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Bruno Dato
APPRENTISSAGE PERMANENT PAR FEEDBACK ENDOGÈNE

APPLICATION À UN SYSTÈME ROBOTIQUE
Directrice : Marie-Pierre Gleizes, Professeur, UT3

Co-Encadrant : Frédéric Migeon, Maître de Conférences, UT3
Résumé

Les applications robotiques sont liées à l’environnement sociotechnique dynamique
dans lequel elles sont intégrées. Dans ce contexte, l’auto-adaptation est une préoccupation
centrale et la conception d’applications intelligentes dans de tels environnements nécessite
de les considérer comme des systèmes complexes. Le domaine de la robotique est très vaste.
L’accent est mis sur les systèmes qui s’adaptent aux contraintes de leur environnement et
non sur la mécanique ou le traitement du signal.

À la lumière de ce contexte, l’objectif de cette thèse est la conception d’un mécanisme
d’apprentissage capable d’apprendre de manière continue en utilisant des feedbacks endo-
gènes (i.e. des interactions internes) dans des environnements sociotechniques dynamiques.
Ce mécanisme d’apprentissage doit aussi vérifier plusieurs propriétés qui sont essentielles
dans ce contexte comme : l’agnosticité, l’apprentissage tout au long de la vie, l’apprentis-
sage en ligne, l’auto-observation, la généralisation des connaissances, le passage à l’échelle,
la tolérance au volume de données et l’explicabilité.

Les principales contributions consistent en la construction de l’apprentissage endogène
par contextes et la conception du mécanisme d’apprentissage ELLSA pour Endogenous Li-
felong Learner by Self-Adaptation. Le mécanisme d’apprentissage proposé est basé sur les
systèmes multi-agents adaptatifs combinés à l’apprentissage endogène par contextes. La
création de l’apprentissage endogène par contextes est motivé par la caractérisation d’im-
précisions d’apprentissage qui sont détectées par des négociations locales entre agents. L’ap-
prentissage endogène par contextes comprends aussi un mécanisme de génération de don-
nées artificielles pour améliorer les modèles d’apprentissage tout en réduisant la quantité
nécessaire de données d’apprentissage. Dans un contexte d’apprentissage tout au long de
la vie, ELLSA permet une mise à jour dynamique des modèles d’apprentissage. Il introduit
des stratégies d’apprentissage actif et d’auto-apprentissage pour résoudre les imprécisions
d’apprentissage. L’utilisation de ces stratégies dépend de la disponibilité des données d’ap-
prentissage.

Afin d’évaluer ses contributions, ce mécanisme est appliqué à l’apprentissage de fonc-
tions mathématiques et à un problème réel dans le domaine de la robotique : le problème
de la cinématique inverse. Le scénario d’application est l’apprentissage du contrôle de bras
robotiques multi-articulés. Les expériences menées montrent que l’apprentissage endogène
par contextes permet d’améliorer les performances d’apprentissage grâce à des mécanismes
internes. Elles mettent aussi en évidence des propriétés du système selon les objectifs de
la thèse : feedback endogènes, agnosticité, apprentissage tout au long de la vie, apprentis-
sage en ligne, auto-observation, généralisation, passage à l’échelle, tolérance au volume de
données et explicabilité.
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LIFELONG LEARNING BY ENDOGENOUS FEEDBACK

APPLICATION TO A ROBOTIC SYSTEM
Directrice : Marie-Pierre Gleizes, Professeur, UT3

Co-Encadrant : Frédéric Migeon, Maître de Conférences, UT3
Abstrac

Robotic applications are linked to the dynamic sociotechnical environment in which they
are embedded. In this scope, self-adaptation is a central concern and the design of intelligent
applications in such environments requires to consider them as complex systems. The field
of robotics is very broad. The focus is made on systems that adapt to the constraints of their
environment and not on mechanics or signal processing.

In light of this context, the objective of this thesis is the design of a learning mecha-
nism capable of continuous learning using endogenous feedback (i.e. internal interactions)
in dynamic sociotechnical environments. This learning mechanism must also verify seve-
ral properties that are essential in this context such as : agnosticity, lifelong learning, online
learning, self-observation, knowledge generalization, scalability, data volume tolerance and
explainability.

The main contributions consist of the construction of Endogenous Context Learning and
the design of the learning mechanism ELLSA for Endogenous Lifelong Learner by Self-
Adaptation. The proposed learning mechanism is based on Adaptive Multi-Agent Systems
combined with Context Learning.

The creation of Endogenous Context Learning is motivated by the characterization of
learning inaccuracies that are detected by local negotiations between agents. Endogenous
Context Learning also includes an artificial data generation mechanism to improve learning
models while reducing the amount of the required learning data. In a Lifelong Learning set-
ting, ELLSA enables dynamic updating of learning models. It introduces Active Learning
and Self-Learning strategies to resolve learning inaccuracies. The use of these strategies de-
pends on the availability of learning data.

In order to evaluate its contributions, this mechanism is applied to the learning of ma-
thematical functions and to a real problem in the field of robotics : the Inverse Kinematics
problem. The application scenario is the learning of the control of multi-jointed robotic arms.

The conducted experiments show that Endogenous Context Learning enables to im-
prove the learning performances thanks to internal mechanisms. They also highlight the
properties of the system according to the objectives of the thesis : endogenous feedback,
agnosticity, lifelong learning, online learning, self-observation, knowledge generalization,
scalability, data volume tolerance and explainability.
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Introduction

IN a near or distant future, robots will be able to evolve and learn as we humans do from
our environment and the interactions it induces. However, there is still a long way to go.

At the moment, robots are a key component of the worldwide industry and they are grad-
ually expanding into personal services. Their learning competences are still narrow such as
most Artificial Intelligence (AI) common technologies. The environments in which robots and
AI are immersed are constantly increasing in complexity. This raises the question of how
intelligent systems should learn in this dynamic. A lead is to provide learning systems with
endogenous abilities: internal mechanisms enabling them to self-assess what they learn and
self-enhance themselves. We call such mechanisms Endogenous Feedback.

The environment that surrounds us is defined by its unpredictability, openness, dynam-
icity and heterogeneity [Nigon et al., 2017]. All theses properties must be taken into consid-
eration when designing a learning system made to interact with it. The challenge of this
thesis is to design a self-learning mechanism implementing Endogenous Learning using En-
dogenous Feedback and dealing with all the characteristic of its environment.

Contributions

In this thesis, I define and characterize Endogenous Learning by identifying its motiva-
tions and how they are declined for a learning mechanism. My contribution is the imple-
mentation of Endogenous Learning with the paradigm of Context Learning: Endogenous Con-
text Learning. It is a distributed learning approach relying on an Adaptive Multi-Agent Sys-
tem. This paradigm enables to identify and solve learning deficiencies using endogenous
mechanisms. It results in a local cooperation of knowledge fragments that are agents with
encapsulated models.

These agents are a part of a larger learning mechanism that I design: ELLSA for Endoge-
nous Lifelong Learner by Self-Adaptation. ELLSA integrates endogenous, agnostic, lifelong, online,
self-observation and generalization learning properties. It provides an active learning mode to
request specific learning situations when they are available, and a self-learning mode to learn
with fewer learning situations.

I assess the implemented learning mechanism on several learning experiments to high-
light its strengths and limitations in relation with its learning properties. A robotic experi-
ment is conducted with ELLSA to present how it performs on a concrete learning problem.
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Document organization

The manuscript is structured as follows:

3 Chapter 1: I present the context of this work. I argue how the future of robotic appli-
cations is related to the dynamic sociotechnical environment in which they are embed-
ded. I defend how self-adaptation is a central concern in this scope and what are the
future challenges for designing intelligent applications in complex systems. The field
of robotics is very broad, the focus is made on systems that adapt to their environment
constraints and not on mechanics or signal treatment. I finish by enumerating the ob-
jectives of the thesis.

3 Chapter 2: I present the basis of Machine Learning in the literature. I explain how artifi-
cial learning works and what are the different degrees of supervision. I differentiate two
main kinds of artificial learning that are rewards and demonstrations. I briefly present
probabilistic approaches of learning. I finish starting a first reflection about these ap-
proaches according to the objectives of my thesis.

3 Chapter 3: I continue the reflection on artificial learning by focusing on Lifelong Learn-
ing. I define what makes us human beings lifelong learners and what are the properties
that are sought to be replicated in artificial learners. I present learning paradigms that
are related to Lifelong Learning: Transfer Learning, Multi-Task Learning, Online Learning
and Reinforcement Learning. I develop a more general questioning on the major protago-
nist of artificial learning today, Deep Learning. I finish updating the reflection about the
presented approaches according to the objectives of my thesis.

3 Chapter 4: I extend the reflection on artificial learning by focusing on a more psycholog-
ical view of learning. I present learning from the Constructivism point of view which
gave birth to Developmental Learning. Then, I explore other learning paradigms that are
related to Developmental Learning: Meta-Learning and Few Shot Learning. I introduce the
Context Learning paradigm upon which the work of this thesis is based. The use of
Adaptive Multi-Agent Systems is defended by presenting their properties which are in
adequacy with the motivations of my thesis.

3 Chapter 5: I detail the construction of Endogenous Context Learning. It consists in the
identification of learning hypotheses that allows to identify learning inaccuracies. The
learning inaccuracies are learning defects that can be detected with local agents negotia-
tions. To add local communication between the agents of a Multi-Agent based learning
mechanism, the concept of neighborhood is introduced. Learning inaccuracies are charac-
terized to determined how to detect and solve them. Their processing order is explained
according to their priority. Cooperative Neighborhood Learning is presented. It is a mech-
anism allowing to generate internal learning situations to enhance the model of agents
through local communication.

3 Chapter 6: The functioning of the designed learning mechanism is presented: ELLSA for
Endogenous Lifelong Learner by Self-Adaptation. The optimization of agents activation is
detailed and the processes of learning and exploitation cycles are described. The learn-
ing criticality and the exploitation criticality are introduced, they enable to include per-
formance, generalization and experience in the learning and exploitation processes. A

2 Bruno Dato



Introduction

mechanism for dynamically updating learning models in a lifelong setting is proposed.
The Active Learning Strategy and the Self-Learning Strategy are introduced. Their use de-
pends on the availability of learning data. The chapter is ended by an analysis and a
positioning about AI challenges.

3 Chapter 7: Several experimentations made on the learning mechanism ELLSA are pre-
sented. The learned models are mathematical functions with properties of linearity, non
linearity, continuity and discontinuity. These experimentations allow to highlight the
strengths and weaknesses of the system according to the objectives presented in section
1.6 (Endogenous Feedback, Agnosticity, Lifelong Learning, Online Learning, Self-Observation,
Knowledge Generalization, Scalability, Any Data Amount and Explainability).

3 Chapter 8: I present several robotic experimentations made with the learning mech-
anism ELLSA. The learning is applied to the problem of Inverse Kinematics which is
classical in the robotic community. The application scenario is the control learning for
multi-joint robotic arms. These experimentations allow to highlight the properties of
the system according to the objectives presented section 1.6 in a concrete problem.

3 Chapter 9: In this final chapter, the conclusions and perspectives are provided in rela-
tion to the initial objectives of this thesis (section 1.6). The contributions are declined in
3 categories: Context Learning, Machine Learning and Robotics. The perspectives present
exploration tracks concerning additional adaptation and optimization for Context Learn-
ing, leads to advance certain challenges of Machine Learning and AI, and possible exten-
sions of the work carried out on robotics.

In order to facilitate reading, a glossary including most of the technical terms and no-
tations is available at the end of the manuscript (Part VI). If you are reading this thesis in
digital version, you can access the glossary by clicking on the terms that are referenced.
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1 From Robotics Towards Complex
Systems

In this chapter, I present the context of this work. I argue how the future of robotic applications
is related to the dynamic sociotechnical environment in which they are embedded. I defend how self-
adaptation is a central concern in this scope and what are the future challenges for designing intelli-
gent applications in complex systems. The field of robotics is very broad, the focus is made on systems
that adapt to their environment constraints and not on mechanics or signal treatment. I finish by
enumerating the objectives of the thesis.

ROBOTS have revolutionized the industry and they will revolutionize our everyday life.
However, the world in which humans live is complex and constantly changing. The

robots of tomorrow will be intrinsically linked to adaptive systems that adjust to the con-
straints of their environment.

1.1 The Future of Robotics

The numbers of robots in our society is growing and and it will never stop increasing
[Torresen, 2018]. From robotic arms to vacuum cleaners, many of them are already present
and widely adopted in many homes and factories. We can categorize them into industrial
robots which will be the majority and service robots.

3 Industrial robots: they consist of articulated arms with a certain number of degrees
of freedom and a terminal tool. The minimal number of degrees of freedom is 6 to
move and to orient the tool in all directions. Industrial robots are commonly found in
manufacturing chains to perform repetitive tasks.

3 Service robots: they are semi- or fully autonomous robots that perform tasks for hu-
mans or equipment. They include personal and domestic robots (vacuum cleaners, toys
or autonomous vehicles) and professional robots for different fields (space exploration,
agriculture, medical care, surveillance ...).

Fig. 1.1 shows the industrial revolutions and their associated breakthroughs. Mechanical
power from water and steam gave birth to the 1st Industrial Revolution. The 2nd Industrial
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Figure 1.1 – Industrial Revolutions

Revolution came with electrical energy and the appearance of assembly lines. Automation
and industrial robotics allowed the 3rd Industrial Revolution in the 1970s. The Internet of
Things (IoT) and cloud computing brought the current 4th Industrial Revolution. With it,
flexible manufacturing and cyber-physical systems emerged. Their goal is to provide real-
time interfaces between virtual and physical worlds. Even if the 4th Industrial Revolution is
still young and its challenges are not yet all accomplished, the 5th Industrial Revolution is
coming [Nahavandi, 2019]. It aims at a massive customization putting human intelligence
in the loop using autonomous cognitive manufacturing. For this revolution, AI and big data
are the main innovative domains that are able to reach the objectives.

1.2 Towards Industry 5.0

Industry 4.0 emphasizes on improving efficiency ignoring the resulting human costs nor
the environmental costs. As we know, the transition towards the replacement of human
labor by its automation with robots promises to be complicated [Granulo et al., 2019]. It is in
this sense that Industry 5.0 focuses on pairing humans and machines, to convert robots into
human companions or cobots (collaborative robots). Cobots are like apprentices, they watch
and they learn giving humans a feeling of satisfaction working alongside cobots.

One of the keys of Industry 5.0 is the design of intelligent autonomous systems that learn
and make decisions under unforeseen circumstances [Nahavandi, 2019]. In particular, in the
context of personalization, Transfer Learning is a critical aspect as it would allow to transfer
knowledge from a virtual system to its physical twin.

Intelligent autonomous systems will also need to cooperate and learn in an adaptive
manner as humans do it [Wickens et al., 2015, Georgé et al., 2011]. Cognition systems need
to improve in order to self-adapt in an ever-changing situations. Systems with such proper-
ties are called Self-Adaptive Systems (SAS). The smart factory of Industry 4.0 implementation
is currently facilitated using SAS and self-organized reconfiguration [Wang et al., 2016].

SAS are well suited for the challenges of the Industry 5.0 [Skobelev and Borovik, 2017].
SAS adapt their behavior during runtime to face changing contexts and environments
[Bernon et al., 2002, Picard and Gleizes, 2002, Capera et al., 2003, Kephart and Chess, 2003].

With the Industry 5.0, autonomous systems will need increasing functionnalities and
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it will no longer be beneficial to specify all behaviors at design because there will be too
many potential states. This is why the popularity of Self-Adaptive Systems is growing and is
expected to evolve into mainstream adopted solutions [Wong et al., 2021].

1.3 Self-Adaptive Systems Challenges

Self-Adaptive Systems (SAS) are well suited for the Industry 5.0 but they also face several
challenges.

As we said, SAS focus on guarantees under uncertainty [Weyns, 2018]. SAS need to
deal with uncertainty as modern software systems are increasingly embedded in open
worlds that are constantly evolving (changing environment, users behaviors and addi-
tional requirements). Anticipating this evolution is almost impossible during the design
of such applications, they need to self-adapt during their lifetime [Bernon et al., 2002,
Baresi and Ghezzi, 2010]. The system has to adapt to its task and no longer needs to be de-
signed for a specific one. This results in different sources of uncertainty that must be taken
into account: uncertainty related to the system suitability, uncertainty related to the system
goals, uncertainty related to the system executions context and uncertainty related to hu-
mans interacting with the system [Mahdavi-Hezavehi et al., 2016].

Other challenges of SAS are the decentralization of adaptation, dealing with changing
goals and dealing with complex types of uncertainties [Gleizes, 2012, Weyns, 2018]. Central-
ization is not a sustainable approach with the increasingly large and complex systems that
need control. Changing goals dynamically is a step beyond dealing with uncertainty. Al-
lowing a complex system to self-adapt its strategy helps it recover from run-time abnormal-
ities [Georgé et al., 2011, Gerostathopoulos et al., 2019]. Dealing with changing goals would
mean that the system could synthesize and verify new models by itself. Complex types of
uncertainties can be model inadequacy, model bias or model inaccuracy. To deal with uncer-
tainty sources, the use of feedback loop mechanisms is required [Muccini et al., 2016].

Current challenges are focused on the exploitation of Artificial Intelligence in order to
perform complex tasks as AI techniques also focus on uncertainty. Machine Learning tech-
niques can overcome SAS challenges by learning from some experiences. Machine learning
is able to address the uncertainty in SAS by learning new adaptation rules dynamically and
modifying the existing rules [Saputri and Lee, 2020]. Then, the step after dealing with the
anticipated changes (known unknowns) is dealing with unanticipated changes (unknown
unknowns) [Oreizy et al., 1998].

1.4 Sociotechnical Environments

The Industry 5.0 and the Self-Adaptive Systems are defined by the Sociotechnical En-
vironment in which they are situated. This environment in which the systems operate
is defined using several assumptions that we present here inspired by Russel & Norvig
[Russell and Norvig, 2016].

3 Non-determinism. The environment potentially contains a multitude of systems that
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act simultaneously, the next state of the world is not only determined by the system’s
current state.

3 Locality. The perception of the world is reduced, so is the effect of actions. An applica-
tion is neither omniscient nor omnipotent and is therefore a located system.

3 Continuity. The values of perceptions and actions evolve in a continuous space and
perceived values are real values.

3 Dynamicity. The environment evolves while the system is processing its tasks.

3 Uncertainty. The world is not ideal but material. It is therefore perceived by sensors
that are subject to noise and breakdowns.

The coupling of Self-Adaptive Systems and their Sociotechnical Environment defines a
Complex System with additional properties that have to be dealt with [Nigon et al., 2017].
Among these, we found openness and heterogeneity. Complex Systems are open in the sense
that entities or applications can appear and disappear at any time. They are heterogeneous
because all interacting components are not necessarily identical in terms of communication,
observation and control.

1.5 Designing in Complex Systems

Designing an intelligent application capable of evolving in the Sociotechnical Environ-
ment and facing the future challenges of the Industry 5.0 is a tough work. I categorize the
designing of an autonomous system or robot focusing on the task it has to perform. An
analogy with the industrial revolutions is made as they led to more and more complex and
abstract tasks.

3 Known Task. When the task is well known in a constrained environment, the designer
can implement an ad hoc application where all situations can be defined. It was the case
for the Industry 3.0. The Industry 4.0 starts deviating from this context with the need for
flexibility. With the complexity of future applications and environments, anticipating all
situations will no longer be a possible solution [Baresi and Ghezzi, 2010, Gleizes, 2011].
Ad hoc systems badly deal with unknwon situations and dynamics. An intelligent ap-
plication must adapt to its environment by learning from its experiences, this is why
learning is an inevitable path.

3 Measurable Task. If the task is measurable, a common approach is to use Learning
by Rewards. The learner explores its environment by acting in it and it is rewarded or
punished to guide its learning. Depending on the complexity of the task, the reward can
be also be difficult to design a priori and it will also need to evolve with the changing
environment.

3 Observable Task. A task is observable when an operator can control the system or the
robot to show it how to behave. In this case, we call it Learning by Demonstrations.
It fits to the spirit of the Industry 5.0 where the human is put back among the Cyber-
Physical Systems to show its expertise and collaborate with robots [Nahavandi, 2019].
Yet, demonstrations may be biased and may not reflect the knowledge gained from
lifelong experiments.
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3 Unknown Task. One of the challenges of robotic interactive systems is to learn without
having any intrinsic knowledge of the tasks they will have to solve. To do so, they
need internal curiosity mechanisms to avoid biases, maximize genericity and provide
adaptation to their environment [Oudeyer et al., 2014]. Such a system is also called an
agnostic system [Kearns et al., 1994]. To design it, it is essential to generate knowledge
through processes and actions that are purely internal to the system.

This thesis focuses on the last setting, the design of interactive learning systems without
prior knowledge on any task. A step towards this goal, and the main objective of this the-
sis, is the generation of Endogenous Feedback. They are internal interactions whose goal is to
improve learning.

1.6 Thesis Objectives

The goal of this thesis is to design a self-adaptive learner that fits the challenges of the
Industry 5.0 and deals with the characteristics of Sociotechnical Environment. We present
the main objectives that we want our learning system to achieve.

3 Endogenous Feedback. The mechanism needs to learn from Endogenous Feedback. It can
learn from external entities but also from endogenous experiences. In the second case,
knowledge must be generated through processes and interactions that are internal to
the system: between its known experiences and between its actions and perceptions
through active learning or self-learning. We call this type of process: “learning by en-
dogenous feedback”. In Economics, we find homologous definitions: learning by doing
[Arrow, 1962] but also endogenous learning [Creane, 1995]. The contribution accord-
ing to this objective is detailed in chapter 5, validated in section 7.4 and evaluated all
along the experimentations in the chapters 7 and 8. This objective was the subject of the
following publication [Dato. et al., 2021b].

3 Agnosticity. The learning system is agnostic towards the task it has to learn. The learn-
ing method is not specialized to one task. It can learn any task using the same approach
without making preliminary assumptions [Kearns et al., 1994]. It has to focus on the
task of learning itself. The learning approach can be applied to any interactive system
possessing sensors and actuators i.e. a system capable of interacting with its environ-
ment, no matter the number of devices it possesses nor the nature of them. This objec-
tive is assessed through the different experiments conducted chapters 7 and 8.

3 Lifelong Learning. The system never stops learning. It learns in an incremental way to
be able to improve its previous knowledge and it decides if a new experience is worth
learning or not. If tasks are related through some underlying structure, the learning
system may share knowledge between these tasks to improve learning performance.
At any time, it may be asked to solve a problem from any previous learned task, and
to also maximize its performance across all learned tasks [Thrun and Mitchell, 1995].
The contribution according to this objective is presented in section 6.3 and evaluated in
sections 7.6 and 7.9.
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3 Online Learning. The learning process is executed online which means that it can
sequentially receive new data and be asked for decision making. The processing of
this new data does not interfere with the exploitation of previously learned tasks
[Rosenblatt, 1957] unlike offline learning mechanisms that receive the training data all
at once. The learning process of this work intrinsically uses online learning and is de-
tailed in section 6.1.

3 Self-Observation. The system has the capability of Self-Observation to self-adapt. It is
able to provide itself feedback on what it knows, how precisely it knows it and what
it could know better. In Psychology, we found the analogous principle of introspec-
tion. It is the examination of one’s conscious thoughts and feelings [Schultz, 2013]. Self-
observation is also an inherent property of this thesis learning approach. It is used for
the Endogenous Feedback contribution in chapter 5 but also during the experiments in
chapter 7.

3 Knowledge Generalization. The learning mechanism generalizes while it learns. It rec-
ognizes if a new experience is similar to a previous one and it establishes connections
between them permitting it to improve a previously learned task and to learn faster
the new one. This is also called inductive transfer [Pan and Yang, 2010]. Generalization
can be thought of as interpolation between known examples, and extrapolation, which
requires going beyond a space of known training examples [Marcus, 1998]. The contri-
bution according to this objective is presented in section 6.2 and specifically evaluated
in chapter 7 across all experiments.

3 Scalability. Future robotic or interactive systems promise to be composed of large
amounts of sensors and actuators [Revzen and Koditschek, 2017]. Natural intelligence
is multi-dimensional and so will be generalized Artificial Intelligence [Gardner, 2011].
Learning must be applicable to large-scale complex learning systems. Its complexity
must be linearly dependent on the number of sensors or actuators. This objective is
addressed all along this work and it is evaluated in section 7.8.

3 Any Data Amount. Learning from a lot of learning examples is usual in machine
learning but learning from few situations still remains a challenge [Bendre et al., 2020].
Learning must be performed from any sample set size. New behaviors should be ob-
tained from a few training examples or from a lot. Learning should be done in every
situation the learning system is facing, regardless of the amount of examples it has ac-
cess to. The contribution that concerns this objective is detailed in sections 5.6 and 6.4.2
and it is evaluated in section 7.7.

3 Explainability. The way the system takes decisions is not hidden in a black box. The
reason that brought the learning mechanism to choose a behavior instead of another one
during an exploitation is explainable and observable by the system itself so that it can
improve itself [Samek et al., 2017]. This objective is addressed by the implementation of
a user interface described in section 7.3.

3 Robotic Application. The last objective of this work is to apply the implemented
learning mechanism to a robotic application. The contribution concerning this goal
is detailed and evaluated in chapter 8. This objective was the subject of a publication
[Dato. et al., 2021a].
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2 Machine Learning Foundations

In this chapter, I present the basis of Machine Learning in the literature. I explain how artificial
learning works and what are the different degrees of supervision. I differentiate two main kinds of
artificial learning that are rewards and demonstrations. I briefly present probabilistic approaches of
learning. I finish starting a first reflection about these approaches according to the objectives of my
thesis

MACHINE Learning is a vast field where one can easily get lost in front of the immensity
of the different works and approaches. I will first present a definition of learning in

AI and what are the main classical techniques keeping in mind the goals of this work. Then, I
will seek for my thesis objectives (section 1.6) in more recent learning approaches to identify
the current advances and challenges.

Learning in AI, such as learning in our society, involves a learner and a teacher. The
learner can be an intelligent application, a robot, a self driving car ... It is an entity that is
designed to process examples from a teacher and transform them into knowledge to gener-
alize and be able to make decisions for unforeseen situations when the teacher is not present
anymore. The knowledge or learning models, as well as the teacher or the oracle, can have
many forms. This is what differentiates each learning fundamental techniques. A learning
mechanism has inputs, they are its perceptions, how it perceives its environment. And it
has outputs, they are its predictions. They are the result of its perceptions processed by its
models (Fig. 2.1).

Figure 2.1 – Learning Mechanism Inputs and Outputs.

In the following and in all the chapters of the state of the art, learning approaches are in-
troduced and a discussion is conducted with respect to the learning objectives described sec-

15



Machine Learning Foundations

tion 1.6 : Endogenous Feedback, Agnosticity, Lifelong Learning, Online Learning, Self-Observation,
Knowledge Generalization, Scalability, Any Data Amount, and Scalability. At the end of each
chapter, a synthesis is made and a summary table is drawn.

2.1 Supervised Learning

Supervised Learning is an essential method in Machine Learning. For this technique the
teacher takes the form of labeled examples associated to perceptions. This is what we call
the training data or the learning data. Learning can be seen as mapping input observa-
tions to output labels. If outcomes are discrete, the mapping is called classification. If it
is continuous, the problem becomes predicting an output as close as possible to the tar-
get one, it is regression. Common learning models in the literature are k-nearest neigh-
bors [Fix and Hodges Jr, 1951], decision trees [Breiman et al., 1984], support vector machines
[Vapnik, 2013] or Artificial Neural Networks [Yegnanarayana, 2009]. They can be used for
classification, regression, and ranking problems. The labeled data reduces the search space
during the learning process, but it also limits the learning to the training samples. The ma-
jority of these approaches are offline and the labeled data are collected depending on the
task to solve.

Recent approaches that we will present and develop later focus on Multi-Task Learning,
Transfer Learning or Online Learning. Ruvolo and Eaton [Ruvolo and Eaton, 2013] performed
Online Multi-Task Learning and Transfer Learning thanks to a general algorithm that sup-
ports different base learners (linear regression and logistic regression). Curriculum Learn-
ing, a step towards Lifelong Learning, proposes a supervised Multi-Task Learning mechanism
where the order in which the learner solves the set of tasks influences the overall perfor-
mance [Pentina et al., 2015].

Discussion

Recent researches in this domain roughly match what we are looking for in this theses.
There is no mention of any mechanism related to Endogenous Feedback in any form. Super-
vised Learning is agnostic in relation to the data because it is not specialized in one specific
task or domain. Some works are starting to focus on Lifelong Learning and Online Learning
problems. Regarding Self-Observation, it is not a concern of classical Supervised Learning. The
work about Knowledge Generalization is in progress with the appearance of Multi-Task Learn-
ing and Transfer Learning that we will present in the next chapter. The Scalability, the needed
data amount and the Explainability are usually model dependent so it is difficult to give any
arguments about it.

2.2 Unsupervised Learning

For this approach there is no teacher. Unsupervised Learning methods make predictions
for all unseen points and they only receive unlabeled training data. Unsupervised Learn-
ing uses only unlabeled data for data aggregation (clustering) or dimensional reduction
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problems [Hastie et al., 2009]. Usual methods are k-means [Hartigan and Wong, 1979], Self-
Organizing Maps (SOM) [Kohonen, 1998], Hopfield networks [Hopfield, 1982] and Boltz-
mann machines [Ackley et al., 1985]. A recent example of Unsupervised Learning application
is the assessment of video similarity [Papoutsakis and Argyros, 2019].

Discussion

These mechanisms are purely endogenous to the learning mechanism because they seek
correlations in amounts of data without external labeled information. Unsupervised Learn-
ing is related to learning with Endogenous Feedback by the use of unlabeled data. However,
it is not focused on enhancing any learning process. It is data agnostic because no prior
information is needed concerning the application domain. These methods are useful to or-
ganize large amount of learned data through Lifelong Learning and lessen Scalability prob-
lems [Henaff et al., 2011]. However, the Unsupervised Learning approach alone cannot over-
come the challenges of Lifelong Learning [Silver et al., 2013]. In the recent years, little work is
concentrated on online implementation of Unsupervised Learning [Nunes and Demiris, 2019].
There is some kind of Self-Observation toward the training data because it is an internal reflec-
tion on it. It is Knowledge Generalization when clustering is performed as data is aggregated
but not in the sense of incremental experiences and their respective relations in an evolving
environment. Unsupervised Learning is specialized in large amounts of data so it makes little
sense to consider using it with little data. Unsupervised Learning seems promising according
to Explainability concerns because it allows to build representations of correlated data.

2.3 Semi-Supervised Learning

In Semi-Supervised Learning, the learner trains with samples consisting of both labeled
data and unlabeled data to make predictions for all unseen points. The goal is to use the
additional unlabeled data to achieve better performances than classical Supervised Learning.
For instance, [Lampert et al., 2009] performs object classification systems without training
images but with human-specified high-level description. [Palatucci et al., 2009] focused on
predicting novel classes that were omitted from a training set using common features to both
novel classes and the training set. It can be seen as seeking to achieve better performance by
combining unlabeled and labeled data rather than using exclusively labeled or exclusively
unlabeled data [Li et al., 2017]

This approach tends towards Active Learning, which consists of letting the learner chose
its training data to lessen the examples in comparison to simple Supervised Learning. We
can find three mains settings in the literature: membership query synthesis, stream-based
selective sampling and pool-based active learning [Settles, 2009]. With membership query
synthesis, the learner can request any situation in the perceptions space, self-generated or
not. A problem with this scenario is that queried situations may not always be labeled by
an oracle. Stream-based selective sampling or sequential Active Learning provides unlabeled
training data and the learner decides whether to query or discard it. This guarantees that
all inputs can be labeled. Pool-based Active Learning is similar to the stream-based scenario
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except that the learner is provided with the full set of unlabeled situations before making
any queries for labeled situations. There are several strategies that seek which situations to
query. Uncertainty Sampling seeks less confident instances. Query-By-Commitee uses vote
mechanisms to query a situation that generates the most disagreements. The queries can also
be to seek which new labeled situation would most impact a model. Statistical techniques
synthesize queries by minimizing the variance of the learner’s errors.

Discussion

Part of our objectives focus on actively pointing out specific situations to enhance the
learning process. Active Learning matches our needs concerning the self-generation of per-
ceptions for Endogenous Feedback. As for Supervised Learning, Semi-Supervised Learning and
Active Learning are not domain or task specific. Most work concerning this learning tech-
nique was focused on pool-based approaches which is by definition offline. However, in
the last decade, online Active Learning techniques are appearing [Lughofer, 2017]. To my
knowledge, Lifelong Learning and Knowledge Generalization are not dominant concerns in this
domain of Machine Learning. Self-Observation is present in Active Learning as it allows to gen-
erate the queries. As for Supervised Learning, Scalability, data amount and Explainability are
model dependent.

2.4 Learning by Rewards

In the family of learning by rewards, we found two principal approaches that are
Reinforcement Learning and Genetic Algorithms. Reinforcement Learning mixes training and
testing phases during which the learner actively interacts with its environment. Here,
the teacher takes the form of a reward function that the learner questions to get posi-
tive or negative feedback for the actions it makes in specific states. To learn which ac-
tions are relevant, it seeks to maximize a reward function defined a priori. Classic meth-
ods are Q-learning [Watkins and Dayan, 1992], SARSA [Sutton, 1996] and case-based rea-
soning [Aamodt and Plaza, 1994]. One of the strengths of Reinforcement Learning is that it
carries out a broader exploration of the research space and that this exploration is online
[Sutton and Barto, 1998]. However, the counterpart is that this exploration can be costly in
terms of execution time and it can damage the system if it is evolving in a dangerous en-
vironment [Mannucci et al., 2017]. Recent work using long term task descriptors enabled
this method to generalize to unseen situations [Schaul et al., 2015]. As designing the reward
function for a specific task can be immensely difficult, promising leads are to learn it from
the environment.

This is what Inverse Reinforcement Learning does. It is an interesting approach because
it permits the system to extract and learn a reward function from observed behavior of an
expert [Abbeel and Ng, 2011].

Derived from Reinforcement Learning, Genetic Algorithms also address the problem of ex-
ploration. Genetic Algorithms belong to the family of evolutionary algorithms. These algo-
rithms draw on the theory of evolution to solve various problems. They provide an ap-
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proximate solution to an optimization problem when there is no exact solution or when the
solution cannot be found in a reasonable time. Genetic Algorithms use the concept of natural
selection and apply it to a population of potential solutions [Holland and Reitman, 1978]. In
order to find better solutions than those existing in the population, the potential solutions
are subjected to mutations or crosses. Solutions that bring improvements are mutated or
crossed in order to find better solutions. An evaluation function or fitness function is used
to measure the effectiveness of each solution and select the best performing solutions.

Discussion

Reinforcement Learning is not related to learning with Endogenous Feedback because it
learns from its environment by interacting with it and there is no self-generation of en-
dogenous situations nor Self-Observation. Recent work goes in this direction by choosing
which reward must be taken [Krueger et al., 2020]. The dependence on a complex reward
function makes it domain-specific. Inverse Reinforcement Learning allows to resolve this issue
by inferring the reward function. Reinforcement Learning mainly introduces Online Learn-
ing. Lifelong and generalizing characteristics are in development thanks to recent research.
[Silver et al., 2013] argues that Reinforcement Learning will be useful for Lifelong Learning.

Scalability is generally an issue, but recent papers managed to overcome this problem
[Zhan et al., 2017]. More over, Reinforcement Learning usually relies on discrete states that
represent a constrained environment different from a continuous one like the Sociotechni-
cal Environment we described in section 1.4. Almost no work was found about learning
with any data amount. [Duan et al., 2016] is one of the few works that achieves Reinforce-
ment Learning with few training. Explainability in Reinforcement Learning learning is still an
emerging research field where most of the approaches are task specific [Heuillet et al., 2020].

Genetic Algorithms or more generally evolutionary algorithms provide solutions to op-
timization and search problems by relying on bio-inspired operators [Mitchell, 1998]. They
present interesting characteristics due to their Online Learning. We find here the same draw-
back that Reinforcement Learning showed which is having to rely on a fitness function that is
task dependent and does not adapt with the evolving environment.

2.5 Learning by Demonstrations

Learning by Demonstrations is a Supervised Learning technique applied to many robotic ap-
plications. It is used to make robots learn behaviors thanks to two phases: firstly, the gath-
ering of demonstration examples and secondly, the generation of a policy from the demon-
stration. The teacher here is an operator that usually shows how to perform a task. It is
an interesting method because it provides a behavior to a system with an intuitive com-
munication medium for human teachers, specially non-robotic experts [Argall et al., 2009,
Verstaevel, 2016]. This mechanism is inherently linked to the information provided in the
demonstration dataset. As a result, learner performance is heavily limited by the quality of
this information [Mazac et al., 2015].
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Discussion

Learning by Demonstrations is far from learning by Endogenous Feedback because it does
not involve any self-generation of knowledge. [Silver et al., 2012] proposes a step towards
this objective by making the learner request specific demonstrations. Learning by Demonstra-
tions is a generic technique which brings Agnosticity because it is open to all the tasks that
could be demonstrated but it is an offline approach because it works in two faces, learning
and exploitation. It lacks Lifelong Learning properties because a learning system can learn
from several demonstrations but there is no generalization across all the tasks it can learn.
The learning is limited to its training and adaptation to unknown situations is not handled.
[Mendez et al., 2018] was the first to propose a step towards Knowledge Generalization and
Lifelong Learning using Inverse Reinforcement Learning.

Intention Learning [MacGlashan and Littman, 2015] is more interesting because it enables
the system to seek and learn the motivations behind a demonstration which is a step to-
wards Endogenous Learning (i.e. learning with Endogenous Feedback). In addition to the states
of the world, Intention Learning uses the transitional dynamics of these environmental states
to search for the goals that motivate the tutor’s behavior. Thanks to the knowledge of these
objectives, the robot behaves correctly when it encounters new situations and generalizes
when simple demonstration learning could not. Planning algorithms are usually used to
derive the behaviors which can lead to large computational cost for complex tasks and Scal-
ability issues which is not the case in demonstration learning. The approach often used is
the same as for an Inverse Reinforcement Learning problem in which the oracle’s intention is
modeled infering the reward function of the demonstrator [Ng and Russell, 2000]. Intention
Learning is also one of the few fields where Few Shot Learning can be found, it is learning
with few experiences. No work on Explainability according to Learning by Demonstrations nor
Intention Learning was found in the literature.

2.6 Probabilistic Learning

The Probabilistic Learning framework is necessary in Machine Learning to represent and
manipulate uncertainty about models and prediction. Even though there is controversy
about how important it is to fully represent uncertainty, it yet plays a central role in scientific
data analysis, Machine Learning, robotics, cognitive science, and AI [Ghahramani, 2015]. At
the lowest level, uncertainty is noise on a measurement and at the highest level, it concerns
the choice of the appropriate general structure of the model (linear regression, neural net-
work...). Probabilistic approaches handle Multi-Task Learning [Lu and Tang, 2015], common-
sense reasoning [Freer et al., 2012], model based Machine Learning [Bishop, 2013], Bayesian
Reinforcement Learning [Vlassis et al., 2012] and investigate advanced memory management
[Lucic et al., 2017]. There is also growing numbers of probabilistic programming languages.
They are extensions of classical programming which permits to manipulate random vari-
ables and conventional deterministic variables [Roy, 2011].

Easily constructing hierarchical models is a powerful feature of the probabilistic frame-
work to deal with large amounts of data and help to self-organize and facilitate Self-
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Observation on data structures. Bayesian methods are at their most powerful with limited
supply of data. There is yet a need to develop methods that scale up well to computational
large data-sets. Probabilistic Learning is a significant part of Machine Learning theory. In my
work this path was not explored any further, the focus being made on other learning ap-
proaches presented in the following chapters.
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2.7 Synthesis

After assessing the fundamental approaches of Machine Learning, a synthesis is presented
and a summary table is drawn up.

Among the classical approaches of learning, Agnosticity is what is most present. Indeed,
the definition of learning is the acquisition of knowledge or skills through study, experience,
or teaching. Nothing in its definition states that it should be specific to any domain of task.

The objectives that are most missing are learning with Endogenous Feedback and Self-
Observation. Most methods lack introspection and self-reflection. Some learning fields are
starting to focus on this aspect by seeking more information than the one that is provided
by the training data, oracle, or demonstrator.

Lifelong Learning is a developing concern that is becoming present in many approaches.
Closely related to Online Learning and Knowledge Generalization, it will be the major focus of
the next chapter. Learning from Any Data Amount as it involves learning from few data such
as from many data is poorly represented. Only few approaches address this problem.

As for Scalability and Explainability, both tend to be model dependent making then diffi-
cult to assess. Moreover, Explainability is late concern in AI which explains why the founda-
tions of Machine Learning make very little reference to it.

Table 2.1 summaries the strengths and weaknesses of the presented learning techniques
according to our objectives.
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Supervised Learning - + - + - + - - +
Unsupervised Learning - + + - + - - + - + + +

Semi-Supervised Learning - + - - + - + -
Active Learning - + + - - + + -

Reinforcement Learning - - - + + - - + - + - + - +
Inverse Reinforcement Learning - + + - + + - - + - + - +

Learning by Demonstrations - + - + - - - +
Intention Learning - + + - + - - - + - - +

Table 2.1 – Synthesis on classical learning approaches with respect to the thesis objectives.
Legend: + positive match ; - + in development or relative match; - negative match.

Next chapter will focus on Lifelong Learning and how it is related to other learning
paradigms.
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In this chapter, I continue the reflection on artificial learning by focusing on Lifelong Learning. I
define what makes us human beings lifelong learners and what are the properties that are sought to
be replicated in artificial learners. I present learning paradigms that are related to Lifelong Learning:
Transfer Learning, Multi-Task Learning, Online Learning and Reinforcement Learning. I develop a
more general questioning on the major protagonist of artificial learning today, Deep Learning. I finish
updating the reflection about the presented approaches according to the objectives of my thesis.

LIFELONG Learning is one key to stronger AI. Machine Learning techniques often focus
on how make the best model on a specific task instead of focusing on the process of

learning itself [Hong et al., 2018]. Humans can learn a variety of tasks and build relations
between them to learn new ones faster or consolidate the previously learned ones. Classi-
cal Machine Learning approaches don’t make any connections between the tasks they learn,
they learn in an isolated way (cf. chapter 2). They focuses on isolated single task learning.
Knowledge is not accumulated and learning is performed without considering past learned
experiences. They lack mechanisms for storing and reusing knowledge. Traditional Machine
Learning allows to solve specific tasks, but if the perceptions change (Fig. 2.1), the models
have to be rebuilt from scratch.

Lifelong Learning aims to overcome the isolated learning paradigm and uses knowl-
edge acquired for one task to solve related ones. Lifelong Learning connects the learning
of new tasks with the previous ones. This way, the learning process can be faster, more
accurate and needs less training data. The learning power of humans is such that by us-
ing their basic knowledge and skills, they can exercise themselves to acquire new knowl-
edge from previous experiences and self-motivated curiosity. We call this ability “Learning
to learn” [Thrun and Pratt, 2012]. The mission of Lifelong Machine Learning is to replicate
the possible connection between learning experiences through time in learning algorithms.
Lifelong Learning is defined by three key characteristics: continuous learning process, ex-
plicit knowledge retention and accumulation, and use of previously learned knowledge
[Chen and Liu, 2018]. In the literature, we find the following learning paradigms that are
related to Lifelong Learning.

3 Transfer Learning. Also called domain adaptation, Transfer Learning is closely related to
Lifelong Learning. It focuses on transferring knowledge from a source task/domain to a
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target task/domain.

3 Multi-Task Learning. Multi-Task Learning seeks to simultaneously learn a group of re-
lated tasks and optimizes over all of them.

3 Online Learning. Online Learning concerns all algorithms where training data is pro-
vided progressively and not all at once. New data does not erase previous training data
like in Offline Learning.

3 Reinforcement Learning. As seen before, Reinforcement Learning is a learning problem
where an agent learns a behavior policy through trial and error interactions with a dy-
namic and labeled environment.

As Reinforcement Learning as already been presented in section 2.4, we will not discuss
it in this chapter. Reinforcement Learning is strongly related to Lifelong Learning because it
learns by trial and error in an online manner. Reinforcement Learning does not yet involve
accumulation of knowledge across several tasks. A paradigm that is central in the learning
community today is Deep Learning. Although it is not directly related to Lifelong Learning,
many studies concerning Lifelong Deep Learning are emerging.

3.1 Transfer Learning

Transfer Learning is a research problem in Machine Learning that focuses on storing knowl-
edge that is gained while solving one problem, and applying it to a different but related
problem [West et al., 2007]. Transfer Learning is a Machine Learning method where a model
developed for a task is reused as the starting point for a model on a second task. Transfer
Learning and domain adaptation refer to the situation where what has been learned in one
setting is exploited to improve generalization in another setting [Bengio et al., 2017]. It also
focuses on learning properties and knowledge consolidation. Traditional Machine Learning
allows to solve specific isolated tasks whereas Transfer Learning works on associating the
learning of new experiences with the previous ones. Transfer Learning is a method enabling
to build models that do not need to be retrained every time the data changes a little. Ev-
ery time knowledge is missing or more relevant knowledge can be learned, the prediction
function is refined by knowledge transfer, specially when data is of a different nature (Fig.
3.1).

Formalism

[Pan and Yang, 2010] proposed a formalization of Transfer Learning by defining domain
and task. A domain D consists of two components : D = {X , P(X)} with X the feature
space and P(X), X = {x1, . . . , xn}, xi ∈ X a marginal probability distribution representing
the features. A task, T , can be defined as a two-element tuple: a label space Y , and a predic-
tive function, η (equation 3.1). The predictive function can also be denoted as P(Y|X) from
a probabilistic view point. The predictive function η is learned from feature/label pairs,
(xi, yi), xi ∈ X , yi ∈ Y . For each feature vector in the domain, η predicts its corresponding
label: η(xi) = yi
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Figure 3.1 – Traditional Machine Learning VS Transfer Learning

T = {Y , P(Y|X)} = {Y , η} Y = {y1, . . . , yn}, yi ∈ Y (3.1)

Given a source domain DS, a corresponding source task TS, as well as a target domain
DT and a target task TT, the objective of Transfer Learning is to learn the target conditional
probability distribution P(YT|XT) inDT with the information gained fromDS and TS where
DS 6= DT or TS 6= TT (Fig. 3.2). In most cases, a limited number of labeled target examples
are provided, which is exponentially smaller than the number of labeled source examples
that are assumed available.

Figure 3.2 – Transfer Learning Formalism

Strategies

Depending on the availability of data and on the changing domain and task, Transfer
Learning is decomposed into several strategies (Fig. 3.3).

3 Inductive Transfer Learning The source and target domains are the same, the source
and target tasks are related but different from each other. The algorithms utilizes the
inductive biases of the source domain to help improve the target task. Depending upon
whether the source domain contains labeled data or not, Inductive Transfer Learning is
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Figure 3.3 – Transfer Learning Strategies

divided into two subcategories, Multi-Task Learning and self-taught learning. Tasks are
usually regression or classification.

3 Unsupervised Transfer Learning The source and target domains are similar, but the
tasks are different. In this scenario, labeled data is unavailable in either domains. Tasks
are clustering or dimensionality reduction problems.

3 Transductive Transfer Learning There are similarities between the source and target
tasks, but the corresponding domains are different. In this setting, the source domain
has a lot of labeled data, while the target domain has none. If domains are different, it
is domain adaptation. In the other case, it is sample selection bias or covariance shift.
Tasks are also regressions and classification problems.

Discussion

Transfer Learning does not match all the requirements of Lifelong Learning for several rea-
sons [Chen and Liu, 2018]. Learning is not continuous and it is not concerned about knowl-
edge accumulation. Learning is unidirectional and it usually involves only two domains (the
source domain and the target domain).

If we now focus on the other objectives of section 1.6, the main strength of Transfer Learn-
ing is Knowledge Generalization from a task to another one. It is an agnostic approach as we see
the many applications it is involved with [Weiss et al., 2016]. Most Transfer Learning works
are offline but online Transfer Learning is attracting attention in the Machine Learning com-
munity [Wu et al., 2017]. Transfer Learning suffers from Scalability issues when the number of
tasks to learn is large [Zhan et al., 2017]. Only a few works deal with adaptation in Transfer
Learning. [Cao et al., 2010] focused on adapting the Transfer Learning schemes by automati-
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cally estimating the similarity between a source and a target task. However, our main goal
is to self-enhance learning through Endogenous Feedback in an adaptive manner using Self-
Observation properties which Transfer Learning lacks. Recent work is focusing on Few Shot
Learning and Meta-Transfer Learning [Sun et al., 2019]. Meta-Learning is a close paradigm to
Learning by Endogenous Feedback because it is focused on speeding up and improving Ma-
chine Learning design at a higher level. We will discuss this topic with more detail in the
next chapter. To my knowledge, in the literature about these learning approaches, there is
no work commenting on the Explainability of Transfer Learning techniques.

3.2 Multi-Task Learning

As we have seen in the previous section, Multi-Task Learning can be considered as a Trans-
fer Learning scenario. The approach focuses on learning simultaneously related tasks and
using their relations to achieve better performances on each task [Li et al., 2009]. Common
techniques are feature learning approach, low-rank approach, task clustering approach, task
relation learning approach, and decomposition approach [Zhang and Yang, 2017].

Deep Learning also tackled the problem of Multi-Task Learning. [Liu et al., 2015] presented
a multi-task DNN for learning representations across multiple tasks that where query clas-
sification and web search ranking. [Huang et al., 2013a] applied Deep Neural Networks to
multilingual data. [Zhang et al., 2014] used deep Multi-Task Learning for the problem of fa-
cial landmark detection. Other applications like name error detection in speech recogni-
tion [Cheng et al., 2015], mutli-label learning [Huang et al., 2013b] and phoneme recognition
used deep Multi-Task Learning [Seltzer and Droppo, 2013].

