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Résumé

La classification d’images est une discipline majeure en traitement d’images et en

intelligence artificielle. La classification est d’une importance fondamentale pour qu’un

système intelligent puisse exploiter et gérer efficacement l’information visuelle. L’objectif

est de développer des algorithmes qui trouvent automatiquement la catégorie à laquelle

appartient un échantillon d’image, à partir d’échantillons d’entraînement. Dans nos

études, nous nous concentrons sur l’étude et le développement des algorithmes basés sur

la représentation parcimonieuse pour la classification d’images, y compris, mais sans s’y

limiter, les visages, les objets et les lésions cutanées. Cette étude met l’accent sur le

développement des problèmes de classification basés sur la représentation parcimonieuse

dans les domaines spécifiques tels que le domaine des ondelettes ou le domaine des

ondelettes quaternioniques dans le but d’améliorer les performances de séparation des

classes.

En outre, notre objectif est de mettre en œuvre une nouvelle méthode pour le

diagnostic du mélanome assisté par ordinateur, réalisé à partir d’images dermoscopiques.

Le mélanome est le type de cancer de la peau le plus mortel. Heureusement, les lésions

cutanées sont curables si elles sont diagnostiquées et traitées suffisamment tôt. Pour

cette raison, le diagnostic automatique du mélanome assisté par ordinateur suscite

aujourd’hui un grand intérêt de la part des chercheurs.

Dans la première partie de cette étude, nous proposons une nouvelle méthode basée

sur la représentation parcimonieuse, à savoir la classification basée sur la représentation

parcimonieuse dans le domaine des ondelettes (SRWC), qui résout le problème du codage

parcimonieux dans le domaine des ondelettes. Le cadre de la SRWC montre que les

caractéristiques obtenues à partir de la transformation en ondelettes peuvent contribuer

au processus de classification. En particulier, nous fusionnons les caractéristiques de

l’image décrites par les informations complémentaires des coefficients d’ondelettes à

basse fréquence et la représentation parcimonieuse pour améliorer les performances
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de classification et en comparant avec des méthodes conventionnelles de classification

par représentation parcimonieuse. Comme les ondelettes favorisent la parcimonie et

fournissent des informations structurelles sur l’image, la méthode proposée augmente

la précision de la classification. En outre, notre méthode peut naturellement gérer

l’occlusion et la corruption des images.

Dans la deuxième partie de cette étude, nous étendons la méthode SRWC à l’espace

4D des quaternions pour développer une nouvelle méthode de classification basée sur

la représentation parcimonieuse dans le domaine des ondelttes quaternioniques, ap-

pelé SRCQW (Sparse Representation based Classification in the Quaternion Wavelet

domain). En particulier, cette méthode exploite la transformée en ondelettes quater-

nioniques, qui utilise les filtres et la transformée de Hilbert, pour générer les coefficients

d’ondelettes quaternioniques. Comme pour la méthode précédente, nous n’utilisons que

les caractéristiques quaternioniques décrites par les coefficients des sous-bandes de basse

fréquence pour mapper le dictionnaire parcimonieux et le problème de classification dans

l’espace quaternionique 4D. Pour calculer le vecteur quaternionique parcimonieux, nous

formulons le modèle QWLasso (quaternion wavelet least absolute shrinkage and selection

operator) en utilisant la minimisation du l1 quaternionique. Pour résoudre le problème

QWLasso, nous développons le nouvel algorithme QFISTA (quaternion fast iterative

shrinkage-thresholding algorithm). La combinaison des ondelettes quaternionques, qui

favorisent la parcimonie, et du modèle de représentation parcimonieuse garantit la

convergence de la méthode proposée vers une grande précision de la classification.

Dans la troisième partie de l’étude, nous combinons le SRWC et le réseau de neurones

(NN) pour pallier aux inconvénients des deux approches. Plus précisément, il s’agit d’une

méthode de classification par apprentissage qui se base sur un modèle d’autoencodage

convolutif (CAE), et sur une représentation parcimonieuse dans le domaine des ondelettes

afin de classer les images étiquetées. Pour cela, nous appelons cette méthode CAE-SRWC.

Ce travail est réalisé dans le cadre d’une collaboration avec un étudiant de Master.

Dans l’approche proposée, la CAE apprend, avec une couche latente parcimonieuse, les

codes parcimonieux des caractéristiques des ondelettes. Ensuite, un critère probabiliste

basé sur les résidus est utilisé pour attribuer des étiquettes aux échantillons de test

en fonction des codes parcimonieux estimés. En outre, la méthode proposée montre

explicitement une réduction substantielle du nombre de paramètres du réseau par

rapport aux méthodes récentes de réseaux de neurones.
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L’efficacité des avancées théoriques et des méthodes proposées est validée expéri-

mentalement en les appliquant à des bases de données couramment utilisées, telles que

celles de visages et des objets, et en comparant leurs résultats avec celles des méthodes

de pointe dans le domaine, y compris les méthodes de réseaux de neurones.

Dans la dernière partie du travail, nous démontrons les capacités des algorithmes

proposés, notamment SRWC, SRCQW et CAE-SRWC, pour le traitement des images

biomédicales en les appliquant à la classification des images de lésions cutanées. Les

résultats obtenus montrent le potentiel des méthodes nouvellement développées, pour

classer les images de lésions cutanées dermoscopiques. De plus, les trois approches

proposées montrent leur supériorité pour la reconnaissance des images de mélanome

avec de bons résultats de sensibilité.

Mots clés : Classification, Représentation parcimonieuse, Transformée en ondelettes

discrète, Algèbre de quaternions, Transformée en ondelettes quaternionique, Lésions

cutanées.





Abstract

Image classification, a key research in image processing and artificial intelligence, is of

fundamental importance for an intelligent system to exploit and manage efficiently the

visual information. The objective is to develop algorithms that automatically find the

category, to which an image sample belongs, given training samples. In our studies,

we focus on the research and applications of sparse representation based algorithms

for image classification including but not limited to faces, objects and skin lesions. A

key emphasis of this study is to formulate the sparse representation-based classification

problems in specific domains, like wavelet and quaternion wavelet, in order to enhance

classes separation performance.

Further, our goal is to implement the novel method to computer-assisted melanoma

diagnosing, performed on dermoscopic images. Melanoma is the most deadly type of

skin cancer. Fortunately, skin lesions are curable if they are diagnosed and treated early

enough. Due to this reason, the automated computer-assisted melanoma diagnosing has

attracted great interest to researchers nowadays.

In the first stage of the present study we propose a novel sparse representation based

methods, namely Sparse Representation Wavelet based Classification (SRWC), solving

the sparse coding problem in the wavelet domain. The SRWC framework shows that

features obtained from wavelet transform can contribute to the classification process.

In particularly, we fuse the image features described by the complementary information

from the low-frequency wavelet coefficients and sparse representation to outperform

the conventional sparse representation-based methods according to accuracy. As the

wavelets promote sparsity and provide structural information about the image, the

proposed method increases the accuracy of classification. Furthermore, our method can

naturally handle occlusion and corruption in images.

In the second stage of the present study, we extend the SRWC method to the 4D

space of quaternions to develop a novel method called Sparse Representation based



viii

Classification in the Quaternion Wavelet domain (SRCQW). In particularly, this method

exploits the quaternion wavelet transform, which considers the low, high-pass filters and

their Hilbert transform calculated counterparts, to generate the quaternionic wavelet

coefficients. Analogous to our previous work, we only use the quaternion features

described by the coefficients from the low-frequency wavelet sub-bands to map the

sparse dictionary and the classification problem onto the 4D quaternion space. To

calculate the quaternion sparse vector, we formulate the quaternion wavelet least absolute

shrinkage and selection operator (QWLasso) model using quaternion l1 minimization.

To solve the QWLasso model, we develop the novel quaternion fast iterative shrinkage-

thresholding algorithm (QFISTA) algorithm. The fusion of the quaternion wavelets,

which promote sparsity, and the sparse representation model guarantees the convergence

of the proposed method to high accuracy solution.

In the third stage of the study, we combine SRWC and neural network (NN) to

overcome the existing drawbacks of both approaches. More precisely, an effective convo-

lutional autoencoder (CAE) model is proposed with the help of sparse representation in

the wavelet domain in order to classify labeled images. For that, we call this method

CAE-SRWC. This work is completed under a collaboration with a Master student. In

the proposed approach, the CAE involves a sparse latent layer that learns the sparse

codes of wavelet features. Then, a residual-based probabilistic criterion is used to assign

labels to test samples based on the estimated sparse codes. Moreover, the proposed

method explicitly shows a substantial reduction in the number of network parameters

comparing to recent NNs.

The efficiency of the above theoretical advancements and novelties are experimentally

validated by applying them on commonly used datasets, such as face and object, and

comparing their results with state-of-the-art methods in the field including NNs.

In the last stage of the work, we demonstrate the capabilities of the proposed

algorithms including SRWC, SRCQW, and CAE-SRWC for medical image processing

with the application to skin lesion image classification. The obtained results show the

potential of the newly developed methods, to classify dermoscopic skin lesion images.

Moreover, the three proposed approaches show their superiority in recognizing melanoma

images with high sensitivity results.

Keywords: Classification; Sparse Representation; Discrete Wavelet Transform;

Quaternion Algebra; Quaternion Wavelet Transform; Skin Lesions.
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Notations

R the set of all real numbers.

x ∈R a scalar.

x ∈R
m a vector.

X ∈R
m×n a matrix.

xT ,XT the transpose of a vector x or a matrix X.

xi the i entry of a vector x.

xi the i element of a vector set X.

‖x‖p the lp-norm of a vector x, which is defined as ‖x‖p =
(∑
i
|xi|p

)1/p
for

p > 1.

‖x‖0 the l0-norm, which counts the number of nonzero entries in a vector x.

‖X‖F the Frobenius norm of a matrix X, which is defined as ‖X‖F =√∑
i

∑
j |xij |

2.

‖X‖1,2 the l1,2-norm of a matrix X, which is defined as ‖X‖1,2 :=∑
i ‖X(i, :)‖2,

where X(i, :) denotes its i-th row.

H the algebra of quaternions.

ẋ ∈R a quaternion.

ẋ ∈R
m a quaternion vector.

Ẋ ∈R
m×n a quaternion matrix.
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Introduction

I n this chapter, we present the motivation and the objectives of the dissertation

work on the problem of image classification including face/object recognition

and medical objects classification (skin lesions). In particular, we will address

the advantages of sparse representation and transform domain for image classification.

Finally, we will present our main contributions with classification methods based on

Sparse Representation in some transform domains.
Chapter 1 is structured as follows.

Chapter content
1.1 Motivation of the study . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Contributions and dissertation organization . . . . . . . . . 7

1.3.1 Main contributions . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.2 Dissertation organization . . . . . . . . . . . . . . . . . . . . 7

1.4 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1 Motivation of the study

Image classification is an important problem in pattern recognition, computer vision

and machine learning. Its role is essential for an intelligent system to exploit and

manage efficiently the visual information. In the last two decades, the developments of
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modern technologies have led to effective techniques both in the theory and practice of

image classification in a variety of domains including healthcare, security, entertainment,

financial services, and manufacturing (Aggarwa 2014; Bishop 2006; Duda et al. 2001;

Zhu et al. 2020). For instance, in some medical applications, image analysis is primordial

for diagnosis decision, and images represent the most important data used in the medical

field. Because doctors are prone to stress, or fatigue, intelligent systems developed

with the help of machine learning techniques can classify and analyse visual data

automatically and more quickly than humans, hence assisting physicians in their tasks.

Particularly, classification has a crucial role in computer-aided diagnosis (CAD) system.

Such systems allow to detect and identify abnormalities, helping doctors make accurate

diagnoses and appropriate treatment (Anthimopoulos et al. 2016; H.-D. Cheng et al.

2003; Gonzalez-Diaz 2018; Nalband et al. 2016; Suzuki 2013; Verma et al. 2016; Yanase

et al. 2019; Zhou et al. 2015). Image classification has been proving capable of providing

valuable cancer-fighting benefits, by classifying for example breast lesions (Zhou et al.

2015) or skin lesions (N. Codella et al. 2015; Gonzalez-Diaz 2018; Mishra et al. 2016) as

either benign or malignant. Also, CAD systems play a vital role for early detection of

diseases that can be beneficial for achieving better patient outcomes. In the case of skin

lesion melanoma which is of our concern in this thesis, the mortality rate significantly

drops if melanoma is detected and treated early. Melanoma of the skin is among the

most commonly occurring cancer in the world with nearly 300,000 new cases in 2018.

In particular, France is ranked 15th in the top 20 countries with the highest rates of

melanoma of the skin in 2018 (Bray et al. 2018). According to (Defossez et al. 2019),

the number of incident cases of melanoma in men has almost multiplied by 5 (+ 371%)

between 1990 and 2018, while those for women has almost been tripled (+ 189%) in the

same period. It is evident that new efficient melanoma diagnostic systems developed for

clinical use are necessary to improve the survival rate.

Classification aims at assigning classes to objects/ samples, by making use of pattern

recognition. Generally, classification is based on knowledge about objects and their

classes. Knowledge should be represented in suitable form to describe objects. A

good knowledge representation is the most important ingredient to the success of a

classification method. When information is available, object classification is possible

by extracting useful information about the object from its data. Typically, given a

labeled training dataset consisting of two or more categories/classes, the problem is
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to identify a new observation into the correct category/class. A general classification

process includes two phases, a training phase where a learning model is constructed and

a classification phase where the model is used to predict class labels for given test data.

More precisely, in the training phase, a set of features is first extracted based on

a model for data description, also referred to as feature generation model, from the

input training data. The construction of this model consists in choosing a suitable set

of properties which describe some characteristics of the input data. In other words,

these properties form the description features of the data. Hence, based on a feature

generation model, the input data is described by a set of features (or feature vectors/

patterns). After the data representation phase through these extracted features, the

relationship between the set of features and correct class label information is learned to

build the classifier. In fact, classifier can be based on some optimality criterion such as

the minimum error criterion which respects the value of the loss caused by classification.

And a helpful approach to find out the optimal classifier setting is learning from a set

of examples. Classifier learning actually enables to set classification parameters based

on the training dataset, which is a set of samples (represented by their features) and

their associated classes.

In the classification phase or testing phase, the features which represent an unlabeled

test sample are extracted and entered as input for the classifier to assign a label to the

target sample.

Generally, the larger the training set, the better the settings of the classifier. On

the other hand, the time required for classification will increase with the size. Another

challenge is related to the data description. Indeed, the quality of a classifier closely

depends on the quality of available information. Good features enable to improve

learning performance. The irrelevant features can result in worse classification accuracy.

In that respect, the description of the samples should be as complex as possible. However,

this results in a large number of description features as it is the case for images. Clearly,

finding a good representation or extracting meaningful information and features from

large and complex data is a challenging task.

In the image context, numerous feature extraction and classification methods have

been developed (Aggarwa 2014; Bishop 2006; Duda et al. 2001). Many efficient features

include HOG (Histogram of Oriented Gradients) (Dalal et al. 2005), SIFT (Scale

Invariant Feature Transform) (Lowe 2004), SURF (Bay, Ess, et al. 2008; Bay, Tuytelaars,
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et al. 2006), spatial pyramid matching (Lazebnik et al. 2006), Gabor filters (W. Li et al.

2014), the Haar wavelets (Ngo et al. 2018). Some dimensionality reduction techniques are

popular feature extractions such as Principal Component Analysis (PCA) (I. T. Jolliffe

1986) and Linear Discriminant Analysis (LDA) (Balakrishnama et al. 1998). In these

methods, features are projected into a new feature space with lower dimensionality, which

helps reduce the complexity of the classification system and boost its speed. More recent

techniques include representation learning techniques such as sparse representation (H.

Cheng et al. 2013; Elad 2010; Olshausen and Field 1996; Z. Zhang et al. 2015) and deep

neural networks (Georgiou et al. 2020; Hinton and Salakhutdinov 2006). If the data

description is suitably chosen and the data are linearly separable, similar objects result

in the proximity of their features in the feature space. Consequently, the corresponding

classes can be separated in the feature space. Each feature vector represents only

samples from one class. However, most of classification problems are not linearly

separable due to the complex structure of data and the presence of high level of noise

as well as occlusions. A linear classifier can not perfectly distinguish different classes

and classify samples correctly. Researchers have shown increasing interest in dealing

with the case of non-linearly separable data and developed more advanced and robust

classification systems. Some efficient state-of-the-art classification methods include

k-nearest neighbors (kNN) (L. Ma et al. 2010), SVM (Chapelle et al. 1999; Hearst

et al. 1998), Decision tree (Quinlan 1986), Random Forest (Bosch et al. 2007), Neural

Networks (Hornik et al. 1989; Krizhevsky et al. 2017; W. Zou, Lo, et al. 2006), and

Deep Learning (T.-H. Chan et al. 2015; Hinton, Osindero, et al. 2006; Yuexiang Li et al.

2018) recently.

1.2 Objectives

A good classifier should achieve the generalization property, i.e. not only could well

discriminate the training samples among classes but also could well represent the

test samples. However, it is always challenging to achieve this property in real-world

classification applications. The objective of this work is to investigate effective methods

for image classification in order to address the following challenges:

• Numerous practical problems face the issue of inadequate data or lack

of data. From the viewpoint of probability, the signal classification problem can

be considered as a maximum likelihood estimation (MLE) problem. Signal identity
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is decided with empirical estimates of the true densities that are learned from the

training samples. A classification system may badly estimate the density, leading

to a poor classifier without generalization property due to the lack of training

data.

• High dimensionality of data. High dimensionality of data can make the

above problem more harsh. In order to keep a classification system stable, the

amount of required data needs to enlarge exponentially with the dimensionality.

Unfortunately, high dimensionality is usually a problem encountered in image

classification problems. For example, a small gray-scale image of size 100× 100

has the dimension of 10000. In reality, various kinds of images (such as color,

medical images...) have even much higher dimensionality and multiple channels.

Hence, inadequate data and high dimensionality issues attract great interest in

image classification.

• Complex data corrupted with noises and occlusions. Most of classification

problems are not linearly separable due to the complex structure of data, such

as images with intricate structures and specific properties, and the presence of

occlusions. For example, in the case of human face images, samples from a

same class may include large variations if the images were taken under different

conditions such as illumination, viewpoint, occlusion. Another difficulty is due to

the fact that image data are often prone to a high level of noise. Noises are mostly

caused by the imperfection in the measurement acquisition systems and the source

of the data itself. A linear classifier can not perfectly distinguish different classes

and classify correctly such samples.

The success in the classification of any complex data relies on the ability of a

representation learning method to reveal the meaningful features hidden in the images.

Therefore, the objective of this dissertation work is to find an efficient data description

and a classifier learning method for extracting meaningful knowledge from such complex

and large data.

This challenge can be addressed by finding a suitable representation learning method

that can capture the meaningful properties of the images. Such a method is the Sparse

Representation (SR) which has achieved state-of-the-art performance in signal and image

processing (Elad 2010). Over the last few decades, sparse representation has achieved
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great success with successful applications in computer vision, machine learning, and sig-

nal/image processing. In the field of signal/image processing, sparse representation also

emerges as a powerful tool for both theoretical and practical applications, ranging from

image denoising, image inpainting (Aharon et al. 2006b), compressed sensing (Donoho

2006), super-resolution (Elad, Figueiredo, et al. 2010), image segmentation (Spratling

2013) and more recently, in image classification (Jiang et al. 2013; Wright, Y. Ma, et al.

2010; M. Yang, L. Zhang, Feng, et al. 2014; Q. Zhang et al. 2010).

Interestingly, SR was recognized as being a primary mechanism used in the early

stages of visual cortex (Olshausen and Field 1996) and considered as a main principle

to efficiently represent complex data. Hence, SR has been shown to be one of the

most efficient approaches producing compact as well as simple representation of the

signal through only a small number of meaningful features (Olshausen and Field

1997). Such SR-based approach is known as one of the most efficient classification

ones with the advantages of providing high robustness to noise and to other kinds of

degradation (Olshausen and Field 1997). Sparse representation-based classification

(SRC) method was initially proposed by (Wright, A. Y. Yang, et al. 2008) and based

on above statements for robust face recognition. Thereafter, SRC was adapted to

various classification problems, such as hyperspectral SRC (Chen et al. 2013), medical

SRC (Srinivas et al. 2014), and others (Dao et al. 2016; M. Yang, L. Zhang, J. Yang,

et al. 2010; Haichao Zhang et al. 2012).

The success of SRC-based methods comes from the theoretical fact that sparsity

frameworks are robust to noise, occlusion, and corruption by exploiting the fact that

these errors are often sparse in the standard basis (Wright, A. Y. Yang, et al. 2008). In

addition, the insufficient training problem can be dealt by exploiting prior knowledge of

signals as regularization terms or sparsity constraints, which capture signal relationships,

in the optimization process (Srinivas et al. 2014; Haichao Zhang et al. 2012).

While many SRC methods perform in the spatial domain, we are motivated by

exploiting the SR of the features in transform domains, such as wavelet domain, for

enhancing the sparsity level of features and learning a compact representation of the

data. Hence, we propose in this dissertation, novel sparsity frameworks in the wavelet

and quaternion wavelet domains for numerous classification applications, including skin

lesion classification, face identification, and object classification. In particular, we are

interested in one of the most common of all cancers, which is cancer of the skin. In
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particular, melanoma is one of the most dangerous skin cancers causing a majority

of skin cancer deaths. According to the American Cancer Society1 2, the estimated

number of new cases of melanoma skin lesion in the United States for 2021 is about

160,110 and correspond to the 5th position behind those of the colorectum, lung and

bronchus, prostate, and breasts. The proposed methods will be applied to the skin lesion

classification and compared with several existing methods including neural-networks

based methods.

The next section of this chapter will present contributions and organization of this

dissertation.

1.3 Contributions and dissertation organization

1.3.1 Main contributions

This thesis introduces three novel image classification based on SR in the transform

domains with application to classification of melanoma skin lesion. The advantage of

using the above novel methods is that they provide increased classification statistics, as

one may observe in sections 3.4, 4.6, 5.4, and 6.3. The three methods are:

i. Sparse Representation Wavelet based Classification (SRWC)

ii. Sparse Representation Classification in the Quaternion Wavelet Domain (SRCQW)

iii. Convolutional Autoencoder Sparse Representation Wavelet Classification (CAE-

SRWC)

1.3.2 Dissertation organization

An overview of the main outline and the main contributions of this dissertation is

presented below. Publications related to the contribution of each chapter are also listed,

as the case may be.

Chapter 2 presents the image classification state-of-the-arts, including sparse

representation and deep learning based methods.

In Chapter 3, we propose to improve the conventional SRC method by exploiting

sparsity coding in the wavelet transform domain. For this reason, the proposed method

is called Sparse Representation Wavelet based Classification (SRWC). The proposed
1https://cancerstatisticscenter.cancer.org/?_ga=2.157868154.1341858780.1620928601-

1416783839.1620928601#!/
2https://www.cancer.org/cancer/melanoma-skin-cancer/about/key-statistics.html
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method takes the advantages of wavelets which promote sparsity and provide structural

information about the image, to enhance the classification performance. In this method,

we fuse the image features described by the complementary information from the

low sub-band of the wavelet coefficients and sparse representation to outperform the

conventional SRC in terms of accuracy. To validate the capabilities and underline the

advantages of the proposed SRWC, we conducted an extensive number of experiments

using publicly available datasets including Extended Yale B (Georghiades et al. 2001),

AR face (Martinez 1998), and COIL-100 (Nene et al. 1996) and compared our results

with contemporary methods.

The material in this chapter was presented at the 2018 IEEE International Conference

on Image Processing.

Chapter 4 develops another novel method for multi-class image classification based

on the sparse representation (SR) approach, which operates in the Quaternion Wavelet

(QW) domain. In this method, we only use features described by the information

from the low-frequency coefficients of QW to construct the sparse dictionary and the

classifier in the 4D space of quaternions. To calculate the quaternion SR vector, we

formulate the QW Least absolute shrinkage and selection operator (QWLasso) model

using quaternion l1 minimization. To solve the QWLasso minimization model and

determine the quaternion SR vector, we develop the novel Quaternion Fast Iterative

Shrinkage-Thresholding Algorithm (QFISTA). In particular, we develop in the novel

QFISTA an upper bound for the QWLasso model and use the upper bound as an

approximation that establishes the iterative scheme to find the quaternion SR vector.

