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Music is enough for a lifetime, but a lifetime is not enough for music.

— Sergei Rachmaninov

Nothing in life is to be feared, it is only to be understood. Now is the time to
understand more, so that we may fear less.

— Marie Curie



ABSTRACT

A key part in the recent success of deep language processing models lies in the abil-
ity to learn efficient word embeddings. These methods provide structured spaces
of reduced dimensionality with interesting metric relationship properties. These,
in turn, can be used as efficient input representations for handling more com-
plex tasks. In this thesis, we focus on the task of learning embedding spaces for
polyphonic music in the symbolic domain. To do so, we explore two different
approaches. The first one is inspired by the work done in the Natural Language
Processing (NLP) field and relies on prediction tasks, while the second is based on
the latent space of Variational Auto-Encoders (VAE).

We introduce an embedding model based on a convolutional network with a
novel type of self-modulated hierarchical attention, which is computed at each
layer to obtain a hierarchical vision of musical information. We show that this
model provides a strong increase in prediction accuracy on all reference symbolic
music prediction datasets. We further evaluate the quality of the resulting em-
bedding spaces by analyzing metric relationships between musical elements. We
show that interesting geometrical structures are naturally discovered by the model,
which reflect music theory properties. However, we notice that similar elements
might be encoded in widely different regions of the embedding revealing a lack
of control over the latent space topology during training.

In order to overcome this effect, we propose another system based on VAEs, a
type of auto-encoder that constrains the data distribution of the latent space to
be close to a prior distribution. As polyphonic music information is very complex,
the design of input representation is a crucial process. Hence, we introduce a novel
representation of symbolic music data, which transforms a polyphonic score into
a continuous signal. To do so, we map MIDI pitches to prime frequencies with a
random imaginary part, allowing to perform an inverse Fourier transform with
minimal resolution. We evaluate the ability to learn meaningful features from this
representation from a musical point of view and conduct an extensive benchmark
against recent polyphonic symbolic representations. We show that our signal-like
representation improves the stability of learning, leading to better reconstruction
and disentangled features. This improvement is reflected in the metric properties
of the space learned from our signal-like representation, which better correlates
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with music theory properties.

Finally, we show the potential of the resulting embedding spaces through the
development of several creative applications used to enhance musical knowledge

and expression, through tasks such as melodies modification or composer identi-
fication.



RESUME

Un élément clé du récent succes des modeles d’apprentissage profond de traite-
ment du langage réside dans la capacité a apprendre des "embeddings" de mots
efficaces. Ces méthodes fournissent des espaces vectoriels structurés de dimension
réduite ayant des relations métriques intéressantes. Ceux-ci, a leur tour, peuvent
étre utilisés comme des représentations d’entrée efficaces pour traiter des taches
plus complexes. Dans cette thése, nous nous concentrons sur la tache d’appren-
tissage d’espaces "d’embedding" pour la musique polyphonique dans le domaine
symbolique. Pour ce faire, nous explorons deux approches différentes. La premiére
s’inspire des travaux réalisés dans le domaine du traitement du langage et repose
sur des taches de prédiction, tandis que la seconde est basée sur 1’espace latent
des encodeurs automatiques variationnels (VAE).

Dans ce manuscrit, nous introduisons un modéle d’embedding basé sur un ré-
seau convolutif avec un nouveau type de mécanisme d’attention hiérarchique auto-
modulée, qui est calculée a chaque couche afin d’obtenir une vision hiérarchique
de l'information musicale. Nous montrons que ce modéle permet une augmen-
tation importante de la précision de prédiction sur tous les jeux de données de
musique symbolique de référence. Nous évaluons ensuite la qualité des espaces
d’embedding en analysant les relations métriques entre les éléments musicaux.
Nous montrons que des structures géométriques qui refleétent les propriétés de la
théorie musicale sont découvertes naturellement par le modéle. Cependant, nous
remarquons que des éléments similaires peuvent étre encodés dans des régions
tres différentes de 1'espace, ce qui révele un manque de contrdle des propriétés de
I'espace latent pendant 1’apprentissage.

Afin de pallier a cet effet, nous proposons un autre systeme basé sur les VAE,
un type d’auto-encodeur qui contraint la distribution des données de l'espace la-
tent a étre proche d’une distribution préalablement choisie. La musique polypho-
nique étant un type d’information complexe, le choix de la représentation d’en-
trée est un processus crucial. Nous introduisons donc une nouvelle représentation
de données musicales symboliques, qui transforme une partition polyphonique
en un signal continu. Pour ce faire, nous remplagons les hauteurs MIDI par des
nombres premiers avec une partie imaginaire aléatoire permettant d’effectuer une
transformation de Fourier inverse de petite résolution. Nous évaluons la capacité
d’apprendre des caractéristiques musicales intéressantes a partir de cette repré-
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sentation et nous effectuons une comparaison approfondie avec les principales
représentations de la musique polyphonique proposées dans la littérature. Nous
montrons que notre représentation "signal-like" améliore la stabilité de 1’apprentis-
sage, ce qui conduit a une meilleure reconstruction et a des caractéristiques mieux
séparées. Cette amélioration se reflete dans les propriétés métriques de l'espace
qui présente une meilleure corrélation avec les propriétés de la théorie musicale.

Enfin, nous montrons le potentiel de nos espaces d’embedding a travers le déve-
loppement de plusieurs applications créatives utilisées pour améliorer la connais-
sance et I'expression musicales, a travers des taches telles que la modification de
mélodies ou l'identification de compositeurs.
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INTRODUCTION

When hearing a musical piece or reading its score, human beings are able to im-
plicitly interpret sets of intricate information inside this input data. Indeed, thanks
to musical experiences developed throughout our lives, we can easily link between
unknown audio signals and known concepts such as musical genre, tempo or har-
mony. These concepts can be thought of as high-level abstractions, oppositely to
low-level ones like acoustic signal values.

Over the past decades, the field of computer music has precisely addressed
problems surrounding the analysis of musical concepts. Indeed, it is only by first
understanding this type of information that we can provide more advanced tools
of analysis and composition and methods that improve our musical knowledge.
Nowadays, a wide variety of approaches have been pursued, with a notable recent
rise of inspirations from the machine learning field.

Throughout this thesis, we have focused on a very promising idea proposed
in machine learning, the idea of embedding spaces. This particular method consists
of designing models, which are able to project musical data into a smaller space,
where the metric properties reflect high-level musical theory concepts. These spaces
are very powerful as they can be used as analytical and even compositional tools
by themselves, but also as an input representation for complex tasks. Indeed, as
these spaces provide an efficiently-organized musical information, they can allow
to tackle more intricate issues in an easier way.

In this chapter, we define the context and goals of this thesis. We will first
explain our motivations inside the specific field of computer music, by highlight-
ing major breakthroughs that have permitted our research, but we also underline
the remaining challenges to tackle. Finally, we outline the global structure of this
manuscript and introduce our main contributions.

1.1 MOTIVATIONS

Concomitantly with the appearance of computers, a large interest in their use
for musical purposes has emerged. Their computational aspects appeared as a
way to free ourselves from physical boundaries, creating novel musical instru-



1.1 MOTIVATIONS

ments able to produce large arrays of sound with uncommon timbral properties.
This curiosity quickly spread to the creation of tools for composing, recording
and analyzing music. For more than half a century, artists and scientists have
been working together on research issues and artistic works, driving this field to
move hand-in-hand with the expansion of computational resources. These tech-
nical possibilities have been seized by artists, motivating their need for new tools
from researchers and engineers. Hence, computer music has played a major role in
reshaping modern music, even becoming one of the main pillar in popular music.

Although a wide variety of scientific challenges have gradually emerged in this
tield, one of the most crucial remains in adequate representations of music that
can be processed efficiently by computers. Indeed, musical notation has evolved
throughout the ages until becoming a complete language in its own right. How-
ever, due to their inner structures and construction, computers are not well fit
to directly process this multi-dimensional type of data with complex shapes and
unique symbols. Therefore, it is compulsory to first convert symbolic music into
a machine-readable format. For this reason, the representation of music must be
transformed and thought-of differently to be effective in our domain.

This specific question has stirred up a huge interest in the research community;,
leading to a wide variety of representations, that we refer here as musical spaces.
Despite their algebraic nature tailored for efficient processing, their real value can
be assessed through the underlying organization of musical theory information.
Although different types of efficiency are usually targeted, all these formalization
share a similar process of development, trying to build spaces through known
mathematical rules. Unfortunately, this usually constrains these spaces to a re-
stricted scope of application in Western music, and are often not easily applicable
to other contexts.

However, novel possibilities have emerged through the rise of the recent deep
learning field. Although the idea of mimicking the behavior of the human neu-

ron through computers dates back to the middle of the 20t

century, the lack of
computational capacities and sufficient amount of data has greatly impeded the
usability of this framework. However, over the last decade, technological advances
have allowed the training of so-called deep architectures, where artificial neurons
are stacked in successive layers. These achievements have brought about a revolu-
tion in computer science, opening up entire fields of research in various domains.
Out of all these new challenges, one question has aroused particular interest: could

a computer be able to learn a meaningful representation of music by itself?



1.2 DISSERTATION ORGANIZATION AND MAIN CONTRIBUTIONS

Recently, different breakthroughs in the Natural Language Processing (NLP)
field have provided the building blocks towards our overarching goal. Particularly
relevant to our work is the huge step forward in the development of word embed-
ding spaces. In this context, large datasets of sentences are used to understand the
relationships between words. The goal is to find a space where words are rep-
resented as points (vectors), whose distance relationships mirror their semantic
similarity. By using these vectors as a representational basis for other machine
learning tasks, scientists made colossal improvements and opened up possibilities
for a wide variety of powerful applications. For instance, Palangi et al., 2016 used
word embedding to perform efficient document retrieval or web search. Similarly,
Tang et al., 2014 developed a tool that classify the messages from Twitter according
to their sentiments.

In our context, structural similarities between the language and music field
could hypothetically share some logical equivalence. Indeed, a sentence is com-
posed by words hierarchically located, akin to a melody, which is composed by
notes. Moreover, this kind of learned space could also be very valuable for the
musical analysis and composition field, as a potential analysis and knowledge
inference tools, but also as a new representation for other creative application.
Moreover, this continuous space could provide direct ways for performing melody
generation or transformation. One of the most interesting challenge would be to
link these spaces with perception or signal processing knowledge as it has been
done in other fields (Aytar, Vondrick, and Torralba, 2016; Karpathy and Fei-Fei,
2015; Kiros, Salakhutdinov, and Zemel, 2014; Mroueh, Marcheret, and Goel, 2015).
Armed with these combined spaces, we could find some novel relevant features
about music and develop powerful classification or recommendation tools. Set-
ting out from these intriguing premises, we decided to devote our work on these
embedding spaces for symbolic music.

1.2 DISSERTATION ORGANIZATION AND MAIN CONTRIBUTIONS

First, Chapter 2 is dedicated to the presentation of the state-of-the-art related to
our work. In Section 2.2, we present the fundamentals of musical notation, while
highlighting its importance in the development of music throughout different eras.
Then, we explain how notation has been adapted to computer science with efficient
digital representations and the powerful concept of musical spaces. In Section 2.3,
we detail the core principles of the Machine Learning (ML) field. We start by ex-
posing basic concepts, allowing to develop the mechanisms of the specific models
that have been used during this thesis. Finally, we provide in Section 2.4 a global



1.2 DISSERTATION ORGANIZATION AND MAIN CONTRIBUTIONS

overview of the embedding spaces framework from its foundation to the most
recent proposals based on VAE in Section 2.5.

Chapter 3 presents our first contribution on learning musical embedding spaces.
This method derived from NLP relies on the prediction of incoming musical events
in a given context. First, we propose in Section 3.2 our model architecture based
on CNN and Long-Short Term Memory (LSTM) networks. We also introduce a new
Attention Mechanism (AM), which greatly improves the overall performances of
our system allowing our model to obtain better results than the state-of-the-art in
musical events prediction. In addition to the prediction results, we also analyze in
Section 3.3 the visualizations of projected data in our learned embedding space.
We see that, despite some structural inconsistencies, several musical relations are
captured, which holds great promise for further developments of our research.

In Chapter 4, we focus on our second method, which relies on the VAE frame-
work. As shown in the literature, these kinds of approaches are highly dependent
of the input representation. Thus, we introduce in Section 4.3 a novel approach for
representing polyphonic excerpts of music called the signal-like representation. We
demonstrate its efficiency by conducting an extensive benchmark against recent
polyphonic symbolic representations. We show that our signal-like representation
improves the stability of learning, leading to better reconstruction and disentan-
gled features. This improvement is reflected in the metric properties of the space
learned from our signal-like representation, which correlates with music theory
properties, as shown in Section 4.4.

Chapter 5 presents several applications of the embedding space, which are
made possible thanks to their structured natures. In Section 5.2, we propose a
composers classification tool trained with our learned representation as input,
which can be used for dataset labelling or unknown score analysis. We show in
Section 5.3.1 how our spaces can be used to compute attribute vectors, which can
be used to make targeted changes in musical excerpts. Lastly, we present in Sec-
tion 5.3 a tool which aims to enhance the creativity of composers by helping them
to find interesting changes in their melodies.

Finally, Chapter 6 summarizes our work and contributions, by discussing our
results and opening directions for possible future works.






OVERVIEW

2.1 INTRODUCTION

In this chapter, we provide an overview on all the fundamentals concepts useful
for further reading of the manuscript. We also present the state of the art methods
related to the learning of embedding spaces for symbolic music.

In Section 2.2, we first highlight the importance of the representation in mu-
sic and how it has become a major challenge in the computer science field. We
present the three main generic and extendable representations for polyphonic mu-
sic, namely the piano-roll, MIDI-like and NoteTuple representation. Finally, we intro-
duce the concept of rule-based musical space where items are positioned according
to music theory rules allowing the inference of musical knowledge, new composi-
tion processes and an easier manipulation of scores.

The following Section 2.3 is dedicated to the ML framework. To begin with, we
develop the basics of this field including its formal description and the training
process with its ensuing mechanics. Then, we are going further by introducing all
the advanced models that we have used during this thesis.

We explain the apparition and formalism of embedding spaces in Section 2.4. We
demonstrate the merits of this approach through the presentation of the two most
outstanding models of the NLP field. Finally, in Section 2.5, we show the work done
to apply it on musical data which can be divided in two categories. The first one,
referred as prediction-based consists of mimicking the word embeddings mechanics
which rely on events prediction while the second one, the VAE-based, is built on
Variational Auto-encoding.

2.2 SYMBOLIC MUSIC REPRESENTATION
2.2.1  Music as symbol
Music can be described as a set of sounds organized in time, that most of the

civilizations have tried to transcribe into written format since very ancient times.
Therefore, it is difficult to precisely date the first appearance of musical symbols
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Figure 2.1: Evolution of the musical notation across the ages. (a) The first score engraved
in cuneiform writing on a clay tablet which date back to to 1400 BC. (b) Ancient
Greece musical notation written in 128 BC where the letters represent the notes
(transcribed by Annie Belis). (c) The Neumes are symbols which encode simple
melodies along a line representing a fixed sound (11th century).

but it seems that the first score discovered traces back to 1400 BC. This music is
engraved in cuneiform writing on clay tablets (see Figure 2.1). Even though the in-
terpretation of this notation system is still under debate, it is clear that it provides
instructions for performing music. We also learn from its reading that the music
was composed in harmonies of thirds and using a diatonic scale (Bosseur, 2005).

In Ancient Greece, the foundations of one of the first notation specifically tai-
lored for transcribing music has been laid by the music theorist Alypius. He cre-
ated two alphabets — one is dedicated to vocals and the other to instruments —
where the letters represent the notes and are distorted to emphasize musical vari-
ations (see Figure 2.1). The use of such a notation already required a significant
amount of knowledge that very few people had access to, leading to the creation
of a very simplified system for the daily practice of music composed only of syl-
lables. Here, we can assume that this has ushered in the emergence of a schism
between the so-called "art music" and the popular music.

Although taken up and completed by the Romans and then by the Byzantines,
we had to wait until the beginning of the Middle Ages to see a significant break-
through in musical notation with the appearance of the neumes. These symbols
take the form of musical figures applied on syllables that do not encode indi-
vidual notes but simple melodies. At first they do not indicate precise intervals
between notes, only grave or acute accents allow to differentiate the pitch. Then
in the course of the 10th century, the idea of drawing a line representing a fixed
sound, above and below which the neumes were ordered, make its appearance
(see Figure 2.1). Fifty years later, a red line represented the F, a yellow one the Ut,
these were the first musical stave lines.
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The Middle Ages were marked by two notable periods corresponding to distinct
compositional styles. The first one, called "ars antiqua", has witnessed the rise of
the polyphony where several instruments play simultaneously. At this point, it be-
came a necessity to accurately transcribe pitches for the global harmony between
voices and rhythm for the coordination between instrumentalists. Therefore, the
number of stave lines has increased to five, as it is today, except for the Gregorian
chants where the smaller pitch range can be handled with only four lines. Single
notes are now represented by little black squares arranged on the staff, with or
without tail according to their duration.

Until then, the ternary rhythms (which divide time by three, creating a revolv-
ing, waltzing pulse) are predominant since they refer to the Holy Trinity *. How-
ever, during the "ars nova", the second major artistical trend of the Middle Ages,
the rhythm begins to be theorized thus triggering a further improvement in the
notation system (Apel, 1961). Indeed, the written note now takes different shapes
— square, rectangle, diamond - based on its duration. These enhancements have
democratized the binary rhythms which divide the time by two, giving a steady
and regular character to the music.

However, we have to wait until the 15th century for a real standardization of the
music writing with the invention of the printing process. The square notes will
give way to round notes that are more suitable for engraving with a chisel. We
also see the emergence of the bar lines that give rhythm a central role and rein-
force the mathematical aspect of the music.

In the centuries that followed, Western musical notation became more complex
and spread throughout the world which made possible to fix in writing traditional
musics hitherto transmitted orally. However, this had the consequence of denatur-
ing some of them, as in China for example, music written with European rules
sounded much more like Western music than traditional Chinese music.

We can see that the representation of music as symbols itself has been a central
question in the history of music. In that sense, musical notation could be thought
of as a model which enables us to reason and think about music.

Holy trinity, in Christian doctrine, the unity of Father, Son, and Holy Spirit as three persons in one
Godhead.
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Figure 2.2: Representations for symbolic music learning from scores (a). The piano-roll (b)
is the most widespread representation. The MIDI-like (Oore et al., 2018) repre-
sentation (c) encodes it as a sequence of events, while the NoteTuple (Hawthorne
et al., 2018) representation (d) encodes the time offset, MIDI pitch number, ve-
locity and two values for the duration.

