
HAL Id: tel-03350268
https://hal.science/tel-03350268

Submitted on 21 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamically and Partially Reconfigurable Embedded
System Architecture for Automotive and Multimedia

Applications
Naim Harb

To cite this version:
Naim Harb. Dynamically and Partially Reconfigurable Embedded System Architecture for Automo-
tive and Multimedia Applications. Embedded Systems. Université de Valenciennes et du Hainaut-
Cambrésis, 2011. English. �NNT : 2011VALE0014�. �tel-03350268�

https://hal.science/tel-03350268
https://hal.archives-ouvertes.fr

u~· ersité ~
ae Llenc'e n~S
et âu ainaut-~a~resis

Dissertation

LAMIH
L ABORATOIRE
D'A UTOMATIQUE
DE MECANIQUE ET
D'INFORMATIQUE
INDUSTRIELLES
ET H UMAINES

Presented and defended on: 23 September 2011

Dynamically and Partially Reconfigurable
Embedded System Architecture for

Automotive and Multimedia Applications
By

Naim M. Harb

For obtaining

Doctorate Degree

At the Université de Valenciennes et du

Hainaut-Cambrésis

Ecole Doctorale Sciences Pour l'Ingénieur Université Lille Nord-de-France-072

Specialty: Automatique et Informatique des Systèmes Industriels et Humains

Referee

Referee

Examiner

Examiner

Superviser

Co-Superviser

Domain : Embedded Systems

Pr. Georgi Gaydadjiev, Delft University of Technology

Pr. Lionel Torres, LIRMM Université de Montpellier

Pr. Carlos Valderrama, Université de Mons

MCF HDR Daniel Chillet, IRISA, Rennes

Pr. Smail Niar, Université de Valenciennes

Pr. Mazen Saghir, Texas A&M University At Qatar

Numéro d'ordre 11/23

UNIVERSITE DE VALENCIENNES ET DU HAINAUT-CAMBRESIS
Le Mont Houy- LAMIH- 59313 VALENCIENNES Cedex 9

Téléphone (+33) 3 27 5112 34- Télécopie (+33) 3 27 5111 00

UNIVERSITE DE VALENCIENNES ET DU HAINAUT-CAMBRESIS
Le Mont Houy- LAMIH- 59313 VALENCIENNES Cedex 9

Téléphone (+33) 3 27 5112 34- Télécopie (+33) 3 27 5111 00

ii

Acknowledgments

iii

iv

Summary
Application-specifie programmable processors are widely used in embedded systems

due to their customized instruction sets and microarchitectural features. This enables them to
attain high levels of performance and energy efficiency. However, short time-to-market win
dows, high design and fabrication costs, and fast changing standards make application
specifie processors a costly and risky investment for microelectronics manufacturers and em
bedded system designers.

To overcome these problems, embedded system designers are increasingly relying on
Field Programmable Gate Arrays (FPGAs) as target design platforms. Today's FPGAs pro
vide high levels of logic density and rich sets of embedded hardware components that enable
the implementation of highly complex systems. They are also inherently flexible and can be
easily and quickly modified to meet changing application or system requirements. FPGAs
also support the reuse of standard or custom IP blocks, which further decreases system devel
opment time and costs. On the other hand, FPGAs are generally slower and consume more
power than Application-Specifie Integrated Circuits (ASICs), and this can restrict their use to
limited application domains. However, recent advances in FPGA architectures, such as Dy
namic Partial Reconfiguration (DPR), are helping bridge this gap. DPR enables a portion of
an FPGA deviee to be reconfigured while the deviee is still operating. This reduces area and
enables mutually exclusive subsystems to share the same physical space on a chip. It also
reduces complexity, which usually results in faster circuits and lower power consumption.

The work in this PhD targets the exploration of the DPR feature in recent FPGAs in
the advantage of an automotive and multimedia system. We target a Driver Assistant System
(DAS) system based on a Multiple Target Tracking (MTT) algorithm as our automotive base
system. On the other hand, we have selected the H.264 encoder as a multimedia targeted sys
tem. Both applications were fully detailed and analyzed before introducing our results and
benefits of the use ofDPR in each.

Starting with the automotive application, in this part of work a dynamically reconfi
gurable filtering hardware block for MTT applications in DAS was presented. Our system
shows that there will be no reconfiguration overhead because the system will still be func
tioning with the original configuration until the system reconfigures itself. The free reconfi
gurable regions can be implemented as improvement blocks for other DAS system functio
nalities. Two approaches were used to design the filtering block according to driving condi
tions. The first approach was related to the number of targets (2 configurations) while in
another approach, DPR was used on the basis oftargets' proximity and danger level (4 confi
gurations).

Regarding the H.264 multimedia system standard, we proposed a dynamically recon
figurable H.264 motion estimation computational unit whose architecture can be modified to
meet specifie energy and image quality constraints. By implementing 16 reconfigurable re
gions, we were able to support multiple configurations each with different levels of accuracy

v

and energy consumption. Image accuracy levels were controlled via application demands,
user demands or support demands. Using a reconfiguration heuristic, our system can support
up to 35 different configurations. With a maximum saving of up to 51% in energy consump

tion, the system can support all block sizes in an H.264 encoder. The data delivery was opti
mized to support a fully parallel architecture using a memory architecture that has negligible
effect on quality.

Résumé
Les processeurs programmables sont largement utilisés dans la réalisation des sys

tèmes embarqués en raison de leurs jeux d'instructions dédiés et leurs caractéristiques micro

architecturales. Ces caractéristiques leurs permettent d'atteindre de hauts niveaux de perfor
mance et d'efficacité énergétique. Cependant, les délais de plus en plus courts de mise sur le
marché, les coûts de conception et de fabrication élevés et les standards qui changent rapide
ment exigent un investissement coûteux et risqué pour les fabricants de microélectronique.

Pour surmonter ces problèmes, les concepteurs de systèmes embarqués s'appuient de
plus en plus sur les circuits reconfigurables (ou FPGA pour Field Programmable Gate Ar
rays) en tant que plateformes spécifiques de conception. Les récents FPGAs fournissent un
haut niveau d'intégration des éléments logiques et un ensemble riche et complet de compo
sants matériels intégrés (ou IP) qui facilite la mise en œuvre de systèmes complexes. Intrin
sèquement, ils sont aussi flexibles et peuvent être facilement et rapidement modifiés pour
répondre aux besoins des différentes applications. Les FPGAs supportent aussi la réutilisa

tion de blocs IP standards ou personnalisés, ce qui diminue encore plus les coûts et les temps
de développement. Néanmoins, ces FPGAs sont généralement plus lents et consomment plus
de puissance électrique que les circuits intégrés pour les applications spécifiques (ASICs).
Ces deux inconvénients peuvent restreindre leur utilisation à un domaine d'application étroit.
Cependant, les récentes avancées dans les architectures FPGA, telle que la reconfiguration
partiellement dynamique (ou DPR pour Dynamic Partial Reconfiguration), aident à combler
ce fossé. La DPR permet à une partie du système FPGA d'être reconfigurée en cours de
l'exécution de l'application. Ceci permet d'avoir une plus grande adéquation entre les besoins
des applications exécutées et l'architecture du système. La DPR autorise aussi les sous

systèmes mutuellement exclusifs à partager le même espace physique sur la puce. Cela réduit
également la complexité et offre la possibilité de concevoir des circuits plus rapides et une
consommation électrique modérée.

Le travail de cette thèse vise à exploiter les caractéristiques de la DPR pour les récents
FPGAs pour supporter des applications de sécurité routière (ou DAS pour Driver Assistant
System) et des applications multimédias où nous avons sélectionné 1' encodeur H.264 comme
exemple illustratif.

Pour l'application DAS, un filtre hardware et reconfigurable dynamiquement a été
présenté. L'architecture du DPR-DAS que nous proposons ne provoque aucune surcharge de

vi

reconfiguration. En effet, comme le système fonctionne avec la configuration d'origine jus
qu'à ce que le système s'auto-reconfigure, il n'y a pas de temps morts entre les opérations de
reconfiguration. Les régions reconfigurables libres peuvent être utilisées entant que blocs
pour améliorer les performances des autres fonctionnalités du système DAS. Deux approches
ont été utilisées pour concevoir le bloc de filtrage en fonction de la position du véhicule et de
son environnement. La première approche est basée sur l'analyse du nombre d'obstacles au
devant du véhicule pour choisir la meilleure architecture du filtre. Dans 1' autre approche, la
DPR utilise la distance du véhicule par rapport aux différents obstacles et le niveau de dange
rosité des obstacles (quatre configurations) pour choisir la meilleure architecture du DAS.
Cette approche pourra être facilement étendue pour prendre en compte d'autres informations
sur l'environnement du véhicule pour choisir l'architecture du DAS la plus performante of
frant ainsi un haut niveau de sécurité.

Concernant 1' application H.264, nous avons proposé une nouvelle architecture de
l'unité de mesure d'estimation du mouvement (ou ME pour Motion Estimation). Notre archi
tecture est reconfigurable dynamiquement. Ce qui permet de répondre rapidement et automa
tiquement à des contraintes spécifiques d'énergie et de qualité d'image. Par l'utilisation de
plusieurs régions reconfigurables du FPGA, nous avons été en mesure de mettre en œuvre
plusieurs architectures offrant différents niveaux de qualité d'image et de consommation
d'énergie. En fonction des besoins de l'utilisateur, le système choisi la meilleure configura
tion matérielle pour consommer le moins d'énergie électrique. En utilisant une heuristique de
reconfiguration, notre système peut supporter jusqu'à 35 configurations architecturales diffé
rentes du ME avec une économie d'énergie électrique maximale de 51%. Le système peut
supporter en outre toutes les tailles de bloc pour un encodeur H.264. Ces résultats ont été ob
tenus aussi grâce à la mise en ouvre d'une nouvelle architecture mémoire pour assurer un
large bande passante des données mémoire.

vii

viii

Table of content

ACKNOWLEDGEMENTS .. iii

SUMMARY ... v

TABLE OF CONTENTS .. ix

LIST OF FIGURES ... xii

LIST OF TABLES .. xvi

Chapter 1 -INTRODUCTION ... 1

Chapter 2 - LITERA TURE REVIEW .. 9

Abstract ... 9

2.1 Dynamic Partial Reconfiguration related work ... 9

2.1.a DPR design flows .. 10

2.I.b Architectural explorations ofDPR systems .. 11

2.I.c Hardware support for a fast reconfiguration process .. 13

2. I.d Fast reconfiguration beneficiai study ... 15

2.2 Driver Assistant Systems related work .. 16

2.2.a The IMAPCAR and EYEQ2 projects ... 17

2.2.b Radar based DAS systems .. 17

2.2.c Camera based DAS systems .. 18

2.2.d Multiple Target Tracking radar-based DAS system ... 19

2.2.e Surnmary ... 19

2.3 H.264 multimedia system related work .. 21

2.3 .a H.264 exploration on ASIC ... 21

2.3.b Static scalable motion estimation on FPGAs ... 22

2.3 .c H.264 exploration on DPR basis .. 22

2.3.d Summary ... 23

Chapter 3- HYBRID ARCHITECTURE FOR A MULTIPLE TARGET TRACKING DRIVER ASSIS-
TANT SYSTEM ... 26

Abstract ... 26

3.1 Introduction .. 26

3.2 Driver Assistant Systems and the base implementation ... 27

3.2.a Multiple Target Tracking system ... 28

3.2.b Filtering&Prediction block in tracking systems .. 31

3.2.c Base system implementation ... 33

3.3 Migration to hardware Filtering&Prediction block ... 35

3.3.a Filter's coefficients stability .. 35

3.3.b Fixed point data precision ... 36

ix

3.3.c Software VS hardware implementation .. 39

3.4 Conclusions .. 40

Chapter 4- EXPLORING DPR IN A MULTIPLE TARGET TRACKING SYSTEM 42

Abstract ... 42

4.1 Introduction .. 42

4.2 Approach and design ... 44

4.3 DPR system based on targets density ... 45

4.3.a Validation system architecture ... 45

4.3.b Different filter implementations .. 47

4.3 .c Filters output and accuracy ... 4 7

4.3.d Resource utilization .. 49

4.3.e Reconfiguration heuristics ... 50

4.3.fLatencies and reconfiguration overheads .. 50

4.3 .g Conclusion .. 52

4.4 DPR system based on targets position ... 52

4.4.a Radar signal processing and enhancement block ... 53

4.4.b Validation system architecture .. 53

4.4.c Different filter implementations ... 54

4.4.d Filtering&prediction configurations ... 55

4.4.e Detection Unit Enhancement block .. 56

4.4.fFilters output and accuracy .. 57

4.4.g Resource utilizations .. 58

4.4.h Reconfiguration heuristics .. 60

4.4.i Latencies and reconfiguration overheads ... 61

4.4.j Conclusion ... 62

4.5 DPR-MTT compared to enhanced soft core processors ... 62

4.6 Conclusions .. 64

Chapter 5- EXPLORING DPR IN AN H.264 ENCODER ... 66

Abstract ... 66

5.1 Introduction .. 66

5.2 The H.264 encoder .. 68

5.3 The H.264 encoder's Motion Estimation .. 69

5.3.a Motion Estimation .. 69

5.3.b SAD analysis and observations ... 71

5.4 DPR exploration and implementation .. 73

5.4.a Implementation and design ... 74

5.4.b Illustration of example of the DPR computational unit .. 76

5.4.c Hardware aspects ... 77

5.4.d Reconfiguration time analysis ... 80

5.4.e Memory interface design and architecture .. 84

5.4.fPower and energy analysis .. 93

5.4.g Image quality and compression ratios .. 96

5.4.h Reconfiguration heuristics .. 97

5.5 Conclusions .. 99

x

Chapter 6 - CONCLUSIONS AND PERSPECTIVES .. 102

6.1 Conclusions .. 102

6.2 Perspectives .. 105

REFERENCES .. 109

xi

List of figures

Figure 1.1 - The number of transistors in Intel microprocessors growth associated with
Moore's Law [MOORE] ... 2

Figure 1.2- FPGAs' last decade progress and improvements in terms ofmemory size, num-
ber oflogic elements and the transistor technology size .. 3

Figure 1.3 -A FPGA based system partially reconfiguring part of its fabric to support a new
configuration while the other part is still running its mapped tasks .. .4

Figure 1.4- Functional three stages of a typical DAS system ... 5

Figure 1.5- H.264 encoder's and decoder's building blocks ... 6

Figure 2.1 - Partial Reconfiguration' s Modular Design Flow four steps 1 0

Figure 2.2 - Scalable systolic coprocessor system's general overview proposed by
[A.OTERO 2010] ... 12

Figure 2.3- Relocation flow ofPR regions proposed by [J.CARVER 2008] 13

Figure 2.4- BRAM based ICAP architecture as proposed by [M.LIU 2009] 13

Figure 2.5- An FSL based ICAP controller proposed by [M.HUBNER 2010] 14

Figure 2.6 - A DMA-engine based reconfiguration accelerator as proposed by [S.LIU
2010_1] .. 15

Figure 2.7- A system overview of an early radar+GPS sensor based DAS system proposed
by [S.LEBEUX 2006] .. 17

Figure 2.8- A hybrid radar based DAS system architecture as proposed in [J.SAAD 2009] ...
... 18

Figure 2.9- The overview of a DPR DAS system using a camera as a sensor as proposed in
[C.CLAUS 2007] and [C.CLAUS 2010 ... 19

Figure 2.10 - The system architecture of an MPSoC MTT -based DAS system using a radar
as a sensor as proposed in [J.KHAN 2009] .. 20

xii

Figure 3.1 - MTT system's basic building blocks. The Data Association 3 Blocks are also
shown in the figure .. 29

Figure 3.2- MTT state prediction and estimation. [J.KHAN 2009] ... 29

Figure 3.3 - MTT system' s detailed building blocks. The Observation-tc-Track Association
and Track Maintenance blocks are shown as detailed inner blocks in the figure 30

Figure 3.4- The MTT system's base architecture. The base architecture is decomposed of
23 soft core processors connected via interconnections of a bus mesh [J.KHAN 2008] 33

Figure 3.5- Kalman filter response for distance simulated data .. 37

Figure 3.6- Kalman filter response for angle simulated data ... 37

Figure 3.7- Kalman filter distance response errors for different precision levels 38

Figure 3.8- Kalman filter angle response errors for different precision levels 38

Figure 4.1 - The proposed dynamically partial reconfigurable MTT based system architec-
ture ... 45

Figure 4.2- Validation architecture basic IP cores. The MTT system runs on the PowerPC
except the Filtering&Prediction Kalman block that runs on the "Filter" hardware block 46

Figure 4.3 - Enlarged view of measured distance and output of different Kalman filter im-
plementations ... 48

Figure 4.4 - Enlarged view of measured angle and output of different Kalman filter imple-
mentations .. 48

Figure 4.5- Pseudo code for filter configuration heuristic ... 50

Figure 4.6- MTT and radar signal processing blocks ... 53

Figure 4.7- Validation architecture basic IP cores. The MTT system runs on the PowerPC
except the Filtering&Prediction Kalman block that runs on the "RR1, RR2 and RR3" recon-
figurable hardware blocks , ... 54

Figure 4.8 - Radar's FOV and Zone definitions. The Zones are identified by a radar
mounted in front of the driver's car , ... 55

xiii

Figure 4.9- Data corresponding to 3 detected targets in the Detection Unit. The 2 targets in
Z1 are hidden by target in Z2 without the Enhancement Unit .. 57

Figure 4.10 - Our DPR system distance output of a target moving across all different confi-
gurations ... 58

Figure 4.11 - Reconfiguration triggering distances supposing a target travelling at a speed of
120 kmlhr ... 60

Figure 4.12- Enhanced proposed architecture for an MTT based DAS system using an en
hanced soft core processor instead of 20 simple processors for the Filtering&Prediction
block. [J.KHAN 2009] ... 63

Figure 5.1 - Detailed figure showing the basic building blocks of an H.264 encoder and de
coder. Also, the figure shows the placement of the ME unit and its relation among the en-
coder and the decoder ofthe multimedia system .. 68

Figure 5.2- Motion estimation of a group of 16x16 pixels in a Search Window among a
Current and a Reference Frame ... 70

Figure 5.3 -Total number of SAD computations for different computational window sizes
for a 16x16 pixels block ... 71

Figure 5.4 - A 4 x4 pixels block composed of four 2 x2 pixels blocks 72

Figure 5.5- Number of SAD4 x4 computations needed for a 16x16 pixel image block using
different sized search window blocks ... 73

Figure 5.6- The design of our proposed architecture of multiple reconfigurable regions in-
cluding static and fixed control blocks ... 75

Figure 5.7- The architecture instantiated for an example. Four regions are configured in this
system and the output selection level is Level3 ... 76

Figure 5.8- Internai design of the SAD4x4 block. This plot contains the internai operations
of the inputs in addition to the control signais as weil ... 77

Figure 5.9- Simulation output of the SAD4x4 block when processing the data in Table 5.2 ...
... 79

Figure 5.10- Routed signais and hardware connections inside the SAD4x4 block. 80

xiv

Figure 5.11 - Example of a basic partial self reconfigurable system including ali necessary
IP peripherals to perform a partial reconfiguration and measure the time needed to finalize
the operation ... 82

Figure 5.12- The different reconfiguration times measured when using the component in
[S.LIU 2010 _1] when a system is reconfigured with a variety of bit file sizes 83

Figure 5.13 - Number of SAD computations based on respective block sizes, using two pix
els shift, needed per frame for a variety of video sequences (the y-axis is in logarithmic
scale) .. 85

Figure 5.14- Current Frame pixels' mapping on memory and the respective frame control-
1er' s building blocks .. 88

Figure 5.15- Reference Frame pixels' mapping on memory and the respective memory con-
troller's different building blocks .. 90

Figure 5.16 - Pixels reading example from respective memory blocks according to block
size and number of active computational units ... 91

Figure 5.17- Required memory locations for various video types' resolutions and necessary
memory layers ... 93

Figure 5.18 - Power measurements acquired for different configuration implementations
using variable number of active regions .. 94

Figure 5.19- Energy and PSNR plot based on different block sizes and various number of
active regions. This plot is sorted in an ascending order of the accuracy PSNR 95

Figure 5.20- The effect of PSNR on image quality. The higher the PSNR, the clearer the
video image has become ... 96

Figure 5.21- Our proposed reconfiguration heuristics flow diagram 98

Figure 5.22- Battery draining in two static systems and our DPR system over time 98

Figure 5.23- Accuracy degradation in two static systems and our DPR system over time
... 99

xv

List of tables

Table 2.1 - Energy reduction by using DPR and clock gating as cited in [S.LIU 2010 _ 2]
... 15

Table 2.2 - DAS related work main features and properties. The main aspects of the related
work in comparison to our work are highlighted and cited in the table 20

Table 2.3- H.264 related work main features and properties. The main aspects of the related
work in comparison to our work are highlighted and cited in the table 24

Table 3.1 - Processor's optimizations applied in order to meet the highest performance of
each respective function in the processor. Execution latency is also provided in msec 35

Table 3.2- Hardware resources used by the software and hardware Kalman implementations
on standard FPGA fabric XC4VFX12 Virtex-4 .. 39

Table 4.1 - Hardware resources used by the different Kalman implementations. This table
also shows the hardware resource utilization of an implemented filter with respect to a re-
configurable region RR .. 49

Table 4.2 - Hardware resources used by the reconfigurable region in addition to those con-
sumed by the static IP cores ... 49

Table 4.3- Base and new DPR Filtering&Prediction hardware resource utilization compari-
son .. , .. 50

Table 4.4- Latencies for different filter implementations and reconfiguration overhead 51

Table 4.5 -A summary table illustrating the filters used in each respective configuration.
The errer obtained from each configuration is also mentioned .. 58

Table 4.6- Hardware resources used by the different Kalman and a-~ implementations. This
table also shows the hardware resource utilization of an implemented filter with respect to
the respective reconfigurable regions .. , 59

Table 4.7- Static and reconfigurable regions hardware resource utilization and total utiliza-
tion by the new MTT system ... 59

Table 4.8- Base and new DPR Filtering&Prediction hardware resource utilization compari-
son ... , ... 59

xvi

Table 4.9- Reconfiguration times needed for the switching among different configurations ...
... 61

Table 4.10 - Enhanced base and new DPR Filtering&Prediction hardware resource utiliza-
tion rough comparison .. 63

Table 5.1 - Profiling results of the ME unit for various video samples. The table shows the
%of the ME unit execution time out of the total encoder's execution time 71

Table 5.2- Simulated fed in data for testing the SAD4x4 block ... 78

Table 5.3- bit file sizes and different reconfiguration times for the SAD4x4 and the Blank
modules ... 81

Table 5.4- bit file sizes and different reconfiguration times for the SAD4x4 and the Blank
modules using the technique in [S.LIU 2010_1] ... 83

Table 5.5- The exact numerical values of the SAD computations from Figure 5.13 86

Table 5.6- Total number ofRAMB36 memory blocks used for different pixel shifts 87

xvii

xviii

Introduction

Since the invention of the first electronic deviee, and humans were investigating the
possibility of having more functionalities, less complexity, smaller deviee sizes and higher
efficiency. Ali was done to provide speed, reliability and high performance. In this work, we
explore two applications implemented in a state of the art electronic deviee technology.
Speed, reliability and high performance for these two applications are weil exploited and
de tai led. We jirstly present a general introduction to the history of the technology evolution
and our targeted technology. Following that, we present our two targeted applications and
introduce how the se applications can perform fast er, efficient/y and more re li able.

1.1. General introduction

In 1946, the first computer was invented in the University of Pennsylvania's Moore
School of Electrical Engineering. This first general purpose electronic computer was called:
the Electronic Numerical Integrator And Computer (ENIAC) with a cost of around 6 million
dollars [ENIAC] [H.GOLDSTINE 1993]. The ENIAC contained tens ofthousands of capaci
tors and resistors, weight around 27 tons, consumed around 150 KWatts in power and took a
167 m2 in space area. Ever since this invention, the race to the most dense, fastest, smallest
and lightest processor or on-chip electronic computational unit has begun. For example, the
industry of processors has reached 100 of millions of transistors on a single chip un til the mid
2000s. With a technology smaller than 40 nm and a power dissipation of less than 2 Watts,
very high speed computations were achieved as can be shown in Figure 1.1.

1

General introduction

1971
18J2
1874
187&
l&et
18eG
'lee
18aa
18&J
1&ea

'

Moore•s Law
Means More Performance

100,000 ~~~
,o~

Figure 1.1 - The number of transistors in Intel microprocessors growth associated

with Moore 's Law [MOORE].

In addition to processors, researchers investigated more methods to accelerate the ex
ecution of applications, in other methods than the software programming of processors. One
of the most interesting implementations that can accelerate the execution of a processor was
the use of hardware accelerators aside of a processor system. The first hardware accelerators
were implemented on Very Large Scale Integration (VLSI) fabric basis. Firstly emerging in
the 1970' s, these deviees were mostly used in the implementation of digital signal processing,
analog signal processing or both [E. VITTOZ 1994]. Although microprocessors are VLSI
fabric based, in the 1970s, VLSI has been introduced as fabric for designing separate hard
ware computational system-on-chip units. Such deviees were manufactured for specifie pur
poses and were not possible to change their functionality once manufactured.

With the growing of technology, the integrated circuit hardware computational units
have prospered as well. Following the VLSI fabric in the 1970's, Application Specifie Inte
grated Circuit (ASIC) has been firstly introduced in the early 1980's. With more transistor
density than in the VLSI fabrics, ASICs, in recent years, can now have full processors, mem
ory blocks and large building blocks. The configuration of an ASIC is simpler to modify
when compared to that of a VLSI. However, unlike VLSI, the fabric does not need to be re
fabricated but still can only be modified by the manufacturers [P.NAISH 1988].

Following the history and progress of on-chip computational hardware units, Field
Programmable Gate Arrays (FPGAs) have been introduced in the late 1980's early 1990's.
With more integrated transistors, these deviees have reached hundreds of thousands of tran
sistors in recent years. Our work is based on the use of FPGAs as a platform and fabric for
our implementations. Hence, we will present a short summary about FPGAs as an introduc
tion to our motivations and contributions.

2

General introduction

FPGAs, similar to VLSI and ASIC fabrics, have been accumulating transistors and
following the technology in transistor size reduction (Figure 1.2). One major advantage
FPGAs have over ASICs is the ability to perform countless reconfiguration of the fabric
without the need to go back to the manufacturer. Although FPGAs consume more power than
ASICs, they overcome ASICs in terms of flexibility. In the early years also, ASICs outper
formed FPGAs in speed and task execution. However, recently FPGAs have improved in size
and performance to match ASIC and SoC tasks. Figure 1.2 summarizes a brief history of
FPGAs showing the number of transistors and memory blocks growth over the past decade.
In Figure 1.2 we also show the technology in size reduction progress over the past decade as
well.

700

! 400

E dl 300

u
f200

-100

0

Figure 1.2 - FPGAs' last decade progress and improvements in terms of memory
size, number of logic elements and the transistor technology size.

FPGAs can be used to implement any logical function that an ASIC could perform.
FPGAs also contain programmable logic components called "logic blocks" or "configurable
logic blocks" (CLB), and a hierarchy of reconfigurable interconnects that allow the blocks to
be "wired together". Also, nowadays, FPGAs support the ability to partially reconfigure
part(s) of its logic dynamically on the fly without the need to stop the main system's execu
tion. While the system is running Dynamic Partial Reconfiguration (DPR) allows part of the
FPGA to be replaced by another needed computational unit or hardware accelerator. The
change into another hardware accelerator within a reconfigurable predefined region is based
on application demands. This ability can better utilize hardware resources by enabling the
possibility to have multiple configurations using the same hardware.

For example, a system can be running two tasks in parallel: Task A and Task B (Fig
ure 1.3). At time t2 the system is asked to perform Task A and Task C this time. Instead of
spending time tt-toto make a full reconfiguration ofthe FPGA to have configurations A and
C, the system can only partially reconfigure configuration B to become configuration C while
configuration Ais still running Task A. In this case, partial configuration allowed keeping the

3

DP R in a DAS system exploration

system running on Task A while spending a smaller reconfiguration time to implement confi
guration C (t3-t2).

