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Résumé

Dans cette these, nous considérons des systemes d’équations algébriques linéaires provenant
de discrétisation d’équations aux dérivées partielles elliptiques de second ordre par des
éléments finis de degré polynomial arbitraire.

Dans le Chapitre 1 nous proposons un estimateur a posteriori pour 'erreur algébrique,
la construction duquel est intrinsequement liée a celle d’un solveur multigrille avec zéro
pas de pré-lissage et seulement un pas de post-lissage par des méthodes de Schwarz (bloc-
Jacobi) avec recouvrement. Les contributions principales de cette approche portent sur les
deux résultats suivants ainsi que leur équivalence : le solveur contracte l’erreur algébrique
indépendamment du degré polynomial (p-robustesse) ; l'estimateur représente une borne
p-robuste supérieure et inférieure de 'erreur algébrique. Les preuves de ces résultats sont
valables en un, deux, et trois dimensions d’espace, sous I’hypothese de régularité minimale
H' de la solution faible, pour des maillages quasi-uniformes ou bien des maillages issus
de raffinements adaptatifs par bissection, et sont indépendantes de la base de l’espace
d’éléments finis choisie. Nous introduisons ici un pas optimal (par recherche linéaire) de
I’étape de correction d’erreur de multigrille.

Dans le Chapitre 2 nous introduisons des pas optimaux par niveau, ainsi maximisant
la, réduction d’erreur algébrique & chaque niveau. Sous hypothese de régularité H?, nous
prouvons ici que la contraction/efficacité p-robuste sont aussi indépendants du nombre
de niveaux dans la hiérarchie de maillages. En plus de I'amélioration des performances
du solveur, l'utilisation des pas optimaux par niveau conduit également a une formule de
Pythagore explicite de la réduction de lerreur algébrique d’une itération a lautre. La
formule sert alors de fondement pour une stratégie adaptative simple et efficace qui permet
au solveur de choisir le nombre nécessaire de pas de post-lissage a chaque niveau.

Dans le Chapitre 3 nous introduisons une stratégie de lissage local adaptatif grace
a notre estimateur efficace a posteriori, qui a la propriété importante d’étre localisé par
niveaux et par patchs d’éléments. Ainsi, lestimateur peut détecter et marquer quels
patchs d’éléments parmi tous les niveaux contribuent plus qu’un pourcentage prescrit par
l'utilisateur de Perreur algébrique globale (via un critere de type bulk-chasing). Chaque
itération du solveur adaptatif est ici composée de deux sous-étapes: apres un premier V-
cycle non adaptatif, un deuxieme V-cycle adaptatif et peu cotteux n’utilise le lissage local
que dans les patchs marqués. Nous prouvons que chacune de ces sous-étapes contracte
Perreur algébrique de maniere p-robuste.

Pour terminer, dans le Chapitre 4 nous donnons des extensions des résultats ci-dessus
au cadre d’éléments finis mixtes en deux dimensions d’espace.

Une variété de tests numériques est présentée pour confirmer les résultats théoriques
de cette these, ainsi que pour montrer les avantages de nos approches p-robustes et/ou
d’adaptivité de solveurs algébriques.

Mots-clés : probleme elliptique de deuxiéme ordre, méthode des éléments finis, solveur
algébrique itératif, méthode multigrille, méthode de Schwarz, lisseur bloc-Jacobi, erreur
algébrique, estimateur d’erreur a posteriori, p-robustesse, décomposition stable, pas opti-
maux, recherche linéaire, adaptivité, choix adaptatif du nombre de pas de lissage, lissage
local






Abstract

In this thesis, we consider systems of linear algebraic equations arising from discretiza-
tions of second-order elliptic partial differential equations using finite elements of arbitrary
polynomial degree.

In Chapter 1, we propose an a posteriori estimator for the algebraic error whose con-
struction is inherently interconnected with the design of a multigrid solver with zero pre- and
only one post-smoothing step by overlapping Schwarz (block-Jacobi) methods. The main
contribution of this approach consists in the two following results and their equivalence: the
solver contracts the algebraic error independently of the polynomial degree (p-robustness);
the estimator represents a two-sided p-robust bound on the algebraic error. The proofs of
these results hold in one, two, and three space dimensions, under the minimal H!-regularity
of the weak solution, for quasi-uniform meshes as well as for possibly highly graded ones,
and are independent of the basis of the chosen finite element space. We introduce here an
optimal step-size (by line search) in the error correction stage of the multigrid.

In Chapter 2, we introduce level-wise optimal step-sizes, thus maximizing the decrease
of the algebraic error on each level. Under the H2-regularity assumption, we prove here that
the p-robust contraction/efficiency also hold independently of the number of mesh levels.
Apart from improving the performance of the solver, the use of the level-wise step-sizes
also leads to an explicit Pythagorean formula of the decrease of the algebraic error from
one iteration to the next. The formula then serves as foundation of a simple and effective
adaptive strategy which allows the solver to choose the necessary number of post-smoothing
steps on each level.

In Chapter 3, we introduce an adaptive local smoothing strategy thanks to our efficient
a posteriori estimator, which has the important property of being localized level-wise and
patch-wise. Thus, the estimator can detect and mark which patches of elements among all
mesh levels contribute more than a user prescribed percentage to the global algebraic error
(via a bulk-chasing criterion). Each iteration of the adaptive solver is here composed of two
sub-steps: after a first non-adaptive V-cycle, a second adaptive and inexpensive V-cycle
employs local smoothing only in the marked patches. We prove that each of these sub-steps
contracts the algebraic error p-robustly.

Finally, in Chapter 4, we provide an extension of the above results to the case of the
mixed finite element method discretization in two space dimensions.

A variety of numerical tests is presented to confirm the theoretical findings of this
thesis, as well as to show the benefits of our p-robust and/or adaptive solver approaches.

Keywords: second-order elliptic problem, finite element method, algebraic iterative solver,
multigrid method, Schwarz method, block-Jacobi smoother, algebraic error, a posteriori er-
ror estimate, p-robustness, stable decomposition, optimal step-sizes, line search, adaptivity,
adaptive choice of the number of smoothing steps, local smoothing
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“Truth is much too complicated to allow
anything but approrimations.”
- John Von Neumann

Introduction

We live in a world full of imperfections, but as long as they are acceptable, we
can carry on with our lives perfectly fine: even though none of our watches are
exact, we live our daily lives as if they were. In mathematics, this idea of adopting
what is good enough corresponds to the concept of approximation and it is often
our best solution when tackling physical problems modeled through partial differ-
ential equations. Thus, instead of the unavailable exact solution of such a problem,
we develop computable mathematically-based approximations. But how to decide
what is a good-enough approximation? A posteriori analysis, which uses the avail-
able outcome of the computations, plays an essential role to treat this question by
identifying the magnitude but also the source and nature of the error between the
unavailable exact solution and its constructed approximation. This information is
valuable in order to control the overall error and develop new approaches to improve
the approximation as efficiently as possible.

i Finite element method

While the analytic solution of a partial differential equation defined for a physical
domain is usually not accessible, one can search for an approximation of the solution
in a finite-dimensional space. This step is accomplished through discretization
methods. Thus, we go from a continuous problem with infinitely many unknowns to
a discrete problem with a finite number of unknowns, which is suitable to be handled
with the help of computers. One of the most popular and versatile discretization
methods is the finite element method, see e.g. Ciarlet [1978], Ern and Guermond
[2004], or Brenner and Scott [2008]. To define the method, first, the computational
domain is partitioned in simple subdomains, for instance simplices, referred to as a
mesh. Then, simple shape functions, for instance piecewise polynomials, are defined
on each subdomain, referred to henceforth as element. The guiding principle of the
finite element method is to be able to approximate the exact solution through
a combination of these shape functions. This typically leads to the problem of
determining the unknown coeflicients needed to weigh each of these shape functions
before summing them together to obtain our approximation. We illustrate this idea
in a simple one-dimensional case in Figure 1.

In particular, the accuracy of the discrete solution depends on how small the
mesh size h is chosen as well as on the polynomial degree of approximation p, see
e.g. Szabé and Babuska [1991] or Solin et al. [2004]. However, initially choosing a
very fine mesh or high polynomial degree is often not the best approach, since this
implies a non-negligible computational cost, even for areas of the domain where
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Figure 1: Hlustration of the finite element method in one space dimension. Left: the
domain = (0,1), the mesh 7, where h is the mesh size (here h = %) Cen-
ter: shape functions @0, ¥n1, ..., @ns (here piecewise affine) that are used to
define the discrete solution uj. The unknown coefficients ¢g, c1, ..., cg (in red)
are to be determined so that up can approximate the unavailable exact solution u
(dotted line) in the discretization points. Right: we obtain the discrete solution wuy,
(in green) after determining the nine unknown coefficients by solving the algebraic

system of nine linear equations obtained from the discrete problem.

the same accuracy can be achieved with fewer unknowns. There have been many
contributions dedicated to the topic, where the idea is to begin by a simple config-
uration of the mesh and polynomial degree distribution and then adaptively enrich
areas of the domain by either refining the mesh and/or increasing the polynomial
degree. This approach is referred to as hp-adaptive finite element method.

