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Extension of the Spectral Difference method to simplex cells and hybrid grids

Abstract This thesis examines the extension of the Spectral Difference (SD) method on unstructured
hybrid grids involving simplex cells (triangles, tetrahedra) and prismatic elements. The Spectral Dif-
ference method is part of high-order spectral discontinuous numerical methods. These methods rely
on piecewise continuous polynomial approximation to obtain high-order accuracy with a good par-
allel efficiency. The standard SD scheme is first presented in the one-dimensional case and then
for tensor-product elements (quadrilaterals and hexahedra). The treatment of simplex cells using
Raviart-Thomas elements is detailed for triangles (in 2D) and tetrahedra (in 3D), followed by the
implementation for prismatic elements.

The linear stability of the Spectral Difference method using Raviart-Thomas elements (SDRT) is
studied on triangles and tetrahedra. The SDRT scheme stability is strongly dependent on the interior
flux points location. On triangles, the SDRT implementation based on interior flux points located
at Williams-Shunn-Jameson quadrature points is found stable up to the fourth-order of accuracy but
shown as spatially unstable for higher orders. Nevertheless, it is shown that this implementation can
be stabilized for fifth- and sixth-order schemes using suitable temporal integration schemes. This
approach being submitted to strict conditions, an optimization of the interior flux points location
is conducted to determine spatially stable SDRT formulations for orders higher than four. The op-
timization process leads to spatially stable schemes up to the sixth-order of accuracy. Finally, the
stability analysis on tetrahedra proves that the SDRT scheme based on the interior flux points located
at Shunn-Ham quadrature points is stable up to the third-order.

The SD/SDRT numerical method is validated on several academic cases for first and second-order
Partial Differential Equations (linear advection equation, Euler equations, Navier-Stokes equations).
Both proposed implementations (based either on Williams-Shunn-Jameson quadrature points or op-
timization points) are used. Numerical experiments involve grids composed of quadratic triangles,
linear tetrahedral elements as well as 2D hybrid meshes.

Keywords: High-order discontinuous method, Spectral Difference, Hybrid grid, Simplex cells, Sta-
bility analysis
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Résumé Étendu en Français

Contexte et Objectifs

La méthode des Différences Spectrales (SD) fait partie des méthodes spectrales discontinues d’ordre
élevé basée sur la forme forte des équations. Cette méthode a été initialement introduite sous le nom
de méthode multi-domaine échelonnée de Tchebychev et appliquée à des maillages composés de qua-
drilatères en utilisant les propriétés de produit tensoriel. Plus tard, la méthode a été adaptée aux
cellules de type simplex et renommée méthode des Différences Spectrales. La méthode a ensuite été
étendue aux équations d’Euler et de Navier-Stokes pour des maillages composés de quadrilatères puis
de triangles. Le principe de la méthode SD consiste à définir deux polynômes : un polynôme de degré
p pour la solution et un polynôme de degré (p + 1) pour chaque composante du flux, permettant
d’obtenir un ordre de précision (p + 1). Ce choix de degrés polynomiaux assure la consistance de la
formulation. Deux jeux de points distincts, les points solution (SP) et les points flux (FP) permettent
de définir les polynômes d’interpolation de Lagrange de degré différents. La stabilité linéaire de la
méthode SD en 1D a été démontrée pour tous les ordres de précision à condition que les FP intérieurs
soient placés aux zéros des polynômes de Legendre correspondants. Il a également été montré que la
position des SP n’influence pas la stabilité. Ces conclusions s’étendent directement aux quadrilatères
et aux hexaèdres puisque la méthode SD sur ces cellules est formulée comme le produit tensoriel de
formulations 1D.

L’importance d’utiliser une discrétisation d’ordre élevé pour les calculs LES est soulignée dans le cha-
pitre 1. Une revue bibliographique montre également les avantages et les inconvénients des méthodes
discontinues d’ordre élevé existantes. Parmi ces méthodes, l’approche standard SD a été choisie pour
être implémentée dans le solveur d’ordre élevé JAGUAR pour sa précision et son efficacité pour la
Simulation aux Grandes Echelles. Le solveur JAGUAR est un code en copropriété entre l’ONERA
et le CERFACS et vise à traiter des applications impliquant des écoulements instationnaires comme
la combustion, la transition vers la turbulence, la capture de chocs et la rentrée atmosphérique. Le
traitement des quadrilatères et des hexaèdres a été mis en œuvre avec succès en suivant les règles de
produit tensoriel.

Lorsque la méthode SD standard est appliquée aux autres éléments fréquemment utilisés dans les
maillages (triangles en 2D ; tétraèdres, prismes ou pyramides en 3D), les études concernant la stabilité
n’ont pas été concluantes. En 2D, la stabilité de la méthode SD standard n’est pas assurée pour les
cellules triangulaires pour un ordre de précision strictement supérieur à deux. Cette limitation est
dépassée en utilisant une formulation alternative des SD : la méthode des Différences Spectrales basée
sur les éléments de Raviart-Thomas (SDRT). La différence principale entre le schéma SD standard et
le schéma SDRT concerne l’approximation polynomiale du flux. La formulation SD standard utilise
une base polynomial composée de scalaires et les coefficients à déterminer sont des vecteurs. A l’in-
verse, la formulation SDRT utilise la base polynomiale de Raviart-Thomas, composée de vecteurs, et
les coefficients à déterminer sont des scalaires. La formulation SDRT sur triangles a été démontrée
comme étant linéairement stable jusqu’au quatrième ordre dans le cadre d’une analyse de stabilité
de Fourier et validée pour les équations d’Euler et de Navier-Stokes pour des maillages triangulaires
et hybrides. Enfin, pour les maillages 3D, l’implémentation SDRT sur les tétraèdres n’a pas encore
été formulée. Les formulations des approches SD standard sur cellules de type produit-tensoriel et
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SDRT sur triangles sont présentées en détail dans le chapitre 2. L’extension des SDRT aux tétraèdres
ainsi que la formulation sur éléments prismatiques (obtenue en utilisant un produit tensoriel entre
les schémas standard 1D SD et 2D SDRT) y sont également développées. La complexité induite par
le traitement des pyramides est enfin abordée et il est choisi de se concentrer sur les triangles et les
tétraèdres. Ce choix est motivé par le fait que les cellules de type simplex (triangles et tétraèdres)
offrent la possibilité de traiter des géométries complexes.

Dans ce contexte, cette thèse porte sur l’extension de la capacité du solveur JAGUAR à traiter
les maillages composés de cellules de type simplex et les maillages hybrides tout en conservant des
propriétés stables et robustes. Pour cela, il est d’abord important de proposer une formulation stable
de la méthode SD sur des cellules simplex. La première étape consiste à étendre l’approche SDRT
pour des ordres de précision supérieurs à quatre pour les cas 2D. Ensuite, la formulation SDRT
sur tétraèdres doit être établie. La stabilité linéaire de la discrétisation SDRT spatiale couplée au
schéma temporel doit être soigneusement analysée pour déterminer des limites de stabilité fiables.
Enfin, l’implémentation de la formulation SDRT dans le JAGUAR pour les maillages triangulaires,
hybrides 2D et tétraédriques permettra d’étudier les propriétés du schéma proposé pour la simulation
d’écoulement.

Schéma SDRT pour triangles basé sur des règles de quadrature
existantes

Pour déterminer des formulations SDRT stables pour des ordres de précision supérieurs à quatre
en 2D, la stabilité linéaire du schéma SDRT sur triangle a été d’abord été étudiée dans le chapitre 3.
D’après les premiers résultats publiés concernant la méthode SDRT sur triangles, le paramètre qui
semble avoir le plus d’impact sur la stabilité est la position des FP intérieurs. Jusqu’au quatrième
ordre, on peut noter que les formulations stables ont été obtenues en choisissant de placer les FP
intérieurs suivant certaines règles de quadratures déjà publiées. Les FP de bord sont eux placés aux
points de Gauss-Lobatto, de façon à correspondre exactement aux FP de bord des quadrilatères et
ainsi de faciliter l’implémentation hybride.

Dans un premier temps, il a donc été logique d’étudier toutes les règles de quadrature appropriées
pour des ordres supérieurs à 4, l’objectif étant d’étudier plusieurs implémentations de SDRT en fonc-
tion du choix de l’emplacement des FP intérieur. L’analyse de Fourier a été utilisée pour retrouver les
résultats de stabilité des SDRT pour p ∈ J1, 3K puis pour déterminer la stabilité de chaque implémen-
tation (i.e. de chaque placement de FP intérieurs) pour p > 3. Toutes les implémentations ont conduit
à de petites valeurs positives de parties réelles dans les spectres de l’opérateur spatial pour p > 3. Il
a cependant été noté que la règle de quadrature valable pour tous les degrés d’approximation poly-
nomiale qui permet d’obtenir les valeurs les plus faibles et celle de Williams-Shunn-Jameson (WSJ).
Cette règle de quadrature sera donc privilégiée dans la suite de l’étude.

Le chapitre 4 a étudié la possibilité de stabiliser la méthode SDRT basée sur les FP intérieurs pla-
cés aux points de la règle de quadrature de Williams-Shunn-Jameson (SDRTWSJ) sur des triangles
pour p > 3 en utilisant la discrétisation temporelle pour dissiper les petites valeurs positives de la
partie réelle dans le spectre de l’opérateur spatial. Deux options menant à des discrétisations spatio-
temporelles couplées stables ont été déterminées. La première utilise le schéma temporel Runge-Kutta
quatre étapes de Jameson (RK4J) pour dissiper l’instabilité spatiale et a été validée pour tous les
angles d’advection. Les coefficients de ce schéma ont été choisis de façon à amortir les modes à haute
fréquence et permet donc de stabiliser le schéma spatial. Cependant, une erreur de dissipation nu-
mérique élevée a été constatée. La seconde utilise des schémas temporels SSP de troisième ordre, qui
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sont associés à de meilleures propriétés de dissipation et de dispersion. Cependant, la stabilité de la
discrétisation spatio-temporelle couplée est soumise à certaines conditions : pour SDRT4, le nombre
CFL doit se situer dans un intervalle donné, tandis que pour SDRT5, la stabilité n’est pas assurée pour
tous les angles d’advection. La forte dépendance à l’angle d’advection ou à une double condition sur
le nombre CFL rend cette seconde possibilité difficilement utilisable en pratique. Enfin, l’utilisation
d’autres quadratures comme FP intérieurs a été étudié mais les résultats montrent que la quadrature
WSJ reste la plus adaptée. Dans ce chapitre, l’importance de conduire une analyse de stabilité sur
la discrétisation spatio-temporelle couplée a été soulignée puisque des schémas SDRT spatialement
stables (p = 2 et p = 3) ont été montrés comme menant à une discrétisation spatio-temporelle instable
lorsqu’ils sont associés à des schémas SSP temporels d’ordre deux pour un CFL supérieur à 0, 02. Pour
les schéma temporels compatibles, les limites de stabilité CFL ont été indiquées précisément.

