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Résumé — Ce travail de doctorat est effectué dans le cadre du projet Scale-FreeBack et
financé par le Conseil de Recherche Européen. Son objectif général est de poser de nouvelles
bases pour une théorie traitant des réseaux physiques complexes à dimension arbitraire.
Un cas particulier est celui des systèmes de transport intelligents, qui sont confrontés
à des défis importants pour empêcher l’apparition de congestions. Les contributions du
travail de doctorat se concentrent sur la phase de surveillance de la gestion du trafic.
Nous traitons trois problèmes principaux : la localisation des capteurs dans le cadre de
contraintes budgétaires, l’estimation de la densité du trafic en utilisant des sources de données
hétérogènes, et l’estimation d’un état de trafic moyen pour une région d’un réseau. Tout
d’abord, le problème du placement optimal des capteurs est examiné. Notre contribution
consiste en analyser deux technologies de capteurs, l’une qui mesure le flux absolu dans
une route, et l’autre qui estime les paramètres d’intersection ici appelés turning ratios, qui
sont une mesure relative du comportement des conducteurs en matière de choix d’itinéraire.
Nous trouvons comment choisir les emplacements pour chaque type de technologie de telle
sorte qu’un nombre minimal de capteurs soit nécessaire et que le flux de trafic puisse être
calculé pour chaque route du réseau. Le deuxième problème concerne la reconstruction du
flux et de la densité à l’aide de sources d’information hétérogènes. En plus des capteurs
fixes analysés dans le premier problème, une autre source de données disponible est le
Floating Car Data (FCD), qui regroupe les trajectoires des véhicules individuels, avec un
taux de pénétration inconnu et généralement agrégées en raison de la réglementation sur
la protection de la vie privée. Nous analysons comment intégrer ces sources de données
afin de pouvoir estimer la densité et le débit de chaque route du réseau, à la fois statiques
et dynamiques en fonction de la quantité d’informations disponibles. Pour le troisième
problème, nous considérons l’estimation de la densité agrégée d’une zone urbaine. Cela est
intéressant lorsque la densité de chaque route individuelle d’une zone n’est pas nécessaire, ou
lorsque la puissance de calcul est limitée. La convergence d’un estimateur pour la densité
moyenne de la zone a été analysée, mais il a été constaté qu’en général, l’estimateur ne
converge pas. Pour résoudre ce problème, nous proposons une méthode qui calcule une
représentation virtuelle du même réseau physique où chaque route est divisée en un certain
nombre de cellules, de sorte que l’estimateur du système virtuel converge. Dans certaines
conditions, nous montrons que la différence entre les moyennes réelles et virtuelles est faible.
L’efficacité de nos contributions a été testée en utilisant des données simulées et réelles. La
simulation consiste en une application du célèbre logiciel de trafic microscopique Aimsun, où
la dynamique des véhicules individuels est calculée dans un réseau réel modélisé. Les don-
nées réelles sont obtenues à partir de capteurs situés dans le centre-ville de la ville de Grenoble.

Mots clés : Reseaux de trafic à grande échelle, Estimation de flux et densité, Place-
ment des capteurs
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Abstract — This PhD thesis is done in the context of the ERC Advanced Grant project
Scale-FreeBack. Its overall aim is to set new foundations for a theory dealing with complex
physical networks with arbitrary dimension. One particular case is intelligent transportation
systems and their challenges to prevent the occurrence of congestions. The contributions
of the PhD work are mainly related to the monitoring of large-scale traffic network states.
We deal with three main problems: the location of sensors under budget constraints, the
estimation of traffic density using heterogeneous data sources, and the estimation of an
aggregated state for a region of an urban traffic network. First, the optimal sensor placement
problem is considered. Our contribution consists in the analysis of two sensor technologies,
one that measures the absolute flow in a road, and another that estimates intersection
parameters called turning ratios, which are a relative measure of route choice behavior of
drivers. We propose an approach to choose the locations for each type of technology such
that a minimal number of total sensors are required, and that traffic flow can be estimated
for each road of the network. The second problem considers the estimation of flow and
density using heterogeneous sources of information. In addition to the fixed flow sensors used
in the first problem, another available data source is the so called Floating Car Data (FCD)
which provides the trajectories of individual vehicles, albeit at an unknown penetration
rate and generally aggregated due to privacy regulations. We analyze how to fuse these
data sources to be able to estimate the density and flow of every road in the network, for
the static and dynamical cases depending on the amount of available information. For the
third problem, we consider the estimation of the aggregated density of an urban network.
This is of interest when the density of every individual road of a zone is not required
to be known, or when computational power is limited. The convergence of an estimator
for the average density of the zone was analyzed, but it was found that in general, the
estimator does not converge. To solve this problem, we propose a method to calculate a
virtual representation of the same underlying physical network where each road is divided
into a number of cells, such that the estimator for the virtual system converges. Under
certain conditions, we show that the difference between the real and virtual averages is
small. The effectiveness of our contributions were tested using simulated and real data.
In the first case, the simulation consists of an application of the well known microscopic
traffic software Aimsun, where the dynamics of individual vehicles are calculated in a
modeled real network. In the second case, real data is obtained from sensors located in
the downtown area of the city of Grenoble and collected using the Grenoble Traffic Lab(GTL).

Keywords: Large scale traffic networks, Density and flow estimation, Sensor loca-
tion

Grenoble Images Parole Signal Automatique (GIPSA-Lab)
11 Rue des Mathématiques, 38400 Saint-Martin-d’Hères



Résumé

Le développement des réseaux de transport est l’un des principaux enjeux de l’expansion des
villes modernes. À mesure que les zones urbaines s’étendent et se peuplent, les embouteillages
deviennent plus fréquents et plus coûteux. Les Systèmes de Transport Intelligents (Intelligent
Transportation Systems - ITS) font référence à l’utilisation de technologies et d’applications
avancées pour offrir des solutions innovantes aux problèmes de congestion du trafic. Certaines
techniques étudiées par les ITS consistent en la régulation du trafic (mesure de la vitesse, tari-
fication, fourniture d’informations, contrôle du cycle des feux de circulation) et la planification
stratégique des transports. L’Estimation de l’Etat du Trafic (Traffic State Estimation - TSE)
est utile pour fournir des informations vitales à l’application efficace et précise des stratégies
de contrôle du trafic routier. Le TSE consiste à utiliser des données de trafic partiellement ac-
cessibles et bruitées pour déduire la valeur de variables de trafic, telles que le débit, la densité,
la vitesse, ou le temps de parcours.

Cette thèse traite du TSE dans le cas de réseaux de trafic urbain à grande échelle. À
cette fin, des méthodes sont proposées pour résoudre deux problèmes principaux : comment
trouver la localisation optimale des capteurs, et comment incorporer des sources de données
hétérogènes dans une approche d’estimation du débit et de la densité. Dans le contexte de
l’état de l’art, la plupart des travaux TSE ne considèrent que le cas où les autoroutes, et les
travaux traitant des réseaux généraux nécessitent souvent des opérations complexes inadaptées
aux très grands systèmes ou supposent l’utilisation de données très riches qui pourraient ne pas
être disponibles pour la plupart des applications. Par conséquent, nos principales contributions
consistent à proposer des méthodes efficaces pour la localisation des capteurs et l’estimation
de l’état en utilisant des sources de données couramment utilisées.

Les principaux chapitres de cette thèse sont résumés ci-dessous.

Estimation de la densité et du débit en régime stationnaire

Ce chapitre traite le problème de l’estimation du débit et de la densité dans les réseaux urbains
dans le cas de régimes stationnaires. Ceci est fait en deux étapes. Dans la première étape, nous
examinons le problème de la minimisation du nombre de capteurs nécessaires pour récupérer
complètement le débit de véhicules. Nous considérons deux technologies de capteurs possibles
: l’une qui permet de mesurer les Rapport de Virage (Turning Ratio - TR) à une intersection
donnée et l’autre qui mesure directement le débit dans une route. La deuxième étape consiste
à utiliser les mesures des capteurs localisés dans la première étape en plus des Données des
Véhicules Flottantes (Floating Car Data - FCD) pour cestimer le débit et la densité de chaque
route du réseau.

Pour résoudre l’étape de localisation des capteurs, la condition de régime stationnaire a été
utilisée pour écrire un ensemble de contraintes linéaires utilisant uniquement la conservation du
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iv Résumé

débit à chaque intersection, en tenant compte de la présence ou de l’absence d’informations
sur le TR. Ainsi, le problème de localisation des capteurs pouvait être résolu en réduisant
l’espace nul de la matrice résultante. Nous avons résolu ce problème en trouvant la solution
de deux problèmes indépendants : localiser de manière optimale un nombre donné de capteurs
TR, puis, en utilisant ce résultat comme entrée, localiser les capteurs de débit. La méthode
proposée trouve l’emplacement du nombre minimal de ces capteurs en temps quasi-linéaire,
en associant l’espace nul de la matrice à l’espace des cycles du graphe sous-jacent, de sorte
que des techniques efficaces de parcours de graphe peuvent être utilisées. La complexité des
algorithmes proposés s’est révélée beaucoup plus efficace que les méthodes précédentes qui
reposent sur des calculs algébriques.

En utilisant les informations des capteurs installés, l’étape d’estimation a été formulée
comme un problème d’optimisation quadratique, pour calculer simultanément le débit et
la densité dans chaque route en utilisant les données des capteurs et les vitesses routières
moyennes obtenues à partir du FCD. La fonction de coût est constituée de la différence entre
les débits mesurés et estimés, et de la distance entre les estimations de densité et les valeurs
prédites à l’aide du Diagramme Fondamental (Fundamental Diagram - FD).

Les approches proposées ont été testées à l’aide de simulations microscopiques dans le
réseau réel de Grenoble. Les résultats de l’estimation se sont révélés très proches de la vérité
de terrain, avec des erreurs relatives médianes inférieures à 10% pour l’estimation du débit
et de la densité. Cependant, l’exigence de conditions stationnaires limite l’applicabilité des
méthodes.

Estimation dynamique de la densité et du débit

Dans ce chapitre, nous avons proposé une méthode pour estimer l’évolution dynamique du
débit et de la densité dans les réseaux à grande échelle de circulation urbaine en utilisant des
sources de données hétérogènes : capteurs de comptage, capteurs d’identification des véhicules
et FCD. Nous avons discuté de la mise en œuvre de ces types de données dans des scénarios
de cas réels tels que des taux d’échantillonnage et des intervalles de temps variables, et de la
manière de les prendre en compte dans la mise en œuvre de l’estimateur.

La méthode nécessite la connaissance de peu de paramètres, car il n’y a pas de modélisa-
tion explicite des débits de sortie en termes de la densité, donc aucune FD n’est nécessaire.
L’estimation repose sur la loi de conservation pour chaque route et l’équation hydrodynamique
: le débit sortant de chaque route est calculé comme le produit entre la densité estimée et la
vitesse moyenne donnée par la FCD.

Cependant, la connaissance des TR pour chaque intersection est nécessaire. Pour simplifier
cette exigence, nous supposons qu’un nombre limité de capteurs de TR peut être installé et
que pour les autres intersections, ils peuvent être estimés en utilisant une méthode heuristique
basée sur le structure du réseau. Le schéma de localisation des capteurs prend en entrée
les valeurs estimées des TR et estime ensuite l’erreur dans la reconstruction de la densité
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introduit par les déviations des valeurs des TR par rapport aux valeurs réelles. Pour chaque
intersection, un poids de sensibilité est calculé comme l’énergie totale de l’erreur due à une
déviation donnée des paramètres pour chacune des routes entrantes. Ensuite, les capteurs
sont placés dans les intersections ayant le poids de sensibilité le plus élevé.

Nous avons testé les méthodes proposées en utilisant des simulations microscopiques sur
une sélection de la ville de Grenoble. Les résultats montrent que l’estimateur est performant,
puisqu’il peut estimer la trajectoire globale des états du trafic, avec de nombreuses routes
présentant peu d’erreurs. Les méthodes proposées sont flexibles, car elles peuvent être ap-
pliquées à différents coûts. En outre, l’algorithme permet l’inclusion de nouvelles données,
de sorte qu’avec le temps, les informations précédentes peuvent être utilisées pour améliorer
l’emplacement des capteurs de TR afin d’augmenter les performances de l’estimateur.

Estimation de la densité moyenne

Dans ce chapitre, nous considérons l’estimation de la moyenne de toutes les densités routières
dans un réseau de trafic. Nous avons analysé la convergence d’un observateur unidimensionnel
en boucle ouverte pour la densité moyenne d’un réseau, dans le cadre d’une dynamique de
circulation linéaire telle que le régime d’écoulement libre. En général, de tels observateurs ne
convergent pas, mais nous proposons une méthode pour obtenir une représentation virtuelle
du réseau avec les mêmes propriétés physiques de sorte que l’observateur converge. Cette
nouvelle représentation est construite en divisant chaque route du réseau original en un certain
nombre de cellules de longueurs spécifiques. Nous montrons qu’il est possible de trouver une
représentation virtuelle du réseau utilisant des divisions routières inhomogènes de telle sorte
que l’observateur proposé converge vers la densité moyenne du système virtuel.

Bien que la densité moyenne du système original et celle du système virtuel ne soient
pas nécessairement égales, nous montrons qu’en considérant des réseaux à grande échelle, la
différence entre ces deux variables est presque toujours faible, et donc que la méthode peut
donner une approximation utile de la valeur d’intérêt.

Les méthodes ont été testées en utilisant des traces simulées de véhicules individuels dans
le cas réel de la ville de Grenoble, France. La densité moyenne estimée s’est avérée proche des
valeurs réelles, avec une erreur RMS de 10%.

Application à la ville de Grenoble

Ce chapitre présente le cas d’étude du centre-ville de Grenoble et valide les méthodologies
décrites au chapitre 3 pour l’estimation dynamique du débit et de la densité de chaque route
d’un réseau, et l’estimation de la densité moyenne de l’ensemble du réseau décrite au chapitre
4, en utilisant des données réelles.
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La section considérée du réseau de circulation de Grenoble a été équipée de capteurs
collectant des informations sur le débit de circulation et les vitesses dans les limites du domaine,
ainsi que les TR pour un nombre sélectionné d’intersections. Ces informations sont disponibles
sur la plateforme expérimentale GTL-Ville, qui fournit également des données et des analyses
de trafic en temps réel.

Pour calculer les TR des intersections qui n’étaient pas équipées de capteurs, nous avons
utilisé la Classification Fonctionnelle des Routes (Functional Road Classification - FRC), qui
attribue à chaque route un indice correspondant à sa fonction (par exemple, s’il s’agit d’une
route principale ou d’une simple route dans une zone résidentielle). Un poids a été attribué
à chaque indice FRC, et les TR pour chaque intersection ont été supposés être proportion-
nels au poids FRC des routes sortantes. Les poids ont été calibrés à l’aide d’un problème
d’optimisation de correspondance des débit en utilisant les données des capteurs d’entrée et
de sortie aux limites du réseau.

Pour la validation de l’estimation dynamique de la densité dans chaque route, les algo-
rithmes décrits ont été mis en œuvre. Un ensemble de capteurs situés à l’intérieur du réseau
a été utilisé pour la validation croisée. Les estimations ont ensuite été comparées aux valeurs
réels fournies par ces capteurs. Bien que le problème du TSE dans les réseaux à grande échelle
soit difficile, les résultats obtenus sont encourageants car le débit estimé pour les routes indi-
viduelles est très proche des données réels fournies par les capteurs. Pour plus de la moitié des
emplacements de validation, les trajectoires moyennes présentent une erreur inférieure à 20%,
et dans tous les cas, les erreurs sont inférieures à 45%. Nous identifions comme principale
source d’erreur l’incertitude des valeurs des TR, due à l’utilisation de la méthode heuristique
basée sur les données FRC. Cependant, ceci peut être amélioré à l’avenir en effectuant plus
de campagnes de mesure, ainsi les résultats d’estimation dans l’application réelle devraient
s’améliorer de manière significative.

En ce qui concerne l’estimation de la densité moyenne, les résultats montrent que pendant
une grande partie de la journée, les estimations et les valeurs réels sont très proches, avec une
erreur moyenne de 8%. Cependant, il a été mis en évidence que lorsque les hypothèses sous-
jacentes de la dynamique linéaire ne sont pas satisfaites, les trajectoires des densités réelles et
estimées divergent, augmentant l’erreur à presque 20%.

Conclusions et perspectives

Bien que les méthodes décrites dans ce travail de recherche aient fourni de bons résultats
initiaux, il reste des problèmes et des questions ouvertes qui peuvent apporter des améliora-
tions significatives à la précision des estimations, et qui peuvent servir de base à de futures
recherches.

Une voie claire est l’amélioration des méthodes d’estimation des TR. Nous avons montré
que l’utilisation du FRC de chaque route pour estimer ces paramètres peut conduire à des
estimations utiles de la propagation des débit dans le réseau. Néanmoins, l’analyse que nous
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avons effectuée pour ce modèle n’est en aucun cas exhaustive, et la prise en compte d’autres
paramètres tels que la géométrie du réseau (par exemple, l’angle de raccordement entre les
routes) peut conduire à des résultats plus précis. Pour ce faire, des mesures supplémentaires
des TR dans le réseau sont nécessaires, ce qui permettra d’améliorer l’estimation dynamique
du débit et de la densité. Une autre amélioration possible consiste à envisager des approches
basées sur les chemins plutôt que sur les intersections, car celles-ci prennent en compte non
seulement la structure du réseau mais aussi des informations supplémentaires relatives aux
itinéraires possibles entre les origines et les destinations.

Une importante question ouverte est de savoir comment traiter la congestion dans le cas de
l’estimateur de la densité moyenne. Ce problème n’est pas trivial, car il concerne entre autres
l’étude de la détectabilité et de l’observabilité des systèmes non linéaires, pour lesquels les outils
théoriques sont limités. La principale difficulté concernant cette extension est que le suivi de
la congestion nécessite de stocker l’état de chaque route, ce qui va à l’encontre de l’objectif
d’avoir un estimateur à faible dimension. Néanmoins, une étude plus approfondie pourrait
permettre de développer de nouveaux outils théoriques capables de fournir un descripteur plus
général de la dynamique moyenne du trafic.

Dans la continuité de cette thèse, l’un des objectifs principaux est de valoriser les données
réelles de la ville de Grenoble et les approches d’estimation proposées pour améliorer la plate-
forme GTL-Ville. Par exemple, cela peut être fait en utilisant les débit et les densités estimés
comme entrée pour les méthodes qui prédisent la consommation d’énergie et les émissions
des véhicules qui sont générées par les utilisateurs du réseau. Ces informations sont cruciales
pour le développement de la gestion écologique du trafic, qui élabore des stratégies visant à
améliorer la durabilité des réseaux de transport.
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Chapter 1

Introduction

The development of transportation networks is one of the main issues in the evolution of
modern cities. As urban areas become larger and more populated, traffic congestions occur
more frequently with higher levels of cost in todays life. Intelligent Transportation Systems
(ITS) refers to the use of advanced technologies and applications to offer innovative solutions
to the problems of traffic congestion. Some techniques under study by ITS consist on traffic
control (ramp metering, pricing, information provision, traffic light cycle control), and strate-
gic transportation planning. Traffic State Estimation (TSE) is one of the main ingredients
required to provide vital information to the efficient and accurate application of traffic control
strategies. TSE refers to the use of partially observed and noisy traffic data to infer the value
of traffic variables, such as flow, density, velocity, traveling time, and others [Seo+17].

There are three main components to the development of any TSE method: a traffic flow
model, the use of input data as partial observation of the traffic state, and a state estimation
approach [Seo+17]; [Ros+20].

1.1 Traffic flow modeling

1.1.1 Single roads

To model traffic dynamics, the main two types of model are microscopic and macroscopic.

1.1.1.1 Microscopic models

Microscopic models describe the trajectory of each individual vehicle. They are based on the
assumption that each driver is affected only by the state of the vehicle directly in front [New02],
and thus are also known as car-following-models [WK+15]. Each trajectory is described by
means of an Ordinary Differential Equation (ODE). Consider a vehicle indexed by α, whose
position at time t is sα(t), and its velocity να(t). Its trajectory is described by

ṡα(t) = να(t)

ν̇α(t) = a(sα − sα−1, να, να−1)
(1.1)

where α − 1 is the indexing of the vehicle in front, and a is called the acceleration function.
This function is designed to provide more realistic description of real traffic phenomena, such

1
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as reaction time, desired speed profile, breaking time, etc. For instance, the Optimal Velocity
Model (OVM) [Ban+95] models the acceleration function as

a(∆s, να) =
νopt(∆s)− να

τ
(1.2)

where ∆s = sα − sα−1, and νopt is called the optimal-velocity function. This model assumes
that each vehicle has a desired velocity that will be attained on a time scale given by the
parameter τ . This function can be chosen arbitrarily under some constraints [TK13], but a
simple choice proposed in [Sug99] is

νopt(∆s) = tanh(∆s− 2) + tanh(2) (1.3)

Due to their nature, microscopic models are ill-suited to describe general traffic conditions,
or to serve for estimation or control techniques. Instead, microscopic models are well-suited to
study the effects of single vehicles in traffic streams, the interactions between heterogeneous
traffic compositions, describing human behavior, and to provide realistic simulations that serve
as validation data for other methods.

1.1.1.2 Macroscopic models

Macroscopic models describe traffic as a continuous, similarly as the description of fluid dy-
namics. The main variables are the density, flow, and velocity. The traffic density ρ(x, t) at
time t around a point x, refers to the number of vehicles per unit length, and has units of
vehicles per kilometer (veh/km). Traffic flow ϕ(x, t) refers to the number of vehicles that tra-
verse some location x per unit time, and has units of vehicles per hour (veh/h). The velocity
v(x, t) refers to the average speed of vehicles, with common units kilometers per hour (km/h).

The basis for any macroscopic traffic model is the conservation law of vehicles, which is
expressed by means of a Partial Differential Equation (PDE)

∂

∂t
ρ(x, t) +

∂

∂x
ϕ(x, t) = 0. (1.4)

Furthermore, the tree variables are related by the hydrodynamic relation

ϕ(x, t) = v(x, t)ρ(x, y). (1.5)

The development of traffic models started with [Gre+34], who manually collected data
from a road stretch during a period of time, measuring the speed of each vehicle and the
inter-vehicle spacing (from which density can be obtained). By plotting this data in a speed-
density diagram, the authors observed an inverse correlation between these variables. They
proposed a linear function of the velocity in terms of the density, which is also known as the
Greenshield’s Fundamental Diagram (FD) (see Fig. 1.1). With this idea, [LW55] and [Ric56],
independently proposed the Lighthill-Whitham-Richards (LWR) model, which assumes that
the speed (and flow) are functions of the traffic density, only. Thus,

ϕ(x, t) = Φ(ρ(x, t)) , v(x, t) = Ψ(ρ(x, t)) (1.6)
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Figure 1.1: Greenshield’s speed-density fundamental diagram.

where Φ(ρ) and Ψ(ρ) are known as the flow-density and speed-density FD, respectively. This
allows to rewrite the conservation law as an equation of only the density

∂

∂t
ρ(x, t) +

∂

∂x
Φ(ρ(x, t)) = 0. (1.7)

Thanks to (1.5), Φ and Ψ can be obtained from one another. For the rest of this document,
unless specified differently, the FD refers exclusively to the flow-density function Φ. The LWR
can be used with any choice of FD, and since the first proposal of the Greenshield’s FD, many
other options have been proposed to better match traffic data [Tra11]. Nevertheless, from
empirical observations, the FD should have the following properties [Car+12]:

• Φ(0) = 0, and there is a value ρmax such that Φ(ρmax) = 0. ρmax is known as the jam
density.

• Φ is convex1.

• The free-flow speed vmax = Φ̇(0) is a finite positive number, and is the maximum vehicle
speed.

• The congested wave speed w = Φ̇(ρmax) is a finite negative number.

• The FD has a unique maximum value ϕmax, also known as the capacity.