Work on this subject traces back to the pioneering work on the h-, p-, and hp-
version of finite element method in Gui and Babuska [1986a,b,c], and interest and
development has continued over the years. Closely related is the progress made in
a posteriori analysis for finite element methods, see e.g. Babuska and Rheinboldt
[1978], Ainsworth and Oden [2000], or Verfiirth [2013] for an overview. These ap-
proaches can be combined together so that the refinement decision is steered adap-
tively by a posteriori estimates. To mention a few contributions, see e.g., Carstensen
et al. [2014] for axioms of adaptivity in an abstract h-refinement setting, Mitchell
and McClain [2014] for a comparison of hp-adaptive strategies, Morin et al. [2002],
Cascon et al. [2008], Becker and Mao [2009], Feischl et al. [2014], Bespalov et al.
[2017], and Canuto et al. [2017] for convergence and quasi-optimality/optimality
results, Dolejsi et al. [2016] for a polynomial-degree-robust a-posteriori-steering,
Daniel et al. [2018] for computable and guaranteed error decrease bound, Gantner
et al. [2018] for optimal convergence rates when the operator is nonlinear.

ii Linear solvers

The benefits of employing the hp-adaptive finite element method, and more gen-
erally the accuracy obtained through high-order approximations, lead us to study
finite element discretizations of arbitrary polynomial degree p. Since increasing the
polynomial degree implies increasing the number of shape functions to better cap-
ture the behavior of the unknown exact solution, this also leads to algebraic systems
of increasing size: a larger number of unknown coefficients needs to be determined
from solving a system of linear algebraic equations of the corresponding size.
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1ii.1 Direct solvers

When the number of unknowns is manageable computationally, we can rely on direct
solvers to give us the coefficients needed to construct our discrete solution.

The algebraic system can be written in a matrix form and depending on the
matrix, certain direct methods are more suitable than others. For instance, the first
distinction to be made is whether or not the matrix is sparse, i.e. most coefficients
of the matrix are zero. This distinction can lead to, when possible, savings in
storage. One can then check if the matrix has certain properties, for example,
being diagonal/banded/triangular/permutation of a triangular matrix, in order to
use simpler and faster solvers (e.g., in the diagonal case it suffices to invert the
coefficients of the diagonal, whereas for the triangular case a backward/forward
solve suffices). In other cases, when the matrix is symmetric and positive definite,
a Cholesky solver can be employed, whereas when the matrix is invertible but
not symmetric, an LU solver can be used instead. Many novel approaches such
as unifrontal-multifrontal methods have been derived in the past decade, see e.g.,
Yeralan et al. [2017], Duff et al. [2020] and the references therein. For more details
on these methods and others, see e.g. Golub and Van Loan [1996] or Davis et al.
[2016].

1i.2 Iterative solvers

Often, due to the size of the algebraic system, it is not possible or it is too time-
or memory-consuming in terms of computer resources to employ direct solvers. In
this case, one can resort to iterative linear solvers: algorithms which produce a
sequence of approximations of the unknown coefficients, which should converge to
the unknown exact coefficients.

We refer to the linear solvers that only require information from the given matrix
as algebraic methods. Classic examples include the Jacobi, Gauss—Seidel, and suc-
cessive overrelaxation (SOR) iterative solvers, see e.g. Kelley [1995], Varga [2000],
or Saad [2003]. More powerful algebraic methods have been developed over the
time, such as the algebraic multigrid method, see the seminal works of Brandt et al.
[1985] and Ruge and Stiiben [1987], or recent contributions in, e.g., Napov and
Notay [2012] and the references therein.

Other linear solvers that use the given matrix and additionally smaller matrices
assembled on sub-meshes and/or other information about the underlying mesh and
problem are referred to as geometric methods. In this class of solvers, we mention
the domain decomposition methods and (geometric) multigrid solvers which are
treated in the following.

ii.2.1 Domain decomposition methods

The strategy of domain decomposition methods can be compared to a “divide and
conquer” approach, see e.g. Dryja and Widlund [1990], Quarteroni and Valli [1999],
Toselli and Widlund [2005], or Dolean et al. [2015] for an in-depth introduction. The
main idea is to subdivide the original computational domain €2 into smaller subdo-
mains (often with simpler geometry), where the associated algebraic systems can be
solved directly. Depending on whether the subdomains are chosen to be overlapping
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or not, the domain decomposition methods can be overlapping or non-overlapping,
see Figure 2 for an illustration. We focus here on overlapping methods, which
are based on the alternating Schwarz method introduced in Schwarz [1870]. This
method can be summarized, for the historic case of two subdomains, by solving on
the first subdomain a smaller-sized problem, then using the obtained approximation
to improve the problem which should be solved in the second neighboring subdo-
main. This procedure continues iteratively, alternating from one subdomain to the
other, until the subdomain approximations match in the overlapping region and a
global approximation on the whole domain is obtained. To benefit from parallel
computing, nowadays, the subdomain problems are typically solved independently,
and then the information from the overlapping region is exchanged between subdo-
mains. For an exhaustive presentation of Schwarz methods, see Gander [2008].

Figure 2: Example of the domain Q (left) being partitioned into a non-overlapping
(center) and overlapping (right) decomposition. The subdomains Q;, Qg, are il-
lustrated in yellow and blue, respectively. For the overlapping decomposition, the
overlapping region shared by both subdomains is illustrated in light green.

ii.2.2 Multigrid solvers

Geometric multigrid solvers, see e.g. Brandt and Livne [2011], Hackbusch [2003] or
Briggs et al. [2000], and more generally multilevel solvers, see e.g. Oswald [1994], are
amongst the most efficient and versatile linear solvers. The main idea of multigrid
solvers is to capture complementary components of the algebraic error through
the use of a hierarchy of meshes, see Figure 4 for an illustration of two different
types of hierarchies, one obtained through uniform mesh refinement and the other
from an adaptive mesh refinement approach. At each level of the hierarchy, a
number of simple iterations, called smoothings, are employed to improve a given
approximation. Importantly, at the coarsest mesh, the associated algebraic system
is small enough in size to be solved directly. In order to convey information from
one level to another, interpolation and restriction operators are crucial, which is
where the geometric information of the mesh hierarchy is used. Depending on the
order in which the levels are visited, an iteration of multigrid is composed of a given
cycle. For example, for the V-cycle, the iteration begins at the finest level, then
levels are visited from finest to coarsest, then revisited again from coarsest to finest,
see Figure 3 for an illustration. We shall refer to the smoothing steps taking place
before or after the coarse solve, respectively as pre-smoothing steps, post-smoothing
steps. Importanly, one of the main features of multigrid solvers is their intrinsic
robustness with respect to the mesh size, i.e. h-robustness. This means that the
factor by which the algebraic error is divided on each step is independent of the
mesh size parameter h.



ii. Linear solvers 5
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Figure 3: The multigrid approach for a hierarchy of meshes illustrated on the left
with J = 3 refinements.

There are many similarities between multigrid and domain decomposition meth-
ods. In fact both are subspace correction methods, see e.g. Xu [1992]. The gaps
between these two methods shrink when a coarse level is introduced in the domain
decomposition setting and even more so when Schwarz methods are considered as
smoothers in multigrid solvers, see e.g. Loisel et al. [2008].

: -
uniform &
refinement
i T T T
To
adaptive
refinement Ti T2 Ts

Figure 4: Two types of mesh hierarchies generated by J = 3 refinements of a quasi-
uniform coarse mesh 7y. Top: Uniform mesh refinement, where each triangle of the
previous level is subdivided into four congruent triangles. Bottom: Adaptive mesh
refinement by using the newest bisection algorithm, cf. Sewell [1972].