1 1

n
0
:;)

:::!l
(JQ
r::
Dl ,....
ë"
:;)

)>

~~~ Mt P .,..., t M 

1 Configuration l 

i . :': ''j""""'" 

FPGA 

n 
0 
:;) -oti" 
c .., 
OJ ..... 
ë" 
:;) 

a:l 

4 ~ sa 

_n 
..., 0 
c :;) 
:;) :::!l 
:l(JQ 
-· c :;) ..., 

(JQ OJ 

~ g. 
~:;) 
-)> 

' 
····01 

1 
1 
1 
l 

~ . , 
Termination of 
Application B 

1 
t2 

:Xl 
n> 
n 
0 
:;) 

~ 
c ..., 
OJ ,.... 
ë" 
:;) 

!i 
-:;) 

:4:::!'1 oOQ 
"'C c 
"'C Dl n> ,.... 
a. -· _o 

:;) 

a:l 

( 

,rO··· 
1 
1 
1 
1 

?ZJ ~ T44 
Start of 

Application C 

t 
t3 

FPGA 

n 
0 
:;) -oti" 
c 

···~ .., 
OJ ..... 

1 ë" 
:;) 

' )> 

1 
l 

"'& 2 "t - a ... 
1 

Termination of Applications 

L ~''"=.o= .. 4,1 
t4 

Figure 1.3- A FPGA based system partial/y recorifiguring part ofits fabric to sup
port a new configuration while the other part is still running its mapped tasks. 

FPGAs have been used for many different applications. Since FPGAs can support pa
ralle! hardware accelerators functionality, applications such as cryptographie algorithms and 
code breaking best exploited this massive parallelism feature on this fabric. Other applica
tions such as Software Defined Radios (SDR), Driver Assistant Systems (DAS) and multi
media applications also made use of FPGAs implementations. However, only recently have 
such applications been explored on the basis of DPR and were found to be beneficiai in a 
variety ofmatters. In this dissertation, we present the work exploration ofDPR in botha DAS 
application and another on multimedia H.264 application systems. The reason for this choice 
is due to the fact that both DAS and multimedia application systems are part of the automo
tive application systems domain. 

1.2. DPR in a DAS system exploration 

Driver Assistance Systems (DASs) have become a widespread class of automotive 
applications in nowadays commercial vehicles. They lend even more confidence to driving 
and improve road safety in stressful driving conditions ( e.g. at night or in bad weather). 
Adaptive cruise control, radar aided automatic proximity control, and navigation systems are 
examples ofwell-known range ofhigh-tech DAS systems. Every DAS system is decomposed 

4 



DP R in a DAS system exploration 

of three stages: The capturing stage, the treatment stage and the restitution stage as can be 
seen in Figure 1.4. In the capturing stage, a sensor is mounted on the user's car to capture 
inputs to the DAS system. Such sensors can be a camera or radar. In the treatment stage, the 
data are taken from the capturing phase and applied to a set of a1gorithms that defines the 
functionality of the DAS system. Sorne algorithms are image processing based, like when 
using a camera sensor. In the restitution phase, the output from the treatment stage is treated 
before delivering them in voice, image, or mechanical action to the user. 

DAS system 

Capturing Treatment Restitution 

Sen sor 

Figure 1.4- Functional three stages of a typical DAS system. 

Traditionally, automotive systems have been designed using 8- and 16-bit microcon
trollers. However, increasing levels of complexity and computational demands in automotive 
applications are forcing a move to more powerful processors, DSPs, and even ASICs. In re
cent years, FPGAs also have been used to implement various automotive subsystems. With 
their inherent support for parallelism, high logic densities, and rich sets of embedded hard
ware components, FPGAs are very well suited candidates for implementing computationally 
demanding applications. Their flexibility, programmability, and fast design turnaround times 
also enable system designers to quickly introduce new features or update existing ones in 
response to changing requirements or new standards. 

Our work is based and centered on the treatment phase of a radar based DAS system 
using FPGAs. We are working on a target tracking DAS feature which aims for an early 
waming and collision avoidance system onboard a vehicle. The purpose of target tracking is 
to collect data from the radar sensor field of view (FOV) containing one or more potential 
obstacles of interest and to partition the sensor data into sets of observations, or tracks. We 
use a radar sensor in our application because it has the advantages of longer range as com
pared to camera based systems. It performs better in bad visibility conditions and has lower 
computational requirements. Moreover, radar helps to detect obstacles at longer distances and 
hence ensures longer reaction time for vehicle drivers. Our contribution lies in the exploration 
of the use of DPR in FPGAs to implement a dynamically reconfigurable system for automo
tive target tracking DAS system and present results for two different possible implementa
tions. Our work is novel in terms ofbeing the first work that targets the use ofDPR in a radar 
based DAS system. 

5 



DPR in a H264 system exploration 

1.3. DPR in a H.264 system exploration 

The H.264 is a widely used video compression standard for recording, compression 
and distribution of high definition videos. The standard is used in a wide range of applica
tions due to its high compression rate that can reach up to 50%. H.264 has also proven its 
efficiency and advantages in encoding and decoding video sequences and has therefore be
come a feature of mobile deviees. H.264's superior compression rates have made it an attrac
tive solution for mobile deviees due to their relatively scarce storage space. However, mobile 
deviees have also demands for real time video encoding/decoding of video sequences. This 
made researchers interested in the implementation of sorne, if not all, of the H.264 standard 
on hardware in order to meet real time constraints. 

As an introduction to the H.264 standard, a very general overview of an H.264 multi
media system is shown in Figure 1.5. Like any other multimedia system, the H.264 is decom
posed of an encoder and a decoder. The decoder phase performs exactly the opposite func
tions ofthat of the encoder. In the encoder, the first stage is the prediction stage. In this stage, 
the encoder predicts the value of pixels of smaller blocks in a frame based on previously 
coded data. The predictions from the prediction stage are then quantized in the transform 
stage using the Discrete Cosine Transform (DCT) integer transform. In the final stage, the 
video coding process produces a number of values that must be encoded to form the com
pressed bit stream. 

Video 
source 

Transform 

H.264 encoder 

Encode 

------------------- Compressed 
video 

Video 
output 

H.264 decoder 

Inverse 
Transform 

decode 

Figure 1.5- H264 encoder 'sand decoder 's building blacks. 

Our work targets, using the DPR feature in FPGAs, the implementation of a dynami
cally partial reconfigurable Motion Estimation unit, part of the encoder's prediction phase, 
inside an H.264 encoder. We present the computational complexity inside this unit and the 
implementation possibilities on an FPGA. Unlike other related work, we use the DPR feature 
not to replace our computational implemented units with other modules but rather to reduce 

6 



Plan ofthe document 

the energy consumption. The flexibility of our system in terms of image quality and power 
was the basis of our reconfiguration heuristics. We implemented our system on fabric and 
deducted results in terms of execution times, power measurements, reconfiguration times and 
acquired image qualities. 

1.4. Plan of the document 

This document is organized as follows: After the introduction, in the next chapter, 
chapter 2, we present the most recent related FPGA work in three sections. In the first field 
we cite DPR optimizations and research in literature. In the second section we cite the related 
work that targeted the implementation of a DAS system on FPGAs and specifically on DPR 
basis. In the third and last section of this chapter, we mention the most related work to our 
contribution regarding the implementation ofH.264 multimedia block(s) on FPGAs using the 
DPR feature. In chapters 3 and 4, we present our contribution in exploring DPR for a DAS 
system. After presenting a short introduction of the problem, we discuss in details our tar
geted DAS system and the functions associated in it in chapter 3. In chapter 4, we show our 
contributions of using DPR in DAS safety systems by presenting two possible implementa
tions showing the advantages and results gained in each implementation. In chapter 5, we 
present, like in chapter 4, our contribution but in exploring DPR for an H.264 multimedia 
encoder. After a short introduction of the base H.264 system, we discuss our DPR exploration 
inside this multimedia system. Our contribution is presented via showing results of our ap
proach and implemented system. Finally, conclusions and perspectives are drawn in the last 
chapter, chapter 6. 

7 



8 



Literature review 

In the last few years, andfollowing the introduction and progress of the DPRfeature 
in FPGAs, researchers have proposed severa/ improvements to this feature. These improve
ments were in terms of the way reconfiguration is performed and in speeding up this process. 
Here, we cite the most important work that has been done in this area firstly. Then, we 
present sorne recent most related work to the implementation of first, a DAS system and 
second, an H264 multimedia system on FPGAs using DPR. We cite important works in lite
rature for each of these systems and discuss the ir merits and demerits. This presentation mo
tivates our system 's implementation and highlights our proposa/ in the research domain. 

2.1. Dynamic Partial Reconfiguration related work 

FPGAs, integrated circuits designed to be reconfigured by customer demands after 
manufacturing, has been firstly commercially introduced in 1985 by Xilinx co-founders Ross 
Freeman and Bernard Vonderschmitt [P.CLARKE 2009]. Starting up with mere 64 configur
able logic blocks (CLBs), with two 3-input lookup tables (LUTs), the FPGA domain has 
reached millions of gates in the early 2000s [RECENT_FPGAS]. During the period between 
1985 and mid 1990s, Xilinx [XILINX], the leader company in FPGA design and fabrication, 
was controlling the market unchallenged. However, Starting from early 1990s, new campa
nies emerged and started to share the market with Xilinx such as Altera [ALTERA] and Actel 
[ACTEL]. 

Many improvements have been added to FPGAs ever since their introduction. One 
new feature is called: partial dynamic reconfiguration. Partial reconfiguration, as the name 
implies, is the ability to reconfigure a partial configuration space on an FPGA fabric. This 
feature allows the swapping of modules on the FPGA without the need to totally reconfigure 
the entire design area. Xilinx were the first to introduce the feature of partial reconfiguration 

9 



Dynamic Partial Reconjiguration related work 

to their FPGA deviees at around the mid 1990s. Their first deviees to support DPR were the 
Spartan-III and Virtex-II Pro FPGA deviees back then [SPARTAN-III] [VIRTEX-IIPRO]. 
The work done in this dissertation is based on the Xilinx FPGAs and hence, most of the re
lated works cited are based on Xilinx hardware verification as well. 

2.1.a. DPR design flows 
Partial reconfiguration has two main design flows: The Modular Design Flow and The 

Early Access Design Flow [C.BOBDA 2007] [PR_FLOWS]. Initially proposed for design 
engineers, the Modular Design Flow was not initially intended to support partial reconfigura
tion. It was used by leader designers to divide the FPGA into several parts, each having the 
desired amount of hardware resources needed by that block's designer engineer. The com
munication to these regions was based on fixed communication channels called Bus Macros 
(BM). The Modular Design Flow is shown in Figure 2.1. 

Synthesis 

The Modular Design Flow is divided into four steps [C.BOBDA 2007]. These steps 
are the following: 

1. The design entry and synthesis. In this step a top level design is implemented us
inga Hardware Description Language (HDL). The top level includes all the global 
logic and 1/0s. The modules that will be mapped as reconfigurable regions are as
signed as black boxes in the top level design. Also, signais that connect these 
black boxes and 1/0s are instantiated in this step. 

2. The initial budgeting. In this step, initial design constraints are assigned to the 
project. These constraints contain: BM position, hardware modules space reserva
tions, docks, power, ground signais and timing constraints. 

3. The active modules implementation. Here, the previously implemented modules 
are assembled into one top level design. The full design can be used to generate a 
full system bit stream that contains the initial configuration of the system. 

4. The module assembling. After the top level initial design has been implemented, 
other modules can be designed for targeted initially implemented modules. Partial 

10 



Dynamic Partial Reconjiguration related work 

reconfiguration is achieved by replacing modules within the same black box and 
during runtime. 

The partial reconfigurable regions in this flow were instantiated on an FPGA column 

overtaking the whole FPGA height. Even without the need for all the reserved resources for 
each module, regions must span over the height of the FPGA. 

The second partial reconfiguration design flow is the Early Access Design Flow 
[EARLY_ACCESS]. This new design flow is a Xilinx updated and enhanced Modular De

sign Flow. In this flow, scripts have been added to the design tools in order to better support 
the partial reconfiguration feature without the need to go in the design details. Graphical in
terfaces have been added to automatically trigger design scripts and insatiate different com
mands such as: new module instantiation, bus macros insertion, I/0 direction ... etc. In addi

tion to the improvements over the original Modular Design Flow, Early Access Design Flow 
added more Bus Macros with synchronization and directional pointers as well. One other 
major enhancement was the partial reconfigurable region instantiation over the FPGA. The 
new flow allowed defined block wise partial reconfigurable regions that does not need to 
span over the full chip height. The Early Access Design Flow steps are the same as those in 
the Modular Design Flow but in a more user friendly manner. 

One interesting work that summarizes the Xilinx tool flow, architecture and system 
integration was presented by [M.HUBNER 2006]. The work presents a tutorial to simplify 
for researchers how a partial reconfigurable system can be implemented. However, the tar
geted design is relatively old (Virtex-II Pro Xilinx FPGA board). Recent FPGAs, such as the 

Virtex-4 and Virtex-5, are different in design and fabric. Not only the fabric has changed, but 
also the design tools versions have changed and had switched from one design flow to aneth
er. There is merely any publication regarding a global partial reconfiguration tutorial due to 
the fact that such systems are directly related to the new software and tools versions in addi
tion to the deviees used. Hence, only basic knowledge can be acquired from the tutorials. 
This, in addition to an experience on the tools and HDL languages, can build a proper know
ledge on how to design a partial reconfigurable system on any FPGA supporting deviee. 

2.1.b. Architectural explorations ofDPR systems 
Partial reconfiguration is highly dependent on the targeted deviee FPGAs. For this 

reason, researchers tried to investigate enhancements to the reconfiguration process in both 
the theoreticallevel and the architectural leve!. The research was mainly aimed to target par
tial reconfigurable aspects that have the least dependency on the tools used or the target de
vices. Once an idea is established on hand, partial reconfigurable deviees were used for veri
fications purposes. Most, if not all, of the research related work was verified on Xilinx boards 

and tools since they were the only deviees supporting the partial reconfiguration ability. In 
this section, we present the most interesting work clone in the field of architectural explora
tion ofDPR systems. 

Sorne researchers investigated the possible usage of reconfigurable regions to scale a 
hardware accelerator attached to a running system. By scaling and scalability, here we mean 

11 



Dynamic Partial Reconfiguration related work 

implementing more processing elements executing in parallel. Hence, the system's enhance
ment lies in the reduction of its execution time but on the cost of more hardware resources 
consumption. Since scalability is one important advantage of the use of partial reconfigura
tion, a lot of work has been cited that made benefit of such usage for different applications. In 
this section however, we will mention few of the work that has been done on the reconfigura
tion exploration level. 

In the work of [A.OTERO 2010], partial reconfiguration has been introduced as an 
enabling feature to have a scalable systolic coprocessor based system as shown in Figure 2.2. 
The system was mainly tested for multimedia applications on a System on Programmable 
Chip (SoPC) architecture. The work presented showed that a system's architecture can adapt 
the scalability of its hardware accelerators to match real time requirements or application 
requirements using a scalable systolic partial reconfigurable architecture. The system high
lights the advantages of scalability when using partial reconfiguration. However, the work of 
[A.OTERO 2010] reserves a considerable amount of resources only for scaling a certain 
hardware accelerator. Their system does not make use oftheir free reconfigurable regions for 
other purposes such as enhancement blocks in other system's parts. 

Figure 2.2 - Scalable systolic coprocessor system 's general overview proposed by 
[A.OTERO 2010]. 

To the authors' knowledge, one of the most interesting work that has been done on the 
architectural level of partial reconfiguration has been proposed by Microsoft embedded and 
reconfigurable systems research group [MSR]. One of their earliest works was cited in 
[J.CARVER 2008]. In this work, an extensible processor was implemented with the ability to 
automatically floor-plan and relocate partial reconfigurable regions and hence, automatically 
instantiate partial reconfigurable regions. The process includes modifying a reconfigurable 
region generator according to the target FPGA and the reconfigurable region specs as shown 
in Figure 2.3. 

Though the work sounds very interesting in its general idea, however the work targets 
only one specifie FPGA deviee, the Virtex-4 Xilinx FPGA. Although the future work carries 
the idea of supporting more deviees, however, such systems are highly dependent on the bit 
files formats for each FPGA that are only provided by the manufacturer of the FPGA deviees. 
Since partial reconfiguration, from its introduction, is a highly deviee dependant feature, in
vestigating the automatic instantiation of such systems could be only industrial beneficiai on 
its entire. 

12 



Dynamic Partial Reconjiguration related work 

Target FPGA 

PR regions 

Figure 2. 3 - Relocation flow of P R regions proposed by [ J. CAR VER 2008]. 

2.1.c. Hardware support for a fast reconfiguration process 
One important aspect of partial reconfigurable system is their ability to be reconfi

gured on the fly and on demand. However, the reconfiguration process on its own incurs a 
considerable time and reconfiguration overhead. For sorne real time applications, this might 
introduce sorne failure in meeting the real time constraint. Hence, researchers were interested 
on the investigation of fast new methods to speed up the reconfiguration process, even to 
support the maximum reconfiguration access port' s optimal configuration speed of 400 
Mbytes/sec (TrcAP). 

One interesting work, in this field, is found in [M.LIU 2009]. In this work, the authors 
investigated various implementations of the Internai Configuration Access Port (ICAP) on a 
Xilinx FPGA. They found out that a Block RAM (BRAM) based ICAP can reach around 370 
Mbytes/sec (0.92xTrcAP). Their architecture design uses BRAMs to form a big buffering 
space inside the ICAP as shown in Figure 2.4. However this implementation requires 32 
BRAMs (around 50% of the BRAMs 16 Kbits found in a Virtex-4 FX20 FPGA) to be im
plemented, which is considered as a big number and a high resource consuming implementa
tion. 

Registers 

RAMBs 

Figure 2. 4- BRAM based !CAP architecture as proposed by [MLIU 2009]. 

13 



Dynamic Partial Reconjiguration related work 

In [M.HUBNER 201 0] we cite another approach to speed up the reconfiguration 
process. Here, the authors targeted having a simpler implementation of the ICAP controller 
that can both speed up the classic ICAP speed and increase the flexibility of a FPGA based 
processor. The basic idea of this implementation is to place and connect the ICAP core as 
near as possible to the processor responsible of performing reconfiguration. The authors used 
the Fast Simplex Link (FSL) as the direct near interface between the ICAP and the processor 
as illustrated in Figure 2.5. In addition to simplicity, the authors achieved a speed of around 
310 Mbytes/sec (0.77xTrcAP) with no use of any BRAMs memory resources at all. However, 
although the implementation was simple and straightforward, the speed acquired is still not 
close to the optimal speed of an ICAP. 

External memory 
(hosting partial bit files) 

Figure 2.5 -An FSL based !CAP controller proposed by [MHUBNER 2010]. 

To the author's knowledge, the work in [S.LIU 2010_1] is considered the most effi
cient implementation of an ICAP intelligent controller in terms of speed and resource utiliza
tions. In [S.LIU 2010_1], the authors used a Direct Memory Access (DMA) based ICAP con
troller to achieve a throughput of more than 399 Mbytes/sec (0.99xTrcAP) which is the closest 
to the optimal among different literature works. Their system aimed in maintaining a bridge 
between an extemal memory hosting the partial bit files and the ICAP. In the system they 
proposed, the extemal memory was a Static Random Access Memory (SRAM) connected to 
the ICAP via a master-slave DMA engine and thus gaining high reconfiguration speed while 
avoiding the busy system bus as shown in Figure 2.6. The only drawback of this work is that 
there was no interesting application that could benefit from such high reconfiguration speed 
presented. 

14 



Dynamic Partial Reconjiguration related work 

System bus 

Figure 2. 6- A DMA-engine based reconjiguration accelerator as proposed by [S. LIU 
2010_1]. 

2.1.d. Fast reconfiguration beneficiai study 
Researchers have fully investigated the enhancement ofthe ICAP throughput. In con

trast to this investigation, [S.LIU 2010_1] have reached an almost optimal ICAP throughput 
which is around 400 Mbytes/sec. Although the authors did not present a real application that 
could benefit from such high reconfiguration speed, but [S.LIU 2010_2] found another ad
vantage of the high speed reconfiguration pro cess. 

In [S.LIU 2010_2], the authors investigated the energy reduction that could be 
achieved with run-time partial reconfiguration. The authors proves, both in theory and in on
board measurements, that using a high speed reconfiguration component can make partial 
reconfiguration outperform clock gating in power and energy reduction. The authors used a 
64-bit division component and compared the energy reduction by either using DPR or clock 
gating. The obtained results are shown in Table 2.1, where the first column represents the 
duration the hardware component was inactive shown in scientific notation. 

5e+OO 15.542 10.38 
Table 2.1 - Energy reduction by using DPR and clock gating as cited in [S.LIU 

2010_2]. 

As a conclusion of the work of Table 2.1 and the work of [S.LIU 2010_2], for longer 
inactive times of hardware accelerators, DPR can gain more energy reduction than clock gat
ing. Although the work of [S.LIU 2010_2] is convincing, there was also no interesting appli
cation that could benefit from this energy reduction. The authors presented only a 64-bit divi
sion component and applied various tests to it. 

15 



Driver Assistant System related work 

The summary and the most important conclusion of the work of [S.LIU 2010_2] is 
summarized in equation (2.1 ). Where, energy can be reduced using DPR if the ICAP 
throughput TJCAP is greater than the product of the reconfigurable region power (Ppr) with the 
size of the partial bit file (Sb!) divided by the product of the reconfiguration static components 
power dissipation (Pstatic) with the inactive time of the reconfigurable region (tinactive). Hence 
if the ICAP throughput is 300 Mbps, even in very bad cases where the reconfigurable region 
consumed 1 Watts and was inactive for 1 msec, with a static power of 10 Watts and a bit file 
size of 1 Mbytes, still, 300 Mbps>100 Mbps. Our system where we used the work of [S.LIU 
2010 _ 2] has a lot less variables values than tho se proposed bef ore. 

Ppr x Sbf 
TICAP > -~--~

Pstatic X tinactive 
(2.1) 

Researching the architectural and enhancement level of partial reconfiguration is 
highly dependent on tools and fabric deviees used. Hence, researchers have been focused on 
the following aspects of partial reconfiguration: the presentation of partial reconfiguration 
and how to implement a base system and the reconfiguration speed enhancements. In our 
work, we make use ofwhat has been presented in [S.LIU 2010_1] and achieved by research
ers and apply it to our base system architecture and show results. 

After presenting the research work done on the improvements of the DPR process, we 
will present the research work related to using DPR for the benefits of certain applications. In 
the following two sections, two applications' research related works are presented to show 
how literature made use of the DPR feature in real system implementations. 

2.2. Driver Assistant System related work 

Different types of DAS systems have been proposed in the last few years. Most of the 
existing DAS systems have either limited functionalities or are too costly for a large-scale 
automotive utilization. Among the most popular DAS functionalities, we can cite: adaptive 
cruise control, lane keep assistance, parking assistance systems and obstacle detection and 
avoidance systems [PREVENT] [A.VAHIDI 2003]. In the past, most programmable plat
forms were based on 8-bit or 16-bit micro-controllers. These platforms are unable to effi
ciently support new processing intensive automotive applications. 

Recent research activities concentrate on the use of DAS in complex environments 
and scenarios, such as detecting bikes, pedestrians and children under changing weather and 
lighting conditions. The proposed systems in these projects are implemented by different 
hardware and/or software architectures. From the hardware point of view, dedicated hard
wired ASIC to pure programmable processors were used. To offer a good perfor
mance/flexibility/cost trade-offs, researchers designed multi-processor system-on-chips 
(MPSoC) and/or hardwired FPGA-based circuits that are more and more used in DAS sys
tems. 

16 



Driver Assistant System related work 

2.2.a. The IMAPCAR and EYEQ2 projects 
Two of the earliest and interesting works that implemented a DAS system on an 

FPGA basis and explored the benefits of such an implementation were proposed in the IM
APCAR [IMAPCAR] and EyeQ2 [EYEQ2] projects. Both the ImpaCAR and the EyeQ2 sys
tems are examples of a fully programmable MPSoC implementation. The architectures are 
dedicated to automotive security applications using vision systems and are therefore camera
based implementations. The IMAPCAR uses SIMD architecture of 128 processing elements 
and a four-way Very Long Instruction Word (VLIW) control processor. On the other hand, 
the EyeQ2 uses two MIPS32 processors for scheduling and controlling the concurrent tasks, 
and eight programmable coprocessors for vision and vector processing (SIMD). These co
processors are dedicated to DAS specifie tasks such as object classification, tracking, lane 
recognition and filter applications. One of the limitations of these systems is that unused co
processors may consume a lot of resources and energy even when not used. These two archi
tectures provide support for a fixed set of real-time data intensive applications. For this rea
son, these systems are unable either to accommodate to new applications or to adapt the 
hardware to the different scenarios. 

2.2.b. Radar based DAS systems 
In another approach to implementa DAS system, we cite [S.LEBEUX 2006]. In this 

work, the authors also used a programmable MPSoC implementation in addition to sorne 
hardware accelerators attached to the main system. This security based application implemen
tation was based on the use of a radar sensor. In addition to the radar and in order to enhance 
the system's prediction and obstacle tracking algorithm, an intelligent cruise control Global 
Positioning System (GPS) was used. Their results show a considerably huge amount of hard
ware resources usage for such an implementation. On the other hand, hardware resources 
consumed by processors and hardware accelerators may become obsolete when not used in 
certain situations. A general overview of the system proposed by [S.LEBEUX 2006] can be 
seen in Figure 2.7. 

Control automation 
(HW block) 

Mode computation 
(HW block) 

Figure 2. 7 - A system overview of an early radar+GPS sensor based DAS system 
proposed by [S.LEBEUX 2006]. 

17 



Driver Assistant System related work 

In the same context of a radar based DAS system implementation, we cite [J.SAAD 
2009]. In the work of [J.SAAD 2009], a flexible FPGA based DAS implementation was pro
posed. The main work was done on the signal processing level where the proposed DAS sys
tem makes use of new particular radar waveform feature to enhance the capabilities of old 
adaptive cruise control radars. The system contains few processors in addition to sorne hard
ware accelerators, forming a hybrid MPSoC architecture (as shown in Figure 2.8). The pro
posed system proved its reliability and functionality via field studies and experimentations. 
The system showed very promising results both in terms of hardware re source utilization and 
fast execution times that made the system suitable for real time implementations. In contrast 
to the resource utilization and the fast execution times, the proposed system was mainly 
based on the treatment of the long or short range used radar. In addition to what have been 
mentioned, hardware resources consumed by either a not used processor or any hardware 
accelerator may become obsolete when not in use. 

Figure 2. 8- A hybrid radar based DAS system architecture as proposed in [ J. SAAD 

2009}. 

2.2.c. Camera based DAS systems 
The first work using partial dynamic reconfiguration for automotive applications has 

been proposed by [C.CLAUS 2007] and [C.CLAUS 2010]. To our knowledge, this is the 
closest work to ours. In this project, three different situations are considered: highway, tunnel 
entrance, and inside tunnel. For each situation, a given hardwired co-processor must be 
loaded and mapped on the FPGA. Two hard cores processors, in the FPGA's static part, were 
used. The first processor realizes high-level image processing while the second was set in 
charge of the control and partial reconfiguration management functions. Consequently, when 
this processor detects a modification of the driving environment, a new image-processing 
algorithm must be executed and thus a new co-processor is defined. The system overview is 
shown in Figure 2.9. 

18 



Driver Assistant System related work 

In contrast to the work mentioned above, our system uses a radar sensor instead of a 
video camera. As explained in the following chapter, the types of processing as well as the 
constraints are different. The use of radar as a sensor in our system has the advantage of 
longer range as compared to camera based systems. It also performs better in poor visibility 
conditions (e.g. foggy weather). Even if initially, radar based DAS was only possible at a 
significant cost, their cost is gradually decreasing making them a cost-effective solution. 

Figure 2. 9- The overview of a DP R DAS system using a camera as a sensor as pro
posed in [C.CLAUS 2007] and [C.CLAUS 2010]. 

2.2.d. Multiple Target Tracking radar-based DAS system 
Our work is an extension and improvement of an earlier proposed DAS system in 

[J.KHAN 2008] and [J.KHAN 2009]. The base system was a utilization of an MPSoC archi
tecture on FPGA to support DAS applications. The system was a radar based DAS sensor 
system. It used a Multiple Target Tracking (MTT) algorithm based on radar data input ac
quired from the driving environments. The tracking algorithm was divided into functional 
blocks mapped on 23 dedicated soft core processors as shown in Figure 2.1 O. The MPSoC 
system was connected via a mesh of buses in order to pro vide valid data transfer among dif
ferent processors. 

The proposed base architecture was validated via simulated data sets and proved to be 
reliable and functioning correctly. However, in contrast to the fully functional system, the 
proposed architecture consumes a large amount of logic gates and hence a high hardware 
resource utilization. Also, the system had to be pipelined in three stages in order to meet the 
real time constraints. In addition to that, this system does not offer DPR and thus cannot 
adapt the architecture to different driving scenarios or application requirements. 

2.2.e. Summary 
To summarize the work done in the past few years and to show what our proposed 

system will offer, we deducted Table 2.2. In Table 2.2 we show for each cited work, includ-

19 



Driver Assistant System related work 

ing ours, the important features and we highlight the differences among them. In the table we 
present the sensor used in every DAS system. The used architecture is also mentioned in the 
table, whether it was based on a multiprocessor architecture or a hybrid combination of pro
cessors and hardware accelerators. We also show what the cited work was treating inside the 
DAS system: image processing, radar signal processing or a treatment algorithm such as the 
MTT algorithm. In addition to all the mentioned properties, we show which of the related 
work used the DPR feature. 

Soft 

Soft 

Soft 
processor 

System 
bus mesh 

Soft 
processor 

(20) 

• • • 
Soft 

Figure 2.10- The system architecture of an MPSoC MTT-based DAS system using a 
radar as a sensor as proposed in {JKHAN 2009]. 

Sensor Architecture Treatment DPR 

Table 2.2 - DAS related work main features and properties. The main aspects of the 
related work in comparison to our work are highlighted and cited in the table. 

The main insight of Table 2.2, and to conclude this section, is to show the relationship 
between our work and the work in the literature citations. Most DAS systems are different, 
either with the used sensor, the architecture they are built on, which treatment method is be
ing implemented or if they support multiple driving conditions using the DPR feature. In 
comparison to other work, sorne used a static radar based DAS system without the use of 
DPR. On the other hand, sorne work used a DPR based DAS system, but with the use of a 

20 



H264 multimedia system relatedwork 

different sensor deviee. Our work is considered the first to use a radar based DAS system on 
the basis ofhybrid DPR architecture. 

2.3. H.264 multimedia system related work 

W e will now explore another application from literature that researchers implemented 
on the basis of DPR in FPGAs, the H.264 multimedia system. Similar to the previous section, 
we will cite the most important work related to ours and show where our contribution lies in 
the research community. 

At first, when the H.264 multimedia standard has been introduced in 2003, a lot ofre
search has been done to better optimize the functionality of the standard. In the same time, 
during the last decade, the H.264 migration into hardware has been a very attractive area. 
Most of which have been capable of implementing complex computational blocks onto AS
ICs or on FPGAs. 

2.3.a. H.264 exploration on ASIC 
The use of ASIC platforms has been proven to be very interesting due to their low 

power consumption and flexible architectures in terms of hardware resources and memory 
blocks. The earl y work done on the migration of the H.264 full or partial blocks into hard
ware design was done using VLSI architectures or ASIC fabrics. 

In [S.YEOWY AP 2004], [Y. W. HUANG 2005] and [C.WEI 2007] for example, the 
authors investigated the implementation of the H.264 motion estimation onto a VLSI ASIC 
based architecture. Other researchers investigated the implementation of the motion estima
tion on ASIC fabrics as cited in [M.ELHAJJ 2009]. In this work we aim to explore the im
plementation of the motion estimation block on FPGA fabrics. This is due to the important 
role this block plays in the H.264 system's encoder and its direct relationship to the decoder. 

Over the past few years, various techniques and methods have been proposed for par
tial or full implementations of the H.264 standard on FPGAs. The flexibility offered by these 
deviees and the ease of reprogramming them with a variety of hardware resources has made 
FPGAs a good candidate platform to target. One of the most interesting works that targeted 
the implementation of the H.264 encoder and specifically the motion estimation is found in 
[M.SHAFIQUE 2008]. This work has become a reference of comparison. However, this 
work was based on a MIPS processor platform and not on the DPR basis or hardware accele
rators. The work of [M.SHAFIQUE 2008] is different than ours in the following points: 

The cited work is based on MIPS processors while our work is a hardware accele
rator unit. 
Our work, in concept, makes use of DPR for energy/performance trade-offs while 
the cited work is an optimized standard motion compensation unit. 

21 



H264 multimedia system related work 

Our work is not an introduction to a novel motion compensation unit but rather a 
presentation of how even a simple motion estimation computational unit can trade 
energy with performance with the aid of DPR 

Our work is made up of three major edges related to what has been done: H.264 en
coder, FPGAs and DPR. For this reason, in this section we will mention few of the most re
cent related work to the usage ofDPR in the H.264 system encoder/decoder. 

2.3.b. Static scalable motion estimation on FPGAs 
One of the earl y works that targeted the H.264' s encoder implementation on FPGAs 

was the work done in [T.MOORTHY 2008]. The author's work was the first to allow the 
implementation of H.264 motion estimation on an FPGA that can support high definition 
image resolutions of 1920x1088 pixels. The author used a search range of 48x63 pixels in the 
implementation and the system can be scaled down to support lower image resolutions and, 
in tum, reduce hardware blocks usage. The work in [T.MOORTHY 2008] is scalable not by 
using partial reconfiguration, but rather by reconfiguring the data paths to the processing 
elements. Hence, by keeping the processing elements as is, re-routing the data sent to each 
element will result in a new output as will be shown in chapter 5. However, although high 
resolution image processing was achieved, the cost in hardware utilization was too high. 

In [H.SAHLBACH 2010], the authors presented a motion estimation block implemen
tation on FPGAs. Results show high performance achievement based on image resolution of 
512x384 pixels and a search range of32x64 pixels. The basic processing elements were scal
able in order to provide a trade-off between the frame processing rate, image resolution or 
lower hardware resource utilization. Although the authors did not use the feature of partial 
reconfiguration in the ir work, the scalability of their system was based on the reconfiguration 
