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0.1 Introduction générale 0.1.1 Lois de conservation scalaires hns le s le plus simpleD une loi de onservtion slire en dimension 1 est une éqution ux dérivées prtielles @ihA de l forme suivnte X ∂ρ ∂t (x, t) + ∂(f (ρ)) ∂x (x, t) = 0, (x, t) ∈ Ω = R × (0, +∞). @HFIFIA ge genre d9équtions dérit le fit que l quntité ρ = ρ(x, t) @désigne en générl une densitéA est onservée et préise son évolution via l fontion f D ppelée ux/diagramme fondamentalF hns les pplitionsD t désigne l vrile temporelleD x l position sptile et il rrive souvent que l fontion )ux soit églement une fontion du temps et de l9espeF r illeursD e sont surtout des systèmes de lois de onservtion qui pprissent nturellement dns l desription de ertins phénomènes physiques omme les éoulements en eu peu profondeD l propgtion des ondes ou l dynmique des gz @équtions d9iuler pour des gz ompressilesD pEsystèmeAF r illeursD l dynmique des gz fortement guidé les trvux liés ux lois de onservtion (n d9en donner une interpréttion physiqueF hns ette thèseD les lois de onservtion onsidérées sont toutes slires et unidimensionnellesF our l9instntD restons dns le dre d9une seule loi de onservtion ve un )ux indépendnt du temps et de l9espeF emrquons que si on intègre @formellementA @HFIFIA entre deux points a, b ∈ R @a < bAD on otient X d dt ¢ b a ρ(x, t) dx = f (ρ(a, t)) -f (ρ(b, t)).

gette églité exprime le fit que l vrition de ρ entre deux points a et b est égle à l di'érene du )ux en es deux pointsF eutrement ditD l quntité ρ n9est ni onsomméeD ni réée u ours du tempsF ous des hypothèses d9intégrilitéD on est onduit à d dt ¢ R ρ(x, t) dx = 0.

I P CONTENTS eutrement ditD l msse totle de ρ ne vrie ps u ours du tempsF ne loi de onservtion pprît don dès qu9on veut modéliser l9évolution d9une quntité qui se onserve X onserE vtion de l msseD de l quntité de mouvement @momentAD de l9énergieF F F ne utre fçon de voir les hoses est de réérire @HFIFIA sous forme quasi-linéaire @linéire pr rpport ux dérivéesA X ∂ t ρ + f (ρ(x, t))∂ x ρ = 0, @HFIFPA de sorte que l loi de onservtion pprît omme une éqution de trnsportF yn voit don que lorsque f n9est ps linéireD l quntité ρ est trnsportée à vitesse f (ρ)D utrement ditD l vitesse de propgtion de l solution dépend elleEmême de l solutionF Exemple 0.1.1 @Éqution de furgers non visqueuseGÉqution de ropfA. g9est sns doute l plus simple des lois de onservtion non linéiresF ille s9érit X

∂ t u + ∂ x u 2 2 = 0.
@HFIFQA gette éqution peut pr exemple dérire l vitesse u = u(x, t) d9un hmp de prtiules qui n9intergissent ps entre elles @milieu isoléD unidimensionnelAF yn grder ette éqution omme (l rouge tout u long de ette setion (n d9illustrer les onepts introduitsF Exemple 0.1.2 @wodèle de tr( routierA.

∂ t ρ + ∂ x (ρv(ρ)) = 0, @HFIFRA où v est une fontion donnéeF ous de onnes hypothèses sur vD entre d9utres déroissne et positivitéD ette loi de onservtion peut dérire le déplement de l quntité ρ = ρ(x, t) ∈ [0, 1] qui représente une densité de voitures @pr exempleA sur une route unidimensionnelleF siD le tr( se déple à vitesse v(ρ(x, t)) de sorte que plus le tr( est denseD moins l vitesse de déplement est importnteF ve s prtiulier v(ρ) = V max (1 -ρ) @V max > 0A onduit u élère modèle vD voir l setion HFIFP pour plus de détilsF enhons nous mintennt sur l résolution de @HFIFIAD et plus préisément sur l résolution du prolème de guhy ssoié X

∂ t ρ + ∂ x (f (ρ)) = 0 ρ(•, 0) = ρ 0 ,
@HFIFSA ρ 0 étnt une fontion donnéeF Solution classique et méthode des caractéristiques. yn suppose ii que les fontions f et ρ 0 sont ussi régulières que l9on veutF essez nturellementD on ommene pr herher des solutions classiques de @HFIFSAD 9estEàEdire des fontions ρ ∈ C 1 (Ω)∩C(Ω) véri(nt l9éqution en tout en point de Ω et l ondition initile sur R×{0}F our e fireD on pplique l méthode des caractéristiquesD voir IHID VID IRRD WV pour une pprohe omplète et rigoureuseF v9idée est l suivnte X on s9intéresse à l9évolution d9une solution de l9éqution @HFIFSA le long d9une 0.1. INTRODUCTION GÉNÉRALE Q oure x = x(t) ∈ C 1 ((0, +∞))D qu9on ppelle ii rtéristiqueF hns le s présentD on otient X ∀t > 0, d dt (ρ(x(t), t)) = ∂ t ρ(x(t), t) + x (t)∂ x ρ(x(t), t).

wettnt ei en prllèle ve @HFIFPA @qui est ien équivlente à @HFIFIA puisque les fontions sont régulièresAD on se rend ompte qu9une solution lssique de @HFIFSA est onstnte le long des oures véri(nt x (t) = f (ρ(x(t), t))F i x est une telle oureD en notnt x 0 = x(0)D lors pour tout t > 0D on otient X

x (t) = f (ρ(x(t), t)) = f (ρ 0 (x 0 )), don les rtéristiques de @HFIFSA sont des droitesF gei nous permet a priori de dé(nir l solution ρ de l fçon suivnte X " on se (xe un point (ξ, τ ) ∈ Ω Y " on résout l9éqution ξ = y + τ f (ρ 0 (y)), y ∈ R; @HFIFTA " on pose ρ(ξ, τ ) = ρ 0 (y)F gontrirement u s linéire @i.e. f linéireA où l9éqution @HFIFTA toujours une unique solutionD l nonElinérité de f est soure d9pprition de nouveux phénomènesF intre utresD si f n9est ps linéireD lors il se peut que l9éqution @HFIFTA dmette plusieurs solutionsD rendnt lors impossile de dé(nir ρ de mnière ontinueF éiproquementD si ρ est dé(nie de l mnière suivnteD lors on se rend ompte que ρ véri(e l9éqution impliite X ∀(ξ, τ ) ∈ Ω, ρ(ξ, τ ) = ρ 0 (ξ -τ f (ρ(ξ, τ ))) . @HFIFUA gette dernière églité signi(e que l solution est otenue en propgent les vleurs de l donnée initileF hns le s linéireD toutes les vleurs sont propgées à l même vitesseD don le grphe de l solution à un temps donné est otenu en trnsltnt le grphe de l donnée initileF hns le s nonElinéireD toutes les vleurs de l donnée initile ne se propgent ps à l même vitesse et don l solution se déforme u ours du tempsD voir l (gure P iEdessousF wentionnons en(n que dns les onditions d9pplition du théorème des fontions impliitesD l9églité @HFIFUA nous fournit l régulrité de ρ et on véri(e ensuite qu9elle est e'etivement une solution lssique du prolème de guhy @HFIFSAD voir pr exemple QQF Exemple 0.1.3 @Éqution de furgers ssA. our l9éqution de furgers @HFIFQAD onsidérons les prolèmes de guhy ssoiées ux données initiles u 0 (x) = arctan(x) et v 0 = -2 arctan(x).

eve u 0 D l9éqution @HFIFTA est réduite à ξ = y + τ arctan(y), y ∈ R, et une rpide étude de fontion montre que pour tout (ξ, τ ) ∈ ΩD ette éqution dmet une unique solutionF gel se trduit pr le fit que les rtéristiques ne s9intersetent ps dns R CONTENTS Figure I ! grtéristiques de l9éqution de furgersGropf ve donnée initile u 0 @à guheA et v 0 @à droiteAF Ω omme on peut le voir sur l (gure I @guheAF einsiD le prolème de guhy @HFIFSA ve donnée initile u 0 dmet une solution lssique dé(nie sur ΩF eve l donnée initile v 0 D l9éqution @HFIFTA devient ξ = y -2τ arctan(y), y ∈ R.

in notnt φ τ (y) = y -2τ arctan(y)D on peut montrer que X " si τ ≤ 1 2 D lors φ τ est stritement roissnte et pour tout ξ ∈ RD @HFIFTA dmet une unique solutionF ves rtéristiques ne se roisent ps dns R × (0, τ ) @voir l (gure ID à droiteA et on peut don dé(nir une solution lssique dns R × (0, τ ) Y " si τ > 1 2 D lors pour tout ξ ∈ [-φ τ ( √ 2τ -1), φ τ ( √ 2τ -1)]\{0}D l9éqution @HFIFTA dE met extement deux solutions @et trois solutions si ξ = 0AF gei est on(rmé pr l (gure ID @à droiteA où on peut voir les rtéristiques se roiserF our illustrer le sens de l9églité @HFIFUAD on représenté dns l (gure P iEdessous les deux solutions des prolèmes de guhy ssoiées ux données initiles u 0 et v 0 F gomme on peut à droiteD u temps t = 0.5 @premier temps d9intersetion des rtéristiquesAD v présente une disontinuité en 0 @là où les rtéristiques se roisentAF vorsque des rtéristiques se oupent en un point (ξ, τ ) ∈ ΩD il n9est plus possile de dé(nir une solution lssique en (ξ, τ ) puisque hque rtéristique qui psse pr (ξ, τ ) trnsporte une vleurF gomme on le voit sur l pigure P @droiteAD l solution devient lors multivaluée @on prle de hoAF hns ertins sD il est même possile de déterminer le temps d9existene d9une solution lssique 9estEàEdire le plus petit temps à prtir duquel des rtéristiques se roisentF gomme on pu le voir dns l9exemple HFIFQD e temps ser lié ux vritions de f • ρ 0 F hns Solution faible, condition de Rankine-Hugoniot, non-unicité. einsiD lorsque l fonE tion )ux f n9est ps linéireD peu importe l régulrité de l donnée initileD on ne peut ps s9ttendre à pouvoir dé(nir glolement @9estEàEdire sur ΩA une solution lssique u proE lème de guhy @HFIFSAF r exempleD pour l9éqution de furgersD seule une donnée initile roissnte onduit à l9existene d9une solution lssique dns ΩF v9pprohe stndrd est lors d9étendre l notion de solutions à des fontions possilement disontinuesD pr exemple ux fontions essentiellement ornéesF ne solution faible de @HFIFIA est lors dé(nie omme une fontion ρ ∈ L ∞ (Ω)D ou plus générlement ρ ∈ L 1 loc (Ω)D véri(nt pour toute fontion test

φ ∈ C ∞ c (Ω) X ¢ +∞ 0 ¢ R (ρ∂ t φ + f (ρ)∂ x φ) dx dt = 0.
@HFIFVA r illeursD si on veut prendre en ompte une donnée initile ρ 0 ∈ L ∞ (R)D on dit que ρ ∈ L ∞ (Ω) est une solution file du prolème de guhy @HFIFSA si pour toute fontion test

φ ∈ C ∞ c (Ω)D on ¢ +∞ 0 ¢ R (ρ∂ t φ + f (ρ)∂ x φ) dx dt + ¢ R
ρ 0 (x)φ(x, 0) dx = 0. @HFIFWA T CONTENTS our rriver à @HFIFVAD on multiplié l9ih @HFIFIA pr φ puis intégré pr prtiesD fisnt insi porter les dérivées sur l fontion régulièreF glirementD toute solution lssique de @HFIFIA en est une solution file et réiproquementD toute fontion ssez régulière véri(nt @HFIFVA est solution lssique d9près le lemme de hu foisEeymondF uisque les formultions intégrles @HFIFVAE@HFIFWA ont été introduites pour prendre en ompte les fontions disontinuesD on peut se demnder e qu9impose @HFIFVA ux disontinuitésF oient γ = γ(t) ∈ C 1 ((0, +∞)) une oure de Ω et ρ ∈ L 1 loc (Ω)F yn suppose que ρ est de l forme X ρ(x, t) = ρ l (x, t) si x < γ(t) ρ r (x, t) si x > γ(t)D @HFIFIHA où ρ l @respetivement ρ r A est une solution lssique de l loi de onservtion @HFIFIA dns l9ouvert {(x, t) ∈ Ω | x < γ(t)} @respetivement {(x, t) ∈ Ω | x > γ(t)}AF elors ρ est solution file de @HFIFIA si et seulement si X ∀t > 0, f (ρ l (γ(t), t)) -f (ρ r (γ(t), t)) = γ (t) × (ρ l (γ(t), t) -ρ r (γ(t), t)), @HFIFIIA gette églité est ppelée condition de Rankine-HugoniotD voir IRRD WV pour une preuveF ille exprime l onservtion de ρ à trvers une disontinuité et fournit une éqution di'érentielle véri(ée pr l oure de disontinuitéF ille nous permet don de onstruire filement des solutions files onstntes pr moreuxD pr exempleD à une loi de onservtion dont les disontinuités sont séprées pr des droitesF Exemple 0.1.4 @Éqution de furgers sssA. oursuivons ve l9éqution de furgers @HFIFQAF pixons ν > 0 et onsidérons les fontions X

ρ(x, t) =        0 si x < 0 x t si 0 ≤ x < t 1 si t ≤ x; ρ ν (x, t) =              0 si x < νt 2 ν si νt 2 ≤ x < (1 + ν)t 2 1 si (1 + ν)t 2 < x,
@HFIFIPA représentées dns l (gure QF yn véri(e rpidement en utilisnt l rtéristion @HFIFIIA que les (ρ ν ) ν sont toutes solution file de @HFIFSA ve donnée initile

ρ 0 (x) = 0 si x < 0 1 si x > 0F v fontion ρ est ontinue dns ΩD de lsse C 1 dns l9ouvert U = {(x, t) ∈ Ω | 0 < x < t} et pour tout (x, t) ∈ U D f (ρ(x, t))∂ x ρ(x, t) = ρ(x, t) × 1 t = x t 2 = -∂ t ρ(x, t).
uisque ρ(•, t) -→ t→0 + ρ 0 dns L 1 loc (R)D on en déduit que ρ est églement solution file de @HFIFSAF yn vient don de onstruire une in(nité de solutions files u même prolème de guhyF Viscosité évanescente, solution entropique. ves deux prgrphes préédents ont mis en lumière les deux phénomènes suivnts pour l loi de onservtion @HFIFIA X " nonEexistene @en générlA d9une solution lssique près un ertin temps T > 0 X les rtéristiques se roisent Y " nonEuniité des solutions files X l ondition de nkineErugoniot n9est ps ssez restritive sur les disontinuitésF sl est don néessire d9imposer un ritère supplémentire qui permette de séletionner l onne solutionF hns le dre des lois de onservtion sliresD il y plusieurs moyens d9exprimer e ritèreD hque ritère se snt sur le onept d'entropieF n de es ritères onsiste à voir l loi de onservtion @HFIFSA omme limite du prolème prolique

∂ t ρ + ∂ x (f (ρ)) = ε∂ 2 xx ρ, ε > 0 ρ(•, 0) = ρ 0 .
@HFIFIQA ve terme ε∂ 2 xx ρ est un terme de visositéGdi'usion rti(ielleF v9idée derrière l9introdution de l9éqution @HFIFIQA @héritée enore une fois de l dynmique des gzA est que le prolème physique modélisé pr l loi de onservtion @HFIFSA est visqueuxD et que l9ih représente le modèle limite qund l di'usion tend vers 0F yn peut montrer sous diverses hypothèses sur f et ρ 0 D voir pr exemple IIRD IPUD IHID WVD que pour tout ε > 0D @HFIFIQA dmet une solution régulière ρ ε ∈ C ∞ (Ω)D et qu9on peut extrire de l suite (ρ ε ) ε une sousEsuite qui onverge presque prtout sur Ω vers une fontion ρ ∈ L ∞ (Ω)F yn s9ttend lors à e que l fontion limite ρD qui est solution fileD possède des propriétés supplémentires pr rpport ux utres solutionsF pixons η ∈ C 2 (R) une fontion onvexe @ppelée entropieA et notons Φ une primitive de η f F yn multiplie l9ih @HFIFIQA pr η (ρ ε )

V CONTENTS et on utilise l onvexité de η X ∂ t (η(ρ ε )) + ∂ x (Φ(ρ ε )) = εη (ρ ε )∂ 2 xx ρ ε = ε∂ 2 xx (η(ρ ε )) -εη (ρ ε )(∂ x ρ ε ) 2 ≤ ε∂ 2 xx (η(ρ ε )) .
@HFIFIRA Remarque 0.1.1 @hissiption d9entropieA. v9inéglité @HFIFIRA une onséquene intéresE snteF ous de onnes hypothèses d9intégrilitéD on otient que

d dt ¢ R η(ρ(x, t)) dx ≤ 0.
gette inéglité trduit le rtère irréversile des phénomènes modélisés pr une loi de onservtion X u ours du temps l9entropie totle est dissipéeD on perd de l9informtionF xotons u pssge que si ρ est une solution lssique de l loi de onservtion sns visosité @ε = 0AD lors en proédnt ux mêmes mnipultions que dns @HFIFIRAD on trouve que r des rguments lssiques d9pproximtionD on peut étendre ette nlyse pour les fonE tions onvexes η κ (ρ) = |ρ-κ| @κ ∈ RAF in tennt ompte de l donnée initileD on est onduit à l notion suivnte de solution entropiqueD due à uruzhkov X une fontion ρ ∈ L ∞ (Ω) est une solution entropique de @HFIFSA si pour tout κ ∈ R et pour toute fontion test

ϕ ∈ C ∞ c (Ω)D ϕ ≥ 0 X ¢ +∞ 0 ¢ R (|ρ -κ|∂ t ϕ + Φ(ρ, κ)∂ x ϕ) dx dt + ¢ R |ρ 0 (x) -κ|ϕ(x, 0) dx ≥ 0, @HFIFISA
où ΦD ppelé ux entropiqueD est donné pr

Φ(ρ, κ) = sgn(ρ -κ)(f (ρ) -f (κ)).
in onsidérnt κ ∈ RD |κ| ≥ ρ L ∞ dns @HFIFISAD on se rend ompte que ρ véri(e l formuE ltion file @HFIFWA pour toute fontion test ϕ ∈ C ∞ c (Ω)D ϕ ≥ 0F i ϕ n9est ps positiveD on l déompose en prtie positive et négtive X ϕ = ϕ + -ϕ -D et l linérité @en ϕA de @HFIFWA ssure que toute solution entropique de @HFIFSA est ussi solution fileF snsistons sur le fit que @HFIFISA est en fit une fmille d9inéglitésF gontrirement à l dé(niE tion de solution file @HFIFWA où on ne pouvit jouer que sur l fontion testD l formultion de uruzhkov permet églement de jouer sur l prmètre κD imposnt nturellement des ontrintes supplémentires sur une solution entropiqueF 0.1. INTRODUCTION GÉNÉRALE W eprenons le risonnement développé dns l setion HFIFIF oient don γ = γ(t) ∈ C 1 ((0, +∞)) une oure de Ω et ρ ∈ L 1 loc (Ω) de l forme @HFIFIHAF elors ρ est solution entropique de @HFIFSA si et seulement si pour tout κ ∈ R et pour tout t > 0D Φ(ρ l (γ(t), t)) -Φ(ρ r (γ(t), t)) ≥ γ (t) × (|ρ l (γ(t), t) -κ| -|ρ r (γ(t), t) -κ|) , @HFIFITA voir pr exemple WV pour une preuveF i on suppose pr exemple qu9en un point τ > 0D on ρ l (τ ) < ρ r (τ ) @on omis l dépendne en γ pour lri(er l suiteAD lors l ondition d9entropie @HFIFITA se réérit X

∀κ ∈ ]ρ l (τ ), ρ r (τ )[, f (κ) ≥ f (ρ l (τ )) + f (ρ r (τ )) -f (ρ l (τ )) ρ r (τ ) -ρ l (τ ) (κ -ρ l (τ )). @HFIFIUA eutrement ditD sur ]ρ l (τ ), ρ r (τ )[D le grphe de f est u dessus de s ordeF yn montrerit de l même fçon que si ρ l (τ ) > ρ r (τ )D lors le grphe de f doit être en dessous de s ordeF Exemple 0.1.5 @gondition de vxD éqution de furgers sA. hns le s où l fontion est pr exemple stritement onvexeD l ondition d9entropie @HFIFIUA est équivlente à l condition d'admissibilité de Lax X ∀t > 0, f (ρ l (t)) > f (ρ r (t)) -f (ρ l (t)) ρ r (t) -ρ l (t) > f (ρ r (t)), @HFIFIVA initilement formulée dns IIUF gette inéglité une interpréttion géométrique illustrée en (gure R X lorsque l ondition de vx est violéeD des rtéristiques sortent de l disontinuité @on dit prfois que de l9informtion est rééeAF yn voit églement que dns le s onvexeD une solution entropique ne peut voir que des discontinuités décroissantesF r onséquentD uune des solutions files (ρ ν ) ν dé(nies pr @HFIFIPA n9est solution entropiqueF hns l (gure iEdessousD on illustre géométriquement l ondition d9dmissiilité de vx en dessinnt les rtéristiques pour les données initiles

ρ 1 0 (x) = 1 si x < 0 0 si x > 0 et ρ 2 0 (x) = 0 si x < 0 1 si x > 0. intre ρ 1 (x, t) =      1 si x < t 2 0 si x > t 2 et ρ 2 (x, t) =      0 si x < t 2 1 si x > t 2 .
seule ρ 1 est don solution entropiqueF hns son ppier IIRD uruzhkov réglé de nomreux prolèmes théoriques en montrnt le rtère ien posé du prolème de guhy dns le dre des solutions entropiquesD uni(nt di'érents points de vue de ses prédéesseurs IRPD IHHD IQID IIUD ISSF preuve d9uniE ité utilise une méthode de dédoulement de vriles et onduit à une ontrtion dns C((0, +∞); L 1 (R))F lus préisément si ρ et σ sont deux solutions entropiques de @HFIFSA ssoiées ux données initiles ρ 0 D σ 0 D lors pour tout t > 0D ρ(•, t) -σ(•, t) L 1 ≤ ρ 0 -σ 0 L 1 . @HFIFIWA Figure R ! gho véri(nt l ondition de vx à guheD et l violnt à droiteF gonernnt l9existeneD uruzhkov sé s preuve sur l méthode de l visosité évnesente rpidement évoquée plus hutF in lissnt de ôté les prolèmes dus à l régulrité insu0snte de l fontion )uxD le résultt de uruzhkov ne pourrit être plus générl dns le sens où il engloe le s où f = f (x, t, ρ) et où @HFIFIA possède un terme soure s = s(x, t, ρ)D en dimension d ∈ N * d9espeD pour les équtions sliresF hns le sillge de uruzhkovD d9utres uteurs ont pr l suite herher à exprimer d9utres inéglités de stilité du type @HFIFIWA pr rpport u )uxD u terme soure etc...D voir pr exemple QPD SWD IPHD IRHF in(nD prmi les utres moyens de prouver l9existene des solutions entropiques mentionnons les méthodes d9pproximtion X " pr 4front trking4D voir pr exemple QQD WVD TV Y " pr volumesGdi'érenes (nisD voir pr exemple IPID RVD RWD VQD IPPD IPVD IRVF ves shéms ux volumes (nisD en prtiulierD sont utilisés de mnière réurrente dns les hpitres de ette thèseF 0.1.2 Cadre LWR pour la modélisation du trac fien vnt que le ppier de uruzhkov pporte une réponse dé(nitive qunt u rtère ien posé des lois de onservtion sliresD es dernières équtionsD et même des systèmes de lois de onservtionD étient déjà lrgement utilisés pour dérire des phénomènes de dynmiques de tr( routierGpiétonnierF rmi les di'érentes pprohesD deux visions se sont démrquées X l desription microscopique et l desription macroscopiqueF hu point de vue mirosopiqueD l trjetoire de hque gent @piétonsD voituresA est dérite pr une éqution di'érentielle ordinireF hns les s les plus simples de desription du tr( routierD voir TPD WQD WWD les modèles sont sés sur les hypothèses suivntes X " l route est unidimensionnelle @ps de dépssementA " l vitesse de hque véhiule @à prt du premier qui se déple à vitesse mximleA ne dépend que de l distne u véhiule qui le préèdeF ves modèles dérivnt de es hypothèses ont reçu l dénomintion de modèles 4pollowEtheE veder4F II hu point de vue mrosopiqueD le tr( est vu omme un )uideGmilieu ontinu et s dyE nmique n9est ps plus dérite pr l trjetoire de ses gentsD mis pr l densité d9gentsF essez nturellementD e ne sont plus plusieurs équtions di'érentielles qui dérivent le tr( mis une seule éqution ux dérivées prtiellesF ges modèles sont pprus pour l première u milieu du e sièle qund vighthillD hithm IPS et ihrds IRI indépendmmentD ont introduit l9idée d9utiliser les lois de onservtion pour dérire le tr(F oussnt un peu plus l9nlogie entre le )ux de tr( et l dynmique des )uidesD leur modèleD ppelé LWR depuisD dérit l9évolution de l densité de voitures ρ = ρ(x, t) ∈ [0, 1] sur une route 4in(nie4 et est donné pr une loi de onservtion exprimnt l onservtion de l msse X

∂ t ρ + ∂ x (ρv(ρ)) = 0.
@HFIFPHA in mettnt ette ih en prllèle ve @HFIFIAD l fontion v pprît don omme l vitesse du tr(F hns le dre vD il est supposé que v = v(ρ) est une fontion positiveD déroisE snte de l densitéD et véri(nt v(0) = 1D v(1) = 0 e qui modélise le fit qu9une file densité de voitures se déple plus rpidement qu9une plus importnte densitéF ve hoix le plus simple est de hoisir v(ρ) = 1 -ρ e qui nous rmène à l9éqution présentée dns l9exemple HFIFRF yn représenté en (gure S des exemples de fontions )ux f (ρ) = ρv(ρ) résultnt de es hypothèses sur l vitesseF gette lsse de )ux est quli(ée de ux en clocheF Figure S ! ixemples de )ux en loheF wlgré s simpliité @une seule éqution slire en dimension 1 d9espeAD le dre v @HFIFPHA onstitue une onne se pour l desription mrosopique du tr(F hns l preE mière prtie de ette thèseD on propose quelques justements u dre v (n de dérire des situtions que le dre v stndrd ne peut reproduireD et on étudie à l fois théoriquement et numériquement es extensionsF 0.1.3 Modèles de trac du second ordre hns le ontexte de dynmique de tr(D on désigne pr modèle du seond ordre un modèle dérivnt l9évolution des vriles d9étt u moyen d9un système de deux ihF ges modèles ont été remis u gout du jour pr ewD sle PS et hng ISU @e dns l suiteA u déut du s e sièle et s9inspirent du système

∂ t ρ + ∂ x (ρv) = 0
∂ t (ρ(v + p(ρ))) + ∂ x (ρv(v + p(ρ))) = 0, @HFIFPIA voir WUD WTD IPF hns le système eD l première éqution trduit toujours l onservtion de l msse lors que l seonde exprime le trnsportD le long des trjetoires des véhiE ulesD d9un 4mrqueur lgrngien4 w = v + p(ρ) où l fontion pD typiquement de l forme p(ρ) = ρ γ D est prfois dite 4pression4 pr nlogie ve l dynmique des gzF v omplexité mthémtique des modèles du seond ordreD voir IRRD QQD WVD TVD IRV pour l9étude théorique de es systèmesD est ompensée pr une meilleure desription du tr(F hns l lsse des modèles du seond ordreD on s9intéresser plus prtiulièrement ux modèles de trnsition de phseF hns l seonde prtie du mnusritD on introduir et étudier un tel modèleF vors de l9étude théorique et numériqueD plutôt que d9dopter 4le point de vue système4 @hyperoliE itéD vleurs propresD prolèmes de iemnnAD on verr plutôt le modèle omme deux lois de onservtion slires dé-couplablesF 0.2 Contribution et organisation du manuscrit ve mnusrit est divisé en trois prtiesF 0.2.1 Description du trac dans le cadre LWR et théorie du ux discontinu hns l prtie sD on propose deux extensions du dre v pour donner une desription un peu plus sophistiquée de ertins phénomènes du tr(F v première extensionD qui est présente dns les deux premiers modèlesD est liée ux ontrintes pontuellesF ges ontrintes pontuelles sont pprues pour l première fois dns THD STD où les uteurs herhient à inorporer dns le modèle v un ménisme qui tiendrit ompte de phénomènesD lolisés en espeD rrivnt utour de sortiesD de péges ou enore de feux de irultionD et qui girient omme des ostlesF ge ménisme est mtérilisé pr une inéglité sur le )ux joutée à @HFIFPHA et lolisée en espe @position de l9ostleAD en générl en x = 0 pour (xer les idéesF ve modèle résultnt est lors

∂ t ρ + ∂ x (f (ρ)) = 0 f (ρ)| x=0 ≤ q(t)
@HFPFIA v9e'et de l9ostle est modélisé pr l fontion q @ontrinte dns l suiteAF yn pro(te du hpitre I pour fire des rppels sur l9pproximtion pr volumes (nis des lois de onservtion slires @HFIFIA et on trite églement le s du système @HFPFIAF ves nottions introduites dns e hpitre seront reprises dns les di'érentes setions d9nlyse numérique du mnusE ritF IQ hns le hpitre PD on se se sur le système @HFPFIA et on propose un modèle dérivnt l dynmique du tr( à un goulot d9étrnglementF yn joute à @HFPFIA un ménisme mesurnt le degré d9orgnistionGde désorgnistion du tr( via une fontion ω = ω(t) véri(nt une éqution di'érentielle impliqunt ρF v vleur de ω u temps t > 0 in)uene l vleur de l ontrinteF hns le hpitre QD on dérit l9in)uene d9un véhiule lent sur le tr( qui l9entoureF hns e seond modèleD qui présente églement une ontrinte pontuelleD l ontrinte n9est plus lolisée en x = 0 mis est moile et suit l trjetoire du véhiule lent X

       ∂ t ρ + ∂ x (f (ρ)) = 0 f (ρ) -ẏ(t)ρ| x=y(t) ≤ Q( ẏ(t)) ẏ(t) = M[ρ],
@HFPFPA y étnt l trjetoire du véhiule lent et où on noté M[•] un opérteur nonElol Y en prE tiqueD M[•] est un opérteur de moyennistion de ρF ve système @HFPFPA présente plusieurs degrés de di0ulté supplémentires pr rpport à @HFPFIAF h9une prtD l ontrinte n9est plus (xeD mis ei n9est ps un prolème X on se rmène à un prolème ve ontrinte (xe via le hngement de oordonnées X = x -y(t)D mis en ontreprtieD le nouveu )ux dépendr du temps via ẏF r illeursD l setion IFTFI du hpitre I étend les résultts étlis u déut du hpitre I dns le dre des systèmes de l forme @HFPFIA ve un )ux dépendnt du tempsF réisons que l vrinte lole de @HFPFPAD 9estEàEdire ve M[ρ] = ρ(y(t)+, t) été étudiée pr les uteurs de UHD et insistons sur l di0ulté d9nlyse de leur modèleD en prtiulier sur l question de l9uniitéD voir ussi UPD IPQF v di0ulté priniple pour l9étude du système @HFPFPA réside dns le ouplge qui existe entre ρ et y X le tr( mint in)uene l vitesse du véhiule via MD et le véhiule lent in)uene le tr( qui l9entoure via l ontrinte Q( ẏ)F our es deux modèlesD on prouve le rtère ien poséD et on onstruit un shém numérique pour lequel on prouve l onvergeneF hes simultions numériques sont églement réliséesF hns le hpitre RD on se propose d9étendre l9nlyse théorique de systèmes @HFPFPA u s où un nomre (ni de trjetoiresGontrintes (y i , q i ) i est donnéF gontrirement u hpitre QD on ne rectie ps les trjetoires dns le sens où on trville dns le repère d9origineD sns fire de hngement de oordonnées @ien que possileD mis lorieuxD voir pr exemple IVAF v ontriution mjeure de e hpitre est l9introdution d9un lngge dpté à l géométrie dé(nie pr les trjetoires (y i ) i @interfacesAF hns l preuve d9existene sée sur l onstrution d9un shém numériqueD on dpte lolement le millge du shém à l géométrie proposéeF ve formlisme et les tehniques dévelopées dns e hpitre llnt u delà des prolèmes à )ux ontrintsD on exploite le dre (xé dns le hpitre R pour l9étude de l loi de onservtion ∂ t ρ(x, t) + ∂ x (f (x, t, ρ(x, t))) = 0, @HFPFQA où l fontion f est de lsse C 1 en ρ et présente des disontinuités en (x, t)D l9exemple le plus simple étnt X f (x, t, ρ) = f (ρ) si x < 0 g(ρ) si x > 0, @HFPFRA ve f, g ∈ C 1 (R)F v9ojetif du hpitre S est de fournir une pprohe systémtique sée sur les volumes (nis pour onstruire des solutions de @HFPFQA ve un ouplge générl à l9interfeF piers soumisGpuliés liés à es deux modèles X PQD ISHD IRWF réisons que dns le hpitre PD du ontenu été jouté pr rpport à PQD notmment dns l setion PFPF joutons églement que le hpitre S fer l9ojet d9un preprint qui est en ours de (nlistionF 0.2.2 Étude théorique et numérique d'un modèle du second ordre yn proposer ensuite dns l prtie ss un modèle du seond ordre onstitué de deux équE tions X une loi de onservtion @ve )ux dépendnt du temps et de l9espeA sur l densité ρ trduisnt l onservtion de l msseD et une loi de onservtion sur un prmètre w trduisnt le degré d9orgnistion du tr( qui évolue le long de l trjetoire des véhiules et in)uene de mnière nonElole le digrmme fondmentl du )ux du tr( X 

             ∂ t ρ + ∂ x (f (x, t, ρ)) = 0 f (x, t, ρ) = (1 -ω(x, t))f min (ρ) + ω(x, t)f max (ρ) ω = M[w] ∂ t (ρw) + ∂ x (f (x, t, ρ)w) = ρK[ρ]w(1 -w),

IS

eprès voir étendu dns le hpitre T l théorie de nov IQR sur les solutions renormalisées d9équtions de trnsport linéiresD on pro(te pleinement de ette théorie dns le hpitre U où on prouve l9existene de solutions u système @HFPFSAF xotre dé(nition de solution est sée sur une ominison des solutions entropiques de uruzhkov pour ρ et des solutions renormlisées de nov pour wD voir l setion UFQF yn propose églement un shém nuE mérique pour @HFPFSA et on montre s onvergene dns le dre de données initiles BV sous l9hypothèse que l densité ρ est séprée de 0F ge shémD qui est une ominison entre l théorie lssique des volumes (nis @pour ρA et l trdution numérique de l propgtion de w le long des rtéristiquesD mène toutefois à un shém onservtif pour l quntité ρwF réEpulition liée à e modèle X PPF 0.2.3 Lois de conservation et équations d'Hamilton-Jacobi hétérogènes pinlementD dns l prtie sssD notre propos réside dns l9étude théorique des lois de onserE vtion ve dépendne sptile du )ux X

∂ t u + ∂ x (f (x, u)) = 0 u(•, 0) = u 0 .
@HFPFTA v première prtie de l9étude onsiste à montrer le rtère ien posé de e prolème de guhy pour des données initiles ornées u 0 ∈ L ∞ (R)F gomme évoqué préédemmentD voir le prgrphe HFIFID il est mintennt ien onnu que @HFPFTA dmet une unique solution enE tropique si f ∈ W 1,∞ (R 2 )D voir pr exemple IIRD VVD TVD IRHF gependntD ette hypothèse est ssez restritive puiqu9elle exlut les fontions à roissne surElinéires en u pr exempleF lutôt que de onsidérer des )ux glolement vipshitzD on hoisir f dns l lsse des fontions C 2 (R 2 ) dont l dépendne sptile est lolisée dns un ompt X

∃X > 0, ∀x, u ∈ R, |x| ≥ X =⇒ ∂f ∂x (x, u) = 0.
@HFPFUA gette hypothèseD qui n9impose ps de ondition de roissne de f en uD permettr pr exemple de onsidérer des fontions f fortement convexes en uD fontions intteignles sous l9hypothèse f ∈ W 1,∞ (R 2 )F our fire le lien ve l modélistion du tr(D une fontion f rentrnt dns notre dre @-f en fitA est

f (x, u) = θ(x)u(1 -u),
où l9llure de l fontion θ ∈ C 2 (R) est représentée en (gure UD à guheF v loi de onservtion ssoiée à e )ux modélise pr exemple l9évolution d9une densité de voitures se déplçnt sur une route où l limittion de vitesse hnge de mnière ontinueF ur le hemin de l preuve d9existene de solutions entropiques de @HFPFTAD on fer le lien entre les solutions @entropiquesA de @HFPFTA et les solutions de visosité @voir IPTD PVA de l9éqution de rmiltonEtoi X

∂ t U + f (x, ∂ x U ) = 0 U (•, 0) = U 0 . @HFPFVA Figure U ! ixmple d9un
)ux stisfisnt l9hypothèse @HFPFUAF hns le s homogèneD i.e. qund f = f (u) ∈ C 1 (R)D il est onnu que X " si f est glolement vipshitzienneD lors @HFPFTA dmet une unique solution entropiqueD pour toute donnée initile ornéeD voir IIR ou IPUD ghpter P Y " si f est glolement vipshitzienne ou superElinéireD lors @HFPFVA dmet une unique solution de visosité pour toute donnée initile vipshitzD voir VID ghpter IH ou PUD ghpter P Y " les solutions entropiques de @HFPFTA sont otenus en dérivnt pr rpport à x les soluE tions de visosité de @HFPFVAD voir IHSD TIF hns le s hétérogèneD sous l9hypothèse @HFPFUA @en plus de superElinérité en uAD es résultts ne sontD a prioriD ps onnusF yutre l9extension de es résultts dns notre dreD on fit églement le lien ve le prolème de lul des vritions ssoié à @HFPFVA X inf y∈W 1,1 ((0,t))

y(t)=x ¢ t 0 f * (y(s), ẏ(s)) ds + U 0 (y(0)) , (x, t) ∈ Ω,
@HFPFWA où f * est l trnsformée de vegendre de f en l seonde vrileF ges di'érents points de vue sont ruiux dns l disussion reliée à l deuxième proléE mtique de ette prtieD à svoir elle d'identication inverseF lus préisémentD on se (xe un temps (nl T > 0 et un pro(l w ∈ L ∞ (R)D et on s9interroge sur l9ensemle des donE nées initiles u 0 tel que l solution entropique u de @HFPFTA véri(e u(•, T ) = wF gomme les solutions de @HFPFTA présentent des disontinuités qui usent une perte d9informtionD e prolème d9identi(tion n9est ps trivilF réisons que les uteurs de TI ont fourni une desription omplète de l9ensemle des données initiles évolunt en un pro(l donné dns le s où f = f (u) étit uniformément onvexeF v prtie sss étend leurs résultts dns le s de )ux fortement onvexe en u ve dépendne sptile ompteF wettons en lumière le fit que l9extension u s hétérogène de es prolèmes d'inverse design n9est ps qu9une simple dpttion des résultts prouvés pr les uteurs de TID omme en tteste l9exemple his (rst hpter is the osion to introdue the nottions we will dopt in the sequel reE grding the numeril pproximtions of our di'erent prolemsF st lso serves to elorte hndful of ingredients nd tehniques we will useF feing given vipshitz onve )ux f :

[0, 1] → RX f (ρ) ≥ 0, f (0) = f (1) = 0; ∃! ρ ∈ (0, 1)
, for FeF ρ ∈ (0, 1), f (ρ)(ρ -ρ) > 0, @IFHFIA nd onstrint funtion q ∈ L ∞ ((0, +∞)), q ≥ 0D we tkle the following prolem in

Ω = R × (0, +∞)X      ∂ t ρ + ∂ x (f (ρ)) = 0 ρ(•, 0) = ρ 0 f (ρ)| x=0 ≤ q(t).
@IFHFPA his lss of prolems hs een gretly investigted in the pst few dedesF wotivted y the modeling of tollgtes nd tr0 lights for instneD the uthors of ST proved wellE posedness result for @IFHFPA in the BV frmework @i.e. with oth q nd ρ 0 with ounded vritionAF he uthors of IR then extended the wellEposedness in the L ∞ frmeworkF sn this prtD we re interested in the numeril pproximtion of rolem @IFHFPA y the mens of (nite volume shemeF vet us rell the notion of solution for @IFHFPAF Denition 1.0.1. e funtion ρ ∈ L ∞ (Ω) is n dmissile entropy solution to @IFHFPA with

initil dt ρ 0 ∈ L ∞ (R) if @iA for ll test funtions ϕ ∈ C ∞ c (Ω), ϕ ≥ 0 nd κ ∈ [0, 1]D the following entropy inequlities IW PH CHAPTER 1. FINITE VOLUMES FOR A CONSTRAINED PROBLEM re veri(edX ¢ +∞ 0 ¢ R |ρ -κ|∂ t ϕ + Φ(ρ, κ)∂ x ϕ dx dt + ¢ R |ρ 0 (x) -κ|ϕ(x, 0) dx + 2 ¢ +∞ 0 R(κ, q(t))ϕ(0, t) dt ≥ 0, @IFHFQA
where R(κ, q(t)) = f (κ) -min {f (κ), q(t)} ; @iiA for ll test funtions ϕ ∈ C ∞ c (Ω), ϕ ≥ 0 the following onstrint inequlities re veri(edX

- ¢ +∞ 0 ¢ R + ρ∂ t ϕ + f (ρ)∂ x ϕ dx dt ≤ ¢ +∞ 0 q(t)ϕ(0, t) dt . @IFHFRA
sn STD IRD the uthors proved the wellEposedness with slightly di'erent notion of solutionF he one we onsider here is equivlent @see ll the detils in ghpter RA nd is more dpted for pssge to the limit of FeF onvergent sequenes of pproximte solutionsD nd thus for the proof of existene while the other one yields uniqueness more esilyF 1.1 Constrained nite volume scheme he ide ehind the onstrution of (nite volume sheme for prtil di'erentil eqution in generl @see VQA is to deompose the domin Ω into smll control volumes nd integrte the hi on eh of those ontrol volumesF hroughout the mnusript @exept in ghpters RES where we will lolly modify the meshAD we will lwys onsider retngle ontrol volumesF por (xed sptil mesh size ∆x > 0 nd time mesh size ∆t > 0D let x j = j∆x @j ∈ ZA nd t n = n∆t @n ∈ NAF e de(ne the ell gridsX

Ω = n∈N j∈Z P n j+1/2 , P n j+1/2 = (x j , x j+1 ) × [t n , t n+1 ).
he ontrol volumes re the retngles P n j+1/2 n,j D see pigure IFID leftF sntegrting the hi of @IFHFPA on

P n j+1/2 @n ∈ N, j ∈ Z)D we otinX ¢ x j+1 x j ρ(x, t n+1 ) -ρ(x, t n ) dx + ¢ t n+1 t n (f (ρ(x j+1 , t)) -f (ρ(x j , t))) dt = 0.
por n ∈ N nd j ∈ ZD let us denote ρ n j+1/2 n pproximtion of the solution ρ on P n j+1/2 D nd f n j n pproximtion of f (ρ) on [t n , t n+1 ) t x = x j D see pigure IFID rightF his leds to the shemeX

ρ n+1 j+1/2 = ρ n j+1/2 - ∆t ∆x (f n j+1 -f n j ).
@IFIFIA e immeditely see tht if we n express the (f n j ) j only with (ρ n j+1/2 ) j D then y indutionD we n dedue ll the vlues ρ n j+1/2 n,j from ρ 0 j+1/2 j onlyD i.e. from pproximte vlues

of ρ 0 F sf ρ 0 ∈ L ∞ (R; [0, 1])D simple hoie isX ∀j ∈ Z, ρ 0 j+1/2 = 1 ∆x ¢ x j+1
x j ρ 0 (x) dx . n e usedF he only requirements re

∀j ∈ Z, ρ 0 j+1/2 ∈ [0, 1] nd ρ 0 ∆ = j∈Z ρ 0 j+1/2 1 (x j ,x j+1 ) -→ ∆x→0 ρ 0 in L 1 loc (R). pigure IFI ! hisretiztion of R × R + nd pproximtions of ρ nd f (ρ)F
e n see tht the remining question is to (nd how to ompute the pproximtion (f n j ) j of f (ρ)F sn (rst pprohD it seems resonle to de(ne f n j s funtion of 

ρ n j-1/2 nd ρ n j+1/2 X f n j = F(ρ n j-1/2 , ρ n j+1/
@iA onsistenyX ∀κ ∈ [0, 1]D F(κ, κ) = f (κ)Y @iiA F is vipshitz ontinuous on [0, 1] 2 D
nonderesing with respet to the (rst vrile nd noninresing with respet to the seond vrileF Remark 1.1.2. he required properties of F re neessry only on [0, 1] euse s we will see lter @cf. heorem IFPFIAD under suitle ssumption on ∆t nd ∆x @gpv ondition @IFIFSAAD the vlues (ρ n j+1/2 ) n,j omputed y the sheme @IFIFIA will elong to [0, 1]F Example 1.1.1. rere re the most lssil nd most ommonly used monotone numeril )uxesF hese re the )uxes we will use nd will refer toD throughout the mnusriptF

Rusanov )uxX ∀a, b ∈ [0, 1], Rus(a, b) = f (a) + f (b) 2 + ∆ 2 (a -b), ∆ ≥ f L ∞ .
e speil se of the usnov )ux is the Lax-Friedrichs )uxD otined with ∆ = ∆x ∆t D under the gpv ondition @IFIFSAF Godunov )uxX

∀a, b ∈ [0, 1], God(a, b) =            f (a) if a = b min u∈[a,b] f (u) if a < b mx u∈[b,a] f (u) if a > b. Engquish-Osher )uxX ∀a, b ∈ [0, 1], EO(a, b) = f (a) + f (b) 2 - 1 2 ¢ b a |f (u)| du .
wore kground s well s other exmples of monotone numeril )uxes re given in IPID IPPD VQF emrk tht for the ones we presented hereD we hveX

∂F ∂a L ∞ , ∂F ∂b L ∞ ≤ f L ∞ .
hroughout this hpterD if not expliitly stted otherwiseD F = F(a, b) will denote ny monotone numeril )ux ssoited to f F yne monotone numeril )ux is hosenD the sheme for the hi in @IFHFPA is ompleteF roweverD we lso hve to tke into ount the onstrint inequlity in @IFHFPAF o doing soD we (rst de(ne suitle pproximtion (q n ) n of qD for instne its men vlue on [t n , t n+1 )D then introdue the onstrined numeril )uxX

F n j (a, b) = F(a, b) if j = 0 min{F(a, b), q n } if j = 0D @IFIFPA nd reple f n j y F n j (ρ n j-1/2 , ρ n j+1/2 ) in @IFIFIAF he resulting mrhing formul isX ∀j ∈ Z, ρ n+1 j+1/2 =                ρ n j+1/2 - ∆t ∆x (f n j+1 -f n j ) if j / ∈ {-1, 0} ρ n -1/2 - ∆t ∆x min{f n 0 , q n } -f n -1 if j = -1 ρ n 1/2 - ∆t ∆x (f n 1 -min{f n 0 , q n }) if j = 0. @IFIFQA Remark 1.1.3. he only neessry requirements on (q n ) n re ∀n ∈ N, q n ≥ 0 nd q ∆ = n∈N q n 1 [t n ,t n+1 ) -→ ∆t→0 q in L 1 loc ((0, +∞)).
xotie how in @IFIFQAD we only modify two vlues of the pproximte solutionY the two vlues ssoited to the ells nery the interface x = 0F st is usul to rewrite @IFIFQA s 

∀j ∈ Z, ρ n+1 j+1/2 = H n j ρ n j-1/2 , ρ n j+1/2 , ρ n j+3/2 , @IFIFRA

PQ

where H n j = H n j (u, v, w) is given y the rightEhnd side of @IFIFQAF pinllyD the pproximte solution ρ ∆ is de(ned lmost everywhere on ΩX

ρ ∆ = n∈N j∈Z ρ n j+1/2 1 P n j+1/2 .
vet ∆ = (∆x, ∆t)F por our onvergene nlysisD we will ssume tht ∆ → 0D with λ = ∆t/∆x verifying the CFL condition

λL ≤ 1, L = ∂F ∂a L ∞ + ∂F ∂b L ∞ . @IFIFSA
Remark 1.1.4. hen onsidering the monotone numeril )uxes presented in ixmple IFIFID the gpv ondition @IFIFSA simply redues to

2λ f L ∞ ≤ 1.
he resoning is s followsX " proving L ∞ stility of the sheme nd disrete entropy inequlitiesY " deriving ontinuous entropyGonstrint inequlities for the pproximte solution simE ilr to @IFHFQAE@IFHFRAY " proving su0ient omptness for the sequene (ρ ∆ ) ∆ Y " pssing to the limit in the ontinuous entropyGonstrint inequlitiesF sn ghpters P ! R nd ghpter UD even if the models onsidered re di'erentD the numeril pproximtion setions will ll hve this skeletonF 1.2 Stability and discrete entropy inequalities sn one spe dimensionD the monotoniity plys huge role in the stility nd onsisteny of the shemeF sn this setionD we detil how muh this is trueF Theorem 1.2.1 @L ∞ stilityA. Under the CFL condition @IFIFSA, the scheme @IFIFRA is (i) monotone: for all n ∈ N and j ∈ Z, H n j is nondecreasing with respect to its three arguments; (ii) stable:

∀n ∈ N, ∀j ∈ Z, ρ n j+1/2 ∈ [0, 1]. @IFPFIA Proof. (i) pix n ∈ N nd j ∈ ZF o prove tht H n j
is nonderesingD we di'erentite it @liit sine it is vipshitz funtionA nd veri(es tht the gpv ondition ensures the nonnegtivity of its prtil derivtivesF uppose (rst tht j / ∈ {-1, 0} i.e. the interfe x = 0 does not enter the lultions in the sheme @IFIFQAF he monotoniity of F implies tht for FeF u, v, w

∈ [0, 1]D ∂H n j ∂u (u, v, w) = λ ∂F ∂a (u, v) ≥ 0, ∂H n j ∂w (u, v, w) = -λ ∂F ∂b (v, w) ≥ 0,
sing now the gpv onditionD we otinX

∂H n j ∂v (u, v, w) = 1 -λ ∂F ∂a (v, w) - ∂F ∂b (u, v) ≥ 1 -λL ≥ 0,
proving the sttement in this seF uppose now tht j = -1 for instneF vet us prove tht the modi(tion in @IFIFQA does not 'et the monotoniity of the shemeF sn the present seD H n -1 tkes the formX

H n -1 (u, v, w) = v -λ (min{F(v, w), q n } -F(u, v)) . glerlyD H n -1
is still nonderesing with respet to the u vrile thnks to the previous lultionsF sing the lssil formul

min{u, v} = (u + v) -|u -v| 2 , we otinX ∂H n -1 ∂v (u, v, w) = - λ 2 ∂F ∂b (v, w) (1 -sgn (F(v, w) -q n )) ≥0 ≥ 0,
euse of the monotoniity of FF xowD with the gpv onditionD we getX

∂H n j ∂v (u, v, w) = 1 -λ 1 2 ∂F ∂a (v, w) (1 -sgn (F(v, w) -q n )) - ∂F ∂b (u, v) ≥ 1 -λ ∂F ∂a (v, w) - ∂F ∂b (u, v) ≥ 1 -λL ≥ 0,
onluding the proof of the sttement in this se s wellF he se j = 0 is similr so we omit the detils of the proof for tht seF (ii) e prove @IFPFIA y indution on nF sf n = 0D it is veri(ed y our hoie of the disretizE tion ρ 0 j+1/2 j D see emrk IFIFIF uppose now tht @IFPFIA is true for some integer n ≥ 0 nd let us show tht it still holds for n + 1F emrk tht 0 nd 1 re sttionry solutions to the shemeF sndeedD for ll j ∈ ZD if j / ∈ {-1, 0} we hve

H n j (0, 0, 0) = 0 nd H n j (1, 1, 1) = 1, nd if j = 0 for instneD then using emrk IFIFQD H n 0 (0, 0, 0) = -λ(f (0) -min{f (0), q n }) = 0 nd H n 0 (1, 1, 1) = 1 -λ(f (1) -min{f (1), q n }) = 1
, nd it is lso the se for H -1 F sing now the monotoniity of H n j nd the indution propertyD we dedue tht for ll j ∈ ZD we hve 

0 = H n j (0, 0, 0) ≤ H n j (ρ n j-1/2 , ρ n j+1/2 , ρ n j+3/2 ) = ρ n+1 j+1/2 = H n j (ρ n j-1/2 , ρ n j+1/2 , ρ n j+3/2 ) ≤ H n j (1, 1, 1) =
∀∆, 0 ≤ ρ ∆ ≤ 1.
Remark 1.2.2. sn the ontext of tr0 )ow dynmisD the ft tht the onstnts 0 nd 1 re sttionry solutions to the sheme mkes senseX vuum @ρ ≡ 0A nd umperEtoEumper (ρ ≡ 1A re ovious equilirium of the modelF sn order to show tht the limit of (ρ ∆ ) ∆ D when omptness is provedD is the dmissile entropy solution to @IFHFPAD we derive disrete entropy inequlitiesF Corollary 1.2.2 @hisrete entropy inequlitiesA. The numerical scheme @IFIFRA fullls the following discrete entropy inequalities for all n ∈ N, j ∈ Z and κ ∈ [0, 1]:

|ρ n+1 j+1/2 -κ| -|ρ n j+1/2 -κ| ∆x ≤      -Φ n j+1 -Φ n j ∆t if j / ∈ {-1, 0} -Φ n int -Φ n -1 ∆t + R(κ, q n )∆t if j = -1 -(Φ n 1 -Φ n int ) ∆t + R(κ, q n )∆t if j = 0, @IFPFPA
where R(κ, q n ) was dened in Denition 1.0.1, and Φ n j and Φ n int are the numerical entropy uxes:

Φ n j = F(ρ n j-1/2 ∨ κ, ρ n j+1/2 ∨ κ) -F(ρ n j-1/2 ∧ κ, ρ n j+1/2 ∧ κ); Φ n int = min{F(ρ n -1/2 ∨ κ, ρ n 1/2 ∨ κ), q n } -min{F(ρ n -1/2 ∧ κ, ρ n 1/2 ∧ κ), q n }.
Proof. his is mostly onsequene of the sheme monotoniityF pix n ∈ N nd j ∈ ZF uppose (rst tht j / ∈ {-1, 0}F sn this seD ll the onstnt sttes κ ∈ [0, 1] re sttionry solutions of the shemeF gonsequentlyD

|ρ n+1 j+1/2 -κ| = ρ n+1 j+1/2 ∨ κ -ρ n+1 j+1/2 ∧ κ = H n j ρ n j-1/2 , ρ n j+1/2 , ρ n j+3/2 ∨ H n j (κ, κ, κ) -H n j ρ n j-1/2 , ρ n j+1/2 , ρ n j+3/2 ∧ H n j (κ, κ, κ) ≤ H n j ρ n j-1/2 ∨ κ, ρ n j+1/2 ∨ κ, ρ n j+3/2 ∨ κ -H n j ρ n j-1/2 ∧ κ, ρ n j+1/2 ∧ κ, ρ n j+3/2 ∧ κ = |ρ n+1 j+1/2 -κ| -λ(Φ n j+1 -Φ n j ),
whih is extly @IFPFPA in the se j / ∈ {-1, 0}F uppose now tht j = 0 for instneF he previous oservtion regrding the onstnts κ ∈ [0, 1] is not longer vlid in this se sine

H n 0 (κ, κ, κ) = κ -λR(κ, q n ) i.e. κ ≤ H n 0 (ρ n -1/2 ∨ κ, ρ n 1/2 ∨ κ, ρ n 3/2 ∨ κ) + λR(κ, q n ) ≥ H n 0 (ρ n -1/2 ∧ κ, ρ n 1/2 ∧ κ, ρ n 3/2 ∧ κ). e dedueX |ρ n+1 1/2 -κ| = ρ n+1 1/2 ∨ κ -ρ n+1 1/2 ∧ κ = H n 0 ρ n -1/2 , ρ n 1/2 , ρ n 3/2 ∨ κ -H n 0 ρ n -1/2 , ρ n 1/2 , ρ n 3/2 ∧ κ ≤ H n 0 ρ n -1/2 ∨ κ, ρ n 1/2 ∨ κ, ρ n 3/2 ∨ κ ∨ κ -H n 0 ρ n -1/2 ∧ κ, ρ n 1/2 ∧ κ, ρ n 3/2 ∧ κ ∧ κ ≤ H n 0 ρ n -1/2 ∨ κ, ρ n 1/2 ∨ κ, ρ n 3/2 ∨ κ ∨ H n 0 (ρ n -1/2 ∨ κ, ρ n 1/2 ∨ κ, ρ n 3/2 ∨ κ) + λR(κ, q n ) -H n 0 ρ n -1/2 ∧ κ, ρ n 1/2 ∧ κ, ρ n 3/2 ∧ κ ∧ H n 0 (ρ n -1/2 ∧ κ, ρ n 1/2 ∧ κ, ρ n 3/2 ∧ κ) ≤ H n 0 (ρ n -1/2 ∨ κ, ρ n 1/2 ∨ κ, ρ n 3/2 ∨ κ) + λR(κ, q n ) -H n 0 (ρ n -1/2 ∧ κ, ρ n 1/2 ∧ κ, ρ n 3/2 ∧ κ) = |ρ n 1/2 -κ| -λ (Φ n 1 -Φ n int ) + λR(κ, q n ),
whih is @IFPFPA in the se j = 0F he otining of @IFPFPA in the se j = -1 is similr so we omit the detils of the proof for this seF 1.3 Continuous inequalities for the approximate solution

sn this setionD if ϕ ∈ C ∞ c (Ω), ϕ ≥ 0 is test funtionD we de(neX ∀n ∈ N, ∀j ∈ Z, ϕ n j+1/2 = 1 ∆x ¢ x j+1
x j ϕ(x, t n ) dx .

Approximate entropy inequalities

e strt y deriving ontinuous entropy inequlities similr to @IFHFQA veri(ed y ρ ∆ F vet us de(ne the pproximte entropy )uxX

Φ ∆ (ρ ∆ , κ) = n∈N j∈Z Φ n j 1 P n j+1/2 . Proposition 1.3.1 @epproximte entropy inequlitiesA. Fix n ∈ N and κ ∈ [0, 1]. Then as ∆ → 0, we have ¢ t n+1 t n ¢ R |ρ ∆ -κ|∂ t ϕ + Φ ∆ (ρ ∆ , κ) ∂ x ϕ dx dt + ¢ R |ρ ∆ (x, t n ) -κ|ϕ(x, t n ) dx - ¢ R |ρ ∆ (x, t n+1 ) -κ|ϕ(x, t n+1 ) dx + 2 ¢ t n+1 t n R(κ, q ∆ (t))ϕ(0, t) dt ≥ O(∆x∆t) + O ∆t 2 .
@IFQFIA 

ρ n+1 j+1/2 -κ ϕ n+1 j+1/2 ∆x ≤ j∈Z j / ∈{-1,0} ρ n j+1/2 -κ ∆x -(Φ n j+1 -Φ j ) n ∆t ϕ n+1 j+1/2 + |ρ n -1/2 -κ|ϕ n+1 -1/2 ∆x -Φ n int -Φ n -1 ϕ n+1 -1/2 ∆t + R(κ, q n )ϕ n+1 -1/2 ∆t + |ρ n 1/2 -κ|ϕ n+1 1/2 ∆x -(Φ n 1 -Φ n int ) ϕ n+1 1/2 ∆t + R(κ, q n )ϕ n+1 1/2 ∆t.
e now proeed to the eel9s trnsformtion s well s dding some quntities nd their opposites to otinX

j∈Z ρ n+1 j+1/2 -κ ϕ n+1 j+1/2 ∆x - j∈Z ρ n j+1/2 -κ ϕ n j+1/2 ∆x - j∈Z ρ n j+1/2 -κ ϕ n+1 j+1/2 -ϕ n j+1/2 ∆x ≤ j∈Z Φ n j ϕ n+1 j+1/2 -ϕ n+1 j-1/2 ∆t A + R(κ, q n )(ϕ n+1 -1/2 + ϕ n+1 1/2 )∆t B + (Φ n int -Φ n 0 )(ϕ n+1 1/2 -ϕ n+1 -1/2 )∆t C .
he leftEhnd side of this inequlity is equl to

¢ R |ρ ∆ (x, t n+1 ) -κ|ϕ(x, t n+1 ) dx - ¢ R |ρ ∆ (x, t n ) -κ|ϕ(x, t n ) dx - ¢ t n+1 t n ¢ R |ρ ∆ -κ|∂ t ϕ dx dt .
e now estimte the memers of the rightEhnd sideF Estimating A. e writeX

A = ∆t ¢ R Φ ∆ (ρ ∆ , κ)∂ x ϕ(x, t n+1 ) dx + λ j∈Z ¢ x j+1 x j ¢ x x-∆x ¢ y x Φ n j ∂ 2 xx ϕ(z, t n ) dz dy dx A 1 = ¢ t n+1 t n ¢ R Φ ∆ (ρ ∆ , κ)∂ x ϕ dx dt + A 1 + ¢ t n+1 t n ¢ R ¢ t n+1 t Φ ∆ (ρ ∆ , κ)∂ 2 tx ϕ(x, τ ) dτ dx dt A 2
, nd we hve the estimtionsX

|A 1 | ≤ 4L sup t≥0 ∂ 2 xx ϕ(•, t) L 1 ∆x∆t; |A 2 | ≤ L sup t≥0 ∂ 2 tx ϕ(•, t) L 1 ∆t 2 .
Estimating B. e hve

B = R(κ, q n ) 2ϕ(0, t n+1 ) + 1 ∆x ¢ ∆x 0 (ϕ(x, t n+1 ) -ϕ(0, t n+1 )) ≤ ∂xϕ L ∞ ∆x dx + 1 ∆x ¢ 0 -∆x (ϕ(x, t n+1 ) -ϕ(0, t n+1 )) dx ≤ ∂xϕ L ∞ ∆x ∆t = 2R(κ, q n )ϕ(0, t n+1 )∆t + O(∆x∆t) = 2 ¢ t n+1 t n R(κ, q ∆ (t))ϕ(0, t) dt + 2 ¢ t n+1 t n R(κ, q ∆ (t)) ϕ(0, t n+1 ) -ϕ(0, t) dt ≤2 q L ∞ ∂tϕ L ∞ ∆t 2 + O(∆x∆t) = 2 ¢ t n+1 t n R(κ, q ∆ (t))ϕ(0, t) dt + O(∆x∆t) + O ∆t 2 . Estimating C. pinllyD |C| ≤ (2L)∆x∆t, onluding the proof of the sttementF Remark 1.3.1. sf ϕ is supported in time in some [0, T ] @T > 0AD with T ∈ [t N , t N +1 )D then y summing @IFQFIA over n ∈ {0, . . . , N + 1}D we otinX ¢ T 0 ¢ R |ρ ∆ -κ|∂ t ϕ + Φ ∆ (ρ ∆ , κ) ∂ x ϕ dx dt + ¢ R |ρ 0 ∆ -κ|ϕ(x, 0) dx + 2 ¢ T 0 R(κ, q ∆ (t))ϕ(0, t) dt ≥ O(∆x) + O(∆t) . @IFQFPA

Approximate constraint inequalities

e now turn to the proof of n pproximte version of the onstrint inequlitiesD one similr to @IFHFRAF sn tht optiD let us de(ne the pproximte )ux funtionX

F ∆ (ρ ∆ ) = n∈N j∈Z f n j 1 P n j+1/2 .
Proposition 1.3.2 @epproximte onstrint inequlitiesA. For all n ∈ N, as ∆ → 0, we have ¢

R + ρ ∆ (x, t n+1 )ϕ(x, t n+1 ) dx - ¢ R + ρ ∆ (x, t n )ϕ(x, t n ) dx - ¢ t n+1 t n ¢ R + ρ ∆ ∂ t ϕ + F ∆ (ρ ∆ )∂ x ϕ dx dt ≤ ¢ t n+1 t n q ∆ (t)ϕ(0, t) dt + O(∆x∆t) + O ∆t 2 .
@IFQFQA 

ρ n+1 j+1/2 ϕ n+1 j+1/2 ∆x = j≥1 ρ n j+1/2 ϕ n+1 j+1/2 ∆x - j≥1 (f n j+1 -f n j )ϕ n+1 j+1/2 ∆t + ρ n 1/2 ϕ n+1 1/2 ∆x -(f n 1 -min{f n 0 , q n })ϕ n+1 1/2 ∆t.
vike eforeD we proeed to the eelG4summtionEyEprts4 tehniqueF efter reorgniztion of the termsD we hveX

j≥0 ρ n+1 j+1/2 ϕ n+1 j+1/2 ∆x - j∈Z ρ n j+1/2 ϕ n j+1/2 ∆x - j∈Z ρ n j+1/2 ϕ n+1 j+1/2 -ϕ n j+1/2 ∆x = j≥1 f n j ϕ n+1 j+1/2 -ϕ n+1 j-1/2 ∆t + min{f n 0 , q n })ϕ n+1 1/2 ∆t ≤ j≥1 f n j ϕ n+1 j+1/2 -ϕ n+1 j-1/2 ∆t A + q n ϕ n+1 1/2 ∆t B .
snequlity @IFQFQA follows from the estimtes

A - ¢ t n+1 t n ¢ R + F ∆ (ρ ∆ )∂ x ϕ dx dt ≤ 4L sup t≥0 ∂ 2 xx ϕ(•, t) L 1 ∆x∆t + L sup t≥0 ∂ 2 tx ϕ(•, t) L 1 ∆t 2 nd B - ¢ t n+1 t n q ∆ (t)ϕ(0, t) dt ≤ q L ∞ ∂ t ϕ L ∞ ∆t 2 . Remark 1.3.2. sf ϕ is supported in time in some (0, T ) @T > 0AD with T ∈ [t N , t N +1 )D then y summing @IFQFQA over n ∈ {0, . . . , N + 1}D we otinX ¢ T 0 ¢ R + ρ ∆ ∂ t ϕ + F ∆ (ρ ∆ )∂ x ϕ dx dt ≤ ¢ T 0 q ∆ (t)ϕ(0, t) dt + O(∆x) + O(∆t) . @IFQFRA

Compactness and convergence

e now wish to pss to the limit in inequlities @IFQFPA nd @IFQFRAF he only missing ingredient is the omptness of the sequene (ρ ∆ ) ∆ F yf ourseD the uniform L ∞ ound @IFPFIA ensures tht susequene of (ρ ∆ ) ∆ onverges in the L ∞ wekB senseF roweverD sine (ρ ∆ ) ∆ ppers in @IFQFPA nd @IFQFRA in nonliner wyD this onvergene does not llow us to the pss to the limit diretlyF por exmpleD the uthors of IR were le to pss to the limit y deriving the soElled wek BV estimtes nd using onvergene of oung9s mesuresD see UTD IQV for instneF he dvntge of this pproh is tht it n e used to tret multiEdimensionl onservtion lwsD where monotoniity is not s restritive s in the oneEdimensionl seD see VPD RVD VQD RWD ISTF sn this setionD we present two methods to otin FeF onvergene @lled strong ompteE ness from here on outA of susequene of (ρ ∆ ) ∆ F he key point is to derive BV oundsD whether they re glol @etion IFRFIA or lolized @etion IFRFPAF vet us lso point out tht in the se where the prolem is invrint y time trnsltion @this is the se for @IFHFPAAD fürger nd lD see QVD vemm RFP nd RID vemms SFQD SFRD were le to provide lolized BV estimtes in di'erent setting tht the one presented in etion IFRFUF

Compactness via global BV bounds

st is well known tht the entropy solution to

∂ t ρ + ∂ x (f (ρ)) = 0 ρ(•, 0) = ρ 0 elongs to the spe L ∞ ((0, +∞); BV(R)) if ρ 0 hs ounded vritionF wore preiselyD the solution ρ veri(esX ∀t ≥ 0, TV(ρ(•, t)) ≤ TV(ρ 0 ).
his is onsequene of the L 1 ontrtion nd of the ft tht the prolem is invrint under sptil trnsltionsD see IIRD WVD SW for instneF his property is lso true for numeril pproximtions onstruted with monotone numeril )uxesX we sy tht the sheme @IFIFIA is total variation diminishing @hAF Lemma 1.4.1. Suppose that ρ 0 ∈ BV(R). Then the scheme @IFIFIA veries:

∀n ∈ N, TV(ρ ∆ (•, t n )) ≤ TV(ρ 0 ). @IFRFIA
Proof. pix n ∈ N nd j ∈ ZF e strt y writing the sheme @IFIFIA under the formX

ρ n+1 j+1/2 = ρ n j+1/2 -λ   F ρ n j+1/2 , ρ n j+3/2 -F ρ n j+1/2 , ρ n j+1/2 ρ n j+3/2 -ρ n j+1/2   -B j+1 ρ n j+3/2 -ρ n j+1/2 -λ   F ρ n j+1/2 , ρ n j+1/2 -F ρ n j-1/2 , ρ n j+1/2 ρ n j+1/2 -ρ n j-1/2   A j ρ n j+1/2 -ρ n j-1/2 .
he monotoniity of F ensures tht A j , B j+1 ≥ 0F e dedue tht

ρ n+1 j+1/2 -ρ n+1 j-1/2 = (1 -A j -B j ) ρ n j+1/2 -ρ n j-1/2 + A j-1 ρ n j-1/2 -ρ n j-3/2 + B j+1 ρ n j+3/2 -ρ n j+1/2 .

QI

wking use of the gpv ondition @IFIFSAD we hve

|A j | + |B j | ≤ λL ≤ 1D heneX j∈Z ρ n+1 j+1/2 -ρ n+1 j-1/2 ≤ j∈Z (1 -A j -B j ) ρ n j+1/2 -ρ n j-1/2 + j∈Z A j-1 ρ n j-1/2 -ρ n j-3/2 + j∈Z B j+1 ρ n j+3/2 -ρ n j+1/2 = j∈Z ρ n j+1/2 -ρ n j-1/2
snequlity @IFRFIA follows y immedite indution on nF he h property @IFRFIA does not hold nymore when the )ux is spe dependent or in the ontext of )ux onstrint prolemsF he totl vrition of the solution to @IFHFPA my well inrese s the following exmple highlightsF Example 1.4.1. he ext solution to @IFHFPA with dt

f (ρ) = ρ(1 -ρ); ρ 0 (x) = 0.6 if x < 0 0.2 if x > 0 ; q(t) = 0.2
is represented t time T = 1 in pigure IFPD see ST for the onstrution of the onstrined iemnn solverF es we n seeD TV(ρ(•, 1)) > TV(ρ 0 )F pigure IFP ! sllustrtion of the loss of h propertyF hough not noninresingD we will show in this setion tht if the initil dt hs ounded vrition nd if the onstrint level does not reh the mximum levelD see essumption @IFRFPA elowD then we n derive glol BV ounds for the sequene @ρ ∆ ) ∆ F Lemma 1.4.2. Let us assume that f ∈ C 1 ([0, 1]\{ρ}), that ρ 0 ∈ BV(R) and that in @IFIFPA, we use the Godunov ux when j = 0. Then if q veries the assumption

∃ε > 0, ∀t > 0, q(t) ≤ max ρ∈[0,1] f (ρ) -ε := q ε , @IFRFPA
there exists a constant C ε > 0 such that for all n ∈ N,

TV(ρ ∆ (•, t n+1 )) ≤ TV(ρ 0 ) + 4 + C ε n k=0 |q k+1 -q k |. @IFRFQA
Proof. xote tht y ssumptionD ny suitle pproximtion (q n ) n of q @men vlueD middle pointFFFA will verifyX ∀n ∈ N, q n ≤ q ε . pix n ∈ NF ith th present set upD we n follow the proofs of RSD etion P to otin the following estimteX

j∈Z |ρ n+1 j+1/2 -ρ n+1 j-1/2 | ≤ TV(ρ 0 ) + 4 + 2 n k=0 ρ q k+1 -ρ q k -q ρ q k+1 -q ρ q k ,
where for ll k ∈ {0, . . . , n}D the ouple ρ q k , q ρ q k ∈ [0, 1] 2 is uniquely de(ned y the onditions

f q ρ q k = f ρ q k = q k nd q ρ q k < ρ q k .
fy ssumptionD the ontinuous funtion |f | is positive on the ompt suset [0, 1]\(q ρ qε , ρ qε )F reneD it ttins its mximl vlue g 0 F gonsequentlyD if one denotes y I : [0, q

ρ qε ] → [0, q ε ] the inresing prt of f D this funtion rries out C 1 Edi'eomorphismF woreoverD ∀q ∈ [0, q ε ], (I -1 ) (q) ≤ 1 g 0 .
gonsequentlyD for ll k ∈ {0, . . . , n}D q ρ q k+1 -q

ρ q k = (I -1 )(q k+1 ) -(I -1 )(q k ) ≤ 1 g 0 |q k+1 -q k |.
sing the sme tehniquesD one n show tht the sme inequlity holds for ρ q k+1 -ρ q k F hereforeD inequlity @IFRFQA follows with C ε = 4 g 0 F Corollary 1.4.3. Let us assume that f ∈ C 1 ([0, 1]\{ρ}) and that ρ 0 ∈ BV(R; [0, 1]). Suppose also that q ∈ BV((0, +∞)), q ≥ 0 veries @IFRFPA and that in @IFIFPA, we use the Godunov ux when j = 0 and any other monotone numerical ux when j = 0. Then there exists

ρ ∈ L ∞ (Ω) ∩ C([0, +∞); L 1 loc (R))
, such that along a subsequence, ρ ∆ → ρ a.e. on Ω. Proof. prom @IFRFQAD we otin

∀n ∈ N, TV(ρ ∆ (•, t n )) ≤ TV(ρ 0 ) + 4 + C ε TV(q).
hen using the mrhing formul @IFIFQAD for ll n ∈ ND

j∈Z |ρ n+1 j+1/2 -ρ n j+1/2 |∆x ≤ j∈Z F n j+1 ρ n j+1/2 , ρ n j+3/2 -F n j ρ n j-1/2 , ρ n j+1/2 ∆t ≤ L j∈Z |ρ n j+1/2 -ρ n j-1/2 |∆t = L × TV(ρ ∆ (•, t n ))∆t.
he omptness omes from the result of WVD eppendix e using the two previous ounds nd the uniform L ∞ estimte @IFPFIAF QQ Theorem 1.4.4. Fix ρ 0 ∈ BV(R; [0, 1]), f ∈ C 1 ([0, 1]\{ρ}) verifying @IFHFIA and q ∈ BV((0, +∞)), q ≥ 0. Suppose that in @IFIFPA, we use the Godunov ux when j = 0 and any other monotone numerical ux associated with f when j = 0. Finally, suppose that q satises @IFRFPA. Then under the CFL condition @IFIFSA, the scheme @IFIFRA converges to the unique admissible entropy solution ρ ∈ L ∞ (Ω) ∩ C([0, +∞); L 1 loc (R)) of @IFHFPA in the sense of Denition 1.0.1. Moreover, there exists a constant C ε > 0 such that ∀t > 0, TV(ρ(•, t)) ≤ TV(ρ 0 ) + 4 + C ε TV(q). @IFRFRA

Proof. e hve proved in gorollry IFRFQ tht susequene of (ρ ∆ ) ∆ onverges FeF on Ω to some ρ ∈ L ∞ (Ω) ∩ C([0, +∞); L 1 loc (R))F ssing to the limit in @IFQFRA nd @IFQFRAD we otin tht ρ veri(es @IFHFQA nd @IFHFRAF his shows tht ρ is n dmissile entropy solution to @IFHFPAF fy uniquenessD the whole sequene (ρ ∆ ) ∆ onverges to ρF pinllyD from @IFRFQAD the lower semiEontinuity of the BV semiEnorm ensures tht ρ ∈ L ∞ ((0, +∞); BV(R)) nd veri(es @IFRFRAD onluding the proofF 1.4.2 Compactness via one-sided Lipschitz condition technique e now dpt tehniques nd results put forwrd y owers in ISPF e no longer suppose tht ρ 0 ∈ BV(R) ut in ompenstionD we ssume tht f ∈ C 2 ([0, 1]) is stritly onve @still verifying @IFHFIAAF fy ontinuityD

∃α > 0, ∀ρ ∈ [0, 1], f (ρ) ≤ -α.
@IFRFSA e will lso ssumeD following ISPD tht the numeril )ux hosen in @IFIFIA is either the ingquistEysher one or the qodunov oneF @IFRFTA o e preiseD the hoie mde for the numeril )ux t the interfe ! i.e. when j = 0 in @IFIFPA ! does not ply ny roleF ht is importnt is tht wy from the interfeD one hooses either the ingquistEysher )ux or the qodunov oneF e denote for ll n ∈ N nd j ∈ ZD D n j = max ρ n j-1/2 -ρ n j+1/2 , 0 . e will lso use the nottion Ẑ = Z\{-1, 0, 1}.

sn ISPD the uthor delt with disontinuous in oth time nd spe )ux nd the spei( 4vnishing visosity4 oupling t the interfeF he disontinuity in spe ws lolized long the urve {x = 0}F he ppliility of the tehnique of ISP for our se @nd in ghpters QER s well with moving interfe nd )uxEonstrined interfe ouplingA relies on the ft tht one n derive ound on D n j s long s the interfe does not enter the lultions for D n j i.e. j ∈ ẐF his is wht the following lemm points out under essumptions @IFRFSAE @IFRFTAF por reders9 onveniene nd in order to highlight the generlity of the tehnique of owers ISPD let us provide the key elements of the rgumenttion leding to omptnessF Lemma 1.4.5. Let n ∈ N and j ∈ Ẑ. Then if a = λα 4

, we have

D n+1 j ≤ max D n j-1 , D n j , D n j+1 -a max D n j-1 , D n j , D n j+1 2 @IFRFUA and D n+1 j ≤ 1 min{|j| -1, n + 1}a . @IFRFVA Proof.
(Sketched, see also Chapter 4) snequlity @IFRFVA is n immedite onsequene of inE equlity @IFRFUAD see ISPD vemm RFQF ytining inequlity @IFRFUA howeverD is less immediE teF vet us give some detils of the proofF pirstD note tht y introduing the funtion ψ :

z → z -az 2 D inequlity @IFRFUA n e stted sX D n+1 j ≤ ψ max D n j-1 , D n j , D n j+1
. @IFRFWA henD one n showD only using the monotoniity of oth the sheme nd of the funtion ψD tht under the ssumption inequlity @IFRFWA holds when

(ρ n j+3/2 -ρ n j+1/2 ), (ρ n j-1/2 -ρ n j-3/2 ) ≤ 0, @IFRFIHA
it follows tht inequlity @IFRFWA holds for ll sesF end (nlly in ISPD ge PQD the uthor proves tht if the )ux onsidered is either the ingquistEysher )ux or the qodunov )uxD then @IFRFIHA holdsF he following lemm is n immedite onsequene of inequlity @IFRFVAF Lemma 1.4.6. Fix 0 < ε < X. Let i, J ∈ N * such that ε ∈ (x i , x i+1 ) and X ∈ (x J-1 , x J ).