The LWR is arguably the most commonly used model for traffic research applications. Its
discretized version was first proposed in [Dag94], and is known as the Cell Transmission Model

1Some authors allow the FD to be non-convex near the jam density, but it is still required that Φ is
unimodal.
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Figure 1.2: Triangular fundamental diagram.

(CTM). In this model, a road is divided into an arbitrary number of cells of equal length. The
density of each cell is computed as

ρi[k + 1] = ρi[k] +
∆t

`i
(ϕi−1[k]− ϕi[k]) (1.8)

where ρi[k] is the density of cell i at time step k, ϕi[k] is the flow between cells i and i + 1,
`i is the cell length, and ∆t is the discretization time. For every cell and every time step, the
CTM computes the Demand Di, which is the maximum flow that exit from cell i, and the
supply Si, which is the maximum flow that can enter the cell. These values are obtained by
using a particular FD with a triangular shape (see Fig. 1.2), such that

Di = min(vmaxρ, ϕmax) (1.9)

Si = min(w(ρmax − ρ), ϕmax) (1.10)

The inter-cell flow is then computed as

ϕi[k] = min(Di[k], Si+1[k]) (1.11)

First-order models such as the LWR and the CTM are nevertheless unable to capture some
real traffic phenomena such as stop-and-go wave and capacity-drop. This is because vehicle
speed is instantaneously adjusted according to the FD by changes in the density. As a solution
to these issues [AR00], second-order models are proposed as an extension. In addition to the
conservation law, a second equation is added that models the smooth change in the vehicle
velocity. A well known second order model is the Aw-Rascle-Zhang (ARZ) [AR00]; [Zha02],

∂

∂t
ρ+

∂

∂x
(vρ) = 0

∂

∂t
(v + p(ρ)) + v

∂

∂x
(v + p(ρ)) = 0

(1.12)

where p(ρ) is an increasing function of ρ and is called the pressure.
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Figure 1.3: Flow exchange at an intersection.

1.1.2 Network models

Urban traffic networks consist of a collection of roads which are connected by intersections, as
shown in Fig. 1.3. Each road section follows a dynamical model as described in Section 1.1.1.
In addition to this, network models require to specify how flow behaves at each intersection.
This is referred to as a junction model. To simplify the notation, define

ϕini (t) = ϕi(0, t) (1.13)

and
ϕouti (t) = ϕi(`i, t) (1.14)

as the inflow and outflow of the i-th road, respectively.

The first component of junction models is vehicle routing, which is the problem distribut-
ing the incoming flows to an intersection to the respective outgoing roads according to user
preferences. One commonly used technique for this problem is the use of intersection parame-
ters called turning ratios. A Turning Ratio (TR) ri,j is the fraction of the flow in road i, ϕouti

that turns to road j at an intersection.

Another common solution to this problem is Traffic Assignment (TA). Usually, these mod-
els take as input the Origin-Destination (OD) matrices, and then calculate the optimal routes
from each origin to each destination, according to a specific cost function such as the traveling-
time. Each OD flow is then divided proportionally into the calculated routes. Modern ap-
proaches periodically recalculate the optimal routes based on the current state of the network,
which is known as the Dynamic Traffic Assignment (DTA).

The second component of junction models is the calculation of the road outflows and
inflows given the densities of each road. One of the most commonly used junctions model is
the flow-maximizing model, which was proposed in [Dag95] as an extension of the CTM to
networks. This model assumes that drivers cooperate such that the total flow that can be
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delivered from an intersection is maximized subject to the downstream road supply constraints.
For the example in Fig. 1.3 this can written as

max ϕout1 + ϕout2 + ϕin3 + ϕin4

subject to ϕout1 ≤ D1(ρ1)

ϕout2 ≤ D2(ρ2)

ϕin3 ≤ S3(ρ3)
ϕin4 ≤ S4(ρ4)
ϕin3 = r1,3ϕ

out
1 + r2,3ϕ

out
2

ϕin4 = r1,4ϕ
out
1 + r2,4ϕ

out
2

(1.15)

The flow-maximizing model is very commonly used in the analysis of traffic networks. However,
it has been found that this model generally overestimates the flows that would be produced in
real scenarios, as it is unable to describe vehicle decelerations when approaching intersections
[LHP17]. Other models have been proposed that incorporate other phenomena such as traffic
light cycles [Jab16]. Nevertheless, realistic junction models remain an open problem for the
treatment of traffic networks.

Region-based models

The described network models usually require the estimation of many parameters such as the
TRs and OD matrices, and the resulting model can be very high-dimensional for large traffic
networks as it must account for the density and flows of each road section. As an alternative
to this issues, region-based models (also called reservoir models) consider the partition of the
network into regions which are analyzed as whole entities, where the states now correspond to
the average density and the average flow of the entire region. [GD08] provided experimental
evidence of a Macroscopic Fundamental Diagram (MFD), which is a relationship between the
average density of a region and its outgoing flow. Since then, the MFD has received increased
attention and extended to include more complex scenarios. For instance, [AZG17] proposed
an extension of the MFD to include heterogeneous traffic composition such as the mixture of
cars and buses, and [ML19] analyzed how to use the MFD framework to handle congestion
propagation due to internal and external trips. One of the main issues of the MFD is that
changes in the average region density generate instantaneous changes in the flow production,
which can in some cases imply the existence of vehicles with infinite speed. To solve this
issue, MFD formulations that account for delays have been proposed in [PL20]. Region-based
models have been used most commonly in the context of perimeter control [AG13], in the
solution of the DTA problem in large networks [Hua+20], and in the estimation of network
traveling times [Sae+20].
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1.2 Input data

Broadly speaking, traffic data can be collected using stationary sensors and Floating Car Data
(FCD).

1.2.1 Stationary sensors

This category includes technologies such as inductive-loop detectors, microwave and infrared
radars, and traffic cameras [KMG06]. As their name indicates, they are located in a fixed
position on a traffic road or intersection, and provide information of the vehicles that traverse
such particular location.

Variables provided by stationary sensors include

• Number of vehicles per unit time

• Occupancy, i.e., percentage of time that the sensor detects a vehicle.

• Vehicle speed.

• Vehicle length or classification.

However, depending on the particular technology, some variables might not be available, or
have different error tolerances. For example, single induction-loops can provide an accurate
flow value, but cannot measure vehicle speeds directly. On the other hand, radars can measure
the speed of vehicles directly with high precision, but are unable to detect stopped vehicles,
and can present count omissions when two vehicles have the same speed. Traffic cameras
can provide very accurate and detailed information about the traffic flow, but are usually
very expensive to maintain, require sophisticated image processing techniques for large-scale
applications, and are affected by environmental factors such as rain or fog [KMG06].

A limitation of most stationary sensors is that they only provide information about a
specific location, and thus cannot easily be used to obtain network-level information such
as traveling times, Origin-Destination (OD) demands, or vehicle route choice. Nevertheless,
an exception to this limitation are the Automatic Vehicle-Identifier (AVI) sensors, such as
license-plate readers. When a network of this technology is available, multiple detections at
different places and times of the same vehicle is possible [GM18].

In addition to this traditional sensors, new traffic data sources have become available due
to widespread use of WiFi and Bluetooth (BT) capable devices. Recent works as [BC13] and
[AjSB13] have analyzed the use of these technologies as AVI sensors. This can be done by
installing devices in certain location, which then constantly search for other capable devices
and log the individual Media Access Control (MAC) address. Compared to the traditional
license-plate readers, BT/WiFi AVI have the advantage of being cheaper, and can cover a wide
area without requiring line-of-sight [BC13], but have the disadvantage of having an unknown
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penetration rate. Nevertheless, this new technology can be shown to be a valuable addition
to complement sensing networks [BQC15].

Network sensor location problem

Stationary sensors are traditionally the most common source of traffic data, specially for
the case of inductive-loops [TK13]; [Seo+17]. Nevertheless, due to their installation and
maintenance cost [KMG06], only a limited number of sensors can be installed in a traffic
network. Because of the crucial role of this data, the number and location of such sensors
must be selected optimally to minimize the budget, while providing the information required
for a given application. This is known as the Network Sensor Location Problem (NSLP)
[GM12].

In the literature, different approaches have been considered for the determination of the
minimum number of sensors according to the degree of knowledge of the network and the
available sensing technologies. [BCR01] defined the region of influence of flow sensors located
at intersections, and with the knowledge of TRs in the network, the authors were able to
provide necessary conditions for flow observability and some heuristic bounds on the number
of sensors. [BCG06] performed a deeper analysis and determined that the sensor location
problem is NP-complete.

Methods developed by [Cas+08] and [HPC09] formulated the problem by enumerating
all possible paths of the network to construct a matrix of constraints to give bounds on
the required number of sensors to estimate the flow everywhere. Furthermore, the authors
analyzed the effect of different network topologies on these bounds. Additionally, if there
is available information about unused paths, [Cas+13] and [Cas+14] provided extensions to
reduce the number of paths that need to be counted. [HL14] and [Fu+16] used these methods
with not only stationary flow sensors, but also AVI sensors.

A different alternative was presented by [Ng12], who considered the conservation of flow
equations at intersections instead of path flows. This method does not require the enumeration
of paths and is able to calculate the number of sensors as a function of the number of nodes
and edges in a graph. Additionally, they proposed an algorithm for flow sensor location. This
method was improved by [He13], who provided an efficient algorithm based on the topology
of the network and graph theory. However, as this approach uses few assumptions about the
network (only topology is used), the number of sensors may be large for real applications
[Vit+14].

More robust approaches to this problem have also been studied. [He13], [Vit+14] and
[RV17] proposed methods to assess and locate sensors for partial observability, i.e. only
some of the flows of the network are estimated. Other works such as [Xu+16] and [LWK16]
considered the problem of noise in the measurements, and proposed a trade-off between the
number of sensors and the robustness of the flow estimation to noise. More complete reviews
about models and methods used for flow estimation and sensor location can be found in
[GM12] and [Cas+15].
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1.2.2 Floating Car Data

FCD refers to information provided by a subset of vehicles in the network, which periodically
communicate with a centralized station. The most common type of FCD corresponds to GPS
coordinates, from which it is possible to reconstruct the trajectories of individual vehicles via
map-matching [TK13]. In other cases, the named probe or connected vehicles, are equipped
with additional sensors, and in addition to their GPS coordinates, provide data about their
environment, such as the distance and velocities of surrounding vehicles [BLRP16]; [SKA15a].
In most applications however, FCD is aggregated such that only the average speed in certain
road sections is available [Seo+17]. Nevertheless, FCD have received increasing attention,
and many of current TSE works make use of a combination of stationary sensors and FCD
[Seo+17].

1.3 Estimation approaches

Most of the TSE approaches proposed in the literature were developed initially for the case
of one-dimensional roads, such as Highways and Freeways [FSS18]. A very common approach
is the use of the Extended Kalman Filter (EKF). For instance, [TI07] proposes the use of the
EKF coupled with the CTM to estimate the density of sections of highways, using data from
stationary sensors located at certain sections of the road. This approach is based on linearizing
the CTM around a current state, and then compare the measurements with the predictions
of the linearized model. Later, [HB10] made use of the increase of availability of GPS data
to complement the stationary sensor data. In this formulation, a Lagrangian model was used
as input to the EKF. More recently, [SW14]; [SKA15b] show how information from connected
vehicles can be provided to a KF approach to improve highway state estimation. Another
common TSE technique is the use of Luenberger-like observers, as shown in [AI+04], which
are based on switching between the free-flow and congested states, and then apply an estimate
correction based on measurements. This technique has been successfully applied to real cases
in [WOK12], and in a decentralized manner in [Viv+15] and more recently in [GCZ17]. In
[Bra+17], the authors proposed a control scheme integrated with a Luenberger-like observer
using the Asymmetric CTM, proposed in [Mun+03]. Other techniques such as Particle Filters
(PF) have also been used as in [MBH07] which showed better results than KF based alterna-
tives, and more recently in [KTK21] in conjunction with data from connected vehicles. PF
techniques are shown to have an accurate estimation, albeit with an elevated computational
cost. A more comprehensive review of TSE techniques can be found in [Seo+17].

More and more, the need to study urban traffic networks is increasing in the last years
for TSE issues. Some methods have been developed such as the Unscented Kalman Filter
(UKF) in [PN06], and Bayesian probabilistic model-based Expectation–Maximization Ex-
tended Kalman Filter (EM-EKF) in [GQZ17]. Nevertheless, in comparison to highways, ur-
ban networks still have not received as much attention, [Seo+17]. This is due in part to the
complexity of modeling traffic dynamics with intersections, the related entry and exit flows,
and the lack of sufficient sensor data. [He13] provides a method to estimate the equilibrium
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flow for each road from sensor data using graph-based algorithms. In [LWK16], a method
to estimate the dynamical evolution of the density of each road is proposed by using both
stationary sensor measurements and FCD. This is done by first giving a flow estimate for each
road as if the network is in stead-state, and then use the speed-density FD to provide density
pseudo-measurements. This estimates are then the input to a Luenberger-like observer. In
[Lad+18], FCD is used to determine if each road is in free-flow or congested regime, and
then uses the flow-density FD and stationary sensor data to provide density estimates to each
road in the traffic network. More recently, [Ros+20] proposes a data-based density estimation
method that does not require the use of a FD. Instead, data from connected vehicles is used
to estimate the outflow of each road, and then uses the density conservation law to estimate
the traffic state.

1.4 Problematics and contributions

This works deals with the TSE problem for urban networks, using heterogeneous sources of
data such as stationary flow sensors, FCD, and AVIs. We analyze three different problematics
in this context.

First, we consider the problem of flow and density estimation for each road of an urban
network under steady-state conditions. In this context, we propose a method to identify the
minimum number and optimal locations of flow and TR sensors. Although the NSLP has
received considerable attention as seen in Section 1.2.1, these works consider only the location
of flow sensors, assuming either full knowledge of TRs, or complete lack thereof. By considering
the different information provided by both sensor types, we identify the cost trade-off between
them which can reduce the total number of sensors. The method only relies on the knowledge
of the network topology, and does not require any information about route choices of O/D
paths which may be hard to obtain. Furthermore, we provide an efficient algorithm that
calculate the sensor locations with quasi-linear complexity2, which is a contribution compared
to other works in the literature and can be applied to large networks. Furthermore, we provide
a method to use the calculated sensor locations with additional FCD to estimate the flow and
density for every road in the network. These results are presented in Chapter2.

The second problem considers the dynamic evolution of the density and flow of every road
in the urban network. Our main contribution is the proposal of a data-based TSE method
for general urban networks that does not require the use of a FD. This method considers
also heterogeneous data sources from flow sensors, TR sensors, and FCD. For the dynamic
case, TR information is needed for every intersection. However, this requirement is relaxed
by assuming a priori estimates of these parameters. To reduce the error introduced by this
assumption, we propose a method to identify the optimal location of a small number of TR
sensors by measuring the error sensitivity of each intersection to errors in the TR values.
These results are presented in Chapter 4.

2Quasi-linear complexity refers to a number of computations of the order n log(n), where n is the number
of nodes.
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For the third problem, Chapter 4 considers the estimation of the average density of an
area of a traffic network, without the need to know the density of each individual road.
This allows the use of a low-dimensional observer, greatly simplifying the computational cost.
This information can then be used as an input to the MFD modeling, in perimeter control
applications. Other average-density estimation approaches such as the ones in [AG13] and
[AG13] use limited density measurements in few roads as a proxy for the entire region. We
find that this methods have questionable precision, which incurs in errors in the MFD inputs.
Recent advances in network theory focus on the development of low-dimensional observers
for linear combinations of the system’s state, as in [SII17] and [NWK19]. We propose to
explore the applicability of such theory to traffic networks, when sensors are only present at
the boundaries. Due to the complexity of modeling traffic dynamics with intersections, we
assume that traffic networks follow linear dynamics and focus at first on free-flow regime. This
work remains important for region-based estimators where free-flow conditions are satisfied
(interconnected residential neighborhoods or regions of cities with low/moderate traffic for
examples). Moreover, if the region does not satisfy the linear dynamics condition, the proposed
estimator can still provide bounds on the average density. Even though the underlying methods
assume free-flow, simulations with congested regimes are carried out to model the resulting
error, and to provide working ranges where the estimator is applicable under mixed regimes.
Finally, such proposed theory can prepare for future work focusing on the same problem but
under high congestion.

Finally, Chapter 5 presents a study case applied to the downtown of the city of Grenoble in
France. This uses real data from traffic sensors located at the boundaries of a selected region of
the city, whose locations where decided using the methods developed in the previous chapters.
This data is then used to evaluate the performance of the proposed estimation approaches.

1.5 Publications

1.5.1 Journals

• Martin Rodriguez-Vega, Carlos Canudas-de-Wit and Hassen Fourati. “Location of turn-
ing ratio and flow sensors for flow reconstruction in large traffic networks”. Transporta-
tion Research Part B: Methodological, 121 (March 2019) pp. 21-40.

1.5.2 Working papers

• Martin Rodriguez-Vega, Carlos Canudas-de-Wit and Hassen Fourati. “Dynamic density
and flow reconstruction in large-scale urban networks using heterogeneous data sources”.
Under review in Transportation Research Part C: Emerging technologies. (2021).

• Martin Rodriguez-Vega, Carlos Canudas-de-Wit and Hassen Fourati. “Average density
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review (3rd round) in Transportation Research Part B: Methodological. (2021).
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• Martin Rodriguez-Vega, Carlos Canudas-de-Wit and Hassen Fourati. “Urban network
traffic state estimation using a data-based approach”. 16th IFAC Symposium on Control
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Density and flow estimation in
steady-state
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2.1 Overview

This chapter treats the problem of flow and density estimation in urban networks for the case
of steady-state regime. This is done in two stages. In the first stage, we examine the problem
of minimizing the number of sensors needed to completely recover the vehicular flow. We
consider two possible sensor technologies: one that allows the measurement of turning ratios
(TRs) at a given intersection and the other that directly measures the flow in a road. We
propose a method that finds the location of the minimum number of such sensors in quasi-
linear time. The second stage consists of using the measurements from the sensors located in
the first stage in addition with FCD to calculate estimates for the flow and density of each
road of the network. The proposed methods are evaluated via microscopic vehicle simulations,
using the real network of the city of Grenoble.

13
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2.2 Model

We represent traffic networks by means of a directed graph. The nodes of the graph are
partitioned in two disjoint sets C and N: C corresponds to source and sink nodes of the
network and N = {1, 2, . . . , nN} represents intersections which are not able to generate or
store vehicular flow. The edges E = {1, 2, . . . , nE} represent the set of roads of the network.
Denote I(k) as the set of incoming edges to some node k and O(k) as the set of outgoing edges
from k. We define a partition of E in three sets: Ein =

⋃
k∈C O(k) are the boundary incoming

roads, Eout =
⋃
k∈C I(k) are the boundary outgoing roads, and Enet = E \ (Ein ∪ Eout) are the

internal roads of the network.

Definition 2.1. A feasible traffic network is a directed graph {C∪N,E} such that the following
conditions are met:

• Every edge is part of a path that starts with an edge from Ein and ends with an edge
from Eout.

• The graph contains no self loops.

• ∀k ∈ N we have I(k) ∩ Eout = ∅ and O(k) ∩ Ein = ∅.

• There is no production or storage of vehicles in the nodes in N.

2.2.1 Single road model

The traffic state of the network refers to the values of the density, flow and velocity which are
defined for each road. Denote by ρi the density of road i. From the conservation law, we have

d

dt
ρi(t) =

1

`i
(ϕin(t)− ϕout(t)) (2.1)

where ϕin is the incoming (or upstream) flow and ϕout is the outgoing (or downstream) flow.
This chapter is limited to the case when the entire network is in steady-state. This is formally
true only when external boundary flows are constant and the network dynamics reach equi-
librium, or it is approximately true when the external boundary flows slowly evolve in time.
This conditions establishes that

ρi(t) = ρi ϕin
i (t) = ϕin

i ϕout
i (t) = ϕout

i ∀i ∈ E ∀t (2.2)

This in turn implies,
0 = ϕin

i − ϕout
i (2.3)

so each road i ∈ E is characterized by a unique vehicular flow

ϕi = ϕin = ϕout (2.4)
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Figure 2.1: Speed-density relation from the triangular fundamental diagram.

Furthermore, we adopt the triangular fundamental diagram to model the relationship between
density and flow in equilibrium,

ϕi = Φ(ρi) =


vmaxi ρi if 0 ≤ ρi ≤ ρci

w(ρmax − ρi) if ρc ≤ ρi ≤ ρmaxi

(2.5)

as shown in Fig. 1.2. This FD has as parameters the free-flow speed vmaxi , the congestion-wave
speed wi, the jam density ρmax, the critical density ρci , and the maximum road capacity ϕmaxi .
Note that these parameters are related to each other, and knowledge of just three is sufficient
to calculate the rest. Taking the relationship ϕi = viρi where vi is the space-mean speed of
road i, the speed-density fundamental diagram is given by

vi = Ψ(ρi) =


vmaxi if 0 ≤ ρi ≤ ρci

wi

(
ρmaxi

ρi
− 1

)
if ρci ≤ ρi ≤ ρmaxi

(2.6)

If a road has a density higher than its critical value, it is said to be in congested regime.
Otherwise, the road is said to be in free-flow.

2.2.2 Intersection model

At the network level, the conservation law imposes constraints in the flow distribution of the
incoming and outgoing roads in each intersection. Consider an internal intersection k ∈ N,
such that it is neither a source or sink of traffic flow. Therefore, flow conservation requires
that the total incoming flow must be equal to the total outgoing one,∑

j∈O(k)

ϕj −
∑
i∈I(k)

ϕi = 0. (2.7)
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However, suppose that for an intersection k ∈ N information is available about the turning
ratios. A Turning Ratio (TR) ri,j is defined as the proportion of traffic flow in road i ∈ E

that turns to road j ∈ E at an intersection k ∈ N such that i ∈ I(k) and j ∈ O(k). With this
information, the flow in each outgoing road from an intersection can be written as a linear
combination of the flows in the incoming roads,

ϕj −
∑
i∈I(k)

ri,jϕi = 0 , ∀j ∈ O(k). (2.8)

Note that joining (2.7) and (2.8) implies
∑

j ri,j = 1.

2.2.3 Measurements and linear constraints

This chapter considers that two data sources are available: flow sensors in single roads and
TR sensors in intersections. The presence of these sensors in particular locations provides
different levels of information, which are represented as constraints in the flow distribution.

It can be seen that (2.8) can only be used when the TRs are known. Let R ⊆ N be the set
of intersections equipped with TR sensors. For each of the outgoing edges of the intersections
in R, an equation following (2.8) can be written. Define A(R) as the matrix that collects the
resulting equations for all intersections in R:

A(R)i,j =

{
1 if ei = j

−rj,ei else
, (2.9)

where ei is the i-th element of the ordered set
⋃
k∈R O(k). As an edge can only belong to one

source node, it is clear that the sets O(k) for all k ∈ N are mutually disjoint. Therefore, the
number of rows of A(R) is |

⋃
k∈R O(k)| =

∑
k∈R degout(k), where degout(k) is the out-degree

(number of outgoing edges) of node k.

Let U = N \R be the set of unmeasured intersections. Following a similar discussion to R,
each of the intersections in U has assigned an equation similar to (2.7). Define B(U) as the
matrix that collects the resulting equations for each k ∈ U:

B(U)i,j =


1 if j ∈ O(ki)

−1 if j ∈ I(ki)

0 else
, (2.10)

where ki is the i-th element of the ordered set U. Check that B(U) has size (nN − nR) × nE
with nR = |R|.

To represent the location of flow sensors, let S ⊆ E be the set of roads with cardinality
|S| = ns equipped with flow sensors. We define C(S) ∈ {0, 1}ns×nE such that C(S)i,j = 1 if
the i-th sensor is located in the j-th road. Note that we can write C(S) = [ue1 ue2 · · · uenS

]T ,
where ei is the i-th element of the set S, and ui is the standard basis vector in the i-th
coordinate . We assume that the elements of S are distinct, and so rank C(S) = nS.
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Using these matrices, we can write the linear constraints as[
L(R)

C(S)

]
ϕ =

[
0

ϕm

]
, (2.11)

where L(R) = [A(R)T B(U)T ]T and ϕm are the measurements given by the flow sensors.

