Preuve: i) La somme (a~1) + a~2)) est uniformément coercive par rapport à b dans V. ii) La forme bilinéaire a~ est coercive sur V de manière uniforme par rapport à b et par rapport à cr 2:: 1. voir [to], nous garantissant l'existence et l'unicité de la solution. la différence uJ"-u 0 qui est un élément de V. Étant donné que pour cr Commençons par démontrer la première limite. Fixons b. Pour Grâce à l'hypothèse (H4), la forme bilinéaire a est coercive sur V. Alors grand, ab" est uniformément coercive, nous obtenons la fonction test v = uc; dans (2.2), du fait que f E V' et en utilisant elle garde cette propriété dans tout sous espace fermé de V, en particulier sur W. Ainsi, les deux problèmes (2.4) et (2.5) admettent des solutions l'inégalité (2.8), nous avons Cil ub"-us Il~ < a6(u6, ub"-us)-a6(u0, ub"-us)
	Preuve: uniques dans W et V respectivement. a~(u~, ub) = a~1)(u~, u6) +o-a~2)(u5, u5") =< f, u5 >:;Il f llv'll ub"llv•
	Pour tout cr> 0 et pour tout u E V, nous avons D'un côté, rappelons que la continuité de a~1 ) sur V 6 x V 6 et de aJ" sur (2.12)
	ab(u, u) = (a~l) +cra~2))(u, u) 2:: min(l, cr)(a~l) +a~2))(u, u), (2.6) V x V découle de l'hypothèse (H2). De cette dernière inégalité et de la Proposition 2-4-1, nous obtenons
	et d'un autre côté, nous avons D'autre part et grâce à la Proposition 2.4.1, nous avons aJ" est coercive sur v. Il uc; Il v :S: C, pour o-~ 1, (2.13)
	) max(l, cr (ab +ab )(u, u 2:: ab(u, u). (1) (2) ) (T Aussi, pouru E V 6 CV, nous obtenons a~2)(u, u) =O. Donc et en raison et de l'hypothèse (H3): (2) ( (T (T) < c 0 d a 6 u 6 , u 6 _ ----+ quan o----+ oo, (T
	Ainsi si la somme (a~l) + a~2)) est uniformément coercive en b i.e., elle où C désigne des constantes positives diverses indépendantes de b et de a~l)(u, u) = a~l)(u, u) +a~2)(u, u) 2: tt[[ u Il~• satisfait à l'inégalité (1.2), alors l'inégalités (2.6) assure cette propriété (T.
	pour éJ. Et inversement, si a:S est coercive alors, grâce à (2.7), il en est de Ce qui démontre la coercivité de a~1) sur V 6 . De (2.13), nous déduisons qu'il existe une sous-suite, que nous noterons
	même pour (a~1) + a~2)) D'où la conclusion pour les deux problèmes (2.2) et (2.3). encore par (u6)(T, et îic5 E V telles que	•	•
	Les quatres formulations (2.2), (2.3), (2-4), et (2.5) vérifient les résultats u5" ---+ îic5 faiblement dans V quand o----+ oo. (2.15)
	d'existence et d'unicité des solutions suivants: Proposition 2-4-2. Sous les hypothèses (HI), (H2), (H3), et (H4), les problèmes (2.2), (2.3), (2.4), et (2.5) admettent des solutions uniques dans V, Vb, W, et V De (2.14), la propriété de symétrie de a~2), de la convergence (2.15) et 2.5 Le résultat principal de ce chapitre est le théorème suivant qui donne l'unicité de la limite, nous arrivons à
	respectivement. la relation entre les problèmes (2.2), (2.3), (2-4) et (2.5) lorsque CT --+ oo (2.16)
	Preuve: et/ ou ,5 --+ O. Ce qui démontre que îi 6 appartient à V 0 .	
	Remarquons tout d'abord que les premiers membres de (2.2), Théorème 2..5.1. Sous les hypothèses (HI), (H2), (H3) et (H4), les solutions En utilisant le fait que a~2) est symétrique et positive, donc elle véri-
	(2.3), (2-4) et (2.5) sont des formes bilinéaires continues sur leurs espaces uJ", u 0 , u et u* respectives des problèmes (2.2), (2.3), (2.4) et (2.5) satisfont aux fie l'inégalité de Cauchy-Schwarz pour v E Vc5, nous déduisons que
	correspondants. Nous remarquons aussi que les seconds membres sont propriétés de limites suivantes : a~2\uc;, v) =O. Par suite, (2.2) devient
	des formes linéaires bornées sur ces espaces en vertu de l'hypothèse (2.9)
		(J-->00	

