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Introduction

Modern Intelligent transportation
systems deal with the development
of control strategies to reduce con-
gestion.

Traffic monitoring is one major
component, and deals with the use
of limited data to estimate the state
of a large traffic system.
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Traffic variables

I Density ρ : vehicles per unit length (veh/km)
I Flow ϕ : vehicles traversing a location per unit time (veh/h)
I Road speed v : average of instantaneous vehicle speeds (km/h)
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Problem definition

We deal with the problem of Traffic State Estimation.

Input data
Partial and noisy

Estimation approach
Traffic modeling

Traffic indicators
Density, flow, etc.

Subproblems:

I Network sensor location problem: identify the minimum
number of sensors and optimal locations.

I Estimation: use of heterogeneous data sources to calculate flow
and density in roads.
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Contributions

I Sensor location problem for two technologies: flow and turning
ratio sensors. Application in steady-state and dynamical
networks.

I Flow and density estimation approaches using data from flow
sensors, turning ratio sensors and Floating Car Data. Use of
data-based models for the case of dynamical networks.

I Estimation of the average density of a region of a traffic network
using a low-dimensional observer using boundary flow data.

I Construction of experimental platform GTL-Ville to validate the
results using real data.
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Previous works

Steady-state networks have been widely used to develop flow sensor
location methods [Gentili and Mirchandani, 2012].

I No turning ratio information
I (Ng, 2012) used node models to calculate the number of sensors

to estimate flow.
I (He, 2013) proposed a graph-based method to find sensor

locations.
I (Rinaldi and Viti, 2017) used O/D route information to reduce

number of sensors.
I Turning ratio information everywhere

I (Shao et al., 2016) used flow constraints at nodes to find sensor
locations.

I (Lovisari et al., 2016) used virtual variances to find sensor
locations in order to reduce estimation noise.

No work considers the location of flow and turning ratio sensors.
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Traffic networks

A traffic network is a collection of roads connected via intersections.
They are modeled as a directed graph G = {N,E}:

I N are the nodes which represent intersections.
I E are the edges which represent roads.

Data sources:
I Flow sensors are located in S ⊂ E.
I Turning ratio sensors are located in R ⊂ N.
I Road speeds are available for all roads E, using FCD.
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Flow conservation

Each road has a density ρi, incoming flow ϕin and outgoing flow ϕout.

Road 1 (ρ1)

Road 2 (ρ2)

Road 3 (ρ3)

Road 4 (ρ4)

ϕout1

ϕin1

ϕout2

ϕin2

ϕin3

ϕout3

ϕin4
ϕout4

The mass conservation at each intersections requires

ϕout1 + ϕout2 = ϕin3 + ϕin4 (1)
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Flow conservation - Turning ratios

Road 1 (ρ1)

Road 2 (ρ2)

Road 3 (ρ3)

Road 4 (ρ4)

ϕout1

ϕin1

ϕout2

ϕin2

ϕin3

ϕout3

ϕin4
ϕout4

Turning ratios (TR) model the average vehicle route choices.
ri,j : proportion of vehicles in road i turning to j.

ϕin3 = r1,3ϕ
out
1 + r2,3ϕ

out
2 (2)

ϕin4 = r1,4ϕ
out
1 + r2,4ϕ

out
2 (3)

gipsa-lab

Rodriguez-Vega, Density estimation in traffic networks 10/ 57



Flow conservation constraints
As we consider steady-state networks, for each road ϕin = ϕout = ϕ.
Flow conservation implies the following linear constraints

I If turning ratios are measured (R):

ϕi −
∑
j

ri,jϕj = 0 =⇒ A(R)ϕ = 0

I If turning ratios are not measured (U = N \ R):∑
i∈In

ϕi −
∑
j∈Out

ϕj = 0 =⇒ B(U)ϕ = 0

I Flow sensor data
C(S)ϕ = ϕmea

Overall [
L(R)
C(S)

]
ϕ =

[
0

ϕmea

]
where L(R) =

[
A(R)
B(U)

]
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Network sensor location problem

Given nR TR sensors, we want to uniquely estimate the flow of each
road.

I What is the minimum number of flow sensors?
I Where to locate flow and TR sensors?

Unique solutions are obtained ⇐⇒ L(R) and C(S) form a full row
rank matrix.

