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Abstract
A modern insight due to Quillen, which is further developed by Lurie, asserts that many cohomology

theories of interest are particular cases of a single construction, which allows one to define cohomology
groups in an abstract setting using only intrinsic properties of the category (or ª-category) at hand.
This universal cohomology theory is known as Quillen cohomology. In any setting, Quillen cohomology
of a given object is classified by its cotangent complex.

The main purpose of this document is to study Quillen cohomology of enriched operads, when working
in the model categorical framework. Our main result provides an explicit formula for computing Quillen
cohomology of enriched operads, based on a procedure of taking certain infinitesimal models of their
cotangent complexes. We are particularly interested in the Quillen cohomology of simplicial operads
and dg operads. There is a natural construction of twisted arrow ª-category of a simplicial operad,
which extends the notion of twisted arrow ª-category of an ª-category introduced by Lurie. We assert
that the cotangent complex of a simplicial operad can be represented as a spectrum valued functor
on its twisted arrow ª-category. Turning to the context of dg operads, the situation becomes simpler
due to the stability of dg modules. We find that the cotangent complex of a dg operad P can be
represented by a nice infinitesimal P-bimodule, which is in fact closely related to the module of Kähler
differentials of P via a cofiber sequence. Moreover, we prove the existence of an operadic version of
the Dold-Kan correspondence, then due to this we find a connection between Quillen cohomology of a
simplicial operad and Quillen cohomology of its associated dg operad. In the last section, we establish
the relation between deformation theory and Quillen cohomology.
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Chapter 1

Introduction

A widespread idea in the domain of homotopy theory is to study a given object of interest by associ-
ating to it various kinds of cohomology group. From generalized cohomology theories for spaces and
various Ext groups in homological algebra, through group cohomology, sheaf cohomology, Hochschild
cohomology and André-Quillen cohomology, such invariants vary from fairly useful to utterly indispens-
able. A modern insight due to Quillen [1], which is further developed by Lurie [3], asserts that all these
cohomology theories are particular cases of a single universal construction, which allows one to define
cohomology groups in an abstract setting using only intrinsic properties of the category (or ª-category)
at hand. This universal cohomology theory is known as Quillen cohomology.

In Quillen’s approach, cohomology of an object of interest is classified by its derived abelianization.
Suppose we are given a model category M. Recall that an abelian group object in M is an object 𝐴
equipped with two maps � Ð� 𝐴 and 𝐴 �𝐴 Ð� 𝐴 subject to the classical axioms of an abelian group.
For each object 𝑋 > M, the category of abelian group objects in M⇑𝑋 , denoted Ab�M⇑𝑋�, possibly
inherits a model structure transferred from that of M. In this situation, the free-forgetful adjunction
F � M⇑𝑋

Ð@
BÐ Ab�M⇑𝑋� � U forms a Quillen adjunction. The cotangent complex of 𝑋, denoted by

L𝑋 , is then defined to be L𝑋 �� LF�𝑋� the derived abelianization of 𝑋. Moreover, given an object
𝑀 > Ab�M⇑𝑋�, the 𝑛’th Quillen cohomology group of 𝑋 with coefficients in 𝑀 is formulated as

H𝑛
𝑄�𝑋,𝑀� � 𝜋0 Maph

Ab�M⇑𝑋��L𝑋 ,𝑀(︀𝑛⌋︀�
where 𝑀(︀𝑛⌋︀ refers to the 𝑛-suspension of 𝑀 in Ab�M⇑𝑋�.

The work of Quillen was first devoted to establishing a proper cohomology theory for rings and
commutative algebras (cf. [2]), which is nowadays generalized into the operadic context as described in
the following example.

Example 1.0.0.1. Let k be a commutative ring of characteristic 0 and P an operad enriched over dg k-
modules. For a P-algebra 𝐴, it was known that the free-forgetful adjunction �AlgP�⇑𝐴 Ð@BÐ Ab��AlgP�⇑𝐴�
is (homotopically) equivalent to the adjunction

Ω𝐴��� � �AlgP�⇑𝐴 Ð@BÐModP
𝐴 � 𝐴 % ���

in which ModP
𝐴 refers to the category of 𝐴-modules over P, the left adjoint takes 𝐵 > �AlgP�⇑𝐴 to

Ω𝐴�𝐵� the module of Kähler differentials of 𝐵 over 𝐴 and the right adjoint takes 𝑀 > ModP
𝐴 to
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𝐴 %𝑀 the square-zero extension of 𝐴 by 𝑀 . Therefore, after sending coefficients into ModP
𝐴, the

𝑛’th Quillen cohomology group of 𝐴 with coefficients in an object 𝑀 > ModP
𝐴 is given by

H𝑛
𝑄�𝐴,𝑀� � 𝜋0 Maph

ModP
𝐴
�Ω𝐴�𝐴cof�,𝑀(︀𝑛⌋︀�

where 𝐴cof is a cofibrant resolution of 𝐴 in AlgP. (See, e.g., [11, 12, 7]).

The Quillen’s approach has certain limitations, despite its success. Indeed, there is not a known
traditional criterion assuring the existence of the transferred model structure on abelian group objects
in a given model category and moreover, even when realized, this model category structure is not
invariant under Quillen equivalences.

Improving the work of Quillen, Lurie [3] established the cotangent complex formalism, when working
in the ª-categorical framework. In his approach, the notion of abelianization is extended to that of sta-
bilization, which itself is inspired by the classical theory of spectra. Let C be a presentable ª-category
and let 𝑋 be an object of C. Consider the over ª-category C⇑𝑋 . Conceptually, the stabilization of
C⇑𝑋 is the ª-categorical limit of the tower

�
Ω
Ð� �C⇑𝑋�� Ω

Ð� �C⇑𝑋�� Ω
Ð� �C⇑𝑋��

where Ω refers to the desuspension functor on �C⇑𝑋�� the pointed ª-category associated to C⇑𝑋 . As
in [3], we will refer to the stabilization of C⇑𝑋 as the tangent category to C at 𝑋 and denote it by
T𝑋C. By construction, T𝑋C is automatically a stable ª-category. Moreover, the presentability of
C implies that the canonical functor T𝑋C Ð� C⇑𝑋 admits a left adjoint, the suspension spectrum
functor, written as Σª

� � C⇑𝑋 Ð� T𝑋C. By this way, Lurie defined the cotangent complex of 𝑋 to
be L𝑋 �� Σª

� �𝑋�. By having that notion of cotangent complex, the 𝑛’th Quillen cohomology group of
𝑋 with coefficients in a given object 𝑀 > T𝑋C is now formulated as

H𝑛
𝑄�𝑋,𝑀� �� 𝜋0 MapT𝑋C�L𝑋 ,𝑀(︀𝑛⌋︀�.

We refer the readers to [7] for a discussion on the naturality of the evolution from Quillen’s approach
to Lurie’s, and also a comparison between them.

For necessary computations in abstract homotopy theory, model categories (or a bit more generally,
semi model categories (cf., e.g., [13, 15, 16]) ) seem to be the most favorable environment, as far
as we know. Fortunately, the Lurie’s settings mentioned above were completely translated into the
model categorical language, thanks to the recent works of Y. Harpaz, J. Nuiten and M. Prasma [6, 7].
Following the settings given in [6], tangent (model) categories come after a procedure of taking left
Bousfield localizations of model categories of interest. Nevertheless, the obstacle is that left Bousfield
localizing usually requires the left properness. The recent result of Batanin and White [17] allows one to
take left Bousfield localizations, in the framework of semi model categories, without necessarily requiring
the left properness. Inspired by this result, under our settings, tangent categories exist as semi model
categories, which are basically convenient as well as (full) model categories.

The main purpose of this thesis is to formulate Quillen cohomology of operads enriched over a
general symmetric monoidal model category, which we will refer to as the base category. Given a base
category S, we denote by Op𝐶�S� the category of S-enriched 𝐶-colored operads with 𝐶 being some
fixed set of colors, yet the one we really care about is the category of S-enriched operads (with non-
fixed sets of colors), which will be denoted by Op�S�. Under some suitable conditions, Op�S� admits
the canonical model structure, according to Caviglia [18]. In particular, when S is the category of
simplicial sets, SetΔ, equipped with the standard (Kan-Quillen) model structure, the canonical model

8



structure on Op�SetΔ� agrees with the Cisinski-Moerdijk model structure, which was known to be a
model for the theory of ª-operads (cf. [19]).

Given an S-enriched 𝐶-colored operad P, one can then consider P as either an object of Op𝐶�S� or
an object of Op�S�. As emphasized above, we are mostly concentrated in the latter case. Therefore, by
Quillen cohomology of P we will mean the Quillen cohomology of P when regarded as an object of
Op�S�. On other hand, by reduced Quillen cohomology of P we will mean the Quillen cohomology
of P when regarded as an object of Op𝐶�S�. Some attention was given in the literature to the reduced
Quillen cohomology of operads. For instance, in the context of dg operads, this was studied by Loday-
Merkulov-Vallette [11, 12], (in which the resultant is described in terms of derivations, similarly as in
Example 1.0.0.1). On the other hand, the problems of formulating Quillen cohomology of operads and
investigating its applications, which are essentially more valuable, have not yet been considered so far.

The two base categories of most interest include the category of simplicial sets, SetΔ, equipped with
the standard (Kan-Quillen) model structure and the category of dg k-modules, C�k�, with k being a
field of characteristic 0, equipped with the projective model structure. Operads which are enriched over
SetΔ (resp. C�k�) will be called simplicial operads (resp. dg operads). These two contexts will also
be our substantial concerns in the thesis.

It has been widely acknowledged that Quillen cohomology theory keeps a key role in the study of
deformation theory and obstruction theory. Let us discuss on these in what below.

Naively, a deformation of an object of interest under “small perturbation” is an object of the same
type which is “equivalent” to the original object. In our setting, a small perturbation is precisely
an artinian dg k-algebra with k being a field of characteristic 0, i.e., a (connective) augmented
commutative dg k-algebra 𝑅 of finite dimensional such that the augmentation map 𝑅 � k exhibits
the 0’th homology of 𝑅 as a local k-algebra. For instance, in the context of algebraic objects (e.g.,
dg module, dg category, dg operad, etc.), a deformation of an object 𝑋 under a small perturbation
𝑅 � k is by definition an object 𝑌 coming together with a weak equivalence 𝑌 a𝑅 k �

Ð� 𝑋. One can
then organize all the deformations of 𝑋 into a category such that every morphism is an equivalence of
deformations. The ª-groupoid associated to this category will be called the space of deformations
of 𝑋 over 𝑅, denoted by Def�𝑋,𝑅�. In a somewhat more abstract setting given in §5.4, we propose
the notion of space of deformations for various types of object. We then show that Quillen cohomology
of a given object indeed classifies the homotopy type of its space of deformations. Moreover, we show
that the functor 𝑅 ( Def�𝑋,𝑅� forms a formal moduli problem in the sense of [5]. It implies that
the deformations of 𝑋 are “governed” by a single dg Lie algebra (cf. [5, 20]).

Given two topological spaces 𝑋 and 𝑌 , understanding maps from 𝑋 to 𝑌 (up to homotopy) is a
classical problem in homotopy theory. Suppose that 𝑌 is simply connected. As the first step, one filters
𝑌 by its Postnikov tower:

�Ð� 𝑃𝑛�𝑌 �Ð� 𝑃𝑛�1�𝑌 �Ð� �Ð� 𝑃1�𝑌 �Ð� 𝑃0�𝑌 �.
The problem is therefore reduced to understanding maps 𝑋 Ð� 𝑃𝑛�𝑌 � which (up to homotopy) extend
some given map 𝑓 � 𝑋 Ð� 𝑃𝑛�1�𝑌 �. It was known that the obstruction to a section 𝑃𝑛�1�𝑌 �Ð� 𝑃𝑛�𝑌 �
is classified by a single cohomology class 𝑘𝑛�1 > H𝑛�1�𝑃𝑛�1�𝑌 �;𝜋𝑛𝑌 �. More generally, the obstruction
to an extension 𝑋 Ð� 𝑃𝑛�𝑌 � of 𝑓 is classified by the image of 𝑘𝑛�1 under 𝑓� � H𝑛�1�𝑃𝑛�1�𝑌 �;𝜋𝑛𝑌 �Ð�
H𝑛�1�𝑋;𝜋𝑛𝑌 �. The latter is called the obstruction class of 𝑓 . Note that the ordinary cohomology
of spaces is nothing but a particular case of Quillen cohomology. The authors of [21] generalized the
above procedures to study the obstruction theory of simplicial categories with fixed set of objects,
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in which case obstruction classes are indeed contained in Quillen cohomology groups. The obstruction
theory of dg categories was considered in [22], in which case Quillen cohomology groups play a central
role, again. We hope that the present thesis may open the way to the study of obstruction theory of
simplicial operads. We would like to leave this for future work.

We are now summarizing our main results with respect to some historical backgrounds. These are
divided into two parts.

Part 1. In the first part (including Chapter 3 and Chapter 4), we study Quillen cohomology of en-
riched operads in general context and particularly, Quillen cohomology of simplicial operads. This work
generalizes the study of Quillen cohomology of enriched categories (in particular, simplicial categories)
carried out by Y. Harpaz, M. Prasma and J. Nuiten ([7]).

Suppose we are given a sufficiently nice base category S (cf. Conventions 3.1.0.2). As the starting
point, we extend a result of [7], which we now recall. Let C > Cat�S� be a fibrant S-enriched category.
Denote by Cat𝐶�S� the category of S-enriched categories with objects in 𝐶 �� Ob�C� and by BMod�C�
the category of C-bimodules. There is a sequence of the obvious Quillen adjunctions

BMod�C�C⇑
Ð@
BÐ Cat𝐶�S�C⇑

Ð@
BÐ Cat�S�C⇑.

Theorem 1.0.0.2. (Y. Harpaz, M. Prasma and J. Nuiten [7]) The above sequence induces a sequence
of Quillen equivalences connecting the associated tangent categories:

TC BMod�C� �
Ð@
BÐ

TC Cat𝐶�S� �
Ð@
BÐ

TC Cat�S� (1.0.0.1)

Let us now fix P to be a fibrant and Σ-cofibrant 𝐶-colored operad in S. We let BMod�P� and
IbMod�P� respectively denote the categories of P-bimodules and infinitesimal P-bimodules. The
induction-restriction functors form a sequence of Quillen adjunctions:

IbMod�P�P⇑
Ð@
BÐ BMod�P�P⇑

Ð@
BÐ Op𝐶�S�P⇑

Ð@
BÐ Op�S�P⇑.

Theorem 1.0.0.3. (3.2.4.1, 3.2.4.3) The above sequence induces a sequence of Quillen equivalences
connecting the associated tangent categories:

TP IbMod�P� �
Ð@
BÐ

TP BMod�P� �
Ð@
BÐ

TP Op𝐶�S� �
Ð@
BÐ

TP Op�S�.
When S is in addition stable containing a strict zero object, all the terms above are Quillen equivalent
to IbMod�P�.

We then compute the derived image of the cotangent complex LP > TP Op�S� under the right Quillen
equivalence TP Op�S� �

Ð� TP IbMod�P�. In the first step, our treatment is inspired by the following.

Theorem 1.0.0.4. (Y. Harpaz, M. Prasma and J. Nuiten [7]) Let C be a fibrant S-enriched category.
Under the right Quillen equivalence TC Cat�S� �

Ð� TC BMod�C�, the cotangent complex LC > TC Cat�S�
is identified to L𝑏C(︀�1⌋︀ > TC BMod�C�, i.e., the desuspension of L𝑏C > TC BMod�C� the cotangent complex
of C when regarded as a bimodule over itself.

We prove that an analogue of this statement holds for the right Quillen equivalence TP Op�S� �

Ð�

TP BMod�P� (cf. Proposition 3.4.0.5). However, the approach as in the loc.cit fails when extending to
our problem. In particular, for our approach, the category S is technically required to satisfy the extra
condition (S8) 3.3.0.2, which is inspired by the work of Dwyer and Hess [[25], Section 5]. After having
proved that, it remains to describe the derived image of the cotangent complex of P (when regarded as a

10



bimodule over itself) under the right Quillen equivalence TP BMod�P�Ð� TP IbMod�P�. The resultant
is denoted by ÇLP. When S is in addition stable, we compute further the derived image of ÇLP under
the right Quillen equivalence TP IbMod�P� �

Ð� IbMod�P�, denoted LP. By having these “infinitesimal
models” for LP, we obtain the central result of the thesis stated as below.

Let S𝑛 denote the pointed 𝑛-sphere in S. Then, let S𝑛𝐶 denote the 𝐶-collection which has S𝑛𝐶�𝑐; 𝑐� �
S𝑛 for every 𝑐 > 𝐶 and agrees with gS on the other levels.

Theorem 1.0.0.5. (3.4.0.17, 3.4.0.18) Suppose that S additionally satisfies the condition (S8) 3.3.0.2.
The 𝑛’th Quillen cohomology group of P with coefficients in a given fibrant object 𝑀 > TP IbMod�P� is
formulated as

H𝑛
𝑄�P,𝑀� � 𝜋0 Maph

TP IbMod�P��ÇLP,𝑀(︀𝑛 � 1⌋︀�
in which ÇLP > TP IbMod�P� is the prespectrum with �ÇLP�𝑛,𝑛 � PXS𝑛𝐶 for 𝑛 E 0. If S is in addition stable
containing a strict zero object 0 then the 𝑛’th Quillen cohomology group of P with coefficients in a given
fibrant object 𝑀 > IbMod�P� is formulated as

H𝑛
𝑄�P,𝑀� � 𝜋0 Maph

IbMod�P��LP,𝑀(︀𝑛 � 1⌋︀�
where LP > IbMod�P� is given by LP�𝑐� � P�𝑐� a hocolim𝑛 Ω𝑛(︀ �S𝑛�a𝑚 �

h
1S

0 ⌋︀ for each 𝐶-sequence
𝑐 �� �𝑐1,�, 𝑐𝑚; 𝑐�.

Moreover, we find a connection between Quillen cohomology and reduced Quillen cohomology of P,
expressed as follows.

Theorem 1.0.0.6. (3.5.0.2) Suppose that S additionally satisfies the condition (S8) 3.3.0.2. Given a
fibrant object 𝑀 > TP IbMod�P�, there is a long exact sequence of abelian groups of the form

�Ð� H𝑛�1
𝑄 �P,𝑀�Ð� H𝑛

𝑄,𝑟�P,𝑀�Ð� H𝑛
𝑄,red�P,𝑀�Ð� H𝑛

𝑄�P,𝑀�Ð� H𝑛�1
𝑄,𝑟 �P,𝑀�Ð� �

where HY

𝑄,𝑟�P,�� refers to Quillen cohomology group of P when regarded as a right module over itself
and HY

𝑄,red�P,�� refers to reduced Quillen cohomology group of P.

Turning to the context of simplicial operads, our main result extends the following:

Theorem 1.0.0.7. (Y. Harpaz, M. Prasma and J. Nuiten [7]) Let C be a fibrant simplicial category.
There is an equivalence of ª-categories TC Cat�SetΔ�ª � Fun�Tw�C�,Spectra� with Spectra being
the ª-category of spectra and Tw�C� being the twisted arrow ª-category of C. Furthermore, the
cotangent complex LC > TC Cat�SetΔ� is then identified to the constant functor Tw�C� Ð� Spectra on
S(︀�1⌋︀, i.e., the desuspension of the sphere spectrum. Consequently, the 𝑛’th Quillen cohomology group
of C with coefficients in a given functor F � Tw�C�Ð� Spectra is given by H𝑛

𝑄�C,F� � 𝜋�𝑛�1 limF.

The construction of twisted arrow ª-categories (of ª-categories) Tw��� � Catª Ð� Catª was
originally introduced by Lurie [[3], §5.2]. We extend that to the construction of twisted arrow ª-
categories of (fibrant) simplicial operads. Let P be a fibrant simplicial operad. Conceptually, the
twisted arrow ª-category Tw�P� is defined to be the covariant unstraightening of the simplicial
functor P � IbP

Ð� SetΔ, which encodes the data of P as an infinitesimal bimodule over itself (see
§2.1.3). In particular, objects of Tw�P� are precisely the operations of P (i.e., the vertices of spaces
of operations of P). For examples, Tw�C𝑜𝑚� is equivalent to Finop

� the (opposite) category of finite
pointed sets, while Tw�A𝑠𝑠� is equivalent to the simplex category Δ (cf. Proposition 4.2.0.15).
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Theorem 1.0.0.8. (4.3.0.1) Let P be a fibrant and Σ-cofibrant simplicial operad. Then there is an
equivalence of ª-categories

TP Op�SetΔ�ª �

Ð� Fun�Tw�P�,Spectra�.
Moreover, under this equivalence, the cotangent complex LP > TP Op�SetΔ�ª is identified to the desus-
pension of the functor FP � Tw�P� Ð� Spectra given on objects by sending each operation 𝜇 > P of
arity 𝑚 to FP�𝜇� � S�𝑚, i.e., the 𝑚-fold product of the sphere spectrum. Consequently, the 𝑛’th Quillen
cohomology group of P with coefficients in a given functor F � Tw�P�Ð� Spectra is formulated as

H𝑛
𝑄�P;F� � 𝜋0 MapFun�Tw�P�,Spectra��FP,F(︀𝑛 � 1⌋︀�.

For example, we consider the little ª-cubes operad Eª. Denote by Modk the category of vector
spaces over a given field k. A right Γ-module is by definition a functor 𝑇 � Finop

� Ð� Modk. There is
a significant invariant for right Γ-modules given by the stable cohomotopy groups (cf. [26]), which
plays a key role in the Eª-obstruction theory initiated by Robinson [27]. In Proposition 4.3.0.4, we
show that for each integer 𝑛 there is an isomorphism

𝜋𝑛�𝑇 � � H𝑛�1
𝑄 �Eª; Ç𝑇 �

between the 𝑛’th stable cohomotopy group of 𝑇 and the �𝑛 � 1�’th Quillen cohomology group of Eª
with coefficients in the induced functor Ç𝑇 � Tw�Eª� � Finop

� Ð� Spectra.
For more illustration, we consider the associative operad A𝑠𝑠. Let F � Tw�A𝑠𝑠� � Δ Ð� Spectra be

a functor whose values are Ω-spectra. Then the Quillen cohomology groups of A𝑠𝑠 with coefficients in
F fit into a long exact sequence of the form

�Ð� H�𝑛�2
𝑄 �A𝑠𝑠;F�Ð� 𝜋𝑛 holimF Ð� 𝜋𝑛F�(︀0⌋︀�Ð� H�𝑛�1

𝑄 �A𝑠𝑠;F�Ð� 𝜋𝑛�1 holimF Ð� �,

(cf. Corollary 4.3.0.7).
A simplicial operad is said to be unitally homotopy connected if all its spaces of unary and 1-ary

operations are weakly contractible. The following result in particular proves that Quillen cohomology
of any little cubes operad with constant coefficients vanishes.

Corollary 1.0.0.9. (4.3.0.8) Let P be a fibrant, Σ-cofibrant and unitally homotopy connected simplicial
operad and F0 � Tw�P�Ð� Spectra a constant functor. Then Quillen cohomology of P with coefficients
in F0 vanishes.

Part 2. In the second part (corresponding to Chapter 5), we study Quillen cohomology of dg operads
and besides that, we outline the relation between deformation theory and Quillen cohomology. This is
a joint work with Y. Harpaz.

Let us fix k to be a field of characteristic 0. By dg operads we mean the operads enriched over C�k�
the category of dg k-modules. In particular, dg operads which are concentrated in non-negative degrees
will be said to be connective.

Let P be any 𝐶-colored dg operad. Since the category C�k� is stable, Theorem 1.0.0.3 tells us that
there is a sequence of right Quillen equivalences TP Op�C�k�� �

Ð� TP Op𝐶�C�k�� �

Ð� IbMod�P�. So the
desired formula of Quillen cohomology of P can be expressed in terms of mapping spaces in IbMod�P�,
after having described the derived image of the cotangent complex of P in IbMod�P�. Denote by I𝐶
the initial 𝐶-colored operad.
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Theorem 1.0.0.10. (5.1.0.8) Let 𝑀 > IbMod�P� be an infinitesimal P-bimodule, regarded as the module
of coefficients. The 𝑛’th Quillen cohomology group of P with coefficients in 𝑀 is formulated as

H𝑛
𝑄�P,𝑀� � 𝜋0 Maph

IbMod�P��LP,𝑀(︀𝑛 � 1⌋︀�
in which LP � PX�1� I𝐶 with the infinitesimal P-bimodule structure described as follows. As an infinites-
imal left P-module, it is free generated by I𝐶 . On the other hand, given an operation 𝛼 > P�𝑐1,�, 𝑐𝑛; 𝑐�,
the (infinitesimal) right action of an operation 𝜆 > P�𝑑1,�, 𝑑𝑚; 𝑐𝑗� on the element �𝛼 , id𝑐𝑖� > P X�1� I𝐶
is given by

�𝛼 , id𝑐𝑖� X𝑟𝑗 𝜆 ��
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀
�𝛼 X𝑗 𝜆 , id𝑐𝑖� if 𝑗 x 𝑖
P𝑚𝑘�1�𝛼 X𝑗 𝜆 , id𝑑𝑘

� if 𝑗 � 𝑖.

Moreover, there is also a long exact sequence relating Quillen cohomology and reduced Quillen
cohomology of P, similar to the one given in Theorem 1.0.0.6.

Now suppose further that P is a single-colored connective augmented dg operad. Let Q be another
single-colored dg operad and 𝛼 � PÐ� Q a map of dg operads. We may take a cofibrant resolution for P
of the form 𝜑 � Ω�C� �

Ð� P with Ω�C� being the cobar construction of C the dg cooperad characterized
by having the same homotopy type as B�P� (i.e., the bar construction of P). The composition 𝛼𝜑 �

Ω�C�Ð� Q performs a Maurer-Cartan element of the convolution dg Lie algebra HomΣ�C,Q�, or of
the reduced one HomΣ�C,Q� with C being the coaugmented coideal of C. Recall that the deformation
complex of 𝛼 is defined to be Hom𝛼𝜑

Σ �C,Q� the twisted dg Lie algebra of HomΣ�C,Q� by 𝛼𝜑. On
other hand, the reduced deformation complex of 𝛼 is Hom𝛼𝜑

Σ �C,Q� the twisted dg Lie algebra of
HomΣ�C,Q� by 𝛼𝜑. (See [11] for more details). Consider Q as an infinitesimal P-bimodule with the
structure induced by 𝛼. According to the works of Loday-Merkulov-Vallette ([11, 12]), the reduced
Quillen cohomology of P with coefficients in Q > IbMod�P� agrees with the homology of the reduced
deformation complex of 𝛼. The following statement therefore fits into their works very naturally.

Theorem 1.0.0.11. (5.2.0.7) The Quillen cohomology of P with coefficients in Q > IbMod�P� agrees
with the homology of the deformation complex of 𝛼. More explicitly, for each 𝑛 > Z, there is a canonical
isomorphism

H𝑛�1
𝑄 �P,Q� � H�𝑛 Hom𝛼𝜑

Σ �C,Q�.
The Dold-Kan correspondence asserts that there is an adjoint equivalence

Γ � CE0�k� �

� sModk � N

between the categories of connective dg k-modules and simplicial k-modules, in which the functor
N is the well known normalized complex functor. An important fact is that the functors Γ and N
are no longer inverse equivalences of each other (or even adjunction) when descending to the categories
of monoids. Despite this, the work of Schwede-Shipley [[55], Theorem 3.12] shows that the functor N
is the right adjoint of a Quillen equivalence when considered as a functor between monoids. Improving
their work, we shall prove the existence of an operadic version of the Dold-Kan correspondence. Note
that while the normalized complex functor is lax symmetric monoidal, its inverse Γ does not admit any
canonical lax symmetric monoidal structure. So one in general can not produce sModk-enriched operads
just by applying Γ to CE0�k�-enriched operads levelwise. The following statement is in particular not a
trivial one.
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Theorem 1.0.0.12. (Operadic Dold-Kan correspondence, 5.3.2.4) The functor

N � Op�sModk�Ð� Op�CE0�k�� (1.0.0.2)

given by applying the normalized complex functor levelwise is a right Quillen equivalence.

For each simplicial operad O > Op�SetΔ�, the image of O through the composite functor

Op�SetΔ� k���
Ð� Op�sModk� N

Ð� Op�CE0�k��
is called the dg version of O, and denoted by dO. We exploit the above assertion to find a connection
between Quillen cohomology of a given simplicial operad and the corresponding of its dg version. Let
O > Op�SetΔ� be a fibrant and Σ-cofibrant simplicial operad and let 𝑀 > IbMod�k�O�� be given. The
object 𝑀 induces a coefficient functor H𝑀 � Tw�O�Ð� Spectra in an obvious way.

Corollary 1.0.0.13. (5.3.3.7) There is a canonical isomorphism

HY

𝑄�O,H𝑀� �

Ð� HY

𝑄�dO,N�𝑀��
between Quillen cohomology of O > Op�SetΔ� with coefficients in H𝑀 � Tw�O�Ð� Spectra and Quillen
cohomology of dO > Op�C�k�� with coefficients in N�𝑀� > IbMod�dO�.

This hence provides us with another approach for calculating Quillen cohomology of dg operads that
come from simplicial operads. For example, using this result we observe that Quillen cohomology of the
dg little ª-cubes operad Eª > Op�C�k�� with coefficients in itself vanishes (cf. Corollary 5.3.3.8).
On other hand, consider the dg associative operad A𝑠𝑠 > Op�C�k��. Let 𝐴 be an associative k-
algebra and let End𝐴 denote the endomorphism operad associated to 𝐴 (regarded as an infinitesimal
A𝑠𝑠-bimodule via the canonical map A𝑠𝑠Ð� End𝐴). We then observe that Quillen cohomology of A𝑠𝑠
with coefficients in End𝐴 can be described in terms of the Hochschild cohomology groups of 𝐴 (cf.
Corollary 5.3.3.9).

In the remainder, we establish the relation between deformation theory and Quillen cohomology.
Here are some settings. Let k be a field of characteristic 0. We denote by CAlgart the category of
artinian dg k-algebras and by ModCat the category whose objects are model categories and whose
morphisms are Quillen adjunctions with the sources and targets being those of the left Quillen functors.
Let F � CAlgart

Ð� ModCat be a functor. For each map 𝑓 � 𝑅 � 𝑆 in CAlgart, by convention we write
𝑓! � F�𝑅�Ð@BÐ F�𝑆� � 𝑓� standing for the image of 𝑓 through F. As the first step, we propose the notion
of space of deformations of a given object 𝑋 > F�k� over some 𝑅 > CAlgart, denoted by Def�𝑋,𝑅�
(cf. Definition 5.4.1.3). To make this notion well-defined, the functor 𝑅 ( Def�𝑋,𝑅� should form a
formal moduli problem in the sense of [5]. To this end, we require that F forms a formal moduli
context (cf. Definition 5.4.1.2 and Proposition 5.4.1.4).

To state our main theorem, we will need the following extra construction. Let F � CAlgart
Ð�

ModCat be a formal moduli context and 𝑋 > F�k� a fibrant object. Suppose that the tangent category
T𝑋F�k� exists. Given an Ω-spectrum 𝑀 � N�NÐ� CAlgart, we denote by Def�𝑋,𝑀� �� Def�𝑋,Ωª𝑀�
and refer to it as the space of first order deformations of 𝑋 in direction 𝑀 . Moreover, we will
denote by 𝑀�𝑋� > T𝑋F�k� the spectrum object defined as

𝑀�𝑋�𝑛,𝑚 � 𝑢�𝑛,𝑚�𝑢𝑛,𝑚�!𝑋 > F�k�
where 𝑢𝑛,𝑚 � kÐ�𝑀𝑛,𝑚 is the unit of 𝑀𝑛,𝑚 > CAlgart. This object 𝑀�𝑋� forms an Ω-spectrum if either
𝑋 is cofibrant or for every �𝑛,𝑚� > N � N the induced functor �𝑢𝑛,𝑚�! � F�k� Ð� F�𝑀𝑛,𝑚� preserves
weak equivalences (cf. Lemma 5.4.1.7 and Remark 5.4.1.9). Our main theorem is then stated as follows.
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Theorem 1.0.0.14. (5.4.1.8) The space Def�𝑋,𝑀� is weakly equivalent to the derived mapping space
Maph

F�k�⇑𝑋
�𝑋,Ωª�1�𝑀�𝑋���. In particular, we have a canonical isomorphism

𝜋0�Def�𝑋,𝑀�� � H1
Q�𝑋,𝑀�𝑋��.

Moreover, the 𝑛’th homotopy group 𝜋𝑛�Def�𝑋,𝑀�,�� is isomorphic to H1�𝑛
Q �𝑋,𝑀�𝑋��, where � >

Def�𝑋,𝑀� refers to the trivial deformation.

The relation between deformation theory and Quillen cohomology of dg operads was considered in
literature (cf. [11, 12, 59]). Theorem 1.0.0.14 allows us to recover their result in a particular case as
follows. Let 𝐴 > CC0�k� be a finite dimensional connective dg k-module and let P be a connective dg
operad over k. Then we have for each 𝑛 C 0 an isomorphism

𝜋𝑛�Def�P,k %𝐴�,�� � H1�𝑛
Q �P,Pa𝐴�

where Pa𝐴 is regarded as an infinitesimal P-bimodule obtained by tensoring levelwise. In particular,
when 𝐴 � k, we obtain that the homotopy type of Def�P,k(︀𝑡⌋︀⇑�𝑡2�� is classified by Quillen cohomology
of P with coefficients in itself P > IbMod�P�.

Organization of the thesis. In Chapter 2, we recall briefly some necessary facts relevant to en-
riched operads and various types of module over an operad. This chapter is also devoted to the most
important concepts that we work with throughout the thesis including tangent category, cotangent com-
plex and Quillen cohomology groups. In Chapter 3, we first concentrate on proving Theorem 1.0.0.3.
We then set up an extra condition on the base category and by the way, provide several illustrations
for this condition. The ultimate goal of this chapter is to prove Theorem 1.0.0.5. Chapter 4 is devoted
to Quillen cohomology of simplicial operads. We shall discuss on the construction of twisted arrow ª-
categories of simplicial operads, after having described the unstraightening of simplicial (co)presheaves.
We then explain how this construction classifies Quillen cohomology of simplicial operads. Our main
purposes in Chapter 5 are to formulate Quillen cohomology of dg operads and to establish the relation
between deformation theory and Quillen cohomology. Besides that, we consider Quillen cohomology of
connective augmented dg operads. For other purposes, we prove the existence of an operadic version of
the Dold-Kan correspondence, as well as give a connection between Quillen cohomology of a simplicial
operad and Quillen cohomology of its dg version. In Appendix A, we recall some basic facts involving
semi model categories and their localizations. Lastly, in Appendix B, we present the notion of homotopy
Cartesian squares of model categories. This appendix is particularly devoted to the work of §5.4.
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Chapter 2

Backgrounds and notations

This chapter is devoted to the basic concepts and notations we work with throughout the thesis. In the
first section, we recall briefly fundamental notions relevant to enriched operads, various types of module
over an operad and their homotopy theories. The second section is devoted to the needed concepts
relevant to the Quillen cohomology theory.

2.1 Enriched operads and various types of operadic module

2.1.1 Enriched operads

Let S be a symmetric monoidal category. Given a set 𝐶, regarded as the set of colors, we denote
by

Seq�𝐶� �� ��𝑐1,�, 𝑐𝑛; 𝑐� ⋃︀ 𝑐𝑖, 𝑐 > 𝐶,𝑛 E 0�
and refer to it as the collection of 𝐶-sequences.

For each 𝑛 C 0, we let Σ𝑛 denote the symmetric group of degree 𝑛.

Definition 2.1.1.1. A symmetric 𝐶-collection (also called a 𝐶-symmetric sequence) in S is a
collection

𝑀 � �𝑀�𝑐1,�, 𝑐𝑛; 𝑐���𝑐1,�,𝑐𝑛;𝑐�>Seq�𝐶�

of objects in S equipped with a symmetric action whose data consists of, for each �𝑐1,�, 𝑐𝑛; 𝑐� > Seq�𝐶�
and 𝜎 > Σ𝑛, a map of the form 𝜎� �𝑀�𝑐1,�, 𝑐𝑛; 𝑐� Ð�𝑀�𝑐𝜎�1�,�, 𝑐𝜎�𝑛�; 𝑐�. These maps define a right
action by Σ𝑛 in the sense that 𝜎�𝜏� � �𝜏𝜎�� and 𝜇�𝑛 � Id where 𝜇𝑛 > Σ𝑛 signifies the trivial permutation.
With the obvious maps, symmetric 𝐶-collections in S form a category, denoted by Coll𝐶�S�.
Remark 2.1.1.2. Let 𝑃 �𝐶� denote the groupoid whose set of objects is given by

Ob�𝑃 �𝐶�� � �g� @ �+
𝑛C1

𝐶�𝑛�
and whose morphisms just consist of the identity map Idg and the morphisms of the form

𝜎� � �𝑐1,�, 𝑐𝑛�Ð� �𝑐𝜎�1�,�, 𝑐𝜎�𝑛��
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with 𝜎 > Σ𝑛, 𝑛 E 1. Then the category Coll𝐶�S� is isomorphic to Fun�𝑃 �𝐶� � 𝐶,S� the category of
S-enriched functors from 𝑃 �𝐶� �𝐶 to S.

The well known composite product

� X � � Coll𝐶�S� �Coll𝐶�S�Ð� Coll𝐶�S�
endows Coll𝐶�S� with a monoidal structure. The monoidal unit will be denoted by I𝐶 , with I𝐶�𝑐; 𝑐� � 1S
for every 𝑐 > 𝐶 and agreeing with gS on the other levels. (See, e.g., [8, 28, 30]).

Definition 2.1.1.3. A symmetric 𝐶-colored operad in S is a monoid in the monoidal category
�Coll𝐶�S�,� X �, I𝐶�. We denote by Op𝐶�S� the category of symmetric 𝐶-colored operads.

Remark 2.1.1.4. Unwinding definition, a symmetric 𝐶-colored operad in S is a symmetric 𝐶-collection
P equipped with

Y a composition whose data consists of the maps of the form

P�𝑐1,�, 𝑐𝑛; 𝑐�aP�𝑐1,1,�, 𝑐1,𝑘1 ; 𝑐1�a�aP�𝑐𝑛,1,�, 𝑐1,𝑘𝑛 ; 𝑐𝑛�
Ð� P�𝑐1,1,�, 𝑐1,𝑘1 ,�, 𝑐𝑛,1,�, 𝑐1,𝑘𝑛 ; 𝑐�,

Y and for each color 𝑐 > 𝐶, with a unit operation id𝑐 � 1S Ð� P�𝑐; 𝑐�.
The composition maps are required to satisfy the essential axioms of Σ�-equivariance, associativity and
unitality. (Cf., e.g, [32, 30] for more details).

Given P > Op𝐶�S�, each object P�𝑐1,�, 𝑐𝑛; 𝑐� will be called a space of 𝑛-ary operations of P.
Recall that the collection of 1-ary operations of P, denoted by P1, inherits an obvious S-enriched
category structure. We shall refer to P1 as the underlying category of P.

The notion of a nonsymmetric 𝐶-colored operad (resp. 𝐶-collection) is the same as that of a
symmetric 𝐶-colored operad (resp. 𝐶-collection) after forgetting the symmetric action. We denote by
nsColl𝐶�S� (resp. nsOp𝐶�S�) the category of nonsymmetric 𝐶-collections (resp. 𝐶-colored operads) in
S. The natural passage from nonsymmetric to symmetric context is performed by the symmetriza-
tion functor Sym. Namely, the functor Sym � nsColl𝐶�S� Ð� Coll𝐶�S� is given by sending each
nonsymmetric 𝐶-collection 𝑀 to Sym�𝑀� with

Sym�𝑀��𝑐1,�, 𝑐𝑛; 𝑐� � +
𝜎>Σ𝑛

𝑀�𝑐𝜎�1�,�, 𝑐𝜎�𝑛�; 𝑐�.
The structure maps are induced by the multiplication of permutations in an evident way. By construc-
tion, the functor Sym forms a left adjoint to the associated forgetful functor.

Remark 2.1.1.5. Given two objects 𝑀,𝑁 > nsColl𝐶�S�, the composite product of unit maps 𝑀 X𝑁 Ð�

Sym�𝑀�XSym�𝑁� induces a natural map Sym�𝑀 X𝑁�Ð� Sym�𝑀�XSym�𝑁�. It can then be verified
that the latter is a natural isomorphism of symmetric 𝐶-collections with the inverse

Sym�𝑀� X Sym�𝑁� �

Ð� Sym�𝑀 X𝑁�
induced by the concatenation of linear orders

Σ𝑘 �Σ𝑛1 �� �Σ𝑛𝑘
Ð� Σ𝑛1���𝑛𝑘

.

On other hand, the functor Sym clearly preserves monoidal units. In conclusion, we get that Sym is
strong monoidal.
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By the above remark, the functor Sym � nsColl𝐶�S� Ð� Coll𝐶�S� descends to a functor between
monoids

Sym � nsOp𝐶�S�Ð� Op𝐶�S�,
which forms a left adjoint to the associated forgetful functor.

Conventions 2.1.1.6. Since we are almost concentrated in the symmetric context, throughout the
forthcoming, unless otherwise specified, we shall omit the word “symmetric” when mentioning an object
of Op𝐶�S� (or Coll𝐶�S�).

One can integrate all the categories Op𝐶�S� for 𝐶 > Sets into a single category of S-enriched operads,
just like the way one establishes category of categories.

Definition 2.1.1.7. The category of S-enriched operads, denoted by Op�S�, is the (contravariant)
Grothendieck construction

Op�S� �� S
𝐶>Sets

Op𝐶�S�
in which for each map 𝛼 � 𝐶 � 𝐷 of sets, the corresponding functor 𝛼� � Op𝐷�S� Ð� Op𝐶�S� is given
by taking Q > Op𝐷�S� to 𝛼�Q with

𝛼�Q�𝑐1,�, 𝑐𝑛; 𝑐� �� Q�𝛼�𝑐1�,�, 𝛼�𝑐𝑛�;𝛼�𝑐��.
The functor 𝛼� will be called the changing-colors functor associated to 𝛼.

Unwinding definition, an object of Op�S� is a pair �𝐶,P� with 𝐶 > Sets, P > Op𝐶�S� and moreover, a
morphism �𝐶,P�Ð� �𝐷,Q� consists of a map 𝛼 � 𝐶 � 𝐷 of sets and a map 𝑓 � PÐ� 𝛼�Q of 𝐶-colored
operads.

2.1.2 Various types of operadic module

Let P be a 𝐶-colored operad in S. We let LMod�P� (resp. RMod�P�) denote the categoy of left (resp.
right) P-modules. Besides that we let BMod�P� and IbMod�P� respectively denote the categories of
P-bimodules and infinitesimal P-bimodules. Let us revisit these quickly.

Operadic left module (resp. right module, bimodule) is the usual notion of left module (resp. right
module, bimodule) over an operad when one regards operads as monoids in the monoidal category of
symmetric sequences. More explicitly,

Definition 2.1.2.1. 1. A left P-module is a 𝐶-collection 𝑀 equipped with a left P-action map
P X𝑀 Ð�𝑀 whose data consists of the Σ�-equivariant maps of the form

P�𝑐1,�, 𝑐𝑛; 𝑐�a𝑀�𝑑1,1,�, 𝑑1,𝑘1 ; 𝑐1�a�a𝑀�𝑑𝑛,1,�, 𝑑𝑛,𝑘𝑛 ; 𝑐𝑛�Ð�𝑀�𝑑1,1,�, 𝑑1,𝑘1 ,�, 𝑑𝑛,1,�, 𝑑𝑛,𝑘𝑛 ; 𝑐�
satisfying the classical axioms of associativity and unitality for left modules.

2. Dually, a right P-module is a 𝐶-collection 𝑀 equipped with a right P-action map 𝑀 XPÐ�𝑀

whose data consists of the Σ�-equivariant maps of the form

𝑀�𝑐1,�, 𝑐𝑛; 𝑐�aP�𝑑1,1,�, 𝑑1,𝑘1 ; 𝑐1�a�aP�𝑑𝑛,1,�, 𝑑𝑛,𝑘𝑛 ; 𝑐𝑛�Ð�𝑀�𝑑1,1,�, 𝑑1,𝑘1 ,�, 𝑑𝑛,1,�, 𝑑𝑛,𝑘𝑛 ; 𝑐�
satisfying the classical axioms of associativity and unitality for right modules.
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3. A P-bimodule is a 𝐶-collection 𝑀 equipped with both a left and a right P-module structure.
These must satisfy the essential compatibility for bimodules.

Moreover, a P-algebra is simply a left P-module concentrated in level 0. More precisely,

Definition 2.1.2.2. A P-algebra is an object 𝐴 > S�𝐶 which is equipped, for each �𝑐1,�, 𝑐𝑛; 𝑐�, with
a P-action map

P�𝑐1,�, 𝑐𝑛; 𝑐�a𝐴�𝑐1�a�a𝐴�𝑐𝑛�Ð� 𝐴�𝑐�
factoring through the tensor product over Σ𝑛. These maps must satisfy the essential axioms of associa-
tivity and unitality. We denote by AlgP�S� the category of P-algebras.

Remark 2.1.2.3. When P is concentrated in arity 1 then P is simply an S-enriched category. In this
situation, the category of P-algebras is nothing but Fun�P,S� the category of S-valued enriched functors
on P.

Example 2.1.2.4. The collection of unary (= 0-ary) operations of P, denoted by P0, inherits an obvious
P-algebra structure and moreover, P0 then becomes an initial object in AlgP�S�.
Example 2.1.2.5. It is noteworthy that for each set 𝐶, there exists a Seq�𝐶�-colored operad in S,
denoted by O𝐶 , whose algebras are precisely the 𝐶-colored operads, i.e., there is an isomorphism of
categories AlgO𝐶

�S� � Op𝐶�S�. We will refer to O𝐶 as the operad of 𝐶-colored operads. (Cf., e.g.,
[[36], §3]).

The structure of left modules (and hence, bimodules) over an operad is not abelian in general. The
notion of infinitesimal left modules (bimodules), as introduced by Merkulov-Vallette ([12]), essentially
appears as the abelianization of the previous one. In terms of enriched colored operads, these are defined
as follows.

Definition 2.1.2.6. 1. An infinitesimal left P-module is a 𝐶-collection 𝑀 equipped with the
action maps of the form

X
𝑙
𝑖 � P�𝑐1,�, 𝑐𝑛; 𝑐�a𝑀�𝑑1,�, 𝑑𝑚; 𝑐𝑖�Ð�𝑀�𝑐1,�, 𝑐𝑖�1, 𝑑1,�, 𝑑𝑚, 𝑐𝑖�1,�, 𝑐𝑛; 𝑐�

which are Σ�-equivariant and satisfy the classical axioms of associativity and unitality for left
modules.

2. Dually, an infinitesimal right P-module is a 𝐶-collection 𝑀 equipped with the action maps of
the form

X
𝑟
𝑖 �𝑀�𝑐1,�, 𝑐𝑛; 𝑐�aP�𝑑1,�, 𝑑𝑚; 𝑐𝑖�Ð�𝑀�𝑐1,�, 𝑐𝑖�1, 𝑑1,�, 𝑑𝑚, 𝑐𝑖�1,�, 𝑐𝑛; 𝑐�

which are Σ�-equivariant and satisfy the classical axioms of associativity and unitality for right
modules.

3. An infinitesimal P-bimodule is a 𝐶-collection 𝑀 equipped with both an infinitesimal left and
an infinitesimal right P-module structure which together satisfy the essential compatibility for
bimodules.

Remark 2.1.2.7. The structure of an infinitesimal right P-module is equivalent to that of a (non-
infinitesimal) right P-module.
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The notion of an infinitesimal P-bimodule can be reformulated using the diagramatical language,
which has certain advantages over the above definition. To this end, one starts with the notion of
infinitesimal composite product:

� X�1� � � Coll𝐶�S� �Coll𝐶�S�Ð� Coll𝐶�S�,
which can be thought of as the “right abelianization” of the composite product � X �. Formally, given
two 𝐶-collections 𝑀 and 𝑁 , 𝑀 X�1�𝑁 is the sub 𝐶-collection of 𝑀 X�I𝐶@𝑁� abelian in 𝑁 . To be precise,
looking at the explicit formula of 𝑀 X �I𝐶 @𝑁�, we have on each level that �𝑀 X�1� 𝑁��𝑐1,�, 𝑐𝑛; 𝑐� is
the sub-object of 𝑀 X �I𝐶 @𝑁��𝑐1,�, 𝑐𝑛; 𝑐� consisting of the multi-tensor products which contain one
and only one factor in 𝑁 . The readers can find out this construction in [[11], Section 6.1].

Observe now that for each 𝑀 > Coll𝐶�S� there is a natural inclusion

P X�1� �P X�1� 𝑀�Ð� �P X�1� P� X�1� 𝑀.

On other hand, the (partial) composition in P gives a map 𝜇�1� � P X�1� P Ð� P. The following is
equivalent to Definition 2.1.2.6(i).

Definition 2.1.2.8. An infinitesimal left P-module is a 𝐶-collection 𝑀 equipped with an action
map PX�1�𝑀 Ð�𝑀 satisfying the classical axioms of associativity and unitality for left modules, which
are depicted as the commutativity of the following diagrams

P X�1� �P X�1� 𝑀�

�P X�1� P� X�1� 𝑀

P X�1� 𝑀 𝑀

P X�1� 𝑀 I𝐶 X�1� 𝑀 P X�1� 𝑀

𝑀

�

Now, notice that for each 𝑀 > Coll𝐶�S�, there is a natural inclusion

�P X�1� 𝑀� XPÐ� �P XP� X�1� �𝑀 XP�.
The following is equivalent to Definition 2.1.2.6(iii).

Definition 2.1.2.9. An infinitesimal P-bimodule is a 𝐶-collection 𝑀 endowed with an infinitesimal left
P-module structure, exhibited by a map PX�1�𝑀 Ð�𝑀 and with a right P-module structure, exhibited
by a map 𝑀 XPÐ�𝑀 which are subject to the essential compatibility, depicted as the commutativity
of the following diagram
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�P X�1� 𝑀� XP

�P XP� X�1� �𝑀 XP�

P X�1� 𝑀 𝑀

𝑀 XP

Remark 2.1.2.10. In the above diagram, the 𝐶-collection �P X�1� 𝑀� X P does not represent the free
infinitesimal P-bimodule generated by 𝑀 . (This does not even carry any canonical infinitesimal P-
bimodule structure). To find out the exact one, we factor the free functor Coll𝐶�S� F𝑖𝑏

Ð� IbMod�P� as
Coll𝐶�S� F1

Ð� RMod�P� F2
Ð� IbMod�P� where F1 (F2) refers to the left adjoint of the associated forgetful

functor. Observe now that F1 � ��� XP, while F2 � P X�1� ���. In conclusion, the functor F𝑖𝑏 is given by
F𝑖𝑏 � P X�1� �� XP�. On other hand, the free infinitesimal left P-module functor is simply P X�1� ���.

Another important one is the notion of modules over an operadic algebra. Let 𝐴 be a P-algebra.

Definition 2.1.2.11. An 𝐴-module over P is an object 𝑀 > S�𝐶 equipped, for each sequence
�𝑐1,�, 𝑐𝑛; 𝑐�, with a mixed �P,𝐴�-action map of the form

P�𝑐1,�, 𝑐𝑛; 𝑐�a A
𝑖>�1,�,𝑛���𝑘�

𝐴�𝑐𝑖�a𝑀�𝑐𝑘�Ð�𝑀�𝑐�
factoring through the tensor product over Σ𝑛. These maps must satisfy the essential axioms of associa-
tivity and unitality. With the obvious maps, 𝐴-modules over P form a category, denoted by Mod𝐴P.

To reformulate Mod𝐴P as a category of S-valued enriched functors, one will need the construction of
enveloping operads.

Denote by Pairs𝐶�S� the category whose objects are the pairs �P,𝐴� with P > Op𝐶�S� and 𝐴 >

AlgP�S�, and whose morphisms are the pairs �𝜙, 𝑓� � �P,𝐴� Ð� �Q,𝐵� with 𝜙 � P � Q being a map in
Op𝐶�S� and 𝑓 � 𝐴 � 𝐵 a map of P-algebras. There is a canonical functor 𝛿 � Op𝐶�S� Ð� Pairs𝐶�S�
sending each 𝐶-colored operad P to the pair �P,P0� (see Example 2.1.2.4). According to [33], the
functor 𝛿 admits a left adjoint Env � Pairs𝐶�S�Ð� Op𝐶�S� called the enveloping functor.

Definition 2.1.2.12. The enveloping operad associated to a pair �P,𝐴� > Pairs𝐶�S� is defined to
be Env�P,𝐴� the image of �P,𝐴� through the enveloping functor.

Remark 2.1.2.13. Following Theorem 1.10 of loc.cit, there is a canonical isomorphism

Mod𝐴P � Fun�Env�P,𝐴�1,S� (2.1.2.1)

between the categories of 𝐴-modules over P and S-valued enriched functors on Env�P,𝐴�1 the underlying
category of Env�P,𝐴�.
Remark 2.1.2.14. Another main interest in this construction is that there is a canonical isomorphism

AlgEnv�P,𝐴��S� � AlgP�S�𝐴⇑

between the categories of Env�P,𝐴�-algebras and P-algebras under 𝐴. On other hand, by construction
there is a canonical map 𝑗𝐴 � P Ð� Env�P,𝐴� of 𝐶-colored operads. This endows Env�P,𝐴�0 with a
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canonical P-algebra structure and moreover, Env�P,𝐴�0 is isomorphic to 𝐴 as P-algebras. (See around
[[33], Lemma 1.7]).

Finally, to sum up, we illustrate several links between mentioned operadic categories. Observe first
that, as well as every type of monoid, there is a restriction functor

Op𝐶�S�P⇑ Ð� BMod�P�P⇑,

which admits a left adjoint usually called the induction functor.
On other hand, the (partial) composition in P endows P with the structure of an infinitesimal

bimodule over itself. Let 𝑀 be a P-bimodule under P. Then, 𝑀 inherits a canonical infinitesimal
P-bimodule structure (under P) induced by inserting the unit operations of P into 𝑀 . This procedure
determines a restriction functor

BMod�P�P⇑ Ð� IbMod�P�P⇑,

which admits a left adjoint, the induction functor again.
Moreover, there is an adjunction

LP � Op𝐶�S�P⇑
Ð@
BÐ Op�S�P⇑ � RP (2.1.2.2)

where the left adjoint is the obvious embedding functor and the right adjoint is given by the restriction
of colors. Namely, let P

𝑓
Ð� Q be an object of Op�S�P⇑, then RP�Q� is given on each level as

RP�Q��𝑐1,�, 𝑐𝑛; 𝑐� �� Q�𝑓�𝑐1�,�, 𝑓�𝑐𝑛�; 𝑓�𝑐��.
In conclusion, we obtain a sequence of adjunctions of the induction-restriction functors

IbMod�P�P⇑
Ð@
BÐ BMod�P�P⇑

Ð@
BÐ Op𝐶�S�P⇑

Ð@
BÐ Op�S�P⇑. (2.1.2.3)

2.1.3 Algebras encoding the categories IbMod�P�, BMod�P�, RMod�P� and LMod�P�

It is convenient that each of the categories IbMod�P�, BMod�P�, LMod�P� and RMod�P� can be
encoded by an enriched operad (or category). In terms of single-colored operads, these constructions
can be found in [47, 48].

Notations 2.1.3.1. 1. We let Fin denote the smallest skeleton of the category of finite sets whose
objects consist of 0 �� g and 𝑚 �� �1,�,𝑚� for 𝑚 E 1.

2. We denote by Fin� the category whose objects are finite pointed sets ∐︀𝑚̃︀ �� �0, 1�,𝑚� (with 0 as
the basepoint) for 𝑚 E 0, and whose morphisms are basepoint-preserving maps. In other words,
Fin� is the smallest skeleton of the category of finite pointed sets.

Note that there is an obvious embedding functor Fin Ð� Fin� taking each 𝑚 to ∐︀𝑚̃︀.
Construction 2.1.3.2. We now construct an S-enriched category, denoted IbP, which encodes in-
finitesimal P-bimodules. The set of objects of IbP is Seq�𝐶�, while its mapping spaces are defined as
follows. For each map ∐︀𝑚̃︀ 𝑓

Ð� ∐︀𝑛̃︀ in Fin�, we denote by

Map𝑓IbP � �𝑐1,�, 𝑐𝑛; 𝑐� , �𝑑1,�, 𝑑𝑚;𝑑� � �� P �𝑐,�𝑑𝑗�𝑗>𝑓�1�0�;𝑑�a A
𝑖�1,�,𝑛

P ��𝑑𝑗�𝑗>𝑓�1�𝑖�; 𝑐𝑖�
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in which, for each 𝑘 > �0,�, 𝑛�, the elements of �𝑑𝑗�𝑗>𝑓�1�𝑘� are put in the natural ascending order of 𝑗.
Then, we define

MapIbP � �𝑐1,�, 𝑐𝑛; 𝑐� , �𝑑1,�, 𝑑𝑚;𝑑� � �� +
∐︀𝑚̃︀

𝑓
�∐︀𝑛̃︀

Map𝑓IbP � �𝑐1,�, 𝑐𝑛; 𝑐� , �𝑑1,�, 𝑑𝑚;𝑑� � .
Observe that

MapId∐︀𝑛̃︀

IbP � �𝑐1,�, 𝑐𝑛; 𝑐� , �𝑐1,�, 𝑐𝑛; 𝑐� � � P�𝑐; 𝑐�aP�𝑐1; 𝑐1�a�aP�𝑐𝑛; 𝑐𝑛�.
Due to this, we can define the unit morphisms of IbP via the unit operations of P. Moreover, the
structure maps of IbP are canonically defined via the composition in P, along with the symmetric
action on P. (See also [47], §2).