of data paths. The main processing elements of the system are statically implemented during 
all times, and depending on the system requirements; the data paths to the processing ele
ments are reconfigured. 

2.3.c. H.264 exploration on DPR basis 
A handful of work has been targeting the implementation of the whole encoder on 

FPGAs. One example on this implementation can be cited in [NOVA]. Although a full FPGA 
implementation of the H.264 encoder can be attractive, however, a huge amount of hardware 
resources must be utilized. On the other hand, sorne hardware blocks might become obsolete 
since they are not functioning all the time. For this reason, in this work our most important 
pointis to mention the usage ofDPR in the encoder. 

In [M.GUARISCO 2010] the authors used the DPR feature on the H.264 encoder to 
change from one standard of video adaptation to another. Starting with the Standard Video 
Coding standard (H.264/SVC) they were able to add few extensions on it in order to migrate 
the architecture from being a H.264/SVC to become a H.264/ A VC (Advanced Video Coding) 
standard. The acknowledgment of this work relies on the utilization of hardware resources 
from the support of low quality videos using the SVC standard to the support of high quality 
videos using A VC standard. Since the two systems share a considerable amount of static 

22 



H264 multimedia system related work 

common features, partially reconfiguring the SVC can lead to an AVC system without the 
need to perform a full system reconfiguration. The AVC new system can support high defini
tion image resolutions of 1920x 1088 pixels. 

One other work cited that made use of the DPR in the H.264 is the work cited in 
[R.KHRAISHA 2010]. In [R.KHRAISHA 2010], the authors used the methods of partial re
configuration to implement the deblocking filter of the H.264 decoder on a DPR architecture. 
The system, with the use of DPR, became scalable, thus allowing the use of different taps 
depending on the video resolution feed to the system. The system proposed can adapt its four 
reconfigurable regions to perform the filtering of a frame in order to meet time constraints 
demands according to the video frame's resolution. When timing constraints are already met, 
the multiple tap filters can be used to enhance image quality. 

The closest work to the authors' knowledge was found in [J.HUANG 2009]. The au
thors in [J.HUANG 2009] used the DPR ability in FPGAs to scale the DCT computation unit 
in an H.264 encoder. Eight reconfigurable regions were used to support a range scaling from 
1 x 1 to 8x8 DCT computational units depending on the encoder's demands. However, our 
point of interest in this work was the introduction of the motion estimation computations in 
the proposed system. The Motion Estimation (ME) computational units were swapped in the 
proposed system whenever no DCT computational units were used in any reconfigurable re
gion. One difference between our proposed system and the one cited in [J.HUANG 2009] is 
the purpose of each Reconfigurable Region (RR) in the system. In [J.HUANG 2009], ME 
computations were used as enhancement unit when available while in our case they are used 
as an essential building blacks in the system design. In the same context, the configuration of 
each RR in our system was to support a time or a block size constraint. Not only our ME 
computational units were explored as enhancement units, but also as a dynamic trade-off be
tween accuracy or image quality and the system's energy consumption. One other difference 
in our work is the exploration of the use DPR to perform energy reduction rather than switch
ing modules with other modules. It is a major advantage to swap modules in a reconfigurable 
region but blanking a region as well has the advantage of energy reduction as our work 
shows. 

2.3.d. Summary 
To conclude this section and to show what our proposed system will offer, compared 

to other related work in literature, we deducted Table 2.3. In Table 2.3 we show for each 
cited work, including ours, the important common features of each citation and we highlight 
the differences among them. The mentioned features are the following: the search range of 
systems targeting the implementation of the ME computational unit on an FPGA. The num
ber of hardware logic cells occupied by the proposed system (fully or only the computation 
implemented hardware blocks). The targeted implemented block: The ME, SVC or the deb
locking filter. And finally, whether or not any cited work explored the power sav
ings/consumptions or the energy savings/consumptions. 

Starting with the first feature in Table 2.3, we find out that our work is similar to that 
of [T.MOORTHY 2008] that is the best search range an H.264 encoder can have. Regarding 

23 



H264 multimedia system related work 

the hardware resources, our system consume the least hardware resources when compared to 
other cited work related to the ME implementation. One other insight from Table 2.3 is that 
our system is the only system among the related work that shows an energy analysis of a 
DPR implemented ME of an H.264 encoder. 

Search HW logic DPR 
cells-

Power Energy 

1111111 

1
111 

Table 2. 3 - H 264 related work main fe atur es and properties. The main aspects of the 

related work in comparison to our work are highlighted and cited in the table. 

24 



25 



Hybrid Architecture for a Mul
tiple Target Tracking Driver 
Assistant System 

In this chapter, we introduce the targeted algorithm used in our DAS system, the 
MTT tracking algorithm. We present our base architecture used with analysis and descrip
tion of each interna! functional black. We follow by discussing the modifications made to the 
original proposed system and the ability to migrate it from a MPSoC architecture to a hybrid 
architecture. Results, analysis and discussions are mentioned as a proof to the validity of our 
new proposed system design. 

3.1. Introduction 

The past two decades have witnessed a proliferation of microelectronic deviees in au
tomotive systems. Today, such deviees are commonly used in a wide range of automotive 
applications including engine and vehicle control, anti-lock brakes, navigation systems, and 
car entertainment units. While early automotive systems were designed using micro
controllers, DSPs, and ASICs, sorne of the newer systems use FPGAs [M.ULLMANN 2004]. 
In addition to providing high logic densities, integrated hardware components, and fast design 
turnaround times, FPGAs can be easily reconfigured to meet the needs of their operating en
vironments. This makes FPGAs ideal platforms for new automotive applications. 

26 



Driver assistant systems and the base implementation 

An increasingly important class of automotive applications, particularly for commer
cial vehicles, is driver assistant systems. Such systems reduce a driver's workload and im
prove road safety in stressful driving conditions ( e.g. at night or in bad weather). Driver assis
tant systems often require real-time monitoring of the driving environment and other vehicles 
on the road. A MTT algorithm, part of a DAS system, uses an on board radar to keep track of 
the speed, distance, and relative position of all vehicles within its field of view. Such infor
mation is crucial in applications such as collision avoidance or intelligent cruise control. The 
computational needs of a MTT system increase with the number of targets that must be 
tracked. 1t is therefore very difficult for a single processor to handle these computational re
quirements alone. 

In this chapter we present a FPGA-based MPSoC architecture for implementing a 
MTT system. We describe the evolution of our system from a software-based implementation 
that distributes the computational workload among multiple soft processor cores to a hybrid 
implementation that combines soft processor cores with dedicated hardware blocks. We also 
discuss the system-level trade-offs we made and the possibility to now introduce the dynamic 
partial reconfiguration into our hybrid system. 

This chapter is organized as follows: in section 3.2, we present a general overview of 
the DAS system. After that, we present a MTT collision avoidance system used in automotive 
applications as a DAS application. The MTT system is defined and is presented in detailed 
functional blocks. The base system architecture is then introduced and described. In section 
3.3, we present our approach to migrate the MPSoC MTT DAS system into a hybrid system. 
We present details and analysis of our targeted block in the MTT system that can be changed 
from a software-based block into a hardware block. Advantages of this change are validated 
by performing tests and obtaining results. Finally, we conclude the chapter in section 3.4 and 
summarize the results. 

3.2. Driver assistant systems and the base implementation 

Driver assistant systems are an increasingly important class of automotive applica
tions, particularly in commercial vehicles where they can greatly reduce a driver's workload 
and improve road safety in stressful driving conditions [F.KUCUKA Y 2004]. Driver assis
tance systems commonly require real-time monitoring of the driving environment and other 
vehicles on the road. 

DAS systems are usually composed of three stages: capturing, treatment and restitu
tion stages (Figure 1.5). Such systems are built with the aid of one or multiple senor deviees. 
These sensors could be mounted cameras, tracking radars, light sensors, speed acquiring de
vices and many more. For any sensor used, a capturing stage is needed to acquire information 
from such sensors (image, signais, light, etc ... ) and convertit to certain signaling formats to 
be used for treatment. The treatment stage, in conjunction with the capturing stage, is respon
sible for the decision making of a DAS system. In this stage, certain algorithms are invoked 

27 



Driver assistant systems and the base implementation 

in order to perform the decision making of the DAS system based on the information from 
the capturing stage. The decisions from the treatment stage are then delivered to the driver 
using the restitution stage. 

In this section, we focus on the treatment stage of a DAS system. The work presented 
is part of the PRIMA-CARE project (Prevention ofRoad accidents through a combination of 
Intelligent radar Multi-sensors and dynamic management of sound Alerts according to the 
Risk Encountered) DAS system's treatment stage [PRIMA-CARE]. We present in this sec
tion the algorithm used inside the treatment stage (the MTT algorithm). We also highlight the 
base architecture of this system as an introduction and motivation to the DPR based proposed 
solution and implementation. 

3.2.a. Multiple target tracking system 
In most driving conditions and environments, multiple targets can be detected in the 

FOV of the sensor mounted. Hence, the use of highly accurate tracking algorithms must be 
used to ensure the proper tracking of multiple targets. One of the most common algorithm 
solutions is the MTT algorithm. First proposed in [N.W AX 1955], the MTT system is a track
while-scan based system. This system, meant for automotive driver assistance applications, 
must take into account the specifie dynamics of the obstacles encountered on roads. Such 
systems uses radar based sensor deviees, over a predetermined search volume, in which data 
is received at regular intervals as the radar and sent to the MTT system. 

The basic elements of a MTT system are shown in Figure 3 .1. Each MTT system is 
decomposed of three basic building blocks: 

1. The Measurement Data Processing block responsible for the data processing be
fore sending it into the MTT functional blocks. This block includes all signal 
processing blocks including the radar sensor deviee. 

2. The Data Association Block, which plays an important role in the tracking of mul
tiple obstacles and assigning each to a specifie track. 

3. The Filtering&Prediction block, which incorporates the assigned observations in
to a set of updated track estimates. 

A MTT system functions, as shown in Figure 3.2, in the following manner: when an 
observation is received from the sensor deviee, specifie signal processing is performed before 
sending the information into the Data Association Block. First, incoming observations are 
considered for existing tracks from previous scans. Gate Computation tests which of the 
possible observation-to-track assignment is more "reasonable" at the beginning before a more 
refined algorithm is used to determine the final pairing. In this case, certain observations 
without associated tracks can generate new tracks. A track is instantiated and confirmed only 
when the number and quality of observations satisfy a certain criteria. In a similar manner, 
low quality tracks, over time are deleted. Finally, a gate is set around each track and the cycle 
repeat itself [S.BLACKMAN 1999]. 

28 



Driver assistant systems and the base implementation 

Input Data 

Filtering & 
Prediction 

Figure 3.1 - MTT system 's basic building blocks. The Data Association 3 Blocks are 
also shown in the figure. 

Measurement Prediction Possible Associations -- ............. .,. 
Figure 3.2- MTT state prediction and estimation. [J.KHAN 2009} 

The MTT application tracks targets by processing data measured by the radar. This 
datais processed in three iterative stages: 

1. During the observation stage, the MTT application reads speed, distance, and 
azimuth angle data for each target. 

2. During the prediction stage, an adaptive filter is used to predict the location of 
each target on the subsequent radar scan. This prediction is based on the actuallo
cation data measured during the observation stage and an estimate of the location 
data computed by the filter during the previous radar scan. 

3. Finally, during the estimation stage, new target location estimates are computed 
for use in the subsequent prediction stage. 

Figure 3.3 shows the structure of the MTT application. A more detailed description of 
the application and its mathematical formulation can be found in our earlier work [J.KHAN 
2008] and [J.KHAN 2009]. 

29 



Driver assistant systems and the base implementation 

Filtering & 
Prediction 

Target 
coordinate 
estima tes 

Figure 3.3- MFT system 's detailed building bloc/cs. The Observation-to-Track Asso

ciation and Track Maintenance blocks are shown as detailed inner blocks in the figure. 

In Figure 3.3, we show a more detailed architecture of the MTT system and its inner 
blocks. Starting from the first stage of the input data, in our system, we use an AC20 TRW 
radar based sensor deviee mounted in front of our car, realizing a scan every 25 msec [RA
DAR]. The data sent to the MTT system includes: targets' distance measured away from the 
radar, positional angle, linear velocity and angular velocity. 

The Gate Computation block is the first step in the data association process. This 
block receives targets' predicted states and predicted errors covariance from the Filter

ing&Prediction blocks. Using these two values, the predicted states and errors, the Gate 
Computation block defines the probability gates which are used to associate incoming obser
vations to existing targets. The Gate Checker block carries inside of it the criteria in which an 
incoming observation is to be assigned with an existing target or the creation of a new de
tected target. In other words, this block is mainly responsible for the pairing of predictions to 
observations according to a certain criteria. The cost of every pairing inside a gate is sent to 
the Cost Matrix Generator block. This block, as the name implies, is responsible for the gen
eration of a set of cost matrices including the cost of assigning certain measurements to exist
ing targets. Based on these matrices, the Assignment Solver block is responsible for the final 
pairing between measurements and the existing targets. The output will be a one-to-one as
signment of one measurement to one existing target. 

The Track Maintenance block is made up of three sub-blocks: Obs-less Gate Identifi
er, New Target Identifier and Track Initia/ize/De/ete. In real situations, sorne targets might 
leave the FOV of the radar. In other cases, a new target might enter the FOV of the radar. 
When a target leaves the FOV of the radar, the Obs-less Gate Identifier identifies this target 
and triggers the Track Initia/ize/De/ete block to remove this specifie target from the calcula
tiens and predictions since it left the detection area of the radar. However when a new target 

30 



Driver assistant systems and the base implementation 

is detected, the New Target Identifier identifies that a new target has entered the FOV of the 
radar and hence a new track must be initialized. This block triggers the Track Initial
ize/Delete block in order to establish a new track for the new detected target. 

The Filtering&Prediction block is particularly important as the number of filters im
plemented inside this block is the same as the maximum number of targets to be tracked. In 
the earlier work of [J.KHAN 2008], 20 Kalman filters were implemented in order to support 
the tracking of a maximum number of 20 targets. 

3.2.b. Filtering&Prediction block in tracking systems 
The MTT application can be implemented using a variety of adaptive algorithms in

cluding a-~ filter, mean-shift algorithm, and Kalman filter [S.BLACKMAN 1999]. In our 
system, we have chosen to implement both the Kalman and the a-~ filters. The Kalman filter 
is used because it is an important block in the whole MTT system. It behaves properly and 
effectively with the other MTT blocks. A Kalman filter is designed to track a moving object 
having a constant velocity. The process and measurement models presented above for target 
dynamics can be classified as linear models with Additive White Gaussian Noise (A WGN). 
For this reason we use the Kalman filter because it is a recursive Least Square Estimator 
(LSE) considered to be the optimal estimator for linear systems with A WGN probability dis
tribution [S.BLACKMAN 1999]. 

Due to the importance of the Kalman filter in our implementation, it is important to 
cite the mathematical computations inside this filter. The Kalman filter mathematical compu
tations are shown in equations (3.1) to (3.8). 

Zk =Distance; Angle (3.1) 

Yk pred =A* Yk-1 (3.2) 

Pk pred = A * Pk-1 * A' + Q (3.3) 

K = Pk pred * H' * (H *Pk pred * H' + R)-1 (3.4) 

Ykestim = Ykpred + K * (zk- H * Ykpred) (3.5) 

Pk estim = (1 - K * H) * Pk pred (3.6) 

Yk-1 = Yk estim (3. 7) 

Pk-1 = Pk estim (3.8) 

Zk: is the measured input distance and angle. 

A: is the assumed known state transition matrix. 

Ykpred: is the predicted state vector. 

Yk-I: is the previous estimated state vector. 

31 



Driver assistant systems and the base implementation 

Ykestim: is the estimated state vector. 

Pkpred: is the predicted error covariance matrix. 

Pk-1: is the previous estimated error covariance matrix. 

Pkesum: is the estimation error covariance matrix. 

Q: is the AWGN assumed known covariance matrix. 

H: an observation matrix that relates the current state to the Zk. 

K: is the Kalman gain matrix. 

/: is an identity matrix. 

R: is the measurement noise covariance matrix. 

In summary, the Kalman filter takes as inputs: The measured distance and angle. 
These are assigned in the Zk matrix as shown in equation (3.1). As for matrixes A, Q, H, R 
and/, they are considered input matrixes from other MTT functional blocks respectively. Yk 

estim is the filter's only output matrix, sent to the driver or restitution phase, that includes the 
predicted and filtered distance and angle. 

However, real objects actually tend to move in variable accelerations and therefore 
different velocities. The choice of the a-P filter is due to its simple implementation and its 
consideration of target velocities in decision makings [S.BLACKMAN 1999]. In general, an 
a-P filter is a simplified estimation filter for data smoothing and control applications. When 
an a-P filter is applied to motion systems, it takes as inputs, the measured distance and veloci
ty. Since we used this filter to enhance our results as will be shown in chapter 4, bence, we 
present the mathematical module of this filter in equations (3.9) to (3.15). 

X: is the input distance to the filter. 

V: is the input velocity to the filter. 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

32 



Driver assistant systems and the base implementation 

L1T: is the time interval between measurements (e.g. the sensor's scans interval). 

Rk: is the input distance difference between the current and the preceding distance. 

xk-1: is the previous predicted distance value. 

vk-1: is the previous predicted velocity value. 

a and P: are constants correction gains of values between 0 and 1. 

In conclusion, this straight forward filter takes selected a and P constants (adjusted 
experimentally), uses a times the deviation Rk to correct the position estimate, and uses P 
times the deviation Rk to correct the velocity estimate. The result of P xRk is used in a consec
utive iteration to further more enhance the target position. 

3.2.c. Base system implementation 
Figure 3.4 shows our baseline MTT system implementation, which uses multiple 

Nios-II soft processor cores [NIOS] implemented in an Altera Stratix-II FPGA [J.KHAN 
2008]. It is important to distinguish that the work of [J.KHAN 2008] was Altera based that 
did not support DPR at that time. Hence, The first step in our work was the migration of the 
architecture from Altera to Xilinx while keeping the same functionality by replacing the 
Nios-II soft cores with MicroBlaze [MICROBLAZE] Xilinx soft cores. 

KF interconnect 

.......... 

Figure 3.4 - The MIT system 's base architecture. The base architecture is decom
posed of 23 soft core processors connected via interconnections of a bus mesh. [J.KHAN 
2008] 

To map the MTT application onto multiple processors, the code was divided into 
functions that interact in a producer-consumer fashion. The functions are then distributed 
among the processors to meet the 25 msec real-time constraint imposed by the radar scan 

33 



Driver assistant systems and the base implementation 

window. To help us profile the run-time characteristics of our application and guide the allo
cation of functions to processors, we used dedicated hardware profiling counters to measure 
the latency and execution frequency of individual functions. 

Our baseline system consists of 23 heterogeneous processor cores arranged in an 
MPSoC configuration. Due to the time-critical nature and floating-point requirements of the 
Kalman filter, and the need to track up to 20 targets simultaneously, our baseline system in
eludes 20 dedicated processors configured with single-precision floating-point units that ex
ecute the Kalman filtering function. Moreover, the assignment solver, gating, and track main
tenance functions [S.BLACKMAN 1999] are each allocated to a different processor to mi
nimize the execution time and communication overhead. Respectively: 

Processors 1-20 host the functions of the Filtering&Prediction block (Klman fil
ters). 
Processor 21 hosts the functions of the Gating Module including the Gate Compu
tation, Gate Checker and Cost Matrix Generator bloclcs. 
Processor 22 includes the functions related to the Assignment Solver block from 
the Observation-to-track Association. 
Processor 23 contains ali the function of the blocks inside the Track Maintenance: 
Obs-less Gate Identifier, New Target Identifier and Track Initialize/Delete blocks. 

Where needed, processors are configured with appropriately sized instruction and data 
caches and local memories. Processors with interacting functions are also interconnected us
ing appropriately sized FIFO buffers. 

To meet the 25 ms real-time constraint, a number of optimizations were applied tore
duce the execution times of different functions. These included: 

Sizing the on-chip instruction and data cache memories for different processors to 
reduce off-chip memory access times. 
Introducing on-chip Private Data Memory (PDM) banks to store the system stack 
and the heap to reduce the cost of dynamic memory allocation in various func
tions. 
Adding floating-point hardware support (Floating Point Units; FPUs) to sorne 
processors to execute floating-point operations more efficiently. 
Transforming sorne functions to only use integer data types and reduce overall ex
ecution time. 

Table 3.1 shows the different optimizations applied to various functions along with 
their final, corresponding, execution times. The latency results in Table 3.1 shows that the 
total execution time of the MTT base system exceeds the real time constraints (25 msec ). In 
order to tackle this problem, pipelining was inserted among different processing stages in 
order to process data in different stages. The use of pipelining stages allows the ability to still 
meet real time constraints. 

34 



Migration to hardware Filtering&Prediction black 

Track No No No No No 8 msec 
Table 3.1 - Processor 's optimizations applied in arder to meet the highest perfor

mance of each respective function in the processor. Execution latency is also provided in 
msec. 

3.3. Migration to hardware Filtering&Prediction block 

The base MTT system demonstrated the high cost, in area and resource utilization, as
sociated with a software-only implementation. This is particularly evident with the use of 20 
soft core processors for the Filtering&Prediction stage of the MTT system. Even when mul
tiple targets could be tracked by a single Kalman filtering block, the cost of implementing an 
entire processor in the logic may be too high. A more cost-effective solution would be to use 
a hybrid system that integrates dedicated Kalman filtering hardware blocks with software
programmable processor cores. 

To better understand the functional and numerical characteristics of the Kalman filter
ing block, we developed a MATLAB™ model using single-precision floating-point arithmetic. 
Details of the mathematical model are described in section 3.2.b, [J.KHAN 2009] and 
[S.BLACKMAN 1999]. We then tested our model using two data sets: 

1- A random set of target data from the radar's operational range (i.e. distances from 0 to 
200 meters and azimuth angles from -6 to +6 degrees). 

2- A more realistic data set that emulates a target being overtaken by the vehicle with the 
radar. 

Gaussian noise was also added to both data sets to model the error introduced by the 
radar sensors. 

3.3.a. Filter's coefficients stability 
After running the tests using the two data sets, we observed Figure 3.5 and Figure 3.6. 

The figures show the output response curves of different Kalman filter implementations for 
the distance and angle measurements of the simulated data set. In the legend of the figures, 
"distance measured" is the simulated data input from the sensor, "calculated Pk" is the re
sponse curve of the Kalman filter without altering any of its internai calculations, "stable K'' 
is the curve obtained when inserting fixed values of the K matrix (Kalman gain matrix). After 
a transient training interval, the filter output stabilizes and begins to track the input data 
(represented on the graph by the solid line). 

When analyzing our results, we noticed that for all filter implementations, and for 
both data sets, the elements ofthe estimation error covariance matrix Pkestim [J.KHAN 2009] 

35 



Migration to hardware Filtering&Prediction block 

[S.BLACKMAN 1999] converge to optimal values and stabilize. This suggests that these 
elements, which are computed iteratively and depend on the characteristics of the radar, can 
be fixed at their optimal values. 

By setting these elements to their optimal constant values, the elements of other ma
trices (e.g. the Kalman gain matrix K [J.KHAN 2009] [S.BLACKMAN 1999]) also become 
constants. This significantly reduces both the computational complexity and execution time 
ofthe filter, and leads to a more efficient implementation of the filter block. This efficiency is 
attained by utilizing less hardware resources for example, such as the reduction of the number 
of embedded multipliers. It also leads to a faster fil ter response time ( c.f. the curves labeled 
calculated Pk and stable Kin Figure 3.5 and Figure 3.6). Our hardware implementation of the 
Kalman fil ter block was therefore designed using the optimal constant values of various fil ter 
coefficients. 

3.3.b. Fixed point data precision 
The software implementation of the Kalman filter block uses single-precision float

ing-point arithmetic and requires a processor with a floating-point unit to execute. However, 
the dynamic range of the data obtained from the radar's sensors (200-meter distances and -6 
to +6 degree angles, respectively) is significantly smaller than the range supported by a float
ing-point unit. Furthermore, an automotive target can still be tracked effectively even when 
the level of numerical precision is low. For example, the MTT system willlikely behave the 
same way whether a target is determined to be at 29.8 or 29.7889993 meters away. This sug
gests that a fixed-point Kalman filter block that provides acceptable levels of numerical accu
racy and precision is a more cast-effective alternative to a floating-point implementation. 

Figures 3.7 and 3.8 shows a close-up view of the Kalman filter's response curves for 
the distance and angle simulated data after the output has stabilized. The solid line corres
ponds to the floating-point implementation while the other curves correspond to fixed-point 
implementations at different levels of precision. Since the radar has a range of 200 meters, 
only 9 bits are needed to represent the (signed) integer portion of the distance simulated. Si
milarly for the angle, since the radar range is of -6 to +6 degrees, only 4 bits are needed to 
represent the (signed) integer portion of the angle simulated. The curves in Figures 3.7 and 
3.8 therefore correspond to the filter response as we increase the fractional portion of the 
distance and angle simulated data from 4 to 16 bits. 

Figures 3.7 and 3.8 clearly show that the error between the floating-point reference 
and the various curves decreases as the fractional precision leve! increases. However, even 
when designing with the fast and area-efficient on-chip hardware multipliers found in most 
high-density FPGAs, increasing precision levels typically result in larger and slower hard
ware. 

To optimize the utilization of 18 x 18 hardware multipliers, we implemented our fil ter 
block using an 18-bit fixed-point data format. For distance computations we used a 9-bit, 
signed, integer component and, hence, a 9-bit fractional component, and for angle computa
tions, we used a 4-bit, signed, integer component and, hence, a 14-bit fractional component. 

36 



Migration to hardware Filtering&Prediction block 

Distance (measured versus estimated) 
160 --------------------------------------------------------------------------------------------------------------------------------------------···--------------------

. , , : -- Dlstance measured 
p:-~~ i i i - - Distance esllmated (calculated Pk) 

140 --~---------1-----~--~~-x-~-:) .. ...) ____________________ ...; ____________________ ..;. _____________________ ==~== ::::: ~:: ~ K) 

~ i / '\\. '"{ i i - - 01stance esllmated (6 bit preciSIOn K) 
~~: 1 ~ ,\ : : 

120 ---------/----------·-~-L~----------\\\-:.:.\ ................ ~----------------------i---------------------- =~== ::::: l!r:=K~: : 
/ :,1~:,_ \ i i Distance est1mated (16 bit pm:is100 K) i 
1 ii i"\ \ : : : : : 

100 --····! ----------···i--------------------- : <:\\~-~-::_·-- --~ ----------------------1--------- -----·-- ----+ --------.------------ ·i-- --·--- ---------------1 
:g i 1: : ~ '•.,: : : : : 
~ 1 il i ~---~ i i i i 
w 1 1 ' ' '· ' ' ' ' ' ' (.) so --··t··------------r-1-----------------------:----------------------~ .. ~~-:-----------------1-----------------------~-----------------------:-----------------------1 i f ' : : : "-~ : : : : 

o:r::/r::::::r L~~~=,·;; L: J 
i 1 : : : : : "'--.: : : 
J i' : : : : : -~- : : 
1 1 ' ' ' ' ' ,., ' ' 

~~7r r ---r r --:- ->Cr -· 
2 4 6 10 12 14 

Time (sec) 

Figure 3. 5- Kalman fil ter response for distance simulated data. 

Angle (measured versus estimated) 

, ·r·-----. r· T --:-~-§§;;:;-, 
6 --------------------~::·----------------------;::· -----------------------!::: ----------------------,.::.-----------------------;- = Z: :::::~ ;: E :: ~i . 

--Angle estimated (11 bit precision K) i 
Angle estimated (13 bit precision K) i 

5 ---------- .......... -T---- ------------------ j ---------------------- ·r---- ----------.------ ·i----..... -- .... -------- j- Angle estimated (16 bit precision K) 1 
: : : : : flt(: 
: : : : : //! : 

0 : : : : : #/: r - ·t-- - i ·r-- -- i -:-~/+ --1 
Il) : : : : : ''i" / : : 

f' - ----r - r------r-r ----------·/7' ·r-- - , 
2 --------------------- r-------- -------------- ~------------ ---------- ·t---------------------- . ----- ~-~>;r r---------------------- -!- ---------------------1 

; r ; ; ; 
.----~- .. --~-.. . -i- __,.. r : : : 

-------------1·----------------------:·::-~:..-:_;.:.·;.;.;-..C:-r----------------------:-----------------------:----------------------1 

ly / ;,----.r.r-i ! ! ! 1 / :_,-f_r- ~--
0 -----

1 -------

0 2 4 8 14 12 6 10 

Time (sec) 

Figure 3. 6- Kalman ji !ter response for angle simulated data. 

37 



Migration to hardware Filtering&Prediction black 

Distance (measured versus estimated) 

l -- Distance measured 
Distance estimaled (calculated Pk) 

--Distance estimaled (stable K) 
60 :·~---···r···············r···············r···············r·········-·····1···············1···············:·· = =~=::: :::~ :::::: ~ 

<·. "'- '-- : : : : : : : -- Distance estimated (9 bit precision K) : '-...., .... ~..... : : : : : : 
i ~-~ "~ f i i [ [ [ --Oistanceeslimaled(11bitprecisionK) 
•' y ~ · · • · ' Distance estimated (13 bit precision K) 

55 i .. ~-~->+~~~~;:~,>~~---···········-l·-············-l·-·············j···············; ........... ~~~t~-e-~~~~~~~;-~-~~~-0-~~--
, ., '-.......... '~ ' ' ' ' ' ' ' 

f i ~l~:~1-~~~ 1 , : , : i 

c ' ' ........ ~"' ' ' ' ' ' 
-m 50 ··············+··············+···············f····-~,:·+·:.:~--~- ~-············1···············+··············+··············+···············f·· 
i5 ' ' ' ~"' ·-,·~· ' ' ' ' 

i i i i '-.... ,,;~---~-~-~~~ 1 i i i 
' ' ' ' '" ''·--~' ' ' ' 

' : : : : : ·,._ : -~----~.~ 1 : : : 

' ' ' ' ' ' ' ' ·-->i ' ' ' : ................ f···············r···············r···············j···············]···········-~-!,:·~~.----··:T~;;:;,_~···+··············-~---···········-~--
: : : : : : --.. ' : ~ .. .,__ 

i i i i i i 1' ---,1 '.,,,·~, 
' ' ' ' ' ' ' ' t"' ' ., ' 
:----------------l----------------~---------------l---------------1---------------~---------------1---------------~---------------.i-----::-::-:: .... , ... -~--------~ __ : 

8.2 84 9 

Time (sec) 

Figure 3. 7- Kalman fi/ter distance response errorsfor different precision leve/s. 

Angle (measured versus estimated) 

--Allgle measured 

............. ~ ............... .:. ............... ; ................ : ................ : ................ : ................ ~ ... --Allgleestimated(calculatedPk) ~ 
2.8 : : : : : · : --Allgle estimaled (stable K) 

i i i i i i - - Allgle estimaled (4 bit precision K) 
i i i i i i i - - Allgle eslimated (6 bit precision K) 

2
.
6 

............. i···--··········t·--···--·--····1·--···--·--·----j···--·--··--··--i···········----·(····---~;z = ::: :::::~ ~~1bit:;::nK~) 
i i i i i ___ C\_L!& /~---~~ Allgle estimated (13 bit precision K) 

2.4 ............. ~---·--·········+·----··----····j----·--···----~--j----------·--·--h5l~~:~:;.>'"""f· Allgleestimaled(16bitprecisionK)' 

: : : : r:- ·~-----:_/ : : : 
î 2'2 ............ -f- .............. t----~~~~;:;~-~---····----·1·······--····--+----··--·--····t·--··--·--··--·t··--·----·--·--
CD ~ ~·-· .---..--' • ' ' ' ' 

t :: ~~~.~···~ .••• ~~•t.•••••••••••••I••••••••••••••••I••••••••••;I;••••;r;:~:::+•••••••=J~-.-.~~·· : : : : ~---- : : : : 
i i i i ,r- ___ , l ' i l l 

14 : : : ~---' : ' : : : 

----------·--:--···--~-~:--~-~>·:::r·~-~·:;"·:----------------;----------------;----------------;----------------:----·----···--·r ............ .. 
12 --=·=·i·=·0 

......... , ................ t .............. r--· .. ··········t··--···--··-----1----------------:----------------:--····--···----·:----------------

9 

Time (sec) 
9.2 9.8 

Figure 3.8- Kalman fi/ter angle response errors for different precision leve/s. 

38 



Migration to hardware Filtering&Prediction black 

3.3.c. Software VS hardware implementation 
In order to compare the software based system with the hardware based system, we 

first cite the hardware re sources utilized by both implementations in Table 3 .2. This tabel' s 
results, unlike our baseline system, targeted the Xilinx XC4VFX12 Virtex-4 FPGA [XI
LINX] and Xilinx MicroBlaze soft processor core, respectively [MICROBLAZE]. Since we 
are interested in exploring dynamically reconfigurable MPSoC architectures, we are limited 
to using Xilinx deviees and tools. However, this does not diminish the results of our baseline 
implementation, which demonstrated the feasibility of implementing a heterogeneous MPSoC 
architecture using customized soft processor cores. 

*: For distance computations we used a 9-bit, signed, integer component and a 
9-bit fractional compone nt, and for angle computations, we used a 4-bit, signed, 
integer component and a 14-bit fractional compone nt respective/y. 
**: Resources needed by one soft core processor. 

Table 3.2- Hardware resources used by the software and hardware Kalman imple
mentations on standard FPGAfabric XC4VFX12 Virtex-4. 

Our results show that the hardware implementation uses almost 80% fewer logic re
sources (LUTs and slices) and no slice flip-flops or BRAMs compared to the software im
plementation. On the other hand, the hardware implementation uses four times as many 
DSP48 blocks as the software implementation. These results clearly demonstrate the architec
tural characteristics of the hardware implementation, which makes use of the constant filter 
coefficient and fixed-point arithmetic optimizations described earlier, in addition to making 
use of the fast and area-efficient DSP48 hardware blocks. Conversely, the software imple
mentation requires enough logic and storage resources to implement a pipelined processor 
datapath. 

We also compared the software and hardware implementations in terms of latency. 
For both implementations we used a 100 MHz system clock. To measure the latency of the 
Kalman software function we used a hardware timer to measure the number of CPU clock 
cycles spent inside the function. We then multiplied the clock cycle count by the period of the 
system clock, which showed the latency of the software implementation to be 268.0325 J.!Sec. 
To measure the latency of the Kalman hardware block we used the results of the post
placement and routing timing report, which showed the latency to be 0.033 J.!Sec. Our results 
therefore show that the hardware implementation is 8,122 times faster than our software im
plementation. 

Thought the proposed new hybrid system consume less hardware resources and is 
faster, hardware blocks used in the system may become obsolete if the application or the al
gorithms around which they are based on, changes. For example, different types of filters 

39 



Conclusions 

may be needed for tracking targets in different driving environments (e.g. urban, suburban, 
rural, etc ... ). One way around this problem is to implementa system with ail the necessary 
hardware blocks, and to select and use the appropriate blocks at run-time. However, this is 
not a very area-efficient solution, and it does not safeguard against hardware block obsoles
cence. Another solution, particularly for systems implemented in FPGAs, is to reconfigure 
