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Abstract

Creating mesh representations for urban scenes is a requirement for numerous modern
applications of urban planning ranging from visualization, inspection, to simulation.
Adding to the diversity of possible input data – photography, laser-based acquisitions
and existing geographical information system (GIS) data, the variety of urban scenes as
well as the large-scale nature of the problem makes for a challenging line of research.
Working towards an automatic approach to this problem suggests that a one-fits-all
method is hardly realistic. Two independent approaches of reconstruction from point
clouds have thus been investigated in this work, with radically different points of view
intended to cover a large number of use cases.

In the spirit of the GIS community, the first approach makes strong assumptions on
the reconstructed scenes and creates a 2.5D piecewise-planar representation of buildings
using an intermediate 2D cell decomposition. Constructing these decompositions from
noisy or incomplete data often leads to overly complex representations, which lack the
simplicity or regularity expected in this context of reconstruction. Loosely inspired by
clustering problems such as mean-shift, the focus is put on simplifying such partitions
by formulating an optimization process based on a tradeoff between attachment to the
original partition and objectives striving to simplify and regularize the arrangement.
This method involves working with point-line duality, defining local metrics for line
movements and optimizing using Riemannian gradient descent.

The second approach is intended to be used in contexts where the strong assump-
tions on the representation of the first approach do not hold. We strive here to be as
general as possible and investigate the problem of point cloud meshing in the context
of noisy or incomplete data. By considering a specific minimization, corresponding to
lexicographic orderings on simplicial chains, polynomial-time algorithms finding lexico-
graphic optimal chains, homologous to a given chain or bounded by a given chain, are
derived from algorithms for the computation of simplicial persistent homology. For pseu-
domanifold complexes in codimension 1, leveraging duality and an augmented version
of the disjoint-set data structure improves the complexity of these problem instances to
quasi-linear time algorithms. By combining its uses with a sharp feature detector in the
point cloud, we illustrate different use cases in the context of urban reconstruction.

Keywords: geometry, optimization, simplicial homology
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Résumé

La représentation par maillages surfaciques de scènes urbaines est devenue un prérequis
à de nombreuses applications de planification urbaine, comme la visualisation, l’inspec-
tion ou encore la simulation. La diversité des données souvent massives, sous forme de
photographies aériennes, d’acquisitions laser ou issues de systèmes d’information géo-
graphique (SIG) ainsi que la variété des scènes urbaines en font une ligne de recherche
ambitieuse. Aussi, une méthode unique et automatique ne pourra réalistiquement pas
satisfaire l’intégralité des domaines d’application. Dans ce contexte, deux méthodes in-
dépendantes sont étudiées dans ce travail, avec des points de vues radicalement différents
afin de couvrir un large spectre de cas d’utilisation.

Proche des méthodes traditionnelles en SIG, la première approche adopte des hypo-
thèses fortes sur les scènes à reconstruire, en représentant les bâtiments par extrusion
d’une partition cellulaire 2-dimensionnelle. La construction de ces partitions, à partir de
données bruitées ou incomplètes, conduit à des représentations souvent trop complexes
comparées aux attentes de simplicité et régularité pour ce genre de maillage. Inspirée
des méthodes de partitionnement comme le mean shift, l’attention des travaux est por-
tée sur la simplification de ces partitions grâce à une méthode d’optimisation formulée
comme un compromis entre la fidélité à la partition d’origine et des objectifs encou-
rageant la simplicité et régularité de l’arrangement. Cette méthode emploie la dualité
point-ligne, définit des métriques locales associées aux lignes de l’arrangement, et dé-
crit une optimisation basée sur une descente de gradient dans un cadre de géométrie
riemannienne.

La seconde approche est adaptée aux contextes où les hypothèses de régularité de la
première ne s’appliquent pas. L’accent est alors porté sur la conception d’une méthode
la plus générale possible, afin de pouvoir obtenir un maillage à partir de données bruitées
ou incomplètes. En considérant une optimisation particulière, correspondant à un ordre
lexicographique sur les chaines simpliciales, des algorithmes de complexité en temps
polynomial, proches de ceux développés pour le calcul de l’homologie simpliciale persis-
tante, permettent d’obtenir des chaînes minimales au sens lexicographique. Dans le cas
de pseudo-variétés, la dualité ainsi que des structures de données efficaces permettent
d’obtenir des versions en temps quasi-linéaires de ces algorithmes. Leur utilisation est
enfin illustrée par plusieurs applications dans le contexte de la reconstruction urbaine.

Mots-clés : géométrie, optimisation, homologie simpliciale
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1.1.1. Context

1.1 Context
1.1.1 Inception of GIS
Cities are faced with a number of challenges that require to modernize the organization
of spaces. Air pollution, cleaner transportation or efficient housing are all examples of
complex and large-scale problems that need to be measured and analyzed in order to
take informed decisions.

Geographic Information Systems (GIS) were born on this belief that combining mul-
tiple sources of information could improve the decisions related to urban spaces. In the
1960s, the Canadian government started storing and processing terrain information in
an attempt to get a better understanding of their land-use. These systems, capable of
processing spatially-localized semantic information allow to query complex phenomena
at play in modern cities. For instance, provided the right information is given to the
system, the following questions can be answered:

— What percentage of the city’s area is dedicated to natural spaces?

— What areas are at risk in case of a natural disaster?

— How are hospital or schools distributed according to the population density?

— Where can a network of antennas be placed to maximize the overall connectivity?

The scope of use for GIS has extended beyond its traditional use as an analysis tool.
As an example, the city of Paris has adopted legislation requiring that new constructions
adhere to a minimal coefficient of vegetation, calculated differently whether it concerns
ground level cover or landscaped building surfaces [Cit19]. These coefficients can be
efficiently enforced with GIS.

Most data of these systems can be stored as 2-dimensional information. However,
as we will see in Section 1.2, 3-dimensional data are needed for numerous applications
related to urban planning.

1.1.2 Representations of geometry for buildings
The first representations of geometry in Geographic Information Systems were gener-
ated for terrain environments. A distinction was made between Digital Elevation Models
(DEM), representing the bare-Earth surface, and Digital Surface Models (DSM), con-
taining both the natural and artificial elements of the environment. These models are
represented either by rasters or using Triangular Irregular Networks (TINs) allowing
to interpolate the measurements. These representations are useful for terrain analy-
sis but are not well suited to built scenes, which present regularities and sharp height
discontinuities.

The representation of buildings in GIS has been largely influenced by its traditional
2-dimensional past. A decomposition into Level Of Details (LOD) is frequently used.
For instance, as illustrated in Figure 1.1, the CityGML standard [Sta12] characterizes
the following 5 levels:

— The coarsest level (LOD0) represents buildings as their footprint or roof edge
polygons. These footprints are often represented as closed polylines.

— LOD1 adds a height information to form prismatic blocks for each building. This
can be seen as a piecewise-constant function on the 2-dimensional horizontal space.

— By allowing differentiated roof structures, the next finer level (LOD2) represents
buildings as piecewise-linear functions on a 2D space.

3



1.1.1. Context

Figure 1.1: The five levels of details described in the CityGML standard [Sta12]. Image
from [BSL+15].

— LOD3 introduces openings (windows and doors) and finer geometric elements
(chimneys, balconies). This is the first level that introduces proper semantic for
buildings.

— The finest level (LOD4) is used to detail interiors of buildings.

LOD models offer a good trade-off between the complexity of the representation,
which needs to be as small as possible in GIS databases to efficiently perform spatial
queries, and its ability to represent most urban architectures. The levels of details are
also perfectly suited to visualization of large environments. Finally, their wide adoption
by software and practitioners has made them the de facto standard representations for
buildings in GIS.

In the past, the creation of these GIS databases was done manually from ground
measurements or imagery, with software offering interactive tools to simplify the pro-
cess. This manual creation is costly and time consuming. Automatic reconstruction
approaches promise to make this process more efficient and allow for more frequent
updates of these databases.

The definition and applicability of these LOD models are however topics of discussion
[BLS16]. When describing a few applications of urban planning requiring 3-dimensional
information (Section 1.2), we will compare these LOD parsimonious descriptions to
dense meshes, that is less compact triangular meshes reconstructed without the strong
regularity priors and structure of LOD representations.

1.1.3 Towards Building Information Modeling (BIM)
Instead of creating a single snapshot of the urban environment at the time of acquisition,
the idea of Building Information Modeling (BIM) revolves around following the whole
lifecycle of urban assets, from their design, cost estimation, construction, certification to
their destruction. Contrary to its name, this applies to more than simply buildings and
encompasses all urban infrastructure such as roads, gas and water pipelines or street
furniture. This single model is used to coordinate multiple actors working on a same
construction project. Its main advantage is that this approach can be time-saving and
less error-prone in comparison with each actor having to maintain their own digital
representations. The requirements on the models are of course a lot more detailed
than previously described LODs: this model contains finer geometry (electrical and
heating systems, pipes) as well as more semantic labels (material types, construction
information, certifications).

BIM has seen its adoption grow dramatically in recent years and has become a
requirement for public construction projects in multiple countries [ULW19]. BIM repre-
sentations are often restricted to new construction projects, as their creation for existing
buildings is an arduous task [THA+10,XAAH13,HY18]. The gap between GIS and BIM

4



1.1.2. The need for meshes in applications

(a) Visualization based on LOD1 (b) Visualization based on dense meshes

Figure 1.2: Illustration of visualization tools for (a) the real estate service Bien’ici [Bie21]
using GIS at level of details 1, and (b) the online mapping service Google Maps [Goo21]
using dense meshes.

applications is however becoming smaller with time, many systems already offering in-
teroperability between the different data formats.

1.2 The need for meshes in applications
A growing number of applications, both in GIS and BIM industries, require 3-dimensional
representations of buildings. We focus in this section on understanding the requirements
imposed to the representations by three major domains of use: visualization, inspection
and simulation. An extensive description of other use cases can be found in [BSL+15].

1.2.1 Visualization
The most obvious and publicly accessible use of 3D building representations is for visu-
alization purposes. Numerous online services such as Google Maps propose a 3D view
of cities, often enriched with semantic information. For real estate projects, a visual
contextualization, combining architectural sketches of a project to an existing environ-
ment, is a great medium of presentation to the public. Although GIS practitioners might
prefer working in 2D reference views for positioning tasks in 3D space, 3-dimensional
representations are more intuitive for a non-expert audience and are also better suited
to shape understanding tasks than multiple 2D views [SJCSO01].

Although rarely used, point clouds can be a reasonable visualization medium, when
sufficiently dense and combined with color and normal information as well as eventually
processed by shaders improving the depth understanding (as in Figure 1.4). However,
this representation requires massive amounts of data to correctly render the illusion of
depth continuity. Also, any defects in the data such as noise or occlusions will degrade
immensely this visualization.

Deciding between dense meshes and LOD representations for visualization is more
debatable. As illustrated in Figure 1.2, the dense mesh will of course contain a lot
more details of the scenes and will be more accurate than LOD models. However, the
simplified representation provides enough visual cues to understand the scene and gives
a less cluttered visualization, especially when urban furniture such as tree or cars can
be filtered out. Also, the hierarchical nature of LOD representations allows for efficient
rendering, while dense meshes require additional processing such as mesh compression
and streaming to offer a smooth visualization experience.

5



1.1.2. The need for meshes in applications

(a) Solar exposition simulation (b) Electromagnetic simulation

Figure 1.3: Examples of simulation based on LOD2 representations. (a) Visualization of
a solar exposition on the city of Helsinki [Cit15]. (b) Visualization of an electromagnetic
simulation performed on the city of Rennes [RS19].

1.2.2 Change tracking and inspection
Another common use for 3D models of urban scenes concerns change tracking and in-
spection. Keeping a digital representation of the whole life cycle of a built asset in BIM
means confronting this virtual model to its real counterpart. This can be used to update
the model after new data acquisitions, to enforce rules such as verifying construction
permits [SZBH15] or to inspect structures at smaller scales [Eur20].

The type of geometric representation depends mainly on the scale of the task. For
the verification of construction permits, LOD2 models provide enough information to
correctly estimate the position, floor-plan area and construction heights. Inspection will
often demand dense meshes, with a higher degree of precision than typically described
in GIS. Indeed, the tasks will require to precisely measure the deviation between a
virtual twin and the captured real representation of the scene. This is often performed
in domains such as civil engineering, to verify structures with difficult human access, or
for cultural heritage preservation.

1.2.3 Simulation
Finally, the ability to perform simulation in urban environments has the potential to
drastically improve the efficiency of constructions and the well being of residents. Simu-
lation will probably take an even larger part in the future, especially with the advent of
BIM: structural calculations, energy consumption or durability reports are all examples
of certifications that can be done through simulation. Each of these types of simulations
however requires precise semantic information and has its own specific requirements on
the geometry.

However, some simulations can be performed on LOD representations, as illustrated
in Figure 1.3. Electromagnetic and solar exposition can be simulated using models
with differentiated roof structures (LOD2). Other calculation, such as wind, noise or
pollutions are other examples of simulations where LOD1 or LOD2 models are acceptable
representations.

Newer simulation applications require more detailed models. As an example, the
deployment of 5G technologies in dense urban contexts has proven to be challenging:
the use of millimeter wave frequency, which allows to increase the bandwidth speed,
reduces the range of transmission and is highly affected by occlusions. The placement
of antennas therefore requires to be carefully thought out in order to create a stable
coverage. Simulating this placement requires line-of-sight computation on dense meshes.
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1.1.3. Data acquisition

Figure 1.4: Visual comparison of LiDAR (left) and photogrammetry-based (right) point
clouds of the same scene. The LiDAR scan is shown with its semantic classification
(red: ground, dark blue: vegetation, light blue: buildings). While LiDAR point clouds
offers an almost noise-free sampling of the scene, all verticalities are undersampled. Point
clouds obtained by a photogrammetry process offer a more uniform but noisier sampling.
The visualization of the LiDAR set of points uses a shader for better understanding of
depth [Bou09].

1.3 Data acquisition
Large-scale surveys of urban scenes are done either by photography or using laser scan-
ning techniques. We describe succinctly both process of acquisition and highlight the
characteristics of the measurements provided by each type of acquisition. A visual com-
parison of the different point clouds on the same scene is given in Figure 1.4.

1.3.1 Photography-based acquisitions
Using photography for the reconstruction of 3D geometry is one of the most studied
problem of Computer Vision and has been an active line of research for the past 30 years
[FH15]. The most successful approaches are based on computing stereo correspondence.
In a process called Structure-from-Motion, local image descriptors [Low99,RRKB11] are
paired into correspondences in overlapping images. The camera intrinsic parameters and
image viewpoints can then be robustly computed (up to a global similarity transforma-
tion) by an optimization known as Bundle adjustment [TMHF00]. In a second phase,
the geometry needs to be estimated from the correctly positioned images. We mention
in particular, patch-match approaches, which use a probabilistic framework based on
photometric [ZDJF14] and geometric consistency [SF16] priors to estimate the depth
and normal maps of each image. These depth maps are then combined to form a set of
points representing the captured scene.

Although this process has been applied to challenging inputs such as mobile imagery
for street views or even databases of public images scraped on the Internet [ASS+09],
most professional acquisitions use aerial or drone imagery, where the trajectory is con-
trolled to ensure optimal coverage of the region of interest and good overlaps between
images. This controlled acquisition helps to reduce defects in the output set of points,
which can be noisy or incomplete when the image coverage of the scene is not suffi-
cient. The error of current photogrammetry methods in airborne settings is less than
the meter, and measured in centimeters for drone acquisitions [LCZ+19].

1.3.2 Laser scanning acquisitions
Commonly grouped under the LiDAR acronym for Light Detection And Ranging, laser
scanning denotes all remote sensing techniques using the response of a laser beam to
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1.1.4. Scope of Interest

measure the distance of an object to the device. These techniques come in different
flavors: they can be either fixed (Terrestrial Laser Scanning; TLS), embarked on a small
aircraft (Airbone Laser Scanning; ALS), on drones (Unmanned Aerial Vehicule LiDAR;
UAV LiDAR) or on cars (Mobile Laser Scanning; MLS). Each of these methods has its
own scope of use: ALS is better suited to aquisitions of large scenes, while TLS offers
the best precision. UAV LiDAR and MLS are used on smaller regions, for instance in
the survey of a construction project.

A lot of context-specific choices are made when deciding the LiDAR acquisition
strategy. For instance, LiDAR systems can either record the full waveform response or
record discrete returns (up to 4 returns). This distinction is particularly relevant for
forest surveys, where the full waveform response corresponds to the profile of the tree
canopy, and discrete returns simply correspond to the tree top and ground. In urban
context, the massive amount of data of the full waveform is not useful, and the discrete
returns strategy is preferred. Coupling the laser acquisitions with a global positioning
system (GPS) and inertial measurement units (IMU), the discrete returns are used to
compute a set of regularly-spaced 3D points along scan lines. The precision of these
systems depends on many criteria (flight height, laser beam width, positioning error)
but the measurement accuracy in height of airborne systems is around 10 centimeters.
In aerial settings, the angle between the scanner and the nadir direction is often small
and therefore the visilibity of vertical structures is reduced. This means that facades
are generally sparsely sampled compared to other parts of the building. The method is
also known to generate a lot of outliers, corresponding to incoherent measures far from
the observed surface, which need to be removed in post-processing.

The resulting point cloud often contains additional attributes: intensity, color if the
system is coupled with a photographic system, land use classification, scan angle or
number of returns.

1.4 Scope of Interest
From the context set by application needs and acquisition capabilities described in pre-
vious sections, we can give a precise scope of interest for this work.

Inputs Although many reconstruction methods are based on aerial imagery or Digital
Terrain models, this works focuses on a common denominator for both photogrammetry
and LiDAR methods: point clouds. We will assume that no additional information is
associated to the set of points. However, we want eventually to exploit optional given
information, such as normals, colors, or classification.

The challenge of considering point clouds resides mostly in the unstructured nature
of this data source. Considering two different kinds of acquisition means dealing with the
defects appearing in both photogrammetry and LiDAR point clouds: noise, occlusion
and the presence of outliers. Finally, these point clouds are often massive in size and
need to be efficiently processed.

Geometry representation We are interested in creating parsimonious geometry
with differentiated roof structures at large scales (i.e. city blocks). Integrating these
models in GIS software requires conforming to LOD representations. The goal is there-
fore set on LOD2 geometry, as the robust treatment of further details such as windows
or doors, would require additional data such as ground-level imagery. The challenge
for this type of reconstruction is to obtain geometry that is as simple and regular as
manually created GIS databases.
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1.1.4. Scope of Interest

For applications at smaller-scales (i.e. single building), reconstructions with finer
geometry are required, ones that do not fit with the strong assumptions imposed by
LOD representations. This type of reconstruction, using dense meshes, should therefore
focus on being as general as possible.

Semi-automatic The variability of chosen inputs and the variety of urban scenes to
reconstruct make a fully-automated process hard to conceive. Instead, we position our
scope of interest on semi-automatic processes, where the interaction are reduced to the
choice of a few parameters, as well as user verification at different steps of the recon-
struction process. The goal is that, once these parameters have been tuned correctly on
a smaller region, the reconstruction can be applied at larger scales automatically.

9



Chapter 2

State of the art and
contributions

Contents
2.1 Generic reconstruction methods . . . . . . . . . . . . . . . 11

2.1.1 Delaunay-based interpolatory reconstructions . . . . . . . . . 11
2.1.2 Implicit functions . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.3 Mesh simplification . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Urban-specific data-driven approaches . . . . . . . . . . . . 14
2.2.1 2D decomposition . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 3D decomposition . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Urban-specific model-driven approaches . . . . . . . . . . . 15
2.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.1 LOD2 reconstruction using simplified 2D partitions . . . . . . 16
2.4.2 Dense mesh from optimal simplicial chains . . . . . . . . . . 16
2.4.3 Publications & Patents . . . . . . . . . . . . . . . . . . . . . 17

10



2.2.1. Generic reconstruction methods

Figure 2.1: Illustration of the crust algorithm in dimension 2. Left: From a set of
points sampling the surface (orange dotted curve), the Voronoi diagram is used to define
poles (cyan points). Right: after constructing the Delaunay triangulation of the points
combined with the poles, the crust reconstruction is given by the set of edges with
vertices in the original set of points.

The scope of interest described in Section 1.4 encompasses both general reconstruc-
tion methods from points clouds in order to create dense meshes, as well as urban-specific
techniques interested in parsimonious representations.

2.1 Generic reconstruction methods
The problem of surface reconstruction has been extensively studied and the survey by
Berger et al. [BTS+14] classifies a large number of methods according to the assump-
tions and information used in addition to geometry. We focus mainly on the methods
that have been used frequently for terrain and urban environment modelling, in partic-
ular interpolatory techniques based on a Delaunay triangulation and methods using an
implicit function.

2.1.1 Delaunay-based interpolatory reconstructions
A number of reconstruction algorithms are based on extracting a subcomplex of the
Delaunay tetrahedralization of the input point cloud. A summary of these methods is
given in [CG04]. These types of approaches can be divided into two categories, either
surface-based or volume-based reconstructions.

Surface-based approaches select a subset of triangles in the Delaunay tetrahedral-
ization. A prime example of this type of approaches is the crust algorithm by Amenta
et al. [ABK98, ACDL00], which is based on the observation that the shape of Voronoi
cells for a set of points densely sampling a surface is elongated along the normal direc-
tion of the surface. This allows to define a subset of vertices of the Voronoi diagram
named poles which approximate the medial axis, as illustrated in Figure 2.1. Although
methods theoretically guaranteeing the quality of reconstruction in 2 dimensions pre-
viously existed [BB97, Att98], the crust algorithm was the first to give guarantees in
dimension 3. The algorithm then computes the Delaunay triangulation of the original
points combined with these additional poles and selects all triangles whose vertices are
solely among the original points. Under strict sampling conditions, this set of triangles
contains a triangulation of the initial surface. Closely related to the crust algorithm, the
cocone family of reconstructions [ACDL00] also make use of these poles of the Voronoi

11



2.2.1. Generic reconstruction methods

diagram. However, it avoids the construction of a second Delaunay triangulation con-
taining the poles, by selecting candidate triangles around each sample point inside the
complement of a double cone in the Voronoi cell. Of great interest for their theoretical
guarantees, the two previously described approaches underperform when the theoretical
sampling conditions are not met for real-world acquisitions. Extensions of both algo-
rithms (Power crust [ACK01], Tight Cocone [DG03], Robust Cocone [DG06]) assume as
additional information that the reconstructed surface is closed and fall in the category
of volume-based approaches.

Several other proposed surface-based approaches incrementally construct a surface
from an initial seed by taking local decisions on triangles neighboring the current surface.
One well-known reconstruction algorithm of this type is the ball-pivoting algorithm
[BMR+99]. More advanced methods might consider different rules for the selection of
neighboring triangles. For instance, in the greedy algorithm [CD04], the neighboring
triangles should not create topological singularities and should form a small dihedral
angle in order to garantee a certain smoothness of the output surface. Each iteration
chooses the triangle that has the smallest radius for its smallest empty circumscribed
ball. The locality of the decision allows for efficient processing of large input sets, but
does not provide theoretical guarantees on the reconstruction quality.

Volume-based methods are usually more robust by reconstructing a surface as the
boundary of a subset of tetrahedra of the Delaunay triangulation. However, an im-
mediate consequence of this formulation is that this approach is not applicable to the
reconstruction of open surfaces. One of the earliest contribution to the problem of sur-
face reconstruction, referred to as the sculpting algorithm [Boi84], uses a priority queue
to eliminate tetrahedra starting from the convex hull of the set of points. The order
on the priority queue is based on a geometric criteria as well as an additional combina-
torial rule enforcing that the surface has genus 0. Another algorithm guaranteeing to
reconstruct a triangulation under strict sampling conditions is based on natural neigh-
bors [BC00]. The reconstruction in this method is based on the zero set of a function,
defined for each point as the average of the distances to the tangent planes of its nat-
ural neighbors. Many other approaches [Ede03, Cha03] have been proposed with no
theoretical guarantees but performing well on real-world data inputs.

Additionally, numerous reconstruction approaches have been formulated as graph-cut
problems. For instance, the spectral surface reconstruction [KSO04] attempts to classify
Voronoi cells into interior and exterior in order to extract the surface at the frontier.
The spectral clustering used is closely related to normalized cut problems introduced
in [JM00]. Graph-cuts have also been used either to reconstruct a surface in a banded
region around an isosurface [HK06], or as a global min-cut problem [LB07]. Labatut
et al. use a graph-cut based reconstruction in the Delaunay triangulation of the set of
points with an optimization based on photo-consistency [LPK07] for Structure-From-
Motion point clouds or visibility information [LPK09] for laser scans. These approaches
use additional information to avoid the common problem of obtaining an empty surface
as solution for a global graph-cut optimization.

In general, Delaunay interpolatory methods have been extensively studied as they
can provide theoretical guarantees on the reconstruction of a surface, given conditions on
the sampling and the sampled surface (curvature, reach or local feature size). However,
these theoretically-guaranteed methods generally behave poorly on real-world data ac-
quisitions, where these strict sampling conditions do not apply. Robust methods are
often formulated as volume-based approaches, where the surface is obtained as the
boundary of a set of tetrahedra. A few methods have therefore been formulated as
the graph-cut on the Delaunay triangulation. The main disadvantage of interpolatory
methods is often that the resulting surface contains many triangles. For noisy sets of
points, surfaces can also be bumpy and overly complex.
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2.1.2 Implicit functions
A second family of surface reconstruction methods defines a function over 3-dimensional
space from the input set of points and extract its zero set in the form of a triangle
surface mesh, for instance by using marching cubes [LC87].

One of the first approaches contributed by Hoppe et al. [HDD+92] defines a function
that associates to any point in space, the signed distance to its projection on the tangent
plane of its closest input point. This method requires precise normal estimation – in
particular the coherence of normal orientations impacts greatly the signed distance
function. Consequently, other methods have been proposed either for more specific
contexts [CL96] or to render the method more robust. For instance, to circumvent the
difficult problem of propagating normal directions on an input set of points, the "signing
the unsigned" approach [MDGD+10] chooses to transform a robust unsigned distance
function into a signed distance function, by constructing an interior/exterior labeling.

Radial basis functions are commonly used for interpolation problems. For surface
reconstruction [CBC+01], they can be efficiently solved and when working with globally-
supported basis functions, the reconstruction is globally smooth, creating watertight
surfaces even when dealing with non-uniform and incomplete data. They require however
off-surface constraints, i.e. points on either side of the surface, which can be difficult
to automatically estimate for noisy configurations. Techniques such as cone carving
[SSZC10] can help discovering off-surface constraints.

Methods can also estimate an indicator function, whose gradient best approximates
the normal field associated to the set of points. This minimization can be restated as a
Poisson equation, and solved by a locally supported radial basis function in an adaptive
octree [KBH06]. The method has been later improved in terms of computation efficiency
[BKBH07,MPS08] and to incorporate the points as interpolation constraints [KH13].

Many recent methods have also proposed to learn these implicit functions [HTM17,
GCV+19,MON+19,MPJ+19,PFS+19]. These data-driven approaches are interesting as
they could derive better reconstruction priors in specific contexts. However, the main
difficulty of these approaches lies in finding a concise representation for 3-dimensional
space compatible with deep learning methods.

Overall, implicit functions, and especially screened Poisson reconstruction [KH13],
have become popular approaches for reconstruction from points obtained via photogram-
metry. They offer a good compromise between the fidelity to input data and robustness
to noise and outliers. Contrary to interpolatory approaches, the number of output tri-
angles is not correlated to the number of input points and can therefore produce lighter
meshes. One major inconvenient, however, lies in the smoothness of the produced result,
which is not well suited to the significant presence of sharp features in urban scenes.

2.1.3 Mesh simplification
We now detail approaches that consider simplifying an initial dense mesh in order to
deduce a concise version useful in the context of urban scenes.

Often motivated by visualization applications, improvements in the field of simplifi-
cation have focused mainly on efficiency and scalability [Lin00,LGL+09,CA15,LTB19] or
visual coherence between the simplified versions and their original counterparts [GBK03,
GMH+20].

Most efficient approaches consists in creating a sequence of edge collapses until reach-
ing either a target mesh complexity or a maximum error deviation. The main difficulty
of mesh simplification is propagating local information in the simplified meshes. Gar-
land et al. [GH97] propose to associate to each vertex a Quadric Error Metric (QEM),
characterizing its local error. When performing a collapse, the optimal contraction po-
sition is computed from the metrics and errors are propagated by adding the quadrics
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associated with the edge collapse. These simplification schemes are based on a sequence
of local decisions. However, the large reduction factor required to obtain meshes of sim-
ilar complexity to GIS expectations suggests more global approaches. This can mean
preserving piecewise-planar structures of objects by guiding edge contractions using pre-
detected planar shapes [SLA15]. When the whole mesh can be represented by planar
shapes and the adjacency graph of these primitives is correctly extracted, primitives can
be assembled into a concise mesh [CAD04].

Among specialized approaches for urban scenes, Kada proposes a method for de-
composing a building into structural parts before replacing them by 3D idealized prim-
itives [Kad07]. Bredif et al. utilize a kinetic model to make facets of an existing model
more consistent with the data [BBPM08]. Verdie et al. [VLA15] assemble planar shapes
that are filtered to produce output meshes with different levels of detail. More recently,
Li et al. [LN21] propose to first relocate the mesh vertices using a bilateral filtering of
the normals, making the primitive detection more robust and allowing to apply edge
contractions inside each primitive. These approaches yield good results when the orig-
inal meshes are geometrically and topologically accurate but fail to correctly simplify
meshes that were originally constructed from defect-laden data.