The fusion of the wavelets and the SR models in the QW domain makes the novel

QWLasso method achieve high accuracy of classification. Our experimental validation

was conducted on four public datasets, namely Extended Yale B (Georghiades et

al. 2001), AR face (Martinez 1998), AR gender, and COIL-100 (Nene et al. 1996).

The experimental results show that the proposed method yields substantial accuracy

improvement over the contemporary methods in the field.

The novel method and its results were presented in a manuscript that will be

submitted for review, in June 2021, to the IEEE Transactions on Image Processing (IF:

9.34).

Chapter 5 proposes a novel convolutional autoencoder (CAE) architecture for

sparse representation-based image classification in the wavelet domain in order to boost



1.4. Publications 9

the classification performance. This method offers the advantages both from the Wavelet

decomposition by using the image sub-bands as inputs to learn a compact representation

of image data, and the sparsity representation of the generated features to efficiently

capture the meaningful characteristics of this data. This work has been conducted in

collaboration with Sy NGUYEN, a Master student, in the framework of his Master

Internship in the L2TI Laboratory. In the proposed approach, the autoencoder involves

a sparse latent layer that learns the sparse codes of wavelet features. A residual-based

probabilistic criterion is then used to assign labels to test samples based on the estimated

sparse codes. Extensive experiments have been conducted on various public datasets

including two digits datasets (USPS (Hull 1994) and SVHN (Netzer et al. 2011)), three

face datasets (AR face (Martinez 1998), YaleB (Georghiades et al. 2001) and UMDAA-

01 (Heng Zhang et al. 2015)), one object dataset COIL-100 (Nene et al. 1996), and

AR gender dataset (Martinez 1998). The obtained results revealed that the proposed

method yields significant classification accuracy improvement over several recent neural

networks while explicitly showing a substantial reduction in the number of network

parameters.

The material in this chapter was presented at the IEEE 22nd International Workshop

on Multimedia Signal Processing (MMSP).

In Chapter 6, we present the applications of the proposed methods to skin lesion

image classification.

In particular, the SRCQW is applied to high and mixed frequency sub-bands to

evaluate the performance of the method with respect to each sub-band. The theoretical

and experimental results of the novel method using high and mixed frequencies were

presented in a new paper, which was submitted for a review by the Signal, Image and

Video Processing (IF: 1.794) in April 2021.

In Chapter 7, the main contributions of this dissertation are summarized with the

possible future works.

1.4 Publications

Based on the research work presented in this thesis, some papers have been published

in international conferences and journals:

i. Conferences:
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1. Ngo, L. H., Luong, M., Sirakov, N. M., Le-Tien, T., Guérif, S., & Viennet, E.

(2018, October). Sparse representation wavelet based classification. In 2018

25th IEEE International Conference on Image Processing (ICIP), October

7-10, 2018, Athens, Greece, pp. 2974-2978.

2. T. -S. Nguyen, L. H. Ngo, M. Luong, M. Kaaniche and A. Beghdadi,

"Convolution Autoencoder-Based Sparse Representation Wavelet for Image

Classification," 2020 IEEE 22nd International Workshop on Multimedia

Signal Processing (MMSP), September 21-24, 2020, Tampere, Finland, pp.

1-6, Best Student Paper Runner-up.

ii. Journal papers under submission:

1. Ngo, L. H., Luong, M., Sirakov, N. M., Le-Tien, T., & Viennet, E. (2021).

Skin Lesion Image Classification Using Sparse Representation in Quater-

nion Wavelet Domain. Signal, Image and Video Processing Journal (Under

Review).
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2.1 Introduction

This chapter reviews some of the relevant state-of-the-art references from the literature

in the subject of automated image classification. We first present some of the major

advances in the problem of image classification, with a special emphasis on Sparse

Representation-based approaches as well as Quaternion-based Sparse Representation

approaches in Section 2.2 and deep neural networks in Section 2.3 that have recently
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demonstrated their outstanding compared to other architectures. While this chapter

does not contribute to the core of this dissertation, it prepares the necessary background

for the subsequent chapters.

2.2 Sparse Representation (SR) based Classification

SR could be mathematically described as a problem whose objective is to find the

sparsest solution to an underdetermined linear system. Based on this assumption, a

given image can be sparsely represented over well-chosen redundant basis vectors (called

’atoms’) from a dictionary.

In the conventional SRC method (Wright, A. Y. Yang, et al. 2008), a test sample

is represented by a linear combination of a few atoms taken from an overcomplete

dictionary formed by the training samples. The sparsest representation of the linear

combination model is first computed via a sparsity-constrained optimisation problem

over the dictionary. Then, the reconstruction residual of each class is calculated and the

test sample is assigned to the class with the minimum residual. However, the weakness of

the method is related to the case of complex and large datasets due to the fact that the

dictionary is formed by all training samples of each class. To overcome this drawback,

many methods based on compact dictionary learning have been developed (Jiang et al.

2013; Vu et al. 2017; M. Yang, L. Zhang, Feng, et al. 2014; Q. Zhang et al. 2010). One

approach is to learn a discriminative dictionary of small size from a selective dataset

instead of the entire dataset, such as the Discriminative K-SVD (D-KSVD) (Q. Zhang

et al. 2010) and the Label Consistent K-SVD (LC-KSVD) (Jiang et al. 2013), both

being based on the theory of K-SVD model (Aharon et al. 2006b).

Moreover, some recent SR-based methods are proposed in 3D space (Yi Xu et al.

2015; C. Zou et al. 2016). In these papers, the three channels of a color image are

modelled as a quaternion signal and the SR models are mapped onto a 3D subspace

of the AQ. (Yi Xu et al. 2015) proposed a Quaternion Sparse Representation (QSR)

model, with l0 minimization, for color image restoration and developed a Quaternion

Orthogonal Matching Pursuit (QOMP) algorithm to determine the sparse coefficients.

Unlike (Yi Xu et al. 2015), (C. Zou et al. 2016) proposed an l1-norm QSR model,

resulting in the quaternion Lasso (QLasso) model, which computes the sparse vector

using the Alternating Direction Method of Multipliers (ADMM) algorithm (Boyd et al.

2011). The resulting model is applied to color face recognition.
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2.2.1 Problem Statement of SR

In sparse representation problem, we consider an input signal y ∈R
m and optimize the

empirical cost function as follows:

fn (D) , 1
n

n∑
i=1

`
(
yi,D

)
, (2.1)

where D = [d1, ...,dn] ∈R
m×n is the dictionary whose columns are basis vectors, and

` is a loss function such that `(y,D) should be small if D is “good” at representing

the input signal y in a sparse representation. Note that, in this setting, over-complete

dictionaries with n >m are allowed. In machine learning and image processing, sparse

regularized problems consist in fitting some model parameters x ∈R
n to the training

samples, while having the a-priori assumption that x should be sparse. This can

be achieved by minimizing F (x) including a smooth convex function f (x), which is

typically a data fitting or data reconstruction term in image processing, and a sparse

regularization term g (x):

`(y,D) , min
x∈Rn

{F (x) := f (x) +λg (x)} , (2.2)

where x is a sparse vector, and λ is a non-negative regularization parameter, which

controls the trade-off between reconstruction error and regularization. To find the

sparsest solution x, l0 pseudo-norm should be a natural choice for g (x) with the

purpose of counting the number of non-zero entries in x. However, it is NP-hard to

find the sparsest solution of Eq. 2.2 in this setting. Fortunately, greedy algorithms or

convex relaxation can provide the approximate solutions. If the solution x is sparse

enough, the solution of the l0-minimization problem is equivalent to the solution of the

l1-minimization problem, also known as the Lasso (Tibshirani 1996):

min
x∈Rn

[1
2 ‖y−Dx‖22 +λ‖x‖1

]
, (2.3)

where y ∈ R
m is an input signal and D = [d1, ...,dn] ∈ R

m×n is a dictionary whose

columns are the dictionary atoms. If the value of λ is large enough, x is known to

be sparse. Thus, only a few dictionary atoms are involved in the representation. To

prevent D from having arbitrarily large values (which would lead to arbitrarily small

values of x), it is common to constrain its columns [d1, ...,dn] to have an l2-norm less
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than or equal to one, i.e. D ∈R
m×n s.t. ∀j(j = 1, ...,n), ‖dj‖22 6 1. The problem of

efficiently solving Eq. 2.3 has received a lot of attention lately. Eq. 2.3 can be rewritten

as a matrix factorization problem with respect to the dictionary D and the sparse codes

X = [x1, ...,xk] ∈R
n×k, which is convex with respect to X while D is fixed:

min
X∈Rn×k

[1
2 ‖Y−DX‖22 +λ‖X‖1

]
, (2.4)

where, Y = [y1, ...,yk] ∈R
m×k is the matrix of input signals, and ‖X‖1 denotes the l1

norm of sparse matrix X which is the sum of the its coefficients.

2.2.2 Sparse Representation-based Classification (SRC)

Recently, sparse representation-based classification (SRC) framework (Wright, A. Y.

Yang, et al. 2008) has attracted the attention of the computer vision community for

image classification as a remarkable contribution to its development. SRC utilize the

discriminative capability of sparse representation to deal with some of the aforementioned

challenges. Given a sufficient set of training samples of k categories/ classes, any new

sample with a specific category can be considered as a linear combination of the training

samples with the same category. By using a dictionary consisting of training samples

from all categories, any new and unlabeled test sample can be sparsely represented with

respect to such dictionary. It is noted that the class-specific design of the dictionary keep

the sparsity assumption existing in a linear representation model. The main concepts of

SRC (Wright, A. Y. Yang, et al. 2008) are presented as follows.

Consider a classification problem with k classes. Let nc be the number of training

samples from class c, for 1 6 c 6 k. Denote by Dc the set of real labeled training samples

from class c, in which each columns of Dc is the vectorized vector of an image. The

training samples in Dc are arranged as columns of a matrix Dc = [dc,1,dc,2, ...,dc,nc ] ∈

R
m×nc . A new test sample y ∈ R

m from class c can be approximately expressed

as y = Dcxc, where xc is a sparse vector associated with the c-th class. Let D =

[D1,D2, ...,Dk] ∈R
m×n be the matrix of all training samples of k classes with a total

number of n atoms, where n=
k∑
c=1

nc. Then, for any test sample y, the objective is to

correctly predict its label. The procedures of SRC are as follows:

i. Given an input sample y and dictionary D, the sparse coefficients are computed

via solving the l1-norm minimization, also known as Lasso problem (Tibshirani
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1996):

x̂ = argmin
x∈Rn

‖y−Dx‖22 +λ‖x‖1, (2.5)

where λ denotes the regularization parameter.

ii. Perform classification by first computing the reconstruction residual of SRC as

follows:

rc(y) = ‖y−Dδc(x̂)‖2, (2.6)

where δc(x̂) is the part of x̂ whose nonzero entries are associated with the c-th

class. Then, the identity of y is determined by the class with minimal residual:

c= identity(y) = argmin
c
rc(y). (2.7)

Although SRC shows interesting results, its performance is still limited in case of high

level noise and artifacts in the original training images. In addition, if a large amount

of data is involved in the scheme, the computational complexity will increase because

the dictionary is formed by all training samples of each class. Moreover, the choice

of dictionary is important for the success of a SR based method. However, by using

directly original training images as dictionary, the discriminative information that is

hidden in the training images cannot be fully exploited. Therefore, dictionary learning

is proposed as a solution to the aforementioned problems, at least to some extent. The

next subsection will present the Label Consistent K-SVD (LC-KSVD) (Jiang et al.

2013), which is a well-known dictionary learning method to sparse representation based

image classification, with impressive results in image classification.

2.2.3 Label Consistent K-SVD (LC-KSVD)

LC-KSVD learns a discriminative over-complete dictionary and an optimal linear

classifier simultaneously (Jiang et al. 2013). It yields dictionaries so that feature points

with the same class labels have similar sparse codes (Jiang et al. 2013). During the

dictionary learning process, the label information is exploited with each dictionary item

(column of the dictionary matrix) to enforce the discriminative sparse codes x.

Next, we will present the main concept of the two methods, LC-KSVD1 and

LC-KSVD2 in (Jiang et al. 2013). The latter is differentiated from the former by

incorporating the classification error term in the objective function, which makes
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the learning process more optimal for image classification. Denote by Y a set of n-

dimensional N input signals, i.e. Y = [y1,y2, ...,yN ] ∈R
n×N . An objective function for

learning a discriminative dictionary with K items for sparse representation of Y can be

defined as it is done by:

• LC-KSVD1 (Jiang et al. 2013):

<D,A,X>= argmin
D,A,X

‖Y−DX‖2F +α‖Q−AX‖2F s.t.∀i,‖xi‖0 6 T, (2.8)

where T is a sparsity constraint factor, D = [d1,d2, ...,dK ] ∈R
n×K (K > n, mak-

ing the dictionary over-complete) is the learned dictionary, X = [x1,x2, ...,xN ] ∈

R
K×N are the sparse codes of input signals Y, α controls the relative correlation be-

tween the reconstruction and label consistent regularization, Q = [q1,q2, ...,qN ] ∈

R
K×N are the ‘discriminative’ sparse codes of input signals Y for classification.

qi =
[
qi,1, qi,2, ..., qi,K

]T ∈ R
K is a ‘discriminative’ sparse code corresponding to

an input signal yi, where qi,k (k = 1...K) equals 1 if the input signal yi and

dictionary item dk share the same label, and 0 otherwise. A ∈R
K×K is a linear

transformation matrix. Here we identify a linear transformation, g (x,A) = Ax,

which transforms the original sparse codes x to be most discriminative in sparse

feature space R
K .

• LC-KSVD2 (Jiang et al. 2013):

<D,W,A,X>= argmin
D,W,A,X

‖Y−DX‖2F +α‖Q−AX‖2F

+β ‖H−WX‖2F s.t.∀i,‖xi‖0 6 T, (2.9)

where the term ‖H−WX‖2F represents the classification error, W denotes the

classifier parameters, H = [h1,h2, ...,hN ] ∈ R
m×N are the class labels of input

signals Y, hi = [0,0, ...,1, ...,0]T ∈R
m is a label vector corresponding to an input

signal yi, where the non-zero position indicates the class of yi, while α and β are

the scalars controlling the relative contribution of the corresponding terms.

The optimal solutions of D,A, and W are obtained by employing the efficient

K-SVD algorithm (Aharon et al. 2006b) to solve Eq. 2.8 or Eq. 2.9.

Classification scheme: For a test image yi, given the learned dictionary D, its
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sparse representation x is computed by solving the optimization problem:

xi = arg min
xi

‖yi−Dxi‖22 s.t.‖xi‖0 6 T. (2.10)

Then the label c of the test sample yi is estimated by simply using the linear predictive

classifier W as follows:

c= identity(yi) = argmax
c

(l = Wxi) , (2.11)

where l ∈R
m is the class label vector.

In the next two sub-sections, we will review the two methods, namely Quaternion-

based Sparse Representation (QSR) (Yi Xu et al. 2015) and Quaternion Sparse

Representation-based Classification (QSRC) (C. Zou et al. 2016), that work with

color images using the sparse representation and algebra of quaternions.

2.2.4 Quaternion-Based Sparse Representation (QSR)

Xu et al (Yi Xu et al. 2015) fuses sparse representation with algebra of the quaternions

to represent each color image as a quaternion matrix. A quaternion-based over-complete

dictionary is learned through the K-quaternion singular value decomposition (QSVD)

method (Yi Xu et al. 2015). K-QSVD consistently transforms the color images to an

orthogonal color space to select the sparse basis atoms during the dictionary learning

process. Then, QOMP (quaternion orthogonal matching pursuit) method is exploited to

compute the sparse coefficients (Yi Xu et al. 2015). In such color space, what make the

proposed method outstanding are full preservation of the intrinsic color structures in the

images during sparse reconstruction and the lower redundancy between the dictionary

atoms of different color channels.

Concretely, a RGB color image patch is vectorized using the pure quaternion form as:

ẏ = 0 + yri+ ygj+ ybk ∈H
m, where the subscript r,g, and b denote the RGB channels

respectively. Accordingly, the learned quaternion dictionary and the corresponding

quaternion sparse vector are represented as: Ḋ = Ds + Dri+ Dgj+ Dbk ∈H
m×n and

ẋ = x0 + x1i+ x2j+ x3k ∈H
n, where s denotes the scalar part (of a quaternion). The

quaternion-based sparse representation (QSR) model is formulated as follows (Yi Xu

et al. 2015):

argmin‖ẋ‖0, s.t. ẏ = Ḋẋ, (2.12)
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where Ḋ ∈H
m×n is a quaternion dictionary including n pure quaternion atoms, ẋ ∈H

n

is a quaternion sparse vector corresponding to the input signal ẏ ∈ H
m, with its

components x0,x1,x2 and x3 ∈ R
n. The l0 norm ‖ẋ‖0 counts the number of nonzero

elements in ẋ.

The quaternion dictionary learning process can be formulated as an extension of

the QSR model in Eq. 2.12 with unknown dictionary and sparse quaternion codes as

follows:

<
_

Ḋ,
_

Ẋ>= argmin
Ḋ,Ẋ

∥∥∥Ẏ− ḊẊ
∥∥∥2

F
+λ

∥∥∥Ẋ∥∥∥
0
, (2.13)

where Ẏ ∈H
m×N is the collection of the sample image patches, Ẋ ∈H

n×N is the

sparse quaternion coefficient matrix. K-QSVD, which is an extension of the well-known

K-SVD (Mairal, Elad, et al. 2007) algorithm, is developed to optimize the dictionary

learning process. It consists of two main steps: sparse coding and dictionary updating.

During the sparse coding stage, QOMP algorithm is developed to find the solution to

the sparse coefficient matrix Ẋ, given a fixed quaternion dictionary Ḋ in 2.13. QOMP

is a counterpart of the OMP (Pati et al. 1993) algorithm, but works with quaternion

numbers. It solve the sparse representation problem of a signal ẏ ∈H
m on a quaternion

dictionary Ḋ ∈H
m×n such that:

ẋ = arg min
ẋ

∥∥∥ẏ− Ḋẋ
∥∥∥2

2
s.t.‖ẋ‖0 6 T, (2.14)

where ẋ ∈H
n is the sparse vector of coefficients and ‖ẋ‖0 6 T is the stopping criterion.

It eases the NP-hard l0-minimization problem by specifying the maximum number of

non-zero components per signal.

During the dictionary updating step, the quaternion dictionary Ḋ can be learned

given the sparse quaternion codes. K-QSVD shows its high efficiency by updating both

the dictionary atoms and the sparse quaternion coefficients jointly. Both of the atom ḋk
and its corresponding coefficients in Ẋl, the l− th row of Ẋ, are updated simultaneously

by decomposing the representation error Ėl = Ẏ−
∑
p,l ḋpẊp using QSVD.

2.2.5 Quaternion Sparse Representation-based Classification (QSRC)

Inspired by the SRC method, (C. Zou et al. 2016) proposed a novel SRC method in

the quaternion space for color images classification, namely quaternion SRC (QSRC).

Similar to SRC, QSRC exploit the l1-norm minimization problem in the quaternion
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space. QSRC naturally preserves the inherent correlation among the color channels

of color images with quaternions. More precisely, the authors extend the SRC to the

quaternion setting. Consider a classification problem with k classes. The main stages of

QSRC are as follows:

i. Given ẏ and Ḋ, the sparse quaternion coefficients vector is computed via solving

the quaternion l1-norm minimization, also known as quaternion Lasso (QLasso)

problem such that:

̂̇x = argmin
ẋ∈Hn

{∥∥∥ẏ− Ḋẋ
∥∥∥2

2
+λ‖ẋ‖1

}
, (2.15)

where λ denotes the regularization parameter. Eq 2.15 can be solved applying

the Alternating Direction Method of Multipliers (ADMM) framework (Boyd et al.

2011).

ii. Perform classification by first computing the residual of QSRC as follows:

rc(ẏ) =
∥∥∥ẏ− Ḋδc(̂̇x)

∥∥∥
2
, (2.16)

where δc(̂̇x) is the part of ̂̇x whose nonzero entries are associated with the c-th

class. Then, the identity of ẏ is determined to the class with minimal residual:

c= identity(ẏ) = arg min
c=1,...,k

rc(ẏ). (2.17)

From the application perspective, the sparsity principle has had great effect in

several domains, especially in image processing (Elad and Aharon 2006; Mairal, Bach,

et al. 2014).

2.3 Deep Neural Networks

In this section, we review some of the key contemporary studies in deep neural network

(NN) domain, especially when applying to image classification. This review prepares the

necessary background for the study in chapter 5, where deep neural networks can be

fused with sparse representation to enhance the capability of classification systems. In

recent years, deep neural networks, e.g. convolutional or recurrent neural networks, have

become one of the most popular and trendy approaches in computer vision (Krizhevsky
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et al. 2017; Simonyan and Zisserman 2014; Szegedy, Liu, et al. 2015; Taigman et al.

2014). In fact, this concept was proposed a few decades ago (Y. LeCun et al. 1998),

while benefiting from the huge amounts of available data as well as the great power of

computers (e.g. powerful GPUs) nowadays. They allow deep networks for learning a

large number of model parameters and better representing the images (Jaderberg et al.

2015; Krizhevsky et al. 2017; Simonyan and Zisserman 2014). In the context of image

classification, convolutional neural networks (CNNs) (Y. LeCun et al. 1998) might be

the most popular models recently. With the help of the linear operations constrained to

be local convolutions and a down-sampling operation in the feature pooling layers, CNNs

are capable of modeling the local stationarity in images and combining the low-level and

high-level features (Zeiler et al. 2014). CNNs has started a revolution in the practice of

computer vision. However, they are prone to over-fitting and data-hungry. They also

suffer from vanishing and exploding gradients (Georgiou et al. 2020). In the other words,

these networks still suffer from many limitations. A number of research with different

manners have been proposed to resolve these issues. More precisely, these researches

studies various elements of CNNs such as the activation functions, the normalization

layers, training strategies, or the network architecture (Georgiou et al. 2020) (e.g. the

inception networks (Szegedy, Ioffe, et al. 2017))

Deep models build their deep visual representations from the available data with

no specific priors required. Thanks to available big data and powerful GPUs, deep

networks have achieved outstanding performance in natural image classification (Im-

ageNet) (Krizhevsky et al. 2017; Simonyan and Zisserman 2014; Szegedy, Liu, et al.

2015), face recognition (Parkhi et al. 2015; Taigman et al. 2014), and fine-grained

classification (Jaderberg et al. 2015; Wah et al. 2011). We briefly present three of the

main operations used to build the data representation in deep models as follows:

• Convolution: Given a three-dimensional feature map x ∈R
H×W×D, the convolu-

tion layer calculates outputs y ∈R
H′′×W ′′×D′′ as the convolution between x with

D′′ learned filters f ∈R
H′×W ′×D as follows (Vedaldi et al. 2015):

yi′′,j′′,d′′ = bd′′ +
H′∑
i′=1

W ′∑
j′=1

D∑
d=1

fi′,j′,dxi′′+i′−1,j′′+j′−1,d, (2.18)

where bd′′ denotes the bias; H ′′ = 1 +H −H ′ and W ′′ = 1 +W −W ′ if unpadded

convolution is applied with a stride of 1.
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• Rectification: Modern deep CNNs use a half-rectification activation function, also

known as rectified linear unit (ReLU), defined by:

y = max(0,x) . (2.19)

This simple non-linearity has been shown to provide significant advances when

compared to traditional sigmoid activation functions (Glorot et al. 2011; Maas

et al. 2013), and is also tightly related to sparse coding (Fawzi et al. 2015).

• Pooling: A pooling operation aims to provide invariant to the classifier through

the computation of summary statistics over the discriminative features. Given a

feature map x, the pooled representation is given by:

yi′′,j′′,d = P

({
xi′′+i′−1,j′′+j′−1,d

}
16i′6W ′
16j′6H′

)
, (2.20)

whereW ′ and H ′ are the width and heights of the pooling regions, respectively and

P denotes the pooling operator (e.g. average pooling, max pooling, etc (Boureau

et al. 2010)). A pooling operation often go along with a sub-sampling of the

feature channel.