Proposition 2.1.3.3. There is a canonical isomorphism

IbMod�P� � Fun�IbP,S�
between the category of infinitesimal P-bimodules and the category of S-valued enriched functors on IbP.

Proof. (1) Let 𝑀 � IbP
Ð� S be an enriched functor. We establish the associated infinitesimal P-

bimodule, still denoted by 𝑀 , as follows.
Each permutation 𝛼 > Σ𝑛 determines a map ∐︀𝑛̃︀ 𝛼

Ð� ∐︀𝑛̃︀. Observe now that

Map𝛼IbP � �𝑐1,�, 𝑐𝑛; 𝑐� , �𝑐𝛼�1�,�, 𝑐𝛼�𝑛�; 𝑐� � � P�𝑐; 𝑐�aP�𝑐1; 𝑐1�a�aP�𝑐𝑛; 𝑐𝑛�.
In particular, the functor structure map of 𝑀

MapIbP � �𝑐1,�, 𝑐𝑛; 𝑐� , �𝑐𝛼�1�,�, 𝑐𝛼�𝑛�; 𝑐� �a𝑀�𝑐1,�, 𝑐𝑛; 𝑐�Ð�𝑀�𝑐𝛼�1�,�, 𝑐𝛼�𝑛�; 𝑐�
has a component given by

P�𝑐; 𝑐�aP�𝑐1; 𝑐1�a�aP�𝑐𝑛; 𝑐𝑛�a𝑀�𝑐1,�, 𝑐𝑛; 𝑐�Ð�𝑀�𝑐𝛼�1�,�, 𝑐𝛼�𝑛�; 𝑐�.
Now, the evaluation at the unit operations id𝑐, id𝑐1 ,�, id𝑐𝑛 of P determines the symmetric action of
typical form: 𝑀�𝑐1,�, 𝑐𝑛; 𝑐� 𝛼�

Ð�𝑀�𝑐𝛼�1�,�, 𝑐𝛼�𝑛�; 𝑐�.
Next we define the infinitesimal right action of P on 𝑀 . Observe that the structure map

MapIbP � �𝑐1,�, 𝑐𝑛; 𝑐� , �𝑐1,�, 𝑐𝑖�1, 𝑑1,�, 𝑑𝑚, 𝑐𝑖�1,�, 𝑐𝑛; 𝑐� �a𝑀�𝑐1,�, 𝑐𝑛; 𝑐�
Ð�𝑀�𝑐1,�, 𝑐𝑖�1, 𝑑1,�, 𝑑𝑚, 𝑐𝑖�1,�, 𝑐𝑛; 𝑐�

has a component given by

𝑀�𝑐1,�, 𝑐𝑛; 𝑐�aP�𝑑1,�, 𝑑𝑚; 𝑐𝑖�aP�𝑐; 𝑐�aP�𝑐1; 𝑐1�a�aP�𝑐𝑖�1; 𝑐𝑖�1�aP�𝑐𝑖�1; 𝑐𝑖�1�a�aP�𝑐𝑛; 𝑐𝑛�
Ð�𝑀�𝑐1,�, 𝑐𝑖�1, 𝑑1,�, 𝑑𝑚, 𝑐𝑖�1,�, 𝑐𝑛; 𝑐�.

This induces an infinitesimal right P-action on 𝑀 by evaluating at the unit operations of P.
To define the infinitesimal left P-action, observe that the structure map

MapIbP � �𝑑1,�, 𝑑𝑚; 𝑐𝑖� , �𝑐1,�, 𝑐𝑖�1, 𝑑1,�, 𝑑𝑚, 𝑐𝑖�1,�, 𝑐𝑛; 𝑐� �a𝑀�𝑑1,�, 𝑑𝑚; 𝑐𝑖�
Ð�𝑀�𝑐1,�, 𝑐𝑖�1, 𝑑1,�, 𝑑𝑚, 𝑐𝑖�1,�, 𝑐𝑛; 𝑐�
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has a component given by

P�𝑐𝑖, 𝑐1,�, 𝑐𝑖�1, 𝑐𝑖�1,�, 𝑐𝑛; 𝑐�aP�𝑑1;𝑑1�a�aP�𝑑𝑚;𝑑𝑚�a𝑀�𝑑1,�, 𝑑𝑚; 𝑐𝑖�
Ð�𝑀�𝑐1,�, 𝑐𝑖�1, 𝑑1,�, 𝑑𝑚, 𝑐𝑖�1,�, 𝑐𝑛; 𝑐�.

The latter induces an infinitesimal left action by evaluating at the unit operations of P, again.

(2) Conversely, let 𝑀 be an infinitesimal P-bimodule. We want to see how 𝑀 admits a canonical
enriched functor structure IbP

Ð� S. We have to define the maps of the form

MapIbP � �𝑐1,�, 𝑐𝑛; 𝑐� , �𝑑1,�, 𝑑𝑚;𝑑� �a𝑀�𝑐1,�, 𝑐𝑛; 𝑐�Ð�𝑀�𝑑1,�, 𝑑𝑚;𝑑�.
This map must consist of, for each ∐︀𝑚̃︀ 𝑓

Ð� ∐︀𝑛̃︀, a component map of the form

P �𝑐,�𝑑𝑗�𝑗>𝑓�1�0�;𝑑�a A
𝑖�1,�,𝑛

P ��𝑑𝑗�𝑗>𝑓�1�𝑖�; 𝑐𝑖�a𝑀�𝑐1,�, 𝑐𝑛; 𝑐�Ð�𝑀�𝑑1,�, 𝑑𝑚;𝑑�.
The latter can be naturally defined using the (two sided) infinitesimal P-action on 𝑀 , along with the
symmetric action on 𝑀 (we will revisit this in Notation 4.2.0.7).

The explicit verifications are elephantine, but not complicated.

Construction 2.1.3.4. The enriched category which encodes the category of right P-modules will be
denoted by RP. Its set of objects is Seq�𝐶�, while its mapping objects are given by

MapRP � �𝑐1,�, 𝑐𝑛; 𝑐� , �𝑑1,�, 𝑑𝑚; 𝑐� � �� +
𝑚

𝑓
�𝑛

⌊︀ A
𝑖�1,�,𝑛

P ��𝑑𝑗�𝑗>𝑓�1�𝑖�; 𝑐𝑖�}︀
where the coproduct ranges over the hom-set HomFin�𝑚,𝑛�. Observe that there is a map

MapRP � �𝑐1,�, 𝑐𝑛; 𝑐� , �𝑑1,�, 𝑑𝑚; 𝑐� �Ð�MapIbP � �𝑐1,�, 𝑐𝑛; 𝑐� , �𝑑1,�, 𝑑𝑚; 𝑐� �
induced by the embedding Fin Ð� Fin� and by inserting the unit operation id𝑐 into the factor P�𝑐; 𝑐�
of the right hand side. The categorical structure of RP is then defined via the operad structure of P,
so that RP forms a subcategory of IbP.

It can then be verified the following, similarly as in the proof of Proposition 2.1.3.3.

Proposition 2.1.3.5. There is a canonical isomorphism

RMod�P� � Fun�RP,S�
between the category of right P-modules and the category of S-valued enriched functors on RP.

We now wish to construct an operad encoding the category of P-bimodules, yet it will be more
convenient for us to start with BMod�P�P⇑ the category P-bimodules under P.

Remark 2.1.3.6. As well as every type of monoid, for every P-bimodule 𝑀 there is a natural isomor-
phism

HomBMod�P��P,𝑀� � Hom𝑐
Coll𝐶�S��I𝐶 ,𝑀�

in which Hom𝑐
Coll𝐶�S��I𝐶 ,𝑀� b HomColl𝐶�S��I𝐶 ,𝑀� is the subset consisting of those 𝜀 � I𝐶 Ð� 𝑀
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making the following diagram commutative

P X I𝐶 � I𝐶 XP
𝜀XP

//

PX𝜀
��

𝑀 XP

��

P X𝑀 //𝑀

Construction 2.1.3.7. The S-enriched operad which encodes P-bimodules under P will be denoted by
BP⇑. Its set of colors is again Seq�𝐶�. The unary operations of BP⇑ agree with P, i.e.,

BP⇑�; �𝑐1,�, 𝑐𝑛; 𝑐�� �� P�𝑐1,�, 𝑐𝑛; 𝑐�,
while its 1-ary operations coincide with those of IbP (see Construction 2.1.3.2), i.e.,

BP⇑ � �𝑐1,�, 𝑐𝑛; 𝑐� ; �𝑑1,�, 𝑑𝑚;𝑑� � � +
∐︀𝑚̃︀

𝑓
�∐︀𝑛̃︀

⌊︀P �𝑐,�𝑑𝑗�𝑗>𝑓�1�0�;𝑑�a A
𝑖�1,�,𝑛

P ��𝑑𝑗�𝑗>𝑓�1�𝑖�; 𝑐𝑖�}︀
where 𝑓 ranges over the set HomFin��∐︀𝑚̃︀ , ∐︀𝑛̃︀�. Then we may extend the above formula to obtain the
spaces of operations of higher arities. A typical space of 𝑛-ary operations of BP⇑ is given by

BP⇑ � �𝑐1,�, 𝑐𝑟1 ; 𝑐�1�� , �𝑐𝑟1�1,�, 𝑐𝑟1�𝑟2 ; 𝑐�2�� ,�, �𝑐𝑟1���𝑟𝑛�1�1,�, 𝑐𝑟1���𝑟𝑛 ; 𝑐�𝑛�� ; �𝑑1,�, 𝑑𝑚;𝑑� �
� +

∐︀𝑚̃︀
𝑓
Ð�∐︀𝑟1���𝑟𝑛̃︀

⌊︀P �𝑐�1�,�, 𝑐�𝑛�,�𝑑𝑗�𝑗>𝑓�1�0�;𝑑�a A
𝑖�1,�,𝑟1���𝑟𝑛

P ��𝑑𝑗�𝑗>𝑓�1�𝑖�; 𝑐𝑖�}︀ .

The Σ𝑛-action is given by permuting the colors 𝑐�1�,�, 𝑐�𝑛� on the factor

P �𝑐�1�,�, 𝑐�𝑛�,�𝑑𝑗�𝑗>𝑓�1�0�;𝑑�
and simultaneously, permuting the terms �𝑐1,�, 𝑐𝑟1�,�,�𝑐𝑟1���𝑟𝑛�1�1,�, 𝑐𝑟1���𝑟𝑛� on the factor

A
𝑖�1,�,𝑟1���𝑟𝑛

P ��𝑑𝑗�𝑗>𝑓�1�𝑖�; 𝑐𝑖� .
The composition of BP⇑ is canonically defined via the composition of P, while its unit operations are
exactly those of IbP.

Proposition 2.1.3.8. There is a canonical isomorphism

BMod�P�P⇑ � AlgBP⇑�S�
between the category of P-bimodules under P and the category of algebras over BP⇑.

Proof. (1) Let 𝑀 be a BP⇑-algebra. Note first that since the underlying category of BP⇑ agrees with
IbP, 𝑀 already inherits a canonical right P-module structure (cf. Proposition 2.1.3.3).

Let us see how 𝑀 comes equipped with a left P-action. For simplicity, we only establish the action
maps of the form

P�𝑐, 𝑑; 𝑒�a𝑀�𝑐1,�, 𝑐𝑛; 𝑐�a𝑀�𝑑1,�, 𝑑𝑚;𝑑�Ð�𝑀�𝑐1,�, 𝑐𝑛, 𝑑1,�, 𝑑𝑚; 𝑒� (2.1.3.1)

To this end, observe first that the BP⇑-algebra structure map of 𝑀 of the form

BP⇑ � �𝑐1,�, 𝑐𝑛; 𝑐� , �𝑑1,�, 𝑑𝑚;𝑑� ; �𝑐1,�, 𝑐𝑛, 𝑑1,�, 𝑑𝑚; 𝑒� �a
a𝑀�𝑐1,�, 𝑐𝑛; 𝑐�a𝑀�𝑑1,�, 𝑑𝑚;𝑑�Ð�𝑀�𝑐1,�, 𝑐𝑛, 𝑑1,�, 𝑑𝑚; 𝑒�
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has a component given by

P�𝑐, 𝑑; 𝑒�aP�𝑐1; 𝑐1�a�aP�𝑐𝑛; 𝑐𝑛�aP�𝑑1;𝑑1�a�aP�𝑑𝑚;𝑑𝑚�a
a𝑀�𝑐1,�, 𝑐𝑛; 𝑐�a𝑀�𝑑1,�, 𝑑𝑚;𝑑�Ð�𝑀�𝑐1,�, 𝑐𝑛, 𝑑1,�, 𝑑𝑚; 𝑒�.

The evaluation at the unit operations id𝑐1 ,�, id𝑐𝑛 , id𝑑1 ,�, id𝑑𝑚 of P to the latter gives us the action map
(2.1.3.1) as desired.

Finally, the action of the unary operations of BP⇑ on 𝑀 gives us a canonical map P�𝑀 .
(2) Conversely, let 𝑀 be a P-bimodule under P. We let the composite map 𝜀 � I𝐶 � P �𝑀 exhibit

the images of the unit operations of P in 𝑀 . In order to establish the BP⇑-algebra structure on 𝑀 , one
will need to make use of the P-bimodule structure of 𝑀 , along with some suitable involvement of 𝜀.

The explicit verifications are elephantine, but not complicated (with a help of Remark 2.1.3.6 at
some points).

Construction 2.1.3.9. The S-enriched operad which encodes the category of P-bimodules will be
denoted by BP. Its set of colors is again Seq�𝐶�. A typical space of 𝑛-ary operations is given by

BP � �𝑐1,�, 𝑐𝑟1 ; 𝑐�1�� , �𝑐𝑟1�1,�, 𝑐𝑟1�𝑟2 ; 𝑐�2�� ,�, �𝑐𝑟1���𝑟𝑛�1�1,�, 𝑐𝑟1���𝑟𝑛 ; 𝑐�𝑛�� ; �𝑑1,�, 𝑑𝑚;𝑑� �
�� +

𝑚
𝑓
Ð�𝑟1���𝑟𝑛

⌊︀P �𝑐�1�,�, 𝑐�𝑛�;𝑑�a A
𝑖�1,�,𝑟1���𝑟𝑛

P ��𝑑𝑗�𝑗>𝑓�1�𝑖�; 𝑐𝑖�}︀

where the coproduct ranges over the hom-set HomFin�𝑚,𝑟1 �� � 𝑟𝑛�. For each map 𝑓 � 𝑚 Ð�

𝑟1 �� � 𝑟𝑛, we will denote by BP
𝑓 ��� the component of BP��� corresponding to 𝑓 , taken from the

above formula. As in Construction 2.1.3.7, the operad structure of BP is canonically defined via the
structure of P, so that BP is in fact a suboperad of BP⇑. (See also [[48], §2.1.1]).

As in the proof of Proposition 2.1.3.8, it can be shown that:

Proposition 2.1.3.10. There is a canonical isomorphism

BMod�P� � AlgBP�S�
between the category of P-bimodules and the category of algebras over BP.

Finally, we construct an operad encoding the category of left P-modules.

Construction 2.1.3.11. We denote by LP the S-enriched operad whose set of colors is Seq�𝐶� and
whose spaces of operations are given as follows. For simplicity of equations, we just describe the spaces
of 2-ary operations. These are concentrated in the following ones

LP � �𝑐1,�, 𝑐𝑟1 ; 𝑐� , �𝑐𝑟1�1,�, 𝑐𝑟1�𝑟2 ; 𝑐�� ; �𝑐𝜎�1�,�, 𝑐𝜎�𝑟1�𝑟2�;𝑑� � ��+
𝛼

P�𝑐, 𝑐�;𝑑�
where 𝜎 > Σ𝑟1�𝑟2 . The coproduct ranges over the subset of Σ𝑟1�𝑟2 consisting of those 𝛼 satisfying that
for every 𝑖 > �1,�, 𝑟1 � 𝑟2�, the two colors 𝑐𝜎�𝑖� and 𝑐𝛼�𝑖� coincide. From the above formula, we denote
by LP

𝛼��� the component of LP��� corresponding to 𝛼. Observe that there is a canonical map

LP
𝛼 � �𝑐1,�, 𝑐𝑟1 ; 𝑐� , �𝑐𝑟1�1,�, 𝑐𝑟1�𝑟2 ; 𝑐�� ; �𝑐𝜎�1�,�, 𝑐𝜎�𝑟1�𝑟2�;𝑑� � � P�𝑐, 𝑐�;𝑑�Ð�

BP
𝛼 � �𝑐1,�, 𝑐𝑟1 ; 𝑐� , �𝑐𝑟1�1,�, 𝑐𝑟1�𝑟2 ; 𝑐�� ; �𝑐𝜎�1�,�, 𝑐𝜎�𝑟1�𝑟2�;𝑑� � � P�𝑐1; 𝑐1�a�aP�𝑐𝑟1�𝑟2 ; 𝑐𝑟1�𝑟2�aP�𝑐, 𝑐�;𝑑�
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given by inserting the unit operations id𝑐𝑖 into the factors P�𝑐𝑖; 𝑐𝑖� for 𝑖 � 1,�, 𝑟1 � 𝑟2. In this way, the
operad structure of LP is established via the structure of P, so that LP forms a suboperad of BP.

Proposition 2.1.3.12. There is a canonical isomorphism

LMod�P� � AlgLP�S�
between the category of left P-modules and the category of algebras over LP.

Proof. The proof is similar to the ones above. Here we just note the following detail. Suppose we are
given an LP-algebra 𝑀 and a permutation 𝜎 > Σ𝑛. We wish to determine the symmetric action map
𝜎� �𝑀�𝑐1,�, 𝑐𝑛; 𝑐�Ð�𝑀�𝑐𝜎�1�,�, 𝑐𝜎�𝑛�; 𝑐�. To this end, we make use of the structure map

LP
𝜎 ��𝑐1,�, 𝑐𝑛; 𝑐�; �𝑐𝜎�1�,�, 𝑐𝜎�𝑛�; 𝑐��a𝑀�𝑐1,�, 𝑐𝑛; 𝑐� � P�𝑐; 𝑐�a𝑀�𝑐1,�, 𝑐𝑛; 𝑐�Ð�𝑀�𝑐𝜎�1�,�, 𝑐𝜎�𝑛�; 𝑐�

where LP
𝜎 ��� is the component of LP��� corresponding to itself 𝜎. The evaluation to the above map at

the unit operation id𝑐 gives us the expected action 𝜎�.

2.1.4 Operadic transferred model structures

In this section, we assume further that S is a symmetric monoidal model category (cf. Hovey’s
[35]). Let P be a 𝐶-colored operad in S and let 𝐴 be a P-algebra. We collect here all the mentioned
operadic categories, except the category of S-enriched operads Op�S�, including

�Coll𝐶�S�,Op𝐶�S�,LMod�P�,RMod�P�,BMod�P�, IbMod�P�,AlgP�S�,Mod𝐴P� �� A. (2.1.4.1)

Definition 2.1.4.1. Let M be any of the categories in A. The (projective) transferred model
structure on M is the one whose weak equivalences (resp. fibrations) are precisely the levelwise weak
equivalences (resp. fibrations).

We wish to set up several suitable conditions on the base category S assuring the existence of the
transferred model structure on every element of A. As we have seen previously, each category M > A
can be represented as the category of algebras over a certain operad (or category) (cf. Remarks 2.1.1.2,
2.1.2.13, Example 2.1.2.5, Propositions 2.1.3.3, 2.1.3.5, 2.1.3.10, 2.1.3.12). Consequently, one just needs
to consider the transferred model structure on the category AlgP�S�. According to the literature, we
know several criteria assuring the existence of that. Here are several settings.

Definition 2.1.4.2. A symmetric monoidal fibrant replacement functor on S is a symmetric
monoidal functor R � S � S together with a monoidal natural transformation 𝜙 � Id � R such that for
each object 𝑋 > S, the map 𝜙𝑋 � 𝑋 Ð� R�𝑋� exhibits R�𝑋� as a fibrant replacement of 𝑋.

Definition 2.1.4.3. A functorial path data on S is a symmetric monoidal functor P � S� S together
with monoidal natural transformations 𝑠 � Id � P and 𝑑0, 𝑑1 � P � Id such that the composite map
𝑋

𝑠𝑋
Ð� P�𝑋� �𝑑0,𝑑1�

Ð� 𝑋 �𝑋 exhibits P�𝑋� as a path object for 𝑋.

The following is an analogue of [[37], Theorem 3.11].

Proposition 2.1.4.4. Suppose that S is strongly cofibrantly generated (i.e., cofibrantly generated with
domains of the generating cofibrations and trivial cofibrations being small). If S admits both a symmetric
monoidal fibrant replacement functor R and a functorial path data P then the transferred model structure
on AlgP�S� exists for every operad P.
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Proof. Consider the free-forgetful adjunction

F � S�𝐶 Ð@BÐ AlgP�S� � U.
By assumption, the product model structure on S�𝐶 is strongly cofibrantly generated. On other hand,
it can be readily verified that the functor U creates filtered colimits. Thus, according to [[37], Lemma
3.3] (a version of the transfer principle for strongly cofibrantly generated model categories), we just need
to show that there is a functorial U-fibrant replacement in AlgP�S� and that every U-fibrant object in
AlgP�S� admits a path object. (In our setting, “U-fibrant” means levelwise fibrant).

For the first condition, observe first that the symmetric monoidal functor R lifts to a functor R �

Op𝐶�S� Ð� Op𝐶�S�. Moreover, the monoidal natural transformation 𝜙 � Id Ð� R gives us a map of
operads 𝜙P � P Ð� RP. On other hand, R lifts to another functor R � AlgP�S� Ð� AlgRP�S�. Due to
the map 𝜙P, for any 𝐴 > AlgP�S�, the RP-algebra R𝐴 inherits a P-algebra structure and moreover, the
induced map 𝜙𝐴 � 𝐴 Ð� R𝐴 is then a map of P-algebras. By construction, R𝐴 is indeed a U-fibrant
replacement of 𝐴.

It remains to verify the second condition. Let 𝐴 > AlgP�S� be a levelwise fibrant P-algebra. By
applying the symmetric monoidal functor P levelwise, we obtain a P-algebra, P𝐴 (just as in the above
paragraph). The monoidal natural transformations 𝑠 � IdÐ� P and 𝑑0, 𝑑1 � PÐ� Id together determine
a diagram in AlgP�S�:

𝐴
𝑠𝐴
Ð� P𝐴

�𝑑0,𝑑1�
Ð� 𝐴 �𝐴,

which exhibits P𝐴 as a path object for 𝐴.

There is another powerful criterion, thanks to the recent work of Pavlov-Scholbach. Here are several
settings.

Recall from [[38], Definition 1.1] that a map 𝑓 � 𝑋 � 𝑌 in S is an ℎ-cofibration if and only if for
every commutative diagram of coCartesian squares in S of the form

𝑋 //

𝑓
��

𝐴
𝑔
//

��

𝐵

��

𝑌 // 𝐴�
𝑔�
// 𝐵�

the map 𝑔� is a weak equivalence whenever 𝑔 is one. If 𝑓 is in addition a weak equivalence then it is an
acyclic ℎ-cofibration.

Let Ð�𝑛 � �𝑛1,�, 𝑛𝑘� be a finite sequence of natural numbers. For a family 𝑠 � �𝑠1,�, 𝑠𝑘� of maps in
S, denote by

𝑠j
Ð�𝑛
�� j𝑖 𝑠

j𝑛𝑖

𝑖 ,

where the subcript “j” refers to the pushout-product operation of maps. The group ΣÐ�𝑛 �� (𝑖 Σ𝑛𝑖

acts on 𝑠j
Ð�𝑛 in an evident way.

Definition 2.1.4.5. The symmetric monoidal model category S is said to be symmetric ℎ-monoidal
if for any finite family 𝑠 � �𝑠1,�, 𝑠𝑘� of (resp. acyclic) cofibrations and for any object 𝑋 > S equipped
with a right ΣÐ�𝑛 -action, the map 𝑋 aΣÐ�𝑛 𝑠

j
Ð�𝑛 is a (resp. acyclic) ℎ-cofibration.

Proposition 2.1.4.6. (Pavlov-Scholbach, [[28], Theorem 5.10]) Suppose that S is a combinatorial sym-
metric monoidal model category such that weak equivalences are closed under transfinite compositions.
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If S is symmetric ℎ-monoidal (the acyclic part is sufficient), then the transferred model structure on
AlgP�S� exists for every operad P.

We end this section by listing some base categories of interest, which we will work with in the thesis,
and discussing how they adapt to the criteria mentioned above.

Examples 2.1.4.7. 1. The base category of most interest is the Cartesian monoidal category of
simplicial sets, �SetΔ,��, equipped with the standard (Kan-Quillen) model structure. The
model structure on SetΔ is combinatorial (and hence strongly cofibrantly generated, in particular)
and has weak equivalences being closed under filtered colimits. It admits a fibrant replacement
functor given by Exª �� Sing ⋃︀ � ⋃︀ the composition of the realization and singular functors, and
admits a functorial path data given by ���Δ1 . Moreover, SetΔ is as well symmetric ℎ-monoidal,
according to [[29], §7.1]. We hence get that SetΔ satisfies the conditions of both two propositions
2.1.4.4 and 2.1.4.6.

2. The second one is the monoidal category of simplicial R-modules, �sModR,a�, with R being
a commutative ring, equipped with the standard model structure transferred from that of SetΔ.
As well as simplicial sets, simplicial R-modules satisfies the conditions of both two propositions
2.1.4.4 and 2.1.4.6. Indeed, note first that sModR is combinatorial, has weak equivalences being
closed under filtered colimits and moreover, it is a fibrant model category (i.e., all the objects
are fibrant). A functorial path data for sModR is given by ���R�Δ1�. It is as well symmetric
ℎ-monoidal, according to [[29], §7.3].

3. Let k be a commutative ring of characteristic 0. Consider the monoidal category of dg k-modules,
�C�k�,a�, equipped with the projective model structure. This is also a combinatorial fibrant model
category and has weak equivalences being closed under filtered colimits. There is a functorial path
data for C�k� given by ���aΩ��Δ1� where Ω��Δ1� is the Sullivan’s dg algebra of differentials on
the interval Δ1

> SetΔ (see [[14], 5.3]). So we get that C�k� satisfies the conditions of Proposition
2.1.4.4. However, C�k� is in general not symmetric ℎ-monoidal, unless k is a field of characteristic
0. (See the one below).

4. Suppose that k is a field of characteristic 0. We are also interested in the monoidal category of
connective dg k-modules, �CE0�k�,a�, equipped with the projective model structure. This
model category is combinatorial and has weak equivalences being closed under filtered colimits.
Moreover, all its objects are both fibrant and cofibrant. However, as far as we know, CE0�k�
does not adapt to the conditions of Proposition 2.1.4.4. The only thing missed is the existence
of a functorial path data, (which we do not know about). Instead of that, CE0�k� satisfies the
conditions of Proposition 2.1.4.6. Indeed, for any given finite group 𝐺, every k-module equipped
with a 𝐺-action is automatically projective as a k(︀𝐺⌋︀-module, (by the Maschke’s theorem). This
fact implies that CE0�k� is symmetric ℎ-monoidal. (See [[29], §7.4] for more details).

5. More generally, let 𝑅 be a commutative monoid in the monoidal category �CE0�k�,a� with k
being a field of characteristic 0. We are also interested in the monoidal category of 𝑅-modules,
�Mod𝑅,� a𝑅 ��, equipped with the projective model structure. This is a combinatorial fibrant
model category and has weak equivalences being closed under filtered colimits. As well as CE0�k�,
the category Mod𝑅 does not admit a functorial path data, but instead it satisfies the conditions of
Proposition 2.1.4.6. To see the latter, one just needs to verify the symmetric ℎ-monoidality. This
is in fact transferred from the symmetric ℎ-monoidality of CE0�k� (cf. [[29], Theorem 5.9]).
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In conclusion, we see that all the base categories listed above are nice enough so that the transferred
model structure on P-algebras exists for every operad P and consequently, for every category M > A
(2.1.4.1), the transferred model structure on M exists as well.

2.1.5 Dwyer-Kan and canonical model structures on enriched operads

Let S be a monoidal model category and let Cat�S� denote the category of (small) S-enriched
categories. For each C > Cat�S�, the homotopy category of C, denoted by Ho�C�, is the ordinary
category whose objects are the same as those of C and whose hom-set HomHo�C��𝑥, 𝑦�, with 𝑥, 𝑦 > Ob�C�,
is defined to be

HomHo�C��𝑥, 𝑦� �� HomHo�S��1S,MapC�𝑥, 𝑦��.
By convention, a map 𝑓 � C�D in Cat�S� is a levelwise weak equivalence (fibration, trivial fibration,

etc.) if for every 𝑥, 𝑦 > Ob�C� the map MapC�𝑥, 𝑦� Ð� MapD�𝑓�𝑥�, 𝑓�𝑦�� is a weak equivalence
(fibration, trivial fibration, etc.) in S.

Definition 2.1.5.1. A map 𝑓 � C � D in Cat�S� is called a Dwyer-Kan equivalence if it is a
levelwise weak equivalence and such that the induced functor Ho�𝑓� � Ho�C� Ð� Ho�D� between
homotopy categories is essentially surjective.

Definition 2.1.5.2. Dwyer-Kan model structure on Cat�S� is the one whose weak equivalences
are the Dwyer-Kan equivalences and whose trivial fibrations are the levelwise trivial fibrations surjective
on objects. (See, e.g., [39], [4]).

Definition 2.1.5.3. (Berger-Moerdijk [31]) Canonical model structure on Cat�S� is the one whose
fibrant objects are the levelwise fibrant categories and whose trivial fibrations are the same as those of
the Dwyer-Kan model structure.

By extending the two above, G. Caviglia [18] established both the Dwyer-Kan and canonical model
structures on Op�S�. Suppose further that S is a symmetric monoidal model category.

By convention, a map 𝑓 � P � Q in Op�S� is called a levelwise weak equivalence (fibration, trivial
fibration, etc.) if for every sequence �𝑐1,�, 𝑐𝑛; 𝑐� of colors in P, the induced map

P�𝑐1,�, 𝑐𝑛; 𝑐�Ð� Q�𝑓�𝑐1�,�, 𝑓�𝑐𝑛�; 𝑓�𝑐��
is a weak equivalence (fibration, trivial fibration, etc.) in S.

On other hand, the homotopy category of P is defined to be Ho�P� �� Ho�P1� the homotopy
category of its underlying category.

Definition 2.1.5.4. A map 𝑓 � P� Q in Op�S� is called a Dwyer-Kan equivalence if it is a levelwise
weak equivalence and such that the induced functor Ho�𝑓� � Ho�P� Ð� Ho�Q� between homotopy
categories is essentially surjective or alternatively, if 𝑓 is a levelwise weak equivalence and has underlying
map 𝑓1 � P1 Ð� Q1 being a Dwyer-Kan equivalence in Cat�S�.
Definition 2.1.5.5. Dwyer-Kan model structure on Op�S� is the one whose weak equivalences are
the Dwyer-Kan equivalences and whose trivial fibrations are the levelwise trivial fibrations surjective
on colors.

30



Definition 2.1.5.6. Canonical model structure on Op�S� is the one whose fibrant objects are the
levelwise fibrant operads and whose trivial fibrations are the same as those of the Dwyer-Kan model
structure.

Remark 2.1.5.7. As originally introduced by G. Caviglia, a given map in Op�S� is a fibration (resp.
weak equivalence) with respect to the canonical model structure if and only if it is a levelwise fibra-
tion (resp. weak equivalence) and such that its underlying map in Cat�S� is a fibration (resp. weak
equivalence) with respect to that model structure. (See [[18], Definition 4.5] and [[31], §2.2]).

Following up his work, we give a set of conditions on the base category S assuring the existence of
the canonical model structure.

Proposition 2.1.5.8. (Caviglia, [18]) Let S be a combinatorial symmetric monoidal model category
satisfying that:

(S1) the class of weak equivalences is closed under filtered colimits,
(S2) either (a) S admits a symmetric monoidal fibrant replacement functor and a functorial path

data, or (b) S is symmetric ℎ-monoidal,
(S3) the monoidal unit is cofibrant, and
(S4) the model structure is right proper.

Then Op�S� admits the canonical model structure, which is as well right proper and combinatorial.
Moreover, this model structure coincides then with the Dwyer-Kan model structure.

Proof. The combinatoriality of S implies that it is strongly cofibrantly generated and besides that,
implies the existence of a set of generating intervals in the sense of [31] (cf. Lemma 1.12 of loc.cit).
On other hand, by propositions 2.1.4.4 and 2.1.4.6, the condition (S2) ensures the existence of the
transferred model structure on Op𝐶�S� for every set 𝐶. Then by [[18], Theorem 4.22 (1)], Op�S�
admits the canonical model structure, which is combinatorial as well. The right properness follows by
Proposition 5.3 of the loc.cit.

For the second claim, observe first that the condition (S1), together with the combinatoriality of
S, implies that S is compactly generated in the sense of [[31], Definition 1.2]. Combining this fact
with (S2), we get that S is adequate in the sense of [[31], Definition 1.1]. The latter fact, along with
the conditions (S3) and (S4), proves that the classes of Dwyer-Kan and canonical weak equivalences
in Cat�S� coincide (cf. [31], propositions 2.20 and 2.24). Thus, by Remark 2.1.5.7 these two classes
in Op�S� coincide as well. Combining the latter with the fact that the two model structures have the
same trivial fibrations, we obtain the expected coincidence.

Remark 2.1.5.9. Under the same assumptions as in Proposition 2.1.5.8, the canonical model structure
on Cat�S� automatically exists and coincides with the Dwyer-Kan model structure.

Example 2.1.5.10. Some typical base categories satisfying the conditions of Proposition 2.1.5.8 include
the ones of Examples 2.1.4.7

31



2.2 Tangent categories and Quillen cohomology

This section, based on the works of [6, 7], contains the most important concepts appearing throughout
the thesis. Basically, tangent category comes after a procedure of taking the stabilization of a model
category of interest. Note that under our setting, stabilizations exist only as semi model categories.
Despite this, the needed results from those papers remain valid. We then get the notion of cotangent
complex, which plays a central role in the Quillen cohomology theory.

Definition 2.2.0.1. A model category M is said to be weakly pointed if it contains a weak zero
object, i.e., an object which is both homotopy initial and terminal.

Let M be a weakly pointed model category and let 𝑋 be an (N �N)-diagram in M. The diagonal
squares of 𝑋 are of the form

𝑋𝑛,𝑛
//

��

𝑋𝑛,𝑛�1

��

𝑋𝑛�1,𝑛 // 𝑋𝑛�1,𝑛�1

Definition 2.2.0.2. An (N �N)-diagram in M is called
(i) a prespectrum if all its off-diagonal entries are weak zero objects in M,
(ii) an Ω-spectrum if it is a prespectrum and all its diagonal squares are homotopy Cartesian,
(iii) a suspension spectrum if it is a prespectrum and all its diagonal squares are homotopy coCarte-
sian.

The projective model category of (N �N)-diagrams in M will be denoted by MN�N
proj .

Definition 2.2.0.3. ([6], Definition 2.1.2) Let M be a weakly pointed model category. A map 𝑓 � 𝑋 � 𝑌

in MN�N is said to be a stable equivalence if for every Ω-spectrum 𝑍 the induced map between derived
mapping spaces

Maph
MN�N

proj
�𝑌,𝑍�Ð�Maph

MN�N
proj

�𝑋,𝑍�
is a homotopy equivalence. Note that a stable equivalence between Ω-spectra is always a levelwise
equivalence.

Following [[6], Lemma 2.1.6], the Ω-spectra in M can be characterized as the local objects against
a certain set of maps. Inspired by Definition 2.1.3 of the loc.cit, we give the following definition, which
is valid due to Theorem A.0.0.14 (Batanin-White).

Definition 2.2.0.4. Let M be a weakly pointed combinatorial model category such that the domains of
generating cofibrations are cofibrant. Stabilization of M, denoted by Sp�M�, is defined to be the left
Bousfield localization of MN�N

proj with Ω-spectra as the local objects. Explicitly, Sp�M� is a cofibrantly
generated semi model category (see Appendix A) whose

- weak equivalences are the stable equivalences, and whose
- (generating) cofibrations are the same as those of MN�N

proj .
In particular, fibrant objects of Sp�M� are precisely the levelwise fibrant Ω-spectra.

Remark 2.2.0.5. When M is in addition left proper then the stabilization Sp�M� exists as a (full)
model category. Nevertheless, we do not require the left properness throughout the thesis.
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Definition 2.2.0.6. ([6]) A (semi) model category M is called stable if the following equivalent con-
ditions hold:
(i) The underlying ª-category Mª of M (cf., [52, 43]) is stable in the sense of [3].
(ii) M is weakly pointed and such that a square in M is homotopy coCartesian if and only if it is
homotopy Cartesian.
(iii) M is weakly pointed and such that the adjunction Σ � Ho�M� Ð@BÐ Ho�M� � Ω of suspension-
desuspension functors is an adjoint equivalence.

Facts 2.2.0.7. (Y. Harpaz, J. Nuiten and M. Prasma [6]) Let M and N be two weakly pointed
combinatorial model categories such that the domains of their generating cofibrations are cofibrant.
(i) There is a Quillen adjunction Σª

�M Ð@
BÐ Sp�M� �Ωª where Ωª�𝑋� � 𝑋0,0 and Σª�𝑋� is the

constant diagram with value 𝑋.
(ii) The induced functor �Ωª�ª � Sp�M�ª Ð� Mª exhibits Sp�M�ª as the stabilization of Mª in
the sense of [3].
(iii) The stabilization Sp�M� is stable. Furthermore, if M is already stable then the adjunction
Σª

�MÐ@
BÐ Sp�M� �Ωª is a Quillen equivalence.

(iv) A Quillen adjunction F�MÐ@
BÐN �G lifts to a Quillen adjunction Sp�F��Sp�M�Ð@BÐ Sp�N� �Sp�G�

between stabilizations which is given by the adjunction FN�N
Ú GN�N on underlying categories. More-

over, if F Ú G is a Quillen equivalence then Sp�F� Ú Sp�G� is one. (We will sometimes write FSp instead
Sp�F�).

Let I be a diagram category. Then the left Quillen functor F � M Ð� N gives rise to a left Quillen
functor

(︀I,Sp�F�⌋︀ � Fun�I,Sp�M��Ð� Fun�I,Sp�N��
between projective model categories given by postcomposition with Sp�F� � Sp�M�Ð� Sp�N�.
Observation 2.2.0.8. Suppose that F preserves weak equivalences. Then Sp�F� also preserves weak
equivalences and therefore, so does the functor (︀I,Sp�F�⌋︀.
Proof. Since F preserves weak equivalences, so does the functor FN�N

� MN�N
proj Ð� NN�N

proj . The proof is
then straightforward using the definition of stable equivalences.

Notations 2.2.0.9. (i) Let C be a category containing a terminal object �. We will denote by C� �� C�⇑
the pointed category associated to C.
(ii) Suppose that C contains an initial object g. We then denote by Caug

�� C⇑g the augmented
category associated to C.
(iii) Let C be a category containing an object 𝑋. We will denote by C𝑋⇑⇑𝑋 �� �C⇑𝑋�� the pointed category
associated to the over category C⇑𝑋 . More explicitly, objects of C𝑋⇑⇑𝑋 are the diagrams 𝑋 𝑓

Ð� 𝐴
𝑔
Ð� 𝑋

in C such that 𝑔𝑓 � Id𝑋 . Alternatively, C𝑋⇑⇑𝑋 is the same as �C𝑋⇑�aug the augmented category associated
to the under category C𝑋⇑.

Note that a morphism 𝑓 � 𝑋 � 𝑌 in C gives rise to a canonical adjunction 𝑓!�C𝑋⇑⇑𝑋
Ð@
BÐ C𝑌 ⇑⇑𝑌 �𝑓�

in which 𝑓!�𝑋 � 𝐴� 𝑋� � 𝐴*
𝑋
𝑌 while 𝑓��𝑌 � 𝐵 � 𝑌 � � 𝐵 �𝑌 𝑋.

It can be shown that if M is a combinatorial model category such that the domains of generating
cofibrations are cofibrant then so is the transferred model structure on M𝐴⇑⇑𝐴 (see Hirschhorn’s [45]).
This makes the following definition valid.
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Definition 2.2.0.10. Let M be a combinatorial model category such that the domains of generating
cofibrations are cofibrant and let 𝐴 be an object of M. The tangent category to M at 𝐴, denoted by
T𝐴M, is defined to be the stabilization of M𝐴⇑⇑𝐴, i.e., T𝐴M �� Sp�M𝐴⇑⇑𝐴�.

There is a Quillen adjunction Σª
� �M⇑𝐴

Ð@
BÐ T𝐴M �Ωª

� given by the composition

M⇑𝐴

𝐴@���
Ð@
BÐforgetful

M𝐴⇑⇑𝐴

Σª

Ð@
BÐ
Ωª

T𝐴M.

Namely, for each 𝐵 > M⇑𝐴, then Σª
� �𝐵� � Σª�𝐴 Ð� 𝐴 @ 𝐵 Ð� 𝐴� the constant diagram with value

𝐴 @𝐵, while for each 𝑋 > T𝐴M, we have Ωª
� �𝑋� � (︀𝑋0,0 Ð� 𝐴⌋︀.

Definition 2.2.0.11. Let M be a combinatorial model category such that the domains of generating
cofibrations are cofibrant and let 𝐴 be an object of M. The cotangent complex of 𝐴, denoted by L𝐴,
is defined to be the derived suspension spectrum of 𝐴, i.e., L𝐴 �� LΣª

� �𝐴� > T𝐴M.
By Facts 2.2.0.7(iv), a given map 𝑓 � 𝐴� 𝐵 in M gives rise to a Quillen adjunction between tangent

categories
𝑓Sp

! �T𝐴M � Sp�M𝐴⇑⇑𝐴�Ð@BÐ Sp�M𝐵⇑⇑𝐵� � T𝐵M �𝑓�Sp.

Moreover, there is a commutative square of left Quillen functors

M⇑𝐴
𝑓!
//

Σª

�

��

M⇑𝐵

Σª

�

��

T𝐴M
𝑓𝑆𝑝

!

// T𝐵M

(2.2.0.1)

Definition 2.2.0.12. Let M be a combinatorial model category such that the domains of generating
cofibrations are cofibrant and let 𝑓 � 𝐴� 𝐵 be a map in M. We will denote by

L𝐵⇑𝐴 �� hocofib (︀LΣª

� �𝑓�Ð� L𝐵 ⌋︀
the homotopy cofiber of the map LΣª

� �𝑓�Ð� L𝐵 in T𝐵M and refer to L𝐵⇑𝐴 as the relative cotangent
complex of 𝑓 .

Notice that the map LΣª
� �𝑓� Ð� L𝐵 can be identified with the map 𝑓Sp

! �L𝐴� Ð� L𝐵, due to the
commutativity of the square (2.2.0.1).
Remark 2.2.0.13. Suppose that 𝐴 is cofibrant. Take a factorization 𝐴 Ð� 𝐵cof �

Ð� 𝐵 in M of the
map 𝑓 into a cofibration followed by a weak equivalence. In particular, 𝐵cof is a cofibrant resolution of
𝐵 in M. Consider the coCartesian square

𝐵 @𝐴 //

��

𝐵 @𝐵cof

��

𝐵 // 𝐵*
𝐴
𝐵cof

When regarded as a coCartesian square in M𝐵⇑⇑𝐵, this square is homotopy coCartesian because the
map 𝐴 Ð� 𝐵cof is a cofibration between cofibrant objects in M and in addition, 𝐵 is a zero object
in M𝐵⇑⇑𝐵. Applying the functor Σª

� M𝐵⇑⇑𝐵 Ð� T𝐵M to this square, we obtain a homotopy cofiber
sequence in T𝐵M

Σª�𝐵 @𝐴�Ð� Σª�𝐵 @𝐵cof�Ð� Σª�𝐵+
𝐴

𝐵cof�.

34



In this sequence, the first term is a model for LΣª
� �𝑓�, while the second term is nothing but L𝐵. Hence,

by definition Σª�𝐵*
𝐴
𝐵cof� is a model for the relative cotangent complex L𝐵⇑𝐴.

Finally, the most important definition in the thesis is as follows.

Definition 2.2.0.14. ([7], Definition 2.2.1) Let M be a combinatorial model category such that the
domains of generating cofibrations are cofibrant and let 𝑋 be a fibrant object of M. Suppose given
a fibrant object 𝑀 > T𝑋M, regarded as the Ω-spectrum of coefficients. For each 𝑛 > Z, the 𝑛’th
Quillen cohomology group of 𝑋 with coefficients in 𝑀 is defined to be

H𝑛
𝑄�𝑋,𝑀� �� 𝜋0 Maph

T𝑋 M�L𝑋 ,𝑀(︀𝑛⌋︀�
where 𝑀(︀𝑛⌋︀ �� Σ𝑛𝑀 , i.e, the 𝑛-suspension of 𝑀 in T𝑋M.

Remark 2.2.0.15. By the Quillen adjunction Σª
� �M⇑𝑋

Ð@
BÐ T𝑋M �Ωª

� , there is a canonical weak
equivalence

Maph
M⇑𝑋

�𝑋,Ωª

� 𝑀(︀𝑛⌋︀� � Maph
T𝑋 M�L𝑋 ,𝑀(︀𝑛⌋︀�,

(cf. Proposition A.0.0.11). In particular, we have that

H𝑛
𝑄�𝑋,𝑀� � 𝜋0 Maph

T𝑋 M�L𝑋 ,𝑀(︀𝑛⌋︀� � 𝜋0 Maph
M⇑𝑋

�𝑋,Ωª

� 𝑀(︀𝑛⌋︀�.
Remark 2.2.0.16. Quillen cohomology is a homotopy invariant. Indeed, a weak equivalence 𝑓 � 𝑋 �

Ð�

𝑌 between fibrant objects induces a right Quillen equivalence M⇑𝑌
�

Ð�M⇑𝑋 . Therefore, for any fibrant
object 𝑀 > T𝑌 M we get a canonical weak equivalence

Maph
M⇑𝑌

�𝑌,Ωª

� 𝑀(︀𝑛⌋︀� �

Ð�Maph
M⇑𝑋

�𝑋,𝑓�Ωª

� 𝑀(︀𝑛⌋︀� � Maph
M⇑𝑋

�𝑋,Ωª

� �𝑓�Sp𝑀�(︀𝑛⌋︀�.
This gives us for each 𝑛 an isomorphism H𝑛

𝑄�𝑌,𝑀� �

Ð� H𝑛
𝑄�𝑋,𝑓�Sp𝑀�, by Remark 2.2.0.15.
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Chapter 3

Quillen cohomology of enriched

operads

This chapter contains the central results of the thesis. As the main goal, we give an explicit formula
for computing Quillen cohomology of enriched operads. Besides that, we prove the existence of a long
exact sequence relating Quillen cohomology and reduced Quillen cohomology of a given operad.

3.1 Conventions

We set up several suitable conditions on the base category that we work with throughout this chapter.
We first recall from [6] the following definition, which itself is inspired by [[3], Definition 6.1.1.6].
Definition 3.1.0.1. A model category M is said to be differentiable if the derived colimit functor
L colim � MN

Ð�M preserves finite homotopy limits. Furthermore, a Quillen adjunction L � MÐ@
BÐN �

R is said to be differentiable if both M and N are differentiable and the right derived functor RR
preserves sequential homotopy colimits.
Conventions 3.1.0.2. In this chapter, we will work on the base category S which is assumed to be a
combinatorial symmetric monoidal model category such that the domains of generating cofibrations are
cofibrant. Moreover, S satisfies the conditions (S1)-(S4) of Proposition 2.1.5.8 and in addition,

(S5) S is differentiable,
(S6) the unit 1S is homotopy compact in the sense that the functor 𝜋0 Maph

S�1S,�� sends filtered
homotopy colimits to colimits of sets, and

(S7) S satisfies the Lurie’s invertibility hypothesis [[4], Definition A.3.2.12].
In particular, we will work on the canonical model structure on Op�S� (Cat�S�), which coincides with
the Dwyer-Kan model structure by Proposition 2.1.5.8. On other hand, for any category

M > �Coll𝐶�S�,Op𝐶�S�,LMod�P�,RMod�P�,BMod�P�, IbMod�P�,AlgP�S�,Mod𝐴P�,
we will work with the (projective) transferred model structure on M, which indeed exists as we discussed
in §2.1.4.

36



Remark 3.1.0.3. Requiring the domains of generating cofibrations to be cofibrant is necessary for the
existence of various types of operadic tangent category (cf. Section 2.2), which come after a procedure
of taking left Bousfield localizations without left properness (see Definition 2.2.0.4).

Remark 3.1.0.4. The conditions (S5)-(S6) support to the differentiability of Op�S� and Op𝐶�S� (cf.
Lemma 3.2.1.3), which we will need in proving Proposition 3.2.1.4.

Remark 3.1.0.5. The condition (S7) allows us to inherit [[7], Proposition 3.2.1] for the work of Section
3.4. Briefly, the invertibility hypothesis requires that, for any C > Cat�S� containing a morphism 𝑓 ,
localizing C at 𝑓 does not change the homotopy type of C as long as 𝑓 is an isomorphism in Ho�C�.
This condition is in fact pretty popular in practice. According to [40], if S is a combinatorial monoidal
model category satisfying (S1) and such that every object is cofibrant then S satisfies the invertibility
hypothesis. It also holds for dg modules over a commutative ring by [[41], Corollary 8.7], and for any
simplicial monoidal model category, according to [[42], Theorem 0.9].

Example 3.1.0.6. Typical categories for Conventions 3.1.0.2 are again the ones of Examples 2.1.4.7.

3.2 Operadic tangent categories

Let P be a 𝐶-colored operad in S. The sequence (2.1.2.3) induces a sequence of adjunctions connecting
the associated augmented categories

IbMod�P�P⇑⇑P
Ð@
BÐ BMod�P�P⇑⇑P

Ð@
BÐ Op𝐶�S�P⇑⇑P

Ð@
BÐ Op�S�P⇑⇑P.

Observe that each of the right adjoints in this sequence preserves fibrations and weak equivalences.
So all the adjunctions in this sequence are Quillen adjunctions. We thus obtain a sequence of Quillen
adjunctions connecting the associated tangent categories (cf. Facts 2.2.0.7(iv)) :

TP IbMod�P�Ð@BÐ TP BMod�P�Ð@BÐ TP Op𝐶�S�Ð@BÐ TP Op�S� . (3.2.0.1)

Recall that the operad P > Op𝐶�S� is said to be Σ-cofibrant if its underlying 𝐶-collection is cofibrant
as an object of Coll𝐶�S�. Our ultimate goal in this section is to prove that the adjunctions in the above
sequence are all Quillen equivalences when P is fibrant and Σ-cofibrant. The work may require making
use of the Comparison theorem [8], which we now recall.

Let M be a symmetric monoidal model category and let O be an M-enriched operad. We denote
by OD1 the operad obtained from O by removing the operations of arity A 1. Recall that the collection
of unary (= 0-ary) operations O0 inherits the obvious structure of an O-algebra and then, becomes an
initial object in the category AlgO�M�.
Definition 3.2.0.1. The operad O is said to be admissible if the transferred model structure on
AlgO�M� exists. Furthermore, O is called stably (resp. semi) admissible if it is admissible
and the stabilization Sp�Algaug

O
�M�� exists as a (resp. semi) model category, where Algaug

O
�M� ��

AlgO�M�O0⇑⇑O0 the augmented category associated to the category AlgO�M� (� AlgO�M�O0⇑).

Note that there is a canonical isomorphism AlgOD1�M� � AlgO1�M�O0⇑. The inclusion of operads
𝜙 � OD1 Ð� O induces a Quillen adjunction

𝜙aug
! �Algaug

OD1
�M� � AlgO1�M�O0⇑⇑O0

Ð@
BÐ AlgO�M�O0⇑⇑O0 � Algaug

O
�M� �𝜙�aug.
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Theorem 3.2.0.2. (Comparison theorem) [Y. Harpaz, J. Nuiten and M. Prasma [8]] Let M be
a differentiable, left proper and combinatorial symmetric monoidal model category and let O be a Σ-
cofibrant stably admissible operad in M. Assume either M is right proper or O0 is fibrant. Then the
induced Quillen adjunction between stabilizations

𝜙Sp
! �Sp�Algaug

OD1
�M��Ð@BÐ Sp�Algaug

O
�M�� �𝜙�Sp

is a Quillen equivalence.

Remark 3.2.0.3. In fact, many model categories of interest are not left proper (where Op𝐶�S� and
Op�S� are typical examples) and as a sequel, their stabilizations do not exist as (full) model categories
(cf. Remark 2.2.0.5). In the loc.cit, the authors were aware of this fact, and made sure to include
Corollary 4.1.4 saying that the restriction functor 𝜙�aug � Algaug

O
�M� Ð� Algaug

OD1
�M�, under the same

assumptions as in Proposition 3.2.0.2 except the left properness of M, induces an equivalence of relative
categories after taking stabilizations

𝜙�Sp� � Sp��Algaug
O

�M�� �

Ð� Sp��Algaug
OD1

�M��.
In particular, when the stabilizations exist as semi model categories then 𝜙Sp

! Ú 𝜙�Sp is indeed a Quillen
equivalence. So keep in mind that the statement of the Comparison theorem remains valid when P is
just stably semi admissible.

3.2.1 The first Quillen equivalence

The Quillen adjunction LP�Op𝐶�S�P⇑
Ð@
BÐ Op�S�P⇑ �RP (2.1.2.2) lifts to a Quillen adjunction between

the associated tangent categories

L
Sp
P
�TP Op𝐶�S�Ð@BÐ TP Op�S� �RSp

P
.

Our goal in this subsection is to prove that LSp
P
Ú R

Sp
P

is a Quillen equivalence when provided that P is
fibrant, yet let us start with the following simple observations.

Observations 3.2.1.1. (i) A given map between 𝐶-colored operads is a weak equivalence (resp. trivial
fibration, cofibration) in Op𝐶�S� if and only if it is a weak equivalence (resp. trivial fibration, cofibration)
in Op�S�.
(ii) A given 𝐶-colored operad is cofibrant (resp. fibrant) as an object of Op𝐶�S� if and only if it is
cofibrant (resp. fibrant) as an object of Op�S�.
(iii) A cofibrant resolution Pcof �

Ð� P of P when regarded as an object of Op𝐶�S� is also a cofibrant
resolution of P when regarded as an object of Op�S�.
Proof. Let 𝑓 � P� Q be a map between 𝐶-colored operads.

(i) If 𝑓 is a weak equivalence in Op�S� then it is in particular a levelwise weak equivalence, and
hence a weak equivalence in Op𝐶�S�. Conversely, suppose that 𝑓 is a weak equivalence in Op𝐶�S�, i.e.,
a levelwise weak equivalence. Since 𝑓 is the identity on colors, the induced map Ho�𝑓� is automatically
essentially surjective (cf. Definition 2.1.5.4). Thus, by definition 𝑓 is indeed a Dwyer-Kan equivalence,
i.e., a weak equivalence in Op�S�.

The claim about trivial fibrations immediately follows by definition.
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We now assume that 𝑓 is a cofibration in Op�S�, and prove that 𝑓 is one in Op𝐶�S�. For any given
trivial fibration 𝑓 � � P� � Q� in Op𝐶�S�, we have to show that 𝑓 has the lifting property against 𝑓 �.
Since 𝑓 � is also a trivial fibration in Op�S�, the lifting problem is solved when considered in Op�S�.
But such a lift must be the identity on colors, so it is also a lift in Op𝐶�S�. We just showed that 𝑓 is a
cofibration in Op𝐶�S�. Conversely, if 𝑓 is a cofibration in Op𝐶�S� then it is one in Op�S�, just by the
fact that the embedding LP � Op𝐶�S�P⇑ Ð� Op�S�P⇑ is a left Quillen functor.

(ii) The claim about the fibrancy immediately follows by definition. Now, if P is cofibrant as an
object of Op�S� then it is so as an object of Op𝐶�S�, similarly as the first claim of the above paragraph.
For the converse direction, by the last claim of (i), it suffices to show that the initial 𝐶-colored operad
I𝐶 is also cofibrant as an object of Op�S�. Notice that a map in Op�S�, from I𝐶 to a given operad O,
is fully characterized by a map from 𝐶 to the set of colors of O. The claim hence follows by the fact
that any trivial fibration in Op�S� has underlying map between colors being surjective.

(iii) This follows by the two above.

As a consequence, by the second part we will usually say a certain 𝐶-colored operad is (co)fibrant
without (necessarily) indicating precisely it is (co)fibrant as an object of Op𝐶�S� or Op�S�.