Then if ∆x/ε is suciently small, there exists a constant

Λ = Λ X, 1 a , 1 ε , nondecreasing
with respect to its arguments, such that for all n ≥ i,

J-1 j=i+1 |ρ n j+1/2 -ρ n j-1/2 |, -i-1 j=-J+1 |ρ n j+1/2 -ρ n j-1/2 | ≤ Λ @IFRFIIA and J-2 j=i+1 |ρ n+1 j+1/2 -ρ n j+1/2 |∆x, -i-2 j=-J+1 |ρ n+1 j+1/2 -ρ n j+1/2 |∆x ≤ LΛ∆t. @IFRFIPA Proof. e hveX J-1 j=i+1 |ρ n j+1/2 -ρ n j-1/2 | = 2 J-1 j=i+1 D n j - J-1 j=i+1 (ρ n j+1/2 -ρ n j-1/2 ) = 2 J-1 j=i+1 D n j -(ρ n J-1/2 -ρ n i+1/2 ) ≤ 1 + 2 J-1 j=i+1 D n j . QS xowD sine i + 1 = (i + 1)∆x ∆x ≥ ε ∆x , we dedue tht if ∆x ε ≤ 1 2 D then j ≥ i + 1 =⇒ j ∈ ZF vemm IFRFS ensures tht J-1 j=i+1 |ρ n j+1/2 -ρ n j-1/2 | ≤ 1 + 2 J-1 j=i+1 D n j ≤ 1 + 2 a J-1 j=i+1 1 min{n, j -1} . roweverD sine n ≥ iD for ll j ≥ i + 1D we hve min{n, j -1} ≥ iD heneX J-1 j=i+1 |ρ n j+1/2 -ρ n j-1/2 | ≤ 1 + 2 a × J -i -1 i ≤ 1 + 4X aε := Λ. henD J-2 j=i+1 |ρ n+1 j+1/2 -ρ n j+1/2 |∆x = J-2 j=i+1 F(ρ n j+1/2 , ρ n j+3/2 ) -F(ρ n j-1/2 , ρ n j+1/2 ) ∆t ≤ LΛ∆t.
Corollary 1.4.7. Let us assume that f ∈ C 2 ([0, 1] is strictly concave and that ρ 0 ∈ L ∞ (R; [0, 1]).

Suppose that in @IFIFPA, we use either the Godunov ux or the Engquist-Osher ux when j = 0. Then there exists ρ ∈ L ∞ (Ω) ∩ C([0, +∞); L 1 loc (R)), such that along a subsequence, ρ ∆ → ρ a.e. on Ω.

Proof. pix 0 < ε < X nd t > λεF henote y Ω(X, ε) = (-X, -ε) ∪ (ε, X)F sntrodue i, J, n ∈ N suh tht ε ∈ (x i , x i+1 )D X ∈ (x J-1 , x J ) nd t ∈ [t n , t n+1 )F emrk tht (n + 1)∆t > t > λε ≥ λ(i∆x) = i∆t, i.e. n ≥ i -1F hen if we suppose tht ∆x/ε is su0iently smllD we n use vemm IFRFTF prom @IFRFIIAD we get TV(ρ ∆ (•, t) |Ω(X,ε) ) ≤ 2Λ @IFRFIQA nd from @IFRFIPAD we dedue ¢ Ω(X,ε) |ρ ∆ (x, t + ∆t) -ρ ∆ (x, t)| dx ≤ 2LΛ∆t. @IFRFIRA
gomining @IFRFIQAE@IFRFIRA nd the L ∞ ound @IFPFIAD like in the proof of gorollry IFRFQD WVD heorem eFV provides the omptness sttementF Theorem 1.4.8. Fix ρ 0 ∈ L ∞ (R; [0, 1]) and f ∈ C 2 ([0, 1] strictly concave. Suppose that in @IFIFPA, we use either the Godunov ux or the Engquist-Osher ux when j = 0 and any other monotone numerical ux associated with f when j = 0. Then under the CFL condition @IFIFSA, the scheme @IFIFRA converges to the unique admissible entropy solution ρ ∈ L ∞ (Ω) ∩ C([0, +∞); L 1 loc (R)) of @IFHFPA in the sense of Denition 1.0.1. Moreover, for all t > 0, ρ(•, t) ∈ BV loc (R * ).

Proof. e hve proved in gorollry IFRFU tht susequene of (ρ ∆ ) ∆ onverges FeF on Ω to some ρ ∈ L ∞ (Ω) ∩ C([0, +∞); L 1 loc (R))F ssing to the limit in @IFQFRA nd @IFQFRAD we otin tht ρ veri(es @IFHFQA nd @IFHFRAF his shows tht ρ is solution to @IFHFPAF xote lso tht sine suh solution is uniqueD the whole sequene (ρ ∆ ) ∆ onverges to ρF pinllyD from @IFRFIQAD the lower semiEontinuity of the BV semiEnorm provides the lst prt of the sttementF his onludes the proofF e tke dvntge of this setion to illustrte some known results out slr onservtion relted in prtiulr to onvergene orders or numeril di'usionF e will onsider the following initil dtX

ρ 1 0 (x) = 0.4 if x < 0 0.8 if x > 0 nd ρ 2 0 (x) = 0.6 if x < 0 0.2 if x > 0.
he solution ρ 1 ssoited with initil dt ρ 1 0 is shock wave i.e. disontinuity trveling t veloity given y the nkineErugoniot ondition while the vlues of the initil ondition

ρ 2 0 rete rreftion wve ρ 2 of speeds f (0.6) nd f (0.2)X ρ 1 (x, t) =      0.4 if x t < -0.2 0.8 if x t > -0.2, ρ 2 (x, t) =                0.6 if x t < -0.2 t -x 2t if -0.2 ≤ x t ≤ 0.6 0.2 if x t > 0.6.
ith domin of omputtion equl to [-1, 1] nd time horizon T = 1D the numeril solutions omputed with the qodunov )ux nd the usnov )ux re presented in pigure IFQF QU pigure IFQ ! gomprisons etween the qodunov )ux nd the usnov )ux with ∆x = 0.01F hese (gures show tht the qodunov sheme is slightly etter thn the usnov )ux in the sense tht it is less di'usiveF por these two iemnn prolemsD the L ∞ stility nd the h property re oservle under the gpv onditionF e onvergene nlysis is lso performedF ine we n esily ompute the ext solutions of these two iemnn prolemsD in pigure IFRD we present the omputed L 1 error t time T X

E ∆ = ρ ∆ -ρ L 1 = ¢ T 0 ¢ 1 -1 |ρ ∆ (x, t) -ρ(x, t)| dx dt ,
nd see tht these errors onverge with onvergene order pproximtely equl to 1F sn the littertureD onvergene of order 1/4 or 1/2 is provedD see RVD RW for instneD ut usully one n oserve onvergene of order 1 like in the present seF pigure IFR ! tes of onvergene for the shok @lueA nd the rreftion @redA t time T = 1.0F 

ρ 1 0 (x) = 0.8 if x < 0 0.2 if x > 0; ρ 2 0 (x) = 0.6 if x < 0 0.2 if x > 0; ρ 3 0 (x) = 0.8 if x < 0 0.4 if x > 0; ρ 4 0 (x) = 0.6 if x < 0 0.4 if x > 0.
e hoose onstnt onstrint funtion q ≡ 0.2 so tht for eh initil dt ρ i 0 @1 ≤ i ≤ 4AD the ext solution is omposed of rreftionGshok wve followed y nonlssil shok stisfying the onstrint nd gin followed y rreftionGshok wveF vet us rell tht the uthors of ST gve full onstrution of ontrined iemnn solver for @IFHFPAF pollowing the ssumptions of heorem IFRFVD pigure IFS presents the numeril solutions omputed with the qodunov )ux t the interfe nd the usnov )ux wy from the interfeF pigure IFS ! xumeril solutions of four onstrined iemnn prolems t time T = 1.0D with ∆x = 0.001F he loss of the totl vrition diminishing property is highlighted y the numeril solutions ρ 2 , ρ 3 nd ρ 4 F vike in the previous setionD we omputed the L 1 errors E i ∆ @1 ≤ i ≤ 4AF he onvergene of these rtio re presented in pigure IFTF 

       ∂ t ρ + ∂ x (F (s(t), ρ)) = 0 ρ(•, 0) = ρ 0 F (s(t), ρ)| x=0 ≤ q(t), @IFTFIA
where s ∈ BV((0, +∞); [0, Σ]) for some Σ > 0 nd q ∈ BV((0, +∞)), q ≥ 0F e suppose tht

F ∈ C 1 ([0, Σ] × [0, 1]) nd tht for ll s ∈ [0, Σ]D F (s, •) veri(es i.e. ∀s ∈ [0, Σ], F (s, 0) = 0, F (s, 1) ≤ 0 nd ∃! ρ s ∈ (0, 1), ∂ ρ F (s, ρ) (ρ s -ρ) > 0 for FeF ρ ∈ (0, 1).
@IFTFPA his frmework overs the prtiulr se when F tkes the formX

F (s(t), ρ) = f (ρ) -s(t)ρ,
with onve f : [0, 1] → R + verifying @IFHFIAD whih our model in ghpter Q is sed onF emrk tht @IFTFIA redues to @IFHFPA when s ≡ 0F sn this setionD we estlish in pssing the wellEposedness of rolem @IFTFIAD ut our min interest lies in the BV in spe regulrity of the solutionsF wore preiselyD we im t otining ound on the totl vrition of the solutions to @IFTFIAD using (nite volume pproximtion whih llows for shrp ontrol of the vrition t the onstrintF e dpt the tehniques nd results we developed in the previous setionsF xote tht the lterntive o'ered y wveEfront trking would e umersome euse of the expliit timeEdependeny in @IFTFIAF es we previously mentionned nd emphsized in etions IFRFIEIFSD entropy solutions to limited )ux prolems like @IFTFIA do not elong to L ∞ ((0, +∞); BV(R))F roweverD y following the sme ides s etion IFRFID we will show tht it is the se under mild ssumption on the onstrint funtion q ! see essumption @IFTFIHA elow ! nd provided tht ρ 0 ∈ BV(R; [0, 1])F hroughout this setionD for ll s ∈ [0, Σ] nd a, b ∈ [0, 1]D we denote y

Φ s (a, b) = sgn(a -b)(F (s, a) -F (s, b))
the lssil uruzhkov entropy )ux ssoited with the uruzhkov entropy ρ → |ρ -κ|D for ll κ ∈ [0, 1]D see IIRF 

initil dt ρ 0 ∈ L ∞ (R) if @iA for ll test funtions ϕ ∈ C ∞ c (Ω), ϕ ≥ 0 nd κ ∈ [0, 1]D the following entropy inequlities re veri(edX ¢ +∞ 0 ¢ R |ρ -κ|∂ t ϕ + Φ s(t) (ρ, κ)∂ x ϕ dx dt + ¢ R |ρ 0 (x) -κ|ϕ(x, 0) dx + 2 ¢ +∞ 0 R s(t) (κ, q(t))ϕ(0, t) dt ≥ 0, @IFTFQA
where R s(t) (κ, q(t)) = F (s(t), κ) -min {F (s(t), κ), q(t)} ; @iiA for ll test funtions ϕ ∈ C ∞ c (Ω), ϕ ≥ 0 the following onstrint inequlities re veri(edX

- ¢ +∞ 0 ¢ R + ρ∂ t ϕ + F (s(t), ρ)∂ x ϕ dx dt ≤ ¢ +∞ 0 q(t)ϕ(0, t) dt . @IFTFRA
Denition 1.6.2. eny dmissile wek solution elonging to ρ ∈ L ∞ ((0, +∞); BV(R)) will e lled BVEregulr solutionF es we pointed out fter he(nition IFHFID this notion of solution is well suited for pssge to the limit of FeF onvergent sequenes of ext or pproximte solutionsF roweverD it is not so wellEdpted to prove uniquenessF en equivlent notion of solutionD sed on expliit tretment of tres of ρ t the onstrintD ws introdued y the uthors of IS @see lso ghpter RAF his notion of solution leds to the following stility estimteF Theorem 1.6.3. Fix s 1 , s 2 ∈ BV((0, +∞); [0, Σ]), ρ 1 0 , ρ 2 0 ∈ BV(R; [0, 1]) and q 1 , q 2 ∈ BV((0, +∞); R + ). Denote by ρ 1 a BV-regular solution to @IFTFIA with data ρ 1 0 , q 1 , s 1 and ρ 2 an admissible weak solution to @IFTFIA with data ρ 2 0 , q 2 , s 2 . Suppose that the ux functions (t, ρ) → F (s 1 (t), ρ), F (s 2 (t), ρ) satisfy @IFTFPA. Then for all t > 0, we have:

ρ 1 (•, t) -ρ 2 (•, t) L 1 ≤ ρ 1 0 -ρ 2 0 L 1 + 2 ¢ t 0 |q 1 (τ ) -q 2 (τ )| dτ + 2 ¢ t 0 F (s 1 (τ ), •) -F (s 2 (τ ), •) L ∞ dτ + ¢ t 0 ∂ ρ F (s 1 (τ ), •) -∂ ρ F (s 2 (τ ), •) L ∞ TV(ρ 1 (•, τ )) dτ . @IFTFSA
In particular, Problem @IFTFIA admits at most one BV-regular solution.

Proof. ine our interest to detils lies rther on the numeril pproximtion point of viewD we do not fully prove this sttement ut we give the essentil steps leding to this stility resultF e omplete proof is given in more generl setting in ghpter RF " Denition of solution. pirstD the uthors of IS introdue suset of R 2 lled germD whih n e seen s the set of ll the possile tres of solution to @IFTFIAF henD they sy tht ρ is solution to @IFTFIA if it stis(es entropy inequlities wy from the interfe ! i.e. with ϕ ∈ C ∞ c (R * × R + ) in the entropy inequlities ! nd if the ouple onstituted of leftEside nd the rightEside tres of ρ elongs to this soElled germF " Equivalence of the two denitions. he next step is to prove tht this ltter de(nition of solution is equivlent to he(nition IFTFIF his prt is done using good hoies of test funtionsD see ISD heorem QFIVD IRD roposition PFSD heorem PFWF " First stability estimate. yne (rst shows tht if s 1 = s 2 D then for ll t > 0D one hs

ρ 1 (•, t) -ρ 2 (•, t) L 1 ≤ ρ 1 0 -ρ 2 0 L 1 + 2 ¢ t 0 |q 1 (τ ) -q 2 (τ )| dτ . @IFTFTA
he proof strts with the lssil douling of vriles method of uruzhkov IIRD heorem I nd then uses the germ strutureD wht the uthors of IS lled L 1 E dissipativityD see ISD he(nition QFI nd IRD vemm PFUF " Proof of estimate @IFTFSAF he proof is sed upon estimte @IFTFTA nd elements orrowed from QPD SWF wost detils n e found in the proof of UPD heorem PFIF Remark 1.6.1. hough the de(nition of solutions with the germ expliitly involves the tres of ρD we did not disuss the existene of suh tresF e (rst wy to ensure suh existene is to del with BVEregulr solutionsF ht wyD tres do exist nd re to e understood in the sense of BV funtionsF yutside the BV frmeworkD existene of strong tres for solutions to @IFTFIA is ensured provided n nonEdegenery ssumption on the fundmentl digrm like @QFPFSAD see QD IPWF pinllyD if one does not wnt to impose suh ondition on the )uxD one n follow wht the uthors of IS proposed @in etion PA nd onsider the 4singulr mpping tresF4

1.6.2 Existence of BV-regular solutions sn this setionD we prove the existene of BVEregulr solutions y the mens of (nite volE ume shemeF he resoning is diret dpttion of wht we proposed in etions IFIEIFRF rolem @IFTFIA flls into tht frmework with the exeption tht here the )ux is time deE pendentD ut this is rely n inonvenieneF wost of the results from etions IFIEIFR still hold hereD with slight modi(tions we re going to mke preiseF yf ourseD we keep the nottions introdued k thenF pix ρ 0 ∈ L ∞ (R; [0, 1])F pirstD let us disretize the initil dt ρ 0 nd the funtions s, q with ρ 0 j+1/2 j D (s n ) n nd (q n ) n where for ll j ∈ Z nd n ∈ ND ρ 0 j+1/2 D s n nd q n re their men vlues on eh ell (x j , x j+1 ) nd [t n , t n+1 )F pollowing IR nd etion IFID the mrhing formul of the sheme reds for ll n ∈ N nd j ∈ ZX

ρ n+1 j+1/2 = ρ n j+1/2 - ∆t ∆x F n j+1 (ρ n j+1/2 , ρ n j+3/2 ) -F n j (ρ n j-1/2 , ρ n j+1/2 ) , @IFTFUA
where

F n j (a, b) = F n (a, b) if j = 0 min {F n (a, b), q n )} if j = 0, @IFTFVA
F n eing monotone numeril )ux ssoited to F (s n , •)F e then de(ne

ρ ∆ (x, t) = ρ n j+1/2 if (x, t) ∈ P n j+1/2 nd s ∆ (t), q ∆ (t) = s n , q n if t ∈ [t n , t n+1 ).
sn the present frmeworkD the gpv ondition redsX

λ sup s∈[0,Σ] ∂F s ∂a L ∞ + ∂F s ∂b L ∞ L ≤ 1, @IFTFWA
where F s = F s (a, b) is the monotone numeril )uxD ssoited to F (s, •)D we use in the sheme @IFTFUAF prom nowD the nlysis of the sheme follows the sme pth s in etions IFIEIFRX monotoniityGL ∞ stilityD disrete entropy inequlitiesD pproximte entropyGonstrint inE equlities nd omptnessF ynly the omptness for (ρ ∆ ) ∆ is left to otin sine the L 1 loc omptness for the sequenes (s ∆ ) ∆ nd (q ∆ ) ∆ is lerF Lemma 1.6.4. We suppose that ρ 0 ∈ BV(R; [0, 1]) and that q ∈ BV((0, +∞)), q ≥ 0 veries the assumption

∃ε > 0, ∀t > 0, ∀s ∈ [0, Σ], q(t) ≤ max ρ∈[0,1] F (s, ρ) -ε := q ε (s). @IFTFIHA
Then there exists a constant

C ε = C ε ( ∂ s F L ∞ )
nondecreasing with respect to its argument such that for all n ∈ N,

TV(ρ ∆ (•, t n+1 )) ≤ TV(ρ 0 ) + 4 + C ε n k=0 |q k+1 -q k | + n k=0 |s k+1 -s k | , @IFTFIIA where ρ ∆ = ρ n j+1/2 n,j
is the nite volume approximation constructed with the scheme @IFTFUA-@IFTFVA, using the Godunov ux when j = 0 in @IFTFVA. ρ s k+1 (q k+1 ) -ρ s k (q k ) -q ρ s k+1 (q k+1 ) -q

ρ s k (q k ) ,
where for ll k ∈ {0, . . . , n}D the ouple ρ s k (q k ), q ρ s k (q k ) ∈ [0, 1] 2 is uniquely de(ned y the onditions

F (s k , ρ s k (q k )) = F (s k , q ρ s k (q k )) = q k nd ρ s k (q k ) > q ρ s k (q k ). henote y Ω(ε) the open suset Ω(ε) = s∈[0,Σ] Ω s (ε)
where for ll s ∈ [0, Σ]D Ω s (ε) = (q ρ s (q ε (s)), ρ s (q ε (s)))F fy essumption @IFTFIHAD the ontinuous funtion (s, ρ) → |∂ ρ F (s, ρ)| is positive on the ompt suset [0, Σ] × [0, 1]\Ω(ε)F reneD it ttins its miniml vlue g 0 > 0F gonsequentlyD for ll s ∈ [0, Σ]D if one denotes y

I s : [0, q ρ s (q ε (s))] → [0, q ε (s)] the inresing prt of F (s, •)D this funtion rries out C 1 E di'eomorphismF woreoverD ∀q ∈ [0, q ε (s)], (I -1 s ) (q) ≤ 1 g 0 .
henD for ll k ∈ {0, . . . , n}D q ρ s k+1 (q k+1 ) -q

ρ s k (q k ) = (I -1 s k+1 )(q k+1 ) -q ρ s k (q k ) ≤ 1 g 0 |q k+1 -q k | + (I -1 s k+1 )(q k ) -q ρ s k (q k ) = 1 g 0 |q k+1 -q k | + (I -1 s k+1 )(q k ) -(I -1 s k+1 ) • I s k+1 q ρ s k (q k ) ≤ 1 g 0 |q k+1 -q k | + q k -I s k+1 q ρ s k (q k ) = 1 g 0 |q k+1 -q k | + F s k , q ρ s k (q k ) -F s k+1 , q ρ s k (q k ) ≤ 1 g 0 |q k+1 -q k | + ∂ s F L ∞ |s k+1 -s k | ≤ 1 + ∂ s F L ∞ g 0 |q k+1 -q k | + |s k+1 -s k | .
he sme inequlity holds when onsidering ρ s k+1 (q k+1 ) -ρ s k (q k ) F hereforeD inequlity @IFTFIIA follows with

C ε = 4 × 1 + ∂ s F L ∞ g 0 .
Remark 1.6.2. xote how the proof is diret dpttion of the proof of vemm IFRFPF Remark 1.6.3. ell we suppose tht F : [0, Σ] × [0, 1] is ontinuously di'erentileD ut if we look in the detils of the proof oveD we tully need F = F (s, ρ) to e ontinuously di'erentile with respet to s nd

∀s ∈ [0, Σ], F (s, •) ∈ C 1 ([0, 1]\{ρ s }), ρ s = rgmx ρ∈[0,1]
F (s, ρ).

Corollary 1.6.5. Fix ρ 0 ∈ BV(R; [0, 1]), s ∈ BV((0, +∞); [0, Σ]) and q ∈ BV((0, +∞)), q ≥ 0. Suppose that q veries Assumption @IFTFIHA. Let ρ ∆ = ρ n j+1/2 n,j be the nite volume approximate solution constructed with the scheme @IFTFUA-@IFTFVA, using the Godunov ux when j = 0 in @IFTFVA, and any other monotone numerical ux when j = 0. Then there exists ρ ∈ C([0, +∞); L 1 loc (R)) such that along a subsequence, ρ ∆ → ρ a.e. on Ω.

Proof. ine s nd q hve ounded vritionD inequlity @IFTFIIA leds to n uniform in time BV ound for the sequene (ρ ∆ ) ∆ F hen the result from UVD eppendix or WVD heorem eFV estlishes the omptness sttementF Theorem 1.6.6. Fix

ρ 0 ∈ BV(R; [0, 1]), s ∈ BV((0, +∞); [0, Σ]), F ∈ C 1 ([0, Σ] × [0, 1])
verifying @IFTFPA and q ∈ BV((0, +∞)), q ≥ 0. Suppose that in @IFTFVA, we use the Godunov ux when j = 0 and any other monotone numerical ux when j = 0. Finally, suppose that q satises @IFTFIHA. Then under the CFL condition @IFTFWA, the scheme @IFTFUA-@IFTFVA converges to an admissible weak solution ρ to @IFTFIA, which is also BV-regular. More precisely, there exists a constant

C ε = C ε ( ∂ s F L ∞ )
nondecreasing with respect to its argument such that ∀t > 0, TV(ρ(•, t)) ≤ TV(ρ 0 ) + 4 + C ε (TV(q) + TV(s)) . @IFTFIPA Proof. prom the sheme @IFTFUAD one n derive pproximte entropyGonstrint inequlities nlogous to @IFQFPAE@IFQFRAF vet ρ e the limit @of susequeneA to (ρ ∆ ) ∆ D the omptness oming from the lst orollryF e lredy know tht ρ ∈ C([0, +∞); L 1 loc (R))F fy pssing to the limit in the pproximte entropyGonstrint inequlities veri(ed y (ρ ∆ ) ∆ we get tht ρ stis(es the entropyGonstrint inequlities of he(nition IFTFIF his shows tht ρ is n dmissile wek solution to rolem @IFTFIAF fy uniqueness of suh solution @cf. heorem IFTFQAD the whole sequene onverges to ρF pinllyD from @IFTFIIAD the lower semiEontinuity of the BV semiEnorm ensures tht ρ ∈ L ∞ ((0, +∞); BV(R)) nd veri(es @IFTFIPAF his onludes the proofF Corollary 1.6.7. Fix

ρ 0 ∈ BV(R; [0, 1]), s ∈ BV((0, +∞); [0, Σ]), F ∈ C 1 ([0, Σ] × [0, 1])
verifying @IFTFPA and q ∈ BV((0, +∞)), q ≥ 0. Suppose that q satises Assumption @IFTFIHA. Then Problem @IFTFIA admits a unique BV-regular solution ρ. Moreover, ρ satises the bound @IFTFIPA.

Proof. niqueness omes from heorem IFTFQD the existene nd the BV ound ome from heorem IFTFTF Remark 1.6.4. nder the hypotheses of gorollry IFTFUD if we prove the existene of n other dmissile wek solution ∼ ρ to @IFTFIA @y nother methodD splitting for instne like in ghpter QAD then heorem IFTFQ ensures tht

∼ ρ = ρF CHAPTER 2
TRAFFIC DYNAMICS AT BOTTLENECKS efter the preliminries of ghpter ID we rry on in this hpter with mrosopi model to desrie tr0 dynmis t ottleneksF es previously evokedD the v frmework is the simplest one tht n e used to desrie mrosopilly pedestrinGrod tr0 in orridor or on rodF st tkes the form

∂ t ρ + ∂ x (f (ρ)) = 0, where ρ = ρ(x, t) ∈ [0, 1] is the density of pedestrinsGrs t (x, t) ∈ Ω = R × (0, +∞) nd f : [0, 1] → R
is the )ux funtionD ssumed onve while verifying @IFHFIAF oint onstrints were introdued in THD ST in the v model in order to ount for lolized in spe phenomen tht my our t exitsD suh s tr0 lights or tollgtes in the ontext of rod tr0D nd whih t s ostlesF o do soD one n impose lolized onstrint on the )ux suh s f (ρ)| x=0 ≤ q(t).

yne of the typil fetures of oth vehile nd pedestrin )ows is selfEorgniztion @or orE derliness nd oopertionAD see IHWD TTD RU for empiril dt tht put in evidene this pheE nomenonF rereD we fous on orderlinessGoopertion ner exitsF e do not intend to model the di'erent mehnisms ehind selfEorgniztionD ut only to reprodue its phenomenolE ogyF sn IH the uthors ttempted to reprodue selfEorgniztion with model sed on the vE)ux onstrint frmeworkX

     ∂ t ρ + ∂ x (f (ρ)) = 0 f (ρ)| x=0 ≤ p ¢ R ρ(x, t)µ(x) dx .
@PFHFIA eoveD µ is weight funtionD supported in ompt neighorhood upstrem the exitD used to verge the density round the exitF reneD the quntity

ξ(t) = ¢ R ρ(x, t)µ(x) dx ,
RS lled subjective density in the sequel is the verge density upstrem the exitF sn @PFHFIAD the funtion p : [0, 1] → R + is noninresing nd vipshitzD nd models the exit e0ienyF he ide ehind this hoie is the following modeling ssumptionX in n evutionD the exit out)ow is noninresing funtion of the upstrem densityY the more rowded the exitD the slower the evutionF rolem @PFHFIA elongs to lss of models whih hs hs een tremendously studied in the lst dedesD see STD IRD SID IID UH for instneF sn prtiulrD the uthors of WD IH were le to reprodue the min e'ets linked to the capacity drop tht re the fress prdox nd the 4pster ss lower4 e'etD @see etions PFQ for relted numeril simultionsA ut not so muh the selfEorgniztionF yur (rst gol is to further dvne in this diretionF e introdue model whih interpoltes etween two sttes of the tr0 @orgnized nd disorgnizedA whih we represent y the presene of two levels of onstrints nd y n orgniztion prmeter whih evolves through n yhiF his model dmits nturl nd e0ient 

∀t ≥ 0, ξ(t) = ¢ R ρ(x, t)µ(x) dx , with weight funtion µ ∈ C 2 c (R -)F eoveD ω(t) ∈ [0, 1]
is n orgniztion prmeter whih desries the stte of the tr0 nd evolves through the yhi

ω(t) = K ξ(t), ξ(t) ω(t)(1 -ω(t)).
@PFIFPA wthemtilly spekingD we only suppose tht K ∈ Lip loc (R 2 )F he ide ehind pheE nomenologilly relevnt hoies of KD see pigure PFI@rightAD is to llow for progressive orgE niztion of tr0 with timeD while keeping the possiility of return to disorgniztion when sudden nd strong vritions of the tr0 ourY see etion PFRF por the ske of eing de(niteD in simultions we will hoose K under the form

K(ξ, χ) = C ξ ξ c -1 + 1 - χ + D + - χ - D - , @PFIFQA
with some positive prmeters ξ c , C, D + , D -nd the nottions z + = mx(z, 0)D z -= |z|-z + F his hoie will e disussed lterF e hve the following oupled hiEyhi system to study RU pigure PFI ! ypil ehvior of exit e0ienies p min , p max @leftA nd orgniztionEdriving funtion

K in @PFIFPA @rightAF in R × (0, T ) @T > 0AX                ∂ t ρ + ∂ x (f (ρ)) = 0 f (ρ)| x=0 ≤ q(t) q(t) = (1 -ω(t))p min (ξ(t)) + ω(t)p max (ξ(t)) ω(t) = K ξ(t), ξ(t) ω(t)(1 -ω(t)).
@PFIFRA he notion of solution for rolem @PFIFRA is sed on he(nition IFHFI in whih we simply tke into ount the oupling etween ρ nd q via ω nd dd wek yhi formultion tht ω hs to verifyF Denition 2.1.1. e ouple (ρ, ω)

with ρ ∈ L ∞ (R × (0, T )) nd ω ∈ W 1,∞ ((0, T )) is n dmissile wek solution to @PFIFRA with initil dt ρ 0 ∈ L ∞ (R) nd ω 0 ∈ (0, 1) if @iA for ll test funtions ϕ ∈ C ∞ c (R × [0, T )), ϕ ≥ 0 nd κ ∈ [0, 1]D the following entropy inequlities re veri(edX ¢ T 0 ¢ R |ρ -κ|∂ t ϕ + Φ(ρ, κ)∂ x ϕ dx dt + ¢ R |ρ 0 (x) -κ|ϕ(x, 0) dx + 2 ¢ T 0 R(κ, q(t))ϕ(0, t) dt ≥ 0, @PFIFSA
where for ll t ∈ [0, T ]D R(κ, q(t)) = f (κ) -min {f (κ), q(t)} ; q(t) = (1 -ω(t))p min (ξ(t)) + ω(t)p max (ξ(t)); @iiA for ll test funtions ϕ ∈ C ∞ c (R × (0, T )), ϕ ≥ 0 the following onstrint inequlities re veri(edX

- ¢ T 0 ¢ R + ρ∂ t ϕ + f (ρ)∂ x ϕ dx dt ≤ ¢ +∞ 0 q(t)ϕ(0, t) dt ;
@PFIFTA @iiiA the following wek yhi formultion is veri(ed for ll t ∈ [0, T ]X

ω(t) = ω 0 + ¢ t 0 K ξ(s), ξ(s) ω(s)(1 -ω(s)) ds . @PFIFUA Remark 2.1.1. uppose tht (ρ, ω) is n dmissile wek solution to @PFIFRAF sn prtiulrD ρ is n entropy solution to ∂ t ρ + ∂ x (f (ρ)) = 0 in R + * ×(0, T ) nd R - * ×(0, T )F gonsequentlyD it is lso wekGdistriutionl solution to the hi in R × (0, T )F sing µψD ψ ∈ C ∞ c ((0, T ))D ψ ≥ 0 s test funtion in the wek formultionD we otin tht ¢ T 0 ξ(t) ψ(t) dt = - ¢ T 0 ¢ R f (ρ(x, t))µ (x) dx ψ(t) dt , whih proves tht ξ is di'erentile in the distriutionl sense nd tht for FeF t ∈ (0, T )D ξ(t) = ¢ R f (ρ(x, t))µ (x) dx . sn prtiulrD if ρ(x, t) ∈ [0, 1] FeF on R × (0, T ) @whih will e the seD see heorem PFPFIAD then for FeF t ∈ (0, T )D ξ(t) ≤ f L ∞ µ L 1 . gonsequentlyD ξ ∈ W 1,∞ ((0, T ))F
fefore we prove stility with respet to initil dt nd uniqueness for dmissile wek solutions to the system @PFIFRAD let us note tht we n diretly integrte the yhi in @PFIFRAF his feture is not ruil nor essentil ut it will e useful in the proof of heorem PFIFQF Lemma 2.1.2. Let (ρ, ω) be an admissible weak solution to the system @PFIFRA associated with initial data ρ 0 ∈ L ∞ (R) and ω 0 ∈ (0, 1). Then for all t ∈ [0, T ],

ω(t) = exp(W (t)) 1 + exp(W (t)) ; W (t) = ln ω 0 1 -ω 0 + ¢ t 0 K ξ(s), ξ(s) ds .
Proof. he expression of ω follows from lssil integrtion of the yhi in @PFIFRAF sntrodue the nottionsX 0 , ρ 2 0 ∈ L ∞ (R) and ω 1 0 , ω 2 0 ∈ (0, 1). We denote by (ρ 1 , ω 1 ) and (ρ 2 , ω 2 ) two admissible weak solutions to the system @PFIFRA corresponding to the initial data (ρ 1 0 , ω 1 0 ) and (ρ 2 0 , ω 2 0 ), respectively. Then there exist A, B, C ≥ 0 such that for all t ∈ [0, T ],

K L ∞ = sup 0≤ξ≤1 |χ|≤2 f L ∞ µ L 1 |K(ξ, χ)|; ∇K L ∞ = sup 0≤ξ 1 ,ξ 2 ≤1 |χ 1 |,|χ 2 |≤2 f L ∞ µ L 1 |K(ξ 1 , χ 1 ) -K(ξ 2 , χ 2 )| nd δp L ∞ = sup 0≤ξ≤1 δp(ξ); δp L ∞ = sup 0≤ξ≤1 |δp (ξ)|.
ρ 1 (•, t) -ρ 2 (•, t) L 1 ≤ ρ 1 0 -ρ 2 0 L 1 G(t) + A|w 1 0 -w 2 0 | ¢ t 0 G(s) ds @PFIFVA
and

|ω 1 (t) -ω 2 (t)| ≤ |w 1 0 -w 2 0 | 4 + C 2 δp L ∞ ¢ t 0 A|w 1 0 -w 2 0 |(t -s) + ρ 1 0 -ρ 2 0 L 1 G(s) ds , @PFIFWA where 
G(t) = exp Bt + Ct 2 2 ; w i 0 = ln ω i 0 1 -ω i 0 i ∈ {1, 2}.
In particular, the system @PFIFRA admits at most one admissible weak solution.

Proof. pix t ∈ [0, T ]F pirstD from IRD roposition PFIHD heorem IFTFQ or heorem @RFIFVAD we getX

ρ 1 (•, t) -ρ 2 (•, t) L 1 ≤ ρ 1 0 -ρ 2 0 L 1 + 2 ¢ t 0 |q 1 (s) -q 1 (s)| ds .
his estimte is typil of onstrint prolems like @PFIFRA nd n e seen s vipshitz ontinuous dependene q → ρ for q ∈ L 1 ((0, T )) nd ρ ∈ C([0, T ]; L 1 (R))F henD using the expressions of q i @i ∈ {1, 2}AD we otin

|q 1 (t) -q 2 (t)| = p min (ξ 1 (t)) + ω 1 (t)δp(ξ 1 (t)) -p min (ξ 2 (t)) -ω 2 (t)δp(ξ 2 (t)) ≤ ( p min L ∞ + δp L ∞ ) |ξ 1 (t) -ξ 2 (t)| + δp L ∞ |ω 1 (t) -ω 2 (t)| ≤ ( p min L ∞ + δp L ∞ ) µ L ∞ ρ 1 (•, t) -ρ 2 (•, t) L 1 + δp L ∞ |ω 1 (t) -ω 2 (t)|.
e now express the distne etween the ω i using their expression @see vemm PFIFPAX

|ω 1 (t) -ω 2 (t)| ≤ |w 1 0 -w 2 0 | 4 + ∇K L ∞ 4 ¢ t 0 |ξ 1 (s) -ξ 2 (s)| + | ξ1 (s) -ξ2 (s)| ds ≤ |w 1 0 -w 2 0 | 4 + ∇K L ∞ ( µ L ∞ + f L ∞ µ L ∞ ) 4 ¢ t 0 ρ 1 (•, s) -ρ 2 (•, s) L 1 ds .
@PFIFIHA utting these three estimtes togetherD we hve shown thtX

ρ 1 (•, t) -ρ 2 (•, t) L 1 ≤ ρ 1 0 -ρ 2 0 L 1 + A|w 1 0 -w 2 0 |t + B ¢ t 0 ρ 1 (•, s) -ρ 2 (•, s) L 1 ds + C ¢ t 0 ¢ s 0 ρ 1 (•, τ ) -ρ 2 (•, τ ) L 1 dτ ds = ρ 1 0 -ρ 2 0 L 1 + A|w 1 0 -w 2 0 |t + ¢ t 0 (B + C(t -s)) ρ 1 (•, s) -ρ 2 (•, s) L 1 ds , with A = δp L ∞ 2 ; B = 2 ( p min L ∞ + δp L ∞ ) µ L ∞ ; C = δp L ∞ ∇K L ∞ ( µ L ∞ + f L ∞ µ L ∞ ) 2 .
en pplition of qronwll9s lemm leds to @PFIFVAD nd @PFIFWA follows y putting @PFIFVA in @PFIFIHAF 2.2 Finite volume approximation of the model rereD we prove the existene of dmissile wek solutions to the system @PFIFRAF o do thtD we onstrut nd prove the onvergene of n expliit iuler in time sheme for the yhi @PFIFPA omined with monotone (nite volume sheme for the onstrined v equtionF he frmework is lmost identil to the one of ghpter ID etions IFIEIFR with the exeption of the oupling etween ρ nd the onstrint level q via ωD expressed y @PFIFIAF roweverD this will not e n issue for the onstrution of the shemeF sndeedD the only modi(tion is in the de(nition of the pproximte onstrintD whih is done rther simply y @PFPFIAF e keep the nottions of ghpter IF

pix ρ 0 ∈ L ∞ (R; [0, 1]) nd ω 0 ∈ (0, 1)F
pirstD let us disretize the initil dt ρ 0 nd the weight funtion µ with ρ 0 j+1/2 j∈Z nd µ j+1/2 j∈Z where for ll j ∈ ZD ρ 0 j+1/2 nd µ j+1/2 re their men vlues on the ell (x j , x j+1 )F Initialization:

ξ 0 = j∈Z ρ 0 j+1/2 µ j+1/2 ∆x nd w 0 = ω 0 .
Induction. pix n ∈ NF et the time step t n D we (rst de(ne onstrint level q n X

q n = (1 -w n )p min (ξ n ) + w n p max (ξ n ).
@PFPFIA e use this vlue to updte the pproximte tr0 density with the mrhing formul @for ll j ∈ ZAX

ρ n+1 j+1/2 = ρ n j+1/2 - ∆t ∆x F n j+1 (ρ n j+1/2 , ρ n j+3/2 ) -F n j (ρ n j-1/2 , ρ n j+1/2 ) , @PFPFPA
whereD following the reipe of IRD SI or ghpter ID etion IFID 

F n j (a, b) = F(a, b) if j = 0 min {F(a, b), q n } if j = 0, @PFPFQA F = F(a,
χ n+1 = ξ n+1 -ξ n ∆t , θ n+1 = K ξ n+1 , χ n+1 w n (1 -w n ), w n+1 = w n + θ n+1 ∆t. @PFPFRA
Conclusion. he(ne the funtions

• ρ ∆ = n∈N j∈Z ρ n j+1/2 1 P n j+1/2 • q ∆ (t), χ ∆ (t), θ ∆ (t) = n∈N q n , χ n+1 , θ n+1 1 [t n ,t n+1 ) • ∀t > 0, ξ ∆ (t) = ξ 0 + ¢ t 0 χ ∆ (s) ds ; ω ∆ (t) = w 0 + ¢ t 0 θ ∆ (s) ds .
es lwysD the gpv ondition reds @λ = ∆t/∆xAX

λL ≤ 1, L = ∂F ∂a L ∞ + ∂F ∂b L ∞ . @PFPFSA 2.
2.1 L ∞ stability and approximate inequalities he nlysis of the sheme follows the skeleton developed in ghpter IF iven etterD most of the results proved through etions IFPEIFR remin extly the sme in the present frmeworkF wore preiselyD ny sttement in ghpter I whih does not depend on the wy the sequene (q n ) n is onstruted still holds hereF Proposition 2.2.1 @L ∞ stilityA. Given q n to dene the constrained ux in @PFPFQA, the scheme @PFPFPA is stable:

∀n ∈ N, ∀j ∈ Z, ρ n j+1/2 ∈ [0, 1]. @PFPFTA
Proof. cf. the proof of heorem IFPFIF Remark 2.2.1. prom @PFPFTA nd the ft tht µ is weight funtionD we immeditely otinX

∀n ∈ N, ξ n = ¢ R ρ ∆ (x, t n )µ(x) dx ∈ [0, 1].
e n lso derive ound for (χ n+1 ) n F sndeedD for ll n ∈ ND

χ n+1 = 1 λ j∈Z (ρ n+1 j+1/2 -ρ n j+1/2 )µ j+1/2 = - j∈Z F n j+1 (ρ n j+1/2 , ρ n j+3/2 ) -F n j (ρ n j-1/2 , ρ n j+1/2 ) µ j+1/2 = j∈Z F n j (ρ n j-1/2 , ρ n j+1/2 )(µ j+1/2 -µ j-1/2 ) = 1 ∆x j∈Z ¢ x j+1 x j ¢ x x-∆x F n j (ρ n j-1/2 , ρ n j+1/2 )µ (z) dz dx , from whih we dedueX ∀n ∈ N, χ n+1 ≤ 2L µ L 1 .
Corollary 2.2.2 @hisrete entropy inequlitiesA. The numerical scheme @PFPFPA fullls the following discrete entropy inequalities for all n ∈ N, j ∈ Z and κ ∈ [0, 1]:

|ρ n+1 j+1/2 -κ| ≤      |ρ n j+1/2 -κ| -λ Φ n j+1 -Φ n j if j / ∈ {-1, 0} |ρ n -1/2 -κ| -λ Φ n int -Φ n -1 ∆t + λR(κ, q n ) if j = -1 |ρ n 1/2 -κ| -λ (Φ n 1 -Φ n int ) ∆t + λR(κ, q n ) if j = 0, @PFPFUA
where R(κ, q n ) was dened in Denition 2.1.1, and Φ n j and Φ n int are the numerical entropy uxes:

Φ n j = F(ρ n j-1/2 ∨ κ, ρ n j+1/2 ∨ κ) -F(ρ n j-1/2 ∧ κ, ρ n j+1/2 ∧ κ); Φ n int = min{F(ρ n -1/2 ∨ κ, ρ n 1/2 ∨ κ), q n } -min{F(ρ n -1/2 ∧ κ, ρ n 1/2 ∧ κ), q n }. Proof. cf. the proof of gorollry IFPFPF Proposition 2.2.3 @epproximte entropyGonstrint inequlitiesA. Fix ϕ ∈ C ∞ c (R × [0, T )), ϕ ≥ 0 and κ ∈ [0, 1]. Then as ∆x, ∆t → 0, we have ¢ T 0 ¢ R |ρ ∆ -κ|∂ t ϕ + Φ ∆ (ρ ∆ , κ) ∂ x ϕ dx dt + ¢ R |ρ 0 ∆ -κ|ϕ(x, 0) dx + 2 ¢ T 0 R(κ, q ∆ (t))ϕ(0, t) dt ≥ O(∆x) + O(∆t) , @PFPFVA and if ϕ ∈ C ∞ c (R × (0, T )), then ¢ T 0 ¢ R + ρ ∆ ∂ t ϕ + F ∆ (ρ ∆ )∂ x ϕ dx dt ≤ ¢ T 0 q ∆ (t)ϕ(0, t) dt + O(∆x) + O(∆t) , @PFPFWA
where

Φ ∆ (ρ ∆ , κ) = n∈N j∈Z Φ n j 1 P n j+1/2 ; F ∆ (ρ ∆ ) = n∈N j∈Z F(ρ n j-1/2 , ρ n j+1/2 )1 P n j+1/2 .
Proof. cf. the proofs of ropositions IFQFIEIFQFPF e now turn to the study of (w n ) n F Proposition 2.2.4 @L ∞ stilityA. Under the additional assumption

∆t K L ∞ < 1, @PFPFIHA
we have ∀n ∈ N, w n ∈ (0, 1). @PFPFIIA SQ Proof. e prove the result y indution on nF he result is lerly true for n = 0 sine ω ∈ (0, 1)F uppose now tht @PFIFWA holds for some n ∈ NF sntrodue the funtion g : w → w + K ξ n+1 , χ n+1 w(1 -w)∆t, so tht w n+1 = g(w n )F sing @PFPFIHAD we otin tht for ll w ∈ [0, 1]D

g (w) = 1 + K ξ n+1 , χ n+1 (1 -2w)∆t ≥ 1 -K ξ n+1 , χ n+1 ∆t > 0.
ine g(0) = 0 nd g(1) = 1D the monotoniity of g implies tht w n+1 = g(w n ) ∈ (0, 1)D whih ompletes the indution rgumentF e now prove tht ω ∆ stis(es n pproximte version of @PFIFUAF Proposition 2.2.5 @epproximte wek yhi formultionA. There exists a constant D ≥ 0

such that ∀t > 0, ω ∆ (t) -ω 0 + ¢ t 0 K (ξ ∆ (s), χ ∆ (s)) ω ∆ (s)(1 -ω ∆ (s)) ds ≤ (D∆t)t. @PFPFIPA Proof. pix |χ| ≤ 2L µ L 1 D n ∈ N nd t ∈ [t n , t n+1 )F e hve K ξ n+1 , χ w n (1 -w n ) -K (ξ ∆ (t), χ) ω ∆ (t)(1 -ω ∆ (t)) ≤ K L ∞ 4 |w n -ω ∆ (t)| + ∇K L ∞ 4 ξ n+1 -ξ ∆ (t)
xote lso tht

|w n -ω ∆ (t)| ≤ K L ∞ 4 ∆t; ξ n+1 -ξ ∆ (t) ≤ 2L µ L 1 ∆t,
hene @PFPFIPA follows with

D = 1 4 K 2 L ∞ 4 + 2L µ L 1 ∇K L ∞ .
o onlude this setionD we mke preise the link etween (q ∆ ) ∆ D (ω ∆ ) ∆ nd (ξ ∆ ) ∆ F Proposition 2.2.6 @epproximte wek yhi formultionA. There exists a constant E ≥ 0

such that ∀t > 0, q ∆ (t) -(1 -ω ∆ (t))p min (ξ ∆ (t)) + ω ∆ (t)p max (ξ ∆ (t)) ≤ E∆t. @PFPFIQA Proof. pix n ∈ N nd t ∈ [t n , t n+1 )F e hve q n -(1 -ω ∆ (t))p min (ξ ∆ (t)) + ω ∆ (t)p max (ξ ∆ (t)) ≤ ( p min L ∞ + p max L ∞ ) |ξ n -ξ ∆ (t)| + ( p min L ∞ + p max L ∞ ) |ω n -ω ∆ (t)| ≤ 2L µ L 1 ( p min L ∞ + p max L ∞ ) + K L ∞ ( p min L ∞ + p max L ∞ ) 4 E ∆t,
whih is extly @PFPFIQAF 2.2.2 Compactness and convergence he only thing left to do is to pss the limit in @PFPFVAE@PFPFWA nd @PFPFIPAE@PFPFIQAD nd to do soD we need su0ient omptness for ll the sequenes involvedF pirstD note tht emrk PFPFI oupled with the ompt emedding W 1,∞ ((0, T )) ⊂ C([0, T ]) ensure tht there exists ξ ∈ C([0, T ]) suh tht long susequeneD ξ ∆ → ξ uniformly on [0, T ]F he sme wyD the stility @PFPFIIA nd the ound

∀n ∈ N, θ n+1 ≤ K L ∞ 4 provide the existene of ω ∈ C([0, T ]) suh tht long susequeneD ω ∆ → ω uniformly on [0, T ]F henD from ∀n ∈ N, |q n+1 -q n | ≤ ( p min L ∞ + δp L ∞ ) |ξ n+1 -ξ n | + δp L ∞ |w n+1 -w n | = ( p min L ∞ + δp L ∞ ) |χ n+1 |∆t + δp L ∞ |θ n+1 |∆t ≤ 2L µ L 1 ( p min L ∞ + δp L ∞ ) + δp L ∞ K L ∞ 4 ∆t. nd the ovious L ∞ oundX ∀n ∈ N, |q n | ≤ p max L ∞ ,
relly9s theorem yields the existene of q ∈ BV([0, T ]) suh tht long susequeneD q ∆ → q FeF on (0, T )F gomining this with @PFPFIQAD we estlish the link etween qD ω nd ξX for FeF t ∈ (0, T )D q(t) = (1 -ω(t))p min (ξ(t)) + ω(t)p max (ξ(t))

egrding the sequene (ρ ∆ ) ∆ D in ghpter ID etion IFRD we disussed in gret lengths diverse wys to otin FeF onvergene nd foused on two of them whih involve BV oundsF " e sw tht glol BV ounds re ville if the dt @initil dt nd onstrintA re BV nd if the onstrint does not reh the mximum levelD under the dditionl ssumption tht f ∈ C 1 ([0, 1]\{ρ})D see vemm IFRFPF o pply this resultD we would need to prove tht the sequene (q n ) n is ounded in BV([0, T ]) nd veri(es essumption IFRFPF his lst ssumption will e ful(lled y supposing tht

∃ε > 0, ∀ξ ∈ [0, 1], p max (ξ) ≤ max 0≤ρ≤1 f (ρ) -ε. @PFPFIRA
por the BV regulrity of (q n ) n D we simply write tht for ll n ∈ ND

|q n+1 -q n | ≤ ( p min L ∞ + δp L ∞ ) |ξ n+1 -ξ n | + δp L ∞ |w n+1 -w n | = ( p min L ∞ + δp L ∞ ) |χ n+1 |∆t + δp L ∞ |θ n+1 |∆t ≤ 2L µ L 1 ( p min L ∞ + δp L ∞ ) + δp L ∞ K L ∞ 4 ∆t.
sn shortD if ρ 0 ∈ BV(R)D under essumption @PFPFIRAD there exists ρ ∈ C([0, T ]; L 1 loc (R)) suh tht long susequeneD ρ ∆ → ρ FeF on R × (0, T )F SS " e lso sw tht lol BV ounds re ville if f ∈ C 2 ([0, 1]) is stritly onveD without ny dditionl ssumption on the dtD see vemms IFRFSEIFRFTF e ould diretly pply this result sine the resoning ehind the proof of these lol BV ounds did not involve the sequene (q n ) n F Theorem 2.2.7. Fix ρ 0 ∈ L ∞ (R; [0, 1]) and ω 0 ∈ (0, 1) and f a concave ux verifying @IFHFIA.

(i) Suppose that ρ 0 ∈ BV(R), f ∈ C 1 ([0, 1]\{ρ}) and that @PFPFIRA holds. Finally, suppose that in @PFPFQA, we use the Godunov ux when j = 0 and any other monotone numerical ux associated with f when j = 0. Then under the CFL conditions @PFPFSA-@PFPFIHA, the scheme @PFPFIA-@PFPFPA-@PFPFQA converges to the unique admissible weak solution to Problem @PFIFRA.

(ii) Suppose that f ∈ C 2 ([0, 1]) is strictly concave and that in @PFPFQA, we use either the Godunov ux or the Engquist-Osher ux when j = 0 and any other monotone numerical ux associated with f when j = 0. Then the conclusion of (i) holds.

Proof. he di'erene etween these sets of ssumptions is on how they provide strong ompteness for (ρ ∆ ) ∆ F yne sid omptness is otinedD the proofs of onvergene re identilF e show tht the ouple (ρ, ω) onstruted ove is n dmissile wek solution in the sense of he(nition PFIFIF pirstD we pss to the limit in @PFPFVAE@PFPFWA nd @PFPFIQA whih proves tht @iAE@iiA of he(nition PFIFI re stis(edF woreoverD from

∀n ∈ N, ∀t ∈ [t n , t n+1 ), ξ ∆ (t) - ¢ R ρ ∆ (x, t)µ(x) dx ≤ χ n+1 (t -t n ) ≤ 2L µ L 1 ∆t,
we dedue tht for FeF t ∈ (0, T )D

ξ(t) = ¢ R ρ(x, t)µ(x) dx .
ine these two funtions re ontinuousD the equlity holds for ll t ∈ [0, T ]F woreoverD sine ρ is distriutionl solution to the hi in @PFIFRAD we know tht

ξ ∈ W 1,∞ ((0, T )) nd for FeF t ∈ (0, T )D ξ(t) = ¢ R f (ρ(x, t))µ (x) dx ,
see emrk PFIFIF he only thing left to do is to prove tht ω veri(es the wek yhi formultion @PFIFUAF o this endD we wnt to pss to the limit in @PFPFIPA nd to do soD we re going to prove tht (χ ∆ ) ∆ onverges to ξ FeF on (0, T )F his is hereD nd only here tht the hypothesis µ ∈ C 2 c (R -) is usedF xote tht until nowD we only used the

C 1 c regulrity of µF por ll n ∈ N nd t ∈ [t n , t n+1 )D we hve χ ∆ (t) - ¢ R F ∆ (ρ ∆ )µ (x) dx = 1 ∆x j∈Z ¢ x j+1 x j ¢ x x-∆x ¢ y x F(ρ n j-1/2 , ρ n j+1/2 )µ (z) dz dy dx ≤ 2L ∆x j∈Z ¢ x j+1 x j ¢ x j+1 x j-1 ¢ x j+1 x j-1 |µ (z)| dz dy dx = 8L µ L 1 ∆x,
proving the sttementF rving ll the su0ient onvergenesD we let ∆ → 0 in @PFPFIPAD proving tht ω veri(es the wek yhi formultion @PFIFUA nd onluding the proof of the theoremF Corollary 2.2.8. Fix ρ 0 ∈ L ∞ (R; [0, 1]) and ω 0 ∈ (0, 1).

(i) Suppose that ρ 0 ∈ BV(R), f ∈ C 1 ([0, 1]\{ρ}) and that @PFPFIRA holds. Then Problem @PFIFRA admits a unique admissible weak solution.

(ii) Suppose that f ∈ C 2 ([0, 1]) is strictly concave. Then Problem @PFIFRA admits a unique admissible weak solution.

Proof. niqueness omes from heorem PFIFQ while existene ws proved in heorem PFPFUF Remark 2.2.2. edopting the formlism proposed in IHD one ould lso prove wellEposedness with (xed point rgumentsF 2.3 Numerical simulations e report on numeril experiments with the sheme desried in etion PFPF sn ll the simultionsD we tke the normlized uniformly onve )ux f (ρ) = ρ(1 -ρ)F pollowing the hypothesis of heorem PFPFUD we hoose to use the qodunov )ux t the interfe @j = 0 in @PFPFQAA nd the usnov )ux wy from the interfe @j = 0 in @PFPFQAAF pollowing IHD etion UD the setup for our simultion is s followsF e onsider the domin of omputtion [-5, 1]D the initil dt ρ 0 (x) = 1 [-4,-2] (x), ω 0 = 0.2 nd the e0ienies of the exit p min D p max re represented in pigure PFI@leftAF por the simultionsD we hve (xed lolly vipshitz preftor K in @PFIFPA with ehviour is depited in pigure PFI@rightA nd prmeters ξ c = 1/3D C = 2/3D D + = 1/10 nd D -= D + /2F he phenomenologil fetures enoded in this hoie will e ddressed in etion PFRF e mild regulristion of the funtion

x → 2n x + 1 n 1 [-1 n ,0] (x),
@with n = 3A is issued s weight funtionF vet us omment on qulittive fetures of the simulted tr0 )ow nd provide its interpreE ttion in terms of gents9 ehviorsF pirstD s we n see in pigure PFPD the introdution of the orgniztion prmeter fvors the evution timeF pigure PFQ highlights the ft tht the model reprodues some fetures expeted from selfEorgniztionF et (rstD the exit )ux inreses until it rehes the mximum level of the exit e0ienyF es tr0 densi(esD the exit )ux flls down to the lowest vlue of this e0ienyD whih re)ets rpid disorgniztionD i.e. D predominne of gents9 individulisti strtegies over the rtionl olletive ehviorF henD in the time intervl [START_REF] Andreianov | Vanishing capillarity solutions of Buckley-Leverett equation with gravity in two-rocks' medium[END_REF][START_REF] Andreianov | On vanishing viscosity approximation of conservation laws with discontinuous ux[END_REF]D the elevted density upstrem hs very smll vritions whih leds to the emergene of oherent olletive ehvior of the gentsF his is witE nessed through the inrese of oth the orgniztion mrker nd the exit )uxF e stress out SU pigure PFP ! he numerilly omputed solution x → ρ ∆ (x, t) t di'erent (xed times tY dshed lines orrespond to the referene solution in sene of orderliness ω = 0 in @PFIFRAF pigure PFQ ! veftX omputed sujetive density ξ ∆ nd orgniztion mrker ω ∆ F ightX omputed exit )ux f (ρ ∆ )| x=0 -Y dshed lines orrespond to the referene solution in sene of orderliness ω = 0 in @PFIFRAD with ∆x = 0.015F tht without orderlinessD the exit )ux keeps its miniml vlue in this time intervlF hen notle phenomenon seems to tke pleF sn the time intervl [15.5, 16.3]D the jm upstrem the exit strts to resorD nd the exit e0ieny @whih is monitored y the exit )uxA slightly flls down while the orgniztion level regresses signi(ntlyF sn other wordsD the gents ndon olletive strtegies in rpidly evolving environmentsD ut this does not 'et the tr0 drmtilly euse densities re lso strongly deresedF

Conclusions and perspectives

he model we propose here permits rigorous nlysis of wellEposedness s well s roust nd simple numeril pproximtionF st enrihes the qulittive ehvior of the simple vEsed models for ottleneks @STD IID IHAD due to its ility to reprodue few selfE orgniztion feturesF vet us deeper disuss the model onstrutionD in prtiulr the role of the funtion K whose ehvior is depited in pigure PFI@rightAF sts key fetures re s followsX " invrine of the orgniztion mrker ω in the region of low densitiesY " rpid derese of ω for moderte nd prtiulrly for high densitiesD under strong density vritionsY " progressive inrese of ω in dense nd very dense tr0 with smll density vritionsF he ide ehind these fetures isX rpidly hnging tr0 onditionsD t onsiderle densiE tiesD promote individul ehvior nd rpidly led to somewht hoti intertions mong gentsD thus lowering the exit e0ienyY while persistent oerive tr0 onditionsD suh s jmD help to emerge nd promote olletive ehvior like formtion of wellEorgnized queuesD the lternte in the order of pssge through the ottlenekD nd higher degree of mutul ourtesy mong gentsY thus the exit e0ieny improves ordinglyD whih enhnes the jm evutionF he form @PFIFQA provides simple exmple of suh ehviorD whih is on(rmed y the simultions of etion PFQF he prmeter ξ c hs the mening of tivE tion threshold for orgniztionGdisorgniztion of the tr0 t ottlenekY D + , D -indite thresholds of trnsition from oopertive @low vritions of ξA to individulisti @higher onesA dynmis of gentsF yne wy to improve this model would e to tke into ount unexpetedGrsh ehvior of ertin gentsF vet us rell tht unlike )uid mehnis modelsD tr0 models del with reltively smll numer of gentsF sn onsequeneD we would expet the dynmis to e gretly impted y the ehvior of few gentsF en ide to model suh rsh ehviors is to introdue stohsti term in the de(nition of the preftor KD for exmple

K(t, ξ, χ) = C ξ ξ c -1 + 1 - χ + D + - χ - D - -X(t) ,
where X is stohsti proess modeling the hrmful impt of rndom numer of mindless gents on the olletive dynmisF e pln to study numerilly this vrint of the model nd provide inditions onerning the impt of undisiplined gents on the evution timeF 2.4. CONCLUSIONS AND PERSPECTIVES SW sn rt ssD we will tke inspirtion from seondEorder mrosopi models of tr0 PSD ISU to model selfEorgniztion glolly on the rodY note tht ottleneks n e s well modelled with nonElol point onstrints within suh modelsD seeD e.g.D IPF wimiking the key elements @PFIFIAE@PFIFPA of the model we ddressed in the present noteD we will introdue two fundmentl grphs f min ≤ f max to desrie the two sttes of the tr0 nd mke the speE ndEtime dependent orgniztion prmeter t oth on the onstrint levels @PFIFIA nd on the fundmentl grphsF e will then hve to study vrint of nonlol v modelD cf. QID WS for relted mthemtil nd numeril issuesF CHAPTER 3

INFLUENCE OF A SLOW MOVING VEHICLE ON TRAFFIC

helle wonhe nd qotin developed in UH mrosopi model iming t desriing the sitution in whih slow moving lrge vehile ! us for instne ! redues the rod pity nd thus genertes moving ottlenek for the surrounding tr0 )owF heir model is given y guhy prolem for vightwillEhithmEihrds slr onservtion lw in one spe dimension with lol point onstrint @IFHFPAF nlike in @IFHFPAD the onstrint is presried long the slow vehile trjetory (y(t), t)D the unknown y eing oupled to the unknown ρ of the onstrined v equtionF oint onstrints were introdued in THD ST to ount for lolized in spe phenomen tht my our t exits nd whih t s ostlesF he onstrint in the model of UH depends upon the slow vehile speed ẏD where its position y veri(es the following yhi

ẏ(t) = ω (ρ(y(t)+, t)) . @eA eoveD ρ = ρ(x, t) ∈ [0, 1]
is the tr0 density nd ω : [0, 1] → R + is noninresing vipshitz ontinuous funtion whih links the tr0 density to the slow vehile veloityF helle wonhe nd qotin proved n existene result for their model in UH with wveE front trking pproh in the BV frmeworkF edjustments to the result were reently rought y vird nd ioli in IPRF hespite the step forwrd mde in UPD the uniqueness issue remined open for timeF sndeedD the pperne of the tre ρ(y(t)+, t) mkes it firly di0ult to get vipshitz ontinuous dependeny of the trjetory y = y(t) from the solution ρ = ρ(x, t)F xonethelessD highly nontrivil uniqueness result ws hieved y vird nd ioli in IPQF o desrie the in)uene of single vehile on the tr0 )owD the uthors of IIS proposed hiEyhi oupled model without onstrint on the )ux for whih they proposed in QS two onvergent shemesF sn the present hpterD we onsider modi(ed model where the point onstrint eomes nonlolD mking the veloity of the slow vehile depend on the men density evluted in smll viinity hed the driverF wore preiselyD insted of eD we onsider the reltion

ẏ(t) = ω ¢ R ρ(x + y(t), t)µ(x) dx , @fA
TI where µ ∈ BV(R; R + ) is weight funtion used to verge the densityF prom the mthemtE il point of viewD this hoie mkes the study of the new model esierF sndeedD the uthors of IID WD IH put forwrd tehniques for full wellEposedness nlysis of similr models with nonlol point onstrintsF prom the modeling point of viewD onsidering f mkes sense for severl resons outlined in etion QFPFSF he hpter is orgnized s followsF etions QFI nd QFP re devoted to the proof of the wellEposedness of the modelF sn etion QFQ we introdue the numeril (nite volume sheme nd prove its onvergeneF en importnt step of the resoning is to prove BV regulrity for the pproximte solutionsF st serves oth in the existene proof nd it is entrl in the uniqueness rgumentF ith this in mindD the results proved in etion IFT will e essentilF sndeedD this setion ws devoted to the proof of BV regulrity for entropy solutions to lrge lss of limited )ux models nd our model @QFIFIA flls diretly in tht frmeworkF sn the numeril setion QFRD (rst we perform numeril simultions to vlidte our modelF hen we investigte oth qulittively nd quntittively the proximity etween our model ! in whih we onsidered f ! s δ → µ 0 + nd the model of UH in whih the uthors onsidered eF 3.1 Model, notion of solution and uniqueness

Model in the bus frame

xote tht we (nd it onvenient to study the prolem in the us frmeD whih mens setting X = x -y(t) in the model of helle wonhe nd qotin in UHF ueeping in mind wht we sid ove out the nonlol onstrintD the prolem we onsiderD set up in R × (0, T ) @T > 0AD tkes the following formX

                         ∂ t ρ + ∂ x (F ( ẏ(t), ρ)) = 0 ρ(•, 0) = ρ 0 (• + y 0 ) F ( ẏ(t), ρ)| x=0 ≤ Q( ẏ(t)) ẏ(t) = ω ¢ R ρ(x, t)µ(x) dx y(0) = y 0 . @QFIFIA eoveD ρ = ρ(x, t) ∈ [0, 1] denotes the tr0 density nd F ( ẏ(t), ρ) = f (ρ) -ẏ(t)ρ
denotes the norml )ux through the urve x = y(t)F e ssume tht the )ux funtion f : [0, 1] → R is vipshitz ontinuousD onve nd stis(es @IFHFIAF sn UHD the uthors hose the funtion

Q(s) = α × 1 -s 2 2
to presrie the mximl )ow llowed through ottlenek loted t x = 0F he prmeter α ∈ (0, 1) ws giving the redution rte of the rod pity due to the presene of the slow vehileF e use the s vrile to stress tht TQ the vlue of the onstrint is funtion of the speed of the slow vehileF sn the sequel the s vrile will refer to quntities relted to the slow vehile veloityF egrding the funtion QD we n llow for more generl hoiesF pei(llyD

Q : [0, ω L ∞ ] → R +
n e ny vipshitz ontinuous funtionF st is well known ft tht in generlD the totl vrition of n entropy solution to onstrint guhy prolem my inrese @see etions IFRFI nd IFS for exmplesAF roweverD s we proved in etion IFRFI or etion IFTD this inrese n e ontrolled if the onstrint level does not reh the mximum levelF e mild ssumption on Q ! see essumption @QFPFUA elow whih is the nlogue to @IFRFPA nd @IFTFIHA ! will gurntee vilility of BV oundsD provided we suppose tht ρ 0 ∈ BV(R; [0, 1])F

Notion of solution

hroughout the hpterD we denote y 

Φ(a, b) = sgn(a -b)(f (a) -f (b)) nd ∀s ∈ R, Φ s (a, b) = Φ(a, b) -s × |a -b| the 
with ρ ∈ L ∞ (R × (0, T )) nd y ∈ W 1,∞ ((0, T )) is n dmissile wek solution to @QFIFIA with initil dt ρ 0 ∈ L ∞ (R) nd y 0 ∈ R if @iA the following regulrity is ful(lledX ρ ∈ C([0, T ]; L 1 loc (R)), @QFIFPA nd ρ(•, 0) = ρ 0 (• + y 0 ) in L 1 loc (R)Y @iiA for ll test funtions ϕ ∈ C ∞ c (R × [0, T )), ϕ ≥ 0 nd κ ∈ [0, 1]D the following entropy inequlities re veri(ed for ll 0 ≤ τ < τ ≤ T X ¢ R |ρ(x, τ ) -κ|ϕ(x, τ ) dx - ¢ R |ρ(x, τ ) -κ|ϕ(x, τ ) dx + ¢ τ τ ¢ R |ρ -κ|∂ t ϕ + Φ ẏ(t) (ρ, κ)∂ x ϕ dx dt + 2 ¢ τ τ R ẏ(t) (κ, q(t))ϕ(0, t) dt ≥ 0, @QFIFQA where R ẏ(t) (κ, q(t)) = F ( ẏ(t), κ) -min {F ( ẏ(t), κ), q(t)} nd q(t) = Q( ẏ(t)); @iiiA for ll test funtions ϕ ∈ C ∞ c (R×(0, T )), ϕ ≥ 0D the following wek onstrint inequlities re veri(ed for ll 0 ≤ τ < τ ≤ T X ¢ R + ρ(x, τ )ϕ(x, τ ) dx - ¢ R + ρ(x, τ )ϕ(x, τ ) dx - ¢ τ τ ¢ R + ρ∂ t ϕ + F ( ẏ(t), ρ)∂ x ϕ dx dt ≤ ¢ τ τ q(t)ϕ(0, t) dt ; @QFIFRA @ivA the following wek yhi formultion is veri(ed for ll t ∈ [0, T ]X y(t) = y 0 + ¢ t 0 ω ¢ R ρ(x, u)µ(x) dx du . @QFIFSA Denition 3.1.
2. e will ll BVEregulr solution ny dmissile wek solution (ρ, y) to the rolem @QFIFIA whih lso veri(es

ρ ∈ L ∞ ((0, T ); BV(R)).
Remark 3.1.1. st is more usul to formulte @QFIFQAE@QFIFRA with τ = 0 nd τ = T D like we did in ghpters IEPF he equivlene etween the two formultions is due to the regulrity @QFIFPAF es it hppensD this timeEontinuity regulrity is tully onsequene of inequlities @QFIFQAF sndeedD we will use the result RRD heorem IFP @or IIRD SWA whih sttes

tht if U is n open suset of R nd if for ll test funtions ϕ ∈ C ∞ c (U × [0, T )), ϕ ≥ 0 nd κ ∈ [0, 1]D ρ stis(es the following entropy inequlitiesX ¢ T 0 ¢ U |ρ -κ|∂ t ϕ + Φ ẏ(t) (ρ, κ)∂ x ϕ dx dt + ¢ U |ρ 0 (x) -κ|ϕ(x, 0) dx ≥ 0, then ρ ∈ C([0, T ]; L 1 loc (U ))F woreoverD sine ρ is ounded nd U \U hs veesgue mesure 0D ρ ∈ C([0, T ]; L 1 loc (U )
)F e will use this remrk severl times in the sequel of the hpterD with U = R * F he interest of wek formultions @QFIFRAE@QFIFSA for the )ux onstrint nd for the yhi governing the slow vehile lies in their stility with respet to ρF pormultion @QFIFQA ! @QFIFSA is well suited for pssge to the limit of FeF onvergent sequenes of ext or pproximte solutionsF 3.1.3 Uniqueness of the BV-regular solution sn this setionD we prove stility with respet to the initil dt nd uniqueness for BVE regulr solutions to rolem @QFIFIAF e strt with the Lemma 3.1.3. If (ρ, y) is an admissible weak solution to Problem @QFIFIA, then ẏ ∈ W 1,∞ ((0, T )).

In particular, ẏ ∈ BV([0, T ]).

Proof. henote for ll t ∈ [0, T ]D s(t) = ω ¢ R ρ(x, t)µ(x) dx . ine µ ∈ L 1 (R) ∩ L ∞ (R) nd ρ ∈ C([0, T ]; L 1 loc (R))D s is ontinuous on [0, T ]
F fy de(nitionD y stis(es the wek yhi formultion @QFIFSAF gonsequentlyD for FeF t ∈ (0, T )D ẏ(t) = s(t)F e re going to prove tht s is vipshitz ontinuous on [0, T ]D whih will ensure tht 

ẏ ∈ W 1,∞ ((0, T ))F ine µ ∈ BV(R)D there exists sequene (µ n ) n∈N ⊂ BV(R) ∩ C ∞ c (R) suh thtX µ n -µ L 1 -→ n→+∞ 0 nd TV(µ n ) -→ n→+∞ TV(µ).
ξ n (t) = ¢ R ρ(x, t)µ n (x) dx . pix ψ ∈ C ∞ c ((0, T ))F ine ρ is distriutionl solution to the onservtion lw in @QFIFIAD we hve for ll n ∈ ND ¢ T 0 ξ n (t) ψ(t) dt = ¢ T 0 ¢ R ρ∂ t (ψµ n ) dx dt = - ¢ T 0 ¢ R F ( ẏ(t), ρ)∂ x (ψµ n ) dx dt = - ¢ T 0 ¢ R F ( ẏ(t), ρ)µ n (x) dx ψ(t) dt , whih mens tht for ll n ∈ ND ξ n is di'erentile in the wek senseD nd tht for FeF t ∈ (0, T )D ξn (t) = ¢ R F ( ẏ(t), ρ)µ n (x) dx . sn prtiulrD sine oth the sequenes ( µ n L 1 ) n nd (TV(µ n )) n re ounded ! sy y C > 0 ! we lso hve for ll n ∈ ND ξ n L ∞ ≤ C nd ξn L ∞ ≤ C( f L ∞ + ω L ∞ ). hereforeD the sequene (ξ n ) n is ounded in W 1,∞ ((0, T ))F xowD for ll t, τ ∈ [0, T ] nd n ∈ ND tringle inequlity yieldsX |s(t) -s(τ )| ≤ 2 ω L ∞ µ n -µ L 1 + ω L ∞ ¢ R (ρ(x, t) -ρ(x, τ ))µ n (x) dx = 2 ω L ∞ µ n -µ L 1 + ω L ∞ |ξ n (t) -ξ n (τ )| ≤ 2 ω L ∞ µ n -µ L 1 + C ω L ∞ ( f L ∞ + ω L ∞ ) K |t -τ |. vetting n → +∞D we get tht for ll t, τ ∈ [0, T ]D |s(t) -s(τ )| ≤ K|t -τ |D whih proves tht s is vipshitz ontinuous on [0, T ]F he proof of the sttement is ompletedF
fefore stting the uniqueness resultD we mke the following dditionl ssumptionX

∀s ∈ [0, ω L ∞ ], rgmx ρ∈[0,1]
F (s, ρ) > 0. @QFIFTA his ensures tht for ll s ∈ [0, ω L ∞ ]D the funtion F (s, •) veri(es the ssumptions @IFTFPAF por exmpleD when onsidering the )ux f (ρ) = ρ(1 -ρ)D @QFIFTA redues to ω L ∞ < 1D whih only mens tht the mximum veloity of the slow vehile is smller thn the mximum veloity of the surrounding rsF Theorem 3.1.4. Suppose that f is Lipschitz, concave and satises @IFHFIA-@QFIFTA. Fix

ρ 1 0 , ρ 2 0 ∈ BV(R; [0, 1]
) and y 1 0 , y 2 0 ∈ R. We denote by (ρ 1 , y 1 ) a BV-regular solution to Problem @QFIFIA corresponding to initial data (ρ 1 0 , y 1 0 ), and by (ρ 2 , y 2 ) an admissible weak solution with initial data (ρ 2 0 , y 2 0 ). Then there exist constants α, β, γ > 0 such that for all t ∈ [0, T ],

ρ 1 (•, t) -ρ 2 (•, t) L 1 ≤ |y 1 0 -y 2 0 |TV(ρ 1 0 ) + ρ 1 0 -ρ 2 0 L 1 exp(αt) @QFIFUA
and

|y 1 (t) -y 2 (t)| ≤ |y 1 0 -y 2 0 | + (β|y 1 0 -y 2 0 | + γ ρ 1 0 -ρ 2 0 L 1 )(exp(αt) -1). @QFIFVA
In particular, Problem @QFIFIA admits at most one BV-regular solution.

Proof. ine (ρ 1 , y 1 ) is BVEregulr solution to rolem @QFIFIAD there exists

C ≥ 0 suh tht ∀t ∈ [0, T ], TV(ρ 1 (•, t)) ≤ C. vemm QFIFQ ensures tht ẏ1 , ẏ2 ∈ BV([0, T ]; R + )F e n use result heorem @IFTFQA to otin tht for ll t ∈ [0, T ]D ρ 1 (t) -ρ 2 (t) L 1 ≤ |y 1 0 -y 2 0 |TV(ρ 1 0 ) + ρ 1 0 -ρ 2 0 L 1 + (2 Q L ∞ + 2 + C) ¢ t 0 | ẏ1 (τ ) -ẏ2 (τ )| dτ . @QFIFWA woreoverD sine for FeF t ∈ (0, T )D | ẏ1 (t) -ẏ2 (t)| ≤ ω L ∞ µ L ∞ ρ 1 (•, t) -ρ 2 (•, t) L 1 , qronwll9s lemm yields @QFIFUA with α = (2 Q L ∞ + 2 + C) ω L ∞ µ L ∞ F henD ∀t ∈ [0, T ], |y 1 (t) -y 2 (t)| ≤ |y 1 0 -y 2 0 | + ¢ t 0 | ẏ1 (s) -ẏ2 (s)| ds ≤ |y 1 0 -y 2 0 | + ω L ∞ µ L ∞ ¢ t 0 ρ 1 (•, s) -ρ 2 (•, s) L 1 ds ≤ |y 1 0 -y 2 0 | + (β|y 1 0 -y 2 0 | + γ ρ 1 0 -ρ 2 0 L 1 )(exp(αt) -1),
where

β = TV(ρ 1 0 ) 2 Q L ∞ + 2 + C nd γ = 1 2 Q L ∞ + 2 + C .
he uniqueness of BVEregulr solution is then lerF 3.2. TWO EXISTENCE RESULTS

TU

Remark 3.1.2. p to inequlity @QFIFWAD our proof ws very muh following the one of UPD heorem PFIF roweverD the uthors of UP fed n issue to derive vipshitz stility estimte etween the r densities nd the slow vehile veloities strting from

|ω ρ 1 (0+, t) -ω ρ 2 (0+, t) |.
por usD due to the nonlolity of our prolemD it ws strightforwrd to otin the ound

ω ¢ R ρ 1 (x, t)µ(x) dx -ω ¢ R ρ 2 (x, t)µ(x) dx ≤ ω L ∞ µ L ∞ ρ 1 (•, t) -ρ 2 (•, t) L 1 .
Remark 3.1.3. e noteworthy onsequene of heorem QFIFR is tht existene of BVE regulr solution will ensure uniqueness of n dmissile wek oneF 3.2 Two existence results

Time-splitting technique

sn UHD to prove existene for their prolemD the uthors took wveEfront trking pprohF e hoose here to use timeEsplitting tehniqueF he min dvntge of this tehnique is tht it relies on redyEtoEuse theoryF wore preiselyD t eh time stepD we will del with ext solutions to onservtion lw with )ux onstrintD whih hve now eome stnE drdD see STD IRD SIF

pix ρ 0 ∈ L ∞ (R; [0, 1]) nd y 0 ∈ RF vet ν > 0 e time stepD N ∈ N suh tht T ∈ [N ν, (N + 1)ν) nd denote for ll n ∈ {0, . . . , N + 1}D t n = nνF e initilize with ∀t ∈ R, ρ 0 (t) = ρ 0 (• + y 0 ) nd ∀t ∈ [0, T ], y 0 (t) = y 0 .
pix n ∈ {1, . . . , N + 1}F pirstD we de(ne for ll t ∈ (t n-1 , t n ]D

σ n (t) = ω ¢ R ρ n-1 (x, t -ν)µ(x) dx , s n = σ n (t n ) nd q n = Q(s n ).
ine oth q n nd ρ n-1 (•, t n-1 ) re oundedD IRD heorem PFII ensures the existene nd uniqueness of solution

ρ n ∈ L ∞ (R × (t n-1 , t n )) to        ∂ t ρ + ∂ x (F (s n , ρ)) = 0 ρ(•, t n-1 ) = ρ n-1 (•, t n-1 ) F (s n , ρ)| x=0 ≤ q n ,
in the sense of he(nition QFIFI @iAE@iiAE@iiiA with suitle )uxGonstrint funtion nd initil dtF e then de(ne the following funtionsX

• ρ ν (t) = ρ 0 1 R -(t) + N +1 n=1 ρ n (t)1 (t n-1 ,t n ] (t) • σ ν (t), q ν (t), s ν (t) = σ n (t), q n , s n if t ∈ (t n-1 , t n ] • y ν (t) = y 0 + ¢ t 0 σ ν (τ ) dτ .
pirstD let us prove tht (ρ ν , y ν ) solves n pproximte version of rolem @QFIFIAF Proposition 3.2.1. The couple (ρ ν , y ν ) is an admissible weak solution, in R × (0, T ), to

                         ∂ t ρ ν + ∂ x (F (s ν (t), ρ ν )) = 0 ρ ν (•, 0) = ρ 0 (• + y 0 ) F (s ν (t), ρ ν )| x=0 ≤ q ν (t) ẏν (t) = ω ¢ R ρ ν (x, t -ν)µ(x) dx y ν (0) = y 0 . @QFPFIA in the sense that ρ ν ∈ C([0, T ]; L 1 loc (R)), ρ ν (•, 0) = ρ 0 (• + y 0 ) in L 1 loc (R)
and satises entropy/constraint inequalities analogous to @QFIFQA-@QFIFRA with ux F (s ν (•), •) and constraint q ν ; and y ν satises, instead of @QFIFSA, the following weak ODE formulation:

∀t ∈ [0, T ], y ν (t) = y 0 + ¢ t 0 ω ¢ R ρ ν (x, τ -ν)µ(x) dx dτ . @QFPFPA Proof. fy onstrutionD for ll n ∈ {1, . . . , N + 1}, ρ n ∈ C([t n-1 , t n ]; L 1 loc (R))F gomining this with the 4stopEndErestrt4 onditions ρ n (•, t n-1 ) = ρ n-1 (•, t n-1 )D one ensures tht ρ ν ∈ C([0, T ]; L 1 loc (R))F vet t ∈ [0, T ] nd n ∈ {1, . . . , N + 1} suh tht t ∈ [t n-1 , t n )F henD y ν (t) -y 0 = n-1 k=1 ¢ t k t k-1 σ k (τ ) dτ + ¢ t t n-1 σ n (τ ) dτ = n-1 k=1 ¢ t k t k-1 ω    ¢ R ρ k-1 (x, τ -ν) ρν (x,τ -ν) µ(x) dx    dτ + ¢ t t n-1 ω    ¢ R ρ n-1 (x, τ -ν) ρν (x,τ -ν) µ(x) dx    dτ = ¢ t 0 ω ¢ R ρ ν (x, τ -ν)µ(x) dx dτ , whih is extly @QFPFPAF pix now ϕ ∈ C ∞ c (R × [0, T )), ϕ ≥ 0 nd κ ∈ [0, 1]F fy onstrution of ((ρ k , y k )) k D we hve for ll n, m ∈ {0, . . . , N + 1} @n < mAD ¢ t m t n ¢ R |ρ ν -κ|∂ t ϕ + Φ sν (t) (ρ ν , κ)∂ x ϕ dx dt = m k=n+1 ¢ t k t k-1 ¢ R |ρ k -κ|∂ t ϕ + Φ s k (ρ k , κ)∂ x ϕ dx dt ≥ m k=n+1      ¢ R |ρ k (x, t k ) -κ|ϕ(x, t k ) dx - ¢ R | ρ k (x, t k-1 ) ρ k-1 (x,t k-1 ) -κ|ϕ(x, t k-1 ) dx -2 ¢ t k t k-1 R s k (κ, q k )ϕ(0, t) dt      = ¢ R |ρ ν (x, t m ) -κ|ϕ(x, t m ) dx - ¢ R |ρ ν (x, t n ) -κ|ϕ(x, t n ) dx -2 ¢ t m t n R sν (t) (κ, q ν (t))ϕ(0, t) dt . TW st is then strightforwrd to prove tht for ll 0 ≤ τ < τ ≤ T D ¢ R |ρ ν (x, τ ) -κ|ϕ(x, τ ) dx - ¢ R |ρ ν (x, τ ) -κ|ϕ(x, τ ) dx + ¢ τ τ ¢ R |ρ ν -κ|∂ t ϕ + Φ sν (t) (ρ ν , κ)∂ x ϕ dx dt + 2 ¢ τ τ R sν (t) (κ, q ν (t))ϕ(0, t) dt ≥ 0.
@QFPFQA roving tht ρ ν stis(es onstrint inequlities is very similr so we omit the detilsF yne hs to strt from

- ¢ t m t n ¢ R + ρ ν ∂ t ϕ + F (s ν (t), ρ ν )∂ x ϕ dx dt nd mke use one gin of the onstrution of the sequene ((ρ k , y k )) k to otin ¢ R + ρ ν (x, τ )ϕ(x, τ ) dx - ¢ R + ρ ν (x, τ )ϕ(x, τ ) dx - ¢ τ τ ¢ R + ρ ν ∂ t ϕ + F (s ν (t), ρ ν )∂ x ϕ dx dt ≤ ¢ τ τ q ν (t)ϕ(0, t) dt . @QFPFRA his onludes the proofF Remark 3.2.1. emrk tht we hve for ll ν > 0D σ ν L ∞ ≤ ω L ∞ nd y ν L ∞ ≤ |y 0 | + T ω L ∞ .
his mens tht the sequene (y ν ) ν is ounded in W 1,∞ ((0, T ))F hen the ompt emedE ding of W 1,∞ ((0, T )) in C([0, T ]) yields susequene of (y ν ) ν D whih we do not relelD whih onverges uniformly on [0, T ] to some y ∈ C([0, T ])F et this pointD we propose two wys to otin omptness for the sequene (ρ ν ) ν D whih will led to two existene resultsF

The case of a nondegenerately nonlinear ux

Theorem 3.2.2. Fix ρ 0 ∈ L ∞ (R; [0; 1]) and y 0 ∈ R. Suppose that f is Lipschitz, concave,
satises @IFHFIA-@QFIFTA and the following nondegeneracy assumption for a.e. s ∈ (0,

ω L ∞ ), mes{ρ ∈ [0, 1] | f (ρ) -s = 0} = 0. @QFPFSA
Then Problem @QFIFIA admits at least one admissible weak solution.