More common elementary operations for CNN architectures can be seen in (Vedaldi

et al. 2015). Figure 2.1 shows a simple CNN architecture. Given the training images and

the specific architecture, the CNN is then trained in an end-to-end manner, where the

convolutional filters f are learned and updated after each iteration. Generally, stochastic

gradient descent (SGD) optimization, which exploits backpropagation (Y. A. LeCun

et al. 2012) to compute the gradients, are employed to train CNNs. In the recent years,

some improving optimization algorithms have been developed (Kingma et al. 2014;

Martens 2010; Martens and Grosse 2015), which outperforms the existing optimization

ones.

Figure 2.1: Main structure of a CNN with stacked series of linear and nonlinear operations. (Fawzi
2016)

Although deep CNNs have achieved impressive successes, the theoretical questions
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regarding to its internal mechanisms leading to these magnificent results still needs to be

answered. The authors of (Mahendran et al. 2015) have proposed visualization tools to

understand the representations of features learned by deep CNNs. These visualization

strategies come up with some empirical understanding about the layers where the

representation invariant is achieved (Mahendran et al. 2015). While (Simonyan, Vedaldi,

et al. 2013) and (Zeiler et al. 2014) have proposed different visualization strategies,

which attempt to maximize the activation of single neurons. It is shown with these

visualization strategies that neurons in lower layers tend to be sensitive to edges, while

neurons in higher layers are sensitive to semantic objects with similar visual appearance.

Up until now, there is a lack of principled methodology and theory for deep learning,

specifically CNNs. Deep models are usually considered as black boxes since they were

originally proposed at the end of the 70’s (Fukushima 1979), then were developed in

the 90’s (Y. LeCun et al. 1998) and recently are evolved deeper (Krizhevsky et al. 2017;

Simonyan and Zisserman 2014). Some of important problems regarding the CNNs

models can be enumerated as follows:

i. Model regularization. Deep models are mainly regularized based on early-

stopping the optimization procedure, model averaging (Srivastava et al. 2014; Wan

et al. 2013), and data augmentation (Ciresan et al. 2012). Nevertheless, model

averaging approaches, such as Dropout (Srivastava et al. 2014), are deficiently

understood from a theoretical perspective (Wager et al. 2014) and seem to weaken

benefits (Wan et al. 2013), while data augmentation is a powerful technique

that helps lessen the importance of regularization by artificially producing virtual

examples to increase the amount of the training samples. However, such generation

needs domain-knowledge, which is not always available, and manual selection of

various hyper-parameters.

ii. Unsupervised learning. Deep neural networks have successfully solved the

tasks with given labeled training samples. But such data is not always avail-

able. Although unsupervised deep learning approaches such as autoencoders

(AEs) (Hinton, Osindero, et al. 2006; Hinton and Salakhutdinov 2006) or restricted

Boltzmann machines (Smolensky 1986) have had mixed success. In particular, an

AE is a symmetric NN that learns the data features in an unsupervised manner.

Bourlard and Kamp (Bourlard et al. 1988) presented its very first basic version
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as an auto-association network, whose objective is to decrease the data dimen-

sionality by using a fully connected layer. Then the network tries to reconstruct

the input data from the intermediate representation, which should carry most of

the information of the input. Later, the AE as widely known now was proposed

by Hinton and Salakhutdinov (Hinton and Salakhutdinov 2006), in which the

network consists of multiple layers. Specifically, the AE consists of an encoder,

a hidden layer, and a decoder. The encoder nonlinearly maps input data to a

latent representation through an activation function (e.g., sigmoid or ReLU). Then

the latent representation is mapped linearly onto the decoder to reconstruct an

approximation of the input data through an activation function. The training

process of an AE is conducted through the back-propagation algorithm to mini-

mize the reconstruction error between the input and reconstructed data, which

yields optimal parameters of the network. Since the development of AE, the

sparse autoencoder was one of its first variants, whose purpose is to transform

the data into a higher dimensional space through a sparse representation. Such

representation could make the data be linearly separable (Georgiou et al. 2020)

and allows a straightforward interpretation of the data by a small number of

hidden features (Ranzato et al. 2007).

Deep models need to be improved in unsupervised learning, which is related to

the question of how to regularize them.

iii. Functional spaces and properties of deep networks. It is essential to un-

derstand the geometry of functional spaces corresponding to deep neural networks

because it might answer the issue of regularization. It provides solutions to manage

the variations of prediction function in a principled fashion. Recently, (Bruna

et al. 2013) endeavor to fill in this gap with the help of scattering transform

where CNNs (Y. LeCun et al. 1998) are fused with the wavelets. The theory

of scattering transform provides interesting insight into invariant properties of

image representations constructed by deep neural networks. Differing from other

deep networks, scattering transform exploits the predefined wavelet functions

instead of the learned filters in the CNNs, which may limits the performance of the

networks. Other studies have investigated the properties of deep networks under

the assumption of independent identically distributed random weights (Giryes

et al. 2016). More precisely, (Giryes et al. 2016) study the three fundamental prop-
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erties of deep networks. Firstly, the metric information of input data is preserved

when propagating through the layers of deep neural networks. This allows firmly

recovering the data from the obtained features. Secondly, information of unseen

data can be carried by the training samples through the learning process. Finally,

the deep networks have the ability to differently treat in-class and out-of-class

data from different classes (Giryes et al. 2016). Similar works should be studied

to clearly understand the functional spaces and properties of deep networks.

iv. Optimization. Deep models are often formulated as the minimization problem

of a non-convex objective function. Hence, it is not possible to find the global

optimum in general, which make it difficult to analyze the model. Recently, some

significant progressions from an optimization point of view have been made with

a few accomplished theoretical results suggesting that very deep networks can be

controllable under some assumptions (Choromanska et al. 2015; Livni et al. 2014).

Nevertheless, there is still a gap between theory and practice, and the theory does

not give an algorithm on how to successfully design deep architectures.

2.4 Conclusion

In this chapter we have presented two parts of related research on Sparse Representation

based Classification (SRC) and Deep Neural Networks. In the first part, image classifi-

cation with the help of Sparse Representation based approaches is introduced, including

the conventional SRC method and its variations (LC-KSVD, QSR, and QSRC). While

the second part review some key studies of neural networks in image classification, which

is crucial for the study in chapter 5. In the next chapter, our first proposed work based

on the Sparse Representation based Classification will be presented.
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3.1 Introduction

If the recent years have witnessed an explosion of interest toward machine and deep learn-

ing, which helps computers learn from data without being explicitly programmed, sparse

representation (SR) modeling has also undergone strong expansion with applications in

machine learning, image processing, statistics and computer vision. SR has achieved

state-of-the-art frameworks in both theoretical research and practical applications in the

field of image processing, such as denoising (Elad and Aharon 2006), inpainting (Aharon

et al. 2006b), super-resolution (Elad, Figueiredo, et al. 2010), segmentation (Lu et al.

2014; Moradi et al. 2019; Spratling 2013; Unser 1995) and classification (Chen et al.

2013; Jiang et al. 2013; Wright, Y. Ma, et al. 2010; Wright, A. Y. Yang, et al. 2008;

M. Yang, L. Zhang, Feng, et al. 2014; Q. Zhang et al. 2010). The success of SR can

be explained by the fact that it behaves like a primary mechanism used in the early

stages of visual cortex (Olshausen and Field 1996). Hence, it provides a useful tool

to efficiently represent complex data with a compact and simple interpretation of the

signal through only a small number of important features (Olshausen and Field 1997).

Moreover, sparsity-based approach is efficient for its robustness to noise, occlusion,

and corruption (Wright, A. Y. Yang, et al. 2008). Mathematically, SR consists of

finding the sparsest solution to an underdetermined linear system. In other words, SR

locates the solution with the fewest nonzero entries. Based on the observation that

small-scale structures are inclined to repeat themselves in a single image or a group of

similar images (Elad 2010), an image can be sparsely represented over some well-chosen

redundant basis. SR is related to compressed sensing (CS) (Candès et al. 2006; Donoho

2006). Donoho (Donoho 2006) first proposed the original notion of CS. According to

CS hypothesis, if a signal is sparse enough, the original signal can be reconstructed by

utilizing a few measured values. (Candès et al. 2006) proved that the original signal

could be accurately reconstructed by utilizing a small amount of Fourier coefficients.

Thus, a large number of algorithms based on CS hypothesis have been developed to

address a number of problems in various fields including SR, encoding measuring, and

reconstructing algorithm. In (Elad, Figueiredo, et al. 2010; Wright, Y. Ma, et al. 2010),

it is proven that the SR theory is one of the most outstanding techniques used to solve

problems in denoising, face recognition/classification, pattern recognition/classification,

and computer vision.

Classification is a typical task in supervised learning. A fundamental problem in
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supervised classification is to use labeled training samples from k distinct object classes

to predict the category to which a new observation belongs. From the perspective of

the way of exploiting “atoms,” SRC can be sorted into two major categories: holistic

representation based and local representation based methods (Z. Zhang et al. 2015).

Holistic representation based methods exploit the training samples of all classes to

represent the test sample, whereas local representation based methods only utilize

training samples of some classes. Most existing SRC algorithms belong to the holistic

representation based group (Jiang et al. 2013; Wright, A. Y. Yang, et al. 2008; Q. Zhang

et al. 2010).

In this chapter, in order to achieve high accuracy and address the challenging

problem of large database, we investigate a new approach of SRC by exploiting sparsity

coding in the wavelet transform domain. For this reason, the proposed method is called

Sparse Representation Wavelet based Classification (SRWC). The proposed SRWC can

be considered as a holistic representation based method. The proposed method takes

the advantages from: i) the wavelet decomposition which promotes sparsity and provides

structural information about the image data, ii) the dimensionality reduction method

using PCA for reducing the complexity of the problem, and iii) the sparse representation

of the generated features to efficiently capture the useful characteristics of this data.

After the wavelet decomposition, the low-frequency image sub-band information

is projected into a new feature space with lower dimensionality using PCA. Taking

advantages of the generated features, we build an overcomplete dictionary, which allows

for representing a test sample from a given dataset. Hence, the test samples are

considered as a linear combination of the transformed training samples into the wavelet

domain. This representation is naturally sparse, and help to reject test samples, which

do not belong to the dataset (Wright, A. Y. Yang, et al. 2008). Then, the test sample

features are sparsely coded for the classification step, which is based on the minimum

reconstruction residual. To validate the capabilities and underline the advantages of

the novel SRWC, we conducted an extensive number of experiments using publicly

available datasets and compared our results on face and object classification with

several contemporary methods. The results demonstrated that the proposed approach

outperforms state-of-the-art methods.

The rest of the chapter is organized as follows: Section 3.2 introduces the related

works; Section 3.3 presents the wavelet transform and develops the novel method,
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SRWC; In section 3.4, SRWC is validated on commonly used datasets, and compared

with several contemporary methods; Section 3.5 concludes the chapter while listing the

contributions.

3.2 Related works

SRC method (Wright, A. Y. Yang, et al. 2008) assumes that a test sample can be

represented as a linear combination of a few basis vectors taken from a dictionary

whose base elements are the training samples. More specifically, SRC exploits the linear

combination of training samples to represent the test sample by computing the sparse

codes of the test sample on the dictionary basis. The reconstruction residuals of each

class are computed through the SR coefficients and training samples. The membership

of a test sample is determined by the minimum residual. In (Wright, A. Y. Yang,

et al. 2008), it is shown that corrupted face images could be recognized by the SRC

algorithm, developed for robust face detection. Later, SRC was adapted to numerous

image classification problems, such as hyperspectral SRC (Chen et al. 2013).

According to recent studies (Jiang et al. 2013; M. Yang, L. Zhang, Feng, et al. 2014;

Q. Zhang et al. 2010), instead of using all the training samples as a dictionary, learning

a dictionary from them could effectively improve the SRC performance. Based on the

theory of K-SVD model (Aharon et al. 2006a), discriminative K-SVD (D-KSVD) (Q.

Zhang et al. 2010) and label consistent K-SVD (LC-KSVD) (Jiang et al. 2013) are

constructed to learn a discriminative dictionary, where the sparse codes are projected

to be sparse enough. In (Jiang et al. 2013), the authors differentiated LC-KSVD2

from LC-KSVD1 by including the classification error term in the objective function for

dictionary learning, which makes the dictionary optimal for the classification task. In (M.

Yang, L. Zhang, Feng, et al. 2014), the FDDL algorithm employs Fisher discrimination

criterion to construct dictionaries and sparse codes.

The SRC methods mentioned above are applied to the spatial domain, to construct

a dictionary used in classification. To improve the image classification performance,

transform domains could be considered as a promising tool. In (Ghazali et al. 2007), the

authors utilized the wavelet transform as an extractor to get the high-leveled feature,

which is then used to classify narrow and broad weeds. Later, in (Huang et al. 2008)

the wavelet transform is used to extract the spectral and spatial features of very high

resolution (VHR) satellite imagery. Then these features are fed to a support vector
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machine (SVM) to classify the VHR satellite imagery. (Jian et al. 2009) proposed to use

Gabor wavelet features for image texture classification. Moreover, they developed feature

selection functions based on the Fisher discrimination criterion to choose the features

that helps to better discriminate the images between classes. In (Tian et al. 2018), the

authors fused frequency domain features, extracted by the Fast Fourier transform (FFT),

and the sparse representation or collaborative representation to classify images, which

is proved to be efficient and robust. (S. Zhang et al. 2012) extracted the image features

using Gabor wavelets. Then these features were fed to SRC, K-nearest neighbor (KNN),

support vector machines (SVM), and artificial neural network (ANN) to evaluate their

efficiency in a facial expression recognition task.

Based on above observations, in our approach, we exploit the advantages of utilizing

both the wavelets, which are naturally sparse and provide structural information about

the image, as well as the sparse representation of the resulting features to efficiently

capture the important characteristics of this data, for the classification task. Hence, the

fusion of the wavelet coefficients and SR helps to enhance the classification accuracy.

3.3 Proposed method: Sparse Representation Wavelet Based Classification (SRWC)

The advantages of the proposed sparse-representation based SRWC method are that it

is performed in the wavelet domain, promoting sparsity and leading to better discrimi-

nation and hence improving the classification accuracy. Indeed, the proposed Sparse

Representation based approach allows not only learning a compact representation of

images data by using the wavelet coefficients as features, but also capturing the mean-

ingful characteristics of this data. Furthermore, it was proven, as described in (W. Zou

and Yan Li 2007), that the extracted low-pass sub-band coefficients lead to better

discrimination. Another advantage is that feature extraction of wavelet coefficients

followed by the dimension reduction PCA method helps to reduce data dimension and

computational cost.

Consider the classification problem of k classes. As proposed in (W. Zou and Yan

Li 2007), image features can be underlined by projecting the distribution of wavelet

coefficients onto the x and y-axes. These projections can be represented by histograms

with eight bins in both the x and y-axes. It is also shown that features described by

wavelet coefficients can significantly improve the image classification. However, (W. Zou

and Yan Li 2007) proves that the histograms in high-pass bands are similar, which does
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not benefit the classification. On the other hand, the histograms in low-pass bands are

different. In (W. Zou and Yan Li 2007), 16 bins of histograms of projection of wavelet

coefficients are exploited as an input for a neural network. Consequently, utilizing

the wavelet coefficients in the low-pass band and sparse representation framework

for classification would make the results more reliable as it is shown in the results

(section 3.4).

The SRWC method includes two phases, the training phase and the classification

phase. The training phase consists in building the dictionary from the training images

and their associated classes. An overview of the training phase is given in Fig. 3.3. The

classification phase allows to assign the class label of a given test image. More precisely,

a feature vector is first obtained from the given test image using the same features

extraction process through DWT followed by PCA as in the training phase. Its sparse

codes are then computed before performing the classification based on the minimum

residual criterion. The classification phase is described in sections 3.3.3 and 3.3.4 and

summarized in Algorithm 3.1.

3.3.1 Single-level Discrete 2D Wavelet Transformation (DWT2)

Consider I as a 2D discrete-space signal (image), where I(u,v) denotes the pixel value.

The 2D signal I(u,v) can be treated as 1D signals among the columns I(u, :) at a fixed

u−th row and among the rows I(:,v) at a fixed v−th column. A single level 2D wavelet

transform of an image can be captured by following the procedure in (Guo et al. 2017)

using Haar kernels.

As illustrated in (Guo et al. 2017), discrete-time signals GL (n) and GH (n) are

half-band low-pass and high-pass filters, respectively, defined in the spatial domain as

the Haar wavelets:

GH (n) =


1, 0 6 n < 1/2

−1, 1/2 6 n < 1

0, otherwise

; GL (n) =


1, 0 6 n < 1

0, otherwise
(3.1)

where n denotes the n− th sample of the discrete-time signal.

In wavelet decomposition, the filter GL (n) is an "averaging" filter while GH (n)

describes details. The 2D Discrete Wavelet Transform (DWT2) (Mallat 2008) decom-

poses an image into four sub-bands: average (LL), vertical (HL), horizontal (LH) and
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Figure 3.1: Block chart of single-level DWT2 decomposition (Guo et al. 2017).

diagonal (HH) information (Fig. 3.2). The details of an image, such as object’s edges, are

represented in the high-pass bands (LH, HL, and HH), while the primary energy of the

image is represented in the low-pass band (LL). Note that after DWT2 decomposition,

the combination of four sub-bands always has the same dimension as the original input

image. The 2D inverse DWT (iDWT2) can trace back the DWT2 procedure by inverting

the steps in Fig. 3.1. More details of wavelet transform could be found in (Mallat 2008).

3.3.2 Training phase

The training images are first passed through DWT2 with Haar wavelet kernel to produce

4 wavelet Sub-Bands (SB):

SB = {LL,HL,LH,HH} :=DWT2(I) , (3.2)

where the LL, HL, LH, and HH are sub-bands containing wavelet coefficients for average,

vertical, horizontal and diagonal details of the input image.

As stated above, we will only use the LL wavelet coefficients to increase the clas-

sification accuracy. Then, principal component analysis (PCA) (I. T. Jolliffe 1986) is

employed to reduce the dimension of each vectorized component, which we call an atom.

Further, we define a new matrix D to describe the relations between the n atoms from

all k categories (n=∑
c=1...knc):

D = [D1,D2, ...,Dk] =
[
d1,1, ...,d1,n1 , ...,dk,1, ...,dk,nk

]
∈R

m×n (3.3)
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(a) Barbara image decomposed by DWT2

(b) Lena image decomposed by DWT2

Figure 3.2: Examples of image decomposed by DWT2. Left: Original image. Right: Visualization of
each sub-band of wavelet coefficients.

The training procedure to form the dictionary matrix D ∈R
m×n, where m is the feature

dimension, is illustrated in Fig. 3.3.

3.3.3 Single test sample detection

Some discriminative models are proposed to exploit the structure of Dc for classification

purposes (Wright, A. Y. Yang, et al. 2008). An approach is considered simple and

efficient if it can model the images from a single class as lying on a linear subspace (Basri

et al. 2003). Subspace models are flexible enough to capture much of the variation in

real datasets. It has been observed that the images of faces under varying illuminations

and expressions lie on a unique low-dimensional subspace (Basri et al. 2003). For ease

of presentation, we assume that the training samples from a single class do lie on a

subspace, which is only the knowledge our method will use.

Given nc atoms of the c− th category, the corresponding sub-dictionary is given

by Dc = [dc,1,dc,2, ...,dc,nc ] ∈R
m×nc . Any new feature sample y ∈R

m from the same
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Training 

samples
LL HL

LH HH

|||...|

|||...|...|||...|||...|||...

DWT2 Vectorization

PCA

n atoms from k 

classes relationship

Only LL 

components 

utilized

Figure 3.3: Block chart of the dictionary training procedure of the SRWC.

class will lie in the linear span of the atoms associated with class c as below:

y = xc,1dc,1 + xc,2dc,2 + ...+ xc,ncdc,nc , (3.4)

where xc,j ∈R, j = 1,2, ...,nc. Then y can be rewritten as the linear combination of the

entire set of atoms as below:

y = Dx ∈R
m, (3.5)

where, ideally, x = [0, ...,0,xc,1,xc,2, ...,xc,nc ,0, ...0]T ∈ R
n is a sparse approximation

vector whose non zero entries are those associated with the c−th class. Since the entries

of the vector x are related to the identity of the test sample y, we are able to obtain

x by solving the linear system of equation y = Dx. When in Eq. (3.5) m < n, the

system of equations y = Dx is underdetermined, and x cannot be found in a unique

way. Further, this difficulty is resolved by taking the minimum l2-norm solution:

(l2) : x̂2 = argmin‖x‖2 subjectto y = Dx. (3.6)

Note that the solution x̂2 from (3.6) is not instructive for recognizing the test sample y

because x̂2 has a large number of nonzero entries corresponding to atoms from various

classes. To resolve this difficulty in recognition, the vector y can be represented by only

the atoms from a single class. On the other hand it is known from (Wright, A. Y. Yang,

et al. 2008) that the sparser the code x is, the higher the accuracy of classification is.

Therefore, large number of classes k is needed to make the representation of y sufficiently

sparse to provide high accuracy of classification. This leads to the requirement to find
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the sparsest solution to y = Dx by solving the following optimization problem:

(l0) : x̂0 = argmin‖x‖0 subjectto y = Dx. (3.7)

In Eq. (3.7), ‖.‖0 denotes the l0-norm, which counts the number of nonzero elements in

a vector. Nevertheless, it is NP-hard to find the sparsest solution of an underdetermined

system of linear equations. Fortunately, if the solution x0 is sparse enough, the solution

of the l0-minimization problem is equivalent to the solution to the l1-minimization

problem as follows (Wright, A. Y. Yang, et al. 2008):

(l1) : x̂1 = argmin‖x‖1 subjectto y = Dx, (3.8)

which can be calculated in polynomial time (Elhamifar et al. 2011). Eq. 3.8 is equivalent

to the Lasso problem (Tibshirani 1996) defined as follows:

x̂ = argmin
x∈Rn

‖y−Dx‖22 +λ‖x‖1, (3.9)

In this study, we use the FISTA algorithm (Beck et al. 2009), which is an iterative

method, to solve the problem in Eq. 3.8.

Fig. 3.4 illustrates the idea of SRWC that one sample is a linear combination of

other samples from the same class with sparse x.

(a)

(b)
(c)

Figure 3.4: SRWC: A sample is a linear combination of the other samples from the same class with a
sparse vector x (Vu et al. 2017)
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Algorithm 3.1: Classification phase by SRWC
Input : a matrix of entire set of atoms, dictionary

D = [D1,D2, ...,Dk] ∈R
m×n for k classes, and a test sample y ∈R

m

in wavelet domain, and an error tolerance ε > 0
1 Normalize the columns of D to have unit l2-norm.
2 Solve the l1-minimization problem Eq. (3.8) in the form

x̂1 = argmin
x
‖x‖1 subjectto‖y−Dx‖2 6 ε.

3 Compute the residuals rc(y) = ‖y−Dδc(x̂1)‖2 for c= 1, ...,k
Output : identity(y) = argmin

c
rc(y)

3.3.4 Classification phase

Given a test image, we perform the same steps of features extraction as in the training

phase, using DWT2 and PCA (sections 3.3.1 and 3.3.2) to obtain the corresponding test

feature vector y. Then, we estimate its sparse representation x̂1 via solving the problem

in Eq. (3.8). In the perfect case, the nonzero entries in the estimate x̂1 will be associated

with the basis of the dictionary from a single class c; then we can determine the class

which y belongs to. Nevertheless, there may be some nonzero entries associated with

other categories due to noise and modeling error. To resolve this problem, y can be

classified based on how well the coefficients in Eq. (3.4) are associated with the atoms

of each object in the reconstruction of the observation y.

For each class c, let δc be the characteristic function that selects the coefficients

(from x) associated only with the c− th class. For x ∈R
n, δc(x) ∈R

n is a new vector

whose only nonzero entries are the entries in x associated with class c. Using the nonzero

entries one can approximate y as ŷc = Dδc(x̂1), which is then classified according to a

label c that minimizes the residual as follows:

min
c

rc(y) = ‖y−Dδc(x̂1)‖2. (3.10)

Algorithm 3.1 summarizes the recognition procedure.

