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Quand on ne sait pas où l’on va, il faut y aller. Et le plus vite possible! 1
– Jacques Rouxel, Les Shadoks.
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Foreword

This thesis concerns the study of liquids confined to the nanometre scale, or nanofluidics.
Why should anyone care about liquids in tiny pipes? A basic answer is: because there is
a difference with liquids in larger pipes. Indeed, as physicists, we have a rather complete
understanding of how water flows, say, through a garden hose. But as we make the garden
hose smaller and smaller, at which point are we going to find something that we do not
understand?

The answer to this question is far from obvious. What we know for sure, is that
scale reduction does eventually bring about new physics. Indeed, the smallest pipes one
can imagine are biological ion channels, and those are known to be qualitatively very
different from garden hoses: take, for instance, the hugely permeable aquaporin [1], the
potassium-ion specific KCsA channel [2], or the mechano-sensitive Piezo channel [3]. Yet,
there is a gray area between the garden hose and the aquaporin, in which it is not entirely
clear what aspects of macroscopic fluid dynamics break down and when.

This gray area – which is, more precisely, between the micrometer and the molecular
scale – is the realm of nanofluidics. It is not only an interesting place to look for new
physics: it also turns out to be particularly relevant in terms of applications [4]. Indeed,
water desalination, or, more generally, ultrafiltration, involves water passing through
channels of sizes comparable with ion diameters. Similarly, the generation of so-called
blue energy – energy extracted from salinity gradients – involves water flows in nanome-
tre scale channels [5]. In a context where balancing energy demand and supply becomes
critical [6], membrane-based separation processes are particularly promising. As an ex-
ample, separation processes in general represent one half of the United States’ industrial
energy consumption. Most of these are based on distillation and require heating, while
membrane-based alternatives would use up to 90% less energy [7].

From a basic science point of view, a lot of inspiration for designing "smarter"
nanoscale transport processes comes from the aforementioned biological channels. Nanoflu-
idics follows in general a bottom-up approach: instead of investigating complex biological
systems directly, researchers attempt to identify their elementary physical ingredients
by studying well-controlled artificial channels [8,9]. The fundamental properties that are
identified in this way may then either lead to upscaling in membrane technology [10], or to
engineering bio-inspired advanced functionalities at smaller scales: this is the nascent field
of iontronics [11]. Therefore, given the biological inspiration and the nature of potential
applications, nanofluidics in general – and this thesis in particular – are mostly concerned
with water as the fluid. Now, especially in physiological conditions, water contains ions,
so that water and ion transport are two indissociable aspects of nanofluidics.

As opposed to experiments in nanoscale fluid transport, the corresponding theoret-
ical investigations mostly rely on a top-down approach [9]. Specifically, equations that
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are derived for fluids at the mesoscopic scale are extended almost down to molecular-
scale confinements. Such an apparently crude procedure has been surprisingly successful:
for example, the Navier-Stokes equation is found to be valid down to about 1 nm con-
finement [12]. Yet, as smaller and smaller scales are reached in artificial nanofluidic
devices [9], evidence accumulates for exotic phenomena that are beyond the reach of
continuum theory: stochastic ion transport through narrow carbon nanotubes [13, 14],
unusual ion and water dynamics in two-dimensional capillaries [15–18], and anomalous
water slippage on carbon-based materials [19–25], to name only a few. These unex-
plained phenomena have recently been compiled in a review by the CENT collabora-
tion on nanofluidics [26], which identifies the "critical knowledge gaps in mass transport
through single-digit nanopores" – nanopores with sub-10 nm dimensions, scale at which
most of the unexplained phenomena come into play.

The main goal of this thesis has been to develop new theoretical tools for nanofluidics,
beyond the reach of the usual continuum and mean field equations. In particular, I show
that a range of unexpected phenomena arise in nanoscale fluid transport due to many-
body effects. These many-body effects are a consequence of what I call interaction
confinement : the presence of a wall affects not only the particles’ translational degrees
of freedom, but also their interactions. I first show that Coulomb interactions become
stronger in confinement, leading to enhanced ionic correlations and many-ion effects rel-
evant to iontronic applications. Then, I explore the correlations between the dynamics
of interfacial water and of the confining wall electrons, which result in a quantum contri-
bution to hydrodynamic friction, shedding some light on the anomalous behaviour of the
water-carbon interface. Finally, I present the development of an experimental setup for
the direct optical measurement of water slippage in two-dimensional confinement. This
thesis is organised into four parts.

• Part I is an introduction to nanofluidics and to the problems tackled in this the-
sis. Chapter 1 gives a brief account of the experimental sate of the art [i], and
describes the well-established continuum and mean-field framework for fluids at the
nanoscale. Chapter 2 introduces the notion of interaction confinement, and explores
the consequences for ionic interactions in one- and two-dimensional channels.

• Part II concerns the many-ion effects that are predicted as a consequence of in-
teraction confinement. Chapter 3 presents a theory of ionic Coulomb blockade [ii],
that arises in 1D channels gated by a surface charge; Chapter 4 describes an ionic
memristor effect that leads to neuromorphic behaviour in 2D channels [iii].

• Part III presents a new theoretical description for the solid-liquid interface, that
takes into account the coupled dynamics of the fluid and solid electrons in a field the-
ory framework [iv]. The only chapter (Chapter 5) predicts a quantum contribution
to hydrodynamic friction, which provides an explanation for the radius-dependence
of water slippage in carbon nanotubes [23].

• Part IV accounts for the experimental work performed during my PhD. Chapter
6 presents a direct measurement of the water slip length in two-dimensional car-
bon nanochannels, via confocal fluorescence imaging: this work is still ongoing at
the time of writing of this manuscript. Chapter 7 concerns the experimental in-
vestigation of a photomechanical transduction phenomenon observed in a colloidal
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suspension [v]. Although it is not exactly a nanoscale phenomenon, I found it to
be a consequence of a many-body effect in the colloidal dynamics.

This thesis is based on the following publications:

i. N. Kavokine, R. R. Netz and L. Bocquet. "Fluids at the Nanoscale: from Con-
tinuum to Subcontinuum transport". Annu. Rev. Fluid. Mech. 53, 377 – 410
(2021)

ii. N. Kavokine, S. Marbach, A. Siria and L. Bocquet. "Ionic Coulomb blockade as a
fractional Wien effect". Nat. Nanotech. 14, 573 – 578 (2019)

iii. P. Robin, N. Kavokine and L. Bocquet. "Modelling of emergent memory and voltage
spiking in ionic transport through angström-scale slits". Science (2021)

iv. N. Kavokine, A. Robert, M.-L. Bocquet and L. Bocquet. "Fluctuation-induced
quantum friction in nanoscale water flows". arXiv:2105.03413, under review. (2021)

v. N. Kavokine, S. Zou, R. Liu, A. Niguès, B. Zou and L. Bocquet. "Ultrafast pho-
tomechanical transduction through thermophoretic implosion". Nat. Commun. 11,
1 – 7 (2020).
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This chapter is based on the following publication: N. Kavokine, R. R. Netz and
L. Bocquet. "Fluids at the Nanoscale: from Continuum to Subcontinuum transport".
Annu. Rev. Fluid. Mech. 53, 377 – 410 (2021).

1.1 Introduction

Fluid flows at the nanometre scale have been studied indirectly in various disciplines
for the last fifty years [27]. However, it is only fifteen years ago that nanofluidics has
emerged as a field on its own, first as a natural extension of microfluidics towards smaller
scales. Back then, it was an issue in itself to establish that nanofluidics deserves its own
name, meaning that there are specific effects at the nano-scale that are not present at
the micro-scale.

Indeed, the "ultimate scale" for observing specific effects is set by the molecular size
of the fluid ; more precisely, a critical confinement `c = 1 nm has been generally accepted
as the limit of validity for the Navier-Stokes equation [12, 28]. Moreover, it is at the
molecular scale that the fluidic functions of biological systems emerge: from the giant
permeability and perfect selectivity of the aquaporin [1], to the ion specificity of KcsA
channels [2], to the mechano-sensitivity of Piezo channels [3], to name a few. However,
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1.1. Introduction
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Figure 1.1

An overview of nanofluidic lengthscales: the main ingredients of the physics above and below
the continuum limit.

ten years ago, the exploration of this ultimate scale was hindered by technical challenges,
as molecular scale channels could not be fabricated artificially.

A decade later, nanofluidics has firmly established itself as a field [8]. Indeed, length-
scales associated with the electrostatics and the fluctuations of surfaces may reach up to
several tens of nanometres, and their effects may be probed specifically in systems with-
out molecular scale confinement [12, 28, 29] (figure. 1.1). These lengthscales govern the
key nanofluidic phenomena that have been demonstrated over the last ten years, such as,
for instance, fast flows in carbon nanotubes [20], diffusio-osmotic energy conversion [10]
or diode-type effects [30].

However, the progress in fabrication technology has now allowed to overcome the
challenges that have hindered the development of nanofluidics at the ultimate scales, and
artificial devices with confinement down to about one water molecule size (3 Å) have
been achieved, in 0D, 1D or 2D geometry [17, 24, 31]. It is therefore an exciting time
for nanofluidics, since it now has the potential to reverse-engineer biological functions:
minimal artificial systems that mimic biological processes may be designed and studied.
Furthermore, nanofluidics is known for its short path from fundamental science to appli-
cations and innovation, and developments in single channel fabrication are likely to have
direct implications for filtration and membrane science [8].

In the quest for scale reduction, theory has been lagging behind experiment. Indeed,
having been developed in the wake of microfluidics, theoretical approaches to nanoflu-
idics have largely been based on continuum and mean field equations [12]. While these
approaches have been surprisingly successful down to few-nanometre lengthscales, they
do eventually break down, as ionic correlations, dielectric anomalies and other subcontin-
uum effects come into play (Fig 1.1): this thesis is concerned with the study of some of
these effects. The first chapter starts with a brief overview of the latest experimental de-
velopments in nanofluidics, which set the application ground for theory. Then, the basic
continuum equations for nanofluidics are presented, with an emphasis on their extension
to the smallest scales. Chapter 2 then focuses on the limits of these equations, which are
set in particular by the phenomenon of interaction confinement.
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Figure 1.2

State-of-the-art nanofluidic systems of various dimensions. a. TEM-drilled nanopore in single
layer MoS2 [31]. b. Boron nitride nanotube inserted into a SiN membrane [10]. c. TEM image
of the nanoslit device fabricated by Radha et al. [15].

1.2 The toolbox of experimental systems

Nanofluidics generally follows a bottom-up approach. Elementary phenomena are un-
derstood at the well-controlled scale of the individual channel, before eventually being
applied to more complex systems. Hence, the design of these well-controlled systems is
paramount to the development of the field. We start this chapter by going through the
systems that have so far been achieved, in order of dimensionality.

1.2.1 Nanopores

Nanopores are channels whose length L and diameter d are both in the nanometre range
(figure 1.2a). Initial studies focused on solid-state nanopores drilled through membranes
made out of ceramics such as SiN of SiC [32,33]. More recently the advent of 2D materials,
such as graphene, hexagonal boron nitride (hBN) or MoS2, allowed for the exploration
of nanopores in atomically thin membranes [34,35]. Essentially three types of fabrication
pathways have been reported for well-controlled nanopores in 2D materials.

• Drilling with an electron or a focused ion beam (FIB). A single 5 nm pore drilled in
monolayer graphene was first reported by Garaj et al. [34]. FIB drilling of arrays
of nanopores in bilayer graphene, ranging from 7.6 nm to 1 µm in diameter, was
reported in [36].

• Electrochemical etching. Feng et al. [37] reported the opening of pores in monolayer
MoS2 when placed in a salt solution in between two electrodes. Applying a potential
above the oxydation potential of MoS2 resulted in the gradual removal of single
MoS2 units, thus creating an opening of controlled size. Nanopores down to 0.6 nm
in diameter have been reported [38].

• The use of intrinsic defects in 2D materials. Large area membranes made of
graphene or hBN are known to exhibit defects in the form of pores, ranging in
size from a few angstroms to 15 nm depending on conditions [39, 40], or such de-
fects may be generated on purpose in smaller membranes using ultraviolet-induced
oxidative etching [41]. The chemical vapour deposition (CVD) graphene membranes
described in [42] exhibited pores in the sub-2 nm range spaced by 70 to 100 nm.
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Placing the membrane on top of a 30-40 nm pore of a SiN membrane allowed to
statistically isolate and study a single pore.

1.2.2 Nanotubes

Nanotubes are cylindrical channels of diameter d in the nanometre range, and length
L � d (figure 1.2b). They are typically made out of carbon, or the isoelectronic boron
nitride. The nanotubes themselves, as a product of self-assembly, are readily available,
but interfacing a nanotube to a fluidic system and avoiding leakage is still an experimental
challenge. Three distinct strategies for addressing this challenge have been reported.

• Building a microfluidic system on top of CVD-grown single-walled carbon nan-
otubes. The systems may comprise one or several carbon nanotubes, typically of
diameter 1 to 2 nm. The tubes generally have very high aspect ratio with lengths up
to 0.5 mm [14,43,44], although similarly built systems with 20 µm long nanotubes
have also been reported [45].

• Insertion of a multiwalled nanotube into a solid state membrane. Siria et al. [10]
reported the fabrication of nanofluidic devices comprising a single boron nitride
nanotube, inserted into a hole milled in a SiN membrane by direct nanomanipulation
under SEM. The hole could be sealed in situ by cracking of naphtalene induced by
the electron beam. The method was later extended to carbon nanotubes [23], of 30
to 100 nm inner diameter and about 1 µm in length, and recently to smaller, 2 nm
inner diameter, multiwall carbon nanotubes [46].

• Insertion of nanotubes into a lipid membrane. Very short (5 to 10 nm) and very
narrow (0.8 to 2 nm in diameter) nanotubes may be incerted into a supported lipid
membrane [47]. Nanotubes were brought in contact with the lipid bilayer thanks to
a microinjection probe. Recently, Noy and colleagues [24] reported the self-assembly
of similar nanotubes, which they term carbon nanotube porins, into phospholipid
vesicles. A single patch of membrane could also be isolated in order to study a
single porin.

1.2.3 Nanoslits down to angström confinements

Slit-like channels with one dimension below tens of nanometers were first made using
micro- and nano- fabrication techniques. But recently, Radha et al. [15] reported the
manufacturing of two-dimensional channels by van der Waals assembly of 2D materials
(figure 1.2c). A few layers of graphene were used as spacers between two crystals of
graphite, hBN or MoS2, allowing for atomically smooth channels of a few µm in length,
100 nm in width and down to 7 Å in height, that is the thickness of two graphene layers.
Very recently, water transport through one-graphene-layer thick (3.4 Å) channels was
reported [17].

This brief overview highlights that nanofluidics at the molecular scale is now a reality.
Not only molecular scale confinement is possible, but the geometry of the confinement
and the nature of the confining materials can also be tuned.
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1.3. Liquid transport

1.3 Liquid transport

1.3.1 Navier-Stokes equation

The two-centuries-old Navier-Stokes equation is remarkably robust at describing fluid
flow down to the smallest scale, typically `c = 1 nm for water in normal pressure and
temperature conditions [12]. This length scale is essentially a lower bound for defining a
fluid viscosity η. Indeed, in macroscopic fluid mechanics, the kinematic viscosity ν = η/ρ,
where ρ is the mass density, plays the role of a diffusion coefficient for the fluid momentum.
For such a diffusion coefficient to be defined, the time required for momentum to diffuse
across the system, `2c/ν, must be larger than the timescale of molecular motion, which
is the microscopic origin of diffusion. A water molecule at a thermal agitation speed of
300 m · s−1 moves by its own size in τc = 10−12 s, which defines a molecular time scale.
Therefore, viscosity may be defined down to a system size

`c ∼
√
ντc ∼ 1 nm. (1.1)

Below this length scale, water structuring due to surfaces, memory effects and other
sub-continuum phenomena come into play. For water flow at 10 nm length scales, the
Reynolds number remains smaller than 0.1 up to fluid velocities of 10 m · s−1. Hence, in
nanofluidic systems, inertial effects may be safely neglected, and the fluid flow is described
by the Stokes equation:

η∆v + f = ∇p, (1.2)

where p is the pressure and f a body force, which may be due, for example, to the
application of an electric field, as discusses in section 1.4.

1.3.2 Boundary conditions

Stokes flow is often solved with no-slip boundary conditions: the velocity of the liquid
is assumed to vanish at a solid-liquid interface. This is, however, a limiting case of the
more general Navier partial slip boundary condition, which enforces that the viscous
stress at the interface should be balancing the solid liquid friction force. Within linear
response theory, the friction force is proportional to the liquid velocity. For a fluid
flowing in the direction x along a surface of normal z, the force balance per unit area
writes σxz = λvx, with [σ] the stress tensor and λ the friction coefficient per unit area
(expressed in N ·s ·m−3). For a Newtonian fluid, σxz = η∂zvx, which allows one to rewrite
the Navier boundary condition as

vx = b
∂vx
∂z

∣∣∣∣
wall

, (1.3)

introducing the slip length b = η/λ. The slip length can be geometrically interpreted as
the depth inside the solid where the linearly extrapolated fluid velocity profile vanishes.
Accordingly, the no-slip boundary condition corresponds to λ → ∞ or b → 0. The
effect of the partial slip condition is to simply shift the no-slip velocity profile by the slip
velocity, which is not negligible roughly within a slip length from the wall (figure 1.3).
Since slip lengths up to tens of nanometers have been measured on atomically smooth
(and hydrophobic) surfaces [15, 21, 23, 48], slippage is expected to play a crucial role in
nanofluidics, and Part III of this thesis is devoted to the study of its microscopic origin.
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No slip Partial slip Perfect slip

Figure 1.3

Geometric interpretation of the Navier partial slip boundary condition, and definition of the slip
length b.

In the smallest channels, of size R � b, a perfect slip boundary condition may even be
appropriate: the flow is then controlled by entrance effects.

1.3.3 Geometry and entrance effects

Experimentally, the flow profile inside a nanofluidic channel can hardly be resolved, and
one typically measures the total flow rate Q. Under a pressure drop ∆P and no-slip
boundary conditions, the flow rate through a cylindrical channel of radius R is given by
the Hagen-Poiseuille formula:

Qc =
πR4

8ηL
∆P. (1.4)

This formula assumes a channel length L� R, and thereby neglects the effect of channel
mouths on the flow rate. But the transition from a macroscopic reservoir to a nanoscale
channel is a source of viscous dissipation, as the streamlines need to be bent in order for
the fluid to enter the channel. These entrance effects may be examined by considering
the flow through an infinitely thin nanopore, which is of interest in itself, given the
geometry of certain nanofluidic devices (see section 1.2). This problem was addressed by
Sampson [49]. For a nanopore of radius R (and vanishing length) under pressure drop
∆P , Sampson obtained the expression of the flow rate as

Qp =
R3

3η
∆P. (1.5)

The scaling in Sampson’s formula naturally emerges from a Stokes equation where the
only lengthscale is R: η∆v = ∇p ⇒ ηv/R2 ∼ ∆P/R, and the typical fluid velocity is
v ∼ Q/R2. In order to estimate the flow rate through a channel taking into account
entrance effects, one may simply add the hydrodynamic resistances of the pore (Rp)
and the channel (Rc). If one writes Qc = (∆P )c/Rc and Qp = (∆P )p/Rp, then the
entrance-corrected flow rate Qpc is obtained by imposing Qp = Qc = Qpc and ∆P =

16



1.4. Ion transport

2 nm

Figure 1.4

Viscous dissipation rate, and streamlines, for the pressure-driven flow of water across a nanopore,
as obtained from a finite-element solution of the Stokes equation (COMSOL) for two values of
the slip length b. The color scale, from blue to red, encodes the viscous dissipation. In the
presence of slippage, the dissipation is mostly at the channel entrances.

(∆P )c + (∆P )p, so that

Qpc =
∆P

Rh +Rp
=
πR4

8ηL

∆P

1 + 3π
8
R
L

. (1.6)

An exact computation [50] shows that the error made by this a priori crude approximation
is less than 1%. Equation 1.6 makes a continuous transition between the nanopore and
nanochannel regimes, and shows that entrance effects are apparently negligible for channel
lengths that exceed a few channel radii.

However, the above discussion has crucially not taken into account slippage, which, as
we have highlighted in the previous section, is a strong effect at the nanoscale. Introducing
a non-zero slip length b, the flow rate though a channel becomes

Qc =
πR4

8ηL

(
1 +

4b

R

)
∆P, (1.7)

while the flow rate through a pore is not significantly affected [51], since the source
of dissipation in that case is mostly geometric. A full expression can be obtained by
gathering previous results, but in the limit where b� R, the entrance-corrected flow rate
becomes

Qpc =
R3

3η

∆P

1 + 2L
3πb

. (1.8)

Thus, the hydrodynamic resistance is actually dominated by entrance effects as long as
the channel is shorter than the slip length, rather than the channel radius (see figure 1.4).
In the presence of significant slippage, one should check whether the low Reynolds number
assumption still holds. The average velocity through a channel of radius R = 5 nm and
length L = 1 µm, with slip length b = 30 nm, under a pressure drop ∆P = 1 bar is
v = 8 mm · s−1, which is 25 times faster than the no-slip result, but still well below the
1 m · s−1 threshold established above.

1.4 Ion transport

The behaviour of ions in nanofluidic systems is of great practical interest with applications
ranging from biological ion channels [2] to ionic liquids inside nanoporous electrodes [52,
53]. Ion transport also provides an indirect way of probing fluid transport, which is often
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useful, since electric currents are much easier to measure than fluid flow. However, due to
their long range Coulomb interactions and diffusive dynamics, ions in nanochannels give
rise to physics of great complexity. In this section, we only sketch the main results with
particular emphasis on how well-known equations apply to the smallest channels, and we
refer the reader to other reviews on the subject [12,28,29] for more details.

1.4.1 Basic equations

Consider an aqueous solution of monovalent salt. Let ρ+, ρ− be the densities of positive
and negative ions, respectively; D the diffusion coefficient, here assumed to be the same
for ions of either sign, and φ the electrostatic potential. In a mean-field treatment, the
convective-diffusive dynamics of ions are described by a Smoluchowski equation:

∂ρ±
∂t

= ∇ ·
(
D∇ρ± ∓

eD

kBT
(∇φ)ρ± + vρ±

)
, (1.9)

where e is the unit charge, φ the electrostatic potential and v is the fluid velocity field.
The mean-field assumption implies in particular that correlations between the ions can be
neglected: the potential importance of such correlations in nanofluidics will be discussed
in the next chapter. Until then, we proceed by specifying the electrostatic potential
through Poisson’s equation,

∆φ = −eρ+ − ρ−
ε

, (1.10)

where ε is the dielectric permittivity of water. For now we assume it to be isotropic,
though this assumption may break down for nano-confined water, as we discuss in chapter
2. Lastly, we specify the flow velocity through the Stokes equation, which now includes
an electrostatic term:

η∆v − e(ρ+ − ρ−)∇φ = ∇p. (1.11)

We now apply these three coupled equations to a specific geometry, though the dis-
cussion that follows could be generalised to channels of any shape. For simplicity, we
consider a slit-like channel of height h, width w and length L, with w,L � h, connect-
ing two reservoirs of salt solution at concentration ρs, extending along the direction x,
between z = 0 and z = h. When considering ion transport, it is important to note that
most surfaces are charged in water, due either to the dissociation of surface groups or to
the adsorption of ions [54–56]. We hence assume the channel wall carries a surface charge
density −Σe (Σ is expressed in elementary charges per unit area, and we assume here the
surface charge to be negative).

1.4.2 Ionic conductance

We first neglect the coupling of ion transport to water transport, and consider the elec-
trophoretic (EP) contribution to the ionic current under an applied electric field E: this
means that we start by setting the fluid velocity v = 0. In the steady state, the Smolu-
chowski equation (1.9) reduces to the so-called Nernst-Planck equations for the constant
ionic fluxes (along the x direction):

j± = D∇xρ± ∓
eD

kBT
(∇xφ)ρ±. (1.12)
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Together with the Poisson equation (1.10), these constitute the widely used Poisson-
Nernst-Planck (PNP) framework. In our geometry, the condition L � h ensures that
in the middle of the channel ∇xρ± = 0; moreover to first order in E, ∇xφ = −E and
the densities reduce to their equilibrium values. Hence, the EP contribution to the ionic
current writes

Iep = w

∫ h

0

dz(j+ − j−) = w
e2D

kBT

∫ h

0

dz(ρ+ + ρ−)E. (1.13)

In order to compute Iep, one needs to find the equilibrium solution of the coupled PNP
equations for ρ+ and ρ−. At equilibrium j± = 0 and the Nernst-Planck equations (1.12)
can be integrated, imposing that in the reservoirs φ = 0 and ρ± = ρs. This yields a
Boltzmann distribution for the ions in the electrostatic potential

ρ± = ρs exp

(
∓ eφ

kBT

)
≡ ρse∓ψ, (1.14)

introducing a dimensionless potential ψ. Combining this with the Poisson equation (1.10)
yields the Poisson-Boltzmann (PB) equation:

∆ψ − λ−2
D sinh(ψ) = 0, (1.15)

which introduces the Debye length λD = (8πρs`B)−1/2, with `B = e2/(4πεkBT ) the
Bjerrum length. In our geometry, the PB equation has an implicit solution in terms of an
elliptic integral [57,58]. We will not exploit it here, however, and we will instead recover
the relevant limiting behaviours from qualitative considerations.

It is well known that, roughly speaking, the Debye length sets the extension of the
diffuse layer of counterions next to a charged surface [59]. Hence, if the channel height
h � λD, its two opposing walls do not ’see’ each other. We expect the conductance to
be the sum of a bulk term, and a surface term originating in the two Debye layers:

Iep = 2w
e2D

kBT
E(ρsh+ Σ). (1.16)

where ρsh and Σ account for the number of charge carriers in the bulk and at surfaces,
respectively. In the opposite limit where h� λD, there is no more distinction between
surface and bulk. All the quantities may be considered uniform across the channel: this is
called the Debye overlap regime. However, one may not assume that the channel contains
only counterions, and one should go back to the thermodynamic equilibrium with the
reservoirs, which in this case bears the name of Donnan equilibrium [12]. One has ρ± =
ρse
∓ψ, which implies a chemical equilibrium ρ+ρ− = ρ2

s in the channel. Going further, in
the limit of long channel length, there should be local electroneutrality: h(ρ+−ρ−) = 2Σ.
This yields

ρ± =
√
ρ2
s + (Σ/h)2 ± Σ/h, (1.17)

and the current-voltage relation in the Debye overlap is

Iep = 2w
e2D

kBT
E
√

(ρsh)2 + Σ2. (1.18)

Equation 1.18 displays the first peculiarity of small channels: one may not simply add
the surface and bulk contributions. Table 1.1 lists the values of Debye length for different
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ρs (M) λD (nm)
100 0.3

10−1 1.0
10−2 3.1
10−3 9.6

Debye length: λD = (8πρs`B)−1/2. Thickness of the diffuse layer of
counterions next to a charged surface.
Bjerrum length: `B = e2/(4πε0kBT ). Distance between two unit charges
at which their interaction energy is kBT .
Dukhin length: `Du = Σ/ρs. Channel width below which surface con-
ductance dominates over bulk conductance.
Gouy-Chapman length: `GC = (2πΣ`B)−1. Distance a unit charge must
travel from a charged surface so that its electrostatic energy is reduced by
kBT .

Material Σ (C ·m−2) Σ (e · nm−2) `GC (nm) `Du at 0.1 M (nm)
Graphene oxide [56] 0.01 0.06 4 1

Silica [60] 0.05 0.3 0.8 5
Carbon nanotube [61] 0.16 1 0.2 17
BN nanotube [10] 1.4 9 0.03 150

Table 1.1

Electrostatic lengthscales. Values of Debye length, Gouy-Chapman length and Dukhin length in
a range of conditions.

electrolyte concentrations, showing that the Debye overlap regime is indeed relevant for
experimentally accessible nanofluidic systems (see section 1.2). Qualitatively, eqs. (1.16)
and (1.18) both predict saturation of the conductance at low salt concentrations at a value
determined by the surface charge. The saturation occurs when ρs ∼ Σ/h, which can be
recast in the form h ∼ ρs/Σ ≡ `Du. `Du is called the Dukhin length and quantifies the
competition between bulk and surface contributions to the conductance. For a channel
narrower than `Du, surface contributions dominate, and vice versa. The Dukhin length
is going to be important in our upcoming discussion of entrance effects.

At this point, a remark should be made concerning the range of validity of equations
(1.16) and (1.18). Indeed, they have been derived from qualitative considerations, without
reference to the exact solution of the PB equation. Now, from eqs. (1.13) and (1.14), one
obtains more generally

Iep = 2w
e2D

kBT

(
ρsh cosh(ψ(h/2)) +

E
2kBT

)
, (1.19)

where E = (ε/2)
∫ h

0
(∂zφ)2dz is the electrostatic energy per unit area. The electric double

layer can be pictured as a capacitor with charge Σ, hence one would expect its electrostatic
energy to scale as Σ2; moreover, this is the prediction of the linearised PB equation, i.e.
eq. (1.15) with the approximation sinhψ ≈ ψ. This is in contrast to, eq. (1.16), which
predicts a linear scaling of the conductance with Σ: this scaling must therefore come
from the non-linearities of the PB equation. The PB equation may be linearised if the
potential varies by less than kBT across the Debye layer (or across the channel if there is
Debye overlap). This is the case in the high concentration/low surface charge limit and
specifically when the Debye length is smaller than the so-called Gouy-Chapman length:
`GC = (2πΣ`B)−1. On the other hand, eq. (1.18), valid for the Debye overlap regime, is
safe from a condition on `GC , as it predicts both quadratic and linear scalings depending
on the value of Σ, as long as there is Debye overlap.
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1.4.3 Entrance effects

Similarly to what we have discussed for liquid and gas transport, we may now ask, for
ion transport, what is the additional electrical resistance due to the channel - reservoir
interface. Equivalently, we may want to estimate the ionic conductance of a nanopore
of small aspect ratio, say of radius R and length L ∼ R. The problem has first been
considered in the context of biological channels by Hille [62] and Hall [63]. Hall solved the
electrostatic problem with an electrode at infinity and an equipotential disk accounting
for the entrance of the pore. Translating the solution into scaling arguments, the current
through the pore entrance is I ∼ πR2κb∆Vout/R, where ∆Vout is the voltage drop at
the entrance of the pore, which is expected to occur over a distance R, and not over the
macroscopic distance between the electrodes. This defines an electrical access resistance
as the ratio ∆Vout/I. We now specialise to the thin Debye layer regime λD � R. If
one simply sums the access resistance and the channel resistance as given by eq. (1.16)
(adapted to cylindrical geometry), the current-voltage relation becomes

Iep = κb

(
L

πR2

1

1 + `Du/R
+

1

αR

)−1

∆V, (1.20)

with α a geometric factor which is 2 in Hall’s computation, and introducing the bulk
conductivity κb = 2e2Dρs/(kBT ). The above equation predicts vanishing conductance
as ρs → 0, since the access resistance becomes infinite in this limit; however, this is not
what is observed experimentally in short nanopores [31, 64]. This inconsistency arises
because, for a surface-charged pore, the access current has a surface contribution, in
addition to the bulk contribution. This surface contribution may be evaluated starting
from charge conservation at the surface, which imposes a relation between the axial and
radial components of the electric field, as pointed out by Khair and Squires [65]:

κbEr = ∂x[κsθ(x)Ex], (1.21)

with κs the surface conductance and θ the Heaviside function, accounting for the disconti-
nuity of surface charge at the pore boundary, which leads to subtle consequences. Indeed,
it reveals that the Dukhin length, `Du = Σ/ρs ∼ κs/κb, is the relevant lengthscale for the
surface contribution to the electric field outside the pore, instead of the channel radius
or Debye length. The Dukhin length appears here as an electrostatic healing length:
feeding the surface conduction at the nanopore mouth disturbs the electric field lines in
the bulk over a length `Du. This interpretation is supported by the numerical results of
ref. [64] as shown in figure 1.5a. The bending of the electric field lines can be estimated
by a perturbative approach [64] that leads to an analytical expression for the corrected
current-voltage relation:

Iep = κb

(
L

πR2

1

1 + `Du/R
+

1

αR+ β`Du

)−1

∆V. (1.22)

The surface-charged pore therefore appears, from the perspective of entrance effects, as
an uncharged pore of effective size R+ `Du, since the geometrical prefactor β ≈ 2. In the
limit of vanishing salt concentration, ρs → 0, the conductance indeed saturates, and, as
expected, the entrance correction disappears in the limit of large aspect ratio pores. Lee et
al. [64] successfully compared the prediction of eq. (1.22) to experimental measurements
in SiN nanopores in the range 100− 500 nm. More recently, it has been used to describe
conductance measurements in MoS2 nanopores down to 2 nm in diameter [31].
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Figure 1.5

a. Colour plot of the electrostatic potential around a nanopore immersed in a salt solution and
subject to a voltage drop, in the charged and in the uncharged case. Around a charged pore,
the lengthscale for variation of the potential is set by the Dukhin length. Adapted from [64].
b. and c. Schematic representation of coupled ion and fluid transport in a nanochannel under
electric field driving: in the thin Debye layer limit (b.) and in Debye overlap in the presence of
slippage (c.). The electro-osmotic contribution dominates in the latter case. d. Peclet number
(defined in the text), as a function of channel width and Gouy-Chapman length. The region in
parameter space where Pe > 1 is coloured in dark red in the no-slip case, and in light red when
slippage is present.

1.4.4 Coupling with fluid flow

So far, we have neglected any coupling of ion transport to fluid transport. However,
in the presence of charged surfaces, an external electric field exerts a net force on the
charged Debye layer, which sets the fluid in motion. This interfacially-driven flow is
termed electro-osmotic (EO) flow. The EO flow in turn drags along the ions in the Debye
layer, which makes a supplementary contribution to the ionic current, that we denote Ieo.
This contribution has a convenient exact expression in the slit-like geometry considered
in section 1.4.1. In analogy to eq. (1.13),

Ieo = 2w

∫ h/2

0

e(ρ+ − ρ−)v(z)dz. (1.23)

From the Poisson equation (1.10), we may replace e(ρ+−ρ−) = −ε∂2
zφ. Then, integrating

by parts,

Ieo = 2wε

[∫ h/2

0

∂zφ∂zv dz + v(0)∂zφ|0

]
. (1.24)

Now, we may use the partial slip boundary condition v(0) = b∂zv|0, as well as the
electrostatic boundary condition ∂zφ|0 = eΣ/ε. This stems from the Gauss theorem
applied to the surface, and the assumption that the medium outside the channel has

22



1.4. Ion transport

much lower dielectric permittivity than water [58]. Moreover, an integration of the Stokes
equation (1.11) allows the replacement ∂zv = −(εE/η)∂zφ. Altogether, we obtain

Ieo = w

[
2ε

η
E +

2be2Σ2

η

]
E, (1.25)

where E = (ε/2)
∫ h

0
(∂zφ)2dz is the electrostatic energy per unit surface introduced in the

previous section. It appears here that slippage has an additive contribution to the EO
current, which strikingly does not depend on any electrolyte properties.

We now consider the result in two limiting cases. First, in the thin Debye layer limit,
by comparing with eq. (1.19), one may identify

Ieo =
kBT

2π`BηD
Isurf
ep + 2w

be2Σ2

η
E, (1.26)

where Isurf
ep is the surface contribution to the electrophoretic current. To quantify the

importance of the EO contribution, one may compute the analogue of a Peclet number:

Pe =
Ieo

Isurf
ep

=
3

2

di
`B

(
1 +

b

`GC

)
. (1.27)

We have introduced here the ion diameter di by using the Einstein relationD = kBT/(3πηdi)
and we recall that `GC = (2πΣ`B)−1. In water at room temperature, di ∼ `B ∼ 0.7 nm,
therefore, in the absence of slippage, the EO contribution is of the same order as the sur-
face EP contribution, Pe ∼ 1. Table 1.1 lists, for reference, values of the Gouy-Chapman
length for typical surface charge values. As these are generally in the nanometre range,
even in the case of moderate slippage (b ∼ 10 nm), there is a strong enhancement of
the EO contribution. The threshold confinement below which the resulting surface con-
tribution dominates over the bulk contribution is given by a rescaled Dukhin length:
`∗Du = (b/`GC)`Du.

Second, in the Debye overlap regime, the EO current is readily determined from
eq. (1.23), since the ion densities may then be considered uniform across the channel and
are given by eq. (1.17). Uniform ionic densities also imply that the flow has no longer
a surface, but rather a volume driving. It is simply a Poiseuille flow, with the pressure
gradient ∆P/L replaced by the electric driving force e(ρ+−ρ−)E. Altogether one obtains

Ieo '
wh

3η
e2Σ2

(
1 +

6b

h

)
E. (1.28)

Since in Debye overlap it makes no more sense to distinguish a surface and a bulk con-
tribution, we define the Peclet number as the ratio of the EO current to the total EP
current:

Pe =
Ieo

Iep
=
di
`B

h

4`GC

1 + 6b/h√
1 + (h/`Du)2

. (1.29)

Figure 1.5d illustrates the dependence of this Peclet number on h and `GC , with ρs =
10−2 M so that there is Debye overlap. In the absence of slippage, the EO contribution
dominates only for high surface charges. However, if a small slip length b = 5 nm is
introduced, the Peclet number exceeds 1 for all reasonable surface charges. Indeed, the
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1.5. The big picture

Peclet number is then essentially determined by the ratio b/`GC . This highlights that in
the Debye overlap regime, ionic conduction should be mostly driven by electro-osmosis.

If strong EO flows are expected, then the reciprocal effect, streaming current, is
expected to be large as well. The streaming current results from the application of a
pressure gradient ∆P/L: in Debye overlap, the charge density 2Σ/h is simply dragged
along by the Poiseuille flow. The current reads

Istr ' hw
ehΣ

6η

(
1 +

6b

h

)
∆P

L
≡ hw−εζ

η

∆P

L
, (1.30)

where we have phenomenologically defined the zeta potential (ζ) via the streaming mobil-
ity. Independent measurements of the surface charge through the voltage-driven current
and of the zeta potential from the pressure-driven current may allow in principle to esti-
mate the slip length b. Such an estimate does not replace a direct measurement, however,
in particular because the slip length may directly depend on surface charge [66], and
surface charges may be mobile [67,68].

1.5 The big picture

In this Chapter, we gave an overview of the basic theoretical framework for fluids
at the nanoscale. The main points are:

• Nanofluidic devices with molecular-scale confinement are today within reach. In
general, nanofluidic systems are probed by liquid or ion transport measurements
under a pressure or a voltage drop.

• Liquid transport is well-described by the Stokes equation, with the addition of
wall slippage. The value of the slip length is crucial in determining a channel’s
permeability.

• Ion transport is understood in terms of the mean-field PNP framework, where
the crucial ingredients are the channel surface charge, and the coupling be-
tween ion and liquid transport through electro-osmosis and streaming. These
couplings are strongly affected by flow slippage at the channel walls.
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Interaction confinement
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2.1 Introduction

As the scale of a nanofluidic system is reduced, some of the assumptions that are at
the root of the continuum and mean-field equations exposed in the previous Chapter
necessarily break down. A general overview of the corresponding sub-continuum effects is
given in [9]. Notably, as channels reach the molecular scale, fluid structuring and thermal
fluctuations play an overwhelming role. In this Chapter, we will focus on one particular
sub-continuum effect, which leads to the breakdown of mean-field theory, and yet does
not rely on fluid structuring. I call this effect interaction confinement, and it is at the
basis of most of the phenomena discussed in the remainder of this thesis.

Interaction confinement means that the presence of a confining wall not only affects
a particle’s translational degrees of freedom, but also its interactions. Typically, we will
consider Coulomb interactions of fluid particles, which are affected by the confining wall’s
electromagnetic response. As the simplest example of interaction confinement, consider
a point-like ion in a narrow channel. Let us imagine that the channel is filled with
water, with high dielectric permittivity (typically, εw = 80) and embedded in a dielectric
membrane with low permittivity εm = 2. Then, due to the dielectric contrast, the
electric field lines produces by the ion are forced to remain parallel to the channel walls
(figure 2.1), so that inside the channel the Coulomb potential resembles a 1D Coulomb
potential.

The idea of electric field shaping by dielectric discontinuities is far from being new. As
early as 1969, Parsegian [69] realised that ions faced an energy barrier upon translocation
through a biological channel embedded in a lipid membrane. For a channel of length L
on the order of its radius R, and an ion of charge e, an approximate expression for this
so-called self-energy barrier is

Es =
e2

4πε0εw

L

R2
. (2.1)
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2.2. Ions in nanotubes

+

Figure 2.1

Sketch of interaction confinement for an ion inside a nanoscale channel: the dielectric contrast
forces the electric field to remain parallel to the channel wall over a length ξ.

This is precisely the electromagnetic energy associated with the 1D-like electric field
depicted in figure 2.1, whose magnitude is, according to Gauss’ law, E = e/(2πR2ε0εw).
In a channel of length L� R, the 1D electric field actually leaks from the channel walls
over a typical length ξ (which is on the order of a few channel radii, as detailed in the
following), so that the self-energy barrier is

Es =
e2

4πε0εw

ξ

R2
. (2.2)

Several authors have proposed solutions of Poisson’s equation for ions confined by
dielectric walls [70–72]. Yet, the consequences of modified ionic interactions on the ion
dynamics have remained largely unexplored. It may seem at first sight that dielectric
discontinuities are fully taken into account in the PNP framework, as it involves solving
Poisson’s equation. However, PNP equations are intrinsically mean-field, and they cannot
capture ionic correlations that result from confined interactions. We shall see that such
correlations are the main consequence of interaction confinement, as ionic interactions in
narrow channels become stronger than in the bulk. Nanofluidic systems with interaction
confinement therefore require new theoretical tools, some of which we propose in Part II
of this thesis.

This Chapter is organised as follows. We first establish analytical expressions for the
Coulomb interaction under dielectric confinement, in the two experimentally relevant (1D
and 2D) geometries. This allows us to determine the approximate dimensions of nanoflu-
idic systems where interaction confinement will be important. While the 1D derivation
has analogues in the literature [70,72], for the 2D case we introduce an original approach
based on surface response functions. Then, taking advantage of the surface response
approach, we discuss the effect of dielectric anisotropy and electronic properties of the
wall material on confined interactions. Finally, we sketch the consequences of interaction
confinement beyond ionic correlations.

2.2 Ions in nanotubes

We consider a point charge +e placed in the middle of a cylindrical channel of radius R
and infinite length. The channel is filled with water, with dielectric permittivity εw, and
is embedded in a local dielectric medium with permittivity εm. We will use, unless stated
otherwise εw = 80 and εm = 2. We define cylindrical coordinates (r, z) with the z axis
along the channel length and the charge placed at the origin. The electrostatic potential
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2.2. Ions in nanotubes
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Figure 2.2

Interaction confinement in a 1D (nanotube) geometry. a. Potential along the channel axis, for
a channel radius R = 2 nm. b. Self-energy barrier as a function of channel radius. The shaded
region corresponds to channel radii for which the self-energy barrier is greater than kBT .

then satisfies the Poisson equation:

∂2
rφ+

1

r
∂rφ+ ∂2

zφ = − e

ε0ε

δ(r)δ(z)

2πr
, (2.3)

with ε = εw, εm. eq. (2.3) is solved by Fourier transforming along the z direction, and
enforcing continuity of the displacement field and of the potential at the channel bound-
ary; in the general, the inverse Fourier transform has then to be carried out numerically.
Details of the computation are given in Appendix A.1, and figure 2.2 shows the result
obtained for the potential φ(0, z) with R = 2 nm.

Here we discuss qualitatively the result. At short distances (much smaller than the
channel radius), only the dielectric response of the water is visible and the potential is
φ(z) ∼ 1/(εwz). At long distances (much larger than the channel radius), it is the dielec-
tric response of the confining medium that matters and φ(z) ∼ 1/(εmz). At intermediate
distances, the electric field lines are essentially parallel to the channel due to the dielectric
contrast εw � εs, and the potential, which is well described by an exponential function,
resembles a 1D Coulomb potential:

φ(x) ≈ eξ

2πε0εwR2
e−z/ξ. (2.4)

ξ is the typical length over which the 1D electric field escapes through the channel bound-
aries (figure 2.1), that depends on the ratio εw/εm and channel radius; ξ = 6.3R for
εw/εm = 40 [70]. It is notable that so far no assumption on the channel radius was made,
so that formally this 1D regime exists for a channel of any size. However, it is only rel-
evant if it leads to ion-ion interactions stronger than kBT , that is if eφ(R) > kBT , for a
monovalent ion. This defines a limiting channel radius, below which ionic interactions are
affected by the confining medium: Rc ∼ 7.5 nm. Another criterion for the importance of
interaction confinement effects is the value of the self-energy barrier (figure 2.2): we find
that it is greater than kBT for R . 4 nm.
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2.3. Ions in nano-slits

2.3 Ions in nano-slits

We now consider a point charge +e placed in the middle of a slit-like channel of height h
and infinite length and width. As before, the channel is filled with water, with dielectric
permittivity εw, and is embedded in a local dielectric medium with permittivity εm. We
define cylindrical coordinates (ρ, z), with the z axis perpendicular to the channel, and
place the charge at the origin. At this point, we could, as in the 1D case, solve the Poisson
equation with the appropriate boundary conditions. But instead, we will introduce a more
powerful approach based on surface response functions, which will ultimately allow us to
discuss media with non-local dielectric response.