Discussion

As for Transfer Learning, Multi-Task Learning does not accumulate any knowledge over
time and it does not use the concept of continuous learning. Optimizing all tasks simul-
taneously when a new task is added online is difficult in a single process as they can
be too numerous and diverse. As we have seen previously, a challenge of Lifelong Learn-
ing is to combine the objectives of Transfer Learning and Multi-Task Learning in a contin-
ual manner. [Ruvolo and Eaton, 2013] proposed the Efficient Lifelong Learning Algorithm
(ELLA) an online method using both Transfer Learning and Multi-Task Learning tending
towards continuous learning. Still, some local and distributed optimizations are needed
[Chen and Liu, 2018]. We have seen that Multi-Task Learning can be applied to numerous
applications making it an agnostic approach. [Zhang and Yang, 2017] argues that Multi-Task
Learning lacks flexibility and robustness to outlier tasks which is due to few Self-Observation.
Moreover, most studies focus on Supervised Learning and not on Unsupervised Learning nor
on Active Learning of which Endogenous Learning, as we define it, is closer. Multi-Task Learn-
ing with few experiences is still little explored in literature. [Zhan et al., 2017] states that
Multi-Task Learning faces Scalability issues. To overcome this problem, [Zhang et al., 2018]
proposed a distributed online Multi-Task Learning approach to distribute computation
with large amounts of tasks. Explainability is an incipient field in Multi-Task Learning,
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[Chen et al., 2019, Wang et al., 2018] recently proposed explainable recommendation sys-
tems using Multi-Task Learning.

3.3 Online Learning

Online Learning is a learning paradigm where training data is sequentially provided to
the learning mechanism. The new data updates the models built so far instead of re-training
the models on all the available data like it would be done in Offline Learning techniques. Of-
fline Learning (also called Batch Learning) suffers from re-training cost when they have to deal
with new training data. Online Learning is a promising approach for real world large-scale
applications as data comes from a continuous stream. It is already involved in a wide variety
of tasks such as classification for spam email filtering, regression analysis, recommendation
systems or clustering. Online Learning can be divided into three categories: online Supervised
Learning, online Supervised Learning with limited feedback and online Unsupervised Learning
[Hoi et al., 2018].

Online Supervised Learning provides full feedback information to the learner
[Shalev-Shwartz et al., 2011]. For online Supervised Learning with limited feedback, the
learner has to make a compromise between exploiting known knowledge and exploring
unknown information. It is an important branch of Online Learning called Bandit Online
Learning [Gittins et al., 2011]. We also find online Active Learning where the learner receives
unlabeled training data and picks which data should be labeled. Common settings are se-
lective sampling [Orabona and Cesa-Bianchi, 2011] and Active Learning with expert advice
[Hao et al., 2018]. Finally, online Semi-Supervised Learning also belongs to online Supervised
Learning with limited feedback. Online Semi-Supervised Learning uses sequential labeled
and unlabeled training data [Goldberg et al., 2011]. Online Unsupervised Learning is an ex-
tension of Unsupervised Learning. Typical problems are also clustering [Aggarwal, 2013],
dimension reduction, anomaly detection [Kloft and Laskov, 2012] and density estimation
[Qahtan et al., 2016] but with a continuous stream of training data.

Other learning paradigms are also closely related to Online Learning. Online Learning can
also be called Incremental Learning. Incremental Learning generally uses sequential training
data like Online Learning but with limited space and computational costs [Wu et al., 2019].
Sequential Learning also focuses on learning sequences taking into account possible past
and future sequences [Aljundi et al., 2018]. Stochastic learning is related to Online Learn-
ing because it is motivated by accelerating learning speed to achieve large scale learning
tasks [Bottou, 2010]. Another close paradigm is Adaptive Learning. [Verstaevel et al., 2017]
proposed a self-adaptive Multi-Agent approach for real world lifelong Machine Learning.
Interactive Machine Learning generally interacts with human users to iteratively refine the
models of the learning mechanism [Dudley and Kristensson, 2018]. As we already discussed
Reinforcement Learning is by definition composed of sequential trials of online exploration.
Finally, Continual Learning is commonly use to refer to Lifelong Learning as the ability to
continually learn over time by accommodating new knowledge while retaining previously
learned experiences [Parisi et al., 2019].
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Discussion

From a Lifelong Learning point of view, the strength of Online Learning is that it can adapt
to sequential training data provided during run-time. It does not focus on different tasks
and on the knowledge relatedness between them to accomplish Knowledge Generalization
[Chen and Liu, 2018]. Online Supervised Learning with limited feedback is close to Learning
by Endogenous Feedback because it uses labeled and unlabeled training data but this data is
not self-generated by the learner. Online Learning is not specialized in a task in particular
which makes it an agnostic approach. Self-Observation is emerging in this domain thanks to
Multi-Agent Systems which focus on complex real world problems. [Hoi et al., 2018] argues
that Online Learning approaches are still far from tackling real world applications because of
their lack of Scalability and their lack of robustness to noise. However, as the training data is
processed incrementally, Online Learning is a powerful tool to deal with large data amounts
as well as small data amounts. To my knowledge there is not any work focusing on the
Explainability of Online Learning approaches.

3.4 Deep Learning

During the last decade, Artificial Neural Networks (ANN) and Deep Neural
Networks (DNN) have proved themselves on many applications: object recognition
[LeCun et al., 2015], speech recognition [Weng et al., 2014], video games [Mnih et al., 2015],
board games [Silver et al., 2017]. They have achieved performances that beat humans in
some respects [Gibney, 2016].

Despite all these successes, a part of the learning community is concerned about the
future of Deep Learning. For several reasons, [Marcus, 2018] argues that Deep Learning cannot
be considered as a general solution to Artificial General Intelligence (AGI). AGI is the future
of Narrow AI, its opposite. Narrow AI, as defined by [Kurzweil, 2005], refers to specific
intelligent behaviors in specific contexts. Ideal AGI is a numerical version of the human brain
with infinite generality, adaptability and flexibility [Goertzel, 2014]. So far, Deep Learning is
not a current promising lead for the following reasons.

3 Data hungry. Deep Learning lacks a mechanism for learning abstractions. It relies on
large numbers of labeled examples [Sabour et al., 2017]. Deep Learning is often not an
ideal solution when training data is limited.

3 Shallow and limited capacity for transfer. Deep Learning patterns extracted are usually
more superficial than they initially appear [Kansky et al., 2017, Jia and Liang, 2017].

3 No natural way to deal with hierarchical structure. Recurrent Neural Networks are
limited in their capacity to represent and generalize rich structure in a faithful man-
ner [Lake and Baroni, 2018]. Issues emerge when complex hierarchical structures are
needed, in particular when a system is likely to encounter novel situations. Superfi-
cially, Neural Networks do not operate on symbols but on inputs that represent (micro)
features [Lyre, 2020].

3 Transparency and Explainability. The Explainability of Neural Networks is a ma-
jor focus of discussion [Samek et al., 2017, Ribeiro et al., 2016]. This is known as the
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problem of opacity or the black box problem of Deep Neural Networks [Lyre, 2020,
Zednik, 2019]. Understanding the internal structure of an AI system is indispensable to
assign cognitive or intelligent properties to it.

3 Prior knowledge. Prior knowledge is often deliberately minimized. Culture in Machine
Learning emphasizes competition on problems that are inherently self-contained. Com-
monsense reasoning essentially lies outside the scope of what Deep Learning is appro-
priate for [Davis and Marcus, 2015].

3 Semantic Grounding. Deep Learning learns complex correlations between input and
output features, but with no inherent representation of meaning nor causality.
[Lyre, 2020] states that semantic grounding (divided into functional, causal and social
grounding) is one of key directions for AGI and it is not fully present in the late success
of Deep Learning such as DeepBlue, AlphaGoZero or AlphaZero.

3 Presumes a largely stable world. The logic of Deep Learning is such that it is likely to
work best in highly stable worlds, which have unvarying rules, and less well in systems
such as politics and economics that are constantly changing [Lazer et al., 2014]. Deep
Reinforcement Learning has proven some generalization properties but the specification
of a special target function, with respect to which a system then allows generalization,
is still a clear limitation [Lyre, 2020].

3 Cannot be fully trusted. Deep Learning systems are quite good at some large fraction of
a given domain, yet they can be easily fooled [Nguyen et al., 2015].

3 Difficult to engineer with. It’s easy to make systems that work in some limited set
of circumstances, but it is quite difficult to guarantee that they will work in alter-
native circumstances with novel data that may not resemble previous training data
[Sculley et al., 2014]. Deep Learning lacks the incrementality, transparency and debug-
gability of classical programming. Moreover, replicability of state-of-the-art methods
can be a tough issue [Henderson et al., 2018].

Discussion

Artificial Neural Networks excel at solving closed-end classification problems. Still, Deep
Learning systems face issues with limited amounts of available training data. Usual neural
networks approaches need large amounts of data to achieve the high performances they are
famous for, on task dependent problems and offline trainings. Deep Neural Networks tend
to overfit when only few learning samples are used [Sun et al., 2019].

Simple multilayer perceptrons cannot generalize outside their training space
[Chollet et al., 2018]. Contemporary Neural Networks do well on challenges that remain
close to their core training data. But they start to break down on cases further out in the pe-
riphery. They do not flexibly generalize to new tasks [Ciregan et al., 2012]. Yet, a recent study
supports promising leads to improve Deep Learning towards human-like structured cogni-
tion [Lake et al., 2017]. One of these is Differentiable Neural Computer (DNC), inspired from
Neural Turing Machines (NTM) [Graves et al., 2014]. They are augmented Neural Networks
with an external memory which enables them to represent and manipulate complex data
structures and to learn to do so from data [Graves et al., 2016]. Thanks to external memory,
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[Vinyals et al., 2016] managed state-of-art performance on one-shot classification tasks but
with task-dependent and Scalability drawbacks.

Lifelong Learning is a long-standing challenge in Neural Network models since the con-
tinual acquisition of data generally leads to catastrophic forgetting or interference. This lim-
itation is a major drawback for state-of-the-art Deep Neural Networks that typically learn
representations from stationary training data [Parisi et al., 2019]. Gradient Episodic Mem-
ory (GEM) [Lopez-Paz et al., 2017] is a Neural Network approach focused on transferring
knowledge and not forgetting during a continuous learning thanks to episodic memory
with few training examples. GEM demonstrated competitive performance against the state-
of-the-art [Kirkpatrick et al., 2017, Rebuffi et al., 2017].

Online Learning is a known problem for Deep Neural Networks as they are trained in
a batch learning setting. [Sahoo et al., 2017] recently identified the issues and proposed an
online setting for Deep Learning using shallow and deep networks.

Only few recent work managed to use limited amounts of training data. Late discover-
ies, thanks to additional memories, managed to perform one-shot learning, Knowledge Gen-
eralization, Self-Observation on data structures and worked on lifelong mechanisms, but still
with task dependency and Scalability drawbacks. Considered like black boxes by a growing
number of researchers, Deep Learning faces Explainability and design difficulties.

At this point, Deep Learning did not concentrate on learning by Endogenous Feedback nor
self-generation of learning situations.
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3.5 Synthesis

As we have seen, Transfer Learning and Multi-Task Learning are the most related
paradigms to Lifelong Learning because they lead to Knowledge Generalization. However, they
don’t enable to learn continuously and to retain or accumulate learned knowledge explic-
itly. Online Learning and Reinforcement Learning allow continuous learning but they focus on
a single task with a time dimension. Lifelong Learning is an emerging concern and the work
in this field is under development. Online Learning has interesting characteristic concerning
Agnosticity, Scalability and learning from Any Data Amount. Self-Observation is a recurrent
lack such as the generation of Endogenous Feedback as the two are linked. Explainability is
still an incipient worry in the presented approaches that possess no innate characteristics
according to this objective.

According to [Chen and Liu, 2018], the following challenges need to be overcome in or-
der to achieve Lifelong Learning.

3 Correctness of knowledge. Knowing if a piece of past knowledge is crucial. This meets
the need for Self-Observation to self-assess any learn knowledge.

3 Applicability of knowledge. Estimating if a piece of knowledge is applicable or not in
the context of a new learning task is essential.

3 Knowledge representation and reasoning. There is a need to return to the early days
of AI and reintroduce reasoning in learning mechanisms.

3 Heterogeneity of tasks. Learned tasks must be of multiple types and/or from different
domains to achieve full generalization.

3 Self-motivated learning. If robots will interact with their environment and learn con-
tinuously, they need to collect their own training data. The exploration process must be
guided by a sense of internal curiosity and interest for the unknown.

3 Compositional learning. Any level of granularity must be used to share knowledge in
the learning system.

3 Social learning. The learning must be able to speed up its learning using interactions
with other systems or humans.

After this chapter, it is reasonable to conclude that current learning techniques need more
introspection and self-motivated mechanisms in their process of learning. One lead is to
explore Unsupervised Learning but more in a sense of Self-Learning. Futures approaches need
to focus on autonomous goal setting. If we could design systems that set their own goals
with higher abstract level, major progress might follow. Another lead is also Symbolic AI
or symbol manipulation. Hybrid approaches allow to bring more realistic classification and
additional contextual information [Rueda et al., 2019]. A multidisciplinary track is cognitive
and developmental psychology. Understanding the innate machinery of human mind will
be valuable for designing the future AI. Infants are born with core knowledge to understand
space, time and objects [Spelke and Kinzler, 2007]. This knowledge is the key to unlock the
first stages of learning in each newborn child. This will be the major topic of the next chapter.

Table 3.1 summaries the strengths and weaknesses of the presented learning techniques
according to our objectives.
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Transfer Learning - + + - + - + - + + - - +
Multi-Task Learning - + - + - + - + - + - +

Online Learning - + + - + + - + - + +
Deep Learning - - + - + - + - + - + - + - + -

Table 3.1 – Synthesis on Lifelong Learning approaches with respect to the thesis objectives.
Legend: + positive match ; - + in development or relative match; - negative match.

Next chapter will finish this state of the art by focusing on learning techniques that im-
plement introspection in the learning process.
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In this chapter, I extend the reflection on artificial learning by focusing on a more psychological
view of learning. I present learning from the Constructivism point of view which gave birth to
Developmental Learning. Then, I explore other learning paradigms that are related to Developmental
Learning: Meta-Learning and Few Shot Learning. I introduce the Context Learning paradigm upon
which the work of this thesis is based. The use of Adaptive Multi-Agent Systems is defended by
presenting their properties which are in adequacy with the motivations of my thesis.

HOW do humans learn ? Infants learn the understanding of their environment and of
their embodiment from their first experiences. This learning can be stimulated but

it is undeniable that the human mind goes through first stages of learning before forging
their adult mindset. These first stages are accomplished thanks to prior learning capabilities
that each human possesses. Such capabilities are essential if one aspires to design an AI that
is capable of learning from its environment and its interactions like humans do. Thus, one
must try to design an infant like AI before even considering designing an adult-like AI.

Instead of trying to produce a programme to simulate the adult mind, why not
rather try to produce one which simulates the child’s? If this were then subjected
to an appropriate course of education one would obtain the adult brain. −Alan
Turing, “Computing Machinery and Intelligence” [Turing, 1950]

From this statement, several works have been conducted on cognitive psychology to
understand how do infants learn and how could these mechanisms could be replicated in
AI. We will first present Developmental Learning that was born from Constructivist Learning
inspirations. Constructivist Learning gives a theory on how knowledge is constructed and
evolves. Developmental Learning is strongly related to Developmental Robotics. Robotics are
partly the origin of the creation of Developmental Learning by expressing the need of cognitive
development within robots. We will then introduce Meta-Learning and Few Shot Learning,
learning paradigms that are related to learning to learn. We will finish by bringing to light
Context Learning, a distributed learning approach also inspired from Constructivist Learning.
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4.1 Developmental Learning

As we have seen, learning systems usually focus on a single-task or very limited number
of tasks. Designing systems capable of learning throughout their lives, whatever the task
they have to perform, is one of the directions Developmental Learning. This approach aims
to reproduce the cognitive stages in infants in order to learn incrementally as humans do,
and understand what motivates this learning. Directly inspired from Constructivist Learning,
the approach of Developmental Robotics focuses on developing robots with infants mental
abilities, assuming that we should first design an infant-like AI before trying an adult one
[Weng et al., 2001, Zlatev and Balkenius, 2001, Cangelosi and Schlesinger, 2015].

Constructivism

The constructivist theory comes from Piaget’s work on infant development [Piaget, 1977,
Piaget, 1978]. According to this theory, knowledge is a construction, based on the observa-
tion of the subject’s environment and the impact of its actions. The previously acquired con-
cepts serve as a basis for assimilating and interpreting new experiences, and these old con-
cepts themselves are restructured in the light of these observations. The basic unit of knowl-
edge in this theory is the schema. This aggregates several perceptions and, in most cases,
several actions [Guerin, 2011]. Firstly, proposed by Drescher [Drescher, 1991] and then for-
malized by Holmes [Holmes et al., 2005], it has been reused combining it to Self-Organizing
Maps (SOM) [Chaput, 2004, Provost et al., 2006], model-based learning [Perotto, 2013] and
Muti-Agent Systems (MAS) [Mazac et al., 2015, Guériau, 2016].

Principles

Developmental Robotics focus on developing robots autonomously. The robot acquires
data as a child would. Indeed, we are already learning to develop our senses from the fetal
phase [Asada et al., 2009]. This approach is intended for “virgin” systems that learn from
scratch and thus create multiple levels of learning.

Developmental Learning has some basic principles: the principle of verification, incarna-
tion, subjectivity, grounding and incremental development. The principle of verification is
the fact that an intelligent agent can create or maintain knowledge, only to the extent that he
can verify this knowledge himself. This saves programmers from coding all the possibilities
and leaving the system to manage its knowledge on its own. The principle of incarnation
says that physical structure is needed for an AI and not just code. This is in line with the
thinking of [Pfeifer and Bongard, 2006] and [Beer, 2014] that states that embodiment is es-
sential for cognition. The principle of subjectivity says that learning is experimental. Indeed,
for the same task, 2 different robots can perform it in different ways due to their experiences.
The purpose of the grounding principle is to determine what is a successful verification. Fi-
nally, the principle of incremental development is the fact that we learn something step by
step. For example, we learn to walk before we can run [Stoytchev, 2009].
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Learning Paradigms

Several Machine Learning paradigms intervene in this domain. Among them we find Cur-
riculum Learning, Transfer Learning, Multisensory Learning and Intrinsic Motivation. Curricu-
lum Learning is strongly related to Lifelong Learning but it focuses on progressively learning
harder tasks. As the human mind is considered highly plastic in its early life, easy tasks
should be learned with high plasticity. Then, this plasticity decreases as the learner ages and
faces more complex tasks. As we have already discuss, Transfer Learning is an open chal-
lenge in Machine Learning and also a big concern of Developmental Learning where Knowledge
Generalization is essential. Multisensory Learning is a key feature to design a coherent, robust,
and efficient interaction with any noisy environment [Parisi et al., 2019].

Intrinsic Motivation is a major topic of Developmental Learning or Developmental Robotics.
Beyond Inverse Reinforcement Learning and Intention Learning, in the fields of robotics,
Intrinsic Motivation is a way to internally guide exploration by focusing on curiosity
mechanisms to improve exploration in the learning process [Forestier and Oudeyer, 2016,
Bondu and Lemaire, 2007]. Intrinsic Motivation promotes hierarchical learning of knowl-
edge and the reuse of skills [Baldassarre, 2011]. We found two broad theoretical views
[Mirolli and Baldassarre, 2013], the knowledge-based Intrinsic Motivation view and the
competence-based Intrinsic Motivation view. Knowledge-based Intrinsic Motivation focuses
on enabling the organism to detect novel or unexpected features while competence-based
Intrinsic Motivation focuses on the particular abilities or skills the robot possesses.

Achievements

There are several robots designed for Developmental Robotics, such as example CB2 (child
robot with bio-mimetic body) [Minato et al., 2007] or ICub [Metta et al., 2010]. In the litera-
ture, there are mostly architectures that use different learning mechanisms. The Multilevel
Darwinist Brain (MDB) focuses on online Lifelong Learning [Bellas et al., 2010]. The emergent
cognitive architecture iCub [Vernon et al., 2011] includes the principles of self-organization,
Intrinsic Motivation, social learning, embodied and active cognition, online and cumulative
learning. In particular, this architecture develops short term and long-term memory mech-
anisms to deal with Lifelong Learning. One interesting approach is the Multilevel Darwinist
Brain (MDB) [Bellas et al., 2010]. It is a cognitive architecture that follows an evolutionary
approach to provide autonomous robots with lifelong adaptation and Online Learning. High
computational cost induced by the evolutionary algorithms makes it unscalable. It enables
minimal intervention of the designer and complex behaviors in dynamic environments.

Discussion

Developmental learning gives promising results because it focuses on several of the fea-
tures we are interested such as Agnosticity, Lifelong Learning, Online Learning, and Knowl-
edge Generalization. Intrinsic Motivation brings Self-Observation and Endogenous Feedback
as it seeks for internally enhancing exploration to enhance the learning process. How-
ever, most existing Developmental Robotics models only focus on some of these principles
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[Cangelosi and Schlesinger, 2015] and some show Scalability issues. Developmental Robotics
suffer from the same Explainability issues than Deep Learning as neural networks constitute
a major part of modern robotics. Only few methods so far enable to conceptualize neural
networks [Weber and Wermter, 2020]. At this moment, there isn’t any work about learning
from Any Data Amount in the Developmental Learning field.

4.2 Meta-Learning

In the field of AI, learning aims to train a model based on parameters and data to solve
a problem. Learning usually requires prior knowledge of the nature of the problem to set
these parameters at the time of the design. It is the responsibility of the designer to deter-
mine the right knowledge to get the best possible model. This human intervention prevents
from providing easy reuse of a model for a different problem or for a problem that is likely
to change. One solution could be to permit models to “learn to learn”, i.e. to automatically
adapt its learning in order to be more efficient. This area is called Meta-Learning. Challenges
in Meta-Learning are to collect meta-data about prior experiences, models and parameters,
and to extract and transfer knowledge from it to guide the new learning tasks. According to
[Lemke et al., 2015], a Meta-Learning system must include a learning subsystem that adapts
through experience. This experience is represented by meta-knowledge extracted from pre-
vious learning and/or from different domains or problems.

Meta-Learning techniques can be categorized according to the type of meta-data they
exploit, from the most general to the most task-specific [Vanschoren, 2019]. Techniques can
be centered around model evaluations to recommend configurations. Other methods focus
on explicit task similarity by learning meta-models representing the relationships. And some
approaches concern the transfer of trained model parameters between similar tasks allowing
Transfer Learning and Few Shot Learning. Multi-Task Learning and Ensemble Learning (building
several models on the same tasks) are often combined with Meta-Learning.

Discussion

Usual Meta-Learning techniques work in an offline setting. [Finn et al., 2019] recently pro-
posed an Online Meta-Learning setting which merges the ideas from both paradigms to bet-
ter capture the spirit and practice of continual Lifelong Learning. This work appeared to be
scalable as it outperformed traditional Online Learning approaches on large-scale problems.
[Obamuyide and Vlachos, 2019] also introduced continuous setting in a Meta-Learning con-
text. [Finn et al., 2017] proved that Meta-Learning can be model-agnostic by designing an
algorithm that is applicable to a variety of different learning problems. [Gui et al., 2018] im-
plemented proactive and adaptive Meta-Learning that frames Few Shot Learning by capturing
common knowledge among a set of few-shot learning tasks.

According to Endogenous Feedback and Self-Observation, we sense the same motivations as
ours to enhance the learning process by extracting additional information from the learning
experiences. However, this approach lacks internal motivation and self-awareness. Even if
the work concerning Explainability is still in its early stages, [Daglarli, 2021] argues that Meta-
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Learning gives promising leads towards explainable Deep Learning.

4.3 Few Shot learning

Machine Learning techniques usually demand huge quantities of training data. However,
humans learn from few examples and this is what Few Shot Learning (also called One-Shot
or Zero-Shot Learning) is trying to reproduce. Few Shot Learning or One-Shot Learning are
variants of Transfer Learning, where the learner tries to infer a required output based on
just one or a few training examples using prior knowledge from a source task or domain
[Wang et al., 2020]. Zero-Shot Learning is another extreme variant of Transfer Learning, which
relies on no labeled examples to recognize a new perception. Zero-Shot Learning methods
make clever adjustments during the training stage itself to exploit additional information to
understand unseen data [Xian et al., 2017]. Few Shot Learning is strongly related to Knowledge
Generalization as in Few Shot Learning, the problem is showing to the learner what matters
for generalization to rapidly learn a new perception [Xian et al., 2017].

Few Shot Learning methods can be categorized into two classes: data augmentation and
task-based Meta-Learning [Sun et al., 2019]. Data augmentation focuses on increasing the
amount of available data by generating it [Khoreva et al., 2017]. Task-based Meta-Learning
extracts experience from multiple experiences or models to perform faster and better on
new situations. The use of prior knowledge is central in Few Shot Learning. A recent survey
proposed another categorization based on data, model and algorithm depending on how is
generated the prior knowledge [Wang et al., 2020]. The categorization concerning the data
is the same as [Sun et al., 2019] but data is not only generated but also transformed.

Model-centered approaches use prior knowledge to constrain the complexity of the hy-
pothesis space. Among these approaches, one finds Multi-Task Learning, Embedding Learning,
Learning with External Memory and Generative Modeling. Multi-Task Learning allows Few Shot
Learning by sharing or linking parameters between tasks. Embedding Learning embeds similar
training data into lower dimensional spaces to better identify similarities and reduce the hy-
pothesis space. Task-specific information can be used in addition to prior knowledge. Learn-
ing with External Memory extract refined knowledge in an external memory. This memory
is then used to represent unseen situations in a reduce space. Generative Modeling estimates
probability distribution from prior knowledge to constrain the hypothesis.

Algorithm centered approaches allow to parameterize the hypothesis for better initial-
ization. Usual Supervised Learning approaches handle enough training samples and the use
of cross validation allows to find the appropriate parameters. In Few Shot Learning, it is not
the case, other mechanisms allow to set these parameters. In this case, the parameters are
existing parameters obtained from prior knowledge that are refined or learned using the
few training situations.

Discussion

Data augmentation usually suffers from domain-dependent issues. Model centered ap-
proaches cannot always be applied in different learning contexts and algorithm centered
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approaches are strongly dependent from the prior knowledge to refine the parameters
[Wang et al., 2020]. The needed prior knowledge is usually task-specific which can remove
Agnosticity. One limitation of Few Shot Learning so far is that studies about this topic
were mostly concentrated on image classification or object recognition [Fei-Fei et al., 2006,
Lake et al., 2011, Wertheimer and Hariharan, 2019]. This gives poor proof of the Agnostic-
ity of the implemented techniques. Yet, recent works achieved promising results using
a Meta-Learning approach in a Few Shot Learning setting and applied it to sinusoidal re-
gression, image classification, Active Learning, and Reinforcement Learning [Yoon et al., 2018].
[Duan et al., 2017] introduced One-Shot Imitation Learning, a combination of Meta-Learning
and Reinforcement Learning to learn from few demonstrations in a robotic case scenario.

Online Learning seems to be poorly explored in the Few Shot Learning works.
[Stewart et al., 2020] recently proposed online few-shot gesture learning using Spiking Neu-
ral Networks (SNN). SNNs incorporate the concept of time and use impulses to trans-
mit information within the network. Few-Shot Lifelong Learning is also in its early work,
[Wei et al., 2020] lately tackled it by outperforming classical Few Shot Learning on several
benchmarks. Across the literature of Few Shot Learning, Self-Observation, as we intend it, is
not a common concern. The generation of additional training data fits our view of Endoge-
nous Feedback but not all approaches implement it. Knowledge Generalization is predominant
in this field as it is essential to learn with few experiences thanks to prior knowledge and
generalization. Scalability is also an issue in Few Shot Learning that is being explored in re-
cent work [Li et al., 2019]. So far, there isn’t any technique specialized in Few Shot Learning
Explainability but [Sun et al., 2020] proved that by applying approaches intended for Deep
Learning, few-shot classification models have been improved while providing intuitive and
informative visualizations.

4.4 Context Learning

Context Learning comes from the Multi-Agent System paradigm combined with Construc-
tivist Learning. This section introduces Adaptive Multi-Agent Systems: Multi-Agent Systems
with enhanced cooperation properties. Context Learning formalism and functioning is then
detailed.

Adaptive Multi-Agent Systems

The Multi-Agent System (MAS) approach [Ferber, 1999], and in particular the Adap-
tive Multi-Agent System (AMAS) approach [Georgé et al., 2011], gives a system adaptive
properties to deal with unexpected situations, which is appropriate for learning systems
[Mazac et al., 2014, Guériau et al., 2016]. An AMAS is a complex artificial system composed
of fine-grained agents promoting the emergence of expected global properties. It allows to
cope with the complexity of the world (openness, non-linearity, dynamics, distributed infor-
mation, noisy data and unpredictability) as defined by Ashby [Ashby and Goldstein, 2011].
Numerous experiments have shown such properties in areas such as the control of biologi-
cal processes [Videau, 2011], the optimal control of motors [Boes, 2014] or robotics learning
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[Verstaevel, 2016]. The late in line is Agnostic MOdEl Builder by self Adaptation (AMOEBA), an
agnostic model builder that brings distributed Online Learning and Knowledge Generalization
in continuous environments [Nigon, 2017].

Context Learning Formalism

This section presents the functioning of the AMOEBA system [Nigon et al., 2017] where
I also define a formalism for Context Learning. This formalism seeks to generalize the learn-
ing paradigm of AMOEBA by providing abstraction in relation to the learning models to
converge toward absolute model independence.

Context Learning is a problem of exploring a search space with n dimensions and estimat-
ing a local model based on any Machine Learning technique (neural networks, linear regres-
sion, SVMs, nearest neighbor, decision trees, k-means...). An instance of the learning system
learns an output called prediction vector O′m = [o′1, . . . , o′k, . . . , o′m] ∈ Rm according to a hid-
den function F (Pn) = F (p1, . . . , pi, . . . , pn) = Om with Om = [o1, . . . , ok, . . . , om] ∈ Rm the
desired predictions. Pn = [p1, . . . , pi, . . . , pn] ∈ Rn is the vector of inputs called the percep-
tions. The vector Ln,m = [Pn,Om], composed of perceptions associated with desired predic-
tions, defines a learning situation, which is similar to a schema in Piaget’s theory. The learned
models are managed by Context Agents C j

n with j the jth pavement in dimension n which
represents a part of the schema. A Context Agent is an intelligent autonomous agent that lo-
cally represents a part of the global functionF with a local model f j

n(p1, . . . , pi, . . . , pn) = O j
m

with O j
m = [oj

1, . . . , oj
k, . . . , oj

m] ∈ Rm the local prediction vector of the Context Agent C j
n. The

Context Agent representation is a parallelotope of dimension n associated with a Machine
Learning model. The parallelotope is defined by validity ranges Rj

n = [rj
1, . . . , rj

i , . . . , rj
n] with

rj
i = [rj

i,start, rj
i,end] which represents a validity interval on a perception pi (Fig. 4.1).
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Figure 4.1 – Context Agents validity ranges

The Context Agents have a confidence cj ∈ Z to evaluate themselves in relation to others.
A Context Agent is therefore defined by its validity ranges, its local model and its confidence
C j

n = {Rj
n, f j

n, cj}.
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Figure 4.2 – Context Agents linear regression models

Implemented Model

In the work of [Nigon et al., 2017], Context Agents C j
n have local linear regression models

as local models f j
n (Fig. 4.2). For each vector of perceptions Pn in the validity ranges, a Context

Agent provides a local prediction vector O j
1 ∈ R calculated from the coefficients of its model

[aj
0, . . . , aj

i , . . . , aj
n] ∈ Rn+1 and perceptions Pn according to the following equation:

O j
1 = oj

1 = f j
n(p1, pi, · · · , pn) =

n

∑
i=1

aj
i .pi + aj

0

In this case, the prediction vectors are real values O′1 and O1. A learning situation is then
Ln,1 = [Pn,O1] = [Pn, o1]. All along this work we will intend to disregard the implement
model to seek absolute abstraction towards the learning process.

Figure 4.3 – Context Learning with AMOEBA
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Exogenous Learning Rules

Learning with Context Agents in AMOEBA [Nigon et al., 2016] is based on a Multi-Agent
System (Fig. 4.3) and several simple rules that are briefly presented in the following. The
Percept Agents enable to activate the relevant Context Agents and the Head Agent is respon-
sible for giving an output prediction and back-propagating the feedback from the oracle to
the Context Agents. Each execution cycle is either a learning cycle or an exploitation cycle.
For learning cycles, the input is a learning situation Ln,1 = [Pn,O1] and for exploitation cy-
cles, the input is an exploitation situation En that is only perceptions En = [Pn]. The learning
is characterized as passive and exogenous because all learning situations are exogenous and
passive learning situations. They are exogenous learning situations because they are provided
by an external entity (i.e. an oracle). They are passive learning situations because the learning
mechanisms does not chooses the learning situations, it receives them in a passive way.

Learning Cycles

We define Lcl
n,1 = [P cl

n ,Ocl
1 ] the learning situation associated to the cycle cl . During a

learning cycle cl , if the perceptions P cl
n belong to the validity ranges of a Context Agent, it is

a Valid Context Agent. It proposes a local prediction vector with its local model. If there are
several Valid Context Agents, the one with the closest prediction to the oracle’s prediction
vector is selected. It is called the Best Context Agent for the current execution cycle. If the Best
Context Agent gives a good prediction, it increments its confidence. To know if the prediction
of a Context Agent is good or bad, an error margin and an inaccuracy margin are used. They
are given by the user of the learning mechanism. A prediction is good if the error with the
oracle’s predictionOcl

1 is less than the inaccuracy margin. A prediction is bad if the error with
the oracle’s prediction is more than the error margin. Then, all Valid Context Agents reorganize
themselves by following the adaptive behaviors below. The self-organization of Valid Context
Agents corresponds to abnormal situations that require special treatments. These situations
are called Non Cooperative Situations (NCS), and provide the four following rules:

3 Bad Prediction NCS The error between the prediction of a Valid Context Agent O j,cl
1

and the oracle’s prediction Ocl
1 is beyond the error margin. The Context Agent should

not be valid for these perceptions. It modifies its validity ranges to exclude them and
decrements its confidence cj. See [Verstaevel et al., 2017] for further details on validity
ranges modifications.

3 Inaccurate Prediction NCS The error between the prediction of a Valid Context Agent
O j,cl

1 and the oracle’s prediction Ocl
1 is greater than the inaccuracy margin but less than

the error margin. The Context Agent adds to its local model the current learning situation
Lcl

n,1 and it decrements its confidence.

3 Uselessness NCS A validity range of a Valid Context Agent is less than a critical size in
one of the perceptions. The Context Agent is considered unnecessary and is subtracted
from the system.

3 Unproductivity NCS There aren’t any Context Agents to cover the current perceptions P cl
n

The closest Context Agent that gives a good prediction extends its ranges towards the
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perceptions. If it fails to include them or no such Context Agent exists, a new one is cre-
ated. Euclidian distance is used to determine relative distances between the perceptions
and a Context Agent.

Exploitation Cycles

During an exploitation cycle, if they are several Valid Context Agents, the one with the
higher confidence is the Best Context Agent. It provides the prediction output Ocl

1
′. If there

aren’t any Valid Context Agents, the closest Context Agent to the perceptions is designated as
the Best Context Agent.

Discussion

Learning by Endogenous Feedback is not present in the Context Learning approach as Con-
text Agents only learn from exogenous learning situations. Context Learning is fully agnostic as it
is not specialized in any application domain. It also exhibits promising leads towards model
independence as the learning rules do not depend on the underneath regression model.

Context Learning thank to its AMAS foundations is well suited for Lifelong Learn-
ing as it permits both exploitation and enrichment of a the learning mechanism.
[Verstaevel et al., 2017] by introducing the Self-Adaptive Context Learning (SACL) Pattern
proved that Context Learning is suitable for both Supervised Learning and Reinforcement Learn-
ing approaches. As agents in an AMAS remain active throughout their life, they confer in-
trinsic properties to AMAS to carry out Lifelong Learning.

Context Learning is on its way to handling Knowledge Generalization as it is defined in
the Machine Learning community. Indeed, the self-adaptability of AMAS confers intrinsic
dynamic properties to Context Learning allowing it to potentially reuse knowledge from a
Context Agent to another.

The construction of Context Learning allows learning or exploitation anytime after the
first learning situation. Thus, Online Learning is fully operational in this approach.

Self-Observation is an intrinsic property of Context Learning as Multi-Agent Systems handle
multiple levels of granularity and distribute a problem into several entities. Each entity, by
interacting with other ones, provides introspection concerning the collective of agents.

Context Learning enables model generalization in a continuous space but it has not been
applied in a Multi-Task Learning setting. One important feature is that it can differentiate
whether or not perceptions have already been experienced.

Thanks to a limited neighborhood of the agents, the complexity of Multi-Agent Systems
can be linearly dependent on the number of agents which is a Scalability quality. However,
constructivist approaches are well known for their Scalability issues.

As knowledge is represented locally, any Context Agent can provide a prediction for an
unseen situation. Even with few learning experiences, the closest known knowledge (i.e. the
closest Context Agent) can give predictions for unexplored situations.

According to recent studies, MAS offer promising properties for Explainability in AI
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[Alzetta et al., 2020]. Multi-Agent Systems promote conceptual integrity in the engineering
of complex software systems and serves the purpose of social Explainable AI (XAI).

4.5 Endogenous Learning Challenges

This section summaries the presented state of the art and defends the chosen learning
approach in this thesis: Context Learning. In order to achieve Endogenous Learning with the
Context Learning approach, its shortcomings are detailed.

4.5.1 Global Synthesis

In the chapter 1, we presented the set of fundamental features a learning system must
have to face the properties of Sociotechnical Environments. The objectives that we pro-
posed to focus on are Endogenous Feedback; Agnosticity; Lifelong Learning; Online Learning;
Self-Observation; Knowledge Generalization; Scalability; learning from Any Data Amount and
Explainability. We presented an overview of today’s learning methods in AI and Robotics,
highlighting their advantages among the exhibited characteristics.

We have seen in chapter 2 that classical learning approaches generally lack Lifelong Learn-
ing, Online Learning and Knowledge Generalization. These are the main challenges of Lifelong
Learning in the Machine Learning community. Lifelong Learning research gave birth to Transfer
Learning, Online Learning and Multi-Task Learning to focus on a new generation of learning
where abstraction and generalization are central. Indeed, to achieve Artificial General Intelli-
gence (AGI), connection between experiences and knowledge are an essential challenge that
needs to be overcome. Then, we have seen in chapter 3 that the major missing topic in the
Lifelong Learning approaches is the self-motivation of learning. The human behavior is im-
pacted by its social interactions but also its internal curiosity and its capacity of self-teaching.
Self-Learning is a key to flexible AGI. Self-Learning must not be mistaken with Unsupervised
Learning. Self-learning has to be seen in a more general and broad sense. It should be un-
derstood as a system’s ability to exploit or explore the training data and its environment by
itself [Lyre, 2020]. It is in this way that Developmental Learning went by introducing Intrinsic
Motivation as a way of providing internal motivation in learning mechanisms. Developmen-
tal Learning aims at developing infant-like intelligence to build adult-like intelligence as an
emergence of incremental experiences and explorations. Related to this topic Meta-Learning
and Few Shot Learning bring an abstract layer to learning mechanism to also converge toward
human-like intelligence. Finally, Context Learning introduced an online agnostic distributed
approach to learning that gives promising leads towards learning in complex environments.

Among all the presented learning paradigms, what is most missing is the endogenous
view of learning and the introspection within learning mechanisms. Context Learning offers
a malleable learning framework and many flexible opportunities towards the manipulation
of knowledge fragments. It is this path that we will explore in this work. Context Learning
and AMAS provide many characteristics to cope with the complexity of the world. The dis-
tribution of learning fragment is a key to adaptive learning. Systems that involve many com-
ponents that adapt or learn as they interact are at the heart of important contemporary prob-

45



Endogenous Learning

lems [Holland, 2006]. Knowledge in AMAS learning is divided in autonomous fragments of
knowledge that cooperate together. This cooperative reasoning is thus a way for generating
a self-enrichment of knowledge. The creation of internal requests, which are the Endogenous
Feedback, can lead to Active Learning and Self-Learning. Taking inspiration from Developmental
Learning to design learning in a self-motivated way is an important of our concerns. We take
inspiration from Developmental Learning work but we are not yet experimenting on blank
robotic systems. Self-organization in AMAS learning is a powerful tool to provide auton-
omy of knowledge fragments. Through the generation of Endogenous Feedback, our goal is
to enhance exploration such as knowledge among Context Agents. It is seemingly more fa-
vorable to distribute smaller subsets of data to different learning units and then collaborate
with direct neighbors to find the optimal solution [Sayed, 2014]. Our work focuses on de-
veloping new cooperation rules in Adaptive Multi-Agent Systems to enable self-enrichment of
knowledge by generating endogenous learning situations and seeking learning insufficiencies.
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Supervised Learning - + - + - + - - +
Unsupervised Learning - + + - + - - + - + + +

Semi-Supervised Learning - + - - + - + -
Active Learning - + + - - + + -

Reinforcement Learning - - - + + - - + - + - + - +
Inverse Reinforcement Learning - + + - + + - - + - + - +

Learning by Demonstrations - + - + - - - +
Intention Learning - + + - + - - - + - - +
Transfer Learning - + + - + - + - + + - - +

Multi-Task Learning - + - + - + - + - + - +
Online Learning - + + - + + - + - + +
Deep Learning - - + - + - + - + - + - + - + -

Developmental Learning + + - + - + + - + - + -
Meta-Learning - + + - + - + - + - + + + - +

Few Shot Learning - + - + - + - + - + - + + - +
Context Learning - + - + + + - + - + + +

Table 4.1 – Synthesis on literature learning approaches with respect to the thesis objectives.
Legend: + positive match ; - + in development or relative match; - negative match.

One important feature in AI nowadays is also Explainability (XAI). To verify a system, im-
prove it, understand recommendations, make it learn from itself and for legislation reason
Explainability is a growing issue in AI [Samek et al., 2017]. Explainability is being explored
in many learning paradigms but it is yet an important challenge [Samek and Müller, 2019].
Designing mechanisms in order to internally enhance a learning mechanism requires a per-
fect understanding of its mechanics. AMAS possess powerful tools to explain AI with dif-
ferent degrees of granularity especially with the help of frameworks and user interfaces
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[Drogoul et al., 2013, Perles et al., 2018].

Table 4.1 summaries the strengths and weaknesses of all the presented learning tech-
niques according to our objectives.

4.5.2 Context Learning Shortcomings

On a simple 2D classification problem, with two linear models represented by two differ-
ent colors (Fig. 4.4a), the exogenous learning rules do not allow the system to converge to an
ideal representation (Fig. 4.4c). An ideal representation would be a learning with the mini-
mum of Context Agents, without any overlap or gaps. We observe several types of unfulfilled
situations which can be solved by endogenous reasoning processes. The exogenous rules do
not protect against imprecise exploration (Fig. 4.4b). Incompetencies (white or blank areas)
are not detected and are only partially filled in when the learning system encounters them.
Conflicts and concurrencies (overlapping hatched validity ranges) are not taken into account
when changing the validity ranges of the Context Agents. A mechanism using neighborhood
properties is missing: for each NCS of the exogenous learning rules (section 4.4), all resolu-
tions are made independently of the Context Agents neighbors if they are any.

(a) Models to learn (b) Example of imprecise learn-
ing

(c) Example of ideal learning

Figure 4.4 – Simple learning problem of 2 linear models symbolized by different colors

The aim of this thesis work is to introduce additional mechanisms to internally deal with
theses inconsistencies and provide Context Learning with better lifelong and generalization
properties.
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5 Endogenous Learning Principles

In this chapter, I detail the construction of Endogenous Context Learning. It consists in the
identification of learning hypotheses that allows to identify learning inaccuracies. The learning
inaccuracies are learning defects that can be detected with local agents negotiations. To add local
communication between the agents of a Multi-Agent based learning mechanism, the concept of
neighborhood is introduced. Learning inaccuracies are characterized to determined how to detect and
solve them. Their processing order is explained according to their priority. Cooperative Neighborhood
Learning is presented. It is a mechanism allowing to generate internal learning situations to enhance
the model of agents through local communication.

IN recent years, AI challenges have evolved. With the ultimate goal of conceiving an Ar-
tificial General Intelligence (AGI), the work on artificial learning focuses on lifelong and

multi-task problems. In robotics, the imitation of infants cognitive stages inspired incremen-
tal learning with internal motivation. Transfer of knowledge and self-taught learning are
two main challenges in AI. In this thesis, the focus is made on self-learning that we call
Endogenous Learning.

Endogenous Learning is when a learning mechanism teaches itself new learning situations.
Its opposite is Exogenous Learning (Fig. 5.1). It is what we call Supervised Learning in the field
of Machine Learning (section 2.1). When a mechanism uses Exogenous Learning, it learns from
an external entity that we previously called the oracle. This oracle provides exogenous learn-
ing situations. When a mechanism uses Endogenous Learning, it learns from internal learning
situations that we call endogenous learning situations.

(a) Exogenous Learning (b) Endogenous Learning

Figure 5.1 – Exogenous Learning VS Endogenous Learning
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Previously presented, a learning situation Ln,m is composed of a vector of perceptions Pn

and a prediction vector Om such that Ln,m = [Pn,Om]. From now on, we differentiate ex-
ogenous learning situations Lexo

n,m and endogenous learning situations Lendo
n,m . Exogenous learning

situations are defined by an exogenous prediction vector Oexo
m provided by an oracle, an ex-

ternal entity, and any perceptions (exogenous perceptions P exo
n or endogenous perceptions P endo

n ):
Lexo

n,m = [P exo
n /P endo

n ,Oexo
m ]. Endogenous learning situations are composed of an endogenous pre-

diction vector Oendo
m and endogenous perceptions P endo

n self-generated by the learning mecha-
nism: Lendo

n,m = [P endo
n ,Oendo

m ].

The generation of endogenous learning situations implies two questions:

3 Where and when to generate the endogenous perceptions in the learning space ?

3 What endogenous prediction vectors should be learned in the generated endogenous percep-
tions ?

This chapter presents the motivations and theoretical bases of Endogenous Learning and
Endogenous Context Learning.

Endogenous Context Learning is an enhancement of Context Learning. Until now, Context
Learning only used exogenous learning situations when Endogenous Context Learning combines
exogenous learning situations and endogenous learning situations. The first question is answered
by the identification of inconsistencies in Context Learning. A mechanism of neighborhood is
added to enable internal communication among the knowledge agents that are the Context
Agents. All possible learning inconsistencies are explored and are defined as learning inac-
curacies. The resolutions of learning inaccuracies are presented in the AMAS framework as
Non Cooperation Situations (NCS). The mechanisms are operational regardless of the num-
ber of perceptions. To simplify the illustrations, only two dimensions are represented. The
priority of learning inaccuracies is introduced to select the strategy for the execution of the
resolutions. Finally, a response to the second question of Endogenous Learning is answered
by presenting Cooperative Neighborhood Learning, a way to internally generate knowledge by
sharing endogenous learning situations between Context Agents.
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5.1 Endogenous Learning Objectives

This section presents the high level learning objectives that lead to Endogenous Context
Learning. These objectives come from the definition of an ideal learning inspired from some
of the AI challenges that we have seen in chapters 3 and 4. An ideal or optimal learning is
defined by the following hypotheses:

3 Curiosity Hypothesis: Curiosity is the source of learning [Forestier and Oudeyer, 2016].
A learner internally seeks novelty and explores new experiences. The learner also looks
for contradictions to develop better understanding of its environment.

3 Continuity Hypothesis: The discreteness and continuity of our nature is an eter-
nal question in physics theory [Hagar, 2014]. However, the world, at its macroscopic
scale is continuous. It is humans, through their perception of it, that make it discrete
[Holmgren, 2014]. Learning is seeking discontinuities in a continuum.

3 Agnosticity Hypothesis: Learning is agnostic. It adapts to new needs and it is always
open for new experiences as different as they can be. It does not need any prior knowl-
edge to gather experience.

3 Generalization Hypothesis: To learn is to generalize thanks to several experiences. Gen-
eralization is made across time and space as experiences can be related through history
and context.

5.2 Endogenous Context Learning Objectives

The learning hypotheses can be transformed using the vocabulary of the Context Learning
framework that we have introduced section 4.4. The following hypotheses are from the point
a view of learning with Context Agents, their validity ranges and their local models.

3 Curiosity Hypothesis: This hypothesis concerns the validity ranges of the Context Agents.
Context Agents completely should fill the exploration space. There aren’t any unknown
areas (void areas). If it is the case, these areas should be discovered. There aren’t any
conflicts nor concurrencies between the Context Agents validity ranges (overlap areas). If
so, these situations should be solved.

3 Continuity Hypothesis: This hypothesis concerns the local models and the validity ranges
of the Context Agents. It is assumed that Context Agents should seek continuity with
other adjacent Context Agents. However, they should also be able to detect cases of dis-
continuities between their models.

3 Agnosticity Hypothesis: This hypothesis only concerns the embedded learning models
of the Context Agents. The learning is independent from the underlying models. All the
implemented mechanisms to satisfy the learning hypotheses should not refer to any
particular learning model.

3 Generalization Hypothesis: This hypothesis concerns the number of Context Agents that
represent the learning. The exploration space should be represented by as few Context
Agents as possible. As Context Agents generalize over continuous spaces, the bigger their
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validity ranges are, the more Context Agents generalize. The generalization also concerns
the models of Context Agents. When it is adequate, Context Agents should share their
model to allow transfer of knowledge.

The learning objectives can be categorized into exploration objectives and model ob-
jectives. Exploration objectives concern the validity ranges of the Context Agents and model
objectives concern the local models of the Context Agents.

5.2.1 Exploration Objectives

p1

p2

C j1
2 C j2

2

C j3
2

C j4
2

C j5
2

C j6
2

C j7
2

Exploration Space Borders

(a) Example of ideal exploration
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C j1
2

C j2
2

C j3
2

C j4
2

C j5
2

C j6
2

C j7
2 C j8

2

C j9
2

C j10
2

Exploration Space Borders

(b) Example of imperfect exploration.

Figure 5.2 – Schemas of ideal and imperfect explorations. The imperfect exploration shows
all possible exploration inaccuracies in Context Learning. Different colors represent different
local models

From these hypotheses, in opposition to an ideal learning exploration (Fig. 5.2a), several
exploration learning inaccuracies can be identified (Fig. 5.2b). They are represented with red
dashed lines figure 5.2b. Learning inaccuracies can occur in the following examples.

• C j1
2 and C j2

2 are inaccurate because they pave a common zone with different models. This
goes against the Curiosity Hypothesis.

• C j5
2 and C j6

2 are inaccurate because the pave a common zone with similar models. This
goes against the Curiosity Hypothesis.