3.4 Experimental results

The performance of the proposed SRWC is evaluated and compared with the conventional

SRC (Wright, A. Y. Yang, et al. 2008), the LC-KSVD1 (Jiang et al. 2013), LC-

KSVD2 (Jiang et al. 2013), and the FDDL (M. Yang, L. Zhang, Feng, et al. 2014)

methods, on the three public databases, some examples of which are shown in Fig. 3.5
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whose descriptions are summarized in Table 3.1. The source codes of the LC-KSVD,

FDDL methods are provided by the authors of the papers (Jiang et al. 2013; M. Yang,

L. Zhang, Feng, et al. 2014). As in (Elad 2010), the dimensions of the feature space

extracted are sufficiently large to correctly compute the sparse representation. For

SRWC, features are extracted by following the procedure stated in Section 3.3. For

other methods (SRC, LC-KSVD, and FDDL), face feature descriptor is a random

face, made by projecting face images onto random vectors using a random projection

matrix (Wright, A. Y. Yang, et al. 2008).

3.4.1 Cross-validation

We applied Monte Carlo cross-validation (Dubitzky et al. 2007), also known as repeated

random subsampling, in our experiments to better evaluate the experimental performance

of the proposed SRWC method. The data is randomly separated into training and test

sets in k repeated times. For each split, an image is seen in either the training set or

the test set, but not in both. Then we calculate the average result over k splits. Using

the Monte Carlo cross-validation helps substantially reduce the variance of the split

sample error estimate and the proportion of the training-test random splits does not

depend on the number k (Molinaro et al. 2005). In our experiments, we set k to 10.

3.4.2 Image databases preparation

The Extended YaleB database has 2,414 frontal-face images of 38 people (∼64

images per person) (Georghiades et al. 2001). The images are captured under various

laboratory-controlled luminance states; then the images are cropped and normalized to

192x168 pixels. As suggested in (Q. Zhang et al. 2010), we randomly select 30 images

from each person for training and the rest (∼34 images) for testing. After PCA, the

dimension of the feature vector is m= 650 (Table 3.1). The number of training samples

is 1140 (30 training images by 38 classes), which is also the dimension of the sparse

representation vector. Some samples of this dataset are shown in Fig. 3.5a.

The AR face database includes over 4,000 frontal images for 126 individuals. Each

subject has 26 pictures (Martinez 1998). The images are cropped to 165x120 pixels.

In the experiment, a subset including 2600 images from 100 classes (50 male and 50

female) is chosen. We randomly select 20 images from every subject for training and

the remaining 6 for testing. The dimension of the feature vector is m= 900 (Table 3.1).

The total number of training samples is 2000 (20 training images by 100 classes), and it
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is also the dimension of the sparse representation vector. Some samples of this dataset

are shown in Fig. 3.5b.

The COIL-100 database contains 7200 color images of 100 objects captured with a

black background and different lighting conditions. For every image, the authors of this

dataset clipped out the object from the black background using a rectangular bounding

box and resized it to 128x128 using interpolation-decimation filters to minimize aliasing.

Analogously to (S. Li et al. 2016), 10 images of each object are chosen randomly for

training, and the rest 62 images are used for testing in our experiment. The feature

vector has the dimension m = 1300 (Table 3.1). The number of training samples is

1000 (10 training images by 100 classes), which is also the dimension of the sparse

representation vector. A few samples of this dataset are shown in Fig. 3.5c.

All images used in our experiments are converted to the grayscale. The feature

vectors obtained after PCA are all normalized to have unit norm.

(a) Ext. YaleB (Georghiades et al. 2001) (b) AR (Martinez 1998)

(c) COIL-100 (Nene et al. 1996)

Figure 3.5: Examples from three datasets.

Table 3.1: Description of the three datasets used in this chapter. In columns 3, 4, and 5: number of
classes, number of training samples, and number of test samples, respectively.

Database Image size #Class #Training #Test Feature dim
Ext. YaleB 192x168 38 n= 1140 1274 m= 650
AR face 165x120 100 n= 2000 600 m= 900
COIL-100 128x128 100 n= 1000 6200 m= 1300

3.4.3 Results

Now, we present the results of the proposed SRWC method with comparison of its

performance to the aforementioned methods in terms of accuracy. Moreover, in order

to evaluate the robustness of the SRWC to the size of training datasets, we analyze the

effect of the varying number of training samples per class.

The overall recognition rates for the Extended YaleB, AR face and COIL-100 datasets
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are presented in Fig. 3.6. Our method is coded in Matlab environment and is repeated

ten times for each dataset, and the average recognition rates for each method are then

reported in Table 3.2. We can see that the newly proposed SRWC method outperforms

the conventional SRC, and the other methods (LC-KSVD1, LC-KSVD2, FDDL) on

Extended YaleB and AR, and is very close (0.13%) to the highest accuracy for COIL-100.

Considering the AR (20) column in Table 3.2, one may also notice the superiority of

the newly proposed SRWC over the other SRC methods. A comparison on AR (30) has

not been conducted because there are not available 30 training samples per class in AR

dataset (Martinez 1998).

In real-world classification tasks, we often have to deal with lack of large training

sets. Fig. 3.6 illustrates the accuracy of classification according to the number of training

samples per class, with comparison to the conventional SRC. As it can be observed,

the accuracy increases along with the gradually growing number of training samples

per class and the proposed SRWC outperforms the baseline SRC (Wright, Y. Ma, et al.

2010). One may derive from Fig. 3.6 that the higher the number of atoms is used, the

higher the recognition rate is. Thus, the highest recognition rate of the proposed SRWC

is 98.06% for the Ext. YaleB, achieved for 30 atoms per class. Further, we determined

throughout experiments that in order to receive accuracy over 80%, the number of

training images should be over 10% or 15% of the size of the entire dataset.

Table 3.2: Mean accuracy of SRWC and SRC methods. Numbers in parentheses show the training set
size per class.

Ext. YaleB (30) AR (20) COIL (10)
SRC 97.54 97.61 81.16
LC-KSVD1 97.09 97.78 81.37
LC-KSVD2 97.80 97.70 81.42
FDDL 97.52 96.16 77.45
SRWC 98.06 98.39 81.29

3.4.4 Analysis of sparsity by visualizing the sparse representation coefficients

The performance of the proposed SRWC over the conventional SRC and the other

evaluated methods can be explained by the fact that wavelets, which are naturally

sparse, are used as features for sparse representation, which enhances the sparsity level

of sparse codes. This advantage can be demonstrated experimentally by an analysis

of the sparsity of the representation coefficients, using the visualization of i) the sum

of absolute sparse codes for different test samples from a same class, ii) the sparseness
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(a) Ext. YaleB (b) AR face

(c) COIL-100

Figure 3.6: Comparison of the proposed SRWC and the SRC (Wright, A. Y. Yang, et al. 2008)
method on the three evaluated databases, with classification accuracy (%) as a function of
the number of training samples per class.

measure.

i. The sum of absolute sparse codes obtained for different test samples from a same

class is graphically represented with respect to the components of the sparse

representation vector based on its dimension. Note that this dimension is also

the number n of atoms in the dictionary (n= k×nc where nc is the number of

training samples per class and k is the number of classes). This sum can also be

represented versus classes or color bars, where each colored bar represents one class.

Note that each class c is related to a set of sub-dictionary atoms. In Fig. 3.7, we

present the sparsity visualization for the SRWC, using the sum of absolute sparse

codes (left column) and residuals (right column) for different testing samples from

the same class, on the three databases, namely Ext. Yale B (34 testing samples

from ’class 33’), AR face (6 testing samples from ’class 51’), and COIL-100 (62

testing samples from ’class 69’). We can see that the class is well identified with
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the highest peak or with a minimum residual.

For purposes of comparison, we report in Fig. 3.8, the results of the experiments

on the AR database for the SRWC and the conventional SRC method, using 6

testing samples from ’class 51’. (Indeed, as it is stated in section 3.4.2, each class

of the AR database has 26 samples from which 20 ones are randomly selected for

training and the remaining 6 ones for testing). The sparse representation vector

has the dimension of 2000 (100 classes by 20 training samples, see Table 3.1).

Hence, the X-axis denotes the dimension (2000) of the sparse representation vector,

and also the classes (100) or colored bars. As a result, we can observe that the two

graphs show high peaks at the 51th colored bar or around the 1000th− 1020th

components of the sparse representation vector, which means that the test samples

are well labeled as ’class 51’. Compared with SRC, the proposed SRWC provides

better discrimination between the coefficients associated with ’class 51’ and those

associated with other classes. The SRWC provides the largest sparsity, which

leads to the highest accuracy of classification.

ii. The sparseness measure: Another way to visualize the sparsity is the sparseness

measure proposed in (Hoyer 2004). We adapt this concept for a sparse coefficient

vector x as follows:

sparseness(x) =
√
n−‖x‖1/‖x‖2√

n− 1 , (3.11)

where n is the dimension of x. The bigger the value of sparseness(x) is, the

sparser the vector x is (Hoyer 2004). To illustrate this concept, we apply Eq. 3.11

and calculate the sparseness values of the sparse codes obtained with the AR face

dataset. With 600 test samples (Table 3.1), we can estimate 600 sparse codes and

then calculate 600 corresponding sparseness values. These values are illustrated by

the histogram in Figure 3.9. One can see that the sparseness value of the SRWC

is averagely bigger than the one of the SRC (0.62 vs 0.57). More precisely, the

largest sparseness value of SRWC and SRC is 0.716 and 0.665, respectively (see

Figure 3.9). We may conclude from these results that SRWC provides a higher

level of sparseness, which leads to better accuracy of classification.

In conclusion, the SRWC provides the higher sparsity level than the conventional
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(a) Ext. YaleB (b) Ext. YaleB

(c) AR face (d) AR face

(e) COIL-100 (f) COIL-100

Figure 3.7: Sparsity visualization for the proposed SRWC, using the sum of absolute sparse codes (left
column) and residuals (right column), for different testing samples from the same class,
on the three evaluated databases, namely Ext. Yale B (34 testing samples from ’class 33’),
AR face (6 testing samples from ’class 51’), and COIL-100 (62 testing samples from
’class 69’). For the graphs in left column, the X axis represents not only the dimension of
sparse representation vector, but also the classes described by colored bars, from which
each color denotes one class for a set of sub-dictionary atoms. On the right column, X
axis simply indicates the class.

(a) SRC (b) SRWC

Figure 3.8: Sparsity visualization for the proposed SRWC and the conventional SRC (Wright,
A. Y. Yang, et al. 2008), using the sum of absolute sparse codes, with 6 testing samples
from ’class 51’. X axis indicates the dimension of the sparse code (n= 2000), and the
classes described by colored bars, each color from which represents one class for a set of
sub-dictionary atoms.
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(a) SRC (b) SRWC

Figure 3.9: Sparseness histograms from the conventional SRC and the proposed SRWC on the AR
dataset using 600 test samples.

SRC, which leads to a better accuracy of classification.

3.5 Discussion and conclusion

The main contribution of the present study is the fusion of the low-band wavelet

coefficients and the SRC approach. This fusion boosted the classification capabilities

and led to an increase in the classification accuracy of the databases containing images

of the same size.

The recognition rates obtained by SRWC on the two face datasets are promising,

compared to LC-KSVD1 (Jiang et al. 2013), LC-KSVD2 (Jiang et al. 2013), and

FDDL (M. Yang, L. Zhang, Feng, et al. 2014) (Table 3.2). Moreover, the proposed

method is robust to the size of the training datasets, which is one of the advantages of the

proposed method to cope with the lack of large training sets in real-world classification

tasks. The SRWC demonstrated that a SRC-based method can improve its accuracy

in the wavelet domain. Indeed, by taking advantage of the promoting sparsity wavelet

coefficients which are used as features, and by exploiting the sparse representation of

the generated features, the sparsity level of sparse codes is improved, and the proposed

SRWC results in an improvement of the accuracy performance. However, the result of

the SRWC on object data class (COIIL-10) is slightly lower than that of the LC-KSVC2.

This can be explained by the fact that objects in such database may prone to large

variation of poses, angles, or shift-variance. Indeed, DWT is not shift-invariant. It is

necessary to improve the solution with a novel approach to recognise objects invariant

to such variations.

In the next chapter, we extend our approach by applying Clifford Algebras, specifi-

cally Quaternion Algebras, to improve the capability of the current method.



4

C
h

a
p

t
e

r

Contribution to the Sparse Representation Classifica-

tion in the Quaternion Wavelet Domain

Chapter content
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Basic concepts of the Algebra of Quaternions . . . . . . . . 48

4.3 Quaternion Wavelet Transform (QWT) . . . . . . . . . . . . 50

4.3.1 Quaternion Analytic Signal and Quaternion Wavelets . . . . 50

4.3.2 QWT implementation . . . . . . . . . . . . . . . . . . . . . . 51

4.4 Proposed method: Sparse Representation Classification in

the Quaternion Wavelet Domain (SRCQW) . . . . . . . . . 54

4.4.1 Training phase and dictionary of low-frequency sub-bands of

the QWT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.4.2 Classification in the QW domain . . . . . . . . . . . . . . . . 56

4.5 Computational complexity . . . . . . . . . . . . . . . . . . . . 61

4.6 Experimental results . . . . . . . . . . . . . . . . . . . . . . . 62

4.6.1 Cross-validation . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.6.2 Details of datasets . . . . . . . . . . . . . . . . . . . . . . . . 62

4.6.3 Effect of varying parameter λ on the classification accuracy . 63

4.6.4 Overall classification accuracy . . . . . . . . . . . . . . . . . . 63

4.6.5 Accuracy versus feature dimensions . . . . . . . . . . . . . . . 66



44 Chapter 4. Contribution to the SRC in the Quaternion Wavelet Domain

4.6.6 Accuracy versus size of training set . . . . . . . . . . . . . . . 67

4.6.7 Analysis of sparsity by visualizing the sparse representation

coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.6.8 Convergence rate . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.7 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . 70

4.1 Introduction

In the previous chapter, we have introduced a SR-based approach for image classification,

namely SRWC, with promising results for face and objects classifications. This chapter

introduces another SR learning solution for image classification with the objective to

outperform the first method, especially to further enhance the robustness of SR-based

classification method (cf. Section 3.5).

Image classification is a challenge of image analysis task due to the complex nature of

images with specific properties and intricate structures as well as possible noises, varying

illuminations, occlusion, outliers and complex backgrounds. Hence, it is important to

find a representation learning method that can capture the meaningful characteristics

of the images. As it has been stated in sub-sections 1.2 and 3.1, SR is one of the

most efficient and robust approaches to provide a compact representation of a signal

with only a small number of meaningful features (Olshausen and Field 1997). Also,

it was established that SR is the mechanism in the primary visual cortex to achieve

concise description of images in terms of features (Olshausen 2003), and considered

as a main principle to efficiently represent complex data (Olshausen and Field 1996).

Hence, SR is an efficient representation learning method which has achieved state-of-

the-art performance in signal and image processing (Elad 2010), particularly in image

classification in recent years with the original sparse representation-based classification

(SRC) initiated in (Wright, A. Y. Yang, et al. 2008) and its variants (Jiang et al. 2013;

M. Yang, L. Zhang, Feng, et al. 2014; Q. Zhang et al. 2010). The main idea is to

estimate the sparse representation coefficients (code) of a test sample over a dictionary

and then to identify its class label via the classification step based on the minimum

reconstruction residual.

Although many SR-based classification methods have achieved promising perfor-

mances, efforts have been necessary to improve the accuracy and to enhance the

robustness of SRC methods especially for large scale systems. If existing SRC meth-
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ods (Jiang et al. 2013; Wright, A. Y. Yang, et al. 2008; M. Yang, L. Zhang, Feng,

et al. 2014; Q. Zhang et al. 2010) are mostly applied to the spatial domain, a recent

approach for improvement of SRC, namely SRWC (Ngo et al. 2018) that we proposed

and presented in Chapter 3, is performed in the sparsity-promoting Discrete Wavelet

Transform (DWT) domain, making it the first SRC method in the wavelet transform

domain. In this method, training and test samples are transformed into the wavelet

domain and Principle Component Analysis (PCA) is used to reduce the dimension of

the generated features. Then, SRWC method is performed in the wavelet domain in two

steps. In the training step, the low-frequency (LL) wavelet sub-band coefficients of the

training samples, after undergoing the PCA, are used to construct a dictionary. In the

testing step, the features of the test samples are sparsely coded over the dictionary. Then,

the class of the test samples is identified using their minimum reconstruction residuals.

The advantages of DWT for classification performance have been proven in (W. Zou and

Yan Li 2007). The SRWC (Chapter 3), (Ngo et al. 2018) demonstrated that SR-based

classification can be performed in the Wavelet domain to enhance the sparsity level of

sparse codes and discrimination ability, yielding more robust classification performance

compared to the state-of-the-art SRC methods.

Despite the advantages of the wavelet domain for classification performance (W. Zou

and Yan Li 2007), the DWT is restricted by its lack of shift-invariance (W. L. Chan

et al. 2004). To cope with this drawback, we investigate a novel SRC method using

the Quaternion Wavelet Transform (QWT) which has approximate shift-invariance

and provides richer geometric information than DWT (W. L. Chan et al. 2004, 2008).

Indeed, quaternion wavelet transform is a new multi-resolution image analysis tool

which is based on 2D Hilbert Transform (HT), 2D analytic signal (Bulow 1999), and

quaternion algebra H. Unlike DWT whose coefficients are real, QWT is quaternion-

valued, and each quaternion wavelet coefficient can be represented by amplitude and

3 phase angles, two of which encode local displacement information, the third one

contains texture feature. Moreover, it can be easily computed using a dual-tree filter

bank with linear computational complexity (W. L. Chan et al. 2004, 2008). Based on

its interesting properties, the QWT has been applied to a number of research fields such

as disparity estimation (W. L. Chan et al. 2008), image denoising (Yin et al. 2012), face

recognition (YH Xu et al. 2010), texture classification (Soulard et al. 2011), and image

segmentation (Subakan et al. 2011).



46 Chapter 4. Contribution to the SRC in the Quaternion Wavelet Domain

Motivated by the advantages of the sparsity-promoting wavelets in the AQ of the

QWT and inspired by the SRWC in (Ngo et al. 2018), we propose in this chapter a

novel SRC method in the Quaternion Wavelet (QW) domain to further enhance the

classification performance for complex datasets. The proposed method is referred to

as SRCQW which stands for Sparse Representation Classification in QW domain. To

the best of our knowledge, there is no SRC approach investigated in the QW domain.

In (Soulard et al. 2011), QWT is applied for image texture classification. The same

transform domain is also investigated for face recognition in (YH Xu et al. 2010). In (Yi

Xu et al. 2015; C. Zou et al. 2016), we have identified two main SR-based methods but

they are performed in the quaternion space, in which 3 channels of color images are

modelled as a quaternion. In (Yi Xu et al. 2015), a SR-based model in the quaternion

is proposed for color restoration, while a SRC method is derived in the quaternion

space (QSRC) for color image recognition in (C. Zou et al. 2016) (Chapter 2). Unlike

these methods, the newly proposed SRC method in the QW domain benefits from the

advantages of the QWT decomposition by using the QW coefficients in the low-frequency

wavelet (LL) sub-bands as features to capture an efficient representation of the data with

near shift-invariance property. Here, we only need features described by QW coefficients

in LL sub-bands as they constitute the main component of the image. The method also

benefits from the SR of the QW coefficients features to learn and capture the meaningful

information of the visual data. Moreover, the construction of the dictionary and the

classification are performed in the 4D space of the Algebra of Quaternions (AQ) (see

Eq. 4.11). In fact, QWT decomposition on an input image yields one low-frequency QW

sub-band (L̇Lq) (approximation information) and three high-frequency QW sub-bands

( ˙LHq, ḢLq, ˙HHq) (details information), where each quaternion sub-band is defined by

four wavelet coefficients sub-bands. Moreover, we formulate the problem of finding the

SR in the QW domain, by the novel QW Least absolute shrinkage and selection operator

(QWLasso) model with quaternion l1 minimization. To solve the QWLasso, we develop

the novel Quaternion Fast Iterative Shrinkage-Thresholding (QFISTA) method, which

is based on the real-valued FISTA method (Beck et al. 2009). The QFISTA maps the

quaternion dictionary to a multi-dimensional real-valued matrix, composed by specific

low-frequency wavelet sub-band coefficients. In addition, we develop an upper bound

for the QWLasso model and use it as an approximation that establishes the iterative

scheme to find the sparse coefficients of QW features. The higher separability of the
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quaternion vector gives an advantage compared to the minimization model in the field

of real numbers. This advantage comes from the fact that formulating the minimization

model in quaternions provides additional information coming from the direction of the

4D vector, which is composed by the quaternion components. Hence, by exploiting the

SR in the QW domain, with classification in the 4D space of the AQ, the proposed

method improves not only the sparsity level of sparse codes for classification, but also

the robustness, resulting in outperformance of the classification accuracy, as it can be

seen in section 4.6.

In this method, training and test samples are transformed into the QW domain and

Principle Component Analysis (PCA) is used to reduce the dimension of the generated

features and computational cost. The SRCQW is performed in the QW domain in

two steps. In the training step, the QW coefficients in L̇Lq sub-bands of the training

samples, after undergoing the dimensionality reduction by PCA, are used to construct a

dictionary. In the testing step, the extracted features from the test samples are sparsely

coded over the dictionary. Then, the class of the test samples is identified using their

minimum reconstruction residuals.

The main contributions of this method are:

i. It is based on SR learning method in the QW domain;

ii. In the training phase, a quaternion wavelet-based dictionary is constructed using

four low-frequency wavelet sub-bands;

iii. In the test phase, a novel QWLasso minimization model is formulated for solving

the sparse coding problem in the QW domain. In addition, the novel QFISTA

method is developed in the AQ to solve the newly QWLasso model for the

estimation of the sparse representation coefficients.

The experimental results show the main advantage of the proposed method, which

outperforms the state-of-the-art methods including NN-based methods in terms of

classification accuracy (Tables 4.2 and 4.3, where 99.6% accuracy is reported).

The rest of the chapter is organized as follows: Section 4.2 presents basic quaternion

concepts; Section 4.3 describes the QWT and defines the QW coefficients of low-

frequency sub-bands; Sections 4.4 develops the novel SRCQW method; Section 4.5

determines its computational complexity; Section 4.6 validates the SRCQW on commonly

used datasets and compares the obtained results with several contemporary methods;
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Section 4.7 concludes the chapter by discussing the contributions, the advantages, and

the bottlenecks.

4.2 Basic concepts of the Algebra of Quaternions

The quaternions, which are proposed by W. R. Hamilton in 1843 (Hamilton 1844), are

numbers having one real and three imaginary parts. The AQ, denoted by H, could

be regarded as a 4D Clifford algebra Cl0,2 (Girard 2007). In this chapter, we denote

scalar variables, vectors and matrices by lowercase letters (e.g., a ∈R), bold types (e.g.,

a ∈ R
M ) and bold capital letters (e.g., A ∈ R

M×N ), respectively. In the AQ, a dot

(above the variable) denotes quaternion variable, e.g., ȧ ∈H. Accordingly, vectors and

matrices with quaternion entries are indicated as ȧ ∈H
M and Ȧ ∈H

M×N , respectively.

The set of quaternions H = {q̇ = q0 + iq1 + jq2 + kq3 : q0, q1, q2, q3 ∈R} composes the

AQ (Girard 2007). The three imaginary numbers satisfy the following properties:

i2 = j2 = k2 = ijk =−1, ij =−ji= k, ik =−ki=−j, jk =−kj = i, (4.1)

and its norm is: ‖q̇‖ =
√
q̇q̇ =

√
q2

0 + q2
1 + q2

2 + q2
3. In addition, quaternion q̇ can

also be expressed by its magnitude- phase representation as: q̇ = ‖q̇‖eiϕejθekψ, where

{ϕ,θ,ψ} are the three phase angles.

Definition 4.1. A vector with quaternion entries is called a vector of quaternions

or quaternion vector:

ȧ = [ȧ1, ȧ2, ..., ȧM ]T ∈H
M , (4.2)

where each entry is a quaternion: ȧm = a0
m + a1

mi+ a2
mj+ a3

mk,m= 1, ...,M . Also, a

quaternion vector can be formulated as:

ȧ = a0 + a1i+ a2j+ a3k, (4.3)

where ae = [ae1,ae2, ...,aeM ]T ∈R
M , aem ∈R, e= 0,1,2,3.