Example 2.1. Consider the traffic network shown in Figure 2.2. Denote C = {v+, v−} where

v−

v+

1

2

3

4

5

6

1

2

3

4

5

6

7

8

9

10

11

Figure 2.2: Example traffic network.

v+ is a source node and v− is a sink node. Additionally, the intersections are denoted by
N = {1, 2, . . . , 6} and the roads by E = {1, 2, . . . , 11}. Assume that TR sensors are located
at intersection R = {2, 3}, and thus U = {1, 4, 5, 6}. Applying the previous description, the
linear constraint matrices are

A(R) =

ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6 ϕ7 ϕ8 ϕ9 ϕ10 ϕ11



ϕ3 0 −r23 1 0 −r53 0 0 0 0 0 0

ϕ6 0 −r26 0 0 −r56 1 0 0 0 0 0

ϕ4 0 0 0 1 0 0 0 −r84 −r94 0 0

ϕ5 0 0 0 0 1 0 0 −r85 −r95 0 0

ϕ7 0 0 0 0 0 0 1 −r87 −r97 0 0

,

B(U) =

ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6 ϕ7 ϕ8 ϕ9 ϕ10 ϕ11


1 1 0 −1 −1 0 0 0 0 0 0 0

4 0 0 0 0 0 −1 −1 0 0 1 0

5 0 0 0 0 0 0 0 1 0 0 −1

6 0 0 0 0 0 0 0 0 1 −1 1

.

The first two rows of A(R) correspond to the outgoing edges of intersection 2 (roads 3 and
6), and the last three rows are related to the outgoing edges of intersection 3 (roads 4, 5 and
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7). Similarly, each of the rows of B(U) are associated with intersections 1, 4, 5 and 6. Now
consider that sensors are located at edges S = {1, 9}. The resulting sensing matrix is

C(S) =

ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6 ϕ7 ϕ8 ϕ9 ϕ10 ϕ11 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0

.

Note that the first row of C(S) is uT1 and the second one is uT9 .

As a specific case, let the TRs be such that the input flows 2, 5, 8 and 9 are distributed
evenly to their corresponding destinations. It is straightforward to check that

rank

 A(R)

B(U)

C(S)

 = 11.

Therefore, this matrix is invertible and flow estimation can be done. �

It is clear that the system (2.11) has a solution when the matrix in the left hand side has
rank equal to the number of columns (the number of roads in the network nE). Therefore, the
condition for full road flow observability is

rank
([

L(R)

C(S)

])
= nE. (2.12)

2.3 Number and location of flow and TR sensors

Our objective is to find the minimum number of flow and TR sensors and their positions. For
the moment, we will consider the scenario where the number of TR sensors |R| = nR is given
and the number of flow sensors |S| is minimized. Later, in Section 2.3.3, we will expand the
results to the general case where both |R| and |S| are the decision variables.

The problem formulation is to find the optimal sets R∗ and S∗ that solve

R∗, S∗ = argmin
R,S

|S|

subject to rank
([

L(R)

C(S)

])
= nE

|R| = nR

. (2.13)

Proposition 2.1. For any nR ∈ {0, 1, . . . , nN}, problem (2.13) has at least one feasible solu-
tion.
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Proof. Consider S = E for which C(E) = InE
. It is straightforward that rank

([
L(R)

C(E)

])
=

nE for matrix L(R). This selection of sets R, S satisfies the constraints, hence the feasible set
is non empty.

It can be seen that this problem is combinatorial. Using a brute force approach, i.e.
calculate the cost for every possible combination and selecting the optimal one, would require
O((nN/nR)nR 2nE) operations, which is expensive to solve. Because of this, we consider a
partition of this problem into two problems with a lower degree of complexity. The first
consists in independently calculating the optimal set of TR sensors as

R∗ = argmax
R

rank L(R)

subject to |R| = nR
. (2.14)

Once we find the set R∗, the second problem consists in finding any set S∗ that satisfies the
following conditions:

find any S∗ ⊆ E

such that rank C(S∗) = nE − rank L(R∗)

rank
([

L(R∗)

C(S∗)

])
= rank C(S∗) + rank L(R∗)

. (2.15)

Next, we show that solving problems (2.14) and (2.15) is equivalent to solving problem
(2.13).

Lemma 2.1. For any given set R∗ ⊆ N, problem (2.15) has at least one solution.

Proof. From the definition of L(R∗), it can be seen that

0 < rank L(R∗) ≤
∑
k∈N

degout(k) < nE.

Consider S = E, then C(E) = I, and rank C(E) = nE. It follows that rank C(E) +

rank L(R∗) > nE. However, rank
([

L(R∗)

C(E)

])
= nE, and some rows of C(E) are linear

combinations of the other rows. We can find a solution with the following iterative process:

1. Initialize S = E.

2. While rank L(R∗) + rank C(S) > nE

2.1 Find s ∈ S such that the corresponding row of C(S) is a linear combination of the
other rows of the matrix.

2.2 Assign S← S \ {s}
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3. Define S∗ ← S

As the process only removes redundant rows, the rank of the augmented matrix is still
equal to nE. Additionally, the algorithm only ends when rank L(R∗) + rank C(S) = nE.
Therefore, for a given R∗, it is always possible to find S∗ which satisfies the constraints.

Lemma 2.2. Let R∗, S∗ be an optimal solution to problem (2.13). Then, the rows of matrices
L(R∗) and C(S∗) are linearly independent.

Proof. We proceed by contradiction. Assume that the rows of C(S∗) are not linearly indepen-
dent to the rows of L(R∗). There exists at least one row of C(S∗), uTs such that s ∈ S∗, which

is a linear combination of the rows of
[
L(R∗)

C(S∗)

]
.

Define a new set S′ = S∗ \ {s}. Matrix C(S′) is the same as C(S∗) but with row uTs

removed. It is evident that rank
([

L(R∗)

C(S′)

])
= nE and the constraints are still satisfied.

Additionally, |S′| = n∗S − 1 < |S∗|, making S∗ non optimal, which is a contradiction.

Theorem 2.1
R∗, S∗ is a solution to problem (2.13) if and only if R∗ is a solution to problem (2.14) and S∗

is a solution to problem (2.15).

Proof. Recall, by construction, rank C(S) = |S| for any S ⊆ E.

First, we prove implication. Assume that R∗, S∗ is a solution to problem (2.13). From
Lemma 2.2 and the constraints of problem (2.13), it is evident that S∗ is a solution to problem
(2.15). By way of contradiction, assume there exists R′, |R′| = nR such that rank L(R′) >

rank L(R∗). Because of Lemma 2.1, we can find S′ satisfying problem (2.15). It is easy to
check that the pair R′, S′ lie in the feasible region of problem (2.13), and that |S′| < |S∗|. This
implies that S∗ is not an optimal solution. This is a contradiction, then this R′ cannot exist
and therefore, rank L(R∗) ≥ rank L(R) for any R, |R| = nR, therefore R∗ is a solution to
(2.14).

Now we proceed to necessity. Assume that R∗ is a solution to problem (2.14) and S∗ is a
solution to problem (2.15), then |S∗| = nE − rank L(R∗). Consider that another pair R′, S′ is
an optimal solution to problem (2.13), therefore |S′| ≤ |S∗|. By construction, it must be that
rank L(R∗) ≥ rank L(R′), and using Lemma 2.2, rank L(R∗) ≥ nE − |S′|. This implies that
|S∗| ≤ |S′|, and thus, |S∗| = |S′|, and the pair R∗, S∗ is also an optimal solution to problem
(2.13).
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2.3.1 Optimal location of turning ratio sensors

Theorem 2.2 (later in this section) allows to write the rank of L(R) for any R as a function of
the number of intersections in the network and their out-degrees, i.e.

rank L(R) = nN − nR +
∑
k∈R

degout(k). (2.16)

Using (2.16), problem (2.14) can be rewritten as

R∗ = argmax
R

∑
k∈R degout(k)

subject to |R| = nR
. (2.17)

To solve this problem, the following algorithm is proposed:

Algorithm 2.1. Location of TR sensors

Inputs: Directed graph {C ∪N,E} and number of TR sensors nR.

Output: Set of intersections R∗.

1. Calculate the vector of out-degrees: d(k)← degout(k), ∀k ∈ N.

2. Sort d from highest to lowest and return the sorting vector λ, i.e. λ(1) is the index of
the highest element of d, λ(2) is the index of the second highest, and so on.

3. Construct R∗ ← {λ(1),λ(2), . . . ,λ(nR)}. �

Remark: Several solutions are possible depending on the multiplicity of the out-degrees of
the nodes of the network, however, all these solutions are optimal.

Example 2.2. Consider the traffic network shown in Figure 2.2. Furthermore, assume that
nR = 2. By applying Algorithm 2.1 to these inputs we obtain:

1. The vector of out-degrees is d = [1 2 3 1 1 2]T .

2. After sorting d, the resulting sorting vector is λ = [3 2 6 1 4 5]T .

3. The output is found by selecting the first two elements of λ: R∗ = {2, 3}.

Note however that there are several nodes with the same out-degree. Because of this, the set
{3, 6} would also be a solution to problem (2.17). �

The following propositions show that problem (2.14) can be converted into problem (2.17).

Lemma 2.3. For any feasible traffic network {C ∪ N,E} (see Definition 2.1) and any set of
intersections R ⊆ N, A(R) is full row rank.
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Proof. Without loss of generality assume that the ordering of the elements of E is such that the
smaller indexes correspond to Ein, followed by Enet and ending with Eout. Denote |Ein| = nin
and |Eout| = nout.

For now, let R = N. Using the proposed indexing, we can write

A(N)i,j =

{
1 if i = j + nin

−rj,i+nin else
,

for i = 1, 2, . . . , nE − nin and j = 1, 2, . . . , nE.

We can split A(N) = [X Y ] where Y is a square matrix of size nE − nin and can be
written as Y = I − RT with Ri,j = ri+nin,j+nin for i, j ∈ {1, 2, . . . , nE − nin}. Matrix R has
the following properties:

1. The diagonal entries of R are zero as ri,i = 0.

2. All roads in Eout have no downstream neighbors, then ri,j = 0 , ∀i ∈ Eout. Thus, the
last nout rows of R are zero. Nevertheless, by flow conservation, all the other rows of R
sum to 1.

3. For every row i of R there is a sequence of nonzero elements of R of the form
Ri,i1 , Ri1,i2 , . . . , Riq ,j such that j ∈ Eout.

Properties 1 and 2 imply that Y T is weakly diagonally dominant matrix, i.e. Yi,i ≥ |
∑

j 6=i Yi,j |,
where the strict inequality is true only for the last nout rows. Nevertheless, property 3 states
that for every row i, there is a sequence of nonzero elements that connect row i to one of the
last nout rows. Because of this, Y T is a special type of matrix called weakly chained diagonally
dominant, which is known to be non-singular [SC74]. Thus all rows of A(N) form a linearly
independent set.

For any arbitrary R ⊆ N, A(R) is just a reduced version of A(N) with some of its rows
removed. As the rows of A(N) are linearly independent, it is straightforward that A(R) is full
row rank as well.

Lemma 2.4. For any feasible traffic network {C ∪ N,E} (see Definition 2.1) and any set of
intersections U ⊆ N, B(U) is full row rank.

Proof. Initially assume that U = N. By construction, each column of B(N) ∈ {−1, 0, 1}nN×nE

has only 2 non-zero entries which sum to 0. The only exceptions are columns corresponding
to indexes Ein which have only one non-zero element equal to -1, and columns corresponding
to indexes Eout with one non-zero entry equal to 1. Note that B(N) is the incidence matrix
of {N,E}.

We proceed by contradiction. Assume that B(N) is not full rank. This implies that there
exist two sets U1 ⊂ N and U2 ⊂ N such that

∑
k∈U1

B(N)k,j = −
∑

k∈U2
B(N)k,j , ∀j, which

is equivalent to
⋃
k∈U1

O(k) =
⋃
k∈U2

I(k) and
⋃
k∈U1

I(k) =
⋃
k∈U2

O(k). This means that for
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every node in U1, any downstream neighbor must be a member of U1 or U2. Subsequently,
any downstream chain of nodes must be contained in one of these two sets. As every edge is
part of path ending in an element of Eout, the previous statements imply that there exists a
node k ∈ N such that I(k) ∩ Eout 6= ∅, which is a contradiction. Hence, the rows of B(N)

form a linearly independent set.

Following a similar discussion as at the end of the proof of Lemma 2.3, we note that for
U ⊆ N, the corresponding B(U) implies only the removal of rows from B(N), so the remaining
rows are still linearly independent, and thus B(U) is full row rank.

Theorem 2.2
For any feasible network {C∪N,E}, and sets R ⊆ N and U = N\R, it holds that rank L(R) =

rank A(R) + rank B(U).

Proof. For an arbitrary k ∈ N, we can check that 1TA({k}) = B({k}). This is due to the fact
that

∑
i ri,j = 1 for all j, and that ri,j = 0 if j is not a downstream neighbor of i. Conversely,

1
TA({k}) and B({p}) share no non-zero entries for k 6= p, because O(k) ∩ O(p) = ∅ and
I(k)∩I(p) = ∅ if k 6= p. Thus, for an arbitrary set K ⊆ N, each row of B(K) can be obtained
by the combination of unique rows of A(K). As R∩U = ∅, no row of B(U) can be written as
a combination of rows of A(R), so both matrices have linearly independent rows.

2.3.2 Optimal location of flow sensors

In this section we discuss an efficient solution to problem (2.15). The following Corollary
provides a way to calculate the optimal number of flow sensors n∗s.

Corollary 2.1. For any feasible traffic network {C∪N,E} and any set of intersections R∗ ⊆ N

with cardinality nR, the minimum number of flow sensors required to infer all flows in the
network is

n∗s = nE − nN + nR −
∑
k∈R∗

degout(k). (2.18)

Proof. Let S∗ be an optimal solution to (2.15), then n∗S = |S∗| = rank C(S∗) = nE−rank L(R∗).
Thus, the corollary follows directly from Theorem 2.2.

To solve the sensor location problem we require a method that locates the number of
sensors indicated in Corollary 2.1 in such a way that the rows of C(S∗) and L(R∗) are linearly
independent.

Because of the efficiency and simplicity of graph-based approaches such as the one of
[He13], we decided to expand these techniques to include partial information of TRs. We
propose Algorithm 2.2 which makes use of the topological structure of the traffic network and
the information given by the set R∗. The algorithm creates spanning trees of the input graph
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by using the well known Depth First Search (DFS), which is a well known graph traversal
algorithm.

Algorithm 2.2. Location of flow sensors

Inputs: Directed graph {C ∪N,E} and set R∗ ⊆ N.

Output: Set of measured edges S∗.

1. Replace all nodes in C with a single node v0 such that Ein = O(v0) and Eout = I(v0).

2. Initialize ER ← ∅ and E′ ← E. For each k ∈ R∗:

2.1 Find {e1, e2, . . . , eq} = O(k).

2.2 Assign ER ← {e2, . . . , eq}.
2.3 Assign E′ ← E′ \ ER.

3. Ignoring edge direction, perform a DFS over {N ∪ {v0},E′} starting at v0. Denote NT

and ET as the visited nodes and edges, respectively.

4. While R∗ \NT 6= ∅:

4.1 For each k ∈ R∗ \NT :

4.1.1 Construct Mk = {m ∈ N | ∃j ∈ O(k) ∩ I(m) ∩ ER}.
4.1.2 If ∃m ∈Mk ∩NT :
4.1.2.1 Find j ∈ O(k) ∩ I(m).
4.1.2.2 Return k and j. Exit loop.

4.2 Find e1 ∈ O(k) ∩ E′.

4.3 Assign E′ ← E′ \ {e1}
4.4 Assign ER ← (ER \ {j}) ∪ {e1}
4.5 Ignoring edge direction, perform a DFS over {N ∪ v0,E′} starting at k. Denote Nk

and Ek the visited nodes and edges, respectively.

4.6 Assign NT ← NT ∪Nk.

4.7 Assign ET ← ET ∪ Ek ∪ {j}.

5. Assign S∗ = E′ \ ET .

Remark: For the case R∗ = ∅, only steps 1, 3 and 5 are performed, and our algorithm
becomes the same as the one presented in [He13].

The first step of the algorithm aggregates the sources and sinks into a single node. The
resulting node will satisfy the flow conservation equations and will make the graph strongly
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connected. Step 2 removes all but one of the outgoing edges for each of the nodes in R∗.
Then, step 3 constructs a tree from the remaining edges. However, because of the removal of
edges in step 2, the resulting graph may become disconnected, then the DFS algorithm may
not reach all of the nodes in the graph. Step 4 redoes the removal of outgoing edges from R∗

such that the resulting graph is connected, and finishes the construction of a spanning tree
of the original graph. Finally, flow sensors are located in edges which are not included in the
spanning tree or the removed edges.

Remark: The removal of links in step 2 and the construction of spanning trees using the
DFS algorithm are not unique, and alternative node and edge indexing might yield different
sensor configuration. Nevertheless, all multiple solutions provide the same number of sensors,
and are thus equally optimal.

Example 2.3. Consider the traffic network shown in Figure 2.2. Let R∗ = {2, 3} as obtained
in Example 2.2. The optimal location of flow sensors is given by Algorithm 2.2: the application
of step 1 will generate the graph shown in Figure 2.3.
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Figure 2.3: Graph after Step 1 of Algorithm 2.2.

During step 2, the algorithm iterates over the elements of R∗. For intersection 2, it can be
seen that O(2) = {3, 6}, where edge 6 is arbitrarily selected and added to set ER. Similarly for
node 3, O(3) = {4, 5, 7}, and edges 4 and 5 are arbitrarily selected and added to ER. Then,
ER = {4, 5, 6} is removed from the graph. The resulting graph is shown in Figure 2.4.
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Figure 2.4: Graph after Step 2 of Algorithm 2.2.

Next, step 3 performs a DFS staring at v0 yielding NT = {v0, 1, 2} and ET = {2, 3}.
However, it can be seen that the graph of Figure 2.4 is disconnected and that intersection 3
does not belong to the visited nodes NT . Thus, we proceed with step 4, where we search for
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a node in R∗ that has an outgoing edge that connects to one of the nodes in NT , i.e. node 3.
Recall that in step 2, edge 7 was arbitrarily selected to remain in the graph. We now remove
edge 7 from the graph and add it to ER. Then, we perform a DFS staring from node 3, adding
the visited nodes N3 = {3, 4, 5, 6} and edges E3 = {8, 10, 11} to NT and ET . Finally, edge 4

is removed from ER and added to ET , hence reconnecting the disconnected components (see
Figure 2.5).
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Figure 2.5: Graph after Step 4 of Algorithm 2.2.

After these steps, the visited nodes are NT = {v0, 1, 2, 3, 4, 5, 6} and the visited edges are
ET = {2, 3, 4, 8, 10, 11}. Figure 2.5 shows the resulting graph, where the edges belonging to
ET are shown in blue and the remaining edges are marked in red. Note that the subgraph
{NT ,ET } contains all the nodes, is connected, and has no cycles. Thus, it is a spanning tree
of the original input. Finally, sensors are located in the remaining edges S∗ = {1, 9}, shown
with boxes in the figure. �

In the Appendix A.1 we show that the output of Algorithm 2.2 is indeed a solution to
problem (2.15).

2.3.3 Sensor cost minimization

Until now, we considered the case where the number of TR sensors was fixed and the number
of flow sensors was minimized. Nevertheless, another case of interest might be when the
number of both sensors are to be decided such that another variable (e.g. installation cost) is
the decision criteria. This can be formulated as,

argmin
R,S

cS|S|+ cR|R|

subject to rank
([

L(R)

C(S)

])
= nE

, (2.19)

where cR, cS are the overall costs of the TR and flow sensors, respectively. For the rest of this
section, we will write |S| = nS and |R| = nR to simplify notation.

In the previous sections it was shown that for any fixed nR the minimum number of flow
sensors corresponds to

nS = nE − nN + nR −
∑
k∈R

degout(k).
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Without loss of generality, assume a permutation of the node indexing such that degout(k) ≥
degout(k+1) for all k ∈ N. This can be achieved by the sorting operation used in Algorithm 2.1.
With this indexing, we define

f(k) =
k∑

m=1

degout(m) , k ∈ N. (2.20)

To solve (2.19), first find the value of nR that satisfies

argmin
nR

cSnS + cRnR

subject to nS = nE − nN + nR − f(nR)

0 ≤ nR ≤ nN

, (2.21)

and then use this number as an input to Algorithms 2.1 and 2.2. It is straightforward to check
that this procedure provides a solution to (2.19): for any nR, it was shown that the algorithms
generate sets S and R that satisfies the constraints of (2.19) and (2.21).

Problem (2.21) can be simplified to

argmin
nR

(cS + cR)nR − cSf(nR)

subject to 0 ≤ nR ≤ nN
. (2.22)

Due to the choice of node indexing, degout(k) is non-increasing, and therefore, f(k) is concave.
The cost function in (2.22) is then convex, so gradient-based approaches are guaranteed to
work. After straightforward manipulations we find that the optimal nR is such that

degout(nR) ≥ cS + cR
cS

≥ degout(nR + 1). (2.23)

This problem is easily solved by performing a simple search and returning the corresponding
index. For the case (cS + cR)/cS > degout(1), then nR = 0. On another hand, if this ratio is
equal to 1, we let nR to be the largest integer for which degout(nR) = 2. This is because locating
TR sensors in nodes with only one outbound edge will not provide any useful information.

Note that when (cS + cR)/cS is an integer, there may be multiple equally optimal solutions
to the problem.

2.3.4 Computational complexity

To solve the original problem (2.13), it was shown that it could be split into two simpler
problems (2.14) and (2.15), for which the solutions are given using Algorithms 2.1 and 2.2
respectively. Therefore, the total computational complexity of the proposed method is the
sum of the complexities of these two algorithms.

For Algorithm 2.1, the only required operation is the sorting of the vector of out-degrees,
which is known to have complexity O(nN log nN). For Algorithm 2.2, it can be seen that steps
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3 and 4 contain the more complex operations, as they require to perform graph traversing and
to search for particular structures. It was discussed that step 2 of Algorithm 2.2 could generate
a disconnected graph with q connected components. As each of the subgraphs must contains
at least one node with an outgoing edge the previously connected to another subgraph, it
must be that q ≤ nR. For each of the subgraphs {Ni,Ei}, i = 0, . . . , q−1, a DFS is performed
(Steps 3 and 4). As each of this searches has complexity O(|Ni|+ |Ei|), the total complexity
is

q−1∑
i=0

O (|Ni|+ |Ei|) = O

(
q−1∑
i=0

|Ni|+
q−1∑
i=0

|Ei|

)
= O(nN + nE).

On the other hand, step 4 requires to find for every subgraph an edge that connects to the
main graph. This search operation has an average complexity of O(log nN) that must be
repeated at most nR times.

By taking into account all the operations from both algorithms, we obtain a total com-
plexity of

O(nN log nN + nE).

This represents a significant improvement when compared to other works in the literature such
as [HPC09] and [Ng12] that rely on Gaussian elimination, and have computational complexity
of O(nNn

2
E).

2.4 Flow and density estimation approach

Using the sensor location described in the previous section, it is possible to use the TR and
flow measurements to obtain a unique solution to (2.11). Nevertheless, this is not enough to
uniquely determine the density in each road. This can be seen from the fundamental diagram
as shown in Fig. 2.6: for a given value of flow for some road i ∈ E, two possible densities can
be associated, the density in free-flow ρfi and the density in congestion ρci .

To discern between these two densities, information about the speed in each road is re-
quired. Suppose that speed from floating car data is available everywhere. Note from (2.6)
that speed data can be used to identify if a road is congested or in free-flow: if vi = vmaxi

the road is in free-flow, and if vi < vmaxi the road is in congestion. Once a road is classified
in one of these regimes, an affine mapping between flow and density can be established as
ρ = F (v)ϕ+d(v) where F (v) is a diagonal matrix and d(v) is a vector, and are both defined
from the FD as

Fi,i(v) =

{
1/vmax if vmax − vi < ε

−1/w if vmax − vi ≥ ε
(2.24)

and

de(v) =

{
0 if vmax − ve < ε

ρmax if vmax − ve ≥ ε
(2.25)

The tunable parameter ε takes into account the uncertainty in the speed measurements.