• C j3
2 and C j4

2 are inaccurate because they pave a zone that could be represented by only
one Context Agent. This goes against the Generalization Hypothesis.

• C j7
2 and C j8

2 are inaccurate because C j7
2 could pave a bigger zone than C j8

2 by taking a part
of C j8

2 validity ranges. This goes against the Generalization Hypothesis.

• C j9
2 and C j10

2 are inaccurate because they are adjacent and their models are different. This
is related to the Continuity Hypothesis. The frontier needs to be clarified as continuous
or discontinuous.

• Finally, according to the Curiosity Hypothesis, the remaining inaccuracies are all the void
areas that are not represented by Context Agents inside the explored space.
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5.2.2 Model Objectives

The Agnosticity Hypothesis states that the learning must be independent of the learning
models. However, for the illustration purposes of this work, models will always be repre-
sented by linear functions. According to the Continuity Hypothesis, the learned hidden func-
tion F is piecewise continuous (Fig. 5.3a). In the continuous parts, the Context Agents models
should meet at their frontiers. As discontinuities can also exist in the hidden function, they
should be detected so that the models can learn them. Figure 5.3b shows an example of non
ideal learning where all local model frontiers are discontinuous and do not match the hidden
function F .
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(a) Example of ideal learning
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(b) Example of imprecise learning

Figure 5.3 – Schemas of ideal and imprecise learning for linear local models. The search space
is supposed entirely explored and represented by Context Agents validity ranges. The gray
thick dashes represent the hidden function F , and the black line are the learned local models
f ji
1 .
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5.3 Neighborhood Definitions

We have identified that the learning can be inaccurate in the Context Learning paradigm
thanks to the learning hypotheses. In classical Context Learning, Context Agents only adapt to
learning situations given by an oracle. Context Agents are not aware of other any neighboring
Context Agents. To allow this awareness and permit communication between neighboring
Context Agents, the concept of neighborhood is added to Context Learning.

What is invariant for both the learning and exploitation cycles is the vector of perceptions.
For each perceptions Pn, a set of Neighbor Context Agents is computed from an area around the
perceptions. This ensures that the resolutions that are implemented are local as only a sub-
set of all the Context Agents of the MAS is considered. The Neighbor Context Agents are the
set of Context Agents that will communicate during a cycle to detect possible inaccuracies.
The neighborhood adds local interactions between Context Agents. By allowing communica-
tion between Context Agents in a local part of the space of perceptions, we aim to control the
complexity of these interactions for large numbers of perceptions and large quantities of Con-
text Agents. The neighborhood area depends on a core value in the learning process which is
defined as the Context Agents range creation radius rcreation

i for a perception pi.

The range creation radius
rcreation

i = (pmax
i − pmin

i ).pR (5.1)

with pmax
i and pmin

i the maximum and minimum experienced values by the learning mech-
anism on the perception pi. The validity ranges precision pR is a parameter chosen by the
user of the mechanism. It represents the percentage of an explored perception pi that can be
used to represent the explored space at the creation of the validity ranges of a Context Agent.
pR ∈]0, 1[. 0 is excluded because it gives a null radius. 1 is excluded by convention, it repre-
sents the whole experienced perception space. The validity ranges precision allows to choose
the sizes of Context Agents at their creation. From this, the following distances result.

The neighborhood radius

rNi = αN .(pmax
i − pmin

i ).pR = αN .rcreation
i (5.2)

with αN ∈ R the neighborhood radius coefficient. A Context Agent C j
n is considered as a

neighbor of the perceptions if its validity ranges intersect a neighborhood area surrounding
the current perceptions. For each perception pi the following condition must be satisfied:
[pi − rNi ; pi + rNi ] ∩ rj

i 6= ∅. The neighborhood radius being proportional to rcreation
i , it is di-

rectly influenced by the validity ranges precision pR and by the size of the explored space in
each perception pi. The validity ranges precision enables to set the creation size of the Context
Agents validity ranges and the neighborhood at the same time. The neighborhood radius coefficient
enables to modify the width of the neighborhood independently of the validity ranges precision.

The prediction neighborhood radius

rNok
= αN .(omax

k − omin
k ).pR (5.3)
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with omax
k and omin

k the maximum and minimum experienced predictions by the learning
mechanism on the prediction values ok of the exogenous prediction vectorsOexo

m . Context Agents
C j1

n and C j2
n are considered as prediction neighbors if all the distances between their last

predictions O j,last
m are lesser than the prediction neighborhood radius (|oj1,last

k − oj2,last
k | < rNok

for the prediction ok). The use of the last prediction vector of a Context Agent O j,last
m is not

dependent on any particular model. The prediction neighborhood radius is set with validity
ranges precision and the neighborhood radius coefficient, and it is proportional to the range of
the experiences oracle values.

The influence radius

rIj,i = (1 + αI ).rj
i (5.4)

with αI ∈ R the influence radius coefficient. A large Context Agent is an agent that has
generalized lot of information. With the area-based neighborhood, such a Context Agent may
not be considered as a Neighbor Context Agent when it should be. For this purpose, Context
Agents have an influence zone outside their validity range that is proportional to their validity
ranges. If the current perceptions are within this zone of influence, the Context Agent C j

n is also
in the neighborhood (rj

i,center ∈ [pi − rIj,i; pi + rIj,i] for one perception pi with rj
i,center the center

of a validity range).

Table 5.1 is a summary of the parameters involved in the configuration of the neighbor-
hood mechanisms.

Name Notation Constrains Domain
User Parameter validity ranges precision pR ]0, 1[ R

User Distance range creation radius rcreation
i (pR)-dependent R

Designer Paramaters
neighborhood radius coefficient αN > 0 R

influence radius coefficient αI > 0 R

Designer Distances
neighborhood radius rNi (pR,αN )-dependent R

prediction neighborhood radius rNok
(pR,αN )-dependent R

influence radius rIj,i (αI )-dependent R

Table 5.1 – Table of user and designer parameters and distances for the configuration of the
neighborhood and the prediction neighborhood.

Figure 5.4 shows an example of neighborhood and influence areas with the associated
Neighbor Context Agents. N C j1

2 is a Neighbor Context Agent because its validity ranges intersect
the neighborhood area. N C j2

2 is a Neighbor Context Agent because its influence zone contains the
current perceptions. C j3

2 is not a Neighbor Context Agents because its validity ranges don’t inter-
sect the neighborhood area and its influence area does not intersect the current perceptions pcl

1
and pcl

2 .

Figure 5.5 shows an example of prediction neighborhood with linear models, for one predic-
tion and one perception. The Context Agent C j1

1 associated with the model f j1
1 is a prediction

neighbor of the Context Agent C j2
1 associated with the model f j2

1 because the distance between
their last predictions is lesser than the prediction neighborhood radius rNo1

. On the contrary, the
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Context Agent C j3
1 associated with the model f j3

1 is not a prediction neighbor because the
distance between their last predictions is greater than the prediction neighborhood radius rNo1

.

p1

p2
Neighbordhood
Influence

N C j1
2

N C j2
2

C j3
2

rIj3,1

rIj3 ,2

pcl
1

pcl
2

rN1

rN2

Figure 5.4 – Schema of the neighborhood of the perceptions P cl
2 and the Context Agents influences

for 2 perceptions p1 and p2.The neighborhood is represented with thick dashes and influences
are represented with thin dashes.
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Figure 5.5 – Schema of Prediction Neighbor Context Agents for one perception p1 and one
prediction output o1. oj1 ,last

1 , oj2 ,last
1 and oj3,last

1 are the last predictions of the Context Agents
C j1

1 , C j2
1 and C j3

1 represented by the local models f j1
1 , f j2

1 and f j3
1 . C j1

1 and C j2
1 are prediction

neighbors whereas C j3
1 is not.
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5.4 Learning Inaccuracies

We have introduced a mechanism that allows Context Agents to locally communicate
and interact. Thanks to this additional awareness between Context Agents, it is now possible
for them to communicate and share information about their validity ranges and local models
without scanning the whole collective of agents. In this section, the detection and resolution
of learning inaccuracies are presented.

In AMAS, agents are designed thanks to two behaviors: the nominal behavior and the
cooperative behavior. The nominal behavior gathers the actions to be done when an agent is
in a cooperative state. The cooperative behavior defines the actions to be carried out in order
to return to the cooperative state if the agent has deviated from it. The situations that enable
to determine if an agent is in the cooperative behavior are called Non Cooperative Situations
(NCS) [Georgé et al., 2011]. NCS are declined in different sub-categories that will be used to
categorized the learning inaccuracies.

5.4.1 Communication in Context Agent Pairs

We have seen previously that for each cycle, a set of Neighbor Context Agents is computed.
Each Context Agent of the Neighbor Context Agents communicates with the other neighbors to
seek for learning inaccuracies. A Context Agent cannot know its relative position compared to
another Context Agent until they have mutually shared their validity ranges. There is no repre-
sentation of space in the list of Neighbor Context Agents. Let n be the number Neighbor Context
Agents and k a subset of Neighbor Context Agents that shares their characteristics. Finding all
the subsets is equivalent to finding all the k−combinations Cn

k in a set of n elements.

Only 2−combinations and not superior combinations are considered because Cn
2 is be-

tween linear dependency and degree 2 polynomial dependency on the number of elements.
Beyond 2−combinations Cn

k is above degree 2 polynomial dependency.

Cn
2 =

(
n
2

)
=

n!
2!(n− 2)!

(5.5)
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Figure 5.6 – Behavior comparison of 2−combinations Cn
2 with linear and degree 2 polyno-

mial functions

This means that learning inaccuracies that involve more than two Context Agents will not
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be solved in one resolution step. It will need several steps of two Context Agents resolutions.
Thus, in the following, the definition of learning inaccuracies will only involve two Context
Agents at a time.

5.4.2 Exploration Inaccuracies Detection

In this section, the characterization of exploration learning inaccuracies and their detection
are detailed. In the first place, a formalism for validity range comparison is introduced and the
used distances for the learning inaccuracies detection are defined. To formalize intersections
between validity ranges, Allen’s interval algebra is used. This algebra was initially made to
formalize all the 13 possible relations between time intervals [Allen, 1983]. It is used for the
relations between one dimension validity ranges (Tab. 5.2).

Relation Illustration Interpretation

rj1
i < rj2

i rj2
i > rj1

i

rj1
i

rj2
i

rj1
i and rj2

i are disjointed

rj1
i m rj2

i rj2
i mi rj1

i

rj1
i

rj2
i

rj1
i meets rj2

i (i stands for inverse)

rj1
i o rj2

i rj2
i oi rj1

i

rj1
i

rj2
i

rj1
i overlaps with rj2

i

rj1
i s rj2

i rj2
i si rj1

i

rj1
i

rj2
i

rj1
i starts rj2

i

rj1
i d rj2

i rj2
i di rj1

i

rj1
i

rj2
i

rj1
i is included by rj2

i

rj1
i f rj2

i rj2
i fi rj1

i

rj1
i

rj2
i

rj1
i ends rj2

i

rj1
i = rj2

i

rj1
i

rj2
i

rj1
i is equal to rj2

i

Table 5.2 – 13 possible relations between one dimension validity ranges

All relations can be represented by intervals that we note rj1
i • rj2

i with • any relation.
For the relations > and <, the interval is between the ranges rj1

i and rj2
i . For the following,
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the center of an interval will be written rj1
i • rj2

i

C
.

5.4.2.1 Detection Distances

For the detection of exploration learning inaccuracies, the following distances need to be
defined.

The range similarity distance
dRsim

i = αRsim .rcreation
i (5.6)

with αRsim ∈]0, 1[ the range similarity coefficient. This distance is a relaxation distance that
enables to determine validity ranges similarities in the continuous space of perceptions.

The minimum range distance
dRmin

i = αRmin .rcreation
i (5.7)

with the minimum range coefficient αRmin ∈]0, 1[ and αRmin < αRsim . This distance is the ex-
ploration precision limit below which the mechanism no longer considers validity ranges for
the detection of learning inaccuracies. This distance represents the utility limit in the space of
perceptions for each perception pi.

The model similarity distance
d f

sim (5.8)

The model similarity distance is a metric that defines the similarity of two models. This
distance is model-dependent and needs to be defined by the user according to the learning
models he uses.

Table 5.3 is a summary of the parameters involved in the learning inaccuracies detection
mechanisms.

Name Notation Constrains Domain
User Parameter validity ranges precision pR ]0, 1[ R

User Distance range creation radius rcreation
i (pR)-dependent R

User Metric model similarity distance d f
sim model-dependent R

Designer Paramaters
range similarity coefficient αRsim ]0, 1[ R

minimum range coefficient αRmin ]0, 1[, αRmin < αRsim R

Designer Distances
range similarity distance dRsim

i (pR,αRsim )-dependent R

minimum range distance dRmin
i (pR,αRmin )-dependent R

Table 5.3 – Table of parameters, distances and metrics for the learning inaccuracies detection
mechanisms.
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5.4.2.2 Conflict NCS Detection

A Conflict NCS is a validity ranges overlap between Context Agents that have different
models according to the model similarity distance. For a learning problem with n perceptions,
a theoretical overlap between two Context Agents is defined by n validity ranges overlaps
rj1

i o rj2
i (Fig. 5.7a). In practice, an overlap occurs if the intersections lengths between Context

Agents validity ranges are greater than the minimum range distance dRmin
i (Fig. 5.7b). rj1

i o rj2
i

represents the overlap distance between rj1
i and rj2

i .

p1

p2

rj1
1 o rj2

1

rj 1 2
o

rj 2 2

C j1
2

C j2
2

(a) Theoretical

p1

p2

rj1
1 o rj2

1 > dRmin
1

rj 1 2
o

rj 2 2
>

dR
m

in
2 C j1

2

C j2
2

(b) Practical

Figure 5.7 – Conflict NCS Detection.

5.4.2.3 Concurrency NCS Detection

Concurrency NCS is a validity ranges overlap between two Context Agents that have similar
models according to the model similarity distance d f

sim. The geometry detection is the same as
the Conflict NCS Detection. Figure 5.8a represents a theoretical Concurrency NCS and figure
5.8b represent a practical Concurrency NCS.

p1

p2

rj1
1 o rj2

1

rj 1 2
o

rj 2 2

C j1
2

C j2
2

(a) Theoretical

p1

p2

rj1
1 o rj2

1 > dRmin
1

rj 1 2
o

rj 2 2
>

dR
m

in
2 C j1

2

C j2
2

(b) Practical

Figure 5.8 – Concurrency NCS Detection.

5.4.2.4 Complete Redundancy NCS Detection

A Complete Redundancy NCS is detected when two adjacent Context Agents with similar
models can merge their common boundary without altering their other ranges. The model
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similarity distance d f
sim is used as in the Concurrency NCS detection. An ideal Complete Re-

dundancy NCS is defined by n− 1 equal validity ranges (rj1
i = rj2

i ) and a meeting intersection
(rj1

i m rj2
i ) (Fig. 5.9a). In a continuous space, it is almost impossible to match these conditions.

So the range similarity distance dRsim
i is used as a threshold when establishing the meeting con-

dition. In this case, two Context Agents are adjacent if the distances between their boundaries
are less than dRsim

i . The range similarity distance dRsim
i is also used for the alignment of the other

validity ranges (Fig. 5.9b).

p1

p2

rj 1 2
=

rj 2 2 C j1
2 C j2

2

rj1
1 m rj2

1

(a) Theoretical

p1

p2

C j1
2

C j2
2

rj1
1 < rj2

1 < dRsim
1

|rj1
2,end − rj2

2,end| < dRsim
2

|rj1
2,start − rj2

2,start| < dRsim
2

(b) Practical

Figure 5.9 – Complete Redundancy NCS Detection.

5.4.2.5 Partial Redundancy NCS Detection

A Partial Redundancy NCS is when two adjacent Context Agents have similar models and
can restructure one of their validity ranges to maximize the volume of one of the Context
Agents. The model similarity is also detected using the model similarity distance d f

sim. An ideal
Partial Redundancy NCS is defined by n− 2 equal ranges (rj1

i = rj2
i ), a starting (rj1

i s rj2
i ) or a

finishing (rj1
i f rj2

i ) intersection and a meeting intersection (rj1
i m rj2

i ) (Fig 5.10a).
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(a) Theoretical
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rj2
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2,start − rj2
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2

(b) Practical

Figure 5.10 – Partial Redundancy NCS Detection.
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By representing two perceptions, only the two last conditions can be present in the figure
5.10. As in the previous NCS, the range similarity distance dRsim

i is used. Two agents are there-
fore adjacent if the distance between one their boundaries are less than the range similarity
distance dRsim

i . A validity range starts or finishes another one if respectively |rj1
2,start − rj2

2,start| <
dRsim

i and rj2
2,end − rj1

2,end > dRsim
i or rj1

2,start − rj2
2,start > dRsim

i and |rj1
2,end − rj2

2,end| < dRsim
i . The

figure 5.10b shows an example of practical Partial Redundancy NCS.

5.4.2.6 Range Ambiguity NCS Detection

A Range Ambiguity NCS is a difference of model between two adjacent Context Agents.
Model similarity is once again computed with the model similarity distance d f

sim. An ideal
Range Ambiguity NCS is defined by n − 1 non-empty intersections (overlaps, beginnings,
ends, inclusions and equalities) and a meeting intersection (Fig. 5.11a). In practice, for two
agents to be adjacent according to the perception pi, the distance between their boundaries
must be less than the minimum range distance dRmin

i and the distance of the non-empty inter-
section must be greater than the minimum range distance dRmin

i (Fig. 5.11b).
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p2

rj 1 2
o

rj 2 2

C j1
2

C j2
2

rj1
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(a) Theoretical

p1

p2

rj 1 2
o

rj 2 2
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in
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2

C j2
2

rj1
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1 < dRmin
1

(b) Practical

Figure 5.11 – Range Ambiguity NCS Detection.

5.4.2.7 Incompetence NCS Detection

An Incompetence NCS is an emptiness inside the neighborhood of the current perceptions.
For a gap to be retained, the minimal length of the ranges that defines it must be greater
than the minimum range distance dRmin

i . The Incompetence NCS is used to detect empty areas
alias incompetent volumes V inc

n within the neighborhood of the current perceptions. An area is
empty if it has an empty intersection ∅ with the validity range of a Context Agent on at least
one perception pi. As few incompetent volumes as possible are constructed. At 2 dimensions
and with only one Context Agent in the middle of the neighborhood, the minimum number of
incompetent volumes to be filled is 4 (Fig. 5.20a). This strategy for seeking incompetent zones
may be computationally expensive for high numbers of perceptions and large quantities of
Neighbor Context Agents. This matter will be addressed in the Scalability experiments in sec-
tion 7.8. The figure 5.12b shows an example of incompetent volume detection with several
Context Agents in a neighborhood.
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(a) Incompetence NCS with one Neighbor Con-
text Agent
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(b) Incompetence NCS with several Neighbor
Context Agents

Figure 5.12 – Incompetence NCS Detection.

Recursive Incompetent Volume Generation: Incompetent volumes are computed across all
Neighbor Context Agents. Initially, there is one empty area : the neighborhood area (Fig. 5.14a).
The neighborhood area is compared to the validity ranges of the first Neighbor Context Agent.
From this comparison, the initial empty area is deleted and new ones are created (Figures
5.14b, 5.14c and 5.14d). The new empty areas are then compared to the next Neighbor Con-
text Agent and so on until all Neighbor Context Agents are processed. Once all Neighbor Con-
text Agents are processed, the left empty areas are defined as incompetent volumes. Figure
5.14d shows an example of completed recursive incompetent volume generation with only
one Neighbor Context Agent.

When a Context Agent is compared to an empty area Aempty
n , each perception pi is recur-

sively computed to obtain one-dimensional filled areas a f illed
i and one-dimensional empty areas

aempty
i (Fig. 5.13). If they are one-dimensional empty areas, they are completed with the other

dimensions of the initial empty area Aempty
n to create a definitive incompetent volume V inc

n . This
corresponds to the incompetent volumes V inc1

2 and V inc2
2 in the figure 5.14b. If there is a one-

dimensional filled area, the area is completed with the other dimensions of the initial empty
area Aempty

n to create a new empty area Aempty
n

′
. This corresponds to the empty area Aempty

2
′

in
the figure 5.14b. The current perception that gave the one-dimensional filled area is considered
computed and the Context Agent validity ranges are then compared to Aempty

n
′

across the re-
maining perceptions as is has been done with Aempty

n (Fig. 5.14c). Figure 5.14d shows the
completed search of incompetent volumes for two perceptions and one Neighbor Context Agent
in the center of the neighborhood.
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Figure 5.13 – Possible configurations when comparing one-dimensional empty areas (dotted
line) with one-dimensional validity ranges.
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competent volumes have been created.

Figure 5.14 – Recursive incompetent volume generation for two perceptions and one Neighbor
Context Agent.
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5.4.3 Model Inaccuracies Detection

In this section, the characterization of model learning inaccuracies and their detection are
presented. The mechanisms are independent from the underlying models. For presentation
purposes, linear regressions are used.

5.4.3.1 Model Ambiguity NCS Detection

Learning models in Machine Learning can require certain quantities of labeled data to
provide reliable predictions. When the volume or quality of data is not adequate for the
learning, this NCS is detected. A Model Ambiguity NCS is when a model needs additional
learning situations to consider itself mature or reliable. A model without enough learning
situations is thus called a immature model or an unreliable model.

In the case of linear regression with n perceptions and one prediction, n + 1 coefficients
are needed to complete the linear model. Thus n + 1 learning situations are needed to fulfill
the model needs. The figure 5.15 shows an example of linear regression for one perception.
To match the hidden function, at least two learning situations are needed. The figure 5.16 shows
an example of linear regression with two perceptions. To match the hidden function, at least
three learning situations are needed.
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Figure 5.15 – Model Ambiguity NCS detection for 1 perception.
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Figure 5.16 – Model Ambiguity NCS Detection for 2 perceptions.
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5.4.3.2 Model Discontinuity NCS Detection

As said in sections 5.1 and 5.2, the Continuity Hypothesis states that Context Agents must
differentiate continuity and discontinuity. A Model Discontinuity NCS is detected when two
Context Agents are Neighbor Context Agents but not Prediction Neighbor Context Agents. The
distance between their last predictions is greater than the prediction neighborhood radius rNok

.
Otherwise, among the Prediction Neighbor Context Agents, continuity is assumed. Continuity
is when the distance between the last predictions of two Context Agents among the Neighbor
Context Agents is less than the prediction neighborhood radius rNok

. Figure 5.17 shows the cases
of assumed discontinuity and continuity.
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(a) Discontinuity is assumed
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(b) Continuity is assumed

Figure 5.17 – Continuity and Discontinuity among Neighbor Context Agents.
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5.4.4 Exploration Inaccuracies Resolution

I present here the resolution of the learning inaccuracies. Most of the learning inaccuracies
resolutions are started with the generation of endogenous perceptions P endo

n that situate the
learning inaccuracies. The resolutions that require endogenous perceptions are presented as if
they were instantly processed. In practice, it will be presented in the section 5.5 that the
learning inaccuracies associated with endogenous perceptions are stored to be solved during a
future cycle. The nature of this future cycle will depend on the learning strategy that is used:
the Active Learning Strategy or the Self-Learning Strategy. These strategies will be presented in
section 6.4. Their use depends on the availability of additional specific learning situations. The
resolutions that do not require any endogenous perceptions can be processed instantaneously.
Each NCS is then treated differently.

5.4.4.1 Conflict and Concurrency NCS Resolution

For the Conflict NCS and Concurrency NCS, the endogenous perceptions are generated in the

middle of the overlapping volume pendo
i = rj1

i o rj2
i

C
. Depending on the learning strategies

that will be presented section 6.4, the two Context Agents negotiate which one should retract
itself to suppress the overlapping area. The looser of the negotiation updates one of its valid-
ity range in order to eliminate the overlap. The validity range that is chosen is the one that least
affects the volume of the shrunk Context Agent. In other words, it is the validity range that
minimizes the volume loss while resolving the overlap. The figures 5.18a and 5.18b show
the position of the endogenous perceptions. The figures 5.18c and 5.18d represent examples of
resolutions where C j1

2 is the Context Agent that retracts itself and p1 is the optimal perception
for the resolution.
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Figure 5.18 – Conflict NCS and Concurrency NCS Resolutions.
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5.4.4.2 Range Ambiguity and Model Discontinuity NCS Resolution

Range Ambiguity NCS and Model Discontinuity NCS are coupled NCS because a discon-
tinuity necessarily concerns two Context Agents that are adjacent and that possess different
models according to the model similarity distance d f

sim. If both NCS are detected between two
Context Agents, the frontier between them can be clarified. To do so, two endogenous percep-
tions P endo1

i and P endo2
i are generated. For the adjacent perception, pendo1

i and pendo2
i are at a

distance of dRmin
i of the adjacent border rj

i,end − dRmin
i or rj

i,start + dRmin
i . The adjacent percep-

tion is p1 in the figure 5.19a. For all the other perceptions, pendo1
i and pendo2

i are both at the

center of the overlapping ranges rj
i o rj

i

C
. In the figure 5.19a the other perception is only p2.

Figure 5.19b shows the possibles future modifications of the considered ambiguous Context
Agents borders. A border may not change if it is correct. As many of these situations can
occur and to avoid targeting infinitely the same discontinuity, the user parameter disconti-
nuity detection probability pbdisc is used. It enables to select the importance of discontinuities
detections.
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Figure 5.19 – Range Ambiguity NCS and Model Discontinuity NCS Resolution.

5.4.4.3 Incompetence NCS Resolution

For the Incompetence NCS, endogenous perceptions are generated in the center of the incom-
petent volumes introduced during the detection of the Incompetence NCS (section 5.4.2.7). Each
endogenous perceptions associated to their incompetent volume will define a different learning
inaccuracy that will need a different cycle to be processed. When the endogenous perceptions
are used to create a new Context Agent, the dimensions of the incompetent volume are used
to initialize the validity ranges of the created Context Agent. Figure 5.20 shows the creation of
Context Agents in a partially empty neighborhood with one Neighbor Context Agent and with
several Neighbor Context Agents.
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Figure 5.20 – Incompetence NCS Resolution.

5.4.4.4 Complete Redundancy NCS Resolution

The Complete Redundancy NCS resolution is made instantaneously as no additional in-
formation is needed and the generalization of two Context Agents into one is possible. One
of the two Context Agents extends its validity ranges to the maximum of both Context Agents
validity ranges to cover the two. The updated Context Agent sets its confidence to the sum of
both Context Agents confidences. The other Context Agent that didn’t make any adaptation is
subtracted from the collective. Figure 5.21 represents a Complete Redundancy NCS resolution
with two perceptions.
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Figure 5.21 – Complete Redundancy NCS Resolution.

5.4.4.5 Partial Redundancy NCS Resolution

The Partial Redundancy NCS resolution is also made instantaneously. The Context Agent
that can maximize its volume extends its validity range on the adjacent perception. It is the
growing Context Agent. In the figure 5.22b, the adjacent perception is p1 and the growing
Context Agent is C j1

2 . The other Context Agent updates the validity range on the perception
that is finishing or starting one of the validity ranges of the growing Context Agent. It is the
shrinking Context Agent.

On the figure 5.22b, the shrinking perception is p2 because rj1
2,start is similar to rj2

2,start

The shrinking Context Agent is C j2
2 . The confidence of the shrinking Context Agent is shared

between itself and the growing Context Agent. Still using the example of the figure 5.22b, let
cj1 , cj2 , V j1

2 and V j2
2 the confidences and volumes of the Context Agents C j1

2 and C j2
2 before the

resolutions. After the resolution, the calculation of the new confidences cj1
new, cj2

new is done as
follows.

cj1
new = cj1 + cj2 .

(
1− V

j2
2,new

V j2
2

)
cj2

new = cj2 .
V j2

2,new

V j2
2

(5.9)

With V j2
2,new the new volume of the shrunk Context Agent. The confidence of the Context

Agent losing volume is given to the other Context Agent in proportion to the volume trans-
ferred.
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(b) After Resolution

Figure 5.22 – Partial Redundancy NCS Resolution.
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5.4.5 Model Inaccuracies Resolution

The only remaining model inaccuracy is the Model Ambiguity NCS as the Model Disconti-
nuity NCS is merged with the Range Ambiguity NCS.

5.4.5.1 Model Ambiguity NCS Resolution

As we have seen, a model can require additional learning situations. The Model Ambigu-
ity NCS resolution is made by generating endogenous perceptions where new learning situa-
tions will be integrated in future cycles. Each endogenous perceptions are randomly created
uniformly inside the validity ranges of the considered Context Agent. Figure 5.23 shows an
example of Model Ambiguity NCS resolution. Each new random endogenous perceptions trans-
formed into a learning situation enables the Context Agent to converge towards a complete or
mature model. Maturity being represented by the shade of color.

p1

p2

C j1
2

(a) Immature Context Agent
with 1 learning situation

p1

p2

C j1
2

(b) Immature Context Agent
with 2 learning situations

p1

p2

C j1
2

(c) Mature Context Agent with
3 learning situations

Figure 5.23 – Model Ambiguity NCS Resolution for 2 perceptions.

5.5 Learning Inaccuracies Computation

Now that all the learning inaccuracies have been presented by defining them as NCS, this
section will detail the order in which they are processed. Except for the Complete Redundancy
NCS and the Partial Redundancy NCS which trigger an instantaneous validity ranges adapta-
tions, the NCS detection are stacked in a pile waiting to be called for their resolutions.

Once detected, learning inaccuracies (other than Complete Redundancy NCS and Partial Re-
dundancy NCS) are associated with a certain priority to be addressed. The order of priority
from the highest to the lowest is given in the table 5.4.

Model Ambiguity NCS
Conflict NCS
Concurrency NCS
Incompetence NCS
Range Ambiguity NCS

Table 5.4 – NCS priorities from the highest to the lowest.
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The most important goal of a Context Agent is to complete its model because the rest
of the learning inaccuracies rely on the completeness of the models. Then, the most critical
learning inaccuracies is the Conflict NCS because, in addition to bad validity range, it can lead
to bad prediction. After that, there is the Concurrency NCS, whose manifestation is the same
but without the risk of a bad prediction. When there are not any overlaps between the Con-
text Agents, the priority is to fill in the gaps and seek for unexplored areas by detecting
Incompetence NCS. Finally, the last possible improvement for a complete exploration is to
refine the discontinuous boundaries with the Range Ambiguity NCS.

Each learning inaccuracy I l
n is defined by {Rl

n,P endo
n ,Ml , T l , p}, with:

3 Identification, l: It is the concatenation of the Context Agents names that raised the learn-
ing inaccuracies. For Incompetence NCS, all the Neighbor Context Agents are involved in the
detection of the learning inaccuracy. For all other NCS, only two Context Agents are con-
cerned.

3 Ranges, Rl
n: they define the area of the overlap in the case of a Conflict NCS or Concur-

rency NCS. In the case of an Incompetence NCS, the ranges define the incompetent volume
that will be used for the creation of the Context Agent.

3 Endogenous perceptions, P endo
n : it is the vector of perceptions that is generated in order

to solve the learning inaccuracy.

3 Memory, Ml : it is the list of Context Agents that detected the learning inaccuracy. This
list is used to ensure that two Context Agents don’t detect the same NCS twice.

3 Type, T l : it is the type of learning inaccuracy (Model Ambiguity NCS, Conflict NCS, Con-
currency NCS, Incompetence NCS or Range Ambiguity NCS).

3 Priority, p: it determines the urgency with which the inaccuracy should be addressed.

To ensure that Incompetence NCS are not detected several times, the stack of learning in-
accuracies must be emptied before storing new ones. Thus, an empty neighborhood is fully
explored before seeking more Incompetence NCS.

As for Incompetence NCS, Range Ambiguity NCS being the last learning improvement, the
stack of learning inaccuracies must be empty before adding any Range Ambiguity NCS. This
ensures that Range Ambiguity NCS does not impinge on the space exploration.
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5.6 Cooperative Neighborhood Learning

As we have seen, according to the Continuity Hypothesis, in this context, learning is seek-
ing continuity and discontinuity. In this section, a new mechanism is presented to satisfy the
Continuity Hypothesis with the objective of reducing the amount of learning situations from
an oracle: Cooperative Neighborhood Learning.

The aim of this mechanism is to enhance the Context Agents local models by internally gen-
erating new learning situations: endogenous learning situations. Cooperative Neighborhood Learn-
ing enables Endogenous Learning. As we have seen, Endogenous Learning is when a learning
mechanism teaches itself learning situations.

We have seen that Context Agents locally map a hidden function with a local model. As
continuity is assumed among all Prediction Neighbor Context Agents, Context Agents should
seek to match their border predictions with their neighbors. This can be seen as a smoothing
of the Context Agents models between them. We call this mechanism Cooperative Neighbor-
hood Learning (CNL). Figure 5.24a shows an example of a learning state where the models
have not matched the hidden function and are not meeting the prediction of their neighbors.
Figure 5.24b shows the objectives of CNL which are to smooth the models but using only
Endogenous Learning.
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1
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(a) Before learning with Prediction Neighbor Con-
text Agents
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1
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1
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1

f j4
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Rj4
1

f j5
1

Rj5
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(b) After learning with Prediction Neighbor Context
Agents

Figure 5.24 – Schema of Cooperative Neighborhood Learning aims. The search space is supposed
entirely explored and represented by Context Agents validity ranges. The gray thick dashes
represent the hidden function F , and the black lines are the learned local models f ji

1 .

Only one local model is enhanced by learning or exploitation cycle (learning and exploita-
tion cycles will be detailed section 6.1). It is the model of the Best Context Agent. It is re-
minded that the Best Context Agent is the Context Agent for which its local model is considered
the best during a learning or an exploitation cycle. A Best Context Agent communicates with
its Prediction Neighbor Context Agents to ask them for endogenous learning situations. An endoge-
nous learning situation is defined by endogenous perceptions P endo

n and an endogenous prediction
vector Oendo

m such as Lendo
n,m = [P endo

n ,Oendo
m ].

The endogenous perceptions P endo
n of the endogenous learning situations are chosen randomly

in the intersection of the neighborhood and the neighbor’s validity ranges. For influential Neigh-
bor Context Agents, endogenous learning situations are chosen randomly in the intersection of
the neighborhood and the influence zone of the Context Agents (fig. 5.25).
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The endogenous prediction vector Oendo
m is asked to the model of the neighbors. As only

Prediction Neighbor Context Agents are considered, the endogenous predictions are in the pre-
diction neighborhood. Neighbor Context Agents that are not in the prediction neighborhood are not
allowed to share endogenous prediction vectors. They represent a discontinuity with the Best
Context Agent because they are in the spatial neighborhoods but not in the prediction neighbor-
hood.

p1

p2
Neighbordhood
Influence

Best Context Agent
P endo

n generation zones

PN C j2
2

PN C j3
2

C j4
2

BC j1
2

pcl
1

pcl
2

Figure 5.25 – Cooperative Neighborhood Learning. The endogenous learning situations are gener-
ated in the hatched zones. The Best Context Agent BC j1

2 is receiving the endogenous learning
situations. The Prediction Neighbor Context Agents PN C j2

2 and PN C j3
2 are each providing an en-

dogenous learning situation.

The set of all retained endogenous learning situations is used to update the Best Context
Agent model with a weight wendo

lrn called the endogenous learning weight. To satisfy this weight,
artificial learning situations are generated for a lifelong update of Context Agents local models.
They are distributed on the Best Context Agent local model according to a normal law centered
in its validity ranges center. The normal law standard deviation is set to ensure that the ar-
tificial learning situations are contained close to the center of the local model. Section 6.3 will
further detail the implemented mechanisms for updating local models in a Lifelong Learning
setting.

The endogenous learning weight wendo
lrn is a designer parameter to set the importance of

endogenous learning situations (Table 5.5).

Name Notation Constrains Domain
Designer Parameter endogenous learning weight wendo

lrn ]0, 1[ R

Table 5.5 – Designer parameter for the Cooperative Neighborhood Learning mechanism.
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5.7 Synthesis

In this chapter, we presented the learning hypotheses upon which relies the introduc-
tion of learning inaccuracies. In order to detect them, the concept of neighborhood was added
to the Context Learning paradigm. The characterization and the resolution of the learning
inaccuracies were detailed. A prioritized treatment strategy was developed. Finally, Coop-
erative Neighborhood Learning was defined as a mechanism that self-generates new learning
situations that are endogenous learning situations. It enables to enhance the learning models by
locally sharing predictions. Table 5.6 provides a summary of the parameters involved in the
presented mechanisms.

Name Notation Constrains Domain

User Parameters
validity ranges precision pR ]0, 1[ R

endogenous learning weight wendo
lrn ]0; 1] R

discontinuity detection probability pbdisc ]0; 1[ R

User Distance range creation radius rcreation
i (pR)-dependent R

User Metric model similarity distance d f
sim model-dependent R

Designer Paramaters

neighborhood radius coefficient αN > 0 R

influence radius coefficient αI > 0 R

range similarity coefficient αRsim ]0, 1[ R

minimum range coefficient αRmin ]0, 1[, αRmin < αRsim R

Designer Distances

neighborhood radius rNi (pR,αN )-dependent R

prediction neighborhood radius rNok
(pR,αN )-dependent R

influence radius rIj,i (αI )-dependent R

range similarity distance dRsim
i (pR,αRsim )-dependent R

minimum range distance dRmin
i (pR,αRmin )-dependent R

Table 5.6 – Table of user and designer parameters, distances and metrics for the Endogenous
Context Learning principles.

The next chapter will focus on the update of Context Learning rules taking advantage of
the additional information that the neighborhood brings. Two learning strategies that differ
in the availability of learning situations will be proposed and other mechanisms involved in
Endogenous Context Learning will be detailed.
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6 Endogenous Lifelong Learner by
Self-Adaptation ELLSA

In this chapter, the functioning of the designed learning mechanism is presented: ELLSA for
Endogenous Lifelong Learner by Self-Adaptation. The optimization of agents activation is detailed
and the processes of learning and exploitation cycles are described. The learning criticality and
the exploitation criticality are introduced, they enable to include performance, generalization and
experience in the learning and exploitation processes. A mechanism for dynamically updating
learning models in a lifelong setting is proposed. The Active Learning Strategy and the Self-Learning
Strategy are introduced. Their use depends on the availability of learning data. The chapter is ended
by an analysis and a positioning about AI challenges.

THE previous chapter focused on the Context Agents mechanisms and how their com-
munication can enhance their collective representation of learning. We introduced the

concept of Endogenous Learning by presenting the detection of learning inaccuracies and their
resolutions using endogenous perceptions. Finally, a way of generating complete endogenous
learning situations was detailed.

However, in Context Learning, other agents intervene in the process of learning. They
define a larger Multi-Agent System (MAS) that is called Endogenous Lifelong Learner by Self-
Adaptation (ELLSA). Based on the learning mechanism AMOEBA [Nigon, 2017], figure 6.1a
shows a global view of the agents involved in classical Context Learning. As presented in
section 4.4, the learning is made with learning situations that are exogenous learning situations.
The exogenous learning situations Lexo

n,m are composed of exogenous perceptions P exo
n and an ex-

ogenous prediction vector Oexo
m provided by an external entity called the oracle.

The other agents involved are the Percept Agents and the Head Agent. The role of the Per-
cept Agents is to activate the Context Agents. Activated Context Agents are called Valid Context
Agents. There are as many Percept Agents as perceptions. The section 6.1.1 will detail how
the activation of Context Agents is optimized thanks to the Percept Agents. The Head Agent
communicates with the Valid Context Agents to retrieve their model propositions according
to the perceptions. When the Context Agents are learning, the Head Agent provides them the
exogenous prediction vector Oexo

m . Indeed, Context Learning uses Supervised Learning and thus
exogenous learning situations.

Figure 6.1b shows where the mechanisms presented in the previous chapter appear. The
neighborhoods enable local communications between Context Agents. These communications
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are at the origin of the endogenous perceptions generation that can replace the exogenous per-
ceptions during the resolution of learning inaccuracies (section 5.4). Still with the addition
of neighborhoods, endogenous learning situations are generated by and for the Context Agents
thanks to the Cooperative Neighborhood Learning mechanism (section 5.6).

(a) Exogenous classical Context Learning with AMOEBA

(b) Exogenous and Endogenous Context Learning with ELLSA

Figure 6.1 – Context Learning VS Endogenous Context Learning

In this chapter, we present the learning mechanism ELLSA. The intervention of endoge-
nous mechanisms at different points in the learning process is explained. To do so, we
present the learning and exploitation rules of ELLSA that rely on Endogenous Context Learn-
ing. For each cycle, the optimization of Context Agents activation with Percept Agents is de-
tailed. The learning and exploitation process rely on criticality measures that are explained.

Then, we look deeper into the Context Agents to outline a mechanism for Lifelong Learning
that we call Lifelong Context Learning. Lifelong Context Learning enables to update any learning
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model taking into account its past experiences without memorizing all of them.

According to the availability of learning data, we detail two learning strategies that are
the Active Learning Strategy and the Self-Learning Strategy. The Active Learning Strategy is
based on the generation of endogenous perceptions to actively resolve the learning inaccura-
cies and accelerate the learning process with specific exogenous prediction vectors. The Self-
Learning Strategy is based on the generation of endogenous perceptions to resolve the learning
inaccuracies without exogenous prediction vectors.

This chapter is ended with reflections about Transfer Learning and Reinforcement Learning
in the Context Learning framework.

6.1 Endogenous Context Learning

In this section, learning cycles and exploitation cycles are detailed. The introduction of
the neighborhood during a cycle brings additional information that can be helpful during the
construction of the Context Agents validity ranges and local models.

A cycle cl of the learning mechanism ELLSA is defined by a common input which
is the vector of perceptions Pn. A vector of perceptions alone defines an exploitation situa-
tion En = [Pn] and thus an exploitation cycle. Perceptions associated with an exogenous
prediction vector Oexo

m define a learning cycle with an exogenous learning situation as input
Lexo

n,m = [Pn,Oexo
m ]. During a learning cycle, Context Agents update their models with the

exogenous learning situation.

P cl
n ,Oexo,cl

m ,O j,cl
m andOcl

m
′ respectively represent perceptions, an exogenous prediction vector,

a local prediction vector from a Context Agent C j
n and an output prediction vector for a cycle cl .

Each cycle results in the operations of the algorithm 6.1. The Percept Agents use the in-
put P cl

n to activate the Valid Context Agents. The activated Valid Context Agents and Neighbor
Context Agents notify to the Head Agent that they have been activated. The Head Agent selects
the Best Context Agent to set the output prediction vector Ocl

m
′. Depending on the availability

of an exogenous prediction vectorOexo,cl
m , the Head Agent provides feedback to the Valid Context

Agents according to their respective local models. It then processes different Non Cooperation
Situations (NCS) that will be detailed in the following. They enable the construction of the
Context Agents and the processing of learning inaccuracies during the learning and the ex-
ploitation cycles.

The table 6.1 recalls a summary of the different Context Agents types during ELLSA cy-
cles.

The activation of Valid Context Agents and their neighborhood during the Percept Agents
cycles is an optimized process that is firstly presented in the following. The Context Agents
cycles are straight forward as Valid Context Agents and Neighbor Context Agents only notify
their activation. The difference of execution between exploitation and learning cycles ap-
pears in the Head Agent cycle only. Further explanations will concern the Head Agent cycle
by detailing learning cycles and exploitation cycles.
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Algorithm 6.1: Execution cycle cl of ELLSA

Input : P cl
n or Lcl

n,m= [P cl
n ,Oexo,cl

m ]

Output: Ocl
m
′

1 Percept Agents Cycles
2 Percept Agents use the perceptions input P cl

n to activate the Valid Context Agents
VCn and their neighborhood the Neighbor Context Agents N Cn ;

3 Context Agents Cycles
4 Valid Context Agents VCn and Neighbor Context Agents N Cn notify their activation

to the Head Agent;
5 Head Agent Cycle
6 The Head Agent selects the Best Context Agent BCn for the final output prediction

vector Ocl
m
′ ;

7 if exogenous prediction vector Oexo,cl
m is available then

8 Valid Context Agents VCn receive feedback about their local model f j
n;

9 NCS are processed using Oexo,cl
m ;

10 else
11 NCS are processed without Oexo,cl

m ;
12 end

Context Agents Types Notations Description
Context Agents Cn They represent the accumulated learning with

validity rangesRj
n associated to local models f j

n.
Valid Context Agents VCn They are Context Agents that are activated by

the Percept Agents using the perceptionsPn. They
provide local prediction vectors O j

m.
Neighbor Context Agents N Cn They are Context Agents that are activated by

the Percept Agents using the neighborhood of
the perceptions Pn and the influences of Context
Agents.

Prediction Neighbor Context Agents PN Cn They are Neighbor Context Agents which local
prediction vectors are in prediction neighborhoods.

Best Context Agent BCn It is the Context Agent for which the local model
is considered the best among the collective ac-
cording to the perceptions and the exogenous pre-
diction vector if available.

Table 6.1 – Table different types of Context Agents during learning and exploitation cycles.
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6.1.1 Percept Agents Cycles

The Percept Agents are responsible for the activation of the Valid Context Agents and the
Neighbor Context Agents. There is one Percept Agent Pcti by perception pi.

A Percept Agent starts by updating the minimal and maximal experienced values pmin
i

and pmax
i for its perception pi. Each Percept Agent computes the Valid Context Agents and

Neighbor Context Agents projections VCpi and N Cpi according to its perception pi. A Context
Agent C j

n is valid for the perception pi if pi is contained in the validity range rj
i . A Context

Agent is a Neighbor Context Agent for the perception pi if its validity range rj
i intersects the

neighborhood or if its influence contains pi (section 5.3).
VCn and N Cn represent the Valid Context Agents and the Neighbor Context Agents once

all Percept Agents have been processed. At the end of their cycles, Percept Agents intersect
the projected Valid Context Agents VCpi and the projected Neighbor Context Agents N Cpi with
VCn and N Cn. When a Context Agent is neither a Valid Context Agent nor a Neighbor Context
Agent in a perception pi, it is eliminated from the potential Valid Context Agents and Neighbor
Context Agents of other perceptions to accelerate the processing of other Percept Agents. The
algorithm 6.2 shows the main operations of a Percept Agent. VCn and N Cn are shared variables
so that each Percept Agent can be parallelized in a thread.

Algorithm 6.2: Execution cycle cl of a Percept Agent
Input : pi

Output : VCpi and N Cpi

Shared Variables: VCn and N Cn

1 Adjust pmin
i and pmax

i ;
2 Compute Valid Context Agents VCpi and Neighbor Context Agents N Cpi projections

on the perception pi

3 VCpi ← all VC j
pi with pi ∈ rj

i ;

4 N Cpi ← all N C j
pi with ([pi − rNi ; pi + rNi ] ∩ rj

i 6= ∅) or

(rj
i,center ∈ [pi − rIj,i; pi + rIj,i]);

5 Process VCpi ∩ VCn and N Cpi ∩ N Cn;

The activation of Context Agents can also be done without all perceptions, we call it acti-
vation with sub-perceptions. Figure 6.2 shows the different cases of Context Agents activation
with two perceptions and thus two Percept Agents. Figure 6.2a shows a Valid Context Agent
(the darker one) activated by its validity ranges rV1 and rV2 . Figure 6.2b shows the activation
of the Neighbor Context Agents. When only a sub-set of perceptions is considered for the acti-
vation of the Valid Context Agents and the Neighbor Context Agents, the other perceptions are
ignored. Figure 6.2c, only p1 is used to detect the Valid Context Agents (the darker ones). The
activation is processed with only the validity ranges on the perception p1 and the current
perception pcl

1 . It is the same for the Neighbor Context Agents (Fig. 6.2d).

The neighborhood radius rNi , introduced section 5.3, enables to detect Neighbor Context
Agents but also learning inaccuracies by exploring the surroundings of the perceptions. It is
dependent from the minimal and maximal experienced perceptions pmin

i and pmax
i . It is then
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with p1 and p2
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(c) Valid Context
Agents with p1
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1

(d) Neighbor Context
Agents with p1

Figure 6.2 – Valid Context Agents and Neighbor Context Agents activation with and without all
perceptions. Dashes represent the neighborhood area and dots represent the influence zones of
Context Agents.

dependent of the perceptions space exploration. If the space is little explored, the neighborhood
can remain limited and so the future exploration. If the space is entirely explored, the neigh-
borhood reaches its largest possible size and the exploration is optimal. To accelerate pmin

i and
pmax

i discovery during the first learning cycles, a bootstrap cycles number cboot is introduced.
During the first cycles of learning, no Context Agent is generated in order to reach a suffi-
cient degree of perceptions exploration. Past the bootstrap cycles, the creation of Context Agents
can start with optimal sizes. The bootstrap cycles number is a user parameter since the user of
the learning mechanism should have an idea of the space to be explored during the training.
The bootstrap cycles number must be must be at least n to let the learning mechanism initialize
all pmin

i and pmax
i .

Table 6.2 reminds the user and designer parameters involved in the activation of Valid
Context Agents and Neighbor Context Agents. The validity ranges precision is the user parameter
that sets the mapping precision of the Context Agents along with the size of the neighborhood.
The bootstrap cycles number is indirectly related to the space exploration as it enables the
Percept Agents to work before starting to learning with the Context Agents. The neighborhood
radius coefficient and the influence radius coefficient are designer coefficients to configure and
evaluate different neighborhood and influence zones.

Name Notation Constrains Domain

User Parameter
validity ranges precision pR ]0, 1[ R

bootstrap cycles number cboot > n N

Designer Paramaters
neighborhood radius coefficient αN > 0 R

influence radius coefficient αI > 0 R

Designer Distances
neighborhood radius rNi (pR,αN )-dependent R

influence radius rIj,i (αI )-dependent R

Table 6.2 – Table of user and designer parameters and distances involved in the activation
of Valid Context Agents and Neighbor Context Agents.
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6.1.2 Learning Cycles

A learning cycle is defined by a learning situation Ln,m as input of the learning mech-
anism. It is the availability of perceptions Pn associated with an exogenous prediction vector
Oexo

m . To take into account learning inaccuracies during the learning process, it is necessary to
modify the rules presented in section 4.4. The algorithm 6.3 sums up the main mechanisms
of a learning cycle which are detailed below. Once that the Valid Context Agents and Neighbor
Context Agents have been activated, the Head Agent finishes the learning execution cycle.

6.1.2.1 Algorithm Description

Initialization

The minimum and maximum experienced exogenous predictions omin
k and omax

k are up-
dated on the vectors Omin

m and Omax
m . The last local prediction vectors O j,last

m of the Neighbor
Context Agents are updated with the perceptions P cl

n . This is necessary to set the prediction
neighborhoods for the Cooperative Neighborhood Learning mechanism.