Dans le chapitre 6, la précision du schéma SDRTWSJ stabilité par le schéma temporel RK4J pour
p ∈ J4, 5K a été étudiée pour les équations différentielles partielles du premier ordre. La simulation
de l’advection d’un sinus dans un domaine périodique a permis d’observer des erreurs de dissipation
élevées, entièrement pilotées par le schéma temporel RK4J. Cela confirme que cette solution ne permet
pas d’obtenir une précision d’ordre élevé pour les problèmes instationnaires sans imposer un pas de
temps très faible et donc augmenter drastiquement le coût de calcul. Pour p < 4, le schéma SDRTWSJ

associé à un schéma temporel avec de bonnes propriétés de dissipation et de dispersion permet bien sûr
de retrouver les ordres de précision p+ 1 attendus. L’association du schéma spatial SDRTWSJ avec le
schéma temporal RK4J reste cependant possible pour les problèmes stationnaires. Dans le chapitre 7,
cette solution a été utilisée pour simuler l’écoulement visqueux et stationnaire autour d’un cylindre à
nombre de Reynolds Re = 20 sur maillage hybride 2D. Les résultats ont conduit à un bon accord avec
les données de référence.

Schéma SDRT pour triangles basé sur un processus d’optimisation
Pour dépasser les conditions restrictives associées à la solution proposée dans le chapitre 4, il a

été envisagé de faire varier le placement des FP intérieurs à travers un processus d’optimisation afin
de déterminer des formulations SDRT spatialement stables. Ce processus d’optimisation a été utilisé
avec deux méthodes d’analyse de stabilité : l’analyse de Fourier standard et une nouvelle méthode,
introduite dans le chapitre 3 et visant à réduire le temps d’analyse et ainsi augmenter le nombre
d’implémentations étudiées. Cette nouvelle méthode de stabilité a été proposée comme moyen effi-
cace d’évaluer la stabilité d’un schéma à partir d’un nombre fixe de cellules, sans injecter de solution
harmonique comme solution initiale. Il a cependant été démontré que les résultats obtenus sur un
domaine composé d’un nombre fixe de cellules ne pouvaient pas être étendus dans un cadre général.
Cette approche a donc été mise de côté au profit de l’analyse de stabilité de Fourier.

Le processus d’optimisation a été utilisé de nouveau pour déterminer des FP intérieurs permettant
d’obtenir des formulations stables dans le chapitre 5, associé cette fois ci à l’analyse de stabilité de
Fourier. De nouveaux ensembles de FP intérieurs conduisant à des formulations SDRT spatialement
stables (schémas dénotés SDRTOPT) ont pu être déterminés pour p = 4 et p = 5. La preuve de la
stabilité spatiale de cette formulation a été donnée par une étude du spectre de l’opérateur spatial et
la discrétisation spatio-temporelle couplée a ensuite été étudiée pour déterminer les limites de stabilité
CFL. Le processus d’optimisation a également été mené pour p = 6 sur les triangles. Une formulation
stable a été déterminée pour un angle d’advection θ = 0 mais n’a pour l’instant pas pu être généralisée
pour tous les angles d’advection.

La précision de l’implémentation SDRTOPT a été vérifiée dans le chapitre 6 pour les équations
différentielles partielles du premier ordre. Pour chaque degré d’approximation polynomiale p ∈ J4, 5K,
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la précision d’ordre élevé p+1 est retrouvée sur maillage triangulaire et hybride. Le schéma SDRTOPT

est ensuite utilisé dans le chapitre 7 pour la simulation de fluides visqueux régis par les équations de
Navier-Stokes. Pour p ∈ J4, 5K, l’implémentation SDRTOPT est utilisée, tandis que pour p ∈ J2, 3K,
l’implémentation SDRTWSJ est conservée puisque démontrée comme étant spatialement stable. Un
écoulement autour d’une aile NACA0012 sur un maillage triangulaire quadratique est simulée pour
trois conditions d’écoulement différentes et tous les schémas conduisent à un bon accord avec les
données de référence répertoriée par la NASA.

Schéma SDRT pour tétraèdres
Après avoir établi une formulation SDRT stable sur triangles jusqu’au sixième ordre de précision,

la stabilité du schéma SDRT sur tétraèdres a été étudiée à l’aide de l’analyse de Fourier (chapitre 3).
Pour le placement des FP, les FP de bord ont d’abord été choisi comme correspondant aux SP du
triangle (ici choisi comme correspondant à la quadrature de WSJ), de façon à ce que les FP de bord
d’un tétraèdre et d’un prisme soient localisés exactement au même endroit pour simplifier l’implé-
mentation hybride. Plusieurs localisations de FP intérieurs ont été étudiées, basées sur des règles de
quadrature existantes pour les tétraèdres. La stabilité linéaire de la méthode SDRT a été établie sur
tétraèdres jusqu’au troisième ordre de précision (p = 2) en choisissant la position des FP intérieurs
comme correspondant aux points de quadrature de Shunn-Ham. Pour p = 3, aucune des quadratures
existantes n’a mené à un schéma SDRT stable.

Le processus d’optimisation a ensuite été mené pour p = 3 sur les tétraèdres dans le chapitre 5 mais
n’a pas conduit à des résultats concluants. Cependant, le problème d’optimisation a considéré en tant
que paramètre d’optimisation uniquement la position des FP intérieurs, alors que les FP situés sur
les faces étaient fixés aux points de quadrature de WSJ. Il a ensuite été démontré que la position des
FP situés sur les faces a un impact important sur la stabilité du schéma. Un problème d’optimisation
considérant à la fois la position des FP intérieurs et la position FP situés sur les faces comme para-
mètres d’optimisation pourrait mener à la détermination de formulations SDRT stables pour p > 2.

La stabilité de la discrétisation spatio-temporelle sur tétraèdre a été vérifiée dans le chapitre 4 pour
p ∈ J1, 2K. Tous les schémas temporels étudiés ont conduit à des résultats stables lorsqu’ils étaient
associés au schéma SDRT. Les limite de stabilité CFL ont été données pour chaque schéma temporel.

L’ordre de précision du schéma SDRT sur tétraèdres a été vérifié dans le chapitre 6 à l’aide d’un cas
test Euler 3D. Pour p = 1 et p = 2, l’ordre de précision p+ 1 attendu est retrouvé. Enfin, les résultats
de la simulation du cas du Taylor-Green Vortex (TGV) sur des maillages composé de tétraèdres sont
présentés dans le chapitre 7. Un bon accord avec les données de référence et un coût de calcul cohérent
permettent de valider l’implémentation du SDRT 3D.
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Chapter 1
Introduction
This chapter aims to present the thesis context. First, an overview of Computational Fluid Dynamics
is given, introducing the notions of mesh, numerical method, and computational efficiency. The
concept of turbulence and approaches to simulate turbulent complex flows are then presented. The
need for accuracy, mesh flexibility and computational efficiency for turbulence simulations leads
to consider high-order discontinuous methods. A review of high-order discontinuous methods is
provided. From this state of the art, the thesis motivations can be stated.
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Chapter 1 : Introduction

1.1. Computational Fluid Dynamics
Fluid Dynamics consists in describing the flow of fluids (liquids and gases). The discipline is based on

conservation laws (mass, momentum and energy). Computational Fluid Dynamics (CFD) numerically
solves approximations of conservation laws over a given geometry. Compared to carrying experimental
tests, CFD offers the possibility to be aware of the flow state at all times on the whole domain. Several
geometries can be tested which would be experimentally costly. Using CFD during the design process
is faster and less expensive than conducting physical tests on prototypes, therefore it has become an
indispensable tool in the aerodynamics industry. A CFD solver is based on a numerical method used
to discretize a mathematical model of the physics (e.g. Navier-Stokes equations) on a mesh. In the
next sections, the notions of mesh, numerical method and computational efficiency are presented.

1.1.1. Mesh Requirements
To discretize equations, the numerical method relies on a mesh. A mesh (or grid) is a subdivision of

the domain into small volumes called cells. Cells are defined by their corners (also called nodes), their
edges and their faces (in 3D). Two types of mesh are possible: a structured mesh or an unstructured
mesh.

A structured mesh is based on a discretization of the domain in quadrilateral elements (in 2D) or
hexahedra (in 3D) called blocks. Any block gives 2 or 3 privileged space directions and the number
of discretization points on parallel edges is forced to be kept constant. As a consequence, any node
is uniquely identified by two indices (i, j) in 2D or three indices (i, j, k) in 3D. Using a structured
mesh allows one to easily spot each node by its indices. Additionally, when considering a certain
cell, information about neighboring cells is easily available. However, structured mesh generation is
difficult and can take weeks or months for a complex geometry.

On the other hand, an unstructured mesh is based on elements that can be triangles or quadrilaterals
in 2D and tetrahedra, prisms, pyramids or hexahedra in 3D. From the list of mesh points, any cell is
defined through a subset of the mesh points (8 points for a hexahedron, 4 for a tetrahedron...). The
connectivity to build 2D and 3D cells is explicitly required and cells are not ordered as for a structured
mesh. The minimum required information for an unstructured grid is:

– the number of nodes,
– the coordinates (xi, yi, zi) of each node i,
– a connectivity table where each cell is defined by its vertices and
– a list of elements located at the domain boundary on which boundary conditions will be applied.