lim Il uJ"-UJ llv = 0, a~l)(uc;, v)=< f, v>, '1/v E Vc5.

  116,o•

	Preuve:	
	Il est évident que a est symétrique et continue dans HJ(D) 3
	tandis que la coercivité est assurée par l'inégalité de Korn (3.10).
	Preuve: De l'inégalité (3.10) nous avons Pour tous u, v E HJ ( D? et grâce à l'inégalité de Cauchy-
	(1) (ab +ab (2))( Schwarz, nous avons	1 u, u) ~ CKo 1 u 11 1 , 0 . 2
	Ce qui implique	

• Les Propositions 3.2.3 et 2-4-1 entraînent, pour À ~ 1, la coercivité uniforme en b de la forme bilinéaire globale a~. Proposition 3.2.4. 1. La forme bilinéaire a~1) converge, lorsque b ------c> 0, vers la forme bilinéaire a donnée par a(u, v) = 2JLo lv e(u) : e(v) dx + i\ 0 lv div u div v dx.

2. La forme bilinéaire a~2) converge vers zéro.

Afin de démontrer la première partie de cette proposition, nous ré-

écrivons a~l) et a~2) comme suit: où a(u, v)= 2Jio lv e(u): e(v) dx + i\ 0 lv div u div v dx et r~l)(u, v)= 2(JL-JLo) r e(u): e(v) dx-Ào r div u div v dx.

los los Proposition 3.2.5. La forme bilinéaire a est symétrique, continue et coercive dans HJ(D) 3 . • Proposition 3.2.6. Le reste r~l) tend vers zéro. En vertue de la Définition 2.1.1, la première partie de la propriété demandée est satisfaite puisque Il u llu 6 ~ 0 quand b ~ 0 avec u6 = Hl(o.5)3.

De la remarque 2.1.2, nous déduisons la seconde partie de la propriété car r~l) est une forme symétrique.

  définissent les translatées respectives de o/2 et de cp 3 par la distance tt dans la direction x 1 , telle que cp 1 est donnée parqJ1 (x+ tt 71) = o/1 (x)-forx (d2cp2 + à3cp3)(x + t 71) dt, V x E S, Vlttl < tto. Cas d'une fissure parallèle au plan (x 1 Ox 2 )Soit b quelconque et soit v E V(Os). Donc dx 1 v est nulle sur Os.

	4•3• Remarque 4.2.2. Grâce aux Théorèmes 4.1.1 et 4-2.1, le troisième pro-6o Chapitre 4• Caractérisation des espaces W(S)
	blème limite n'est autre que le quatrième problème limite, autrement dit
	la commutativité des passages aux limites est assurée.	
	4•3 Cas d'une fissure parallèle au plan (x10x2)	
	Afin d'illustrer l'impact de la géomertie de la fissure sur l'interprétation
	des espace W(S), nous allons présenter un contre-exemple.	
	Posons	
	W 1 ( S) définit un sous espace fermé de HJ ( D) et est strictement indu
	dans ce dernier.	
	Prouvons maintenant que W(S) Ç W 1 (S) :	(4.6)
	Définissons cp son prolongement à D comme dans (4.3) et nous dédui-
	X3•	•

4-1.1 sauf qu'ici nous allons construire une fonction test qui soit à divergence nulle sur un voisinage de S.

Sans perte de généralité, nous supposons que l'hypothèse (H6) est satisfaite pour i = 1 et nous choisissons cp = ( cpl! cp2, cp3) avec ?h et ?p 3 sons que div cp = 0 dans e ~ 0 La formulle de Green généralisée (4.5) appliquée à cp= v donne le résultat souhaité.