2.2.2  Symbolic music representations for computer science

Nowadays, with the apparition of the digital era, multiple machine-readable scores
formats have been developed, the most prominent being the Musical Instrument
Digital Interface (MIDI). This type of digital data format allows to treat music
through its symbolic representation since it is based on a finite alphabet of symbols.
A MIDI file encodes information for the different notes, durations and intensities
through numerical messages with a pre-defined temporal quantification (a subdi-
vision of a quarter note). Hence, this format has been widely used in computer
music research as it allows a compact representation of music. Other formats have
been developed using for instance Locator/Identifier Separation Protocol (LISP)
(Assayag et al., 1999) or eXtensible Markup Language (XxML) (Good et al., 2001).

In order to fully benefit from the growing computational capability of the mod-
ern machines, these digital scores have to be encoded into more algebraic struc-
tures like vectors and matrices. Some representations are specific to a precise task,
like the couple representation (Hadjeres, Pachet, and Nielsen, 2017) used for rep-
resenting four-voices chorales written by Jean-Sebastian Bach. Despite the tremen-
dous generation results obtained from it, we focus in this chapter on more generic
proposals which may fit well for any kind of musical data. We present here the
three main representations of the literature.

2.2.2.1 Piano-roll

The most common way to represent polyphonic music is through the piano-roll
representation. Here, time is discretized with a reference quantum (typically a
fraction of the quarter note) to provide a matrix P(n, t) that represents note activa-
tion in musical sequences. An example is depicted Figure 2.2. This representation
tits for every kind of music as it properly handles polyphony. However, the result-
ing matrices are relatively high dimensional (88 to 128 dimensions per time step,
per voice) and highly repetitive due to its discrete nature. Moreover, because of the
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typically small amount of notes played simultaneously, these matrices are usually
highly sparse.

For these reasons, this representation raises several issues for learning, which war-
ranted the definition of alternate approaches.

2.2.2.2 MIDI-like

The first alternative representation has been proposed in Oore et al., 2018. This
MIDI-like approach relies on an event-based vocabulary composed by four main
MIDI events. The NOTE_ON event (composed of 128 possible sub-events) indicates
the start of the corresponding MIDI note. Similarly, the NOTE_OFF event signifies the
end of a played note. The TIME_SHIFT event is composed by 125 sub-events and
moves the time step forward by increments of 8 ms up to 1 second. Finally, the
SET_VELOCITY event counts 32 sub-events which changes the velocity applied to all
subsequent notes until the next velocity event. Hence, the resulting representation
of an input piece is a variable-length sequence of discrete events taken from this
vocabulary. We can see an example Figure 2.2 This representation can handle any
form of music with polyphony and variable number of voices or time signatures.
However, as the MIDI-like representation relies on the idea of time shifts, all the
attributes corresponding to a given note (velocity, note ON and note OFF) may be
encoded at very distant positions of a sequence which could again stirs up some
issues for learning systems.

2.2.2.3 NoteTuple

To alleviate this particular issue, the NoteTuple representation (Hawthorne et al.,
2018) was recently proposed. In this method, each note is represented by a tuple
composed by four attributes, namely, the time offset from the previous note, pitch,
velocity and duration. The encoding of each attribute is categorical, with its own
vocabulary instead of a large shared one (as in MIDI-like). As the time offset and
duration vocabularies can potentially be very large, both are separated into major
and minor tick fields. The time shift attribute counts 13 major and 77 minor ticks,
representing 0 through 10 seconds and the duration attribute counts 25 major and
40 minor tick values. The result is a tuple containing six elements for each note.
For notes played simultaneously, tuples are listed by order of increasing pitches as
shown in the example Figure 2.2.

2.2.3 Musical spaces

One of the core research question in computer music remains to find an adequate
representation for the relationships between musical objects. Indeed, the transcrip-
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Figure 2.3: Different representations of the pitch space which have been used for dis-
covering algebraic patterns in music. (a) the circle representation of Marin
Mersenne (Mersenne, 1972), (b) the K-nets discovered by Henry Klumpen-
houwer (Klumpenhouwer, 1991) and (c) the tonnetz used in the Hexachord
software (Bigo and Andreatta, 2017).

tion of music as symbols usually fails to provide information about harmonic or
timbral relationships. In that sense, we can loosely say that the goal would be
to find a target space, which could exhibit such properties between musical enti-
ties. Hence, finding representations of musical objects as spaces has witnessed a
flourishing interest in the scientists community (Ukkonen, Lemstrom, and Maki-
nen, 2003; Bigo, Giavitto, and Spicher, 2011; Typke, Veltkamp, and Wiering, 2004;
Uitdenbogerd and Zobel, 1999). Many of the formalizations proposed over the
past decades entail an algebraic nature that could allow to study combinatorial
properties and classify musical structures. Here, we delimit a distinction between
these methods into two types of representations: the rule-based and the agnostic
approaches.

In the rule-based stream of research, several types of spaces have been devel-
oped since the Pythagoreans. Indeed, Marin Mersenne allowed to discover many
algrebraic and geometric structure in classical music through his circular repre-
sentation of the pitch space in the 17th century (Mersenne, 1972; Mesnage, 1997;
Vieru, 1995). Many years later Henry Klumpenhouwer present a new space for rep-
resenting music called the K-nets (Klumpenhouwer, 1991). This approach leaded
to reveal some structural aspects in music through the many isographies of the net-
works (Lewin, 1994; Perle, 1996; Lewin, 1990). Finally, we can cite the well-known
Tonnetz, invented by Euler in the 18th century (Euler, 1739) where the symbolic
pitches are geometrically organized in an Euclidean space defined by infinite axes
associated with particular musical intervals. We can see examples of these differ-
ent spaces Figure 2.3.

10



2.3 MACHINE LEARNING TOOLS

In a mathematical point of view, all these representations are equivalent meth-
ods of formalizing the structural properties of the equal-tempered system (i.e. the
division of the octave into twelve equal intervals). They provide a novel and pow-
erful tool for the analysis of harmonic progression. Their combinatorics nature
has aroused a lot of composition treatises and techniques which are valued for
the pedagogical benefits they offered to students by transmitting knowledge in
the manipulation of musical materials (Bigo et al., 2015). Moreover, these models
have proven their ability to enhance human creativity, since they have been used in
contemporary music for example in the composition of the so-called Hamiltonian
songs (Bigo and Andreatta, 2014). These were created by following the 124 possi-
ble Hamiltonian cycles — which refer in graph theory to a path passing through all
possible nodes and ending precisely where it start — present in the Tonnetz (Albini
and Antonini, 2009).

There are two main benefits of this type of rule-based approach. First, once the
model is built, it can be straightforward to analyze some of its properties (based
on the defined sets of rules). Second, we can also understand the scope where the
model should be efficient based on its construction. But as it is defined, a rule-
based approach represent the particular vision of the designer that has thought
and crafted the corresponding rule sets. Hence, the corresponding musical spaces
will provide a given set of interactions. It is interesting to ask if we could develop a
more empirical discovery of these spaces that could provide more generic musical
relationships. These kinds of spaces could allow to exhibit properties in musical
scores in a way that we never would have thought. In doing so, we could then
find some new relevant features and metric relationships between musical entities
and develop innovative applications. Hence, in the following, we consider that
the important properties of a space are not necessarily its dimensions (like in the
rule-based approaches), but rather the metric relationships or distances between
objects inside this space (like in the agnostic approach that we seek to develop).

However, we remain conscious of the limitations of such agnostic spaces. In-
deed, these are still indirectly the product of our design of the learning algorithms.
Furthermore, they might be highly dependent on the dataset used for their con-
struction. Finally, there might be no direct ways to analyze their properties nor
prove their efficiency.

2.3 MACHINE LEARNING TOOLS

In the following section, we propose an overview of all the machine learning con-
cepts that have been used during this thesis. First of all, we propose a formal de-

11
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scription of what has been named machine learning by laying the necessary bases
for an algorithm to be able to learn. Then, we detail the training procedure and
the notions of artificial neurons and neural networks. Finally, we develop the ar-
chitectures and specificities of all models and techniques useful for our work.

2.3.1 Basics

2.3.1.1  Formal description

Learning can be defined as the process of acquiring, modifying or reinforcing
knowledge by discovering new facts and theories through observations (Gross,
2015). To succeed, learning algorithms need to grasp the generic properties of
different types of objects by "observing" a large amount of examples. These ob-
servations are collected inside training datasets that supposedly contain a wide
variety of examples. There exists three major types of learning :

* Supervised learning: Inferring a function from labeled training data. Every
sample in the dataset is provided with a corresponding groundtruth label.

* Unsupervised learning: Trying to find hidden structure in unlabeled data.
This leads to the important difference with supervised learning that correct
input/output pairs are never presented. Moreover, there is no simple evalu-
ation of the models accuracy.

* Reinforcement learning: Acting to maximize a notion of cumulative reward.
This type of learning was inspired by behaviorist psychology. The model
receives a positive reward if it outputs the right object and a negative one in
the opposite.

In computer science, an example of a typical problem is to learn how to classify
elements by observing a set of labeled examples. Hence, the final goal is to be able
to find the class memberships of given objects (e.g. a sound played either by a pi-
ano, an oboe or a violin). Mathematically we can define the classification learning
problem as follows.

Given a training dataset X of N samples X = {x1,...,xn} with xy € R?, we
want assign to each sample a class inside the set Y = {y;,...,ym} of M classes with
ym €1{1,.... M}

To do so, we need to define a model 'y that depends on the set of parameters
0 € ©. This model can be seen as a transform mapping an input to a class value
such that

§ =To(xi) (2-1)

12
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In order to define the success of the algorithm, but also to allow learning, we
further need to define a score function,

h = he . RD — RM (2_2)
and a loss function,
L=Lxy:0 =R (2-3)

The role of the score function is to determine the membership of a given sam-
ple x; to a class ym. In a statistical setting, we can interpret this function as the
probability of belonging to a given class.

hm(xi) =p(0 =ym | x4,0) (2-4)

Considering the basic rules of probability distributions, we have

M

D> hn(x)=1

m=1

(2-5)
hm(x) € [0,1], Vxeyx, Ym=1,.,M

On the other hand, the loss function computes the difference between predic-
tions of the model and groundtruths. In order to learn the most efficient model,
we need to update its parameters 6 by minimizing the value of this loss function

0 = argmingco(Lxy) (2-6)

There is usually no analytical solution and sometimes not even a single mini-
mum for this problem. The optimal set of parameters  is usually approximated by
updating a sequence of 0,, that iteratively decreases the loss function. The update
rules of the model describes how 6,1 is obtained from 0,. Other numerical pa-
rameters, called hyper-parameters, can influence the model but, unlike 0, they are
not considered in the optimization problem.

Therefore, we rely on the Gradient Descent (GD) algorithm (Cauchy, 1847) to
find a potential solution (minimum) to this problem by updating the parameters
iteratively depending on the gradient of the error as defined as

Ont1 =600 —MVoelx,y(0n) (2-7)

The gradient of Lx v is associated with a vector in the parameter space 6 which
points out in the direction in which Lx y growths the most. Hence, geometrically
speaking, the update rule corresponds to move each parameter 0 in a direction

13
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Figure 2.4: Impact of different values of the learning rate on the convergence of gradient
descent

that lowers the value of the loss function by a step of the meta-parameter 1, called
the learning rate. The convergence highly depends on the value of 1, as displayed
in Figure 2.4. A convex loss with an adequate value n will provide a fast and
easy convergence. Unfortunately, in most of the cases, the loss function is highly
non-convex and possess several local minima. This does not imply any theoretical
guarantees of the convergence to the global minimum.

In order to avoid the convergence on a local minimum, it is possible to con-
sider the loss over a single example L, y;, and perform updates for each example
separately. Using a single training sample x(i) at each iteration of the GD process
allows to cover more values of the parameters, and is called Stochastic Gradient
Descent (SGD)

On+1 =06q —ﬂVein,yi(en) (2-8)

Note that the GD algorithm actually corresponds to computing the mean of the
SGD over the whole training dataset as the loss is defined as

N
L) =) Ly, (6) (2-9)
i=1

While GD must compute the derivatives of all the terms in the sum before updat-
ing the parameters (a costly operation when the number of samples is large), SGD
can decrease the value of the loss, without computing all derivatives. However, as
the gradient may take largely different values for each example, we usually rather
rely on successive partitions X;_(; ... gy of the data set and apply the update rule

0Lx;,v;
50

This process called Mini-Batch Gradient Descent (MSGD) allows to parallelize and
thus speed up the computation of the GD algorithm.

en—H = en —1N (en) (2_10)

14
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2.3.1.2 Training

A single phase of training is referred to an epoch, which corresponds to one itera-
tion of the training loop defined as listed in Algorithmus 1.

Data : X,Y,Lx v(0n)

Result : The parameters 0 of the model 'y minimize the value of the loss
function Lx y(60n)

Random initialization of 6;

while 6 # argmingee(£Lx,y) do
Compute a prediction { for inputs x; depending on the current

parameters 0,

§ =To(xi);

Evaluate the error by comparing the predictions groundtruth y; with an
arbitrary distance function F

Lx,y =F0,yi);

Update the parameters of the model in order to decrease the loss value,
by relying on the derivatives of the error

Ony1 =0n _nveLX,Y(en);
end

Algorithmus 1 : Training algorithm of a model 'y for a classification task. X

is the training set composed by a N samples X = {x1,...,xn}, Y is the set of M
classes that correspond with the samples Y = {y;, ...,ym with y; € {1,..., M}

At this point, the question arises to know whether the number of epochs has
to be the largest possible to have the most efficient model. Unfortunately, this is
generally not the case due to the phenomenon known as over-fitting. Indeed, if
the model learns "too precisely" the training dataset properties or if it counts too
many parameters for the problem, it will learn the samples themselves and will
not be able to generalize its learned concepts to unseen contexts anymore. This
can be understood graphically by looking at Figure 2.5.

The first case on the left illustrate a model that has not been trained enough. Its
classification function is too simple to separate efficiently the samples. In the op-
posite we can see on the center a model that has made too much training epoch or
with an overly complex classification function. In this case, it will be very efficient
for tasks on this particular dataset but very bad on other example. Finally, the
right of the figure shows a model that has made the optimal number of epochs.
Generally speaking, these questions relate to the notion of generalization, which
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Underfit Overfit Optimal capacity

Figure 2.5: Depending on their complexities, models can tend to underfit (left), overfit
(middle) or have an adequate capacity for the problem (right)

refers to the ability to accurately predict independent unknown test data.

To prevent the over-fitting, we split the data into three datasets, namely the
training set, the testing set, and the validation set. We use the training dataset in

order to update the parameters, and then we compute the loss with the test one.

When the training loss value tends to zero (a model "knows" each sample, zero
miss-predictions are made), the test loss will re-increase because of over-fitting as
depicted in Figure 2.6. We stop the training at this point and assess our model on
the validation dataset to get the expected final accuracy of the model on unknown
data.

_____________________________________

Al Underfit | Overfit

Train
set

Test set

Train set
_________________ Training - --Predict -

Epochs

Figure 2.6: Separating the dataset in order to alleviate overfitting

Another solution to prevent over-fitting is to apply regularization to the model
or the learning process. Examples of regularization include adding noise to the
input or restrict the values of the parameters through weight decay. We can also
add a regularization term to the loss in order to restrict the magnitude of the value
that the parameters can take. The loss can then be written as

Lx,ya(0) = Lx,y(0) +AR(0) (2-11)
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Figure 2.7: A biological neuron (left) is approximated through affine transform and activa-
tion function (right).

where R is usually a l,-norm on the space of parameters and A is a meta-parameter,
which controls the strength of the regularization. When ® ~ R¥, the 1,-norm is
written as:

K ’
16]lp = <Z |9k|p> (2-12)
k=1

Most of the time, the 1, or 1y norms are used. While 1;-norm regularization
leads to sparse parameters, where only a few have a “significant” value and the
remaining ones are very close to zero, l,-norm regularization leads to uniform
“low” value parameters.

2.3.1.3 Artificial neurons

Now that we have a global overview of learning algorithms, we will define the
model 'y as a neural networks. A wide part of research in machine learning has fo-
cused on the concept of artificial neural networks. Indeed, the most widely known
basis of intelligent behavior as we know it, is the biological neuron. Therefore, sci-
entists tried to mimic its mechanisms, tracing back to the original model proposed
in McCulloch and Pitts, 1943. An artificial neuron is composed of multiple weights
and a threshold, that together define its parameters, as depicted in Figure 2.7.

The activation of the output of the neuron will be governed by an affine trans-

form and a non-linear activation function. Mathematically, with N inputs a neuron
output is defined as

N
y = Z xiwi + T (2-13)
i=1
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with w; the learned weights and T the threshold of activation. If we interpret this
equation geometrically, we can see that it corresponds to an N-dimensional hy-
perplane. Therefore, a neuron can divide a space (akin to binary classification),
or approximate a function (as the sum will give an output whatever X comes in).
By organizing these neurons as layers where each neuron (also called units) trans-
forms the input independently, we obtain the perceptron. These layers are then
stacked one after another, where the input of a layer is the output of the previ-
ous one, to obtain the well-known multi-layer perceptron. The number of layers
is called the depth of the model. Hence, the multi-layer neural network allows
combining non-linear activations in order to process more complex tasks.

However, a problem arise from this representation. Indeed, to update the pa-
rameters with gradient descent method (Equation 2—7) the output space has to be
continuous (e. g., the value of y must be continuous to be differentiable, y(x) is
of class C'). To alleviate this problem we need to use different activation function
denoted as o(x), and we now consider T as a bias denoted as b, leading to

y=0() xwi+b) (2-14)
Three examples of common activation functions are showed in the following.

e Pjecewise linear :

0 V x < Xmin
ox)={mx+b VYV Xmax > X > Xmin
1 YV X 2 Xmax
¢ Sigmoid :
X

:]+e—|3X J

e Rectified Linear Unit (ReLU) (Hahnloser et al., 2000) :

o(x) = max(0,x)
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Figure 2.8: A fully-connected network with four layers. Units between two adjacent layers
are fully pairwise connected.