The surface response function g(q, ω) may be defined as a reflection coefficient for
evanescent plane waves. If an external potential φext(ρ, z, t) = φ0e

i(qρ−ωt)eq(z+h/2) acts,
say, on the confining wall at z < −h/2, then the potential induced by the confining wall in
the half-space z > −h/2 is φind(ρ, z, t) = −φ0g(q, ω)ei(qρ−ωt)e−q(z+h/2). In this Chapter
we will only be concerned with static potentials, hence we will use g(q) ≡ g(q, ω = 0).
Surface response functions are discussed in detail in Appendix B, where it is shown
how they can be evaluated starting from materials’ electronic properties. For the local
dielectric medium of permittivity εm, the surface response function is

gm(q) =
εm − εw
εm + εw

, (2.5)

taking into account that outside the medium m is water of permittivity εw.
With these definitions, we may readily determine the Coulomb potential inside the

two-dimensional channel. It is the sum of the "external" potential produced by the test
charge +e, and of the "induced" potential produced by the polarisation charges in the
confining walls. The external potential is simply the 3D Coulomb potential φext(r) =
e/(4πε0εw|r|), which supports the following Fourier decomposition:

φext(ρ, z) =
e

4πε0εw

∫
dq

(2π)2

2π

q
e−q|z|eiqρ. (2.6)

The induced potential may be determined separately for every wavevector q. Let φmext(q)
be the external potential acting on the wall at z = −h/2. It is the sum of the potential
produced by the test charge, and of the induced potential created by the polarisation
charges in the medium at z > h/2, both screened by the water dielectric constant. By
symmetry, the external potential is the same in the upper and lower dielectric medium.
This yields the following self-consistent equation:

φmext(q) =
e

4πε0εw

2π

q
e−qh/2 − gm(q)φmext(q)e

−qh. (2.7)

We are interested in the total potential in the plane z = 0, which is

φtot(q, z = 0) = φext(q, z = 0)− 2gm(q)φmext(q)e
−qh/2. (2.8)

Making use of eq. (2.7), we obtain

φtot(q, 0) =
e

4πε0εw

2π

q

(
1− 2gm(q)e−qh

1 + gm(q)e−qh

)
. (2.9)
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Figure 2.3

Interaction confinement in a 2D (nano-slit) geometry. a. Potential along the channel axis, for
a channel height h = 2 nm. b. Self-energy barrier as a function of channel height. The shaded
region corresponds to channel radii for which the self-energy barrier is greater than kBT .

The potential in real space is then obtained by inverse Fourier transformation, which
thanks to the rotational symmetry reduces to

φtot(ρ, 0) ≡ φ(ρ) =

∫ +∞

0

dq

2π
qJ0(qρ)φtot(q, 0), (2.10)

with J0 the Bessel function of the first kind.
Analytical expressions for the real space potential may be provided in terms of series

expansions: these are reported in Appendix A.2. Here, we focus on the qualitative
interpretation of the results. For illustration, the real-space Coulomb potential obtained
in a slit of height h = 2 nm is shown in figure 2.3. Similarly to the 1D case, at distances
ρ � h, the test charge only "sees" the dielectric response of water, and φ(ρ) ∼ 1/εwρ.
Conversely, at large distances ρ � h, the potential is mostly screened by the walls,
and φ(ρ) ∼ 1/εmρ. At intermediate distances, there is, as in 1D, a regime where the
electric field lines remain parallel to the channel walls, but in the present 2D geometry
this corresponds to a logarithmic potential, as opposed to linear in the 1D case. In this
logarithmic region, the potential supports the following analytical approximation, in the
limit of strong dielectric contrast (see Appendix A.2):

φ(ρ) =
eK

2πε0εwh
log

(
ρ+ ξ

ρ

)
, (2.11)

where K ≈ 1.1, and "leakage" of the electric field over a distance ξ = εwh/(2εm) is taken
into account. This analytical expression is plotted in figure 2.3a and is found to be in
excellent agreement with the exact solution. Figure 2.3b shows the self-energy barrier
(discussed in section 1) as a function of channel height h, determined according to Es =
eφind(0, 0)/2. It is found to be greater than kBT for h . 2 nm, which roughly establishes
a threshold for the importance of interaction confinement effects in 2D geometry.
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Figure 2.4

Dielectric anomalies in confined water. a. Components of the dielectric permittivity tensor
of water in a carbon nanotube, as a function of nanotube radius, as determined from MD
simulations. Adapted with permission from [72]. b. Experimental results for the transverse
dielectric constant of water in planar confinement, as a function of confinement width. Adapted
with permission from [73].

2.4 Dielectric anisotropy

We have so far assumed that the screening properties of water are described by a uniform
dielectric constant εw. While this is a good approximation in the bulk up to molecular
lengthscales, it is no longer so under confinement. Precisely, the total electric field E in
water is the sum of the polarisation field of the water molecules and of the externally
applied field D/ε0, where D is the electric displacement, and so far we have assumed the
simple relation D = εwε0E. However, the most general (static) linear response may be
anisotropic, space-dependent and non-local:

Dα(r) = ε0
∑
β

∫
dr′εαβ(r, r′)Eβ(r′). (2.12)

The relative permittivity is then a tensor with components εαβ(r, r′), α, β ∈ {x, y, z}.
While MD simulations show that the dielectric response in water may be considered local
(εαβ(r, r′) = εαβ(r)δ(r−r′)), it becomes anisotropic and space-dependent in the vicinity of
interfaces, as a consequence of water layering [74,75]. Qualitatively, the orientations of the
water dipoles are anti-correlated in the direction perpendicular to the interface, resulting
in a reduced permittivity in that direction, while the permittivity is largely unaffected
parallel to the interface. In planar confinement, this behaviour could be captured by
an effective medium model, in which the water is described by a space-independent,
but anisotropic permittivity (ε‖, ε⊥) (the parallel direction is not confined). While ε‖
essentially retains its bulk value, ε⊥ is reduced by up to an order of magnitude for
confinements below 1 nm [76,77]. Such a reduction of the perpendicular dielectric response
was recently observed experimentally for water confined between a graphite and a boron
nitride crystal [73]. A deviation from the bulk value was measured up to nearly 100
nm confinement (figure 2.4). The results were well described by assuming each interface
carried a 7 Å thick layer of very low permittivity (εw = 2.1) "electrically dead water".
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Figure 2.5

Coulomb potential created by an ion of charge e inside a nano-slit of height h = 2 nm, filled
with water with anisotropic dielectric permittivity. The permittivity along the slit direction is
fixed at ε‖ = 80, while the permittivity in the perpendicular direction is varied.

An effective medium model based on MD simulations was developed by Loche et
al. [72] for cylindrical confinement of water in carbon nanotubes. Similarly to the case
planar case, the radial permittivity is found to be reduced by up to an order of magnitude
for tube radii smaller than 3 nm (figure 2.4). However, for the smallest tubes (below 1
nm radius), the longitudinal permittivity is found to increase with respect to its bulk
value, and it skyrockets 1 to 3 orders of magnitude in a 0.4 nm radius tube, where water
is in a single file arrangement.

The dielectric anisotropy of water clearly has an influence on the Coulomb interac-
tions under confinement. In general, this influence may be assessed by solving Poisson’s
equation, which now takes the form

∇
(
ε · ∇φ

)
= − e

ε0
δ(r), (2.13)

with ε the dielectric tensor. In the nanotube geometry, the computation is reported in
Appendix A.1. In the nano-slit geometry, the anisotropy may be taken into account
within the formalism of surface response functions. In an infinite medium with dielectric
tensor components (ε‖, ε⊥), the potential created by a point charge e placed at the origin
is

φext(ρ, z) =
e

4πε0
√
ε‖ε⊥

√
ρ2 +

ε‖
ε⊥
z2
, (2.14)

which becomes, after Fourier transformation,

φext(q, z) =
e

4πε0
√
ε‖ε⊥

2π

q
e−aq|z|, (2.15)

with a =
√
ε‖/ε⊥. Hence, taking into account the dielectric anisotropy amounts to

replacing εw 7→
√
ε‖ε⊥, and introducing factors a in all the exponentials of the type e−qz.

In particular, the confining wall’s surface response function becomes

gm(q) =
εm −

√
ε‖ε⊥

εm +
√
ε‖ε⊥

, (2.16)

31



2.5. Metallicity of the confining walls

and the Fourier-transformed potential at the channel midplane is

φtot(q, 0) =
e

4πε0
√
ε‖ε⊥

2π

q

(
1− 2gm(q)e−aqh

1 + gm(q)e−aqh

)
. (2.17)

The analytical expression in eq. (2.11) for the logarithmic region of the potential still
holds, with εw 7→

√
ε‖ε⊥ and ξ = ε‖h/(2εm).

The qualitative consequence of these modified expressions is illustrated in figure 2.5,
which shows the Coulomb potential produced by an ion inside a slit of height h = 2 nm.
The parallel dielectric constant of water is fixed at ε‖ = 80, while different values are taken
for ε⊥. The dielectric anisotropy mainly affects the potential at short distances ρ � h,
where the scaling becomes φ(ρ) ∼ 1/

√
ε‖ε⊥ρ. Since the effective dielectric constant seen

by the potential at short distances is reduced, it becomes larger than in the isotropic
case: this effectively shifts the logarithmic region to larger distances. In a nanotube
geometry, the consequences of dielectric anisotropy on ionic interactions have been studied
extensively in [72]. The effect is qualitatively the same as in 2D, except that, somewhat
counterintuitively, the short-distance scaling of the potential along the axial direction
involves the radial dielectric constant: φ(z) ∼ 1/εrz. In general, one may conclude that
ionic interactions are underestimated if nano-confined water is assumed to have the bulk
dielectric properties.

2.5 Metallicity of the confining walls

We have discussed up till now ionic interactions in nanoscale channels with perfectly
insulating walls. Such an assumption has traditionally been made for biological channels
embedded in lipid membranes, and it is relevant for a range of artificial channel materials
such as silica or hexagonal boron nitride. But many artificial channels are now being
made out of graphite and related materials [15, 23], in which conduction electrons are
present; pores with carbon-based walls also occur in nanoporous carbon electrodes [52,53].
These carbon-based materials may be electrically conducting: it is therefore of interest to
explore the influence of conduction electrons on ionic interactions in confinement. Existing
computations of confined Coulomb potentials that do not make the approximation of a
perfect insulator make instead the approximation of a perfectly metallic wall [72,78–80].
But in order to tackle realistic systems, one would like an approach that could deal with
confining wall electronic properties in between these two extremes.

The surface response function framework is perfectly suited for such a purpose. Indeed,
within the so-called specular reflection approximation (see [81] and Appendix B.4), the
surface response function of a material can be computed given any form of its non-local
bulk dielectric function ε(q, qz):

gm(q, ω) =
1−√ε‖ε⊥q`q
1 +
√
ε‖ε⊥q`q

, `q =
2

π

∫ +∞

0

dqz
(q2 + q2

z)ε(q, qz)
. (2.18)

In order to continuously explore the range of screening properties between metal and
insulator, one may use, at the simplest level, the Thomas-Fermi model for the bulk
dielectric function [82]:

ε(q, qz) = εm +
q2
TF

q2 + q2
z

, (2.19)
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2.5. Metallicity of the confining walls

where εm is the background dielectric constant that accounts for screening by interband
transitions, and qTF is the Thomas-Fermi wavevector. Qualitatively, the Thomas-Fermi
model introduces a screening length for the potential: λTF = q−1

TF. In an insulator,
qTF = 0 and the screening length is infinite, while in a perfect metal qTF → ∞ and the
potential is screened over a very short distance below the surface. Replacing eq. (2.19)
into eq. (2.18) yields the surface response function in the Thomas-Fermi model:

gm(q) =
εmfTF(q)−√ε‖ε⊥
εmfTF(q) +

√
ε‖ε⊥

, fTF(q) =

√
1 +

1

εm

q2
TF

q2
. (2.20)

In the limit qTF → 0, we recover the insulator result of eq. (2.16). Conversely, if we let
qTF → ∞, we may obtain the potential in the perfect metal limit. Indeed, if qTF → ∞,
gm(q) = 1. Then, eq. (2.17) becomes

φtot(q, 0) =
e

4πε0
√
ε‖ε⊥

2π

q
tanh(aqh/2), (2.21)

and the real space potential, according to eq. (2.10), is given by

φ(ρ) =
e

4πε0
√
ε‖ε⊥

∫ +∞

0

dq J0(qρ)tanh(aqh/2). (2.22)

The integral may be computed in the following way. First, we introduce the notation

φ(ρ) =
e

4πε0
√
ε‖ε⊥

2

ah
I(ρ̃), (2.23)

with ρ̃ ≡ 2ρ/ah, and

I(ρ̃) =

∫ +∞

0
dq J0(qρ̃)tanh(q). (2.24)

Then, we make use of the property

I(ρ̃) =

∫ +∞

0
dsL[J0(qρ̃)](s)L−1[tanh(q)](s), (2.25)

where L is the Laplace transform. For the Bessel function, we have L[J0(qρ̃)](s) = 1/
√
ρ̃2 + s2. The

hyperbolic tangent has poles at iqn = i(2n + 1)π/2, n ∈ Z on the imaginary axis. Hence, its inverse
Laplace transform is given by

L−1[tanh(q)](s) =
1

2iπ

∫ δ+i∞

δ−i∞
dq tanh(q)eqs, (2.26)

with δ > 0. This integral is computed by closing the integration path in the left complex plane, and
making use of the Cauchy residue theorem:

L−1[tanh(q)](s) =
∑
iqn

Resq=iqn [tanh(q)eqs], (2.27)

Since the residue of the hyperbolic tangent at the poles iqn is 1, we obtain

L−1[tanh(q)](s) =

+∞∑
n=−∞

ei(2n+1)πs/2 = 2

+∞∑
n=0

cos

(
2n+ 1

2
πs

)
. (2.28)

Replacing into eq. (2.24) yields

I(ρ̃) = 2

+∞∑
n=0

∫ +∞

0
ds

cos((2n+ 1)πs/2)√
ρ̃2 + s2

. (2.29)
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2.5. Metallicity of the confining walls
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Figure 2.6

Coulomb potential created by an ion of charge e inside a nano-slit, for different models of the
confining walls’ dielectric response. The left panel corresponds to a slit of height h = 2 nm and
water with isotropic permittivity, while in the left panel the slit height is 0.7 nm and water has
an anisotropic dielectric response. The background dielectric constant is set to εm = 2 in all
instances.

Here, we may recognise the integral representation K0, the modified Bessel function of the second kind
of order 0:

I(ρ̃) = 2

+∞∑
n=0

K0

(
2n+ 1

2
πρ̃

)
. (2.30)

Finally, we obtain for the potential in the perfect metal limit

φ(ρ) =
e

πε0
√
ε‖ε⊥ah

+∞∑
n=0

K0

(
(2n+ 1)π

ρ

ah

)
. (2.31)

This result differs from the one given without proof by Kondrat and Kornyshev [79],
which we find to be incorrect, since it does not reduce to an unperturbed 3D Coulomb
potential in the limit ρ → 0, as opposed to ours. Nevertheless, in the limit ρ � h, we
recover the same asymptotic form as in [79]:

φ(ρ) ≈ e

πε0
√
ε‖ε⊥

e−πρ/ah√
2ahρ

. (2.32)

In figure 2.6, we plot the Coulomb potential created by an ion in a slit-like channel
for different values of the Thomas-Fermi wavevector qTF of the confining walls. As soon
as the wall material has conduction electrons (that is, qTF is non-zero), the potential
becomes exponentially screened at long distances, over the typical lengthscale ah/π, as
given by eq. (2.32). In the perfect metal case qTF →∞, the transition between the short
distance 1/ρ regime and long-distance exponential regime occurs at ρ ∼ h. However,
in a realistic material with finite screening length, the transition occurs at longer dis-
tances. Before the transition to the exponentially screened regime the material behaves
as an insulator with the background dielectric constant εm. For example, in the case of
graphite with screening length λTF ∼ 1 nm [83] (qTF ∼ 0.1 Å), the perfect metal model
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2.6. Consequences of interaction confinement

significantly underestimates the Coulomb potential (figure 2.6). Overall, we conclude
that the electronic properties of the confining wall material strongly impact the confined
ionic interactions.

2.6 Consequences of interaction confinement

We have shown that the Coulomb interactions between ions in solution are significantly
modified when the solution is confined to a channel of few-nanometre width. These ef-
fective confined interactions are much stronger than the bulk ones (see figures 2.2 and
2.3), and should therefore result in enhanced correlations between the ions. Taking the
example of a nanotube of radius R, one may assess the importance of correlations by
introducing a coupling parameter Γ = eφ((πR2ρ)−1)/(kBT ), where ρ is the ion concen-
tration inside the channel, so that (πR2ρ)−1 is the average distance between ions [12]. Let
us take R = 2 nm, so that Es ∼ 2.5kBT from eq. (2.4). An effective Coulomb potential
of magnitude ∼ 5kBT then extends around an ion over a distance ξ ∼ 10 nm. Therefore,
for concentrations above ρ = 10−2 M, Γ > 1 and correlations are expected to become
important.

Furthermore, the self-energy barrier that ions face upon entering a few-nanometre wide
channel significantly affects the ionic concentration inside the channel As an example,
consider a neutral channel in the absence of correlation effects: a barrier Es = 4kBT
reduces the ionic concentration by a factor eEs/(kBT ) = 100. We should also mention here
that when entering a channel smaller than its hydrated radius, an ion pays an additional
energy penalty due to the shedding of its hydration shell [84, 85]. For chloride, the total
hydration energy is as high as 155 kBT , but the hydrated radius is 0.4 nm, so that only
partial dehydration arises and only for the smallest pores. For pores larger than 1 nm,
we expect the self-energy to dominate the entrance barrier. We should mention that
the discussion so far has been restricted to monovalent ions. Interaction confinement
effects are amplified for ions of valence Z > 1: the self-energy, for example, scales as Z2.
This will be particularly important in Part II, where we will discuss confinement-induced
many-ion effects.

Finally, we have shown that ionic interactions in confinement strongly depend on the
electronic nature of the wall material: whether it is a metal, an insulator or something
in between. This suggests a more general definition of interaction confinement: it is the
regime where fluid transport properties depend on the channel wall material. Granted
this definition, the quantum friction phenomenon described in Part III also appears as
a consequence of interaction confinement as it involves the coupling of interfacial water
dynamics to the electron dynamics in the channel wall.

2.7 The big picture

Interaction confinement means that the presence of a confining wall not only
affects a particle’s translational degrees of freedom, but also its interactions. Ions in
few-nanometre-wide channels experience interaction confinement due to the dielectric
contrast between water and the channel wall material. As a result, ionic interactions
are enhanced in confinement compared to the bulk, leading to correlation effects that
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will be discussed in Part II. These interactions strongly depend on the electronic
properties of the channel wall. The effect of confining wall electronic properties on
interfacial water dynamics will be discussed in Part III of this thesis.
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Part II

Many-ion effects
in interaction confinement
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Chapter3

Ionic Coulomb blockade as a
fractional Wien effect
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Recent advances in nanofluidics have allowed exploration of ion transport down to
molecular scale confinement [15,24,31], yet artificial porins are still far from reaching
the advanced functionalities of biological ion machinery, such as high selectivity, ionic
pumping, and electrical and mechanical gating [86–88]. Part II of this thesis explores
confinement-induced ionic correlations as a route towards such functionalities. In
the present Chapter, we focus on the phenomenon of ionic Coulomb blockade – the
ionic analogue of electronic Coulomb blockade (CB) – which amounts to single-ion
transport that is tuneable by an external gate. Signatures of ionic CB has been ob-
served indirectly in experiments [31,89,90] and simulations [91–94], but a theoretical
understanding beyond the electronic analogy [95] is still lacking. Here, we show that
interaction confinement in a charged nanochannel results in many-body correlated
dynamics, which produce quantised and strongly non-linear ionic transport, in full
agreement with molecular simulations. We find that ionic CB occurs when, upon
sufficient confinement, oppositely charged ions form ’Bjerrum pairs’, and the con-
duction proceeds through a mechanism reminiscent of Onsager’s Wien effect. Our
findings open the way to novel nanofluidic functionalities, such as an ionic-CB-based
ion pump inspired by its electronic counterpart.

This Chapter is based on the following publication: N. Kavokine, S. Marbach, A. Siria
and L. Bocquet, "Ionic Coulomb blockade as a fractional Wien effect". Nat. Nanotech.
14, 573–578 (2019).
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3.1. General context
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Figure 3.1

a. Sketch of an ionic Coulomb blockade configuration: an electrolyte is confined to a gated
nanochannel. The tuneable surface charge Q is equivalent to a voltage applied to the gating
electrode which is capacitively coupled to the channel. b. Schematic of the corresponding
one-dimensional model. Due to confinement, ions interact through 1D-like Coulomb potentials.

3.1 General context

Coulomb blockade is a well-known condensed-matter phenomenon that is typically ob-
served in a single electron transistor: under fixed bias, the current between source and
drain peaks at quantised values of the gating voltage [96]. The origins of this effect stem
from the many-body Coulomb interactions between the electrons and from the discrete-
ness of the charge carriers [95]. Similar physical ingredients are at play in a nanoscale
channel filled with a salt solution (figure 3.1): ions also interact via Coulomb forces, and a
variable surface charge on the channel walls can play the role of the gating voltage. While
ionic interactions in solutions are typically weaker than the thermal energy, they become
much stronger in nanoscale channels due to interaction confinement, as discussed in Chap-
ter 2. One may therefore expect to observe an “ionic Coulomb blockade”, namely peaks
in the ionic conductance of a nanochannel at quantised values of its surface charge. It is
thus of interest that molecular dynamics simulations [91–94] and experiments [89,90,97]
have shown what might be indirect signatures of ionic CB (though in the absence of a
gating voltage), and conductance gating by a surface charge has been demonstrated in
simulations of a biological ion channel model [98]. These observations remain surprising
since ionic systems in water at room temperature have specific features contrasting with
electronic systems which may preclude the occurrence of ionic CB. Beyond the absence
of quantum effects, the fact that ions are of both signs – while electrons are only negative
– results in Debye screening, which is expected to drastically weaken the many body
interaction; it remains unclear under which conditions these aspects may suppress ionic
transport quantisation.

Although pioneering analytical efforts have translated the results established for elec-
trons [95] to the ionic case [98–100], a general theory for ionic CB, incorporating the
unique features of ionic systems in contrast to their electronic counterparts, is still lack-
ing. Developing such a theory is challenging, since it clearly requires to go beyond the
mean-field PNP framework. The existing methods for doing so are largely restricted to
equilibrium systems. There have been proposals of a field theory framework that for-
mally takes all correlations into account in arbitrary geometry [101, 102], and that can
deal with dielectric discontinuities, but applications have been restricted to a Debye-
Hückel-type approximation for the electrolyte free energy [103]. Bazant, Storey and
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3.2. Model definition and numerical results

Kornyshev [104,105] have proposed to introduce a term proportional to the Laplacian of
the potential squared in the electrolyte free energy. The approach has been successful in
understanding overscreening and crowding phenomena, but remains phenomenological.
A method for dealing with strong correlations has been proposed by Levin [106], who in-
corporated ion pairs as a separate chemical species, but this approach runs into difficulties
at high ionic concentrations where an ion pair becomes ill-defined. Finally, in the specific
case of a one-dimensional nanotube geometry, an interacting electrolyte may be mapped
onto an exactly solvable model [80, 107–109]. Recently, a general analogy between the
statistical mechanics of 1D electrolytes and non-Hermitian quantum mechanics has been
proposed [110].

In this Chapter, we build on the exactly solvable model approach to describe an elec-
trolyte inside a gated nanochannel. We then extend the theory to the out-of-equilibrium
regime, where it successfully accounts for the ionic CB phenomenon.

3.2 Model definition and numerical results

Our theory is based on a simple but general model of a nanochannel which confines ions
in one dimension (figure 3.1a). The channel has radius R and length L� R, as opposed
to nanopores of length L ∼ R. It is filled with water, which under confinement exhibits a
priori an anisotropic dielectric permittivity ε [73,76], and it is embedded in a membrane
with low permittivity εm (whenever needed, we use εm = 2). Under such conditions (see
figure 3.1b), the electric field lines produced by an ion stay confined inside the channel
over a characteristic length ξ, as discussed in Chapter 2. This leads to a stronger Coulomb
interaction than in the bulk solution, which is well described by the exponential potential

V (x) = kBT
ξ

xT
e−|x|/ξ. (3.1)

This introduces a thermal length xT [109], which is the typical distance between two
opposite charges confined in the channel. We detail in Appendix A.1 how the parameters
ξ and xT are related to the channel geometry and to the various dielectric constants.
If the permittivity of confined water is assumed to be the same as in the bulk, one has
ξ ≈ 7R and xT = R2/2`B , where `B = 0.7 nm is the Bjerrum length in bulk water. We
shall use these relations in the following, keeping in mind that taking into account the
anisotropic permittivity would result in a stronger interaction for a given confinement.

A charge is imposed on the confining surface and acts as a gate on the system; here we
reduce the surface charge to a point-like charge Q. The ions interact between themselves
and with the surface charge through the potential given in eq. (C.34); depending on
conditions, an electric field E may be applied along the channel.

Before developing an analytical theory, we confirm using (grand canonical) brownian
dynamics simulations [111] that our simplified model displays the ionic CB phenomenol-
ogy. Details of the simulations are given in Appendix F.1.1: the measured quantities are
the ionic current and the neutralising charge N(Q), defined as the total positive charge
that screens the negative charge Q. Figures 3.2a and 3.2b show typical simulation re-
sults. Remarkably, we do observe signatures of ionic CB: namely, the neutralising charge
N(Q) is “quantised”, as it increases in discrete steps as a function of Q – this can be
considered an equilibrium signature of ionic CB –, and under an external electric field,
the current peaks at discrete values of Q. We thus recover the same phenomenology as
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Figure 3.2

Brownian dynamics simulations of ionic CB. a. The ionic current through the channel, at fixed
applied electric field (E = 1 kBT/e/nm), show peaks at discrete values of the surface charge. b.
The neutralising charge N(Q) – the total positive charge that screens the negative surface charge
– increases in steps as a function of Q. The dashed line shows the mean-field prediction obtained
from the equilibrium solution of the PNP equations, which is in complete disagreement with the
simulations. c. Ionic current as a function of the applied electric field at fixed surface charge
(Q = −1.7). A strongly non-linear behaviour is observed. The parameters are xT = 0.09 nm,
ξ = 3.5 nm, and salt concentration ρ0 = 0.44 M. Error bars represent the standard deviation of
the mean.
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3.3. Fractional Wien effect theory

in simulations of nanopores [98], although in our general setting we do not assume elec-
trostatic coupling between the channel entrances and the surface charge. Furthermore,
our simulations reveal a very non-linear current-voltage characteristic (figure 3.2c), with
the conductance at low voltages being suppressed with respect to the one expected from
Ohm’s law. Interestingly, the I−V characteristic for our ionic CB system differs from its
electronic counterpart, where several steps in current versus applied voltage are observed
before reaching Ohm’s law [96].

3.3 Fractional Wien effect theory

We now develop an analytical theory in order to understand this counterintuitive be-
haviour. The vision of Coulomb blockade in terms of energy barriers which has been
developed for electrons in quantum dots [95], and adapted to ions in nanopores [98]
cannot apply here as we consider a 1D nanochannel of arbitrary length. Moreover, the
phenomenon at stake is clearly out of reach for the mean-field PNP equations discussed
in Chapter 1. The PNP result for the neutralising charge is derived in Appendix C.1 and
is shown in figure 3.2b: a perfectly linear behaviour for N(Q) versus the surface charge
Q is obtained, in contrast to the simulation results. Thus, the theoretical description of
ionic CB requires to exactly solve the underlying many-body problem.

3.3.1 Equilibrium properties

To this end, we first compute the grand-canonical partition function of the confined
electrolyte in the presence of the gating charge Q and interacting with the pairwise
potential of eq. (C.34); the chemical potential is µ and the temperature T (we set kBT =
1). The system under consideration closely resembles a 1D Coulomb gas model, which
can be solved using a functional integral technique as in [107,112,113], which we extend to
incorporate an arbitrary gating charge density q(x). An exhaustive calculation reported
in Appendix C.1 yields the partition function as

Ξ =

∫
dφ0dφLe

−xT (φ2
0+φ2

L)/4ξP(φL, L|φ0), (3.2)

where the propagator P(φ, x|φ0) solves

∂P
∂x

=
1

xT

∂2P
∂φ2

+

(
iqφ− xT

4ξ2
φ2 +

2z

L
cosφ

)
P (3.3)

with initial condition P(φ, 0|φ0) = δ(φ− φ0), and z = eβµ the fugacity.
This result allows us to unveil the unconventional behaviour of the ionic system. As

a first indication, the equation of state of the confined ionic gas can be exactly derived in
the limit zT ≡ z xT /L � 1, corresponding to strong electrostatic interactions (with our
simulation settings, zT = 0.02), yielding

P =
1

2
ρkBT ×

(
1 +O(z2

T )
)
, (3.4)

where P is the pressure and ρ is the salt density (see Appendix C.1). Thus, when the
interactions are strong enough, the ionic gas of density ρ behaves as an ideal gas of
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Figure 3.3

Schematic representation of Onsager’s Wien effect and of the fractional Wien effect. Both corre-
spond to non-linearities in the current-voltage characteristic due to the electric field dependence
of the dissociation rate of ion pairs.

density ρ/2. Hence, in the channel, ions of opposite charge are actually bound together
in the form of Bjerrum pairs, as confirmed by direct observation in the simulations1.
The confined salt behaves accordingly as a weak electrolyte. We will now demonstrate
that this crucial characteristic, missed by mean-field theory, is the key to explaining both
the conductance gating and the strongly non-linear response under an electric field, as
highlighted in figure 3.2.

3.3.2 The Wien effect

Let us first sketch a qualitative picture. In a weak electrolyte, the conduction should
proceed through the second Wien effect, which was famously explained by Onsager [114,
115]. In Onsager’s picture, tightly bound ion pairs cannot move under the effect of an
electric field, and current can only flow when an ion pair dissociates (figure. 3.3). This
picture applies to our system, except for the presence of the gating charge Q, which acts
as a "defect” and affects the dissociation process of ion pairs. If Q is an integer, all the
ions are tightly bound at low enough E and the conductance is vanishing. Now if Q has
a fractional part, it still binds an integer number of ions, so that one of those ions may be
less strongly bound than the others (for example if a charge Q = −1.5 binds two positive
ions). This weakly bound ion may then dissociate from the surface charge under the effect
of the external electric field, resulting in non-zero conductance. This qualitative picture is
confirmed by direct observation in the simulations. Interestingly, once a pair dissociates,
conduction occurs via a Grotthus-like mechanism, with the free ion exchanging between
Bjerrum pairs. Altogether, the conduction is due to ions dissociating not from their
opposite charge counterparts, but from the fractional surface charge: we thus name this
new mechanism "fractional Wien effect".

In addition to the surface charge gating, the fractional Wien effect picture allows
us to understand the non-linear current voltage characteristics. Indeed, at low electric
fields, the conduction is due to the dissociation of fractional ion-surface charge pairs,
whose dissociation rate depends on the electric field, thus the conductance acquires an

1Movie available at https://www.nature.com/articles/s41565-019-0425-y
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Analytical theory for the Wien effect mechanism of ionic CB. a. Schematic setting for the study
of out-of-equilibrium Bjerrum pair dynamics. The main ingredient is the computation of the
mean escape time of an ion from the potential created by an effective charge q. b. Neutralising
charge N(Q) as a function of surface charge. c. Positive ion current, at fixed applied electric
field (E = 1 kBT/e/nm), as a function of surface charge. d. Current-voltage characteristic at
fixed surface charge, corresponding to a conductance peak (Q = −1.7). Inset: zoom on the small
applied electric field region. In panels b, c and d, dots are simulations results, while the solid
line is the theoretical prediction from eq. (3.8) and eq. (3.5). The Wien effect theory shows
quantitative agreement with simulations. Error bars represent the standard deviation of the
mean.

electric field dependence. But, at sufficiently high electric fields, the Bjerrum pairs that
are present in the bulk of the channel will also start dissociating, resulting in the standard
(“bulk”) Wien effect that was studied by Onsager. This results in another non-linearity in
the I−V curve, before a collapse onto Ohm’s law once all the pairs have been dissociated.

3.3.3 Out-of-equilibrium theory

We now develop an out-of-equilibrium framework to quantify the fractional Wien picture
that has emerged. As a first step, the exact solution (3.2) for the partition function Ξ
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3.3. Fractional Wien effect theory

allows to compute the probability of the system containing a fractional ion-surface charge
pair, or equivalently the average neutralising charge N(Q). In the limit of an infinite
channel and a point-like surface charge, we obtain N(Q) = −(xT /ξ)(∂ log Ξ/∂Q)−Q and
a lengthy calculation reported in Appendix C.1 yields an analytical expression, which can
be written in the form:

N(Q) =

∑
ij aiaj(j − i)e

− ξ
2xT

(Q−(i−j))2∑
ij aiaje

− ξ
2xT

(Q−(i−j))2
−Q. (3.5)

The coefficients ai are obtained as series expansions in zT ≡ z xT /L (a few terms are
sufficient in the limit of interest zT � 1). The prediction in eq. (3.5) is plotted in
figure 3.4b: it accounts for a quantised neutralising charge, and the agreement with
simulations is excellent. Assuming strong enough interactions, one may adopt a “two-
state” perspective: the surface charge Q may bind either bQc or bQc + 1 counterions
(b.c denoting the floor function); in the latter case, a fractional ion-surface charge pair is
formed. The probability of the system containing this weakly bound pair is accordingly
p(Q) = N(Q)− bQc.

In a second step, we study the out-of-equilibrium dynamics of a Bjerrum pair. We
consider a single ion bound to an effective charge q (see figure 3.4a). Its probability
distribution P (x, t) is governed by the Fokker-Planck equation

∂tP = D∂x (P∂x [−qV (x)− Ex]) +D∂2
xP, (3.6)

with D the diffusion coefficient, E the applied electric field and V (x) the pairwise inter-
action potential in eq. (C.34). Solving eq. (3.6) with an absorbing boundary condition
(see figure 3.4b) yields the mean escape time for the bound ion (see Appendix C.2 and
Ref. [116]):

τ(q, E) =
1

D

∫ +∞

−∞

∫ ξ log q
ExT

max(0,x)

eq(V (x)−V (y))+E(x−y)dydx. (3.7)

For a bulk ion pair the effective charge q is 1, and the average lifetime of the pair is
actually τ(1, E)/2 since both ions are mobile; for a fractional ion-surface charge pair,
q = Q − bQc. In Appendix C.2, we derive the relation between the lifetime of the ion
pairs and the number of free charge carriers. Combining this result with the probability
p(Q) of finding a weakly bound pair in the system yields an expression for the positive
ion current I+(E) accounting for both the fractional and the bulk Wien effect:

I+(E) = (N(Q)− bQc)IQ−bQc(E) + I+
bulk(E), (3.8)

with Iq(E) = (L/(DE) + τ(q, E))−1 and

I+
bulk(E) =

1

2τ(1, E)

(√
1 + 2ρDEτ(1, E)− 1

)
. (3.9)

These analytical predictions for the current (eq. (3.8)), are plotted in figure 3.4d-e: they
reproduce quantitatively the simulations results. Our result accounts both for the CB
oscillations – enhanced conductance at quantised values of surface charge – and for the
“blockade” of ionic transport in the form of the strongly nonlinear current voltage relation
at low applied field. The theory fully validates the fractional Wien mechanism, highlight-
ing that this effect originates in an interplay between many-body dynamics of ion pairs
and Coulomb gas statistics.
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3.4. Phase diagram

0.1

0.2

0.3

0.4

10010-2 10-110-3 101

0

Concentration     (M)

0.5 1
Paired fraction

+ -

+ -

0

0.3

0.6

0.9

St
ep

 s
te

ep
ne

ss

a

b

W
ea

k 
el

ec
tr

ol
yt

e

St
ro

ng
 

el
ec

tr
ol

yt
e

10-1 100 101 102

0.5

0.1

0.2

0.3

0.4

0

0.50

1

2

3
N

eu
tra

lis
in

g 
ch

ar
ge

 N
(Q

)

c = 0.1 M

c = 1 M

c = 3 M

Brownian dynamics
Theory

0 0.5 1 1.5 2 2.5 3
Surface charge Q (-e)

0

1

2

0

1

2

 charge- ++ -+

CB

No CB

Figure 3.5

Conditions for observation of ionic Coulomb blockade. a. Neutralising charge N(Q) as a function
of the surface charge Q, as obtained from brownian dynamics simulations (dots), and the full
theoretical prediction from eq. (3.5) (solid line), at different salt concentration values. CB steps
disappear as the salt concentration is increased. The parameters are chosen here as xT = 0.18 nm
and ξ = 7 nm. b. "Phase diagram" for Coulomb blockade. The colour scale shows, as an
assessment of the “strength” of ionic CB, the steepness of the steps in the neutralising charge
N(Q). It is defined as 1 − 1/maximum slope of a step and varies between 0 (no CB) to 1
(full CB). The axes correspond to the channel radius (in terms of the dimensionless quantity
xT /ξ = R2/2`Bξ) and to the dimensionless bulk salt concentration ρ0ξ

3. On the right panel,
the fraction of ion pairs in the channel is plotted as a function of xT /ξ, at bulk concentration
0.1 M. Ion pairing is a prerequisite for ionic Coulomb blockade, i.e. CB occurs when the salt
behaves as a weak electrolyte.

3.4 Phase diagram

Having now established a theoretical framework for ionic CB that is quantitatively vali-
dated against molecular simulations, we may use it to obtain insight into the conditions
under which one may expect ionic CB. Figure 3.5a shows the prediction for the neu-
tralising charge N(Q) at increasing salt concentration values: strikingly, the CB steps
disappear at high salt concentration as a result of Debye screening, again in full agree-
ment with simulations. This is a crucial specificity of our ionic system with respect to
its electronic counterpart. Going further, we build a phase diagram which displays the
parameter space where ionic CB occurs (that is where N(Q) versus Q displays steps),
in terms of dimensionless ion density and channel size, see figure 3.5b. Ionic CB indeed
disappears above a critical salt concentration for a given channel size (or xT ); Debye
screening thus does prevent Coulomb blockade, though only at rather high salt concen-
tration values (typically, more than 2 M for a 1 nm channel). Conversely, at a given salt
concentration, a small enough xT (strong enough interactions) is required for ionic CB to
occur. In the limit zT � 1, the slope of a step is given by (dN/dQ)max = ξ/(4xT )+O(z4

T )
(Appendix C.1). Therefore a necessary condition for observing steps is ξ/xT & 4, i.e. the
Coulomb interaction between two ions should be greater than ∼ 4 kBT . Concretely, this
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Coulomb-blockade-based ion pump. a. Schematic of the ion pump inspired by its electronic
counterpart; time dependence of the variable surface charges Qi(t). The 125 variable charges are
placed every 5 nm, and periodic boundary conditions are used. b. Positive ion current resulting
from the pump operation (with no applied electric field), at xT = 0.1 nm (CB regime), and
xT = 2 nm (no CB), as obtained from brownian dynamics, as a function of the pump amplitude
∆Q. The current is normalised by I(1 ion), which is the current resulting from one ion moving
at a velocity 5 nm/10 ns. Error bars represent the standard deviation of the mean.

corresponds to nanochannel sizes R . 3.5`B ∼ 2.5 nm for monovalent ions. For multiva-
lent ions with valency p, the Bjerrum length increases as p2 and this modifies accordingly
the condition on the channel size. Thus, our theory demonstrates that ionic CB can ac-
tually be expected in channels that are much larger than previously considered biological
nanopores [98] of radius R ∼ 0.3 nm. Finally, the right panel of figure 3.5b shows the
fraction of Bjerrum pairs as predicted by our theory (Appendix C.1): it decreases with
increasing xT , in line with the disappearance of CB steps, highlighting once more that
ionic CB and Bjerrum pairing are intimately related.

3.5 Ion pump

Our modelling of Coulomb blockade opens the way to the design of new functionalities in
nanofluidic systems. Beyond gated transport itself, one may also harness the control over
single ions allowed by CB to develop ion pumping functionalities. Single electron pumps
have been obtained by associating two CB devices in series, with their gate voltages os-
cillating out of phase [117]. Figure 3.6a shows an analogous ionic system, a nanochannel
with variable surface charges placed along its length. We confirm using brownian dy-
namics simulations that such a device is capable of pumping activity. Upon appropriate
modulation of the surface charges, and in the absence of applied electric field, there is
indeed transport of ions along the channel; the modulation amplitude ∆Q allows one to
precisely control the discrete number of ions being transported (figure 3.6b). But most
importantly, the simulations highlight that the pumping fully relies on the system op-
erating in the CB regime. Indeed, the pumping current is almost 0 at large xT (weak
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3.6. The big picture

interactions, no CB), while it is significant only at small xT (strong interactions, CB
regime; see inset of figure 3.6b). This proof-of-concept confirms the importance of ionic
CB as a building block for artificial devices mimicking biological functions; we leave for
future work the thorough investigation of such devices.

3.6 The big picture

In this Chapter, we have presented a first consequence of interaction confinement
on the ion transport in one-dimensional nanoscale channels. We predict that, if
gated by a variable surface charge, a few-nanometer-wide nanotube can exhibit ionic
Coulomb blockade : conduction is allowed only at discrete values of the surface
charge. This quantum-like behaviour is found to have in fact a completely physico-
chemical origin, in the confinement-induced ionic correlations. These lead to the
formation Bjerrum pairs, and non-linear conduction proceeding through Onsager’s
Wien effect. We have developed an analytical theory for one-dimensional electrolytes
that quantitatively accounts for ionic Coulomb blockade, which is based on the exact
solution of a Coulomb-gas-type model and an escape rate approach for the dynamics
of ion pairs. Ionic Coulomb blockade is a promising tool for manipulating electrolytes
at the single-ion level. The theoretical methods we propose are also more general,
and can be extended to a range of confined ionic systems, one of which is discussed
in the next Chapter.
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Hodgkin-Huxley iontronics
with two-dimensional nanofluidic memristors
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New energy-efficient architectures inspired by the brain are growing as an alter-
native to traditional von Neumann computing [118]. While existing hardware imple-
mentations use electrons as charge carriers, advances in nanofluidics have opened the
possibilities for ion-based computation [11], inspired by biological neurons. In this
Chapter, we show that interaction-confinement-induced correlations lead to neuro-
morphic behaviour in 2D electrolyes, such as those that were recently demonstrated in
subnanometric slits [15–17]. Using analytical theory, backed up by molecular dynam-
ics simulations, we demonstrate that under an electric field, ions in a nanoscale slit
assemble into micelle-like clusters, whose long-timescale dynamics result in a history-
dependent conductivity. We carry out molecular simulations of two such devices,
reproducing the Hodgkin-Huxley neuron model [119] with experimentally-accessible
biomimetic nanofluidic circuitry. The resulting system highlights spontaneous emis-
sion of voltage spikes trains, characteristic of neuromorphic activity.

This Chapter is based on the following publication: "Modelling of emergent mem-
ory and voltage spiking in ionic transport through angström-scale slits". P. Robin, N.
Kavokine and L. Bocquet, Science (2021).1

1The molecular simulations and analytical developments presented in this Chapter have been carried
out by Paul Robin, to whom I am deeply grateful for the collaboration on this project.
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4.1 General context

The brain activity relies on the transport of ion species to carry out complex compu-
tations [120, 121]. As ions come with various size, shape, valence and chemical prop-
erties, they are intrinsically more versatile than electrons. This offers manifold possi-
bilities for computational architectures beyond von Neumann’s. Notably, ionic systems
are best suited to implement parallel computing methods – which are crucial for energy
saving [122] – since they can encode information through the fluxes of many different
chemical species. Yet, biomimetic ion-based computing has not been achieved so far.
This points to the need of inventing and designing artificial iontronic devices with ad-
vanced functionalities [8], incorporating experimentally-accessible molecular channels as
ion conduits.

On the experimental side, considerable progress in the design of novel nanofluidic
devices has been achieved over the past decade (see Chapter 1), and a milestone has
been reached very recently, as confinement of an electrolyte down to a single molecular
layer was demonstrated and investigated experimentally [15–17, 68]. Extremely confined
systems are promising from a functional point of view, as they are most sensitive to the
discrete nature of ions, and are prone to exhibit exotic transport properties that could be
harnessed as building blocks of iontronic circuitry [46,68,123]. An example was given in
Chapter 3, where a gated one-dimensional channel was shown to exhibit ionic Coulomb
blockade.

In the present Chapter, we show that two-dimensional (2D) ion channels, such as the
angstrometric slits introduced in Refs. [15,16,68], behave as memristors (or memory resis-
tors) [124, 125], in that they exhibit a history-dependent conductivity. We further prove
that elementary circuitry incorporating two such channels allows reproducing ion-driven
voltage spiking characteristic of neuron activity [119]. This unconventional behaviour
takes its root in the interaction-confinement-induced correlations in the monolayer elec-
trolye, which cause the ions to self-associates into dense, linear clusters upon application
of an electric field. The slow dynamics of these large-scale structures are at the source
of the memory effect. In order to unveil these properties, we combine molecular dynam-
ics simulations of two-dimensional electrolytes (with both explicit and implicit solvent
and confining material, see figure 4.1 a and b), as well as analytical modelling beyond
the traditional Poisson-Nernst-Planck (PNP) equations. Our theory ultimately leads to
the design of elementary nanofluidic devices whose architecture and stimulated response
mimic those of biological neurons and that could be capable of carrying out prototypic
computations.

4.2 Monolayer electrolyte at equilibrium

4.2.1 Bjerrum pairing

We consider a monolayer of ions, molecularly confined in a subnanometric slit, see fig-
ure 4.1. As discussed in Chapter 2, in such strong planar confinement, ions experience
not only a reduction in translational freedom, but also stronger electrostatic interactions
whose nature is intermediate between that of 3D and 2D systems, which we term ‘2D+’
interactions.

We first investigate the equilibrium properties of such 2D electrolytes. Using all-atom
MD simulations, we consider aqueous solutions of various salts, such as NaCl, CaCl2 and
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4.2. Monolayer electrolyte at equilibrium

c.

h

b.

a.

E = 0

Figure 4.1

Modelling and simulation of a 2D electrolyte. a. Sketch of a 2D electrolyte. b. Sketch of
the quasi-2D Coulomb gas model, with 2D+ Coulomb interactions given by (4.1). The electric
field is confined in the channel over a length ξ due to dielectric contrast between water and the
channel wall. c. Typical configuration of a monolayer electrolyte as observed in all-atom MD
simulations. Sodium (in red) and chloride ions (in blue) form tightly bound Bjerrum pairs at
room temperature in slits of height h = 0.7 nm.