Proof. gondition @QFPFSA omined with the ovious uniform

L ∞ ound ∀ν > 0, ∀(x, t) ∈ R × [0, T ], ρ ν (x, t) ∈ [0, 1],
nd the results proved y nov in IQSD IQT ensure the existene of susequene ! whih we do not relel ! tht onverges in

L 1 loc (R * × (0, T )) to some ρ ∈ L 1 loc (R * × (0, T ))Y nd
further extrtion yields the lmost everywhere onvergene on R × (0, T )F e now show tht the ouple (ρ, y) onstruted ove is n dmissile wek solution to @QFIFIA in the sense of he(nition QFIFIF

por ll ν > 0 nd t ∈ [0, T ]D y ν (t) -y 0 = ¢ t 0 ω ¢ R ρ ν (x, τ -ν)µ(x) dx dτ = ¢ t-ν -ν ω ¢ R ρ ν (x, τ )µ(x) dx dτ = ¢ t 0 ω ¢ R ρ ν (x, τ )µ(x) dx dτ + ¢ 0 -ν - ¢ t t-ν ω ¢ R ρ ν (x, τ )µ(x) dx dτ .
he lst term vnishes s ν → 0 sine ω is oundedF henD veesgue theorem omined with the ontinuity of ω givesD for ll t ∈ [0, T ]D

y ν (t) -→ ν→0 y 0 + ¢ t 0 ω ¢ R ρ(x, τ )µ(x) dx dτ .
his lst quntity is lso equl to y(t) due to the uniform onvergene of (y ν ) ν to yF his proves tht y veri(es @QFIFSAF xowD we im t pssing to the limit in @QFPFQA nd @QFPFRAF ith this in mindD we prove the FeF onvergene of the sequene (σ ν ) ν towrds ẏF ine µ ∈ BV(R)D there exists sequene of smooth funtions

(µ n ) n∈N ⊂ BV(R) ∩ C ∞ c (R) suh thtX µ n -µ L 1 -→ n→+∞ 0 nd TV(µ n ) -→ n→+∞ TV(µ).
sntrodue for every ν > 0 nd n ∈ ND the funtion

ξ n ν (t) = ¢ R ρ ν (x, t)µ n (x) dx .
ine for ll ν > 0D ρ ν is distriutionl solution to the onservtion lw in @QFPFIAD one n show ! following the proof of vemm QFIFQ for instne ! tht for every n

∈ ND ξ n ν ∈ W 1,∞ ((0, T ))D nd tht for FeF t ∈ (0, T )D ξn ν (t) = ¢ R F (s ν (t), ρ ν )µ n (x) dx . woreoverD sine oth the sequenes ( µ n L 1 ) n nd (TV(µ n )) n re oundedD it is ler tht (ξ n ν ) ν,n is uniformly ounded in W 1,∞ ((0, T ))D therefore so is (ω(ξ n ν )) ν,n F gonsequentlyD for ll n ∈ ND ν > 0 nd lmost every t ∈ (0, T )D the tringle inequlity yieldsX σ ν (t) -ω ¢ R ρ(x, t)µ(x) dx ≤ 2 ω L ∞ µ n -µ L 1 + ν sup n∈N ω(ξ n ν ) W 1,∞ + ω L ∞ ¢ R (ρ ν (x, t) -ρ(x, t))µ(x) dx -→ ν→0 n→+∞ 0, 3.2. TWO EXISTENCE RESULTS

UI

whih proves tht (σ ν ) ν onverges FeF on (0, T ) to ẏF o prove the timeEontinuity regulrityD we (rst pply inequlity @QFPFQA with τ = 0D τ = T @whih is liit sine

ρ ν is ontinuous in timeAD ϕ ∈ C ∞ c (R * × [0, T )), ϕ ≥ 0 nd κ ∈ [0, 1]X ¢ T 0 ¢ R |ρ ν -κ|∂ t ϕ + Φ σν (t) (ρ ν , κ)∂ x ϕ dx dt + ¢ R |ρ 0 (x + y 0 ) -κ|ϕ(x, 0) dx ≥ 0. henD we let ν → 0 to get ¢ T 0 ¢ R |ρ -κ|∂ t ϕ + Φ ẏ(t) (ρ, κ)∂ x ϕ dx dt + ¢ R |ρ 0 (x + y 0 ) -κ|ϕ(x, 0) dx ≥ 0. gonsequentlyD ρ ∈ C([0, T ]; L 1 loc (R)
)D see emrk QFIFIF pinllyD the FeF onvergenes of (σ ν ) ν nd (ρ ν ) ν to ẏ nd ρD respetivelyD re enough to pss to the limit in @QFPFQAF his ensures tht for ll test funtions

ϕ ∈ C ∞ c (R × [0, T )), ϕ ≥ 0 nd κ ∈ [0, 1]D the following inequlities hold for FeF 0 ≤ τ < τ ≤ T X ¢ R |ρ(x, τ ) -κ|ϕ(x, τ ) dx - ¢ R |ρ(x, τ ) -κ|ϕ(x, τ ) dx + ¢ τ τ ¢ R |ρ -κ|∂ t ϕ + Φ ẏ(t) (ρ, κ)∂ x ϕ dx dt + 2 ¢ τ τ R ẏ(t) (κ, q(t))ϕ(0, t) dt ≥ 0.
yserve tht the expression in the leftEhnd side of the previous inequlity is ontinuous funtion of (τ, τ ) whih is lmost everywhere greter thn the ontinuous funtion 0F fy ontinuityD this expression is everywhere greter thn 0D whih proves tht ρ stis(es the entropy inequlities @QFIFQAF sing similr rgumentsD we show tht ρ stis(es the onstrint inequlities @QFIFRAF his proves tht the ouple (ρ, y) is n dmissile wek solution to rolem @QFIFIAD onluding the proofF sn this setionD we proved n existene result for L ∞ initil dtD ut we hve no gurntee of uniqueness sine a priori we hve no informtion regrding the BV regulrity of suh solutionsF essumption @QFPFSA ensures the omptness for sequenes of entropy solutions to onservtion lws with )ux funtion F F roweverD it prevents us from using )ux funtions with liner prtsD like in pigure S @rightA ! whih orresponds to onstnt tr0 veloity for smll densities ! wheres suh fundmentl digrms re often used in tr0 modelingF he results of the next setion will extend to this interesting seD under the extr BV ssumption on the dtF 3.2.3 Well-posedness for BV data o otin omptness for (ρ ν ) ν D n lterntive to the setting of etion QFPFP is to derive uniform BV oundsF Theorem 3.2.3. Fix ρ 0 ∈ BV(R; [0, 1]) and y 0 ∈ R. Suppose that f is Lipschitz, concave and satises @IFHFIA-@QFIFTA. Suppose also that

∀s ∈ [0, ω L ∞ ] , F (s, •) ∈ C 1 ([0, 1]\{ρ s }), @QFPFTA where ρ s = rgmx ρ∈[0,1]
F (s, ρ). Finally assume that Q satises the condition

∃ε > 0, ∀s ∈ [0, ω L ∞ ], Q(s) ≤ max ρ∈[0,1] F (s, ρ) -ε. @QFPFUA
Then Problem @QFIFIA admits a unique admissible weak solution, which is also BV-regular.

Proof. pix ν > 0F ell tht (ρ ν , y ν ) is n dmissile wek solution to @QFPFIAF sn prtiulrD ρ ν is n dmissile wek solution to the onstrined onservtion lw in @QFPFIA in the sense of he(nition QFIFI @iAE@iiAE@iiiAF st is ler from the splitting onstrution tht for FeF t ∈ (0, T )D

σ ν (t) = ω ¢ R ρ ν (x, t -ν)µ(x) dx .
pollowing the steps of the proof of vemm QFIFQD we n show tht for ll ν > 0D σ ν ∈ BV([0, T ]; R + )F iven more thn thtD y doing so we show tht the sequene (TV(σ ν )) ν is oundedF hereforeD the sequene (TV(s ν )) ν is ounded s wellF woreoverD sine Q veri(es @QFPFUAD ll the hypotheses of gorollry IFTFU re ful(lledX there exists onstnt

C ε > 0 suh tht for ll t ∈ [0, T ]D TV(ρ ν (•, t)) ≤ TV(ρ 0 ) + 4 + C ε (TV(q ν ) + TV(s ν )) ≤ TV(ρ 0 ) + 4 + C ε (1 + Q L ∞ )TV(s ν ).
@QFPFVA gonsequentlyD the sequene (ρ ν ) ν is ounded in L ∞ ((0, T ); BV(R))F e lssil nlysis rguE mentD see UVD eppendix or WVD heorem eFVD ensures the existene of ρ ∈ C([0, T ]; L 1 loc (R)) suh tht long susequeneD ρ ν → ρ FeF on R × (0, T )F ith this onvergeneD we n follow the proof of heorem QFPFP to show tht (ρ, y) is n dmissile wek solution to @QFIFIAF henD when pssing to the limit in @QFPFVAD the lower semiEontinuity of the BV semiEnorm ensures tht (ρ, y) is lso BVEregulrF fy emrk QFIFQD it ensures uniqueness nd onludes the proofF

Stability with respect to the weight function

o end this setionD we now study the stility of rolem @QFIFIA with respet to the weight funtion µF wore preiselyD let µ ⊂ BV(R; R + ) e sequene of weight funtions tht onverges to µ in the wek

L 1 senseX ∀g ∈ L ∞ (R), ¢ R g(x)µ (x) dx -→ →+∞ ¢ R g(x)µ(x) dx .
@QFPFWA vet (y 0 ) ⊂ R e sequene of rel numers tht onverges to some y 0 nd let (ρ 0 ) ⊂ L 1 (R; [0, 1]) e sequene of initil dt tht onverges to ρ 0 in the strong L 1 senseF e suppose tht the )ux funtion f is vipshitzD onve nd stis(es essumptions @IFHFIAE @QFIFTAE@QFPFSAF heorem QFPFP llows us to de(ne for ll ∈ ND the ouple (ρ , y ) s n UQ dmissile wek solution to the following prolemD set up in R × (0, T )X

                         ∂ t ρ + ∂ x F ( ẏ (t), ρ ) = 0 ρ (•, 0) = ρ 0 (• + y 0 ) F ( ẏ (t), ρ ) x=0 ≤ Q( ẏ (t)) ẏ (t) = ω ¢ R ρ (x, t)µ (x) dx y (0) = y 0 .
Remark 3.2.2. sing the sme rguments s in emrk QFPFI nd s in the proof of heorem QFPFPD we get tht up to the extrtion of susequeneD (y ) onverges uniformly on

[0, T ] to some y ∈ C([0, T ]) nd (ρ ) onverges FeF on R × (0, T ) to some ρ ∈ L ∞ (R × (0, T ))F
Theorem 3.2.4. The couple (ρ, y) constructed above is an admissible weak solution to Problem @QFIFIA.

Proof. he sequene (µ ) onverges in the wek L 1 sense nd is ounded in L 1 (R)Y y the hunfordEettis theoremD this sequene is equiEintegrleX

∀ε > 0, ∃α > 0, ∀A ∈ B(R), mes(A) < α =⇒ ∀ ∈ N, ¢ A µ (x) dx ≤ ε @QFPFIHA nd ∀ε > 0, ∃X > 0, ∀ ∈ N, ¢ |x|≥X µ (x) dx ≤ ε. @QFPFIIA pix t ∈ (0, T ) nd ε > 0F pix α, X > 0 given y @QFPFIHA nd @QFPFIIAF igoro' theorem yields the existene of mesurle suset E t ⊂ [-X, X] suh tht mes([-X, X]\E t ) < α nd ρ (•, t) -→ ρ(•, t) uniformly on E t . por su0iently lrge ∈ ND ¢ R ρ (x, t)µ (x) dx - ¢ R ρ(x, t)µ(x) dx ≤ ¢ |x|≥X |ρ -ρ|µ dx + ¢ Et (ρ -ρ)µ dx + ¢ [-X,X]\Et (ρ -ρ)µ dx + ¢ R ρµ dx - ¢ R ρµ dx ≤ ε + ρ -ρ L ∞ (Et) ¢ Et µ (x) dx + ¢ [-X,X]\Et µ (x) dx + ε ≤ 4ε, whih proves tht for FeF t ∈ (0, T )D ¢ R ρ (x, t)µ (x) dx -→ →+∞ ¢ R ρ(x, t)µ(x) dx .
@QFPFIPA e get tht y veri(es the wek yhi formultion @QFIFSA y pssing to the limit in

y (t) = y 0 + ¢ t 0 ω ¢ R ρ (x, u)µ (x) dx du .
fy de(nitionD for ll ∈ ND the ouple (ρ , y ) stis(es the nlogue of entropyGonstrint inequlities @QFIFQAE@QFIFRA with suitle )uxGonstrint funtionsF epplying these inequlities with

τ = 0D τ = T D ϕ ∈ C ∞ c (R * × [0, T )), ϕ ≥ 0 nd κ ∈ [0, 1]D we get ¢ T 0 ¢ R |ρ -κ|∂ t ϕ + Φ ẏ (t) (ρ , κ)∂ x ϕ dx dt + ¢ R |ρ 0 (x + y 0 ) -κ|ϕ(x, 0) dx ≥ 0.
he ontinuity of ω nd the onvergene @QFPFIPA ensure tht ( ẏ ) onverges FeF to ẏF hisD omined with the FeF onvergene of (ρ ) to ρ nd ieszEprehetEuolmogorov theorem ! ρ 0 eing strongly ompt in L 1 (R) ! is enough to show tht when letting → +∞ in the inequlity oveD we getD up to the extrtion of susequeneD tht

¢ T 0 ¢ R |ρ -κ|∂ t ϕ + Φ ẏ(t) (ρ, κ)∂ x ϕ dx dt + ¢ R |ρ 0 (x + y 0 ) -κ|ϕ(x, 0) dx ≥ 0. gonsequently ρ ∈ C([0, T ]; L 1 loc (R)
)D see emrk QFIFIF pinllyD the omined FeF onverE genes of ( ẏ ) nd (ρ ) to ẏ nd ρD respetivelyD gurntee tht (ρ, y) veri(es inequlities @QFIFQAE@QFIFRA for lmost every 0 ≤ τ < τ ≤ T F he sme ontinuity rgument we used in the proof heorem QFPFP holds here to ensure tht (ρ, y) tully stis(es the inequlities for ll 0 ≤ τ < τ ≤ T F his onludes the proof of our stility limF

Discussion

he lst setion onludes the theoretil nlysis of rolem @QFIFIAF he nonlolity in spe of the onstrint delivers n esy proof of stility with respet to the initil dt in the BV frmeworkF elthough proof of existene using (xed point theorem ws possile @cf. IHAD we hose to propose proof sed on timeEsplitting tehniqueF he stility with respet to µ is noteworthy fetureD whih shows ertin sturdiness of the modelF roweverD the se we hd in mind ! nmely µ → δ 0+ ! is not rehle with the ssumptions we used to prove the stilityD espeilly @QFPFWAF e will explore this singulr limit numerillyD fter hving uilt roust onvergent numeril sheme for rolem @QFIFIAF vet us lso underE line tht unlike in IPQD IPR where the uthors required prtiulr form for the funtion ω to prove wellEposedness for their modelD our result holds s long s ω is vipshitz ontinuousF es evoked erlierD the nonlolity in spe of the onstrint mkes the mthemtil study of the model esierF fut in the modeling point of viewD this hoie lso mkes sense for severl resonsF pirst of llD one n think tht the veloity ẏ of the slow moving vehile ! unlike its elertion ! is rther ontinuous vlueF iven if the driver of the slow vehile suddenly pplies the rkesD the vehile will not deelerte instntneouslyF xote tht the v model llows for disontinuous verged veloity of the gentsD however while modeling the slow vehile we re onerned with n individul gent nd n model its ehvior more preiselyF US woreoverD onsidering the men vlue of the tr0 density in viinity hed of the driver ould e seen t tking into ount oth the driver ntiiption nd psyhologil e'etF por exmpleD if the driver sees ! severl dozens of meters hed of himGher ! speed redution on tr0D heGshe will strt to slow downF his oservtion n e relted to the ft thtD ompred to the )uid mehnis models where the typil numer of gents is governed y the evogdro onstntD in tr0 models the numer of gents is t lest 10 20 times lessF hereforeD mild nonlolity @evlution of the downstrem tr0 )ow vi verging over hndful of preeding rsA is resonle ssumption in the mrosopi tr0 models inspired y )uid mehnisF his point of view is exploited in the model of SPF xote tht it is fesile to sustitute the si v eqution on ρ y the nonlol v introdued in SP in our nonlol model for the slow vehileF uh mildly nonlol model remins lose to the si lol model of UHF st n e studied omining the tehniques of SP nd the ones we developed in this setionF 3.3 Numerical approximation of the model sn this setionD we im t onstruting (nite volume sheme nd t proving its onvergene towrd the BVEregulr solution to @QFIFIAF he resoning is diret dpttion of wht we proposed in ghpter ID from where we keep the nottionsF

pix ρ 0 ∈ L ∞ (R; [0, 1]) nd y 0 ∈ RF 3.
3.1 Finite volume scheme in the bus frame he hnge of vriles X = x -y(t) trnsforms the prolem into lssil (xed interfe point onstrint prolemY one tht flls into the frmework overed in ghpter ID etion IFTD where we preisely delt with time dependent )uxF pirstD let us disretize the initil dt ρ 0 (• + y 0 ) nd the weight funtion µ with ρ 0 j+1/2 j∈Z nd µ j+1/2 j∈Z where for ll j ∈ ZD ρ 0 j+1/2 nd µ j+1/2 re their men vlues on the ell (x j , x j+1 )F pix n ∈ NF et the time step t n D we (rst de(ne n pproximte veloity of the slow vehile

s n nd onstrint level q n X s n = ω j∈Z ρ n j+1/2 µ j+1/2 ∆x ; q n = Q (s n ) . @QFQFIA
ith these vluesD we updte the pproximte tr0 density with the mrhing formul for ll j ∈ ZX

ρ n+1 j+1/2 = ρ n j+1/2 - ∆t ∆x F n j+1 (ρ n j+1/2 , ρ n j+3/2 ) -F n j (ρ n j-1/2 , ρ n j+1/2 ) , @QFQFPA
whereD following the reipe of IRD SI nd etion IFTD

F n j (a, b) = F n (a, b) if j = 0 min {F n (a, b), q n } if j = 0, @QFQFQA F n = F n (a, b) eing monotone numeril )ux ssoited to F (s n , •)D see he(nition IFIFI nd ixmple IFIFIF he onservtive form of the sheme redsX ρ n+1 j+1/2 = H n j (ρ n j-1/2 , ρ n j+1/2 , ρ n j+3/2 ), @QFQFRA
where H n j is given y the expression in the rightEhnd side of @QFQFPAF e then de(ne the funtions

• ρ ∆ (x, t) = n∈N j∈Z ρ n j+1/2 1 P n j+1/2 (x, t) • s ∆ (t), q ∆ (t) = s n , q n if t ∈ [t n , t n+1 ) • y ∆ (t) = y 0 + ¢ t 0 s ∆ (u) du .
sn the present frmeworkD the gpv ondition reds @λ = ∆t/∆xAX

λ sup s∈[0, ω L ∞ ] ∂F s ∂a L ∞ + ∂F s ∂b L ∞ L ≤ 1, @QFQFSA
where

F s = F s (a, b) is the monotone numeril )ux ssoited to F (s, •) we use in @QFQFPAF Remark 3.3.1.
hen onsidering one of the monotone numeril )uxes we introdued in ixmple IFIFID the gpv ondition n e redued toX

2λ( f L ∞ + ω L ∞ ) ≤ 1.

L ∞ stability and approximate inequalities

he results re stted without proofD we refer to ghpter ID etions IFPEIFQ nd IFT for ll the detilsF Proposition 3.3.1 @L ∞ stilityA. The scheme @QFQFRA is monotone and stable:

∀n ∈ N, ∀j ∈ Z, ρ n j+1/2 ∈ [0, 1]. @QFQFTA
Corollary 3.3.2 @hisrete entropy inequlitiesA. The numerical scheme @QFQFRA fullls the following inequalities for all n ∈ N, j ∈ Z and κ ∈ [0, 1]:

|ρ n+1 j+1/2 -κ| ≤      |ρ n j+1/2 -κ| -λ Φ n j+1 -Φ n j if j / ∈ {-1, 0} |ρ n -1/2 -κ| -λ Φ n int -Φ n -1 ∆t + λR(κ, q n ) if j = -1 |ρ n 1/2 -κ| -λ (Φ n 1 -Φ n int ) ∆t + λR(κ, q n ) if j = 0, @QFQFUA
where R(κ, q n ) was dened in Denition 1.0.1, and Φ n j and Φ n int are the numerical entropy uxes:

Φ n j = F(ρ n j-1/2 ∨ κ, ρ n j+1/2 ∨ κ) -F(ρ n j-1/2 ∧ κ, ρ n j+1/2 ∧ κ); Φ n int = min{F(ρ n -1/2 ∨ κ, ρ n 1/2 ∨ κ), q n } -min{F(ρ n -1/2 ∧ κ, ρ n 1/2 ∧ κ), q n }.
where R s n (κ, q n ) = F (s n , κ) -min{F (s n , κ), q n }, and Φ n j , Φ n int denote the numerical entropy uxes:

Φ n j = F n (ρ n j-1/2 ∨ κ, ρ n j+1/2 ∨ κ) -F n (ρ n j-1/2 ∧ κ, ρ n j+1/2 ∧ κ), Φ n int = min{F n (ρ n -1/2 ∨ κ, ρ n 1/2 ∨ κ), q n } -min{F n (ρ n -1/2 ∧ κ, ρ n 1/2 ∧ κ), q n }.
es in ropositions IFQFIEIFQFPD we de(ne the pproximte entropy )ux nd the pproximte )ux funtionX

Φ ∆ (ρ ∆ , κ) = n∈N j∈Z Φ n j 1 P n j+1/2 ; F ∆ (s ∆ , ρ ∆ ) = n∈N j∈Z F n (ρ n j-1/2 , ρ n j+1/2 )1 P n j+1/2 . Proposition 3.3.3 @epproximte entropyGonstrint inequlitiesA. Fix ϕ ∈ C ∞ c (R×[0, T )), ϕ ≥ 0, κ ∈ [0, 1] and 0 ≤ τ < τ ≤ T . Then as ∆x, ∆t → 0, we have ¢ R |ρ ∆ (x, τ ) -κ|ϕ(x, τ ) dx - ¢ R |ρ ∆ (x, τ ) -κ|ϕ(x, τ ) dx + ¢ τ τ ¢ R |ρ ∆ -κ|∂ t ϕ + Φ ∆ (ρ ∆ , κ)∂ x ϕ dx dt + 2 ¢ τ τ R s ∆ (t) (κ, q ∆ (t))ϕ(0, t) dt ≥ O(∆x) + O(∆t) . @QFQFVA and ¢ R + ρ(x, τ )ϕ(x, τ ) dx - ¢ R + ρ(x, τ )ϕ(x, τ ) dx - ¢ τ τ ¢ R + ρ ∆ ∂ t ϕ + F ∆ (s ∆ , ρ ∆ )∂ x ϕ dx dt ≤ ¢ τ τ q ∆ (t)ϕ(0, t) dt + O(∆x) + O(∆t) . @QFQFWA

Compactness

he (nl step is to otin omptness for the sequenes (ρ ∆ ) ∆ nd (y ∆ ) ∆ in order to pss to the limit in @QFQFVAE@QFQFWAF e strt with (y

∆ ) ∆ F Proposition 3.3.4. For all t ∈ [0, T ], y ∆ (t) = y 0 + ¢ t 0 ω ¢ R ρ ∆ (x, u)µ(x) dx du . @QFQFIHA
Consequently, there exists y ∈ C([0, T ]) such that along a subsequence, y ∆ → y uniformly on

[0, T ]. y ∆ (t) -y 0 = n-1 k=0 ¢ t k+1 t k s k+1 du + ¢ t t n s n du = n-1 k=0 ¢ t k+1 t k ω j∈Z ¢ R ρ k j+1/2 µ j+1/2 ∆x du + ¢ t t n ω j∈Z ¢ R ρ n j+1/2 µ j+1/2 ∆x du = ¢ t 0 ω ¢ R ρ ∆ (x, u)µ(x) dx du .
vet us lso point out tht from @QFQFIAD we get tht for ll ∆ nd lmost every t ∈ (0, T )D

s ∆ (t) = ω ¢ R ρ ∆ (x, t)µ(x) dx . @QFQFIIA
gomining @QFQFIHA nd @QFQFIIAD we otin tht for ll ∆D

ẏ∆ L ∞ = s ∆ L ∞ ≤ ω L ∞ nd y ∆ L ∞ ≤ |y 0 | + T ω L ∞ . he sequene (y ∆ ) ∆ is therefore ounded in W 1,∞ ((0, T ))F wking use of the ompt emedding of W 1,∞ ((0, T )) in C([0, T ])D we get the existene of y ∈ C([0, T ]) suh tht up to the extrtion of susequeneD (y ∆ ) ∆ onverges uniformly to y on [0, T ]F e now turn to (ρ ∆ ) ∆ F
Global BV bounds he following result is the disrete version of vemm QFIFQ so it is onsistent tht the proof uses the disrete nlogous rguments of the ones we used in the proof of vemm QFIFQF Lemma 3.3.5. Introduce for all ∆ > 0 the function ξ ∆ dened for all t ∈ [0, T ] by

ξ ∆ (t) = ¢ R ρ ∆ (x, t)µ(x) dx .
Then ξ ∆ has bounded variation and consequently, so does s ∆ .

Proof. ine µ ∈ BV(R)D there exists sequene of smooth funtions (µ

) ∈N ⊂ BV(R) ∩ C ∞ c (R) suh tht µ -µ L 1 -→ →+∞ 0 nd TV(µ ) -→ →+∞ TV(µ). sntrodue for ll ∈ N nd t ∈ [0, T ]D the funtion ξ ∆, (t) = ¢ R ρ ∆ (x, t)µ (x) dx nd let K > 0 suh tht ∀ ∈ N, µ L 1 , TV(µ ) ≤ K. 3.3. NUMERICAL APPROXIMATION OF THE MODEL UW por ll ∈ N nd t, τ ∈ [0, T ]D if t ∈ [t p , t p+1 ) nd τ ∈ [t q , t q+1 )D for some p, q ∈ ND then we hve |ξ ∆, (t) -ξ ∆, (τ )| = |ξ ∆, (t p ) -ξ ∆, (t q )| = ¢ R ρ ∆ (x, t p )µ (x) dx - ¢ R ρ ∆ (x, t q )µ (x) dx = j∈Z (ρ p j+1/2 -ρ q j+1/2 )µ j+1/2 ∆x , µ j+1/2 = 1 ∆x ¢ x j+1 x j µ (x) dx = j∈Z p-1 k=q (ρ k+1 j+1/2 -ρ k j+1/2 )µ j+1/2 ∆x = p-1 k=q j∈Z F k j (ρ k j-1/2 , ρ k j+1/2 ) -F k j+1 (ρ k j+1/2 , ρ k j+3/2 ) µ j+1/2 ∆t = p-1 k=q j∈Z F k j+1 (ρ k j+1/2 , ρ k j+3/2 )(µ j+3/2 -µ j+1/2 )∆t ≤ L p-1 k=q TV(µ )∆t ≤ LK(|t -τ | + 2∆t). gonsequentlyD for ll ∈ ND ∆ > 0 nd t, τ ∈ [0, T ]D the tringle inequlity yieldsX |ξ ∆ (t) -ξ ∆ (τ )| ≤ 2 µ -µ L 1 + LK(|t -τ | + 2∆t).
vetting → +∞D we get tht for ll

∆ > 0 nd t, τ ∈ [0, T ]D |ξ ∆ (t) -ξ ∆ (τ )| ≤ LK(|t -τ | + 2∆t),
whih leds to

TV(ξ ∆ ) = N k=0 ξ ∆ (t k+1 ) -ξ ∆ (t k ) ≤ 3LK(T + ∆t). his proves tht ξ ∆ ∈ BV([0, T ])F ine ω is vipshitz ontinuousD s ∆ lso hs ounded vritionF Theorem 3.3.6. Fix ρ 0 ∈ BV(R; [0, 1]
) and y 0 ∈ R. Suppose that f is concave and satises @IFHFIA-@QFIFTA-@QFPFTA and that Q satises @QFPFUA. Suppose also that in @QFQFQA, we use the Godunov ux when j = 0 and any other monotone numerical ux when j = 0. Then there

exists ρ ∈ L ∞ (R × (0, T )) ∩ C([0, T ]; L 1 loc (R)), such that along a subsequence, ρ ∆ → ρ a.e. on R × (0, T ).
Proof. ell the hypotheses of vemm IFTFR re ful(lledF gonsequentlyD there exists onstnt

C ε > 0 suh tht for ll n ∈ {0, . . . , N -1}D TV ρ ∆ (•, t n+1 ) ≤ TV(ρ 0 ) + 4 + C ε n k=0 q k+1 -q k + n k=0 s k+1 -s k ≤ TV(ρ 0 ) + 4 + C ε (1 + Q L ∞ ) n k=0 s k+1 -s k .
@QFQFIPA wking use of vemm QFQFSD we otin tht for ll n ∈ {0, . . . , N }D

n k=0 |s k+1 -s k | = n k=0 |s ∆ (t k+1 )-s ∆ (t k )| ≤ ω L ∞ n k=0 |ξ ∆ (t k+1 )-ξ ∆ (t k )| ≤ 3LK ω L ∞ (T +∆t).
where the onstnt K ws introdued in the proof of vemm QFQFSF he two lst inequlities imply tht for ll t ∈ [0, T ]D we hve

∀t ∈ [0, T ], TV(ρ ∆ (•, t)) ≤ TV(ρ 0 ) + 4 + 3C ε (1 + Q L ∞ ) ω L ∞ LK(T + ∆t). @QFQFIQA hereforeD the sequene (ρ ∆ ) ∆ is ounded in L ∞ ((0, T ); BV(R))Y UVD eppendix

then proE vides the omptness sttementF

OSLC technique e stte without proof the following ompteness resultF he result omes from the study done in etions IFRFPEIFTF Theorem 3.3.7. Fix ρ 0 ∈ L ∞ (R; [0, 1]) and y 0 ∈ R. Let us assume that f ∈ C 2 ([0, 1] is strictly concave. Suppose also that in @QFQFQA, we use either the Godunov ux or the Engquist-Osher ux when j = 0 and any other monotone numerical ux when j = 0. Then there exists

ρ ∈ L ∞ (R × (0, T )) ∩ C([0, T ]; L 1 loc (R))
, such that along a subsequence, ρ ∆ → ρ a.e. on R × (0, T ).

Convergence and existence results

e were le to get ompteness using two di'erent methodsD nd under two di'erent sets of ssumptionsF his will to two onvergeneGexistene resultsF roweverD note tht the proofs of onvergene only di'er in the otining of omptenessF Theorem 3.3.8. Fix ρ 0 ∈ BV(R; [0, 1]) and y 0 ∈ R. Suppose that f is concave and satises @IFHFIA-@QFIFTA-@QFPFTA and that Q satises @QFPFUA. Suppose also that in @QFQFQA, we use the Godunov ux when j = 0 and any other monotone numerical ux when j = 0. Then under the CFL condition @QFQFSA, the scheme @QFQFIA @QFQFQA converges to a BV-regular solution ρ to Problem @QFIFIA. Moreover, there exists a constant

C ε > 0 such that ∀t ∈ [0, T ], TV(ρ(•, t)) ≤ TV(ρ 0 ) + 4 + 3C ε (1 + Q L ∞ ) ω L ∞ LKT, @QFQFIRA
where K was dened in Lemma 3.3.5.

Proof. e hve shown tht ! up to the extrtion of susequene ! y ∆ onverges uniformly on [0, T ] to some

y ∈ C([0, T ]) nd tht ρ ∆ onverges FeF on R × (0, T ) to some ρ ∈ L ∞ (R × (0, T )) ∩ C([0, T ]; L 1 loc (R)
)F e now prove tht this ouple (ρ, y) is BVEregulr solution to rolem @QFIFIA in the sense of he(nition QFIFIF ell tht for ll

∆ nd t ∈ [0, T ]D y ∆ (t) = y 0 + ¢ t 0 ω ¢ R ρ ∆ (x, u)µ(x) dx du .
VI xowD we pss to the limit in @QFQFVA nd @QFQFWA using the FeF onvergene of (s ∆ ) ∆ to ẏ nd of (ρ ∆ ) ∆ to ρ s well s the ontinuity of Q nd ωF gonsequentlyD for ll test funtions

ϕ ∈ C ∞ c (R × [0, T )), ϕ ≥ 0 nd κ ∈ [0, 1]D the following inequlities hold for lmost every 0 ≤ τ < τ ≤ T X ¢ R |ρ(x, τ ) -κ|ϕ(x, τ ) dx - ¢ R |ρ(x, τ ) -κ|ϕ(x, τ ) dx + ¢ τ τ ¢ R |ρ -κ|∂ t ϕ + Φ ẏ(t) (ρ, κ)∂ x ϕ dx dt + 2 ¢ τ τ R ẏ(t) (κ, q(t))ϕ(0, t) dt ≥ 0.
o onludeD note tht the expression in the leftEhnd side of the previous inequlity is ontinuous funtion of (τ, τ ) whih is lmost everywhere greter thn the ontinuous funtion 0F fy ontinuityD this expression is everywhere greter thn 0D whih proves tht ρ stis(es the entropy inequlities @QFIFQAF sing similr rgumentsD one shows tht ρ lso stis(es the onstrint inequlities @QFIFRAF his shows tht the ouple (ρ, y) is n dmissile wek solution to @QFIFIAF pinllyD estimte @QFQFIRA omes from @QFQFIQA nd the lower semiEontinuity property of the BV semiEnormF Theorem 3.3.9. Fix ρ 0 ∈ L ∞ (R; [0, 1]) and y 0 ∈ R. Let us assume that f ∈ C 2 ([0, 1] is strictly concave. Suppose also that in @QFQFQA, we use either the Godunov ux or the Engquist-Osher ux when j = 0 and any other monotone numerical ux when j = 0. Then under the CFL condition @QFQFSA, the scheme @QFQFIA @QFQFQA converges to an admissible weak solution to Problem @QFIFIA.

Proof. he proof is identil to the one of heorem QFQFVF e proved tht in the L ∞ frmeworkD the sheme onverges to n dmissile wek solutionD ut note tht there is no gurntee of uniqueness in this onstrutionF elso stress tht we nnot extend this result to generl monotone numeril )uxes eyond the ingquistEysher )ux or the qodunov )uxF

Numerical simulations

sn this setion we present some numeril tests performed with the sheme nlyzed in etion QFQF sn ll the simultions we tke the uniformly onve )ux f (ρ) = ρ(1 -ρ) @the mximl r veloity nd the mximl density re ssumed to e equl to oneAF pollowing the hypotheses of heorem QFQFVD we hoose the qodunov )ux t the interfeD nd the usnov one wy from the interfeF e will use weight funtions of the kind

µ k (x) = 2 k 1 [0; 1 2 k ] (x),
for one @in etion QFRFIA or severl @in etion QFRFPA vlues of k ∈ N * F 3.4.1 Validation of the scheme sn this setionD onsider twoElne rod on whih us trvels with speed given y the funtion

ω(ρ) =    α (β + ρ) 2 if 0 ≤ ρ ≤ 0.6 1 -ρ if 0.6 ≤ ρ ≤ 1,
where α nd β re hosen so tht ω(0) = 0.7 nd ω(0.6) = 0.4D s illustrted in pigure QFI @leftAF he setEup of the experiment is the followingF gonsider domin of omputtion [0, 11]D the weight funtion µ 4 nd the following dtX

ρ 0 (x) = 0.51 [0.5;1] (x), y 0 = 1.5, Q(s) = 0.75 × 1 -s 2 2 .
he ide ehind the hoie of Q is tht in verge @etween the two lnesAD the presene of the slow vehile redues y 25% the mximum tr0 )owF es we n see in pigure QFI @rightAD the slow vehile nerly lwys trvels t mximum veloityF st mkes sense euse even though we n see tht rs re overtking it @pigure QFID right nd pigure QFPAD the density ξ hed of it is never su0iently importnt to mke it go slowerF pigure QFI ! ivolution in time of the us veloity ẏ∆ nd of the sujetive density ξ ∆ D with ∆x = 0.01F Remark 3.4.1. he funtion ω we hose ove is not of the form s required in IPQD IPRF yne ginD let us stress tht the prtiulr form ω(ρ) = min {V bus ; 1 -ρ}D where V bus is the mximum us veloityD is ruil for the wellEposedness result of IPQD IPR to holdF sndeedD it is essentil in the nlysis of IPQD IPR tht the veloity of the us e onstnt @equl to V bus A ross the nonlssil shoksF yur nonlol model is not ound to this restritionF e lso perform onvergene nlysis for this testF sn le QFID we omputed the reltive errors 

E ρ,∆ = ρ ∆ -ρ ∆/2 L 1 ((0,T );L 1 (R)) nd E y,∆ = y ∆ -y ∆/2 L ∞ ,
ω(ρ) = min{0.3; 1 -ρ} nd Q(s) = 0.6 × 1 -s 2 2 .
pirstD onsider the initil dtum pigure QFQ ! tes of onvergene for ρ ∆ @in lkA nd y ∆ @in greenAD with

ρ 0 (x) = 0.4 if x < 0.5 0.5 if x > 0.5 ; y 0 = 0.5. @QFRFIA xumer of ells E ρ,∆ (×10 -2 ) E y,∆ (×10
T = 13F
he numeril solution is omposed of two lssil shoks seprted y nonlssil disE ontinuityD s illustrted in pigure QFR @leftAF xextD we hoose ρ 0 (x) = 0.8 if x < 0.5 0.5 if x > 0.5 ; y 0 = 0.5. @QFRFPA he vlues of the initil ondition rete rreftion wve followed y nonlssil nd lssil shoksD s illustrted in pigure QFR @rightAF pigure QFR ! ivolution in time of the numeril density orresponding to initil dt @QFRFIA @leftA nd @QFRFPA @rightAD with ∆x = 0.001F pinllyD still following SHD we onsider

ρ 0 (x) = 0.8 if x < 0.5 0.4 if x > 0.5 ; y 0 = 0.4. @QFRFQA
rere the solution is omposed of rreftion wve followed y nonlssil nd lssil shoks on the density tht re reted when the slow vehile pprohes the rreftion nd initites moving ottlenekD s illustrted in pigure QFSF pigure QFS ! ivolution in time of the numeril density orresponding to initil dt @QFRFQAD with ∆x = 0.001F ith these three testsD we n lredy seeD in qulittive wyD the resemlne etween the numeril pproximtions to the solutions to our model nd the numeril pproximtions of SHF yne wy to quntify their proximity is for exmple to evlute the L 1 error etween the r densities nd the L ∞ error etween the us positionsF wore preiselyD denote y (ρ ∆ , y ∆ ) the pproximtion of the BVEregulr solution to @QFIFIA otined with the sheme @QFQFIA ! @QFQFQAD nd denote y (ρ ∆ , y ∆ ) the ouple otined with this sme sheme ut

repling s n = ω j∈Z ρ n j+1/2 µ j+1/2 ∆x y s n = ω ρ n 1/2 .
vet us mke preise tht this is not the sheme the uthors of SH proposedF roweverD this sheme is onsistent with the prolem

       ∂ t ρ + ∂ x (F ( ẏ(t), ρ)) = 0 F ( ẏ(t), ρ)| x=0 ≤ Q( ẏ(t)) ẏ(t) = ω (ρ(0+, t)) @QFRFRA
nd ehves in stle wy in the lultions we performedF hereforeD the ouple (ρ ∆ , y ∆ ) is expeted to give resonle pproximtion of the solution to @QFRFRAF ith this in mindD for the se @QFRFQA nd still with the weight funtion µ 3 D we omputed in le QFP the mesured errors 

E 1 ∆ = ρ ∆ -ρ ∆ L 1 ((0,T );L 1 (R)) nd E ∞ ∆ = y ∆ -y ∆ L ∞ . xumer of ells E 1 ∆ (×10 -4 ) E ∞ ∆ (×10 -
J ≥ 40960D E 1 ∆ 2.7 × 10 -4 nd E ∞ ∆ 7.6 × 10 -3 .
his indites the disrepny etween our nonlol model nd the lol model @QFRFRA of UHF he ide is now to (x the numer of ells J = 40960 nd to mke the length of the weight funtion support go to zeroF sn le QFQD we hve omputedD for di'erent weight funtionsD the error etween the pproximtions of the two modelsF his error orrespondsD s in the ove lultionD to the residul error oserved strting from su0iently smll ∆xF nd @QFRFRAF vet us however point tht the nonlolity in spe for the slow vehile introdues n undesirle rteft into the modelF sn the rreftion regime one my oserve tht the lrge vehile my move it fster tht the surrounding )owF he sitution where this e'et eomes truly pereptile is when onsidering initil dt of the type

weight funtion E 1 ∆ E ∞ ∆ µ 1 6.810 × 10 -3
ρ 0 (x) = 1 if x < x b 0 if x > x b .
@QFRFSA VU sndeedD for suh dtD there exists smll time intervl [0, ν] @ν > 0A in whih ẏ(t) > v(ρ(y(t) + )) = 0D whih would suggest tht the slow vehile moves forwrd while the rs in front of it do notF his time intervl is in ft quite smll due to the nrrowness of the support of the weight funtionF he lol model does not develop suh phenomenF his qulittive rtift preludes us from giving mirosopi interprettion to the modelD whih min output is the glol in)uene of the slow vehile on the )owY howeverD let us stress tht the phenomenon eomes quntittively negligile for lrger timesF sndeedD yle%nik estimte on dey of positive wves ensures tht dt of the type @QFRFSA evolve into rreftion wves nd do not pper while drivingX the lssil v model preludes the formtion of rreftion wves foused t positive timeF he modi(tion of the lssil v rought y the onstrint my produe nonlssil wves t positive timesY while these wves re downwrd jumps in density like in @QFRFSAD they re situted preisely t the lotion of the onstrint nd not slightly ehind itD like in @QFRFSAF iven if we re unleD t this timeD to rigorously link our prolem @QFIFIA with µ → δ 0 + nd the originl prolem @QFRFRA of the uthors in UHD this lst experiment orroortes the onjeture tht the lol model @QFRFRA is the singulr limit of our model in the se ω is of the form ω(ρ) = min {V bus ; 1 -ρ}F he other interesting question is whether the lol model is well posed eyond this prtiulr hoie of ωF CHAPTER 4

A LWR MODEL WITH CONSTRAINTS AT MOVING INTERFACES feing given regulr onve )ux f ∈ C 2 ([0, 1]) verifying f (ρ) ≥ 0, f (0) = f (1) = 0; ∃! ρ ∈ (0, 1), for FeF ρ ∈ (0, 1), f (ρ)(ρ -ρ) > 0, @RFHFIA nd (nite fmily of trjetories (y i ) i∈[[1;J]] nd onstrints (q i ) i∈[[1;J]] de(ned on (s i , T i ) @0 ≤ s i < T i AD we tkle the following prolemX      ∂ t ρ(x, t) + ∂ x (f (ρ(x, t))) = 0 (x, t) ∈ R × (0, +∞) = Ω ρ(x, 0) = ρ 0 (x) x ∈ R ∀i ∈ [[1; J]], (f (ρ) -ẏi (t)ρ)| x=y i (t) ≤ q i (t) t ∈ (s i , T i ).
@RFHFPA ystems of the type @RFHFPA hve nturlly risen in the reent yersF vet us give nonE exhustive review on how our rolem @RFHFPA reltes to the existing litertureF " he uthors of UQD VW onsidered model very similr to @RFHFPAF sn their frmeworkD (y i ) i represented the trjetories of utonomous vehilesD nd the uthors imed t modeling the regultion impt on few utonomous vehiles on the tr0 )owF sn the sme frmework ut with di'erent pplitions in mindD the model of IIT ounts for the oundedness of tr0 elertionF xote tht in eh of these modelsD the trjetories of the moving interfes (y i ) i were not given a prioriD ut rther otined s solutions to n yhi involving the density of tr0D mehnism reminisent of IRD UHD ISH for instneF vet us lso mention the work of WP where the uthors studied di'erent model for the sitution of severl moving ottleneksF " he numeril spet of @RFHFPA ws treted in SH @for one trjetoryA nd UI @for multiple trjetoriesAD where the uthors modeled the moving ottleneks reted y uses on rodF " sn lss of prolems lose to @RFHFPAD i.e. without onstrint on the )uxD ut still with oupling interfesGdensityD the uthors of VR desried the intertion etween pltoon of vehiles nd the surrounding tr0 )ow on highwyF VW " rolem @RFHFPA n e seen s onservtion lw with disontinuous )ux nd speil tretments t the interfesF sn tht diretionsD the uthors of IHUD IVD SD QRD ISQ studied suh prolems ut with the lssil vnishing visosity oupling t the interE fesF sn severl of these works VWD IITD the existene issue is tkled using the wveEfront trkE ing proedure whih is very sensile to the detils of the modelF yn the other hndD when numeril shemes re onsideredD see UID SHD the numeril nlysis is usully left outF he ontriution of this hpter is to provide roust mthemtil setting oth in the theoE retil nd numeril spets of @RFHFPAF he proof of uniqueness is sed upon omintion of uruzhkov lssil method of douling vriles nd the theory of dissiptive germs in the frmework of disontinuous )ux IS nd it is nlogous to the one of IVF o prove existeneD we uild (nite volume sheme with grid tht dpts lolly to the trjetories (y i ) i nd to their rossing pointsD ut remins simple rtesin grid wy from the interfesF yur work n serve s sis for onstruting solutions to more involved modelsD e.g. via the splitting pprohF es n exmple of pplitionD we n point out the vrint of our reent work ISH with multiple slow vehiles involvedY this is mildly nonElol nlogue of the prolem onsidered numerilly in UIF es the fundmentl ingredient of the wellEposedness proof nd numeril pproximtion of @RFHFPAD we will (rst tkle the one trjetoryGone onstrint prolemX

       ∂ t ρ + ∂ x (f (ρ)) = 0 ρ(•, 0) = ρ 0 (f (ρ) -ẏ(t)ρ)| x=y(t) ≤ q(t) t > 0, @RFHFQA with y ∈ W 1,∞
loc ((0, +∞)) nd q ∈ L ∞ loc ((0, +∞))F ell tht in ghpter ID we studied @RFHFQA in the se y ≡ 0F he redution of @RFHFPA to lolized prolem @RFHFQA requires the onstrution of (nite volE ume sheme in the originl oordintes (x, t)D while the tretment of @RFHFQA in the literture is most often sed upon the reti(tion of the interfe via vrile hngeD see UHD UP nd ghpter QF por @RFHFPAD this pproh leds to umersome nd singulr onstrutionD see IVF sn our wellEposedness nlysis nd pproximtion of @RFHFQAD hving in mind @RFHFPAD we will not hnge the oordinte systemF vet us detil how the hpter is orgnizedF etions RFIERFP re devoted to rolem @RFHFQAF e strt y giving two de(nitions of solutionsF yneD most frequently used in tr0 dynmis @see STD PQAD is omposed of lssil uruzhkov entropy inequlities with reminder term tking into ount the onstrint nd of wek formultion for the onstrintD see he(nition RFIFIF he seond de(nition emntes from the theory of onservtion lws with dissiptive interfe oupling @see ISD SAF st onsists of uruzhkov entropy inequlities with test funtions tht vnish long the interfe {x = y(t)} nd of n expliit tretment of the tres of the solution long the interfeD see he(nition RFIFRF fefore tkling the wellEposedness issueD we WI prove tht these two de(nitions re equivlentD see ropositions RFIFTERFIFTD similrly to wht the uthors of IR didF niqueness follows from the stility otined in etion RFID see heorem RFIFIQF sn etion RFPD we onstrut (nite volume sheme for @RFHFQA nd prove of its onvergeneF sn the onstrutionD we do not retify the trjetory ut insted we lolly modify the mesh to mold the trjetoryF woreoverD we fully mke use of tehniques nd results put forwrd y the uthor of ISP to derive lolized BV estimtes wy from the interfeD essentil to otin strong omptness for the pproximte solutions reted y the shemeD see gorollry RFPFUF his is wy to highlight the generlity of the omptness tehnique of ISPF sn etion RFQD we get k to the originl prolem @RFHFPAF yur strtegy is to assemble the study of @RFHFPA from severl lol studies of @RFHFQA with the help of prtition of unity rgumentF his onernsD in prtiulrD the onvergene of (nite volume pproximtion of @RFHFPA whih is ddressed via loliztion rgumentF roweverD the sheme needs to e de(ned glollyD whih mkes it impossile to use the reti(tion strtegy s soon s the interfes hve rossing pointsD cf. IV for singulr reti(tion strtegyF 

∀ρ ∈ [0, 1], F s (ρ) = f (ρ) -sρ nd ∀a, b ∈ [0, 1], Φ s (a, b) = sgn(a -b)(F s (a) -F s (b))
the norml )ux through {x = x 0 + st} @x 0 ∈ RA nd its entropy )ux ssoited with the uruzhkov entropy ρ → |ρ -κ|D for ll κ ∈ [0, 1]D see IIRF vet us lso denote y Γ the trjetoryX

Γ = {(x, t) ∈ Ω | x = y(t)}. Denition 4.1.1. e funtion ρ ∈ L ∞ (Ω; [0, 1]) is n dmissile entropy solution to @RFHFQA with initil dt ρ 0 ∈ L ∞ (R; [0, 1]) if @iA for ll test funtions ϕ ∈ C ∞ c (Ω), ϕ ≥ 0 nd κ ∈ [0, 1]D the following entropy inequlities re veri(edX ¢ +∞ 0 ¢ R |ρ -κ|∂ t ϕ + Φ(ρ, κ)∂ x ϕ dx dt + ¢ R |ρ 0 (x) -κ|ϕ(x, 0) dx + ¢ +∞ 0 R ẏ(t) (κ, q(t))ϕ(y(t), t) dt ≥ 0, @RFIFIA where R ẏ(t) (κ, q(t)) = 2 F ẏ(t) (κ) -min F ẏ(t) (κ), q(t) ; @iiA for ll test funtions ϕ ∈ C ∞ c (Ω), ϕ ≥ 0 the following onstrint inequlities re veri(edX - ¤ Ω + ρ∂ t ϕ + f (ρ)∂ x ϕ dx dt ≤ ¢ +∞ 0 q(t)ϕ(y(t), t) dt , @RFIFPA
where

Ω + = {(x, t) ∈ Ω | x > y(t)}F Remark 4.1.1. king κ = 0D then κ = 1 in @RFIFIAD from the ondition ρ(x, t) ∈ [0, 1]
FeF we dedue tht ny dmissile wek solution to rolem @RFHFQA is lso distriutionl solution to the onservtion lw

∂ t ρ + ∂ x f (ρ) = 0F sf ρ is regulr enough solutionD then for ll test funtions ϕ ∈ C ∞ c (Ω), ϕ ≥ 0D we hve 0 = ¤ Ω + div (x,t) f (ρ) ρ ϕ dx dt = ¢ ∂Ω + f (ρ)ϕ ρϕ • -1 ẏ(t) dt - ¤ Ω + f (ρ) ρ • ∇ x,t ϕ dx dt = - ¢ +∞ 0 (f (ρ) -ẏ(t)ρ) |x=y(t) ϕ(y(t), t) dt - ¤ Ω + ρ∂ t ϕ + f (ρ)∂ x ϕ dx dt .
woreoverD if ρ stis(es the )ux inequlity of @RFHFQA FeF on (0, +∞)D then the previous omputtions led to

- ¤ Ω + ρ∂ t ϕ + f (ρ)∂ x ϕ dx dt ≤ ¢ +∞ 0 q(t)ϕ(y(t), t) dt ;
this is where inequlities @RFIFPA ome fromF xote how they mke sense irrespetive of the regE ulrity of ρF sntegrting on Ω -= {(x, t) ∈ Ω | x < y(t)} would led to similr nd equivlent inequlitiesF he(nition RFIFI is well suited for pssge to the limit of FeF onvergent sequenes of ext or pproximte solutionsF roweverD we nnot derive uniqueness y the stndrd rguments like in the lssil se of uruzhkovF sing n equivlent notion of solutionD whih we dpt from ISD sed on expliit tretment of tres of ρ on ΓD we rther omine the rguments of IIR nd ISSF sn this de(nition ouple plys mjor roleD the one whih relizes the equlity in the )ux onstrint in @RFHFQAF wore preiselyD (x (rst s ≥ 0F fy @RFHFIA nd onvity of f D for ll q ∈ [0, max F s )D the eqution F s (ρ) = q dmits extly two solutions in [0, 1]D see pigure RFID leftF he sme wyD if s ≤ 0D then for ll q ∈ [-ṡ, max F s )D the eqution still dmits two solutions in [0, 1]F he ouple formed y these two solutionsD denoted y ( ρ s (q), q ρ s (q)) in he(nition RFIFP elowD will serve oth in the prove of uniqueness nd exisE teneF pollowing the previous disussionD in the sequelD we will ssume tht q veri(es the following ssumptionX

for FeF t > 0, q(t) ∈ [0, max F ẏ(t) ) if ẏ(t) ≥ 0 nd q(t) ∈ [-ẏ(t), max F ẏ(t) ) if ẏ(t) < 0.
@RFIFQA sn prtiulrD remrk tht for FeF t > 0, ẏ(t) + q(t) ≥ 0. @RFIFRA WQ pigure RFI ! sllustrtion of essumption @RFIFQA Denition 4.

1.2. vet s ∈ R + nd q ∈ [0, max F s )D or s ∈ R -nd q ∈ [-s, max F s )F
he dmissiility germ for the onservtion lw in @RFHFQA ssoited with the onstrint

F s (ρ) |x=st ≤ q is the suset G s (q) ⊂ [0, 1] 2 de(ned s the unionX G s (q) = ( ρ s (q), q ρ s (q)) G 1 s (q) {(κ, κ) | F s (κ) ≤ q} G 2 s (q) {(k l , k r ) | k l < k r nd F s (k l ) = F s (k r ) ≤ q} G 3 s (q)
, whereD due to the pro(le of F s D the ouple ( ρ s (q), q ρ s (q)) is uniquely de(ned y the onditions F s ( ρ s (q)) = F s (q ρ s (q)) = q nd ρ s (q) > q ρ s (q). Lemma 4.1.3. For all s ∈ R + and q ∈ [0, max F s ), and for all s ∈ R -and q ∈ [-s, max F s ),

the admissibility germ G s (q) is L 1 -dissipative in the sense that:

(i) for all (k l , k r ) ∈ G s (q), F s (k l ) = F s (k r ) (Rankine-Hugoniot condition); (ii) for all (k l , k r ), (c l , c r ) ∈ G s (q), Φ s (k l , c l ) ≥ Φ s (k r , c r ). @RFIFSA
Proof. he point (i) is ovious from the de(nitionF vet us prove the dissiptive feture @RFIFSAF he following tle summrizes whih vlues n tke the di'erene ∆ = Φ s (k l , c l ) -Φ s (k r , c r ) ording with whih prts of the germ the ouples

(k l , k r ), (c l , c r ) ∈ G s (q) elong toF (c l , c r ) (k l , k r ) ∈ G 1 s (q) ∈ G 2 s (q) ∈ G 3 s (q) ∈ G 1 s (q) 0 0 0 or 2(q -F s (k l )) ∈ G 2 s (q) 0 0 0 or 2|F s (c) -F s (k l )| ∈ G 3 s (q) 0 or 2(q -F s (c l )) 0 or 2|F s (c l ) -F s (k)| 0 or 2|F s (c l ) -F s (k l )| rving in mind the de(nition of G 3 s (q)D we n onlude tht ∆ ≥ 0F Denition 4.1.4. e funtion ρ ∈ L ∞ (Ω; [0, 1]) is G ẏ(q)Eentropy solution to @RFHFQA with initil dt ρ 0 ∈ L ∞ (R; [0, 1]) ifX @iA for ll test funtions ϕ ∈ C ∞ c (Ω\Γ), ϕ ≥ 0 nd κ ∈ [0, 1]D the following entropy inequlities re veri(edX ¢ +∞ 0 ¢ R |ρ -κ|∂ t ϕ + Φ(ρ, κ)∂ x ϕ dx dt + ¢ R |ρ 0 (x) -κ|ϕ(x, 0) dx ≥ 0;
@RFIFTA @iiA for FeF t > 0D (ρ(y(t)-, t), ρ(y(t)+, t)) ∈ G ẏ(t) (q(t)). @RFIFUA Remark 4.1.2. gondition @RFIFUA is to e understood in the sense of strong tres long ΓF en importnt ft we stress is tht it is not restritive to ssume tht entropy solutionsD i.e. ounded funtions verifying @RFIFTAD dmit strong tresF sullyD it is ensured provided nondegenery ssumption on the )ux funtionX

for ny nonempty intervl (a, b) ⊂ (0, 1), f |(a,b) is not onstntF @RFIFVA
sn the ontext of tr0 )owD howeverD we sometimes onsider )uxes whih do not verify @RFIFVAF uh )uxesD whih hve liner prtsD usully model onstnt tr0 veloity for smll densitiesF sn those situtionsD nd when y ≡ 0D one n prove tht under mild ssumption on the onstrintD if the initil dt hs ounded vritionD then solutions to @RFHFQA re in L ∞ ((0, T ); BV(R))D nd tres re then to e understood in the sense of BV(R) funtionsD see ISHD heorem QFPF elso note tht the germ formlism n e dpted to the situtions where the )ux is degenerte nd no vrition ound is ssumedD see ISD emrks PFPD PFQF e now prove tht he(nitions RFIFI nd RFIFR re equivlentF Proposition 4.1.5. Any admissible entropy solution to @RFHFQA is a G ẏ(q)-entropy solution.

Proof. pix ρ ∈ L ∞ (Ω) n dmissile entropy solution to @RFHFQAD ϕ ∈ C ∞ c (Ω)D ϕ ≥ 0 nd κ ∈ [0, 1]F sf ϕ vnishes long ΓD then @RFIFIA eomes @RFIFTAF woreoverD it is known tht the nkineErugoniot ondition is ontined in @RFIFIAF gomining it with @RFIFPA gives usX

for FeF t > 0, F ẏ(t) (ρ(y(t)-, t)) = F ẏ(t) (ρ(y(t)+, t)) ≤ q(t). @RFIFWA vet us show tht for FeF t > 0D (ρ(y(t)-, t), ρ(y(t)+, t)) ∈ G ẏ(t) (q(t))F Case 1: ρ(y(t)-, t) ≤ ρ(y(t)+, t)F gondition @RFIFWA implies tht (ρ(y(t)-, t), ρ(y(t)+, t)) ∈ G 2 ẏ(t) (q(t)) ∪ G 3 ẏ(t) (q(t))F Case 2: ρ(y(t)-, t) > ρ(y(t)+, t)F uppose now tht ϕ ∈ C ∞ c (Ω) nd (x n ∈ N * F
fy stndrd pproximtion rgumentD we n pply @RFIFIA with the vipshitz test funtion ξ n ϕD where ξ n is the utEo' funtionX

ξ n (x, t) =            1 if |x -y(t)| < 1 n 2 -n|x -y(t)| if 1 n ≤ |x -y(t)| ≤ 2 n 0 if |x -y(t)| > 2 n . WS his yieldsX ¢ +∞ 0 ¢ R |ρ -κ| ξ n ∂ t ϕ + n ẏ(t) sgn(x -y(t))1 { 1 n <|x-y(t)|< 2 n } ϕ dx dt + ¢ +∞ 0 ¢ R Φ(ρ, κ) ξ n ∂ x ϕ -n sgn(x -y(t)1 { 1 n <|x-y(t)|< 2 n } ϕ dx dt + ¢ +∞ 0 R ẏ(t) (κ, q(t))ϕ(y(t), t) dt ≥ 0.
king the limit when n → +∞D we otinX

¢ +∞ 0 Φ ẏ(t) (ρ(y(t)-, t), κ) -Φ ẏ(t) (ρ(y(t)+, t), κ) + R ẏ(t) (κ, q(t)) ϕ(y(t), t) dt ≥ 0 whih implies tht for FeF t > 0 nd for ll κ ∈ [0, 1]D Φ ẏ(t) (ρ(y(t)-, t), κ) -Φ ẏ(t) (ρ(y(t)+, t), κ) + R ẏ(t) (κ, q(t)) ≥ 0.
king in prtiulr κ = rgmx(F ẏ(t) )D we getX

Φ ẏ(t) (ρ(y(t)-, t), κ) -Φ ẏ(t) (ρ(y(t)+, t), κ) + 2(F ẏ(t) (κ) -q(t)) ≥ 0. @RFIFIHA ine ρ(y(t)-, t) > ρ(y(t)+, t)D @RFIFIHA leds to F ẏ(t) (ρ(y(t)-, t)) ≥ q(t)D whih omined with @RFIFWAD implies F ẏ(t) (ρ(y(t)-, t)) = F ẏ(t) (ρ(y(t)+, t)) = q(t)F e dedue tht (ρ(y(t)-, t), ρ(y(t)+, t)) ∈ G 1 ẏ(t) (q(t)
)D whih ompletes the proofF Proposition 4.1.6. Any G ẏ(q)-entropy solution to @RFHFQA is an admissible entropy solution.

Proof. pix ρ ∈ L ∞ (Ω) G ẏ(q)Eentropy solution to @RFHFQAD ϕ ∈ C ∞ c (Ω)D ϕ ≥ 0D κ ∈ [0, 1] nd n ∈ N * F
e still denote y ξ n the utEo' funtion from the lst proofF e write

ϕ = (1 -ξ n )ϕ + ξ n ϕF ine φ n = (1 -ξ n )ϕ vnishes long ΓD we hve I = ¢ +∞ 0 ¢ R |ρ -κ|∂ t ϕ + Φ(ρ, κ)∂ x ϕ dx dt + ¢ R |ρ 0 (x) -κ|ϕ(x, 0) dx + ¢ +∞ 0 R ẏ(t) (κ, q(t))ϕ(y(t), t) dt = ¢ +∞ 0 ¢ R |ρ -κ|∂ t φ n + Φ(ρ, κ)∂ x φ n dx dt + ¢ R |ρ 0 (x) -κ|φ n (x, 0) dx ≥0 + ¢ +∞ 0 ¢ R |ρ -κ|∂ t (ξ n ϕ) + Φ(ρ, κ)∂ x (ξ n ϕ) dx dt + ¢ R |ρ 0 (x) -κ|ξ n (x, 0)ϕ(x, 0) dx + ¢ +∞ 0 R ẏ(t) (κ, q(t))ϕ(y(t), t) dt ≥ ¢ +∞ 0 ¢ R |ρ -κ| ξ n ∂ t ϕ + n ẏ(t) sgn(x -y(t))1 { 1 n <|x-y(t)|< 2 n } ϕ dx dt + ¢ +∞ 0 ¢ R Φ(ρ, κ) ξ n ∂ x ϕ -n sgn(x -y(t)1 { 1 n <|x-y(t)|< 2 n } ϕ dx dt + ¢ R |ρ 0 (x) -κ|ξ n (x, 0)ϕ(x, 0) dx + ¢ +∞ 0 R ẏ(t) (κ, q(t))ϕ(y(t), t) dt .
king the limit when n → +∞D we otinX

I ≥ ¢ +∞ 0 Φ ẏ(t) (ρ(y(t)-, t), κ) -Φ ẏ(t) (ρ(y(t)+, t), κ) + R ẏ(t) (κ, q(t)) ∆(t,κ) ϕ(y(t), t) dt .
o onludeD we re going to prove tht for FeF t > 0 nd for ll κ ∈ [0, 1]D ∆(t, κ) ≥ 0F ememer tht y ssumptionD for FeF t > 0D (ρ(y(t)-, t), ρ(y(t)+, t)) ∈ G ẏ(t) (q(t))F he following tleD in whih we dropped the ẏ(t)/q(t)EindexingD summrizes whih vlues n tke the di'erene ∆(t, κ) ording to the position of κ with respet to the ouple (ρ(y(t)-, t), ρ(y(t)+, t))D whih is simply denoted y (ρ l , ρ r )F xote tht the se mrked y × is impossileF 

κ (ρ l , ρ r ) ∈ G 1 ∈ G 2 ∈ G 3 κ < min{ρ l , ρ r } 0 R(κ, q(t)) 0 κ > max{ρ l , ρ r } 0 R(κ, q(t)) 0 κ etween ρ l nd ρ r 0 × 2(F (κ) -F (ρ l )) + R(κ, q(t))
, σ 0 ∈ L ∞ (R; [0, 1]), y ∈ W 1,∞
loc ((0, +∞)) and q, r ∈ L ∞ loc ((0, +∞)). We denote by ρ (resp. σ) a G ẏ(q)-entropy solution (resp. G ẏ(r)-entropy solution) to Problem @RFHFQA corresponding to initial data ρ 0 (resp. σ 0 ). We suppose that q, r satisfy @RFIFQA. Then for all test functions ϕ ∈ C ∞ c (Ω), ϕ ≥ 0, we have

¢ +∞ 0 ¢ R |ρ -σ|∂ t ϕ + Φ(ρ, σ)∂ x ϕ dx dt + ¢ R |ρ 0 (x) -σ 0 (x)|ϕ(x, 0) dx + ¢ +∞ 0 Φ ẏ(t) (ρ(y(t)+, t), σ(y(t)+, t)) -Φ ẏ(t) (ρ(y(t)-, t), σ(y(t)-, t)) ϕ(y(t), t) dt ≥ 0. @RFIFIIA Proof. ke φ = φ(x, t, χ, τ ) ∈ C ∞ c (Ω 2 ), φ ≥ 0 with support ontined in the set Ω\Γ 2 F
he lssil method of douling vriles leds us toX

¨|ρ(x, t) -σ(χ, τ )|(∂ t φ + ∂ τ φ) + Φ(ρ(x, t), σ(χ, τ ))(∂ x φ + ∂ χ φ) dx dt dχ dτ + ¦ |ρ 0 (x) -σ(χ, τ )|φ(x, 0, χ, τ ) dx dχ dτ + ¦ |ρ(x, t) -σ 0 (χ)|φ(x, t, χ, 0) dx dt dχ ≥ 0.
@RFIFIPA eginD stndrd pproximtion rgument llows us to pply @RFIFIPA with the vipshitz funtion

φ n (x, t, χ, τ ) = γ n (x, t)ϕ x + χ 2 , t + τ 2 δ n x -χ 2 δ n t -τ 2 where ϕ = ϕ(X, T ) ∈ C ∞ c (Ω) is nonnegtive test funtionD (δ n ) n is smooth pproximtion of the hir mss t the originD nd γ n (x, t) =              0 if |x -y(t)| < 1 n n |x -y(t)| - 1 n if 1 n ≤ |x -y(t)| ≤ 2 n 1 if |x -y(t)| > 2 n .
sing the ft tht for FeF t > 0D

∂ t φ n + ∂ τ φ n = -n ẏ(t) sgn(x -y(t))1 { 1 n <|x-y(t)|< 2 n } ϕ x + χ 2 , t + τ 2 δ n x -χ 2 δ n t -τ 2 + γ n (x, t)∂ T ϕ x + χ 2 , t + τ 2 δ n x -χ 2 δ n t -τ 2 
∂ x φ n + ∂ χ φ n = n sgn(x -y(t))1 { 1 n <|x-y(t)|< 2 n } ϕ x + χ 2 , t + τ 2 δ n x -χ 2 δ n t -τ 2 + γ n (x, t)∂ X ϕ x + χ 2 , t + τ 2 δ n x -χ 2 δ n t -τ 2 , we otinX ¨|ρ(x, t) -σ(χ, τ )|(∂ t φ n + ∂ τ φ n ) dx dt dχ dτ -→ n→+∞ - ¢ +∞ 0 ẏ(t) |ρ(y(t)+, t) -σ(y(t)+, t)| -|ρ(y(t)-, t) -σ(y(t)-, t)| ϕ(y(t), t) dt + ¢ +∞ 0 ¢ R |ρ(x, t) -σ(x, t)|∂ T ϕ(x, t) dx dt nd ¨Φ(ρ(x, t), σ(χ, τ ))(∂ x φ n + ∂ χ φ n ) dx dt dχ dτ -→ n→+∞ ¢ +∞ 0 Φ(y(t)+, t), σ(y(t)+, t) -Φ(ρ(y(t)-, t), σ(y(t)-, t)) ϕ(y(t), t) dt + ¢ +∞ 0 ¢ R Φ(ρ(x, t), σ(x, t))∂ X ϕ(x, t) dx dt . pinllyD sine ¦ |ρ 0 (x) -σ(χ, τ )|φ n (x, 0, χ, τ ) dx dχ dτ nd ¦ |ρ(x, t) -σ 0 (χ)|φ n (x, t, χ, 0) dx dχ dt oth onverge to 1 2 ¢ R |ρ 0 (x) -σ 0 (x)|ϕ(x, 0) dx ,
we get @RFIFIIA y ssemling the ove ingredients togetherF Theorem 4.

1.8. Fix ρ 0 , σ 0 ∈ L ∞ (R; [0, 1]), y ∈ W 1,∞
loc ((0, +∞)) and q, r ∈ L ∞ loc ((0, +∞)). We denote by ρ (resp. σ) a G ẏ(q)-entropy solution (resp. G ẏ(r)-entropy solution) to Problem @RFHFQA corresponding to initial data ρ 0 (resp. σ 0 ). We suppose that q, r satisfy @RFIFQA. Then for all T > 0, we have

ρ(•, T ) -σ(•, T ) L 1 ≤ ρ 0 -σ 0 L 1 + 2 ¢ T 0 |q(t) -r(t)| dt . @RFIFIQA
In particular, Problem @RFHFQA admits at most one solution. 