To get one node coordinates for a given cell, one first needs to find this node in the vertex list of the
cell and then locate it in the coordinate table. Spotting one node is thus more complicated than with
a structured mesh: it needs indirect addressing. However, unstructured meshes are more flexible than
structured grids and their generation can be automated easily. Generation of an unstructured mesh is
much easier and takes a short time even for a complex geometry (some days at the most) but the local
mesh refinement is generally not manufactured as easily as using structured mesh generation tools.
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1.1.2. Numerical Methods
Today, most of industrial CFD solvers use a second-order accurate Finite Volume (FV) method to

discretize the Reynolds-averaged Navier–Stokes (RANS) equations. The second-order FV scheme is
part of what is called low-order numerical methods.

Mathematically, a numerical method is said to be k-th-order accurate (or of order k) if the error
between the exact solution and its numerical approximation behaves as hk, where h is the mesh size.
Low-order methods are defined as numerical methods of order below or equal to 2 whereas high-order
methods are at least third-order [1]. Low-order methods have been subject to intense research over
the past decades and are now robust and efficient. However, these schemes generally induce numerical
dissipation and dispersion. The notion of dissipation and dispersion needs to be presented. Let us
consider the model problem of the linear advection equation at velocity c in a periodic domain. For
a given computational domain of length L ensuring a periodic initial solution, the transportation of
a planar wave leads to a periodic solution of period T = L/c. In practice, the solution at time kT ,
k ∈ N, and the initial solution are not located exactly at the same position and don’t have the same
amplitude. The phase shift is called dispersion, whereas the loss of energy during the computation
is called dissipation (or diffusion). Both are due to time-space discretization errors. Dispersion and
dissipation are summarized in Fig. 1.1.

Figure 1.1. – Representation of dissipation and dispersion effects for the linear advection of a planar
wave in a periodic domain

A way to circumvent this behavior using a low-order method is to consider a very refined mesh
but the number of grid points can become unaffordable. To accurately compute vortical flows at a
reasonable cost, one can consider high-order methods. Because of their higher accuracy, high-order
methods have better wave propagation properties than low-order methods. As a result, they can solve
turbulent vortices accurately with fewer degrees of freedom (DoF) and besides, the total Central Pro-
cessing Unit (CPU) time for the computation can become even smaller than with low-order schemes
(for a given accuracy).

The first type of high-order methods is based on the FV formalism. As mentioned before, the second-
order accurate FV scheme is the most commonly used in industrial solvers, but the FV formalism can be
extended to higher orders of accuracy. Such methods, like ENO [2–4], WENO [5–7] or k-exact schemes
[8–11] consist in a solution representation using a polynomial built from cell-averaged values of the
unknowns over the neighboring cells. An alternative approach considers a polynomial approximation
defined locally, inside the cell. This is the principle of the family of schemes called high-order spectral
discontinuous methods.
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1.1.3. Computational Efficiency
A numerical method will be efficient if its formulation stands on a compact stencil. The stencil is

the number of neighboring cells used to update the solution in one cell. Standard numerical meth-
ods - Finite Element (FE), Finite Difference (FD), Finite Volume (FV) - can easily reach high-order
accuracy by extending the stencil. For FD and FV methods based on a structured mesh, extending
the stencil is particularly simple since information about neighboring cells is immediately available.
However, the same situation on an unstructured grid can become extremely difficult to handle.

The large stencil must be built by hand, using the direct neighboring cells. The number of unknowns
to define the scheme is known a priori and must be recovered on the stencil. In an unstructured mesh,
the number of neighboring cells is not constant and the definition of the stencil is not straightforward.
Additionally, a large stencil can be defined on several blocks, which leads to many exchanges between
CPU to perform at any iteration to deal with parallel computation. To sum up, being based on a
compact stencil is crucial for a numerical method to reach good computational efficiency in a massively
parallel environment.

In this section, main notions associated with CFD simulations were introduced: mesh, numerical
method and computational efficiency. Benefits of using an unstructured mesh were underlined: an
unstructured grid is more flexible to treat complex geometries and its generation is way faster.
Dissipation and dispersion properties of a numerical method were defined. High-order methods lead
to a better accuracy than low-order methods but can be difficult to parallelize if they are not based
on a compact stencil. It was pointed out that for a CFD solver to be computationally efficient, the
chosen numerical method should be based on a compact stencil. The class of high-order discontinuous
methods fulfills this requirement since they are based on local polynomial approximations. They were
briefly mentioned and will be detailed later, but first, the concept of turbulence and the different
approaches to deal with it are presented.
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1.2. Turbulence Modeling and Computation
Industrial applications are generally associated with high Reynolds number flows, for which the rela-

tively low importance of diffusion effects compared with nonlinear transport can lead to the transition
to turbulence, one of the most complex physical phenomena to account for when studying fluid dynam-
ics. Turbulence is a natural, chaotic and three-dimensional phenomenon driven by energy transfers
occurring in the fluid. Turbulence results from the superposition of vortices (also called structures
or eddies) of different energy distributed over a large range of temporal and spatial scales [12]. In a
turbulent viscous flow, large vortices are found at small wavenumbers and are carrying energy. Those
large structures break into smaller and smaller structures, without energy production or dissipation.
At high wavenumbers, turbulence structures are small enough to be dissipated by viscosity effects.
This process is known as the Kolmogorov energy cascade [13] and is described in Fig. 1.2. Three main
zones can be distinguished. The production zone is located at small wavenumbers κ and composed of
large turbulent structures containing the main part of the turbulent kinetic energy Ec. The inertial
area contains medium turbulent scales and the kinetic turbulent energy follows Kolmogorov theory:
as the wavenumber increases, the slope is in κ−5/3. Finally, the dissipation zone is composed of small
eddies which kinetic turbulent energy is dissipated in heat transfer. In the turbulent spectrum, the
energy transfer is from large structures (small wavenumbers) to small structures (high wavenumbers),
i.e. from the production zone to the dissipation zone.

In CFD, turbulence structures can be either computed (simulated, solved) or modeled. Today, there
are essentially three classes of CFD methods to deal with turbulence, represented in Fig. 1.2:

– Direct Numerical Simulation (DNS): all turbulent scales are computed,
– Reynolds-averaged Navier–Stokes (RANS): all turbulent scales are modeled,
– Large Eddy Simulation (LES): large turbulent scales are computed whereas small scales are

modeled.

Figure 1.2. – Simplified view of the Kolmogorov spectrum and illustration of CFD methods for tur-
bulence
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1.2.1. Direct Numerical Simulation

The first method, called Direct Numerical Simulation (DNS), consists in solving the Navier-
Stokes equations without modeling (except for the temporal and spatial discretizations), implying
that every temporal and spatial turbulence scales have to be computed. The instantaneous fluid
information can thus be obtained at any time and any location and leads to a reliable and accurate
description of turbulence. To properly capture all turbulent scales:

– The mesh should be extremely refined (same size order than small turbulent structures located
in the dissipation area);

– Numerical errors should be minimized by using a small time step and a high-order scheme with
optimized dissipation and dispersion properties (capability to transport a wave without damping
it nor having a phase shift).

These requirements lead to a huge computational cost that increases with the Reynolds number Re:
the number of grid points for the computation varies as Re9/4 [14]. Today, DNS seems out of reach for
most industrial applications, which deal with flows associated with high Reynolds numbers (typically
higher than 107). However, instantaneous fluid information obtained from DNS computations at low
Reynolds numbers help to better understand turbulence mechanisms and can be used to validate
RANS and LES models.

1.2.2. Reynolds-Averaged Navier–Stokes Approach

The second technique is based on taking into account the mean effect of turbulence on the flow and
deals with the Reynolds-averaged Navier–Stokes (RANS) equations. Starting from the Navier-
Stokes equations, an ensemble-averaging procedure is applied using Reynolds decomposition: a vari-
able is split into a mean and a fluctuating component, leading to the RANS equations. Using RANS
equations, the mean effect of turbulence on the flow is considered and turbulent fluctuations are
modeled. RANS equations have the same form as the Navier-Stokes equations, except for additional
terms in the heat flux and the Reynolds stress tensor. The Reynolds stress tensor comes from the
Navier-Stokes nonlinearity and represents turbulence effects on averaged variables. The Reynolds
stress tensor introduces 6 new variables, leading to 11 unknowns for 5 equations (in 3D). It is then
mandatory to close the system. To do so, many closures were proposed, all of them aiming at model-
ing the Reynolds stress tensor. They can be classified into first-order models and second-order models.

The latter consists in introducing one transport equation for each Reynolds stress tensor component
(e.g. Reynolds Stress Modeling models) and induces a high computational cost. On the other hand,
first-order models rely on the Boussinesq hypothesis [15] and the turbulent viscosity concept, which
links the Reynolds stress tensor to the average flow. For example, the class of k− ε turbulence models
[16–18], that is probably the most commonly used in industry, determines the turbulent viscosity from
the turbulent kinetic energy and the dissipation rate, both of them determined from their transport
equations. Many other turbulence models have been proposed, based on one [19], two [20] or more
transport equations. However, none of them is considered as appropriate for all kinds of flow.

Since the RANS approach does not compute all turbulent scales but model them, requirements
about the mesh and the spatial-temporal numerical schemes are lighter, leading to a reasonable com-
putational cost. Contrary to approaches solving turbulent fluctuations, the RANS approach admits
steady solutions, thus it has been massively used for steady problems in the industry. The RANS ap-
proach is nowadays the most common technique for industrial applications and RANS equations are
generally solved using a second-order numerical scheme. However, since turbulent fluctuations are not
computed but modeled, the model capability to reproduced complex phenomena can be questioned.
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As mentioned before, there is no universal turbulence model and none of them can accurately repre-
sent the mean effects of turbulence on the flow. For aeroacoustics, where turbulent structures interact
between themselves, or combustion simulations, where interactions between chemical and turbulent
scales take place, none of the RANS models can give accurate results.

1.2.3. Large Eddy Simulation

The last alternative is called Large Eddy Simulation (LES) [21]. The approach consists in
computing the largest turbulent scales and modeling the smallest ones, which only contain a small
fraction of turbulent energy. To do so, the Navier-Stokes equations are spatially filtered. The filter
size corresponds to the mesh cells size, defined according to the grid resolution that can be afforded.
Turbulent scales larger than the filter size are captured by the mesh whereas smaller turbulent scales
are removed and modeled using a subgrid-scale model [22]. The use of a model for small turbulent
scales is justified by the universal nature of the smallest scales (Kolmogorov hypothesis [13]). In the
filtered Navier-Stokes equations, the Reynolds stress tensor, which describes the interaction between
resolved and unresolved structures, is modeled using subgrid-scale eddy-viscosity. A first model of
the subgrid-scale eddy-viscosity was presented by Smagorinsky [23], followed by the development of
different other models (static, transport, dynamic) [24–27].