CaSO4, confined in a narrow slit of tunable spacing h = 0.7, 1.0 or 1.4 nm (amounting
to one, two and three water layers, respectively) made of two sheets of graphene or
hexagonal boron nitride (hBN). Details of the simulations are provided in Appendix F.2.
While these salts are known to be completely dissociated in bulk solutions, we find that
in monolayer confinement, they form tightly bound Bjerrum pairs (see figure 4.1c) – and
even triplets in the case of CaCl2. Even in two- or three-layer confinement, all salts
except NaCl still associate into pairs. Such pairing is consistent with the 2D+ confined
interactions discussed in Chapter 2. The interaction energy between tow ions i and j
may be expressed as

βVij(r) = −qiqj
T ∗

log
r

r + ξ
, (4.1)

where β is inverse temperature, qi,j = ±1 the charge sign and 1/T ∗ a dimensionless
coupling constant. The expressions of T ∗ and of the field escape length ξ are derived in
Chpater 2, notably in the experimentally relevant case where the dielectric permittivity
of confined water is anisotropic [73, 76]. In the case of a divalent salt in a slit of height
h = 0.7 nm at room temperature, we find typically T ∗ = 0.11 and ξ = 14 nm. The
corresponding Bjerrum length `B, defined by βV (`B) = 1, is 130 nm, which is much
larger than the Bjerrum length in bulk water (`B = 0.7 nm). Therefore, the interaction
potential in eq. (4.1) is much stronger than its bulk counterpart Vbulk(r) = e2/4πε0εwr;
this qualitatively explains the confinement-induced ion pairing. The coupling constant
1/T ∗ is also proportional to Z2/h, with Z the valence of ions, explaining why monovalent
ions only forms pairs in the thinnest slits.
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Phase diagram of a 2D electrolyte, obtained from brownian dynamics simulations. At reduced
temperature T ∗ = 0.25, the system undergoes a pairing phase transition, analogous to the
Kosterlitz-Thouless transition. The solid and dashed lines correspond to the mean-field predic-
tion for the transition temperature, for an exactly 2D (ξ =∞) and 2D+ (finite ξ) Coulomb gas,
respectively.

4.2.2 Kosterlitz-Thouless transition

In order to identify the range of effective temperatures and ionic concentrations in which
Bjerrum pairing occurs (figure 4.2), we performed implicit solvent brownian dynamics
(BD) simulations of a symmetric electrolyte interacting with the derived potential in
eq. (4.1). At short distance (r � ξ), our interaction potential is logarithmic, and re-
sembles a 2D Coulomb potential. The pairing transition in our monolayer electrolyte is
therefore almost described by a 2D Coulomb gas model [106, 126], and is analogous to
the Kosterlitz-Thouless (KT) topological phase transition [127]. However, the analogy is
not perfect since the interaction potential recovers a bulk 1/r behavior at large distances
r � ξ.

To account for these observations, we use a mean-field approach inspired by the Fuoss
theory of bulk electrolytes [128], in which ion pairs are incorporated as a separate species.
We are able to determine analytically the pairing transition temperature, both in the
ideal 2D and our 2D+ setting (figure 4.2), as detailed in Appendix D.2. Our analytical
computation reproduces quantitatively the BD simulations, and the ideal 2D description
turns out to be valid for all but the lowest salt concentrations. The ion pairing quasi-
KT phase transition appears as a specific feature of the monolayer electrolyte. In 1D
confinement there can be no phase transition [123], and in three dimensions, the ion-ion
interactions are usually not strong enough for pairing to occur at room temperature [106].
Here on the contrary, our model predicts a transition temperature T = 350 K for divalent
salts like CaSO4 in slits with h = 1.4 nm, or for CaCl2 with h = 0.7 nm.
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4.3 Non-linear dynamics

4.3.1 Polyelectrolytic Wien effect

Such strong ionic correlations at equilibrium are at the source of highly non-linear ion
transport, as illustrated by the current-voltage characteristics obtained from MD simula-
tions (figure 4.3). This non-linearity reveals that conduction proceeds in fact through the
breaking of ion pairs. Consistently, a non-linear response is observed for CaSO4, which is
paired at equilibrium, unlike NaCl which does not form pairs in the considered conditions
(figure 4.3).

This type of ion transport is known as the second Wien effect, which we have already
encountered in the study of ionic Coulomb blockade. In contrast to the 1D case where
the Wien effect was successfully described within an escape rate formalism, the present
2D+ geometry is best suited for an approach based on Onsager’s original theory [114].
We consider a chemical equilibrium between pairs and “free" ions of the form NaCl �
Na+ + Cl− (see figure 4.3). Assuming pairs dissociate with a timescale τd and free ions
assemble into pairs with a timescale τa, we obtain an evolution equation for the fraction
nf of free ions not engaged in a pair:

ṅf =
1− nf
τd

−
n2
f

τa
. (4.2)

While computing the dependence of τd on the parameters is usually a mathematical
challenge, we were able to reduce it to self-similar problem in the particular case of 2D+

confined electrolytes, as detailed in Appendix D.3, yielding:

τa =
T ∗

4πDρ
, (4.3)

τd =
r2
0

2D

(
lE
r0

)1/T∗

, (4.4)

where the lengthscale lE = kBT/ZeE describes the strength of the external field with
respect to thermal fluctuations, D is the diffusion coefficient and r0 is the ion radius.
Because this model considers no interactions between ion pairs, we refer to it as the
isolated pair (IP) model. When the steady state is reached, equation (4.2) can be solved
and the ionic current reads:

I = N
2ZeD

kBTL
E
τa
2τd

(√
1 +

2τd
τa
− 1

)
∝
E→0

EaIP (T∗), (4.5)

with L the channel length and aIP (T ∗) = 1+1/2T ∗ the I-V curve exponent at low applied
voltage. Surprisingly, this prediction fails to reproduce simulation results, even at very
low concentrations, see figure 4.3b (solid yellow line).

The all-atom MD simulations provide some hints to understand this discrepancy. As
shown in figure 4.3c, under an external electric field, ion pairs do not actually break
but instead rearrange into gigantic clusters with chemistry-specific size and topology (see
figure F.4 and Appendix F.2). These clusters, which we term “Bjerrum polyelectrolytes",
lead to a radically new phenomenology. The formation of macrostructures indicates that
ion pairs cannot be treated independently, and therefore the Wien effect dynamics are
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Figure 4.3

Analytical theory of the polyelectrolytic Wien (PEW) effect. a. Schematic representation
of Onsager’s Wien effect for an isolated ion pair: free ions have a lifetime of order τa during
which they contribute to conduction, before assembling into pairs (upper panel). Pairs typically
break up after a time τd, and do not take part in conduction (lower panel). b. Current-voltage
characteristic of a generic divalent salt. Taking into account the formation of polyelectrolytes
significantly improves the agreement with simulations (blue line, see (4.6) and (4.7)) compared
the isolated pair model (yellow line, see (4.4)), for an ionic concentration ρ = 10−3 atom/nm2.
c. Molecular dynamics snapshot showing the formation of Bjerrum polyelectrolytes. The salt is
CaSO4; calcium ion are in green and sulphate ions in black. d. Current-voltage characteristic of
CaSO4 in a 1 nm slit as obtained from all-atom simulations, compared to the power law I ∝ Ea
of the PEW effect theory, with the predicted exponent a = aPEW = 2.6. Sodium chloride does
not form pairs in slits of that height, and exhibits a linear response.
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4.3. Non-linear dynamics

fundamentally different from Onsager’s picture. Going beyond the IP model essentially
amounts to accounting for Debye screening, characterised by the Debye length λD =√

T∗

ρnf
. Since under a (low) electric field E, the free ions density is nf ∼ τ−1/2

d ∝ l−1/2T∗

E ,

then λD ∝ l1/4T
∗

E sets the size of the screening cloud around a given ion. Yet, two ions are
carried away from each other if they are separated by a distance exceeding lE/T ∗ ∝ lE
in the direction of the field, say x. For sufficiently low temperature (or sufficiently large
field), λD > lE and the ionic atmosphere becomes anisotropic: it extends over lE in the
direction x and over λD in the perpendicular direction y. We show in Appendix D.3
that such an anisotropic screening cloud becomes unstable in the direction y above a
critical electric field, explaining the formation of Bjerrum polyelectrolytes. In terms of
the dynamics, this amounts to modifying the scaling exponent of the pair dissociation
time according to (see Appendix D.3):

τd =
r2
0

2D

(
lE
r0

)1/2T∗

. (4.6)

As per eq. (4.5), this results in a new exponent for the current versus voltage scaling:

I ∝
E→0

EaPEW (T∗), aPEW (T ∗) = 1 + 1/4T ∗. (4.7)

We term this new mechanism the polyelectrolytic Wien (PEW) effect, since conduction
actually occurs inside the Bjerrum polyelectrolytes. In figure 4.3b, we show that the PEW
prediction is in quantitative agreement with BD simulation results, in contrast to the
isolated pair model. We also compare it to results from all-atom simulations for CaSO4

in figure 4.3d to demonstrate its robustness: the dynamics of the ionic assemblies are
independent of the chemical nature of the salt and the confining medium or of simulation
details (see figure F.4). Their formation is a direct consequence of 2D confinement.

4.3.2 Ionic memristor

The non-linear transport phenomena unveiled above set the stage for the memristor effect.
The number of free ions in the system is expected to behave as an internal variable, which
keeps memory of the voltage history. More formally, Eqs. (4.2) and (4.5) can be recast
in the more transparent form, introducing the voltage U :

I = G(nf )× U, (4.8)
∂

∂t
nf = f(nf , U) (4.9)

The fraction of conducting free ions, nf , appears here indeed as an internal state variable.
Furthermore, from the previous analysis, the relevant timescale governing the system’s
dynamics – τa – is much longer than usual molecular timescales, with typically τa ∼ 1 µs.
This points to potential memory effects in the system. Altogether, eqs. (4.8-4.9) formally
define a voltage-controlled memristor, an electronic device whose resistance depends on
its past [124,125].

A further proof and hallmark of the memristor behaviour is shown in figure 4.4a, as the
I-V characteristic under alternating voltage takes the form of a pinched loop for frequen-
cies larger than a threshold fp. The timescale τp = 1/fp is found to decrease with ionic
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Time-dependent regime and memristor effect. a. “Pinched" current-voltage characteristic at
high frequency (here f = 10fC = 1.6 MHz and T ∗ = 0.11), typical of memristive devices.
Here, the IP model (yellow line, equations (4.2) and (4.4)) provides a better prediction than the
PEW effect model (blue line, equations (4.2) and (4.6)), showing that Bjerrum polyelectrolytes
are unstable at high frequency. b. Temperature-frequency diagram summarizing the existence
domains of Bjerrum pairs and polyelectrolytes, for a generic salt with r0 = 1Å, D = 10−9 m2 s−1

and ionic concentration ρ ∼ 10−3 at/nm2.

concentration ρ, and we interpret it as a formation timescale of Bjerrum polyelectrolytes.
Qualitatively, as conduction occurs through the slow formation of macrostructures, the
system cannot adapt to the instantaneous value of the electric field: once the polyelec-
trolytes are formed, they contribute to conduction even if the field is turned off, before
eventually dissolving. Going further, we compare the BD simulation results with our Wien
effect theory to gain insight into the underlying physics of the memristor behaviour. We
find that below a frequency fC (here fC = 160 kHz) the simulated I-V curves are well re-
produced by the PEW model, while for f > fC , quantitative agreement is observed with
the IP model, see figure 4.4b and figure F.4. This is consistent with the observation that
at high frequencies, polyelectrolytes do not have time to form and conduction proceeds
through the breaking of individual pairs. The threshold frequency fC = 160 kHz is found
to be remarkably independent of concentration and is therefore related to the dynamics
of individual Bjerrum polyelectrolytes.

While in our simulations the frequency of the alternating field is high due to numerical
constraints, our model predicts that it should also be relevant in a realistic experimental
setting. We show in Appendix D.4 that a memristor effect may be observed at experi-
mentally relevant frequencies f ∼ 100 Hz and voltages U ∼ 0.1 V (see figure F.4). Overall
a key finding of our work is therefore that an ionic memristor can be realized using 2D+

electrolytes confined in molecular channels. The memory effect is driven by Bjerrum pairs
and polyelectrolytes, which form in all salts regardless of their chemical nature. There-
fore, the memristor effect, described by equations (4.8) and (4.9), is a universal property
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Figure 4.5

Building an artificial Hodgkin-Huxley neuron from 2D ionic memristors. a. Electronic rep-
resentation of the Hodgkin-Huxley model, adapted from [119]. b. Prototype ionic machine
implemented in BD simulations, exhibiting primitive neuronal behaviour. Two slits with differ-
ent ionic concentrations are simulated over long timescales (t ∼ 1 ms). Each slit is connected to
a pair of reservoirs, imposing a given Nernst potential on the slit, as in the original computation
by Hodgkin and Huxley. c. Spontaneous voltage spikes emitted by the prototype ionic machine,
and qualitative explanation for the observed spiking effect.

of 2D electrolytes. We also find that optimal conditions correspond to a divalent salt
with a slit height close to 1 nm, with other parameters such as the chemical structure of
ions or of the confining material playing little role.

4.4 Hodgkin-Huxley neuron

We now make use of the fact that memristors are the electric equivalents of voltage-
gated ion channels. As such, they may serve as components of a primitive neuron, as
first pointed out by Hodgkin and Huxley [119] (figure 4.5a). Hence, it is expected that
assembling several nanofluidic memristors should allow to mimic neuromorphic behavior.
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4.5. The big picture

To demonstrate this possibility, we perform parallel BD simulations of two monolayer
electrolytes confined in two separate molecular channels, see figure 4.5b). For both elec-
trolytes, the simulation yields the instantaneous relation between the applied voltage and
resulting ionic current. A numeric circuitry is designed around the simulated molecular
systems in order to reproduce the Hodgkin-Huxley model, see figure 4.5a. This includes
a capacitor, and opposite sign potentials applied on each channel that account for the
Nernst potentials. Altogether the circuit responds live to the MD-simulated conductance
of the nanofluidic channels. Further details of the simulations are given in Appendix D.5.
The outcome of these molecular simulations is shown in figure 4.5c: we observe spon-
taneous voltage spikes at a frequency around 10 kHz. These spikes are the hallmark of
neuromorphic behaviour, obtained here from the sole properties of monolayer electrolytes.

The qualitative mechanism behind the generation of the spikes can be understood as
follows. Since the two electrolytes are subject to (Nernst) potentials of opposite signs,
they conduct current in opposite directions, but they are gated by the same voltage U .
When U is small, only the discharging memristor is conducting, so that the capacitor
receives a current IC < I and slowly charges. When U reaches a threshold value, the
charging memristor starts conducting and the capacitor receives IC � I, causing the
voltage to spike up to U ∼ VCharge. Then, the discharging memristor takes over: the
capacitor receives a strongly negative current, and its voltage is lowered back to 0, at
which point the process can start again (see figure 4.5c). This whole process is analogous
to voltage spiking in biological neurons caused by the successive opening and closing of
ion channels (sodium and potassium channels in the case of the Hodgkin-Huxley model of
the giant squid axon). The observed working frequency of a few kilohertz is, considering
the set of parameters used in simulations, just above the threshold frequency for the
memristor effect, which is therefore crucial for observing the neuromorphic behaviour.

4.5 The big picture

Two-dimensional electrolytes inside sub-nanometric slits are today an experi-
mentally accessible nanofluidic system, where very strong interaction confinement is
achieved. In this Chapter, thanks to a combination of analytical theory and molec-
ular dynamics simulations, we have predicted that confinement-induced correlations
result in very peculiar ion transport in such systems.

• The ionic interactions in 2D confinement are so strong that oppositely charged
ions form tightly bound Bjerrum pairs.

• Upon application of a constant electric field, the system undergoes a dynamical
phase transition and ion pairs assemble into dense clusters, which we term
"Bjerrum polyelectrolyes". We develop a specific theory to describe conduction
in these clusters.

• The slow dynamics of Bjerrum polyelectrolytes result in the system behaving
as a memristor: a circuit component whose resistance depends on its past.

• The memristor effect can be harnessed to build elementary computational ar-
chitectures with nanofluidic systems. As a proof-of-concept, we simulate two
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coupled 2D electrolytes associated in a Hodgkin-Huxley cell, and show that
these exhibit spontaneous voltage spikes, characteristic of neuromorphic activ-
ity.

The effects we predict are strongest with a divalent salt such as CaSO4, in 7 −
10 Å confinement. Taken together, they open a promising avenue for bio-inspired
computing based on nanoscale ion transport.
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Part III

Many-body physics
of the solid-liquid interface
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Chapter5

Quantum friction
in nanoscale water flows
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The peculiar flow of water in carbon nanochannels has defied understanding thus
far [8], with accumulating experimental evidence for ultra-low friction, exception-
ally high water flow rates, and curvature-dependent hydrodynamic slippage [19–25].
These unique properties have raised considerable interest in carbon-based membranes
for desalination, molecular sieving and energy harvesting [129–131]. However, the
underlying mechanism for the bizarre water-carbon friction remains a critical knowl-
edge gap [26], with neither current theories [132], nor classical [133–136] or ab initio
molecular dynamics simulations [137] providing satisfactory rationalisation for this
singular behaviour. In this Chapter, we develop a quantum microscopic theory of
the solid-liquid interface, which explicitly takes into account the electronic degrees
of freedom of the solid through a non-equilibrium field theory framework. Our the-
ory reveals a new contribution to friction, which is due to the coupling of charge
fluctuations in the liquid to electronic excitations in the solid. We expect that this
quantum friction, which cannot be accounted for by Born-Oppenheimer molecular
dynamics, is the dominant friction mechanism for water on carbon-based materials.
We demonstrate a strong difference in quantum friction between the water-graphene
and water-graphite interface, due to the coupling of water Debye collective modes
with a thermally excited interlayer plasmon specific to graphite. This suggests an
explanation for the radius-dependent slippage of water in carbon nanotubes [23], in
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terms of the nanotubes’ surface electronic excitations. Our findings open the way
to quantum engineering of hydrodynamic flows through the confining wall electronic
properties.

This Chapter is based on the following publication: "Fluctuation-induced quantum
friction in nanoscale water flows". N. Kavokine, A. Robert, M.-L. Bocquet and L. Boc-
quet. arXiv:2105:03413, under review (2021).1

5.1 General context

The flow rate of water through a macroscopic channel is determined solely by the channel’s
geometry. This is no longer true at the nanoscale, where the amount of friction between
water and channel wall strongly affects the channel’s permeability [138], as discussed in
Chapter 1. Despite the importance of maximising flow slippage for practical applications
such as filtration, understanding liquid friction on solid surfaces has remained a key
fundamental challenge in fluid dynamics [26], with the water-carbon interface presenting
a particularly puzzling picture [8]. Water was indeed found to exhibit very strong slippage
– that is, low friction – in carbon nanotubes (CNTs) [19,20], with the slippage increasing
with decreasing tube radius [23]. On the other hand, water slippage is vanishing inside the
structurally similar, but electronically different, boron nitride nanotubes (BNNTs) [23],
and only moderate water slippage has been reported on flat graphite surfaces [48].

These observations challenge the current theoretical understanding of the solid-liquid
interface, which is based on picturing the solid as a static external potential that acts on
the fluid molecules. The starting point of existing theoretical approaches is typically the
Green-Kubo relation for the solid-liquid friction coefficient [139–141]:

λ =
1

AkBT

∫ +∞

0

〈Fx(t)Fx(0)〉, (5.1)

where Fx(t) is the total force that the static solid exerts on the liquid at time t of
equilibrium dynamics, and A is the surface area. The force-force correlation function
cannot in general be computed analytically, though it can be extracted from molecular
dynamics simulations [135,137]. Most numerical evaluations of slippage are indeed based
on equilibrium simulations and the use of eq. (5.1). The essence of these numerical results
may be captured by a simple scaling estimate, which was established in [139]:

λ ∼ nsw
Sw(q0)

DkBT
|Vq0 |2. (5.2)

Here nsw is the liquid density in the interfacial layer, Vq0 is the interaction energy between
this layer and the solid, and Sw(q0) is the structure factor of the liquid in the direction
parallel to the interface.

The dissipation therefore appears to be determined by the interaction energy between
the interfacial fluid layer and the solid, and by the commensurability of its molecular
structure with the solid’s periodic potential. Friction is then expected to be lower on

1The molecular dynamics simulations presented in this Chapter have been carried out by A. Robert
and M.-L. Bocquet, to whom I am grateful for their collaboration on this project.
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Quantum friction at the solid-liquid interface. a. Artist’s view of the quantum friction
phenomenon: water charge fluctuations couple to electronic excitations within the solid surface.
b. Average electronic density, as obtained from density functional calculations (Appendix F.3.4,
at the water-graphene interface.

surfaces that are weakly interacting with the liquid, hence more hydrophobic, consis-
tently with a number of experiments and simulations [12, 142]. However, this classical
approach involves a high degree of arbitrariness through the choice of the molecular force
fields [143], leading, for instance, to a three order of magnitude spread in the reported
molecular dynamics (MD) simulation results for the water friction coefficient inside sub-10
nm CNTs [134, 135, 144]. Moreover, it simply fails to account for experimental observa-
tions : in particular, the radius-dependence of friction observed for relatively large (60 nm
diameter) CNTs [23], or the vast difference with BNNTs.

All this suggests that some key ingredients are missing from the current understand-
ing of the solid-liquid interface, which might include quantum effects in nanoscale fluid
dynamics. A few simulation studies have made pioneering attempts at taking into ac-
count electronic degrees of freedom at the solid-water interface, through polarisable force
fields [145] or ab initio molecular dynamics (AIMD) [137,146] in the Born-Oppenheimer
approximation. While the latter point to some difference in water friction between
graphene and boron nitride surfaces, such simulations are still insufficient to account
for the whole experimental picture. In this Chapter, we introduce a theoretical descrip-
tion of the solid-liquid interface that fully accounts for the quantum dynamics of the solid
electrons. This description reveals an analogue of interaction confinement at the solid-
liquid interface, as the interfacial water dynamics appear sensitive to the confining wall’s
electronic properties. We predict that quantum effects do contribute to the solid-liquid
friction, with the water-carbon interface being unique in many respects.
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5.2. Model definition

5.2 Model definition

We consider a flat solid-liquid interface lying in the (x, y) plane, as depicted in figure 5.1.
We are interested in the solid-liquid friction force, which is the total force F that the solid
exerts on the liquid in the direction parallel to the interface. It vanishes in the absence of
liquid flow, while in the presence of flow it is proportional to the interfacial fluid velocity:

F/A = −λv, (5.3)

where A is the area of the interface and λ is the solid-liquid friction coefficient. Equiv-
alently, we will also consider the hydrodynamic slip length defined as b = η/λ, where
η is the fluid viscosity. The solid interacts with the liquid through long range Coulomb
forces, which result in van der Waals attraction at long range, and through short-range
Pauli repulsion forces, which prevent the solid and the liquid from interpenetrating each
other. In the framework of classical molecular dynamics, these are modelled in terms of
a semi-empirical Lennard-Jones potential, with ad hoc molecular parameters. Our aim
here is to relax this assumption and explicitly take into account the Coulomb interactions
and the dynamics of the solid electrons.

5.3 Single particle friction

In order to introduce the theoretical framework, we first consider a single point charge e
moving at a height h above the solid surface. As electronic degrees of freedom are taken
into account, a polarisation charge arises within the solid. Dissipation then occurs in the
dynamics of this polarisation charge [147].

We use cylindrical coordinates r = (ρ, z), with the charge initially at r0 = (0, h). It
generates at every point r a Coulomb potential V (r− r0), with

V (r) =
e2

4πε0‖r‖
. (5.4)

If the charge now moves at velocity v, the Coulomb potential becomes time-dependent:
V (r, t) = V (r − (r0 + vt)). In the framework of linear response theory, the polarisation
charge δn(r, t) is given by

δn(r, t) =

∫ +∞

−∞
dt′
∫

dr′χe(r, r′, t− t′)V (r′, t′). (5.5)

This defines the density response function χe of the solid. The polarisation charge gener-
ates a Coulomb potential that acts back on the external charge. The corresponding force
reads

f(t) = −
∫ +∞

−∞
dt′
∫

drdr′∇r0V (r0 + vt− r)χe(r, r′, t− t′)V (r′ − r0 − vt′). (5.6)

We assume that the solid is translationally invariant parallel to the surface, and consider
only the in-plane component of the force. Then, χe(r, r′) depends only on (ρ− ρ′, z, z′),
and we may carry out Fourier transforms with respect to the in-plane coordinate ρ:

f(t) = −
∫

dq

(2π)2
(iq)

∫ 0

−∞
dzdz′Vq(z + h)Vq(z

′ + h)

∫ +∞

−∞
dt′eiqv(t−t′)χe(q, z, z′, t− t′),

(5.7)
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with

Vq(z) =
e2

4πε0

2π

q
e−q|z| (5.8)

the 2D Fourier transform of the Coulomb potential. Identifying the Fourier transform of
χe with respect to time, we obtain

f =
e2

8π2ε0

∫
dq

iq

q
e−2qh

[
−e2

2ε0q

∫ 0

−∞
dzdz′ eq(z+z

′)χe(q, z, z′, ω = qv)

]
. (5.9)

The expression in brackets defines the solid’s surface response function ge(q, ω = qv).
Physically, ge(q, ω) relates the external potential applied to the solid in the half-space
z < 0 to the induced potential in the half-space z > 0. If the external potential is
an evanescent plane wave of the form Vext = V0e

i(qr−ωt)eqz, the induced potential is
Vind = V0ge(q, ω)ei(qr−ωt)e−qz (see detailed discussion in Appendix B). Using the prop-
erty ge(q,−ω) = ge(q, ω)∗, we finally obtain that the moving charge is subject to a friction
force that reads

f =
−e2

8π2ε0

∫
d2q

q

q
e−2qh Im ge(q,q · v), (5.10)

generalising the bulk result [148, 149] to interfacial friction. eq. (5.10) accounts for elec-
tronic friction, that is, friction through the generation of electronic excitations within the
solid. This phenomenon has been invoked in various situations where classical nuclear
degrees of freedom are coupled to an electron bath [150–154].

The mechanism outlined here for a single charged particle should in principle apply as
well to a dense polar liquid such as water. An electronic contribution to hydrodynamic
friction, given by the sum of electronic friction forces on each water molecule, was indeed
proposed in [155,156] to account for the radius-dependent slippage in carbon nanotubes,
but the prediction disagreed with experiments by orders of magnitude. The pitfall in
these estimates lies in the wrong treatment of the collective excitations of the fluid,
which cannot be accounted for by a sum of individual contributions.

5.4 From particles to modes

5.4.1 General theory

We are hence required to go beyond the single-particle picture. As a first step, we formally
express the dissipation resulting from water flow on a solid wall in terms of the system’s
many-body dynamics. To do so, we build on the general framework of fluctuation-induced
forces [157, 158], which is specifically extended to account for a solid-liquid instead of a
solid-solid interface. In particular, we implement a fully non-local and non-equilibrium
treatment through the Schwinger-Keldysh framework of perturbation theory [159,160].

Let us assume for concreteness that the liquid is water. We focus on the force due to
the long range Coulomb interaction between the water molecules and the solid electrons,
noting that we could consider the Coulomb interactions between water and the crystal
lattice in a similar way. Since the dynamics of the electrons are quantum, the friction
force is represented by an operator F̂, whose average value at time t is

〈F̂(t)〉 = −
∫

dr dr′∇r′V (r− r′)〈nw(r′, t)n̂e(r, t)〉. (5.11)
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Here V is the Coulomb potential, nw is the instantaneous charge density of water, and n̂e
is the electron density operator. The average is over all thermal and quantum fluctuations
of the system. While the dynamics of water are well described within classical mechanics
even at the molecular scale, the electron dynamics are intrinsically quantum. Hence,
in order to maintain a consistent formalism, we treat the water dynamics in formally
quantum way. Precisely, we represent the water charge density by a quantum field n̂w,
which we assume to have gaussian fluctuations with prescribed correlation functions, as
is done, for example, in the theory of solvation [161, 162]. The average in eq. (5.11)
is then computed in the framework of many-body perturbation theory, with respect to
the interaction Hamiltonian that comprises both the electron-water and electron-electron
Coulomb interactions:

Ĥint =

∫
drdr′n̂w(r′, t)V (r− r′)n̂e(r, t) +

1

2

∫
drdr′n̂e(r

′, t)V (r− r′)n̂e(r, t). (5.12)

The main difficulty of the computation is in that it deals with a non-equilibrium
steady state: for the friction force to be non-zero, we need to impose a net flow of
water parallel to the interface. Accordingly, we treat the perturbative expansion in the
non-equilibrium Schwinger-Keldysh framework ( [160] and Appendix E.1.2). After an
exhaustive computation, reported in Appendix E.1, our most general result is a Dyson
equation relating the electron-water, water-water and electron-electron density correlation
functions, which has the following Feynman diagram representation:

(5.13)

Here the thick solid lines represent the fully dressed electron Green’s function, and the
dashed lines are water density correlation functions. The electronic polarisation "bubble"
is renormalised by the Coulomb interactions according to

(5.14)

Qualitatively, eqs. (5.13) and (5.14) express that electron-water correlations result from
all the possible fluctuations of the water and electron densities. The friction force may
then be expressed in terms of the Keldysh component of the water-electron correlation
function. We stress here the generality of the result, as it applies to a fully out of
equilibrium situation, and allows for overlap between the water and electron densities.
Moreover, we treat the water-electron interaction beyond the mean-field approximation,
as our computation allows for a self-energy correction due to the presence of water in the
electron Green’s functions.

The fully general but cumbersome result in eq. (5.13) can be simplified if the water and
electron densities are no longer allowed to interpenetrate each other. This is a reasonable
approximation as long as there is no chemisorption of water on the solid surface: then,
the short-range Pauli repulsion effectively acts as an infinite potential barrier between
the water and the electrons. Density functional calculations show that this is the case,
for instance, at the water-graphene interface (figure 5.1b). A further simplification is
obtained by considering the hydrodynamic flow profile above the solid surface. As long
as the typical range of the solid-liquid interactions is smaller than the slip length, one may
consider the flow velocity to be uniform, and equal to the interfacial velocity v. Then,
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expanding the friction force to linear order in v, we obtain a closed-form expression for
the friction coefficient λ. It separates into two terms: λ = λCl + λQ, with

λCl =
1

8π2kBT

∫
d2q

(q · v)2

v2
|Ve(q)|2

∫ +∞

−∞
dtSw(q, t) (5.15)

and

v · λQ =
1

8π2

∫ +∞

0

qdq (~q)
∫ +∞

0

d(~ω)

kBT

q · v
sinh2( ~ω

2kBT
)

Im[ge(q, ω)] Im[gw(q, ω)]

|1− ge(q, ω) gw(q, ω)|2
. (5.16)

The first term (eq.(5.15)) corresponds exactly to the scaling estimate of the friction co-
efficient based on the classical surface roughness picture and calculated previously in
refs. [135, 163]: we hence call it the classical term. In eq. (5.15), Ve(q) is the average
Coulomb potential acting on the interfacial water layer, and Sw(q) is the water charge
structure factor (precise definitions of these quantities are given in Appendix E.1.5). On
the other hand, the second term (eq. (5.16)) is absent in the roughness-based picture,
and originates from the coupled water and electron dynamics, as it involves the surface
response functions of both the solid and the liquid, ge and gw, respectively: we call it
the quantum term. A similar term is known to arise in the non-contact friction between
two dielectric media separated by a vacuum gap [164–167]: it is then interpreted as a
dynamic analogue of the van der Waals force. However, the expression of this van der
Waals friction was rigorously established only in the case of two media with local dielec-
tric response [168], hence it could not apply directly to the solid-liquid interface under
scrutiny.

5.4.2 Toy model

Let us examine the expression for the quantum friction coefficient in eq. (5.16). A crucial
observation is that it depends on the overlap between the water and electron surface
excitation spectra. Hence, quantum friction cannot be seen as resulting from the inter-
action of individual water molecules with the solid: it is rather a consequence of the
interaction between the collective charge fluctuation modes of the two media. Starting
from this observation, the structure of eq. (5.16) can be given a simple interpretation in
terms a quasiparticle tunnelling between harmonic modes. Let us assume that the charge
fluctuations in each medium can be described by a single harmonic mode, with the same
wavevector q and frequency ωq. Then, the total hamiltonian of the system is

Ĥ = ~ωq(w†qwq + s†qsq) +Hint, Hint = Vq(w
†
qsq + s†qwq). (5.17)

where Vq is a Fourier-transformed Coulomb interaction and (w†q, wq) and (s†q, sq) are
the creation and anihilation operators corresponding to the water and the solid modes,
respectively. Elementary excitations (quasiparticles) may tunnel back and forth between
the s and w modes. We denote |ns, nw〉 the eigenstates of the non-interacting system.
According to the Fermi golden rule, the quasiparticle tunnelling rate from mode w to
mode s is

γ(w → s) =
2π

~
∑
ns,nw

Ps(ns)Pw(nw)|〈nw − 1, ns + 1|Hint|nw, ns〉|2

=
2π

~
V 2
q

∑
ns,nw

Ps(ns)Pw(nw)nw(ns + 1),

(5.18)
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Figure 5.2

Schematic of the quantum friction mechanism, showing quasiparticle tunnelling between two
surface modes. The back and forth tunnelling rates are different in the presence of flow, resulting
in net momentum transfer from the liquid to the solid.

where Ps(ns) (Pw(nw)) is the probability that there are ns (nw) quasiparticles in mode
s (w). Hence, the difference between forward and backward tunnelling rates is

∆γ(ωq) = γ(w → s)− γ(s→ w) =
2π

~
V 2
q

∑
n

n(Pw(n)− Ps(n)). (5.19)

At equilibrium, ∑
n

nPw(n) =
∑
n

nPs(n) = nB(ωq), (5.20)

with nB(ω) ≡ 1/(e~ω/kBT − 1) the Bose distribution, so that the tunnelling rates com-
pensate and there is no net momentum transfer between the two media. This is no longer
true when the fluid flows with velocity v. Our full computation (Appendix E.1) shows
that the flow induces a Doppler shift in the occupation of the water modes. Precisely,
the w mode contains nB(ωq − qv) quasiparticles, while the s mode still contains nB(ωq)
quasiparticles. This results in a difference in between the w → s and s → w tunnelling
rates:

∆γ(ωq) =
2π

~
V 2
q (nB(ωq − qv)− nB(ωq)) ≈ πV 2

q

q · v
kBT

sinh−2

(
~ωq

2kBT

)
. (5.21)

Such an asymmetric quasiparticle tunnelling results in a net momentum transfer, hence
an elementary friction force fq = ~q∆γ(ωq). The total friction force is then obtained by
integrating over all the modes: F/A =

∫
d2q ~q∆γ(ωq). This is essentially the structure

of eq. (5.16), where the frequency integral takes into account the distribution of modes
at wavevector q; the product of surface excitation spectra enforces energy conservation
and contains the Coulomb interaction V 2

q . The mechanism of dissipation via asymmetric
quasiparticle tunnelling between charge fluctuation modes is summarised in figure 5.2.

Based on eq. (5.16), we can now evaluate quantitatively the quantum hydrodynamic
friction coefficient λQ. To this end, we need to determine the surface excitation spectra
Im gw,e(q, ω) of water, and of the electronic system under consideration. In both cases,
we are only interested in the spectra at frequencies below 2kBT/~ = 50 meV or 10 THz,
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because only modes that are populated at temperature T can contribute to quantum
friction. However, the spectra need to be evaluated up to the highest momenta, since the
contribution of modes at wavevector q to the friction coefficient scales as q3.

5.5 Water fluctuations

Our result in eq. (5.16) involves the bare surface response function of water, which de-
pends on the water dynamics in the absence of coupling to electronic degrees of freedom.
Moreover, in the frequency range under consideration, the water dynamics are completely
classical, so that classical MD simulations are well-suited for the determination of water
surface response functions. Accordingly, we have carried out such simulations for water
(in the SPC/E model) in contact with graphite surfaces, for which we considered two
different sets of Lennard-Jones parameters [143, 169] (figure 5.3a). The surface response
functions were determined from the equilibrium charge correlation functions through the
fluctuation-dissipation theorem, according to the definition in eq. (B.3). Details of the
simulations and analysis are given in Appendix F.3.

We first focus on results in the long wavelength limit (q → 0), displayed in figure 5.3b.
The surface response function should then converge to a value determined only by the
bulk water dielectric permittivity εw(ω):

gw(0, ω) =
εw(ω)− 1

εw(ω) + 1
. (5.22)

It is then interpreted as an electromagnetic reflection coefficient (see Appendix B). We
find that this limit is essentially reached for the lowest q values accessible in our simulation
(q = 0.05 Å−1). Moreover, for frequencies below 100 meV, our results agree well with the
long wavelength surface response function obtained from the experimentally determined
εw(ω) [170]. Note that by construction the mode frequencies in the surface response gw

are strongly blue shifted with respect to the bulk dielectric response −Im[1/εw(ω)] by a
factor of εw(0)/2 ≈ 40.

The relation with the bulk dielectric function in eq. (5.22) implies that the features in
gw(q, ω) can be analysed in terms of the well-known features of the bulk water dielectric
response [171]. The low-energy surface response of water is dominated by the Debye
mode, which corresponds to the wide feature in the spectrum, spanning about three
decades in frequency between 0.1 meV and 100 meV. This mode is a general feature of
polar liquids and corresponds to the collective relaxation of molecular dipoles. However,
in water, it has recently been assigned a more complex microscopic origin, involving the
migration of defects in the hydrogen bond network [172]. The sharp peak at around 100
meV corresponds to the libration mode, which involves rotation of the water molecules
without displacement of their centre of mass [149].

The water surface response function shows little dispersion as the momentum q is
increased (figures 5.3 and F.5), and only small variations are found between the two
models for the graphite surfaces. At large momenta (q ≥ 1 Å−1), the surface response
function shows an exponential decrease, which we attribute to the depletion of water near
the hydrophobic surface. We find that, for the purposes of calculation, gw(q, ω) is well
represented by the sum of two Debye peaks at ωD,1 = 1.5 meV and ωD,2 = 20 meV, with
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Figure 5.3

Surface dielectric response of water. a. Snapshot of the MD simulation used for determining the
water surface response function. b. Surface response function of water in the long wavelength
limit. The results from surface simulations agree with the long wavelength limit obtained from the
bulk dielectric function (eq. (5.22)). c. Surface response function of water in energy-momentum
space, after fitting the simulation data with two Debye peaks (see text).

momentum-dependent oscillator strengths:

gw(q, ω) =
f1(q)

1− iω/ωD,1
+

f2(q)

1− iω/ωD,2
. (5.23)

Analytical expressions for f1(q) and f2(q) are given in Appendix F.3; at large q, f1(q) +
f2(q) ∝ e−2qd, with d = 0.95 Å.

5.6 Jellium model

We now examine the surface excitations in the solid and first explore a generic electronic
system. A solid has low energy electronic excitations if contains free charge carriers, but
the precise location of these excitations in energy-momentum space depends strongly on
the conduction band characteristics. The simplest way to account for this dependence
for a wide range of parameters is in the framework of the jellium model. In the jellium
model, the nuclei and core electrons are assimilated to a semi-infinite positive background,
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a. Schematic of the infinite barrier jellium model: the water and solid electrons are separated by
an infinite potential barrier. b. Band structure for the jellium model: a single parabolic band
with effective mass m∗.

while the conduction electrons behave as free electrons (figure 5.4a), so that they occupy
a parabolic band: E(k) = ~2k2/(2m∗). The electronic structure is then completely
determined by two parameters: the effective massm∗ appearing in the electron dispersion,
and the Fermi energy EF up to which the band is filled, figure 5.4b.

In general, in the jellium model, electrons are allowed to spill over the positive back-
ground edge [173]. However, in the presence of water, the spill-over is limited by the
Pauli repulsion between the water and the surface electrons (figure 5.1b), so that the
infinite barrier jellium model appears better suited to describing the electronic system
under scrutiny. The infinite barrier jellium presents furthermore a technical advantage,
as it may be treated within the specular reflection (SR) approximation, with only small
quantitative differences with respect to the exact semi-infinite computation [174]. The
SR approximation allows one to express the surface response of a system in terms of
its bulk response. Precisely, the non-interacting density-density response function of the
semi-infinite system χ0(q, z, z′, ω) is assumed to satisfy

χ0(q, z, z′, ω) ' χ0
B(q, z − z′, ω) + χ0

B(q, z + z′, ω), (5.24)

where χ0
B is its bulk counterpart. Then, the surface response function can be obtained

according to (see [175] and Appendix B.4)

ge(q, ω) =
1− q`q(ω)

1 + q`q(ω)
, `q(ω) =

2

π

∫ +∞

0

dqz
(q2 + q2

z)ε(q, qz, ω)
, (5.25)

where ε(q, qz, ω) = 1− e2

ε0(q2+q2z)χ
0
B(q, qz, ω) is the bulk system’s dielectric function. The

bulk dielectric function can in turn be obtained from the band dispersion and Fermi
energy in a standard way (Appendix B and Appendix E.2).

A typical result for the jellium surface response function is shown in figure 5.5a. It
presents two types of features: incoherent particle-hole excitations, and a collective surface
plasmon mode. At zero energy, particle-hole excitations are present up to q = 2kF, with
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a. Surface response function for a semi-infinite jellium (rs = 5) in energy-momentum space. b.
Quantum friction coefficient for water on a jellium surface, as a function of the jellium Fermi
energy and effective mass (in units of electron mass).

kF =
√

2m∗EF/~ the Fermi momentum. The long wavelength surface plasmon frequency
ωP scales as (m∗)1/4E

3/4
F . It shows a positive dispersion, and remains visible in the

spectrum up to a momentum qmax ≈ kF(
√

1 + 2~ωP/EF − 1), above which it enters the
particle-hole continuum and becomes Landau-damped.

Having determined the surface response functions for water and for the jellium elec-
trons, we may compute the quantum friction coefficient of water according to eq. (5.16),
for a range of Fermi energy and effective mass values. Result are shown in figure 5.5b.
The friction coefficient λQ is given in the standard unit N · s ·m−3 (λ = 105 N · s ·m−3

corresponding to a slip length of 10 nm for water).
Generally, the quantum contribution to friction is found to be non-negligible when the

electronic system has excitations at low energy and high momentum. For instance, we
find it to be very small for water on semiconductor surfaces, which, for our purpose, can be
described by a jellium model with low Fermi energy and effective mass, regardless of the
nature (electron or hole) of the charge carriers. In such systems, electronic excitations
are restricted to very small momenta, and we expect the hydrodynamic friction to be
dominated either by the classical roughness term [135, 139] or by the optical phonon
contribution (Appendix E.2.3).

On metal surfaces, with high Fermi energy (1 - 10 eV) and effective mass close to
unity, we find λQ ∼ 102 N · s ·m−3, which is two orders of magnitude lower than typical
hydrodynamic friction coefficients. There are, to our knowledge, no experimental mea-
surements of water slip length on atomically smooth metal surfaces. If dominated by
the quantum contribution, we would expect such surfaces to exhibit very high slippage.
The highest values of quantum friction coefficient in the (m∗, EF) parameter space are
obtained in the region of low Fermi energy and high effective mass. In this region, the
electronic surface plasmon mode is at low enough energy (∼ 10 meV) and high enough
momenta (∼ 0.5 Å−1) to couple with the Debye peak of water: the resonant coupling
between these two modes results in a particular friction enhancement (see figure E.2).
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Surface excitations of carbon-based materials. a. Surface response function of doped graphene
(EF = 0.1 eV) in energy-momentum space, and experimental data for the graphite surface
plasmon mode [177–179]. b. Schematic of the electron movement corresponding to the graphite
surface plasmon, and definition of the interlayer coupling parameters.

5.7 Water-carbon interface

We now examine specifically the water-carbon interface. In the ideal case where the solid
is a single graphene sheet, its surface response function can be calculated analytically
( [176] and Appendix E.3.1). The result is plotted in figure 5.6a, considering a doping
level EF = 0.1 eV. Graphene is found to have low energy excitations (ω . 100 meV)
only at very small momenta (q . 0.05 Å−1). An intra-layer plasmon mode is present,
but it displays a very steep square root dispersion at small momenta. The quantum
contribution to the water friction coefficient, evaluated with eq. (5.16), is accordingly
found to be very small, below 100 N · s ·m−3, whatever the doping level, much like in the
case of semiconductors treated within the jellium model.

The situation, however, is drastically different for water on a semi-infinite graphite
surface, made up of a staggered stack of graphene sheets (figure 5.6b). In such an ar-
rangement, electrons acquire an extra degree of freedom compared to graphene, as they
may tunnel between the stacked sheets. In particular, the coupling between second near-
est layers is associated with a bandwidth 4γ2 = 40 meV. It is therefore not surprising
that experimentally, a strong effect of this interlayer coupling on the graphite low energy
excitations was observed. In electron energy loss spectroscopy, graphite was found to
exhibit a surface plasmon mode, polarised perpendicularly to the layers, at ωP = 50 meV
(at 300 K), with a very flat dispersion in the measured momentum range, which was up
to qmax = 0.2 Å−1 at 300 K [179] and qmax = 0.4 Å−1 at 600 K [178] (see figure 5.6a). A
similar plasmon peak was also observed in inelastic electron tunnelling spectroscopy [180].
Based on our study of the jellium model, we expect this low-energy plasmon of graphite
to strongly interact with the water Debye mode, resulting in an enhancement of quantum
friction. This enhancement may be assessed by describing the plasmon contribution to
the graphite surface response in terms of a Drude model:

ge(q, ω) =
ω2

P

ω2
P − ω2 − 2iγω

θ(q − qmax), (5.26)
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5.7. Water-carbon interface

with γ ∼ 25 meV the surface plasmon width [177,178], and θ the Heaviside step function.
Using this expression in eq. (5.16), we obtain a water quantum friction coefficient λ =

0.4× 103 N · s ·m−3 for qmax = 0.2 Å−1 and λ = 5× 103 N · s ·m−3 for qmax = 0.4 Å−1,
which is indeed orders of magnitude larger than the expectation for graphene, and non-
negligible compared to experimentally measured hydrodynamic friction coefficients: λ ≈
2× 104− 105 N · s ·m−3 on graphite surfaces [15,48] and λ ≈ 3× 104 N · s ·m−3 in carbon
nanotubes with large (50 nm) radius [23], corresponding to hydrodynamic slip lengths in
the range of a few tens of nanometers.

Going beyond a phenomenological treatment for the water-graphite quantum friction
is particularly challenging. Indeed the numerical treatment of excitations at low energies
and high momenta within the complex graphite band structure [181] requires a very
large number of k points, and a very large unit cell comprising more than 100 layers
would be needed to avoid finite size effects [182]. This is likely to be the reason why,
to our knowledge, there is no detailed theoretical study of the graphite terahertz surface
plasmon. Nevertheless, we propose a simplified model in order to extract the essential
physical ingredients at play in the graphite surface response. At a qualitative level, the
free charge carriers that contribute to the low energy plasmon are located mainly on the
B sublattice [183] (figure 5.6b). The flat plasmon dispersion has been attributed to the
shape of the bands containing those free carriers [178]. As a consequence of interlayer
coupling, these are nearly flat up to parallel momentum k ∼ γ1/vF = 0.06−0.11 Å−1, with
γ1 the nearest-neighbour interlayer coupling parameter (figure 5.6b) and vF the graphene
Fermi velocity. If the electron dispersion is flat parallel to the layers, then the graphite
can be pictured as an array of independent 1D chains extending perpendicular to the
layers, at least within a certain momentum range. This assembly of localised oscillators
are then expected to have excitations whose energy does not depend on wavevector, that
is a dispersionless mode.