Finally, a few methods propose to construct hybrid meshes, which mix sparse and
dense representations in the same model. By combining a mesh segmentation into
primitives and sampling steps, Lafarge et al. [LKBV13] propose an iterative refine-
ment procedure which creates a representation combining regular regions represented
by primitives and detailed regions represented by a dense meshes. Another approach
by Holzmann [HMFB18], inspired by the graph-cut approach by Labatut [LPK07], in-
serts detected planar primitives into the 3-dimensional Delaunay triangulation to con-
struct a hybrid model. These methods are interesting to simplify meshes obtained from
Structure-from-Motion, but their hybrid representation does not fit well with usual rep-
resentations of geometry in GIS.

2.2 Urban-specific data-driven approaches
Data-driven or bottom-up approaches often rely on the detection of primitives (segments
or planes) and the consolidation of these primitives into a concise model. In contrast
to previously described methods, no dense mesh has been computed and therefore dis-
covering the adjacency of primitives from the point cloud is more challenging. The
particularity of urban scenes and the requirements of LOD2 modeling imply that most
of these methods use a space decomposition, either of the 2-dimensional horizontal plane
or of the 3-dimensional space. The challenge in both types of decomposition is finding
a good trade-off between the complexity of the decomposition and the capability of the
partition to complete missing data.

2.2.1 2D decomposition
2D space partitioning data structures have been used routinely for urban reconstruc-
tion [MWA+13]. Commonly constructed from unorganized measurement data such as
point clouds or images, the 3-dimensional representation is obtained by lifting these
2-dimensional partitions to represent urban objects such as buildings or facades with a
simple disk-like topology.

The 2D decomposition can again be obtained using a dense or sparse representation.
Delaunay triangulations of the point cloud projected in the 2D plane offer dense parti-
tions that need to be simplified in order to produce concise output meshes. Reducing
the size of the triangulation is achieved, for instance, by contracting edges with an opti-
mal transport approach [dCAD11], splitting and merging triangles [GS97], or inserting
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and removing vertices within a spatial point process framework [FLBA20]. However,
such operations alter the alignment of the triangulation with the input data and make
the subsequent reconstruction step unable to produce meshes that are both concise and
geometrically accurate [BRVG15]. Voronoi diagrams or adaptive grids also exhibit this
weakness. The former, used in [DL16], does not allow complex buildings to be accu-
rately reconstructed by a few Voronoi cells lifted in 3D. The latter can only reconstruct
buildings accurately with dense grids [ZN10].

2D partitions of polygons offer a better tradeoff between data fidelity and conciseness
on urban objects. For instance, the roof section of a building can be ideally abstracted by
a single polygon. Such partitions can be created by kinetic simulations that propagate
line-segments aligned with the data [Gui04, BL18] or by the vectorization of region
maps [AS17]. However, their use to reconstruct buildings [ZBKB08, BL19] or facade
objects [RBDD18] is effective only when the partitions are simple and preserve the
geometric regularities inside objects and scenes, such as parallelism, orthogonality or
symmetry. The partition can be refined by merging and splitting polygons [LLM20].
Most approaches add regularity priors by either globally snapping along the axis [ZN10,
HK12], clustering 2-dimensional segments sharing the same directions [ZBKB08,ZN08]
or optimizing a fidelity/regularity trade-off between spatially-close segments [BL19].

2.2.2 3D decomposition
Urban models can also be obtained by detecting planes from the initial set of points
and creating a polyhedral arrangement of these planes in 3D. When all intersections
are considered, which grows as a cubic to the number of planes, a lot of care needs to
be taken on the number of initial primitives [BdM14,MMP16] and these approach have
mostly found applications in relatively small space such as indoor scenes. Approaches
for urban scenes require to make these intersections more local: the intersections of a
plane primitive can for instance be limited to the super-pixels of a coarse volumetric grid
containing the primitive [CLP10]. This cuts down the O(n3) arrangement’s complexity
but depends on the order of insertion of the primitives. Again, these methods can
also integrate regularity priors at the level of primitives. For instance, Monszpart et
al. [MMBM15] propose an energy minimization framework with priors that encourage
regularities for the extraction of planar primitives from point clouds.

2.3 Urban-specific model-driven approaches
We finally describe model-driven or top-down approaches, that consists in constructing
a parameterized model that best fits the input observations. One early attempt by Maas
et al. [MV99] uses invariant moments to estimate the parameters describing a symmetric
gable roof. Defining a library of different building models leads to optimizing non-convex
functions. Given enough time, Markov Chain Monte Carlo (MCMC) techniques [HBS11,
VL12,HGSP13] can find a good configuration of parameters. A deep learning approach
[ZWF18] was also proposed to jointly classify the building type and estimate the model
parameters. Model-driven methods are however often limited by the expressiveness of
the library of shapes they rely upon and cannot cope with inputs that are too different
from this library.

Attempts have been made of fitting models using Roof Topology Graph (RTG):
graph vertices represent detected planar primitives, and an edge between two vertices
is added to the graph when the corresponding primitives have been detected to be
adjacent. From a small library of known graphs for simple shapes, a complex RTG can
be decomposed into simple shapes [VKH06]. This requires sub-graph matching, which
is a NP-complete problem and limits the size of the graphs that can be dealt with.
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Nevertheless, this method has the advantage of being more expressive than previously
described model-driven approaches, as graph parts that are not detected as matches
of a simpler shape can still be reconstructed. This has been further developed with
a more complex library of shapes [EV09]. The whole method relies however on the
correct detection of primitives and their relations: an error in the RTG can result in a
badly matched subgraph. The graph-edit dictionary [XOEV14] attempts to solve this
limitation, by recovering missing primitives or edges in the graph from a dictionary of
common graph errors.

2.4 Contributions
Two independent approaches for reconstruction from point clouds have been investigated
in this work, with radically different points of view intended to cover a large number of
use cases.

2.4.1 LOD2 reconstruction using simplified 2D partitions
We make the same assumptions as the LOD2 model and create a piecewise-planar re-
construction of the buildings.

Our approach is data-driven and uses an intermediate 2-dimensional decomposition.
We give a few reasons to justify this choice. First, we believe data-driven methods,
compare to model-based methods, have the best chance of adapting to different urban
environments. Also, formulating the problem in 2D helps to reduce the complexity of
the problem and allows to apply the method at larger scales. Finally, this intermediate
representation in 2D can also be enriched from pre-existing GIS information (i.e. cadas-
tral or semantic information). We found however that these 2-dimensional partitions
are often too complex, especially when dealing with point clouds from Structure-From-
Motion. The resulting 3-dimensional representations are then slightly too complex for
GIS expectations. Our main contribution is a simplification scheme for 2D partitions,
formulated as an optimization trade-off between fidelity to the original decomposition
and objectives striving for simplicity and regularity.

Compared to other simplification methods, the objectives are defined locally thanks
to the connectivity of the partition, whereas axis-aligned snapping [ZN10,HK12] or angle
clustering methods [ZBKB08, ZN08] are too global and can often produce large errors.
The proposed approach can also simplify small cells of the partition in a continuous
optimization, which was previously only considered using discrete operations [LLM20].

2.4.2 Dense mesh from optimal simplicial chains
The second contribution presented in this work is focused on obtaining dense meshes
for urban applications. It studies optimal simplicial chains for its application to point
cloud triangulation, where optimality is defined as a lexicographic order on chains.
Algorithms for the computation of lexicographic optimal chains in arbitrary dimensions
are first studied to highlight connections with matrix reduction algorithms used for
the computation of persistent homology. Using duality and efficient data structures,
meshing schemes with quasi-linear time complexity are described for the reconstruction
of closed and open 2-surfaces in 3-dimensional space.

This reconstruction approach falls in the category of Delaunay-based interpolatory
reconstructions. This means that the resulting mesh contains most of the raw data
points and is therefore far from being a parsimonious representation compared to im-
plicit functions. However, we argue that having an interpolatory reconstruction can be
appreciated for applications such as inspection, where a great deal of care is generally

16



2.2.4. Contributions

taken to control the noise in the input data. Defects in the acquisition therefore need to
be captured, as well as very small details that might be relevant to the task of inspec-
tion. Although not explored in this work, this precise mesh could also be considered as
an initialization for further simplification or regularity detection methods, as described
in Section 2.1.3.

The different algorithms developed in this contribution are formulated as global opti-
mization according to a lexicographic order. The quantities involved in the computation
of this lexicographic order – radius of the smallest enclosing and circumscribing balls of
triangles – are natural quantities for measuring triangles and bear resemblances to the
criteria used either in the carving algorithm [Boi84] or in the greedy algorithm [CD04].
The global lexicographic optimization along these quantities will be strongly justified
by the connections between lexicographic optimal chains and Delaunay triangulations.
Similarly to the way we derive a surface reconstruction method from a characterization
of Delaunay triangulations, the tangential Delaunay [BF04,CDE+00] generalizes Delau-
nay complexes to arbitrary metric spaces and is then used as a reconstruction method
for submanifolds [BG14].

The presented reconstruction methods can be characterized as volume-based ap-
proaches. We noted previously that volume-based approaches are often more robust to
noise or incomplete data, as this formulation essentially adds a topological constraint
on the reconstruction compared to surface-based methods. We also note that previously
described graph-cut approaches required additional information (photo-consistency or
visibility) to avoid finding the empty surface as an optimal solution: in our case, this
additional input will be explicitly given either as an interior tetrahedron for closed
surface reconstruction or as the expected boundary for open surface reconstruction. Fi-
nally, previous volume-based methods were only used to reconstruct watertight closed
surfaces. Quite surprisingly, the proposed open surface reconstruction, where an input
1-boundary needs to be provided, can still be seen as a volume-based method, where the
volume bounds the difference between the resulting chain and a transient constructed
chain.

2.4.3 Publications & Patents
This thesis is supported by the following publications and patents:

— David Cohen-Steiner, André Lieutier, and Julien Vuillamy. Lexicographic Optimal
Homologous Chains and Applications to Point Cloud Triangulations. Presented
at the 36th International Symposium on Computational Geometry, 2020.

— David Cohen-Steiner, André Lieutier, and Julien Vuillamy. Regular triangula-
tions as lexicographic optimal chains. Submitted to the Discrete & Computational
Geometry journal, 2020.

— Two patents, for closed and open surface reconstruction processes, have been filed,
2019 & 2020.

— Julien Vuillamy, André Lieutier, Florent Lafarge, and Pierre Alliez. Simplification
of 2D Polygonal Partitions via Point-Line Projective Duality, and Application
to Urban Reconstruction. Accepted for fast-track publication in the Computer
Graphics Forum journal, 2021.
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Parsimonious representations
from 2D partitions
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3.3.1. Overview

3.1 Overview

(a) (b) (c) (d) (e)

Figure 3.1: Overview of our method. From an input point cloud (a), by extracting 3D
line-segments (b) and projecting them onto the horizontal plane to form a polygonal
partition (c), our method simplifies the partition while capturing some geometric reg-
ularities highlighted in red (d). The resulting partition is then lifted in 3D to create a
concise polygon surface mesh (e).

The proposed method generates models compatible with Geographic Information
Systems (GIS) from point clouds typically generated from photogrammetry or laser
scanning. It uses an intermediate 2-dimensional representation and creates a recon-
struction as a 2-dimensional piecewise-linear function over this 2D representation. This
constraints the type of buildings that this method is able to correctly model. In partic-
ular, overhangs cannot be represented. However, this output representation fits exactly
with the type of reconstruction expected for LOD2 representations of buildings in GIS.

Figure 3.1 depicts the main steps of our method. Section 3.2 starts by describ-
ing the reconstruction process without simplification (steps (a), (b), (c) and (e) in
Figure 3.1). We will also motivate the need for simplification of the intermediate 2-
dimensional arrangements. Section 3.3 proposes a simplification optimization performed
on 2-dimensional partitions. Finally, Section 3.4 gives examples of reconstruction of ur-
ban scenes and discusses the usefulness and limitations of the proposed simplification
process.

3.2 Reconstruction pipeline
We start by detailing a reconstruction pipeline that combines many ideas already ex-
plored for the reconstruction of urban scenes.

3.2.1 Extraction of 3D line-segments
Planar primitives and their adjacency relationships are first detected in the original point
cloud using a k-nearest neighbors algorithm and a region-growing approach [FTK14,
HB13, RvdHV06]. For all adjacent planes, which can be recovered from a k-nearest
neighbors, intersection lines are computed and 3D segments are generated from the
points located near each intersection line. The segments are then projected in the 2-
dimensional horizontal plane. The problem is from now on considered in 2D. However,
we keep some 3D information about the segments. In particular, we identify all segments
that are at the intersection of a vertical plane with a non-vertical plane, as to locate the
possible building facades.

3.2.2 Kinetic cell arrangement
In order to obtain a parsimonious 2-dimensional polygonal partition from projected seg-
ments, we now describe a method called kinetic framework [Gui04,BL18]. By extending
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Figure 3.2: Illustration of the kinetic rules. From left to right: initial segment intersec-
tions are created at time t = 0. A prolonged segment intersecting an initial segment is
stopped. When two prolonged segments intersect, the last to arrive on the intersection
is stopped.

all line segments, intersection events are used to decide whether to stop one of the two
line-segments forming the intersection. More specifically, for a segment S, any point I
on its supporting line can be assigned a Time of Arrival, which equates to the distance
to the segment for a constant unit speed movement:

TS(I) = d(I, S)

The kinetic framework can be seen as a set of rules dictating the segments’ progres-
sion. In its simplest form, the progression of a segment in one direction is stopped at an
intersection event when it arrives last on the intersection. For instance, a segment S1
will be stopped at its intersection I with S2 if TS1(I) > TS2(I). All intersection events
I ′ concerning S1 in the same direction as I and verifying TS1(I ′) > TS1(I) can then
be discarded, as segment S1 will not cross segment S2. These rules are illustrated in
Figure 3.2.

Additional rules can be designed to improve the connectivity of the arrangement,
such as setting a custom speed for each segment or allowing a fixed number of cross-
ings. We found particularly useful to allow crossings when the time of arrival to the
next intersection is smaller than a threshold value. This makes the connectivity of the
partition less dependent on small perturbations in the detected segments.

Arrangements resulting from the kinetic framework exhibits substantially fewer in-
tersections than the complete line arrangement containing O(n2) intersections. It also
better preserves details, as small segments are kept in the arrangement but are likely
stopped by larger features and therefore will only have a local impact on the arrange-
ment. Finally, an important property of the resulting partition is that initial segments
spanning large distances are often decomposed into multiple smaller segments in the
arrangement, while still sharing the same supporting line.

3.2.3 Lifted model
Given a 2D polygonal partition and a point cloud P, a lifted model can be created by
assigning to each cell of the partition the plane that best fits the points projecting in
the cell. However, this approach is not resilient to imprecise partitions, missing data or
noise in the input points. Instead, using the set of detected planes Π in Section 3.2.1, a
discrete optimization is performed to obtain a coherent lifted model.

Denote by C the set of cells of the partition. We call labeling a map L : C 7→ Π that
associates to each cell of the arrangement a plane in Π. The global energy objective is
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2ǫ

ze(Πk,Πl)

Π

P ∩ Ci

Figure 3.3: Illustration of the quantities involved in ECi
(Πk) and Ve(Πk, Πl). For each

point of P ∩ Ci, the height in red corresponds to the quantity appearing in the sum of
ECi(Πk) for a fixed threshold ϵ.

expressed as follows:

E(L) =
∑
Ci∈C

ECi
(L(Ci)) + µ

∑
e=Ci∩Cj

Ve(L(Ci),L(Cj))

The quantities involved in both terms ECi and Ve are illustrated in Figure 3.3.
For each cell Ci ∈ C, the function ECi will measure the fidelity between a plane of

Π and the subset of points of P whose projection in the horizontal plane lies inside Ci,
which we denote by P ∩ Ci. More formally, given a plane equation z = Πk(x, y),

ECi
(Πk) = ACi

Card(P ∩ Ci)
∑

p∈P∩Ci

min(ϵ, |pz −Πk(px, py)|) (3.1)

where ACi denotes the cell area of Ci. A threshold ϵ is used on the z-distance to the
plane to improve the robustness of the plane fitting in the presence of noise in the point
cloud or slight errors in the cell decomposition.

The regularity term Ve between two cells (Ci, Cj) intersecting on an edge e = Ci ∩ Cj

needs to penalize the height difference along e. Given planes Πk, Πl ∈ Π assigned to the
cells on each side of the edge e, a regularity term measures a mean vertical area along
the edge e:

Ve(Πk, Πl) = pe length(e) ze(Πk, Πl) (3.2)

where ze denotes the average vertical height along an edge e = ((x1, y1), (x2, y2)):

ze(Πk, Πl) = 1
2
∑

i=1,2
|Πk(xi, yi)−Πl(xi, yi)|

For each edge, the parameter pe in Equation (3.2) denotes a prior probability that
the edge is along a building facade and can for instance be found by identifying segments
at the intersection of a vertical and non-vertical plane.

The regularity parameter µ of the global optimization, homogeneous to a length,
should be understood as the smallest "feature" size we want to distinguish. This objective
function, decomposed as a unary fidelity term and binary regularity interactions on
labels, belongs to a family of functions where local minima can be reached efficiently
using graph cut optimization [BVZ01].
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Figure 3.4: Decomposing scenes into planimetric partitions of 2D polygons is a popular
approach in urban reconstruction. Traditional partitioning schemes however produce
overly complex and unregularized partitions. Our approach simplifies such partitions
while preserving their fidelity to data and enforcing some geometric regularities con-
tained in the scene (see histograms depicting the angle deviation around 90◦ and the
distribution of edge lengths in the partitions). The output model, reconstructed by
lifting our partition in 3D, is both more concise and regular (see closeups).

3.2.4 Complexity of resulting models
The proposed pipeline enjoys the benefits of data-driven methods, by allowing to re-
cover the complexity of urban scenes, without being restricted to the fixed complexity
of model-driven approaches. The projection into a 2-dimensional space reduces the com-
plexity of the problem. Using a kinetic process then creates a relatively sparse connec-
tivity for the detected segments in a regular structure containing multiple collinear seg-
ments. The lift optimization finally confronts the 2-dimensional partition with the input
point cloud in a trade-off that tends to avoid small discontinuities in the 2-dimensional
piecewise-planar lift function. This successfully ignores small building features that are
not relevant for a LOD2 type of reconstruction as well as noise in the input data.

The created models tend however to be slightly too complex compared to the ex-
pected representations of GIS. In Figure 3.4, we show an input point cloud on a small
building complex extracted from a 2015 LiDAR survey of Dublin [LAA+17]. Although
the general structure of the buildings is simple, many small features are present in the
point cloud. Using the previously described pipeline, the segment detection and kinetic
framework create a complex 2-dimensional partition, which result in a few errors in the
lift model (middle of Figure 3.4). By observing that the 2-dimensional partition contains
many small segments as well as many angles close to orthogonality, we are interest in
simplifying 2-dimensional partitions by essentially removing small cells and collapsing
small segments while enforcing orthogonality and preserving collinearities present by
construction in the partition.

3.3 Simplification of 2D partitions
We now detail the simplification process used on 2D partitions in order to address the
over-complexity presented in Section 3.2.4.

3.3.1 Global versus local minima and convex versus non-convex
objectives

We start by mentioning two problems in the context of point cloud simplification in 2D.
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For two non-empty set of points X, Y , the Hausdorff distance dH(X, Y ) between the
two subsets is defined as:

dH(X, Y ) =
def.

max
{

max
x∈X

d(x, Y ), max
y∈Y

d(y, X)
}

where d(x, Y ) (resp. d(y, X)) denotes the minimal distance between the point x (resp.
y) and any points of Y (resp. X).

The following two problems were shown to be NP-hard [MBH+95].

Problem 1 (Geometric unit disk cover). Given a set of points P in R2 and a distance
ϵ > 0, find a cardinal-minimal set of points X ∈ R2 such that dH(P, X) ≤ ϵ.
Problem 2 (Minimum dominating set on unit disk graphs). Given a set of points P
in R2 and a distance ϵ > 0, find a cardinal-minimal subset of points X ⊂ P such that
dH(P, X) ≤ ϵ.

These clustering problems can be seen as “point cloud simplification” problems and,
as such, share some similarities with our simplification problem. However, while simpler,
finding a global optimal for these problems has been proven to be NP-hard. For this
reason, in practice, efficient point clustering algorithms only search for local minima:
for instance, mean-shift or k-means iterations can be interpreted as steps of a gradient
descent toward a local minimum. As it is already the case for these simpler problems,
we do not expect the existence of a global minimum formulation for our simplification
problem.

The following ambiguous situation also motivates us to formulate the problem solu-
tion as a local minimum of a non-convex objective. Consider the artificial and symmetric
configuration where 360 segments of similar length form a perfect regular 360-gon. We
wish to simplify this configuration by merging adjacent segments making an angle below
5 degrees. A practical solution must break the symmetry and hence make some arbi-
trary choices, as would mean-shift for points regularly spaced on a circle. Such a desired
behavior requires a non-convex objective, since, by symmetry, several well separated
local minima are equivalent.

Finally, the choice of a continuous optimization seems more promising than a se-
quence of discrete operations. Indeed, as mentioned in Section 3.2.2, the partition cre-
ated by a kinetic process contains multiple collinear segments (as T-junctions). Keeping
these regularities, as well as enforcing orthogonality or parallelism, fits better with a
continuous optimization scheme.

3.3.2 Projective duality: line movement vs. point movement
We use the point-line projective duality to describe a partition. Each element is described
as a 3D vector representing:

— The coefficients (a, b, c) of an oriented line ax + by + c = 0;

— The homogeneous coordinates (x, y, w) for a 2D point ( x
w , y

w ).

This duality is especially visible in the symmetry of the roles played by points and lines
in the line equation written as an inner product:

(
a b c

)x
y
w

 = 0

A comprehensive description of projective duality can be found in [Ber94].
We summarize two possible representations of 2D partitions, dual to one another in

projective geometry:
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— point representation: points of the partition are given explicit coordinates and
lines are implicitly defined from two of these points. This representation allows to
encode in the combinatorial structure the situation where multiple lines share a
same point, but not the situation where more than two points are supported by a
single line.

— line representation: lines of the partition are given explicit coordinates and points
are implicitly defined as the intersection of two of these lines. This dual represen-
tation, symmetrically, encodes in the combinatorial structure the situation where
a line carries multiple points but not the dual configuration for which more than
2 lines intersect at the same point.

In terms of optimization, dealing with point coordinates is simpler than line coordi-
nates, as the Euclidean metric associated to the distance between 2-dimensional points is
natural. Optimizing via line coordinates is more involved as no natural metric describes
a distance between lines which is invariant under arbitrary Euclidean isometries. Ap-
pealed by its apparent simplicity, we have tried to use the point representation in a first
attempt. However, two arguments justify the choice of optimizing lines instead of points
in our specific context and were confirmed by experiments on the point representation.

Firstly, the initial data for our problem consists of a set of detected line segments,
while points are only secondary data constructed from the initial segments by the kinetic
framework. Measuring data fidelity with respect to the initial segments seems therefore
more natural to our problem than data fidelity with respect to point coordinates.

Secondly, by construction, many segments of the partition exhibit collinearity rela-
tionships, that ought to be preserved for the sake of keeping the partition as simple as
possible. In a point-based representation, this requires optimizing under collinearity con-
straints. However, as depicted in the inset, configurations close
to edge collapses, which were our objectives in a
point-based representation, are also configurations
where collinearity constraints are unstable: con-
straining three points to be aligned when two of
them are indistinguishable from one another is not
a well-posed problem. In our first experiments,
these frequent configurations resulted in numerical instabilities whose robust treatment
was problematic. In contrast, in the line representation model, these collinearities are
naturally preserved in the structure.

The homogeneous line coordinates are initialized via Euclidean normalization, also
referred to as its normal form: a2 + b2 = 1. Although the spherical normalization
(a2 + b2 + c2 = 1) is used for its ability to represent all projective lines, our problem
does not require to represent the line at infinity and we hence adhere to Euclidean
normalization. We will further justify this choice when giving a geometrical meaning
to the regularity term of our optimization energy. Figure 3.5 depicts the unit cylinder
structure of the line coordinates with Euclidean normalization.

3.3.3 Energy formulation
We denote by L = (L1, . . . , Ln) ∈ R3n the set of lines, represented in their normal
form. Our simplification problem is formulated as a trade-off between a fidelity term
Efidelity, describing the attachment of the partition to the initial configuration, and
complexity terms Econcurrent and Eorthogonality, measuring respectively edge collapses
and orthogonality objectives on the lines of the partition:

E(L) = Efidelity(L) + λ1 Econcurrent(L) + λ2 Eorthogonality(L) (3.3)
We now provide details on each term of this objective function.

24



3.3.3. Simplification of 2D partitions

Figure 3.5: Illustration of Euclidean normalizations. Left: the Euclidean normalized
coordinates of a projective point X correspond to the intersection of the w = 1 plane
and the line passing through O3 and X. Right: the Euclidean normalized coordinates
le of the projective line l lies on the cylinder verifying a2 + b2 = 1. Image taken
from [FW16].

Fidelity term. As mentioned previously, no metric defines a distance between lines
which is invariant under Euclidean isometries. Indeed, the only discrepancy measures
on lines that are preserved by Euclidean isometries are the angle between two lines and
the distance between two parallel lines.

In our problem, we have the additional information that each line L is associated to
an initial detected segment S = ((x0, y0), (x1, y1)). This can be used to define a distance
from the initial configuration. Consider a point P = (x, y) on a line L parametrized by
(a, b, c).

ax + by + c = 0 (3.4)

Under line movement δL = (δa, δb, δc), the squared distance of the point P to the
line L + δL can be written as:

d(P, L + δL)2 = (δa · x + δb · y + δc)2

= δLt

x2 xy x
yx y2 y
x y 1

 δL

This quantity measures the square of a first order approximation of the distance
between point P and line L+δL, which is exact only when L+δL satisfies the Euclidean
normalization (a + δa)2 + (b + δb)2 = 1.

For each line L associated to a segment S = ((x0, y0), (x1, y1)), we consider the sum
of these approximated squared distances between the line L + δL with the two initial
segment endpoints:

1
2

 x2
0 + x2

1 x0y0 + x1y1 x0 + x1
x0y0 + x1y1 y2

0 + y2
1 y0 + y1

x0 + x1 y0 + y1 2


Note that by definition, the kernel of this matrix contains all homogeneous coordi-

nates of the line passing through the points (x0, y0) and (x1, y1).
The quadratic form associated with this positive semi-definite matrix offers a good

balance between the translation and rotation movements depending on the segment
vertex locations: the rotation of a line which is associated to a large segment will be
more penalized compared to the rotation of the same line associated to a shorter segment.
However, in the extreme case where the segment used for the definition of the quadratic
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Lk

Lj

Li

Pik

Pij
αij

αik

Figure 3.6: Illustration of a detected regularization configuration: three lines Li, Lj , Lk

form two intersections in the partition.

form has zero length, the kernel of the matrix contains all homogeneous coordinates of
lines that pass through this unique point (x0, y0) = (x1, y1). In the optimization, this
means lines which are associated to very small segments can freely rotate, which can
cause numerical instabilities. We stabilize our quadratic form by adding a small penalty
l2
min to the rotation part of all matrices and finally define the matrix Mi for each line

Li in L:

Mi =
def.

1
2

x2
0 + x2

1 + l2
min x0y0 + x1y1 x0 + x1

x0y0 + x1y1 y2
0 + y2

1 + l2
min y0 + y1

x0 + x1 y0 + y1 2

 (3.5)

where ((x0, y0), (x1, y1)) denotes the segment associated to the line Li, and lmin is a
minimal length at which we consider segments to be relevant.

The fidelity term on all lines Li of the arrangement is then defined as follows:

Efidelity(L) =
def.

1
2

n∑
i=1

Lt
iMiLi (3.6)

Observation 3.1. Fidelity terms are usually written as a quadratic form Q applied to
the difference between the current configuration X and the initial configuration X0:

(X −X0)tQ(X −X0)

However, in our case, the information of the initial configuration of each line L0
i is

contained in the matrix Mi. Indeed, for a line L0
i passing through the segment used to

define Mi, we have:
MiL

0
i = 0

Regularization terms. We consider triplets of lines (Li, Lj , Lk) where Li, Lj and
Li, Lk form intersection points in the partition respectively denoted by Pij and Pik. We
define the following quantity Dijk:

Dijk =
def.
|det(Li, Lj , Lk)| = |(Li × Lj) · Lk|

We illustrate such a configuration in Figure 3.6 and provide a geometrical meaning to
this quantity, when Li, Lj , Lk are (Euclidean) normalized line coordinates. The point-
line projective duality gives that the cross product Li × Lj is a homogeneous vector
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representing the intersection point Pij = (xij , yij). Therefore,

Li × Lj = wij

xij

yij

1


with, thanks to the choice of an Euclidean normalization for lines,

wij =
∣∣∣∣ai aj

bi bj

∣∣∣∣ = sin αij

where αij denotes the angle between Li and Lj .
The Euclidean normalization gives also that the inner product of Li × Lj with the

vector Lk yields the (2-dimensional) distance from the point Pij to the line Lk, multiplied
by wij :

Dijk = wij

xij

yij

1

 · Lk = wij d(Pij , Lk).

The distance from Pij to line Lk can be expressed with the angle αik between the lines
Li and Lk:

d(Pij , Lk) = ||Pij − Pik|| sin αik.

We get finally:
Dijk = ||Pij − Pik|| sin αij sin αik (3.7)

where αij and αik respectively denote the angles ∠(Li, Lj) and ∠(Li, Lk).
The invariance under isometries follows from Equation (3.7) while the invariance

under permutation is inherited from the determinant expression, so that:

Lemma 3.2. Under Euclidean normalization of the line coordinates, Dijk is invariant
under Euclidean isometries and permutations.