Definition 4.2. A matrix with quaternion entries is called a matrix of quaternions

or quaternion matrix:

Ȧ = [ȧ1, ȧ2, ..., ȧN ] ∈H
M×N , (4.4)
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where ȧn =
[
ȧ1,n, ȧ2,n, ..., ȧM,n

]T ∈ H
M , ȧm,n = a0

m,n + a1
m,ni+ a2

m,nj + a3
m,nk ∈

H, aem,n ∈R, e= 0,1,2,3, m= 1, ...,M, n= 1, ...,N .

A quaternion matrix can also be formulated as:

Ȧ = A0 + A1i+ A2j+ A3k, (4.5)

where Ae = [ae1,ae2, ...,aeN ] ∈R
M×N ,aen =

[
ae1,n,a

e
2,n, ...,a

e
M,n

]T
∈R

M .

Definition 4.3. The l1,2-norm of a matrix A is: ‖A‖1,2 := ∑
i ‖A(i, :)‖2, where

A(i, :) denotes the i-th row of the matrix A.

The AQ is associative but non-commutative. Let ȧ, ḃ ∈H, λ ∈R. Based on (Girard

2007), some fundamental operations in the AQ are given as follows:

• Addition/ subtraction/ multiplication by a scalar

λ
(
ȧ± ḃ

)
= λ(a0± b0) +λ(a1± b1) i+λ(a2± b2)j+λ(a3± b3)k (4.6)

• Clifford product of quaternions

ȧḃ= (a0b0− a1b1− a2b2− a3b3) + (a1b0 + a0b1− a3b2 + a2b3)i

+(a2b0 + a3b1 + a0b2− a1b3)j+ (a3b0− a2b1 + a1b2 + a0b3)k
(4.7)

• Clifford product of quaternion matrices

ȦḂ = (A0 + A1i+ A2j+ A3k)(B0 + B1i+ B2j+ B3k)

=
(
A0B0−A1B1−A2B2−A3B3

)
+
(
A1B0 + A0B1−A3B2 + A2B3

)
i

+
(
A2B0 + A3B1 + A0B2−A1B3

)
j

+
(
A3B0−A2B1 + A1B2 + A0B3

)
k,

(4.8)

where Ae ∈R
M×N ,Be ∈R

N×K ,e= 0,1,2,3.
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4.3 Quaternion Wavelet Transform (QWT)

The quaternion wavelets considered in this study are based on Bulow quaternion analytic

signal (Bulow 1999) and a dual-tree QWT introduced in (W. L. Chan et al. 2004, 2008).

4.3.1 Quaternion Analytic Signal and Quaternion Wavelets

The quaternion analytic signal associated with a real 2D signal s(x,y) is defined by its

partial (sHx ,sHy) and total (sHxy) HTs as follows (Bulow 1999):

sq(x,y) = s(x,y) + isHx(x,y) + jsHy (x,y) + ksHxy (x,y), (4.9)

where sHx = s(x,y) ∗ δ(y)
πx ,sHy = s(x,y) ∗ δ(x)

πy ,sHxy = s(x,y) ∗ 1
π2xy .

The symbol ∗ denotes the 2D convolution operation, while δ(x) and δ(y) are impulse

functions along y-axis and x-axis, respectively.

In the dual-tree QWT, each quaternion wavelet is composed of four quadrature

components (a real wavelet and its 2D HTs), which are organised as a quaternion: a

real DWT wavelet and three imaginary wavelets obtained by 1D HT along either or

both coordinates.

Denote with φ(t) and ψ (t) the scaling and the wavelet functions of the 1D DWT,

respectively. The 2D DWT is computed as the separable tensor products of 1D

DWTs over each coordinate: the scaling function φ(x)φ(y) and three wavelet functions

ψ (x)ψ (y), ψ (x)φ(y) and φ(x)ψ (y) oriented in the diagonal, vertical and horizontal

directions, respectively (W. L. Chan et al. 2004, 2008).

Mathematically, the 2D QWT is defined by 1D functions as follows:

ψDq = ψg (x)ψg (y) + iψf (x)ψg (y) + jψg (x)ψf (y) + kψf (x)ψf (y) (4.10a)

ψVq = ψg (x)φg (y) + iψf (x)φg (y) + jψg (x)φf (y) + kψf (x)φf (y) (4.10b)

ψHq = φg (x)ψg (y) + iφf (x)ψg (y) + jφg (x)ψf (y) + kφf (x)ψf (y) (4.10c)

φq = φg (x)φg (y) + iφf (x)φg (y) + jφg (x)φf (y) + kφf (x)φf (y) , (4.10d)

where ψDq ,ψVq ,ψHq are quaternion wavelets oriented in the diagonal, vertical and hori-

zontal directions, respectively; the subscripts {g,f} refer to a real-valued filter and its

HT counterpart, respectively. The quaternion scaling function φq in (4.10d) corresponds

to the QWT low-frequency coefficients.
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4.3.2 QWT implementation

(a) GL (n) (b) GH (n)

(c) FL (n) (d) FH (n)

Figure 4.1: Coefficients of the four decomposition filters are shown on the vertical axis, while the
horizontal axis shows the values of n.

The QWT is realized by using the dual-tree algorithm (W. L. Chan et al. 2008). The

decomposition of an image by QWT is performed using 2D DWT, for which an input

image is decomposed into a low-frequency sub-band (LL) describing the approximation

information and three high-frequency sub-bands describing image details in horizontal

(LH), vertical (HL) and diagonal (HH) directions, respectively (W. L. Chan et al.

2004, 2008). According to (W. L. Chan et al. 2004, 2008; Yin et al. 2012), the QWT can

be implemented with the combinations of the four filters (GL, GH , FL and FH), where

GL (n) and GH (n) are low-pass and high-pass wavelet filters, respectively, while FL (n)

and FH (n) are the filters, corresponding to the HT of GL (n) and GH (n), respectively.

Coefficients of these filters, for Daubechies 8 ’db8’ wavelet, are illustrated in Figure 4.1.

From these filter banks, four different wavelet coefficients are generated in the AQ to

obtain the QWT coefficients. The structure of the QWT decomposition is presented in

Figure 4.2, where an image is decomposed into 16 wavelet sub-bands, which construct
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Figure 4.2: QWT decomposition of an image.
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(a) Real part (b) Imaginary (i)

(c) Imaginary (j) (d) Imaginary(k)

Figure 4.3: Barbara image decomposed by the QWT to 16 wavelet sub-bands as shown in Figure 4.2.
LgLg ,LfLg ,LgLf , LfLf are shown at upper left side of (a), (b), (c), (d) respectively.
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four quaternion wavelet sub-bands: one low-frequency sub-band (L̇Lq) (as in (4.11a))

and three high-frequency sub-bands ( ˙LHq, ḢLq, ˙HHq) (as in (4.11b-4.11d)).

L̇Lq = LgLg + iLfLg + jLgLf + kLfLf (4.11a)

˙LHq = LgHg + iLfHg + jLgHf + kLfHf (4.11b)

ḢLq =HgLg + iHfLg + jHgLf + kHfLf (4.11c)

˙HHq =HgHg + iHfHg + jHgHf + kHfHf . (4.11d)

Hence, L̇Lq represents the low-frequency sub-band in the QWT domain. Figure 4.3a

represents the image decomposition to four real-valued wavelet sub-bands described by

the real part in Figure 4.2; while the decomposition in Figures 4.3b-4.3d corresponds to

the three imaginary parts of Figure 4.2.

As stated in (W. Zou and Yan Li 2007) and validated in (Ngo et al. 2018), the use

of only low-frequency sub-band is sufficient to increase the accuracy of classification in

the wavelet domain. We adopt this proposition and implement only the low-frequency

sub-band L̇Lq in the further developments.

4.4 Proposed method: Sparse Representation Classification in the Quaternion

Wavelet Domain (SRCQW)

In this section, we present the SRC method in the QW domain. In this method, training

and test samples are transformed into the QW domain. The proposed SRCQW method

is performed in two steps: dictionary construction and classification in the QW domain.

The dictionary is constructed from the training samples and mapped into the 4D space

of AQ. In the classification step, assuming a given dictionary, we first estimate the

quaternion SR of a query image by solving the novel QWLasso model applying the

novel QFISTA method (quaternion sparse coding stage in section 4.4.2.2); then we

compute the class-dependent residual to identify the label of the query image (namely

label assignment stage in section 4.4.2.3). An overview of the novel SRCQW method is

illustrated in Figure 4.4, while the main procedure is summarized in Algorithm 4.1.

4.4.1 Training phase and dictionary of low-frequency sub-bands of the QWT

In this chapter, a quaternion vector, which belongs to the basis of a quaternion dictionary

(matrix whose entries are quaternions composed of low-frequency sub-bands), is called a
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Training 
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QWT

+PCA ...|||...|||...
Quaternion 

Dictionary

Test 

samples

QWT

+PCA

Sparse Coding:
+ QWLasso

+QFISTA algo.

Label 

assignment

Figure 4.4: The framework of the proposed SRCQW method.

quaternion atom. Consider a classification problem withK classes. LetNk be the number

of training samples from the k-th class for 1 6 k 6K. The QWT is first performed on

every training sample, as shown in Figure 4.2, to obtain the low-frequency QW sub-band

(given with Eq.4.11a) as image descriptor (atom). Next, in the k-th class, Nk atoms

are arranged as vector columns of quaternions, generating hence a dictionary on which

PCA (I. Jolliffe 2011) is applied to reduce the dimension of the quaternion atoms by

compressing them onto a lower-dimensional feature space with dimension M , yielding

thus the dictionay for the class k: Ḋk =
[
ḋk1, ḋk2, ..., ḋknk

, ..., ḋkNk

]
∈ H

M×Nk , where

the quaternion atoms ḋknk
∈H

M ,nk = 1, ...,Nk. Now, using the training dictionaries

Ḋk,k = 1, ...,K, we compose the dictionary for all classes:

Ḋ =
[
Ḋ1,Ḋ2, ...,ḊK

]
=
[
ḋ1

1, ..., ḋ1
N1 , ḋ

2
1, ..., ḋ2

N2 , ..., ḋ
K
1 , ..., ḋKNK

]
. (4.12)

The total number of atoms in the dictionary Ḋ is N = ∑
k=1...KNk. Employing

Eq. 4.5, we present the dictionary Ḋ as follow:

Ḋ = D0 + D1i+ D2j+ D3k ∈H
M×N , (4.13)

where De =
[
De,1,De,2, ...,De,K

]
= [de,11 , ...,de,1N1

,de,21 , ...,de,2N2
, ...,de,K1 , ...,de,KNK

] ∈R
M×N ,

e = 0,1,2,3. Each training dictionary De presents information from a single low-

frequency sub-band only. For example, D0 is constructed by the LgLg from Eq. 4.11a.

It follows from Eq. 4.3 that a quaternion atom can be represented as a quaternion vector
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of real-value vectors:

ḋknk
= d0,k

nk
+ d1,k

nk
i+ d2,k

nk
j+ d3,k

nk
k, de,knk

∈R
M , e= 0,1,2,3, k = 1, ...,K. (4.14)

By comparing the coefficients from Eq. 4.14 with those in Eq. 4.11a, it is clear that

for the nk-th training image from class k, the entities d0,k
nk , d1,k

nk , d2,k
nk , and d3,k

nk are

respective vectors of the low-frequency sub-band for real part (LgLg), imaginary parts

(i) LfLg, (j) LgLf , and (k) LfLf . An image example for each vector is presented with

every upper left image in Figure 4.3.

4.4.2 Classification in the QW domain

In this section, finding the SR of a test sample is necessary to identify its class label.

Within this scope, we formulate the QWLasso model in the QW domain and propose

the QFISTA method to resolve this problem. Then a classifier minimizing a residual

criterion is used to identify the membership of the image.

Algorithm 4.1: Classification phase by SRCQW
Input : a test quaternion vector ẏ ∈H

M , the quaternion dictionary matrix
Ḋ ∈H

M×N for K classes in quaternion wavelet domain and the
parameter λ from Eq. 4.16.

1 Normalize the columns of Ḋ to have unit l2-norm.
2 Compute the quaternion sparse vector via the QWLasso model:̂̇x = argmin

ẋ∈HN

{∥∥∥ẏ− Ḋẋ
∥∥∥2

2
+λ‖ẋ‖1

}
(Go to Algorithm 4.2).

3 Compute the residuals: rk (ẏ) =
∥∥∥ẏ− Ḋδk

(̂̇x)∥∥∥
2

for k = 1, ...,K.

Output : identity (ẏ) = argmin
k

rk (ẏ).

4.4.2.1 Sparse Representation Quaternion Wavelet model

In (C. Zou et al. 2016), the authors extended the SRC and developed the QLasso model

to work in the AQ, where every quaternion represents the three color channels, at

every image pixel, and preserves the correlation information among the channels. In

contrast, the proposed SRCQW method uses four low-frequency sub-bands in the AQ.

In (C. Zou et al. 2016), to solve the QLasso model and calculate the sparse vector, the

authors applied the ADMM approach, while in the present study, we develop the novel

optimization algorithm, QFISTA, which allows for solving the QWLasso model defined

with Eq. 4.16. Another difference between the QLasso (C. Zou et al. 2016) and the
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QWLasso, used by the proposed SRCQW method, is that the former is formulated in

3D sub-space of the 4D space of the AQ, while the latter is formulated in the entire

4D space of the AQ. The higher dimension is expected to provide higher accuracy of

classification.

Assume unknown test image. By applying QWT we obtain the low-frequency

quaternion L̇Lq. After the reduction of its dimension with the PCA and following

Eq.4.14 we determine its form as a quaternion of approximation information ẏ =

y0 + y1i+ y2j+ y3k ∈H
M , where ye ∈R

M , e= 0,1,2,3. Accordingly, the quaternion

SR of ẏ is ẋ = x0 + x1i+ x2j + x3k, ẋ ∈ H
N , xe ∈ R

N . Then, we develop the SR

quaternion wavelet model to estimate vector ̂̇x of the quaternion sparse vector ẋ:

̂̇x = argmin
ẋ∈HN

‖ẋ‖1, s.t. ẏ = Ḋẋ, (4.15)

where Ḋ ∈H
M×N is the entire quaternion dictionary built up by the N quaternion

atoms. The symbol ‖ẋ‖1 :=∑
i |ẋi| denotes the l1-norm of the quaternion vector, which

is naturally based on the l1-norm of the real-valued vector. Inspired from (Wright,

A. Y. Yang, et al. 2008), we use Eq. 4.15 to formulate the new QWLasso model as

follows: ̂̇x = argmin
ẋ∈HN

{∥∥∥ẏ− Ḋẋ
∥∥∥2

2
+λ‖ẋ‖1

}
, (4.16)

where λ > 0 is the regularization parameter, which controls the sparsity of ẋ and provides

a trade-off between the sparsity penalty and the fidelity term. To solve Eq. 4.16, we

propose a novel gradient-based algorithm called QFISTA that we introduce in the next

sub-section..

4.4.2.2 Quaternion sparse coding stage

Inspired by the results obtained with the FISTA method (Beck et al. 2009), we develop

its version to operate in the AQ to resolve Eq. 4.16.

Paper (C. Zou et al. 2016) demonstrated that calculations in quaternions are

considerably more complex than those in real number system. This greatly increases

the complexity of solving the optimization problem in Eq. 4.16 with the novel SRCQW

method. Therefore, to simplify the solution of Eq. 4.16 (also point 2 in Algorithm 4.1),

we map the quaternion dictionary of low-frequency sub-bands to a real-valued dictionary

implemented with Algorithm 4.2. To develop the mapping, we apply Eqs. 4.3 and 4.5
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and rewrite equation ẏ = Ḋẋ in the form:

y0 + y1i+ y2j+ y3k = (D0 + D1i+ D2j+ D3k)(x0 + x1i+ x2j+ x3k). (4.17)

Then, using Eq. 4.7, the above Eq. 4.17 can be rewritten as:

y0 + y1i+ y2j+ y3k = D0x0−D1x1−D2x2−D3x3

+
(
D1x0 + D0x1−D3x2 + D2x3

)
i

+
(
D2x0 + D3x1 + D0x2−D1x3

)
j

+
(
D3x0−D2x1 + D1x2 + D0x3

)
k

(4.18)

By comparing the coefficients of i, j and k in both sides of Eq. 4.18 we obtain:



y0

y1

y2

y3


=



D0 −D1 −D2 −D3

D1 D0 −D3 D2

D2 D3 D0 −D1

D3 −D2 D1 D0





x0

x1

x2

x3


. (4.19)

Since De (e = 0,1,2,3) are real-valued matrices we solve Eq. 4.19 in the field

of real numbers. To develop the solution to Eq. 4.16, we use the operators P and

Q, which naturally arise from Eq. 4.19. Consider Ḋ = D0 + D1i + D2j + D3k ∈

H
M×N , De ∈ R

M×N , which is a quaternion matrix. There exists a unique operator

P : HM×N →R
4M×4N :

P
(
Ḋ
)

:=



D0 −D1 −D2 −D3

D1 D0 −D3 D2

D2 D3 D0 −D1

D3 −D2 D1 D0


∈R

4M×4N . (4.20)

The existence and uniqueness of P follow from Eqs. 4.17-4.19. Accordingly, for any

quaternion vector ẋ = x0 + x1i+ x2j+ x3k, ẋ ∈H
N , xe ∈ R

N , e= 0,1,2,3, we define

the operator Q : HN →R
4N such that:

Q(ẋ) :=
[
(x0)T (x1)T (x2)T (x3)T

]T
∈R

4N . (4.21)

Denote with Q−1 the inverse of Q, i.e. Q−1 (Q(ẋ)) := ẋ . As proven in (C. Zou
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Algorithm 4.2: QFISTA with constant step-size
Input :The test quaternion vector ẏ ∈H

M , the quaternion dictionary
Ḋ ∈H

M×N and regularization parameter λ ∈R.

1 Initialization: u :=Q(ẏ) ,B := P
(
Ḋ
)
,s :=Q(ẋ) ,s0 = 0,w1 = s0 ∈R

M , t1 = 1.
2 Step r. (r > 1) Compute:

i. sr = pL(wr) where pL(wr) = argmin
sr

{h(sr)}= argmin
sr

{g(sr) +ϕ(sr)} (Beck
et al. 2009) and it is computed by Algorithm 4.3, which determines the current sr,

ii. tr+1 = 1+
√

1+4t2r
2 , coefficient used in wr+1 update,

iii. wr+1 = sr + tr−1
tr+1

(sr − sr−1).

Output : ̂̇x = Q−1(sr).

et al. 2016), the operators P and Q possess the following properties:

(i) P and Q are linear;

(ii) ‖Q(ẋ)‖2 = ‖ẋ‖2, ∀ẋ ∈H
N ;

(iii) Q
(
Ḋẋ

)
= P(Ḋ)Q(ẋ) , ∀Ḋ ∈H

M×N , ∀ẋ ∈H
N ;

(iv)
∥∥∥Ḋẋ

∥∥∥
2

=
∥∥∥P(Ḋ)Q(ẋ)

∥∥∥
2
, ∀Ḋ ∈H

M×N , ∀ẋ ∈H
N .

Further, we define the operator qmat(Q(ẋ)) : R4N×1→R
N×4 (C. Zou et al. 2016):

qmat(Q(ẋ)) :=
[
x0,x1,x2,x3

]
∈R

N×4. (4.22)

Now we apply the operators P, Q and qmat on the QWLasso model in Eq. 4.16 and

map it from the AQ to the field of real numbers:

Q
(̂̇x)= argmin

Q(ẋ)∈R4N

{∥∥∥Q(ẏ)−P
(
Ḋ
)

Q(ẋ)
∥∥∥2

2
+λ‖qmat(Q(ẋ))‖1,2

}
(4.23)

Note that in Eq. 4.23 we apply the l1,2-norm because the quaternion ẋ in the l1 term

in Eq. 4.16 is mapped to a matrix in Eq. 4.23. For the sake of simplicity, we denote

u := Q(ẏ) ∈ R
4M ,B := P

(
Ḋ
)
∈ R

4M×4N , s := Q(ẋ) ∈ R
4N , and rewrite Eq. 4.23 in

the following concise form:

ŝ = argmin
s∈R4N

{
‖u−Bs‖22 +λ‖qmat(s)‖1,2

}
(4.24)
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Algorithm 4.3: The Optimal Gradient Method for Computing ‘s’
Input :Lipschitz constant L,wr,sr,1 = 0, maxIter - the maximum number of

iterations, and the parameter λ ∈R.
1 Calculate ∇f(wr) using Eq. 4.26.
2 Calculate hbest1 = h(sr,1), assign sbestr,1 = sr,1.
3 While 1 6 z 6maxIter compute

i. ∇h(sr,z), apply Eq. 4.27,

ii. sr,z+1 = sr,z − ∇h(sr,z)√
z‖∇h(sr,z)‖2

,

iii. hbestz+1 = min
{
hbestz ,h(sr,z+1)

}
,

iv. sbestr,z+1 =
{

sbestr,z , if hbestz+1 = hbestz

sr,z+1, if hbestz+1 = h(sr,z+1)
,

end while
Output : sr = sbestr,z+1.

Then, we split Eq. 4.24 into two parts and denote them: f (s) = ‖u−Bs‖22 and

g(s) = λ‖qmat(s)‖1,2. Hence, Eq. 4.24 becomes: ŝ = argmin
s∈R4N

{f(s) + g(s)}. Note that

f (s) is smooth since its second derivative exists. It follows that in the vicinity of

s,∃ w ∈ R
4N and a Lipschitz constant L, which define a quadratic form ϕ(s) that

approximates f (s):

f (s) 6 f(w) +∇f(w)T (s−w) + L

2 ‖s−w‖22

≈ L

2

∥∥∥∥s−(w− 1
L
∇f(w)

)∥∥∥∥2

2
= ϕ(s) .

(4.25)

Unlike the original FISTA, which uses l1-norm, we implement Eq. 4.24 with the

l1,2-norm. The proposed QFISTA is applied to approximate the solution of Eq. 4.16

with the help of Eq. 4.25. In order to implement the novel QFISTA and calculate the

sparse code ̂̇x, we develop the novel Algorithm 4.2 and its sub-procedure Algorithm 4.3

to solve equation pL(w) = argmin
s
{h(s)} for s, where h(s) = g(s) +ϕ(s).

To apply Algorithms 4.2 and 4.3, the formulas given below are calculated, where
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w,L, and ∇f(w) are real-valued constants:

∇f (s) =−2BT (u−Bs) = 2
(
BTBs−BTu

)
, (4.26)

∇h(s) =∇g(s) +∇ϕ(s),where (4.27)

∇g(s) = λ

[
∂g(s)
∂s1

∂g(s)
∂s2

· · · ∂g(s)
∂s4N

]
,∇ϕ(s) = L

(
s−

(
w− 1

L
∇f(w)

))
. (4.28)

4.4.2.3 Label assignment stage

In the final stage, we compute the class dependent residual for each class k, 1 6 k 6K

as: rk (ẏ) =
∥∥∥ẏ− Ḋδk

(̂̇x)∥∥∥
2
, where δk denotes the characteristic function that selects

the coefficients from ̂̇x associated with class k. For ̂̇x ∈H
N , the non-zeros entries of

δk
(̂̇x) ∈H

N are associated with the class k. Finally, the test quaternion vector ẏ is

assigned to the class providing the minimal residual.

4.5 Computational complexity

The computational complexity for the SRCQW algorithm is estimated as the number of

arithmetic operations required to calculate sbestk,z+1 in Algorithms 4.2 and 4.3 for solving

Eq. 4.16. For the purpose of simplicity, we assume that i) the number of training samples

(number of dictionary atoms) is the same for every class and equals n= max {Nk}Kk=1.

ii) each iterative algorithm requires same q iterations to converge.

We observe, from Eqs. 4.26 and 4.27, that the most computationally expensive

expressions are: BTBs−BTu and ∇g(s) +∇ϕ(s), where BTu can be precomputed.

Note B ∈ R
4M×4N ,u ∈ R

4M , where N denotes the total number of atoms in the

quaternion dictionary. We obtain that BTu = O (NM). Since N = Kn, where K is

the number of classes, we have BTu = O (nKM). Consider that s ∈ R
4N . There are

two different ways to calculate the computational complexity of the chain: BT (Bs) =(
BTB

)
s. For the left one we have BT (Bs) = O (MN +MN) = O (MN) number of

arithmetic operations. Concerning the right chain of matrix multiplication we have(
BTB

)
s =O

(
NMN +N2)=O

(
N2M

)
. Therefore, we select O (NM) =O(nKM) for

the computational complexity of BTBs.