Based on this qualitative idea, we propose a simplified model for the graphite surface
response. We consider only the atoms on the B sublattice, which form an assembly of
tight-binding chains with coupling parameter γ2 = 10 meV [184]. At sufficiently large
momenta (q & 1/(2c) = 0.14 Å−1), we may consider that the external field acts only on
the topmost (surface) atoms. We then compute the local density response of the topmost
atom a of a 1D chain δna(q, ω) = χa(q, ω)φa(q, ω), where φa is the potential acting on
atom a (see Appendix E.3.2). Then, treating the Coulomb interactions between the chains
in the random phase approximation, we obtain the graphite surface response function as

ge(q, ω) =
nsvqχa(ω)

nsvqχa(ω)− 1
, (5.27)

where vq = e2

4πε0
2π
q is the 2D Coulomb potential and ns is the density of charge car-

riers contributing to the low energy mode. Our simple model accounts indeed for an
excitation continuum around ω = 40 meV, whose intensity slowly decays with mo-
mentum (figure E.4). If we use for ns the free carrier density in graphite at 300 K
(ns = 2.3 × 1012 cm−2 [185]), we find a friction coefficient λQ = 1.8 × 104 N · s · m−3,
slightly larger than the Drude model estimates, and within the range of experimentally
measured water friction coefficients (figure 5.8).

Going further, we find that the band flattening which is at the root of the 1D chain
picture is enhanced in the presence of water. Indeed, we are able to evaluate the lowest
order self-energy correction the electron Green’s functions in graphene (Appendix E.3.3):
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the resulting renormalised spectral density is shown in figure 5.7. We find that, upon
coupling with the water Debye mode, the graphene band velocity is reduced, so that more
states become available at low energy and high momentum. We expect that a qualitatively
similar renormalisation occurs in graphite. Hence, in our 1D chain model, the carrier
density ns should increase in the presence of water with respect to bare graphite, yielding
quantum friction coefficients in the range λQ ∼ 104 − 105 N · s ·m−3 (figure 5.8a), well in
agreement with the experimentally measured total hydrodynamic friction (figure 5.8b).

Overall, our theory suggests that quantum friction may be the dominant mechanism
for the hydrodynamic friction on atomically smooth carbon surfaces. This is in line with
the observation that, in classical MD simulations, the water friction coefficient on graphite
is typically underestimated with respect to the experimental values [135]. Furthermore,
the strong difference in quantum friction that we find between graphene and graphite
suggests an explanation for the radius-dependent slippage of water in carbon nanotubes.
It is crucial that the experiments in [23] are carried out with multiwall carbon nanotubes.
In such nanotubes, the interlayer coupling is known to strongly depend on radius: a 50 nm
radius tube has locally a graphite-like structure, while in a 10 nm radius tube the shells
are completely decoupled [186]. Therefore, in large radius nanotubes, water is subject to
graphite-like high quantum friction, while in smaller radius nanotubes water experiences
graphene-like low friction.

The quantitative relevance of this argument can be checked, at the simplest level,
in the framework of the Franklin model [187, 188], which relates the probability p of
two layers being misaligned in a graphite structure to the average interlayer spacing
d, which is known from experiment as a function of the tube radius R [186]: d(R) =
3.44− 0.086 · (1− p2) (Å). We may then assume that the electron density ns in eq. (5.27)
scales according to ns(R) = n0

s (1− p(R)), and we choose n0
s = 1013 cm−2 so that λ(R→

∞) = 4.4 × 104 N · s · m−3. The resulting prediction for the slip length b = η/λ, with
η the water viscosity, is shown in figure 5.8b. Overall the predicted radius dependence
is found to be in good agreement with the experimental data. We note that if the inner
shell tubes are semiconducting, the radius-dependent band gap Eg(R) = (2/3)vF/R [189]
may also reduce the number of charge carriers contributing to low energy excitations: we
then expect a scaling ns(R) = n0

se
−Eg(R)/kBT . Such a scaling also provides reasonable

agreement with the data (figure 5.8b). While the details of electronic excitations in
multiwall carbon nanotubes are hard to investigate theoretically, our theory strongly
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Water-carbon quantum friction. a. Quantum friction coefficient for water on graphene and
graphite as a function of charge carrier density. For graphene, the carrier density is determined
by the doping level. For graphite, the friction coefficient is determined from the 1D chain model
(eq. (5.27)), where the carrier density corresponds to the parameter ns. b. Water slip length
in multiwall carbon nanotube as a function of inner tube radius. The green symbols are experi-
mental data from refs. [21,23,48], and the full lines are theoretical predictions, corresponding to
different models for the radius dependence of ns in eq. (5.27).

suggests that quantum friction is a key ingredient for determining the water slip length
in these systems.

5.8 Discussion

Our theory explains why the water-carbon couple is indeed bizarre [8]. We are able
to rationalise the unique friction properties of water on carbon surfaces, as well as the
puzzling radius dependence of slippage in carbon nanotubes, in terms of a quantum
contribution to the hydrodynamic friction. We find that water friction is not anomalously
low on graphene: it is rather anomalously high on graphite. This anomaly is shown to
have a quantum origin, in the coupling of a water collective mode to a peculiar terahertz
plasmon specific to graphite.

A similar fluctuation-induced contribution to friction has been predicted for two solids
separated by a vacuum gap [158], yet in the case of solids such contributions are mea-
surable only in a non-contact configuration [190]. In contrast, thanks to the amorphous
nature of water, we find that quantum friction may be the dominant contribution for wa-
ter friction on atomically smooth surfaces, provided that these have electronic excitations
at low energy (ω . 100 meV) and high momenta (q ∼ 0.5 Å−1), which may couple to the
Debye mode of water. We expect a similar quantum contribution to exist in the friction
of polar organic solvents [191,192] or room-temperature ionic liquids [193] since they also
exhibit a Debye mode.

We stress that quantum friction is altogether beyond the reach of standard ab initio
MD simulations [137,146], since it is an effect of electronic excitations beyond the Born-
Oppenheimer (BO) approximation. At the water-carbon interface, the breakdown of the
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BO approximation is particularly strong: this is in line with the recent observation of
non-BO effects on the graphene optical phonon frequencies [194]. While ab initio MD
provides precious information on the static properties of solid-liquid interfaces, our results
indicate that studying the dynamics of these interfaces requires novel simulation methods.
Furthermore, the strong self-energy corrections that we find for graphene interacting with
water collective modes suggest that water-graphene systems should be treated beyond the
single water molecule and at the GW level.

The quantum friction phenomenon may be viewed as an extension of the idea of in-
teraction confinement to the solid-liquid interface. Indeed, in Part II of this thesis, we
explored the physics of strongly confined electrolytes whose interactions were sensitive to
the microscopic nature of the channel walls, and in particular to their dielectric screening
properties. Here, we find that the many-body dynamics of interfacial water are also sen-
sitive to the nature of the confining wall, but through much more subtle time-dependent
response properties. As such, interaction confinement may actually affect fluid transport
in fairly large channels (∼ 30 nm radius), as soon as the flow rate depends strongly on
wall slippage.

Ultimately, our findings present a new avenue for controlling nanoscale water flows
with the vastly tuneable electronic properties of carbon-based confining walls. A partic-
ularly promising material in this respect is twisted bilayer graphene, which was recently
predicted to exhibit a nearly dispersionless plasmon mode at terahertz frequencies [195]
for twist angles . 2◦.

5.9 The big picture

In this Chapter, we have developed a new theoretical description of the solid-
liquid interface, that takes into account the electronic degrees of freedom of the solid
at a quantum level. Our theory predicts a quantum contribution to the hydrody-
namic friction coefficient, which is due to the coupling of water charge fluctuations to
electronic excitations in the solid. This quantum contribution is significant when the
solid has excitations at low energy (ω . 100 meV) and high momenta (q ∼ 0.5 Å−1),
so that they may interact with the water Debye mode. While quantum friction is
very small for water on graphene, it is likely to be the dominant friction mechanism
for water on graphite, because water fluctuations efficiently couple to the electron
movement in between the graphene layers. This striking difference suggests an ex-
planation for the radius-dependent water slippage in multiwall carbon nanotubes,
in terms of their interlayer electronic excitations. Our results shed some light on
the long-standing mystery of water-carbon friction, and reveal a non-trivial quantum
effect in nanoscale fluid dynamics.
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Experimental investigations
of nanoscale fluid transport
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Chapter6

Direct measurement of water slippage
in two-dimensional nanochannels
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Water and carbon form a bizarre couple [8]: in numerous instances, carbon-based
pores outperform alternative materials in terms of water permeability or other trans-
port characteristics [19–25]. The origins of this superior performance are so far not
understood [26], and are the subject of ongoing theoretical efforts: for instance, in
Chapter 5, we proposed that quantum friction at the water-carbon interface might
be an essential ingredient of the peculiar phenomenology. In this context, there is a
crucial need for experimental measurements of slippage at the water-carbon interface.
While numerous permeability measurements have been carried out with carbon-based
membranes [19,20,22], there are only very few studies that met the considerable chal-
lenge of carrying out such measurements in a controlled nanochannel geometry, which
is best suited for benchmarking theoretical predictions [23,196]. Here, we present the
first direct measurements of water slippage in two-dimensional nanochannels [15],
using a specific fluorescence-based technique and an in-house confocal microscopy
setup. This work is still ongoing at the time of writing of this Chapter. We will
report preliminary results for channels of height h = 15 nm and h = 10 nm, which
suggest that our measurement technique should have enough sensitivity to probe
nanochannels down to the molecular scale.
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Capillaries

a b c

Figure 6.1

Flow measurement techniques in nanofluidics. a. Cartoon of a lipid vesicle with embedded
carbon nanotubes porins (CNTPs). The flow rate is measured by monitoring the osmotically
induced swelling of vesicles through light scattering. Reproduced from [24]. b. Schematic of the
weight loss measurement setup employed in [15]. c. Schematic representation of the flow rate
measurement through a nanotube, using a Landau-Squire jet. Reproduced from [23].

I am grateful to V. Kalangi, who fabricated the nanofluidic devices and carried out the
fluorescence measurements, for his collaboration on this project. My contribution amounts
to developing the confocal microscopy setup and performing the data analysis.

6.1 General context

The flow rate of water through a slit-like channel of length d = 10 µm, width L = 200 nm
and height h = 10 nm, under a pressure drop ∆P = 1 bar, is Q = 10−16 L · s−1, assuming
a no-slip boundary condition at the channel walls (see Chapter 1). The measurement
of such tiny flow rates is inaccessible to conventional flow sensors, and several specific
methods have been developed to overcome this challenge.

An obvious solution is to measure the flow through multiple channels at once. This
requires, however, the ability to isolate a large number of identical channels and control
for leakage. Such constraints are easiest to satisfy in the case of biological channels:
channels with a given amino acid sequence may be expressed and purified, and they
insert into phospholipid membranes spontaneously and without leaks. The osmotic-flow-
induced swelling of reconstituted lipid vesicles embedded with channels has been used
to measure the permeability of, for instance, aquaporin [197]. The same method was
recently applied to the permeability of tiny carbon nanotubes (0.8 nm in diameter), that
also spontaneously insert into lipid membranes [24] (figure 6.1a). Alternatively, the flow
rate could be inferred by measuring the ion concentration profile in the vicinity of a
membrane embedded with ion channels using microelectrodes [198,199].

For a single single tube-like channel, the only technique with enough sensitivity for
nanoscale channel dimensions was proposed by Secchi et al. [23]. It relies on the prop-
erties of the flow induced by the jet that emerges from a nanotube into a macroscopic
reservoir [196], the so called Landau-Squire flow (figure 6.1c). At low Reynolds number,
the Stokes equation in the reservoir enforces diffusion of the fluid momentum. Therefore,
the fluid velocity scales as the rate of momentum transfer from the tube to the reservoir,
F ∼ ηRv̄, and not as the rate of mass transfer Qm ∼ ρR2v̄. Thus, as opposed to the
tube flow rate which scales as the tube radius squared, the flow velocity in the reservoir
scales linearly with the tube radius. Moreover, the diffusive behaviour imposes a 1/r
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Figure 6.2

Setup for water flow measurement in two-dimensional nanochannels. a. Schematic of flow
detection by fluorescence imaging of a calcium-sensitive dye. b. Schematic of the nanofluidic
device under study (courtesy of T. Emmerich).

decay of the flow profile away from the tube, which allows for a measurable flow over
tens of micrometers. By analysing the flow profile, Secchi et al. could detect flow rates
down to 10−14 L · s−1. An application of the Landau-Squire technique for measuring
electro-osmotic flow was first proposed in ref. [200], where the flow-induced rotation of
a particle held in an optical trap was monitored in order to obtain electro-osmotic flow
rates down to a few pL · s−1.

The geometry of the recently developed slit-like channels is unsuitable for Landau-
Squire measurements, and existing measurements of their hydrodynamic permeability
rely on a weight loss technique [15]. The channels are set up to provide the only pathway
out of a water reservoir, which is placed on a balance (figure 6.1b). Capillary condensation
ensures that water is liquid inside the channels, therefore the evaporation rate, as given
by the weight loss, is a measure of the liquid water flow rate through the channels. Radha
et al. [15] monitored the weight loss for several days in order to obtain flow rates down
to 10−12 L · s−1. However, with such evaporation measurements, the driving force is not
exactly known, as it is a combination of capillary pressure and disjoining pressure [9],
so that the measured flow rates could not be directly related to confined fluid properties
such as slip length.

In this Chapter, we present a direct measurement of the water flow through two-
dimensional nanochannels under an imposed pressure drop in-between two reservoirs,
which relies on a fluorescence-based technique for flow detection, and develop a theoretical
model to extract the water slip length from the fluorescence data.
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6.2 Experimental setup

6.2.1 Device fabrication

The nanofluidic devices (figure 6.2b) were fabricated by van der Waals assembly, following
the method described in [15]. The devices are composed of two graphite flakes (the "top
layer" and the "bottom layer"), separated by graphene "spacers" of chosen thickness,
obtained by patterning a graphite flake through electron beam lithography and oxygen
plasma etching. The graphite structure is deposited on a silicon nitride (SiN) membrane.
An aperture is etched in the SiN membrane and in the bottom graphite layer, so that water
may flow between the two sides of the membrane only through the graphite channels.

6.2.2 Flow measurement

The advection of fluorescent molecules by fluid flow has been widely used as a mean of
optically detecting fluid transport [201, 202]. However, such methods are not directly
applicable to nanoscale fluid transport measurements, since the molecular size of a fluo-
rescent dye may be on the scale of the channel opening. To circumvent this issue, we use
fluorescence to detect ion transport, instead of dye transport, through the nanochannel.
As shown in figure 6.2a, a calcium chloride solution is placed in the top reservoir, while
the bottom reservoir contains a solution of a specific dye, whose fluorescence is enhanced
(about 100-fold) in the presence of calcium (Fluo-4FF). The pressure-driven flow through
the nanochannel results in a fluorescence increase due to the calcium influx to the bottom
reservoir. The signal from the calcium-bound dye near the channel mouth is separated
from the background thanks to optical sectioning by a confocal microscope.

6.2.3 Optical setup

Fluorescence imaging is done using a confocal microscope that I developed during my
PhD (figure 6.3). The microscope is built around an Olympus IX-83 body. Fluorescence
is excited using a blue laser (Coherent Obis, 488 nm, 60 mW). The beam is expanded
up to ∼ 5 mm diameter, and projected onto a pair of scanning mirrors (Thorlabs GVS-
202). The scanning mirrors are then imaged onto the back focal plane of the objective
(Olympus LUMPlanFI, NA = 0.9, 60x, water immersion) by a scan lens / tube lens system
(Thorlabs SL50-CLS2 and TTL200-CLS2). The fluorescence from the sample back along
the excitation path up to the scanning mirrors, at which point it is separated from the
excitation using a dichroic mirror (Semrock Di03-R488-t3), and an emission filter. The
fluorescence is then focused onto a 50 µm pinhole for optical sectioning, and re-imaged
onto the opening of an avalanche photodiode (MPD, PD-100-CTE). The photon-counter
output of the photodiode is connected to a DAQ card (NI PCIe-6363), and the microscope
is operated by a custom Labview software.

6.3 Theory

In this section, we develop a theoretical description of the experimental configuration,
in order to extract the water flow rate in the nanochannels from the measured fluores-
cence profiles. We first examine the hydrodynamic flow that is induced in the reservoirs,
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Figure 6.3

Confocal microscopy setup. Simplified schematic of the optical path (a.), and photograph of the
setup (b.).

and then focus on the full reaction-diffusion problem corresponding to the fluorescence
measurement.

6.3.1 Flow through a one-dimensional aperture

Consider the flow emerging from an infinitely thin slit into a semi-infinite reservoir (see
figure 6.4). It has been shown by Jeffery and Hamel [203–205] that the full non-linear
Navier-Stokes equation has a purely radial solution in this geometry. Since we are in-
terested in the limit of very low Reynolds number, here we reproduce their solution
discarding the non-linear terms.

For a radial velocity field u = u(r, θ) er, the continuity equation imposes ∂(ru)/∂r = 0
and therefore u = F (θ)/r. The Stokes equation reads

η∇2u−∇p = 0. (6.1)
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Its two components are
∂p

∂r
= η

F ′′(θ)

r3
(6.2)

and
∂p

∂θ
=

2ηF ′(θ)

r2
. (6.3)

Integrating (6.3) with respect to θ, we obtain

p =
2ηF (θ)

r2
+ S(r), (6.4)

with S(r) an arbitrary function of r. Substituting into (6.2),

− 4ηF (θ)

r3
+ S′(r) = η

F ′′(θ)

r3
. (6.5)

Multiplying by r3, on notices that r3S′(r) must be a constant, which we denote ηC.
Therefore, F satisfies the ordinary differential equation

F ′′ + 4F = C, (6.6)

with the no-slip boundary conditions imposing F (α1,2) = 0. One must also impose the
total flow rate per unit length. If the fluid velocity in the slit is v and its height is h, then
one has ∫ α2

α1

F (θ) dθ = vh. (6.7)

In the following we specialise to the case α1 = 0 and α2 = π/2. Then, the velocity field
satisfying the boundary conditions is

u = vh
sin(2θ)

r
er. (6.8)

If α1 = −π/2 and α2 = π/2, the solution is

u =
vh

π

1 + cos(2θ)

r
er. (6.9)

One remark needs to be made concerning these particularly simple solutions. With the
assumption of an infinitely thin slit, we have been able to specify the total flow rate, but
not the momentum transferred to the reservoir. In fact, the momentum transfer has been
imposed by the requirement that the flow is purely radial. Such an approximation should
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be best for small apertures α2−α1, and it breaks down for very large apertures (typically
α2 − α1 ∼ 2π, the Landau-Squire configuration), where one must relax the assumption
of purely radial flow. In our experimental configuration, α2 − α1 ≈ π, so that the radial
assumption may be around its limit of validity, but the details of the flow profile will not
be important in the reaction-diffusion problem, which we solve in the limit of low Peclet
number.

6.3.2 Reaction-diffusion problem

Governing equations

We now consider the experimental geometry with a channel of length d connecting two
reservoirs. Since the top and bottom layers are thin on the scale of the imaging (< 1 µm),
we will assume α2 − α1 = π in the reservoirs. This will introduce some error on the
concentrations very close to the channel mouth, but we will find in the end that such fine
details of the geometry are unimportant.

We have just determined the flow field u in the reservoirs, while inside the channel it
is given by the Poiseuille law. This flow advects calcium ions Ca that react with the dye
F to form the fluorescent complex CaF whose concentration profile we wish to determine.
The reaction is

Ca + F� CaF. (6.10)

We denote k+ and k− the forward and backward rate constants, respectively. In princi-
ple, we need to solve three coupled advection-diffusion-reaction equations for the three
chemical species:

−DCa∇2[Ca] +∇(u · [Ca]) = −k+[Ca][F] + k−[CaF] (6.11)

−DCaF∇2[CaF] +∇(u · [CaF]) = k+[Ca][F]− k−[CaF] (6.12)

−DF∇2[F] +∇(u · [F]) = −k+[Ca][F] + k−[CaF] (6.13)

Pure diffusion case

We first solve the problem in the absence of flow: we set u = 0 in the governing equations.
We introduce two reduced concentration variables:

c =
DCa[Ca] +DCaF[CaF]

DCa
and f =

DF[F] +DCaF[CaF]

DF
. (6.14)

They satisfy diffusion equations: ∇2c = 0 and ∇2f = 0. We will solve these separately
in the two reservoirs and in the channel, and then stitch the solutions together. We focus
on the equation for c, the one for f being completely analogous. We denote J the total
flux of c that is constant across the system, and J̄ = J/DCa.

Solution in the reservoirs Expanding the Laplace operator, the diffusion equation reads[
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2
+

∂2

∂z2

]
c = 0 (6.15)

We have introduced explicitly the dimension z along the width of the channels. The
reason is that we need to take into account the finite width L of the channels: if it is
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assumed infinite, the 2D diffusion equation yields a diverging logarithmic solution. We
impose no flux through the boundaries, that is ∂θc|θ=α1,α2 = 0. This can be satisfied by
taking c independent of θ. Then, we may solve the Laplace equation through a Fourier
transform. We introduce

c̃(r, k) =

∫ +∞

−∞
dz c(r, z)e−ikz, (6.16)

which satisfies
∂2c̃

∂r2
+

1

r

∂c̃

∂r
− k2c̃ = 0. (6.17)

This is a modified Bessel equation, whose well-behaved (at r →∞) solution is the modi-
fied Bessel function of the second kind K0. Precisely, we obtain

c(r, z) = const +

∫ +∞

−∞
dk eikzA(k)K0(|k|r), (6.18)

with A(k) an arbitrary function of k, determined by the boundary conditions. In the
bottom reservoir c(r → ∞) = 0, therefore const = 0. We also need to impose that as
r → 0 the positive flux J comes out of an aperture of length L.

lim
r→0

[−r∂rc(r, z)] =
J̄

αL
θ(|z| − L/2), (6.19)

with α = α2 − α1. Using that K ′0(x) = −K1(x) and K1(x) ∼ 1/x at small x, we find

lim
r→0

[−r∂rc(r, z)] =

∫
dkA(k)eikz, (6.20)

so that

A(k) =
J̄

2παL

∫ +∞

−∞
dz θ(|z| − L/2)e−ikz =

J̄

παL

sin(kL/2)

k
. (6.21)

Finally, the solution for c(r, z) reads

c(r, z) =
J̄

παL

∫ +∞

−∞

dk

k
eikz sin(kL/2)K0(|k|r). (6.22)

At z = 0, the Fourier transform may be computed analytically:

c(r, 0) =
J̄

αL
Arcsinh

(
L

2r

)
. (6.23)

The behaviour of the solution may be readily analysed recalling that Arcsinh(x) = log(x+√
x2 + 1). At small r, the solution behaves as log r, as expected in a 2D geometry. At

increasing r, the solution transitions to a 3D behaviour, and ends up scaling as 1/r:

c(r →∞, 0) ∼ J̄

2αr
. (6.24)

This limiting behaviour is consistent with flux conservation, as it corresponds to a flux J
through a portion of sphere of angle α.
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Similarly, we may determine in the top reservoir

c(r, 0) = [Ca]0 −
J̄

αL
Arcsinh

(
L

2r

)
. (6.25)

In the exact same way, we obtain the solutions for f . We call −J ′ the constant flux of f ,
and J̄ ′ ≡ J ′/DF . Then, in the bottom reservoir

f(r, 0) = [F]0 −
J̄ ′

αL
Arcsinh

(
L

2r

)
, (6.26)

and in the top reservoir

f(r, 0) =
J̄ ′

αL
Arcsinh

(
L

2r

)
. (6.27)

Solution in the channel In the channel, we neglect any edge effects and simply consider
1D diffusion. Then the concentration profiles are linear:

c(x) = c(0)− J̄
λLhx and f(x) = f(d) + J̄′

λLh (x− d). (6.28)

The factor λ accounts for the fact that there are spacers between the channels, and the
actual width available to the flow is therefore less than L. It may also account for some
channels being closed. Let w be the width of an individual channel, s the width of a
spacer, N the number of open channels and µ the fraction of open channels. Then

λ =
µNw

N(w + s)
. (6.29)

We may now determine the unknown fluxes J and J ′ by stitching the solutions at the
channel boundaries. We assume that we need to match c(0) in the channel and c(r = h, 0)
in the top reservoir. The choice r = h is arbitrary up to a constant of order 1, whose
choice does not alter the final result. Similarly, we impose c(d) to match c(r = h, 0) in
the bottom reservoir. This yields a self-consistent equation for J̄ :

[Ca]0 −
J̄

αL
Arcsinh

(
L

2h

)
− J̄

λLh
d =

J̄

αL
Arcsinh

(
L

2h

)
. (6.30)

Since h� L, we may simplify Arcsinh(L/2h) ≈ log(L/h), and we set α = π. We obtain

J̄ = L
λ(h/d)[Ca]0

1 +
2

π

λh

d
log(L/h)

. (6.31)

With the experimental parameters, (2h/πd) log(L/h) = 4 × 10−3 and it may be safely
neglected in the denominator. We may then use the simple result

J̄ =
λLh

d
[Ca]0. (6.32)
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Extension to non-zero flow

In the presence of flow, the advection terms are no longer zero, and the reduced variables
c and f in principle no longer satisfy simple diffusion equations. Nevertheless, in the
reservoirs, one may check that the advection terms are in fact negligible. Upon normalis-
ing by the relevant diffusion coefficient, in the reservoir, the advection-diffusion operator
becomes

∂2

∂r2
+

[
(1− Pe

π
(1 + cos(2θ))

]
1

r

∂

∂r
+

1

r2

∂2

∂θ2
+

∂2

∂z2
, (6.33)

with Pe = vh
D a Peclet number: we have made use of the flow field obtained in section 6.3.1.

One expects a velocity v of at most 1 mm ·s−1, and for D ∼ 10−10 m2 ·s−1 and h = 10 nm
this amounts to Pe ∼ 10−1. Therefore, to a good approximation, one may neglect the
advection terms in the reservoirs.

On the other hand, in the channel, one has to fully take advection into account.
But even in a 1D geometry, the three coupled non-linear differential equations can only
be solved numerically. We may nevertheless proceed analytically under the assumption
that the chemical reaction can be neglected inside the channel. This is expected to be
reasonable, since in the pure diffusion case, the dye concentration becomes negligible
beyond 1 µm inside the channel. This is on the scale of the geometrical details such as
the thickness of the graphite layers and the exact shape of the channel mouth, which we
find to drop out at the end of the computation. The assumption will still be checked
numerically in the final version of this work.

If there is no chemical reaction in the channel we may write the advection-diffusion
equation for the calcium ions:

−DCa
d[Ca]

dx
+ v[Ca] =

J

λLh
. (6.34)

We introduce the Peclet number Pe = vh/DCa, so that

d[Ca]

dx
− Pe

h
[Ca] = − J̄

λhL
. (6.35)

This is solved by

[Ca](x) =
J̄

λPeL

(
1− ePe x/h

)
+ c(0)ePe x/h. (6.36)

We may now apply the same stitching procedure as in the pure diffusion case to determine
J . We obtain

J̄ =
L[Ca]0

(1/π) log(L/h)(1 + e−Pe d/h)− 1
λPe (e−Pe d/h − 1)

. (6.37)

This may be simplified to linear order in the Peclet number:

J̄ =
λhL

d
[Ca]0

(
1 +

d

2h
Pe

)
. (6.38)

Far away from the channels, all the calcium has been bound to the dye and

[CaF] ≈ DCaF

DCa

J̄

2πr
. (6.39)
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By fitting this long distance behaviour, one can determine J̄ . Then,

J̄(Pe)

J̄(Pe = 0)
= 1 +

d

2h
Pe. (6.40)

We may explicit the Peclet number as a function of the pressure drop ∆P and slip length
b:

Pe =
∆Ph3

12ηdDCa

(
1 +

6b

h

)
. (6.41)

Then, the relevant result for analysing the experimental data is

J̄(Pe)

J̄(Pe = 0)
= 1 +

∆Ph2

24ηDCa

(
1 +

6b

h

)
. (6.42)

Remarkably, we find that the long-distance scaling of the fluorescence intensity de-
pends on very few parameters, and is insensitive to the geometric details of the channels,
and even to the number of channels. Therefore, we expect eq. (6.42) to provide a robust
method for extracting the hydrodynamic slip length from fluorescence data.

6.4 Preliminary results

Fluorescence flow measurements have so far been carried out with two nanofluidic devices.
Device 1 had N = 80 channels of height h = 15 nm and length d = 10 µm, while Device
2 had N = 30 channels of height h = 10 nm and length d = 10 µm. Figure 6.5a shows
fluorescence images of Device 2 at increasing values of pressure drop imposed across the
membrane: a corresponding increase in fluorescence intensity is clearly visible.

The main prediction of the model established in section 6.3 is a 1/r scaling of the
fluorescence intensity at large distance r away from the channels (eq. (6.39)), which can
be directly related to the Peclet number, and therefore to the slip length of water inside
the channels (eq. (6.42)).

For comparison with the model, the measured fluorescence intensity was radially aver-
aged (over half a circle) on each side of the device. Typical radially-averaged fluorescence
profiles, plotted as a function of the inverse distance 1/r, are shown in figure 6.5b: a
linear behaviour is indeed observed, consistently with the model predictions. Fitting of
this linear regime allowed us to extract the flux J̄ (eq. (6.39)), for increasing values of
the pressure drop ∆P . As shown in figure 6.5c, for both devices, J̄ shows roughly linear
behaviour as a function of ∆P , in line with the prediction of eq. (6.42). According to our
theory, the slope of J̄(∆P )/J̄(∆P = 0) versus ∆P gives access to the slip length of water
inside the channels, see dashed lines in figure 6.5c. While for both devices the observed
increase of J̄ with ∆P is faster than what would be expected in the absence of slippage,
the data can be described by introducing only a very small slip length b ∼ 1− 4 nm.

6.5 Discussion

The water slip length on graphite extracted from our preliminary measurements is broadly
consistent with the previously reported value b ≈ 6 − 10 nm, measured by surface force
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Figure 6.5

Preliminary results of water flow measurements across two-dimensional graphite channels. a.
Confocal fluorescence images of Device 2 (h = 10 nm) under increasing pressure drops. The
calcium concentration in the top reservoir is [Ca]0 = 15 mM and the dye concentration in the
bottom reservoir in [F]0 = 100 µm. b. Radially-averaged fluorescence profiles corresponding to
the images in a (top channels). c. Normalised flux J̄ (see eq. (6.39)) obtained by fitting the
long-distance behaviour of the fluorescence, for both devices. The dashed lines correspond to the
prediction of eq. (6.42). For device 1, the top reservoir calcium concentration was [Ca]0 = 10 mM.
The two symbols (triangle and circle) correspond to the two sides of the devices.

apparatus [48]. However, our measurements still require careful benchmarking – notably
with boron nitride instead of graphite channels – and the contribution of diffusio-osmosis
to the measured water flux remains to be assessed. Nevertheless, the results presented
in figure 6.5 provide a proof of principle that our fluorescence technique should allow for
the measurement of flow rates in two-dimensional channels down to the molecular scale.
Indeed, the radially averaged fluorescence profiles obtained with 10 nm wide channels
show a signal to noise ratio of nearly 100, so that we expect the flow through 1 nm wide
channels to still be measurable, even under the conservative assumption of the signal
scaling as h2.

While in 10 to 15 nm wide channels water is expected to have essentially bulk-like
behaviour, in few-nanometre confinement the onset of water structuring is expected to
significantly affect the channel permeability. For instance, in the experiments of Radha
et al., the evaporation rate of water through two-dimensional channels was unexpectedly
found to display a maximum at around 2 nm channel width [15]. The interpretation of
these evaporation experiments is difficult, since the driving force of the flow – a combi-
nation of capillary pressure and disjoining pressure – is not exactly known. Hence, the
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measurement of water flow rate in nanometre-scale channels under imposed pressure drop
will be crucial to shed some light on these peculiar results. Moreover, such measurements
will be a much-needed testing ground for our theory of quantum friction, which may
be extended to a nanoslit configuration so as to predict the dependence of a graphitic
channel’s permeability on confinement width.

6.6 The big picture

In this Chapter, we have presented direct optical measurements of water slip
length in two-dimensional graphite nanochannels. The measurement technique is
based on detecting the pressure-driven flow of calcium ions through the channel
thanks to a calcium-sensitive dye, whose fluorescence is imaged by confocal mi-
croscopy. A dedicated theoretical model links the shape of the measured fluorescence
profiles to the water slip length inside the channels, and preliminary results yield slip
lengths b ∼ 1− 4 nm for water on graphite. We expect our method to be applicable
to nanometre-scale channels, where it would allow us, for instance, to directly test
the predictions of the quantum friction theory developed in Chapter 5.
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Chapter7

Ultrafast photomechanical
transduction through thermophoretic

implosion

a.k.a. the Jedi experiment.
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Since the historical experiments of Crookes, the direct manipulation of matter by
light has been both a challenge and a source of scientific debate. In this Chapter,
we show that laser illumination allows to displace a vial of nanoparticle solution
over centimetre-scale distances. Cantilever-based force measurements show that the
movement is due to millisecond long force spikes, which are synchronised with a sound
emission. We observe that the nanoparticles undergo negative thermophoresis, while
ultrafast imaging reveals that the force spikes are followed by the explosive growth
of a bubble in the solution. We propose a mechanism accounting for the propulsion
based on a thermophoretic instability of the nanoparticle cloud, analogous to the
Jeans instability that occurs in gravitational systems. Our experiments demonstrate
a new type of laser propulsion, and a remarkably violent actuation of soft matter,
reminiscent of the strategy used by certain plants to propel their spores.
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7.1. General context

This Chapter is based on the following publication: N. Kavokine, S. Zou, R. Liu,
A. Niguès, B. Zou and L. Bocquet. "Ultrafast photomechanical transduction through
thermophoretic implosion". Nat. Commun. 11, 50 (2020).1

All movies are available at https://www.nature.com/articles/s41467-019-13912-w#
Sec13.

7.1 General context

In 1874, William Crookes observed that a light-absorbing vane placed in a vacuum-filled
glass bulb would rotate when exposed to sunlight, and interpreted the results as the effect
of radiation pressure [206]. Crookes’ interpretation was the cause of much debate at the
time, and it is five years later that Maxwell proposed the currently accepted explanation:
the vane actually rotates due to thermophoresis of the residual gas molecules in the
bulb [207]. Since then, a variety of methods for propelling macroscopic objects with light
have been proposed [208], involving, if not radiation pressure [209,210], the light-induced
ejection of matter, resulting in propulsion through momentum conservation [211–213].
However, the potential of thermophoresis – the driving mechanism in Crookes’ experiment
– for macroscopic light-induced propulsion has hardly been explored since the nineteenth
century. While light-induced self-thermophoresis has been highlighted as a means of
controlled optical manipulation of individual colloids [214, 215], light-induced thermal
gradients have been overlooked as a means of macroscopic actuation.

We describe in this Chapter a macroscopic system that is propelled over centimetre-
scale distances by the sole action of light, yet without any exchange of matter with the
surrounding medium; we show that the propulsion mechanism is based on light-induced
thermophoresis. The light-induced propulsion effect was serendipitously observed by our
collaborators at the Beijing Institute of Technology. The observation was so intriguing
that I took the time during my primarily theoretical PhD to develop an experimental
setup, so as to characterise the effect and ultimately propose an explanation. This work,
although seemingly unrelated to the primary subject of my thesis, does in fact involve a
many-body effect in almost-nanoscale fluid dynamics.

7.2 Methods

7.2.1 Nanoparticle synthesis and characterisation

The PbS nanoparticles used in all experiments were synthesised following a typical hot-injection
method, involving injection of a sulfur precursor into a lead precursor in an organic solvent. All
the syntheses were carried out under air-free conditions using a standard Schlenk-line setup. PbS
quantum dots purchased from Merck exhibited the same behaviour as the in-house-synthesised
ones. Transmission electron microscopy (TEM, JEOL-2100F) was used to visualise the nanopar-
ticles. Their crystal structure was obtained by the X-ray diffraction (XRD, D8-Advance X-ray
diffractometer). The absorption spectra in cyclohexane were recorded using a Shimadzu UV-3600
spectrometer.

1The photomechanical effect discussed in this Chapter was originally observed by B. Zou and col-
leagues at the Beijing Institute of Technology, to whom I am grateful for sharing their intriguing discovery.
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7.3. Results

7.2.2 Force measurement setup

A schematic of our force measurement setup is given in figure 7.2. A Sheaumann HF-975-
7500-25C fibre-coupled laser diode, powered by an Arroyo LaserSource controller, was used for
actuating the system. The vial or spectroscopic cuvette were glued to a 3 cm long metal cantilever
(made from a metal ruler). A small mirror was glued to the other side of the cantilever. A low
power red laser was reflected on the small mirror, and directed onto a quadrant photodiode
(Thorlabs, PDQ80A). Laser illumination above the threshold power (see figure 7.4c) resulted in
force spikes which induced deflection of the cantilever in the 10 µm range. The deflection of the
cantilever could be translated into a force thanks to calibration with a Novatech F329 load cell.
The resolution in cantilever deflection was below 100 nm, and the time resolution was given by
the photodiode bandwidth (150 kHz). In all experiments, the excitation laser fibre tip was placed
at exactly 1 mm from the vial wall using a stepper motor, and 2 mm above the vial bottom.
The analog control of the laser power, camera triggers and force and sound measurements were
synchronised using a National Instruments DAQ card (NI USB-6363) and a custom Labview
software.

7.2.3 Imaging

High speed imaging was performed using a Phantom v642 or a Hamamatsu Orca Flash 4.0
camera, and either a Nikon 50 mm macro lens, or a Thorlabs MVL12X3Z 12X zoom lens, with
coaxial illumination from an Olympus U-HGLGPS (130 W) light source. Thermal imaging was
performed using a FLIR Q655sc infrared camera.

7.3 Results

7.3.1 The photomechanical effect

Our system consists of a closed vial containing 1 mL of a concentrated solution of lead
sulphide (PbS) nanoparticles in cyclohexane. The particles have an average diameter of 8
nm and strong absorption in the near-infrared. We observe that when illuminated with a
∼ 1.5 W, 975 nm laser, the vial suddenly "jumps" away from the laser source (figure 7.1a,
movie 1), over a few millimetres. The typical velocity of the vial during a jump is about
1 cm · s−1, corresponding to a mechanical work around 30 µJ. After one such jump,
the vial falls out of range of the laser, which diverges from a fibre tip. Moving the fibre
tip closer to the vial results in another jump, and the process can thus go on, yielding
propulsion of the vial over several centimetres. In the experiment shown in figure 7.1,
an average speed of 1 mm · s−1 was obtained (figures 7.1b and 7.1c, movie 2), which was
essentially limited by the rate of laser repositioning.

7.3.2 Macroscopic characterisation

In order to characterise this intriguing phenomenon, we built a force-measurement setup
based on a cantilever, whose deflection is monitored using a quadrant photodiode (fig-
ure 7.2). The vial was glued on the cantilever and its deflection was recorded as a function
of time upon application of the laser light. Then, knowing the cantilever stiffness , we
could translate the observed deflection into the horizontal component of the force ex-
erted on the vial-cantilever system. A typical measurement is shown in figure 7.3: the
cantilever registers a series of force spikes which starts when the laser is switched on; it
ceases as soon as it is switched off. Each force spike is accompanied by the emission of
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Figure 7.1

A vial filled with a lead sulphide nanoparticle solution is propelled by a near-infrared laser.
a. Snapshots of the vial motion during one laser-induced jump. The red arrow indicates the
propagation direction of the laser. b. Temporal colour-code projection of the large scale vial
motion obtained when the fiber tip is kept at an approximately constant distance from the vial.
The image is a superposition of ten snapshots of the vial motion, with the colour encoding time.
c. Vial and fibre tip position as a function of time corresponding to the large-scale motion shown
in panel b.

audible sound (figure 7.3), and ∼ 97% of the recorded sound spikes match a force spike. A
typical force spike lasts around 5 ms and contains several oscillations of the force between
positive and negative values (figure 7.3, inset). Note that a positive force is oriented here
along the direction of propagation of the laser and the initial increase of the force is al-
ways towards positive values. Varying the laser power, one observes that the force spikes
are triggered only above a threshold power, as shown in figure 7.4a; above the threshold,
the average spike frequency (that is the number of spikes per unit time) increases with
increasing power. The threshold laser power depends on particle concentration: the lower
the concentration the higher the threshold. For a 2 % in weight particle concentration,

IR laser

Detection 
laser

Quadrant 
photodiode

Cantilever

Vial with 
QD solution

Figure 7.2
space

Schematic of the force measurement setup. The
vial is suspended on a cantilever; a low power
laser and a quadrant photodiode are used to
monitor the cantilever position as a function of
time.

95



7.3. Results

2 s

2 mN

Laser off LASER ON Laser off

Force
Sound pressure2 ms

Figure 7.3

Typical force and sound pressure versus time measurement. The particle concentration is 6.4 wt
% and the laser power is 1.5 W. Inset: zoom on a single force spike and the corresponding spike
in sound pressure.
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Figure 7.4

a. Frequency of the force spikes as a function of laser power, for different particle concentrations.
Spikes are observed above a critical laser power, which increases with decreasing concentration.
b. Average peak force as a function of laser power, for two different particle concentrations.
Error bars represent the standard deviation.

no spikes were observed up to 7 W laser power. The average amplitude of a spike is
around 6 mN; remarkably, it does not have any appreciable dependence on laser power
or particle concentration (figure 7.4d).
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7.3.3 Microscopic mechanism

We investigated the origin of the photomechanical effect in light of the macroscopic char-
acterisation described above. Radiation pressure could clearly be ruled out since it acts
continuously and not in spikes; moreover, one can estimate the radiation pressure in our
system at a value around 5 nano-Newton, which is orders of magnitude below the forces
that are measured, in the several milli-Newton range. Furthermore, the vial is sealed and
can hardly be expected to exchange matter with the surrounding medium. Thus, the
momentum of the vial and solution it contains must be conserved, and if the vial moves
away from the laser, then the fluid inside must acquire momentum towards the laser. In
order to understand how the fluid acquires this momentum, we placed the nanoparticle
solution in a 1 mm thick spectroscopic cuvette, and synchronised the force measurement
with high-speed imaging of the laser-illuminated region. The results are presented in
figure 7.5.

As opposed to the large vial, where force spikes could be observed indefinitely (we
observed no change in behaviour for up to 30 seconds), in the thin spectroscopic cuvette
the spiking ceased after less than a second of illumination (figure 7.5b). After about 10
seconds, imaging of the illuminated region revealed the formation of a solid aggregate
(figure 7.5c and movies 3, 4), due to the PbS particles accumulating next to the cuvette
wall, somehow "jamming" the spiking mechanism. Therefore, there is a particle-laser
interaction that causes the particles to migrate towards the laser. Such migration could
be due to the direct interaction of the particles with the laser electric field: the phe-
nomenon in question would be dielectrophoresis [216]. However, one can estimate the
dielectrophoretic migration velocity in our system as less than 1 nm per hour, hence the
contribution of dielectrophoretic driving is negligible. On the other hand, one could ex-
pect the particle migration to be the result of temperature driving, since the particles have
strong absorption at the laser wavelength. Indeed, when performing infrared imaging (see
movie 5) we observe temperature differences of up to 30 K across the system, and the
temperature gradient reaches up to 2 K ·mm−1. We expect such temperature differences
to drive particle motion through thermophoresis; here negative thermophoresis since par-
ticles move towards higher temperatures. The particle flux j(r) due to thermophoresis is
characterised by the Soret coefficient S, defined by:

j(r) = −DSρ(r)∇T (r), (7.1)

whereD is the particle diffusion coefficient and ρ(r) is the particle concentration [217,218].
Thermal imaging combined with monitoring of the aggregate size as a function of time
allowed us to make a rough estimate of the Soret coefficient of the PbS particles, yielding
S ≈ −4 K−1. To our knowledge there have been no reported measurements of the Soret
coefficient for PbS particles in cyclohexane. For a more common experimental system,
polystyrene particles in water, Soret coefficient values ranging from −1.5 to +40 K−1

have been reported [217–221], depending on conditions and particle size. Our estimate
is therefore not unreasonable with regard to this range, and corresponds to quite strong
negative thermophoresis.

Furthermore, high speed imaging of the solution revealed another striking phenomenon.
We observed that every force spike is accompanied by the explosive formation of a bub-
ble next to the cuvette wall (figure 7.5a, movie 3). The bubble grows in about 0.5 ms
and collapses as rapidly, which could be a signature of either cavitation [222, 223] or
explosive boiling [224, 225]; in that case our bubble would be analogous to a plasmonic
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Figure 7.5

Microscopic investigation of the origin of the photomechanical effect. The four panels show
results of simultaneous measurement of force and sound pressure, coupled to ultrafast imaging
(11 000 fps), in a 1 mm thick spectroscopic cuvette. a. High speed photography snapshots of the
dynamics of a bubble growing and collapsing upon laser illumination. The red arrow indicates
the laser impact point. b. Typical recording of force and sound versus time, and of the volume
of the bubble in solution as determined by optical imaging. c. Image of the particle aggregate
that becomes visible after about 10 s illumination. The red arrow shows the impact point of the
laser, the grey striped rectangle emphasises the cuvette wall, and the dashed white line highlights
the aggregate in the image. d. Bubble volume, force, and sound pressure versus time, averaged
over the first six spikes shown in panel b. The grey rectangle is a guide to the eye highlighting
that the onset of the force spike precedes bubble growth. Inset: aligned time traces of six force
spikes, showing very reproducible synchronisation with the bubble dynamics.

bubble [226]. One could expect these violent bubble dynamics to be the cause of the
observed photomechanical effect. However, careful time-resolution of the dynamics con-
tradicts this hypothesis. Indeed, the bubble growth results in fluid moving away from
the laser, which should trigger macroscopic motion of the vial towards the laser through
momentum conservation. This is in contradiction with the macroscopic observation that
the vial always moves away from the laser source. Now, one could argue that the bubble
dynamics may still be responsible for the vial motion if the necessary momentum was
released during bubble collapse. However, this scenario is again contradicted by the ex-
perimental observations, since high speed imaging shows that the vial takes off while the
bubble is still growing (movie 1). A further confirmation of this macroscopic observation
is provided by the parallel high-speed imaging and force measurement (figure 7.5d), whose
synchronisation we ensured down to one camera frame (90 µs). The time traces of the
various measured quantities were found to be very reproducible over several spikes (see
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figure 7.5d, inset), in terms of shape, time delay and order of occurence. Thus, the mea-
surement unambiguously shows that the onset of the force spike precedes bubble collapse,
and even precedes bubble growth; moreover, the spike contains oscillations on a timescale
which is about three times faster than the bubble dynamics. Hence the bubble seems to
arise as a collateral consequence of another phenomenon that is actually responsible for
the photomechanical effect.