2.5. Simulation and validation 29

Density ρ

F
lo
w
ϕ

ρmax

ϕmax

ϕi

ρfi ρci

Figure 2.6: Density solutions from the fundamental diagram.

Using the sensor measurements and the FCD for the road speed, the joint estimation of
traffic flow and density is formulated as the following optimization problem,

min
ϕ̂,ρ̂

∣∣∣∣∣∣∣∣[ F (v) −I
C(S) 0

] [
ϕ̂

ρ̂

]
−
[
d(v)

ϕm

]∣∣∣∣∣∣∣∣2
s.t. L(R)ϕ̂ = 0

0 ≤ ϕ̂ ≤ ϕmax
0 ≤ ρ̂ ≤ ρmax

, (2.26)

where ρ̂ and ϕ̂ are the estimated quantities. This formulation has as objective to minimize
the difference between the estimated pair of flow and density, and the flow measurements
and the regime of the triangular FD determined by speed data. The constraints impose the
conservation of flow at the intersections, and that the variables remain of sensible size. As the
cost function is convex and the constraints are linear, this is a convex optimization problem
which can be solved using off-the-shelf tools.

2.5 Simulation and validation

In this section, we evaluate the performance of the proposed approach on a real traffic network
from the city of Grenoble, France. The experimental platform GTL-Ville1 developed for the
Grenoble city is the study case of the Scale-FreeBack2 project. A section of the city’s downtown
was chosen, spanning an approximate area of 1.5 km by 1 km, and can be seen in Fig. 2.7.
A graph of the zone was constructed under MATLAB, as shown in Fig. 2.8, which includes
information for each road such as its number of lanes, speed limit, and length.

1http://gtlville-dev.inrialpes.fr/
2Scale-Free control for complex physical network systems, http://scale-freeback.eu.
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Figure 2.7: Selected area of Grenoble downtown.

Note: The shape of the edges in the figure represent only the connections between roads and
intersections, and do not follow the actual geometry of the roads; the arching present in some
places is a graphical way to avoid overlapping between bidirectional roads.

2.5.1 Sensor location

For a given value of nR we solved problems (2.15) and (2.17). The process was done iteratively
by using different values of nR. In Fig. 2.9 we show the required number of flow sensors for
each value of nR, as well as the theoretical prediction from (2.18). We can observe that
the outputs of the algorithm coincide exactly with the predictions from (2.18). For the case
nR = 0, a total of 389 flow sensors are required, which represents 48% of all roads. This result
is coherent with the reported information by [Ng12] and [Vit+14], who estimated that real
networks require the measurement of between 50% and 60% of all roads to estimate all flows.
Information provided by TR sensors reduces the number of flow sensors needed. However,
the plot shows a piecewise-linear behavior, where the slope of each section is non-increasing
as the number of TR sensors increases. Thus, there are diminishing returns in the benefits of
including more TR information. From (2.18), the slope of each linear section relates to the
out-degree of the intersections being equipped with TR sensors. When nR ≤ 90, intersections
have 3 or more outgoing roads, hence each TR sensor reduces the number of flow sensors in
2 or more. When 90 < nR ≤ 245, intersections have 2 outgoing roads, then each TR sensor
reduces the number of flow sensors in 1. Lastly, if nR > 245, there are only intersections with
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Figure 2.8: Directed graph representing the selected traffic network of Grenoble downtown.
The nodes in blue represent intersections and centroids. The edges in green represent roads.

Figure 2.9: Minimum number of flow sensors for a given number of TR sensors.
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Figure 2.10: Particular configuration of sensors, using 17 TR sensors and 337 flow sensors.

one outgoing road, which provides no benefit. For this last case, the number of required flow
sensors is equal to the number of boundary incoming roads.

As a particular example, consider nR = 17, which corresponds to the number of intersec-
tions which have 4 or more outgoing roads. The resulting location provided by the algorithms
for TR and flow sensors is shown in Fig. 2.10. From (2.23), this choice corresponds to the case
when TR sensors are between 2 to 3 times more expensive than flow sensors. In the following
sections, we will use this particular configuration to estimate the flow and density.

2.5.2 Flow and density estimation

To evaluate the proposed approach, ground truth values are obtained from simulated traces of
individual vehicles using the well-known traffic microsimulator Aimsun [BC05]. This software
models the position, speed and acceleration of each vehicle according to the interaction with
the other vehicles in each section and intersection.

Aimsun requires as inputs a network geometry, profile of external demands, and definition
of the TRs for each intersection. The external demands were set constant in time, in order
reach steady-state, with magnitudes obtained from real data collected using already existing
sensors in the network and manual data collection. TRs were set arbitrarily to be homoge-
neously divided to the outgoing roads from each intersection. The initial condition of the
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Table 2.1: Fundamental diagram parameters

Variable Symbol Fixed value Min value Max value
Jam density per lane (veh/km) ρmax 120 - -
Critical density per lane (veh/km) ρc 36 - -
Free-flow speed (km/h) vmax - 10 50
Congested-wave speed (km/h) w - 4.29 21.43

network is completely empty, and the simulation time is of 1 hour.

As measurements, data was collected from the intersections and roads as shown in Fig. 2.10.
Flow sensors are located at the exit of each selected road, and they count the number of vehicles
that passed that location during time intervals of 10 minutes. For TR, the total number of
vehicles that made each turn at the simulation end was recorded, and then normalized with
the sum of all turns from the same incoming road.

For the validation stage, the flow of each road is recorded in the same way as described
for the measurements (vehicles counted at the exit during 10 minute intervals). The density
of each road is calculated as the average number of vehicles contained in each road during a
time interval of 10 minutes, divided by the road’s length and number of lanes.

The estimated flow and density are obtained by implementing (2.26) in MATLAB, using
the well known interior-point algorithm [BV04, Chapter 11]. Table 2.1 shows the FD param-
eters used in estimation. For the jam and critical densities, the values are the same for all
roads in the network, as they depend on the minimal distance between vehicles which is a
function of cultural driving habits, and the average vehicle length. In the literature, reported
values for the jam density range between 100 and 200 veh/km (e.g. [TK13],[KD17],[AI+04]).
For the considered scenario, a commonly used value of 120 veh/km for Europe is selected. A
ratio of critical to jam density of 0.3 is used to obtain the value of ρc [Car+12]. The value for
the free-flow speed vary from one road to another, so the minimum and maximum values are
shown. In practice, this parameter can be obtained from the FCD by considering the average
measured road speeds during periods of low traffic. The congested-wave speed parameters is
calculated for each road from the previous parameters.

Figure 2.11 shows the ground truth values obtained directly from Aimsun, and the cor-
responding estimates. To improve the readability of the figure, roads are indexed to sort in
ascending order the ground truth values for each case.. Note that the estimates are dispersed
around the real values. This dispersion is caused by several factors. There is uncertainty in
the parameters used by the estimator, as the microscopic model used by Aimsun allows for
each vehicle to have a stochastic optimal velocity and minimal inter-vehicle headway, which
is similar to real driver behavior. Additionally, in the microscopic scale, interactions between
vehicles in intersections and accelerations when moving to a different road can cause devia-
tions from an ideal steady-state. Nevertheless, most of the roads show a close agreement with
the real values, with the exception of some outliers.

To quantitatively analyze the error between the true and estimated values, we use as a
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Figure 2.11: Ground truth and estimated values for flow and density in the simulated scenario.
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Figure 2.12: Cumulative distribution for the flow and density relative errors. Each point in the
curve shows the fraction of roads that have a relative error less than or equal to the abscissa.
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metric the relative error (RE). For a given road i, this is defined as

REρ =
|ρi − ρ̂i|
ρi

(2.27)

where REρ is a function of density, ρi is the true value, and ρ̂i is the estimated value. The
REϕ for flow is defined analogously. Figure 2.12 shows the cumulative distribution plot for
both relative errors. The cumulative distribution function (CDF) is defined as the fraction of
roads for which the error is less than or equal to a given value. The figure shows two curves:
in blue, the error for the estimates using measurements collected during the first 10 minutes
of the simulation, so the steady-state is not yet reached. The red curve shows the results for
the estimates using measurements obtained at the end of the simulation (the last 10 minutes
from t = 50 minutes to t = 60 minutes), where steady-state is expected.

For the estimation in steady-state (red curve), we can see that the median error for the flow
is about 3%, and for density about 8%. Moreover, 80% of the roads have a error below 20%
for flow and below 25% for density. This shows that the proposed approach provides a close
estimation for most of the roads in the network for the considered scenario once steady-state
is achieved. In contrast, the estimates obtained during the transient (blue curve) show higher
errors, evidenced by the horizontal distance between the curves in the figure. Nevertheless,
even in these conditions the obtained median errors for flow and density are 10% and 13%
respectively, and 60% of the roads present an error below 20% for both variables.

2.6 Concluding remarks

In this work, we solved the network sensor location problem by using two types of sensing
technologies. This allows to reduce the number of flow sensors that are originally required. We
solved this problem by finding the solution of two independent problems: optimally locating
a given number of TR sensors, and then, using this result as an input, we locate flow sensors.
These problems were shown to have computationally efficient solutions, as the first one only
requires vector sorting, and the second one can be solved by the construction of spanning trees.
The methods were shown to give an optimal solution to the original problem. The complexity
of the proposed algorithms was shown to be O(nN log nN + nE), which is much more efficient
than previous methods that rely on algebraic computations providing complexities of O(nNn

2
E).

The proposed approaches were tested using microscopic simulations in the real network of
Grenoble. The estimation results showed to be very close to the ground truth, with median
relative errors under 10% for both flow and density estimation. Nevertheless, the number
of sensors required to deploy this approach can be unpractical for some applications, even
when considering the use of both sensor types. Furthermore, the requirement of steady-state
conditions limit the applicability of the methods. In the following chapters we will consider
different approaches that do not assume steady-state conditions and that use fewer sensors.
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3.1 Overview

This Chapter proposes a dynamic estimator for the vehicle density of every road section of a
large urban traffic network. We assume that a limited number of flow and TR sensors can be
installed, and that aggregate floating car data (FCD) are available, such that the space-mean
speed of each road can be estimated. We propose a method to locate TR sensors, which takes
as input previous low-quality estimates of the turn rates, and then assigns each intersection
a weight according to the effect on the total density estimation error caused by perturbations
between the a priori and actual TR values. We evaluate the models and estimator for the city
of Grenoble, France.
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3.2 Model

We define a traffic network as a directed graph G = {N,E} where the nodes N ⊂ N correspond
to intersections, and the edges E ⊂ N×N correspond to road sections. Additionally, for every
road section i, there are associated parameters such as the road length `i, number of lanes Γi,
and maximum velocity vmax

i .

The traffic state refers to the collection of road densities, inflows and outflows for all roads,
which we denote with vectors ρ(t),ϕin(t),ϕout(t) ∈ R|E|. Traffic dynamics are governed by
the conservation law

d

dt
ρ(t) = L−1(ϕin(t)−ϕout(t)) (3.1)

where L is a diagonal matrix containing the road lengths, i.e., L = diag(`).

Intersections are modeled as 0 dimensional points that do not store vehicles. To model
the exchange of inflows and outflows of the different roads at the intersections we use the TR
parameters. Let I(n) be the set of incoming roads to some intersection n ∈ N and O(n) be the
set of outgoing roads from n. A TR ri,j for i ∈ I(n) and j ∈ O(n) defines the proportion of
vehicles exiting i that enters j. As intersections do not store vehicles, conservation of density
implies that ∑

j∈O(n)

ri,j = 1 , ∀n ∈ N ∀i ∈ E \ Eout (3.2)

where Eout are outgoing roads at the boundary of the network, hence have no downstream
roads. Let R ∈ R|E|×|E| be the TR matrix with elements ri,j . If there is no connection
between roads i, j, then ri,j = 0. The input flows of each section can be expressed as a linear
combination of the output flows of the preceding sections.

ϕin(t) = R>ϕout(t) +ϕext(t) (3.3)

where ϕext(t) corresponds to the external inflows (also known as the input demands), which
are the incoming flow for the roads which are at the boundaries of the network. Combining
eqs. (3.1) and (3.3), we have

d

dt
ρ(t) = L−1(R> − I)ϕout(t) + L−1ϕext(t) (3.4)

Define vi(t) as the space-mean speed of road i, that is, the average of the speeds of vehicles
inside of road i at time t. Denote v(t) as the speed vector with elements vi(t). Using the
hydrodynamic relation, we can approximate the outflows as

ϕout(t) ≈ V (t)ρ(t) (3.5)

where V (t) = diag(v(t)). This relation applies accurately when considering very short dis-
tances, or when the spatial variations in vehicle speed and density are negligible. We make
the following assumption,

Assumption 3.1. The speed and density throughout a road section do not vary significantly
in the spatial domain.
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Therefore, (3.4) can be rewritten as

d

dt
ρ(t) = L−1(R> − I)V (t)ρ(t) + L−1ϕext(t) (3.6)

In this paper, we use an open loop observer following the same dynamics of (3.6).To achieve
this goal, we require knowledge about the TRs, the road speeds, and the external flows. The
measurement of these variables will be examined in Section 3.3. For now, denote R̂ as the
estimate for the TR matrix, V̂ (t) as the estimate for the speed matrix, and ϕmea(t) as the
flow measurements at the boundary inputs. Thus, the estimator for the system’s density is

d

dt
ρ̂(t) = L−1(R̂> − I)V̂ (t)ρ̂(t) + L−1ϕmea(t) (3.7)

where ρ̂(t) is the estimated density. The error associated to this estimate is defined as

e(t) = ρ(t)− ρ̂(t). (3.8)

with dynamics,
d

dt
e(t) = L−1(R> − I)V (t)e(t)− L−1(R> − I)Ω(t)ρ̂(t)

−L−1Ξ>V (t)ρ̂(t)− L−1Ξ>Ω(t)ρ̂(t) + (ϕext(t)−ϕmea(t))

(3.9)

where Ξ = R̂ − R and Ω(t) = V̂ (t) − V (t). The performance of the proposed estimator
depends on the stability of (3.9) and how it is affected by the error terms. Consider first the
case where all information is known and measurements are ideal, i.e., Ξ = 0, Ω(t) = 0, and
ϕext(t) = ϕmea(t). Theorem 3.1 shows that under some assumptions on the velocity V (t), the
estimator is asymptotically stable for any initial condition.

Theorem 3.1
Consider the dynamic system

d

dt
e(t) = L−1(R> − I)V (t)e(t) (3.10)

If V = diag(v(t)) such that v(t) is continuous, bounded by

0 < vmin1 ≤ v(t) ≤ vmax1, (3.11)

and is continuously differentiable with derivative bounded by

d

dt
v(t) ≤ v2min(1− ε)

`max||(I−R>)−1||∞
1 (3.12)

where 0 < ε < 1 is arbitrary, then (3.10) is asymptotically stable, i.e., e(t)→ 0 as t→∞.

The proof of Theorem 3.1 is shown in Appendix A.2. The restrictions imposed on the
velocity are very strict, but they are sufficient conditions which may be conservative, and the
system may still be stable when the conditions are not satisfied. This stability result shows
that if the measured TRs, velocities and boundary inflows are close to the real values, the
estimator can give a close estimation of the network’s states. In Section 3.3, we discuss how
these variables are measured, and how to locate sensors such the resulting error is minimized.
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3.3 Sensor location and input data

The estimator (3.7) requires the knowledge of the TR parameters ri,j , the measurement of
space-mean speeds v(t), and some observations of the state variables or incoming signals. We
are going to consider the following sources of information:

• Stationary counting sensors. Installed at a certain location in a road, they measure the
number of vehicles that pass in front.

• Turning ratio sensors. Installed in all adjacent roads to an intersection, they measure
the proportion of vehicles taking any turn.

• FCD. Some of the vehicles in the network report their GPS traces to a remote server.
To protect user privacy, the traces are aggregated, but average section velocities are able
to be recovered.

As the number of sensors is constrained by budgetary limits, it is important to determine
the optimal locations of few sensors, such that the density and flow estimates are close to the
real values.

3.3.1 Floating car data

Consider that a fraction of the vehicles in the network are equipped with devices (e.g. a GPS
navigator) that periodically report to a centralized server information about the vehicles tra-
jectory, such as its position and velocity at a given time. Define by Vi(t) the set of vehicles
indexes providing FCD that are inside of road i at time t. The total number of vehicles in
i cannot be estimated with this information as the penetration rate of vehicles that provides
FCD is unknown. However, as the velocity of a vehicle is affected by the velocities of sur-
rounding vehicles, this can be used to estimate the space-mean speed of the section. Let να be
the speed of a vehicle indexed by α. We define the aggregated speed for road section i from
FCD data by

vFCD
i (t) =

1

|Vi(t)|
∑

α∈Vi(t)

να(t) (3.13)

where |Vi(t)| is the cardinality of Vi(t), corresponding to the number of vehicles in road i at
time t. We assume that FCD speeds are direct measurements of the space-mean road speed,
and thus

Ω(t) = 0 (3.14)

However, due to technical constraints, this information is not provided continuously, but at
discrete times denoted by {tv0 , tv1 , tv2 , . . . }. Thus let vFCD[i] be the average of the reported
vehicle velocities for all road sections between times tvi and t

v
i−1. Denote V̂ [i] = diag(vFCD[i]).
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We assume in what follows that the aggregated speeds are available for all roads. In the
case where the information is not available for some roads due to a lack of reporting vehicles,
we use the value of the maximum speed (or speed limit) vmax.

3.3.2 Stationary counting sensors

We assume that flow sensors are located in the boundary inputs of the network, such that the
external flows ϕext(t) are measured directly,

ϕmea(t) = ϕext(t) (3.15)

However, in practice the flow measurements are not continuous. Instead, the sensors report
the number of vehicles counted during a discrete interval. Let {tϕ0 , t

ϕ
1 , t

ϕ
2 , . . . } denote the

times at which flow measurements are available. Let ϕmea[m] be the measured flow during
the interval [tϕm−1, t

ϕ
m]. Then

ϕmea[m] =
1

(tϕm − tϕm−1)

∫ tϕm

tϕm−1

ϕext(τ)dτ. (3.16)

3.3.3 Turning ratios

The estimator requires the knowledge of the TR parameters for all intersections in the traffic
network. This is however unfeasible in practice as it requires to provide every intersection
with sensors, which is impossible for networks containing more than a few intersections.

To circumvent this restriction, some authors have proposed the use of heuristic formulas
that provide a priori values to the TRs for each intersection, based on few network parameters
which are more readily obtainable [Fur90]. As these values are only an approximation, an
optimal selection of a reduced number of measurements is then required to complement this
initial values. Appendix B discusses an approach to provide a priori values to the TRs based
only on the physical properties of the network’s roads, which has been validated using data
from a Highway near the city of Grenoble.

Suppose that a limited number of sensors is available. The selection of intersections to
locate sensors is done to minimize the error in the flow-density estimation caused by deviations
between the real and estimated TRs. For this, we propose to identify which intersections
generate the highest error given some perturbations in its TRs.

3.3.3.1 Flow estimation error

Let r̂i,j be the a priori value proposed for some TR. Let the deviation between this and the
actual value be given by ξi,j such that,

r̂i,j = ri,j + ξi,j (3.17)
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The deviations ξi,j will cause an error in the state estimation. Define R̂ and Ξ as matrices
with elements r̂i,j and ξi,j , respectively. Note that R̂ = R + Ξ. To quantify the sensitivity
of the TRs in the error, we neglect the effects of time variations of the external flows and
velocities, hence V (t) = V and ϕext(t) = ϕext.

We want to express the effect of the TR perturbations Ξ in the estimation error e(t). To
simplify the notation, let M = (I − R>)V and M̂ = (I − R̂>)V , such that M̂ = M − Ξ>V .
Under the assumption that section speeds are constant, the dynamics (3.6) and (3.7) become
time-invariant, for which a closed-form solution is known,

ρ(t) = e−L
−1Mtρ(0) +

(∫ t

0
e−L

−1Mτd

)
L−1ϕext

ρ̂(t) = e−L
−1M̂tρ̂(0) +

(∫ t

0
e−L

−1M̂τd

)
L−1ϕext

(3.18)

Therefore, the error can be written as

e(t) = e−L
−1Mtρ(0)− e−L−1M̂tρ̂(0) +

∫ t

0

(
e−L

−1Mτ − e−L−1M̂τ
)

dτL−1ϕext (3.19)

In [RVWF19], we showed that I − R> is an invertible M-matrix, with all eigenvalues having
positive real parts. Therefore, it can be shown that −L−1M has eigenvalues with negative-real
parts, so it is a stable matrix. Thus, the asymptotic error is

e = lim
t→∞

e(t) = (M−1 − M̂−1)ϕext (3.20)

where we have used the facts that the exponential function of a stable matrix goes to zero as
time goes to infinity, and that ∫ ∞

0
eAtdt = −A−1 (3.21)

for any stable invertible matrix A. The latter fact follows from the property of the exponential
function

deAt

dt
= AeAt (3.22)

and the fundamental theorem of calculus.

3.3.3.2 Sensitivity of turning ratio deviations

Suppose that the deviations ξi,j are small, and that we want to calculate the error resulting
from small nudges in a single value,

∂e

∂ξi,j
=

∂

∂ξi,j

(
(M−1 − M̂−1)ϕext

)
= −

(
∂

∂ξi,j
M̂−1

)
ϕext (3.23)

Consider the following theorem.
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Theorem 3.2
([MN19]) Let A(t) be an invertible matrix that depends on a scalar parameter t. Then,

dA−1

dt
= −A−1dA

dt
A−1 (3.24)

Using Theorem 3.2, (3.23) can be written as

∂e

∂ξi,j
= M̂−1

∂Ξ>

∂ξi,j
V M̂−1ϕext (3.25)

Assume that the TR deviations are independent from each other. Thus,

∂Ξ>

∂ξi,j
= uju

>
i (3.26)

where ui is the i-th column of the identity matrix of suitable dimensions. Hence,

∂e

∂ξi,j
= M̂−1uju

>
i V M̂

−1ϕext (3.27)

3.3.3.3 Selection of intersections

Consider an intersection n ∈ N with incoming roads I(n) and outgoing roads O(n). Let
ξi = {ξi,j}j∈O(n) for each i ∈ I(n). To quantify the effect of the perturbations ξi,j on the error
e we propose the following procedure:

1. Calculate the Jacobian matrix
Ji =

∂e

∂ξi
(3.28)

for each incoming road i ∈ I(n).

2. Calculate the error energy due to perturbations in the TRs of i using the Frobenius
norm of the Jacobian,

||Ji||2F =
∑
k∈E

∑
j∈O(n)

(
∂ek
∂ξi,j

)2

. (3.29)

3. Calculate the intersection weight as the total error energy due to its incoming roads,

wn =
∑
i∈I(n)

||Ji||2F (3.30)

4. Locate the available sensors in intersections with the highest values of wn.

Note that the intersection weight can be simplified to

wn =
∑
i∈I(n)

∑
j∈O(n)

∑
k∈E

∑
p∈E

M̂−1k,j M̂
−1
i,p viϕ

ext
p

2

(3.31)
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This heuristic procedure is a greedy approach as it assumes that deviations in the TR
values are independent from each other.

Once the selected intersections are equipped with sensors, the corresponding elements of
the TR matrix can be adjusted with the measured values. One type of sensor capable of
measuring this parameter are Bluetooth (BT) readers. The reader detects the presence of
a vehicle equipped with a BT device, and reports a count. Counts are matched between
incoming and outgoing roads to calculate the percentages of turns during a time interval. As
the ratio of vehicles equipped with BT is unknown, these sensors cannot provide absolute flow
measurements.