The main tool for proving the adjunction L
Sp
P
Ú R

Sp
P

is a Quillen equivalence will be [[6], Corollary
2.4.9]. To be able to use this tool, we have to show that the induced Quillen adjunction

L
aug
P
�Op𝐶�S�P⇑⇑P

Ð@
BÐ Op�S�P⇑⇑P �R

aug
P

between the associated augmented categories is differentiable (cf. Definition 3.1.0.1).

Remark 3.2.1.2. By convention, the base category S is differentiable and has the class of weak equiv-
alences being closed under sequential colimits. Thus, the (underived) colimit functor colim � SN Ð� S

already preserves homotopy Cartesian squares and homotopy terminal objects. An analogue does hold
for the functor colim � Cat�S�N Ð� Cat�S�, due to Remark 3.1.0.4 and [[7], Lemma 3.1.10] (saying that
weak equivalences in Cat�S� are closed under sequential colimits).

Lemma 3.2.1.3. The Quillen adjunction LP�Op𝐶�S�P⇑
Ð@
BÐ Op�S�P⇑ �RP is differentiable. Conse-

quently, the induced Quillen adjunction L
aug
P

� Op𝐶�S�P⇑⇑P
Ð@
BÐ Op�S�P⇑⇑P � R

aug
P

is differentiable as
well.

Proof. Observe first that sequential colimits of enriched operads are taken levelwise in the following
sense. Consider a sequence of objects in Op�S�

P�0�
Ð� P�1�

Ð� P�2�
Ð� �.

We establish an operad P as follows. Take Col�P� �� colim
𝑛

Col�P�𝑛�� where Col��� refers to set of colors.
For each 𝑐 � �𝑐1,�, 𝑐𝑛; 𝑐� in Seq�Col�P��, we pick 𝑛0 large enough such that 𝑐 > Seq�Col�P�𝑛0���. Then
we take P�𝑐� �� colim

𝑛E𝑛0
P�𝑛��𝑐�. The operad structures of the terms P�𝑛�’s together determine an operad

structure on P. It can then be verified that P � colim𝑛P
�𝑛�. In particular, we get that P1 � colim𝑛P

�𝑛�
1

(cf. the proof of [[7], Lemma 3.1.10]).
We now claim that weak equivalences in Op�S� are closed under sequential colimits. Indeed, recall

that a map 𝑓 in Op�S� is a weak equivalence if and only if it is a levelwise weak equivalence and such
that the underlying map 𝑓1 is a weak equivalence in Cat�S� (cf. Remark 2.1.5.7). Thus, the claim
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follows by the above paragraph and by the fact that weak equivalences in S (or Cat�S�) are closed
under sequential colimits.

Next, we claim that a given square in Op�S� is homotopy Cartesian if and only if the following two
conditions hold:
(i) the induced squares of spaces of operations are homotopy Cartesian in S, and
(ii) the induced square of underlying categories is homotopy Cartesian in Cat�S�.
Notice that this statement is already correct when we forget the word “homotopy”. So we get the claim,
immediately by Remark 2.1.5.7. On other hand, it is not hard to show that an object of Op�S� is
homotopy terminal if and only if all its spaces of operations are homotopy terminal in S.

We now show that Op�S� is differentiable. By the second paragraph, it suffices to verify that
the (underived) colimit functor colim � Op�S�N Ð� Op�S� preserves homotopy Cartesian squares and
homotopy terminal objects. This follows by combining the first and third paragraphs, along with
Remark 3.2.1.2.

On other hand, the category Op𝐶�S� is also differentiable. Indeed, the situation is similar to the
differentiability of Op�S�. One will need to use the facts that sequential colimits of 𝐶-colored operads
are taken levelwise (and hence weak equivalences in Op𝐶�S� are closed under sequential colimits), that
a square in Op𝐶�S� is homotopy Cartesian if and only if the induced squares of spaces of operations
are homotopy Cartesian in S, that a 𝐶-colored operad is homotopy terminal if and only if all its spaces
of operations are homotopy terminal in S, and that the functor colim � SN Ð� S preserves homotopy
Cartesian squares and homotopy terminal objects (as discussed in Remark 3.2.1.2).

Now, the category Op�S�P⇑ (resp. Op𝐶�S�P⇑) is differentiable since Op�S� (resp. Op𝐶�S�) is already
so. Moreover, the restriction functor RP clearly preserves sequential homotopy colimits. Thus, the
adjunction LP Ú RP is differentiable, and hence so is the L

aug
P
Ú R

aug
P

.

We are now in position to prove the main result of this subsection.

Proposition 3.2.1.4. The adjunction L
Sp
P
�TP Op𝐶�S� Ð@BÐ TP Op�S� �RSp

P
is a Quillen equivalence

when provided that P is fibrant.

Proof. Let Q > Op�S�P⇑⇑P be a fibrant object, exhibited by a diagram P � Q � P in Op�S� such that
the second map is a fibration. The same arguments as in the proof of [[7], Lemma 3.1.13] show that
the map between the homotopy pullbacks P �h

LPRP�Q� P Ð� P �h
Q P is a weak equivalence in Op�S�.

In particular, the induced map ΩL
aug
P

R
aug
P

�Q� Ð� ΩQ is a weak equivalence in Op�S�P⇑⇑P. This fact,
together with Lemma 3.2.1.3, allows us to apply [[6], Corollary 2.4.9] to deduce that the derived counit
of the Quillen adjunction L

Sp
P
Ú R

Sp
P

is a stable equivalence for every fibrant Ω-spectrum.
It remains to show that the derived unit of L

Sp
P
Ú R

Sp
P

is a stable equivalence for any cofibrant
object. In fact, we will show that this holds for the larger class of levelwise cofibrant objects. Since
R

aug
P

XL
aug
P

is isomorphic to the identity functor and since R
aug
P

preserves weak equivalences, the derived
unit of Laug

P
Ú R

aug
P

is a weak equivalence. By the first part of [[6], Corollary 2.4.9], the derived unit of
L

Sp
P
Ú R

Sp
P

is a stable equivalence for any levelwise cofibrant prespectrum. But every levelwise cofibrant
object in TP Op𝐶�S� is stably equivalent to a levelwise cofibrant prespectrum (see [6], Remark 2.3.6),
it therefore suffices to observe that L

Sp
P

preserves stable equivalences. But this follows immediately by
Observation 2.2.0.8.
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3.2.2 The second Quillen equivalence

We wish to prove that TP Op�S� is Quillen equivalent to TP IbMod�P�.
Proposition 3.2.2.1. Suppose that P is a cofibrant 𝐶-colored operad. Then the adjunction

TP IbMod�P�Ð@BÐ TP Op𝐶�S�
is a Quillen equivalence. Consequently, the adjunction TP IbMod�P� Ð@BÐ TP Op�S� is a Quillen equiv-
alence when P is in addition fibrant.

Proof. We regard P as an algebra over O𝐶 the operad of 𝐶-colored operads. Then we get a canonical
isomorphism AlgEnv�O𝐶 ,P��S� � Op𝐶�S�P⇑ between the categories of algebras over the enveloping operad
Env�O𝐶 ,P� and 𝐶-colored operads under P (cf. §2.1.2). On other hand, the same arguments as in the
proof of [[36], Proposition 3.5] show that the structure of an infinitesimal P-bimodule is equivalent to that
of a P-module over O𝐶 . So we have a canonical isomorphism of categories AlgEnv�O𝐶 ,P�1�S� � IbMod�P�
(cf. Remark 2.1.2.13).

We are now applying the Comparison theorem 3.2.0.2 (along with noting Remark 3.2.0.3) to the op-
erad Env�O𝐶 ,P�. The symmetric groups act freely on O𝐶 . In particular, O𝐶 is Σ-cofibrant. Moreover,
since P is cofibrant, it implies that Env�O𝐶 ,P� is Σ-cofibrant as well (cf. [[28], Lemma 6.1]). This fact
makes the Comparison theorem work in our data. The first paragraph shows that the functor

Algaug
Env�O𝐶 ,P�D1

�S�Ð� Algaug
Env�O𝐶 ,P�

�S�
turns out to coincide with the left Quillen functor IbMod�P�P⇑⇑P Ð� Op𝐶�S�P⇑⇑P. So the adjunction
TP IbMod�P� Ð@BÐ TP Op𝐶�S� is indeed a Quillen equivalence. Finally, by combining the latter with
Proposition 3.2.1.4, we deduce that the adjunction TP IbMod�P�Ð@BÐ TP Op�S� is a Quillen equivalence
when provided that P is bifibrant (i.e., both fibrant and cofibrant).

The cofibrancy of P as required in this proposition is very strict and should be refined in order that
it can work in the larger class of Σ-cofibrant operads.

Proposition 3.2.2.2. The second statement of Proposition 3.2.2.1 is already correct when P is fibrant
and Σ-cofibrant.

Proof. By Observations 3.2.1.1, we can take 𝑓 � Q �

Ð� P to be a bifibrant resolution of P in Op�S� such
that 𝑓 is a map in Op𝐶�S�. By Proposition 3.2.2.1, we have a Quillen equivalence

TQ IbMod�Q� �
Ð@
BÐ

TQ Op�S�.
Thus, by the naturality, it suffices to prove that the induced adjunctions IbMod�Q�Q⇑⇑Q

Ð@
BÐ IbMod�P�P⇑⇑P

and Op�S�Q⇑⇑Q
Ð@
BÐ Op�S�P⇑⇑P are a Quillen equivalence.

Let us start with the second one. We first show that the adjunction

𝑓!�Op�S�Q⇑
Ð@
BÐ Op�S�P⇑ �𝑓

�

is a Quillen equivalence. Since 𝑓� creates weak equivalences, it suffices to verify that, for any cofibration
Q� R in Op�S�, the induced map RÐ� R*

Q
P is a weak equivalence. But this immediately follows by

the relative left properness of Op�S� (cf. [18], Theorem 6.7). Now we want to prove that

𝑓aug
! �Op�S�Q⇑⇑Q

Ð@
BÐ Op�S�P⇑⇑P �𝑓�aug
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is a Quillen equivalence. We will need the following observation, which can be readily verified using
definition:

(*) Suppose we are given a Quillen equivalence F � M
�
Ð@
BÐ

N � G between right proper model
categories. Let 𝛼 � F�𝐴� �

Ð� 𝐵 be a weak equivalence in N with 𝐴 >M being cofibrant and 𝐵 > N being
fibrant. Then the induced adjunction F𝛼�M⇑𝐴

Ð@
BÐ N⇑𝐵 �G𝛼 is a Quillen equivalence.

By applying (*) to the data of 𝑀 � Op�S�Q⇑, 𝑁 � Op�S�P⇑, 𝐴 � IdQ and 𝐵 � IdP, we deduce that
the adjunction 𝑓aug

! Ú 𝑓�aug is indeed a Quillen equivalence.
It remains to prove that the adjunction IbMod�Q�Q⇑⇑Q

Ð@
BÐ IbMod�P�P⇑⇑P is a Quillen equivalence.

Since both Q and P are levelwise cofibrant, the map 𝑓 � Q �

Ð� P induces a weak equivalence IbQ �

Ð� IbP

of S-enriched categories (see Construction 2.1.3.2). So the induced adjunction

IbMod�Q� � Fun�IbQ,S�Ð@BÐ Fun�IbP,S� � IbMod�P�
is a Quillen equivalence. The claim can then be verified in the same fashion as above.

3.2.3 The third Quillen equivalence

Recall from §2.1.3 that the category BMod�P�P⇑ can be represented as the category of algebras over
BP⇑, which has the underlying category BP⇑

1 agreeing with IbP (cf. Constructions 2.1.3.2 and 2.1.3.7).
In light of this, we can demonstrate the following, which is the last piece for the proof Theorem 3.2.4.1.

Proposition 3.2.3.1. The adjunction IbMod�P�P⇑
Ð@
BÐ BMod�P�P⇑ induces a Quillen equivalence of

the associated tangent categories
�

TP IbMod�P�Ð@BÐ TP BMod�P� whenever P is Σ-cofibrant.

Proof. When P is Σ-cofibrant, by construction BP⇑ is also Σ-cofibrant. We are now applying the
Comparison theorem 3.2.0.2, along with noting Remark 3.2.0.3, to the operad BP⇑. The key point is
that the adjunction Algaug

BP⇑
D1
�S� Ð@BÐ Algaug

BP⇑�S� which arises from the inclusion �BP⇑�D1 Ð� BP⇑ is the
same as the adjunction of induction-restriction functors

IbMod�P�P⇑⇑P
Ð@
BÐ BMod�P�P⇑⇑P.

Thus, the adjunction TP IbMod�P�Ð@BÐ TP BMod�P� is indeed a Quillen equivalence.

3.2.4 Main statements

The main result of this section is stated as follows.

Theorem 3.2.4.1. The adjunctions in the sequence

TP IbMod�P�Ð@BÐ TP BMod�P�Ð@BÐ TP Op𝐶�S�Ð@BÐ TP Op�S� (3.2.4.1)

are all Quillen equivalences provided that P is fibrant and Σ-cofibrant.

Proof. Proposition 3.2.1.4 proves that the adjunction TP Op𝐶�S�Ð@BÐ TP Op�S� is a Quillen equivalence
when P is fibrant. On other hand, by Proposition 3.2.2.2 the adjunction TP IbMod�P� Ð@BÐ TP Op�S�
is a Quillen equivalence when P is fibrant and Σ-cofibrant, while TP IbMod�P�Ð@BÐ TP BMod�P� is one
by Proposition 3.2.3.1. These facts, along with the 2-out-of-3 property, prove the theorem.
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Besides that we are interested in the case in which S is stable (cf. Definition 2.2.0.6). The following
is an analogue of [[8], Lemma 2.2.3].

Lemma 3.2.4.2. Suppose that S is in addition stable containing a strict zero object 0 and let 𝑀 >

IbMod�P� be a levelwise cofibrant infinitesimal P-bimodule. Then the adjunction

��� @𝑀 � IbMod�P�Ð@BÐ IbMod�P�𝑀⇑⇑𝑀 � ker

is a Quillen equivalence, where the functor ker is defined by sending 𝑀 � 𝑃 �𝑀 to 𝑃 �𝑀 0, while its

left adjoint takes 𝑁 > IbMod�P� to 𝑀 𝑖0
Ð�𝑀 @𝑁

Id𝑀 �0
ÐÐÐÐ�𝑀 .

Proof. As in the loc.cit, we take a cofibrant object 𝑁 > IbMod�P� and a fibrant object �𝑀 � 𝑃 �𝑀� >
IbMod�P�𝑀⇑⇑𝑀 . We then have to show that a given map 𝑓 � 𝑁 @𝑀 Ð� 𝑃 in IbMod�P�𝑀⇑⇑𝑀 is a weak
equivalence if and only if its adjoint 𝑓ad

� 𝑁 Ð� 𝑃 �𝑀 0 in IbMod�P� is one.
Consider the following diagram of infinitesimal P-bimodules

0 //

��

𝑁
𝑓ad
//

��

𝑃 �𝑀 0 //

��

0

��

𝑀 // 𝑁 @𝑀
𝑓

// 𝑃 //𝑀

Since infinitesimal P-bimodules can be represented as S-valued enriched functors on IbP, their (co)limits
are computed levelwise. Hence, for each 𝐶-sequence 𝑐 �� �𝑐1,�, 𝑐𝑛; 𝑐�, we get an induced diagram in S:

0 //

��

𝑁�𝑐� 𝑓ad�𝑐�
//

��

𝑃 �𝑐� �𝑀�𝑐� 0 //

��

0

��

𝑀�𝑐� // 𝑁�𝑐� @𝑀�𝑐�
𝑓�𝑐�

// 𝑃 �𝑐� //𝑀�𝑐�
Observe now that since both 𝑁�𝑐� and 𝑀�𝑐� are cofibrant, the left square is homotopy coCartesian.
On other hand, the right square is homotopy Cartesian by the facts that the map 𝑃 �𝑐� Ð� 𝑀�𝑐� is
a fibration and that S is right proper. By the stability of S and by pasting laws, the middle square is
homotopy (co)Cartesian as well. Thus, 𝑓�𝑐� is a weak equivalence if and only if 𝑓ad�𝑐� is one.

Theorem 3.2.4.3. Suppose that S is in addition stable containing a strict zero object 0 and that P is
fibrant and Σ-cofibrant. The sequence (3.2.4.1) is then prolonged to a sequence of Quillen equivalences
of the form

IbMod�P� ���@P
Ð@
BÐker

IbMod�P�P⇑⇑P

Σª

Ð@
BÐ
Ωª

TP IbMod�P� �
Ð@
BÐ

TP BMod�P� �
Ð@
BÐ

TP Op𝐶�S� �
Ð@
BÐ

TP Op�S�
(3.2.4.2)

Proof. The category IbMod�P� is stable since S is already so (cf. [[7], Remark 2.2.2] and Proposition
2.1.3.3), and hence the category IbMod�P�P⇑⇑P is stable as well. Thus, by Facts 2.2.0.7 the adjunction

Σª
� IbMod�P�P⇑⇑P

Ð@
BÐ TP IbMod�P� � Ωª

is a Quillen equivalence. The statement hence follows by Lemma 3.2.4.2 and Theorem 3.2.4.1.
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3.3 An extra condition

For the remainder of this chapter, we will need to set up an extra condition on the base category S. Let
P be a 𝐶-colored operad in S.

Notation 3.3.0.1. We will denote by BMod�P�� �� BMod�P�PXP⇑ the category of P-bimodules under
P XP (which performs the free P-bimodule generated by I𝐶), and refer to it as the category of pointed
P-bimodules. Observe that the composition 𝜇 � P XPÐ� P exhibits P itself as a pointed P-bimodule.

Let 𝑓 � 𝑔 � P @ P Ð� Q be a map in Op𝐶�S�. Then Q inherits a P-bimodule structure with the left
(resp. right) P-action induced by 𝑓 (resp. 𝑔). In particular, there is a restriction functor

Op𝐶�S�P@P⇑ Ð� BMod�P��,
which admits a left adjoint denoted by

E � BMod�P�� Ð� Op𝐶�S�P@P⇑.

Observe then that E sends P > BMod�P�� to itself P > Op𝐶�S�P@P⇑ equipped with the fold map
IdP � IdP � P@PÐ� P. Dwyer and Hess ([[25], section 5]) proved that, in the context of nonsymmetric
simplicial operads, the left derived functor of E sends P to itself P. Inspired by their work, we set up
an extra condition on the base category S as follows.

Condition 3.3.0.2. (S8) For any cofibrant object P > Op𝐶�S�, the left derived functor

LE � BMod�P�� Ð� Op𝐶�S�P@P⇑

of E sends P to itself P.

We shall now extend the work of Dwyer and Hess to prove that the category SetΔ of simplicial sets
satisfies the condition (S8). Moreover, for any commutative ring 𝑅, the category sMod𝑅 of simplicial
𝑅-modules (see Examples 2.1.4.7) also satisfies (S8).

Proposition 3.3.0.3. The category SetΔ satisfies the condition (S8) 3.3.0.2. Namely, for every simpli-
cial 𝐶-colored operad P which is cofibrant, the left derived functor LE � BMod�P�� Ð� Op𝐶�SetΔ�P@P⇑

of E sends P to itself P.

The proof first requires constructing a nice cofibrant resolution for P as an object in BMod�P��.
For this, we will follow C. Rezk’s [[49], § 3.7.2]. (However, note that the operadic model structures
considered in the loc.cit are different from ours, so it should be used carefully). Let M be a simplicial
model category. The diagonal (or realization) functor diag � MΔop

Ð� M is by definition the left
adjoint to the functor M Ð� MΔop taking each 𝑋 > M to the simplicial object (︀𝑛⌋︀ ( 𝑋Δ𝑛 . For each
𝑌Y >M

Δop , one defines the latching object L𝑛 𝑌Y as the coequalizer in M of the form

+
0D𝑖@𝑗D𝑛

𝑌𝑛�1
��
�� +

0D𝑘D𝑛
𝑌𝑛 Ð� L𝑛 𝑌Y

in which one of the two maps sends the �𝑖, 𝑗� summand to the 𝑗’th summand by 𝑠𝑖 while the other
sends the �𝑖, 𝑗� summand to the 𝑖’th summand by 𝑠𝑗�1. By convention, one puts L�1 𝑌Y �� g. By
construction, there is a unique map L𝑛 𝑌Y Ð� 𝑌𝑛�1 factoring the map 𝑠𝑘 � 𝑌𝑛 Ð� 𝑌𝑛�1 for every
𝑘 � 0,�, 𝑛. One then establishs a filtration diag�𝑌Y� � colim𝑛 diag𝑛 𝑌Y of diag�𝑌Y�, inductively, built up
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by taking diag0 𝑌Y �� 𝑌0 and, for each 𝑛 E 1, taking the pushout:

𝑑𝑛𝑌Y //

��

Δ𝑛
a 𝑌𝑛

��

diag𝑛�1 𝑌Y // diag𝑛 𝑌Y

(3.3.0.1)

in which 𝑑𝑛𝑌Y �� Δ𝑛
a L𝑛�1 𝑌Y*𝜕Δ𝑛aL𝑛�1 𝑌Y 𝜕Δ𝑛

a 𝑌𝑛. As a consequence, if for every 𝑛 E 0 the latching
map L𝑛�1 𝑌Y Ð� 𝑌𝑛 is a cofibration then diag�𝑌Y� is cofibrant. More generally, we have the following
observation.

Lemma 3.3.0.4. Let 𝑋Y Ð� 𝑌Y be a map of simplicial objects in M. Suppose that for every 𝑛 E 0 the
(relative) latching map

𝑋𝑛 +
L𝑛�1 𝑋Y

L𝑛�1 𝑌Y Ð� 𝑌𝑛 (3.3.0.2)

is a cofibration. Then the induced map diag�𝑋Y�Ð� diag�𝑌Y� is a cofibration as well.

Proof. By the filtrations of diag�𝑋Y� and diag�𝑌Y� mentioned above, the map diag�𝑋Y� Ð� diag�𝑌Y�
is a cofibration as soon as the map diag𝑛𝑋Y Ð� diag𝑛 𝑌Y is one for every 𝑛 E 0. Note first that when
𝑛 � 0 the map (3.3.0.2) coincides with the map diag0𝑋Y Ð� diag0 𝑌Y. Let us assume by induction that
the map diag𝑛�1𝑋Y Ð� diag𝑛�1 𝑌Y is a cofibration. Then, factor diag𝑛𝑋Y Ð� diag𝑛 𝑌Y as

diag𝑛𝑋Y Ð� diag𝑛𝑋Y +
diag𝑛�1 𝑋Y

diag𝑛�1 𝑌Y
𝜙
Ð� diag𝑛 𝑌Y.

By the inductive assumption, the first map in this composition is a cofibration. Hence, it remains to
show that 𝜙 is a cofibration. Let us denote by 𝐿𝑛�1�𝑋Y, 𝑌Y� �� 𝑋𝑛*L𝑛�1 𝑋Y

L𝑛�1 𝑌Y. We can then form
a canonical map

Δ𝑛
a𝐿𝑛�1�𝑋Y, 𝑌Y� +

𝜕Δ𝑛a𝐿𝑛�1�𝑋Y,𝑌Y�

𝜕Δ𝑛
a 𝑌𝑛 Ð� Δ𝑛

a 𝑌𝑛,

which is a cofibration by the pushout-product axiom. Unwinding computation, this map turns out to
be isomorphic to the canonical map

𝑑𝑛𝑌Y +
𝑑𝑛𝑋Y

Δ𝑛
a𝑋𝑛 Ð� Δ𝑛

a 𝑌𝑛. (3.3.0.3)

Now, consider the following commutative cube

𝑑𝑛𝑋Y Δ𝑛
a𝑋𝑛

𝑑𝑛𝑌Y Δ𝑛
a 𝑌𝑛

diag𝑛�1𝑋Y diag𝑛𝑋Y

diag𝑛�1 𝑌Y diag𝑛 𝑌Y

whose the front and back squares are coCartesian. Applying the pasting law of pushouts iteratively, we
find that 𝜙 turns out to be cobase change of the map (3.3.0.3), which is a cofibration. We therefore get
the conclusion.

The category of simplicial 𝐶-collections admits a canonical simplicial model structure. It implies
that the category BMod�P� admits a canonical simplicial model structure, by the transferred principle
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in simplicial version (see [[49], Propositions 3.1.5, 3.2.8]). One constructs the Hochschild resolution of
P as follows.

Construction 3.3.0.5. Let HYP � Δop
Ð� BMod�P� be the simplicial object of P-bimodules with

H𝑛P �� PX�𝑛�2�, the face map 𝑑𝑖 � H𝑛P Ð� H𝑛�1 P given by using the composition 𝜇 � P X P Ð� P

to combine the factors 𝑖 � 1 and 𝑖 � 2 in H𝑛P and with the degeneracy map 𝑠𝑖 given by inserting the
unit operations of P between the factors 𝑖 � 1 and 𝑖 � 2. The realization diag�HYP� > BMod�P� has
𝑛-simplices being those of H𝑛P. The map 𝜇 induces a canonical map of simplicial objects HYP Ð� P.
The augmentation map 𝜓 � diag�HYP�Ð� diag�P� � P is then a weak equivalence by [[49], Corollary
3.7.6], (this even comes with a contracting homotopy). The map 𝜓 now exhibits diag�HYP� as the
Hochschild resolution of P > BMod�P�.
On other hand, since P X P � H0 P, there is a unique map of simplicial objects P X P Ð� HYP, which is
the identity on degree 0. Now, the diagonal functor gives a map 𝜌 � PXPÐ� diag�HYP� of P-bimodules,
satisfying that the composition P XP

𝜌
Ð� diag�HYP� 𝜓

Ð�
�

P agrees with 𝜇 � P XPÐ� P.

Lemma 3.3.0.6. Suppose that P is a Σ-cofibrant simplicial operad. The map 𝜓 indeed exhibits diag�HYP�
as a cofibrant resolution for P regarded as a bimodule over itself. Moreover, the map 𝜌 � P X P Ð�

diag�HYP� is a cofibration of P-bimodules. In particular, diag�HYP� is also a cofibration resolution for
P when regarded as a pointed P-bimodule.

Proof. The first statement is an analogue of [[49], Corollary 3.7.6]. We now recall his arguments. It
suffices to show that the latching map L𝑛�1 HYP Ð� H𝑛P is a cofibration for every 𝑛 E 0. The case in
which 𝑛 � 0 is clear since H0 P � P X P is cofibrant as a P-bimodule. When 𝑛 E 1, the object L𝑛�1 HYP

can be written as L𝑛�1 HYP � P X𝐾𝑛�1 X P where 𝐾𝑛�1 is the object of [[49], Lemma 3.7.8]. Moreover,
there is a canonical map 𝑘𝑛 � 𝐾𝑛�1 Ð� PX𝑛 such that the map L𝑛�1 HYP Ð� H𝑛P agrees with the free
P-bimodule map generated by 𝑘𝑛. It therefore suffices to show that 𝑘𝑛 is a cofibration of symmetric
sequences for every 𝑛 E 1. This can be done using an inductive argument. Indeed, note that the map 𝑘1
is nothing but the unit map I𝐶 Ð� P, which is a cofibration by the assumption that P is Σ-cofibrant.
Furthermore, by [[49], Lemma 3.7.8] the map 𝑘𝑛�1 turns out to be the pushout-product of 𝑘𝑛 with
the unit map I𝐶 Ð� P. Finally, one will need the fact that, given two maps 𝑓 and 𝑔 of symmetric
sequences in a sufficiently nice symmetric monoidal model category, the pushout-product of 𝑓 with 𝑔 is
a cofibration as soon as both of them are one and, in addition, the domain of 𝑔 is cofibrant (cf. [[13],
Lemma 11.5.1]).

To prove that the map 𝜌 is a cofibration, we make use of Lemma 3.3.0.4. Since P X P is considered
as a constant simplicial object, the latching map (3.3.0.2) is simply L𝑛�1 HYPÐ� H𝑛P when 𝑛 E 1 and
the identity map IdPXP when 𝑛 � 0. But the first map is a cofibration by the above paragraph. The
proof is hence completed.

Remark 3.3.0.7. Let P be any simplicial operad and let 𝐴 be any P-algebra. Hochschild resolution
of 𝐴 is the realization of the simplicial P-algebra HP

Y 𝐴 with HP
𝑛 𝐴 � PX�𝑛�1�

X 𝐴. The augmentation
map diag�HP

Y 𝐴�Ð� 𝐴 is a weak equivalence by [[49], Corollary 3.7.4], and indeed exhibits diag�HP
Y 𝐴�

as a cofibrant resolution for 𝐴. To see this, we will show that the latching map L𝑛�1 HP
Y AÐ� HP

𝑛 A is a
cofibration for every 𝑛 E 0. The case 𝑛 � 0 is clear since HP

0 A � PX𝐴 the free P-algebra generated by 𝐴.
Let us now pick up the objects 𝐾𝑛’s and the maps 𝑘𝑛’s mentioned in the above proof. When 𝑛 E 1 the
map L𝑛�1 HP

Y AÐ� HP
𝑛 A concides with the free P-algebra map generated by 𝑘𝑛X𝐴 �𝐾𝑛�1X𝐴Ð� PX𝑛X𝐴.

It therefore suffices to show that the map 𝑘𝑛 X 𝐴 is injective for every 𝑛 E 1. The key point is that,
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in the monoidal category of simplicial symmetric sequences, pushout-product of any two injections is
again an injection (cf. [[49], Proposition 3.4.5]). By an inductive argument we can show that the maps
𝑘𝑛 are injective, and hence the maps 𝑘𝑛 X𝐴 are all injective as well.

Proof of Proposition 3.3.0.3. In the first step, we follow the arguments of [[25], section 5]. By applying
the functor E to HYP degreewise, one obtains a simplicial object, E HYP, of operads under P @ P. The
realization diag�E HYP� is then an operad under P @ P. Since E�P� � P in Op𝐶�SetΔ�P@P⇑, there is a
canonical map 𝜙P � diag�E HYP� Ð� P of operads under P @ P. One observes that there is a canonical
isomorphism diag�E HYP� � E�diag�HYP�� of operads under P @ P and over P (cf. [[25], Proposition
5.3]). Since E�diag�HYP�� is already a model for LE�P� by Lemma 3.3.0.6, it just remains to show
that the map 𝜙P � diag�E HYP� Ð� P is a weak equivalence of operads. By the diagonal principle, 𝜙P

is a weak equivalence as soon as the map E H𝑛PÐ� P is one for every 𝑛 E 0. Moreover, one finds that
E H𝑛P � P @ F��PX𝑛� @P where

F� � Coll𝐶�SetΔ�I𝐶⇑ Ð� Op𝐶�SetΔ�
refers to the free-operad functor on pointed 𝐶-collections. This tells us that if Q

�

Ð� P is a weak
equivalence between cofibrant operads then 𝜙Q is a weak equivalence if and only if 𝜙P is one. Applying
the diagonal principle in the other direction, we get that 𝜙P is a weak equivalence as soon as the map
𝜙P�𝑛�

is one for every 𝑛 E 0 (where P�𝑛� is the operad of 𝑛-simplices of P).
Now, consider P as an O𝐶-algebra with O𝐶 being the operad of simplicial 𝐶-colored operads. The

above remark suggests that we can make use of P𝑐 �� diag�HO𝐶
Y P� as (another) cofibrant model for P.

By the first paragraph, it suffices to verify that the map 𝜙P𝑐 is a weak equivalence. To this end, we just
need to show that the map 𝜙P𝑐

�𝑛�
is a weak equivalence for every 𝑛. More precisely, we have that

P𝑐�𝑛� � ��O𝐶�X�𝑛�1�
XP��𝑛� � �O𝐶�X�𝑛�1�

XP�𝑛�.

(The second identification is because of the fact that O𝐶 is a discrete operad). In particular, P𝑐�𝑛� is
a discrete free O𝐶-algebra. Note that a free O𝐶-algebra is the same as the free operad generated by a
free symmetric sequence (i.e., symmetrization of a nonsymmetric sequence).

By the second paragraph, we can assume without loss of generality that P is the free operad gen-
erated by a discrete free symmetric sequence or alternatively, P is the symmetrization of a discrete
free nonsymmetric operad. Nevertheless, for the remainder we just need to assume that P is the sym-
metrization of a nonsymmetric operad Q, i.e., P � Sym�Q� (see §2.1.1). Back to the first paragraph, we
therefore have to show that the map 𝜙Sym�Q� � diag�E HY Sym�Q��Ð� Sym�Q� is a weak equivalence of
operads. This is in fact equivalent to our original problem: proving that LE Sym�Q� � Sym�Q�.

Observe that the symmetrization functor lifts to the functors Sym � BMod�Q�� Ð� BMod�Sym�Q���
and Sym � nsOp𝐶�SetΔ�Q@Q⇑ Ð� Op𝐶�SetΔ�Sym�Q�@Sym�Q�⇑, which are left adjoints to the associated
forgetful functors. Moreover, we have a commutative square of left Quillen functors

BMod�Q�� E
//

Sym
��

nsOp𝐶�SetΔ�Q@Q⇑

Sym
��

BMod�Sym�Q���
E
// Op𝐶�SetΔ�Sym�Q�@Sym�Q�⇑

(for this, it suffices to verify the commutativity of the associated square of right adjoints). According
to [[25], Proposition 5.4], we have that LEQ � Q. Thus, by the commutativity of the above square
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and by the fact that the symmetrization functor preserves weak equivalences, we obtain the expected
identification LE Sym�Q� � Sym�Q�.
Remark 3.3.0.8. Hochschild resolutions work in the context of simplicial 𝑅-modules under a slightly
different setting. Let P > Op𝐶�sMod𝑅� be given such that the unit map I𝐶 Ð� P is a cofibration
of symmetric sequences. Then the composition P X P Ð� diag�HYP� �

Ð� P exhibits diag�HYP� as a
cofibrant resolution for P > BMod�P��. On other hand, let 𝐴 be a levelwise cofibrant P-algebra. Again,
the augmentation map diag�HP

Y 𝐴� �

Ð� 𝐴 exhibits diag�HP
Y 𝐴� as a cofibrant resolution for 𝐴. For the

proof, one repeats the arguments given in the proof of Lemma 3.3.0.6 and Remark 3.3.0.7.

Proposition 3.3.0.9. The category sMod𝑅 satisfies the condition (S8) 3.3.0.2. Namely, for every
cofibrant object P > Op𝐶�sMod𝑅�, the left derived functor LE � BMod�P�� Ð� Op𝐶�sMod𝑅�P@P⇑ of E
sends P to itself P.

Proof. By the above remark, we can make use of diag�HYP� as a cofibrant resolution for P > BMod�P��
and diag�HO𝐶

Y P� as (another) cofibrant model for P > Op𝐶�sMod𝑅�, (note that since the operad O𝐶 is
discrete Σ-cofibrant, its unit map is indeed a cofibration). We then pick up the first two paragraphs of
the proof of Proposition 3.3.0.3. We hence may assume that P is the free operad generated by a discrete
free symmetric sequence.

The free-forgetful adjunction 𝑅��� � SetΔ Ð@BÐ sMod𝑅 � U lifts to a Quillen adjunction

𝑅��� � Op𝐶�SetΔ�Ð@BÐ Op𝐶�sMod𝑅� � U
between operads. By the assumption on P, there exists a simplicial operad Q > Op𝐶�SetΔ� which is the
free operad generated by a discrete free symmetric sequence such that 𝑅�Q� � P. On other hand, the
functor 𝑅��� does lift to a left Quillen functor 𝑅𝑏��� � BMod�Q�� Ð� BMod�P��, which fits into the
following commutative square of left Quillen functors

BMod�Q�� E
//

𝑅𝑏���

��

Op𝐶�SetΔ�Q@Q⇑

𝑅���

��

BMod�P��
E
// Op𝐶�sMod𝑅�P@P⇑

Note that both the functors 𝑅𝑏��� and 𝑅��� preserve weak equivalences. Now, by the commutativity
of the square we have that

L𝑅�LE�Q�� � LE�L𝑅𝑏�Q�� � LE�P�.
On other hand, Proposition 3.3.0.3 proves that LE�Q� � Q, and hence we get LE�P� � L𝑅�Q� � P as
expected.

3.4 Cotangent complex and Quillen cohomology of enriched operads

Let P be an S-enriched 𝐶-colored operad.

Notations 3.4.0.1. To avoid confusion, in the remainder of this chapter, we will use the symbol * (resp.
*
𝑏
, *
𝑝𝑏

, *
𝑐
) standing for the coproduct operation in the category Op�S� (resp. BMod�P�, BMod�P��,

Op𝐶�S�).
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Notations 3.4.0.2. We let LP > TP Op�S� and L𝑏P > TP BMod�P�, respectively, denote the cotangent
complexes of P when regarded as an object of Op�S� and BMod�P�. Besides that, we denote by
Lred
P > TP Op𝐶�S� the cotangent complex of P when regarded as an object of Op𝐶�S� and refer to it as

the reduced cotangent complex of P.

Conventions 3.4.0.3. From now on, by Quillen cohomology of P we will mean the Quillen coho-
mology of P when regarded as an object of Op�S�, which is therefore classified by LP. On other hand,
by reduced Quillen cohomology of P we will mean the Quillen cohomology of P when regarded as
an object of Op𝐶�S�, which is classified by Lred

P .

By Theorem 3.2.4.1, when P is fibrant and Σ-cofibrant, we have a sequence of Quillen equivalences
connecting the tangent categories:

TP IbMod�P� �
Ð@
BÐ

TP BMod�P� �
Ð@
BÐ

TP Op𝐶�S� �
Ð@
BÐ

TP Op�S�.
Notations 3.4.0.4. We denote by TP IbMod�P� F𝑖𝑏

P
Ð@
BÐ
U𝑖𝑏

P

TP Op�S� and TP BMod�P� F𝑏
P
Ð@
BÐ
U𝑏

P

TP Op�S� two

composed adjunctions taken from the above sequence.

In order to get the desired formula of Quillen cohomology of P, we will compute the derived image
of LP > TP Op�S� under the composed right Quillen equivalence

U𝑖𝑏P � TP Op�S� �

Ð� TP BMod�P� �

Ð� TP IbMod�P�.
As the first step, we will show that the derived image of LP in TP BMod�P� is weakly equivalent to L𝑏P,
up to a shift. Our work therefore extends [[7], Proposition 3.2.1], but in a different approach. For our
approach, the base category S is technically required to satisfy the extra condition (S8) 3.3.0.2. After
having done that first step, it just remains to compute the derived image of L𝑏P in TP IbMod�P�. Let
us see how it goes.

As discussed above, we first wish to prove the following.

Proposition 3.4.0.5. Suppose that S additionally satisfies the condition (S8) 3.3.0.2 and that P is
fibrant and Σ-cofibrant. Then the left Quillen equivalence F𝑏P � TP BMod�P� �

Ð� TP Op�S� identifies
L𝑏P to LP(︀1⌋︀ (see Notations 3.4.0.2). Alternatively, the right Quillen equivalence U𝑏P � TP Op�S� �

Ð�

TP BMod�P� identifies LP to L𝑏P(︀�1⌋︀.
The proof of Proposition 3.4.0.5 will require several technical lemmas.
Given two S-enriched categories C and D, the tensor product C aD is by definition the S-enriched

category whose set of objects is Ob�CaD� �� Ob�C��Ob�D� and such that for every 𝑐, 𝑐� > Ob�C� and
𝑑, 𝑑� > Ob�D� we have

MapCaD��𝑐, 𝑑�, �𝑐�, 𝑑��� �� MapC�𝑐, 𝑐��aMapD�𝑑, 𝑑��.
Recall that the category of C-bimodules is isomorphic to Fun�Cop

aC,S� the category of S-valued enriched
functors on Cop

a C. Under this identification, the functor MapC � C
op
a CÐ� S, �𝑥, 𝑦�(MapC�𝑥, 𝑦� is

exactly C viewed as a bimodule over itself.

Lemma 3.4.0.6. Let C > Op�S� be a fibrant and levelwise cofibrant operad concentrated in arity 1.
Then there is a weak equivalence 𝜃C � F𝑏C�L𝑏C� �

Ð� LC(︀1⌋︀ in TC Op�S�.
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Proof. We also regard C as an S-enriched category. The proof is then straightforward by observing that
the category Cat�S� is already a “neighborhood” of C in Op�S�. This idea is expressed as follows. There
is a commutative square of left Quillen functors

TMapC
Fun�Cop

a C,S� //

F𝑏
MapC

��

TC BMod�C�
F𝑏

C

��

TC Cat�S� // TC Op�S�
The horizontal functors are the obvious embedding functors, which clearly preserve cotangent complexes,
while the functor F𝑏MapC

is the left Quillen equivalence appearing in [[7], Theorem 3.1.14]. According
to Proposition 3.2.1 of loc.cit, there is a weak equivalence 𝜃C � F𝑏MapC

�LMapC
� �

Ð� LC(︀1⌋︀ in TC Cat�S�.
Finally, the expected weak equivalence 𝜃C is given by the image of 𝜃C under the embedding functor
TC Cat�S�Ð� TC Op�S�.

In what follows, we consider the case where C � I𝐶 the initial 𝐶-colored operad and describe the
weak equivalence 𝜃I𝐶

� F𝑏I𝐶
�L𝑏I𝐶

� �

Ð� LI𝐶
(︀1⌋︀ of the above lemma.

Let us pick up several notations from [[7], §3.2]. We denote by � the category which has a single object
whose endomorphism object is 1S. Moreover, let (︀1⌋︀S denote the category with objects 0, 1 and mapping
spaces Map(︀1⌋︀S�0, 1� � 1S,Map(︀1⌋︀S�1, 0� � g and Map(︀1⌋︀S�0, 0� � Map(︀1⌋︀S�1, 1� � 1S. Localizing (︀1⌋︀S at
the unique non-trivial morphism 0� 1 gives us the category (︀1⌋︀�S, which is the same as (︀1⌋︀S except that
Map(︀1⌋︀�

S
�1, 0� � 1S. By construction, the canonical map (︀1⌋︀�S Ð� � is a weak equivalence.

Take a factorization (︀1⌋︀S Ð� E
�

Ð� (︀1⌋︀�S of the canonical map (︀1⌋︀S Ð� (︀1⌋︀�S into a cofibration
followed by a trivial fibration. We now obtain a sequence of maps �*� Ð� (︀1⌋︀S Ð� E

�

Ð� (︀1⌋︀�S �

Ð� �

such that the first two maps are cofibrations, while the others are weak equivalences. Tensoring with
I𝐶 (viewed as an S-enriched category) produces a sequence of maps in Cat�S�

I𝐶+ I𝐶 Ð� I𝐶 a (︀1⌋︀S Ð� I𝐶 a E
�

Ð� I𝐶 a (︀1⌋︀�S �

Ð� I𝐶 .

The last two maps are again weak equivalences, while the others are again cofibrations because I𝐶 is
discrete.

By the above words, the pushout I𝐶 *
I𝐶@I𝐶

I𝐶 a E is a cofibrant model for I𝐶
h*

I𝐶@I𝐶

I𝐶 > Op�S�I𝐶⇑⇑I𝐶
,

and hence LI𝐶
(︀1⌋︀ is given by

LI𝐶
(︀1⌋︀ def

� Σª�I𝐶 h
+

I𝐶@I𝐶

I𝐶� � Σª�I𝐶 +
I𝐶@I𝐶

I𝐶 a E�.
On the other hand, by definition L𝑏I𝐶

is given by Σª�I𝐶 *
𝑏
I𝐶�. Furthermore, note that the cate-

gory BMod�I𝐶� is isomorphic to Coll𝐶�S� the category of 𝐶-collections. So we find that F𝑏I𝐶
�L𝑏I𝐶

� �
Σª�Fr�I𝐶�� where Fr is the free functor Coll𝐶�S� Ð� Op𝐶�S� and Fr�I𝐶� is regarded as an object in
Op�S�I𝐶⇑⇑I𝐶

. In fact, Fr�I𝐶� is the same as the pushout I𝐶 *
I𝐶@I𝐶

I𝐶 a (︀1⌋︀S. Finally, we find the expected
map

𝜃I𝐶
� F𝑏I𝐶

�L𝑏I𝐶
� � Σª �I𝐶 +

I𝐶@I𝐶

I𝐶 a (︀1⌋︀S� �

Ð� Σª �I𝐶 +
I𝐶@I𝐶

I𝐶 a E� � LI𝐶
(︀1⌋︀ (3.4.0.1)

canonically induced by the map (︀1⌋︀S Ð� E.
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Consider 𝜇 � PXPÐ� P as a map in BMod�P� and the unit map 𝜂 � I𝐶 Ð� P of P as a map in Op�S�.
Recall by notation that Σª

� �𝜇� is the image of 𝜇 under the left Quillen functor Σª
� � BMod�P�⇑P Ð�

TP BMod�P�. Note that Σª
� �𝜇� has already the right type since P X P > BMod�P� is cofibrant. Also,

Σª
� �𝜂� is the image of 𝜂 under the left Quillen functor Σª

� � Op�S�⇑P Ð� TP Op�S�, and has already
the right type as well.

Lemma 3.4.0.7. There is a weak equivalence F𝑏P�Σª
� �𝜇�� �

Ð� Σª
� �𝜂�(︀1⌋︀ in TP Op�S�.

Proof. The map 𝜂 � I𝐶 Ð� P gives rise to a commutative square of left Quillen functors

TI𝐶
BMod�I𝐶�F𝑏

I𝐶
//

𝜂𝑏
!
��

TI𝐶
Op�S�
𝜂𝑜𝑝

!
��

TP BMod�P�
F𝑏

P

// TP Op�S�

(3.4.0.2)

Let us start with the cotangent complex L𝑏I𝐶
> TI𝐶

BMod�I𝐶� of I𝐶 > BMod�I𝐶�. Note that the
functor BMod�I𝐶� Ð� BMod�P� agrees with the free P-bimodule functor Coll𝐶�S� Ð� BMod�P�,
which in particular takes I𝐶 to P XP. Due to this, we find that the functor 𝜂𝑏! sends L𝑏I𝐶

� Σª�I𝐶 *
𝑏
I𝐶�

to Σª�P*
𝑏
�P X P�� > TP BMod�P�, which is exactly Σª

� �𝜇�. Thus, the commutativity of (3.4.0.2)

shows that F𝑏P�Σª
� �𝜇�� � 𝜂𝑜𝑝! F𝑏I𝐶

�L𝑏I𝐶
�. On other hand, by the words after Definition 2.2.0.12 we have

Σª
� �𝜂�(︀1⌋︀ � 𝜂𝑜𝑝! �LI𝐶

(︀1⌋︀�. Using Σª�I𝐶 *
I𝐶@I𝐶

I𝐶aE� as a cofibrant model for LI𝐶
(︀1⌋︀ as discussed above,

we find the desired weak equivalence given by

F𝑏P�Σª

� �𝜇�� � 𝜂𝑜𝑝! F𝑏I𝐶
�L𝑏I𝐶

� 𝜂𝑜𝑝
! �𝜃I𝐶

�

ÐÐÐÐÐ�
�

𝜂𝑜𝑝! �LI𝐶
(︀1⌋︀� � Σª

� �𝜂�(︀1⌋︀
where 𝜃I𝐶

is the weak equivalence (3.4.0.1).

Remark 3.4.0.8. It is necessary to give an explicit description of the map 𝜂𝑜𝑝! �𝜃I𝐶
�. Concretely, we

have that
F𝑏P�Σª

� �𝜇�� � 𝜂𝑜𝑝! F𝑏I𝐶
�L𝑏I𝐶

� � Σª �P+
I𝐶

Fr�I𝐶�� � Σª �P +
I𝐶@I𝐶

I𝐶 a (︀1⌋︀S� .
On the other hand,

Σª

� �𝜂�(︀1⌋︀ � 𝜂𝑜𝑝! �LI𝐶
(︀1⌋︀� � Σª �P+

I𝐶

�I𝐶 +
I𝐶@I𝐶

I𝐶 a E�� � Σª �P +
I𝐶@I𝐶

I𝐶 a E� .
We now find the map 𝜂𝑜𝑝! �𝜃I𝐶

� given by applying Σª to the map

P +
I𝐶@I𝐶

I𝐶 a (︀1⌋︀S Ð� P +
I𝐶@I𝐶

I𝐶 a E

canonically induced by the map (︀1⌋︀S Ð� E.

Consider the Quillen adjunction L
Sp
P
� TP Op𝐶�S�Ð@BÐ TP Op�S� � RSp

P
.

Lemma 3.4.0.9. The left Quillen functor L
Sp
P

takes Lred
P > TP Op𝐶�S� to LP⇑I𝐶

the relative cotangent
complex of the unit map 𝜂 � I𝐶 Ð� P (cf. § 2.2).

Proof. Let P𝑐 �

Ð� P be a cofibrant resolution of P in Op𝐶�S�. So we get a factorization I𝐶 Ð� P𝑐
�

Ð� P

in Op�S� of the map 𝜂 into a cofibration followed by a weak equivalence. By Remark 2.2.0.13 we
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have that LP⇑I𝐶
� Σª�P *

I𝐶

P𝑐�. On other hand, by definition the reduced cotangent complex Lred
P >

TP Op𝐶�S� is given by Σª�P*
𝑐
P𝑐� the suspension spectrum of P*

𝑐
P𝑐 > Op𝐶�S� considered as a 𝐶-

colored operad over and under P.
Observe now that since I𝐶 is an initial object in Op𝐶�S�, the coproduct P*

𝑐
P𝑐 is nothing but P *

I𝐶

P𝑐

when regarded as an object in Op�S�. We hence get the conclusion.

Suppose that P is cofibrant. Then LP⇑I𝐶
is simply given by Σª�P *

I𝐶

P�. Nevertheless, we will need

two more models for this. Let R and R� be in Op�S� with

R � P+
I𝐶

�I𝐶 a (︀1⌋︀S� , R� � P+
I𝐶

�I𝐶 a E�.
We then form a diagram of coCartesian squares in Op�S� as follows

I𝐶 //

𝑖0
��

P

��

I𝐶 * I𝐶 //

��

P * I𝐶 //

��

P * P

��

I𝐶 a (︀1⌋︀S //

��

R //

��

R *
I𝐶

P

��

I𝐶 a E //

�

��

R� //

�

��

R� *
I𝐶

P

�

��

I𝐶 // P // P *
I𝐶

P

(3.4.0.3)

The middle column is nothing but the image of the first column through the left adjoint functor
Op�S�I𝐶⇑⇑I𝐶

Ð� Op�S�P⇑⇑P induced by the unit map 𝜂 � I𝐶 Ð� P. We consider R and R� as ob-
jects in Op�S�P⇑⇑P via that way. Three of squares on the right hand side are considered as coCartesian
squares in Op�S�P⇑⇑P. Moreover, note that all the arrows in this diagram are cofibrations, except the
three bottom vertical maps, which are all weak equivalences (the last two ones are homotopy cobase
change of the weak equivalence I𝐶 a E

�

Ð� I𝐶).

Lemma 3.4.0.10. The map R Ð� R� induces a weak equivalence 𝜃P⇑I𝐶
� Σª�R *

I𝐶

P� �

Ð� Σª�R� *
I𝐶

P�
of spectrum objects in TP Op�S�. Moreover, the two are both weakly equivalent to the relative cotangent
complex LP⇑I𝐶

.

Proof. By the weak equivalence R� *
I𝐶

P
�

Ð� P *
I𝐶

P of objects in Op�S�P⇑⇑P as indicated above, the

suspension spectrum Σª�R� *
I𝐶

P� is indeed a model for LP⇑I𝐶
. It remains to show that 𝜃P⇑I𝐶

is a weak

equivalence. For this, we will follow the arguments given in the proof of [[7], Proposition 3.2.1]. It hence
suffices to show that the map R *

I𝐶

P Ð� R� *
I𝐶

P is (-1)-cotruncated in Op�S�P⇑⇑P. Since the latter is

homotopy cobase change in Op�S�P⇑⇑P of the map R Ð� R�, it now suffices to show that R Ð� R� is
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(-1)-cotruncated in Op�S�P⇑⇑P. Furthermore, since the map RÐ� R� agrees with the image of the map
I𝐶a(︀1⌋︀S Ð� I𝐶aE through the left Quillen functor Op�S�I𝐶⇑⇑I𝐶

Ð� Op�S�P⇑⇑P, the proof will be hence
completed after showing that the latter map is a (-1)-cotruncated map (between cofibrant objects) in
Op�S�I𝐶⇑⇑I𝐶

. For this, it suffices to show that the fold map

I𝐶 a E +
I𝐶a(︀1⌋︀S

I𝐶 a EÐ� I𝐶 a E

is a weak equivalence in Op�S�I𝐶⇑⇑I𝐶
or in Cat�S�, alternatively. This follows by the fact that the fold

map E *
(︀1⌋︀S

EÐ� E is a weak equivalence in Cat�S�, due to the convention that S satisfies the invertibility

hypothesis (cf. §3.1).

We denote by L𝑏P⇑PXP > TP BMod�P� the relative cotangent complex of the map 𝜇 � P X P Ð� P

regarded as a map in BMod�P�. Take a factorization P X P Ð� Pcof �

Ð� P in BMod�P� of the map 𝜇

into a cofibration followed by a weak equivalence. By Remark 2.2.0.13 we have that Σª�P *
PXP

Pcof� is

a (cofibrant) model for L𝑏P⇑PXP.

Lemma 3.4.0.11. Suppose that S additionally satisfies the condition (S8) 3.3.0.2 and that P is cofibrant.
Then the left Quillen functor F𝑏P � TP BMod�P�Ð� TP Op�S� sends L𝑏P⇑PXP > TP BMod�P� to LP⇑I𝐶

(︀1⌋︀.
Proof. Let us write F𝑏P as the composed left Quillen functor

TP BMod�P�Ð� TP Op𝐶�S� L
Sp
P
Ð� TP Op�S�.

As the first step, we will compute the image of L𝑏P⇑PXP through the first functor. It will suffice to
compute the image of P *

PXP
Pcof through the left Quillen functor BMod�P�P⇑⇑P Ð� Op𝐶�S�P⇑⇑P, which

is the same as the composition

BMod�P�P⇑⇑P � BMod�P��P⇑⇑P

ÇE
Ð� �Op𝐶�S�P*

𝑐
P⇑�P⇑⇑P � Op𝐶�S�P⇑⇑P

where ÇE is the one lifted by the functor E � BMod�P�� Ð� Op𝐶�S�P*
𝑐
P⇑ (see §3.3). Note that the

pushout P *
PXP

Pcof , when regarded as an object in BMod�P��, is exactly P*
𝑝𝑏
Pcof the coproduct of P

with Pcof as pointed P-bimodules. Writing E�Pcof� �� �P*
𝑐
PÐ� Q�, we then have that the underlying

𝐶-colored operad of E�P*
𝑝𝑏
Pcof� is given by the pushout Q *

P*
𝑐
P
P. The condition (S8) 3.3.0.2 implies

that Q is a cofibrant resolution of P when considered as an object in Op𝐶�S�P*
𝑐
P⇑ and hence, the latter

pushout is a model for Σ�P*
𝑐
P� the suspension of P*

𝑐
P considered as an object in Op𝐶�S�P⇑⇑P. So we

find that the derived image of L𝑏P⇑PXP in TP Op𝐶�S� is given by Σª�Σ�P*
𝑐
P��, which is nothing but

Lred
P (︀1⌋︀ the suspension of Lred

P .
Finally, we deduce by using Lemma 3.4.0.9, which proves that the derived image of Lred

P (︀1⌋︀ through
the functor TP Op𝐶�S�Ð� TP Op�S� is exactly LP⇑I𝐶

(︀1⌋︀.
Proof of Proposition 3.4.0.5. We can take 𝑓 � Q �

Ð� P to be a bifibrant resolution of P in Op�S� such
that 𝑓 is a map in Op𝐶�S� (cf. Observations 3.2.1.1). The map 𝑓 gives rise to a commutative square of
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left Quillen equivalences

TQ BMod�Q� F𝑏
Q

�
//

�

��

TQ Op�S�
�

��

TP BMod�P�
F𝑏

P

�
// TP Op�S�

(3.4.0.4)

(cf. Proposition 3.2.2.2). It is then not hard to see that the vertical functors preserve cotangent
complexes. Therefore, if the statement holds for Q then it holds for P as well. So we can assume
without loss of generality that P is bifibrant.

By the definition of relative cotangent complex, we have two cofiber sequences in TP Op�S�:
F𝑏P�Σª

� �𝜇��Ð� F𝑏P�L𝑏P�Ð� F𝑏P�L𝑏P⇑PXP� , Σª

� �𝜂�Ð� LP Ð� LP⇑I𝐶
.