7.3.4 The thermophoretic instability

Based on these various observations – and the dismissal of several scenarios –, we propose
a physical origin for the photomechanical effect, which is based on a collapsing instability
of the colloidal suspension. The key point in our reasoning is that the thermophoretic
force that drives the particles towards the laser also induces their mutual attraction.
It was proposed theoretically that such a thermophoretic attraction could lead to an
instability, analogous to the Jeans instability observed in gravitational systems [227,228],
as we detail in the following.

Assuming for simplicity that all the particles at positions rj are illuminated with
intensity I, each particle behaves as a point heat source and the temperature field satisfies
κ∆T (r) = 4πσI

∑
j δ(r− rj), where σ is the particle absorption cross-section and κ the

thermal conductivity of the solvent. This leads immediately to a temperature field which
depends on the colloidal structure according to

T (r) = T0 +
σI

κ

∑
j

1

|r− rj |
, (7.2)

where T0 is the temperature far away from the laser. Now if the particles undergo
thermophoresis characterised by the Soret coefficient S, then the particle flux, given by
eq. (7.1), can be rewritten introducing the effective potential Veff(r) which represents the
"thermophoretic interaction":

j(r) = −DSρ(r)∇T (r) ≡ D

kBT0
ρ(r)(−∇Veff)(r), (7.3)

with
Veff(r) = −G

∑
j

1

|r− rj |
, (7.4)

and G ≡ kBT0|S|σI/κ. Therefore, the laser-induced thermophoresis results in the par-
ticles interacting with a 1/r attractive potential (S is negative), which is analogous to
a gravitational potential, and G plays the role of a gravitational constant. Now, an en-
semble of particles – say a cloud of radius R – with gravitational interactions is known
to undergo a Jeans instability when it exceeds a critical mass [229]: quantitatively, the
cloud collapses to a point when the gravitational energy per particle exceeds the thermal
energy:

ρR2G ∼ kBT0. (7.5)

Such a collapsing instability explains the formation of stars from clouds of interstel-
lar dust [230]. The profound analogy between gravitational and certain types of col-
loidal interactions was first noted by Keller and Segel in the case of chemotactic bacte-
ria [231, 232]: when bacteria are attracted by a molecule that they themselves produce,
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they may collapse on each other to form dense aggregates. Similar behaviour was later
highlighted with diffusiophoretic [233,234], or even capillary [235] interactions, and more
recently predicted theoretically for thermophoretic interactions such as the ones con-
sidered here [227, 228]. It is therefore likely that the analog of Jeans’ instability with
thermophoretic interactions explains the brutal force release that we observe. This is
further supported by the scaling law argument we develop in the following.

The dynamics of the thermophoretic collapse couple the particle transport in the
pseudo-gravitational field to the fluid dynamics. The latter is described with a Navier-
Stokes equation:

µs[∂tv + (v · ∇)v] = −∇p+ ρ(−∇Veff) + η∆v, (7.6)

where v is the velocity field, p is the pressure, and µs and η the suspension mass density
and viscosity, respectively. The driving term ρ(−∇Veff) takes its origin in the ther-
mophoretic interaction introduced above. Solving this equation in the presence of the
thermophoretic interaction represents a formidable challenge, but one may propose some
scaling relations for the collapse dynamics. First, the observations indicate that the col-
lapse occurs over a short time-scale, of the order of 100 µs (figure 7.5b). This suggests that
the Reynolds number associated with the collapse is relatively large: indeed, using a mil-
limetric size for the collapsing region, one can estimate Re ≈ 10; thus the dynamics are
dominated by the transient (inertial) terms in the Navier-Stokes equation, while viscous
terms should be small. As a further note, one may remark that the viscous (shear) term
cancels for an incompressible flow with spherical symmetry as expected in the present
geometry, hence discarding viscosity effects on a more general ground. The collapse
thus results from the balance between the transient inertial term µsR

3v̇ ∼ µsR
4/τ2 (inte-

grated over the size R ∼ 1 mm of the collapsing cloud) and the total thermophoretic force
∼ ρR3(−∇Veff), with Veff the thermophoretic interaction potential defined in eq. (7.3).
Since the pseudo-gravitational potential results from the sum of the interactions of par-
ticles within the sphere of radius R, one estimates Veff ≈ −ρR3 G

R . This leads to a scaling
law for the timescale τ of the collapse, as

µs ·
R4

τ2
∼ ρ2GR5 ∼ ρR2kBT0 (7.7)

hence

τ ∼

√
µsR2

ρkBT0
, (7.8)

Due to the thermophoretic attraction, the density in the illuminated region is expected to
be close to the close packing density of the PbS particles, so that assuming ρ ∼ 1024 m−3,
we find τ ∼ 100 µs. This estimate is indeed in good agreement with the experimental
result and justifies a posteriori the inertial assumptions on the dynamics. As a further
prediction, the force generated in the collapse can be estimated as the collapsing mass
times its acceleration:

F ∼ mρR3 R

τ2
=
mρ2

µs
kBT0R

2. (7.9)

We find F ∼ 40 mN, which is again compatible with the experimentally observed range.
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Figure 7.6

Schematic mechanism of the photomechanical effect. a. Force versus time signal corresponding to
a force spike. The four dashed rectangles correspond to the four steps in the proposed mechanism
for the generation of a spike. b. Schematics for the four steps highlighted in panel a. The black
circles correspond to PbS particles and the red colour represents a temperature gradient. (1)
Phoretic motion of the particles towards the laser source. (2) Jeans instability, resulting in brutal
force release. (3) Explosive growth of a bubble, which disperses the accumulated particles. (4)
Collapse of the bubble and return to the initial state.

7.4 Discussion

The above considerations allow us to propose a complete scenario for the origin of the
photomechanical effect, which is summarised in figure 7.6. The PbS particles absorb the
laser light and become point heat sources. They undergo negative thermophoresis and
thus migrate towards the laser source. The particle density increases in the illuminated
region, up to the point where the Jeans instability occurs, resulting in collective motion
of the particles towards the laser, giving the whole vial momentum away from the laser.
The "gravitational" collapse is expected to result in a temperature increase and pressure
decrease near the wall of the vial, resulting from the increase in the particle concentration
and their rapid motion, respectively. This triggers a cavitation event, with a bubble
explosively growing and then collapsing next to the wall. The resulting dynamics disperse
the particles that have accumulated near the wall [223,236], so that the process can start
again and result in a new propulsion event. We expect that the momentum of the particles
is transmitted to the vial wall, resulting in the propagation of a shock wave through the
glass, which would be responsible for the oscillations observed in the force spikes and the
sound: the observed oscillation frequencies were different in the vial and the spectroscopic
cuvette. When the vial stands freely on a substrate, the momentum carried by the shock
wave can be transmitted to the substrate and then back to the vial so that it takes off: this
momentum transfer is similar to what occurs in the propulsion of the Mexican jumping
beans [237]. We thus expect only the first positive force peak to matter: the subsequent
oscillations contained in the spike (figure 7.6a) occur when the vial is already in the air
and they cannot therefore contribute to propulsion.

We have demonstrated the propulsion of a macroscopic object by the sole action of
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light through a novel mechanism involving negative thermophoresis as a key ingredient.
A 1.5 W laser illumination is sufficient to propel a vial weighing 3.5 grams at a 1 mm ·s−1

average speed. Remarkably, it is the interplay between three different phenomena –
thermophoretic migration, the Jeans instability and bubble cavitation –, that results in
the system propelling itself through repeatable, discrete force spikes. We believe it is also
remarkable that a "soft" system, whose dynamics are usually viscous, actually exhibits
ultrafast transport, way beyond the viscous timescale. The slow energy accumulation
followed by a fast release is reminiscent of the process used by certain plants, such as the
fern, to propel their spores [238]. Our novel mechanism for soft matter actuation could
therefore be of interest for mimicking certain bio-inspired functionalities.

7.5 The big picture

In this Chapter, we studied a peculiar photomechanical effect: a vial filled with a
concentrated colloidal suspension is propelled upon near-infrared laser illumination.
Thanks to a dedicated experimental setup that combined cantilever-based force mea-
surements and ultrafast imaging, we were able to propose a complete mechanism
for the propulsion, which is summarised in figure 7.6. The key ingredients are ther-
mophoretic migration of the colloidal particles towards the illuminated spot, and a
collapsing instability of the particle cloud.
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Conclusion and perspectives

In this thesis, I have explored several phenomena in nanoscale fluid transport that are
beyond the reach of the well-established continuum and mean-field theories. These phe-
nomena are the consequences of many-body effects – that is, inter-particle correlations –
in the ion and fluid dynamics under nanometre-scale confinement.

Why many-body effects? We have shown in Chapter 2 that many-body effects are
enhanced at the nanoscale due to interaction confinement : the presence of a confining wall
affects not only the particles’ translational degrees of freedom, but also their interactions
and hence their dynamics. The way in which the wall affects interactions is essentially
determined by its electromagnetic response. Hence, the fluid dynamics in a sufficiently
small channel may be expected to depend on the wall material’s electronic properties,
and even couple to its electron dynamics. This general principle establishes a crucial
distinction between nanofluidics and macroscopic hydrodynamics, where a wall is nothing
more than a boundary condition. This thesis has been largely devoted to exploring the
potential consequences of such a distinction.

Many-ion phenomena. In part II of this thesis, we predict that interaction confinement
significantly affects nanoscale ion transport. Due to the contrast in dielectric screening
properties between water and typical channel materials, ions in confinement interact
much stronger than in the bulk, leading to enhanced ionic correlations. Correlations are
in fact so strong that oppositely charged ions may pair up in nanometre-scale 1D or 2D
confinement. This Bjerrum pairing leads to many-body effects in the ion dynamics. In
1D geometry, we predict an ionic Coulomb blockade phenomenon, where ion transport
becomes "quantised" upon gating by a variable surface charge. In 2D confinement, a
dynamic clustering transition of the Bjerrum pairs gives rise to memory effects in the
system, and potentially neuromorphic behaviour. Overall, we find that ions in interaction
confinement have striking properties that are completely beyond mean-field descriptions.
We develop a range of specific theoretical tools to tackle these systems: from revisiting
Onsager’s theory of the Wien effect, to implementing an exactly solvable model in one
dimension.

Many-body quantum friction. In part III of this thesis, we take the idea of interaction
confinement further, by looking at its consequences on the dynamics of the solid-liquid
interface. While ion dynamics are sensitive to the channel wall’s electronic properties on
the nanometre scale, where these can be described in terms of local dielectric response, the
dynamics of interfacial water involve lengthscales that may be on the order of the Fermi
wavelength of the wall material’s conduction electrons. Moreover, in terms of time scales,

103



the terahertz frequencies associated with the water molecules’ thermal motion may be in
the range of electronic plasma frequencies of materials with low electronic density, and
non-trivial water-electron couplings beyond the Born-Oppenheimer approximation may
be expected. By developing a many-body quantum theory of the solid-liquid interface,
we find that such couplings do indeed occur, and are responsible for a supplementary
contribution to hydrodynamic friction that we call quantum friction. This quantum
contribution may explain some of the peculiar properties of the water-carbon interface, in
particular the radius-dependent slippage in carbon nanotubes. Thus, strikingly, the most
subtle consequences of interaction confinement are measurable in fairly large channels: the
radius dependence of slippage is observed in nanotubes with radii in the range 10−30 nm.

What about experiments? The theoretical investigations developed in this thesis are
largely motivated by the recent progress in fabrication technology, which has finally placed
well-controlled nanofluidic systems with molecular-scale confinement within our reach. It
is therefore reasonable to hope for an experimental insight into the theoretical predic-
tions of this thesis in the near future, and several preliminary results are encouraging
in this respect. For instance, non-linear current-voltage characteristics have been ob-
served for ion transport in 2 nm diameter carbon nanotubes, and may be the signature of
confinement-induced ionic correlations [44]. Moreover, an observation of ionic Coulomb
blockade in MoS2 nanopores has recently been claimed: the authors measured conduc-
tance gating by a light-controlled variable surface charge [239] (the findings have not
yet been peer-reviewed). Finally, the ongoing measurements of water slippage in two-
dimensional nanochannels, described in Chapter 5, will provide an ideal testing ground
for our theory of quantum hydrodynamic friction, thanks to the possibility of tuning the
confinement width and wall materials.

So what ? We have learned that liquids have some peculiar correlated dynamics when
confined to the nanometre scale. Apart from filling up the pages of a thesis, this opens
a range of exciting perspectives. The exotic ion transport phenomena that result from
interaction confinement open new avenues in the field of iontronics, that is, computations
based on ions. Ion transport is used by the human brain to carry out computations that
are too complex for any artificial computer to handle, and with orders of magnitude lower
energy consumption. The exact reasons which make biological computations so efficient
are unclear, and the development of elementary ion-based computing devices may be
expected to shed light on this fundamental question. Pioneering work in this direction is
currently in the hands of my fellow PhD students, Théo Emmerich and Paul Robin.

The whole principle of interaction confinement, and in particular the quantum fric-
tion phenomenon, establishes a new bridge between hard and soft condensed matter.
This was envisioned already in our group’s 2016 paper on radius-dependent slippage in
nanotubes [23]: The unexpected slippage behaviour inside CNTs and BNNTs points to
a hitherto not appreciated link between hydrodynamic flow and the electronic structure
of the confining material. This opens up a new avenue for research that could bridge
the gap between hard and soft condensed matter physics. While the 2016 paper laid the
foundation with a crucial experimental result, this thesis begins to build the bridge with
equations, which point to non-trivial quantum effects in solid-liquid friction. I hope that
the theoretical framework presented in Chapter 5 can help unveil new quantum effects at
the solid-liquid interface, whether it is frictional behaviour – the single-file water configu-
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ration shows particular promise in this respect – or other related effects such as Coulomb
drag [240,241]. Beyond the fundamental interest, these phenomena could potentially lead
to radically new ways of controlling fluid transport at the nanoscale.
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AppendixA

Ionic interactions in confinement
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A.1 1D channel: nanotube

We consider the nanochannel of radius R in cylindrical coordinates (r, z). We denote ε
the dielectric permittivity tensor. We place a point charge Ze at (r, z) = (0, 0) and solve
the Poisson equation for the electrostatic potential φ, which reads

∇
(
ε · ∇φ

)
= −Ze

ε0

δ(r)δ(z)

2πr
. (A.1)

The tensor ε is diagonal in cylindrical coordinates,

ε =

 εr 0 0
0 εθ 0
0 0 εz

 . (A.2)

Inside the channel (r < R), the permittivity is that of water and therefore εr = εθ = ε⊥
and εz = ε‖. Outside the channel, we assume an isotropic permittivity εm, so that
εr = εθ = εz = εm.

We may expand eq. (A.1) as

εr∂
2
rφ+

εr
r
∂rφ+ εz∂

2
zφ = −Ze

ε0

δ(r)δ(z)

2πr
. (A.3)

We now define the Fourier-transformed potential φ̃(r, q) by

φ(r, z) =
1

2π2

∫ ∞
0

dq φ̃(q, r) cos(qz), (A.4)

and eq. (A.3) in Fourier space reads

∂2
r φ̃+

1

r
∂rφ̃−

(
q

√
εz
εr

)2

φ̃ = − Ze

ε0εr

δ(r)

r
. (A.5)
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A.1. 1D channel: nanotube

We look for solutions of (A.5) separately in the regions r < R and r > R. The solutions
are given by:

r < R : φ̃<(q, r) = AI0
(
qr
√
ε‖/ε⊥

)
+BK0

(
qr
√
ε‖/ε⊥

)
r > R : φ̃>(q, r) = CI0(qr) +DK0(qr)

(A.6)

where A,B,C,D are four constants and I0 and K0 are the modified Bessel functions.
Since I0 diverges at infinity, we immediately set C = 0. We now determine the boundary
conditions at r = 0 and r = R. The continuity of the potential at r = R implies

AI0

(
qR
√
ε‖/ε⊥

)
+BK0

(
qR
√
ε‖/ε⊥

)
= DK0(qR). (A.7)

To determine the condition on the electric field at r = 0, we integrate eq. (A.5) over an
interval [r = −λ; r = λ]:∫ λ

−λ
dr (r∂2

r + ∂r)φ̃<(q, r)−
(
k
√
ε‖/ε⊥

)2
∫ λ

−λ
dr rφ̃<(q, r) = − Ze

ε0ε⊥

∫ λ

−λ
δ(r)dr. (A.8)

Recalling that (r∂2
r + ∂r) = ∂r(r∂r) and letting λ go to 0, we obtain the condition

lim
r→0

[
r∂rφ̃<(q, r)

]
= − Ze

ε0ε⊥
. (A.9)

Applying the same procedure at r = R, we obtain

ε⊥ ∂rφ̃<

∣∣∣
r=R

= εm ∂rφ̃>

∣∣∣
r=R

. (A.10)

In terms of the solution (A.6), the condition (A.9) reads

q

√
ε‖

ε⊥
·B · lim

r→0

[
rK1

(
qr

√
ε‖

ε⊥

)]
=

Ze

ε0ε⊥
, (A.11)

and since K1(x) ∼
x→0

1/x, this yields

B =
Ze

ε0ε⊥
. (A.12)

Similarly, the condition (A.10) implies

√
ε⊥ε‖ ·

[
AI1

(
qR
√
ε‖/ε⊥

)
−BK1

(
qR
√
ε‖/ε⊥

)]
= −εmDK1(qR). (A.13)

Solving together eqs. (A.7), (A.12) and (A.13) yields the constants A,B,C and the ex-
pression for the Fourier-transformed potential inside the channel:

φ̃<(q, r) =

√
ε⊥ε‖K1

(
qR
√
ε‖/ε⊥

)
K0(qR)− εmK1(qR)K0

(
qR
√
ε‖/ε⊥

)
√
ε⊥ε‖K0

(
qR
√
ε‖/ε⊥

)
I1(qR) + εmK1

(
qR
√
ε‖/ε⊥

)
I0(qR)

·
ZeI0

(
qr
√
ε‖/ε⊥

)
ε0ε⊥

. . .

+
Ze

ε0ε⊥
·K0

(
qr
√
ε‖/ε⊥

)
.

(A.14)
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A.1. 1D channel: nanotube

Setting ε‖ = ε⊥ one recovers the result obtained for example by Teber [70]. We may
now follow ref. [70] in identifying the first term in eq. (A.14) as the contribution of
the polarisation charges in the confining medium and the second term as the usual 1/r
Coulomb potential. Indeed, upon reverse Fourier transformation, it yields a contribution

φ0(r, z) =
q

4πε0
√

(zε⊥)2 + (r
√
ε‖ε⊥)2

, (A.15)

which dominates the potential φ(r, z) at short distances r � R. Thus, interestingly, it is
the radial permittivity that matters for the short-range interaction along the longitudinal
direction.

Now at distances r � R, one needs only to consider the contribution of small wavevec-
tors q (such that qR � 1) in eq. (A.4). We set κ ≡ qR and expand the denominator of
eq. (A.14) at small κ. We obtain:

√
ε⊥ε‖K0

(
κ
√
ε‖/ε⊥

)
I1(κ) + εmK1

(
κ
√
ε‖/ε⊥

)
I0(κ) =

εm
κ

√
ε⊥
ε‖

[
1 +

κ2

4εmε⊥

(
εm(ε⊥ − ε‖) + 2γε‖(εm − ε⊥) + 2ε‖(εm − ε⊥) log

(
κ

2

√
ε‖

ε⊥

))
+ o(κ2)

]
,

(A.16)

where γ is Euler’s gamma constant. In order to be able to compute the reverse Fourier
transform, Teber proposes to introduce a characteristic length ξ such that the term in
brackets in eq. (A.16) may be simplified as 1 + (κξ/R)2. Enforcing that the bracket
should equal 2 when κ = R/ξ, one obtains an implicit equation for ξ, which reads in our
anisotropic permittivity case

ξ2

R2
=

1

4εmε⊥

[
εm(ε⊥ − ε‖) + 2ε‖(εm − ε⊥)

(
γ − log

(
2ξ

R

√
ε⊥
ε‖

))]
. (A.17)

Setting ε⊥ = ε‖ = εw and assuming εm � εw , one recovers

ξ2

R2
=

εw
2εm

[
log

(
2ξ

R
− γ
)]

, (A.18)

which is eq. (7) of ref. [70]. Provided that the above approximation scheme holds in the
anisotropic permittivity case, one obtains the potential along the z direction as

φ(0, z) = φ0(0, z) +
Ze

2π2ε0R

√
ε‖

εmε⊥
√
ε⊥

. . .∫ +∞

0

dκκ ·
√
ε⊥ε‖K1

(
κ
√
ε‖/ε⊥

)
K0(κ)− εmK0

(
κ
√
ε‖/ε⊥

)
K1(κ)

1 + (κξ/R)2
cos(κz/R).

(A.19)

Teber identifies the length ξ as the point of transition between a 1D-like linear Coulomb
potential and a 1/r tail. He thereby approximates the potential as

φ(0, z) =
ξ

xT
e−|z|/ξ, (A.20)

where xT ≈ R2/(2`B), with `B is the Bjerrum length for an isotropic water permittivity
εw. In the case of a not too strongly anisotropic permittivity, one may use our eq. (A.17)
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A.2. 2D channel: nano-slit

to compute a corrected value of ξ. However, if the permittivity is strongly anisotropic
there is no solution to eq. (A.17). Hence one may not use the exponential approximation
directly: qualitatively, it is the short-range 1/r term in the potential that dominates
over the 1D term that comes from the image charges. Nevertheless, it is possible to find
parameters ξ and xT such that the exponential form (A.20) reasonably reproduces at few-
nm separations that are relevant in the discussion on many-body effects, in particular the
Coulomb blockade phenomenon.

A.2 2D channel: nano-slit

In this section, we establish an analytical representation for the Coulomb potential created
by an ion placed in the middle of a nano-slit of heigh h1. We start from eq. (2.17), which
gives the Fourier-transformed Coulomb potential in terms of the confining medium’s
surface response function gm:

φtot(q, 0) =
e

4πε0
√
ε‖ε⊥

2π

q

(
1− 2gme

−aqh

1 + gme−aqh

)
. (A.21)

At distances ρ � h, we may consider only the contribution of the potential induced by
the polarisation charges:

φ(q, 0) =
e

4πε0
√
ε‖ε⊥

2π

q

(
− 2gme

−aqh

1 + gme−aqh

)
. (A.22)

We then expand the denominator, according to

φ(q, 0) =
e

4πε0
√
ε‖ε⊥

4π

q

+∞∑
n=1

(−1)ngnme
−nqah. (A.23)

This allows us to compute the real-space potential according to

φ(ρ) =

∫ +∞

0

dq

2π
qJ0(qρ)φ(q, 0) =

e

2πε0
√
ε‖ε⊥

+∞∑
n=1

(−gm)n√
ρ2 + a2h2n2

. (A.24)

We recall that
gm =

εm −
√
ε‖ε⊥

εm +
√
ε‖ε⊥

< 0, (A.25)

in the case under consideration where εm �
√
ε‖ε⊥. We may then heuristically approxi-

mate the sum by the corresponding integral:

φ(ρ) ' e

4πε0ε‖h

∫ ∞
0

γu du√
ρ2/a2h2 + u2

, (A.26)

with γ = −gm. We obtain:

φ(ρ) ' e

4πε0ε‖h

[
−J0

(
ρ| log γ|
ah

)
log

(
ρ| log γ|

2ah

)
+

1

2
πH0

(
ρ| log γ|
ah

)
− f

(
−ρ

2 log2 γ

4a2h2

)]
,

(A.27)
1I am indebted to P. Robin for carrying out this computation
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where H0 is the Struve function of zeroth order and f can be expressed in terms of the
hypergeometric confluent function 0F1 and Euler’s gamma function:

f(x) =

(
∂

∂a
0F1(a, x)

Γ(a)

)
a=1

. (A.28)

We can identify the lengthscale:

ξ =
ah

| log γ|
'

ε‖

2εm
h (A.29)

where we recall that a =
√
ε‖/ε⊥. The appearance of the lengthscale ξ suggests the

further approximation of the potential according to

φ(ρ) ' −eK
2πε0ε‖h

log

(
ρ

ρ+ ξ

)
, (A.30)

which strongly ressembles a 2D Coulomb potential screened by a dielectric constant ε‖.
The dimensionless constant of order unity K ' 1.11 is a geometric factor that depends
very weakly on other parameters. This analytical approximation reproduces very well
the exact result as shown in figure 2.3.
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AppendixB

Surface response functions
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B.4 Specular reflection approximation . . . . . . . . . . . . . . . . . . . 114

B.1 Definition

Consider a semi-infinite medium occupying the half-space z < 0, while the half-space
z > 0 is filled with vacuum. We define its density-density response function χ as the
linear response function relating the induced charge density δn to the externally applied
potential φext (in energy units):

δn(r, t) =

∫ +∞

−∞
dt′
∫

dr′χ(r, r′, t− t′)φext(r
′, t′). (B.1)

If the medium is translationally invariant parallel to the surface, we introduce cylindrical
coordinates r ≡ (ρ, z); and the space-time Fourier transform

χ(q, z, z′, ω) =

∫
d(ρ−ρ′)

∫ +∞

−∞
d(t− t′)e−iq(ρ−ρ′)e−iω(t−t′)χ(ρ−ρ′, z, z′, t− t′). (B.2)

The surface response function is then defined according to

g(q, ω) = − e2

2ε0q

∫ 0

−∞
dzdz′ eq(z+z

′)χ(q, z, z′, ω). (B.3)

B.2 Long wavelength limit

It appears from the definition (B.3) that the surface response function plays the role
of a reflection coefficient for evanescent plane waves. Suppose the medium is subject
to an evanescent plane wave at frequency ω, of the form φext(ρ, z, ω) = φ0e

iqρeqz. Its
space-time Fourier transform is φext(z, q, ω) = φ0e

qz. Then, the induced charge density
is

δn(q, z, ω) = φ0

∫ 0

−∞
dz′χq(z, z

′, ω)eqz
′
, (B.4)
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and the induced potential at a distance z above the medium is

φind(q, z, ω) = φ0

∫ 0

−∞
dz′dz′′χ(q, z′, z′′, ω)eqz

′ e2

4πε0

2π

q
e−q(z−z”) = −g(q, ω)φ0e

−qz,

(B.5)
or, in real space, φind(ρ, z, t) = −φ0g(q, ω)ei(qρ−ωt)e−qz.

Given this interpretation, g may be readily evaluated in the long wavelength limit,
where the medium may be assumed to have a local dielectric response ε(ω). In that
case, inside the medium, there may be no induced charges (except on the surface), and
the potential therefore solves the Laplace equation. Since it must vanish at −∞, it is
of the form φm(q, z) = φme

qz. Outside the medium, the potential is the sum of the
external potential and the induced potential. Since the Laplace equation holds, the
outside potential reads

φ(q, z) = φexte
qz + φinde

−qz. (B.6)

Now, we must enforce boundary conditions on the interface. These are given by continuity
of the potential and of the displacement field D = −ε0ε(ω)∇φ. The boundary conditions
read

φext + φind = φm

φext − φind = ε(ω)φm.
(B.7)

Hence we obtain φind = φext(1 − ε(ω))/(ε(ω) + 1), and therefore the expression of g in
the long wavelength limit:

g(q → 0, ω) =
ε(ω)− 1

ε(ω) + 1
. (B.8)

If one further takes into account the screening of the indued potential in the half-space
z > 0 by a local dielectric constant εw, then through a similar enforcement of boundary
conditions this expression is generalised to

g(q → 0, ω) =
ε(ω)− εw
ε(ω) + εw

. (B.9)

B.3 General case

In general, computing the surface response requires the knowledge of the density response
function χ(q, z, z′, ω) for a semi-infinite medium. For a liquid, it can be determined
directly from classical molecular dynamics (MD) simulations (see Appendix F). For an
electronic system, it can be computed within different analytical or numerical frameworks
with varying degrees of accuracy. The simplest treatment (self-consistent Hartree, or
RPA) that takes into account electron-electron interactions requires to solve the following
Dyson equation (see Appendix E):

χ(q, z, z′, ω) = χ0(q, z, z′, ω) +

∫
dz1dz2 χ

0(q, z, z1, ω)Vq(z1 − z2)χ(q, z2, z
′, ω), (B.10)

where Vq(z) = (e2/2ε0q)e
−q|z| is the Fourier-transformed Coulomb potential. Here χ0 is

the non-interacting density response function: it determines the electrons’ response to an
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B.4. Specular reflection approximation

external potential φext with the electron-electron interactions switched off. Solving the
one-electron Schrödinger equation to first order in the perturbation φext yields [242]:

χ0(r, t, r′, t′) = − i
~
θ(t− t′)Tr(ρ0[n(r, t), n(r′, t′)]), (B.11)

where ρ0 is the non-interacting density matrix, and the density operators are in the
Heisenberg picture with respect to the non-interacting hamiltonian H0:

n(r, t) = eiH0t/~n(r)e−iH0t/~. (B.12)

We denote |λ〉 the eigenstates and Eλ the corresponding energies of the unperturbed
non-interacting system:

H0|λ〉 = Eλ|λ〉. (B.13)

Then, the non-interacting density matrix is

ρ0 =
∑
λ

nF(Eλ)|λ〉〈λ|, (B.14)

where nF is the Fermi-Dirac distribution. Inserting the resolution of the identity Î =∑
λ |λ〉〈λ| into eq. (B.11), one obtains

χ0(r, t, r′, t′) = − i
~
∑
λλ′

(nF(Eλ)−nF(E′λ))〈λ|n(r)|λ′〉〈λ′|n(r′)|λ〉e i~ (Eλ−Eλ′ )(t−t
′). (B.15)

Fourier transformation with respect to time then yields

χ0(r, r′, ω) = − i
~
∑
λλ′

nF(Eλ)− nF(E′λ)

Eλ − Eλ′ + ~ω + iδ
〈λ|n(r)|λ′〉〈λ′|n(r′)|λ〉, (B.16)

with δ → 0+. If we introduce the position representation eigenfunctions ψλ(r), then the
density operator is decomposed according to

n(r) =
∑
λ1λ2

ψ∗λ2
(r)ψλ1(r)|λ2〉〈λ1|, (B.17)

so that finally

χ0(r, r′, ω) =
∑
λ,λ′

nF(Eλ)− nF(Eλ′)

Eλ − Eλ′ + ~ω + iδ
ψ∗λ(r)ψλ′(r)ψ∗λ′(r

′)ψλ(r′). (B.18)

Thus, the non-interacting density response function can in principle be computed if the
eigenstates and eigenenergies of the non-interacting system are known, and then the
surface response function can be obtained in the framework of RPA.

B.4 Specular reflection approximation

Even if χ0 is known, eq. (B.10) must be solved numerically for every value of q and
ω. A considerable simplification is achieved within the so-called specular reflection (SR)
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approximation, which allows one to solve (B.10) analytically and express the surface
response in terms of the bulk response. The SR approximation sets

χ0(q, z, z′, ω) = χ0
B(q, z − z′, ω) + χ0

B(q, z + z′, ω), (B.19)

where χ0
B is the bulk system’s non-interacting density response. This ansatz does not

correspond to any particular form of the wavefunctions in eq. (B.18). It imposes phe-
nomenologically that in the presence of a surface, the points z and z′ may either interact
directly, or through a specular reflection from the surface at z = 0. It can be shown
that the SR approximation thus amounts to neglecting quantum interference between
electrons impinging on and electrons reflected from the surface [175].

Inserting eq. (B.19) into eq. (B.10) and carrying out Fourier transforms along the
vertical direction (the computation is detailed, for example, in [175]), one obtains:

g(q, ω) =
1− q`q(ω)

1 + q`q(ω)
, `q(ω) =

2

π

∫ +∞

0

dqz
(q2 + q2

z)ε(q, qz, ω)
, (B.20)

where ε(q, qz, ω) = 1− e2

ε0(q2+q2z)χ
0
B(q, qz, ω) is the bulk system’s dielectric function. The

bulk non-interacting density response function is obtained from the Fourier-transformed
eq. (B.18):

χ0
B(q, qz, ω) =

∑
ν,ν′

∫
BZ

d3k

4π3
|〈k + q, ν|eiq·r|k, ν′〉|2 nF[Eν(k + q)]− nF[Eν′(k)]

Eν(k + q)− Eν′(k)− ~(ω + iδ)
,

(B.21)
where we have re-labeled the states λ 7→ (k, ν), with ν a band index and k a vector within
the (three-dimensional) first Brillouin zone.

For completeness, we provide here an additional derivation of eq. (B.20), which has
the advantage of being computationally simpler than the one reported in [175]. It is based
on the work of Ritchie and Marusak [81], who first proposed the SR approximation in
their study of surface plasmons. The idea is that, when eq. (B.19) is enforced, the shape
of the density response of the semi-infinite medium to the potential φext(q, z, ω) = φexte

qz

is the same as the shape of the density response of an infinite medium to a symmetrised
potential φeff(q, z, ω) = φeffe

−q|z|. The amplitude φeff is a priori non known, and it is
determined by enforcing Maxwell boundary conditions at the interface.

In the following, we will drop the frequency ω which plays no role in the computation.
In response to the potential φeff , the induced charge density in the infinite medium reads

δn(q, z) = φeff

∫ +∞

−∞
dz′χB(q, z − z′)e−q|z

′| (B.22)

= φeff
1

2π

∫ +∞

−∞
dqzχB(q, qz)e

iqzz

∫ +∞

−∞
dz′e−q|z

′|e−iqzz
′

(B.23)

= φeff
q

π

∫ +∞

−∞
dqz

χB(q, qz)

q2 + q2
z

eiqzz. (B.24)

The induced potential φind,m (not to be confused with the induced potential φinde
−qz
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outside the medium) is

φind,m(q, z) =

∫ +∞

−∞
dz′ δn(q, z′)

e2

4πε0

2π

q
e−q|z−z

′| (B.25)

= 2φeff
e2

4πε0

∫ +∞

−∞
dqz

χB(q, qz)

q2 + q2
z

eiqzz
∫ +∞

−∞
dz′e−q|z−z

′|eiqzz
′

(B.26)

= 4φeff
e2

4πε0

∫ +∞

−∞
dqz

qχB(q, qz)

(q2 + q2
z)2

eiqzz. (B.27)

At this point, we may introduce the bulk dielectric function ε(q, qz). For the bulk inter-
acting density response function, the RPA Dyson equation (B.10) reduces to

χB(q, qz) =
χ0

B(q, qz)

1− e2

ε0(q2+q2z)χ
0
B(q, qz)

. (B.28)

The dielectric function being defined according to ε(q, qz) = 1 − e2

ε0(q2+q2z)χ
0
B(q, qz), we

have the relation

χB(q, qz) =
ε0(q2

z + q2)

e2

(
1

ε(q, qz)
− 1

)
. (B.29)

When inserting this relation into eq. (B.27), we need to compute the integral

I(q) =

∫ +∞

−∞
dqz

eiqzz

q2 + q2
z

=
1

q

∫ +∞

−∞
du

eiuqz

1 + u2
. (B.30)

Specialising to the case z < 0, and noticing that the integrand has poles at i and −i, we
may close the integration path in the lower complex plane, so that

I(q) = −2iπ

q
Res
u=−i

[
eiuqz

1 + u2

]
=
π

q
eqz. (B.31)

Finally,

φind,m(q, z) = φeff

(
q

π

∫ +∞

−∞

eiqzz

(q2 + q2
z)ε(q, qz)

− eqz
)
, (B.32)

so that the total potential in the half-space z < 0 is

φm(q, z) = φeffe
qz + φind,m(q, z) = φeff

q

π

∫ +∞

−∞

eiqzz

(q2 + q2
z)ε(q, qz)

. (B.33)

We now need to determine φeff in the actual semi-infinite medium by enforcing the bound-
ary conditions at the surface, which are, as in the local case (section 3.1), continuity of
the potential and of the displacement field. Outside the medium, we may still express
the potential as φexte

qz + φinde
−qz: the sum of the actual potential we are applying and

the potential induced by the medium. The displacement field is produced only by the
external charges, hence D(q, z) = −ε0∇φeff(q, z) in the half-space z < 0, so that the
boundary conditions read:

φext + φind = q`qφeff

φext − φind = φeff .
(B.34)
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We deduce
φind =

q`q − 1

q`q + 1
φext, (B.35)

and, given that φind = −g(q, ω)φext (see section B.2), we recover eq. (B.20). As in the
long wavelength limit, if we take into account screening of the induced potential by a
local dielectric medium of permittivity εw at z > 0, the result generalises to

g(q, ω) =
1− εwq`q(ω)

1 + εwq`q(ω)
. (B.36)
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Theory of ionic Coulomb blockade
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C.1 Equilibrium properties: Coulomb gas theory

Our computation is inspired by the original solution of the 1D Coulomb gas model by
Lenard and Edwards [112], and subsequent studies by Demery, Dean and coworkers [113,
243–245], as well as Shklovskii and coworkers [107,109].

C.1.1 Model definition

We consider a one-dimensional lattice with sites 1, . . . ,M as a model for the nanochannel
of radius R and length L. Each lattice site i carries a spin Si, which takes the values
{0, 1,−1}, corresponding respectively to no ion, a positive ion, or a negative ion occupying
the site. We model the surface charge distribution as an extra fixed charge qi added at
each lattice site. The spins interact with the Hamiltonian

H({Si}) =
ξ

2xT

M∑
i,j=1

(Si + qi)(Sj + qj)e
−|i−j|/ξ ≡ 1

2xT
(S + q)TC(S + q), (C.1)
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where we have taken kBT = 1. The system is in contact with a particle reservoir with bulk
density ρ0. Here the parameters ξ and xT are dimensionless, expressed in number of lattice
sites. Their relationship to the geometrical parameters is discussed in Appendix A.1.

C.1.2 General solution

The grand partition function is given by

Ξ =
∑

S1,...,SM

z
∑
i |Si|e

− 1
2xT

(S+q)TC(S+q)
, (C.2)

with z = ρ0πR
2L/M the fugacity. The matrix C can be analytically inverted:

C−1 =
1

2ξ sinh(1/ξ)
·



e1/ξ −1 0 0 . . . 0 0
−1 2 cosh(1/ξ) −1 0 . . . 0 0
...

. . . . . . . . .
...

...
...

. . . . . . . . .
...

...
...

. . . . . . . . .
...

0 0 . . . 0 −1 2 cosh(1/ξ) −1
0 0 . . . . . . 0 −1 e1/ξ


. (C.3)

Hence we can carry out a Hubbard-Stratonovich transformation, that is rewrite the par-
tition function as a gaussian integral, introducing the integration variable φ:

Ξ =

√
xMT

(2π)Mdet(C)
·
∑

S1,...,SM

z
∑
i |Si|

∫
dφe−

xT
2 φTC−1φ+i(S+q)Tφ, (C.4)

with det(C) = e1/ξ

2 sinh(1/ξ) ·
[
ξ(1− e−2/ξ)

]M
. After performing the sum over the spins,

which is now decoupled, we obtain

Ξ =

√
xMT

(2π)Mdet(C)
·
∫

dφ1 . . .dφM

M∏
j=1

(1 + 2z cosφj)

M∏
j=1

eiqjφj . . .

exp

(
− xT

4ξ sinh(1/ξ)

[
M−1∑
j=1

(φj+1 − φj)2 + 2(cosh(1/ξ)− 1)

M−1∑
j=2

φ2
j + (e1/ξ − 1)(φ2

1 + φ2
M )

])
.

(C.5)

We now take a continuum limit of the lattice model. We call a the physical lattice
spacing and let ξ̃ = aξ, x̃T = axT and z̃ = Mz. We then let a → 0 and M → ∞ while
keeping the physical length of the system L = aM constant. We then drop the tilde sign
to lighten the notation and obtain

Ξ =

∫
dφ(0)e−xTφ(0)2/4ξ

∫
[dφ]e−S[φ]

∫
dφ(L)e−xTφ(L)2/4ξ (C.6)

with

S[φ] =

∫ L

0

dx

[
xT
4

(
dφ

dx

)2

+
xT
4ξ2

φ(x)2 − iq(x)φ(x)− 2z

L
cosφ(x)

]
≡
∫ L

0

L(φ, φ̇).

(C.7)
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C.1. Equilibrium properties: Coulomb gas theory

q(x) is the one-dimensional density corresponding to the surface charge, and we have
changed the notation to z ≡ πR2Lρ0. At this point ξ and xT have the dimension of
length. The path integral measure is defined as

[dφ] = lim
a→0
M→∞
L=aM

 M∏
j=1

√
xT
4πa

dφj

 . (C.8)

We now define the propagator P (φ, x|φ0, 0), or simply P (φ, x), as

P (φ, x) =

∫
dφ(x)δ(φ(x)− φ)

∫
[dφ]e−

∫ x
0
L(φ,φ̇)

∫
dφ(0)δ(φ(0)− φ0). (C.9)

Considering an infinitesimal displacement ∆x,

P (φ, x) =

√
xT

4π∆x

∫
d(∆φ)P (φ−∆φ, x−∆x) . . .

. . . exp

(
−
∫ x

x−∆x

dx′

[
xT
4

(
∆φ

∆x

)2

+
xT
4ξ2

φ2 − iq(x)φ− 2z

L
cosφ

])
.

(C.10)

Expanding the propagator as P (φ −∆φ, x −∆x) = P (φ, x) −∆x∂P/∂x −∆φ∂P/∂φ +
(1/2)(∆φ2)∂2P/∂φ2, and carrying out the gaussian integrals, we obtain

P (φ, x) =

(
P (φ, x)−∆x

∂P

∂x
+O(∆x2)

)(
1−∆x

[
xT
4ξ2

φ2 − iq(x)φ− 2z

L
cosφ

]
+O(∆x2)

)
+

∆x

xT

∂2P

∂x2
(1 +O(∆x)).

(C.11)

P (φ, x) thus solves the partial differential equation

∂P

∂x
=

1

xT

∂2P

∂φ2
+

(
iqφ− xT

4ξ2
φ2 +

2z

L
cosφ

)
P, (C.12)

with initial condition P (φ, 0) = δ(φ−φ0) which is the equivalent of a Schrödinger equation
for the path integral representation (C.6). The partition function can thus be computed
as

Ξ =

∫
dφ(L)e−xTφ

2/4ξP (φ,L|f0), (C.13)

where P (φ,L|f0) is the solution of (C.12) with initial condition P (φ, 0) = f0(φ) ≡
e−xTφ

2/4ξ, which can be easily obtained by finite difference numerical integration.
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C.1. Equilibrium properties: Coulomb gas theory

C.1.3 Observables

In the lattice model, the probability to find, say, a positive ion at position k, can be
computed by replacing a factor (1 + 2z cosφk) by zeiφk :

〈ρ+
k 〉 =

1

Ξ

∫
dφ1 . . . dφM

∏
j 6=k

(1 + 2z cosφj)ze
iφk

M∏
j=1

eiqφj . . .

exp

− xT
4ξ sinh(1/ξ)

M−1∑
j=1

(φj+1 − φj)2 + 2(cosh(1/ξ)− 1)

M−1∑
j=2

φ2
j + (e1/ξ − 1)(φ2

1 + φ2
M )

 .

(C.14)

Thus, taking the continuum limit, one can compute the average positive ion density by
inserting the operator zeiφ at position x:

〈ρ+(x)〉 =
1

Ξ

∫
dφ(0)dφ(x)dφ(L)e−xTφ(0)2/4ξP (φ(x), x|φ(0), 0) . . .

. . . zeiφ(x)P (φ(L), L|φ(x), x)e−xTφ(L)2/4ξ,

(C.15)

which can again be obtained by finite differences. Let us now compute the electrostatic
potential Φ at a lattice point j0. One has

∂Ξ

∂qj0
=

∑
S1,...,SM

[
− 1

xT

∑
i

(Si + qi)Cij0

]
z
∑
i |Si|e−H({Si})

=
∑

S1,...,SM

[
− ξ

xT

∑
i

(Si + qi)e
−|i−j0|

]
z
∑
i |Si|e−H({Si}) ≡ −〈Φj0〉 · Ξ

(C.16)

Now looking at eq. (C.5), differentiating Ξ with respect to qj0 corresponds to inserting
a factor iφj0 , thus in the continuum limit the electrostatic potential is computed by
inserting an operator −iφ:

〈Φ(x)〉 =
1

Ξ

∫
dφ(0)dφ(x)dφ(L)e−xTφ(0)2/4ξP (φ(x), x|φ(0), 0) . . .

. . . (−iφ(x))P (φ(L), L|φ(x), x)e−xTφ(L)2/4ξ.

(C.17)

C.1.4 Effect of ion valence

So far we have only considered monovalent ions. Ions of valence p could be taken into
account by having the spins Si take the values {p, 0,−p} instead of {1, 0,−1}. The
action (C.7) then becomes

S[φ] =

∫ L

0

dx

[
xT
4

(
dφ

dx

)2

+
xT
4ξ2

φ(x)2 − iq(x)φ(x)− 2z

L
cos pφ(x)

]
, (C.18)

or, after a change of variable,

S[φ] =

∫ L

0

dx

[
(xT /p

2)

4

(
dφ

dx

)2

+
(xT /q

2)

4ξ2
φ(x)2 − i(q(x)/p)φ(x)− 2z

L
cosφ(x)

]
.

(C.19)
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C.1. Equilibrium properties: Coulomb gas theory

Thus any property for ions of valence p will be the same as for ions with valence 1, with
p2 times stronger interactions and p times smaller surface charge.

C.1.5 Mean-field approximation

The mean-field version of the Coulomb gas model is obtained by taking a saddle point
approximation in path integral (C.6). Minimising the action (C.7) with respect to the
function φ(x), we obtain a differential equation for φ(x):

xT
2

d2φ

dx2
=
xT
2ξ2

φ− iq +
2z

L
sinφ. (C.20)

Following the argument in section C.1.3, we identify the dimensionless electrical potential
as Φ = −iφ. Thus Φ satisfies(

d2

dx2
− 1

ξ2

)
Φ = − 2q

xT
+

4z

LxT
sinh Φ. (C.21)

Now using xT = R2/(2`B) = 2πε0εwR
2/e2 (we still take kBT = 1) and z = ρ0πR

2L, we
obtain (

d2

dx2
− 1

ξ2

)
Φ(x) = − q(x)

εwε0
+

2ρ0

εwε0
sinh Φ(x). (C.22)

This the equivalent of the Poisson-Boltzmann equation (that is, the Poisson-Nernst-
Planck equations at equilibrium) for our system. The dashed black line in figure 3.2a
corresponds to the numerical solution of eq. (C.22). It could have also been derived in
the standard way from the Boltzmann distribution of ions in the electrostatic potential
Φ, which solves the modified Poisson equation (d2/dx2 − 1/ξ2)Φ = −ρc/(εwε0), with ρc
the charge density.