1i.2.3 Preconditioners

The methods we mentioned above, both algebraic and geometric, can be used either
as iterative solvers, or their procedure can be modified (if needed) to be symmetric,
so that they can serve as preconditioners for, e.g., the conjugate gradient algorithm
of Hestenes and Stiefel [1952]. Using preconditioning can accelerate the convergence
of the solver, see e.g. [Xu, 1992, Proposition 2.2]. For cases when the procedure is
not symmetric, one can also resort to the use of the GMRES method introduced
in Saad and Schultz [1986], or the BICGSTAB method developed in van der Vorst
[1992]. These methods belong to the same family of Krylov subspace methods.
Note, however, that the performance of the original methods degrades when the



6 Introduction

mesh size h decreases (they are not h-robust), but this is amended once h-robust
preconditioners are used.

ii.3 Adaptive linear solvers

Adaptivity in linear solvers can be understood in various ways depending primar-
ily on the nature of the solver that is being considered. In the family of algebraic
multigrid methods, there have been several works which develop adaptive smoothed
aggregation to build a coarser linear system, for example by determining near-kernel
components, see e.g. Brezina et al. [2006], or by path covers using generalized a pos-
teriori error estimates, see Hu et al. [2019], see also the references therein. Other
techniques include the adaptive construction of preconditioners, see e.g., Anciaux-
Sedrakian et al. [2020], which relies on a posteriori error estimates of the algebraic
error used in, e.g., Papez et al. [2018]. Another recent approach is the adaptive
multilevel Krylov method developed in Kehl et al. [2019], where the number of it-
erations performed on each level is chosen through a theoretically-derived criterion.

ii.4 Robustness with respect to the polynomial degree p

Due to the role of the linear solvers in obtaining a computable approximation of the
discrete solution, their behavior with respect to the discretization parameters, mesh
size h and polynomial degree p, should be considered. While we mentioned that
certain solvers are robust with respect to the mesh size h, e.g. geometric multigrid
solvers and certain preconditioners, we now focus on the behavior of solvers with
respect to p. Very often the performance of linear solvers degrades with the increase
of the polynomial degree, i.e., the algebraic error decreases in each iteration more
slowly when p increases. When the solver is immune to this degradation, we refer
to it as a p-robust solver.

In Quarteroni and Sacchi Landriani [1988], a p-robust domain decompostion
method was presented for a specific domain configuration, and later advances on
the topic were made in Pavarino [1994] for quadrilateral/hexahedral meshes, where
a p-robust domain decomposition method using additive Schwarz was introduced.
The generalization of this result for triangular/tetrahedral meshes was achieved by
Schoberl et al. [2008] and the additive Schwarz method was used here to construct a
p-robust preconditioner. For results for multigrid solvers also covering more general
meshes, see e.g., Antonietti et al. [2018] and Antonietti and Pennesi [2019], where
p-robustness is achieved when the number of smoothing steps is chosen sufficiently
large.

For a computational survey on multigrid solvers for high-order discretizations,
see e.g. Sundar et al. [2015].

ili Two central building blocks for the results of the
thesis
We wish to acknowledge the important role of the two following works in the de-

velopment of our theoretical results: 1) The p-robust results of this thesis crucially
rely on the p-robust stable decomposition based on local problems of Schéberl et al.
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[2008]. In Schoberl et al. [2008] this is developed on one given mesh (one-level),
whereas we generalize it here to the multilevel setting. Moreover, the analysis in
Schoberl et al. [2008] serves to construct a (symmetric) preconditioner, whereas in
our work, the decomposition is a crucial ingredient of a standalone (non-symmetric)
solver. 2) The multilevel piecewise affine stable decomposition of Xu et al. [2009],
in particular for graded meshes generated by bisection. In Xu et al. [2009] the
finite element hierarchy only uses order p approximations in the finest level and
the estimates are not p-robust, whereas in our work, the hierarchy can be more
general as long as the level-wise finite element spaces are nested, and the estimates
are p-robust. By combining the above two results together, we obtain a p-robust
multilevel stable splitting, essential for our analysis.

iv. Model problem and its discretization

In this thesis, we will consider of a second-order elliptic diffusion problem posed
over QCR? de{1,2,3}, an open bounded polytope with a Lipschitz-continuous
boundary. Below, f € L?(Q) denotes the source term and K € [L®(9)]%*? is a
bounded tensor-valued diffusion coefficient taking symmetric and uniformly positive
definite values. The problem consists in finding u : £ — R such that

V. (ICVu) =f inQ, )
u=0 on 0.

The continuous primal weak formulation of problem (1) consists in finding
u € HE(9), such that

(KVu,Vv) = (f,v) Vv e Hy (%), (2)

where (-, -) is the L?(Q) or [L?(Q)]¢ scalar product. The existence and uniqueness of
the solution of (2) follows from the Riesz representation theorem and assumptions
on the data.

After fixing a matching simplicial mesh 7 of € and an integer p > 1, we can
introduce the finite element space of continuous piecewise p-degree polynomials

V] = Pp(T7) N Hy (), (3)
where P, (7;) := {vs € L*(Q),vs|x € Po(K) VK € T;}.
The discretization of problem (2) leads to searching for uy € V7 such that
(KVuz,Voy) = (fvg) YugeVy. (4)

Upon introducing a basis of V}’ , the discrete problem (4) can be rewritten in a
matrix form; however, the newly written problem would then be basis-dependent.
Throughout this thesis, we opt to work with the functional basis-independent writ-

ing (4).

v A posteriori point of view and goals of the thesis

The approach and focus of this thesis is driven by a posteriori analysis. In a nutshell,
we develop a posteriori error estimates of the algebraic error

K3 (s =),
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where u; is the exact (unknown) solution of (4) and u’ € V¥ is its arbitrary ap-
proximation. The a posteriori estimator nglg is computable from u*; (by a procedure
equivalent to a V-cycle multigrid with no pre-smoothing and one post-smoothing
step) and yields a guaranteed lower bound on the algebraic error:

1529 (g — )| > g (5)

A salient feature of our approach is that we simultaneously use the construction of
the estimator to define a linear solver. If uf] is the current iterate for the iteration

counter 7, then the linear solver constructs the next iterate uf,“ from u?] as

u't = v + “update”, (6)

where the same procedure which constructs the a posteriori estimator nglg also gives
us the solver update.

The procedure we develop in this thesis is more precisely designed in a way that
links the estimator and the solver as

1 i1, (12 1 NIE P \2
|12V (uy —ufH)||" = |2V (wy — ul)||” = (nag) (7)
where, recall, uy is the exact (unknown) solution of the linear system (4). The
first important property of our approach, following from (7), is that the a posteriori
estimator is a guaranteed lower bound of the algebraic error, i.e. (5) holds.
One natural follow-up question is: is this estimator also efficient, i.e. is 77;1g also

an upper bound, up to a constant, of the algebraic error HIC%V(UJ — uf])H’?
Owing to the link (7) between the solver and the estimator, this question

is in fact equivalent to: does the solver contract the algebraic error, i.e. is
1 - 1 .

HIC§V(UJ - uf]H)H strictly smaller than HICEV(UJ - uf])H‘? This equivalence can

be seen from:

H’C%V(U,J - uf,+1)}|2 < aQHIC%V(uJ — uf,)HQ (error contraction)  (8)
Q H’C%V(UJ — uf;)HQ — (nglg)g < QZHK%V(UJ — uZJ)HZ
& H’C%V(UJ - uf,)HQ(l —a?) < (n;lg)2 (estimator efficiency). 9)

We show in this thesis that the answer to the above two equivalent questions
is yes, and that the factor 0 < a < 1 is moreover independent of the polynomial
degree p, i.e. p-robust.

In the upcoming chapters, we will see different ways of defining a posteriori
estimators and algebraic solvers that have these desirable properties. We shall
also exploit further the properties of the a posteriori estimator by proposing new
adaptive approaches in algebraic solvers. Due to the inherent connection between
estimators and solvers, we refer to these solvers as a-posteriori-steered.

v.l1 Multilevel setting

In order to define the procedure that constructs both the estimator 77;1g and the
solver update in (6), linked by (7), we take a multilevel approach. This is necessary
when it comes to estimating the algebraic error, as already pointed out in, e.g.,
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Riide [1993], and can also seen in the counterexample of [Papez et al., 2020, Section
2.1]: one-level a posteriori estimators of the algebraic error are ill-suited to the task.
In fact, the mentioned numerical counterexample illustrates how the accuracy of the
one-level estimator degrades, in particular when the mesh size h decreases.

To T T2 T3 T

Vi=R(T)NHJ(Q) VI'=B(T)NHHQ) V=B (T)NHQ) V=B, (T)NH(Q) Vi=B(T)NHQ)

Figure 5: Example of a mesh and space hierarchy for a number of refinements J = 4.

For our multilevel setting, we assume we have at our disposal a fixed sequence
of nested matching simplicial meshes {7;}o<j<s, J > 1, where 7 is the previously
introduced finest mesh, and each 7; is a refinement of 7;_1, 1 < j < J. Our meshes
in the hierarchy can be quasi-uniform or highly graded; we, however, require that:
(i) the initial coarsest mesh Ty is quasi-uniform; (ii) all the meshes of the hierarchy
are shape-regular; (iii) the maximum strength of refinement from one mesh to the
next is bounded.

From the hierarchy of meshes, we then introduce a hierarchy of nested finite
element spaces. By fixing an increasing sequence of level-wise polynomial degrees
1l=pg<p1 <...<pj_1 <pj=p, we can define:

for j =0: Vo :=P1(To) N HY() (lowest-order space), (10a)
for0<j< J: Vjpj =Py, (Tj) N H}(Q) (intermediate-order spaces), (10b)
for j=J: VP :=P,(T;) N H)(Q) (highest-order space). (10c)

An illustration of a possible hierarchy is given in Figure 5.
v.2 Multilevel procedure for constructing an a posteriori estimator
of the algebraic error and a linear solver

Throughout this thesis we present several different constructions of an a posteriori
estimator and solver based on the following common multilevel procedure, whose
goal is to lift the algebraic residual. We first introduce the algebraic residual func-
tional on V¥ given by

vy (f,vg) — (KVuY, Vuy) € R, vy e VY. (11)

Definition v.1 (Multilevel lifting of the algebraic residual). Given an arbitrary
uf] € V}D, perform the following steps:

1. Define the global lowest-order algebraic residual lifting pf) € Vol by
(IKV phy, Vog) = (f,v0) — (IKVuY, Vug)  Yug € V. (12)

This corresponds to the global residual solve on the coarsest mesh.