2.3.1.4 Neural networks

We illustrate one of the most common architecture in Figure 2.8, the fully-connected
network whose units between two adjacent layers are fully pairwise connected.
This type of architecture is called feed-forward as the information moves in only
one direction, forward, from the inputs to the outputs. There is no loops, backward
connections or connections among units in the same layer. Moreover, the middle
layers have no link with the external world, and hence are called hidden layers
(Leshno et al., 1993). Here, we denote L the depth (i.e. the number of layers) of the
network, and y' € RNt the output value of the 1-th layer, where Ny is the number
of neurons contained in this layer. For 1 < 1 < L, the parameters of a layer are
defined by a weight matrix WL € RNXNi-1 and a bias vector bt € RNt. Therefore,
the activation of neuron i in layer 1 is computed with the following equation:

Ny
hi = of Z (Wil,]- .hjlq) +b}), (2-15)

—_

—

where h{ = x;. Moreover, as b} = W! O.h};1 , the previous equation now become

Nig

hi=o( Z (Wi -h]-lq )) (2-16)
j=0

Finally, the output of the network is defined by y; = ht.
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2.3.1.5 Back-propagation

Here, we can argue that the training of neural networks with a deep architecture
(with a very large depth L) is nearly out of the question in light of the complexity of
the computed function. However, this is without taking into account the method
proposed by Rumelhart, Hinton, and Williams, 1986 and called back-propagation.
This approach allows to decompose this procedure into a set of simple functions
considering that adding layers is equivalent to adding a function computed on the
previous output. Subsequently, in the forward pass, the output is updated depend-
ing on the parameters of the neurons in its layer. Thus, when attempting to acquire
the contribution of a given neuron to the final error rate, we can apply the chain
rule of derivations, to isolate its contribution inside the network. The error values
acquired after a forward pass can be just propagated in reverse, starting from the
output, and assessing the derivative of every neuron output given its parameters.
This technique is applied recursively until all the weights of the network have been
updated as depicted in Figure 2.9.

The forward pass allows to compute the loss £ between the desired output y;
and the output of the network hl. By using Equation 2-15, we define £ on the
output of layer L — 1, the weight matrix W' and o the activation function (see
Equation 2-17). Thus, we can define the total loss as an equation containing only
the set of weight of the models, the inputs x; and the desired output

N
L(yi/h Uu Z WL hL ] (2_17)

NL1

L(yi, 0 Z ..}U(Z W) (2-18)
j=0

We denote e} the derivative of the error for neuron i of layer 1, and the output
of layer 1 — 1 before its activation function by

N1

1 _ 1 1-1
f=) Wi
j=0

The error for the last layer is defined based on the loss function

t= = (2-19)

The chain rule allows to compute the errors e! for all other layers of the NN.
First, the chain rule is used to compute the derivative of £(y;, hiL) with respect to
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Figure 2.9: Computational graph for the forward and backward pass

60{-. In Equation 2—-20, the first term corresponds to e{-, whereas the second term
is the derivative of the activation function.

5L(yi, hi) _ 5L(yi, hi) . Sht
Sok Shl ok

L
i

(2—20)

— el xo'(0}) (2—21)

Second, the chain rule is used another time to compute the derivative of £(ys, hiL)
with respect to the contributions of neurons in the previous layer h-—'.

oL (Ui/ h-I;) 60{— dL (Ui/ h’{—) L
= W.-. 2—22
oL ohL-] ol U (2=22)

—erx0'(0f) WlL] (2—23)

Thus, by taking into account all the connections emanating from the last layer

Mt

L1 1 L L

e; :O',(Oi)g Wij.¢ (2-24)
j=0

Therefore, we obtain a relationship between the errors of two successive layers.
This error can therefore be back propagated throughout the network, thanks to
the generalization of Equation 2—24

My
e} = O'/(Oh Z Wilfjﬂ.e]-H] ; lell,.,L=1] (2-25)
j=0

Finally, the weights are updated in each layer by an amount proportional to the
derivative of the error with respect to the associated weight

Wil]. = Wilj +n.e}h}_1 (2—26)

Where 1 is the learning rate.
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2.3.2  Specific tools

Other type of network based on different connections or operations have been
developed. We now present the different specific architectures that were useful for
our work, namely the CNN, the RNN, the attention mechanism, the Auto-Encoder
(AE) framework, and finally the VAE.

2.3.2.1 CNN

Convolutional Neural Networks were inspired by the models of the visual sys-
tem’s structure proposed in Hubel and Wiesel, 1962. It is a category of neural
networks that have proven very effective in areas such as image recognition and
classification (Krizhevsky, Sutskever, and Hinton, 2012; Simonyan and Zisserman,
2014a; Simonyan and Zisserman, 2014b). There are four main operations in this
kind of network, each processed by a different layer (see Figure 2.10).

coNVOLUTION  The first layer is the convolution operator. Its primary purpose
is to extract features from the input matrix. Indeed, each units k € IN in this layer
can be seen as a small filter determined by the weights Wy and the bias by that
we convolve across the width and height of the input data x. Hence, this layer will
produce a 2-dimensional activation map h¥, that gives the activation of that filter
across every spatial position

h = (WS Xy + by (2-27)

With the discrete convolution for a 2D signal defined as

0 0

flm,n] x glm,n] = Z Z flu, vl * glm —u,n—v] (2—28)
u=—inf v=—inf

The responses across different regions of space are called the receptive fields. Dur-

ing the training process, the network will need to learn filters that can activate

when they see some recurring features such as edges or other simple shapes. By

stacking convolutional layers, the features in the upper layers can be considered

as higher-level abstraction such as composed shapes.

NON-LINEARITY As discussed in the previous section, we have to introduce
non-linearities (NL) in the network in order to model complex relationships. Hence,
before stacking every feature maps in order to obtain the output activations we ap-
ply a non-linear function like those introduced previously.

POOLING Spatial pooling (also called subsampling or downsampling) allows to
reduce the dimensionality of each feature map. The principle behind the pooling
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Figure 2.10: Convolutional neural network with two convolutional layers separated by a
pooling layer and followed by a fully-connected network for classification.

operation is to define a spatial neighborhood (such as a 3 * 3 window) and take the
largest elements (max-pooling) or the average (average-pooling) of all elements in
that window. In that way, we progressively reduce the spatial size of the input
representation and make it more manageable.

FULLY-CONNECTED LAYER Based on the highest level features in the network,
we can use these to classify the input into various categories. One of the simplest
way to do that is to add several fully-connected layers (see Figure 2.8). By relying
on this architecture, the CNN will take into account the combinations of features
similarly to the multi-layer perceptron.

2.3.2.2 Dense and Residual CNN

We have seen that by stacking layers, the CNN was able to handle more and more
complex shapes and thus increase its level of abstraction until it could identify
specific objects. Theoretically, an extremely deep network is therefore capable of
dealing with a maximum amount of detail, enabling it to perform highly demand-
ing tasks such as facial recognition. Unfortunately, it has been shown in He et al.,
2016 that, in practice, the norm of the gradient of the error decreases with each
layer until it becomes insignificant enough to no longer allow the optimization
of the network parameters creating a maximum threshold for depth with classical
CNN. To alleviate this issue, the authors have proposed a novel architecture relying
on residual connections between convolutional layers which add the outputs from
previous layers to the outputs of stacked layers as depicted in Figure 2.11. Thus,
the output of a layer in a residual network can be formally defined as

y = Fx, {Wi}) + Wix (2—29)

where x and y represent the input and output of the layer respectively, F(x, {W;})
is the residual mapping to be learned and W; is a linear projection applied to
match the dimensions of x and y when the number of channels differs from one
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Figure 2.11: (Top) Residual CNN where the red lines represent the skip connection between
layers (He et al., 2016). (Bottom) Densely connected CNN where all layers are
connected with each other (Huang et al., 2017).

layer to another. These skip connections have shown to be highly valuable to al-
low the training of very depth networks and have enabled the residual networks
to largely outperforms all the previous models in many visual recognition tasks.

Driven by this success, a multitude of architectures have emerged (Srivastava,

Greff, and Schmidhuber, 2015; Huang et al., 2016; Larsson, Maire, and Shakhnarovich,

2016), including a particularly successful one called DenseNet (Huang et al., 2017).
In this proposal, all layers are connected with each other to maximize the informa-
tion flow between them leading to an increase in the number of direct connections
between layers from L in a traditional architecture to w Besides, as we can
see in Figure 2.11, the features are not combined by summation as for the residual
network but by concatenation. Note that in this case, the matching of the features
map size is mandatory. This model has been shown to foster the reuse of the
learned features throughout the layers and thus to decrease the redundancy in the
information flow resulting in the achievements of state-of-the-art performances in

all the competitive visual tasks with fewer parameters.

2.3.2.3 RNN

Traditional neural networks do not allow information to persist in time. In other
words, it could not use features extracted from previous events to inform later
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Figure 2.12: Loops of a RNN unfolded through time.

ones. To address this issue, specific networks with loop connections have been
developed, called RNN (Elman, 1990). The idea is that a neuron now contains a
loop to itself, allowing to carry information from one time step to the next. Hence,
its activation can be defined as

hy = A(x¢, he—1) (2-30)

With x the input and h¢_ the activation of the previous time step. By "unfolding"
the networks, it can be thought of as multiple copies of the same feed-forward net-
work, each passing a message to its successor (see Figure 2.12).

This chain-like nature underlines the intimate connection that RNN share to se-
quential events. Unfortunately, this kind of network is usually not able to learn
long-term dependencies and are usually bound to succeed in tasks with very
short contexts. This problem was explored in depth in Bengio, Simard, and Fras-
coni, 1994, exhibiting the theoretical reasons behind these difficulties, such as the
vanishing or exploding gradient. To alleviate these issues, Hochreiter and Schmid-
huber introduced the 1.5TM network (Hochreiter and Schmidhuber, 1997). These
cells also have this chain-like structure, but the repeating module has a different
structure. Indeed, the key element of a LSTM network is a signal called the cell
state which runs straight down the entire structure. This signal can be seen as the
main information that is passed from an "unrolled units’ to another at each time
steps. In the following, we denote the cell state at the time step t as C¢. During its
crossing, this information can be modified or not or even totally forgotten depend-
ing of the input of the network x; and the output of the previous units hy_j. This
is the role of four other elements in the structure called gate defined with weights
W and bias b that we now present in details.

1. The forget gate is a simple sigmoid layer which is here to decide if we keep
the previous information in the cell state or not. It takes into account h¢_
and x¢, and outputs a number f; between 0 and 1T where 0 represents “com-
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pletely forget this” and 1 represents “completely keep this”.

e
It

~

/

Lt

fr = o(Wslhe—1,%x¢] + by)

2. The input gate allows to decide what new information we are going to store

in the cell state. This as two parts, a sigmoid layer dedicated to decide which

values will be updated or not depending on i; and a tanh layer which creates

a vector of new candidate values Cy for the update.

-

it

ht—1

\

it = o(Welhe—1,x¢] + by)

Ct = tanh(We[he_1,x¢] +bc)

3. The update gate that its goal is to actually do what we decided before. There-

fore we multiply the old state by f; and add it i; = Ct. The resulting cell state

Cy is passed to the next time step unit.

Ct :ft*Ct_1 +it*(~:t

4. The output gate finally decide what the network is going to output depend-

ing of the input x¢ and of the cell state C;. The combination of a sigmoid
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layer and a tanh layer are applied to achieve this.

O¢
A

4 N

I:OI':I ht = Ot * tanh(Ct)

N s
Lt

2.3.2.4 Auto-Encoders

One of the most successful type of models that has been recently proposed in
the machine learning field is the AE. These networks are composed of an encoder
Ep(x) : R* — R?* which embeds the input data in a lower dimensional space
IR* where the second part, the decoder Dg(z) : R* — R*, tries to reconstruct the
original input from this code so that X = €4 (Dg(x)) ~ x as depicted in Figure 2.13.

Latent code

AN _ - e -—
-S N ~ Ve R a
% X g¢ |4 DQ X5
— d - - N o
-7 N
N e N _/
encoder decoder

Figure 2.13: Auto-encoder architecture. x is encoded into a latent space z. The decoder aims
to reconstruct an estimation X from z

Then, the reconstructed output are compared to the input through a loss func-
tion (typically a Mean Squared Error (MSE)) which the network try to minimize

L (%,x) =|| e(d(x)) —x ||? (2-31)

In order to avoid learning the identity function, the encoded (latent) space is
chosen to have a much lower dimensionality than the input space. By doing so,
the model learns to compress effectively the input in the final latent space.

tanh 0t = G(Wo [ht—lrxt} + bo)
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2.3.2.5 Variational Auto-Encoders

A very successful improvement of the AEs, called the Variational Auto Encoder
(VAE), have been proposed in Kingma and Welling, 2013. This class of model is
based on the Variational Inference paradigm which aims to approximate a condi-
tional density p(z |x) of latent variables z given observed ones x by optimising a
family of densities over the latent variables (Blei, Kucukelbir, and McAuliffe, 2017).
Indeed, a data distribution can be defined with the marginal distribution p(z) and
the probability of generating x with given latent variable z as following

plx) = Jp(x |2)p(2)dz (2-32)

In this equation, both distribution (p(x|z) and p(z)) are usually unsolvable
through a closed analytical form. However, the Variational Inference allows the
approximation of p(z|x) by a simpler distribution q(z|x) € Q where Q is a
parametrized family of distribution. In order to assess the quality of this approxi-
mation, we measure its difference with the posterior distribution by means of the
KullBack-Leibler Divergence (Dxp ) defined by:

Dxrlq(z[x]llp(z[x)] = Eq(,) log q(z/x) —log p(z | x)] (2-33)

By applying the Bayes’ rule on the previous equation, we thus obtain

Dxr[q(zIX)llp(z]x)] = Eq(y)[log q(z]x) —logp(x|z) —log p(z) +logp(x)] (2-34)

Here, we can notice that p(x) and q(z) are mutually independent allowing the
reformulation of Equation 2-34 as

logp(x) — Dk [q(z|x) || p(z|x)] = E;[logp(x|z)] —Dxr[q(z]x) || p(z)] (2-35)

Therefore, the aim of the VAE is to optimize the divergence of the two distri-
butions. To do so, it rely on its encoder and its decoder defined respectively as
parametric functions q¢ (z) with ¢ € ® and pg(z) with 6 € ©. Assuming logp(x)
is a constant value, we can write the final optimization problem as

L£(8, ) =Eq, ;) [logpoe(x|z)] — Dxi[qe(z|X) || po(z)] (2-36)

reconstruction regularisation

As we can see, this loss function is composed of two different terms. The first
term is the reconstruction loss (or expected negative log-likelihood), which encour-
ages to learn an accurate reconstruction of the data. On the other hand, the Kullback-
Leibler Divergence act as a reqularizer as it measures how much information is lost
by relying on approximate q¢ (z|x) instead of the true latent distribution pg(z).
Moreover, forcing the latent distribution of the data to be close to an isotropic
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Figure 2.14: Architecture of a VAE with sampling in the latent space where the data are
smoothly organized thanks to the regularisation.

normal distribution (choosing a prior p(z) with mean zero and variance one
p(z) ~ N(0,1)) avoids the network to project each inputs in a very different re-
gion of the latent space, hence favoring close embedding vectors for similar inputs
(in other words, they will be close together in the final space).

Therefore, the encoder outputs the pair [u(x), Z(x)], which are parameters of the
multivariate Gaussian probability density q¢(z|x) and the decoder is then fed
with sample from this density and outputs a reconstruction X as depicted Fig-
ure 2.14

REPARAMETERIZATION TRICK As the training of the VAE is obtained through
gradient descent, the sampling operation from the latent space would render the
estimation of the gradient extremely noisy which can hinder the convergence. The
reparameterization trick tackles this particular issue (Kingma and Welling, 2013).
The main idea is to move the sampling operation outside of the network defini-
tion to ensure that it remains trainable, as depicted in Figure 2.15. If we define
x ~ N(u, ) and standardize it so that x ~ N(0, 1), then we can revert the standard-
ization by simply computing x = p + 2%, Therefore, we can perform the overall
sampling operation, by first sampling from a standard normal distribution with
€ ~N(0,1) and then convert it to the desired Gaussian with a specific mean and
variance z = p(x) + b (x)e. This allows to perform the sampling process outside of
the network (eg. without any dependency to the network parameters). This means
that the stochastic component of the gradient will not be taken into account for
the gradient computation.

The reparameterization trick provides an easy way of computing gradients of the
form Vo Eg, (2)[f(z)] for many common densities q¢ (z). The key idea is to express
a sample from q¢ (z) as a function of a sample € from some fixed distribution p(e).
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Figure 2.15: The reparameterization trick

2.3.2.6 Attention mechanism

When we process sequential information, such as reading a book, a score or watch-
ing a video, the amount of information that reaches our brain is enormous and not
all of it is equally important in interpreting a given situation. Therefore, we have
learned to unconsciously select from this flow the most relevant ones. For example,
if we want to find the tonality of a given excerpt of music by reading its score, we
will focus on particular notes and accidentals while not paying attention to others.
In broader terms, we are able to assess the interdependence between input data and
a desired output.

The same idea has been adapted to machine learning systems leading to the so-
called AM (Bahdanau, Cho, and Bengio, 2014) which have been proposed in a wide
variety of machine learning algorithms such as text translation (Firat, Cho, and
Bengio, 2016), image captioning (Xu et al., 2015) or sentence summarization (Rush,
Chopra, and Weston, 2015). Its original use was intended to discriminate salient
elements inside sequential data. Hence, given a sequence of n inputs {x¢, ..., Xn—1}
and a context C, the attention mechanism computes a n-dimensional vector A of
weights reflecting the relevance of each x; in the context C. By computing the dot
product x - A, we finally obtain a weighted arithmetic mean of the input.

In a more computer science oriented way, we can defined the AM as a function
which aims to map a query and a set of key-value pairs to an output. The keys
(K) correspond to the weights describing the relative relevance of the inputs in a
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Figure 2.16: (Left) Scale dot product attention mechanism. (Right) Multi-head attention
mechanism

sequence for a given query (Q) and the values (V) result from the multiplication of
the weights with the input sequence. This formalism has led to two major extended
versions of the AM, namely the Scaled Dot-Product Attention and the Multi-Head
Attention (Vaswani et al., 2017).

For the first one, the matrix of outputs is computed as

QK"
Vi

where dy is the dimension of the keys and queries (see Figure 2.16). The main im-

Attention(Q, K, V) = Softmax( A% (2-37)

provement of this algorithm appears when dealing with large values of dy. Indeed,
the scale factor \/% prevents the magnitude of the dot product from overgrowing
which causes the gradient of the softmax function to vanish.

For the Multi-Head Attention, the authors have gone further than performing a
single attention function with d,oqe1-dimensional K,V and Q. They rely instead
on h different learned linear projections to dyx dimensions for the queries and the
keys and to d, dimensions for the values. Then the attention function is applied
in parallel to all the projected version of K,V, and Q leading to d,-dimensional
output values. Finally, these are concatenated and linearly projected to obtain the
final output as

MultiHead(Q, X, V) = Concat(head, ... head, )W° (2-38)
where

head; = Attention(QW?, KWK, vwY) (2-39)
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with
WQ c Rdmodelek
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where WiQ, WK, WY and WO are the projections of Q, K, V and the output O
respectively. The whole algorithm is depicted Figure 2.16.