Best Context Agent Selection

The Best Context Agent BCn is selected using the smallest learning criticality Critlrn that will
be detailed section 6.2.1. The Best Context Agent is sought among the Valid Context Agents. If
there aren’t any, it is sought among the Neighbor Context Agents. If there are no Valid Context
Agents nor Neighbor Context Agents, the Best Context Agent can be searched among all the
Context Agents.

The Best Context Agent provides the final output prediction vector Ocl
m
′. At initialization,

when no Context Agent have been created, the minimal and maximal prediction vectorsOmin
m

and Omax
m are used to provide a mean output prediction vector. One of our goals is to always

provide an output prediction vector even with very few learning cycles.

Valid Context Agents Feedback

Each Valid Context Agents then receives feedback about its local model. If the local model is
incomplete (see sections 5.4.3.1 and 5.4.5.1), it is updated with the learning situation Lcl

n,m=

[P cl
n ,Oexo,cl

m ]. If the local model is complete and reliable, the model prediction distance d
f j
Ln,m

is

compared to the model error margin m f
err. The inaccuracy margin (section 4.4) is removed so

there is only one error margin to define the prediction accuracy: the model error margin m f
err.

The model error margin is a user parameter that represents the desired precision on the dif-

ferent values of the output prediction vector. The model prediction distance d
f j
Ln,m

is the distance

between a local model f j
n and a learning situations Ln,m. It is a model-dependent distance that

must be specified by the designer when he selects the underlying learning models. This dis-
tance enables to assess the relevance of a model according to a learning situation. The model
prediction distance used in this work will be presented in the section 6.2.3.3.

If the prediction of a Valid Context Agents is correct (d
f j
Ln,m

< m f
err), it becomes a Good
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Context Agent. It is updated with the lifelong updating mechanisms that will be presented
section 6.3. Always updating Good Context Agents enables to be robust to noise in the exoge-
nous learning situations by accumulating more learning situations than necessary to complete
a model. Each Good Context Agent receives a confidence bonus. If a Valid Context Agent is not
good, it triggers a Bad Prediction NCS and its confidence decreases (section 6.2.3.2 will detail
the dynamics of confidence bonuses and penalties).

Algorithm 6.3: Learning cycle cl for the Head Agent

Input : Lcl
n,m= [P cl

n ,Oexo,cl
m ]

Output: Ocl
m
′

1 Update all Omin
m and Omax

m ;

2 Update Neighbor Context Agents N Cn last local prediction vectors O j,last
m ;

3 Select the Best Context Agent BCn with the lowest learning criticality Critlrn ;
4 Set the output prediction vector Ocl

m
′;

5 Send feedback to Valid Context Agents
6 Foreach Valid Context Agents VC j

n

7 if local model f j
n incomplete then

8 Update Valid Context Agent models f j
n ;

9 else if d
f j
Ln,m

< m f
err then

10 Lifelong update of Valid Context Agent models f j
n ;

11 cj ++ ;
12 else
13 Bad Prediction NCS ;
14 cj − = 2 ;
15 end
16 if cl> cboot then
17 Uselessness NCS ;
18 Conflict NCS and Concurrency NCS resolution;
19 Unproductivity NCS ;
20 Complete Redundancy NCS and Partial Redundancy NCS resolutions;
21 Learning inaccuracies NCS detection ;
22 end

Other NCS

If the cycle of execution is higher than the bootstrap cycles number, all other NCS can be
treated (Uselessness NCS, Conflict NCS, Concurrency NCS, Unproductivity NCS, Complete Re-
dundancy NCS and Partial Redundancy NCS). A learning cycle is ended by seeking the learning
inaccuracies NCS presented section 5.4. Each detected learning inaccuracy NCS generates en-
dogenous perceptions P endo

n that situates the learning inaccuracy. P endo
n represents a proposition

for a future learning situation. When the P endo
n are used by the oracle to provide a new learn-

ing situation, it corresponds to the Active Learning Strategy that will be detailed section 6.4.1.
When the P endo

n are self-requested as endogenous exploitation situations, it corresponds to the
Self-Learning Strategy. Both strategies will be described in section 6.4.2.
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6.1.2.2 Learning NCS

The Non Cooperative Situations (NCS) that intervene in a learning cycle are presented
here. Some of them are inspired from classical Context Learning (section 4.4) [Nigon, 2017].
The main contribution here is the addition of the Neighbor Context Agents to resolve the NCS.

Bad Prediction NCS

Detection. The Bad Prediction NCS is triggered when a Valid Context Agent has a bad

model: the model prediction distance is higher than the model error margin (d
f j
Ln,m

> m f
err). The

Valid Context Agent is not good for the exogenous learning situation, its model is not close
enough given the expected precision.

Resolution. To resolve this situation, the Context Agent moves one of its validity ranges
rj

i to exclude the current perceptions. At the same time, it communicates with the other Valid
Context Agents to destroy any possible overlap by choosing the largest if there are several
of them. The overlap detection is made as described in the sections 5.4.2.2 and 5.4.2.3. The
confidence is decreased depending on the presence of an overlap (section 6.2.3.2). The validity
range which is chosen for the modification is the one that least affects the volume of the
Context Agent that is bad for current perceptions (p1 in the figures 6.3a and 6.3b). This ensures
that as little knowledge and experience as possible is lost for the Context Agent. To find
the perception that will least affect the Context Agent volume, potentially lost volumes are
calculated. The perception corresponding to the smallest is selected.

p1

p2

pcl
1

pcl
2

(a) Before Resolution
Without Overlap

p1

p2

pcl
1

pcl
2

(b) Before Resolution
With Overlap

p1

p2

pcl
1

pcl
2

(c) Resolution With-
out Overlap

p1

p2

pcl
1

pcl
2

(d) Resolution With
Overlap

Figure 6.3 – Bad Prediction NCS Resolutions.

Figure 6.3 shows the possibles resolutions with and without any overlaps. When there
isn’t any overlap, the validity range moves inside its closest border with an AVT increment.
AVT stands for Adaptive Value Tracker. It is a tool to discover a real dynamic value with suc-
cessive returns [Lemouzy, 2011]. In our case, it rules the validity ranges modification incre-
ments and will not be detail any further. When there is an overlap, the validity range modifies
the closest border in order to suppress the conflicting zone. The Bad Prediction NCS enables
to process Conflict NCS when one of the conflicting Context Agents has a bad model.
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Uselessness NCS

Detection. The Uselessness NCS has the role of eliminating the useless Context Agents
of the collective. A Context Agent is considered useless when the length of one of its validity
ranges rj

i is lesser than the minimum range distance dRmin
i . The minimum range distance role is

indeed to set the minimal exploration distance. Any Context Agent with any validity range
below this distance should not be considered.

Resolution. Such Context Agents disappear and no longer represent a portion of the
explored space. To be effective, the detection is made on all the Neighbor Context Agents.
Figure 6.4 shows an example of resolution in a neighborhood.

p1

p2

neighborhood
dRmin

i

pcl
1

pcl
2

(a) Before Resolution

p1

p2

neighborhood
dRmin

i

pcl
1

pcl
2

(b) After Resolution

Figure 6.4 – Uselessness NCS Resolution.

Conflict NCS and Concurrency NCS

Detection. The Bad Prediction NCS deals with some of the Conflict NCS detections but to
ensure that all Conflict NCS and Concurrency NCS detections are taking into account, the Con-
flict NCS and Concurrency NCS resolutions are called here between the Valid Context Agents.
As presented in sections 5.4.2.2 and 5.4.2.3, the model similarity distance d f

sim is used to deter-
mine if local models are similar or not. The overlap presence is due to the existence of several
Valid Context Agents. If several Context Agents are valid, overlaps are necessarily present.
Highlighting the perceptions where Conflict NCS and Concurrency NCS are is done during the
detection of learning inaccuracies with the generation of endogenous perceptions P endo

n at the
end of the learning cycle.

Resolution. The Conflict NCS and Concurrency NCS resolutions are processed only if

the Best Context Agent is also a Good Context Agent (i.e. its model prediction distance d
f j
Ln,m

is

lower than model error margin m f
err). The spatial resolutions are as presented in section 5.4.4.1.

The Context Agent that wins the resolution is the Best Context Agent selected earlier. When
a Context Agent looses a Conflict NCS or a Concurrency NCS, its confidence is decreased. The
dynamic of the confidence will be detailed section 6.2.3.2.
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Unproductivity NCS

Detection. The Unproductivity NCS is triggered when there aren’t any Valid Context
Agents. It means that the current perceptions P cl

n are not represented by any Context Agent
(Figures 6.5a, 6.6a, 6.6c and 6.6e).

Resolution. The resolution of such situations can involve two steps. First, the closest
Good Context Agent, if there is one, tries to include the new perceptions P cl

n by expanding its
validity ranges. In a second step, if the attempt to cover the new perceptions fails (Fig. 6.5c), a
new Context Agent is created in addition to the expansion. In the following, the Good Context
Agent expansion and the Context Agent creation mechanisms are detailed.
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1

pcl
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(a) Before expansion of the Good
Context Agent in the neighbor-
hood

p1
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pcl
1

pcl
2

(b) Successful expansion of the
Good Context Agent

p1

p2

pcl
1

pcl
2

(c) Failed expansion of the Good
Context Agent

Figure 6.5 – Unproductivity NCS expansion resolutions. The neighborhood is represented by
dashes. The Good Context Agent is boxed. For the illustrations, influences are not used.

3 Good Context Agent Expansion. The closest Good Context Agents is sought among the
Neighbor Context Agents. The distance used to determine proximity is the range percep-
tions proximity distance. It is the distance between the perceptions and the validity ranges
of a Context Agent (section 6.2.3.4). If such Context Agent exists, it tries to expand its va-
lidity ranges in order to include the new perceptions. The validity ranges expansions are
also ruled by AVT dynamic increment. Figure 6.5a shows a Good Context Agent among
the neighborhood and figure 6.5b shows a successful expansion of the Good Context Agent
which succeeds to contain the new perceptions P cl

n . There are two cases where the new
perceptions are not included (Fig 6.5c). The dynamic increment is not large enough or the
validity range is not allowed to grow anymore. To detect if a validity range can no longer
grow, the maximum range radius rmax

i is used.

rmax
i = αRmax .rcreation

i (6.1)

with αRmax the maximum range radius coefficient, a designer parameter. And rcreation
i the

range creation radius introduced section 5.3. Forbidding a Context Agent to grow is essen-
tial to control the space exploration by the Context Agents. Thus, a large Context Agent
cannot cover a zone explored by smaller Context Agents. The creation of a new Context
Agents is then compulsory.
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Figure 6.6 – Unproductivity NCS creation resolutions. The neighborhood is represented by
dashes. The Good Context Agents are boxed. For the illustrations, influences are not used.

3 Context Agent creation. If the Good Context Agent expansion fails, the second step is
engaged, a new Context Agent is created. The creation of a Context Agent involves the
initialization of the confidence, the local model and validity ranges. The section 6.2.3.2 will
detail the initialization of the confidence. The initialization of the validity ranges depends
on the availability of Neighbor Context Agents or the availability of a previous Incom-
petence NCS detection with its associated incompetent volume. Each case is listed in the
following.

— Validity ranges initialization without Neighbor Context Agents. In the case that
there isn’t any Neighbor Context Agents (Fig. 6.6a), the new validity ranges are ini-
tialized with the range creation radius rcreation

i (Fig. 6.6b).

— Validity ranges initialization with Neighbor Context Agents. When there are
Neighbor Context Agents (Fig. 6.6c), knowing the mean validity ranges size gives in-
formation about the spatial granularity of the neighborhood. The new validity ranges
are then initialize with the neighborhood mean validity ranges sizes (Fig. 6.6d).

— Validity ranges initialization with an incompetent volume. If a previous Incompe-
tence NCS detection occurred, an incompetent volume to fill is provided (Fig. 6.6e).
The new validity ranges are then initialized with the ranges of the incompetent vol-
ume (Fig. 6.6f).

After initializing the validity ranges, the local model must be set. The initialization of the
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local model depends on the availability of a Good Context Agent. A Good Context Agent is

a Context Agent with a good local model (i.e. d
f j
Ln,m

< m f
err). The two cases are presented

as follows.

— Local model Initialization without Good Context Agent. The local model is initial-
ized with only one learning situation, the exogenous learning situation Lexo

n,m of the
current learning cycle (Figures 6.6b and 6.6d).

— Local model Initialization with Good Context Agent. When a Good Context Agent
is available, its local model can be shared to create the new one and thus accelerate
the learning process. The Good Context Agent sponsors the Context Agent creation.
The new local model is initialized with the local model of the sponsor Context Agent
(Fig. 6.6f). The current exogenous learning situation Lexo

n,m is used to update the newly
created model with the lifelong learning mechanism (section 6.3).

Complete Redundancy NCS and Partial Redundancy NCS

We have seen that past certain validity ranges sizes, Context Agents can no longer grow
and generalize. Indeed, growing is a synonym of generalizing in the Context Learning
paradigm. This is why the Complete Redundancy NCS and Partial Redundancy NCS were in-
troduced. Detailed in the sections 5.4.2.4, 5.4.2.5, 5.4.4.4 and 5.4.4.5, the Complete Redundancy
NCS and Partial Redundancy NCS are learning inaccuracies that can be resolved instantly
without generating any endogenous perceptions P endo

n . They enable to merge or restructure
Context Agents validity ranges to accelerate the generalization process and make it continue
when the Context Agents can no longer do it by themselves. Each Valid Context Agent with
a complete local model seeks with which Neighbor Context Agent is could resolve a Complete
Redundancy NCS or Partial Redundancy NCS. Incomplete local models are not concerned as
their models are not reliable.

The learning inaccuracies NCS detections are common to the learning and exploitation
cycles. They will be detailed in the section 6.4.
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6.1.2.3 Learning Parameters

Table 6.3 reminds the added parameters for the learning cycles of ELLSA. One impor-
tant measure introduced with learning cycle is the learning criticality. The learning criticality
determines the learning degree of confidence of a Context Agent during learning. This mea-
sure will be detailed in section 6.2. A user parameter that was added in this section is the
model error margin, it enables to specify the desired prediction performances depending on
the model prediction distance. The model prediction distance is a metric that represents the affin-
ity of a local model towards a learning situation. This distance is model-dependent and needs
to be specified along with the selection of the learning models. The range perceptions proxim-
ity distance is a metric that measures the proximity of Context Agents validity ranges from the
perceptions input. The last added parameter is the maximum range radius that constrains the
expansion of the Context Agents validity ranges.

Name Notation Constrains Domain
User Parameter model error margin m f

err > 0 R

User Metric model prediction distance d
f j
Ln,m

model-dependent R

Designer Paramaters maximum range radius coefficient αRmax > 1 R

Designer Distance maximum range radius rmax
i (pR,αRmax )-dependent R

Designer Metric range perceptions proximity distance dR
j
n
Pn

≥ 0 R

Designer Criticality learning criticality Critlrn > 0 R

Table 6.3 – Table of user and designer parameters, distances, and criticalities involved in
learning cycles.
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6.1.3 Exploitation Cycles

An exploitation cycle is defined by an exploitation situation En as input of the learning
mechanism. Exploitation situations are only perceptions: En = [Pn]. Its is a request to the learn-
ing mechanism in order to obtain an output prediction vector O′m for specific perceptions. Usu-
ally, when a learning mechanism is exploited, it no longer learns. One of the goals of this
thesis is to make ELLSA learn even during exploitation. Thus learning inaccuracies can be
processed during an exploitation cycle. The algorithm 6.4 presents the main mechanisms of
an exploitation cycle.

6.1.3.1 Algorithm Description

The Valid Context Agents and Neighbor Context Agents are still activated by the Percept
Agents before the Head Agent exploitation cycle. The last local prediction vectors O j,last

m of the
Neighbor Context Agents are also updated with the perceptions P cl

n . The Best Context Agent BCn

is selected among the Valid Context Agents using the smallest exploitation criticality Critexpl

that will be detailed in section 6.2.1. Like in learning cycles, the search is expanded to the
Neighbor Context Agents and to all the Context Agents if there isn’t any Valid Context Agents
nor Neighbor Context Agents. The Best Context Agent provides the output prediction vectorOcl

m
′.

As in learning cycles, if no Best Context Agent is found, the last Best Context Agent or the
minimal and maximal experienced prediction vectors Omin

m and Omax
m are used.

Algorithm 6.4: Exploitation cycle cl for the Head Agent

Input : P cl
n

Output: Ocl
m
′

1 Update Neighbor Context Agents N Cn last local prediction vectors O j,last
m ;

2 Select the Best Context Agent BCn with the exploitation criticality Critexpl ;
3 Set the output prediction vector Ocl

m
′;

4 if cl> cboot then
5 Uselessness NCS ;
6 Conflict NCS and Concurrency NCS resolution;
7 Unproductivity NCS ;
8 Complete Redundancy NCS and Partial Redundancy NCS resolutions;
9 Learning inaccuracies NCS detection ;

10 end

If the cycle of execution is higher than the bootstrap cycles number, as in learning cycles,
all the NCS can be treated and the learning inaccuracies can be detected.

6.1.3.2 Exploitation NCS

The Uselessness NCS, the Complete Redundancy NCS and the Partial Redundancy NCS are
unchanged compared to the learning NCS. There are no Bad Prediction NCS during exploita-
tion cycles because the local models cannot be compared to any oracle’s prediction vectors. All

93



Endogenous Lifelong Learner by Self-Adaptation ELLSA

Conflict NCS and Concurrency NCS detections are treated by the Conflict NCS and Concur-
rency NCS resolutions. The difference with the learning cycles is that the Best Context Agent
is selected with the exploitation criticality. As there isn’t any exogenous prediction vector, it can-
not be verified that the Best Context Agent is a Good Context Agent. The confidences of the
loosing Context Agents are affected as during the learning cycles.

The Unproductivity NCS behaves differently as the local models of the Context Agents can-
not be verified. In the case that there are Neighbor Context Agents, a new Context Agents can
be created in some cases. The local predictions of the Neighbor Context Agents are use to cre-
ate an endogenous prediction vectorOendo

m . Each endogenous prediction oendo
k is the mean of the

Neighbor Context Agents predictions weighted by the inverse exploitation criticality.

oendo
k =

∑N C j
n

Critexpl
j
−1

.oj
k

∑N C j
n

Critexpl
j
−1 (6.2)

The local model of the created Context Agent is then initialized with the learning situation
Ln,m = [P cl

n ,Oendo
m ] Depending on the Neighbor Context Agents or the Incompetence NCS detec-

tion, the validity ranges of the new Context Agent are initialized as in the learning cycles. The
confidence initialization is detailed in section 6.2.3.2. However, to ensure that the weighted
endogenous prediction are reliable, the number of Neighbor Context Agents must be greater
that the creation neighbors number ncreation. ncreation is a designer parameter.

6.1.3.3 Exploitation with Sub-Perceptions

In the case of an exploitation with sub-perceptions, the given subset of perceptions is used
to define the set of Valid Context Agents (section 6.1.1). The Best Context Agent is chosen using
the exploitation criticality. The unspecified perceptions are set by default to the centers of the
Best Context Agent validity ranges.

6.1.3.4 Exploitation Parameters

Table 6.4 reminds the added parameters for the exploitation cycles of ELLSA. The ex-
ploitation criticality represents the exploitation confidence of a Context Agent. It will be de-
tailed section 6.2. ncreation is the minimal number of Neighbor Context Agents that are neces-
sary to create a new Context Agent without an exogenous learning situation.

Name Notation Constrains Domain
Designer Paramaters creation neighbors number ncreation > 0 N

Designer Criticality exploitation criticality Critexpl > 0 R

Table 6.4 – Table of user and designer parameters involved in exploitation cycles.
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6.2 Criticalities

The learning criticality and the exploitation criticality have been introduced in learning and
exploitation cycles to represent high level learning and exploitation confidences. The lower
the criticality is, the higher the confidence is. They enable to select the Best Context Agent dur-
ing the learning and exploitation cycles. The criticalities can gather the affinity with learning
situations (i.e. the model prediction distance), the confidences of Context Agents, their volume and
the distances to the perceptions (i.e. the range perceptions proximity distance). In the following
the learning criticality, the exploitation criticality and their metrics are presented.

6.2.1 Learning Criticality

The learning criticality Critlrn gathers the model prediction distance d
f j
Ln,m

with a learning

situation, the normalized confidence cj
0,1 of a Context Agent and its validity ranges volume V j

n.

Critlrn =
wlrn

fn
.d

f j
Ln,m

+ wlrn
c0,1

.cj
0,1
−1 + wlrn

Rn
.V j

n
−1

wlrn
fn

+ wlrn
c0,1

+ wlrn
Rn

(6.3)

3 wlrn
fn

is the accuracy learning weight. It represents the weight given to model prediction dis-

tance d
f j
Ln,m

. It is the weight given to the affinity of a local model with an exogenous learning
situation Lexo

n,m. The model prediction distance measures the accuracy of a local model.

3 wlrn
c0,1

is the experience learning weight. It represents the weight given to the normalized

confidence cj
0,1. The confidence is an image of a Context Agent history, its past experiences.

It is the result of all the past successes and failures of a Context Agent. The confidence
needs to be normalized to be used in the learning criticality (section 6.2.3.2).

3 wlrn
Rn

is the generalization learning weight. It represents the weight given to the validity
ranges volume of a Context Agent. The volume represents the generalization of a Context
Agent on the continuous space of perceptions.

The three learning weights enable to dose the importance of the model accuracy, the
experience history and the generalization of Context Agents during the selection of the Best
Context Agent for the learning cycles. They are three important facets of learning.

6.2.2 Exploitation Criticality

The exploitation criticality Critexpl gathers the range perceptions proximity distance dR
j
n
Pn

with

perceptions, the normalized confidence cj
0,1 of a Context Agent and its validity ranges volume

V j
n. As during an exploitation cycle an exogenous prediction vector is not available, the model

prediction distance is replaced by the range perceptions proximity distance.

Critexpl =
wexpl
Pn

.dR
j
n
Pn

+ wexpl
c0,1 .cj

0,1
−1 + wexpl

Rn
.V j

n
−1

wexpl
Pn

+ wexpl
c0,1 + wexpl

Rn

(6.4)
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3 wexpl
Pn

is the proximity exploitation weight. It represents the weight given to range percep-

tions proximity distance dR
j
n
Pn

. It is the weight given to the proximity of validity ranges to
input perceptions.

3 wexpl
c0,1 is the experience exploitation weight. It represents the weight given to the normalized

confidence cj
0,1 during exploitation cycles.

3 wexpl
Rn

is the generalization exploitation weight. It represents the weight given to the validity
ranges volume of a Context Agent during exploitation cycles.

The three exploitation weights enable to dose the importance of the proximity, the ex-
perience history and the generalization of Context Agents during the selection of the Best
Context Agent for the exploitation cycles.

6.2.3 Metrics

The learning and exploitation criticalities and the previously presented mechanisms use
several metrics that are detailed in the following. The metrics that are described in the fol-
lowing enable to measure Context Agents generalization and experience, local models affinity
and similarity, and validity ranges proximity in the perceptions space.

6.2.3.1 Generalization

The generalization is measured with the volumes of the Context Agents validity ranges.
The larger the validity ranges are, the more a Context Agent generalizes over a large part of
the continuous exploration space. The volume of a Context Agent V j

n is the simple product of
all the validity ranges rj

i lengths.

V j
n = ∏

i
rj

i = ∏
i
(rj

i,end − rj
i,start) (6.5)

6.2.3.2 Experience

Experience is measured with the confidence of the Context Agents. Confidence is initialized
at the creation of Context Agents. It then evolves though different experiences that can be
either successes or failures. The impact of positive and negative events on the Context Agents
are firstly detailed. Then, to compare the confidence to the other metrics, a normalization
mechanic is described.

Confidence Dynamics

Table 6.5 reminds all the confidences initializations and variations during learning and
exploitation cycles. The reference initialization confidence is 0.5. It corresponds to the creation
of a Context Agent with one exogenous learning situation. The initialization confidence is higher
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when a Neighbor Context Agent is sponsoring the creation. The creation with an endogenous
learning situation provides a much lower confidence as the endogenous prediction vector cannot
be verified.

The positive experiences that are defined as successes are the good local model feedback,
the volume gains and additional endogenous learning situation generated with the CNL mech-
anism. A good local model feedback is a good affinity of local model with a learning situation.
It increases the confidence by 1. The volume gains or losses represent exchanges of explored
areas. Confidences varies in proportion to the exchanged volumes. As in the creation of a
Context Agent, additional endogenous learning situations provide little bonus of confidence.

The negative experiences designated as failures are the bad local model feeback, Conflict
NCS, Concurrency NCS and volume losses. A bad feedback is more punished than a good
one. A Conflict NCS loss has the same degree of severity of a bad feedback as the winner
of the Conflict NCS possesses the lowest learning criticality or exploitation criticality. The Con-
currency NCS loss is little punished because it is just a spatial inaccuracy. The local model is
similar to the one of Best Context Agent.

Events Experiences
Confidence

Initialization Variation

Creations
Exogenous learning situation Lexo

n,m 0.5
Sponsor good local model and Lexo

n,m 1
Endogenous learning situation Lendo

n,m 0.01

Successes

Good local model feedback + 1
Merge with a Context Agent C j

n + cj

Volume gain from a Context Agent C j
n + (1− αloss)cj

nbendo endogenous learning situations Lendo
n,m + 0.01nbendo

Failures

Bad local model feedback − 2
Conflict NCS loss − 2
Concurrency NCS loss − 0.5
Volume loss αloss − (1− αloss)cj

Table 6.5 – Table of confidence dynamics through the different experiences of Context Agents

Confidence Normalization

The confidence cj of a Context Agent C j
n is a real number. The other metrics of the learning

criticality and exploitation criticality are positive real values (model similarity distance, valid-
ity ranges volumes, range perceptions proximity distance). To make the confidence comparable
to other learning metrics, it is modified with a Sigmoid normalization function. cj

0,1 is the
normalized confidence given by the equation 6.6.

cj
0,1(c

j) =
1

1 + e
− cj−pctr

pdisp

(6.6)

Let cmin and cmax the minimal and maximal confidences across all the Context Agents. To

97



Endogenous Lifelong Learner by Self-Adaptation ELLSA

cj

cj
n0,1(c

j)

cmin cmax

1

0

Figure 6.7 – Normalized confidence between 0 and 1.

adjust the slope between cmin and cmax, the systems of equations 6.7 is fixed.

cj
n0,1(cmin) = Cmin

n0,1

cj
n0,1(cmax) = Cmax

n0,1

(6.7)

Cmin
n0,1

and Cmax
n0,1

are fixed such as Cmin
n0,1

= 0.01 and Cmax
n0,1

= 0.99. The resolution of the equa-
tions gives the values of pctr and pdisp that enable to configure the normalization depending
on cmin, cmax, cmin

n0,1
and cmax

n0,1
.

pctr =
cmax−cmin.CNmax

min
1−CNmax

min

with CNmax
min =

ln
(

1
Cmax

n0,1
−1
)

ln

(
1

Cmin
n0,1
−1

)
pdisp = pctr−cmax

ln
(

1
Cmax

n0,1
−1
)

(6.8)

The normalization could be done with a simple linear function but this function offers
more possibilities for distributing the confidences values between 0 and 1. It also enables to
not always update cmin and cmax as the function is strictly constrained in the interval ]0, 1[.

6.2.3.3 Model

This section presents the model-dependent distances of the learning mechanism ELLSA.

The model prediction distance d
f j
Ln,m

and the model similarity distance d f
sim.

Local Model Affinity

The model prediction distance d
f j
Ln,m

measures the affinity of learning situations with a lo-
cal model. In this thesis, we illustrated the use of local models with linear regressions. Context
Agents C j

n have local linear regression models as local models f j
n. For each vector of perceptions

Pn in the validity ranges, a Context Agent provides a local prediction vector O j
1 ∈ R calculated

from the coefficients of its model [aj
0, . . . , aj

i , . . . , aj
n] ∈ Rn+1 and perceptions Pn according to

the following equation:
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O j
1 = oj

1 = f j
n(p1, pi, · · · , pn) =

n

∑
i=1

aj
i .pi + aj

0 (6.9)

The prediction vectors are real values O′1 and O1. A learning situation is Ln,1 = [Pn,O1] =

[Pn, o1]. In this context, the model prediction distance d
f j
Ln,1

is the euclidian distance between a
learning situation Ln,1 and the local linear model. It is the distance between a point with n+ 1
dimensions which is the situation Ln,1 = [Pn,O1], and the hyperplane H representing the
linear model f j

n. The n + 1th dimension is the prediction dimension.

d
f j
Ln,1

=
| #           »Ln,1H. #»n |
‖ #»n ‖ =

|O1.1− aj
1.p1 − . . .− aj

n.pn − a0|
‖ 12 + aj

1
2
+ . . . + aj

n
2 ‖

with −aj
1.x1 − . . . − aj

n.xn + 1.o1 − a0 =0 the cartesian equation of the plane and
#»n = [−aj

1, . . . ,−aj
n, 1] a normal vector to the hyperplane H, O1 the oracle’s prediction,

[aj
0, aj

1, . . . , aj
n] the model coefficients and [p1, . . . , pn] the perceptions Pn. For other learning

models, the distance to a learning situation is different.

p2

o1

p1

O1

P2

#»n

f j
2(p1, p2)

L2,1

d
f j
L2,1

rj
1

rj
2

Figure 6.8 – Distance to a learning situation with 2 perceptions.

Demonstration. A linear regression of dimension n estimates the coefficients ai to define
the following function depending on the variables pi. In our case, the result of the function
is the prediction value o1.

f (p1, . . . , pi, . . . , pn) = a1.p1 + . . . + ai.pi + . . . + an.pn + a0 = o1 (6.10)

The corresponding hyper-plane equation of this function is given by the equation 6.11.

a1.p1 + . . . + ai.pi + . . . + an.pn + a0 = o1

−a1.p1 − . . .− ai.pi − . . .− an.pn + 1.o1 − a0 = 0
(6.11)
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with (−a1, . . . ,−ai, . . . ,−an, 1) a normal vector.

Considering a learning situation Ln,1 = [Pn,O1] with coordinates [p1, . . . , pi, . . . , pn,O1]

in the frame {p1, . . . , pi, . . . , pn, o1} , the distance between the hyper-plane of the regression
and the learning situation Ln,1 is given by the equation 6.12.

dLn,1,H =
| #           »Ln,1H. #»n |
‖ #»n ‖ =

| − a1.p1 − . . .− an.pn +O1.1− a0|
‖ aj

1
2
+ . . . + aj

n
2
+ 12 ‖

(6.12)

Local Model Similarity

The model similarity distance d f
sim is another model-dependent distance. It measures the

similarity between two local models. When the local models are linear models, f j1
n and f j2

n ,
the coefficients on each dimension aj1

i and aj2
i of the regressions are compared to evaluate

the similarity. The maximum difference between the coefficient is retained as the model
similarity distance with linear models d flr

sim.

d flr
sim( f j1

n , f j2
n ) =

n
max
i=0

|aj1
i − aj2

i |
amax (6.13)

With amax the maximum regression coefficient across Context Agents. Two local linear models
are similar when the model similarity distance is lesser than the model similarity threshold t f

sim.

d flr
sim( f j1

n , f j2
n ) < t f

sim (6.14)

6.2.3.4 Proximity

The proximity of a Context Agent is measured by the range perceptions proximity distance

dR
j
n
Pn

. It is an external Manhattan distance. It represents the distance between the perceptions
and the validity ranges of a Neighbor Context Agents. It is the sum of the external distances
between each perception pi and each validity range rj

i .

dR
j
n
Pn

= ∑
i

pi rj
i (6.15)

with pi rj
i = min(|pi − rj

i,start|, |pi − rj
i,end|) if the perception pi is not included in the

validity range. Is the perception pi is included in the validity range, the distance pi rj
i is zero.
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6.2.4 Synthesis

This section has presented the learning criticality and the exploitation criticality. These met-
rics enable to chose the importance of model accuracy or proximity, past experiences and
generalization during learning and exploitation cycles. The metrics for all these facets of
learning where also detailed. Table 6.6 reminds the parameters involved. The two model-
dependent distances which are the model prediction distance and the model similarity distance
were presented in the context of linear regression which is the used learning model of this
work.

Name Notation Constrains Domain

User Metrics
model prediction distance d

f j
Ln,1

linear regression R

model similarity distance d flr
sim linear regression R

Designer Paramaters

accuracy learning weight wlrn
fn

≥ 0 R

experience learning weight wlrn
c0,1

≥ 0 R

generalization learning weight wlrn
Rn

≥ 0 R

proximity exploitation weight wexpl
Pn

≥ 0 R

experience exploitation weight wexpl
c0,1 ≥ 0 R

generalization exploitation weight wexpl
Rn

≥ 0 R

model similarity threshold t f
sim > 0 R

Designer Metrics
normalized confidence cj

0,1 ]0; 1[ R

validity ranges volume V j
n > 0 R

range perceptions proximity distance dR
j
n
Pn

≥ 0 R

Designer Criticalities
learning criticality Critlrn (wlrn

fn
,wlrn

c0,1
,wlrn
Rn

)-dependent R

exploitation criticality Critexpl (wexpl
Pn

,wexpl
c0,1 ,wexpl

Rn
)-dependent R

Table 6.6 – Table of designer parameters, metrics and criticalities involved in learning and
exploitation criticalities.
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6.3 Lifelong Context Learning

In this section, the updating of the local model with learning situations is detailed. A life-
long updating mechanism is proposed for updating any underlying learning model em-
bedded in the Context Agents. This mechanisms was designed to enable learning models to
memorize their past learning situations without storing all of them. The main idea is to ask
the local model for a set of prediction vectors that will represent its local model so far. These pre-
dictions are then mixed with any new learning situations so that local models learn from past
and new learning situations. This mechanism is used for learning exogenous and endoge-
nous situations. First, the motivations of this mechanisms are presented. Then the principle
of weighted model update is described followed by the necessary generation of artificial
learning situations. The presentation of the two possible update scenarios finish this contri-
bution.

6.3.1 Motivations

Learning models can require to memorize a large number of learning situations if all the
history of situations must have an impact on the learning. This brings up different differ-
ent issues. In a context of Lifelong Learning, all learning situations can not be stored to avoid
memory and time saturation. The more learning situations they are, the more the update of a
learning model takes time. Old learning situations can also be obsolete if the validity ranges of
a Context Agent have changed. Keeping a subset of learning situations requires a non-obvious
selection strategy. For all of these reasons, updating local models with learning situations in a
lifelong setting is needed. We call it Lifelong Context Learning.

6.3.2 Weighted Model Update

The proposed solution is to give a weight to a new learning situation so that the modifi-
cation of a local model can be controlled. Let f j

n,cl be the model of a Context Agent at a cycle
cl . It represents the resulting model of all the previous adjustments that occurred during
the previous cl−1 cycles. A new learning situation at a cycle cl has an influence on the local
model that is represented by its learning weight wlrn with 0 < wlrn 6 1. The learning weight
represents the learning speed of local models.

To satisfy the learning weight, artificial learning situations are needed. Let nL
new

the number
of new learning situations and nL

arti f icial
the number of artificial learning situations. The number

of artificial learning situations is given by the equation 6.16. Floor values are considered as
the number must be an integer.

nL
arti f icial

= bnLnew
.
1− wlrn

wlrn
c (6.16)

Let nL
needed

the total learning situations that are needed by a local model (i.e. Model Ambiguity
NCS) and nL

total
= nL

arti f icial
+ nL

new
are the total available learning situations to adjust a model

for a cycle cl . If nL
total

is less than nL
needed

, a factor k ∈N is used to increase the number nL
total

and satisfy the inequality 6.17.
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nL
needed ≤ k.nL

total ⇔ nL
needed ≤ k.(nL

arti f icial
+ nL

new
) (6.17)

6.3.3 Artificial Learning Situations Generation

To satisfy the learning weight during the update of a local model, artificial learning situations
must be generated. The generation of artificial learning situations implies the generation of
artificial perceptions P arti f icial

n and artificial prediction vectors Oarti f icial
m .

The artificial perceptions are created using a normal distribution of as many dimensions
as the perceptions. The distribution is centered on the considered Context Agent validity ranges
center : µ = rj

i,center = (rj
i,start + rj

i,end)/2.

f (pi) =
1

σ.
√

2π
e
− 1

2

(
pi−rj

i,center
σ

)2

(6.18)

The standard deviation σ is set with the empirical rule (equation 6.19).

Pr(µ− kσσ ≤ parti f icial
i ≤ µ + kσσ) ≈ 0.6827 with kσ = 1

Pr(µ− kσσ ≤ parti f icial
i ≤ µ + kσσ) ≈ 0.9545 with kσ = 2

Pr(µ− kσσ ≤ parti f icial
i ≤ µ + kσσ) ≈ 0.9973 with kσ = 3

...

(6.19)

To ensure that artificial perceptions are near the centers of the Context Agents, σ is set by
verifying the equations 6.20. Thus σ = αPgen .rj

i,radius/kσ with αPgen the perceptions generation
coefficient that allows to chose the zone of generation depending on the validity range radius
rj

i,radius = (rj
i,end − rj

i,start)/2 and kσ the selected quantile (Fig. 6.9). A perceptions generation
coefficient of 1 considers the entire validity range.

µ− kσσ = rj
i,center − αPgen rj

i,radius

µ + kσσ = rj
i,center + αPgen rj

i,radius

(6.20)

The resulting distribution is given in the equation 6.21. It enables to distribute the artifi-
cial perceptions around the center of the Context Agents where they are most confident. Figure
6.9 shows an illustration of the distribution on a one dimension validity range.

f (pi) =
1

αPgen .rj
i,radius

kσ
.
√

2π

e

− 1
2

 pi−rj
i,center

αPgen .rj
i,radius

kσ


2

(6.21)

By fixing kσ to 3, there is one chance in 370 that an artificial perception parti f icial
i is outside

the generation interval. Assuming that there is a minimal of one new learning situation, this
implies that for such a situation to happen, the learning weight must be under 1/371 ≈ 0.003,
which is very low. Another scenario is that the learning model needs more than 370 to be
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pi

µµ− kσσ µ + kσσ

rj
i,center − αPgen .rj

i,radius

rj
i,center + αPgen .rj

i,radius

rj
i,start rj

i,end

Figure 6.9 – Probability density for artificial perceptions generation

reliable. In this study, such models are not considered. If it were the case, kσ should be fixed
to a higher value.

For each artificial generated perceptions, an artificial prediction vector is asked to the model
of the Context Agent to complete the artificial learning situations. The artificial and the new
learning situations are then given to the local model which is recalculated with past and new
experiences. In this thesis, the used learning algorithm is Miller’s regression [Miller, 1992].
The consequence of the use of artificial learning situations is that when a Context Agent re-
ceives new learning situations, the model can adjust itself choosing the importance of the
new experiences with a learning weight wlrn. This distribution ensures that the center of the
local models are slightly altered.

6.3.4 Local Models Update Scenarios

The local models update is different if it has been completed or not (cf. sections 5.4.3.1
and 5.4.5.1). These differences are presented in the first instance. In a second stage, it is
detailed how exogenous learning situations and endogenous learning situations are also treated
differently.

6.3.4.1 Immature and Mature Models

As presented in the Model Ambiguity NCS (section 5.4.3.1), local models can be in two
different states. When a local model has not received sufficient learning situations, it is in an
incomplete or immature state. When it has received enough, it is in a complete of mature
state. This differentiates two kinds of model update.

3 Incomplete Model Update. The model was not able to forge a complete representation
of its learning so far. Each new learning situations are stored and have the same weight
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during the construction of the model.

3 Complete Model Update. The model has already built a complete representation. Each
new learning situation has a learning weight wlrn to preserve the old model state.

6.3.4.2 Exogenous and Endogenous Learning

ELLSA learning mechanisms can lead to Exogenous Learning and Endogenous Learning.
Exogenous Learning concerns exogenous learning situations provided one at the time from an
external entity of the learning mechanism (i.e. the oracle). Endogenous Learning concerns
endogenous learning situations provided in different quantities. The quantity is defined by the
number of Neighbor Context Agents during Cooperative Neighborhood Learning (section 5.6).
Exogenous and endogenous model updates have different learning weights.

3 Exogenous Model Update. A new exogenous learning situation modifies a complete
model with an exogenous learning weight wexo

lrn . If the model is incomplete, the learning
situation is exploited as previously explained.

3 Endogenous Model Update. A set of endogenous learning situations updates a complete
model with an endogenous learning weight wendo

lrn . The weight concerns the entire set and
not only one learning situation like for exogenous learning situations. Endogenous learning
situations do not update incomplete models.

The exogenous learning weight and the endogenous learning weight enable to select the im-
pact of Exogenous Learning and Endogenous Learning.

6.3.5 Synthesis

The section presented Lifelong Context Learning, a mechanism allowing to update learn-
ing models through lifelong new learning situations. In particular, it permits not to store all
the experienced learning situations, only the first ones.

Table 6.7 reminds the involved parameters. They are the weights of the exogenous and
endogenous learning situations. The perceptions generation coefficient represents the portion
of the Context Agents validity ranges that are exploited when artificial learning situations are
generated to fulfill the desired learning weights.

Name Notation Constrains Domain

User Parameters
exogenous learning weight wexo

lrn ]0; 1] R

endogenous learning weight wendo
lrn ]0; 1] R

Designer Parameter perceptions generation coefficient αPgen > 0 R

Table 6.7 – Table of designer parameters involved in Lifelong Context Learning.
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6.4 Learning Strategies

This section presents the two learning strategies that can be followed with ELLSA. The
Active Learning Strategy and the Self-Learning Strategy. The Active Learning Strategy assumes
that any new learning situation can be actively requested to an oracle. Learning inaccuracies
can be resolved by asking specific situations. The Self-Learning Strategy assumes that the
learner passively receives learning situations from an oracle. Learning inaccuracies can only be
resolved with internal self-exploitation situations.

6.4.1 Active Learning

The Active Learning Strategy is based on the availability of active learning situations that
can be asked to the oracle anytime and anywhere in the search space. In opposition to passive
learning situations, active learning situations are defined as follows.

3 Active learning situations Lact
n,m are composed of endogenous perceptions P endo

n and an
exogenous prediction vectorOexo

m : Lact
n,m = [P endo

n ,Oexo
m ]. The endogenous perceptions are gen-

erated by ELLSA. The exogenous prediction vector is provided by the oracle.

3 Passive learning situations Lpass
n,m are composed of exogenous perceptions P exo

n and an
exogenous prediction vector Oexo

m : Lpass
n,m = [P exo

n ,Oexo
m ]. Passive learning situations are exoge-

nous learning situations with exogenous perceptions.

Figure 6.10 – Active Learning Strategy

Figure 6.10 shows the general view of the agents communications during the Active
Learning Strategy. During this strategy, learning inaccuracies are resolved with only learning
cycles (presented section 6.1.2). In the Active Learning Strategy setting, the learning inaccu-
racies detections are processed at the end of each learning cycle. The goal of the learning
inaccuracies detections is to generate endogenous perceptions for future active learning situa-
tions. All learning inaccuracies resolutions are made with active learning cycles for which the
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oracle provides an exogenous prediction vector associated to the actively requested endogenous
perceptions. All learning inaccuracy NCS resulting behaviors for the Active Learning Strategy
are detailed in the following.

3 The Model Ambiguity NCS detection intentionally targets random endogenous perceptions
inside incomplete Context Agents local models. On a future learning cycle, the endogenous
perceptions are actively requested to the oracle. The targeted incomplete local models re-
ceive new active learning situations to complete their model during the feedback of Valid
Context Agents.

3 The Conflict NCS and Concurrency NCS detection generate endogenous perceptions in the
centers of the overlapping areas. In this case, the endogenous perceptions provide active
learning situations that enlighten which Context Agent must win the Conflict NCS or the
Concurrency NCS. During learning cycles, its the Best Context Agent that is selected with
the learning criticality. These overlapping areas are then removed during the Bad Predic-
tion NCS, the Conflict NCS and the Concurrency NCS resolutions.

3 The Incompetence NCS detection creates endogenous perceptions associated with incompe-
tent volumes. The active learning situations will trigger Unproductivity NCS with already
known validity ranges initializations (i.e. the incompetent volumes). This allows to actively
explore the space of the perceptions without adding new Conflict NCS and Concurrency
NCS during the creation of the new Context Agents.

3 The Range Ambiguity NCS detection creates endogenous perceptions next to adjacent Con-
text Agents with different local models. The associated active learning situations will trigger
good local model feedback if a validity range border is correct. If a border is not correct, it
will trigger Bad Prediction NCS that will adjust the validity range.

The Cooperative Neighborhood Learning mechanism is not used in the Active Learning Strat-
egy. Full trust is given to the oracle. This strategy can suffer from the fact that in real world
learning scenarios, it is no always possible to request specific situations. Moreover, if the
exogenous learning situations are provided from the exploration of an environment or robot
states, some situations may be unreachable. The Active Learning Strategy is for learning sce-
narios where the perceptions space is completely reachable or partially reachable. In other
case, the Self-Learning Strategy can be used.
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6.4.2 Self-Learning

The Self-Learning Strategy is based on the non-availability of active learning situations and
on learning data saving. Only passive learning situations are provided to the learning mech-
anisms. The goal of the Self-Learning Strategy is to learn with as few learning situations as
possible. To do so, ELLSA uses passive learning situations and endogenous exploitation situa-
tions to learn.

3 Passive learning situations Lpass
n,m are composed of exogenous perceptions P exo

n and an
exogenous prediction vector Oexo

m : Lpass
n,m = [P exo

n ,Oexo
m ].

3 Endogenous exploitation situations E endo
n are endogenous perceptions provided to ELLSA

for an exploitation cycle: E endo
n = [P endo

n ]. They are self-exploitation situations.

Figure 6.11 – Self-Learning Strategy

Figure 6.11 shows the general view of the agents communications during the Self-
Learning Strategy. During this strategy, learning inaccuracies are resolved with learning and
exploitation cycles (presented sections 6.1.2 and 6.1.3). In the Self-Learning Strategy setting,
the learning inaccuracies detections are processed at the end of learning and exploitation cy-
cles. The goal of the learning inaccuracies detections is to generate endogenous perceptions for
future endogenous exploitation situations. Unlike the Active Learning Strategy, the Self-Learning
Strategy does not use new exogenous prediction vectors to resolve the detected learning inac-
curacies. All detected learning inaccuracies resolutions are made with only exploitation cycles
for which the perceptions are actively requested by the endogenous perceptions. All learning in-
accuracy NCS resulting behaviors for the Self-Learning Strategy are detailed in the following.

3 The Model Ambiguity NCS detection targets random endogenous perceptions inside incom-
plete Context Agents local models to generate new learning situations. As new exogenous
prediction vectors are not available with this strategy, prediction vectors are requested to
the incomplete model and they serve as endogenous prediction vectors.
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3 The Conflict NCS and Concurrency NCS detection generate endogenous perceptions in the
centers of the overlapping areas. The endogenous perceptions lead to an endogenous ex-
ploitation situation that activates the overlapping Context Agents. The exploitation critical-
ity is used to determine which Best Context Agent wins the Conflict NCS or Concurrency
NCS. The overlapping areas are then removed during the Conflict NCS and the Concur-
rency NCS resolutions.

3 The Incompetence NCS detection creates endogenous perceptions associated with incom-
petent volumes when the numbers of Neighbor Context Agents are greater than the cre-
ation neighbors number. The endogenous exploitation situations trigger Unproductivity NCS
if the numbers of Neighbor Context Agents in the new neighborhoods are also greater than
the creation neighbors number. In the Self-Learning Strategy setting, a minimal number of
Neighbor Context Agents is needed both for the detection and the resolution of Incom-
petence NCS. This mechanism is not intended for exploration but rather for filling un-
explored perceptions that are close to other Context Agents. As detailed in section 6.1.3,
an endogenous prediction vector is created with the predictions of the Neighbor Context
Agents.

3 The Range Ambiguity NCS detection creates endogenous perceptions next to adjacent Con-
text Agents with different local models. As no exogenous learning situation is requested in
this strategy, it is the role of the CNL mechanism to enhance the discontinuities where
they are detected. As detailed in the section 5.6, Prediction Neighbor Context Agents pro-
vide endogenous learning situations to the Best Context Agent of the current cycle. The shar-
ing of learning situations between Prediction Neighbor Context Agents allows to smooth the
local models when continuity is assumed. When the Neighbor Context Agents are not in the
prediction neighborhood, the endogenous learning situations are not shared an the assumed
discontinuity is represented by the Context Agents.

As previously said, the Self-Learning Strategy is intended for learning with less exogenous
learning situations as the Neighbor Context Agents are used to provide additional endogenous
learning situations. Moreover, as the Self-Learning Strategy can also be performed with only
exploitation cycles, the learning mechanisms can keep enhancing its models even when the
learning phase is over. A classical passive exploitation phase thus become an active exploita-
tion phase.
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6.4.3 Synthesis

In this section, a focus was made on two different learning strategies with different
scopes: the Active Learning Strategy and the Self-Learning Strategy.

The Active Learning Strategy is intended for learning scenarios for which specific new
learning situations can be requested to an oracle. In the Active Learning Strategy, only learn-
ing cycles are used to detect and solve learning inaccuracies. The detection generates active
learning situations to speed up the learning process.

The Self-Learning Strategy is intended for learning scenarios where the goal is to minimize
learning situations without requesting additional and specific new active learning situations. In
the Self-Learning Strategy learning and exploitation cycles are used. The learning cycles are
for passive learning situation and the detection of learning inaccuracies. The exploitation cycles
are for the endogenous exploitation situations that solve the learning inaccuracies. The exploita-
tion cycles can also detect learning inaccuracies. It is the principle of active exploitation. It
is the use of the Self-Learning Strategy on an exploitation phase where the learning mecha-
nism can keep seeking for learning inaccuracies and enhancing its models while it is being
exploited.
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6.5 Learning Reflections

In this section, reflections on ELLSA according to Transfer Learning, Multi-Task Learning
and Reinforcement Learning are made. Learning scenarios in relation to these paradigms are
presented. Working mechanisms and future leads are proposed.

6.5.1 Context Transfer Learning

As presented in the state of the art in section 3.1, Transfer Learning is an important con-
cern in AI. Knowledge generalization and transfer is a challenge that is attracting a lot of
attention in Machine Learning. One of the objectives of ELLSA is to perform Transfer Learning.
We use the Transfer Learning framework of [Pan and Yang, 2010] to introduce Context Transfer
Learning divided into Context Domain Adaptation and Context Inductive Transfer.