Set )\6 =1.
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2. Go through the levels j € {1,...,J} in ascending order:

(a) Let V; be the set of vertices of the mesh T;. Given a vertex a€V;, let
w§ be the open patch subdomain of all mesh elements of T; that share the
vertez a. Let the local space V?* be defined by

VR =Py, (T;) N HY (). (13)

(b) For all a€Vj, define P;,a € V* as the solution to the local intermediate
or highest-order residual problem:

(’Cvpé,a>vvj7a)w? = (f) Uj,a)w; - (TCVuf],ij,a)w;.
j—1
_ Z )\};(ICVp};,VUj,a)w}a Yuja €V (14)
k=0

(c) Define the algebraic residual lifting on level j by

pii= 2 Pia (15)

aEVj

If pé %0, define the optimal step-size on level j by

v o) = (CV (uy + SO AL, Vi) 16)
] lictwsil? |

otherwise set )\3'- = 1.

One can notice that this multilevel procedure is parallelizable on each given
level, since the local patch problems are mutually independent. It is, though, not
parallelizable level-wise. From an algebraic perspective, the procedure is additive
patch-wise for each given level and multiplicative level-wise.

Definition v.2 (A posteriori estimator of the algebraic error). Given any arbitrary
uf] € VP, let the leve]—wise algebraic residual liftings {p;}ogjg] and the level-wise
optimal step-sizes {)\;-}ogjgj be constructed as in Definition v.1. Define the a pos-
teriori estimator of the algebraic error associated to uf] as

J 1
e = (D2 (I3 Ve )?) " (a7
=0

J

Definition v.3 (A posteriori-steered solver). Initialize u =0 and let i = 0. Per-
form the following steps:

1. Construct the level-wise algebraic residual liftings {pé}ogjgj and the level-wise
optimal step-sizes {)\é}OSjSJ from u’ as in Definition v.1.
J
2. Update the current approximation uf,‘H =Y+ Z )\3,0; (18)
§=0

3. If uff’l :uf}, then stop the solver; otherwise increase i:=1 +1 and go to step 1.
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One iteration of the solver of Definition v.3 can be seen as a geometric multigrid
V-cycle with zero pre- and a single post-smoothing step by overlapping additive
Schwarz method, i.e. block-Jacobi, associated to patches of elements sharing the
given vertex. Indeed, this is the interpretation of the local residual problems (14):
note that except for the case p; = 1, where there is only one unknown per patch (i.e.,
the smoothing is actually a simple Jacobi), the solution of the local problems (14)
implies inverting sub-matrices (Jacobi blocks) of the original stiffness matrix. This
is a central point in our construction which follows Schéberl et al. [2008] and allows
us later to prove polynomial-degree robustness.

Note also that the coarse solve is cheaper than that of typical multigrid solvers,
since we only employ lowest-order polynomials on the coarsest level.

Moreover, a salient feature of the solver that distinguishes it from classical multi-
grid approaches is the use of the level-wise optimal step-sizes defined in (16). These
step-sizes, used previously in, e.g., the work of Heinrichs [1988], are determined
through a line search and play a crucial role at the error correction stage of the
multigrid by minimizing the algebraic error of the current mesh level before moving
on to the next. Numerically, the role and importance of optimal step-sizes (even only
a global one on level J, as used in Chapter 1) can be seen in, e.g., Table 1 (excerpt of
Table 1.2 in Chapter 1): for the case p = 1, zero pre- and only one post-smoothing
step, the only difference between our solver (denoted wRAS) and the usual V-cycle
geometric multigrid with simple Jacobi smoothing (denoted MG(0,1)-J) is the use
of the global optimal step-size as in (16), (18) for j = J. We see that employing the
step-size not only helps the solver to be faster, but even makes it converge when
the simple Jacobi iteration fails.

Sine Peak L-shape
J|p||wRAS|MG(0,1)-J || wRAS|MG(0,1)-J||wRAS|MG(0,1)-J
31| 21 - 19 68 17 44

3| 15 - 15 - 12 -
6( 13 - 14 - 10 -
9| 13 - 14 - 10 -
41| 23 - 20 - 18 -
3| 15 - 15 - 12 -
6( 13 - 14 - 10 -
9| 13 - 14 - 9 -
5(1| 22 - 20 - 17 -
3| 15 - 15 - 12 -
6( 13 - 14 - 9 -
9| 13 - 13 - 8 -

Table 1: Comparison of wRAS solver of Chapter 1 with the standard V-cycle multi-
grid employing one post-smoothing step with Jacobi iteration for three test problems
of the Section 6 in Chapter 1. Number of iterations needed for the £2-norm of the
algebraic residual vector to drop below 107> times the initial value.

The level-wise minimization of the algebraic error through the use of optimal
step-sizes leads to the following Pythagorean formula of the error decrease, which
now gives all necessary details to (7).
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Theorem v.4 (Pythagorean error representation of one solver step). For
u?] € Vf’, let uf]H GV}D be the next iterate constructed from uf] by the solver of Defini-
ton v.3. Then

1 2 1 T 1 2

1 1 1 . o

13w, — s = v, — ) = 3 (VA (9
j=0

Proof. We go through the levels from finest to coarsest and we use the construc-
tion (16) of the level-wise optimal step-sizes )\3:

53V (g — i 2 H’C%V((“J —uly - Ji Xiph) — i}pfz) H2
=0

J—1
Y H’C%V(U] —ul —Z /\;p;)
j=0

20| 1) = (<2900+3 ). )
P

J-1
DleE Vs —uly = 3 NIl — (N [KEVR ) = .

+ <)\ZHKZ%VpZ

7=0

J
= |12V (uy — (uly + Noph)) 12 = D (i ||z vl )

j=1
(12) | o1 A e
= |12V (ug — ) [|” = > (NI V)

7=0

D2V (s — u)|[? = (i) (20)

v.3 Main results: p-robust efficiency of the a posteriori estimator
and p-robust solver contraction

We prove that the a posteriori estimator of the algebraic error is efficient and that
the associated a-posteriori-steered algebraic solver contracts the algebraic error at
each iteration. These two main results can be presented as follows:

Theorem v.5 (p-robust reliable and efficient bound on the algebraic error). Let
uy € VI be the (unknown) finite element solution of (4) and let u; € VYV be
arbitrary, ¢ > 0. Let nglg be given by Definition v.2. Then, in addition to

H]C%V(UJ —uf)|| > nélg from (20), there holds

Mg > BTV (ug —uly)], (21)

where 0 < B < 1 depends on the space dimension d, the mesh shape reqularity
parameter, the ratio of the largest and the smallest eigenvalue of the diffusion coef-
ficient IC, at most linearly on the number of mesh levels J, and additionally on the
mesh hierarchy parameters like the strength of refinement and quasi-uniformity of
the coarse mesh (graded bisections) or all meshes (uniform refinement). In partic-
ular, B is independent of the polynomial degree p.
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Theorem v.6 (p-robust error contraction of the multilevel solver). Let uy € V7 be
the (unknown) finite element solution of (4) and let u', € V¥ be arbitrary, i > 0.
Take uf,“ to be constructed from uf] using one step of the multilevel solver of Defi-
nition v.3. There holds

139 — 5| < a3 — )| 2

where « is given by o = /1 — 82 with 8 from (21).

Recall also the equivalence of Theorems v.5 and v.6 by (8)—(9); details can be
found in Section 6 of Chapter 2.

The p-robustness results stated above are numerically illustrated in Table 2, see
Table 2.1 of Chapter 2. Different test cases with different regularities, polynomial
degrees p, and numbers of mesh levels J are considered. As we expect from Theo-
rem v.6, the number of iterations stays in particular stable despite the increase of
the polynomial degree p.