Let B be the set of intersections with BT readers. These sensors can provide data dynami-
cally, such that the estimated matrix R̂ is time dependent. Suppose that ratio data is received
at times {tR0 , tR1 , tR2 , . . . }. Denote rBi,j [k] as the TR value reported by the sensors using
vehicles counts between times tRk−1 and tRk . The corresponding matrix of measured TRs is

R̂i,j [k] =


rBi,j [k] if ∃n ∈ B : i ∈ I(n) , j ∈ O(n)

r̂i,j else
(3.32)

3.4 Estimator implementation

To be able to use the estimator described in Section 3.2 in practical applications, it is required
to provide a discrete time version of the dynamic equation. Furthermore, as the sampling
times for the flow, speed and TR information might be different, we propose an algorithm
able to incorporate these measurements to estimate the traffic state.

Define the discrete time density ρ[k] such that it a sampled version of the density at times
t = k∆t. Assuming that ∆t is small enough, (3.7) can be discretized as

ρ̂[k + 1] = ρ̂[k] + ∆t
(
A[k]ρ̂[k] + L−1ϕmea[k]

)
(3.33)

where
A[k] = L−1(R̂>[k]− I)V̂ [k] (3.34)

The discretization step ∆t must be chosen such that the estimator is numerically stable. The
Courant-Friedrichs-Lewy criterion establishes that a necessary condition for the discretization
step is ∆t < mini(`i/v

max
i ), that is, the discretization time is less than the minimum traversal

time for all roads in the network. Algorithm 3.1 allows to use the discrete-time estimator with
input data provided at arbitrary discrete times.

Algorithm 3.1. Density estimation

Inputs:

• Initial density condition ρ[0].
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• Discretization time ∆t.

• Graph G and road lengths L.

• Sensor data:

– Aggregate speeds: Update times tvi for i ∈ {1, 2, . . . , imax} and data V̂ [i] .

– Turning ratios: Update times tRj for j ∈ {1, 2, . . . , jmax} and data R̂[j].

– External inflows: Update times tϕm for m ∈ {1, 2, . . . ,mmax} and data ϕmea[m].

Outputs:

• Discrete density vector ρ[k] for k ∈ {0, 1, 2, . . . , kmax}, where

kmax = dmin(tvimax , tRjmax , t
ϕ
mmax)/∆te.

Steps:

1. Initialize (i, j, k,m, T )← (1, 1, 0, 1, 0).

2. While (i ≤ imax) ∧ (j ≤ jmax) ∧ (m ≤ mmax)

2.1. T ← min(tvi , t
R
j , t

ϕ
m)

2.2. n←
⌈
T

∆t

⌉
2.3. While k < n

2.3.1. V ← V̂ [i]

2.3.2. R← R̂B[j]

2.3.3. A← L−1(R> − I)V
2.3.4. ρ[k + 1]← (I + ∆tA)ρ[k] + ∆tL−1ϕmea[m]

2.3.5. k ← k + 1

2.4. if T ≥ tvi then i← i+ 1

2.5. if T ≥ tRj then j ← j + 1

2.6. if T ≥ tϕm then m← m+ 1

3. Return ρ[k] ∀k.

To deal with the variable input-data times, Algorithm 3.1 uses the sample-and-hold scheme
to update the density estimates.
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Figure 3.1: Time series for the trajectories of the real and estimated density and flow for one
road using different aggregation times. Top row uses a window of 1 minute, whereas the
bottom row uses one of 5 minutes.

3.5 Simulation and validation

To evaluate the performance of the estimator, we considered a zone of downtown Grenoble,
France. This corresponds to the same case as shown in Chapter 2 in Fig. 2.7. The ground
truth states are obtained via simulated traces of individual vehicles using the well-known
traffic microsimulator Aimsun. As input data for Aimsun, we used the TRs as described in
Appendix B. As input demands, an arbitrary but realistic time-varying profile was applied
to each boundary inflow. As simulation outputs, the position and speed of each vehicle were
collected at each time step. From this raw data, the average road speeds and boundary flows
are calculated by (3.13) and (3.16). For validation, the ground-truth density for road i is
calculated as

ρi[k] =
1

`iτ

∫ kτ

(k−1)τ
|Vi(t)|dt (3.35)

where Vi(t) is the set of vehicle indexes contained in road i at time t, and τ is the duration of
a time window that represents the measurement aggregation time.

3.5.1 Turning ratios known everywhere

In first a simulation scenario, we consider the case where all TRs are known, R̂ = R. Figure 3.1
shows the evolution of the real and estimated densities for one particular road of the network
when using aggregation times of 1 and 5 minutes. Note that for both cases the estimates are
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close to the real values. Nevertheless, the real values present a much higher dispersion, which
is increases as the aggregation time decreases. This dispersion is due to the stochastic behavior
of individual vehicles that are not captured by the macroscopic model. As the aggregation time
increases, the individual vehicle decisions are smoothed out, so the estimation error decreases.
To quantify the error we consider the following error metrics: a) the Mean Error (ME) and
Relative Mean Error (RME) defined as

MEρi =
1

T

∣∣∣∣∣
T∑
k=1

(ρi[k]− ρ̂i[k])

∣∣∣∣∣ (3.36)

RMEρi =
MEρi

1

T

T∑
k=1

ρi[k]

(3.37)

where T is the duration of the simulation, which measure the deviation between the mean
trajectories of the real and estimated quantities; and b) the Absolute Error (AE) and Relative
Absolute Error (RAE), defined as

AEρi =
1

T

T∑
k=1

|ρi[k]− ρ̂i[k]| (3.38)

RAEρi =
AEρi

1

T

T∑
k=1

ρi[k]

, (3.39)

which measure the total error between the two trajectories, as it not only consider the difference
between the means, but also the high frequency variations of one signal with respect to the
other.

Figure 3.2 shows the error Cumulative Distribution Function (CDF) for the relative mean
and absolute errors for density. That is, CDF(x) is the percentage of roads that have an error
less than or equal to x. The error is presented for three scenarios using varying aggregation
times: 1,5, and 10 minutes. Note that for the RME, the three aggregation times exhibit
the same behavior, showing that, overall, the mean trajectory of the vehicles is correctly
estimated: 90% of the roads present an error lesser than 7%. For the RAE, it is noted that
longer aggregation times present a reduced error, as the dispersion of the ground truth values
due to the behavior of individual vehicles is smoothed out. As is to be expected, the RAE is
greater than the RME, as 90% of the roads present now an error lesser than 18% for the case
of an aggregation time of 10 minutes, 25% for the case of 5 minutes, and 52% for the case of
1 minute.

3.5.2 Simulation results with few turning ratio measurements

In the second simulated scenario, a uniform disturbance between -10% and 10% was added to
the estimates for the TRs. The random values were used as input to the AIMSUN simulation,
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Figure 3.2: Cumulative distribution of the relative mean and absolute errors for density esti-
mation, using different aggregation times. Solid lines correspond to the RME, whereas dashed
lines correspond to the RAE.

Figure 3.3: Sensitivity weight of each intersection: effect in the estimation error by small
perturbations in the TRs. Intersection identifiers were sorted according to the weight.
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Figure 3.4: Location of TR sensors. Nodes in dark-red are the measured nodes.

but they were unknown for the estimation algorithm. To include TR measurements, the
method detailed in Section 3.3.3 was used to measure the sensitivity of each intersection.
Figure 3.3 shows the distribution of the intersection sensitivity weight using the initial TR
estimates and the maximum demands measured at the boundaries. Note that the sensitivity
weight decreases very quickly, so it is expected that diminishing returns will be observed as
more sensors are located. Thus, a few number of intersections could provide a value trade-off.
As an illustrating example, the 20 intersections with the highest weight were selected such that
the TRs are measured directly. This corresponds to approximately 4% of the total number of
network’s intersections. Fig. 3.4 shows the location of the TR sensors.

The outputs of the simulation were obtained using an aggregation time of 10 minutes. For
comparison purposes, the results are also shown for the case where no sensors are located,
and where all TRs are known. These correspond to the worst and best case scenarios, respec-
tively. Fig. 3.5 shows the resulting density error CDF. As expected, the case that measures
all intersections out-performs the other methods, especially in the estimation of the mean
trajectory, as seen in the ME metric. However, this case is generally unfeasible due to prac-
tical limitations. Similarly, the no measurements case shows the highest errors and provides
an upper-bound to the error. The error obtained using the proposed sensor location scheme
(using the intersection weight) presents a significant improvement when compared to the base
case with no sensors, as for a given number of roads, the RME increases in about 4%.
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Figure 3.5: Relative error for the density estimation using time varying TRs. Error is reported
when measuring all intersections, no intersections, locations using the sensitivity method,
random selection of intersections.

3.6 Concluding remarks

In this Chapter, we proposed a method to estimate the dynamical evolution of flow and density
in large urban traffic network by using heterogeneous data sources: counting sensors, vehicle
identifier sensors, and floating car data. We discussed the implementation of these types of
data in real case scenarios such as varying sampling rates and time intervals, and how to take
them into account in the estimator implementation.

The method requires little parameters to be known, as there is no explicit modeling of the
road outflows in terms of the current density, so no fundamental diagram is required. The
estimation relies in a data-based approach based on the FCD. However, the knowledge of
the TRs for every intersection is required. To simplify this requirement, we introduce a TR
sensor location scheme that takes as input a priori values for these parameters to identify the
intersections for which small perturbations in the TR values would generate the highest error.

We tested the proposed methods using microsimulations over a selection of the city of
Grenoble. The results show that the estimator performs well, as it is able to estimate the
overall trajectory of the traffic states, with many roads presenting little errors. The proposed
methods are flexible, as they can be applied for different budgets. In addition, the algorithm
allows the inclusion of new data, so with time, the previous information can be used to improve
the location of TR sensors to increase the performance of the estimator.
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4.1 Overview

In this chapter, we consider the estimation of the average of all road densities in a traffic
network. We propose the the use of a reduced-order open-loop observer, and we show that it
is possible to find a virtual representation of the network using inhomogeneous road divisions
such that the proposed observer converges to the average density of the virtual system.

4.2 Model

Consider the road-graph representation of a traffic network G = {E, T , R}, where the nodes
E = {1, 2, . . . , p} represent sections of roads, the edges T ⊂ E×E represent the possible vehicle
transfers (turns) between roads1, and R ∈ Rp×p is the adjacency matrix (TR matrix) whose

1Note that this graph differs from those used in Chapters 2 and 3 where the nodes were intersections and
the edges roads. The definition used in this Chapter is also referred to as the line-graph or the road-graph.

51
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elements ri,j are the TRs. In addition to G, we include a set of parameters for each road
representing physical properties, e.g., a vector of road lengths ` ∈ Rp.

As presented in Chapter 3, we consider as state variable the vector of road densities
ρ(t) ∈ Rp. The dynamics of this vector where found to be given by

ρ̇(t) = L−1(R> − I)ϕout(t) + L−1Bu(t). (4.1)

where L = diag(`), ϕout(t) is the flow at the downstream end of each road, B ∈ {0, 1}p×q is
a selection matrix that indicates the location of boundary inflows, and u(t) ∈ Rq contains the
input demands. Assuming that vehicle density and speed do not vary significantly in space,
it follows

ρ̇(t) = L−1(R> − I)V (t)ρ(t) + L−1Bu(t) (4.2)

where V (t) = diag(v(t)) is a matrix containing the space-mean speed of each road. However,
depending in the relationship between road density ρ(t) and speed v(t), this model defini-
tion is generally non-linear, or at least, time-dependent. In this Chapter, we will examine
the convergence of a one-dimensional estimator for the average density of the whole network.
However, due to the limitations of the available tools to analyze the observability and de-
tectability of non-linear systems, we are restricted to the case of linear systems. This is the
case when the speed of each road is independent from density and constant in time, v(t) = v,
such that

ρ̇(t) = Aρ(t) + L−1Bu(t) (4.3)

where A = L−1(R> − I)V . For instance, the case when all roads are in free-flow, ρ ≤ ρc,
satisfies the required condition, but in the congested regime, the road outflow decreases as the
density increases, implying the average vehicle speed decreases as well.

Despite this limitation, Section 4.6 evaluates the performance of the estimator under con-
gested scenarios. It was found that for some cases, even multiple congestions in a considered
region still provide an error under 10%. Nevertheless, the extension of this work to consider
more general cases with congestion is a work in progress.

4.2.1 Average density dynamics

Suppose that sensors are located in a set of nodes S ⊂ N corresponding to the boundaries
(inflows and outflows) of the network. Without loss of generality, we index roads such that
measured roads have the highest indexes, i.e., S = {p− s+ 1, . . . , p} with q < s < p. Thus,
y(t) = Cρ(t) where C = [0s×m Is], and m = p− s is the number of unmeasured nodes.

Consider a partition of the state vector as ρ(t) = [ρ>1 (t) ρ>2 (t)]> such that ρ1(t) ∈ Rm
corresponds to the states of the unmeasured nodes (also called internal nodes), and ρ2(t) ∈ Rs
to the states of the measured nodes. Note that ρ2(t) = y(t). The system matrices are
partitioned accordingly,

A =

[
A11 A12

A21 A22

]
, B =

[
B1

B2

]
. (4.4)
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where A11 ∈ Rm×m, A12 ∈ Rm×s, A21 ∈ Rs×m, A22 ∈ Rs×s, and B1 ∈ Rm×q and B2 ∈ Rs×q.
Analogously, let

R =

[
R11 R12

R21 R22

]
, L =

[
L1 0

0 L2

]
, V =

[
V1 0

0 V2

]
. (4.5)

We aim to estimate the average of the unmeasured states, i.e., ρav(t) = 1
m1>ρ1(t) with-

out requiring knowledge about the full vector ρ1(t). Consider a lower-dimensional projected
system in which the unmeasured states are aggregated. The average state follows

ρ̇av(t) =
1

m
1>A111ρav(t) +

1

m
1>A12ρ2(t) +

1

m
1>A11σ(t) (4.6)

where σ(t) is the average deviation vector given by σ(t) = ρ1(t)− 1ρav(t).

4.2.2 Average detectability

Consider the open-loop observer

˙̂ρav(t) =
1

m
[1>A111ρ̂av(t) + 1>A12y(t)] (4.7)

which is obtained by following the known dynamics (4.6) ignoring the unknown input σ(t).

Definition 4.1 (Average detectability). A system is called average detectable if the open-loop
observer (4.7) converges asymptotically, i.e., ρ̂av(t)→ ρav(t) as t→∞.

Note that average detectability is a particular case of functional observability, as described
in [FHJ10]. Theorem 4.1 states the conditions that a network must satisfy to be average
detectable.

Theorem 4.1 ([NWK19])
For systems of the form (4.6), the open-loop observer (4.7) converges if and only if
1>A11 = −γ1> with γ > 0.

4.3 Virtual network definition

Theorem 4.1 imposes strict conditions which are not generally satisfied for traffic networks.
Nevertheless, we will show that by dividing each road into virtual cells, it is possible to
construct a virtual network which is average detectable. We first show some motivating
examples which illustrate the need for these virtual partitions in the average detectability
problem. Then, we present how these divisions are defined for general networks.

Example 4.1. One way road
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`

(a) One way road
`
3

`
3

`
3

4 1 2 3 5

(b) Homogeneous cells

δδ
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δ
3

4 1 2 3 5

(c) Inhomogeneous cells

Figure 4.1: One way road. Green strips represent sensors located and the upstream and
downstream ends. Two different virtual divisions are shown.

Consider a one way road as shown in Fig. 4.1.a. Sensors are located at the upstream and
downstream boundaries of the road, represented by green strips in the figure. Let ` be the
length of road between the sensors, and v be the maximum velocity. We divide this stretch
into 3 virtual sections (cells), such that the sum of their lengths is `, and all of them have
maximum velocity v. Possible divisions are shown in Figs. 4.1.b and 4.1.c.

First, consider the common approach of considering homogeneous cells as in Fig. 4.1.b,
such that cells 1-3 have each length `/3. The corresponding state matrix is,

A =



−3`−1 0 0 3`−1 0

3`−1 −3`−1 0 0 0

0 3`−1 −3`−1 0 0

0 0 0 −`−14 0

0 0 `−15 0 −`−15


v.

where `4 is the length of entry and `5 is the length of the exit. It can be seen that
1>A11 = [0 0 − 3`−1]v. Thus, the condition 1>A11 = −γ1> from Theorem 4.1 is not
satisfied, and thus, equal length divisions are not average detectable.

This results seems counterintuitive, as it is known that for one ways roads such as highways,
measuring the density of the downstream cell is enough to make the entire system observable
and the density of each cell can be known, [BLRP16]. However, we are interested in estimating
the average density of all cells directly, without the need to calculate each individual density.
Therefore, full observability does not imply average detectability.

Now, consider a division such that cell 3 has length δ, cell 2 has length δ/2 and cell 1 has
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Figure 4.2: Circle road with one entry and one exit.

length δ/3, where δ = 6
11` (see Fig. 4.1.c). The corresponding state matrix is

A =



−3δ−1 0 0 3δ−1 0

2δ−1 −2δ−1 0 0 0

0 δ−1 −δ−1 0 0

0 0 0 −`−14 0

0 0 `−15 0 −`−15


v

and thus 1>A11 = [−δ−1 −δ−1 −δ−1]v. Note that all column sums are equal, and because
of Theorem 4.1, this division is average detectable.

Example 4.2. Circle road: networks

Consider a ring road as shown in Fig. 4.2. Suppose that sensors are located at the entry
and the exit. Consider the network representation in Fig. 4.3. The green nodes represent
sensors in the network boundaries. For simplicity, we no longer index the nodes with sensors
as they are not concerned with the average detectability conditions.

Denote by `1, `2, v1, v2 the lengths and speeds of the top and bottom sections of the cir-
cle, respectively. Suppose that both roads have equal speeds, and that units are such that
v1 = v2 = 1. The state matrix of the unmeasured partition is

A11 =

[
−`−11 `−11

r`−12 −`−12

]
.

According to Theorem 4.1, to be able to estimate the average density this matrix must
satisfy 1>A11 = −γ1>, and therefore

−`−11 + r`−12 = −γ
`−11 − `

−1
2 = −γ ⇒ `1 =

2

r + 1
`2.

As r < 1, the roads cannot be of equal length. Thus, we are interested in finding a way to
modify the network, such that physical parameters are conserved (i.e. lengths, velocities and
turning ratios), but that the network is average detectable.
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1

2

1

r

1− r

1

Figure 4.3: Network representation of a circle road.

Let the physical lengths of the roads 1 and 2 be `1 = `2 = `. Consider a new network where
roads 1 and 2 are divided into n1 and n2 cells, respectively, as shown in Fig. 4.4. Let cells 1
to n1 correspond to road 1, and cells n1 + 1 to n1 +n2 correspond to road 2. Furthermore, let
δi be the length of the i-th cell. The dimension and elements of this network’s state matrix,
denoted by A(n1,n2), depend on the values of n1, n2 and the vector of cell lengths δ. The block
matrix corresponding to the unmeasured states is

A
(n1,n2)
11 =



−δ−11 δ−11 0 · · · 0 0 0

0 −δ−12 δ−12 · · · 0 0 0
...

. . .
...

0 · · · −δ−1n1
δ−1n1

· · · 0

0 · · · 0 −δ−1n1+1 · · · 0
...

. . .
...

rδ−1n1+n2
0 · · · 0 0 · · · −δ−1n1+n2


.

The average detectability condition requires −δ−11 + rδ−1n1+n2
= −γ and −δ−1i + δ−1i−1 = −γ for

i = 2, 3, . . . , n1 + n2. Using these equations, we can calculate section lengths as

δi =
1(

i+
r

1− r
(n1 + n2)

)
γ

. (4.8)

The specific values of n1 and n2 must be such that the physical parameters of the network
are conserved, this is,

` =

n1∑
i=1

δi =

n2∑
i=1

δn1+i. (4.9)

By substituting (4.8) into (4.9), we obtain

n1∑
i=1

1

i+
r

1− r
(n1 + n2)

=

n2∑
i=1

1

i+
1

1− r
(n1 + rn2)

.

The values of n1 and n2 that satisfy this equation yield a network partition that is average
detectable. Note that as the summands on both side of the equation are different, then it
must be n1 6= n2.
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Figure 4.4: Network of a circle road with virtual partitions. Road 1 is divided into n1 cells,
and road 2 into n2 cells.

From the previous examples it follows that average-detectable virtual networks, i.e. net-
works constructed using virtual cells, require inhomogeneous divisions of the original roads.

In what follows, we will consider traffic networks as a directed graph with added parameters
`, v. Thus, G = {N,E, R, `,v}. Additionally, consider a vector n ∈ Nm which specifies the
number of virtual cells for each road. For an arbitrary traffic network G and division vector n
we define the following concepts.

Definition 4.2 (Road division). Consider an arbitrary road i ∈ N, and ni the corresponding
element of n. A division of road i is a directed path graph whose nodes {i(1), i(2), . . . , i(ni)}
are virtual cells of i. The downstream cell is denoted i(1), whereas i(ni) denotes the upstream
cell. Additionally, the length and velocity of the k-th cell of road i are denoted by δ(k)i and
v
(k)
i , respectively.

Definition 4.3 (Virtual network). A network G(n) = {N(n),E(n), R(n), δ(n),v(n)} is called a
virtual network of G according to n if its nodes N(n) correspond to the road divisions of the
nodes N, and the adjacency matrix R(n) satisfies r(n)

i(1),j(nj)
= ri,j and r

(n)

i(j),i(k)
= 1 if k = j − 1.

Additionally,
δ(n) = [δ

(1)
1 · · · δ

(n1)
1 δ

(1)
2 · · · δ

(n2)
2 · · · δ(1)m · · · δ(nm)

m ]>

and
v(n) = [v

(1)
1 · · · v

(n1)
1 v

(1)
2 · · · v

(n2)
2 · · · v(1)m · · · v(nm)

m ]>.

Definition 4.4 (Admissible virtual network). A virtual network G(n) of G is said to be ad-
missible if for every road i ∈ N, the velocity of any cell is equal to the velocity of the road,

v
(k)
i = vi, (4.10)

and the sum of cell lengths is equal to the length of the road,

`i =

ni∑
k=1

δ
(k)
i . (4.11)

Given a traffic network G, many possible admissible virtual networks G(n) can be con-
structed. Let ρ(k)i denote the density of cell k of road i, and let ρ(n) be the density vector of
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dimension 1>n for the virtual network. Its dynamics are given by

ρ̇(n)(t) = A(n)ρ(t) + diag(δ(n))−1B(n)u(t) (4.12)

where
A(n) = diag(δ(n))−1(R(n)> − I)diag(v(n)). (4.13)

and B(n) maps the input demands to the upstream cell of the boundary inflows.

Following the same discussion as in sections 4.2.1 and 4.2.2, consider the state partition
ρ(n) = [ρ

(n)>
1 , ρ

(n)>
2 ]>. From Theorem 4.1, and as shown in the example, the properties

of the measured roads do not affect the average detectability of the system, thus we let the
measured nodes to have no partitions so ρ(n)2 = ρ2. Define the average density of the new
system as

ρ(n)av =
1

ntot
ρ
(n)
2 (4.14)

where ntot = 1>n. Its dynamics are given by

d

dt
ρ(n)av (t) =

1

ntot
1>A

(n)
11 1ρ(n)av (t) +

1

ntot
1>A

(n)
12 ρ2(t) +

1

ntot
1>A

(n)
11 σ

(n)(t) (4.15)

and the open-loop observer is given by

d

dt
ρ̂(n)av (t) =

1

ntot

[
1>A

(n)
11 1ρ̂(n)av (t) + 1>A

(n)
12 y(t)

]
(4.16)

The convergence of this observer thus depends on the construction of an admissible virtual
graph that satisfies Theorem 4.1.

In the following section we will treat the problem of, for any given traffic network G, finding
a division vector n, cell length vector δ(n), and constant γ > 0, such that the virtual network
G(n) is admissible and average detectable.

4.4 Estimation approach

The following theorem presents the conditions required for a virtual network to be admissible
and average detectable.