As the title — Attention is all you need — of this paper suggests, these algorithms
are so efficient that a model based entirely on attention has outperformed the
state-of-the-art recurrent architectures on several tasks.

2.4 EMBEDDING SPACES
2.4.1  Apparition and formalism

An embedding space is considered in our context as a space of lower dimension-
ality which can be found from the high-dimensionality space of the input. Then,
inside this space, the embedding of an object will be a representation of this object
inside the lower-dimensionality space in such a way that some targeted algebraic
properties are preserved. From a topological point of view, one space X is said to
be embedded in another space Y when the properties of Y restricted to X are the
same as the properties of X. However, in our case, we want to target certain prop-
erties of similarities between the different object inputs, such that the distances
inside the embedded space mimics the targeted relationships. For our problem,
this amounts to find a meaningful representation for musical elements inside a
space, in which the distance between the musical entities would faithfully repre-
sent their musical similarity. It means that we seek a transform that could map
every notes and chords to these low-dimensional vectors, for which the distance
between vectors would carry semantic relations. An example of embedding space
is depicted in Figure 2.17. For example, in this space, the distance between the
word embedding vector for “strong” and the one for “stronger” is the same than
between “clear” and “clearer”. We can see that even though the dimensions of this
space do not have a particular meaning, the metric relationships inside this space
do mirror some semantic meaning.

During the last decades, most of the work devoted to embedding spaces has
been centered on NLP through word embedding space models. Indeed, in 2003
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Figure 2.17: Set of visualizations that show interesting patterns relying to the vectors dif-
ferences between related words in an embedding space learned with GloVe
(‘GloVe: Global Vectors for Word Representation’).

Bengio et al. used for the first time a word embedding inside a neural language
model (Bengio et al., 2003). Following this seminal work, many word embedding
algorithms were developed including the well known Latent Semantic Analysis
(LSA) (Landauer, 2006), the Latent Dirichlet Allocation (LDA) (Blei, Ng, and Jor-
dan, 2003) and the model proposed in Collobert and Weston, 2008, which alto-
gether form the foundation for most of the current approaches. Since then, several
NLP tasks such as automatic caption generation (Reed et al., 2016; Ren et al., 2016;
Vinyals et al., 2015), text classification based on sentiments (Kiros et al., 2015) or
speech recognition (Mroueh, Marcheret, and Goel, 2015; Noda et al., 2015), include
the computation of an embedding space for words as their first step to implement
more complex behaviors.

Embedding spaces can be learned through machine learning techniques. Indeed,
we saw in the previous section that neural network transform an input in order to
minimize the value of the loss function. Hence, we can manage to learn a trans-
form that provide a mapping of each samples in a continuous N-dimensional
space, that carry information on relationships between elements.

2.4.2  Successful models

In the following, we will present the currently best-performing models namely
Wordz2vec (Mikolov et al., 2013a; Mikolov et al., 2013b), and Global Vectors for
word representation (GloVe) (Pennington, Socher, and Manning, 2014) that pro-
vides state-of-the-art results for word embeddings. We will consider that the learn-
ing algorithm is fed with sentences composed of words such that s = {x1, ..., xn}. In
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that case, a word wy is said to be in a context ¢ = {W¢_p, .., W1, W41, o, Wigp -

We will talk about the past context of w¢ as {wy, ..., wi_1} and the future context

as {We g1, o Wegn -

2.4.2.1  Wordzvec

There are two critical aspects of learning embedding spaces that allows to produce
interesting embeddings and also evaluate their quality. First, the training objective
of the corresponding learning algorithms should make it effective for encoding
general semantic relationships. Second, the computational complexity of such an

objective should be low for this task, while providing an efficient coding scheme.

Hence, the idea is to learn a model f(wy, ..., Wi ni1) = P(wy | w§_1) that is
decomposed in two parts. First, a mapping C from any words to a real vector
C(i) € R™ that represent the distributed feature vectors. Then, the probability
function over words expressed with C through a function g which maps an input
sequence of feature vectors {C(wW¢_n41),...,C(wt_1)} to a conditional probability
distribution over words for the next word wy. The i-th element of the output of g
determines the probability P(w; | wi™') (Bengio et al., 2003). This architecture is
depicted Figure 2.18.

i-th output = P(w; = i | context)
softmax
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Figure 2.18: A classic neural architecture for word embedding. The function is defined
as f(wg, .., we_na1) = g(i, C(We_ns1), -, C(wi_1)) where g is the neural
network and C(i) is the i-th word feature vector. (Image from Bengio et al.,
2003).
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2.4 EMBEDDING SPACES

Starting from this basic neural model, Mikolov et al. proposed the Word2Vec al-
gorithm, which is tailored around two different architectures, namely Continuous
Bag-Of-Word (CBOW) and skip-gram.

CONTINUOUS BAG-OF-WORDS  The training objective of this architecture is to
predict a given word w; from a context. The main idea behind the model is to use
information from the past and future contexts of given word. Thus, the network
take as input both the n words before and after the target word w; and fine-tune
its parameters 0 in order to output the right prediction (see Figure 2.19). Therefore
the objective function that the network maximizes is defined as follows

T

Jo = T Z log P(We | Wi, e, We—1, Wit 1, ooy Wegm ) (2—40)
t=1

We can see that this equation simply means that we try to maximize the log-
likelihood over the whole dataset of words inside their respective context, both in
the past and the future. In order to compute a given context word probability, this
architecture use the softmax function as

exp(RTvly,)
S ey exp(n Vi)
Where v, is the output embedding of word w and h is the output vector of the

P(Wt | Wi—1,s Wt—n+1 ) = (2_41)

penultimate layer in the neural language network. To show the quality of their
results, the authors perform simple algebraic operations directly on the vector rep-
resentation of words. For example, they compute vector X = vector("biggest") —
vector("big") +vector("small") and they search in the vector space for the word
closest to X measured by cosine distance. If this word is the correct answer (here,
the word "smallest") the operation is counted as a correct match. By doing so on
several examples, they obtain a score that reflects the efficiency of the embedding.
For this architecture, with a context size of 10 words and an embedding space
representation of 300 dimensions, the accuracy reached is 36.1% on 10000 triplets.

SsKIP-GRAM  While the CBOW model uses the whole context around a given
word to predict it, the skip-gram model performs the opposite task. Hence, the
model relies on a single given word input, and tries to predict its whole context
words, both in the past and future (see Figure 2.19). Therefore, the objective of
the skip-gram is to maximize the probability of a complete context (represented
by the n surrounding words to the left and to the right), given that we observe a
particular target word w;. Consequently, the objective to maximize is given by the
log-likelihood over the entire dataset of T words

)
Jo=<Y Y logplwelw) (242)

t=1-nG<n,#0
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Figure 2.19: Continuous bag-of-words and Skip-gram architectures for Wordzvec (Mikolov
et al., 2013). The model tent to predict a given word w; from a context com-
posed by n words before and after the target or vice versa.

In the skip-gram model, instead of calculating the probability of the target word
wy given its previous words, the model computes the probability of a context word
Wi given wy. Moreover, as the skip-gram model does not use an intermediate
layer, in this case, h simply becomes the word embedding v,,, of the input word
wy, which lead to the following equation

exp (Vi Viv,,,)

wieV exp (V;rvtv\//vi)

Plwery [we) = 5= (2-43)
Even though the task might seem extremely hard to learn, this model was shown
to strongly outperform CBOW. Indeed, on the same dataset and same parameters,
the accuracy for the superlative task reaches 53.3%.

2.4.2.2 GloVe

The main idea behind GloVe is that the ratio between the co-occurrence probabilities
of a word given two other words might contain significantly more information
than the single cooccurrence probabilities separately (this concept is better detailed
in Table 2—-1). Hence, it is this ratio that the network will try to encode as a vector
representation. Therefore, the input is no longer a stream of words defined by a
sliding window but rather a complete word-context matrix of co-occurrences.

To train the model, the authors propose a weighted least square objective |
that directly aims to minimize the difference between the dot product of the em-
bedding representation of two words and the logarithm of their number of co-
occurrences

\%
J= D f(Xy)(w{W; +bi+b; —logXy;)* (2-44)
ij=1

36



2.4 EMBEDDING SPACES

Probability and Ratio | k =solid k=gas k=water k= fashion
P(klice) 19%x107% 66x107° 30x1073 1.7x107°
P(k|steam) 22x107° 78x107% 22x1073 1.8x10°7°
P(klice)/P(k|steam) 8.9 8.5 x 1072 1.36 0.96

Table 2—1: Co-occurrence probabilities for target words ice and steam with selected con-
text words from a 6 billion token corpus. Only in the ratio does noise from
non-discriminative words like water and fashion cancel out, so that large values
(much greater than 1) correlate well with properties specific to ice, and small
values (much less than 1) correlate well with properties specific of steam. (Table
and text from GloVe: Global Vectors for Word Representation Pennington, Socher,
and Manning, 2014)

where w; and W; are the embedding vectors of word i and j respectively, b; and
b; are the biases of word i and j respectively, Xi; is the number of times word i
occurs in the context of word j, and f is a weighting function that allows to assign
a relative importance to the co-occurrences given their frequency.

An exact quantitative comparison of GloVe and wordzavec is difficult to produce
because of the existence of many parameters that have a strong effect on per-
formance (vector length, context window size, corpus, vocabulary size, word fre-
quency cut-off). This question stirred up heated debate in the machine learning
community. Despite this, GloVe consistently outperformed Word2vec by achieving
better results with even faster training.

2.4.3 Space representation

A crucial question still remains unsettled regarding embedding spaces. Indeed,
we have just seen that the primary goal of latent space learning algorithms is to
consistently reduce the dimensionality of the input space while ensuring a mean-
ingful organization of the samples in the output space. This is why the choice of
the latent space dimensionality is a carefully considered trade-off between provid-
ing the smallest possible output space and keeping enough dimensions to express
all the complexity of the input data. In the literature, these values vary from 30
to 512 dimensions depending on various types of parameters. Since we can not
display more than 3 dimensions, it is therefore impossible to really visualize this
kind of space as it stands. However, this would seem very convenient in purposes
of appraising the overall structure of the space and highlighting relevant geomet-
rical patterns between embedded samples.
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2.4 EMBEDDING SPACES

That is why we have to rely on algorithms which project high dimensional
spaces in displayable ones (e.g. 2D or 3D) while keeping their geometric properties.
In the following we present two possible solutions, namely the Principal Compo-
nent Analysis (PCA) and the t-distributed Stochastic Neighbor Embedding (t-SNE).

2.43.1 PCA

The PCA is largely the most widely used dimensionality-reduction method of the
literature. Based on the work of Karl Pearson (Pearson, 1901), it has been devel-
oped and popularized by the statistician Harold Hotelling (Hotelling, 1933). Since
then, this algorithm has been extended and adapted to a wide variety of scientific
fields taking different names across its different applications. Although existing
many ways to describe and process the PCA, its basic concepts can be mathemati-
cally defined as follow.

Let is consider a matrix X = (x{)nxp of n observations described on p variables
where x; € R™ define the ith observation and x) € RP define the j'" variable.
First, we standardize the range of the different variables forcing them to have a
mean equal to 0 and a variance equal to 1. Thus, we obtain the standardized matrix
Z = (z{)nxp where

i j ; j
_ X mean(x)) mean(z)) =0 var(z) =1
var(xJ)

j
Z
Note that this step is optional yet is used in most cases. Indeed, since the PCA is
highly correlated with the variances of the variables, a variable with a larger mea-
surement scale (i.e., a greater variance) will take on too much importance in the
analysis compared to the others and thus potentially bias the result.

Then, we aim to find the correlations between variables, or in broader term:s,
how much the different variables are varying with respect to each other. To do so,
we compute the p x p covariance matrix Kzz defined as

Kzz =E[ZZ"] —E(ZJE(Z] (2-45)

We can intuitively understand that highly correlated variables are carrying redun-
dant information making them good potential candidates to be removed or com-
bined into a single variable. In order to precisely quantify the relevance of each
original variable in the description of the input data, we compute the Eigendecom-
position of Kzz defined by

Kzz = QAQ ™! (2—46)
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where Q = (qfi)p><p is the matrix composed by the eigenvectors q; of Kzz and A
is the diagonal matrix whose elements are the corresponding eigenvalues Ai; = A.
The properties of such a matrix ensure that each q; defines the direction of the axes
that maximizes the variance across the corresponding variable, and the attached
Ai indicates the amount of variance it carries. Therefore, by ranking eigenvectors
in descending order according to their eigenvalues, we obtain the principal com-
ponents in order of significance. Finally, we construct the feature matrix W € RP*¥
by selecting the k main principal components (with k = 2 or k = 3 in the case of
a reduction to 2D or 3D) and project the original data in the space defined by this
new basis to obtain the reduced representation of the input data.

Xpca =W'Z' (2-47)

In that way, it become possible to display spaces with more than three dimen-
sions. However, we must not forget that dimensionality reduction processes in-
evitably lead to a loss of information, even if we tend to minimize it. Moreover, as
linear combinations of the initial variables, the principal components are not car-
rying real meanings anymore nor physical interpretations but are only partially
reflecting the geometrical relationships between observations. Finally, this linear
nature could lead to poor visualizations especially when dealing with non-linear
manifold structures.

2.4.3.2 t-SNE

One of the most efficient alternative to the PCA, called +-SNE, has been proposed in
Maaten and Hinton, 2008b. This unsupervised learning algorithm is an improved
version of the original Stochastic Neighbor Embedding (Hinton and Roweis, 2002)

and has proven to be very effective in the visualization of non-linear high-dimensional

data distributions on displayable spaces.

Starting again from a matrix Xy, v, composed by n p-dimensional observations,
we first aim to measure the similarities between elements in the original high di-
mensional space. To do so, we rely on the density of all points x; under a Gaussian
distribution centered around a point x; by computing the conditional probability

p(ili) as
L7]

with Vi ¢ b(i]i) =0 (2-48)
Z)’ pGli) =1

__expl=l —xjll?/20%)
Zkyéi exp(—Ilxi — XkHZ/zo-iz)

p(i i)
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2.5 SYMBOLIC MUSICAL SPACES

Through this, we can calculate the joint probabilities p(i,j) which reflect the
similarities between the points x; and x;.

p(G,1) =p(ij)
p(ij) = p(”l);np(l']) with  {p(,1) =0 (2—49)

Y Yplij) =1

Indeed, if the probability that two distinct points x; and x; are under the same
local Gaussian distribution are high, this means that these two points are highly
similar. We can adjust the locality of this analysis (i. e.take into account a more
or less wide neighborhood) by modifying the bandwidth of the Gaussian kernels
expressed by o;. The authors have shown that this parameter, called the perplexity,
should stay in the range between 5 to 50 to ensure a normal behavior of the algo-
rithm.

Then, we define another set of joint probability q(i,j) which reflect the similari-
ties of the elements in the d-dimensional target space Ynxq (Withd =2ord =3
in the case of space displays). We proceed as for p except that this time we use
the heavy-tailed Students t-distribution with one degree of freedom (or Cauchy
distribution) instead of a Gaussian distribution. Indeed, its properties allow a bet-
ter modeling of dissimilar elements thus located far from each other in the output
space. Therefore, for i # j, q(i,j) is defined as

C (1T +llyi —y;1A) ! _
WD) == 5 o+ Ty~ wlP) (2-50)

Since the goal for the low-dimensional space Y is to mirror the local similarities

of X, the set of probabilities ¢(i,j) must be as close as possible to p(i,j). Hence, we
rely on the KullBack-Leibler Divergence (Dkr ) to measure the difference between
both distributions as

Dot PIOT — L ) 10e POA)
kL [PQ] iZ#ph,n %8 i)

(2-51)
Finally, by minimizing the Dy with respect to Y through gradient descent,

we learn a map which reflects the similarity between the elements in the high-
dimensional space.

2.5 SYMBOLIC MUSICAL SPACES

We have seen that the representation of symbolic music has taken a central role in
the evolution of musical knowledge and creativity, thus becoming one of the key
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challenges of computer music. Moreover, the success of embeddings in the NLP
field has raised the perspective of representing musical objects in a relatively low-
dimensional space organized according to fundamental concepts of music theory.
Therefore, several attempts have been made during the last decade to adapt the
embedding approach to musical data. In this section, we present the main propos-
als that have made progress towards this objective. We can divide these works into
two categories, namely the Prediction-based which consists of mimicking the tech-
niques of the NLP field, and the VAE-based which rely on the Variational Inference
paradigm.

2.5.1 Prediction-based

One of the first direct adaptation of Wordz2Vec has been proposed in Huang, Du-
venaud, and Gajos, 2016. In this work, the musical units that have been embed-
ded are simple chords described through their main attributes such as their root,
their type (major, minor, diminished), inversion, extensions and alterations. The
resulting strings are used as input to train the skip-gram version of Word2Vec (see
Section 2.4.2.1) on two different datasets composed respectively by the chorales
written by J-S Bach and 200 rock song from the Rolling Stone Top 500 Hits. A simple
PCA projection of the 10-dimensional learned embedding with two principal com-
ponents has highlighted interesting topological properties, with Minor and Major
chords following the circle of fifth. Moreover, it seems that the distances between
chords in the space are partially reflecting musical similarities in term of func-
tional harmony. Thus, despite the simplistic nature of this approach which makes
the resulting space unusable in realistic contexts, the authors have confirmed the
relevance and the potential of the embeddings framework for symbolic music.

In Madjiheurem, Qu, and Walder, 2016, another way to obtain a musical ver-
sion of Word2Vec has been explored. In this approach, the embedded unit is still
the chord although this time there is no limitation as to the number or type of
chords to be accounted for. Any different stacking of notes occurring throughout
the dataset is considered a chord and is represented as a Piano-roll matrix. Three
models inspired from the NLP field has been trained including again the skip-
gram version of Word2Vec. The second one is based on the Neural Autoregressive
Distribution Estimator (NADE) which are very efficient for modeling the distri-
bution of high-dimensional vectors of discrete variable (Larochelle and Murray,
2011). Finally, the last one is an architecture called Sequence-to-sequence (or Seqz2Seq)
(Sutskever, Vinyals, and Le, 2014). These particular auto-encoders are composed
of RNNs for both, the encoder and the decoder, and aim to encode an entire in-
put sequence in a latent space from which another sequence will be inferred. In
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this paper, these three models have been trained through the prediction task on
four different datasets. Based on the log-likelihood evaluation, the Seq2Seq model
shows superior results. However, the authors did not go further in the evaluation
of their embedding spaces.