the entire FPGA to implementa new system with new hardware blocks. However, this also is 
not very efficient since only a small portion of the hardware implementation typically needs 
to be reconfigured. A better solution would be to build a dynamically reconjigurable system 
that enables an application to replace obsolete or inadequate hardware blocks with new ones 
on the fly. However, such a solution requires FPGA deviees and tools capable of supporting 
partial dynamic reconfiguration. In the following chapter we explore two possibilities of the 
use ofDPR on the hybrid MTT base system. 

3.4. Conclusions 

In this chapter, we presented the work we did to implementa hybrid MTT DAS based 
system. We started with an introduction of a general DAS system and highlight its usage and 
importance. Following the introduction, we highlight a base system implementation of a mul
tiple target collisions avoidance tracking system. This system will further become our base 
system where DPR is explored. The base MTT system was originally designed on an MPSoC 
basis. This original base architecture showed a huge resource utilizations especially for its 
filtering and prediction inner block and hence was implemented on a hardware accelerator 
basis. The migration of the MTT MPSoC system into a hybrid system architecture was the 
first step to the exploration of the benefits of DPR in such a system. Our results showed that 
with the migration of a soft processor based filtering block into a hardware accelerator block 
reduced hardware resources by around 80% with an increase of processing speed that reached 
around 8000 times. 

40 



41 



lll a Multiple Exploring DPR • 

Target Tracking System 

In this chapter, we describe two implementations of a dynamically partial reconfi
gurable MTT module for our DAS system. Our modules leverage DP R to implementa dynam
ically reconfigurable filtering black that changes with changing driving conditions. We pro
vide experimental results that demonstrate the feasibility of our systems and its resilience 
against reconfiguration overhead, which enhances reliability and driver safety. 

4.1. Introduction 

The baseline MTT system, proposed by [J.KHAN 2009], demonstrated the feasibility 
of using software-programmable processor cores to execute a complex application and still 
meet its real-time constraints. lt also demonstrated the importance of optimizing the system's 
implementation to meet these performance constraints. However, it also demonstrated the 
high cost, in area and resource utilization, associated with a software-only implementation. 
This is particularly evident with the Kalman filtering block where dedicated processors, con
figured with floating-point units, cache memories, and private data memories, are used to 
execute the Kalman filtering code for each target. Also, one disadvantage of the current 
FPGA system is that hardware blocks may become obsolete if the application or the algo
rithms change. 

A more cast-effective solution would be to use a hybrid system that integrates dedi
cated Kalman filtering hardware blocks with software-programmable processor cores. 

42 



Introduction 

This step can lead to a better hardware resource utilizations on an FPGA. The use of hard
ware filtering blocks can also be an introduction to the use of DPR in the MTT system. This 
can lead to the support of different driving conditions and environments on the fly during run 
time. 

In this chapter, we present the work done on the MTT base system to migrate it from 
a hybrid based implementation to a DPR based implementation. We investigate two possible 
DPR systems that can be used in order to support multiple driving environments and obstacle 
behaviors. In the first possible implementation, we explore the use of DPR to modify the 
physical structure of the Kalman filtering subsystem in a MTT application in section 4.3. We 
also demonstrate how the accuracy of the filter block can be dynamically and automatically 
tuned to match the characteristics of the operational environment. This can be very useful 
when the environment changes from, say, open highway to narrow city street where higher 
levels of accuracy are needed to track multiple, potentially closer targets. Conversely, when 
the driving environment changes from dense to sparse, the accuracy of the filter can be re
duced to minimize resource utilization and energy consumption. We provide experimental 
results that demonstrate the feasibility of this approach and its low overhead. We also demon
strate the ease with which we can switch between hardware implementations automatically 
using a simple heuristic. This contrasts with prevailing approaches to dynamic reconfigura
tion, which are mainly demand-driven. 

As for the second possible implementation, we explore the use of DPR according to 
targets proximity to the radar sensor in section 4.4. As targets move closer to the radar, they 
should be tracked at higher levels of accuracy since they can potentially become more ha
zardous. On the other hand, as targets move further away, less accurate trac king can be used. 
In this section, section 4.4, we show how the functionality and accuracy of an MTT system 
can be automatically tuned to match the dynamics of moving obstacles on the road. Since 
lower levels of accuracy generally require fewer hardware resources, DPR can be leveraged 
to release hardware resources for other uses, such as tracking more obstacles, accelerating 
other computational functions, or reducing power consumption. In our work, free hardware 
resources are used to enhance the radar detection unit, which improves the detection of tar
gets at different distances. Our design is based on using three modular filters that can be dy
namically combined in three configurations to match different driving scenarios. Our design 
also includes an enhanced detection unit module for post-processing acquired radar signais 
and pre-filtering them before they are delivered to our MTT system. Our system is also de
signed to continue operating even when being reconfigured, and this enhances the system's 
reliability. Our experimental results demonstrate the feasibility and low overhead of our dy
namically reconfigurable design. 

This chapter is organized as follows, in section 4.2, we explore the use of DPR in the 
base MTT DAS system. We present two possible proposed DPR systems and we highlight 
the advantages of each by showing simulated and actual results of our proposed systems in 
sections 4.3 and 4.4. A comparison between an enhanced soft core processor based system 
and our two proposed DPR systems is presented in section 4.5. Finally, in section 4.6, we 
conclude and summarize the built systems. 

43 



Approach and design 

4.2. Approach and design 

Starting from the main objective of the system, i.e. providing a reliable DAS system, 
we divided the objective into a set of goals, problems and solutions. The main goal and objec
tive of the exploration of DPR in a DAS system is designing a collision avoidance system 
using sensors that will support multiple scenarios on a single package. The main problems, 
derived from the final goal, were the following: 

Designing a proper and reliable collision avoidance system. 
Building the collision avoidance system and the use of a sensor that can support as 
much driving conditions as possible. 
Tackle the problem of the limitation in hardware resources when supporting mul
tiple driving scenarios and environments. Hence, instead of having multiple hard
ware systems for each scenario, hardware reuse is considered of high importance 
and cost reducer. 

For these three problems, three solutions were suggested: 

1- The use a MTT based system to tackle the collision avoidance problem. 
2- The use of radar as sensors in order to support multiple driving conditions when 

compared to other sensor deviees such as camera sensors. 
3- The use of hardware accelerators and in tum, FPGA's ability to dynamically re

configure partial space on the fabric to tackle the problem of supporting multiple 
driving scenarios and environments. 

Hence, we emphasized the goal to become: designing an FPGA based hybrid MTT 
system using radar sensors that will support, with the use of DPR, multiple scenarios on the 
same fabric. From the goal definition, two main steps must be implemented in order to 
achieve a valid goal. 

1- Designing and introducing hardware accelerators in the MTT soft processor sys
tem and hence implementing a hybrid MTT system. 

2- Using these hardware accelerators as reconfigurable regions and modules that can 
change their configurations according to changing environments and driving con
ditions. 

Figure 4.1 shows a high-level view of our proposed system architecture. Like the hy
brid MTT system, it includes a number of soft processor cores for executing the control
intensive portions of the MTT application. It also includes a number of slots that can be con
figured with pre-designed hardware blocks for accelerating the performance-critical portions 
of the application. The soft processors and hardware blocks would be able to exchange data 
through interconnected FIFO buffers. The system also includes an ICAP controller for man
aging the configuration ofhardware blocks on the fly. The configuration bit streams could be 
stored on- or off-chip memories, while the loading, removal, and swapping of hardware 

44 



DPR system based on targets density 

blocks would be controlled by the main MTT application software using various perfor
mance-enhancing heuristics. 

ICAP 

Configuration 
Me mory 

HW Block 
Slot 

Bus Macro 

Configuration Bus 

••• 
HWBiock 

Slot 

Bus Macro 

Soft 
Processor ••• 

lnterconnect 

Soft 
Processor 

Figure 4.1 - The proposed dynamically partial reconfigurable MTT based system ar
chitecture. 

4.3. DPR system based on targets density 

In this part, we present one possibility to implementa DPR based MTT system. The 
important issue about this system is that partial reconfiguration is triggered based on the ob
stacles density. We present a new system architecture mostly used for the validation of the 
new DPR based Kalman Filtering&Prediction block. We then show the different filter im
plementations and their respective functional environments. We highlight the differences 
between them and show the impact of each configuration on the total system performance. 
Plots, results and hardware resource utilizations are presented as a comparison between the 
new DPR system of the hybrid architecture and software based MTT system. A reconfigura
tion heuristic is illustrated to show when each configuration is best fit according to detected 
driving conditions. 

4.3.a. Validation system architecture 
In order to implementa basic DPR system, first we need to implementa prototype de

sign system. This system is important for the validation of the reconfigurable regions and the 
testing of their functionalities. In Figure 4.2 we show the architecture of our dynamically re
configurable MTT system. The basic blocks and their respective functionalities of the proto
type design are the following: 

45 



DPR system based on targets density 

PowerPC processor [POWERPC] used to implement ali the blocks of the MTT 
application except the Kalman filtering block, which we implement as a dynami
cally reconfigurable hardware block. 
Processor Local Bus (PLB), used to provide fast communication between the pro
cesser and the external Double Data Rate Synchronous Dynamic Random Access 
Memory (DDR SDRAM). 
DDR SDRAM memory used to store the instruction and data files used by the 
MTT algorithm. 
On-Chip Peripheral Bus (OPB), used to connect various peripheral components 
and enable data transfers between the peripherals and the processor. 
"Timer" block, used to measure the latency of the hardware filter block and the 
time needed to transfer data and results between the processor (software) and the 
filter block. 
Advanced Configuration Environment (ACE) controlier, used to load the configu
ration bit stream files of different filter block implementations from the compact 
flash drive. It is also used to configure the static portion of the system architecture 
and the MTT application code on system startup. 
HWICAP controller used for configuring reconfigurable regions in the FPGA 
[HWICAP]. It is initialized and operated under software control. 

As for the Filter block, the Deviee Control Register (DCR) bus and its bridge, ali are 
responsible for implementing the reconfigurable hardware. In other words, the partial recon
figurable region is inside the Filter box, which can communicate with the processor using the 
DCR bus. 

DDR_SDRAM 

___ _,, _____ , _______ , t, 

; _____________ ... ' 
( OCR Bus ~ ' r------------- _. 

'~ ~ 

Figure 4.2- Validation architecture basic IP cores. The MTT system runs on the Po
werPC except the Filtering&Prediction Kalman block that runs on the "Fi/ter" hardware 
black. 

46 



DP R system based on targets density 

4.3.b. Different filter implementations 
After implementing the Kalman filter as hardware block, chapter 3, the next step was 

to study the ability of implementing different types of filters in a reconfigurable region. The 
main advantage of such an implementation is its ability to implement different filter architec
tures having different characteristics in response to changing operating conditions. Such 
change is very common in driving scenarios where environments are constantly changing 
from urban to suburban to rural. To that end we have designed two Kalman filter implemen
tations with different levels of tracking accuracy to match the needs of different road envi
ronments. 

Our lower accuracy KFO filter is aimed at open road environments such as highways 
while our higher accuracy KFD filter is aimed at dense road environments such as those in
side cities. 

• KFO Fi/ter: In addition to using constant, fixed-point filter coefficients, sorne 
coefficients are rounded to 2-x while others are restricted to 18 bits. Such re
strictions reduce the complexity of the hardware block and the number of 
18 x 18 hardware multipliers needed to implement the fil ter. They also reduce 
the accuracy of the fil ter, which is an acceptable trade-off in open driving en
vironments where fewer cars are typically within range of the radar. 

• KFD Fi/ter: This filter is based on the same architecture as the KFO filter but 
uses wider coefficients that result in a larger, more complex implementation. 
Wider coefficients are not rounded and hence need to be presented as 18 bits. 
This increases the number of 18x18 hardware multipliers and hence increase 
the filter's complexity. On the other hand, these also result in a more accurate 
fil ter that is better suited for dense driving environments ( e.g. city streets, rush 
hour) where more cars are spotted within range of the radar. 

4.3.c. Filters output and accuracy 
Our first set of experiments was designed to measure the accuracy of different filter 

implementations. We used actual radar distance and angle measurements with different Kal
man filter implementations including the original software implementation that uses floating
point operations ( calculated Pk), a modified software implementation that uses constant float
ing-point coefficient values (stable K; Kalamn Gain matrix), and the reconfigurable KFO 
(KF1 in Figures 4.3 and 4.4) and KFD (KF2 in Figures 4.3 and 4.4) hardware blocks. Figures 
4.3 and 4.4 show enlarged views of the noisy data fed into the Kalman fil ter block along with 
the various outputs observed both for distance and angle values. These plots are a zoomed in 
plots in order to highlight the different outputs of different filter implementations. It is impor
tant to note that the measured data contains high variations in it due to the inaccuracy of the 
radar sensor used or any radar sensor [M.RICHARDS 2005]. However, the use of an accurate 
filter can reduce the error and eliminate the sensor's noise. 

After testing KFO with data sets from different environments, the average error in the 
distance and angle estimation relative to the original software implementation is 23 centime-

47 



DPR system based on targets density 

ters and 0.007 degrees, respectively. These results confirm the lower accuracy of the KFO 
filter, but also illustrate its suitability for open environments where targets are relatively far 
from each other. 

40 .... 

38 .... 

136 ... . 
134 .. .. 
Q 

3.2 .... 

Distance (rneasun!d Wll!fSUS estmaled} 

--Distance mea5lftd 

~ 
Distance estinlaled (calaJaled Pk) 
Distance estimaled (stal* K) 
Distance estimaled KF2 
Distance estimaled KF1 

. . . . 
' . . ............................. ~ .............. -~ .. -.. . . 

1.7 1.8 7.9 
TI'M(sec) 

Figure 4. 3 - Enlarged view of measured distance and output of different Kalman fil ter 

implementations. 

-3.25 ... 

-3.3 ... 

-3.35 ... 

-3.4 ... 

Angle (measured Wll!fSUS esliimaled) 
' ' 0 . . ..... -. ,_ ------ ... - -i-------:Ntfj--'-:-e-mea5l.ftCI--":---.....___, 

Angle esliimaled (calc:Uà!d Pk) -
Ntfje esliimaled (sGille, K) 
Ntfje esliimaled KF2 

: Angle esliimaled KF1 
~-------;----·-------;-----------;-----------;-----

1-~: :: : :o .... ; _______ ( _______ .. _! ___________ ! ___________ ! ____ _ 

f -3.55 .. ":'. + .. ··t· --~------------~-----------t .. ··-------. --
-3.6 .... ; ............ ;............. : ...................... ~ .. ----------; .................... ~ -- .. 

-3.65 .. ITP ..... ) __________ · ----------~-----------~--------- ~ --
1 1 1 1 1 . . . . . 

4.5 4.7 
Tme(sec) 

Hl 

Figure 4. 4 - Enlarged view of measured angle and output of different Kalman fil ter 

implementations. 

Next we tested the KFD filters using the same data used with the KFO filter. Here we 
observed an average error in distance and angle estimates relative to the original software 
implementation of 5.2 centimeters and 4.6x104 degrees, respectively. These results illustrate 
the higher accuracy of the KFD fil ter and its suitability for tracking targets in dense environ
ments. 

48 



DP R system based on targets density 

4.3.d. Resource utilizations 
Table 4.1 summarizes the resource utilization for both hardware filter implementa

tions (KFO and KFD). It is also important to note that the resources consumed by either im
plementation are allocated as part of the reconfigurable region. This is due to the current 
technology for implementing reconfigurable regions. In general, a reconfigurable region can 
be specified as a rectangular area in the FPGA fabric. This region must contain all the hard
ware resources required by the most complex reconfigurable module implemented inside of 
it. As can be seen in Table 4.1, the dimensions of the RR region were set to accommodate the 
slices required by KFD. Although the overall utilization of slices for both filters with respect 
to the reconfigurable region shows high efficiency (97%), the utilization of other resources 
within the region (DSPs, RAMB16s, etc ... ) is not as high due to the rectangular design con
strain of a reconfigurable region. 

HW resources KFO KFD RR Utilization 

Table 4.1 - Hardware resources used by the different Kalman implementations. This 
table also shows the hardware resource utilization of an implemented fi/ter with respect to a 
reconjigurable region RR. 

Table 4.1 does not summarize all the resources required by the new implemented 
MTT system. In addition to the resources required by the HW block, we must also take into 
consideration the resources needed by the HWICAP block, CF System ACE, and the DCR 
socket and its bus. These components constitute the static part of our new system. Table 4.2 
summarizes the resources used by the static region and the total resource utilization when 
added to tho se of the reconfigurable region. 

HW resources Static RR Total 

RAMBs 0 42 42 
Table 4.2 - Hardware resources used by the reconjigurable region in addition to 

those consumed by the static IP cores. 

Table 4.3 summarizes and compares both implementations in terms of hardware re
sources consumed and the re source reduction percentage of using the new MTT implementa
tion. This table also shows the trade off in area of using a reconfigurable system compared to 
a software only implementation. As a conclusion of this table, a reduction of around 80% of 
hardware resources can be achieved by implementing the reconfigurable system. Note that 

49 



DP R system based on targets density 

this table compares the resources utilized by only the Filtering&Prediction blocks in both the 
original MTT system and the new DPR system. 

HW resources Base SW Filter DPR HW Filter Resource reduction 

RAMBs 160 42 74% 
Table 4.3- Base and new DPR Filtering&Prediction hardware resource utilization 

comparison. 

4.3.e. Reconfiguration heuristics 
We modified our original MTT application so it can reconfigure the Kalman filter 

block automatically. Our field studies had shown that, on average, in open environments the 
number of targets within range of the radar were fewer than six, while in dense environments 
this number increased to more than eight. Using these observations, we developed a simple 
heuristic that tracks the number of targets in range of the radar over the last five radar sweeps, 
and uses the appropriate fil ter implementation accordingly. The number of prior radar sweeps 
we track is arbitrary, but is done to ensure that the filter is not reconfigured unless the ob
served conditions favor one configuration over another. Figure 4.5 shows the pseudo code for 
the filter reconfiguration heuristic. 

while (true) { 
//Track number of targets in last 5 sweeps 
for (i=O ; i <= 3 ; i++) { 

targets [i+1] = targets [i]; 

//Check threshold and use appropriate configuration 
if (targets [0] <= 6 && targets [1] <= 6 && 
targets [2] <= 6 && targets [3] <= 6 && 
targets [4] <= 6) { 

Use KFO; 

elsa if (targets [0] >= 8 && targets [1] >= 8 && 
targets [2] >= 8 && targets [3] >= 8 && 
targets [4] >= 8) { 

Use KFD; 

Figure 4.5- Pseudo code for fi/ter configuration heuristic. 

4.3.f. Latencies and reconfiguration overheads 
The latency analysis of such application is essential especially when this system is 

implemented as DAS system. In such systems, decision making should be fast in order to 
increase the reaction time of the driver. 

When implemented as a software function, the Kalman filter consumed 4% of the 
MTT application's total execution time (Table 3.1). This time, 3 msec, is the same for 

50 



DP R system based on targets density 

processing one or 20 targets since we have 20 processors implemented in parallel in the base 
system. Table 4.4 summarizes the execution times needed for the different Kalman filter im
plementations. It is important to note that for all implementations of the Kalman filter, the 
latency measurement includes not only the time spent processing data, but also the time spent 
transferring data to the filter module. We will therefore be comparing the time needed by all 
implementations to execute starting from sending the inputs, to receiving the final output. As 
shown in Table 4.4, although KFO and KFD have different architectures they still require the 
same processing time. This similarity is due to the data transfer time. As hardware blocks, 
KFO has a latency of 30 nsec, while KFD has a latency of 45 nsec, respectively. However, in 
our current implementation, the latency of the reconfigurable fil ter is determined by the larg
est and slowest of the two implementations. One other insight from Table 4.4 is that although 
for 20 targets, the HW filters consume more time than the software based implementation, it 
is important to remember that the HW filter is using 80% less hardware resources than the 
software based implementation. Also, the DPR based system can now support two driving 
conditions in the same small hardware utilized. 

Reconfiguration 192 msec 
Table 4.4 - Latencies for different jUter implementations and reconfiguration over-

head. 

Since the system uses a 100 MHz (10 nsec) clock, and KFD (the larger and slower 
block) has a latency of 45 nsec we used a 20 MHz (50 nsec) clock for the reconfigurable filter 
block. That is why both KFO and KFD will have a fixed latency of 50 nsec. Adding the data 
transfer time to this, results in a totallatency of 181.3 J.LSec (Table 4.4). 

The slower clock used for the reconfigurable hardware block will not affect the per
formance of the system for the following reason: If the block is still functioning on 1 00 MHz 
or at 20 MHz (100+5), the time needed to fetch the first output, still covers both clock delays. 
In other words, the fetching command of a data from the socket consumes 1 J.LSec to execute. 
This means that whether the time needed by the hardware block to execute is 1 0 nsec (at 1 00 
MHz) or 50 nsec (20 MHz), as long as the execution time is less than 1 J.LSec, the system will 
still consume 181.3 J.LSec. 

Table 4.4 also shows the overhead of reconfiguring the HW block. During reconfigu
ration, the system will essentially be blind for eight radar sweeps. Although this time is not 
insignificant, it is nonetheless acceptable for this application for at least two reason: 

1- First, the change in the environment is not likely to occur very frequently. Recall 
that the time needed to switch between filter implementations depends on the em
ployed heuristics. 

2- Second, the reconfiguration time does not adversely affect a driver's reaction time. 
The reaction time of a driver, as cited in [X.MA 2006], is around 2.7 seconds. In 

51 



DP R system based on targets position 

the worst case, if a driver has to react while there was a change in the environ
ment; the reaction time will be reduced to 2.5 seconds, which is still within the ac
ceptable safety margin. Moreover, during this time, a target traveling at 120 kmlhr 

would only move a few centimeters. 

4.3.g. Conclusion 
In this work section we described our implementation of a dynamically reconfigurable 

Kalman filtering hardware block for automotive multiple target tracking applications based 
on targets density. W e also demonstrated that a simple heuristic can be used to modify the 
filter architecture in real time to match the tracking accuracy requirements of two driving 
environments. Our results show that we can achieve significantly lower latencies compared to 
a software implementation of the Kalman filter. Our results also show that the reconfiguration 
overhead is small enough to ensure safe and fast driver response times. Finally, our results 
show that using a reconfigurable region can significantly reduce FPGA resource utilization, 
but that this needs to be balanced with good resource utilization within the reconfigurable 
regwn. 

4.4. DPR system based on targets position 

In this part, we present another possibility to implementa DPR based MTT system. 
The important issue about this system is that partial reconfiguration is triggered based on the 
targets positions. Closer targets that have higher probability to be more dangerous will be 
tracked more accurately than further targets. We first show the blocks of an MTT system 
alongside extra blocks from the capturing and treatment phase. This step is important to show 
how free reconfigurable regions can be used as enhancement units as well. We then present a 
hybrid MTT system with new DPR based Kalman Filtering&Prediction block. We then show 
the different filter implementations and their respective functional environments. We high
light the differences between them and show the impact of each configuration on the total 
system performance. Plots, results and hardware resource utilizations are presented as a com
parison between the new DPR system and the software based MTT system. A reconfiguration 
heuristic is illustrated to show when each configuration is best fit according to detected tar
gets positions. 

One major difference in this implementation is in the Filtering&Prediction block. The 
MTT application can be implemented using a variety of adaptive algorithms such as a-~ fil
ter, mean-shift algorithm, and Kalman filter, etc [S.BLACKMAN 1999]. As detailed in the 
following sections, each chosen filter has interesting features and could be used in specifie 
situation. In our system, we have chosen to implement not only the Kalman filter but rather 
both the Kalman and the a-~ filters. The Kalman filter is used because it is an important 
block in the whole MTT system. A Kalman filter is designed to track a moving object having 
a constant velocity. However, real abjects actually tend to move in variable accelerations and 

52 



DP R system based on targets position 

therefore different velocities. The choice of the a.-~ fil ter is due to its simple implementation 
and its consideration of target velocities in decision makings [S.BLACKMAN 1999]. 

4.4.a. Radar signal processing and enhancement block 
Similar to Figure 3.1, we plot the same figure including the capturing stage blocks as 

shown in Figure 4.6. The radar signal processing blocks are responsible for analyzing cap
tured signais and delivering them to the MTT system for decision making. The three main 
blocks can be seen in Figure 4.6. 

The Delay Estimation block is based on correlation and HOS (High Order Statis
tics) algorithms related to noisy radar signais or an FFT (Fast Fourier Transform) 
algorithm for continuous wave radars such as the one used in our system. 
The Detection Unit is an adaptive threshold based signal detector that is responsi
ble for target identification and tracking [M.RICHARDS 2005]. The Detection 
Unit Enhancement block is used to enhance the detection unit and is responsible 
for amplifying and filtering weak signais detected from distant targets and ob
stacles. The motivation for implementing such a block is the fact that the side 
lobes of a signal recovered from close targets will hide the signais detected from 
targets farther away. More details will be given in a following subsection. 
The Sensor Data Processing block realizes data translation and interpretation in 
order to be delivered to the MTT MPSoC based system. 

, _________________________________________________ , 

1 
1 
1 Radar 
1 
1 Data 
1 
1 
1 
1 

~-------------------------------------------------J 

Figure 4. 6- MIT and radar signal processing blacks. 

4.4.b. Validation system architecture 
Similar to the previous Subsection, in order to implement a basic DPR system, first 

we need to implementa prototype like architecture. Figure 4.7 shows the architecture of our 
dynamically reconfigurable MTT system. Our system enables specifie hardware blocks to be 
swapped on the fly. We implemented the system on a ML410 Xilinx board with an 
XC4VFX60 Virtex-4 FPGA. This system is used for validating the MTT's functionality and 
measuring data such as the reconfiguration overhead. Depending on the radar connected to 
the MTT and the number of obstacles to track, one or several hardware and software cores 
may be used. Here, as we focus on the dynamically reconfigurable hardware realization of the 
Filtering&Prediction block, we use only one PowerPC processor [POWERPC] to implement 
the data association block. Different other blocks in Figure 4. 7 are of the same functionality 
as those discussed earlier in Figure 4.2. 

53 



DP R system based on targets position 

,/~ _t--------------------------- J',, 
.,: OCR Bus ', 
', .------------------------------1 ,' 

'1 1, ' ~ 

Figure 4. 7- Validation architecture basic IP cores. The MTT system runs on the Po
wer PC except the Filtering&Prediction Kalman block that runs on the "RRJ, RR2 and RR3" 

reconfigurable hardware blocks. 

4.4.c. Different filter implementations 
Initially we implemented the Kalman filter as a dedicated hardware block, chapter 3, 

section 3.3. Our goal in this section is to study the ability of implementing different types of 
filters in reconfigurable regions. The main advantage of this implementation is its ability to 
implement different filter architectures having different characteristics in response to chang
ing operating conditions. 

We have designed two Kalman filter implementations having different tracking cha
racteristics and an a-~ extension filter. These three filters have different characteristics and 
can be used in different driving environments. They are used in three different configurations 
to support three different driving scenarios. Namely, the filter set includes a Kalman filter for 
angle estimation (KF A), a Kalman filter for distance estimation (KFD) and an a-~ extension 
filter for both angle and distance estimations (ABF). 

• K.F A Fi/ter: The Kalman fil ter for angle estimation (KF A) is a version of the 
original Kalman filter hardware block. This filter performs only the prediction 
of the angle. 

• KFD Fi/ter: The Kalman filter for distance estimation (KFD) is also a version 
of the original Kalman fil ter hardware block. KFD allows only the prediction 
of the distance. 

• ABF Fi/ter: The a-~ filter is a simple filter mainly used for data smoothing 
and control applications. The ABF filter uses the same calculations as in an a
~ filter not only for the distance estimation, but also for the angle estimation. 
This filter realizes the prediction of both the distance and angle with the help 
of linear and angular input velocities. 

54 



DP R system based on targets position 

The two Kalman filters differ in their building blocks due to the different behavior of 
the input data. The tuning matrices, PK and K matrices as mentioned in section 3.2.b, used to 
store different values for a distance input or an angle input are one of the major differences 
between these two filters. We also designed an extended a-p filter to provide even more accu
rate predictions for certain driving conditions. An a-P filter is used due to its smoothing cha
racteristics of input data and ability to be mapped on a hardware block. Three reconfigurable 
regions, RRI, RR2 and RR3 are respective! y mapped to three designed filters as shown in 
Figure 4.7. 

4.4.d. Filtering&prediction configurations 
The Filtering&Prediction Block configurations are directly related to a set of differ

ent combinations among the filters KF A, KFD and ABF. The se configurations are associated 
with three regions: Zone 1 between 160 meters and the maximum radar range, Zone 2 be
tween 1 00 meters and 160 meters and Zone 3 between 1 00 meters and 0 meters as shown in 
Figure 4.8. 

Zone 1 

1 

1 

Figure 4.8- Radar 's FOV and Zone definitions. The Zones are identified by a radar 
mounted in front of the driver 's car. 

These regions are defined according to their proximity to the radar and are be mapped 
to 3 configurations simultaneously: 

• Configuration 1 (Cl): This configuration uses only the fil ter KF A. C 1 is im
plemented when there are only targets tracked far away from the radar or those 
in Zone 1. These obstacles are considered to have a negligible hazard level. 
Also the distance estimation for such far away obstacles is considered to have 
a very low priority. Estimating just the angle for such obstacles is considered 
as an initiation step in the detection system. This means that when there are 
targets only in that region, then RR1 will be configured to KF A while RR2 

55 



DPR system based on targets position 

and RR3 will just forward their inputs to the outputs. In addition to this, these 
regions (RR2 and RR3) will use different inputs for an enhancement block in 
the system. Only the signais related to the filtering block will be forwarded 
without any treatment. 

• Configuration 2 (C2): This configuration uses both KFA and KFD. C2 will be 
used when targets are observed in Zone 2. Targets in that region can potential
ly be more hazardous than those in Zone 1. Thus, a better estimation will be 
computed for such targets by using estimated of both their distance and angle. 
Hence, RR1 and RR2 will be configured to KFA and KFD, respectively. 

• Configuration 3 (C3): C3 includes the implementation of all KFA, KFD and 
ABF at the same time. If a target is spotted in Zone 3, it will be considered to 
have a high hazard level and a better prediction of its position is needed. This 
is wh y we consider ABF an enhancement over KF A and KFD that pro vides 
better distance and angle estimation of a target's data. In this configuration, 
RR1 will be configured as KF A, RR2 will be configured as KFD, and RR3 
will be configured as ABF. 

In configurations C 1 and C2, the free reconfigurable regions are used as an enhance
ment unit related to the radar signal processing part as mentioned in the following subsection. 

4.4.e. Detection Unit Enhancement block 
The Detection Unit Enhancement (DUE) block is used to improve the detection of 

weak target signais captured from far away targets. As mentioned earlier, in section 4.4.a, 
closer target signais tend to hide farther target signais. In potentially hazardous situations 
where targets are spotted in Zone 3, the signais from these targets are the most important and 
are strong enough for analyzing and delivering to the MTT system. Other signais are not con
sidered very important since they are not within the hazardous zone (Zone 3). 

In situations where targets are only in Zone 2 and Zone 1, and with the free resources 
liberated from other reconfigurable regions, a better utilization of these resources can be 
achieved by implementing the DUE block in those regions. As an illustration, Figure 4.9 
shows three detected signais, one from a target in Zone 2 and two other signais detected from 
targets in Zone 1. It is noticed that the signais detected from two targets in Zone 1 are hidden 
by the side lobes from the signal detected from the target in Zone 2. 

Figure 4.9 shows the motivation for supporting a DUE hardware block whenever free 
reconfigurable regions are available. The DUE block consists oftwo basic functional blocks: 

Side lobe elimination unit and an automatic gain control (AGC) [M.RICHARDS 
2005] for amplifying the weak signais as shown in Figure 4.14. 
After the side lobes are eliminated by the first unit, the AGC will amplify the sig
nais after so that they will become ready for delivery to the MTT system. 

56 



DP R system based on targets position 

Figure 4.9- Data corresponding to 3 detected targets in the Detection Unit. The 2 
targets in Zl are hidden by target in Z2 without the Enhancement Unit. 

4.4.f. Filters output and accuracy 
Our first set of experiments was designed to measure the accuracy of different filter 

implementations. We use actual radar distance, angle, and linear velocity and angular veloci
ty measurements with different filtering block configurations. Here we present only the re
sults for distance estimation with the 3 configurations C 1, C2 and C3 in order to show the 
response of our system. In Figure 4.10 we show the measured distance of a target captured by 
the radar (system's input), its actual position, the output when implementing C2 (KFA+KFD 
output) and that when implementing C3 (KFA+KFD+ABF output). 

When implementing C 1, the output distance from the filtering block is identical to the 
measured distance so there is no error. On the other hand, our results show that the angle es
timation error can reach a maximum of 1.8 degrees (15%), Table 4.5. This is similar to the 
angle estimation error achieved when implementing C2. However, since C2 filters the meas
ured distance, it results in a distance estimation error that reaches a maximum of 6 meters 
(4%). Implementing C3, results in the lowest distance and angle estimation errors, which 
reach a maximum of 3.2 meters (2%) and 0.7 degrees (7%), respectively. These results show 
that the extended ABF reduces distance and angle estimation errors by 50%. 

57 



DP R system based on targets position 

Distance (measured versus estimated) 
200 ---- ·- • • • · ; ---- · · • • ·-- i • • • ·- • • • • • • . • • • • ·- ·- • • •. • • • ·-- • • ·- -·-----

180 

'(i) 160 .... 
Q) 

Qi 
g 
~ 140 c 
(1) 

(i) 

i5 

120 

100 

. 
--Measured 

- - Actual Position 
' 