WW Proof. pix T > 0D R ≥ y L ∞ ((0,T )) nd set L = f L ∞ + ẏ L ∞ ((0,T )) F gonsider for ll n ∈ N the funtionX ϕ n (x, t) = 1 4 (1 -ξ n (t -T )) (1 -ξ n (|x| -R + L(t -T ))) ,
where (ξ n ) n is smooth pproximtion of the sign funtionF he sequene (ϕ n ) n is smooth pproximtion of the hrteristi funtion of the trpezoid

T = (x, t) ∈ Ω | t ∈ [0, T ] nd |x| ≤ R -L(t -T ) ⊃ (x, t) ∈ Ω | t ∈ [0, T ] nd x = y(t) .
vet us pply uto inequlity @RFIFIIA with

(ϕ n ) n F por ll n ∈ ND we hve ¢ +∞ 0 ¢ R |ρ -σ|∂ t ϕ n dx dt = - 1 4 ¢ +∞ 0 ¢ R |ρ -σ|ξ n (t -T ) (1 -ξ n (|x| -R + L(t -T ))) dx dt - L 4 ¢ +∞ 0 ¢ R |ρ -σ| (1 -ξ n (t -T )) ξ n (|x| -R + L(t -T )) dx dt -→ n→+∞ - ¢ |x|≤R |ρ(x, T ) -σ(x, T )| dx -L ¢ T 0 ¢ |x|=R-L(t-T ) |ρ -σ| dx dt . henD ¢ +∞ 0 ¢ R Φ(ρ, σ)∂ x ϕ n dx dt = - 1 4 ¢ +∞ 0 ¢ R Φ(ρ, σ) (1 -ξ n (t -T )) sgn(x)ξ n (|x| -R + L(t -T )) dx dt -→ n→+∞ - ¢ T 0 ¢ |x|=R-L(t-T ) Φ(ρ, σ) sgn(x) dx dt . pinllyD we hve ¢ R |ρ 0 (x) -σ 0 (x)|ϕ n (x, 0) dx -→ n→+∞ ¢ |x|≤R+LT |ρ 0 (x) -σ 0 (x)| dx .
emrk lso tht the hoies of R nd L imply tht for ll t > 0D

ϕ n (y(t), t) -→ n→+∞ 1.
essemling the previous limits togetherD we getX

- ¢ |x|≤R |ρ(x, T ) -σ(x, T )| dx + ¢ |x|≤R+LT |ρ 0 (x) -σ 0 (x)| dx - ¢ T 0 ¢ |x|=R-L(t-T ) (L|ρ -σ| + Φ(ρ, σ) sgn(x)) dx dt + ¢ T 0 Φ ẏ(t) (ρ(y(t)+, t), σ(y(t)+, t)) -Φ ẏ(t) (ρ(y(t)-, t), σ(y(t)-, t)) dt ≥ 0. xote tht for ll ρ, σ ∈ [0, 1] nd for ll x ∈ RD L|ρ -σ| + Φ(ρ, σ) sgn(x) ≥ L|ρ -σ| -|f (ρ) -f (σ)| ≥ (L -f L ∞ )|ρ -σ| ≥ 0.
gonsequentlyD we hve shown tht

¢ |x|≤R |ρ(x, T ) -σ(x, T )| dx ≤ ¢ |x|≤R+LT |ρ 0 (x) -σ 0 (x)| dx + ¢ T 0 Φ ẏ(t) (ρ(y(t)+, t), σ(y(t)+, t)) -Φ ẏ(t) (ρ(y(t)-, t), σ(y(t)-, t)) ∆(t)
dt .

ht is left to do is to tke the limit when R → +∞ nd to estimte the lst two terms of the rightEhnd side of the previous inequlityF he following tleD in whih we dropped the tEindexingD summrizes whih vlues n tke the di'erene ∆(t) ording to whih prts of their respetive germs the ouples (ρ(y(t)-, t), ρ(y(t)+, t)) nd (σ(y(t)-, t), σ(y(t)+, t))D respetively denoted y (ρ l , ρ r ) nd (σ l , σ r ) elong toF

(σ l , σ r ) (ρ l , ρ r ) ∈ G 1 ẏ (q) ∈ G 2 ẏ (q) ∈ G 3 ẏ (q) ∈ G 1 ẏ (r) 2(q -r) 0 or 2(F ẏ(ρ l ) -r) 2(F ẏ(ρ l ) -r) ∈ G 2 ẏ (r) 0 0 ≤ 0 ∈ G 3 ẏ (r) 2(F ẏ(σ l ) -q) ≤ 0 ≤ 0
e lerly see the ound ∆(t) ≤ 2|q(t) -r(t)|D whih leds us to @RFIFIQAD whih lerly implies uniquenessF his onludes the proofF 4.2 Existence for the single trajectory problem e uild simple (nite volume sheme nd prove its onvergene to n dmissile entropy solution to @RFHFQAF prom now onD we denote y

a ∨ b = max{a, b} nd a ∧ b = min{a, b}. pix ρ 0 ∈ L ∞ (R; [0, 1])F 4.2.
1 Adapted mesh and denition of the scheme e strt y de(ning the sequene of pproximte slopesX 

∀n ∈ N, s n = 1 ∆t ¢ t n+1 t n ẏ(t) dt ; ∀t ≥ 0, s ∆ (t) = n∈N s n 1 [t n ,t n+1 ) (t).
) ∆ onverges to ẏ in L 1 ((0, T ))F pix ε > 0F ine ẏ ∈ L 1 ((0, 2T ))D y densityD there exists ontinuous funtion γ ∈ C([0, 2T ]) suh tht ẏ -γ L 1 ((0,2T )) ≤ εF reine theorem ensures tht γ is uniformly ontinuousD heneX ∃α > 0, ∀t, τ ∈ [0, 2T ], |t -τ | ≤ α =⇒ |γ(t) -γ(τ )| ≤ ε 2T . uppose now tht ∆t ≤ α nd let N ∈ N * suh tht T ∈ [t N , t N +1 )F e hveX ẏ -s ∆ L 1 ((0,T )) ≤ ẏ -γ L 1 ((0,T )) + γ -s ∆ L 1 ((0,T )) ≤ ẏ -γ L 1 ((0,2T )) + γ -s ∆ L 1 ((0,t N +1 )) ≤ ε + N n=0 ¢ t n+1 t n |γ(t) -s n | dt ≤ ε + N n=0 ¢ t n+1 t n ¢ t n+1 t n γ(t) -ẏ(τ ) ∆t dτ dt ≤ ε + N n=0 ¢ t n+1 t n ¢ t n+1 t n γ(t) -γ(τ ) ∆t ≤ ε 2T ∆t dτ dt + N n=0 ¢ t n+1 t n ¢ t n+1 t n γ(τ ) -ẏ(τ ) ∆t dτ dt ≤ ε + (N + 1)∆t 2T ε + γ -ẏ L 1 ((0,t N +1 )) ≤ 3ε.
henD we de(ne the sequene of pproximte trjetoriesX

∀t ≥ 0, y ∆ (t) = y 0 + ¢ t 0 s ∆ (τ ) dτ ; ∀n ∈ N, y n = y ∆ (t n ),
whih onverges to y in L ∞ loc ((0, +∞)) sine (s ∆ ) ∆ onverges to ẏ in L 1 loc ((0, +∞))F e lso de(ne (q ∆ ) ∆ D the sequene of pproximte onstrintsX

q ∆ (t) = n∈N q n 1 [t n ,t n+1 ) (t); q n = 1 ∆t ¢ t n+1 t n q(t) dt .
ine q ∈ L ∞ loc ((0, +∞))D we n showD s we did in emrk RFPFID tht (q ∆ ) ∆ onverges to q in L 1 loc ((0, +∞))F Remark 4.2.2. emrk tht with our hoiesD from @RFIFRAD we dedue tht

∀n ∈ N, s n + q n = 1 ∆t ¢ t n+1 t n
( ẏ(t) + q(t)) dt ≥ 0. @RFPFIA his ft will ome in hndy in the proof of stility for the shemeF pix now T > 0 nd sptil mesh size ∆x > 0 with λ = ∆t/∆x (xedD verifying the gpv ondition

2   f L ∞ + ẏ L ∞ ((0,T )) L   λ ≤ 1. @RFPFPA
por ll n ∈ ND there exists unique index j n ∈ Z suh tht y n ∈ (x jn , x jn+1 )D see pigure RFPF sntrodue the sequene (χ n j ) j∈Z de(ned y

χ n j =      x j if j ≤ j n -1 y n if j = j n x j+1 if j ≥ j n + 1.
e de(ne the ell gridsX

Ω = n∈N j∈Z P n j+1/2 ,
where for ll n ∈ N nd j ∈ ZD P n j+1/2 is the retngle

(χ n j , χ n j+1 ) × [t n , t n+1 ) if j ≤ j n -2D one of the prllelogrms represented in pigure RFP if j ∈ {j n -1, j n } nd the retngle (χ n j+1 , χ n j+2 ) × [t n , t n+1 ) if j ≥ j n + 1F
pigure RFP ! sllustrtion of the modi(tion to the meshF e strt y disretizing the initil dt ρ 0 with ρ 0 j+1/2 j where for ll j ∈ ZD ρ 0 j+1/2 is its men vlue on the ell (χ 0 j , χ 0 j+1 )F glerlyD for this hoieD we hveX 

ρ 0 j+1/2 ∈ [0, 1] nd ρ 0 ∆ = j∈Z ρ 0 j+1/2 1 (χ 0 j ,χ 0 j+1 ) -→ ∆x→0 ρ 0 in L 1 loc (R).
∀j ∈ Z, f n j = EO ρ n j-1/2 , ρ n j+1/2 nd f n int = God s n ρ n jn-1/2 , ρ n jn+1/2 ∧ q n .
@RFPFQA e now proeed to the de(nition of the shemeF st omes from disretiztion of the onservtion lw written in eh volume ontrol P n j+1/2 @n ∈ ND j ∈ ZAF ewy from the trjetoryGonstrintD it is the stndrd 3Epoint mrhing formul nd when j ∈ {j n -1, j n }D we hve to del with oth the onstrint nd the interfe whih is not vertilF hree ses hve to e onsidered when desriing the mrhing formul of the shemeD ut we relly give the detils for only one of themF Case 1: j n+1 = j n + 1F his mens tht the line joining (y n , t n ) nd (y n+1 , t n+1 ) rosses the line x = x jn+1 D see pigure RFPF sf j / ∈ {j n -1, j n }D the onservtion written in the retngle P n j+1/2 is given y the stndrd equtionX

ρ n+1 j+1/2 -ρ n j+1/2 ∆x + (f n j+1 -f n j )∆t = 0. @RFPFRA
prom the onservtion in the ell P n jn-1/2 D we setX

ρ n+1 j n+1 -1/2 y n+1 -χ n+1 j n+1 -2 -ρ n jn-1/2 y n -χ n jn-1 + (f n int -f n jn-1 )∆t = 0. @RFPFSA
his formul orresponds to the hoie of putting the sme vlue for ρ ∆ on (χ n+1 j n+1 -2 , χ n+1 j n+1 -1 ) nd on (χ n+1 j n+1 -1 , y n+1 ) t time t = t n+1 D i.e. ρ n+1 j n+1 -3/2 = ρ n+1 j n+1 -1/2 F sn the ell P n jn+1/2 D the onservtion tkes the formX

ρ n+1 j n+1 +1/2 χ n+1 j n+1 +1 -y n+1 -ρ n jn+1/2 χ n jn+1 -y n -ρ n jn+3/2 ∆x + (f n jn+2 -f n int )∆t = 0. @RFPFTA
vet us introdue the two funtions

H n jn-1 (u, v, w) = v(y n -χ n jn-1 ) -God s n (v, w) ∧ q n -EO(u, v) ∆t y n+1 -χ n+1 j n+1 -2 nd H n jn (u, v, w, z) = v(χ n jn+1 -y n ) + w∆x -EO(w, z) -God s n (u, v) ∧ q n ∆t χ n+1 j n+1 +1 -y n+1 so tht    ρ n+1 j n+1 -1/2 = H n jn-1 (ρ n jn-3/2 , ρ n jn-1/2 , ρ n jn+1/2 ) ρ n+1 j n+1 +1/2 = H n jn (ρ n jn-1/2 , ρ n jn+1/2 , ρ n jn+3/2 , ρ n jn+5/2 ).
@RFPFUA he key point in the proofs of the next setion @stility nd disrete entropy inequlitiesA is tht the funtions H jn-1 nd H jn re nonderesing with respet to their rguments i.e. the modi(tion in @RFPFQA did not 'et the monotoniity of the resulting sheme @RFPFRA ! @RFPFTAF pinllyD the pproximte solution ρ ∆ is de(ned lmost everywhere on ΩX

ρ ∆ = n∈N j≤jn ρ n j+1/2 1 P n j+1/2 + j≥jn+1 ρ n j+3/2 1 P n j+1/2
. he other ses @j n+1 = j n or j n+1 = j n -1A follow from similr geometri onsidertionsF xote tht in the ontext of tr0 dynmisD y would e the trjetory of sttionry or forwrd moving ostle nd thereforeD we should hve ẏ ≥ 0F his implies tht for ll n ∈ ND either j n+1 = j n or j n+1 = j n + 1F his is why we will fous on the se presented in pigure RFPF

Stability and discrete entropy inequalities

Proposition 4.2.1 @L ∞ stilityA. Under the CFL condition @RFPFPA, the scheme @RFPFRA @RFPFTA is stable:

∀n ∈ N, ∀j ∈ Z, ρ n j+1/2 ∈ [0, 1]. @RFPFVA Proof.
Monotonicity. pix n ∈ NF glerlyD the expression @RFPFRA llows to express ρ n+1 s funtion of three vlues of ρ n in n nondreresing wyD see the VQD ghpter S for instneF e now verify tht the funtions H n jn-1 nd H n jn re lso nonderesingF vet us detil the proof for H n jn F ell tht H n jn is vipshitz ontinuous y onstrutionD therefore we n study its monotoniity in terms of its FeF derivtivesF wking use of oth the gpv ondition @RFPFPA nd of the monotoniity of EO nd God s n D for FeF u, v, w, z ∈ [0, 1]D we hve

∂H n jn ∂u (u, v, w, z) = 1 2 ∆t χ n+1 j n+1 +1 -y n+1 ∂God s n ∂a (u, v)(1 -sgn(God s n (u, v) -q n )) ≥ 0, ∂H n jn ∂v (u, v, w, z) = χ n jn+1 -y n χ n+1 j n+1 +1 -y n+1 + ∆t χ n+1 j n+1 +1 -y n+1 ∂God s n ∂b (u, v) (1 -sgn(God s n (u, v) -q n )) 2 ≥ χ n jn+1 -(y n + L∆t) χ n+1 j n+1 +1 -y n+1 ≥ χ n jn+1 -y n + ∆x 2 χ n+1 j n+1 +1 -y n+1 ≥ 0, ∂H n jn ∂w (u, v, w, z) = ∆x χ n+1 j n+1 +1 -y n+1 - ∆t χ n+1 j n+1 +1 -y n+1 ∂EO ∂a (w, z) ≥ ∆x -L∆t χ n+1 j n+1 +1 -y n+1 ≥ ∆x -∆x/2 χ n+1 j n+1 +1 -y n+1 ≥ 0, ∂H n jn ∂z (u, v, w, z) = - ∆t χ n+1 j n+1 +1 -y n+1 ∂EO ∂b (w, z) ≥ 0,
proving the monotoniity of H n jn F imilr omputtions show tht H n jn-1 is nonderesing with respet to its rguments s wellF Stability. e now turn to the proof of @RFPFVAD whih is done y indution on nF sf n = 0D it F uppose now tht @RFPFVA holds for some integer n ≥ 0 nd let us show tht it still holds for n + 1F emrk tht 0 nd 1 re sttionry solutions to the shemeF st is oviously true in the se @RFPFRAF he de(nitions of H n jn-1 nd H n jn do not hnge this ftF por instneD H n jn-1 (0, 0, 0) = 0 sine q n ≥ 0 nd euse of @RFPFIAD we lso hveX

H n jn-1 (1, 1, 1) = (y n -χ n jn-1 ) -((-s n ) ∧ q n ) ∆t y n+1 -χ n+1 j n+1 -2 = (y n -χ n jn-1 ) + s n ∆t y n+1 -χ n+1 j n+1 -2 = 1.
imilr omputtions would ensure tht it holds lso for H n jn F sing now the monotoniity of H n jn-1 for instneD we dedue tht

0 = H n jn-1 (0, 0, 0) ≤ H n jn-1 (ρ n jn-3/2 , ρ n jn-1/2 , ρ n jn+1/2 ) = ρ n+1 j n+1 -1/2 = H n jn-1 (ρ n jn-3/2 , ρ n jn-1/2 , ρ n jn+1/2 ) ≤ H n jn-1 (1, 1, 1) = 1,
whih onludes the indution rgumentF he remining ses follow from similr omputE tionsF Corollary 4.2.2 @hisrete entropy inequlitiesA. Fix n ∈ N, j ∈ Z\{j n+1 -2} and κ ∈ [0, 1].

Then the numerical scheme @RFPFRA @RFPFTA fullls the following discrete entropy inequalities:

|ρ n+1 j+1/2 -κ|(χ n+1 j+1 -χ n+1 j ) ≤                    |ρ n j+1/2 -κ|(χ n j+1 -χ n j ) -Φ n j+1 -Φ n j ∆t if j / ∈ {j n+1 -1, j n+1 } -|ρ n+1 j n+1 -1/2 -κ|∆x + |ρ n jn-1/2 -κ|(χ n jn -χ n jn-1 ) -Φ n int -Φ n jn-1 ∆t + 1 2 R s n (κ, q n )∆t if j = j n+1 -1 |ρ n jn+1/2 -κ|(χ n jn+1 -χ n jn ) + |ρ n jn+3/2 -κ|∆x -Φ n jn+2 -Φ n int ∆t + 1 2 R s n (κ, q n )∆t if j = j n+1 , @RFPFWA
where Φ n j and Φ n int denote the numerical entropy uxes:

Φ n j = EO(ρ n j-1/2 ∨ κ, ρ n j+1/2 ∨ κ) -EO(ρ n j-1/2 ∧ κ, ρ n j+1/2 ∧ κ); Φ n int = min{God s n (ρ n jn-1/2 ∨ κ, ρ n jn+1/2 ∨ κ), q n } -min{God s n (ρ n jn-1/2 ∧ κ, ρ n jn+1/2 ∧ κ), q n }
Proof. his result is mostly onsequene of the sheme monotoniityF hen the interE feGonstrint does not enter the lultions i.e. when j / ∈ {j n+1 -1, j n+1 }D the proof follows VQD vemm SFRF he key point is not only the monotoniityD ut lso the ft tht in the lssil seD ll the onstnts sttes κ ∈ [0, 1] re sttionry solutions of the shemeF his oservtion does not hold when the onstrint enters the lultionsF uppose for exmple tht j = j n+1 @whih orresponds to the funtion H n jn AF rereD we hve

H n jn (κ, κ, κ, κ) = κ(χ n jn+1 -y n ) + κ∆x -(f (κ) -(f (κ) -s n κ) ∧ q n ) ∆t χ n+1 j n+1 +1 -y n+1 = (χ n jn+2 -y n -s n ∆t)κ χ n+1 j n+1 +1 -y n+1 - ∆t 2(χ n+1 j n+1 +1 -y n+1 ) R s n (κ, q n ) = κ - ∆t 2(χ n+1 j n+1 +1 -y n+1 ) R s n (κ, q n ),
nd it impliesX

H n jn (ρ n jn-1/2 ∧ κ, ρ n jn+1/2 ∧ κ, ρ n jn+3/2 ∧ κ, ρ n jn+5/2 ∧ κ) ≤ ρ n+1 j n+1 +1/2 ∧ κ, ρ n+1 j n+1 +1/2 ∨ κ ≤ H n jn (ρ n jn-1/2 ∨ κ, ρ n jn+1/2 ∨ κ, ρ n jn+3/2 ∨ κ, ρ n jn+5/2 ∨ κ) + ∆t 2(χ n+1 j n+1 +1 -y n+1 ) R s n (κ, q n ).
e dedueX

|ρ n+1 j n+1 +1/2 -κ| = ρ n+1 j n+1 +1/2 ∨ κ -ρ n+1 j n+1 +1/2 ∧ κ ≤ H n jn (ρ n jn-1/2 ∨ κ, ρ n jn+1/2 ∨ κ, ρ n jn+3/2 ∨ κ, ρ n jn+5/2 ∨ κ) -H n jn (ρ n jn-1/2 ∧ κ, ρ n jn+1/2 ∧ κ, ρ n jn+3/2 ∧ κ, ρ n jn+5/2 ∧ κ) + ∆t 2(χ n+1 j n+1 +1 -y n+1 ) R s n (κ, q n ) = χ n jn+1 -y n χ n+1 j n+1 +1 -y n+1 |ρ n jn+1/2 -κ| + ∆x χ n+1 j n+1 +1 -y n+1 |ρ n jn+3/2 -κ| - ∆t χ n+1 j n+1 +1 -y n+1 Φ n jn+2 -Φ n int + ∆t 2(χ n+1 j n+1 +1 -y n+1 ) R s n (κ, q n ),
whih is extly @RFPFWA in the se j = j n+1 F he otining of @RFPFWA in the se j = j n+1 -1 is similr so we omit the detils of the proof for this seF 4.2.3 Continuous inequalities for the approximate solution he next step of the resoning is to derive ontinuous inequlitiesD nlogous to @RFIFIAE@RFIFPAD veri(ed y the pproximte solution ρ ∆ D strting from the disrete entropy inequlities @RFPFWA nd the mrhing formul @RFPFRA ! @RFPFTAF sn this setionD we (x test funtion ϕ ∈ C ∞ c (Ω), ϕ ≥ 0 nd de(neX 

∀n ∈ N, ∀j ∈ Z, ϕ n j+1/2 = 1 χ n j+1 -χ n j ¢ χ n j+1 χ n j ϕ(x, t n ) dx = 2 χ n j+1 χ n j ϕ(x, t n ) dx .
t n ¢ R |ρ ∆ -κ|∂ t ϕ + Φ ∆ (ρ ∆ , κ) ∂ x ϕ dx dt + ¢ R |ρ ∆ (x, t n ) -κ|ϕ(x, t n ) dx - ¢ R |ρ ∆ (x, t n+1 ) -κ|ϕ(x, t n+1 ) dx + ¢ t n+1 t n R s ∆ (t) (κ, q ∆ (t))ϕ(y ∆ (t), t) dt ≥ O ∆x 2 + O(∆x∆t) + O ∆t 2 .

@RFPFIHA

Proof. por ll j ∈ Z\{j n+1 -2}D we multiply the disrete entropy inequlities @RFPFWA y ϕ n+1 j+1/2 nd tke the sum to otinX

j =j n+1 -2 ρ n+1 j+1/2 -κ ϕ n+1 j+1/2 (χ n+1 j+1 -χ n+1 j ) ≤ j / ∈{j n+1 -2,j n+1 -1,j n+1 } ρ n j+1/2 -κ (χ n j+1 -χ n j ) -(Φ n j+1 -Φ n j )∆t ϕ n+1 j+1/2 + |ρ n jn-1/2 -κ|ϕ n+1 j n+1 -1/2 (χ n jn -χ n jn-1 ) -|ρ n+1 j n+1 -1/2 -κ|ϕ n+1 j n+1 -1/2 ∆x -Φ n int -Φ n jn-1 ϕ n+1 j n+1 -1/2 ∆t + |ρ n jn+1/2 -κ|ϕ n+1 j n+1 +1/2 (χ n jn+1 -χ n jn ) + |ρ n jn+3/2 -κ|ϕ n+1 j n+1 +1/2 ∆x -Φ n jn+2 -Φ n int ϕ n+1 j n+1 +1/2 ∆t + 1 2 R s n (κ, q n )(ϕ n+1 j n+1 -1/2 + ϕ n+1 j n+1 +1/2 )∆t.
his inequlity n e rewritten s j∈Z

ρ n+1 j+1/2 -κ ϕ n+1 j+1/2 (χ n+1 j+1 -χ n+1 j ) - j∈Z ρ n j+1/2 -κ ϕ n+1 j+1/2 (χ n j+1 -χ n j ) ≤ -ρ n+1 j n+1 -1/2 -κ ϕ n+1 j n+1 -1/2 -ϕ n+1 j n+1 -3/2 ∆x ε 1 + ρ n jn-1/2 -κ ϕ n+1 j n+1 -1/2 -ϕ n+1 j n+1 -3/2 (χ n jn -χ n jn-1 ) ε 2 + ρ n jn+1/2 -κ ϕ n+1 j n+1 +1/2 -ϕ n+1 j n+1 -1/2 (χ n jn+1 -χ n jn ) ε 3 - j / ∈{j n+1 -2,j n+1 -1,j n+1 } (Φ n j+1 -Φ n j )ϕ n+1 j+1/2 ∆t -Φ n int -Φ n jn-1 ϕ n+1 j n+1 -1/2 ∆t -Φ n jn+2 -Φ n int ϕ n+1 j n+1 +1/2 ∆t + 1 2 R s n (κ, q n )(ϕ n+1 j n+1 -1/2 + ϕ n+1 j n+1 +1/2 )∆t, with ∀i ∈ {1, 2, 3}, |ε i | ≤ 8 ∂ x ϕ L ∞ ∆x 2 .
e now proeed to the eel9s trnsformtion nd reorgnize the terms of the inequlityF his leds us toX

j∈Z ρ n+1 j+1/2 -κ ϕ n+1 j+1/2 (χ n+1 j+1 -χ n+1 j ) - j∈Z ρ n j+1/2 -κ ϕ n j+1/2 (χ n j+1 -χ n j ) A - j∈Z ρ n j+1/2 -κ ϕ n+1 j+1/2 -ϕ n j+1/2 (χ n j+1 -χ n j ) B + j / ∈{j n+1 -2,j n+1 -1} Φ n j ϕ n+1 j+1/2 -ϕ n+1 j-1/2 ∆t C ≤ 1 2 R s n (κ, q n )(ϕ n+1 j n+1 -1/2 + ϕ n+1 j n+1 +1/2 )∆t D + 5 i=1 ε i , with ∀i ∈ {4, 5}, |ε i | ≤ 4 f L ∞ ∂ x ϕ L ∞ ∆x∆t.
e immeditely see tht

A = ¢ R ρ ∆ (x, t n+1 ) -κ ϕ(x, t n+1 ) dx - ¢ R |ρ ∆ (x, t n ) -κ| ϕ(x, t n ) dx .
e onlude this proof y estimting the remining terms of the inequlityF Estimating B. pirstD note tht

B = j≤jn-2 ¤ P n j+1/2 |ρ ∆ -κ| ∂ t ϕ dx dt + j≥jn+1 ¤ P n j+1/2 |ρ ∆ -κ| ∂ t ϕ dx dt + ρ n jn-1/2 -κ 2 χ n+1 jn+1 χ n+1 jn-1 ϕ(x, t n+1 ) dx - 2 y n χ n jn-1 ϕ(x, t n ) dx (y n -χ n jn-1 ) B 1 + ρ n jn+1/2 -κ 2 y n+1 χ n+1 jn ϕ(x, t n+1 ) dx - 2 χ n jn+1 y n ϕ(x, t n ) dx (χ n jn+1 -y n ) B 2 + ρ n jn+3/2 -κ 2 χ n+1 jn+2 y n+1 ϕ(x, t n+1 ) dx - 2 χ n jn+2 χ n jn+1 ϕ(x, t n ) dx ∆x B 3
.

IHW ine ¤ P n jn-1/2 |ρ ∆ -κ| ∂ t ϕ dx dt = ρ n jn-1/2 -κ ¢ y n+1 χ n+1 jn-1 ϕ(x, t n+1 ) dx - ¢ y n χ n jn-1 ϕ(x, t n ) dx -s n ¢ t n+1 t n ϕ(y n + s n (t -t n ), t) dt = ρ n jn-1/2 -κ y n+1 -χ n+1 jn-1 y n -χ n jn-1 2 y n+1 χ n+1 jn-1 ϕ(x, t n+1 ) dx - 2 y n χ n jn-1 ϕ(x, t n ) dx + y n -y n+1 y n -χ n jn-1 2 t n+1 t n ϕ(y n + s n (t -t n ), t) dt (y n -χ n jn-1 ),
we dedue the oundX

B 1 - ¤ P n jn-1/2 |ρ ∆ -κ| ∂ t ϕ dx dt = ρ n jn-1/2 -κ (y n+1 -y n ) 2 y n+1 χ n+1 jn-1 ϕ(x, t n+1 ) dx - 2 t n+1 t n ϕ(y n + s n (t -t n ), t) dt ≤ ẏ L ∞ 3 ∂ x ϕ L ∞ ∆x + ∂ t ϕ L ∞ ∆t + 2 ẏ L ∞ ∂ x ϕ L ∞ ∆t ∆t.
he sme wyD we would derive the estimtionX

B 2 + B 3 - ¤ P n jn+1/2 |ρ ∆ -κ| ∂ t ϕ dx dt ≤ 6 ∂ x ϕ L ∞ ∆x 2 + ẏ L ∞ 2 ∂ x ϕ L ∞ ∆x + ∂ t ϕ L ∞ ∆t + 2 ẏ L ∞ ∂ x ϕ L ∞ ∆t ∆t.
Estimating C. e writeX

C = λ j / ∈{j n+1 -2,j n+1 -1,j n+1 } ¢ χ n j+1 χ n j ¢ x x-∆x Φ n j ∂ x ϕ(y, t n+1 ) dy dx + Φ n j n+1 ϕ n+1 j n+1 +1/2 -ϕ n+1 j n+1 -1/2 ∆t ε 6 = ¢ t n+1 t n ¢ R Φ ∆ (ρ ∆ , κ)∂ x ϕ dx dt + ε 6 - j n+1 -2≤j≤j n+1 -1 ¤ P n j+1/2 Φ ∆ (ρ ∆ , κ)∂ x ϕ dx dt ε 7 + j / ∈{j n+1 -2,j n+1 -1,j n+1 } λ ¢ χ n j+1 χ n j ¢ x x-∆x Φ n j ∂ x ϕ(y, t n+1 ) dy dx - ¢ t n+1 t n ¢ R Φ ∆ (ρ ∆ , κ)∂ x ϕ dx dt ε 8 , with |ε 6 | + |ε 7 | ≤ 8 f L ∞ ∂ x ϕ L ∞ ∆x∆t nd |ε 8 | ≤ f L ∞ 4 sup t≥0 ∂ 2 xx ϕ(•, t) L 1 ∆x + sup t≥0 ∂ 2 tx ϕ(•, t) L 1 ∆t ∆t.
Estimating D. pinllyD we hve

D = R s n (κ, q n )ϕ(y n+1 , t n+1 )∆t + 1 y n+1 -χ j n+1 -1 ¢ y n+1 χ n+1 j n+1 -1 (ϕ(x, t n+1 ) -ϕ(y n+1 , t n+1 ))∆t ε 9 + 1 χ j n+1 +1 -y n+1 ¢ χ n+1 j n+1 +1 y n+1 (ϕ(x, t n+1 ) -ϕ(y n+1 , t n+1 ))∆t ε 10 = ¢ t n+1 t n R s ∆ (t) (κ, q ∆ (t))ϕ(y ∆ (t), t) dt + ε 9 + ε 10 + ¢ t n+1 t n R s ∆ (t) (κ, q ∆ (t))(ϕ(y n+1 , t n+1 ) -ϕ(y ∆ (t), t)) dt ε 11 , with |ε 9 | + |ε 10 | + |ε 11 | ≤ 2 f L ∞ 2 ∂ x ϕ L ∞ ∆x + ẏ L ∞ ∂ x ϕ L ∞ ∆t + ∂ t ϕ L ∞ ∆t ∆t xote tht if ϕ is supported in time in [0, T ]D with T ∈ [t N , t N +1 )D then y summing @RFPFIHA over n ∈ {0, . . . , N + 1}D we otin @rell tht λ is (xedAX ¢ T 0 ¢ R |ρ ∆ -κ|∂ t ϕ + Φ ∆ (ρ ∆ , κ) ∂ x ϕ dx dt + ¢ R |ρ 0 ∆ -κ|ϕ(x, 0) dx + ¢ T 0 R s ∆ (t) (κ, q ∆ (t))ϕ(y ∆ (t), t) dt ≥ O(∆x) + O(∆t) .
@RFPFIIA e now turn to the proof of n pproximte version of @RFIFPAF vet us de(ne the pproximte )ux funtionX

F ∆ (ρ ∆ ) = n∈N j≤jn f n j 1 P n j+1/2 + j≥jn+1 f n j+1 1 P n j+1/2 . III Proposition 4.2.4 @epproximte onstrint inequlitiesA. Fix n ∈ N and κ ∈ [0, 1]. Then we have ¢ +∞ y n ρ ∆ (x, t n )ϕ(x, t n ) dx - ¢ +∞ y n+1 ρ ∆ (x, t n+1 )ϕ(x, t n+1 ) dx - ¢ t n+1 t n ¢ R ρ ∆ ∂ t ϕ + F ∆ (ρ ∆ ) ∂ x ϕ dx dt ≤ ¢ t n+1 t n q ∆ (t)ϕ(y ∆ (t), t) dt + O(∆x 2 ) + O(∆x∆t) + O(∆t 2 ) .

@RFPFIPA

Proof. pollowing the steps of the proof of roposition RFPFQD we (rst multiply the sheme @RFPFRAE@RFPFTA y ϕ n+1 j+1/2 D sum over j ≥ j n+1 nd then pply the summtion y prts proeE dureF his timeD we otinX

j≥j n+1 ρ n+1 j+1/2 ϕ n+1 j+1/2 (χ n+1 j+1 -χ n+1 j ) - j≥jn ρ n j+1/2 ϕ n j+1/2 (χ n j+1 -χ n j ) A - j≥jn ρ n j+1/2 ϕ n+1 j+1/2 -ϕ n j+1/2 (χ n j+1 -χ n j ) B + j≥jn+2 f n j ϕ n+1 j+1/2 -ϕ n+1 j-1/2 ∆t C ≤ q n ϕ n+1 j n+1 +1/2 ∆t D +ε, with ε ≤ 8 ∂ x ϕ L ∞ ∆x 2 F glerlyD A = ¢ +∞ y n+1 ρ ∆ (x, t n+1 )ϕ(x, t n+1 ) dx - ¢ +∞ y n ρ ∆ (x, t n )ϕ(x, t n ) dx ,
nd estimte @RFPFIPA follows from the oundsX

B - ¢ t n+1 t n ¢ R ρ ∆ ∂ t ϕ dx dt ≤ (3 ∂ x ϕ L ∞ ∆x + ∂ t ϕ L ∞ ∆t)∆t + ẏ L ∞ 2 ∂ x ϕ L ∞ ∆x + 2 ẏ L ∞ ∂ x ϕ L ∞ ∆t + ∂ t ϕ L ∞ ∆t ∆t C - ¢ t n+1 t n ¢ R F ∆ (ρ ∆ ) ∂ x ϕ dx dt ≤ f L ∞ 6 ∂ x ϕ L ∞ + 4 sup t≥0 ∂ 2 xx ϕ(•, t) L 1 + sup t≥0 ∂ 2 tx ϕ(•, t) L 1 ∆x∆t D - ¢ t n+1 t n q ∆ (t)ϕ(y ∆ (t), t) dt ≤ q L ∞ 2 ∂ x ϕ L ∞ ∆x + ∂ t ϕ L ∞ ∆t + ẏ L ∞ ∂ x ϕ L ∞ ∆t ∆t.
sf ϕ is supported in time in (0, T )D with T ∈ [t N , t N +1 )D then y summing @RFPFIHA over n ∈ {0, . . . , N + 1}D we otinX

- ¢ T 0 ¢ R ρ ∆ ∂ t ϕ + F ∆ (ρ ∆ ) ∂ x ϕ dx dt ≤ ¢ T 0 q ∆ (t)ϕ(y ∆ (t), t) dt + O(∆x) + O(∆t) . @RFPFIQA

Compactness and convergence

he remining prt of the resoning onsists in otining su0ient omptness for the sequene (ρ ∆ ) ∆ in order to pss to the limit in @RFPFIIAE@RFPFIQAF o doing soD we dpt tehniques nd results put forwrd y owers in ISPF ith this in mindD we suppose in this setion tht the )ux funtionD still stisfying @RFHFIAD is lso stritly onveF fy ontinuityD

∃µ > 0, ∀ρ ∈ [0, 1], f (ρ) ≤ -µ.
@RFPFIRA e denote for ll n ∈ N nd j ∈ ZD D n j = max ρ n j-1/2 -ρ n j+1/2 , 0 . e will lso use the nottion

∀n ∈ N, Z n+1 = Z\{j n+1 -2, j n+1 -1, j n+1 , j n+1 + 1}.
sn ISPD the uthor delt with disontinuous in oth time nd spe )ux nd the spei( 4vnishing visosity4 oupling t the interfeF he disontinuity in spe ws lolized long the urve {x = 0}F rereD we del with smooth )ux ut we hve )ux onstrint long the urve {x = y(t)}F he ppliility of the tehnique of ISP for our se with moving interfe nd )uxEonstrined interfe oupling relies on the ft tht one n derive ound on D n+1 j s long s the interfe does not enter the lultions for D n+1 j i.e. s long s j ∈ Z n+1 in the se

j n+1 = j n + 1F Lemma 4.2.5. Let n ∈ N, j ∈ Z n+1 , a = µ ∆t 4∆x and ψ(x) = x -ax 2 . Then D n+1 j ≤ ψ max D n j-1 , D n j , D n j+1 .

@RFPFISA

Proof. e omplete proofD whih is lrgely inspired y ISPD n e found in IRWD eppendixF Remark 4.2.3. pix n ∈ N nd j ∈ Z n+1 F emrk tht if D n j > 0D then we n write tht for some ν(j) ∈ {j -1, j, j + 1}D we hve

D n+1 j ≤ D n ν(j) -a D n ν(j) 2 = D n ν(j) 1 -aD n ν(j) = D n ν(j) 1 -a 2 D n ν(j) 2 1 + aD n ν(j) ≤ D n ν(j) 1 + aD n ν(j) = 1 1 D n ν(j) + a .
Corollary 4.2.6. Let n ∈ N. Then the scheme @RFPFRA @RFPFTA veries the following onesided Lipschitz condition (OSLC): 

D n+1 j ≤                          1 (n + 1)a if j ≤ j n+1 -3 -n 1 ((j n+1 -2) -j)a if j n+1 -3 -n ≤ j ≤ j n+1 -3 1 (j -(j n+1 + 1))a if j n+1 + 2 ≤ j ≤ j n+1 + 2 + n 1 (n + 1)a if j ≥ j n+1 + 2 + n. @RFPFITA
∀k ∈ N * , ∀j ∈ Z, min{n + 1, j -(j n+1 + 1)} ≥ k =⇒ D n+1 j ≤ 1 ka . @RFPFIUA snequlity @RFPFIUA holds if k = 1F sndeedD if k = 1D then j ≥ j n+1 + 2 i.e. j ∈ Z n+1 F fy @RFPFISAD ∃ν j ∈ {j -1, j, j + 1}, D n+1 j ≤ D n ν j -a D n ν j 2 . sf D n ν j = 0D then D n+1 j = 0 ≤ 1/aF ytherwiseD we n writeX D n+1 j ≤ 1 1 D n ν j + a ≤ 1 a = 1 ka .
xowD let us ssume tht @RFPFIUA holds for some integer k ∈ N * nd suppose tht min{n + 1, j -

(j n+1 + 1)} ≥ k + 1F eginD y @RFPFISAD ∃ν j ∈ {j -1, j, j + 1}, D n+1 j ≤ D n ν j -a D n ν j 2 . ine n ≥ k nd ν j -(j n + 1) ≥ (j -1) -(j n+1 + 1) = j -(j n+1 + 1) -1 ≥ k,
we dedue tht min{n, j -(j n + 1)} ≥ kD heneD using the indution propertyX

D n+1 j ≤ 1 1 D n ν j + a ≤ 1 (k + 1)a ,
whih onludes the indution rgumentF istimtes @RFPFITA in the ses j ≥ j n+1 + 2 follow for suitle hoies of k in @RFPFIUAF Corollary 4.2.7 @volized BV estimtesA. Fix 0 < ε < X and suppose that 3∆x ≤ ε and that t n+1 ≥ ε 2L

. Then there exists a constant Λ = Λ 1 ε , X , nondecreasing with respect to its arguments such that TV ρ ∆ (•, t n+1 ) |(y n+1 +ε,y n+1 +X) ≤ Λ @RFPFIVA and ¢ y n+1 +X

y n+1 +ε ρ ∆ (x, t n+2 ) -ρ ∆ (x, t n+1) ) dx ≤ 2∆x + L (2Λ + 1) ∆t. @RFPFIWA
xote tht we hve the sme ounds for the quntitiesX

TV ρ ∆ (•, t n+1 ) |(y n+1 -X,y n+1 -ε) nd ¢ y n+1 -ε y n+1 -X ρ ∆ (x, t n+2 ) -ρ ∆ (x, t n+1) ) dx . Proof. vet k n+1 , J n+1 ∈ Z suh tht y n+1 + ε ∈ (χ n+1 k n+1 , χ n+1 k n+1 + ∆x) nd y n+1 + X ∈ (χ n+1 J n+1 , χ n+1 J n+1 + ∆x)F e hveX TV(ρ ∆ (•, t n+1 ) |(y n+1 +ε,y n+1 +X) ) J n+1 j=k n+1 +1 |ρ n+1 j+1/2 -ρ n+1 j-1/2 | = 2 J n+1 j=k n+1 +1 D n+1 j - J n+1 j=k n+1 +1 (ρ n+1 j+1/2 -ρ n+1 j-1/2 ) = 2 J n+1 j=k n+1 +1 D n+1 j -(ρ n+1 J n+1 -1/2 -ρ n+1 k n+1 +1/2 ) ≤ 1 + 2 J n+1 j=k n+1 +1 D n+1 j .
xowD for ll j ≥ k n+1 + 1D we hve

j -(j n+1 + 1) ≥ (k n+1 + 1) -(j n+1 + 1))∆x ∆x = (χ n+1 k n+1 + ∆x) -χ n+1 j n+1 ∆ x ≥ (y n+1 + ε) -(y n+1 + 2∆x) ∆x = ε ∆x -2 ≥ 1.
vemm RFPFIT ensures tht

TV(ρ ∆ (•, t n+1 ) |(y n+1 +ε,y n+1 +X) ) ≤ 1 + 2 a J n+1 j=k n+1 +1 1 min{n + 1, j -(j n+1 + 1)} .
roweverD we lso hveX

n+1 = t n+1 ∆t ≥ ε 2L∆t ≥ ε ∆x = (y n+1 + ε) -y n+1 ∆x ≥ χ n+1 k n+1 -(χ n+1 j n+1 + ∆x) ∆x = k n+1 -(j n+1 +1).

IIS

e dedue tht for ll j ∈ {k n+1 + 1, . . . , J n+1 }D min{n + 1, j -

(j n+1 + 1)} ≥ k n+1 -(j n+1 + 1)Y heneX J n+1 j=k n+1 +1 |ρ n+1 j+1/2 -ρ n+1 j-1/2 | ≤ 1 + 2 a × J n+1 -k n+1 k n+1 -(j n+1 + 1) ≤ 1 + 2 a × X -ε + ∆x ε -2∆x ≤ Λ, Λ := 1 + 6X aε ,
whih is extly @RFPFIVAF henD ¢ y n+1 +X

y n+1 +ε ρ ∆ (x, t n+2 ) -ρ ∆ (x, t n+1) ) dx ≤ 2∆x + J n+1 j=k n+1 +1 |ρ n+2 j+1/2 -ρ n+1 j+1/2 |∆x ≤ 2∆x + f L ∞   J n+1 j=k n+1 +1 |ρ n+1 j+3/2 -ρ n+1 j+1/2 | + J n+1 j=k n+1 +1 |ρ n+1 j+1/2 -ρ n+1 j-1/2 |   ∆t ≤ 2∆x + L (2Λ + 1) ∆t, onluding the proofF Theorem 4.2.8. Fix ρ 0 ∈ L ∞ (R; [0, 1]), y ∈ W 1,∞
loc ((0, +∞)), ẏ ≥ 0 and q ∈ L ∞ loc ((0, +∞)), q ≥ 0. Suppose that f ∈ C 2 ([0, 1]) satises @RFHFIA-@RFPFIRA. Then as ∆ → 0 while satisfying the CFL condition @RFPFPA, (ρ ∆ ) ∆ converges a.e. on Ω to the admissible entropy solution to @RFHFQA.

Proof. pix n ∈ N * F he uniform onvergene of (y ∆ ) ∆ to yD oupled with the BV ounds @RFPFIVAE@RFPFIWA nd the uniform L ∞ ound @RFPFVA provide @up to susequeneA FeF onE vergene for the sequene (ρ ∆ ) ∆ in ny retngulr ounded domins of the open suset

O n = {(x, t) ∈ Ω | |x -y(t)| > 1/n},
see WVD eppendix eF he FeF onvergene on ny ompt susets of Ω n follows y lssil overing rgumentF hen digonl proedure provides the FeF onvergene on ny ompt susets of O = {(x, t) ∈ Ω | x = y(t)}F e further extrtion yields the FeF onvergene on ΩF iquipped with the onvergene of (ρ ∆ ) ∆ to ρD we let ∆ → 0 in @RFPFIIA nd @RFPFIQA to estlish tht ρ is n dmissile entropy solution to @RFHFQAF fy uniquenessD the whole sequene onverges to ρD whih proves the theoremF Corollary 4.2.9. Fix ρ 0 ∈ L ∞ (R; [0, 1]), y ∈ W 1,∞ loc ((0, +∞)), ẏ ≥ 0 and q ∈ L ∞ loc ((0, +∞)), q ≥ 0. Suppose that f ∈ C 2 ([0, 1]) satises @RFHFIA-@RFPFIRA. Then Problem @RFHFQA admits a unique admissible entropy solution.

Proof. ixistene omes from heorem RFPFV while uniqueness ws estlished y heorem RFIFVF 4.3 Well-posedness for the multiple trajectory problem e now get k to the originl prolem @RFHFPAF vet us detil the orgniztion of this setionF pirstD we onstrut prtition of the unity to redue the study of @RFHFPA to n ssemling of severl lol studies of @RFHFQAD see etion RFQFIF sing the de(nition sed on germsD nlogous to he(nition RFIFRD we will prove stility estimteD leding to uniquenessD see heorem RFQFQF hen in etion RFQFQD we onstrut (nite volume sheme in whih we fully use the preise study of etion RFPF e speil tretment of the rossing points is desriedD see etion RFQFQF vet us rell tht we re given (nite @or more generlly lolly (niteA fmily of trjetories nd onstrints

(y i , q i ) i∈[[1;J]] de(ned on (s i , T i ) @0 ≤ s i < T i AF sntrodue the nottionsX ∀i ∈ [[1; J]], Γ i = {(x, t) ∈ Ω | t ∈ [s i , T i ] nd x = y i (t)}. e suppose tht for ll i ∈ [[1; J]]D y i ∈ W 1,∞ ((s i , T i )) nd q i ∈ L ∞ ((s i , T i ); R + )F
his nottion mens tht wht n e seen s rossing points etween interfes will e onsidered s endpoints of the interfesY for instneD given two rossing linesD we split them into four interfes hving ommon endpointF e denote y (C m ) 1≤m≤M the set of ll endpoints of the interfes

Γ i , i ∈ [[1; J]]F 4.3.1 Reduction to a single interface pix ϕ ∈ C ∞ c (Ω\ ∪ M m=1 C m )F vet us denote y K the ompt support of ϕF
Step 1. por ll i ∈ [[1; J]]D K ∩ Γ i is ompt suset @mye emptyA of ΩD nd the fmily

(K ∩ Γ i ) i is pirwise disjointF fy omptnessD ∃δ > 0, ∀i, j ∈ [[1; J]], i = j =⇒ dist(K ∩ Γ i , K ∩ Γ j ) ≥ 2δ.
Step 2. por ll i ∈ [[1; J]]D set

Ω i = (x,t)∈K∩Γ i B((x, t), δ),
where B((x, t), δ) denotes the R 2 Eeuliden open ll entered on (x, t) nd of rdius δF

glerlyD Ω i is n open suset of Ω ontining Γ i F woreoverD the fmily (Ω i ) i is pirwise disjointF sndeedD suppose insted tht for some i, j ∈ [[1; J]] @i = jAD we hve Ω i ∩ Ω j = ∅, nd (x (x, t) ∈ Ω i ∩ Ω j F fy de(nitionD there exists (x i , t i ) ∈ K ∩ Γ i nd (x j , t j ) ∈ K ∩ Γ j suh tht (x, t) ∈ B((x i , t i ), δ) ∩ B((x j , t j ), δ).
sing the tringle inequlityD we dedue tht 

dist(K ∩ Γ i , K ∩ Γ j ) ≤ dist((x i , t i ), (x j , t j )) ≤ dist((x i , t i ), (x, t)) + dist((x, t), (x j , t j )) < 2δ,
Ω 0 = (x, t) ∈ Ω ∀i ∈ [[1; J]], dist((x, t), K ∩ Γ i ) ≥ δ 2 .
he fmily

(Ω i ) i∈[[0;J]]
is n open over of R × R + F gonsequentlyD there exists prtition of the unity

(θ i ) i∈[[0;J]] ssoited with this overX ∀i ∈ [[0; J]], θ i ≥ 0; θ i ∈ C ∞ c (Ω i ); ∀(x, t) ∈ R × R + , J i=0 θ i (x, t) = 1.
Step 4. e write the funtion ϕ in the following mnnerX 

ϕ = J i=0 (ϕθ i ) = ϕ 0 + J i=1 ϕ i . @RFQFIA
dt ρ 0 ∈ L ∞ (R) ifX @iA for ll test funtions ϕ ∈ C ∞ c (Ω\ ∪ J i=1 Γ i ), ϕ ≥ 0 nd κ ∈ [0, 1]D the following entropy inequlities re veri(edX ¢ +∞ 0 ¢ R |ρ -κ|∂ t ϕ + Φ(ρ, κ)∂ x ϕ dx dt + ¢ R |ρ 0 (x) -κ|ϕ(x, 0) dx ≥ 0; @RFQFPA @iiA for ll i ∈ [[1; J]] nd for FeF t ∈ (s i , T i )D (ρ(y i (t)-, t), ρ(y i (t)+, t)) ∈ G ẏi (t) (q i (t)), @RFQFQA
where the dmissiility germ G ẏi (q i ) ws de(ned in he(nition RFIFPF Lemma 4.3.2 @uto inequlityA. Fix

ρ 0 , σ 0 ∈ L ∞ (R; [0, 1]). Let (q i ) i∈[[1;J]] and ( ∼ q i ) i∈[[1;J]] be two family of constraints, where for all i ∈ [[1; J]], q i , ∼ q i ∈ L ∞ ((s i , T i ))
. We denote by ρ (resp. σ) a G-entropy solution to Problem @RFHFPA corresponding to initial data ρ 0 (resp. σ 0 ) and constraints

(q i ) i∈[[1;J]] (resp. ( ∼ q i ) i∈[[1;J]] ). Then for all test functions ϕ ∈ C ∞ c (Ω), ϕ ≥ 0, we have ¢ +∞ 0 ¢ R |ρ -σ|∂ t ϕ + Φ(ρ, σ)∂ x ϕ dx dt + ¢ R |ρ 0 (x) -σ 0 (x)|ϕ(x, 0) dx + J i=1 ¢ T i s i Φ ẏi (t) (ρ(y i (t)+, t), σ(y i (t)+, t)) -Φ ẏi (t) (ρ(y i (t)-, t), σ(y i (t)-, t)) ϕ(y i (t), t) dt ≥ 0.

@RFQFRA

Proof. e split the resoning in two stepsF

Step 1. uppose (rst tht ϕ ∈ C ∞ c (Ω\ ∪ M m=1 C m )F sn this seD we write ϕ using the prtition of unity @RFQFIAF pix i ∈ [[1; J]]F pollowing the omputtions of vemm RFIFUD we otinX

¤ Ω i |ρ -σ|∂ t ϕ i + Φ(ρ, σ)∂ x ϕ i dx dt + ¢ {x∈R | (x,0)∈Ω i } |ρ 0 (x) -σ 0 (x)|ϕ i (x, 0) dx + ¢ T i s i Φ ẏi (t) (ρ(y i (t)+, t), σ(y i (t)+, t)) -Φ ẏi (t) (ρ(y i (t)-, t), σ(y i (t)-, t)) ϕ i (y i (t), t) dt ≥ 0.
@RFQFSA xowD sine ϕ 0 vnishes long ll the interfesD stndrd omputtions led to

¤ Ω 0 |ρ-σ|∂ t ϕ 0 +Φ(ρ, σ)∂ x ϕ 0 dx dt+ ¢ {x∈R | (x,0)∈Ω 0 }
|ρ 0 (x)-σ 0 (x)|ϕ 0 (x, 0) dx ≥ 0. @RFQFTA e now sum @RFQFSA @i ∈ [[1; J]]A nd @RFQFTA to otin @RFQFRAF his inequlity is the nlogous of @RFIFIIAF

Step 2. gonsider now ϕ ∈ C ∞ c (Ω)F pix n ∈ N * F prom the (rst stepD lssil pproximtion rgument llows us to pply @RFQFRA with the vipshitz test funtion

ψ n (x, t) = M m=1 δ m,n (x, t) ϕ(x, t), where for ll m ∈ [[1; M ]]D δ m,n (x, t) =              0 if dist 1 ((x, t), C m ) < 1 n n dist 1 ((x, t), C m ) - 1 n if 1 n ≤ dist 1 ((x, t), C m ) ≤ 2 n 1 if dist 1 ((x, t), C m ) > 2 n ,
whereD y nlogy with the proof of vemm RFIFUD dist 1 denotes the R 2 distne ssoited with the norm

• 1 F e let n → +∞D keeping in mind thtX M m=1 δ m,n ϕ -ϕ L 1 (Ω) -→ n→+∞ 0; ∀m ∈ [[1; M ]], ∇δ m,n L 1 (Ω) = O 1 n . trightforwrd omputtions led to @RFQFRA with ϕ ∈ C ∞ c (Ω)D onluding the proofF Theorem 4.3.3. Fix ρ 0 , σ 0 ∈ L ∞ (R; [0, 1]). Let (q i ) i∈[[1;J]] and ( ∼ q i ) i∈[[1;J]
] be two family of constraints, where for all i ∈ [[1; J]], q i , ∼ q i ∈ L ∞ ((s i , T i )). We denote by ρ (resp. σ) a Gentropy solution to Problem @RFHFPA corresponding to initial data ρ 0 (resp. σ 0 ) and constraints

(q i ) i∈[[1;J]] (resp. ( ∼ q i ) i∈[[1;J]] ).
Then for all T > 0, we have

ρ(•, T ) -σ(•, T ) L 1 ≤ ρ 0 -σ 0 L 1 + J i=1 2 ¢ T i s i q i (t) - ∼ q i (t) dt . @RFQFUA
In particular, Problem @RFHFPA admits at most one G-entropy solution. 

∈ L ∞ (R) if @iA for ll test funtions ϕ ∈ C ∞ c (Ω), ϕ ≥ 0 nd κ ∈ [0, 1]D the following entropy inequlities re veri(edX ¢ +∞ 0 ¢ R |ρ -κ|∂ t ϕ + Φ(ρ, κ)∂ x ϕ dx dt + ¢ R |ρ 0 (x) -κ|ϕ(x, 0) dx + J i=1 ¢ T i s i R ẏi (t) (κ, q i (t))ϕ(y i (t), t) dt ≥ 0, @RFQFVA
where R ẏi (κ, q i ) ws de(ned in he(nition RFIFIY @iiA for ll test funtions ϕ ∈ C ∞ c (Ω\ ∪ M m=1 C m ), ϕ ≥ 0D written under the form @RFQFIAD the following onstrint inequlities re veri(ed for ll

i ∈ [[1; J]]X - ¤ Ω + i ρ∂ t ϕ + f (ρ)∂ x ϕ dx dt ≤ ¢ T i s i q i (t)ϕ i (y i (t), t) dt , @RFQFWA
where 

Ω + i = {(x, t) ∈ Ω i | x > y i (t)}F
(i), it is equivalent that @RFQFVA holds with ϕ ∈ C ∞ c (Ω\ ∪ M m=1 C m ).
Proof. he proof of the equivlene of he(nitions RFQFI nd RFQFR is strightforwrd dpttion of the proofs of ropositions RFIFSERFIFTF he lst prt of the sttement follows using the sme pproximtion rgument desried t the end of the proof of vemm RFQFPF e now turn to the proof of existene for dmissile entropy solutions of @RFHFPAF e mke use of the preise study of etion RFP in the se of single trjetory nd uild (nite volume shemeF e keep the nottions of etion RFP when there is no miguityF Construction of the mesh, denition of the scheme por the ske of lrityD suppose tht we only hve two trjetoriesGonstrints 

(y i , q i ) (1 ≤ i ≤ 2 
2     f L ∞ + max 1≤i≤4 ẏi L ∞ ((0,T )) L     λ ≤ 1. @RFQFIHA et N ∈ N suh tht τ ∈ [t N , t N +1
)F e divide the disussion in four prtsF Part 1. sntrodue the numer

N 1 = inf n ∈ N, |y 1 ∆ (t n ) -y 2 ∆ (t n )| ≤ 4∆x .
he de(nition of N 1 ensures tht for ll n ∈ {0, . . . , N 1 -1}D we n independently modify the mesh ner the two trjetories y 1 ∆ nd y 2 ∆ D s presented in pigure RFSF gonsequentlyD we n simply de(ne the pproximte solution ρ ∆ on R × [0, t N 1 -1 ] s the (nite volume pproximE tion of onservtion lwD with initil dt ρ 0 D with )ux onstrints on two nonEinterting trjetoriesD using the reipe of etion RFP for eh trjetoryGonstrintF 4.3. WELL-POSEDNESS FOR THE MULTIPLE TRAJECTORY PROBLEM IPI Part 2. pix now n ∈ {N 1 , . . . , N }F sn these time intervlsD sine the two trjetories re too lose to eh otherD one nnot modify the mesh in the neighourhood of one of them without 'eting the otherF roweverD the sheme hs to e de(ned glolly so we proeed s desried elowF " pirstD introdue the men trjetory nd the new onstrintX ∀t ∈ [0, τ ], y 12 (t) = y 1 (t) + y 2 (t) 2 ; q 12 (t) = min{q 1 (t), q 2 (t)}, represented in purple in pigure RFSD efore the rossing point @in redAF he hoie of tking the miniml level of onstrint in the de(nition of q 12 stems from the nture of the onstrined prolemY see however emrk RFQFI elowF " henD de(ne ρ ∆ on R × [t N 1 , t N ] s the (nite volume pproximtion of the one trjeE toryGone onstrint prolemX 

         ∂ t ρ + ∂ x (f (ρ)) = 0 ρ(•, t N 1 ) = ρ ∆ (•, t N 1 -1 ) (f (ρ) -ẏ12 (t)ρ)| x=y 12 (t) ≤ q 12 (t) t ∈ (t N 1 , t N ),
N 2 = inf n > N, |y 3 ∆ (t n ) -y 4 ∆ (t n )| ≥ 4∆x .
por n ∈ {N, . . . , N 2 }D we re in the sme sitution s rt PF e proeed to the sme onstrutionD mutatis mutandis.

" es in rt PD de(ne the men trjetory nd the new onstrintX ∀t ∈ [τ, T ], y 34 (t) = y 3 (t) + y 4 (t) 2 ; q 34 (t) = min{q 3 (t), q 4 (t)}, represented in purple in pigure RFSD fter the rossing pointF " he(ne ρ ∆ on R×[t N , t N 2 ] s the (nite volume pproximtion of the one trjetoryGone onstrint prolemX

         ∂ t ρ + ∂ x (f (ρ)) = 0 ρ(•, t N ) = ρ ∆ (•, t N ) (f (ρ) -ẏ34 (t)ρ)| x=y 34 (t) ≤ q 34 (t) t ∈ (t N , t N 2 ). Part 4. pinllyD ρ ∆ is de(ned on R × [t N 2 , T ] like in rt I with y 3 , q 3 , ρ ∆ (•, t N 2 ) @respF y 4 , q 4 A
plying the role of y 1 , q 1 , ρ 0 @respF of y 2 , q 2 AF Remark 4.3.1. vet us stress out tht the detils of the tretment done in rts PEQ do not ply ny signi(nt role in the onvergene proof elow thnks to the hoie of test funtions vnishing t neighourhood of the rossing pointsD see roposition RFQFSF gonsequentlyD tking the men trjetory nd the minimum of the onstrint is merely n exmple iming t preserving some onsisteny while keeping the sheme simple to understnd nd implementF he generl se of (nite numer of interfes @lolly (nite numer n e esily inludedA is treted in the sme wyD leding to pttern with the uniform retngulr mesh dpted to eh of the interfes Γ i D i ∈ [[1; J]] exept for smll @in terms of the numer of impted mesh ellsA neighourhoods of the rossing points

C m D m ∈ [[1; M ]]F Proof of convergence Theorem 4.3.6. Fix T > 0, f ∈ C 2 ([0, 1]) satisfying @RFHFIA-@RFPFIRA and ρ 0 ∈ L ∞ (R; [0, 1]).
Let (y i , q i ) i∈[[1;J]] be a nite family of trajectories and constraints dened on (s i , T i ) (0 ≤ s i < T i ). We suppose that for all i ∈ [[1; J]], y i ∈ W 1,∞ ((s i , T i )) and q i ∈ L ∞ ((s i , T i ); R + ). Suppose also that the interfaces (Γ i ) i dened by the trajectories (y i ) i have a nite number of crossing points. Then as ∆ → 0 while satisfying the CFL condition

2     f L ∞ + max 1≤i≤J ẏi L ∞ ((0,T )) L     λ ≤ 1,
the sequence (ρ ∆ ) ∆ constructed by the procedure of Section 4.3.3 converges a.e. on Ω to the admissible entropy solution to @RFHFPA.

Proof. e mke use of the ft tht in he(nition RFQFRD we only need to onsider test funtions tht vnish t neighourhood of the rossing points @this is the key oservtion leding to emrk RFQFI hereoveAF

IPQ (i) Proof of the entropy inequalities. pix ϕ ∈ C ∞ c (Ω\∪ M m=1 C m ), ϕ ≥ 0D written s ϕ = ϕ 0 + J i=1 ϕ i D
using the pproprite prtition of unityD see etion RFQFIF ine ϕ 0 vnishes long ll the interfesD ρ ∆ veri(es inequlity @RFPFIIA with R ≡ 0 on the domin Ω 0 nd with test funE tion ϕ 0 F sndeedD for su0iently smll ∆x > 0D the sheme we onstruted in the previous setion redues to stndrd (nite volume in Ω 0 F pix now i ∈ [[1; J]]F ine ϕ i vnishes long ll the interfes ut Γ i D ρ ∆ veri(es inequlity @RFPFIIA with reminder term R s i ∆ (κ, q i ∆ ) long the trjetory y i ∆ on the domin Ω i nd with test funtion ϕ i D due to the nlysis of etion RFPY indeedD in the support of the test funtionD our sheme for the multiEinterfe prolem redues to the sheme for the singleEinterfe prolemF fy summing these previous inequlitiesD we otin n pproximte version of @RFQFVA veri(ed

y ρ ∆ X ¢ +∞ 0 ¢ R |ρ ∆ -κ|∂ t ϕ + Φ ∆ (ρ ∆ , κ)∂ x ϕ dx dt + ¢ R |ρ 0 ∆ (x) -κ|ϕ(x, 0) dx + J i=1 ¢ T i s i R s i ∆ (t) (κ, q i ∆ (t))ϕ(y i ∆ (t), t) dt ≥ O(∆x) + O(∆t) . @RFQFIIA (ii) Proof of the weak constraint inequalities. vet ϕ ∈ C ∞ c (Ω\ ∪ M m=1 C m ), ϕ ≥ 0D written under the form @RFQFIAF pix i ∈ [[1; J]
]F ine ϕ i vnishes long ll the interfes ut Γ i D for su0iently smll ∆xD ρ ∆ veri(es inequlity @RFPFIQA with onstrint q i ∆ long the trjetory y i ∆ on the domin Ω + i nd with test funtion ϕ i F e otin n pproximte version of @RFQFIPA veri(ed y ρ ∆ X -¤

Ω + i ρ ∆ ∂ t ϕ + F ∆ (ρ ∆ )∂ x ϕ dx dt ≤ ¢ T i s i q i ∆ (t)ϕ i (y i ∆ (t), t) dt + O(∆x) + O(∆t)
. @RFQFIPA (iii) Compactness and convergence. gomptness of the sequene (ρ ∆ ) ∆ follows diretly from the study of etion RFPFR where we derived lol BV ounds for (ρ ∆ ) ∆ under the ssumption @RFPFIRAF sndeedD these lol ounds led to omptness in the domin omplementry to the interfesD we only use the ft tht the interfes together with the rossing points form losed suset of Ω with zero veesgue mesureF yne the FeF onvergene @up to susequeneA on Ω to some ρ ∈ L ∞ (Ω; [0, 1]A otinedD we simply pss to the limit in @RFQFIIAE@RFQFIPAF his proves tht ρ is n dmissile solution to @RFHFPAF fy the uniqueness of heorem RFQFQD the whole sequene onverges to ρF his onludes the proofF Corollary 4.3.7. Fix T > 0, f ∈ C 2 ([0, 1]) satisfying @RFHFIA-@RFPFIRA and ρ 0 ∈ L ∞ (R; [0, 1]).

Let (y i , q i ) i∈[[1;J]] be a nite family of trajectories and constraints dened on

(s i , T i ) (0 ≤ s i < T i ). We suppose that for all i ∈ [[1; J]], y i ∈ W 1,∞ ((s i , T i )) and q i ∈ L ∞ ((s i , T i ); R + ).
Finally, suppose that the interfaces (Γ i ) i dened by the trajectories (y i ) i have a nite number of crossing points. Then Problem @RFHFPA admits a unique admissible entropy solution.

Proof. ixistene omes from heorem RFQFT while uniqueness ws estlished y heorem RFQFQF 4.4 Numerical experiment with crossing trajectories sn this setionD we perform numeril test to illustrte the sheme nlyzed in etion RFP nd etion RFQFQF e tke the qxv )ux f (ρ) = ρ(1 -ρ)F e model the following situtionF e vehile reks down on rod nd redues y hlf the surrounding tr0 )owD whih initil stte is given y ρ 0 = 0.8 × 1 [START_REF] Adimurthi | Conservation law with discontinuous ux[END_REF][START_REF] Aleksi¢ | Strong traces for averaged solutions of heterogeneous ultraparabolic transport equations[END_REF] F et some pointD tow truk omes to move the immoile vehileF e summrized this sitution in pigure RFTF xotie the time intervl in whih q 3 ≡ 0.1F his orresponds to the time needed for the tow truk to move the vehileF emrk lso tht the vlue of the onstrint on this time inE tervl is smller thn the one when only the roken down vehile ws reduing the tr0 )owF pigure RFT ! e tow truk omes moving n immoile vehileF he evolution of the numeril solution is represented in pigure RFUF vet us omment on the pro(le of the numeril solutionF " et (rst @0 ≤ t ≤ 5.80AD the solution is omposed of trveling wves seprted y sttionry nonlssil shok loted t the immoile vehile positionF " hen the tow truk thes up with the vehile @6.30 ≤ t ≤ 8.0AD the pro(le of the numeril solution is the smeD ut the greter vlue of the onstrint in this time intervl hnges the mgnitude of the nonlssil shokY t this point the omined presene of oth the tow truk nd the immoile vehile logs the tr0 )ow even moreF " pinllyD one the tow truk strts gin @t > 8.0AD the tr0 ongestion is reduedF xotie t time t = 7.44 the smll rteft @irled in red in pigure RFUA reted y rts PEQ in the onstrution of the pproximte solution nd reprodued y the shemeF his highlights the ft tht even if the tretment of the rossing points rings inonsistenies or rtefts to the numeril solutionD these undesired e'ets re not mpli(ed y the shemeD nd eome negligile when one re(nes the meshF 

∂ t ρ(x, t) + ∂ x (f (x, t, ρ(x, t))) = 0 for (x, t) ∈ Ω ρ(•, 0) = ρ 0 on R @SFIFIA
where ρ 0 ∈ L ∞ (R) nd f : Ω × R → R is grthéodory funtionD s spei(ed elowF he physil rnge of vlues of the stte vrile my e restrited to suset [a, b] ⊂ R in mny pplitionsF sn the se where f extends to lolly vipshitz ontinuous on Ω × R funtionD nd under some restritions on the growth of f in ρ to ensure glol in time existene @see in prtiulr rt sssAD the de(nition of entropy solutions in the sense of uruzhkov IIR is the ornerstone of the wellEposedness theoryF hisontinuousE)ux prolems nd relted prolems of onserE vtion lws with emedded interfes pper in pplitions suh s sedimenttionD porous mediD rod tr0D etcFFF fy disontinuousE)ux we men only prolems where the )ux is ontinuous @nd even lolly vipshitz or even C 1 A in the stte vrile ρ while it my present disontinuities in the (x, t)EplneF ense n e given to @SFIFIA @in prtiulrD wek formultion n e writtenA in the generl sitution where f is grthéodory funtion @mesurle in (x, t)D ontinuous in ρAY to the est of the uthors9 knowledgeD no onsistent theory hs een onstruted yet in this very generl settingF he most generl setting where IPU prtil existene nd uniqueness results were estlished onerns )uxes f tht re t lest BV loc in (x, t)D for ll ρ ∈ RD see in prtiulr IHUD IQTF o the uthors9 knowledgeD the existene results under the BV kind ssumption on the )ux onern exlusively solutions onstruted y the lssil vnishing visosity strtegy going k to yleighD ropf nd uruzhkovF he erly onepts of dmissiility suh s the miniml jump ondition @WRA or the ΓEondition @USD see lso URA t interfes selet the vnishing visosity solutionD cf. ISY they were elorted in the ontext of sedimenttion pplitionsF roweverD vnishing visosity limits re not lwys pproprite from the modeling perspetiveF yptiml entropy solutions @i.e. solutions whih mximize the )ow ross interfesA were seond lss of soE lutions identi(ed s relevnt in pplitions in porous mediD see IHRD PD RPY they lso pper in the ontext of rod tr0 with vrying rod onditions @see PH nd referenes thereinAF st hs een relized tht the optiml solutions my e di'erent from the vnishing visosity limits @seeD in prtiulrD IHUD etF UAF wore generllyD oEexistene of in(nitely mny difE ferent kinds of solutionsD eqully onsistent from the purely mthemtil stndpointD ws expliitly pointed out in PF vter onD the di'erent solution notions @(A, B)EonnetionsA put forwrd in P were linked to di'erent vnishing pillrity limits in the porous medium ontext RQD TF woreoverD fully nlogous sitution rose from modeling of rod tr0 y lssilD ontinuousE)ux vighthillEhithmEihrds eqution with point onstrints on the )ux @STD IRA where di'erent solvers stem from di'erent levels of onstrintF husD di'erE ent notions of solution orrespond to di'erent modeling ssumptions t the interfeD quite nlogously to wht hppens when one presries di'erent oundry onditions to given hi @we refer to S for the viewpoint of snterfe goupling gonditions nd highlighted nlogies with nonliner oundry onditions for slr onservtion lws PIAF por this resonD writing @SFIFIA is formlD even hving in mind uruzhkovElike entropy formultionX indeedD one needs to speify the expeted @expetedD given the underlying modeling ontextA ehvior of solutions t interfes whih re the jump sets of (x, t) → f (x, t, ρ)F prom this perspetiveD these jump sets should e ommon for ll vlues of ρF e rther generl set of ssumptions on f tht llows to interpret @SFIFIA s disontinuousE)ux onservtion lw is elorted in TSF goupling t interfes nd the ssoited uniqueness nlysis for the referene setting of TS @see lso IHUD IV for simpler ut still rther omplex vrintsA re mimiked from the model seD whih we now disussF he model prolem @SFIFIA fetures the )ux funtion f disontinuous with respet to the spe vrile ross the interfe {x = 0}F he expression for suh )ux reds s followsX

f (x, t, ρ) = f (ρ) if x < 0 g(ρ) if x > 0.
@SFIFPA rolem @SFIFIAD@SFIFPA hs een the min plyground for understnding the issue of dmissiE ility of solutions nd of their uniqueness @see PRD IQU for di'erent line of reserh on this topi whih pplies to prtiulr )ux on(gurtionsD nd where disontinuities need not to rrnge long interfesAF qenerl struture of interfe oupling leding to L 1 Eontrtive solution semigroup for @SFIFIAD @SFIFPA hs een desried in IS in terms of L 1 D germs relled elowF st gve ommon frmework to numer of uniqueness rguments develE oped in the literture @WRD USD ISID ID IHUD PD RIAF st hs een exploited for the ske of uniqueness nd stility nlysis of rod tr0 models with point onstrints IR nd of 5.1. INTRODUCTION IPW nonEonservtive )uidEprtile intertion model IUF he very generl uniqueness result of TS highlights the ft tht strt germ formultions redily led to uniqueness of the ssoited solutionsD fr eyond the model prolem se @in this respetD let us underline tht TS dels with the multiEdimensionl nlogue of @SFIFIAAF por the ske of ompletenessD let us point out very di'erent uniqueness result of QRD whih requires muh weker thn BV regulrity ssumptions on the (x, t)Edependene of f ut is only pplile to vnishing visosity solutionsF sn wht onerns existene for @SFIFIA E for given hoie of interfe oupling onditionsD s highlighted oveD E the sitution is fr less exploredF e refer in prtiulr to TSD emrk PFIHF ypillyD to prove existene for @SFIFIA hving in mind spei( interfe ouplingD it is required to onstrut sequenes of pproximte solutionsD pss to the limit using the pproprite omptness struturesD nd otin t the limit entropy formultions enodingD in prtiulrD the oupling expeted t the interfesF o the est of the uthors9 knowledge only one sitution ws explored systemtilly eyond the model )ux @SFIFPA seX this is the vnishing visosity interfe ouplingF he existene results of ISID IHTD IHUD SRD ITD IVD IHVD ISPD QR re sed either on vnishing visosity pproximtion @whih n e very triky oneD see IVA or on numeril (nite volume pproximtion whih enforesD t the numeril levelD the ontinuity of the stte vrile ρ t interfesF etullyD the notion of vnishing visosity solution orresponds to n impliit ssumption of ontinuity E up to n interfe lyerD like for the se of frdosEveouxExédéle oundryEvlue prolems E of solution ρ t interfes @IVD SD UAD nd suh ontinuity is expliitly or impliitly inorported into the ove mentioned pproximtion shemesF enother nturl onstrution proedure whih is the smoothing of the disontinuities of f @seeD e.g.D PT in the model seD see lso IRU for more elorte sitution oming from vnishing visosity pproximtion of tringulr system of onservtion lwsAX it my produe relevnt solutions in prtiulr situtionsD ut it nnot e used to produe solutions for ny kind of ouplingF he dpted visosity proedure of IS ws rther rti(il ttempt to produe solutions with more generl interfe ouplingD ut it hs not een extended eyond the model seF xote in pssing tht the ove visosityD smoothing nd disretiztion methods re pplile for multiE dimensionl generliztion of @SFIFIAD nd some of the ove referenes del with multiple spe dimensionsF sn one spe dimensionD wveEfront trking pproximtions were used for onstruting solutions @QW for the vnishing visosity seD WH for the generl setting fully omprle to ISA ut eyond the model situtionsD their use for prolems of the kind @SFIFIA ws minly restrited to rod tr0 models in onrete situtionsF xowD rod tr0 with point )ux limittions t interfes is nother ontext where solutions to @SFIFIA were onstruted for slntedD urved nd possily rossing interfes either through veE pront rking or through pinite olume pproximtionF he ltter is ddressed in detil in ghpter RY we refer to its introdution for set of referenes to relted worksF he gol of this ghpter is to provide systemti pinite olume pproh to onstrution of solutions to @SFIFIA with pieewise C 1 dependene on (x, t) nd with generl interfe ouplingF o this endD we exploit the onstrutions put forwrd in ghpter R @the de(nition of the shemeD the tretment of interfes nd of interfe rossingsAF xturllyD the numeril sheme onsistent with the desired interfe oupling should use spei( )uxes t the lotions of the interfesY for the ske of mximl generlityD we use the qodunov )ux ssoited with the underlying germ @cf. ISAF ine the germ depends on the inlintion ẏ(t) of the interfe x = y(t) nd the interfes re pproximtedD we require mild restrition on the fmily G ẏ(t) presriing the interfe ouplingF he essentil tool of our nlysis is the dpted entropy formultion inorporting reminder termsD s suggested in ISF he ornerstone of our ontriution is the identi(tion of the suitle form of the reminder termD omptile with the qodunov numeril pproximtion t interfesF he ghpter is orgnized s followsF sn etion SFP we mke preise the ssumptions on f in @SFIFIA nd on the oupling enfored on eh of the interfes ssoited with the (x, t)E disontinuity of f F e stte the de(nition of solution for whih uniqueness follows from TS @ut we lso rely upon the nlysis of ghpter R for tehnilly simpler proofD sine our geometril ssumptions on the struture of interfes re muh stronger tht those of TSAD nd reformulte the notion of solution in terms of dpted entropy inequlitiesF et this pointD spei( grthéodory struture of the fmily of interfe ouplings t hnd omes into plyF e illustrte the resulting setting with n exmple @nother exmple eing explored in detil in ghpter RAF o onlude etion SFPD we stte the min result of existene via onvergene of pinite volume sheme tht is desried in susequent setionsF e lso provide omments out the omptness ssumptions we tke nd on the onvergene of other pproximtion proeduresF sn etion SFQD we oin the key tools of our study in the model se @SFIFPA with tEdependent oupling t the interfe {(x, t) : x = 0, t ∈ (0, +∞)}F e link our dpted entropy formultion to the qodunov numeril pproh t the interfeD formulte the numeril sheme nd sketh the omptness nd onvergene nlysisD treting in detil the interfe termsF sn etion SFR we rie)y develop the dpttions needed in the sheme to tke into ount slnted interfes nd interfe rossingsD nd perform the redution of the generl se with multipleD possily rossing interfes to the se on n isolted interfeY we then ll upon the onvergene nlysis of the model seD showing tht it lso pplies to the generl settingF pinllyD in etion SFS we present some onlusions nd omment on extensions of our existene result to weker genuine nonlinerity ssumptions on f nd to the multiEdimensionl seF 5.2 Flux and interface coupling structure. Notion of solution, uniqueness and existence result por the ske of lrity nd in order to void tehnil detils relted to t nd x dependene of f in regions etween interfes @note tht ghpter Q nd rt sss for the relevnt dpttionsAD we will ssume tht the speEtime heterogeneity of the )ux is redued to the presene of shrp interfesY in simple wordsD we ssume tht f is pieewise onstnt with respet to (x, t)F e refer to emrk SFPFI nd emrk SFPFR for disussion on fesile generliztions to )ux heterogeneous etween interfesF

Piecewise constant ux

e ssume we re given (nite fmily of interfes

(y i ) i∈[[1;J]] de(ned on (s i , T i ) @0 ≤ s i < T i ≤ +∞AF sntrodue the nottionsX ∀i ∈ [[1; J]], Γ i = {(x, t) ∈ Ω | t ∈ (s i , T i ) nd x = y i (t)}. @SFPFIA
xote tht the extension to lolly (nite numer of interfes in strightforwrdF e suppose tht for ll i ∈ [[1; J]]D y i ∈ W 1,∞ ((s i , T i ))F es explined in etion RFQD this nottion mens tht wht n e seen s rossing points etween interfes will e onsidered s endpoints of the interfesF e denote y (C m ) 1≤m≤M the set of ll endpoints of the interfes

Γ i D i ∈ [[1; J]]F
es suggested hereoveD we ssume tht in eh of the regions of the (x, t)Eplne delimited y the interfesD f depends on ρ only @i.e. the )ux is homogeneous in eh suh regionAF

Germs and Godunov uxes for interface coupling

purtherD to eh interfe we tth twoEprmeter fmily of susets of R 2 denoted y G i s (t)D t ∈ (s i , T i )D s ∈ RF sn the terminology of ISD S relled in etion SFQ elowD G i s (t) is ssumed to e omplete L 1 D germ for the ouple of )uxes

g i s (ρ) = f (t, y i (t)-, ρ) -sρ, f i s (ρ) = f (t, y i (t)+, ρ) -sρ (∀t ∈ (s i , T i )); @SFPFPA
note tht due to the pieewise onstnt ssumption on f D the expressions of g i s , f i s re tully tEindependentF e will need g i ẏ(t) , f i ẏ(t) nd G i ẏ(t) (t) to de(ne the interfe oupling onditions ssoited with the interfes in the forml prolem @SFIFIAD see he(nition SFPFP elowY ut we exploit G i s (t)D for s in viinity of ẏ(t)D in order to onstrut pproximte solutions via numeril shemeF he ssumption we impose on the fmily {G i s (t)} t∈(s i ,T i ),s∈R is grthéodoryEkind ssumptionX the fmily should e ontinuous in s nd mesurle in tF o this endD we need to de(ne topology on the set of L 1 D germsY the one we tke is inferred from our numeril pproh nd it is desried in terms of the qodunov )ux ssoited to the iemnn solver determined y the germ t hndF xote tht de(nitions of neighourhood of germ nd ssoited mesurility properties were elorted nd disussed in ISD SD ut we tke di'erent @more prtilA viewpoint hereF por given s ∈ R nd (xed t 0 ∈ (s i , T i )D onsider the )ux @SFIFPA with g = g i s D f = f i s D with interfe oupling presried @in the sense of ISD see lso etion SFQ elowA y the mximl L 1 D germ G i s (t 0 ) nd with iemnn initil dt

ρ 0 (x) = κ L if x < 0 κ R if x > 0.
his prolem dmits unique solution whihD we denote RS i s (κ L , κ R , t 0 )F ine mximl L 1 D germ is lso omplete @see ISD SAD this solution is selfEsimilrD therefore the qodunov )ux

F i,int s (•, •, t 0 ) : (κ L , κ R ) → g i s RS i s (κ L , κ R , t 0 ) | x=0 -≡ f i s RS i s (κ L , κ R , t 0 ) | x=0 + @SFPFQA
is well de(ned @in the rightEhnd sideD we hve onstnt in t funtion tht we see s rel vlueY in other wordsD we hve F i,int s (•, •, t 0 ) : R 2 → RAF xote tht we ould lso use the formlism of WHD whih diretly presries the interfe oupling in terms of iemnn solver de(ned t the interfeF e re now in position to de(ne the grthéodory struture on fmilies of germs used in this hpterF Denition 5.2.1. qiven i ∈ [[1; J]] nd fmily {G i s (t)} t∈(s i ,T i ),s∈R of mximl L 1 D germs ssoited with )uxes g i s , f i s D we sy tht the fmily is grthéodory @mesurle in t ∈

(s i , T i )D ontinuous in s ∈ RA if for every (κ L , κ R ) ∈ R 2 the ssoited funtion R × (s i , T i ) → R, (s, t) → F i,int s (κ L , κ R , t)
is grthéodory funtionF ell tht s will stnd for ẏ(t) @the slope of the interfeA or for its pproximtionsD while t reples the (xed vlue t 0 in the de(nition of the qodunov )uxes F i,int s (•, •, t) ssoited with the fmily of germsF

Notion of solution and uniqueness

e re now in position to de(ne solutionsY the de(nition redily leds to uniquenessF por κ ∈ RD denote y Φ(x, t, ρ, κ) the uruzhkov entropy )ux orresponding to f (x, t, ρ)D i.e. Φ(x, t, ρ, κ) = sign(ρ -κ)(f (x, t, ρ) -f (x, t, κ)). Denition 5.2.2. gonsider pieewise onstnt )ux f : Ω × R → R with set of interfes of the form @SFPFIAF essume tht for eh i ∈ [[1; J]] we re given fmily {G i s (t)} t∈(s i ,T i ),s∈R of mximl L 1 D germs ssoited with )uxes g i s , f i s in @SFPFPAY ssume tht this fmily is grthéodoryD in the sense of he(nition SFPFIF gonsider funtion ρ ∈ L ∞ (Ω) suh tht ρ hs strong oneEsided tres in the sense of ISRD IQQ on interfes Γ i Y we denote them

γ i L ρ, γ i R ρ : (s i , T i ) → RF e sy tht suh funtion ρ is G i s (t)Eentropy solution to @SFIFIA with initil dt ρ 0 ∈ L ∞ (R) if for ll test funtions ϕ ∈ C ∞ c (Ω \ ∪ J i=1 Γ i )D ϕ ≥ 0 nd for ll κ ∈ RD the lssil uruzhkov entropy inequlities re stis(edX ¢ +∞ 0 ¢ R |ρ -κ|∂ t ϕ + Φ(x, t, ρ, κ)∂ x ϕ dx dt + ¢ R |ρ 0 (x) -κ|ϕ(x, 0) dx ≥ 0 @SFPFRA nd moreoverD for ll i ∈ [[1; J]]D for FeF t ∈ (s i , T i ) there holds (γ i L ρ)(t) , (γ i R ρ)(t) ∈ G i ẏi (t) (t). @SFPFSA
xote tht it is esy to ssess tht solution ρ in the ove sense elongs to C(R + ; L 1 loc (R)) in the sense tht it is timeEontinuous tking vlues in the L 1 loc spe of funtions of the spe vrileY seeD e.g.D ghpter QF Remark 5.2.1. egrding the ssumption of existene of strong oneEsided tres for ρ on interfes Γ i D we hve two importnt ommentsF pirstD our existene result will require uniform onvexity or uniform onvity in ρ of the )ux f on eh of the regions of the (x, t)Eplne delimited y the interfesF nder this ssumption whih implies the genuine nonlinerity of the )uxD existene of strong tres is well known sine ISRF eondD using the mhinery of IQQD one n irumvent the genuine nonlinerity ssumption with the help of kind of singulr mppings whih llow to to de(ne the relevnt tres nd with the help of redued germs to reple @SFPFSA @see ISD emF PFPD hefF QFSAF por these two resonsD we onsider tht the tre ssumption is nonErestritive in prtieF Remark 5.2.2. por the ske of onisenessD we hve hosen to formulte he(nition SFPFP in the ontext of pieewise onstnt f F ixtension of this notion of solution to pieewise regulr )uxesD heterogeneous ut C 1 @or even merely vipshitz ontinuousA in (x, t) in regions delimited y the interfesD is strightforwrdF xote tht lso the existene of strong oneE sided interfe tres extends to this frmework under mild ssumptionsD see in prtiulr QD TSD IQHF he uniqueness proof under the ssumption of (nite numer of interfes is stndrd @seeD in prtiulrD ISD IVY see lso ghpter RAY moreoverD even in the muh more generl sitution of SBV )uxes uniqueness is proved in TSF e stte the orresponding lim for the ske of ompletenessD long with the L 1 ontrtion resultF Theorem 5.2.3. In the situation of Deniton 5.2.2, there exists at most one G i s (t)-entropy solution for every initial datum

ρ 0 ∈ L ∞ (R), moreover, if ρ0 ∈ L ∞ (R) with ρ0 -ρ 0 ∈ L 1 (R)
and ρ is the associated G i s (t)-entropy solution, then for all t > 0 there holds

ρ(•, t) -ρ(•, t) L 1 (R) ≤ ρ0 -ρ 0 L 1 (R) .
xote tht lso the ontinuous dependene on interfe oupling onditions n e otined long the sme line of rgumenttionD see ISD ropF QFPI for prototype sttementF pinllyD note tht the grthéodory ssumption on the fmily {G i s (t)} t∈(s i ,T i ),s∈R plys no role in the uniqueness proofY tullyD we will exploit it for proving existene of solutionsF woreE overD we guess tht it is importnt for stility of solutions under perturtion of interfe lotionsF o sum upD we elieve tht this ssumption is n importnt one on the wy to onsistent theory of prolem @SFIFIA nd thereforeD we hve inluded it into he(nition SFPFPF 5.2.4 Adapted entropy inequalities and existence result he(nition SFPFP is prtiulrly well suited for uniqueness proofD ut it nnot e used diretly to estlish existene of solutionsF st eme stndrd in the literture to use di'erent kinds of dpted entropy inequlities in order to desrie the interfe ouplingD in the ple of @SFPFSAF sn the se of tr0 models with )ux limittionD sine ST one uses entropy inequlities of uruzhkov @with onstnt vlue κA with reminder term R(κ) supported y the interfeY see ghpters I ! RF he hoie of onstnt κ n e done for the vnishing visosity interfe ouplingD see IHTD IHUF he orresponding reminder term R(κ) ppers quite nturlly even in very generl ontextD see IQTD ut this nturl formultion leds to uniqueness only if the soElled rossing ondition is ful(lled @see ISAF he se without the rossing ondition is signi(ntly more delite ut it n e hndled s well y introduing singulr form of reminder term R(κ)D see IVD TR @see lso IHVAF roweverD the presene of reminder terms supported on the interfes is not the min dpE ttion of the lssil uruzhkov entropy onditionsF edpted entropy inequlities with κ tht my jump ross interfe o'er more )exiilityY e.g.D in mny situtions inluding the rod tr0 with limited )uxD only one entropy inequlity @with speil hoie of the pieewise onstnt funtion κA is neededD see RID IRD T nd ISD etF RFVDRFWF roweverD eyond the homogeneous sitution with onstnt in time hoie of oupling ross interfesD dpted entropy inequlities should e written for ritrry hoie of the pieewise onstnt κD whih jumps ross the interfes of f D see in prtiulr ITD IVY these inequlities inorporte reminder term tht depends oth upon the pieewise onstnt κ nd on the presried oupling @i.e. on the given fmily of germs long interfesAF e strt y reformulting the de(nition of G i s (t)Eentropy solution under the form of dpted entropy inequlities whih inorporte reminder term R i ẏi (t) (κ L , κ R , t) di'erent from those previously proposed in ISD S ut stisfying the key struturl properties tht ensure the equivlene of de(nitionsF Proposition 5.2.4. Consider a piecewise constant ux f : Ω×R → R with a set of interfaces of the form @SFPFIA. Assume that for each i ∈ [[1; J]] we are given a family {G i s (t)} t∈(s i ,T i ),s∈R of maximal L 1 D germs associated with uxes g i s , f i s in @SFPFPA; assume that this family is Carathéodory, in the sense of Denition 5.2.1. Denote by K the set of all the functions, piecewise on Ω, that share the same interfaces as f . For a function κ ∈ K and i ∈ [[1; J]], we denote by k i L , k i R the one-sided limits of κ on Γ i (being κ L = κ(y i (t) -0, t) and κ R = κ(y i (t) + 0, t) for all t ∈ (s i , T i )). Dene for all i ∈ [[1; J]], t ∈ (s i , T i ), s ∈ R and (κ L , κ R ) ∈ R 2 the "remainder term"

R i s (κ L , κ R , t) := f (κ L ) -F i,int s (κ L , κ R , t) + F i,int s (κ L , κ R , t) -g(κ R ) , @SFPFTA
where F i,int s (•, •, t) is the Godunov ux dened in @SFPFQA associated with the germ family {G i s (t)} t∈(s i ,T i ),s∈R .