In Boulanger-Lewandowski, Bengio, and Vincent, 2012, the predictive models
that have been proposed for learning musical embeddings are based on Restricted
Boltzmann Machine (RBM) (Smolensky, 1986). These specific stochastic neural net-
works aim to learn the probability distribution over the set of inputs in order to
project it in a lower dimensional space. By combining it with RNNs, the authors
have designed the most successful model in the literature used for predicting mu-
sical events. As in the previous approach, the input data are Piano-roll vectors de-
scribing the note activations across a discretized time axis. To allow the encoding
of all the events included in the whole set of scores, this time reference quantum
has been fixed to the eight note. However, as the average duration of a note is
much longer, this leads to a representation with a huge amount of repetitions
when dealing with entire musical sequences. Under these conditions, a network
trained trough the prediction task will simply learn to repeat the last event as it
create a very strong local minimum in the loss function. To avoid this, the authors
have relied on the event-level prediction by considering only the frames where at
least one pitch differs from the previous one. As this study have been hardly fo-
cusing on the prediction scores, the structure of the latent space have not been
explored.

Bretan et al., 2017 have introduced the use of CNN for learning musical embed-
ding space in the symbolic domain. They have also brought a new perspective to
this field of research by considering four consecutive beats as the basic unit to be
embedded rather than a single chord. The model they used stems from a class of
AE called denoising Auto-encoder whose aims is to learn to denoise a corrupted ver-
sion of the input. In this paper, the decoder is the mirror network of the encoder
which is composed by four convolutional layers followed by three fully-connected
layers. As in the previous approach, the authors have relied on the Piano-roll rep-
resentation limited to the note onset frames to avoid repetitions. Moreover, a regu-
larization of the embedding space has been applied by using the task of composer
classification as a means for the training. The quality of the learned space has
been assessed by using the embedding vectors as input representations for train-
ing neural networks on the forward prediction and composer classification tasks.
The whole system have been performing well on the second one, however, as no
other topological properties of the space have been highlighted, this seems to re-
sult mostly from the regularization technique rather than the embedding.
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2.5.2 VAE-based

More recently, the VAE (see Section 2.3.2.5) have provided an elegant approach for
learning embedding spaces. Thanks to the constraint that the code z is a random
variable distributed according to a prior p(z), the resulting latent space is forced
to be smoothly organized without any region of the space which do not map
with realistic data. Hence, in addition to the low-dimensional representation of the
inputs, this approach offers the possibility to generate new realistic data directly
from the space by sampling latent codes from p(z). These paradigm has been used
in a wide variety of domains leading to powerful applications such as natural
image and text modelling (Oord et al., 2016; Bowman et al., 2015). In the field of
symbolic music, one model in particular, called MusicVAE, has demonstrated the
strength of this approach (Roberts et al., 2018).

2.5.2.1 MusicVAE

The goal of this model is to accurately project short monophonic melodies (from 2
to 16 bars) in a reduced latent space. To do so, MIDI files used as training inputs
are sliced in few bars and represented using a simpler version of the MIDI-like
representation (see Section 2.2).

The model itself is defined as a recurrent VAE. The encoder is a two-layers bidi-
rectional LSTM network that produces a sequence of hidden states h = {hj, h;, ..., ht}
from an input sequence x = {x1,x2, ..., x1}. The final encoding z is then set as a func-
tion of the last hidden state ht. For the decoder, the authors have proposed a novel
hierarchical recurrent neural network composed by two LSTM network. The first
one, called the conductor RNN, segments the output target into U non-overlapping
sub-sequences and produces an embedding vector ¢ ={c1, ¢z, ..., cu} for each time
step. Finally, the last LSTM network auto-regressively produces a sequence of distri-
butions over output tokens for each sub-sequence via a softmax output layer. The
architecture is depicted in Figure 2.20. This hierarchical system allows to address
the issue of long-term structure modelling that occurs when using VAE. Indeed, the
authors have shown that the reconstruction accuracy are very poor when using a
simple RNN because of the vanishing influence of the latent state as the output
sequence is generated.

Several tests have been set up in order to validate the quality of their proposal.
First, the authors emphasized the logical structure of the learned space by showing
that the generation of an interpolated sequence between two points is producing
a smooth musical evolution. In addition, they have explored the attribute vector
arithmetic technique which consists in altering the musical attribute of a sequence
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Figure 2.20: MusicVAE architecture with a hierarchical decoder. The conductor RNN pro-
vides sub-sequences from which the final output is recursively decoded by
the decoder RNN (Roberts et al., 2018).

through its latent code. To do so, they have defined five attributes for each sam-
ples, namely C diatonic membership, note density, average interval, and 16th and
8th note syncopation. By averaging the latent codes for all datapoints which pos-
sess a given attribute, they obtained a vector which can be used to make targeted
changes to data examples. In their contexts, the intended changes were mostly
well executed despite the appearance of different side effects.

Thus, MusicVAE has shown very interesting results and the latent space ob-
tained from it seems to be usable for creative applications. Nevertheless, it only
takes into account monophonic melodies which drastically limit its scope of use
as polyphony is a crucial notion in music.

2.6 CONCLUSION

In this chapter, we have provided the details necessary to understand the context
in which we conducted our research and the trends that have been taken. We have
first laid the foundations for the symbolic representation of music and the chal-
lenges it raises for computer science. Then, we have explained in detail the basic
mechanisms of ML and the more advanced models we ran with. Finally, we have
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introduce what has been the core of our research, the embedding spaces.

We have seen in the first section that the representation are playing a major role in
the evolution of the music. Indeed, the improvements brought to musical notation
through the ages have led to the development of increasingly complex composi-
tional techniques with the appearance of new rhythmic and harmonic patterns.
At the end of the last century, with the rise of the computer science, the digital
era further broadened new horizons for musical creation that had previously been
unthinkable. However, we have seen through the description of the three major
representations of the literature that representing music in an efficient computer-
oriented way is a difficult task. In spite of its universal aspect and its simplicity of
use, the piano-roll still possesses some undesirable properties in computer science
such as its highly sparse and repetitive nature. The MIDI-like representation does
not suffer from these limitations but nevertheless seems difficult to manage in the
context of polyphonic music because of the large size of the vocabularies used to
describe the evolution of the notes and the disorder in which they occur. The Note-
Tuple representation addresses both of this issues by relying on small vocabularies
ordered in tuples which, however, results to the necessity to employ six different
vocabularies to describe a single note. Finally, we have put forward the merits of
musical spaces by introducing three different ones built from mathematical back-
grounds that allowed us not only to develop our musical knowledge but also to
compose original music.

The second section has been dedicated to the ML framework. We have seen that
a neural network can be seen as a non-linear transformation of an input space into
a new output space. This transformation is driven by a loss function that the net-
work tries to minimize by optimizing its various parameters through the gradient
descent algorithm. For this reason, this paradigm seems to be a good solution to
reach our goal of finding a meaningful representation of symbolic music. In addi-
tion, we have presented some more advanced ML mechanisms that make it an even
more attractive alternative. We have seen that thanks to the convolution operation
or to well designed temporal loops, a Neural Newtork (NN) could capture fine
spatial and temporal features of an input. Moreover, we have presented the class
of auto-encoder networks which aims to compress information in a relatively low-
dimensional space. this process can be enhanced through the use of the attention
mechanism which provide a hierarchy regarding the relevance of each element in
the input sequence, or through the regularisation of the latent space by imposing
the output to be close to a prior distribution.
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As seen in the third section, the idea of using ML algorithms to learn a mean-
ingful representation of a given type of data has appeared in the NLP field. The
structure of these famous word embeddings reflects the semantic relationships be-
tween words and thus provides precious information on them which can be used
for handling complex task. We have shown by describing the two most striking
models in the literature (Word2Vec and GloVe) that the training of these spaces was
done through the prediction of events according to a context. By doing so, the
model learns the probability that a given word occurs in a context which is a good
indicator of its overall meaning.

Following the success of this approach, multiple attempts to built musical em-
beddings has been made. The main papers we have presented have all made a
valuable contribution, and even if the spaces obtained are not as efficient as the
word embeddings, increasingly encouraging results have been obtained. In the
meantime, a novel trend relying on the so-called VAE has make its appearance in
the stream of embeddings research. Based on this probabilistic class of architec-
ture, we have presented an outstanding model called MusicVAE which provides
powerful latent spaces for symbolic music but only for monophonic data.
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PREDICTION-BASED FRAMEWORK

3.1 INTRODUCTION

The aim of this thesis is to design algorithms for learning musical embedding
spaces in the symbolic domain. In other words, we want to capture information
about the semantic relationships between musical items in an unsupervised man-
ner, and to encode it in a low-dimensional space. In this chapter, we propose a
method to tackle this objective, by taking inspiration from the NLP field, since we
rely on a prediction task.

We propose in Section 3.2 a new model which takes its roots from the critical dif-
ferences that exist between textual and musical data. First, we explain the reasons
behind our different choices before presenting the architecture in detail. Then, we
introduce a new AM derived from Multi-head Attention Mechanisms (Vaswani et al.,
2017), aiming to enhance the overall performances of our system. Finally, we de-
scribe the training procedure as well as the datasets on which we have tested it.

We define our evaluation method in Section 3.3, where the results of our pro-
posal are presented in two categories. The first gathers the different prediction
results obtained according to the model used and the dimensionality of the em-
bedding, while the second presents a topological study of these spaces. Finally, we
conclude in Section 3.4 by summarizing and discussing our different results.

3.2 CNN-LSTM MODEL

Here, we introduce a novel model, which belongs to the general class of auto-
encoders (see Section 2.3.2.4). These two-parts networks are specifically designed
to compress input data with the least possible loss of information. Thus, in theory,
redundancies contained in the input representation are removed and the pertinent
information is encoded in a latent vector.

3.2.1  Motivations

As we have seen in Section 2.4 with word embeddings, a direct approach to op-
timize a model able to disentangle the underlying semantic of a set of data is
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to train it on a prediction task. Indeed, the probability that an event occurs in a
given context is highly tied to its meaning. This implies that two elements with a
high probability of occurrence within the same context will be close semantically.
Furthermore, we can also intuitively understand that prediction tasks are greatly
simplified if the input data space is logically ordered. For these reasons, we choose
to rely on this paradigm in order to address our objectives.

However, as seen in Section 2.5, a direct application of the word embedding
methods leads to significantly weaker results on symbolic music. Our assumption
to explain these results is that, in spite of the apparent similarity between musi-
cal and textual languages, some fundamental characteristics of music are not well
handled by word embedding methods. This considerably limits the amount of rel-
evant semantic information extracted by the network. Indeed, a text is composed
by a very wide variety of symbols (words) that appear sparsely across the data, while
musical scores are defined by few symbols that re-occur frequently along the score.
Moreover, the crucial notion of transposition in music does not exist in text data,
while we would expect any musical embedding space to deal with it adequately.
Another musical aspect that word embedding algorithms are not able to handle
correctly is to separate rhythmic information. In these models, there are no com-
ponents that aim to capture information about time dependencies.

Hence, given these observations, we tried to build a model that could address
all of these shortcomings through two main modules. The first one is a CNN aim-
ing to capture the different structures and shapes formed by the note activations
in the piano-roll frames. By applying convolution along the pitch axis, we expect
the learned feature maps to reflect the core properties of musical chords, namely
the number of notes and the intervals between each note. Moreover, by choosing
a kernel size equal to 12 — corresponding to the number of notes in an octave in
Western music — there will be some common kernel activations between two iden-
tical chords at different root notes, thus leading to common features in the latent
code (see Figure 3.1). The second module is an LSTM, whose role is to target fine
temporal relationships in a sequence of consecutive piano-roll frames since there
is much more subtlety in the rhythmical ordering of events in a musical sequence
than in a textual one.

In addition, one very important thing to consider when dealing with sequential
data is the relative importance of each element in the sequence. For example, in or-
der to understand the general meaning of a sentence, we devote more importance
to verbs and nouns than to articles and other linking words. Similarly, adjectives
are sometimes predominant in conveying meaning and other times are almost
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Figure 3.1: Octave convolution applied on piano-roll frames.

purely decorative. As we have seen in Section 2.3.2.6, the so-called attention mecha-
nism was specifically designed to leverage on this observation. In our context, this
module could be very valuable since these hierarchical relationships are strongly
present in music. We can even go further by noting that, in the context of poly-
phonic music, this classification according to the importance of each element can
also be carried out vertically within the same piano-roll frame. Indeed, a chord can
be embellished with different notes that will not fundamentally change its nature
and which will, therefore, have to have a less prominent role in the encoding. For
these reasons, we propose an AM specifically designed to weigh the elements of
a musical sequence temporally (horizontally) and harmonically (vertically) that we
called Hierarchical Attention Modulation (HAM).

3.2.2  Architecture

The proposed model is based on an encoding network architecture, as depicted in
Figure 3.2. To learn a structured embedding space reflecting musical properties,
the model encodes each event of a sequence in an embedding vector and tries to
predict the next event based on this representation. Then, this prediction is de-
coded and compared with the ground truth. In order to ensure that the model
learns an adequate embedding rather than solely optimizing the prediction task,
almost all of the network capacity lies in the encoder. We ensure this by relying on
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Figure 3.2: Our proposal is composed of two major parts. (Left) A convolutional network
is augmented with a separate attention mechanism at each convolutional layer.
This allows to attend the most salient information at each level of processing.
(Right) The input acts as a query to the attention module, which works on each
of the feature maps separately.

very low-capacity prediction and decoder models (see Figure 3.3).

The embedding architecture is based on a CNN. In addition, we introduce a novel
attention mechanism called HAM. The main idea is to attend each convolutional
layer of processing separately, in order to obtain a multi-scaled hierarchical view
over the different levels of abstraction. The attention module itself operates on
a kernel-based operation instead of the spatial attention, by processing each fea-
ture map independently. This proposed attention module is developed in detail
in the next section. Furthermore, the input is used as a query across all attention
modules rather than the feature maps themselves. Information from the different
hierarchies of attention are then concatenated and mixed before being attended
again with a simpler dot-product attention. Finally, this hierarchical attention in-
formation is used to modulate the fully-connected transform of the encoder.

The final model is composed of 5 convolutional layers with 300 channels each,
except the last one with 200 channels. As an octave is composed of 12 notes in
western music, we impose transposition-invariance activations by relying on ker-
nels of size 12. We rely on the ReLU as non-linearity and apply batch normalization
and dropout (with a factor of p = 0.4) between each layer. At the end of the con-
volution processing, we perform a max-pooling to reduce the dimensionality by
a factor of 2. Finally, 3 fully-connected layers of 1500, 500 and d. units combine
the activations of the convolutions filters modulated by the hierarchical attention
modules, where d. is the dimensionality of the embedding. This leads to output
a final embedding vector of d. dimensions. We conduct a benchmark to assess
the impact of d. on the overall performances of the system and to choose the best
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Figure 3.3: The second part of our model is a very-low capacity LSTM network to ensure
that the embedding learns a structured space. This layer predicts the event
following a sequence of embedded events. The decoder mirrors the encoder to
output the predicted piano-roll frame.

alternative. The results are displayed in the following section.

The second part of the model is a simple 1-layer LSTM network with only 500
units to predict the events in the embedding space. It is fed with encoded se-
quences of 12 elements leading to an input matrix of size 12 x d.. Finally, the
predictions are decoded by mirroring the operations performed by the encoder in
reverse. This produces a piano-roll frame, which is evaluated by using a Binary
Cross Entropy (BCE) criterion, defined as

1
Lece =~y ;yi-log(QiHU —Yi)-log(1—0i) (3-52)
1=
where N is the length of the piano-roll frames, {j; is the i-th value of the predicted
frame and y; is the corresponding target value.

3.2.3 Hierarchical attention modulation

Here, we propose to rely on a hierarchical attention mechanism inspired by multi-
head attention, but that differs in several key aspects. First, the hierarchical aspect
comes from the fact that the attention is applied at each layer separately to select
the most relevant information. However, this information does not feed the follow-
ing layers but is rather mixed and attended again separately. The resulting output
is used to modulate the last fully-connected layers of the network. Finally, the at-
tention module itself targets entire feature maps rather than spatial locations and
can be mathematically described as follows. First, each feature map is processed
through a linear transform separately to reduce its dimensionality to d. This pro-
duces a set of keys K and values V. The query Q is defined by the output of
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the preceding convolutional layer. The network computes the scaled dot-product
attention of each reduced feature map as

QK™
Vay

Finally, this set of attention vectors is normalized and mixed across kernels to

Attention(Q, K, V) = Softmax( A% (3-53)

obtain a summary of the prominent information at each given layer. The whole
process is depicted in Figure 3.2

3.2.4 Data and training

In order to evaluate our proposal, we train it on the four reference symbolic pre-
diction datasets that have been the most widely used in the literature.

* JSB Chorales is a corpus of 382 chorales by Johann Sebastian Bach, which
is split into the train, test and validation sets proposed by Allan & William
(Allan and Williams, 2005).

¢ Nottingham is a collection of 1200 British and American folk tunes’.

¢ Piano-midi.de is a collection of classical music played on piano, following
the split by Poliner & Ellis (Poliner and Ellis, 2006)>.

* MuseData is a dataset developed by the CCARH that includes 880 orchestral
pieces of famous composers3.

For all datasets, we extract the piano-roll matrices from the MIDI files by quanti-
fying the time scale at 16 frames per beat and set played note values to 1 and o
otherwise. Hence, the resulting matrices are composed of a large majority of re-
peated frames. As shown by Crestel and Esling, 2016, in this frame-based context, a
dull model which simply repeats the last musical frame outperforms all previously
proposed models (with an accuracy of up to 85% on the JSB dataset). A solution
to avoid this problem could be to predict an entire sequence rather than a single
note. However, all previous models are evaluated on single-frame prediction tasks
and learning on entire sequences could render the learning very unstable and de-
prive the resulting embedding of its metric properties. Therefore, we constrain the
prediction by transforming piano-roll matrices into an event-level representation
(keeping a single frame per new event). We keep the reference dataset splits if
available, otherwise we follow a 80% train and 20% test split.

1 https://ifdo.ca/ seymour/nottingham/nottingham.html
2 http://www.piano-midi.de/
3 http://www.musedata.org/

52



3.3 METHOD EVALUATION

Based on the sequence of events, we train our network to predict the next mu-
sical event. As the great majority of the capacity is in the encoder, the goal is
that the model improves the structure of the embedding to improve its prediction
score. We feed the network with mini-batches of size 32, each element being a
sequence of 12 events (the 128-dimensional frames). All the events are encoded in
the d.-dimensional space and the 1LSTM network tries to predict the 13" event of
the sequence by relying on the previous 12 embedded vectors. Then, the predic-
tions are decoded by processing the encoding reversely and the 128-dimensional
resulting vectors are compared to the real target through the BCE loss. Regarding
optimization, we use the ADAM learning algorithm (Kingma and Ba, 2014), with
an initial learning rate of 107> and use an optimization scheduler that halves the
learning rate after 25 epochs without improvements.