~~~""' .................... .; ....... _ .. 0 KF A+KFD Output 
-+ KF A+KFD+ABF Output

1
1 1 1

1 ' ' ' 1
-----~ -··-------,-----·----- .. - • • ·- ··- ·r·- ·- ·- -- • ... ·r ----

1

' 1
1
1
1
1
1

1 ' '

' '

. .
' ' ······~ ·········· ~ -··-····---,· - ··-·--···r· -------~- ---------~-----' ' '

6 8 10 12 14 16
Time (sec)

Figure 4.10 - Our DP R system distance output of a target moving across al! different

configurations.

Name Utilization Zone/RR Error

KFA Used alone, D>160 rn Zl/RR1
Angle: 15%

Distance: 20%

KFD
Used with KFA, 100

Z2/RR1+RR2
Angle: 15%

distance m<D< 160m Distance: 4%

Table 4. 5 -A summary table illustrating the filters used in each respective configura

tion. The err or obtained from each configuration is also mentioned.

4.4.g. Resource utilizations
Table 4.6 summarizes the resource utilization for different hardware filter implemen

tations (KFA, KFD and ABF). As can be seen in Table 4.6, the dimensions of the RR region

were set to accornmodate the slices required by each filter according to its respective reconfi
gurable region. Although the overall utilization of slices for both filters shows very high effi

ciency (99%), the utilization of other resources within the region (DSPs, etc ...) is not as high.

58

DP R system based on targets position

Table 4. 6 - Hardware resources used by the different Kalman and a-fJ implementa
tions. This table also shows the hardware resource utilization of an implemented fi/ter with
respect to the respective reconfigurable regions.

Table 4.6 summarizes the resources used by the reconfigurable regions RRI, RR2 and
RR3. In addition to the resources required by the reconfigurable regions, we must also take
into consideration the resources used by the HWICAP block, CF System ACE, and the DCR
socket and its bus. These components constitute the static part of our new system and are also
shown in Table 4.7. Table 4.7 also shows the system's total hardware resource usage.

HW resources Static RRl RR2 RR3 Total

Table 4. 7- Static and reconjigurable regions hardware resource utilization and total

utilization by the new MTT system.

Table 4.8 summarizes and compares both implementations in terms of hardware re
sources consumed and the resource reduction percentage of using the new MTT implementa
tion. As a conclusion of this table, a reduction of around 75% of hardware resources can be
achieved by implementing the reconfigurable system. Note that this table compares the re
sources utilized by only the Filtering&Prediction blocks in both the original SW based MTT
system and the new HW based DPR system.

HW resources Base SW Filter DPR HW Filter Resource reduction

Table 4.8- Base and new DPR Filtering&Prediction hardware resource utilization
comparison.

One of the main contributions of the work presented in this section is the possibility
of using sorne hardware resources in other blocks other than those in the MTT application.
When the system is in C 1 or C2, the reconfigurable regions not used in the filtering block can
be exploited for different uses. Our experiments showed that the free resources can be used in
the detection unit enhancement of the radar. This block is only an enhancement and is used to
detect weak signais from farther detected targets.

59

DPR system based on targets position

4.4.h. Reconfiguration heuristics
The MTT application can reconfigure the filtering block automatically. The measured

distance of any obstacle forms the basis for our reconfiguration heuristic. This information,
along with the zone definitions will provide the decision to switch among the three configura
tions. For our experimental results we consider a real scenario where a target is traveling at
33.3 meters/sec (120 Kmlhr) speed towards the radar [X.MA 2006]. Since the reaction time

ofthe driver should be around 2.7 secs, a distance ofaround 90 meters is considered safe and
thus defining Zone 3, section 4.4.d.

To verify the presence of an obstacle in a given zone, we rely on a window of 12,

consecutive 25-msec-radar sweeps. This number is obtained through experimental testing.
The value 12 is directly related to the user's relative linear velocity and the driver's reaction
time and is therefore calculated frequently. 12 sweeps provide an additional margin of 10
meters around each zone threshold; 12 sweeps x 25 msec/sweep x 33.3 meters/sec = 9.99

meters.

For example if a target is initially spotted in Zone 1, 12 consecutive radar sweeps will
be monitored to ensure that this target remains in Zone 1, upon which C 1 will be instantiated.
If the target moves doser and enters Zone 2, 12 consecutive radar sweeps will also be consi
dered to ensure the target's position as well. These sweeps will be triggered for counting after
the target crosses the 160 meters distance measured. Considering that the target is traveling at
a speed of 33.3 meters/sec [X.MA 2006] and that each radar scan is 25 msec long, this will
make our target ready to be tracked using C2 at a distance of 160-10=150 meters. The same
applies if the target is entering or leaving Zone 1, Zone 2 or Zone 3. In summary, Figure 4.11
shows the reconfiguration triggering process based on measured distance.

Zone/
Configuration

'1====-=----t--+

0 90 110 150 170 Obtacle Distance
(ln m)

Figure 4.11 - Reconjiguration triggering distances supposing a target travelling at a
speed of 120 km/hr.

60

DP R system based on targets position

Regarding the DUE unit, one region (RR3) out of the 2 free regions (RR2 and RR3)
in configuration Cl will be implemented to as a DUE hardware unit. The same region will

remain a DUE unit when the system changes into configuration C2 since RR3 will not
change its configuration but only RR2. In configuration C3, the DUE unit will be replaced by
the ABF filter.

4.4.i. Latencies and reconfiguration overheads
Latency analysis in driver assistant systems is very important to improve safety and

ensure that drivers have adequate time to react to changing conditions. Starting from this
point, we base our analysis on scenarios where targets travel towards the radar at 33.3 me
ters/sec (120 kmlhr). Since the reaction time of the driver should be approximately 2.7
seconds [X.MA 2006], this results in a 33.3x2.7 = 90 meter safety buffer that we use to de
fine Zone 3.

Re garding the implementation of the KF A, KFD and ABF filters, we note that they
each have a latency of less than 50 nsec. Since these filters are in turn used to implement each
of the three configurations, we note that the latency of configuration Cl, which only uses
KF A, is 50 nsec. Similarly, the latency of configuration C2, which uses filters KF A and KFD

in parallel, is also 50 nsec. On the other hand, the latency of configuration C3, which uses the
ABF to pro cess the outputs of the KF A and KFD filters is 100 nsec.

Although pipelining can be used to maintain a 50 nsec clock, the additional hardware
resources and system complexity are not necessary. Since the data transfer latency from a soft
pro ces sor core to the filtering block is on the order of micro-seconds, the 100 nsec latency of
the Filtering&Prediction block is not on the critical path.

The three reconfigurable regions can be reconfigured to KF A, KFD and ABF respec
tive! y as mentioned earlier. The time needed to reconfigure RRl to KFA is 87.3 msec; RR2
to KFD is 82.8 msec; and RR3 to ABF is 130.1 msec. These are used in Table 4.9, which
shows the reconfiguration time for the different scenarios that might occur.

Table 4.9- Reconfiguration times neededfor the switching among different conjigu-
rations.

These results enable us to infer the number of radar sweeps that can be missed with
out filtering while reconfiguration is under way. The number of missed radar sweeps also
enables us to validate the defined zones and the heuristic used to perform reconfiguration. For
example, the AC20 radar has a maximum detection range of 200 meters.

When a target is detected in Zone 1 at a distance of 200 meters traveling at 33.3 me
ters/sec (120 Km!hr), four radar sweeps (100 msec) will be skipped due to the reconfiguration
process. This still enables configuration Cl to be ready while the target is at 200-3.33=196.67

61

DPR-MTT compared to enhanced soft core processors

meters. When the target passes through the 150 meters boundary, configuration C2 will be
triggered. In turn, four radar sweeps (1 00 msec) within Zone 2 will maintain configuration C 1
until configuration C2 is ready to be used. Hence configuration C2 will be enabled while the
target is still at a distance of 150-3.33=146.67 meters.

Finally, when the target passes through the 90 meter boundary, configuration C3 will
be triggered. In turn, six radar sweeps (150 msec) within Zone 3 will maintain configuration
C2 until configuration C3 is ready. Hence the target will be tracked using configuration C3
when it is at a safe distance of 90-3.33-1.665=85.005 meters. Note that even when being re
configured, our system is designed to continue operating and detecting obstacles using the
previous configuration.

4.4.j. Conclusion
In this work a dynamically reconfigurable filtering hardware block for multiple target

tracking applications in DAS based on targets positions was presented. Our system shows
that there will be no reconfiguration overhead because the system will still be functioning
with the original configuration until the system reconfigures itself. The free reconfigurable
regions can be implemented as improvement blocks for other DAS system functionalities.
For example all RRs can be KFAs for three radars attached to the MTT system.

4.5. DPR-MTT compared to enhanced soft core processors

Soft core processors come in different versions and configurations. This variety in
choice, allows the enhancements in terms of latencies and hardware utilizations of any tar
geted and implemented system. However, this choice is directly related to the manufacturer
and the utilized soft core processor. For example, the variety of soft core processor versions
in Xilinx is not as wide as that in Altera based systems (MicorBlaze version 8.0 and Niosii
versions 'e', 's'or 'f soft cores) [MICROBLAZE] [NIOS].

In the work of [J.KHAN 2009], the author proposed enhancements on the MTT DAS
system by utilizing enhanced soft core processors. Though an enhanced processor can ex
ecute in more time but utilize less hardware resources when compared to a simpler version of
the same processor, the author's upper limit for the use of an enhanced soft core processor
was its execution time. The author proposed the removal of the 20 Kalman processors from
the base architecture, and replaces them with two processors instead as shown in Figure 4.12.
One of the processors, Processor 1 KFs 1 to 20, was a Niosii!f processor with 16 Kbytes I
cache. The second processor, Processor 2 Housekeeper, was a Niosii/e processor with no
cache. These two processors represented the new enhanced Filtering&Prediction block. The
author, as mentioned in chapter 3, pipelined his MTT system in three stages, one of them was
after the Filtering&Prediction block. According to [J.KHAN 2009], the two processors based
Filtering&Prediction block was sufficient to execute in around 25 msec.

62

DPR-MTT compared to enhanced soft core processors

Clèck distribution

Assign Solver ta Housekeeper lnterconnect

~~llilf!!J

Externat dock

dock distribution

Figure 4.12 - Enhanced proposed architecture for an MIT based DAS system using
an enhanced soft core processor instead of 20 simple processors for the Filtering&Prediction
block. [J.KHAN 2009}

The rough comparison between our two proposed DPR systems and the new enhanced
system in terms of hardware resources is presented in Table 4.1 O. The hardware resources
utilized by the Base Filter are those needed for the implementation of five MicorBlaze soft
core processors and a 16 Kbytes of on chip memory. The DPR Filter 4.3 and 4.4 represent the
hardware resources utilized by our DPR implementation based on targets density and position
respectively.

HW re
sources

Base
sw

Fil ter

DPR
Fil ter

4.3

Res ource
reduction

DPR
Fil ter

4.4

Res ource
reduction

Table 4.10- Enhanced base and new DPR Filtering&Prediction hardware resource
utilization rough comparison.

63

Conclusions

As shown in Table 4.1 0, the DPR based systems consumed little more hardware re
sources than the enhanced base architecture in one implementation (DPR Filter 4.4). Howev
er, the execution time is faster in our DPR than in the previous implementation since the new
base system consume 25 msec and not 3 msec anymore (Table 3.1). A DPR system also dy
namically supports different driving conditions without the need of any user feedback or in
put. Also, as shown in section 4.4, our DPR system can support enhancement blocks other
than those of the MTT algorithm using the same hardware resources instead of leaving them
to become absolute.

4.6. Conclusions

In this chapter, we proposed two scenarios where DPR can be beneficiai in the MTT
system. In the first system implementation, the filtering block was implemented as a reconfi
gurable hardware unit adapting to the number of observed targets. Results showed that our
filtering block can adapt its accuracy and complexity according to the number of observed
targets. As the number of targets increases, the system utilizes a more accurate filtering block
in order to more accurately detect these targets. However, as the number of targets is reduced,
the danger level of such targets is reduced and hence a lower accurate less complex filtering
block is most fit for such an environment. Our results show that using a reconfigurable region
can significantly reduce FPGA resource utilization, but that this needs to be balanced with
good resource utilization within the reconfigurable region.

In the second proposed DPR system, the filtering block was implemented on multiple
reconfigurable regions architecture. These regions can adapt their modules and architecture
according to the proximity of detected targets. The detection region was divided into three
zones where different filtering implementations were used for each zone. The furthest zone
did not need a high accurate filtering block since targets in that zone are the least danger.
However as targets get doser and enter the second and the third zones, the filtering block is
adapted to provide higher accuracy levels of detections. This implementation however uses
free reconfigurable regions in order to implement an enhancement detection unit block part of
the detection phase. Final results show better hardware utilization when using a DPR archi
tecture and the ability to use free resources for other enhancement blocks not necessary in the
MTTsystem.

By also comparing to enhanced soft core processors, in conclusion, whether we used
20 or five soft core processors, the hardware may become absolute in certain cases. The DPR
feature supports the ability to make use of absolute hardware for enhancement purposes
(DUE unit), accuracy trade-offs (ABF filter) and the dynamicity to automatically support
multiple driving conditions (DPR Filter sections 4.3 and 4.4).

64

65

Exploring
multimedia system

DPR •
lll an H.264

In this chapter, we present our second exploitation of DP R in embedded system de
sign. This contribution concerns the utilization of DP R for making embedded systems more
efficient while running multimedia applications namely the H264 encoder. We first begin by
introducing the H264 multimedia system and its important functional blacks. We then ex
plore the image quality and energy trade-o.ffs of a dynamically reconfigurable H264 motion
estimation black. Our architecture exploits DPR to vary the granularity of the pixel masks
used to compute the sum of absolute difference (SAD). The SAD calculation is needed to find
the motion vectors between current and reference frames. This provides the ability to trade
off image quality for lower processing times and energy consumption. In addition to describ
ing our architecture, we describe sorne of the optimizations we used to re duce the system 's
memory requirements. We also present a heuristic for automatically tuning the pixel mask
size to meet image quality and energy consumption leve/s.

5.1. Introduction

During the last decade, the H.264 application's migration into hardware has been a
very attractive area. Most of which have been capable of implementing complex computa
tional blocks onto ASICs or on FPGAs. The use of ASIC platforms has proven to be very
interesting platforms due to their low power consumptions and their flexible architectures in
terms of hardware resources and memory blocks. FPGAs have been also explored for the
H.264 implementation, partially and even entirely implemented on the same fabric [NOVA].
The use of FPGAs is due to their flexible programming and the variety of resources present
on the fabric such as high speed memory blocks, Arithmetic Logic Units (ALUs) and embed

66

Introduction

ded soft and hard core processors as well. Although FPGAs consume more power when
compared to ASICs [A.AMARA 2006], however, the major advantage FPGAs have over
ASICs is re-programmability. FPGAs can be reconfigured with a new design on the fly, while
ASICs need both time and cost to implementa new design on the same fabric. Also, nowa
days, FPGAs support the ability to partially reconfigure part(s) of its logic dynamically on the
fly without the need to stop the system's execution. While the system is running, DPR allows
part of the FPGA to be replaced by another needed computational unit or hardware accelera
tor.

In this work we target the Motion Estimation (ME) unit part of the H.264 encoder. As
detailed in the following section, this unit is important due to its major role in the achieve
ment of high compression rates. The ME unit encodes a motion vector of a set of pixels
joined in a defined macro-block size. The lower the block size is, the better the quality of the
video becomes but this also results in lesser compression rate. However, for certain video
sequences, bigger macro-block sizes can be naturally used when there are not a lot of pixel
changes between consecutive frames in the video. Renee, with larger block sizes, good quali
ty is still achieved in this case and with higher compression ratios as well. The information
from the ME unit, the motion vectors, is also used in the decoder as well to decode the video
sequence.

The work in this chapter targets, using the DPR feature in FPGAs, the implementation
of a dynamically partial reconfigurable ME inside an H.264 encoder. We present the compu
tational complexity inside this unit and the implementation possibilities on an FPGA. Unlike
other related work, we use the DPR feature not to replace our computational implemented
units with other modules but rather to reduce the energy consumption. Our system is also
capable to compute the ME of different supported block sizes by simply changing the data
information sent to interconnected computational units. The flexibility of our system in terms
of image quality and energy was the basis of our reconfiguration heuristics. We implemented
our system on fabric and deducted results in terms of execution times, power measurements,
and reconfiguration times and acquired image quality. Our system was tested to support mo
bile video services with resolutions such as Quarter Common Interface Format (QCIF
176x144).

The chapter is organized as follows: In section 5.2 we present a small introduction
about the H.264 system in general. Following the H.264 introduction, we present an elabora
tion on the targeted computational unit inside the ME unit in section 5.3. A thorough analysis
of this unit and the targeted computational blocks inside of it is studied and analyzed in the
same section. After this study and analysis, section 5.4 presents the implementation details of
these units on a DPR based functional system. In this section we give a more detailed analy
sis and description of the attached memory controllers to our proposed design. We also show
the analysis and results achieved from the power and energy studies. Our system's control is
described in section 5.4 via explaining the reconfiguration heuristics before concluding our
work in the last section, section 5.5.

67

The H264 encoder

5.2. The H.264 encoder

In this section we introduce the basic building blocks and functionalities of the H.264
encoder. As shown earlier in Figure 1.5 and as shown in the next figure, Figure 5.1, the
H.264 encoder is decomposed of three main stages: Prediction, Transform and Quantization
and Encoding stages.

-Decoder

-Encoder

Bitstream

Oecoded
Frames

Figure 5.1 - Detailed figure showing the basic building blocks of an H264 encoder
and decoder. Also, the figure shows the placement of the ME unit and its relation among the
encoder and the decoder of the multimedia system.

1. Starting with the Prediction stage of the encoder, it is made up basically of one
unit, a Motion Estimation unit. Prediction exploits the redundancy of specifie
blocks of pixels in multiple frames in the video. This process is done using a mo
tion estimation unit that predicts the placement of the pixels' blocks in consecu
tive frame(s) in the video. The block size of the pixels can vary between 4x4 to
16 x 16 pixels. Also, the number of consecutive frames, the motion of the pixels'
block is predicted at, can vary from one to ten consecutive reference frames
[J.W.CHEN 2006].

2. Another stage in the encoding process is the Transformation and Quantization
stage. The main functionality of this stage is to reduce the coding information and
scale down the transformed coefficients [J. W. CHEN 2006]. The most popular
transformation and quantization block used in this stage is the DCT image and
video compressor. The DCT also reduces the residual error data which is the dif
ference between the actual and predicted data.

68

The H 264 encoder 's Motion Estimation

3. The final stage in the H.264 encoder is the Encoding stage. This stage is also
known as the Entropy Coding. The Entropy Coding is responsible of converting
all the syntax based elements, such as the motion vectors from the Prediction
phase and the quantized coefficients from the Transformation and Quantization
stage, to encoded bit streams of the video. The H.264 standard support two entro
py coding methods: Context Adaptive Length Coding (CA VLC) and Context
Based Adaptive Arithmetic Coding (CABAC) [J.W.CHEN 2006].