Lorsque S est une surface plane parallèle à l'un des trois plans de l'espace, W(S) ne coïncide pas avec l'espace fonctionnel total pour les deux premiers cas traités auparavant. Théorème 4.3.1. Pour une surface planeS parallèle au plan (x 1 0x 2 ), l'espace W(S) introduit dans le théorème 4.1.1 ou à la remarque 4.1.2 est strictement inclus dans HJ(D)N, N==1 ou 3, selon le cas considéré. Preuve: Nous prouvons ce résultat pour le cas de l'espace apparaissant dans le Théorème 4.1.1, l'autres cas est traité de la même façon. Nous supposons que S est une surface parallèle à (x 1 Ox 2 ) c'est-à-dire tout point M E S a ( x1, x2, C) comme coordonnées, où C est une constante réelle. Comme {Os, VJ} constitut un ensemble de voisinages pour la fissureS, alors sur ce voisinage Os, v ne dépend que des deux composantes x2 et

•

  Pour ce type de fissure et pour que le troisième problème limite ait un sens, une condition non locale est à introduire au niveau de cette fissure s.

	Proposition 4•3•2• Sous les hypothèses du Theorem 4.3.1 une condition non
	local apparaît au niveu de la fissure S à savoir

JsranCT(u)

].v ds = o, VvE W(S).

Preuve:

Limitons nous au cas de l'élasticité générale. Pour cet exemple, si u E W(S) solution de (3-43) est assez régulière, alors elle satisfait à Comme W(S) C W 1 (S), alors v surS ne dépand que de x 2 .

  ) équation du second ordre pour le champ électrique E.

	Notons qu'après avoir déterminé E, nous obtenons alors la densité de
	flux magnétique H grâce à la formule

l H= -rotE. Wfl Définition 5.2.2. Nous dirons que E est solution de Maxwell dans D si E satisfait à l'équation (5.3). Remarque 5.2.3. Si E E H(rot, D) est solution de Maxwell, alors manifestement E E H (rot, rot, D).

  Es, fio, fis et cr 2 1 des constantes positives fixées. f div E div H dx + s f div Ediv H dx. }C(II rotE 116,o +Il E 116, 06 +Il div E 116, 06 +Il div E 116, 06 ), où C est une constante positive qui dépend de 11 et de s. Vu que le domaine D est simplement connexe, alors comme conséquence du Lemme 2.2 de [16], le terme à droite de l'inégalité ci-dessus est une borne supérieure pour Il E 116,o 6 •

	5•3• Formulation faible	
	Posons	
	a(E, H) =	f 11-1 rot E.rot H dx + iw(J f E • H dx Jo lo 6
		los	los
	Alors	
		Re ( ( 1 -i) a ( E, E)) 2::
	min{1, w (5.12)
	Puisque	
	Re { (1-i)a6	
	Alors il existe une constante positive w 0 (indépendante de S, fi et s, mais pas
	de cr) telle que pour tout w E (O,wo), la forme sesquilinéaire (1-i)a §,R est
	fortement coercive sur Y 0 (D) c'est-à-dire:
	Il existe une constante positive Co (indépendante de S, fi et s, mais pas de cr)
	telle que	
	Preuve:	

Re ((1i)as,R(E,E)) 2 CollE li~s(D) VE E Y.,(D). +s Par conséquent, nous avons Re

((1-i)a(E,E)) 2:: min{1, w}CJI E ll~s(O)• R (E, E)} =Re ( (1-i)a(E, E))-w 2 ( ciEJ 2 dx

, (5.13) , Jo pour un w tel que w 2 < C m_inp, w \, nous obtenons m1n Eo, E 0 Re { (1 -i)ab,R ( E, E)} 2:: Co Il E ll~s(O)' où Co est une constante positive donnée par Co = C min{1, w}w 2 min{ Eo, Es}. D'où la conclusion.