6.5.1.1 Context Domain Adaptation

Domain adaptation in Transfer Learning corresponds to transferring the knowledge of a
same task T between two different domains that are the source domain DS and the target
domain DT. In Context Learning, a task is represented by a set of Context Agents, the knowl-
edge of the task is distributed in the local models. The domains are the set of perceptions.
The two different domains are different perceptions in quantity and/or in nature. Figure 6.12
shows an example of domain adaptation with a robot task. The learned task could be a de-
livery or surveillance trajectory to follow. With two perceptions, the task would be performed
by a terrestrial robot and with three perceptions, it would be an aerial robot.

Figure 6.12 – Context Domain Adaptation

Assuming that the perceptions are of the same nature (the position in space for example),
depending on the target and source domain, two cases appear.

3 DS = {p1, p2, p3} andDT = {p1, p2}. The domain adaptation is a reduction of the space.
Updating the validity ranges is easy as only the target perceptions are kept. Updating
the local models would require to question the predictions of the 3-dimensional Context
Agents to generate artificial learning situations (section 6.3) for the 2-dimensional Context
Agents local models.

3 DS = {p1, p2} and DT = {p1, p2, p3}. The domain adaption is an increase of the space.
In this case the validity ranges of the new perception needs to be generated with default

111



Endogenous Lifelong Learner by Self-Adaptation ELLSA

values or with the averages of source domain validity ranges. The local models can then
be updated with the same method than the domain reduction.

If the perceptions are not from the same nature, the state of wheels and rotors for example,
additional mechanisms would be needed to transfer the validity ranges and local models. En-
dogenous Context Learning seems appropriate for domain adaption as it offers great Context
Agents malleability. The validity ranges and local models are easily exploitable and provide
great evolutionary properties.

6.5.1.2 Context Inductive Transfer

Inductive Transfer in Transfer Learning corresponds to transferring the knowledge of a
same domain D between two different but related tasks that are the source tasks TS and
the target task TT. As we said, in Context Learning, a task is represented by a set of Context
Agents where the knowledge of the task is distributed in several local models. The unique
domain is the set of perceptions. The two tasks are learned with two training sets of learning
situations. The first is larger than the second as the second learning must transfer already
known experiences. Figure 6.13 shows an example of inductive learning with robot tasks
in a domain with two perceptions p1 and p2. Keeping the example of a trajectory task, the
goal in this case is to learn the second trajectory that is the target task with fewer learning
situations.

Figure 6.13 – Context Inductive Transfer

The learning of the second task should exploit already learned models to save learning
situations and reuse the Context Agents that are also reliable for the new task. This is exactly
what Endogenous Context Learning does when it creates new Context Agents. Experiments in
order to evaluate the transfer properties of ELLSA will be conducted section 7.9.

6.5.2 Context Multi-Task Learning

Multi-Task Learning, presented section 3.2, is another challenge of AI. The Multi-Task
Learning challenge is to generalize knowledge across several related learned tasks and use
this knowledge to achieve better performances on each task. Figure 6.14 shows an example
of several tasks T1,T2 and T3 represented by Context Agents with two perceptions. The 3 tasks
are different but still related.

In this work, tasks are not represented in a symbolic manner. If a task T1 is learned, the
second learned task T2 will transfer the usable local models but conflicting models with the
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Figure 6.14 – Context Multi-Task Learning

new task will be forgotten. A first step would be to create one collective of Context Agents
by task. Previously learned tasks could be used during the learning of the new tasks but
they would be kept intact. This mechanism would enable to learn several tasks and share
common knowledge about them during the learning of new ones. However an issue could
be the scalability of such implementation. If the number of tasks is large, all of them cannot
be stored.

Generalization across learned tasks would enable to tackle this problem. All tasks could
be merged into a high level collective of Context Agents which would represent a general-
ization of all learned related tasks. To go further, a measure of similarity between learned
tasks (i.e. sets of Context Agents) would need to be introduced in order to detect which tasks
should be merged into generalized knowledge and which should not.

6.5.3 Context Reinforcement Learning

Reinforcement Learning, presented section 2.4, is a widely use approach in AI to explore
and learn from an environment by acting and interacting with it. The discovery of the
environment is made thanks to a reward that is given when positives situations are en-
countered. Endogenous Context Learning provides tracks to explore using the Reinforcement
Learning paradigm. Figure 6.15 shows a simple example of a Reinforcement Learning problem
where a robot has to reach certain areas (green areas) and avoid other ones (red areas) in a
2D space represented by the perceptions p1 and p2.

The goal of classical Reinforcement Learning is to generate a policy from the experienced
rewards so that the positive situations can be reached in an optimal way. What can be done
with Endogenous Context Learning is to learn the reward function with Context Agents and
then to convert the collective of Context Agents into a policy. The learned rewards only rep-
resent the situations that are positive (green), negative (red) and neutral (gray). But the pos-
itive situations cannot be reached and the negative situations cannot be avoided as the neu-
tral rewards do not provide any better or worse directions. To generate the policy from a
learned reward function, the Context Agents should smooth the rewards predictions across
all the collective of agents. As introduced with the CNL mechanism, Context Agents could
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Figure 6.15 – Context Reinforcement Learning

share their predictions to their neighbors to generate a reward gradient. The reward gradi-
ent would then be the learned policy enabling to point out which direction to follow.

Coupled with the learned policy, a controller permitting to move the learner (the robot in
this example) in the space of the learned policy would be needed. The learned policy would
provide the closest perceptions with the highest reward. The controller would provide the
actions to reach the perceptions.

This approach would allow to perform Reinforcement Learning in continuous
state and action spaces which is not the case in most Reinforcement Learning ap-
proaches [Montazeri et al., 2011]. Recent works focuses on continuous state and ac-
tion space Reinforcement Learning as it is better suited for real world applications
[Fernandez-Gauna et al., 2018].
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6.6 Synthesis

This section presents a synthesis of the two contributions chapters. First, conclusions
are provided for the Endogenous Learning principles and the Endogenous Lifelong Learner by
Self-Adaptation (ELLSA). Then, a summary of all parameters and distances is reminded.

6.6.1 Endogenous Learning Principles

The chapter on the Endogenous Learning principles resulted in the introduction of several
mechanisms which were introduced in several stages.

3 Definitions and Objectives. Endogenous Learning was defined and its objectives were
presented in terms of general learning hypotheses. The hypotheses were declined into
Context Learning oriented hypotheses. The objectives enabled to clearly identified the
possible shortcomings during Context Learning.

3 Neighborhood. To overcome deficiencies, a first step was to design neighborhood
mechanisms to add local interactions between the fragments of knowledge that are
the Context Agents. The neighborhood and influences enable local sets of Context Agents
to communicate and exchange information without considering all the Context Agents
of the learning mechanism. Thus, unnecessary operations can be avoided. The locality
principle provides a gain in computation time and memory distribution properties.

3 Learning Inaccuracies. The shortcomings of Context Learning were identified as learn-
ing inaccuracies. They are divided into exploration learning inaccuracies that concern the
Context Agents validity ranges and model learning inaccuracies that concern the Context
Agents local models. Thanks to the addition of neighborhood and influences, the detection
and resolution of learning inaccuracies are detailed. The resolution scheduling strategy
is presented with the establishment of priorities to each learning inaccuracies.

3 Cooperative Neighborhood Learning. A last mechanisms entitled Cooperative Neigh-
borhood Learning is presented. Still benefiting from the neighborhood and influences mech-
anisms, a way to generate endogenous learning situations is exhibited. Neighbor Context
Agents share their own model predictions to reach continuity between their local models
borders.

6.6.2 ELLSA

The chapter on the Endogenous Lifelong Learner by Self-Adaptation (ELLSA) detailed the
integration of the Endogenous Learning principles into a larger Multi-Agent System using sev-
eral learning techniques and strategies. It involved the description of the execution cycles,
the introduction of learning and exploitation criticalities, the implementation of a Lifelong
Learning mechanism for Context Learning, the definition of two learning strategies and a re-
flection and positioning in relation to other learning paradigms.

3 Execution cycles. The sequence of an execution cycle of the learning mechanism ELLSA
is outlined from the perceptions input to the output prediction vector. The other agents
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constituting the learning mechanism are detailed. The Percept Agents are responsible for
optimizing the activation of the Context Agents. The Head Agent selects the best Context
Agent with different metrics for the prediction output. Learning and exploitation cycles
are differentiated by the availability of learning situations. The contribution concerning
the execution cycles is firstly the optimization of the Context Agents and Neighbor Context
Agents activations. Another enhancement is the addition of neighborhood mechanisms
into Context Learning.

3 Criticalities. The learning criticality and the exploitation criticality represent the reliability
of the Context Agents. They rely on metrics of generalization, experience, performance
and proximity. The criticalities are configurable so that the importance of the metrics
can be chosen. This section brings a formalization of generalization, experience and
performance in the Context Learning paradigm when only performance was initially
used.

3 Lifelong Learning. A mechanism was introduced to learn in a lifelong setting. It enables
to update any learning model without storing all the learning situations. To do so, when
a local model receives a new learning situation, artificial learning situations are generated
with the local model that will be updated. The artificial learning situations represent past
learning. The new learning situation is combined with the artificial learning situations
to merge past and new experiences. Lifelong Context Learning main contribution is the
possibility to control the learning weight of any new learning situation on any learning
model without being constrained by it.

3 Learning Strategies. Two different learning strategies where presented: the Active
Learning Strategy and the Self-Learning Strategy. The Active Learning Strategy relies on the
availability of specific learning situations that can be actively requested by the learner.
The Self-Learning Strategy focuses on using as little learning situations as possible while
generating endogenous learning situations to counterbalance the lack of information. The
strategies involve different ways of resolving the learning inaccuracies. These two strate-
gies provide active and self generation of knowledge when only passive learning was
performed in classical Context Learning.

3 Reflections. To finish, a reflection was made concerning how Endogenous Context Learn-
ing is positioned in relation to some challenges AI is facing nowadays. The focus is
made on Transfer Learning, Multi-Task Learning and Reinforcement Learning. Concerning
Transfer Learning, Endogenous Context Learning offers interesting leads on task transfer
that would need to be assessed in practical cases. About Multi-Task Learning, additional
work would be needed to address this problem as several tasks are represented by sev-
eral collectives of Context Agents and ELLSA only considers one set of Context Agents.
Regarding Reinforcement Learning, Endogenous Context Learning brings promising direc-
tions as it provides continuous state and action spaces when most of Reinforcement
Learning approaches use discrete spaces.
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6.6.3 Parameters, Distances, Metrics and Criticalities

The table 6.8 summaries all the parameters, distances, metrics and criticalities introduced
in the contributions chapters. They are differentiated between user and designer use.

Name Notation Constrains Domain

U
se

r

Parameters

validity ranges precision pR ]0, 1[ R

model error margin m f
err > 0 R

bootstrap cycles number cboot > n N

exogenous learning weight wexo
lrn ]0; 1] R

endogenous learning weight wendo
lrn ]0; 1] R

discontinuity detection probability pbdisc ]0; 1[ R

Distance range creation radius rcreation
i (pR)-dependent R

Metrics
model prediction distance d

f j
Ln,m

model-dependent R

model similarity distance d f
sim model-dependent R

D
es

ig
ne

r

Parameters

neighborhood radius coefficient αN > 0 R

influence radius coefficient αI > 0 R

maximum range radius coefficient αRmax > 1 R

range similarity coefficient αRsim ]0, 1[ R

minimum range coefficient αRmin ]0, 1[, αRmin < αRsim R

creation neighbors number ncreation > 0 N

perceptions generation coefficient αPgen > 0 R

model similarity threshold t f
sim ≥ 0 R

accuracy learning weight wlrn
fn

≥ 0 R

experience learning weight wlrn
c0,1

≥ 0 R

generalization learning weight wlrn
Rn

≥ 0 R

proximity exploitation weight wexpl
Pn

≥ 0 R

experience exploitation weight wexpl
c0,1 ≥ 0 R

generalization exploitation weight wexpl
Rn

≥ 0 R

Distances

neighborhood radius rNi (pR,αN )-dependent R

prediction neighborhood radius rNok
(pR,αN )-dependent R

influence radius rIj,i (αI )-dependent R

maximum range radius rmax
i (pR,αRmax )-dependent R

range similarity distance dRsim
i (pR,αRsim )-dependent R

minimum range distance dRmin
i (pR,αRmin )-dependent R

Metrics
normalized confidence cj

0,1 ]0; 1[ R

validity ranges volume V j
n > 0 R

range perceptions proximity distance dR
j
n
Pn

≥ 0 R

Criticalities
learning criticality Critlrn (wlrn

fn
,wlrn

c0,1
,wlrn
Rn

)-dependent R

exploitation criticality Critexpl (wexpl
Pn

,wexpl
c0,1 ,wexpl

Rn
)-dependent R

Table 6.8 – Table of parameters, distances, metrics and criticalities involved in Endogenous
Context Learning.

The user parameters enable to select the validity ranges and local models precision. They
also allow to select how many cycles must be used to boot the learning. The user can also
choose the weight of the exogenous learning situations and the endogenous learning situations;
and the probability of discontinuity detection.

The user metrics are the measures of model affinity with learning situations and model
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similarity. They depend on the learning model that is implemented by the user.

The designer parameters enable to configure the neighborhood and the influences, the de-
tection and resolution of learning inaccuracies, and the learning and exploitation mechanisms.

The designer distances represent the distances that are manipulated to determine the
neighborhood, the influences and all the mechanisms that modify the validity ranges.

The designer metrics are all the measures that represent the Context Agents properties
according model experience, generalization and proximity to situations (learning situations
or exploitation situations).

The criticalities enable to assess the reliability of the Context Agents according to all the
presented metrics.

The next chapter will present experimentations on abstract hidden functions. The sensi-
bility of most of the presented parameters will be examined. The learning will be tested on
several scenarios by measuring metrics related to the objectives of this thesis (section 1.6).
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7 Experiments on Mathematical
Models

In this chapter, several experimentations made on the learning mechanism ELLSA are presented.
The learned models are mathematical functions with properties of linearity, non linearity, continu-
ity and discontinuity. These experimentations allow to highlight the strengths and weaknesses of
the system according to the objectives presented in section 1.6 (Endogenous Feedback, Agnosticity,
Lifelong Learning, Online Learning, Self-Observation, Knowledge Generalization, Scalability, Any
Data Amount and Explainability).

THE experiments conducted in this chapter focus on the learning of abstract models in
order to highlight specific ELLSA properties. First, the used parameters during the ex-

periments are presented. Some of them vary during the specific experiment scenarios. In
each scenario, the changing parameters are specified. Then, to evaluate the objectives of this
thesis, several metrics are introduced. They are measured all along the experimentations.
The experiments focus on the following matters:

— Learning Inaccuracies. A toy learning problem is presented in order to assess the de-
tection and resolution of learning inaccuracies NCS (Sec. 7.4).

— Active Learning and Self-learning. The Active Learning Strategy and the Self-Learning
Strategy are tested on non linear continuous and discontinuous learning problems. A
multi-model learning problem is also presented (Sec. 7.5).

— Lifelong Learning. This section details an experiment which shows how the Lifelong
Context Learning mechanism deals with noise in the learning data. A second experiment
presents how a lifelong exploitation can enable to keep enhancing the learned models
(Sec. 7.6).

— Few Learning Situations. An experiment which evaluates the ability of ELLSA to learn
with few learning situations is proposed (Sec. 7.7).

— Scalability. The scalability of the learning mechanisms is tested in relation to the num-
ber of Context Agents and perceptions (Sec. 7.8).

— Transfer Learning. A last experiment is presented to test the Transfer Learning abilities
of ELLSA (Sec. 7.9).
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7.1 Parameters

The table 7.1 reminds all the parameters introduced in the previous chapters and adds
experimental parameters. For illustration and explanation needs, most experiments are con-
ducted with 2 perceptions. Section 7.8 assesses how higher numbers of perceptions impact
the learning mechanisms. A learning episode is composed of a learning phase with a certain
number of learning situations L# and an exploitation phase with a certain number of exploitation
situations E#. To quantify the learning performances, several metrics are calculated (section
7.2) and averaged over 15 learning episodes. More than 15 learning episodes provide equally
stable behaviors and are thus not necessary. For all experiments, the code is implemented in
java with the framework AMAK [Perles et al., 2018] and it is executed on a machine 1 with
Ubuntu 18.04.3 LTS.

The sensibility of several parameters is assessed all along the learning scenarios that are
specified in the table 7.1.

Name Notation Constrains Domain Value Sensibility

Ex
p.

number of perceptions n > 0 N 2 7.8
number of learning situations L# > 0 N 500 7.8
number of exploitation situations E# > 0 N 250 7.6.2
number of learning episodes E ps# > 0 N 15

U
se

r

validity ranges precision pR ]0, 1[ R 0.1 7.4, 7.6.1, 7.6.2, 7.7
model error margin m f

err > 0 R 1 7.5.1
bootstrap cycles number cboot > n N 10
exogenous learning weight wexo

lrn ]0; 1] R 0.1 7.7
endogenous learning weight wendo

lrn ]0; 1] R 0.1 7.6.2, 7.7
discontinuity detection probability pbdisc ]0; 1[ R 0.1 7.5.1

D
es

ig
ne

r

neighborhood radius coefficient αN > 0 R 2 7.6.2, 7.7
influence radius coefficient αI > 0 R 0.5 7.6.2, 7.7
maximum range radius coefficient αRmax > 1 R 2
range similarity coefficient αRsim ]0, 1[ R 0.375
minimum range coefficient αRmin ]0, 1[, αRmin < αRsim R 0.25
creation neighbors number ncreation > 0 N 7
perceptions generation coefficient αPgen > 0 R 0.1 7.6.1
model similarity threshold t f

sim ≥ 0 R 0.001 7.5.2
accuracy learning weight wlrn

fn
≥ 0 R 1 7.4

experience learning weight wlrn
c0,1

≥ 0 R 1 7.4
generalization learning weight wlrn

Rn
≥ 0 R 1 7.4

proximity exploitation weight wexpl
Pn

≥ 0 R 1 7.4
experience exploitation weight wexpl

c0,1 ≥ 0 R 1 7.4
generalization exploitation weight wexpl

Rn
≥ 0 R 1 7.4

Table 7.1 – Table of experimental, user and designer parameters. If not specified, these are
the default parameters for this chapter.

1. Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz × 8, RAM 31.4 GB
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7.2 Experimental Metrics

To quantify the learning scenarios performances according to the objectives given in
the section 1.6, several metrics are defined and some objectives are only evaluated qual-
itatively. The focus is made on prediction performance, Endogenous Feedback, Agnosticity,
Lifelong Learning, Online Learning, Self-Observation, Knowledge Generalization, Scalability, Any
Data Amount, Explainability and robotic applications.

Prediction Error

For a learning mechanism, the performance of the prediction is a central metric that
needs to be evaluated. To evaluate the predictions of the learning mechanism, a normalized
prediction error OErr is calculated between the values given by the oracle and the learn-
ing system: OErr = |O − O′|/(Omax − Omin). Omax and Omin are the maximum and min-
imum experienced predictions in the exogenous learning situations during a learning phase.
The prediction error metric is calculated and averaged during the exploitation phase over
the number of exploitation situations. During the exploitation phase, ELLSA is asked to make
predictions about random uniformly distributed exploitation situations in the search space.

Endogenous Feedback

To quantify the Endogenous Feedback, all types of Endogenous Feedback are considered. The
focus is made on the number of generated active learning situations Lact

# , endogenous exploita-
tion situations E endo

# and endogenous learning situations Lendo
# . This will permit to validate their

presence, observe their impact and be able to say if they bring improvement.

3 The active learning situations Lact
# are present in the Active Learning Strategy. They are the

actively requested learning situations Lact
n,m = [P endo

n ,Oexo
m ] to resolve learning inaccuracies.

3 The endogenous exploitation situations E endo
# are present in the Self-Learning Strategy. They

are the self-requested exploitation situations E endo
n = [P endo

n ] to resolve learning inaccura-
cies.

3 The endogenous learning situations Lendo
# are also present in the Self-Learning Strategy.

They are the self-generated learning situations Lendo
n,m = [P endo

n ,Oendo
m ] during Cooperative

Neighborhood Learning.

3 The opposite of theses situations are the passive learning situations Lpass
# . Passive learn-

ing situations are exogenous perceptions associated with exogenous prediction vectors
Lpass

n,m = [P exo
n ,Oexo

m ]. The interest of counting them is in the comparison of the ran-
domly supplied passive learning situations Lpass

# and the requested Lact
# and E endo

# or
generated Lendo

# situations. Exogenous learning situations are also observed, they are ex-
ogenous or endogenous perceptions associated with exogenous prediction vectors Lexo

n,m =

[P exo
n /P endo

n ,Oexo
m ]. Their measure enables to compare the quantities of exogenous and

endogenous learning situations.

3 The active learning situations and the endogenous exploitation situations associated with the
resolutions of Model Ambiguity NCS, Conflict NCS, Concurrency NCS, Incompetence NCS
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and Range Ambiguity NCS are also measured to observe they behavior in the different
learning scenarios.

Agnosticity

This work did not focus on designing a metric for the measurement of Agnosticity. One
possibility for this measure would be to use the learning mechanism in several fields of ap-
plications and count all those for which the learning performance is good. A good learning
performance would need to be defined for each field of application.

In this thesis, Agnosticity is measured qualitatively across all the several conducted ex-
periments. The experiments of this chapter do not focus on any specific application domain.
They concentrate on several varieties of hidden models with different properties (linear-
ity, non linearity, continuity and discontinuity). The experiment section 7.5.3 will focus on
learning a hidden function that groups the different learning models in one.

Lifelong Learning

This work did not concentrate on designing a metric to measure the performances of the
lifelong learning mechanisms. In this study, Lifelong Learning intervenes in the local model up-
date mechanism but also during the exploitation phase. The updating mechanism enables
local models to learn all learning situations according to the model error margin. This mecha-
nisms will be assessed section 7.6.1. The generation of endogenous exploitation situations and
endogenous learning situations enables ELLSA to continue learning even during the exploita-
tion phase. Lifelong Learning in this sense will be evaluated in the section 7.6.2.

Online Learning

Online Learning is an intrinsic property of Context Learning. Learning situations can be se-
quentially provided and several learning and exploitation phases can follow one another.
Moreover, all learning cycles involve a prediction proposition which is an exploitation.
Learning and exploitation are done simultaneously. This property is partially assessed in
the experiment section 7.9.

Self-Observation

Self-Observation is also an intrinsic property of AMAS. It enables to get feedback accord-
ing to the agents that compose the system. In this case, it enables to assess the exploration
of the perceptions space and the learning inaccuracies across different volumes.

3 VCtxt
′ is the volume explored by all the Context Agents. It is the normalized sum of the

volumes of each Context Agent VC j to which are subtracted the volumes of conflicts VC f lt

and concurrencies VConc between Context Agents.
VCtxt

′ = (∑j VC j − VC f lt − VConc)/Vtotal
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3 VC f lt is the volume of conflicts. It is the sum of the volumes explored by two Context
Agents with different models. VC f lt

′ is its normalization.
VC f lt = (∑(j,k),16j<k6nCtxt , f j 6= f k VC j∩Ck) and VC f lt

′ = VC f lt/Vtotal

3 VConc is the volume of concurrencies. It is the sum of the volumes explored by two
Context Agents with similar models. VConc

′ is its normalization.
VConc = (∑(j,k),16j<k6Nctxt , f j≈ f k VC j∩Ck)/Vtotal and VConc

′ = VConc/Vtotal

3 VInc
′ is the normalized volume of the unexplored search space. VInc

′ = 1− VCtxt
′

Vtotal is the total volume of the considered search space. It is defined with the mini-
mum pmin

i and maximum pmax
i perceptions experienced by the learning mechanism: Vtotal =

∏i(pmax
i − pmin

i ). In this chapter, full exploration of the search is expected this is why all vol-
umes are normalized by the total volume of the search space. To defined if an overlapping
volume is a conflict or a concurrency, the measure of similarity between Context Agents local
models is used. It is the presented section 6.2.3.3.

Knowledge Generalization

Two measures are necessary to evaluate the ability of the mechanism to generalize. They
are the number of Context Agents nCtxt used to represent the space and the explored volume
VCtxt

′. The generalization score is defined as Gscr = VCtxt
′/nCtxt.

The numbers of Complete Redundancy NCS and Partial Redundancy NCS also represent
generalization but locally. They contribute to decreasing the number of Context Agents and
increasing their volume. The Complete Redundancy NCS and Partial Redundancy NCS respec-
tively enable to merge Context Agents and to exchange a part of their volume. When these
NCS occur, it means that ELLSA manages to locally enhance generalization. They provide
feedback on all the situations that partially led to the final measure of the generalization score.

Scalability

To evaluate the scalability of the learning mechanism, time metrics are used to measure
the execution time of the learning, the exploitation and the agents cycles. The measures
are conducted section 7.8 by varying the number of perceptions, the validity ranges precision
and number of learning situations. Decreasing the validity ranges precision and increasing the
number of learning situations enable to create larger quantities of Context Agents and assess
the behavior of ELLSA with larger amounts of Context Agents.

Any Data Amount

In this context, learning with Any Data Amount is strongly related to Lifelong Learning
and Online Learning. The Lifelong Learning implemented mechanism enables to deal with
large amounts of learning situations without storing them. And the Online Learning properties
enable the learning mechanisms to provide predictions even with few learning situations.
This objective is evaluated in the sections concerning Lifelong Learning (Sec. 7.6.1) and few
learning situations 7.7.
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Explainability

Explainability is a complicated objective to measure. This objective is addressed by the
implementation of a user interface described section 7.3. This user interface provides many
feedback and model visualization properties to understand the behavior of ELLSA. A qual-
itative reflection about this topic will be made after all the experiments.

Robotic Application

The robotic applications and experiments are described in the chapter 8. Two learning ex-
periments are described. They involve the learning of the Inverse Kinematic Models of robotic
arms with centralized and distributed control.
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7.3 User Interface

In order to visualize numerous information concerning the agents and the learning
process, I supervised the design of a user interface called AMAKFX. It was developed by
Master’s students during a project and an internship. It was implemented from AMAK
[Perles et al., 2018], a framework developed in Java to facilitate the design and development
of a MAS. AMAKFX uses AMAK with the software platform JavaFX [Clarke et al., 2009] for
the graphical interface. The purpose of AMAKFX is to provide understandable feedback on
Context Learning with explainable and graphical information. Figure 7.1 summaries some
main elements of the user interface.

(a) 2D Validity Ranges (b) 3D Validity Ranges (c) Hidden Model

(d) Local Models (e) Number of Agents (f) Prediction Errors

Figure 7.1 – Screen-shots of the user interface AMAKFX.

The validity ranges can be observed in 2D (Fig. 7.1a) and 3D (Fig. 7.1b) by selecting the
perceptions to be observed. The hidden model (Fig. 7.1c) can be compared to the learned local
models (Fig. 7.1d). Darker validity ranges or local models represent the Neighbor Context Agents
for the current perceptions and neighborhood area (cross and square figure 7.1a). The list of the
Context Agents is also available on the left scrolling zone (Fig. 7.1a) and additional informa-
tion about them can be displayed (confidence, last predictions, first learning situations...).
Figure 7.1e provides the number of agents in the collective and how many are activated
during a cycle. Figure 7.1f shows the real time prediction errors.

In the following, all experiments are presented with 2 perceptions to simplify visualiza-
tion. For each experiment, its objectives are stated; the hidden model is presented; the proto-
col is described and examples of learned models are showed. Averaged experimental met-
rics results are provided and a discussion is conducted.
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7.4 Learning Inaccuracies NCS

This section presents the experiments on a toy problem to evaluate and validate the
learning inaccuracies NCS detection and resolution. An evaluation on different validity ranges
precisions, learning and exploitation criticalities weights is given.

Objectives

The objective of this experiment is to validate the learning inaccuracies NCS on a simple
problem where an ideal learning representation can be easily identify. Figure 7.2 shows an
ideal learning representation for the validity ranges (Fig. 7.2a) and for the local models (Fig.
7.2b). It corresponds to 5 Context Agents representing 100% of the space and thus a maximal
generalization score of 100/5 = 20%. The goal of this experiment is to show the resolution of
each learning inaccuracies by incrementally adding the learning inaccuracies NCS detections.

(a) Capture of Ideal
Learned Validity Ranges

(b) Capture of Ideal
Learned Local Models

Figure 7.2 – 2 Perceptions Linear Toy Problem.

Protocol

The toy problem is a learning scenario with a hidden function F composed of two linear
functions (Eq. 7.1) with two perceptions and one output.

F (p1, p2) =

{
150.p2 + 20000 if − h < p1 < h and − h < p2 < h
150.p1 + 20000 else.

(7.1)

with h = 50 and p1, p2 ∈ [−100, 100]. For all the experiments of this chapter, p1 and p2 will
always belong to this interval. Table 7.2 shows the experimental parameters for this scenario.
All other user and designer parameters are the ones presented in the table 7.1. The Active
Learning Strategy is used in this setting.
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Name Notation Constrains Domain Value

Ex
p.

number of perceptions n > 0 N 2
number of learning situations L# > 0 N 500
number of exploitation situations E# > 0 N 250
number of learning episodes E ps# > 0 N 15

Table 7.2 – Table of experimental parameters for the validation of learning inaccuracies NCS.

Results

Figure 7.3 shows captures of the learning representation at the end of a learning episode.
Each learning inaccuracy NCS is incrementally added. It can be seen that when all learning
inaccuracies NCS are activated, the representation of the learning converges towards the ideal
representation.

(a) No NCS (b) Model Ambiguity (c) Conflict (d) Concurrency

(e) Incompetence (f) Complete Redun-
dancy

(g) Partial Redun-
dancy

(h) Range Ambiguity

Figure 7.3 – Screenshots of Context Agents after 500 training cycles with different NCS reso-
lution incrementally added. Each color is a different linear model.

Incrementally adding the detection and resolution of each learning inaccuracies NCS en-
ables to assess the impact of each one on the learning performances. Figure 7.4 shows the
metrics presented section 7.2 for each case. All the values are averaged over the number of
exploitation situations. The black thin bars represent the standard deviations. It is the case for
all the metric results figures of the manuscript.

3 No NCS. When no NCS are solved, it is the reference case (gray label in the figure 7.4).
Figure 7.3a shows a capture of the validity ranges obtained without any NCS. There are
only passive learning situations (Fig. 7.4a). The volumes of conflicts and concurrencies
are at their highest and the volume of incompetencies is of 10% (Fig. 7.4b). There are
around 80 Context Agents (Fig. 7.4c), the generalization score is around 1% (Fig. 7.4d) and
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the prediction error is under 1% (Fig. 7.4e).

(a) Passive Lpass
# and Active

Lact
# learning situations (#)

(b) Volumes of learning inaccuracies: VC f lt
′, VConc

′

and VInc
′ (%)

(c) Number of Con-
text Agents nCtxt (#)

(d) Generalization
score Gscr (%)

(e) Prediction error
OErr (%)

(f) Learning inaccuracies NCS counts.

Figure 7.4 – Metrics results on the toy learning problem with the Active Learning Strategy.
The learning inaccuracies NCS are incrementally added. The parameters are set to the values
of the tables 7.2 and 7.1.

3 Model Ambiguity NCS. The Model Ambiguity NCS adds the generation of active learning
situations to complete the local models (blue label in the figure 7.4). The difference is not
visually noticeable in the figure 7.3b as it concerns the early stages of the Context Agents.
Around 40 active learning situations are generated to solve this NCS (Fig. 7.4f). The vol-
umes of learning inaccuracies slightly decrease (Fig. 7.4b). The lower number of passive
learning situations reduces the numbers of Context Agents (Fig. 7.4c). The prediction error
is slightly reduced (Fig. 7.4e).

3 Conflict NCS. The Conflict NCS adds the generation of active learning situations to sup-
press the conflicts between Context Agents (orange label in the figure 7.4). The Con-
flict NCS addition decreases the conflicting overlaps between the Context Agents validity
ranges (Fig. 7.3c) and thus the volume of conflicts (Fig. 7.4b). Another impacted metric
is the prediction error which also decreases (Fig. 7.4e).
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3 Concurrency NCS. The Concurrency NCS adds the generation of active learning situations
to suppress the concurencies between Context Agents (green label in the figure 7.4). The
Concurrency NCS addition clearly decreases the concurrent overlaps between the Con-
text Agents validity ranges (Fig. 7.3d) and thus the volume of concurrencies (Fig. 7.4b).
Resolving the concurrencies decreases the number of Context Agents (Fig. 7.4c) and in-
creases the incompetent volumes (Fig. 7.4b). It makes sense because the resolution of
overlaps can generate volume loss.

3 Incompetence NCS. The Incompetence NCS adds the generation of active learning situ-
ations to seek incompetent areas (red label in the figure 7.4). It enables to reduce the
incompetent volumes (Fig. 7.4b) and prevents the conflicts and concurencies as less are
counted (Fig. 7.4f). However, more Context Agents are created (Fig. 7.4c) and the predic-
tion error is worse (Fig. 7.4e).

3 Complete Redundancy NCS. The Complete Redundancy NCS adds the possibility for Con-
text Agents to merge (purple label in the figure 7.4). This significantly decreases the
number of Context Agents (Fig. 7.4c) and increases the generalization score (Fig. 7.4d). It
prevents some incompetencies but generates slightly more conflicts and concurrencies
to solve (Fig. 7.4f).

3 Partial Redundancy NCS. The Partial Redundancy NCS adds the possibility for Context
Agents to cede a part of their validity ranges (brown label in the figure 7.4). It allows to
unlock situations where Context Agents cannot merge like in figure 7.3f. This tends to
generate more incompetencies (Fig. 7.4b) but the generalization score is better (Fig. 7.4d).

3 Range Ambiguity NCS. The Range Ambiguity NCS adds the generation of active learning
situations to enhance discontinuities between Context Agents (pink label in the figure
7.4). This NCS enables to reach the best generalization score (Fig. 7.4d) but not the best
prediction error (Fig. 7.4e).

Validity Ranges Precision Sensibility

Figure 7.5 shows the sensibility of the learning metrics in relation to the validity ranges
precision. For high validity ranges precisions, there is less need for active learning situations (Fig.
7.5a). Indeed, figure 7.5f shows that for low validity ranges precisions there are more Model
Ambiguity NCS and Incompetence NCS. Smaller validity ranges precisions implies smaller neigh-
borhoods and Context Agents are less likely to share their local models in smaller areas. Thus,
more Context Agents need to complete their models with Model Ambiguity NCS. The high
count of Incompetence NCS is explained by the higher volume of incompetencies for low va-
lidity ranges precisions (Fig. 7.5b). Smaller Context Agents need a bigger collective to represent
the space which is why there are more Context Agents for low validity ranges precisions (Fig.
7.5c). For high validity ranges precisions the generalization score almost reaches the ideal of 20%
(Fig. 7.5d) but at the price of a worse prediction error (Fig. 7.5e).
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(a) Passive Lpass
# and Active

Lact
# learning situations (#)

(b) Volumes of learning inaccuracies: VC f lt
′, VConc

′

and VInc
′ (%)

(c) Number of Con-
text Agents nCtxt (#)

(d) Generalization
score Gscr (%)

(e) Prediction error
OErr (%)

(f) Learning inaccuracies NCS counts.

Figure 7.5 – Metrics results on the toy learning problem with the Active Learning Strategy
with different validity ranges precisions pR = {0.05; 0.1; 0.15; 0.2}. The other parameters are
set to the values of the tables 7.2 and 7.1.

Learning and Exploitation Criticalities Weights Sensibility

Figure 7.6 presents an evaluation on different concerns for the learning criticality and the
exploitation criticality (all, performance, generalization and experience). The different inter-
ests result in the following weight settings.

3 All: wlrn
fn

= 1, wlrn
c0,1

= 1, wlrn
Rn

= 1, wexpl
Pn

= 1, wexpl
c0,1 = 1, wexpl

Rn
= 1

3 Performance: wlrn
fn

= 1, wlrn
c0,1

= 0.5, wlrn
Rn

= 0.5, wexpl
Pn

= 1, wexpl
c0,1 = 0.5, wexpl

Rn
= 0.5

3 Generalization: wlrn
fn

= 0.5, wlrn
c0,1

= 0.5, wlrn
Rn

= 1, wexpl
Pn

= 0.5, wexpl
c0,1 = 0.5, wexpl

Rn
= 1

3 Experience: wlrn
fn

= 0.5, wlrn
c0,1

= 1, wlrn
Rn

= 0.5, wexpl
Pn

= 0.5, wexpl
c0,1 = 1, wexpl

Rn
= 0.5

These weights intervene for the selection of the Best Context Agent during learning and
exploitation. Figure 7.6c shows that giving more weight to performance (local model affinity
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during learning and validity ranges proximity during exploitation) provides better predic-
tions errors than giving weight to all focuses. Figures 7.6a and 7.6b show that giving more
weight to generalization enables to decrease the volume of learning inaccuracies and increase
the generalization score. It can be seen that giving weight to experience provides better gener-
alization results that the focus on performance and better prediction results than the focus
on generalization. A third metric would be needed to measure the global experience of all
Context Agents in order to better evaluate the gain that it represents.

(a) Volumes of learning inaccuracies:
VC f lt

′, VConc
′ and VInc

′ (%)
(b) Generalization
score Gscr (%)

(c) Prediction error
OErr (%)

Figure 7.6 – Metrics results on the toy learning problem with the Active Learning Strategy with
different learning and exploitation concerns for the learning criticality and the exploitation
criticality: all, performance, generalization and experience. The other parameters are set to
the values of the tables 7.2 and 7.1.

Synthesis

This experiment enabled to validate the resolutions of the learning inaccuracies on a sim-
ple learning problem by incrementally adding each resolutions. The validity ranges precision
enables to select the precision degree at the cost of a worse generalization. The high devia-
tion values for the prediction error are explained by the discontinuous nature of the problem.
The evaluation of learning criticality and exploitation criticality weights validates that different
learning and exploitation concerns can be set by giving importance to performance, gener-
alization, experience or all of them.

All the learning inaccuracies NCS are independent from the number of perceptions. How-
ever, additional experiments are necessary to validate the mechanisms with more perceptions.
Section 7.8 will assess this learning problem on higher dimensions.
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7.5 Active Learning VS Self-Learning

This section assesses the performances of the Active Learning Strategy and the Self-
Learning Strategy on non linear learning problems without and with discontinuities. A multi
model problem is also presented.

7.5.1 Non Linear Continuous Problem

This section presents the experiments on a non linear continuous problem. An evaluation
on different model error margins and discontinuity detection probabilities is given.

Objectives

The objective of this experiment is to validate the Active Learning Strategy and the Self-
Learning Strategy on a non linear continuous learning problem. Non linearity better repre-
sents real world problem. This experiment also intends to show the strengths and weak-
nesses of the Active and Self-Learning Strategies compared to a Naive Learning Strategy. Figure
7.7 shows the hidden model and the learned local models by the Active Learning Strategy and
the Self-Learning Strategy.

(a) Hidden Model (b) Active Learning Strategy
learned models

(c) Self-Learning Strategy
learned models

Figure 7.7 – Captures of the 2 Perceptions Continuous Non Linear Problem

Protocol

The hidden function is a continuous non linear function with two perceptions and one out-
put (Eq. 7.2 and Fig. 7.7a). It was inspired from the intensity diffraction patterns in physics.

F (p1, p2) = α1. ∏
i

exp−
(pi−µ)2

2σ2 . cos(α2.(p2
1 + p2

2)) + α3 (7.2)

with µ, σ, α1, α2 and α3 arbitrary parameters. Table 7.3 shows the parameters used for this
scenario. All other parameters are the ones presented in the table 7.1. The Naive Learning
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Strategy only uses passive exogenous learning situations. It does not use any learning inaccuracies
NCS and neither the mechanisms that involve Neighbor Context Agents.

Name Notation Constrains Domain Value
Ex

p.
number of perceptions n > 0 N 2
number of learning situations L# > 0 N 2000
number of exploitation situations E# > 0 N 250
number of learning episodes E ps# > 0 N 15

U
. validity ranges precision pR ]0, 1[ R 0.04

Table 7.3 – Table of experimental parameters for the experiments on continuous non linear-
ity.

Results

Figure 7.8 shows the learning metrics for the non linear continuous learning problem
for the Naive Learning Strategy (gray label), the Active Learning Strategy (blue label) and the
Self-Learning Strategy (orange label).

Figure 7.8a presents the used situations for this learning problem. The Naive Learning
Strategy only uses passive exogenous learning situations as expected. The Active Learning Strat-
egy uses learning situations that are mostly active and all of them are exogenous (i.e. their are
provided by an oracle). The Self-Learning Strategy uses passive learning situations which are
the only exogenous learning situations provided by an oracle. The other situations are endoge-
nous exploitation situations and endogenous learning situations.

Compared to the Naive Learning Strategy, the Active Learning Strategy and the Self-Learning
Strategy lead to a worse generalization score (Fig. 7.8c) because more Context Agents are created
(Fig. 7.8b) and the volumes of incompetencies are more important (Fig. 7.8e). However the
important volume of conflicts with the Naive Learning Strategy are greatly reduced with the
Active and Self-Learning Strategy. The prediction errors means are slightly augmented but
the deviations are reduced (Fig. 7.8d).

In the Active Learning Strategy, there are more Context Agents (Fig. 7.8b) and the volume
of incompetencies is also higher (Fig. 7.8e). This explains the better generalization score for the
Self-Learning Strategy (Fig. 7.8c). In the Active Learning Strategy, most of the Context Agents
are created with Incompetence NCS (Fig. 7.8f). Even is there are more Context Agents with the
Active Learning Strategy, the space is more poorly explored because it is locally explored. This
prevents a global exploration like in the Self-Learning Strategy. The consequence is that the
prediction error for both strategies are close but the deviation for the Active Learning Strategy
is higher (Fig. 7.8d).

It can be seen that there are more Conflict NCS with the Self-Learning Strategy as the
validity ranges are rather initialized in a passive way as oppose to the active strategy which
does not need a minimal amount of Neighbor Context Agents to fill a void. There is a huge
difference in the amount of Model Ambiguity NCS between the two strategies. This can be
explained by the lower Neighbor Context Agents as the space is explored randomly in the
Self-Learning Strategy. With fewer Neighbor Context Agents, the sharing of good local models is
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(a) Passive, active, exogenous and endogenous
learning and exploitation situations (#)

(b) Number of
Context Agents
nCtxt (#)

(c) Generaliza-
tion score Gscr

(%)

(d) Prediction
error OErr (%)

(e) Volumes of learning inaccu-
racies: VC f lt

′, VConc
′ and VInc

′

(%)

(f) Learning inaccuracies NCS counts and cooperative neighbors
counts.

Figure 7.8 – Metrics results on the non linear continuous learning problem with the Active
Learning Strategy and the Self-Learning Strategy. The parameters are set to the values of the
tables 7.3 and 7.1.

less likely to happen and more Model Ambiguity NCS are generated. An issue is the too high
number of Range Ambiguity NCS as this problem is known continuous. Range Ambiguity NCS
should not be present in this learning scenario.

Model Error Margin Sensibility

Figure 7.9 presents an evaluation of some metrics on different model error margins. For the
Active Learning Strategy, lower model error margins imply more Context Agents. The prediction
error seems related to the volumes of incompetencies. A lower model error margin than 1.0
combined with the current parameter results in difficulties to map the space as there are
more incompetencies. A higher model error margin than 1.0 implies less constraining predic-
tion needs. Thus less Context Agents are needed but the prediction error is worse. For the
Self-Learning Strategy, the model error margin has a low impact on the prediction error. It is
compensated by the Cooperative Neighborhood Learning and the greater number of Context
Agents when the model error margin is higher.
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(a) Volumes of learning inaccuracies:
VC f lt

′, VConc
′ and VInc

′ (%)
(b) Number of Context
Agents nCtxt (#)

(c) Prediction error OErr
(%)

Figure 7.9 – Impacted metrics results on the non linear continuous learning problem with
the Active Learning Strategy (AL) and the Self-Learning Strategy (SL) with different model error
margins m f

err = {0.5; 1.0; 1.5}. The other parameters are set to the values of the tables 7.3 and
7.1.

Discontinuity Detection Probability Sensibility

Figure 7.10 presents an evaluation of some metrics on different discontinuity detection
probabilities. The impact is mainly the same for both strategies. When Range Ambiguity NCS
are less sought (i.e. the discontinuity detection probability is lower), the situations that where
allocated for the resolution of Range Ambiguity NCS are used to further explore the space.
The results are lower volumes of incompetencies, more Context Agents and a lower predic-
tion error (average and deviation). For the Self-Learning Strategy though, the prediction error
is rather independent of the discontinuity detection probability.

(a) Volumes of learning inaccuracies:
VC f lt

′, VConc
′ and VInc

′ (%)
(b) Number of Context
Agents nCtxt (#)

(c) Prediction error OErr
(%)

Figure 7.10 – Impacted metrics results on the non linear continuous learning problem with
the Active Learning Strategy and the Self-Learning Strategy with different discontinuity detection
probabilities pbdisc = {0.01; 0.05; 0.1}. The other parameters are set to the values of the tables
7.3 and 7.1.
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Synthesis

This experiment showed that the Active Learning Strategy and the Self-Learning Strategy
can learn a non linear continuous model. The Naive Learning Strategy resulted in better gen-
eralization. This raises a lack in the generalization score because the Naive Learning Strategy
generated a lot of conflicts compared to the Active Learning Strategy and Self-Learning Strat-
egy. An improvement of the generalization score would be to take into account the volume of
conflicts (and concurrencies). The prediction error was improved in term of deviation, the
Active and Self-Learning Strategy provided more stable predictions.

The Self-Learning Strategy enabled to reach a close prediction error to the Active Learning
Strategy with lesser exogenous learning situations. The Active Learning Strategy is more efficient
than the Self-Learning Strategy when it has sufficient learning situations to explore the space.
Otherwise the Self-Learning Strategy is better indicated when less exogenous learning situa-
tions are available as it reaches close prediction errors to the other strategies with 4 times
less exogenous learning situations. There is still room for improvement concerning the Range
Ambiguity NCS because it slows down the learning process on a continuous problem where
no discontinuities should be detected.

With the Active Learning Strategy, only lowering the model error margin is not enough to
reach better prediction errors as it creates more incompetent zones and a need for more
learning situations to fill them. Concerning the Self-Learning Strategy, the prediction error is
little impacted by the model error margin and the discontinuity detection probability because
the endogenous learning situations enable to compensate the lack of other learning situations or
precision constrains.
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7.5.2 Non Linear Discontinuous Problem

This section presents the experiments on a non linear discontinuous problem. An evalu-
ation on different model similarity thresholds is given.

Objectives

The objective of this experiment is to validate the Active Learning Strategy and the Self-
Learning Strategy on a non linear discontinuous learning problem compared to the Naive
Learning Strategy. The discontinuity of the hidden model is present to test the ability of
ELLSA to learn with the addition of this difficulty. Unlike the previous experiment, this
hidden function allows generalization on certain zones to also test the generalization abilities
of ELLSA. Figure 7.11 shows the hidden model and the learned local models by the Active
Learning Strategy and the Self-Learning Strategy.

(a) Hidden Model (b) Active Learning Strat-
egy learned models

(c) Self-Learning Strategy
learned models

Figure 7.11 – Captures of the 2 Perceptions Discontinuous Non Linear Problem

Protocol

The hidden function is a discontinuous non linear function with two perceptions and one
output (Eq. 7.3 and Fig. 7.11a).

F (p1, p2) =

{
cos(α1 p1) + α2 if h < p1

sin(α1 p1) + α2 else.
(7.3)

with h, α1 and α2 arbitrary parameters. h is the perception p1 where the discontinuity is
present. Table 7.4 shows the parameters used for this scenario. All other parameters are
the ones presented in the table 7.1. The Naive Learning Strategy is the one presented in the
previous experiment (Section 7.5.1).
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Name Notation Constrains Domain Value

Ex
p.

number of perceptions n > 0 N 2
number of learning situations L# > 0 N 2000
number of exploitation situations E# > 0 N 250
number of learning episodes E ps# > 0 N 15

U
. validity ranges precision pR ]0, 1[ R 0.04

model error margin m f
err > 0 R 0.05

Table 7.4 – Table of experimental parameters for the experiments on discontinuous non lin-
earity.

Results

Figure 7.12 shows the learning metrics for the non linear discontinuous learning problem
for the Naive Learning Strategy (gray label), the Active Learning Strategy (blue label) and the
Self-Learning Strategy (orange label).

(a) Passive, active, exogenous and endogenous
learning and exploitation situations (#)

(b) Number of
Context Agents
nCtxt (#)

(c) Generaliza-
tion score Gscr

(%)

(d) Prediction
error OErr (%)

(e) Volumes of learning inaccu-
racies: VC f lt

′, VConc
′ and VInc

′

(%)

(f) Learning inaccuracies NCS counts and cooperative neighbors
counts.

Figure 7.12 – Metrics results on the non linear discontinuous learning problem with the
Active Learning Strategy and the Self-Learning Strategy. The parameters are set to the values
of the tables 7.4 and 7.1.

The distribution of passive, active, exogenous and endogenous learning situations is sim-

140 Bruno Dato



7.5. Active Learning VS Self-Learning

ilar to the previous problem (Fig. 7.12a).

Concerning the generalization score, the same behavior as before is experimented (Fig.
7.12c). It is way better for the Naive Learning Strategy because conflicts are not accounted in
the generalization metric. The resolution of all theses conflicts generates more incompeten-
cies than the Naive Learning Strategy (Fig. 7.12e). The Active Learning Strategy provides better
prediction performances than the Naive Learning Strategy but the prediction performances of
Self-Learning Strategy are worse (Fig. 7.12d).

If we now compare the Active Learning Strategy and the Self-Learning Strategy, the gen-
eralization score is better for the Active Learning Strategy (Fig. 7.12c) as it creates less Context
Agents (Fig. 7.12b) and less incompetent volumes (Fig. 7.12e). Due to the discontinuity, there
are more Range Ambiguity NCS than the previous experiment and the other learning inac-
curacies NCS behave like in the previous experiment (Fig. 7.12f). However, there aren’t any
Complete Redundancy NCS or Partial Redundancy NCS as expected. The prediction error is
lower for the Active Learning Strategy (Fig. 7.12d). It can be again related to the discontinuity
and to the lower volume of incompetencies for the Active Learning Strategy (Fig. 7.12e).