5.3. The H.264 encoder's Motion Estimation

Like most multimedia systems, the H.264 is composed of an encoder and a decoder.
The main focus in this work is directly related to a functional block that is common between
both the encoder and the decoder; The ME unit. This unit performs most of its computations
to conduct the motion vectors in the encoder and the same information is used in the decoder.
The ME estimation unit, as shown in Figure 5.1, shows its relation between the encoder and
the decoder. Figure 5.1 also shows other functional blocks implemented on a DPR architec
ture such as the de-blocking filter in the decoder and the quantization (DCT) block in the en
coder.

Our work is based on the implementation of the ME unit on an FPGA on the basis of
using DPR. Hence, in this section we will give a detailed analysis of this unit, its major com
putational function block and the complexity of this block. This will provide a better under
standing of the proposed implemented system and explore its efficiency when implementa
tion and experimental results are discussed.

5.3.a. Motion Estimation
One of the main characteristics of an H.264 encoder is its high compression ratios,

which are mainly achieved through the ME unit. The ME unit computes motion vectors for
specifie groups of pixels across multiple frames, and only encodes the motion vectors instead
of encoding the pixels themselves. The accuracy of the compressed frames depends on the
size of the pixel blocks used to compute the motion vectors. In general, higher levels of accu
racy are achieved using smaller pixel blocks at the expense of higher computational require
ments. The pixel block dimensions can vary between 4x4 and 16xl6.

The most accurate method for computing motion vectors involves an exhaustive
search, which is shown in Figure 5.2. For every pixel block in the Current Frame, a 63x48
pixel Search Window, centered on the same block's position in a Reference Frame, is used to
find a best match. A Computation Window having the same size as the pixel block (16x16
pixels block) is used to scan the Search Window in one-pixel horizontal and vertical incre
ments, and is used to compute the sum of absolute difference (SAD) with the pixel block. The
best match corresponds to the Computation Window that results in the minimum SAD, which
can then be used to compute the motion vector. Figure 5.2 shows a I6xl6 pixels block, which

69

The H264 encoder 's Motion Estimation

pro vides the best compromise between accuracy and computational complexity [P .KUHN

1999].

Current Frame

Computation
window window

Figure 5. 2 -Motion estimation of a group of 16 x 16 pixels in a Se arch Window

among a Current and a Reference Frame.

Earlier studies have shown that the motion estimation corresponds to a significant
proportion of the execution time of a H.264 encoder [Y.SHENGFA 2006]. To validate these
results, we used the Joint Video Team (JVT) ISOIIEC JM codee [MPEG4] to profile the
H.264 encoder and found that motion estimation accounts for an average of 40% of the en
coder's run time. We tested sorne videos using the JVT simulator on an Intel Pentium IV
20Hz processor with 1 GBytes as RAMs to verify the average execution time of the ME unit.
Profiling results ofthe ME unit are shown in Table 5.1.

As shown form the table, the ME unit consumes on average 42% of the H.264's en
coder total execution time. Given the high frequency of the ME function and the significance
of the SAD operation in computing it, we chose to implement the motion estimation function
as a hardware accelerator block.

The SAD computations are used in the ME unit to select the best matching motion
vector. The following equation, equation (5.1) shows the mathematical formulation for SAD
computations. In this equation, "C" and "R" correspond to the dimensions of the pixel block
(i.e. the block size). Each pixel is represented by Y, U and V values where Y corresponds to
the luminance component and U and V correspond to the chrominance (color) components.
Since the ME unit operates on Y values only, "cur" and "ref' correspond to the Y values for a
given pixel in the current and reference frames, respectively. At the same time, "l" and "k"
correspond to the coordinates of the Computation Window within the Search Window.

C R

SADcxR = L Llcur(i,j)- ref(i + l,j + k)l (5.1)
i=l j=l

70

The H264 encoder 's Motion Estimation

Container 43

Table 5.1 - Profiling results of the ME unit for various video samples. The table
shows the% ofthe ME unit execution time out ofthe total encoder's execution time.

5.3.b. SAD analysis and observations
The SAD computations depend on two main factors: pixel values and block size. The

pixel values determine the magnitude of the difference between pixels in the current and ref
erence frames, while the block size determines the group of pixels that are being considered.
As the block size increases from 4x4 to 16x16, fewer SADcxR computations are needed.
However, Figure 5.3 shows the total number of SAD computations for a 16x16 block using
different CxR pixel block dimensions for a Computation Window to slide all across the Ref
erence Frame's search window. This shows that the same computations can be made using
Computation Windows with different dimensions. For example, to compute the SAD for a
16xl6 block, we canuse sixteen 4x4, four 8x8, or one 16x16 Computational Windows. As
we will prove in section 5.4, the size of the Computation Window can be used to optimize
energy consumption and image quality.

--

VI
50000

c 45000 0
+i 40000 (tl
+1

35000 :::1
o.
E 30000
0 25000 u
a: 20000)(
u 15000
0
< V)

10000
5000

0

16x16 8x16 16x8 8x8 4x8 8x4 4x4

CxR

Figure 5. 3 - Total number of SAD computations for different computational window
sizes for a J6xJ6 pixels block.

71

The H264 encoder 's Motion Estimation

We also show that a SAD computation for an arbitrary block size can be composed
from SAD computations for the smallest block size. Figure 5.4 shows a 4x4 block divided
into four 2x2 regions labeled a, b, c, and d, respectively. Replacing the values of C and R by
four in equation (5.1) we can derive equation (5.2 a). lfwe now treat the block in Figure 5.4
as four blocks of size 2x2 pixels, we can reduce equation (5.2 a) to equation (5.2 b). This
shows that a SAD4x4 can be computed as the sum of four SAD2x2 computations. It follows
that an arbitrary SADcxR can be computed as the sum of appropriate terms of SAD4x4 compu
tations.

j fi ~

LI
r'"

Figure 5. 4- A 4 x4 pixels block composed of four 2 x2 pixels blocks.

4 4

SAD4 x4 = L Llcur(i,j)- ref(i + l,j + k)l (5.2 a)
i=l j=l

SAD4 x4 = SAD(a) 2x2 + SAD(b) 2 xz SAD(c)zx 2 SAD(d)zxz (5.2 b)

As we show in section 5.4, our ME computational unit is designed around a reconfi
gurable array of SAD4x4 blocks. Figure 5.5 shows the resulting number of SAD4x4 computa
tions needed to compute the motion vectors for a 16 x 16 pixel block using different sized
CxR block sizes. Hence, by multiplying the number of SAD computations of block size
16x16 by 16, 8x16 and 16x8 by 8, 8x8 by 4, 4x8 and 8x4 by 2 and 4x4 by 1, we get the re
sults in Figure 5.5. It noticeable that by even standardizing all computations for different
block sizes CxR to one block size computation 4x4, bigger block sizes consume less compu
tations.

72

DP R exploration and implementation

50000
Ill 45000 c:
0 40000 ~

"' 35000
:::s a. 30000
E
0 25000
u

20000 ~
)(

15000 ~

0 10000 <C
Cl) 5000 =1:1:

0

16x16 8x16 16x8 8x8 4x8 8x4 4x4

CxR

Figure 5.5- Number of SAD4 x 4 computations needed for a 16 x]6 pixel image black
using different sized search window bloc/cs.

5.4. DPR exploration and implementation

In general, to study the ability of having the ME unit, or any suitable candidate, to be
implemented on the DPR basis, few forecasted points must be addressed and studied. One
point is to find out where and in which part of the designated system can DPR be imple
mented and found most beneficiai. Our designated system is the H.264 encoder, and it was
found out that the SAD computation block in the Motion Estimation unit was a suitable can
didate to be implemented on the basis ofDPR for the following reasons:

1. This block can be implemented as a hardware accelerator block. The SAD func
tion does not need a large amount of hardware resources to be instantiated for it
does not include complex functions such as division or exponential computations.

2. The SAD computational block of different block sizes can be implemented based
on one basic building block. This means that any configuration can be imple
mented by scaling and replicating the basic building block. This makes the system
a scalable system, which is one of the major advantages of the use of DPR when
best explored.

3. The SAD computational block in the implemented system benefits from the hard
ware reuse feature of DPR. The system can reuse hardware, instantiate new hard
ware or erase sorne hardware blocks in order to achieve dynamic power/energy
consumption.

Before describing the system implementation level details, it is important to mention
the following: The DPR system is implemented to be a black box performing the SAD corn-

73

DP R exploration and implementation

putations of any block size. This implementation takes into considerations the sensitivity is
sues, which are addressed to be the available power and the image quality provided or re
quired. The system is connected as a peripheral to a memory buffering architecture holding
all necessary data to be processed. The DPR system presented is implemented in a manner
where it can be connected to a simple memory buffer and add no extra complexity to the
memory control unit. Following this note, along with the computational unit and the reconfi
guration heuristic, we explored one DPR implementation possibility and design in the H.264
multimedia encoder.

For our system to achieve ali previously mentioned points, it was theoretically stu
died, designed and then physically implemented. After the implementation phase, the system
was fully verified and tested. Based on the theoretical design and actual implementation, we
designed our reconfiguration heuristic based on power available and image quality demands.
The advantages of the use of DPR in the H.264 encoder were validated by highlighting the
energy and performance trade-offs in the overall system. Discussions and results were fol
lowed and conclusions were drawn.

5.4.a. Implementation and design
In order to build a basic DPR system, the essential components of the system must be

studied, designed and implemented. We follow the theoretical approach that can best explore
the benefits and advantages of the DPR feature in our system design. At first, and based on
the theoretical analysis of the SAD computational block, we designed a hardware SAD4x4
component. This component is used as our basic building block for all other block sizes the
H.264 encoder can support (4x4, 4x8, 8x4, 8x8, 8x16, 16x8 and 16x16). A tree-like hierar
chical structure was designed to support all block sizes based on the basic SAD4x4 building
block as can be shown in Figure 5.6.

Sixteen reconfigurable regions have been instantiated as shown in Figure 5.6 marked
from RR1 to RR16. The regions are placed in a way to make the architecture clearer and
simpler to understand. The placement is done in this manner in order to minimize the total
system complexity and reconfiguration heuristics as will be shown in a subsequent section. In
our system, a reconfigurable region can either be implemented as SAD4 x4 hardware block or
be a blank region.

The proposed architecture also includes sorne static blocks and controllogic. The stat
ic blocks are adders and are marked by a sign "+" in Figure 5 .6. There are 15 summation
blocks in the static part of the architecture. The architecture also has sorne control logics
which are basically enable signais of the summation blocks. In Figure 5.6, five levels of out
puts can be found: Level1, 2, 3, 4 and Level5. When the system is configured on Level1, all
the summation blocks are enabled and one output is drawn from Level 1. In the case the sys
tem is configured on Level 2, all summation blocks are enabled except the one at Level 1
(summation block beyond Level 2). Level 2 drives two outputs as marked in Figure 5.6.
When the system is using Level3, all summation blocks beyond Level 3 are disabled for they
are not used at the time and this level derives four outputs as shown in the figure. In the case
of Level 4, the same idea follows. Ail summation blocks beyond this level are disabled and

74

DPR exploration and implementation

the level drives eight outputs. Finally, Level 5 drives 16 outputs and no summation blocks are
enabled when this configuration is being used.

LEVEll

r------·
1

LEVEL2

L----------1
1

LEVEL3

L------------------J 1
1

LEVEL4

L---------------------------1 1

LEVELS

Figure 5. 6- The design of our proposed architecture of multiple reconfigurable re
gions including static and fixed control blacks.

Based on the mathematical theory provided in the previous section 5.3, the proposed
architecture follows the same manner and was implemented on the same basis. The summa
tion oftwo regions means the addition oftwo SAD4x4 outputs. With the proper data sent as
input of those regions, two SAD4x4 can function as the output of one SAD4x8 or one
SAD8x4. The same applies to four SAD4x4, which can result in computing one SAD8x8.
Also, eight SAD4x4 performs one SAD8x16 or one SAD16x8 and 16 SAD4x4 to perform
the computations of one SAD I6x 16.

The regions placement over the summation mesh and the instantiations of different
output levels is implemented in order to minimize the overall system complexity. The follow
ing example illustrates the complexity reduction. Note that in the following example, the
block sizes and the allowed instantiated blocks are considered after the reconfiguration heu
ristics stage.

75

DP R exploration and implementation

5.4.b. Illustration of example of the DPR computational unit
In this example we see the architectural form when the system can support the block

size of 4x4 and is capable of instantiating four regions. Two steps are required for the process
of reconfiguring and constructing the architecture available for this system.

The first step is to find out how many outputs the system should deliver. Since the
block size is 4x4 and four regions can be supported, bence four outputs can be driven from
such a system. Four outputs reflect that the selection of the respective level should be Level
3.

After that, since four regions can be supported, the regions RRl, 2, 3 and RR4 are
configured to hold SAD4x4 respectively as can be shown in Figure 5.7. The output level se
lection is easy, when it is supposed to be 4, in this case since Level 3 can support exactly this
number of outputs. This reduces certain output selection procedures and allows a faster leve!
selection without the use of a higher selection method. In the case of this example, the level
selection can be issued by enabling Level 3.

L-----------' 1

LEVEL 3

Figure 5. 7- The architecture instantiatedfor an example. Four regions are configured

in this system and the output selection leve! is Leve! 3.

The numbering and placement of the reconfigurable regions also reduces the reconfi
guration control and heuristics. If the four nearby regions are to be configured, then the out
put level selection will change, in this case to Level 5. 16 outputs will be delivered but only
the first four will be considered and the rest will not be. In addition to that, when the system
changes its configuration, the less the control and reconfiguration performed the better and
more optimized the system became. The system is more likely to change into a configuration
that does not include high changes on the previously implemented architecture. This change

76

DP R exploration and implementation

is to achieve either lower/higher power consumption, or due to a lower/higher image quality
demand or both as will be explained in proceeding sections.

After foreseeing the system's architectural overview, and after identifying the functio
nality and manner such a system should function on, certain procedures were followed to
verify the stated design. At first, the basic computational block, which is the SAD4x4, was
implemented and studied. Physical implementation of the hardware basic block was imple
mented to validate the block and verify its functionality.

5.4.c. Hardware aspects
After implementing and designing a proper architecture for our system to be based on,

we focused on building the basic component of the architecture, the SAD4x4 basic building
block. The SAD4x4 block built takes as an input 32 8-bit wide data operands. These 32 inter
nai buses pass the data needed by a SAD function to compute, using two 4x4 blocks (16
bytes). The first 16 bytes (d1_0 to d1_15) driven, are the pixels values of the block in the
Reference Frame while the second 16 bytes (d2 _ 0 to d2 _15) driven are the pixels values of
the block in the Current Frame. The reason for choosing one byte data bus width is because a
pixel value can range between 0 and 255, thus eight bits are enough to represent the input
data. The block derives one output which is the SAD computed value "SAD" and is 16 bits
wide. A clock is inserted into the block for synchronization "CLK" and an enable signal for
enabling or disabling the output "ENA". The processing done inside the SAD4x4 involves
the change of input data signais into integers, then perform the absolute difference and after,
change into signais and sum all differences to form the output "SAD". Figure 5.8 shows an
illustration of the SAD4x4 block with the corresponding input buses, internai computations,
output and the control signais.

Reference
Frame 4x4

Current
Frame 4x4

•••• •••• •••• ••••
0000
0000
0000
0000

r··~~~~~~··~ ~
• to : •
~ lnteger ~ r ___ _
.. •••• • • • ••••••

1
Absolute 1

.. · · · · · • · · · · · · ·. L difference 1
.--""'-'" ~ Co~~ert ~ -~ - ..

lnteger ~ r=:::!}
.............

..
.,._sA.D_.._.: Convert ~o ~4-

: Std_Log1c : ·
~

CLK
SAD4x4

Figure 5.8- Interna! design of the SAD4 x4 bloc k. This plot contains the interna! op

erations of the inputs in addition to the control signais as weil.

77

DP R exploration and implementation

The block is coded using the VHSIC (Very High Speed Integrated Circuit) hardware
Description Language (VHDL) programming language [VHDL]. The design was fully com
piled and synthesized using the Xilinx ISE synthesizing tool version 12.4 [ISE12]. The code
was implemented, synthesized and tested via simulations before the implementation. To test
the block, we used simulated data and verify the output. This was done to insure the functio
nality of the block and validate its functionality before the actual board implementation. The
following example demonstrates the procedures of the validation process. The data driven to
the component after feeding a clock "CLK" and enabling the block by raising to '1' the ena
ble signal "ENA" are found in Table 5.2.

b1 15 7 00000111 b2 15 5 00000101
Table 5.2- Simulatedfed in data for testing the SAD4 x4 black.

If we calculate the sum of absolute differences of the data found in Table 5 .2, the re
suit will be 130, which is '0000000010000010' in binary. Figure 5.9 shows the simulated
signais of the data mentioned in Table 5.2. In the left side of the figure, we can see the signais
declarations and the respective bit bus widths. The bottom left side of the figure shows also
the clock signal "CLK", the enable signal "ENA" and the output "SAD" signal with its re
spective bit bus width of 16 bits. The right si de of the figure shows the simulated signais with
their binary representations. In the bottom of the figure, we can notice that the value of
"SAD" when the data of Table 5.2 are fed is '0000000010000010' which is 130 in its integer
format. This validates the SAD4x4 block and that the block is properly functioning.

After coding the computations of the component and forming the SAD4x4 block, we
instantiated the block on hardware and implemented it too. For prototyping the block we im
plemented iton a Virtex 4 'XC4VFX60-11FFG1152C' FPGA [V4_FPGA]. In order to op
timize the block and make it consume the only needed hardware resources, we had to update
the timing constraints file associated with the instantiation of the SAD4x4 block. The higher
the timing constraint is, the more the flexibility of the synthesis and routing tool has become
and in turn the tool is more relaxed in the placement of the hardware resources of the block.
By decreasing the timing constraints, the synthesis and routing tool is forced to try as much

78

DP R exploration and implementation

as possible to place the hardware resources of the block as close as possible in order to meet
this timing constraint. When the tool fails to meet the constraint, it will signal a 'timing con
straint not met' error message. In that case, the timing constraint is set to the best case
achieved where the tool was able to synthesize and route the hardware of the block. Our
hardware SAD4x4 block, in summary, consumes 282 slices, 459 LUTs and can function on a
maximum of 500 MHz clock frequency.

JI- ..,. d!_0[7:0] 00000 1

.... ""' d1_1[7:0] 000001 1

JI- 11)11! dt_Z[7:0] 000001 Il

.... ""' d!_3[7:0] 00001 0

JI- ..,. dl_ '1[7:0] 00001 1

.... ""' d1_5[7:0] 00011 10

JI- 11)11! d1_6[7:0] 00001 10

.... ""' d1_7[7:0] oooch 10

JI- ..,. d1_8[7:0] 00001 10

.... ""' d1_9[7:0] 00001 10

JI- ..,. d1_10[7:0] 00001 Il

.... ""' dl_ll[7:0] 000011 0

JI- Ill! d1_1Z[7:0] 000011 1

.... ""' d1_13[7:0] 00000 1

JI- ..,. dl_l'l[7:0] 000001 1

.... ""' d1_15[7:0] 00000111

JI- Ill! dZ_0[7:0] 00000 1

.... ""' dZ_1[7:0] 00001J(. 1

JI- ..,. d2_2[7:0] 00000 1

.... ""' d2_3[7: 0] 00000 1

JI- ..,. d2_ '1[7:0] 00000 Il

.... ""' d2_5[7:0] 00000 10

JI- ..,. d2_6[7:0] 00000 1

.... ""' d2_7[7:0] 000001 1

JI- ..,. d2_8[7:0] 00000111

........ d2_9[7:0] 00000 1

JI- ..,. d2_10[7:0] 00001111

.... ""' d2_11[7:0] 000101 0

JI- ..,. d2_12[7:0] 000101 0

........ d2_13[7:0] 000101 1

JI- ..,. d2_1'1[7:0] 000101 1

.... ""' d2_15[7:0] 00000 1

lfr: dk r-
l.Ç, ena

JI- 00000 ... 00000 0010000010

Figure 5.9- Simulation output of the SAD4 x4 block when processing the data in Ta
ble 5.2.

The very small execution time ofthe SAD4x4 block is due to two reasons:

1. The throughput of the block and the computations involved inside the SAD4x4.
The SAD4x4 blocks takes all its input at the same clock edge. As we have already
shown and discussed in Figure 5.8, 32 8-bit data buses are driven in parallel to the
block. This makes our system a fully parallel implementation and with no pipelin
ing stages.

2. For this short time constraint is the computations performed on the input data. The
two inputs are converted to integers in parallel and then the absolute difference of
the outputs is commutated in parallel as weil, after that, the summation of the ab
solute differences is executed. This process takes very short time and the paral
lelism of the inputs makes the execution time even shorter and hence faster to ex-

79

DPR exploration and implementation

ecute. Figure 5.10 shows the density of the routed signais and hardware the syn
thesis and routing tool had to implement in order to meet the 2 nsec timing con
straint.

Figure 5.10- Routed signais and hardware connections inside the SAD4 x4 bloc k.

After explaining the hardware aspects of our block, we will analyze this block when
mapped into a reconfigurable region. One important aspect of performing reconfiguration is
the time needed for this process to finish. This step is considered important due to the impact
this process can have on the overall system.

5.4.d. Reconfiguration time analysis
In every dynamic partial reconfigurable base system implementation, the reconfigura

tion time plays a major factor in the design process. In general, one advantage of the use of
the DPR feature is that the FPGA will continue working when part of it is being reconfigured.
But the system should also know when the reconfiguration process will end in order to adapt
to the new configuration.

Reconfiguration time is important for the reconfiguration heuristics as well. The re
configuration heuristic, when knowing how long the reconfiguration process can take, can
predict how much time the system can continue functioning in the current configuration until
the new configuration is available. This provides prior knowledge of the system's functionali
ty and ensures proper configuration at the right time.

One other important point to mention regarding the reconfiguration time is that when
power is related to the system's performance, it is better to try to minimize this time as much
as possible. The reason for doing so is to reduce the energy consumption of the total system.
Since the system is spending more time to perform reconfiguration, this will add on its energy
consumption. The more the reconfiguration time is reduced, the less the energy loss of the
system has become. This point will be mentioned in the following section (section 5.3.e)

In order to acquire the reconfiguration time, we used build-in hardware timers to ac
quire this time. The hardware timer is a build-in IP core that could be attached directly to a

80

DP R exploration and implementation

processor. When the timer is triggered, it sends the number of clock cycles from the com
mand was executed till the timer was triggered. When the timer is stopped, it sends the num
ber of clock cycles spent when it was initiaily triggered. By subtracting these two values, we
can get the total number of clock cycles spent between the stopping and triggering of the
hardware timer. When this number is multiplied by the frequency of the clock the processor
is running on, we get the time the counter read. This time is basically the execution time
needed by the commands executed between the starting and the stopping of the hardware
timer. To measure the reconfiguration time, the reconfiguration command lines are put be
tween the start and stop commands of the timer.

In general, when a system includes reconfigurable regions, the bit files that host the
configurations in these regions are stored in a Compact Flash (CF) memory card. Since the
CF is the easiest way to transfer files to the board including the FPGA, it is used as a default
memory hosting the configuration files. Taking this into account, few steps are followed to
perform a partial reconfiguration process. First, the HWICAP must be initialized and tested if
any errors were in the hardware of the component. After that, a function is cailed to read the
desired bit file from the CF and sent to the HWICAP controiler. At that stage, the reconfigu
ration process starts after isolating the targeted region.

We designed a sample self-reconfigurable system with HWICAP in order to physical
ly measure the reconfiguration time. We used the Xilinx version 9.1.02_PR10 design tools in
order to build our system.

As shown in Figure 5.11, the system consists of multiple components which are man
datory in order to perform partial reconfiguration. A HWICAP IP core is included with its
inner controiler and cache BRAM responsible for performing partial reconfiguration. A
hardware timer IP core that will be used to measure the elapsed time needed to perform the
reconfiguration process. A processor is used to host the software commands and communica
tions with the peripheral components. This processor could either be a PowerPC v.405 pro
cesser [POWERPC], or a MicorBlaze v.5 [MICROBLAZE]. A backbone OPB is used to
connect the processor and ail the other peripherals. A flash memory controller peripheral is
added to communicate with the CF memory.

In our system, since ail 16 regions are identical, we are interested in the measuring of
two reconfiguration times: one is the reconfiguration time spent to configure a SAD4x4
module in a reconfigurable region. The other is the reconfiguration time spent to configure a
blank module in a reconfigurable region, or in other words, the blanking of a region. After
performing the reconfiguration process multiple times for both the SAD4x4 and the blank
module, and on a system's clock of 100 MHz, Table 5.3 was concluded.

Blank 105 1.0972
Table 5. 3 - bit file sizes and different reconjiguration times for the SAD4 x4 and the

Blank modules.

81

DPR exploration and implementation

Figure 5.11 - Example of a basic partial self reconfigurable system including ali ne
cessary IP peripherals to perform a partial reconfiguration and measure the time needed to
finalize the operation.

Table 5.3 includes the bit file sizes in addition to the reconfiguration times needed for
each of the SAD4x4 and the Blank modules to be reconfigured in a single reconfigurable
region. The bit file includes information about the module's logic to be configured inside a
reconfigurable region. We designed our reconfigurable regions to be as dense in logic as
possible. This justifies the almost similar bit file sizes among the two modules. The bit file
contains location addresses of logic elements alongside an activate/deactivate value for each
logic element (CLB, BRAM, Slice, LUT, FlipFlops ...) [V4_FPGA]. The bit file sizes are
close in size and this is due to the bit file format and repetition. In other words, the compo
nent used inside a reconfigurable region utilizes most, but not ali, of the reconfigurable re
gion's resources and hence the bit file mostly contains 'ones'. The same applies for the blank
bit file; it contains 'zeros' for deactivating logic blocks in the region. Since the same disk sto
rage is needed for storing 'l' or '0', the bit file sizes are very close in size [V 4 _ FPGA]. Our
system uses 16 reconfigurable regions in its final implementation. This requires the reserva
tion of 3712 Kbytes of memory space to store ali partial bit files since we need 16 SAD4x4
and 16 Blank bit files.

From previous results, the reconfiguration time is considered very long especialiy if
the system is to be implemented for real time applications. In the worst case we have to re
configure 16 regions at the same time with a SAD4x4, thus resulting in a reconfiguration
time of 16x1.4824=23.7184 secs. Since an H.264 encoder receives a new frame every 60

82

DP R exploration and implementation

milliseconds, hence losing around 390 frames due to the reconfiguration process is consi
dered unacceptable. In order to reduce the reconfiguration time, certain techniques have been
proposed in literature in order to minimize this time. The approach we used in our system is
based on the system proposed in [S.LIU 2010_1]. The authors used a DMA based streaming
engine of partial bit files to an intelligent ICAP controller. Their technique has proven to
reach up to 395-400 Mbytes/sec which is almost the optimal ICAP throughput (400
Mbytes/sec). We tested this system with a variety ofreconfigurable regions with different bit
file sizes. The results are presented in Figure 5.12 that shows the reconfiguration time accord
ing to different bit file sizes.

- 3
u
C1l
VI 2.5 E -C1l 2 E
j::
c: 1.5
0

~ .2-+:;
fa 1
::s
b.O

:;25 Z+= 0.5 c:
0 u

0 C1l
0:::

81.406 100.734 127.75 500.016 953.125

.bit File Size (Kbytes)

Figure 5.12 - The different reconfiguration times measured when using the compo
nent in [S.LJU 2010_1] when a system is reconfigured with a variety of bit file sizes.

Based on the results in Figure 5.12, and with the use of the same technique in [S.LIU
2010_1] we were able to reduce the reconfiguration times of our bit files to those in Table
5.4. As noticed, the reconfiguration times are highly reduced and hence can be used for real
time applications. In the worst case we have to reconfigure 16 regions at the same time with a
SAD4x4, thus resulting in a reconfiguration time of 16x0.000327=0.005232 secs << 60
msecs.

Blank 105 0.00028
Table 5.4 - bit file sizes and different reconfiguration times for the SAD4 x4 and the

Blank modules using the technique in [S.LIU 2010_1].

83

DPR exploration and implementation

5.4.e. Memory interface design and architecture
In order to fully exploit the benefits and the performance of our computational system

we need to design a memory buffering system attached to it. This system is composed of
memory hardware blocks as well as a controller that manages data from the memory blocks
to the computational units. As mentioned in section 5.3.a, the ME unit uses data transfers
from current and reference frames to perform its internai computations. Data from each frame
is sent to the computational units to compute the SAD values. Thus, every RR should be able
to access data from both frames to deliver a proper and valid output. For this reason, we im
plemented two memory units consisting of multiple memory blocks each to store the pixels of
the current and reference frames, respectively.

1. System exploration
In our design we use an exhaustive search algorithm to compute the motion vectors.

This requires scanning a large Search Window using a sliding computational window that is
moved one pixel at a time in the horizontal and vertical directions. However, other search
algorithms, with lower computational requirements, can be used without degrading accuracy
significantly. In video multimedia systems, accuracy is measured by the Peak Signal to Noise
Ratio (PSNR) of the video sequence.

According to [C.TING 2003], many algorithms search for a best match in specifie re
gions within smaller Search Windows than the 63 x48 window used in the exhaustive search
algorithm. These include New Three Step Search (NTSS), Diamond Search (DS), and Hex
agonal Search (HS). The NTSS algorithm has been proven to achieve the same average
PSNR as an exhaustive search algorithm [D.CHUN 2008]. The NTSS algorithm shifts the
Computation Window 2-8 pixels within a smaller Search Window. This indicates that we can
modify the exhaustive search algorithm by shifting the Computational Window in increments
of two pixels without affecting accuracy significantly [C.TING 2003] [D.CHUN 2008]. As
will be shown later in this section, the two pixels shift will allow us to store, more efficiently,
pixels of frames in our memory system.