  La forme sesquilinéaire a~2) est positive. La même propriété est vraie pour la forme sesquilinéaire a~1~ puisque le terme en fonction de la fré-, elle dépend du paramètre J. Ceci rend le passage à la limite, lorsque ce dernier converge vers zéro, impossible. Seul le passage à la limite lorsque la conductivité cr tend vers l'infini est réali-= {E E Yb(D): E = 0 dans Ob}. Eb in Yb(D). comme E 0 = 0 dans le sous domaine 0 0 , alors nous en déduisons que la quatrième identité du système (5.16) est satisfaite.Maintenant, dans (5.14) nous prenons comme foction test H = V' cp avec cp E H6(D 0 , ~) une fonction prolongeable par zéro en dehors du sous domaine 0 0 , nous obtenons { sdiv Es div ~cp-r w 2 EoEs . \7 cp dx = -iw r Jo. V' cp dx.

	5+ La limite
	5•4 La limite quence west censé être négligeable. , De plus, a~2) est hermitienne donc elle vérifie l'inégalité de Cauchy-Schwarz. Comme conséquence de l'inégalité de Cauchy-Schwarz, les deux formes sesquilinéaires a~~~ et a~2) sont continues sur l'espace Y 0 (D) x Ys(D). En effet: et C(Jl-1 )11 rotE llo vil rotH llo v+ C(w,e)ll E llo vil H llo v+ ' , , 1 sll div (Eiv 6 ) llo,v)l div (Hiv 6 ) llo,Ds + sll div (Eio 6 ) 11 0 , 06 11 div (HioJ 11 0 , 06 < C'll E IIYs(D) Il H IIYs(D) 1 a~2) (E, H) 1 < Il E llo, o 6 Il H llo, 0 6 < Cil E llo, vil H llo, D < C'll E IIYs(D) Il H IIYs(D)• Nous constatons que les formes sesquilinéaires a~, a~~~ et a~2) satis-font à la plupart des hypothèses mentionnées dans la version abstraite sont satisfaites excepté le détail suivant : Si nous regardons la norme Il • IIYs(D) définie en (6.17), nous verrons clairement que, contrairement seur b. Définition 5•4•1:• Pour tout 6 > 0, Y( Ob) est l'espace des fonctions E dans Yb(D) tels que a~2) (E, E) = 0, ou de manière équivalente Y(Ob) Le problème limite lorsque cr tend vers l'infini que nous obtenons est le suivant: trouver Eb E Y (Ob) tel que a~~~ (Eb, H) = -iw < Jo, H >, VH E Y(Ob)• (5.14) Ainsi nous avons un résultat d'existence et d'unicité pour le problème faible (5.11) et son problème limite (5.14) et seul le premier résultat du Théorème 2.5.1 est obtenu pour ce cas: Proposition 5.4.2. Les problèmes (5.11) et (5.14) admettent des solutions uniques dans Yb(D) et Y(Ob) respectivement. Théorème 5•4-3-Soient Ef et Eb les solutions respectives des problèmes (5.11) et (5.14). Alors, elles vérifient la propriété limites suivantes (T----->00 Si le paramétre s est convenablement choisi, alors la formulation forte du problème (5.14) est : Jl() 1 rot rot Eb-w 2 Eo Eb -iwfo dans Db, div Eb 0 dans Db, Eb 0 dans Ob, ( 5 .16) Eblo 5 x n 0 sur aob, Eb x n 0 sur av. Puisque E 0 appartient à H 0 (rot, D), donc il vérifie la relation de saut: aux exemples précédentssable puisque au cours de ce passage, nous sommes amené à fixer l'épais-[E 0 x n]aos =O.

lim Ef = En effet, la troisième équation et la dernière équation du système (5.16) sont satisfaites puisque Eb, solution de (5.14), appartient à Y(Ob)• Et

  Ici, le champ éléctrique E est un champ véctoriel dans R 2 , tandis que le champ magnétique H est un scalaire.