Assume that ρ ∈ L ∞ (Ω) satises, for all test functions ϕ ∈ C ∞ c (Ω), ϕ ≥ 0 and for all κ ∈ K, the following adapted entropy inequalities:

¢ +∞ 0 ¢ R |ρ -κ|∂ t ϕ + Φ(x, t, ρ, κ)∂ x ϕ dx dt + ¢ R |ρ 0 (x) -κ|ϕ(x, 0) dx ≥ - J i=1 ¢ T i s i R i ẏi (t) (κ L , κ R , t)ϕ(y i (t), t) dt . @SFPFUA Then ρ is the G i s (t)-entropy solution to @SFIFIA with initial data ρ 0 ∈ L ∞ (R).
es onsequene of the uniqueness of G i s (t)Eentropy solution @heorem SFPFQAD the reiproE l implition of roposition SFPFR n e proved s soon one n ensure the existene of solutions in the sense of inequlity @SFPFUAD see emrk SFQFQF IQS Remark 5.2.3. es demonstrted in ghpter RD in the ontext of formultions of the kind @SFPFUA we n reple the set C ∞ c (Ω) for the test funtions y C ∞ c (Ω \ ∪ M m=1 C m )F his permits to relxD in smll viinity of the rossEpoints C m D the onsisteny onstrints on the pproximtion proedure used to onstrut solutionsD see etion SFRFPF ith this reformultion of the notion of solution we re onerned withD we re in position to stte the min result of the ghpterF Theorem 5.2.5. Consider a piecewise constant ux f : Ω × R → R with a set of interfaces of the form @SFPFIA. Assume that for each i ∈ [[1; J]] we are given a family {G i s (t)} t∈(s i ,T i ),s∈R of maximal L 1 D germs associated with uxes g i s , f i s in @SFPFPA; assume that this family is Carathéodory, in the sense of Denition 5.2.1. Assume moreover that the connement assumption holds:

∃a, b ∈ R : a < b and for a.e. (x, t) ∈ Ω f (x, t, a) = a, f (x, t, b) = b. @SFPFVA Assume moreover f is C 2 in the state variable ρ ∈ [a, b]
for a.e. (x, t) ∈ Ω and the uniform convexity/concavity assumption holds:

∃c > 0 ∀ρ ∈ [a, b] |∂ 2 ρ f (x, t, ρ)| ≥ c. @SFPFWA Finally, suppose that for each i ∈ [[1; J]], (κ L , κ R ) → F i s (κ L , κ R , •) @SFPFIHA is Lipschitz continuous on [a, b] 2 uniformly in t ∈ (s i , T i ) and locally uniformly in s ∈ R.
Then for any initial datum ρ 0 ∈ L ∞ (R) taking values in [a, b], there exists a G i s (t)-entropy solution (which is unique, due to Theorem 5.2.3) of the discontinuous-ux conservation law @SFIFIA. Moreover, it can be obtained as the limit of a sequence of approximate solutions generated by a nite volume numerical scheme described in Section 5.4.

vet us stress thtD due to the pieewise onstnt in (x, t) struture of f D ssumption @SFPFWA is onise wy to stte thtD in eh of the regions delimited y the interfes Γ i D f is either sujet to the uniform onvexity or to the uniform onvity ssumptionF yserve tht the hnge of onvexity ross the interfe is relevntD e.g.D in the rughes model of pedestrin evution RF purtherD ssumption @SFPFVA is stndrd wy to ensure uniform L ∞ ounds on the pproximte solutions @seeD e.g.D IHUAY for instne in tr0 nd porous medi modelsD it is stis(ed with [a, b] = [0, 1]D the physil rnge of the stte vrileF xextD we guess tht ssumption @SFPFIHA is veri(ed in ll prtil sesF sn prtiulrD for the interfe oupling sed on trnsmission mps @see etion SFPFS elowA the vipshitz property is heked in UD while for the )uxElimittion oupling of ghpters IERD this property is ovious from the de(nition of the qodunov )ux @see in prtiulr RS for the de(nition of the qodunov )ux in this seAF e stress tht the onvergene nd existene result of heorem SFPFS requires lol strong omptness of the sequene of pproximte solutionsF yur hoie of omptness rgument is the oneEsided vipshitz @yvA oundD whih imposes the restrition @SFPFWA of uniform onvexity or uniform onvity of f with respet to ρ in eh of the sudomins seprted y the interfes Γ i F hree remrks re in orderF Remark 5.2.4. heorem SFPFSD stted for pieewise onstnt in (x, t) )ux f for the ske of redilityD extends to tEdependent nd to xEdependent )ux in regions etween the interfesF his n e seen from the proofs of ghpter QD under the ssumption of the uniform in t or in x onvexity or onvity of the )ux with respet to the stte vrile @unpulishedAF sndeedD in this hpter the pinite olume sheme is onstruted tking into ount the tEdependene nd the lol yvEsed omptness rgument for this se is written in detilF e guess tht the extension to the (x, t)Edependent )ux under the uniform onvexityGonvity sE sumption n e otined in strightforwrd wyF Remark 5.2.5. hi'erent omptness toolsD suh s the ompensted omptnessD would permit to justify the existene nd onvergene result of heorem SFPFS under weker ssumpE tions on the genuine nonlinerity of f with respet to ρ in eh of the sudomins seprted y interfesF e refer to IHU for suh rgumentsD in the setting of di'erent shemeY we guess tht these rguments n e pplied in our frmework s wellF his diretion is left for future workF Remark 5.2.6. es soon s the existene of solution is estlished for dense set of initil dtD the wek onvergene methods @seeD e.g.D the entropy proess frmework put forwrd in VQA n e pplied to justify onvergene of other numeril shemes tht re onsistent with the wek formultion nd the dpted entropy inequlitiesF e refer to ISD hmF QFPVDhmF TFS nd IR for this line of rgumenttionF 5.2.5 The example of transmission map coupling sn etion RFQD the exmple of )ux limittion interfe oupling ws tretedY hereD let us oserve tht the ssoited fmily of germs is indeed grthéodoryD due to the ontinuity in s of the )uxes g i s D f i s nd to the mesurility of the onstrints t → q i (t)F woreoverD the reminder term denoted y R(κ, q i (t)) used in ghpters I ! RD for the hoie of onstnt κD is preisely R i s (κ, κ, t) in our frmeworkF sn this setionD let us provide nother importnt exmple of interfe oupling ful(lling the grthéodory ssumptionD nd give the expliit expression of the ssoited qodunov )uxesF his exmple is sed upon UD see lso S for summryF por the ske of onisenessD let us onsider the se of single interfe de(ned for t ∈ (0, +∞)D i.e. J = 1Y in this seD we drop the interfe lel i in the nottionF qiven )uxes g, f on

[a, b] ⊂ R suh tht g(a) = f (a) nd g(b) = f (b)D set g s (ρ) = g(ρ)-sρD f s (ρ) = f (ρ)-sρ nd denote y Godg s , Godf s : [a, b] 2 → R
the qodunov )uxes ssoited to g s , f s D respetivelyF he expliit formul for the qodunov )uxes shows tht the dependene of Godg s (κ L , κ R ), Godf s (κ L , κ R ) on s is ontinuousF o de(ne the interfe ouplingD given {β(t)} t∈(0,+∞) fmily of mximl monotone grphs in R × RD we n de(ne for ll s

∈ R nd t ∈ (s i , T i ) the mximl L 1 D germ G s (t) = (ρ L , ρ R ) ∈ [a, b] 2 , ∃(k -, k + ) ∈ β(t) suh tht g s (ρ L ) = (Godg s )(ρ L , k -) = (Godf s )(k + , ρ R ) = f s (ρ R )
nd the ssoited interfe qodunov )ux

F int s (κ L , κ R , t) = (Godg s )(κ L , k -) = (Godf s )(k + , κ R ) where (k -, k + ) ∈ β(t), @SFPFIIA IQU eing understood tht the equlity etween F L := (Godg s )(κ L , k -) nd F R := (Godf s )(k + , κ R )
my not de(ne uniquely the ouple (k -, k + ) ∈ β(t) ut the ommon vlue F L = F R is de(ned uniquelyF e refer to U for the justi(tion of the ove limsF xote tht the se β(t) = sd orresponds to the fundmentl se of vnishing visosity interfe ouplingF e point out tht the fmily {G i s (t)} t∈(0,+∞),s∈R is grthéodoryD in the sense of he(niE tion SFPFID provided the fmily {β(t)} t∈(0,+∞) is mesurle in nturl senseF o this endD let us represent ny mximl monotone grph β in R × R s β = {(π L (p), π R (p)) , p ∈ R} where π L,R : R → R re 1Evipshitz nonEderesing funtions verifying π L (p) + π R (p) = p for ll p ∈ RF sn other wordsD we prmetrize β y the sum p = κ L + κ R of the two omE ponents of point (κ L , κ R ) ∈ βF hen the nturl wy to impose mesurility of fmily {β(t)} t is to onsider the orresponding prmetristions π L,R (t, •) nd require tht these funtions e grthéodoryF henD in view of the onstrution @SFPFIIAD it is ler thtD given

(κ L , κ R )D (s, t) → F int s (κ L , κ R , t
) is ontinuous with respet to s @euse the qodunov )uxes re ontinuous with respet to sA nd mesurle with respet to t @euse they re otined solving n eqution of the form F s (t, p) = 0 for mesurle in tD monotone nd ontinuous in p funtion F s AF

The basic ingredients in the model case with variable interface coupling

vet us now provide the key tools to our study for the model se @SFIFIAE@SFIFPA with timeEdependent oupling t the interfe {x = 0}F hereforeD in this setionD we onsider )ux f : Ω × R → R given y @SFIFPA verifying the on(nement ssumption @SFPFVA nd the the uniform onvexityGonvity ssumption @SFPFWA with f, g ∈ C 2 ([a, b])F hroughout the setionD we denote y Φ f @respF Φ g A the lssil uruzhkov entropy )ux ssoited with f @respF gA so thtX

∀x ∈ R * , ρ, κ ∈ [a, b], Φ(x, ρ, κ) = Φ f (ρ, κ) if x < 0 Φ g (ρ, κ) if x > 0.
uppose lso tht we re given fmily {G(t)} t>0 of mximl L 1 D germs ssoited with )uxes f nd gF e suppose tht this fmily is grthéodory in the sense of he(nition SFPFI whihD in this ontextD mens tht for ll

κ L , κ R ∈ [a, b]D the ssoited funtion R → R, t → F int (κ L , κ R , t)
is grthéodory funtionF

Stability and uniqueness

por the ske of ompletenessD we rell the strt de(nition of L 

, κ R ) ∈ G(t)D f (κ L ) = g(κ R )Y @iiA for ll (κ L , κ R ), (c L , c R ) ∈ G(t)D Φ f (κ L , c L ) -Φ g (κ R , c R ) ≥ 0. @SFQFIA e
¢ +∞ 0 ¢ R |ρ -ρ|∂ t ϕ + Φ(x, ρ, ρ)∂ x ϕ dx dt + ¢ R |ρ 0 (x) -ρ0 (x)|ϕ(x, 0) dx + ¢ +∞ 0 Φ g (γ R ρ(t), γ R ρ(t)) -Φ f (γ L ρ(t), γ L ρ(t)) ϕ(0, t) dt ≥ 0.
he L 1 D dissiptivity ssumption on the fmily of germs {G(t)} t>0 @SFQFIA ensures tht for FeF

t > 0D Φ g (γ R ρ(t), γ R ρ(t)) -Φ f (γ L ρ(t), γ L ρ(t)) ≤ 0.
pon suitle hoie of test funtionD see the proof of heorem RFIFVD the stility estimte of heorem SFPFQ followsF his leds to uniquenessF

Adapted entropy inequalities with the Godunov remainder terms

e now turn to the proof of roposition SFPFR where the reminder term eomesX

R(κ L , κ R , t) = f (κ L ) -F int (κ L , κ R , t) + F int (κ L , κ R , t) -g(κ R ) . ell tht for t > 0 nd κ L , κ R ∈ [a, b]D F int (κ L , κ R , t
) denotes the qodunov )ux ssoited with the fmily {G(t)} t>0 F e strt with the following lemmF Lemma 5.

3.2. Let (κ L , κ R ) ∈ [a, b]. Then (κ L , κ R ) ∈ {G(t)} t>0 =⇒ ∀t > 0, R(κ L , κ R , t) = 0.
Proof. sndeedD sying tht (κ L , κ R ) ∈ {G(t)} t>0 mens tht the pieewise onstnt funtion

κ(x) = κ L if x < 0 κ R if x > 0
is the unique solution to the prolem @SFIFIA with initil dt ρ 0 = κF gonsequentlyD for ll

t > 0D f (κ L ) = F int (κ L , κ R , t) = g(κ R
) nd ∀t > 0, R(κ L , κ R , t) = 0, onluding the proofF IQW e now turn to the proof of roposition SFPFRF uppose tht ρ veri(es @SFPFUAF glerlyD ρ stis(es @SFPFRA if ϕ ∈ C ∞ c (Ω), ϕ ≥ 0 vnishes long the interfe {x = 0}F pollowing the proof of roposition RFIFSD we otinX

¢ +∞ 0 Φ f (γ L ρ(t), κ L ) -Φ g (γ R ρ(t), κ R ) + R(κ L , κ R , t) ϕ(0, t) dt ≥ 0. @SFQFPA ine t → R(κ L , κ R , t) is mesurle nd oundedD the funtion t → R(κ L , κ R , t) is in L 1 loc ((0, +∞))F gonsequentlyD FeF t > 0 is veesgue point of this funtionF prom @SFQFPAD we dedue tht for FeF t > 0D Φ f (γ L ρ(t), κ L ) -Φ g (γ R ρ(t), κ R ) + R(κ L , κ R , t) ≥ 0.
sn prtiulrD using vemm SFQFPD

∀(κ L , κ R ) ∈ {G(t)} t>0 , for FeF t > 0, Φ g (γ R ρ(t), κ R ) ≤ Φ f (γ L ρ(t), κ L ).
@SFQFQA his lst inequlity implies tht for FeF t > 0D (γ L ρ)(t) , (γ R ρ)(t) ∈ G(t) y mximlity @nd therefore ompletenessD see ISD SA of the fmily of germsF e proved tht ρ is

G i s (t)Eentropy solution to @SFIFIA with initil dt ρ 0 ∈ L ∞ (R; [a, b])F
Remark 5.3.2. sn the se of n interfe oupling like the one in ghpter ID se y se study ensures tht G(t)Eentropy solution to @SFIFIA veri(es inequlity @SFPFUA s wellD see the proof of roposition RFIFTF

Finite volume scheme, compactness and convergence

e turn to the proof of the existene sttement @heorem SFPFSA with the onstrution of (nite volume sheme for whih we prove the onvergeneF vet us keep the nottions introE dued k in etion IFIF vet ρ 0 ∈ L ∞ (R; [a, b])D where a, b ∈ R re the numers de(ned in the on(nement ssumption SFPFV veri(ed y f nd gF e denote y F f = F f (u, v) @respF F g = F g (u, v)A monotone numeril )ux ssoited with f @respF gAD see he(nition IFIFI nd ixmple IFIFIF pollowing the ssumptions of heorem SFPFSD we ssume tht

(κ L , κ R ) → F int (κ L , κ R , •) is vipshitz ontinuous on [a, b] 2 D uniformly on t > 0F his n e expressed sX ∃L > 0, ∀t > 0, ∀x, y, χ, γ ∈ [a, b], F int (x, y, t) -F int (χ, γ, t) ≤ L (|x -χ| + |y -γ|) .
@SFQFRA sn the nlysis elowD the following properties of the qodunov )ux (t, κ L , κ R ) → F int (κ L , κ R , t) re used in ddition to @SFQFRAF Lemma 5.3.3. The Godunov ux dened in Section 5.2.2 has the following properties:

(i) for all t > 0, F int (•, •, t) is nondecreasing with respect to its rst argument and nonincreasing with respect to its second argument; (ii) for all t > 0,

∀t > 0, f (a) = F int (a, a, t) = g(a); f (b) = F int (b, b, t) = g(b).
@SFQFSA Proof. oint (i) follows from the orderEpreservtion property enoded in L 1 D germs via the grndllErtr vemm @see VAF oint (ii) omes from the ft tht the ouples (a, a) nd (b, b) elong to {G(t)} t>0 @emrk SFQFIAF sdentites @SFQFSA follow s in the proof of vemm SFQFPF e now proeed to the de(nition of the shemeF pix n ∈ N nd j ∈ ZF ewy from the interfeD i.e. for j / ∈ {-1, 0}D our sheme redues to lssil threeEpoint (nite volume sheme on the uniform grid de(ned in etion IFIF wore preiselyD

∀j ≤ -2, ρ n+1 j+1/2 = ρ n j+1/2 -λ(F f (ρ n j+1/2 , ρ n j+3/2 ) -F f (ρ n j-1/2 , ρ n j+1/2 )) @SFQFTA nd ∀j ≥ 1, ρ n+1 j+1/2 = ρ n j+1/2 -λ(F g (ρ n j+1/2 , ρ n j+3/2 ) -F g (ρ n j-1/2 , ρ n j+1/2 )). @SFQFUA
o hndle the oupling t the interfeD introdue the men numeril )ux

God n int (ρ n -1/2 , ρ n 1/2 ) = 1 ∆t ¢ t n+1 t n F int (ρ n -1/2 , ρ n 1/2 , t) dt @SFQFVA
nd use it to de(ne the numeril solution in the remining ellsX

ρ n+1 -1/2 = ρ n -1/2 -λ(God n int (ρ n -1/2 , ρ n 1/2 ) -F f (ρ n -3/2 , ρ n -1/2 )). @SFQFWA nd ρ n+1 1/2 = ρ n 1/2 -λ(F g (ρ n 1/2 , ρ n 3/2 ) -God n int (ρ n -1/2 , ρ n 1/2 )). @SFQFIHA
por the ske of simpliityD we hoose F f nd F g equl to one of the numeril )uxes introdued in ixmple IFIFIF his wyD the gpv ondition redues to

2λ max { f L ∞ , g L ∞ , L} ≤ 1, @SFQFIIA
with L de(ned in @SFQFRAF Stability and discrete entropy inequalities Lemma 5.3.4 @L ∞ stilityA. The scheme @SFQFTA-@SFQFIHA is monotone and stable:

∀n ∈ N, ∀j ∈ Z, ρ n j+1/2 ∈ [a, b]. @SFQFIPA
Proof. he monotoniity of the sheme follows from the rguments used in the proof of heorem IFPFI for instneF xote in prtiulr tht the qodunov interfe )uxes F int re monotone @whih implies the monotoniity of God n int due to @SFQFVAF he stility estimte is proved y indution with the introdutionD for ll n ∈ N nd j ∈ ZD of the funtion H n j = H n j (x, y, z) used to express ρ n+1 j+1/2 from ρ n j-1/2 D ρ n j+1/2 nd ρ n j+3/2 D like in @IFIFRAF he key point of the proof is the ft tht a nd b re sttionry sttes of the shemeF sndeedD s onsequene of vemm SFQFQ (iii)D we hveX

∀n ∈ N, ∀j ∈ Z, H n j (a, a, a) = a nd H n j (b, b, b) = b.
e refer to the proof of heorem IFPFI for more preise detilsF IRI Corollary 5.3.5 @hisrete entropy inequlitiesA. Fix κ L , κ R ∈ [a, b] and dene

∀j ∈ Z, κ j+1/2 = κ L 1 {j≤-1} + κ R 1 {j≥0} .
Then the numerical scheme @SFQFTA-@SFQFIHA fullls the following discrete entropy inequalities for all n ∈ N and j ∈ Z:

|ρ n+1 j+1/2 -κ j+1/2 | -|ρ n j+1/2 -κ j+1/2 | ∆x ≤          -Φ n j+1 -Φ n j ∆t if j / ∈ {-1, 0} -Φ n int -Φ n -1 ∆t + |f (κ L ) -God n int (κ L , κ R )| ∆t if j = -1 -(Φ n 1 -Φ n int ) ∆t + |God n int (κ L , κ R ) -g(κ R )| ∆t if j = 0, @SFQFIQA
where Φ n j and Φ n int are the numerical entropy uxes:

Φ n j = F f (ρ n j-1/2 ∨ κ L , ρ n j+1/2 ∨ κ L ) -F f (ρ n j-1/2 ∧ κ L , ρ n j+1/2 ∧ κ L ) if j ≤ -1 F g (ρ n j-1/2 ∨ κ R , ρ n j+1/2 ∨ κ R ) -F g (ρ n j-1/2 ∧ κ R , ρ n j+1/2 ∧ κ R ) if j ≥ 1 Φ n int = God n int (ρ n -1/2 ∨ κ L , ρ n 1/2 ∨ κ R ) -God n int (ρ n -1/2 ∧ κ L , ρ n 1/2 ∧ κ R ).
Proof. pix n ∈ NF he otining of @SFQFIQA in the se j / ∈ {-1, 0} is stndrdD see the proof of gorollry IFPFPF uppose tht j = -1F sn tht seD we hve

H n -1 (κ L , κ L , κ R ) = κ L -λ (God n int (κ L , κ R ) -f (κ L )) ,
frow whih we otinX

H n -1 ρ n -3/2 ∧ κ L , ρ n -1/2 ∧ κ L , ρ n 3/2 ∧ κ R -λ (God n int (κ L , κ R ) -f (κ L )) - ≤ κ L ≤ H n -1 ρ n -3/2 ∨ κ L , ρ n -1/2 ∨ κ L , ρ n 3/2 ∨ κ R + λ (God n int (κ L , κ R ) -f (κ L )) + ,
where we denoted y z + @respF z -A the positive prt @respF negtive prtA of the rel numer zF e dedueX

|ρ n+1 -1/2 -κ L | = ρ n+1 -3/2 ∨ κ L -ρ n+1 -3/2 ∧ κ L ≤ H n -1 ρ n -3/2 ∨ κ L , ρ n -1/2 ∨ κ L , ρ n 1/2 ∨ κ R + λ (God n int (κ L , κ R ) -f (κ L )) + -H n -1 ρ n -3/2 ∧ κ L , ρ n -1/2 ∧ κ L , ρ n 1/2 ∧ κ R + λ (God n int (κ L , κ R ) -f (κ L )) - = |ρ n -1/2 -κ L | -λ Φ n int -Φ n -1 + λ |God n int (κ L , κ R ) -f (κ L )| ,
whih is extly @SFQFIQA in the se j = -1F he otining of @SFQFIQA in the se j = 0 is similr so we omit the detils of the proof for this seF Proposition 5.3.6 @epproximte entropy inequlitiesA. Fix κ L , κ R ∈ [a, b] and dene

κ = κ L 1 {x<0} + κ R 1 {x>0} . Let ϕ ∈ C ∞ c (Ω), ϕ ≥ 0 supported in time in [0, T ] (T > 0). Then as ∆ → 0, we have ¢ T 0 ¢ R |ρ ∆ -κ|∂ t ϕ + Φ ∆ (x, ρ ∆ , κ) ∂ x ϕ dx dt + ¢ R |ρ 0 ∆ -κ|ϕ(x, 0) dx + ¢ T 0 R ∆ (κ L , κ R , t)ϕ(0, t) dt ≥ O(∆x) + O(∆t) , @SFQFIRA where Φ ∆ (x, ρ ∆ , κ) = n∈N j∈Z * Φ n j 1 (x j ,x j+1 )×[t n ,t n+1 ) .
and

R ∆ (κ L , κ R , t) = n∈N |f (κ L ) -God n int (κ L , κ R )| + |God n int (κ L , κ R ) -g(κ R )| 1 [t n ,t n+1 ) .
Proof. he proof follows step y step the proof of roposition IFQFIX strt from the disrete entropy inequlities @SFQFIQAY pply the eel proedure nd estimte the memers of the resulting inequlityF he reminder term tht reples

R(κ, q n )(ϕ n+1 -1/2 + ϕ n+1 1/2 )∆t from the proof of roposition IFQFI eomesD in our ontextD |f (κ L ) -God n int (κ L , κ R )| ϕ n+1 -1/2 + |God n int (κ L , κ R ) -g(κ R )| ϕ n+1 1/2
∆t.

Compactness and convergence

e now prove existene of solutions in the sense of inequlity @SFPFUAF he omptness of the sequene (ρ ∆ ) ∆ is otined y deriving lol BV oundsF ine f nd g re ssumed to hve uniform onvexityGonvexityD we n use the yv tehnique put forwrd y ISP desried in detil in ghpter R nd IRWD eppendix nd pplied in ghpters QERF es highlighted in ghpter RD this tehnique 4does not see4 the interfe ouplingD so the proofs ontined in the previous hpters over our present se s wellF his provides the existene of ρ ∈ L ∞ (Ω; [a, b]) suh tht susequene of (ρ ∆ ) ∆ onverges to ρ FeF on ΩF o pss to the limit in @SFQFIRA nd onlude the nlysisD we need to ensure tht

¢ T 0 R ∆ (κ L , κ R , t)ϕ(0, t) dt -→ ∆→0 ¢ T 0 R(κ L , κ R , t)ϕ(0, t) dt .
his onvergene lim omes from the mesurility nd the oundedness of t → R(κ L , κ R , t)F ine t → R ∆ (κ L , κ R , t) is otined y tking the men vlues of t → R(κ L , κ R , t) on uniE form gridD we re ensured tht for ll veesgue points t > 0 of R(κ L , κ R , •) @whih re FeF t > 0AD (R ∆ (κ L , κ R , t)) ∆ onverges to R(κ L , κ R , t)F his lst ingredient implies tht y letting ∆ → 0 in @SFQFIRAD we otin tht ρ stis(es @SFPFUAF solutions in the sense of inequlity @SFPFUAD we n proveD under the ssumptions of heorem SFPFSD the uniqueness for the dpted entropy formultion @SFPFUA nd the reiprol sttement of roposition SFPFRF pirstD let us oserve tht omining the lst step of the onvergene proof resoning nd etion SFQFPD we proved wellEposedness result for solutions in the sense of inequlity @SFPFUAF ixistene is otined y the shemeF woreoverD two solutions in the sense of inequlity @SFPFUA re lso G(t)Eentropy solutions y etion SFQFPY for those solutions we hve uniquenessD see heorem SFQFID leding to uniqueness for the dpted entropy formultion of roposition SFPFRF xow suppose tht ρ is G(t)Eentropy solution to @SFIFIA with initil dt ρ 0 ∈ L ∞ (R; [a, b])F uppose tht ρ is not the solution in the sense of inequlity @SFPFUAF vet us then denote y σ = ρ the solution in the sense of inequlity @SFPFUAF es mentioned eforeD σ is lso G(t)Eentropy solutionD nd therefore equl to ρ y uniquenessF his ontrdits the ft tht ρ is not the solution in the sense of inequlity @SFPFUAF e onlude tht ρ veri(es @SFPFUAF

Multi-interface problem with general interface coupling

his setion is very rief euse orrows lmost ll of its ontents to the orresponding setion of ghpter RF sndeedD the only hnges re tht we use qodunov interfe )ux in more generl sitution leding to more strt form of the reminder termY nd tht we do not need ny more the onstrint inequlities required for shrp hrteriztion of solutions for the dpted entropy formultion of ghpter RF es in ghpter RD we proeed in two stepsF pirst the se of single interfe is delt with lling upon the nlysis of the previous setion in wht onerns the reminder term R s F eondD the urte use of prtitions of unity long with the hoie of test funtions vnishing ner the rossEpoints permits to redue the generl se desried in etion SFPFI to the se of single slnted interfeF 5.4.1 The case of a single slanted interface his setion uilds on the work done in etions RFIERFPF sf y denotes the trjetory of the interfeD the reminder term hs now the formX

R ẏ(t) (κ L , κ R , t) = f ẏ(t) (κ L ) -F int ẏ(t) (κ L , κ R , t) + F int ẏ(t) (κ L , κ R , t) -g ẏ(t) (κ R ) .
sing he(nition SFPFPD the proof of uniqueness follows the ones of vemm RFIFU nd heorem RFIFVF egrding the existeneD the only di'erene with the model se is tht here we need to disretize the interfe nd to dpt the mesh in neighourhood of the disrete interfeF vike in etion RFPD we de(ne the sequene of pproximte slopesX

∀n ∈ N, s n = 1 ∆t ¢ t n+1 t n ẏ(t) dt ; ∀t ≥ 0, s ∆ (t) = n∈N s n 1 [t n ,t n+1 ) (t),
whih onverges to ẏ in L 1 loc ((0, +∞))D see emrk RFPFIF he mesh is produed in the sme wy s in etion RFQFQD see in prtiulr pigure RFPF yne only needs to mke preise the numeril )ux used t the slnted mesh oundriesF et time step t n D the pproximte oupling qodunov )ux is de(ned yX

God s n int (ρ n -1/2 , ρ n 1/2 ) = 1 ∆t ¢ t n+1 t n F int s n (ρ n -1/2 , ρ n 1/2 , t) dt . @SFRFIA
xote tht y ssumptionD the fmily of germs {G s (t)} t>0,s∈R is grthéodory whih imE plies tht for ll

(κ L , κ R ) ∈ [a, b] 2 D s → God s int (κ L , κ R ) is ontinuous sine for ll t > 0D s → F int s (κ L , κ R , t) is ontinuousF
he pproximte reminder term tht ppers in the pproximte dpted entropy inequlE ities isX

R s ∆ (t) (κ L , κ R , t) = n∈N f s n (κ L ) -God s n int (κ L , κ R ) + God s n int (κ L , κ R ) -g s n (κ R ) 1 [t n ,t n+1 ) .
he onvergene

¢ +∞ 0 R s ∆ (t) (κ L , κ R , t)ϕ(y ∆ (t), t) dt -→ ∆→0 ¢ +∞ 0 R ẏ(t) (κ L , κ R , t)ϕ(y(t), t) dt omes fromX " the mesurility of t → R ẏ(t) (κ L , κ R , t)Y
" the ontinuity of s → t → R s (κ L , κ R , t) @t > 0A omined with the strong onvergene of (s ∆ ) ∆ to ẏF ixistene of solutions in the sense of inequlity @SFPFUA follows nd like in etion SFQFQD we n prove the equivlene etween he(nition SFPFP nd inequlity @SFPFUAF 5.4.2 Isolating interfaces and neglecting cross-points he onstrution of the meshD of the (nite volume sheme nd the onvergene nlysis y redution of the initil on(gurtion of etion SFP to the se of single slnted interfeD tkled in etion SFRFI is identil to the resoning of etion RFQF vet us only highlight the ft tht the hoie of the preise oupling t the interfes ner the rossEpoints @the violet prts in pigure RFSA does not mtter for the onvergene of the sheme nd its overll onsistenyF sndeedD the hoie of the test funtions in emrk SFPFQ permits to disregrd the disrete solution ner rossEpointsF e only hve to ensure tht the disrete solutions tke their vlues within [a, b]D for this ske we n use ny numeril )ux t the interfes onsistent with the sttionry solutions a nd bF sn this wyD we omplete the proof of heorem SFPFSF 5.5. CONCLUSION AND POSSIBLE EXTENSIONS IRS Remark 5.4.1. sn the prtie of numeril pproximtion of prolem @SFIFIA y the shemes we propose in this ghpterD ny numeril )ux whih is monotone nd whose vipshitz onstnt is onsistent with the gpv n e used on the interfes in smll viinity of the rossing pointsF his my led to pperne of numeril rtefts @see etion RFQFQ for n exmpleAF roweverD the ltter remin 4under ontrol4 sineD ording to our nlysisD they do not 'et the onvergene of the shemeF

Conclusion and possible extensions

sn this hpterD we provided n existene result for oneEdimensionl disontinuousE)ux onE servtion lw @SFIFIA for wide hoie of interfe ouplingsF o this endD we onstruted pinite olume numeril sheme where the uniform meshD retngulr in (x, t)D is dpted to the presene of interfes nd of their rossEpointsF he dpttion to interfes is urte nd the qodunov )ux onsistent with the interfe ondition is used long the disretized interfesF he onvergene result is sed upon new vrint of dpted entropy inequlity whih nturlly rises from qodunov disretiztion t interfesY the qodunov )ux should e omE ptile with the interfe oupling imposed for @SFIFIAF e stress tht the entropy formultion veri(ed y the limit of the sheme enjoys uniquenessD i.e. oth the entropy dmissiility onE ditions within the regions of homogeneous )ux nd full informtion on the interfe oupling re pturedF he existene result is sed upon onsisteny with suh dpted entropy formultion nd on lol strong omptness propertyD whih requires (ne nlysis of the shemeF e highlight the ft thtD s soon s existene is justi(edD onvergene of other pE proximtion shemes n e hieved with wek omptness rguments @cf. ISD eF QFRDTFR nd IRA s soon s these pproximtion shemes re onsistent E wy from the rossEpoints E with the dpted entropy inequlities for the interfe oupling t hndF he lol omptness tehnique we exploit systemtilly in this hesis is sed upon oneE sided vipshitz regulriztionD under the ssumption of uniform onvexity or onvity of the )ux f with respet to the stte vrileF hue to the lol nture of the omptness rgumentsD it does not depend on the hoie of the interfe ouplingF egulr dependene of f on t in eh of the sudomins seprted y the interfes n e hndled within this omptness pprohX the neessry djustments re pointed out in ghpter R @for the time dependeneAF he se of regulr dependene of f on x is left for future worksF yur omptness pproh n e repled y the ompensted omptness tehniqueD unE der the weker ssumption of nonEdegenertely nonliner )ux @cf. IHU for very similr resultAF e highlight the ft tht the use of the ompensted omptness tehnique would mke our onstrution pplile to the multiEdimensionl generliztion of @SFIFIAF sndeedD for instne in the se of twoEdimensionl spe @soD (x, t) ∈ R 3 AD interfes re surfes in R 3 nd interfe rossings re lowerEdimensionl sets @urves nd their rossEpointsAF he rossings n e negleted nd the retngulr speEtime mesh n e lolly dpted to the shpe of interfes wy from viinity of rossingsF vike for the oneEdimensionl prolemD dpted entropy inequlities involving qodunov )uxes in the norml diretion to the interE fes n e written t the disrete level nd inherited t the limitY like in the oneEdimensionl seD the resulting formultion enjoys uniqueness @cf. TSD SAF Part II Existence analysis and numerical approximation for a second order model of trac with orderliness marker

IRU IRW e propose toy model for selfEorgnized rod tr0 tking into ount the stte of orE derliness in drivers9 ehviorF he model is reminisent of the wide fmily of generlized seondEorder models @qywA of rod tr0F st n lso e seen s phseEtrnsition modelF he orderliness mrker is evolved long vehiles9 trjetories nd it in)uenes the fundE mentl digrm of the tr0 )owF he oupling we hve in mind is nonElolD leding to kind of wek deoupling of the resulting 2 × 2 systemY this mkes the mthemtil nlE ysis similr to the nlysis of the lssil uey(tzEurnzer systemF king dvntge of the theory of wek nd renormlized solutions of oneEdimensionl trnsport equtions novD PHHVD whih we further develop on this osion in the (rst hpterD we prove the existene of dmissile solutions de(ned vi mixture of the uruzhkov nd the nov pprohesY note tht this pproh to dmissiility does not rely upon the lssil hyperoli struture for 2 × 2 systemsF pirstD pproximte solutions re otined via splitting strtegyY omptE i(tion e'ets proper to the notion of solution we rely upon re refully exploitedD under generl ssumptions on the dtF eondD we lso ddress fully disrete pproximtion of the systemD onstruting BVEstle pinite olume numeril sheme nd proving its onverE gene under the noEvuum ssumption nd for dt of ounded vritionF es yprodut of our pprohD n originl tretment of lol qywElike models in the BV setting is rie)y disussedD in reltion to disontinuousE)ux v modelsF 

∂ t (ρw) + ∂ x (ρvw) = ρS ρ(•, 0)w(•, 0) = ρ(•, 0)w 0 .
@TFHFPA pollowing IQRD we give the following notions of solution for rolem @TFHFPAF Denition 6.0.1. e funtion w ∈ L ∞ (Ω) is wek solution to @TFHFPA with initil dt

w 0 ∈ L ∞ (R) if for ll test funtions φ ∈ C ∞ c (R × [0, T ))D the following wek formultion is stis(edX ¢ T 0 ¢ R (ρw)∂ t φ + (ρvw)∂ x φ + (ρS)φ dx dt + ¢ R ρ(x, 0)w 0 (x)φ(x, 0) dx = 0.
@TFHFQA Remark 6.0.1. ine ρ is distriutionl solution to ∂ t ρ + ∂ x (ρv) = 0D we know @see IQRD vemm IA tht t → ρ(•, t) is weklyB ontinuous in L ∞ (R)D nd the quntity ρ(•, 0) hs to ISI e understood s the wekB limit of ρ(•, t) s t → 0 + F purtherD pplying IQRD vemm I to the (eld ( Ã, B)D

à : (x, t) → (ρw)(x, t) - ¢ t 0 (ρSw)(x, s) ds , B = ρvw stisfying ∂ t à + ∂ x B = 0D we see tht à ∈ C([0, T ]; w * -L ∞ (R)) nd sine the integrl term in the de(nition of à is in C([0, T L ∞ (R))D we lso hve ρw ∈ C([0, T ]; w * -L ∞ (R))
F sn prtiulrD ρw ssumes the initil dtum ρ(•, 0)w 0 in the sense of the wekB limit in L ∞ (R)F Denition 6.0.2. e sy tht wek solution w ∈ L ∞ (Ω) to @TFHFPA with initil dt

w 0 ∈ L ∞ (R) veri(es the renormliztion property if for ny funtion p ∈ C 1 (R)D u = p(w) is wek solution to ∂ t (ρu) + ∂ x (ρvu) = ρSp (w) ρ(•, 0)u(•, 0) = ρ(•, 0) (p • w 0 )(•).
@TFHFRA vet us rell the following resultsD put forwrd in IQRF Theorem 6.0.3. Let ρ, v ∈ L ∞ (Ω) satisfy @TFHFIA and let S ∈ L ∞ (Ω).

(i) For any initial data w 0 ∈ L ∞ (R), the transport equation @TFHFPA admits a unique weak solution. Moreover, this weak solution veries the renormalization property.

(ii) If w 1 and w 2 are two weak solutions to @TFHFPA associated with data (w 1 0 , S 1 ) and (w 2 0 , S 2 ), respectively, then the following stability estimate holds: for a.e. t ∈ (0, T ),

w 1 (•, t) -w 2 (•, t) L ∞ ≤ w 1 0 -w 2 0 L ∞ + ¢ t 0 S 1 (•, s) -S 2 (•, s) L ∞ ds .
@TFHFSA Remark 6.0.2. he uthor of IQR even extended these results with soure termsX

S(x, t) = g(x, t)w(x, t) + h(x, t); g, h ∈ L ∞ (Ω),
w eing the unknownF he ontriution of this hpter is to prove n nlogous to heorem TFHFQ when the soure term of @TFHFPA tkes the form S(x, t) = g(x, t)F(w(x, t)); g ∈ L ∞ (Ω). @TFHFTA emrk tht when the funtion F is seprted from zero in the sense desried elowD exisE tene of wek solution for given initil dtum follows from the renormliztion propertyF Lemma 6.0.4. Suppose that F ∈ C(R) and that there exists δ > 0 such that F ≥ δ. Then for any initial data w 0 ∈ L ∞ (R), the transport equation @TFHFPA with source term S given by @TFHFTA admits at least a weak solution.

Proof. sntrodue the C 1 funtion p de(ned y

∀w ∈ R, p(w) = ¢ w 0 dy F(y) .
xote tht the ssumption on F implies tht p is C 1 Edi'eomorphism on its imgeF prom heorem TFHFQ (i)D we know tht the trnsport eqution

∂ t (ρu) + ∂ x (ρvu) = ρg ρ(•, 0)u(•, 0) = ρ(•, 0) (p • w 0 )(•).
dmits unique wek solution uF ine u veri(es the renormliztion propertyD y remrking tht (p -1 ) (u) = F(w)D we dedue tht w = p -1 • u is wek solution to @TFHFPAF nder the mere lol vipshitz ssumption on FD uniqueness for the trnsport eqution with soure terms of the form @TFHFTA followsF Proposition 6.0.5. Let ρ, v ∈ L ∞ (Ω) satisfy @TFHFIA, g ∈ L ∞ (Ω) and F ∈ Lip loc (R). Then for any initial data w 0 ∈ L ∞ (R), the transport equation @TFHFPA with source term S given by @TFHFTA admits at most one weak solution.

Proof. vet w 1 0 , w 2 0 ∈ L ∞ (R)F e denote y w 1 @respF w 2 A wek solution to @TFHFPA ssoited with initil dt w 1 0 @respF w 2 0 AF emrk in the prtiulr tht w 1 @respF w 2 A is wek solution to @TFHFPA with soure term S 1 = gF(w 1 ) @respF S 2 = gF(w 2 )AF sing the stility estimte @TFHFSAD we otin tht for FeF t ∈ (0, T )D

w 1 (•, t) -w 2 (•, t) L ∞ ≤ w 1 0 -w 2 0 L ∞ + g L ∞ F L ∞ ¢ t 0 w 1 (•, s) -w 2 (•, s) L ∞ ds .
qronwll lemm yields stility estimte nd the uniqueness followsF e now prove the min result of omptnessGstility regrding wek solutions verifying the renormliztion propertyF Theorem 6.0.6. Let ρ, v ∈ L ∞ (Ω) satisfy @TFHFIA, g ∈ L ∞ (Ω), F ∈ Lip(R) and w 0 ∈ L ∞ (R). Let (ρ ν ) ν , (v ν ) ν , (g ν ) ν , (w 0,ν ) ν be sequences of uniformly bounded functions such that: Suppose that (w ν ) ν ⊂ L ∞ (Ω) is a sequence of weak solutions to

∀ν > 0, ρ ν ≥ 0; (ρ ν ) ν , (ρ ν v ν ) ν , (g ν ) ν -→ ν→0 ρ,
∂ t (ρ ν w ν ) + ∂ x (ρ ν v ν w ν ) = ρ ν g ν F(w ν ) ρ ν (•, 0)w ν (•, 0) = ρ ν (•, 0)w 0,ν , @TFHFUA
verifying the renormalization property. Then:

1. There exists w ∈ L ∞ (Ω) such that (w ν ) ν → w a.e. on Ω.

2. The function w is a weak solution to the transport equation @TFHFPA with source term given by @TFHFTA, and it veries the renormalization property.

Proof. 1. e split the study into two stepsF

Step 1. he uniform L ∞ ound of (w ν ) ν provides the existeneD up to the extrtion of susequene @not releledAD for FeF (x, t) ∈ Ω of forel proility mesure m (x,t) on R suh tht for eh ϕ ∈ C(R)D (ϕ(w ν )) ν onverges L ∞ EweklyB to ϕ where for FeF (x, t) ∈ ΩX

ϕ(x, t) = ¢ R ϕ(y) dm (x,t) (y),
see for exmple UTD IQVF vet us suppose tht there exists ε > 0 suh tht for ll

ν > 0D a + ε ≤ w ν ≤ b -εF sntrodue the C 1 ([a + ε, b -ε]) funtion p(w) = ¢ w (a+b)/2
dy F(y) .

fy the renormliztion propertyD for ll ν > 0D

u ν = p(w ν ) ∈ L ∞ (Ω) is wek solution to ∂ t (ρ ν u ν ) + ∂ x (ρ ν v ν u ν ) = ρ ν g ν ρ ν (•, 0)u ν (•, 0) = ρ ν (•, 0) (p • w 0,ν )(•).
@TFHFVA xote tht the soure term does not depend on u ν Y this is the reson ehind the hoie of p oveF woreoverD heorem TFHFQ ensures tht u ν veri(es the renormliztion propertyF fy de(nitionD for ll test funtions

φ ∈ C ∞ c (R × [0, T ))D we hve ¢ T 0 ¢ R (ρ ν u ν )∂ t φ + (ρ ν v ν u ν )∂ x φ + (ρ ν g ν )φ dx dt + ¢ R ρ ν (x, 0)p(w 0,ν (x))φ(x, 0) dx = 0.
@TFHFWA xow from thisD we tke two routesF Route 1: limit rst, renormalization second. e n sfely pss to the limit in @TFHFWAF his proves tht p is wek solution to

∂ t (ρp) + ∂ x (ρvp) = ρg ρ ν (•, 0)p(•, 0) = ρ ν (•, 0) (p • w 0 )(•).
ine the soure term of this lst trnsport eqution is of the form overed y heorem TFHFQ @emrk TFHFPAD we re ssured tht p veri(es the renormliztion propertyF epplying it with expD we otin tht u = exp(p) is wek solution to

∂ t (ρu) + ∂ x (ρvu) = ρgu ρ ν (•, 0)u(•, 0) = ρ ν (•, 0) exp(p • w 0 ).
@TFHFIHA Route 2: renormalization rst, limit second. prom @TFHFVAD we pply the renormlizE tion property to u ν @ν > 0A with p = expF his ensures tht

U ν = exp(u ν ) is wek solution to ∂ t (ρ ν U ν ) + ∂ x (ρ ν v ν U ν ) = ρ ν g ν U ν ρ ν (•, 0)U ν (•, 0) = ρ ν (•, 0) exp(p • w 0,ν ), ISS i.e. for ll test funtions φ ∈ C ∞ c (R × [0, T ))D we hve ¢ T 0 ¢ R (ρ ν U ν )∂ t φ+(ρ ν v ν U ν )∂ x φ+(ρ ν g ν U ν )φ dx dt+ ¢ R ρ ν (x, 0) exp(p(w 0,ν (x)))φ(x, 0) dx = 0.
e now let ν → 0 in this formultion to otin tht exp •p is wek solution to @TFHFIHAF fy uniqueness @see heorem TFHFQ nd emrk TFHFPAD exp

•p = exp •p FeF on ΩF gonsequentlyD for FeF (x, t) ∈ ΩD exp (p(x, t)) = exp ¢ R p(y) dm (x,t) (y) ≤ ¢ R exp (p(y)) dm (x,t) (y) = exp(p)(x, t) = exp (p(x, t)) .
ine exp is stritly onvexD the funtion y → p(y) is onstnt m (x,t) EFeF nd onsequentlyD for FeF (x, t) ∈ ΩD m (x,t) = m α(x,t) for some funtion α : Ω → RF pinllyD for ll ν > 0D nd for ll ounded open susets U ⊂ ΩD

w ν 2 L 2 (U ) = ¢ T 0 ¢ R w 2 ν 1 U dx dt -→ ν→0 ¢ T 0 ¢ R ¢ R y 2 dm (x,t) (y) 1 U dx dt = ¢ T 0 ¢ R α(x, t) 2 1 U dx dt = w 2 L 2 (U ) ,
whih implies tht w ν → w in L 2 loc (Ω)F e stndrd digonl proess yields susequene of (w ν ) ν tht onverges FeF on Ω to wF

Step 2. e now get k to the generl seF pix ε > 0 nd onsider the utEo' funtions

F ε (r) = max{F (r), ε}; T ε (w) = min{min{a + ε, w}, b -ε}. ine F ε ∈ C(R) nd F ε ≥ ε > 0D vemm TFHFR ensures tht the trnsport eqution ∂ t (ρ ν w) + ∂ x (ρ ν v ν w) = ρ ν g ν F ε (w) ρ ν (•, 0)w(•, 0) = ρ ν (•, 0)T ε (w 0,ν ) dmits wek solution w ν,ε F xote tht from roposition TFHFSD for ll ν, ε > 0D w ν,ε (•, t) -w ν (•, t) L ∞ ≤ w ν,ε (•, t) -w ν (•, t) L ∞ + sup ν>0 g ν L ∞ ¢ t 0 F(w ν (•, s)) -F ε (w ν,ε (•, s)) L ∞ ds ≤ ε + sup ν>0 g ν L ∞ F L ∞ ¢ t 0 w ν (•, s) -w ν,ε (•, s) L ∞ ds + εt , sine F -F ε L ∞ ≤ εF prom thisD we dedue with qronwll lemmD tht ∀ν, ε > 0, w ν,ε -w ν L ∞ (Ω) ≤ ε (1 + sup ν>0 g ν L ∞ F L ∞ T ) exp(sup ν>0 g ν L ∞ F L ∞ T ) C .
@TFHFIIA glerlyD if 0 < ε ≤ 1D inequlity @TFHFIIA estlishes uniform L ∞ ound for the sequene (w ν,ε ) ν sine (w ν ) ν is ounded in L ∞ y ssumptionF gonsequentlyD sine F ε ≥ ε > 0D tep I provides the existene of w ε ∈ L ∞ (Ω) suh tht susequene of (w ν,ε ) ν onverges FeF on Ω to w ε F xowD y stndrd topologil rgument we prove tht @TFHFIIA leds to strong omptness for the sequene (w ν ) ν F wore preiselyD we re to prove tht

(w ν ) ν is reltively ompt in L 1 loc (Ω)F pix K ⊂ Ω ompt suset of Ω nd (x δ > 0F ine for ll ε > 0D (w ν,ε ) ν onverges FeF on Ω nd is uniformly ounded in L ∞ D the sequene onverges in L 1 (K)F gonsequentlyD for ll ε > 0D (w ν,ε ) ν is reltively ompt in L 1 loc (K)F pix ε > 0 suh thtD with C de(ned in @TFHFIIAD mes(K)Cε ≤ δ 2 .
xow use the preomptness of (w ν,ε ) ν to introdue (nite overing

B L 1 u i , δ 2 1≤i≤J ; u i ∈ L 1 (K), J ∈ N * .
e onlude y verifying tht

{B L 1 (u i , δ)} 1≤i≤J is overing of (w ν ) ν F pix ν > 0 nd i ∈ {1, . . . , J} suh tht w ν,ε ∈ B L 1 u i , δ 2 
F sing the tringle inequlity nd the de(nition of εD we otinX

w ν -u i L 1 (K) ≤ w ν -w ν,ε L 1 (K) + w ν,ε -u i L 1 (K) ≤ mes(K) w ν -w ν,ε L ∞ (Ω) + δ 2 ≤ mes(K)Cε + δ 2 ≤ δ.
e n onlude tht susequene of (w ν ) ν onverges in L 1 loc (Ω) to some w ∈ L ∞ (Ω)F e further extrtion estlishes the FeF onvergeneF 2. ssing to the limit in the wek formultion stis(ed y (w ν ) ν D we otin tht w is wek solution to @TFHFPA with soure term given y @TFHFTAF fy uniqueness of suh wek solutionD see roposition TFHFSD the whole sequene (w ν ) ν onverges to wF pinllyD heorem TFHFQ (i) pplied with S(x, t) = g(x, t)F(w(x, t)) ensures tht w stis(es the renormliztion propertyD onluding the proofF ISU e onlude the hpter with wellEposedness result for the trnsport eqution @TFHFPA with soure term @TFHFTA where we onsider funtions F whih stisfyX

∃a, b ∈ R (a < b), F ∈ Lip([a, b]), F(a) = F(b) = 0 nd F > 0 on (a, b).
@TFHFIPA yur study is motivted y the prtiulr se a, b = 0, 1 nd F(w) = w(1 -w)F Theorem 6.0.7. Let ρ, v ∈ L ∞ (Ω) satisfy @TFHFIA, g ∈ L ∞ (Ω), F satisfying @TFHFIPA and

w 0 ∈ L ∞ (R; [a, b]
). Then the transport equation @TFHFPA with source term given by @TFHFTA admits at least a weak solution. Moreover, this solution veries the renormalization property.

Proof. he ide is to onstrut sequenes 

(ρ k ) k , (v k ) k , (g k ) k
θ k (x, t) = ϕ(kx)ϕ(kt) k 2 ∈ C ∞ c ((R 2 ; R + )
). e now introdue the smooth pproximtions of the oe0ientsX

ρ k = ρ * θ k + 1 k ; V k = (ρv) * θ k + 1 k ; g k = g * θ k . he sequenes (ρ k ) k , (V k ) k nd (g k ) k
re sequenes of smooth funtions tht onverge in L 1 loc (Ω) to ρ, ρv nd gD respetivelyD nd even if it mens tking susequenesD we n ssume tht the onvergene is FeF on ΩF xote lso tht sine ρ ≥ 0D then

ρ k ≥ 1 k > 0F pix φ ∈ C ∞ c (Ω)F st is redily heked tht ∂ t ρ k + ∂ x V k = 0 in D (Ω)D nd sine ρ k nd V k re smoothD the equlity holds pointwiseF gonsider now (w 0,k ) k ⊂ C 1 (R) suh tht ∀k ∈ N * , a ≤ w 0,k ≤ b nd w 0,k -→ k→+∞ w 0 FeF on RF ine ρ k does not vnishD the funtion v k = V k ρ k is smoothD moreoverD it veri(es the uniform L ∞ oundX ∀k ∈ N * , |v k | = |V k | ρ k = |(ρv) * θ k + 1/k| ρ * θ k + 1/k ≤ v L ∞ + 1.
e n de(ne w k ∈ Lip(Ω) s the lssil solution to the following trnsport equtionX

∂ t w k + v k ∂ x w k = g k F(w k ) w k (•, 0) = w 0,k .
@TFHFIQA sndeedD we n solve this hi using the method of hrteristisF wore preiselyD (x (x, t) ∈ ΩF pirstD we solve the following system of yhis @0 < s < tAX

ξk (s) = v k (ξ k (s), s) ξ k (t) = x uk (s) = g k (ξ k (s), s)F(u k (s)) u k (0) = w 0,k (ξ k (0)).
he (rst yhi dmits unique glol solution sine v k is smooth nd oundedF woreoverD sine (s, u) → g k (ξ k (s), s)F(u) is ontinuous nd vipshitz ontinuous with respet to the u vrileD the seond yhi dmits unique solutionF his de(nes w k everywhere in ΩF xote tht sine

u k (0) ∈ [a, b]D essumption @TFHFIPA ensures tht u(s) ∈ [a, b] for ll s ∈ [0, t]F gonsequentlyD w k (x, t) = w k (ξ(t), t) = u(t) ∈ [a, b]F reneX ∀k ∈ N * , ∀(x, t) ∈ Ω, a ≤ w k (x, t) ≤ b. @TFHFIRA
st is lssil tht w k de(ned tht wy is lssil solution to the hi @TFHFIQA nd lso to

∂ t (ρ k w k ) + ∂ x (ρ k v k w k ) = g k F(w k ) ρ k (•, 0)w k (•, 0) = ρ k (•, 0)w 0,k .
@TFHFISA sine ρ k > 0F herefore w k is lso wek solution to @TFHFISAF ine we lso hveD for ny

p ∈ C 1 (R)D d ds (p(u k (s))) = g k (ξ k (s), s)F(u k (s))p (u k (s)),
we dedue the sme wy tht

U k = p(w k ) is wek solution to ∂ t (ρ k U k ) + ∂ x (ρ k v k U k ) = g k F(w k )p (w k ) ρ k (•, 0)U k (•, 0) = ρ k (•, 0) (p • w 0,k )(•), @TFHFITA
i.e. the sequene (w k ) k is sequene of wek solutions to @TFHFISA whih stisfy the renorE mliztion propertyF ell the hypotheses of heorem TFHFT re ful(lledF gonsequentlyD there exists w ∈ L ∞ (Ω; [a, b]) suh tht (w k ) k onverges FeF to wD w is wek solution to @TFHFPA nd it veri(es the renormliztion propertyF utting together roposition TFHFS nd heorem TFHFUD we provedX Corollary 6.0.8. Let ρ, v ∈ L ∞ (Ω) satisfy @TFHFIA, g ∈ L ∞ (Ω) and F satisfying @TFHFIPA.

Then for any initial data w 0 ∈ L ∞ (R; [a, b]), the transport equation his hpter is devoted to mthemtil nd numeril nlysis of 2 × 2 system of lne lws with nonElol ouplingF yur motivtions ome from mrosopi modeling of rod tr0D nd more spei(llyD from tking into ount the distintion etween ordered or disordered ehviors of drivers within the prdigm of the soElled qenerlized eondE yrder wodels @qywAF 7.1.1 Generalities on macroscopic PDE trac models vet us strt y providing rief ount on dvntges nd drwks @in terms of modelingD ut lso in terms of ompleteness nd )exiility of their mthemtil nd numeril nlysisA of (rstEorder nd seondEorder hyperoli models for rod tr0D inluding phse trnsition models tht omine oth of the oveF wore informtion n e foundD e.g.D in the surveys nd monogrphs QHD IQWD IRQF sn etion UFIFPD we will insert our work within this generl piture nd highlight the nlytil purpose of our work tht goes eyond its modeling purposeF

∂ t (ρw) + ∂ x (ρvw) = ρgF(w) ρ(•, 0)w(•, 0) = ρ(•, 0)w 0 .
The fundamental ow equation elthough tr0 desription in terms of individul gents nd their intertions is relevntD typilly it leds to lrge yhi systems whih mthemtil nlysis is umersomeY moreE overD they my enrypt the relevnt tr0 informtion @suh s presene of shok wvesA in ISW nonEovious wyF he in)uene of )uid mehnis nd the well developed mthemtil mhinery of hyperoli his nd their pproximtion mde mrosopi models very popE ulrD strting from the pioneering vighthillEhithm nd ihrds modelF ell these models re sed on the fundmentl )ow eqution

∂ t ρ + ∂ x (ρv) = 0 @UFIFIA
with ρ representing the density of the )owD ounded y some mximum vlueD nd v repE resenting the veloityF hi'erent models re uilt upon this eqution y dding funtionl ndGor di'erentil reltions linking the two stte vriles ρ nd v @or ρ nd ρvAF

First-order models hese models use n expliit losure reltion linking v to ρ y funtionl dependeneD suh

s v(ρ) = V max (1 - ρ ρ max
)F he lssil vighthillEhithm nd ihrds model IPSD IRI @vD in the sequelA is the prototype of the whole lssF e refer to PW for survey of (rstEorder modelsF he mjor dvntge of suh models is the possiility of their omplete mthemtil nlysisD rigorous ssessment of severl pproximtion strtegiesD proved reE ltion to ertin mirosopi mnyEprtile modelsF heir theory is (rmly tthed to the lssil theory of uruzhkov entropy solutions to slr onservtion lws IIRF he roE ustness of the theory filittes the introdutionD into the (rstEorder modelsD of dditionl fetures suh s delysD nonElolityD point onstrintsD vrition of the numer of linesD etcY see PWD see lso RHD STD IID QI for few more reent exmplesF he ler drwk of the (rstEorder models is their indequy to experimentl dt whih exhiit funtionl dependene of ρv on ρ only for low enough densitiesD seeD e.g.D the experimentl fundmentl digrm in VUD pigFIF

Second-order models sn the ontext of tr0 )owsD the nme seondEorder is given to models desriing the joint evolution of the stte vriles (ρ, v) @or (ρ, ρv)A y mens of 2 × 2 system of hisF efter the ontroversy of TWD the seondEorder model of ewEsle nd hng PSD ISU @eD in the sequelA eme populrF sn IIWD IIV wide fmily of generlized seondE order models @qywD in the sequelA ws desriedF he mthemtil struture of these models is 2 × 2 system of onservtion or lne lwsD stritly hyperoli wy from the vuum ρ = 0D with one genuinely nonliner nd one linerly degenerte hrteristi (eldsF eletion riteri in terms of iemnn solver n e reformulted under the form of entropy onditions @seeD in prtiulrD IP for uruzhkovElike hoie of entropiesAF rints of e with dditionl feturesD s for the vrints of the v model mentioned here oveD were proposedF ixistene nlysis withD sometimesD numeril nlysis ould e extended to some of these vrintsD seeD e.g.D IPF roweverD the mthemtil nlysis of qyw is not omplete t the present stgeD exept for the se of the iemnn prolems IIVF he dditionl omplexity of e nd more generllyD of qyw is ompensted y etter desription of some of the fetures of tr0D yet for low densities nd espeilly for vuum the v model my represent simpler nd more relile modelF ITI Phase transition models hse trnsitions etween free nd ongested sttes of )ow were identi(ed in the engiE neering litertureD see e.g.D IHWD IIID s the ruil property of rel tr0 )ows responsile for the selfEorgniztion ptterns suh s the stopEndEgo wvesF he two phses re ssoE ited with two di'erent regions of the experimentl fundmentl digrmsD like VUD pigFIF everl twoEphse mthemtil models with phse trnsitions were proposedF sn prtiulrD the model of SS is lose to the qyw fmilyD see IIWF sn prinipleD these models o'er etter desription of tr0D omining the dvntges of the (rstEorder nd the seondEorder models @e.g.D WID SUA nd the insight from the engineering litertureF his omes t the prie of muh hevier mthemtil tretmentF sndeedD typilly the phseEtrnsition models re posed in terms of the iemnn solver @whih desriesD mong otherD the phse trnsition ehviorA nd the wveEfront trking lgorithm with delite ontrol of vrition is used for the existene nlysisF iven slight modi(tions of suh models my result in hevy modi(tions of the nlysis of front intertionsF e refer to IQ for one reent exmple of phse trnsition model enrihed with point onstrints nd for rief survey of mthemtil literture on phse trnsition modelsF 7.1.2 Analytical and modeling purposes of the present work yur purpose is twoEfoldF yur primry gol is to ontriute to mthemtil nlysis for some qyw models sed upon the roust theory of slr onservtion lws like for the (rstEorder se nd on the theory of renormliztion for the kind of trnsport equtions enountered in typil qywF his line is n lterntive to the lssil line sed on the generl theory of hyperoli systems of onservtion lwsD nd it my llow for more )exiility when vrints of the model re onsideredF yur seondry gol is to enrih the qyw fmily of models with vrint uilt on tking into ount the stte of orderliness in drivers9 ehvior nd its evolution long vehiles9 trjetoriesF yur mthemtil nlysis is developed hving in mind the key fetures of this nonElol vrint of qywD though it my hve wider pplitionsF Contributions into analysis and approximation of GSOM-kind models and systems of the Keytz-Kranzer kind e develop dequte nlysis nd pproximtion tools for n exemplry qyw model feE turing nonElol oupling etween the eqution for the density ρ nd the eqution for the uxiliry mrker wF he nonElolity hs regulrizing e'et tht mkes the system under study reminisentD in terms of the nlytil pprohD of the lssil uey(tzEurnzer sysE tem IIPF sn this situtionD the entrl role is plyed y the renormliztion property for the omponent w of the solution whih evolves long the trjetories of the )owF his surprising E in view of the involved nd elerted theory UU of renormlized solutions E struturl property ws estlished in IQR for generl wek solutions w of the trnsport eqution ∂ t w + ∂ x (wv) = 0 with the veloity v involved in the ontinuity eqution ∂ t ρ + ∂ x (ρv) = 0 for the density ρD hving in mind pplition to the uey(tzEurnzer systemF e further deE velop the tool of the wekGrenormlized solution dding nonliner soure terms in the nov setting IQR nd unovering propgtion of omptness mehnism proper to this liner equtionF sndeedD the renormliztion struture yields omptness E either through the totl vrition ontrolD or through the nlysis in terms of oung mesuresF his struture lso guides us in developing n originl numeril strtegy whih entersD in nonEovious wyD the stndrd frmework of (nite volume pproximtionsF st turns out tht this numeril strtegy n e seen s generliztion of the spei( disretiztion strtegy developed for the uey(tzE urnzer system IIQF xote tht the renormliztion property ws lredy identi(ed in IP s key ingredient in the study of the ewEsle nd hng system @eD the est known exmple of qywA with point onstrints t ottleneksD nd it n e instrumentl s well for studying oundryEvlue prolems for eF epplile to wider lss of qyw with nonElol ouplingD our nlysis does not rely on the stndrd hyperoli struture of the systemF snstedD it relies upon sort of deoupling due to the nonElol dependene on w of the fundmentl digrm ρ → v(x, t, ρ)F woreoverD we rie)y disuss the possiility of pursuing this line of nlysis for more stndrd lol qyw modelsD linking the question to the need for deeper understnding of disontinuousE )ux slr onservtion lws with modertely or wildly disontinuous in spe )ux funtionF igorous pplition of this pproh to lol qyw is postponed to future workF xote tht lso the disretiztion strtegy we pursue is pplile to the lol qywF Contribution to trac modeling with GSOM e propose prototype model le to tke into ount the stte of orderliness of drivers9 ehviorF oughly spekingD we represent the stte of the tr0 y fmily of fundmentl digrms ρ → ρv tht depend on the dditionl orderliness prmeter ω nd interpolte etween fundmentl digrms ρ → ρV min (ρ) @orresponding to ω = 0D fully disordered tr0A nd ρ → ρV max (ρ) @orresponding to ω = 1D fully ordered tr0AF his ide ws put forwrd y the uthors in PQ @see lso ghpter PA with the gol to model selfEorgniztion @nd disorgniztionA of tr0 t ottleneksD in the frme of the si v model dpted to the presene of ottleneks IID WD IHF sn PQD ω is timeEdependent prmeter tthed to the ottlenekY the pssing pity of the ottlenek is funtion of the orderliness prmeter ωF he dynmis of ω is governed y n yhi of the logisti typeF his yhi is driven y verged vlues of the density in the upstrem neighourhood of the ottlenekX this o'ers mehnism of progressive ordering of the tr0 @selfEorgniztionA in stle tr0 onditionsD nd of quik disordering in the situtions with ruptly growing verged density upstrem the ottlenekF sn view of the extensive evidene of selfEorgniztion of tr0 eyond ottleneks IIHD we trnspose this ide towrds tking into ount the in)uene of orderliness in drivers9 ehvior on the fundmentl digrm of the )ow in the ulk @so we do not fous on ottleneks ny moreD unlike in PQAF wny ttempts hve een mde to model the selfEorgniztion in tr0 nd its slient fetures like the stopEndEgo wvesF yne importnt prdigm for these models is phse trnsitionsD resulting in formultion of twoEphse models IIID SVF ome of twoEphse models re loseD in their strutureD to the qyw models SSD IIWF sn the present hpterD we propose toy model whih n e situted t the rossrods of the ove mentioned idesF st hs the struture ITQ of qyw with the vgrngin mrker interpreted s the orderliness prmeterF st n e seen s twoEphse modelD due to the ft tht we tke V min ≡ V max for low densitiesF end it orrows from PQ the mehnism for the evolution of the orderliness mrker w tthed to individul vehilesF e de(ne the orderliness prmeter ω = ω(x, t) of the fundmentl digrm s the weighted vergeD over smll viinity of every point (x, t)D of the individul orderliness mrker wF he orresponding lol model @with ω = wA mkes sense nd it is rie)y disussedF eny ttempt to link the model we work withD or the vlues of the prmeters of this modelD to rod tr0 dt is fr eyond the sope of this hpterF es mtter of ftD we hve in mind the whole lss of systems of nonElol qyw kind of whih our exemplry model is prtiulr instneF sndeedD the mthemtil nlysis we rry out is suitle for wide fmily of nonElol qyw modelsD inluding soure terms for evolution of the vgrngin mrkerF 7.2 The GSOM-kind model with orderliness yne nd for llD (x time horizon T > 0 nd denote Ω = R × (0, T )F e onsider tht the mximl density ρ max on the rod equls 1F sn our new modelD the (rst eqution on

[0, 1]Evlued density ρD ∂ t ρ + ∂ x (ρv(x, t, ρ)) = 0, (x, t) ∈ Ω, @UFPFIA
expresses the onservtion of mss nd it is driven y time nd spe dependent veloity vF his dependeny redsX v(x, t, ρ) = (1 -ω(x, t))V min (ρ) + ω(x, t)V max (ρ). @UFPFPA sn @UFPFPAD V min , V max re the two levels of tr0 veloityY the one for the ordered regime of tr0 nd the other for the disordered regimeF es usulD we require oth of them to e noninresing nd nonnegtive vipshitz ontinuous funtions de(ned for ρ ∈ [0, 1]X nturllyD V max ≥ V min F he tul veloity v in @UFPFPA is onvex omintion of the two regimes9 veloities with ω(x, t) ∈ [0, 1] representing the stte of orderliness of the tr0 t time t nd position xF e further onsider the orderliness prmeter w ssoited to individul vehilesD whih is evolved ording to the trnsport eqution

∂ t (ρw) + ∂ x (ρwv(x, t, ρ)) = ρs(x, t, w). @UFPFQA
por regulr veloity (eldD eqution @UFPFQA orresponds to the evolution of w ording to the yhi ẇ(X(t), t) = s X(t), t, w(X(t), t) long the integrl urves x = X(t) of the veloity (eld vF sn sene of regulrity of vD the rigorous mening to suh evolution is provided y the wek formultion @UFPFQA whihD moreoverD utomtilly implies the renormliztion property @see ghpter TAF he oupling of @UFPFIAD @UFPFPA with @UFPFQA is provided y reltions linking ωD s to wD ρF pirstD we onentrte on the hoie of the soure term s in @UFPFQAX it is diretly inspired y our previous work PQ where selfEorgniztion t ottleneksD governed y n nlogous orE derliness prmeter ωD is onsideredF vet us tke s(x, t, w) = Kw(1-w) where KD depending on ρ nd ∂ t ρ in nonElol wyD re)ets mehnism of orderingGdisordering sujet to the tr0 onditions in viinity of eh point (x, t)F o this endD we introdue the sujetive density

ξ(x, t) = ¢ R ρ(y, t)µ(x -y) dy , @UFPFRA where µ ≥ 0D ¢ R µ(x) dx = 1D
is smooth weight funtion used to verge ρD similrly to nonElol models of IID QID PQF purtherD we mke K depend on ρ through the sujetive density ξ nd its time vritions ∂ t ξF por future useD let us mke preise tht lssil hi omputtions using the wek formultion of @UFPFIA ensure tht ξ dmits time derivtive in the sense of the distriutions nd tht for FeF (x, t) ∈ ΩD

∂ t ξ(x, t) = - ¢ R ρ(y, t)v(y, t, ρ)µ (x -y) dy .
his omes from using ϕ(y, t) = µ(x -y)ψ(t) @x ∈ RA s test funtion in the wek formultionD see for instne emrk PFIFIF o sum upD we tke

s(x, t, w) = K(ξ, ∂ t ξ)w(1 -w) @UFPFSA
for some K : [0, 1] × R → RF o (x the idesD in the simultions we will tkeD following PQD

K(ξ, χ) = C ξ ξ c -1 + 1 - χ + D + - χ - D -
with some threshold ξ c ∈ (0, 1) nd onstnts C > 0D D + > > D -> 0 @see pigure UFIAF wthemtilly spekingD we only suppose tht K ∈ Lip loc ([0, 1] × R)F he ide ehind the ove hoie of K is to llow for progressive ordering of the tr0 with time when the tr0 onditions re stleD nd for quik disordering when sudden nd strong vritions @espeilly in the se of densi(tionA of the tr0 ourF xote tht rndom )ututions of w ould e onsideredD s further step of modelingD ut this is eyond the sope of our workF he key fetures of the dynmis of w enoded in @UFPFQA!@UFPFSA with the ove hoie of K re s followsX " onservtion of the momentum quntity ρw in the region of low densitiesD euse K is zero for low densitiesY " rpid derese of ρw for moderte nd prtiulrly for high densitiesD under strong density vritions @disorderingAY " progressive inrese of ρw in dense nd very dense tr0 with smll density vritions @orderingAF pinllyD let us write the link etween ω in @UFPFPA nd the individul ordering mrkers w s

ω = M[w] @UFPFTA
where M is n opertor on L ∞ (Ω; [0, 1])F e hve in mind the following three hoiesF por the simplest oneD M = sdD i.e.D ω = wD @UFPFIA n e seen s n v eqution with speE time disontinuous )uxF sts mthemtil study still requires deeper nlysisD despite muh progress mde in this diretionF e rie)y disuss the issue in etion UFSFPF feuse tr0 ITS pigure UFI ! ypil ehvior of the orderlinessEdriving funtion KF involves only limited numer of gents in neighourhood of eh pointD in this hpter we fous on the nonElol impt of the individul vehile mrkers w on the glol tr0 orderliness ωF wo vrints will e onsideredF sn etion UFRD the existene will e otined with

M[w](x, t) = ¢ t -∞ ¢ R
w(y, s)η(x -y, t -s) dy ds . @UFPFUA sn @UFPFUAD the funtion η is weight funtion of the form η(x, t) = η 1 (x)η 2 (t) with η 1 ∈ C 1 c (R) nd η 2 ∈ BV(R) nd supported in ompt suset of [0, T )F xote lso tht to mke sense of @UFPFUAD we will extend w y the initil dt w 0 for negtive timesF xote tht the spe verging mens tht the pereptionD y the driversD of the tr0 onditions relies on their oservtions of their immedite neighourhood @typillyD severl dozens of meters downstrem the )owA nd the time verging mens tht the drivers9 pereption of the sitution is not instntneousF emrk tht the nonElolity in time only looks in the pstF sn etion UFSFI nd throughout etion UFTD we ssume stronger retivity of the drivers to instntneous tr0 onditions in their immedite neighourhoodD nd tke the mere spe verging

M[w](x, t) = ¢ R w(y, t)η(x -y) dy .
@UFPFVA with η ≡ η 1 F por the mthemtil nlysis of the resulting systemD the di'erene etween @UFPFUA nd @UFPFVA is tht tht the ltter one requires the BV frmework for existene nlE ysisD while the (rst hoie is regulrizing enough to del with mere L ∞ solutions nd dtF pinllyD we stress tht we hve in mind the sitution where

∃ρ f ∈ (0, 1), ∀ρ ∈ [0, ρ f ], V min (ρ) = V max (ρ) @UFPFWA
so tht @UFPFIA!@UFPFTA exhiits twoEphse ehvior with ρ ∈ [0, ρ f ] orresponding to the free tr0 )ow phse while ρ > ρ f orrespond to the ongested tr0F e re now in position of presenting the outline of the hpterF sn etion UFQ we (x the mthemtil frmework of our workF he eqution @UFPFIA is understood in the sense of uruzhkov entropy solutions IIR of v modelsF he eqution presriing the evolution of the orderliness mrker @UFPFQA is understood in the wek nd renormlized sense of nov IQR for oneEdimensionl trnsport equtions driven y zeroEdivergene oe0ientsD with neessry dpttionsF sndeedD n importnt ingredient of our nlysis is the re(nement of the theory of wek @nd renormlizedA solutions of trnsport his of the kind @UFPFQA under the key ssumptions tht the oe0ients form zeroEdivergene (eld in ΩD nd for wide lss of soure (elds with seprtion on (x, t) nd w dependeneF e gthered originl results on this prolem in ghpter T for this very purposeF purtherD etion UFR is devoted to the proof of the existene of solutions of rolem @UFPFIA ! @UFPFTA with the verging hoie @UFPFUAF sn etion UFS we disuss the extension of the existene nlysis to other hoies of M in @UFPFTAF sn etion UFT we uild numeril sheme dpted to the spei( struture of the system t hnd @v eqution for ρ nd trnsport eqution for wAF e mke the simpler verging hoie @UFPFVA nd prove tht the sheme is BVEstle nd onvergentF e point out struturl similrities etween our sheme nd the sheme of the uthors of IIQ developed for the lssil uey(tzEurnzer systemF pinllyD etion UFU is devoted to performing numeril simultions to illustrte our modelF 7.3 Notion of solution e denote y f the time nd spe dependent )ux f (x, t, ρ) = ρv(x, t, ρ) nd Φ its uruzhkov entropy )ux @see IIRAX

∀ρ, κ ∈ [0, 1], ∀(x, t) ∈ Ω, Φ(x, t, ρ, κ) = sgn(ρ -κ) (f (x, t, ρ) -f (x, t, κ)) .
elying upon IIR for the hi desriing the evolution of ρ nd upon IQR @see lso ghpter TA for the hi desriing the evolution of wD we give the following de(nition of solution to rolem @UFPFIA ! @UFPFTAF Denition 7.3.1. e ouple (ρ, w) ∈ L ∞ (Ω) 2 is solution to @UFPFIA ! @UFPFTA with initil

dt (ρ 0 , w 0 ) ∈ L ∞ (R) 2 if @iA ρ ∈ C([0, T ]; L 1 loc (R; [0, 1])) nd ρw ∈ C([0, T ]; w * -L ∞ (R; [0, 1]
))D where w * -L ∞ mens the spe L ∞ endowed with its topology of wekE * onvergeneY @iiA ρ is n entropy solution to @UFPFIA with initil dt ρ 0 in the following senseX ρ(

•, 0) = ρ 0 in L 1 loc (R)Y nd for ll test funtions ϕ ∈ C ∞ c (R × R + ), ϕ ≥ 0D for ll κ ∈ [0, 1] nd for ll τ, s ∈ [0, T ] @s < τ AD ¢ τ s ¢ R |ρ -κ|∂ t ϕ + Φ(x, t, ρ, κ)∂ x ϕ -sgn(ρ -κ)∂ x f (x, t, κ)ϕ dx dt + ¢ R |ρ(x, s) -κ|ϕ(x, s) dx - ¢ R |ρ(x, τ ) -κ|ϕ(x, τ ) dx ≥ 0; @UFQFIA @iiiA w is wek solution to @UFPFQA with initil dt w 0 in the following senseX ρ(•, 0)w(•, 0) = ρ 0 w 0 in L ∞ (R)EweklyBY nd for ll test funtions φ ∈ C ∞ c (R × R + ) nd for ll τ, s ∈ [0, T ] 7.3. NOTION OF SOLUTION ITU @s < τ AD ¢ τ s ¢ R (ρw)∂ t φ + (ρvw)∂ x φ + ρK (ξ, ∂ t ξ) w(1 -w)φ dx dt + ¢ R ρ(x, s)w(x, s)φ(x, s) dx - ¢ R ρ(x, τ )w(x, τ )φ(x, τ ) dx = 0, @UFQFPA
where ξ is linked to ρ y @UFPFRAY @ivA v nd ω re linked y @UFPFPA nd ω nd w re linked y @UFPFTAF Remark 7.3.1. eording to the result of gorollry TFHFV sed upon the theory of IQRD given ρ, v nd setting g = K (ξ, ∂ t ξ) with ξ given y @UFPFRAD the solution w in the sense @UFQFPA utomtilly veri(es the renormliztion propertyD cf. he(nition TFHFPF e will syD for shortD tht the wek solution in the sense @UFQFPA is lso renormlized solutionD mening tht it ful(lls this renormliztion propertyF his spet is essentil for the omptness propertiesD nd it lso mens thtD in senseD the solution is evolving s if hrteristis ould e de(ned @though the ltter nnot e de(ned due to the possile irregulrity of ρ, vAF he ltter oservtion is the key to the onstrution of the the numeril sheme nd it lso ensures the propgtion of the BV regulrityD for BV initil dtF Remark 7.3.2 @yn the timeEontinuityA. st is more usul to formulte @UFQFIAE@UFQFPA with

s = 0D τ = T nd ϕ, φ ∈ C ∞ c (R × [0, T ))
F yur present formultions re instrumentl for the splitting rgument we employ in our onstrutionD see etion UFRFIF he equivlene etween the two formultions is due to the timeEontinuity of entropy solutions of v eqution nd of wek solutions of the trnsport equtions t hndD see he(nition UFQFI@iAF sn etion UFRD we prove the following existene resultF Theorem 7.3.2. Fix ρ 0 , w 0 ∈ L ∞ (R; [0, 1]). Assume that V min ≤ V max ∈ C 1 ([0, R]) are nonnegative and that V min and V max do not vanish on any interval of [0, 1]. Then Problem @UFPFIA @UFPFTA,@UFPFUA admits at least one solution.

sn etion UFTD we otin the following results of numeril pproximtion nd existene for the timeElol vrint @UFPFVA of our modelY note tht @UFPFUA n lso e onsidered in our numeril frmeworkF Theorem 7.3.3. Suppose that TV(ρ 0 ) < +∞ and that w 0 ∈ L 1 (R; [0, 1]), TV(w 0 ) < +∞.