3.3 METHOD EVALUATION

In order to assess the quality of our proposal, we perform two separate types of
analyses. The first one consists in comparing the prediction results of our model
with those of the state of the art. In addition, we also evaluate the scores obtained
by performing gradual ablations of our network in an attempt to determine the
contribution of each module. Finally, we study the impact of the embedding di-
mensionality on these prediction scores. On the other hand, the second evaluation
aims to analyse the structure of the embedding in a visual manner. To do so, we
display several PCA projection of selected elements according to their musical prop-
erties and we observe the geometrical patterns which emerge from these graphs.

3.3.1 Prediction results

In order to evaluate the success of various models, the frame-level accuracy of
the prediction is computed for each piano-roll frame in the validation set. This
measure was specifically designed for evaluating the prediction of a sparse binary
vector. Indeed, a purely binary measure corresponding to either a perfect match
between the prediction and the ground truth, or an error in any other case, might
not reflect the true success of the underlying algorithm. For that reason, the frame-
level accuracy measure is usually used to alleviate the problem.

To obtain this measure, we first compute three variables depending on the pre-
diction vector and the ground truth one. The true positives TP is the number of
active notes that the model predicts correctly, the false positives FP is the number
of 1 which should be o, and the false negatives FN is the opposite (o that should
be 1). Note that we do not take into account the true negatives values due to the
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sparsity of a pitch class vector. Indeed, this property of sparsity leads to a very
high number of true negatives (a wide percentage of o in both vectors), which
might skew the measure by artificially inflating the success of these algorithms.
Hence, from these three variables, we can calculate an overall accuracy score for a
given predicted vector as follows

TP

ACC = 5 EPTEN (-54)

However, we can see that this measure fails to account for rightfully predicted rests
(vectors filled with only 0), as even with a perfect prediction, we obtain TP = 0. To
account for this case, we introduce in this work a new measure of accuracy where
a specific term is defined for the rests and the global accuracy score is computed
for N predicted vectors with at least one active unit and M vectors of rest as

Accuracy = ] 3 TPn + i _ 1 (3-55)
I T MAN & TP+ PP+ Ny &= T4 PPy, 375

This proposed measure of overall performance is now bounded between 0 and 1,
where 1 corresponds to perfect prediction.

3.3.1.1 Architecture analysis

In order to evaluate the different parts of our proposal, we train several variants
of our model by performing an ablation study. First, we evaluate a baseline CNN
model (with the same architecture as our proposed encoder), along with a resid-
ual and dense version of it. Then, we evaluate different variants of the AM. First,
we change the type of attention module used, either with a simple dot-product
attention (AM-dp) or with the multi-head attention (AM-mh) and, lastly, with our
proposed kernel attention (HAM). Finally, we replace the modulation aspect of
our HAM by a simple addition (HA+). In addition to the random baseline model,
we compare it to the RNN-RBM and RNN-Nade models proposed by Boulanger-
Lewandowski, Bengio, and Vincent, 2012. The results for the event-level prediction
are presented in Table 3—2.

First of all, we can notice that the results achieved with the classic CNN module
are better than those obtained through its two more sophisticated versions. This
result is quite unexpected as the dense and residual CNN have yielded consistent
improvements in accuracy across several competitive datasets (see Section 2.3.2.2).
Here, we hypothesize that the visual features of the piano-roll frames are relatively
straightforward compared to those of images making the reuse of feature across
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JSB Chorales | Piano-midi.de | Nottingham | MuseData
Models Acc. (%) Acc. (%) Acc. (%) Acc. (%)
RNN-RBM 33.12 28.92 75.40 34.02
RNN-Nade 32.11 20.69 64.95 24.91
Random 442 3:35 4.53 3.74
CNN 25.73 22.48 62.31 26.73
Residual 14.85 12.29 53.42 12.30
Dense 15.36 12.74 56.42 16.44
AM-dp 33.61 30.17 64.11 27.17
AM-mh 35.19 32.68 64.25 32.15
HA+ 39.07 33.27 76.09 37.84
HAM 40.25 35.28 76.25 38.15

Table 3-2: Prediction results measured with the frame level accuracy on the different
datasets with an embedding dimensionality de = 30.

layers less necessary. Thus, the different connections present in the residual mod-
ules might hinder the learning of the model instead of improving its performance.

On the other hand, the different attention modules greatly increase the predic-
tion accuracy of the model. Indeed, even with the simple dot-product module
(AM-dp), the scores are already significantly better across all the datasets. As ex-
pected, the use of the multi-head mechanism also further improves the perfor-
mance of our proposal to the point of obtaining results already comparable to the
best model of the state of the art.

Finally, our complete model (HAM) outperforms all the previous architectures
(including the state-of-art ones) on all datasets. We can notice that a stronger mod-
ulating signal (by relying on a product instead of a simple sum) on the fully-
connected layers with our attention matrices leads to higher scores. This confirms
the merits of our approach and demonstrates the benefits of establishing both a
temporal and a harmonic hierarchy between the elements of a musical sequence
in order to efficiently encode it in a low-dimensional space.

3.3.1.2 Embedding dimensionality

One of the fundamental questions when dealing with embedding systems is the
dimensionality of the output space. Indeed, since our goal is to compress the infor-
mation contained in the input data, we want to reduce the number of dimensions
of the embedding as much as possible. However, the latent code must contain
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enough information to both reconstruct the original input data, while encoding
high-level musical theory features. In order to find the best trade-off between
these objectives, we compare the prediction scores of our model as a function
of the number of embedding dimensions. The results for d. € [10,30,50, 100] are
presented in Figure 3.4.

N |SE B Pianc-midi N Mottingham MuseData
100 1
™ w —
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Accuracy [%]

10 0 50 100
Dimensionality

Figure 3.4: Prediction accuracy score for our complete HAM model according to the di-
mensionality of the embedding space.

As we can see, the best results seems to be attained for d. = 30. In the case
of a low-complexity dataset (such as Nottingham) the number of dimensions can
logically be further reduced without really compromising the performance of the
network. However, in any case, increasing the number of dimensions beyond 30
does not seem to improve the overall performances of our algorithm.

ORTHOGONALIZATION ISSUE By scrutinizing the values of the embedding vec-
tors for each event, we observed that many dimensions were being set to zero (dif-
ferent ones for each event), regardless of the dimensionality of the final space. By
doing so, the model tends to orthogonalize the distribution of the data in the em-
bedding space during the training. This behavior is quite common in the training
of classical AE, where the model focuses only on the reconstruction problem with-
out putting constraints on the space itself. In this regard, the easiest way for the
model to correctly discriminate between inputs is to embed them in very different
regions of the space. This observation is unfortunate since this behavior does not
provide continuous ordering of the elements according to their musical meanings.
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3.3.2 Embedded data visualization

Here, we provide our second analysis, which is intended to geometrically assess
the overall structure of the resulting embedding spaces. To that aim, we compute
a PCA on the 30-dimensional space, in order to project all the musical events of the
datasets in the corresponding 2-dimensional map (see Section 2.4.3.1). Then, we
explore the geometric patterns formed by plotting only musically-related items, as
it has been done for word embeddings (see Figure 2.17). We depict several selected
examples in Figure 3.5. In these particular examples, we link root notes with their
corresponding major 3rd, 4th, 5th, 7th and octave chords with colors depending
on their pitch class.

As we can see, it appears that some musical relations have been well captured
by the embedding. The majority of resulting segments share some clear common
geometrical properties like their length and direction. Nevertheless, few of them
do not respect the overall pattern despite the fact that intuitively they seem to be
close semantically. This observation appears to be particularly strong for events
that occur only very rarely across the whole dataset (such as very high or very low
pitches and rather uncommon chords). Our major assumption regarding this issue
is that the underlying semantic meaning of a musical event strongly depends on
its context. Indeed, a specific chord could have many different "roles" from a musi-
cological point of view depending on where it occurs in the melody or depending
on the key signature of the piece.

Moreover, it appears that, in certain cases, the different events are squeezed
in the center of the space, thus forming a cluster of very small vectors that are
unrelated to the general structure. This is particularly marked on the example
of the 4th at the bottom left of Figure 3.5. This phenomenon, which seems to
strongly alter the organization of the elements in the space, might be caused by
the orthogonalization mechanism discussed previously. Indeed, by setting several
coordinates to zero to easily separate elements, the model artificially partitions
the space into orthogonal sub-planes whose covariance is zero. Thus, certain sub-
planes will "dominate" the PCA (those where the variance of the elements is the
highest) and, thereby, bias the principle components that will express the variation
of only parts of the data. A solution to alleviate this problem could be to compute
different PCA for each sub-planes. However, as this analysis aims to assess the
overall geometrical structure of our embedding, it is of limited interest.
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Figure 3.5: Example of relations that emerge from our embedding. Colors depend on the
root note. Each note are linked to the corresponding chord.
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3.4 CONCLUSION

In this chapter, we have presented a method inspired by the NLP field, which aims
to provide musical embedding spaces. To do so, we have proposed a new AE ar-
chitecture composed by a CNN and an LSTM network both targeting to capture
relevant musical features. As the majority of the computational capacity of our
model lies in the encoder, by training it on the forward prediction task, we push
the model to organize the embedded elements in a logical manner. In addition,
we have introduced a novel AM, called HAM, which aims to establish a hierarchy
between elements according to their relevance both temporally in a sequence and
harmonically in a chord.

First, we have assessed our proposal by performing an ablation study whose
results has highlighted the merits of each of the modules included in the model,
in particular those of our HAM. Moreover, the whole system has outperformed the
previous state-of-the-art prediction results demonstrating again the benefit of the
embedding framework.

By displaying PCA projections of our embedding, we have further demonstrated
that some musical features are reflected in the overall geometrical structure of the
spaces. However, some examples do not respect these underlying patterns point-
ing to the fact that a musical chord can potentially carry very diverse "meanings"
depending on the context in which it occurs. In broader terms, we can argue that
there is a lack of meaning carried by a single musical object. Accordingly, trying
to learn an embedding of musical events alone without any context (similarly to
the approach taken in NLP) seems to be unrealistic.

Another important point of discussion is related to the relevance of the predic-
tion task in learning musical embeddings. Indeed, in textual data, the order of
appearance of different types of words is quite similar across the vast majority of
sentences. In this context, learning to accurately predict future events turns out
to be very beneficial for understanding the overall meaning of the language. On
the other hand, in music, the ordering of the elements is less important and varies
a lot depending on the different bars, which questions the overall validity of the
prediction task for capturing meaningful features of music.

Furthermore, we faced the huge problem of orthogonalization, a recurrent phe-
nomenon when training AE which consists in encoding the musical units in differ-
ent orthogonal sub-planes in order to easily discriminate between them. Because
of the contradictory nature of this process with the idea of learning a semantic
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space, this issue has to be alleviate and the most direct way to do it seems to be
through imposing constraints over the latent space during the training. Armed
with these observations, we have developed in the following chapter another ap-
proach designed to improve the learning of symbolic embedding spaces.






VAE-BASED FRAMEWORK

4.1 INTRODUCTION

In this chapter, we propose another method for learning musical embedding spaces
in the symbolic domain, which takes its roots from various observations collected
during the evaluation of our first approach. To do so, we rely on the class of prob-
abilistic AE called the VAE (see Section 2.3.2.5).

First, we detail the different choices that shaped our proposal and explain the
underlying motivations behind our design choices. We present the architecture
that we have developed and underline the critical problem of polyphonic music
representation. Therefore, Section 4.3 is dedicated to this particular issue. We pro-
pose a novel representation called signal-like and conduct a benchmark against the
three most successful representation of the literature. Then, we expose the results
showing the efficiency of our proposal.

In order to assess the relevance of the resulting embeddings, we introduce in
Section 4.4 a musical evaluation based on a synthetic dataset that follows strict
music theory rules. We begin by describing the method by which we designed
this dataset and, then, we outline its use in further analyses with their expected
outcomes. Finally, we present the results achieved by 4 embeddings with these
analyses, where each space is learned through a different input representation.
This allows to ensure the consistency with the previous results and to measure the
ability of the spaces to encode musical features of higher levels of abstraction.

4.2 MOTIVATION

Based on the mitigate success of the word embedding framework, we argue that
there are some assumptions underlying its definition that are inappropriate for
music processing. First, there are fixed ordering rules in textual data, which do
not exist in music. Hence, defining learning through a prediction task appears
less efficient in the music domain because of these less rigid ordering rules in
music. Second, whereas we can define the semantic meaning of a single written
word outside any context, there are no semantics in music without the correspond-
ing context (time and rhythm). Therefore, it seems not possible to embed single
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notes and chords, but we should rather focus on longer sequences instead. Finally,
whereas there are very low amounts of repetition in text, repetition is a fundamen-
tal aspect in music.

Therefore, we have made several adaptations for further developing our sym-
bolic embedding spaces. First of all, we do not consider single musical events as
our analysis unit anymore but rather aim for small slices of music instead. Here,
we face the somewhat controversial question of the choice of a "core unit" used to
describe a musical score. If the granularity is too thin, the embedded elements will
be too dependent on their contexts and, oppositely, if it is too large, the system will
not be able to capture the subtleties contained in music. As discussed previously,
the two most common alternatives found in the literature are either a fixed num-
ber of beats (usually 4) or several consecutive bars (between 2 and 16). However,
the first case does not allow to handle pieces with different time signatures and
the second case is more oriented towards the study of long term structures. Hence,
in our context, by taking into account one bar of music (regardless of the number
of beats), we hypothesize that the embedded objects can carry enough relevant
semantic information by themselves, while keeping enough expressiveness.

Moreover, in order to have a finer control on the space properties, we now rely
on probabilistic models, through the VAE, which allows to constrain the probability
distribution over the latent space (see Section 2.3.2.5) and avoid the orthogonaliza-
tion problem. Based on the success of the MusicVAE (Roberts et al., 2018) model,
we rely on this architecture for our experiments. One of its strengths stems from
its hierarchical decoder which divides the latent code into several sub-sequences
allowing to manage much longer sequence. In our context, the temporal structure
of our input data is shorter but the harmonic structure is much more complex
since we are dealing with polyphony. Hence, we use a recurrent encoder with a
two-layers bidirectional LSTM of 1024 units and a hierarchical recurrent decoder
with a two-layer unidirectional LSTM with a hidden size of 1024 for both the con-
ductor and decoder (Roberts et al., 2018).

Furthermore, we can see that the success of the wide variety of machine learn-
ing approaches rely on a crucial point: the input data representation. However,
representing a polyphonic music piece efficiently in the symbolic domain appears
to be a daunting task. The most well-known representation is the piano-roll, which
accounts for the polyphonic nature of music but leads to highly sparse matrices
that are notoriously inefficient for learning processes. Therefore, we focus on this
particular issue of input representation in the next section.
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4.3 POLYPHONIC MUSIC REPRESENTATIONS

The most commonly used format in music computing for polyphonic data is the
piano-roll representation. This very sparse non-negative integer matrix describes
note activations across time. However, the specificities of this piano-roll stirs up
some issues for learning. First, the resulting matrices are high dimensional and the
velocity is usually encoded with a categorical distribution. Moreover, because of
the typically small amount of notes played simultaneously, these vectors are highly
sparse. Hence, different symbolic music representations have been proposed to al-
leviate these limitations for machine learning approaches.

Motivated by this challenge, we introduce here a novel type of representation,
which allows to encode any symbolic score as a minimal audio signal. Different
MIDI pitches are mapped to prime frequencies and summed across time result-
ing in a simplified waveform. The process being perfectly invertible, we can re-
trieve the original score without losing any information. We show that this novel
representation, named signal-like, is able to outperform previous propositions on
polyphonic data. Hence, we compare our proposal to previous symbolic music rep-
resentations, namely, the piano-roll, the MIDI-like and the NoteTuple representation
by evaluating their results for learning musical embedding spaces.

4.3.1  The signal-like representation

An audio signal can be described as a sum of periodical functions, oscillating at
different frequencies and complex amplitudes. Hence, we can represent any au-
dio signal in a time-frequency domain such as the well-known Short-Time Fourier
Transform (STFT), which produces a two-dimensional complex spectrogram. In this
matrix, rows correspond to frequency bins while the columns describe each time
step t (frames index). The advantage of the STFT is that it is an exactly invertible
process, allowing to retrieve the original waveform from a spectrogram. In ma-
chine learning applied to music, this signal information offers several desirable
properties. Indeed, it naturally contains polyphonic information as a decompos-
able sum. Moreover, there has been some large successes in using raw signal for
learning. Nevertheless, the major flaws of this representation are its large dimen-
sionality, and the existence of phase effects in harmonic signals.

In this section, we show that relying on a compact signal-like representation
for polyphonic symbolic music can lead to large enhancements in tasks related
to learning embedding. Hence, we aim to transform any given piano-roll as a
spectrogram generating the most compact signal representation possible. To that
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Figure 4.1: The score is represented as a piano-roll matrix where each MIDI pitch are
mapped to prime frequencies. Then, taking the role of a fake audio signal
phase, an imaginary part equal to 1j is added to each values of the matrix.
Finally, the ISTFT is computed on the resulting spectrogram to obtain the final
Signal-like representation

aim, we first map each MIDI pitch to prime numbers, starting from 43 (for MIDI
pitch o) to 2063 (for MIDI pitch 127) and removing consecutive numbers with a
gap smaller than 4 (in order to not obtain pseudo frequencies that are too close
together). In this representation, harmonic relationships may create phase effects
detrimental to the inversion. Indeed, as the frequencies are arbitrary chosen and
each represent a single MIDI pitch, the emergence of new harmonics during the
inversion process would lead to the addition of notes which are not present in
the original score. The use of prime numbers allow to mitigate this undesirable
effect. Note that this also restrains the maximum frequency to a rather small value,
allowing for a compact resulting signal. Then, we add an artificial phase, by setting
imaginary parts to 0. Doing so, we can apply the inverse STFT to the resulting
matrix and obtain a compact signal-like representation of the score. We use a
window size of 2048 with an hop size equal to 1. This overall process is depicted
in Figure 4.1.

4.3.2 Benchmark

In order to compare the efficiency of the piano-roll, the MIDI-like, the NoteTuple and
the Signal-like representations, we evaluate them with the same common learning
approach. Therefore, we train 4 identical models (with slight changes on the first
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and last layer according to the input shapes) to provide latent spaces logically or-
ganized along music theory principles and compare the respective achievements.