	et		
			rot 1/J = ( dl/J ' -dl/J ) T
				dX2	dX1
	où (x1, x2) sont les coordonnées cartésiennes de IR 2 .
	Pour H = ~11 rot E, le systeme (6.1) est réduit à
	rot (JJ-1 rot E) +(iwo--w 2 c) E = -iw Jo dans D,s.	(6.2)
	En appliquant la divergence à la deuxième équation du système (6.1) et
	puisque E et a-sont constants dans Os et Ds, il en résulte que
		{	div E = 0 dans 0 0 . div E = 0 dans Os,	(6.J)
	Une condition de conducteur parfait est à ajouter au niveau du bord
	extérieur aD s		
	OÙ T = ( -X2, Xl)•		
	Pour une description complète du champ éléctromagnétique et suite à la
	sructure particulière du domaine global Ds, nous ajoutons les conditions
	de transmission à travers de l'interface S :
				surS,	(6.s)
	Par Jo E L 2 (R 2 )	2 nous désignons la densité du courant source que nous
	supposons à support inclus dans Do.
	Nous supposons que Jo est à divergence nulle dans R 2 (c'est le cas
	d'absence des charges élécrtiques libres).
	Rappelons que les notations rot et rot désignent rotationnel scalaire et le
	rotationnel vectoriel respectivement :
			dV2	dV1	T
			uX1	uX2

rot v=:;----:;---quand v= (v1, vz) ,

  Il tp Il XN(O)::::: c Il u Il U(O) . := fo (rot tp rot x+ div tp div x) dx,

	Alors il exist tp E X N ( 0) tel que	
	u =rot tp,	
	et	
	div tp = 0,	(6.8)
	OÙ	
	rot tp E L 2 ( 0),	
	div tp E L 2 (0),	
	t/J • T = 0}.	
	De plus il existe C > 0 tel que	
		(6.g)
	Preuve:	
	Comme XN(O) s'injecte de manière compacte dans L 2 (0) 2 , la
	forme	
	a( tp, x) est coercive sur XN(O).	
	Ainsi il existe un unique tp E XN(O) solution de	
	a( tp, X)	
	Pour étudier le système (6.1), on introduit les espaces de Hilbert suivants

= fou rot xdx, V xE XN(O).

  Il u llz(Ds) = Il u llo,o 6 + Il rot u llo,o 6 +Il d1v u llo,o 0 + Il d1v u llo,o 6 Espaces fonctionnels et formulation faible Par le Théorème 6.3-4, pour tout v E Z(Ds) il existe tfJ E XN(Ds) et cp E HÔ(Ds) solution de (6.12) tels que
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				v=tp+\lcp		
	et il existe C > 0						
	a) Comme D s est un rectangle,			
	et il existe C3, C 4 > 0 tels que			
	c3 Il tfJ 11Hl(Do)2~11 tfJ llxN(Do)~ c4 111/J 11Hl(Do)2r Vtp E XN(Ds).
	2			2	0	2	0	2	) l/2
	(							•
	Ainsi cp est solution du problème de transmission		(6.17)
	Nous remarquons que Z(Ds) = Z(Ds, E) où -div EV cp -div EV(v -tp)	dans Os n Ds,
		[cp]	_ E=	{ E1 -if5 sur Os 0	surS,	
	[EV cp• n]		Eo	sur Do	surS,	
	Théorème 6.3•5•	cp		0		sur dD 0 .	
	Vu la géomértie du domaine Ds, on va voir que		(6018)
	où						
	Loin des sommets, on sait que cp E HÔ(Ds) solution de (6.21) est
	De plus, il existe deux constantes positives C 1 et C 2 telles que dans PH 2 .	
	Près des sommets, on distingue deux cas :		