Compare to DNS, LES allows the use of a coarser grid since small scales are modeled: in 3D, the
number of grid points is approximately Re3/2, leading to a lower computational cost. However, LES
computations remain too expensive to be routinely used in the industrial design process. Compared to
RANS, LES offers the possibility to capture unsteady phenomena (vortex shedding, acoustic waves)
and thus to better represent turbulent flows. For combustion, the initial form of the Navier-Stokes
equations is extended to account for several reactive species with chemical reactions. Among the
possible techniques, LES has shown its superior accuracy to model chemistry-turbulence interactions
compared to the RANS approach [28–32].

LES requires accurate schemes with optimized properties to correctly capture the largest turbulence
scales. The chosen numerical scheme should have low-dissipation and low-dispersion properties to cap-
ture the vortex-dominated flow while being able to deal with an unstructured mesh to cope with any
complex geometry. Additionally, it is also required to maintain a good parallel efficiency. The common
class of high-order methods based on the FV formalism deals with polynomial reconstruction using
cell-centered quantities. Since the polynomial is constructed based on information from neighboring
cells, the number of cells needed increases with the degree of accuracy, making the method difficult to
parallelize.

To handle polynomials more efficiently, high-order discontinuous methods were introduced. Rather
than using a cell and its neighbors to construct the polynomial, these methods are based on a polyno-
mial reconstruction of the solution from data directly available in the considered cell. Consequently,
the stencil is reduced to the considered cell and its immediate neighbors, leading to a compact stencil
and making the method much easier to parallelize. Direct neighbors are required for the flux com-
putation since they allowed information to transit from one cell to another. The reconstruction of a
high-order polynomial in each cell is possible if there are enough information available, thus the local
amount of DoF increases with the order of accuracy.
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LES appears to be the most promising approach to obtain an accurate representation of a turbulent
complex flow with a practicable computational cost. To compute large turbulent scales while keeping
a reasonable mesh size, high-order numerical methods are considered. The compact stencil properties
of high-order discontinuous methods make them particularly suitable for high-order accuracy and
computational efficiency. Among high-order discontinuous methods, two classes can be identified:
methods based on an integral formalism, as Discontinuous Galerkin or Spectral Volume, and methods
using a strong formalism, as Spectral Difference or Flux Reconstruction. They are presented in detail
in the next sections.
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1.3. High-Order Discontinuous Methods for Unstructured Grid Based on
the Integral Form

1.3.1. Discontinuous Galerkin Method

The most popular approach, the Discontinuous Galerkin (DG) method, has been successfully imple-
mented in many solvers and lead to a very rich research. Without being exhaustive, a partial literature
review focused on CFD is available in several books [33–40] and many contributions in Europe also
come from projects [41–43] involving research centers and industry [44]. The first DG method was
introduced in 1973 by Reed and Hill [45] for a linear hyperbolic equation: the neutron transport equa-
tion. It was then adapted for nonlinear hyperbolic conservation laws in a series of papers by Cockburn
et al. [46–49]. The DG method links the standard FE method and the FV method: unknowns defined
on a polynomial basis are solutions of a weak problem, as in FE, but discontinuities at mesh interfaces
are solved using an approximated Riemann solver, as in FV.

The principle is to find a polynomial representation of the solution that satisfies a variational form
of the governing equations within each element. For a (p+ 1)-th-order accurate DG scheme, variables
are approximated with a polynomial of degree p in each cell. The DG unknowns are the polynomial
coefficients. At cell interfaces, the proper flux polynomial degree needs to be ensured for the ap-
proach to be conservative and consistent. Flux values are thus uniquely defined at each cell interface
quadrature points as the solution of a Riemann problem. In the literature, there are many possible
DG approaches - modal [50–52], nodal [34, 53, 54], DG Spectral Element Method (DGSEM) [55–58]
- and all depend on the chosen set of basis functions. Basis functions choice will have an impact on
the stability, accuracy and efficiency of the DG method.

Like FV based methods, the DG method is fully conservative due to the Riemann solver used to
compute numerical fluxes across element boundaries: since the flux polynomial is uniquely defined
and continuous on the whole computational domain, conservation is ensured. In terms of stability,
the DG method was proven stable for any order of accuracy through a cell entropy inequality [59]
which holds for all scalar nonlinear conservation laws. A major asset compare to FV-based methods
is the DG accuracy property: the method can be easily designed for any order of accuracy without
increasing the stencil. Since the stencil is compact (the considered cell and its direct neighbors), the
DG approach is suitable for High-Performance Computing (HPC). Even if more than one piece of
information needs to be stored and evolved for each cell (the polynomial coefficients), meaning that
the memory requirement is higher than FV methods, there is no reconstruction procedure involved
since needed values to evaluate the flux are immediately available. Moreover, the DG method can be
applied to unstructured meshes composed of any standard element (hexahedron, tetrahedron, prism,
pyramid), which allows one to treat complex geometries. The DG method is also compatible with
h and p adaptation: the solution accuracy is enhanced by playing with the local mesh refinement
(h-adaptation) and solution accuracy (p-adaptation). A lot of work was performed on this subject
and was presented during a dedicated session at the Von Karman Institute (VKI) [42].

However, the DG method has at least two disadvantages. First, the use of the integral formulation
leads to an expensive computational cost to obtain a high-order of accuracy since high-order surface
and volume integral evaluations using quadrature rules are required. Secondly, the modal and nodal
DG methods have a severe Courant–Friedrichs–Lewy (CFL) stability constraint: compared to an FV
method, the time step is divided by (2p + 1) due to the mass matrix. Thus the higher the order
of accuracy is, the more stringent the CFL condition becomes. That can be a curb for unsteady
computations. The situation is overcome with the DGSEM for which, compared to an FV method,
the time step is divided by (p+ 1) only, but the multi-element shape capability is not trivial [60, 61].
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1.3.2. Spectral Volume Method
The Spectral Volume (SV) method was first developed in 2002 by Z.J. Wang in a series of papers

[62–68]. Research has been conducted about the SV application to Euler equations [69, 70], imple-
mentation efficiency [71], p-multigrid refinement [72] and discretization of spatial derivatives [73, 74].

As discussed in section1.1, high-order methods based on an FV formalism consists in defining a
local polynomial approximation of the state variables on a considered cell by using a stencil that
contains the cell and a sufficient number of neighboring cells. The SV method also uses averages over
control volumes as solution variables but unlike FV methods, control volumes are not whole cells.
Control volumes are obtained by subdividing each cell (also called spectral volume) into smaller vol-
umes called sub-volumes. The number of sub-volumes required is as large as the number of unknowns
in the polynomial approximation. Thus, the reconstruction process does not require information from
neighboring cells, which leads to a compact stencil, suitable for HPC. The method’s order of accuracy
is then defined by the number of sub-volumes in each cell. Cell-averaged data from these sub-volumes
are used to reconstruct a high-order approximation in the spectral volume. Inside a spectral volume,
state variables are continuous across sub-volumes boundaries thus analytic fluxes can be used rather
than a Riemann solver, which is not necessary. Riemann solvers are only used to compute fluxes
at the spectral volume interfaces. As for the DG method, the SV method maintains a high-order
of accuracy using a high-order quadrature for flux computation (at spectral volumes boundaries and
interior sub-volume boundaries).

However, when considering 3D problems, the SV method becomes highly expensive. This is due to
the number of quadrature points needed to compute surface integrals, which can reach hundreds of
thousand points. The difficulty does not lie in the definition of the locations (everything can be simpli-
fied using the reference element) but in the evaluation of the data from the polynomial reconstruction.
This default is partially circumvented using a quadrature-free implementation of the SV method, as
proposed by Harris et al. [71, 75]. Additionally to the high quadrature computation price, for orders
of accuracy higher than two, the partitioning of a spectral volume into sub-volumes is not unique and
has a considerable influence on the stability of the method. This issue was investigated by Van den
Abeele et al. in [76] where they identified a weak instability in several SV partitions and proposed
stable ones. It can be noticed that even if a partition leads to a stable scheme, it does not necessarily
preserve the scheme order of accuracy. To maintain the order of accuracy, it was demonstrated that
two criteria have to be respected. First, the number of sub-volumes at a spectral volume interfaces
must be large enough to be exact for polynomials using dedicated quadrature rules. A minimum
number of control volumes per spectral volume then needs to be ensured. However, these rules are
insufficient to uniquely define spectral volume partitions for an order of accuracy higher than two.
Work was also performed on the analysis of dissipation and dispersion properties of the SV scheme
depending on the definition of the sub-cells [77].

Today, the SV method does not seem to be of strong interest, essentially due to the fact that the
sub-cell definition did not lead to best practices. Last studies concerned a time implicit formulation
[72], the treatment of the diffusion terms for the Navier-Stokes equations [73, 78], its extension to
third-order spatial derivative terms [74], an efficient time integration procedure (implicit formulation)
[69, 72] and the choice of a suitable diffusion scheme [73, 78].

The Discontinuous Galerkin and the Spectral Volume methods are both based on the integral form
of equations and are thus expensive to use, especially due to the need for quadrature rules. Kopriva
and Kolias [79] demonstrated that employing the differential form is also possible by introducing the
staggered-grid spectral method, later called the Spectral Difference method. This approach and the
Flux Reconstruction technique are presented in the next sections.
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1.4. High-Order Discontinuous Methods for Unstructured Grid Based on
the Strong Form

In section 1.3 were presented high-order discontinuous spectral methods based on an integral for-
mulation and it was highlighted that quadrature rules for surface and volume integrals were required.
Additionally, the standard DG method is associated with a severe CFL condition depending on the
order of accuracy of the polynomial reconstruction. To avoid the CFL condition coming from the mass
matrix, it is interesting to solve the strong form of equations, playing directly with the differential
equations, but taking into account standard additional constraints such as conservation, efficient the-
oretical background and strong parallel capability. In this section, attention is first paid to the Flux
Reconstruction (FR) approach and then to the Spectral Difference (SD) method.