Let us consider the corresponding shifted cofiber sequences:

F𝑏P�L𝑏P⇑PXP�(︀�1⌋︀ 𝛼
Ð� F𝑏P�Σª

� �𝜇��Ð� F𝑏P�L𝑏P� , LP⇑I𝐶

𝛽
Ð� Σª

� �𝜂�(︀1⌋︀Ð� LP(︀1⌋︀.
The map 𝛼 is described as follows. From Remark 3.4.0.8 we have that

F𝑏P�Σª

� �𝜇�� � Σª�P +
I𝐶@I𝐶

I𝐶 a (︀1⌋︀S�.
On other hand, by Lemma 3.4.0.11 we have an identification F𝑏P�L𝑏P⇑PXP� � LP⇑I𝐶

(︀1⌋︀ and hence,
F𝑏P�L𝑏P⇑PXP�(︀�1⌋︀ is identified to LP⇑I𝐶

. By Lemma 3.4.0.10 we have two models for LP⇑I𝐶
given by

Σª�R *
I𝐶

P� and Σª�R� *
I𝐶

P�. We use the first one as a model for F𝑏P�L𝑏P⇑PXP�(︀�1⌋︀, i.e.,

F𝑏P�L𝑏P⇑PXP�(︀�1⌋︀ � Σª�R+
I𝐶

P� � Σª ��P + P� +
I𝐶@I𝐶

I𝐶 a (︀1⌋︀S� .
Under these identifications, 𝛼 is given by the map of suspension spectra

𝛼 � Σª ��P + P� +
I𝐶@I𝐶

I𝐶 a (︀1⌋︀S�Ð� Σª �P +
I𝐶@I𝐶

I𝐶 a (︀1⌋︀S�
canonically induced by the fold map P * PÐ� P.

Again by Remark 3.4.0.8, we have Σª
� �𝜂�(︀1⌋︀ � Σª �P *

I𝐶@I𝐶

I𝐶 a E�. Furthermore, when using

Σª�R� *
I𝐶

P� � Σª ��P * P� *
I𝐶@I𝐶

I𝐶 a E� as a model for LP⇑I𝐶
, then by construction 𝛽 is given by the

map of suspension spectra

𝛽 � Σª ��P + P� +
I𝐶@I𝐶

I𝐶 a E�Ð� Σª �P +
I𝐶@I𝐶

I𝐶 a E�
canonically induced by the fold map P * PÐ� P again.
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We now obtain a commutative square in TP Op�S�
Σª ��P * P� *

I𝐶@I𝐶

I𝐶 a (︀1⌋︀S� 𝛼
//

𝜃P⇑I𝐶 �

��

Σª �P *
I𝐶@I𝐶

I𝐶 a (︀1⌋︀S�
� 𝜂𝑜𝑝

! �𝜃I𝐶
�

��

Σª ��P * P� *
I𝐶@I𝐶

I𝐶 a E�
𝛽

// Σª �P *
I𝐶@I𝐶

I𝐶 a E�
in which the left and right vertical maps are the weak equivalences of lemmas 3.4.0.10 and 3.4.0.7,
respectively. It hence induces a weak equivalence between homotopy cofibers of the maps 𝛼 and 𝛽. We
thus obtain a natural weak equivalence 𝜃P � L𝑏P

�

Ð� LP(︀1⌋︀ in TP Op�S� as expected.

In the next step, we will describe the cotangent complex L𝑏P > TP BMod�P�. We will need the
following lemma.

Lemma 3.4.0.12. The forgetful functor U � BMod�P� Ð� LMod�P� is a left Quillen functor provided
that P is Σ-cofibrant.

Proof. The functor U is given by forgetting the right P-action, which is linear. It implies that U preserves
colimits. By the adjoint functor theorem and by the combinatoriality of S, U is indeed a left adjoint.

Since U preserves weak equivalences, the proof will be completed after showing that it preserves
cofibrations. To this end, we first prove that every cofibration in RMod�P� has underlying map in
Coll𝐶�S� being a cofibration as well. Observe that the model structure on RMod�P� admits a set of
generating cofibrations given by �𝑖 XP �𝑀 XPÐ� 𝑁 XP�𝑖 where 𝑖 �𝑀 � 𝑁 ranges over the set of those
of Coll𝐶�S�. Since the forgetful functor RMod�P�Ð� Coll𝐶�S� is a left adjoint, it suffices to show that
each map 𝑖 X P � 𝑀 X P Ð� 𝑁 X P is a cofibration in Coll𝐶�S�. Let g𝐶 denote the initial 𝐶-collection,
which agrees with gS on every level. Then, factor the map 𝑖 XP as

𝑀 XPÐ� 𝑁 X g𝐶 +
𝑀Xg𝐶

𝑀 XPÐ� 𝑁 XP.

The map 𝑖Xg𝐶 �𝑀 Xg𝐶 Ð� 𝑁 Xg𝐶 agrees with the component of 𝑖 on level 0, it is hence a cofibration.
So the first map of the above composition is a cofibration. The second map is also a cofibration by [[13],
Lemma 11.5.1], along with the Σ-cofibrancy of P. Thus, 𝑖 XP is indeed a cofibration.

It can be shown that the model structure on BMod�P� admits a set of generating cofibrations given
by �P X 𝑗 � P X𝐾 Ð� P X 𝐿�𝑗 where 𝑗 � 𝐾 � 𝐿 ranges over the set of those of RMod�P�. It therefore
suffices to show that each map P X 𝑗 � P X𝐾 Ð� P X 𝐿 is a cofibration in LMod�P�. This is now clear
since P X ��� is the free left P-module functor Coll𝐶�S� Ð� LMod�P�, which is a left Quillen functor,
and since 𝑗 is a cofibration in Coll𝐶�S� as indicated above.

Suppose that P is fibrant and Σ-cofibrant. Properly, L𝑏P is given by Σª�P*
𝑏
Pcof� with Pcof being

a cofibrant resolution of P in BMod�P�. But the map P*
𝑏
Pcof

Ð� P*
𝑏
P is a weak equivalence of

P-bimodules due to Lemma 3.4.0.12, so we will exhibit Σª�P*
𝑏
P� as a model for L𝑏P. According to

[[6], Corollary 2.3.3], L𝑏P � Σª�P*
𝑏
P� admits a suspension spectrum replacement simply given by

fixing P*
𝑏
P as its value at the bidegree �0, 0�, and hence the value at the bidegree �𝑛,𝑛� is given by
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Σ𝑛�P*
𝑏
P� the 𝑛-suspension of P*

𝑏
P in BMod�P�P⇑⇑P. So L𝑏P is fully determined just by describing the

P-bimodule Σ𝑛�P*
𝑏
P� for every 𝑛 E 0.

Notations 3.4.0.13. For each 𝑛 E 0, we denote by S𝑛 �� Σ𝑛�1S @ 1S� > S with the suspension Σ���
computed in S1S⇑⇑1S

, and refer to S𝑛 as the pointed n-sphere in S. Furthermore, we will write S𝑛𝐶
standing for the 𝐶-collection which has S𝑛𝐶�𝑐; 𝑐� � S𝑛 for every 𝑐 > 𝐶 and agrees with gS on the other
levels.
Computations 3.4.0.14. By Lemma 3.4.0.12, the underlying left P-module of Σ𝑛�P*

𝑏
P� is nothing

but Σ𝑛�P*
𝑙
P� > LMod�P�P⇑⇑P, in which “*

𝑙
” refers to the coproduct operation in LMod�P�. The good

thing is that P is free (generated by I𝐶) as a left module over itself. Thanks to this, we may compute
Σ𝑛�P*

𝑙
P� as follows. First, note that P*

𝑙
P > LMod�P� is isomorphic to P X S0

𝐶 the free left P-module

generated by S0
𝐶 . We have further that

Σ�P+
𝑙

P� � P X
�
�I𝐶

h
+ I𝐶
S0

𝐶

�
� � P X S1

𝐶 .

Inductively, we find that Σ𝑛�P*
𝑙
P� � P X S𝑛𝐶 the free left P-module generated by S𝑛𝐶 . In particular, for

each 𝐶-sequence 𝑐 �� �𝑐1,�, 𝑐𝑚; 𝑐�, we find that

Σ𝑛�P+
𝑙

P� �𝑐� � P X S𝑛𝐶 �𝑐� � P�𝑐�a �S𝑛�a𝑚.
Notations 3.4.0.15. We denote by ÇLP > TP IbMod�P� the derived image of L𝑏P > TP BMod�P� under
the right Quillen equivalence TP BMod�P� �

Ð� TP IbMod�P� (cf. Theorem 3.2.4.1). Furthermore, recall
that when S is in addition stable containing a strict zero object 0, we have a sequence of right Quillen
equivalences

TP IbMod�P� Ωª

Ð�
�

IbMod�P�P⇑⇑P
ker
Ð�
�

IbMod�P�
(cf. Theorem 3.2.4.3). In this situation, we will denote by LP �� R�ker XΩª��ÇLP�.
Computations 3.4.0.16. Let us compute ÇLP and LP.
(1) It is not difficult to show that the Quillen adjunction IbMod�P�P⇑⇑P

Ð@
BÐ BMod�P�P⇑⇑P is differen-

tiable (see Definition 3.1.0.1). The [[6], Corollary 2.4.8] hence shows that the right Quillen equivalence
TP BMod�P� �

Ð� TP IbMod�P� simply sends L𝑏P (which is now identified to its suspension spectrum
replacement) to its underlying prespectrum of infinitesimal P-bimodules.
(2) Suppose that S is in addition stable containing a strict zero object 0. Let us compute LP �

R�ker XΩª��ÇLP�. By [[6], Remark 2.4.7], we have RΩª�ÇLP� � hocolim𝑛 Ω𝑛�ÇLP�𝑛,𝑛. Now, by Com-
putations 3.4.0.14 we find that

R�ker XΩª��ÇLP� � �hocolim𝑛 Ω𝑛�P X S𝑛𝐶�� h
�P 0 � hocolim𝑛 Ω𝑛(︀ �P X S𝑛𝐶� h

�P 0� ⌋︀.
More explicitly, for each 𝑐 � �𝑐1,�, 𝑐𝑚; 𝑐� we find that

R�ker XΩª��ÇLP� �𝑐� � hocolim𝑛 Ω𝑛(︀ �P�𝑐�a �S𝑛�a𝑚� h
�P�𝑐� 0 ⌋︀ � P�𝑐�a hocolim𝑛 Ω𝑛(︀ �S𝑛�a𝑚 h

�1S
0 ⌋︀

in which the last desuspension Ω��� is now computed in IbMod�P�. (In the above formula, the second
weak equivalence is because of the fact that homotopy pullbacks in S are also homotopy pushouts and
that the functor P�𝑐�a ��� preserves colimits).
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Corollary 3.4.0.17. Suppose that S additionally satisfies the condition (S8) 3.3.0.2 and that P is fibrant
and Σ-cofibrant. Then the right Quillen equivalence

U𝑖𝑏P � TP Op�S� �

Ð� TP IbMod�P�
identifies the cotangent complex LP to ÇLP(︀�1⌋︀ > TP IbMod�P� in which ÇLP is the prespectrum with
�ÇLP�𝑛,𝑛 � P XS𝑛𝐶 for 𝑛 C 0. When S is in addition stable containing a strict zero object 0 then under the
right Quillen equivalence

TP Op�S� �

Ð� IbMod�P�,
the cotangent complex LP is identified to LP(︀�1⌋︀ with LP > IbMod�P� being given by

LP�𝑐� � P�𝑐�a hocolim𝑛 Ω𝑛(︀ �S𝑛�a𝑚 �
h
1S

0 ⌋︀
for each 𝐶-sequence 𝑐 �� �𝑐1,�, 𝑐𝑚; 𝑐�.
Proof. By Proposition 3.4.0.5 (and by Notations 3.4.0.15), we get that RU𝑖𝑏P�LP� � ÇLP(︀�1⌋︀. By Com-
putations 3.4.0.16(1), ÇLP agrees with L𝑏P on each level. The description of the latter is included in
Computations 3.4.0.14.

In the case where S is in addition stable containing a strict zero object, the claim follows just by
combining the above paragraph with Computations 3.4.0.16(2).

By the definition of Quillen cohomology group 2.2.0.14, we give the following conclusion.

Theorem 3.4.0.18. Suppose we are given a fibrant object 𝑀 > TP IbMod�P�. Under the same as-
sumptions as in Proposition 3.4.0.17, the 𝑛’th Quillen cohomology group of P with coefficients in 𝑀 is
formulated as

H𝑛
𝑄�P,𝑀� � 𝜋0 Maph

TP IbMod�P��ÇLP(︀�1⌋︀,𝑀(︀𝑛⌋︀� � 𝜋0 Maph
TP IbMod�P��ÇLP,𝑀(︀𝑛 � 1⌋︀�.

Furthermore, suppose that S is in addition stable containing a strict zero object 0. For a given fibrant
object 𝑀 > IbMod�P�, the 𝑛’th Quillen cohomology group of P with coefficients in 𝑀 is formulated as

H𝑛
𝑄�P,𝑀� � 𝜋0 Maph

IbMod�P��LP(︀�1⌋︀,𝑀(︀𝑛⌋︀� � 𝜋0 Maph
IbMod�P��LP,𝑀(︀𝑛 � 1⌋︀�.

3.5 Long exact sequence relating Quillen cohomology and reduced

Quillen cohomology

The unit map 𝜂 � I𝐶 Ð� P gives rise to the Quillen adjunctions

𝜂𝑖𝑏! � TI𝐶
IbMod�I𝐶�Ð@BÐ TP IbMod�P� � 𝜂�𝑖𝑏 , 𝜂𝑜𝑝! � TI𝐶

Op�S�Ð@BÐ TP Op�S� � 𝜂�𝑜𝑝.
Moreover, there is a commutative diagram of Quillen adjunctions of the form

TI𝐶
IbMod�I𝐶� TI𝐶

Op�S�

TP IbMod�P� TP Op�S�

F𝑖𝑏
I𝐶

𝜂𝑖𝑏
!

Ù

U𝑖𝑏
I𝐶

𝜂𝑜𝑝
!

F𝑖𝑏
P

Ú 𝜂�𝑖𝑏

Û

U𝑖𝑏
P

Ø𝜂�𝑜𝑝
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The following is an analogue of [[7], Corollary 3.2.9].

Lemma 3.5.0.1. Suppose that S additionally satisfies the condition (S8) 3.3.0.2 and that P is fibrant
and Σ-cofibrant. There is a (homotopy) cofiber sequence in TP IbMod�P� of the form

RU𝑖𝑏P,𝐶�Lred
P �Ð� L𝜂𝑖𝑏! �ÇLI𝐶

�Ð� ÇLP (3.5.0.1)

where U𝑖𝑏P,𝐶 is the right Quillen equivalence U𝑖𝑏P,𝐶 � TP Op𝐶�S� �

Ð� TP IbMod�P� appearing in Theorem
3.2.4.1.

Proof. Corollary 3.4.0.17 proves the existence of weak equivalences Ç𝜃I𝐶
� ÇLI𝐶

(︀�1⌋︀ �

Ð� RU𝑖𝑏I𝐶
�LI𝐶

� andÇ𝜃P � ÇLP(︀�1⌋︀ �

Ð� RU𝑖𝑏P�LP� in TI𝐶
IbMod�I𝐶� and TP IbMod�P�, respectively. Applying L𝜂𝑜𝑝! to Ç𝜃𝑎𝑑I𝐶

�

LF𝑖𝑏I𝐶
�ÇLI𝐶

� �

Ð� LI𝐶
(︀1⌋︀ (i.e., the adjoint of Ç𝜃I𝐶

), and taking then the adjoint of the resultant, we obtain
a weak equivalence in TP IbMod�P� of the form L𝜂𝑖𝑏! �ÇLI𝐶

� �

Ð� RU𝑖𝑏PL𝜂𝑜𝑝! �LI𝐶
(︀1⌋︀�.

On other hand, by the definition of relative cotangent complex, there is a cofiber sequence in TP Op�S�
of the form

LP⇑I𝐶
Ð� L𝜂𝑜𝑝! �LI𝐶

�(︀1⌋︀Ð� LP(︀1⌋︀.
By applying RU𝑖𝑏P to the latter and by the first paragraph, we get a cofiber sequence in TP IbMod�P�:

RU𝑖𝑏P�LP⇑I𝐶
�Ð� L𝜂𝑖𝑏! �ÇLI𝐶

�Ð� ÇLP.

Now, note that the functor U𝑖𝑏P is the same as the composition U𝑖𝑏P,𝐶 XR
Sp
P

. Lemma 3.4.0.9 hence shows
that there is a weak equivalence RU𝑖𝑏P,𝐶�Lred

P � �

Ð� RU𝑖𝑏P�LP⇑I𝐶
� in TP IbMod�P�. So we get the desired

cofiber sequence.

We end this chapter with the following theorem.

Theorem 3.5.0.2. Suppose that S additionally satisfies the condition (S8) 3.3.0.2 and that P is fibrant
and Σ-cofibrant. Given a fibrant object 𝑀 > TP IbMod�P�, there is a long exact sequence of abelian
groups of the form

�Ð� H𝑛�1
𝑄 �P,𝑀�Ð� H𝑛

𝑄,𝑟�P,𝑀�Ð� H𝑛
𝑄,red�P,𝑀�Ð� H𝑛

𝑄�P,𝑀�Ð� H𝑛�1
𝑄,𝑟 �P,𝑀�Ð� �

where HY

𝑄,𝑟�P,�� refers to Quillen cohomology group of P when regarded as a right module over itself,
while HY

𝑄�P,�� refers to Quillen cohomology group of P and HY

𝑄,red�P,�� refers to reduced Quillen
cohomology group of P (cf. Conventions 3.4.0.3).

Proof. The cofiber sequence of Lemma 3.5.0.1 induces a fiber sequence of derived mapping spaces:

Maph
TP IbMod�P��ÇLP,𝑀�Ð�Maph

TP IbMod�P��L𝜂𝑖𝑏! �ÇLI𝐶
�,𝑀�Ð�Maph

TP IbMod�P��RU𝑖𝑏P,𝐶�Lred
P �,𝑀�.

In this sequence, by notation RU𝑖𝑏P,𝐶�Lred
P � classifies the reduced Quillen cohomology of P, while ÇLP

classifies the Quillen cohomology of P, by Theorem 3.4.0.18. That fiber sequence will hence give rise
to the desired long exact sequence after having that L𝜂𝑖𝑏! �ÇLI𝐶

� classifies the Quillen cohomology of
P when regarded as a right module over itself. To see this, we first consider the Quillen adjunc-
tion TP RMod�P� Ð@BÐ TP IbMod�P� which is induced by the free-forgetful adjunction RMod�P� Ð@BÐ
IbMod�P�. We denote by L𝑟P > TP RMod�P� the cotangent complex of P when regarded as a right
module over itself. It therefore suffices to prove that the derived image of L𝑟P in TP IbMod�P� is
weakly equivalent to L𝜂𝑖𝑏! �ÇLI𝐶

�. For this last claim, observe first that 𝜂𝑖𝑏! is the same as the functor
TI𝐶

Coll𝐶�S� Ð� TP IbMod�P� induced by the free functor Coll𝐶�S� Ð� IbMod�P�. Moreover, under
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the identification TI𝐶
IbMod�I𝐶� � TI𝐶

Coll𝐶�S�, the object ÇLI𝐶
is nothing but the cotangent complex

of I𝐶 when regarded as an object of Coll𝐶�S�, which has the derived image through the left Quillen
functor TI𝐶

Coll𝐶�S�Ð� TP RMod�P� being L𝑟P obviously. The proof is hence completed.

Remark 3.5.0.3. When considering P as a right module over itself, it is free generated by I𝐶 . Thus,
we have a canonical isomorphism

H𝑛
𝑄,𝑟�P,𝑀� � H𝑛

𝑄,𝑐𝑜𝑙�I𝐶 ,𝑀�,
where the right hand side is the 𝑛’th Quillen cohomology group of I𝐶 , when regarded as a 𝐶-collection,
with coefficients in the derived image of 𝑀 in TI𝐶

Coll𝐶�S�. When S is further stable containing a strict
zero object 0 (and hence, so is the category Coll𝐶�S�), we have a sequence of right Quillen equivalences

TI𝐶
Coll𝐶�S� Ωª

Ð�
�

Coll𝐶�S�I𝐶⇑⇑I𝐶

ker
Ð�
�

Coll𝐶�S�
(cf. Theorem 3.2.4.3) and moreover, under this composed right Quillen equivalence, the cotangent
complex of I𝐶 is identified to itself I𝐶 (cf. [[8], Corollary 2.2.4]). Therefore, in this situation we have
that

H𝑛
𝑄,𝑐𝑜𝑙�I𝐶 ,𝑀� � 𝜋0 Maph

Coll𝐶�S��I𝐶 ,Rker Ωª�Σ𝑛𝑀�� � )
𝑐>𝐶

𝜋0 Maph
S�1S,Σ𝑛�𝑀�𝑐; 𝑐� �1S

0��.
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Chapter 4

Quillen cohomology of simplicial

operads

Simplicial operads are precisely operads enriched over the Cartesian monoidal category of simplicial
sets, SetΔ. This category comes equipped with the standard (Kan-Quillen) model structure and then,
satisfies the conditions of Conventions 3.1.0.2 and also the extra condition (S8) 3.3.0.2 (cf. Example
2.1.4.7 and Proposition 3.3.0.3). We therefore inherit the results of §3.4 for the work of this chapter.

In the first section, we revisit the straightening and unstraightening constructions (in unmarked
case), according to [[4], §2.2.1]. Given a simplicial (co)presheaf F over a simplicial category C, the
unstraightening of F is in particular a simplicial set over NC. As the first step, we will focus on
describing the simplices of the unstraightening of F and furthermore, giving convenient models for its
spaces of (right) left morphisms.

According to the work of Y. Harpaz, J. Nuiten and M. Prasma ([7]), the cotangent complex of an
ª-category (or a fibrant simplicial category) can be represented as a spectrum valued functor on its
twisted arrow ª-category (see Theorem 1.0.0.7). The construction of twisted arrow ª-categories (of
ª-categories) Tw��� � Catª Ð� Catª was originally introduced by Lurie [[3], § 5.2]. For a given fibrant
simplicial category C, the twisted arrow ª-category of C is simply defined to be Tw�C� �� Tw�NC� with
NC being the simplicial nerve of C. In the second section, we extend the latter to the construction
of twisted arrow ª-categories of (fibrant) simplicial operads. For a fibrant simplicial operad P, the
twisted arrow ª-category Tw�P� is by definition the unstraightening of the simplicial copresheaf P �

IbP
Ð� SetΔ, which encodes the data of P as an infinitesimal bimodule over itself (see §2.1.3). The

results obtained from the first section provide us with a comprehensive view on the structure of Tw�P�,
on both the simplicial and ª-categorical structures.

In the last section, for the main purpose we will show that the cotangent complex of a simplicial
operad can be represented as a spectrum valued functor on its twisted arrow ª-category.
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4.1 Unstraightening of simplicial (co)presheaves

We denote by C(︀�⌋︀ � SetΔ Ð� Cat�SetΔ� the rigidification functor, which is left adjoint to the
simplicial nerve functor N. Recall by definition that C(︀Δ𝑛⌋︀ is the simplicial category whose set of
objects is (︀𝑛⌋︀ � �0,�, 𝑛� and whose mapping spaces are defined as MapC(︀Δ𝑛⌋︀�𝑖, 𝑗� �� N P𝑖,𝑗 the nerve of
the poset

P𝑖,𝑗 � �𝐴 ⋃︀ �𝑖, 𝑗� b 𝐴 b (︀𝑖, 𝑗⌋︀�,
with (︀𝑖, 𝑗⌋︀ �� �𝑖, 𝑖 � 1,�, 𝑗�. (In particular, MapC(︀Δ𝑛⌋︀�𝑖, 𝑗� � g when 𝑖 A 𝑗). The composition in C(︀Δ𝑛⌋︀
is induced by the maps P𝑖,𝑗 �P𝑗,𝑘 Ð� P𝑖,𝑘 taking �𝐴,𝐵� to 𝐴 8𝐵.

Depending if one wants to “unstraighten” simplicial presheaves or copresheaves, one would need
to use contravariant or covariant unstraightening functor, respectively. Suppose we are given a
simplicial set 𝑆 and a simplicial category C. Let 𝜑 � C(︀𝑆⌋︀ Ð� C be a simplicial functor. For each
simplicial set 𝑋 over 𝑆, one takes two simplicial categories

MR

𝑋 �� C(︀𝑋R⌋︀ +
C(︀𝑋⌋︀

C , MP

𝑋 �� C(︀𝑋P⌋︀ +
C(︀𝑋⌋︀

C

where 𝑋R and 𝑋P are respectively the left and right cones of 𝑋. We will always use the letter “𝑣”
standing for the cone point, for both left and right cones.

The covariant straightening functor associated to 𝜑, written as

StR𝜑 � �SetΔ�⇑𝑆 Ð� Fun�C,SetΔ�,
is defined by sending each simplicial set 𝑋 over 𝑆 to the functor Map

M
R

𝑋
�𝑣,�� � C Ð� SetΔ. The

functor StR𝜑 admits a right adjoint, the covariant unstraightening functor associated to 𝜑, denoted
by UnR𝜑 . In fact, the adjunction StR𝜑 Ú UnR𝜑 forms a Quillen adjunction when one endows the category
Fun�C,SetΔ� with the projective model structure and the category �SetΔ�⇑𝑆 with the covariant model
structure. Moreover, this adjunction is a Quillen equivalence as long as 𝜑 is a weak equivalence of
simplicial categories. (See [4], Chapter 3 for more details).

Dually, the contravariant straightening functor associated to 𝜑, written as

StP𝜑 � �SetΔ�⇑𝑆 Ð� Fun�Cop,SetΔ�,
is defined by sending each simplicial set 𝑋 over 𝑆 to the functor Map

M
P

𝑋
��, 𝑣� � Cop

Ð� SetΔ. The
functor StP𝜑 admits a right adjoint, the contravariant unstraightening functor associated to 𝜑,
denoted by UnP𝜑 . The adjunction StP𝜑 Ú UnP𝜑 forms a Quillen adjunction when one endows the category
Fun�Cop,SetΔ� with the projective model structure and the category �SetΔ�⇑𝑆 with the contravariant
model structure and moreover, becomes a Quillen equivalence if 𝜑 is a weak equivalence.

Notations 4.1.0.1. 1. We are almost concentrated in the case where 𝑆 � NC and 𝜑 � C(︀NC⌋︀ Ð� C

is the counit map of C(︀�⌋︀ Ú N. In this case, the corresponding covariant (resp. contravariant)
straightening-unstraightening adjunction will be denoted by StRC Ú UnRC (resp. StPC Ú UnPC ).

2. When C � C(︀𝑆⌋︀ and 𝜑 is the identity functor, the corresponding covariant (resp. contravariant)
straightening-unstraightening adjunction will be denoted by StR𝑆 Ú UnR𝑆 (resp. StP𝑆 Ú UnP𝑆 ).

61



Remark 4.1.0.2. Note that UnRC is the same as the composed functor

Fun�C,SetΔ� 𝜀�C
ÐÐÐ� Fun�C(︀NC⌋︀,SetΔ� UnRNC

ÐÐÐ� �SetΔ�⇑NC

where 𝜀C is the counit map of the adjunction C(︀�⌋︀ Ú N, (this follows from [4], Proposition 2.2.1.1(2)).
The same thing holds for the contravariant case.

Let F � C Ð� SetΔ be a simplicial functor. We wish to understand the structure of UnRC �F� as a
simplicial set over NC. For this, we will follow [[49], §58], yet in the opposite convention. For each
𝑛 > N, one establishes a simplicial functor

DR

Δ𝑛 � C(︀Δ𝑛⌋︀Ð� SetΔ

given by sending each 𝑖 > (︀𝑛⌋︀ to DR

Δ𝑛�𝑖� �� N PR�𝑖� the nerve of the poset

PR�𝑖� �� �𝐴 ⋃︀ �𝑖� b 𝐴 b (︀0, 𝑖⌋︀ �
with (︀0, 𝑖⌋︀ �� �0, 1,�, 𝑖�. The structure maps of simplicial functor are defined by applying the union
operation of subsets in an obvious way. Moreover, for each map 𝛿 � Δ𝑚

Ð� Δ𝑛, one defines a natural
transformation

DR

𝛿 �DR

Δ𝑚 Ð�DR

Δ𝑛 X C(︀𝛿⌋︀
of the simplicial functors C(︀Δ𝑚⌋︀Ð� SetΔ given at each 𝑖 > (︀𝑚⌋︀ by the map DR

𝛿 �𝑖� �DR

Δ𝑚�𝑖�Ð�DR

Δ𝑛�𝛿𝑖�
which is induced by the map of posets PR�𝑖�Ð� PR�𝛿𝑖� , 𝑆 ( 𝛿�𝑆�.
Construction 4.1.0.3. The data of an 𝑛-simplex of UnRC �F� consists of

Y an 𝑛-simplex 𝜙 > N�C�, i.e., a functor 𝜙 � C(︀Δ𝑛⌋︀Ð� C, and
Y a natural transformation 𝑡 �DR

Δ𝑛 Ð� F X 𝜙 between simplicial functors C(︀Δ𝑛⌋︀Ð� SetΔ.
For each map 𝛿 � Δ𝑚

Ð� Δ𝑛, the corresponding structure map UnRC �F�𝑛 Ð� UnRC �F�𝑚 is given by
sending each pair �𝜙, 𝑡� > UnRC �F�𝑛 to the pair

C(︀Δ𝑚⌋︀ C(︀𝛿⌋︀

ÐÐÐ� C(︀Δ𝑛⌋︀ 𝜙

ÐÐÐ� C , DR

Δ𝑚

DR

𝛿

ÐÐÐ�DR

Δ𝑛 X C(︀𝛿⌋︀ 𝑡XId
ÐÐÐ� F X 𝜙 X C(︀𝛿⌋︀.

Explanations: First, argue that giving an 𝑛-simplex 𝑧 > UnRC �F� is equivalent to giving a sequence
of maps Δ𝑛 𝑧

Ð� UnRC �F� Ð� NC. Let us denote this composite map by 𝜙𝑧 � Δ𝑛
Ð� NC, which is

identified to a simplicial functor 𝜙𝑧 � C(︀Δ𝑛⌋︀ Ð� C. Observe now that for each such map 𝜙𝑧 there is a
commutative square of right adjoint functors

Fun�C,SetΔ� UnR
C
//

𝜙�𝑧
��

�SetΔ�⇑NC

𝜙�𝑧
��

Fun�C(︀Δ𝑛⌋︀,SetΔ�
UnRΔ𝑛

// �SetΔ�⇑Δ𝑛

(this follows by combining both two parts of [[4], Proposition 2.2.1.1], along with noting Remark 4.1.0.2).
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This proves the existence of a Cartesian square of the form

UnRΔ𝑛�F X 𝜙𝑧� //

��

Δ𝑛

��

UnRC �F� // NC

So the data of 𝑧 is equivalent to that of a map 𝜙𝑧 � Δ𝑛
Ð� NC and a map Δ𝑛

Ð� UnRΔ𝑛�FX𝜙𝑧� factoring
the identity IdΔ𝑛 . By adjunction, the latter is identified to a natural transformation StRΔ𝑛�IdΔ𝑛� Ð�
F X𝜙𝑧. But, by definition StRΔ𝑛�IdΔ𝑛� � MapC(︀�Δ𝑛�R⌋︀�𝑣,��. Hence, it remains to establish for each 𝑛 an
isomorphism

DR

Δ𝑛

�

Ð�MapC(︀�Δ𝑛�R⌋︀�𝑣,��
between simplicial functors C(︀Δ𝑛⌋︀Ð� SetΔ compatible with simplicial maps Δ𝑚

Ð� Δ𝑛. For this, note
that under the identification �Δ𝑛�R � Δ𝑛�1, the functor MapC(︀�Δ𝑛�R⌋︀�𝑣,�� is isomorphic to the functor
(︀𝑛⌋︀ ? 𝑖(MapC(︀Δ𝑛�1⌋︀�0, 𝑖 � 1� � N P0,𝑖�1. For each 𝑖 > (︀𝑛⌋︀, we define an isomorphism of posets

PR�𝑖� �

Ð� P0,𝑖�1 , 𝐴( �0� @ �𝐴 � 1�
with 𝐴 � 1 �� �𝑎 � 1 ⋃︀𝑎 > 𝐴�. This indeed gives us the desired isomorphism DR

Δ𝑛

�

Ð�MapC(︀�Δ𝑛�R⌋︀�𝑣,��.
Remark 4.1.0.4. Unwinding definition, each vertex of UnRC �F� is the choice of an object 𝑥 > Ob�C�
and a vertex 𝜇 > F�𝑥�. Let 𝑥, 𝑦 be two objects of C. The data of an edge of UnRC �F� from 𝜇 > F�𝑥�
to 𝜈 > F�𝑦� consists of a vertex 𝛼 > MapC�𝑥, 𝑦� and an edge of F�𝑦� of the form 𝑡 � 𝜈 Ð� 𝛼��𝜇� where
𝛼� � F�𝑥�Ð� F�𝑦� is the map induced by the simplicial functor structure of F � CÐ� SetΔ.

Comments 4.1.0.5. Intuitively, there seems to be something illogical in the data of an edge of UnRC �F�
mentioned above. Indeed, if one thinks of the covariant unstraightening functor as something generaliz-
ing the classical (covariant) Grothendieck construction then it is natural to require that, in the data of
such an edge of UnRC �F�, the edge 𝑡 should be in the direction 𝛼��𝜇� Ð� 𝜈 instead of 𝜈 Ð� 𝛼��𝜇�. In
fact, this confusion arises from the convention, namely, when one chose the adjunction C(︀�⌋︀ Ú N to work
with, for both covariant and contravariant cases. Let us try to modify this convention slightly. We define
a new “rigidification functor” C�(︀�⌋︀ by taking, for each 𝑛, MapC�(︀Δ𝑛⌋︀�𝑖, 𝑗� �� N Pop

𝑖,𝑗 , (instead of N P𝑖,𝑗 as
in the definition of C(︀�⌋︀). This leads to a new “simplicial functor” N� characterized as the right adjoint
to C�(︀�⌋︀. Now, if instead of C(︀�⌋︀ Ú N, one uses the adjunction C�(︀�⌋︀ Ú N� in establishing the covariant
straightening, then the new covariant unstraightening will satisfy what one expects from the classical
Grothendieck construction, i.e., one has the edge 𝑡 indeed being in the direction 𝛼��𝜇� Ð� 𝜈. We
believe that when doing the covariant unstraightening, using the adjunction C�(︀�⌋︀ Ú N� is more natural
than the C(︀�⌋︀ Ú N. But if one does not expect a perfect generalization from the classical Grothendieck
construction anymore, everything still works certainly.

Let F� � Cop
Ð� SetΔ be a simplicial functor. Similarly as in the covariant case, one can get an

explicit description of the contravariant unstraightening of F�, UnPC �F��. For each 𝑛 > N, one defines a
simplicial functor

DP

Δ𝑛 � C(︀Δ𝑛⌋︀op
Ð� SetΔ

taking each 𝑖 > (︀𝑛⌋︀ to DP

Δ𝑛�𝑖� �� N PP𝑛 �𝑖� the nerve of the poset

PP𝑛 �𝑖� �� �𝐴 ⋃︀ �𝑖� b 𝐴 b (︀𝑖, 𝑛⌋︀ �
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with (︀𝑖, 𝑛⌋︀ �� �𝑖, 𝑖 � 1,�, 𝑛� For each map 𝛿 � Δ𝑚
Ð� Δ𝑛, there is also a natural transformation

DP

𝛿 � DP

Δ𝑚 Ð� DP

Δ𝑛 X C(︀𝛿⌋︀op of the simplicial functors C(︀Δ𝑚⌋︀op
Ð� SetΔ. The structure maps are

defined naturally as well as in the covariant case (see Construction 4.1.0.3).

Construction 4.1.0.6. The data of an 𝑛-simplex of UnPC �F�� consists of
Y an 𝑛-simplex 𝜙 > N�C�, i.e., a functor 𝜙 � C(︀Δ𝑛⌋︀Ð� C, and
Y a natural transformation 𝑡 �DP

Δ𝑛 Ð� F� X 𝜙op between simplicial functors C(︀Δ𝑛⌋︀op
Ð� SetΔ.

The simplicial structure maps of UnPC �F�� are induced by the natural transformations DP

𝛿 mentioned
above. (See also [[49], §58]).

We now consider the case where C � ��� the terminal category. The corresponding covariant (resp.
contravariant) straightening-unstraightening adjunction will be then denoted by StR� Ú UnR� (resp.
StP� Ú UnP� ). By definition, these forms the self-adjunctions on SetΔ

StR� � SetΔ Ð@BÐ SetΔ � UnR� , StP� � SetΔ Ð@BÐ SetΔ � UnP� .

Note that StP� Ú UnP� agrees with the adjunction ⋃︀ � ⋃︀𝑄Y Ú Sing𝑄Y of [[4], §2.2.2].
Let 𝑋 be a simplicial set. We will need explicit descriptions of both UnR� �𝑋� and UnP� �𝑋�. Recall

that the 𝑛-cube �Δ1���1,�,𝑛� has total of 𝑛 end faces (i.e., the faces containing the terminal vertex),
including

𝑇𝑖 �� �Δ1���1,�,𝑖�1�
� �1� � �Δ1���𝑖�1,�,𝑛�

b �Δ1���1,�,𝑛�

for 𝑖 � 1,�, 𝑛. For each 𝑖, we denote by

𝑇 X𝑖 �� �1� �� � �1� � �Δ1���𝑖�1,�,𝑛�
b 𝑇𝑖,

which is an �𝑛 � 𝑖�-subcube of 𝑇𝑖.

Definition 4.1.0.7. Let 𝛾 � �Δ1���1,�,𝑛�
Ð� 𝑋 be a simplicial map performing an 𝑛-cube in 𝑋. Then 𝛾

is called a quasi 𝑛-simplex of 𝑋 if for every 𝑖 > �1,�, 𝑛�, the end face of 𝛾 given by 𝛾⋂︀
𝑇𝑖

the restriction
of 𝛾 to 𝑇𝑖 is degenerate on 𝛾⋂︀

𝑇 X𝑖
the restriction of 𝛾 to 𝑇 X𝑖 .

Remark 4.1.0.8. Each 𝑛-simplex 𝛿 � Δ𝑛
Ð� 𝑋 corresponds to a quasi 𝑛-simplex of 𝑋 given by the

composition
𝛿 � �Δ1���1,�,𝑛� 𝜏

Ð� Δ𝑛 𝛿
Ð� 𝑋

where the map 𝜏 is given by the canonical way of collapsing the 𝑛-cube to a nondegenerate 𝑛-subsimplex
containing the initial vertex. Conversely, each quasi 𝑛-simplex of 𝑋 agrees with an 𝑛-cube in 𝑋 of such
type 𝛿 on boundary. This phenomenon itself suggests us to the terminology “quasi simplex”.

Example 4.1.0.9. A quasi 3-simplex of 𝑋 is a 3-cube in 𝑋 of the form
𝑥 𝑦

𝑧 𝑧

𝑡 𝑡

𝑡 𝑡

𝑓

such that the front square is degenerate on the edge 𝑧 𝑓
Ð� 𝑡 and the bottom square is degenerate on the

terminal vertex 𝑡.
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The main interest in this notion is as follows.

Lemma 4.1.0.10. 1. There is a natural bijection between the 𝑛-simplices of UnP� �𝑋� and the quasi
𝑛-simplices of 𝑋.

2. Also, there is a natural bijection between the 𝑛-simplices of UnR� �𝑋� and the quasi 𝑛-simplices of
𝑋.

To get an explicit proof, we make use of DP

Δ𝑛�0� � N PP𝑛 �0� as a specific model for the 𝑛-cube
�Δ1���1,�,𝑛� (see Construction 4.1.0.6). For each 𝑖 > �1,�, 𝑛�, we take the subposets

�𝐴 > PP𝑛 �0� ⋃︀𝐴 c (︀0, 𝑖⌋︀� b �𝐴 > PP𝑛 �0� ⋃︀𝐴 ? 𝑖� b PP𝑛 �0�.
Note that the inclusion N�𝐴 > PP𝑛 �0� ⋃︀𝐴 c (︀0, 𝑖⌋︀� b N�𝐴 > PP𝑛 �0� ⋃︀𝐴 ? 𝑖� corresponds to the inclusion
𝑇 X𝑖 b 𝑇𝑖 mentioned above. Moreover, there is an obvious identification of posets

�𝐴 > PP𝑛 �0� ⋃︀𝐴 c (︀0, 𝑖⌋︀� � PP𝑛 �𝑖�.
Proof of Lemma 4.1.0.10. (1) By Construction 4.1.0.6, an 𝑛-simplex of UnP� �𝑋� is a natural trans-
formation 𝑡� �DP

Δ𝑛 Ð� �𝑋� between simplicial functors C(︀Δ𝑛⌋︀op
Ð� SetΔ, with �𝑋� being the constant

functor on 𝑋. Unwinding definition, the data of 𝑡� consists of the maps 𝑡��𝑖� �DP

Δ𝑛�𝑖� � N PP𝑛 �𝑖�Ð� 𝑋

for 𝑖 > (︀𝑛⌋︀, satisfying that:
(*) for every pair �𝑖, 𝑗� such that 𝑖 A 𝑗, the composition

MapC(︀Δ𝑛⌋︀op�𝑖, 𝑗� �DP

Δ𝑛�𝑖� DP

Δ𝑛

ÐÐÐ�DP

Δ𝑛�𝑗� 𝑡��𝑗�

ÐÐÐ� 𝑋 (4.1.0.1)

agrees with the composition MapC(︀Δ𝑛⌋︀op�𝑖, 𝑗� �DP

Δ𝑛�𝑖�Ð�DP

Δ𝑛�𝑖� 𝑡��𝑖�

ÐÐÐ� 𝑋.
Note that the map (4.1.0.1) corresponds to the restriction of 𝑡��𝑗� to N�𝐴 > PP𝑛 �𝑗� ⋃︀𝐴 ? 𝑖�. When

𝑗 � 𝑖 � 1, the condition (*) means that 𝑡��𝑖� agrees with the restriction of 𝑡��𝑖 � 1� to

N�𝐴 > PP𝑛 �𝑖 � 1� ⋃︀𝐴 ? 𝑖� � N PP𝑛 �𝑖�.
Inductively, for every 𝑖 E 1, 𝑡��𝑖� agrees with the restriction of 𝑡��0� to

N�𝐴 > PP𝑛 �0� ⋃︀𝐴 c (︀0, 𝑖⌋︀� � N PP𝑛 �𝑖�.
In particular, the data of 𝑡� is fully displayed in that of 𝑡��0�, which performs an 𝑛-cube in 𝑋. Now, fix
𝑗 � 0, the condition (*) means that for every 𝑖 > �1,�, 𝑛�, the end face of 𝑡��0� given by the restriction
𝑡��0�⋂︀N�𝐴>PP𝑛 �0� ⋃︀𝐴?𝑖� is degenerate on 𝑡��0�⋂︀N�𝐴>PP𝑛 �0� ⋃︀𝐴c(︀0,𝑖⌋︀�. This is equivalent to saying that 𝑡��0� is a
quasi 𝑛-simplex of 𝑋, by the words before the proof.

Conversely, let 𝑡� � DP

Δ𝑛�0� � N PP𝑛 �0� Ð� 𝑋 be a quasi 𝑛-simplex of 𝑋. For each 𝑖 > (︀𝑛⌋︀, we take
𝑡��𝑖� to be the restriction of 𝑡� to N�𝐴 > PP𝑛 �0� ⋃︀𝐴 c (︀0, 𝑖⌋︀� � N PP𝑛 �𝑖�. In particular, 𝑡��0� is nothing
but 𝑡�. It can then be verified that �𝑡��𝑖��𝑖 forms a natural transformation DP

Δ𝑛 Ð� �𝑋�.
The two above paragraphs clearly provide the inverses of each other between the 𝑛-simplices of

UnP� �𝑋� and the quasi 𝑛-simplices of 𝑋.

(2) By the first part, it suffices to prove the existence of a natural bijection between the 𝑛-simplices
of UnR� �𝑋� and those of UnP� �𝑋�. By Construction 4.1.0.3, an 𝑛-simplex of UnR� �𝑋� is a natural
transformation 𝑡 � DR

Δ𝑛 Ð� �𝑋� between simplicial functors C(︀Δ𝑛⌋︀ Ð� SetΔ and therefore, it consists
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of the maps 𝑡�𝑖� � DR

Δ𝑛�𝑖� � N PR�𝑖� Ð� 𝑋 �𝑖 > (︀𝑛⌋︀� subject to the essential naturality with respect to
every space of morphisms in C(︀Δ𝑛⌋︀ (similarly as the condition (*) above).

For each 𝑖 > (︀𝑛⌋︀, there is an isomorphism of posets PP𝑛 �𝑖� �

Ð� PR�𝑛 � 𝑖� taking 𝐴 > PP𝑛 �𝑖� to

𝑛�𝐴 �� �𝑛�𝑎 ⋃︀𝑎 > 𝐴�. We then take 𝑡��𝑖� to be the composition N PP𝑛 �𝑖� � N PR�𝑛� 𝑖� 𝑡�𝑛�𝑖�

ÐÐÐ� 𝑋. It can
then be verified that 𝑡� � �𝑡��𝑖��𝑖 forms a natural transformation 𝑡� �DP

Δ𝑛 Ð� �𝑋� and hence, performs
an 𝑛-simplex of UnP� �𝑋�. Moreover, the assignment 𝑡( 𝑡� indeed forms a natural bijection.

Remark 4.1.0.11. Though the assignment 𝑡( 𝑡� gives an isomorphism between UnR� �𝑋� and UnP� �𝑋�
on point-set level, it is not compatible with simplicial structures. Instead of that, this turns out to form
a natural isomorphism UnR� �𝑋� � UnP� �𝑋�op.

Remark 4.1.0.12. As mentioned in Remark 4.1.0.8, each 𝑛-simplex of 𝑋 is associated to a quasi 𝑛-
simplex. This determines a natural map 𝑋 Ð� UnP� �𝑋�, which is in fact a weak equivalence as long
as 𝑋 is a Kan complex (see [[4], 2.2.2.7, 2.2.2.8]). Combined with the above remark, we get a natural
weak equivalence 𝑋op �

Ð� UnR� �𝑋� when 𝑋 is Kan. In other words, while the (derived) contravariant
unstraightening UnP� is weakly equivalent to the identity functor, the covariant one UnR� is weakly
equivalent to the opposite functor 𝑋 ( 𝑋op.

Given a simplicial category C and a simplicial functor F � C Ð� SetΔ, we turn back to consider the
covariant unstraightening of F. We will need the following in the last section.

Remark 4.1.0.13. As in [[4], Remark 2.2.2.11], for a given object 𝑥 > C, there is a canonical isomorphism

UnRC �F� �NC �𝑥� � UnR� �F�𝑥��.
This follows by the compatibility of the unstraightening functor with taking base change along the map
�𝑥� Ð� NC (see explanations after Construction 4.1.0.3). Combined with Remark 4.1.0.12, we get a
weak equivalence

F�𝑥�op �

Ð� UnRC �F� �NC �𝑥� (4.1.0.2)

whenever F�𝑥� is a Kan complex.

Let 𝑥, 𝑦 > Ob�C� be two objects of C. Suppose we are given two vertices 𝜇 > F�𝑥� and 𝜈 >

F�𝑦� regarded as vertices of UnRC �F� (see Remark 4.1.0.4). We wish to give a convenient model for
HomR

UnR
C
�F�

�𝜇, 𝜈� the space of right morphisms from 𝜇 to 𝜈 in UnRC �F�. Recall by definition that an
𝑛-simplex of HomR

UnR
C
�F�

�𝜇, 𝜈� is an �𝑛�1�-simplex 𝑇 � Δ𝑛�1
Ð� UnRC �F� such that 𝑑𝑛�1𝑇 is degenerate

on 𝜇 and 𝑇 ⋂︀Δ�𝑛�1� � 𝜈. According to Construction 4.1.0.3, the data of 𝑇 consists of:
Y An �𝑛�1�-simplex 𝐻 � Δ𝑛�1

Ð� NC of NC satisfying that 𝑑𝑛�1𝐻 is degenerate on 𝑥 and 𝐻 ⋂︀Δ�𝑛�1� �

𝑦. In other words, 𝐻 is nothing but an 𝑛-simplex of HomR
NC�𝑥, 𝑦�. We also regard 𝐻 as a functor

C(︀Δ𝑛�1⌋︀Ð� C.
Y In addition, a natural transformation 𝑡 �DR

Δ𝑛�1 Ð� F X𝐻 between simplicial functors C(︀Δ𝑛�1⌋︀Ð�
SetΔ satisfying that for every 𝑖 > �0,�, 𝑛� the map

𝑡�𝑖� �DR

Δ𝑛�1�𝑖�Ð� F X𝐻�𝑖� � F�𝑥�
collapses its domain to the vertex 𝜇 and that the initial vertex of 𝑡�𝑛 � 1� agrees with 𝜈. (Note that
𝑡�𝑛 � 1� performs an �𝑛 � 1�-cube in F�𝑦�).
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On other hand, we take 𝜌𝜇 to be the composition

𝜌𝜇 � MapC�𝑥, 𝑦� F
Ð�MapSetΔ

�F�𝑥�,F�𝑦�� 𝑒𝑣𝜇

Ð� F�𝑦�
with 𝑒𝑣𝜇 being the evaluation at 𝜇. Now, by [[4], 2.2.2.13] there is a canonical isomorphism HomR

NC�𝑥, 𝑦� �
UnP� MapC�𝑥, 𝑦�. So we can form a canonical map

HomR
NC�𝑥, 𝑦� � UnP� MapC�𝑥, 𝑦�

UnP� �𝜌𝜇�

ÐÐÐÐ� UnP� F�𝑦� . (4.1.0.3)

Let us analyze this map. Let 𝐻 be an 𝑛-simplex of HomR
NC�𝑥, 𝑦� exhibited by a simplicial functor

𝐻 � C(︀Δ𝑛�1⌋︀Ð� C. The data of 𝐻 consists of the maps of the form

𝐻 𝑖
� MapC(︀Δ𝑛�1⌋︀�𝑖, 𝑛 � 1� � �Δ1���𝑛�𝑖� Ð�MapC�𝑥, 𝑦� , 𝑖 � 0,�, 𝑛.

Observe that each map 𝐻 𝑖 agrees with the restriction of 𝐻0 to a certain �𝑛 � 𝑖�-cube. So the data of
𝐻 is fully displayed in that of 𝐻0. It can be shown that 𝐻0 performs a quasi 𝑛-simplex of MapC�𝑥, 𝑦�
and hence, is an 𝑛-simplex of UnP� MapC�𝑥, 𝑦� by Lemma 4.1.0.10. Moreover, note that under the
identification HomR

NC�𝑥, 𝑦� � UnP� MapC�𝑥, 𝑦�, 𝐻 is simply identified to 𝐻0. For each 𝑖 > �0,�, 𝑛�, we
denote by 𝐻 𝑖

��𝜇� �� 𝐻 𝑖
X 𝜌𝜇. Finally, we get that the map (4.1.0.3) sends 𝐻 to 𝐻0

��𝜇�, (which performs
a quasi 𝑛-simplex of F�𝑦�).
Lemma 4.1.0.14. There is a canonical isomorphism

HomR
UnR

C
�F�

�𝜇, 𝜈� � �UnP� F�𝑦��𝜈⇑ �UnP� F�𝑦�
HomR

NC�𝑥, 𝑦� �� P𝜇,𝜈 .
Proof. With having chosen 𝐻 > HomR

NC�𝑥, 𝑦�, an 𝑛-simplex of P𝜇,𝜈 is a quasi �𝑛 � 1�-simplex of F�𝑦�
which admits 𝜈 as its initial vertex and in addition, admits 𝐻0

��𝜇� as an end face. (To see this, we
combine Lemma 4.1.0.10 with the above analyses).

On the other hand, with having chosen 𝐻 > HomR
NC�𝑥, 𝑦�, an 𝑛-simplex of HomR

UnR
C
�F�

�𝜇, 𝜈� (as
analyzed earlier) is a natural transformation 𝑡 � DR

Δ𝑛�1 Ð� F X𝐻 satisfying that for every 𝑖 > �0,�, 𝑛�
the map 𝑡�𝑖� � DR

Δ𝑛�1�𝑖� Ð� F�𝑥� collapses its domain to the vertex 𝜇 and that the initial vertex of
𝑡�𝑛 � 1� agrees with 𝜈. In particular, the data of 𝑡 is fully enclosed in that of the map

𝑡�𝑛 � 1� �DR

Δ𝑛�1�𝑛 � 1� � N PR�𝑛 � 1�Ð� F�𝑦�
subject to the following condition:

(**) for every 𝑖 > �0,�, 𝑛�, the composition

MapC(︀Δ𝑛�1⌋︀�𝑖, 𝑛 � 1� �DR

Δ𝑛�1�𝑖�
DR

Δ𝑛�1

ÐÐÐÐ�DR

Δ𝑛�1�𝑛 � 1� 𝑡�𝑛�1�
ÐÐÐÐ� F�𝑦�

agrees with the composition MapC(︀Δ𝑛�1⌋︀�𝑖, 𝑛 � 1� �DR

Δ𝑛�1�𝑖�Ð�MapC(︀Δ𝑛�1⌋︀�𝑖, 𝑛 � 1� 𝐻𝑖
�
�𝜇�

ÐÐÐÐ� F�𝑦�.
Note that the first composition corresponds to the restriction of 𝑡�𝑛�1� to N�𝐴 > PR�𝑛�1� ⋃︀𝐴 ? 𝑖�,

which is an end face of the �𝑛 � 1�-cube DR

Δ𝑛�1�𝑛 � 1� � N PR�𝑛 � 1�.
When 𝑖 � 0, the condition (**) means that 𝐻0

��𝜇� agrees with the end face of 𝑡�𝑛 � 1� given by
the restriction of itself to N�𝐴 > PR�𝑛 � 1� ⋃︀𝐴 ? 0�. In particular, for each 𝑖 > �0,�, 𝑛�, 𝐻 𝑖

��𝜇�
agrees with the restriction of 𝑡�𝑛 � 1� to N�𝐴 > PR�𝑛 � 1� ⋃︀𝐴 c (︀0, 𝑖⌋︀�. So for every 𝑖 > �0,�, 𝑛�, the
condition (**) means that the end face of 𝑡�𝑛 � 1� given by the restriction 𝑡�𝑛 � 1�⋂︀N�𝐴>PR�𝑛�1� ⋃︀𝐴?𝑖� is
degenerate on 𝑡�𝑛 � 1�⋂︀N�𝐴>PR�𝑛�1� ⋃︀𝐴c(︀0,𝑖⌋︀�. This is equivalent to saying that 𝑡�𝑛 � 1� performs a quasi
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�𝑛�1�-simplex of F�𝑦�. Therefore, by the first paragraph, the data of an 𝑛-simplex of HomR
UnR

C
�F�

�𝜇, 𝜈�
is equivalent to that of an 𝑛-simplex of P𝜇,𝜈 . The obtained identification is indeed compatible with
simplicial structures.

Remark 4.1.0.15. There is a canonical embedding UnP� �F�𝑦�𝜈⇑� Ð� �UnP� F�𝑦��𝜈⇑ established as
follows. By Lemma 4.1.0.10, an 𝑛-simplex of UnP� �F�𝑦�𝜈⇑� is a quasi 𝑛-simplex of F�𝑦�𝜈⇑, which can
be identified with a map

𝛾 � Δ0
� �Δ1���1,�,𝑛�

Ð� F�𝑦�
(where “�” stands for the join operation) satisfying that for every 𝑖 > �1,�, 𝑛� the restriction 𝛾⋂︀Δ0�𝑇𝑖

is degenerate on 𝛾⋂︀Δ0�𝑇 X𝑖
and that 𝛾⋂︀Δ0 agrees with 𝜈. We then associates to 𝛾 the composite map

Ç𝛾 � �Δ1���1,�,𝑛�1�
Ð� Δ0

� �Δ1���1,�,𝑛� 𝛾
Ð� F�𝑦�

in which the first map refers to the canonical way of collapsing the �𝑛 � 1�-cube to its subset given by
joining the initial vertex with an end face. The map Ç𝛾 is indeed a quasi �𝑛� 1�-simplex of F�𝑦� with 𝜈
as its initial vertex, and hence is an 𝑛-simplex of �UnP� F�𝑦��𝜈⇑.

By the above remark and Remark 4.1.0.12, we can form a composite map

F�𝑦�𝜈⇑ �F�𝑦� MapC�𝑥, 𝑦�Ð� UnP� �F�𝑦�𝜈⇑� �UnP� F�𝑦�
UnP� MapC�𝑥, 𝑦�Ð� P𝜇,𝜈 (4.1.0.4)

Suppose now that C is fibrant and F � CÐ� SetΔ is levelwise fibrant. Then the map UnRC �F�Ð� NC

is a left fibration and NC is an ª-category. So UnRC �F� is an ª-category as well. Our main interest in
this section is the following:

Proposition 4.1.0.16. Let 𝑥, 𝑦 > Ob�C� be two objects of C. Given two vertices 𝜇 > F�𝑥� and 𝜈 > F�𝑦�
regarded as vertices of UnRC �F�, there is a homotopy equivalence

�𝜈� �h
F�𝑦� MapC�𝑥, 𝑦� �

Ð�MapUnR
C
�F�

�𝜇, 𝜈�.
Proof. We make use of the pullback F�𝑦�𝜈⇑ �F�𝑦� MapC�𝑥, 𝑦� as a model for the left hand side. Since
F�𝑦� and MapC�𝑥, 𝑦� are Kan complexes, that pullback is Kan as well. It implies that the first map
of the composition (4.1.0.4) is a weak equivalence (see Remark 4.1.0.12). The second map of (4.1.0.4)
is also a weak equivalence, since UnP� �F�𝑦�𝜈⇑� and �UnP� F�𝑦��𝜈⇑ are both contractible. So the map
(4.1.0.4) is a weak equivalence. We deduce then by using Lemma 4.1.0.14.