In the specific case of two parallel lines intersected perpendicularly by a third line,
this determinant is exactly the distance separating the two parallel lines. We can there-
fore define a largest allowed distance ϵ to consider edge collapses. By denoting T the set
of triplets (i, j, k) corresponding to lines (Li, Lj , Lk) forming at least two intersections
in the partition, we define the following regularity objective:

Econcurrent =
∑

(i,j,k)∈T

min (ϵ, |det(Li, Lj , Lk)|) (3.8)

We also favor orthogonality by adding an objective on the set P of pairs (i, j) corre-
sponding to intersecting lines (Li, Lj) in the arrangement:

Eorthogonality =
∑

(i,j)∈P

min(sin αmax, |dot2d(Li, Lj)|) (3.9)

where dot2d denotes the inner product on the two first component of the vectors Li and
Lj , and αmax is a tolerance angle below which the two lines are considered as orthogonal.

The choice of a L2-like term for the fidelity objective of Equation (3.6) and L1-
like terms, that is with a gradient discontinuity at 0, for the simplification objectives
of Equation (3.8) and Equation (3.9) is natural, since the fidelity must be maximized
while we are looking for exact line concurrency or orthogonality when this is possible.
Our simplification process thus behaves as an avatar of the celebrated sparsity of L1

minima.

27



3.3.3. Simplification of 2D partitions

Note that taking the minimum with some threshold in Equation (3.8) and Equa-
tion (3.9) makes these objectives active in the minimization only when the configuration
is close to the corresponding exact constraint satisfaction. In a more conceptual per-
spective, taking the min with a threshold also contributes to the desired non-convexity
of the objectives motivated in Section 3.3.1.

3.3.4 Gradient descent in a Riemannian manifold
We solve our optimization problem via a gradient descent algorithm. Indeed, as dis-
cussed in Section 3.3.1, we are looking for local minima and, despite its apparent sim-
plicity, the gradient method has proven to be a reliable descent method in particular for
non-smooth and non-convex objective minimizations.

While the gradient is merely the transpose of the objective’s first derivative in an
Euclidean context, working on the space of lines and using homogeneous coordinates
lead to several changes in the standard expression of the gradient.

We recall here a few notions of Riemannian geometry, more details being provided
by Lee [Lee13]. Consider a differentiable real-valued function f :M→ R, where (M, g)
is a Riemannian manifold with metric g. Denote by TpM the tangent space of M at
a point p ∈ M. The directional derivative df and the gradient grad f of f at a point
p ∈M verify, for v ∈ TpM:

df(v) = ⟨grad f, v⟩g (3.10)
For G , D, and ∇f the respective matrix representations of g, df , and grad f , this
translates to

∇f = G−1Dt (3.11)
We denote by M the manifold of (oriented) lines, seen as the submanifold of the

space R3 of homogeneous coordinates with Euclidean normalization. As illustrated in
Figure 3.5, it corresponds to the cylinder with implicit equation a2+b2 = 1. The gradient
descent is performed in the n-fold Cartesian product manifold M× · · · ×M, where n
is the number of lines in L. Each of these copies of M is associated to a line of L and
a positive semi-definite matrix as defined in Equation (3.5). Because of this Cartesian
product, the gradient of each line can be computed independently, and we consider the
copy of M associated to the ith line. Li = (a, b, c) and Mi denote respectively the
current position in normalized homogeneous coordinates and the matrix associated to
this line. We also denote by Di the derivative of the objective function E given by
Equation (3.3) with respect to the homogeneous coordinates of line Li:

Di =
(

dE

da
,

dE

db
,

dE

dc

)
The tangent space at Li corresponds to a 2-dimensional vector space written as:

TLiM = {v ∈ R3, v · (a, b, 0) = 0} = UiR2 (3.12)

with

Ui =

−b 0
a 0
0 1


The quadratic form associated to the matrix Mi, restricted to this 2-dimensional

vector space TLiM, is non-degenerate – it can be seen as an actual Riemannian metric
for the space M associated to the ith line. We give the expression of the derivative D′

i

and the matrix M ′
i associated to the quadratic form in TLi

M:

D′
i = DiUi

M ′
i = U t

i MiUi
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Iteration 0
Complexity: 1,121
Orthogonality: 0

Iteration 1000
Complexity: 812

Orthogonality: 529

Iteration 3000
Complexity: 518

Orthogonality: 391

Iteration 7000
Complexity: 137

Orthogonality: 161

Iteration 9000
Complexity: 44

Orthogonality: 57

Figure 3.7: Evolution of partitions during optimization. The global simplification al-
gorithm progressively reduces the number of lines while increasing the orthogonality
between them (“complexity” and “orthogonality” refer to the number of lines and num-
ber of orthogonal pairs of lines in the partition).

Using Equation (3.11), the expression of the gradient with respect to line Li in the
tangent space TLiM is: (

∇E
)

TLi
M

= (M ′
i)−1D′

i
t

In order to update the coordinates of the line Li, one could in theory apply the expo-
nential map from TLi

M to M. We use instead a simpler procedure which is equivalent
at first order. The expression of the gradient ∇iE in homogeneous coordinates is ob-
tained as the product of Ui mapping TLiM to the space R3 of homogeneous coordinates
with

(
∇E

)
TLi

M
:

∇iE = Ui(M ′
i)−1D′

i
t (3.13)

For a given step α, the homogeneous coordinates are updated by adding −α∇iE and
normalized, which can be seen as an orthogonal projection onto M.

Denoting normalize
(
(a, b, c)t

)
the Euclidean normalization of vector (a, b, c)t, a gra-

dient descent step consists in:

∀i, L
(k+1)
i = normalize

(
L

(k)
i − α∇iE

)
(3.14)

3.3.5 Global Algorithm
The global simplification process is shown on Algorithm 1 where C and L =
(L1, . . . , Ln) ∈ R3n represent respectively the combinatorial and numerical components
of the line arrangement. Figure 3.7 illustrates how a polygonal partition typically evolves
during the simplification process.

The step L ← GradientStep(C,L, α) consists in one Riemannian gradient step
described in Equation (3.14) for each line Li in which only the numerical data L is
updated.

The instruction α← Update(α) governs the choice of the step α. The analysis of the
rate of convergence of gradient methods for non-smooth, non-convex objectives [KW18]
is a difficult question that has not been studied in this work. Many techniques, for either
choosing the step such as line search methods [NW99] or improving the convergence
speed such as momentum [Qia99, Nes83], are taking on renewed importance with the
popularity of deep learning. Experimentally, although more elaborate schemes could
improve the speed of convergence, a geometric sequence αi = α0ri, with a ratio r
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smaller but close to 1 was enough to successfully converge to local minima. We want
the stopping criterion αmin to be small enough as to bring some regularization terms
below a certain threshold η.

The step NbReductions, C,L ← Reductions(C,L) in Algorithm 1, applies a combi-
natorial reduction step, that updates both the combinatorial structure C, by decreasing
the number n of lines and updating the line intersection relations as well as the list of
coordinates L of new lines resulting from merge decisions. It returns the integer variable
“NumberOfReductions”, which denotes the number of achieved merges and is utilized
in the termination test.

Algorithm 1: Global simplification algorithm
Inputs : C: combinatorial structure,

L: list of lines coordinates,
α: step.

Output: C, L.
do

do
L ← GradientStep(C,L, α)
α← Update(α)

while α > αmin
NumberOfReductions, C,L ← Reductions(C,L)

while NumberOfReductions > 0

Robustness of combinatorial reductions. It is well known that optimization
with L1 regularization leads to sparser solutions than its L2 counterpart, which in our
case translates into edge collapses, orthogonalities and line fusions. Although the line
representation does not enable collapsing edges – as this would require multiple lines
to pass through the same point – it is useful to interlace, as shown in Algorithm 1,
optimization iterations with combinatorial line merges and thus continue optimizing in
a simplified partition. Such an entanglement of numerical and combinatorial processes
may lead to what is known in computational geometry as robustness problems: combi-
natorial decisions require a perfect consistency whereas numerical computations produce
only approximations.

If the numerical gradient descent was able to perfectly cancel a determinant formed
by 3 lines |det(Li, Lj , Lk)| = 0, then at least one of the two following projective situa-
tions would occur: (a) two lines are equal or (b) the 3 lines differ but meet at a same
single point. In the language of affine geometry, situation (b) splits into the case of 3
lines that meet at a single affine point (b1) and 3 lines that meet at infinity, in other
words 3 parallel lines (b2). However, what becomes this observation when replacing
|det(Li, Lj , Lk)| = 0 by |det(Li, Lj , Lk)| < η for a small threshold η > 0?

In order to take the right combinatorial decisions when merging lines, while using
the finite accuracy from numerical computations, we need a carefully quantified version
of the previous “exact” implication of one of situations (a), (b1) and (b2) so that, when
lines (Li, Lj , Lk) form a regularization term |det(Li, Lj , Lk)| smaller than a threshold
value η, we can guarantee that one of the following situations occur:

— two (or more) lines of the triplet are indistinguishable up to some quantified ac-
curacy dL, corresponding to exact situation (a)

— two (or more) points at the line intersections are indistinguishable up to some
quantified accuracy dP corresponding to exact situation (b1)
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— the intersection points are outside a disk of radius R corresponding to exact situ-
ation (b2)

We relate this threshold η in the continuous optimization to values used in discrete
combinatorial operations: a minimal distance dP at which points are considered identi-
cal, a minimal quantity between line vectors dL at which they are considered identical
and the radius R of a disk centered at 0 containing the partition:

η = dP d2
L

5(1 + R2) (3.15)

Proof. By translating the arrangement such that the origin is at its center, we make the
assumptions that all lines as well as all points of the arrangement are at a distance from
the origin bounded by R, where R represents the half-size of the arrangement. We want
to determine a value η such that when a regularity criteria Dijk on a triplet of lines
(Li, Lj , Lk) is smaller than η, we can guarantee that either two lines L, L′ of the triplet
verify ||L−L′|| < dL or that the two points at the intersection of (Li, Lj) and (Li, Lk),
denoted respectively Pij and Pik, have a distance smaller than a chosen length dP .

To that effect, we assume that Dijk < η and all pair of lines L, L′ in the triplet of
lines verify ||L− L′|| > dL and we expect that ||Pij − Pik|| < dP .

Consider two lines L, L′ represented respectively by homogeneous coordinates (a, b, c)
and (a′, b′, c′). Recall that their intersection point P has homogeneous coordinates:

P = L× L′ =
(∣∣∣∣b b′

c c′

∣∣∣∣ , ∣∣∣∣a a′

c c′

∣∣∣∣ , sin α

)
where α denotes the angle between L and L′. Therefore, using the normalization a2 +
b2 = a′2 + b′2 = 1:

OP 2 sin2 α = (bc′ − b′c)2 + (ac′ − a′c)2

= (a2 + b2)c′2 + (a′2 + b′2)c2 − 2cc′(aa′ + bb′)
= (c′ − c)2 + 2cc′(1− cos α)

And finally,
(c′ − c)2 = OP 2 sin2 α− 4cc′ sin2 α

2 (3.16)

The assumption that the point P as well as the lines L and L′ have a distance to
the origin upper bounded by R can be translated into:

OP ≤ R

|c| ≤ R

|c′| ≤ R

Combined with Equation (3.16), we get:

(c′ − c)2 ≤ R2 sin2 α− 4cc′ sin2 α

2 ≤ 5R2 sin2 α

From the assumption that dL < ||L− L′||,

d2
L < (a′ − a)2 + (b′ − b)2 + (c′ − c)2

< 4 sin2 α

2 + 5R2 sin2 α

< 5(1 + R2) sin2 α
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The last inequality holds for α = αij and for α = αik so that:

sin αij sin αik >
d2

L

5(1 + R2) (3.17)

which is used to upper bound the distance between two points from the regularity
criteria. Indeed, if:

Dijk = ||Pij − Pik|| sin αij sin αik < η,

then (3.17) gives:

||Pij − Pik|| <
5η(1 + R2)

d2
L

From the assumptions, we want ||Pij − Pik|| < dP and therefore set:

η = dP d2
L

5(1 + R2)

When dealing with 64-bit arithmetic, a typical numerical value in Equation (3.15)
would be η = 10−16, for R = 1 and dP = dL = 10−5. A discrete step in our optimization
consists then in deciding for each regularization term in Econcurrent below η the nature
of the simplification: point fusion (b1), line fusion (a), or removal of an intersection
point outside the area of interest (b2).

Propagation of reductions. The function Reductions(C,L) must propagate
the simplifications in the partition, by verifying the following geometric invariant of our
structure: two lines cannot have more than one common point and two points cannot
have more than one common line.

In a first step, for each triplet (i, j, k) for which |det(Li, Lj , Lk)| < η one of the
mentioned 3 alternatives (lines merge, points merge, or point deletion) is applied. When
lines Li and Lj merge into line Lij , if there is a point indexed by (Lj , Lk), it is inherited
by the pair (Lij , Lk). Along successive merges, the aforementioned geometric invariant
may be violated, breaking the arrangement validity. Each time such a configuration is
encountered, the indexes of the faulty pair is pushed to a stack. Once the first step
is achieved, one applies either a line merge or a point merge operation for each pair
popped from the stack. These merges may again push new pairs on the stack. Since
each pop operation induces a reduction of the structure, the combinatorial simplification
eventually ends.

Finally, when merging lines Li and Lj into Lf , we combine metrics associated to
both lines into a resulting fused metric:

Mf = Mi + Mj

This ensures that the fidelity to original lines of the arrangement is propagated through-
out discrete operations. Note that this bears some resemblance with the discrete deci-
mation algorithm using Quadric Error Metric (QEM) [GH97].

3.4 Experiments
3.4.1 Tuning the method
Tradeoff between fidelity, complexity and regularity. The two main parameters
of our method are λ1 and λ2 that balance the three energy terms in the simplification
of the partition. As illustrated in Figure 3.8, these two parameters allow an intuitive
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control on the accuracy, complexity and the level of orthogonality of the partition. Note
that, when increasing λ2, the number of lines usually stays stable and the number of
points decreases slightly: this decrease is explained by the situation where two lines
become orthogonal to a third line and their intersection point is sent to infinity. The
combinatorial reduction will then remove this intersection from the partition.

In Figure 3.8, as the error is concentrated in small cells, reasonable choices for
concurrent lines and orthogonality parameters do not introduce large distortions and
therefore the increase in 3D fidelity error is controlled. Further simplifications with larger
regularity parameters degrade the partition gracefully: for instance, building contours
can be identified in the most simplified example (top right). These large distortions lead
however to large errors in the 3D fidelity measure.

Flexibility and robustness. We test our reconstruction method on different
scales of urban scenes, from individual houses (Figure 3.11), building blocks (Figure 3.9),
and larger architectural structures (Figure 3.4 and Figure 3.10). Our method produces
concise and accurate models as long as observed buildings can be represented by a piece-
wise planar and disk-topology geometry. We also evalute our algorithm on input point
clouds generated by different acquisition systems. As illustrated in Figure 3.11, our
method returns 3D models of similar quality on both a Laser point cloud with missing
data and occlusions and a multiview stereo point cloud with noise and outliers. The
importance of the partition simplification step, our main contribution, is visible in this
figure: without simplification, output results are less accurate and concise.

Performance. Our method is implemented in C++ (single-thread) and uses the
Eigen library [GJ+10] for its ease of use when dealing with homogeneous representations
as well as solving small linear algebra systems appearing in the computation of the Rie-
mannian gradient. Section 3.4.1 shows the processing times of the different steps of our
method on input data of various sizes. The creation and simplification of 2D partitions
are fast and scalable, typically a few seconds for large urban scenes. By implement-
ing the main geometric operations in the horizontal 2D plane, we avoid the time- and
memory-consuming issues arisen from the creation and manipulation of 3D polyhedral
arrangements. Adding this simplification method greatly improves the performance of
the extrusion step by reducing the number of cells in the partition.

Metric propagation along combinatorial simplification. A prime example
of the usefulness of propagating a metric information is given by Figure 3.7. In this
example, the segment detection led to an original partition containing a lot of small
segments clustered along the building’s facades. During simplification, lines carrying
these segments are merged in the first few iterations and their metric information is thus
accumulated by lines representing large parts of the facades. When further simplifying,
the fidelity term on these lines leads to very little deviation from their original position
and are therefore stabilized by the information of previous simplifications. In the final
partition, made of 44 lines – a 96% reduction from its original counterpart – the outline
of the building’s facades is still visible and lines on this outline can carry the information
of up to 100 initial segments.

3.4.2 Comparison
We compare our method with the piecewise-planar reconstruction method [CLP10] and
three mesh simplification pipelines in which input points are first converted into a dense
surface mesh by the screened Poisson algorithm [KH13] before being simplified either
by the popular Quadric Error Metrics edge contraction algorithm [GH97], by structure-
aware edge decimation [SLA15] or by variational shape approximation [CAD04]. As il-
lustrated in Figure 3.11, edge contraction based methods [GH97,SLA15] cannot produce
very low complexity models (i.e. with one or two dozens of facets for a standard house)
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BarnMVS BuildingBlock Dublin
(Figure 3.11) (Figure 3.9) (Figure 3.4)

#input points 619,472 1,000,000 6,305,813
Scene area 400 m2 13,000 m2 19,000 m2

Line-segment extraction 6.7s 8.9s 37s
#line-segments 213 813 1,681
Kinetic partitioning 3ms 4ms 238ms
#polygons 330 1,422 2,724
Simplification 0.4s 1.5s 5.3s
#polygons 61 288 1,197
Extrusion 0.9s 3.1s 87s
#output faces 24 139 637

Table 3.1: Performances of our algorithm on different input data. The processing time
for creating and simplifying 2D partitions are negligible compared to those of 3D oper-
ations, i.e. line-segment extraction and output mesh extrusion.

without strongly degrading geometric accuracy to input data. The mesh simplification
pipeline [CAD04] and the reconstruction method [CLP10] can produce more accurate
results but with a higher complexity. Our method offers the best compromise between
accuracy and complexity as well as a stable results for different acquisition systems
(laser and photogrammetry). Moreover, only our method can deliver meshes in which
orthogonalities are preserved. Contrary to two previous algorithms [GH97,SLA15], our
method does not offer a direct control on the output mesh complexity. This being said,
our method has been designed to produce very concise meshes, departing from other
algorithms [CAD04,CLP10].

3.4.3 Limitations
We acknowledge a few limitations of our method. First, the assumption that observed
objects can be represented by a 2.5D disk-topology geometry, while true for many build-
ings, does not hold for other urban objects. The geometric regularities taken into account
by our method are also limited to orthogonalities and, by construction, to collinearities.
Considering other regularities such as symmetries would probably improve the quality
of our results: it is conceivable to extend our optimization formulation to take them into
account. Finally, the simplification of partitions can in some cases degrade the accuracy
of the output model. As illustrated in Figure 3.12, this typically happens on curved
structures, where small segments in 2D play a large role in the quality of the extruded
facade, and the resulting models can appear overly simplified.
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λ1

λ2

Lines:61, Points:197, Orthos:0 Lines:59, Points:185, Orthos:82 Lines:59, Points:170, Orthos:105

Lines:41, Points:91, Orthos:0 Lines:40, Points:91, Orthos:48 Lines:42, Points:118, Orthos:74

Lines:18, Points:30, Orthos:0 Lines:18, Points:30, Orthos:29 Lines:18, Points:31, Orthos:31

Figure 3.8: Impact of parameters λ1 and λ2. Increasing λ1 reduces the complexity of
the partition, while increasing λ2 encourages the presence of orthogonal lines (Orthos
refers to the number of orthogonalities counted when the angle difference with π

2 is under
10−4 degrees). Increasing λ1 and λ2 simultaneously reduce the accuracy of the partition
as illustrated by the increasing presence of red polygons towards the top-right diagonal
(the root mean squared error of the best-fit plane of the 3D input points projected in
each polygon is displayed from white (zero error) to red (high error)).
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Figure 3.9: Result on a building block. The output 3D model (bottom right) obtained
from a multiview stereo point cloud (bottom left) preserves the main roof components
while ignoring small elements such as chimneys and dormer-windows.

Figure 3.10: Result on large regular building complex. Our 3D output model (bottom
right) preseves the orthogonality existing between facade and rooftop components. Note
how the planimetric partition (top right) aligns well with the aerial image (top left, not
used).
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Laser acquisition

QEM

error: 0.079
complexity: 15

SAMD

error: 0.085
complexity: 16

RPP

error: 0.032
complexity: 814

VSA

error: 0.072
complexity: 501

Ours (w/o simpl.)

error: 0.074
complexity: 33

Ours

error: 0.054
complexity: 15

MultiView Stereo acquisition QEM

error: 0.097
complexity: 24

SAMD

error: 0.07
complexity: 25

RPP

error: 0.044
complexity: 28

VSA

error: 0.03
complexity: 717

Ours (w/o simpl.)

error: 0.07
complexity: 186

Ours

error: 0.055
complexity: 24

Figure 3.11: Comparisons with existing methods. Mesh simplification algorithms QEM
[GH97] and SAMD [SLA15] applied from Screened Poisson dense meshes [KH13] cannot
produce low complexity models without altering the geometric accuracy (“complexity”
and “error” refer to the number of facets in the output models and to the root mean
square Hausdorff distance from input point clouds (left) to the output models, the
Hausdorff distance ranging from 0 meter (red) to 0.2 meter (black)). VSA [CAD04] and
the piecewise-planar reconstruction method RPP [CLP10] deliver more accurate results
but with a higher complexity. Our method yields the best trade-off between accuracy
and complexity, independently of the acquisition system used to generate the input point
cloud. In addition, it also preserves the orthogonality between the walls of the building.
Note how our results are degraded when the simplification of the 2D partition is not
activated. Input data from [KPZK17].

Figure 3.12: Failure case. Our simplification process may degrade the accuracy of the
output model on curved structures. The left (respectively right) model is obtained
without (resp. with) simplification of the 2D partition. Edges highlighted in red, corre-
sponding to facades in the 3D model, show the discrepancy between 2D regularity and
3D fidelity.
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P Set of points
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Bk(K) Vector space of absolute k-boundaries on K
Ck(K, B) Vector space of relative k-chains on (K, B)
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σ1 ≤ σ2 Total order on simplices σ1, σ2
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Figure 4.1: Simplices in 3D.

Figure 4.2: Example of a simplicial 3-complex.

4.1 Definitions and notations
This section presents succinctly the concepts of simplicial homology required for the rest
of this chapter. Introductions to simplicial homology can be found in [Mun18,EH10]. We
also give definitions and usual characterizations of Delaunay and regular triangulations.
More details can be found in [BCY18].

4.1.1 Simplicial complexes and chains
An abstract simplicial complex K is a collection of finite non-empty sets that is
closed under taking subsets, i.e. every subset of an element of K is also in K. A k-
simplex of K is an element of K of size k+1. 0-, 1-, 2- and 3-simplices of K are referred
to as vertices, edges, triangles and tetrahedrons of K and are illustrated in Figure 4.1.

Figure 4.2 gives an example of an abstract simplicial complex. The dimension of a
finite abstract simplicial complex is the largest dimension of any simplex of the complex.
We denote by K(k) the set of k-simplices in K. We will only consider finite complexes
in this work.

A simplex τ subset of σ is called a face of σ, and is denoted as τ ⪯ σ. Reversely, we
say σ a coface of τ .

A subcomplex B of an abstract simplicial complex K is an abstract simplicial com-
plex whose simplices are included in K. In particular, the k-skeleton of K, containing
all simplices in K of dimension at most k, is a subcomplex of K.

We call the full d-complex KP over vertices P the collection of all possible simplices
over P of dimension at most d.

For any k-simplex σ, its support |σ| is defined as the convex hull of k + 1 points
in Rk+1. We can associate to the simplicial complex K its geometric realization |K|,
obtained by gluing supports of adjacent simplices on their common faces. For finite
complexes, this topological space can be always be embedded, for instance in RN , where
N denotes the number of vertices of the complex.

In all that follows, the set P will denote d-dimensional points with coordinates in
Rd. This defines therefore an map from vertices of K to Rd, and by extension a unique
piecewise-linear map, linear on each simplex, from |K| to Rd. When this application is
injective, for instance for the Delaunay triangulation, we say it is an embedding of the
abstract simplicial complex. When the application is non injective, which can happen
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∂2

Figure 4.3: The boundary operator on a 2-chain. The coefficient of the 2-chain and
1-chain is understood to be 1 on each oriented simplex (indicated by arrows).

for the full d-complex over points P, we say the simplicial complex is not embedded in
Rd.

Nevertheless, the support |σ| of a k-simplex σ (k ≤ d) will denote the convex hull of
the k + 1 points of P associated with this k-simplex.

Let K be a simplicial complex of dimension at least k. While the notions of chains
and homology can be defined with coefficients in any ring, we consider here coefficients
in a field F, where we have in mind in particular the cases of the field of integers modulo
2 (F = Z2) and the field of rationals (F = Q). A k-chain A with coefficients in F is a
formal sum of k-simplices:

A =
∑

i

xiσi, with xi ∈ F and σi ∈ K(k)

We denote by Ck(K), or Ck(K;F) when we want to emphasize the chain coefficient,
the vector space of k-chains in the complex K.

For a chain Γ ∈ Ck(K), its support, denoted |Γ|, is the set of simplices for which
the coefficient in Γ is not zero:

|Γ| =
def.

{
σ ∈ K(k), Γ(σ) ̸= 0

}
When F = Z2, the chain coefficient in front of any simplex can be interpreted as

indicating the existence of this simplex in the chain. We can view k-chains as sets of k-
simplices: for a k-simplex σ and a k-chain A, we then write that σ ∈ A if the coefficient
for σ in A is 1. With this convention, the sum (or difference) of two chains corresponds
to the symmetric difference on their sets. In what follows, a k-simplex σ can also be
interpreted as the k-chain containing only the k-simplex σ.

A d-dimensional simplicial complex is said pure if it is of dimension d and any
simplex has at least one coface of dimension d. A d-pseudomanifold is a pure d-
dimensional simplicial complex for which each (d−1)-face has exactly two d-dimensional
cofaces.

The dual graph of a d-pseudomanifold M is the graph whose vertices are in one-
to-one correspondence with the d-simplices of M and whose edges are in one-to-one
correspondence with (d− 1)-simplices ofM : an edge e connects two vertices v1 and v2
of the graph if and only if e corresponds to the (d− 1)-face with cofaces corresponding
to v1 and v2.

A strongly connected d-pseudomanifold is a d-pseudomanifold whose dual graph
is connected.

4.1.2 Boundary operator and homology
The boundary operator ∂k : Ck(K) → Ck−1(K) is the linear map defined for any
k-simplex σ = [a0, . . . , ak] as:

∂kσ =
def.

k∑
i=0

(−1)i[a0, . . . , âi, . . . , ak]
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Zk−1(K)

Ck−1(K)

Bk−1(K)

0k−1

Zk(K)

Ck(K)

Bk(K)

0k

Zk−2(K)

Ck−2(K)

Bk−2(K)

0k−2

∂k ∂k−1

Figure 4.4: Illustration of the structure induced by the boundary operator. Chains are
mapped to boundaries, cycles are mapped to the null chain of inferior dimension and
boundaries form a subgroup of cycles.

where the symbol âi means the vertex ai is deleted from the array. Figure 4.3
illustrates this natural operator.

The kernels and images of the boundary operator form respectively the vector space
of cycles and boundaries:

Zk(K) =
def.

Ker ∂k =
{

Γ ∈ Ck(K), ∂kΓ = 0
}

Bk(K) =
def.

Im ∂k+1 =
{

Γ ∈ Ck(K),∃A ∈ Ck+1(K) | Γ = ∂k+1A
}

The following fundamental property of the boundary operator

∂k∂k+1 = 0

implies that
Im ∂k+1 ⊂ Ker ∂k

or equivalently
Bk(K) ⊂ Zk(K)

and induces a special structure across dimensions illustrated in Figure 4.4.
Homology groups – forming vector spaces over the field F – are defined as quotient

spaces of cycles over boundaries:

Hk(K) =
def.

Zk(K)
Bk(K)

Two k-cycles A, A′ ∈ Zk(K) are then said to be homologous if they belong to the
same homology class in Hk(K), or equivalently if A−A′ = ∂k+1B for some (k +1)-chain
B. Figure 4.5 illustrates the notion of homologous cycles. By extension, we also say
two k-chains Γ, Γ′ ∈ Ck(K) are homologous if their difference is a boundary, i.e. there
exists a (k + 1)-chain B such that Γ− Γ′ = ∂B.

4.1.3 Relative homology
Roughly speaking, relative homology of a simplicial pair (K, B) is constructed similarly
to absolute homology but "ignores" all the part of K inside of B. Given a simplicial
subcomplex B of K, relative k-chains are defined as classes in the following quotient
space:

Ck(K, B) =
def.

Ck(K)
Ck(B)
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Figure 4.5: Illustration of homologous cycles on a torus. The two cycles on the minor
radius of the torus are homologous: their difference is a boundary highlighted in blue.
The cycle on the major radius of the torus is however in a different homology class than
the two other cycles.

B K \B

Γ1 ∈ B1(K,B)

Γ2 ∈ Z1(K,B)

Figure 4.6: Illustration of relative 1-boundary and 1-cycle. Γ1 and Γ2 are respectively
elements of a relative boundary and relative cycle class.
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Denote by ∂
(r)
k the relative k-boundary operator in (K, B) and by ∂

(a)
k the absolute

k-boundary operator in K. For any absolute k-chain Γ ∈ Ck(K),

∂
(r)
k (Γ + Ck(B)) =

def.
∂

(a)
k (Γ) + Ck−1(B)

This is well-defined as ∂
(a)
k (Ck(B)) ⊆ Ck−1(B). Relative cycles and boundaries, are

still defined as respective kernel and image of the relative boundary operator:

Zk(K, B) =
def.

Ker ∂
(r)
k

Bk(K, B) =
def.

Im ∂
(r)
k+1

Translated in term of absolute chains, for Γ ∈ Ck(K),

Γ + Ck(B) ∈ Zk(K, B) ⇐⇒ |∂(a)
k Γ| ⊂ B

Γ + Ck(B) ∈ Bk(K, B) ⇐⇒ ∃A ∈ Ck+1(K), |Γ− ∂
(a)
k+1A| ⊂ B

The notion of relative cycles and boundaries is illustrated on Figure 4.6.
Relative homology is again defined as the quotient space of relative cycles over rela-

tive boundaries:
Hk(K, B) =

def.