Sine || Peak || L-shape Checkerboard Skyscraper
K=I|K=I| K=I ||K=I|7(K)=0(10%)||7(K)=0(1)|7(K)=0(107)
Dj Lipflip|l |pjlip| 1 p L1 »p 1 p
J|pDoF|| is | is || s | s || s | s ||%s |9s| s is is is is is
3|1(2e*([19|19([19|19]| 21 | 21 [|18|18| 18 18 19 19 19 19
3|1e®||29(13(|28(14| 29 | 11 ||27|11| 28 11 31 13 | 31 13
6|6e°||30(13||30(14(| 26 | 9 ||24| 9| 25 10 28 | 11 | 28 11
9|1e8 ||31|14||30(14]| 23 | 9 (/23| 9| 23 9 26 | 10 | 26 10
4/1]6e*[[21]21]/20(20]| 21 | 21 [|19[19] 19 19 19 19 19 19
3|6e°(29(13(/29|14| 28 | 11 ||26|11| 27 11 30 | 11 | 30 11
6]2e5|31|13(|30(14( 25| 9|24| 9| 24 9 27 | 10 | 27 10
9|5e% ||32(14||31(15]| 23 | 9 {|22| 9| 23 9 25 9 | 25 9

Table 2: Number of iterations is needed for the ¢?>-norm of the algebraic residual
vector to drop below 1075 times the initial value, for different polynomial degrees
p, number of mesh levels J, space hierarchies with two different intermediate poly-
nomial degrees p;, j € {1,...,J — 1}, and jump in the diffusion coefficient J(IC).

v.4 Alternative approaches

We can obtain different linear solvers when we modify the multilevel construction
of Definition v.1.

For instance, one can decide to modify the definition of “patches” used to fix
the local spaces (13) into larger subdomains. The assembly of the solutions of
local problems (14) per level can also be modified depending on which smoothing
method we employ. For example, in Chapter 1 we consider damped additive Schwarz
smoothing, whereas in Chapter 2 and Chapter 4, we use additive Schwarz, and
in Chapters 1 and 3 we also study the numerically better performing weighted
restricted additive Schwarz.

The level-wise contributions (15) can also be combined differently to set the
update of the solver in (18): in Chapter 1, only one global optimal step-size is used,
which still enables us to have the desired connection (7) between estimator and
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solver. This was improved in the later chapters by the use of the step-sizes (16)
that are optimal level by level. In Chapter 1, we also study variants that are additive
not only on each mesh but also level-wise, thus being fully parallelizable. Equally
in Chapter 1, variants leading to local smoothing are mentioned.

A generalized version of the multilevel construction of Definition v.1 for
defining p-robust multilevel solvers is illustrated in Figure 6. The module
COARSE_GLOBAL_LIFTING refers to the solution of the coarse global problem (12);
SMOOTH_PATCHES encapsulates the choice of patches used in the local spaces (13),
local problems (14), and assembly (15); COMBINE refers to the combination of level-
wise contributions into the solver update in (18).

ui, € VP uiH =i, + COMBINE{ pfipli.. i ph e VP
T Py SMOOTH PATCHES { (i ] T YEVI.
T o\ P =SNOOTH PATCHES { (P RO ;- - - LM EVY
o .......P1 = SMOOTH PATCHES{ £ ) - : ?KW
DU T el p)=COARSE GLOBAL LIFTING {@S} Vil

Figure 6: Generalization of the multilevel approach of Definiton v.1 used to define
a linear solver for a hierarchy of meshes illustrated on the left for J = 3.

v.5 Extension to the mixed finite element method

In case of homogeneous Neumann boundary conditions instead of homogeneous
Dirichlet ones, the model problem (1) can be equivalently written in a dual formu-
lation: find u € V/ so that

(K 'u,v)=0 ¥veV (23)

where V/ := {v € H(div;Q), V-v = f, v.-n = 00on dQ} and V? := {v ¢
H(div,Q), V-v =0, v-n = 0 on 99}, with the boundary condition to be un-
derstood in an appropriate sense. This writing is useful when we are interested in
the dual variable u instead of the primal one, usually motivated by the physical
meaning of the variable (often, u represents a fluid velocity).

There are many options to choose from to discretize the newly written model
problem (23), see e.g. Boffi et al. [2013]. For simplicity, let f be a piecewise poly-
nomial. Then, we just denote for now V§ € V/ and Vg € VO “syitable” discrete
spaces of a given polynomial order, allowing us to write the discrete problem: find
uy € V§ so that

(]C_1UJ,VJ) =0 Vvye€ V(} (24)

Like in the primal formulation setting, we shall work with the functional formulation
in order to avoid any dependence on the choice of the basis functions.
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To tackle problem (24), we take a similar approach as in Ewing and Wang [1992].
The first step we take to define a linear solver to treat (24), is to construct u§ evi,
for example, as done in [Ewing and Wang, 1992, Theorem 3.1]. Since we have an
initial guess which has the correct divergence, i.e., which belongs to Vf;, we aim to
extend the solver of Definition v.3 to the current setting by constructing updates
that are divergence-free to approximate uy.

The parts that need to be adapted from the multilevel construction of Defini-
tion v.1 are the coarse problem, local spaces, and local problems. However, the main
approach in constructing the multilevel solver remains the same and importantly,
we can prove, in two space dimensions, that this solver also contracts the algebraic
error independently of the polynomial degree at each iteration. This polynomial-
degree-robustness result is the main difference from the work done in Ewing and
Wang [1992]; moreover, since we use level-wise optimal step-sizes, no relaxation /
damping parameters are needed for the solver and the analysis.

vi Adaptivity in a-posteriori-steered solvers

The second main point of this thesis is the development of adaptive approaches in
a-posteriori-steered solvers.

Since we are working in the context of geometric multigrid methods, the two
adaptive approaches we explore are the following: (i) adaptive choice of the number
of smoothing steps per level, (ii) adaptive local smoothing. While the closely related
topics of a variable number of smoothing steps per level, see e.g. Bramble and
Pasciak [1987] or Thekale et al. [2010], and local smoothing, see e.g. Bai and Brandt
[1987], McCormick [1989], Riide [1993], or Xu et al. [2009], are not new, our novelty
here is to explore them through the lens of adaptivity based on a posteriori estimates
of the algebraic error.

We explain now in more detail the adaptive approaches we present in this thesis.

vi.l1 Adaptive number of post-smoothing steps

The starting point for this approach is in the Pythagorean formula (19) that we
restate for the reader’s convenience:

J
1139 s — af DI = K3V s —ad)[[* = 3 (N[ KE VA )’
j=0
2

= K9 s =) |* = () -

This important property is satisfied by the solver introduced in Definition v.3 and
can be understood in the following way: while applying one step of the solver,
we know exactly the contraction of the algebraic error on all previous levels. After
employing one mandatory post-smoothing step in the current level, we can compare
the error decrease with that of previous levels on-the-fly. Thus, we can decide
whether or not another post-smoothing step is needed based on the computable
terms that constitute the a posteriori estimator nglg of Definition v.2. If the decrease
after the mandatory post-smoothing step is higher than a user-prescribed portion
of the decrease made by the previous levels and previous smoothings on the given
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level, we decide to employ another post-smoothing step before going to the next
level.

This criterion is a greedy-type one, where the goal is to decide when the algebraic
error of the given level is important enough to require another post-smoothing
step. Note also that since the criterion compares the current level error decrease
with the decrease of all previous levels, we penalize the finest levels by making it
more difficult for them to be smoothed many times. This evokes, for example, the
approach of Bramble and Pasciak [1987], where the number of smoothing steps is
doubled on successively coarser grids, thus avoiding more smoothing steps in finest
levels thereby resulting in a computationally cheaper procedure.

pj=1
it= 1‘1t 2‘1‘5 3‘1‘5 4‘1‘5 5‘1t 6‘1t 7‘1t 8

j =P
it= 1‘1‘5 2‘1‘5 3‘1t 4‘1t 5‘1t 6

level 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
level 1|| 3 3 3 3 3 3 3 3 3 4 4 4 4 4
level 2|| 3 3 3 3 3 3 3 3 2 1 1 1 1 1
level 3|| 3 4 4 4 4 4 4 4 2 2 2 2 2 1

Table 3: Number of post-smoothing steps per level in each iteration for a given test
case, polynomial degree p = 3, number of mesh levels J = 3, diffusion coefficient
jump J(KC) = O(105), and mesh hierarchies with intermediate polynomial degrees

pj=landp;=p,je{l,....,J -1}

Numerically, the adaptive approach is illustrated in Table 3, Table 2.3 in Chap-
ter 2, where the number of post-smoothing steps on each level for each iteration is
presented for a given test problem. We also compare the performance, both in terms
of number of iterations and timing, of this approach compared to other multilevel
solvers in Table 4, Table 2.5 in Chapter 2. Therein, MG(0,adapt)-bJ(wRAS) denotes
the multigrid solver with zero pre- and an adaptive number of post-smoothing steps,
that we have just described, equipped with a weighted restricted additive Schwarz
(block-Jacobi) smoother. As the numerical results suggest, the solver outperforms
the other considered methods, both in number of iterations and in timing, while
preserving the p-robust nature.

vi.2 Adaptive local smoothing

If mesh adaptivity consists in refining the mesh in areas of the domain where the
a posteriori estimator of the discretization error is large, the solver adaptivity coun-
terpart is to smooth in levels and areas of the hierarchy of meshes where the a pos-
teriori estimator of the algebraic error is large. This is what we explore with the
adaptive local smoothing approach. Importantly, the approach that we introduce
can be used in mesh hierarchies that are graded or uniform, as in e.g. Figure 4, as op-
posed to local smoothing multigrid which is designed for adaptively refined (graded)
meshes and the smoothing is only applied around newly generated vertices.