Moreover suppose that ρ 0 is separated from the vacuum in the sense that

∃ε ∈ (0, 1), ε ≤ ρ 0 ≤ 1 and V min (ε) = V max (ε). @UFQFQA
Then up to a subsequence, the sequence of discrete solutions produced by the scheme of Section 7.6 converges to a solution of @UFPFIA @UFPFTA, @UFPFVA.

xote tht the seond requirement in @UFQFQA follows from the ssumption @UFPFWAD while the (rst requirement in @UFQFQA is essentil in order to de(ne the gpv ondition of the numeril sheme we developF Theorem 7.3.4. Suppose that TV(ρ 0 ) < +∞ and ρ 0 satises @UFQFQA, and that w 0 ∈ L 1 (R; [0, 1]), TV(w 0 ) < +∞. Then Problem @UFPFIA @UFPFTA, @UFPFVA admits at least one solution.

vet us mke preise tht the ssumption @UFQFQA is only useful to onstrut nd prove the onvergene of the sheme developed in etion UFTF he lst existene result n e otined without itD see the disussion in etion UFSFID y using the splitting onstrution orrowed the proof of heorem UFQFP long with BV stility rgument ensuring omptnessF 7.4 Existence of solutions via splitting 7.4.1 Time-splitting procedure and approximate solution o prove existene of solutions to @UFPFIA ! @UFPFTAD@UFPFUAD we use timeEsplitting tehniqueF his wyD we split the model omining the notion of uruzhkov entropy solution to v models with the notion of wekEndErenormlized solutions to trnsport equtions under the spei( form of nov IQRD extended in ghpter T in order to inlude the nonliner soure termF

pix ρ 0 , w 0 ∈ L ∞ (R; [0, 1])F vet ν > 0 e time stepD denote for ll n ∈ ZD t n = nν nd let N ∈ N * suh tht T ∈ [t N , t N +1 )F Initialization. por ll t ∈ RD ρ 0 (•, t) = ρ 0 nd ∀n ∈ Z -, w n (•, t) = w 0 .
Induction. pix n ∈ {1, . . . , N + 1}F @IA pirst de(ne the orderliness prmeterX ∀t ∈ [t n-1 , t n ), ∀x ∈ RD

ω n (x, t) = ¢ t-ν t n-2 ¢ R w n-1 (y, s)η(x -y, t -s) dy ds + k≤n-2 ¢ t k t k-1 ¢ R w k (y, s)η(x -y, t -s) dy ds .
emrk tht the vlues of ω n only depend on the vlues of ρ nd w efore time t n-1 D whih is the key to the splittingF @PA e use ω n to de(ne the r veloity

∀t ∈ [t n-1 , t n ), ∀x ∈ R, v n (x, t, •) = (1 -ω n (x, t))V min (•) + ω n (x, t)V max (•) nd the )ux f n (x, t, ρ) = ρv n (x, t, ρ)F @QA he )ux funtion is smooth in xD vipshitz in ρ nd BV in tF ine ρ n-1 (•, t n-1 ) is oundedD we n de(ne ρ n ∈ C([t n-1 , t n ]; L 1 loc (R; [0, 1]
)) s the unique entropy solutionD in the sense of he(nition UFQFI @iAE@iiAD see IIRD heorem I nd SWD heorem PFQD to

∂ t ρ n + ∂ x (f n (x, t, ρ n )) = 0 ρ n (•, t n-1 ) = ρ n-1 (•, t n-1 ). ITW @RA etting ∀t ∈ [t n-1 , t n ), ∀x ∈ R, ξ n (x, t) = ¢ R ρ n (y, t)µ(x -y) dy ,
nd following gorollry TFHFVD we n de(ne

w n ∈ L ∞ (R × (t n-1 , t n )) s the unique wek solution to ∂ t (ρ n w n ) + ∂ x (f n (x, t, ρ n )w n ) = ρ n K (ξ n , ∂ t ξ n ) w n (1 -w n ) w n (•, t n-1 ) = w n-1 (•, t n-1 ).
gorollry TFHFV ensures tht w n veri(es the renormliztion propertyD see he(nition TFHFPY nd emrk TFHFI sed upon IQRD vemm I provides the required regulrity in timeX

w n ∈ C([t n-1 , t n ]; w * -L ∞ (R))F xote tht y onstrutionD w tkes vlues in [0, 1]F Conclusion. he(ne the following funtionsX for FeF (x, t) ∈ ΩD (ρ ν (•, t), w ν (•, t)) = (ρ 0 , w 0 ) 1 R -(t) + N +1 n=1 (ρ n (•, t), w n (•, t)) 1 (t n-1 ,t n ] (t); (v ν (x, t, •), ω ν (x, t), ξ ν (x, t)) = N +1 n=1 (v n (x, t, •), ω n (x, t), ξ n (x, t)) 1 [t n-1 ,t n ) (t) f ν (x, t, •) = N +1 n=1 f n (x, t, •)1 [t n-1 ,t n ) (t).
Proposition 7.4.1. The couple (ρ ν , w ν ) constructed above is a solution in Ω to the following system:

                 ∂ t ρ ν + ∂ x (f ν (x, t, ρ ν )) = 0 v ν (x, t, ρ) = (1 -ω ν (x, t))V min (ρ) + ω ν (x, t)V max (ρ) ∂ t (ρ ν w ν ) + ∂ x (f ν (x, t, ρ ν )w ν ) = ρ ν K (ξ ν , ∂ t ξ ν ) w ν (1 -w ν ) ω ν (x, t) = ¢ t-ν -∞ ¢ R w ν (y, s)η(x -y, t -s) dy ds .

@UFRFIA

Proof. fy onstrutionD for ll n ∈ {1, . . . , N + 1}, ρ n ∈ C([t n-1 , t n ]; L 1 loc (R))F gomining this with the stop-and-restart onditions

ρ n (•, t n-1 ) = ρ n-1 (•, t n-1 )D we ensure tht ρ ν ∈ C([0, T ]; L 1 loc (R))F sing similr resoningD we otin ρ ν w ν ∈ C([0, T ]; w * -L ∞ (R))F pix now ϕ ∈ C ∞ c (R × R + ), ϕ ≥ 0 nd κ ∈ [0, 1]F vet us denote y Φ ν the uruzhkov entropy )ux
ssoited with f ν F fy onstrutionD for every n ∈ {1, . . . , N + 1}D we hve

¢ t n t n-1 ¢ R ρ ν -κ ∂ t ϕ + Φ ν (x, t, ρ ν , κ)∂ x ϕ dx dt = ¢ t n t n-1 ¢ R ρ n -κ ∂ t ϕ + sgn(ρ n -κ) f n (x, t, ρ n ) -f n (x, t, κ) ∂ x ϕ dx dt ≥ ¢ t n t n-1 ¢ R sgn(ρ n -κ)∂ x f n (x, t, κ)ϕ dx dt - ¢ R ρ n (x, t n-1 ) -κ ϕ(x, t n-1 ) dx + ¢ R |ρ n (x, t n ) -κ| ϕ(x, t n ) dx = ¢ t n t n-1 ¢ R sgn(ρ n -κ)∂ x f ν (x, t, κ)ϕ dx dt - ¢ R ρ ν (x, t n-1 ) -κ ϕ(x, t n-1 ) dx + ¢ R |ρ ν (x, t n ) -κ| ϕ(x, t n ) dx .
prom this inequlityD it is strightforwrd to prove tht for ll s, τ ∈ [0, T ] @s < τ AD we hve

¢ τ s ¢ R |ρ ν -κ|∂ t ϕ + Φ ν (x, t, ρ ν , κ)∂ x ϕ -sgn(ρ ν -κ)∂ x f ν (x, t, κ)ϕ dx dt + ¢ R |ρ ν (x, s) -κ|ϕ(x, s) dx - ¢ R |ρ ν (x, τ ) -κ|ϕ(x, τ ) dx ≥ 0,
@UFRFPA see ghpter QD etion QFP for n nlogous lultionF vet us mke preise here the link etween

ρ ν nd ξ ν F por ll t ∈ [0, T ]D if t ∈ [t n-1 , t n ) for some n ∈ {1, . . . , N + 1}D then for ll x ∈ RD ξ ν (x, t) = ξ n (x, t) = ¢ R ρ n (y, t)µ(x -y) dy = ¢ R ρ ν (y, t)µ(x -y) dy .
e now turn to the otining of n pproximte wek formultion similr to @UFQFPAF vet

φ ∈ C ∞ c (R × R + )F por every n ∈ {1, . . . , N + 1}D we hve ¢ t n t n-1 ¢ R ρ ν w ν ∂ t φ + f ν (x, t, ρ ν )w ν ∂ x φ dx dt = ¢ t n t n-1 ¢ R ρ n w n ∂ t φ + f n (x, t, ρ n )w n ∂ x φ dx dt = - ¢ t n t n-1 ¢ R ρ n K (ξ n , ∂ t ξ n ) w n (1 -w n )φ dx dt - ¢ R ρ n (x, t n-1 )w n (x, t n-1 )φ(x, t n-1 ) dx + ¢ R ρ n (x, t n )w n (x, t n )φ(x, t n ) dx = - ¢ t n t n-1 ¢ R ρ ν K (ξ ν , ∂ t ξ ν ) w ν (1 -w ν )φ dx dt - ¢ R ρ ν (x, t n-1 )w ν (x, t n-1 )φ(x, t n-1 ) dx + ¢ R ρ ν (x, t n )w ν (x, t n )φ(x, t n ) dx , 7.4. 
EXISTENCE OF SOLUTIONS VIA SPLITTING IUI from thisD one ginD it is esy to prove tht for ll s, τ ∈ [0, T ] @s < τ AD we hve

¢ τ s ¢ R (ρ ν w ν )∂ t φ + (ρ ν v ν w ν )∂ x φ + ρ ν K (ξ ν , ∂ t ξ ν ) w ν (1 -w ν )φ dx dt + ¢ R ρ ν (x, s)w ν (x, s)φ(x, s) dx - ¢ R ρ ν (x, τ )w ν (x, τ )φ(x, τ ) dx = 0.
@UFRFQA fy onstrutionD v ν nd ω ν re linked y the seond equlity in @UFRFIAF pinllyD if t ∈ [t n-1 , t n ) for some n ∈ {1, . . . , N + 1}D then we hve for ll x ∈ RD

ω n (x, t) = ¢ t-ν t n-2 ¢ R w n-1 (y, s)η(x -y, t -s) dy ds + k≤n-2 ¢ t k t k-1 ¢ R w k (y, s)η(x -y, t -s) dy ds = ¢ t-ν -∞ ¢ R w ν (y, s)η(x -y, t -s) dy ds ,
i.e. ω ν nd w ν re linked y the lst equlity in @UFRFIAF 7.4.2 Compactness and convergence e now wnt to pss to the limit in @UFRFPAE@UFRFQAD nd for tht we need su0ient omptness of the sequenes involvedF he di0ulty lies in the otining of strong omptness for the sequene (w ν ) ν F por this skeD we developed the omptness from renormliztion rgument for oneEdimensionl trnsport equtions ddressed in IQRD see heorem TFHFTF o pply itD we needX " uniform L ∞ ounds for the sequenes

(ρ ν ) ν D (v ν ) ν D (K(ξ ν , ∂ t ξ ν )) ν nd (w ν ) ν Y " strong omptness for the sequenes (ρ ν ) ν D (f ν (•, •, ρ ν )) ν D (K(ξ ν , ∂ t ξ ν )) ν Y
" to prove tht (w ν ) ν is sequene of wek solutions to the seond hi of @UFRFIAD whih implies tht they verify the renormliztion propertyD y virtue of gorollry TFHFVF xote tht we proved the lst point in the proof of roposition UFRFIF e now fous on the two other requirementsF vet us strt with the L ∞ oundsF Lemma 7.4.2. For all ν > 0, we have the bounds:

0 ≤ ρ ν , w ν , ω ν ≤ 1; 0 ≤ v ν ≤ V max ; |K(ξ ν , ∂ t ξ ν )| ≤ sup 0≤ξ≤1 |χ|≤Vmax µ L 1 |K(ξ, χ)| .
Proof. he ounds for (ρ ν ) ν nd (w ν ) ν re lerF ine η is weight funtionD for ll ν > 0D we hve

∀(x, t) ∈ Ω, 0 ≤ ω ν (x, t) ≤ ¢ T 0 ¢ R η(y, s) dy ds = 1,
whih implies the desired ounds for (v ν ) ν sine it is onvex omintion of V min nd V max F xowD one we rell tht for FeF (x, t) ∈ ΩD

∂ t ξ ν (x, t) = - ¢ R ρ ν (y, t)v ν (y, t, ρ ν )µ (x -y) dy ,
we immeditely get the ound for (K(ξ ν , ∂ t ξ ν )) ν F e now turn to the omptness for the sequenes

(ρ ν ) ν D (f (•, •, ρ ν )) ν D (K(ξ ν , ∂ t ξ ν )) ν F vet us strt with (f (•, •, ρ ν )) ν F
Lemma 7.4.3. There exists ω ∈ C(Ω) such that up to the extraction of a subsequence, (ω ν ) ν converges uniformly on compact sets to ω. Moreover, for all (x, t) ∈ Ω, ω(x, t) ∈ [0, 1].

Proof. e now prove tht the sequene (ω ν ) ν is ounded in W 1,∞ (Ω)F e lredy proved in vemm UFRFP tht (ω ν ) ν is ounded in L ∞ (Ω)F pix now (x, t), (ξ, τ ) ∈ ΩF yn the one hndD we hve

|ω ν (x, t) -ω ν (ξ, t)| ≤ ¢ t-ν -∞ ¢ R |η(x -y, t -s) -η(ξ -y, t -s)| dy ds ≤ |x -ξ| ¢ t-ν -∞ TV(η(•, t -s)) ds ≤ η L 1 ((0,T );BV) |x -ξ|.
yn the other hndD

|ω ν (x, t) -ω ν (x, τ )| ≤ ¢ t-ν -∞ ¢ R |η(x -y, t -s) -η(x -y, τ -s)| dy ds + ¢ τ -ν t-ν ¢ R η(x -y, τ -s) dy ds ≤ η L 1 (R;BV) + η L ∞ ((0,T );L 1 ) |t -τ |.
he omptness result follows from the ompt emedding W 1,∞ ( • U ) ⊂ C(U ) when U ⊂ Ω is ompt susetF e stndrd digonl proess ensures then the existene of susequene of (ω ν ) ν tht onverges to some ω ∈ C(Ω) on every ompt suset of ΩF Corollary 7.4.4. Dene the velocity v(x, t, ρ) = (1 -ω(x, t))V min (ρ) + ω(x, t)V max (ρ) and the ux f (x, t, ρ) = ρv(x, t, ρ). Then, up to a subsequence, (v ν ) ν and (f ν ) ν converge uniformly on compact subsets of Ω × [0, 1] to v and f , respectively.

Proof. he lim is immedite euse of the onvergene of (ω ν ) ν F e see here the e'et of the nonElolity of (ω ν ) ν F o otin strong omptness of (ρ ν ) ν D we impose nonEdegenery ssumption on the )uxF Lemma 7.4.5. Suppose that V min and V max do not vanish on any interval of [0, 1]. Then there exists a subsequence of (ρ ν ) ν which converges a.e. on Ω to some ρ ∈ L ∞ (Ω). Moreover, for a.e. (x, t) ∈ Ω, ρ(x, t) ∈ [0, 1].

Proof. pix U ounded open suset of ΩD V ompt suset of Ω ontining U nd κ ∈ [0, 1]F sing the formlism of IQPD IQRD we show tht div (t,x) (ρ ν -κ) + (ρ ν -κ) + (f (x, t, ρ ν ) -f (x, t, κ)) ν is preompt in H -1 (U ). IUQ fy for ll ν > 0D 2∂ t (ρ ν -κ) + + 2(ρ ν -κ) + (f (x, t, ρ ν ) -f (x, t, κ)) = -∂ x f (x, t, κ) + ∂ t |ρ ν -κ| + ∂ x Φ(x, t, ρ ν , κ) + ∂ x (f (x, t, ρ ν ) -f ν (x, t, ρ ν )) Rν (x,t) @UFRFRA por ll ϕ ∈ C ∞ c (U )D we hve ¤ U R ν ϕ dx dt = ¤ U (f (x, t, ρ ν ) -f ν (x, t, ρ ν )) ∂ x ϕ dx dt ≤ f -f ν L ∞ (V ) mes(U ) 1/3 ∂ x ϕ L 3/2 (U ) ≤ sup ν>0 f -f ν L ∞ (V ) mes(U ) 1/3 ϕ W 1,3/2 (U ) ,
whih proves tht the sequene (R ν ) ν is ounded in W -1,3 (U )F ine (R ν ) ν is lso lerly ounded in the spe of (nite signed don mesures M s (U )D VHD gorollry IFQFI ensures tht (R ν ) ν is preompt in H -1 (U )F he sme method pplies to prove tht the reminder of the rightEhnd side of @UFRFRA is preompt in

H -1 (U )F reneD div (t,x) (ρ ν -κ) + (ρ ν -κ) + (f (x, t, ρ ν ) -f (x, t, κ)) ν is preompt in H -1 loc (Ω). ine (ρ ν ) ν ⊂ L ∞ (Ω)
is oundedD for ll (x, t) ∈ ΩD the )ux f (x, t, •) eing nonEdegenerte in the sense required in IQR due to our ssumption on V min D V max D IQTD gorollry P yields susequene of (ρ ν ) ν tht onverges to some ρ ∈ L ∞ (Ω) in L 1 loc (Ω)F e further extrtion yields the FeF onvergene on ΩF he ft tht ρ tkes vlues in [0, 1] omes from the L ∞ ound of vemm UFRFPF Corollary 7.4.6. Dene for all (x, t) ∈ Ω,

ξ(x, t) = ¢ R ρ(y, t)µ(x -y) dy ; χ(x, t) = - ¢ R ρ(y, t)v(y, t, ρ)µ (x -y) dy .
Then, up to a subsequence, (ξ ν ) ν , (∂ t ξ ν ) ν and (K(ξ ν , ∂ t ξ ν )) ν converge a.e. on Ω to ξ, χ and K(ξ, χ), respectively.

Proof. he lim is immediteF e now ssess the omptness of (w ν ) ν F Corollary 7.4.7. There exists w ∈ L ∞ (Ω; [0, 1]) such that (w ν ) ν converges a.e. to w on Ω.

Proof. hroughout this setionD we ensured tht ll the hypotheses of heorem TFHFT re ful(lledD yielding the desired omptnessF ith the estlished omptnessD we prove the Theorem 7.4.8. The couple (ρ, w) constructed in Lemma 7.4.5 and Corollary 7.4.7 is a solution to Problem @UFPFIA @UFPFTA,@UFPFUA.

Proof. por ll ν > 0 nd for ll (x, t) ∈ ΩD we hve

ω ν (x, t) = ¢ t-ν -∞ ¢ R w ν (y, s)η(x -y, t -s) dy ds = - ¢ t t-ν ¢ R w ν (y, s)η(x -y, t -s) dy ds + ¢ t -∞ ¢ R w ν (y, s)η(x -y, t -s) dy ds . he (rst term lerly vnishes s ν → 0D nd sine η ∈ L 1 (Ω)D the seond one onverges to ¢ t -∞ ¢ R w(y, s)η(x -y, t -s) dy ds s ν → 0F ell @cf. vemm UFRFQA tht (ω ν ) ν onverges
uniformly to ω on ompt sets of Ω nd we getX

∀(x, t) ∈ Ω, ω(x, t) = ¢ t -∞ ¢ R w(y, s)η(x -y, t -s) dy ds . st is ler from this formul tht ω ∈ W 1,∞ (Ω)F epply now @UFRFPA with ϕ ∈ C ∞ c (R × [0, T )), ϕ ≥ 0D κ ∈ [0, 1]D s = 0 nd τ = T nd let ν → 0F e getX ¢ T 0 ¢ R |ρ -κ|∂ t ϕ+Φ(x, t, ρ, κ)∂ x ϕ -sgn(ρ -κ)∂ x f (x, t, κ)ϕ dx dt + ¢ R |ρ 0 (x) -κ|ϕ(x, 0) dx ≥ 0.
his proves tht ρ is n entropy solution to @UFPFIAF hereforeD ρ ∈ C([0, T ]; L 1 loc (R))D see SWF woreoverD it implies tht ξ de(ned in vemm UFRFT veri(es for ll

x ∈ RD ξ(x, •) ∈ W 1,∞ ((0, T )) nd tht for Fe t ∈ (0, T )D ∂ t ξ(x, t) = χ(x, t),
where χ ws de(ned in UFRFT s wellF xow the onvergenes we hve proved for

(ρ ν ) ν nd (f ν ) ν ensure tht for FeF τ, s ∈ [0, T ] @s < τ )D ¢ τ s ¢ R |ρ -κ|∂ t ϕ + Φ(x, t, ρ, κ)∂ x ϕ -sgn(ρ -κ)∂ x f (x, t, κ)ϕ dx dt + ¢ R |ρ(x, s) -κ|ϕ(x, s) dx - ¢ R |ρ(x, τ ) -κ|ϕ(x, τ ) dx ≥ 0.
he expression in the leftEhnd side of the previous inequlity is ontinuous funtion of (s, τ ) whih is lmost everywhere greter thn the ontinuous funtion 0F fy ontinuityD this expression is everywhere greter thn 0D whih proves tht ρ stis(es the entropy inequlities @UFQFIAF o onlude the proof of the sttementD we hve to prove tht w is wek solution

IUS to @UFPFQAF pply @UFRFQA with φ ∈ C ∞ c (R × [0, T ))D s = 0 nd τ = T D nd we let ν → 0F he strong onvergene of (w ν ) ν nd (K(ξ ν , ∂ t ξ ν ) ν ) re ruil hereF e otinX ¢ T 0 ¢ R (ρw)∂ t φ + (ρvw)∂ x φ + ρK (ξ, ∂ t ξ) w(1 -w)φ dx dt + ¢ R ρ 0 (x)w 0 (x)φ(x, 0) dx = 0,
implying in prtiulr tht ρw ∈ C([0, T ]; w * -L ∞ (R))F hereforeD we n onlude the sme wy we did for ρ tht w stis(es the wek formultion @UFQFPAD onluding the proofF Proof of Theorem 7.3.2. he existene lim redily follows from heorem UFRFVF 7.5 Variants of the model sn the previous setionD we onduted the existene nlysis of rolem @UFPFIA ! @UFPFTA with @UFPFUAF he verging in oth spe nd time of the orderliness mrker @UFPFTAD@UFPFUA llowed for strong deoupling of the system @UFPFIA!@UFPFQA nd thus led us to proof of existene via timeEsplitting tehnique with merely ounded initil dtumF xotie however thtD while optiml results on slr onservtion lws feture merely L ∞ solutions @IIRAD the ssumption of ounded vrition is typil in tr0 modeling not only euse of the numerous mthemtil dvntges it my o'er nd the onsisteny of the BVEsed theoryD ut lso euse it is nturl in the ontext due to the reltive smllness of the numer of tr0 gentsF sn this setionD we will dopt the setting of densities with ounded vritionY within the BV frmeworkD we will onsider two vrints of the model @UFPFIA ! @UFPFTAF sn etion UFSFI we reple @UFPFUA with @UFPFVA with only spe verging of the orderliness mrkerF xote tht this will e the frmework of our etion UFT devoted to numeril nlysis of the modelF he essentil property tht llows for nlysis nd numeril nlysis of this vrint is the propgtion of the initil BV regulrity of the orderliness mrker ω uniformly with respet to the dynmis of ρD whih is the spei( feture of solutions to @UFPFQA intimtely relted to the renormliztion property of IQRF purtherD in etion UFSFP we will rie)y disuss the lol vrint of the model without verging of the orderliness mrkerDi.e. D the vrint where ω is tken equl to wF p to the soure term in @UFPFQA tht keeps nonE lol hrterD suh model oils down to system of onservtion lwsD thus flling within the lss of soElled qyw @generlized seondEorderA models put forwrd in IIWD IIVF he unonditionl BV regulrity for w @provided initil dt re BVA llows us to mke (rst step towrds existeneD howeverD we stress tht mthemtil tools for hndling this sitution re not ripe yetF sndeedD @UFPFIA eomes in this setting onservtion lw with BV in speEtime oe0ients @seeD e.g.D IQTA nd one need to ensure tht the ndidte solutions ful(ll seletion riteri proper to the tr0 ontext @seeD e.g.D IWA mong in(nitely mny onsistent seletion riteri @ISAF he theory of @UFPFIAD@UFPFPA is well understood for the se of isolted disontinuities in ω @cf. IHUD IRWA ut the se of interestD in the ontext of our modelD requires muh deeper investigtionF 7.5.1 On the time-local model gonsider the vrint of rolem @UFPFIA ! @UFPFTA with verging only in spe of the orE derliness mrker @UFPFVAF his simpler model keeps the nonElol in spe hrter re)etE ing the ft thtD while the orderliness mrker is tthed to individul driversD the impt @UFPFPAD@UFPFTAD@UFPFVA of the individul orderliness sttes on the fundmentl digrm is tken in vergeF he gol of this setion is to sketh the existene theoryD via onvergene of the splitting pproximtionsD sed upon the propgtion of the BV regulrity of the initil dtum w 0 F e do not expnd this setionD euse the sme prolem is ddressed in the setting of fully disrete numeril pproximtions in etion UFTF e only point out the key rguments of the rgumenttion leding to onvergene of the splitting pproximtions in this seF o strt withD we require ρ 0 , w 0 ∈ BV(R)F he notion of solution is the one of he(niE tion UFQFID with the neessry djustment to reple @UFPFUA y @UFPFVAY within the de(nition of solutionD we n dd the BV regulrity of ρ, w sine we hieve existene of suh soluE tionsF he splitting onstrution is unhngedF yur whole ttention goes to the omptness issueD nd t this pointD we hnge the order of rguments nd fully hnge the omptness nlysis of wF ith BV dtum ρ 0 D omptness for (ρ ν ) ν is strightforwrd to otin nd it omes without the ssumption on V min , V max of vemm UFRFSF sndeedD due to the uniform spe regulrity of (ω ν ) ν we n infer tht (ρ ν ) ν is ounded in L ∞ ([0, T ]; BV(R))D see SWF por (w ν ) ν D glol BV ounds n e explined y the ftD highlighted in IQRD tht wek solutions to equtions like @UFPFQA ehve like if they were evolving long hrteristisF sn the si soureless se with pieewise onstnt dtD this mens tht the solution t ny time ssumes the sme sttes E nd in the sme order E s the initil dtumD therefore its vrition in spe is ontrolledD for ny timeD y the vrition of the initil dtF por generl BV dtum nd in presene of the soure termD in order to infer this property one n rely upon the regulriztion pproh of ghpter T nd the renormliztion propertyF e do not develop the rgument hereD ut we stress tht the numeril ounterprt of the BV ound for (w ν ) ν is ssessed in detil in etion UFTF hile in etion UFT we require the restrition ρ 0 ≥ ε > 0 in the pproprite reD see @UFQFQAD let us stress here tht this restrition is needed only to de(ne the sheme nd to gurntee the pproprite gpv onditionF es fr s the splitting proedure is onsideredD there is no need to introdue this restritionD s one n see it from the rguments of ghpter T where the se of ρ ≥ 0 n e hndled via regulriztion proedureF 7.5.2 On the local model (7.2.1) (7.2.6) sn this susetionD we disuss the purely lol vrint of our modelD tking M = sd in @UFPFTAY in other wordsD we onsider the sitution where the 2 × 2 system on ρ, w nd ω is losed y identifying ω with wF he resulting model is vrint of qyw @generlized seondE orderA models proposed in IIWD IIVD inspired y the lredy lssil ewEsle nd hng model @eAF roweverD due to the hoie @UFPFPA of the veloityD in our se the model need not redue to hyperoli system with one genuinely nonliner nd one linerly degenerte (eldF vet us sketh nonEstndrd pproh to this kind of qyw modelsF pirstD s in etion UFSFID the dynmis of w ensures the propgtion of BV regulrity if we ssume w 0 ∈ BV(R)F por the ske of simpliityD onsider (rst the se where K = 0F hen it n e shown using theory of IQR E due to the ft tht the renormliztion property is vlid for generl forel funtions E tht pieewise onstnt w 0 led to pieewise onstnt w @cf. IIV for the nlogous oservtion in the frme of qywAF sn this prtiulr se eqution @UFPFIA eomes disontinuousE)ux onservtion lw with seprted interfesF he theory @orD rtherD multiple theoriesA of suh equtions were developed over more thn PS yersD nd we point out tht it is possile to pply suh theories in order to de(ne the notion of solution to the model we re deling withD nd more generllyD to qyw models with or without the stndrd hyperoliity strutureF he key issue is to selet the pproprite oupling onditions ross disontinuities of ω ≡ w @lled interfesAD whih is lerly understood issue in the tr0 ontextF eording to phenomenologil rgumenttion nd to the numeril simultions involving the deterministi mnyEprtile pproximtion @the soElled pollowEtheEleder modelAD see IWD the oupling ondition is the one mximizing the )ux ross interfesF iither we do not pursue this line in the present hpterD let us point out tht E for pieewise onstnt initil dtum w 0 of the orderliness mrker E it is possile to de(ne solutions @dmissile in the sense of mximizing the )ow ross interfesA for the splitting sheme we used in etion UFRD nd pss to the limit in the shemeF he omptness of (ρ ν ) ν n e ssessed relying on the nonEdegenery of the )ux IQTF he generl setting with pieewise C 1 or merely BV omponent w of the solution is hllenging issue for whih some elements of nlysis re redyD nd others re lkingF vet us pinpoint the two min issues we leve for future workX " yne needs plusile @on heuristi groundsD suh s the uniqueness for iemnn proE lemsA hrteriztion of dmissile solutions suitle for generl ω ≡ w ∈ BVFe stress tht the one of IQTD otined in very generl settingD does not led to uniqueness for generl )ux on(gurtions ut my e su0ient in the setting we re onsideringF sn prtiulrD due to the ft tht V max ≥ V min in our modelD fundmentl digrms for di'erent vlues of ω ≡ w do not rossD so tht the rossing ondition of IHT is utomtilly ful(lledF sn this situtionD the optimlE)ux entropy solutions we re interested in oinide with the soElled vnishing visosity solutions studied in IHTD IV@see lso IT nd in TRAF xote tht sutler hrteriztion of dmissile vnishing visosity solutions is provided in IV nd TRY the prtiulrity of TR is tht the nlysis extends to the generl BV struture of the )uxD whih is wht we hve in mindF " feing understood tht the uniqueness of solutions for the system is proly eyond the reh of full nlysisD it would e interesting to ssess uniqueness of ρD given ω ≡ w ∈ BV(R)F owrds this golD delite re(nements of tehniques of IHTD IVD TR need to e elortedF o sum upD the present investigtion of the nonElol prolem @UFPFIA!@UFPFTA highlights novel pproh to the de(nition of dmissiility of solutionsof the lol qyw modelsD wekening t the sme time the requirement on the hyperoli struture of the systemF vst ut not lestD the numeril strtegy developed in etion UFT elow for the sptilly nonElol prolem of etion UFSFI is pplile lso to the lol prolem of etion UFSFPD provided onsistent disretiztion of @UFPFIAD@UFPFPA is used tking into ount the possile shrp disontinuities in the expression of the )ux funtion @cf. IRWAF

Numerical approximation

sn this setionD we develop (nite volume numeril sheme for pproximtion of model @UFPFIA!@UFPFTAD with the verging opertor M in @UFPFTA given y @UFPFVAF e nlyze the BV stility nd infer the onvergene of the shemeF he pproximtion of the trnsport eqution @UFPFQA is otined exploiting the ide of propgtion long hrteristisY to stte the ide lerlyD we strt with simpli(ed prolem nd expose the motivtions ehind the mrhing formul for the omponent (w n j+1/2 ) j∈Z of the numeril solutionF he sheme for the simpli(ed prolem turns out to e similr to the pproximtion of the uey(tzEurnzer IIP system put forwrd in IIQD see emrk UFTFIF 7.6.1 Motivation e uild simple (nite volume sheme nd prove its onvergene to solution of @UFPFIA ! @UFPFTA with @UFPFVA this timeF vet us explin the ides ehind the onstrution of our shemeF por the ske of lrityD insted of @UFPFIA ! @UFPFTAD onsider the prolem

∂ t ρ + ∂ x (f (ρ)) = 0 ∂ t (ρw) + ∂ x (f (ρ)w) = ρS(x, t). @UFTFIA
his system is tringulr one in the sense tht we n solve the (rst eqution nd (nd ρ without wD nd then solve the seond oneF xumerillyD this is wht we do s wellF he pproximte density ρ ∆ = (ρ n j+1/2 ) n,j is onstruted with stndrd (nite volume shemeX (ρ n+1 j+1/2 -ρ n j+1/2 )∆x + (f n j+1 -f n j )∆t = 0, where f n j is suitle pproximtion of the )ux f (ρ)D see @UFTFPAF e then use these vlues to onstrut w ∆ F he strting point is tht if ll the involved funtions re smooth nd if ρ > 0D the seond hi in @UFTFIA n e solved with the method of hrteristisF wore preiselyD if x ∈ C 1 ((0, T )) nd u(t) = w(x(t), t)D ssuming in ddition tht ρ > 0 in ΩD the seond eqution in @UFTFIA n e solved y solving the fmily of yhi systems

       x (t) = v(ρ(x(t), t)) = f (ρ(x(t), t)) ρ(x(t), t) u (t) = S(x(t), t).
yn eh time step [t n , t n+1 )D for ll j ∈ ZD we drw hrteristis strting from x j with slope

s n j := f n j ρ n+1 j+1/2
D whih is our hoie for the pproximtion of f (ρ(x(t), t)) ρ(x(t), t) F et this point we need to know tht ρ n+1 j+1/2 ≥ ε > 0D in order to gurntee the existene of gpv ondition ensuring tht t time t n+1 D the hrteristis whih strted t x j ends up t point X n+1 j ∈ (x j , x j+1 )D see pigure UFPF xowD the yhi solved y u(t) = w(x(t), t) tells us tht 

u(t n+1 ) = u(t n ) + ¢ t n+1 t n S(x(t), t) dt i.e. w(X n+1 j , t n+1 ) w(x j , t n ) + ∆tS n+1
w n+1 j+1/2 ∆x = (x j+1 -X n+1 j ) ∼ w n j+1/2 + (X n+1 j -x j ) ∼ w n j-1/2 = 1 - ∆t ∆x s n j ∼ w n j+1/2 + ∆t ∆x s n j ∼ w n j-1/2 ∆x
he ove hoies led to onservtive sheme for ρwF vooking t the simplest se S = 0 @ ∼ w n j+1/2 = w n j+1/2 AD y multiplying the lst expression y ρ n+1 j+1/2 D we (nd thtX

(ρw) n+1 j+1/2 -(ρw) n j+1/2 ∆x = ρ n+1 j+1/2 w n+1 j+1/2 -w n j+1/2 ∆x + ρ n+1 j+1/2 -ρ n j+1/2 w n j+1/2 ∆x = -ρ n+1 j+1/2 s n j w n j+1/2 -w n j-1/2 ∆t -(f n j+1 -f n j )w n j+1/2 ∆t = -f n j w n j+1/2 -w n j-1/2 ∆t -(f n j+1 -f n j )w n j+1/2 ∆t = -f n j+1 w n j+1/2 -f n j w n j-1/2 ∆t,
so tht the numeril )ux for ρw turns out to e f n j w n j-1/2 F his oservtion is ornerstone of our onvergene proofF Remark 7.6.1. sn the se S ≡ 0D system @UFTFIA hs the sme struture s the lssil uey(tzEurnzer system IIP up to the properties of the )ux funtion f D whih is monotone in the uey(tzEurnzer se nd whih is onve nd ellEshped @see @RFHFIAA in the se we re onerned withD lso QUF hisretiztion of the uey(tzEurnzer system y (nite di'erene shemes ws ddressedD in prtiulrD in IIQF yne of the shemes proposed in this referene @see IIQD etion SA losely resemles our shemeF sn the setting of IIQ the )ux hs the form f (ρ) = ρφ(ρ) ut the ssumptions on φ E di'erent from our ssumptions on v E ensure tht f is inresingF herefore the upwind hoie is mde for the numeril )uxesX f n j = ρ n j-1/2 φ(ρ n j-1/2 )F he sheme of IIQD etion S then redsX

ρ n+1 j+1/2 = ρ n j+1/2 - ∆t ∆x (f n j+1 -f n j ) w n+1 j+1/2 = 1 - ∆t ∆x sn j w n j+1/2 + ∆t ∆x sn j w n j-1/2 . with sn j = f n j ρ n j-1/2 = φ(ρ n j-1/2
) due to the upwind hoie for f n j F his hoie of sn j di'ers slightly from our hoie of s n j F st does not require the lower ound on ρ n j-1/2 D ut this is due to the monotoniity of f nd nnot e mimiked in the setting of ellEshped nd onve f whih is oursF he ides to del with rolem @UFPFIA ! @UFPFTA re the sme s the ones we just developF he di'erene is the presene of the oupling etween ρ nd wF he oupling is tken re of in tep I elowF etion UFTFP detils the onstrution of the sheme for @UFPFIA ! @UFPFTAD following the ides developed oveF 7.6.2 Denition of the scheme sn wht onerns the initil densityD we ssume tht TV(ρ 0 ) < +∞ nd tht ρ 0 is seprted from the vuum in the sense stted in ssumption @UFQFQAY for the initil orderlinessD we ssume tht TV(w 0 ) < +∞ nd w 0 ∈ L 1 (R; [0, 1])F por (xed sptil mesh size ∆x > 0 nd time mesh size ∆t > 0D let x j = j∆x @j ∈ ZAD

t n = n∆t @n ∈ NA nd N ∈ N * suh tht T ∈ (t N , t N +1 ]F e de(ne the ell gridsX R × (0, T ] ⊂ N n=0 j∈Z P n+1 j+1/2 , P n+1 j+1/2 = (x j , x j+1 ) × (t n , t n+1 ].
e im t onstruting n pproximte solution (ρ ∆ , w ∆ ) de(ned lmost everywhere on ΩX

             ρ ∆ = ρ 0 1 {t≤0} + N n=0 j∈Z ρ n+1 j+1/2 1 P n+1 j+1/2 w ∆ = N n=0 j∈Z w n j+1/2 1 (x j ,x j+1 )×[t n ,t n+1 ) .
pirstD we disretize the initil dt ρ 0 @respF w 0 A with ρ 0 j+1/2 j D @respF with w 0 j+1/2 j A where for ll j ∈ ZD ρ 0 j+1/2 @respF w 0 j+1/2 A is its men vlue on the ell (x j , x j+1 )F pix n ∈ {0, . . . , N }F

Step 1: yrderliness @men vlueAF por ll j ∈ ZD de(ne

ω n j = ¢ R w ∆ (x, t n j -y) dy = i∈Z w n i+1/2 ¢ x i+1 x i η(x j -y) dy η j-(i+1/2)
.

Step 2: pinite volumes for the densityF e use ω j to de(ne the veloity

v n j (ρ) = (1 -ω n j )V min (ρ) + ω n j V max (ρ) nd the )ux f n j (ρ) = ρv n j (ρ)F sntrodue the nottionsX f min,max (ρ) = ρV min,max (ρ); δf = f max -f min .
vet F n j = F n j (u, v) e monotone numeril )ux ssoited with f n j D see he(nition IFIFI nd ixmple IFIFIF por the ske of simpliityD we use the usnov )uxD tht is for ll u, v ∈ [0, 1]D

F n j (u, v) = 1 2 f n j (u) + f n j (v) + L(u -v) , L = max{ f min L ∞ , f max L ∞ }.
he onservtion of ρ written in ell P n+1 j+1/2 @j ∈ ZA leds to the following mrhing formulX

ρ n+1 j+1/2 = ρ n j+1/2 - ∆t ∆x F n j+1 (ρ n j+1/2 , ρ n j+3/2 ) -F n j (ρ n j-1/2 , ρ n j+1/2
) . @UFTFPA iventullyD it will e onvenient to write the sheme under the formX

ρ n+1 j+1/2 = H n j ρ n j-1/2 , ρ n j+1/2 , ρ n j+3/2 ,
where H n j = H n j (a, b, c) is given y the rightEhnd side of @UFTFPA with

ρ n j-1/2 , ρ n j+1/2 , ρ n j+3/2 repled y a, b, c ∈ [0, 1]F
Step 3: oure termF por ll j ∈ ZD we set

                     ξ n+1 j+1/2 = i∈Z ρ n+1 i+1/2 ¢ x i+1 x i µ(x j+1/2 -y) dy µ j+1/2-(i+1/2) χ n+1 j+1/2 = - i∈Z F n i (ρ n+1 i-1/2 , ρ n+1 i+1/2 ) ¢ x i+1 x i µ (x j+1/2 -y) dy dµ j+1/2-(i+1/2)
.

xote tht hereoveD we disretize the expression for χ = ∂ t ξ tht is otined omining the de(nition of ξ nd the wek formultion of the mss onservtion equtionF hen we de(ne the soure term y

∀j ∈ Z, S n+1 j+1/2 = K ξ n+1 j+1/2 , χ n+1 j+1/2 w n j+1/2 (1 -w n j+1/2 ).
Step 4: yrderliness mrkerF pix j ∈ ZF et

X n+1 j = x j + ∆t F j (ρ n j-1/2 , ρ n j+1/2 ) ρ n+1 j+1/2 s n j .
e will prove tht under @UFQFQA nd suitle gpv onditionD see @UFTFRAD the sequene (X n+1 j ) j is well de(nedF pollowing the pproh outlined in etion UFTFID we ompute the updted orderliness mrker s followsX

     ∼ w n j+1/2 = w n j+1/2 + ∆tS n+1 j+1/2 w n+1 j+1/2 = 1 - ∆t ∆x s n j ∼ w n j+1/2 + ∆t ∆x s n j ∼ w n j-1/2 .
@UFTFQA e lso de(ne

(ξ ∆ , χ ∆ , S ∆ ) = N n=0 j∈Z (ξ n+1 j+1/2 , χ n+1 j+1/2 , S n+1 j+1/2 )1 P n+1 j+1/2 nd ω ∆ = N n=0 j∈Z ω n j 1 (x j ,x j+1 )×[t n ,t n+1 ) .
por lter useD introdue the nottionsX

K L ∞ = sup ε≤ξ≤1 |χ|≤L×TV(µ) |K(ξ, χ)|; ∇K L ∞ = sup ε≤ξ 1 ,ξ 2 ≤1 |χ 1 |,|χ 2 |≤L×TV(µ) |K(ξ 1 , χ 1 ) -K(ξ 2 , χ 2 )| nd δf L ∞ = sup 0≤ρ≤1 δf (ρ); δf L ∞ = sup 0≤ρ≤1 |δf (ρ)|.
7.6.3 L ∞ stability via monotonicity Proposition 7.6.1. Under the conditions

λ max 2, 1 ε L ≤ 1; λ = ∆t ∆x @UFTFRA and ∆t K L ∞ ≤ 1, @UFTFSA
the scheme @UFTFPA-@UFTFQA is monotone and L ∞ stable. More precisely, for all n ∈ {0, . . . , N + 1} and j ∈ Z, we have ε ≤ ρ n j+1/2 ≤ 1 and 0 ≤ w n j+1/2 ≤ 1.

@UFTFTA

Proof. e prove the result y indution on nF he is lerly true for n = 0 y de(nition of ρ j+1/2 j nd w 0 j+1/2 j F uppose now tht for some n ∈ {0, . . . , N }D @UFTFTA holdsF pix j ∈ ZF (i) ine 0 ≤ w ∆ (•, t n ) ≤ 1D we hve

ω n j = ¢ R w ∆ (y, t n )η(x j -y) dy ∈ [0, 1],
from whih we dedue tht f n j is onvex omintion of f min nd f max F xote lso tht

|ω n j+1 -ω n j | ≤ i∈Z ¢ x i+1 x i |w n j+1/2 | • |η(x j+1 -y) -η(x j -y)| dy ≤ ¢ R |η(y -∆x) -η(y)| dy ≤ TV(η)∆x.
(ii) sing the gpv onditionD we n prove tht the sheme @UFTFPA is monotoneF wore preiselyD for FeF a, b, c ∈ [0, 1]D we hveX

∂H n j ∂a (a, b, c) = λ ∂F n j ∂u (a, b) ≥ 0; ∂H n j ∂c (a, b, c) = -λ ∂F n j+1 ∂v (b, c) ≥ 0 nd ∂H n j ∂b (a, b, c) = 1 -λ ∂F n j+1 ∂u (b, c) - ∂F n j ∂u (a, b) ≥ 1 -2λL ≥ 0.
sing the monotoniity of the sheme nd the indution propertyD we dedue tht

ρ n+1 j+1/2 = H n j ρ n j-1/2 , ρ n j+1/2 , ρ n j+3/2 ≤ H n j (1, 1, 1) = 1 ndD sine δf (ε) = 0 due to ssumption @UFQFQAD ρ n+1 j+1/2 ≥ H n j (ε, ε, ε) = ε -λ(ω n j+1 -ω n j )δf (ε) = ε. (iii) ine ε ≤ ρ ∆ (•, t n+1 ) ≤ 1D we hve ξ n+1 j+1/2 = ¢ R ρ ∆ (y, t n+1 )µ(x j+1/2 -y) dy ∈ [ε, 1], nd lerlyD |χ n+1 j+1/2 | ≤ L × TV(µ).
(iv) vet us prove tht Remark 7.6.2. he stility estimtes @UFTFTA immeditely implyX

ε ≤ ρ ∆ , ξ ∆ ≤ 1; 0 ≤ ∆ , ω ∆ ≤ 1; |χ ∆ | ≤ L × TV(µ); |S ∆ | ≤ K L ∞ 4 .
por ll a, b ∈ [0, 1]D set a ∧ b = min{a, b} a ∨ b = max{a, b}.

Corollary 7.6.2 @hisrete entropy inequlitiesA. The numerical scheme @UFTFPA fullls the following discrete entropy inequalities for all n ∈ {0, . . . , N }, j ∈ Z and κ ∈ [0, 1]:

ρ n+1 j+1/2 -κ -ρ n j+1/2 -κ ∆x + (Φ n j+1 -Φ n j )∆t ≤ -sgn ρ n+1 j+1/2 -κ × (f n j+1 (κ) -f n j (κ))∆t, @UFTFUA
where Φ n j denotes the numerical entropy ux:

Φ n j = F n j ρ n j-1/2 ∨ κ, ρ n j+1/2 ∨ κ -F n j ρ n j-1/2 ∧ κ, ρ n j+1/2 ∧ κ .
Proof. his is mostly onsequene of the sheme monotoniityF emrk tht

∀j ∈ Z, H n j (κ, κ, κ) = κ -λ(f n j+1 (κ) -f n j (κ)).
e omine this with the onvexity of the funtion | • -κ| to otinX

ρ n+1 j+1/2 -κ = H n j ρ n j-1/2 , ρ n j+1/2 , ρ n j+3/2 -κ ≤ H n j ρ n j-1/2 , ρ n j+1/2 , ρ n j+3/2 -H n j (κ, κ, κ) + sgn ρ n+1 j+1/2 -κ × H n j (κ, κ, κ) -κ ≤ H n j ρ n j-1/2 ∨ κ, ρ n j+1/2 ∨ κ, ρ n j+3/2 ∨ κ -H n j ρ n j-1/2 ∧ κ, ρ n j+1/2 ∧ κ, ρ n j+3/2 ∧ κ -λ sgn ρ n+1 j+1/2 -κ × (f n j+1 (κ) -f n j (κ)) = ρ n j+1/2 -κ -λ(Φ n j+1 -Φ n j ) -λ sgn ρ n+1 j+1/2 -κ × (f n j+1 (κ) -f n j (κ)).
7.6.4 Compactness via BV stability he key to otin omptness is to derive glol BV ounds for (ρ ∆ , w ∆ ) ∆ F Theorem 7.6.3. There exists a constant c > 0 such that for all n ∈ {1, . . . , N }:

TV(ρ ∆ (•, t n )) + TV(w ∆ (•, t n )) ≤ (TV(ρ 0 ) + TV(w 0
))e (2c+c 2 ∆t)t n . @UFTFVA F n j = F n j ρ n j-1/2 , ρ n j+1/2 . e strt y writing the sheme @UFTFPA under the formX

ρ n+1 j+1/2 = ρ n j+1/2 -λ   F n j+1 -F n j+1 ρ n j+1/2 , ρ n j+1/2 ρ n j+3/2 -ρ n j+1/2   -B j+1 ρ n j+3/2 -ρ n j+1/2 -λ   F n j ρ n j+1/2 , ρ n j+1/2 -F n j ρ n j+1/2 -ρ n j-1/2   A j ρ n j+1/2 -ρ n j-1/2 -λ(ω n j+1 -ω n j )δf (ρ n j+1/2 ).
he monotoniity of F n j+1 nd F n j ensures tht A j , B j+1 ≥ 0F e dedue tht

ρ n+1 j+1/2 -ρ n+1 j-1/2 = (1 -A j -B j ) ρ n j+1/2 -ρ n j-1/2 + A j-1 ρ n j-1/2 -ρ n j-3/2 + B j+1 ρ n j+3/2 -ρ n j+1/2 -λ(ω n j+1 -ω n j )δf (ρ n j+1/2 ) + λ(ω n j -ω n j-1 )δf (ρ n j-1/2
). wking use of the gpv ondition @UFTFRAD we hve

|A j | + |B j | ≤ 2λL ≤ 1, heneX j∈Z ρ n+1 j+1/2 -ρ n+1 j-1/2 ≤ j∈Z (1 -A j -B j ) ρ n j+1/2 -ρ n j-1/2 + j∈Z A j-1 ρ n j-1/2 -ρ n j-3/2 + j∈Z B j+1 ρ n j+3/2 -ρ n j+1/2 + λ j∈Z (ω n j+1 -2ω n j + ω n j-1 )δf (ρ n j+1/2 ) + λ j∈Z (ω n j -ω n j-1 ) δf (ρ n j+1/2 ) -δf (ρ n j-1/2 ) ≤ (1 + ∆tTV(η) δf L ∞ ) j∈Z ρ n j+1/2 -ρ n j-1/2 + λ δf L ∞ j∈Z ω n j+1 -2ω n j + ω n j-1 .
e now rewrite the lst term of the inequlity using the eel proedureF por ll j ∈ ZD we hve

ω n j+1 -2ω n j + ω n j-1 = i∈Z w n i+1/2 η j-(i-1/2) -η j-(i+1/2) -η j-(i+1/2) -η j-(i+3/2) = i∈Z w n i+1/2 -w n i-1/2 η j-(i-1/2) -η j-(i+1/2) , from whih we dedueX j∈Z |ω n j+1 -2ω n + ω n | ≤ i∈Z |w n i+1/2 -w n i-1/2 | j∈Z |η j-(i-1/2) -η j-(i+1/2) | ≤ TV(η)TV(w ∆ (•, t n ))∆x.
e now derive similr estimte for (w ∆ ) ∆ F e hve

w n+1 j+1/2 -w n+1 j-1/2 = 1 -λs n j w n j+1/2 -w n j-1/2 + λs n j-1 w n j-1/2 -w n j-3/2 + ∆t 1 -λs n j S n+1 j+1/2 -S n+1 j-1/2 + λs n j-1 S n+1 j-1/2 -S n+1 j-3/2
. ine 0 ≤ λs n j ≤ 1 due to the gpv onditionD we otin

j∈Z w n+1 j+1/2 -w n+1 j-1/2 ≤ j∈Z w n j+1/2 -w n j-1/2 + ∆t j∈Z S n+1 j+1/2 -S n+1 j-1/2 . fut S n+1 j+1/2 -S n+1 j-1/2 ≤ K L ∞ w n j+1/2 -w n j-1/2 + ∇K L ∞ 4 ξ n+1 j+1/2 -ξ n+1 j-1/2 + χ n+1 j+1/2 -χ n+1 j-1/2 , so tht from ξ n+1 j+1/2 -ξ n+1 j-1/2 = i∈Z ρ n+1 i+1/2 (µ j+1/2-(i+1/2) -µ j-1/2-(i+1/2) ) = i∈Z ρ n+1 i+1/2 (µ j+1/2-(i+1/2) -µ j+1/2-(i-1/2) ) = i∈Z (ρ n+1 i+1/2 -ρ n+1 i+3/2 )µ j+1/2-(i+1/2) ,
we dedue @rememer tht µ is weight funtionAX

j∈Z ξ n+1 j+1/2 -ξ n+1 j-1/2 ≤ TV(ρ ∆ (•, t n+1 )).
e prove in the sme wy tht

j∈Z χ n+1 j+1/2 -χ n+1 j-1/2 ≤ 2L × TV(µ)TV(ρ ∆ (•, t n+1 )).
pinllyD we proved tht

               TV(ρ ∆ (•, t n+1 )) ≤ (1 + ∆tTV(η) δf L ∞ ) TV(ρ ∆ (•, t n )) + δf L ∞ TV(η)∆tTV(w ∆ (•, t n )) TV(w ∆ (•, t n+1 )) ≤ (1 + ∆t K L ∞ ) TV(w ∆ (•, t n )) + ∆t ∇K L ∞ (1 + 2L × TV(µ)) 4 TV(ρ ∆ (•, t n+1 )), @UFTFWA 7.6. NUMERICAL APPROXIMATION IVU i.e. y setting u n = TV(ρ ∆ (•, t n )) nd v = TV(w ∆ (•, t n ))D u n+1 ≤ (1 c 1 ∆t)u n + c 2 ∆tv n v n+1 ≤ (1 + c 3 ∆t + c 2 c 4 ∆t 2 )v n + (1 + c 1 ∆t)c 4 ∆tu n .
utting the ove inequlities into mtrix formD with stndrd liner lger omputtions we re led to @UFTFVA with c = max 1≤i≤4 c i F Remark 7.6.3 @L 1 stilityA. nder the dditionl ssumption tht w 0 ∈ L 1 (R)D the sheme @UFTFQA is L 1 stleF sndeedD for ll n ∈ {0, . . . , N -1}D

w ∆ (•, t n+1 ) L 1 = j∈Z w n+1 j+1/2 ∆x = j∈Z w n j+1/2 ∆x + j∈Z S n+1 j+1/2 ∆x∆t + j∈Z λs n j (w n j-1/2 -w n j+1/2 ) + j∈Z λs n j (S n+1 j-1/2 -S n+1 j+1/2 )∆t ≤ (1 + K L ∞ ∆t) w ∆ (•, t n ) L 1 + L ε × TV(w ∆ (•, t n ))∆t + L ε × ∇K L ∞ (1 + 2L × TV(µ)) 4 TV(ρ ∆ (•, t n ))∆t ≤ (1 + c∆t) w ∆ (•, t n ) L 1 + L ε × TV(w ∆ (•, t n ))∆t + L ε × cTV(ρ ∆ (•, t n ))∆t.
qronwll lemm yields sup ∆ w ∆ L ∞ ((0,T );L 1 (R)) < +∞F Corollary 7.6.4. We have:

j∈Z |ρ n+1 j+1/2 -ρ n j+1/2 |∆x ≤ 2L × TV(ρ ∆ (•, t n )) + δf L ∞ TV(η)TV(w ∆ (•, t n )) ∆t j∈Z |w n+1 j+1/2 -w n j+1/2 |∆x ≤ L ε TV(w ∆ (•, t n )) + cTV(ρ ∆ (•, t n+1 )) + c w ∆ (•, t n ) L 1 ∆t @UFTFIHA Consequently, there exist ρ, w ∈ L ∞ (Ω) ∩ C([0, T ]; L 1 loc (R))
, such that along a subsequence, (ρ ∆ , w ∆ ) ∆ → (ρ, w) a.e. on Ω.

Proof. istimtes @UFTFIHA ome from omintion of estimtes @UFTFVA nd the sheme @UFTFPAE@UFTFQAF wore preiselyD

j∈Z |ρ n+1 j+1/2 -ρ n j+1/2 |∆x ≤ j∈Z F n j+1 ρ n j+1/2 , ρ n j+3/2 -F n j ρ n j-1/2 , ρ n j+1/2 ∆t ≤ 2L j∈Z |ρ n j+1/2 -ρ n j-1/2 |∆t + j∈Z |f n j+1 (ρ n j+1/2 ) -f n j (ρ n j+1/2 )|∆t ≤ 2L × TV(ρ ∆ (•, t n ))∆t + δf L ∞ TV(η)TV(w ∆ (•, t n ))∆t. egrding (w ∆ ) ∆ D we write j∈Z w n+1 -w n ∆x ≤ L ε TV(w ∆ (•, t n )) + j∈Z S n+1 j+1/2 -S n+1 j-1/2 ∆t + j∈Z S n+1 j+1/2 ∆x∆t ≤ L ε TV(w ∆ (•, t n )) + cTV(ρ ∆ (•, t n+1 )) ∆t + c w ∆ (•, t n ) L 1 ∆t.
he omptness omes from WVD eppendix e sine we hve the ounds @UFTFTAE@UFTFVAE @UFTFIHAF 7.6.5 Approximate entropy inequalities and weak formulation e derive pproximte entropy inequlities veri(ed y ρ ∆ nd n pproximte version of the wek formultion @UFQFPA stis(ed y w ∆ F e strt with ρ ∆ F ith Φ n j de(ned in gorolE lry UFTFPD we de(ne the pproximte entropy )ux nd the w ∆ Erelted ontriutionX

Φ ∆ (ρ ∆ , κ) = N n=0 j∈Z Φ n j 1 P n+1 j+1/2 ; ∂ ∆ f (x, t, κ) = ¢ R w ∆ (y, t)η (x -y) dy δf (κ). @UFTFIIA Theorem 7.6.5 @epproximte entropy inequlitiesA. Fix ϕ ∈ C ∞ c (R × R + ), ϕ ≥ 0, κ ∈ [0, 1]
and n ∈ {0, . . . , N }. Then as ∆ → 0, we have:

¢ t n+1 t n ¢ R |ρ ∆ -κ|∂ t ϕ + Φ ∆ (ρ ∆ , κ)∂ x ϕ -sgn(ρ ∆ -κ)∂ ∆ f (x, t, κ)ϕ dx dt + ¢ R |ρ ∆ (x, t n ) -κ|ϕ(x, t n ) dx - ¢ R |ρ ∆ (x, t n+1 ) -κ|ϕ(x, t n+1 ) dx ≥ O(∆x∆t) + O ∆t 2 . @UFTFIPA Proof. pix n ∈ {0, . . . , N }D j ∈ ZD ϕ ∈ C ∞ c (R × R + ), ϕ ≥ 0D κ ∈ [0, 1] nd set ϕ n j+1/2 = 1 ∆x ¢ x j+1 x j ϕ(x, t n ) dx .
wultiply the disrete entropy inequlities @UFTFUA y ϕ n j+1/2 nd tke the sum over j ∈ ZF roeeding to the eel summtionD we otinX

j∈Z |ρ n+1 j+1/2 -κ|ϕ n+1 j+1/2 ∆x - j∈Z |ρ n j+1/2 -κ|ϕ n j+1/2 ∆x A - j∈Z |ρ n+1 j+1/2 -κ| ϕ n+1 j+1/2 -ϕ n j+1/2 ∆x B - j∈Z Φ n j+1/2 ϕ n j+1/2 -ϕ n j-1/2 ∆t C ≤ - j∈Z sgn(ρ n+1 j+1/2 -κ)(f n j+1 (κ) -f n j (κ))ϕ n j+1/2 ∆x∆t D . IVW emrk tht A-B = ¢ R |ρ ∆ (x, t n+1 )-κ|ϕ(x, t n+1 ) ¢ R |ρ (x, t n )-κ|ϕ(x, t n ) dx- ¢ t n+1 t n ¢ R |ρ ∆ -κ|∂ t ϕ dx dt .
e now ompre the other memers of the inequlity to their ontinuous ounterprtsF Estimating C. e writeX

C = ¢ t n+1 t n ¢ R Φ ∆ (x, ρ ∆ , κ)∂ x ϕ(x, t n ) dx dt + λ j∈Z ¢ x j+1 x j ¢ x x-∆x ¢ y x Φ n j+1/2 ∂ x ϕ(z, t n ) dz dy dx C 1 = ¢ t n+1 t n ¢ R Φ ∆ (x, ρ ∆ , κ)∂ x ϕ(x, t) dx dt + C 1 + ¢ t n+1 t n ¢ R ¢ t n t Φ ∆ (x, ρ ∆ , κ)∂ 2 tx ϕ(x, τ ) dτ dx dt C 2 ,
nd we hve the estimtionsX

|C 1 | ≤ 4L sup t≥0 ∂ 2 xx ϕ(•, t) L 1 ∆x∆t; |C 2 | ≤ L sup t≥0 ∂ 2 tx ϕ(•, t) L 1 ∆t 2 .
Estimating D. ith the nottion @UFTFIIAD we hve

D = j∈Z ∆t ¢ x j+1 x j sgn(ρ n+1 j+1/2 -κ)∂ ∆ f (x, t n , κ)ϕ(x, t n ) dx + j∈Z λ ¢ x j+1 x j ¢ R ¢ x j+1 x j ¢ z
x sgn(ρ n+1 j+1/2 -κ)w ∆ (y, t n )η (u -y)δf (κ)ϕ(x, t n ) du dz dy dx

D 1 = ¢ t n+1 t n ¢ R sgn(ρ ∆ -κ)∂ ∆ f (x, t, κ)ϕ(x, t) dx + D 1 + ¢ t n+1 t n ¢ R sgn(ρ ∆ -κ)∂ ∆ f (x, t n , κ)(ϕ(x, t n ) -ϕ(x, t)) dx D 2
, whih we omine with the oundsX

|D 1 | ≤ η L 1 δf L ∞ sup t≥0 ϕ(•, t) L 1 ∆x∆t |D 2 | ≤ η L 1 δf L ∞ sup t≥0 ∂ t ϕ(•, t) L 1 ∆t 2 .
e now turn to w ∆ F vet us de(ne the pproximte )ux funtionX

f ∆ (x, t, ρ) = (1 -ω ∆ (x, t))f min (ρ) + ω ∆ (x, t)f max (ρ).
Theorem 7.6.6 @epproximte wek formultionA. Fix φ ∈ C ∞ (R×R + ) n ∈ {0, . . . , N }. Then as ∆ → 0, we have:

¢ t n+1 t n ¢ R (ρ ∆ w ∆ )∂ t φ + (f ∆ (x, t, ρ ∆ )w ∆ )∂ x φ -ρ ∆ S ∆ φ dx dt + ¢ R (ρ ∆ w ∆ )(x, t n )φ(x, t n ) dx - ¢ R (ρ ∆ w ∆ )(x, t n+1 )φ(x, t n+1 ) dx = O(∆x∆t) + O ∆t 2 .

@UFTFIQA

Proof. his proof follows the sme steps s the one of heorem UFTFSF pix n ∈ {0, . . . , N } nd j ∈ ZF vet us multiply @UFTFQA y ρ n+1 j+1/2 nd omine the result with @UFTFPAF wore preiselyD we writeX 2 . hese omputtions re the nlogous of the ones we did in etion UFTFIF his lst equlity expresses the onsisteny of our shemeF pix now φ ∈ C ∞ c (R × R + ) nd set

(ρw) n+1 j+1/2 -(ρw) n j+1/2 ∆x = ρ n+1 j+1/2 w n+1 j+1/2 -w n j+1/2 ∆x + ρ n+1 j+1/2 -ρ n j+1/2 w n j+1/2 ∆x = F n j w n j-1/2 -w n j+1/2 ∆t + ρ n+1 j+1/2 S n+1 j+1/2 ∆x∆t + F n j × (S n+1 j-1/2 -S n+1 j+1/2 )∆t 2 -F n j+1 -F n j w n j+1/2 ∆t = -F n j+1 w n j+1/2 -F n j w n j-1/2 ∆t + ρ n+1 j+1/2 S n+1 j+1/2 ∆x∆t + F n j × (S n+1 j-1/2 -S n+1 j+1/2 )∆t
φ n j+1/2 = 1 ∆x ¢ x j+1 x j φ(x, t n ) dx .
wultiply the previous equlity y φ n+1 j+1/2 nd tke the sum over j ∈ ZF roeeding to the eel summtionD we otinX

j∈Z (ρw) n+1 j+1/2 φ n+1 j+1/2 ∆x - j∈Z (ρw) n j+1/2 φ n j+1/2 ∆x A - j∈Z (ρw) n j+1/2 φ n+1 j+1/2 -φ n j+1/2 ∆x B - j∈Z F n j+1 w n j+1/2 φ n+1 j+3/2 -φ n+1 j+1/2 ∆t C - j∈Z ρ n+1 j+1/2 S n+1 j+1/2 φ n+1 j+1/2 ∆x∆t D - j∈Z F n j × (S n+1 j-1/2 -S n+1 j+1/2 )φ n+1 j+1/2 ∆t 2 E = 0.
he remining prt of the proof onsists in estimting eh memer of this lst equlityD hving in mind the previously estlished estimtes suh s @UFTFVAF vike in the previous proofD we immeditely see thtX 

A = ¢ R (ρ ∆ w ∆ )(x, t n+1 )φ(x, t n+1 ) dx - ¢ R (ρ ∆ w ∆ )(x, t n )φ(x, t n ) dx .
C = λ j∈Z ¢ x j+1 x j ¢ x+∆x x F j+1 w n ∂ x φ(y, t n+1 ) dy dx = λ j∈Z ¢ x j+1 x j ¢ x+∆x x f n j+1 (ρ n j+1/2 )w n j+1/2 ∂ x φ(y, t n+1 ) dy dx + λ j∈Z ¢ x j+1 x j ¢ x+∆x x (F n j+1 -f n j+1 (ρ n j+1/2 ))w n j+1/2 ∂ x φ(y, t n+1 ) dy dx C 1 = λ j∈Z ¢ x j+1 x j ¢ x+∆x x f n j (ρ n j+1/2 )w n j+1/2 ∂ x φ(y, t n+1 ) dy dx + C 1 + λ j∈Z ¢ x j+1 x j ¢ x+∆x x (f n j+1 (ρ n j+1/2 ) -f n j (ρ n j+1/2 ))w n j+1/2 ∂ x φ(y, t n+1 ) dy dx C 2 = λ j∈Z ¢ x j+1 x j ¢ x+∆x x f n j (ρ n+1 j+1/2 )w n j+1/2 ∂ x φ(y, t n+1 ) dy dx + C 1 + C 2 + λ j∈Z ¢ x j+1 x j ¢ x+∆x x (f n j (ρ n j+1/2 ) -f n j (ρ n+1 j+1/2 ))w n j+1/2 ∂ x φ(y, t n+1 ) dy dx C 3 = ¢ t n+1 t n ¢ R (f ∆ (x, t, ρ ∆ )w ∆ )∂ x φ(x, t n+1 ) dx dt + C 1 + C 2 + C 3 + λ j∈Z ¢ x j+1 x j ¢ x+∆x x f n j (ρ n+1 j+1/2 )w n j+1/2 (∂ x φ(y, t n+1 ) -∂ x φ(x, t n+1 )) dy dx C 4 = ¢ t n+1 t n ¢ R (f ∆ (x, t, ρ ∆ )w ∆ )∂ x φ(x, t) dx dt + C 1 + C 2 + C 3 + C 4 + ¢ t n+1 t n ¢ R (f ∆ (x, t, ρ ∆ )w ∆ )(∂ x φ(x, t n+1 ) -∂ x φ(x, t)) dx dt C 5
, nd we hve the estimtionsX

|C 1 | ≤ 2L ∂ x φ L ∞ TV(ρ ∆ (•, t n ))∆x∆t; |C 2 | ≤ 2 δf L ∞ TV(η) sup t≥0 ∂ x φ(•, t) L 1 ∆x∆t; |C 3 | ≤ L j∈Z |ρ n+1 j+1/2 -ρ n j+1/2 |∆x ∂ x φ L ∞ ∆t = O ∆t 2 due to gorollry UFTFR; |C 4 | ≤ 4L sup t≥0 ∂ 2 xx φ(•, t) L 1 ∆x∆t; |C 5 | ≤ L sup t≥0 ∂ 2 tx φ(•, t) L 1 ∆t 2 . woreoverD B = ¢ t n+1 t n ¢ R ∆ w ∆ t φ dx dt + j∈Z (ρ n j+1/2 -ρ n+1 j+1/2 )w n j+1/2 φ n+1 j+1/2 -φ n j+1/2 ∆x B 1
ndD using heorem UFTFQ nd gorollry UFTFRD we hve

|B 1 | ≤ j∈Z |ρ n+1 j+1/2 -ρ n j+1/2 |∆x ∂ t φ L ∞ ∆t = O ∆t 2 .
Estimating D. e write

D = ¢ t n+1 t n ¢ R ρ ∆ (x, t)S ∆ (x, t)φ(x, t n+1 ) dx = ¢ t n+1 t n ¢ R ρ ∆ (x, t)S ∆ (x, t)φ(x, t) dx dt + ¢ t n+1 t n ¢ R ρ ∆ (x, t)S ∆ (x, t)(φ(x, t n+1 -φ(x, t)) dx dt D 1
, nd we hve the oundX

|D 1 | ≤ S ∆ L ∞ sup t≥0 ∂ t φ(•, t) L 1 ∆t 2 .
o estimate ED we diretly writeX

|E| ≤ cL φ L ∞ (TV(ρ ∆ (•, t n )) + TV(w ∆ (•, t n ))) ∆t 2 ,
onluding the proofF 7.6.6 Convergence and existence statement fefore proving the onvergene resultD remrk tht the strong onvergene of (ρ ∆ ) ∆ nd (w ∆ ) ∆ implies the strong onvergene of (ξ

∆ ) ∆ D (χ ∆ ) ∆ D (ω ∆ ) ∆ D (f ∆ (•, •, ρ ∆ )) ∆ nd (S ∆ ) ∆ F wore preiselyD (x (x, t) ∈ ΩF qiven ∆D let n ∈ {0, . . . , N }, j ∈ Z e suh tht (x, t) ∈ P n+1 j+1/2 F e hveX ξ ∆ (x, t) = ξ n+1 j+1/2 = ¢ R ρ ∆ (y, t)µ(x j+1/2 -y) dy -→ ∆→0 ¢ R ρ(y, t)µ(x -y) dy := ξ(x, t). woreoverD ω ∆ (x, t) = ω n j = ¢ R w ∆ (y, t)η(x j -y) dy -→ ∆→0 ¢ R w(y, t)η(x -y) dy := ω(x, t). gonsequentlyD f ∆ (x, t, ρ ∆ (x, t)) -→ ∆→0
(1 -ω(x, t))f min (ρ(x, t)) + ω(x, t)f max (ρ(x, t)) := f (x, t, ρ(x, t)), 

χ ∆ (x, t) = χ n+1 j+1/2 = - ¢ f ∆ (y, ρ ∆ )µ (x j+1/2 -y) dy - i∈Z (F n i (ρ n+1 i-1/2 , ρ n+1 i+1/2 ) -f n i (ρ n+1 i+1/2 )) ¢ x i+1 x i µ (x j+1/2 -y) dy =O(∆x) -→ ∆→0 - ¢ R f (y, t, ρ)µ (x -y) dy := χ(x, t). elsoD y ontinuity of KD S ∆ (x, t) = K(ξ ∆ (x, t), χ ∆ (x, t))w ∆ (x, t)(1 -w ∆ (x, t)) -→ ∆→0 K(ξ(x, t), χ(x, t))w(x, t)(1 -w(x, t)) := S(x, t).
e now turn to the Proof of Theorem 7.3.3. e verify tht (ρ, w) stis(es ll the points of he(nition UFQFIF (i

) pix ϕ ∈ C ∞ c (R × [0, T )), ϕ ≥ 0D κ ∈ [0, 1] nd τ, s ∈ [0, T ] @τ < sAF feing given ∆ > 0D let n, m ∈ {0, . . . , N + 1} suh tht τ ∈ [t n , t n+1 ) nd s ∈ [t m , t m+1 )F fy summing @UFTFIPA over k ∈ {n, . . . , m -1}D we otinX ¢ τ s ¢ R |ρ ∆ -κ|∂ t ϕ + Φ ∆ (ρ ∆ , κ)∂ x ϕ -sgn(ρ ∆ -κ)∂ ∆ f (x, t, κ)ϕ dx dt = - ¢ s t n ¢ R |ρ ∆ -κ|∂ t ϕ + Φ ∆ (ρ ∆ , κ)∂ x ϕ -sgn(ρ ∆ -κ)∂ ∆ f (x, t, κ)ϕ dx dt + m-1 k=n ¢ t k+1 t k ¢ R |ρ ∆ -κ|∂ t ϕ + Φ ∆ (ρ ∆ , κ)∂ x ϕ -sgn(ρ ∆ -κ)∂ ∆ f (x, t, κ)ϕ dx dt + ¢ τ t m ¢ R |ρ ∆ -κ|∂ t ϕ + Φ ∆ (ρ ∆ , κ)∂ x ϕ -sgn(ρ ∆ -κ)∂ ∆ f (x, t, κ)ϕ dx dt .
@UFTFIRA sing the uniform L ∞ oundsD we see tht the (rst nd lst term of the rightEhnd side of this equlity n e written s O(∆t)F fy @UFTFIPAD m-1

¢ t k+1 k ¢ R |ρ ∆ -κ|∂ t ϕ + Φ ∆ (ρ ∆ , κ)∂ x ϕ -sgn(ρ ∆ -κ)∂ ∆ f (x, t, κ)ϕ dx dt ≥ ¢ R |ρ ∆ (x, t m ) -κ|ϕ(x, t m ) dx - ¢ R |ρ ∆ (x, t n ) -κ|ϕ(x, t n ) dx + m-1 k=n O(∆x∆t) + O ∆t 2 ≥ ¢ R |ρ ∆ (x, s) -κ|ϕ(x, s) dx - ¢ R |ρ ∆ (x, τ ) -κ|ϕ(x, τ ) dx -T (∆x + ∆t) + ¢ R (|ρ ∆ (x, t m ) -κ|ϕ(x, t m ) -|ρ ∆ (x, s) -κ|ϕ(x, s)) dx - ¢ R (|ρ ∆ (x, t n ) -κ|ϕ(x, t n ) -|ρ ∆ (x, τ ) -κ|ϕ(x, τ )) dx .
sing the time BV estimte @UFTFIHAD we dedue tht the lst two memers of this inequlity n e written s O(∆t) s wellF utting everything togetherD when letting ∆ → 0 in @UFTFIRAD we otin tht ρ is n entropy solution to

∂ t ρ + ∂ x (f (x, t, ρ)) = 0.
(ii) prom @UFTFIQAD nd using the sme ides s in the previous resoningD with in this se the seond time BV estimte of gorollry UFTFIHD we esily otin tht for ll

φ ∈ C ∞ c (R×[0, T )) nd τ, s ∈ [0, T ] @τ < sAD we hveX ¢ τ s ¢ R (ρ ∆ w ∆ )∂ t φ + (f ∆ (x, t, ρ ∆ )w ∆ )∂ x φ -ρ ∆ S ∆ φ dx dt + ¢ R ρ ∆ (x, s)w ∆ (x, s)φ(x, s) dx - ¢ R ρ ∆ (x, τ )w ∆ (x, τ )φ(x, τ ) dx = O(∆x) + O(∆t) ,
whih y tking the limit s ∆ → 0 implies tht w is wek solution of

∂ t (ρw) + ∂ x (f (x, t, ρ)w) = ρK (ξ, χ) w(1 -w).
pinllyD sine ρ is wek solution to ∂ t ρ + ∂ x (f (x, t, ρ)) = 0D we dedue tht ξ is di'erenE tile with respet to tD with derivtive χF (iii) e proved tht v nd ω re linked nd tht ω nd w re linked y @UFPFTA t the eE ginning of the setionF he proof is ompletedF Proof of Theorem 7.3.4. he existene lim redily follows from heorem UFQFQF 7.7 Numerical simulation sn this setionD we present numeril test performed with the sheme nlyzed in etion UFTF por f min D we tke the uniformly onve )ux f min (ρ) = ρ(1 -ρ)D nd for f max D we tke

f max (ρ) = f min (ρ) if 0 ≤ ρ ≤ ρ c P (ρ) if ρ c < ρ ≤ 1,
where ρ c is some ritil threshold nd P is polynomil of degree 3 stisfyingX ≥ 0 on c , 1]; P (ρ c ) = f min (ρ c ); P (ρ c ) = f min (ρ c ); P (1) = 0, s depited in pigure UFQD leftF por the ske of simpliityD we hoose η = µD oth equl to suitle regulriztion of the tringleEshped funtion x → 2(1 -2|x|)1 {|x|≤ 1 2 } F e del with rod prmetrized y the intervl [-2, 5] nd time horizon T = 6.0F e hoose initil dt stisfying the hypotheses of heorem UFQFQX 

ρ 0 (x) =      0.4 if -1 < x < 0 0.8 if 1 < x < 2 0.
∂ t u + ∂ x (H(x, u)) = 0 u(•, 0) = u 0 .
@VFHFIA st is known tht solutions to these equtions generlly develop shoks whih use loss of informtionF his expresses the irreversile nture of the phenomenon they desrieF sn TID the uthors onsidered eqution @VFHFIA in the se when the )ux hs no spe dependeny i.e. H(x, u) = H(u)F hey provided full hrteriztion of the set of initil dt tht evolve into given pro(leF hey lso desried some geometri nd topologil properties of this setF yne of the ruil tools used y the uthors of TI is the onnetion etween the solutions to the onservtion lw @VFHFIA nd the solutions of the rmiltonEtoi eqution

∂ t U + H (x, ∂ x U ) = 0 U (•, 0) = U 0 .
@VFHFPA sn the se where the )ux H does not depend on the spe vrileD solutions of @VFHFIA re otined y di'erentiting solutions of @VFHFPAF he uthors of TI lso lri(ed how to otin solutions of @VFHFPA from solutions of @VFHFIAD see TID roposition PFSF yn n ttempt to extend their studies to speEdependent )owsD we (rst im in this hpter to prove wellEposedness of oth prolem @VFHFIA nd prolem @VFHFPAD nd the orrespondene to their solutions for lss of C 2 (R 2 ) )ux funtions H whih spe dependeny is lolized in ompt suset of RX

∃X > 0, ∀x, u ∈ R, |x| ≥ X =⇒ ∂H ∂x (x, u) = 0. @VFHFQA 1.
We change the notation for the ux from f to H because we will extensively use the methods and viewpoints from the theory of the associated Hamilton-Jacobi equations, where the notation H is traditional. IWW sn the litertureD wellEposedness for the onservtion lw @VFHFIA is usully otined in the lss of ounded funtions with )ow H glolly vipshitzD see for instne IIRD VVD TVD IRHF egrding the rmiltonEtoi eqution @VFHFPAD the initil dt is usully tken in the spe W 1,∞ (R) nd the )ow HD onvex with respet to the seond vrileD is suEliner s |u| → +∞D see VID ghpter IH nd IPTD UWD TQD PVF xote tht this lst ssumption does not seem to hve ounterprt in the usul ssumptions on the )ow of onservtion lwF o our knowledgeD using ssumption @VFHFQA is newF his ssumption is worth onsidering for few resonsX " prom the pplition point of view i.e. from the hi point of view @etion VFPAD )ows H whih stisfy @VFHFQA nturlly rise in the ontext of rod tr0 dynmisF ome simple exmples would e )ux funtionsX

H(x, u) = f (u) + g(x); H(x, u) = θ(x)f (u); H(x, u) = f (u -θ(x)),
for suitle hoie of funtions f D g nd θF emrk tht ssumption @VFHFQA llows for ny growth of H in uF sn prtiulrD strongly convex @in uA rmiltonins n e onsideredF " prom the lulus of vritions viewpoint @etion VFQAD eing le to onsider oerive @in uA rmiltonin will e essentil to prove the existene of miniml rsF " prom the yhi point of view @etion VFIFPAD ssumption @VFHFQA will led to glol existene in time for the rmiltonin rys nd outside the ompt [-X, X] of spe dependenyD the rmiltonin rys will e stright linesF his hpter is orgnized s followsF e strt in etion VFI y setting the frmework nd proving useful estimtes nd properties of the rmiltonin H @nd its vegendre trnsformA s well s yhi results nd generlized hrteristisF henD etion VFP is devoted to the proof of orrespondene etween entropy solutions nd visosity solutions under the sme ssumptions on HF es yprodutD we lso otin wellEposedness results for @VFHFIA nd @VFHFPAF he result is extended for the rmiltonEtoi eqution in etion VFQ through the lulus of vritions pprohF wore thn the existene resultD this setion lso provides the orrespondene visosity solutionsGlulus of vritionsF e onlude in etion VFR y tkling the initil dt identi(tion prolem for our lss of speEdependent )owsF Then f has the following properties.