(a) Volumes of learning inaccuracies:
VC f lt

′, VConc
′ and VInc

′ (%)
(b) Number of Con-
text Agents nCtxt (#)

(c) Generalization
score Gscr (%)

(d) Prediction error
OErr (%)

(e) Learning inaccuracies NCS counts and cooperative neighbors counts.

Figure 7.13 – Metrics results on the toy learning problem with the Active Learning Strategy
with different model similarity thresholds t f

sim = {0.001; 0.01; 0.1}. The other parameters are
set to the values of the tables 7.4 and 7.1.
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Model Similarity Threshold Sensibility

In order to study the generalization behavior for this experiment, figure 7.13 presents
an evaluation of some metrics on different model similarity thresholds. Augmenting the model
similarity threshold generates more Complete Redundancy NCS and Partial Redundancy NCS as
expected because the similarity constraint is weaker (Fig. 7.13e). Thus, there are less Con-
text Agents (Fig. 7.13b), the generalization score is higher (Fig. 7.13c) but the prediction error
is higher (Fig. 7.13d) and the volume of incompetencies increases too (Fig. 7.13a). It can
be noticed that the number of Concurrency NCS increases with the model similarity threshold
because some Conflict NCS become Concurrency NCS by reducing the similarity constraint.
Moreover, there are less Range Ambiguity NCS because less local models are considered differ-
ent.

Synthesis

This experiment shows that the Active Learning Strategy and the Self-Learning Strategy can
learn a non linear discontinuous model. It turns out that the Active Learning Strategy reaches
better prediction performances than the Naive Learning Strategy when the Self-Learning Strat-
egy prediction performances were worse than both other strategies. Indeed, with the used
parameter and the presence of a discontinuity, the prediction error for the Self-Learning Strat-
egy is higher than the one with the Naive Learning Strategy but with fewer exogenous learning
situations.

The Context Agents generalization mechanisms are highly dependent of the model similar-
ity threshold. This parameter also impacts the Conflict NCS, the Concurrency NCS, the Range
Ambiguity NCS and the exploration of incompetent areas.
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7.5.3 Multi-Model

This section presents the experiments on a multi-model problem. This experiment intro-
duces non linear frontiers between hidden models.

Objectives

The objective of this experiment is to validate the Active Learning Strategy and the Self-
Learning Strategy on a multi-model learning problem compared to the Naive Learning Strat-
egy. This experiment gathers all the previous learning problems (linear and non linear) and
difficulties (continuity, discontinuity and generalization). This experiment adds non linear
frontiers. Figure 7.14 shows the hidden model and the learned local models by the Active
Learning Strategy and the Self-Learning Strategy.

(a) Hidden Model (b) Active Learning Strategy
Learned Models

(c) Self-Learning Strategy
Learned Models

Figure 7.14 – Captures of the 2 Perceptions Multi-Model Problem

Protocol

The hidden function is composed of four zones with different difficulties, two perceptions
and one output (Eq. 7.4 and Fig. 7.14).

F (p1, p2) =


F1(p1, p2) if 0 6 p1 and 0 6 p2

F2(p1, p2) if 0 > p1 and 0 < p2

F3(p1, p2) if 0 > p1 and 0 6 p2

F4(p1, p2) else.

(7.4)

3 F1 is composed of two linear models f1 and f2 with a non linear discontinuity repre-
sented by the equation of a circle.

3 F2 is a non linear model represented by a Gaussian function centered in the considered
zone.

3 F3 is the same problem than the section 7.4 with the linear models f1 and f2.
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3 F4 is composed of two linear models f1 and f2 with a non linear discontinuity repre-
sented by a Gaussian function.

The linear models f1 and f2 are the one used in the section 7.4: f1(p1, p2) = 150p2 +

20000; f2(p1, p2) = 150p1 + 20000. Table 7.5 shows the parameters used for this scenario. All
other parameters are the ones presented in the table 7.1. The same Naive Learning Strategy is
again compared to the Active and Self-Learning Strategies.

Name Notation Constrains Domain Value

Ex
p.

number of perceptions n > 0 N 2
number of learning situations L# > 0 N 4000
number of exploitation situations E# > 0 N 500
number of learning episodes E ps# > 0 N 15

U
. validity ranges precision pR ]0, 1[ R 0.03

model error margin m f
err > 0 R 1

Table 7.5 – Table of experimental parameters for the mutli-model experiments.

(a) Passive, active, exogenous and endogenous
learning and exploitation situations (#)

(b) Number of
Context Agents
nCtxt (#)

(c) Generaliza-
tion score Gscr

(%)

(d) Prediction
error OErr (%)

(e) Volumes of learning inaccu-
racies: VC f lt

′, VConc
′ and VInc

′

(%)

(f) Learning inaccuracies NCS counts and cooperative neighbors
counts.

Figure 7.15 – Metrics results on the non linear discontinuous learning problem with the
Active Learning Strategy and the Self-Learning Strategy. The parameters are set to the values
of the tables 7.4 and 7.1.
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Results

Figure 7.15 shows the learning metrics for the multi-model learning problem for the
Naive Learning Strategy (gray label), the Active Learning Strategy (blue label) and the Self-
Learning Strategy (orange label). The distribution of passive, active, exogenous and endoge-
nous learning situations is similar to the previous problems (Fig. 7.15a).

Compared to the Naive Learning Strategy, the best generalization is reached for the Ac-
tive Learning Strategy and the worse for the Self-Learning Strategy (Fig. 7.15c). As neither
conflicts nor concurrencies impact the generalization score, it is better for the Naive Learn-
ing Strategy than for the Self-Learning Strategy. Both the Active Learning Strategy and the Self-
Learning Strategy significantly decrease the volumes of conflicts and concurrencies compared
to the Naive Learning Strategy (Fig. 7.15e). Figure 7.15d shows that the Active Learning Strat-
egy reaches better prediction errors than the Naive Learning Strategy and the Self-Learning
Strategy reaches similar ones.

If we now compared the Active Learning Strategy and the Self-Learning Strategy only, the
generalization score of Active Learning Strategy is more than twice the generalization score of the
Self-Learning Strategy (Fig. 7.15c). With the Active Learning Strategy, there are much less Con-
text Agents (Fig. 7.15b) and much less incompetent volumes (Fig. 7.15e). This is explained
by the better exploration of the Active Learning Strategy and its higher number of Complete
Redundancy NCS and Partial Redundancy NCS (Fig. 7.15f). As the Self-Learning Strategy en-
hances the local models by smoothing their frontiers with their neighbors, it takes longer for
them to converge toward the hidden models. While the Active Learning Strategy combined
with the Model Ambiguity NCS provides to local models the exact hidden model if all the ac-
tive Model Ambiguity NCS learning situations belong to same linear model. This can be seen
by the presence of concurrence volumes (Fig. 7.15e) and Concurrency NCS (Fig. 7.15f) for the
Active Learning Strategy. For the Self-Learning Strategy, there are not concurrence volumes nor
Concurrency NCS, there are mostly conflict volumes and Conflict NCS.

Again, the prediction error is lower for the Active Learning Strategy (Fig. 7.15d). It is due
to the better exploration (less incompetent volumes are observable on the figure 7.15e) and
generalization (Fig. 7.15c) than the Self-Learning Strategy. However, the Self-Learning Strat-
egy manages to reach a comparable prediction error with four times less exogenous learning
situations.

Synthesis

This experiment showed that the Active Learning Strategy and the Self-Learning Strategy
can learn a multi-model problem composed of continuity, discontinuity and non linearity.
The Active Learning Strategy performed better than the Naive Learning Strategy and the Self-
Learning Strategy performed similarly.

The learning was performed on all zones with a unique set of parameters which shows
that ELLSA can adapt to different learning difficulties without requiring special parameters
tuning for each different model.
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7.6 Lifelong Learning

This section presents experiments on the Lifelong Learning implemented mechanism. One
with noise in the learning situations and one with lifelong exploitation of the Context Agents.
Lifelong Context Learning was designed to keep providing learning situations to the local models
without storing them. This mechanism has two goals. The first one is to deal with noise in the
learning situations. The second one is to enable the local models to never stop learning by being
able to use new learning situations (exogenous or endogenous) during lifelong experiences.

7.6.1 Noisy Problem

In this section an experimentation on the Lifelong Context Learning mechanism is pre-
sented. We have previously seen that to enable Lifelong Learning, artificial situations are gen-
erated in order to update the local models with a desired weight. This mechanism is intended
for being robust to noisy data.

Objectives

The objective of this experiment is to assess the Active Learning Strategy and the Self-
Learning Strategy on a noisy model learning problem. The Active Cooperative Learning Strategy
is introduced to evaluate the impact of Cooperative Neighborhood Learning with the Active
Learning Strategy. Another goal is to test how the parameters involved in Lifelong Context
Learning impact the learning performances. Figure 7.16 shows the hidden model and the
learned local models by the Active Learning Strategy, the Active Cooperative Learning Strategy
and the Self-Learning Strategy with the same amounts of learning situations.

(a) Hidden Noisy
Model

(b) Active Learning Strat-
egy Learned Models

(c) Active Coopera-
tive Learning Strategy
Learned Models

(d) Self-Learning Strat-
egy Learned Models

Figure 7.16 – Captures of the 2 Perceptions Noisy Model Problem

Protocol

In this experiment three learning strategies are proposed. The Active Learning Strategy,
the Self-Learning Strategy and the Active Cooperative Learning Strategy. The Active Cooperative
Learning Strategy is the Active Learning Strategy with the Cooperative Neighborhood Learning
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mechanism. The used hidden function is the same as the section 7.5.1 but with the addition of
noise (Fig. 7.16a).

Noise is added to the perceptions and to the prediction vectors of the oracle. The noise is
generated with a normal distribution N (µ, σ2). µ = pi for the noisy perceptions and µ = ok

for the noisy prediction vectors. σ is set using the empirical rule 7.5.

Pr(pi − 2σ ≤ pnoisy
i ≤ pi + 2σ) ≈ 0.9545

Pr(ok − 2σ ≤ onoisy
k ≤ ok + 2σ) ≈ 0.9545

(7.5)

Table 7.6 shows the parameters used for this scenario. All other parameters are the ones
presented in the table 7.1.

Name Notation Constrains Domain Value

Ex
p.

number of perceptions n > 0 N 2
number of learning situations L# > 0 N 2000
number of exploitation situations E# > 0 N 250
number of learning episodes E ps# > 0 N 15
noise deviation 2σ > 0 R 1.0

U
. validity ranges precision pR ]0, 1[ R 0.04

model error margin m f
err > 0 R 1.0

Table 7.6 – Table of experimental parameters for the noisy experiment.

Results

Figure 7.16 shows that the Active Learning Strategy and the Active Cooperative Learning
Strategy have great exploration difficulties as their poor exploration attests. Figure 7.17
shows the learning metrics for the noisy model learning problem for the Active Learn-
ing Strategy (blue label), the Active Cooperative Learning Strategy (green label) and the Self-
Learning Strategy (orange label).

The figure 7.8a shows that the Active Cooperative Learning Strategy uses the same learning
situations as the Active Learning Strategy with the addition of endogenous learning situations.
The addition of noise in the exogenous learning situations leads to worse prediction error for
the Active Learning Strategies (Fig. 7.17d). This is the consequence of the lack of exploration
due to the noise. Most of the space is unexplored with the Active Learning Strategies (Fig.
7.17e). The noise in the perceptions generates more Conflict NCS than usual which slows the
exploration (Fig. 7.17f). The addition of the endogenous learning situations enables to reduce
the number of Range Ambiguity NCS and thus decrease the volume of incompetencies (Fig.
7.17e), increase the number of Context Agents (Fig. 7.17b) and still augment the generaliza-
tion score (Fig. 7.17c). The Self-Learning Strategy is impacted by the noise only for the passive
exogenous learning situations because the learning inaccuracies are solved with endogenous ex-
ploitation situations that are not impacted by the oracle’s noise.
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(a) Passive, active, exogenous and endogenous
learning and exploitation situations (#)

(b) Number of
Context Agents
nCtxt (#)

(c) Generaliza-
tion score Gscr

(%)

(d) Prediction
error OErr (%)

(e) Volumes of learning inaccu-
racies: VC f lt

′, VConc
′ and VInc

′

(%)

(f) Learning inaccuracies NCS counts and cooperative neighbors
counts.

Figure 7.17 – Metrics results on the noisy learning problem with the Active Learning Strategy,
the Active Cooperative Learning Strategy and the Self-Learning Strategy. The parameters are set
to the values of the tables 7.6 and 7.1.

Noise Sensibility

Figure 7.18 presents an evaluation of some metrics on different noise deviations for the
noisy problem. When there isn’t any noise (2σ = 0), the exploration of the space is similar
for all the learning strategies (Fig. 7.18a) and the prediction errors are of the same order of
magnitude (Fig. 7.18d). It can be noticed that without noise, the Active Cooperative Learning
Strategy is the strategy that reaches the lowest prediction error. For high noise deviation val-
ues, there is an increase of the conflict and incompetent volumes and the prediction error
sharply increases. However, the Self-Learning Strategy appears to be more robust to noise as
the increase in the prediction error is much lower.

Validity Range Precision Sensibility

Figure 7.19 presents an evaluation of some metrics on different validity ranges precisions
for the noisy problem. It can be seen that for the active strategies, the better results in terms
of exploration (Fig. 7.19a), generalization (Fig. 7.19c) and prediction (Fig. 7.19d) are obtained
with the bigger validity ranges precisions. For the Self-Learning Strategy, it is the same behavior
except for the prediction error that is better for small validity ranges precisions.
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(a) Volumes of learning
inaccuracies: VC f lt

′, VConc
′

and VInc
′ (%)

(b) Number of
Context Agents
nCtxt (#)

(c) Generaliza-
tion score Gscr

(%)

(d) Prediction error OErr
(%)

Figure 7.18 – Metrics results on the noisy learning problem with the Active Learning Strategy
(AL), the Active Cooperative Learning Strategy (ACL) and the Self-Learning Strategy (SL) with
different noise deviation 2σ = {0; 1; 10}. The other parameters are set to the values of the
tables 7.6 and 7.1.

(a) Volumes of learning
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(c) Generaliza-
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(d) Prediction error OErr
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Figure 7.19 – Metrics results on the noisy learning problem with the Active Learning Strategy
(AL), the Active Cooperative Learning Strategy (ACL) and the Self-Learning Strategy (SL) with
different validity ranges precisions pR = {0.02; 0.04; 0.06}. The other parameters are set to the
values of the tables 7.6 and 7.1.

Perceptions Generation Coefficient Sensibility

Figure 7.20 presents an evaluation of some metrics on different perceptions generation co-
efficients for the noisy problem. The perceptions generation coefficient determines the range in
which the artificial perceptions are generated. It is noted that for the active strategies, the
highest perceptions generation coefficients enables to decrease the incompetent volumes (Fig.
7.20a) but it increases the number of Context Agents (Fig. 7.20b). Concerning the prediction
error (Fig. 7.20d), from the tested coefficients, the best result is obtained for the Active Cooper-
ative Learning Strategy with αPgen = 2.0. It means that the artificial perceptions are generated
beyond the entire validity ranges of the Context Agents. For the Self-Learning Strategy, higher
perceptions generation coefficients result in higher generalization scores (Fig. 7.20c), but worse
prediction errors (Fig. 7.20d).

This difference between the strategies makes sense because the Self-Learning Strategy uses
exogenous learning situations for the centers of the Context Agents and the endogenous learning

149



Experiments on Mathematical Models
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Figure 7.20 – Metrics results on the noisy learning problem with the Active Learning Strategy
(AL), the Active Cooperative Learning Strategy (ACL) and the Self-Learning Strategy (SL) with
different perceptions generation coefficients αPgen = {0.1; 0.5; 1; 2}. The other parameters are set
to the values of the tables 7.6 and 7.1.

situations purpose is to enhance their frontiers by keeping the center predictions as little
changed as possible. By generating artificial learning situations close to the center of validity
ranges, the exogenous learning situation is protected. The active strategies focus on the entire
validity ranges of the Context Agents. With the Active Learning Strategy, generating artificial
learning situations to close to the center (αPgen = 0.1) or to far from the borders (αPgen = 2)
gives weight on predictions that do not properly represent the confidence zone of Context
Agents. Surprisingly, the Active Cooperative Learning Strategy still benefits from distant artifi-
cial learning situations.

Synthesis

This experiment showed that the Self-Learning Strategy is better suited for noisy learn-
ing situations. The Active Learning Strategy is very sensitive to noise but with the Cooperative
Neighborhood Learning mechanism, it behaves better. The learning strategies perform differ-
ently in relation the validity ranges precision and the perceptions generation coefficient because of
the way they process the learning situations. The Self-Learning Strategy performs better with
low validity ranges and αPgen . The Active Learning Strategy performs better with large validity
ranges and medium αPgen . The Active Cooperative Learning Strategy performs better with large
validity ranges and αPgen .
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7.6.2 Lifelong Exploitation Problem

In this section, another experiment on Lifelong Learning is conducted but more in the
sense of Lifelong Exploitation. As the Self-Learning Strategy uses endogenous learning situations
and endogenous exploitation situations, the learning mechanism can keep on improving the
local models while it is being exploited.

Objectives

The objective of this experiment is to highlight the abilities of ELLSA to keep work-
ing and generating knowledge during an exploitation. During the exploitation, the learn-
ing mechanism continues to seek learning inaccuracies and to enhance the continuities and
discontinuities between the local models thanks to the CNL mechanism. Figure 7.21 shows
captures of the validity ranges and the local models before and after the Lifelong Exploitation.

(a) Validity ranges Before
Exploitation

(b) Validity ranges After
Exploitation

(c) Local models Before
Exploitation

(d) Local models After
Exploitation

Figure 7.21 – Capture of the 2 Perceptions Lifelong Exploitation Problem

Protocol

The Self-Learning Strategy is employed in this experiment. The used hidden function is the
same as the section 7.5.2. Table 7.7 shows the parameters used for this scenario. All other
parameters are the ones presented in the table 7.1. The hidden function is learned with 2000
learning cycles. Exploitation situations E li f elong

# are requested to the learning mechanism to
simulate a lifelong exploitation. 250 additional exploitation situations are used to calculate
the prediction error.

Name Notation Constrains Domain Value

Ex
p.

number of perceptions n > 0 N 2
number of learning situations L# > 0 N 2000
number of exploitation situations E# > 0 N (E li f elong

# ) 250
number of learning episodes E ps# > 0 N 15

U
. validity ranges precision pR ]0, 1[ R 0.02

model error margin m f
err > 0 R 0.05

Table 7.7 – Table of experimental parameters for the transfer experiment.
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Results

Figure 7.22 shows the learning metrics for the lifelong exploitation learning prob-
lem for the Self-Learning Strategy for several numbers of exploitation situations (E li f elong

# =

{0; 1000; 10000; 20000; 100000}).

(a) Passive, active, exogenous and endogenous
learning and exploitation situations (#)

(b) Number of
Context Agents
nCtxt (#)

(c) Generaliza-
tion score Gscr

(%)

(d) Prediction
error OErr (%)

(e) Volumes of learning inaccu-
racies: VC f lt

′, VConc
′ and VInc

′

(%)

(f) Learning inaccuracies NCS counts and cooperative neighbors
counts.

Figure 7.22 – Metrics results on the lifelong exploitation learning problem Self-
Learning Strategy with different numbers of exploitation situations E li f elong

# =

{0; 1000; 10000; 20000; 100000}. The parameters are set to the values of the tables 7.7
and 7.1.

Figure 7.22a shows that during the exploitation cycles, endogenous exploitation situations
and endogenous learning situations are generated. On the figure 7.22f, the endogenous exploita-
tion situations concern the Conflict NCS, the Concurrency NCS, the Incompetence NCS and the
Range Ambiguity NCS; the endogenous learning situations concern the Model Ambiguity NCS,
the Incompetence NCS and the cooperative neighbors. Figure 7.22e shows that the lifelong ac-
tive exploitation slightly increases the volume of conflicts but it significantly decreases the
volume of incompetencies as it can also be seen on the figure 7.21. This implies the creation
of much more Context Agents (Fig. 7.22b) and lower generalization scores (Fig. 7.22c). The ad-
ditional Complete Redundancy NCS and Partial Redundancy NCS (Fig. 7.22f) do not enable to
increase the generalization. Concerning the prediction performances, a slight error increase
is observed with 1000 exploitation situations but with more exploitation situations, the exploita-
tion phase manages to reduce the prediction error (Fig. 7.22d).
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Parameters Sensibilities

Figure 7.23 details how the prediction error is impacted by the validity ranges precisions
size with different numbers of exploitation situations. It can be seen that for larger validity
ranges precisions, the exploitation phase provides better performances at first, but it gets
worse as there are more Exploitation situations (Figures 7.23band 7.23c).

(a) pR = 0.02 (b) pR = 0.04 (c) pR = 0.06

Figure 7.23 – Prediction error OErr (%) with the Self-Learning Strategy with several va-
lidity ranges precisions pR and different numbers of exploitation situations E li f elong

# =

{0; 1000; 10000; 20000; 100000}. The parameters are set to the values of the tables 7.7 and
7.1.

Figure 7.24 presents the impact on the prediction error of the endogenous learning weight,
the neighborhood radius coefficient and the influence radius coefficient. The endogenous learning
weight and the influence radius coefficient have low impact but tend to increase the error for
the highest tested values (Figures 7.24a and 7.24c). The neighborhood radius coefficient clearly
increases the prediction error when it augments (Fig. 7.24b).

(a) wendo
lrn = {0.05; 0.1; 0.2; 0.5} (b) αN = {2; 4; 8} (c) αI = {0.5; 1; 2; 4}

Figure 7.24 – Prediction error OErr (%) with the Self-Learning Strategy; sensibility to the en-
dogenous learning weight wendo

lrn , the neighborhood radius coefficient αN and the influence radius
coefficient αI ; exploitation situations E li f elong

# = 10000. The other parameters are set to the val-
ues of the tables 7.7 and 7.1.
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Synthesis

This experiment showed that the Self-Learning Strategy enables to enhance the predic-
tion performances during an exploitation phase where no exogenous learning situations are
provided. This improvement is dependent of the validity ranges precision. For larger validity
ranges precisions, the observed improvements turn into deterioration when exploitation situa-
tions grow.

In this setting, the enlargement of the neighborhood and the influence areas did not
enable better prediction performances. This shows that for this model, larger neighborhoods
do not bring useful information.
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7.7 Few Learning Situations

In this section the experimentation with few learning situations and the Self-Learning Strat-
egy is presented. It is compared to a Naive Learning Strategy with no neighborhood abilities.

Objectives

The objective of this experiment is to show that few learning situations are enough to
obtain an exploitable collective of Context Agents with and without discontinuities. Another
goal is to show that Self-Learning Strategy can provide better learning performances than the
Naive Learning Strategy. Figure 7.25 shows captures of the learned local models with the Naive
and Self-Learning Strategies for the non linear continuous model (NLC) and the non linear
discontinuous model (NLD).

(a) NLC Model,
Learned local models
with the Naive Learning
Strategy

(b) NLC Model,
Learned local models
with the Self-Learning
Strategy

(c) NLD Model,
Learned local models
with the Naive Learning
Strategy

(d) NLD Model,
Learned local models
with the Self-Learning
Strategy

Figure 7.25 – Captures of the 2 perceptions non linear continuous (NLC) and discontinuous
(NLD) problems and their learning with 500 learning situations with the Naive Learning Strat-
egy and the Self-Learning Strategy.

Protocol

The Self-Learning Strategy and the Naive Learning Strategy are used on two different hid-
den functions. The continuous non linear problem (Sec. 7.5.1) and the discontinuous non
linear problem (Sec. 7.5.2). The Naive Learning Strategy is the one presented section 7.5. It
learn with passive learning situations. It does not use any learning inaccuracies NCS and all the
mechanisms that involve Neighbor Context Agents are not used. Table 7.8 shows the parame-
ters used for this scenario. All other parameters are the ones presented in the table 7.1. In this
experiment, Context Agents are not created with the Neighbor Context Agents like is usually
done in the previous evaluations of the Self-Learning Strategy.
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Name Notation Constrains Domain Value

Ex
p.

number of perceptions n > 0 N 2
number of learning situations L# > 0 N 200
number of exploitation situations E# > 0 N 250
number of learning episodes E ps# > 0 N 15

U
. validity ranges precision pR ]0, 1[ R 0.02

model error margin m f
err > 0 R 1.0 / 0.05

Table 7.8 – Table of experimental parameters for the few learning experiment.

Results

Figure 7.26 shows the learning metrics for the learning problem with few learning situa-
tions for the Self-Learning Strategy and the Naive Learning Strategy (brown label: NLC model
and Naive Learning Strategy; red label: NLC model and Self-Learning Strategy; gray label: NLD
model and Naive Learning Strategy; purple label: NLD model and Self-Learning Strategy).

(a) Passive, active, exogenous and endogenous
learning and exploitation situations (#)

(b) Number of
Context Agents
nCtxt (#)

(c) Generaliza-
tion score Gscr

(%)

(d) Prediction
error OErr (%)

(e) Volumes of learning inaccu-
racies: VC f lt

′, VConc
′ and VInc

′

(%)

(f) Learning inaccuracies NCS counts and cooperative neighbors
counts.

Figure 7.26 – Metrics results on the non linear continuous (NLC) and discontinuous (NLD)
learning problems with few learning situations; The Self-Learning Strategy and Naive Learning
Strategy are compared. The other parameters are set to the values of the tables 7.8 and 7.1.

Figure 7.26a shows that even for a low number of learning situations, endogenous exploita-
tion situations are generated to enhance the local models for the Self-Learning Strategy. They are
mostly Conflict NCS (Fig. 7.26f). In this case, most of the space is unexplored and filled with
incompetent volumes (Fig. 7.26e). As the Naive Learning Strategy does not generate endoge-
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nous exploitation situations, it slightly more explores the space and generates more Context
Agents (Fig. 7.26b). Concerning the prediction and the non linear continuous problem, it can
be noticed that the Self-Learning Strategy decreases the prediction error deviation when com-
pared with the Naive Learning Strategy (red and brow labels on the figure 7.26d). For the non
linear discontinuous problem, the Self-Learning Strategy does not improves the prediction
error as experienced section 7.5.2.

Parameters Sensibilities

Figure 7.27 presents an evaluation of the prediction error by varying several parameters.

(a) pR = {0.02; 0.04; 0.06} (b) αN = {2; 6; 8; 10} (c) αI = {0.5; 1; 2; 4}

(d) wendo
lrn = {0.05; 0.1; 0.25; 0.5} (e) wexo

lrn = {0.05; 0.1; 0.15; 0.2}
L# = 4000

Figure 7.27 – Prediction errorOErr (%) with the Self-Learning Strategy; sensibility to the valid-
ity ranges precision pR, the neighborhood radius coefficient αN and the influence radius coefficient
αI , the endogenous learning weight wendo

lrn and the exogenous learning weight. The other parame-
ters are set to the values of the tables 7.8 and 7.1.

Figure 7.27a shows that enlarging the validity ranges precision with few learning situations
increases the prediction error. Concerning the neighborhood radius coefficient, it seems to exist
an optimal value (αN = 6 in this case) for both problems (Fig. 7.27b). The influence radius
coefficient decreases the prediction error when it grows but the highest value gives a worse
prediction error for the discontinuous model (Fig. 7.27c). The endogenous learning weight has a
weak impact on the prediction error. An increasing trend of prediction error can be guessed
(Fig. 7.27d). To assess the exogenous learning weight, 4000 learning situations are necessary
to observe variations. Figure 7.27e shows that higher exogenous learning weights worsen the
prediction error.
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Synthesis

This experiment showed that a low random exploration of the space can provide predic-
tion on the whole space, even the unexplored areas. The Self-Learning Strategy was able to
enhance the learning process with few examples for the non linear continuous model.

For these learning problems, enlarging the explored space by enlarging the validity ranges
precision does not bring better prediction error as it could have been thought. Varying the
neighborhood radius coefficient and the influence radius coefficient enable to refine the predic-
tion error. Adding weight on the endogenous learning situations and the exogenous learning
situations only leads to worse predictions.
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7.8 Scalability

In this section, the scalability of the learning mechanisms is assessed with the Self-
Learning Strategy and the Active Learning Strategy.

Objectives

The objective of this experiment is to evaluate how the Self-Learning Strategy and the
Active Learning Strategy behave at higher dimensions and with large quantities of Context
Agents. The used hidden model is the toy problem of section 7.4. Figure 7.28 shows captures
of learned validity ranges for 2 and 3 perceptions.

(a) 2 perceptions (b) 3 perceptions

Figure 7.28 – Captures of learned validity ranges for the toy learning problem

Protocol

In this experiment, the hidden function of section 7.4 is used for several perceptions (2, 3, 5
and 10).

Table 7.9 shows the parameters used for this scenario. All other parameters are the ones
presented in the table 7.1.

Name Notation Constrains Domain Value

Ex
p.

number of perceptions n > 0 N 2; 3; 5; 10
number of learning situations L# > 0 N 500; 2000; 10000
number of exploitation situations E# > 0 N 250
number of learning episodes E ps# > 0 N 15

U
. validity ranges precision pR ]0, 1[ R 0.06; 0.1

model error margin m f
err > 0 R 1

Table 7.9 – Table of experimental parameters to evaluate scalability.

Results

Figure 7.29 shows the learning metrics for the toy problem with the Self-Learning Strat-
egy and several perceptions. Figure 7.29d shows that for higher perceptions, filling the space
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(a) Execution times of
learning and exploitation
cycles (ms)

(b) Number of Context
Agents nCtxt (#)

(c) Prediction error
OErr (%)

(d) Volume of Context
Agents VCtxt

′ (%)

(e) Learning inaccuracies NCS counts and cooperative neighbors counts.

Figure 7.29 – Metrics results on the square problems with the Self-Learning Strategy and sev-
eral perceptions. pR = 0.06. The other parameters are set to the values of the tables 7.9 and
7.1.

with Context Agents requires much larger amounts of learning situations. It explains the much
worst prediction errors obtained figure 7.29c. The learning and exploitation execution times
grow with the higher dimensions and with larger amounts of learning situations (Fig. 7.29a).
With this strategy, larger amounts of learning situations always generate more Context Agents
(Fig. 7.29b). Figure 7.29e shows how the learning inaccuracies NCS are affected by higher di-
mensions. For the same amount of learning situations, there are more Model Ambiguity NCS
with higher perceptions. It make sense because as linear regression is used, additional learn-
ing situations are required when perceptions grow. It can be noticed that there are less Conflict
NCS for 5 perceptions and there aren’t any for 10 perceptions. Indeed, for higher perceptions,
Context Agents are more distant. Neighbor Context Agents are required to generate Incompe-
tence NCS with the Self-Learning Strategy and for 10 perceptions none are generated as well
as no Cooperative Neighborhood Learning situations are produced. This phenomenon is also
observable with the amount Range Ambiguity NCS that decreases with higher dimensions.
Indeed, proximity between Context Agents is essential for the Range Ambiguity NCS detec-
tion.

Figure 7.30 plots the execution time sums of each agents types depending on the num-
ber of agents and perceptions. The Percept Agents time execution follow a polynomial trend
regardless of the number of perceptions (Fig. 7.30a). The Context Agents time execution also
follow polynomial curves but low perceptions lead to longer execution times (Fig. 7.30b). It is
explained by the larger amounts of activate Context Agents and Neighbor Context Agents with
low perceptions. However the considered duration are negligible compared to the execution
time of the Percept Agents and the Head Agent. The Head Agent time execution is the one that
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(a) Percept Agents (s) (b) Context Agents (s) (c) Head Agent (s)

Figure 7.30 – Execution time sums results on the square problem depending on the number
of Context Agents with the Self-Learning Strategy and several perceptions n = {2; 3; 5; 10}.
pR = 0.02. The other parameters are set to the values of the tables 7.9 and 7.1.

has the most impact and it also matches polynomial behaviors with longer durations for
higher perceptions (Fig. 7.30c).

(a) Percept Agents (s) (b) Context Agents (s) (c) Head Agent (s)

Figure 7.31 – Execution time sums results on the square problem depending on the num-
ber of perceptions with the Self-Learning Strategy and different validity ranges precisions pR =

{0.02; 0.06; 0.1}. The other parameters are set to the values of the tables 7.9 and 7.1.

Figure 7.31 plots the execution duration sums of agents depending on the perceptions
with different validity ranges precisions. There is a logarithmic dependence of Percept Agents
execution time on the perceptions (Fig. 7.31a). The Context Agents execution is linearly de-
pendent on the perceptions for pR = 0.1. For lower validity ranges precisions, the duration
increases until 5 perceptions and decreases for 10 perceptions. This can be cause by the fewer
activated Context Agents at high dimensions for small validity ranges precisions (Fig. 7.31b).
The Head Agent time execution is linearly dependent on the perceptions and it is regardless
of the validity ranges precision (Fig. 7.31c).

Figure 7.32 shows the learning metrics for the square problem with the Active Learning
Strategy and several perceptions. The number of perceptions 10 was not tested with the Ac-
tive Learning Strategy because of too long experimental execution times for high numbers
of learning situations. The duration of cycles increases with the perceptions. But for 2 percep-
tions it decreases with the number of learning situations. For 3 perceptions, it also decreases
with the number of perceptions during the exploitation and it stabilizes during the learning
(Fig. 7.32a). This is due to the increase in generalization when the number of Context Agents
decreases (Fig. 7.32b) and the explored volume increases (Fig. 7.32d). Compared to the Self-
Learning Strategy, the Active Learning Strategy generates almost no Model Ambiguity NCS be-
cause models are more shared during the Context Agents creation (Fig. 7.32e). Indeed, there
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(a) Execution times of
learning and exploitation
cycles (ms)

(b) Number of Context
Agents nCtxt (#)

(c) Prediction error
OErr (%)

(d) Volume of Context
Agents VCtxt

′ (%)

(e) Learning inaccuracies NCS counts and cooperative neighbors counts.

Figure 7.32 – Metrics results on the square problems with the Active Learning Strategy and
several perceptions. pR = 0.1 The other parameters are set to the values of the tables 7.9 and
7.1.

are more similar models as the presence of Concurrency NCS, Complete Redundancy NCS and
Partial Redundancy NCS attests. More similarities between local models enable to decrease
the number of Context Agents but for 5 perceptions the space is not sufficiently explored to
enable generalization. This lack of exploration is also visible on the figure 7.32c where the
prediction error is worse for high perceptions and few learning situations.

(a) Percept Agents (s) (b) Context Agents (s) (c) Head Agent (s)

Figure 7.33 – Execution time sums results on the square problem depending on the number
of Context Agents with the Active Learning Strategy and several perceptions n = {2; 3; 5}. pR =

0.06. The other parameters are set to the values of the tables 7.9 and 7.1.

Figure 7.33 plots the execution time sums of each agents types depending on the number
of agents with different perceptions and the Active Learning Strategy. All curves follow poly-
nomial trends. For the Percept Agents, the number of perceptions as no impact (Fig. 7.34a).
Compare to the previous strategy, the Context Agents cycles take much more time, and there
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is a huge increase for 5 perceptions (Fig. 7.34b). The agent that is responsible of most of the ex-
ecution time is again the Head Agent but with an increase of more than 10 times the duration
of the Head Agent with the Self-Learning Strategy.

(a) Percept Agents (s) (b) Context Agents (s) (c) Head Agent (s)

Figure 7.34 – Execution time sums results on the square problem depending on the number
of perceptions with the Active Learning Strategy and different validity ranges precisions pR =

{0.02; 0.06; 0.1}. The other parameters are set to the values of the tables 7.9 and 7.1.

Figure 7.34 plots the execution duration sums of agents depending on the perceptions
with different validity ranges precisions and the Active Learning Strategy. Depending on the
number of perceptions, the Percept Agents execution duration follow a linear curve (Fig. 7.34a).
The Context Agents and the Head Agent follow a polynomial curve (Figures 7.34b and 7.34c).
An increase in time execution is observed for higher validity ranges precisions and higher
numbers of perceptions. This can be due to larger neighborhoods. Larger neighborhoods involve
more Neighbor Context Agents and thus more operations when resolving the NCS.

Synthesis

In this section, it has been showed that exploration for higher numbers of perceptions is
an issue. Achieve a full exploration for perceptions that are higher than 3 would required
huge amounts of learning situations and Context Agents. This lack of exploration obviously
leads to poorer predictions when the whole space is considered.

It has been found that the neighborhood and influence mechanism are also affected by
growing dimensions. From a certain number of perceptions, neighborhoods are empty since
the Self-Learning Strategy no longer founds cooperative Neighbor Context Agents to generate
endogenous learning situations.

Using the Active Learning Strategy, it has been proven that generalization also works for
3 perceptions. However, it would require much more learning situations for higher perceptions.

The Percept Agents optimized activation has proven to be effective as the number of per-
ceptions grow. However, Context Agents and Head Agent execution times have not reach linear
dependence on the number of perceptions yet. Depending on the number of Context Agents,
the time performance is not linear either and it behaves differently with the number of per-
ceptions.

A huge difference in time execution was noticed between the Self-Learning Strategy and
the Active Learning Strategy. This is what is responsible for the absence of 10 perceptions for
the Active Learning Strategy. The Active Learning Strategy increases the execution time by a
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factor of 10. This is certainly due the Incompetence NCS that is computationally expensive
for higher dimensions and needs further work to be scalable. Otherwise, it can be used less
often like in the Self-Learning Strategy where the time execution explosion is not observed.
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7.9 Transfer Learning

In this section, the ability of the learning mechanism to reuse its knowledge and to adapt
to a variation in the search space is tested. The ability to transfer previously learned knowl-
edge during the learning of a new task is an important challenge of Machine Learning. The
goal is to enable a learning mechanism to generate connections between its past and present
experiences without any intervention of the designer.

Objectives

The objective of this experiment is to show that past learned models can be used for a
new learning task when they are related to it. The goal of this experiment is also to highlight
the adaptive abilities of ELLSA to changing models or tasks without any intervention of the
learning mechanism creator. Figure 7.35 shows captures of learned validity ranges for the 3
hidden models of increasing difficulty that are considered.

(a) Learned validity
ranges of F1 (square)

(b) Learned validity
ranges of F2 (disc)

(c) Learned validity
ranges of F3 (rhombus)

Figure 7.35 – Captures of learned validity ranges of 2 perceptions Transfer Learning problems.

Protocol

There are three hidden functions that represent close learning problems, two perceptions
and one output. F1 is the learning problem of the section 7.4 with the shape of a square. F2

and F3 are variations of F1 with the respective shapes of a disc and a rhombus.

Table 7.10 shows the parameters used for this scenario. All other parameters are the ones
presented in the table 7.1. When a hidden function is learned alone, 2000 learning cycles are
used. When is is learned after after another hidden function, 1500 learning cycles are pro-
vided. F2 (disc) and F3 (rhombus) are learned independently. F2 is learned with 1500 learn-
ing cycles after F1 (square→disk) and F3 is learned with 1500 learning cycles after F1 and
F2 (square→disc→rhombus). The Active Learning Strategy is used. The results are average
over 50 episodes because the behaviors for these learning problems are more fluctuating.
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Name Notation Constrains Domain Value

Ex
p.

number of perceptions n > 0 N 2
number of learning situations L# > 0 N 2000 (1500)
number of exploitation situations E# > 0 N 500
number of learning episodes E ps# > 0 N 50

U
. validity ranges precision pR ]0, 1[ R 0.05

model error margin m f
err > 0 R 1

Table 7.10 – Table of experimental parameters for the transfer experiment.

Results

(a) Passive, active, exogenous and en-
dogenous learning and exploitation sit-
uations (#)

(b) Number of
Context Agents
nCtxt (#)

(c) Generaliza-
tion score Gscr

(%)

(d) Prediction
error OErr (%)

(e) Volumes of learning inaccu-
racies: VC f lt

′, VConc
′ and VInc

′

(%)

(f) Learning inaccuracies NCS counts and cooperative neighbors
counts.

Figure 7.36 – Metrics results on the Transfer Learning problems with the Active Learning Strat-
egy. The parameters are set to the values of the tables 7.10 and 7.1.

Figure 7.36 shows the learning metrics for the Transfer Learning problem with the Active
Learning Strategy. The blue label is the learning of the disc (F2) with 2000 learning cycles.
The yellow label is the learning of the square (F1) with 2000 learning cycles, followed with
the learning of the disc (F2) with 1500 learning cycles. The green label is the learning of
the rhombus (F3) with 2000 learning cycles. The red label is the learning of the square (F1)
with 2000 learning cycles, followed with the learning of the disc (F2) with 1500 learning
cycles, followed with learning of the rhombus (F3) with 1500 learning cycles. The NCS, the
learning and the exploitation situations are usually counted during all the learning cycles.
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To represent the gain of the previous learning cycles for the scenarios square→disc and
square→disc→rhombus, only the last 1500 learning cycles are considered for the counts.

Figure 7.36a shows that when the disc problem is learned after the square problem, much
less active learning situations are required. All learning inaccuracies NCS are generated in less
quantities, specially the Model Ambiguity NCS. This shows that local models are shared to
avoid asking unnecessary active learning situations (Fig. 7.36f). The generalization score mean
is slightly improved compared to the learning of the disc problem alone but with devia-
tion increase (Fig. 7.36c). This is due to the highly fluctuating obtained incompetent vol-
umes with the learning of the disk and the square→disc (Fig. 7.36e). It is explained by the
generalization obtained with the square problem (Sec. 7.4). When large Context Agents up-
date they validity ranges, their are more likely to create large void areas. The learning of the
square→disc problem manages to reach similar prediction error with less learning situations
concerning than the disc problem alone (Fig. 7.36d).

After the learning of the square and the disc problems, the rhombus problem is
still a difficult problem because it still requires lot of active learning situations. The
square→disc→rhombus problem generates less NCS from all types than the rhombus
problem (like the square→disc problem compared to the disc problem) except for Con-
flict NCS (Fig. 7.36f). Learning the square and disc models before the rhombus enables to
reach lesser incompetent volumes (Fig. 7.36e), but it generates more Context Agents (Fig.
7.36b) and the generalization score is not improved (Fig. 7.36c). The prediction error on the
square→disc→rhombus problem is neither improved when compared to the learning of
rhombus problem alone.

Synthesis

This experiment showed that ELLSA is capable of reusing models and sharing them
between Context Agents to speedup the learning process on two related problems. It also
demonstrated that the collective of Context Agents can self-adapt in order to adjust to any
change in the hidden model. All the learning metrics were not enhanced with the addition
of the different past related experiences and it is still an easy learning problem. Additional
mechanism need to be investigate in order to reach better transfer of knowledge between
Context Agents. However, this experiment confirms that Context Learning provides undeni-
able flexibility properties for the manipulated models.
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7.10 Synthesis

To conclude on the mathematical models experiments, the objectives of section 1.6 are
reminded and a discussion is provided with respect to them.

3 Endogenous Feedback. The experiment section 7.4 validated the implementation of a
part of the implemented Endogenous Feedback: the detection and resolution of learning
inaccuracies with active learning situations. The Endogenous Feedback were also observed
along all the different experiments. The experiments using the Self-Learning Strategy
showed that the learning inaccuracies can also be resolved with endogenous exploitation
situations that do not required predictions from an oracle. Another Endogenous Feedback
is the endogenous learning situations. When using the Self-Learning Strategy, the endoge-
nous learning situations enabled to enhance the learning metric by using less learning
situations. One issue that remains is that for high numbers of perceptions, endogenous
learning situations are harder to generate because the Context Agents do not perceive any
neighbors. Additional experiments concerning the generation of endogenous learning sit-
uations will be conducted in the next chapter (8).

3 Agnosticity. The experiments that were conducted in this chapter were intentionally in-
dependent from any domain application and focused on properties of linearity, non lin-
earity, continuity and discontinuity. Section 7.5.3 showed that the Active Learning Strat-
egy and the Self-Learning Strategy performed better than a naive learning strategy on a
hidden model composed of all these properties.

3 Lifelong Learning. The experiments on Lifelong Learning gathered noisy problems and
lifelong exploitation problems. It was experimentally proven that the Self-Learning Strat-
egy is well suited for learning problems with noise in the data. The Self-Learning Strategy
also enabled lifelong active exploitation during which the learning mechanism contin-
ues enhancing its models without exogenous learning situations.

3 Online Learning. The learning mechanisms learns by definition in an online manner
as each learning situation is provided sequentially. The experiment that most represents
this property is detailed section 7.9. In this experiment several learning and exploita-
tion phases follow one another when the hidden model is changed. Previous relevant
experiences are kept and exploited as the new learning situations are used to modify the
models that need to be changed.

3 Self-Observation. The Self-Observation was highlighted through the detection of all
learning inaccuracies during the Active Learning Strategy and the Self-Learning Strategy.
A track that has not be treated is to use the confidence of Context Agents to strengthen
their local models when their confidence is low. Add additional learning inaccuracy could
be to target Context Agents with the lowest confidences.

3 Knowledge Generalization. This objective was addressed all along the experiments by
observing the generalization score. Knowledge Generalization in the case of Context Learning
is dependent on the measure of similarity between local models and on the disposition
of validity ranges (Context Agents can merge only when their validity ranges are aligned).
The Active Learning Strategy enabled better generalization than the Self-Learning Strat-
egy. Indeed, the Active Learning Strategy locally converges faster towards the hidden
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model with the additional learning situations that are requested at the creation of a Con-
text Agent. The Self-Learning Strategy uses the CNL mechanism to locally converge to-
wards the hidden model. When generalization is possible, the CNL mechanism does
not converge fast enough toward the hidden models to permit the same generalization
than the Active Learning Strategy. When the number of perceptions grows, the generaliza-
tion is achieved until 3 perceptions. Beyond, much more learning situations are necessary.
Knowledge Generalization in the sense of Transfer Learning was assessed section 7.9. It
showed that when the learning tasks are related, past experiences are helpful for the
new task to be learned but the transfer of information could be more important.

3 Scalability. The objective was assessed with the two learning strategies section 7.8. It
was showed that the exploration of spaces with high numbers of perceptions is an issue
because full exploration is impossible. Moreover, for high numbers of perceptions, the
neighborhood mechanism needs to be enhanced because no Neighbor Context Agents are
detected. A good point is that the execution times of the agents follow logarithmic,
linear and polynomial dependencies on the number of Context Agents and perceptions.

3 Any Data Amount. The Self-Learning Strategy is intended for learning with few learning
situations thanks to Cooperative Neighborhood Learning. The model updating mechanism
implemented with Lifelong Context Learning is intended for learning in a lifelong set-
ting where many learning situations can be provided. The experiments with few learning
situations and higher numbers of perceptions enabled to validate both cases.

3 Explainability. This objective was not validated with a metric measure. However, the
implemented interface and the ease of measuring metrics shows that Context Learning
enables to explain how is the learning is modeled, represented and structured. This is
provided by the embedding of the local models into agents.

3 Robotic Application. Robots evolve in the real world which is subject to noise in the
perceived data. It is in this objective that the experiment with noise was conducted.
It showed that the Active Learning Strategy is very affected by noise in the perceptions
and the prediction vectors. However, thanks to the CNL mechanism, the Self-Learning
Strategy provides robustness to noise. The next chapter will present a concrete robotic
application using ELLSA.
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8 Robotic Problems

In this chapter, I present several robotic experimentations made with the learning mechanism
ELLSA. The learning is applied to the problem of Inverse Kinematics which is classical in the robotic
community. The application scenario is the control learning for multi-joint robotic arms. These ex-
perimentations allow to highlight the properties of the system according to the objectives presented
section 1.6 in a concrete problem.

ROBOTIC arms or industrial robots are widely used nowadays. They enable automation
for mass production, they can provide human assistance in the medical field or human

replacement for all kind of manipulations where humans can’t handle it. The International
Federation of Robotics (IFR) reported a record of 2.7 million industrial robots operating in
factories around the world in 2020 [IFR, 2020].

8.1 Background

A robotic arm is composed of a mechanical structure with n joints and a terminal tool.
The structure enables to set the position P and orientation O of the terminal tool. The ter-
minal tool realizes a task and interacts with the environment. The state of a robotic arm is
defined by all its joint variables. These variables can be associated to translations or rota-
tions. Rotations are more usual for industrial robots. Only rotations are considered in this
study and the joint variables are thus only angles θi. The state of a robotic arm is defined by
the following elements.

3 The position PT |F0
= (xn, yn, zn) of the terminal tool in a static reference frame F0 that

is the tasks space.

3 The orientationOT |F0
of the terminal tool in a static reference frame F0. The orientation

can be expressed in different ways.

— Euler angles: OT |F0
= (ψ, θ, φ), the precession, the nutation and the intrinsic

rotation. They are chained rotations that can represent any orientation in a 3-
dimensional space.

— Bryant angles: OT |F0
= (yaw, pitch, roll), it is a different convention of chained

rotations usually used for aircrafts.

171



Robotic Problems

— Quaternions: OT |F0
= (w, x, y, z), they are a useful mathematical notation for rep-

resenting spatial orientation in robotics. They enable to avoid the gimbal lock 1

problem but they are not as intuitive as the Euler and Bryant angles.

3 The joints variables Jn = (θ0, . . . , θi, . . . , θn−1). They are the actuator and sensors of the
robot. They enable to control it but also to obtain information about its configuration.

x

y

x3

y3

θ0

θ1

θ2

l1 l2 l3

F0

Figure 8.1 – Robotic arm example in a 2D task space with 3 joints.PT |F0
= (x3, y3, 0),OT |F0

=

(θ2|F0
, 0, 0) and J3 = (θ0, θ1, θ2).

Figure 8.1 shows an example of robotic arm in a 2-dimensional task space. In this study,
only 2-dimensional tasks spaces are considered with n number of joints. The position and
orientation become PT |F0

= (xn, yn, 0) and OT |F0
= (θn−1|F0

, 0, 0) (with Euler angles).

An industrial robot is controlled in two different ways: with Direct Kinematics and Inverse
Kinematics (Fig. 8.2). The Direct Kinematic Model (DKM) calculates the position PT |F0

and
orientation OT |F0

of the tool from the joints variables Jn. The Inverse Kinematic Model (IKM)
calculates all possible configurations of joint variables Jn,Jn

′,Jn
′′, . . . in order to reach a

desired position PT |F0
and orientation OT |F0

of the tool.

Figure 8.2 – Direct Kinematic and Inverse Kinematic Models for control.