Zk(K, B)
Bk(K, B)

While, strictly speaking, a relative k-chain Γ ∈ Ck(K, B) is a class, we allow ourselves
to write, for simplicity,

Γ =
∑

σi∈K\B

xiσi

where the simplex σi ∈ K \B stands in this case for σi +Ck(B). For all that follows, the
distinction between absolute and relative boundary operators will be omitted and the
notation ∂k will denote either the absolute and relative boundary operator depending
on the context.

4.1.4 Delaunay and regular complexes
For its ubiquity throughout this work, from theoretical justification of lexicographic
orders to its use in practice as a 3-dimensional complex, we define and give a few
insights on Delaunay complexes and its generalization for weighted points, called regular
triangulations.

In all that follows, SEB(σ) denotes the smallest enclosing ball of a simplex σ. RB(σ)
and RC(σ) respectively denote the radius of the smallest enclosing ball and the radius
of the smallest circumscribed sphere associated to a simplex σ.

Delaunay triangulations Let P = (P1, . . . , PN ) denote a set of points in Rd, with
N ≥ d+1. A condition of genericity is added to the set of points to ensure the existence
of circumscribing spheres.

Condition 1. We say that a set of point P =
{

P1, . . . , PN

}
⊂ Rd satisfies the first

generic condition if no set of (d + 1) points lies on a same (d − 1)-dimensional affine
space.

The Delaunay triangulation knows a few different characterizations. We recall first
its definition from the empty sphere property, illustrated in Figure 4.7.
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Figure 4.7: The empty sphere property of Delaunay triangulations.

IR

Del(P)

Del(P)

Figure 4.8: Illustration of a 1-dimensional Delaunay triangulation (in black) and its
lift (in cyan). In contrast with other simplices shown in red, the lifted simplices of the
Delaunay triangulation are on the lower hull of the lifted set of points.

Definition 4.1 (Empty-sphere property). A d-dimensional Delaunay triangulation
Del(P) of P ⊂ Rd is a triangulation of the convex hull of P such that no point in
P lies inside the circumscribed sphere of any of its d-simplices.

Particularly relevant to our work, we recall the lift characterization [Bro79] of Delau-
nay triangulations. Given a point P ∈ Rd, its lift, denoted lift(P ), is a point in Rd × R
given as:

lift(P ) =
def.

(P, ∥P∥2)

The boundary of the convex hull of the set of lifted points lift(P) can be partitioned
into two: the lower (resp. upper) hull correponds to simplices visible (resp. not visible)
from the weighted point (0,−∞). The lift characterization of the Delaunay triangulation
states that:

Proposition 1. A simplex σ is in the Delaunay triangulation if and only if its lifted
simplex lift(σ) is on the lower hull of lift(P).

Figure 4.8 illustrates Proposition 1 in dimension 1 and shows how simplices that are
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IR

el(P)

Figure 4.9: Illustration of a 2-dimensional Delaunay triangulation and its lift.

not in the Delaunay triangulation do not appear on the lower hull of the lifted points.
The lifted Delaunay triangulation is also illustrated in dimension 2 in Figure 4.9.

Regular triangulations We briefly recall the notions associated to weighted points
and distances required to introduce the generalization of Delaunay triangulations, called
regular or weighted Delaunay triangulations.

We consider a set of weighted points P = {(P1, µ1), . . . , (PN , µN )} ⊂ Rd × R with
N ≥ n + 1. For positive weights, a weighted point (P, µ) can be seen as a usual point
associated with a sphere of radius r = √µ.

Definition 4.2. Given two weighted points (P1, µ1), (P2, µ2) ∈ Rd × R their weighted
distance is defined as:

D ((P1, µ1), (P2, µ2)) =
def.

(P1 − P2)2 − µ1 − µ2

we say that (P1, µ1) and (P2, µ2) are orthogonal if D ((P1, µ1), (P2, µ2)) = 0.

The orthogonality denomination is justified by Figure 4.10 when considering the
spheres associated with positively-weighted points. From this weighted distance, we can
define generalizations of circumscribed spheres and smallest enclosing balls for weighted
points. Condition 1 is again required to properly define the generalization of circum-
scribed spheres.

Definition 4.3. Let P be a set of weighted points verifying Condition 1. Given a k-
simplex σ ⊂ P with 0 ≤ k ≤ d the generalized circumsphere and smallest enclosing ball
of σ are the weighted points (PC , µC)(σ) and (PB , µB)(σ) respectively defined as:

µC (σ) =
def.

min
{

µ ∈ R,∃P ∈ Rd,∀(Pi, µi) ∈ σ, D ((P, µ), (Pi, µi)) = 0
}

(4.1)

µB (σ) =
def.

min
{

µ ∈ R,∃P ∈ Rd,∀(Pi, µi) ∈ σ, D ((P, µ), (Pi, µi)) ≤ 0
}

(4.2)
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P1 P2

√

µ1

√

µ2

Figure 4.10: Two orthogonal points (P1, µ1), (P2, µ2) with positive weights in dimension
2.

PC(σ) and PB(σ) are the unique points P that respectively realize the minimum
in Equations (4.1) and (4.2). The weights µC (σ) and µB (σ) are called respectively
“circumweight” and bounding weight of σ.

Observation 4.4. In the particular case of zero weights:

– The weighted distance is simply the squared Euclidean distance. For two points P1
and P2:

D((P1, 0), (P2, 0)) = (P1 − P2)2

– PC(σ) and PB(σ) are respectively the center of the smallest circumscribed sphere
and the center of the smallest enclosing ball of the simplex σ.

– µC(σ) and µB(σ) correspond to the squared radius of the smallest circumscribed
sphere and the squared radius of the smallest enclosing ball of the simplex σ:

µC(σ) = RC(σ)2 and µB(σ) = RB(σ)2

Similarly to Delaunay triangulations, regular triangulations can be defined with a
generalization of the empty sphere property.

Definition 4.5. A regular triangulation T of the set of weighted points P =
{(P1, µ1), . . . , (PN , µN )} ⊂ Rd × R, N ≥ d + 1, is a triangulation of the convex hull
of {P1, . . . , PN} taking its vertices in {P1, . . . , PN} such that for any d-simplex σ ∈ T

(Pi, µi) ∈ P \ σ ⇒ D
(
(PC(σ), µC(σ)), (Pi, µi)

)
≥ 0

The lift characterization also applies for Delaunay triangulations, with the following
definition of lift for weighted points:

lift : Rd × R→ Rd × R

(P, µ) 7→ (P, ∥P∥2 − µ)

4.2 Lexicographic order and total orders on simplices
In this section, a generic preorder on k-chains induced by a total order on k-simplices is
defined and qualified as lexicographic. At first sight, minimizing along this lexicographic
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p = 1

p = 2

p = 8

C

A

B

Figure 4.11: Illustration of weighted shortest paths for different exponents, as defined in
Equation (4.4). The set of points is composed of inliers (represented as dots) sampling
the curve C and outliers (represented as crosses). The graph is not drawn but is supposed
to be the complete graph. Increasing the exponent on the edge lengths favors smaller
edges, and the shortest path goes through dense regions of the set of points.

preorder might seem peculiar and therefore an informal example of curve reconstruction
in 2D is given. When considering generalizing this approach to shape reconstruction in
higher dimensions, the main question that arises is the definition of the total order on
k-simplices required by this lexicographic order. A total order on 2-simplices, which will
be useful to reconstruction applications of 2-surfaces, will be justified by its connection
to 2-dimensional Delaunay triangulations. Finally, we will mention that a total order
with similar connections to regular triangulations, can be defined in any dimension. As
the justification of these total orders extends beyond the scope of this work, some results
are given without proof but with references to the corresponding result in [CLV19a].

4.2.1 An intuition of lexicographic optimality
We first give an informal example of lexicographic optimality to build an understanding
of its usefulness for shape reconstruction.

Depicted in Figure 4.11, consider a set of points P sampling an open curve C in 2D,
with the usual defects found in acquisitions:

– noisy and non-uniformly sampled inliers located close to C;

– outliers far from C, in relatively few number compared to inliers.

We make the additional assumption that the boundary of the curve C, denoted by points
A and B, is part of P. For simplicity, we also construct the complete graph G = (P, E),
having an edge between any two points of P. We assume all edges have distinct lengths
and therefore for e1, e2 ∈ E :

||e1|| = ||e2|| =⇒ e1 = e2 (4.3)

where ∥e∥ denotes to the length of the edge e.
Given this boundary information for C, one might consider looking at shortest paths

from A to B for the reconstruction of the shape C. However, in the complete graph, the
shortest path between any two points for the usual Euclidean distance will always be
the edge between A and B. Instead, we are interested in a family of weights associating

49



4.4.2. Lexicographic order and total orders on simplices

to each edge e its p-powered length for p ∈ [1,∞). Denoting by {ei}i∈I a set of edges
in G forming a path from A to B, its associated cost cp is then:

cp({ei}i∈I) =
def.

∑
i∈I

∥ei∥p (4.4)

In Figure 4.11, three paths minimal for this cost cp are drawn, for the values p = 1
(Euclidean distance), p = 2, and p = 8. Whereas the first two shortest paths are far
from the expected shape, go through outliers and very few inlier points, the latter avoids
outliers and goes through the densest parts of the point cloud, as a higher exponent on
the edge lengths favors smaller edges.

This leads to considering the limit behaviour of weights when p→∞. In this case,
the cost cp of a path defined by Equation (4.4) is dominated by the weight ∥emax∥p

of its longest edge emax. This means comparing two paths asymptotically involves
comparing the length of their longest edge, and in case of equality (which implies both
paths go through the same largest edge from Equation (4.3)), the length of their second
longest edge and so on... The comparison of two paths when p → ∞ uses therefore a
lexicographic comparison on the edges of both paths, sorted in decreasing order of their
lengths.

The lexicographic order will be formally defined in the next section for simplicial
chains. Indeed, although paths in graphs can be somewhat more intuitive, the vector
space structure of chains is the right formalism to generalize lexicographic minimization
problems. Instead of minimizing in the set of paths connecting A to B, this will be
formulated on the set of chains Γ verifying ∂Γ = B −A. This is a weaker condition, as
any path Γ from A to B verifies ∂Γ = B − A but not the converse. One can however
observe that a lexicographic optimal chain Γmin verifying Γmin = B − A will in fact be
a path between A and B.

4.2.2 Lexicographic order on chains
Whenever considering lexicographic orders on k-chains, we assume a total order on
k-simplices, which will simply be denoted by ≤.

Definition 4.6 (Lexicographic total preorder). Given Γ1, Γ2 ∈ Ck(K;F),

Γ1 ⊑lex Γ2 ⇐⇒
def.


|Γ1| = |Γ2|
or
max

{
σ ∈ |Γ1|△|Γ2|

}
∈ |Γ2|

where △ denotes the set symmetric difference.

A corresponding strict order ⊏lex is defined as:

Γ1 ⊏lex Γ2 ⇐⇒
def.

(
Γ1 ⊑lex Γ2

)
and ¬

(
Γ2 ⊑lex Γ1

)
From the definition of ⊑lex, we make the following observation:

Observation 4.7. Consider Γ1, Γ2 ∈ Ck(K;F).(
Γ1 ⊑lex Γ2 and Γ2 ⊑lex Γ1

)
⇐⇒ |Γ1| = |Γ2|

Observation 4.8. When F = Z2, the preorder ⊑lex is a total order and, by considering
chains on Z2 as sets, the order can be written as follows.
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Given Γ1, Γ2 ∈ Ck(K;Z2),

Γ1 ⊑lex Γ2 ⇐⇒


Γ1 = Γ2

or
max

{
σ ∈ Γ1 + Γ2

}
∈ Γ2

Observation 4.9. Qualifying this order as lexicographic is natural from the fact the
comparison depends on the first place where the two chain supports differ. However, our
lexicographic order is different from the order used, for instance, in dictionaries. By
analogy, our order assumes all letters (i.e. simplices) of each word (i.e. chain support)
are first ordered from largest to smallest before comparison.

We first characterize the existence and unicity of lexicographic optimal chains. These
properties of lexicographic minima can be best understood in the abstract context of
quotient vector spaces. Consider a pair A ⊂ E of finite dimensional vector spaces, with
a given ordered basis:

e1 < . . . < en

of E inducing a lexicographic preorder ⊑lex on E.

Definition 4.10 (Application Mlex: lexicographic M inimal representative). The map
MA

lex : E → E is defined as:

MA
lex(x) =

def.
min
⊑lex

x + A (4.5)

The exponent A is omitted when there is no ambiguity.

The map Mlex is well defined since one has:

Lemma 4.11. Given x ∈ E, the minimum MA
lex(x) under the total preorder ⊑lex in

Equation (4.5) exists and is unique.

Proof. We call the support |x| ⊂ {e1, . . . , en} of x ∈ E the set of basis elements for
which the corresponding coordinates in x are not zero. Since x ∈ x + A, the set x + A is
not empty. Since there is a finite number of supports on the space x + A, there exists a
minimal support, and therefore at least one minimal vector. Assume, for a contradiction,
that there exists x1, x2 ∈ x + A, x1 ̸= x2, minimum under the preorder ⊑lex. Consider
a basis element σ ∈ |x2− x1|. From Observation 4.7, we have that |x1| = |x2|, therefore
|x2 − x1| ⊂ |x1| and σ is in |x1|. We now consider the following vector:

x3 =
def.

x1 + x1(σ)
(x2 − x1)(σ) (x2 − x1)

As x1 ∈ x + A and x2 − x1 ∈ A, we have that x3 belongs to x + A. By construction,
it is also smaller than x1 for the preorder ⊑lex, as |x3| ⊂ |x1| \ {σ}. This is a clear
contradiction with the definition of x1 as a minimum of x + A.

A major insight for solving lexicographic optimality problems lies in the linearity of
the application Mlex:

Lemma 4.12. The application MA
lex is linear. In other words, for x1, x2 ∈ E and λ ∈ F,

MA
lex(x1 + λx2) = MA

lex(x1) + λMA
lex(x2)
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fσ(x)

σ

x

Figure 4.12: The height difference function fσ associated with a 2-simplex σ.

Proof. Recall that ∀x ∈ E, MA
lex(x)− x ∈ A, so that one can define a ∈ A as:

a =
def.

Mlex(x1 + λx2)−Mlex(x1)− λMlex(x2) (4.6)

Assume for a contradiction that a ̸= 0 and take σmax = max |a|. The basis element
σmax belongs to the support of (at least) one of the three terms of Equation (4.6). We
assume first that σmax ∈ |Mlex(x1)|. We now have the following chain:

x =
def.

Mlex(x1)− Mlex(x1)(σmax)
a(σmax) a

that verifies by design σmax /∈ |x|, so that x ⊏lex Mlex(x1). Since x ∈ x1 + A, this is a
clear contradiction with the definition of Mlex(x1): we conclude that σmax /∈ |Mlex(x1)|.
A similar construction assuming σmax ∈ |Mlex(x1 + λx2)| or σmax ∈ |Mlex(x2)| leads to
the same contradiction. We conclude that a = 0 and Mlex is linear.

Consequences of these properties of uniqueness and linearity will be further explored
in Section 4.7.2.

4.2.3 A total order on 2-simplices
The main result of this section is deriving a total order on 2-simplices (Lemma 4.14)
and giving an insight on the proof showing that lexicographic optimal chains induced
by this total order characterize 2-dimensional Delaunay triangulations.

Variational approach to the Delaunay triangulations

The lift characterization (Proposition 1) inspired authors [Mus03, CX04, ACYD05] to
consider a variational approach to Delaunay triangulations. We consider a set of points
P ⊂ Rd and denote by KP the d-dimensional full complex over P, made of all simplices
over vertices of P of dimension at most d.

For each k-simplex σ = {P0, . . . , Pk}, define a function:

fσ : |σ| → R

x 7→ fσ(x) =
def.

∑
i

λi(x) ∥Pi∥2 − ∥x∥2 (4.7)
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where λi(x) are the barycentric coordinates of x verifying

x =
∑

i

λi(x)Pi with
∑

i

λi(x) = 1 and λi(x) ≥ 0 for all i = 0, . . . , k

As illustrated on Figure 4.12 for 2-dimensional simplices, this function measures, for any
point x ∈ |σ|, the height difference along the line ((x, 0), (x, +∞)) between the lifted
simplex lift(σ) and the paraboloid defined by the function P 7→ ∥P∥2.

Defining a weight wp for each k-simplex σ

wp(σ) =
def.
∥fσ∥p =

(∫
|σ|

fσ(x)pdx

) 1
p

(4.8)

the variational characterization of the Delaunay triangulation in [CX04] states that,
for any p ∈ [1,∞):

Del(P) = arg min
T ∈VP

(∑
σ∈T

wp(σ)p

) 1
p

where VP corresponds to the set of all triangulations of the convex hull CH(P) of P.
This characterization can in fact be extended to simplicial chains. Define the following
L1 norms on d-chains:

∥Γ∥(p) : Cd(KP)→ R

Γ 7→
∑

σ∈K(d)

|Γ(σ)|wp(σ)p (4.9)

The following proposition extends the variational formulation to d-chains.

Proposition 2 (Proposition 6.13 in [CLV19a]). Denote by βP ∈ Bd−1(KP) the (d−1)-
boundary made of the simplices belonging to the boundary of CH(P). For any p ∈ [1,∞),
define the chain

Γmin =
def.

arg min
Γ∈Cd(KP)

∂Γ=βP

∥Γ∥(p)

The support |Γmin| of Γmin corresponds to all d-simplices of the Delaunay triangulation
of P.

Asymptotical behaviour of wp

We are now interested in the asymptotical behaviour of weights wp(σ) when p → ∞
in dimension d = 2. Assume the set of points P ⊂ R2 verifies the following generic
condition, which enforces that no two edges have the same length and four points cannot
be co-cyclic.

Condition 2. The set of points P verifies Condition 1 (no degenerate triangles) and
for any two edges or triangles σ1 and σ2 ∈ KP, one has:

RC(σ1) = RC(σ2) =⇒ σ1 = σ2

We give the following asymptotical behaviour of the weight wp(σ) according to the
nature of the triangle σ. The proof of this result is given in Appendix A.1. Recall the
asymptotic equivalence notation:

f(x) ∼
x→∞

g(x) ⇐⇒
def.

lim
x→∞

f(x)
g(x) = 1
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Lemma 4.13 (Proof in Appendix A.1). Given a set of points P verifying Condition 2,
if a triangle σ ∈ KP is:

– strictly acute,
wp(σ)p ∼

p→∞
π

1
p

RB(σ)2+2p

– right,
wp(σ)p ∼

p→∞

π

2
1
p

RB(σ)2+2p

– strictly obtuse,

wp(σ)p ∼
p→∞

√
π

4h2
1
p3 RB(σ)2+2p

with h2 = RC(σ)2−RB(σ)2

RB(σ)2 .

Define the following comparison between 2-simplices σ1, σ2 ∈ K(2)

σ1 ≤ σ2 ⇐⇒
def.

∃p ∈ N | ∀p′ > p, wp′(σ1) ≤ wp′(σ2)

as well as a strict order < based on the strict comparison of the weights.
is shown to be equivalent to the following comparison thanks to the asymptotical

behaviours of Lemma 4.13.

Lemma 4.14. For σ1, σ2 ∈ K(2),

σ1 ≤ σ2 ⇐⇒


RB(σ1) < RB(σ2)
or
RB(σ1) = RB(σ2) and RC(σ1) ≥ RC(σ2)

Proof. Consider two distinct 2-simplices σ1 ̸= σ2. We make the following two distinc-
tions:

Case 1: RB(σ1) ̸= RB(σ2)
The asymptotical behaviours of Lemma 4.13 give immediately that, independently of
the nature of the triangle:

σ1 < σ2 ⇐⇒ RB(σ1) < RB(σ2)

Case 2: RB(σ1) = RB(σ2)
The contrapositive of Condition 2 implies that RC(σ1) ̸= RC(σ2). As acute and right
triangles have same radius of smallest enclosing ball and circumscribed sphere, one of
the two triangles has to be obtuse. The comparison of the asymptotical behaviours
between an obtuse triangle σ1 and an acute or right triangle σ2 leads to σ1 < σ2, which
coincides with the comparison RC(σ1) > RC(σ2), as RC(σ1) > RB(σ1) and RC(σ2) =
RB(σ2) = RB(σ1). For two stricly obtuse triangles, the comparison of the asymptotical
behaviour also give that σ1 < σ2 is equivalent to RC(σ1) > RC(σ2).

It is clear that, under Condition 2, the order ≤ is antisymmetric and therefore defines
a total order on 2-simplices.
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Delaunay triangulations as optimal lexicographic chains

To characterize the 2-dimensional Delaunay triangulation using the lexicographic order
⊑lex induced by this total order, we now need to compare it with the preorder induced
by the asymptotical behaviour of norms defined in Equation (4.9):

Definition 4.15 (⊑∞ order on 2-chains). For Γ1, Γ2 ∈ C2(K):

Γ1 ⊑∞ Γ2 ⇐⇒
def.

∃p ∈ [1,∞),∀p′ ∈ [p,∞), ∥Γ1∥(p′) ≤ ∥Γ2∥(p′)

We can again define a strict order ⊏∞ as:

Γ1 ⊏∞ Γ2 ⇐⇒
def.

(
Γ1 ⊑∞ Γ2

)
and ¬

(
Γ2 ⊑∞ Γ1

)
If the orders ⊑lex and ⊑∞ were equivalent, Proposition 2 would then give immedi-

ately a characterization of the Delaunay triangulation as a lexicographic optimal chain.
However, a counter-example can be given, showing orders ⊑lex and ⊑∞ are not equiva-
lent.

Observation 4.16 (⊑lex and ⊑∞ differ). Consider three obtuse triangles σ1, σ2, σ3
sharing a same longest edge – this can occur generically – and therefore sharing the
same smallest enclosing ball. Denote, for i = 1, 2, 3, the quantities from Lemma 4.13 of
each simplex:

h2
i = RC(σi)2 − RB(σi)2

RB(σi)2

It is possible for these values to verify simultaneously:
h1 < h2

h1 < h3
1

h1
< 1

h2
+ 1

h3

The first two inequalities, with the fact they share the same smallest enclosing ball,
translate to σ2 < σ1 and σ3 < σ1 resulting in:

σ2 + σ3 ⊏lex σ1

However, from the last inequality, the asymptotical behaviour for obtuse triangles of
Lemma 4.13 gives us:

σ1 ⊏∞ σ2 + σ3

Even though the orders ⊑lex and ⊑∞ are not equivalent, we can show that this
counter-example cannot appear in the minima of either ⊑lex and ⊑∞.

Lemma 4.17. Let P ⊂ Rd be a finite set of points satisfying Condition 2 and let KP be
the full complex over P. For some 1-boundary β ∈ B1(KP), define the set D of 2-chains
bounded by β:

D =
def.

{
Γ ∈ C2(KP) | ∂Γ = β

}
If Γ ∈ C2(KP) is a minimum in D for one of the orders ⊑∞ or ⊑lex, then Γ cannot

contain two obtuse triangles sharing the same longest edge.

Proof. Consider two obtuse triangles acb, abd ∈ KP
(2) with same longest edge ab. The

triangles adc and bcd as well as the tetrahedron abcd also belong to KP. It follows that
acb+abd is homologous to adc+ bcd in KP. Therefore, if some chain Γ contains acb and
abd, then the chain Γ′ = Γ−acb−abd+adc+ bcd is homologous to Γ. One checks easily
that, while Γ′ ̸= Γ, one has Γ′ ⊑∞ Γ and Γ′ ⊑lex Γ. Γ can therefore not be minimum in
D for either order ⊑∞ or ⊑lex.
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The following lemma states that minima taken under either ⊑lex or ⊑∞ are identical.

Lemma 4.18 (Lemma 7.8 in [CLV19a]). Let P ⊂ Rd be a finite set of points satisfying
Condition 2 and let KP be the full complex over P. For a 1-boundary β ∈ B1(KP),
define the set D of 2-chains bounded by β:

D =
def.

{
Γ ∈ C2(K) | ∂Γ = β

}
The minima on D under either ⊑∞ or ⊑lex are identical:

min
⊑∞
D = min

⊑lex

D

Finally, we can state the following characterization of Delaunay triangulation as op-
timal lexicographic chain induced by the total order on 2-simplices given in Lemma 4.14.

Proposition 3. Let P = {P1, . . . , PN} ⊂ R2 with N ≥ 3 be in general position and let
K be any 2-dimensional complex containing the Delaunay triangulation of P. Denote
by βP ∈ B1(K) the 1-boundary made of edges belonging to the boundary of convex hull
CH(P). Define the chain

Γmin =
def.

min
⊑lex

{Γ ∈ C2(K), ∂Γ = βP}

The support |Γmin| of Γmin corresponds to the 2-simplices of the Delaunay triangulation
of P.

Proof. Let ΓDel(P) be the 2-chain with coefficients 1 on each Delaunay 2-simplex. We
will show that ΓDel(P) is the lexicographic optimal chain over all 2-chains bounding
βP in the full complex KP. The result will be a fortiori true for any subcomplex K
containing ΓDel(P).

We know that ∂ΓDel(P) = βP, and from Proposition 2, for any p ≥ 1:

ΓDel(P) = arg min
∂Γ=βP

∥Γ∥(p)

It follows that, for any Γ ∈ C2(KP),

∂Γ = βP =⇒ ∀p ≥ 1,
∥∥∥ΓDel(P)

∥∥∥
(p)
≤
∥∥∥Γ
∥∥∥

(p)
=⇒ ΓDel(P) ⊑∞ Γ

Therefore, the chain ΓDel(P), whose support corresponds to the Delaunay triangulation,
verifies:

ΓDel(P) = min
⊑∞
{Γ ∈ C2(KP), ∂Γ = βP}

Finally, the equality of minima under ⊑∞ and ⊑lex (Lemma 4.18) completes the
proof.

4.2.4 Characterizing regular triangulations as lexicographic op-
timal chains

In this section, we simply state a generalization of the result of the previous section for
regular triangulations of arbitrary dimension.

We consider a set of weighted points P that verifies the following generic condition.

Condition 3. We say that P =
{

(P1, µ1), . . . , (PN , µN )
}
⊂ Rd×R is in general position

if it satisfies Condition 1 and for a k-simplex σ and a k′-simplex σ′ in KP with 1 ≤
k, k′ ≤ n, one has:

µC(σ) = µC(σ′)⇒ σ = σ′ (4.10)
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dimΘ(σ) = 3 dimΘ(σ) = 2 dimΘ(σ) = 1

Figure 4.13: For zero weights, three generic cases can define different Θ(σ) for a tetra-
hedron. In each case, the simplex Θ(σ) is spanned by the highlighted vertices which
contribute to the smallest enclosing ball. Note however that, for arbitrary weights, a
fourth situation is possible, where dim Θ(σ) = 0.

From Definition 4.3 of generalized circumspheres and smallest enclosing balls, we
can show that any d-simplex σ admits a unique inclusion minimal face Θ(σ) having the
same bounding weight as the simplex σ:

(PB , µB)(σ) = (PB , µB)(Θ(σ))

Figure 4.13 illustrates the different possibilities for Θ(σ) in the case d = 3 with zero
weights.

We can then construct for each d-simplex σ a sequence of inclusion-increasing faces
Θk(σ) defined incrementally, for 0 ≤ k ≤ dim σ − dim Θ(σ), by:

Θ0(σ) =
def.

Θ(σ)

Θk(σ) =
def.

arg min
Θk−1(σ)⪯τ⪯σ

dim τ=dim Θk−1(σ)+1

µC(τ)

The order on d-simplices will consider the circumweights of this sequence (Θk(σ))k,
denoted:

µk(σ) =
def.

µC(Θk(σ))

Note that in particular,

µ0(σ) = µC(Θ(σ)) = µB(σ) (4.11)

The following relation defines a generalized total order on d-simplices over weighted
points:

σ1 ≤ σ2 ⇐⇒
def.

σ1 = σ2 or


µ0(σ1) < µ0(σ2)

or
∃k ≥ 1, µk(σ1) > µk(σ2)
and ∀j, 0 ≤ j < k, µj(σ1) = µj(σ2)

(4.12)

Note first that for two d-simplices σ1, σ2, thanks to Condition 3 and Equation (4.11):

µB(σ1) = µB(σ2)⇒ Θ(σ1) = Θ(σ2)

which implies that, when µB(σ1) = µB(σ2), the range of values of (µk(σ1))k and
(µk(σ2))k are the same and the order is well-defined.
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We can verify, for zero weights in dimension 2, that this order is equivalent to the
one presented in Lemma 4.14, the only difference being the comparison uses squared
radii. Indeed, as mentioned in Observation 4.4, for zero weights, we have:

µ0(σ) = µB(σ) = RB
2(σ)

For two distinct triangles σ1, σ2, the order first compares the squared radii of the smallest
enclosing circle of each triangle. For obtuse triangles, these radii can generically be equal
when they share their longest edge, which corresponds to Θ(σ1) = Θ(σ2). In this case,
the tie is broken by comparing in reverse order the squared circumradii of the triangles.

The previous characterization result for 2-dimensional Delaunay triangulation can
then be extended to regular triangulations of any dimension.
Theorem 4.19 (Theorem 3.1 in [CLV19b]). Let P = {(P1, µ1), . . . , (PN , µN )} ⊂ Rd×R,
with N ≥ d + 1 be in general position and let KP be the d-dimensional full complex over
P. Denote by βP ∈ Bd−1(KP) the (d− 1)-boundary made of simplices belonging to the
boundary of CH(P). Define the chain

Γmin =
def.

min
⊑lex

{Γ ∈ Cd(KP), ∂Γ = βP}

The support |Γmin| of Γmin corresponds to the d-simplices of the regular triangulation of
P.