To better illustrate the computations demands on real systems, using two pixels shift,
we considered the number of the SAD operations on a variety of video sequences. Figure
5.13 shows the number of SAD4x4 computations needed to compute the motion vectors, us
ing CxR block sizes, in one video frame for five different video sequences (Quarter Common
Intermediate Format (QCIF), Video Graphies Array (VGA), Super VGA (SVGA), Extreme
VGA (EVGA) and High Definition (HD) video sequences). The exact values of the number
of SAD4x4 computations for every video are found in Table 5.5.

The results in Figure 5.13 are based on those in Figure 5.5 but not only for a 16x16
pixels block using a CxR block size, but rather for a whole frame according to specifie video
format. The values are obtained according to the mathematical model in equation (5.3).
Hence, by reading the #SAD4x4 value of a specifie block size CxR from Figure 5.5, dividing
it by two (2 pixels shifts and not one as in Figure 5.5), multiply it by the number of respective
blocks in a certain video and then dividing it by the number ofCxR blocks in a 16x16 pixels
block, we get the results both shown in Table 5.5 and Figure 5.13.

84

DPR exploration and implementation

SAD (5.13) = SADcxn(S.S) X Video C X Video R + ~
CxR 2 C R CxR

(5.3)

#SAD 4x4 Computations (log scale)
..... 0'1 N "" 0'1 "" V1

0 0 0 0 0'1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

"" x

""

• 0
(")

00
::;;

x
"" -..)

0'1 x
"" ""
• <
G)

"")> x 0'1 00

"" 0 x

"" 00
0

• n V1
)(

00 <
~ x G)

CT 00)>

0 00
0 n 0

7(' x
V\ 0'1
;:::i' 0
lb

0
V\

..... • 0'1 m
x <
00 G)

)>
.....
0
N

"" x
-..)
0'1
00

00 x • 0'1 ::I:
0
.....
ID
N
0 x
0

..... 00
0'1 00
x
0'1

Figure 5.13 - Number of SAD computations based on respective black sizes, using
two pixels shift, needed per frame for a variety of video sequences (the y-axis is in logarith
mic scale).

85

DP R exploration and implementation

Video 4X8 8X8 16X8 8X16 16X16

Table 5.5- The exact numerical values of the SAD computations from Figure 5.13.

The SAD computations depend on the size of the Computational Window, which is
assumed to scan the Search Window in two-pixel increments. These results show that the
number of SAD4x4 computations decreases as the size of the computational block increases.
For example, in QCIF videos, using 8x4 block sizes uses 7% less SAD4x4 computations than
using 4x4 block sizes; 100-(2138400+1995840)x100. This has implications on both the
frame storage requirements as weil as energy consumption.

u. Memory organization
When designing our memory architecture, our goal was to develop a simple and fast memo

ry unit that consumes the least amount of resources without compromising accuracy. Given
the availability of embedded memory blocks in contemporary FPGAs, we decided to build
our memory architecture around the random access memory blocks (RAMB36) found in Xi
linx Virtex 5 and Virtex 6 FPGAs.

The RAMB36 is a dual-ported memory block with a capacity of 36 Kbits. These
blocks can take two addresses and generate two 32 bit wide outputs. However, since a RAM
block should be capable of storing and loading data, one port is used for input while the other
is used for output. This restricts the bandwidth of each RAMB36 to 32 bits (four bytes) on
each port. Each RR in our ME computational unit requires two 16-byte inputs to perform a
SAD4x4 computation: one from the Reference Frame and another from the Current Frame.
Since the SAD computation operates on 8-bit luminance data, each pixel requires one byte of
storage.

To compute the motion vectors, and depending on their sizes, pixel blocks in the Cur
rent Frame are shifted in fixed increments of four-16 pixels in both the horizontal and vertical
directions. The memory unit used to store the Current Frame is therefore organized to provide
efficient access.

Starting with the Current Frame, in this frame the window shift is fixed and is at least
a four pixel shift, hence a 4x4 block shift which is the lowest block size. The reason for four
pixels shift is due to the fact that the blocks in the Current Frame are the ones we need to
compare with in the Reference Frame and find their corresponding motion vectors. Since the
smallest block size that the H.264 encoder can support is 4x4, and this block size is used for
the block definition in the Current Window, hence the worst smallest shift the system should
support is four pixels shift. Other cases should shift the block in the Current Frame by eight
(8x16 for example) or 16 (16x8 for example) depending on the block size. If a memory sys-

86

DP R exploration and implementation

tem can shift four pixels the block in the Current Frame, it can easily shift 8 or 16 pixels as
well.

Using the previous explanation and the throughput of a RAMB36, in a Current Frame
memory controller, the smallest memory block can have four RAMB36; 4x32=16x8 bits.
Each single RR needs four RAMB36 (one current memory block) which means we need 64
RAMB36 in order to feed all regions if all were active in the worst case. And since we are
using an incrementai address controller for both Current and Reference frames controllers. It
is easy to slide across the Current Frame with any desirable block size with the proper incre
ments of designated current memory block(s).

Regarding the Reference Frame, in this frame the Computation Window (Figure 5.2)
shift is at least one pixel. In that case and using the incrementai address controller, each pixel
will be stored in one RAMB36. This way when we increment 16 RAMB36 aligned on the
same column we get a Computation Window shifted one pixel to the right (every vertical 16
pixels in the Reference Frame are in 16 RAMB36). This means that for each RR we need 16
RAMB36 (one reference memory block) in order to have a 4x4 block from the Reference
Frame. In order to support 16 RRs, in the worst case, this means we need to use 256
RAMB36 which is considered a huge number of memory blocks and resources. For this rea
son we considered two pixel shifts which reduce the memory blocks used without changing
the accuracy of the system. Two pixels shift means that the smallest memory unit should have
four pixels data. This means that we can use one RAMB36 to host this block of four pixels
next to each others. From this point we can achieve a reference memory block of size four
RAMB36 for each single RR. In this case, we need only 64 RAMB36 memory blocks rather
than 256. When shifting more than two pixels, two RAMB36 for each smallest window shi:ft
(3 pixels, 4 pixels, 8 ...) is used. Since the RAMB36 cannot send more than four bytes in a
cycle, thus more than two pixels shift will still end up using one RAMB36. Also more pixels
shift might hinder the accuracy of the system. The main insight from this explanation is that
more than two pixels shift will use less reference memory blocks but with more RAMB36 in
each.

Table 5.6 shows the number of RAMB36 usage per number of pixel shifts for both
Reference and Current memory controllers. Notice that the Current Frame memory uses 64
RAMB36 blocks all the time and hence this number is constantly added whatever the pixel
shifts were. By using two pixels shift we reduced the number of RAMB36 blocks used by
60% when compared to the one pixel shift.

Pixel shift 1 2 4 8 16

Table 5.6- Total number ofRAMB36 memory blacks usedfor different pixel shifts.

87

DP R exploration and implementation

111. Current frame memory controller
In the proposed DPR based computational unit architecture, not all regions are active

all the time. Also the same block size is not used ali the time. For these reasons, certain con
trollers have to be implemented to manage the correct data sent to the active regions taking
into consideration the block size and the number of active regions selection.

We designed four units attached to the current frame memory controller controlled by
the number of active regions and the block size selection where the block size can be one of
seven possibilities each informing the controller which of the seven block sizes is being used.
And the number of active regions can be one of five possibilities each informing the control-
1er how many regions are active (1, 2, 4, 8 or 16). Figure 5.14 shows the current frame mem
ory controller and a sample frame to demonstrate how the pixels in the frame are stored.

V0D0~
16 RR 8 RR 4 RR 2 RR 1 RR

Figure 5.14 - Current Frame pixels' mapping on memory and the respective frame
control/er 's building blocks.

In Figure 5.14 we show a frame divided into blocks each ofsize 4x4 pixels numbered
from 1 to 16. We need four RAMB36 to store 16 pixels, where each group of four RAMB36
is joined to be one memory block. In order to deliver data to all 16 regions when active, we
need 16 memory blocks, marked 1 to 16 in Figure 5.14. The storing of pixels in this control-
1er is based on a combination of row and column-major order. The Memory Write Interface
manages the mapping of 4x4 pixels from a Current Frame into one memory block. Each
memory block stores each 4x4 pixels into four RAMB36 numbered x-1 to x-4. Whenever the

88

DPR exploration and implementation

Current Frame is changed, this unit manages the re-writing of this frame in its proposed man
ner as show in the figure. Only one Current Frame is needed to be stored in order to compute
the block of pixels motion vectors with respect to another Reference Frame.

The Memory Read Interface is the next unit attached to the memory blocks. It uses the
selected block size to control which memory block(s) to read and which to increment their
addresses for the next reading if needed. For example if ali regions are active and we are us
inga 16x16 block size, the memory blocks are ali read to deliver 16x16 block to the 16 com
putational units. When another 16 x 16 block is needed for processing, after finishing the
computations over a Search Window, the addresses are incremented for ali the memory
blocks and hence, as shown in Figure 5.14, a new 16x16 block is used. This unit also controls
data selection from each memory block if a smaller block size is used. For example if we are
using an 8x8 block size, the memory blocks 1 to 4 are read and sent to the active computa
tional units. When a new 8x8 block is needed, the controlier sends data in memory blocks 5
to 8 and so on till the data in ali 16 memory blocks are sent.

The current frame memory controlier does not perform address increments of its
memory blocks addresses as frequently as the reference frame memory controller. In other
words, if we want to find the ME of a 4x4 block size, the same block is sent to ali active re
gions in parallel in order to finish searching for its motion vector across the Search Window.
For this reason, we designed the Data Replication Stage to take any data from the Memory
Read Interface and transfer it to 16 16 bytes. Hence, if this unit receives 16 bytes (4x4 pixels
block), it outputs 16 similar 16 bytes (16 4x4 similar pixels blocks). This controlier functions
independently of the block size or the number of active regions and its output is al ways 16 16
pixels.

After this stage, we designed a Data to RR Pipelining Stage that manages data accord
ing to the number of active regions. This unit takes 16 16 pixels and sends them in parallel or
pipelined to the active regions. If 16 regions are active, 16 16 pixels are sent in paraliel to
these regions, each region receiving 16 pixels. However if for example only four regions are
active, the 16 16 pixels are pipelined on four stages in order to send in each stage four 16
pixels to the four active regions. Hence, the only output from the current frame memory con
trolier to the computational DPR unit is one bundle of 16 smaller buses each of 16 bytes
width.

tv. Reference frame memory controller
The reference frame memory controlier foliows the same flow and design as the cur

rent frame memory controller. However, there are a few differences in control and organiza
tion between them. The first difference is the mapping of Reference Frame's pixels on the
memory blocks. Each memory block in the reference frame memory controlier is made up of
one RAMB36. Each memory block stores 2x2 pixels and hence in order to store the whole
16x16 pixels we need 64 memory blocks as shown in Figure 5.15. The second difference is
that this controller does not use a Data Replication Stage unit as will be proven later in this
section.

89

DP R exploration and implementation

Figure 5.i5 -Reference Frame pixels' mapping on memory and the respective me mo

ry controller 's different building blacks.

In Figure 5.15 we show a frame divided into blocks each ofsize 2x2 pixels numbered
from 1 to 64. In order to deliver data to all 16 regions when active we need 64 memory
blocks marked 1 to 64 in Figure 5.15. The storing of pixels in this memory is based on a row
major order. We show in Figure 5.15 the Memory Write interface and the Memory Read in
terface only since the rest of the units are the same as those in the Current Frame memory.

The Me mory Write Interface manages the mapping of 2 x2 pixels from a Reference
Frame into memory blocks. Each memory block stores each 2x2 pixels into a single
RAMB36 labeled x-1. When the Reference Frame is changed, this unit manages the re
writing of the new frame in its proposed manner as in Figure 5.15. Multiple Reference
Frames can be stored in this memory that will be used to compute motion vectors with re
spect to one Current Frame. The number of Reference Frames can range from 1 to 10
[I.M.JUAHIR 2006]. In the following section we will present how many frames can fit in
both the current and reference frames memory units.

The Memory Read interface is attached to the memory blocks that use the selected
block size to control which memory block(s) to read and which to increment its address for
the next reading if needed. If 16 regions are active and we are using a 16 x 16 block size, all
the memory blocks 1 to 64 are read to deliver a 16x16 block to the 16 computational units.

90

DP R exploration and implementation

When a new 16x 16 block is needed for processing, only memory blocks 1-9-17-25-33-41-49-
57 addresses are incremented and hence, as shown in Figure 5.16.a, a new 16x16 block is
used. The new 16x16 block is shifted in the Search Window two pixels to the right. This unit
also controls data selection from each memory block if a smaller block size is used. For ex
ample if we are using an 8 x 8 memory blocks with four or less number of active regions, the
memory blocks 1-2-3-4-9-10-11-12-17-18-19-20-25-26-27-28 are read and sent only, Figure
5.16.b. When a new block is needed, the controller sends data in 2-3-4-5-10-11-12-13-18-19-
20-21-26-27-28-29, Figure 5.16.b, and so on. However, when eight regions are active for
example, the Memory Read Interface sends data from memory blocks: 1-2-3-4-9-10-11-12-
17-18-19-20-25-26-27-28 (1 st 8x8 block), and 5-6-7-8-13-14-15-16-21-22-23-24-29-30-31-
32 (2nd 8x8 block); Figure 5.16.c. In the next cycle we send data from memory blocks
representing the bottom two 8 x 8 blocks. However in the 3 rd cycle, we send data from memo
ry blocks: 2-3-4-5-10-11-12-13-18-19-20-21-26-27-28-29 (1st 8x8 block), and 6-7-8-1 + 1-14-
15-16-9+ 1-22-23-24-17+ 1-30-31-32-25+ 1 (2"d 8x8 block, where '+ 1' represents an increment
in the address of respective memory block); Figure 5.16.c, and so on.

(a)

(b)

(c)

Figure 5.16 - Pixels reading example from respective memory bloclcs according to
black size and number of active computational units.

91

DP R exploration and implementation

It is important to know that in our system data sent from the current frame memory is
the same while that from the reference frame memory is being changed until the Search Win
dow finishes the Computational Window. For this reason we stated that the addresses change
is more frequent here than in the current frame memory. For the same reason, this memory
does not need a Data Replication Stage since only sufficient data are sent to the correspond
ing number of active regions.

It is noticeable that the proposed memory system will have no memory conflicts in
addressing specifie memory blocks for any data requested. For any block size functioning at
any number of active regions, the memory blocks are read in parallel in only one cycle to
support that computation. This justifies the amount of memory blocks used in order to sup
port the full parallelism of our computational units.

v. Memorv capacity
The RAMB36 memory hardware unit is a dual port memory block with a capacity of

36 Kbits. These blocks can take two addresses and generate two 32 bits wide outputs. How
ever, 4 Kbits of this capacity is for parity bits and the remaining 32 Kbits are data. We kept
the design based on 32 Kbits in order not to add more logic related to making use of the pari
ty bits as data bits.

In the proposed architecture each RAMB36 has 32 bits per location. In the current
frame memory, a 4x4 pixels block is stored in one memory block of four RAMB36 each and
having 2x2 pixels in a location. 16 4x4 pixels are stored in 16 memory blocks, hence require
64 RAMB36. In the reference frame memory, a 4x4 pixels block is stored in four memory
blocks of one RAMB36 each and having 2x2 pixels in an address. 16 4x4 pixels are stored in
64 memory blocks, hence 64 RAMB36. In both controllers, memory blocks are 64 in each
regardless how they are aligned (4 or 1 per memory block). For real time applications, such
as live transmission or video conferences, to function normally, one Current Frame and at
least one Reference Frame should be stored in memory. Each 16x16 pixels block from a Cur
rent Frame can be stored in one location in the respective controller and the same applies for
16x 16 pixels block from a Reference Frame in its respective controller. By taking each video
type resolution and dividing it by 16x16 we get how many locations we need to store the pix
els from both frames. Our system's memory layer is made of 2x64 RAMB36, 128 RAMB36,
with a capacity of 2x 1024 16x 16 pixels block. In Figure 5.17 we show the number of loca
tions required for two frames of each video and the necessary number of memory layer(s).
Video types are ofresolutions QCIF 176x144, CIF 352x288, DCIF 528x384, VGA 640x480,
SVGA 800x600, EVGA 1024x768 and HD 1920x1088.

The left vertical axis in Figure 5.17 shows the number of memory locations both
needed to store two frames of various video types and locations available for every memory
layer(s). The right vertical axis shows the number memory layers; which when multiplied by
128 gives the total number ofRAMB36 blocks used. We implemented our system mainly for
mobile deviees that uses video resolutions such as that ofQCIF, CIF and DCIF. However, by
simply adding extra layers to our controllers, the system can support higher pixels resolutions
such as VGA and SVGA used in tablets deviees (+1 layer) or even high definition HD TVs

92

DP R exploration and implementation

(+ 7 lay ers). This is do ne without the need to change the algorithm in the controller architec
ture but only the change of memory hardware components.

18000
Ill 16000 c
.2 14000 ...
"' 12000 u
0 10000 _,
~ 8000
0 6000 E
cu 4000
~ 2000 :tt

0

-Me mory Layers - Memory Locations

QCIF CIF DCIF VGA SVGA EVGA HD

Video Types

9
8

~
7 ~
6 .!3
5
4
3

~
0
E
CLJ

2 ~
1 :tt

0

Figure 5.17- Required memory locations for various video types' resolutions and ne
cessary memory layers.

5.4.f. Power and energy analysis
In this section we analyze the power and energy consumed by the ME computational

unit. We present measurements that demonstrate how energy can be reduced when bigger
block sizes are used. This provides the flexibility to leverage reconfigurability to trade-off
accuracy for energy savings based on application demands.

One objective of our work is to reduce energy consumption. And there are two ways
to achieve this: first, to control the computationalload by selecting an appropriate block size,
and second, to blank reconfigurable regions that are not being used. This latter approach was
proposed in [S.LIU 2010_2], where it was shown that partial reconfiguration can lead to more
energy reduction than clock gating as long as the reconfiguration component throughput is
high enough to overcome the extra energy required to perform reconfiguration. In our case
we are using the ICAP to perform reconfiguration, and the Direct Memory Access (DMA)
technique proposed in [S.LIU 2010_1] to accelerate the reconfiguration process. Using the
high speed DMA engine, our system requires 327 J..LSec to configure a RR with a SAD4x4
hardware block, and 280 J..Lsec to blanka RR. We present our results to validate the conclu
sions presented in [S.LIU 2010_2].

Next we analyzed our system's energy consumption for different computational mod
es. Since energy is the product to power and time, we measured both quantities. We used a
Xilinx ML605 FPGA board to measure the power consumed in the static and reconfigurable
regions. Figure 5.17 shows the different power measurements corresponding to 1, 2, 4, 8 or
16 active regions.

93

DP R exploration and implementation

This plot shows that power dissipation is not linear. Due to the architecture of the
FPGA fabric, when a module is configured in one region, the corresponding column in the
FPGA is enabled and clock regions and access ports to this region are powered on as well.
Since multiple regions can be configured within the same FPGA column, additional power is
consumed by the additional logic resources, but no additional power is consumed by clock
resources. This explains the non linearity in Figure 5.18, which also affects energy consump
tion in the reconfigurable ME computational unit.

- 1600
Ill

t: ra 1400

~ 1200
E - 1000
cv
~ 800
0 o.. 600

"'C
cv

400
::1
Ill
ra 200 cv

:E 0

1 2 4 8 16

of Active regions

Figure 5.18 - Power measurements acquired for different configuration implementa
tions using variable number of active regions.

Note that the reconfiguration process is achieved via implementing static components
responsible for performing the reconfiguration control. These components consume power
during all time since they are static components (720 mWatts). According to [S.LIU 2010_2],
it is important to mention that the static power is overtaken and eliminated from the energy
model by using high reconfiguration speed as the one we used and proposed by [S.LIU
2010_1] (TicAp=399 Mbps). Verifying that, we recall equation (2.1) and by replacing 720
mWatts in Pstatic, 127 Kbitsx16 regions in Sbfi, 1400 mWatts in Ppr (power for a maximum of
16 regions) and 60 msec as a maximum inactive time (1 frame) we get (399 Mbps>66 Mbps).

After measuring the power in our reconfigurable ME computational unit, according to
active regions, we measured and studied the time used to perform various SAD computations.
Recall that our system can complete a SAD computation every clock cycle.

Using a system clock frequency of 100 MHz and using the power measurements from
different active regions, we obtained the results shown in Figure 5.19. The y-axis shows the
energy in nJ and the x-axis shows different block sizes implemented in 16, 8, 4, 2 or 1 RR(s).
The energy shown in this figure corresponds to that consumed by a Computation Window to
finish scanning a Search Window using a certain block size implemented in the specified
number of active RR(s).

94

DP R exploration and implementation

In Figure 5.19, it is important to note that when the system is running on a number of
active regions that do not support the full parallelism of a certain block size, repetitive usage
of the se regions is performed.

co
0 n
::o:"
VI
;::;·
11)

"C
11) ..
QI

Q.
<"
11)

;
OQ s·
:::1

E

00
x
m

.....
m x
00

00 x
00

+:> x
00

.....

.....
m

00

.....
m

00

.....
m
00

N

0
...
0 "' 0

PSNR (dB)

"" 0 "' 0
0'\
0

- • · 1 1
• 1 ~ALI ! ,-!Tfls ~~

~- j. ~~~ : T-Tt+r-- ·:
. '. 1 ! i

. ' ' . • ! . Ji
1 i i

1 1

i 1 . ; ! : ' • •

1!
•

: i 1 •

1 •• -rr:
i

-+

. i 1

• : 1 i 1
[;

i :·
' :1 :

:;
• 1 i

,-....

--····•-i-----'"' . .!.····•····:··-+ .•. ·+·····i······•····)....... 1·--··----·'· ;

.....
0
0
0
0

.....
N

8
0

.....
+:>
0
0
0

.•... .L ..•.......• ------.L ;J,, --•·········

.....
m
0
0
0

.....
00

8
0

Energy (nJ)

N
0
0
0
0

N
N

8
0

N
+:>
0
0
0

1

Figure 5.19- Energy and PSNR plot based on different block sizes and various num
ber of active regions. This plot is sorted in an ascending order of the accuracy PSNR.

95

DPR exploration and implementation

For example computing the SAD16x16 using one RR is performed by running the
same region 16 times with different data each time. Figure 5.19 shows that using larger block
sizes can reduce energy consumption by up to 51% when comparing the average energy spent
using a block size of 16x16 to a block size of 4x4. Figure 5.19 also shows the PSNR
achieved using different block sizes and presents how energy consumption can be traded for
accuracy.

5.4.g. Image quality and compression ratios
The PSNR has a direct impact on the quality of the image as can be shown in Figure

5.20. Video images with higher PSNR (50 dB) are clearer and smoother for the vision. How
ever, as the PSNR, and hence image quality, decreases, the video images become more noisy
(<10 dB).

SOdB 3SdB

25dB <lOdB

Figure 5.20- The effect of PSNR on image quality. The higher the PSNR, the clearer
the video image has become.

As presented in section 5.4.f, the energy consumption can be traded with the image
quality or the PSNR. However, less image quality in videos means that the videos have been
encoded using bigger block sizes. The use of bigger block sizes also means that fewer bits
were used to encode the video. In conclusion, bigger block sizes tend to compress, encode,
videos more than smaller block sizes while trading that with image quality. The compression
ratio for a QCIF video image size using 16x16 block sizes is around 50%. However, using
lower block sizes such as 4x4 decreases this ratio to around 4%.

In the next section, we present a heuristic for controlling the reconfiguration of the
ME computational block based on this trade-off.

96

DP R exploration and implementation

5.4.h. Reconfiguration heuristics
To exploit the trade-offbetween system energy consumption and image accuracy, we

developed a reconfiguration heuristic that manages different configurations according to sys
tem demands. To better explain the heuristic, we plot in Figure 5.19 the energy consumption
per Search Window for different block sizes and active regions versus the PSNR in dB for a
sample QCIF, 256 Kbps, and video sequence using different block sizes.

Figure 5.19 shows that the PSNR is constant for different active regions due to its be
ing derived from the image quality, which only depends on the block size used. We also ob
serve that 8x16 and 16x8 blocks, and 4x8 and 8x4 blocks, achieve similar PSNR levels. This
is due to the fact that these blocks have the same size but different orientations, which results
in images having similar quality.

Our heuristic is controlled as shown in the flow chart in Figure 5.21. The system starts
with a specified accuracy level, and selects an appropriate block size corresponding to the
requested accuracy level. For example a mobile user can start a real time video conference on
his QCIF dimension mobile screen. A configuration point is selected based on the energy
level in the mobile device's battery. The system continues to monitor energy and accuracy
levels to determine if reconfiguration is needed. When a reconfiguration is needed, an appro
priate configuration and memory interface are invoked based on an appropriate block size.
The system continues to monitor energy and accuracy levels until a change becomes neces
sary upon which a new reconfiguration cycle is invoked.

To evaluate our system, we compare its energy consumption and accuracy under the
proposed reconfiguration heuristic to two static cases.

1. A fixed block size of 4x4 running on 16 computational units.
2. A fixed block size of 16x 16 running on 16 computational units.

These static cases correspond to two extremes: One, the highest accuracy and energy
consumption and Two, the lowest accuracy and energy consumption, respectively (refer to
point 4x4 on 16 regions and 16x16 on 16 regions in Figure 5.19). The basic test involves
decoding a QCIF video on a mobile deviee with a battery capacity of 1350 mAh. All three
systems were run until the battery is completely discharged. Figure 5.22 shows the time used
by the three systems to drain the battery. Also, in Figure 5.23 we show the accuracy degrada
tion while battery draining of the three systems.

Figure 5.22 and Figure 5.23 show that the static system with a block size of 4x4
achieves the highest accuracy (49 dB) with the battery lasting 2500 minutes. The static sys
tem with a block size of 16x16 achieves the lowest accuracy (6 dB) with the battery lasting
4500 minutes. On the other hand, our dynamically reconfigurable system achieves an accura
cy of 25 dB with the battery lasting 3000 minutes. This shows that our heuristics succeed in
achieving 20% more battery life that the highest accuracy system while also achieving 5.2
times the accuracy of the system with the longest battery life.

97

DPR exploration and implementation

,-----------1
..................... System demand L---------- ..

,-----------
.................... Battery life : L---------- ..

y

Figure 5.21- Our proposed reconfiguration heuristicsflow diagram.

1600

.-.1400
-= < 1200
-!
,ô 1000
u
~ 800
c:
u 600 c
~ 400
c:
~ 200

0

~ .. -------------------- .. -- -·-------- ... --------------------------------- -· . ' '

------------"----
' ' ' ' ' ------------"'----------
'

1000 2000 3000
Time (mins)

-----------"--------------·
'

4000

Figure 5.22- Battery draining in two static systems and our DPR system over time.

98

Conclusions

-
60

50

co 40
"'C -a: 30
z
V) 20
0..

10

0

---4X4 -.-1GX16 -<:>-DPR

1'!'!!! ~

- v -
<:) ':).,<:) ':).,<:) "coeo "coeo "'\.-<-:> "'\.-<-:> <-<:)<:) <-"'"' <-"'"' t;::P<:) ~<:)<:) ';::)<:)<:) <-<:)<:)

'\,V '\,V '\,. '\,. v ~ v ~ ~ ~ ~

Time (mins)

Figure 5.23- Accuracy degradation in two static systems and our DPR system over
ti me.

5.5. Conclusions

In this chapter, we presented the work we did to implementa dynamically reconfigur
able H.264 ME computational unit. We started with an introduction of the whole multimedia
system, the H.264. Following the introduction, we highlighted the ME unit in the H.264 en
coder system and its relevant importance to the whole H.264 multimedia system. The ME
unit was analyzed afterwards in terms of computational demands and execution times com
pared to the total H.264 encoder execution times. We found out that this block consumed
around 40% of execution times out of the total encoder execution time. This percentage was
caused by one major computational block in the ME unit, the SAD block. For this reason, the
SAD block was analyzed and studied for different pixels block sizes and for different video
resolutions. The change in the block size was an important factor in the reduction of the ener
gy consumption of the system. However, we showed that the energy consumption can be fur
ther more reduced when implemented on a DPR basis.

We proposed a tree-like architecture of 16 partially reconfigurable computational
blocks performing the SAD computations. High speed memory controllers were connected to
the computational units in order to provide high throughput and speed to the computational
blocks. Execution times were acquired and in addition to the power measurements of differ
ent configurations of our system, we were able to compute the energy consumption for any
configuration. Our proposed system's architecture can be modified to meet specifie energy
and image quality constraints. By implementing 16 reconfigurable regions, we were able to
support five configurations for each of the seven block sizes each with different levels of ac-

99

Conclusions

curacy and energy consumption. Image accuracy levels were controlled via application de
mands, user demands or support demands. Using a reconfiguration heuristic, our system can
support up to 3 5 different configurations. With a maximum saving of up to 51% in energy
consumption, the system can support ali block sizes in an H.264 encoder. The data delivery
was optimized to support a fully parallel architecture using a memory architecture that has
negligible effect on quality.

100

101

Conclusions and perspectives

By definition, the term "Technology" stands for the making usage and knowledge of
tools, techniques, crafts, systems or methods of organization in arder to solve a problem or
serve sorne purposes. On the other hand, the term PhD is used in a broader sense in accor
dance with ifs original Greek meaning, which is "love of wisdom ". Combining bath, results
in what has been disserted in this book that is a combination of PhD and technology. This
thesis is aimed in using wisdom and research in making usage of knowledge of software tools
for DPR techniques in FPGA crafts and systems for the purpose of enhancing a DAS and
H264 systems. The conclusions of my three years work are summarized in this chapter, fol
lowed by sorne proposais for possible extensions of this work.