w[EUon] = -ùrulorn sur S}o C'est un espace de Hilbert muni de la norme Preuve: 6.3. (6.20) b) Régularité de cp : cp E HJ ( D s) est solution de [e( v -1/J) . n l i) Près des sommets
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	6.3. Espaces fonctionnels et formulation faible
		Ceci prouve l'estimée de gauche de (6.19). L'autre estimée est
		triviale. { Trouver E 0 E Z(D 0 ) tel que ao,R (E 0 , H) = ( -iw Jo, H), VH E Z(D 0 )	(6.29)	•
	Dans toute la suite, H ne désigne plus le champ magnétique mais une
	fonction test. Proposition 6.3.6. La forme sesquilinéaire ao,R est coercive sur Z(D 0 ).
	Preuve:				
	En multipliant (6.2) par une fonction test HE H 0 (rot, Ds) et en intégrant La démonstration est similaire à celle faite pour la Proposition
	sur Do U Os, nous obtenons 5-J.l.		•
	{ j DoUOs	rotrt-1 rotE.Hdx+ { j D 0 UOs	(iwi7-w 2 E)E.Hdx= { j D 0 U0 6	-iwJo.Hdx.
	6.4				
	Comme HE Ho(rot, Ds), la formule de Green (5.1) donne
	{ l~u~	Jl-	1 rotE. rotH dx+ { l~u~	(iwi7-w 2 E)E.H dx = { J~u~	-iwJo.H dx.
	Le problème faible associé au problème initial (6.2)-(6.5) est:
			{	as(Es, H) = ( -iw Jo, H), VH E Ho(rot, Ds) Trouver Es E Ho (rot, D s) tel que	(6.26)
	où as désigne la forme sesquilinéaire associée donnée par
	as(E, H) = r rt-1 rotE. rotH+ r (iwl7-w 2 E)E.H dx (6.27) l~u~ l~u~
	La forme sesquilinéaire as n'étant pas coercive dans l'espace Ho(rot, Ds),
	sa régularisation sur l'espace topologique plus fin Z(Ds) est nécessaire: Toutes ces considérations montrent que cp E PH 2 (D 6 ) et que Sa forme régularisée notée as,R est :
	Si on revient à (6.13), on voit que v E PH 1 (D 6 ) 2 . De plus par
	(6.20) et (6.25), on a l	s div E.div H dx,	(6.28)
				.foouOs	
	llviiPHl(o 6 )2 < 111/JIIPHl + llc/JIIPH2 où s est un réel positif arbitraire.
	< Cllvllz(o 6 ) Par suite, le problème faible (6.26) se re-écrit comme suit:

but de cette section est d'utiliser la méthode du développement asymptotique pour établir le comportement limite de la solution du problème de transmission de Maxwell (6.2) -(6.5); ce qui revient à étudier le comportement de E 0 solution du problème (6.29) quand J tend vers zéro.

Cette étude est très délicate puisque l'espace Z(D 0 ) et sa norme dépendent du paramètre b.

  Les formes sesquilinéaires ao, a1 et a2 sont hermitiennes et continues sur Z(D). Soient Eo, E1, fla, Jll, w and cr des constantes positives fixées.
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	est bien une borne supérieure pour Il E 116,Do• D'après le Lemme 6.3.2 il existe FE XN(D) tel que dans D Lemme 6.4.1. Remarque 6.4.z. Nous voyons bien que le problème (6.30) est un pro-rot F = rot E et div F = 0
	blème de perturbation singulière (voir [25]).	
	et vérifie					
			Il F llxN(D) :s; C1ll rotE llo,v•	(6.J3)
	Le résultat énoncé ci-dessous ainsi que Lemme de Lax-Milgram nous
	Puisque D est simplement connexe alors, et grâce au Théorème 6.3+ il assurent que le problème (6.30) admet au moins une solution dans Z(D). existe un unique cp E Hà ( D) tel que
	Lemme 6.4-3-2 2 E = F+ \lep dans D.
	Dans Do, cp satisfait à				
		-div(Eo\lcfJ) = -div[Eo(E-F)].
		( Re e	~	2	)	2	(6.}1)
	Preuve: et on a l'estimation suivante		
	Rappelons que				
	2 L aj(E, H) De (6.34) on a				
		Il E llo,D 0 :s			(6.30)
	où	ao(E, H) = tt1 1 ln a2E1a2H1 dy+ s ln a2E2a2H2 dy,
	Il rotE 116,D + Il divE 116,Do + Il divE 116,o. +Il E 116,o. (iwcr-w 2 E 1 ) ln EH dy. a2(E, H) = tt1 1 ln al E2a1 H2 dy+ s ln a1E1a1H1 dy+ Montrons maintenant que le terme et a1 (E, H) = tt 0 1 f rotE rotH dy-w 2 Eo { EH dy+ lo 0 scose11 divE ll~.o.-wcrsine11 E 11~, 0 -lo 0 s f divE div H dy+ s f (a1E1a2H2 + a2E2a1H1) loo cosew2EIII E 116,o.-cosew 2 Eoll E 116,Do' Jo ./o où Jl~~ = min{J1 0 1 , f/} 1 }. tt1 1 f (a2E1a1H2 + a1E2a2H1) dy, (6.3z)

), E.T = 0 sur ao,

w[EE.n] = -icrEio.n surS}.