4.3 Problem statement and solutions in arbitrary di-
mension

In this section, after stating two lexicographic optimal chain problems over coefficients
in Z2, polynomial-time solutions are derived from algorithms akin to Gauss elimination
and very similar to the computation of persistent homology.

We assume a total order on k-simplices is given, inducing a lexicographic order ⊑lex

on k-chains as defined in Definition 4.6. The choice of coefficients in Z2 simplifies the
presentation of matrix reduction algorithms, however these results could be extended to
any coefficient field F with the same algorithmic complexity by considering matrices in
Smith normal forms [EH10]. These extensions to different coefficient fields are especially
useful to carry an information of orientation on the simplices.

In Z2 arithmetic, the addition and subtraction operations are of course equivalent.
However, both symbols appear in this section: this is justified by the fact that one
operation might be more natural than the other if the problem was considered in an
arbitrary coefficient field.

4.3.1 Problem statement
The Optimal Homologous Chain Problem (OHCP), introduced in [DHK11], can be
stated as follows.
Problem 3 (OHCP). Given a k-chain Γ0 in a simplicial complex K and a set of weights
given by a diagonal matrix W of appropriate dimension, find the L1-norm minimal chain
Γmin homologous to Γ0:

Γmin = arg min
Γ

||W · Γ||1 such that Γ is homologous to Γ0

It has been shown that this problem, in an arbitrary simplicial complex with chain
coefficients in Z2, is NP-hard [CF11,CEN09].

The first problem studied in this section, denoted Lexicographic Optimal Homolo-
gous Chain Problem (Lex-OHCP), can be seen as a particular instance of OHCP.
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4.4.3. Problem statement and solutions in arbitrary dimension

Problem 4 (Lex-OHCP). Given a simplicial complex K and a k-chain Γ0 ∈ Ck(K),
find the unique chain Γmin defined by:

Γmin = min
⊑lex

{
Γ ∈ Ck(K) | ∃A ∈ Ck+1(K), Γ− Γ0 = ∂k+1A

}
Observation 4.20. By verifying that Γmin = M

Bk(K)
lex (Γ0), the existence and unicity of

Problem 4 is immediate from Lemma 4.11.

Observation 4.21. Formulating Lex-OHCP as OHCP with coefficients in Z2 requires
ordering simplices along their total order and taking a weight matrix W with generic
term Wii = 2i, in which case the L1-norm minimization is equivalent to a minimization
along the lexicographic order.

The second problem of interest in this section is finding a lexicographic optimal chain
under imposed boundary.

Problem 5. Given a simplicial complex K with a total order on the k-simplices and a
(k − 1)-cycle A, check if A is a boundary:

BA =
def.
{Γ ∈ Ck(K) | ∂kΓ = A} ≠ ∅

If it is the case, find the minimal k-chain Γ bounded by A:

Γmin = min
⊑lex

BA

4.3.2 Boundary matrix reduction
The following terminology will be useful when discussing the links with matrix reduction
algorithms.

Definition 4.22. A k-chain Γ0 ∈ Ck(K) is said reducible if there is a k-chain Γ ∈
Ck(K) (called reduction) and a (k + 1)-chain A ∈ Ck+1(K) such that:

Γ ⊏lex Γ0 and Γ− Γ0 = ∂k+1A

If this property cannot be verified, the k-chain Γ0 is said irreducible. If Γ0 is reducible,
we call total reduction of Γ0 the unique irreducible reduction of Γ0. If Γ0 is irreducible,
Γ0 is said to be its own total reduction.

Note that Problem 4 can be reformulated as finding the total reduction of Γ0.
With m = dim Ck(K) and n = dim Ck+1(K), we consider the m-by-n boundary

matrix ∂k+1 with entries in Z2. We enforce that rows of the matrix are ordered according
to the given strict total order on k-simplices σ1 < · · · < σm, where the k-simplex σi is
the basis element corresponding to the ith row of the boundary matrix. The order of
columns, corresponding to an order on (k + 1)-simplices, is not relevant for this section
and can be chosen arbitrarily.

For a matrix R, the index of the lowest non-zero coefficient of a column Rj is de-
noted by low(j), or sometimes low(Rj) when we want to make explicit which matrix is
considered. This index is not defined for a column whose coefficients are all zero.

Algorithm 2 is a slightly modified version of the boundary reduction algorithm pre-
sented in [EH10]. Indeed, for our purpose, we do not need the boundary matrix storing
all the simplices of all dimensions, as does [EH10], and apply the algorithm to the sub-
matrix ∂k+1 : Ck+1(K) → Ck(K). Note that this algorithm can be seen as a matrix
factorization R = ∂k+1V , where V is not explicitly constructed. One checks easily that
Algorithm 2 has O(mn2) time complexity.
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4.4.3. Problem statement and solutions in arbitrary dimension

Algorithm 2: Reduction algorithm for the ∂k+1 matrix
Input : Boundary matrix ∂k+1
Output: Reduced matrix R
R = ∂k+1
for j ← 1 to n do

while Rj ̸= 0 and ∃j0 < j with low(j0) = low(j) do
Rj ← Rj + Rj0

end
end

We now introduce a few lemmas useful for solving Problem 4. We allow ourselves
to consider each column Rj of the matrix R, formally an element of Zm

2 , as the corre-
sponding k-chain in the basis (σ1, . . . , σm).

Lemma 4.23. A k-chain Γ is reducible if and only if at least one of its k-simplices is
reducible.

Proof. If there is a reducible k-simplex σ ∈ Γ, Γ is reducible by the k-chain Γ′ =
Γ− σ + Red(σ), where Red(σ) is a reduction for σ.
We now suppose Γ to be reducible. Let Γ′ ⊏lex Γ be a reduction for Γ and A the
(k + 1)-chain such that Γ − Γ′ = ∂A. We denote σmax = max {σ ∈ Γ− Γ′}. Note that
σmax is homologous to Γ′ − Γ + σmax. The chain Γ′ − Γ + σmax only contains simplices
smaller than σmax, by definition of the lexicographic order (Definition 4.6). We have
thus shown that if Γ is reducible, it contains at least one simplex that is reducible.

Lemma 4.24. After matrix reduction (Algorithm 2), a non-zero column Rj ̸= 0 can be
described as

Rj = σlow(j) + Γ, where Γ is a reduction for σlow(j).

Proof. As all matrix operations performed on R by the reduction algorithm are linear,
each non-zero column Rj of R is in the image of ∂k+1. Therefore, there exist a (k + 1)-
chain A such that Rj = σlow(j) + Γ = ∂k+1A, which, is equivalent in Z2 to Γ− σlow(j) =
∂k+1A. By definition of the low of a column, we also have immediately: Γ ⊏lex σlow(j).
For each non-zero column, the largest simplex is therefore reducible by the other k-
simplices of the column.

Lemma 4.25. After matrix reduction (Algorithm 2), there is a one-to-one correspon-
dence between the reducible k-simplices and non-zero columns of R:

σi ∈ Ck(K) is reducible ⇐⇒ ∃j, 1 ≤ j ≤ n, Rj ̸= 0 and low(j) = i

Proof. Lemma 4.24 shows immediately that the simplex corresponding to the lowest
index of a non-zero column is reducible.

Suppose now that a k-simplex σ̃ is reducible and let Γ̃ be a reduction of it: σ̃ −
Γ̃ = ∂k+1A for some A ∈ Ck+1(K) and Γ̃ ⊏lex σ̃. Algorithm 2 realizes the matrix
factorization R = ∂k+1 · V , where matrix V is invertible [EH10]. It follows that Im R =
Im ∂k+1. Therefore, non-zero columns of R span Im ∂k+1 and since σ̃ − Γ̃ = ∂k+1B ∈
Im ∂k+1, there is a family (Rj)j∈J = (σlow(j), Γj)j∈J of columns of R such that :

σ̃ − Γ̃ =
∑
j∈J

σlow(j) + Γj

Every σlow(j) represents the largest simplex of a column, and Γj a reduction chain for
σlow(j). As observed in [EH10, Section VII.1], one can check that the low indices in R
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are unique after the reduction algorithm. Therefore, there is a jmax ∈ J such that for
all j in J \ {jmax}, low(j) < low(jmax), which implies:

σjmax = max{σ ∈
∑
j∈J

σlow(j) + Γj} = max
{

σ ∈ σ̃ − Γ̃
}

= σ̃

We have shown that for the reducible simplex σ̃, there is a non-zero column Rjmax with
σ̃ = σlow(jmax) as its largest simplex.

4.3.3 Total reduction algorithm
Combining the three previous lemmas give the intuition on how to construct the total
reduction solving Problem 4: Lemma 4.23 allows to consider each simplex individually,
Lemma 4.25 characterizes the reducible nature of a simplex using the reduced boundary
matrix and Lemma 4.24 describes a column of the reduction boundary matrix as a sim-
plex and its reduction. We now present Algorithm 3, referred to as the total reduction
algorithm. For a k-chain Γ, Γ[i] ∈ Z2 denotes the coefficient of the ith simplex in the
chain Γ.

Algorithm 3: Total reduction algorithm
Inputs : A k-chain Γ, the reduced boundary matrix R
for i← m to 1 do

if Γ[i] ̸= 0 and ∃j ∈ [1, n] with low(j) = i in R then
Γ← Γ + Rj

end
end

Proposition 4. Algorithm 3 finds the total reduction of a given k-chain in O(m2) time
complexity.

Proof. In Algorithm 3, let Γi−1 be the value of the variable Γ after iteration i. Since
the iteration counter i decreases from m to 1, the input and output of the algorithm are
respectively Γm and Γ0. At each iteration, Γi−1 is either equal to Γi or Γi + Rj . Since
Rj ∈ Im ∂k+1, Γi−1 is in both cases homologous to Γi. Therefore, Γ0 is homologous to
Γm. We are left to show that Γ0 is irreducible. From Lemma 4.23, it is enough to check
that it does not contain any reducible simplex.
Let σi be a reducible simplex and let us show that σi /∈ Γ0. Two possibilities may occur:

– if σi ∈ Γi, then Γi−1 = Γi + Rj . Since low(j) = i, we have σi ∈ Rj and therefore
σi /∈ Γi−1.

– if σi /∈ Γi, then Γi−1 = Γi and again σi /∈ Γi−1.

Furthermore, from iterations i − 1 to 1, the added columns Rj contain only simplices
smaller than σi and therefore σi /∈ Γi−1 ⇒ σi /∈ Γ0.

Observe that using an auxiliary array allows to determine in constant time, if it exists,
the column index j corresponding to a lowest element low(j). The column addition
nested inside the loop lead to a O(m2) time complexity for Algorithm 3.

It follows that Problem 4 can be solved in O(mn2) time complexity, by applying
successively Algorithm 2 and Algorithm 3, or in O(N3) complexity if N is the size of
the simplicial complex.
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4.3.4 A basis of cycles from matrix reduction
In order to derive an algorithmic solution to Problem 5, we revisit the boundary matrix
reduction algorithm presented in Section 4.3.2. Unlike Problem 4, which uses the ∂k+1
boundary operator, we now consider ∂k, meaning the given total order on k-simplices
applies to the columns of the matrix. An arbitrary order can be taken for the (k − 1)-
simplices to build the matrix ∂k. We mentioned that the matrix reduction algorithm
could be seen as a matrix factorization problem R = ∂k · V . As the order on (k − 1)-
simplices is chosen arbitrarily, the properties of the columns of the reduced matrix
presented in Section 4.3.2 are not useful for the minimization of Problem 5. However,
the rows of the transformation matrix V do follow the given simplicial ordering. Very
similar to Algorithm 2, Algorithm 4 shows how to compute the transformation matrix
V .

Algorithm 4: Boundary factorization algorithm
Input : Boundary matrix ∂k

Outputs: Reduced matrix R, Transformation matrix V
R = ∂k

V = Identity
for j ← 1 to n do

while Rj ̸= 0 and ∃j0 < j with low(j0) = low(j) do
Rj ← Rj + Rj0

Vj ← Vj + Vj0

end
end

After calling Algorithm 4, the matrices R and V are used to construct a basis of
cycles. Indeed, the number of zero columns of R is the dimension of Zk = Ker ∂k, which
we denote by nKer. By selecting all columns in V corresponding to zero columns in R,
we obtain the matrix V Ker, whose columns V Ker

1 , . . . , V Ker
nKer form a basis of Zk.

Similarly to R, we show the lows of the columns of V Ker are unique.

Lemma 4.26. Indices
{

low(V Ker
i )

}
i∈[1,nKer] are unique:

i ̸= j ⇒ low(V Ker
i ) ̸= low(V Ker

j )

If A ∈ Ker ∂k\{0}, there exists a unique column V Ker
max of V Ker with low(V Ker

max) = low(A).

Proof. Before the boundary matrix reduction algorithm, the initial matrix V is the iden-
tity: the low indices are therefore unique. During iterations of the algorithm, the matrix
V is right-multiplied by an column-adding elementary matrix Lj0,j , adding column j0
to j with j0 < j.

Lj0,j =

j



1
1 1 j0

. . .
1

. . .
1
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Therefore, the indices {low(Vi), Vi ∈ V } stay on the diagonal during the reduction al-
gorithm and are therefore unique. The restriction of V to V Ker does not change this
property.

If A ∈ Ker ∂k \ {0}, A can be written as a non-zero linear combination of columns
(V Ker

i )i∈I of V Ker. Call imax = low(A) the index of the largest element σimax in A.
Suppose, for a contradiction, that no column of (V Ker

i )i∈I has imax as its low index. By
existence of σimax in A, there is an odd number of columns V Ker

j ∈ (V Ker
i )i∈I satisfying

σimax ∈ V Ker
j with low(V Ker

j ) > imax. We have shown however that the lows of V Ker are
unique, which implies the lows of columns V Ker

j would appear in A: this contradicts the
definition of imax as the low of A.

4.3.5 Lexicographic-minimal chain under imposed boundary
This section studies a variant of Lex-OHCP (Problem 4) in order to solve the subsequent
problem of finding a minimal k-chain bounding a given (k − 1)-cycle (Problem 5).

Problem 6. Given a simplicial complex K with a total order on the k-simplices and a
k-chain Γ ∈ Ck(K), find:

Γmin = min
⊑lex

{Γ′ ∈ Ck(K) | ∂kΓ′ = ∂kΓ}

Indeed, in Problem 5, once a representative Γ in the set BA ̸= ∅ such that ∂kΓ = A
has been found, we are then taken back to Problem 6 to find the minimal k-chain Γmin
such that ∂kΓmin = ∂kΓ = A.

We apply a similar total reduction algorithm as previously introduced but using the
matrix V Ker defined in Section 4.3.4. In the following algorithm, m = dim Ck(K).

Algorithm 5: Total reduction variant
Inputs : A k-chain Γ and V Ker

for i← m to 1 do
if Γ[i] ̸= 0 and ∃j ∈ [1, nKer] with low(j) = i in V Ker then

Γ← Γ + V Ker
j

end
end

Proposition 5. Algorithm 5 computes the solution for Problem 6 in O(m2) time com-
plexity.

Proof. The proof is similar to the one of Proposition 4.
In Algorithm 5, we denote by Γi−1 the value of variable Γ after iteration i. Since
iteration counter i is decreasing from m to 1, the input and output of the algorithm are
respectively Γm and Γ0. Since V Ker

j ∈ Ker ∂k, at each iteration ∂Γi−1 = ∂Γi therefore
∂Γ0 = ∂Γm. We are left to show the algorithm’s result is the minimal solution.

Suppose there is Γ⋆ such that ∂kΓ⋆ = ∂kΓ and Γ⋆ ⊏lex Γ0. Let’s consider the
difference Γ0 − Γ⋆, and its largest element index low(Γ0 − Γ⋆) = i, with σi ∈ Γ0 and
σi /∈ Γ⋆ by Definition 4.6 of the lexicographic order. As Γ0−Γ⋆ ∈ Ker ∂k \{0}, there has
to be a column V Ker

j in V Ker where low
(
V Ker

j

)
= i, from Lemma 4.26. Two possibilities

may occur at iteration i:

– if σi ∈ Γi, then Γi−1 = Γi + V Ker
j . Since i = low(j), we have σi ∈ V Ker

j and
therefore σi /∈ Γi−1.
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– if σi /∈ Γi, then Γi−1 = Γi and again σi /∈ Γi−1.

However, from iterations i−1 to 1, the added columns V Ker
j contains only simplices with

indices smaller than i and therefore we obtain σi /∈ Γi−1 ⇒ σi /∈ Γ0, a contradiction to
the definition of σi as the largest element of Γ⋆ − Γ0.

4.3.6 Finding a representative chain given a cycle
As previously mentioned, solving Problem 5 requires deciding if the set

BA = {Γ ∈ Ck(K) | ∂kΓ = A}

is empty and in case it is not empty, finding an element of the set BA. Algorithm 5
can then be used to minimize this element under imposed boundary. In the following
algorithm, m = dim Ck−1(K) and n = dim Ck(K).

Algorithm 6: Finding a representative
Inputs : A (k − 1)-chain A, a boundary matrix R reduced by V
Γ0 ← ∅
A0 ← A
for i← m to 1 do

if A0[i] ̸= 0 then
if ∃j ∈ [1, n] with low(j) = i in R then

A0 ← A0 −Rj

Γ0 ← Γ0 + Vj

else
The set BA is empty.

end
end

end

Proposition 6. Algorithm 6 decides if the set BA is non-empty, and in that case, finds
a representative Γ0 such that ∂kΓ0 = A in O(m2) time complexity.

Proof. We start by two trivial observations from the definition of a reduction. First, A
is a boundary if and only if its total reduction is the null chain. Second, if a non-null
chain is a boundary, then its greatest simplex is reducible.

If, at iteration i, A0[i] ̸= 0, then σi is the greatest simplex in A0. In the case R has
no column Rj such that low(j) = i, σi is not reducible by Lemma 4.25 and therefore
A0 is not a boundary. Since A and A0 differ by a boundary (added columns of R), A is
not a boundary either. This means the set BA is empty.
The main difference with the previous chain reduction is we keep track of the column
operations in Γ0. If the total reduction of A is null, we have found a linear combination
A =

∑
j∈J Rj . We have also computed Γ0 as the sum of the corresponding columns in

V : Γ0 =
∑

j∈J Vj . As R = ∂k · V , we can verify that

∂kΓ0 = ∂k

∑
j∈J

Vj

 =
∑
j∈J

Rj = A
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4.4 Lexicographic optimal homologous cycle in codi-
mension 1

We’ve seen in the previous section that the Lexicographic Optimal Homologous Chain
Problem (Lex-OHCP) can be solved for any arbitrary simplicial complex in time cubic
in the size of the complex. However, having in mind applications of reconstruction of 2-
surfaces in 3-dimensional space, we look at ways of further improving this complexity. In
this section, we study the problem of finding a lexicographic optimal homologous cycle
in codimension 1 of a pseudomanifold complex K, allowing to formulate the problem as a
particular mincut problem on the dual graph of the complex, which we call lexicographic
mincut and will be solved in O(n log n) time complexity, where n stands for the size of
the complex K. We assume the coefficient field is Z2, allowing to consider chains as sets
of simplices.

The idea of considering the minimal cut problem on the dual graph has been pre-
viously studied [Sul90]. In particular, Chambers et al. [CEN09] have considered graph
duality to derive complexity results for the computation of L1-optimal homologous cy-
cles on 2-manifolds. Chen et al. [CF11] also use a reduction to a minimum cut problem
on a dual graph to compute minimal non-null homologous cycles on d-complexes em-
bedded in Rd. Their polynomial algorithm (Theorem 5.2.3 in [CF11]) for computing a
homology class representative of minimal radius is reminiscent of our algorithm for com-
puting lexicographic minimal representatives (Algorithm 6). In a recent work [DHM20],
Dey et al. consider the dual graph of pseudomanifolds in order to obtain polynomial
time algorithms for computing minimal persistent cycles. Since they consider arbitrary
weights, they obtain the O(n2) complexity of best known minimum cut/maximum flow
algorithms [Orl13].

4.4.1 Dual formulation as lexicographic min-cut
Given a strongly connected d-pseudomanifold M (see definition in Section 4.1.1) and
τ1 ̸= τ2 two d-simplices of M, we consider a special case of Problem 4 where K =
M\ {τ1, τ2} and A = ∂τ1:

Problem 7. Given a strongly connected d-pseudomanifold M with a total order on the
(d− 1)-simplices and two distinct d-simplices (τ1, τ2) of M, find:

Γmin = min
⊑lex

{
Γ ∈ Cd−1(M) | ∃B ∈ Cd(M\ {τ1, τ2}), Γ− ∂τ1 = ∂B

}
Definition 4.27. Seeing a graph G as a 1-dimensional simplicial complex, we define
the coboundary operator ∂0 : C0(G) → C1(G) as the linear operator defined by the
transpose of the matrix of the boundary operator ∂1 : C1(G)→ C0(G) in the canonical
basis of simplices.1

For a given graph G = (V, E), V and E respectively denote its vertex and edge sets.
For a (d − 1)-chain α ∈ Cd−1(M) and a d-chain β ∈ Cd(M), α̃ and β̃ denote their
respective dual 1-chain and dual 0-chain in the dual graph G(M) of M (see definition
in Section 4.1.1). We easily see that:

Observation 4.28. For a set of vertices V0 ⊂ V, ∂0V0 is exactly the set of edges in
G = (V, E) that connect vertices in V0 with vertices in V \ V0.

1In order to avoid to introduce non essential formal definitions, the coboundary operator is defined
over chains since, for finite simplicial complexes, the canonical inner product defines a natural bijection
between chains and cochains.

65



4.4.4. Lexicographic optimal homologous cycle in codimension 1

Observation 4.29. Let M be a d-pseudomanifold. If α ∈ Cd−1(M) and β ∈ Cd(M),
then α̃ = ∂0β̃ ⇐⇒ α = ∂dβ.

The order on (d − 1)-simplices of a d-pseudomanifold M naturally defines a cor-
responding order on the edges of the dual graph: τ1 < τ2 ⇐⇒ τ̃1 < τ̃2. This order
extends similarly to a lexicographic order ⊑lex on sets of edges (or, equivalently, 1-chains
over Z2 coefficients) in the graph.

In what follows, we say a set of edges Γ̃ disconnects τ̃1 and τ̃2 in the graph (V, E)
if τ̃1 and τ̃2 are not in the same connected component of the graph (V, E \ Γ̃).

Given a graph with weighted edges and two vertices, the min-cut/max-flow problem
[EK72, Orl13] consists in finding the minimum cut (i.e. set of edges) disconnecting the
two vertices, where minimum is meant as minimal sum of weights of cut edges. We
consider a similar problem where the minimum is meant in term of a lexicographic
order: the Lexicographic Min-Cut (LMC).
Problem 8 (LMC). Given a connected graph G = (V, E) with a total order on E and
two vertices τ̃1, τ̃2 ∈ V, find the set Γ̃LMC ⊂ E minimal for the lexicographic order ⊑lex,
that disconnects τ̃1 and τ̃2 in G.

As illustrated by Figure 4.14, we show the primal formulation of Problem 7 is equiv-
alent to the dual formulation of Problem 8.
Proposition 7. Γmin is solution of Problem 7 if and if only its dual 1-chain Γ̃min is
solution of Problem 8 on the dual graph G(M) ofM where τ̃1 and τ̃2 are respective dual
vertices of τ1 and τ2.
Proof. Problem 7 can be equivalently formulated as:

Γmin = min
⊑lex

{
∂d(τ1 + B) | B ∈ Cd(M\ {τ1, τ2})

}
(4.13)

Using Observation 4.29, we see that Γmin is the minimum in Equation (4.13) if and only
if its dual 1-chain Γ̃min satisfies:

Γ̃min = min
⊑lex

{
∂0(τ̃1 + B̃) | B̃ ⊂ V \ {τ̃1, τ̃2}

}
(4.14)

Denoting Γ̃LMC the minimum of Problem 8, we need to show that Γ̃LMC = Γ̃min.
As Γ̃LMC disconnects τ̃1 and τ̃2 in G = (V, E), τ̃2 is not in the connected component of
τ̃1 in (V, E \ Γ̃LMC). We define B̃ as the connected component of τ̃1 in (V, E \ Γ̃LMC)
minus τ̃1. We have that B̃ ⊂ V \ {τ̃1, τ̃2}. Consider an edge e ∈ ∂0(τ̃1 + B̃). From
Observation 4.28, e connects a vertex va ∈ {τ̃1} ∪ B̃ with a vertex vb /∈ {τ̃1} ∪ B̃. If the
edge e does not belong to ΓLMC, this means vertices va and vb are in the same connected
component in (V, E \ ΓLMC), which contradicts the statement that vb /∈ {τ̃1} ∪ B̃. We
have therefore shown that ∂0(τ̃1 + B̃) ⊂ Γ̃LMC. Using Equation (4.14), we get:

Γ̃min ⊑lex ∂0(τ̃1 + B̃) ⊑lex Γ̃LMC (4.15)

Now we claim that if there is a C̃ ⊂ V \{τ̃1, τ̃2} with Γ̃ = ∂0(τ̃1 + C̃), then Γ̃ disconnects
τ̃1 and τ̃2 in (V, E). Consider a path in G from τ̃1 to τ̃2. Let va be the last vertex of the
path that belongs to {τ̃1} ∪ C̃ and vb the next vertex on the path (which exists since τ̃2
is not in {τ̃1}∪ C̃). From Observation 4.28, we see that the edge (va, vb) must belong to
Γ̃ = ∂0(τ̃1 + C̃). We have shown that any path in G connecting τ̃1 and τ̃2 has to contain
an edge in Γ̃ and the claim is proven.
In particular, the minimum Γ̃min disconnects τ̃1 and τ̃2 in (V, E). As Γ̃LMC denotes
the minimum of Problem 8, Γ̃LMC ⊑lex Γ̃min which, together with Equation (4.15) and
Observation 4.8, gives us Γ̃LMC = Γ̃min. We have therefore shown the minimum defined
by Equation (4.14) coincides with the minimum defined in Problem 8.
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(a) Duality

τ2

τ1

Γmin

(b) Primal problem

τ̃1

τ̃2
˜
Γmin

(c) Dual problem

Figure 4.14: (a): A primal 2-pseudomanifold M in dimension 2 and its dual graph
G. The dotted edges are all connected to an infinite dual vertex. (b): The primal
problem finds a chain Γmin lexicographic optimal 1-chain homologous to ∂τ1 (in red)
in M \ {τ1, τ2}. (c): The corresponding min-cut problem on the dual graph finds a
lexicographic minimal set Γ̃min that disconnects τ̃1 and τ̃2 in the dual graph.
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Figure 4.15: Disjoint sets represented as parent-pointer trees. On the left, the blue path
shows the computation of the FindSet operation on node 3. On the right, the red edge
is the result of the LinkSet operation between set representatives 5 and 7.

4.4.2 Disjoint-sets data structure
The dual formulation involves verifying connectivity on the dual graph. We recall a
classic data structure called the disjoint-sets structure. Introduced for finding connected
components [GF64] in a graph, it is capable of representing connected components by
associating with each set a different representative value. Three operations are defined
on the structure:

— MakeSet(x): given an element x, creates a set containing this element x.

— FindSet(x): given an element x, returns the representative of the set. The FindSet
operation will return the same representative for any two elements in the same set
and different representatives for elements in different sets.

— LinkSet(x, y): merges two sets represented by x and y. After this operation,
elements of both sets have the same representative.

In practice, the structure can be implemented using parent-pointer trees. Figure
4.15 represents the structure and shows the action of FindSet and LinkSet operations.
Each set is represented as a tree with the root as its representative. Each element of the
set is a node of the tree containing a pointer either to an ancestor element for non-root
nodes or itself for the root. The FindSet(x) operation consists of retrieving the root
by iteratively asking for the ancestor starting at the node x. The LinkSet(x, y) simply
updates the parent pointer of x to y. Algorithm 7 gives for reference the implementation
of the different operations.

For sake of completeness, we quickly summarize the two strategies needed to make
the structure asymptotically optimal [FS89]: path compression and union by rank. Path
compression consists of shortening the path of ancestors at each call of the FindSet op-
eration, for instance by setting the parent pointer of each node on the path to the found
root node. Union by rank consists in keeping a value for each set representing its depth
and, when using the LinkSet operation, updates the parent pointer of the shallowest
tree to the deepest one so as to keep the tree heights as small as possible. Using both
strategies brings the amortized complexity for FindSet and LinkSet operations down to
O(α(n)) [Tv84], where n is the number of elements in the structure and α is the inverse
Ackermann function.
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Algorithm 7: Disjoint-sets operations
Function MakeSet(Element x):

x.parent = x

Function FindSet(Element x):
while x ̸= x.parent do

x = x.parent
end
return x;

Function LinkSet(Element r1, Element r2):
// r1, r2 are set representatives
r1.parent = r2

4.4.3 Algorithm for lexicographic min-cut
In light of the new problem equivalency, we construct an algorithmic solution to Problem
8. As we will only consider the dual graph for this section, we leave behind the dual
chain notation: vertices τ̃1 and τ̃2 are replaced by α1 and α2, and the solution to the
problem is simply noted ΓLMC. The following lemma exposes a constructive property
of the solution on subgraphs.

Lemma 4.30. Consider ΓLMC solution of Problem 8 for the graph G = (V, E) and
α1, α2 ∈ V. Let e0 be an edge in V × V such that e0 < min{e ∈ E}. Then:

(a) The solution for (V, E ∪ {e0}) is either ΓLMC or ΓLMC ∪ {e0}.

(b) ΓLMC ∪ {e0} is solution for (V, E ∪ {e0}) if and only if α1 and α2 are connected
in (V, E ∪ {e0} \ ΓLMC).