(S∗,R∗) = argmin
S,R

|S|

subject to rank
([

L(R)
C(S)

])
= nE

(4)

This formulation is NP-complete (Bianco et al., 2006). Can efficient
solutions be found?
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Sensor location

To solve (4), we propose the following sequential problems

1. Independent location of TR sensors

R∗ = argmax
R

∑
k∈R

outdegree(k) s.t. |R| = nR (5)

2. Location of flow sensors using R∗.

find S∗ ⊂ E

such that |S∗| = nE − rank L(R∗),
C(S∗) ∈ ker L(R∗).

(6)

Theorem
Solving problems (5) and (6) is equivalent to solving problem (4).
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Location of flow sensors
The cycle space of the network graph corresponds to the kernel of
L(R).

r1 r2



1 0 0
−1 0 0
−1 0 0

1 0 −r1
0 0 −r2
0 0 r1 + r2
0 1 0
0 1 r2
0 0 r2
0 0 −r1
0 0 r1
0 1 0
0 0 0
0 0 0



∈ kerL(R)
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Sensor location algorithm

1. Remove of all but one of the outgoing links from nodes R.

2. Construct a spanning tree.

3. Locate sensors S in the links not contained in the tree.
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Trade-off between sensor types

The minimum number of sensors n∗S is

n∗S = nE − nN −
∑
k∈R∗

(outdegree(k)− 1)

R
oa

ds
w

ith
flo

w
se

ns
or

s

Nodes with turning ratio sensors
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Nodes outdegree: 5 4 3 2 1
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Flow and density estimation
The fundamental diagram is an empirical relation between flow and
density (Greenshields, 1934). Speed from FCD is used to discriminate
between free-flow and congestion (Daganzo, 1995).
Φ(ρ)

w

ρ

ϕ

ρ1 ρ2

v2vmax

ρmax

ϕmax
ϕ = F (v)ρ+ d(v)

F (v)i,i =

{
vmax if vi ≥ vmax
−w if vi < vmax

d(v)i =

{
0 if vi ≥ vmax

wρmax if vi < vmax

State estimation is postulated as a quadratic optimization problem

min
ϕ̂,ρ̂

∣∣∣∣∣∣∣∣[ I −F (v)
C(S) 0

] [
ϕ̂
ρ̂

]
−
[
d(v)
ϕm

]∣∣∣∣∣∣∣∣2
s.t. L(R)ϕ̂ = 0

0 ≤ ϕ̂ ≤ ϕmax , 0 ≤ ρ̂ ≤ ρmax
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Grenoble traffic network
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Zone under study
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Sensor location
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Estimation error
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Section conclusions

I The trade-off between TR and flow sensors is considered.
Reduction of the overall number of sensors and cost.

I Density and flow are estimated by combining data from both
sensors, and FCD, using the FD.

I The number of sensors can still be too large for certain
applications.

I The steady-state assumption is useful, but can induce errors
during transient periods.
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Previous works

Dynamic TSE approaches have mostly targeted highways (Ferrara et
al., 2018), and few works have considered the urban case (Seo et al.,
2017).
Works considering the urban case include:

I (Lovisari et al., 2016) uses the FCD and the FD to provide
density measurements, in junction with a Luenberg-like observer.

I (Gu et al. 2017) uses Kalman filtering using a linearized CTM
(Daganzo, 1995) and the FD.

However, current models do not effectively describe vehicle decelera-
tions at intersections (Jabari, 2016) and (Liou et al., 2017).

(Rostami-Shahrbabaki, 2020) proposes a data-based method using
connected vehicles. This data might not be readily available.

Our contribution: data-based method using speed data from FCD,
and TR/flow sensors.
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Dynamic model

Traffic dynamics are governed by the conservation equation.

d

dt
ρ(t) = L−1(ϕin(t)−ϕout(t)) (7)

where L is diagonal matrix of road lengths.

ϕin(t) = R>ϕout +ϕext(t) (8)

where ϕext are external incoming flows at the network boundaries, R
TR matrix. From these equations,

d

dt
ρ(t) = L−1(R> − I)ϕout(t) + L−1Bu(t) (9)
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Dynamic model

Consider the hydrodynamic relation

ϕout(t) ≈ V (t)ρ(t) (10)

where V (t) is the average vehicle speeds.

Assumption: The speed and density throughout a road section do
not vary significantly in the spatial domain.

Thus, the estimator is

d

dt
ρ̂(t) = L−1(R> − I)V (t)ρ̂(t) + L−1Bu(t) (11)

Required data: flows, road speeds, and turning ratios.
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Turning ratios

TR are required for all intersections. Hard in practice.

Simplification: use of empirical methods to estimate TR using net-
work properties (Furth, 1990)1.