1.4.1. Flux Reconstruction Method

The first class of high-order discontinuous methods based on the strong form is called the Flux Re-
construction (FR) or the Correction Procedure for Reconstruction (CPR) approach. First established
in 1D by Huynh in 2007 [80], the method consists in approximating both the solution and the flux
as polynomials of degree p. In a second step, a lifting operator defined as a polynomial of degree
(p + 1) is introduced to correct the flux polynomial of degree p to make the approach conservative
and consistent. The lifting operator plays a central role in the properties of the scheme and enables
to link the FR method, the DG formulation and other methods [81, 82].

Mathematical properties of the FR method are subject to many papers. The stability of the FR
method was studied by Jameson et al. in the linear and nonlinear cases [83, 84] and then extended to
2D flows [85]. Spectral properties (dissipation and dispersion) of the FR were analyzed in [86, 87]. In
2011, Vincent, Castonguay and Jameson [88] proposed a new class of lifting operator that makes the
formulation energy stable. For this scheme, the naming VCJH scheme (Vincent, Castonguay, Jameson
and Huynh) is introduced in [84]. They extended the method for triangles in 2012 [89]. Huynh, Z.J.
Wang and Vincent published in 2014 a reference paper on the latest developments for the FR/CPR
schemes [90]. The treatment of the diffusion term in the Navier-Stokes was also the subject of research
[91, 92]. On a coarse grid, the stability seems to be a problem and leads to intense research [85, 93].
The FR method is today compatible with h and p-adaptation [94] and with the adjoint formulation [95].

Recently, Jameson’s team proposed the Direct Flux Reconstruction (DFR) method [96, 97] for 1D
flows and tensor product cells. The principle of the DFR lies in the fact that the flux polynomial is
required to be of degree at least (p+ 1) to cope with consistency. In the DFR, the authors propose to
build a flux polynomial of degree (p+ 2) using the flux at solution points and flux points at the same
time. A simple Lagrange polynomial is then built and differentiated at solution points to time-match
the hyperbolic equations. The procedure was extended by Romero and Jameson [96] to triangles using
a specific geometric transform that links a triangle in the physical domain to a quadrilateral in the
reference space.

The FR method was applied to the simulation of 3D non linear systems including a turbulent flow
over a cylinder [98], an SD7003 infinite wing at 4 degrees angle of attack [99, 100], supersonic jet simu-
lations [101] and flows over turbomachinery [102] as well as the Large Eddy Simulation of a turbulent
channel flow [103]. Reviews of recent FR/CPR developments were provided by Z.J. Wang and Huynh
[104] and by Witherden, Vincent and Jameson [105].

The FR method has gained a lot of attention during last years due to its capability to handle
hybrid grids in 2D and 3D. Many authors also argue that the FR method can recover other standard
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discontinuous spectral methods but it needs to be underlined that this was demonstrated in the linear
case only [80]. Finally, the FR scheme strongly depends on the lifting operator that is built artificially:
the number of constraints is not large enough to control all polynomial coefficients.

1.4.2. Spectral Difference Method
The second class of high-order discontinuous spectral method dealing with the strong form of equa-

tions is called the Spectral Difference (SD) method. Initially named the staggered-grid Chebyshev
multi-domain method, the approach was initiated by Kopriva and Kolias [79] in 1996 and applied to
structured quadrilateral grids using a tensor-product framework by Kopriva in [106]. In 2006, Liu et
al. [107] proposed an extension of Kopriva and Kolias’ work to simplex cells and called the approach
the Spectral Difference method. Z.J. Wang et al. [108] adapted the procedure to Euler equations on
triangular grids. The method was then extended to Navier-Stokes equations by May and Jameson
[109] for triangular meshes and Sun et al. [110] for hexahedral grids. It is important to notice that
for grids based on tensor product cells, the Spectral Difference method formulation is identical to the
multi-domain spectral method introduced by Kopriva and Kolias [79].

For tensor product cells, the SD method principle consists in defining two polynomials: a polyno-
mial of degree p for the solution and a polynomial of degree (p+ 1) for each flux component, leading
to an order of accuracy of (p + 1). This choice of polynomial degrees ensures the consistency of the
formulation. However, contrary to the FR approach, no lifting operator is introduced in the formula-
tion: two sets of points, the Solution Points (SP) and the Flux Points (FP) enable the definition of
the Lagrange interpolation polynomials. An alternative approach was derived very recently by Chen
et al. [111] for tensor-product cells. This technique and the standard one differ in the definition of
the flux derivative. In the new formulation, the flux derivative is built from the set of SP plus the
interface FP. Such a formulation avoids the need to interpolate from SP to internal FP.

Developments of the SD method also involve multi-grid refinement and implicit time integrators
to enhance convergence to steady solutions [112, 113] and sliding-mesh interface approach [114]. The
SD method was also used for high-fidelity simulations of 3D vortex-induced vibrations on quadrilat-
eral mesh [115]. In addition, several works concerned the validation of the SD method capability to
compute unsteady solutions of compressible flows by means of LES [116–121]. Extensions of the SD
method were proposed to handle shocks [122]. The SD method was recently made compatible with
the non-reflecting boundary conditions [123], written specifically to cope with the SD algorithm and
then coupled with a Time Domain Impedance Boundary Condition (TDIBC) formulation [124, 125].
The SD method was applied to three-dimensional turbulence simulations by Chapelier et al. [126] and
to astrophysical fluid dynamics by Wang et al. [127].

The SD, FR and standard DG methods were compared by Liang et al. in [128]. It was proven that
the most efficient method is the FR discretization technique and the slowest one is the DG method.
The DG method leads to the more accurate results and the FR to the less accurate ones. For both
performance and accuracy, the SD method lies in between. Recently, Cox et al. [129] compared
the accuracy, stability and performance of the standard SD method compare to the FR approach.
A nonlinear stability analysis and numerical experiments show that the SD scheme leads to better
accuracy and stability. Finally, the quadrature-free DG scheme and the SD method were proven as
equivalent under given conditions (use of a nodal Lagrange basis, the quadrature-free paradigm and
the numerical flux) for nonlinear hyperbolic conservation laws by May [130].
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The stability of the SD method for tensor product cells was studied by Van den Abeele et al.
[131, 132]. They showed that the SP position influences neither the stability nor the accuracy of the
scheme. Jameson confirmed this statement [83] and also showed that for the one-dimensional linear
advection case, the SD method is stable for all orders of accuracy in a norm of Sobolev-type provided
that the interior flux collocation points are placed at the zeros of the corresponding Legendre polyno-
mials. Vanharen et al. revisited the spectral analysis for high-order spectral discontinuous methods
and applied it to the 1D SD method in [133].

When considering the standard SD method on simplex cells, stability analysis leads to different
conclusions. Van den Abeele et al. [132] showed that for an order of accuracy strictly greater than
two, the scheme stability is not ensured for triangular cells. For high-order SD schemes on triangular
cells, several FP positions are tested but none of them lead to a stable scheme. This explains why
after several papers using the SD approach on triangles (see [107, 108, 134–136] among the possible
literature), most researchers focused on unstructured grids composed of hexahedra only. To overcome
this limitation, Liang et al. [137] proposed to decompose any triangular cell into quadrilaterals using
cell center and mid-edges, leading to quadrilateral cells of half the size of the original element. Using
this option, a 2D hybrid mesh is transformed into an unstructured grid composed of quadrilaterals
only but the number of mesh elements is strongly increased. Finally, one must also mention the work
of Meister et al. on the SD method on triangles based on Proriol-Koornwinder-Dubiner basis on tri-
angles for both solution and flux polynomials [138, 139]. Using this approach, the set of FP is chosen
as the set of two-dimensional Lobatto points on a triangle proposed by Blyth and Pozrikidis [140],
leading to FP located at triangle vertices. Since a triangle vertex is generally shared by more than
two triangles, this choice is questionable to properly define the inputs of the Riemann problem.

Balan et al. proposed another alternative in [141, 142]. Instead of splitting any mesh cell into sub-
cells to define the computational grid, they build an alternative SD formulation using Raviart-Thomas
elements on triangles, leading to the naming SDRT. The SDRT scheme is proven to be linearly stable
up to the fourth-order under a Fourier stability analysis originally initiated by May and Schöberl [143]
and validated on Euler test cases. The SDRT method was then extended to simulate 2D viscous flows
on unstructured hybrid grids up to the fourth-order by Li et al. [144] and used for the simulation of
vortex-induced vibrations using a sliding-mesh method on hybrid grids by Qiu et al. [145].
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1.5. Motivations for the Thesis
The thesis addresses the definition of a high-order convection-diffusion scheme for unstructured

hybrid grids based on a compact formulation. The standard staggered SD approach was chosen to
be implemented in the high-order solver JAGUAR (proJect of an Aerodynamic solver using General
Unstructured grids And high-ordeR schemes) [146] because of its accuracy [133] and its efficiency [147]
for LES. The JAGUAR solver is owned by ONERA and CERFACS and aims to treat applications
including combustion, transition, shock capturing and re-entry unsteady flows using HPC. The treat-
ment of quadrilaterals and hexahedra has been successfully implemented following tensor product rules.

In this context, the present thesis focuses on the extension of the JAGUAR solver to deal with
hybrid unstructured grids composed of standard element shapes (triangles and quadrilaterals in 2D;
hexahedra, tetrahedra and prismatic elements in 3D) while maintaining stable and robust properties.
Before performing advanced LES, it is of strong importance to propose a stable formulation of the
SD method on simplex cells. The first step is to extend the SDRT approach introduced by Balan et
al. [142] for orders of accuracy higher than four for 2D cases. The SDRT formulation on tetrahedral
elements has then to be established. The linear stability of the spatial SDRT discretization coupled
with the temporal scheme has to be carefully analyzed to determine reliable stability limits. Finally,
the implementation of the SDRT formulation in JAGUAR for triangular, 2D hybrid and tetrahedral
grids allows one to investigate the scheme properties for fluid flow problems.