(i) f is superlinear:

lim |u|→+∞ f (u) |u| = +∞.
(ii) Its Legendre transform f * , given by the formula

f * (v) = sup u∈R uv -f (u) ,
is well-dened on R. Moreover, f * is C 2 (R) and strongly convex as well.

(iii) For all C ∈ R, the equation f (u) = C admits at most two solutions.
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Proof. emrk tht f is in prtiulr

C 1 Edi'eomorphism of RF (i) pix A > 0F ine f : R → R is ijetionD ∃β ∈ R, f (β) = 2A. woreoverD ∃U = U (A, β) > 0, ∀v ∈ R, v ≥ U =⇒ f (β) -2Aβ v ≤ A.
fy onvexityD for ll u ≥ max{β, V }D we hve

f (u) u ≥ f (β) + f (β)(u -β) u = f (β) + 2A(u -β) u = 2A + f (β) -2Aβ u ≥ A, whih proves tht lim u→+∞ f (u) u = +∞F e would show in similr fshion tht lim u→-∞ f (u) u = -∞F (ii) pix v ∈ RF he funtion φ : u → uv -f (u) is ontinuous on R nd stis(es φ(u) -→ |u|→+∞ -∞
euse of (i)F e dedue tht φ ttins its mximum on RY suh glol mximum u 0 is ritil point of φF e dedueX

φ (u 0 ) = 0 ⇐⇒ v -f (u 0 ) = 0 ⇐⇒ u 0 = g(v), g := (f ) -1 .
xote tht g ∈ C 1 (R) s the reiprol of f F e dedue tht f * is given yX

∀v ∈ R, f * (v) = vg(v) -f (g(v)).
ine f nd g re oth ontinuously di'erentileD f * is ontinuously di'erentile s wellF woreoverD for ll v ∈ RD 

(f * ) (v) = g(v) -vg (v) -g (v)f (v) = g(v). ine g is ontinuously di'erentileD (f * ) is ontinuously di'erentile s wellD i.e. f * ∈ C 2 (R)F pinllyD sine f is n inresing ijetionD so is (f * ) = g = (f ) -1 F his proves tht f * is strongly onvexF (iii) pix C ∈ RF roperty (i)
∀x, v ∈ R, L(x, v) = (v + θ(x)) 2 4θ(x) .
yne remrkle feture is tht L nd H hve the sme propertiesD s highlighted y the following lemmF Lemma 8.1.3. Let H ∈ C 2 (R 2 ) verify @VFHFQA-@VFIFPA. Then:

(i) L ∈ C 2 (R 2
) and veries @VFHFQA-@VFIFPA as well;

(ii) we have:

∀λ > 0, ∀x ∈ R, ∀v ∈ R * , L(x, v) |v| ≥ λ - 1 |v| sup y∈R |u|≤λ H(y, u) @VFIFRA and ∀λ > 0, ∀x ∈ R, ∀u ∈ R * , H(x, u) |u| ≥ λ - 1 |u| sup y∈R |v|≤λ L(y, v) . @VFIFSA
Proof. emrk tht the superliner growth grnted in (i) of vemm VFIFP ensures tht the supremum in the de(nition of L is mximumD so tht L is well de(ned on R 2 F (i) fy @VFIFPAD for ll

(x, v) ∈ R 2 D there exists unique u ∈ R suh tht v = ∂H ∂u (x, u)F ine ∂ 2 H ∂u 2 (x, •)
does not vnish on RD we n pply the impliit funtion theorem to inverse the reltionX

v = ∂H ∂u (x, u) ⇐⇒ u = g(x, v), with g ∈ C 1 (R 2 ) in neighorhood of (x, v)F woreoverD diret omputtions led to ∂L ∂v (x, v) = g(x, v), ensuring tht L ∈ C 2 (R 2 )F woreoverD from @VFHFQAD we dedueX ∀(x, v) ∈ R 2 , |x| ≥ X =⇒ L(x, v) = sup u∈R uv -H(X, u) ,
nd the spe dependeny of L is lolized in the ompt suset [-X, X] s wellF he ft tht for ll x ∈ RD L(x, •) is strongly onvex follows from vemm VFIFPF (ii) e now turn to the proof of inequlity @VFIFRAF fy speilizing with u = λv |v| in the de(nition @VFIFQA of LD we getX

L(x, v) ≥ λ|v| -H x, λv |v| ≥ λ|v| -sup y∈R |u|≤λ H(y, u).
prom this lst inequlityD we dedue @VFIFRAF snequlity @VFIFSA follows from the sme omE puttionsD using the ft tht the vegendre trnsform is n involution on onvex funtionsF pix r 0 ≥ 0 nd let (r n ) n e sequene of R + whih onverges to rF fy omptnessD

∀n ∈ N, ∃x n ∈ [-X, X], φ(r n ) = F (x n , r n ) nd ∃x 0 ∈ [-X, X]
, φ(r 0 ) = F (x 0 , r 0 ). eginD y omptnessD up to the extrtion of susequeneD we n suppose tht (x n ) n onverges to some x ∈ [-X, X]F he ontinuity of F gives usX

φ(r n ) -→ n→+∞ F (x, r 0 ).
e onlude the proof y showing tht F (x, r 0 ) = F (x 0 , r 0 )F fy de(nition of the sequene (x n ) n D ∀n ∈ N, F (x n , r n ) ≤ F (x 0 , r n ) =⇒ F (x, r 0 ) ≤ F (x 0 , r 0 ). pinllyD y de(nition of x 0 D we lso hve F (x, r 0 ) ≥ F (x 0 , r 0 )D hene the equlity nd the proof is ompleteF PHS Remark 8.1.1. gondition @VFIFTA implies tht L @respF HA is ounded y elowF sndeedD y ssumptionD there exists R 1 > 0 suh tht

∀r ∈ R + , r ≥ R 1 =⇒ φ(r) ≥ r. he funtion φ is ontinuous on the ompt suset [0, R 1 ]D hene ounded on [0, R 1 ]F gonE sequentlyD ∀x, v ∈ R, L(x, v) ≥ φ(|v|) ≥ min min [0,R 1 ] φ; R 1 .

ODE aspect

he hrteristis system ssoited to @VFHFIA isX

       ξ(t) = ∂H ∂u (ξ(t), ν(t)) ν(t) = - ∂H ∂x (ξ(t), ν(t)); ξ(0) = ξ 0 , ν(0) = ν 0 ; ξ 0 , ν 0 ∈ R. @VFIFUA emrk tht if (ξ, ν) is trjetory of @VFIFUA de(ned on (τ, σ)D we hveX ∀t ∈ (τ, σ), d dt (H(ξ(t), ν(t))) = ξ(t) ∂H ∂x (ξ(t), ν(t)) + ν(t) ∂H ∂u (ξ(t), ν(t)) = 0, @VFIFVA
whih mens tht H is onstnt long ny trjetory t → (ξ(t), ν(t))F ine H ∈ C 2 (R 2 )D guhyEvipshitz theorem immeditely ensures tht for ll ξ 0 , ν 0 ∈ RD @VFIFUA dmits unique mximl solutionF sn this setion we prove two prinipl results under ssumptions @VFHFQAE @VFIFPAX glol existene of the mximl solutions nd surjetivity of the shooting funtionF Global existence Lemma 8.1.5 @rojetion of the level setsA. Let ξ 0 , ν 0 ∈ R. Set

M := sup x∈R |u|≤|ν 0 | |H(x, u)| + sup x∈R |v|≤1 L(x, v).
Then the maximal solution ((τ, σ), ξ, v) to @VFIFUA satises:

∀t ∈ (τ, σ), |ν(t)| ≤ M. @VFIFWA Proof.
his is onsequene of estimte @VFIFSA nd ssumption @VFHFQAF sndeedD for ll t ∈ (τ, σ)D we hve

sup x∈R |u|≤|ν 0 | |H(x, u)| ≥ H(ξ 0 , ν 0 ) = H(ξ(t), ν(t)) ≥ |ν(t)| -sup x∈R |v|≤1 L(x, v),
where we hve used @VFIFSA with λ = 1 nd the onservtion of H long t → (ξ(t), ν(t))D see @VFIFVAF Lemma 8.1.6 @qlol existeneA. Fix ξ 0 , ν 0 ∈ R and let ((τ, σ), ξ, ν) be the maximal solution to @VFIFUA. Then (τ, σ) = R.

Proof. es in vemm VFIFSD set

M := sup x∈R |u|≤|ν 0 | |H(x, u)| + sup x∈R |v|≤1 L(x, v) so tht ∀t ∈ (τ, σ), |ν(t)| ≤ M.
xowD set

V := sup x∈R |p|≤M ∂H ∂u (x, p) < +∞. emrk tht ∀t ∈ (τ, σ), | ξ(t)| ≤ V nd thereforeD ∀t, t ∈ (τ, σ), |ξ(t) -ξ(t )| ≤ V |t -t |,
nd ξ does low up in (nite timeF ine ν does not eitherD (τ, σ) = RF Surjectivity of the shooting function vet us introdue the )ow of @VFIFUAX ϕ : R 3 -→ R 2 (t, ξ 0 , ν 0 ) -→ (ξ(t), ν(t)), where (ξ, ν) is the mximl solution to @VFIFUA ssoited with initil dt (ξ 0 , ν 0 )F he di'erE entil system eing utonomousD we know tht ϕ hs the sme regulrity s the derivtives of HD so here ϕ ∈ C 1 (R 3 )F vet us lso denote y ϕ 1 nd ϕ 2 the two projetions of ϕD tht is for ll (t, ξ 0 , ν 0

) ∈ R 3 D ϕ 1 (t, ξ 0 , ν 0 ) = ξ 0 + ¢ t 0 ∂H ∂u (ϕ 1 (s, ξ 0 , ν 0 ), ϕ 2 (s, ξ 0 , ν 0 )) ds ϕ 2 (t, ξ 0 , ν 0 ) = ν 0 - ¢ t 0 ∂H ∂x (ϕ 1 (s, ξ 0 , ν 0 ), ϕ 2 (s, ξ 0 , ν 0 )) ds .
@VFIFIHA he prinipl of result of this setion is vemm VFIFIIF fefore tkling the proofD we introdue some nottionsGde(nitions nd prove intermedite resultsF sn view of @VFIFPAD 

∀x ∈ R, ∃!u(x) ∈ R, ∂H ∂u (x, u(x)) = 0. @VFIFIIA woreoverD sine ∂ 2 H ∂u 2 (x, •) does not vnish on RD n pplition of the impliit funtion theorem ensures tht u ∈ C 1 (R) nd tht ∀x ∈ R, |x| ≥ X =⇒ u (x) = 0,
Γ - C := (x, p) ∈ R 2 | H(x, p) = C nd p < u(x) Γ + C := (x, p) ∈ R 2 | H(x, p) = C nd p > u(x) .
Proposition 8.1.8. For all C > K and for all x ∈ R,

∀C > K, ∀x ∈ R, ∃!(m(x, C), M (x, C)) ∈ R 2 , (x, m(x, C)) ∈ Γ - C , (x, M (x, C)) ∈ Γ + C .
Moreover, (i) M, m ∈ C 1 (R × (K, +∞));

(ii) M and m have a compact space dependency:

∀(x, C) ∈ R × (K, +∞), |x| ≥ X =⇒ ∂M ∂x (x, C) = 0; ∂m ∂x (x, C) = 0; @VFIFIQA (iii) for all x ∈ R, M (x, •
) is an increasing function and m(x, •) is a decreasing function.

(iv) We have the limits:

∀x ∈ R, M (x, C) -→ C→+∞ + ∞; m(x, C) -→ C→+∞ -∞.
Proof. e only prove the results for M D the detils for m re similrF (i)-(ii) he funtion M is de(ned y the reltions fy de(nition of KD ∀t ∈ R, ϕ 2 (t, ξ 0 , ν 0 ) = u(ϕ 1 (t, ξ 0 , ν 0 )).

∀(x, C) ∈ R × (K, +∞), H(x, M (x, C)) = C, M (x, C) > u(x).
K = -1/4F ∀x ∈ R, ∀C > - 1 4 , m(x, C) = 1 2 - 1 2 1 + 4C θ(x) ; M (x, C) = 1 2 + 1 2 1 + 4C θ(x) .
sing the ontinuity of ϕ 1 nd ϕ 2 s well s the ft tht ν 0 > u(ξ 0 )D we dedue tht ∀t ∈ R, ϕ 2 (t, ξ 0 , ν 0 ) > u(ϕ 1 (t, ξ 0 , ν 0 )), thereforeD for ll t ∈ RD (ϕ 1 (t, ξ 0 , ν 0 ), ϕ 2 (t, ξ 0 , ν 0 )) ∈ Γ + C 0 F gonsequentlyD y de(nition of V @he(nition VFIFWAD we hveX

ϕ 1 (T, ξ 0 , ν 0 ) = ξ 0 + ¢ T 0 ξ(s) ds ≥ ξ 0 + T • V (C 0 ) -→ ν 0 →+∞ + ∞ sine C 0 -→ ν 0 →+∞
+ ∞F sing m nd vD we would prove the sme wy tht

ϕ 1 (T, ξ 0 , ν 0 ) -→ ν 0 →-∞ -∞.
he ontinuity of ϕ 1 oupled with the intermedite vlue theorem onludes the proofF ith similr idesD we prove the vrintX Lemma 8.1.12. Fix T > 0 and ξ T ∈ R. Then

∀ξ 0 ∈ R, ∃ν T ∈ R, ϕ 1 (0, ξ T , ν T ) = ξ 0 .

Generalized characteristics

e now rell de(nitions nd results from TUD whih we mostly e used in etion VFRF xote tht we re indeed in the frmework of TU euse of ssumptions @VFIFPAF pix T > 0 nd u 0 ∈ L ∞ (R)F es we will prove in etion VFPD @VFHFIA dmits unique entropy solution u ∈ L ∞ (Ω)D see he(nition VFPFIF woreoverD for FeF t ∈ (0, T )D u(•, t) dmits strong leftEside nd rightEside tres t point x for ll x ∈ RD see emrk VFPFIF Denition 8.1.13. @iA e vipshitz funtion γ ∈ Lip((0, T )) is generlized hrteristis

to @VFHFIA if for FeF t ∈ (0, T )D ∂H ∂u (γ(t), u(γ(t)+, t) ≤ γ(t) ≤ ∂H ∂u (γ(t), u(γ(t)-, t)).
@iiA e generlized hrteristis γ ∈ Lip((0, T )) is sid genuine on (0, T ) if for FeF t ∈ (0, T )D u(γ(t)-, t) = u(γ(t)+, t). 

lim sup ε→0+ 1 ε ¢ γ(0) γ(0)-ε u 0 (x) dx ≤ v(0) ≤ lim inf ε→0+ 1 ε ¢ γ(0)+ε γ(0) u 0 (x) dx for a.e. t ∈ (0, T ), u(γ(t)-, t) = v(t) = u(γ(t)+, t) u(γ(T )+, T ) ≤ v(T ) ≤ u(γ(T )-, T ).
Moreover, (γ, v) solves the ODE system @VFIFUA.

(ii) Two genuine characteristics may intersect only at their endpoints.

( 

initil dt u 0 ∈ L ∞ (R) if for ll test funtions ϕ ∈ C ∞ c (R × R + ), ϕ ≥ 0 nd for ll κ ∈ RD the following entropy inequlities re veri(edX ¢ +∞ 0 ¢ R |u -κ|∂ t ϕ + Φ (x, u, κ) ∂ x ϕ -sgn(u -κ) ∂H ∂x (x, κ)ϕ dx dt + ¢ R |u 0 (x) -κ|ϕ(x, 0) dx ≥ 0.
@VFPFIA Remark 8.2.1. es we mentioned in ghpter I @see emrk IFTFIAD sine the rmiltonin is nonEdegenerte @see ssumption @VFIFPAAD entropy solutions to @VFHFIA dmit strong tres for ll positive timesD see QD IPWF xote tht vemm VFIFS oupled with the notion of generlized hrteristis @see eE tion VFIFQ provides n a priori ound for entropy solutions to @VFHFIAF Theorem 8.2.2. Fix u 0 ∈ L ∞ (R)∩C(R) and let u be an entropy solution to @VFHFIA associated with initial data u 0 . Then we have:

u L ∞ (Ω) ≤ sup y∈R |p|≤ u 0 L ∞ H(y, p) + sup y∈R |v|≤1 L(y, v). @VFPFPA
Proof. pix (x, t) ∈ Ω nd denote y ξ @respF ζA the miniml @respF mximlA kwrd generlized hrteristis emnting from (x, t)F egrding ξD it mens tht ξ ∈ C 1 ((0, t)) nd tht there exists ν ∈ C 1 ((0, t)) suh tht ξ, ν solves @VFIFUA with (nl onditions ξ(t) = x nd ν(t) = u(x-, t)D where we denoted y u(x-, t) the leftEside tre of u t point x nd time t @see emrk VFPFI for the existene of suh tresAF ine u 0 is ontinuousD y onservtion @see @VFIFVAA we hve

H(ξ(t), ν(t)) = H(ξ(0), ν(0)) = H(ξ(0), u 0 (ξ(0))).
sing now inequlity @VFIFSA with λ = 1D we dedueX o otin the sme ound for |u(x+, t)|D we use ζX there exists some funtion ω ∈ C 1 ((0, t)) suh tht ζ, ω solves @VFIFUA with (nl onditions ζ(t) = x nd ω(t) = u(x+, t)F e omit the detils of the proof sine they re similr to the ones for u(x-, t)F Remark 8.2.2. yne n show tht the ound @VFHFIA still holds for merely ounded initil dtF roweverD heorem VFPFP stted s it is will e su0ient for the pplition we hve in mindD see gorollry VFPFPHF he key rgument to the proof of uniqueness for entropy solutions is uto inequlityD whih proof n e found in IIRD heorem IF e provide here simpler reEwriting of the proof in our frmeworkF Lemma 8.2.3 @uto inequlityA. Fix u 0 , v 0 ∈ L ∞ (R). We denote by u (resp. v) an entropy solution to @VFHFIA corresponding to initial data u 0 (resp. v 0 ). Then for all test functions ϕ ∈ C ∞ c (R × R + ), ϕ ≥ 0, we have:

|u(x-, t)| ≤ H(x, u(x-, t)) + sup y∈R |v|≤1 L(y, v) = H(ξ(t), ν(t)) + sup
¢ +∞ 0 ¢ R |u -v|∂ t ϕ + Φ(x, u, v)∂ x ϕ dx dt + ¢ R |u 0 (x) -v 0 (x)|ϕ(x, 0) dx ≥ 0. @VFPFQA 8.2. CORRESPONDENCE CL/HJ PIQ Proof. ke φ = φ(x, t, y, s) ∈ C ∞ c ((R × R + ) 2
), φ ≥ 0F he lssil method of douling vriles @fter ddingGsustrting identil funtions nd rrnging termsA leds us toX ¨|u(x, t) -v(y, s)|(∂ t φ + ∂ s φ) dx dt dy ds + ¨sgn(u(x, t) -v(y, s) (H(x, u(x, t)) -H(y, v(y, s)) (∂ x φ + ∂ y φ) dx dt dy ds + ¨sgn(u(x, t) -v(y, s) (H(y, v(y, s)) -H(x, v(y, s)) ∂ x φ dx dt dy ds + ¨sgn(u(x, t) -v(y, s) (H(y, u(x, t)) -H(x, u(x, t)) ∂ y φ dx dt dy ds

- ¨ ∂ x H(x, v(y, s)) -∂ x H(y, u(x, t)) sgn(u(x, t) -v(y, s))φ dx dt dy ds + ¦ |u 0 (x) -v(y, s)|φ(x, 0, y, s) dx dy ds + ¦ |u(x, t) -v 0 (y)|φ(x, t, y, 0) dx dt dy ≥ 0.
@VFPFRA e now pply @VFPFRA with

φ n (x, t, y, s) = ϕ x + y 2 , t + s 2 δ n x -y 2 δ n t -s 2 , where ϕ = ϕ(X, T ) ∈ C ∞ c (R × R + ), ϕ ≥ 0 nd (δ n ) n is smooth pproximtion @in the C ∞ c ( 
R) senseA of the hir mss t the originF sing the ft tht for ll n ∈ ND 

∂ t φ n + ∂ s φ n = ∂ T ϕ x + y 2 , t + s 2 δ n x -y 2 δ n t -s 2 ∂ x φ + ∂ y φ = ∂ X ϕ x + y 2 , t + s 2 δ n x -y 2 δ n t -s 2 nd ¨ ∂ x H(x, v(y, s)) -∂ x H(y, u(x, t)) sgn(u(x, t) -v(y, s))φ n dx dt dy ds -→ n→+∞ 0, we otin ¨|u(x, t)-v(y, s)|(∂ t φ n +∂ s φ n ) dx dt dy ds -→ n→+∞ ¢ +∞ 0 ¢ R |u(x, t)-v(x, t)|∂ T ϕ(x, t) dx dt nd ¨sgn(u(x, t) -v(y, s) (H(x, u(x, t)) -H(y, v(y, s)) (∂ x φ n + ∂ y φ n ) dx dt dy ds -→ n→+∞ ¢ +∞ 0 ¢ R Φ(x, u(x, t), v(x, t))∂ X ϕ(x,
, v 0 ∈ L ∞ (R).
We denote by u (resp. v) an entropy solution to @VFHFIA corresponding to initial data u 0 (resp. v 0 ). Fix R > 0 and set

L = sup x∈R |p|≤ u L ∞ + v L ∞ ∂H ∂u (x, p) .
Then for all t ∈ (0, T ),

¢ |x|≤R |u(x, t) -v(x, t)| dx ≤ ¢ |x|≤R+Lt |u 0 (x) -v 0 (x)| dx . @VFPFSA
In particular, @VFHFIA admits at most one entropy solution.

Proof. pix t ∈ (0, T )F gonsider for ll n ∈ N the funtionX

ϕ n (x, s) = 1 4 (1 -ξ n (s -t)) (1 -ξ n (|x| -R + L(s -t))) ,
where (ξ n ) n is smooth pproximtion of the sign funtionF he sequene (ϕ n ) n is smooth pproximtion of the hrteristi funtion of the trpezoid

T = (x, s) ∈ R × R + | s ∈ [0, t] nd |x| ≤ R -L(s -t) .
vet us pply uto inequlity @VFPFRA with (ϕ n ) n F por ll n ∈ ND we hve

¢ +∞ 0 ¢ R |u -v|∂ t ϕ n dx ds = - 1 4 ¢ +∞ 0 ¢ R |u -v|ξ n (s -t) (1 -ξ n (|x| -R + L(s -t))) dx ds - L 4 ¢ +∞ 0 ¢ R |u -v| (1 -ξ n (s -t)) ξ n (|x| -R + L(s -t)) dx ds -→ n→+∞ - ¢ |x|≤R |u(x, t) -v(x, t)| dx -L ¢ t 0 ¢ |x|=R-L(s-t) |u -v| dx ds . henD ¢ +∞ 0 ¢ R Φ(x, u, v)∂ x ϕ n dx ds = - 1 4 ¢ +∞ 0 ¢ R Φ(x, u, v) (1 -ξ n (s -t)) sgn(x)ξ n (|x| -R + L(s -t)) dx ds -→ n→+∞ - ¢ T 0 ¢ |x|=R-L(s-t)
Φ(x, u, v) sgn(x) dx ds . essemling the previous limits togetherD we getX

- ¢ |x|≤R |u(x, t) -v(x, t)| dx + ¢ |x|≤R+Lt |u 0 (x) -v 0 (x)| dx - ¢ T 0 ¢ |x|=R-L(s-t) (L|u -v| + Φ(x, u, v) sgn(x)) dx ds ≥ 0. xote tht for ll s ∈ (0, t)D if x = R -L(s -t)D then L|u(x, t) -v(x, t)| + Φ(x, u(x, t), v(x, t)) sgn(x) ≥ L|u(x, t) -v(x, t)| -|H(x, u(x, t)) -H(x, v(x, t))| ≥ 0.
e get @VFPFSA y ssemling the ove ingredients togetherF st lerly implies uniqueness nd the proof is ompleteF xowD let us rell the stndrd grndllEvions de(nition of visosity solutionD see IPTD TQD IHSF Denition 8.2.5. e ontinuous funtion U ∈ C(Ω) is visosity solution to @VFHFPA with

initil dt U 0 ∈ Lip(R) if U ∈ Lip(Ω)Y U (•, 0) = U 0 on R nd if for ll test funtions ϕ ∈ C ∞ (Ω) nd (x 0 , t 0 ) ∈ ΩX @iA if U -φ hs lol mximum t (x 0 , t 0 )D thenX ∂ϕ ∂t (x 0 , t 0 ) + H x 0 , ∂ϕ ∂x (x 0 , t 0 ) ≤ 0, @VFPFTA @iiA if U -φ hs lol minimum t (x 0 , t 0 )D thenX ∂ϕ ∂t (x 0 , t 0 ) + H x 0 , ∂ϕ ∂x (x 0 , t 0 ) ≥ 0.
@VFPFUA e ll susolution @respF supsolutionA to @VFHFPA vipshitz funtion U ∈ Lip(Ω) whih veri(es U (•, 0) = U 0 on R nd @VFPFTA @respF @VFPFUAAF Remark 8.2.3. st is known tht in he(nition VFPFSD we n llow t = T D see VID etion IHFPF vike for entropy solutionsD uniqueness nd stility of visosity solutions is stndrdD see for instne IHPD PVD ghpter PD RTD ghpter S or PUD ghpter ssF roweverD these results do not pply in our frmeworkD so we give the proof of the following sttementF Theorem 8.2.6. Fix U 0 , V 0 ∈ Lip(R). We denote by U (resp. V ) a viscosity solution to @VFHFPA corresponding to initial data U 0 (resp. V 0 ). Then:

sup (x,t)∈Ω |U (x, t) -V (x, t)| ≤ sup x∈R |U 0 (x) -V 0 (x)| . @VFPFVA
In particular, @VFHFPA admits at most one viscosity solution.

Proof. vet us ssume tht M := sup

R |U 0 -V 0 | < +∞F et L := max{ ∇U L ∞ (Ω) , ∇V L ∞ (Ω) }F prom strightforwrd omputtionD we otin tht for ll (x, t), (y, s) ∈ RΩD |U (x, t) -V (y, s)| ≤ L(2T + |x -y|) + M. @VFPFWA pix A, ε, ν, η > 0 nd onsiderD for ll (x, t), (y, s) ∈ ΩD ψ(x, y, t, s) := U (x, t) -V (y, s) - (x -y) 2 2ε 2 - (t -s) 2 2ν 2 -A(x 2 + y 2 ) -η(t + s).
sn view of @VFPFWAD ψ(x, y, t, s) -→ 

∈ R, (x -y) 2 2ε 2 - (x -y) 2 2ε 2 -A(x 2 -x 2 ) ≤ U (x, t) -U (x, t) ≤ L|x -x|. @VFPFIIA epply @VFPFIIA with x > x @respF x < xA nd let x → x+ @respF x → x-A to otinX (x -y) ε 2 + 2Ax ≤ L. @VFPFIPA ith similr rgumentsD one n hek tht (x -y) ε 2 + 2Ay ≤ L. @VFPFIQA
(2) yne ginD y de(nition of (x, y, t, s)D ψ(0, 0, t, s) ≤ ψ(x, y, t, s), 

- L 2 2 + A|y| - L 2 2 ≤ L 2 2 , nd thenX A|x| - L 2 ≤ L √ 2 ; A|y| - L 2 ≤ L √ 2 . @VFPFIRA gomining this with @VFPFIPA providesX |x -y| ε 2 ≤ (x -y) ε 2 + 2Ax + 2A|x| ≤ 4L. @VFPFISA
(3) elso note tht ψ(x, y, t, t) ≤ ψ(x, y, s)

implies (t -s) 2 2ν 2 ≤ LT + η(t -s). @VFPFITA
(4) sing one more time the de(nition of (x, y, t, s)D we write ∀(x, t) ∈ R × [0, T ], ψ(x, x, t, t) ≤ ψ(x, y, t, s).

his redsX

A(x 2 + y 2 ) ≤ (U (x, t) -V (y, s)) -(U (x, t) -V (x, t)) - (x -y) 2 2ε 2 - (t -s) 2 2ν 2 + 2Ax 2 + 2ηt -η(t + s). @VFPFIUA xow tke the limit s x → 0 nd t → 0X A(x 2 + y 2 ) ≤ (U (x, t) -V (y, s)) + M - (x -y) 2 2ε 2 - (t -s) 2 2ν 2 ≤ L(2T + |x -y|) + M - (x -y) 2 2ε 2 - (t -s) 2 2ν 2 .
sn view of @VFPFISA nd @VFPFITAD ∃C, ∀A, ε, η, ν, A(x 2 + y 2 ) ≤ C. @VFPFIVA [START_REF] Andreianov | New approaches to describing admissibility of solutions of scalar conservation laws with discontinuous ux[END_REF] uppose tht t = 0F sn view of @VFPFITAD we lso hve s = 0F he funtion 

ϕ(x, t) = V (y, s) + (x -y) 2 2ε 2 + (t -s) 2 2ν 2 + A(x 2 + y 2 ) + η(t + s) is in C 1 (Ω) nd U -ϕ
(y, s) = U (x, t) - (x -y) 2 2ε 2 - (t -s) 2 2ν 2 -A(x 2 + y 2 ) -η(t + s) is in C 1 (Ω) nd V -ϕ dmits lol minimum t point (y, s)F ine V is visosity solutionD we hveX ∂ϕ ∂t (y, s) + H y, ∂ϕ ∂x (y, s) ≥ 0 whih rewrites sX (t -s) ν -η + H y, (x -y) ε 2 -2Ay ≥ 0. @VFPFPHA ustrting @VFPFIWA y @VFPFPHA yieldsX 2η + H x, (x -y) ε 2 + 2Ax -H y, (x -y) ε 2 -2Ay Q ≤ 0. @VFPFPIA xote tht in view of @VFPFIPAD |Q| ≤   sup x∈R |p|≤8L ∂H ∂x (x, p)   |x -y| + 2   sup x∈R |p|≤8L ∂H ∂u (x, p)   A(|x| + |y|) ≤ 4L   sup x∈R |p|≤8L ∂H ∂x (x, p)   ε 2 +   4 √ C sup x∈R |p|≤8L ∂H ∂u (x, p)   √ A. xowD let A → 0 nd ε → 0 to otin the ontrdition 2η ≤ 0F hereforeD t = s = 0F (6) xowD for ll (x, t) ∈ R × [0, T ]D U (x, t) -V (x, t) = (U (x, t) -V (x, t) -2Ax 2 -2ηt) + 2Ax 2 + 2ηt = ψ(x, x, t, t) + 2Ax 2 + 2ηt ≤ ψ(x, y, 0, 0) + 2Ax 2 + 2ηt = U 0 (x) -V 0 (y) - (x -y) 2 2ε 2 -A(x 2 + y 2 ) + 2Ax 2 + 2ηt ≤ L|x -y| + M - (x -y) 2 2ε 2 -A(x 2 + y 2 ) + 2Ax 2 + 2ηt.
Proof. (i) imple omputtions yield

∂ t U ε (x, t) + H(x, ∂ x U ε (x, t)) = ¢ x 0 ∂ t u ε (y, t) dy -H(0, u ε (0, t)) + ε∂ x u ε (0, t) + H(x, u ε (x, t)) = ¢ x 0 -∂ x (H(y, u ε (y, t))) + ε∂ xx u ε (y, t) dy -H(0, u ε (0, t)) + ε∂ x u ε (0, t) + H(x, u ε (x, t)) = ε∂ x u ε (x, t) = ε∂ xx U ε (x, t).
(ii) his is otined y di'erentiting @VFPFPQA with respet to xF

A priori bounds Lemma 8.2.8. Let f ∈ C 1 (R), R > 0 and ε > 0. Denote by U the open subset U = {(x, t) ∈ Ω | x > R}. Suppose that u ∈ C(U) ∩ C 2 1 (U) ∩ L ∞ (U) is a classical solution to ∂ t u + ∂ x (f (u)) = ε∂ 2 xx u, (x, t) ∈ U.
Then u attains its maximum and minimum over the closure of U, and both max u and min u are taken at a point of

∼ U = {(x, 0) | x ≥ R} ∪ {(R, t) | 0 ≤ t ≤ T }.
In particular, max

(x,t)∈U |u(x, t)| ≤ max sup x≥R |u(x, 0)|, sup 0≤t≤T |u(R, t)| .
Proof. e tke inspirtion from IHID ghpter sss nd the proof of WVD heorem fFIF por ny η ∈ (0, 1)D de(ne the funtion

∀(x, t) ∈ U, v η (x, t) = u(x, t) -η 2εt + (ηx) 2 2 . pix η ∈ (0, 1)F ine u is oundedD we hve v η (x, t) -→ x→+∞ -∞D uniformly on t ∈ [0, T ]F e dedue tht v η ttins its mximum vlue t some point (x η , t η ) ∈ UF emrk tht v η (x η , t η ) ≥ v η (R, 0) =⇒ η 3 |x η | 2 2 ≤ u(x η , t η ) -u(R, 0) -2εt η + η 3 R 2 2 ,
nd sine η ∈ (0, 1)D we otinX 

η 3/2 |x η | ≤ 4 u L ∞ (U) + R 2 := M. @VFPFPRA
η (x, t) ≤ v η (x η , 0) = u(x η , 0) - η 3 |x η | 2 2 ≤ sup x≥R u(x, 0). e dedue tht for ll (x, t) ∈ UD u(x, t) ≤ v η (x, t) + η 2εt + (ηx) 2 2 ≤ sup x≥R u(x, 0) + η 2εt + (ηx) 2 2 . @VFPFPSA
Case 2: x η = R and 0 ≤ t η ≤ T . sn this seD for ll (x, t) ∈ UD we hve

v η (x, t) ≤ v η (R, t η ) = u(R, t η ) -η 2εt η + (ηR) 2 2 ≤ sup 0≤t≤T u(R, t).
e dedue tht for ll

(x, t) ∈ UD u(x, t) ≤ v η (x, t) + η 2εt + (ηx) 2 2 ≤ sup 0≤t≤T u(R, t) + η 2εt + (ηx) 2 2 .
@VFPFPTA Case 3: x η > R and t η > 0. et the mximum pointD we hveX

∂ t v η (x η , t η ) ≥ 0; ∂ x v η (x η , t η ) = 0; ∂ xx v η (x η , t η ) ≤ 0,
whih trnsltes for u sX

∂ t u(x η , t η ) ≥ 2εη; ∂ x u(x η , t η ) = η 3 x η ; ∂ xx u(x η , t η ) ≤ η 3 . gonsequentlyD ∂ t u + ∂ x (f (u)) -ε∂ xx u |(xη,tη) ≥ 2εη + η 3 x η f (u(x η , t η )) -εη 3 ≥ 2εη -η 3 |x η | sup |p|≤ u L ∞ |f (p)| -εη 3 ≥ 2εη -η 3/2 M sup |p|≤ u L ∞ |f (p)| -εη 3 = 2ε -η 1/2 M sup |p|≤ u L ∞ |f (p)| -εη 2 Q(η) η,
where we hve used the ound @VFPFPRAF ine ηQ(η) ∼ η→0 2εη > 0D we n hoose η ∈ (0, 1)

su0iently smll suh tht Q(η) > 0F his yields the ontrdition

0 = ∂ t u + ∂ x (f (u)) -ε∂ xx u |(xη,tη) > 0.
hereforeD we re either in gse I or in gse PF prom @VFPFPSAE@VFPFPTAD we dedue tht for ll

(x, t) ∈ UD u(x, t) ≤ max sup x≥R u(x, 0), sup 0≤t≤T u(R, t) + η 2εt + (ηx) 2 2 .
he proof is omplete y pssing to the limit s η → 0F

st is strightforwrd to hek tht similr sttement holds on the suset

U = {(x, t) ∈ Ω | x < -R}. Corollary 8.2.9. Let u ε ∈ C(Ω) ∩ C 2 1 (Ω) ∩ L ∞ ( 
Ω) be a classical solution to @VFPFPPA with initial data u 0 ∈ C(R). Then |u ε | attains its maximum over the closure of U, which is taken at a point of

K = {(x, 0) : |x| ≥ X} ∪ {(x, t) : |x| ≤ X and t ∈ [0, T ]}. In particular, max (x,t)∈Ω |u ε (x, t)| ≤ max      sup x∈R |u 0 (x)|, sup |x|≤X 0≤t≤T |u ε (x, t)|      . @VFPFPUA Proof. vet us denote y U the suset U = (X, +∞) × (0, T ) nd de(ne v ε = u ε |U D the restrition of u ε to UF fy onstrutionD v ε ∈ C(U)∩C 2 1 (U)∩L ∞ (U) nd v ε is lssil solution to @VFPFPPA in UF vemm VFPFV ensures tht |v ε | ttins its mximumD nd tht max (x,t)∈U |v ε (x, t)| ≤ max sup x≥X |u 0 (x)|, sup 0≤t≤T |u ε (X, t)| .
he sme resoning holds for the restrition w ε = u ε|(-∞,-X]×[0,T ] F his leds to @VFPFPUA nd the proof is ompleteF Corollary 

8.2.10. Let U ε ∈ C(Ω) ∩ C 3 1 (Ω) be a classical solution to @VFPFPQA with initial data U 0 ∈ C 1 (R). Suppose that U ε ∈ Lip(Ω). Then |∂ x U ε | attains its maximum, which is taken at a point of K = {(x, 0) : |x| ≥ X} ∪ {(x, t) : |x| ≤ X and t ∈ [0, T ]}. In particular, max (x,t)∈Ω |∂ x U ε (x, t)| ≤ max      sup x∈R |U 0 (x)|, sup |x|≤X 0≤t≤T |∂ x U ε (x, t)|      . @VFPFPVA
0 ∈ C 1 (R) such that U 0 ∈ W 1,∞ (R). Suppose that U ε ∈ Lip(Ω).
Then there exists a constant C, which does not depend on ε nor T such that

∂ t U ε L ∞ + ∂ x U ε L ∞ ≤ C. @VFPFPWA
Proof. e divide the proof in two stepsF

Step 1. Bound for ∂ t U ε . pirstD let us di'erentite the hi @VFPFPQA with respet to t so

tht ϕ ε = ∂ t U ε ∈ L ∞ (Ω) solves the liner proli equtionX ∂ t ϕ ε + ∂ x ϕ ε ∂H ∂u (x, ∂ x U ε ) = ε∂ 2 xx ϕ ε . gonsequentlyD omprison prinipleD ensures tht inf x∈R ϕ ε (x, 0) ≤ ϕ ε ≤ sup x∈R ϕ ε (x, 0) i.e. inf x∈R ∂ t U ε (x, 0) ≤ ∂ t U ε ≤ sup x∈R ∂ t U ε (x, 0).
e now ound ∂ t U ε (•, 0) using superGsusolutionsF sntrodue the funtion φ de(ned y

∀(x, t) ∈ Ω, φ(x, t) = U 0 (x) + M t, M = sup ξ∈R |p|≤ U 0 L ∞ H(ξ, p) + U 0 L ∞ . @VFPFQHA hen φ(•, 0) = U 0 ndD relling tht 0 < ε ≤ 1D we hve ∂ t φ + H(x, ∂ x φ) -ε∂ xx φ = M + H(x, U 0 (x)) -εU 0 (x) ≥ M + H(x, U 0 (x)) -|U 0 (x)| ≥ 0.
e dedue tht U ε ≤ φD see for instne VTD heorem VFIF st is strightforwrd to hek tht ψ de(ned y ψ(x, t) = U 0 (x) -M t is susolution to @VFPFPQAD implying tht U ε ≥ ψF e dedue tht for ll (x, t) ∈ ΩD

-M ≤ U ε (x, t) -U 0 (x) t ≤ M, whih leds to ∂ t U ε (•, 0) L ∞ ≤ M y letting t → 0 + F e just proved tht ∂ t U ε L ∞ ≤ M, M := sup ξ∈R |p|≤ U 0 L ∞ H(ξ, p) + U 0 L ∞ . @VFPFQIA
Step 2. Bound for ∂ x U ε . e tke inspirtion from the omputtions done in IPTD epE pendix IF vet η ∈ C 2 (R) e funtion whih veri(es η > 0 on R nd set ω ε = η(∂ x U ε )F e di'erentite the hi @VFPFPQA with respet to x this time nd multiply the resulting hi y η (∂ x U ε )F e writeD relling tht 0 < ε < 1D

∂ t ω ε + ∂H ∂u (x, ∂ x U ε )∂ x ω ε -ε∂ xx ω ε = - ∂H ∂x (x, ∂ x U ε )η (∂ x U ε ) -ε(∂ xx U ε ) 2 η (∂ x U ε ) ≤ - ∂H ∂x (x, ∂ x U ε )η (∂ x U ε ) -(ε∂ xx U ε ) 2 η (∂ x U ε ) = - ∂H ∂x (x, ∂ x U ε )η (∂ x U ε ) -(∂ t U ε + H(x, ∂ x U ε )) 2 η (∂ x U ε ) ≤ - ∂H ∂x (x, ∂ x U ε )η (∂ x U ε ) - 1 2 H(x, ∂ x U ε ) 2 -M 2 η (∂ x U ε ),
where we hve used the inequlity

∀a, b ∈ R, (a + b) 2 ≥ a 2 2 -b 2
nd the ound @VFPFQIAF o summrizeD ω ε veri(esX

∂ t ω ε + ∂H ∂u (x, ∂ x U ε )∂ x ω ε -ε∂ xx ω ε + η (∂ x U ε ) H(x, ∂ x U ε ) 2 2 + η (∂ x U ε ) η (∂ x U ε ) ∂H ∂x (x, ∂ x U ε ) -M 2 ≤ 0.
@VFPFQPA sing gorollry VFPFIHD we know tht ∂ x U ε nd therefore ω ε ttins its mximum on ΩF hereforeD let (x 0 , t 0 ) ∈ Ω e point of mximum of ω ε F e onlude the proof y se y se studyF

Case 1: t 0 = 0. sn tht seD y onvexity of ηD we otinX

∀(x, t) ∈ Ω, η(∂ x U ε (x, t)) ≤ max{η( U 0 L ∞ ), η(-U 0 L ∞ )}. @VFPFQQA
Case 2: t 0 > 0. sn tht situtionD we hveX

∂ t ω ε (x 0 , t 0 ) ≥ 0; ∂ x ω ε (x 0 , t 0 ) = 0; ∂ xx ω ε (x 0 , t 0 ) ≤ 0.
gomining these inequlities with @VFPFQPAD we dedue tht

H(x 0 , ∂ x U ε (x 0 , t 0 )) 2 2 + η (∂ x U ε (x 0 , t 0 )) η (∂ x U ε (x 0 , t 0 )) ∂H ∂x (x 0 , ∂ x U ε (x 0 , t 0 )) ≤ M 2 .
@VFPFQRA sf |x 0 | ≥ XD then using ssumption @VFHFQAD we otinX

|H(x 0 , ∂ x U ε (x 0 , t 0 ))| ≤ √ 2M,
nd the growth ondition @VFIFSA pplied with λ = 1 yieldsX

|∂ x U ε (x 0 , t 0 )| ≤ √ 2M + sup x∈R |v|≤1 L(x, v).
@VFPFQSA e onlude the proof y hndling the se |x 0 | < XF vet us exploit @VFPFQRA with η of the form η = exp •θD where θ ∈ C 2 (R) is stritly onvex funtionD to e determinedF ith tht hoieD @VFPFQRA eomes

H(x 0 , ∂ x U ε (x 0 , t 0 )) 2 2 + θ (∂ x U ε (x 0 , t 0 )) θ (∂ x U ε (x 0 , t 0 )) + (θ (∂ x U ε (x 0 , t 0 ))) 2 ∂H ∂x (x 0 , ∂ x U ε (x 0 , t 0 )) ≤ M 2 .
@VFPFQTA por the ske of lrityD introdue ∀r ≥ 0, g(r) := sup 

= r + ¢ r+1 r g(v) dv . glerlyD A ∈ C 1 ((0, +∞)) nd A > 0F xote tht lim r→0+ A(r) = ¢ 1 0 g(v) dv := M 1 ; lim r→0+ A (r) = 1 + g(1) -g(0) := M 2 .
woreoverD sine g is nonderesingD for ll r ≥ 0D we hve

A(r) ≥ r + g(r). xowD set ∀r < 0, B(r) := 2M 1 -A(-r). fy de(nitionD B ∈ C 1 ((-∞, 0))D B > 0D we hve the limits lim r→0- B(r) = M 1 ; lim r→0- B (r) = M 2 , nd for ll r ≤ -2M 1 D B(r) ≤ 2M 1 -(-r + g(-r)) = 2M 1 + r -g(-r) ≤ -g(-r).
hereforeD the funtion θ de(ned y

∀r ∈ R, θ (r) = A(r) if r ≥ 0 B(r) if r > 0 veri(esX θ ∈ C 1 (R)D θ > 0 nd ∀r ∈ R, |r| ≥ 2M 1 =⇒ |θ (r)| ≥ g(|r|).
prom @VFPFQTAD nd the omputtion of the se |x 0 | ≥ XD we otinX

|∂ x U ε (x 0 , t 0 )| ≤ max    2M 1 , 2(M 2 + 1) + sup x∈R |v|≤1 L(x, v)    . @VFPFQUA
gomining @VFPFQQAE@VFPFQSAE@VFPFQUAD we otin the desired oundF Corollary 8.2.12. Fix ε ∈ (0, 1) and let

u ε ∈ C(Ω) ∩ C 2 1 (Ω) ∩ L ∞ ( 
Ω) be a classical solution to @VFPFPPA with initial data u 0 ∈ W 1,∞ (R). Then there exists a constant C, which does not depend on ε nor T such that u ε L ∞ ≤ C. @VFPFQVA Proof. sn light of vemm VFPFU (i)D pply gorollry VFPFII to

U ε (x, t) = ¢ x 0 u ε (y, t) dy - ¢ t 0 H(0, u ε (0, s)) -ε∂ x u ε (0, s) ds .
Existence for the viscous equations pix ε ∈ (0, 1) nd de(ne the lssil het kernelX

∀(x, t) ∈ Ω, K ε (x, t) = 1 √ 4πεt e -x 2 4εt . ell tht ∀t > 0, ¢ R K ε (x, t) dx = 1; ¢ R ∂K ε ∂x (x, t) dx = 1 √ πεt ,
see for instne IHQD ghpter UF Theorem 8.2.13. Fix u 0 ∈ W 1,∞ (R). Then @VFPFPPA admits a classical solution

u ε ∈ C(R × [0, +∞)) ∩ C 2 1 (R × (0, +∞)).
Proof. e split the study in two stepsF

Step 1: Local existence. por ontinuous funtion v ∈ C(Ω)D de(ne

∀(x, t) ∈ Ω, Lv(x, t) = K ε (•, t) * u 0 (x) - ¢ t 0 ¢ R ∂K ε ∂x (x -y, t -s)H(y, v(y, s)) dy ds he ide is to prove tht L hs (xed point in suitle suset of L ∞ (Ω)F vet T * > 0 su0iently smll suh tht   2 √ πε sup x∈R |p|≤1+ u 0 L ∞ |H(x, p)|   √ T * ≤ 1;   2 √ πε sup x∈R |p|≤1+ u 0 L ∞ ∂H ∂u (x, p)   √ T * ≤ 1 2
@VFPFQWA nd de(ne 

E = v ∈ C(Ω * ) : v -K ε (•, t) * u 0 L ∞ (Ω * ) ≤ 1 ; Ω * = R × (0, T * ). his suset E is losed in L ∞ (Ω * )D therefore ompleteY E is invrint under L sine for ll v ∈ ED Lv ∈ C(Ω * ) nd ∀(x, t) ∈ Ω * , |Lv(x, t) -K ε (•, t) * u 0 (x)| ≤ ¢ t 0 ¢ R ∂K ε ∂x (x -y, t -s)H(y, v(y, s)) dy ds ≤    2 √ πε sup ξ∈R |p|≤1+ u 0 L ∞ |H(ξ, p)|    √ T * ≤ 1, y de(nition of T * nd the ft tht v L ∞ (Ω * ) ≤ v -K ε (•, t) * u 0 L ∞ (Ω * ) + K ε (•, t) * u 0 L ∞ (Ω * ) ≤ 1 + u 0 L ∞ .
≤    2 √ πε sup ξ∈R |p|≤1+ u 0 L ∞ ∂H ∂u (ξ, p)    √ T * u -v L ∞ (Ω * ) ≤ 1 2 u -v L ∞ (Ω * ) , y de(nition of T * F fnh (xed point theorem ensures tht L dmits (xed point u ε ∈ EF gonsequentlyD ∀(x, t) ∈ Ω * , u ε (x, t) = K ε (•, t) * u 0 (x) - ¢ t 0 ¢ R ∂K ε ∂x (x -y, t -s)H(y, u ε (y, s)) dy ds .
trting from the oundedness of u ε D the regulrity of the het kernel ensures tht u ε ∈ C(Ω * ) ∩ C 2 1 (Ω * ) nd is lssil solution to @VFPFPPA with initil dt u 0 D see for instne WVD vemm fFQF vet us mke preise tht in this step of the resoningD we only use the ft

u 0 ∈ C(R) ∩ L ∞ (R)F
Step 2: Global existence. xowD introdue

T m = sup τ ≥ 0 | @VFPFPPA dmits lssil solution C(R × [0, τ ]) ∩ C 2 1 (R × (0, τ )) .
prom tep 1D we know tht T m is wellEde(ned nd tht T m ≥ T * F vet us prove tht T m = +∞ y supposing tht T m < +∞F vet C e the onstnt given y gorollry VFPFIPF pix τ > 0 suh tht

  2 √ πε sup x∈R |p|≤C+1 |H(x, p)|   √ τ ≤ 1;   2 √ πε sup x∈R |p|≤C+1 ∂H ∂u (x, p)   √ τ ≤ 1 2 . @VFPFRHA et τ m = T m -τ /2F fy de(nition of T m D we n (nd funtion u ∈ C(R × [0, τ m ]) ∩ C 2 1 (R × (0, τ m )) whih is lssil solution of @VFPFPPAF prom gorollry VFPFIPD u L ∞ (R×(0,τm)) ≤ C. pollowing the resoning of tep 1D sine u (•, τ m ) ∈ C(R)∩L ∞ (R)D we n onstrut lssil solution u τ to ∂ t v + ∂ x (H(x, v)) = ε∂ 2 xx v v (•, τ m ) = u (•, τ m ) ; ; u τ ∈ C (R × [τ m , τ m + τ ]) ∩ C 2 1 (R × (τ m , τ m + τ )) . he ontention v(•, t) = u(•, t) if 0 ≤ t ≤ τ m u τ (•, t) if τ m < t ≤ τ m + τ
Proof. (i) st omes from heorem VFPFIQF (ii) he strong omptness of (u ε ) ε will follow from ompensted omptness resoningD see TUD ghpter ITD VHD ghpter S or IRSD ghpter WF he resoning follows four stepsF

Step 1. pirstD we prove tht (

√ ε|∂ x u ε |) ε is ounded in L 2 loc (Ω)F por ll ε ∈ (0, 1) nd for ll test funtions ϕ ∈ C 1 c (Ω)D we hve for ll t ∈ (0, T )D ¢ R ∂ t u ε (x, t)ϕ dx + ε ¢ R ∂ x u ε (x, t)∂ x ϕ(x, t) dx = - ¢ R ∂ x (H(x, u ε (x, t)))ϕ dx . @VFPFRIA pix R > 0 nd φ ∈ C ∞ c (R), φ ≥ 0 suh tht φ ≡ 1 on [-R, R] nd φ(x) = 0 if |x| ≥ R + 1F vet us pply @VFPFRIA with ϕ = u ε φ 2 F e otinX 1 2 d dt ¢ R (u ε φ) 2 dx + ¢ R | √ ε∂ x (u ε φ)| 2 dx = ε ¢ R |u ε φ | 2 dx - ¢ R ∂ x (H(x, u ε ))u ε φ 2 dx . @VFPFRPA xowD we introdue the funtion ∀(x, t) ∈ Ω, f ε (x, t) = ¢ uε(x,t) 0 v ∂H ∂u (x, v) dv . xote tht (f ε ) ε is ounded in L ∞ (Ω) nd tht ∂ x f ε (x, t) = ∂ x u ε (x, t) ∂H ∂u (x, u ε (x, t))u ε (x, t) + ¢ uε(x,t) 0 v ∂ 2 H ∂x∂u (x, v) dv = ∂ x (H(x, u ε (x, t)))u ε (x, t) - ∂H ∂x (x, u ε (x, t))u ε (x, t) + ¢ uε(x,t) 0 v ∂ 2 H ∂x∂u (x, v) dv . @VFPFRQA sntegrting @VFPFRPA on t ∈ (0, T ) yieldsX ¢ T 0 ¢ R | √ ε∂ x (u ε φ)| 2 dx dt ≤ 1 2 ¢ R |u 0 φ| 2 dx + ε ¢ T 0 ¢ R |u ε φ | 2 dx dt - ¢ T 0 ¢ R ∂H ∂x (x, u ε )u ε - ¢ uε(x,t) 0 v ∂ 2 H ∂x∂u (x, v) dv φ 2 dx dt - ¢ T 0 ¢ R ∂ x f ε φ 2 dx dt .
@VFPFRRA sing @VFPFRQAD n integrtion y prts gives usX

¢ T 0 ¢ R ∂ x f ε (x, t)φ 2 (x) dx dt ≤ 2 sup ε>0 f ε L ∞ (Ω) ¢ T 0 ¢ R φ(x)|φ (x)| dx dt .
prom @VFPFRQAD this lst estimte nd the oundedness of

(u ε ) ε in L ∞ (Ω)D we dedue tht ( √ ε|∂ x u ε |) ε is ounded in L 2 ((-R, R) × (0, T ))F he ritrriness on R > 0 ensures tht ( √ ε|∂ x u ε |) ε is ounded in L 2 loc (Ω)F vet us lso mke preise tht for ll η ∈ C 1 (R)D (ε∂ xx (η(u ε ))) ε lies in ompt suset of H -1 loc (Ω) for the strong topology sine ∀ε > 0, |ε∂ x (η(u ε ))| = √ ε|∂ x u ε | × √ εη (u ε ) -→ ε→0 0 in L 2 loc (Ω).
Step 2. Towards the divergence-curl lemma. vet us ensure tht we re in position to pply the divergeneEurl lemmF pix η ∈ C 2 (R) onvex funtionF he(ne its speE dependent entropy )ux ΦX

∀x, u ∈ R, Φ(x, u) = ¢ u 0 η (v) ∂H ∂u (x, v) dv .
fy multiplying the hi @VFPFPPA y η (u ε )D stndrd omputtions led to 

∂ t (η(u ε )) + ∂ x (Φ(x, u ε )) = ¢ uε 0 η (v) ∂ 2 H ∂x∂u (x, v) dv -η (u ε ) ∂H ∂x (x, u ε ) vε + ε∂ xx (η(u ε )) -εη (u ε )(∂ x u ε ) 2 . @VFPFRSA " ine the sequenes (η(u ε )) ε nd (Φ(•, u ε )) ε re ounded in L ∞ (Ω)D we know tht (∂ t (η(u ε )) + ∂ x (Φ(x, u ε ))) ε is ounded in W -1,∞ (Ω). " he sequene (v ε ) ε is ounded in L 1 loc (Ω) sine (u ε ) ε is ounded in L ∞ (Ω)F hereforeD (v ε ) ε is ounded in the spe of ounded mesuresD M(U ) for every ounded open set U F " imilrlyD tep 1 ensures tht (ε|∂ x u ε | 2 ) ε is ounded L 1 loc (Ω) nd thereforeD ounded in M(U ) s wellF " ell tht (ε∂ xx (η(u ε ))) ε lies in ompt suset of H -1 loc (Ω)F o summrizeD we wrote (∂ t (η(u ε )) + ∂ x (Φ(x, u ε ))) ε D sequene ounded in W -1,∞ (Ω) s the sum of sequene whih is ounded in the spe of mesures M loc (Ω) nd of sequene whih is ompt in H -1 loc (Ω)F prom IRSD vemm WFPFID we dedue tht (∂ t (η(u ε )) + ∂ x (Φ(x, u ε ))) ε lies in ompt suset of H -1 loc ( 
f ∈ C(R)D f (u ε ) f in L ∞ -w * ; f (x, t) = ¢ R f (y) dν x,t (y). @VFPFRTA sn prtiulrD (u ε ) ε onverges L ∞ -w * to uD where for FeF (x, t) ∈ ΩD u(x, t) = ¢ R y dν x,t (y) 
. 

:= sup ε>0 u ε L ∞ (Ω) < +∞ nd (x n ∈ N * F toneEeierstrss theorem provides numer N ∈ N * nd sequenes (f k ) 1≤k≤N D (g k ) 1≤k≤N suh thtX g k ∈ C([-X, X]); f k ∈ C([-M, M ]); F - N k=1 g k f k L ∞ ([-X,X]×[-M,M ]) ≤ 1 n . por ll k ∈ {1, . . . , N }D let us extend g k y ∀x ∈ R, G k (x) =      g k (-X) if x < -X g k (x) if |x| ≤ X g k (X) if x > X so tht G k ∈ C(R); f k ∈ C([-M, M ]); F - N k=1 G k f k L ∞ (R×[-M,M ]) ≤ 1 n . @VFPFRUA pix ϕ ∈ L 1 (Ω) nd k ∈ NF ine G k ∈ L ∞ (R)D G k ϕ ∈ L 1 (Ω)F e dedue tht ¢ T 0 ¢ R G k (x)f k (u ε (x, t))ϕ(x, t) dx dt = ¢ T 0 ¢ R f k (u ε (x, t))G k (x)ϕ(x, t) dx dt -→ ε→0 ¢ T 0 ¢ R ¢ R f k (y) dν x,t (y) G k (x)ϕ(x, t) dx dt = ¢ T 0 ¢ R ¢ R G k (x)f k (y) dν x,t (y) ϕ(x, t) dx dt . fy linerityD N k=1 ¢ T 0 ¢ R G k (x)f k (u ε (x, t))ϕ(x, t) dx dt -→ ε→0 ¢ T 0 ¢ R ¢ R N k=1 G k (x)f k (y) dν x,t (y) ϕ(x, t) dx dt .
sing @VFPFRUAD strightforwrd omputtions ensure tht for ny ontinuous funtion

F ∈ C(R 2 ) verifying @VFHFQAD the sequene (x, t) → F (x, u ε (x, t)) onverges in L ∞ -w * to F where for FeF (x, t) ∈ ΩD F (x, t) = ¢ R F (x, y) dν x,t (y). @VFPFRVA xow (x κ ∈ RD |κ| ≤ M F vet us pply the divergeneEurl lemmD see VHD heorem SFPFI with η 1 (u) = uD Φ 1 (x, u) = H(x, u) nd η 2 (u) = |u -κ|; Φ 2 (x, u) = sgn(u -κ)(H(x, u) -H(x, κ)).
sing @VFPFRVAD we otin tht for FeF (

x, t) ∈ ΩD ¢ R yΦ 2 (x, y) dν x,t (y) - ¢ R |y -κ|H(x, y) dν x,t (y) = u(x, t) ¢ R ¢ R Φ 2 (x, y) dν x,t (y) -H(x, t) ¢ R ¢ R |y -κ| dν x,t (y) 
.

peilizing with κ = u(x, t)D we get

H(x, t) -H(x, u(x, t)) ¢ R |y -u(x, t)| dν x,t (y) = 0.
his equlity implies tht either H(x, t) = H(x, u(x, t)) or ν x,t = δ u(x,t) Y in ny seD we proved tht for FeF (x, t) ∈ ΩD H(x, t) = H(x, u(x, t))F

Step 4. Strong convergence. vet us onludeF por FeF (x, t) ∈ ΩD we hveD using tensen inequlityD

H (x, u(x, t)) = H x, ¢ R y dν x,t (y) ≤ ¢ R H (x, y) dν x,t (y) = H(x, t) = H (x, u(x, t)) .
ine for ll x ∈ RD H(x, •) is stritly onvexD the funtion y → y is onstnt ν x,t EFeF nd onsequentlyD for FeF (x, t) ∈ ΩD ν x,t = δ α(x,t) for some funtion α : Ω → RF pinllyD for ll ε > 0D nd for ll ounded open susets U ⊂ ΩD

u ε 2 L 2 (U ) = ¢ T 0 ¢ R u 2 ε 1 U dx dt -→ ε→0 ¢ T 0 ¢ R ¢ R y 2 dν x,t (y) 1 U dx dt = ¢ T 0 ¢ R α(x, t) 2 1 U dx dt = u 2 L 2 (U ) , whih implies tht u ε → u in L 2 loc (Ω)D see VHD heorem IFIFIF e stndrd digonl proess yields susequene of (u ε ) ε tht onverges FeF on Ω to uF (iii) pix η ∈ C 2 (R) onvex funtion nd Φ = Φ(x, u) its entropy )uxX ∀x, u ∈ R, ∂Φ ∂u (x, u) = η (u) ∂H ∂u (x, u).
pix ε > 0F trting from @VFPFPPAD stndrd omputtions led toX

∂ t (η(u ε )) + ∂ x (Φ(x, u ε )) + η (u ε )∂ x H(x, u ε ) -∂ x Φ(x, u ε ) ≤ ε∂ 2 xx η(u ε ). @VFPFRWA pix now test funtion ϕ ∈ C ∞ c (R × R + )D ϕ ≥ 0F wultiply @VFPFRWA y ϕ nd integrte y vemm VFPFU ensures tht we hve ∂ x U ε = u ε F e now prove tht ∂ x U = uF pix φ ∈ C ∞ c (Ω)F hen we hve ¢ T 0 ¢ R (uφ) dx dt = lim ε→0 ¢ T 0 ¢ R (u ε φ) dx dt = lim ε→0 ¢ T 0 ¢ R (∂ x U ε φ) dx dt = -lim ε→0 ¢ T 0 ¢ R (U ε ∂ x φ) dx dt = - ¢ T 0 ¢ R (U ∂ x φ) dx dt = ¢ T 0 ¢ R (∂ x U φ) dx dt ,
whih proves the sttementF xotie tht the onvergene of (u ε ) ε to u in L ∞ (Ω) -w * would hve su0e to mke the previous omputtionsF e onlude this setion y extending the orrespondene sttement for less regulr initil dtF Corollary 8.2.20. Fix u 0 ∈ L 1 (R) ∩ L ∞ (R) and suppose that H ∈ C 2 (R 2 ) satises @VFHFQA-@VFIFPA. Then the conclusions of Theorem 8.2.19 hold.

Proof. vet (u

(k) 0 ) k∈N ⊂ C ∞ c (R) suh thtX u (k) 0 -→ k→+∞ u 0 in L 1 (R); sup k∈N u (k) 0 L ∞ :=M < +∞. he(ne ∀k ∈ N, ∀x ∈ R, U (k) 0 (x) = ¢ x 0 u (k) 0 (y) dy . emrk tht for ll k ∈ ND u (k) 0 ∈ W 1,∞ (R) nd thereforeD U (k) 0 ∈ C 1 (R) nd (U (k) 0 ) ∈ W 1,∞ ( 
R)F sing heorem VFPFIV nd heorem VFPFITD for ll k ∈ ND we denote y u k @respF U k A the entropy solution to @VFHFIA @respF the visosity solution to @VFHFPAA with initil dt u

(k) 0 @respF U (k) 0 AF xote tht heorem VFPFIW ensures tht for ll k ∈ ND ∂ x U k = u k in L ∞ (Ω)F
e will use the uniform ound otined from heorem VFPFPF por ll k ∈ ND we hveX

∂ x U k L ∞ = u k L ∞ ≤ sup y∈R |p|≤ u (k) 0 L ∞ H(y, p) + sup y∈R |v|≤1 L(y, v) ≤ sup y∈R |p|≤M H(y, p) + sup y∈R |v|≤1 L(y, v).
@VFPFSPA (i) prom the stility result @see heorem VFPFR with R → +∞AD we dedue tht ∀p, q ∈ N, sup

t∈[0,T ] u p (•, t) -u q (•, t) L 1 ≤ u (p) 0 -u (q) 0 L 1 .
his estimte yields the existene of u ∈ L ∞ ((0, T ); L 1 (R)) suh tht (u k ) k onverges to u in L ∞ ((0, T ); L 1 (R))F p to the extrtion of susequeneD we n ssume tht the PQS onvergene is on ΩF gomined with @VFPFSPAD we dedue tht u is n entropy solution to @VFHFIA with initil dt u 0 F ine u 0 ∈ L ∞ (R)D u is the entropy solution to this guhy prolemF (ii) prom the equlityD liit for FeF

x ∈ RD ∀t, τ ∈ [0, T ] (τ < t), U k (x, t) -U k (x, τ ) = ¢ t τ H(x, ∂ x U k (x, s)) ds nd the ound @VFPFSPAD we dedue tht (U k ) k is ounded in W 1,∞ loc (Ω)F he ompt emedE ding of W 1,∞ (U) in C(U) @U ⊂ Ω
ounded open susetD see QTD heorem WFITA omined with stndrd digonl proess ensures the existene of susequene of (U k ) k whih onE verges uniformly on ompt susets of Ω to some U ∈ Lip(Ω)F U is visosity solution to @VFHFPA with initil dt U 0 D see PVD ghpter P or VID ghpter IHF (iii) ith the onvergenes otined oveD we onlude tht ∂ x U = u with the sme rguE ment used in the proof of heorem VFPFIWF Remark 8.2.4. he extension of gorollry VFPFPH for merely ounded initil dt u 0 ∈ L ∞ (R) follows y stndrd pproximtion y L 1 funtions using the (nite speed of propE gtion of @VFHFIAD highlighted y estimte @VFPFSAF 8.3 Calculus of variations e fous on the lulus of vritions prolem ssoited to the rmiltonEtoi eqution @VFHFPAF por ll t ≥ 0D introdue the funtionl

J t : W 1,1 ((0, t)) -→ R y -→ ¢ t 0 L(y(s), ẏ(s)) ds + U 0 (y(0)),
where U 0 ∈ Lip(R)F sn this setionD we re interested in minimizing J t nd mke the onnetion to the rmiltonEtoi eqution @VFHFPAF vet us lso mention tht even though we re not preisely in the frmework overed y the uthors of RTD ghpter SD VID ghpter Q or SQD rt sssD some ides nd tehniques we use in the next setions re reminisent of the ones of these uthorsF 8.3.1 Existence of a minimum arc sn light of emrk VFIFID L is ounded y elowF sn this setionD nd only in this setionD we will ssume tht L ≥ 0D only for the ske of lrityF his simply redues to trnslte U 0 of onstntD whih does not lter its vipshitz ontinuityF e strt this setion with result on the funtionl J t @t > 0A whih resemles lower semiontinuityF ell tht funtions of W 1,1 ((0, t)) @t > 0A re lled solutely ontinuousD see QTD emrks of roposition VFQF Lemma 8.3.1. Fix > 0 and U 0 ∈ Lip(R). Let (y n ) n be a sequence of W 1,1 ((0, t)) and y ∈ W 1,1 ((0, t)) such that y n -→ n→+∞ y uniformly on [0, t] and ẏn -→ n→+∞ ẏ weakly in L 1 ((0, t)).

Then lim inf n→+∞ J t (y n ) ≥ J t (y).

Proof. his is onsequene of the onvexity of L with respet to the seond vrileF por ll k ∈ ND introdue the suset

E k = {s ∈ (0, t) : | ẏ(s)| ≤ k}.
he ide is to (rst work on the (E k ) k susets nd then tke the limit s k → +∞F por ll k, n ∈ ND we hve

J t (y n ) = ¢ t 0 L(y n (s), ẏn (s)) ds + U 0 (y n (0)) ≥ ¢ E k L(y n (s), ẏn (s)) ds + U 0 (y n (0)) ≥ ¢ E k L(y n (s), ẏ(s)) ds + ¢ E k ( ẏn (s) -ẏ(s)) ∂L ∂v (y n (s), ẏ(s)) ds + U 0 (y n (0)), @VFQFIA
where the lst inequlity omes from the onvexity of L with respet to vF pix k ∈ NF por ll s ∈ E k we hve L(y n (s), ẏ(s)) -→ n→+∞ L(y(s), ẏ(s)) nd the oundX 

∀n ∈ N, |L(y n (s), ẏ(s))| ≤ sup x∈R |v|≤k |L(x, v)| ∈ L 1 (E k ). fy dominted onvergeneD ¢ E k L(y n (s), ẏ(s)) ds -→ n→+∞ ¢ E k L(y(s), ẏ(s)) ds . henD for ll n ∈ ND ¢ E k ( ẏn (s) -ẏ(s)) ∂L ∂v (y n (s), ẏ(s)) ds = ¢ E k ( ẏn (s) -ẏ(s)) ∂L ∂v ( 
≤ y n -y L ∞ (E k ) sup n∈N ẏn L 1 (E k ) + ẏ L 1 (E k ) sup x∈R |v|≤k ∂ 2 L ∂x∂v (x, v) -→ n→+∞ 0.
ell tht sine ( ẏn ) n onverges wekly in L 1 ((0, t))D sup n∈N ẏn L 1 ((0,t)) < +∞D see VHD heoE rem IFIFIF king the limit in @VFQFIA when n → +∞ yields @rememer tht U 0 is ontinuousAX

∀k ∈ N, lim inf n→+∞ J t (y n ) ≥ ¢ t 0 L(y(s), ẏ(s))1 E k (s) g k (s)
ds + U 0 (y(0)). @VFQFPA he sequene (g k ) k is sequene of mesurleD nonderesingD nonnegtive funtionsF ine ẏ ∈ L 1 ((0, t))D it is (nite lmost everywhere on (0, t) whih implies tht (g k ) k onverges to s → L(y(s), ẏ(s)) lmost everywhere on (0, t). fy monotone onvergeneD e otin the nnouned result y tking the limit in @VFQFPA when k → +∞F Theorem 8.3.2 @ixistene of minimizerA. Fix t > 0, x ∈ R and U 0 ∈ Lip(R). Then the functional J t admits a minimizer in the subset A x,t := y ∈ W 1,1 ((0, t)) | y(t) = x .

Proof. he proof mostly onsists in proving su0ient omptness for minimizing sequene nd then invoke vemm VFQFIF here exist rs y ∈ A x,t for whih J t (y) is (niteD for exmple the onstnt rX J t (y ≡ x) = tL(x, 0) + U 0 (x) @(niteAF eordinglyD J t dmits minimizing sequene (y n ) n in A x,t X lim n→+∞ J t (y n ) = inf Ax,t J t ≤ tL(x, 0) + U 0 (x) < +∞.

Compactness for (y n ) n with Arzelà-Ascoli theorem. vet R > 0 suh tht 

∀r ∈ R + , r ≥ R =⇒ φ(r) r ≥ 1 + U 0 L ∞ ,
≤ Rt + 1 1 + U 0 L ∞ (J t (y n ) -U 0 (x) + U 0 L ∞ ẏn L 1 ) ,
whih n e rewritten s ∀n ∈ N, sing this equiEintegrilityD the hunfordEettis theorem @see QTD heorem RFQHA ensures tht there exist further susequene @whih we do not relelA nd z ∈ L 1 ((0, t)) suh tht ( ẏn k ) k onverges to z wekly in L 1 ((0, t))F fy de(nition of the wek derivtivesD we hve ∀k ∈ N, ∀ϕ ∈ C ∞ c ((0, t)), ine z ∈ L 1 ((0, t))D this lst equlity ensures tht y ∈ W 

1 - U 0 L ∞ 1 + U 0 L ∞ ẏn L 1 ≤ Rt + 1 1 + U 0 L ∞ (J t (y n ) -U 0 (x)) .
∀x ∈ R + , (1 + x)f ξ 1 + x -f (ξ) ≤ -xf * f ξ 1 + x .
Proof. ine g ∈ C 2 (R)D the onvexity of g follows from the omputtionX

∀x ∈ R + , g (x) = ξ 2 (1 + x) 3 f ξ 1 + x ≥ 0.
henD using the onvexity of g nd lssil vegendre trnsform propertiesD we n write tht for ll x > 0D Theorem 8.3.5 @egulrity of minimizersA. Fix t > 0, x ∈ R and U 0 ∈ Lip(R).

g(x) -g(0) x ≤ g (x) = f ξ 1 + x - ξ 1 + x f ξ 1 + x = -f * f ξ 1 +
y ∈ A x,t be a minimizer of J t . Then there exists a Lipschitz bijection Λ ∈ Lip((0, t)) with Λ -1 ∈ Lip((0, t)) such that γ := y • Λ -1 ∈ A x,t is a Lipschitz minimizer of J t in A x,t .

Proof. he ide ehind the onstrution of Λ is the followingF " yn the susets on whih we n ontrol | ẏ| @E nd O elowAD we mke γ • Λ trvel fster @three times fster to e preiseAD ut we hve to py ostD see @VFQFSAF " yn the other hndD if we nnot ontrol | ẏ| @suset U N elowAD then we mke γ • Λ trvel slower nd djust the ost @see @VFQFTAA so tht γ is still minimizer of J t @tep 3 elowAF

Step 1: Setting. i.e. Λ -1 is vipshitz ontinuous with (Λ -1 ) L ∞ ≤ 3F his ensures tht oth Λ nd Λ -1 re solutely ontinuousF

α : (0, t) -→ R s -→            1 3 if s ∈ O 1 + | ẏ(s)| N -1 if s ∈ U N
Step 3: γ := y • Λ -1 is a minimizer of J t on A x,t . fy the hnge of vriles formul @see IRTD heorem QAD we otin where the lst inequlity omes from @VFQFTAF utting everything togetherD we getX

J t (γ) ≤ J t (y) + 3 2 ε N δ - ¢ U N 3 2 | ẏ(s)| N -1 δ ds = J t (y).
Step 4: γ is a Lipschitz arc. xowD using the hin rule IRTD gorollry PD we otin for is in C 1 ((-1, 1)) nd sine y is minimizer of J t D it dmits minimum t point η = 0F sts derivtive t s = 0 vnishesD whih from @VFQFUAD reds extly s @VFQFVAF emrk tht sine s → ∂L ∂x (y(s), ẏ(s)) ∈ L ∞ ((0, t))D we hveD y de(nition of wek derivtivesD s → ∂L ∂v (y(s), ẏ(s)) ∈ W 1,∞ ((0, t)).

(ii) ine y is ontinuousD the strong onvexity ssumption of L @see vemm VFIFQA implies tht prom ylor expnsionD we otinD s η → 0D J t (y + ηϕ) = F (0) + ηF (0) + U 0 (y(0) η) + o(η) , @VFQFIPA withD in light of vemm VFQFT nd the iulerEvgrnge equtions @VFQFWAD F (0) = J t (y) -U 0 (y(0)); F (0) = -∂L ∂v (y(0), ẏ(0)).