Our method: use of road importance to determine most likely turns.
Calibration possible using flow data.

However, these methods introduce uncertainty,

e = lim
t→∞

(ρ(t)− ρ̂(t)) = (M−1 − M̂−1)Bu

where M = (I−R>)V , and M̂ = (I− R̂>)V .

Sensor location: Few TR are available. Find intersections that have
the larger effect on e. Calculate intersection sensitivity weight.

1Used road density, presence of detours, and road angles.
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Sensitivity weight

Let Ξ = R̂−R. For each intersection n and incoming road i we
calculate the error energy due to TR deviations;

1. Calculate the Jacobian
Ji =

∂e

∂Ξi
(12)

2. Calculate the error energy using the Frobenius norm ||Ji||2F
3. Calculate the total intersection energy

wn =
∑
i∈I(n)

||Ji||2F (13)

4. Locate available sensors in intersections with the highest wn.
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Turning ratio sensors
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Flow sensors

Sensors: Boundary inflows, Boundary outflows, Validation sensors
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Results - Flow time series
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Results - Flow time series
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Results - Relative mean error

Relative Mean Error:

RME =

∫
(x(t)− x̂(t))dt∫

x(t)dt

Relative Absolute Error:

RAE =

∫
|x(t)− x̂(t)|dt∫

x(t)dt
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Section conclusions

I A data-based density estimation method is proposed. This is
based on the conservation equation, and the use of FCD to
estimate road outflows.

I A method to locate few TR sensors is proposed. Measure of
intersection sensitivity.

I Validation with real data shows accurate flow reconstruction for
most locations.

I However, mismatches are found, which are due in part to errors
in the TR estimation.

I Systemic flow underestimation is evidenced. Measurement of
few inflows is missing.
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Zone aggregation

Red nodes are at the boundaries,
while green nodes are internal.

Internal road sections are
aggregated into a single node.

ρav
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Motivation

Such aggregations are useful to:
I Reduce the high dimensions of large networks (Huang, 2020).
I Limit the computational cost of network processing.
I Ignore individual states of unimportant nodes in some

applications.
In traffic, region-based methods have received increasing attention

I (Geroliminis et al., 2008) showed the existence of the
Macroscopic Fundamental Diagram (MFD). Convex relation
between the average density and total outflow of a region.

I (Haddad and Zheng, 2020) makes use of the MFD to implement
perimeter control strategies.

However, there are few methods to estimate the average density of a
region. (Aboudolas and Geroliminis, 2013) and (Saedi et al., 2020)
used few density samples as proxy for the entire region.
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Traffic model

Density dynamics are given by the non-linear model

ρ̇(t) = L−1(R> − I)V (t)ρ(t) +Bu(t) (14)

Current theory is only applicable to the case of linear systems,
(Fernando et al., 2010) and (Niazi et al., 2019).

Assumption: vehicle speeds are constant, V (t) = V , as in free-flow
regime. Thus,

ρ̇(t) = Aρ(t) + L−1Bu(t) (15)

where A = L−1(R> − I)V .

Results are analyzed during congestion as well.
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Average density dynamics

We split the state into internal nodes ρ1 ∈ Rm and boundary nodes
ρ2 ∈ Rs. Matrices A and B are split accordingly,

ρ =

[
ρ1
ρ2

]
, A =

[
A11 A12

A21 A22

]
, B =

[
B1

B2

]
. (16)

We are interested in the estimation of the average density of the
unmeasured nodes, ρav(t) = 1

m1>ρ1(t), which evolves according to

ρ̇av(t) =
1

m
1>A111ρav(t) +

1

m
1>A12ρ2(t) +

1

m
1>A11σ(t) (17)

where σ(t) = ρ1(t)− 1ρav(t).
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Average detectability

Consider the one-dimensional open-loop observer

˙̂ρav(t) =
1

m
[1>A111ρ̂av(t) + 1>A12y(t)] (18)

Definition: Average detectability

A system is called average detectable if the open loop observer (18)
converges, i.e., ρ̂av(t)→ ρav(t) as t→∞.

Theorem: Average detectability (Niazi et al., 2019)

A system is average detectable if and only if 1>A11 = −γ1, with
γ > 0.
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Virtual graph

In general, traffic networks are not average detectable. Is it possible
to obtain an average detectable graph by splitting roads into
cells?

Definition: virtual graph

Given G and n ∈ Nm, a virtual graph G(n) is such that:
I Road i is divided into ni cells.
I The length of the k-th of road i is δ(k)i .
I The total length of each road is conserved (sum of cell lengths).
I Road speeds and turning ratios are unmodified.