8.1.1 Direct Kinematics

The Direct Kinematic Model is the model that calculates PT |F0
and OT |F0

from Jn. Ho-
mogeneous coordinates are used and the model is an homogeneous transfer matrix T0,n

1. The gimbal lock is the loss of one degree of freedom when two rotation axis are parallel.

172 Bruno Dato



8.1. Background

between the static frame F0 and the frame of the tool Fn.

T0,n =

(
R0,n

#               »

O0On |F0

01×3 1

)
(8.1)

with R0,n the rotation matrix between the frames and O0 and On their respective origins.
The transfer matrix is usually calculated by decomposing it joint to joint with the a Ti−1,i

matrix. With a 2-dimensional task space and only rotation joints the transfer matrix Ti−1,i is
given by the equation 8.2.

Ti−1,i =


cos θi−1 − sin θi−1 0 li cos θi−1

sin θi−1 cos θi−1 0 li sin θi−1

0 0 1 0
0 0 0 1

 (8.2)

with li the size of the arm segment between the joint θi−1 and θi. The final transfer matrix
is obtained by doing the product of all Ti−1,i.

T0,n = T0,1. · · · .Ti−1,i. · · · .Tn−1,n (8.3)

The position of the terminal tool PT |F0
is obtained with the vector

#               »

O0On |F0
To get the ro-

tation, one must convert the rotation matrixR0,n into Euler angles, Bryant angles or Quater-
nions.

8.1.2 Inverse Kinematics

Robotic applications usually rely on task space controllers. The model allowing to control
a robot in its task space is called the Inverse Kinematic Model (IKM). It provides all possible
configurations of joint variables Jn,Jn

′,Jn
′′, . . . in order to reach a desired position PT |F0

and orientation OT |F0
of the terminal tool.

The IKM can be obtained with analytical approaches for rigid bodied robots of low
DOF (Degrees Of Freedom). These approaches perform poorly on complex systems with
lot of DOF or soft robots as they are difficult to model [Thuruthel et al., 2016]. Common
methods for solving the IKM of a redundant manipulator system are numerical solutions:
pseudo-inverse methods [Gardner and Velinsky, 2000, Bayle et al., 2003] and Jacobian trans-
pose methods [Hootsmans and Dubowsky, 1991]. They allow better scalability for higher
DOF but they still rely on the availability of accurate robot parameters which can be difficult
to obtain. Recent motion caption techniques allow to generate pre-learned postures and use
data-driven approaches for Inverse Kinematics problems [Ho et al., 2013, Holden et al., 2016].
Hybrid methods combine previous techniques and attempt to reduce the complexity of the
problem by decomposing it in several components [Unzueta et al., 2008]. Data-driven tech-
niques are the most exploited approaches in the last decades in the domain of computer
graphics [Aristidou et al., 2018]. We also found geometric approaches that provide direct
solutions using geometrical heuristics [Jamali et al., 2011]. From the point a view of devel-
opmental robotics, Baranes and Oudeyer [Baranes and Oudeyer, 2013] tackled the Inverse
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Kinematics problem by using intrinsically motivated goal exploration while learning the lim-
its of reachability.

Future robots will possess soft joints and high numbers of DOF making them difficult or
yet impossible to model. Thus, learning the IKM for complex robots is an inevitable way. The
implemented architecture for learning the IKM presented is this thesis can be considered as
a data-driven approach.

8.2 Inverse Kinematics Learning

The learning of the Inverse Kinematic Model is detailed in this section. For our ex-
perimentations, we repeat one of the experimental setups of Baranes and Oudeyer
[Baranes and Oudeyer, 2013] which is the learning of the inverse kinematics with a redun-
dant robotic arm. We consider a robotic arm with segments of length li and n joints in a
2-dimensional task space: (θ0, . . . , θi, . . . , θn−1) (Fig. 8.1 shows an example for 3 joints). To
control it, one must use its Direct Kinematic Model (DKM) and its Inverse Kinematic Model
(IKM) which are both non linear models dependent on the characteristics of the arm. We
propose here to learn the IKM using the DKM as a supervisor.

The used experimental metrics are presented. Two learning implementations are pro-
posed which involve centralized and decentralized control of joints.

8.2.1 Experimental Metrics

The metrics that are measured during the robotic experiments are the goal position and
orientation errors, the amount of generated endogenous learning situations and the execution
time.

Goal Position Error

To evaluate the predictions of the learning mechanism when a goal position P goal
T |F0

is
requested after a learning phase, a goal prediction error is defined.

EP = ||
#                            »

P goal
T |F0
P explo
T |F0
||/Dreachable (8.4)

P explo
T |F0

is the tool position obtained after the exploitation of the learning. The error is the
distance between the desired position and the one obtained by the exploitation (Fig 8.3). This
distance is normalized byDreachable. It is the diameter of the reachable area for the robotic arm
which is a disc when there aren’t any constrains for the joints (Fig 8.4).

Goal Orientation Error

The orientation can also be a requested goal Ogoal
T |F0

. It is a central element for robotic
arms as their task usually requires specif orientations. The orientation error is calculated as
it follows.
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EO = |Ogoal
T |F0
−Oexplo

T |F0
|/2π (8.5)

The orientation error is the difference between the requested orientation Ogoal
T |F0

and the

orientation Oexplo
T |F0

obtained after the exploitation (Fig 8.3). This difference is normalized by
2π, the maximal possible orientation error in a 2D task space.

Goal Position and Orientation Error

If both the position and the orientation are requested. The goal position and orientation
error EPO is the mean of the goal position error EP and the goal orientation error EO.

Endogenous Learning Situations

To evaluate the impact of the Cooperative Neighborhood Learning mechanism on the goal
performances, the number of generated endogenous learning situations Lendo

# is observed.

Execution Time

A focus on the execution time of learning episodes is made to appraise how the scalabil-
ity of the learning mechanism is affected in the presented robotic problems.

Figure 8.3 – Goal position and orientation error in a 2-
dimensional task space.

Figure 8.4 – Example of an
explored reachable space by a
simulated robotic arm in a 2-
dimensional task space.
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8.2.2 Centralized Control

This section presents the learning of the IKM in a centralized setting. The implementa-
tion of the experiment is firstly described. Then, the experiment objectives and protocol are
presented. The results and their analysis end this section.

Implementation

This experiment involves one learning instance (i.e. one ELLSA instance) for learning
the IKM of robotic arms between 2 and 30 joints. The learning of the IKM with one learn-
ing instance requires special training, exploration and exploitation that are detailed in the
following.

(a) Learning perceptions and prediction (b) Exploitation perceptions and predictions

Figure 8.5 – IKM learning implementation with 3 joints in the centralized setting.

Training. The training is made from several randomly generated positions of the tool in
the task space P rdm

T |F0
= (xrdm

n , yrdm
n ) and all the corresponding random joint angles except

one (θrdm
0 , θrdm

i , . . . , θrdm
n−2) as perceptions. The last angle θrdm

n−1 is the prediction vector which in
our case is a single value. The function that is learned by the mechanism is given by the
following equation.

Fθn−1(xn, yn, θ0, θi, . . . , θn−2) = θn−1 (8.6)

The learning situations are defined as Ln+1,1 = [(xn, yn, θ0, θi, . . . , θn−2), θn−1]. Figure 8.5a
shows an example of learning implementation with 3 joints. For this experiment, only the
position of the terminal tool is concerned. Learning the orientation would require an ad-
ditional perception. Concerning the learning criticality, only the distances to the local models
are considered. All the weight is given to the learning accuracy (wlrn

fn
= 1, wlrn

c0,1
= 0 and

wlrn
Rn

= 0).

Exploration. The generation of the training set is made using random angles for the joints
following a normal distribution. Considering that an outstretched arm is defined by all the
angles being set to 0 [2π], the distribution of each angle is centered around this value except
for θ0 which has an homogeneous random distribution between 0 and 2π. The dispersion is
set empirically for 3, 10 and 30 joints with the objective of having homogeneous situations
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in the task space. Figure 8.4 shows an example of exploration with 3 joints after 1000 learn-
ing situations. The respective empirical dispersions are π/2, π/4 and π/6. The dispersion
for n number of joints is given by the formula of the trend curve satisfying these points :
2.5593n−0.479.

Exploitation. The exploitation of the learning mechanisms is an exploitation with sub-
perceptions because only one learning instance is used but several actuators are needed (the
joint variables). During the exploitation of the learned IKM, the objective is to get a set of
angles to set the tool of the robotic arm in a desired position P goal

T |F0
= (xgoal

n , ygoal
n ) (Fig. 8.3).

All P goal
T |F0

are randomly generated in the reachable zone of the task space. The exploitation
that is performed with the learning instance of ELLSA is an exploitation with sub-perceptions
(Section 6.1.3). The sub-perceptions are xgoal

n and ygoal
n . The exploitation situations are defined as

En+1 = (xn, yn). Figure 8.5b shows an example of exploitation with 3 joints. The exploitation
with sub-perceptions usually generates several Valid Context Agents. The selection for the Best
Context Agent is made with the exploitation criticality by setting all the weight in the proximity
(wexpl
Pn

= 1) and no weight for experience and generalization (wexpl
c0,1 = 0 and wexpl

Rn
= 0).

Objectives

The objective of this experiment is to show that the endogenous learning situations gen-
erated by the Cooperative Neighborhood Learning mechanism enable to enhance the learning
performances on a concrete problem. Another goal is to test the scalability of this approach
to assess its viability on a real world application.

Protocol

In this context, the Self-Learning Strategy is used. Active learning situations are not avail-
able. The Incompetence NCS and Model Ambiguity NCS are not used. The focus is made on
Cooperative Neighborhood Learning.

Each learning experience is stopped after 1000 training cycles and the error metrics are
calculated over 200 exploitation cycles. The metrics are averaged over 15 learning episodes.
The inverse models to be learned are non linear models of several dimensions: 3, 4, 6, 10,
20 and 30. 30 is the number of degrees of freedom on a usual humanoid robot. Humanoid
linkages are not serial but the goal here is to test the scalability with the same degrees of
freedom order of magnitude. The stretched length for each arm sizes is the same (50 units
in our simulation). Thus, for each arm size scenario, the size of the reachable space is the
same. The error margin is set to 1. For visualization needs, all angles are multiplied by 100.
In this experiment, the generalization and experience weights for the learning criticality and
the exploitation criticality are set to 0. Table 8.1 reminds the parameters used for this scenario.
All other parameters are the ones presented in the table 7.1.
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Name Notation Constrains Domain Value

Ex
p.

number of joints n > 1 N 2, 3, 5, 10, 20, 30
number of ELLSA instances nELLSA > 0 N 1
number of perceptions nperceptions > 0 N n + 1
number of learning situations L# > 0 N 1000
number of exploitation situations E# > 0 N 200
number of learning episodes E ps# > 0 N 15

U
. validity ranges precision pR ]0, 1[ R 0.01/0.03

model error margin m f
err > 0 R 1

D
es

ig
ne

r.

accuracy learning weight wlrn
fn

≥ 0 R 1
experience learning weight wlrn

c0,1
≥ 0 R 0

generalization learning weight wlrn
Rn

≥ 0 R 0
proximity exploitation weight wexpl

Pn
≥ 0 R 1

experience exploitation weight wexpl
c0,1 ≥ 0 R 0

generalization exploitation weight wexpl
Rn

≥ 0 R 0

Table 8.1 – Table of experimental, user and designer parameters for the learning of the IKM
with centralized control.

Results

This section presents the results obtained with the learning of the IKM in the centralized
control setting.

Figure 8.6 shows the validity ranges of a learned IKM for 2 joints. With P3 = (x2, y2, θ0)

as perceptions and O1 = θ1 the prediction vector. The model in the perceptions space is a helical
hollow cylinder. For a desired position P goal

T |F0
= (xgoal

2 , ygoal
2 ) they are several possible joints

configurations. Context Learning enables to visualize the redundancy of this problem.

Figure 8.6 – Validity ranges for
the IKM with 2 joints in a 2-
dimensional task space. Perceptions
P3 = (x2, y2, θ0) and prediction O1 =

θ1.

Figure 8.7 – Mean goal position errors EP de-
pending on the number of joints without Co-
operative Neighborhood Learning.
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Arm Dimensions

The figure 8.7 shows that without Cooperative Neighborhood Learning the best perfor-
mance is obtained for 2 joints and with a validity ranges precision of 0.01. The validity ranges
precision of 0.01 also gives lower mean error for the arms of 2, 3 and 6 joints than the validity
ranges precision of 0.03. For arms with more joints the gap is less visible. The mean error
and its dispersion increases around 10 joints. Then, it decreases as the number of joints gets
higher.

The lowest error is obtained for the lowest arm dimensions. The error increases around
10 joints and it decreases for higher arm dimensions. At low dimensions, the good perfor-
mance is due to the low redundancy of the problem making the exploration less extensive.
The decreasing of the error at high dimensions is caused by the exploitation of the Context
Agents with sub-perceptions. If the requested goal P goal

T |F0
during the exploitation is in a less

explored area, it is the closest model of Context Agent that is used for the last angle predic-
tion. The smaller the size of the last arm segment is, the smaller the distance error on the
goal is. This is the case for the higher dimensions. The rest of the angles are fixed using the
validity ranges of the Best Context Agent. Moreover, with higher joints the information needed
to reach a certain P goal

T |F0
is distributed across the angles perceptions and not only the predic-

tion of the last angle. The better performances are obtained at the cost of Context Agents with
higher dimensions and longer execution times.

Neighborhood Sizes

Figures 8.8a and 8.8b show that the size of the neighborhood has an impact on the
mean error for the arms of 2, 3 and 6 joints. The error slightly decreases for 2 and 3 joints
with a validity ranges precision of 0.01. With a validity ranges precision of 0.03 the error
decreases and reaches a minimum value with a delay in the neighborhood radius coefficient for
the different arms. It then increases for 2 and 3 joints for higher neighborhood sizes. For 10,
20 and 30 joints, the error only decreases for 10 joints with a validity ranges precision of 0.03
(Fig. 8.9a). The other cases are not impacted by the variation of neighborhood (Fig. 8.9b).

(a) pR = 0.01 (b) pR = 0.03

Figure 8.8 – Mean goal position errors EP depending on neighborhood radius coefficients over
robotic arms of 2, 3 and 6 joints.
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(a) pR = 0.01 (b) pR = 0.03

Figure 8.9 – Mean goal position errors EP depending on neighborhood radius coefficients over
robotic arms of 10, 20 and 30 joints.

Endogenous Learning

(a) pR = 0.01 (b) pR = 0.03

Figure 8.10 – Mean goal position errors EP depending on mean endogenous learning situations
over robotic arms of 2, 3 and 6 joints.

Figure 8.11 – Mean goal position errors EP depending on mean endogenous learning situations
over robotic arms of 10, 20 and 30 joints; pR = 0.03.

The figures 8.10 and 8.11 represent the same experiment than 8.8 and 8.9 but focusing
on the variation of the error according to the generated endogenous learning situations. With
a validity ranges precision of 0.01 (Fig. 8.10a), for 2 and 3 joints, the more endogenous learning
situations there are, the lower the error is. It is the same for 6 joints and a validity ranges
precision of 0.03 (Fig. 8.10b). For 2 and 3 joints and a validity ranges precision of 0.03, the same
behavior than the figure 8.8b is observable.
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The validity ranges precision of 0.01 with the joints 10, 20 and 30 (Fig. 8.9a) is not repre-
sented because in this case, almost no endogenous learning situations were generated. For 10
joints with a validity ranges precision of 0.03 (Fig. 8.11), additional endogenous learning situa-
tions reduce the error. But for 20 and 30 joints, the endogenous learning situations do not reduce
the goal error, they even slightly increase it.

Figures 8.8, 8.9, 8.10 and 8.11 showed that the expansion of the neighborhood with larger
validity ranges precisions can lead to better or worse performances by generating more en-
dogenous learning situations. The point of best performance is different for each joint number
which shows that the neighborhood behaves differently with higher dimensions. Past this
point, the error increases because the generated endogenous learning situations are too far from
the Best Context Agents to bring a coherent smoothing.

At high dimensions, endogenous learning situations are harder to generate because of the
large exploration space. This is why, for the same neighborhood radius coefficients, there are
more endogenous learning situations at low dimensions. Moreover, beyond 10 joints, the per-
formances are not affected by the endogenous learning situations.

Execution Time

Figure 8.12a shows that with a validity ranges precision of 0.01, the execution time is
slightly affected by the generation of endogenous learning situations. However, with a validity
ranges precision of 0.03 (Fig. 8.12b), small amounts of endogenous learning situations lead to
the exponential increase of the execution time.

(a) pR = 0.01 (b) pR = 0.03

Figure 8.12 – Mean execution time depending on mean endogenous learning situations over
robotic arms from 2 to 30 joints.

Extending the neighborhood to generate more endogenous learning situations is quickly
greedy in computing time even for small amounts of situations. This shows the limitation of
our approach especially since the accuracy does not improve significantly with increasing
dimensions. A method is therefore needed that guarantees similar results to those of small
dimensions for large dimensions.
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Synthesis

The magnitude of the mean goal reaching errors of the Self-Adaptive Goal Generation
RIAC algorithm (SAGG-RIAC) [Baranes and Oudeyer, 2013] is close to our results. The dif-
ference is that SAGG-RIAC uses around 104 micro actions for each goal to obtain comparable
goal errors without the knowledge of the Direct Kinematic Model. Our approach instanta-
neously gives a set of angles to reach the goal after a training of 1000 learning situations but
it uses the DKM as learning supervisor.

This experiment enabled to applied the Context Learning paradigm to the learning of In-
verse Kinematic Models of robotic arms with different numbers of joints. The results showed
that the generation of endogenous learning situations led to better performances for the posi-
tioning of the terminal tool. The generation of endogenous learning situations makes it possi-
ble to reduce exogenous learning situations as the performance improvement with Cooperative
Neighborhood Learning attests.

The proposed approach needs to be refined in order to select the right neighborhood radius
coefficient according to the dimension of the exploring space to maximize performance. The
generation of endogenous learning situations at high dimensions needs also to be optimized to
access to more neighbors with reasonable execution times.

A promising lead is to decompose the learning into several local instances of the learning
mechanism, one for each joint. This would reduce the high-dimensional problem into sev-
eral low-dimensional problems where Cooperative Neighborhood Learning is more effective. It
will also ensure that the performances are independent of the number of dimensions, and
that the execution time is linearly dependent on the dimensions. This will be the focus of the
next experiment.
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8.2.3 Distributed Control

This section presents the learning of the IKM in a distributed setting. The implementa-
tion of the experiment is firstly described. Then, the experiment objectives and protocol are
presented. The results and their analysis end this section.

Implementation

We propose here to learn the IKM still using the DKM (Direct Kinematic Model) but lo-
cally. The learning is exploited with a constraint propagation mechanism. This approach is
independent of the joints number of the considered robots. At high dimensions, agent co-
operation is computationally expensive and raises implementation issues. To cope with this
problem, the learning is separated into several low dimension instances, one for each joint.
This experiment involves several ELLSA instances for learning the IKM of robotic arms be-
tween 3 and 100 joints. In the case of distributed control, training and exploitation differ
from the previous experiment.

(a) Perceptions and predictions (b) Instances

Figure 8.13 – IKM learning and exploitation implementation with 3 joints in the distributed
setting.

Training. The training is local to each joint. There are as many learning instances as joints.
Let ELLSAθi the learning instance which corresponds to the control of the joint θi and the
position of the joint θi+1: Pθi+1|Fi

= xi+1|Fi
, yi+1|Fi

(Fig. 8.13). The arm configurations are also
randomly generated. An instance learns the local angle θrdm

i|Fi
to position its segment li+1 local

end (xrdm
i+1|Fi

, yrdm
i+1|Fi

) in the joint local frame Fi. The training is made with xrdm
i+1|Fi

and yrdm
i+1|Fi

as

perceptions and θrdm
i|Fi

as the oracle value. The local function Fθi learned by each instance is:

Fθi(xi+1|Fi
, yi+1|Fi

) = θi|Fi
(8.7)

The learning situations are defined as L2 = [(xi+1|Fi
, yi+1|Fi

), θi|Fi
].

Exploration. In this case, an homogeneous exploration of space is not necessary as each
joint model is learned locally. Still, the same random generation of arm configurations is
used for this experiment. This distribution favors extended arm positions. This exploration
removes possible biases which would be due to a non homogeneous exploration of the task
space.
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T |F0

ygoal
T |F0

Pgoal
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Pθ3

xlocal goal
3|F0

ylocal goal
3|F0

Plocal goal
θ3

Pgoal
θ3

Figure 8.14 – Goal propagation mechanism; F0 is the frame of the task space.

Exploitation During the exploitation of the learned IKM, the goal is to get a set of angles
to position the end of the robotic arm in a point P goal

T |F0
= (xgoal

n , ygoal
n ) (Fig. 8.3). All P goal

T |F0
are

randomly generated in the reachable zone of the task space. Each joint learning instance is
exploited sequentially from the first to the last: it defines a goal propagation cycle. ELLSAθi

being the learning instance which corresponds to the the control of the joint θi and the po-
sition of the joint θi+1: Pθi+1|Fi

= xi+1|Fi
, yi+1|Fi

. Each instance enables to control the joints in
local frames. To achieve a matching of the last frame (i.e. the frame of the terminal tool) with
the desired goal, the goal position P goal

T |F0
is propagated on all the joints local frames.

The desired position for the terminal tool PT |F0
isP goal

T |F0
. To approach this goal, the needed

translation between the tool and the goal is
#                     »

PT |F0
P goal
T |F0

(Fig 8.14). The translation is propa-

gated to the position of each joint θi+1 which gives
#                             »

Pθi+1|F0
P goal

θi+1|F0
.

P goal
θi+1|F0

is the position that the joint θi+1 must take to satisfy the goal on the termi-

nal tool. P goal
θi+1|F0

is then moved in the reachable zone of θi+1 to generate P local goal
θi+1|F0

=

(xlocal goal
i+1|F0

, ylocal goal
i+1|F0

). xlocal goal
i+1|F0

and ylocal goal
i+1|F0

are translated to the frame Fi. xlocal goal
i+1|Fi

and

ylocal goal
i+1|Fi

are the perceptions that are given to the learning instance ELLSAθi for the selection
of the angle θi|Fi

. The number of goal propagation cycles is chosen by the user. An example
of goal propagation on the joint θ2 is given Fig. 8.14.

In this experiment, orientation goals Ogoal
T |F0

are also generated. If the orientation of the
end of the arm is a desired constraint, orientation goals are randomly generated between 0
and 2π in addition to the position goals. During the goal propagation, the orientation of the
joint θn is set to Ogoal

T |F0
. The rest of the joints then adapt to the fixed orientation during goal

propagation.
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8.2. Inverse Kinematics Learning

Objectives

The objectives of this experiment are the same as the previous one but in the distributed
control setting. The goal of this experiment is to show that the endogenous learning situa-
tions generated by the Cooperative Neighborhood Learning mechanism enhance the learning
performances. Scalability is also assessed with higher numbers of joints than the previous
experiment.

Protocol

In this context, the Self-Learning Strategy is also used. The Incompetence NCS and Model
Ambiguity NCS are not used. The focus is made on the Cooperative Neighborhood Learning
mechanism .

The presented results are averaged over 15 learning experiences. A learning cycle cor-
responds to a configuration for the robotic arm. Each learning instance receives a local
learning situation at each learning cycle. The inverse models to be learned are non linear
models of high dimensions (up to 100). They are all reduced to 2-dimensional problems.
We chose to stop at 100 dimensions because it is reasonable to evaluate scalability and it
covers most hyper redundant robots and the dimensional complexity of a human body
[Aristidou et al., 2018]. The stretched length for each arm sizes is the same as before (50
units in our simulation). Each segment of the arm is decreasingly smaller up to the end of
the arm. The error margin is set to 1. For visualization needs, all angles are multiplied by
100. The validity ranges precision is fixed at 0.04 for all the presented results. The goal prop-
agation cycles are set to 10. In this experiment, the generalization and experience weights
for the learning criticality and the exploitation criticality are set to 0. Table 8.2 summaries the
parameters used for this scenario. All other parameters are the ones presented in the table
7.1.

Name Notation Constrains Domain Value

Ex
p.

number of joints n > 1 N 3, 5, 10, 20, 30, 50, 100
number of ELLSA instances nELLSA > 0 N n
number of perceptions nperceptions > 0 N 2
number of learning situations L# > 0 N 200
number of exploitation situations E# > 0 N 50
number of learning episodes E ps# > 0 N 15

U
.

validity ranges precision pR ]0, 1[ R 0.04
model error margin m f

err > 0 R 1
goal propagation cycles cprop > 0 N 10

D
es

ig
ne

r.

accuracy learning weight wlrn
fn

≥ 0 R 1
experience learning weight wlrn

c0,1
≥ 0 R 0

generalization learning weight wlrn
Rn

≥ 0 R 0
proximity exploitation weight wexpl

Pn
≥ 0 R 1

experience exploitation weight wexpl
c0,1 ≥ 0 R 0

generalization exploitation weight wexpl
Rn

≥ 0 R 0

Table 8.2 – Table of experimental, user and designer parameters for the learning of the IKM
with distributed control.
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Results

This section presents the results obtained with the learning of the IKM in the distributed
control setting.

Learning Situations and Arm Dimensions

Figure 8.15 shows the impact of learning situations on the goal position error depending
on the joints number. For low learning situations and for small number of joints, the goal po-
sition error increases (Fig. 8.15a). For high learning situations and for big numbers of joints,
the goal position error increases too. The addition of Cooperative Neighborhood Learning (Fig.
8.15b) removes the goal position error divergence for high learning situations and high num-
ber of joints. Starting from 25 learning situations, the goal position error is relatively indepen-
dent of the number of joints. Fig. 8.15c shows the addition of orientation goals. This has the
effect of slightly increasing the position error while keeping the same curve tendency.

(a) Without CNL (b) With CNL

(c) With CNL and orientation goals

Figure 8.15 – Mean goal position errors EP depending on robotic arm sizes for different
learning cycles (10, 25, 50, 100, 200 and 500), with and without Cooperative Neighborhood
Learning (CNL).

Figure 8.16 shows the impact of joints numbers on the goal position error depending
on learning situations with and without Cooperative Neighborhood Learning. One can see that
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8.2. Inverse Kinematics Learning

the addition of Cooperative Neighborhood Learning clearly decreases the goal position error in
particular for high joints numbers. With Cooperative Neighborhood Learning, small amounts of
learning situations is sufficient to obtain goal position errors close to the lowest obtained with
high amounts of learning situations.

(a) Without CNL (b) With CNL

Figure 8.16 – Mean goal position errors EP depending on learning situations for different
robotic arm sizes (3, 6, 10, 20, 30, 50 and 100), with and without Cooperative Neighborhood
Learning (CNL).

Without Cooperative Neighborhood Learning, a worse learning is observed for high joints
numbers and high learning situations that may be due to a bias in the used learning models.
This bias is compensated by the generation of endogenous learning situations. Figures 8.15b
and 8.16b show that with the addition of Cooperative Neighborhood Learning, the exploitation
of the learned inverse model for position control is mostly independent of the joints numbers
of the robotic arms. If a joint local learned model is not accurate enough, the goal propaga-
tion allows to transfer its incompetence to the other joints models. The collective of learning
instances then allows the emergence of a correct tool position for the arm regardless of the
number of joints. The only exception is for the smallest number of joints configurations and
the lowest learning cycles. In this case, because of the poor redundancy, the endogenous learn-
ing situations cannot further decrease the error. The addition of the orientation for the goal
leads to an error increase for low joints number because high redundancy is essential to con-
trol the orientation of the arm extremity. With few joints, it is harder to satisfy the position
and orientation goals.

As Figure 8.16b shows it, using more than 25 learning situations by joint does not sig-
nificantly improve the goal position error. This is also due to the redundancy of the arms
coupled with the goal propagation. Small quantities of arm configurations are enough to
learn the Inverse Kinematic Model with position errors between 1%(±1) and 2%(±2).
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Goal Propagation

Figure 8.17 shows the impact of goal propagation cycles on the goal position error de-
pending on the joints numbers. On figure 8.17a, the different goal propagations give similar
results except for the single and twice propagations, for which, one observes worse posi-
tion errors. Yet, for high joints number, the error converges towards the same value than the
other propagations. The orientation error (Fig. 8.17b) is independent of the number of joints
or propagation. The position and orientation errors (Fig. 8.17c) follow the same behavior
than the position error but with lower error values for small joints number.

(a) Goal Position Error EP (b) Goal Orientation Error EO

(c) Goal Position and Orientation Error EPO

Figure 8.17 – Mean goal position and orientation errors depending on robotic arm sizes for
different goal propagation cycles (1, 2, 5, 10 and 20), with Cooperative Neighborhood Learning,
with orientation goal.

Except for the single propagation, using more than 5 propagations does not significantly
improve the position and orientation errors. When goal orientation is implemented, the
choice of setting the angle of the last joint at the end of propagation explains the poor results
of the single propagation. Joints models do not get a second chance to adapt to the fixed ori-
entation of the arm extremity. Indeed, the second wave of propagation significantly reduces
the error. As expected, the orientation is independent of the joints number. The chaotic devi-
ations are the consequence of goal orientations that are not reachable (mainly on the edges
of the task space).
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Execution Time

Figure 8.18 shows the impact of goal propagation cycles and learning situations on the ex-
ecution time of the experiments depending on the joints number. Figure 8.18a shows that the
addition of Cooperative Neighborhood Learning does not increase time execution. The number
of goal propagation cycles has an impact. The more propagation cycles there are, the greater
the execution time is. For 20 goal propagations, the trend curve is polynomial of degree 2
with a determination coefficient of 0.9997. The coefficient of degree 2 is 0.022 and the co-
efficient of degree 1 is -0.104. For 5 goal propagations, the trend curve is also polynomial
of degree 2 with a determination coefficient of 0.9999. The coefficient of degree 2 is 0.006
and the coefficient of degree 1 is 0.012. Figure 8.18b shows that for more learning cycles, the
execution time of experiences is slightly increased. Lastly, as an example, using the same
experimental parameters than figure 8.18a for 10 joints and 5 goal propagation cycles, the
exploitation time represents 40% of the total time execution of the experiment.

(a) For different goal propagation cycles (1, 5,
10 and 20); with and without Cooperative Neigh-
borhood Learning (CNL).

(b) For different learning cycles (10, 25, 50, 100,
200, 500 and 1000); with Cooperative Neighbor-
hood Learning; cprop = 20.

Figure 8.18 – Mean experience time execution depending on robotic arm sizes; with orienta-
tion goal.

The execution time of the implemented approach for learning Inverse Kinematics Models
is polynomially dependent on the number of joints. However, the highest coefficients for
the trend curves are of degree 1 which shows that the linear dependency is almost reached.
Moreover, 5 goal propagations is enough to obtain reasonable performances regarding the
best reached errors for higher goal propagations. As can be seen on the figure 8.18b, the
impact of learning cycles is weak and adding more learning situations does not change the
polynomial dependence on the number of joints.
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Synthesis

With close experimental conditions, for 30 joints, the Self-Adaptive Goal Generation
RIAC algorithm (SAGG-RIAC) [Baranes and Oudeyer, 2013] reaches a position error of
around 2.5%(±2) (with the position error metric of section 8.2.1) against less than 2%(±2)
for our results (Figures 8.15b and 8.16b). The difference is that SAGG-RIAC uses around
104 micro actions for each goal to reach comparable performances. Our approach needs a
few dozen learning examples and less than 10 goal propagations across the arm joints. One
difference though is that the SAGG-RIAC does no relies on the Direct Kinematic Model.

This experiment has showed that the generation of endogenous learning situations makes
it possible to reduce learning situations as the performance improvement with Cooperative
Neighborhood Learning attests.

The several learning instances coupled with goal propagation and Cooperative Neighbor-
hood Learning provided scalable performances that are independent of the number articula-
tions of the robotic arms.

The learning architecture is not highlighted at its best with the characteristics of the use
joints because they could be locally modeled by analytical techniques.

Further focus could be the implementation of this approach with more complex 3D joints
or soft joints. Soft robots are known for being difficult, if not impossible to characterize.
Since the implemented learning is dependent on the Direct Kinematic Model, future concerns
could focus on how to remove this dependency. This approach also gives promising leads
for implementing multi-goal situations to simulate robotic hands where each finger has its
own goal.
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8.3 Synthesis

This chapter proposed an application of Endogenous Context Learning in a robotic con-
text. It was the learning of the Inverse Kinematic Model of a robotic arm. Centralized and dis-
tributed control implementations were proposed. Both configurations allowed to experience
how the generation of endogenous learning situations enhances the prediction performances.
The centralized control faced scalability issues that where solved by the distributed control.
The presented implementation uses the Direct Kinematic Model as a supervisor during learn-
ing. One perspective would be to remove this dependency on the Direct Kinematic Model
because robot parameters can be hard to obtain, especially with soft robots. A solution to
this problem would be to learn how to perform position and orientation variations.

To finish the synthesis on the robotic experiments, the related objectives of section 1.6 are
reminded and a discussion is provided with respect to them.

3 Endogenous Feedback. One of the focus of the robotic experiment was the impact of
the endogenous learning situations generation. Endogenous learning situations enabled to
enhance the prediction performances on both the centralized and distributed control.
As seen in the previous chapter, higher numbers of perceptions require to enlarge the
neighborhood size to consider a larger zone surrounding the perceptions in order to detect
more Neighbor Context Agents. It worked up to 6 joints (7 perceptions for the centralized
experient). Beyond 6 joints, the generated endogenous learning situations did not enhance
the prediction performances. The neighborhood behavior for high dimensions needs to
be further investigated so that the Cooperative Neighborhood Learning mechanism works
whatever the number of dimensions. One alternative was to distribute the learning with
several learning instances of low dimensions. In this case, the generation of endogenous
learning situations provided better prediction performances regardless of the number of
joints.

3 Scalability. Concerning this objective, the centralized experiment confirmed the lack
of endogenous learning situations for high dimensions. The expansion of the neighborhood
enabled to generate endogenous learning situations and to reach better prediction perfor-
mances. However the resulting execution time increased exponentially with the addi-
tional situations. On the other hand, the distributed experiment showed polynomial
(close to linear) time execution dependency on the number of joints.

3 Any Data Amount. Concerning the number of required learning situations, the central-
ized and the distributed experiments differ. The centralized experiment needs a rather
large quantity of learning situations dispatched homogeneously in the reachable space
of the robot. The distributed scenario can achieve similar position errors with very few
learning situations. This is achieved through the propagation mechanism that allows
knowledge gaps to be propagated to other joints.
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9 Conclusions and Perspectives

In this final chapter, the conclusions and perspectives are provided in relation to the initial ob-
jectives of this thesis (section 1.6). The contributions are declined in 3 categories: Context Learning,
Machine Learning and Robotics. The perspectives present exploration tracks concerning additional
adaptation and optimization for Context Learning, leads to advance certain challenges of Machine
Learning and AI, and possible extensions of the work carried out on robotics.

Conclusions

This thesis focused on the design of ELLSA (Endogenous Lifelong Learner by Self-
Adaptation. An analysis of each chapter of the manuscript is given. Then, a discussion with
respect to each objective of this work is conducted.

Manuscript Analysis

Chapter 1 established the context of this work by presenting the focused environments
by the designed learning mechanism. The future of robotics, industry and AI leads to re-
thinking the design of learning systems. This reflection led to consider the environment as
a complex system and allowed to characterize the objectives of the work done in this thesis:
Endogenous Feedback, Agnosticity, Lifelong Learning, Online Learning, Self-Observation, Knowl-
edge Generalization, Scalability, Any Data Amount and Explainability.

Chapters 2, 3 and 4 described the state of the art of the learning approaches and chal-
lenges in relation with the defined objectives. Chapter 2 described the lack of Endoge-
nous Feedback and Self-Observation in the classical learning approaches and the growing
concerns of Online Learning, Lifelong Learning and Knowledge Generalization. Chapter 3 fo-
cused on the challenges of Lifelong Learning and its related learning approaches. Among the
presented paradigms, Endogenous Feedback and Self-Observation appeared to be poorly ad-
dressed. Chapter 4 concentrated on learning paradigms that were using endogenous mech-
anism especially in robotics. The reflection was finished by the introduction of Context Learn-
ing, a distributed and agnostic learning approach based on Adaptive Multi-Agent Systems.
This technique provides great malleability in the learning process to ease the implementa-
tion of the missing required properties.

Chapters 5 and 6 detailed the contributions of this thesis. The first contribution is the def-
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inition of Endogenous Learning and its implementation in the paradigm of Context Learning:
Endogenous Context Learning. The second contribution is the design of ELLSA (Endogenous
Lifelong Learner by Self-Adaptation), a learning mechanism that integrates endogenous, agnos-
tic, lifelong, online, self-observation and generalization learning properties.

Chapter 5 introduced Endogenous Learning by giving its motivations and definitions. In
this chapter, the focus was on the Context Agents which represent the local learning frag-
ments. The neighborhood and influence mechanisms were established in order to enhance
communication between the knowledge fragments. The shortcomings of Context Learning
motivated the characterization of learning inaccuracies. Their detection and resolution were
made possible with the addition of communication between Neighbor Context Agents. To
finish this chapter, Cooperative Neighborhood Learning was introduced. It is meant for the gen-
eration of endogenous learning situations in order to enhance the learning performances and
save exogenous learning situations.

Chapter 6 presented Endogenous Context Learning from a broader point of view by de-
scribing all the mechanisms that intervene in the learning system ELLSA. Learning and
exploitation cycles were detailed as both intervene during learning to generate exogenous
learning situations and endogenous learning situations. Generalization, experience and perfor-
mance were formalized with the use of a learning criticality and an exploitation criticality.
A mechanism was added to update the local models in a lifelong setting with the goal to
give weight to past learning situations without storing them. This mechanism was essential
for Cooperative Neighborhood Learning. It enables endogenous learning situations to enhance the
local models without completely altering their past experiences. I have proposed two learn-
ing strategies, the Active Learning Strategy and the Self-Learning Strategy. The Active Learning
Strategy is intended for learning scenarios were specific additional active learning situations
(also exogenous learning situations) can be requested to enhance the learning process. The Self-
Learning Strategy only uses endogenous mechanisms to enhance the learning process and it
uses fewer exogenous learning situations. These endogenous mechanisms are the generation
of endogenous exploitation situations and endogenous learning situations. The chapters of contri-
bution were finished with discussions and leads concerning related learning paradigms and
their challenges. Multi-Task Learning is the challenge that would need the most additions to
Endogenous Context Learning to be performed as it would involve several collectives of Con-
text Agents. Reinforcement Learning could be achieved by using several instances of ELLSA
and with continuous state and action spaces when most Reinforcement Learning techniques
only use discrete state and action space. Transfer Learning seemed to be achievable in the
Context Learning and is presented in the experimentations.

Chapters 7 and 8 detailed the conducted experiments. Chapter 7 focused on learning sce-
narios that were independent of any application domain. It enabled to assess the learning
mechanism on different hidden models properties (continuity, discontinuity, linearity and
non linearity) but also varying models with making as little assumptions as possible and
without reprogramming ELLSA or resetting the learning parameters. Each of the learning
objectives were evaluated quantitatively and/or qualitatively. Chapter 8 presented an ap-
plication of Endogenous Context Learning in a concrete robotic problem: the learning of the
Inverse Kinematic Model of a robotic arm. The experiments included a centralized and a dis-
tributed learning scenario with the Self-Learning Strategy where the generation of endogenous
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learning situations enabled performance enhancements.

Objectives Conclusions

This part of the conclusions reminds the objectives defined section 1.6 and highlights the
contributions for each of them.

Endogenous Feedback

The first objective of this thesis is to generate Endogenous Feedback to enhance a learning
process. This goal was achieved with the generation of active learning situations, endogenous
exploitation situations and endogenous learning situations. The possible learning enhancements
were characterized into learning inaccuracies. These learning inaccuracies were detected and
resolved using neighborhood mechanisms, active learning situations (with the Active Learning
Strategy) and endogenous exploitation situations (with the Self-Learning Strategy). Concerning
the Self-Learning Strategy, a second learning enhancement was to learn with fewer exogenous
learning situations and compensate the lack of learning situations with the generation of en-
dogenous learning situations. The experiments on mathematical models enabled to validate
the generation of active learning situations and endogenous exploitation situations on several
hidden models. The enhancement of learning performances was observed with the use of
both strategies. The robotic experimentations also proved that the endogenous learning situ-
ations improved the learning performances on a concrete problem. One issue was the gen-
eration of endogenous learning situations with high numbers of perceptions where the Context
Agents could not perceive any Neighbor Context Agents. Further work could focus on the
behavior of neighborhood mechanisms for high dimension.

Agnosticity

The Agnosticity objective is to design a learning mechanism that makes no assumptions
on the tasks it will have to learn. Instead, it focuses on the learning task. This goal was pur-
sued all along this thesis. Endogenous Context Learning was design starting from the most
general learning hypotheses possible. These hypotheses were then declined in the Context
Learning paradigm to define the Endogenous Learning principles. The experiments conducted
chapter 7 were intentionally independent of any application. They showed that all prob-
lems did not need specific tuning of the parameters to achieve similar performances. The
experiments chapter 8 confirmed that a complete change of the learning parameters was
not required to perform a concrete robotic learning scenario. Additional work would be to
carry out several other concrete learning scenario in other domains than robotics to further
evaluate the Agnosticity of Endogenous Context Learning.

Lifelong Learning

The objective of Lifelong Learning is to provide the learning mechanism with continuous
learning properties. An incremental way of learning was achieved with the update mech-
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anism that enables learning situations to be accepted in a lifelong way. The utility of an ex-
ogenous learning situation is represented by the model prediction distance and the model error
margin. They determine when a new exogenous learning situation should be learned. Coop-
erative Neighborhood Learning brought incremental learning as endogenous learning situations
enable to progressively enhance the local models by sharing their knowledge. This transfer of
information was also achieved during the creation of new models to speed up the learning.
Lifelong Learning in the sense of Transfer Learning focuses on the transfer of entire tasks. An
experiment concerning such problem was conducted. It showed that ELLSA possesses great
adaptive properties because it can update its collective of Context Agents when the learning
task changes. During this update, it manages to transfer some experiences from the pre-
viously learned tasks. Especially during the creation of new knowledge fragments. Future
investigations could focus on more complex learning tasks to obtain additional assessments
on the transfer properties of Endogenous Context Learning.

Online Learning

The objective of Online Learning is that the designed learning mechanisms has to learn
in a sequential way and new experiences should not affect the whole collective of models.
This functioning was already present in classical Context Learning as each new exogenous
learning situation is provided sequentially. The local properties of AMAS then enabled to lo-
cally modify the concerned local models without altering all the Context Agents. The addition
of neighborhoods permits to extend and control a larger working area where local models can
learn by sharing endogenous learning situations. The capacity of alternating learning and ex-
ploitation phase was validated during the Transfer Learning experiment. Future work could
focus on defining an Online Learning metric to better measure this property on more adapted
learning scenarios.

Self-Observation

The goal of Self-Observation is to make the learning system capable of self-adapting and
provide feedback on its knowledge. The implementation of learning inaccuracies detection
and resolution shows that part of this objective is reached. ELLSA can identify shortcomings
and resolve them with or without the help of exogenous learning situations. One difficulty
that still remains is the enhancement of discontinuities with the Self-Learning Strategy. The
work on this problem should be continued. Tools for enabling the learning mechanism to
provide feedback on its knowledge were introduced with the normalized confidence. It brings
information on relative confidence between the local models in the collective and it can show
if there are huge confidence differences among the Context Agents. One additional learning
inaccuracy could be to add learning focus on less experimented zones where local models have
received fewer learning situations and are thus less confident.
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Knowledge Generalization

The objective of Knowledge Generalization is to increase the generalizing properties of Con-
text Learning. It includes adding experience transfer over time to enhance the learning per-
formances. The model similarity mechanisms focus on the increase of generalization by en-
abling Context Agents to merge. Even if an increase of generalization was observed with
some learning scenario, for higher numbers of perceptions, this technique is not efficient
enough. It depends on the alignment of the Context Agents validity ranges in the space of
perceptions which is not controlled. Additional work concerning this objective needs to be
done. To achieve better generalization, local models should be considered using the valid-
ity ranges differently. The neighborhood mechanism could also help reducing the number of
agents by merging them when they are all Prediction Neighbor Context Agents for example.
The experience transfer was added with the creation of new Context Agents using sponsors.
This addition has proven itself useful during the transfer learning experiment. However,
there is still room for improvement because all learning metric were not enhanced thanks to
past experiences. One learning inaccuracy that is explored in this thesis was the incompetence
but not the novelty. Seeking novelties in already learned local models could improve transfer
properties by focusing on evolving areas of the search space.

Scalability

This objective is to manage learning with high numbers of perceptions. To do so, the Per-
cept Agents optimized the activation process of the Context Agents. One of the goals of the
neighborhood was also to consider small sets of Neighbor Context Agents for the resolutions of
NCS instead of considering the entire collective of Context Agents at each execution cycle.
The experiment assessing the execution time showed that depending on the used learning
strategies, polynomial, linear and logarithmic dependencies on the number of Context Agents
and perceptions were found. Assuming that it is possible, additional work needs to be done to
achieve linear dependency on the worst case. The most computationally expensive process-
ing is the active exploration of incompetent areas. It should be redesigned or combined with
passive exploration. The experiments showed that with higher dimensions the neighborhood
behaves differently and endogenous learning situations are no longer generated because of the
non-availability of Neighbor Context Agents. Increasing the size of the neighborhoods partially
resolved this problem but it generated exponentially increasing execution times. The Coop-
erative Neighborhood Learning mechanism requires additional experimentations with high di-
mensions. It would enable to understand how the neighborhood and the influence mechanisms
could be enhanced so that they could perform well regardless of the number of perceptions.
A solution to the Scalability issue with high dimensions was to distribute the learning into
low perceptions learning instance. The proposed distributed approach for solving the Inverse
Kinematic Model of a robotic arm showed reasonable execution times variations.

Any Data Amount

Another objective of this work is to perform learning with many learning situations as
well as few learning situations. The Lifelong Context Learning updating mechanism enables to
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keep enhancing the local models with growing exogenous and endogenous learning situations.
The Cooperative Neighborhood Learning mechanism enabled to reduce the number of exogenous
learning situations by compensating with the generation of endogenous learning situations. This
objective was achieved for low numbers of perceptions. But, as previously said, for higher di-
mensions, Cooperative Neighborhood Learning needs to be refined as endogenous learning situa-
tions are more rare if not impossible to generate. On the other hand, the distributed robotic
control scenario managed to perform learning with very few and many learning situations
using constraint propagation between several low dimensional learning instances.

Explainability

The objective of Explainability is to keep full transparency in the implemented learn-
ing mechanisms so that they can be measured, observed and understood. Context Learning
provides all this characteristics as the learning models are encapsulated into agents that
represent a well defined portion of the space. The implemented user interface allowed to vi-
sualize in real time the construction of the learning fragments (i.e. the validity ranges and the
associated local models). For better Explainability, the experiments were conducted with low
dimensions that were fully visualizable. The interface enabled to visualize the redundancy
of an Inverse Kinematic Model and validate the presence of continuities and discontinuities.

Robotic Application

A final objective of this thesis is to apply the learning mechanism to a robotic application.
The chosen case study was the learning of the Inverse Kinematic Problem of robotic arms. It is
a difficult redundant and non linear problem with increasing complexity with the number of
joints. Centralized and distributed control approaches were proposed to solve this problem.
Both respectively succeeded up to 30 and 100 joints with comparable performances to a de-
velopmental approach. The goal of this experiment is not to perform better than state of the
art approaches but to show that Endogenous Context Learning enables to enhance the learn-
ing performances on a concrete and useful application. The experiments were conducted on
2-dimensional arms with the Direct Kinematic Model as a supervisor. Future work should fo-
cus on the extension of this technique on 3-dimensional robotic arm. Another improvement
would be to remove the dependence on the Direct Kinematic Model. It is indeed way easier
to calculate analytically but it still relies on the robot parameters which can be hard if not
impossible to obtain with complex and/or soft robots.
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Contributions

The contributions of this work are separated into 3 categories Context Learning, Machine
Learning and Robotics.

Contribution to Context Learning using AMAS

The research conducted in this thesis followed a series of works on learning mechanisms
involving Context Learning: Obsidian [Videau, 2011], AMADEUS [Guivarch et al., 2013], ES-
CHER [Boes, 2014], ALEX [Verstaevel, 2016] and AMOEBA [Nigon et al., 2017]. ELLSA in-
troduced new concepts: neighborhood, influences, Active Learning and Endogenous Learning in
the setting of Context Learning. The implementation of the neighborhood and the influences
enabled to enhance cooperation between the Context Agents in order to detect and solve
Non Cooperative Situations (NCS). This enhanced communication unlocked the ability for the
learning mechanism to reconsider its learning representations which are the Context Agents.
This self-reflection permitted to internally detect weaknesses in the learning models. To re-
solve the deficiencies, the passive learning strategy of Context Learning was transformed into
an Active Learning Strategy or a Self-Learning Strategy. Finally, in addition to simple model
performance, another advancement of this thesis is the inclusion of generalization and ex-
perience in the learning process of Context Learning.

Contribution to Machine Learning

All along the formalization of Endogenous Context Learning, a special focus was made on
two important properties: the genericity of the approach and the independence of the em-
bedded learning models. Except for model affinity and similarity that are model-dependent
measures, all the mechanisms ignore the underlying models of Context Agents. This offers
interesting learning properties as other learning techniques could be used and distributed
when there are usually not. With normalized affinity and similarity measures, different
learning models could be used in the same collective of Context Agents. Endogenous Context
Learning offers a distributed Meta-Learning framework with properties of Endogenous Feed-
back, Agnosticity, Lifelong Learning, Online Learning, Self-Observation, Knowledge Generalization,
Scalability, Any Data Amount and Explainability.

Contribution to Robotics

Robotic contributions are of the order of Context Learning architectures to perform cen-
tralized and distributed Inverse Kinematic control. The centralized and distributed control
proposed original resolutions of the Inverse Kinematic problem for robotic arms using Con-
text Learning. The distributed approach introduced a constraint propagation mechanism that
enables the resolution of the IKM to be independent from the number of degrees of freedom
and that reduces the required number of learning situations.

201



Conclusions and Perspectives

Perspectives

This works offers interesting perspectives that can be presented in different topics.