Once again, we shall rely on the properties of our efficient a posteriori estimator
of the algebraic error given in Definition v.2. First, note that

7j—1

ZH’CZVpJaH f”OJ (KV uJ+Z)‘kpk ),V ')( )‘ZH’C V'O]H
acV; k=0
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~MG(0,1)|~MG(0,1)| ~MG(0, |[~MG(0,adapt]) PCG(MG | MG(1,1)- | MG(0,1)- | MG(3,3)-
-bJ -bJ adapt)-bJ| -bJ (wRAS) | (3,3)-bJ) [PCG(iChol)] bGS GS
1=1p | Lp—=p |Lp—p 1/7p pP—Dp 1/p 1=-1p| 1/p

J|p| is time| g time | g time | g time| s time| s time| s time| g time
31|18 0.05s|18 0.07s|8 0.04s|8 0.04s[10 0.07s| 6 0.39s|10 0.04s| 4 0.02s
3128 0.96s|11 0.50s[6 0.43s|6 041 s] 3 0.57s|22 3.43s|11 2.62s| 6 0.34s
6(25 9.88s|10 543s|6 524s|5 2.90s| 2 5.24s(|44 51.38s| 9 7.35s|11 591 s
9123 45.87s| 9 27.01 5|6 25.25 5|4 13.86 s| 2 36.95s|80 5.22m| 8 32.53 5|11 19.72 s
411|119 0.12s|19 0.12s]9 0.11s]9 0.11s[11 0.20s|16 0.74 s|11 0.06s| 4 0.05s
3127 3.85s|11 2.07s|6 1.89s|T7 1.62s| 3 2.34s|44 27.48 s|10 9.64s| 5 1.37s
6124 41.79 s| 9 20.19 5|6 20.69 s| 4 1254 s| 3 38.40s|80 6.87Tm| 9 34.78 s| 6 14.44 s
9(23 3.63m| 9 2.13m|6 2.09m|3 49.84 s| 2 2.24m |80 23.08m| 8 1.72m| 9 1.21m

Table 4: Checkerboard O(10°) problem: comparison of iteration numbers is and
CPU times for different solvers. The horizontal/rising arrow denotes whether the
polynomial degree per level remains the same/gradually increases from the coarsest
grid pg = 1 to the finest grid py = p. The number of pre- and post-smoothing
steps are given in parantheses, and the smoothers are given by block-Jacobi (bJ),
block Gauss—Seidel (bGS), pointwise Gauss—Seidel (GS), or PCG with incomplete
Cholesky preconditioner. The number of iterations is limited to 80.

which means that our estimator is localized not only level-wise but also patch-wise:

. 2 J . . . J . . i
() == (il Ve )? = (I3 v |* + 30 X (e v )
j=0 j=1

J
Do+ X D €5 T0a
7=1 acV;

From the efficiency of the a posteriori estimator nglg, cf. Theorem v.5, we imme-
diately have equivalence of the algebraic error with the localized version of the
a posteriori estimator:

Corollary vi.1 (Equivalence of error—global estimator—local estimators). Let the
assumptions of Theorem v.5 hold. Then

J
. . 2 . . .
113V s —ub)|* = (viag) = [IKEVRH| 4 30X D K3 VafaLp (26)
j=1

j= aGVj

Thus, if we employ one step of the solver of Definition v.3, we have at our
disposal the efficient localized estimator in (26). Then, we can rely on a bulk-
chasing criterion, cf. Dorfler [1996], to detect and mark the patches with increased
error on all levels. The next step consists in employing a modified step of the
solver which only applies smoothing in these marked patches, if an analysis-driven
condition, based on the available a posteriori estimator, holds. The idea of this
adaptive solver is illustrated in Figure 7.

We give here an illustration of how the bulk-chasing criterion marks the patches
where we estimate the error to be increased. For a user-prescribed parameter 6 €
(0,1), we sort all patch-wise algebraic error estimators on all levels and select for
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@ full smoothing
on all patches

o adaptive local smoothing
on marked patches only
Figure 7: Hlustration for J = 3 of one iteration of the adaptive local smoothing
solver: one full-smoothing and one adaptive-smoothing V-cycle substeps

marking the smallest cardinality set of the coarsest level and vertex indices, 1 <
7 < J, by the following bulk-chasing criterion:

J
0 | Iz Vabl|* + 305 3 12Vl | < 0N D K2V, @27)
j=1  acV; JEM  aEM;

where HIC%Vp%)H appears on the coarsest level j = 0 if it is marked. For a given test
case, we present in Figure 8 an example of how the distribution of the estimated
algebraic error can faithfully follow the distribution of the true algebraic error. The
problematic patches on each level have been marked for adaptive local smoothing
(red border).

0-5

~; - iy 7
IV 51|y x10° (XD Vi lus

15

1
2
0

10

N A O 0 =2 X

x10° (A2 [V g lus x107°

Figure 8: [Peak test case, J=2, pp=1, p1=p2=6, =0.95] Comparing the algebraic
error distribution (left) to the local error indicators (right) (levels j =1 top, j =2
bottom). Voronoi cells correspond to patch values, and the ones with the red border
are marked for local smoothing.
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We prove that this adaptive approach leads to a solver that in each of its sub-
steps contracts the algebraic error p-robustly cf. Figure 7:

Theorem vi.2 (p-robust error contraction of the adaptive multilevel solver). Let
uy € V¥ be the (unknown) solution of (4) and let u', € V¥ be arbitrary, i > 0. Let

u?% € Vf be the update at the end of the full-smoothing substep. Then
29 (s = )]| < all iV (= )| (28)

When the following tests are satisfied:

J
i i i i i 1o P
SAS (SR < S NY R e
JEM aeM; k=j J JEM aEM; !
Ni<2(d+1) Vie{o,...,J}, (30)

ory € (0,1) a user-prescribed parameter, let uttt € VP be the update at the end o
J J
the adaptive substep. Then

I3 g — )| < A3V (s — ) oy

Here 0 < a < 1, 0 < a < 1 depend on the space dimension d, the mesh shape
reqularity parameter Kk, the number of mesh levels J, and the ratio of the largest
and the smallest eigenvalues of the diffusion coefficient IC, and additionally on the
mesh hierarchy parameters like the strength of refinement and quasi-uniformity of
the coarse mesh (graded bisections) or all meshes (uniform refinement). The de-
pendence of the number of levels J is at most linear for a and cubic for . The
factor & depends additionally on the marking parameter 6 of (27) and the adaptiv-
ity test parameter . In particular, both o and & are independent of the polynomial
degree p.

Numerically, we see from Figure 9, that even when the marking parameter is
as high as 8 = 0.95, only a relatively small percentage of patches are marked for
smoothing (in the Peak test case during the first 5 iterations, the test (29) is not
satisfied, so that no adaptive substep it performed). Thus, it is beneficial to smooth
in only this small portion of patches while obtaining a contraction of the algebraic
error with a similar quality as smoothing in all the patches. This is seen in Figure 10,
where the relative energy norm of the algebraic error with numerically very similar
contraction factor in both the full-smoothing sub-steps and the adaptive-smoothing
sub-steps.
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Peak test case
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Skyscraper test case (diff. contrast O(102))
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Figure 9: [Different tests, J =3, po =1, p1 =1, pa =2, p3 =3, 0 =0.95, v = 0.7]
Adaptive local smoothing: coarsest level marked or not and percentages of patches
marked for each level 1 < j < J (Y-axis). Iterations of the adaptive local smoothing
solver (X-axis).
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Figure 10: [Different tests, J =3, po=1, p1=1, p2 =2, p3=3, § =0.95, v =0.7]
Adaptive local smoothing: decrease of the relative energy norm of the algebraic
error H’C%V(UJ —uf) H/HKI%VUJH in the full-smoothing substep and adaptive local
smoothing substep in each iteration.
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vii Contents and contributions of the thesis

The manuscript is constituted of four chapters. We now describe the contributions
of each one.

vii.1 Chapter 1

This chapter consists of the article Miragi et al. [2020], STAM Journal on Numerical
Analysis, 58, 5 (2020), 2856-2884, written with Jan Papez and Martin Vohralik.

In this chapter we lay the groundwork which will be reused also in the subsequent
chapters. We develop an algebraic error estimator and a multigrid iterative linear
solver, where the multilevel construction is the predecessor of that of Definition v.1.
Here, only one optimal step-size is used, at the finest level J, and damping weights
appear in the sum of the local problems (14) as well as in the level-wise assembly of
contributions (15). These damping weights have to satisfy a compatibility condition
and their role is to counterbalance the effect of overlapping patch-wise and level-
wise contributions due to the additive Schwarz smoothing. Thus, the smoothing
here is damped additive Schwarz. We also consider in this chapter two types of
patches of different sizes which are used to define the local spaces: those of (13)
and one-layer larger patches. Finally, we also introduce here the weighted restricted
additive Schwarz smoothing which does not require damping weights and seems to
perform better numerically.