Problem
Find n, δ(n), and constant γ > 0, such that G(n) is average detectable.
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Example - Manhattan grid network

Not average detectable Average detectable
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Error analysis

The average densities ρav for G and ρ(n)av for G(n) need not be equal.

ρav =
1

m

∑
i

ρi , ρ(n)av =
1

n>1

∑
i

∑
k

ρ
(k)
i

If the inputs vary slowly,

ρ(n)av − ρav ≈
n>σ

n>1
with σ = ρ1 − ρav1 (19)

Proposition

For large networks, the probability of n and σ being orthogonal is
asymptotically 1. Thus,

lim
m→∞

P (|ρ(n)av − ρav| < ε) = 1 (20)
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Virtual division for general networks

Theorem 2
An virtual graph G(n) is average detectable if and only if

δ
(k)
i =

1

(d>i n + k)γ
(21)

where d>i depends only on the TR and road speeds.

Cell lengths are directly computed from n and γ. Therefore, the
problem only depends on these variables.
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Approximate solutions

Theorem 3
Let n and γ satisfy

[K(γ)− V (I−R11)−1V −11 ]n =
1

2
1, (22)

where K(γ)i,i =
eγ`i/vi

eγ`i/vi − 1
. Then,

∣∣∣∣∣`i −∑
k

δ
(k)
i

∣∣∣∣∣ ∼ O
(

1

vid>i n + 1

)
(23)

Theorem 4
There is γmax such that if 0 < γ < γmax, the solution to (22) is positive.
Moreover, as γ → γmax, then ||n|| → ∞ and (23) goes to 0.
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Algorithm

Using Theorems 3 and 4, n and γ can be calculated by iteratively
approximating γmax. Consider the bisection algorithm:

Initialization: γ1 = 0, and γ2 = maxi(− log(λ(R11)vi/`i)
2.

1. Set γ ← (γ1 + γ2)/2.
2. n = [K(γ)− V (I−R11)−1V −11 ]−11/2.
3. If ni < 0, set γ2 ← γ. Go to Step 1.

4. If |`i −
∑
k δ

(k)
i | > ε, set γ1 ← γ. Go to Step 1.

5. Return (n, γ).

2This value of γ2 is proven to be greater than γmax
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Number of cell divisions
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Estimator deployment

The number of divisions can be very high. Fortunately, the virtual
graph is not needed to estimate ρ(n)av .

˙̂ρ(n)av = −γρ̂(n)av +
γ

n>1
n>V −11 (I−R>11)−1R>21V2y(t) (24)

We require:
I (n, γ) provided by the previous algorithm.
I Turning ratios and average speeds, graph properties.
I Measurements of external inflows y(t).

The estimator is efficiently deployed even for very large dimensions.
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Average density estimation

Total error:
12%

Error during
congestion:
18%.

Error outside
congestion:
8%.
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Section conclusions

I An open-loop average density estimator is proposed for large
traffic networks.

I This estmator is shown to converge for virtual networks. Division
of roads into cells of specific length.

I Although not exact, the estimation error is bounded. Reduction
of error for large networks, and large number of divisions.

I The linear regime assumption can limit the scope of the method.
I Nevertheless, for not too large congestions, the estimator

provides satisfactory results.
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Experimental platform

GTL-Ville (http://gtlville.inrialpes.fr/)
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Functionality - Traffic data

The platform allows the access to real time
traffic data from different sources.
This data is collected from providers and stored
in database. Can be download openly.
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Functionality - Density estimation

Input data is processed, filtered, and missing
samples are imputed.
The described estimation methods are applied.

gipsa-lab

Rodriguez-Vega, Density estimation in traffic networks 51/ 57



Density estimation - Demonstration

2D density via Gaussian Kernel Estimation (Mollier et al., 2018).
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Sensor location

1. In steady state, we analyzed the trade-off between flow and
turning ratio sensors. This method requires few additional
parameters, but may require a high number of sensors.

2. In dynamical conditions, TRs are required. We proposed an
approach in which heuristic values can be used. The estimation
error is reduced by detecting the most critical locations to locate
few TR sensors.
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Flow and density estimation

We considered three different scenarios:
1. In stationary networks, sensor data and the FD with FCD speed

data are used to jointly estimate both variables via an
optimization problem.

2. In dynamical networks, we propose a data-based approach that
computes road outflows using FCD speed data and previous
density estimates.