Remark 4.1.0.17. An analogue holds in the contravariant case. Let F � Cop
Ð� SetΔ be a simplicial

presheaf on C. Let 𝑥, 𝑦 > Ob�C� be two objects of C, and suppose we are given two vertices 𝜇 > F�𝑥�
and 𝜈 > F�𝑦� regarded as vertices of UnPC �F�. We take 𝜌𝜈 to be the composite map

𝜌𝜈 � MapC�𝑥, 𝑦� F
Ð�MapSetΔ

�F�𝑦�,F�𝑥�� 𝑒𝑣𝜈
Ð� F�𝑥�

with 𝑒𝑣𝜈 being the evaluation at 𝜈. When C is fibrant and F is levelwise fibrant (so that UnPC �F� is an
ª-category), there is a homotopy equivalence

�F�𝑥�𝜇⇑ �F�𝑦� MapC�𝑥, 𝑦��op �

Ð�MapUnP
C
�F�

�𝜇, 𝜈�.

68



4.2 Twisted arrow ª-categories of simplicial operads

Let E be an ordinary category. The (covariant) twisted arrow category Tw�E� is by definition the
category whose objects are the morphisms of E and such that maps from 𝑓 � 𝑥 � 𝑦 to 𝑓 � � 𝑥� � 𝑦� are
given by commutative diagrams of the form

𝑥 𝑥�

𝑦 𝑦�

𝑓 𝑓 � (4.2.0.1)

This classical notion was generalized into the ª-categorical framework due to Lurie [[3], §5.2.1]. For
a given ª-category D, the twisted arrow category Tw�D� is the ª-category whose 𝑛-simplices are
the �2𝑛 � 1�-simplices of C. In particular, objects of Tw�D� are the morphisms of D. A map from
𝑓 � 𝑥Ð� 𝑦 to 𝑓 � � 𝑥� Ð� 𝑦� can be also depicted as a diagram of the type (4.2.0.1) commutative up to a
chosen homotopy.

Furthermore, for a given fibrant simplicial category C, the twisted arrow ª-category of C is simply
Tw�C� �� Tw�NC� the twisted arrow ª-category of the nerve of C. It turns out that Tw�C� can be
represented as the unstraightening of a certain simplicial copresheaf. This phenomenon motivates us to
establish twisted arrow ª-categories of (fibrant) simplicial operads. Let us see how it arises.

We will need the following notations and conventions:
- Let 𝑆 be a simplicial set. We denote by �Setcov

Δ �⇑𝑆 the covariant model category of simplicial
sets over 𝑆 whose cofibrations are monomorphisms and whose fibrant objects are left fibrations over
𝑆. (See [[4], §2.1.4] for more details).

- Let C be a simplicial category. Recall that the category of C-bimodules can be represented as
Fun�Cop

�C,SetΔ� the category of simplicial functors Cop
�CÐ� SetΔ. Moreover, under this identifica-

tion, the functor MapC � C
op
� C Ð� SetΔ, �𝑥, 𝑦� (MapC�𝑥, 𝑦� is nothing but C, viewed as a bimodule

over itself. We endow Fun�Cop
� C,SetΔ� with the projective model structure.

- For the remainder, we consider only the covariant unstraightening construction. So we will simply
write UnC��� standing for the covariant unstraightening of simplicial functors CÐ� SetΔ.

Suppose now that C is a fibrant simplicial category. According to [[3], Proposition 5.2.1.11], the
unstraightening functor

UnCop�C � Fun�Cop
� C,SetΔ� �

Ð� �Setcov
Δ �⇑NCop�NC, (4.2.0.2)

which is a right Quillen equivalence, identifies MapC to Tw�C�. In other words, the unstraightening of
C (viewed as a bimodule over itself) is exactly a model for Tw�C�.

We now fix P to be a fibrant simplicial 𝐶-colored operad. Recall from Section 3.2.2 that there
is a canonical isomorphism IbMod�P� � Fun�IbP,SetΔ� between the categories of infinitesimal P-
bimodules and simplicial functors IbP

Ð� SetΔ. The unstraightening construction gives us a right
Quillen equivalence

UnIbP � IbMod�P� � Fun�IbP,SetΔ� �

Ð� �Setcov
Δ �⇑N�IbP�. (4.2.0.3)

Since P is fibrant, it implies that IbP is a fibrant simplicial category, and hence N�IbP� is an ª-category.
Moreover, the functor

P � IbP
Ð� SetΔ , �𝑐1,�, 𝑐𝑚; 𝑐�( P�𝑐1,�, 𝑐𝑚; 𝑐�,
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which encodes the data of P as an infinitesimal bimodule over itself, is levelwise fibrant. So we get a
left fibration UnIbP�P�Ð� N�IbP�, and hence UnIbP�P� is in particular an ª-category.

Along the passage from simplicial categories to simplicial operads, the notion of categorical bimod-
ules should correspond to that of operadic infinitesimal bimodules, which can be thought of as the
linearization of the usual notion of operadic bimodules. With having this logic in mind, we propose the
following concept.

Definition 4.2.0.1. The twisted arrow ª-category of P, denoted by Tw�P�, is defined to be
Tw�P� �� UnIbP�P� the unstraightening of the simplicial functor P � IbP

Ð� SetΔ or alternatively,
unstraightening of P regarded as an infinitesimal bimodule over itself.

Examples 4.2.0.2. When P is discrete then Tw�P� is isomorphic to the nerve of an ordinary category.
In this situation, we will identify Tw�P� to the corresponding ordinary category and refer to it as the
twisted arrow category of P. For example, it is not hard to show that the twisted arrow category of
the commutative operad is equivalent to Finop

� . We will see that the twisted arrow category of the
associative operad is equivalent to the simplex category Δ (cf. Proposition 4.2.0.15).

Proposition 4.2.0.3. The construction Tw��� determines a homotopy invariant from fibrant simplicial
operads to ª-categories.

Proof. Let 𝑓 � P � Q be a map between fibrant simplicial operads. By the compatibility of the un-
straightening functor with taking base change along 𝑓 � P � Q, we obtain the induced map Tw�𝑓� �
Tw�P�Ð� Tw�Q� fitting into the following Cartesian square of ª-categories

Tw�P� //

��

Tw�Q�
��

N�IbP� // N�IbQ�
Note that this square is already homotopy Cartesian (with respect to the Joyal model structure), due
to the fact that the right vertical map is a left fibration.

We are showing that the map Tw�𝑓� � Tw�P� Ð� Tw�Q� is an equivalence when provided that
𝑓 � P � Q is a weak equivalence. We first show that the induced map Ib𝑓 � IbP

Ð� IbQ is a weak
equivalence of simplicial categories (i.e., a Dwyer-Kan equivalence). It is clear by construction that Ib𝑓

is a levelwise weak equivalence. Hence it remains to show that Ib𝑓 is essentially surjective. Suppose
given an object �𝑑1,�, 𝑑𝑛;𝑑0� of IbQ. Since the underlying simplicial functor 𝑓1 � P1 Ð� Q1 of 𝑓 is
essentially surjective, for each 𝑖 > �0,�, 𝑛� there exists an object 𝑐𝑖 of P together with an isomorphism
𝜃𝑖 � 𝑓�𝑐𝑖� �

Ð� 𝑑𝑖 in the homotopy category of Q1. The morphisms 𝜃𝑖’s together form a morphism
𝜃 � �𝑓�𝑐1�,�, 𝑓�𝑐𝑛�; 𝑓�𝑐0�� Ð� �𝑑1,�, 𝑑𝑛;𝑑0� in IbQ. It can then be verified by definition that 𝜃 is an
isomorphism in the homotopy category of IbQ. We just proved that Ib𝑓 is a weak equivalence (between
fibrant simplicial categories). So the map N�IbP� Ð� N�IbQ� is an equivalence of ª-categories. This
fact, together with the first paragraph, proves that the map Tw�𝑓� � Tw�P� Ð� Tw�Q� is indeed an
equivalence

Again, let P be a fibrant simplicial 𝐶-colored operad. Due to the previous section, we can describe
the simplicial structure of Tw�P� as follows.

Construction 4.2.0.4. The data of an 𝑛-simplex of Tw�P� consists of
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Y an 𝑛-simplex 𝜙 > N�IbP�, i.e., a functor 𝜙 � C(︀Δ𝑛⌋︀Ð� IbP, and
Y a natural transformation 𝑡 �DR

Δ𝑛 Ð� P X 𝜙 between simplicial functors C(︀Δ𝑛⌋︀Ð� SetΔ.
For each map 𝛿 � Δ𝑚

Ð� Δ𝑛, the simplicial structure map Tw�P�𝑛 Ð� Tw�P�𝑚 is induced by the
natural transformation DR

𝛿 �DR

Δ𝑚 Ð�DR

Δ𝑛 X C(︀𝛿⌋︀, as in Construction 4.1.0.3.

To analyze the structure of Tw�P�, we will need the following notations.

Notation 4.2.0.5. We always denote the permutations by listing their values. For instance, 𝜎 �

(︀𝑖1,�, 𝑖𝑛⌋︀ refers to the permutation 𝜎 > Σ𝑛 with 𝜎�𝑘� � 𝑖𝑘.
Notations 4.2.0.6. Let 𝑓 � ∐︀𝑛̃︀ Ð� ∐︀𝑚̃︀ be a map in Fin�. For each 𝑠 > �0, 1,�,𝑚�, we let (︀𝑓�1�𝑠�⌋︀
denote the increasing sequence of the elements of 𝑓�1�𝑠�, written as (︀𝑓�1�𝑠�⌋︀ � (︀𝑖𝑠1 @ � @ 𝑖𝑠𝑘𝑠

⌋︀. (Of
course, this could be empty). Then 𝑓 can be represented by the sequence obtained by concatenating
those sequences for 𝑠 � 1,�,𝑚, written as:

(︀𝑓�1�1� ⋃︀ 𝑓�1�2� ⋃︀ � ⋃︀ 𝑓�1�𝑚�⌋︀ � (︀𝑖11 @ � @ 𝑖1𝑘1
⋃︀ 𝑖21 @ � @ 𝑖2𝑘2

⋃︀ � ⋃︀ 𝑖𝑚1 @ � @ 𝑖𝑚𝑘𝑚
⌋︀,

or alternatively, by the extended sequence (︀𝑓�1�1� ⋃︀ 𝑓�1�2� ⋃︀ � ⋃︀ 𝑓�1�𝑚� ⋃︀ 𝑓�1�0�X⌋︀ formed in the
same manner, in which (︀𝑓�1�0�X⌋︀ �� (︀𝑓�1�0�⌋︀ � �0�. Moreover, we denote by 𝜎𝑓 the permutation
(︀𝑓�1�1� ⋃︀ 𝑓�1�2� ⋃︀ � ⋃︀ 𝑓�1�𝑚� ⋃︀ 𝑓�1�0�X⌋︀ > Σ𝑛.

Notation 4.2.0.7. Let 𝑐 �� �𝑐1,�, 𝑐𝑚; 𝑐� and 𝑑 �� �𝑑1,�, 𝑑𝑛;𝑑� be two 𝐶-sequences and 𝑓 � ∐︀𝑛̃︀Ð� ∐︀𝑚̃︀
a map in Fin�. Given a vertex

𝛼 � �𝛼0, 𝛼1,�, 𝛼𝑚� > Map𝑓IbP�𝑐, 𝑑�
with 𝛼0 > P �𝑐,�𝑑𝑗�𝑗>𝑓�1�0�;𝑑� and 𝛼𝑖 > P ��𝑑𝑗�𝑗>𝑓�1�𝑖�; 𝑐𝑖� (𝑖 � 1,�,𝑚) (see Construction 2.1.3.2), we
denote by 𝛼� � P�𝑐� Ð� P�𝑑� the image of 𝛼 under the map MapIbP�𝑐, 𝑑� Ð� MapSetΔ

�P�𝑐�,P�𝑑��
which is part of the simplicial functor structure of P � IbP

Ð� SetΔ. By construction, for each simplex
𝜃 > P�𝑐�, we have that

𝛼��𝜃� � �𝛼0 X1 𝜃 X �𝛼1,�, 𝛼𝑚� �𝜎�1
𝑓 > P�𝑑�

the action of 𝜎�1
𝑓 > Σ𝑛 on 𝛼0 X1 𝜃 X �𝛼1,�, 𝛼𝑚�, where “(X1) X” refers to the (partial) composition.

Unwinding definition we will see that Tw�P� indeed looks like something obtained by twisting
“multiarrows” of P.

Y Objects of Tw�P� are precisely the operations of P (i.e., the vertices of the spaces of operations
of P).

Y Let 𝜇 > P�𝑐� and 𝜈 > P�𝑑� be two operations of P, the data of a morphism (edge) 𝜇� 𝜈 in Tw�P�
consists of

- a map 𝑓 � ∐︀𝑛̃︀Ð� ∐︀𝑚̃︀ in Fin�,
- a tuple of operations 𝛼 � �𝛼0, 𝛼1,�, 𝛼𝑚� > Map𝑓IbP�𝑐, 𝑑�, and
- an edge 𝑡 � 𝜈 Ð� 𝛼��𝜇� in P�𝑑�, viewed as a homotopy from 𝜈 to 𝛼��𝜇�.

By convention, we will write �𝑓,𝛼, 𝑡� � 𝜇 Ð� 𝜈 standing for such a typical morphism. It is convenient
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to depict this morphism as the diagram of the form

�𝑐1,�, 𝑐𝑚� �𝑑1,�, 𝑑𝑛�

�𝑐� �𝑑�
𝜇

�𝛼1 �𝛼𝑚�

𝜈

𝛼0

(4.2.0.4)

which is “commutative up to a chosen homotopy”.
Y In general, a 𝑘-simplex of Tw�P� is the one, formally, depicted as the composition of 𝑘 squares of

the type (4.2.0.4) equipped with a collection of homotopies, homotopies between homotopies, and so
forth.

We saw above the simplicial structure of Tw�P�. So it remains to understand the ª-categorical
structure of Tw�P�. As usual, this is best understood by reformulating equivalences in Tw�P� and
describing its mapping spaces. We indeed hold these in hand, expressed by the two propositions below.

Again, let 𝜇 > P�𝑐� and 𝜈 > P�𝑑� be two operations of P, regarded as objects of Tw�P�.
Proposition 4.2.0.8. A morphism �𝑓,𝛼, 𝑡� � 𝜇 Ð� 𝜈 is an equivalence in Tw�P� if and only if the
following conditions hold:

1. 𝑓 � ∐︀𝑛̃︀Ð� ∐︀𝑚̃︀ is bijective.

2. There exist 𝛽 > Map𝑓
�1

IbP�𝑑, 𝑐�, an edge 𝑡� � 𝜇Ð� 𝛽��𝜈� and together with two edges

(︀ℎ � 𝑖𝑑𝑐 Ð� 𝛽𝛼⌋︀ > MapId∐︀𝑚̃︀

IbP �𝑐, 𝑐� , (︀ℎ� � 𝑖𝑑𝑑 Ð� 𝛼𝛽⌋︀ > MapId∐︀𝑛̃︀

IbP �𝑑, 𝑑�
which are all subject to the existence of two 2-simplices of the forms

𝛽��𝜈�

𝜇 𝛽�𝛼��𝜇�
𝛽��𝑡�𝑡�

ℎ�⋃︀�𝜇��Δ1

𝛼��𝜇�

𝜈 𝛼�𝛽��𝜈�
𝛼��𝑡��𝑡

�ℎ���⋃︀�𝜈��Δ1

(4.2.0.5)

belonging to P�𝑐� and P�𝑑�, respectively. In this item, ℎ� (and similarly, �ℎ���) is given by the
composition

P�𝑐� �Δ1
IdP�𝑐� �ℎ

ÐÐÐÐÐÐ� P�𝑐� �MapId∐︀𝑚̃︀

IbP �𝑐, 𝑐� P
Ð� P�𝑐�.

Proof. The proof is straightforward, once one knows that the data of a 2-simplex of Tw�P� of the form
𝜈

𝜇 𝜇 ,

�𝑔,𝛽,𝑡���𝑓,𝛼,𝑡�

𝑠0𝜇

with having (necessarily) required 𝑓𝑔 � Id∐︀𝑚̃︀, is equivalent to the choice of an edge ℎ � 𝑖𝑑𝑐 Ð� 𝛽𝛼 in
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MapId∐︀𝑚̃︀

IbP �𝑐, 𝑐� and in addition, a square in P�𝑐� of the form

𝜇
𝑠0𝜇

//

𝑡�

��

𝜇

ℎ�⋃︀�𝜇��Δ1
��

𝛽��𝜈�
𝛽��𝑡�
// 𝛼�𝛽��𝜈� .

Moreover, since P�𝑐� is Kan, this square is equivalent to the choice of a 2-simplex of the form (4.2.0.5)
(the first one).

We take 𝜌𝜇 to be the composite map

𝜌𝜇 � MapIbP�𝑐, 𝑑� P
Ð�MapSetΔ

�P�𝑐�,P�𝑑�� 𝑒𝑣𝜇

Ð� P�𝑑�
with 𝑒𝑣𝜇 being the evaluation at 𝜇.

Proposition 4.2.0.9. There is a canonical homotopy equivalence

�𝜈� �h
P�𝑑�

MapIbP�𝑐, 𝑑� �

Ð�MapTw�P��𝜇, 𝜈�.
Proof. This follows immediately by Proposition 4.1.0.16.

Remark 4.2.0.10. Note that there is a canonical map of ª-categories Tw�P� Ð� N�Finop
� � factoring

through N�IbP�. Consider the induced map MapTw�P��𝜇, 𝜈� Ð� HomFinop
�
�∐︀𝑚̃︀, ∐︀𝑛̃︀�. For each map

𝑓 � ∐︀𝑛̃︀Ð� ∐︀𝑚̃︀ in Fin�, we denote by Map𝑓Tw�P�
�𝜇, 𝜈� the component of MapTw�P��𝜇, 𝜈� over 𝑓 , so that

we can write
MapTw�P��𝜇, 𝜈� � +

∐︀𝑛̃︀
𝑓
Ð�∐︀𝑚̃︀

Map𝑓Tw�P�
�𝜇, 𝜈�.

By the above proposition, there is a homotopy equivalence

�𝜈� �h
P�𝑑�

Map𝑓IbP�𝑐, 𝑑� �

Ð�Map𝑓Tw�P�
�𝜇, 𝜈�.

In what follows, we will survey some local properties of Tw�P� using the two propositions above.

Corollary 4.2.0.11. Let 𝜇 > P�𝑐1,�, 𝑐𝑚; 𝑐� and 𝜎 > Σ𝑚 be given. Then there is a canonical equivalence
𝜇

�

Ð� 𝜇𝜎 in Tw�P�.
Proof. We take a canonical edge �𝑓,𝛼, 𝑡� � 𝜇 Ð� 𝜇𝜎 as follows. The map 𝑓 � ∐︀𝑚̃︀ Ð� ∐︀𝑚̃︀ agrees with 𝜎

on �1,�,𝑚�. Then, we take 𝛼 to be the tuple of unit operations

𝛼 �� �id𝑐, id𝑐1 �, id𝑐𝑚� > Map𝜎IbP��𝑐1,�, 𝑐𝑚; 𝑐�, �𝑐𝜎�1�,�, 𝑐𝜎�𝑚�; 𝑐��.
By construction, the induced map

𝛼� � P�𝑐1,�, 𝑐𝑚; 𝑐�Ð� P�𝑐𝜎�1�,�, 𝑐𝜎�𝑚�; 𝑐�
is nothing but the map defined by the action of the permutation 𝜎 on P (see the proof of Proposition
2.1.3.3). In particular, we get that 𝛼��𝜇� � 𝜇𝜎. Finally, we take 𝑡 �� 𝑠0𝜇

𝜎. Using Proposition 4.2.0.8,
we can readily verify that the obtained edge �𝑓,𝛼, 𝑡� is indeed an equivalence in Tw�P�.

By convention, a simplicial operad is said to be 𝑘-connected if all its spaces of operations are 𝑘-
connected. For example, the little 𝑛-cubes operad E𝑛 is �𝑛 � 2�-connected (cf., e.g., [[9], Corollary
5.1.11]). As before, let 𝜇 > P�𝑐� and 𝜈 > P�𝑑� be two operations of P, regarded as objects of Tw�P�.
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Corollary 4.2.0.12. Suppose we are given an integer 𝑘 and suppose further that P is 𝑘-connected.
Then the induced map

MapTw�P��𝜇, 𝜈�Ð� HomFinop
�
�∐︀𝑚̃︀, ∐︀𝑛̃︀� (4.2.0.6)

is 𝑘-connected. In particular, whenever 𝑘 E 1, the map Tw�P� Ð� N�Finop
� � induces an equivalence

Ho�Tw�P�� �

Ð� Finop
� between (ordinary) homotopy categories.

Proof. For each map 𝑓 � ∐︀𝑛̃︀Ð� ∐︀𝑚̃︀ in Fin�, by Remark 4.2.0.10 we have a fiber sequence

Map𝑓Tw�P�
�𝜇, 𝜈�Ð�Map𝑓IbP�𝑐, 𝑑�Ð� P�𝑑�.

By assumption, both the second and third terms are 𝑘-connected. It implies that Map𝑓Tw�P�
�𝜇, 𝜈� is

�𝑘 � 1�-connected, and hence the map (4.2.0.6) is indeed 𝑘-connected.
Consequently, when 𝑘 E 1 we have that

𝜋0 MapTw�P��𝜇, 𝜈� � HomFinop
�
�∐︀𝑚̃︀, ∐︀𝑛̃︀�.

In particular, this implies that any two operations of P that are of the same arity are equivalent as
objects of Tw�P�. The proof is therefore completed.

We find a somewhat large class of simplicial operads whose twisted arrowª-categories admit terminal
objects.

Definition 4.2.0.13. A simplicial operad is said to be homotopy unital if all its spaces of unary
operations are weakly contractible. Furthermore, a simplicial operad is said to be unitally homotopy
connected if it is homotopy unital with weakly contractible spaces of 1-ary operations.

Typical examples for this definition include the little cubes operads E𝑛 for 𝑛 � 0,�,ª.

Corollary 4.2.0.14. Let P be a fibrant and homotopy unital simplicial operad. Let 𝑑 be a color of P
and 𝜇𝑑 > P�𝑑� an unary operation of P. Then 𝜇𝑑 is a terminal object of Tw�P� if and only if for every
color 𝑐, the space P�𝑐;𝑑� is contractible. Consequently, if P is fibrant and unitally homotopy connected
then Tw�P� admits terminal objects being precisely the unary operations of P.

Proof. By definition, 𝜇𝑑 is a terminal object of Tw�P� precisely if for every operation 𝜇 > P the mapping
space MapTw�P��𝜇,𝜇𝑑� is contractible. Given any operation 𝜇 > P�𝑐1,�, 𝑐𝑚; 𝑐�, it suffices to show that
there is a homotopy equivalence of spaces:

P�𝑐;𝑑� � MapTw�P��𝜇,𝜇𝑑�.
By Proposition 4.2.0.9 there is a homotopy equivalence

�𝜇𝑑� �ℎP�𝑑� MapIbP��𝑐1,�, 𝑐𝑚; 𝑐�, �𝑑�� �

Ð�MapTw�P��𝜇,𝜇𝑑�.
Since P�𝑑� is contractible by assumption, the homotopy pullback is equivalent to MapIbP��𝑐1,�, 𝑐𝑚; 𝑐�, �𝑑��.
Furthermore, note that

MapIbP��𝑐1,�, 𝑐𝑚; 𝑐�, �𝑑�� � P�𝑐;𝑑� �P�𝑐1� �� �P�𝑐𝑚�,
which is therefore weakly equivalent to P�𝑐;𝑑�, by assumption again. So we get indeed a homotopy
equivalence P�𝑐;𝑑� � MapTw�P��𝜇,𝜇𝑑�.

Finally, for more illustration, we prove the following:
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Proposition 4.2.0.15. There is a canonical equivalence 𝜙 � Δ �

Ð� Tw�A𝑠𝑠� between the simplex
category and the twisted arrow category of the associative operad A𝑠𝑠.

To this end, we first revisit some basic constructions.

Construction 4.2.0.16. There is a canonical functor 𝜄 � Δ Ð� Finop
� (which is essentially used to

define underlying cosimplicial spaces of gamma spaces) defined by sending (︀𝑛⌋︀ > Δ to ∐︀𝑛̃︀ > Finop
�

and by giving the natural maps 𝜄𝑚,𝑛 � HomΔ�(︀𝑚⌋︀, (︀𝑛⌋︀� Ð� HomFin��∐︀𝑛̃︀, ∐︀𝑚̃︀� as follows. Given a map
𝑓 � (︀𝑚⌋︀ Ð� (︀𝑛⌋︀, let us identify 𝑓 with the increasing sequence (︀𝑗1 @ � @ 𝑗𝑘⌋︀ of its values together with
a tuple �𝑝1,�, 𝑝𝑘� with 𝑝𝑟 being the cardinality of the fiber 𝑓�1�𝑗𝑟�. The map 𝜄𝑚,𝑛�𝑓� � ∐︀𝑛̃︀ Ð� ∐︀𝑚̃︀ is
given by listing its nonempty fibers as follows:

𝜄𝑚,𝑛�𝑓��1�𝑝1� � �𝑗1 � 1,�, 𝑗2� , 𝜄𝑚,𝑛�𝑓��1�𝑝1 � 𝑝2� � �𝑗2 � 1,�, 𝑗3� ,�,
𝜄𝑚,𝑛�𝑓��1�𝑝1 � 𝑝2 �� � 𝑝𝑘�1� � �𝑗𝑘�1 � 1,�, 𝑗𝑘� , 𝜄𝑚,𝑛�𝑓��1�0� � �0, 1,�, 𝑛� � �𝑗1 � 1,�, 𝑗𝑘�.

Remark 4.2.0.17. It is straightforward to verify the following observations:
(1) The image Im�𝜄𝑚,𝑛� b HomFin��∐︀𝑛̃︀, ∐︀𝑚̃︀� of 𝜄𝑚,𝑛 consists of precisely those maps 𝑔 such that

(︀𝑔�1�1� ⋃︀ 𝑔�1�2� ⋃︀ � ⋃︀ 𝑔�1�𝑚�⌋︀ (cf. Notations 4.2.0.6) is either empty or forms a sequence of consecutive
natural numbers.

(2) Let Homconst
Δ �(︀𝑚⌋︀, (︀𝑛⌋︀� b HomΔ�(︀𝑚⌋︀, (︀𝑛⌋︀� denote the subset consisting of the constant maps

and let HomX

Δ�(︀𝑚⌋︀, (︀𝑛⌋︀� denote the complement of the previous one in HomΔ�(︀𝑚⌋︀, (︀𝑛⌋︀�. Likewise, we
denote by const0 > HomFin��∐︀𝑛̃︀, ∐︀𝑚̃︀� the unique constant map (with value 0 > ∐︀𝑚̃︀) and let ImX�𝜄𝑚,𝑛�
be the complement Im�𝜄𝑚,𝑛� � �const0�. Observe then that the restriction of 𝜄𝑚,𝑛 to HomX

Δ�(︀𝑚⌋︀, (︀𝑛⌋︀�
induces a natural bijection 𝜄X𝑚,𝑛 � HomX

Δ�(︀𝑚⌋︀, (︀𝑛⌋︀� �

Ð� ImX�𝜄𝑚,𝑛�.
Recall that the associative operad A𝑠𝑠 is the single-colored operad whose set of 𝑛-ary operations

is given by A𝑠𝑠�𝑛� � Σ𝑛 for 𝑛 E 0, equipped with the canonical right action of Σ𝑛 on itself. The
composition is defined by concatenating linear orders.

Proof of Proposition 4.2.0.15. By Corollary 4.2.0.11, Tw�A𝑠𝑠� admits a skeleton whose objects are the
trivial permutations 𝜇𝑛 �� (︀1,�, 𝑛⌋︀ > Σ𝑛, 𝑛 E 0. We define 𝜙 on objects by sending (︀𝑛⌋︀ > Δ to 𝜇𝑛. It
remains to establish natural isomorphisms of the form

𝜙𝑚,𝑛 � HomΔ�(︀𝑚⌋︀, (︀𝑛⌋︀� �

Ð� HomTw�A𝑠𝑠��𝜇𝑚, 𝜇𝑛�.
Let us analyze the right hand side. By definition, we write

HomTw�A𝑠𝑠��𝜇𝑚, 𝜇𝑛� � +
∐︀𝑛̃︀

𝑓
�∐︀𝑚̃︀

A𝑓

where A𝑓 b Hom𝑓

IbA𝑠𝑠��𝑐1,�, 𝑐𝑚; 𝑐�, �𝑑1,�, 𝑑𝑛;𝑑�� denotes the subset consisting of those 𝛼 � �𝛼0, 𝛼1,�, 𝛼𝑚�
such that 𝛼��𝜇𝑚� � 𝜇𝑛 (see Notation 4.2.0.7). Unwinding definition, the latter is equivalent to the equa-
tion

𝛼0 X1 𝜇𝑚 X �𝛼1,�, 𝛼𝑚� � (︀𝑓�1�1� ⋃︀ 𝑓�1�2� ⋃︀ � ⋃︀ 𝑓�1�𝑚� ⋃︀ 𝑓�1�0�X⌋︀ (4.2.0.7)

Observe that there is a unique choice of �𝛼1,�, 𝛼𝑚� such that this equation possibly admits solutions,
being precisely �𝜇ℎ�1�,�, 𝜇ℎ�𝑚��, i.e., the tuple of trivial permutations with ℎ�𝑖� referring to the arity of
𝛼𝑖. Thus, by comparing the two sides of (4.2.0.7) after substituting �𝛼1,�, 𝛼𝑚� � �𝜇ℎ�1�,�, 𝜇ℎ�𝑚�� back
to it, we realize that the set A𝑓 is nonempty only if the sequence (︀𝑓�1�1� ⋃︀ 𝑓�1�2� ⋃︀ � ⋃︀ 𝑓�1�𝑚�⌋︀, whenever
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it is nonempty, forms a sequence of consecutive natural numbers. But this condition is equivalent to
saying that 𝑓 > Im�𝜄𝑚,𝑛� (see Remark 4.2.0.17), so we can rewrite

HomTw�A𝑠𝑠��𝜇𝑚, 𝜇𝑛� � +
𝑓>Im�𝜄𝑚,𝑛�

A𝑓 .

As in Remark 4.2.0.17, we write Im�𝜄𝑚,𝑛� � �const0� @ ImX�𝜄𝑚,𝑛�. Unwinding computation, we have
that

- when 𝑓 > ImX�𝜄𝑚,𝑛�, there is also a unique choice of 𝛼0 solving the equation (4.2.0.7), and
- when 𝑓 � const0, there are �𝑛 � 1� choices of 𝛼0 > Σ𝑛�1 solving (4.2.0.7) precisely given as

𝛼𝑖0 �� (︀𝑖, 1,�, 𝑖 � 1, 𝑖 � 1,�, 𝑛 � 1⌋︀ , 𝑖 � 1,�, 𝑛 � 1.

So we can rewrite once more

HomTw�A𝑠𝑠��𝜇𝑚, 𝜇𝑛� � �𝛼𝑖0�𝑛�1
𝑖�1 @ ImX�𝜄𝑚,𝑛�.

Finally, we find the desired natural bijection 𝜙𝑚,𝑛 separated into two components as follows:

𝜙𝑚,𝑛 � 𝜙
const
𝑚,𝑛 @ 𝜄X𝑚,𝑛 � Homconst

Δ �(︀𝑚⌋︀, (︀𝑛⌋︀� @ HomX

Δ�(︀𝑚⌋︀, (︀𝑛⌋︀� �

Ð� �𝛼𝑖0�𝑛�1
𝑖�1 @ ImX�𝜄𝑚,𝑛�

in which 𝜙const
𝑚,𝑛 sends each constant map (︀𝑚⌋︀ Ð� (︀𝑛⌋︀ with value 𝑖 to 𝛼𝑖�1

0 , while 𝜄X𝑚,𝑛 is the natural
bijection mentioned in Remark 4.2.0.17.

4.3 Main statements

Let P be a fibrant and Σ-cofibrant 𝐶-colored simplicial operad. We shall now prove that the cotangent
complex LP > TP Op�SetΔ� can be represented as a spectrum valued functor on Tw�P�. Our treatment
is inspired by the work of [[7], §3.3].

As introduced in the previous section, Tw�P� is defined to be the image of P through the un-
straightening functor UnIbP � IbMod�P� � Fun�IbP,SetΔ� �

Ð� �Setcov
Δ �⇑N�IbP�. To avoid complication

of notation, we will write U𝑛 instead UnIbP . Recall by construction that there is a canonical left
fibration Tw�P� � U𝑛�P�Ð� N�IbP�.

Observe first that U𝑛 induces a right Quillen equivalence (denoted by)

U𝑛P⇑⇑P � IbMod�P�P⇑⇑P
�

Ð� �Setcov
Δ �Tw�P�⇑⇑Tw�P�

where �Setcov
Δ �Tw�P�⇑⇑Tw�P� refers to the pointed model category associated to �Setcov

Δ �⇑Tw�P�. This
induces a right Quillen equivalence of stabilizations

U𝑛Sp
P⇑⇑P

� TP IbMod�P� �

Ð� Sp��Setcov
Δ �Tw�P�⇑⇑Tw�P��.

Observe now that the straightening functor StTw�P� � �Setcov
Δ �⇑Tw�P�

�

Ð� Fun�C(︀Tw�P�⌋︀,SetΔ� lifts
to a left Quillen equivalence between the associated pointed model categories

�StTw�P��� � �Setcov
Δ �Tw�P�⇑⇑Tw�P�

�

Ð� Fun�C(︀Tw�P�⌋︀, �SetΔ��� (4.3.0.1)

where �SetΔ�� denotes the pointed model category associated to SetΔ. The latter induces a left Quillen
equivalence of stabilizations

StSp
Tw�P�

� Sp��Setcov
Δ �Tw�P�⇑⇑Tw�P�� �

Ð� Fun�C(︀Tw�P�⌋︀,Spectra�
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where Spectra refers to the stable model category of spectra.
We now obtain a sequence of right or left Quillen equivalences

TP Op�SetΔ� U𝑖𝑏
P
Ð�
�

TP IbMod�P� U𝑛Sp
P⇑⇑P

ÐÐÐÐ�
�

Sp��Setcov
Δ �Tw�P�⇑⇑Tw�P��

StSp
Tw�P�

ÐÐÐÐ�
�

Fun�C(︀Tw�P�⌋︀,Spectra�
(4.3.0.2)

Let us describe the derived image of LP > TP Op�SetΔ� through this composition. We have seen
that RU𝑖𝑏P�LP�(︀1⌋︀ � ÇLP (cf. Corollary 3.4.0.17). Namely, ÇLP > TP IbMod�P� is the prespectrum with
�ÇLP�𝑘,𝑘 � PXS𝑘𝐶 where S𝑘𝐶 is the 𝐶-collection with S𝑘𝐶�𝑐; 𝑐� � S𝑘 for every color 𝑐 and agreeing with g on
the other levels. In our setting, we will refer to S𝑘 as a Kan replacement of the (pointed) 𝑘-sphere so that
P X S𝑘𝐶 is fibrant. Furthermore, the right derived functor RU𝑛Sp

P⇑⇑P
simply sends ÇLP to the prespectrum

U𝑛�P X SY𝐶� > Sp��Setcov
Δ �Tw�P�⇑⇑Tw�P��

with U𝑛�P X SY𝐶�𝑘,𝑘 � U𝑛�P X S𝑘𝐶�. Finally, let us denote by

FP �� LStSp
Tw�P�

�U𝑛�P X SY𝐶�� > Fun�C(︀Tw�P�⌋︀,Spectra� (4.3.0.3)

the derived image of U𝑛�P X SY𝐶� through StSp
Tw�P�

. So FP is the derived image of LP(︀1⌋︀ under the
composed functor (4.3.0.2).

To get a description of the functor FP, observe first that there is an equivalence of ª-categories

Fun�C(︀Tw�P�⌋︀,Spectra�ª �

Ð� Fun�Tw�P�,Spectra�
where Spectra is the ª-category of spectra. So we will regard FP as an ª-functor Tw�P�Ð� Spectra.
Let 𝜇 > P�𝑐1,�, 𝑐𝑚; 𝑐� be an operation of P, regarded as an object of Tw�P�. By construction, FP�𝜇� >
Spectra is the prespectrum with FP�𝜇�𝑘,𝑘 being given by the value at 𝜇 of the functor

StTw�P��U𝑛�P X S𝑘𝐶�� � C(︀Tw�P�⌋︀Ð� SetΔ .

By the fact that the map U𝑛�P X S𝑘𝐶� Ð� U𝑛�P� � Tw�P� is a left fibration and by using [[4], 2.2.3.15]
(with the opposite convention), we have that

FP�𝜇�op
𝑘,𝑘 � U𝑛�P X S𝑘𝐶� �U𝑛�P� �𝜇�.

We have on each level that �P X S𝑘𝐶��𝑐1,�, 𝑐𝑚; 𝑐� � P�𝑐1,�, 𝑐𝑚; 𝑐� � �S𝑘��𝑚. With a help of Remark
4.1.0.13, it can then be computed that FP�𝜇�𝑘,𝑘 � �S𝑘��𝑚 and hence, we find that FP�𝜇� � S�𝑚 the
𝑚-fold product of the sphere spectrum.

Let 𝜈 > P�𝑑1,�, 𝑑𝑛;𝑑� be another operation of P and Ç𝑓 � 𝜇 Ð� 𝜈 a morphism in Tw�P� lying above
a map 𝑓 � ∐︀𝑛̃︀Ð� ∐︀𝑚̃︀ in Fin�. Then the structure map

FP�Ç𝑓� � FP�𝜇� � S��1,�,𝑚�
Ð� S��1,�,𝑛�

� FP�𝜈� (4.3.0.4)

is defined by, for each 𝑖 > �1,�,𝑚�, copying the 𝑖’th factor to the factors of position 𝑗 > 𝑓�1�𝑖� when
this fiber is nonempty or collapsing that factor to the zero spectrum otherwise.

We summarize the above steps in the following:

Theorem 4.3.0.1. Let P be a fibrant and Σ-cofibrant simplicial operad. There is an equivalence of
ª-categories

TP Op�SetΔ�ª �

Ð� Fun�Tw�P�,Spectra�.
Moreover, under this equivalence, the cotangent complex LP is identified to FP(︀�1⌋︀ the desuspension of
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the functor FP � Tw�P�Ð� Spectra (4.3.0.3), which is given on objects by sending each operation 𝜇 > P

of arity 𝑚 to FP�𝜇� � S�𝑚. Consequently, for a given functor F � Tw�P�Ð� Spectra, the 𝑛’th Quillen
cohomology group of P with coefficients in F is computed by

H𝑛
𝑄�P;F� � 𝜋0 MapFun�Tw�P�,Spectra��FP,F(︀𝑛 � 1⌋︀�.

Example 4.3.0.2. By Proposition 4.2.0.3, the twisted arrow ª-category of the little ª-cubes operad
Eª is equivalent to Tw�C𝑜𝑚�, and hence is equivalent to Finop

� . So the tangent category TEª Op�SetΔ�
is (up to a zig-zag of Quillen equivalences) equivalent to Fun�Finop

� ,Spectra� endowed with the projective
model structure. The functor FEª � Finop

� Ð� Spectra takes each object ∐︀𝑚̃︀ to S�𝑚 and for a given
map 𝑓 � ∐︀𝑚̃︀Ð� ∐︀𝑛̃︀ in Fin�, the structure map FEª�𝑓� � S�𝑛 Ð� S�𝑚 is the same as the map (4.3.0.4).

An immediate consequence of this example is that the stabilization of ª-operads is equivalent to
Fun�Finop

� ,Spectra�. For more illustration, we shall now relate Quillen cohomology of Eª to the one
called stable cohomotopy of right Γ-modules (cf. [26, 27]).

Let k be a field. Recall that a right Γ-module is by definition a functor Finop
� Ð� Modk. One

particularly regards the right Γ-module 𝑡 � Finop
� Ð� Modk given by taking ∐︀𝑚̃︀ to 𝑡�∐︀𝑚̃︀� � (︀∐︀𝑚̃︀,k⌋︀

the k-module of based maps from ∐︀𝑚̃︀ to k (where k has basepoint 0k).

Remark 4.3.0.3. The k-module 𝑡�∐︀𝑚̃︀� admits a canonical basis given by �𝜏𝑖�𝑚𝑖�1 in which 𝜏𝑖 � ∐︀𝑚̃︀Ð� k
is defined by sending 𝑖 to 1k and sending the others to 0k. In particular, we have that

𝑡�∐︀𝑚̃︀� � (︀∐︀𝑚̃︀,k⌋︀ � k`𝑚 .

For a given map 𝑓 � ∐︀𝑚̃︀Ð� ∐︀𝑛̃︀ in Fin�, under the above identification, the structure map

𝑡�𝑓� � 𝑡�∐︀𝑛̃︀� � k`𝑛 Ð� k`𝑚 � 𝑡�∐︀𝑚̃︀�
is given by, for each 𝑖 > �1,�, 𝑛�, copying the 𝑖’th factor to the factors of position 𝑗 > 𝑓�1�𝑖� when this
fiber is nonempty or collapsing that factor to the zero module otherwise (i.e., in the same fashion as
the map FEª�𝑓� of Example 4.3.0.2).

We now fix 𝑇 � Finop
� Ð� Modk to be a right Γ-module. According to [[27], §3.4], the 𝑘’th stable

cohomotopy group of 𝑇 is formulated as

𝜋𝑘𝑇 � Ext𝑘Γ�𝑡, 𝑇 � � 𝜋0 Maph
Fun�Finop

� ,C�k���𝑡, 𝑇 (︀𝑘⌋︀�.
Here we identified right Γ-modules with functors Finop

� Ð� C�k� from Finop
� to dg k-modules, via

the embedding functor Modk Ð� C�k�. Besides that, 𝑇 (︀𝑘⌋︀ � Finop
� Ð� C�k� is the functor with

𝑇 (︀𝑘⌋︀�∐︀𝑚̃︀� � �𝑇 �∐︀𝑚̃︀��(︀𝑘⌋︀ the 𝑘-suspension of 𝑇 �∐︀𝑚̃︀� regarded as a chain complex concentrated in
degree 0.

On other hand, the right Γ-module 𝑇 corresponds to a functor 𝑇 � Finop
� Ð� Sp�sModk� given by

the composition
𝑇 � Finop

�

𝑇
Ð�Modk Ð� sModk

Σª

Ð� Sp�sModk�
in which the second functor is the obvious embedding and Σª is the suspension spectrum replacement
functor (cf. [6], §2.3). Here we use Σª (instead of Σª) to get that 𝑇 is a diagram of suspension spectra,
and hence a diagram of Ω-spectra. Furthermore, consider the adjunction

Sp�F�� � Spectra � Sp��SetΔ���Ð@BÐ Sp�sModk� � Sp�U��
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induced by the free-forgetful adjunction F� � �SetΔ�� Ð@BÐ �sModk�� � sModk � U� between pointed
categories. We denote by Ç𝑇 the composed functor

Ç𝑇 � Finop
�

𝑇
Ð� Sp�sModk� Sp�U��

ÐÐÐ� Spectra .

Proposition 4.3.0.4. The �𝑘 � 1�’th Quillen cohomology group of the little ª-cubes operad Eª with
coefficients in Ç𝑇 is isomorphic to the 𝑘’th stable cohomotopy group of 𝑇 :

H𝑘�1
𝑄 �Eª; Ç𝑇 � � 𝜋𝑘𝑇.

Proof. By Theorem 4.3.0.1 and Example 4.3.0.2, we just need to prove the existence of a weak equiva-
lence

Maph
Fun�Finop

� ,Spectra��FEª ,
Ç𝑇 (︀𝑘⌋︀� � Maph

Fun�Finop
� ,C�k���𝑡, 𝑇 (︀𝑘⌋︀�.

By the induced Quillen adjunction Fun�Finop
� ,Spectra�Ð@BÐ Fun�Finop

� ,Sp�sModk��, we have that

Maph
Fun�Finop

� ,Spectra��FEª ,
Ç𝑇 (︀𝑘⌋︀� � Maph

Fun�Finop
� ,Sp�sModk��

�Sp�F�� X FEª , 𝑇 (︀𝑘⌋︀�.
Here we note that Sp�F�� X FEª has already the right type, by Observation 2.2.0.8. By construction,
for each ∐︀𝑚̃︀ > Fin�, Sp�F�� X FEª�∐︀𝑚̃︀� � Sp�F���S�𝑚� > Sp�sModk� is the prespectrum with

Sp�F���S�𝑚�𝑛,𝑛 � coker �kÐ� k�S𝑛�a𝑚� > sModk . (4.3.0.5)

On other hand, consider the sequence of right or left Quillen equivalences

Sp�sModk� Sp�N�

ÐÐÐ�
�

Sp�CE0�k�� �

Ð� Sp�C�k�� Ωª

Ð�
�

C�k�
where the first arrow is the stabilization of the normalized complex functor N and the second arrow is
the embedding functor. This induces a sequence of right or left Quillen equivalences

Fun�Finop
� , Sp�sModk�� �

Ð� Fun�Finop
� , Sp�CE0�k��� �

Ð� Fun�Finop
� , Sp�C�k��� �

Ð� Fun�Finop
� , C�k��.

Note that the derived image of 𝑇 (︀𝑘⌋︀ in Fun�Finop
� ,C�k�� is exactly 𝑇 (︀𝑘⌋︀. Combined with the first

paragraph, it remains to show that the derived image of Sp�F�� X FEª in Fun�Finop
� ,C�k�� is weakly

equivalent to 𝑡.
We first compute the derived image of Sp�F�� X FEª in Fun�Finop

� , Sp�C�k���. Observe that the
actual image has already the right type, by Observation 2.2.0.8. So the expected derived image is given
by the composition G �� Sp�N� X Sp�F�� X FEª . Using the equation (4.3.0.5), G�∐︀𝑚̃︀� > Sp�C�k�� is the
prespectrum with

G�∐︀𝑚̃︀�𝑛,𝑛 � N �coker �kÐ� k�S𝑛�a𝑚�� � coker �kÐ� �k` k(︀𝑛⌋︀�a𝑚� � 𝑚

?
𝑖�1

C𝑖
𝑚 k(︀𝑖 𝑛⌋︀.

Here we made use of the fact that the normalized complex functor is (op)lax monoidal and that its
(op)lax monoidal maps are weak equivalences (see §5.3). Finally, we need to show that the derived image
of G through the right Quillen equivalence (︀Finop

� ,Ωª⌋︀ � Fun�Finop
� , Sp�C�k��� �

Ð� Fun�Finop
� , C�k��,

denoted G, is weakly equivalent to 𝑡. Namely, G�∐︀𝑚̃︀� is given by RΩª�G�∐︀𝑚̃︀��. According to [[6],
Remark 2.4.7], the latter is given by

RΩª�G�∐︀𝑚̃︀�� � hocolim𝑛 Ω𝑛G�∐︀𝑚̃︀�𝑛,𝑛 � hocolim𝑛 Ω𝑛� 𝑚?
𝑖�1

C𝑖
𝑚 k(︀𝑖 𝑛⌋︀� � 𝑚

?
𝑖�1

hocolim𝑛 C𝑖
𝑚 k(︀�𝑖 � 1�𝑛⌋︀.

By the fact that the homology functor commutes with filtered colimits, hocolim𝑛 C𝑖
𝑚 k(︀�𝑖�1�𝑛⌋︀ vanishes

79



whenever 𝑖 A 1. So we get that G�∐︀𝑚̃︀� � RΩª�G�∐︀𝑚̃︀�� � k`𝑚, i.e., agrees with 𝑡�∐︀𝑚̃︀�. For each map
𝑓 � ∐︀𝑚̃︀Ð� ∐︀𝑛̃︀ in Fin�, the map G�𝑓� � k`𝑛 Ð� k`𝑚 indeed agrees with 𝑡�𝑓� (see Remark 4.3.0.3).

Example 4.3.0.5. Following Proposition 4.2.0.15, the twisted arrow category of the associative op-
erad A𝑠𝑠 is equivalent to Δ. So the tangent category TA𝑠𝑠 Op�SetΔ� is (up to a zig-zag of Quillen
equivalences) equivalent to Fun�Δ,Spectra� endowed with the projective model structure. The functor
FA𝑠𝑠 � ΔÐ� Spectra is given by the composition

Δ 𝜄
Ð� Finop

�

FEª
ÐÐÐ� Spectra,

(see Example 4.3.0.2 and Construction 4.2.0.16 for notations).

Consider the functor 𝜂!�S� � Δ Ð� Spectra which is the left Kan extension of �
�S�
Ð� Spectra along

the inclusion 𝜂 � �
�(︀0⌋︀�
Ð� Δ. Concretely, we have 𝜂!�S��(︀𝑛⌋︀� � S-�0,�,𝑛� the �𝑛 � 1�-fold wedge sum of the

sphere spectrum and for a given map (︀𝑛⌋︀ 𝑓
Ð� (︀𝑚⌋︀, the structure map 𝜂!�S��𝑓� � S-�0,�,𝑛�

Ð� S-�0,�,𝑚�

is given by taking the 𝑖’th summand to the 𝑓�𝑖�’th summand. The following will be helpful in describing
the Quillen cohomology groups of A𝑠𝑠.

Lemma 4.3.0.6. There is a homotopy cofiber sequence in Fun�Δ,Spectra� of the form

FA𝑠𝑠 Ð� 𝜂!�S�Ð� S

where S signifies the constant functor with value S.

Proof. We are finding another model for 𝜂!�S� which is more related to FA𝑠𝑠. Let 𝑠ℎ � Δ Ð� Δ denote
the shift functor sending (︀𝑛⌋︀ to (︀𝑛 � 1⌋︀ and (︀𝑛⌋︀ 𝑓

Ð� (︀𝑚⌋︀ to the map 𝑠ℎ�𝑓� � (︀𝑛 � 1⌋︀ Ð� (︀𝑚 � 1⌋︀
which agrees with 𝑓 on �0,�, 𝑛� and takes 𝑛 � 1 to 𝑚 � 1. Let us denote by F�A𝑠𝑠 �� FA𝑠𝑠 X 𝑠ℎ. By
adjunction there exists a natural transformation 𝜃 � 𝜂!�S� Ð� F�A𝑠𝑠 which is the identity IdS on degree
0. Unwinding definition the map 𝜃(︀𝑛⌋︀ � S-�0,�,𝑛�

Ð� S��1,�,𝑛�1� is given by taking the 𝑖’th summand
S�𝑖� to S��𝑖�1,�,𝑛�1� for 𝑖 � 0,�, 𝑛. It is clear that 𝜃(︀𝑛⌋︀ is a stable homotopy equivalence and hence, 𝜃 is
a weak equivalence in Fun�Δ,Spectra�.

Note that there is a natural transformation 𝛾 � IdΔ Ð� 𝑠ℎ with 𝛾(︀𝑛⌋︀ being given by the injection
𝛿𝑛�1

� (︀𝑛⌋︀ Ð� (︀𝑛 � 1⌋︀. The 𝛾 now induces a natural transformation FA𝑠𝑠 Ð� F�A𝑠𝑠 such that the map
FA𝑠𝑠�(︀𝑛⌋︀� � S��1,�,𝑛�

Ð� S��1,�,𝑛�1�
� F�A𝑠𝑠�(︀𝑛⌋︀� is given by the obvious inclusion. So we obtain a

homotopy cofiber sequence in Fun�Δ,Spectra�:
FA𝑠𝑠 Ð� F�A𝑠𝑠 Ð� S.

The proof is therefore completed.

Corollary 4.3.0.7. Let F � Δ Ð� Spectra be a diagram of Ω-spectra. The Quillen cohomology groups
of A𝑠𝑠 with coefficients in F fit into a long exact sequence of the form

�Ð� H�𝑛�2
𝑄 �A𝑠𝑠;F�Ð� 𝜋𝑛 holimF Ð� 𝜋𝑛F�(︀0⌋︀�Ð� H�𝑛�1

𝑄 �A𝑠𝑠;F�Ð� 𝜋𝑛�1 holimF Ð� �

Proof. By Lemma 4.3.0.6 we get a fiber sequence of derived mapping spaces

Maph
Fun�Δ,Spectra��S,F�Ð�Maph

Fun�Δ,Spectra��𝜂!�S�,F�Ð�Maph
Fun�Δ,Spectra��FA𝑠𝑠,F�.
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In this sequence, note that the first term is weakly equivalent to Maph
Spectra�S,holimF�, while by

adjunction the second one is weakly equivalent to Maph
Spectra�S,F�(︀0⌋︀��. Combined with Theorem

4.3.0.1, we get the expected long exact sequence induced by the above fiber sequence.

We end this section by the following result, which in particular shows that Quillen cohomology of
any little cubes operad with constant coefficients vanishes.

Corollary 4.3.0.8. Suppose that P is fibrant, Σ-cofibrant and unitally homotopy connected (cf. Def-
inition 4.2.0.13). Let F0 � Tw�P� Ð� Spectra be a constant functor. Then Quillen cohomology of P

with coefficients in F0 vanishes.

Proof. By Theorem 4.3.0.1 and by the assumption that F0 is a constant functor, Quillen cohomology
of P with coefficients in F0 is given by

HY

𝑄�P;F0� � 𝜋0 MapSpectra�colimFP,F0(︀Y � 1⌋︀�.
By Lemma 4.2.0.14, Tw�P� admits terminal objects being precisely the unary operations of P. It
implies that colimFP is weakly equivalent to FP�𝜇0� with 𝜇0 > P being an arbitrary unary operation.
But FP�𝜇0� is just the zero spectrum, and hence HY

𝑄�P;F0� vanishes as desired.
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Chapter 5

Quillen cohomology of dg operads

In this chapter, we will fix k to be a field of characteristic 0. By dg operads we shall mean the operads
enriched over C�k� the monoidal category of dg k-modules (cf. Examples 2.1.4.7). Our main goals in
this chapter are to formulate Quillen cohomology of dg operads and to establish the relation between
deformation theory and Quillen cohomology. Besides that, in the second section, we particularly
regard Quillen cohomology of connective augmented dg operads. In the third section, we prove the
existence of an operadic version of the Dold-Kan correspondence, then due to this we find a connection
between Quillen cohomology of a simplicial operad and Quillen cohomology of its associated dg operad.

This chapter is part of joint work with Y. Harpaz.

5.1 Cotangent complex and Quillen cohomology of dg operads

Let P > Op𝐶�C�k�� be a 𝐶-colored dg operad. Notice that P is automatically fibrant and Σ-cofibrant.
By Theorem 3.2.4.3, there is a sequence of Quillen equivalences

IbMod�P�Ð@BÐ TP IbMod�P�Ð@BÐ TP Op𝐶�C�k�� L
Sp
P
Ð@
BÐ
R

Sp
P

TP Op�C�k�� (5.1.0.1)

Notations 5.1.0.1. We will write IbMod�P� FP
Ð@
BÐ
UP

TP Op�C�k�� and IbMod�P� F𝐶
P
Ð@
BÐ
U𝐶

P

TP Op𝐶�C�k��
standing for two composed adjunctions taken from the above sequence.

As in Notations 3.4.0.2, we denote by LP > TP Op�C�k�� (resp. Lred
P > TP Op𝐶�C�k��) the cotangent

complex of P when considered as an object of Op�C�k�� (resp. Op𝐶�C�k��).
As in Conventions 3.4.0.3, by Quillen cohomology of P we shall mean the Quillen cohomology of

P when considered as an object of Op�C�k��, which is therefore classified by LP. On the other hand,
by reduced Quillen cohomology of P we shall mean the Quillen cohomology of P when considered
as an object of Op𝐶�C�k��, which is therefore classified by Lred

P .
This section is devoted to the desired formula of Quillen cohomology of P. To this end, we will

give an explicit description of RUP�LP� > IbMod�P� the derived image of LP under the right Quillen
equivalence UP. We would guess that the category C�k� also satisfies the condition (S8) 3.3.0.2, yet it
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could be complicated to verify this. We therefore do not inherit the results of §3.4. For our approach in
this context, the key step is to find a cofiber sequence in IbMod�P� relating RUP�LP� and RU𝐶P�Lred

P �
and then, to observe that the latter was considered in literature under the name of module of Kähler
differentials.

As the starting point, we revisit the construction of module of Kähler differentials. Let O be a
colored dg operad and let 𝐴 be an O-algebra. For each 𝑀 > Mod𝐴P, the (levelwise) coproduct 𝐴 `𝑀

admits the canonical structure of an O-algebra over 𝐴, usually called the square zero extension of 𝐴
by 𝑀 (cf., e.g., [[11], §12.3.3], [[7], §2.5]). This construction determines a right adjoint functor written
as

𝐴 % ��� � Mod𝐴P Ð� �AlgO�⇑𝐴.
We will denote by Ω⇑𝐴 the left adjoint of 𝐴%��� and refer to it as the functor of Kähler differentials.