Theorem 4.2
Let G = {N,E, R, `,v} be a given traffic network. An admissible network
G(n) = {N(n),E(n), R(n), δ(n), v(n)} is average detectable if and only if there exist n ∈ Nm,
γ > 0, and δ(n) such that

δ
(k)
i =

vi

(vid>i n + k)γ
(4.17)

for all i = 1, 2, . . . ,m; k = 1, 2, . . . , ni; where d>i is the i-th row of D = (I−R11)
−1R11V

−1
1 .
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Proof. Consider an arbitrary cell i(k), with k 6= 1 such that its downstream neighbor is cell
i(k−1). The column sum of A(n)

11 corresponding to this cell is

− vi

δ
(k)
i

+
vi

δ
(k−1)
i

= −γ.

where we imposed the condition v(k)i = vi. By induction, we can calculate the length of each
cell from δ

(1)
i ,

1

δ
(k)
i

=
1

δ
(1)
i

+
k − 1

vi
γ. (4.18)

Cell i(1) has as out-neighbors all cells j(nj) such that (i, j) ∈ E. Thus, its corresponding
column sum is,

− vi

δ
(1)
i

+

m∑
j=1

rijvi

δ
(nj)
j

= −γ. (4.19)

Define δ−1(1) = [1/δ
(1)
1 1/δ

(1)
2 · · · 1/δ

(1)
m ]. By substituting (4.18) into (4.19), we obtain

a system of linear equations,

(I−R11)δ
−1
(1) = γ[R11V

−1
1 n + (I−R11)V

−1
1 1]. (4.20)

Thus,
1

δ
(1)
i

= γ

(
d>i n +

1

vi

)
(4.21)

are the solutions to (4.20) for the downstream cells of each road i. Substitution of (4.21) into
(4.18) gives (4.17).

4.4.1 Approximate solutions

Consider a virtual network whose cell lengths are calculated according to (4.17). Define

fi(n, γ) = `i −
vi
γ

ni∑
k=1

1

vid>i n + k
. (4.22)

such that it corresponds to the error in (4.11), i.e., the error between the sum of cell lengths
and the length of road i. Thus, the problem of finding an average detectable and admissible
division of a given network is equivalent to finding a vector of integers n and a constant
γ such that fi(n, γ) = 0 for all i = 1, . . .m. However, this is difficult in practice, as it is
a combinatorial problem. As a simplification, we can search for solutions that satisfy the
constraints approximatively, that is, to find n and γ such that |fi(n, γ)| is less than a desired
tolerance.

In the following theorems, we propose an alternative system of equations used to calculate
n and γ. To do this, we allow the values of n to take real (instead of only integer) values.
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Then, we approximate the sum in fi(n, γ) using the continuous functions. This results in a
system of equations that is simpler to solve, but that results in approximation error. However,
we show that this error is bounded and can be reduced by selecting different values of γ.

Theorem 4.3
Consider any given traffic network G. Let x ∈ Rm and γ > 0 such that,

[(Kγ − I)−1Kγ − V1(I−R11)
−1V −11 ]x =

1

2
1, (4.23)

where Kγ = diag([eγ`1/v1 eγ`2/v2 · · · eγ`m/vm ]). Let b·e denote the nearest integer function.
Then, n = bxe and γ satisfy

|fi(n, γ)| ∼ O
(

(vid
>
i n + 1)−1

)
(4.24)

for i = 1, 2, . . . ,m.

Proof. Let ψ be the digamma function. Its definition and a list of properties can be found in
[AS72] . This function satisfies the following identity,

n∑
k=1

1

z + k
= ψ(z + n+ 1)− ψ(z + 1).

Therefore, with z = vid
>
i n, (4.22) can be rewritten as

fi(n, γ) = `i −
vi
γ

[
ψ
(
vid
>
i n + ni + 1

)
− ψ

(
vid
>
i n + 1

)]
. (4.25)

Define ε(z) = ψ(z)− ln(z − 1
2). It is known that for z > 1

2 , ε(z) is positive and monotonically
decreasing. Furthermore, its asymptotic expansion is ε(z) = z−2

24 + z−3

24 + . . . as z →∞. Thus,
(4.25) becomes

fi(n, γ) = `i −
vi
γ

[
ln
(
vid
>
i n + ni + 1

2

)
− ln

(
vid
>
i n + 1

2

)
+ ∆i(n)

]
, (4.26)

where ∆i(n) = ε
(
vid
>
i n + 1

)
−ε
(
vid
>
i n + ni + 1

)
, is the total error due to this approximation.

Using the Taylor expansion of the logarithm, it can be shown that for any non-negative
vector a and c > 0, ln

(
a>bxe+ c

)
− ln

(
a>x + c

)
is equal to

∞∑
k=1

(−1)k+1

k

[
a>(bxe − x)

a>x + c

]k
∼ O

(
1

a>bxe+ 1

)
.

Thus, we can rewrite (4.26) as

fi(n, γ) = `i −
vi
γ

[
ln
(
vid
>
i x + xi + 1

2

)
− ln

(
vid
>
i x + 1

2

)
+ ∆i(n) + ηi(x)

]
, (4.27)

where ηi(x) is the rounding error.
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Now, consider the equation

0 = `i −
vi
γ

[
ln
(
vid
>
i x + xi + 1

2

)
− ln

(
vid
>
i x + 1

2

)]
(4.28)

Using logarithm identities, this becomes

γ
`i
vi

= ln

(
vid
>
i x + xi + 1

2

vid>i x + 1
2

)
,

which can be written as xi − (eγ`i/vi − 1)vid
>
i x = 1

2(eγ`i/vi − 1). Thus, we obtain a system of
m equations,

[I− (Kγ − I)V1D]x =
1

2
(Kγ − I)1. (4.29)

Substituting the expression for D into (4.29) and rearranging terms we obtain (4.23), and
thus, (4.28) is satisfied for the considered x and γ. Substituting (4.28) into (4.27), we get

|fi(n, γ)| = vi
γ
|∆i(n) + ηi(x)|. (4.30)

Note that |∆(n)| < ε(vid
>
i n + 1), and so ∆(n) ∼ O[(vid

>
i n + 1)−2]. Additionally, ηi(x) ∼

O[(vid
>
i n + 1)−1].

Thus |fi(n, γ)| ∼ O
(
(vid

>
i n + 1)−1

)
, completing the proof.

Theorem 4.4
There exists γmax such that for every 0 < γ < γmax, the solution to (4.23) is positive. More-
over, as γ approaches γmax the magnitude of x grows arbitrarily large.

Proof. Let M = (Kγ − I)−1Kγ − V1(I − R11)
−1V −11 . Assume that M is invertible. Using

Woodbury’s identity2, we can write M−1 as

(I−K−1γ ) + (I−K−1γ )V1Kγ(I−R11Kγ)−1V −11 (I−K−1γ ).

Therefore, M is invertible only if I−R11Kγ is invertible.

Let λ(R11) denote the spectral radius of R11. It can be shown that I−R11 is an invertible
M-matrix (see [RVWF19]), and thus, λ(R11) < 1. For sufficiently small γ, Kγ can be made
arbitrarily close to I, such that λ(R11Kγ) < 1.

Let γmax be such that λ(R11Kγmax) = 1. Thus, for every γ < γmax, I − R11Kγ is an
invertible M-matrix such that

(I−R11Kγ)−1 = I +
∞∑
k=1

(R11Kγ)k. (4.31)

As γ → γmax, the nonzero elements of (R11Kγ)k increase exponentially. For γ = γmax, the
sum diverges and the matrix is not invertible. Finally, for 0 < γ < γmax, (I− R11Kγ)−1 and
(I−K−1γ ) are non-negative, which implies that M−1 is non-negative.

2(A + UCV )−1 = A−1 −A−1U(C−1 + V A−1U)−1V A−1.
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Figure 4.5: 4×4 Manhattan grid (nodes correspond to roads). All TRs are set to 50%. Green
nodes symbolize sensor locations.

Example 4.3. Consider the 4 × 4 Manhattan grid network shown in Fig. 4.5. Assume that
all roads have the same length of ` = 500m, and the same free-flow velocity of v = 30 km·h−1.
As all speeds and lengths are equal,

Kγ = exp

(
γ
`

v

)
I, (4.32)

and γmax = −(v/`) ln [λ(R11)].

By Theorem 4.4, for any given value of γ ∈ (0, γmax), the corresponding division vector
n is positive and increases in magnitude as γ increases. This is evidenced in Fig, 4.6, which
shows the solutions to (4.23) for different values of γ in the range. The initial choice of 88%
is because at this value all elements of n are greater than or equal to 1.

Using (4.23) to calculate n induces an error fi(n, γ) in the admissibility constraint. Con-
sider the total root mean square error (RMSE) for all roads i = 1, . . . ,m, as shown in Fig. 4.7.
As γ increases, the upper limit of this error decreases, approaching 0 as γ → γmax. This is
because the number of cells per road is also increasing rapidly, so Theorem 4.3 is applicable.
In this sense, the lowest error is obtained by choosing γ very close to γmax.

As a specific case, let γ = 0.95γmax, which corresponds to a vector n with elements 2, 3,
and 4, and a RMS error below 3%. The corresponding virtual network is shown in Fig. 4.8.
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Figure 4.6: Approximate solutions of (4.23) for n for all unmeasured nodes.

Figure 4.7: Normalized RMSE,
√∑

i

fi(n, γ)2/` for different values of γ.
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Figure 4.8: Virtual network for a 4 × 4 Manhattan grid using γ = 0.95γmax.

4.4.2 Observer implementation

Suppose that an average-detectable admissible virtual graph G(n) is obtained from a given
traffic network, such that the open-loop estimator (4.16) converges asymptotically. However,
from the previous example it can be seen that virtual networks with low error in the admis-
sibility constraint may require many divisions per road. The dimensions of the matrices A(n)

11

and A
(n)
12 are proportional to the norm of n, hence, large number of divisions could imply

costly calculations to obtain the values required by the estimator. However, the expressions
for the gains in the estimator can be simplified such that the matrix A(n) is not explicitly
required.

The first term can be simplified by using the fact that the network is average detectable,
which requires 1>A(n)

11 = −γ1> and thus

1

ntot
1>A

(n)
11 1 = − γ

ntot
1>1 = −γ.

The second term of the estimator can also be simplified. Let

b> =
1

ntot
1>A

(n)
12
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be the vector gain for the measurements. From the construction of A(n), it follows,

bi−ntot =
1

ntot

m∑
j=1

nj∑
k=1

r
(n)

i,j(k)
vi

δ
(k)
j

(4.33)

where the indexes i = ntot + 1, . . . , ntot + k correspond to the measured boundary nodes in
the virtual network. From the definition of R(n), the expression can be simplified to

bi−ntot =
1

ntot

m∑
j=1

ri,j
vi

δ
(nj)
j

. (4.34)

Substituting (4.17) into (4.34),

bi−ntot =
γvi
ntot

m∑
j=1

ri,j

(
d>j n +

nj
vj

)
. (4.35)

Using matrix notation, this can be rewritten into

b> =
γ

1>n
n>(D> + V −11 )R>21V2. (4.36)

Substituting the definition of D, this simplifies to

b> =
γ

1>n
n>V −11 (I−R>11)−1R>21V2. (4.37)

Hence, the estimator for the average density of the virtual system becomes

˙̂ρ(n)av (t) = −γρ̂(n)av (t) +
γ

n>1
n>V −11 (I−R>11)−1R>21V2y(t). (4.38)

Note that to use the proposed observer only requires the calculation of n, γ, and the
topology of the original network. As the virtual network is not required, this provides an
efficient way to deploy the estimator even for very high number of divisions.

4.4.3 Calculation of the number of divisions per road

Using Theorems 4.3 and 4.4, we propose the following algorithm to find a vector n of partitions
that yields an admissible network within a given tolerance.

Algorithm 4.1. Create a virtual network

Inputs: Traffic network G = {N,E, R, `,v}. Tolerance ε.

Output: Vector of divisions n. Detectability constant γ.

1. Initialize range for γ:

1.1 Set γ1 ← 0.
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1.2 Set γ2 ← maxi[− ln(λ(R11))vi/`i].

2. Calculate n:

2.1 Set γ ← (γ1 + γ2)/2.

2.2 Set x← [(Kγ − I)−1Kγ − V1(I−R11)
−1V −11 ]−11/2.

2.3 Set n← bxe.

2.4 If ∃i : xi < 0

2.4.1 Set γ2 ← γ.
2.4.2 Go to Step 2.1.

2.5 If ∃i : |fi(n, γ)| > ε

2.5.1 Set γ1 ← γ.
2.5.2 Go to Step 2.1.

3. Return n, γ.

The algorithm is based on an implementation of the well known bisection method [BF85,
Chapter 2]. From Theorems 4.3 and 4.4, as γ approaches the maximum value γmax, the
error function fi(n, γ) decreases its magnitude. As γmax is not generally known a priori, the
algorithm searches inside a range of possible values until it finds a value of γ for which fi(n, γ)

is less than the given tolerance for each i = 1, . . . ,m.

The algorithm explores for values of γ inside of the interval [γ1, γ2], initialized in Step 1.
γ1 is set to zero, which is a trivial constraint from the problem formulation. The expression
for the maximum value γ2 comes from the fact that

λ(R11Kγmax) = 1 (4.39)

(see proof of Theorem 4.4), and that Kγ is a diagonal matrix.

With this initial limits, the algorithm proceeds by setting γ as the intermediate value
between γ1 and γ2, and then it is used to calculate a candidate solution x. If x has negative
entries, it means that the current γ is higher than γmax, so the upper limit γ2 is reduced. Else,
the error functions |fi(n, γ)| are compared against the tolerance. If the tolerance is not met,
then the lower limit γ1 is increased. This process continues until a good-enough solution is
reached.

Note that after every step, the exploration range [γ1, γ2] is reduced by half, and therefore,
the algorithm will require at most O(log2(1/ε)) cycles. Additionally, every cycle requires
the inversion of a m ×m matrix, each requiring O(m3) calculations. Therefore, the overall
computational cost is O(m3 log2(1/ε)).
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4.5 Error analysis

In the previous sections we have discussed how to generate a virtual network G(n) from a
given one G. The virtual network keeps the same physical properties as the original one, but
its roads have been divided into smaller cells. This transformation allows to have an average
detectable network.

Nevertheless, even if the underlying physical network is the same, the dynamics of the real
and virtual systems are different, and therefore the trajectories of the corresponding average
densities are not identical. Let ρav be the average density of the given undivided network,
and let ρ(n)av be the average density of the divided network (following the methods discussed
before). It can be seen that both definitions are not equivalent:

ρav =
1

m

m∑
i=1

ρi (4.40)

where ρi is the density of road i, and,

ρ(n)av =
1

m∑
i=1

ni

m∑
i=1

ni∑
k=1

ρ
(k)
i (4.41)

where ρ(k)i is the density of cell k of road i, and ni is the number of divisions of road i. The
quantities ρi and ρ

(k)
i are related by the expression

`iρi =

ni∑
k=1

δ
(k)
i ρ

(k)
i (4.42)

which states that the total number of vehicles must be the same in both representations.
Figures 4.9 and 4.10 show the trajectories of the average density of the real system ρav, and
the virtual system ρ

(n)
av for two sample networks in Examples 4.1 and 4.2.

Note that in general, both trajectories are very close, so using the estimator for the virtual
system yields a good result for the real one. However, the closeness between these trajectories
might depend in the original network parameters, so it is required to establish a way to
determine if a particular network might be well represented using the approach described in
this paper.

The error between the average density of the original and virtual system can be found to
be

ρ(n)av − ρav =
1

m

m∑
i=1

ni∑
k=1

(
1

nav
−
δ
(k)
i

`i

)
ρ
(k)
i (4.43)

where nav = 1>n/m. Note that this expression depends both on the properties of the network
division (the cell lengths), and on the state of the virtual network, as the density of each cell
is required.
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Figure 4.9: Trajectories of the average densities of the original and virtual systems for the one
way road from Example 4.1.

Figure 4.10: Trajectories of the average densities of the original and virtual systems for the
circle road from Example 4.2.
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4.5.1 Slow varying inputs

Consider the case where the rate of change of the inputs (incoming flows at the boundaries) is
small in comparison to the traveling in each road. This can be achieved if the input demands
are relatively constant, or in urban scenarios where the distance between intersections is small.
Note that this does not imply that the physical dimensions of the entire network is small, just
its individual components. This assumption implies that there are small spatial variations in
the flow for each road, so that ϕin(t) ≈ ϕout(t). This in turn implies that the density of each
road is approximately constant in space, and thus

ρ
(k)
i ≈ ρi (4.44)

for each road i and each cell k. It follows that the average density of the virtual system can
be approximated as a weighted average of the density of the internal nodes, where the weights
are the number of partitions,

ρ(n)av ≈
1

ntot
n>ρ1. (4.45)

where ntot = 1>n.Thus, we can simplify the error equation as

ρ(n)av − ρav ≈
1

m

m∑
i=1

ρi

(
ni
nav
− 1

)
. (4.46)

Note that in this case, the difference between the two trajectories depends only on the
densities of the roads (not cells), and the number of cells per road. Using matrix notation,
this can be rewritten as

ρ(n)av − ρav ≈
n>σ

n>1
(4.47)

where
σ = ρ− ρ̄av1. (4.48)

The value of the error depends then on the cell division and the state of the original system,
which is unknown. To benchmark the applicability of the proposed method for all possible
networks, we can analyze the distribution of the error under the assumption that the deviation
σ is a random process. We introduce the following theorem,

Theorem 4.5
Consider the metric space (Sm, d) where Sm = {x ∈ Rm : ||x|| = 1} is the m-dimensional unit
sphere and d is the spherical distance. Consider two independent random vectors u ∈ Sm and
v ∈ Sm. Then, for any ε > 0,

Pu,v(|u>v| < ε) ≥ 1− 2e−(m−1)ε
2/2 (4.49)

where P is the uniform spherical probability measure.

The proof of the theorem is shown in Annex A.3. This implies that for large dimensions
(m→∞), the probability of the two vectors being ε-orthogonal is asymptotically 1.
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Because of this, the trajectories of the average density of the original and virtual systems
get closer as we consider larger networks. Note that this depends on the assumption σ is
independent to n. Even though both vectors depend on the properties of the network, this
assumption can be justified by the fact that σ depends highly on the input demands u, and
thus, the orientation of σ does not depend on the orientation of n.

4.6 Simulation and validation

To test the methods proposed in this chapter, we will consider the zone of Grenoble downtown
as shown in the previous chapters. Figure 4.11 shows the input graph of Grenoble downtown,
and the classification of every road into the measured or internal nodes. However, note that
some nodes (bottom right) are marked as “ignored”. Recall from Theorem 4.3 that the errors
in the admissibility condition are of the order

|fi(n, γ)| ∼ O
(

(vid
>
i n + 1)−1

)
(4.50)

which imply that as n increases, the error decreases. Nevertheless, this is only the case when
d>i is non-zero. By construction

D =

( ∞∑
i=1

Rn11

)
V −11 . (4.51)

As R11 is the adjacency matrix of the unmeasured subgraph, di,j measures the average distance
between roads i and j. Therefore, if road i is part of a strongly connected component, di,i > 0

and the corresponding error can be decreased. Nodes marked as internal in the Figure are part
of a strongly connected component, so their admissibility error can be reduced. Nodes marked
as ignored are not part of the strongly connected component, so their error is not guaranteed
to be reduced arbitrarily. Fortunately, urban networks are usually strongly connected, so the
method can be applied in most cases.

To calculate the number of partitions per road, we used Algorithm 4.1, with an error
tolerance of 10%. Figure 4.12 shows the resulting division vector: the top part of the figure
shows the spatial distribution of road divisions, while the bottom shows the sorted values as
a function of road index. Note that this result implies that roads are divided into very wildly
varying number of cells, for which the maximum requires around 14500 cells.

Nevertheless, as shown in the previous simulated example, the deployment of the estimator
only requires the outputs of the algorithm (n and γ) and the properties of the original network.
Therefore, the very large number of cells in the virtual representation does not lead to a
problem in the actual on-line calculations.

To validate the open-loop observer, we used the software Aimsun to produce individual
vehicle traces to use as ground truth. To setup the simulation, a time-varying profile was
applied to the boundary inflows, using the same procedure described in Chapter 3. The TRs
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Figure 4.11: Road graph of Grenoble downtown, with road classification for average density
estimation.
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Figure 4.12: Top: Network representation of the selected area where the color of each node
corresponds to its number of cells. Bottom: List of values of the division vector n sorted in
ascending order.
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Figure 4.13: Average density trajectories for the Grenoble network.

were arbitrarily set to be distributed homogeneously according to the number of exits from
each intersection.

The density of each of the measured nodes were obtained directly and used as input for
the estimator (4.16), using the values of n and γ provided by the algorithm. As ground truth,
the density of each of the internal nodes were obtained. We consider two trajectories: the
density of the original system ρav(t) and the density of the virtual system ρ

(n)
av (t). The former

is easily calculated from the outputs of the simulator. Nevertheless, as roads present very
high number of cells, it is unfeasible to measure in a significant way the density of each cell.
Therefore, we estimate ρ(n)av using the slow-varying inputs assumption,

ρ(n)av (t) ≈ 1

ntot
n>ρ1(t) (4.52)

as described in Section 4.5.1. The maximum road traversal time is around 30 seconds, while the
inflows are defined constant for an interval of 20 minutes, and the outputs are obtained with
an aggregation time of 5 minutes. Therefore, the slow-varying input assumption is applicable.
The trajectories of both average densities are shown in Fig. 4.13. From the figure it can be
seen that the average densities of the original and the virtual system are almost identical.

The figure also shows the estimated average density trajectory, as obtained with (4.16).
Note that the estimates approaches the real trajectories, with a normalized mean squared
error of 10%. This error is to be expected, as there is a difference between individual vehicle
behavior and the macroscopic model predictions.
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4.7 Concluding remarks

In this Chapter, we analyzed the convergence of a one-dimensional open-loop observer for the
average density of a traffic network, under linear traffic dynamics such as free-flow regime. In
general, such observers do not converge, but we propose a method to obtain a virtual network
representation with the same physical properties such that the observer converges. This new
representation is constructed by dividing each road in the original network in a number of
cells with specific lengths.

Although the average density of the original and virtual systems are not necessarily equal,
we show that by considering large networks, the difference between these two variables is
almost always small, and thus, the method can give a useful approximation to the value of
interest.

The methods were tested using a simulated traces of individual vehicles in the real case
of the city of Grenoble, France. The estimated average density was found to be close to the
ground truth values, with a RMS error of 10%.
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5.1 Overview

This Chapter presents the study case of Grenoble downtown and validates the methodologies
described in Chapter 3 for the dynamic estimation of the flow and density of each road of
a network, and the average-density estimation of the entire network described in Chapter 4,
using real data. The considered section of the Grenoble traffic network has been equipped
with sensors collecting information about the traffic flow and velocities in the boundary of the
domain, and the TRs for a selected number of intersections. First, we describe the available
data and how sensor locations were selected using the methods from previous chapters. Then,

75
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Figure 5.1: Homepage of the GTL-Ville. Points show the location of stationary sensors, and
the highlighted roads show the estimated traffic indicators.

we apply the concerned density and flow estimation algorithms, and the results are compared
to ground-truth data using a subset of validation sensors.

5.2 Experimental platform

The Grenoble Traffic Lab for urban networks (GTL-Ville)1 is an experimental platform for
real-time collection of traffic data coming from a network of sensors installed in the city of
Grenoble. This platform also provides real-time traffic indicators and analysis oriented towards
the users of the city, traffic operators, and researchers, which are available for download.

Figure 5.1 shows the homepage of the GTL-Ville. Currently, data statistics can be shown
for roads and sensors. Sensor indicators correspond to the data collected from stationary sen-
sors, which includes speed, flow and occupancy. Road indicators correspond to data obtained
from FCD provided by TomTom, and include speed, fluidity, and density. For the purposes
of this work, a section of the city center was selected to validate the proposed estimation
approaches, which spans an area of 1.4 Km by 1 Km. In the following, we describe in depth
the available data sources for the selected area.

1http://gtlville.inrialpes.fr/
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Figure 5.2: Location of single-loop induction sensors in blue, with their corresponding ID in
database.