En introduisant la nouvelle variable dans (6.26) et en identifiant E 15 (x) à E(b, y), le problème se réécrit sous la forme:

{ Trouver E(b, y) E Z(O) tel que VH E Z(O) ao(E(b, y), H) +ba 1 (E(b, y), H) +b 2 a 2 (E(b, y), H) = 6(-iwJo, H),

Alors, ils existent eo et el données pareo= f-1 (K) et el= arccos(w()";oflmin), 2 tels que pour tout e E ( eo, el) c (-.g:' 0)' la somme L aj est coercive sur j=O Z(D) i.e., :

J C > 0, VE E Z(D) 1 j~ aj(E, E) 2: Cil E llz(D)• où j(e) := wcrsine + w 2 E 1 cose et K := -1-~E~. j=O Par suite (fi-l rotE, rot H)v + (s divE, div H)v 0 + (s divE, div H)o. + (iwcr-w 2 E E, H)v.

c'est-à-dire cp vérifie -f..cfJ = -div E dans Do.

  Il E llo,Do :SC [11rot Ello,D +li div Ello,D 0 +El:~ cr (li div Ello,o + IIEIIo,o)] .En multipliant l'inégalité ci-dessus par w;o pour éviter que les termes enw-1 n'explosent quand w devient très petit, il vient ; 2 ll E llo,v 0 :S cr 2 ° [llrot Ello,D + (J"IIdiv Ello,v 0 ] + ( (7 2 d + 1) [lldiv Ello,o + IIEIIo,o].Il est toujours possible de trouver un réel positif s tel que les deux quantités (s COS e-~e~) et (s COS e-~~ E~ -1) soient strictement positives. Il reste à vérifier qu'on peut trouver un e tel que (6.39) et (6-40), et pour bo et c:r assez grands, il existe eo 2 2 arccos(wcr; 0 flmin) et il existe e2 = arccos( 4 ~9cr 2 ) tels que De (6.41) et pour c:r assez grand, il existe e 1 = f-1 (K) tel que qu'il existe une tel que (6.39), (6.40) et (6-41) soient vérifiées, il faut que eo < el ce qui est vrai pour (T assez grand. Donc, un tel e existe dans Jeo, el [ c] -.g:, 0 [.

	En introduisant cette inégualité dans sa précédante, nous obtenons
	IlE llo,Do :S Czllrot Ello,D 0 +Czlldiv Ello,D 0 +CzC3E() Pour C = max{Cz, CzC3} une constante positive indépendante des pa-1 (E1 + :) [lldiv Ello,o + IIEIIo,o]. 7[ 7[ --< eo < e < e2 < -2 2"
	ramètres w, (7, E, on a			
		7[ --< e < e1 < o 2 .		
					J4)
	WEo	WEo	.	W	.
	(6.35) Nous élevons cette dérnière à la puissance deux et pour C' =
	min { 1, C 2	1 2C 2 } 1 nous obtenons			
	~~ 4 c,En l'introduisant dans (6.32), nous obtenons ~~	~	(6.J6)
					(6.J7)
		< C2[[[rot E[[o,Do +[[div E[[o,Do + E 0		
		W2E2 o flmin COS --2 --1 e (7	> O.		
		eo 4 c, (7 2 -cos e		

(Til E llo,Do::; ceT [llrot Ello,D +(]"li diV Ello,Dol + C( (]"El+ 1) [lldiv Ello,o + IIEIIo,o]. 2 Re(eieLaj(E,E)) > (tt~Jncose-~E~) Il rotE 116,v j=O (6.J8) > o. De Pour

•

  Remarque 6-4-4. En général, la solution du problème (6.30) ne converge pas quand b tend vers zéro(voir [25]).