1.6. Outline
The outline of this thesis is organized as follows.

In Chapter 2, the Spectral Difference method is presented in detail. The standard SD formulation
is first recalled in the 1D case and for tensor product elements. The extension to simplex cells using
Raviart-Thomas elements is then introduced for triangles and developed for tetrahedra. The SD for-
mulation on prismatic elements is obtained using a tensor product of the 1D standard SD approach
and the 2D SDRT method. Finally, the complexity induced by the treatment of pyramids is addressed.

Chapter 3 examines the linear stability properties of the standard 1D SD method and the SDRT
spatial discretization on triangular and tetrahedral elements. The common Fourier stability analysis
is presented for triangles and extended to tetrahedral elements. A different way to assess stability is
proposed and results are compared with the Fourier stability analysis for the 1D standard SD scheme
and the SDRT scheme on triangles.

In Chapter 4, the linear stability properties of the SDRT spatial discretization based on interior FP
located at quadrature points coupled with different temporal schemes are studied for simplex cells in
2D (triangles) and 3D (tetrahedra) using Fourier analysis. For spatially stable SDRT schemes, the
analysis of the coupled time-space discretization is conducted to determine stability limits for each
temporal scheme. For unstable SDRT schemes, the ability of time integration schemes to stabilize the
full discretization through their numerical dissipation properties is examined.

Chapter 5 proposes an optimization technique to determine stable SDRT formulations. Sets of FP
leading to stable SDRT formulations on triangles are given up to the sixth-order of accuracy (p = 5).
Results of the Fourier analysis are presented for both spatial and coupled time-space discretizations.
The optimization process is then extended to p = 6 on triangles and p = 3 on tetrahedral elements.
For tetrahedral elements, the influence of the position of FP located on faces is examined.
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Validation test cases are presented for first and second-order Partial Differential Equations (PDEs)
in Chapters 6 and 7, respectively. The advection of a sine and the convection of an isentropic vortex
test cases are used to assess the accuracy of the SDRT discretization on triangular, tetrahedral and
2D hybrid grids. The 2D Navier-Stokes equations are then numerically solved to simulate a flow over
a NACA 0012 airfoil using a quadratic triangular mesh and a flow around a circular cylinder using a
2D hybrid grid. The SDRT method is eventually validated for the 3D simulation of the Taylor-Green
Vortex using tetrahedral elements.

Finally, conclusions are given and future perspectives are considered.

1.7. Publications
1.7.1. Papers

– A. Veilleux, G. Puigt, H. Deniau and G. Daviller. A stable Spectral Difference approach for
computations with triangular and hybrid grids up to the sixth-order of accuracy. Submitted for
Journal of Computational Physics in August 2020.

– A. Veilleux, G. Puigt, H. Deniau and G. Daviller. Stable Spectral Difference approach using
Raviart-Thomas elements for 3D computations on tetrahedral grids. Under Preparation, to be
submitted.

1.7.2. Presentations
– A. Veilleux, G. Puigt, H. Deniau and G. Daviller. Towards a multi-element-shape extension for

the Spectral Difference method. NAHOM Con 19, San Diego, CA, Jun 2-5, 2019.
– A. Veilleux, G. Puigt, H. Deniau and G. Daviller. Extension of the Spectral Difference method

using Raviart-Thomas elements to the sixth-order of accuracy on triangles and formulation on
tetrahedra. 16th U.S. National Congress on Computational Mechanics, July 25-29, 2021.
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Chapter 2
The Spectral Difference Method
In this chapter, the standard Spectral Difference method is first presented for the 1D case and
for tensor-product cells in 3D (hexahedral elements). The formulation extension on simplex cells,
named the SDRT method, is presented for triangles in 2D and developed for tetrahedron in 3D.
A brief theoretical comparison between the FR and the SD method based on the number of SP is
established to highlight differences between the two methods. The procedure to deal with prismatic
elements using a tensor product of the 2D SDRT scheme and the 1D standard SD formulation is
detailed. Finally, the complexity induced by the treatment of pyramids is addressed and possible
solutions used in the literature are given.
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2.1. One-Dimensional Formulation
To get a (p + 1)-th-order accurate scheme, the Spectral Difference principle is to represent the so-

lution as a polynomial of degree p. To ensure consistency, the flux derivative has to be represented
by a polynomial of degree p, leading to a representation of the flux density as a polynomial of degree
p + 1. In 1D, the solution is defined within each cell on a first set of N1d

SP = p + 1 points called
Solution Points (SP) and denoted ξj , j ∈ J1, N1d

SP K whereas fluxes are computed in another set of
N1d
FP = p+ 2 points called Flux Points (FP) and denoted ξk, k ∈ J1, N1d

FP K. In the standard 1D formu-
lation, the SD method is said staggered: one FP is located between two adjacent SP and additional FP
are located at the segment endpoints. The detailed implementation is described by the following steps.

Let us consider an hyperbolic equation under its differential form in 1D:

∂u

∂t
+ ∂f

∂x
= 0, in Ω× [0, tf ], (2.1)

on a domain Ω, where x is a spatial coordinate, t is time, u is a conservative variable, f = f(u) is the
flux in the x direction and tf is the final time of the computation. The computational domain Ω is
divided into N non-overlapping elements Ωi:

Ω =
N⋃
i=1

Ωi. (2.2)

For implementation simplicity, Eq. (2.1) is solved in the reference domain. Each element Ωi of the
domain Ω is transformed into a standard element S := {ξ, 0 ≤ ξ ≤ 1}. This transformation can be
written:

x =
n∑
i=1

Mi(ξ)xi, (2.3)

where xi are the Cartesian coordinates in the physical domain of the n vertices of the cell and Mi(ξ)
are the shape functions. The non-singular Jacobian matrix of this transformation from the physical
domain x to the reference domain ξ is:

J = ∂x

∂ξ
, (2.4)

and the inverse transformation is related to the Jacobian matrix according to:

∂ξ

∂x
= J−1. (2.5)

The shape functions and Jacobian matrix expressions are given in Appendix A for linear (A.2.1) and
quadratic (A.2.2) 1D element. Under this mapping, Eq. (2.1) becomes:

∂û

∂t
+ ∂f̂

∂ξ
= 0, in S × [0, tf ], (2.6)

where the transformed variables in the reference domain are defined as:

û = |J | · u, (2.7)

f̂ = |J |J−1 · f. (2.8)

To solve Eq. (2.6) with a (p+ 1)-th-order of accuracy, the Spectral Difference approach approximates
the solution û with a polynomial ûh of degree p on each cell Ωi. Given the solution values ûj defined
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on a set of SP ξj , j ∈ J1, N1d
SP K, the polynomial approximation ûh is defined in the reference element

S using a Lagrange interpolation of degree p:

ûh(ξ) =
N1d
SP∑
j=1

ûj lj(ξ), (2.9)

where

lj(ξ) =
N1d
SP∏

s=1,s 6=j

ξ − ξs
ξj − ξs

, (2.10)

and
N1d
SP = p+ 1. (2.11)

Usually, SP are taken as Gauss points:

ξj = 1
2

[
1− cos

( 2j − 1
2(p+ 1) · π

)]
, j ∈ J1, N1d

SP K. (2.12)

The flux is approximated using a Lagrange interpolation polynomial of degree p+ 1:

f̂h(ξ) =
N1d
FP∑
k=1

f̂k lk(ξ), (2.13)

where

lk(ξ) =
N1d
FP∏

s=1,s 6=i

ξ − ξs
ξk − ξs

, (2.14)

and
N1d
FP = p+ 2. (2.15)

The FP are taken as Gauss-Lobatto points or as the roots of the Legendre polynomial of degree p
plus the segment endpoints. The initial choice, the Gauss-Lobatto points (see [113, 137, 148, 149] for
instance), was demonstrated to lead to unstable simulations for some values of p whereas the choice of
the Legendre roots was demonstrated as stable for any order of accuracy by Jameson [83]. The latter
choice gives today the standard position for the flux points. The flux polynomial approximation given
by Eq. (2.13) is built fromN1d

FP flux values. To determine them, the solution polynomial approximation
given by Eq. (2.9) is first used to compute solution values at FP, denoted ûk. The flux values f̂k at
interior FP can then be computed directly from the approximate solution values at FP:

f̂k = f̂(ξk) = f̂(ûh(ξk)), ξk ∈ S \ ∂S. (2.16)

The flux is likely to be discontinuous at the interface between elements since it is computed from the
approximated solution which is continuous on each cell Ωi but has no reason to be continuous on the
whole domain Ω. At element interfaces, two different values are available at a single flux point. At
the left interface, one comes from the right state, i.e., the considered cell i, and one comes from the
left state, i.e., cell i − 1. At the right interface, one comes from the left state, i.e., the considered
cell i, and one comes from the right state, i.e., cell i + 1. To have a continuous flux function on the
whole domain Ω and thus to ensure conservation, a Riemann solver is used to compute a single flux
value. Note that the Riemann solver gives the numerical flux f∗, computed from the physical values
of the approximated solution at FP located on edges. In 1D, the numerical flux f∗ is equal to the
reference numerical flux f̂∗. However, it won’t be the case in 2D and 3D, thus the relation between

19



Chapter 2 : The Spectral Difference Method

the numerical flux in the reference and in the physical domain will have to be expressed. For FP on
edges, the numerical flux is used as the flux value:

f̂k = f̂∗k , ξk ∈ ∂S. (2.17)

Once flux values are known at flux points and uniquely defined, the flux divergence at SP can be
computed: (

∂f̂h
∂ξ

)
j

=
N1d
FP∑
k=1

f̂k ·
∂lk
∂ξ

(ξj). (2.18)

These values are finally used to update the solution in time on each cell i using a temporal discretization
of the following semi-discrete equation:

∂û
(i)
j

∂t
= −

N1d
FP∑
k=1

f̂
(i)
k ·

∂lk
∂ξ

(ξj). (2.19)
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2.2. Tensor Product Elements Formulation

The SD method can easily be extended from the 1D case to tensor-product elements. The procedure
is described in this section for 3D tensor-product cells, i.e., hexahedral elements. Let us consider an
hyperbolic equation under its differential form in 3D:

∂u

∂t
+∇ · f = 0, in Ω× [0, tf ], (2.20)

where u is a conservative variable, f = (f, g, h) are fluxes in the x, y and z directions respectively and tf
is the final time of the computation. The computational domain Ω is divided into N non-overlapping
conforming hexahedral elements Ωi. As for the 1D case, Eq. (2.20) is solved in the reference domain.
Each element Ωi of the domain Ω is mapped to a standard hexahedron H = {(ξ, η, ζ), 0 ≤ ξ, η, ζ ≤ 1}.
This transformation can be written:

x =
n∑
i=1

Mi(ξ)xi, (2.21)

where xi = (xi, yi, zi) are the Cartesian coordinates in the physical domain of the n vertices of the cell
and Mi(ξ) are the shape functions. The non-singular Jacobian matrix of this transformation from the
physic (x, y, z) to the reference domain (ξ, η, ζ) is:

J = ∂(x, y, z)
∂(ξ, η, ζ) =

xξ xη xζ
yξ yη yζ
zξ zη zζ

 , (2.22)

and the inverse transformation is related to the Jacobian matrix according to:

∂(ξ, η, ζ)
∂(x, y, z) =

ξx ξy ξz
ηx ηy ηz
ζx ζy ζz

 = J−1. (2.23)

The shape functions and Jacobian matrix expressions are given in Appendix A for the linear (A.3.3)
and quadratic (A.3.4) quadrilateral and the linear hexahedron (A.4.3). Under this mapping, Eq. (2.20)
becomes:

∂û

∂t
+ ∂f̂

∂ξ
+ ∂ĝ

∂η
+ ∂ĥ

∂ζ
= 0, in H× [0, tf ], (2.24)

where the transformed variables in the reference domain are defined as:

û = |J | · u, (2.25)

f̂ĝ
ĥ

 = |J |J−1 ·

fg
h

 . (2.26)

The Spectral Difference approach to solve Eq. (2.24) on tensor product cells consists in a 1D treatment
in each direction. On tensor product cell, the number of points needed to represent the solution as a
polynomial of degree p is given by:

Nd
SP = (p+ 1)d, (2.27)

and the number of points needed to represent the flux as a polynomial of degree p+ 1 is:

Nd
FP = d(p+ 2)(p+ 1)d−1, (2.28)
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where d is the dimension. To highlight the tensor product properties, the solution points ξj =
(ξj , ηj , ζj), j ∈ J1, Nd

SP K are denoted:

ξ(j1,j2,j3), (j1, j2, j3) ∈ J1, N1d
SP K, (2.29)

and the set of flux points ξk, k ∈ J1, Nd
FP K are denoted:

ξ(k1,j2,j3), k1 ∈ J1, N1d
FP K in the ξ-direction, (2.30)

ξ(j1,k2,j3), k2 ∈ J1, N1d
FP K in the η-direction, (2.31)

ξ(j1,j2,k3), k3 ∈ J1, N1d
FP K in the ζ-direction. (2.32)

(2.33)

An example of solution and flux points distribution on the reference hexahedron is given in Fig. 2.1
for the case p = 1.

ξ
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0.5

1.0
η

0.0

0.5
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ζ
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Figure 2.1. – Points distribution in the hexahedral reference element for p = 1: SP ξ(j1,j2,j3) ( ), FP
in the ξ-direction ξ(k1,j2,j3) ( ), FP in the η-direction ξ(j1,k2,j3) ( ), FP in the ζ-direction
ξ(j1,j2,k3) ( )

Given the solution û(j1,j2,j3) at solution points, the solution is approximated as the tensor products
of three one-dimensional Lagrange interpolation polynomials of degree p:

ûh(ξ, η, ζ) =
p+1∑
j3=1

p+1∑
j2=1

p+1∑
j1=1

û(j1,j2,j3) lj1(ξ) · lj2(η) · lj3(ζ), (2.34)

where lj1(ξ), lj2(η) and lj3(ζ) are the 1D Lagrange polynomials associated with the 1D SP located at
ξj1 , ηj2 and ζj3 (respectively) and û(j1,j2,j3) is the solution value located at (ξj1 , ηj2 , ζj3) The approx-
imated solution values at FP (û(k1,j2,j3), û(j1,k2,j3), û(j1,j2,k3)) can be computed from Eq. (2.34). At
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internal FP, fluxes f̂(k1,j2,j3), ĝ(j1,k2,j3) and ĥ(j1,j2,k3) are computed from the solution values extrapo-
lated at FP:

f̂k =

f̂(k1,j2,j3)
ĝ(j1,k2,j3)
ĥ(j1,j2,k3)

 =

f̂ (ûh(ξk1 , ηj2 , ζj3))
ĝ (ûh(ξj1 , ηk2 , ζj3))
ĥ (ûh(ξj1 , ηj2 , ζk3))

 , ξk ∈ H \ ∂H. (2.35)

At element interfaces, two different values are available at a single FP and, in order to have a continuous
flux function and thus to ensure conservation, a Riemann solver is used to compute a single flux value.
The Riemann solver gives the physical normal numerical flux, denoted (f · n)∗ and computed from the
physical values of the approximated solution at FP located on edges. The physical normal numerical
flux is converted to the transformed space using:(

f̂ · n̂
)∗

= (f · n)∗ |Jface|, (2.36)

where Jface is the face Jacobian. The relation between the physical and the reference outward normal
vectors on a face is:

n̂ = 1
|J |
|Jface|J>n, (2.37)

or
n = |J | 1

|Jface|
(J>)−1n̂. (2.38)

By injecting Eq. (2.38) into Eq. (2.36), one gets:(
f̂ · n̂

)∗
=
(
f · |J |(J>)−1n̂

)∗
. (2.39)

The flux values at FP located on edges read:

f̂k =
(
f̂k · n̂k

)∗
=
(
fk · (|J |J−1)>n̂k

)∗
, ξk ∈ ∂H. (2.40)

Once flux values at flux points are known, the flux components in each direction are approximated by
polynomials constructed using Lagrange interpolation polynomials of degree p+1 in the corresponding
direction:

f̂h(ξ, η, ζ) =
p+1∑
j3=1

p+1∑
j2=1

p+2∑
k1=1

f̂(k1,j2,j3) lk1(ξ) · lj2(η) · lj3(ζ), (2.41)

ĝh(ξ, η, ζ) =
p+1∑
j3=1

p+2∑
k2=1

p+1∑
j1=1

ĝ(j1,k2,j3) lj1(ξ) · lk2(η) · lj3(ζ), (2.42)

ĥh(ξ, η, ζ) =
p+2∑
k3=1

p+1∑
j2=1

p+1∑
j1=1

ĥ(j1,j2,k3) lj1(ξ) · lj2(η) · lk3(ζ), (2.43)

where lk1(ξ), lk2(η) and lk3(ζ) are the 1D Lagrange polynomials associated with the 1D FP located at
ξk1 , ηk2 and ζk3 (respectively). The divergence of the approximate flux at SP is:

∇̂ · f̂h(ξj1 , ηj2 , ζj3) =
(
∂f̂h
∂ξ

)
(j1,j2,j3)

+
(
∂ĝh
∂η

)
(j1,j2,j3)

+
(
∂ĥh
∂ζ

)
(j1,j2,j3)

, (2.44)

where (
∂f̂h
∂ξ

)
(j1,j2,j3)

=
p+2∑
k1=1

f̂(k1,j2,j3) ·
∂lk1

∂ξ
(ξj1), (2.45)
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(
∂ĝh
∂η

)
(j1,j2,j3)

=
p+2∑
k2=1

ĝ(j1,k2,j3) ·
∂lk2

∂η
(ηj2), (2.46)

(
∂ĥh
∂ζ

)
(j1,j2,j3)

=
p+2∑
k3=1

ĥ(j1,j2,k3) ·
∂lk3

∂ζ
(ζj3). (2.47)

The solution is updated in time on each cell i using a time discretization scheme of the following
semi-discrete equation:

∂û
(i)
j

∂t
= −

p+2∑
k1=1

f̂
(i)
(k1,j2,j3) ·

∂lk1

∂ξ
(ξj1)−

p+2∑
k2=1

ĝ
(i)
(j1,k2,j3) ·

∂lk2

∂η
(ηj2)−

p+2∑
k3=1

ĥ
(i)
(j1,j2,k3) ·

∂lk3

∂ζ
(ζj3). (2.48)

For tensor product cells, the SD method is easy to implement since only one-dimensional operations
are involved. High-order accuracy is achieved through high-order local representation of the state
variables. The use of Riemann solvers guarantees that the method is fully conservative. Since
operations are mostly one-dimensional, the method is quite efficient. However, using tensor product
cells only does not offer much flexibility when it comes to complex geometries. In particular, the
tensor product method cannot be applied to simplex cells. The Spectral Difference approach using
Raviart-Thomas elements on simplex cells is presented in the next section. Before that, an algebraic
framework about polynomial expansion on simplices is given.
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2.3 Triangular and Tetrahedral Elements Formulation

2.3. Triangular and Tetrahedral Elements Formulation

2.3.1. Algebraic Framework

2.3.1.1. Polynomial Expansion on Simplices

Let us consider the interpolation of a polynomial of degree p, uh(ξ) ∈ Pp, through a set of distinct
points ξm,m ∈ J1, NSP K defined as:

ξm =
{

(ξm, ηm) in 2D,
(ξm, ηm, ζm) in 3D,

(2.49)

where

NSP =
{

(p+ 1)(p+ 2)/2 in 2D,
(p+ 1)(p+ 2)(p+ 3)/6 in 3D,

(2.50)

and

Pp =
{
span{ξiηj , 0 ≤ i, 0 ≤ j and i+ j ≤ p in 2D,
span{ξiηjζk, 0 ≤ i, 0 ≤ j, 0 ≤ k and i+ j + k ≤ p in 3D.