4.3.2.1  Experiments

As discussed previously, we choose the hierarchical architecture of MusicVAE for
our experiments. We evaluate different latent sizes in order to choose the most ad-
equate value for largely reducing the input dimensionality while keeping enough
information for the reconstruction.

We train the models on the Johann Sebastian Bach chorales dataset. We use
data augmentation based on transposition as proposed in Hadjeres, Pachet, and
Nielsen, 2017, ensuring that transposed chorales are still correct from a music
theory standpoint. This leads to an extended set of 2418 training and 549 testing
chorales. As the model takes musical bars as input, we split the MIDI files into
separate bars and compute different representations on each bar. In order to ob-
tain constant-sized matrices for both, the piano-roll and the signal-like, we slightly
change the sampling frequency of the piano-roll according to the tempo.

We filter bars to have a maximum of 64 events, retaining more than 95% of all
the data. After these operations, we obtain 36801 training and 8850 testing bars.
Regarding the MIDI-like representation, we introduce a dummy event as padding
to obtain a constant-size representation. We use a similar approach for the Note-
Tuple representation by taking 16 tuples by bar and padding with empty tuples.

All the models are trained with the ADAM optimizer (Chen et al., 2016) with an
initial learning rate of 10~* and a batch size of 16. In order to train the piano-roll
and the signal-like representation, we rely on a MSE loss. Since the MIDI-like and
NoteTuple representation are categorical, we rather rely on a cross-entropy loss.

4.3.2.2  Results

In this section, we compare the capacity of each model to reconstruct the original
data, by relying on a frame-level accuracy measure. We divide musical sequences
into elements of 16 frames and compute the accuracy as the ratio of correct (true
positives) and wrong (false negatives and positives) active notes in each one of
them. We also display separately the best reconstruction accuracy and KL diver-
gence results on the test set in Table 4—3.

As we can see, the MIDI-like already provides strong performances in the recon-
struction of monophonic musical bars but are unable to achieve the reconstruction
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Table 4-3: Reconstruction accuracy and KL divergence on the test set for different input

representations.
Input Reconstruction KL div
accuracy (%)
Piano-roll 95.8 2%103
Monophonic 1ano-ro ¥
MIDI-like-mono 97.5 1%103
Piano-roll 94.1 2x103
MIDI-lik 1 -
Polyphonic tee <
NoteTuple 17.3 9% 10%
Signal-like 96.5 1+ 103

with polyphonic ones. Indeed, due to the nature of the MIDI-like representation,
even a unique error on a NOTE_ON or NOTE_OFF event leads to an ill-defined musi-
cal sequences with notes that never end or never start. Regarding NoteTuple, the
models are able to encode information about the number of notes, duration and
time offsets, which are almost perfectly reconstructed. However, a large number
of mistakes in the pitches of individual notes cause the frame-level accuracy score
to be low. Hence, despite the use of regularization techniques (dropout, data aug-
mentation) these two representations seem to largely suffer from over-fitting.

On the other hand, excellent results are achieved with the signal-like representa-
tion. In addition to a better reconstruction accuracy, our representation improves
learning stability by avoiding the exploding gradient problem (Pascanu, Mikolov,
and Bengio, 2012), which occurs with the piano-roll representation. Indeed, by
training the model repeatedly using the piano-roll representation with various
hyper-parameters, we have observed that below a certain KL divergence value,
the gradient of the error becomes to low and cannot be back-propagated across
the network anymore. As this behavior does not arise with the signal-like repre-
sentation, our proposal decreases the reconstruction loss, while minimizing the
KL divergence and, thus, leads to a better trade-off in scores.

Another interesting property lies in the robustness of the signal-like which is
illustrated in Figure 4.2. In our particular setting, the inverse Fourier transform
is not overly sensitive to minor variations in the waveform. In broader terms, we
retrieve the perfect original score by applying our inverse process even on slightly
noisy waveforms. Thus, small reconstruction errors inherent to any model are
immplicitly erased and do not alter the output data, whereas for piano-rolls this
automatically leads to added or deleted notes in the resulting score.
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Figure 4.2: Example of a reconstructed signal-like representation. Despite the fact that the
reconstruction error slightly blur the waveform, the corresponding piano-roll
and final score are perfectly retrieved.

EMBEDDING DIMENSIONALITY Here, we assess the number of dimensions
needed for the spaces to achieve good reconstruction results, while maximizing
the compression and minimizing the KL divergence. The results showing the im-
pact of the dimensionality on the reconstruction accuracy and KL score are shown
in Figure 4.3. As we can see, 256 seems to be the best value in the signal-like con-
text. Note that, for the Piano-roll, the system allows a better compression because
the dimensionality can be decreased to 128 without significant loss of information.
This seems logical given the fact that the space retains globally less information in
this case, as shown by the reconstruction and KL divergence scores.
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Figure 4.3: Impact of the latent space dimensionality for the piano-roll and signal-like rep-
resentation. (a) Results for the frame-level reconstruction accuracy. (b) Results
for the KL divergence with a factor of 103.
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4.4 SPACES EVALUATION

In this section, we address another key issue in learning symbolic music embed-
ding, which lies in their evaluation. Indeed, although all embedding spaces inher-
ently compress the input information into a small set of features, the relevance and
organization of these different sets of embedded features are non trivial to com-
pare. These features can represent different levels of abstraction, and might also
be highly context-dependent, varying between different genres or even within a
single musical piece.

To address this issue, we introduce an evaluation method based on principled
music generation, following known rules from music theory. Hence, to allow for
precisely controlling the properties of evaluation data, we focus in this chapter on
the four part harmonized chorales by Johann Sebastian Bach, which follow clear
and well-known music theory rules. Our method allows to create synthetic musical
bars (termed skeletons), following the rules of Bach chorales. From each skeleton,
we create a set of sophisticated pieces by adding passing tones, neighboring tones,
suspensions and retardations while keeping the previous rules respected. Finally,
we compute the correlation between the learned embedding and our pre-defined
music theory properties, allowing to quantify how different spaces are organized
along these musical concepts. In the next section, we show the superiority of our
signal-like representation to learn well-organized music embeddings.

4.4.1  Musical analysis

In order to precisely evaluate how embedding spaces are able to capture music
theory principles, we introduce a principled generative approach. This allows to
obtain large sets of evaluation data with controlled properties, while following
known music theory rules similar to the ones applied in the four-part harmonized
chorales written by J-S Bach.

4.4.1.1  Principled music theory dataset

Hence, we generate a dataset composed by bars of synthetic chorales in C major or
a minor tonality. We follow the strict modulation rules implemented by Bach in his
chorales and allow only the use of neighbouring tonalities (G, F, e, d in our case).
Bars are either in one of these six tonalities or modulate between them. Finally, we
generate the data by random sampling with the following procedure

1. We generate sequences of tonal functions with first-order Markov chains,
with transition probabilities defined by expert composers.
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2. We expand this sequence as a four-voices realisation, by randomly picking
chords in major triads, minor triads, diminished triads and dominant sev-
enths. This defines a skeleton of only quarter notes.

3. Based on the skeleton, we generate more sophisticated realisations by using
passing tones, neighboring tones, suspensions and retardations without fun-
damental changes in the chord progression.

In order to further control the generation properties, we define two sets of rules
related to the harmony and voice progressions. These rules allow to

1. define prior constraints on sampling through
* voice pitch ranges

¢ rules on double and missing notes in chords.

2. exclude erroneous samples containing
* bad transitions of the seventh and leading-tone.
e parallel octaves, fifths and unison
e direct octaves, fifths and unison
* unisons left by direct motion

* unisons approached by oblique motion

Finally, we obtain a set of 21966 realisations from 370 different skeletons, where
the links between each realisation and its corresponding skeleton have been kept.
In our experiments, this corpus is used only for evaluation purpose. Hence, none
of these data are used during the training.

Based on this corpus, we can analyze different aspects of the organization of
learned embedding spaces. First, we can analyze the behavior of different spaces
based on tonality. An adequate clustering of the different tonalities across the
space would prove its capacity to encode this high-level musical information. Sec-
ond, we can compute the distance between a realisation and its corresponding
skeleton based on the number of non-harmonic tones. In this case, if the space is
well-organized, we expect these distances to evolve linearly with the number of
additional tones. Third, we can compute the distance between a realisation and
its corresponding skeleton based on the type of non-harmonic tones. A link be-
tween these distances and the note type would show that the embedding space
can handle advanced musical concepts. Finally, we can compute the distance be-
tween consecutive skeletons. Since a realisation is always musically closer to its
corresponding skeleton than to a different one, this condition should be reflected
in the metrics of a well-structured space.
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4.4.2 Results

First, we embed unseen synthetic bars in order to compare their respective pro-
jections in the embedding. As the latent spaces have 256 dimensions, precluding
direct visualization, we rely on a t-SNE dimensionality reduction approach (Maaten
and Hinton, 2008a) with 1000 iterations and a perplexity of 30. We display in Fig-
ure 4.4 the results of this analysis according to either 3 different tonalities (a) or to
6 different tonalities (b).

It clearly appears that the use of our proposed signal-like representation signif-
icantly improves the efficiency of the latent space in encoding an unseen high-
level musical feature such as the tonality. Indeed, in the case with 3 tonalities, the
t-SNE projection of the embedding shows that input sequences are organized along
clean clusters with smooth transitions between them. For the piano-roll, the result-
ing space appears to suffer from a lack of smoothness despite the fact that the
tonalities have been well separated. Finally, as expected from the reconstruction
scores, there is no strongly logical organization of the spaces learned through the
NoteTuple and the MIDI-like representations. These results are also reflected in
the analysis with the 6 tonalities where the separation is not as clear — potentially
arising from errors within the mapping of the t-SNE algorithm, which struggles
to entirely express the complexity of the organization along the 256 dimensions —
but still remaining very apparent in the signal-like case.

Then, we compute statistics over metadata of the toy dataset in order to evaluate
how different spaces have organized the realizations with respect to the number
of non-harmonic tones. As we can see in Figure 4.5, the distances between the
original skeleton and its different realizations in the space learned through the
signal-like representation provide an almost linear relationship with the number
of non-harmonic tones, whereas for other representations, this function is even
not monotonic. This highlights the fact that the signal-like space is better organized
from a music theory point of view.
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Figure 4.4: t-SNE plots of different latent spaces with our principled synthetic data, where
these musical bars have not been seen during training. The colors represent the

tonalities ((a) with 3 tonalities and (b) with 6 tonalities). We use a perplexity of
30 and 1000 iterations.
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Figure 4.5: Normalized mean £, distances between the original skeleton and its realiza-
tions depending on the number of non-harmonic tones.

In addition, we compute the £, distances between each skeleton. This distance
should be larger than the ones between a skeleton and all of its realizations in
order to imply a coherent organization of the latent space. Indeed, regardless of
how many notes have been added to a skeleton, realizations are always closer mu-
sically speaking to their skeleton than two totally different sequences. As we can
see in Table 4—4, this condition is well respected in the case of the signal-like and
the piano-roll representation.

Input DBSR DBCS

Piano-roll | 229.0+36.0 | 291.7+204
MIDI-like | 445.5+169.1 | 312.8 £92.6
NoteTuple | 572.5£146.5 | 292.8+89.4
Signal-like | 242.24+34.2 | 285.5+13.5

Table 4—4: Distances between the original skeleton and its realizations (DBSR) and dis-
tances between consecutive skeletons (DBCS).

However, it seems that none of the spaces have been able to correctly encode
information regarding the fype of non-harmonic tones. Indeed, we observed the
distance between a skeleton and its realizations with only one non-harmonic tone
depending on its type. The corresponding behavior did not reflected any rules
for the MIDI-like and the NoteTuple, while there were very similar for the two
other representations (underlining that their metric properties are highly tied to
the number of alterations).
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4.5 CONCLUSION

In this chapter, we have explored another approach for learning musical embed-
ding space targeting the main weaknesses of the first method presented in Chap-
ter 3. First, in order to obtain more meaningful embedding vectors, we have consid-
ered the basic musical unit to be an entire bar rather than isolated musical events.
Second, by relying on the latent space of the VAE, we have performed a control
over the final embedding thus preventing the orthogonalization problem. And, fi-
nally, we have avoided the prediction task in the training procedure to rather focus
on the reconstruction of the encoded data.

Given the success of the MusicVAE model to learn musical embedding for mono-
phonic melodies, we have used a similar architecture under the assumption that
its hierarchical decoder designed to manage long-term temporal structures could
be also beneficial for decoding complex polyphonic structures. Moreover, we have
seen that the achievement of this system is highly bound to the input representa-
tion. Since the piano-roll exhibits poor statistical properties, we have proposed a
new representation for polyphonic symbolic music, called signal-like, which trans-
formed a small excerpt of music in a pseudo-waveform naturally containing poly-
phonic information. By conducting a benchmark against the piano-roll, MIDI-like
and NoteTuple representations, we have shown that our proposal have improved
the quality of the learned spaces for both the reconstruction quality and the orga-
nization of the underlying spaces.

Finally, as the evaluation of such spaces from a musical point of view is a daunt-
ing task, we have proposed a new musical evaluation for latent spaces with a
specifically tailored synthetic dataset. We provided a generation procedure, allow-
ing to create synthetic bars with well-defined and controled music theory prop-
erties. In addition to having again evidenced the efficiency of our representation,
these results have highlighted a musical coherence in the structure of our embed-
dings, providing a large step forward towards our objective.
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APPLICATIONS

5.1 INTRODUCTION

In addition to providing an efficient input representation for complex models, our
embeddings learned through VAE can be employed directly for creative or analyt-
ical purposes. In this chapter, we present some applications, which aim to either
infer knowledge from musical data or enhance composers’ creativity.

In Section 5.2, we present a composers classification tool relying on the meaning-
ful structure of our embeddings. After presenting the experiment, we highlight the
results of our model to classify small musical sequences between 5 notable com-
posers of Western music. Besides, while discussing the success of this approach,
we also provide the results of the binary classification task defined by the discrim-
ination between sequences from one composer and all the other composers.

Afterwards, Section 5.3 is dedicated to creative applications. Hence, we intro-
duce experiments in attribute vector arithmetic, which intends to modify a musical
bar in a meaningful manner. We further present the results of interpolation and
latent code averaging between two distinct sequences. Lastly, we display several
plots that illustrate most of the proposed methods and discuss the results.

Finally, we conclude this chapter by providing a summary and an overall dis-
cussion of our various proposals.

5.2 COMPOSERS CLASSIFICATION

In this section, we propose a direct application of our embedding spaces, which
aims to classify small musical score excerpts according to their composer. As writ-
ing music is a very intricate process, which reflects the personal vision of the
composer, we expect the meaningful structures of our embeddings to aid in distin-
guishing between their different styles. Moreover, such a tool can be of particular
benefit for inferring musical knowledge about a composer or musical trend, as
well as for performing tasks such as automatic labeling of datasets.
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Composers Train | Test | Valid
Scriabin 19 4 5
Debussy 31 6 4
Scarlatti 18 5 4
Mendelssohn 27 4 0
Liszt 99 17 13
Schubert 150 24 6
Chopin 159 21 18
Bach 129 10 10
Brahms 20 2 2
Haydn 25 3 10
Beethoven 104 9 21
Schumann 28 7 8
Rachmaninoff | 46 10 0
Mozart 30 3 2
Others 53 0 0

Table 5-5: Musical pieces distribution over the composers of the MAESTRO dataset
(Hawthorne et al., 2019).

5.2.1 Settings

First, we train our previously introduced system (relying on a VAE architecture and
our signal-like representation) on the MAESTRO dataset proposed in Hawthorne et
al., 2019. This dataset contains over 200 hours of paired audio and MIDI record-
ings from piano performances of classical pieces written by composers from the
17" to the early 20 century. In our context, we used only the MIDI files, split
as recommended by the authors into train, test, and validation sets — described in
Table 5-5 —leading to a total of around 117K training bars and 23K for testing and
validation purposes, each represented through the signal-like representation.

Once our model has reached the lowest possible KL divergence value while
keeping a reconstruction accuracy score above 96% on unseen datasets, we stop
the training and keep the encoder with frozen parameters to project data in the
resulting embedding space. Then, we use the embedded samples as input rep-
resentation for training a 2-layers RNN classifier with 256 units per layer, which
intends to segregate small musical sequences based on their composers. As the
MAESTRO dataset is highly unbalanced and contains only few examples for a large
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Composers | Train | Test || Accuracy

Bach 3088 | 553 84%
Beethoven | 6055 | 797 54%
Schubert 7428 | 1017 46%
Chopin 6027 | 1367 46%
Liszt 5082 | 485 77%

Total 27680 | 4219 58%

Table 5-6: 6-consecutive bars sequences distribution over the 5 most represented com-
posers of the MAESTRO dataset. In addition, we display the results of the classi-
fication task on the test set.

variety of composers, we extract a subset comprising pieces written by the 5 most
represented composers and split them in sequences of 6 consecutive bars without
any overlap (otherwise, the network simply tries to detect common bars among the
sequences and thus heavily suffers from overfitting) that have been first encoded
in the embedding space. Finally, we obtain a set of 27680 sequences for training
and 4219 for testing. We display the categorical distribution of the data, as well as
the classification results in Table 5-6.

5.2.2  Discussion

As we can see, the overall classification results are fairly good in this context. As a
reference, a similar model trained without going through an intermediate embed-
ding representation or through an ill-defined embedding does not exceeds 30%
accuracy for all the composers which is hardly better than the random function.
Now, the most interesting part of these results is the variation in the model accu-
racy among composers. Indeed, although the model has trouble classifying almost
half of the sequences composed by Beethoven, Chopin, and Schubert, it performs
greatly in identifying the work of Bach and Liszt. Thus, by precisely analyzing the
musical relationships between correctly classified sequences in the embedding,
such a system can be an interesting tool for musicologists to refine our knowledge
on the compositional practices of different composers.

On the other hand, the classifier is not sufficiently efficient by itself to do au-
tomatic labelling on these 5 composers simultaneously. Nevertheless, as it seems
able to distinguish the work of certain composers, it can potentially be used to dif-
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Composers | Accuracy
Bach 91%
Beethoven 86%
Schubert 69%
Chopin 61%
Liszt 89%

Table 5—7: Results on the binary classifications aiming to differentiate a work of a com-
poser among the others.

ferentiate a work of a given composer amongst all others and thus operate a class
by class labeling. In order to show this, we have trained the same architecture
with the same data to perform this binary classification task for each composer.
The accuracy is expressed as a ratio of good predictions defined by

TP+ TN (5-56)
FN+FP+TP+TN 575

Accuracy =

with TP, TN, FP, FN the true positives, true negatives, false positives and false
negatives predictions respectively. As we can see in Table 5-7, the resulting scores
are rather high despite the fact that, as expected, the task is more difficult for
certain composers than others. However, in the high accuracy cases, the results
are strong enough (notwithstanding a remaining amount of errors warranting a
manual check for the less reliable predictions), such a system can be an adequate
basis for automatic labeling.