Let P be a 𝐶-colored dg operad. Recall that the datum of P as a 𝐶-colored dg operad is equivalent to
that as an algebra over O𝐶 , i.e., the operad of 𝐶-colored dg operads (cf. [36], Section 3). Moreover,
the same arguments as in the proof of Proposition 3.5 of loc.cit show that the structure of a P-module
over O𝐶 is the same as that of an infinitesimal P-bimodule. Due to these translations, we obtain an
adjunction

Ω⇑P
� Op𝐶�C�k��⇑P Ð@BÐ IbMod�P� � P % ���,

which is the operadic version of the adjunction Ω⇑𝐴
Ú 𝐴 % ��� mentioned above. We will refer to

ΩP �� Ω⇑P�IdP� > IbMod�P� the module of Kähler differentials of P (cf. [12], §8). In fact, this
object is best understood in terms of derivations.

Definition 5.1.0.2. For a given infinitesimal P-bimodule 𝑀 , a derivation 𝑑 � P � 𝑀 is a map of
𝐶-collections satisfying the classical derivative equations of the form

𝑑�𝛼 X𝑖 𝛽� � 𝛼 X𝑙𝑖 𝑑�𝛽� � 𝑑�𝛼� X𝑟𝑖 𝛽 (5.1.0.2)

in which 𝛼 > P�𝑐1,�, 𝑐𝑛; 𝑐� and 𝛽 > P�𝑑1,�, 𝑑𝑚; 𝑐𝑖� are taken arbitrarily, “X𝑖” refers to partial composition
in P and “X𝑙𝑖” (resp. “X𝑟𝑖 ”) refers to infinitesimal left (resp. right) P-action on 𝑀 (cf. Definition 2.1.2.6).
The collection of such derivations will be denoted by Der�P,𝑀�.
Proposition 5.1.0.3. ([12], Proposition 76) Up to isomorphisms, the module of Kähler differentials of
P is an infinitesimal P-bimodule equipped with a universal derivation 𝑑P � PÐ� ΩP and characterized
by a universal property that for any 𝑀 > IbMod�P� and for any derivation 𝑑 � P � 𝑀 , there exists a
unique map ΩP Ð�𝑀 of infinitesimal P-bimodules lifting the map 𝑑:

P ΩP

𝑀 .

𝑑P

𝑑

Proof. Fix 𝑀 to be an infinitesimal P-bimodule. Unwinding definition, the operad structure of P %𝑀
is set-theoretically given as follows. As a 𝐶-collection, it is given by the coproduct P `𝑀 . The unit
operations are given by �id𝑐, 0� > P�𝑐; 𝑐� `𝑀�𝑐; 𝑐� for every color 𝑐 > 𝐶. Moreover, given �𝜇,𝑚� >

�P`𝑀� �𝑐1,�, 𝑐𝑚; 𝑐� and �𝜈, 𝑛� > �P`𝑀� �𝑑1,�, 𝑑𝑛; 𝑐𝑖�, the partial composition is defined as

�𝜇,𝑚� X𝑖 �𝜈, 𝑛� � �𝜇 X𝑖 𝜈 ;𝜇 X𝑙𝑖 𝑛 �𝑚 X
𝑟
𝑖 𝜈�.

The map P %𝑀 Ð� P of operads is given by the projection.
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It can then be verified that the data of a map P Ð� P %𝑀 of operads over P is equivalent to the
choice of a derivation P Ð�𝑀 and moreover, this equivalence is natural in “𝑀”. Thus, by adjunction
we obtain a natural isomorphism

HomIbMod�P��ΩP,𝑀� � Der�P,𝑀�,
which proves the proposition.

Thanks to this, we are going to give an explicit description of ΩP on point-set level. Let F𝑖𝑏�P� denote
the free infinitesimal P-bimodule generated by P. Recall that F𝑖𝑏�P� � P X�1� �P X P� as 𝐶-collections
(cf. Remark 2.1.2.10). Each element of F𝑖𝑏�P� is performed by a tuple of operations of P of the form
�𝛼 ;𝛽 ;𝛽1,�, 𝛽𝑛�. Besides that, recall that the operad P is said to be augmented if it is equipped with
a map 𝜀 � P Ð� I𝐶 of 𝐶-colored dg operads. In this situation, the kernel P �� ker�P 𝜀

Ð� I𝐶� will be
called the augmentation ideal of P.
Corollary 5.1.0.4. 1. ΩP is isomorphic to the quotient of F𝑖𝑏�P� under the relation

�𝛼 ; 𝛽 X𝑖 𝛾 ; 𝛽1,�, 𝛽𝑖�1, 𝛾1,�, 𝛾𝑛, 𝛽𝑖�1,�, 𝛽𝑚 �
� �𝛼 X𝑘 𝛽 X �𝛽1,�, 𝛽𝑚� ; 𝛾 ; 𝛾1,�, 𝛾𝑛 � � �𝛼 ; 𝛽 ; 𝛽1,�, 𝛽𝑖�1, 𝛾 X �𝛾1,�, 𝛾𝑛�, 𝛽𝑖�1,�, 𝛽𝑚 �

in which 𝛽 is grafted to the 𝑘’th leaf of 𝛼, while 𝛾 is grafted to the 𝑖’th leaf of 𝛽 and the 𝛽𝑟’s (resp.
𝛾𝑡’s) are grafted to 𝛽 (resp. 𝛾). (This can be viewed as the operadic version of the formula given
in [[11], Lemma 12.3.20]).

2. Under the isomorphism of (1), ΩP is spanned under k-linear combinations by the collection of
elements of the form �𝛼 ; 𝛽 ; id𝑑1 ,�, id𝑑𝑚� with 𝛼 > P�𝑐1,�, 𝑐𝑛; 𝑐� and 𝛽 > P�𝑑1,�, 𝑑𝑚; 𝑐𝑖� such that
𝛽 is not a unit operation.

3. Suppose further that P is augmented. Then ΩP is isomorphic to P X�1� P.
Proof. (1) We first establish the universal derivation 𝑑P � PÐ� F𝑖𝑏�P�⇑ � as follows. Given an operation
𝛼 > P�𝑐1,�, 𝑐𝑛; 𝑐�, we take 𝑑P�𝛼� �� �id𝑐;𝛼; id𝑐1 ,�, id𝑐𝑛�. Let 𝛽 > P�𝑑1,�, 𝑑𝑚; 𝑐𝑖� be another operation.
To show that 𝑑P is a derivation, we have to verify the equation (5.1.0.2). By definition, we have that
𝛼 X𝑙𝑖 𝑑P�𝛽� � �𝛼 ; 𝛽 ; id𝑑1 ,�, id𝑑𝑚� and 𝑑P�𝛼� X𝑟𝑖 𝛽 � �id𝑐 ; 𝛼 ; id𝑐1 ,�, id𝑐𝑖�1 , 𝛽, id𝑐𝑖�1 ,�, id𝑐𝑛�. It is now
clear that

𝑑P�𝛼 X𝑖 𝛽� � 𝛼 X𝑙𝑖 𝑑P�𝛽� � 𝑑P�𝛼� X𝑟𝑖 𝛽,
as expected. It remains to verify the universality of 𝑑P as mentioned in Proposition 5.1.0.3. Suppose
given an infinitesimal P-bimodule 𝑀 and a derivation 𝑑 � P � 𝑀 . The map 𝑑 extends to a canonical
map 𝜙𝑑 � F

𝑖𝑏�P� Ð�𝑀 of infinitesimal P-bimodules, which passes through the relation “ �” since 𝑑 is
a derivation, and hence 𝜙𝑑 descends to a map 𝜙𝑑 � F

𝑖𝑏�P�⇑ � Ð�𝑀 of infinitesimal P-bimodules. The
latter is in fact the unique candidate satisfying the equation 𝜙𝑑 X 𝑑P � 𝑑.

(2) For simplicity of equations, we shall now ignore the role of colors and besides that, we will not
distinguish between partial composition and composition of operations. Observe that an element in
F𝑖𝑏�P� of the form �𝛼 ;𝛽 ;𝛽1,�, 𝛽𝑛� can be extracted as

�𝛼 ;𝛽 ;𝛽1,�, 𝛽𝑛� � �𝛼 ;𝛽 X �𝛽1,�, 𝛽𝑛� ; id,�, id� � 𝑛

Q
𝑖�1

�𝛼 X 𝛽 X �𝛽1,�, 𝛽𝑖�1, 𝛽𝑖�1,�, 𝛽𝑛� ; 𝛽𝑖 ; id,�, id�.
On other hand, for any operation 𝛼, observe that

�id ; 𝛼 ; id,�, id� � �id ; 𝛼 X id ; id,�, id� � �𝛼 ; id ; id� � �id ; 𝛼 ; id,�, id�.
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This means that �𝛼 ; id ; id� � 0. So we get the conclusion.
(3) Let us first explain the infinitesimal P-bimodule structure of P X�1� P. As an infinitesimal left

P-module, P X�1� P is free generated by P (cf. Remark 2.1.2.10). On other hand, let �𝛼 , 𝛽� perfom an
element of P X�1� P with 𝛼 > P and 𝛽 > P being grafted to some leaf of 𝛼. The infinitesimal right action
of a given operation 𝜆 > P on �𝛼 , 𝛽� is defined as follows:

�𝛼 , 𝛽� X𝑟 𝜆 � )︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀
�𝛼 X 𝜆 , 𝛽� if 𝜆 is grafted to 𝛼
�𝛼 , 𝛽 X 𝜆� � �𝛼 X 𝛽 , 𝜆� if 𝜆 is grafted to 𝛽.

The universal derivation 𝑑P � PÐ� P X�1� P is defined as

𝑑P�𝜇� �
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

0 if 𝜇 � id
�id , 𝜇� if 𝜇 x id .

Suppose given any infinitesimal P-bimodule 𝑀 and a derivation 𝑑 � P � 𝑀 . The restriction of 𝑑 to P

extends to a canonical map 𝜓𝑑 � P X�1� P Ð�𝑀 of infinitesimal left P-modules. Moreover, 𝜓𝑑 is also a
map of infinitesimal right P-modules, by the assumption that 𝑑 is a derivation. It is now clear that 𝜓𝑑
is the unique map satisfying that 𝜓𝑑 X 𝑑P � 𝑑 on P. But every derivation takes the unit operations to
zero, and hence we get that 𝜓𝑑 X 𝑑P � 𝑑 as desired.

Observe that the unit map 𝜂 � I𝐶 Ð� P gives rise to a commutative square of Quillen adjunctions

IbMod�I𝐶� TI𝐶
Op�S�

IbMod�P� TP Op�S�

FI𝐶

𝜂𝑖𝑏
!

Ù

UI𝐶

𝜂𝑜𝑝
!

FP

Ú 𝜂�𝑖𝑏

Û

UP

Ø𝜂�𝑜𝑝

whose horizontal adjunctions are Quillen equivalences. Let us denote by LP �� RUP�LP�(︀1⌋︀ > IbMod�P�
the suspension of RUP�LP�. The following is the key for understanding the cotangent complex LP.

Lemma 5.1.0.5. Let P be any 𝐶-colored dg operad. There is a homotopy cofiber sequence in IbMod�P�
of the form

RU𝐶P�Lred
P �Ð� P X�1� PÐ� LP,

where P X�1� P represents the free infinitesimal P-bimodule generated by I𝐶 .

Proof. By Lemma 3.4.0.6 and by [[8], Corollary 2.2.4], there is a weak equivalence 𝜃I𝐶
� I𝐶(︀�1⌋︀ �

Ð�

RUI𝐶
�LI𝐶

� in IbMod�I𝐶�. Consider 𝜃ad
I𝐶
� LFI𝐶

�I𝐶� �

Ð� LI𝐶
(︀1⌋︀ the adjoint map of 𝜃I𝐶

, which is a weak
equivalence in TI𝐶

Op�S�. Applying L𝜂𝑜𝑝! to 𝜃ad
I𝐶

and then, taking the adjoint of the resultant, we obtain
a weak equivalence in IbMod�P� of the form L𝜂𝑖𝑏! �I𝐶� �

Ð� RUPL𝜂𝑜𝑝! �LI𝐶
(︀1⌋︀�.

On other hand, by the definition of relative cotangent complex we get a homotopy cofiber sequence
in TP Op�S� of the form LP⇑I𝐶

Ð� L𝜂𝑜𝑝! �LI𝐶
(︀1⌋︀� Ð� LP(︀1⌋︀. Applying RUP to the latter and by the

above paragraph, we obtain a homotopy cofiber sequence in IbMod�P� of the form

RUP�LP⇑I𝐶
�Ð� L𝜂𝑖𝑏! �I𝐶�Ð� RUP�LP(︀1⌋︀� � LP.
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Note that 𝜂𝑖𝑏! agrees with the free infinitesimal P-bimodule functor Coll𝐶�S� Ð� IbMod�P�. We thus
find that L𝜂𝑖𝑏! �I𝐶� � P X�1� P. It remains to show that RUP�LP⇑I𝐶

� is weakly equivalent to RU𝐶P�Lred
P �.

Since the functor UP is the same as the composition

TP Op�C�k�� R
Sp
P

ÐÐÐ� TP Op𝐶�C�k��
U𝐶

P

ÐÐÐ� IbMod�P�,
it suffices to prove the existence of a weak equivalence Lred

P

�

Ð� RRSp
P
�LP⇑I𝐶

� in TP Op𝐶�C�k��. But
this follows by Lemma 3.4.0.9, since L

Sp
P
Ú R

Sp
P

is a Quillen equivalence.

By applying [[7], Corollary 2.5.11] to the data of C�k�, O𝐶 and P, we obtain that the object
RU𝐶P�Lred

P � > IbMod�P� is weakly equivalent to ΩP the module of Kähler differentials of P. (Here
we note that, by the assumption that k is a field of characteristic 0, it is not necessarily required that
P is cofibrant). We may now describe the derived image of LP in IbMod�P�.
Proposition 5.1.0.6. Let P be any 𝐶-colored dg operad. The object LP � RUP�LP�(︀1⌋︀ > IbMod�P� is
weakly equivalent to P X�1� I𝐶 whose infinitesimal P-bimodule structure is described as follows. As an
infinitesimal left P-module, it is free generated by I𝐶 (cf. Remark 2.1.2.10). On other hand, given an
operation 𝛼 > P�𝑐1,�, 𝑐𝑛; 𝑐�, the (infinitesimal) right action of an operation 𝜆 > P�𝑑1,�, 𝑑𝑚; 𝑐𝑗� on the
element �𝛼 , id𝑐𝑖� > P X�1� I𝐶 is given by

�𝛼 , id𝑐𝑖� X𝑟𝑗 𝜆 ��
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀
�𝛼 X𝑗 𝜆 , id𝑐𝑖� if 𝑗 x 𝑖
P𝑚𝑘�1�𝛼 X𝑗 𝜆 , id𝑑𝑘

� if 𝑗 � 𝑖.

Proof. Combining the above words with Lemma 5.1.0.5, we obtain a homotopy cofiber sequence in
IbMod�P� of the form

ΩP

𝜙𝑑
Ð� P X�1� PÐ� LP.

Let 𝛼 > P�𝑐1,�, 𝑐𝑛; 𝑐� and 𝛽 > P�𝑑1,�, 𝑑𝑚; 𝑐𝑖� be two operations of P. Unwinding the definitions, the
map 𝜙𝑑 is the one induced by the canonical derivation 𝑑 � PÐ� P X�1� P taking the operation 𝛽 to

𝑑�𝛽� � �𝛽 , id𝑑1� �� � �𝛽 , id𝑑𝑚� � �id𝑐𝑖 , 𝛽�.
(cf. Proposition 5.1.0.3). Therefore, 𝜙𝑑 sends each generating element 𝜀 �� �𝛼 ; 𝛽 ; id𝑑1 ,�, id𝑑𝑚� (cf.
Corollary 5.1.0.4(2)) to

𝜙𝑑�𝜀� � �𝛼 X𝑖 𝛽 , id𝑑1� �� � �𝛼 X𝑖 𝛽 , id𝑑𝑚� � �𝛼 , 𝛽�.
In particular, 𝜙𝑑 is injective and hence, its cokernel is already a model for its homotopy cofiber. (For
this, note that the category IbMod�P� is abelian and stable). Thus, LP can be modeled by the quotient
of P X�1� P under the relation:

�𝛼 , 𝛽� � �𝛼 X𝑖 𝛽 , id𝑑1� �� � �𝛼 X𝑖 𝛽 , id𝑑𝑚�
for every 𝛼 > P�𝑐1,�, 𝑐𝑛; 𝑐� and 𝛽 > P�𝑑1,�, 𝑑𝑚; 𝑐𝑖�. Unwinding computation, this quotient is exactly
P X�1� I𝐶 with the infinitesimal P-bimodule structure as described in the statement.

Remark 5.1.0.7. The object LP � P X�1� I𝐶 > IbMod�P� was considered in literature for different
purposes. B. Fresse [13] considered this as a right P-module satisfying the universal property that, for
every P-algebra 𝐴, there is a canonical isomorphism Ω⇑𝐴�𝐴� � LP XP 𝐴 of 𝐴-modules over P, where
� XP � refers to the relative composite product over P (cf. section 10.3 of loc.cit). The object LP was
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also considered by J. Millès [53] named functorial module of Kähler differential forms (see section 5.2
of loc.cit). We will revisit several results of this author in the next section.

Immediately by the definition of Quillen cohomology groups, Proposition 5.1.0.6 leads to the following
conclusion:

Theorem 5.1.0.8. Let P be a 𝐶-colored dg operad and 𝑀 an infinitesimal P-bimodule, regarded as the
module of coefficients. The 𝑛’th Quillen cohomology group of P with coefficients in 𝑀 is formulated as

H𝑛
𝑄�P,𝑀� � 𝜋0 Maph

IbMod�P��LP(︀�1⌋︀,𝑀(︀𝑛⌋︀� � 𝜋0 Maph
IbMod�P��LP,𝑀(︀𝑛 � 1⌋︀�.

Remark 5.1.0.9. On other hand, the 𝑛’th reduced Quillen cohomology group of P with coefficients in
𝑀 is given by

H𝑛
𝑄,red�P,𝑀� � 𝜋0 Maph

IbMod�P��ΩP,𝑀(︀𝑛⌋︀�.
This assertion therefore fits into the work of [12, 11, 7].

Moreover, we find a long exact sequence relating Quillen cohomology and reduced Quillen cohomology
of P, just like the one given in Theorem 3.5.0.2.

Theorem 5.1.0.10. Let P be a 𝐶-colored dg operad and let 𝑀 be an infinitesimal P-bimodule, regarded
as the module of coefficients. There is a long exact sequence of abelian groups of the form

�Ð� H𝑛�1
𝑄 �P,𝑀�Ð� H𝑛

𝑄,𝑟�P,𝑀�Ð� H𝑛
𝑄,red�P,𝑀�Ð� H𝑛

𝑄�P,𝑀�Ð� H𝑛�1
𝑄,𝑟 �P,𝑀�Ð� � (5.1.0.3)

where HY

𝑄,𝑟�P,�� refers to Quillen cohomology group of P when regarded as a right module over itself.

Proof. The cofiber sequence ΩP Ð� P X�1� PÐ� LP induces a fiber sequence of mapping spaces

Maph
IbMod�P��LP,𝑀�Ð�Maph

IbMod�P��P X�1� P,𝑀�Ð�Maph
IbMod�P��ΩP,𝑀�.

As indicated above, ΩP classifies the reduced Quillen cohomology of P, while LP classifies the Quillen
cohomology of P. Thus, that fiber sequence will give rise to the desired long exact sequence after
showing that P X�1� P classifies Quillen cohomology of P when regarded as a right module over itself.
Note that the category RMod�P� of right P-modules is stable. It implies that the derived image of
the cotangent complex of P (when regarded as a right module over itself) through the right Quillen
equivalence TP RMod�P� �

Ð� RMod�P� is nothing but P > RMod�P� (cf. [[8], Corollary 2.2.4]), which
has the derived image through the induction functor RMod�P� Ð� IbMod�P� being exactly P X�1� P.
The proof is therefore completed.

5.2 Quillen cohomology of connective augmented dg operads

In this section, we study Quillen cohomology of connective augmented dg operads, i.e., the aug-
mented operads which are in addition concentrated in non-negative degrees. Nevertheless, we will
restrict our attention to the case where the set of colors 𝐶 is a singleton. Then, each (dg) 𝐶-collection
will be called a Σ�-module, the initial operad will be denoted by I. Moreover, we will denote by
Op��C�k�� the category of (single-colored) dg operads.

It was known that there exists a conilpotent dg cooperad C and a quasi free resolution
Ω�C� �

Ð� P of P, where Ω��� refers to the cobar construction. In fact, the cooperad C can be
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characterized by having the same homotopy type as B�P� the bar construction of P. When P is
further Koszul, it admits a smaller quasi free resolution Ω�P¡� �

Ð� P where P¡ denotes the Koszul dual
cooperad of P. Moreover, when P is in addition connective, those two become cofibrant resolutions of
P. For more details about these, we refer the readers to [11]. The main result of this section is Theorem
5.2.0.7.

Definition 5.2.0.1. ([11]) Let C be a dg cooperad and P a dg operad. The convolution dg Lie
algebra associated to C and P is given by HomΣ�C,P� �� �HomΣ�C,P�, (︀ , ⌋︀, 𝜕� where

HomΣ�C,P� � )
𝑛C0

HomΣ𝑛�C�𝑛�,P�𝑛��,
𝜕 is the canonical differential of internal hom of chain complexes and moreover, the bracket (︀ , ⌋︀ is given
by (︀𝑓, 𝑔⌋︀ �� 𝑓 � 𝑔 � ��1�⋃︀𝑓 ⋃︀⋃︀𝑔⋃︀𝑔 � 𝑓 with � being the operadic convolution product defined as

𝑓 � 𝑔 �� C
Δ�1�

ÐÐÐ� C X�1� C
𝑓X�1�𝑔

ÐÐÐÐ� P X�1� P
𝜇�1�

ÐÐÐ� P

in which Δ�1� (resp. 𝜇�1�) refers to the infinitesimal decomposition (resp. composition) map of C (resp.
P) (cf. Chapter 6 of loc.cit).

Suppose further that C is coaugmented, i.e., it is equipped with a coaugmentation map 𝜂 � IÐ�

C. We will refer to C �� coker �I 𝜂
Ð� C� the coaugmentation coideal of C. By definition, the reduced

convolution dg Lie algebra associated to C and P is given by HomΣ�C,P� �� �HomΣ�C,P�, (︀ , ⌋︀, 𝜕�
with

HomΣ�C,P� � )
𝑛C0

HomΣ𝑛�C�𝑛�,P�𝑛��,
and with the differential 𝜕 and bracket (︀ , ⌋︀ defined similarly as those of HomΣ�C,P�.
Remark 5.2.0.2. According to the proof of [[11], Theorem 6.5.10], a map 𝜑 � Ω�C� Ð� P of operads
can be identified to a Maurer-Cartan element of HomΣ�C,P�, i.e., a map 𝜑 � C Ð� P of degree
-1 satisfying the Maurer-Cartan equation 𝜕�𝜑� � 𝜑 � 𝜑 � 0. This map extends trivially to a map
𝜑 � CÐ� P, which is also a Maurer-Cartan element of HomΣ�C,P�.

In what follows, we fix P > Op��C�k�� to be a connective augmented dg operad. Let 𝜑 � Ω�C� �

Ð� P

be a cofibrant resolution of P, with C being a conilpotent dg cooperad. As before, we denote by P

(resp. C) the augmentation ideal (resp. coaugmentation coideal) of P (resp. C). Moreover, we will
use the same notation to write 𝜑 � C Ð� P standing for the corresponding Maurer-Cartan element of
HomΣ�C,P�.
Construction 5.2.0.3. Following [53], the functorial cotangent complex of P is the quasi free
infinitesimal P-bimodule �P X�1� �C X P�, 𝛿� with the differential given by 𝛿 � 𝑑PX�1��CXP� � 𝑑

𝑙
� 𝑑𝑟 where

𝑑𝑙 is the composition

P X�1� �C XP�
IdP X�1��Δ�1� XIdP�

ÐÐÐÐÐÐÐÐÐÐ� P X�1� ��C X�1� C� XP�
IdP X�1���𝜑X�1�IdC�XIdP�

ÐÐÐÐÐÐÐÐÐÐ�

P X�1� ��P X�1� C� XP�ÐÐÐÐ� �P XP XP� X�1� �C XP�ÐÐÐÐ� P X�1� �C XP�
and 𝑑𝑟 is almost the same as 𝑑𝑙 except that in the second arrow one takes the factor IdC X�1�𝜑 instead of
𝜑X�1� IdC (cf. Section 5.1 of the loc.cit). Along with that, he also considered the quasi free infinitesimal
P-bimodule �PX�1��𝑠�1CXP�, 𝛿� whose differential is given by 𝛿 � 𝑑

PX�1��𝑠�1CXP��𝑑
𝑙
�𝑑𝑟, defined similarly

as above. This will be called the reduced functorial cotangent complex of P.

88



We will denote by

Lres
P �� �P X�1� �C XP�, 𝛿� , Ωres

P �� �P X�1� �𝑠�1C XP�, 𝛿�.
According to [[53], Lemma 4.2.2], the composite map

P X�1� �𝑠�1C XP� IdP X�1��𝜑 X IdP�

ÐÐÐÐÐÐÐÐÐÐ� P X�1� �P XP� proj
ÐÐÐÐ� ΩP � P X�1� P

exhibits Ωres
P as a quasi free resolution of ΩP (see also Corollary 5.1.0.4 (3)). On other hand, the

composite map

P X�1� �C XP�
IdP X�1��𝜃 X IdP�

ÐÐÐÐÐÐÐÐÐÐ� P X�1� �I XP� � P X�1� P
proj

ÐÐÐÐ� LP � P X�1� I

with 𝜃 � C � I being the counit map of C, exhibits Lres
P as a quasi free resolution of LP (see p. 29 of

loc.cit). Moreover, since P is connective, these two are in fact cofibrant resolutions.

According to Theorem 5.1.0.8, we get the following:

Corollary 5.2.0.4. Let 𝑀 > IbMod�P� be an infinitesimal P-bimodule, regarded as the module of
coefficients. The 𝑛’th Quillen cohomology group of P with coefficients in 𝑀 is computed by

H𝑛
𝑄�P,𝑀� � HomHo�IbMod�P���Lres

P ,𝑀(︀𝑛 � 1⌋︀� (5.2.0.1)

Remark 5.2.0.5. On other hand, by Remark 5.1.0.9, we obtain that the 𝑛’th reduced Quillen coho-
mology group of P with coefficients in 𝑀 is computed by

H𝑛
𝑄,red�P,𝑀� � HomHo�IbMod�P���Ωres

P ,𝑀(︀𝑛⌋︀� (5.2.0.2)

Let Q > Op��C�k�� be another dg operad and let 𝛼 � P Ð� Q be a map in Op��C�k��. By Re-
mark 5.2.0.2, the composition 𝛼𝜑 � Ω�C� Ð� Q performs a Maurer-Cartan element of HomΣ�C,Q� (or
HomΣ�C,Q�).
Definition 5.2.0.6. ([11]) (i) The deformation complex of 𝛼 is defined to be Hom𝛼𝜑

Σ �C,Q� the
twisted dg Lie algebra of the convolution dg Lie algebra HomΣ�C,Q� by the Maurer-Cartan element 𝛼𝜑.
Namely, Hom𝛼𝜑

Σ �C,Q� has the same bracket (︀ , ⌋︀ as of HomΣ�C,Q� and has the differential 𝜕𝛼𝜑 defined
as 𝜕𝛼𝜑�𝑓� �� 𝜕�𝑓� � (︀𝛼𝜑, 𝑓⌋︀.
(ii) The reduced deformation complex of 𝛼 is defined to be Hom𝛼𝜑

Σ �C,Q� the twisted dg Lie algebra
of the reduced convolution dg Lie algebra HomΣ�C,Q� by the Maurer-Cartan element 𝛼𝜑.
(iii) When 𝛼 is the identity map on P, we will refer to the two as the deformation complex and
reduced deformation complex of P, respectively.

We also consider Q as an infinitesimal P-bimodule with the structure induced by the map 𝛼.

Theorem 5.2.0.7. The Quillen cohomology of P with coefficients in Q > IbMod�P� agrees with the
homology of the deformation complex of 𝛼. More explicitly, for each 𝑛 > Z, there is a canonical isomor-
phism

H𝑛�1
𝑄 �P,Q� � H�𝑛 Hom𝛼𝜑

Σ �C,Q� (5.2.0.3)

Let Ω�ΔY� denote the Sullivan simplicial dg algebra of differentials on the standard simplices ΔY (cf.
[54]). According to [[59], Proposition 2.5], the simplicial object QY �� Q a Ω�ΔY� of dg operads forms
a simplicial resolution of Q. Observe that QY admits the canonical structure of a simplicial object in
IbMod�Q� induced by the degeneracy maps Q � Q0 Ð� Q𝑛, 𝑛 E 0.
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Lemma 5.2.0.8. QY > IbMod�Q�Δop
is a simplicial resolution of Q when regarded as an infinitesi-

mal bimodule over itself. Consequently, QY is again a simplicial resolution of Q when regarded as an
infinitesimal P-bimodule.

Proof. We will need the following fact:
(*) Suppose we are given a model category M and a fibrant object 𝑋 > M. Let 𝑋Y be a simplicial

object in M with 𝑋0 � 𝑋. Then 𝑋Y is a simplicial resolution of 𝑋 as an object of M if and only if it is
a simplicial resolution of 𝑋 as an object of M𝑋⇑.

To prove (*), it suffices to observe that limits in the under category M𝑋⇑ are taken as those in M.
Now, since the restriction functor Op��C�k��Q⇑ Ð� IbMod�Q�Q⇑ is a right Quillen functor, it pre-

serves simplicial resolutions of Q. The first claim hence follows by the fact (*), immediately. Combined
with the fact that the restriction functor 𝛼� � IbMod�Q� Ð� IbMod�P� is a right Quillen functor, we
deduce that QY is indeed a simplicial resolution of Q when regarded as an infinitesimal P-bimodule.

By definition, the functorial nerve of a given dg Lie algebra g is the simplicial set MCY�g� ��
MC�gaΩ�ΔY�� whose 𝑛-simplices are the Maurer-Cartan elements of gaΩ�Δ𝑛� (see, e.g., [44]).

Proof of Theorem 5.2.0.7. By the isomorphism (5.2.0.1) we just need to prove that

𝜋0 Maph
IbMod�P��Lres

P ,Q(︀𝑛⌋︀� � H�𝑛�Hom𝛼𝜑
Σ �C,Q��.

By Lemma 5.2.0.8 we have that Maph
IbMod�P��Lres

P ,Q(︀𝑛⌋︀� � HomIbMod�P��Lres
P , �QY�(︀𝑛⌋︀�. For each 𝑚 > Z,

consider the (abelian) dg Lie algebra Hom𝛼𝜑
Σ �C,Q�a k(︀𝑚⌋︀ whose bracket is trivial. According to [[60],

Theorem 1.1], there is a canonical isomorphism

𝜋0 MCY�Hom𝛼𝜑
Σ �C,Q�a k(︀𝑛 � 1⌋︀� � H0�Hom𝛼𝜑

Σ �C,Q�a k(︀𝑛⌋︀�.
Note that the right hand side is nothing but H�𝑛�Hom𝛼𝜑

Σ �C,Q��. By these facts, it will suffice to
establish for each 𝑛 a canonical isomorphism of simplicial sets

HomIbMod�P��Lres
P , �QY�(︀𝑛⌋︀� � MCY�Hom𝛼𝜑

Σ �C,Q�a k(︀𝑛 � 1⌋︀�.
Moreover, it suffices to treat only the case 𝑛 � 0. We shall now establish a canonical isomorphism of
simplicial sets

HomIbMod�P��Lres
P ,QY� � MCY�Hom𝛼𝜑

Σ �C,Q�a k(︀�1⌋︀� def
� MC�Hom𝛼𝜑

Σ �C,Q�aΩ�ΔY�a k(︀�1⌋︀�.
Following the proof of [[59], Theorem 2.12], there is a canonical isomorphism of simplicial dg Lie algebras:

Hom𝛼𝜑
Σ �C,Q�aΩ�ΔY� � Hom𝑠Y𝛼𝜑

Σ �C,QY�
where for each 𝑚 C 0, Hom𝑠𝑚𝛼𝜑

Σ �C,Q𝑚� refers to the twisted dg Lie algebra of HomΣ�C,Q𝑚� by the
composition C

𝜑
Ð� P

𝛼
Ð� Q

𝑠𝑚
Ð� Q𝑚 with 𝑠𝑚 being the degeneracy map Q � Q0 Ð� Q𝑚. So we obtain

that
MC�Hom𝛼𝜑

Σ �C,Q�aΩ�ΔY�a k(︀�1⌋︀� � MC�Hom𝑠Y𝛼𝜑
Σ �C,QY�a k(︀�1⌋︀�.

The right hand side is precisely 𝑍0 Hom𝑠Y𝛼𝜑
Σ �C,QY� the simplicial set of 0-cycles of the simplicial complex

Hom𝑠Y𝛼𝜑
Σ �C,QY�. Thus, it remains to establish the isomorphisms of sets

HomIbMod�P��Lres
P ,Q𝑚� � 𝑍0 Hom𝑠𝑚𝛼𝜑

Σ �C,Q𝑚� , 𝑚 C 0
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which are compatible with simplicial structures. Observe that a map 𝑓 � Lres
P Ð� Q𝑚 in IbMod�P� is

identified to a map CÐ� Q𝑚 of degree 0 making the following square commutative

C
𝑓

//

𝑑C�𝑑
𝑙
�𝑑𝑟

��

Q𝑚

𝑑Q𝑚

��

P X�1� �C XP� 𝑓
// Q𝑚

Unwinding computation, this commutativity is equivalent to the equation

𝜕�𝑓� � �𝑠𝑚𝛼𝜑� � 𝑓 � 𝑓 � �𝑠𝑚𝛼𝜑� � 0

meaning that 𝜕𝑠𝑚𝛼𝜑�𝑓� � 0, i.e., 𝑓 > 𝑍0 Hom𝑠𝑚𝛼𝜑
Σ �C,Q𝑚�. The obtained isomorphisms are clearly

compatible with simplicial structures.

Remark 5.2.0.9. Using the same arguments as in the above proof (with the starting point being
now the equation (5.2.0.2)), we obtain that the reduced Quillen cohomology of P with coefficients in
Q > IbMod�P� agrees with the homology of the reduced deformation complex of 𝛼. More explicitly, for
each 𝑛 > Z, there is a canonical isomorphism

H𝑛�1
𝑄,red�P,Q� � H�𝑛 Hom𝛼𝜑

Σ �C,Q� (5.2.0.4)

In fact, this identification is pretty well-know, as already shown in the works of Loday-Merkulov-Vallette
([11, 12]).

We end this section with some computations using the formulas (5.2.0.3) and (5.2.0.4). For simplicity,
let us assume that P �� P�𝐸,𝑅� is a binary quadratic operad with 𝐸 being concentrated in degree
0 (and in arity 2). Moreover, we suppose that P is Koszul so that P admits a nice cofibrant resolution
𝜑 � Ω�P¡� �

Ð� P with P
¡ being the Koszul dual cooperad of P. The interested readers may refer to

[[11], Chapter 7] for more details about these notions.
Note that P

¡�𝑛 � 1� is concentrated in degree 𝑛 for every 𝑛 E 0. We now fix a map 𝛼 � P Ð� Q and
assume that Q is a connected operad (i.e., Q�0� � 0 and Q�1� � k) concentrated in degree 0. As a
complex, Hom𝛼𝜑

Σ �P¡
,Q� is of the form

k � Homk�P¡�1�,Q�1�� 𝑑1
Ð� HomΣ2�P¡�2�,Q�2�� 𝑑2

Ð� HomΣ3�P¡�3�,Q�3�� 𝑑3
Ð� � (5.2.0.5)

in which HomΣ𝑛�P¡�𝑛�,Q�𝑛�� is of degree ��𝑛 � 1�. The differential is given by

𝑑�𝑓� �� (︀𝛼𝜑, 𝑓⌋︀ � �𝛼𝜑� � 𝑓 � ��1�⋃︀𝑓 ⋃︀𝑓 � �𝛼𝜑�.
On other hand, the complex Hom𝛼𝜑

Σ �P¡,Q� is of the form

0Ð� HomΣ2�P¡�2�,Q�2�� 𝑑2
Ð� HomΣ3�P¡�3�,Q�3�� 𝑑3

Ð� � (5.2.0.6)

Remark 5.2.0.10. Let us survey the (reduced) Quillen cohomology of P in some small degrees. Assume
that HomΣ2�P¡�2�,Q�2�� � k�𝛼𝜑� the one dimensional k-module spanned by 𝛼𝜑. Since 𝛼𝜑 is a twisting
morphism, the map 𝑑2 must be trivial. Then, by the equation (5.2.0.4) we get that

H0
𝑄,red�P,Q� � H�1�Hom𝛼𝜑

Σ �P¡,Q�� � k.
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Now, by cutting the long exact sequence (5.1.0.3), starting from H�1
𝑄,red�P,Q� to H1

𝑄,𝑟�P,Q�, which are
both trivial, we obtain an exact sequence of the form

0Ð� H�1
𝑄 �P,Q�Ð� H0

𝑄,𝑟�P,Q� 𝑝
Ð� H0

𝑄,red�P,Q�Ð� H0
𝑄�P,Q�Ð� 0 (5.2.0.7)

Note that H0
𝑄,𝑟�P,Q� � 𝜋0 Maph

RMod�P��P,Q� � k, since Q is connected. Moreover, the map 𝑝 is the
identity map Idk. These facts, together with the exactness of (5.2.0.7), prove that H�1

𝑄 �P,Q� and
H0
𝑄�P,Q� are both trivial. In summary, we obtain that

(*) H0
𝑄,red�P,Q� � k and H�1

𝑄 �P,Q� � H0
𝑄�P,Q� � 0 whenever HomΣ2�P¡�2�,Q�2�� � k�𝛼𝜑�.

Example 5.2.0.11. Note that all our stated results remain valid for nonsymmetric operads. We
consider the augmented version of the nonsymmetric associative operad, denoted A𝑠E1. Let 𝛼
be the identity map on A𝑠E1. By definition, A𝑠E1�𝑛� � k�𝜇𝑛� for 𝑛 E 1. The partial composition in
A𝑠E1 is simple: 𝜇𝑚 X𝑖 𝜇𝑛 � 𝜇𝑚�𝑛�1 for any 𝑖. The Koszul dual cooperad A𝑠

¡
E1 is given on each arity by

A𝑠
¡
E1�𝑛� � k�𝜇𝑐𝑛� for 𝑛 E 1. By [[11], Lemma 9.1.7], the decomposition of A𝑠¡

E1 is given by

Δ�𝜇𝑐𝑛� � Q
𝑖1���𝑖𝑘�𝑛

��1�P�𝑖𝑗�1��𝑘�𝑗��𝜇𝑐𝑘;𝜇𝑐𝑖1 ,�, 𝜇𝑐𝑖𝑘�.
The twisting map 𝜑 sends 𝜇𝑐2 to 𝜇2. Unwinding computation, we find that

(︀Hom�A𝑠¡
E1�𝑛�,A𝑠E1�𝑛�� 𝑑𝑛

Ð� Hom�A𝑠¡
E1�𝑛 � 1�,A𝑠E1�𝑛 � 1�� ⌋︀ � )︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

0 if n is even
Idk if n is odd.

The chain complex Hom𝜑�A𝑠¡
E1,A𝑠E1� is therefore acyclic. So we deduce that HY

𝑄�A𝑠E1,A𝑠E1� � 0 and
HY

𝑄,red�A𝑠E1,A𝑠E1� � k concentrated in degree 0.

Example 5.2.0.12. We consider the Lie operad, L𝑖𝑒 (cf. [[11], §13.2]), and compute the Quillen
cohomology groups of L𝑖𝑒 with coefficients in itself. Let L𝑖𝑒�𝑥1,�, 𝑥𝑛� be the free Lie algebra with
generators 𝑥1,�, 𝑥𝑛. By definition, as a k-module, L𝑖𝑒�𝑛� b L𝑖𝑒�𝑥1,�, 𝑥𝑛� is (non-freely) generated
by the bracket monomials containing each 𝑥𝑖 exactly once. The symmetric group Σ𝑛 acts on L𝑖𝑒�𝑛�
by permutations. The Koszul dual cooperad L𝑖𝑒

¡ is given on each arity by L𝑖𝑒
¡�𝑛� � k�𝑙𝑐𝑛�, while the

action of 𝜎 > Σ𝑛 on 𝑙𝑐𝑛 is given by �𝑙𝑐𝑛�𝜎 �� sign�𝜎�𝑙𝑐𝑛. Observe that HomΣ𝑛�L𝑖𝑒¡�𝑛�,L𝑖𝑒�𝑛�� � 0 for
every 𝑛 C 3 because there is not any non-zero vector 𝜆 > L𝑖𝑒�𝑛� (𝑛 C 3) satisfying that 𝜆𝜎 � sign�𝜎�𝜆 for
every 𝜎 > Σ𝑛. Moreover, HomΣ2�L𝑖𝑒¡�2�,L𝑖𝑒�2�� � k�𝜑� where 𝜑 sends 𝑙𝑐2 to (︀𝑥1, 𝑥2⌋︀. Thus, by Remark
5.2.0.10 we deduce that HY

𝑄�L𝑖𝑒,L𝑖𝑒� � 0 and HY

𝑄,red�L𝑖𝑒,L𝑖𝑒� � k concentrated in degree 0.

Example 5.2.0.13. Let us compute the Quillen cohomology groups of the augmented version of the
commutative operad, denoted C𝑜𝑚E1 (cf. [[11], §13.1]), with coefficients in itself. By definition
C𝑜𝑚E1�𝑛� � k�𝜇𝑛� equipped with the trivial Σ𝑛-action. The Koszul dual cooperad C𝑜𝑚

¡
E1 is (up to

suspension) isomorphic to the Lie cooperad L𝑖𝑒𝑐, which encodes the Lie coalgebras. As a Σ𝑛-module,
C𝑜𝑚

¡
E1�𝑛� � L𝑖𝑒�𝑛�a 𝑠𝑖𝑔𝑛Σ𝑛 . The situation is similar to Example 5.2.0.12. Unwinding verification, we

have HomΣ2�C𝑜𝑚¡
E1�2�,C𝑜𝑚E1�2�� � k�𝜑� and HomΣ𝑛�C𝑜𝑚¡

E1�𝑛�,C𝑜𝑚E1�𝑛�� � 0 for every 𝑛 C 3. So
we deduce that HY

𝑄�C𝑜𝑚E1,C𝑜𝑚E1� � 0 and HY

𝑄,red�C𝑜𝑚E1,C𝑜𝑚E1� � k concentrated in degree 0.
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5.3 Operadic Dold-Kan correspondence

The Dold-Kan correspondence asserts that there is an adjoint equivalence

Γ � CE0�k� �
Ð@
BÐ

sModk � N

between the categories of connective dg k-modules and simplicial k-modules (cf. Examples 2.1.4.7). The
functor N is the well-known normalized complex functor. An important fact is that the functors
Γ and N are no longer inverse equivalences of each other (or even adjunction) when descending to the
categories of monoids (cf. [55]). Despite this, Schwede-Shipley demonstrated that the functor N is the
right adjoint of a Quillen equivalence when considered as a functor between monoids (cf. Theorem
3.12 of loc.cit). By improving their work, Tabuada [24] proved that the functor N � Cat�sModk� Ð�
Cat�CE0�k�� between enriched categories, given by applying the normalized complex functor levelwise,
is again the right adjoint of a Quillen equivalence. In this section, we will give such a statement in the
operadic context. Namely, we shall prove the existence of a Quillen equivalence between the categories
of enriched operads

L � Op�CE0�k��Ð@BÐ Op�sModk� � N
in which the right adjoint is given by applying the normalized complex functor levelwise, while L is a
bit more complicated mixed between Γ and the free-operad functors. For the proof, the key step is as
follows. Let P be an sModk-enriched operad. We shall first prove that the functor

NP � AlgP�sModk�Ð� AlgNP�CE0�k��
given by applying the normalized complex functor levelwise, is a right Quillen equivalence from P-
algebras to NP-algebras. For this, our treatment is inspired by the arguments given in the proof of
[[55], Proposition 5.1].

On other hand, there is an obvious Quillen adjunction Op�SetΔ� Ð@BÐ Op�sModk� induced by the
free-forgetful adjunction SetΔ Ð@

BÐ sModk. We therefore get a link between simplicial operads and
(connective) dg operads. In the third subsection, we find a connection between Quillen cohomology of
a simplicial operad and the corresponding of the associated dg operad via that link.

5.3.1 Dold-Kan correspondence of operadic modules

Let 𝑅 be a unital ring and let 𝐴 and 𝐵 be the simplicial right and left 𝑅-modules, respectively. Recall
that the Alexander-Whitney and shuffle maps form the homotopy inverses of each other:

AW � N�𝐴a𝑅 𝐵�Ð� N𝐴a𝑅 N𝐵 , © � N𝐴a𝑅 N𝐵 Ð� N�𝐴a𝑅 𝐵� (5.3.1.1)

(cf., e.g., [[55], §2.3], [[56], §8.5] and [[57], Chapter 4, § 2.2]).

Remark 5.3.1.1. Let 𝐾 and 𝐿 be dg right and left 𝑅-modules, respectively. There is a natural map

Γ�𝐾 a𝑅 𝐿�Ð� Γ�𝐾�a𝑅 Γ�𝐿� (5.3.1.2)

given by the adjoint of the composition

𝐾 a𝑅 𝐿Ð� N Γ�𝐾�a𝑅 N Γ�𝐿� ©
Ð� N�Γ�𝐾�a𝑅 Γ�𝐿��

where the first map is the tensor product over 𝑅 of the unit maps of the adjunction Γ Ú N. The map
(5.3.1.2) is a weak equivalence as well.
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Now, let 𝐴 and 𝐵 be two simplicial k-modules. The maps © � N𝐴 a N𝐵 Ð� N�𝐴 a 𝐵� and
AW � N�𝐴 a 𝐵� Ð� N𝐴 a N𝐵 respectively equip the functor N � sModk Ð� CE0�k� with a lax and
an oplax monoidal structure. Note that the lax monoidal structure of N is symmetric while, however,
its oplax monoidal structure is not (see, e.g., [[55], §2.3] ). In particular, the canonical lax monoidal
structure of Γ � CE0�k�Ð� sModk induced by AW is not symmetric.

The Dold-Kan correspondence lifts to an adjoint equivalence between 𝐶-collections:

Γ � Coll𝐶�CE0�k�� �
Ð@
BÐ

Coll𝐶�sModk� � N (5.3.1.3)

Since the lax monoidal structure of the functor N � sModk Ð� CE0�k� is symmetric, the lifted functor
N � Coll𝐶�sModk�Ð� Coll𝐶�CE0�k�� admits an extended lax monoidal structure:

N�A� XN�B�Ð� N�A XB�
for A,B > Coll𝐶�CE0�k��. Due to this lax monoidal structure, the latter descends to a functor between
monoids, i.e., 𝐶-colored operads:

N � Op𝐶�sModk�Ð� Op𝐶�CE0�k�� (5.3.1.4)

Remark 5.3.1.2. On other hand, the functor Γ � CE0�k� Ð� sModk does not admit any canonical
symmetric lax monoidal structure. As a sequel, one in general can not produce sModk-enriched operads
just by applying Γ to CE0�k�-enriched operads levelwise.

To state our main results, we will need the following construction.
Let C and D be two monoidal categories. Furthermore, let L�CÐ@BÐD �R be an adjunction between

underlying categories such that the right adjoint R is lax monoidal. In particular, the left adjoint
L inherits an induced oplax monoidal structure. Since R is lax monoidal, it descends to a functor
between monoids. Now, fix 𝐴 to be a monoid in D. Again, the functor R descends to a functor
R � Mod𝐴 Ð� ModR𝐴 from left 𝐴-modules to left R𝐴-modules. Suppose that coequalizers of left
𝐴-modules exist. We take a functor L𝐴 � ModR𝐴 Ð� Mod𝐴 given by sending 𝑀 > ModR𝐴 to the
coequalizer

𝐴aL�R𝐴a𝑀� ��
�� 𝐴aL𝑀 Ð� L𝐴𝑀 . (5.3.1.5)

One of the two maps is given by applying 𝐴 aL��� to the structure map R𝐴 a𝑀 Ð� 𝑀 of 𝑀 . The
other map is the unique map of left 𝐴-modules extending the composition

L�R𝐴a𝑀�Ð� LR𝐴aL𝑀 Ð� 𝐴aL𝑀

where the first map is an oplax monoidal map of L and the second map is the tensor product of the
counit map LR𝐴Ð� 𝐴 with IdL𝑀 . As in [[55], Section 3], we have the following.

Lemma 5.3.1.3. The functors L𝐴 and R form an adjunction

L𝐴 � ModR𝐴
Ð@
BÐMod𝐴 � R.

Moreover, the module left adjoint L𝐴 and the original left adjoint L are related via the identification

L𝐴 X �R𝐴a �� � �𝐴a �� XL . (5.3.1.6)

Proof. Given any 𝑀 > ModR𝐴 and 𝑁 > Mod𝐴, we need to establish a natural isomorphism

HomMod𝐴
�L𝐴𝑀,𝑁� � HomModR𝐴

�𝑀,R𝑁�.
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By construction, giving a map 𝑓 � L𝐴𝑀 Ð� 𝑁 in Mod𝐴 is equivalent to giving a map 𝑓 � 𝐴aL𝑀 Ð� 𝑁

of left 𝐴-modules compatible with the coequalizer diagram (5.3.1.5). The latter is identified with a map
L𝑀 Ð� 𝑁 in D, and hence corresponds to a map 𝑓ad

�𝑀 Ð� R𝑁 in C, due to the adjunction L Ú R.
To make it work, we first need to show that 𝑓ad is indeed a map of left R𝐴-modules. This follows by the
compatibility of 𝑓 with the coequalizer diagram (5.3.1.5), along with making use of the lax naturality
of R suitably. Conversely, let 𝑔 � 𝑀 Ð� R𝑁 be a map in ModR𝐴. Consider the corresponding map
L𝑀 Ð� 𝑁 in D, which is identified with a map 𝐴 a L𝑀 Ð� 𝑁 of left 𝐴-modules. As before, it can
be readily verified that the latter is compatible with the coequalizer diagram (5.3.1.5) and therefore, it
induces a map 𝑔ad

� L𝐴𝑀 Ð� 𝑁 in Mod𝐴. It is clear by construction that the obtained assignments
𝑓 ( 𝑓ad and 𝑔 ( 𝑔ad are natural and moreover, form the inverses of each other.

By construction, there is a commutative square of right adjoints

Mod𝐴 R
//

forgetful
��

ModR𝐴

forgetful
��

D
R

// C ,

which proves the identification (5.3.1.6).

We now fix P > Op𝐶�sModk� to be a 𝐶-colored operad in sModk. Consider the functor NP �

LMod�P� Ð� LMod�NP� from left P-modules to left NP-modules given by applying the normalized
complex functor levelwise. Due to Lemma 5.3.1.3, NP admits a left adjoint LP � LMod�NP� Ð�
LMod�P�. By construction, NP descends to a functor NP � AlgP�sModk� Ð� AlgNP�CE0�k�� between
full subcategories of P-algebras and NP-algebras. On other hand, note that the embedding functor
AlgP�sModk� Ð� LMod�P� is a left adjoint, it in particular preserves colimits. This implies that LP

descends to a functor LP � AlgNP�CE0�k�� Ð� AlgP�sModk� as well. We thus obtain an adjunction
LP Ú NP between NP-algebras and P-algebras.

Proposition 5.3.1.4. The adjunction LP � AlgNP�CE0�k��Ð@BÐ AlgP�sModk� � NP is a Quillen equiva-
lence.

Let 𝐴 be an NP-algebra. Recall from §2.1.2 that there is a canonical map 𝑗LP𝐴 � PÐ� Env�P,LP𝐴�
in Op𝐶�sModk� with Env�P,LP𝐴� being the enveloping operad associated to the pair �P,LP𝐴�. On
other hand, note that the initial N Env�P,LP𝐴�-algebra is nothing but N Env�P,LP𝐴�0 � NPLP𝐴.
Now, due to the adjunction Env Ú 𝛿, the map N�𝑗LP𝐴� and the unit map 𝐴 Ð� NPLP𝐴 together
induce a canonical map 𝜙𝐴 � Env�NP,𝐴� Ð� N Env�P,LP𝐴� in Op𝐶�CE0�k��. Taking the adjoint of
𝜙𝐴 (considered as a map of 𝐶-collections), we obtain a map

Ψ𝐴 � Γ Env�NP,𝐴�Ð� Env�P,LP𝐴�
in Coll𝐶�sModk�. For the proof of Proposition 5.3.1.4, we first need to prove that Ψ𝐴 is a weak
equivalence provided 𝐴 is a cofibrant NP-algebra.

Our argument exploits the description of free extensions of operads (cf. [28, 34, 16]). Suppose
we are given a pushout square of 𝐶-colored operads in some symmetric monoidal category of the form

F�𝑀� F�𝑓�
//

��

F�𝑁�
��

O // O�

(5.3.1.7)
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where F�𝑓� � F�𝑀�Ð� F�𝑁� is the free map generated by the map 𝑓 �𝑀 � 𝑁 of 𝐶-collections. Fix a
𝐶-sequence 𝑐 �� �𝑐1,�, 𝑐𝑛; 𝑐�. According to [[28], Proposition 5.2], the object O��𝑐� is described as the
colimit of the sequence of maps

O��𝑘��𝑐�Ð� O��𝑘�1��𝑐�
(with O��0��𝑐� � O�𝑐�) which are pushouts of the maps of the form

𝐻 �+
𝑇

𝑓�𝑇 aAut�𝑇� Σ�𝑐1,�,𝑐𝑛� Ð�+
𝑇

𝑓𝑇 aAut�𝑇 � Σ�𝑐1,�,𝑐𝑛� (5.3.1.8)

The coproduct ranges over all isomorphism classes of Tree�𝑘�
𝑐 the collection of planar trees with

𝑘 marked vertices and with valency 𝑐 (i.e., with root edge colored by 𝑐 and leaves colored by
𝑐1,�, 𝑐𝑛). Moreover, Σ�𝑐1,�,𝑐𝑛� is certain product of symmetric groups depending on �𝑐1,�, 𝑐𝑛� (cf. the
notation Σ𝑠 in loc.cit). In order to determine the group Aut�𝑇 �, one partitions the set �𝑇1,�, 𝑇𝑟� into
subsets of pairwise isomorphic trees

�𝑇 1
1 ,�, 𝑇

1
𝑟1
� @� @ �𝑇 𝑞1 ,�, 𝑇 𝑞𝑟𝑞

�.
Then, one writes

Aut�𝑇 � �� 𝑞

)
𝑖�1

Aut�𝑇 𝑖�𝑟𝑖 %

𝑞

)
𝑖�1

Σ𝑟𝑖 .

Now, to understand the map 𝐻 (5.3.1.8), it suffices to determine the map 𝜀𝑇 � 𝑓�𝑇 Ð� 𝑓𝑇 . For each
𝑇 > Tree�𝑘�

𝑐 , one takes the canonical grafting operation 𝑇 � 𝑟𝑇 �𝑇1,�, 𝑇𝑟� with 𝑟𝑇 being the root
vertex of 𝑇 and 𝑇𝑖 being the subtree of 𝑇 grafted to the 𝑖’th leaf of 𝑟𝑇 . The map 𝜀𝑇 is inductively
defined as an iterated pushout-product of the form

𝜀𝑇 �� 𝜀𝑟𝑇
j 𝜀𝑇1 j�j 𝜀𝑇𝑟 (5.3.1.9)

with 𝜀𝑟𝑇
given by

𝜀𝑟𝑇
��

)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀
𝑓�𝑣𝑎𝑙�𝑟𝑇 �� if 𝑟𝑇 is marked
𝜂O�𝑣𝑎𝑙�𝑟𝑇 �� if 𝑟𝑇 is unmarked

in which 𝑣𝑎𝑙�𝑟𝑇 � refers to the valency of 𝑟𝑇 and 𝜂O � I𝐶 Ð� O is the unit of O.
For the proof below, we just need to concentrate in analyzing the map 𝜀𝑇 . The readers may refer to

[28] (around Proposition 5.2) for more details about the above constructions.

Lemma 5.3.1.5. For any cofibrant NP-algebra 𝐴, the map Ψ𝐴 � Γ Env�NP,𝐴� �

Ð� Env�P,LP𝐴� is a
weak equivalence in Coll𝐶�sModk�.
Proof. It will suffice to treat only the case where 𝐴 is a cellular NP-algebra. Recall that a cellular NP-
algebra is a sequential colimit, starting from the initial NP-algebra NP0, of pushouts of free cofibrations
(i.e., images of cofibrations in CE0�k��𝐶 under the free NP-algebra functor). According to [[28], Propo-
sition 4.4(ii)], along with noting the fact that the forgetful functor Op𝐶�CE0�k�� Ð� Coll𝐶�CE0�k��
preserves filtered colimits, both the functors Γ Env�NP,�� and Env�P,LP���� preserve the filtration of
𝐴. It allows us to argue by induction on the filtration of 𝐴, because weak equivalences in Coll𝐶�sModk�
are closed under filtered colimits. By the adjunction Env Ú 𝛿, the map ΨNP0 agrees with the counit
map Γ NP Ð� P, which is an isomorphism. Hence, it remains to show that for any pushout square in
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AlgNP�CE0�k�� of the form

NP X𝑋
NPX𝑓

//

��

NP X 𝑌

��

𝐴 // 𝐵

(5.3.1.10)

with the top horizontal map being the free cofibration generated by a given map 𝑓 � 𝑋 Ð� 𝑌 in
CE0�k��𝐶 , the map Ψ𝐵 is a weak equivalence provided that the map Ψ𝐴 is one.