The main results and novelties of Chapter 1 are: 1) the proof that the a posteriori
estimator of the algebraic error we introduce based on the multilevel construction is
p-robustly efficient; 2) the proof that the associated solver is p-robustly contractive
at each iteration; 3) the equivalence of these results as in (8)—(9); 4) the proof that
the algebraic error is also equivalent to an a posteriori estimator which is localized
patch-wise and level-wise in the spirit of (26); 5) the analysis is done for a general
nested hierarchy of unstructured and possibly highly graded simplicial meshes in two
or three space dimensions; 6) the analysis is done under the minimal H!-regularity
of the weak solution.

To the best of our knowledge, this is the first work that proves p-robust multi-
grid convergence on triangular/tetrahedral meshes while requiring only one post-
smoothing step.

vii.2 Chapter 2

This chapter consists of the article Miragi et al. [2021a], SIAM Journal on Sci-
entific Computing, DOI 10.1137/20M1349503, written with Jan PapeZ and Martin
Vohralik.

In this chapter we introduce the improved version of the multilevel construction
which is described here in Definition v.1. Therein, the level-wise optimal step-sizes
(given by line search) are introduced to maximize error decrease from one level to the
next. Additionally, after introducing the optimal step-sizes per level, we no longer
need to use any damping parameters, whose tuning can be cumbersome. A simple
and effective adaptive strategy which allows to choose the necessary number of post-
smoothing steps on each level is also presented in this chapter. The advantages of



22 Introduction

using optimal step-sizes and the adaptive approach are also seen in our numerical
experiments. Finally, we emphasize that the main ideas of optimal step-size per
level and adaptive number of post-smoothing steps are flexible approaches that can
be used even in other geometric multigrid solvers. Implementation-wise, these ideas
are easy to add to existing codes and alleviate the task of choosing the number of
smoothing steps arbitrarily.

The main results of Chapter 2 are as: points 1)-3) and 5) presented for Chap-
ter 1. Compared to Chapter 1, the novelties are: the optimal step-sizes lead to
the explicit level-by-level error decrease formula (19); the a posteriori estimator
we introduce is localized level-wise and patch-wise following (26); the analysis of
Chapter 2 gives at most linear dependence on the number of mesh levels J under
minimal H'-regularity and complete independence of J in H?2-regularity setting.

vii.3 Chapter 3

This chapter consists of the article Miragi et al. [2021b], Computational Methods in
Applied Mathematics, DOI 10.1515/cmam-2020-0024, written with Jan PapeZ and
Martin Vohralik.

In this chapter we use the localized a posteriori estimator of the algebraic er-
ror (26) of Chapter 2 to develop the new adaptive local smoothing strategy. The
solver we consider uses one full-smoothing sub-step as the solver in Chapter 2.
Then, thanks to the localized a posteriori estimator and a bulk-chasing criterion,
we mark for an adaptive-smoothing sub-step only the patches where an increased
error is estimated. Numerically, we observe that the adaptive local smoothing gives
the same quality of error decrease as smoothing in all patches despite a much lower
cost since smoothing is applied in (much) fewer patches.

The main results of Chapter 3 are as: points 1)-3) and 5) presented for Chapter 1
for each of the sub-steps of our solver. Compared to Chapter 2 the novelties are:
the development of a new kind of adaptivity that is local in patches with increased
algebraic error, whereas the adaptivity in Chapter 2 chooses the number of post-
smoothing steps globally per level; the localization in space relying on Dérfler’s
marking; the proof that the new adaptive sub-step contracts the error p-robustly,
despite it only smoothes in marked patches (no convergence proof of the adaptive
scheme is given in Chapter 2); the adaptive decision on which smoothing (additive
Schwarz or weighted restricted additive Schwarz) variant to employ per level and
inclusion of the weighted restricted additive Schwarz in the analysis, which was not
done in Chapter 2.

To the best of our knowledge, this is the first work to prove that an adaptive local
smoothing multigrid solver contracts the algebraic error p-robustly, while requiring
only one post-smoothing step.

vii.4 Chapter 4

This chapter corresponds to an article in preparation. This work is a collaboration
with Martin Vohralik and Ivan Yotowv.

In this chapter we adapt the main ideas of our a posteriori-steered multigrid
solver to the mixed finite element method. In two space dimensions, the theoret-
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ical results of the Chapter 2 can be extended to this setting. Depending on the
mesh hierarchy, we define the spaces in the multilevel construction and introduce a
multigrid solver as well as a domain decomposition one.

The main results and novelties of Chapter 4 include a p-robustly contractive
multigrid solver with associated p-robustly efficient a posteriori estimator as well
as a p-robustly contractive domain decomposition solver with associated p-robustly
efficient a posteriori estimator for a linear system discretized by mixed finite ele-
ments. While this work follows the same setting as in Ewing and Wang [1992], we
prove that the estimates we develop are p-robust. Moreover, since we use level-
wise step-sizes, we do not need to add any relaxation/damping parameters for the
analysis and one post-smoothing step is sufficient.

vii.b Implementation notes

The numerical experiments of this thesis were performed thanks to an in-house
MATLAB finite element 2D code developed initially by Jan Papez. The coarse
meshes of our multilevel setting are generated from a Delaunay triangulation algo-
rithm using the Partial Differential Equation Toolbox of MATLAB and the refine-
ments are uniform: each triangle is subdivided in four congruent new ones. The
polynomial degrees supported in the code vary from 1 to 13, though this can be
extended if needed. The main interest of the implementation is academic: since we
have access to every single component of the code, it is easier to modify and verify
all modules for our specific needs.

The solver modules were gradually added to the code as the results of the-
sis evolved. Currently, the code handles multigrid solvers with additive Schwarz
smoothing, damped additive Schwarz smoothing, weighted restricted additive
Schwarz smoothing associated to patch subdomains of different sizes, as well as
the two adaptive approaches presented in the thesis. I have added some of these
modules on my own, whereas others were added in collaboration with Jan Papez.

viii Perspectives

There are many directions and topics that would be interesting to explore.

One point to be pursued theoretically would be the robustness with respect to
the jumps in the diffusion coefficient. While the numerical experiments we have
conducted in two space dimensions show no degradation with increasing jumps,
we believe that the outcome of tests in three space dimensions (apart from being
important in their own right), would give helpful insights if one can hope to prove
theoretical robustness.

Another possible subject to be tackled would be the replacement of the coarsest
level direct solve in our approach by an inexact solver. We believe that this could
be included in the theory upon ensuring, via our a posteriori estimators, that the
error committed in the inexact coarse solve does not harm the overall precision.

We would also wish to incorporate our a-posteriori-steered multigrid solver as an
inexact solver in a setting where the hierarchy is obtained through hp-refinement.
Mesh elements in this case are expected to have different polynomial degrees and
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this poses no problem for our analysis: we only need the hierarchy of finite element
spaces to be nested.

Further work would also explore how the p-robust theory we presented for mixed
finite elements in two space dimensions could be extended to the case of three
space dimensions. Discretization by mortar elements is also another direction to be
considered.

Finally, we are drawn to see how the developed solvers of this thesis can be used
in real world hydrogeological applications with complex geometry such as fluid flow
in fractured porous media. This subject is expected to be treated in the near future
in the SERENA team.



Chapter 1

A multilevel algebraic error
estimator and the
corresponding iterative solver
with p-robust behavior
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Abstract

In this work, we consider conforming finite element discretizations of arbitrary
polynomial degree p > 1 of the Poisson problem. We propose a multilevel a
posteriori estimator of the algebraic error. We prove that this estimator is re-
liable and efficient (represents a two-sided bound of the error), with a constant
independent of the degree p. We next design a multilevel iterative algebraic
solver from our estimator and show that this solver contracts the algebraic
error on each iteration by a factor bounded independently of p. Actually, we
show that these two results are equivalent. The p-robustness results rely on
the work of Schoberl et al. [IMA J. Numer. Anal., 28 (2008), pp. 1-24] for
one given mesh. We combine this with the design of an algebraic residual
lifting constructed over a hierarchy of nested unstructured, possibly highly
graded, simplicial meshes. The lifting includes a global coarse-level solve with
the lowest polynomial degree one together with local contributions from the
subsequent mesh levels. These contributions, of the highest polynomial de-
gree p on the finest mesh, are given as solutions of mutually independent
local Dirichlet problems posed over overlapping patches of elements around
vertices. The construction of this lifting can be seen as one geometric V-cycle
multigrid step with zero pre- and one post-smoothing by (damped) additive
Schwarz (block Jacobi). One particular feature of our approach is the optimal
choice of the step-size generated from the algebraic residual lifting. Numerical
tests are presented to illustrate the theoretical findings.