C.1.6 Self-energy

An ion confined in the channel creates an electric field E(x) such that |E(x)| = e−|x|/ξ/xT .
Thus, it has an electrostatic self-energy

Es = πR2

∫
dx
ε

2
E(x)2 = πR2 ε

2x2
T

ξ =
ξ

2xT
. (C.23)

One can check that this self-energy is taken into account in the hamiltonian (C.1): each
particle contributes ξ

2xT
to the system’s energy.

C.1.7 Fourier space and thermodynamic limit

In practice, equation (C.12), is most easily solved in Fourier space. We define

P̃ (k, x) =
1√
2π

∫
dφe−ikφP (φ, x). (C.24)

Then P̃ (k, x) satisfies

∂P̃

∂x
= − k

2

xT
P̃ − q ∂P̃

∂k
+
xT
4ξ2

∂2P̃

∂k2
+
z

L

[
P̃ (k + 1, x) + P̃ (k − 1, x)

]
, (C.25)
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or, defining x̃ ≡ x/xT (and L̃ ≡ L/xT ),

∂P̃

∂x̃
= −k2P̃ − qxT

∂P̃

∂k
+
x2
T

4ξ2

∂2P̃

∂k2
+ zT

[
P̃ (k + 1, x̃) + P̃ (k − 1, x̃)

]
. (C.26)

qxT is the number of surface charges per length xT , and zT = ρ0πR
2xT is the number of

ions per length xT if the density in the channel was the same as in the reservoir.
The term proportional to ∂P̃ /∂k in eq. (C.26) is an advection term: it induces a drift

in k space, by an amount which equals the total surface charge Q. We assume from now
on that the distribution q(x) is reduced to a point: q(x) = Qδ(x − L/2), or, after the
change of variable, q(x̃) = (Q/xT )δ(x̃ − L̃/2). Then, the effect of the advection term is
an infinitely fast shift by an amount Q, that is the action of an operator

SQ : f 7→ (g : k 7→ f(k −Q)). (C.27)

Let us also define the operator T such that

[T (P̃ )](k) = −k2P̃ +
x2
T

4ξ2

∂2P̃

∂k2
+ zT

[
P̃ (k + 1, x̃) + P̃ (k − 1, x̃)

]
, (C.28)

which plays the role of a functional transfer matrix. Recalling eq. (C.13), the partition
function then reads

Ξ = 〈f0|e
L̃
2 T SQe

L̃
2 T |f0〉 (C.29)

with f0(k) = e−ξk
2/xT and 〈f(k)|g(k)〉 ≡

∫
dkf∗(k)g(k).

Now in the limit L→∞, we may consider the largest eigenvalue λ of the operator T ,
and the associated eigenfunction χ:

[T (χ)](k) = λχ(k). (C.30)

Then, up to an exponentially small correction,

Ξ = |〈f0|χ〉|2〈χ(k)|χ(k −Q)〉eλL̃. (C.31)

C.1.8 Observables in the thermodynamic limit

The insertion of eiφ in direct space is the equivalent of a unit shift in Fourier space. Hence
the ion density at a point x̃ (assuming for simplicity x̃ < L̃/2) is given by

〈ρ±(x̃)〉 = zT
〈χ(k −Q)|[e−(L̃/2−x̃)T · χ(k ∓ 1)]〉
〈χ(k −Q)|[e−(L̃/2−x̃)T · χ(k)]〉

, (C.32)

in ions per length xT . The function χ can be computed by finite difference integration
of eq. (C.26): in practice, we start from the initial condition P̃ (k, 0) = f0(k) and carry
out the integration until convergence to the eigenfunction. Further numerical integration
allows to compute [e−(L̃/2−x̃)T · χ(k)]. We define the neutralising charge N(Q) as the
average charge in the interval [L/2−1.25 nm;L/2+1.25 nm], which can thus be computed
by integration of the density obtained from eq. (C.32). The plots of N(Q) versus Q
obtained in such a way were used to obtain the data in figure 3.4. In an uncharged
channel (or far away from the surface charge), eq. (C.32) is reduced to

〈ρbulk
± 〉 = zT

〈χ(k)|χ(k ∓ 1)〉
〈χ(k)|χ(k)〉

, (C.33)
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Insertion of −iφ(x) in direct space corresponds to differentiating with respect to q(x)
in Fourier space. Hence, in particular, the potential at x = L/2 can be computed as

〈Φ(L/2)〉 = −〈χ(k)|χ′(k −Q)〉
〈χ(k)|χ(k −Q)〉

. (C.34)

In the Coulomb blockade regime, the N(Q) ions are closely bound to the surface charge.
Since an ion creates in its immediate vicinity a potential ξ/xT , [N(Q) + Q](ξ/xT ) =
〈Φ(L/2)〉, and therefore the neutralising charge is

N(Q) = −Q− xT
ξ

〈χ(k)|χ′(k −Q)〉
〈χ(k)|χ(k −Q)〉

. (C.35)

C.1.9 Strong coupling approximation

Strong interactions correspond to low values of xT and, if ρ0 is not too large, then the
condition zT � 1 holds. For instance, in our simulations, xT = 0.09 nm, and for a
channel of radius R = 0.5 nm, zT = 0.042 × ρ0 (in M). Thus, for describing our system
in the Coulomb blockade regime, it is reasonable to consider only the first terms in the
expansion of observables in powers of zT . To obtain such an expansion, we first need to
compute the function χ. Equation (C.26) without the diffusion term,

∂P̃

∂x̃
= −k2P̃ + zT

[
P̃ (k + 1, x̃) + P̃ (k − 1, x̃)

]
, (C.36)

is actually the Fourier-transformed Mathieu equation, and methods for computing the
Fourier coefficients of its highest periodic eigenfunction χ0 are known from the mathe-
matical literature [246] (see section C.1.12):

χ0(k) =
1

2

[
a0δ(k) +

∑
i>0

ai(δ(k − i) + δ(k + i))

]
(C.37)

with

a0 = 2 (C.38)

a1 = 2zT −
7

2
z3
T +

116

9
z5
T +O(z7

T ) (C.39)

a2 =
1

2
z2
T −

10

9
z4
T +O(z6

T ) (C.40)

a3 =
1

18
z3
T −

13

96
z5
T +O(z7

T ) (C.41)

a4 =
1

288
z4
T +O(z6

T ) (C.42)

ap>4 = O(zpT ) (C.43)

The function χ0(k) is represented by an ensemble of discrete peaks at integer values of k.
The effect of the diffusion term in eq. (C.26) will be to spread these discrete peaks over a
non-zero width. In practice, keeping the diffusion term and taking zT = 0, equation (C.26)
becomes

∂P̃

∂x̃
= −k2P̃ +

x2
T

4ξ2

∂2P̃

∂k2
, (C.44)
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Figure C.1

a. Function χ(k), as computed by finite differences from equation (C.26), and analytically from
equation (C.46), with zT = 0.012 (xT = 0.9Å and ρ0 = 0.28 M). b. Neutralising charge N(Q),
as computed by finite differences from equation (C.32), and analytically from equation (C.47),
with zT = 0.012 (xT = 0.9Å and ρ0 = 0.28 M).

which is solved by

P̃ (k, x̃) = e
− x2T

4ξ2
x̃
e−ξk

2/xT . (C.45)

Thus one may heuristically assume that if the width
√
xT /ξ of solution (C.45) is much

smaller than 1, an eigenfunction of the operator T will be well approximated by a set
gaussian peaks centred on integer values of k. The highest eigenfunction χ will then be
given by

χ(k) = e−ξk
2/xT +

1

2

∑
i∈Z∗

a|i|e
−ξ(k−i)2/xT . (C.46)

This analytical approximation is actually in good agreement with the numerical result
obtain from finite differences, as shown in figure C.1.

We can now use equation (C.35) to obtain an analytical expression for the neutralising
charge. After computing the gaussian integrals,

N(Q) =

∑
ij aiaj(j − i)e

− ξ
2xT

(Q−(i−j))2∑
ij aiaje

− ξ
2xT

(Q−(i−j))2
−Q . (C.47)

Figure C.1 shows the neutralising charge obtained by numerical integration from equa-
tion (C.32) and the analytical result from equation (C.47). They are in very good agree-
ment, especially for Q . 1, since for larger values of Q higher orders in zT are involved.
The first step (N(Q), Q ≤ 1) has the simple form

N1(Q) =
1

1 + 1
2zT

e
− ξ
xT

(Q− 1
2 )
. (C.48)

125



C.1. Equilibrium properties: Coulomb gas theory

The maximum slope is attained at

Qmax =
1

2
− xT

ξ
log(2zT ) (C.49)

and the corresponding slope is

dN

dQ

∣∣∣∣
Qmax

=
ξ

4xT
+O(z4

T ), (C.50)

so that steps are apparent when xT ≥ ξ/4 as stated in Chapter 3. Equation (C.49) shows
that the steps are shifted to the right with respect to the half-integer values of Q by
an amount that varies as the logarithm of the salt concentration. We thus recover on
rigorous grounds the logarithmic dependence that was suggested in ref. [247].

C.1.10 Equation of state

The pressure of the Coulomb gas is defined as

P = −∂F
∂L

, (C.51)

with F the free energy. The total number N of ions can be obtained by deriving the
free energy with respect to the chemical potential µ (which is the same for positive and
negative ions). Given that z = eµ,

N = −z ∂F
∂z

. (C.52)

Thus, the density is related to the pressure by

ρ =
∂N

∂L
= z

∂P

∂z
. (C.53)

Now the total ion density can be computed from eq. (C.33), and using eq. (C.46) for the
function χ(k) in the strong coupling approximation, we obtain

ρ = 2zT
〈χ(k)|χ(k − 1)〉
〈χ(k)|χ(k)〉

= 2zT

∑
ij a|i−1|a|j|e

− ξ
2xT

(i−j)2∑
ij a|i|a|j|e

− ξ
2xT

(i−j)2
, (C.54)

the lengths being now expressed in units of xT . The above sums can be considerably
simplified if we may neglect the terms with i 6= j. The order p in zT to which such an
approximation is valid is given by

zpT ∼ e
− ξ

2xT , i.e. p ∼ ξ

2xT log(1/zT )
. (C.55)

With the parameter values corresponding to our simulations, we obtain p ∼ 4.4. We
therefore neglect the terms with i 6= j and expand the coefficients ai up to order z4

T . We
obtain:

ρ = 4z2
T − 14z4

T +O(z6
T ) (C.56)
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and

P =
ρ

2

(
1 +

7

4
z4
T +O(z6

T )

)
. (C.57)

Thus up to order z4
T we obtain the same equation of state as was derived for the ideal

Coulomb gas (ξ → ∞) in ref. [245]. It demonstrates that, in the strong coupling limit,
the Coulomb gas of density ρ behaves as an ideal gas of density ρ/2: the positive and
negative ions are associated in tightly bound pairs, that is the salt behaves as a weak
electrolyte.

C.1.11 Paired fraction

Since the ions in the Coulomb gas associate in tightly bound pairs, we may be interested
in estimating the fraction of paired ions for a given set of parameters. We may only
give a qualitative estimate, since it depends on the way we define an ion pair. Consider
a negative test charge placed at x = x0 in a homogeneous Coulomb gas (Q = 0). If
it is in a paired state, then there is a positive charge that we assume to be uniformly
distributed in an interval [x0 − xT ;x0 + xT ]. (At this point, we may have chosen any
interval [x0−λxT , x0 +λxT ], with λ of order 1, which would give a quantitatively different
result). The test charge therefore feels a potential

Φpaired =
1

xT

∫ xT

0

ξ

xT
e−x/ξ =

(
ξ

xT

)2

(1− e−xT /ξ) ≡ ξ

xT
f(xT ). (C.58)

If the test charge is unpaired, then it feels a potential Φunpaired created by a negative
charge uniformly distributed in an interval [x0 − δ, x0 + δ], with δ = 1/(2ρ−), ρ− being
the negative ion density:

Φunpaired =
ξ

xT
f(δ) (C.59)

Now the average potential at the location of the test charge can be computed from
eq. (C.34):

Φ(x0) = −〈χ(k)|χ′(k + 1)〉
〈χ(k)|χ(k + 1)〉

. (C.60)

From the above considerations, if we denote np the fraction of paired ions, this potential
may also be expressed as

Φ(x0) =
ξ

xT
(npf(xT ) + (1− np)f(δ)− 1). (C.61)

We thus obtain the paired fraction as

np =
((xT /ξ)Φ(0)− 1)− f(δ)

f(xT )− f(δ)
. (C.62)

Eq. (C.62) was used to compute the data in figure 3.5.
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C.1.12 Solution of the Mathieu equation

In this section, we provide a method for deriving the series expansions of the coefficients
ai (eqs. (C.39)–(C.43)), following ref. [246]. We are looking for a solution of eq. (C.36),

∂P̃

∂x̃
= −k2P̃ + zT

[
P̃ (k + 1, x̃) + P̃ (k − 1, x̃)

]
, (C.63)

in the form
P̃ (k, x̃) = eλx̃

∑
i≥0

1

2
ai(δ(k − i) + δ(k + i)). (C.64)

Substituting this ansatz into eq. (C.36) we find the set of equations λa0/2− zTa1 = 0
−(λ+ 1)a1 + zTa0 + zTa2 = 0
−(λ+ k2)ak + zT (ak+1 + ak−1) = 0,∀k > 1

(C.65)

We now define Λk ≡ (λ+k2)/zT . Successively rearranging the equations of system (C.65),
we obtain

Λ0 =
2a1

a0
=

2

Λ1 −
a2

a1

=
2

Λ1 −
1

Λ2 −
a3

a2

= ... (C.66)

This yields a closed equation for the Λk’s in the form of a continued fraction:

0 = Λ0 −
2

Λ1 −
1

Λ2 −
1

Λ3 −
1

Λ4 − ...

. (C.67)

We can now perturbatively solve eq. (C.67) in the limit of small zT . Starting at order 2,
we have to solve Λ0 − 2/Λ1 = 0, which yields two solutions for λ: λ1 = 2z2

T +O(z4
T ) and

λ2 = −1 − 2z2
T + O(z4

T ). Since we are looking for the largest eigenvalue λ we pick only
the first solution. Having fixed the coefficient at order 2, we obtain only one solution for
λ at the next orders. Iterating the procedure, we obtain the expansion

λ = 2z2
T −

7

2
z4
T +

116

9
z6
T −

68687

1152
z8
T +

123707

400
z10
T +O(z12

T ), (C.68)

in agreement with ref. [245]. Knowing the expansion of λ to arbitrary order, we can solve
the system (C.65) truncated at the nth equation to obtain the coefficients ai to the nth

order in zT , yielding eqs. (C.39)–(C.43).

C.2 Bjerrum pair dynamics and fractional Wien effect

The aim of this section is to provide a theory of non-equilibrium ion transport that
accounts for the ionic Coulomb blockade phenomenology. From the equilibrium Coulomb
gas theory and from the simulations we know that in the Coulomb blockade regime the
salt behaves as a weak electrolyte, where the positive and negative ions are strongly
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C.2. Bjerrum pair dynamics and fractional Wien effect

correlated as they from tightly bound pairs. However, it is reasonable to assume that
the globally neutral ion pairs are largely uncorrelated. Hence we will study the dynamics
of a single ion pair, and then incorporate the statistics of the Coulomb gas in order to
describe the fractional Wien effect. We recall that we use units such that kBT = 1 and
e = 1.

C.2.1 Lifetime of an ion pair

We consider a mobile ion of charge +1, with diffusion coefficient D in one dimension,
interacting with a fixed charge −q placed at x = 0, under the effect of an electric field E.
The two point charges interact with the pairwise potential V (x) = ξ

xT
e−|x|/ξ. We wish

to compute the average time τ(q, E) the mobile ion takes to escape from the confining
potential −qV (x) − Ex, if placed initially at x = 0. We follow the well-known method
described for example in [116]. The probability distribution P (x, t) of the mobile ion is
governed by the Fokker-Planck equation

∂tP = D∂x (P∂x [−qV (x)− Ex]) +D∂2
xP, (C.69)

with initial condition P (x, 0) = δ(x). We consider the ion has escaped once it has crossed
the potential barrier on the right, the crossing point δ being defined by d

dx (qV (x)− Ex)|x=δ =
0, that is

δ(q, E) = ξ log

(
q

ExT

)
. (C.70)

Therefore we place an absorbing boundary condition at x = δ as schematically depicted
in figure 3.4a.

The probability that the ion has already escaped at time t is 1 −
∫
P (x, t)dx. Thus,

the probability density for escaping at time t is −
∫
∂tP (x, t)dx, so the average time it

takes to escape is

τ(q, E) =

∫ ∞
0

t

(
−
∫ +∞

−∞
∂tP (x, t)dx

)
dt, (C.71)

or, after integration by parts,

τ(q, E) =

∫ +∞

−∞
dx

∫ ∞
0

dtP (x, t). (C.72)

We now define the time-integrated probability density G(x) =
∫∞

0
P (x, t)dt, which solves

the time-integrated version of eq. (C.69):

− δ(x) = D∂x (G∂x [−qV (x)− Ex]) +D∂2
xG. (C.73)

We solve eq. (C.73) enforcing:

• The absorbing boundary condition G(δ) = 0.

• G(x→ −∞) = 0.

• The continuity of G at x = 0, G(0+) = G(0−).

• The discontinuity of ∂xG as imposed by the δ function: ∂xG|0+−∂xG|0−−qG(0)(∂xV |0+−
∂xV |0−) = −1/D.

129



C.2. Bjerrum pair dynamics and fractional Wien effect

We find a solution

G(x) =
1

D

∫ δ

max(0,x)

eq(V (x)−V (y))+E(x−y)dy, (C.74)

hence the mean escape time

τ(q, E) =

∫ +∞

−∞
G(x)dx =

1

D

∫ +∞

−∞

∫ ξ log q
ExT

max(0,x)

eq(V (x)−V (y))+E(x−y)dydx. (C.75)

If we are considering a mobile ion coupled to an effective surface charge q, then the
average lifetime of such a pair is indeed τ(q, E). But our computation also applies to a
bulk ion pair: one should take q = 1 and replace the diffusion coefficient D by 2D since
both ions are mobile. Therefore the average lifetime of a bulk ion pair is τ(1, E)/2.

C.2.2 From pair lifetime to ionic current

We shall separately consider the current resulting from ions dissociating from the frac-
tional surface charge and from bulk ion pairs breaking apart.

The contribution from the surface charge dominates the ionic current at low electric
fields, when bulk ion pairs do not dissociate. When all the bulk ions are paired, an ion
that dissociates from the surface charge moves unhindered at a velocity DE, dragged
by the electric field, through the periodic boundary condition, until it comes back to
bind to the surface charge, after a time tf = L/(DE). We assume that the Grotthus-like
exchange does not significantly affect tf . Thus, an ion bound to an effective surface charge
q is actually free for a fraction tf/(tf + τ(q, E)) of the time, during which it contributes
I0 = 1/tf to the ionic current, so the resulting average current is

Iq(E) =
tf

tf + τ(q, E)
I0. (C.76)

At larger electric fields, when the bulk ion pairs start to dissociate, the contribution
of the single ion that may be released by the surface charge becomes negligible. Let N be
the total number of positive ions and Nf the average number of free positive ions. When
a bulk pair dissociates, the two free ions which are released travel in opposite directions,
each producing a current I0, until they encounter a free ion of the opposite sign, which
occurs on average after a time tf/(2Nf ). Thus Nf solves the self-consistent equation

Nf
N

=
tf/Nf

tf/Nf + τ(1, E)
, (C.77)

from which we find Nf and the resulting positive ion current,

I+
bulk(E) = NfI0 =

tf
2τ(1, E)

(√
1 +

4Nτ(1, E)

tf
− 1

)
I0. (C.78)

C.2.3 Coulomb gas statistics and effective charge

We now discuss the value of the effective charge q. In the Coulomb blockade regime a
surface charge Q can bind either bQc counterions with probability 1 − p(Q) or bQc + 1

130



C.2. Bjerrum pair dynamics and fractional Wien effect

counterions with probability p(Q). In the first case, all the counterions feel an effective
charge which is larger than 1, so that the contribution to the current from their dissoci-
ation is negligible with respect to the contribution of bulk ion pairs. In the second case,
however, there is a counterion which feels a charge q = Q − bQc < 1 and may therefore
have a non-negligible contribution to the current. The average number of counterions is
N(Q) = (1 − p(Q))bQc + p(Q)(bQc + 1), hence p(Q) = N(Q) − bQc, with N(Q) known
from the equilibrium Coulomb gas theory (eq. (C.47)). If we admit that the current val-
ues can be averaged with the grand canonical probabilities of the corresponding numbers
of counterions, we obtain an expression for the total positive ion current in the whole
electric field range:

I+(E) = (N(Q)− bQc)IQ−bQc(E) + I+
bulk(E). (C.79)

The result given by this equation is plotted in figure 3.4.

C.2.4 Discussion

The first theory of the Wien effect was famously established by Onsager in 1934 [114].
However, it applies to the case of a three-dimensional electrolyte, interacting with a 1/r
Coulomb potential. With our one-dimensional electrolyte and effective potential V (x), we
could not exactly follow Onsager’s approach. Onsager computes the normalised two-point
function g(r) = 〈ρ+(r)ρ−(0)〉/(〈ρ+〉〈ρ−〉), which solves the Fokker-Planck equation

∇ · (g∇[−V (r)− Ex]) +∇2g = 0. (C.80)

If V (r) is a real Coulomb potential, it solves ∇2V = 0, and thus a constant function is a
solution of (C.80). Solutions of (C.80) can then be decomposed as a sum of a constant
function, which corresponds to dissociated ion pairs, and a function which goes to 0 at
infinity, which corresponds to tightly bound pairs. Onsager shows that the probability
currents corresponding to these two solutions give access respectively to the association
and dissociation rates of ion pairs. However, our one-dimensional effective potential V (x)
does not solve ∂2

xV = 0, hence no such decomposition is possible. The 1D solution
of (C.80) satisfying g(±∞) = 1 is

gE(x) = EeV (x)+Ex

∫ +∞

x

e−V (y)−Eydy, (C.81)

but it does not give a straightforward access to the average number of ion pairs. One may
resort to the drastic approximation used by Liu [248,249], which amounts to assimilating
a ratio of integrals of g to a ratio of values at x = 0 at small electric fields. In this
approximation the relative increase in the number Nf of free ions when applying an
electric field E is given by

Nf (E)

Nf (0)
=

√
g0(0)

gE(0)
=

(
E

∫ +∞

0

e−V (y)−Eydy

)−1/2

. (C.82)

Unfortunately this result does not agree well with simulations, nor with our escape rate
theory.

Even if the technical difficulties related to an Onsager-type approach could be over-
come, it would not take into account correlations between ion pairs. While these cor-
relations are negligible in three dimensions, they are important in one dimension: two
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unpaired ions of opposite sign will necessarily encounter each other. The escape rate
approach, on the contrary, does allow to take such correlations into account: for instance,
they are introduced by eq. (C.77). In three dimensions, escape rate approaches have been
attempted [250], but they could only proceed through strong approximations, and the
end results thus poorly compared with Onsager’s theory and with simulations [249].
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Theory of two-dimensional
electrolytes
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D.1 Model definition

Our theoretical analysis of the equilibrium structure of 2D electrolytes is based on the
2D Coulomb gas model [106,126], which we modify to take into account that nanofluidic
slits are not exactly 2D systems. Therefore, we refer to our model as a ‘2D+’ Coulomb
gas model. We assume ions to be rigid spheres of radius r0 with a discrete charge ±1
at their center that can freely move in a 2D plane located at the center of the slit. This
approximation is justified as long as the potential created by an ion does not sensibly
vary across the slit. For typical values of parameters, we find its relative variation is
indeed less than a percent. Furthermore, ion pairs have a typical size of 4Å in the case
of NaCl, exceeding the vertical space available to the electrolyte between the confining
sheets. This greatly constrains their rotational dregrees of freedom, and confirms the
validity of our 2D+ approximation

Anions and cations are assumed to have same size, mass, valence and diffusion coeffi-
cient D. Results for ions with different valence (like CaCl2) can be obtained in a similar
way. Lastly, the pairwise interaction potential, derived in next section, is found to be for
a Z : Z electrolyte (Z the valence, charge qi = ±Z ):

βVij(r) = −qiqj
T ∗

log
r

r + ξ
, (D.1)
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which strongly resembles the interaction potential of the 2D Coulomb gas, and heavily
deviates from Coulomb’s law for bulk electrolytes, which is only recovered for r � ξ.
The dielectric confinement length ξ can thus be interpreted as the distance over which
electrostatic interactions are effectively 2D. Our computations will sometime consider the
case where βVij(r) = − qiqjT∗ log r, which we will refer to as the exact 2D Coulomb gas
(2DCG) model. In many cases – where ξ happens to be much larger than any other
relevant lengthscale – the 2DCG model provides reasonable predictions, matching the
results of molecular dynamics simulations.

D.2 Equilibrium properties

D.2.1 Pairing transition

In this section, we detail under which conditions ionic pairing may occur in 2D elec-
trolytes. The equilibrium properties of the system can be derived using the Debye–Hückel
mean-field framework described in [106] and which we recall here for the sake of com-
pleteness. We consider an electrolyte with density ρ, with a single ion located at the
origin, interacting with all surrounding ions. Assuming ions are rigid spheres of radius r0

that cannot interpenetrate each other, the electrostatic potential created by the test ion
is unchanged for r < r0 :

Φ(r) ' −ZeK
2πε0ε‖h

log

(
r

r + ξ

)
+ ψ(Z), (D.2)

with ψ a constant to be determined. For r > r0, the electrostatic potential is given by the
Poisson–Boltzmann (PB) equation, modified to take the special geometry into account:(

∆− 1

r + ξ
∂r

)
Φ =

2ZeKρ
ε0ε‖h

sinh
ZeΦ

kBT
. (D.3)

The operator on the left-hand side is chosen such that its Green function is given by
equation (D.2). The PB equation must be linearised in order to make computations
tractable; however, this underestimates the strength of ion-ion correlations and neglects
the possibility of ion pairing. Bjerrum suggested to introduce pairs as a separate chemical
species, decomposing:

2ρ = ρ1 + 2ρ2, (D.4)

with ρ1 the concentration in free ions of both signs and ρ2 the concentration in pairs. We
get: (

∆− 1

r + ξ
∂r

)
Φ =

Z2e2Kρ1

ε0ε‖hkBT
Φ = κ2

DΦ, (D.5)

where we introduced the inverse Debye length κD. This leads to:

Φ(r > r0) =
ZeKA

2πε0ε‖h
[K0 (κDr)−K0 (κD (r + ξ))] , (D.6)

where K0 is the modified Bessel function of the second kind. The constants A and ψ
are determined using the boundary conditions at r = r0, where Φ and its gradient must
match the unscreened potential (D.2):

A =
ξ

κDr0(r0 + ξ)
[K1 (κDr0)−K1 (κD (r0 + ξ))]

−1
, (D.7)
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ψ(Z) =
ZeK

2πε0ε‖h

[
ξ

κDr0(r0 + ξ)

K0 (κDr0)−K0 (κD (r0 + ξ))

K1 (κDr0)−K1 (κD (r0 + ξ))
− log

r0 + ξ

r0

]
. (D.8)

Finally, for a system of size L × w, the electrostatic free energy is obtained through a
Debye charging process and reads:

F el = Lwfel = Lwρ1

∫ Z

0

ψ(λ) dλ. (D.9)

This allows us to compute the total free energy, which is the sum of this electrostatic
term and of entropic terms:

βf = βfel + ρ1 log
ρ1Λ2

2
− ρ1 + ρ2 log

ρ2Λ2

ζ2
− ρ2, (D.10)

where ζ2 is the internal partition function of a pair:

ζ2(R) =

∫ R

r0

2πr exp

[
− 1

T ∗
log

r

r + ξ

]
. (D.11)

The large distance cut-off R plays little role in the physics of the system, and can be set
to the inflection point of the integral [106]:

R =
ξ

T ∗
=
βZ2e2K
4πε0εm

= `Bj = 130 nm. (D.12)

This lengthscale is called the Bjerrum length. Note that in the limit T ∗ � 1, this matches
the usual definition of the Bjerrum length βV (`B) = 1. Its expression is identical to
that of bulk water, with the dielectric permittivity of water εw = 80 replaced by the
permittivity of the confining medium εm = 2. Then, chemical equilibrium between free
ions and tightly bound pairs imposes:

µ2 = µ+ + µ−, (D.13)

with µi = ∂F
∂Ni

is the chemical potential of species i. This yields:

ρ2 =
1

4
ρ2

1ζ2e
2βµex , (D.14)

where we introduced the excess chemical potential defined as:

µex =
∂fel

∂ρ1
. (D.15)

We can then solve the system composed of equations (D.4), (D.10) and (D.14), by numer-
ically computing the free energy f as a function of ionic concentration ρ. At temperature
T ∗ < T ∗C = 0.25, f fails to be a convex function of ρ, and we define the low and high
density branches ρlow and ρhigh as the positions of the two inflection points. The curves
of ρlow and ρhigh as functions of temperature correspond to the spinodal curve. In the
2DCG model f is not convex at low concentration, which corresponds to ρlow(T ∗) = 0:
there is no low density branch. When T ∗ approaches T ∗C , ρhigh(T ∗) approaches a finite
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value: in the perfectly 2D case, there is no low density branch, and the high density
branch ends at the critical line T ∗ = 0.25 (see figure 4.2, solid line).

In the 2D+ model, the high density branch is only slightly shifted, but there is a low
density branch. However, since we treated ion pairs as an ideal gas, we neglected their
contribution to the free energy, and as a result the shape of the low density branch is
unphysical. A solution would consist in including dipole-ion and dipole-dipole interaction
terms, as suggested in [106]. Since we are only interested in the qualitative shape of the
transition line, we simply assume that, at low concentration, the transition happens when
there are roughly as many pairs as free ions, ie. ρ ∼ ρ1. Using this approximation, we
plot the spinodal curve of the 2D+ model in figure 4.2 (dashed red line). The low and
high density branches again do not join, resulting in a critical line at T ∗ ' 0.25.

These results are remindful of the Kosterlitz–Thouless transition of the XY model
[127]. The exact value of the critical temperature can be computed in the 2DCG model
by considering the ρ1 → 0 limit:

βfel = − ρ1

T ∗
log [κDr0K1 (κDr0)]

(κDr0)2
, (D.16)

βµex = −βZ
2e2K

4πε0ε‖h

K0(κDr0)

κDr0K1(κDr0)
' − 1

T ∗

[γ
2

+
lnκDr0/2

2

]
. (D.17)

We obtain ρ2 ∝ ρ2−1/2T∗

1 . This cannot hold for T ∗ < T ∗C = 0.25: since ρ1 < 2ρ, we would
have ρ2 > ρ for low enough ρ.

D.2.2 Ion pairing in MD simulations

As discussed in next section, ionic pairing results in non-linear transport phenomena
under an external field. However, a weak enough electric field should not be able to
break Bjerrum pairs, and only free ions should contribute to conduction. Therefore, in
MD simulations, the paired fraction can be computed from the ionic current at small
voltage.

Assuming that pairing captures all relevant ion-ion correlations, free ions essentially
behave as independent particles of electrical mobility µi = ZeqiD/kBT . We obtain:

I =

〈
Ze

L

∑
free ions

qiv
i
x

〉
=
Z2e2Dwρ1

LkBT
∆V =

ρ1

2ρ
GOhm∆V, (D.18)

where GOhm is the conductance of an ideal (non interacting) bulk electrolyte of concen-
tration ρ. We use this result to define the free and paired fractions in MD simulations:

nf =
Gsimulation

GOhm
=
ρ1

2ρ
, (D.19)

np = 1− nf =
ρ2

ρ
. (D.20)

This definition of nf is used in figure 4.2 to obtain the phase diagram of the system from
brownian dynamics. At high temperature, nf ' 1, and the system is in a purely ohmic
regime: there are no pairs and its conductivity matches that of a bulk electrolyte. For
T ∗ < 0.25, nf ' 0 and the system is insulating as there no free ion left within the slit.
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D.3 Onsager’s Wien effect in 2D

D.3.1 Isolated pair model

In this section, we develop an extensive theory of conduction in confined 2D electrolytes
far from equilibrium. We follow Onsager’s original computation of Wien effect for bulk
weak electrolytes [114], extending it to the 2D case, and then show how it must be
modified to take Bjerrum polyelectrolytes into account.

Let us consider a 2D electrolyte (X+, Y−) in an external electric field E = E x̂. We
assume ions may pair up according to a chemical equilibrium of the form XY � X+ +
Y−. In what follows, we study the chemical kinetics associated with this equilibrium and
we base our model on a generic reaction equation:

ṅf =
1− nf
τd

−
n2
f

τa
, (D.21)

The evolution of fraction nf of free ions – that are not part of a pair and thus can conduct
current – is governed by two timescales: the pair dissociation time τd and the free ions
association time τa.

Onsager suggests to derive these two timescales from the shape of the out of equilib-
rium correlation function g. Assuming that a positive ion is fixed at the origin, g(r, θ) is
(up to a normalization factor) the probability density of finding a negative ion at polar
position (r, θ). It is solution of a Fokker–Planck equation:

∂tg = 2D∇ · (∇g + g∇ (βΦ)), (D.22)

where Φ is the total electrostatic potential felt by a hypothetical anion located at (r, θ).
One has:

βΦ =
1

T ∗
log

r

r + ξ
− r cos θ

lE
. (D.23)

The first term of the potential corresponds to the unscreened interaction of two ions
in confinement: we therefore neglect any influence of the ionic atmosphere or Debye
screening. This means the current model only captures the effects of pairs dissociating
and ions recombining independently from each others. We therefore call it an isolated
pair model. The lengthscale lE introduced in equation (D.23) measures the strength of
the external field:

lE =
kBT

Ze|E|
. (D.24)

Note that the potential Φ has its maximum for r = lE/T
∗ (plus a correction of order

lE/ξ ∼ 0.01, which we neglect). This means an ion separated from the central ion by
more than lE/T ∗ will be carried away by the electric field, breaking the pair. Therefore,
lE is the spatial extension of electrostatic correlations in presence of an external field. The
other relevant lengthscale is the Bjerrum length `Bj = ξ/T ∗, which governs the shape of
g in the absence of an external field. However, the Wien effect is perceptible in brownian
simulations starting for values of E such that lE/`Bj ∼ 10−2 � 1, so we discard any
effect caused by a finite dielectric confinement length, and set ξ = ∞ in what follows.
This amounts to replacing the potential (D.23) by:

βΦ =
1

T ∗
log

r

r0
− r cos θ

lE
+ constant, (D.25)
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where r0 is the ion size. We then assume that the system has reached a steady state, so
that ∂t = 0: [

∆ +

(
1

T ∗r
− cos θ

lE

)
∂r +

sin θ

rlE
∂θ

]
g = 0. (D.26)

Since the problem has a single lengthscale lE , we perform the change of variable r→ u =
r/lE . We obtain: [

∆ +

(
1

T ∗u
− cos θ

)
∂u +

sin θ

u
∂θ

]
g = 0. (D.27)

It is remarkable that the system is now entirely determined by a single dimensionless
parameter T ∗, regardless of field strength. This is unique to the 2D case, because of the
divergent Bjerrum length. Onsager then suggests to decompose g into two parts:

g = gd + ga, (D.28)

where gd and ga are two solutions of (D.27) with the additional conditions:∫ 2π

0

−2D [∇ga + ga∇ (βΦ)] · r̂ rdθ = −C, (D.29)

lim
r→∞

ga = ρ, (D.30)

and ∫ 2π

0

−2D [∇gd + gd∇ (βΦ)] · r̂ rdθ = +C, (D.31)

lim
r→∞

gd = 0, (D.32)

where C is a positive constant independant of r. It can be interpreted as a particle flux:
ga describes free ions far from the central ion, with which they can recombine and form a
Bjerrum pair. This association process creates a net ionic flux from infinity to the origin;
ga is the solution of (D.27) associated with a sink at the origin. Similarly, gd describes
negative ions bound to the central cation and localized near the origin (hence the decay
of gd at infinity), forming a Bjerrum pair. This pair has a certain probability of breaking
under the action of the external field, creating an ionic flux from the origin to infinity.
These fluxes are of opposite signs and equal amplitude since the system is in steady state.

It is easy to see that in fact:
ga = ρ, (D.33)

and straigthfoward integration yields:

C =
4πDρ

T ∗
. (D.34)

This is a recombination rate, defining the pair association time:

τa =
T ∗

4πDρ
. (D.35)

Under typical settings used in simulations, one has τa ∼ 1 µs. Computing gd and the
corresponding dissociation timescale τd is, however, a mathematical challenge. Onsager’s
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D.3. Onsager’s Wien effect in 2D

computation involved a series expansion in terms of families of special functions he in-
vented specifically for this problem; and this solution is applicable if the Smoluchowski
equation is spatially separable, which is not the case in 2D. Instead, we propose a solution
based on the self-similarity of g, which allows us to derive all the relevant quantities (up
to a geometrical factor of order 1) without resorting to in-depth mathematical analysis.

Another trivial solution of (D.27) is the Boltzmann distribution:

g0(u, θ) = exp

[
− 1

T ∗
ln
ulE
r0

+ u cos θ

]
. (D.36)

This solution has, however, unphysical behaviour for u → ∞, because the Boltzmann
distribution is only relevant at thermal equilibrium. It should, however, bear some phys-
ical meaning for u � 1 because then the effect of the external field is negligible and the
system is in quasi-equilibrium. Therefore, we admit that gd is the unique solution of the
following problem: [

∆ +

(
1

T ∗u
− cos θ

)
∂u +

sin θ

u
∂θ

]
gd = 0, (D.37)

gd ∼ Ka

(
lE
r0

)−1/T∗

u−1/T∗ for u→ 0, (D.38)

lim
u→∞

gd(u) = 0, (D.39)

where Ka is chosen such that the particle flux associated with gd compensates that of ga.
Because it is defined through the balance of fluxes, it can be interpreted as an association
constant. The uniqueness of the solution is ensured because gd is known on the whole
boundary of the domain. Because lE now only appears in the boundary condition at
u = 0 as a multiplicative factor, it is easy to see that:

gd(u) = Ka

(
lE
r0

)−1/T∗

G(u), (D.40)

where G is a universal function depending only on T ∗. The resulting ionic flux reads:

2DKa

(
lE
r0

)−1/T∗

F =
4πDρ

T ∗
, (D.41)

where F is the flux associated to the universal function G:

F = −
∫ 2π

0

[∇G+G∇ (βΦu)] · ûudθ, (D.42)

the dimensionless potential Φu being defined as:

βΦu =
1

T ∗
log u− u cos θ. (D.43)

The flux F has the dimension of an inverse length squared and is independent of lE ; it
is also independent of ρ the total ionic concentration, since it is the property of a single
isolated pair dissociating. Therefore, it must scale with r0, the ionic radius, which is the
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D.3. Onsager’s Wien effect in 2D

only relevant lengthscale remaining. We then obtain (up to a geometrical factor of order
unity):

F ' r−2
0 . (D.44)

We finally get the expression of the association constant Ka:

Ka = 2π

(
lE
r0

)1/T∗
ρr2

0

T ∗
=
τd
τa
, (D.45)

as well as the dissociation time τd:

τd =
r2
0

2D

(
lE
r0

)1/T∗

. (D.46)

At steady state, the free ion fraction nf can be obtained from (D.21):

nf =
τa
2τd

(√
1 +

4τd
τa
− 1

)
. (D.47)

Notably, the above result predicts a power law dependency of nf with applied field at
low voltage:

nf ∝ E1/2T∗ . (D.48)

Note that in particular nf vanishes at zero voltage. This shows that our model is only
valid in the low temperature phase, where all ions are paired up at thermal equilibrium
(which is clearly the case in typical simulation settings). Otherwise, Debye screening
cannot be neglected, as there remain some free ions even for vanishing electric field.
This concludes our solution of the isolated pair model, and we plot its prediction using
equations (D.18) and (D.47) in figure 4.3 (yellow line). The agreement with simulations
is rather poor. Notably, the onset of conduction happens at much lower voltages than
predicted by this model.

While it provides reasonable predictions for the bulk Wien effect, the isolated pair
model must be modified for 2D confined electrolytes. One key element this model fails
to account for is the formation of Bjerrum polyelectrolytes at non zero voltages. The
existence of ionic strings, as shown in figure 4.3b, clearly indicates that the conduction
in this system cannot be understood from the individual dynamics of ion pairs.

D.3.2 Role of the ionic atmosphere

In this section, we discuss the physical meaning of the expression of the dissociation
timescale τd, so as to extend it to the case where Bjerrum polylectrolytes are relevant.
Equation (D.46) can be recast as an Arrhenius law:

τd = τdiffusion exp [−2β∆F ] =
r2
0

2D

(
lE
r0

)1/T∗

, (D.49)

where ∆F is the free energy barrier to overcome in order to break a pair. It reads:

β∆F ' − log lE/r0

2T ∗
. (D.50)
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This expression is very similar to the free energy cost to create an ionic atmosphere of
size lE around an ion, see (D.16):

βFatm(lE) = − 1

T ∗
log [K1 (r0/lE) r0/lE ]

(r0/lE)2
' − log lE/r0

2T ∗
. (D.51)

In other words, the kinetic energy barrier to break a pair is equal to the thermodynamic
energy gap between the paired and the unpaired states, if we admit that the typical size
of the ionic atmosphere around a free ion is given by lE instead of the Debye length λD.

Indeed, the Debye length reads:

λD =

√
T ∗

2nfρ
, (D.52)

so that for low applied field, we obtain λD ∝ l
1/4T∗

E . Therefore, λD � lE provided
T ∗ < 0.25, ie. if the system is in the low temperature phase, and for large enough electric
field. However, the electrostatic potential (D.23) has a maximum at r = lE/T

∗ ∝ lE , and
thus two ions separated by more than lE will effectively cease to interact and be carried
away by the electric field. This means the ionic atmosphere cannot be larger than lE ,
and since λD � lE , lE is indeed its correct lengthscale in our simplified picture.

D.3.3 Anisotropic atmosphere and PEW effect

The above analysis only holds if the ionic atmosphere is destroyed by the external field.
However, we should keep in mind the field only acts along the x axis, while the atmosphere
extends in all directions. Hence, correlations along the y axis should remain strong, and
the ionic atmosphere becomes anisotropic. It has an ovoid shape, with typical spatial
extension l =

√
λDlE . Therefore, we also need to compute fluxes along both axes sepa-

rately. This introduces two quantities, nx and ny, which are the fractions of ions free to
move along the x (resp. y) axis. Both follow a reaction equation:

ṅx =
1− nx
τd,x

− n2
x

τa,x
, (D.53)

ṅy =
1− ny
τd,y

−
n2
y

τa,y
, (D.54)

where we also introduced distinct association times τa,x = τa,y = τa and dissociation
times τd,i. Assuming the Arrhenius law derived in last section still holds, the free energy
cost to breaking a pair can be decomposed in the following way:

2β∆F (
√
λD,ylE) ' − log lE/r0

2T ∗
− log λD,y/r0

2T ∗
= 2β∆Fx + 2β∆Fy, (D.55)

where λD,y =
√
T ∗/2nyρ. This allows us to express both dissociation times using Arrhe-

nius equations:

τd,x =
r2
0

2D

(
lE
r0

)1/2T∗

, (D.56)

τd,y =
r2
0

2D

(
λD,y
r0

)1/2T∗

. (D.57)
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Figure D.1

Characterization of the ionic memristor. a.-c. Low frequency IV curves. The ionic memristor,
with ionic concentration ρ = 10−4atom/nm2 is stimulated with an oscillating field of amplitude
E0 = 0.5 kBT/Å and variable frequency. The IV curve exhibits a hysteresis loop for all frequen-
cies in the range 10 kHz − 10 MHz. a. At all frequencies below fc = 160 kHz, the shape of the
curve can be predicted using a quasistatic version of equation (D.53). At higher frequencies (b.,
b.) the description of the system in terms of Bjerrum polyelectrolytes fails and the isolated pair
model must be used.

Chemical equilibrium along the y axis reads:

ρ(1− ny) = (ρny)2−1/4T∗ r
2
0

T ∗

(
2

T ∗

)−1/4T∗

. (D.58)

This equation is the equivalent of (D.14), with temperature divided by 2. Moreover, it
can only hold if T ∗ > 0.125. At lower temperatures, the equilibrium is broken and no ion
can move freely along the y axis – remindful of how, at thermal equilibrium, no ion can
escape pairing if T < 0.25. In other words, at low temperature, the whole system collapses
into a single (or several) ionic assemblies, which we call Bjerrum polyelectrolytes.

Chemical equilibrium along the direction of the applied field reads:

nx =
τa,x
2τd,x

√1 +

(
2τd,x
τa,x

)2

− 1

 ∝
E→0

E1/4T∗ . (D.59)

This last result is similar to (D.47), however the corresponding low field exponent is mod-
ified by a factor 2. This shows that Bjerrum polyelectrolytes have a dramatic influence
on conduction in confined electrolytes: their formation corresponds to a change of the
power law exponent of the current-voltage characteristic, because tearing an ion out of
a massive polyelectrolyte is easier than breaking a Bjerrum pair. Our Polyelectrolytic
Wien (PEW) effect predicts a greatly increased conductance with respect to Onsager’s
isolated pair model, as shown on figure 4.3c (red solid line), in quantitative agreement
with brownian simulations.

D.4 Memristor effect

We now consider the case of an alternating field E = E0 cos 2πft with frequency f rang-
ing from 10 kHz to 10 MHz. An exact theoretical treatment would require to solve the
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D.5. Hodgkin–Huxley neuron model

full time-dependent Smoluchowski equation (D.22). This introduces a new lengthscale
lf =

√
D/f corresponding to a diffusion length over a period of the external field. How-

ever, for a typical frequency f ∼ 100 kHz, one has lf ∼ 100 nm � lE ∼ 1 nm. This
allows us to neglect terms proportional to ∂tg, of order (lE/lf )2, in (D.22) and consider
quasistatic dynamics. The conclusions of previous sections are hence left unchanged upon
replacing E by E0 cos 2πft in the expressions of τa and τd,x. This quasistatic PEW effect
model allows us to predict the shape of the AC IV curve with great accuracy up to a
critical frequency fc = 160 kHz, see figure D.1. At higher frequencies, however, simula-
tions show that Bjerrum polyelectrolytes do not form, and the isolated pair model is in
better accordance with simulations results compared to the PEW effect model. Moreover,
the transition frequency fc between the two regimes is surprisingly found to be indepen-
dent of ionic concentration. This frequency must correspond to an intrinsic property of
Bjerrum polyelectrolytes, whose formation dynamics are therefore independent of ionic
concentration.