Cooperation and Adaptation

The introduction of neighborhood among the Context Agents enabled to add new cooper-
ative behavior with small sets of Context Agents. Additional treatments could be effectuated
with the neighborhood like supplementary learning inaccuracies. Like previously said, the new
learning inaccuracies could involve novelty seeking or less confident Context Agents.

The neighborhood itself could be more adaptive by changing its size depending on the
considered zone. This would enable to enhance the learning precision when it is needed.
At the moment, fixed parameters are responsible for the precision and size of the Context
Agents. The ability of the neighborhood to self-adapt could also provide enhanced visibility
to tackle large dimensions where Neighbor Context Agents were difficult if not impossible to
find.

One other improvement concerns the way perceptions are considered during the learning
process. In Context Learning and Endogenous Context Learning, each perception has the same
importance compared to others. It would be interesting to add weight to the perceptions in
the case that they happen to be heterogeneous. Distances and neighborhoods would also be
affected.

Optimization

The work on the optimization of Context Agents activation is a first step towards full
optimization of Context Learning. One long term goal is to distribute and parallelize most
of the operations to optimize the Scalability of the learning process. The objective would be
to design an architecture to represent Context Agents spatially and speedup their interac-
tions. Close Context Agents would perceive their neighbors without having to compare their
validity ranges with all the close Context Agents.

Reinforcement Learning

It has been seen that Endogenous Context Learning offers interesting leads for perform-
ing Reinforcement Learning in a continuous state and action space. Cooperative Neighborhood
Learning could enable to generate a continuous learning policy composed of a collective of
Context Agents. This collective would then be exploited to seek better rewarded situations.

Multi-Task Learning

Another perspective of Endogenous Context Learning would be to learn several tasks. In
the sense of Multi-Task Learning, it would mean that all learned tasks would communicate
with each other to improve their respective performances. In Context Learning, a task is rep-
resented by a collective of Context Agents. In order for these collective to exchange useful
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information, new communication mechanisms between set of Context Agents would need to
be designed.

In robotics, learning several tasks could mean for a robot to know several skills (move,
grab an object, place an object...). Each skill would be represented by a set of Context Agents.
Estimating which skill to use depending on a specific situation would then require addi-
tional processes to seek and use the appropriate collective of Context Agents from a database
with several sets of agents (i.e. skills).

Meta-Learning

The implemented Meta-Learning approach was only used with linear regression. Future
work could involve testing other learning models to validate the compatibility of the design
mechanisms with them. The measure of affinity and similarity would need to be specified
for the selected learning model. As said before, the interface could also provide interesting
representation and visualization of other learning techniques that are difficult to explain like
Deep Neural Networks.

Robotics

The implemented robotic experiments focus on 2-dimensional robotic arms. One inter-
esting perspective would be to extend this work to 3-dimensional robotic arms. The con-
straint propagation mechanism of the distributed control for the Inverse Kinematic problem
provides promising leads for multi-goal arm positioning. Considering a robotic hand with
several goal positions for the fingers ends. Each goal could be propagated to the joints were
several segment meet and would then be merged to create higher level goals. This way,
complex skeletons could be controlled in a distributed way.

Towards Non Finality...

This work adds a stone to the great edifice that is the non finality in AI. The challenge
of non finality [Gleizes et al., 1999] is to design learning mechanisms that have not any prior
task dependent purposes. Their goal is to find their purpose and develop skills that are
adapted to the environment they are immersed in. The problems that are addressed in De-
velopmental Learning join this challenge. They seek to endow learning mechanisms with au-
tonomous knowledge generation capabilities [Cangelosi and Schlesinger, 2015]. A major fo-
cus of Developmental Learning is also Intrinsic Motivation which goal is to replicate curiosity
mechanisms in order to improve the exploration and the discovery of new skills or pur-
poses [Forestier and Oudeyer, 2016]. Artificial General Intelligence (AGI) objectives, which are
infinite generality, adaptability and flexibility, are also in line with the scientific lock of non
finality [Goertzel, 2014].

This thesis provided mechanisms for endogenous enhancement in the direction of non
finality. This work proves that Context Learning and Adaptive Multi-Agent Systems (AMAS)
provide generality, adaptability and flexibility to a learning mechanism, fundamentals prop-
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erties for AGI. The distribution and the locality of Endogenous Context Learning enabled in-
trospection during the learning process, an essential mechanism for non finality.

The future of AI promises interesting advances in the understanding of human cognition
and in its artificial replication. One question remains, how such future artificial intelligent
forms will be considered and accepted by humans and their eternal fear of the unknown.
The explainability of these systems will certainly have an important role to play in this ac-
ceptance.
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Glossary

Acronyms

AGI Artificial General Intelligence. It is theoretical numerical version of the human brain with
infinite generality, adaptability and flexibility. Opposed to usual Narrow AI that are spe-
cific behaviors in specific contexts. 29, 30, 45, 51, 203, 204

AI Artificial Intelligence. It is the implemented theories and techniques in order to create
machines capable of simulating human intelligence. 1, 3, 8, 9, 15, 20, 22, 23, 29, 30, 32,
35, 36, 38, 44, 45, 46, 51, 79, 111, 112, 113, 116, 195, 203, 204, 233, 234, 235

AMAKFX It is the designed user interface in this theses which provides understandable
feedback on Context Learning with explainable and graphical information. 127, 225

AMAS Adaptive Multi-Agent System. Is is a MAS that promotes the emergence of expected
global properties using cooperative behaviors between the agents. 40, 44, 45, 46, 52, 59,
124, 198, 203, 233, 234, 242

AMOEBA Agnostic MOdEl Builder by self Adaptation. It is distributed Context Learning mech-
anism designed with the AMAS theory for continuous environments. 41, 42, 43, 79, 80,
223, 233

AVT Adaptive Value Tracker. It is a tool to discover a real dynamic value with successive
returns. It rules the validity ranges modification increments. 87, 89

CNL Cooperative Neighborhood Learning. It is the implemented mechanism within ELLSA to
generate Endogenous Learning using cooperation between Neighbor Context Agents. 75,
97, 109, 113, 151, 169, 186, 187, 189, 228, 243, 244

DKM Direct Kinematic Model. It calculates the position and orientation of a robotic arm end
tool from its joints states. 172, 174, 182, 183

ELLSA Endogenous Lifelong Learner by Self-Adaptation. It is the learning mechanism designed
in this thesis. It is an enhancement of AMOEBA that adds Endogenous Learning to the
Context Learning paradigm. 79, 80, 81, 82, 92, 93, 94, 98, 105, 106, 108, 111, 112, 115, 116,
121, 123, 124, 125, 126, 139, 145, 151, 165, 167, 169, 176, 177, 178, 183, 185, 195, 196, 198,
201, 231, 233, 241
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Machine Learning

IKM Inverse Kinematic Model. It calculates between one and all possible configurations of a
robotic arm joints in order to reach a desired position and orientation of its end tool.
172, 173, 174, 176, 177, 178, 183, 184, 185, 186, 201, 228, 230

MAS Multi-Agent System. It is an AI approach that distributes the resolution of problems
into several intelligent and autonomous entities called agents. 40, 44, 56, 79, 127, 233

NCS Non Cooperative Situations. They are abnormal situations in an AMAS that require spe-
cial treatments. The design, detection and resolution of these situations are the basis of
cooperation within AMAS. 43, 47, 52, 59, 64, 67, 69, 70, 73, 74, 81, 82, 86, 87, 91, 93, 107,
108, 121, 125, 128, 129, 130, 131, 132, 133, 135, 136, 140, 141, 144, 148, 152, 155, 156, 160,
162, 163, 166, 167, 199, 201, 225, 229, 230, 238, 239, 242, 243, 244

SAS Self-Adaptive Systems. They are systems that can adapt to their environment and its
changes. 8, 9

Machine Learning

Active Learning Active Learning is a learning technique where the learner selects the labeled
data (exogenous learning situations). 17, 18, 22, 27, 28, 40, 46, 201

Constructivist Learning Constructivist Learning is a theory that states that learning is an
incremental construction based on observation and action one an environment. 35, 36,
40, 234

Context Learning Context Learning is a learning technique inspired from Constructivist
Learning that distributes the learning process using the AMAS theory. 1, 2, 3, 35, 40,
41, 42, 44, 45, 46, 47, 52, 53, 54, 56, 77, 79, 80, 81, 87, 91, 111, 112, 115, 116, 124, 127, 167,
168, 169, 178, 182, 195, 196, 197, 198, 199, 200, 201, 202, 203, 223, 224, 233, 234, 235

Deep Learning Deep Learning is a machine learning technique that uses network architec-
tures inspired from the biological brain to extract high-level features from raw input. 2,
23, 24, 27, 29, 30, 31, 33, 38, 39, 40, 46

Developmental Learning Developmental Learning is an application of Constructivist Learning
in machine learning especially in Developmental Robotics. 2, 35, 36, 37, 38, 45, 46, 203

Endogenous Context Learning Endogenous Context Learning is an enrichment of Context
Learning with the addition of Endogenous Learning. 1, 2, 51, 52, 53, 77, 80, 112, 113, 116,
117, 191, 196, 197, 198, 200, 201, 202, 204, 224, 229, 230

Endogenous Learning Endogenous Learning represents the action of learning with situations
which are internal to a learning mechanism (endogenous learning situations). 1, 20, 27, 45,
51, 52, 75, 79, 105, 115, 196, 197, 201, 223, 233, 234, 241

Exogenous Learning Exogenous Learning represents the action of learning with situations
which are external to a learning mechanism (exogenous learning situations). 51, 105, 223
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Machine Learning

Few Shot Learning Few Shot Learning bases its learning on just one or a few training exam-
ples using prior knowledge. 2, 20, 27, 35, 38, 39, 40, 45, 46

Genetic Algorithms Genetic Algorithms is a biologically inspired learning technique that
uses a fitness function and natural selection heuristics to optimize the learning process.
18, 19

Intrinsic Motivation Intrinsic Motivation is a concept introduced by Developmental Robotics
that aims to internally guide exploration by focusing on curiosity mechanisms to im-
prove exploration in the learning process. 37, 45, 203

Inverse Reinforcement Learning Inverse Reinforcement Learning is an enhancement of Rein-
forcement Learning for which the reward function is extracted from observed behaviors
and not design a priori. 18, 19, 20, 22, 37, 46

Learning by Demonstrations Learning by Demonstrations is a Supervised Learning technique
that extracts learning policies from expert demonstrations. 19, 20, 22, 46

Intention Learning Intention Learning is a Supervised Learning technique that extracts the
motivations behind the expert demonstrations to generate the learning policy. 20, 22,
37, 46

Lifelong Context Learning Lifelong Context Learning is an enrichment of Context Learning
which enables a dynamic update of local models without storing all the learning situations.
80, 102, 105, 116, 121, 146, 169, 199, 230

Lifelong Learning Lifelong Learning aims to overcome the isolated learning paradigm and
uses knowledge acquired for one task to solve related ones. It is defined by three key
characteristics: continuous learning process, explicit knowledge retention and accumu-
lation, and use of previously learned knowledge. 2, 16, 17, 19, 20, 22, 23, 24, 26, 27, 28,
29, 31, 32, 33, 37, 38, 40, 45, 80, 102, 115, 124, 125, 146, 151, 168, 195, 198, 229

Machine Learning Machine Learning or Artificial Learning is a field of AI that uses mathe-
matical and statistical approaches to give computers the ability to learn from data. 2, 3,
15, 16, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 37, 39, 41, 44, 45, 51, 67, 111, 165, 195, 223

Meta-Learning Meta-Learning aims at collecting meta-data about prior experiences, models
and parameter, and to extract and transfer knowledge from it to guide the learning
process of new tasks. 2, 27, 35, 38, 39, 40, 45, 46, 201, 203

Multi-Task Learning Multi-Task Learning focuses on learning simultaneously related tasks
and using their relatedness to achieve better performances on each task. 2, 16, 20, 23, 24,
26, 27, 28, 32, 33, 38, 39, 44, 45, 46, 111, 112, 116, 196, 202

Offline Learning Offline Learning is a learning paradigm where all the training data is pro-
vided at once. New training data requires re-training the models on all the available
data. 24, 28

Online Learning Online Learning is a learning paradigm where training data is sequentially
provided to the learning mechanism. 2, 16, 19, 22, 23, 24, 28, 29, 31, 32, 33, 37, 38, 40, 41,
45, 46, 124, 125, 195, 198
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Thesis Objectives

Probabilistic Learning Probabilistic Learning approaches are machine learning techniques
that enable to represent and manipulate uncertainty. 20, 21

Reinforcement Learning Reinforcement Learning is a learning approach that uses a reward
function to enable learning by acting in an environment and receiving positive and
negative feedback. 2, 18, 19, 20, 22, 23, 24, 28, 30, 32, 40, 44, 46, 81, 111, 113, 114, 116, 196,
202, 235

Semi-Supervised Learning Semi-Supervised Learning is a learning technique that uses la-
beled data (exogenous learning situations) and unlabeled data (exploitation situations). 17,
18, 22, 28, 46

Supervised Learning Supervised Learning is a learning technique that only uses labeled data
(exogenous learning situations). 16, 17, 18, 19, 22, 27, 28, 29, 39, 44, 46, 51, 79, 235

Transfer Learning Transfer Learning is a research problem that focuses on using knowledge
gained while solving one problem and applying it to a different but related problem. 2,
8, 16, 23, 24, 25, 26, 27, 32, 33, 37, 38, 39, 45, 46, 81, 111, 112, 116, 121, 165, 166, 169, 196,
198, 223, 227

Unsupervised Learning Unsupervised Learning are data aggregation and dimension reduc-
tion techniques that only use unlabeled data (exploitation situations). 16, 17, 22, 27, 28,
32, 45, 46

Thesis Objectives

Agnosticity The learning system is agnostic towards the task it has to learn. It can learn any
task using the same approach without making preliminary assumptions. It has to focus
on the task of learning itself. 3, 11, 16, 20, 22, 32, 33, 37, 40, 45, 46, 121, 123, 124, 168, 195,
197, 201

Any Data Amount Learning must be performed in every situation the learning system is
facing, regardless of the amount of learning examples it has access to. 3, 12, 16, 22, 32,
33, 38, 45, 46, 121, 123, 125, 169, 191, 195, 201

Endogenous Feedback The mechanism learns from exogenous and endogenous experi-
ences. Knowledge must also be generated through processes and interactions that are
internal to the system through active learning or self-learning. 1, 3, 11, 12, 16, 17, 18, 19,
20, 22, 27, 29, 31, 32, 33, 37, 38, 40, 44, 45, 46, 121, 123, 168, 191, 195, 197, 201

Explainability The reason that brought the learning mechanism to choose a behavior in-
stead of another one during an exploitation is explainable and observable. 3, 12, 16, 17,
18, 19, 20, 22, 27, 29, 31, 32, 33, 38, 40, 44, 45, 46, 121, 123, 126, 169, 195, 200, 201

Knowledge Generalization The learning mechanism recognizes if new experiences are
similar to previous ones and it establishes connections between them permitting it to
improve previously learned tasks and to learn faster the new ones. 3, 12, 16, 17, 18, 20,
22, 26, 29, 31, 32, 33, 37, 39, 40, 41, 44, 45, 46, 121, 123, 168, 169, 195, 199, 201
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Learning Hypothesis

Lifelong Learning The system learns in an lifelong and incremental way to be able to
improve its previous knowledge. If tasks are related, the learning system may share
knowledge between these tasks to improve learning performance. 3, 11, 16, 17, 18, 22,
33, 44, 45, 46, 76, 121, 123, 168, 195, 197, 201

Online Learning The learning process can sequentially receive new data and be asked for
decision making. The process of this new data does not interfere with the exploitation
of previously learned tasks. 3, 12, 16, 22, 33, 44, 45, 46, 121, 123, 168, 195, 198, 201

Scalability Learning must be applicable to large-scale complex learning systems. Its com-
plexity must be linearly dependent on the number of sensors or actuators. 3, 12, 16, 17,
18, 19, 20, 22, 26, 27, 29, 31, 32, 33, 38, 40, 44, 45, 46, 64, 121, 123, 169, 191, 195, 199, 201,
202

Self-Observation The system has the capability of self-observation to self-adapt. It is able to
provide feedback on what it knows, how precisely it knows it and what it could know
better. 3, 12, 16, 17, 18, 19, 20, 22, 27, 29, 31, 32, 33, 37, 38, 40, 44, 45, 46, 121, 123, 124, 168,
195, 198, 201

Learning Hypothesis

Agnosticity Hypothesis Learning is agnostic. It adapts to new needs and it is always open
for new experiences as different as they can be. It does not need any prior knowledge
to gather experience. 53, 55

Continuity Hypothesis The world, at its macroscopic scale is continuous. It is humans,
through their perception of it, that make it discrete. Learning is seeking discontinuities
in a continuum. 53, 54, 55, 68, 75

Curiosity Hypothesis A learner internally seeks novelty and explores new experiences. It
looks for contradictions to develop better understanding of its environment. 53, 54

Generalization Hypothesis To learn is to generalize thanks to several experiences. Gener-
alization is made across time and space as experiences can be related through history
and context. 53, 54

Agents

Best Context Agent The Best Context Agent is the Context Agent for which the local model
is considered the best among the collective during an execution cycle according to the
perceptions, the neighborhood/influences and the learning criticality or the exploitation crit-
icality. 43, 44, 75, 237, 76, 81, 82, 85, 86, 88, 93, 94, 95, 96, 97, 107, 109, 132, 177, 179, 181,
224, 246

Context Agent A Context Agent is an intelligent autonomous agent that locally represents a
part of a learned global function F with a local model f j

n, a spatial representation that are
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Learning Incacuracies NCS

the validity rangesRj
n and a confidence cj. 41, 42, 43, 44, 46, 47, 52, 53, 54, 55, 56, 57, 58, 59,

60, 62, 63, 64, 65, 68, 69, 70, 71, 72, 73, 74, 75, 76, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90,
91, 92, 93, 94, 95, 96, 97, 98, 100, 102, 103, 104, 105, 107, 108, 109, 111, 112, 113, 115, 116,
118, 121, 124, 125, 127, 128, 129, 130, 131, 132, 133, 135, 136, 137, 140, 141, 142, 144, 145,
146, 147, 148, 149, 150, 152, 155, 156, 157, 159, 160, 161, 162, 163, 166, 167, 168, 169, 179,
196, 197, 198, 199, 201, 202, 203, 223, 224, 225, 227, 229, 237, 238, 239, 241, 242, 243, 245,
246, 247, 248

Good Context Agent Good Context Agents are Context Agents for which the model prediction
distance is lesser than the model error margin. 85, 86, 88, 89, 90, 91, 94, 224, 225, 239

Head Agent The Head Agent communicates with the Valid Context Agents to retrieve their
model propositions according to the perceptions and provide the final output prediction
vector. 43, 79, 81, 82, 85, 86, 93, 116, 160, 161, 162, 163, 231, 238

Neighbor Context Agent Neighbor Context Agents are Context Agents that are activated by
the Percept Agents using the neighborhood of the perceptions Pn and the influences of Con-
text Agents. 56, 57, 59, 64, 65, 66, 68, 70, 71, 74, 75, 76, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90,
91, 93, 94, 97, 100, 105, 109, 115, 116, 127, 135, 155, 160, 163, 169, 191, 196, 197, 199, 202,
224, 229, 233, 238, 239, 241, 242, 243, 244, 246

Percept Agent The Percept Agents are responsible for the activation of the Valid Context
Agents and the Neighbor Context Agents. There is one Percept Agent Pcti by perception
pi. 43, 79, 80, 81, 82, 83, 84, 93, 116, 160, 161, 162, 163, 199, 231, 238, 246

Prediction Neighbor Context Agent Prediction Neighbor Context Agents are Neighbor Context
Agents which local prediction vectors are in prediction neighborhoods. 58, 68, 75, 76, 82, 109,
199, 223, 224, 239, 243, 246

Valid Context Agent Valid Context Agents are Context Agents that are activated by the Percept
Agents using the perceptions Pn. They provide local prediction vectors O j

m to the Head
Agent. 43, 44, 79, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 93, 94, 107, 177, 224, 229, 238, 239,
246

Learning Incacuracies NCS

Complete Redundancy NCS This NCS is detected when two adjacent Context Agents with
similar local models (d f

sim < t f
sim) can merge their common boundary without altering

their other validity ranges. It is revolved by extending the validity ranges of one of the
two Context Agents to the maximum of the both Context Agents validity ranges. 62, 63, 71,
72, 73, 86, 91, 93, 125, 131, 141, 142, 145, 152, 162, 224

Concurrency NCS This NCS is detected when two Context Agents validity ranges overlap
and their local models are similar (d f

sim < t f
sim). Depending on the learning strategy, the

two Context Agents negotiate which one should retract itself to suppress the overlapping
area. 62, 63, 69, 73, 74, 86, 88, 93, 94, 97, 107, 109, 123, 131, 142, 145, 152, 162, 224, 248
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Other NCS

Conflict NCS This NCS is detected when two Context Agents validity ranges overlap and
their local models are different (d f

sim > t f
sim). Depending on the learning strategy, the two

Context Agents negotiate which one should retract itself to suppress the overlapping
area. 62, 69, 73, 74, 86, 87, 88, 93, 94, 97, 107, 109, 123, 130, 135, 142, 145, 147, 152, 156,
160, 167, 224, 248

Incompetence NCS This NCS is detected when incompetent volumes are found inside the
neighborhood of the current perceptions at the end of an execution cycle cl . It is resolved
by creating new Context Agents using the incompetent volumes during future execution
cycles. 64, 65, 70, 71, 73, 74, 90, 94, 107, 109, 123, 131, 135, 152, 160, 164, 177, 185, 224,
241, 244, 248

Model Ambiguity NCS This NCS is detected when the volume or quality of data is not
adequate for a Context Agent local model. It is resolved by providing additional learning
situations to the local model. 67, 73, 74, 102, 104, 107, 108, 123, 130, 131, 135, 136, 145, 152,
160, 161, 167, 177, 185, 224

Model Discontinuity NCS This NCS is detected when two Context Agents are Neighbor Con-
text Agents but not Prediction Neighbor Context Agents. It is resolved with the Range Am-
biguity NCS. 68, 70, 73, 224, 239

Partial Redundancy NCS This NCS is detected when two adjacent Context Agents with sim-
ilar local models (d f

sim < t f
sim) and can restructure one of their validity ranges to maximize

the volume of one of the Context Agents. It is resolved by extending the validity range the
Context Agent that can maximize its volume.. 63, 64, 72, 73, 86, 91, 93, 125, 131, 141, 142,
145, 152, 162, 224

Range Ambiguity NCS This NCS is detected when two adjacent Context Agents have dif-
ferent local models (d f

sim > t f
sim) and a Model Discontinuity NCS is detected between them.

It is resolved by generating active learning situations or endogenous exploitation situations
close their frontier. 64, 70, 73, 74, 107, 109, 124, 131, 136, 137, 138, 141, 142, 147, 152, 160,
224, 239

Other NCS

Bad Prediction NCS This NCS is detected when a Valid Context Agent has a bad local model
(d

f j
Ln,m

> m f
err). It is resolved by moving one of the Valid Context Agent validity ranges to

exclude the current perceptions. 86, 87, 88, 93, 107, 224

Unproductivity NCS This NCS is detected when there aren’t any Valid Context Agents. It is
resolved by expanding the closest Good Context Agent validity ranges to aim at including
the new perceptions. If the expansion failed or there is not any Good Context Agent, a new
Context Agent is created. 86, 89, 90, 93, 94, 107, 109, 224, 225

Uselessness NCS This NCS is detected when one of a Context Agent validity ranges is lesser
than the minimum range distance. It is resolved by subtracting such Context Agents from
the learning mechanism. 86, 88, 93, 224
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Perceptions and Predictions

Learning and Exploitation Situations

active learning situation An active learning situation is a vector of endogenous perceptions
P endo

n combined with an exogenous prediction vector Oexo
m : Lact

n,m = [P endo
n ,Oexo

m ]. 106, 107,
108, 110, 123, 130, 131, 167, 168, 177, 196, 197, 239, 243, 245, 246, 247

endogenous exploitation situation An endogenous exploitation situation is a vector of endoge-
nous perceptions P endo

n : E endo
n = [P endo

n ]. 86, 108, 109, 110, 123, 124, 135, 147, 151, 152, 156,
168, 196, 197, 239, 244, 245, 246, 247

endogenous learning situation An endogenous learning situation is a vector of or endoge-
nous perceptions P endo

n combined with an endogenous prediction vector Oendo
m : Lendo

n,m =

[P endo
n ,Oendo

m ]. 46, 51, 52, 75, 76, 77, 79, 80, 97, 104, 105, 109, 115, 116, 117, 123, 124, 135,
138, 147, 149, 151, 152, 158, 163, 168, 174, 175, 177, 180, 181, 182, 185, 187, 190, 191, 196,
197, 198, 199, 200, 224, 228, 234, 241, 244, 247

exogenous learning situation An exogenous learning situation is a vector of exogenous percep-
tions P exo

n or endogenous perceptions P endo
n combined with an exogenous prediction vector

Oexo
m : Lpass

n,m = [P exo
n /P endo

n ,Oexo
m ]. 43, 44, 51, 52, 79, 81, 86, 87, 91, 94, 95, 96, 97, 104, 105,

106, 107, 109, 117, 123, 135, 138, 142, 145, 147, 149, 150, 154, 158, 168, 182, 196, 197, 198,
200, 234, 236, 242, 244, 247

exploitation situation An exploitation situation is a vector of or perceptions Pn: En = [Pn]. 43,
81, 93, 106, 108, 118, 123, 151, 152, 153, 154, 177, 226, 236, 245, 246

learning situation A learning situation is a vector of perceptions Pn combined with a predic-
tion vector Om: Ln,m = [Pn,Om]. 1, 2, 41, 42, 43, 44, 51, 52, 56, 67, 69, 73, 75, 76, 77, 79, 85,
86, 91, 92, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 106, 108, 109, 110, 111, 112, 116, 117,
118, 121, 123, 124, 125, 130, 132, 135, 138, 140, 145, 146, 147, 150, 155, 156, 157, 160, 161,
162, 163, 167, 168, 169, 176, 177, 182, 183, 185, 186, 187, 189, 190, 191, 196, 197, 198, 199,
200, 201, 225, 227, 228, 235, 239, 241, 245, 247

passive learning situation A passive learning situation is a vector of exogenous perceptions
P exo

n combined with an exogenous prediction vector Oexo
m : Lpass

n,m = [P exo
n ,Oexo

m ]. 43, 106,
108, 110, 123, 129, 130, 135, 155, 243, 244, 245, 247

Perceptions and Predictions

endogenous perceptions The endogenous perceptions is a vector of inputs pendo
i provided by

learning mechanism itself: P endo
n = [pendo

1 , . . . , pendo
i , . . . , pendo

n ] ∈ Rn. 52, 69, 70, 73, 74,
75, 79, 80, 81, 86, 88, 91, 106, 107, 108, 109, 240, 247

endogenous prediction vector An endogenous prediction vector is a prediction vector provided
by the learning mechanism itself. 52, 75, 76, 94, 97, 108, 109, 240, 247

exogenous perceptions The exogenous perceptions is a vector of inputs pexo
i provided by an

entity external to the learning mechanism: P exo
n = [pexo

1 , . . . , pexo
i , . . . , pexo

n ] ∈ Rn. 52, 79,
80, 106, 108, 240, 247
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Endogenous Context Learning

exogenous prediction vector A exogenous prediction vector is a prediction vector provided by
an entity external to the learning mechanism (labeled data in machine learning). 52, 57,
79, 81, 82, 85, 94, 95, 106, 107, 108, 240, 247

local prediction vector A local prediction vector is the output prediction vector O j
m of the Con-

text Agent local model f j
n. 41, 42, 43, 81, 82, 85, 86, 93, 98, 238, 247

output prediction vector The output prediction vector is the vector of outputs ok
′ of the learn-

ing mechanism: O′m = [o′1, . . . , o′k, . . . , o′m] ∈ Rm. 81, 82, 85, 86, 93, 115, 241, 248

perceptions The perceptions is the vector of inputs pi of the learning mechanism: Pn =

[p1, . . . , pi, . . . , pn] ∈ Rn. 41, 42, 43, 44, 52, 56, 57, 58, 61, 62, 64, 71, 74, 79, 81, 82, 83,
84, 85, 87, 88, 89, 92, 93, 94, 95, 96, 98, 99, 100, 103, 104, 107, 108, 109, 111, 112, 113, 114,
115, 121, 122, 123, 124, 125, 127, 128, 129, 133, 134, 135, 139, 140, 143, 144, 147, 149, 151,
156, 159, 160, 161, 162, 163, 165, 166, 168, 169, 177, 178, 179, 183, 184, 185, 191, 197, 199,
200, 202, 223, 224, 225, 227, 228, 237, 238, 239, 240, 242, 243, 247

prediction vector The prediction vector is the vector representing the labels ok of learning
situations: Om = [o1, . . . , ok, . . . , om] ∈ Rm. 41, 42, 43, 52, 57, 93, 99, 102, 103, 104, 108,
123, 147, 169, 176, 178, 238, 240, 241, 248

Endogenous Context Learning Formalism

confidence The confidence cj ∈ Z of Context Agents is an experience measure that enables
them to evaluate themselves in relation to others. 41, 43, 44, 71, 72, 86, 87, 88, 90, 94, 95,
96, 97, 98, 168, 225, 229, 238, 243, 246

Cooperative Neighborhood Learning It is the implemented mechanism within ELLSA to
generate Endogenous Learning using cooperation between Neighbor Context Agents. 2, 51,
52, 75, 76, 77, 80, 85, 105, 107, 115, 123, 136, 146, 150, 160, 169, 175, 177, 178, 179, 182, 185,
186, 187, 188, 189, 190, 191, 196, 198, 199, 200, 202, 224, 228, 229, 241

cooperative neighbors The cooperative neighbors are the Neighbor Context Agents that pro-
vided endogenous learning situations during learning and exploitation with the Coopera-
tive Neighborhood Learning mechanism. 136, 140, 141, 144, 148, 152, 156, 160, 162, 166

exploitation criticality The exploitation criticality measure the relevance of a Context Agent
during an exploitation cycle according to its spatial proximity (range perceptions proxim-
ity distance), its experience (normalized confidence) and its generalization (validity ranges
volume). 2, 79, 93, 94, 95, 97, 101, 109, 116, 117, 132, 133, 177, 185, 196, 225, 237, 244, 245,
246

hidden function The hidden function is a global function that the learning mechanism
ELLSA locally estimates with the Context Agents. 41, 55, 67, 75, 124, 128, 134, 139, 143,
147, 151, 155, 159, 165, 223, 224, 242, 246

incompetent volume The incompetent volumes are the empty area that are found in the neigh-
borhood during the Incompetence NCS. 64, 65, 66, 70, 74, 90, 107, 109, 224, 239, 248
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Endogenous Context Learning

influence The influence is a spatial area around a Context Agent that is proportional to its
validity ranges. Associated with the neighborhood it enables Context Agents to locally per-
ceive themselves by activating the Neighbor Context Agents. 57, 58, 75, 82, 83, 84, 115,
118, 163, 196, 199, 201, 223, 237

influence radius The influence radius sets the influence length for a perception pi and a Con-
text Agent C j

n. 57, 77, 84, 117, 248

learning criticality The learning criticality measure the relevance of a Context Agent during
a learning cycle according to its prediction performance (model prediction distance), its
experience (normalized confidence) and its generalization (validity ranges volume). 2, 79,
85, 86, 92, 95, 97, 101, 107, 116, 117, 132, 133, 176, 177, 185, 196, 225, 237, 244, 246

learning inaccuracy The learning inaccuracies are learning deficiencies characterized by the
learning hypothesis section 5.1, they are categorized into NCS using the AMAS theory
first. 2, 51, 52, 54, 59, 60, 61, 67, 69, 70, 73, 74, 77, 79, 80, 81, 83, 85, 86, 88, 91, 93, 106, 107,
108, 110, 115, 116, 118, 121, 123, 124, 128, 129, 130, 132, 133, 135, 136, 137, 140, 141, 144,
147, 148, 149, 150, 151, 152, 155, 156, 160, 162, 166, 167, 168, 196, 197, 198, 199, 202, 225,
229, 230, 243

local model A local model is a learning model that locally represents a part of the hidden func-
tion. Its spatial representation in the space of perceptions is given by the validity ranges.
41, 42, 43, 53, 54, 55, 59, 75, 76, 81, 82, 85, 86, 88, 90, 91, 92, 93, 94, 95, 96, 97, 98, 100, 102,
103, 104, 107, 108, 109, 111, 112, 115, 116, 117, 124, 125, 127, 128, 130, 131, 132, 134, 135,
139, 142, 143, 145, 146, 151, 155, 156, 162, 167, 168, 169, 176, 196, 198, 199, 200, 223, 224,
235, 237, 238, 239, 241, 242, 244, 245, 247, 248

maximum range radius The maximum range radiuses is the maximal validity range radius
length below which the expansion is allowed. 89, 92, 117, 245, 248

minimum range distance The minimum range distance defines the minimal precision dis-
tance for the validity ranges. 61, 62, 64, 77, 88, 117, 239, 245, 246

model prediction distance The model prediction distance measure the affinity of a local model
with an exogenous learning situation. 85, 87, 88, 92, 95, 98, 99, 101, 117, 198, 238, 242, 244,
245, 246

model similarity distance The model similarity distance measure the similarity between two
local models. 61, 62, 63, 64, 70, 77, 88, 97, 98, 100, 101, 117, 245, 246

neighborhood The neighborhood is a spatial area around the current perceptions of a cycle
P cl

n . Associated with the influence of Context Agents, it enables Context Agents to locally
perceive themselves by activating the Neighbor Context Agents. 2, 51, 52, 56, 57, 58, 64,
65, 66, 70, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 242, 88, 89, 90, 109, 115, 118, 127, 131, 154,
163, 169, 191, 196, 197, 198, 199, 201, 202, 223, 224, 225, 229, 237, 238, 239, 241, 242, 243,
244, 245

neighborhood radius The neighborhood radius sets the neighborhood length for a perception
pi. 56, 57, 77, 83, 84, 117, 248
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normalized confidence The normalized confidence is a normalization of confidence between 0
and 1 to enable it to be comparable with other positive metrics. 95, 96, 101, 117, 198, 241,
242, 244, 246

prediction neighborhood The prediction neighborhood adds the prediction dimensions to the
neighborhood to measure if Neighbor Context Agents are Prediction Neighbor Context Agents.
57, 76, 82, 85, 109, 229, 238, 243

prediction neighborhood radius The prediction neighborhood radius sets the prediction neigh-
borhood length for a prediction ok. 56, 57, 58, 68, 77, 117, 248

range creation radius The range creation radius is the default validity range radius length on
the perceptions pi during the creation of a new Context Agent. 56, 57, 61, 77, 89, 90, 117,
248

range perceptions proximity distance The range perceptions proximity distance measure the
proximity between the validity ranges in the space of perceptions. 89, 92, 95, 96, 97, 100,
101, 117, 241, 245, 246

range similarity distance The range similarity distance defines the maximal distance be-
tween two validity ranges borders to be similar. 61, 63, 64, 77, 117, 245, 246

validity range The validity ranges are the spatial representation of Context Agents in the
space of perceptions. There is one validity range by perception pi. 41, 42, 43, 47, 53, 54,
55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 69, 70, 71, 72, 73, 74, 75, 76, 81, 82, 83, 87, 88, 89,
90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 107, 111, 112, 115, 117, 118, 127, 128,
129, 130, 131, 133, 135, 149, 150, 151, 159, 165, 167, 168, 178, 179, 199, 200, 202, 223, 224,
227, 228, 229, 233, 238, 239, 241, 242, 243, 244, 245, 248

Learning Strategies

Active Cooperative Learning Strategy The Active Cooperative Learning Strategy is a learn-
ing scenario where passive learning situations and active learning situations are used with
neighborhood mechanisms and CNL. 146, 147, 148, 149, 150, 226

Active Learning Strategy The Active Learning Strategy is a learning scenario where passive
learning situations and active learning situations are used with neighborhood mechanisms
but without CNL. 3, 69, 79, 81, 86, 106, 107, 108, 110, 116, 121, 123, 128, 130, 132, 133, 134,
135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 159, 161, 162,
163, 165, 166, 168, 169, 196, 197, 201, 225, 226, 227

Naive Learning Strategy The Naive Learning Strategy is a learning scenario where only pas-
sive learning situations are used without any neighborhood mechanisms. The neighbor-
hood mechanisms include the learning inaccuracies NCS, the creations of Context Agents
with Neighbor Context Agents and CNL. 134, 135, 138, 139, 140, 141, 142, 143, 144, 145,
155, 156, 157, 227
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Self-Learning Strategy The Self-Learning Strategy is a learning scenario where passive learn-
ing situations and endogenous exploitation situations are used with neighborhood mecha-
nisms and CNL. 3, 69, 79, 81, 86, 106, 107, 108, 109, 110, 116, 121, 123, 134, 135, 136, 137,
138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156,
157, 158, 159, 160, 161, 163, 164, 168, 169, 177, 185, 196, 197, 198, 201, 225, 226, 227, 244

Learning Parameters

accuracy learning weight The accuracy learning weight is a designer parameter to set the
weight of the model prediction distance during the calculation of the learning criticality. 95,
101, 117, 122, 178, 185, 248

bootstrap cycles number The bootstrap cycles number is a user parameter to set the number
of learning cycles during which no NCS are detected and resolves. 84, 86, 93, 117, 122,
246

creation neighbors number The creation neighbors number is a designer parameter to set the
number of necessary Neighbor Context Agents to detect an Incompetence NCS during the
Self-Learning Strategy. 94, 109, 117, 122, 247

discontinuity detection probability The discontinuity detection probability is a user parame-
ter to set the importance of discontinuity detection during learning. 70, 77, 117, 122, 134,
137, 138, 225, 246

endogenous learning weight The endogenous learning weight is a user parameter to set the
weight of endogenous learning situations on the local models. 76, 77, 105, 117, 122, 153, 157,
226, 227, 249

exogenous learning weight The exogenous learning weight is a user parameter to set the
weight of exogenous learning situations on the local models. 105, 117, 122, 157, 227, 249

experience exploitation weight The experience exploitation weight is a designer parameter
to set the weight of the normalized confidence during the calculation of the exploitation
criticality. 96, 101, 117, 122, 178, 185, 249

experience learning weight The experience learning weight is a designer parameter to set the
weight of the normalized confidence during the calculation of the learning criticality. 95,
101, 117, 122, 178, 185, 249

generalization exploitation weight The generalization exploitation weight is a designer pa-
rameter to set the weight of the validity ranges volumes during the calculation of the
exploitation criticality. 96, 101, 117, 122, 178, 185, 249

generalization learning weight The generalization learning weight is a designer parameter
to set the weight of the validity ranges volumes during the calculation of the learning
criticality. 95, 101, 117, 122, 178, 185, 249

generalization score Generalization Score. 125, 129, 130, 131, 132, 133, 135, 136, 138, 140,
141, 142, 144, 145, 147, 148, 149, 150, 152, 156, 166, 167, 168, 248
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influence radius coefficient The nfluence radius coefficient is a designer parameter to set the
reach of the Context Agents influences. 57, 77, 84, 117, 122, 153, 157, 158, 226, 227, 246

maximum range radius coefficient The maximum range radius coefficient is a designer pa-
rameter to set the maximum range radius. 89, 92, 117, 122, 246

minimum range coefficient The minimum range coefficient is a designer parameter to set the
minimum range distance. 61, 77, 117, 122, 246

model error margin The model error margin is a user parameter to set the model prediction
distance below which Context Agents local models are considered good. 85, 87, 88, 92, 117,
122, 124, 134, 136, 137, 138, 140, 144, 147, 151, 156, 159, 166, 178, 185, 198, 225, 238, 247

model similarity threshold The model similarity threshold is a designer parameter to set the
model similarity distance below which two local models are considered similar. 100, 101,
117, 122, 139, 141, 142, 226, 248

neighborhood radius coefficient The neighborhood radius coefficient is a designer parameter
to set the size of the neighborhood area. 56, 57, 77, 84, 117, 122, 153, 157, 158, 179, 180, 181,
182, 226, 227, 228, 246

number of exploitation situations It is the number of exploitation situations during the ex-
ploitation phase of a learning episode. These situations are used to measure the prediction
performance. 122, 123, 129, 135, 140, 144, 147, 151, 156, 159, 166, 178, 185, 247

number of learning episodes It is the number of learning episodes during an experiment. A
learning episode is a learning phase followed by an exploitation phase. 122, 129, 135, 140,
144, 147, 151, 156, 159, 166, 178, 185, 247

number of learning situations It is the number of the accumulated passive learning situa-
tions, active learning situations or endogenous exploitation situations during the learning
phase of a learning episode. 122, 125, 129, 135, 140, 144, 147, 151, 156, 159, 166, 178, 185,
247

perceptions generation coefficient The perceptions generation coefficient is a designer param-
eter to set the validity range ratio for generating artificial learning situations. 103, 105, 117,
122, 149, 150, 226, 246

proximity exploitation weight The proximity exploitation weight is a designer parameter to
set the weight of the range perceptions proximity distance during the calculation of the
exploitation criticality. 96, 101, 117, 122, 178, 185, 249

range similarity coefficient The range similarity coefficient is a designer parameter to set the
range similarity distance. 61, 77, 117, 122, 246

validity ranges precision The validity ranges precision is a user parameter to set the precision
of Context Agents validity ranges. 56, 57, 61, 77, 84, 117, 122, 125, 128, 131, 132, 133, 135,
140, 144, 147, 148, 149, 150, 151, 153, 154, 156, 157, 158, 159, 161, 163, 166, 178, 179, 180,
181, 185, 225, 226, 227, 248
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Notations

Cn All Context Agents. 82
N Cn All Neighbor Context Agents. 82, 83, 86, 93
PN Cn All Prediction Neighbor Context Agents. 82
VCn All Valid Context Agents. 82, 83
BCn Best Context Agent. 82, 85, 86, 93

C j
n Context Agent j. 41, 42, 56, 57, 81, 83, 97, 98, 242, 246, 247, 248
N C j

n Neighbor Context Agent j. 94

Pcti Percept Agent i. 83, 238
VC j

n Valid Context Agent j. 86

αI Influence radius coefficient. 57, 77, 84, 117, 122, 153, 157, 226, 227

αRmax Maximum range radius coefficient. 89, 92, 117, 122

αRmin Minimum range coefficient. 61, 77, 117, 122

αN Neighborhood radius coefficient. 56, 57, 77, 84, 117, 122, 153, 157, 226, 227

αPgen Perceptions generation coefficient. 246, 103, 105, 117, 122, 149, 150, 226

αRsim Range similarity coefficient. 61, 77, 117, 122

cj Confidence of the Context Agent C j
n. 41, 43, 86, 246, 97, 238, 241

cj
0,1 Normalized confidence of the Context Agent C j

n. 95, 96, 97, 101, 117

Critexpl Exploitation criticality. 93, 94, 95, 101, 117

Critlrn Learning criticality. 85, 86, 92, 95, 101, 117

cboot Bootstrap cycles number. 84, 86, 93, 117, 122

cl Execution cycle l of the learning mechanism. 43, 81, 82, 83, 86, 93, 102, 231, 239, 247, 248

pbdisc Discontinuity detection probability. 70, 77, 117, 122, 137, 225

dRmin
i Minimum range distance. 61, 62, 64, 70, 77, 246, 88, 117

d
f j
Ln,m

Model prediction distance. 85, 86, 87, 88, 91, 92, 95, 98, 117, 239

d f
sim Model similarity distance. 61, 62, 63, 64, 70, 77, 88, 98, 100, 117, 238, 239

dR
j
n
Pn

Range perceptions proximity distance. 92, 95, 96, 100, 101, 117

dRsim
i Range similarity distance. 61, 63, 64, 77, 117

E endo
n Endogenous exploitation situation. 108, 123, 240

En Exploitation situation. 43, 81, 93, 240

F Hidden function. 41, 55, 75, 128, 134, 139, 143, 223, 224, 237

Lact
n,m Active learning situation. 106, 123, 240
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Lendo
n,m Endogenous learning situation. 52, 75, 97, 123, 240

Lexo
n,m Exogenous learning situation. 52, 79, 81, 91, 95, 97, 123

Ln,m Learning situation. 41, 52, 85, 94, 240

Lcl
n,m Learning situation of the cycle cl . 82, 85, 86

Ln,1 Learning situation with linear regression local model. 42, 43, 99

Lcl
n,1 Learning situation with linear regression local model for the cycle cl . 43

Lpass
n,m Passive learning situation. 106, 108, 123, 240

f j
n Local model of the Context Agent C j

n. 41, 42, 82, 85, 86, 98, 99, 237, 241

m f
err Model error margin. 85, 86, 87, 88, 91, 92, 117, 122, 137, 140, 144, 147, 151, 156, 159, 166,

178, 185, 225, 239

ncreation Creation neighbors number. 94, 117, 122

nCtxt Number of Context Agents. 125, 130, 132, 136, 137, 140, 141, 144, 148, 149, 150, 152, 156,
160, 162, 166

E ps# Number of learning episodes. 122, 129, 135, 140, 144, 147, 151, 156, 159, 166, 178, 185

E endo
# Number of endogenous exploitation situations. 123

E# Number of exploitation situations. 122, 129, 135, 140, 144, 147, 151, 156, 159, 166, 178, 185

Lact
# Number of active learning situations. 123, 130, 132

Lendo
# Number of endogenous learning situations. 123, 175

L# Number of learning situations. 122, 129, 135, 140, 144, 147, 151, 156, 157, 159, 166, 178, 185

Lpass
# Number of passive learning situations. 123, 130, 132

P endo
n Endogenous perceptions. 52, 69, 74, 75, 247, 86, 88, 91, 106, 108, 123, 240

P exo
n Exogenous perceptions. 52, 79, 106, 108, 123, 240

Pn Perceptions. 41, 42, 43, 52, 56, 81, 82, 85, 93, 98, 99, 238, 240, 241, 247

P cl
n Perceptions of cycle cl . 43, 81, 82, 85, 86, 89, 93, 94, 242

pmax
i Maximum experienced value on the perception pi. 56, 83, 84, 125

pmin
i Minimum experienced value on the perception pi. 56, 83, 84, 125

pi Single perception i of the vector of perceptions Pn. 41, 56, 57, 61, 64, 247, 65, 83, 100, 247,
238, 241, 242, 243, 247, 248

Oendo
m Endogenous prediction vector. 52, 75, 76, 94, 123, 240

Oexo
m Exogenous prediction vector. 52, 57, 79, 81, 85, 106, 108, 123, 240

O j,last
m Last local prediction vector of a Context Agents C j

n. 57, 85, 86, 93

O j
m Local prediction vector of a Context Agents C j

n. 41, 82, 238, 241

O j
1 Local prediction vector of a Context Agents C j

n with linear regression local model. 42, 98, 99

O j,cl
1 Local prediction vector of a Context Agents C j

n with linear regression local model for the
cycle cl . 43

247



Notations

O′m Output prediction vector. 41, 93, 241

O′1 Output prediction vector with linear regression local models. 42, 99

Ocl
1
′ Output prediction vector with linear regression local models for the cycle cl . 44

OErr Prediction error. 123, 130, 132, 133, 136, 137, 140, 141, 144, 148, 149, 150, 152, 153, 156,
157, 160, 162, 166, 226, 227

Om Prediction vector. 41, 52, 240, 241, 248

O1 Prediction vector with linear regression local model. 42, 43, 99

Ocl
1 Prediction vector with linear regression local model for the cycle cl . 43

Omax
m Vector of maximum experienced prediction values. 85, 86, 93

Omin
m Vector of minimum experienced prediction values. 85, 86, 93

omax
k Maximum experienced value on the prediction ok. 56, 57, 85

omin
k Minimum experienced value on the prediction ok. 56, 57, 85

ok Single prediction k of the prediction vector Om. 57, 241, 243, 248

rcreation
i Range creation radius. 56, 57, 61, 77, 89, 90, 117

rIj,i Influence radius on the perception pi for the Context Agent C j
n. 57, 77, 83, 84, 117

rmax
i Maximum range radius. 89, 92, 117

rNi Neighborhood radius on the perception pi. 56, 57, 77, 83, 84, 117

rNok
Prediction neighborhood radius on the prediction ok. 56, 57, 68, 77, 117

rj
i Validity range of the Context Agent C j

n on the perception pi. 41, 56, 57, 248, 83, 87, 88, 96,
100

Rj
n Validity ranges of the Context Agent C j

n. 41, 82, 238

pR Validity ranges precision. 56, 57, 61, 77, 84, 92, 117, 122, 132, 135, 140, 144, 147, 149, 151,
153, 156, 157, 159, 160, 161, 162, 163, 166, 178, 179, 180, 181, 185, 225, 226, 227, 228

Gscr Generalization score. 125, 130, 132, 133, 136, 140, 141, 144, 148, 149, 150, 152, 156, 166

t f
sim Model similarity threshold. 100, 101, 117, 122, 141, 226, 238, 239

VConc Volume of Concurrency NCS. 124, 125, 130, 132, 133, 136, 137, 140, 141, 144, 148, 149,
150, 152, 156, 166

VC f lt Volume of Conflict NCS. 124, 125, 130, 132, 133, 136, 137, 140, 141, 144, 148, 149, 150,
152, 156, 166

V j
n Volume of a Context Agent C j

n. 95, 96, 101, 117

VCtxt Volume explored by all Context Agents. 124, 125, 160, 162

VInc Volume of Incompetence NCS. 125, 130, 132, 133, 136, 137, 140, 141, 144, 148, 149, 150,
152, 156, 166

V inc
n Incompetent volume. 64, 65

wlrn
fn

Accuracy learning weight. 95, 101, 117, 122, 132, 176, 178, 185
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wendo
lrn Endogenous learning weight. 76, 77, 105, 117, 122, 153, 157, 226, 227

wexo
lrn Exogenous learning weight. 105, 117, 122, 157

wexpl
c0,1 Experience exploitation weight. 95, 96, 101, 117, 122, 132, 177, 178, 185

wlrn
c0,1

Experience learning weight. 95, 101, 117, 122, 132, 176, 178, 185

wexpl
Rn

Generalization exploitation weight. 95, 96, 101, 117, 122, 132, 177, 178, 185

wlrn
Rn

Generalization learning weight. 95, 101, 117, 122, 132, 176, 178, 185

wexpl
Pn

Proximity exploitation weight. 95, 96, 101, 117, 122, 132, 177, 178, 185
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