1 Introduction

The finite element method (FEM) is a widespread approach for discretizing prob-
lems given in the form of partial differential equations, and has been used in engi-
neering for more than fifty years. For a thorough overview on the topic, we refer the
reader to, e.g., Ciarlet [1978], Ern and Guermond [2004], and Brenner and Scott
[2008]. Many iterative methods have been suggested to treat the linear systems
arising from finite element discretizations; see e.g., Bramble et al. [1986] and Bram-
ble et al. [1990], Hackbusch [2003], Bank et al. [1988], Brandt et al. [1985], Oswald
[1994], or Zhang [1992], and the references therein. A systematic description of
iterative solvers is given in Xu [1992]. For convergence results on unstructured and
graded meshes, we refer the reader to, e.g., Wu and Chen [2006], Hiptmair et al.
[2012], Chen et al. [2012], and Xu et al. [2009]. The convergence of these methods is
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typically robust with respect to the size of the mesh (h-robustness). In fact, this is
one of the key advantages of multigrid methods. For the conjugate gradient method
on the other hand, h-robustness is not intrinsic; this problem can be bypassed with
the development of appropriate preconditioners.

If we are to consider methods of arbitrary approximation polynomial degree,
an additional question arises: how does the polynomial degree p affect the perfor-
mance of the method? In this regard, results for p-version FEM include Foresti
et al. [1989] for two-dimensional domains, Mandel [1990] for three-dimensional do-
mains, and Babuska et al. [1991] for two-dimensional domains. For the latter,
the condition number of the preconditioned system grows at most by 1 4 log?(p),
and a generalization of this work for hAp-FEM is given by Ainsworth [1996], where
the p-dependence is still present. An early version of a polynomial-degree robust
(p-robust) solver was introduced by Quarteroni and Sacchi Landriani [1988] for a
specific domain configuration (decomposable into rectangles without internal cross
points). A notable development on p-robustness was later made by Pavarino [1994]
for quadrilateral /hexahedral meshes, where the author introduced a p-robust addi-
tive Schwarz method. The generalization of this result for triangular/tetrahedral
meshes was achieved by Schoberl et al. [2008], once more by introducing an addi-
tive Schwarz preconditioner. More recent works were carried out based on these
approaches. In Antonietti et al. [2017] (see also the references therein), the p-robust
approach for rectangular/hexahedral meshes was used for high-order discontinuous
Galerkin (DG) methods; moreover the spectral bounds of the preconditioner are also
robust with respect to the method’s penalization coefficient. We also mention the
introduction of multilevel preconditioners yielded by block Gauss—Seidel smoothers
in Kanschat [2008] for rectangular/hexahedral meshes and DG discretizations. Fur-
ther multilevel approaches for rectangular/hexahedral meshes using overlapping or
nonoverlapping Schwarz smoothers can be found in, e.g., Janssen and Kanschat
[2011] and Lucero Lorca and Kanschat [2021]. For a study on more general meshes,
see, e.g., Antonietti and Pennesi [2019], where a multigrid approach behaves p-
robustly under the condition that the number of smoothing steps (depending on p)
is chosen sufficiently large. Another notable contribution is the design of algebraic
multigrid methods (AMG) via aggregation techniques; see, e.g., Notay and Napov
[2015], Bastian et al. [2012], and the references therein. The numerical results of
the latter give a satisfactory indication of p-robustness.

An associated topic is the development of estimates of the algebraic error. In
this regard, a posteriori tools have primarily been used to estimate the algebraic
error for existing solvers. One particular goal is the development of reliable stop-
ping criteria, allowing one to avoid unnecessary iterations. This is achieved with a
combination of a posteriori error estimators for the discretization error. Some con-
tributions on this matter (see also references therein) include Becker et al. [1995]
where adaptive error control is achieved for a multigrid solver, Bornemann and
Deuflhard [1996], where a one-way multigrid method is presented by integrating an
adaptive stopping criterion based on a posteriori tools. Further developments were
made in Meidner et al. [2009], where goal-oriented error estimates are used in the
framework of the dual weighted residual (DWR) method. In Jirdnek et al. [2010]
and later in Papez et al. [2018], upper and lower bounds for both the algebraic
and total errors are computed, which allow one to derive guaranteed upper and
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lower bounds on the discretization error, and consecutively construct safe stopping
criteria for iterative algebraic solvers. Arioli et al. [2013] propose practical stop-
ping criteria which guarantee that the considered inexact adaptive FEM algorithm
converges for inexact solvers of Krylov subspace type. To the best of the authors’
knowledge, though, dedicated proofs of efficiency of a posteriori estimators of the
algebraic error have so far not been presented.

In this work, we present an a posteriori algebraic error estimator and a multilevel
iterative solver associated to it. The cornerstone of their definitions lies in the mul-
tilevel construction of a residual algebraic lifting, motivated partly by the approach
of Papez et al. [2020]. The lifting can be seen as an approximation of the algebraic
error by continuous piecewise polynomials of degree p, obtained by a V-cycle multi-
grid method with no pre-smoothing step and a single post-smoothing step. The
coarse correction is given by a lowest polynomial degree (piecewise affine) function.
Our smoothing is chosen in the family of damped additive Schwarz (block Jacobi)
methods applied to overlapping subdomains composed of patches of elements (two
options for defining the patches will be given in due time) and corresponds to local
Dirichlet problems with the highest p-degree on the finest mesh. Note that additive
Schwarz-type smoothing allows for a parallelizable implementation at each level of
the mesh hierarchy. Once this lifting is built, the a posteriori estimator is easily
derived as a natural guaranteed lower bound on the algebraic error, following Papez
et al. [2020] and the references therein. As our first main result, we show that up
to a p-robust constant, the estimator is also an upper bound on the error.

Our solver is then defined as a linear iterative method. Because we have at hand
the residual lifting, which approximates the algebraic error, we use it as a descent
direction (the asymmetric, since no pre-smoothing is used, approach in defining the
lifting will not be a problem for the analysis). The step-size is then chosen by a
line search in the direction of the lifting. Our choice presents a resemblance to the
conjugate gradient method, in that we choose the step-size that ensures the best
error contraction in the energy norm at the next iteration. Other precedents of the
use of optimal step-sizes include, e.g., Canuto and Quarteroni [1985], and in the
multigrid setting Heinrichs [1988]. As our second main result, we prove that this
solver contracts the error at each iteration by a p-robust constant. Actually, we
also show that the p-robust efficiency of the estimator is equivalent to the p-robust
convergence of the solver. All these results are defined for a general hierarchy of
nested, unstructured, possibly highly refined (graded) matching simplicial meshes,
and no assumption beyond u € H&(Q) is imposed on the weak solution.

The work is structured as follows. In Section 2, we introduce the setting in
which we will be working as well as the notation employed throughout the paper.
Then, we introduce our multilevel residual lifting construction in Section 3, follow-
ing Papez et al. [2020]. In Section 4, we present the a posteriori estimator on the
algebraic error and the corresponding multilevel solver based on the residual lifting.
Our main results are presented in the form of two theorems in Section 5, together
with a corollary establishing their equivalence. Another important corollary is the
equivalence of the algebraic error with a computable estimator which is localized
levelwise as well as patchwise. We provide numerical experiments in Section 6,
focusing mainly on showcasing p-robustness, in agreement with our theoretical re-
sults, and on a comparison with several existing approaches. We also introduce a
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weighted restricted additive Schwarz variant of our solver. The proofs of our main
results are given in Section 7. In particular, for the stable decomposition estimate,
the p-robust result on one level introduced by Schéberl et al. [2008] is crucial. We
also rely on the multilevel stable splitting of Xu et al. [2009] for p = 1 to obtain
acceptable estimates with respect to the number of levels. Finally, Section 8 brings
forth our conclusions and outlook for future work.

2 Setting

We will consider in this work the Poisson problem defined over QCR% d €{1, 2, 3},
an open bounded polytope with a Lipschitz-continuous boundary.

2.1 Model problem

Let f € L?(Q) be the source term. We consider the following problem: find u :

) — R such that
—Au=f in,

1.1
u =0 on Jf. (1.1)

In the weak formulation, we search for u € H}(f2) such that
(Vu, Vo) = (f,v) Vv e Hy(Q), (1.2)

where (-,-) is the L?(Q) or [L?(Q)]? scalar product. The existence and uniqueness
of the solution of (1.2) follows from the Riesz representation theorem.

2.2 Finite element discretization

Let 77 be a given simplicial mesh of €. Fixing an integer p > 1, we introduce the
finite element space of continuous piecewise p-degree polynomials

VP = Py(Ty) N HY(Q), (1.3)

where Py, (7;) = {v; € L*(Q),vs|x € Pp(K) VK € T;}. We set Ny := dim(V?).
The discrete problem consists in finding u; € V7§ such that

(Vuy,Vouy) = (f,v5) Yousye€ V}). (1.4)

2.3 Algebraic system, approximate solution, and algebraic residual

If one introduces wf], 1 <1< Ny, a basis of