Proof. Let’s call Γ′
LMC the solution for (V, E ∪ {e0}). Since Γ′

LMC ∩ E disconnects α1
and α2 in (V, E), one has

ΓLMC ⊑lex Γ′
LMC

Since ΓLMC ∪ {e0} disconnects α1 and α2 in (V, E ∪ {e0}), we also have

Γ′
LMC ⊑lex ΓLMC ∪ {e0}

Therefore,
ΓLMC ⊑lex Γ′

LMC ⊑lex ΓLMC ∪ {e0}

As e0 < min{e ∈ E}, there is no set in E∪{e0} strictly between ΓLMC and ΓLMC∪{e0}
for the lexicographic order. It follows that Γ′

LMC is either equal to ΓLMC or ΓLMC∪{e0}.
The choice for Γ′

LMC is therefore ruled by the property that it should disconnect α1
and α2: if α1 and α2 are connected in (V, E ∪ {e0} \ ΓLMC), ΓLMC does not disconnect
α1 and α2 in (V, E ∪ {e0}) and ΓLMC ∪ {e0} has to be the solution for (V, E ∪ {e0}). On
the other hand, if α1 and α2 are not connected in (V, E ∪{e0} \ΓLMC), then both ΓLMC
and ΓLMC ∪ {e0} disconnect α1 and α2 in (V, E ∪ {e0}), but as ΓLMC ⊏lex ΓLMC ∪ {e0},
ΓLMC ∪ {e0} is not the solution for (V, E ∪ {e0}).

We now describe Algorithm 8. The algorithm expects a set of edges sorted in de-
creasing order according to the lexicographic order.
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Algorithm 8: Lexicographic min-cut
Inputs : G = (V, E) and α1, α2 ∈ V, with E = {ei, i = 1, . . . , n} in decreasing

order
Output: ΓLMC
ΓLMC ← ∅
for v ∈ V do

MakeSet(v)
end
for e ∈ E in decreasing order do

e = (v1, v2) ∈ V × V
r1 ← FindSet(v1), r2 ← FindSet(v2)
c1 ← FindSet(α1), c2 ← FindSet(α2)
if {r1, r2} = {c1, c2} then

ΓLMC ← ΓLMC ∪ e
else

UnionSet(r1, r2)
end

end

Proposition 8. Algorithm 8 computes the solution of Problem 8 for a given graph
(V, E) and two vertices α1, α2 ∈ V. Assuming the input set of edges E are sorted, the
algorithm has O(nα(n)) time complexity, where n is the cardinal of E and α the inverse
Ackermann function.

Proof. We denote by ei the ith edge along the decreasing order and Γi
LMC the value of the

variable ΓLMC of the algorithm after iteration i. The algorithm works by incrementally
adding edges in decreasing order and tracking the growing connected components of the
set associated with α1 and α2 in (V, {e ∈ E , e ≥ ei} \ Γi

LMC), for i = 1, . . . , n.
At the beginning, no edges are inserted, and Γ0

LMC = ∅ is indeed solution for (V,∅).
With Lemma 4.30, we are guaranteed at each iteration i to find the solution for (V, {e ∈
E , e ≥ ei}) by only adding to Γi−1

LMC the current edge ei if α1 and α2 are connected in
{e ∈ E , e ≥ ei} \ Γi−1

LMC, which is done in the if-statement. If the edge is not added, we
update the connectivity of the graph (V, {e ∈ E , e ≥ ei}\Γi

LMC) by merging the two sets
represented by r1 and r2. After each iteration, Γi

LMC is solution for (V, {e ∈ E , e ≥ ei})
and when all edges are processed, Γn

LMC is solution for (V, E).
The complexity of the MakeSet, FindSet and UnionSet operations have been

shown to be respectively O(1), O(α(v)) and O(α(v)), where α(v) is the inverse Acker-
mann function on the cardinal of the vertex set [Tv84]. Assuming sorted edges as input
of the algorithm – which is performed in O(n ln(n)), the algorithm runs in O(nα(n))
time complexity.

4.5 Lexicographic optimal homologous relative chain
in codimension 1

This section and the next are motivated by constructing an efficient version in codi-
mension 1 for the lexicographic optimal chain under imposed boundary problem (Prob-
lem 5). However, we will require stronger assumptions on the complex. Recall that
solving Problem 5 in an arbitrary simplicial complex requires two steps:

1. finding a representative chain bounded by the given boundary (Algorithm 6),
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2. finding the optimal chain having the same boundary (Algorithm 5).

Similarly, both steps are required in codimension 1. This section will solve the prob-
lem of finding the optimal relative chain homologous to a given chain Γ0 ∈ Cd−1(K, B).

Problem 9 (Lex-OHRCP). Given a simplicial pair (K, B), and a (d − 1)-chain Γ0 ∈
Cd−1(K, B), find the lexicographic optimal chain Γmin homologous to Γ0:

Γmin =
def.

min
⊑lex

{
Γ0 + b, b ∈ Bd−1(K, B)

}
This problem is similar to Problem 4, but formulated for relative chains in codimen-

sion 1 over a general coefficient field F. Note that the constraints on the minimization
of Problem 9 are stronger than those of Problem 6, as being homologous implies having
the same boundary but the converse is not always true. These problems are however
equivalent when the complex has trivial (d − 1)-homology. The presentation of this
section will be similar to Section 4.4 but requires to expose a few properties related to
Poincaré duality (for absolute homology) or Lefschetz duality (for relative homology).
The use of relative chains will be discussed in applications presented in Section 4.8.2
and Section 4.8.3.

4.5.1 Lefschetz duality and intersection product
For this section, we consider K a simplicial complex triangulating the d-sphere Sd. After
specifying the duality with a cell complex K̃, we define an intersection product between
relative k-chains in (K, B) and the (d − k)-chains of the dual K̃ \B and expose a few
property of the induced Lefschetz duality. The chain coefficient group is supposed to be
a general field F in this section.

Duality in elementary linear algebra

We start by giving a simple duality result of linear algebra. Consider E, F finite dimen-
sional vector spaces and a linear map L : E → F .
Denote by E∗, F ∗ the respective duals of E and F , and, for a ∈ E, b ∈ E∗ and the image
b(a) of a by b by:

b(a) = ⟨b, a⟩ ∈ F.

The orthogonal complement 2 of a subspace A of E, denoted A⊥, can be defined as the
subspace of E∗ verifying:

A⊥ =
def.

{
b ∈ E∗ | ∀a ∈ A, ⟨b, a⟩ = 0

}
The adjoint of L, is the linear map L∗ : F ∗ → E∗ defined by:

∀a ∈ E,∀b ∈ F ∗, ⟨L∗b, a⟩ =
def.
⟨b, La⟩

The following equivalences

a ∈ Ker L ⇐⇒ La = 0
⇐⇒ ∀b ∈ F ∗, ⟨b, La⟩ = 0
⇐⇒ ∀b ∈ F ∗, ⟨L∗b, a⟩ = 0

⇐⇒ ∀c ∈ Im L∗, ⟨c, a⟩ = 0 ⇐⇒ a ∈
(

Im L∗
)⊥

give the following lemma:
2This is actually the annihilator, which, for finite vector space, is the dual of the orthogonal com-

plement.
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Lemma 4.31. If E, F are finite dimensional vector spaces and L : E → F a linear
map, then:

Ker L =
(

Im L∗
)⊥

(
Ker L

)⊥
= Im L∗

Relative duality between (K, B) and K̃ \B

Any triangulated manifold K admits a dual polyhedral decomposition. We denote K̃
the cell complex dual to K, where k-cells are in bijective correspondence with the (d−k)-
simplices of K. A prime example of this duality is Voronoi diagrams, dual to Delaunay
triangulations.

For 0 ≤ k ≤ d, denote by K(k) and K̃(k) the set of k-simplices of K and the set of k-
cells of K̃. For σ, τ ∈ K with dim(σ) = dim(τ)− 1 one write σ ⪯s τ , where s ∈ {−1, 1},
when σ is a face of τ and s ∈ {−1, 1} is the sign of σ as it appears in ∂τ (the sign s can
be ignored if F = Z2). The duality between K and K̃ means precisely that:

— for 0 ≤ k ≤ d, there is a bijection between K(k) and K̃(d−k), where the cell dual
of the k-simplex σ ∈ K(k) is denoted σ̃ ∈ K̃(d−k),

— for σ, τ ∈ K such that dim(σ) = dim(τ)− 1 then:

σ ⪯s τ ⇐⇒ τ̃ ⪯s σ̃ (4.16)

Equation (4.16) can be equivalently formulated as saying the matrices of the respec-
tive boundary operators ∂Ck+1(K) : Ck+1(K) → Ck(K) and ∂Cd−k(K̃) : Cd−k(K̃) →
Cd−k−1(K̃), expressed in the simplices, or cells, bases, are transpose of each other:

∂Cd−k(K̃) =
(
∂Ck+1(K)

)t (4.17)

Intersection product

Denote by intersection product the bilinear form defined by:

⊗ : Ck(K)×Cd−k(K̃)→ F

(Γ, γ) 7→ Γ⊗ γ =
def.

∑
σ∈K(k)

Γ(σ) γ(σ̃) (4.18)

Observation 4.32. The intersection product vanishes when Γ and γ have disjoint sup-
port. Extending the ·̃ notation to sets of simplices:

∀Γ ∈ Ck(K),∀γ ∈ Cd−k(K̃), |Γ| ∩ |̃γ| = ∅ =⇒ Γ⊗ γ = 0

If we consider Γ ∈ Ck(K) and γ ∈ Cd−k(K) as vectors expressed in the simplex
basis, the intersection product can be written Γ⊗ γ = Γtγ, where Γt is the transpose of
vector Γ. Using Equation (4.17) we get that:

∂Γ⊗ γ =
(
∂Ck+1(K)Γ

)t
γ = Γt

(
∂Ck+1(K)

)t
γ = Γt∂Cd−k(K̃)γ

So that:
∂Γ⊗ γ = Γ⊗ ∂γ (4.19)
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γ ∈ B1(K̃ \B) Γ ∈ Z2(K, B)

γ′ ∈ Z1(K̃ \B)

Γ′ ∈ B2(K, B)

Figure 4.16: Illustration of the intersection product and Lemma 4.34 in dimension 3. The
pink region corresponds to subcomplex B of the ambient complex K. The intersection
product between Γ ∈ Z2(K, B) and any γ ∈ B1(K̃ \B) verifies Γ ⊗ γ = 0. The
intersection product between Γ′ ∈ B2(K, B) and any γ′ ∈ Z1(K̃ \B) also verifies Γ′ ⊗
γ′ = 0.

While K \B is not a simplicial complex in general, because some simplices in K \B

may have faces in B, by contrast, the set of its dual cells, K̃ \B, is a cellular complex.
Observes that the set of k-simplices in K \ B, in bijection with their dual (d − k)-cells
in K̃ \B, defines a canonical basis for both Ck(K, B) and Cd−k(K̃ \B) in which the
intersection product ⊗ corresponds to the canonical dot product between respective
coordinates in Fn, where n is the cardinal of (K̃ \B)(d−k). Identifying a chain Γ ∈
Cd−1(K, B) with the dual element Γ∗ : γ 7→ Γ⊗γ, the notation · ⊥ used in Lemma 4.31
becomes:

Definition 4.33. For a vector subspace V of C1(K̃ \B),

V ⊥ =
def.

{
Γ ∈ Cd−1(K, B) | ∀γ ∈ V, Γ⊗ γ = 0

}
(4.20)

As illustrated in dimension 3 in Figure 4.16, applying Lemma 4.31 in the context of
Equation (4.19) gives the following properties:

Lemma 4.34. Let K ≃ Sd and B a subcomplex of K.

Zd−1(K, B) = B1(K̃ \B)⊥ (4.21)

Bd−1(K, B) = Z1(K̃ \B)⊥ (4.22)

In other words, for any Γ ∈ Cd−1(K, B), one has:

Γ ∈ Zd−1(K, B) ⇐⇒
(
∀γ ∈ B1(K̃ \B), Γ⊗ γ = 0

)
(4.23)

Γ ∈ Bd−1(K, B) ⇐⇒
(
∀γ ∈ Z1(K̃ \B), Γ⊗ γ = 0

)
(4.24)
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Lefschetz duality

The intersection product of previous section extends to homology classes. For two
homologous relative (d − 1)-cycles Γ, Γ′ ∈ Zd−1(K, B), the fact that Γ′ − Γ belongs to
Bd−1(K, B) implies, thanks to Equation (4.24):

∀γ ∈ Z1(K̃ \B), Γ′ ⊗ γ = Γ⊗ γ

Similarly, for two homologous 1-cycles γ, γ′ ∈ Z1(K̃ \B), thanks to Equation (4.23):

∀Γ ∈ Zd−1(K, B) Γ⊗ γ′ = Γ⊗ γ

The intersection product is therefore independent of the chosen representative of the
homology class and extends to a bilinear form on homology groups:

⊗ : Hd−1(K, B)×H1(K̃ \B)→ F

Observation 4.35. Thanks to Lemma 4.34, the pairing

⊗ : Hd−1(K, B)×H1(K̃ \B)→ F

is perfect, which means it induces an isomorphism between H1(K̃ \B) and the dual of
Hd−1(K, B). This can be seen as a particular case of Lefschetz duality.

4.5.2 Dual problem formulation
We now give a dual formulation for Problem 9. We consider GK\B = (VK\B , EK\B)
the 1-skeleton of the complex K̃ \B, where VK\B and EK\B are respectively the set of
vertices and edges of the graph. We consider the following graph problem:

Problem 10. Given a subgraph G of G
K̃\B

, with a total order on its edges, and Γ0 ∈
Cd−1(K, B), consider the set:

△G =
def.

{
Γ ∈ Cd−1(K, B) | ∀γ ∈ Z1(G), (Γ− Γ0)⊗ γ = 0

}
and find the chain defined by:

Γmin =
def.

min
⊑lex

△G (4.25)

From Lemma 4.34, Equation (4.24), we have the following equivalence:

Lemma 4.36. Consider Γ0 ∈ Cd−1(K, B) and (K ≃ Sd, B) a simplicial pair. Problem
9 for the simplicial pair (K, B) and Γ0 is equivalent to Problem 10 for the graph GK\B

and Γ0.

Denoting by n the number of edges of the graph GK\B , we enumerate the edges of
EK\B in a decreasing order induced by the total order on the primal (d − 1)-simplices
of K \B:

e1 > e2 > · · · > en (4.26)
We consider the increasing sequence of graphs:

Gi =
def.

(
VK\B , Ei =

def.

{
ej ∈ EK\B | j ≤ i

})
(4.27)

In particular, G0 = (VK\B ,∅) and Gn = GK\B .
The following observation gives an important property on the support of the solution

of Problem 10 for this increasing sequence of graphs.
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Observation 4.37. Denote by △Gi
the set of Problem 10 associated to some graph Gi

defined in Equation (4.27). Recall from Observation 4.32 that, for Γ ∈ Cd−1(K, B) and
γ ∈ Z1(Gi),

|Γ− Γ0| ∩ |̃γ| = ∅ =⇒ (Γ− Γ0)⊗ γ = 0

The constraints defining the set △Gi
rely only on the value of Γ on the (d− 1)-simplices

dual to 1-simplices in Ei. The optimal chain on △Gi
then verifies∣∣∣∣min

⊑lex

△Gi

∣∣∣∣ ⊂ Ẽi

We show that the minimum of Problem 10 for GK\B can be constructed incremen-
tally by considering this increasing sequence of graphs. To this end, we borrow termi-
nology from persistent homology [EH10] and qualify edges as positive if their addition
creates new cycles in the graph and as negative if their addition merges two connected
components.

Lemma 4.38. Consider Γ0 ∈ Cd−1(K, B). Denote by Γ(i) and Γ(i+1) the respective
solutions of Problem 10 for the graphs Gi and Gi+1 and the chain Γ0. Denote by ei+1
the edge added to Gi to form Gi+1.

- If the edge ei+1 is negative, i.e. kills a connected component in Gi+1 and
dim Z1(Gi+1) = dim Z1(Gi),

Γ(i+1) = Γ(i)

- If the edge ei+1 is positive, i.e. forms a new cycle in Gi+1 and dim Z1(Gi+1) =
dim Z1(Gi) + 1, for γi+1 ∈ Z1(Gi+1) \ Z1(Gi), with γi+1(ei+1) = 1,

Γ(i+1) = Γ(i) + α ẽi+1

with α = −(Γ(i) − Γ0)⊗ γi+1.

Proof. A negative edge will kill a connected component but no new cycles will be formed
by adding this edge and Z1(Gi+1) = Z1(Gi). We have immediately that Γ(i) is solution
for Gi+1.

For a positive edge ei+1, a new graph cycle is formed in Gi+1. In term of chains,
this means dim Z1(Gi+1) = dim Z1(Gi) + 1 and we can consider a 1-chain γi+1 in
Z1(Gi+1) \ Z1(Gi) verifying:

γi+1(ei+1) = 1 (4.28)

Let’s verify that Γ(i) + αẽi+1 ∈ △Gi+1 , with α = −(Γ(i) − Γ0)⊗ γi+1. Consider any
cycle γ in Z1(Gi+1) and µ = γ(ei+1) its coefficient for edge ei+1. The cycle γ can be
written as γ′ +µγi+1, where γ′ = γ−µγi+1 is in Z1(Gi). The intersection product along
this cycle for Γ(i) + αẽi+1 and Γ0 can now be decomposed as:

(Γ(i) + αẽi+1 − Γ0)⊗ γ = (Γ(i) − Γ0)⊗ γ′ + αẽi+1 ⊗ γ′ + µ(Γ(i) + αẽi+1 − Γ0)⊗ γi+1

By definition of Γ(i) as solution of Problem 10 for Gi, (Γ(i)−Γ0)⊗γ′ = 0. As ei+1 /∈
|γ′|, we also have ẽi+1 ⊗ γ′ = 0. Finally, from the definition of α and Equation (4.28),
the last term of the sum is also zero:

(Γ(i) + αẽi+1 − Γ0)⊗ γi+1 = (Γ(i) − Γ0)⊗ γi+1 + α ẽi+1 ⊗ γi+1 = 0

and we have shown that Γ(i) + αẽi+1 ∈ △Gi+1 . As Γ(i+1) = min⊑lex
△Gi+1 , Γ(i+1) ⊑lex

Γ(i) + αẽi+1. As △Gi+1 ⊆ △Gi , we also have that Γ(i) ⊑lex Γ(i+1). Hence the following
bounds for Γ(i+1):

Γ(i) ⊑lex Γ(i+1) ⊑lex Γ(i) + αẽi+1 (4.29)
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Figure 4.17: A set of oriented edges obtained by performing FindSet operations for the
two nodes 6 and 4 of the same set. The dotted edge, which is not in the disjoint-sets,
illustrates how a cycle can be constructed from the structure.

Recall that Observation 4.37 showed∣∣∣Γ(i+1)
∣∣∣ ⊂ Ẽi+1

which means, together with Equation (4.29), that the supports of Γ(i) and Γ(i+1) can
only differ on ẽi+1. When α = −(Γ(i) −Γ0)⊗ γi+1 is not zero, Γ(i) /∈ △Gi+1 . Therefore,
the support of Γ(i+1) needs to contain ẽi+1 and the unicity of the solution from Lemma
4.11 implies Γ(i+1) = Γ(i) + αẽi+1. When α = −(Γ(i) − Γ0) ⊗ γi+1 is zero, we can of
course also write Γ(i+1) = Γ(i) + αẽi+1.

As illustrated in Lemma 4.38, two key elements are required to incrementally con-
struct the solution for Problem 10: tracking connected components in the sequence of
graphs (Gi)i=0...n to distinguish between positive and negative edges and computing the
coefficient α for any new cycle going through a positive edge. The former requires again
the disjoint-sets data structure to keep track of incremental connected components. In
the next section, we will show how a small augmentation of this data structure can help
to efficiently compute the latter.

4.5.3 Augmented disjoint-sets data structure
As described in Lemma 4.38, the incremental construction of the lexicographic optimal
homologous relative chain requires, for a positive edge ei+1, to compute the coefficient
of the intersection product (Γ(i) − Γ0) ⊗ γi+1 of the previous solution Γ(i) minus the
initial given chain Γ0 with a cycle γi+1 passing through this new edge. As illustrated in
Figure 4.17, the tree structure of the disjoint-set defines such a cycle, going through the
representative element of the set.

We now describe an augmented version of the disjoint-set structure enabling the
computation of intersection products and give the corresponding MakeSet*, FindSet*
and LinkSet* operations in Algorithm 9. A tree node now consists of a parent pointer
to an ancestor and a value in F, representing the intersection product along a directed
path in the disjoint set from this node to the parent (respectively denoted by parent and
value in functions of Algorithm 9).

The reader can verify that the two strategies making the standard disjoint-sets
asymptotically optimal, described in Section 4.4.2, can still be used in this augmented
version. During path compression, the value associated to a node needs to be updated
by summing all coefficients on the compressed path starting from this node. During
union by rank, the given value in the LinkSet* operation has to be set to its opposite if
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Algorithm 9: Augmented disjoint-sets operations
Function MakeSet*(Element x):

x.parent = x
x.value = 0F

Function FindSet*(Element x):
g = 0F
while x ̸= x.parent do

g = g + x.value
x = x.parent

end
return (x, g);

Function LinkSet*(Element r1, Element r2, F δ):
// r1, r2 are set representatives
r1.parent = r2
r1.value = δ

the largest set corresponds to the first given representative. The structure makes exactly
the same number of addition as the tree height when calling the FindSet* operation.
The complexity of its augmented version is therefore cα(n), where n is the number of
sets, α is the inverse Ackermann function and c denotes the cost of an addition in F.

While, in this context, stored values are in a field F, the augmentation can be gener-
alized to values in a non-commutative group: it is conceivable that this data-structure
might have other applications.

4.5.4 Lexicographic optimal homologous chain
In this section, from the dual formulation presented in Section 4.5.2 and with the help of
the augmented disjoint-set structure described in Section 4.5.3, we present an algorithmic
solution for Problem 9.

Lemma 4.39. Taking as inputs Γ0 ∈ Cd−1(K, B) and the graph GK\B with edges sorted
in decreasing order along the total order defined on (d−1)-simplices, Algorithm 10 solves
Problem 9 in O(cnα(n)) time complexity, where n is the number of edges in the graph
GK\B, α the inverse Ackermann function and c the cost of addition in F.

Proof. Note first that all edges added to the disjoint-sets structure are negative and
therefore, from Lemma 4.38, Γmin(ẽ) = 0 for any edge e in the disjoint-sets structure.
More generally,

Γmin ⊗ γ = 0 (4.30)
for any path γ on edges in the disjoint-sets structure.

Algorithm 10 is an iterative application of Lemma 4.38. Every edge of the graph is
considered in decreasing order along the total order on 2-simplices, which corresponds
to the graph filtration (Gi)i=0,...,n. We will show by induction that, at each iteration i,

– Γmin is the solution of Problem 10 for Gi,

– the augmentation part of the disjoint-sets structure verifies, for any negative edge
e = (v1, v2) ∈ Ei:

Γ0 ⊗ e = g2 − g1
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Algorithm 10: Lexicographic optimal homologous relative cycle
Inputs : G = (VK\B , EK\B) with EK\B = {ei, i = 1, . . . , n} in decreasing order,

Γ0 ∈ Cd−1(K, B).
Output: Γmin ∈ Cd−1(K, B), lexicographic optimal relative chain homologous

to Γ0.
Γmin ← 0
for v ∈ VK\B do

MakeSet*(v)
end
for e ∈ EK\B in decreasing order do

e = (v1, v2) ∈ VK\B × VK\B

(r1, g1)← FindSet*(v1)
(r2, g2)← FindSet*(v2)
α = Γ0(ẽ) + g2 − g1
if r1 = r2 then

Γmin ← Γmin + α · ẽ
else

LinkSet*(r1, r2, α)
end

where g1, g2 are the respective values returned by the FindSet* operations on v1
and v2.

Sets are initially first made inside the disjoint set structure for each vertex in VK\B

using the MakeSet* operation. We start with Γmin = 0 as it is the solution of Problem 10
for G0. As E0 = ∅, the invariant on the augmentation part of the disjoint-sets structure
is also verified.

At an iteration i, we consider the edge ei+1 and suppose Γmin is the solution of
Problem 10 for graph Gi. We also assume the invariant on the augmented disjoint-
sets to be verified. Following Lemma 4.38, we first determine whether the edge ei+1 is
positive or negative by testing the set representatives of both edge vertices in Gi. When
the edge is negative, i.e. r1 ̸= r2, Lemma 4.38 shows Γmin is still the solution of Problem
10 for graph Gi+1. The LinkSet* operation is used to update the graph connectivity
when adding the edge ei+1. It also updates the augmented part so as to verify the
invariant. The data structure after update is illustrated in Figure 4.18. Indeed, denote
by g1 and g′

1 (resp. g2 and g′
2) the values obtained by calling the FindSet* operation

on v1 (resp. v2) before and after the update of the data structure (i.e. before and after
having set α as coefficient for r1). We now have:

g′
2 − g′

1 = g2 − (g1 + α) = g2 − g1 − (Γ0(ẽi+1) + g2 − g1) = Γ0 ⊗ ei+1

If the edge is positive, i.e. r1 = r2, the value α of Lemma 4.38 needs to be computed
thanks to the path γi+1 = ei+1 + p2 − p1, where p1 and p2 are respectively paths from
v1 to r1 and v2 to r2 = r1 inside the disjoint-sets structure. Note that the condition
γi+1(ei+1) = 1 is verified.

α = −(Γmin − Γ0)⊗ γi+1 (4.31)
From Equation (4.30) and as ẽi+1 /∈ |Γmin|:

α = Γ0 ⊗ γi+1 = Γ0(ẽi+1) + Γ0 ⊗ p2 − Γ0 ⊗ p1

From the invariant on the augmentation part of disjoint-sets structure at iteration i
means the values g1 and g2 obtained by calling FindSet* on v1 and v2 verify:

g1 = Γ0 ⊗ p1 and g2 = Γ0 ⊗ p2
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g2
α

g1

r2

v2

v1

r1

Γ0(ẽi+1)

Figure 4.18: Illustration of the disjoint-sets augmented data structure after the addition
of a positive edge ei+1 between v1 and v2. The value g1 (resp. g2) corresponds to the
sum of the values along the path from the node v1 (resp. v2) to the node r1 (resp. r2).
The blue dashed edge is not present in the disjoint-sets structure but illustrates the
value that needs to be stored in the disjoint-sets structure.

and therefore α = Γ0(ẽi+1) + g2 − g1. Chain Γmin is updated in consequence to become
the minimum of Problem 10 for graph Gi+1. The output of the algorithm is therefore
solution of Problem 10 for the whole graph Gn.

Iterating over all edges of the graph while using disjoint-sets operations leads to a
O(cnα(n)) complexity.

4.6 Representative chain in the Delaunay 3-complex
As detailed in the introduction of Section 4.5, computing a lexicographic optimal 2-
chain bounded by a given 1-boundary requires first to compute a "representative" 2-
chain bounded by the given boundary. In this section, we describe Algorithm 11 that
does exactly that in the Delaunay 3-complex. For simplicity, the algorithm assumes the
chain coefficient is F = Z2, but the approach extends similarly to an arbitrary coefficient
field. We again consider chains as sets of simplices.

Observation 4.40. Contrary to Algorithm 6, the 1-homology of the Delaunay 3-complex
is trivial, therefore all cycles are boundaries, which implies the existence of a represen-
tative chain bounding any cycle in the Delaunay complex.

4.6.1 Lower link of a vertex in the 3D Delaunay complex
In all that follows, P denotes a set of points in R3 verifying the following generic con-
dition. In practice, non-generic configurations can be solved by SoS (Simulation of
Simplicity) [EM90].

Condition 4. No pair of vertices in P have same z-coordinate.

We recall the notion of link and lower link.

Definition 4.41 (Link of a simplex). The link lkK(τ) of a simplex τ in a simplicial
complex K is the simplicial complex made of all simplices σ ∈ K such that τ ∪ σ ∈ K
and τ ∩ σ = ∅.
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z

Figure 4.19: A vertex in a two-dimensional Delaunay complex (left), its link (center)
and lower link (right).

Definition 4.42 (Lower link of a vertex). The lower link llkK(a) of a vertex a ∈ P is
the simplicial complex made of all simplices in the link lkK(a) of a whose vertices have
all their z-coordinates smaller than the z-coordinate of a.

Figure 4.19 illustrates the definitions of link and lower link in Delaunay 2-complex.
The lower link in the Delaunay 3-complex is also illustrated in Figure 4.20.

Denote byDel(P) the Delaunay 3-complex of the set of points P. The link lkDel(P)(a)
and lower link llkDel(P)(a) of vertex a are two-dimensional simplicial complexes: each
tetrahedron of Del(P) containing a gives rise to a triangle in lkDel(P)(a), each triangle of
Del(P) containing a gives rise to an edge in lkDel(P)(a) and each edge of Del(P) contain-
ing a gives rise to a vertex in lkDel(P)(a). These triangles or edges belong to llkDel(P)(a)
if and only if all their vertices have z-coordinates smaller than the z-coordinate az of a
(see Figure 4.20, left).

Recall that a topological space and in particular a simplicial complex is said con-
tractible if it has the homotopy type of a point. In particular, a contractible simplicial
complex K is connected, which means that any pair of vertices in K can be connected
by a path of edges in K.

Algorithm 11 relies on the fact that, in a Delaunay complex, the lower link of a
vertex is either empty or contractible.

Lemma 4.43. Let Del(P) be the Delaunay complex of a set of vertices P in R3 verifying
Condition 4 and a ∈ P a vertex of the complex.

– the lower link llkDel(P)(a) is empty if and only if vertex a has minimal z-coordinate
in P,

– if the z-coordinate of a is not minimal in P, llkDel(P)(a) is contractible.