∃κ > 0, ∀s ∈ [0, t], ∀v ∈ [-ẏ L ∞ , ẏ L ∞ ], ∂ 2 
ine y is minimizerD for ll η ∈ (-1, 1)D J t (y + ηϕ) ≥ J t (y)F hereforeD @VFQFIPA impliesX ∀η ∈ (-1, 1), η ∂L ∂v (y(0), ẏ(0)) ≤ U 0 (y(0) + η) -U 0 (y(0)) + o(η) . @VFQFIQA hivide y η > 0 nd tke the lim inf s η → 0 + to otin the right inequlity of @VFQFIHAY thenD divide y η < 0 nd tke the lim sup s η → 0 -to otin the left inequlity of @VFQFIHAF pix now U 0 ∈ Lip(R) nd let C H > 0 suh tht e prove tht U is visosity solution to @VFHFPAF emrk tht y heorems VFQFPEVFQFSD n equivlent wy to de(ne U is with the following optiml ontrol prolemX U (x, t) = min α∈L ∞ ((0,t))

∀r ∈ R + ,
¢ t 0 L(y(s), α(s)) ds + U 0 (y(0)) , ẏ(s) = α(s) 0 < s < t y(t) = x. @VFQFITA Lemma 8.3.10 @hynmi progrmming prinipleA. Fix (x, t) ∈ Ω. Then for all h ∈ (0, t), we have

U (x, t) = inf α∈L ∞ ((t-h,t)) ¢ t t-h
L(y(s), α(s)) ds + U (y(t -h), t -h) , @VFQFIUA where y is given by ẏ(s) = α(s) t -h < s < t y(t) = x. where we used heorem VFQFWF st is strightforwrd to hek tht the reiprol inequlity holds in view of the symmetril roles plyed y x nd ξF

Step 2: Lipschitz continuity in time.

pix now (x, t) ∈ Ω nd h ∈ (0, t)F pirstD y @VFQFIUA @with α ≡ 0AD we hve U (x, t) ≤ hL(x, 0) + U (x, t -h) =⇒ U (x, t) -U (x, t -h) ≤ h sup 

@VFQFIVA

Proof. e proved in heorem VFQFII tht U hs the required regulrityD nd trivillyD U (•, 0) = U 0 sine for ll x ∈ RD the suset A x,0 redues to {x}F Claim: U is a subsolution. pix ϕ ∈ C 1 (Ω) nd let (x 0 , t 0 ) e lol point of mximum for U -ϕF iven if it repling U ϕ y U -ϕ -(U (x 0 , t 0 ) -ϕ(x 0 , t 0 ))D we n ssume tht U (x 0 , t 0 ) -ϕ(x 0 , t 0 ) = 0F fy de(nitionD there exists r > 0 suh tht for ll (x, t) ∈ ΩD max{|x -x 0 |, |t -t 0 |} ≤ r =⇒ U (x, t) -ϕ(x, t) ≤ U (x 0 , t 0 ) -ϕ(x 0 , t 0 ) = 0. @VFQFIWA he funtion v → v ∂ϕ ∂x (x 0 , t 0 ) -L(x 0 , v) -→ |v|→+∞ -∞F fy ontinuityD it ttins its mximum vlue on some ompt suset [-R, R] (R > 1AF pix 0 < h ≤ r R F gonsider α ∈ [-R, R] onstnt ontrol nd y the trjetory de(ned y ∀s ∈ [t 0 -h, t 0 ], y(s) = x 0 + (s -t 0 )α.

he dynmi progrmming priniple ensures tht U (x 0 , t 0 ) ≤ ¢ t t 0 -h L(y(s), α) ds + U (y(t 0 -h), t 0 -h).

ine

|y(t 0 -h) -x 0 | ≤ ¢ t 0 t 0 -h α ds = αh ≤ r,
we n use @VFQFIWA to otin tht ϕ(x 0 , t 0 ) = U (x 0 , t 0 ) ≤ ¢ t t 0 -h L(y(s), α) ds+U (y(t 0 -h), t 0 -h) ≤ ¢ t t 0 -h L(y(s), α) ds+ϕ(y(t 0 -h), t 0 -h), whih leds us to ϕ(x 0 , t 0 ) -ϕ(y(t 0 -h), t 0 -h) h ≤ 1 h ¢ t 0 t 0 -h L(y(s), α) ds .

king the limit when h → 0D we getX ∂ϕ ∂t (x 0 , t 0 ) + α ∂ϕ ∂x (x 0 , t 0 ) -L(x 0 , α) ≤ 0.

king the supremum for ll α ∈ [-R, R]D we otinX ∂ϕ ∂t (x 0 , t 0 ) + H x 0 , ∂ϕ ∂x (x 0 , t 0 ) ≤ 0.

Claim: U is a supsolution. pix ϕ ∈ C 1 (Ω) nd let (x 0 , t 0 ) e lol point of minimum for U -ϕF eginD it is not restritive to ssume tht U (x 0 , t 0 ) -ϕ(x 0 , t 0 ) = 0F here exists r > 0 suh tht for ll (x, t) ∈ ΩD max{|x -x 0 |, |t -t 0 |} ≤ r =⇒ U (x, t) -ϕ(x, t) ≥ U (x 0 , t 0 ) -ϕ(x 0 , t 0 ) = 0. @VFQFPHA PSI pix 0 < h ≤ min r C H , r nd y n optiml vipshitz trjetory for U (x 0 , t 0 )F ine y relizes the minimum for U (x 0 , t 0 )D lso hveX U (x 0 , t 0 ) = ¢ t 0 t 0 -h L(y(s), ẏ(s)) ds + U (y(t 0 -h), t 0 -h).

gonsequentlyD sine y heorem VFQFW we hve |y(t 0 ) -x 0 | ≤ hC H ≤ rD we n writeX ϕ(x 0 , t 0 ) = U (x 0 , t 0 ) = ¢ t 0 t 0 -h L(y(s), ẏ(s)) ds + U (y(t 0 -h), t 0 -h)

≥ ¢ t 0 t 0 -h
L(y(s), ẏ(s)) ds + ϕ(y(t 0 -h), t 0 -h), nd like in the (rst stepD this leds to ∂ϕ ∂t (x 0 , t 0 ) + ẏ(t 0 ) ∂ϕ ∂x (x 0 , t 0 ) -L(x 0 , ẏ(t 0 )) ≥ 0 nd ∂ϕ ∂t (x 0 , t 0 ) + H x 0 , ∂ϕ ∂x (x 0 , t 0 ) = ∂ϕ ∂t (x 0 , t 0 ) + sup v∈R v ∂ϕ ∂x (x 0 , t 0 ) -L(x 0 , v) ≥ ∂ϕ ∂t (x 0 , t 0 ) + ẏ(t 0 ) ∂ϕ ∂x (x 0 , t 0 ) -L(x 0 , ẏ(t 0 )) ≥ 0, onluding the proofF 8.3.4 Two explicit minimizers e proved in etions VFQFIEVFQFP the existene of C 1 minimizers for J t @t ≥ 0AF sn this setionD we estlish tht for ll (x, t) ∈ R × (0, T ]D the miniml nd mximl kwrd hrteristis emnting from (x, t) @see etion VFIFQA re minimizers of J t in A x,t F pirstD we prove the Lemma 8. e now get k to the originl prolemD tht is the initil dt identi(tion for the onserE vtion lw @VFHFIA nd the rmiltonEtoi eqution @VFHFPAF sn TID the uthors onsidered eqution @VFHFIA with n homogeneous )ow H = H(u)F e ruil tool used y the uthors is triple orrespondene entropy solutionsGvisosity solutions nd vxEropf formulD see VID etion QFQD heorem RF sn our frmeworkD i.e. with H ∈ C 2 (R 2 ) stisfying @VFHFQAE@VFIFPAD we estlished the orrespondene entropy solutionsGvisosity solutions in etion VFPF sn the heterogeneous seD there is no vxEropf formulF sts equivlent is given y the orresponE dene visosity solutionsGlulus of vritionsD estlished in etion VFQF ith these toolsD we im t extending the results of TIF he ojetive of this setion is to dpt results put forwrd y the uthors of TIF vet us (x some nottionsF por ny initil dt u 0 ∈ L ∞ (R) nd U 0 ∈ Lip(R)D we denote y (x, t) → S CL t u 0 (x) the entropy solution to @VFHFIA nd y (x, t) → S HJ t U 0 (x) the visosity solution to @VFHFPAF por given pro(les w ∈ L ∞ (R) nd W ∈ Lip(R)D we im t providing hrteriztion of the susetsX Proof. sn light of oth vemm VFIFT nd vemm VFRFID sine I CL T (w) = 0D p w is wellEde(ned on RF pix x, y ∈ R @x < yAF ine I CL T (w) = 0D p w ssigns to x @respF yA the vlue t time t = 0 of the miniml kwrd generlized hrteristis emnting from (x, T ) @respF from (y, T )A see etion VFIFQF fy TUD heorem QFPD ξ x nd ξ y re genuineD hene they do not interset in (0, T )D see TUD gorollry QFPF his implies in prtiulr tht ξ x (0) ≤ ξ y (0) i.e. p w is nonderesingF fy de(nition of U * 0 D we hve equlity oveD nd therefore ξ is mximizer of U * 0 F e dedue tht (ξ(0), x T ) ∈ GF fy @VFRFIIAD x T < x T =⇒ x 0 ≤ ξ(0) nd x T > x T =⇒ x 0 ≥ ξ(0). e dedue tht ξ(0) = x 0 nd thereforeD (x 0 , x T ) ∈ GF is nonempty nd ounded y elowD thereforeD x = inf F is wellEde(nedF glerlyD we hve x ≤ xF vet (x n ) n e sequene of E whih onverges to xF por ll n ∈ ND there exists y n < x T suh tht (x n , y n )F ine (x n ) n is oundedD (y n ) n is ounded s wellD s onsequene of @VFRFIHAF p to the extrtion of susequeneD we n ssume tht (y n ) n onverges to some y ≤ x T F ine G is losedD see vemm VFRFU (ii)D (x, y) ∈ GF he sme wyD there exists y ≥ x T suh tht (x, y) ∈ GF vet us onlude the proof y se y se studyF Case 1: x = x := x 0 F ine y ≤ x T ≤ yD y @VFRFIRAD we hveX (x 0 , y), (x 0 , y) ∈ G =⇒ (x 0 , x T ) ∈ G. sn view of the surjetivity of the shooting funtionD see vemms VFIFIIEVFIFIPD we know tht for ny x 0 ∈ [γ(0), ζ(0)]D we n onnet (0, T ) nd (x 0 , 0) y rmiltonin ryF vet us mke preise tht in the homogeneous seD there ws unique rmiltonin ry joining (0, T ) nd (x 0 , 0)F pigure VFS highlights two ftsF pirstD the shooting funtion is not ijetive nymoreF end seondD sine w is rehleD we know tht p w is nonderesingD see heorem VFRFVF roweverD this monotoniity does not imply mximlity @in the sense of @VFRFIRAA for the suset G u 0 ssoited with u 0 D see @VFRFVAD s we see rmiltonin rys rossing γ nd ζF Stu Résumé :

I CL T (w) = u 0 ∈ L ∞ (
Dans cette thèse, on traite la prise en compte de l'hétérogénéité dans les lois de conservation scalaires, c'est-àdire les lois de conservation non invariantes par translation en espace. Ces équations apparaissent notamment dans les modèles de trac. Par exemple, les mécanismes suivants de l'hétérogénéité : la présence de feux de circulation, des portions de route où la vitesse maximale est limitée, la variabilité de l'état de la route, etc... La prise en compte de l'hétérogénéité permet d'enrichir les modèles de trac. On aborde trois classes de problèmes inhomogènes pour lesquelles on complète et approfondit le cadre mathématique pour l'analyse théorique et l'approximation numérique. Nous explorons en détail le cadre où l'hétérogénéité est matérialisée par l'ajout d'une ou plusieurs interfaces mobiles. Le long des interfaces, on impose une condition de majoration sur le ux de la loi de conservation. Cette classe de modèles permet de tenir compte de la présence d'un petit nombre de véhicules encombrants et lents (ou alors, de véhicules autonomes qui ont pour rôle la régulation du trac). Dans ce cadre, l'évolution des interfaces et des contraintes est couplée de façon non locale à l'état du trac et/ou à des paramètres spéciant l'état du véhicule ou du conducteur. En outre, nous élaborons une description de l'hétérogénéité du trac résultant des variations du degré d'organisation des conducteurs, dans le cadre des modèles dits "du second ordre". L'aspect numérique est prépondérant pour les modèles de trac que nous étudions. On construit des schémas numériques robustes et on élabore des techniques de compacité spéciques. La convergence de ces schémas conduit à des résultats d'existence. Enn, en lien avec le modèle décrivant l'évolution d'une densité de véhicules sur une route hétérogène, on étudie théoriquement une loi de conservation dans laquelle la dépendance spatiale du ux est explicite. Des résultats classiques sur le caractère bien posé ou la correspondance avec l'équation de Hamilton-Jacobi associée sont obtenus sous des hypothèses plus en adéquation avec la modélisation que celles rencontrées dans la littérature. Les applications allant au-delà de la description du trac, on se donne pour objectif l'analyse approfondie des problèmes d'identication de données initiales.

Mots clés : Lois de conservation hétérogènes ; Modèles de trac ; Interfaces mobiles ; Schéma volumes nis ; Inverse design Abstract:

This thesis is devoted to the treatment of heterogeneity in scalar conservation laws. We call heterogeneous a conservation law which is not invariant by space translation. These equations arise for instance in trac ow dynamics modeling. The presence of trac lights or roads that have a variable maximum speed limit are examples of mechanisms which lead to heterogeneous conservation laws. Considering such equations is a way to expand macroscopic trac ow models. We tackle three classes of inhomogeneous problems for which we extend the mathematical framework for both the theoretical analysis and the numerical approximation. We fully investigate the treatment of heterogeneity when one or several moving interfaces are added in the classic LWR model for trac ow. Flux constraints are attached to each interfaces. The resulting class of models can be used to take into account the presence of slow moving vehicles that reduce the road capacity and thus generates moving bottlenecks for the surrounding trac ow. They can also describe the regulating eect of autonomous vehicles. In this framework, the interfaces and the constraints are linked in a nonlocal way to the trac density and/or to an orderliness marker describing the state of the drivers. The description of the heterogeneity caused by the variations in the drivers' organization leads to the analysis of a so-called second order model. The numerical aspect plays a central role in the analysis of these trac ow models. We construct robust numerical schemes and establish specic techniques to obtain compactness of the approximate solutions. Proving the convergence of these schemes lead to existence results. Finally, with the space-dependent LWR trac ow model in mind, we theoretically analyze a class of scalar conservation laws with explicit space dependency. Classical results such as well-posedness or the link to the associated Hamilton-Jacobi equation are obtained under a set of assumptions more tting with the modeling hypothesis. With applications that go beyond trac modeling in mind, we aim to tackle initial data identication problems.

Keywords: Heterogenous conservation laws; Trac ow models; Moving interfaces; Finite volume scheme; Inverse design
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0. 1

 1 Figure P ! sllustrtion de l9évolution des grphes des données initiles Y pour une évolution dynmique des solutionsD voir X httpsXGGutoxFunivEtoursFfrGsGiugooxqQo

0. 1

 1 Figure Q ! gonstrution d9une in(nité de solutions files @à droiteAF

  (x, t)) dx = 0. ves solutions lssiques sontD ellesD isentropiquesF yn déduit de @HFIFIRA que ρ doit véri(er pour toute fontion testϕ ∈ C ∞ (Ω)D ϕ ≥ 0 et pour toute fontion onvexe η ∈ C 2 (R)D l9inéglité intégrle X ρ)∂ t ϕ + Φ(ρ)∂ x ϕ) dx dt ≥ 0.

  Figure T ! sllustrtion des deux niveux de désorgnistionF

1. 1 .

 1 CONSTRAINED FINITE VOLUME SCHEME PI Remark 1.1.1. ythers hoie ould e mdeD for instne in the se ρ 0 ∈ C(R) suh tht lim |x|→+∞ ρ 0 (x) existsD the vlues ρ 0 j+1/2 = ρ 0 x j +x j+1 2

  2 )D see pigure IFID rightF e hoose the funtion F in the lss of monotone numerical uxF Denition 1.1.1. e monotone numeril )ux ssoited to f is funtion F : R × R → R whih stis(esX

1F 1 . 5 . 1

 151 Remark 1.4.1. xote the omplementrity of the hypotheses mde in the ove theorem with the ones of heorem IFRFRF ell tht in heorem IFRFRD we needed the qodunov )ux only t the interfeF 1.5 Numerical simulations sn ll the simultionsD we hoose the uniformly onve )ux f (ρ) = ρ(1 -ρ)F ine the initil dt tke vlues in [0, 1]D the gpv ondition redues to 2 ∆t ∆x ≤ Classical case (without constraint)

1. 6 .

 6 BV BOUNDS FOR A TIME-DEPENDENT LIMITED FLUX MODEL QW pigure IFT ! tes of onvergene for four onstrined iemnn prolems t time T = 1.0F 1.6 On global BV bounds for a time-dependent limited ux model e now fous on the study of the following lss of modelsX

2. 1 .

 1 NOTION OF SOLUTION AND UNIQUENESS RW Theorem 2.1.3. Fix ρ 1

  entropy )uxes ssoited with the uruzhkov entropy ρ → |ρ -κ|D for ll κ ∈ [0, 1]D see IIRF pollowing UHD STD IRD SID we give the following de(nition of solution for rolem @QFIFIAF Denition 3.1.1. e ouple (ρ, y)

3. 1 .

 1 MODEL, NOTION OF SOLUTION AND UNIQUENESS TS sntrodue for ll n ∈ N nd t ∈ [0, T ]D the funtion

  VQ for di'erent numer of spe ells t the (nl time T = 13F e see @pigure QFQA tht those rtio onverge with onvergene orders pproximtely equl to 0.76 for the r density nd pproximtely equl to 1.1 for the slow moving vehile positionF pigure QFP ! he numeril solution t di'erent (xed timesD red dshed lines orrespond to the slow vehile initil positionY for n nimted representtion of the solutionD see httpsXGGutoxFunivEtoursFfrGsGfonsiqmrjndyTT 3.4.2 Comparisons with experiments on the local model xow we onfront the numeril tests performed with our model with the tests done y the uthors in SH pproximting the originl prolem of UHF e del with rod of length 1 prmetrized y the intervl [0, 1] nd hoose the weight funtion µ 3 F woreoverD

4. 1

 1 Uniqueness and stability for the single trajectory problem he ontent of this setion is not originl in the sense tht it is rigorous dpttion nd ssemling of existing tehniques reminisent of ISSD IIRD STD IRD ISF 4.1.1 Equivalent denitions of solutions hroughout the hpterD for ll s ∈ RD we denote y

  vet us denote y EO = EO(a, b) the ingquistEysher numeril )ux ssoited with f nd for ll s ∈ RD God s = God s (u, v) e the qodunov )ux ssoited with ρ → f (ρ) -sρD see IHQ he(nition IFIFI nd ixmple IFIFIF pix n ∈ NF o simplify the redingD we introdue the nottionsX

4. 2 .

 2 EXISTENCE FOR THE SINGLE TRAJECTORY PROBLEM IHS is veri(ed y de(nition of ρ 0 j+1/2 j

4. 2 .

 2 EXISTENCE FOR THE SINGLE TRAJECTORY PROBLEM IIQ pigure RFQ ! sllustrtion of the yv ound @RFPFITAF Proof. pix n ∈ NF e only prove @RFPFITA in the ses j ≥ j n+1 + 2F he resoning for the ses j ≤ j 0 -3 is very similrF vet us (rst prove y indution on k ∈ N * tht

4. 3 .

 3 WELL-POSEDNESS FOR THE MULTIPLE TRAJECTORY PROBLEM IIU yielding the ontrditionF Step 3. he(ne the open suset @(nite intersetion of open susetsAX

Proposition 4 . 3 . 5 .

 435 Denition 4.3.1 and Denition 4.3.4 are equivalent. Moreover, in Definition 4.3.4

  ) de(ned on [0, τ ]D whih ross t time τ F e denote y C this rossing pointF uppose lso tht this rossing point results in two dditionl trjetoriesGonstrints (y i , q i ) (3 ≤ i ≤ 4) de(ned on [τ, T ]D nd whih do not rossD s represented in pigure RFRF pigure RFR ! sllustrtion of the on(gurtionF vet us fully mke expliit the steps of the resoning leding to the onstrution of our sheme in tht situtionF uppose tht λ = ∆t/∆x is (xed nd veri(es the gpv ondition

  using extly the reipe of etion RFPFIF pigure RFS ! sllustrtion of the lol modi(tions of the meshF Part 3. sntrodue the numerX

4. 4 .

 4 NUMERICAL EXPERIMENT WITH CROSSING TRAJECTORIES IPS pigure RFU ! he numeril solution t di'erent (xed timesY for n nimted evolution of the solutionD followX httpsXGGutoxFunivEtoursFfrGsGnTopQtsRfPsmer CHAPTER 5 TOWARDS WELL-POSEDNESS OF (X, T )-DISCONTINUOUS FLUX CONSERVATION LAWS UNDER ABSTRACT COUPLING CONDITIONS AT INTERFACES 5.1 Introduction sn the domin Ω = R × (0, +∞) onsider the forml guhy prolem

  extend the results put forwrd y nov in IQRF sn this hpter nd the nextD we write Ω for R × (0, T )F vet us rell the working frmeworkF pix ρ, v ∈ L ∞ (Ω) suh thtρ ≥ 0; ∂ t ρ + ∂ x (ρv) = 0 in D(Ω).@TFHFIA qiven soure term S ∈ L ∞ (Ω) nd n initil dtum w 0 ∈ L ∞ (R)D introdue the trnsport eqution formlly written s ∂ t w + v∂ x w = SD w(•, 0) = w 0 nd reformulted sX

  ρv, g a.e. on Ω. Moreover, suppose that there exist a, b ∈ R such that F |(a,b) > 0 and ∀ν > 0, a ≤ w 0,ν ≤ b; w 0,ν -→ ν→0 w 0 a.e. on R.

  stisfying the ssumptions of heorem TFHFTF por the ske of onsistenyD let us extend F on R\[a, b] so tht F ∈ Lip(R) nd veri(es the ssumption of heorem TFHFTF pix ϕ ∈ C ∞ c (R), ϕ ≥ 0 test funtion of mss 1 nd supported in [-1, 0]F por ll k ∈ N * D onsider the funtion

  admits a unique weak solution w ∈ L ∞ (Ω; [a, b]). Moreover, w veries the renormalization property.

2 ,

 2 IUW pigure UFP ! of the two steps of the onstrution of the shemeF S n+1 j+1/2 eing suitle pproximtion of soure term on the ell (x j , x j+1 ) × (t n , t n+1 ]F et the numeril levelD we re led to ssign the vlue ∼ w n j+1/2 on (X n+1 j , x j+1 )F et this point we hoose to de(ne w ∆ (•, t n+1 ) on (x j , x j+1 ) y verging the vlues ∼ on (x j , x j+1 )F his is expressed sX

2 ∈ 2 ≥ 0 .

 220 [0, 1]F sntrodue the funtion g : w → w + ∆tK ξ n+1 j+1/2 , χ n+1 j+1/2 w(1 -w). sing @UFTFSAD we otin tht for ll w ∈ [0, 1]Dg (w) = 1 + ∆tK ξ n+1 j+1/2 , χ n+1 j+1/2 (1 -2w) ≥ 1 -∆t K ξ n+1 j+1/2 , χ n+1j+1/ine g(0) = 0 nd g(1) = 1D the monotoniity of g implies tht ∼ w n j+1/2 = g(w n j+1/2 ) ∈ [0, 1]F hue to the gpv onditionD w n+1 j+1/2 is onvex omintion of ∼ w n j+1/2 nd ∼ w n j-1/2 F his implies tht w n+1 j+1/2 ∈ [0, 1]D whih ompletes the indution rgumentF

  10 otherwiseY w 0 (x) = 0.5 if |x| ≤ 10 0 otherwiseD s represented in pigure UFQD rightF pigure UFQ ! ypil hoie of fundmentl digrms nd initil dtF vet us omment on the pro(le of the numeril solutions represented in pigure UFRF uite expetedlyD s we n see from pigure UFR t time T D the introdution of the orderliness mrker hs fvored the glol veloity of the densityF xow let us look more preisely t the di'erent pro(les of the numeril solutionF e see tht t times t = 1.64 nd t = 3.01D the highest peks of density orrespond to the res where the orderliness is the lowestF sn the mentimeD notie how this pek of the density is followed y n inrese of the orderliness vlueD suggesting the emergene of n orgnizing pttern upstrem the ottlenekF pinllyD s inorported in the modelD everywhere the density is lesser thn the threshold ρ c D the vlue of w does not vryF pigure UFR ! he numerilly omputed solutions ρ ∆ (•, w ∆ (•, t di'erent (xed times tY dshed lines orrespond to the referene solution in sene of orderliness mrkerD i.e. for ω ≡ 0 in @UFPFPAY for n nimted evolution of the numeril solutionD followX httpsXGGutoxFunivE toursFfrGsGeghkkmWPRUiF stritly positive time horizon T > 0 nd set Ω = R × (0, T )F por )ux H : R 2 → R 1 nd n initil dt u 0 ∈ L ∞ (R)D onsider the slr onservtion lw in ΩX

H

  (x, u) = θ(x)u(u -1), where θ ∈ C 2 (R) hs the form depited in pigure VFID leftD is in the lss of )ux funtions we onsiderF xote tht the onservtion lw @VFHFIA with )ux -H is generliztion of the v modelD see ixmple HFIFPF his heterogeneous extension desries the density of )ow of vehiles long oneEdimensionl rod with mximl speed smoothly vrying from θ(-1) for x ≤ -1D to θ(1) for x ≥ 1F pigure VFI ! ixmple of strongly onvex rmiltoninF 8.1.1 Properties of the Legendre transform vet us rell some properties of strongly onvex funtions we will use in the sequelF Lemma 8.1.2 @yn strongly onvex funtionsA. Let f ∈ C 2 (R) be a strongly convex function.

  ensures tht f is ounded y elow nd ttins its minimum vlueD sy t point u 0 F xote tht f (u 0 ) = 0F sn prtiulrD f is inresing on [u 0 , +∞) nd is deresing on (-∞, u 0 ]F he sttement (iii) follows from se y se studyX Case 1: f (u 0 ) > CF he eqution does not hve ny solutionF Case 2: f (u 0 ) = CF he unique solution to the eqution is u 0 F Case 3: f (u 0 ) < CF fy monotoniityD the eqution dmits extly two solutionsF PHQ Notation 8.1.1. vet us introdue the vegendre trnsform of HD funtion we denote y L @sometimes referred to s vgrnginA nd whih is de(ned y∀x, v ∈ R, L(x, v) = H * (x, v) := sup u∈R uv -H(x, u) .@VFIFQA Example 8.1.2 @r0 )ow ssA. he vegendre trnsform of the rmiltonin from ixmple VFIFI is given yX
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 43 showing tht no mtter the regulrE ity of HD s soon s ∂ 2 uu H(x, •) vnishesD L my lk the C 2 regulrityD hene our ssumption @VFIFPAF e refer to RTD eppendix eFP for more properties of the vegendre trnsformF Corollary 8.1.4. Both H and L have a Nagumo growth: there exists a continuous functionφ : R + → R which veries φ(r) r -→ r→+∞ + ∞ such that ∀x, v ∈ R, H(x, v) ≥ φ(|v|). @VFIFTAProof. e only give the detils for HF vet us hek tht the funtion∀r ∈ R + , φ(r) := inf x∈R min{H(x, r), H(x, -r)}suits the requirementsF emrk tht in light of @VFIFIAD ∀r ∈ R + , φ(r) = inf |x|≤X min{H(x, r), H(x, -r)} . ∞ nd φ stis(es @VFIFTAY only the ontinuity is left to proveF vet us introdue the ontinuous funtion F de(ned on [-X, X] × R + y F (x, r) := min{H(x, r), H(x, -r)}.

8. 1 . 4 .

 14 ASSUMPTIONS AND PRELIMINARY RESULTS PHU see lso the proof of heorem VFIFQF hereforeD u is ounded nd ttins oth its minimum nd its mximumD nd the following quntities re well de(ned u := min x∈R u(x), u := max x∈R u(x), K := sup x∈R H(x, u(x)). @VFIFIPA Example 8.1.3 @r0 )ow sssA. ith the rmiltonin ∀x, p ∈ R, H(x, p) = θ(x)p(p -1), where θ ∈ C 2 (R) hs the shpe depited in pigure VFID leftD u is onstnt nd we hveX ∀x ∈ R, u(x) Denition 8.1.7. por ll C > KD introdue the level sets

  yne ginD the impliit funtion theorem provides the regulrityF henD the hin rule providesX∂H ∂x (x, M (x, C)) + ∂M ∂x (x, C) ∂H ∂u (x, M (x, C)) = 0,from whih we dedue @VFIFIQA when using @VFHFQAF (iii) fy di'erentiting with respet to C the reltion de(ning M D we otin∀(x, C) ∈ R × (K, +∞), ∂M ∂C (x, C) ∂H ∂u (x, M (x, C)) = 1. @VFIFIRA roweverD rell tht for ll (x, C) ∈ R × (K, +∞)D M (x, C) > u(x)F fy de(nition of uD this impliesX ∀(x, C) ∈ R × (K, +∞), ∂H ∂u (x, M (x, C)) > 0.gomined with @VFIFIRAD it proves the sttementF (iv) sn view of the monotoniity of M D suppose insted tht for some x ∈ RD M (x, •) is ounded y oveF hereforeD M (x, •) hs (nite limit s C → +∞F his ontrdits the equlity H(x, M (x, C)) = C. Example 8.1.4 @r0 )ow sA. ith the H de(ned in ixmple VFIFQD we n expliitly ompute m nd M F ell tht in this seD

  pigure VFP ! epresenttion of the funtions m nd M F Denition 8.1.9. por ll C > KD de(ne the funtionsX ∀C > K, V (C) := inf x∈R ∂H ∂u (x, M (x, C)); v(C) := sup x∈R ∂H ∂u (x, m(x, C)).

8. 2

 2 Correspondence conservation law/Hamilton-Jacobi equation e extend to our frmework the orrespondene etween entropy solutions to @VFHFIA nd visosity solutions to @VFHFPA using the vnishing visosity methodF e (x T > 0 nd set Ω := R × (0, T )F8.2.1 Stability resultsvet us introdue ΦD the spe dependent lssil entropy )ux ssoited to HX ∀x, u, κ ∈ R, Φ(x, u, κ) = sgn(u -κ)(H(x, u) -H(x, κ)), whih we use for the notion of entropy solution in the sense of uruzhkov IIRD he(nition IF Denition 8.2.1. e ounded funtion u ∈ L ∞ (Ω) is n entropy solution to @VFHFIA with

  x) -v 0 (x)|ϕ n (x, 0) dx -→ n→+∞ ¢ |x|≤R+Lt |u 0 (x) -v 0 (x)| dx .

  x∈R |p|≤r ∂H ∂x (x, p) .

  Ω)Y nd this holds for ny onvex funtion η ∈ C 2 (R)D with entropy )ux ΦF e stndrd pproximtion rgument ensures tht we n hoose η ∈ C(R)D see the emrks of IRSD roposition WFPFPFStep 3. Application of the divergence-curl lemma. vet us introdue the sequene (ν x,t ) (x,t)∈Ω of oung mesures ssoited to (u ε ) ε D whih omes from the uniform L ∞ oundD see gorollry VFPFIPF his mens tht for ny ontinuous funtion

¢ t 0 Lt 0 L

 00 (y(s), ẏ(s))1 E k (s) ds -→ k→+∞ ¢ (y(s), ẏ(s)) ds .

1

 1 rell tht φ C(R + ) is given y the xgumo growth of LD see gorollry VFIFRF gonsequentlyD for ll n ∈ ND we hveX ẏn L n (s), ẏn (s)) ds= Rt + 1 1 + U 0 L ∞ (J t (y n ) -U 0 (y n (0)))

A|¢

  he sequene ( ẏn ) n is ounded in L 1 ((0, t)) whih implies tht the sequene (yn ) n is ounded in C([0, t])X ∀n ∈ N, ∀s ∈ [0, t], |y n (s)| ≤ |x| + ¢ t s | ẏn (τ )| dτ ≤ |x| + sup n∈N ẏn L 1 . e now prove tht the sequene (y n ) n is equiEontinuousF pirst remrk tht ∀n ∈ N, n (s), ẏn (s)) ds ≤ J t (y n ) -U 0 (x) + U 0 L ∞ ẏn L 1 whih implies tht M := sup n∈N ¢ t 0 φ(| ẏn (s)|) ds < +∞F pix ε > 0 nd s ∈ [0, t]F vet R > 0 suh tht ∀r ∈ R + , r ≥ R =⇒ φ(r) r ≥ 2M ε . PQW uppose tht τ ∈ [0, is suh tht |τ -s| ≤ ε 2R F hen we hve ∀n ∈ N, |y n (τ ) -y n (s)| ≤ ¢ (τ,s)∩{| ẏn|≥R } | ẏn (σ)| dσ + ¢ (τ,s)∩{| ẏn|<R } | ẏn (σ)| dσ ≤ ε 2M ¢ (τ,s)∩{| ẏn|≥R } φ(| ẏn (σ)|) dσ + R |τ -s| erzelàEesoli theorem @see QTD heorem RFPSA ensures tht there exist y ∈ C([0, t]) nd susequene (n k ) k suh tht (y n k ) k onverges uniformly to y on [0, t]F sn prtiulrD y(t) = limk→+∞ y n k (t) = xF Compactness for ( ẏn ) n with Dunford-Pettis theorem. e now prove tht the seE quene ( ẏn k ) k is equiEintegrleF vet A ⊂ (0, t) e mesurle set verifying mes(A) ≤ ε 2R D then we hveX ∀k ∈ N, ¢ ẏn k (s)| ds = ¢ A∩{| ẏn k |<R } | ẏn k (s)| ds + ¢ A∩{| ẏn k |>R } | ẏn k (s)| ds A∩{| ẏn k |>R } φ(| ẏn k (s)|) ds ≤ ε.

¢ t 0 y

 0 n k (s) φ(s) ds = -¢ t 0 ẏn k (s)ϕ(s) ds . king the limit s k → +∞ in the equlity oveD we getX ∀ϕ ∈ C ∞ c ((0, t)), ϕ(s) ds .

E 2 :2 ε N ≤ t 8 ≤

 28 et m := y L ∞ nd M := ẏ L 1 F sntrodue the susetE := s ∈ (0, t) : | ẏ(s)| ≤ 4M 3t . (s), 3 ẏ(s)) -L(y(s), ẏ(s)) ≤ δ. @VFQFSA vemm VFQFR yields the existene of N 1 ∈ N suh tht ∀x, v ∈ R, |x| ≤ m nd |v| ≥ N 1 =⇒ H x, ∂L ∂v (x, v) ≥ 3 2 δ.xow for ll n ∈ N * D introdue the susetU n := {s ∈ (0, t) : | ẏ(s)| > n} .eginD wrkov inequlity yieldsX∀n ∈ N * , mes(U n ) ≤ M n .e lso hve∀n ∈ N * , ∩ U N = ∅ ∀x, v ∈ R, |x| ≤ m nd |v| ≥ N =⇒ H x,Construction of Λ. vet O e mesurle suset of E whih hs veesgue meE sure equl to 3 2 ε N F his is possile sineD in light of @VFQFRA nd@VFQFTAD 3 mes(E)F emrk tht with our hoie of N D E ∩ U N = ∅ results in O ∩ U N = ∅F he(ne

  ) + mes(U N ) + ε N + (t -mes(O) -mes(U N )) = t, de(nes n inresingD solutely ontinuous ijetion from [0, t] onto itselfF ine Λ ≥1 3 FeF on (0, t)D we dedue tht for ll p, q ∈ [0, t]D written p = Λ(P)D q = Λ(Q)D P, Q ∈ [0, t]D we hve |Λ(P ) -Λ(Q)| ≥ 1 3 |P -Q| =⇒ |Λ -1 (p) -Λ -1 (q)| ≤ 3|p -q|,

3 L 1 3 L

 313 (y(s), 3 ẏ(s)) ds + ¢ U N | ẏ(s)| N L y(s), N ẏ(s) | ẏ(s)| ds + ¢ (0,t)\O∪U N L(y(s), ẏ(s)) ds . PRQ ine we hose O ⊂ ED we hveD using @VFQFSAX ¢ O (y(s), 3 ẏ(s)) -L (y(s), ẏ(s)) ds ≤ mes(O) = 3 2 ε N δ. woreoverD using vemm VFQFQ with f = LD we get tht for ll s ∈ U N D | ẏ(s)| N L y(s), N ẏ(s) | ẏ(s)| -L(y(s), ẏ(s))

FeF s ∈ ( 0 ,FF

 0 vlue of γ is ounded t lmost every point Λ(s)F ine Λ : [0, t] → [0, t] is oneEtoEoneD lmost every point of [0, t] is of this formF e now prove tht vipshitz minimizers re tully in W 2,∞ ((0, t))F pirst let us rell the following tehnil resultF Lemma 8.3.6. Fix t > 0, ϕ ∈ C ∞ ((0, t)) and y ∈ W 1,∞ ((0, t)). Dene the function s) + ηϕ(s), ẏ(s) + η φ(s)) dsThen F ∈ C 1 ((-1, 1)) and for all η ∈ (-1, 1), s) + ηϕ(s), ẏ(s) + η φ(s)) + φ(s) ∂L ∂v (y(s) + ηϕ(s), ẏ(s) + η φ(s)) ds .@VFQFUAProof. he(ne ∀η ∈ (-1, 1), ∀s ∈ (0, t), f (η, s) := L(y(s) + ηϕ(s), ẏ(s) + η φ(s)).

  por ll η ∈ (-1, 1)D f (η, •) ∈ L 1 ((0, t)) sine y is vipshitzY for FeF s ∈ (0, f (•, s) ∈ C 1 ((-1, 1)) nd for ll η ∈ (-1, 1) nd for FeF s ∈ (0, t)D we hve the oundX∂f ∂η (η, s) = ϕ(s) ∂L ∂x (y(s) + ηϕ(s), ẏ(s) + η φ(s)) + φ(s) ∂L ∂v (y(s) + ηϕ(s), ẏ(s) + η φ(s)) ≤ ϕ L ∞ sup x∈R |v|≤V ∂L ∂x (x, v) + φ L ∞ sup x∈R |v|≤V ∂L ∂v (x, v) , V := ẏ L ∞ + φ L ∞ , whih ensures tht F ∈ C 1 ((-1, 1)) nd tht F is given y @VFQFUAF Corollary 8.3.7. Fix t > 0, x ∈ R and U 0 ∈ Lip(R).Denote by y a Lipschitz minimizer of J t in A x,t . Then:(i) y satises the weak form of the Euler-Lagrange equations:∀ϕ ∈ C ∞ c ((0, t)), ¢ t 0 φ(s) ∂L ∂v (y(s), ẏ(s)) ds = -s), ẏ(s)) ds . @VFQFVA (ii) y ∈ W 2,∞ ((0, t)). Proof. (i) pix ϕ ∈ C ∞ c ((0, t))Fvet F e the funtion of vemm VFQFTF he funtion η → J t (y + ηϕ) = F (η) + U 0 (y(0))

L ∂v 2

 2 (y(s), v) ≥ κ. hereforeD for FeF s, τ ∈ (0, t)D we hve κ| ẏ(s) -ẏ(τ )| = ∂v 2 (y(s), v) dv = ∂L ∂v (y(s), ẏ(s)) -∂L ∂v (y(s), ẏ(τ )) ≤ ∂L ∂v (y(s), ẏ(s)) -∂L ∂v (y(τ ), ẏ(τ )) + ∂L ∂v (y(τ ), ẏ(τ )) -∂L ∂v (y(s), ẏ(τ )) .

PRSe

  proved in (i) tht s → ∂L ∂v (y(s), ẏ(s)) is vipshitzY let9s ll Λ ≥ 0 its vipshitz onstntF woreoverD we hve∂L ∂v (y(τ ẏ(τ )) -∂L ∂v (y(s), ẏ(τ )) ≤ |y(τ ) -y(s)| sup x∈R |v|≤ ẏ L ∞ tht for FeF s, τ ∈ (0, t)D | ẏ(s) -ẏ(τ )| ≤ Λ + Γ κ |s -τ |, whih proves tht y ∈ W 2,∞ ((0, t))F Remark 8.3.1. ine s → ∂L ∂v (y(s), ẏ(s)) is vipshitzD it is di'erentile FeF on (0, t) in the lssil senseF gonsequentlyD equlity @VFQFVA implies tht ∀ϕ ∈ C ∞ c ((0, t)), s), ẏ(s)) ds .henD du foisEymond lemm ensures tht for FeF s ∈ (0, t)X d ds ∂L ∂v (y(s), ẏ(s)) = ∂L ∂x (y(s), ẏ(s)). @VFQFWA sn shortD ny vipshitz minimizer of J t stis(es the FeF form of the iulerEvgrnge equtionsF iulerEvgrnge equtionsD omined with vrint of the trnsverslity onditionD will proE vide uniform @wFrFtF x, tA vipshitz ound for regulr minimizers of J t F pirstX Lemma 8.3.8. Fix t > 0, x ∈ R and U 0 ∈ Lip(R). Denote by y a Lipschitz minimizer of J t in A x,t . Then y saties the conditionlim sup η→0 - U 0 (y(0) + η) -U 0 (y(0)) η ≤ ∂L ∂v (y(0), ẏ(0)) ≤ lim inf η→0 + U 0 (y(0) + η) -U 0 (y(0)) , ẏ(0)) ≤ U 0 L ∞ @VFQFIIAProof. vet us rell tht gorollry VFQFU ensures tht tullyD y ∈ W 2,∞ ((0, t))F pix ϕ ∈ C 1 c ([0, t)) suh tht ϕ(0) = 1F vet F e the funtion of vemm VFQFT so tht for ll η ∈ (-1, 1)D J t (y + ηϕ) = F (η) + U 0 (y(0) + η).

  , ẏ(0)) -L(y(0), ẏ(0)) = H y(0), ∂L ∂v (y(0), ẏ(0)) .sing the trnsverslity ondition @VFQFIIAD we dedueX|C x,t | ≤ sup w∈R |u|≤ U 0 L ∞ |H(w, u)|.

8. 3 .

 3 CALCULUS OF VARIATIONS PRU Convexity and coercivity. fy onvexityD for ll s ∈ [0, t]D we hveL y(s), ẏ(s) 1 + | ẏ(s)| ≥ L(y(s), ẏ(s)) + 1 1 + | ẏ(s)| -1 ∂L ∂v (y(s), ẏ(s)) = L(y(s), ẏ(s)) + 1 1 + | ẏ(s)| -1 (C x,t + L(y(s), ẏ(s))) = L(y(s), ẏ(s)) 1 + | ẏ(s)| -| ẏ(s)| 1 + | ẏ(s)| C x,t ≥ φ(| ẏ(s)|) 1 + | ẏ(s)| -| ẏ(s)| 1 + | ẏ(s)| sup w∈R |u|≤ U 0 L ∞ |H(w, u)|, from whih we dedueX ∀s ∈ [0, t], φ(| ẏ(s)|) 1 + | ẏ(s)| ≤ sup w∈R |u|≤ U 0 L ∞ |H(w, u)| + sup x∈R |v|≤1 |L(x, v)| .fy @VFQFIRAD this ensures tht for ll s ∈[0, t]D | ẏ(s)| ≤ C H F 8.3.3 Link to the Hamilton-Jacobi equation e now link the minimiztion of J t @t > 0A to the rmiltonEtoi eqution @VFHFPAF wore preiselyD (x T > 0 nd onsider the vlue funtionX ∀(x, t) ∈ Ω, U (x, t) := min y∈Ax,t J t (y); Ω = R × (0, T ).

0 L¢ t 0 +

 00 Proof. pix h ∈ (0, t) nd let us ll V (x, t) the rightEhnd side of @VFQFIUAF PRWy(s) = z(s) + (x -ξ)F ine y ∈ A x,t D y de(nition of U D we hve U (x, t) ≤ ¢ t (y(s), ẏ(s)) ds + U 0 (y(0)) = x -ξ, ż(s)) ds + U 0 (z(0) + x -ξ) = U (ξ, t) + ¢ t 0 (L(z(s) + x -ξ, ż(s)) -L(z(s), ż(s))) ds + (U 0 (z(0) + x -ξ) -U 0 (z(0)) ≤ U (ξ, t) + t sup χ∈R |v|≤C H ∂L ∂x (χ, v) + U 0 L ∞ |x -ξ|,

  χ∈R |L(χ, 0)|. pix now n optiml vipshitz trjetory y forU (x, t)F he(ne z(s) = y(s + h) (s ∈ [0, t -h])F fy de(nitionD we hve U (x, t -h) ≤ ¢ t-h 0 L(z(s), ż(s)) ds + U 0 (z(s), ẏ(s)) ds + U 0 (y(h)) = U (x, t) -¢ h 0 L(y(s), ẏ(s)) ds + (U 0 (y(h)) -U 0 (y(0))) ≤ U (x, t) + sup χ∈R |v|≤C H |L(χ, v)| + U 0 L ∞ C H h,whih onludes the proofF Theorem 8.3.12. The function U ∈ Lip(Ω) is a viscosity solution to the Hamilton-Jacobi equation @VFHFPA with initial data U 0 . Moreover, for all (x, t), (ξ, τ ) ∈ Ω,|U (x, t) -U (ξ, τ )| ≤ T sup y∈R |v|≤C H ∂L ∂x (y, v) + U 0 L ∞ |x -ξ| + sup y∈R |v|≤C H |L(y, v)| + U 0 L ∞ C H |t -τ |.

3 . 13 . 15 .γ

 31315 Let U ∈ Lip(Ω) be the viscosity solution to @VFHFPA with initial data U 0 ∈ Lip(R). Fix ξ, ζ ∈ Lip((0, T )), ξ ≤ ζ. Then for all s, τ ∈ [0, T ] (s < τ ), we have:¢ ζ(τ ) ξ(τ ) U (x, τ ) dx -)U (ζ(t), t) -ξ(t)U (ξ(t), t) dt .@VFQFPIAProof. he proof follows the one of TUD vemm QFP nd we only give the detils for the ske of ompletenessF prom the hi @VFHFPAD we dedue tht for ll test funtionsϕ ∈ C 1 c (Ω)D ¢ T 0 ¢ R (U (x, t)∂ t ϕ(x, t) -H(x, ∂ x U (x, t))ϕ(x, t)) dx dt = 0. @VFQFPPA PSQ U (•, s) is di'erentile t point x = ζ(s) nd tht ∂ x U (ζ(s), s) = lim h→±0 ∂ x U (ζ(s) ± h, s)F e otinX U (ζ(t), t) -U 0 = ¢ t 0 ζ(s)∂ x U (ζ(s), s) -H (ζ(s), ∂ x U (ζ(s), s)) ds . @VFQFPRAine ζ is genuineD there exists funtion ω ∈ C 1 ((0, t)) suh tht (ζ, ω) is solution to the yhi system @VFIFUA with (nl onditions ζ(t) = x nd ω(t) = ∂ x U (x + , t)F woreoverD for FeF s ∈ (0, t)D ω(s) = ∂ x U (ζ(s), s)F gomining these detils with @VFQFPRAD we otinXU (x, t) -U 0 (ζ(0)) = ¢ t 0 ζ(s)ω(s) -H (ζ(s), ω(s)) ds = ¢ t 0 ∂H ∂u (ξ(s), ω(s))ω(s) -H (ζ(s), ω(s)) ds = Fix t > 0, x ∈ R and U 0 ∈ Lip(R). Then min ∈ C 1 ([0, t]) ∃θ ∈ C 1 ([0, t]), ∀s ∈ (0, t), γ(s) = ∂H ∂u (γ(s), θ(s)) and θ(s) = -∂H ∂x (γ(s), θ(s)) us ll A, B nd C the three quntities in @VFQFPSAF glerlyD we hve A ≥ B ≥ C. heorem VFQFS ensures tht A = BF heorem VFQFIR ensures tht A = CF 8.4 Initial data identication for space-dependent ows

  R) | S CL T u 0 = w I HJ T (W ) = U 0 ∈ Lip(R) | S HJ T U 0 = W . @VFRFIA Remark 8.4.1. sn TID the uthors gve neessry nd su0ient ondition on given pro(le w ∈ L ∞ (R) to ensure tht I CL T (w) = ∅Y they lso provided full hrteriztion of the set of initil dt tht evolve into given pro(leD nd (nllyD they desried some geometri nd topologil properties of I CL T (w) nd I HJ T (W )F e will follow the sme pth in this setionF sn light of emrk VFPFID we hve the following resultF Lemma 8.4.1. Let w ∈ L ∞ (R) such that I CL T (w) = ∅. Then for all x ∈ R, w admits left-side and right-side traces at point x. sn light of this regulrityD in the sequelD if w ∈ L ∞ (R) is suh tht I CL T (w) = ∅D then for ll x ∈ RD y w(x)D we will men the leftEside tre of w t point xF xote tht vemm VFRFI trnsltes sX Lemma 8.4.2. Let W ∈ Lip(R) such that I HJ T (W ) = ∅. Then for all x ∈ R, W admits left-side and right-side traces at point x.

8. 4 . 1

 41 Characterization of I CL T (w) and I HJ T (W ) his setion is orgnized s followsF pirst we give neessry ondition on pro(le w ∈ L ∞ (R) to verify I CL T (w) = ∅F henD using the orrespondene onservtion lwsGrmilton toi equtionsGlulus of vritions @see etions VFPEVFQAD we strengthen this ondition to otin su0ient ondition on pro(le W ∈ Lip(R) to verify I HJ T (W ) = ∅F pinllyD given W ∈ Lip(R) suh tht I HJ T (W ) = ∅D we hrterize the initil dt tht elong to I HJ T (W )F Necessary condition for I CL T (w) = ∅ vet w ∈ L ∞ (R) nd de(ne the funtion p w : R -→ R x -→ ξ x (0), @VFRFPA 8.4. INITIAL DATA IDENTIFICATION FOR SPACE-DEPENDENT FLOWS PSS where for ll x ∈ RD ξ x , ν x ∈ C 1 ((0, T )) re suh thtX (t), ν x (t)) νx (t) = -∂H ∂x (ξ x (t), ν x (t)); ξ x (T ) = x, ν x (T ) = w(x).

Remark 8 . 4 . 2 .

 842 sn the homogeneous seD p w redues to ∀x ∈ R, p w (x) = x -T • H (w(x)), see TID etion PF Proposition 8.4.3. Let w ∈ L ∞ (R) such that I CL T (w) = ∅. Then p w is nondecreasing.

Remark 8 . 4 . 3 .γ ∈ C 1 (¢ T 0 L 0 L

 843100 sn the homogeneous seD the monotoniity of p w redsX ∀x, y ∈ R, x < y =⇒ H (w(y)) -H (w(x)) ≤ y -x T , whih is the lssil yleinik ondition on the dey of positive wvesD see TVD ghpter TF Sucient and necessary condition for I HJ T (W ) = ∅ e now provide su0ient nd neessry ondition on pro(le W ∈ Lip(R) to ensure tht I HJ T (W ) = 0F Notation 8.4.1. por ny W ∈ Lip(R)D denote y C H,W > 0 onstnt suh tht ∀r ∈ R + , r ≥ C H,W =⇒ φ(r) 1 + r > sup x∈R |u|≤ W L ∞ |H(x, u)| + sup x∈R |v|≤1 |L(x, v)| , @VFRFQA where φ is given y the xgumo growth of HD see gorollry VFIFRF vet us prove some intermedite resultsF Lemma 8.4.4. Dene the subset [0, T ])∃θ ∈ C 1 ([0, T ]), ∀t ∈ (0, T ), γ(t) = ∂H ∂u (γ(t), θ(t)) and θ(t) = -0 , x T ) ∈ R 2 , ∃γ ∈ S, γ(0) = x 0 and γ(T ) = x T .Proof. his is onsequene of vemms VFIFIIEVFIFIPF PST CHAPTER 8. CORRESPONDENCES AND THE INVERSE DESIGN PROBLEM Lemma 8.4.5. Let W ∈ Lip(R). Dene∀x 0 ∈ R, U * 0 (x 0 ) := sup γ∈S s), γ(s)) ds . @VFRFSA Then U * 0 ∈ Lip(R), and in its denition, the sup is attained. More precisely, v) + W L ∞ . @VFRFTA Moreover, for any Lipschitz curves γ realizing the maximum in @VFRFSA, we have:γ L ∞ ≤ C H,W .Proof. pirstD remrk tht∀x 0 ∈ R, U * 0 (x 0 ) = -inf γ∈S γ(0)=x 0 ¢ T 0 L(γ(s), γ(s)) ds -W (γ(T )) .xow pplying the hnge of vriles τ = T -sD∀x 0 ∈ R, U * 0 (x 0 ) = -inf y∈S y(T )=x 0 (y(T -τ ), ẏ(T -τ )) dτ -W (y(0)) .henD in view of gorollry VFQFISD∀x 0 ∈ R, U * 0 (x 0 ) = -inf y∈Lip((0,T )) (T -s), ẏ(T -s)) ds -W (y((T -s), ẏ(T -s)) ds -W (y(0))whih flls extly in the frmework developed in etion VFQD nd the results of the sttement followD in light of heorem VFQFW nd heorem VFQFIPF he funtion U * 0 will ply signi(nt role in the sequelF pirstD note tht Lemma 8.4.6. Fix W ∈ Lip(R) such that I HJ T (W ) = ∅ and let U * 0 be dened as in Lemma 8.4.5. Then for all U 0 ∈ I HJ T (W ), we haveU 0 ≥ U * 0 . @VFRFUA Proof. pix x 0 ∈ R nd γ ∈ S suh tht γ(0) = x 0 F ine U 0 ∈ I HJ T (W )D we hveX W (γ(T )) -s), ζ(s)) ds + U 0 (ζ(0)) -¢ T (γ(s), γ(s)) ds ≤ ζ=γ U 0 (γ(0)) = U 0 (x 0 ).fy tking the supremum on γ ∈ SD we otinU * 0 ≤ U 0 F we dedue tht ( γ(n) ) n nd ( θ(n) ) n onverge uniformly on [0, T ] to ∂H ∂u (γ, θ) nd -∂H ∂x(γ, θ)D respetivelyF woreoverD y pssing to the limit in the equlities∀n ∈ N, ∀t ∈ [0, T ], γ (n) (t) = x n) (s), θ (n) (s)) ds θ (n) (t) = θ (n) (0) -n) (s), θ (n) (s)) ds , we dedue thtX " γ, θ ∈ C 1 ((0, T )) nd γ = ∂H ∂u (γ, θ) nd θ -∂H ∂x (γ, θ)Y " ( γ(n) ) n nd ( θ(n) )n onverge uniformly on [0, T ] to γ nd θD respetivelyF pinllyD we let n → +∞ in @VFRFIPA to onlude tht (rst tht γ ∈ S nd thenD tht (x 0 , x T ) ∈ GF (iii) vet (x 0 , x T ) ∈ G nd let γ ∈ S linking x 0 nd x T F hen in view of vemm VFRFSD we hve|x 0 -x T = |γ(0) -γ(T )| ≤ T γ L ∞ ≤ T C H,W .(iv) e only prove the (rst implition in @VFRFWAD the detils of the proof for the seond one re similr so we omit themF vet γ, ζ ∈ S e two minimizers for U * 0 (x 0 ) nd U * 0 (y 0 )D respetivelyF fy ssumptionD we hve γ(0) < ζ(0)F e now hek tht γ nd ζ do not interset in [0, T )Y this will prove the sttementF uppose insted tht ∃τ ∈ (0, T ), γ(τ ) = ζ(τ ).@VFRFIQA he(ne the ontention∀t ∈ [0, T ], ξ(t) = ζ(t) if 0 ≤ t ≤ τ γ(t) if τ < t ≤ T. glerlyD ξ ∈ Lip(R) nd ξ(0) = y 0 F emrk tht γ(τ ) = ζ(τ )F sf it ws the seD then y denoting θ, ω ∈ C 1 ((0, T )) the urves ssoited with γ nd ζD respetivelyD given y (x 0 , x T ), (y 0 , y T ) ∈ GD then we would hveXγ(τ ) = ζ(τ ) ⇐⇒ ∂H ∂u (γ(τ ), θ(τ )) = ∂H ∂u (ζ(τ ), ω(τ )) ⇐⇒ ∂H ∂u (γ(τ ), θ(τ )) = ∂H ∂u (γ(τ ), ω(τ )) ⇐⇒ θ(τ ) = ω(τ ), sine u → ∂H ∂u (γ(τ ), u) is ijetionF rowever this would ontrdits guhy vipshitz theoE remF sn prtiulrD ξ is not di'erentile t point τ F woreoverD sine γ nd ζ re minimizersD 8.4. INITIAL DATA IDENTIFICATION FOR SPACE-DEPENDENT FLOWS PSW we hveD in light of gorollry VFQFISX U * 0 (y 0 ) -W (y T ) = -inf y∈S s), ẏ(s)) ds -inf y∈Lip((τ,T )) y(τ )=ξ(τ ),y(T )=y T (s), ξ(s)) ds . his ensures tht ξ is vipshitz minimizer for U * 0 (y 0 )D therefore ξ ∈ W 2,∞ ((0, T ))D see gorollry VFQFUF roweverD this ontrdits the ft tht ξ is not di'erentile t point t = τ F e onlude tht γ nd ζ do not ross in [0, T ) whih implies tht γ(T ) ≤ ζ(T ) i.e. x T ≤ y T F Remark 8.4.4. emrk tht in vemm VFRFUD roperties (ii)-(iii)-(iv) do not rely on the de(nition of U * 0 D only its vipshitz ontinuity ws requiredF sn prtiulrD for ny vipshitz funtion U 0 D we n de(ne its ssoited suset G U 0 y @VFRFVA @repling U * 0 y U 0 A nd the suset G U 0 will lso stisfy roperties (ii)-(iii)-(iv)F sn ontrstD roperty @VFRFWA is intrinsi to U * 0 F e re now in position to hrterize the pro(les whih re rehleF Theorem 8.4.8. Fix W ∈ Lip(R). Let U * 0 and G be dened as in Lemmas 8.4.5-8.4.7. Then the following conditions are equivalent. 1. U * 0 ∈ I HJ T (W ). 2. I HJ T (W ) = ∅. 3. (i) p W is nondecreasing and (ii) G has the following maximal property:(x 0 , x T ), (x 0 , x T ) ∈ G =⇒ ∀x T ∈ [x T , x T ], (x 0 , x T ) ∈ G. @VFRFIRA Proof. 1. =⇒ 2.is lerF 2. =⇒ 3. uppose tht I HJ T (W ) = ∅F e hve lredy estlished tht (i) holdsD see roposition VFRFQF pix now U 0 ∈ I HJ T (W )D (x 0 , x T ), (x 0 , x T ) ∈ G @x T < x T A nd x T ∈ (x T , x T )F vet γ, ζ ∈ S two minimizers onneting (x 0 , x T ) nd (x 0 , x T )D respetivelyD nd let ξ e the miniml kwrd generlized hrteristis emnting from (x T , T )D ssoited with the hi @VFHFIA with initil dt U 0 F ine ξ is genuineD ξ ∈ S nd y heorem VFQFIRD W (x T ) = ¢ T 0 L(ξ(s), ξ(s)) ds + U 0 (ξ(0)) ≥ ¢ T 0 L(ξ(s), ξ(s)) ds + U * 0 (ξ(0)). eoveD we used the ft tht U 0 ≥ U * 0 D see vemm VFRFTF e dedue tht U * 0 (ξ(0)) ≤ W (x T ) -¢ T 0 L(ξ(s), ξ(s)) ds .

3 .

 3 =⇒ 1. e now show tht ssumptions (i)-(ii) imply thtU * 0 ∈ I HJ T (W )F e (rst hek thtX ∀x T ∈ R, ∃x 0 ∈ R, (x 0 , x T ) ∈ G. @VFRFISA pix x T ∈ R nd introdue the susetX E = {x ∈ R | ∃y < x T , (x, y) ∈ G} .ine E is nonempty nd ounded y ove sineD s onsequene of @VFRFWA nd @VFRFIHAD(-∞, -T C H,W + x T ) ⊂ E nd ∀x ∈ E, x ≥ (x -y) + y ≥ -|x -y| + x T ≥ -T C H,W + x T .hereforeD x = sup E is wellEde(nedF vikewiseD the suset F = {x ∈ R | ∃y > x T , (x, y) ∈ G} .

Case 2 :

 2 x < xF pix x 0 ∈ (x, x)F fy vemm VFRFUD there exists y ∈ R suh tht (x 0 , y) ∈ GF roweverD y the de(nition of xD we neessrily hve y ≥ x T F he sme wyD the de(nition of pigure VFR ! he numeril solution u ∆ (•, t) t time 3.5Y for n nimted evolution of the numeril solutionD followX httpsXGGutoxFunivEtoursFfrGsGVgySfygwSgpSzSF pigure VFS ! fkwrd hrteristisF 8.4. INITIAL DATA IDENTIFICATION FOR SPACE-DEPENDENT FLOWS PTS henD on the right we drew rmiltonin rys i.e. the projetions ξ of the urves (ξ, ν) solving the systemX ξ(t) = ν(t) ν(t) = -g (ξ(t)), ξ(T ) = 0, ν(T ) = ν T , w(0+) ≤ ν T ≤ w(0-).

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  |x=y(t) ≤ q(t) in the FeF senseF fy emrk RFIFID ρ stis(es @RFIFPA s well i.e. ρ is n dmissile entropy solution to @RFHFQAF

	4.1.2 Uniqueness of G-entropy solutions
	e now prove uniqueness using he(nition RFIFRF
	Lemma 4.1.7 @uto inequlityA. Fix ρ 0

4.1. UNIQUENESS AND STABILITY (ONE TRAJECTORY)

WU glerlyD ∆(t, κ) ≥ 0D whih proves tht I ≥ 0D hene ρ stis(es @RFIFIAF woreoverD y ssumptionD for FeF t > 0D (ρ(y(t)-, t), ρ(y(t)+, t)) ∈ G ẏ(t) (q(t))F his impliesD in prtiulrD tht ρ stis(es the )ux onstrint inequlity (f (ρ) -ẏ(t)ρ)

  4.2. EXISTENCE FOR THE SINGLE TRAJECTORY PROBLEM IHU e strt y deriving ontinuous entropy inequlities veri(ed y ρ ∆ F vet us de(ne the pE proximte entropy )uxX Φ ∆ (ρ ∆ , κ) =

	Φ n j 1 P n j+1/2 +	Φ n j+1 1 P n j+1/2	.
	n∈N j≤jn	j≥jn+1	
	Proposition 4.2.3 @epproximte entropy inequlitiesA. Fix n ∈ N and κ ∈ [0, 1]. Then we
	have		
	¢ t n+1		

  4.3. WELL-POSEDNESS FOR THE MULTIPLE TRAJECTORY PROBLEMIIWProof. istimte @RFQFUA follows from uto inequlity @RFQFRA with suitle hoie of test funtion nd in light of the inequlityX ∀i ∈ [[1; J]], for FeF t ∈ (s i , T i ), Φ ẏi (t) (ρ(y i (t)+, t), σ(y i (t)+, t)) -Φ ẏi (t) (ρ(y i (t)-, t), σ(y i (t)-, t)) ≤ 2|q i (t) -

	∼ q i (t)|,
	see heorem RFIFVF
	4.3.3 Proof of existence
	pollowing the resoning of etions RFIERFPD we introdue seond de(nition of solutionsD
	more suitle to prove existeneF
	Denition 4.3.4.

e funtion ρ ∈ L ∞ (Ω; [0, 1]) is n dmissile entropy solution to @RFHFPA with initil dt ρ 0

  Denition 5.3.1. e fmily {G(t)} t>0 of susets of [a, b] 2 is lled L 1 D germ ssoited with )uxes f, g if for ll t > 0X @iA for ll (κ L

1 D germD see ISD he(nition QFI or SD he(nition IFIF e restrit ourselves to susets of [a, b] 2 in view of the on(nement ssumption veri(ed y f nd gF

  sy tht the fmily is mximl if for ll t > 0D G(t) is not strit suset of some other L 1 D germF Remark 5.3.1. ith this onventionD it is redily seen tht ny mximl L 1 D germ G(t)

	ssoited with )uxes f, g verifying the on(nement ondition @SFPFVA ontins the ouples
	(a, a) nd (b, b)F
	vet us give the rguments of the proof of heorem SFPFQ for this model seF pollowing the
	proof of vemm RFIFUD we derive the uto inequlityX

  5.4. MULTI-INTERFACE PROBLEM WITH GENERAL INTERFACE COUPLING IRQ Remark 5.3.3. es mentioned fter roposition SFPFRD now tht we proved the existene of

  iii) For all (x, t) ∈ R × (0, T ], there exist two generalized characteristics ξ and ζ, called minimal and maximal, such that if γ ∈ Lip((0, T )) is a generalized characteristics going

through (x, t), then:

∀s ∈ [0, t], ξ(s) ≤ γ(s) ≤ ζ(s)

ξ and ζ are genuine on (0, t)

ξ(t) = u(x-, t); ζ(t) = u(x+, t).

  ≤ L (|x| + |y|) . porgetting the seond term in the leftEhnd sideD we dedue

	8.2. CORRESPONDENCE CL/HJ	PIU
	therefore	(x -y) 2 2ε 2 A|x| A x 2 + y 2 +

  dmits lol mximum t point (x, t)F hereforeD sine U is visosity solutionD we hveX

		∂ϕ ∂t	(x, t) + H x,	∂ϕ ∂x	(x, t) ≤ 0
	whih rewrites sX	(t -s) ν	+ η + H x,	(x -y) ε 2 + 2Ax ≤ 0.	@VFPFIWA
	yn the other hndD the funtion			
	ϕ				

  Case 1: t η = 0 and x η ≥ R. sn this seD for ll (x, t) ∈ UD we hve v

	8.2. CORRESPONDENCE CL/HJ	PPI
	e onlude the proof with se y se studyF	

  is ontinuousD nonderesing nd nonnegtive on R + F e now de(ne θ to ontrol the ontriution of g in @VFPFQTAF pirstD set ∀r ≥ 0, A(r) :

	8.2. CORRESPONDENCE CL/HJ	PPS
	he funtion g	

  VFPFRTA for ontinuous funtions F ∈ C(R 2 ) hving the property of ompt spe dependenyD @VFHFQAF et M

	8.2. CORRESPONDENCE CL/HJ	PQI
	vet us extend @	

  1,1 ((0, t)) nd tht ẏ = zD hene y ∈ A x,t F whih proves tht y is minimizer of J t F 8.3.2 Regularity of e now disuss the regulrity of the minimizers of J t F e will use the following resultsF Lemma 8.3.3. Let f ∈ C 2 (R) be a strongly convex function. Then for all ξ ∈ R, the

	application			
	g : [0, +∞) -→	R
		x	-→ (1 + x)f	ξ 1 + x
	is convex. Moreover,			
	Conclusion. vemm VFQFI ensures tht	
	inf Ax,t	J t = lim			Ax,t	J t ,

k→+∞ J t (y n k ) ≥ J t (y) ≥ inf

  x .whih leds to @VFQFQAF st is strightforwrd to prove the estimte in the se v < 0F he proof is ompleteF 8.3. CALCULUS OF VARIATIONS PRI e re going to prove the following resultF

	Lemma 8.3.4. We have					
	∀x ∈ R, ∀v ∈ R * , H x,	∂L ∂v	(x, v) ≥	φ(|v|) |v|	-sup y∈R	L(y, w) • 1 +	1 |v|	,	@VFQFQA
												|w|≤1
	Consequently, H x,	∂L ∂v	(x, v)			-→
					H x,	∂L ∂v	(x, v) = sup p∈R	p	∂L ∂v	(x, v) -L(x, p)
	with p = 1D we otinX						
	H x,	∂L ∂v	(x, v) = sup p∈R	p	∂L ∂v	(x, v) -L(x, p) ≥	∂L ∂v	(x, v)-L(x, 1) ≥	∂L ∂v	y∈R (x, v)-sup	L(y, w) .
												|w|≤1
	fy onvexityD								
			∂L ∂v	(x, v) ≥	L(x, v) -L(x, 0) v	≥	φ(|v|) |v|	-	1 |v|	y∈R sup	L(y, w) ,
												|w|≤1

|v|→+∞

+ ∞, uniformly in x.

Proof. pix v > 0F sing the link etween H nd LX

  is given y the xgumo growth of HD see gorollry VFIFRF Theorem 8.3.9. For all t > 0, for all x ∈ R, and for all all Lipschitz minimizers of J t inA x,t , we have ẏ L ∞ ≤ C H . @VFQFISAProof. e dpt the resoning put forwrd y the uthor of SQF pix t > 0D x ∈ R nd let y e vipshitz minimizer of J t in A x,t F Using the transversality condition. ine y ∈ W 2,∞ ((0, t)) @see gorollry VFQFUA nd stis(es the FeF form of the iulerEvgrnge equtionsD for FeF s ∈ (0, t)D we hve

	r ≥ C H =⇒	φ(r) 1 + r	>	w∈R sup	w∈R |H(w, u)| + sup	|L(w, v)| ,	@VFQFIRA
							|u|≤ U 0 L ∞	|v|≤1
	where φ d ds	ẏ(s)	∂L ∂v	(y(s), ẏ(s)) -L(y(s), ẏ(s)) = 0,
	whih implies thtX						
	∃C						

x,t ∈ R, ∀s ∈ [0, t], ẏ(s) ∂L ∂v (y(s), ẏ(s)) -L(y(s), ẏ(s)) = C x,t .

Proof. por ll t ∈ [0, T ]D if t ∈ [t n , t n+1 ) for some n ∈ {0, . . . , N }D then we n write

PHW

Proposition 8.1.10. (i) V is a nondecreasing function and v is a nonincreasing function;

(ii) We have the limits:

Proof. vet us mke preise tht in view of ssumption @VFIFIA nd roposition VFIFVD V nd v re wellEde(nedF e now prove the sttements nd only give the detils for V F (i) his follows from the monotoniity of M nd ∂H ∂u with respet to their seond rgumentX

henD tke the in(mum for x ∈ RF (ii) uppose insted tht it is not the se so tht y monotoniityD V := sup C>K V (C) < +∞F fy de(nitionD

p to the extrtion of susequeneD we n ssume tht (x n ) n onverges to some x ∈ [-X, X]F wking use of roposition VFIFV (iv) nd of the oerivity of HD we dedueX

xowD the monotoniity of M omined with @VFIFISA results inX ∀n ≥ N, ∂H ∂u (x n , M (x n , N )) ≤ V .

ssing to the limit s n → +∞ ontrdits @VFIFITAD therefore proving the sttementF e re now in position to proveX Lemma 8.1.11. Fix T > 0 and ξ 0 ∈ R. Then ∀ξ T ∈ R, ∃ν 0 ∈ R, ϕ 1 (T, ξ 0 , ν 0 ) = ξ T . @VFIFIUA Proof. pix ν 0 > 0 su0iently lrge suh thtX ν 0 > u(ξ 0 ); C 0 := H(ξ 0 , ν 0 ) > K.

henD exhnge the roles plyed y U nd V to otin sup

Vanishing viscosity method

he ultimte gol of the next setions is to gurntee the orrespondene etween the entropy solutions of the onservtion lw nd the visosity solutions of the rmiltonEtoi equtionsD sed on the onstrution of oth kinds of solution s vnishing visosity limitsD tht isD s limits of solutions to the visous prolemsX

will men tht u is ontinuously di'erentile in Ω with respet to t nd k times ontinuously di'erentile in Ω with respet to xF vet us mke preise tht the orrespondene etween solutions to @VFPFPPA nd @VFPFPQA follows from simple omputtions when the solutions re su0iently smoothD s outlined in the following lemmF Lemma 8.2.7. Fix ε > 0.

(Ω) be a classical solution to @VFPFPPA with initial data u 0 . Dene:

his impliesD one ginD tht v is lssil solution to

Proof. smmedite in light of vemm VFPFU (i)F

Convergence and existence results Theorem 8.2.15.

. Then:

(i) for all ε ∈ (0, 1), the equation @VFPFPQA admits a classical solution U ε ∈ C(Ω) ∩ C 3 1 (Ω); (ii) there is a subsequence of (U ε ) ε which converges uniformly on compact subsets of Ω to some U ∈ C(Ω);

(iii) the function U is a viscosity solution to @VFHFPA with initial data U 0 .

Proof. oint (i) omes from gorollry VFPFIRF sing the a priori ound of heorem VFPFIID erzelàEesoli theorem @see QTD heorem RFPSA omined with stndrd digonl proess yields the existene of susequene of (U ε ) ε whih onverges uniformly on ompt susets of Ω to some U ∈ C(Ω)F he ft tht U is visosity solution to @VFHFPA is stndrdD see for instne VID ghpter IHF Theorem 8.2.16. Suppose that H ∈ C 2 (R 2 ) veries @VFHFQA-@VFIFPA. Then for any initial

, the Hamilton-Jacobi equation @VFHFPA admits a unique viscosity solution.

Proof. ixistene omes from heorem VFPFIS while uniqueness ws proved in heorem VFPFTF xote tht existene of visosity solution to @VFHFPA under ssumptions @VFHFQAE@VFIFPA nd with U 0 ∈ Lip(R) is otined in etion VFQ through the lulus of vritions pprohD see heorem VFQFIPF Theorem 8.2.17. Fix u 0 ∈ W 1,∞ (R). Then:

(i) for all ε ∈ (0, 1), the equation @VFPFPPA admits a classical solution u ε ∈ C(Ω) ∩ C 2 1 (Ω); (ii) there is a subsequence of (u ε ) ε which converges a.e. on Ω to some u ∈ L ∞ (Ω);

(iii) the function u is an entropy solution to @VFHFIA with initial data u 0 . PQQ prts to otinX

@VFPFSHA xow mke use of the FeF onvergene of (u ε ) ε nd the uniform L ∞ ound @VFPFQVA to pply veesgue theorem to pss to the limit in @VFPFSHAX

@VFPFSIA snequlity @VFPFSIA is vlid for ny onvex funtion η ∈ C 2 (R)F e stndrd pproximtion rgument ensures tht it holds for ny onvex funtion η ∈ W 1,∞ (R)F sn prtiulrD with η = | • -κ| @κ ∈ RAD we otin tht u is n entropy solution to @VFHFIA with initil dt u 0 in the sense of he(nition VFPFIF emrk tht heorems VFPFREVFPFIU provide wellEposedness result for @VFHFIAF Theorem 8.2.18. Suppose that H ∈ C 2 (R 2 ) veries @VFHFQA-@VFIFPA. Then for any initial data u 0 ∈ W 1,∞ (R), the conservation law @VFHFIA admits a unique entropy solution.

Correspondence

Theorem 8.2.19. Fix u 0 ∈ W 1,∞ (R) and suppose that H ∈ C 2 (R 2 ) satises @VFHFQA-@VFIFPA.

Then:

(i) the conservation law @VFHFIA admits a unique entropy solution with initial data u 0 , denoted by u;

(ii) the Hamilton-Jacobi equation @VFHFPA admits a unique viscosity solution with initial data

Proof. oints (i)E(ii) omes from heorems VFPFIVEVFPFITF (iii) vet (U ε ) ε e the sequene of lssil solutions to @VFPFPQA onstruted in gorollry VFPFIRD whih onverges uniformly on ompt susets of Ω to U @see heorem VFPFISAF vikewiseD let (u ε ) ε the sequene of lssil solutions to @VFPFPPA onstruted in heorem VFPFIQD whih onverges FeF on Ω to the entropy solution u ∈ L ∞ (Ω) to @VFHFIAF xote tht for ll ε ∈ (0, 1)D Claim: U(x, t) ≥ V(x, t)F vet α e n optiml ontrol for U (x, t)F sf we ll y its ssoited trjetoryD then we hveX

)) e ontrol of ssoited trjetory y nd β n optiml ontrol @of trjetory zA for U (y(t -h), t -h)F gonsider α ∈ L ∞ ((0, t)) the ontrol de(ned y

sts trjetory y oinides with y on [t -h, t] nd with z on [0, t -h]F gonsequentlyD we hve

king the in(mum on ll α ∈ L ∞ ((t -h, t))D we otin the seond inequlityD onluding the proofF Theorem 8.3.11 @egulrity of the vlue funtionA. The function U is Lipschitz: U ∈ Lip(Ω).

Proof.

Step 1: Lipschitz continuity in space.

pix (x, t), (ξ, t) ∈ ΩF vet z e vipshitz minimizer for U (ξ, t) nd introdue y de(ned y e stndrd pproximtion rgument llows us to hoose ϕ ∈ W 1,∞ (Ω)D whih we do nowF pix ε > 0F es TUD de(ne for ll

vet us mke preise tht for FeF t ∈ (0, T )D

e pply @VFQFPPA with the test funtion ψ ε χ ε nd let ε → 0F ine U ∈ Lip(Ω)D stndrd omputtions led to @VFQFPIAF prom vemm VFQFIQD we dedue the nnouned sttementF Theorem 8.3.14. Let U ∈ Lip(Ω) be the viscosity solution to @VFHFPA with initial data U 0 ∈ Lip(R). Fix (x, t) ∈ R × (0, T ] and let ξ (resp. ζ) be the minimal (resp. maximal) characteristics emanating from (x, t). Then

Proof. e only prove the result for ζF he detils of the proof for ξ re similr so we omit themF pix ε > 0F vet us pply @VFQFPIA with ζ nd ζ -ε on (0, t)F efter dividing y εD we otinX

@VFQFPQA e let ε → 0 in @VFQFPQA using the fts thtX @iA U nd U 0 re ontinuousY @iiA ∂ x U is the entropy solution @VFHFIA with initil dt U 0 D see gorollry VFPFPH nd emrk VFPFRF @iiiA ine ζ is genuineD for FeF s ∈ (0, t)D ∂ 

. @VFRFVA Then G has the following properties:

(i) G is surjective in the following sense:

(iii) for all (x 0 , x T ) ∈ G, we have

(iv) G is monotone in the following sense:

Proof. (i) roperty @VFRFWA omes from the de(nition of U * 0 nd vemm VFRFSF (ii) vet (x

) n e sequene of G whih onverges to some (x 0 , x T ) ∈ R 2 F fy de(nitionD for ll n ∈ ND there exists γ (n) ∈ S suh tht

whih provides the oundedness of (θ (n) (0)) n F hereforeD up to susequeneD we n ssume tht (θ (n) (0), γ (n) (0)) n onverges to (θ 0 , x 0 ) with θ 0 ∈ RF sing the ontinuity of the )ow of the rmiltonin system in the de(nition @VFRFRAD we estlish the existene of γ, θ

PTI

x ensures tht y ≤ x T F e proved tht y = x T nd thereforeD (x 0 , x T ) ∈ G for ny x 0 ∈ (x, x)F iqulity @VFRFISA rewrites sX

woreoverD the de(nition of U * 0 ensures tht for ll x ∈ R nd for ll urves γ ∈ SD γ(T ) = xD we hve 

Proof. =⇒ oint (i) omes from vemm VFRFTF vet us prove (ii)F pix x 0 ∈ p W (R)F fy de(nitionD ∃z 0 ∈ R, x 0 = p W (z 0 ). for instneF he evolution of the numeril solutionD with time horizon T = 3.5 is repreE sented in pigure VFRF emrkD nd this is intrinsi to the heterogeneous seD tht the initil rreftion pro(le evolves into shok wveF vet us denote y w = u(•, T ) @T = 3.5A the (nl pro(le whih isD y onstrution rehleF sn pigure VFSD we drw kwrd hrteristis emnting from (0, T )F vet us omment on the (gureF yn the leftD we drew the miniml @in rownA nd mximl @in lueA kwrd hrteristis emnting from (0, T )D denoted y γ nd ζD respetivelyF es expetedD they do not ross in (0, T )D nd rell tht these urves re minimizers for the lulus of vritions prolemD see heorem VFQFIRF