Consider Eqs. 4.27-4.28. It is straightforward to show that ∇g(s) = O (nK) and

∇ϕ(s) = O (nK). Now, consider that each of the Algorithms 4.2 and 4.3 requires

q iterations to converge. Therefore, following Eqs. 4.24, 4.26, 4.27, we evaluate the

computational complexity of the SRCQW method as:
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O (nKM)︸         ︷︷         ︸
BT u

+q[O (nKM)︸         ︷︷         ︸
BT Bs

+q[O (nK)︸     ︷︷     ︸
∇g(s)

+O (nK)︸     ︷︷     ︸
∇ϕ(s)

]]

=O (nKM) +O (qnKM) +O
(
q2nK

)
≈O (qnKM) +O

(
q2nK

)
.

The last big-O expression implies that the SRCQW method has a computational

complexity that equals to the max
{
O (qnKM) ,O

(
q2nK

)}
.

4.6 Experimental results

In order to validate the SRCQW capabilities, we carried out experiments on four public

datasets and compare its results with several contemporary methods in the field including

SR-based methods, namely SRC (Wright, A. Y. Yang, et al. 2008), LC-KSVD (Jiang

et al. 2013), FDDL (M. Yang, L. Zhang, Feng, et al. 2014), LRSDL (Vu et al. 2017),

and SRWC (Ngo et al. 2018) as well as NNs, namely Centralined PLN (Liang et al.

2018), Distributed PLN (Liang et al. 2018), PCANet1 (T.-H. Chan et al. 2015), and

Deep/Wide Net (Alom et al. 2018).

4.6.1 Cross-validation

To evaluate the performance of the proposed SRCQW method, Monte Carlo cross-

validation (Dubitzky et al. 2007) was used. It randomly splits the dataset into a training

set and a test set and repeats this process k times. For each split, a sample appears in

either the training set or the test set, but not in both. The results are then averaged

over the k splits. The advantage of using the Monte Carlo cross-validation is that it can

substantially reduce the variance of the split sample error estimate and the proportion

of the training-test random splits does not depend on the number k (Molinaro et al.

2005). In our experiments, k is set to 10.

4.6.2 Details of datasets

The validation public databases are: the Extended YaleB face dataset (Georghiades

et al. 2001), the AR face dataset (Martinez 1998), the AR gender dataset (Martinez

1998) and a multi-class object category dataset – the COIL-100 (Nene et al. 1996).

Figure 4.5 shows examples from these datasets (Georghiades et al. 2001; Martinez 1998;

Nene et al. 1996), whose descriptions are summarized in Table 4.1.

i. The Extended YaleB dataset (Georghiades et al. 2001) contains face images of 38
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people. For every face, about 64 images are taken under various conditions. For

each face, we randomly select 30 images for training, making a total number of

1140 training and 1274 test images.

ii. The AR face dataset (Martinez 1998) contains frontal faces of 126 people and 26

images are available for each face. In this experiment, we use 100 people (50 males

and 50 females). For every person, 20 images are randomly selected for training

and 6 for testing.

iii. The AR gender dataset (Martinez 1998) is generated by choosing 14 non-occluded

images per individual from 100 people (50 males and 50 females), having total of

1400 images. We randomly select 350 images from each class (male/female) for

training; the remaining images are used for testing.

iv. The COIL-100 dataset (Nene et al. 1996) consists of 7200 color images of 100

objects. For every experiment, we randomly select 10 images of each object for

training and the rest (62 images) for testing.

Table 4.1: Description of the four datasets used in this chapter. In columns 3, 4, and 5: number of
classes, number of training samples, and number of test samples, respectively.

Database Image size #Class #Training #Test Feature dim
Ext. YaleB 192x168 38 N = 1140 1274 M = 2400
AR face 165x120 100 N = 2000 600 M = 2200

AR gender 165x120 100 N = 700 700 M = 1700
COIL-100 128x128 100 N = 1000 6200 M = 400

4.6.3 Effect of varying parameter λ on the classification accuracy

Figure 4.6 shows the performance of the proposed SRCQW on three datasets using

different values of the regularization parameter λ (Eq.4.16, Algorithm 4.2) from the

discrete set [10−5,10−4,10−3,10−2,10−1] (C. Zou et al. 2016). We observe that the

highest accuracy is obtained with λ= 10−3 for the face datasets and with λ= 10−2 for

the COIL-100. Hereafter, we utilize these λ values.

4.6.4 Overall classification accuracy

To evaluate the SRCQW classification performance, we compare it with five contem-

porary SR-based methods on the four datasets. The chosen methods comprise a

fundamental one (Wright, A. Y. Yang, et al. 2008), its elaborations (Jiang et al. 2013;
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(a) Ext. YaleB (Georghiades et al. 2001)

(b) COIL-100 (Nene et al. 1996)

(c) AR face (Martinez 1998)

(d) AR gender (Martinez 1998)

Figure 4.5: Examples from the four datasets.

Figure 4.6: Correlation between λ (x axis), in Eq.4.16 and Algorithm 4.2, and accuracy.
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Table 4.2: Mean accuracy (%) of the proposed SRCQW and contemporary SR-based methods.
Numbers in parentheses show the training set size per class. Best results are marked in bold.

SRC LC-KSVD1 LC-KSVD2 FDDL LRSDL SRWC SRCQW
Ext. YaleB (30) 97.5 97.1 97.8 97.5 98.8 98.1 98.9
Ext. YaleB (55) 99 N/A N/A 98.77 99.3 98.7 99.85
AR (20) 97.6 97.8 97.7 96.2 98.8 98.4 98.9
ARgender (350) 92.6 88.4 90.1 93.7 95.4 96.5 98.6
COIL-100 (10) 81.2 81.4 81.4 77.5 84.4 81.3 84.8

Vu et al. 2017; M. Yang, L. Zhang, Feng, et al. 2014), and a SRC in the wavelet

domain (Ngo et al. 2018). For each dataset, we execute the code ten times in Matlab

environment using same number of training samples for all runs, but randomly select

different test set for every run. The average classification rates are reported in Table 4.2.

It is evident that the proposed SRCQW outperforms the competitors in all cases. In

particular, a substantial improvement, up to 2.1%, has been made for the ARgender

dataset, while in the classification of the Ext. YaleB database, the SRCQW achieved the

very high 99.85%. For the object dataset COIL-100, except for the LRSDL method, the

new SRCQW improves the classification accuracy with up to 3.4%. Compared to the

LC-KSVC1 and LC-KSVC2, the proposed SRCQW has superior performance for object

dataset (COIL-100). Indeed, as it has been noticed for the SRWC method in chapter 3,

which has slightly lower performance than LC-KSVD2 (also in Table 4.2), the proposed

SRC in the QW domain shows better performance on object dataset (COIL-100), thus

demonstrating the benefits of the shift-invariance property of QWT.

Table 4.3: Comparision of the novel SRCQW with recent Neural Networks. In (T.-H. Chan et al.
2015; Liang et al. 2018), results are not reported on COIL-100 database. It is the same case for the two

face datasets in (Alom et al. 2018).
Ext. YaleB AR face COIL-100

#Training #Test Acc #Training #Test Acc #Training #Test Acc
Centralined PLN (Liang et al. 2018) 1600 800 96.6 1800 800 95.3 N/A N/A N/A
Distributed PLN (Liang et al. 2018) 1600 800 96.8 1800 800 95.6 N/A N/A N/A
PCANet1 (T.-H. Chan et al. 2015) N/A N/A 97.8 N/A N/A 98 N/A N/A N/A
Deep Net (Alom et al. 2018) N/A N/A N/A N/A N/A N/A 5000 2200 94.1
Wide Net (Alom et al. 2018) N/A N/A N/A N/A N/A N/A 5000 2200 96.8
SRCQW 1596 818 99.6 1800 800 98.5 5000 2200 95.6
SRCQW 1140 1274 98.9 1500 1100 98 N/A N/A N/A

To further reveal the advantage of the proposed SRCQW, we compare it with five

recent contemporary NNs approaches. In (Liang et al. 2018), the authors trained a

large deep architecture with a progressive learning network in a distributed setup and

used the ADMM optimizing algorithm. PCANet1 (T.-H. Chan et al. 2015) is a deep

learning network, which is constructed on cascaded PCA, binary hashing, and blockwise

histograms. The authors employed PCA to learn multistage filter banks. Then binary
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hashing and block histograms for indexing and pooling were implemented. In (Alom

et al. 2018), deep and wide convolutional NNs (CNNs) are implemented within the

Energy Efficient Deep Neuromorphic Networks framework released by IBM in 2016.

Table 4.3 reveals that the proposed SRCQW outperforms the five NNs on the two

face datasets despite using less training images, as it can be seen in the last row from

Table 4.3 (1140 instead of 1600 with Ext. YaleB and 1500 instead of 1800 with AR

face). When using nearly the same number of training images, as it is depicted in the

penultimate row from Table 4.3, SRCQW achieves very high accuracies of 99.6% on the

YaleB and 98.5% on the AR classification. With COIL-100 dataset, SRCQW obtains

very high result (95.6%) with such complicated dataset and ranks 2nd in the table.

4.6.5 Accuracy versus feature dimensions

Figure 4.7: Effect of various feature dimensions (shown on X axis) on the overall accuracy.

In order to study the classification accuracy of the novel SRCQW method and

its sensitivity to the dimension (M) of feature vectors (obtained after PCA for the

reduction of its dimension), we conducted experiments with varying dimensionsM of the

atoms used in the dictionary. For this purpose, we used the four baseline datasets and

illustrated the results in Figure 4.7. The maximum overall accuracies on the Ext. YaleB,

AR face, AR gender, and COIL-100 are 98.9%, 98.92%, 98.57%, and 84.74% respectively,

obtained for dimensions 2400, 2200, 1700, and 400 respectively. These results tell that

if the dimension of the atom increases, the accuracy of face recognition increases as

well, while in case of COIL-100, the accuracy of objects recognition decreases when the

dimension increase from 400 to 1100.
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4.6.6 Accuracy versus size of training set

(a) Ext. YaleB (b) AR face

(c) ARgender (d) COIL-100

Figure 4.8: Comparison of SRCQW with main competitors on the four datasets, with overall
classification accuracy (%) as a function of the number of training samples per class.

To further show the SRCQW capabilities, we investigate its robustness according

to the size of the training set. Hence, we conducted additional experiments where we

vary the number of training samples per class. For the purpose of comparison, we

use again the datasets: Ext. YaleB, AR face, AR gender and COIL-100. Figure 4.8

shows that the accuracy curve of SRCQW is above the curves of the other methods.

Moreover, the novel SRCQW method achieved an accuracy of 90% on the YaleB, 96%

on the AR face, and about 85% on the COIL-100 databases using 10 training samples.

One may derive from Fig. 4.8 that the higher the number of atoms is used, the higher

the recognition rate is. Thus, the highest recognition rate of the proposed SRCQW is

99.85% for the Ext. YaleB, achieved for 55 atoms per class. Further, we concluded

throughout experiments that to receive accuracy over 80%, we need to use at least 10%

of the total images of the dataset for training.
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4.6.7 Analysis of sparsity by visualizing the sparse representation coefficients

Analogous to the work in section 3.4.4, to experimentally demonstrate the advantage of

quaternion wavelet over classical wavelet and real domain, we conducted an analysis

of the sparsity of the representation coefficients obtained from the proposed SRCQW,

SRWC, and SRC methods, using the visualization of i) the sum of absolute sparse codes

for different test samples from a same class, ii) the sparseness measure.

i. The sum of absolute sparse codes: One testing class from the AR face dataset

is used for illustration. For this purpose, we calculate the sum of sparse codes of six

test samples from ’class 50’ in the AR face dataset. As described in Table 4.1, 2000

samples are used for training. Thus, each sparse code has the dimension of 2000

entries as illustrated along the X axis in Figure 4.9. Each colored rectangle from

the horizontal bars represents one class (1 to 100 classes) for a subset of dictionary

atoms. One can see that the three graphs possess high peaks at the 50th colored

rectangle or around the 1000th component of the quaternion SR vector, which

means that the test samples are well labeled as ’class 50’. By comparison with

SRC and SRWC, the proposed SRCQW provides better discrimination between

the coefficients associated with ’class 50’ and those associated with other classes.

(a) SRC (b) SRWC (c) SRCQW

Figure 4.9: Sparse codes generated by the SRCQW, SRC, and SRWC methods. X axis shows the
sparse codes dimensions, Y axis shows the sum of sparse codes for different test samples.

ii. The sparseness measure: Another way to visualize the sparsity is the sparseness

measure proposed in (Hoyer 2004). We adapt this concept for a quaternion sparse

vector ẋ as follows:

sparseness(ẋ) =

√
N −‖ẋ‖1/‖ẋ‖2√

N − 1
, (4.29)

where N is the dimension of ẋ. The bigger sparseness(ẋ) is, the sparser ẋ

is (Hoyer 2004). To illustrate this concept, we apply Eq. 4.29 and calculate the

sparseness values of the sparse codes obtained with the AR face dataset. With 600
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test samples (Table 4.1), we can estimate 600 quaternion sparse codes and then

calculate 600 corresponding sparseness values. These values are illustrated by the

histogram in Figure 4.10. One can see that the sparseness values of the SRCQW

are averagely bigger than those of the SRWC and SRC (0.64 vs 0.62 and 0.57).

More precisely, the largest sparseness value of SRCQW, SRWC, and SRC is 0.752,

0.716, and 0.665, respectively (Figure 4.10). Hence, we conclude that SRCQW

provides a higher sparseness, which leads to better accuracy of classification.

(a) SRC (b) SRWC (c) SRCQW

Figure 4.10: Sparseness histogram.

In conclusion, the SRCQW, which is performed in the QW domain, promotes more

sparsity of features than SRWC in the Wavelet domain. The proposed method provides

the largest sparsity level, which contributes to the highest accuracy of classification.

4.6.8 Convergence rate

Figure 4.11: Comparison of convergence rate and running time of the proposed SRCQW with
SRC (Wright, A. Y. Yang, et al. 2008) and SRWC (Ngo et al. 2018) methods.

To compare the convergence rate of the proposed SRCQW versus conventional

SRC (Wright, A. Y. Yang, et al. 2008) and SRWC (Ngo et al. 2018) methods, we apply

them on the AR face dataset. Figure 4.11 shows the cost functions and running time of

the three methods on the interval of [0,300] iterations. One may observe that SRCQW

has smaller rate of convergence compared with the other two. Moreover, the higher

cost for SRCQW comes from the fact that it works in the 4D space of the AQ, and is a

trade off for the very high accuracy of 99.85% and 99.6% (Table 4.2,4.3).
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4.7 Discussion and Conclusion

The main contribution of this chapter is the development of the novel and efficient

sparsity-promoting SRCQW method for image classification in the AQ, where features

are described by the low-frequency QW sub-bands. Hence, the SRCQW method is the

first SR-based one that uses information from the quaternion wavelet domain to solve

the QWLasso minimization problem for classification in the 4D space of the AQ. Thus,

we developed the novel gradient-based method QFISTA to calculate the sparse vector

in the AQ defined over wavelets. Also, in QFISTA we develop an upper bound of f (s)

(Eq. 4.25), which simplifies the calculations.

The advantage of using quaternions is that they provide additional information,

which comes from the direction of the vector of the quaternion in the 4D space of the

AQ. This additional information increases the separability of the atoms, resulting in

improvement of classification accuracy, which led to the achievement of 99.85% with

YaleB dataset. To the best of our knowledge, no other method has reported such an

accuracy of face identification. Another advantage of the SRCQW compared to other

SRC in a transform domain such as DWT, is that the QWT has near shift-invariance and

promotes higher sparsity of features than DWT, which make it particularly appropriate

for data representation and discrimination. Hence, the QW domain makes the SR a

very suitable representation learning method for SRC, providing robustness and high

accuracy of classification.

Moreover, the SRCQW method is robust according to the number of training images

as shown in Figure 4.8. For example, in the case of the COIL-100 dataset we use only

10 images per object for training and 62 for testing. This observation also shows the

advantage of the SRCQW method over the NNs, which are very powerful and flexible

tools for classification but need a large number of training samples to achieve high

accuracy. In this sense we may state that, the NNs are useful classifiers if hundreds or at

least tenth of thousands of training samples are available, while the SRCQW approach

proved (see Table 4.3) to be optimal when medium-sized training dataset is available.

In the light of the FISTA algorithm (Beck et al. 2009) and due to the convexity

of Eq. 4.24, the proposed QFISTA guarantees global convergence, while the methods

in (Yi Xu et al. 2015; C. Zou et al. 2016) do not. The same statement holds for the

NNs which usually need a number of parameters and functions to be correctly selected.

On the other hand, the SRCQW method needs the selection of a single parameter (λ)
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for which a few values should be tested (section 4.6.3).

A drawback of the novel SRCQW is its relatively high computational complexity,

which is the trade off for the very high accuracy of 99.85%. Also, the method is inefficient

for images where the background occupies a larger area than the target object.

In chapter 6, we will extend the application of the SRCQW method to skin lesion

images. Further, this method promises a strong connection to the application of deep

learning for the purpose of non-linear mapping.
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5.1 Introduction

Over the last decades, sparse representation (SR) has been well studied and successfully

applied on image classification (Wright, A. Y. Yang, et al. 2008) as well as many other

image processing problems (Elad 2010). Recently, the trend of deep learning has also

brought remarkable success to the research areas. Specifically, SR is known as one of

the most successful approaches that produces a compact and simple representation of

the data using a small number of meaningful features. Further, SR correlates with the

visual neurons properties in the visual brain area (Olshausen and Field 1996).

However, the performance of SRC can be compromised when dealing with complex

data whose samples from different classes may have high correlation. Another limitation

of SRC is due to the way of using all the training images to form the dictionary, which

is detrimental to the sparse code solver, especially in the case of big databases. For

this reason, it is inevitable to develop an efficient approach to optimally represent the

complex data by extracting the most meaningful features for classification purpose.

Note that deep learning models have been successfully applied in many domains. More

precisely, unsupervised autoencoders have been widely applied in several applications,

especially in image processing (Papyan et al. 2017).

To further boost the classification accuracy for complex and big data, we propose,

in this chapter, a novel CAE model regularized with sparsity constraint in the wavelet

domain. We can consider this model as a hybrid approach between SRC (Wright,

A. Y. Yang, et al. 2008) and CAE (Papyan et al. 2017) in the wavelet domain, which is

employed to extract high discriminant features, being inspired from the proposed SRWC

in chapter 3. The image features described by the complementary information of the

low-frequency wavelet coefficients, which represents the most principal component of the

image, are treated as the input to the model. Further, the loss function is regularized by

a sparsity constraint in the latent space of the CAE. This allows the network to better

learn the discrimination between the samples of different classes, and so, to result in a

more accurate classification. Hence, this approach better classifies images with high

variation in their contents, for example, the SVHN (Netzer et al. 2011) dataset, used in

Section 5.4.

More precisely, the proposed method is inspired by the two latest methods, Deep

Sparse Representation Classification (DSRC) (Abavisani et al. 2019) and Sparse Repre-

sentation Wavelet based Classification (SRWC) (Ngo et al. 2018). However, unlike the
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DSRC method (Abavisani et al. 2019), the proposed model contributes to the classifi-

cation improvement by utilizing the wavelet features in order to exploit the sparsity

of wavelets. Another key contribution is construction of a deep CAE architecture (see

Table 5.1), which enhance the performance of classification and significantly decreases

the number of network parameters. Moreover, the classification criterion from the

residuals is based on a residual-based probabilistic rule (Wei et al. 2016) and not on

minimum residuals criterion (Abavisani et al. 2019)

The remainder of this chapter is organized as follows. Section 5.2 presents related

works. Then, the methodology of the proposed classification scheme is presented in

Section 5.3. Subsequently, Section 5.4 discusses the experimental results before a

conclusion in Section 5.5.

5.2 Related works

In the context of image classification, it is very important to find a suitable representation

that captures the most meaningful properties of the data. Among the representation

methods, SR has achieved great performances the signal and image processing litera-

ture (Elad 2010; Lu et al. 2014), where it is considered as a tool with the advantages of

presenting high robustness to noise and other kinds of degradation (Wright, A. Y. Yang,

et al. 2008).

A good representation of image features contributes as a main key to the success in any

complex classification system. Among the explosive interests toward machine learning,

deep learning models including VGG19 (Simonyan and Zisserman 2014), ResNet50 (He

et al. 2016), Inception (Szegedy, Vanhoucke, et al. 2016), and WideResNet (Zagoruyko

et al. 2016) have been developed and considered as powerful tools for learning data

representation.

Taking advantage of sparsity, fusing neural networks with SR is a promising approach

for image classification. In this respect, in (F. Li et al. 2018), the authors proposed

a sparse AE-based model in order to improve the classification accuracy, by learning

the SR using `1/2 sparse regularization as a constraint on the hidden representation.

Later, a CAE model fused with SRC (Wright, A. Y. Yang, et al. 2008), namely Deep

Sparse Representation Classification (DSRC) model, was proposed. Its main idea is to

a CAE to learn SR and estimate the sparse coefficients for classification. More precisely,

embedding features are extracted from the input images by the encoder through a
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non-linear mapping. These features are then fed to the sparse coding layer to find the

sparse codes. Finally, the recovered embedding features are transferred into the decoder

to reconstruct the images. In the training stage, the encoder-decoder and sparse coding

are updated simultaneously. The resulting sparse codes are exploited to predict the

class labels of test samples using the minimum reconstruction residual as mentioned in

conventional SRC method (Wright, A. Y. Yang, et al. 2008). However, the conventional

residual criterion is the drawback of DSRC method because it is not discriminant when

the data between classes are highly correlated.

To further enhance the classification performance for large and complex datasets, a

novel CAE model with sparsity regularization in the wavelet domain is introduced in

the next section. The method benefits from the advantages of neural network, sparse

representation and wavelet transform through the low frequency sub-bands.

5.3 Proposed method: Convolutional Autoencoder Sparse Representation Wavelet

based Classification (CAESRWC)

In this section, we describe the newly proposed method, namely Convolutional Au-

toencoder based Sparse Representation Wavelet Classification (CAESRWC), to deal

with classification problem of big and complex datasets. When comparing to recent

deep learning-based methods (He et al. 2016; Simonyan and Zisserman 2014; Szegedy,

Vanhoucke, et al. 2016; Zagoruyko et al. 2016), our method validates its enhanced

performance as well as space efficiency with small number of network parameters.

The proposed method benefits from both the learning deep CAE, by providing the

latent space with structured features in the wavelet domain, and the sparse coding,

by providing sparse coefficients for the classification stage. Furthermore, the proposed

method takes advantage of the wavelet domain, which promotes sparsity to enhance the

classification reliability. As proved in (W. Zou and Yan Li 2007), using only the approx-

imation coefficients from the low-pass sub-band, which causes better discrimination (see

Section 5.3.1), will improve the classification accuracy.

The proposed classification scheme includes four main modules as illustrated in

Fig. 5.1 and described below:

• The Wavelet Transform extracts the LL wavelet coefficients X of the original

image I (including test or validation samples and training samples).
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Figure 5.1: End-to-end architecture of the proposed CAESRWC.

• The Encoder extracts the encoding features Y in the latent space, with the

extracted LL wavelet coefficients X as input.

• The Sparse Coder finds the sparse codes of the encoding features Y and yields

the recovered encoding features Ŷ (concatenating the recovered encoding features

and the training encoding features) to be fed into the decoder.

• The Decoder calculates from the sparse encoding Ŷ and a reconstruction X̂ close

to the original input X.

To train the autoencoder, the loss function is formed by minimizing both the

reconstruction error and the sparse regularization terms. Then we exploit the estimated

sparse codes of the encoding features to predict the class labels with the help of a

residual-based probabilistic model.

Let Xtrain ∈R
m×ntr , Xval ∈R

m×nval , and Xtest ∈R
m×nte be the given vectorized

LL wavelet sub-bands of the training, validation, and testing data, respectively. Likewise,

Ytrain ∈ R
my×ntr , Yval ∈ R

my×nval , and Ytest ∈ R
my×nte are their corresponding

encoding features. In our experiments (section 5.4.2), Xtrain, Xval, and Xtest are three

sub-packages extracted from the observed dataset for training, validation, and testing

in the proportion of 0.8, 0.1, and 0.1, respectively (ntr = 0.8 ∗n,nval = nte = 0.1 ∗n).