  L'identification formelle des puissancesde 6, en introduisant ( 6.42) dans ( 6. 3 o), conduit aux formules suivantes : ( -iwJo, H), VH E No, non nulle sur No n N1. Donc, a 2 sur No n N 1 se reécri comme suit : Par la formule de Green et les conditions au bord du sous-domaine 0, nous déduisons que (6-48) est équivalente au problème du second ordre suivant:~1 E 0 , 2 + ~WCTiw E1)Eo,2 = f(H), dans 0, spectre de (6-49) est constitué seulement du spectre ponctuel (valeur propre CTp) qui est strictement contenu dans R (opérateur auto-adjoint).Comme le scalaire (wCT-iw 2 t: 1 )rt 1 n'est pas un réel pur, nous déduisons que le problème (6-48) admet une solution unique. Donc, il existe Ê1 E Nef tel que la première équation de (6.44) ait lieu i.e.,

		1 •Il	2	.
	{	Eo,z(O) = Eo,z(l) =O.
	Existence et unicité de E 1 :
			0,
	E1 E Z(D),	
	ao(El, H)	( -iwJo, H)-al(Eo, H), VH E Z(D),	(6.44)
	a1 ( E1, H)	-a2(Eo, H),	VH E N 0 ,
	a2(E 11 H)	0,	VH E NonNl.

linéaire Le D'après (6-43), la forme H f------+ -( iw Jo, H) -a1 ( Eo, H) est nulle sur N 0 . ~ . l_ ao(E1, H) = ( -zw Jo, H)-a1 (Eo, H), VH E N 0 .

Théorème 6.5.1. Soit

  E 6 la solution exacte du problème (6.30) et soient Ej, j 2:Grâce aux formules (P 0 ), (P 1 ) et (P 1 ), j :2: 2, nous déduisons que : at5,R(t/JtJ, H) = 6( -iwfo, H) + xs(H), Ws dans (6.55), nous trouvons (6.s6) Sachant que as,R est coercive sur Z(D) et est la somme des aj, j = 0, 1, 2 et que cette somme définie une norme equivalente à celle de Z(D), nous trouvons que :as,R(ws, ws) = ao(ws, ws) +6a1(w 0 , ws) +6 2 a2(w 0 , ws) 2:: min{1, 6, J 2 } [ao(ws, ws) +al(ws, ws) +a2(ws, ws)]2:: 6 2 Co Il ws II~(D) .Co étant la constante de la coercivité et est indépendante de 6.Mais d'un autre côté et de la continuité des aj, j = 0, 1, 2, nous avons : Par l'inégalité de Cauchy-Schwarz, on trouve

	100	Chapitre 6. Formule asymptotique du champ électrique
	Notons	
	Alors pour tout HE Z(D), nous avons:
	avec C1 une constante indépendante de 6 et est telle que
	Ainsi, l'identité (6.56) donne
	Preuve:	(6.53)
	où Xs ( H) est donnée par : D'où l'estimation d'erreur (6.52) souhaitée.
	Par conséquent et comme Es satisfait à (6.30), nous avons

0 les coefficients de sa solution approchée. Nous avons alors :

C désigne une constante indépendante de b. ao(Eo, H) + 6[ao(El, H) + a1 (Eo, H)] +••• as,R(WtJ, H) = -Xt5(H), HE Z(D).

(6.ss) 6.5. Estimation d'erreur En prenant H = 101 1 Xg(ws) 1 ::::; 6i+ 3 (1 al(Ej+2' EJ+2) Il a1(H, H) 1 + 1 a2(Ej+l, EJ+l) Il a2(H, H) 1) ::::; 6i+ 3 (11 Ej+l llhv) +Il Ej+2 II~(D)) Il Ws llhv) ::::; 6i+ 3 C1 Il ws II~(DJ'

(E1 + if5)[[E[o.n[[J{I/2( 5 )'].Par les théorèmes de rèlevement des traces, il existe C 3 une constante positive qui dépendent seulement des domaines telle que :
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