6.1. Conclusions

In this thesis, an exploration of the DPR feature in FPGAs is explored for the benefit
of a DAS system as well as a multimedia system. We presented these two system applications
mapped on FPGA fabrics. Using DPR, we explore the benefits that DPR provides for each of
the presented application. For each system implementation, we present steps to approach the
final implementation and validate the approach by showing obtained results. The benefits
achieved with the use of DPR for each of the implemented applications are concluded from
the obtained results. A detailed summary of the motivation to this work, implementation
steps, applications explored, results obtained and benefits has been fully addressed and do
cumented in the following manner:

In order to present the details of our work, an introduction to the field and motivation
had to be presented first. At the beginning of this thesis, we introduced fabric technologies
and highlighted the advancements done in the field of electronic computational deviees and
fabrics. Starting with VLSI designs and ending with the recent technology of FPGAs. These

102

Conclusions

deviees proved their promising future and capabilities in the research and industrial domains
by being useful for many applications and introducing new features such as the DPR feature.
This feature, in which in particular, has been proposed recently and many research started
targeting it since the last decade. Hence, being in this era of interest in the DPR feature in
FPGAs, we were motivated to investigate this and show how it can be beneficiai in our own
thinking and research methodology.

In order to better investigate the DPR feature, certain applications were targeted in or
der to verify the approach we propose and seil our ideas to the research community. Being in
the North of France, a region famous in automotive industry and research, motivated the in
vestigation of automotive related applications. We therefore chose two applications that, with
the proper advising and guiding, were interesting both in terms of fabric investigation (DPR
and FPGAs) and field investigation (automotive). We therefore started the investigation of
DPR on FPGAs in DAS safety driving systems and multimedia video processing systems that
are automotive related as weil.

After a motivational introduction for both the targeted fabric and its feature and the
targeted applications, thoughtful studies and analyses of recent researches and works were
inevitable.

The first literature review was related to the FPGA fabric and its DPR feature. A
selection ofthe most interesting work was done in this review, showing what has
been proposed as architectural improvements in the recent few years since the in
troduction of the DPR. Since our aim was not introducing a new architectural im
provement, a review of the literature in that field made benefits for our goal and
our systems designs. One of which we picked to benefit from was the making use
of high partial reconfiguration speeds IP cores in order to sustain energy [S.LIU
2010_1] [S.LIU 2010_2].
The second literature review was related to the DAS safety systems and the work
done targeting its implementations on FPGAs and using DPR. This review of the
latest research was important in order for us to target sorne work that was either
not targeted orto enhance another work. Seeing that most of the DAS systems
were based on camera sensors motivated us to choose a different sensor that is
better in longer ranges and weather conditions such as a radar sensor. And because
from our literature review, no work has targeted a DPR-radar based DAS system,
made us pioneers in investigating this system and added more to our motivation.
A final review was made related to our second targeted application, the multime
dia application. The choice landed on choosing the H.264 standard due to its im
portance and wide applicability in the multimedia video processing field. Like in
the DAS systems review, we reviewed the work done related to the H.264 and its
implementation on FPGAs and using the DPR feature. We found out that most of
the standard's decoder blocks were investigated thorough fuily on the basis of
DPR and hence, we targeted the encoder block instead. Literature cited many
blocks in the encoder as weil but one, the ME unit. It was staticaily implemented
and ameliorated on FPGAs and only added as an enhancement block on the basis

103

Conclusions

of DPR. This motivated us, by using the work of [S.LIU 2010_1] and [S.LIU
2010_2] to present a considerably important application, the ME unit in the
H.264, that can make use of energy savings especially due to the fact that the
H.264 is a mobile application as weil.

After motivating the work and setting the main milestones to tackle, we went in de
scribing our approaches, systems propositions and implementations. Starting with building up
a DPR-radar based DAS system, we first defined DAS systems and their functionalities. We
based our system proposai on a static MPSoC radar based DAS system [J.KHAN 2009] and
hence, we described the base system. With properly analyzing the base system for a good
DPR candidate block, we found that the filtering block of this DAS system was the most suit
able. Being based on multiple soft processors motivated its migration into a hardware block
instead of based on soft processors. The filtering block was bence analyzed and optimized in
way to meet timing constraints and accuracy levels demanded by driving safety standards
before implementing it as a hardware accelerator block. This accelerator showed to be 8000
times faster and 80% less hardware resource consumption compared to the soft processor. In
addition to that, the migration of the filtering block from soft processors to a single hardware
block made the system a hybrid architectural system and introduced the possibility to have a
DPR based system.

We then proposed our first DPR-radar based DAS system that explores the use of
DPR to modify the physical structure of the filtering block in the DAS system. We demon
strated in this approach how the accuracy of the filtering block can be dynamically and auto
mati caU y tuned to match the characteristics of the driving environment. This was very useful
when the environment changes like from rush hours on highways or narrow city streets with
more obstacles to track to calm open roads and less obstacles to track. A high accurate filter
was used in order to track more targets in dense environments and bence, ease sorne stress off
the driver and another less accurate, less resource utilized filter, used in relaxing environ
ments. We demonstrate, based on real data sets and experimental studies that the system can
function normally with low overhead and can be automatically controlled by a simple heuris
tic.

In a second contribution based on the same system, we explored yet another possibili
ty to benefit from DPR. We investigated, unlike the previous target density driven reconfi
gurable system, the possibility to automatically tune the accuracy of our filter to match the
dynamics of moving obstacles on the road. Since lower levels of accuracy generally require
fewer hardware resources, DPR can be leveraged to release hardware resources for other
uses, such as tracking more obstacles, accelerating other computational functions, or reducing
power consumption. Our design was based on using three modular filters that can be dynami
cally combined in three configurations to match different driving scenarios. Our design also
included an enhanced detection unit module for post-processing acquired radar signais and
pre-filtering them before they are delivered to our system. This enhancement block was im
plemented whenever a free reconfigurable region was available. Our system was also de
signed to continue opera ting even when being reconfigured, and this enhances the system' s

104

Perspectives

reliability. Our experimental results demonstrated the feasibility and low overhead of our
dynamically reconfigurable design.

On the other hand, and by using DPR, we contributed to the exploration of DPR for
an H.264 multimedia system. We targeted the Motion Estimation (ME) unit part of the H.264
encoder, a unit that was not very investigated on the basis of DPR in literature. We targeted
using the DPR, the implementation of a dynamically partial reconfigurable ME inside an
H.264 encoder. We presented the computational complexity inside this unit and the imple
mentation possibilities on an FPGA. Following that, we presented the proposed architecture
for this computational unit and showed its hardware aspects and functionality. Our system
was capable of computing the ME of different supported block sizes by simply changing the
data sent to interconnected computational units. Hence, this made our system functioning
similar to a fully static implementation but with a better hardware resource usage due to the
use of DPR. In order to support the high hardware computation speed, a memory buffering
architecture was also designed and connected to the DPR computational unit in order to pro
vide fast data throughput. By using the work of [S.LIU 2010_1] and [S.LIU 2010_2], we
were able to use DPR to adapt the energy levels according to 35 different configurations.
Hence, the flexibility of our system in terms of image quality and energy was the basis of our
reconfiguration heuristics. We implemented our system on fabric and deducted results in
terms of execution times, power measurements, and reconfiguration times and acquired im
age quality. Our system was tested to support mobile video services.

6.2. Perspectives

While the work accomplished the envisaged objectives set at the start, several exten
sions are possible for future continuation. The future work and perspectives can be divided
into three main targets: First perspective deals with architectural improvements and investiga
tions of enhancing the DPR process. The second perspective is related to DPR in DAS sys
tems and multiple enhancements levels investigations. The third and final perspective is re
lated to enhancing and better exploring the DPR feature in the H.264 multimedia encoder
system.

The perspectives related to the DPR architectural improvements and enhancement in
vestigations can be summarized in the following points:

• The DPR process mostly involves the reading of bit files from an extemal
compact flash memory. Enhancements on the DPR process were done by buf
fering these bit files in other faster accessible memories such as BRAMs or
SRAMs. One room for enhancement is to investigate the implementation of an
IP core that, using specifie user' s inputs, that can automatically read and write
those bit files from the compact flash memory to other selected memories such
as BRAMs, SRAMs, DDR, or DDR2 memories. While showing the trade-offs
between capacity and speed of the DPR process for each available memory,

105

Perspectives

the system's intelligence can take these trade-offs and can automatically select
the most suitable DPR memory bit files storing architecture it wants according
to application demands.

• Recent Reconfigurable Regions (RRs) are rectangular in shape. In sorne cases,
a design mapped to a reconfigurable region consumes extra resources due to
the shape restrictions. Sometimes a region might contain unnecessarily re
sources such as BRAMs or embedded multipliers that are not utilized. Howev
er, in order to support the required number of logic cells for a module in a RR,
these unnecessarily resources have been added due to fabrications restrictions
and design. One room for improvements is to investigate the possibility to
have an n-edges polygon based RR region design. This way, with automatic or
manual tuning of the RR, resources that are not needed can be excluded from a
reconfigurable region. Hence, better inner RR region hardware resource utili
zations can be achieved. By acquiring bit files formats and enhancing the
placement constraints of a RR, the n-edges polygon is now possible to be de
fined.

As for DPR enhancements and investigations in DAS systems, the following perspec
tives could be interesting for future investigations:

• We used in our approach only one radar sensor and applied DPR to the deci
sion making system using this sensor. One room for investigation is to apply
the same DAS system to support multiple radars (one in the front, one in the
rear and two side radars for example). Since we proved the reduction of re
sources and the gain of high processing speed with the migration to hardware
accelerators, we can make benefit of supporting multiple sensors. In this case,
instead of adapting the RR to modify only the accuracy of a filter based on one
radar sensor, the regions can function, using DPR, as separate sensors to other
car mounted radars.

• In our DAS DPR based system implementation, an enhancement block was
implemented when RRs are free and not needed. One room for enhancements
is to investigate more units from not only the capturing phase but also from the
restitution phase. Such units can be sound amplification for sound based resti
tution DAS systems, or image rendering enhancements for image base restitu
tion DAS systems.

• Although our work was mainly focused on the treatment phase in a DAS sys
tem, other phases can be investigated for their implementations on a DPR ba
sis separately as well. Once this is achieved, a whole system can be built with
joined RRs that can support computational units from different DAS phases. A
more detailed investigation can include hardware reuse whenever one phase is
in no need for its hardware unit. Hence, regions reserved for this unit can be
built as RRs and can be reconfigured to become hardware accelerators used in
other DAS phases.

106

Perspectives

For the final targeted perspective related to enhance and better explore the DPR fea
ture in the H.264 multimedia encoder system, the following can be investigated:

• Our base system includes a buffering memory system that can support fast
throughput to the reconfigurable ME computational units. One room for en
hancement is investigating the implementation of an IP core that is capable of
reading video data from an extemal memory and be able to store this data in
its proposed alignment in the buffering memory architecture.

• We showed using a simple heuristic how energy can be reduced by blanking
sorne computational regions using DPR. A detailed study on the video types
viewed by mobile users adds a realistic criterion to the proposed reconfigura
tion heuristics. U sing such criteria can improve the validity of our proposed
architecture based on real life demands. This can be achieved by taking into
consideration a proper study of the mobile video scenarios and applying it to
our system. Such study is like that proposed in [J.HAMERS 2008]. By testing
it on our system, this adds more validity and reliability on our system.

• Since the H.264 in addition to the DAS systems have been both investigated
on the basis of DPR. And since both applications, DAS and video processing,
are part of the automotive industry domain. Implementing one common sys
tem, using both radar sensors and camera video recording sensor can be one
interesting project to target. The investigations we did for both applications
and the three DPR system implementations represent the first hardest step in
achieving this goal. What is next is to design a system joining both, sharing a
RR of hardware accelerators used by a DAS and a video H.264 multimedia
system.

107

108

References

[A.AMARA 2006] -A Amara, F Amiel, and T Ea, "FPGA vs. ASIC for low power applica
tions," Microelectronics Journal37, no. 8 (August 2006): 669-677.

[A.OTERO 2010]- Andres Otero et al., "Run-Time Scalable Systolic Coprocessors for Flex
ible Multimedia SoPCs," in 2010 International Conference on Field Programmable Logic
and Applications (presented at the 2010 International Conference on Field Programmable
Logic and Applications (FPL), Milan, Italy, 2010), 70-76,
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5694223.

[A.VAHIDI 2003]- A. Vahidi and A. Eskandarian, "Research advances in intelligent colli
sion avoidance and adaptive cruise control," IEEE Transactions on Intelligent Transportation
Systems 4, no. 3 (September 2003): 143-153.

[ACTEL]- Actel Inc., http://www.actel.com/.

[ALTERA]- Altera Inc., http://www.altera.com/.

[C.BOBDA 2007] - Christophe Bobda, "Introduction to reconfigurable computing: architec
tures, algorithms, and applications" (Dordrecht: Springer-Verlag, 2007).

[C.CLAUS 2007]- Christopher Claus, Johannes Zeppenfeld, Florian Müller and Walter Ste
chele, "Using Partial-Run-Time Reconfigurable Hardware to Accelerate Video Processing in
Driver Assistance System," in 2007 Design, Automation & Test in Europe Conference &

Exhibition: Nice, France, 16-20 April 2007. (Piscataway NJ: IEEE, 2007).

[C.CLAUS 2010]- Claus et al., "Towards Rapid Dynamic Partial Reconfiguration in Video
Based Driver Assistance Systems," in Reconjigurable Computing: Architectures, Tools and
Applications, ed. Phaophak Sirisuk et al., vol. 5992 (Berlin, Heidelberg: Springer Berlin Hei
delberg, 201 0), 55-67, http://www.springerlink.com/index/1 0.1007/978-3-642-12133-3 _8.

[C.TING 2003]- Chi-Wang Ting, Lai-Man Po, and Chun-Ho Cheung, "Center-biased frame
selection algorithms for fast multi-frame motion estimation in H.264," in International Con
ference on Neural Networks and Signal Processing, 2003. Proceedings of the 2003 (pre
sented at the 2003 International Conference on Neural Networks and Signal Processing,
Nanjing, China), 1258-1261.

[C.WEI 2007]- Cao Wei et al., "A Novel reconfigurable VLSI architecture for motion esti
mation," in 2007 7th International Conference on ASIC (presented at the 2007 7th Interna
tional Conference on ASIC, Guilin, China, 2007), 774-777,
http:/ /ieeexplore.ieee.org/lpdocs/epic03/wrapper .htm?arnumber=44157 45.

109

[D.CHUN 2008] - Dongyeob Chun et al., "Design of high-perfonnance unified motion esti
mation IP for H.264/MPEG-4 video CODEC," in 2008 International SoC Design Conference
(presented at the 2008 International SoC Design Conference (ISOCC), Busan, Korea (South),
2008), I-156-I-159.

[E.VITTOZ 1994] - Eric A. Vittoz, "Analog VLSI signal processing: Why, where, and
how?," Journal ofVLSI Signal Processing 8, no. 1 (February 1994): 27-44.

[EARL Y _ACCESS]- Xilinx Inc., "Early Access Partial Reconfiguration User Guide," Xilinx
user guide UG208 (v1.1) March 6, 2006. Available:
http://www.xilinx.com/bvdocs/appnotes/xapp290.pdf

[ENIAC] Electronic Numerical Integrator And Computer (ENIAC),
http://en.wikipedia.org/wiki/ENIAC.

[EYEQ2]- The MobilEye safety project. Available: http://www.mobileye.com/node/69

[F.KUCUKA Y 2004]- F. Kucukay and J. Bergholz. "Driver Assistant Systems". Proc. /nt.
Conf on Automotive Technologies, 2004.

[H.GOLDSTINE 1993] -Herman Goldstine and American Council of Leamed Societies.,
The computer from Pascal to von Neumann (Princeton, N.J.:: Princeton University Press,
1993).

[H.SAHLBACH 2010]- Henning Sahlbach et al., "A Scalable, High-Perfonnance Motion
Estimation Application for a Weakly-Programmable FPGA Architecture," in 2010 Interna
tional Conference on Field Programmable Logic and Applications (presented at the 2010
International Conference on Field Programmable Logic and Applications (FPL), Milan, Italy,
201 0), 15-18, http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?amumber=5694213.

[HWICAP]- OPB HWICAP Data Sheet. DS 280. http://www.xilinx.com.

[I.M.JUAHIR 2006]- Izyan Musfirah Juahir and Nasreen Badruddin, "Block Mode Decision
Based on Motion Vectors for H.264/ A VC," in TENCON 2006- 2006 IEEE Region 10 Confe
rence (presented at the TENCON 2006 - 2006 IEEE Region 10 Conference, Hong Kong,
China, 2006), 1-4.

[IMAPCAR] - Nec Electronics 2006,"Nec introduces Imapcar image processor with ad
vanced parallel processing capabilities". Available:
http:/ /www.nec.co.jp/press/en/0608/250 1.html

[ISE12]- Xilinx ISE In-Depth Tutorial UG695 (v 12.3). September 21, 2010.

[J.CARVER 2008] -Jeff Carver, Richard Neil Pittman, and Alessandro Forin, "Relocation
and Automatic Floor-planning of FPGA Partial Configuration Bit-Streams," no. MSR-TR-
2008-111, August 2008.

110

[J.HAMERS 2008]- Juan Hamers and Lieven Eeckhout, "Automated hardware-independent
scenario identification," in Proceedings of the 45th annual conference on Design automation
-DAC '08 (presented at the the 45th annual conference, Anaheim, California, 2008), 954,
http://portal.acm.org/citation.cfm?doid=1391469.139171 O.

[J.HUANG 2009] - Jian Huang et al., "Scalable FPGA-based architecture for DCT computa
tion using dynamic partial reconfiguration," ACM Transactions on Embedded Computing
Systems 9, no. 1 (October 2009): 1-18.

[J.KHAN 2008] - Jehangir Khan et al., "An MPSoC architecture for the Multiple Target
Tracking application in driver assistant system," in 2008 International Conference on Appli
cation-Specifie Systems, Architectures and Processors (presented at the 2008 International
Conference on Application-Specifie Systems, Architectures and Processors (ASAP), Leuven,
Belgium, 2008), 126-131,
http :/ /ieeexplore.ieee.org/lpdocs/ epic03/wrapper .htm ?amumber=45 80166.

[J.KHAN 2009] - Jehangir Khan, "Embedded Multiprocessor Architectures for Automotive
Driver Assistance Systems," 2009. Thesis and dissertations. Available (hard copy):
http:/ /www. uni v-valenciennes.fr/SCD/bibliotheque-universitaire-du-mont -houy.

[J.SAAD 2009] -Jean Saad, Amer Baghdadi, and Frantz Bodereau, "FPGA-based Radar
Signal Processing for Automotive Driver Assistance System," in 2009 IEEEIIFIP Interna
tional Symposium on Rapid System Prototyping (presented at the 2009 IEEEIIFIP Interna
tional Symposium on Rapid System Prototyping (RSP), Paris, France, 2009), 196-199,
http:/ /ieeexplore.ieee.org/lpdocs/epic03/wrapper .htm?amumber=5158519.

[J.W.CHEN 2006]- Jian-Wen Chen, Chao-Yang Kao, and Youn-Long Lin, "Introduction to
h.264 advanced video coding," in Asia and South Pacifie Conference on Design Automation,
2006. (presented at the Asia and South Pacifie Conference on Design Automation, 2006.,
Yokohama, Japan, n.d.), 736-741,
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?amumber=1594774.

[JVSG]- JVSG.com. H.264 joint video surveillance group compression research data: 2008.
May 2010.

[M.ELHAJJ 2009] - Majdi Elhajj et al., "A Low Power ASIC Design of a FSBM Motion
Estimator for H.264/AVC," ICGST-PDCS Journal9, no. 1 (October 2009): 53-58.

[M.GUARISCO 2010]- Michael Guarisco, Hassan Rabah, and Abbes Amira, "Dynamically
reconfigurable architecture for real time adaptation of H264/AVC-SVC video streams," in
2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition -
Workshops (presented at the 2010 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition Workshops (CVPR Workshops), San Francisco, CA, USA, 2010),
39-44, http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5543764.

[M.HUBNER 2006] - M. Hübner and J. Becker, "Exploiting dynamic and partial reconfigu
ration for FPGAs," in Proceedings ofthe 19th annual symposium on Integrated circuits and

111

systems design - SBCCI '06 (presented at the the 19th annual symposium, Ouro Preto, MG,
Brazil, 2006), 1, http://portal.acm.org/citation.cfm?doid=1150343.1150350.

[M.HUBNER 2010]- Michael Hübner et al., "Fast dynamic and partial reconfiguration data
path with low hardware overhead on Xilinx FPGAs," in 2010 IEEE International Symposium
on Para/le/ & Distributed Processing, Workshops and Phd Forum (IPDPSW) (presented at
the Distributed Processing, Workshops and Phd Forum (IPDPSW), Atlanta, GA, USA, 2010),
1-8, http:/ /ieeexplore.ieee.org/lpdocs/ epic03/wrapper .htm ?arnumber=54 7073 6.

[M.LIU 2009] - Ming Liu et al., "Run-time Partial Reconfiguration speed investigation and
architectural design space exploration," in 2009 International Conference on Field Pro
grammable Logic and Applications (presented at the 2009 International Conference on Field
Programmable Logic and Applications (FPL), Prague, Czech Republic, 2009), 498-502,
http:/ /ieeexplore.ieee.org/lpdocs/ epic03/wrapper .htm ?arnumber=5272463.

[M.RICHARDS 2005] -M Richards, Fundamentals of radar signal processing (New York:
McGraw-Hill, 2005).

[M.SHAFIQUE 2008] -Muhammad Shafique, Lars Bauer, and Jorg Henkel, "Optimizing the
H.264/AVC Video Encoder Application Structure for Reconfigurable and Application
Specifie Platforms," Journal of Signal Processing Systems 60, no. 2 (November 2008): 183-

210.

[M.ULLMANN 2004]- M. Ullmann et al. "On-Demand FPGA Run-Time System for Dy
namic Reconfiguration with Adaptive Priorities". Proceedings of the 14th International Con
ference on Field-Programmable Logic and Applications (FPL), pp. 454-463, Springer-Verlag
LNCS Vol. 0302, 2004.

[MICROBLAZE] - Xilinx MicroBlaze Processor Reference Guide UG081 (v9.0). January
17,2008.

[MOORE] Moore's law Intel Software Network,
http :/ /www.developers.net/intelisnshowcase/view/ 12 7.

[MPEG4]- hhi.fraunhofer.de. H.264/mpeg4-avc. Jan. 2011.

[MSR]- Microsoft Inc., Embedded and Reconfigurable Systems Research Group. Available:
http :/ /research.microsoft.com/ en -us/ groups/ embeddedsystems

[N.W AX 1955] -Nelson Wax, "Signal-to-Noise Improvement and the Statistics of Track
Populations," Journal of Applied Physics 26, no. 5 (1955): 586.

[NIOS]- NIOS-II Processor Reference Handbook. http://www.altera.com.

[NOVA]- opencores.org. Project nova. Oct. 2009.

112

[P.CLARKE 2009]- Peter Clarke, EE Times, "Xilinx, ASIC Vendors Talk Licensing." June
22, 2001. Retrieved February 10, 2009.

[P .KUHN 1999] -Peter Kuhn, Algorithms, complexity analysis, and VLSI architectures for
MPEG-4 motion estimation (Dordrecht;Boston: Kluwer, 1999).

[P.NAISH 1988] - Paul Naish, Designing Asics (Chichester West Sussex England; New
York: Ellis Horwood;; Halsted Press, 1988).

[POWERPC]- Xilinx PowerPC 405 Processor Block Reference Guide. January 16,2004.

[PR_FLOWS]- Xilinx Inc., "Two Flows for Partial Reconfiguration: Module Based or Dif
ference Based," September 9, 2004. Available:
http :/ /www.xilinx.com/bvdocs/appnotes/xapp290. pdf

[PREVENT] "The european fp7, prevent-intersafe project," Available:
http:/ /www. preventip.org/en/prevent subproj ects/intersection safety /intersafe

[PRIMA-CARE]- PRIMA-CARE Project. 3 May 2011. http://www.primacare-project.com/.

[R.KHRAISHA 2010] - Rakan Khraisha and Jooheung Lee, "A scalable H.264/AVC deb
locking filter architecture using dynamic partial reconfiguration," in 2010 IEEE International
Conference on Acoustics, Speech and Signal Processing (presented at the 201 0 IEEE Interna
tional Conference on Acoustics, Speech and Signal Processing, Dallas, TX, USA, 201 0),
1566-1569, http:/ /ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm ?amumber=5495525.

[RADAR]- Cognitive Safty Radar Systems, www.trw.com.

[RECENT_FPGA]- Clive Maxfield, "The design warrior's guide to FPGAs: deviees, tools
and flows" (Boston: Newnes; Elsevier, 2004).

[S.BLACKMAN 1999] - Samuel Blackman, Design and analysis of modern trac king systems
(Boston: Artech House, 1999).

[S.LEBEUX 2006] - Sébastien LE BEUX et al., "FPGA Implementation of Embedded
Cruise Control and Anti-Collision Radar". 9th Euromicro conference on Digital System De
sign :Architectures, Methods and Tools (DSD 2006), Dubrovnik, Croatia, August 2006.

[S.LIU 2010_1] - Shaoshan Liu, Richard Neil Pittman, and Alessandro Forin, "Minimizing
partial reconfiguration overhead with fully streaming DMA engines and intelligent ICAP
controller (abstract only)," in Proceedings of the 18th annual ACM/SIGDA international
symposium on Field programmable gate arrays - FPGA '1 0 (presented at the the 18th annual
ACM/SIGDA international symposium, Monterey, California, USA, 2010), 292.

[S.LIU 2010_2]- Shaoshan Liu, Richard Neil Pittman, and Alessandro Forin, "Energy reduc
tion with run-time partial reconfiguration (abstract only)," in Proceedings of the 18th annual
ACMISIGDA international symposium on Field programmable gate arrays- FPGA 'JO (pre-

113

sented at the the 18th annual ACM/SIGDA international symposium, Monterey, California,
USA, 2010), 292.

[S.YEOWYAP 2004] - S.Y. Yap and J.V. McCanny, "A VLSI Architecture for Variable
Block Size Video Motion Estimation," IEEE Transactions on Circuits and Systems II: Ex
press Briefs 51, no. 7 (July 2004): 384-389.

[SPARTAN-III]- Xilinx Inc., "Spartan-3 Generation FPGA User Guide Extended Spartan-
3A, Spartan-3E, and Spartan-3 FPGA Families," Xilinx user guide UG331 (vl.7) August 19,
20 1 0. A vailable: http :/ /www.xilinx.com/support/documentation/user _guides/ug3 3 2. pdf

[T.MOORTHY 2008] - Theepan Moorthy, "Scalable FPGA Hardware Acceleration for
H.264 Motion Estimation," 2008. Thesis and dissertations. Paper 121. Available:
http :/1 digitalcommons.ryerson.ca/ dissertations/ 121.

[V4_FPGA]- Xilinx Virtex-4 FPGA User Guide UG070. December 1, 2008.

[VHDL]- Wikipedia. 7 February 2011. "http://en.wikipedia.org/wikiNHDL" (last accessed
at 7 February 2011).

[VIRTEX-IIPRO] - Xilinx Inc., "Virtex-II Pro and Virtex-II Pro X FPGA User Guide," Xi
linx user guide UG012 (v4.2) 5 November 2007. Available:
http:/ /www.xilinx.com/support/ documentation/user _guides/ugO 12.pdf

[X.MA 2006] - X. Ma and I. Andrasson. "Driver reaction time estimation from real car fol
lowing data and application in GM-type model evaluation". In Proceedings of the 85th TRB
annual meeting, Washington D.C., 2006.

[XILINX]- Xilinx Inc., http://www.xilinx.com/.

[Y.SHENGFA 2006] -Yu Shengfa, Chen Zhenping, and Zhuang Zhaowen, "Instruction
Leve! Optimization ofH.264 Encoder Using SIMD Instructions," in 2006 International Con
ference on Communications, Circuits and Systems (presented at the 2006 International Confe
rence on Communications, Circuits and Systems, Guilin, Guangzi, China, 2006), 126-129.

[Y.W.HUANG 2005] - Yu-Wen Huang et al., "Analysis, fast algorithm, and VLSI architecture
design for H.264/AVC intra frame coder," IEEE Transactions on Circuits and Systems for Video
Technology 15, no. 3 (March 2005): 378-401.

114

Scientific output of this work
Journal:

o HARB N., NIAR S., KHAN J., SAGHIR M. (2009). A Reconfigurable Plat
form Architecture for an Automotive Multiple-Target Tracking System. ACM
SIGBED Review, vol6, num3, ISSN 1551-3688.

o HARB N., SAGHIR M., NIAR S., BEN ATITALLAH R., KURDAHI F., Per
formance/Energy Trade-offs in a Dynamically Reconfigurable H.264 Motion
Estimation Block, ACM Transactions on Architecture and Code Optimization
TACO (submitted).

Conferences
o HARB N., NIAR S., KHAN J., SAGHIR M. (2009). A Reconfigurable Plat

form Architecture for an Automotive Multiple-Target Tracking System, 2nd
Workshop on Adaptive and Reconfigurable Embedded Systems
(APRES'2009), in conjunction with Esweek (CASES'09, CODES+ISSS'09,
EMSOFT'09), Grenoble, France, October.

o LANGE T., HARB N., NIAR S., LIU H., BEN ATITALLAH R. (2010). An
Improved Automotive Multiple Target Tracking System Design. 13th EU
ROMICRO Conference on Digital System Design DSD'2010, Lille France,
September.

o HARB N., NIAR S., SAGHIR M., EL HILLALI Y., BEN ATITALLAH R.
(2011). A Dynamically Reconfigurable Filtering Block in a Driving Assis
tance System, IEEE Symposium on Application Specifie processors SASP
2011 (part ofDAC 2011) San Diego CA, USA, June.

Posters
o HARB N., NIAR S., SAGHIR M., A Reconfigurable Heterogeneous Multi

Core Architecture for an Automotive Driver Assistant System. ACES 2009,
Edegem, Belgium, June 2009.

o HARB N., NIAR S., SAGHIR M., A Dynamically Reconfigurable Filtering
Block in a Driver Assistance System. Colloque du GDR SOC SIP, Paris,
France, June 2010.

o HARB N., NIAR S., SAGHIR M., A Reconfigurable Filtering Architecture in
Driver Assistance System. 1 st PROGram for Research on Embedded Systems
& Software (PROGRESS, part of STW.ICT conference), Veldhoven, Nether
lands, November 2010.

115

116

Bibliotheque .. Universitaire .. de .. Valenciennes