By [[28], Proposition 4.4(iii)], there is a pushout square in Op𝐶�CE0�k�� of the form

F�𝑋� F�𝑓�
//

��

F�𝑌 �
��

Env�NP,𝐴� // Env�NP,𝐵�

(5.3.1.11)

with the top horizontal map being the free cofibration generated by 𝑓 . As discussed above, for each
𝑐 �� �𝑐1,�, 𝑐𝑛; 𝑐�, Env�NP,𝐵��𝑐� is the colimit of the sequence of maps

Env�NP,𝐵��𝑘��𝑐�Ð� Env�NP,𝐵��𝑘�1��𝑐�
which are pushouts of the maps of the form

𝐻 � +
𝑇 >Tree�𝑘�

𝑐
⇑�

𝑓�𝑇 aAut�𝑇 � Σ�𝑐1,�,𝑐𝑛� Ð� +
𝑇 >Tree�𝑘�

𝑐
⇑�

𝑓𝑇 aAut�𝑇� Σ�𝑐1,�,𝑐𝑛� (5.3.1.12)

Since 𝑓 is a cofibration, the map 𝜀𝑇 � 𝑓�𝑇 Ð� 𝑓𝑇 is one for every tree 𝑇 . In fact, this is a consequence of
[[33], Lemma 3.1], yet it is also can be proved in similar fashion as we treat the claim (*) below. Now,
since 𝜀𝑇 is a cofibration (and since k is a field of characteristic 0), so is the map 𝐻. Therefore, the
mentioned pushouts are in fact homotopy pushouts.

On other hand, by applying LP to the pushout square (5.3.1.10) and noting that the map LP�NPX𝑓�
is canonically isomorphic to the free cofibration P X Γ�𝑓� � P X Γ�𝑋� Ð� P X Γ�𝑌 � (cf. Lemma 5.3.1.3),
we hence get that LP𝐴 Ð� LP𝐵 is pushout of P X Γ�𝑓�. As in the above paragraph, Env�P,LP𝐵��𝑐�
is the colimit of the sequence of maps

Env�P,LP𝐵��𝑘��𝑐�Ð� Env�P,LP𝐵��𝑘�1��𝑐�
which are (homotopy) pushouts of the maps of the form

Ç𝐻 � +
𝑇 >Tree�𝑘�

𝑐
⇑�

�Γ𝑓��𝑇 aAut�𝑇 � Σ�𝑐1,�,𝑐𝑛� Ð� +
𝑇 >Tree�𝑘�

𝑐
⇑�

�Γ𝑓�𝑇 aAut�𝑇� Σ�𝑐1,�,𝑐𝑛� (5.3.1.13)

For our purpose, we have to prove that the map Ψ𝐵�𝑐� � Γ Env�NP,𝐵��𝑐�Ð� Env�P,LP𝐵��𝑐� is a
weak equivalence for every 𝐶-sequence 𝑐. The map Ψ𝐵�𝑐� is compatible with the mentioned filtrations
of Env�NP,𝐵��𝑐� and Env�P,LP𝐵��𝑐�. As indicated in the two above paragraphs, on the filtration
of Env�NP,𝐵��𝑐� (resp. Env�P,LP𝐵��𝑐�), the �𝑘 � 1�-skeleton is given by (homotopy) pushout of
the 𝑘-skeleton along a map of type 𝐻 (resp. Ç𝐻). For the 0-skeleton, by construction the map Ψ�0�

𝐵 �𝑐�
agrees with Ψ𝐴�𝑐�, which was assumed to be a weak equivalence. By an inductive argument, it suffices
to prove the following:

(*) For every 𝑘 > N, 𝑐 > Seq�𝐶� and for every 𝑇 > Tree�𝑘�
𝑐 , the canonical maps Γ𝑓�𝑇 Ð� �Γ𝑓��𝑇 and

Γ𝑓𝑇 Ð� �Γ𝑓�𝑇 are weak equivalences.
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By construction, 𝑓�𝑇 and 𝑓𝑇 are respectively the source and target of the map 𝜀𝑇 (5.3.1.9) which is
inductively defined as:

𝜀𝑇 � 𝜀𝑟𝑇
j 𝜀𝑇1 j�j 𝜀𝑇𝑟

where 𝜀𝑟𝑇
is given by

𝜀𝑟𝑇
��

)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀
𝑓�𝑣𝑎𝑙�𝑟𝑇 �� if 𝑟𝑇 is marked
𝜂Env�NP,𝐴��𝑣𝑎𝑙�𝑟𝑇 �� if 𝑟𝑇 is unmarked .

Similarly, �Γ𝑓��𝑇 and �Γ𝑓�𝑇 are respectively the source and target of the map

Ç𝜀𝑇 �� Ç𝜀𝑟𝑇
j Ç𝜀𝑇1 j�j Ç𝜀𝑇𝑟

where Ç𝜀𝑟𝑇
is given by

Ç𝜀𝑟𝑇
��

)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀
Γ𝑓�𝑣𝑎𝑙�𝑟𝑇 �� if 𝑟𝑇 is marked
𝜂Env�P,LP𝐴��𝑣𝑎𝑙�𝑟𝑇 �� if 𝑟𝑇 is unmarked .

We shall now prove the claim (*) in inductive style. By an elementary tree, we shall mean a planar
tree with the root vertex as its unique vertex.

Y In the first step, we assume that 𝑇 is elementary. First, consider the case where 𝑟𝑇 is unmarked.
Then, the map Γ𝑓�𝑇 Ð� �Γ𝑓��𝑇 agrees with Idk if 𝑣𝑎𝑙�𝑟𝑇 � � �𝑐; 𝑐� and agrees with Id0 otherwise; while
the map Γ𝑓𝑇 Ð� �Γ𝑓�𝑇 agrees with

Ψ𝐴�𝑣𝑎𝑙�𝑟𝑇 �� � Γ Env�NP,𝐴��𝑣𝑎𝑙�𝑟𝑇 ��Ð� Env�P,LP𝐴��𝑣𝑎𝑙�𝑟𝑇 ��,
which was assumed to be a weak equivalence. In the other case where 𝑟𝑇 is marked, the map Γ𝑓�𝑇 Ð��Γ𝑓��𝑇 is simply IdΓ𝑋�𝑣𝑎𝑙�𝑟𝑇 �� and the map Γ𝑓𝑇 Ð� �Γ𝑓�𝑇 is IdΓ𝑌 �𝑣𝑎𝑙�𝑟𝑇 ��.

Y In the next step, we suppose that 𝑇 is not elementary. In particular, 𝑇 has at least one internal
edge 𝑒. Consider a decomposition 𝑇 � �𝑇1, 𝑇2� of 𝑇 obtained by cutting itself at 𝑒. We are showing
that if both 𝑇1 and 𝑇2 satisfy the condition of (*) then so does 𝑇 . Indeed, observe that 𝜀𝑇 � 𝜀𝑇1 j 𝜀𝑇2

and Ç𝜀𝑇 � Ç𝜀𝑇1 j Ç𝜀𝑇2 . So the map Γ𝑓𝑇 Ð� �Γ𝑓�𝑇 can be written as

Γ�𝑓𝑇1 a 𝑓𝑇2�Ð� �Γ𝑓�𝑇1 a �Γ𝑓�𝑇2 ,

which is in fact the composition

Γ�𝑓𝑇1 a 𝑓𝑇2�Ð� Γ𝑓𝑇1 a Γ𝑓𝑇2 Ð� �Γ𝑓�𝑇1 a �Γ𝑓�𝑇2 .

The first map is an oplax monoidal map of Γ, which is a weak equivalence. Thus, Γ𝑓𝑇 Ð� �Γ𝑓�𝑇 is a
weak equivalence as soon as the maps Γ𝑓𝑇𝑖 Ð� �Γ𝑓�𝑇𝑖 (𝑖 � 1, 2) are weak equivalences. On the other
hand, the map Γ𝑓�𝑇 Ð� �Γ𝑓��𝑇 is isomorphic to the map between pushouts:

Γ �𝑓�𝑇1
a 𝑓𝑇2� +

Γ �𝑓�
𝑇1
a𝑓�

𝑇2
�

Γ �𝑓𝑇1 a 𝑓
�

𝑇2
� Ð� �Γ𝑓��𝑇1

a �Γ𝑓�𝑇2 +
�Γ𝑓��

𝑇1
a�Γ𝑓��

𝑇2

�Γ𝑓�𝑇1 a �Γ𝑓��𝑇2
.

Note that these pushouts are in fact homotopy pushouts, since the maps 𝜀𝑇𝑖 and Ç𝜀𝑇𝑖 are cofibrations
(see the second paragraph). Therefore, by the same reason as discussed above, Γ𝑓�𝑇 Ð� �Γ𝑓��𝑇 is a
weak equivalence whenever all the maps Γ𝑓𝑇𝑖 Ð� �Γ𝑓�𝑇𝑖 and Γ𝑓�𝑇𝑖

Ð� �Γ𝑓��𝑇𝑖
are weak equivalences for

𝑖 � 1, 2.
We will say that the decomposition 𝑇 � �𝑇1, 𝑇2� is elementary if both 𝑇1 and 𝑇2 are so.
Y Now, let 𝑇 be any tree. If 𝑇 is elementary then we are done by the first step. Otherwise, we take a

decomposition 𝑇 � �𝑇1, 𝑇2� of 𝑇 as in the second step. If this decomposition is elementary then we are
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done by the first and second steps. Otherwise, we decompose the subtree 𝑇𝑖 at its internal edge (if it is
not elementary). By the finiteness of trees, this process must be stable at elementary decompositions.
Hence, the claim is verified by the first and second steps, again.

Proof of Proposition 5.3.1.4. The functor NP creates fibrations and weak equivalences. In particular,
the adjunction LP Ú NP indeed forms a Quillen adjunction. To prove that this is a Quillen equivalence,
it suffices to show that for every cofibrant NP-algebra 𝐴 the unit map 𝜂𝐴 � 𝐴 Ð� NPLP�𝐴� is a weak
equivalence. Considering 𝜂𝐴 as a map in CE0�k��𝐶 , it suffices to verify that the adjoint of 𝜂𝐴,

𝜂�𝐴 � Γ�𝐴�Ð� LP�𝐴�,
is a weak equivalence in sMod�𝐶k . As in the above proof, we can assume that 𝐴 is a cellular NP-algebra
and then, argue by induction on the filtration of 𝐴. Observe first that the map 𝜂�NP0

coincides with the
counit map Γ NP0 Ð� P0, which is an isomorphism. Hence, it remains to show that for any pushout
square in AlgNP�CE0�k�� of the form

NP X𝑋
NPX𝑓

//

��

NP X 𝑌

��

𝐴 // 𝐵

(5.3.1.14)

with the top horizontal map being the free cofibration generated by a given map 𝑓 � 𝑋 � 𝑌 in CE0�k��𝐶 ,
the map 𝜂�𝐵 is a weak equivalence when provided that 𝜂�𝐴 is one.

For simplicity of equations, in the remainder, we assume the set of colors 𝐶 is a singleton. According
to [[28], Proposition 5.7], the underlying dg k-module of 𝐵 is sequential colimit of maps𝐵𝑛�1 Ð� 𝐵𝑛 with
𝐵0 � 𝐴 and such that each map 𝐵𝑛�1 Ð� 𝐵𝑛 is cobase change of the map 𝜙𝑛 �� Env�NP,𝐴��𝑛�aΣ𝑛 𝑓

j𝑛

with 𝑓j𝑛 being the 𝑛-fold pushout-product of 𝑓 . Since 𝑓 is a cofibration, so is 𝑓j𝑛 and hence, so is 𝜙𝑛.
(For this, note that we are working on a field of characteristic 0). In particular, the map 𝐵𝑛�1 Ð� 𝐵𝑛
is in fact a homotopy pushout of 𝜙𝑛. Moreover, by extracting the iterated pushout-product 𝑓j𝑛, the
map 𝜙𝑛 is of the form

𝜙𝑛 � Env�NP,𝐴��𝑛�aΣ𝑛 𝑄𝑛�𝑋,𝑌 �Ð� Env�NP,𝐴��𝑛�aΣ𝑛 𝑌
a𝑛

in which 𝑄𝑛�𝑋,𝑌 � is the domain of 𝑓j𝑛. We may regard 𝑄𝑛�𝑋,𝑌 � as the colimit of the punctured
𝑛-cube (i.e., the 𝑛-cube with the terminal vertex removed) 𝑊𝑛�𝑋,𝑌 � whose vertices are of the form
𝐶1a𝐶2a�a𝐶𝑛 such that each 𝐶𝑖 is either 𝑋 or 𝑌 , and whose edges are given by multi-tensor product
of the maps of types �𝑓, Id𝑋 , Id𝑌 �. The object 𝑄𝑛�𝑋,𝑌 � is in fact homotopy colimit of 𝑊𝑛�𝑋,𝑌 �,
again due to the pushout-product axiom.

On other hand, by applying the left adjoint LP to (5.3.1.14), we obtain a pushout square in
AlgP�sModk�:

LP�NP X𝑋� //

��

LP�NP X 𝑌 �
��

LP�𝐴� // LP�𝐵�

(5.3.1.15)

By Lemma 5.3.1.3, the top horizontal map is canonically isomorphic to the free cofibration P X Γ�𝑓� �
P X Γ�𝑋� Ð� P X Γ�𝑌 �. As in the above paragraph, the underlying simplicial k-module of LP�𝐵�
is sequential colimit of maps LP�𝐵�𝑛�1 Ð� LP�𝐵�𝑛 with LP�𝐵�0 � LP�𝐴� and such that each map
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LP�𝐵�𝑛�1 Ð� LP�𝐵�𝑛 is (homotopy) pushout of the map

Ç𝜙𝑛 � Env�P,LP�𝐴���𝑛�aΣ𝑛 𝑄𝑛�Γ�𝑋�,Γ�𝑌 ��Ð� Env�P,LP�𝐴���𝑛�aΣ𝑛 �Γ𝑌 �a𝑛
in which 𝑄𝑛�Γ�𝑋�,Γ�𝑌 �� > sModk is homotopy colimit of the punctured 𝑛-cube 𝑊𝑛�Γ�𝑋�,Γ�𝑌 ��,
defined similarly as above.

The map 𝜂�𝐵 � Γ�𝐵� Ð� LP�𝐵� is compatible with the filtrations of 𝐵 and LP�𝐵� constructed in
the two above paragraphs. Thus, 𝜂�𝐵 is a weak equivalence as soon as for each 𝑛 the component map
�𝜂�𝐵�𝑛 � Γ�𝐵𝑛� Ð� LP�𝐵�𝑛 is one. Again, the latter will be proved by an inductive argument. When
𝑛 � 0, the map �𝜂�𝐵�0 concides with 𝜂�𝐴, which was assumed to be a weak equivalence. Assume by
induction that the map �𝜂�𝐵�𝑛�1 � Γ�𝐵𝑛�1� Ð� LP�𝐵�𝑛�1 is a weak equivalence. As indicated above,
the object Γ�𝐵𝑛� is homotopy pushout of Γ�𝐵𝑛�1� along Γ�𝜙𝑛�, while LP�𝐵�𝑛 is homotopy pushout of
LP�𝐵�𝑛�1 along the map Ç𝜙𝑛. It therefore suffices to show that the following two canonical maps

Γ�Env�NP,𝐴��𝑛�aΣ𝑛 𝑄𝑛�𝑋,𝑌 �� 𝜃1
ÐÐÐ� Env�P,LP𝐴��𝑛�aΣ𝑛 𝑄𝑛�Γ�𝑋�,Γ�𝑌 ��,

Γ�Env�NP,𝐴��𝑛�aΣ𝑛 𝑌
a𝑛� 𝜃2

ÐÐÐ� Env�P,LP𝐴��𝑛�aΣ𝑛 �Γ𝑌 �a𝑛
are a weak equivalence.

(1) Concretely, the map 𝜃1 is given by the composition

Γ �Env�NP,𝐴��𝑛�aΣ𝑛𝑄𝑛�𝑋,𝑌 ��Ð� Γ Env�NP,𝐴��𝑛�aΣ𝑛Γ𝑄𝑛�𝑋,𝑌 �Ð� Env�P,LP𝐴��𝑛�aΣ𝑛𝑄𝑛�Γ�𝑋�,Γ�𝑌 ��.
The first one is the canonical map of type (5.3.1.2), which is a weak equivalence. The second one is
the tensor product over Σ𝑛 of the map Ψ𝐴�𝑛� � Γ Env�NP,𝐴��𝑛� Ð� Env�P,LP𝐴��𝑛�, which is a
weak equivalence by Lemma 5.3.1.5, with the canonical map ℎ𝑋,𝑌 � Γ𝑄𝑛�𝑋,𝑌 � Ð� 𝑄𝑛�Γ�𝑋�,Γ�𝑌 ��.
Therefore, the map 𝜃1 is a weak equivalence as soon as ℎ𝑋,𝑌 is one. As analyzed above, 𝑄𝑛��,��
is homotopy colimit of the punctured 𝑛-cube 𝑊𝑛��,�� and moreover, the restriction of ℎ𝑋,𝑌 on each
vertex of the punctured 𝑛-cube diagram is an (iterated) oplax monoidal map of Γ of the form

Γ�𝐶1 a𝐶2 a�a𝐶𝑛�Ð� Γ𝐶1 a Γ𝐶2 a�a Γ𝐶𝑛
in which each 𝐶𝑖 is either 𝑋 or 𝑌 . The latter is certainly a weak equivalence and hence, ℎ𝑋,𝑌 is indeed
a weak equivalence.

(2) The map 𝜃2 is also a weak equivalence, by the same fashion as discussed above.

Recall from §2.1.3 that for any operad O enriched over some symmetric monoidal category S, there
exists an enriched category, denoted by IbO, such that the structure of an infinitesimal O-bimodule is
equivalent to that of an S-valued enriched functor on IbO.

Corollary 5.3.1.6. Let P > Op𝐶�sModk� be given. The functor

N𝑖𝑏
P � IbMod�P�Ð� IbMod�NP�

given by applying the normalized complex functor levelwise is a right Quillen equivalence.

Proof. Consider IbP as an operad concentrated in arity 1. By Proposition 5.3.1.4, the normalized
complex functor induces a right Quillen equivalence

Fun�IbP, sModk� �

Ð� Fun�N�IbP�,CE0�k��
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between the projective model categories of enriched functors. On other hand, the shuffle map © induces
a CE0�k�-enriched functor ©

�
� IbNP

Ð� N�IbP�, which is the identity on objects and is a weak
equivalence in Cat�CE0�k��. We hence obtain another right Quillen equivalence

Fun�N�IbP�,CE0�k�� �

Ð� Fun�IbNP,CE0�k��
given by precomposition with ©

�. Finally, the proof is completed by observing that the functor N𝑖𝑏
P

agrees with the composition of the two right Quillen equivalences mentioned above.

Moreover, we have seen from §2.1.3 that each of the categories LMod�O�, RMod�O� and BMod�O�
can be also represented as a category of algebras over a certain operad. Using the same arguments as
in the above proof, we get the following.
Corollary 5.3.1.7. Let P > Op𝐶�sModk� be given. The functors

N𝑙
P � LMod�P�Ð� LMod�NP� , N𝑟

P � RMod�P�Ð� RMod�NP� , N𝑏
P � BMod�P�Ð� BMod�NP�

given by applying the normalized complex functor levelwise, are all right Quillen equivalences.

5.3.2 Dold-Kan correspondence of enriched operads

To specify the regarded sets of colors, for each set 𝐶, we will write

N𝐶 � Op𝐶�sModk�Ð� Op𝐶�CE0�k��
standing for the functor given by applying the normalized complex functor levelwise.

Applying Proposition 5.3.1.4 to the case where P � O𝐶 the operad of 𝐶-colored operads in sModk,
we get a right Quillen equivalence Op𝐶�sModk� �

Ð� Op𝐶�CE0�k�� given by applying the normalized
complex functor levelwise. The latter certainly agrees with N𝐶 . We will denote by L𝐶 the left adjoint
of N𝐶 . In particular, we obtain the following.

Corollary 5.3.2.1. The adjunction L𝐶 � Op𝐶�CE0�k��Ð@BÐ Op𝐶�sModk� � N𝐶 is a Quillen equivalence.

We wish to integrate the collection of adjunctions �L𝐶 Ú N𝐶�𝐶>Sets into a single adjunction be-
tween the categories of enriched operads. To this end, we first need to realize how the Grothendieck
construction behaves with adjunctions. Let F � Cop

Ð� Cat be a contravariant functor on a given
category C valued in the category of small categories Cat. For each map 𝛼 � 𝑐 � 𝑑 in C, we let
𝛼� � F�𝑑� Ð� F�𝑐� denote the functor corresponding to 𝛼 through F. We denote by Groth�F� the
(contravariant) Grothendieck construction of F. Recall by definition that objects of Groth�F� are given
by

Ob�Groth�F�� � +
𝑐>Ob�C�

Ob�F�𝑐�� ,
and for 𝑋 > Ob�F�𝑐�� and 𝑌 > Ob�F�𝑑��, the hom-set is given by

HomGroth�F��𝑋,𝑌 � � +
𝑐

𝛼
Ð�𝑑

HomF�𝑐��𝑋,𝛼�𝑌 �
where the coproduct ranges over HomC�𝑐, 𝑑�.
Construction 5.3.2.2. Suppose we are given two functors F,G � Cop

Ð� Cat and suppose that for
every object 𝑐 > C, there is an adjunction

L𝑐 � F�𝑐�Ð@BÐ G�𝑐� � N𝑐
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such that the collection of right adjoints �N𝑐�𝑐>C forms a natural transformation from G to F. We
establish two integrated functors L � Groth�F�� Groth�G� � N as follows.
On objects, N is simply given by the coproduct of the maps N𝑐 � Ob�G�𝑐��Ð� Ob�F�𝑐�� and similarly,
L is given by the coproduct of the maps L𝑐 � Ob�F�𝑐��Ð� Ob�G�𝑐��.
Fix 𝛼 � 𝑐� 𝑑 to be a map in C. Let 𝐴 > G�𝑐� and 𝐵 > G�𝑑� be given objects. For each map 𝑓 � 𝐴Ð� 𝛼�𝐵

in G�𝑐� regarded as a map from 𝐴 to 𝐵 in Groth�G�, we take N�𝑓� to be the map

N𝑐�𝐴� N𝑐�𝑓�

ÐÐÐÐ� N𝑐�𝛼�𝐵� � 𝛼�N𝑑�𝐵�.
On the other hand, let 𝑋 > F�𝑐� and 𝑌 > F�𝑑� be given objects. For each map 𝑔 � 𝑋 Ð� 𝛼�𝑌 in F�𝑐�
regarded as a map from 𝑋 to 𝑌 in Groth�F�, we take L�𝑔� � L𝑐�𝑋� Ð� 𝛼�L𝑑�𝑌 � to be the adjoint of
the composition

𝑋
𝑔
Ð� 𝛼�𝑌

𝛼��𝜂𝑌 �

ÐÐÐÐ� 𝛼�N𝑑L𝑑�𝑌 � � N𝑐𝛼
�L𝑑�𝑌 �

where 𝜂𝑌 signifies the unit map of the adjunction L𝑑 Ú N𝑑.

The main interest in this construction is that:

Lemma 5.3.2.3. The obtained integrated functors L and N form an adjunction between the Grothendieck
constructions

L � Groth�F�Ð@BÐ Groth�G� � N .

Proof. Let 𝑐, 𝑑 > C be two objects of C. For 𝑋 > F�𝑐� and 𝐴 > G�𝑑�, regarded as objects of Groth�F�
and Groth�G� respectively, we have to establish a natural isomorphism

𝜙𝑋,𝐴 � HomGroth�F��L𝑐�𝑋�,𝐴� �

Ð� HomGroth�G��𝑋,N𝑑�𝐴��.
Note first that for each map 𝛼 � 𝑐� 𝑑 in C, due to the adjunction L𝑐 Ú N𝑐, we have a natural isomorphism

𝜙𝛼𝑋,𝐴 � HomG�𝑐��L𝑐�𝑋�, 𝛼�𝐴� �

Ð� HomF�𝑐��𝑋,N𝑐�𝛼�𝐴�� � HomF�𝑐��𝑋,𝛼�N𝑑�𝐴��.
We now take 𝜙𝑋,𝐴 to be the coproduct of the maps 𝜙𝛼𝑋,𝐴 with 𝛼 ranging over HomC�𝑐, 𝑑�. It remains to
verify the naturality of the obtained map 𝜙𝑋,𝐴. The verification is straightforward using the naturality
of the maps 𝜙𝛼𝑋,𝐴, along with manipulating basic properties of adjunction suitably.

Using this lemma, we can now integrate all the adjunctions L𝐶 � Op𝐶�CE0�k��Ð@BÐ Op𝐶�sModk� � N𝐶

for 𝐶 > Sets into a single adjunction between the categories of enriched operads, written as

L � Op�CE0�k��Ð@BÐ Op�sModk� � N .

The statement we really care about in this section is the following:

Theorem 5.3.2.4. (Operadic Dold-Kan correspondence) The adjunction

L � Op�CE0�k��Ð@BÐ Op�sModk� � N
is a Quillen equivalence.

The free-forgetful adjunction k��� � SetΔ Ð@BÐ sModk � U lifts to an adjunction

k��� � Op�SetΔ�Ð@BÐ Op�sModk� � U (5.3.2.1)

between simplicial operads and operads in simplicial k-modules.
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Lemma 5.3.2.5. Let 𝑓 � PÐ� Q be a map in Op�sModk�. Then 𝑓 is a fibration (resp. weak equivalence)
in Op�sModk� if and only if U�𝑓� is a fibration (resp. weak equivalence) in Op�SetΔ�.
Proof. It is clear by definition that 𝑓 is a levelwise weak equivalence if and only if U�𝑓� is one. On
other hand, by adjunction the induced functor Ho�𝑓� � Ho�P� Ð� Ho�Q� agrees with the functor
Ho�U�𝑓�� � Ho�U�P�� Ð� Ho�U�Q�� (cf. Section 2.1.5). These facts together show that 𝑓 is a weak
equivalence if and only if U�𝑓� is one.

By transferring the Dwyer-Kan model structure on Op�SetΔ� along the adjunction k��� Ú U, we get
a model structure on Op�sModk�, which in particular has trivial fibrations being precisely the levelwise
trivial fibrations surjective on colors. Combining this with the above paragraph, we see that the obtained
model structure agrees with the Dwyer-Kan model structure on Op�sModk�. Consequently, the map 𝑓
is a fibration if and only if U�𝑓� is one.

Proof of Theorem 5.3.2.4. Let 𝑓 � P Ð� Q be a map in Op�sModk�. The above lemma shows that 𝑓 is
a fibration if and only if it is a levelwise fibration and such that the induced functor Ho�𝑓� � Ho�P�Ð�
Ho�Q� is an isofibration (see also [58]). An analogue holds for fibrations in Op�CE0�k��, according to
[23] (along with noting Remark 2.1.5.7).

By the Dold-Kan correspondence, there is a natural equivalence Ho�O� � Ho�N�O�� for every O >

Op�sModk�. Thus, the functor Ho�𝑓� � Ho�P�Ð� Ho�Q� is essentially surjective (resp. an isofibration)
if and only if the functor

Ho�N�𝑓�� � Ho�NP�Ð� Ho�NQ�
is essentially surjective (resp. an isofibration). Combining this with the fact that the functor N creates
levelwise weak equivalences and fibrations, we deduce further that N creates weak equivalences and
fibrations. In particular, L Ú N indeed forms a Quillen adjunction. Finally, to prove this is a Quillen
equivalence, it suffices to prove that the unit map 𝜂P � P Ð� NL�P� is a weak equivalence for every
cofibrant operad P > Op�CE0�k��. This directly follows from Corollary 5.3.2.1, because 𝜂P is simply
given by the unit map of the adjunction between operads with fixed set of colors.

5.3.3 From Quillen cohomology of simplicial operads to Quillen cohomology of dg

operads

Theorem 5.3.2.4 provides us with a Quillen equivalence between operads in CE0�k� and sModk

L � Op�CE0�k��Ð@BÐ Op�sModk� � N .

Let us fix P to be an operad in sModk and consider the induced Quillen adjunction

LP⇑⇑P � Op�CE0�k��NP⇑⇑NP
Ð@
BÐ Op�sModk�P⇑⇑P � NP⇑⇑P .

Lemma 5.3.3.1. The adjunction LP⇑⇑P Ú NP⇑⇑P is a Quillen equivalence. Consequently, the induced
adjunction between tangent categories

Sp�LP⇑⇑P� � TNP Op�CE0�k��Ð@BÐ TP Op�sModk� � Sp�NP⇑⇑P�
is a Quillen equivalence as well.
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Proof. We first take a cofibrant resolution 𝑓 � �NP�cof �

Ð� NP of NP in Op�CE0�k�� such that 𝑓 is a triv-
ial fibration. Since k is a field of characteristic 0, the model structures on Op�CE0�k�� and Op�sModk�
are proper. This implies that the induced adjunction Op�CE0�k���NP�cof⇑⇑�NP�cof Ð@BÐ Op�sModk�NP⇑⇑NP

is a Quillen equivalence. It now suffices to show that the composed adjunction

L�P⇑⇑P � Op�CE0�k���NP�cof⇑⇑�NP�cof Ð@BÐ Op�sModk�P⇑⇑P � N�

P⇑⇑P

is a Quillen equivalence. For Q > Op�CE0�k���NP�cof⇑⇑�NP�cof , the object L�P⇑⇑P�Q� is given by the pushout
of L�Q� along the composition L�NP�cof

Ð� LNP Ð� P, which is a weak equivalence because L Ú N
is a Quillen equivalence. In the other hand, given R > Op�sModk�P⇑⇑P, then N�

P⇑⇑P�R� is given by the
pullback of N�R� along the map 𝑓 � �NP�cof �

Ð� NP.
Since 𝑓 is a trivial fibration and since N creates weak equivalences, the functor N�

P⇑⇑P creates weak
equivalences as well. It hence suffices to show that the unit map 𝜂Q � Q Ð� N�

P⇑⇑PL�P⇑⇑P�Q� is a weak
equivalence provided that Q is cofibrant. When Q is cofibrant (i.e., the structure map �NP�cof

Ð� Q

is a cofibration), the structure map L�Q� Ð� L�P⇑⇑P�Q� is a weak equivalence in Op�sModk� because
Op�sModk� is left proper. But Q is also cofibrant as an object of Op�CE0�k��, so the adjoint map
𝜂�Q � Q Ð� NL�P⇑⇑P�Q� is again a weak equivalence in Op�CE0�k��. On other hand, since 𝑓 is a trivial
fibration, the structure map 𝜃Q � N�

P⇑⇑PL�P⇑⇑P�Q�Ð� NL�P⇑⇑P�Q� is in particular a weak equivalence in
Op�CE0�k��. The claim is now proved by the fact that 𝜂�Q � 𝜃Q X 𝜂Q.

Corollary 5.3.1.6 provides us with a right Quillen equivalence N𝑖𝑏
P � IbMod�P� �

Ð� IbMod�NP�. This
lifts to a right Quillen functor between tangent categories

Sp�N𝑖𝑏
P� � TP IbMod�P�Ð� TNP IbMod�NP�.

Moreover, we have a commutative square of right Quillen functors

TP Op�sModk�Sp�NP⇑⇑P�
//

UP �

��

TNP Op�CE0�k��
UNP�

��

TP IbMod�P�
Sp�N𝑖𝑏

P�

// TNP IbMod�NP�

(5.3.3.1)

in which the vertical functors are the right Quillen equivalences appearing in Theorem 3.2.4.1. In
particular, Sp�N𝑖𝑏

P� is also a right Quillen equivalence by the above lemma.

Proposition 5.3.3.2. Let M > TP IbMod�P� be a fibrant object. The normalized complex functor
induces an isomorphism

HY

𝑄�P,M� �

Ð� HY

𝑄�NP,NM�
between Quillen cohomology of P > Op�sModk� with coefficients in M > TP IbMod�P� and Quillen
cohomology of NP > Op�CE0�k�� with coefficients in NM > TNP IbMod�NP�, where NM �� Sp�N𝑖𝑏

P��M�
given by applying the normalized complex functor to M degreewise and levelwise.

Proof. Recall that, after sending coefficients into TP IbMod�P�, the Quillen cohomology of P with
coefficients in M is formulated as

HY

𝑄�P,M� � 𝜋0 Maph
TP IbMod�P��RUP�LP�,M (︀Y⌋︀�.
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Similarly, the Quillen cohomology of NP with coefficients in NM is given by

HY

𝑄�NP,NM� � 𝜋0 Maph
TNP IbMod�NP��RUNP�LNP�,NM (︀Y⌋︀�.

Since the functor N � Op�sModk� Ð� Op�CE0�k�� is a right Quillen equivalence, the right derived
functor RSp�NP⇑⇑P� sends LP to LNP, and hence the right derived functor RSp�N𝑖𝑏

P� sends RUP�LP�
to RUNP�LNP�, due to the commutativity of (5.3.3.1). Moreover, since Sp�N𝑖𝑏

P� is a right Quillen
equivalence, it induces a homotopy equivalence

Maph
TP IbMod�P��RUP�LP�,M (︀Y⌋︀� �

Ð�Maph
TNP IbMod�NP��RUNP�LNP�,NM (︀Y⌋︀�.

Combining this with the first paragraph, we get the conclusion.

Consider the Quillen adjunction k��� � Op�SetΔ�Ð@BÐ Op�sModk� � U.

Definition 5.3.3.3. Let O > Op�SetΔ� be a simplicial operad. We will denote by dO �� N k�O� the
image of O under the composite functor

Op�SetΔ� k���
ÐÐÐ� Op�sModk� N

ÐÐÐ� Op�CE0�k��
and refer to it as the differential graded (dg) version of O.

In fact, many dg operads of interest come from this construction, typically, including the dg versions
of the little cubes operads E𝑛 for 𝑛 > N.

Besides that, we also regard the induced Quillen adjunction between operadic infinitesimal bimodules
k���𝑖𝑏 � IbMod�O� Ð@BÐ IbMod�k�O�� � U𝑖𝑏. This induces a Quillen adjunction between the associated
tangent categories (still denoted by)

k���𝑖𝑏 � TO IbMod�O�Ð@BÐ Tk�O� IbMod�k�O�� � U𝑖𝑏.
Notation 5.3.3.4. Let O be a fibrant and Σ-cofibrant simplicial operad. For each M > Tk�O� IbMod�k�O��,
we will denote by HM � Tw�O�Ð� Spectra the image of M under the composed ª-functor

Tk�O� IbMod�k�O��ª �U𝑖𝑏�ª

ÐÐÐ� TO IbMod�O�ª �

Ð� Fun�Tw�O�,Spectra�
in which the second functor is the equivalence indicated in §4.3.

There is a connection between Quillen cohomology of a simplicial operad and Quillen cohomology
of its dg version, expressed as follows.

Proposition 5.3.3.5. Let O > Op�SetΔ� be a fibrant and Σ-cofibrant simplicial operad and let M >

Tk�O� IbMod�k�O�� be a fibrant object. There is a canonical isomorphism

HY

𝑄�O,HM� �

Ð� HY

𝑄�dO,NM�
between Quillen cohomology of O > Op�SetΔ� with coefficients in HM � Tw�O� Ð� Spectra (cf.
Theorem 4.3.0.1) and Quillen cohomology of its dg version dO > Op�CE0�k�� with coefficients in
NM > TdO IbMod�dO�, where NM is given by applying the normalized complex functor to M degreewise
and levelwise.

Proof. By notation and by the adjunction k���𝑖𝑏 Ú U𝑖𝑏, we find a canonical isomorphism

HY

𝑄�O,HM� �

Ð� HY

𝑄�k�O�,M�.
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On other hand, Proposition 5.3.3.2 proves the existence of a canonical isomorphism

HY

𝑄�k�O�,M� �

Ð� HY

𝑄�dO,NM�.
So we get the conclusion.

For more illustration to obtained results, we take any 𝑀 > IbMod�k�O�� and consider the case
M � Σª�k�O� @𝑀� > Tk�O� IbMod�k�O�� with the structure maps given by

k�O� 𝑖0
Ð� k�O� @𝑀 Idk�O� �0

ÐÐÐÐÐ� k�O�.
In this situation, we simply denote by H𝑀 �� HM the corresponding functor Tw�O� Ð� Spectra. We
now describe this functor.

Computations 5.3.3.6. The object M, regarded as a suspension spectrum (see around Computations
3.4.0.14), is given at each bidegree �𝑛,𝑛� by M𝑛,𝑛 � k�O� @𝑀(︀𝑛⌋︀ the coproduct of k�O� with the
𝑛-suspension of 𝑀 in IbMod�k�O��. First, argue that since M is also a fibrant Ω-spectrum, the image
U𝑖𝑏�M� > TO IbMod�O� has already the right type. By construction, U𝑖𝑏�M� is the Ω-spectrum whose
value at each bidegree �𝑛,𝑛� is given by the pullback in IbMod�O�:

U𝑖𝑏�M�𝑛,𝑛 //

��

k�O� @𝑀(︀𝑛⌋︀
��

O // k�O�

(5.3.3.2)

It can be shown that, for each operation 𝜇 > O�𝑐� regarded as an object of Tw�O�, the Ω-spectrum
H𝑀�𝜇� > Spectra is given at each bidegree �𝑛,𝑛� as the fiber in SetΔ:

H𝑀�𝜇�𝑛,𝑛 � U𝑖𝑏�M�𝑛,𝑛�𝑐� �O�𝑐� �𝜇�,
(this is very similar to the computations given in §4.3). By the Cartesian square (5.3.3.2), H𝑀�𝜇�𝑛,𝑛
agrees with the fiber

�k�O�𝑐�� @𝑀�𝑐�(︀𝑛⌋︀� �k�O�𝑐�� �𝜇�
in SetΔ. Note that this fiber is the same as the kernel of the projection k�O�𝑐��@𝑀�𝑐�(︀𝑛⌋︀Ð� k�O�𝑐��
regarded as a map of simplicial k-modules. We thus find that

H𝑀�𝜇�𝑛,𝑛 �𝑀�𝑐�(︀𝑛⌋︀
the 𝑛’th suspension of 𝑀�𝑐� > sModk. So we deduce that H𝑀�𝜇� �𝑀�𝑐�(︀Y⌋︀ > Spectra. We will simply
write H𝑀�𝜇� � 𝑀�𝑐�, because it comes from 𝑀�𝑐� via the composition sModk Ð� Sp�sModk� Ð�
Spectra.

Let 𝑑 > 𝑆𝑒𝑞�𝐶� be another 𝐶-sequence and let 𝜈 > O�𝑑� be another operation of O. Recall by
construction that the data of an edge 𝜇 � 𝜈 in Tw�O� contains a morphism 𝑐 Ð� 𝑑 in IbO. This
determines the structure map

H𝑀�𝜇� �𝑀�𝑐�Ð�𝑀�𝑑� �H𝑀�𝜈�,
(here we note that 𝑀 carries an infinitesimal O-bimodule structure, i.e., a functor IbO

Ð� SetΔ).

Note that when M � Σª�k�O� @𝑀� and considering dO as an object in Op�C�k�� (instead of
Op�CE0�k��), then under the right Quillen equivalence TdO IbMod�dO� �

Ð� IbMod�dO�, the object
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NM > TdO IbMod�dO� corresponds to nothing but N�𝑀� > IbMod�dO�. Thus, with having the descrip-
tion of H𝑀 and Theorem 5.3.3.5, we obtain that:

Corollary 5.3.3.7. There is an isomorphism

HY

𝑄�O,H𝑀� �

Ð� HY

𝑄�dO,N�𝑀��
between Quillen cohomology of O > Op�SetΔ� with coefficients in H𝑀 � Tw�O�Ð� Spectra and Quillen
cohomology of dO > Op�C�k�� with coefficients in N�𝑀� > IbMod�dO�.

For example, we let O � Eª the little ª-cubes operad and let𝑀 � k�Eª� regarded as an infinitesimal
bimodule over itself. In this case, H𝑀 � Tw�Eª� Ð� Spectra is weakly equivalent to the constant
functor with value k and N�𝑀� � d Eª. Combining the above one with Corollary 4.3.0.8, we have the
following.

Corollary 5.3.3.8. Quillen cohomology of d Eª > Op�C�k�� with coefficients in itself vanishes.

For another example, we consider the case O � A𝑠𝑠 the associative operad. Let 𝐴 > sModk be
a discrete monoid. Recall that the endomorphism operad End𝐴 is given by setting End𝐴�𝑛� �

MapsModk
�𝐴a𝑛,𝐴� with the composition and symmetric action respectively induced by substitution

and permutation of the tensor factors. There is a map of operads k�A𝑠𝑠� Ð� End𝐴 classifying the
k�A𝑠𝑠�-algebra structure of 𝐴. We consider End𝐴 as an object of IbMod�k�A𝑠𝑠�� via that map. By
Corollary 5.3.3.7 we have an isomorphism

HY

𝑄�A𝑠𝑠;HEnd𝐴
� �

Ð� HY

𝑄�dA𝑠𝑠; End𝐴�
between Quillen cohomology of A𝑠𝑠 > Op�SetΔ� with coefficients in HEnd𝐴

and Quillen cohomology
of the dg associative operad dA𝑠𝑠 (considered as an object of Op�C�k��) with coefficients in End𝐴.
Here we note that since 𝐴 is discrete, the normalized complex functor sModk Ð� C�k� preserves
the construction of the endomorphism operad. Following Computations 5.3.3.6, HEnd𝐴

is given by
HEnd𝐴

�(︀𝑛⌋︀� � MapModk
�𝐴a𝑛,𝐴� and furthermore, when considered as a cosimplicial k-module, HEnd𝐴

exhibits the Hochschild cochain complex of 𝐴. Using the long exact sequence of Corollary 4.3.0.7,
we get an isomorphism H𝑛

𝑄�dA𝑠𝑠; End𝐴� � H H𝑛�2�𝐴� for each 𝑛 C 0. Around the degree -1, the long
exact sequence takes the form

0Ð� 𝑍�𝐴�Ð� 𝐴Ð� H�1
𝑄 �dA𝑠𝑠; End𝐴�Ð� H H1�𝐴�Ð� 0

where 𝑍�𝐴� � H H0�𝐴� is the center of 𝐴. Recall that H H1�𝐴� is given by Der�𝐴,𝐴�⇑ Ider�𝐴,𝐴� the
module of derivations modulo the inner derivations. This implies that H�1

𝑄 �dA𝑠𝑠; End𝐴� � Der�𝐴,𝐴�,
because Ider�𝐴,𝐴� agrees with the quotient 𝐴⇑𝑍�𝐴�. In summary, we obtain that:

Corollary 5.3.3.9. Quillen cohomology of the dg associative operad with coefficients in End𝐴 is given
by

H𝑛
𝑄�dA𝑠𝑠; End𝐴� �

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

0 if 𝑛 D �2 ,
Der�𝐴,𝐴� if 𝑛 � �1 ,
H H𝑛�2�𝐴� otherwise .

Consequently, HY

𝑄�dA𝑠𝑠; End𝐴� is (up to a shift) isomorphic to Quillen cohomology of 𝐴 as an asso-
ciative algebra with coefficients in itself (cf. [7], Example 3.2.12).
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5.4 Deformation theory and Quillen cohomology

Our main purpose in this section is to establish the relation between deformation theory and Quillen
cohomology.

We will denote by CAlgaug the category of commutative monoids in CC0�k� equipped with a map to k.
Alternatively, CAlgaug

� Algaug
C𝑜𝑚�CC0�k�� the augmented category of algebras over C𝑜𝑚 > Op�CC0�k��.

We endow CAlgaug with the projective transferred model structure. Then the stabilization Sp�CAlgaug�
exists (at least) as a semi model category (cf. Section 2.2).

For each 𝑅 > CAlgaug, we denote by 𝜋𝑛�𝑅� the 𝑛’th homology group of the underlying complex of
𝑅. Recall by definition that an augmented commutative algebra 𝜀 � 𝑅 Ð� k is said to be artinian if
the underlying complex of 𝑅 is finite dimensional and such that the map 𝜋0�𝜀� � 𝜋0�𝑅� Ð� 𝜋0�k� � k
exhibits 𝜋0�𝑅� as a local k-algebra (i.e. the kernel of 𝜋0�𝜀� is the unique maximal ideal of 𝜋0�𝑅�). We
will denote by CAlgart

b CAlgaug the full subcategory spanned by artinian algebras. Furthermore, we
abuse the notation to write Sp�CAlgart� standing for the full subcategory of Sp�CAlgaug� spanned by
the spectrum objects 𝑋Y,Y � N �NÐ� CAlgaug whose degrees are all artinian.

On other hand, we let ModCat denote the category whose objects are model categories and whose
morphisms are Quillen adjunctions with the sources and targets being those of the left Quillen functors.
We are interested in functors F � CAlgart

Ð� ModCat. By convention, for each map 𝑓 � 𝑅 � 𝑆 in
CAlgart, we will write 𝑓! � F�𝑅�Ð@BÐ F�𝑆� � 𝑓� standing for the image of 𝑓 under the functor F.

As the first step, we propose the notion of space of deformations of a given object 𝑋 > F�k� over
some 𝑅 > CAlgart, denoted by Def�𝑋,𝑅�, with F being a functor CAlgart

Ð� ModCat. To make this
well-defined, the functor F is required to be a formal moduli context (cf. Definition 5.4.1.2) so that
the functor 𝑅 ( Def�𝑋,𝑅� forms a formal moduli problem in the Lurie’s sense [5] (cf. Proposition
5.4.1.4). For the main purpose, we will show that Quillen cohomology of 𝑋 classifies homotopy type of
its spaces of deformations. In the second subsection, we review some examples of interest.

5.4.1 Statements

We denote by S the ª-category of spaces and by CAlgart
ª the full ª-subcategory of CAlgaug

ª spanned
by artinian k-algebras.

Definition 5.4.1.1. ([5]) A formal moduli problem is a functor 𝐹 � CAlgart
ª Ð� S satisfying that

𝐹 �k� is contractible and that, if 𝜎 is a Cartesian square of the form

𝑅 //

��

𝑆

��

𝑇 // 𝑈

such that the induced maps 𝜋0�𝑆�Ð� 𝜋0�𝑈� and 𝜋0�𝑆�Ð� 𝜋0�𝑈� are surjective, then 𝐹 �𝜎� is Cartesian
as well.

Definition 5.4.1.2. A formal moduli context is a functor F � CAlgart
Ð� ModCat satisfying the

following properties:

(1) F sends weak equivalences in CAlgart to Quillen equivalences and satisfies that for every morphism
𝑓 � 𝑅 Ð� 𝑆 in CAlgart the right adjoint functor 𝑓� � F�𝑆�Ð� F�𝑅� preserves weak equivalences.
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(2) For every homotopy Cartesian square
𝑅 //

��

𝑆

��

𝑇 // 𝑈

in CAlgart such that the maps 𝜋0�𝑆� Ð� 𝜋0�𝑈� and 𝜋0�𝑇 � Ð� 𝜋0�𝑈� are surjective, the corre-
sponding diagram

F�𝑅� //

��

F�𝑆�
��

F�𝑇 � // F�𝑈�
of model categories is homotopy Cartesian (in the sense of Definition B.0.0.1).

Definition 5.4.1.3. Suppose given a formal moduli context F � CAlgart
Ð�ModCat. Let 𝑋 > F�k� be

a fibrant object and let 𝑅 be an object of CAlgart equipped with the augmentation map 𝜀 � 𝑅 Ð� k.

1. A deformation of 𝑋 over 𝑅 is defined to be a pair �𝑌, 𝜂� with 𝑌 > F�𝑅� being cofibrant and
𝜂 � 𝜀!𝑌

�

Ð� 𝑋 being a weak equivalence.

2. If �𝑌, 𝜂� and �𝑌 �, 𝜂�� are two deformations of 𝑋 over 𝑅 then an equivalence from �𝑌, 𝜂� to �𝑌 �, 𝜂��
is a weak equivalence 𝑌 �

Ð� 𝑌 � compatible with the structure maps 𝜂 and 𝜂�.

3. The space of deformations of 𝑋 over 𝑅, denoted by Def�𝑋,𝑅�, is defined to be the Kan
replacement of the nerve of the category whose objects are deformations of 𝑋 over 𝑅 and whose
morphisms are equivalences of deformations. We will consider Def�𝑋,𝑅� as a pointed space whose
base point is the trivial deformation �𝑢!𝑋,𝜂� > Def�𝑋,𝑅� where 𝑢 � k� 𝑅 is the unit of 𝑅 and
𝜂 � 𝜀!𝑢!𝑋

�

Ð� 𝑋 is the natural isomorphism.

For each ª-category C, we denote by C� the maximal ª-subgroupoid of C. Explicitly, C� is the
simplicial subset of C such that a simplex 𝜎 > C is belong to C� if and only if every edge of 𝜎 is an
equivalence. It was known that the assignment C( C� determines an ª-categorical right adjoint from
ª-categories to ª-groupoids (cf. [4]).

The main interest in the notion of a formal moduli context is that it leads to a formal moduli
problem:

Proposition 5.4.1.4. Let F � CAlgart
Ð� ModCat be a formal moduli context and let 𝑋 > F�k� be a

fibrant object. Then the functor 𝑅 ( Def�𝑋,𝑅� is a formal moduli problem.

Proof. We have to verify that Def�𝑋,k� is weakly contractible and that F preserves the type of Cartesian
squares appearing in Definition 5.4.1.1(2).

For the first claim, note first that Def�𝑋,k� is (Kan replacement) of the nerve of the category whose
objects are cofibrant replacements of 𝑋. According to [[46], Theorem 14.6.2], the latter is indeed weakly
contractible.

For each 𝑅 > CAlgart, the map 𝜀 � 𝑅 � k induces Ç𝜀! � F�𝑅��ª Ð� F�k��ª. We may identify Def�𝑋,𝑅�
to the homotopy pullback

Def�𝑋,𝑅� � F�𝑅��ª �
h
F�k��

ª
�F�k��ª�⇑𝑋 ,
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(this follows from the fact that section model categories have the right type as discussed in Appendix B).
In particular, Def�𝑋,𝑅� is in fact weakly equivalent to the homotopy fiber of the map Ç𝜀! � F�𝑅��ª Ð�
F�k��ª over the object 𝑋.

Now, consider a homotopy Cartesian square

𝑅 //

��

𝑆

��

𝑇 // 𝑈

in CAlgart such that the maps 𝜋0�𝑆� Ð� 𝜋0�𝑈� and 𝜋0�𝑇 � Ð� 𝜋0�𝑈� are surjective. By assumption,
there is a homotopy Cartesian square of model categories

F�𝑅� //

��

F�𝑆�
��

F�𝑇 � // F�𝑈�
By Remark B.0.0.2, this induces a homotopy Cartesian square of the underlying ª-categories and hence,
we obtain a homotopy Cartesian square of ª-groupoids

F�𝑅��ª //

��

F�𝑆��ª
��

F�𝑇 ��ª // F�𝑈��ª

(5.4.1.1)

By the above paragraph, we get a homotopy Cartesian square

Def�𝑋,𝑅� //

��

Def�𝑋,𝑆�
��

Def�𝑋,𝑇 � // Def�𝑋,𝑈�
as desired.

Definition 5.4.1.5. Let F � CAlgart
Ð�ModCat be a formal moduli context, let 𝑋 > F�k� be a fibrant

object and 𝑀 > Sp�CAlgart� an Ω-spectrum. Then Ωª𝑀 Ð� k is an artinian k-algebra. We will call
the ª-groupoid Def�𝑋,𝑀� �� Def�𝑋,Ωª𝑀� the space of first order deformations of 𝑋 in direction
𝑀 .

To state our main theorem we will need the following construction:

Definition 5.4.1.6. Let F � CAlgart
Ð� ModCat be a formal moduli context and let 𝑋 > F�k� be

an object such that the tangent category T𝑋F�k� exists (at least) as a semi model category. Given a
spectrum object 𝑀 � N�NÐ� CAlgart, we will denote by 𝑀�𝑋� > T𝑋F�k� the spectrum object defined
as

𝑀�𝑋�𝑛,𝑚 � 𝑢�𝑛,𝑚�𝑢𝑛,𝑚�!𝑋 > F�k�,
where 𝑢𝑛,𝑚 � kÐ�𝑀𝑛,𝑚 is the unit of 𝑀𝑛,𝑚 > CAlgart.

Lemma 5.4.1.7. Suppose further that 𝑋 > F�k� is cofibrant and that 𝑀 > Sp�CAlgart� is an Ω-spectrum.
Then 𝑀�𝑋� is an Ω-spectrum in T𝑋F�k�.
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Proof. We first show that 𝑀�𝑋� is a prespectrum. For any given pair �𝑛,𝑚� with 𝑛 x 𝑚, we have to
prove that the structure map 𝑋 Ð� 𝑢�𝑛,𝑚�𝑢𝑛,𝑚�!𝑋 is a weak equivalence. Since 𝑀 is in particular a
prespectrum, the unit map 𝑢𝑛,𝑚 � k Ð�𝑀𝑛,𝑚 is a weak equivalence. Furthermore, since F is a formal
moduli context, the adjunction �𝑢𝑛,𝑚�! � F�k�Ð@BÐ F�𝑀𝑛,𝑚� � �𝑢𝑛,𝑚�� is a Quillen equivalence such that
�𝑢𝑛,𝑚�� preserves weak equivalences. This fact, together with the cofibrancy of 𝑋, proves that the map
𝑋 Ð� 𝑢�𝑛,𝑚�𝑢𝑛,𝑚�!𝑋 is indeed a weak equivalence.

It remains to show that for every 𝑛 C 0 the square

𝑢�𝑛,𝑛�𝑢𝑛,𝑛�!𝑋 //

��

𝑢�𝑛,𝑛�1�𝑢𝑛,𝑛�1�!𝑋

��

𝑢�𝑛�1,𝑛�𝑢𝑛�1,𝑛�!𝑋 // 𝑢�𝑛�1,𝑛�1�𝑢𝑛�1,𝑛�1�!𝑋

(5.4.1.2)

is homotopy Cartesian in F�k�. Given 𝑖, 𝑗 > �𝑛,𝑛 � 1�, we write 𝜙𝑖,𝑗 � 𝑀𝑛,𝑛 Ð� 𝑀𝑖,𝑗 standing for the
map induced by the unique map �𝑛,𝑛� Ð� �𝑖, 𝑗� in N � N. Then we note that 𝑢𝑖,𝑗 � 𝜙𝑖,𝑗 X 𝑢𝑛,𝑛 and
therefore, 𝑢�𝑖,𝑗 � 𝑢�𝑛,𝑛 X𝜙�𝑖,𝑗 while �𝑢𝑖,𝑗�! � �𝜙𝑖,𝑗�! X �𝑢𝑛,𝑛�!. Consequently, the square (5.4.1.2) agrees with
the image through 𝑢�𝑛,𝑛 of the following square

𝑋 � //

��

𝜙�𝑛,𝑛�1�𝜙𝑛,𝑛�1�!𝑋
�

��

𝜙�𝑛�1,𝑛�𝜙𝑛�1,𝑛�!𝑋
� // 𝜙�𝑛�1,𝑛�1�𝜙𝑛�1,𝑛�1�!𝑋

�

(5.4.1.3)

where 𝑋 �
�� �𝑢𝑛,𝑛�!𝑋. So we just need to verify that the latter is a homotopy Cartesian square in

F�𝑀𝑛,𝑛�. By assumption, for every 𝑛 E 0 the square

𝑀𝑛,𝑛
//

��

𝑀𝑛,𝑛�1

��

𝑀𝑛�1,𝑛 //𝑀𝑛�1,𝑛�1

(5.4.1.4)

is homotopy Cartesian in CAlgart and such that 𝑀𝑛,𝑛�1 � 𝑀𝑛�1,𝑛 � k. Observe that Sp�CAlgaug� def
�

Sp�Algaug
C𝑜𝑚�CC0�k��� is equivalent to the stabilization Sp�Algaug

C𝑜𝑚�C�k���, (these two are both equivalent
to C�k�), and hence we can assume that 𝑀 comes from an Ω-spectrum in Sp�Algaug

C𝑜𝑚�C�k���. In
particular, the underlying square of chain complexes of (5.4.1.4) is homotopy coCartesian. Moreover,
since 𝑀𝑛,𝑛 is artinian, there exists a (connective) chain complex 𝑁 such that the underlying complex
of 𝑀𝑛,𝑛 factors as 𝑀𝑛,𝑛 � k ` 𝑁 . We thus find that the underlying complex of 𝑀𝑛�1,𝑛�1 is weakly
equivalent to k ` 𝑁(︀1⌋︀. This implies that the maps 𝑀𝑛,𝑛�1 Ð� 𝑀𝑛�1,𝑛�1 and 𝑀𝑛�1,𝑛 Ð� 𝑀𝑛�1,𝑛�1
induce the isomorphisms on 𝜋0. Now, since F is a formal moduli context, we get a homotopy Cartesian
square of model categories

F�𝑀𝑛,𝑛� //

��

F�𝑀𝑛,𝑛�1�
��

F�𝑀𝑛�1,𝑛� // F�𝑀𝑛�1,𝑛�1�
Finally, we deduce by Remark B.0.0.4 that the square (5.4.1.3) is indeed homotopy Cartesian.