5.2.1 Induction loops

The city of Grenoble is equipped in various locations by induction loop sensors. This tech-
nology consists on a coil buried under the pavement that perceives a change in the magnetic
induction when a vehicle passes over it. In the section of interest, 18 single-loop sensors are
available whose positions are shown in Figure 5.2. These sensors are administered by the city’s
traffic administration (Metromobilité), which allows the use of this data. Data is received in
real time, with an aggregation time of 6 minutes. For each time period, received data is the
number of detected vehicles and occupancy.

5.2.2 Radars

To complement the data provided by the induction loops, additional sensors were located as
shown in Figure 5.3. These sensors consist of microwave radars, which periodically emit a pulse
of radiation and then measure the reflections of these pulses. By measuring the properties
of the reflected radiation, this technology can accurately measure the velocity and length of
vehicles passing through the specified location, for every lane and direction. These sensors are
leased and administered by a subcontractor. An example of a radar installation is shown in
Figure 5.4.
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Figure 5.3: Location of radar sensors in green, with their corresponding ID in database.

Figure 5.4: Example of a radar sensor for the measurement of road flow. Courtesy: Karrus.
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Table 5.1: Description of the road classes provided by TomTom.

Class Short description Long description
0 Highways, Motorways All roads that are officially assigned as motorways.
1 Major roads of high im-

portance
All roads of high importance, that are part of a con-
nection used for international and national traffic and
transport.

2 Other major roads All roads used to travel between different neighboring
regions of a country.

3 Secondary roads All roads used to travel between different parts of the
same region.

4 Local connecting roads All roads making all settlements accessible or making
parts of a settlement accessible.

5 Local roads of high im-
portance

All local roads that are the main connections in a set-
tlement. These are the roads where important through
traffic is possible

6 Local roads All roads used to travel within a part of a settlement or
roads of minor connecting importance in a rural area.

7 Local roads of minor im-
portance

All roads that only have a destination function.

8 Other roads All roads which are not usable by cars.

Data from these sensors are available in real time, with an aggregation time of 1 minute.
For each passing vehicle, the sensors save the time of passage, its velocity, length, and lane.

5.2.3 Floating car data

FCD is provided by the driving navigation assistance company TomTom2. For each road, the
provided information is the Functional Road Classification (FRC), the average speed, and the
confidence index. Each of these types of data are described below.

5.2.3.1 Functional Road Classification

The FRC is used to classify roads into homogeneous classes depending on their role in a
transportation network [D’A+14]. This classification determines the type of use of each road,
for instance, as it differentiates between major roads that experience heavy traffic from a
variety of O/D pairs, and minor roads which are inside of a residential area and experience
light traffic only. Table 5.1 shows the FRC provided by TomTom and their description3.

Figure 5.5 shows the FRC of each road of the considered zone of Grenoble. For this area,

2https://www.tomtom.com/
3Source: https://developer.tomtom.com/traffic-stats/support/faq/what-are-functional-road-classes-frc
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Figure 5.5: FRC for the Grenoble network, provided by TomTom.

there are no Motorways so FRC 0 not used. Similarly, there are no roads with FRC 2. All
pathways with FRC 8 are ignored as they are not used for the type of traffic under study.

5.2.3.2 Average speed

Average speed data is available for roads that have a FRC between 0 and 6. This information
is available in real time, with a frequency rate of 1 minute. However, data is not collected for
each individual road, but instead, all considered roads are divided into 120 partitions. Each
partition consists of a number roads with the same FRC that forms a straight path, with an
average length of 200m. FCD is collected for vehicles contained in the same partition during
a time interval of 1 minute, and a speed value is given. Therefore, all roads contained in the
same partition have the same speed value. Figure 5.6 shows the map of road partitions for
average speed data.

5.2.3.3 Confidence index

Because of internal policies of TomTom, the precise number of vehicles providing the FCD
at every time instant is unknown. However, to quantify data quality, each velocity value is
supported by an additional confidence index. This value ranges from 0% to 100% and refers
to the accuracy of the data. This value depends on the number of recent measurements, the
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Figure 5.6: Map of road partitions for FCD speed calculation. Adjacent roads of the same
color belong to the same partition. Roads with FRC equal to 7 are ignored as no FCD is
collected for them.

Figure 5.7: Distribution of the confidence index for all roads during December 21, 2020.
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standard deviation, and the total volume of measurements. According to TomTom, a value of
100% means that the provided data is the highest quality data, whereas lower values indicate
the degree that the data may vary from the actual conditions on the road.

For instance, Figure 5.7 shows the confidence index values for the entire day of December
21, 2020. In the figure, the left-axis shows the fraction of vehicles that have a confidence
index less than or equal to the value given by the colorbar. Note that the confidence index
is always greater than or equal to 50%. During nighttime, between 00h00 and 5h00, we see
that the confidence index is at its lowest values, which can be explained by the low vehicular
flow expected during this time, which results in a small number of FCD measurements. As
the working hours start around 6h00, the confidence index increases due to an increase in the
number of vehicles in the network. During a high portion of the day, between 9h00 and 21h00,
the FCD has a high confidence index as 80% of the roads have values greater than 90%.

5.2.4 Bluetooth vehicle identifiers

To obtain direct measurements of TRs, Bluetooth (BT) reader devices were located at the
adjacent roads for a selection of intersections. These locations were selected using the method
described in Section 3.3.3, which assigns a sensitivity weight to each intersection: errors in
the TRs for intersections with a higher weight would generate larger errors in the density
estimation. In total, 12 locations were selected as shown in Fig. 5.8, corresponding to the
intersections with the highest sensitivity weights in order to reduce the estimation error.

Due to technical and economical constraints, these data is not available in real time.
Instead, campaigns of one week duration were organized for each intersection, for a total of 4
campaigns. The timetable for these campaigns is shown in Table 5.2.

To illustrate the data collection process, Fig. 5.9 shows the location of BT devices around
one of the chosen intersections. For each sensor pair, the detected vehicle IDs are compared
with their corresponding timestamps. Thus, it is possible to assign the origin and destination
roads for each of the detected vehicles. This data is aggregated during a time period of 1
hour, so the available information is the number of counts for each of the possible turns in the
intersection. From this, TRs are computed as

rBT
i,j (t) =

Counts(i, j, t)∑
k

Counts(i, k, t)
(5.1)

Table 5.2: Measurement campaigns for the collection of BT data.

Campaign Intersections Begin date End date
1 5, 6, 7 September 21, 2020 - 12h00 September 28, 2020 - 13h00
2 1, 4, 10, 11 September 30, 2020 - 12h00 October 08, 2020 - 8h00
3 3, 9, 12 October 12, 2020 - 13h00 October 21, 2020 - 8h00
4 2, 8 October 21, 2020 - 14h00 October 28, 2020 - 14h00
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Figure 5.8: Intersections used to collect TR data using BT identifiers in red, with their location
ID.

where Counts(i, j, t) is the number of counts from road i to road j via the BT during the time
interval [t−∆t, t], with ∆t = 1 hour.

To evaluate the quality of the data, Fig. 5.10 shows the time series of the TR values for
one road. A zoom of this figure for only one day (Oct 22) is shown in Figure 5.11. Note that
during the day hours (6h00 to 20h00), the TR values are fairly constant, lying in a range of
±0.07 around the mean. The peaks that can be seen between 23h00 and 6h00 are due to the
low vehicular flow during these times, which results in a very low number of measurements
and the estimation may not be good.

The mean TR values are computed using the total number of vehicle detections during
the duration of the campaign,

rBT
i,j =

TotalCounts(i, j)∑
k

TotalCounts(i, k)
. (5.2)

For the rest of the document, the TR parameters for the selected intersections are given by
(5.2).

As BT technology is used, data is provided only by a fraction of the vehicles in the network.
Taking into account the daytime hours (6h00 to 20h00) for intersection 2, the turn with the
minimum number of counts reported an average of 8 detections per hour, and the turn with
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Figure 5.9: Location of BT devices around intersection 2, with their corresponding ID in
database.

Figure 5.10: Time series for the estimated TRs for one road in intersection 2, from Oct 21 to
Oct 28, 2020. Dashed lines are the mean values for each turn.
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Figure 5.11: Time series for the estimated TRs for one road in intersection 2, for Thursday
Oct 22, 2020. Dashed lines are the mean values for each turn.

the maximum number of counts reported an average of 92 detections per hour. Over all turns,
the average is 26 detections per hour.

5.3 Validation of dynamic density-flow estimation

This section evaluates the performance of the flow and density estimator described in Chap-
ter 3, which provides values for each road in the network. Real data from the GTL-Ville is
used to deploy the estimation algorithms, and to cross-validate the results.

5.3.1 Sensor classification

From the stationary sensors present in the considered zone (induction loops and radars), three
sets were created:

Input set Corresponds to the sensors that are in the boundaries of the zone and provide
the external input demands to the network. This information is required as an input to the
estimation algorithm. We refer as the input set only to the data oriented towards the inside
of the network. Flow data provided by the input set is denoted by u(t).

Output set Correspond to sensors located at the boundaries of the network that take into
account the outbound vehicles. This is provided by microwave radars which are capable of
measuring the flow in multiple lanes and directions. Data from these locations are denoted
by y(t).
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Figure 5.12: Classification of the sensors contained in the area of interest. The input set is
shown in blue, the output set is shown in red, and the validation set is shown in green.

Validation set Correspond to sensors located in selected internal locations of the network,
which will be used for the cross-validation of the estimator. Data from these sensors will not
be used by the estimator, and provide ground truth data to compare with the estimates.

The location of sensors for each of this class is shown in Fig. 5.12. Note that some of
the radar sensors locations present two identifiers belonging to different sets. These are the
locations that allow the measurement of flow in both directions.

5.3.2 Deployment of the flow and density estimator

To estimate the flow and density for each road, we use the dynamic estimator proposed in
Chapter 3,

d

dt
ρ̂(t) = L−1(R> − I)ϕ̂out(t) +Bu(t) (5.3)

ϕ̂out(t) = VFCD(t)ρ̂(t) (5.4)

where L is a diagonal matrix with the road lengths, and R is the TR matrix. The input vector
u(t) contains the flow data from the sensors in the input group, and matrix B maps each
input to its corresponding road index. The diagonal matrix VFCD(t) contains the speed data
provided by TomTom. Roads with very few number of measurements which do not provide
FCD speed data are assumed to have a low vehicular flow, so we use a speed value equal to
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the speed limit. The discretized version of the estimator is done by using Algorithm 3.1. The
output estimates are computed as

ŷ(t) = Cϕ̂out(t) (5.5)

where C is a binary matrix that selects the road indexes corresponding to the output set. The
estimation error is

e(t) = y(t)− ŷ(t) (5.6)

5.3.3 Parameter estimation

For the estimation, values of the TRs are required at every intersection. As described in
Section 5.2.4, these parameters are measured for some set of intersections. To provide values
for the remaining intersections, we propose the use of an heuristic that uses the FRC of each
road to estimate the TRs.

An initial proposition was described in Appendix B, which is based on the hypothesis that
TRs are proportional to the capacity of each outgoing road. Nevertheless, preliminary tests
using this estimates in the Grenoble city center showed that this choice was not satisfactory.
Although Appendix B provided an experimental validation of this method, this was originally
done in a single Highway, where all segments were homogeneous. However, when applied to
an urban setting where roads have different purposes and roles as specified by their FRC, this
caused underestimation in major roads that shared intersections with minor roads, albeit with
the same capacity.

As an alternative, we consider the use of the FRC information to estimate the TRs.
For each FRC class in the set {1, 2, . . . , 7}, we define a weight θ ∈ (0, 1]. Let θ ∈ (0, 1]7

be the vector of class weights. Suppose that the TRs at each intersection are distributed
proportionally to the class weights of each of its outgoing roads. Thus, TRs are computed as

rFRCi,j =
θFRC(j)∑

k∈O(ni)

θFRC(k)

(5.7)

where FRC(i) is the FRC class of road i, and O(ni) is the set of outgoing roads from intersection
ni, to which the input i is adjacent. However, for the turns corresponding to intersections
where BT sensors were installed, their TRs are instead computed from the collected data.

Let B be the set of intersections equipped with BT sensors. For the remaining intersections
where data is not available, the value of the weight class vector is required. Consider the
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Table 5.3: Value of FRC weights for the estimation of TR parameters. Class 2 has no assigned
weight as no roads with this class are contained in the area.

Class index 1 2 3 4 5 6 7
Class weight θ 1.00 N/A 1.00 0.50 0.23 0.13 0.04

following optimization problem

min
θ
||ȳ − C(I−R>(θ))−1Bū||

subject to θ ∈ (0, 1]7,

θ1 = 1,

ri,j(θ) =


rBT
i,j if ni ∈ B

θFRC(j)/
∑

k∈O(ni)

θFRC(k) if ni /∈ B
.

(5.8)

where ni is the destination intersection of road i, i.e., i ∈ I(ni), rBT
i,j is computed by (5.2),

and

ū =
1

T

∫ T

0
u(t) , ȳ =

1

T

∫ T

0
y(t). (5.9)

are the average flows from the input and output sets, respectively.

This optimization problem is based on the assumption that, over a long enough time
period, the average flows in a network behave as if in steady-state, and are only subject to the
flow conservation laws at intersections as described in Chapter 2. The estimated steady-state
flow is computed as

ϕ̄ = (I−R>)−1Bū. (5.10)

and the estimated outputs are Cϕ̄. Thus, the optimization problem tries to minimize the
difference between the average validation flows and the corresponding steady-state flows, by
changing the values of the TR matrix according to the weights of the FRC classes. The
condition θ1 is set arbitrarily without loss of generality, as only the relative differences between
the weights are important.

Due to the limited number of parameters, this problem can be solved by using the well
known gradient descent method. We obtained the values shown in Table 5.3, and in Fig. 5.13
for visualization purposes. Note that as the importance of the road decreases, so does the
corresponding class weight as is to be expected.

5.3.4 Results

For evaluation purposes, we considered the data collected for January 8, 2021, from 6h00 to
23h00. Figures 5.14 and 5.15 show the time series for the real and estimated flow from the
cross-validation sensors.



5.3. Validation of dynamic density-flow estimation 89

C
la
ss

w
ei
gh

t
θ

FRC Classes

1

0.5

0
1 2 3 4 5 6 7

Figure 5.13: Visualization of the class weights for each FRC class.

Note that for most cases, the estimated and real values have a very similar trajectory.
This shows that the proposed estimator is able to accurately reconstruct the propagation of
flow throughout the network. Nevertheless, some of the locations present different trajectories
for the real and estimated flows, showing that there are some mismatches in the estimation.
The principal source of error considered to be the deviations of the TRs for some of the
network’s intersections. Furthermore, internal sinks and sources of vehicles (such as parkings
and buildings) are neglected, which has an impact on the accuracy of the estimator.

The effect of deviations in the TR values can be seen in the behavior of sensors R14_SN,
R15_EW, and R16_NS. This sensors are interconnected, as R15_EW and R16_NS can
be reached from vehicles turning left after passing sensor R14_SN. Thus, error in the flow
estimation for the latter has cascading effects that partially explains the deviations presented
in the former. Thus, a better estimation of the flow at location R14_SN in the future could
improve the overall accuracy of the proposed approach.

As error metrics, we use the Relative Mean Error (RME) and the Relative Absolute Error
(RAE), defined as

RMEi =

∣∣∣∣∣∣
∫ T

0
ei(t)dt

∣∣∣∣∣∣∫ T

0
yi(t)dt

, RAEi =

∫ T

0
|ei(t)|dt∫ T

0
yi(t)dt

, (5.11)

and are shown in Fig. 5.16. The RME shows that the proposed estimator provides close
estimates to the real values, as half of the validation locations present an error under 20%,
and all of them have an error under 45%.

When considering the RAE, the error increases as this metric considers not only the
differences between the mean trajectories, but also takes into account the dispersion of the
real data. This indicates that the macroscopic model used for the estimation approach filters
out high frequency traffic variations due to vehicle interactions. Despite this limitation, for
half of the considered locations the RAE has low values between 20% and 30%.
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Figure 5.14: Values for the real and estimated flows.
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Figure 5.15: Values for the real and estimated flows.
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Figure 5.16: Relative estimation error for the validation sensors.

For locations at the right of Figure 5.16, the RME and RAE values are very close to
each other. This is due to the fact that for these sensors, most of the error is due to the
underestimation bias between the mean trajectories, and the contribution of the up and down
peaks of the real data are not as important. All sensors have a RME and RAE less than 45%.

5.4 Validation of average density estimation

This section will evaluate the application of the one-dimensional open loop observer for the
average density of an entire network described in Chapter 4, using real data from the Grenoble
network. Following the same process described in Section 4.2.1, the roads of the network are
divided into two partitions, one corresponding to the boundary roads where measurements are
available (the measured roads), and the internal roads without measurements. The density
vector is then partitioned as ρ(t) = [ρ>1 (t) ρ>2 (t)]> where ρ1(t) is the density of the internal
roads, and ρ2(t) is the density of the measured roads. We are interested in the estimation of
the average density of the internal roads

ρav(t) =
1

m
1>ρ1 (5.12)

where m is the number of internal roads.

5.4.1 Estimation approach

As described in Section 4.4.2, the average-density estimator is of the form

˙̂ρav(t) = −γρ̂av(t) +
γ

n>1
n>V −11 (I−R>11)−1R21u(t). (5.13)
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Figure 5.17: Fluidity for the Grenoble network during December 21, 2020.

where R11 and R21 are blocks of the TR matrix resulting from the partition of the network
into the internal and measured roads, such that

R =

[
R11 R12

R21 R22

]
. (5.14)

Similarly, V1 is a diagonal matrix containing the speed of the internal roads. n corresponds to
the division vector, i.e., each internal road is divided into a number of virtual cells specified
by n. γ is the observer gain. n and γ must be carefully selected to provided error bounds on
the convergence of the observer. Chapter 4 proposes Algorithm 4.1 to compute both n and γ.
This algorithm has as inputs the length of each road, its velocity, and the TR matrix.

However, this method assumes that the network’s dynamics are linear, which implies that
the speed of each road is constant and independent of the number of vehicles. This is not
always the case, as phenomena such as congestion can cause great variations in the vehicle
speed profile. Consider for instance the mean speed data from FCD for December 21, 2020
shown in Fig. 5.17. This figure shows the fluidity of each road, defined as

Fluidityi =
vi(t)

vmaxi

(5.15)

where vmaxi is the speed limit of road i. The left axis in the figure corresponds to the fraction
of roads which have a fluidity value equal to or less than the value indicated by the colorbar
(at the right). Note the high variations in the speed values throughout the day, specially
during the after noon rush between 15h00 and 19h00.

To deploy the estimator, it is necessary to define a nominal velocity value for each internal
road, i.e., a constant matrix V̄1. For instance, Chapter 4 used the speed limit for each road.
However, this is not a good choice for the current case, as Fig. 5.17 shows that the vast
majority of roads exhibit speed values lower than 80% of the speed limit. To provide a more
representative nominal value, we use the average speed computed as

V̄ =
1

T

∫ T

0
V (t) (5.16)
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Figure 5.18: Time series for the average density of the Grenoble downtown network.

As input data for the observer, u(t), we use the data provided by the sensors of the input
set as described in Section 5.3.1. TR values are the same as used in Section 5.3.3.

5.4.2 Validation methodology

To directly validate the results of the average-density observer, the ground truth value of the
average density if needed. However, as previously described, only a handful of sensors placed
in strategic locations are available, so there is no direct measure of the real average density.
Therefore, this section considers as proxy for the ground truth the mean of the estimated
densities of the individual roads,

ρav(t) =
1

m

m∑
i=1

ρ̂i(t) (5.17)

where ρ̂(t) is calculated via eqs. (5.3) and (5.4) in Section 5.3. Therefore, the error in this
case is defined as

e(t) = ρav(t)− ρ̂av(t) =
1

m

m∑
i=1

ρ̂i(t)− ρ̂av(t) (5.18)

Although these individual estimates present errors (Section 5.3.4), as both estimators use
the same parameters for the TRs, they are expected to have similar results.

5.4.3 Results

The estimates for the average density are computed using data from 6h00 to 23h00, December
21 - 2020. Figure 5.18 shows the outputs of the observer, and the mean of the individual road
estimated densities. Note that for the majority of the time, the estimated average density is
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Figure 5.19: Fraction of total vehicles in the network which are in a congested road at every
time.

very close to the ground truth values, except for a time window between 15h00 and 19h00,
with a peak error at 17h30, where a the average density is underestimated.

To identify the reason for the increase in error, Fig. 5.19 shows the fraction of vehicles
that are in a congested road at every time instant. A road i is said to be in congestion if its
density ρ̂i is greater than the critical value ρc. For the current analysis, we use the same value
ρc as in Chapter 2. Note that during the period of 15h00 to 19h00, a large fraction of vehicles
are congested, ranging from 15% to 35%. Thus, the error in the average density estimation
occurs when the underlying assumptions are violated, namely during congestions.

Note that during the morning, between 9h00 and 12h00, the fraction of vehicles in conges-
tion reaches up to 15%. Although of lower magnitude compared to the afternoon, this is still
a noticeable congestion event. Nevertheless, during this period the average density estimates
are very close to the real values, and there is no noticeable increase in the error. This indicates
that when low-level of congestion are present in the network, the proposed estimator can still
provide accurate results.

As an error metric, the total RAE is equal to 12%. During the afternoon congestion (15h00
to 19h00), the obtained RAE increases to 18.3%. For comparison purposes, the RAE for the
rest of the time (from 6h00 to 15h00 and from 19h00 to 23h00), the RAE is 8.2%.

5.5 Concluding remarks

This Chapter described the use of the GTL-Ville platform that provides real traffic data from
the city of Grenoble to validate the dynamic flow-density estimation approaches proposed in
this manuscript. Although the problem of TSE in large networks is challenging, the obtained
results are encouraging as the estimated flow for individual roads are very close to the ground
truth data provided by sensors. For more than half of the validation locations, the mean
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trajectories presented an error below 20%.

For some other locations, the estimated trajectories underestimated the real values. Nev-
ertheless, even in this case the obtained errors were below 45%. We identify as the main error
source the uncertainty in the values of the TRs. This is because direct measurements of TRs
are only obtained for 12 intersections of the network, and for the rest of the intersections they
are estimated based on an heuristic formula based on the properties of the network. However,
this can be improved in the future by performing more measuring campaigns, so the estimation
results in the real application are expected to improve significantly.

Considering the average density estimation, the results show that during a high portion
of the day, the estimates and the ground truth values are very close, with an average error of
8%. However, it was evidenced that when the underlying assumptions of linear dynamics are
not satisfied, the trajectories of the real and estimated densities diverged, increasing the error
to almost 20%.



Conclusion and perspectives

Traffic state estimation in large scale urban networks is a challenging problem. This is due to
several factors such as the difficulty to accurately model the outflow of intersections, to the
large number of required parameters which are difficult to measure, and the to lack of sufficient
data. In this thesis we have addressed this issues, and provided different solutions that can be
used in real application to estimate the density and flow of large-scale traffic networks. Below
we will first summarize the main contributions of this work, and then propose some possible
future works.

Contributions

Sensor location

The availability of real traffic data is one of the most important elements in the deployment
of any TSE application. Due to the high costs related to the construction and maintenance
of a sensor network, we have proposed different methods that minimizes the required number
of flow and TR sensors, while minimizing the estimation error. In Chapter 2 this is done
for stationary networks by considering a trade-off between both sensing technologies. It was
found that the inclusion of TR measurements for a subset of intersections can significantly
reduce the number of flow sensors, where the reduction depends on the total out-degree on the
measured intersections. When considering different costs for both technologies, we proposed a
way to calculate the optimal number of sensors for each technology such that the total cost is
minimized. Furthermore, an efficient sensor location algorithm is proposed which can be used
for very large traffic networks without requiring a high computational cost. However, although
useful, this method presents certain limitations. As it is design for stationary networks,
the predicted sensor locations are not well-suited for dynamic scenarios. Additionally, as
the underlying flow estimation method uses only conservation laws, the predicted number of
sensors can still be high for certain applications.