Proof. Denote by az the z-coordinate of a. By definition of the Delaunay triangula-
tion and of lkDel(P)(a), there is a one-to-one correspondence between the vertices in
lkDel(P)(a) and the set of (possibly unbounded) facets contributing to the boundary of
the Voronoi cell of a. By definition, a vertex v with z-coordinate vz is in the lower link
of a if and only if its Voronoi cell has a common boundary with the Voronoi cell of a and
vz < az. It follows that the Voronoi cell of a is contained in the half space containing
a and bounded by the plane bisector of a and v. Such a vertex exists if and only if
the vertical half-line starting at a and pointing toward negative z is not contained in
the Voronoi cell of a. One can see that the vertical half-line starting at a and pointing
toward negative z is contained in the Voronoi cell of a if and only if a has minimal z in
V and the first statement is proven.

The lower envelope of the Voronoi cell of a is the union of the facets dual to edges
connecting a and a vertex in the lower link of a. When this lower envelope is not
empty, its projection on the horizontal plane is an homeomorphism with a convex two-
dimensional polytope. This lower envelope is therefore contractible. Since the lower link
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of a is the nerve of the set of facets in the lower envelope of the Voronoi cell, the second
statement follows from the nerve theorem.

4.6.2 Algorithmic description

Algorithm 11: Finding a set of triangles for a given boundary
Inputs : Del(P) a Delaunay complex and a 1-cycle A0 ∈ Z1(Del(P);Z2)
Output: A 2-chain Γ0 ∈ C2(Del(P);Z2) verifying ∂Γ0 = A0
Γ0 ← 0
A← A0
while A ̸= 0 do

a← GetHighestVertex(A)
Va ← GetAdjacentVertices(a, A)
LL← GetLowerLink(a, Del(P))
E ← GetEdgesConnecting(Va,LL)
for v ∈ Va do

A← A− a ∨ v
end
for e ∈ E do

A← A + e
Γ0 ← Γ0 + a ∨ e

end
end

The discussion of Algorithm 11 is divided in two: the first lemma is given to prove
the correctness of the algorithm and describes succinctly each subroutine. A better
description of these subroutines is then given in order to analyze the algorithm’s com-
plexity. We denote by ∨ the join operator on simplices, corresponding to the union for
disjoint abstract simplices. In particular, for two 0-simplices a, v, a ∨ v denotes the 1-
simplex [a, v]. For a 0-simplex a and a 1-simplex e = [e1, e2], a∨e denotes the 2-simplex
[a, e1, e2].

Lemma 4.44. Given a Delaunay complex K = Del(P) of a set of points P ⊂ R3

verifying Condition 4 and an 1-cycle A0 ∈ Z1(K;Z2), Algorithm 11 computes a 2-chain
Γ0 ∈ C2(K;Z2) such that ∂Γ0 = A0.

Proof. We verify immediately that with the algorithm’s initialization of Γ0, if A0 is
empty, the algorithm returns and the property ∂Γ0 = A0 is verified.

The following invariants are shown at each iteration of the while loop:

— ∂Γ0 = A0 + A

— A is a cycle and the z-coordinate of its highest vertex decreases,

The first invariant will imply that, if the algorithm terminates with A = 0, we have
that ∂Γ0 = A0. The second invariant implies that the algorithm must terminate.

We now describe the operations performed inside the while loop. Figure 4.20 il-
lustrates one iteration of this loop. The procedure GetHighestVertex(A) returns a,
the vertex in A with the maximal z-coordinate. Since A is a cycle, an even number of
edges of A connects a with a set Va of vertices in the link lkDel(P)(a) of a. This set
is returned by the procedure GetAdjacentVertices(a, A). The fact a is the highest
vertex in A implies the set Va is a subset of the vertices of lower link llkDel(P)(a). This
set is not empty and has again an even cardinality. As A is not zero, it must contain at
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a

A

LL

a

A

LL

a

A

LL

Figure 4.20: Left: the lower link LL of a (in blue) with the two adjacent edges of a in
A (in red). Center: a path in LL between the two adjacent vertex of a in A (in orange).
Right: created triangles (in transparent orange) join of a. The path in LL between the
two adjacent vertices replaces the edges adjacent to a in A (in red).

least 2 distinct vertices and therefore, its highest vertex a cannot be the lowest vertex in
Del(P). Lemma 4.43 asserts then that the lower link of a is non empty and contractible,
proving as a consequence the existence of a 1-chain E bounded by the 0-chain formed
by the even set of vertices in Va. The procedure GetLowerLink(a,Del(P)) returns the
1-skeleton LL of the lower link of a in Del(P). GetEdgesConnecting(Va, LL) uses
this 1-skeleton LL to construct a 1-chain E ∈ C1(LL;Z2) that verifies ∂E = Va.

The main step of the algorithm consists in replacing the edges connecting a in A by
the edges on this chain E and adding, for each edge e of E, the corresponding triangle
a ∨ e in Γ0. The following 2-chain is added to Γ0:∑

e∈E

a ∨ e (4.32)

and its boundary can be evaluated as:

∂
(∑

e∈E

a ∨ e
)

=
∑
e∈E

(e− a ∨ ∂e) = E − a ∨ ∂E = E − a ∨ Va (4.33)

From Equation (4.33), the boundary of the 2-chain added to Γ0 corresponds to the 1-
chain added to A. This means if the invariant ∂Γ0 = A0 + A was verified at previous
iteration, it still remain true after additions to Γ0 and A: the first invariant is therefore
shown. As A is initialized to A0 and is updated by adding a boundary, A remains a
cycle at each step. Also, all edges connecting a are removed from A and the added edges
are in the lower link llkDel(P)(a) of a. This shows the second invariant.

We now give more details on each subroutine used in Algorithm 11 to derive its
complexity.

Lemma 4.45. Under Condition 4, Algorithm 11 in the Delaunay complex Del(P) can
be implemented in O(n log n) time complexity, where n corresponds to the size of the
complex Del(P).

Proof. We first describe a preprocessing step to query the Delaunay triangulation, es-
pecially for the GetLowerLink operation. Under Condition 4, by writing each edge in
Del(P) as a pair of vertices (v1, v2) such that z(v1) > z(v2), one can define the following
total order on the edges of Del(P):

(v1, v2) ≤ (v′
1, v′

2) ⇐⇒
def.

z(v1) > z(v′
1)

or v1 = v′
1 and z(v2) ≥ z(v′

2)
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The set of vertices of the lower link llkDel(P)(a) of a vertex a is in one-to-one correspon-
dence with the set of ordered pairs whose first vertex is a. These pairs in the form (a, ·)
are contiguous in the set of all edges sorted according to this total order.

Similarly, each triangle in Del(P) can be represented by the ordered triple of vertex
(v1, v2, v3) such that z(v1) > z(v2) > z(v3) and one can define the following total order
on the triangles of Del(P):

(v1, v2, v3) ≤ (v′
1, v′

2, v′
3) ⇐⇒

def.


z(v1) > z(v′

1)
or v1 = v′

1 and z(v2) > z(v′
2)

or v1 = v′
1 and v2 = v′

2 and z(v3) ≥ z(v′
3)

As previously, the set of edges of the lower link llkDel(P)(a) of a vertex a is in one-to-one
correspondence with the set of ordered triples whose first vertex is a. These triples in
the form (a, ·, ·) are again contiguous in the set of all triples ordered according to this
total order.

Creating these representations (sorted edges and triangles) for the whole Delaunay
complex Del(P) costs O(n log n), where n is the size of Del(P).

Procedure GetLowerLink(a,Del(P)), which returns the 1-skeleton LL of the lower
link of a in Del(P), now has a log(n) time complexity to find the contiguous entries in
the ordered sets of edges and triangles of the respective forms (a, ·) and (a, ·, ·).

The cycle A of the algorithm is also represented as an ordered set along the described
total order on edges. Getting the largest element of A in the subroutine GetHigh-
estVertex(A) and the edges associated with this vertex with the subroutine GetAd-
jacentVertices(a, A) can be performed in a O(1) time complexity in this ordered rep-
resentation. Finally, each update of the cycle A (insertion or deletion) can be computed
in O(log n) time complexity.

The subroutine GetEdgesConnecting(Va, LL) requires a bit more attention to
derive the correct complexity. Denote by m the size of the lower link LL of a vertex
a. The most obvious way of implementing this subroutine is by creating a spanning
tree T of the lower link graph (using a breadth-first search for instance), which has
a O(m) time complexity. From this spanning tree, we could partition the even set of
vertices Va into pairs and construct a path in T for each of these pairs. However, if
Va contains 2k = O(m) vertices, this leads to computing k paths in the spanning tree,
which has a O(m2) time complexity, followed by adding up to km edges in A, which
has an O(m2 log n) time complexity. Instead, we describe Algorithm 12. When creating
this spanning tree T of the 1-skeleton LL of the lower link of a vertex a, we also assign
an integer rank to each vertex such that the root has rank 0 and each non root vertex
has a rank higher than its parent (this is a linear-time operation and can be seen as a
topological sort of the spanning tree).

Note the resemblance of Algorithm 12 to Algorithm 11, but with one dimension less:
given a 0-cycle Va, Algorithm 12 finds a 1-chain E such that ∂E = Va. In fact, Lemma
4.43 still applies, where the height z is replaced by the vertex rank. Indeed, each vertex
which is not the root has as lower link in T : a single vertex, representing its unique
parent node in T . This lower link is then contractible. The lower link of the root is
empty.

The procedure GetHighestVertex(V ) of Algorithm 11 is replaced by an iteration
on all vertices of T , from the vertex of highest rank m − 1 to the vertex with rank 1,
and the test verifying that v belongs to V . This iteration ends at rank 1, because, since
at each step V is a 0-boundary and therefore contains an even number of vertices, the
highest (minimal rank) vertex on V cannot be Vertex(0). If an array of size m contains
all vertices indexed by their rank, each call to the procedure Vertex(rank) costs O(1). If
the evolving set of vertex V is represented by an array of booleans of size m, where entry
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Algorithm 12: GetEdgesConnecting
Inputs : An even set of vertices Va in the lower link of a vertex a and a

spanning tree T of the 1-skeleton LL of this lower link
Output: A set of edges E in T such that ∂E = Va

E ← 0
V ← Va

for rank ← m′ − 1, 1 do
v ← Vertex(rank)
if v ∈ V then

p← GetParentInTree(v, T)
V ← V − v + p
E ← E + v ∨ p

end
end

k indicate the membership to V of the vertex with rank k, the membership predicate
v ∈ V costs O(1). When V is updated, updating this membership array can be done
also in time O(1). It follows that each line in the algorithm costs O(1). For this reason,
the cost of Algorithm 12 is O(m). The proof of correctness is similar to the proof of
correctness of Algorithm 11 and is based on preserving the following property along the
algorithm:

∂E = Va + V (4.34)

We now summarize the discussion of complexity. After an initial O(n log n) time
complexity one-time preprocessing of edges and triangles of the Delaunay triangulation,
the complexity of each operation GetLowerLink, GetHighestVertex and GetAd-
jacentVertices can be upper bounded by O(log n). With m the size of the lower link
of a vertex, the subroutine GetEdgesConnecting can be performed in O(m) time
complexity and outputs a set of edges E of size O(m). Keeping the ordered represen-
tation of A at each iteration (i.e. insertion and deletion into an ordered map) leads
to a O(m log n) time complexity. Finally, each vertex of P is visited at most once as
the highest vertex of A. Note also that the set of edges of all lower links are in 1-to-1
correspondence with the triangles of Del(P), which means the sum of the sizes of all 1-
skeletons of lower links is upper bounded by the size n of the complex. We can therefore
conclude the global complexity of Algorithm 11 is O(n log n).

4.7 Critical basis of cycles
This section highlights deeper connections between lexicographic optimal chains and
homology groups. From there, we define a basis of optimal cycles which we call critical
basis and show how to construct it. A possible application of these critical basis will be
given in Section 4.8.3. The chain coefficient group is assumed to be a general field F.

4.7.1 Optimal homology representatives
From the linearity of Mlex (Lemma 4.12), the following vector subspace Zmin

k (K, B) of
Zk(K, B), made of chains that are minimal among relative homologous chains, can be
defined:

Zmin
k (K, B) =

def.
Mlex(Zk(K, B))
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Note first that Mlex can be seen an idempotent application from Zk(K, B) to
Zk(K, B), and therefore a projection map onto Zmin

k (K). Moreover, the following dia-
gram commutes and implies an isomorphism from Zmin

k (K, B) to Hk(K, B):

Zk(K, B) Zmin
k (K, B) Zk(K, B)

Hk(K, B)

Mlex

iso.

⊂

The same construction applies identically to absolute homology, by taking an empty
subcomplex B.

We see therefore that vector spaces of lexicographic minimal chains are isomorphic to
corresponding homology groups. This mimics the property of harmonic forms. Indeed,
in Hodge theory, harmonic forms, which are most often defined as being in the kernels
of Laplacian operators, can be defined, equivalently, as L2 minima of chains in their
homology classes.

Also, the map that associates to a chain Γ its L2 minimum in its homology class, i.e.
the unique homologous harmonic form, is linear as is linear any map that associate to a
vector V the minimum of a positive definite quadratic form on the affine space V + B,
for a linear subspace B (in the case of homology, B is the space of boundaries). Our
map Mlex enjoys the same linearity, as shown in Lemma 4.12.

The computation of L1 minimal chains in their homology class has been intensively
studied [EW05,CF08,CF10,DSW10,DHK11,CF11,BCC+12,CV15,WCW+17,DLW18,
CVKP18,DHM20,BMN20,Att21], in particular because, unlike L2 minima, the L1 min-
ima are sparse and as such are visually meaningful geometric representations of corre-
sponding homology classes.

Our lexicographic minimal chains benefit from both properties: the isomorphism
with homology of L2 minima in Hodge theory, as well as the sparsity of support of L1

minima.

4.7.2 Critical basis of cycles
The linear space Zmin

k (K), made of chains that are lexicographic minimal inside their
homology classes, admits a canonical basis that we call critical basis since each basis
vector is associated to a critical simplex. The definition is given in this section explicitly
only for the space Zmin

k (K), since the exact same construction applies in the context of
relative chains, and critical bases are defined similarly for the space Zmin

k (K, B).

Definition 4.46 (Critical simplex). For Γ ∈ Zmin
k (K), the critical simplex

crit(Γ) =
def.

max |Γ|

is the maximal k-simplex in the support |Γ| of Γ.

Definition 4.47 (Critical basis). We say that b = (b1, . . . , bm) ∈
(
Zmin

k (K)
)m is a

critical basis of Zmin
k (K) if and only if, for 0 ≤ i ≤ m− 1:

bi+1 = min
⊑lex

{
Γ ∈ Zmin

k (K) | Γ /∈ span(b1, . . . , bi) and Γ
(

crit(Γ)
)

= 1
}

with the convention span(∅) = {0}. When F = Z2, the condition Γ
(

crit(Γ)
)

= 1 is
unnecessary.

Lemma 4.48. The critical basis is canonical, in other words there is a unique ordered
sequence b = (b1, . . . , bm) satisfying Definition 4.47.
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Proof. Assume, for i ≤ m, the first i− 1 critical basis elements have been constructed,
and denote Si−1 = span(b1, , . . . , bi−1), with S0 = {0}. Since the dimension of Zmin

k =
Zmin

k (K) is m > i − 1, there is at least one chain in Zmin
k \ Si−1, and the number

of possible supports being finite, a minimum among them exists. From Observation
4.7, two lexicographic minima of Zmin

k \ Si−1 must have same support. Consider, for a
contradiction, two such minima Γ1 ̸= Γ2 with Γ1

(
crit(Γ1)

)
= Γ2

(
crit(Γ2)

)
= 1.

One has |Γ1| = |Γ2| so that crit(Γ1) = crit(Γ2). Take σ ∈ |Γ1| such that Γ1(σ) ̸=
Γ2(σ) and construct the k-cycle

Γ =
def.

1
Γ2(σ)− Γ1(σ)

(
Γ2(σ) Γ1 − Γ1(σ) Γ2

)
Observe that Γ verifies Γ(crit(Γ)) = Γ(crit(Γ1)) = 1 and Γ(σ) = 0. As |Γ| ⊂ |Γ1| \ {σ},
Γ is strictly smaller for the lexicographic order ⊑lex than Γ1. If Γ /∈ Si−1, this is an
immediate contradiction with the optimality of Γ1. Otherwise, if Γ ∈ Si−1, we can again
consider an element σ′ ∈ |Γ| ⊂ |Γ1| and construct

Γ′ =
def.

Γ1 −
Γ1(σ′)
Γ(σ′) Γ

which is smaller than Γ1 since |Γ′| ⊂ |Γ1|\{σ′} and Γ′ /∈ Si−1, being the sum of Γ1 /∈ Si−1

and −Γ1(σ′)
Γ(σ′) Γ ∈ Si−1. We have again a contradiction.

We give two essential properties of critical bases. Since the critical basis elements
are defined as minima over an inclusion decreasing sequence of sets, we have:

Observation 4.49. For any i, j = 1, . . . , m

i ≤ j =⇒ bi ⊑lex bj

Lemma 4.50. For any i, j = 1, . . . , m

bj(crit(bi)) = δij

where δij is the Kronecker delta.

Proof. One has immediately that bi(crit(bi)) = 1. The following property

j < i =⇒ bj(crit(bi)) = 0,

is verified as, if this was not the case, then bj(crit(bi)) bi−bj would be strictly smaller
than bi and not in span(b1, . . . , bi−1), a contradiction with the minimality of bi. Sym-
metrically, a similar argument holds to show that

j > i =⇒ bj(crit(bi)) = 0, (4.35)

as, if this was not the case, then bj − bj(crit(bi)) bi would be strictly smaller than bj

and not in span(b1, . . . , bj−1), contradicting the minimality of bj .

It follows that, for i = 1, . . . , m, Γ ∈ span(b1, . . . , bi−1) =⇒ Γ(crit(bi)) = 0 and
therefore: {

Γ ∈ Zmin
k (K), Γ(crit(bi)) = 1

}
⊂ Zmin

k (K) \ span(b1, . . . , bi−1)

Since bi is in the first set and, by definition, minimum of the second set, one has:

Observation 4.51. For i = 1, . . . , m:

bi = min
⊑lex

{
Γ ∈ Zmin

k (K), Γ(crit(bi)) = 1
}
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4.7.3 Computation of a critical basis from optimal homology
representatives

We now bridge the gap between optimal representatives in Zmin
k (K) and the critical

basis of Zmin
k (K), allowing to construct the critical basis from any basis of Zmin

k (K).

Lemma 4.52. Consider a basis (Γi)i=1,...,m of Zmin
k (K) that verifies for all i, j =

1, . . . , m 
Γi(crit(Γi)) = 1
i ≤ j =⇒ Γi ⊑lex Γj

i ̸= j =⇒ crit(Γi) ̸= crit(Γj)
(4.36)

The critical basis of Zmin
k (K) can be constructed, for all i = 1, . . . , m, as

bi = min
⊑lex

Γi + span(Γ1, . . . , Γi−1) (4.37)

Proof. By writing an element bi in the basis (Γj)j=1,...,m, the third property of Equa-
tion (4.36) requires that the critical simplex of bi corresponds to a critical simplex of one
element of the basis (Γj)j=1,...,m. Therefore, the critical simplices of (bi)i=1,...,m form a
subset of the critical simplices of (Γi)i=1,...,m, with same cardinality. This implies that
the set of critical simplices is the same between (bi)i=1,...,m and (Γi)i=1,...,m, and in the
same order thanks to the second property of Equation (4.36) and Observation 4.49. For
i = 1, . . . , m, we have:

crit(Γi) = crit(bi)
We now show Equation (4.37). Denote by

Γmin
i =

def.
min
⊑lex

Γi + span(Γ1, . . . , Γi−1)

Any element Γ of the set Γi + span(Γ1, . . . , Γi−1) verifies Γ(crit(bi)) = Γ(crit(Γi)) = 1
as Γi(crit(Γi)) = 1 (first condition of Equation (4.36)) and, from the two last conditions
of Equation (4.36), for any j < i, crit(Γj) < crit(Γi) therefore Γj(crit(Γi)) = 0. We have
thus that:

Γi + span(Γ1, . . . , Γi−1) ⊂
{

Γ ∈ Zmin
k (K), Γ(crit(bi)) = 1

}
and from Observation 4.51,

bi ⊑lex Γmin
i

Next, we write bi in the basis (Γj)j=1,...,m of Zmin
k (K):

bi =
m∑

j=1
λjΓj

From the third condition of Equation (4.36), we have that:

crit(bi) = max {crit(Γj),∀1 ≤ j ≤ m | λj ̸= 0}

As crit(bi) = crit(Γi), this implies that λj = 0 for any j > i and thus bi ∈ Γi +
span(Γ1, . . . , Γi−1) resulting in:

Γmin
i ⊑lex bi

We have therefore that |Γmin
i | = |bi| from Observation 4.7. Suppose for a contradic-

tion that Γmin
i ̸= bi and consider σ ∈ |Γmin

i − bi|. The following chain

Γ =
def.

Γmin
i − Γmin

i (σ)
Γmin

i (σ)− bi(σ)
(
Γmin

i − bi

)
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verifies |Γ| ⊂ |Γmin
i |\{σ} and thus Γ ⊏lex Γmin

i . Also as bi ∈ Γi +span(Γ1, . . . , Γi−1),
Γmin

i −bi ∈ span(Γ1, . . . , Γi−1) and Γ ∈ Γi+span(Γ1, . . . , Γi−1). We have a contradiction
with Γmin

i as minimum of the set Γi + span(Γ1, . . . , Γi−1). We conclude that Γmin
i =

bi.

The next two observations allow to compute the critical basis from matrix reduction
algorithms previously described in Section 4.3 when F = Z2.

Observation 4.53. For F = Z2, when considering a k-chain Γ as a vector of Zm
2

written in the basis of ordered k-simplices of dimension m, the low index corresponds to
the index of the critical simplex:

crit(Γ) = σlow(Γ)

The third property of Equation (4.36) can therefore be understood as verifying that the
lows of the set (Γi)i=1,...,m, seen as vectors in Zm

2 , are unique.

Observation 4.54. Consider a set (Γi)i=1,...,m basis of Zmin
k (K;Z2) and the matrix M

whose columns are the corresponding vector representations in Zm
2 of (Γi)i=1,...,m in the

basis of ordered k-simplices of dimension m.

— The algorithm transforming this set (Γi)i=1,...,m such that it verifies the properties
of Equation (4.36) is the matrix reduction algorithm (Algorithm 2) of the matrix
M , followed by a sort in increasing order along the lexicographic order on k-chains
of the columns of M , resulting in a matrix R.

— The construction of each element bi of the critical basis as described in Lemma 4.52
corresponds to the total reduction algorithm (Algorithm 3) on the column Ri with
the submatrix of R formed by the first (i− 1) columns.

4.8 Applications to urban reconstruction
We now explore three types of efficient reconstruction methods from the algorithms
detailed in this chapter.

4.8.1 Closed surface reconstruction
The process of reconstruction for closed surfaces is illustrated in Figure 4.21. The De-
launay 3-complex is first computed from the input set of points P, thanks to the CGAL
library [JPT21]. When constructing its dual graph, we complete it into a topological
3-sphere by connecting, for any triangle on the convex hull of the Delaunay triangula-
tion, its dual edge to an “infinite” dual vertex. Considering 2-cycles in this Delaunay
3-complex – which is an oriented 3-manifold – allows to use Algorithm 8, which was
formulated as a lexicographic mincut problem between two dual vertices α1, α2, that
we can respectively qualify as interior and exterior constraints. These vertices need to
be provided as inputs to the reconstruction, although the exterior α2 constraint can
reasonably be set to the infinite dual vertex, representing the outside of the convex hull
of P. All triangles of the complex (i.e. dual edges) need to be sorted in decreasing order
along the total order on 2-simplices defined in Lemma 4.14. Note that Algorithm 8 is
purely combinatorial, the only geometrical information is given by this order on dual
edges. This means the radii quantities appearing in the 2-simplex order can be com-
puted in fixed precision and the sorting does not require exact predicates. The mincut
formulation implies that the 2-chain resulting from Algorithm 8 is the boundary of a
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Figure 4.21: Illustration of the closed surface reconstruction on the Stanford Bunny
[GT94]. Left: in addition to the set of points, an interior point (in blue) is given: the
Delaunay cell in which it lies will be the α1 interior constraint, the exterior constraint
α2 will be set to the "infinite" dual vertex. Right: the closed surface reconstruction
formulated as lexicographic optimal chain.

Figure 4.22: Reconstructions under different perturbations. Under no (left) or small
(middle) perturbations, the reconstruction is a triangulation of the sampled manifold. A
few non-manifold configurations can appear however under larger perturbations (right).
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Figure 4.23: Illustration of how the topological information can effectively guide the
shape reconstruction. The lexicographic order on 1-chains is induced by edge length
comparison. Left: the global mincut is often not relevant when dealing with noisy or non-
uniform sets of points. Middle and right: providing additional topological information
can improve the result of the reconstruction.

union of tetrahedrons. It can be oriented and, although it might contain non-manifold
configurations, these can be systematically dealt with.

The total order on 2-simplices was justified in Section 4.2.3 by its connection to
2-dimensional Delaunay triangulations: this does not guarantee however that using the
same order to reconstruct 2-surfaces in 3D will be relevant. However, triangles of 2D
Delaunay triangulation are known to have some nice properties, such as maximizing the
minimal angle or minimizing the largest circumcircle. When using the same total order
to minimize 2-chains in dimension 3, we can hope some of these properties transfer to
the reconstruction. In fact, it can been shown that for a Čech or Vietoris-Rips complex,
under very strict conditions linking the point set sampling, the parameter of the complex
and the reach of the underlying manifold of Euclidean space, the minimal lexicographic
chain in the fundamental class of the complex using the described simplex order is a
triangulation of the sampled manifold [CLV19a]. Experimental results (Figure 4.22)
show that this property remains true relatively far from these theoretical conditions.

As urban scenes present a lot more open surfaces than closed surfaces, we illustrate
the closed surface reconstruction on an interior structure (Figure 4.24). We observe that
the formulation as a global optimization allows to filter out noise as well as small thin
structures when compared to either a level set approximating method such as Poisson
reconstruction [KH13] or the scale-space version of the advancing front interpolating
reconstruction [DMSL11,CD04], both implemented in CGAL [ASG21,DC21,van21].

We investigate the effects of the input constraints α1, α2 on the reconstruction, as
illustrated in Figure 4.23. Note first that a completely automatic method could be de-
signed, which would compute the global lexicographic mincut problem: the lexicographic
minimal chain separating the complex into two components. This would require only
the point cloud as input and could work for clean and uniformly sampled points but
would, however, not be robust in practical applications, as the global mincut is often
irrelevant in these situations. On the other hand, additional constraints can better guide
the reconstruction, especially when the input set of points is not sampled uniformly on
the closed surface.

4.8.2 Open surface reconstruction
The context of urban reconstruction requires mostly to reconstruct portions of the
Earth’s surface and therefore open surfaces. Just as for closed surface reconstruction, we
construct the 3-dimensional Delaunay triangulation of a set of points P and complete
it into a topological 3-sphere. The process of open surface reconstruction is illustrated
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(a) Input set of points (b) Lexicographic optimal cycle

(c) Poisson reconstruction (d) Advancing front reconstruction

Figure 4.24: Application of closed surface reconstruction as lexicographic optimal cycle.
The formulation as an optimization problem helps avoid a lot of noise from the input
point cloud.

(a) Inputs (b) Representative chain (c) Optimal chain

Figure 4.25: Illustration of the open surface reconstruction steps. From a set of points
and a 1-cycle with coefficient in Z2 (a), a representative 2-chain bounding this 1-cycle
is computed in the Delaunay 3-complex (b). Finally, the lexicographic optimal 2-chain
homologous to the representative chain is computed (c). Note that an additional point
far from the Mobius strip has been added to the set of points to better highlight the
construction of the representative chain.
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Figure 4.26: Example of open surface meshing on two models from the senseFly dataset
[Sen11]. As the boundary is not part of the set of points, all triangles connecting any
vertex of the boundary are removed in the resulting mesh.

in Figure 4.25. Assuming a 1-cycle embedded in the Delaunay triangulation is given,
Algorithm 11 is used to compute a representative 2-chain having, as its boundary, the
provided 1-cycle. Algorithm 10 then computes the optimal absolute chain homolo-
gous to the representative chain. As the 3-dimensional Delaunay complex has trivial
2-homology, this is equivalent to the optimal chain bounded by the provided 1-cycle.
The resulting mesh is again the boundary of a union of tetrahedrons, whose arbitrary
small offset is a pseudo-manifold with boundary. While closed surface reconstruction
were formulated as the variant of a mincut problem and therefore the chain coefficient Z2
was used, different chain coefficients, namely Z2 and Q, are interesting for open surface
reconstruction. Indeed, Figure 4.25 shows that, when optimizing using Z2 coefficients,
the resulting optimal chain in Z2 might not be orientable in Q and therefore the two
minimization problems can give different results. In applications however, the choice
of Q is more appealing to obtain an oriented result. We conjecture also, thanks to the
unimodularity property of the boundary operator for oriented pseudomanifold [DHK11],
that optimality problems with coefficients in Z can be relaxed to coefficient in Q and
that both Algorithm 11 and Algorithm 10 can be extended to chains with coefficients
in Z.

Figure 4.26 illustrates the simplest use case of open surface reconstruction for ter-
rains, where the boundary can be defined outside the set of points and the Delaunay
triangulation is constructed on both the set of points and the points of this boundary.
Because the points of the boundary are on the convex hull of the Delaunay triangulation,
we are guaranteed that the edges of this boundary are in the Delaunay triangulation.
We give in Table 4.2 a few performance information for each reconstruction case. The
observed performance for the reconstruction correlates with the quasi-linear theoretical
complexity. Like most reconstruction methods based on the interpolation of the in-
put set of points, the reconstruction is far from being parsimonious, and the generated
number of triangles can be a real limitation of the method for large sets of points.