D.5 Hodgkin–Huxley neuron model

In this section, we detail the implementation of the molecular dynamics simulations of
the Hodgkin–Huxley neuron model [119] using our ionic memristor. It consists in two
graphene slits coupled by an external electronic circuit containing a current generator I
and a capacitor C, see figure 4.5. We refer to these two slits as discharging and charging
memristor due to their respective effect on the capacitor.

In the description of biological neurons by Hodgkin and Huxley, ion channels (typically
sodium and potassium channels) play the role of memristors. Each channel is modelled
by a history-dependent resistor in series with a Nernst potential which accounts for the
concentration contrast of some ionic species in the reservoirs to which the memristor is
connected (the extra- and intracellular media), see figure 4.5a. Hodgkin and Huxley then
propose the following electronic model of the ion channels:

Ik = Gk(nk)(U − Vk), (D.60)

ṅk = f(nk, U), (D.61)

where Ik is the current flowing out of the kth ion channel, Gk its conductance, Vk its Nernst
potential, U the applied voltage and nk an internal parameter (or array of parameters)
describing the activity of the channel. The key point here is that the evolution of nk only
depends on the physical voltage U and not on the Nernst potential, which is of chemical
origin. Lastly, since biological channels are ion-specific, their Nernst potential is directly
linked to the concentrations of the corresponding ion inside and outside the neuron, cink
and coutk :

Vk =
kBT

e
log

coutk

cink
. (D.62)

Qualitatively, the spiking response observed in the Hodgkin–Huxley model stems from the
sign difference in the Nernst potentials of sodium ions (which are more concentrated in
the extracellular medium, flow inside the neuron and increase its charge) and potassium
ions (which are more concentrated in the intracellular medium, flow outside the neuron
and decrease its charge).
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Because our description of 2D electrolytes is formally equivalent to Hodgkin and
Huxley’s model of ion channels, we can reproduce step by step their neuron model, using
two nanofluidic memristors. Illustrating e.g. the mechanism with CaSO4 as a salt, a
“charging" memristor is connected on the left to a reservoir with more sulfate ions than
calcium ions and on the right to a reservoir containing more calcium than sulfate ions. In
both reservoirs, electroneutrality is imposed by some additional electrolyte that cannot
enter the graphene slit (because, for example, it is too large). The situation is reversed for
the discharging memristor: it is connected on the left to a reservoirs with many calcium
ions, and on the right to a reservoir with many sulfate ions.

However in our simulations, we can simplify the setup by imposing de facto the ad-
ditional Nernst potential. We cannot indeed afford to simulate the reservoirs explicitly,
because we need to perform the simulation over very long timescales (up to a few millisec-
onds). Instead we implement them through additional Nernst electrochemical potentials
VDischarge < 0 and VCharge > 0 being imposed on the slits.

Our simulation scheme is as follows. First, we impose the capacitor voltage U(t)
during a time ∆t = 50 ns to both slits and compute the corresponding ionic current
IDischarge(t+ ∆t) and ICharge(t+ ∆t) without taking Nernst potentials into account. We
then deduce the conductance of each channel:

Gk(t+ ∆t) =
Ik(t+ ∆t)

U(t)
. (D.63)

The actual ionic currents are then determined by:

Ik,Nernst = Gk(t+ ∆t)(U(t)− Vk), (D.64)

as in the Hodgkin–Huxley model. This allows us to compute the new value of the voltage:

U(t+ ∆t) = U(t) +
∆t

C
[I − IDischarge, Nernst − ICharge, Nernst] . (D.65)

Figure 4.5c shows the voltage U as function of time for I = 0.1 nA, C = 10−4 pF
and VCharge = −VDischarge = 0.2 kBT/Å. The graphene slits have the same length
L = 2 µm and different ionic concentrations ρDischarge = 10−4 atom/nm2 and ρCharge =
10−5 atom/nm2. A more realistic value of C can easily be used instead by reducing the
slits length, as only the value of the product CL2 matters, or by considering stacks of
identical slits in parallel instead.

D.6 Orders of magnitude discussion

Our results, as discussed in previous sections, are based on molecular dynamics simula-
tions of a graphene slit of length 2 µm and height h = 7Å, where typical electric fields are
of the order of 0.1 kBT/Å. This corresponds to an applied voltage U ∼ 50 V. This is of
course unrealistic due to water electrolysis starting at U = 1.23 V. Similarly, to test the
memristor effect we used frequencies in the range 10 kHz − 10MHz which can hardly be
accessed to in experiments due to capacitive effects observed in such nanofluidic systems.

This set of parameters was necessary for simulations, as testing a more reasonable
frequencies around f ∼ 100 Hz would require to simulate the system for t ∼ 0.1 s which
is not feasible due to numerical constraints. Likewise, only the value of the electric field
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Figure D.2

Theoretical model of experimentally accessible devices. a. Memristor effect in a 100 nm long
graphene slit excited by a voltage U = U0 cos 2πft such that U0 = 0.26 V and f = 160 Hz,
obtained by solving equation (D.53) numerically. b. Voltage spiking in a Hodgkin–Huxley
cell (see figure 4.5b) made of two 100 nm slits and a capacitance C = 2 pF, stimulated by an
input current I = 1 pA. The two slits are connected to pairs of reservoirs with different cation
and anion concentrations, corresponding to the Nernst potentials V = ±50 mV. The system is
simulated using its equivalent electronic circuit (see figure 4.5b).

bears relevance to the ionic dynamics. Therefore, reducing the system size allows one to
consider much more reasonable voltages. Another possibility would be to use lower ionic
concentrations or slightly bigger channels (h = 1 nm), both of which lowers the electric
field needed to observe conduction through Wien effect.

Our theoretical model, however, allows us to predict that the memristor effect should
still be observed in experimental conditions. As a proof of concept, we show in figure D.2
the AC IV curve obtained for a sinusoidal voltage of amplitude U = 0.26 V and frequency
f = 160 Hz for a slit of length L = 100 nm and height h = 0.7 nm containing an ionic
concentration ρ = 10−3 atom/nm2. The resulting ionic current is less than 10 pA, which
is harder to detect, but the experiment can be implemented using stacks of identical
devices in parallel to increase the signal-to-noise ratio significantly.

Similarly, we can use our model to predict the spiking response of such experimen-
tally available systems. We implement this by solving numerically the Hodgkin–Huxley
equations corresponding to the device shown figure 4.5b, with I = 1 pA, C = 2 pF,
ρCharge = 20ρDischarge = 2 × 10−3 atom/nm2, and T ∗ = 0.22 (corresponding to slits of
height h = 1.4 nm and divalent ions). We also use VCharge, Discharge = ±50 mV, which
corresponds to concentration ratios of 100 between the reservoirs. To compensate for the
lower concentration (and hence lower conductivity), the discharging memristor is a stack
of 5 identical slits. The result, showing voltage spike trains with frequency around 7 kHz,
is presented on figure D.2b.
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Theory of quantum friction
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E.1 Many-body theory of solid-liquid friction

E.1.1 Model definition

We consider a semi-infinite solid extending into the half-space z < 0 in contact with a
semi-infinite liquid (water) extending into the half-space z > 0, at temperature T . The
whole system is described within a quantum field theory framework. For simplicity, we
describe only the electronic degrees of freedom of the solid by the creation and anihilation
fields Ψ†(r, t) and Ψ(r, t), respectively; we note that one could follow the steps described
below with the addition of lattice degrees of freedom as a phonon field. The liquid
is described by its charge density nw(r, t), assumed to have gaussian fluctuations fully
determined by the two-point functions 〈nw(r, t)nw(r′, t′)〉, which are treated as inputs of
the model. A flow parallel to the interface is induced in the liquid, and the system is
assumed to have reached a non-equilibrium steady state. We assume that the liquid flow
is slow enough so that it does not affect the form of microscopic correlations in the liquid.
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E.1. Many-body theory of solid-liquid friction

In that case, the effect of the flow field v is to shift the coordinates within the liquid
according to nw(r, t) 7→ nw(r− vt, t).

The liquid and the solid interact through long range Coulomb forces, and through
short-range forces due to the coupling of electronic degrees of freedom of the solid with
electronic degrees of freedom of the liquid, which we do not treat explicitly. If the fron-
tier orbitals of the solid and the liquid are sufficiently far apart in energy, then these
short-range forces amount simply to "Pauli repulsion", which prevents the solid and the
liquid from interpenetrating each other [251, 252]. If not, there may be chemisorption
of the liquid on the solid [253], which is a situation beyond the scope of this work. The
former assumption is justified in particular for the water-carbon interface, where ab initio
simulations show no water chemisorption [55]. In the following, we will treat explicitly
only the long-range Coulomb forces, with the effect of Pauli repulsion taken into account
in the bare correlation functions, computed for semi-infinite media.

The Coulomb interactions in the system are described by the Hamiltonian

Ĥint =

∫
drdr′n̂e(r′, t)V (r− r′)n̂w(r−vt, t) +

1

2

∫
drdr′n̂e(r′, t)V (r− r′)n̂e(r, t), (E.1)

where ne(r, t) ≡ Ψ†(r, t)Ψ(r, t) is the electron density: the first term is the water-electron,
and the second term is the electron-electron Coulomb interaction. Within the interacting
system, we wish to compute the solid-liquid friction force

〈F̂(t)〉 = −
∫

drdr′∇r′V (r− r′)〈n̂w(r′ − vt, t)n̂e(r, t)〉, (E.2)

where the average is taken over all quantum and thermal fluctuations in the system.
Therefore, computing the friction force amounts to computing the equal-time water-
electron density correlation function. We proceed by treating Ĥint as a perturbation,
and expanding the average in eq. (E.2) in powers of Ĥint to arbitrary order. Because
we are dealing with a non-equilibrium steady state, we do so in the Schwinger-Keldysh
framework of perturbation theory.

E.1.2 Brief overview of the Keldysh framework

We make use of the out-of-equilibrium perturbation theory formalism originally proposed
by L. V. Keldysh in 1965 [159], which has since then been extensively described in several
books [254, 255] and reviews [160]. However, in order to keep the discussion as self-
contained as possible, we give here a brief introduction, whose formulation is largely
based on [255]. The reader who is familiar with the Keldysh formalism may directly skip
to section E.1.3.

Our solid-liquid system is governed by the total Hamiltonian H(t) = Ĥ0 + Ĥint(t),
where Ĥ0 is the quadratic Hamiltonian describing the system at equilibrium with Coulomb
interactions switched off. Suppose we wish to compute the mean value of the Schrödinger
picture operator O at time t. It is defined by

〈O〉(t) =
Tr[ρ̂(t)O]

Tr[ρ̂(t)]
, (E.3)

where ρ̂(t) is the density matrix of the out-of-equilibrium interacting system. In order to
evaluate ρ̂(t), we assume that the Coulomb interactions and the fluid flow, which sets the
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system out of equilibrium, are adiabatically switched on starting at t = −∞. Then, we
may express the interacting density matrix at time t as a function of the non-interacting
density matrix ρ̂0 at t = −∞, and the evolution operator U : ρ̂(t) = Ut,−∞ρ̂0U−∞,t, with

Ut,t′ = T
[
exp

(
− i
~

∫ t

t′
H(t)dt

)]
, (E.4)

T being the time-ordering operator. The average value in eq. (E.3) then becomes

〈O〉(t) =
Tr[U−∞,tOUt,−∞ρ̂0]

Tr[ρ̂0]
, (E.5)

where we have used circular permutation within the trace. The expression under the
trace can be read (from left to right) in terms of time evolution: the system is evolved
from t = −∞ where the density matrix is known, to t where the observable is computed,
and the back to t = −∞. In equilibrium perturbation theory, one further assumes that
the interactions are adiabatically switched off at t = +∞, so that the state of the system
at t = +∞ differs from the state at t = −∞ only by a phase factor. Then, instead of
evolving the system from t to −∞, one can evolve it from t = +∞, thereby avoiding
the complication of forward-backward time evolution. After a non-equilibrium evolution,
however, the system has no reason to go back to its initial state, even if the interactions
are switched off. Hence, one has to consider the evolution of the system on a contour that
goes forwards then backwards in time. In practice, one defines the Schwinger-Keldysh
closed time contour c, which travels from t = −∞ to t = +∞ and then back. It can then
be shown that

〈O〉(t) =
1

Tr[ρ̂0]
Tr
[
ρ̂0Tc · OH0(t)e−

i
~
∫
c
H
H0
int (t′)dt′

]
, (E.6)

where the subscript H0 indicates operators in the Heisenberg picture with respect to H0,
and Tc is the time-ordering operator along the contour c.

In practice, instead of average values of operators at one point in time, we will be in-
terested in computing contour-ordered two-point functions of operators taken at different
points in time, in particular

χew(e, w) ≡ − i
~
〈
Tc
{
nHe (re, te)n

H
w (rw, tw)

}〉
. (E.7)

It can be shown that, in analogy with eq. (E.6),

χew(e, w) = − i
~

〈
Tc
{
nH0
e (re, te)n

H0
w (rw, tw)e−

i
~
∫
c
H
H0
int (t′)dt′

}〉
0
, (E.8)

with 〈·〉0 ≡ Tr[ρ̂0·]/Tr[ρ̂0].
Under the form (E.8), the correlation function χew can be evaluated as a perturbation

series, by expanding the exponential to arbitrary order. Each term in the series consists
in the average value of the contour-ordered product a certain number of field operators,
taken with respect to the non-interacting density matrix ρ̂0. Since ρ̂0 is gaussian in the
field operators, Wick’s theorem applies, and those average values of many operators can
be expressed as a convolution of two-operator correlation functions or Green’s functions.

However, the contour-ordered correlation function is a complicated object, since it
has a different form depending on the part, forward (c1) or backward (c2), of the contour
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E.1. Many-body theory of solid-liquid friction

where its two time points are taken. It can actually be pictured as a 2× 2 matrix, whose
entries contain the four possible choices. For example,

χew =

(
χ11
ew χ12

ew

χ21
ew χ22

ew

)
, (E.9)

with χijew corresponding to te ∈ ci and tw ∈ cj . It can be shown that the perturbation
theory is consistent with this matrix structure: the convolution of two matrix correlation
functions corresponds to matrix multiplication, followed by space-time convolution of the
resulting component pairings. However, the components χij are not convenient quantities
in terms of physical meaning. Therefore, it is customary to redefine the correlation
function through a certain matrix transformation, for which different conventions exist.
We shall adopt the trigonal representation of Larkin and Ovchinnikov [256], which is
obtained through the transformation

χ 7→ Lτ3χL† =

(
χR χK

0 χA

)
, (E.10)

with the matrices

L =
1√
2

(
1 −1
1 1

)
and τ3 =

(
1 0
0 −1

)
. (E.11)

This transformation reveals three physically meaningful components for χ: the retarded,
advanced and Keldysh correlation functions. For the density cross-correlation function
χew, these components are defined as

χRew(e, w) = − i
~
θ(te − tw)〈[n̂e(e), n̂w(w)]〉 (E.12)

χAew(e, w) =
i

~
θ(tw − te)〈[n̂e(e), n̂w(w)]〉 (E.13)

χKew(e, w) = − i
~
〈{n̂e(e), n̂w(w)}〉, (E.14)

where [, ] is the commutator and {, } the anticommutator; all the operators are in the
Heisenberg picture with respect to Ĥ0, and we have used condensed notations of the
type e ≡ (re, te). Similar definitions hold for the components of the electron-electron
and water-water correlation functions χe and χw

1. In terms of these definitions, the
solid-liquid friction force (eq. (E.2)) can be recast as

〈F̂〉 = −
∫

dredrw∇rwV (rw − re) ·
i~
2
χKew(re, te, rw, 0)|te=0

= − i~
4π

∫ +∞

−∞
dω

∫
dredrw∇rwV (rw − re)χ

K
ew(re, rw, ω).

(E.15)

1Here we based our discussion on density-density correlation functions, because these are relevant
for the solid-liquid problem. A more usual discussion in terms of Green’s functions can be found, for
example, in [160].
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E.1.3 Diagrammatic perturbation theory

We have established in the previous section that evaluating the solid-liquid friction force
amounts to computing the Keldysh component of the electron-water density correlation
function, which supports a perturbative expansion in terms of the Coulomb interaction
Hint. We discuss the structure of this expansion using a Feynman diagram representation.
We adopt the following notations for the propagators:

(E.16)

Here Ge(e′, e) = −(i/~)〈Tc ·Ψ(e′)Ψ†(e)〉0 is the bare electron Green’s function. Recalling
that n̂e(e) = Ψ†(e)Ψ(e), the Hamiltonian in eq. (E.1) allows for two types of vertices,
corresponding to water-electron and electron-electron Coulomb interactions:

(E.17)

We start by considering only water-electron Coulomb interactions. Then, the series ex-
pansion of the exponential in eq. (E.8) has the following diagrammatic representation:

(E.18)

This expansion allows for partial resummation in the form of a Dyson equation:

(E.19)

The thick line represents the electron Green’s function renormalised by all self-energy
corrections due to Coulomb interactions with water. For the water-graphene interface,
we will compute the lowest order self-energy diagram (see section E.3.3). The grey triangle
represents vertex corrections, which are analogous to electron-phonon vertex corrections,
and we expect them in general to be negligible according to the Migdal theorem [257,258].
For simplicity, we drop these vertex corrections in the following, and leave their detailed
investigation for future work.

We now include the electron-electron Coulomb interactions at the self-consistent
Hartree (RPA) level. This amounts to renormalise the electron polarisation bubble (or
density correlation function) according to

(E.20)

We note that in principle, electron-electron interactions beyond the RPA could be in-
cluded, and would result in further self-energy and vertex corrections to the polarisation
bubble. Ultimately, our Dyson equation for the electron-water density correlation func-
tion becomes

(E.21)
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E.1.4 General result

We now explicit the analytical expressions corresponding to the Feynman diagrams. We
denote χe the renormalised electron polarisation bubble, as defined in eq. (E.20). Then,
the first term in eq. (E.21) reads(

[χ
(1)
ew ]R(e, w) [χ

(1)
ew ]K(e, w)

0 [χ
(1)
ew ]A(e, w)

)
≡ [χe ⊗ χw](e, w)

=

∫ +∞

−∞
dt

∫
dr′edr

′
wV (r′e − r′w) . . .(

χRe (re, te, r
′
e, t) χKe (re, te, r

′
e, t)

0 χAe (re, te, r
′
e, t)

)(
χRw(r′w − vt, t, rw, 0) χKw (r′w − vt, t, rw, 0)

0 χAw(r′w − vt, t, rw, 0)

)
.

Having made explicit the definition of the convolution ⊗, we may rewrite the Dyson
equation (E.21) in terms of the R,A,K components: χKew = χRe ⊗ χKw + χKe ⊗ χAw + χRe ⊗ χRw ⊗ χKew + (χRe ⊗ χKw + χKe ⊗ χAw)⊗ χAew

χR,Aew = χR,Ae ⊗ χR,Aw + χR,Ae ⊗ χR,Aw ⊗ χR,Aew

.

(E.22)
Equation (E.22), together with eq. (E.15), is our most general result, that holds far from
equilibrium, and for any shape of the solid-liquid interface.

E.1.5 Classical contribution

From now on, we will make several simplifying assumptions so as to obtain closed-form
expressions for the solid-liquid friction coefficient. We start by splitting off the contribu-
tion to friction due to the solid’s static roughness. The solid’s charge density can always
be split according to

n̂e(r, t) = 〈ne(r)〉+ δn̂e(r, t) ≡ n0
e(r) + δn̂e(r, t). (E.23)

The static charge density n0
e(r) only contributes to the Keldysh component of the density

correlation function χe. Precisely,

χKe (r, t, r′, t′) = − i
~
[
2n0

e(r)n0
e(r
′) + 〈{δn̂e(r, t), δn̂e(r′, t′)}〉

]
≡ − i

~
2n0

e(r)n0
e(r
′) + χ̃Ke (r, t, r′, t′).

(E.24)

We consider the effect of static roughness only to first order in the solid-liquid Coulomb
interaction. This would be exact in the case where the solid is completely static. If it
is not, then we expect most electronic fluctuations to be at wavelengths that are large
compared to the lattice spacing, so that the effect of these fluctuations on the surface
roughness contribution is small. Nevertheless, the potential effect of these higher order
contributions should be reassessed for any particular solid-liquid system under considera-
tion. Using eqs. (E.15), (E.22) and (E.24), the first order surface roughness contribution
to the friction force, which we call the classical contribution, reads

FCl = −
∫ +∞

−∞
dt

∫
dredr

′
edrwdr′w∇rwV (rw−re)n0

e(re)n
0
e(r
′
e)V (r′e−r′w)χAw(r′w−vt, t, rw, 0).

(E.25)
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Since the liquid is translationally invariant parallel to the surface, we may carry out
two-dimensional Fourier transforms. We obtain:

FCl = −
∫ +∞

−∞

dq

(2π)2
(iq)

∫
dzedz

′
edzwdz′w e

−q|ze−zw|e−q|z
′
e−z

′
w| . . .

. . . V 2
q n

0
e(q, ze)n

0
e(−q, z′e)

∫ +∞

−∞
dteiqv(z′w)tχAw(q, zw, z

′
w, t),

(E.26)

with Vq ≡ Vq(z = 0) (see eq. (5.8)). We may now identify the Fourier transform of χA
with respect to time. Then, we use that χA(q, z, z′,−ω) = χA(q, z, z′, ω)∗ = χR(q, z, z′, ω)
to obtain

FCl =
e2

2ε0

∫
dq

(2π)2

q

q

∫
dzedz

′
edzwdz′w e

−q|ze−zw|e−q|z
′
e−z

′
w| . . .

. . .
e2

2ε0q
n0
e(q, ze)n

0
e(−q, z′e)Im[χRw(q, zw, z

′
w,qv(z′w))].

(E.27)

This result may be further simplified under the assumption that there is a well-defined
separation between the solid and the liquid, say at z = 0, so that the integration over
the zw’s runs over [0,+∞[, while the integration over the ze’s runs over ] − ∞, 0]. As
explained in Chapter 5, we will further assume that the flow velocity v is independent
of z, which is true as long as the slip length (at least several nm on atomically smooth
surfaces) is much larger than the range of the interactions contributing to the friction
force (less than 1 nm). We then identify the (retarded) surface response function gw(q, ω)
of the liquid, so as to obtain

FCl = − e2

2ε0

∫
dq

(2π)2

q

q

∫ 0

−∞
dzedz

′
ee
q(ze+z

′
e)n0

e(q, ze)n
0
e(−q, z′e) Im[gRw(q,qv)]. (E.28)

This result may be cast into a more physically transparent form. First, we define

|Ve(q)|2 =
1

A

∣∣∣∣ e2

2ε0q

∫ 0

−∞
dze e

qzen0
e(q, ze)

∣∣∣∣2 , (E.29)

which is the squared Fourier component at wavevector q of the average potential acting
on the liquid at z = 0, normalised by the area A of the interface. Then, eq. (E.28)
becomes

FCl

A
= −

∫
dq

(2π)2
q |Ve(q)|2

[
2ε0q

e2
Im[gRw(q,qv)]

]
. (E.30)

Second, the expression in brackets can recast in terms of the liquid dynamic structure
factor. We make use of the equilibrium relation between the Keldysh and retarded compo-
nents of the surface correlation functions, which plays the role of a fluctuation-dissipation
theorem [259]:

gKw (q, ω) = 2i coth

(
~ω

2kBT

)
Im[gRw(q, ω)]. (E.31)

Taking the limit ω → 0 of this relation, and using the definition (E.14), we obtain

lim
ω→0

(
2ε0q

e2

Im[gRw(q, ω)]

ω

)
=

1

2AkBT

∫ +∞

−∞
dt〈nsw(q, t)nsw(−q, 0)〉, (E.32)
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where

nsw(q, t) =

∫ +∞

0

dz e−qznw(q, z, t). (E.33)

Defining the "surface" dynamic charge structure factor of the liquid as

Sw(q, t) =
〈nsw(q, t)nsw(−q, 0)〉

A
, (E.34)

and expanding eq. (E.30) to linear order in v, we obtain

FCl

A
= − 1

8π2kBT

∫
dqq(q · v) |Ve(q)|2

∫ +∞

−∞
dt Sw(q, t). (E.35)

Finally, defining the classical friction coefficient λcl through FCl · v/A = −λClv
2, we

obtain

λCl =
1

4π2kBT

∫
dq

(q · v)2

v2
|Ve(q)|2

∫ +∞

0

dt Sw(q, t), (E.36)

which is equation (5.15) given in Chapter 5. This is formally identical to the result
obtained in the classical treatment of solid-liquid friction where the solid has no internal
degrees of freedom [163]; we recover it here in the corresponding limit of our quantum
formalism. We note, however, that our formalism only deals with Coulomb interactions,
and any roughness of the short-range Pauli repulsion forces is not taken into account.
Nevertheless, this additional roughness could be dealt with in the exact same way as
above, with the Coulomb potential replaced by a short-range repulsive potential, and the
water charge density replaced by the water atom density.

E.1.6 Quantum contribution

Having dealt with the static roughness contribution, we assume that the solid’s average
charge density vanishes: this amounts to replacing χKe 7→ χ̃Ke in eq. (E.22). We then
make the same simplifying assumptions as in the previous section: there is a separation
between the solid and the liquid at z = 0, and the velocity field does not depend on z. We
further assume that the various correlation functions are translationally invariant parallel
to the interface. This assumption is not necessary to proceed, but it greatly simplifies
notations and is relevant for most practical purposes: we will be considering fluctuations
at wavelengths that are longer than the solid’s lattice spacing.

With the above assumptions, we may define, for any correlation function χ, the surface
correlation function g according to

g(q, ω) =
−e2

4πε0

2π

q

∫
d(ρ− ρ′)e−iq(ρ−ρ′)

∫ +∞

−∞
d(t− t′)eiω(t−t′) . . .

· · ·
∫ +∞

0

dzdz′e−q(|z|+|z
′|)χ(ρ,ρ′, z, z′, t, t′).

(E.37)

These naturally satisfy the same Dyson equations (E.22) as the χ functions, and their
convolution corresponds simply to multiplication in Fourier space. But, importantly,
the effect of the flow velocty v is to shift the frequencies appearing in water correlation
functions according to ω 7→ ω − qv. With that, rearranging eq. (E.22) yields

gKew(q, ω) = −g
R
e (q, ω) gKw (q, ω − qv) + gKe (q, ω) gAw(q, ω − qv)

|1− gRe (q, ω) gRw(q, ω − qv)|2
, (E.38)
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where we have used that gR(q, ω) = [gA(q, ω)]∗. We now notice that Fourier-transforming
eq. (E.15) yields

〈F̂〉
A

=
1

2

i~
(2π)3

∫ +∞

−∞
dω

∫
dq (iq)gKew(q, ω). (E.39)

In order to proceed, we make use of the fluctuation-dissipation theorem as in the previous
section:

gKe,w(q, ω) = 2i coth

(
~ω

2kBT

)
Im[gRe,w(q, ω)] ≡ 2if(ω)Im[gRe,w(q, ω)]. (E.40)

We may then expand eq. (E.38) as

gKew(q, ω) = 2
(f(ω − qv)− f(ω))Im[gRe (q, ω)] Im[gRw(q, ω − qv)]

|1− gRe (q, ω) gRw(q, ω − qv)|2

− 2i
f(ω − qv)Re[gRe (q, ω)] Im[gRw(q, ω − qv)] + f(ω)Im[gRe (q, ω)] Re[gRw(q, ω − qv)]

|1− gRe (q, ω) gRw(q, ω − qv)|2
.

(E.41)

The imaginary parts of the surface response functions gR are odd functions of ω, while
the real parts are even. Therefore, the second term in eq. (E.41) is even with respect to
the transformation ω 7→ −ω,q 7→ −q and vanishes upon integration in eq. (E.39). We
hence obtain the quantum contribution to the friction force as:

FQ

A
=

~
(2π)3

∫
dqq

∫ +∞

−∞
dω

(f(ω)− f(ω − qv))Im[gRe (q, ω)] Im[gRw(q, ω − qv)]

|1− gRe (q, ω) gRw(q, ω − qv)|2
.

(E.42)
To linear order in v, the friction force becomes

FQ

A
=

~
4π3

∫
dqq (q · v)

∫ +∞

0

dω

(
df(ω)

dω

)
Im[gRe (q, ω)] Im[gRw(q, ω)]

|1− gRe (q, ω) gRw(q, ω)|2
, (E.43)

with
df(ω)

dω
= − ~

2kBT
sinh−2

(
~ω

2kBT

)
. (E.44)

Defining the quantum friction coefficient λQ by FQ/A = −λQv, we obtain after angular
integration

λQ =
~2

8π2kBT

∫ +∞

0

dq q3

∫ +∞

0

dω

sinh2
(

~ω
2kBT

) Im[gRe (q, ω)] Im[gRw(q, ω)]

|1− gRe (q, ω) gRw(q, ω)|2
, (E.45)

which is equation (5.16) after minor rearrangement.

E.1.7 Discussion

Our result for the solid-liquid quantum friction coefficient (eq. (E.45)) is formally identical
to the one obtained in the solid-solid case by Volokitin and Persson ( [158] and references
therein), and differs by a factor of 2 from the one obtained by Despoja, Echenique and
Sunjic [260]. However, none of the literature derivations for non-contact solid-solid friction
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may readily be extended to the solid-liquid case. Indeed, to our knowledge, the only
derivation based on rigorous field theory arguments is restricted to the case of solids
with local dielectric response [168]. At the solid-liquid interface, lengthscales as small as
the solid’s lattice spacing come into play, and an assumption of local dielectric response
cannot hold. On the other hand, explicitly non-local derivations [166, 260] have treated
the friction force rigorously to first order in the Coulomb interactions, and based the
expression of higher order terms on an idea of multiple reflections of the electromagnetic
field. This reasoning is difficult to justify fundamentally, especially when the two media
are actually in contact, as in the solid-liquid case.

Our formalism deals rigorously with the Coulomb interactions up to arbitrary order
in fully non-local media. This allows us to obtain contributions beyond the first order
(the denominator in eq. (E.45)) without resorting to multiple reflection arguments, as
the solution of a Dyson equation written in non-equilibrium perturbation theory. Beyond
justifying the use of eq. (E.45) for the solid-liquid interface, our formalism unambiguously
specifies in which way – if at all – the response functions appearing in eq. (E.45) should
be renormalised by the solid-liquid interactions. Indeed, if interactions are taken into
account at the RPA level, our computation shows that the response functions appearing
in eq. (E.45) are bare response functions. Therefore, they do not need further RPA
renormalisation, for instance according to [261]

gRe,w(q, ω) =
gRe,w(q, ω)

1− gRe (q, ω)gRw(q, ω)
. (E.46)

The only interaction corrections that are not explicit in eq. (E.45) are self-energy correc-
tions to the electronic response function.

E.2 Jellium model

E.2.1 Surface response

In order to qualitatively assess the role of electronic properties in the quantum friction of
water, we consider a generic electronic system described within the infinite barrier jellium
model, treated in the specular reflection (SR) approximation (for a detailed discussion
of surface response functions and the SR approximation, see Appendix B ). The non-
interacting bulk density response function is computed according to eq. (B.21). For the
bulk jellium, there is a single band with energy E(k) = ~2k2

2m∗ , with m
∗ the effective mass,

and the eigenstates are Bloch waves, so that all the matrix elements are equal to 1.
Setting the temperature to 0, the Fermi-Dirac distribution becomes f(E) = θ(EF − E),
with EF the Fermi energy. The integral in eq. (B.21) may then be evaluated analytically,
yielding the Lindhard function [262,263]:

v(q, qz)Re[χ0
B(q, qz, ω)] = −αrs

4x2

(
1

2
+
F (x, x0) + F (x,−x0)

8x

)
, (E.47)

v(q, qz)Im[χ0
B(q, qz, ω)] = −αrs

4x2

[
π(1− (x0/x− x)2)

8x
θ(x0 − |x− x2|)θ(x+ x2 − x0) . . .

+
πx0

2x
θ(x0)θ(x− x2 − x0)

]
.

(E.48)
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We used the following notations:

F (x, x0) =

(
1−

(x0

x
− x
)2
)

log

∣∣∣∣x+ x2 − x0

x− x2 + x0

∣∣∣∣ ; (E.49)

x =
√
q2 + q2

z/(2kF), x0 = ω/(4ωF). ωF = EF/~ is the Fermi frequency, kF =
√

2m∗EF/~2

is the Fermi wavevector. v(q, qz) = e2/(ε0(q2+q2
z)) is the 3D Coulomb potential. Once the

frequencies and wavevectors have been normalised by the Fermi frequency and wavevec-
tor, the Lindhard function depends only on the electron density parameter rs, defined
by

rs =

(
9π

4

)1/3
(m∗/me)

kFa0
, (E.50)

with a0 = 4πε0~2/(mee
2) the Bohr radius and me the electron mass. The prefactor α is

α = (4/π)(9π/4)−1/3 ≈ 0.66. Given the Lindhard function, the surface response function
of the semi-infinite jellium can be evaluated by carrying out numerically the integration
in eq. (B.20).

E.2.2 Friction coefficient

In order to evaluate the quantum friction coefficient of water on a semi-infinite jellium
according to eq. (5.16), we fit the numerically determined jellium surface response func-
tion with analytical expressions. Such a procedure is necessary because the integral in
eq. (5.16) has contributions at very low frequencies (typically, the water Debye mode
frequency), and much higher frequencies corresponding to the electronic surface plas-
mon mode, which makes numerical sampling difficult. Figure E.1 shows the integrand of
eq. (5.16), that is

λ̃(q, ω) =
~2

8π2kBT

q3

sinh2
(

~ω
2kBT

) Im[ge(q, ω)] Im[gw(q, ω)]

|1− ge(q, ω) gw(q, ω)|2
, (E.51)

in (q, ω) space, with parameter values such that the surface plasmon frequency is low
enough to make a non-negligible contribution (EF = 2 meV and m∗ = 50me). We
observe observe that the integrand λ̃(q, ω) has contributions from two disjoint regions of
the (q, ω) space: at very low frequencies (ω → 0), and at frequencies around the surface
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a. Low frequency particle-hole excitation contribution to the quantum friction coefficient. b.
Surface plasmon contribution to the quantum friction coefficient.

plasmon frequency. Hence, we may fit the jellium surface response separately in these
two regions.

Our choice of fit functions is guided by [174]. In the low frequency region, we use

ge(q, ω) = e−q/(kFC[rs]) + iA[rs]
ω

EF

q

kF
e−q/(kFB[rs])θ(q − 2kF). (E.52)

For the surface plasmon region, we fitted the imaginary part of the surface response
function by a Lorentzian:

Im ge(q, ω) =
D[q/kF, rs]

2

1

(ω − ωP [q/kF, rs])2 + γ[q/kF, rs]2
. (E.53)

The real part was then consistently determined through the Kramers-Krönig relation:

Re ge(q, ω) =
2

π
P
∫ +∞

0

dω′
ω′Im ge(q, ω

′)

ω′2 − ω2

=
D[q/kF, rs]

2

ωP [q/kF, rs](ωP [q/kF, rs]− ω)

(ω − ωP [q/kF, rs])2 + γ[q/kF, rs]2
,

(E.54)

where P indicates that the Cauchy principal value of the integral is taken. We carry out
the fit up to qmax/kF = −1 +

√
1 + 2ω0

P [rs]/ωF, where

ω0
P [rs] =

√
8

3π

(
4

9π

)1/3

r1/2
s ωF ≈ 0.67× r1/2

s ωF (E.55)

is the surface plasmon frequency at zero wavevector. For wavevectors beyond qmax the
surface plasmon is Landau-damped, effectively disappearing from the spectrum. We
found that the fit results were well-reproduced by the following analytical expressions:

ωP [q, rs] = ω0
P [rs]

(
1 +

q2

qmax[rs]2

)
and A[q, rs] = e−q/(0.45×qmax[rs]), (E.56)

157



E.2. Jellium model

d = 1 Å
d = 2 Å
d = 3 Å 

b

10-2 10-1 100 101 102 103

Phonon frequency (meV)

10-1

101

103

105

-
- - --

- -
--

-
- - -

- -
- - -

--
-
-

-
------

a

d
+ + + +

- - -
+ + +

Debye peak

Figure E.3

Phonon contribution to quantum friction. a. Definition of the distance d appearing in eq. (E.59).
b. Phonon contribution to the quantum friction coefficient as a function of phonon frequency
ωs, for different values of d. The phonon width is set at γ = ωs/20.

and γ = 0.01 × ω0
P [rs]. Figure E.2 shows separately the low frequency and the plasmon

contribution to the quantum friction coefficient as a function of the jellium parameters
m∗ and ωF. It clearly appears that the friction is dominated by the plasmon contribution
in the region of low Fermi energy and high effective mass, where the plasmon is at low
energy and is weakly damped up to high momenta.

E.2.3 Phonon contribution

In addition to electronic excitations, phonon modes can make a contribution to the surface
response function of a solid, precisely in the low frequency and high momentum region
relevant for water quantum friction. We expect that the phonon contribution will be most
significant for polar materials such as hBN or SiO2, which have nearly dispersionless
optical phonon modes, so that their dielectric response may be considered local up to
momenta comparable with the Brillouin zone size. We consider for simplicity a material
with a single optical phonon mode with frequency ωph and width γ. Assuming ε∞ ≈ 1,
its dielectric function may be written as

ε(ω) = ε∞ + (εs − 1)
ω2

ph

ω2
ph − ω2 − iγω

, (E.57)

where ε∞ is the high frequency background dielectric constant and εs is the static dielec-
tric constant. The corresponding surface response function is

g(ω) =
ε(ω)− 1

ε(ω) + 1
=
εs − 1

εs + 1

ω2
s

ω2
s − ω2 − iγω

, (E.58)

with ωs = ωph

√
(1 + εs)/2 the surface phonon frequency. The ratio (εs − 1)/(εs + 1)

defines a surface phonon "oscillator strength", which is close to 1 since εs ∼ 3− 10.
Now, in the case of phonons, eq. (E.58) cannot be directly used to evaluate a quan-

tum friction coefficient according to eq. (E.45). Indeed, one should take into account a
microscopic distance d between the interfacial water layer and the first atomic layer of
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E.3. Water-carbon interface

the solid, which supports the phonon mode (see figure E.3). Eq. (E.45) is then modified
according to

λq =
~2

8π2kBT

∫ +∞

0

dq q3e−2qd

∫ +∞

0

dω

sinh2
(

~ω
2kBT

) Im[gRe (q, ω)] Im[gRw(q, ω)]

|1− e−2qdgRe (q, ω) gRw(q, ω)|2
,

(E.59)
We note that in the case of electronic excitations, there is no need to add explicitly
a distance d, as the water molecules are in direct contact with the solid’s electronic
density. The position of the image plane within the solid is then taken into account
in the momentum dependence of the electronic surface response function. Figure E.3
shows the friction coefficient computed according eq. (E.59) for different values of d in
the angström range as a function of phonon frequency (the "oscillator strength" is taken
equal to 1). We assume a small phonon width γ = ωs/20. We find that, for reasonable
surface phonon frequencies (ωs ∼ 100 meV), the phonon contribution to water quantum
friction is rather small (λ ∼ 102 N · s ·m−3), even at d = 1 Å.

In figure E.3, we plotted the quantum friction coefficient for a wide range of phonon
frequencies (beyond physically reasonable ones), in order to study in a simple case the
dependence of the friction coefficient on mode frequencies. In eqs. (E.45) and (E.59),
the product of surface response functions suggests that there should be a resonance for
the friction coefficient when a solid (phonon) mode has the same frequency as the water
Debye mode. This is however not the case, and the friction coefficient is found to be a
monotonically decreasing function of the phonon frequency. This is due to the thermal
factor sinh(~ω/2kBT ), which gives more weight to lower frequency modes, and to the very
broad shape of the Debye peak. If the Debye peak was replaced by a weakly damped
harmonic oscillator peak centred at ωD, the friction coefficient would show a maximum
at ωs = ωD, but would still converge to a non-zero value as ωs → 0.

E.3 Water-carbon interface

E.3.1 Graphene surface response function

We compute the surface response function of monolayer graphene according to the def-
inition in eq. (B.3). In order to explicit the density response function χ(q, z, z′, ω), we
make use of the tight binding model of graphene [264,265]. In the tight binding descrip-
tion, the Hilbert space of the graphene π electrons is restricted to linear combinations of
localised states |i〉. We denote c†i , ci the corresponding creation and anihilation operators
and ϕ(r− ri) the corresponding wavefunctions. We use for ϕ the generalised hydrogenic
wavefunction representing the carbon 2pz orbital [265]:

ϕ(ρ, z) = Aze−Z
√
ρ2+z2/2a0 , (E.60)

with A a normalisation factor, a0 the Bohr radius and Z = 3.18. All overlaps between
neighbouring orbitals are neglected, so that the electron density reads

n(r, t) =
∑
i

|ϕ(r− ri)|2c†i (t)ci(t) (E.61)

We introduce the Bloch state operators, defined separately for the sublattices A and B:

c†A(k) =
∑
i∈A

eikρic†i and c†B(k) =
∑
i∈B

eikρic†i . (E.62)
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The inverse transformation is

c†i∈A =

∫
BZ

dk

ABZ
e−ikρic†A(k) and c†i∈B =

∫
BZ

dk

ABZ
e−ikρic†B(k), (E.63)

with ABZ the area of the Brillouin zone. We further note the property∑
i∈A,B

eikρi = ABZ

∑
G

δ(k + G), (E.64)

where the G are vectors of the reciprocal lattice. Inserting (E.63) into (E.61), and using
(E.64), we obtain

n(ρ, z, t) =

∫
BZ

dq

(2π)2

∑
G

ξ(q + G, z)ei(q+G)ρnq(t), (E.65)

with
ξ(q, z) =

∫
dρ|ϕ(ρ, z)|2e−iqρ (E.66)

and
nq(t) =

∫
BZ

dk

ABZ

∑
a∈{A,B}

c†a(k + q, t)ca(k, t). (E.67)

We now focus on the non-interacting density response function χ0. Inserting (E.67) into
the definition (E.13), we obtain

χ0(r, t, r′, t′) =

∫
BZ

dqdq′

(2π)4

∑
G,G′

ξ(q + G, z)ξ(q′ + G′, z′)ei(q+G)ρei(q
′+G′)ρ′ . . .

. . .

[
− i
~
θ(t− t′)〈[nq(t), nq′(t

′)]〉0
]
.

(E.68)

Now, momentum conservation imposes

〈[nq(t), nq′(t
′)]〉0 = ABZδ(q + q′)〈[nq(t), n−q(t′)]〉0. (E.69)

Hence, eq. (E.68) becomes

χ0(r, t, r′, t′) =

∫
BZ

dq

(2π)2

∑
G,G′

ξ(q + G, z)ξ(q + G′, z′)∗ei(q+G)ρe−i(q+G′)ρ′ . . .

. . .

[
− i
~
θ(t− t′) ABZ

(2π)2
〈[nq(t), n−q(t′)]〉0

]
.

(E.70)

The quantity in brackets is the non-interacting density response function χ0
2D of graphene

that has been evaluated in the literature [176, 266]. It has the usual expression as a
function of the graphene eigenenergies Eν(k) and eigenstates |k, ν〉, which is the 2D
analogue of eq. (B.21):

χ0
2D(q, ω) =

∑
ν,ν′=±1

∫
BZ

d2k

2π2
|〈k + q, ν|eiq·r|k, ν′〉|2 nF[Eν(k + q)]− nF[Eν′(k)]

Eν(k + q)− Eν′(k)− ~(ω + iδ)
.

(E.71)
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For momenta q that are small compared to the intervalley distance (1.7 Å−1), the inte-
gration over the Brillouin zone may be carried out separately for the two valleys, and the
matrix elements have the expression

|〈k + q, ν|eiq·r|k, ν′〉| = 1

2

(
1 + νν′

k + q cos θ

‖k + q‖

)
, (E.72)

where θ is the angle between k and q. If one further assumes zero temperature, the
integral in eq. (E.71) can be carried out analytically, yielding the expression reported
in [176], which we reproduce here for completeness:

χ0
2D(q, ω) =− iπF (q, ω)

v2
F

− 2EF
πv2

F

+ . . .

+
F (q, ω)

v2
F

[
G

(
ω + 2EF
vF q

)
− θ

(
2EF − ω
vF q

− 1

){
G

(
2EF − ω
vF q

)
− iπ

}
+ . . .

+ θ

(
ω − 2EF
vF q

+ 1

)
G

(
ω − 2EF
vF q

)]
.

(E.73)

Here, EF is the graphene Fermi energy (doping level), vF = 6.73 eV · Å is the graphene
Fermi velocity, and the functions F and G are given by

F (q, ω) =
1

4π

v2
F q

2√
ω2 − v2

F q
2
, (E.74)

and
G(x) = x

√
x2 − 1− log

(
x+

√
x2 − 1

)
. (E.75)

Having written out the non-interacting density response function for graphene, we
may examine the corresponding surface response function. We found (eq. (E.70)), that
the non-interacting density response function χ0 has a Fourier expansion of the form

χ0(r, r′, ω) =

∫
BZ

dq

(2π)2

∑
G,G′

χ0
GG′(q, z, z

′, ω). (E.76)

Therefore, in principle, one should define a non-interacting surface response function for
every (G,G′):

g0
GG′(q, ω) = − e2

2ε0‖q + G′‖

∫
dzdz′e‖q+G‖ze‖q+G′‖z′χ0

GG′(q, z, z
′, ω). (E.77)

Physically, gGG′ determines the induced potential at wavevector q+G′ in response to an
applied potential at wavevector q + G. Now, since we are considering applied potentials
at wavevectors much smaller than the reciprocal lattice spacing G1 = 2.9 Å−1, we will
only be interested in g0

00(q, ω) ≡ g0(q, ω). Expanding eq. (E.77),

g0(q, ω) = − e2

2ε0q

∫
dzdz′eqzeqz

′
ξ(q, z)ξ(q, z′)∗χ0

2D(q, ω). (E.78)

In the water-graphene configuration, the z integration should in principle run from z =
−∞ up to some fixed z0 > 0, which sets the limit between solid and liquid. However, the
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E.3. Water-carbon interface

atomic orbitals ϕ extend formally up to z = +∞, and they should be somehow cutoff at
z = z0. We expect z0 to be in the angström range, comparable to the typical extension
of the 2pz orbital. Hence, for wavevectors q . 1/z0, the exact choice of z0 plays no
significant role. We may then set eqz ≈ 1 in eq. (E.78), which reduces to

g0(q, ω) = − e2

2ε0q
|ξ(q)|2χ0

2D(q, ω), (E.79)

with ξ(q) ≡
∫

dzξ(q, z). From the expression (E.60) of the 2pz orbital, one obtains [265]

|ξ(q)|2 =
(
1 + (qa0/Z)2

)−6
. (E.80)

In order to obtain the interacting surface response function, in general one has to
solve the RPA Dyson equation (B.10) for the density response function. However, for
wavevectors smaller than the reciprocal lattice spacing, it reduces to a Dyson equation
involving directly the surface response function:

g(q, ω) = g0(q, ω)− g0(q, ω)g(q, ω). (E.81)

Hence, we finally obtain the graphene surface response function as

g(q, ω) =

− e2

2ε0q
|ξ(q)|2χ0

2D(q, ω)

1− e2

2ε0q
|ξ(q)|2χ0

2D(q, ω)

. (E.82)

This expression was used to obtain figure 5.6a and figure 5.8a. The charge carrier (electron
or hole) density in graphene (n) is related to the Fermi level EF according to |EF | =
vF
√
πn.