To address these limitations, Chapter 3 proposes an alternative sensor location method
that considers TR sensors only. This method assumes that a priori values for the TRs for all
intersections are available, which may be subject to deviations from the real values. With this
initial guess, a sensitivity weight is computed for each intersection. This weight measures the
total error in the density estimation that is due to deviations of the TR estimates from the
real values. Then, a small given number of TR sensors are placed in the intersections with the
highest sensitivity weights, minimizing the estimation error. This method has the advantage
of being flexible for different budgets, and additional information can be used to improve the
resulting estimates. Nevertheless, this method is limited by the fact that it requires a priori
TR values for all intersections, or a TR estimation methodology. The accuracy of these initial
values can affect the quality of the results.

97
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Parameter estimation

For the implementation of the sensor location and estimation methods proposed in this thesis,
the TR parameters are a fundamental component. As their measurement for all intersections
is unfeasible, we analyzed the use of TR estimation methods based on network parameters
that are easily known, such as the number of lanes, the speed limit, and the FRC. We first
considered the TR estimation method proposed in Appendix B, which uses only the number
of lanes and speed limit of each road to compute the TR estimates. Tests in homogeneous
networks such as Highways provided good results, but in heterogeneous urban networks the
preliminary results were not satisfactory. As an alternative, Chapter 5 considers instead the
use of the FRC of each road to estimate the TRs. This method was applied to real data in
the Grenoble downtown, obtaining overall good results.

Although these methods are heuristic and introduce uncertainty in the parameters, the
obtained results show that they are an interesting tool that can be used to provide an initial
approximation with little economical cost.

Flow and density estimation approaches

To estimate the density and flow in urban traffic network, this thesis proposed three methods
that can be used for different applications. The steady-state method proposed in Chapter 2
provided good results, but due to its underlying assumptions, is limited to specific scenarios
and can require a large number of sensors and FD parameters.

The data-based dynamic estimation method in Chapter 3 can be applied to a wider range
of applications, as it does not assumes steady-state. Furthermore, compared to other works
in the literature, this method has the advantage of not using the FD, so fewer parameters
are used. This is done by using the road speed from FCD to directly estimate the outflow of
each road. As its main drawback, uncertainty in the TR were shown to significantly affect
the estimation error. Nevertheless, the results of this method in the real case of the Grenoble
downtown are encouraging, as the flow estimates were very close to the real values for a high
fraction of the validation locations. Furthermore, inclusion of new TR measurements can be
included to improve these initial results.

The third estimation approach proposed in Chapter 4 consists on estimating the average
density of an entire region. This differs from the methods of Chapters 2 and 3 that estimate
the density of each individual road. Instead, Chapter 4 proposes a one-dimensional observer,
such that the average density is estimated directly. This offers the advantage of a much lower
need for computational power, when only this aggregated indicator is required. However, this
approach is designed for the case of linear dynamics, which is generally not the case in real
traffic networks. Specifically, the presence of high levels of congestion were shown to cause
errors in the average density estimation. Nevertheless, simulations and the application to the
real case of Grenoble show that for most of the time this estimator can provide good results,
even when mild congestions are present in the network.
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Application in real networks

Chapter 5 of this document presented the experimental platform GTL-Ville, which consist
of the analysis of the network of the city of Grenoble, where real data from FCD, induction
loops, radars, and BT vehicle identifiers is available. This platform was used to validate the
results of the different approaches proposed in this thesis. On one hand, part of the sensors
and measurement campaigns that were realized in this area, were decided using the proposed
sensor location methods. On the other hand, the real data was used to deploy the algorithms
to estimate the flow and density for the roads of the network. All the information concerning
the raw data and the estimated indicators are available to the public, providing value to the
users of the network, traffic operators, and to the scientific community.

Perspective and extensions

Although the methods described in this research work have provided good initial results,
there are still open problems and questions that can provide significant improvements to the
accuracy of the estimations, and can be the base for future research.

One clear path is the improvement of the TR estimation methods. We have shown that
using the FRC of each road to estimate these parameters can lead to useful estimations of flow
propagation in the network. Nevertheless, the analysis we performed for this model is by no
means extensive, and the consideration of other parameter such as the geometry of the network
(e.g. connection angle between roads) can lead to more precise results. To do this, further
measurements of TR in the network are required, which in turn will improve the dynamic flow
and density estimation. Another possible improvement is to consider path-based rather than
intersection-based approaches, as these take into account not only the network structure, but
also additional information relating the possible routes between origins and destinations.

An important open question is how to deal with congestion for the case of the average
density estimator. This problem is not trivial, as it is mainly concerned to the study of
the detectability and observability of non-linear systems, for which the theoretical tools are
limited. The main issue regarding this extension is that keeping tract of congestion requires to
store the state of each individual road, which defeats the purpose of having a low-dimensional
estimator. Nevertheless, further study of this problem could developed new theoretical tools
able to provide a more general descriptor of the average traffic dynamics.

As a continuation of this PhD thesis, one of the main goals is to give further value to
the real data from the city of Grenoble and the proposed estimation approaches to improve
the GTL-Ville platform. For instance, this can be done by using the estimated flows and
densities as input for methods that predict the energy consumption and vehicle emissions which
are generated by the users of the network. This information is crucial for the development
of ecological traffic management, which develop strategies to improve the sustainability of
transportation networks.





Appendix A

Complementary proofs

A.1 Validity of Algorithm 2.2

Algorithm 2.2 presented in Section 2.3.2 constructs a basis for the null space of L(R∗) and
then locates sensors in such a way that the dimension of kerL(R∗) is reduced to 0. Recall
that C(S) can be written as the concatenation of rows uTs for s ∈ S. It can be shown that
if there exists any v ∈ kerL(R∗) such that v(i) 6= 0, then uTi is linearly independent to the
rows of L(R∗), and thus, this row reduces the dimension of the null space.

In the following propositions, we show that the proposed algorithm provides a solution to
problem (2.15). First, we show that the algorithm locates exactly the optimal number of flow
sensors n∗s. Subsequently, we show that the collection of uTs for s ∈ S is linearly independent
to the rows of L(R∗).

A.1.1 Number of sensors

Proposition A.1. Given any feasible network {C ∪ N,E} and any set R∗ ⊂ N, the graph
{NT ,ET } generated by Algorithm 2.2 is a spanning tree of {N ∪ {v0},E}.

Proof. From the original graph, we know that every edge is part of a directed path that
begins with an element of Ein and ends with an element of Eout. Because of this, step 1 of
the algorithm generates a strongly connected graph: for any node k ∈ N, there is a directed
path from v0 to k and another from k to v0. As step 2 implies the removal of edges, it is
possible that the result is a disconnected graph. For now, consider the case when the graph is
connected. Step 3 performs a DFS over a connected graph, so every node is visited, and thus
step 4 is not performed. Therefore, {NT ,ET } is a spanning tree of {N ∪ {v0},E}.

Now consider the case when step 2 generates a disconnected graph. Assume that there
are q connected components Gi = {Ni,Ei}, i = 0, 1, . . . , q − 1, and let G0 be the subgraph
containing node v0. The DFS in step 3 will visit only the nodes in G0. In step 4, we begin
by searching some k ∈ R that belongs to some Gi, i 6= 0, such that originally there is an
edge j ∈ O(k) that would connect Gi and G0. As the original graph is strongly connected,
every node is part of a directed path connecting to v0 ∈ G0, therefore such k and j must
always exist. Next, the single remaining outgoing edge of k is also removed. If this causes Gi

101



102 Appendix A. Complementary proofs

to become disconnected, denote Gq as the new connected component, which will be treated
in the following iterations. The DFS starting from k will generate a spanning tree of Gi.
Then, the addition of edge j connects subgraphs Gi and G0 without creating any cycles. This
process is carried out iteratively until all nodes haven been visited, creating a spanning tree
of {N ∪ {v0},E}.

Corollary A.1. For any set of intersections R∗, with cardinality |R∗| = nR, the described
algorithm locates n∗s sensors, where n∗s follows Corollary 2.1.

Proof. From step 1, we start with a graph that has nN + 1 nodes and nE edges. At the end of
step 4, the algorithm obtains a spanning tree of this graph, which is known to have nN edges.
It follows that there are nE − nN edges not contained in the tree. However, step 2 removes
degout(k) − 1 edges for each k ∈ R∗, for a total of

∑
k∈R∗ degout(k) − nN removed edges. As

sensors are to be located in edges not belonging to the tree nor the set of removed edges, we
end up with nE + n∗R −

∑
k∈R∗ degout(k)− nN locations, which is the same result as Corollary

2.1.

A.1.2 Linearly independence of sensor locations

The algorithm must also find the location of these sensors such that the rows of C(S) and
L(R∗) are linearly independent. To do this, we first discuss the relationship of the null space
of matrix L(R∗) with the cycles of the graph. Then, we show that by placing sensors in edges
that "break" the cycles we obtain a set of linearly independent rows to matrix L(R∗).

Definition A.1. Given a path P ⊂ E, P = {e1, e2, . . . , el} such that there are no repeated
edges, the corresponding path vector is defined as v ∈ {−1, 0, 1}nE×1 where v(e1) = 1, v(ei) =

0 if ei /∈ P, and v(ei) = v(ei−1) if edges ei, ei−1 have the same direction or v(ei) = −v(ei−1)

else.

Lemma A.1. Let P be a cycle that does not include any node belonging to R∗. The corre-
sponding path vector v belongs to the null space of L(R∗).

Proof. If R∗ = ∅, then L(∅) = B(N) is the incidence matrix of the graph {N ∪ {v0},E} and
the proposition has already been proved by [Cas+14].

For an arbitrary R∗, as the nodes comprised by P do not belong to R∗, then each one
of them is associated to a row of B(U). As this matrix is just a reduced version of B(N),
B(U)v = 0 must hold.

We can see that j ∈ P ⇐⇒ j /∈
⋃
k∈R∗ O(k) and j /∈

⋃
k∈R∗ I(k). Therefore, A(R∗)v = 0.

With these two results, L(R∗)v = 0.

Lemma A.2. Let k ∈ R∗ such that e0 ∈ I(k) and O(k) = {e1, e2, . . . , eq}. Let Pi =

{ei, . . . , e0} for i = 1, . . . , q be a feasible path, with associated path vector vi, such that it
does not include any node from R∗ other than k. Then v =

∑
i re0,eivi belongs to the null

space of L(R∗).



A.1. Validity of Algorithm 2.2 103

Proof. Note that each of the paths Pi is a cycle: the path ends with e0 which is connected
via k to the starting edge ei. We have B(U)vi = 0. Also, A(R∗ \ {k})vi = 0, as there are no
shared edges between Pi and

⋃
h∈R∗,h6=k O(h) or

⋃
h∈R∗,h6=k I(h). It can be seen that

A({k})vi = ui −


re0,e1
re0,e2
...

re0,eq

 .
Thus,

A({k})v =

q∑
i=1

re0,eiA({k})vi

=

q∑
i=1

re0,eiui −


re0,e1
re0,e2
...

re0,eq


q∑
i=1

re0,ei

=


re0,e1
re0,e2
...

re0,eq

−

re0,e1
re0,e2
...

re0,eq


A({k})v = 0

.

Thus, A(R∗)v = 0, which implies that L(R∗)v = 0 finalizing the proof.

In general, for each j ∈ I(k) for some k ∈ R∗, the cycles that connect every outgoing edge
of k to j must appear together in the elements of kerL(R∗).

Theorem A.1
The rows of C(S) calculated via the described algorithm and the rows of L(R∗) form a linearly
independent set.

Proof. The algorithm generates a set S of sensor locations such that these edges do not belong
to a constructed spanning tree or a set of removed edges. It is well known that adding an edge
s ∈ S to the tree generates a single cycle Ps. Additionally, if the corresponding path vector to
Ps is vs, the collection of vs for s ∈ S is a linearly independent set. Consider a partition of
S in SU and SR, such that SU consists of the edges that when added to the tree will generate
cycles that do not include any node from R∗.

Consider one element s0 ∈ SU. From Lemma A.1, vs0 ∈ kerL(R∗). As s0 ∈ Ps0 then
vs0(s0) 6= 0, therefore uTs0 is linearly independent to the rows of L(R∗). Now define L′ =

[L(R∗)T us0 ]T . Consider another s1 ∈ SU , s0 6= s1. Because s1 /∈ Ps0 , it is clear that
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us0(s1) = 0, hence vs1 ∈ kerL′. Following the previous reasoning we obtain that uTs1 is
linearly independent to the rows of L′. Repeating this process iteratively, it can be seen that
the collection of uTs for all s ∈ SU is linearly independent to the rows of L(R∗).

Now consider one element s0 ∈ SR which forms a cycle Ps0 that includes some k ∈ R∗

when added to the tree. From Lemma A.2, there is at least one vector v in the null space of
L(R) such that v(s0) 6= 0, so uTs0 is linearly independent to L(R∗). Consider another s1 ∈ SR
associated with cycle Ps1 such that Ps1 also includes node k. If there exists i ∈ O(k) ∩ Ps0
and j ∈ O(k) ∩ Ps1 with i 6= j, then Lemma A.2 implies that the path vectors vs0 ,vs1 form
part of the same v ∈ kerL(R∗). Therefore, {uTs0 ,u

T
s1} and the rows of L(R∗) do not form a

linearly independent set.

Nevertheless, step 2 of the algorithm removes all but one of the outgoing edges for the
intersections in R∗, implying that it is not possible to form two cycles Ps0 ,Ps1 that include
two different outgoing edges from the same k ∈ R∗ by only adding elements from S to the
tree. Thus, all the path vectors vs for all s ∈ SR are related to linearly independent vectors
in the null space of L(R∗). Hence, the collection of uTs for all s ∈ SR are linearly independent
to the rows of L(R∗).

Furthermore, note that as the cycles generated by the elements of SU do not include any
node from R∗, Lemma A.2 does not apply to them, and thus, they are independent to the
cycles formed by the elements of SR. Hence, the rows of C(S) and L(R∗) form a linearly
independent set.

A.2 Proof of Theorem 3.1

Consider the linear transformation x(t) = Le(t), subject to

d

dt
x(t) = (R> − I)L−1V (t)x(t) (A.1)

note that L is positive definite, and therefore (3.10) is asymptotically stable if and only if
(A.1) is asymptotically stable. Consider the Lyapunov candidate function

f(x, t) = x>P−1(t)x (A.2)

where
P (t) = diag(p(t)) (A.3)

and
p(t) = V −1(t)L(I−R>)−11 (A.4)

As I − R> is an invertible M-matrix, its elements are non-negative. Moreover, as V (t)

has positive diagonal entries and is bounded, P (t) and P−1(t) are bounded diagonal matrices
with positive diagonal entries, so f is positive definite. The derivative of f is

d

dt
f(x, t) = x>

(
V (t)L−1(R− I)P−1(t) + P−1(t)(R> − I)L−1V (t) +

d

dt
P−1(t)

)
x. (A.5)
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Consider

Q(t) = P (t)V (t)L−1(R− I) + (R> − I)L−1V (t)P (t)− d

dt
P (t) (A.6)

Note that
d

dt
f(t) = x>(t)P−1(t)Q(t)P−1(t)x(t) (A.7)

where we have use the fact that

d

dt
P−1(t) = −P−1(t)

(
d

dt
P (t)

)
P−1(t) (A.8)

Furthermore, as P (t) is positive definite,
d

dt
f(x, t) is negative-definite if and only if Q(t) is

negative-definite.

Consider the first two terms of Q(t),

Q1(t) = P (t)V (t)L−1(R− I) + (R> − I)L−1V (t)P (t) (A.9)

Let qi,j(t) be the element in the (i, j) position of Q1(t). According to the Gershgorin circle
theorem, the i-th eigenvalue of Q1(t), λi(t), is contained in a disk with center qi,i(t) and radius∑

j 6=i
|qi,j(t)|. (A.10)

In this specific case, we have

qi,i = −2
pi(t)vi(t)

`i
(A.11)

and ∑
j 6=i
|qi,j(t)| =

∑
j

(
pi(t)vi(t)

`i
ri,j

)
+
∑
j

(
pj(t)vj(t)

`j
rj,i

)
≤ pi(t)vi(t)

`i
+
∑
j

(
pj(t)vj(t)

`j
rj,i

) (A.12)

where we have used the property

∑
j

ri,j =

{
1 if i /∈ Eout

0 if i ∈ Eout
(A.13)

and ri,i = 0 for all i.

As the eigenvalues of Q1(t) are real, they can be upper-bounded by

λi(t) ≤ zi(t) (A.14)

where

zi(t) = −pi(t)vi(t)
`i

+
∑
j 6=i

(
pj(t)vj(t)

`j
rj,i

)
(A.15)
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is the sum of the center and radius of the Gershgorin disk. This results in a system of equations
of the form

z(t) = −(I−R>)L−1V (t)p(t) (A.16)

Substitution of (A.4) into (A.16) gives z(t) = −1. This implies that all eigenvalues of Q1(t)

are bounded above by -1, and thus,
Q1(t) ≤ −I (A.17)

Now consider
d

dt
P (t), whose i-th diagonal entry is

d

dt
pi(t) = − `i

v2i (t)

d

dt
vi(t)

∑
j

mi,j (A.18)

where mi,j is the (i, j) entry of (I−R>)−1. Using (3.12),

d

dt
pi(t) ≥ −

v2min
v2i (t)

`i
`max

∑
jmi,j

||(I−R>)−1||∞
(1− ε) ≥ −(1− ε). (A.19)

The last inequality follows from the fact that each of the fractions in the equation are less
than or equal to 1. This implies

d

dt
P (t) ≥ −(1− ε)I. (A.20)

Substitution of (A.17) and (A.20) into

Q(t) = Q1(t)−
d

dt
P (t) (A.21)

gives
Q(t) ≤ −εI (A.22)

Thus, the Lyapunov function f(x, t) is positive-definite with negative-definite derivative, which
implies that (A.1) (and by extension (3.10)) is asymptotically stable.

A.3 Proof of Theorem 4.5

Because of the independence between the vectors u and v, we can rewrite the desired proba-
bility in terms of the conditional probability

Pu,v(|u>v| < ε) = Pu(|u>v| < ε|v = y) (A.23)

where y ∈ Sm is any arbitrary vector.

Consider the set Pε = {x ∈ Sm : |x>y| < ε}. This can be visualized in the unit m-sphere
as all points within a distance ε from the equator, where the pole is y. Let A = {x ∈ Sm :

x>y > 0} be the hemisphere of Sm closest to y, and B = {x ∈ Sm : x>y ≤ 0} be the opposite
hemisphere. Note that Pu(A) = Pu(B) = 1/2.
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Define the ε-extension Aε = {x ∈ Sm : d(x,A) < ε}, and Bε defined analogously. It follows
that Pε = Aε ∩ Bε. Due to the fact that u is independent from the choice of y, the events Aε
and Bε are independent, and thus

Pu(Pε) = Pu(Aε)Pu(Bε) (A.24)

Because of the concentration of measure phenomenon, (see Theorem 2.3 in [Led05]), we
have that

Pu(Aε) ≥ 1− e−(m−1)ε2/2,
Pu(Bε) ≥ 1− e−(m−1)ε2/2.

(A.25)

Substitution of (A.24) and (A.25) into (A.23) gives

Pu,v(|u>v| < ε) ≥ 1− 2e−(m−1)ε
2/2, (A.26)

thus, finalizing the proof.





Appendix B

Turning ratio topology-based model

This section proposes a model to give estimate values for the turning proportions for a given
intersection of a traffic network based on a topology-based method. These techniques use only
physical parameters of the network at each intersection (e.g.: angle between incoming and
outgoing roads, number of lanes, maximum capacity, etc.) to determine the most likely turns.
Consider the following assumption,

Assumption B.1. For any intersection, the TR from road i to road j, ri,j , is proportional
to the maximum capacity of the outgoing road j.

The capacity of a road relies on most cases on parameters such as the critical density,
which may be difficult to obtain in practice. We simplify this assumption by estimating the
capacity in terms of the maximum vehicle speed vmax

i and the number of lanes Γi. Thus,

ri,j =
vmax
j Γj∑

k∈O(n)

vmax
k Γk

(B.1)

The values for the maximum velocity can be calculated using FCD, or by using the speed limit
of each road. It can be seen that the main advantage of these type of approaches is that they
require few parameters to be known, so they can be applied to the entire network. However,
because of their simplicity they are more prone to errors and can provide estimates with high
error mean and variance. These values can be used as a working initial value for the sensor
location scheme described in Section 3.3.3. This flexible approach can improve estimates from
an initial cheap alternative.

To evaluate this choice of model for the TRs, data recollected by the Grenoble Traffic
Lab (GTL)1 was used. This data consists of inductive magnetic loop sensors installed in 21
locations along the Rocade highway at the outskirts of the city of Grenoble in the direction
North-South. Figure B.1 shows the 21 locations equipped with sensors. To measure TRs,
data from sensors located at off-ramps was taken. The 8 locations of the off-ramps with
available data are shown in the figure with red stars. Figure B.2 shows an aerial view of the
an intersection, corresponding to the label 1 in Figure B.1. The top location marked with an
"O" corresponds to an off-ramp, whereas the locations in the middle and bottom marked with
"I"s are in-ramps from the East-West and West-East directions, respectively. Note that at

1https://gtl.inrialpes.fr
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Figure B.1: Sensing locations in the Rocade highway. Purple markers signal each of the 21
locations. Red stars show a subsets of the sensors which correspond to off-ramps such that
TRs can be measured.

Figure B.2: Aerial photo of intersection 1. Location of the magnetic loops are shown with
dark-green dots. The off-ramp is labeled with a light green marker with an "O".
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Location ID 1 2 3 4 5 6 7
Number of lanes Rocade 2 2 2 2 2 2 2
Max. Speed Rocade (km/h) 97 95 98 97 97 94 88
Number of lanes Off-ramp 1 1 1 1 1 1 1
Max. Speed Off-ramp (km/h) 60 50 44 26 58 37 28
Estimated ratio 0.24 0.21 0.18 0.12 0.33 0.17 0.12

Table B.1: Physical parameters and estimated TRs for off-ramps 1 to 7.

Figure B.3: Aerial photo of intersection 8. There are three diverging directions: right, center,
left.

each location there are three sensors corresponding to the off-ramp (or in-ramp), the regular
lane and the fast-lane. The setup for the remaining 7 locations are similar.

The estimated values for the TRs are obtained using only the topology and physical prop-
erties of the network. Table B.1 shows the parameters for the off-ramps 1 to 7. For these
intersections there are only 2 diverging directions, namely continuing in the highway or taking
the off-ramp. Intersection 8 has a different setup, as it splits into 3 directions as shown in
Fig. B.3. The physical parameters for the three directions are shown in Table B.2 with the
corresponding TR estimates.

Vehicle count and speed data is available for each sensor with an aggregation time of
5 minutes. Let ϕji [k] be the vehicle count during the time interval k for the off-ramp i ∈
{1, 2, . . . , 8} and lane j ∈ {1, 2, 3} (where 1 identifies the off-ramp, 2 the regular-lane, and 3
the fast-lane). For this particular set-up, as there is only one incoming road to the intersection,
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Direction Right Center Left
Number of lanes 1 1 1
Max. Speed (km/h) 67 58 76
Estimated ratio 0.33 0.29 0.38

Table B.2: Physical parameters for the outgoing roads at intersection 8.

Figure B.4: Time series of the measured TRs for the days of the week for each intersection.
For intersection 8 only the right turn ratio is shown.

the TR for the off-ramp i is calculated as

ri[k] =

T−1∑
τ=0

ϕ1
i [k − τ ]

3∑
j=1

T−1∑
τ=0

ϕji [k − τ ]

(B.2)

where T ≥ 0 is the length of a sliding window to smooth out the measures of the TRs.

We used 1 year of data from March 2014 to February 2015, with a sliding window of 20
minutes. As expected, the TRs present a variation in time, specifically in terms of the hour
of the day and the day of the week. Figure B.4 shows the time evolution of the measured
TRs for each time interval and each day of the week. Each point is calculated by taking the
median of all data points of the same day of the week at the same time.
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Note that for 6 out of 8 intersections, the proposed topology-based model yields a good
approximation of the actual values for the TRs.
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