3. A method to estimate the average density of a zone using a 1D
estimator. This estimator is shown to converge for a network
where roads are divided in virtual cells.
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Conclusions

Validation using real data showed that the described methods provide
encouraging results.

Some open questions and improvements remain for future works:
I Improvement of TR estimates.
I Expansion of the average-density estimation method to better

capture congestion.
I Estimation of energy consumption and vehicle emissions.

gipsa-lab

Rodriguez-Vega, Density estimation in traffic networks 56/ 57





Appendices
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Sketch of proof
The column sum for an internal cell k > 1 of road i must satisfy

− vi

δ
(k)
i

+
vi

δ
(k−1)
i

= −γ.

At intersections (ending cells), the column sums satisfy

− vi

δ
(1)
i

+

m∑
j=1

rijvi

δ
(nj)
j

= −γ. (25)

Joining all the columns, we obtain a system of equations

(I−R11)δ−1(1) = γ[R11V
−1
1 n + (I−R11)V −11 1] (26)

This system is always solvable, giving

1

δ
(1)
i

= γ

(
d>i n +

1

vi

)
(27)
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Sketch of proof for Theorem 3
The finite fraction sums can be approximated using the natural
logarithm,

n∑
k=1

1

z + k
= ln

(
z + n+

1

2

)
− ln

(
z +

1

2

)
+O(n−2)

Thus, we rewrite

fi(n, γ) = `i −
vi
γ

[
ln
(
vid
>
i n + ni + 1

2

)
− ln

(
vid
>
i n + 1

2

)
+O(n−2)

]
From the Taylor series of logarithms, we note that
ln
(
a>n + c

)
− ln

(
a>x + c

)
∼ O((a>n + 1)−1)

Using logarithm properties, we note that

0 = `i −
vi
γ

[
ln
(
vid
>
i x + xi + 1

2

)
− ln

(
vid
>
i x + 1

2

)]
if and only if [(Kγ − I)−1Kγ − V (I−R11)−1V −11 ]x = 1

21.
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Functional Road Classification
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Functional Road Classification

Table: Description of the road classes provided by TomTom.

Class Short description
0 Highways, Motorways
1 Major roads of high importance
2 Other major roads
3 Secondary roads
4 Local connecting roads
5 Local roads of high importance
6 Local roads
7 Local roads of minor importance
8 Other roads
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Floating car data - Average speed

Aggregated vehicle trajectories of a fraction of vehicles in the network
are used to provide the average road speed of a subset of roads.
Due to technical limitations, data is provided not for each road.
Instead, roads are divided into partitions, such that each partition
contains adjacent roads of the same FRC, going in the same
direction.
The average length of each partition is of 200 m.
Only FRC above 7 are given speed values.
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Bluetooth sensors
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Bluetooth sensors
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Turning ratio estimation

For unmeasured intersections, turning ratios are estimated using the
FRC of the outgoing roads, which is used as a proxy of road
importance.
For each class c, define a weight θ(c). We assume that TRs are
proportional to the weights of the outgoing roads, as

ri,j
ri,k

=
θ(cj)

θ(ck)
(28)

where ck is the class of road k.
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Turning ratio estimation

The FRC weight values are calculated by solving a flow-matching
optimization problem

min
θ

||y − ŷ(u,θ)||2 (29)

where θ is the class-weight vector, y and u are the daily averages of
boundary outflows and inflow, respectively, from sensors, and

ŷ(u,θ) = (I−R(θ)>)−1Bu (30)

are the estimated steady-state flows.
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Induction loops
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Microwave radars

gipsa-lab

Rodriguez-Vega, Density estimation in traffic networks 69/ 57



Microwave radars
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Scenario 1

We evaluate the estimator using the microscopic simulator Aimsun in
the city of Grenoble.
Scenario 1: Turning ratios are known everywhere. Boundary inflows
follow a time-varying profile.
The boundary inflows are measured and used as inputs to the esti-
mator.The space-mean speed of each road is measured using floating
car data.
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Flow and density time series for a single road
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Scenario 1: Estimation error
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Scenario 2

Scenario 2: Turning ratios everywhere are added a uniform 10% noise
to represent uncertainty.
The sensor location method is used to select 20 intersections. For
these places, the proportion of vehicles taking each direction is mea-
sured directly.
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Scenario 2: Turning ratio sensor location
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Scenario 1: Estimation error
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Boundary outflow sensors
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Internal validation sensors (Outflows)
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Boundary inflow sensors
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