We are now in position to prove the main theorem of this section:
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Theorem 5.4.1.8. Let F � CAlgart
Ð� ModCat be a formal moduli context and let 𝑋 > F�k� be a

bifibrant object such that the tangent category T𝑋F�k� exists. Moreover, let 𝑀 > Sp�CAlgart� be an Ω-
spectrum. Then Def�𝑋,𝑀� is weakly equivalent to the derived mapping space Maph

F�k�⇑𝑋
�𝑋,Ωª�1𝑀�𝑋��.

In particular, we have a canonical isomorphism

𝜋0�Def�𝑋,𝑀�� � H1
Q�𝑋,𝑀�𝑋��.

Moreover, the 𝑛’th homotopy group 𝜋𝑛�Def�𝑋,𝑀�,�� is isomorphic to H1�𝑛
Q �𝑋,𝑀�𝑋��, where � refers

to the basepoint �𝑢!𝑋,𝜂� mentioned in Definition 5.4.1.3(iii).

Proof. Note first that 𝑀1,0 � 𝑀0,1 � k, 𝑀0,0 � Ωª𝑀 and 𝑀1,1 � Ωª𝑀(︀1⌋︀. We will simply denote by
𝑢𝑀 � kÐ� Ωª𝑀(︀1⌋︀ the unit of Ωª𝑀(︀1⌋︀ and by 𝜀𝑀 � Ωª𝑀(︀1⌋︀Ð� k the augmentation map. As in the
proof of Lemma 5.4.1.7 , there is a homotopy Cartesian square of model categories

F�Ωª𝑀� //

��

F�k�
��

F�k� // F�Ωª𝑀(︀1⌋︀�
As in the proof of Proposition 5.4.1.4, the latter induces a homotopy Cartesian square of the associated
ª-groupoids

F�Ωª𝑀��ª //

��

F�k��ª
�Ç𝑢𝑀�!
��

F�k��ª �Ç𝑢𝑀�!
// F�Ωª𝑀(︀1⌋︀��ª

Since Def�𝑋,𝑀� is equivalent to the homotopy fiber of the left vertical map over 𝑋 > F�k��ª (see the
proof of Proposition 5.4.1.4), it is also equivalent to the homotopy fiber of the right vertical map over
�Ç𝑢𝑀�!𝑋. Consider a diagram of ª-groupoids of the form

�
𝑋
//

𝜄

��

F�k��ª
�Ç𝑢𝑀�!
��

𝑍 //

��

F�Ωª𝑀��ª
�Ç𝜀𝑀�!
��

�
𝑋
// F�k��ª

where 𝑍 is taken such that the bottom square is homotopy Cartesian. In particular, the top square is
homotopy Cartesian as well. Hence we may identify Def�𝑋,𝑀� to the loop space Ω𝜄���𝑍. By this way,
we find that Def�𝑋,𝑀� is weakly equivalent to the homotopy fiber of the map between loop spaces:

Ω�𝑢𝑀�!𝑋 F�Ωª𝑀��ª Ð� Ω𝑋 F�k��ª
over the constant loop at 𝑋, which is identified to the homotopy fiber of the map

Maph
F�Ωª𝑀(︀1⌋︀���𝑢𝑀�!𝑋, �𝑢𝑀�!𝑋�Ð�Maph

F�k��𝑋,𝑋�
over Id𝑋 . By the Quillen adjunction �𝑢𝑀�! Ú 𝑢

�

𝑀 , the latter is weakly equivalent to the map

Maph
F�k��𝑋,𝑢�𝑀�𝑢𝑀�!𝑋�Ð�Maph

F�k��𝑋,𝑋� (5.4.1.5)

Now, since 𝑋 is fibrant, the model category F�k�⇑𝑋 has the right type in the sense that, for every weak
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equivalence 𝑌 �

Ð� 𝑋 with 𝑌 being also fibrant, the induced adjunction F�k�⇑𝑌 Ð@BÐ F�k�⇑𝑋 is a Quillen
equivalence. This fact proves that the homotopy fiber of the map (5.4.1.5) over Id𝑋 is weakly equivalent
to the derived mapping space

Maph
F�k�⇑𝑋

�𝑋,𝑢�𝑀�𝑢𝑀�!𝑋� � Maph
F�k�⇑𝑋

�𝑋,Ωª�1𝑀�𝑋��.
We just showed that Def�𝑋,𝑀� is weakly equivalent to MapF�k�⇑𝑋

�𝑋,Ωª�1𝑀�𝑋�� and moreover, this
equivalence identifies � � �𝑢!𝑋,𝜂� to the unit map 𝜇 � 𝑋 Ð� Ωª�1𝑀�𝑋� � 𝑢�𝑀�𝑢𝑀�!𝑋. Now, the
Quillen adjunction Σª

� � F�k�⇑𝑋 Ð@BÐ T𝑋F�k� � Ωª
� proves the existence of a canonical weak equivalence

Maph
F�k�⇑𝑋

�𝑋,Ωª�1𝑀�𝑋�� � Maph
T𝑋F�k��L𝑋 ,𝑀�𝑋�(︀1⌋︀�,

which identifies 𝜇 to the zero map L𝑋
0
Ð�𝑀�𝑋�(︀1⌋︀. Finally, by the definition of Quillen cohomology

group, we deduce that

H1�𝑛
Q �𝑋,𝑀�𝑋�� � 𝜋𝑛�MapT𝑋F�k��𝐿𝑋 ,𝑀�𝑋�(︀1⌋︀�, 0� � 𝜋𝑛�Def�𝑋,𝑀�,��.

Remark 5.4.1.9. If 𝑀 � N � N Ð� CAlgart is an Ω-spectrum such that for every �𝑛,𝑚� > N � N the
induced left Quillen functor �𝑢𝑛,𝑚�! � F�k� Ð� F�𝑀𝑛,𝑚� preserves weak equivalences, then following
the proof of Lemma 5.4.1.7, 𝑀�𝑋� is automatically an Ω-spectrum, even when 𝑋 is not cofibrant.
In this situation, the statement of Theorem 5.4.1.8 remains valid without necessarily requiring 𝑋 to
be cofibrant. In fact, this is usually the case. For instance, all the functors F � CAlgart

Ð� ModCat
appearing in the next subsection satisfy the property that, for every 𝑅 > CAlgart with the unit 𝑢 � k� 𝑅,
the induced functor 𝑢! � F�k�Ð� F�𝑅� preserves weak equivalences.

5.4.2 Examples

In this subsection, we describe some interesting examples of formal moduli contexts. Repeatedly, the
work requires verifying the two conditions of Definition 5.4.1.2.
Proposition 5.4.2.1. Let F � CAlgart

Ð� ModCat be the functor F�𝑅� � Mod𝑅 �� Mod𝑅�CC0�k��.
Then F is a formal moduli context.
Proof. Let Ç𝑅 be the category with a single object and with 𝑅 as its mapping object. Note that the
category Mod𝑅 can be identified with Fun�Ç𝑅,CC0�k�� the category of CC0�k�-valued enriched functors
on Ç𝑅. Using this identification, we can readily verify the first condition of Definition 5.4.1.2 on F.

We shall now verify the second condition of Definition 5.4.1.2 on F. Let

𝑅 //

��

𝑆

𝑝

��

𝑇
𝑞
// 𝑈

(5.4.2.1)

be a homotopy Cartesian square in CAlgart such that the maps 𝑝 and 𝑞 are surjective on 𝜋0. We have
to show that the corresponding square of model categories

Mod𝑅 //

��

Mod𝑆

��

Mod𝑇 // Mod𝑈

(5.4.2.2)
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is homotopy Cartesian in the sense of Definition B.0.0.1. Let F� � (︀1⌋︀ � (︀1⌋︀ Ð� ModCat represent the
square (5.4.2.2). Let I b (︀1⌋︀ � (︀1⌋︀ denote the full subcategory spanned by the vertices �0, 1�, �1, 0� and
�1, 1�. We need to show that the Quillen adjunction Lcoc

� Mod𝑅 Ð@BÐ Seccoc�F�⋃︀I� � Rcoc is a Quillen
equivalence. For this, it suffices to show that RRcoc detects weak equivalences (between cofibrant
objects) and that for every cofibrant object 𝑋 > Mod𝑅 the derived unit map 𝑋 Ð� RRcocLcoc�𝑋� is a
weak equivalence.

Let us start with the second claim. By Remark B.0.0.4 we just need to verify that the square

𝑋 //

��

𝑋 a𝑅 𝑆

��

𝑋 a𝑅 𝑇 // 𝑋 a𝑅 𝑈

(5.4.2.3)

is homotopy Cartesian in Mod𝑅. Consider the functor 𝑋 a𝑅 ��� � Mod𝑅 Ð�Mod𝑅. Firstly, since 𝑋 is
cofibrant, this functor preserves weak equivalences. Indeed, we may identify 𝑋 a𝑅 ��� to the functor
𝑋 XÇ𝑅 ��� � AlgÇ𝑅�CC0�k��Ð� AlgÇ𝑅�CC0�k�� with Ç𝑅 regarded as an operad in CC0�k�. The latter indeed
preserves weak equivalences (cf., e.g., [[13], Theorem 15.1.A]). The functor 𝑋 a𝑅 ��� is a left Quillen
functor preserving weak equivalences, it hence preserves homotopy coCartesian squares.

Consider (5.4.2.1) as a homotopy Cartesian square in Mod𝑅. We are showing that this square is also
homotopy coCartesian in Mod𝑅. Since the embedding functor

𝜄𝑅 � Mod𝑅
def
� Mod𝑅�CC0�k��Ð�Mod𝑅�C�k��

detects homotopy coCartesian squares, it suffices to show that (5.4.2.1) is homotopy coCartesian when
regarded as a square in Mod𝑅�C�k��. But this is equivalent to saying that (5.4.2.1) is homotopy
Cartesian in Mod𝑅�C�k��, since Mod𝑅�C�k�� is stable. The latter follows from the fact that a map
in Mod𝑅�CC0�k�� is surjective if and only if it is surjective on every positive degree and in addition,
surjective on 𝜋0. We just showed that (5.4.2.1) is homotopy coCartesian in Mod𝑅. Combined with
the above paragraph, we get that (5.4.2.3) is homotopy coCartesian. Finally, since the functor 𝜄𝑅 also
detects homotopy Cartesian squares, the square (5.4.2.3) is indeed homotopy Cartesian as expected.

Let us now show that RRcoc
� Seccoc�F�⋃︀I� Ð� Mod𝑅 detects weak equivalences between cofibrant

objects. Note first that a map in Seccoc�F�⋃︀I� is a weak equivalence if and only if its cofiber is a weak
0-section (i.e. the section whose coordinates are weak 0-objects). Indeed, the property of being a
weak equivalence and the formation of homotopy cofibers are both jointly created by the projections
Seccoc�F�⋃︀I� Ð� Mod𝑆 , Seccoc�F�⋃︀I� Ð� Mod𝑇 and Seccoc�F�⋃︀I� Ð� Mod𝑈 , and the characterization
of weak equivalences via cofibers holds in any module category in CC0�k�. It will hence suffice to
show that RRcoc detects weak 0-objects. By definition, the data of a cofibrant section 𝑠 > Seccoc�F�⋃︀I�
consists of a triple �𝑋𝑆 ,𝑋𝑇 ,𝑋𝑈� > Mod𝑆 �Mod𝑇 �Mod𝑈 of cofibrant objects together with the maps
𝜙 � 𝑋𝑇 a𝑇 𝑈 Ð� 𝑋𝑈 and 𝜓 � 𝑋𝑆 a𝑆 𝑈 Ð� 𝑋𝑈 in Mod𝑈 . When 𝑠 is in addition fibrant, the maps 𝜙 and
𝜓 are weak equivalences. In summary, given such a bifibrant section 𝑠 � �𝑋𝑆 ,𝑋𝑇 ,𝑋𝑈� such that the
homotopy pullback 𝑋𝑇 �

h
𝑋𝑈

𝑋𝑆 is an acyclic complex, we need to show that each of 𝑋𝑆 ,𝑋𝑇 and 𝑋𝑈 is
an acyclic complex as well.

Observe first that since 𝜋𝑘�𝑋𝑇 �
h
𝑋𝑈

𝑋𝑆� � 0, the induced map 𝑓𝑘 � 𝜋𝑘�𝑋𝑇 �` 𝜋𝑘�𝑋𝑆� Ð� 𝜋𝑘�𝑋𝑈� is
injective for every 𝑘 E 0. Let us assume that 𝑋𝑇 is acyclic. By the weak equivalence 𝜙 � 𝑋𝑇a𝑇 𝑈 Ð� 𝑋𝑈 ,
we get that 𝑋𝑈 is acyclic, and hence 𝑋𝑆 is acyclic as well, by the injectivity of the maps 𝑓𝑘’s. By
symmetricity, we just need to verify that either 𝑋𝑇 or 𝑋𝑆 is acyclic. Assume by contradiction that both
𝑋𝑇 and 𝑋𝑆 are not so. Let 𝑘 C 0 be the smallest integer such that at least one of 𝜋𝑘�𝑋𝑇 �, 𝜋𝑘�𝑋𝑆� is non-
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trivial. Then we have 𝜋𝑘�𝑋𝑇a𝑇 𝑈� � 𝜋𝑘�𝑋𝑇 �a𝜋0�𝑇�𝜋0�𝑈� . In particular, the map 𝜋𝑘�𝑋𝑇 �Ð� 𝜋𝑘�𝑋𝑈�,
which is the same as the composition

𝜋𝑘�𝑋𝑇 �Ð� 𝜋𝑘�𝑋𝑇 �a𝜋0�𝑇� 𝜋0�𝑈� 𝜋𝑘�𝜙�
Ð�
�

𝜋𝑘�𝑋𝑈�
is surjective. By symmetricity, the map 𝜋𝑘�𝑋𝑆� Ð� 𝜋𝑘�𝑋𝑈� is as well surjective. Combining these
observations with the injectivity of 𝑓𝑘, we obtain that 𝜋𝑘�𝑋𝑇 � � 𝜋𝑘�𝑋𝑆� � 0. But this is a contradiction.

Proposition 5.4.2.2. Let P be an operad in CC0�k�. Let F � CAlgart
Ð� ModCat be the functor

F�𝑅� � AlgP�Mod𝑅�. Then F is a formal moduli context.

Proof. Each map 𝑅 � 𝑅� in CAlgart gives rise to a symmetric monoidal Quillen adjunction Mod𝑅 Ð@BÐ
Mod𝑅� , which then induces a Quillen adjunction AlgP�Mod𝑅� Ð@BÐ AlgP�Mod𝑅��. The right adjoint
functor is simply the restriction functor and hence, preserves weak equivalences. Moreover, as in the
above proof, each weak equivalence 𝑅 �

Ð� 𝑅� gives rise to a symmetric monoidal Quillen equivalence
Mod𝑅

�
Ð@
BÐ

Mod𝑅� , which hence induces a Quillen equivalence AlgP�Mod𝑅� �
Ð@
BÐ

AlgP�Mod𝑅��. We just
verified the first condition of Definition 5.4.1.2 on F.

Now, observe that for each map 𝑓 � 𝑅 � 𝑆 in CAlgart the induced Quillen adjunction

𝑓! � AlgP�Mod𝑅�Ð@BÐ AlgP�Mod𝑆� � 𝑓�
is given on the underlying modules by the same adjunction 𝑓! � Mod𝑅 Ð@BÐ Mod𝑆 � 𝑓�. In other words,
both the square

AlgP�Mod𝑆� 𝑓�
//

��

AlgP�Mod𝑅�
��

Mod𝑆
𝑓�

// Mod𝑅

and the square
AlgP�Mod𝑅� 𝑓!

//

��

AlgP�Mod𝑆�
��

Mod𝑅
𝑓!

// Mod𝑆

commute. These facts allow us to inherit the proof of Proposition 5.4.2.1 for verifying the second
condition of Definition 5.4.1.2 on F.

Proposition 5.4.2.3. Let F � CAlgart
Ð� ModCat be the functor F�𝑅� � Cat�Mod𝑅�. Then F is a

formal moduli context.

Let F � C�D be a functor between Mod𝑅-enriched categories. We will say that F is an isofibration
if the induced functor Ho�F� � Ho�C�Ð� Ho�D� between homotopy categories is an isofibration in the
classical sense. By the free-forgetful adjunction CC0�k� Ð@BÐ Mod𝑅, we see that the homotopy category
of a Mod𝑅-enriched category is the same as that of its underlying CC0�k�-enriched category. Moreover,
note that a morphism 𝑓 � 𝑥 � 𝑦 in C performs an isomorphism in Ho�C� if and only if for every object
𝑧 > Ob�C� the induced map 𝑓 X ��� � MapC�𝑧, 𝑥� Ð� MapC�𝑧, 𝑦� is a weak equivalence. The proof of
Proposition 5.4.2.3 will require the following lemma:

115



Lemma 5.4.2.4. Let 𝑝 � 𝑅 � 𝑆 be a map in CAlgart such that 𝜋0�𝑝� � 𝜋0�𝑅� Ð� 𝜋0�𝑆� is surjective
and let C be a levelwise cofibrant Mod𝑅-enriched category. Then the induced functor CÐ� Ca𝑅 𝑆 is an
isofibration of Mod𝑅-enriched categories (where C a𝑅 𝑆 � 𝑝�𝑝!C the category obtained by tensoring all
mapping objects with 𝑆 over 𝑅). More generally, given a sequence of maps 𝑅 Ð� 𝑆

𝑝
Ð� 𝑈 in CAlgart

such that 𝑝 induces a surjection on 𝜋0, then the induced functor Ca𝑅 𝑆 Ð� Ca𝑅 𝑈 is an isofibration of
Mod𝑅-enriched categories.

Proof. Unwinding definition, the functor Ho�C�Ð� Ho�Ca𝑅 𝑆� is the identity on objects and given on
hom-object by the map

𝜋0 MapC�𝑥, 𝑦�Ð� 𝜋0 MapC�𝑥, 𝑦�a𝜋0𝑅 𝜋0𝑆,

which can be identified to the projection

𝜋0 MapC�𝑥, 𝑦�Ð� 𝜋0 MapC�𝑥, 𝑦�⇑a�𝜋0 MapC�𝑥, 𝑦��
with a being the kernel of the surjection 𝜋0�𝑅� Ð� 𝜋0�𝑆�. So we just need to show that, for any
map 𝑓 � 𝑥 � 𝑦 in Ho�C�, if the corresponding map 𝑓 � 𝑥 � 𝑦 is an isomorphism in Ho�C a𝑅 𝑆�
then 𝑓 itself is one. For this, it suffices to show that for every object 𝑧 > Ob�C� the induced map
𝑓 X ��� � MapC�𝑧, 𝑥�Ð�MapC�𝑧, 𝑦� is a weak equivalence as soon as the map

MapC�𝑧, 𝑥�a𝑅 𝑆 Ð�MapC�𝑧, 𝑦�a𝑅 𝑆
is one. Note by assumption that the map 𝑓 X ��� goes between cofibrant 𝑅-modules, hence the functor
���a𝑅 𝑆 preserves the homotopy cofiber of 𝑓 X ���. So the problem is reduced to proving that for any
𝑀 > Mod𝑅, if 𝑀 a𝑅 𝑆 is acyclic then so is 𝑀 . Assume by contradiction that 𝑀 is not acyclic, and let
𝑘 C 0 be the smallest integer such that 𝜋𝑘𝑀 is non-trivial. We then have that

𝜋𝑘𝑀⇑a�𝜋𝑘𝑀� � 𝜋𝑘𝑀 a𝜋0𝑅 𝜋0𝑆 � 𝜋𝑘�𝑀 a𝑅 𝑆� � 0.

But the equation 𝜋𝑘𝑀⇑a�𝜋𝑘𝑀� � 0 implies the contradiction that 𝜋𝑘𝑀 � 0, because every ideal of a
local artinian algebra is nilpotent. The second statement of the lemma is very similar.

Proof of Proposition 5.4.2.3. As in the previous proofs, it is straightforward to verify the first condition
of Definition 5.4.1.2 on F. For the second condition, we let

𝑅 //

��

𝑆

𝑝

��

𝑇 𝑞
// 𝑈

(5.4.2.4)

be a homotopy Cartesian square in CAlgart such that the maps 𝜋0�𝑝� � 𝜋0�𝑆� Ð� 𝜋0�𝑈� and 𝜋0�𝑞� �
𝜋0�𝑇 �Ð� 𝜋0�𝑈� are surjective. We need to show that the induced square of model categories

Cat�Mod𝑅� //

��

Cat�Mod𝑆�
𝑝!

��

Cat�Mod𝑇 � 𝑞!
// Cat�Mod𝑈�

(5.4.2.5)

is homotopy Cartesian in the sense of Definition B.0.0.1. Let F� � (︀1⌋︀ � (︀1⌋︀ Ð� ModCat represent
the square (5.4.2.5) and let I b (︀1⌋︀ � (︀1⌋︀ denote the full subcategory spanned by �0, 1�, �1, 0� and
�1, 1�. We need to show that the Quillen adjunction Lcoc

�Cat�Mod𝑅�Ð@BÐ Seccoc�F�⋃︀I� �Rcoc is a Quillen
equivalence. As in the proof of Proposition 5.4.2.1, we shall prove that Rcoc detects weak equivalences
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between bifibrant objects and that for every cofibrant object C > Cat�Mod𝑅� the derived unit map
CÐ� RRcocLcoc�C� is a weak equivalence.

Let us start with the second claim. By Remark B.0.0.4, we have to show that the induced square

C //

��

Ca𝑅 𝑆

��

Ca𝑅 𝑇 // Ca𝑅 𝑈

(5.4.2.6)

is homotopy Cartesian in Cat�Mod𝑅�. According to [[7], Lemma 3.1.11], we just need to verify that for
every pair 𝑥, 𝑦 > Ob�C� the induced square of mapping objects

MapC�𝑥, 𝑦� //

��

MapC�𝑥, 𝑦�a𝑅 𝑆
��

MapC�𝑥, 𝑦�a𝑅 𝑇 // MapC�𝑥, 𝑦�a𝑅 𝑈
is homotopy Cartesian, and that the maps Ca𝑅𝑇 Ð� Ca𝑅𝑈 and Ca𝑅𝑆 Ð� Ca𝑅𝑈 are an isofibration.
The first condition was indicated in the proof of Proposition 5.4.2.1 while the second one follows by
Lemma 5.4.2.4.

We now show that Rcoc detects weak equivalences between bifibrant objects. Let 𝑓 � 𝑠 � 𝑠� be a
map between bifibrant objects in Seccoc�F�⋃︀I� such that Rcoc�𝑠� Ð� Rcoc�𝑠�� is a weak equivalence in
Cat�Mod𝑅�. We have to show that 𝑓 itself is a weak equivalence. By definition, 𝑠 is in particular a
coCartesian section, and hence the homotopy type of 𝑠�1, 1� is determined by either 𝑠�0, 1� or 𝑠�1, 0�
via (derived) tensoring. An analogue holds for 𝑠�. Therefore, it will suffice to show that the maps 𝑓0,1 �

𝑠�0, 1� Ð� 𝑠��0, 1� and 𝑓1,0 � 𝑠�1, 0� Ð� 𝑠��1, 0� are weak equivalences (in Cat�Mod𝑇 � and Cat�Mod𝑆�
respectively). By symmetricity, we just need to verify that 𝑓0,1 is a weak equivalence. We first show that
𝑓0,1 is fully-faithful. Let 𝑥, 𝑦 be two objects of 𝑠�0, 1� > Cat�Mod𝑇 � and let 𝑥�, 𝑦� denote their images
in 𝑠�1, 1� > Cat�Mod𝑈�. By assumption, the map 𝑠�1, 0� Ð� 𝑝�𝑠�1, 1� is a fibration (cf. Observation
B.0.0.3) and in particular, an isofibration; while its adjoint 𝑝!𝑠�1, 0� Ð� 𝑠�1, 1� is a weak equivalence
and in particular, is essentially surjective. These facts together prove that the map 𝑠�1, 0�Ð� 𝑝�𝑠�1, 1�
is surjective on objects. Let 𝑥��, 𝑦�� > 𝑠�1, 0� be objects which map to 𝑥�, 𝑦� > 𝑠�1, 1� respectively. Since
Rcoc�𝑠�Ð� Rcoc�𝑠�� is a weak equivalence, the map

Map𝑠�0,1��𝑥, 𝑦� �h
Map𝑠�1,1��𝑥

�,𝑦�� Map𝑠�1,0��𝑥��, 𝑦��� �

Ð�Map𝑠��0,1��𝑥, 𝑦� �h
Map𝑠��1,1��𝑥

�,𝑦�� Map𝑠��1,0��𝑥��, 𝑦���
is a weak equivalence in Mod𝑅. Following the proof of Proposition 5.4.2.1, the map Map𝑠�0,1��𝑥, 𝑦�Ð�
Map𝑠��0,1��𝑥, 𝑦� is a weak equivalence. We just verified that 𝑓0,1 is fully-faithful. It remains to prove
that it is essentially surjective. Let 𝑧 be an object of 𝑠��0, 1� > Cat�Mod𝑇 � and let 𝑧� denote its
image in 𝑠��1, 1�. As above, there exists an object 𝑧�� > 𝑠��1, 0� which maps to 𝑧�. We thus find an
object 𝜔 �� �𝑧, 𝑧�, 𝑧��� of Rcoc�𝑠�� � 𝑠��0, 1� �ℎ𝑠��1,1� 𝑠

��1, 0� in Cat�Mod𝑅�. Since Rcoc�𝑠� Ð� Rcoc�𝑠��
is essentially surjective, there exists an object 𝜔 > Rcoc�𝑠� whose image in Rcoc�𝑠�� is equivalent to 𝜔.
Now, we have a commutative square

Rcoc�𝑠� 𝜙
//

��

𝑠�1, 0�
𝑓0,1
��

Rcoc�𝑠��
𝜙�
// 𝑠��1, 0�

(5.4.2.7)
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in which the left vertical map takes 𝜔 > Rcoc�𝑠� to 𝜔 > Rcoc�𝑠�� (up to an equivalence) while the bottom
horizontal map takes 𝜔 to 𝑧. The commutativity of this square tells us that 𝑧 is equivalent to the image
under 𝑓0,1 of 𝜙�𝜔� > 𝑠�1, 0�. We just showed that 𝑓0,1 � 𝑠�0, 1� Ð� 𝑠��0, 1� is essentially surjective, as
expected.

Finally, the example that we really care about is the following:

Proposition 5.4.2.5. Let F � CAlgart
Ð� ModCat be the functor F�𝑅� � Op�Mod𝑅�. Then F is a

formal moduli context.

Proof. As before, it is straightforward to verify the first condition of Definition 5.4.1.2 on F. Verifying
the second condition on F will be mainly supported by the propositions 5.4.2.1 and 5.4.2.3. Let us pick
up the settings from the proofs of those. In brief, we have to show that the square of model categories

Op�Mod𝑅� //

��

Op�Mod𝑆�
𝑝!

��

Op�Mod𝑇 � 𝑞!
// Op�Mod𝑈�

(5.4.2.8)

is homotopy Cartesian. Again, we have to show that the adjunction

Lcoc
� Op�Mod𝑅�Ð@BÐ Seccoc�F�⋃︀I� � Rcoc

is a Quillen equivalence where F� � (︀1⌋︀ � (︀1⌋︀Ð�ModCat represents the square (5.4.2.8).
We first show that the derived unit map OÐ� RRcocLcoc�O� is a weak equivalence for every cofibrant

object O > Op�Mod𝑅�. By Remark B.0.0.4, this is equivalent to saying that the square

O //

��

Oa𝑅 𝑆

��

Oa𝑅 𝑇 // Oa𝑅 𝑈

(5.4.2.9)

is homotopy Cartesian in Op�Mod𝑅�. Following the proof of Lemma 3.2.1.3, we need to verify that the
induced square of underlying categories

O1 //

��

O1 a𝑅 𝑆

��

O1 a𝑅 𝑇 // O1 a𝑅 𝑈

is homotopy Cartesian in Cat�Mod𝑅� and that the induced squares of spaces of operations

O�𝑐1,�, 𝑐𝑛; 𝑐� //

��

O�𝑐1,�, 𝑐𝑛; 𝑐�a𝑅 𝑆
��

O�𝑐1,�, 𝑐𝑛; 𝑐�a𝑅 𝑇 // O�𝑐1,�, 𝑐𝑛; 𝑐�a𝑅 𝑈
are all homotopy Cartesian in Mod𝑅. The first square is homotopy Cartesian by the proof of Proposition
5.4.2.3 while the second one is so by the proof of Proposition 5.4.2.1.

It remains to check that Rcoc detects weak equivalences between bifibrant objects. Recall from
Remark 2.1.5.7 that a map between operads in Mod𝑅 is a weak equivalence if and only if the induced map
between underlying categories is one in Cat�Mod𝑅� and the induced maps between spaces of operations
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are a weak equivalence in Mod𝑅. So the expected property of Rcoc just follows by the fact that both the
functors RRcoc

� Seccoc�F�⋃︀I�Ð� Cat�Mod𝑅� (of Proposition 5.4.2.3) and RRcoc
� Seccoc�F�⋃︀I�Ð�Mod𝑅

(of Proposition 5.4.2.1) detect weak equivalences.

To end the chapter, we give an illustration concerning deformations of dg operads using the obtained
results. In particular, we are interested in the functor F � CAlgart

Ð�ModCat , 𝑅 ( Op�Mod𝑅� of the
above proposition.

Let 𝐴 > CC0�k� be a finite dimensional connective dg k-module. For each 𝑛 > N, the square-zero
extension k % 𝐴(︀𝑛⌋︀ of k by 𝐴(︀𝑛⌋︀ is an artinian algebra. Consider the Ω-spectrum 𝑀 > Sp�CAlgart�
with 𝑀𝑛,𝑛 � k % 𝐴(︀𝑛⌋︀ and 𝑀𝑛,𝑚 � k when 𝑛 x 𝑚. Let P be an operad in CC0�k�. Then the object
𝑀�P� > TP Op�CC0�k�� of Definition 5.4.1.6 is an Ω-spectrum (cf. Lemma 5.4.1.7 and Remark 5.4.1.9).
Concretely, we have for each 𝑛 > N that 𝑀�P�𝑛,𝑛 � P % �P a 𝐴(︀𝑛⌋︀� the square-zero extension of P by
Pa𝐴(︀𝑛⌋︀, where Pa𝐴(︀𝑛⌋︀ is regarded as an infinitesimal P-bimodule with

�Pa𝐴(︀𝑛⌋︀��𝑐1,�, 𝑐𝑟; 𝑐� � P�𝑐1,�, 𝑐𝑟; 𝑐�a𝐴(︀𝑛⌋︀
for every sequence �𝑐1,�, 𝑐𝑟; 𝑐� of colors of P (cf. §5.1). Note that if we regard P as an object of
Op�C�k�� (instead Op�CC0�k��), then under the right Quillen equivalence TP Op�C�k�� �

Ð� IbMod�P�
(cf. §5.1), 𝑀�P� corresponds to nothing but Pa𝐴. Theorem 5.4.1.8 hence tells us that:

(*) 𝜋0 Def�P,k%𝐴� � H1
Q�P,Pa𝐴� and 𝜋𝑛�Def�P,k%𝐴�,�� � H1�𝑛

Q �P,Pa𝐴� where HY

Q�P,Pa𝐴�
refers to the Quillen cohomology group of P (considered as an object in Op�C�k��) with coefficients in
Pa𝐴 > IbMod�P�.

In particular, when 𝐴 � k then Def�P,k % 𝐴� represents the space of deformations of P over the
algebra of dual numbers k(︀𝑡⌋︀⇑�𝑡2�. We hence get that the homotopy type of Def�P,k(︀𝑡⌋︀⇑�𝑡2�� is
classified by Quillen cohomology of P with coefficients in itself P > IbMod�P�.
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Appendix A

Semi model categories and their left

Bousfield localizations

We first recall briefly some basic facts involving semi model categories. For more details, we refer
the readers to [15, 16].

Definition A.0.0.1. ([16]) A semi model category is a bicomplete category M which is equipped with
three subcategories of weak equivalences W, fibrations F, and cofibrations C satisfying the following
axioms:
(SM 0) The initial object of M is cofibrant.
(SM 1) The 2-out-of-3 and retract axioms hold.
(SM 2) (i) Cofibrations have the left lifting property with respect to trivial fibrations; (ii) trivial cofi-
brations whose domain is cofibrant have the left lifting property with respect to fibrations.
(SM 3) (i) Every map in M can be functorially factored into a cofibration followed by a trivial fibration;
(ii) every map whose domain is cofibrant can be functorially factored into a trivial cofibration followed
by a fibration.
(SM 4) The fibrations are closed under pullbacks and transfinite (reverse) compositions.

Facts A.0.0.2. The following observations hold in a semi model category:
(1) The class of cofibrations (resp. trivial fibrations) is characterized by the left (resp. right) lifting
property with respect to the class of trivial fibrations (resp. cofibrations).
(2) A map with cofibrant domain is a trivial cofibration if and only if it has the left lifting property
with respect to the class of fibrations.
(3) The class of cofibrations is stable under pushouts and transfinite compositions.
(4) The class of trivial fibrations is stable under pullbacks and transfinite (reverse) compositions.

Proof. The same arguments as in the proof of [[35], Lemma 1.1.10] prove (1) and (2), while (3) and (4)
follow by (1).
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In a semi model category M, (resp. path) cylinder objects exist for every (resp. cofibrant) object.
Homotopy relations in M are then well behaved in the sense that: if 𝑋 is cofibrant and 𝑌 is bifibrant
then left and right homotopy coincide and are equivalence relations on Hom�𝑋,𝑌 �. Consequently, on
the full subcategory of bifibrant objects, denoted M𝑐𝑓 , the homotopy relation is an equivalence relation
and moreover, compatible with composition. One can then prove that there is a canonical isomorphism
M𝑐𝑓 ⇑� � Ho�M𝑐𝑓� and that the inclusion M𝑐𝑓 Ð� M induces an equivalence Ho�M𝑐𝑓� �

Ð� Ho�M�
between the associated homotopy categories. (cf. [16] for more details).

Definition A.0.0.3. An adjunction L � MÐ@
BÐN � R between semi model categories is called a Quillen

adjunction if the right adjoint R preserves fibrations and trivial fibrations.

Lemma A.0.0.4. (K. Brown’s lemma) Let F � MÐ� C be a functor where M is a semi model category
and C is a category equipped with a class of weak equivalences satisfying the 2-out-of-3 property. If F
sends trivial cofibrations between cofibrant objects to weak equivalences then F preserves weak equiv-
alences between cofibrant objects. Dually, if F sends trivial fibrations between fibrant objects to weak
equivalences then F preserves the weak equivalences whose domain is bifibrant and whose codomain is
fibrant.

Proof. The claims follow by the same arguments as in the proof of the (original) K. Brown’s lemma (cf.
[35]). Here we just note that, for the second claim, one would need a help of the axiom �SM 4�.
Facts A.0.0.5. Let L � MÐ@

BÐN � R be a Quillen adjunction between semi model categories.
(1) The left Quillen functor L preserves cofibrations, but preserves only trivial cofibrations whose domain
is cofibrant. Moreover, L preserves weak equivalences between cofibrant objects.
(2) The right Quillen functor R preserves weak equivalences between fibrant objects.
(3) The Quillen adjunction L Ú R induces an adjunction L � Ho�M� Ð@BÐ Ho�N� � R between the
associated homotopy categories.

Proof. (1) The first two claims follow by Facts A.0.0.2 (1, 2). The other follows by the K. Brown’s
lemma A.0.0.4.

(2) Let 𝑓 � 𝑋 �

Ð� 𝑌 be a weak equivalence between fibrant objects in N. By the axiom SM 3(i) we
can take a commutative square in N: Ç𝑋 //

Ç𝑓
��

𝑋

𝑓

��Ç𝑌 // 𝑌

such that the horizontal maps are trivial fibrations and the map Ç𝑓 is a weak equivalence between bifibrant
objects. By the “fibrant half” of the K. Brown’s lemma A.0.0.4 the map R�Ç𝑓� is a weak equivalence.
On other hand, by definition R sends the horizontal maps to trivial fibrations in M. The claim hence
follows by the 2-out-of-3 axiom.

(3) For this, one makes use of the two above and follows up the arguments given in the proof of [[35],
Lemma 1.3.10].

Lemma A.0.0.6. Let L � M Ð@
BÐ N � R be a Quillen adjunction between semi model categories. The

following conditions are equivalent.
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(1) Given any cofibrant object 𝐴 > M and any fibrant object 𝑋 > N, a map 𝑓 � L�𝐴� Ð� 𝑋 is a weak
equivalence if and only if its adjoint 𝑓ad

� 𝐴Ð� R�𝑋� is one.
(2) Given any cofibrant object 𝐴 > M and any bifibrant object 𝑋 > N, a map 𝑓 � L�𝐴� Ð� 𝑋 is a weak
equivalence if and only if its adjoint 𝑓ad

� 𝐴Ð� R�𝑋� is one.
(3) For every cofibrant object 𝐴 > M the composition

𝐴
𝜂𝐴
Ð� R L�𝐴� R�𝑖�

Ð� R�𝑋�
is a weak equivalence, where 𝜂 is the adjunction unit and 𝑖 � L�𝐴�Ð� 𝑋 is the trivial cofibration coming
from the factorization SM 3�𝑖𝑖� of the terminal map L�𝐴�Ð� � and in addition, for every fibrant object
𝑋 > N the composition

L�R�𝑋�cof�Ð� L R�𝑋� 𝜀
Ð� 𝑋

is a weak equivalence, where 𝜀 is the adjunction counit and R�𝑋�cof is a cofibrant resolution of R�𝑋�.
(4) The induced adjunction L � Ho�M�Ð@BÐ Ho�N� � R is an adjoint equivalence.

Proof. (1) 
� (2): the direction (1) Ô� (2) is clear. For the converse direction, let 𝐴 > M be a
cofibrant object and 𝑋 > N a fibrant object, and let 𝑓 � L�𝐴� Ð� 𝑋 be given. Let us factor 𝑓 into a
cofibration 𝑔 � L�𝐴� Ð� 𝑌 followed by a trivial fibration 𝑌 � 𝑋. In particular, 𝑓ad agrees with the

composite map 𝐴 𝑔ad

Ð� R�𝑌 �Ð� R�𝑋� with the second map being a trivial fibration. By the 2-out-of-3
axiom, 𝑓 (resp. 𝑓ad) is a weak equivalence if and only if 𝑔 (resp. 𝑔ad) is one. Since 𝑌 is bifibrant, the
condition (2) implies that 𝑔 is a weak equivalence if and only if 𝑔ad is one.

(2) 
� (3) 
� (4): this is done by following up the arguments of [[35], Proposition 1.3.13], along
with making use of Facts A.0.0.5.

Definition A.0.0.7. The Quillen adjunction L � M Ð@
BÐ N � R is called a Quillen equivalence if the

equivalent conditions of Lemma A.0.0.6 are satisfied.

We now discuss on derived mapping spaces in a semi model category. As well as every relative
category, any semi model category M has an underlying ª-category, denoted by Mª. Let LW M >

Cat�SetΔ� denote the hammock localization associated to the pair �M,W� (cf. [52]). One then
defines

Mª �� N�LW M�𝑓𝑖𝑏 > Catª

the coherent nerve of any fibrant resolution of LW M. By this way, the derived mapping space
Maph

M�𝑋,𝑌 � is given by
Maph

M�𝑋,𝑌 � �� MapMª
�𝑋,𝑌 �, (A.0.0.1)

which is weakly equivalent to the simplicial set MapLW M�𝑋,𝑌 �.
On other hand, as well as model categories, the derived mapping spaces in M can be modeled by

homotopy function complexes. The key point is the following:

Theorem A.0.0.8. (M. Spitzweck [16]) Let R be a Reedy category. The category of R-diagrams in M
admits a semi model structure whose classes of weak equivalences and (co)fibrations are the same as
those of the classical Reedy model structure.

Let 𝑋 be an object of M. We let 𝑐𝑐�𝑋� > MΔ and 𝑐𝑠�𝑋� > MΔop
denote the constant cosimplicial

and simplicial objects on 𝑋 respectively.
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Definition A.0.0.9. A cosimplicial resolution of 𝑋 is a cofibrant resolution 𝑋Y �

Ð� 𝑐𝑐�𝑋� of 𝑐𝑐�𝑋�
with respect to the Reedy model structure on MΔ. A simplicial resolution of 𝑋 is a fibrant resolution
𝑐𝑠�𝑋� �

Ð� 𝑋Y of 𝑐𝑠�𝑋� with respect to the Reedy model structure on MΔop
.

Functorial cosimplicial resolution exists for every object of M. On the other hand, functorial simpli-
cial resolutions in general exist only for cofibrant objects. In what follows, we will always assume that
simplicial resolution of a given object exists. (Otherwise, one takes simplicial resolution of its cofibrant
resolution). We have an analogue of [[35], Proposition 5.4.7].

Proposition A.0.0.10. Let 𝑋 > M be a cofibrant object and 𝑌 > M a fibrant object. Then there are
homotopy equivalences of Kan complexes

HomM�𝑋Y, 𝑌 � 𝜙𝑋,𝑌

Ð�
�

diag HomM�𝑋Y, 𝑌Y� 𝜙
�

𝑋,𝑌

�Ð
�

HomM�𝑋,𝑌Y� (A.0.0.2)

Proof. We repeat the Hovey’s arguments given in [[35], Section 5.4]. Using the same arguments as in
the proof of Proposition 5.4.1 (loc.cit), we obtain that:

(1a) The functor 𝑋Y
a ��� � SetΔ Ð� M preserves cofibrations and trivial cofibrations. For this

claim, one would need to use Facts A.0.0.2(3) saying that cofibrations in M are closed under pushouts
and transfinite compositions.

(2a) The functor 𝑌 ���
Y � SetΔ Ð� Mop preserves cofibrations and trivial cofibrations as well. For

this, one would need to use the axiom (SM 4) saying that fibrations in M are closed under pullbacks
and transfinite (reverse) compositions.

Note that there are canonical adjunctions 𝑋Y
a ��� Ú HomM�𝑋Y,�� and 𝑌

���
Y Ú HomM��, 𝑌Y�. We

then argue as follows.
(1b) The functor HomM�𝑋Y,�� � M Ð� SetΔ preserves trivial fibrations by (1a) and by Facts

A.0.0.2(1). It also preserves fibrations. Indeed, to see this one would need to make use of the axiom
SM 2(ii), along with the facts that the left adjoint 𝑋Y

a��� preserves trivial cofibrations and that 𝑋Y
a𝐾

is cofibrant for every 𝐾 > SetΔ.
(2b) The functor HomM��, 𝑌Y� � Mop

Ð� SetΔ preserves trivial fibrations by (1b) and by Facts
A.0.0.2(1). It preserves fibrations as well, by similar arguments as above.

Consequently, HomM�𝑋Y, 𝑌 � and HomM�𝑋,𝑌Y� are indeed Kan complexes. In order to see that
diag HomM�𝑋Y, 𝑌Y� is as well a Kan complex, one follows up the arguments as in the proof of [[46],
Theorem 16.5.18].

To prove the maps 𝜙𝑋,𝑌 and 𝜙�𝑋,𝑌 are weak equivalences, the arguments as in the proof of [[35],
Proposition 5.4.7] can be repeated. Technically, one would need to use the following observations:

(1c) By (1b) and by Facts A.0.0.5(2), the functor HomM�𝑋Y,�� preserves weak equivalences between
fibrant objects. So each bisimplicial structure map of HomM�𝑋Y, 𝑌Y� of the form

HomM�𝑋Y, 𝑌𝑘�Ð� HomM�𝑋Y, 𝑌𝑛�
is a weak equivalence.

(2c) By (2b) the functor HomM��, 𝑌Y� � MÐ� Setop
Δ sends trivial cofibrations to weak equivalences,

and hence it preserves weak equivalences between cofibrant objects, according to the K. Brown’s lemma
A.0.0.4. So each bisimplicial structure map of HomM�𝑋Y, 𝑌Y� of the form

HomM�𝑋𝑘, 𝑌Y�Ð� HomM�𝑋𝑛, 𝑌Y�
123



is a weak equivalence as well.

A consequence of Proposition A.0.0.10 is that all the function complexes appearing in (A.0.0.2) are
invariant with respect to cofibrant objects of M in the left variable and fibrant objects of M in the right
variable. In conclusion, for any 𝑋,𝑌 > M the derived mapping space Maph

M�𝑋,𝑌 � can be modeled by
any of these homotopy function complexes (after taking suitable resolutions of 𝑋 and 𝑌 ). As in [[52],
Proposition 4.4], it can be proved that these models and the model (A.0.0.1) are all equivalent.

Proposition A.0.0.11. Let L � M Ð@
BÐ N � R be a Quillen adjunction between semi model categories.

Given a cofibrant object 𝑋 > M and a fibrant object 𝐴 > N, then there is a natural homotopy equivalence
between derived mapping spaces

Maph
N�L𝑋,𝐴� � Maph

M�𝑋,R𝐴�.
Proof. Let 𝑋Y be a cosimplicial resolution of 𝑋. According to [[46], Proposition 16.2.1], L𝑋Y is a
cosimplicial resolution of L𝑋. By adjunction we get a natural isomorphism

HomN�L𝑋Y,𝐴� � HomM�𝑋Y,R𝐴�
in which the left and right hand sides are respectively models for Maph

N�L𝑋,𝐴� and Maph
M�𝑋,R𝐴�,

as indicated above.

In the remainder, we discuss on left Bousfield localizations of semi model categories, according to
the recent work of M. Batanin and D. White [17]. The Hirschhorn’s [46] and Barwick’s [15] are good
references for left Bousfield localizations of model categories.

Definition A.0.0.12. ([17]) A semi model category M is said to be cofibrantly generated if there exists
a set of generating cofibrations 𝐼 and a set of generating trivial cofibrations 𝐽 such that the domains
of 𝐼 are small relative to 𝐼-cell and the domains of 𝐽 are small relative to the maps in 𝐽-cell whose
domain is cofibrant and in addition, the class of fibrations (resp. trivial fibrations) is characterized by
the right lifting property with respect to the maps in 𝐽 (resp. 𝐼).

Definition A.0.0.13. ([17]) A semi model category M is said to be combinatorial if it is cofibrantly
generated and such that its underlying category is locally presentable.

Let M be a semi model category and let C be a set of maps of M. An object 𝑋 > M is said to be
C-local if for every map 𝑓 � 𝑌 � 𝑍 in C, the induced map between derived mapping spaces

𝑓� � Maph
M�𝑍,𝑋�Ð�Maph

M�𝑌,𝑋�
is a homotopy equivalence. A given map 𝑓 � 𝑌 � 𝑍 in M is called a C-local equivalence if the map
𝑓� is a homotopy equivalence for every C-local object 𝑋.

Theorem A.0.0.14. (M. Batanin and D. White [17]) Suppose that M is a combinatorial semi model
category such that the domains of generating cofibrations are cofibrant. Then the left Bousfield localiza-
tion LC M exists as a cofibrantly generated semi model category whose

- weak equivalences are the C-local equivalences,
- (generating) cofibrations are the same as those of M, and whose
- fibrations are characterized by the right lifting property with respect to a certain set 𝐽C of C-local

equivalences.
Moreover, fibrant objects of LC M are precisely the fibrant C-local objects of M.
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Proposition A.0.0.15. Suppose that M is a combinatorial semi model category such that the domains
of generating cofibrations are cofibrant, and let C be a set of maps of M. Let L � M Ð@

BÐ N � R be a
Quillen adjunction between semi model categories such that the functor R takes fibrant objects of N to
𝐶-local objects. Then the adjunction L Ú R descends to a Quillen adjunction between LC M and N.

Proof. Assuming that R takes fibrant objects of N to C-local objects in M is equivalent to saying that
the left adjoint L takes C-local equivalences to weak equivalences in N. Hence, the claim follows just
by [[17], Theorem 4.3].
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Appendix B

Homotopy Cartesian squares of model

categories

This section is devoted to the work of §5.4. We denote by ModCat the category whose objects are model
categories and whose morphisms are Quillen adjunctions with the sources and targets being those of
the left Quillen functors. Let I be a small category and let F � I Ð� ModCat be a diagram of model
categories. By convention, for each map 𝛼 � 𝑖� 𝑗 in I, we will write 𝛼! � F�𝑖�Ð@BÐ F�𝑗� � 𝛼� standing for
the image of 𝛼 through F.

By a section of F we shall mean a section of the natural projection RIF Ð� I from the Grothendieck
construction of F to I. More explicitly, a section of F consists of a choice of an object 𝑠�𝑖� > F�𝑖� for
each 𝑖 > I and a morphism 𝑓𝛼 � 𝛼!𝑠�𝑖�Ð� 𝑠�𝑗� for each map 𝛼 � 𝑖� 𝑗 in I which are subject to a natural
compatibility constraint for every composable pair of morphisms in I. We will denote by Sec�F� the
category of sections of F and morphisms between them.

When F�𝑖� is combinatorial for every 𝑖 one can endow the category Sec�F� with either the projective
or the injective model structure, according to [15] (see also [10] and [61]). Here we will be interested in
the injective model structure, denoted by Sec�F�inj, in which a map 𝑠� 𝑠� is a cofibration (resp. weak
equivalence) if and only if 𝑠�𝑖� Ð� 𝑠��𝑖� is a cofibration (resp. weak equivalence) for every 𝑖. Recall
that a section 𝑠 � IÐ� RIF is said to be coCartesian if the composed map

𝑓𝛼 � 𝛼!�𝑠�𝑖�cof�Ð� 𝛼!�𝑠�𝑖�� 𝑓𝛼
Ð� 𝑠�𝑗�

is a weak equivalence for every 𝛼 � 𝑖� 𝑗 in I, where 𝑠�𝑖�cof
Ð� 𝑠�𝑖� is a cofibrant replacement of 𝑠�𝑖� in

F�𝑖�. Moreover, this model category Sec�F�inj is combinatorial as well. When all the model categories
F�𝑖�’s are furthermore left proper then Sec�F�inj is left proper and one can then left Bousfield localize
Sec�F�inj so that the new fibrant objects are the injective fibrant coCartesian sections. In this case,
we will denote the localized model category by Sec�F�coc. If the F�𝑖�’s are combinatorial but not left
proper, we may still define the localization Sec�F�coc as a semi model category. In any case, Sec�F�coc

has the right type in the sense that its underlying ª-category Sec�F�coc
ª is a model for the limit of the

diagram I ? 𝑖 ( F�𝑖�ª > Catª, in which for each map 𝛼 � 𝑖 � 𝑗 the functor F�𝑖�ª Ð� F�𝑗�ª is given
by �𝛼!�ª (cf. [61], Corollary 3.45 ).
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Now let (︀1⌋︀�(︀1⌋︀ be the square category and let F � (︀1⌋︀�(︀1⌋︀Ð�ModCat be a diagram of combinatorial
model categories. Let I b (︀1⌋︀ � (︀1⌋︀ be the full subcategory spanned by the objects �0, 1�, �1, 0�, �1, 1�.
Since �0, 0� is the initial object of I, we have for each 𝑖 > I a unique map 𝛼𝑖 � �0, 0� Ð� 𝑖. We then
obtain a natural functor L � F�0, 0� Ð� Sec�F⋃︀I� which sends an object 𝑋 > F�0, 0� to the section
L�𝑋��𝑖� � �𝛼𝑖�!𝑋 > F�𝑖�. The functor L admits a right adjoint R � Sec�F⋃︀I� Ð� F�0, 0� which sends a
section 𝑠 � IÐ� RIF to the pullback

R�𝑠� �� lim
𝑖>I

𝛼�𝑖 𝑠�𝑖� > F�0, 0�.
Since L clearly sends (trivial) cofibrations to injective (trivial) cofibrations, we see that the adjunction
L � 𝐹 �0, 0�Ð@BÐ Sec�F⋃︀I�inj

� R is a Quillen adjunction.

Definition B.0.0.1. Let F � (︀1⌋︀� (︀1⌋︀Ð�ModCat be a diagram of combinatorial model categories. We
will say that F is homotopy Cartesian if the composed left Quillen functor

Lcoc
� F�0, 0� L

Ð� Sec�F⋃︀I�inj
Ð� Sec�F⋃︀I�coc

is a left Quillen equivalence, in which the functor Sec�F⋃︀I�inj
Ð� Sec�F⋃︀I�coc is the identity functor,

which is a left Quillen functor by construction.

Remark B.0.0.2. Let F � (︀1⌋︀�(︀1⌋︀Ð�ModCat be a diagram of combinatorial model categories depicted
as the square of left Quillen functors:

F�0, 0� //

��

F�0, 1�
��

F�1, 0� // F�1, 1�
If F is homotopy Cartesian in the sense of Definition B.0.0.1 then the corresponding square of underlying
ª-categories

F�0, 0�ª //

��

F�0, 1�ª
��

F�1, 0�ª // F�1, 1�ª
is homotopy Cartesian as well. This follows by the fact that the model category Sec�F⋃︀I�coc has the
right type, as mentioned above.

Observation B.0.0.3. Let G � IÐ�ModCat be a diagram of combinatorial model categories with I b

(︀1⌋︀�(︀1⌋︀ being the category mentioned above. Let 𝑠 > Sec�G� be a section of G. If 𝑠 is injective fibrant, i.e.,
fibrant as an object of Sec�G�inj then the structure maps 𝑠�0, 1�Ð� 𝛽�𝑠�1, 1� and 𝑠�1, 0�Ð� 𝛾�𝑠�1, 1�
are fibrations, in which 𝛽 and 𝛾 are the arrows 𝛽 � �0, 1�Ð� �1, 1� and 𝛾 � �1, 0�Ð� �1, 1�.
Proof. By symmetricity we just need to show that the map 𝑠�0, 1�Ð� 𝛽�𝑠�1, 1� is a fibration in G�0, 1�.
Suppose we are given a commutative square in G�0, 1� of the form

𝐴 //

��

𝑠�0, 1�
��

𝐵 // 𝛽�𝑠�1, 1�
with 𝐴� 𝐵 being a trivial cofibration. Take two sections 𝑠� and 𝑠�� with 𝑠��0, 1� � 𝐴, 𝑠��1, 1� � 𝛽!𝐴 and
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𝑠��1, 0� � g, while 𝑠���0, 1� � 𝐵, 𝑠���1, 1� � 𝛽!𝐵 and 𝑠���1, 0� � g. The map 𝐴 � 𝐵 hence builds up to a
map of sections 𝑠� Ð� 𝑠��. By construction the latter is an injective trivial cofibration. On other hand,
there is a canonical map of sections 𝑠� Ð� 𝑠 consisting of 𝑠��0, 1� � 𝐴 Ð� 𝑠�0, 1�, 𝑠��1, 1� � 𝛽!𝐴 Ð�

𝛽!𝑠�0, 1� Ð� 𝑠�1, 1� and 𝑠��1, 0� � g Ð� 𝑠�1, 0�. Now, since 𝑠 is injective fibrant there exists a map
𝑠�� Ð� 𝑠 lifting the map 𝑠� Ð� 𝑠. In particular, we get a map 𝐵 � 𝑠���0, 1� Ð� 𝑠�0, 1�, which is indeed
a lift of the above square.

Remark B.0.0.4. Let F � (︀1⌋︀ � (︀1⌋︀ Ð� ModCat be a diagram of combinatorial model categories and
assume in addition that for every morphism 𝛼 in (︀1⌋︀�(︀1⌋︀ the right adjoint 𝛼� preserves weak equivalences.
Let Rcoc

� Sec�F⋃︀I�coc
Ð� F�0, 0� be the right adjoint of Lcoc. Since L � F�0, 0� Ð� Sec�F⋃︀I�inj sends

cofibrant objects to coCartesian sections, it follows that for a given cofibrant object 𝑋 > F�0, 0�, the
derived unit map 𝑋 Ð� RRcocLLcoc�𝑋� is a weak equivalence if and only if the derived unit map 𝑋 Ð�
RRLL�𝑋� is a weak equivalence. Now, for a section 𝑠 � IÐ� RIF, the value of the right derived functor
RR�𝑠� can be identified to the homotopy fiber product holim𝑖>I 𝛼

�
𝑗 𝑠�𝑖�, as a consequence of Observation

B.0.0.3. In conclusion, if 𝑋 > F�0, 0� is cofibrant then the derived unit map 𝑋 Ð� RRcocLLcoc�𝑋� is a
weak equivalence if and only if the square

𝑋 //

��

𝛼��0,1��𝛼�0,1��!𝑋

��

𝛼��1,0��𝛼�1,0��!𝑋 // 𝛼��1,1��𝛼�1,1��!𝑋

is homotopy Cartesian in F�0, 0�.
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