E.3.2 1D chain model

In this section, we present a qualitative model for the surface response of graphite, which
accounts for the presence of a dispersionless low energy mode in the surface excitation
spectrum. It is based on the physical interpretation of this low energy mode as originating
from interlayer excitations of electrons located mainly on the B sublattices (figure 5.6b).
The lack of dispersion indicates that, from the point of view of low energy excitations,
the 1D chains formed by the B sublattice atoms behave as if they were independent,
with no in-plane tunnelling between the chains. This behaviour can be tied, to some
extent, to the flattening of the π bands in graphite with respect to graphene, though the
very flat dispersion observed in experiment does not seem to fully grasped by the band
structure of graphite at the tight-binding level. Hence, as a phenomenological model
for the experimentally observed graphite surface response, we consider an array of semi-
infinite tight-binding chains, with coupling parameter γ2 = 10 meV [184].

E.3.2.1 Local Green’s function

As a first step, we evaluate the local non-interacting (retarded) Green’s function at the
topmost atom of a 1D chain, denoted G11(ω). We introduce the creation and anihilation
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operators c†i , ci at the chain atoms, and the tight-binding Hamiltonian

Ĥ =

∞∑
i=1

γ2(c†i ci+1 + cic
†
i+1). (E.83)

The Green’s function G11 is given by the first coefficient of the matrix (~ωÎ− Ĥ)−1, with
Î the identity matrix:

G11(ω) = (~ωÎ − Ĥ)−1
11 . (E.84)

G11 may thus be computed with the help of cofactor expansions. We denote ĤN the
Hamiltonian of a tight-binding chain with finite length N , and H̃N = ~ωÎN − ĤN , so
that the local Green’s function at the finite chain’s topmost atom is G̃N11 = (H̃−1

N )11. In
matrix form,

H̃N =



~ω −γ2 0
. . . . . .

−γ2 ~ω −γ2 0
. . .

0 −γ2 ~ω −γ2
. . .

. . . 0 −γ2 ~ω
. . .

. . . . . . . . . . . . . . .


. (E.85)

Using the cofactor expansion formula for the matrix inverse, we obtain

GN11(ω) =
det H̃N−1

det H̃N

. (E.86)

We then expand the determinant of H̃N along the first row:

det H̃N = ~ω det H̃N−1 + γ2 detMN−1, (E.87)

with

MN−1 =



−γ2 −γ2 0
. . . . . .

0 ~ω −γ2 0
. . .

0 −γ2 ~ω −γ2
. . .

. . . 0 −γ2 ~ω
. . .

. . . . . . . . . . . . . . .


. (E.88)

Then, expanding the determinant of MN−1 along the first column, we find detMN−1 =
−γ2 det H̃N−2. Replacing into eq. (E.86), we obtain

GN11(ω) =
det H̃N−1

~ω det H̃N−1 − γ2
2 det H̃N−2

(E.89)

=
1

~ω − γ2
2G

N−1
11 (ω)

. (E.90)
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Taking the limit N → ∞, this yields a self-consistent equation for G11, which is solved
by

G11(ω) =
1

2γ2
2

(
ω −

√
ω2 − 4γ2

2

)
. (E.91)

Here we chose the − sign in the solution of the second order equation so that G11 has a
negative imaginary part as required by causality.

E.3.2.2 Local density response

We may now compute the non-interacting local density response function at the topmost
atom, defined as

χ1(ω) =

∫ +∞

−∞
d(t− t′)eiωt

[
− i
~
θ(t− t′)〈[n1(t), n1(t′)]〉0

]
, (E.92)

with n1 ≡ c†1c1. For that, we require the spectral function

A1(ω) = −2 ImG11(ω) =
2

γ2

√
1−

(
ω

2γ2

)2

θ(2γ2 − |ω|). (E.93)

Then, density response function is obtained as [242]

χ1(ω) =
1

2π2

∫ +∞

−∞
dEdE′

nF (E′)− nF (E)

E′ − E + ~ω + iδ
A1(E)A1(E′). (E.94)

Using eq. (E.93),

χ1(ω) =
2

γπ2

∫ +1

−1

dEdE′
nF (E′)− nF (E)

E′ − E + ~ω/(2γ2) + iδ

√
(1− E2)(1− E′2) ≡ 2

γπ2
χ̃1

(
ω

2γ2

)
.

(E.95)
The function χ̃1(x) is evaluated numerically, assuming one electron per atom so that
the Fermi level is at 0. In order to facilitate subsequent computations, we introduce an
analytical representation for Im χ̃1(x) at T = 300 K and x > 0:

Im χ̃1(x) = −0.38× x(2− x)θ(2− x). (E.96)

We then determine the corresponding real part through the Kramers-Krönig relation (see
eq. (E.54)):

Re χ̃1(x) = 0.38× 2

π

(
2xArctanh

[
f̃1(x/2)

]
− 2 +

1

2
x2 log

∣∣∣∣4− x2

x2

∣∣∣∣) , (E.97)

with f̃1(x) = xθ(1−x)+(1/x)θ(x−1). The numerical result for χ1(ω) is plotted alongside
the analytical representation in figure E.4a.

E.3.2.3 Graphite surface response

We now use our results for a single atomic chain to obtain an expression for the surface
response function of graphite, within our independent chain model. For not too small
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Figure E.4

Independent chain model for the graphite surface response. a. Normalised local density response
function as defined in eq. (E.95). Full lines are obtained by numerical integration, and the
dashed lines correspond to the analytical representation in eqs. (E.96) and (E.97). b. Graphite
surface response function as obtained in the independent chain model (eq. (E.101)). We set
ns = 2.3× 1012 cm−2 (free carrier density in graphite at 300 K).

wavevectors (q & 1/(2c) = 0.14 Å−1), we may consider that the external field acts only
on the first graphene layer. Then, the non-interacting density response function reads

χ0(r, t, r′, t′) =
∑
i,j∈B

|ϕ(r− ri)|2|ϕ(r′ − rj)|2
[
− i
~
θ(t− t′)〈[ni(t), nj(t′)]〉0

]
. (E.98)

But since the 1D chains below atoms i and j are assumed to be decoupled (there is no
electron tunnelling between them), [ni(t), nj(t

′)] = δij [ni(t), ni(t
′)]. Hence,

χ0(r, t, r′, t′) =
∑
i∈B
|ϕ(r− ri)|2|ϕ(r′ − ri)|2χ1(ω). (E.99)

Carrying out Fourier transforms as in section E.3.1, we obtain the Fourier components

χ0
GG′(q, z, z

′, ω) =
ABZ

(2π)2
χ1(ω)ξ(q + G, z)ξ(q + G′, z′)∗. (E.100)

The factor ABZ/(2π)2 represents the electron density ns in the first graphene layer, which
is one electron per unit cell in our computation so far. However, we do not expect that
all the π electrons of the B sublattice contribute to the low energy excitations we are
describing, but rather only the free (electron and hole) charge carriers. Hence, from now
on, we treat ns as a parameter of our model, which represents the charge carrier density
that contributes to the low energy interlayer excitations.

Since we are making the approximation that the external field affects only atoms in
the first graphene layer, we need only consider Coulomb interactions between atoms in
that first layer. At wavevectors q that are small enough to set eqz ≈ 1 for z on the
scale of a pz orbital, the interacting surface response function satisfies the same Dyson
equation (E.81) as for graphene. We then obtain

g(q, ω) =
nsvq|ξ(q)|2χ1(ω)

nsvq|ξ(q)|2χ1(ω)− 1
, (E.101)
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with vq = e2/(2ε0q). This is equivalent to eq. (5.27) (where we have set χa(q, ω) ≡
|ξ(q)|2χ1(ω)), which was used to obtain figure 5.8. We plot in figure E.4b the imaginary
of the surface response function in eq. (E.101) as a function of q and ω. We find that
it accounts for a continuum of low energy excitations (below 40 meV), whose intensity
decays slowly with increasing momentum, reproducing qualitatively the features observed
in graphite electron energy loss spectroscopy [178,179]. We note, however, that our model
is bound to be incorrect at small values of q. Because of the 2D nature of our computation
for the surface response function, its imaginary part decays to 0 at small q, while it
would be expected to have a finite limit in a 3D setting. We therefore underestimate
the friction coefficient by resorting to a 2D approximation, though we do not expect the
underestimation to be significant, as the friction is most sensitive to the surface response
function at large values of q.

E.3.3 Electron self-energy in the presence of water

E.3.3.1 General derivation

Our main result for the quantum friction coefficient (eq. (E.45)) completely takes into
account Coulomb interactions at the RPA level. Beyond RPA, self-energy corrections due
to the presence of water have to be taken into account in the electron Green’s functions.
Diagramatically, the electron Green’s function is renormalised according to

(E.102)

We will consider a single diagram for the self-energy Σ:

(E.103)

with the thick dashed line representing the full water propagator, defined by

(E.104)

In order to give explicit expressions for these diagrams, we rewrite the water-electron
interaction Hamiltonian (E.1) in the basis of eigenstates |k, ν〉 of the electronic system,
where k is a two-dimensional wavevector. Considering wavevectors q that are small
compared to the size of the surface Brillouin zone, we find

Hint =

∫
dq

(2π)2

e2

2ε0q
ns(q, t)

∑
k,ν,ν′

〈k + q, ν|eiqρeqz|k, ν′〉c†k+q,ν(t)ck,ν′(t), (E.105)

with

ns(q) =

∫
dρ

∫ +∞

0

dz e−iqρe−qznw(ρ, z, t), (E.106)

and
∑

k ≡ (1/ASBZ)
∫

SBZ
dk, SBZ standing for surface Brillouin zone. We note that the

sum over spin degrees of freedom is implied, and the relevant factor of 2 will be added
when needed. We will consider the self-energy correction at equilibrium, hence we may
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interpret the diagrammatic equations (E.102) – (E.104) in the Matsubara formalism [267].
The bare Matsubara Green’s function in the band ν is defined as

G0
ν(k, ikn) = −

∫ β

0

dτeiknτ 〈Tc†k,ν(τ)ck,ν(0)〉 =
1

ikn − Eν(k)
, (E.107)

with kn = (2n+ 1)πkBT the fermionic Matsubara frequencies, and τ the imaginary time
that runs between 0 and β = 1/kBT . Then, the Dyson equation (E.102) reduces to

Gν(k, ikn) =
1

1

G0
ν(k, ikn)

− Σν(k, ikn)
. (E.108)

The self-energy in the band ν reads

Σν(k, ikn) =
e2

2ε0β

∫
dq

(2π)2

1

q

∑
ν′

|〈k+q, ν|eiqρeqz|k, ν′〉|2
∑
m

gw(q, iωm)G0
ν′(k+q, ikn+iωm),

(E.109)
where ωm = 2mπkBT are the bosonic Matsubara frequencies. This expression for the
self-energy involves directly the water surface response function. Indeed, the bare surface
response function in Matsubara representation is

g0
w(q, iωm) =

∫ β

0

dτeiωmτ 〈Tns(q, τ)ns(−q, 0)〉. (E.110)

The full surface response function is obtained according to the Dyson equation (E.104):

gw(q, iωm) =
g0
w(q, iωm)

1− g0
w(q, iωm)ge(q, iωm)

. (E.111)

The sum over Matsubara frequencies may be carried out once the Lehmann representation
is used for the water surface response function:

gw(q, iωm) = −
∫ +∞

−∞

dω

π

Im gw(q, ω)

iωm − ω
. (E.112)

Upon using the definition (E.107), we are left with a standard Matsubara sum [267]:

− 1

β

∑
m

1

iωm − ω
1

ikn + iωm − Eν′(k + q)
=
nB(ω) + nF(Eν′(k + q))

ikn + ω − Eν′(k + q)
. (E.113)

Finally, we obtain for the self-energy

Σν(k, ikn) =
e2

2ε0

∫
dq

(2π)2

1

q

∑
ν′

|〈k + q, ν|eiqρeqz|k, ν′〉|2 . . .

· · ·
∫ +∞

−∞

dω

π
Im gw(q, ω)

nB(ω) + nF(Eν′(k + q))

ikn + ω − Eν′(k + q)
.

(E.114)

The retarded self-energy is obtained by analytical continuation ikn 7→ E + iδ. Then,
using the identity Im[1/(E −ω+ iδ)] = −πδ(E −ω), we obtain for the imaginary part of
the self-energy

Im Σν(k, E) =
−e2

2ε0

∫
dq

(2π)2

1

q

∑
ν′

|〈k + q, ν|eiqρeqz|k, ν′〉|2 . . .

. . . Im[ gw(q, Eν′(k + q)− E)] · [nB(Eν′(k + q)− E) + nF(Eν′(k + q))].

(E.115)
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E.3.3.2 Graphene

We numerically evaluate (at T = 300 K) the self-energy in eq. (E.115) in the case where
the electronic system is a single graphene sheet, treated in the Dirac cone approximation
for its bare band structure. We give the label ν = ±1 to the two π bands. Then, the
band energies are Eν(k) = sign(ν)vF k, and the matrix elements reduce to [176]:

|〈k + q, ν|eiqρeqz|k, ν′〉|2 =
1

2

(
1 + νν′

k + q cos θ

‖k + q‖

)
, (E.116)

where θ is the angle between k and q. Note that eq. (E.115) is then multiplied by 2 to
account for the valley degeneracy. We further take into account the renormalisation of
the water surface response function according to eq. (E.112). The water Debye peak at
ωD = 1.5 meV is sensitive only to the static response function of graphene ge(q, 0). For
undoped graphene, it is essentially independent of q: ge(q, 0) = 0.78 according to our
computation in section E.3.1. We determine the real part of the self-energy through a
Kramers-Krönig relation:

Re Σν(k,E) = Re Σν(k,E)− Re Σν(k, 0) =
1

π

∫ +∞

−∞
dE′

E Im Σν(k,E′)

E′(E′ − E)
. (E.117)

Then, the renormalised electron Green’s function is determined according to eq. (E.108):

Gν(k, ω) =
1

ω − Eν(k)− Σν(k, ω)
. (E.118)

The renormalised spectral density, A(k, ω) = −2
∑
ν ImGν(k, ω), is plotted as a function

of energy and momentum in figure 5.7.

E.3.4 Multiwall nanotubes

For the radius-dependence of the average interlayer spacing in multiwall carbon nan-
otubes, we rely on the transmission electron microscopy data of ref. [186]. For tube radii
between 7.5 nm and 50 nm, we used a linear approximation to the data:

d(R) = 3.35 + 0.002× (R (nm)− 50) (Å). (E.119)

In figure 5.8, the curve labeled "Decoupling + gap" is obtained by considering a scaling
ns(R) = (1− p(R))n0

se
−Eg(R)/kBT .
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F.1 Brownian dynamics simulations of ionic Coulomb blockade

F.1.1 Numerical details

Our 1D brownian dynamics simulations are carried out using the LAMMPS software [268].
The simulation system consists of N+ positive ions and N− negative ions, in a one-
dimensional box of length L with periodic boundary conditions. An immobile point
charge Q is placed at x = L/2 to model the surface charge. We typically use N− = 100,
N+ = 100+n with 0 ≤ n ≤ 3, and L = 12.5 µm, unless stated otherwise. We only simulate
the motion of ions (the solvent is implicit), and the ion positions at timestep i + 1 are
determined from the positions at timestep i by solving a Euler-discretised overdamped
Langevin equation:

xi+1 = xi −∆t
eD

kBT
∂xΦ|x=xi + ηi

√
2D∆t, (F.1)

where Φ is the electrostatic potential and ηi a gaussian random variable of 0 mean and
unit variance. We use a timestep ∆t = 5 ps, diffusion coefficient D = 10−9 m2 · s−1

and temperature T = 298 K. The potential Φ acting on the ion i takes into account
the interaction with the ions j 6= i with the pairwise potential V (x) = ξ

xT
e−|x|/ξ, the

interaction with the surface charge Q with the same pairwise potential, and the con-
tribution −Ex from the applied electric field E. Unless stated otherwise, we used the
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Figure F.1

a. Free energy difference ∆F = F (bQc + 1) − F (bQc), as a function of surface charge Q, as
obtained from the brownian dynamics simulations by the thermodynamic integration method.
b. Probability p(Q) of the channel containing N+ = N−+ bQc+ 1 positive ions as a function of
Q, as obtained from the simulation results for ∆F (using eq. (F.3)), and from the Coulomb gas
theory.

values xT = 0.9 Å and ξ = 3.5 nm, which physically correspond to divalent ions confined
in a channel of diameter 1 nm. With these values of the parameters, the ion density
we imposed in the channel (200 ions per 12.5 µm) corresponds to a salt concentration
c = 0.44 M in the reservoirs, as determined from eq. (C.33). In each simulation run,
we measured the neutralising charge N(Q) as the average number of positive ions in the
interval [L/2− 1.25 nm, L/2 + 1.25 nm], and the positive and negative ion currents:

I± =

〈
±e
L

∑
± ions

xi+1 − xi
∆t

〉
dynamics

(F.2)

The ions were initially randomly distributed in the simulation box. The simulations
lasted for 5× 108 timesteps, with the first 107 timesteps left for equilibration. Error bars
represent the standard deviation of the sampled observable, corrected by its correlation
time.

F.1.2 Grand canonical averaging

Our simulations aim to account for a channel connecting two reservoirs, therefore the
number of ions in the system should be able to fluctuate, the chemical potential µ of the
reservoirs being fixed. At equilibrium, we can account for these fluctuations by carrying
out simulations at a fixed number of ions (N+, N−) and then averaging the observables
obtained for different (N+, N−) with the grand canonical probabilities of having (N+, N−)
ions in the channel. We assume that we may extend this approach out of equilibrium
and carry out the same type of averaging for the observables N(Q) and I± even when
the system is driven by an electric field.
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F.1. Brownian dynamics simulations of ionic Coulomb blockade

We must now determine how many different values of (N+, N−) should be taken into
account. In the absence of surface charge, the system tries to maintain electroneutrality,
N+ = N−. Departing from electroneutrality by a unit charge has an energy cost which
is approximately the dielectric self-energy of the unit charge: Es = ξ/(2xT ) = 19.6 kBT
with our simulation settings (see section 1.6). Thus, the probability of observing a non-
neutral state is negligible and the only allowed fluctuations are those that keep the system
neutral, that is fluctuations in the number of ion pairs. In the CB regime, the ion pairs
behave essentially as ideal gas particles, thus the fluctuations in their number become
gaussian in the thermodynamic limit, with variance ∆N2 ∼ N . Hence, when there is no
surface charge, the grand canonical averaging takes care of itself thanks to the equivalence
of ensembles, and we may carry out simulations with a fixed number N = 100 of ion pairs.
At N = 100 we are not well into the thermodynamic limit, but we do not expect small
fluctuations in the number of ion pairs to significantly affect the observables of interest.

Now in the presence of a surface charge Q, the system tries to get as close to elec-
troneutrality as possible, meaning that N+ = N− + bQc or N+ = N− + bQc+ 1. If Q is
close to a half-integer, these two values of N+ may have very similar probabilities, while
other values of N+ are essentially forbidden, since breaking the quasi-electroneutrality
has an energy cost which is again at least Es = 19.6 kBT . This means that the fluc-
tuations in N+ and N− are not gaussian, whatever the system size, so that there is no
equivalence of ensembles in the thermodynamic limit. One should therefore carry out
separate simulations for the two allowed values of N+.

Let us denote p(Q) the probability of the channel containing N+ = N− + bQc + 1
positive ions, as in section C.2.3. It is given by

p(Q) =
e−F (bQc+1)

e−F (bQc+1) + e−F (bQc) ≡
1

1 + e∆F (Q)
, (F.3)

where F (q) is a shorthand for F (N− + q,N−), the free energy at fixed particle numbers
(N− + q,N−). We determined the free energy difference ∆F from brownian dynamics
simulations by a thermodynamic integration method [269]. Consider a system containing
N+ positive ions, N− negative ions and an extra particle of charge λe. Let F (λ) be the
free energy of such a system. The derivative of the free energy with respect to λ can be
computed as

∂F (λ)

∂λ
=

∫
d{xi}(∂E({xi}, λ)/∂λ)e−E({xi},λ)∫

d{xi}e−E({xi},λ)
=

〈
∂E({xi}, λ)

∂λ

〉
λ

, (F.4)

where 〈·〉λ denotes averaging over the dynamics with a given value of λ. The energy
E({xi}, λ) can be decomposed as

E({xi}, λ) = E({xi}, 0) + λ · [E({xi}, 1)− E({xi}, 0)]. (F.5)

Here we did not take into account the dielectric self-energy of the extra particle, which
is proportional to λ2, but it can be added a posteriori in the free energy difference.
Precisely, ∆F = Es + F (λ = 1)− F (λ = 0), hence

∆F = Es +

∫ 1

0

dλ
∂F (λ)

∂λ
= Es +

∫ 1

0

dλ 〈E({xi}, 1)− E({xi}, 0)〉λ (F.6)

This expression suggests a numerical scheme for computing ∆F . Simulations are
carried out at a range of values of λ between 0 and 1. For each simulation one computes
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Figure F.2

a. Positive ion current as a function of surface charge, as obtained from brownian dynamics
simulations, for each of the two allowed values of N+, and the resulting grand-canonical average.
b. Neutralising chargeN(Q) as a function of surface charge, as obtained from brownian dynamics
simulations, for each of the two allowed values of N+, and the resulting grand-canonical average.

the average of the quantity E({xi}, 1) − E({xi}, 0). Concretely, this means that every
few timesteps, we set λ to 1, compute the energy, then set λ to 0, compute the energy,
take the difference between the two, then return λ to its original value and continue the
dynamics. We then numerically compute the integral in eq. (F.6) to obtain ∆F . We
implemented this numerical scheme for a range of values of Q. For each value of Q we
sampled 20 values of λ, and each 5× 108-timestep-long simulation was repeated 5 times,
since the exploration of the configuration space is slower in the absence of driving by an
electric field.

Figure F.1 shows the results we obtained for ∆F as a function of Q, and the resulting
probability p(Q), with parameters xT = 0.9 Å, ξ = 3.5 nm, and L = 1.25 µm (a line
density of 80 ions/µm). The simulation results for p(Q) can be compared with the
Coulomb gas theory. In the CB regime, any unpaired positive ions are most likely to be
closely bound to the surface charge, hence it does not matter whether to consider the
number of positive ions in the whole system or in the vicinity of the surface charge. Thus,
p(Q) = N(Q) − bQc, with N(Q) given for example by eq. (C.35). Panel b shows that
this analytical result is in excellent agreement with simulations. Thus, to carry out the
grand canonical averaging in non-equilibrium simulations, we used the p(Q) given by the
Coulomb gas theory.

In order to give an idea of the effect of grand-canonical averaging, figure F.2 shows
the neutralising charge N(Q) and the positive ion current I+ obtained with each of the
two allowed values of N+, and the resulting average.

F.1.3 Ion pump

We carried out a proof-of-concept simulation of a device that functions as an ion pump.
The device consists of a nanochannel connected to not one, but several gating electrodes,
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Figure F.3

a. Schematic of the ion pump and time dependence of the variable surface charges Qi(t). b.
Positive ion current in the ion pump (blue circles), at fixed pumping amplitude ∆Q = 1, as a
function the thermal length xT . The pumping current drops down to 0 for large values of xT
(weak interactions), and correlates well with the CB step steepness obtained from the Coulomb
gas theory (red line).

which may induce time dependent surface charges on the channel walls. Its operating
principle is shown in figure 3.6, and recalled in figure F.3. The variable charges are placed
every 5 nm along the channel. At a given point in time, all the charges are set to 0, except
one which takes the value −∆Q. Every 10 ns, the charge −∆Q is moved to the next site,
5 nm further along the channel. We used a channel of length L = 625 nm with periodic
boundary conditions. Intuitively, this displacement of a negative surface charge should
result in the dragging of a positive ion along the channel. In figure 3.6, we show the ionic
current normalised by I(1 ion), the current that would result from the perfect pumping
of a single ion, that is an ion moving at a velocity of 5 nm per 10 ns. It appears that the
interactions need to be strong enough (that is xT low enough) for the pumping current
to be close to the theoretical maximum. We carried out further simulations at fixed
amplitude ∆Q = 1, and a range of values of xT , whose results are shown in figureF.3b.
We observe that the pumping current drops down to 0 at large values of xT , and this
decrease correlates well with step steepness obtained from the Coulomb gas theory at a
given value of xT . This highlights that the operation of the ion pump relies on the system
being in the CB regime.

For the simulation in figure F.3b, with pumping amplitude ∆Q = 1, we used a fixed
number of particles: N− = 100 and N+ = 101. For the simulation in figure 3.6b,
with xT = 0.1 nm, we used the same type of grand-canonical averaging as described in
section F.1.2. With xT = 2 nm, setting either N+ = N− + bQc or N+ = N− + bQc + 1
does not alter the result.
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F.2. Molecular simulations of two-dimensional electrolytes

F.2 Molecular simulations of two-dimensional electrolytes

F.2.1 Methods – Molecular dynamics

We use both all-atom molecular dynamics simulations (where water molecules and graphene
are simulated explicitly) and brownian dynamics simulations (where water molecules and
graphene are treated implicitly as continuous media). Both are carried out using the
LAMMPS software [268].

All-atom simulations consist in two graphene sheets separated by a single or a few
layers of water, with periodic boundary conditions. This forms a slit of dimensions
L×w × h, with typical values being L = w = 20 nm. Channels of three different heights
are tested: h = 0.7, 1 or 1.4 nm, corresponding to one, two and three water layers between
the graphene sheets, respectively. The number Nw of water molecules is approximately
4500 for each water layer. This value was obtained from previous studies [270]. The
number N of ions of each sign is varied between N = 10 and N = 500. Simulations
involve various binary salts, such as sodium chloride (NaCl), calcium chloride (CaCl2)
and calcium sulfate (CaSO4). Generic salts of formula XpYn of various valence and
stoechiometries were also considered. All initial configurations were obtained using the
Packmol software [271].

Water molecules are described using either the TIP4P model or the SPC/E model, and
maintained rigid with the SHAKE algorithm [272]. Lennard-Jones (LJ) parameters of all
considered species are summarized in Table F.1, with cross-parameters determined with
the Lorentz-Berthelot mixing rules [273]. Interactions are computed using a spherical
1 nm cut-off for LJ potentials, and long-range Coulomb interactions are treated with
the particle-particle particle-mesh (PPPM) method and a slab correction to deal with
the non-periodicity in the z direction [274]. Finally, the integration time step is 1 fs
and temperature is fixed to 298 K using the Nosé–Hoover thermostat [275] with a time
constant of 0.1 ps. Simulations last 1.5 · 107 time steps, corresponding to approximately
15 ns of physical time.

In brownian dynamics simulations, systems consist in N positive and N negative
ions, with typically N = 4000 in a two-dimensional box of dimensions L×w and periodic
boundary conditions, with L = 2 µm. The width w of the simulation box was fixed
depending on the desired electrolyte concentration, with typical values ranging from w =
0.2 µm to w = 200 µm. The solvent as well as graphene walls are treated implicitly, and
the ion positions at timestep n + 1 are determined from the positions at time step n by
solving a Euler-discretised overdamped Langevin equation:

rn+1 = rn −∆t
eD

kBT
∇Φ + ηn

√
2D∆t, (F.7)

where rn is the position of a given ion at time step n, Φ is the electrostatic potential
felt by the ion and ηn is a Gaussian random variable of zero mean and unit variance.
We use the value D = 10−9 m2 s−1 for the diffusion coefficient of ions in water at 298 K,
in line with experimental measurements of the diffusion coefficient of various ions under
monolayer confinement [16].

The typical value of the time step is ∆t = 5 ps, and is lowered down to 5 fs when
fast dynamics are considered. The electrostatic potential is determined by taking into
account the contribution −Ex from the external electric field E = E x̂, as well as pair-
wise interactions. We assume that ions interact with a pairwise ‘2D+’ quasi-logarithmic
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Figure F.4

MD simulation snapshots of various 2D electrolytes in and out of equilibrium. For out of equi-
librium snapshots, a constant electric field E of the order of 1 kBT/Å is applied.
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Atom Charge (e) σ (Å) ε kcal/mol Reference

O (H2O) −0.8476 3.165 0.155 [277]
H (H2O) +0.4238 – – [277]
C (graphene, SPC/E) 0 3.214 0.0566 [278]
C (graphene, TIP4P) 0 3.214 0.0566 [278]
Na+ +1 2.35 0.123 [279]
Cl− −1 4.401 0.100 [279]
Ca2+ +2 2.895 0.100 [280]
S (SO2−

4 ) +2 3.55 0.250 [281]
O (SO2−

4 ) −1 3.15 0.200 [281]
B (hBN) +0.3 3.402 0.0951 [282]
N (hBN) −0.3 3.490 0.0622 [282]
Xp+ p = 1, 2, 3 2.35 0.123 –
Yn− n = 1, 2, 3 4.401 0.100 –

Table F.1

Lennard–Jones parameters used in all-atom MD simulations.

potential given by eq. (A.30). In typical simulations, we use T ∗ = 0.11 and ξ = 14 nm,
which corresponds to divalent ions in a slit of height h = 7Å. Quasi-coulombic, long-
range interactions are regularized using both a short- and a long-distance cut-off of 1Å
and 20 nm, respectively. Simulations last typically 2 · 108 time steps, corresponding to
1 ms of physical time.

For both types of simulations, ionic current is computed by averaging the velocities
of ions across the slit:

I =

〈
e

L

∑
i

Ziqi
xin+1 − xin

∆t

〉
dynamics

, (F.8)

where qi = ±1 is the charge of ion i, Zi its valence and the sum is over all ions of both
signs. Simulation results were visualized using VMD [276].

F.2.2 Effect of the nature of the salt

All-atom MD simulations allow us to study the system’s configuration qualitatively. Fig-
ure F.4 shows simulation snapshots for all studied chemical species, both at thermal
equilibrium (no external field) and out of equilibrium (in presence of an electric field
E ∼ 1 kBT/Å). These snapshots correspond to monolayer confinement (h = 0.7 nm),
except for simulations with sulphate ions, which are too big to enter these slits, and are
instead studied in bilayer confinement (h = 1 nm). Sodium chloride forms pairs, or very
short clusters (3 to 4 ions) at thermal equilibrium, and assembles into short but tightly
bound chains (typically 10 ions or less) under a non-zero electric field. Calcium sul-
phate mainly forms round clusters (typically 4 to 8 ions) instead of pairs at equilibrium,
and very large, branched assemblies for E 6= 0. The same is true for a generic divalent
salt X2+,Y2−, except the clusters are linear even at equilibrium, and they almost never
branch.
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Calcium chloride, however, behaves slightly differently. It can form either pairs or
triplets at equilibrium, or sometimes some short linear assemblies. All these structures
are usually not tightly bound, as they include water molecules, solvating calcium ions in a
circular arrangement. In the case of triplets, there seem to be different possible values of
the dihedral angle formed by the three ions, depending on the number of water molecules
surrounding the central cation, or whether that circle is complete or not. Similarly, the
Bjerrum polyelectrolytes formed by these triplets have a more complex structure than
simple linear chains. We expect that the thermodynamic properties of these triplets and
chains to bear some signature of the molecular nature of water; however, the study of
these properties is beyond the scope of this thesis.

F.3 Water surface response function from molecular dynamics

We carried out classical molecular dynamics (MD) simulations of water in contact with
a hydrophobic surface in order to determine the water surface response function. As a
consistency check, we also carried out bulk water simulations, from which we extracted
the frequency-dependent dielectric constant.

F.3.1 Details of the simulations

All simulations were carried out using the LAMMPS software [268]. We used the SPC/E
water model [283] with the SHAKE algorithm [284]. The simulations were carried out
in the canonical (NVT) ensemble, with a stochastic CSVR thermostat [285] with time
constant 1 ps maintaining a temperature T = 298.15 K. We used a timestep of 2 fs, and
atomic positions were written out every 4 fs. Electrostatic interactions were calculated
with a particle-mesh Ewald summation with a Coulomb cutoff of 1.4 nm.

F.3.1.1 Bulk simulation

The bulk simulation used N = 8000 water molecules. The volume of the simulation box
was first adjusted in the NPT ensemble to yield a mass density ρ = 0.99715 g · cm−3.
The resulting volume was V = (64.145)3 Å3. The simulation was then equilibrated in the
NVT ensemble for 200 ps, and the subsequent 20 ns were used for analysis.

F.3.1.2 Interface simulation

The interface simulation was carried out with N = 20200 water molecules. The solid sur-
face consisted of three graphene layers (with ABA stacking), with surface area 128.316×
123.490 Å2, and the simulation box height was 6.5 nm. The positions of the carbon atoms
were frozen during the simulation. The direction normal to the surface was aperiodic, and
spurious slab-slab interactions were removed. A reflective wall was placed close to the
top edge of the box to prevent gaseous water molecules from crossing the top boundary.
We used two sets of Lennard-Jones parameters for the water-carbon interaction, to which
we refer to as "Werder" and "Aluru", listed in the following table.

Ref. Name εCO (kcal/mol) σCO (Å) εCH (kcal/mol) σCH (Å)
[143] Werder 0.0937 3.19 - -
[169] Aluru 0.0850 3.436 0.0383 2.69
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The simulation was equilibrated in the NVT ensemble for 200 ps and the subsequent 6 ns
were used for analysis.

F.3.2 Analysis of the simulations

The computation of response functions from equilibrium MD simulations is based on the
fluctuation-dissipation theorem.

F.3.2.1 Bulk simulation

The simulation was split into Ns = 20 pieces of length ∆t = 1 ns, and the results obtained
from each of the pieces were averaged to obtain the final result. The accessible frequencies
were thus from 1 GHz to 62.5 THz. At every sampled time t, we computed the Fourier-
transformed water charge density nw(k, t) =

∑
i Zie

ikri(t), with the index i running over
all the charged sites of the SPC/E water molecules, and Zi the corresponding charge. We
define the dynamic charge structure factor according to

S(k, ω) =
1

V

∫ +∞

−∞
dt〈nw(k, t)nw(−k, 0)〉eiωt, (F.9)

where V is the volume of the simulation box. Then, the fluctuation-dissipation theorem
yields the susceptibility χ̄ according to:

Im χ̄(k, ω) =
e2

2ε0k2

ω

kBT
S(k, ω). (F.10)

The susceptibility is related to the dielectric permittivity according to χ̄(k, ω) = 1 −
1/ε(k, ω). We therefore require also the real part of the susceptibility, which can be
determined through a Kramers-Krönig relation:

Re χ̄(k, ω) =
2

π
P
∫ +∞

0

dω′
ω′Im χ̄(k, ω′)

ω′2 − ω2
, (F.11)

where P indicates that the principal part of the integral is taken. In practice, the structure
factor in eq. (F.9) was computed from the simulation data by making use of the Wiener-
Khinchin theorem. The resulting spectra were convoluted with a gaussian filter of half-
width 50 GHz. This allowed for some smoothing of the spectra, while not affecting
their low-energy region, since the spectra are constant below 200 GHz. Then, spherical
averaging was performed over the quantity S(k, ω)/k2.

F.3.2.2 Interface simulation

The simulation was split into Ns = 60 pieces of length ∆t = 0.1 ns, and the results
obtained from each of the pieces were averaged to obtain the final result. The accessible
frequencies were thus from 0.1 GHz to 62.5 THz. At every sampled time t, we computed
the Fourier-Laplace transform of the water charge density nsw(q, t) =

∑
i Zie

iqri(t)e−qzi ,
with the index i running over all the charged sites of the SPC/E water molecules, and Zi
the corresponding charge. We define the dynamic surface structure factor according to

Ss(q, ω) =
1

A

∫ +∞

−∞
dt〈δnsw(q, t)δnsw(−q, 0)〉eiωt, (F.12)
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with A the surface area, and δnsw = nsw − 〈nsw〉. We then obtain the imaginary part of
the surface response function through the fluctuation-dissipation theorem:

Im gw(q, ω) =
e2

4ε0q

ω

kBT
Ss(q, ω), (F.13)

In practice, the structure factor in eq. (F.12) was computed from the simulation data by
making use of the Wiener-Khinchin theorem. The resulting spectra were convoluted with
a gaussian filter of half-width 50 GHz. Then, radial averaging was performed over the
quantity S(q, ω)/q.

The surface response function evaluated in this way depends on the choice of origin
for the vertical coordinate z. By default, the origin is placed at the first graphene plane,
but this introduces a spurious vacuum gap (we call its thickness d) in the computation
of the surface response. In fact, the procedure described above yields e−2qdgw(q, ω)
instead of gw(q, ω). However, there is no clear way of determining d from microscopic
considerations. Instead, we fixed d by enforcing the compressibility sum rule for the
surface response function in the long wavelength limit. The procedure is derived in
detail in section F.3.2.3. In brief, we first compute the static surface structure factor:
S̄s(q) = (1/A)〈δnsw(q)δnsw(−q)〉, with the average performed over the whole length of
the simulation. Then, the compressibility sum rule reads

e2

8ε0kBT

S̄s(q)

q
=

∫ ∞
0

dω
Im gw(q, ω)

ω
=
π

2
gw(q, 0). (F.14)

In the same way as the bulk structure factor has only even powers of q in its low q ex-
pansion, the surface structure factor is expanded only in odd powers of q (see Appendix).
Therefore S̄s(q)/q has a horizontal asymptote as q → 0, while e−2qdS̄s(q)/q has a linear
scaling. Hence, in order to cancel the gap d, we adjust the origin of the coordinate z so
that S̄s(q)/q has indeed a horizontal asymptote. Then, to ensure consistency, the sum
rule (F.14) is enforced when fitting Im gw(q, ω).

This procedure yielded d = 1.3 Å with the Werder parameters and d = 1.76 Å with
the Aluru parameters. This last value agrees well with the position of the electronic
density minimum at the water-graphene interface, as determined from DFT (figure 5.1b).
This is consistent with the fact that the Aluru parameters are based on DFT calculations
for water on a graphene surface [169]. Therefore, our sum-rule-based approach does place
the origin of the z axis where it would be expected from microscopic considerations.

F.3.2.3 Compressibility sum rule

The Kramers-Krönig relation for the surface response function is

Re gw(q, ω) =
1

π
P
∫ +∞

−∞
dω′

Imgw(q, ω′)

ω′ − ω
. (F.15)

Taking ω = 0, this yields

gw(q, 0) =
2

π

∫ +∞

0

dω
Im gw(q, ω)

ω
, (F.16)
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Figure F.5
Surface respose of water: simulation results. The left (right) column corresponds to Aluru (Werder)
parameters. a. Static surface response function, as obtained from the static structure factor, before
and after cancellation of the gap d. The dashed line shows a fit to the data (eq. (F.21)). b. Surface
response as a function of frequency, for different values of the wavevector q. c. Result of fitting the
surface excitation spectra with two Debye peaks, for different wavevectors. d. Fitting parameter values.
Frequencies of the Debye peaks (top), and relative oscillator strengths (bottom).
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since Im gw(q, ω) is an odd function of frequency. Using the fluctuation-dissipation theo-
rem (F.13), we obtain∫ +∞

0

dω
Im gw(q, ω)

ω
=

e2

8ε0kBT

∫ +∞

−∞
dω

Ss(q)

q
. (F.17)

Then, using the definition (F.12) of the static structure factor, we recover the sum
rule (F.14). The surface structure factor is related to the full three-dimensional structure
factor according to

S̄s(q) =

∫ +∞

0

dzdz′e−q(z+z
′)S̄(q, z, z′), (F.18)

with S̄(q, z, z′) = (1/A)〈nw(q, z)nw(−q, z′)〉. We may assume that the main contribution
to the integral in eq. (F.18) comes from the terms z ≈ z′, due to the layering of the liquid
near the surface [163]. Then S(q, z, z′) ≈ S(q|z)δ(z− z′), and we further assume that the
structure factor is similar in all layers: S(q|z) ≈ S(q|0). Then, we have simply

S̄s(q) =

∫ +∞

0

dze−2qzS̄(q|0) =
S(q|0)

2q
, (F.19)

S(q|0) is defined by the Fourier transform

S(q|0) =

∫
dρ e−iqρS(ρ|0). (F.20)

Since the structure factor is isotropic, the coefficients of odd powers of q in a Taylor
expansion around q = 0 vanish upon angular integration in eq. (F.20). Hence the small
q expansion of Ss(q|0) contains only even powers of q, and the one of Ss(q) only odd
powers, justifying the procedure described in section F.3.2.2.

F.3.3 Fitting

The evaluation of quantum friction coefficients with eq. (E.45) required to fit the MD
simulation data, so as to avoid issues with numerical integration. The MD simulation
results are reported in figure 5.3 and figure F.5. Figures F.5 a and b show the static surface
response function gw(q, 0), as obtained from the static structure factor (eq. (F.14)), before
and after cancellation of the gap d, for both sets of LJ parameters. The simulation data
was fitted with the following expression:

gw(q, 0) = exp
[
a+ a′(1 + (q/b)α)1/α

]
, (F.21)

with the constraint a + a′ = log(gw(0, 0)) = log(0.97), since the long wavelength limit
of gw(q, 0) is imposed by the static permittivity ε(0) = 71 of SPC/E water: gw(0, 0) =
(ε(0)− 1)/(ε(0) + 1). The following results were obtained for the fit parameters:

a a′ b (−1) α
Werder 5.16 −5.19 1.95 2
Aluru 3.38 −3.41 1.79 2.4
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The imaginary part of the surface response function was then fitted by a sum of two
Debye peaks:

Im gw(q, ω) = Im

[
f1(q)

1− iω/ωD,1(q)
+

f2(q)

1− iω/ωD,2(q)

]
, (F.22)

with the constraint f1(q) + f2(q) = gw(q, 0) so as to satisfy the sum rule (F.14). As
can be seen in figure F.5c, this fitting function reproduces quite well the general shape
of the surface response function below 100 meV. The values we obtain for quantum
friction coefficients are insensitive to the water response at higher frequencies, since these
are cut off by the thermal factor in eq. (E.45). Furthermore, our classical simulations
become inaccurate at frequencies above 100 meV, since at these frequencies the quantum
nature of the dynamics can no longer be neglected (see, for instance, the comparison with
an experimental result in the long wavelength limit, figure 5.3b). For both sets of LJ
parameters, the frequencies of the two Debye peaks remain roughly constant (figure F.5d),
at ωD,1 = 1.5 meV and ωD,2 = 20 meV. In the long wavelength limit, the two Debye
peaks have the same oscillator strength, but the wavevector dependence is different for
the two sets of parameters. The general trend is that the oscillator strength is transferred
from the lower to the upper Debye peak as the wavevector increases.

For evaluating quantum friction coefficients, we used the results obtained with Aluru
parameters. Precisely, we represented the surface response function by the following
analytical expression:

gw(q, ω) =
gw(q, 0)

2

[
e−q/q0

1− iω/ωD,1
+

2− e−q/q0
1− iω/ωD,2

]
, (F.23)

with ωD,1 = 1.5 meV, ωD,2 = 20 meV, q0 = 3.12 −1 and gw(q, 0) given by eq. (F.21). The
result in eq. (F.23) is plotted in figure 5.3c as a function of frequency and wavevector.

F.3.4 DFT calculation

We carried out an ab-initio molecular dynamics (AIMD) simulation of a graphene-water
interface of area 12.83 × 12.35 using the CP2K software. The simulation is identical to
the one described in [55] with the difference that the hydroxide ion is replaced by a water
molecule. A VASP calculation was performed on a single configuration extracted from the
dynamics, again following [55]. We used the Perdew, Burke and Ernzerhof functional [286]
with the D3 dispersion correction scheme [287, 288], which has been shown to provide a
good description of the water/graphene interface [289]. Plane waves with kinetic energy
larger than 600 eV were cut off and convergence was reached when the difference between
total energy and eigenvalue energies was smaller than 10−6 eV. The resulting electronic
density, once averaged in the direction parallel to the interface, is shown in figure 5.1b.
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ABSTRACT 
 
This thesis explores several phenomena that arise in nanoscale fluid transport due to inter-
particle correlations. We show that in nanoscale channels, the walls affect not only the fluid 
motion, but also its interactions. As a result, we predict enhanced ionic correlations in 
confined electrolytes, with consequences ranging from ionic Coulomb blockade to memory 
effects. We further explore how correlations between interfacial water and electron 
dynamics in the channel wall result in a quantum contribution to hydrodynamic friction. 
Finally, we present the development of an experimental setup for measuring water flow 
through two-dimensional channels.   

MOTS CLÉS 
 
Nanofluidique, Électrolytes, Physique statistique, Théorie des champs 

RÉSUMÉ 
 
Cette thèse explore plusieurs phénomènes de transport de fluides aux nanoéchelles qui 
résultent de corrélations entre les particules. Nous montrons que dans un canal 
nanométrique, les parois affectent non seulement le mouvement du fluide, mais aussi ses 
interactions. Ainsi, nous prédisons des corrélations ioniques renforcées dans les 
électrolytes confinés, avec des conséquences allant du blocage de Coulomb ionique aux 
effets de mémoire. Nous explorons ensuite les corrélations entre la dynamique de l’eau 
interfaciale et des électrons de la paroi solide, qui induisent une contribution quantique à 
la friction hydrodynamique. Enfin, nous présentons le développement d’un dispositif 
expérimental pour la mesure de flux d’eau dans des canaux bidimensionnels.  
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Nanofluidics, Electrolytes, Statistical mechanics, Field theory 
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