The encoder input is defined as X = [Xtrain,Xref ] ∈R
m×(ntr+nref ) where ”ref” refers

to ”validation” or ”test”.

5.3.1 Wavelet transform block

In this pre-precessing step, approximation wavelet sub-bands of the original images are

extracted to feed the autoencoder. We convert each color image into gray-scale level
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and apply the 5-level Haar wavelet transform. To further analyze the discrimination

capability of each wavelet decomposition level, we conduct an analysis where the

discrimination index of each level is computed using the images from two random classes

of the observed data. In this analysis, we use the fisher ratio defined below as the

discrimination index.

v = (µ1−µ2)2

σ2
1 +σ2

2
, (5.1)

where µ1,µ2,σ1,σ2 are mean and standard deviation values of the normalized approxi-

mation coefficients of images from the two classes.

Figure 5.2: Discriminant analysis based on different decomposition levels for various standard
datasets.

It can be observed from Fig. 5.2 that three resolution levels are sufficient to obtain

a good discrimination for different standard image datasets.

5.3.2 Sparse coding block

The sparse coder plays an important role in this architecture. It estimates the sparse

representation of the encoding features Y = [Ytrain,Yref ] ∈R
my×(ntr+nref ) in the latent
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space by solving the following Lasso optimization problem:

min
S

∥∥Yref −YtrainS
∥∥2
F +λ1‖S‖1 , (5.2)

where S ∈R
ntr×nref is the sparse coefficients matrix and λ1 is a positive regularization

parameter that controls the sparsity penalty and the fidelity between the input Y and

the estimated output Ŷ of the sparse coder. From (5.2), the estimated sparse encoding

features Ŷref can be considered as the output of a Fully Connected Network (FCN)

with an input layer representing the encoded features vector Ytrain. Hence, Ŷref can

be computed as Ŷref = YtrainS ∈ R
my×nref . Forming the sparse coder’s output as

Ŷ = [Ŷtrain,Ŷref ], problem (5.2) can be reformulated as:

min
S

∥∥∥Y− Ŷ
∥∥∥2

F
+λ1‖S‖1 , (5.3)

5.3.3 Loss function block

The proposed CAE-based sparse representation wavelet classification model will be

trained based on an appropriate loss function which aims to:

• Learn a relevant representation of the input wavelet sub-bands X by a non linear

reduction method, using the CAE instead of the linear PCA as performed in

SRWC (Ngo et al. 2018). This results in reduced encoding wavelet features Y

which allow to recover the reconstructed sub-bands X̂ via X̂ = decoding(Ŷ) =

decoding(sparse coder(Y)). Thus, the loss LAE due to the reconstruction error

of the CAE between the input sub-band X and the reconstructed sub-band X̂ can

be calculated as:

LAE =
∥∥∥X− X̂

∥∥∥2

F
(5.4)

• Estimate the SR of the encoding features in the latent space by minimizing both

the reconstruction error (i.e. first term in (5.3)) and the sparse regularization (i.e.

second term in (5.3)). Thus, the loss related to the SR layer, LSR, is defined as

follows:

LSR = min
S

∥∥∥Y− Ŷ
∥∥∥2

F
+λ1‖S‖1 (5.5)



80 Chapter 5. Contribution to the Convolutional Autoencoder SRC

Therefore, the global loss function Lt of the proposed architecture composing of the

CAE loss function LAE and the SR one LSR is defined as:

Lt = min
S

∥∥∥Y− Ŷ
∥∥∥2

F
+λ1‖S‖1 +λ2

∥∥∥X− X̂
∥∥∥2

F
(5.6)

5.3.4 Classification stage

Once the training stage is completed, the estimated sparse codes are exploited to predict

the labels of the test samples in the classification stage. More precisely, we utilize a

residual-based probabilistic rule (Wei et al. 2016) that has been proven to be better

compared to the conventional approach based on the truncated residual scheme (Wright,

A. Y. Yang, et al. 2008) in the case of highly inter-correlated data. Firstly, we compute

the residual rc for each class c by:

rc (xtest) = ‖ytest−Ytrainδc (s)‖22
‖δc (s)‖22

, (5.7)

where xtest is the approximation sub-band of the observed sample in Xtest, while ytest
is its embedding feature vector, and s is the corresponding sparse vector s in the sparse

matrix S.

By using the probability value associated with each residual rc based on the softmax

function, the label of the test sample xtest can be predicted by:

class (xtest) = argmax
c

(pc) = argmax
c

(
e−rc∑k
c=1 e−rc

)
, (5.8)

where pc denotes the probability that xtest belongs to class c, while k is the number of

the classes.

From (5.8), it is evident to see that 0≤ pc ≤ 1 and ∑k
c=1 pc = 1. However, the test

sample xtest belongs to class c if the probability pc is higher than a threshold (set

to 0.99 in our experiments). Otherwise, its label is determined using the minimum

residual in (5.7). Compared to the truncated residual criterion of the conventional SRC

method (Wright, A. Y. Yang, et al. 2008), this probability judgement rule is a ratio

of the basic residual term of SRC approach (Wright, A. Y. Yang, et al. 2008) to the

`2-norm of the sparse code. This helps in overcoming the drawback of conventional SRC

to classify highly inter-correlated datasets.
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5.4 Experimental results

To evaluate the capability of the proposed method, we conduct various experiments and

compare the results with recent state-of-the art image classification methods.

5.4.1 Experimental settings

Layer Output Shape Kernel Param#

Encoder

InputLayer (None, 48, 48, 1) ∅ 0
Conv2D-1 (None, 48, 48, 10) 1×3×3×10 100
Max-pool-1 (None, 24, 24, 10) ∅ 0
Conv2D-2 (None, 24, 24, 20) 1×3×3×20 1820
Max-pool-2 (None, 12, 12, 20) ∅ 0
Conv2D-3 (None, 12, 12, 30) 1×1×1×30 630
Max-pool-3 (None, 6, 6, 30) ∅ 0

Sparse
Layer

Dense-1 (None, 6, 6, 30) ∅ 930
Dense-2 (None, 6, 6, 30) ∅ 930

Decoder

Conv2D-4 (None, 6, 6, 30) 1 1 1 30 930
Upsampling1 (None, 12, 12, 30) ∅ 0
Conv2D-5 (None, 12, 12, 20) 3×3×3×20 5420

Upsampling2 (None, 24, 24, 20) ∅ 0
Conv2D-6 (None, 24, 24, 10) 3×3×3×10 1810

Upsampling3 (None, 48, 48, 10) ∅ 0
Conv2D-7 (None, 48, 48, 1) 3×3×3×1 91

Param Total parameters: 12, 661
Trainable parameters: 12, 661

Table 5.1: Description of the proposed model’s parameters

We carry out the training process of the proposed model using Tensorflow 2.0, and

NVIDIA Tesla T4 GPU. Our model is trained using the momentum Adam optimizer

with the learning rate 1e− 3 while applying a decay of 0.9. To train this model, a

two-stage approach is considered. In the first one, considered as a pre-trained stage, the

training process is launched without using the sparse coding layer, like a traditional

CAE model, in 100 epochs. Then, in the second stage, the overall model including the

sparse coding layer is trained in 900 epochs. The summary of the end-to-end model can

be found in Table. 5.1. The number of neurons of the input layer corresponds to the

dimension of the input approximation wavelet sub-band. We use the kernel size of 1× 1

for the third convolution layer while the size of 3×3 is used for the rest convolution layer.

To deal with overfitting, we use the dropout and random permutation cross-validation

in our experiments. Finally, the parameters λ1 and λ2 in (5.6) are set to 10 and 1,

respectively.
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5.4.2 Datasets

In this section, we evaluate our method against state-of-the art SR-based methods

(SRWC (Ngo et al. 2018), FDDL (M. Yang, L. Zhang, Feng, et al. 2011), LC-KSVD2

(Jiang et al. 2013)), and DSRC(Abavisani et al. 2019)). Two digits datasets (USPS

(Hull 1994) and SVHN (Netzer et al. 2011)), three face datasets (AR face (Martinez

1998), YaleB (Georghiades et al. 2001) and UMDAA-01 (Heng Zhang et al. 2015)), one

object dataset COIL-100 (Nene et al. 1996), and AR gender dataset (Martinez 1998)

are considered in our experiments. Some examples of each dataset are shown in Fig. 5.3.

These datasets can be briefly described as follows:

(a) USPS (Hull 1994) (b) SVHN (Netzer et al. 2011)
(c) UMDAA-01 (Heng Zhang

et al. 2015)

(d) YaleB (Georghiades et al.
2001)

(e) AR (Martinez 1998) (f) Coil-100 (Nene et al. 1996)

Figure 5.3: Some data samples from the six employed datasets.

• USPS (Hull 1994) is the handwritten digits dataset, which consists of 7291

training gray-scale images of ten digits (0-9).A subset of 2000 samples is considered

in our experiment. Hence, 1600, 200, and 200 samples are randomly selected for

the training, validation, and testing, respectively.

• Street view house numbers (SVHN) (Netzer et al. 2011) is a real-world

dataset used for object recognition methods. There are over 600,000 labeled

real-world images of house numbers obtained from Google Street View images

in this dataset. A subset of 2000 samples corresponding to 10 classes has been

rcpnsider. Hence, 160, 20, and 20 samples per class are used for the training,

validation, and testing, respectively.

• AR face (Martinez 1998) contains over 4,000 color images relating to 126

people’s faces (70 men and 56 women). In our experiments, a subset of 2000
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samples corresponding to 100 classes are considered, where 1600, 200, and 200

samples are used for the training, validation, and testing, respectively.

• YaleB face (Georghiades et al. 2001) consists of 5760 single light source

pictures of 10 subjects observed under 576 viewing conditions. In our experiments,

we retained a subset of 2000 samples where 1600, 200, and 200 samples are

randomly selected for the training, validation, and testing, respectively.

• UMD mobile face (Heng Zhang et al. 2015) consists of 750 front-facing

camera videos of 50 users captured by smartphones. In our experiments, we

randomly selected 2500 images corresponding to 50 classes where 2000, 250 and

250 samples are used for training, validation, and testing, respectively.

• COIL-100 (Nene et al. 1996) consists of 7,200 color images corresponding to

100 objects. Then, 4800, 1200 and 1200 samples are randomly selected for the

training, validation, and testing, respectively.

• AR gender (Martinez 1998) is the last considered dataset which consists of

2,600 face images corresponding to 50 males and 50 females taken under 26 viewing

conditions. In our experiments, 2,000, 300 and 300 images are randomly selected

for training, validation, and testing, respectively.

5.4.3 Performance and comparison

The overall accuracy results of the proposed methods and contemporary ones are

reported in Table. 5.2 where the best values are highlighted in bold.

Method

Acc. (%) SRC FDDL SRWC LC-
KSVD2 DSRC CAE

SRWC
USPS 87.78 91.34 95.45 87.45 96.25 96.82
SVHN 15.71 22.54 28.21 35.31 67.75 68.24
ARface 97.61 96.16 98.39 97.70 98.12 98.37

ARgender 93.0 94.0 94.2 86.8 96.48 96.54
YaleB 97.54 97.52 98.06 97.80 97.20 98.35

UMDAA-01 79.00 81.22 85.29 84.82 93.39 95.10
COIL 100 91.16 88.22 92.29 91.42 91.12 92.35

Table 5.2: Classification accuracy (%).

One can see from Table. 5.2 that the proposed method CAESRWC outperforms

the state-of-the art methods for most of the employed datasets. The proposed method
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ranks second with AR face dataset (Martinez 1998) and is very close to the SRWC

method (Ngo et al. 2018) (i.e. 0.02%).

To further validate the advantage of the proposed method over deep neural networks,

which are well known to be effective only with large scale training data, we propose

to analyze the accuracy of different deep learning based methods as a function of the

number of training samples. For that, four subsets are formed by randomly choosing 20%,

40%, 60% and 80% of the sample of each dataset. Then, we separate each subset into

training/validation/test samples and conduct the experiments on different classification

methods. Fig. 5.4 illustrates the accuracy of these methods as a function of the training

size on six different datasets.

One can see from Fig. 5.4 that the modern deep learning based models are sensitive

to the training size. They perform a significant drop in accuracy when the training

size is relative small. This is an inevitable drawback of moden trained models. In the

meantime, the proposed method is superior to the others including DSRC method and

appears to be more robust to the number of training samples.

Finally, a comparison between different deep learning based methods in terms of the

network parameters has been studied as shown in Table 5.3. The number of parameters

of the proposed method are much smaller than the other methods. Obviously, the

reduced number of parameters explains the good behavior of the proposed method with

limited amount of training samples. Moreover, a small sized model allows to achieve

gain in terms of storage memory.

VGG ResNet Inception Wide
ResNet DSRC CAE

SRWC
#param 138M 25.6M 23.8M 8.8M 24.5K 12.7K

Table 5.3: Comparison of the number of network parameters between different deep learning methods.
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(a) USPS (Hull 1994) (b) SVHN (Netzer et al. 2011)

(c) UMDAA-01 (Heng Zhang et al. 2015) (d) YaleB (Georghiades et al. 2001)

(e) AR (Martinez 1998) (f) Coil-100 (Nene et al. 1996)

Figure 5.4: Effects of the size of the employed subsets of data on the accuracy for the different deep
learning methods.
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5.5 Conclusion

In this chapter, a novel classification method fusing the sparse representation and

deep learning model has been proposed in the wavelet domain. More precisely, the

method relies on a convolutional autoencoder architecture and a sparse latent layer

applied to the low-pass sub-bands. Extensive number of experiments are carried out on

different datasets and reveal the advantages of the proposed method over other recent

state-of-the-art deep learning based approaches. For the future work, instead of using

only the approximation sub-band, we will investigate the effect of high-pass sub-bands

as well as other wavelet transforms rather than Haar wavelet on the classification.
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6.1 Introduction

Melanoma is a type of skin lesion that mostly develops in the pigment-producing cells,

also called melanocytes which are responsible for the production of melanin. By leading

to 9000 deaths a year and accounting for about 75% of deaths associated with skin

cancer, it is considered as the most dangerous form of skin cancer(Jerant et al. 2000).

The American Cancer Society estimated that about 105540 new cases of melanomas

would be evaluated in the United States in 2019 (Siegel et al. 2019). Fortunately, if

melanoma is diagnosed early, it can be cured properly to enhance the survival rate of

patients (Balch et al. 2001).
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In order to improve melanoma detection the dermoscopy technique was developed.

Dermoscopy is a noninvasive skin imaging technique of acquiring a magnified and

illuminated visualization of a subsurface structure of skin to increase the clarity of

its spots (Binder et al. 1995). By eliminating surface reflection of skin and using

cross-polarized light, the dermoscopy enhances the visual effect of deeper levels of

skin and hence provides more details to increase the discrimination between lesions.

Dermoscopy assessment is widely used in the clinical diagnosis of melanoma and obtains

much higher accuracy rates than evaluation by naked eyes (Silveira et al. 2009). On

the other hand, early detection of melanoma is classically evaluated with physical

examinations of skins based on morphological features such as atypical pigment network,

dots, globules, streaks, pseudopods, blue-whitish veil, regression pattern, atypical

vascular pattern, structureless areas. For example, the presence of dots and globules is

associated with increased probability of melanoma. This holds especially if more than

three of them are black or dark brown colors, and are located on the periphery (Sirakov,

Mete, et al. 2015). The problem is that sometimes dots are difficult to detect even by

experienced dermatologist equipped with a dermoscope (Sirakov, Mete, et al. 2015).

Fig. 6.1 shows some examples of skin lesion dots in dermoscopy images. Moreover, the

manual inspection from dermoscopy images is still complex, time-consuming, fault-prone

and subjective due to the challenges with various image characteristics (variation in

lesion size, color or shape, presence of artifacts, etc) (Binder et al. 1995; Vestergaard

et al. 2008). Hence, there is high demand for the development of reliable automated

classification approaches in order to remedy these limitations.

Figure 6.1: Example of skin lesion dots (with ground truth (Sirakov, Mete, et al. 2015) indicated by
arrows) in dermoscopy images.

Automated skin lesion classification from dermoscopy images is a challenging task

due to many issues. First, the large intra-class variation of melanomas in terms of color,



6.1. Introduction 89

texture, shape, size and location in the dermoscopy images as well as the high degree of

visual similarity between melanoma and benign lesions make it difficult to discriminate

melanomas from benign skin lesions. Second, the relatively low contrasts and obscure

boundaries between skin lesions (especially at their early stages) and normal skin regions

make the automated classification task even harder. Finally, the presence of artifacts

such as hairs, veins, air bubbles, or color reflections may blur or occlude the skin lesions

(Fig. 6.2).

(a) Skin hairs (b) Air bubbles (c) Ruler marks (d) Color charts

Figure 6.2: Example of skin lesions from the ISIC2017 dataset with various artifacts.

A lot of efforts have been dedicated to deal with this problem. Early investigations

apply low-level hand-crafted features to distinguish melanomas from benign skin lesions,

including shape (Mete et al. 2012), color (Sirakov, Ou, et al. 2015), and texture (Ballerini

et al. 2013). Later, feature selection algorithms have been proposed to define proper

features and employ them to improve the recognition performance (Ganster et al.

2001; Sirakov, Mete, et al. 2015). However, these hand-crafted features are incapable

of dealing with the large intra-class variation of melanoma and the visual similarity

between melanoma and benign lesions. On the other hand, in designing methods for

a computer-aided diagnosis (CAD) system which is generally composed of sequential

processes including pre-processing, segmentation, and classification, some researchers

proposed to firstly perform segmentation and then to recognize the melanomas (Ganster

et al. 2001; Mete et al. 2012; Sirakov, Mete, et al. 2015; Sirakov, Ou, et al. 2015).

However, this approach deals with two main challenges: (i) each process is complex with

the need to tune a set of parameters, specific to a given dataset; (ii) the performance of

each process depends on the previous one, and the errors are built up throughout the

system (Rastgoo, Lemaitre, et al. 2016). In the recent years, the deep neural networks

(NNs) have gained the popularity in the field of automated melanoma classification but

they always need a large amount of training samples, which is not always available in

real-world tasks.

In the present chapter, the novel SRCQW method, which is proposed and presented
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in Chapter 4, is applied on skin lesion images classification. Further, we also studied the

SRCQW using the high-frequency quaternion sub-bands along with the low-frequency

one and the mixed version between them. This study allows to analyse and determine

the sub-band appropriate for the classification of skin lesion images.

In every domain, we conducted experiments to classify the skin lesion images from the

ISIC2017 (N. C. Codella et al. 2018) and ISIC2019 (N. C. Codella et al. 2018; Combalia

et al. 2019; Tschandl et al. 2018) datasets. The extensive number of experimental results

demonstrated that the proposed method is competitive with several state-of-the-art

methods including deep learning.

The rest of the chapter is organized as follows: Section 6.2 reviews related works;

Section 6.3 validates the SRCQW on the skin lesion datasets ISIC2017 (N. C. Codella

et al. 2018) and ISIC2019 and compares the obtained results with several contemporary

methods; Section 6.4 concludes the chapter by listing the contributions, with a discussion

on the advantages and bottlenecks.

6.2 Related works

In the past decade, numerous approaches have been proposed for automatic diagnosis

of skin lesions. A summary of these methods and their properties can be found in

the article of (Korotkov et al. 2012). Unfortunately, a fair comparison among the

state-of-the-art presented methods is not possible due to lack of a benchmark and

common datasets (Korotkov et al. 2012; Rastgoo, Garcia, et al. 2015). Jaworek-

Korjakowska (Jaworek-Korjakowska 2012) proposed a classification system based on

the most clinically used ABCD rule for melanoma detection. More specifically, features

(i.e. asymmetry, border irregularity, amount of colors and diameter) of every lesion are

computed and utilized to determine whether it is a melanoma or benign lesion. Other

features in use are shapes, colors, dots and texture. Some of the commonly used classifiers

are Support Vector Machine (SVM) (Abuzaghleh et al. 2014; Mete et al. 2012; Sirakov,

Mete, et al. 2015; Sirakov, Ou, et al. 2015), k-nearest neighbors (KNN) (Ballerini et al.

2013; Ganster et al. 2001), AdaBoost (Ruela, Barata, and Marques 2013; Ruela, Barata,

Mendonça, et al. 2013), Local Binary Pattern (LBP) (Riaz et al. 2014), Bag-of-feature

(BoF) (Barata et al. 2013), and ensemble approach (Rastgoo, Garcia, et al. 2015). In

particular, (Abuzaghleh et al. 2014) proposed the use of SVM based on 2D Fast Fourier

Transform (FFT2) and Discrete Cosine Transform (DCT). (Ruela, Barata, and Marques
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2013; Ruela, Barata, Mendonça, et al. 2013) applied an AdaBoost classifier to compare

the role of shapes and colors for classification. (Barata et al. 2013) proposed the use

of a BoF model including colors and gradient features. (Riaz et al. 2014) introduced

a variation of LBP descriptor and combined it with color features for the dermoscopy

image classification. (Rastgoo, Garcia, et al. 2015) compared the effects of various colors,

shape and texture features using ensemble approaches. The features were extracted

from previously segmented area and data space over-sampling (DOS) was used instead

of random over-sampling (ROS). Noroozi and Zakerolhosseini (Noroozi et al. 2016), for

the first time, developed a novel method for detecting basal cell carcinoma tumor using

Z-transform features as a combination of two or three Fourier transform features.

Later, with the success of sparse coding approach, a number of methods have

been developed. (Rastgoo, Lemaitre, et al. 2016) proposed a melanoma classification

framework based on sparse coding without the pre-processing or lesion segmentation

step. More precisely, Random Forests classifier and SR were utilized with the help of

the features including SIFT, Hue and Opponent angle histograms, and RGB intensities.

(N. Codella et al. 2015) combined deep learning, sparse coding and SVM algorithms to

better characterize the lesions for melanoma classification. (Yao et al. 2016) proposed

a multi-view joint SR framework for melanoma detection. In this method, the local

texture and color features were extracted and then the SR of multiple features was

jointly learned with a discriminative dictionary. Recently, Moradi et al (Moradi et al.

2019) proposed a framework for melanoma segmentation and classification based on

kernel SR. For this purpose, selected features are represented in a high dimensional

feature space by a kernel-based learned dictionary and discriminative sparse codes.

Inspired from the recent growth of the neural network (NN) and deep learning

applications for solving scientific, medical and industrial problems, a number of NNs

were launched in the literature (Astudillo et al. 2020; Yuexiang Li et al. 2018; Sousa

et al. 2017; J. Zhang et al. 2019). In (Astudillo et al. 2020) the authors developed

a convolutional NN (CNN) and applied it with noisy Stochastic Gradient Descent

(SGD) and Adam learning methods on the ISIC2018 skin lesion dataset. Its subset

ISIC2017 (N. C. Codella et al. 2018) was classified by the NNs presented in (Yuexiang Li

et al. 2018; Sousa et al. 2017; J. Zhang et al. 2019).

The next section presents the application of the SRCQW proposed in chapter 4 to

skin lesion images classification, which is the main purpose of this chapter.
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6.3 Application of the SRCQW to skin lesion images classification

In order to analyse and determine the sub-band appropriate for the classification of

skin lesion images, the proposed SRCQW method is coded in Matlab and applied to

each of the quaternion sub-bands
{
L̇L, ˙LH,ḢL, ˙HH

}
and every pair from the set to

classify skin lesion images to melanoma and benign lesion in the large public datasets,

namely ISIC2017 (N. C. Codella et al. 2018) and ISIC2019 (N. C. Codella et al. 2018;

Combalia et al. 2019; Tschandl et al. 2018). Then we compare its results with several

contemporary methods in the field (Yuexiang Li et al. 2018; Rebouças Filho et al.

2018; Sousa et al. 2017; J. Zhang et al. 2019) as well as with the SRWC (proposed in

chapter 3) and the CAE-SRWC (proposed in chapter 5). Note that, for CAE-SRWC

method (Nguyen et al. 2020), we used the same experimental settings as mentioned in

section 5.4.1, but using Pytorch 1.7.1 instead of Tensorflow 2.0 and NVIDIA RTX2060

super GPU instead of NVIDIA Tesla T4 GPU. While (Rebouças Filho et al. 2018)

proposed to automatically classify melanoma from dermoscopy images using structural

co-occurrence matrix of main extracted frequencies, (Sousa et al. 2017), (Yuexiang Li

et al. 2018), and (J. Zhang et al. 2019) presented different convolutional neural networks

to address the classification problem. In adition, we compare the highest results from

the ISIC2017 challenge1 with those obtained by the novel SRCQW.