When dealing with large urban scenes, point cloud data can be massive and meshing
the whole dataset is prohibited by memory capacity. For instance, the 2015 Dublin
LiDAR survey [LAA+17], shown in Figure 4.27 contains more than 1.4 billion points,
organized into tiles. A tiling strategy for meshes is more difficult than for points, as it
is expected that the mesh coincides correctly at the frontier of each tile. The ability to
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Input
Model name Sullens Thammasat
Number of points 1 056 038 5 225 819

Performance
Delaunay triangulation 2 633 ms 14 416 ms
Representative chain (Algorithm 11) 27 ms 5 ms
Optimal chain (Algorithm 10) 1 548 ms 8 040 ms
Total elapsed time 4 208 ms 22 461 ms
Peak memory usage 1.4 GB 5.5 GB

Output
Number of vertices 976 389 4 551 486
Number of triangles 1 953 211 9 108 074

Table 4.2: Performance on examples of the senseFly dataset [Sen11]

specify the boundary of our reconstruction method makes it a useful tool for this spatial
decomposition. In Figure 4.27, the four exterior tiles are reconstructed independently –
with the same technique as illustrated in Figure 4.26 – and the boundary of the resulting
meshes can be combined to create a cycle which will define the boundary of the interior
tile. The interior tile can then be reconstructed given this imposed boundary, the five
meshes therefore coinciding at the frontier of each tiles. Note that the difficult question
to automate this whole process is guaranteeing the presence of the provided cycle in
the triangulation. This question is related to the challenging problem of conforming
Delaunay tetrahedralization [CCY04,Rup95,Si15,Si08,MMG01,She98]. Here, to obtain
the interior tile in Figure 4.26, some input points near the boundary have been removed
to ensure the presence of the boundary in the Delaunay triangulation.

Finally, the previous open surface meshing applications were solved using the ver-
sion of Algorithm 10 for absolute chains (by considering an empty subcomplex B). In
Figure 4.28, we illustrate how the relative version of the algorithm is useful for remesh-
ing purposes, for instance when a second partial acquisition needs to be merged with a
previous larger mesh. With absolute chains, we can define a cycle on the mesh and find
the lexicographic optimal chain bounding this cycle in the Delaunay triangulation of the
new acquisition. However, defining this cycle depends strongly on the region impacted
by the new acquisition and a badly localized cycle might generate defects along the
junction between the old and new mesh. Instead, we can create a subcomplex B on the
old mesh as an offset around this badly localized cycle and, after finding a representative
2-chain in the Delaunay triangulation K of the new acquisition, apply Algorithm 10 in
the relative context to compute the lexicographic optimal relative chain homologous to
the representative in the complex pair (K, B). This means that instead of bounding
exactly the badly localized cycle, the resulting 2-relative chain can have its boundary
anywhere inside B: roughly speaking, the resulting optimal 2-chain has the freedom
of choosing where to place the junction between the old and new mesh. This junction
should be cleaner than the one in the absolute context.

4.8.3 Boundary detection and critical basis
Finally, we described a process of reconstruction based on sharp feature detection and
critical basis, illustrated in Figure 4.29. We first use the Voronoi-based curvature es-
timator called Voronoi Covariance Measure (VCM) [MOG11]. This method is able to
estimate the curvature of a sampled surface from the covariance matrices of Voronoi
cells. The idea of using the shape of Voronoi cells for the estimation of normal and
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Figure 4.27: Example of reconstruction by spatial decomposition. Left: Visualization
of the 2015 Dublin LiDAR survey [LAA+17], subsampled in order to visualize it in its
entirety. Right: The center tile has been reconstructed under boundary imposed by its
neighboring tiles. Each meshed tile is composed of about 9 million triangles.

(a) New Acquisition (b) Absolute context

Subcomplex B

(c) Relative context

Figure 4.28: Illustration of the difference between absolute and relative optimal chains
for remeshing purposes in 2 dimensions. (a) A new acquisition (points in cyan) needs to
be reconstructed and merged with a previous reconstruction (shown in gray). The focus
is put on one of the two junctions with the previous 1-chain. (b) A bad placement of the
boundary (point in red) can lead to a partial and suboptimal reconstruction. (c) Using
relative chains with a subcomplex B around the imposed boundary allows obtaining a
smaller lexicographic optimal chain.

(a) VCM estimation (b) Optimal 1-cycles in B (c) Critical 2-basis of (K, B)

Figure 4.29: Illustration of a reconstruction process based on critical basis. An estima-
tion of the boundary is computed on a set of points. By thresholding this estimator
and constructing an subcomplex B offsetting a subset of points, a basis of Zmin

1 (B)
is computed. By duality, this optimal basis is used to compute the critical basis of
Zmin

2 (K, B).
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curvature information is not new [ABK98, ACTD07, CCM10], however this method is
resilient to non-local influences as well as noise by (i) computing the covariance matrix
of a Voronoi cell VP intersected by a small ball around the site P and (ii) considering
a weighted average of neighboring covariance matrices, allowing for a better curvature
estimation. The method can be efficiently computed for 3-dimensional point clouds.
By thresholding this estimation, we can extract a subset S of vertices and construct a
2-subcomplex B of the Delaunay triangulation K, parameterized by a distance ϵ, as the
union of all simplices up to dimension 2 that lie inside the ϵ-offset of S.

By keeping the size of the subcomplex B, denoted by p, relatively small compared to
the size n of the Delaunay 3-complex, we can use Algorithm 2 to compute the reduced
boundary matrix of the complex B in O(p3) time complexity. After extracting a basis
of Z1(B) by exploring the 1-skeleton of the subcomplex, we can use Algorithm 3 to
compute the optimal homologous cycles for all cycles of B, and by filtering out all zero
chains, we get a set of cycles (γi)i=1,...,β ∈ Z1(B) whose homology classes form a basis
of H1(B), with β = dimH1(B). Reduction algorithms are performed using the PHAT
library [BKRW17].

As the Delaunay complex K triangulates the 3-sphere S3,

H1(K) = H1(S3) = {0}
H2(K) = H2(S3) = {0}

With ρ⋆ and ι⋆ the homology morphisms induced respectively by the inclusion map
ρ : C2(K) → C2(K, B) and the inclusion map ι : C1(B) → C1(K), the following long
exact sequence of relative homology

{0} = H2(K) ρ⋆

−→ H2(K, B) ∂−→ H1(B) ι⋆

−→ H1(K) = {0}

implies that H2(K, B) ∂−→ H1(B) is an isomorphism. By finding representative chains
in Z2(K, B) (using Algorithm 11) for each element of (γi)i=1,...,β , we get a set of cycles
whose homology classes form a basis of H2(K, B).

Just as open surface reconstruction applications in Section 4.8.2, two optimizations
of these representative chains are possible: either in the absolute complex K, meaning
finding the lexicographic optimal chain having the same boundary as the representative,
or in a simplicial pair (K, B), meaning finding the lexicographic optimal relative cycle
homologous to the representative chain. When the simplicial complex B is of dimension
1, both approaches are of course equivalent. Again, the relative setting could improve
the quality of the reconstruction when the detected cycles (γi)i=1,...,β of B are imprecise.
However, one major inconvenient of the relative setting is that the reconstruction will
be missing on the 2-skeleton of the subcomplex B. In the example shown in Figure 4.31,
we will be considering the absolute setting.

Nonetheless, in both cases, the result of applying Algorithm 10 to each of these
chains constructs a basis (Γi)i=1,...,β of Zmin

2 (K, B).
Finally, following Observation 4.54, the critical basis can be obtained from any basis

of Zmin
2 (K, B) by computing the matrix reduction (Algorithm 2) of the matrix whose

columns are vector representations in the basis of ordered k-simplices of (Γi)i=1,...,β ,
followed by a sort in increasing order along the lexicographic order of these columns, and
a final total reduction of each column. This construction has a O(β2n) time complexity.
The whole process, excluding the complexity of computing the Delaunay triangulation
and calling the feature estimator, has a O(p3 + βn log n + β2n) time complexity, where
n is the size of the complex K, p the size of the subcomplex B, β the dimension of
1-homology of B (or equivalently the 2-homology of (K, B)).

A reconstruction result is presented in Figure 4.31 for mobile scanning input set
of points, where occlusions make it a difficult reconstruction problem. However, from
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Figure 4.30: The reconstruction using critical basis of a sampled cube (i.e. closed
surface) misses one face. Also, an imprecise localization of the sharp edges by the
estimator leads to noisy lexicographic optimal 1-cycles.

the VCM estimation, a reasonable set of cycles can be extracted. The critical basis
associated to these cycles creates a complete reconstruction of the scene as well as
an interesting geometric decomposition: for instance, cars are represented in different
elements of the critical basis than the ground, represented in a unique element. This
decomposition also allows to either fill or keep the holes corresponding to occluded
regions of the input set of points, by removing some of the largest elements of this
critical basis.

This process knows a few limitations. In the presence of different densities in the
input, using a single threshold for the curvature estimator is not appropriate. This can
be seen on the roof part with low density in Figure 4.31, where the threshold leads to a
fragmentation of the roof into multiple elements of the critical basis. Also, as shown in
Figure 4.30, lexicographic optimal 1-chain are not always particularly well localized in
the subcomplex B. Finally, as the homology classes of the critical basis form a basis of
H2(K, B), any reconstruction of a closed surface with this method will miss one part.
We argue however that, in this situation, the first reconstruction method is far better
suited to closed surfaces.
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(a) Sharp feature estimation (b) Cycles basis of Zmin
1 (B)

(c) Critical basis of Zmin
2 (K, B) (d) Removing the first few chains

Figure 4.31: Example of reconstruction based on the construction of a critical basis.
After choosing a threshold for the sharp feature estimation (a) and constructing a ϵ offset
complex B (ϵ = 0.25 meters), the basis of Zmin

1 (B) forms a “wireframe” representation
of the scene (b). The critical basis correctly reconstructs most part of the scene (c). In
this basis, the largest elements often correspond to the perceived holes of the original
set of points (d). The input set of points was extracted from the Paris-Lille-3D dataset
[RDG18].
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Chapter 5

Conclusion and perspectives

Creating models for urban scenes is essential for tasks related to urban planning such
as visualization, change tracking and simulation. The most adapted representation of
3-dimensional geometry fluctuates between either parsimonious representations, such
as those defined by level of details in Geographic Information Systems, allowing less
cluttered visualization, change tracking at the scale of entire cities and fast but coarse
simulations, and dense representations, as triangular meshes reconstructed without pri-
ors, creating more realistic and precise visualization and allowing precise inspection and
simulations at smaller scales. Advancements in acquisitions process, either from photog-
raphy or laser scanning, allow to generate massive point clouds representing large urban
scenes with a precision in the order of centimeters and reconstruct either geometry
representations in a semi-automatic fashion.

Convinced that both representations have their own merits and flaws, two methods
are presented in this work. The first reconstructs buildings using a parsimonious LOD2
representation with strong priors, in view of integration with GIS applications. The
second reconstructs whole urban scenes as dense meshes without priors, focusing on
efficiency and generality for large sets of points.

Parsimonious reconstructions The described pipeline for parsimonious LOD2 rep-
resentations constructs intermediate 2-dimensional partitions. The following two obser-
vations have guided our contribution to this reconstruction pipeline:

— in order to correctly detect all relevant structures on noisy inputs, a large number
of segments are used to create these 2-dimensional decompositions, often making
them overly complex and irregular.

— the kinetic construction of these partitions creates many collinear segments.

The focus of our work is a simplification process of these 2D polygonal partitions
which seeks a balance between the fidelity to input partition, the enforcement of canon-
ical relationships between lines and a low complexity output. Because of the collinear
segments of the initial partition, the simplification is formulated on the lines of the parti-
tion, written in homogeneous coordinates. We associate to each line a metric to measure
the displacement from the original position. Applying a gradient descent algorithm to
minimize our objective function requires a few precautions, namely a calculation of the
gradient that takes into account the defined metrics and dealing with the degeneracy
of these metrics. Our simplification alternates between continuous optimization and
discrete merges of lines. When lifted in 3D, the simplified partitions allow for scalable
generation of 3D models whose quality competes well with those of existing methods.
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A major weakness of our simplification method is that the movement of the 2-
dimensional partition might degrade the result of the lifted model. This is mainly
due to the decorrelation between the formulated fidelity of the 2-dimensional partition
and the input point clouds. An improvement of this simplification should consider this
3-dimensional information.

Future work could also explore a more iterative version of this pipeline. As an ex-
ample, after having performed a simplification of a first partition, running the kinetic
framework solely on the segments whose supporting line were not simplified might im-
prove the quality of the partition, essentially filtering the unnecessary segments. Also,
lifting the 2-dimensional partition gives a good information of fidelity to the input data,
and regions where the fidelity is not sufficient could be located to either detect finer
primitives or subdivide the partition locally.

Finally, investigating how our simplification process can be extended efficiently on
3D polyhedral arrangements could in turn lead to more scalable 3D piecewise-planar
reconstruction methods.

Dense reconstructions We have proposed several dense reconstruction methods
based on lexicographic optimal chains, for closed as well as open surfaces. The defi-
nition of lexicographic optimality is based on a total order on simplices which we justify
by showing that Delaunay triangulations can be characterized by lexicographic optimal
chains along this total order on simplices. We give polynomial-time algorithms allowing
to compute lexicographic optimal homologous chains of any dimension of an arbitrary
simplicial complex, whereas the more general problem of computing optimal homologous
chains (OHCP) is NP-hard. Motivated by applications of reconstruction of 2-surfaces
in 3D, we give more efficient algorithms when the simplicial complex is a pseudoman-
ifold and the considered optimal chains are of codimension 1. This involves mainly
leveraging the duality of the complex. In fact, the lexicographic optimal cycle problem
is quite naturally restated as a lexicographic min-cut on the dual graph. In practice,
this problem is used to reconstruct closed surfaces, where the method requires an input
tetrahedron, the resulting chain being homologous to the boundary of this input in the
simplicial complex where this tetrahedron has been removed. We also design an open
surface reconstruction method, which requires to provide a 1-boundary. To derive an
efficient algorithm in the dual graph of the complex, the method first requires to com-
pute a “representative” chain, which can be any chain that is bounded by the provided
boundary. A second algorithm computes the lexicographic optimal chain homologous
to this representative chain. This requires to efficiently verify intersection products be-
tween 2-chains of the primal complex and 1-cycles of the dual graph. We introduce a
modified version of the disjoint-sets data structure to do exactly that. In applications,
when using the Delaunay triangulation as complex, finding the lexicographic optimal
chain homologous to the representative chain is equivalent to finding the lexicographic
optimal chain bounded by the provided boundary, thanks to the trivial homology of the
Delaunay complex. We show this open surface reconstruction is particularly useful in
the context of large urban scenes, as it allows to use a tiling meshing strategy for massive
data points, where imposing the boundary guarantees correct stitching between meshes
on adjacent tiles. Finally, we define a critical basis of the vector space of lexicographic
optimal relative 2-chains in a simplicial pair (K, B), which is isomorphic to the homology
groups H2(K, B). One application for this critical basis constructs a subcomplex B of
K from a sharp feature estimator and the critical basis of 2-cycles of this simplicial pair
(K, B). We show how this reconstruction is useful for open surfaces where the boundary
to reconstruct cannot easily be given manually.

The framework of lexicographic optimal chains offers many interesting continuation
to this work. Although not exposed for sake of simplicity, most algorithms can be
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explored in a persistent context: Given complexes B ⊂ BB ⊂ K, we believe algorithms
can be derived to compute optimal homologous cycles of (K, B) persistent in (K, BB).
The critical basis can also be defined for persistent homology. Whether these algorithms
have interesting applications of reconstruction is still unknown at this point.

For closed surfaces, defining as input an interior region can be tedious. Small or
under-sampled structures are also sometimes ignored by the method, and specifying
additional interior constraints can improve the reconstruction. Because of its proxim-
ity with other Delaunay-based interpolatory approaches, finding automatically interior
points is an interesting direction for this work, for instance with a classification of
Voronoi poles [KSO04].

The second possible control over the method is by modifying the underlying com-
plex used. A logical approach is to consider regular triangulations as we can derive
a total order on these simplices and define a similar lexicographic order on chains for
this complex. The choice of weights could be used either to guide the method toward
a better reconstruction or to simplify the result, as the vertices of regular complexes
can be a subset of the provided set of points, i.e. some input points might not appear
as vertices of the complex. A few early experiments seem to show that this direc-
tion is promising, however the method choosing the weights automatically needs to be
explored and justified. Approaches that have considered optimizing weighted triangula-
tions [MMdD11,dGMMD14] could be relevant to this discussion.

Finally, the reconstruction process using critical basis is interesting, especially thanks
to the control of which part of the basis we want to keep. We’ve mentioned limitations on
the choice of a fixed threshold for the feature detector as well as the imprecise localization
of produced 1-cycles. Further work could consider for instance adapting the threshold
of the detector according to the local density of points, or improving the 1-cycles before
computing its associated critical basis of 2-chains.
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.A.1. Asymptotical behaviours for 2-simplices (Proof of Lemma 4.13)

Figure 1: Illustration of the three nature of triangles

A.1 Asymptotical behaviours for 2-simplices (Proof
of Lemma 4.13)

We recall the definition of the weight associated to any triangle σ = {P0, P1, P2} given
by Equation (4.8):

wp(σ)p =
∫

|σ|
fσ(x)pdx

where, for a point x =
∑

i λiPi of |σ| written in barycentric coordinates (λi)i=0,1,2 (i.e.
verifying

∑
i λi = 1 and ∀0 ≤ i ≤ 2, 0 ≤ λi ≤ 1,),

fσ(x) =
2∑

i=0
λi ∥Pi∥2 − ∥x∥2

Applying a uniform scale λ to a triangle σ multiplies by λ2 both its area and the
function fσ. Therefore, the quantity wp(σ)p is multiplied by λ2+2p. Therefore, without
loss of generality, we consider now and for the rest of the proof a triangle abc with ab
as its longest edge and verifying:

RB(abc) = 1

For any triangle σ similar to abc, the final asymptotical behaviour of the triangle σ
will then be multiplied by RB(σ)2+2p compared to behaviour associated to abc.

Observe the function fσ is invariant by translation and rotation around the origin.
We introduce the 2-dimensional Cartesian coordinate system of the supporting plane
Πabc of abc, centered at the circumcenter CC(abc) of abc and verifying:{

xa = xb

xc > xa

We call h the x-coordinate of a and b. This coordinate system is illustrated in
Figure 1 according to the nature of the triangle abc. It is particularly helpful in the
study of wp(abc)p as the function fabc in this referential verifying:

wp(σ)p =
∫

(x,y)∈|abc|
fabc(x, y)pdxdy

is given by the following equation:

fabc(x, y) = RC(abc)2 − x2 − y2
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The proof will require to show that an asymptotical behaviour of wp(abc)p can be
found in a small region of |abc| close to the circumcenter: this is the goal of the following
definition and lemma.

Definition .1 (Upper set measure Dϕ). Consider a compact set D ⊂ Rd. For a con-
tinuous function ϕ : D → [0, 1] we denote by Dϕ the upper set measure of ϕ, the map
Dϕ : [0, 1]→ R+ defined as:

Dϕ(t) =
def.

µL ({u ∈ D, ϕ(u) ≥ 1− t})

where µL denotes the Lebesgues measure.

From this definition, the upper set measure t 7→ Dϕ(t) is non decreasing. Recall
that, by Rademacher Theorem, Lipschitz function are differentiable almost everywhere.

Lemma .2. Consider a compact set D ⊂ Rd and a continuous function ϕ : D → [0, 1].
Assumes the upper set measure Dϕ of ϕ is Lipschitz and denote by D′

ϕ its derivative
defined almost everywhere. Then one has:∫

D
ϕ(u)p =

∫ 1

0
D′

ϕ(t)(1− t)pdt

Moreover, if there is β > 0 such that D′
ϕ is defined and continuous on (0, β) with:

∀t ∈ (0, β), D′
ϕ(t) > 0

then, for any given 0 < α ≤ 1:∫
D

ϕ(u)p ∼
p→∞

∫ α

0
D′

ϕ(t)(1− t)pdt

Proof. On the interval [0, 1], the map s 7→ sp is p-Lipschitz (its derivative is upper
bounded by p), therefore:

∀a, b ∈ [0, 1], |ap − bp| ≤ p|b− a|

In particular, for a positive integer k:

∀a ∈ [0, 1],
∣∣∣∣ap −

(
1
k
⌊ka⌋

)p∣∣∣∣ ≤ p

k

For a compact set D ⊂ Rd and a continuous function ϕ : D → [0, 1] one has therefore:∣∣∣∣∫
D

ϕ(u)p −
∫

D

(
1
k
⌊kϕ(u)⌋

)p∣∣∣∣ ≤ p

k
µL(D)

Since: ∫
D

(
1
k
⌊kϕ(u)⌋

)p

=
k−1∑
i=0

(
Dϕ

(
i + 1

k

)
−Dϕ

(
i

k

))(
1− i

k

)p

Using the Lebesgue integrability of ϕ and the Riemann integrability of t 7→ p(1 −
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t)p−1Dϕ(t), we get:∫
D

ϕ(u)p = lim
k→∞

k−1∑
i=0

(
Dϕ

(
i + 1

k

)
−Dϕ

(
i

k

))(
1− i

k

)p

= lim
k→∞

k−1∑
i=1

((
1− i− 1

k

)p

−
(

1− i

k

)p)
Dϕ

(
i

k

)
=

∫ 1

0
−Dϕ(t)p(1− t)p−1dt

= [−Dϕ(t)(1− t)p]10 +
∫ 1

0
D′

ϕ(t)(1− t)pdt

=
∫ 1

0
D′

ϕ(t)(1− t)pdt (1)

For the second part of the lemma, one has:∫
D ϕ(u)p∫ α

0 D′
ϕ(t)(1− t)pdt

=
∫ 1

0 D′
ϕ(t)(1− t)pdt∫ α

0 D′
ϕ(t)(1− t)pdt

= 1 +
∫ 1

α
D′

ϕ(t)(1− t)pdt∫ α

0 D′
ϕ(t)(1− t)pdt

Since Dϕ is increasing and K-Lipschitz for some constant K, one has D′
ϕ(t) ∈ [0, K]

whenever it is defined which gives:∫ 1

α

D′
ϕ(t)(1− t)pdt ≤ K(1− α)p

and: ∫ α

0
D′

ϕ(t)(1− t)pdt ≥
∫ α/2

0
D′

ϕ(t)(1− t)pdt ≥ A(1− α/2)p

with:

A =
∫ α/2

0
D′

ϕ(t)dt

Since there is β > 0 such that D′
ϕ is defined and continuous on (0, β) with ∀t ∈

(0, β), D′
ϕ(t) > 0 we have A > 0 and:∣∣∣∣∣

∫
D ϕ(u)p∫ α

0 D′
ϕ(t)(1− t)pdt

− 1

∣∣∣∣∣ ≤ K(1− α)p

A(1− α/2)p
= K

A

(
1− α

1− α/2

)p

When looking at the upper measure of fabc, Dfabc
is Lipschitz with constant π since

for 0 ≤ t < t + u ≤ 1:

0 ≤ Dfabc
(t + u)−Dfabc

(t) ≤ µL

(
(x, y) ∈ R2, h2 + t ≤ x2 + y2 ≤ h2 + t + u}

)
≤ πu

We now study each case illustrated in Figure 1 separately, depending on the nature
of the triangle abc.

abc is strictly acute We have that RC(abc) = RB(abc) = 1 and h < 0. Also, (0, 0)
is in the interior of abc and therefore, there is α > 0 small enough such that:

∀t ∈ [0, α], f−1
abc ([1− t, 1]) = {(x, y) ∈ R2, x2 + y2 ≤ t}
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which gives for the upper set measure Dfabc
:

∀t ∈ [0, α], Dfabc
(t) = πt

and then, if D′
fabc

denotes the derivative of Dfabc
:

∀t ∈ [0, α], D′
fabc

(t) = π

By applying Lemma .2, one gets the following equivalence:∫
|abc|

fabc(u)p ∼
p→∞

∫ α

0
π(1− t)pdt = 1− (1− α)p

p + 1

Finally,
wp(abc)p ∼

p→∞

π

p

abc is right Very similarly than the strictly acute case, one now has RC(abc) =
RB(abc) = 1 and h = 0. There is α > 0 small enough such that:

∀t ∈ [0, α], f−1
abc ([1− t, 1]) = {(x, y) ∈ R2, x2 + y2 ≤ t and x ≥ 0}

which gives for the upper set measure Dfabc
:

∀t ∈ [0, α], Dfabc
(t) = π

2 t

and therefore:
∀t ∈ [0, α], D′

fabc
(t) = π

2
Applying again Lemma .2 we get

wp(abc)p ∼
p→∞

π

2p

abc is strictly obtuse One now has h > 0, RC(abc) > 1 and h2 = RC(abc)2 − 1.
There is α > 0 small enough such that :

∀t ∈ [0, α], f−1
abc ([1− t, 1]) = {(x, y), x2 + y2 ≤ h2 + t and x ≥ h}

which gives:

∀t ∈ [0, α], Dfabc
(t) = (h2 + t)

(
π

2 − arcsin
√

h2

h2 + t

)
−
√

h2t

and then:

∀t ∈ [0, α], D′
fabc

(t) = arccos
√

h2

h2 + t
(2)

This gives from Lemma .2:

wp(abc)p ∼
p→∞

∫ α

0
(1− t)p arccos

√
h2

h2 + t
(3)

Using a change of variable u =
√

t
h , t = h2u2, dt = 2h2u du and arccos

√
h2

h2+t =
arctan(u) we get:∫ α

0
(1− t)p arccos

√
h2

h2 + t
dt = 2h2

∫ √
α/h

0
(1− h2u2)pu arctan(u) du (4)
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Since limu→0
arctan(u)

u = 1 and, for positive u, arctan(u) < u, one has:

∀ϵ > 0, ∃α′ > 0, u ∈ (0, α′)⇒ (1− ϵ)u ≤ arctan(u) ≤ u

So that, for a given h and arbitrary small ϵ > 0, there is α > 0 such that:

(1− ϵ)
∫ √

α/h

0
u2(1− h2u2)p du ≤

∫ √
α/h

0
(1− h2u2)pu arctan(u) du

≤
∫ √

α/h

0
u2(1− h2u2)p du (5)

Notice that:
u2(1− h2u2)p = u2 exp

(
p log(1− h2u2)

)
and, using the first order Taylor expansion of t → log(1 − t) and since the second
derivative of log is negative at 1, for α > 0 small enough, there is a constant C > 0 such
that, when u ∈ (0,

√
α/h), one has:

−pC(h2u2)2 − ph2u2 ≤ p log(1− h2u2) ≤ −ph2u2

we get, then, when u ∈ (0,
√

α/h):

exp
(
−pCh4u4) exp

(
−ph2u2) ≤ (1− h2u2)p ≤ exp

(
−ph2u2) (6)

The second inequality in Equation (6) gives, for α > 0 small enough:∫ √
α/h

0
u2(1− h2u2)p du ≤

∫ √
α/h

0
u2 exp

(
−ph2u2) du (7)

One can check, by derivation of the right hand term, that, for β > 0:∫ β

0
u2 exp

(
−ph2u2) du =

√
π erf(h√pβ)− 2h

√
pβ exp

(
−ph2β2)

4h3p
3
2

(8)

where the so called “error function” erf is the normalized primitive of the Gaussian:

erf(z) =
def.

2√
π

∫ z

0
exp(−t2)dt

and the normalization gives that limz→∞ erf(z) = 1. Observe that Equation (8) gives,
for any p and β > 0: ∫ β

0
u2 exp

(
−ph2u2) du ≤

√
π

4h3p
3
2

This, with Equation (7), gives that, for fixed α small enough:

lim
p→∞

∫√
α/h

0 u2(1− h2u2)p du
√

π

4h3p
3
2

≤ 1 (9)

We consider now the lower bound given by the first inequality in Equation (6). First
observes that, for p large enough, one has p−1/3 <

√
α/h, and since the integrand is non

negative, one has:

lim
p→∞

∫√
α/h

0 u2 exp
(
−pCh4u4) exp

(
−ph2u2) du∫ p−1/3

0 u2 exp (−pCh4u4) exp (−ph2u2) du
≥ 1
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Since u 7→ exp
(
pCh4u4) is increasing for u > 0, this gives:

lim
p→∞

∫√
α/h

0 u2 exp
(
−pCh4u4) exp

(
−ph2u2) du

exp
(
−pCh4(p−1/3)4

) ∫ p−1/3

0 u2 exp (−ph2u2) du
≥ 1

Since limp→∞ exp
(
pCh4(p−1/3)4) = limp→∞ exp

(
p−1/3Ch4) = 1, we get:

lim
p→∞

∫√
α/h

0 u2 exp
(
−pCh4u4) exp

(
−ph2u2) du∫ p−1/3

0 u2 exp (−ph2u2) du
≥ 1 (10)

Taking β = p−1/3 in Equation (8) we get:

lim
p→∞

∫ p−1/3

0 u2 exp
(
−ph2u2) du

√
π

4h3p
3
2

= 1

This, with Equation (10) and the first inequality in Equation (6), we get:

lim
p→∞

∫√
α/h

0 u2(1− h2u2)p du
√

π

4h3p
3
2

≥ 1

This with Equation (9) gives, for any α > 0 small enough

lim
p→∞

∫√
α/h

0 u2(1− h2u2)p du
√

π

4h3p
3
2

= 1 (11)

Since Equation (5) holds for any ϵ > 0, and since Equation (11) holds for arbitrary
small α, we get:

lim
p→∞

∫√
α/h

0 (1− h2u2)pu arctan(u) du
√

π

4h3p
3
2

= 1

and, with Equation (4) and Equation (3), we finally get:

wp(σ)p ∼
p→∞

√
π

4h2
1
p3
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