5.3 CREATIVITY SUPPORT TOOL

Thanks to the probabilistic nature of the VAE, our model can generate new realistic
data by performing sampling in the latent space and decoding the resulting latent
codes. In this section, we use this property to propose several creative tools, which
aim to enhance the composition process or to serve as a basis for more complex
systems. All of the following experiments have been done using our model trained
on the MAESTRO dataset (previously introduced in Section 5.2).

5.3.1 Attribute vector arithmetic

First, we propose an application that aims to alter major musical features (or at-
tributes) of a given bar in a controlled manner. Indeed, by averaging the latent
code of a given class (i. e.with a common attribute) of musical data, we can obtain
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a so-called attribute vector. We can see these as the unit vectors of the embedding
space along which the value of the corresponding attribute will vary. Hence, by
performing simple arithmetic operations, the attribute vectors can be used to re-
move or add the corresponding attribute to a musical bar.

As shown in Raffel and Ellis, 2016, MIDI files are sorely lacking in robust anno-
tations, prompting us to resort to attributes that can be trivially computed from
the score itself. Hence, we rely on the 6 following attributes.

¢ C diatonic membership : The amount of notes in a bar which belong to the
C diatonic scale (i. e.the white keys of a piano C, D, E, E, G, A, and B). This
attribute is expressed as the ratio of these notes to the number total of notes,
thus taking values in the range [0, 1].

* Note density : The number of notes played in a bar.

¢ Average polyphony : The mean number of notes played simultaneously
across a bar (i. e.the average length of the chords)

¢ Average note duration : The mean of the duration of the notes in the bar.

o 8™ note syncopation : The ratio of quantized note onsets which are not

8th

landing on an expected note position without any note played in the

previous 8" note position.

* 16" note syncopation : The ratio of quantized note onsets which are not

6th

landing on an expected 16" note position without any note played in the

previous 16" or 8™ note position.

To extract the attribute vectors, we apply a specific procedure described in the
following. First, we compute the attributes for each training sample and partition
them into quartiles based on their corresponding value in terms of attribute. Then,
we compute the attribute vectors by subtracting the mean latent vectors of the top
quartiles to the mean latent vectors of the bottom ones.

Once equipped with these vectors, we first measure the adequacy of the seman-
tic modifications that can be drawn from them. To do so, we start by measuring the
amount of attributes expressed by a total of 256 bars, which have been formerly
generated by random sampling from the prior. Next, we replicate this procedure
on the bars resulting from the decoding of the latent codes obtained through the
additions and subtractions of the attribute vectors to the 256 original codes. Finally,
we assess the average percentage of change that are obtained after applying these
different operations.
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Figure 5.1: Percentage of change in the attributes induced by performing attribute vector
arithmetic. The diagram on the left illustrates the subtraction, while the right
depicts the addition.

As shown by the results displayed in Figure 5.1, the attribute vectors allow sig-
nificant changes in the expression of the corresponding attributes and, thus, pro-
duce the desired semantic shifts. However, these transformations often go hand in
hand with others that were not initially intended. In some cases, these side effects
are mostly logical as they involve attributes that are highly semantically related
such as the average polyphony and the note density. Conversely, some of these
relationships are somewhat not so easily established, but given the broad nature
of our attributes, it seems natural that some of their characteristics are overlapping.
Thus, we assume that this method could be greatly improved by specifying finer
attributes based on a more thorough musicological analysis of the data. That being
said, with regards to its performance and the control it allows, the tool introduced
here still holds a great deal of creative potential.

For a more concrete understanding of the impact of the attribute vectors arith-
metic, we have provided several plots illustrating the contrast between original
and altered bars in Figure 5.2, Figure 5.3, and Figure 5.4. Since we also sought to
evaluate whether we could finely control the amount of the targeted attribute, we
have multiplied the attribute vectors by a factor whose values vary between —1.5
to 1.5, in steps of 0.5.

As we can see in these various examples, the results observed in Figure 5.1
are clearly reflected in the scores. Indeed, it appears that the C diatonic is the
most successful case with a clean and smooth modification of its attribute without
significant side effects even for the most extreme values. The note density attribute
also shows great performances, as evidenced by this particular example, where
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Figure 5.2: Examples of attribute vector arithmetic performed with the C diatonic mem-
bership and the average polyphony attributes. The unaltered bars have been
generated through random sampling from the prior distribution and the at-
tribute vectors have been multiplied by the factor depicted on the scale in the
middle before being added to the original latent codes. For the C diatonic at-
tribute, the notes which belong to this scale have been colored in red to ease
the visualization.
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16th note syncopation

Figure 5.3: Examples of attribute vector arithmetic performed with the 8th note and 16th
note syncopation attributes. The unaltered bars have been generated through
random sampling from the prior distribution and the attribute vectors have
been multiplied by the factor depicted on the scale in the middle before being
added to the original latent codes. The note with syncopated onsets have been
colored in red to ease the visualization.
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Figure 5.4: Examples of attribute vector arithmetic performed with the average note dura-

tion and density attributes. The unaltered bars have been generated through
random sampling from the prior distribution and the attribute vectors have
been multiplied by the factor depicted on the scale in the middle before being
added to the original latent codes.
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the attribute has been correctly modified without modifying the structure of the
original bar characterized by a rest on the 2"¢ beat. Regarding the polyphony
attribute, even though it is closely related to the density as expected, the desired
variations are also very significant. Finally, although still noticeable, the effects of
the syncopation attributes are the most mitigated since the expected modulation
remains quite low, but with a significant impact — especially for the 8" note case —
on the average duration and density.

5.3.2 Interpolation

To further highlight the generative capabilities of our system, we have made sev-
eral experiments relying on interpolations. Indeed, the continuity and the orga-
nized structure of the latent space should allow to generate smoothly varying bars
from the interpolated latent codes between two points. Thus, by computing

eq = 0z1 + (1 — )z (5-57)

with o € [0,1], z1 and z; the latent codes of two points x; and x, respectively.
By decoding the M resulting e, we should obtain realistic musical bars x., for
each «, with x, semantically closer to x. (1) than Xe(i1a) for i € NM. However,
as pointed out in the literature, the underlying metric of the Gaussian prior of a
VAE is spherical rather than linear, thereby making spherical interpolation — with
a change on the radius — a generation process, which is more consistent with
the inherent regularization of the VAE. Thus, in our experiments, we rely on the

spherical interpolation formula, defined as

B SiTL((] — Cx)O_) sin(tQ)
« sin(Q) S sin(Q) =

(5-58)

with cos(Q) = zp - z1.

We display in Figure 5.5 some interpolation examples, where we have selected
random testing samples and generated the bars corresponding to the interpolated
latent codes between them. In these figures, the first and last bars are the random
elements of the testing set, while the others are generated by our system. As we
can see, the generated sequences are gradually evolving from one sample to the
next, even though the characteristics of the two original bars are very different.
Note that the rate of change in the generated bar sequence can be controlled by
varying the size of the interpolation step and, thus, generating more or fewer bars
between the start and end points. However, if the step size becomes too large,
the evolution might lose its smoothness and if it gets unnecessarily large, some
of the consecutive generated bars will be roughly identical. Thus, if we want to
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obtain steady results regardless of the original data, a potential solution consists
in setting this step size according to the distance computed between the starting
and the ending bars in the embedding space.
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Figure 5.5: Interpolation generation between randomly selected training points. The first
black and final yellow bars are the original training samples, while the others
are generated by our system. The interpolation step was chosen to generate 6
bars between the starting and finishing points.

5.3.3 Discussion

The different results presented in this chapter underline the creative potential of
our embedding spaces. Indeed, while providing realistic musical data, the manip-
ulation of latent codes allows a degree of semantic control over the resulting bars,
by intentionally modifying their core attributes. In this context, we believe that
our embeddings can provide a powerful tool to enhance composers creativity by
proposing meaningful alterations of a selected bar through attribute vector arith-
metic or close neighborhood latent codes sampling. In addition, such a system
could provide a "mix" between two distinct bars by averaging their respective la-
tent codes. In that way, we assume that our tool will not tamper with the creative
intent of the artist but rather improve the compositional experience by providing
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rapid access to a palette of possible alternatives. However, we keep in mind that
to fully exploit this creative power, it is necessary to refine the definition of the
musical attributes by conducting a finer analysis of the training samples.

Regarding the interpolations, our system also achieves interesting results by
generating bars that are smoothly varying from one sequence to another, although
they are musically very far apart. While this nicely illustrates the structural prop-
erties of our embeddings, the creative potential of such a process seems rather
limited when based on basic linear interpolations. However, the possibilities for
various spatial progressions are endless — such as advanced interpolations, path
distortions, shape designs, and so on — and we believe that exploring them is a
creative process in itself that can lead to highly interesting results.

5.4 CONCLUSION

In this chapter, we have introduced several applications of our embeddings learned
through the signal-like representation and the hierarchical VAE. We have trained
the model on the MAESTRO dataset, which gathers the reductions for piano of a
great number of orchestral pieces from Western classical music. In addition to
containing proper MIDI files, this dataset has the benefit of being more musically
diversified than those presented in the previous chapters, while remaining within
the restricted scope of Western classical music.

First, we have presented two composers classification tools, which are perform-
ing fairly well in categorizing the work of 5 great composers of the Western clas-
sical music. Although these performances are rather unequal depending on the
composer, they are, nevertheless, very promising given the simplicity of the sys-
tem implemented. Indeed, as our goal was to demonstrate the benefits of our in-
termediate latent representation, we have not performed extensive optimisation of
the classifier hyper-parameters, nor of the training procedure. Moreover, by means
of a simpler task consisting in discriminating between the sequences from a given
composer and the others, we have succeeded in producing a very accurate tool.

Then, we have proposed a more creative use of our embeddings through sev-
eral examples of latent code manipulation that have yielded meaningful variations
on the bars. Indeed, by categorizing the training samples according to a set of at-
tributes, we were able to compute the corresponding attribute vectors that can
be considered as the most relevant latent dimensions involved in encoding these
features. Thus, by adding or subtracting these vectors to the latent code of a bar,
we can purposefully alter the amount of attribute exhibited in it. While our results
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have confirmed that this technique produces the expected semantic shifts, we have
also observed that it has an impact on other attributes that were not initially in-
volved. To avoid this side effect, we assume that the definition of the attributes has
to be refined to not cause overlapping in our proposed heuristic.

Finally, we have confirmed the generative capabilities of our system by display-
ing various plots illustrating sequences generated from linear interpolations or
average latent codes between two distinct embedded units. Since this process pro-
duces realistic musical sequences that are smoothly evolving, it demonstrates, once
again, the consistency in the underlying music theory structure of our embeddings
that empowers them with a genuine creative potential.
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To conclude our work, we start in Section 6.1 by summarizing all of our contribu-
tions presented in each chapter of this manuscript. Then, we present in Section 6.2
the various axes for future work arising from our research. Finally, in Section 6.3
we provide an overall conclusion on the work conducted throughout this thesis.

6.1 SUMMARY AND DISCUSSION

First, in chapter Chapter 1, we introduced the manuscript by highlighting the chal-
lenges raised by the representation of symbolic music in the context of computer
science and how musical spaces offer a powerful framework for addressing it. We
set the background of this thesis and explained our motivations in exploring the
use of machine learning algorithms for learning meaningful unsupervised low-
dimensional spaces called embeddings. Therefore, obtaining these types of spaces
for symbolic music data was the guideline of this thesis.

In Chapter 2, we made an extensive overview of the state of the art related to
our research. We provided a quick history of musical notation, underlining its role
in the development of music and presented the main proposals found in the lit-
erature to allow its use in computer-based processing. Along with the respective
benefits and drawbacks of music representations, we have seen that these are far
from entirely satisfactory. We also exhibited the development of musical spaces,
starting from the first circular representation of pitches to the most recent ver-
sions of the Tonnetz, which have highly motivated our research. Next, we have
provided an in-depth presentation of the concepts of machine learning from its
basic definition towards the most advanced models we used in order to achieve
our objectives. Then, we explained how this framework has led to the emergence
of embedding spaces, as well as the tremendous breakthroughs that they triggered
in the NLP field. Finally, we presented different approaches related to our work,
which aims to adapt this paradigm to musical data. Similarly to our manuscript,
we have organized these proposals into two categories, namely those relying on
event prediction and those relying on the latent space of probabilistic models.

Chapter 3 was dedicated to our first method derived from the NLP field. Starting
out from the observation that there are some critical features in musical symbols
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that do not exist in text (such as the notion of pitch class and the important tem-
poral dependencies defined by the rhythm), we proposed a new model designed
to fill these gaps through a CNN and a LSTM module. In addition, we enhanced the
overall performances of our system by introducing a novel attention mechanism
capable of distinguishing the harmonic and temporal salience of elements in a se-
quence at all levels of abstraction (i. e.layers) of the network. Our proposal was able
to overpower all previous state-of-art results on the prediction task. Moreover, by
using the t-SNE algorithm to project our high-dimensional embedding spaces into
2-dimensional maps, we have revealed the existence of geometric relationships
between objects that exhibit an understanding of musical semantic concepts. How-
ever, since there were no constraints set on these spaces’ properties, the model
naturally encoded the data in widely separated subgroups to ensure maximum
accuracy in compression and prediction tasks. Also, in light of the impairment
caused by this behavior to the semantic structure of the space, we argued that a
control over the latent space is mandatory during the learning of an embedding.
Moreover, in seeking to pinpoint the semantic relationships between the embed-
ded elements captured by the network, we observed that the meaning carried by
a single note or chord is clearly context-dependent. Although the perception of a
music excerpt remains determined by its context, wee argued that by increasing
the granularity of our embeddings, the samples would carry a more general mean-
ing and the semantic structure of the space will be reinforced.

Based on these hypotheses, we have defined a new approach detailed in Chap-
ter 4. First, we have considered the core unit of embeddings to be an entire musical
bar rather than a single event, ensuring that it could be described through generic
features unrelated to the context in which it occurs. Then, we relied on another
type of auto-encoders called VAE, which allows control over the latent space by
pushing its data distribution to be close to a prior, in our case a Gaussian distribu-
tion with mean 0 and variance 1. We implemented an architecture similar to the
recently proposed MusicVAE, which provides a hierarchical decoder that enhances
the generation of complex data and forces the model to exclusively rely on the la-
tent vectors to correctly decode the musical excerpts. Besides, a further significant
element that has contributed to the success of this system is the use of a much
more efficient input representation than the piano-roll. As this model has been
initially targeting only monophonic data, this MIDI-like representation did not fit
well with polyphonic sequences, which led us to develop our proposal. Thus, we
have introduced the signal-like representation which aims to transform a piano-roll
matrix into a small continuous waveform similar to an audio signal. By conduct-
ing an extended benchmark against the main representations of the literature, we
have shown that, in the context of learning embedding spaces for polyphonic bars
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with VAE, our representation improves learning stability and leads to a better re-
construction and KL divergence trade-off. Moreover, since analyzing the structure
of such a space from a musical point of view is not trivial, we have presented a
method relying on a principled synthetic dataset that allows assessing how certain
music theory concepts have been encoded in the space. By these means, we have
shown that the structure of the embeddings learned through our method reflects
at least partially the semantics of the embedded elements. These results have led
to a publication in the "2020 Joint Conference on Al Music Creativity" organized
and hosted by the Royal Institute of Technology (KTH) in Stockholm, Sweden.

Beyond being an aid to all systems requiring symbolic representation as input,
these VAE-learned spaces can be directly exploited as tools to foster musical cre-
ation by virtue of their semantic structures and their continuity properties. In
Chapter 5, we have presented several applications to illustrate these abilities. First,
we have proposed a composer identification tool by training a very simple RNN
classifier that takes as input small sequences of 6 consecutive bars previously em-
bedded by our pre-trained embedding model and attempts to classify them among
5 great composers of Western classical music. Although these results show a sig-
nificant benefit in using embedding vectors as an input representation, the tool
remains insufficiently accurate to be fully effective for automatic labeling or mu-
sic composition analysis. However, by training separate networks to acknowledge
the work of a single composer among the others, the performance achieved has
become close to that expected from such tools. Then, we have introduced several
methods intending to enhance the creativity of composers. Indeed, we have shown
that we can extract attribute (i. e.fundamental feature) vectors from the meaningful
structure of our spaces which can be used to purposefully shift the amount of the
corresponding attribute exhibited in a bar. Additionally, we have seen how the in-
terpolation between two latent vectors may engender the generation of a sequence
of realistic bars that are smoothly evolving from one sample to the other. There-
fore, we believe that our embedding model can be beneficial to the compositional
process, either by providing quick and visual access to a range of meaningful bar
alterations or by allowing musical rendering of geometrical or arithmetical pat-
terns initiated by the composer.

6.2 FUTURE WORKS

In addition to the further development of all the methods presented here, we see
that the work done during this thesis could be extended and serve as a seed for
groundbreaking researches. Here, we propose some ideas for future works.
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A first stream of research could be to address multimodal music analysis frame-
works. Indeed, a musical piece can be described with different modalities (audio
signal, score or perceptual effects), which carry different information but with a
common semantic content. Hence, we are convinced that linking them could lead
to a higher-level understanding of musical data and potentially powerful applica-
tions. The embedding approach seems to fit perfectly well for this task as different
transformations can be applied to embed each modality in different spaces with
identical dimensionality. The learning criterion for the multimodal model then
simply becomes a minimization of the distance between semantically similar vec-
tors from different modalities (Palatucci et al., 2009).

On the other hand, we need to be able to exploit efficiently our spaces to produce
concrete tools for musical creativity. However, even if the dimensionality of the in-
put space has been drastically reduced, it may remain too high for an intuitive
exploration. As a further matter, some dimensions can be optimal non-linear com-
binations of the input, whereas other dimensions might be less relevant. Therefore,
as future work, we could try to identify and discriminate information-carrying di-
mensions. Our first trail to handle this question is that we need to define measures
derived from information geometry and topology to automatically evaluate the
information content of various dimensions, such as musical information rate or
topological variations (Bergomi, 2015).

6.3 OVERALL CONCLUSION

The goal of this thesis was to develop new representations of symbolic polyphonic
music in an empirical manner through a machine learning framework.

We succeeded to build a very promising approach that aims to represent sym-
bolic music objects in a space that carry semantic relationships between the ele-
ments. With many possible improvements, our model already shown very inter-
esting results in representing polyphonic musical bars. Moreover, we proposed
several applications based on such representations that could allow both to infer
knowledge on musical concepts and to increase musical creativity.
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