Note, (C. Zou et al. 2016) recommends using λ values from the set{
10−5,10−4,10−3,10−2,10−1,1,10

}
. Experimenting with these values, we found that the

novel SRCQW method obtains its higher performance of skin lesion binary classification

with λ= 10−3, which we use in our further experiments.

In our experimental setup, we use Monte Carlo cross-validation (Dubitzky et al.

2007) as described in section 4.6.1, to validate the capability of the proposed method.

We randomly select the training and test sets from the dataset. The results are averaged

over the k splits. The advantage of this set-up is that the variance of the split sample

error estimate can substantially be reduced. Also, the proportion of the training-test

random splits does not depend on the number k (Molinaro et al. 2005). In this chapter,

k is set to 10.

1https://challenge.isic-archive.com/landing/2017

https://challenge.isic-archive.com/landing/2017
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6.3.1 Dataset

We conducted extensive experiments to evaluate the novel SRCQW method on one of the

largest public datasets of skin lesion images, ISIC2017 (N. C. Codella et al. 2018). The

dataset consists of 2229 benign and 521 malignant melanoma images equipped with the

gold standard diagnosis. The ground truth is held out by the ISBI 2017 (N. C. Codella

et al. 2018) organizer for independent evaluation. Further a challenge competition

was organized (N. C. Codella et al. 2018). Multiple teams participated providing

classification results by contemporary NNs.

The numbers of melanoma and benign lesions in this dataset are quite imbalanced.

In this regard, it will bias the dictionary generation of our method. In order to remedy

the problem, we randomly select 1708 malignant images from the ISIC Archive2 resource

to obtain a new dataset that we referred to as ’ISIC2017+’ dataset. This latter contains

2229 malignant and 2229 benign skin lesion images. Note that the authors in (J. Zhang

et al. 2019) (Table 6.3), also collected additional dermoscopy images (1320 including 466

melanoma, 822 nevus images, and 32 seborrheic keratosis images) from the ISIC Archive

to enlarge the training dataset. Likewise, in (Yuexiang Li et al. 2018) (Table 6.3), the

authors increased the dataset by using data augmentation to obtain 7480 melanoma,

10976 nevus images, and 5080 seborrheic keratosis images. To validate the capability

of efficiently classifying middle size dataset, we randomly select 1115 malignant and

1115 benign skin lesion images from the ISIC2017+ dataset to conduct the experiments.

Every image is supplied with a ground truth diagnosis to benign or malignant lesion.

Examples of the dataset are shown in Fig. 6.3. We also report in Fig. 6.4 an example of

a skin lesion image decomposed by the QWT to 16 wavelet sub-bands.

We observed that most of the images selected for the set of experiments possess a

large background around the lesion. In order to balance the images, we cropped them,

around the center, 80% of every image and used the cropped area for classification. We

briefly report the description of the used dataset in Table 6.1 along with the number of

skin lesion image features used from a single image to create a dictionary atom.

Further, the proposed SRCQW was validated on the ISIC2019 dataset, which is an

extension of the ISIC2017. There are 25331 dermoscopic images of eight different skin

lesion classes, which are originally taken from the the HAM10000 dataset (Tschandl

et al. 2018), the BCN20000 dataset (Combalia et al. 2019), and the MSK dataset (N. C.
2https://www.isic-archive.com/

https://www.isic-archive.com/
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Figure 6.3: Examples of some skin lesion images from ISIC2017+. The first and second rows are
benign and melanoma lesions, respectively.

(a) Real part (b) Imaginary (i)

(c) Imaginary (j) (d) Imaginary (k)

Figure 6.4: Example of a skin lesion image decomposed by the QWT to 16 wavelet sub-bands. The
gray level version of the original image is shown at the upper left corner of the real part.
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Table 6.1: Description of the ISIC2017+ dataset used in the case of single frequency and mix
frequencies. Columns 3 and 4 show the number of training samples and number of test
samples, respectively.

Cropped image size #Training #Test Feature dim
L̇L/ ˙LH/ḢL/ ˙HH 256× 192 N = 2007 223 M1 = 3600
L̇L& ˙LH/L̇L&ḢL/L̇L& ˙HH 256× 192 N = 2007 223 M2 = 4000

Codella et al. 2018). We randomly selected 1000 images from ISIC2019, having 500

melanomas and 500 benign. In the pre-processing stage, we applied the Laplacian filter

(∆I + 2I, where I(x,y) is the image function) on the original images. Next, we cropped

them as done with the above ISIC2017+.

6.3.2 Evaluation metrics

For the purpose of comparison, we apply seven metrics to evaluate the classification

effectiveness of the proposed SRCQW method, including accuracy (AC), specificity

(SP), sensitivity (SE), miss rate (MR), precision (PR), F1 score (F1), and Youden’s J

statistic (J). The metrics are defined as:

AC = Ntp +Ntn
Ntp +Nfp +Nfn +Ntn

,

SE = Ntp
Ntp +Nfn

, SP = Ntn
Ntn +Nfp

,

PR= Ntp
Ntp +Nfp

, F1 = 2 PR ·SE
PR+SE

,

MR= 1−SE, J = SE+SP − 1,

(6.1)

where Ntp,Nfp,Nfn and Ntn denote the number of true positive, false positive, false

negative and true negative, respectively. A melanoma image is considered as a true

positive if its SRCQW evaluation is melanoma; otherwise it is regarded as a false

negative. A benign image is considered as a true negative if its diagnosis is benign;

otherwise it is regarded as a false positive.

6.3.3 Results and discussion

In our experiments, we randomly select 90% of the images for training, while the rest

is used for testing (Table 6.1). We execute the code ten times in Matlab environment

using the same number of training samples for all runs, but randomly select different

training set for every run. Under the above settings we experimented the SRCQW

method with every quaternion sub-band
{
L̇L, ˙LH,ḢL, ˙HH

}
and every pair of them.
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The average classification rates from every set of these experiments are reported in

Table 6.2. Note that the results with pairs of quaternion sub-bands that do not contain

L̇L are not shown due to the SRCQW poor performance.

Table 6.2: Application of the SRCQW method to skin lesion images with performance comparison of
different quaternion sub-bands on ISIC2017+ dataset. Best results for each index are
marked in bold.

AC (%) SP (%) SE (%) PR (%) F1 (%) J (%)
L̇L 88.19 98.09 78.28 97.63 86.86 76.37

˙LH 52.25 58.56 45.95 52.59 49.04 4.51
ḢL 55.86 57.66 54.05 56.07 55.05 11.71

˙HH 62.16 57.66 66.67 61.16 63.79 24.33
L̇L& ˙LH 66.22 50.45 79.58 62.33 70.82 30.03
L̇L&ḢL 62.61 52.25 72.97 60.45 66.12 25.22
L̇L& ˙HH 60.36 46.85 73.87 58.16 65.08 20.72

Table 6.2 shows the skin lesion classification results of the novel SRCQW method

using one or two quaternion sub-bands for classification. It is evident that SRCQW

with the low-frequency sub-band L̇L provides the best results with huge difference

compared to the others in almost metrics except in sensitivity, where classification

with
{
L̇L& ˙LH

}
gives the highest value of sensitivity. In other words, high values of

sensitivity in Table 6.2 indicate that mixed frequencies with low-frequency sub-band L̇L

provide the highest rate of melanoma recognition with ’ISIC2017+’ dataset. Hereafter,

for comparison purposes we report results obtained by SRCQW with the low-frequency

quaternion sub-band L̇L.

Table 6.3: Comparison of the proposed SRCQW with contemporary methods. Best results for each
index are marked in bold.

AC (%) SP (%) SE (%) PR (%) F1 (%) J (%)
(Sousa et al. 2017) 84.7 90 63.3 - - 53.3
(Yuexiang Li et al. 2018) 85.2 93.3 50.4 - - 43.7
(Rebouças Filho et al. 2018) 89.93 92.15 89.93 91.29 90 82.08
(J. Zhang et al. 2019) 85 89.6 65.8 - - 55.4
SRWC 63.68 45.29 82.06 60 69.32 53.04
CAE-SRWC 76.68 78.5 75 79.09 76.99 53.5
SRCQW 88.19 98.09 78.28 97.63 86.86 76.37

To validate the classification capabilities of the novel SRCQW method, we compare it

with six contemporary methods, including the two proposed methods SRWC (Chapter 3)

and CAE-SRWC (Chapter 5), on the ’ISIC2017+’ dataset described in section 6.3.1.

One may observe in Table 6.3 that the newly proposed SRCQW method significantly

outperforms the competitors in specificity (98.09%, making a substantial improvement
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up to 4.79%) and precision (97.63%, making a significant improvement up to 6.34%).

Its accuracy is relatively high (88.19$) and is quite close to the highest one. These

results prove that the proposed SRCQW is the most accurate in recognizing benign

lesions if the low-frequency quaternion sub-band L̇L is used. This is a useful advise

to dermatologists, because it leads to decrease of wrongly treated benign lesions as

melanoma, which decreases the total cost of treatment. Although Youden’s index

(J) of the proposed SRCQW ranks second behind the one of (Rebouças Filho et al.

2018), its value is relatively large (76.37%), indicating that the proposed method is

well balanced in diagnosing both benign and melanoma images. The SRWC (Ngo et al.

2018) does not generally perform well except for sensitivity (82.06%), which means that

the method is very sensitive to the melanoma detection. It can be observed that the

CAE-SRWC (Nguyen et al. 2020) obtains even results in every metrics, which shows its

balance in diagnosing both melanoma and benign images.

As mentioned above, each experiment is executed repeatedly ten times to obtain

the average, maximum, and minimum results. The maximum and minimum results

obtained by the SRCQW method with L̇L in each of the five metrics are reported in

Table 6.4. These results are verified by the corresponding confusion matrix presented in

Table 6.5, which shows the number of correct and wrong classified images per class. One

can see in Table 6.5 that the SRCQW correctly classify 92 images as melanoma, but

misclassify 19 melanoma images as benign. Similarly, it accurately labels 110 images as

benign but wrongly labels 1 benign image as melanoma.

Table 6.4: Maximum and minimum (%) results of the proposed SRCQW method on the ISIC2017+
dataset.

AC (%) SP (%) SE (%) PR (%) F1 (%)
Max 90.54 99.1 82.88 98.89 89.76
Min 85.59 96.4 72.97 95.65 83.51

Table 6.5: An example confusion matrix obtained by the SRCQW method on the ISIC2017+ dataset.
Condition positive Condition negative

Predicted condition positive Ntp = 92 Nfp = 1
Predicted condition negative Nfn = 19 Ntn = 110

As mentioned above, we conducted experiments on classifying the ISIC2017+ skin

lesion dataset with the newly proposed SRCQW method. To validate its classification

capabilities, the SRCQW is compared (Table 6.6) with CAE-SRWC (Nguyen et al. 2020)

and the results of the top 10 deep NN-based classifiers (according to the leaderboard
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Table 6.6: Classification comparison with the top 10 results of the ISIC2017 skin lesion classification
challenge (N. C. Codella et al. 2018). The two best results for each metric are marked in
bold.

AC (%) SP (%) SE (%) MR (%) J (%)
RECOD Titans 87.2 95 54.7 45.3 49.7
USYD-BMIT1 85.8 96.3 42.7 57.3 39
CSUJT 82.8 85.1 73.5 26.5 58.6
MPG-UCIIIM 82.3 99.8 10.3 89.7 10.1
UoG-MLRG 84.5 96.5 35 65 31.5
IHPC-NSC 83 92.5 43.6 56.4 36.1
UFdMG 82.7 90.1 52.1 47.9 42.2
CVI 84.3 95.7 37.6 62.4 33.3
icuff1 83 99 17.1 82.9 16.1
icuff2 82.5 98.3 17.1 82.9 15.4
CAE-SRWC 76.68 78.5 75 25 53.5
SRCQW 88.19 98.09 78.28 21.72 76.37

Table 6.7: Results by the SRCQW on the ISIC2019.
AC (%) SP (%) SE (%) PR (%) F1 (%)

128× 128 70 56 84 65.6 73.7
192× 192 74 72 76 73.1 74.5
256× 192 70 76 64 72.7 68.1
256× 256 74 68 80 71.4 75.5
512× 512 82 76 88 78.6 83

ranking for melanoma classification reported in "Part 3: Disease Classification Task")

that participated in the ISIC2017 challenge (N. C. Codella et al. 2018). Note that in

Table 6.6, we use the institution name of these top ten competitors to indicate their

methods (N. C. Codella et al. 2018), while SRCQW is the name of our proposed method.

The SRCQW ranks first in terms of accuracy, sensitivity, miss rate, and Youden’s index

(J) and fourth according to specificity, while the CAE-SRWC ranks second in sensitivity

and miss rate and third according to J-index. The Youden’s index validates that the

novel SRCQW method is best balanced among all NNs in diagnosing both benign and

melanoma images through high rates in specificity and sensitivity. It is evident, from

Table 6.6, that most of the methods provided results quite biased between benign and

melanoma diagnosis (see SP, SE, and J in Table 6.6). In other words, they can diagnose

almost every benign cases (high specificity) but fail to recognise most of melanoma

cases (low sensitivity), especially MPG-UCIIIM (J = 10.1%), icuff2 (J = 15.4%), and

icuff1 (J = 16.1%). In contrast, the proposed SRCQW method diagnoses well not only

the negative (benign) cases, but also the positive (malignant) cases having the highest

J = 76.37%.
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In Table 6.7, we analyze the performance of the proposed method on ISIC2019 dataset

according to the image sizes. It is evident that SRCQW with image size 512×512 obtains

the best results in all metrics. More precisely, it make the substantial improvements up

to 4% in accuracy and sensitivity, 5.5% in precision, and 7.5% according to F1 score.

Furthermore, to validate the advantages of the proposed SRCQW over NNs, we

investigate the dependence of ResNet architectures (Pollastri et al. 2021) on the dataset

size. Hence, three subsets with 10000, 5000, and 1000 samples are randomly selected

from ISIC2019 dataset. One can see in Table 6.8 that, using only 1000 samples, the

SRCQW method significantly outperforms all the ResNet NNs, which use for training

away more images with every image sizes. In particular, with image size of 512× 512,

SRCQW using 1000 training images makes a substantial improvement of 4.7% compared

to ResNet-152 using 10000 training images, which are huge gaps both in balanced

accuracy and number of training images.

6.4 Conclusion

In this chapter, our primary contribution is the application of the novel SRWC, CAE-

SRWC, and especially SRCQW methods for skin lesions classification. We applied the

SRCQW method with different frequencies sub-bands. We validated its efficiency for

skin lesion classification in the AQ, where the quaternions represent frequencies from

the quaternion wavelet domain. More precisely, the novel SRCQW approach, which

decomposes every image using the QWT, may implement any quaternion sub-band

or pair of sub-bands to formulate the QWLasso problem. The latter is solved with

the novel QFISTA method. Also, we determined that quaternions of low-frequency

Table 6.8: Balanced Accuracy (columns 3, 4, 5 ) of NNs (Pollastri et al. 2021) and SRCQW on
ISIC2019 with different Dataset Size (DS).

DS 512× 512 256× 256 128× 128
ResNet-18 10000 69.9 69 62.5
ResNet-18 5000 61 61.7 56
ResNet-18 1000 43.1 45 41.6
ResNet-50 10000 75 72.2 61.4
ResNet-50 5000 66.3 63.7 51.1
ResNet-50 1000 45.6 46.4 41.3
ResNet-152 10000 77.3 73.9 64.8
ResNet-152 5000 68.9 63.3 57.2
ResNet-152 1000 52.2 49.5 43.3
SRCQW 1000 82 74 70
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wavelet sub-bands provide a dictionary in the QW domain where the classification was

conducted with highest accuracy compared with the other wavelet frequencies. This

conclusion for lesion images confirms the one derived in (Ngo et al. 2018; W. Zou and

Yan Li 2007) about human faces and 2D objects. SRWC and CAE-SRWC also show

their promising results in skin lesion diagnosis, where SRWC is sensitive to melanoma

detection and CAE-SRWC is well-balanced in classifying both melanoma and benign

images.

An advantage of SRCQW over the NNs (Yu et al. 2018) is that the forward is well

suited to provide very high classification statistics using middle size image datasets for

training, while the NNs are able to exhibit their advantages when trained with very

large datasets.

Given the above advantages, the novel SRCQW method meets the high expectation

and demand for balanced and accurate skin lesion diagnosis (according to AC and

J metrics in Table 6.3). Hence, it has the potential to be transferred to the clinical

practice.
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7.1 Introduction

This dissertation addressed the problem of exploiting the sparse representation (SR)

in the transform domain, i.e. wavelet and quaternion wavelet (QW) domains. The

present chapter summarizes the contributions of this study in the field of automated

image classification with applications for faces (Extended YaleB, ARface, UMDAA-

01), genders (AR gender), objects (COIL-100), digits (USPS, SVHN) or skin lesions

(ISIC2017, ISIC2019) detection. In addition, it highlights some future directions to

pursue.

More precisely, the proposed methods take advantages of SR and wavelet or QW

domain in order to enhance the sparsity level of features and learn a simple and compact

representation of the images. These advantages come from the fact that wavelets are

naturally sparse and provide structural information about the image. Moreover, it

helps to extract high discriminant features. Besides, QW has near shift-invariance and

provides richer geometric information as well as higher sparsity of features than DWT.
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SR was chosen as our main approach because it was recognized as a primary mechanism

used in the early stages of visual cortex and considered as a main principle to efficiently

represent complex data. SR has shown its efficiency in producing compact as well as

simple representation of the images through only a small number of meaningful features.

In addition, SR provide high robustness to noise, occlusion, and corruption in image

classification tasks.

Table 7.1 summarizes a general comparison of the three proposed methods.

Table 7.1: Comparison of the three proposed methods ((more ticks represent better performance).
SRWC SRCQW CAE-SRWC

Domain Wavelet Quaternion wavelet Wavelet
Space 1D 4D 1D
Feature reduction PCA PCA Autoencoder
Classification rule Minimum residual Minimum residual Probability-based residual
Robust to training size Yes Yes Yes
Computational cost Low High Low
Faces classification XX XXX XX

Objects classification XX XXX XX

Skin lesions classification X XXX XX

7.2 Summary and conclusions

A comprehensive literature review on image classification algorithms using recent

techniques have been made in Chapter 2 before the three main contributions proposed

in Chapter 3, 4 and 5. All the works are sparse representation (SR) based algorithms

for image classification, where the first approach performs classification in the wavelet

domain, while the second one classifies images in the quaternion wavelet domain, and

the third one combines SR and neural network in the wavelet domain to enhance the

classification performance.

More precisely:

In Chapter 3, our main contribution comes from the SR approach for classification

using image features described by the low-frequency wavelet coefficients. In particular,

an over-complete dictionary, which allows for representing a test sample from a given

dataset, is built using the features generated by transforming the training samples into

the wavelet domain. Then PCA is used to to reduce the dimension of the generated

features and computational cost. Hence, a test sample can be represented as a sparse

linear combination of base elements of the dictionary in the wavelet domain. This

representation is naturally sparse, and help to reject test samples, which do not belong to
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the dataset (Wright, A. Y. Yang, et al. 2008). Moreover, the wavelets promote sparsity

and provide structural information about the image, which boosts the classification

performance. To validate the capabilities and underline the advantages of the novel

SRWC, we conducted an extensive number of experiments using publicly available

datasets including faces and object. By comparing our results with others, we prove

that the proposed SRWC outperforms some state-of-the-art methods in the field.

In Chapter 4, in order to improve the classification performance of the SRWC,

our primary contribution is the development of the novel and robust sparsity-inducing

SRCQW method for image classification in the algebra of quaternions. We introduce

the novel method for multi-class image classification based on the SR approach, which

operates in the quaternion wavelet domain. The advantage of this domain is its near

shift invariance which is not the case for the DWT used in the SRWC proposed in

chapter 3. In this method, we only make use of the image features described by the

information from the low-frequency coefficients of quaternion wavelet, which represent

the most important components of the image in the coarsest level, to construct the sparse

dictionary and the classifier in the 4D space of quaternions. The sparse quaternion

dictionary is constructed by the Quaternion Wavelet coefficients in the low-frequency

sub-bands of the training samples. To estimate the quaternion SR vector in the sparse

coding stage, we formulate the QWLasso model using quaternion l1 minimization. In

order to solve the QWLasso minimization model and determine the quaternion SR

vector, we develop the novel QFISTA. In particular, we develop in the novel QFISTA

an upper bound for the QWLasso model and use the upper bound as an approximation

that establishes the iterative scheme to find the quaternion SR vector. The fusion

of the wavelets and the SR model in the quaternion wavelet domain makes the novel

QWLasso method achieve high accuracy of classification. To the best of our knowledge,

the proposed SRCQW is the first approach that uses information from the quaternion

wavelet domain to solve the minimization problem QWLasso for classification in the

4D space of the quaternion algenbra. Our experimental validation was conducted on

several public datasets, which consist of faces, genders, and objects. The experimental

results show that the proposed method yields substantial accuracy improvement over

the state-of-the-art methods in the field including Neural Network based approaches.

In Chapter 5, we propose to use SR as a layer of a neural network. In particular, a

convolutional autoencoder architecture including a sparse latent layer is constructed in
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the wavelet domain. Analogous to the work of SRWC method, only image low-frequency

wavelet sub-bands are utilized as the input of the network. To assign identity to

the unlabeled samples, a residual-based probabilistic criterion is exploited based on

the estimated sparse coefficients. Extensive experiments conducted on several public

datasets, including faces, genders, objects, and digits, validated the superior of the

proposed methods over various recent neurals networks.

Finally, Chapter 6 applies the proposed methods to skin lesion image classification.

Up until now, it is always challenging to automatically detect melanoma images from

benign images due to various barriers. This leads to our primary contribution in

this chapter, which is the application of the novel SRWC, SRCQW, and CAE-SRWC

methods. Further, we investigate the application of the SR based approach with

low, high, and mixed quaternion wavelet frequencies. Using the public skin lesion

image dataset ISIC2017 and ISIC2019, we experimentally determined that creating

dictionary with low-frequency wavelet sub-bands leads to the most accurate classification

of melanoma and benign skin lesions. To validate the capabilities of the novel approaches,

we compared them with multiple contemporary methods including neural networks.

While SRWC is sensitive to melanoma detection (sensitivity=82.06%), SRCQW and

CAE-SRWC methods meet the high expectation and demand for balanced and accurate

skin lesion diagnosis. Hence, they have the potential to be transferred to the clinical

practice

7.3 Future works and perspectives

In the following, we conclude by mentioning/listing/detailing some of the possible

extensions/directions/ideas to be investigated inspired by the achievements in this

dissertation.

Dictionary Learning: A key point that we have intentionally paid less attention

to, in this study, is the necessity to learn the dictionaries in parallel with the sparse

codes update. Hence, the learned dictionaries and the obtained sparse codes will be

concurrently optimized.

Data labels: In this dissertation, data labels do not play an important role in our

approaches. As proven in the work by (Jiang et al. 2013), labels need to be considered

in further works to enhance the performance of classification.

Sparse representation and Kernel: Kernel, a familiar technique in machine
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learning, can be fused with sparse representation to better discriminate the input

samples. In particularly, the input samples are implicitly mapped into a high-dimensional

space, namely kernel feature space, with the help of a nonlinear kernel function. This

combination promisingly increases the accuracy of classification, because it discriminates

the different samples from different classes.

Sparse representation and Deep networks: We can not stay out of the deep

revolution. Taking advantage of both sparse representation and deep neural networks, we

can combine the best of both strategies to construct multilayer sparse coding networks

or sparse deep neural networks. These networks are theoretically expected to achieve

outstanding enhancements over their individual counterparts, which can be seen clearly

in Chapter 5 with the proposed CAE-SRWC method. Hence, it is worth investigating

more on the fusion of the two methodologies for the future work.

Deployment to Practice: The application of the proposed methods on skin lesion

image demonstrate their potential to be deployed to clinical practice. However, they

need improving in some aspects to perfectly fit the clinical demands.

Implementation: We can improve the running time of the proposed methods by

implementing them with the help of powerful and efficient GPUs.
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