(2.51)

The polynomial uh(ξ) can be expanded using a nodal or a modal representation. When using the
nodal representation, the polynomial is represented in term of point values by way of a Lagrangian
interpolant, which is defined as the polynomial of lowest degree that assumes at each value ξj the
corresponding value uj so that the function coincide at each point:

uh(ξ) =
NSP∑
j=1

uj lj(ξ), (2.52)

where lj is a Lagrange polynomial and uj are the known solution values at point ξj . Since there is
not a closed-form expression of the Lagrange polynomials through an arbitrary set of points on the
triangular element [150], a solution is to expand the polynomial uh using a modal representation:

uh(ξ) =
NSP∑
m=1

ūm Ψm(ξ), (2.53)

where Ψm(ξ) ∈ Pp is a complete polynomial basis and ūm are the modal basis coefficients, which do
not represent the value of a function at a point. Since uh(ξ) and Ψm(ξ) span the same polynomial
space, any projection form will recover the exact expansion coefficient ūm. By performing a collocation
projection at the points ξj such that:

uh(ξj) = uj =
NSP∑
m=1

ūm Ψm(ξj), (2.54)

the coefficients ūm can then be determined as:

ūm =
NSP∑
m=1

uj (Ψm(ξj))−1 =
NSP∑
m=1

uj (Vj,m)−1. (2.55)

The term Ψm(ξj) corresponds to the matrix of basis change, also known as the generalized Vander-
monde matrix Vj,m = Ψm(ξj). The choice of the basis Ψm(ξ) is of primary importance since a matrix
inversion is involved in the polynomial expansion process. The chosen basis will dictate the condition-
ing of the matrix V and thus the computational stability. The most straightforward choice would be
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the monomial basis ( {1, x, y, x2, xy, y2, ..., yp} in 2D). However, this choice leads to a dense Vander-
monde matrix whose condition number rapidly increases with the degree p. A solution is to choose a
hierarchical orthogonal basis, whose Vandermonde matrix is diagonal and thus better conditioned. An
appropriated basis choice is to define Ψm(ξ) as the Proriol-Koornwinder-Dubiner (PKD) basis, which
has been defined on triangles by Proriol [151], Koornwinder [152] and Dubiner [153] and on tetrahedra
by Sherwin and Karniadakis in [154].

From the literature [150, 155], three main assets of the PKD basis can be noted. First, it is based on
Jacobi polynomials, which can be evaluated to a high degree using simple recurrence relations. The
PKD L2 orthogonality will then tend to a well-conditioned Vandermonde matrix. Finally, the PKD
basis hierarchical nature (the expansion set of degree p contains the expansion set of degree p − 1)
simplifies the construction of certain finite element spaces, such as the Raviart-Thomas space, which
will be used to approximate the flux function in the SDRT formulation. The PKD basis is detailed in
the following section.

2.3.1.2. Proriol-Koornwinder-Dubiner Basis

This section follows the generalized tensor product modal expansion notations defined by Karni-
adakis and Sherwin [150].

Collapsed Coordinated System

2D The PKD basis is obtained by forming a tensor product of one-dimensional Jacobi polynomials
based on a Cartesian coordinate system. Since the Jacobi polynomials are defined on the reference
interval [−1, 1], the 2D PKD basis obtained using tensor product is defined on the reference quadrilat-
eral QPKD bounded by the same constant limits, i.e., QPKD := {(x, y) : −1 ≤ x, y ≤ 1}. To express
the PKD basis on the reference triangle T PKD := {(x, y) : −1 ≤ x, y ≤ 0, x+ y ≤ 0}, the first step is
to map the reference triangle onto the reference quadrilateral. This transformation is defined by: ξ = 2(1 + x)

(1− y) − 1,

η = y,

or

 x = (1 + ξ)(1− η)
2 − 1,

y = η.

(2.56)

The triangular element can now be described with the new coordinates as T PKD := {(ξ, η) : −1 ≤ ξ, η ≤ 1},
bounded by the very same constant limits. The coordinates system (ξ, η) is referred to as the collapsed
coordinate system or Duffy coordinates.

3D Following the same reasoning, the tetrahedron T PKDe := {(x, y, z) : −1 ≤ x, y, z, x+ y + z ≤ 1}
is mapped onto the reference hexahedron HPKD := {(x, y, z) : −1 ≤ x, y, z ≤ 1}. The mapping is done
by applying the 2D rectangle-to-triangle transformation given by Eq. (2.56) several times : the hex-
ahedron is mapped into a prism, the prism into a pyramid and the pyramid into a tetrahedron. The
transformation from the hexahedron coordinates (x, y, z) to the collapsed 3D coordinates (ξ, η, ζ) is
given by: 

ξ = 2(1 + x)
−y − z

− 1,

η = 2(1 + y)
1− z − 1,

ζ = z,

or


x = (1 + ξ)(1− η)(1− ζ)

4 − 1,

y = (1 + η)(1− ζ)
2 − 1,

z = ζ.

(2.57)

The tetrahedron can now be described with the new coordinates as T PKDe := {(ξ, η, ζ) : −1 ≤ ξ, η, ζ ≤ 1},
bounded by the very same constant limits as the hexahedron.
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Proriol-Koornwinder-Dubiner Basis Using the collapsed coordinates, the PKD basis is constructed
as a family of L2-orthogonal polynomials on T PKD derived from a warped product of one-dimensional
Jacobi polynomials:

Φi,j = P 0,0
i (ξ)

(1− η
2

)i
P 2i+1,0
j (η), i+ j ≤ p. (2.58)

The PKD basis was extended in 3D by Sherwin and Karniadakis[154] and is defined on T PKDe as:

Φi,j,k = P 0,0
i (ξ)

(1− η
2

)i
P 2i+1,0
j (η)

(1− ζ
2

)i+j
P

2(i+j+1),0
k (ζ), i+ j + k ≤ p. (2.59)

In Eq. (2.58) and Eq. (2.59), Pα,βi denotes the corresponding n-th-order Jacobi polynomials on the
interval [−1, 1] which are orthogonal polynomials under the Jacobi weight (1− x)α(1 + x)β, i.e.:∫ 1

−1
(1− x)α(1 + x)βPα,βi (x)Pα,βj (x)dx = 2α+β+1

2i+ α+ β + 1
Γ(i+ α+ 1)Γ(i+ β + 1)

i!Γ(i+ α+ β + 1) δij , (2.60)

where Γ is the Gamma function
Γ(n) = (n− 1)!. (2.61)

In the case of β = 0, Eq. (2.60) can be simplified as:∫ 1

−1
(1− x)αPα,0i (x)Pα,0j (x)dx = 2α+1

2i+ α+ 1δij . (2.62)

Remark: The 2D (respectively 3D) PKD basis functions are polynomials in both (x, y) and (ξ, η)
(respectively (x, y, z) and (ξ, η, ζ)) spaces.

Remark: The "warped product" property refers to the fact that the 2D (respectively 3D) PKD
basis functions can be expressed as the product of two polynomials, one in ξ and one in η (respectively
three polynomials).

Normalized Proriol-Koornwinder-Dubiner Basis In the following sections, the L2 normalized PKD
basis is used. The proof of L2 orthogonality and the normalization are given in Appendix B. The
normalized 2D and 3D PKD basis are:

Φi,j =
√

(i+ 1/2)(i+ j + 1) P 0,0
i (ξ)

(1− η
2

)i
P 2i+1,0
j (η), i+ j ≤ p, (2.63)

Φi,j,k =
√

(i+ 1/2)(i+ j + 1)(i+ j + k + 3/2) P 0,0
i (ξ)

(1− η
2

)i
P 2i+1,0
j (η)

(1− ζ
2

)i+j
P

2(i+j+1),0
k (ζ),

i+ j + k ≤ p. (2.64)

2.3.2. General Principle
As mentioned in Chapter 1, the stability of the standard SD method on triangular cells is not

ensured for an order of accuracy strictly greater than 2. In this framework, Balan et al. proposed
another alternative in [141, 142]. They build a SD formulation using Raviart-Thomas elements on
triangles, leading to the naming SDRT. The SDRT scheme was proven to be linearly stable up to the
fourth-order under a Fourier stability analysis originally initiated by May [143]. To obtain a (p+ 1)-
th-order accurate scheme, the solution in the reference domain û is approximated by a polynomial of
degree p denoted ûh. The polynomial ûh is expanded in the orthonormal PKD basis introduced in
section2.3.1. From the polynomial expansion of ûh, solution values at FP can then be computed, as
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for the standard SD scheme. The main difference with the standard SD scheme comes from the flux
approximation. With the standard SD scheme, the flux is approximated by f̂h in the reference domain
by projecting it component-wise into a finite dimensional polynomial space of degree p+ 1 as:

f̂h(ξ) =
Ns
FP∑
k=1

f̂klk(ξ), (2.65)

where

N s
FP =


(p+ 2)(p+ 3)

2 in 2D,

(p+ 2)(p+ 3)(p+ 4)
6 in 3D,

(2.66)

and lk(ξ), k ∈ J1, N s
FP K is the one-dimensional Lagrange polynomial associated with the k-th FP.

In Eq. (2.65), the basis is scalar and the coefficients are vectors. With the SDRT scheme, the flux
function is approximated in the Raviart-Thomas space as:

f̂h(ξ) =
NRT
FP∑
k=1

f̂kψk(ξ), (2.67)

where

NRT
FP =


N tri
FP = (p+ 1)(p+ 3) in 2D,

N tet
FP = (p+ 1)(p+ 2)(p+ 4)

2 in 3D,
(2.68)

and ψk are interpolation functions which form a basis in the Raviart-Thomas space. In Eq. (2.67),
the basis functions are vectors and the coefficients are scalars. By nature, the Raviart-Thomas space
is the smallest polynomial space such that the divergence maps it onto the space of polynomial of
degree p. This ensures that the solution and the flux divergence will both be polynomials of degree p.
In the next sections, the Raviart-Thomas basis and its interpolation functions are first detailed, fol-
lowed by the description of the SDRT scheme methodology for triangles and its extension to tetrahedral
elements.

2.3.3. Raviart-Thomas Basis
The Raviart-Thomas (RT ) finite element spaces were originally introduced by Raviart and Thomas

[156] to approximate the Sobolev space H(div) defined by:

H(div) = {u ∈
(
L2(K)

)d
, ∇ · u ∈ L2(K)}, (2.69)

where d is the dimension, K is a bounded open subset of Rd with a Lipshitz continuous boundary,
L2(K) is the Hilbert space of square integrable function defined on K. The extension to the three-
dimensional case considering K as a tetrahedron or a cube was proposed by Nedelec [157]. The space
RTp spanned by the Raviart-Thomas basis functions of degree p is the smallest polynomial space
such that the divergence maps RTp onto Pp, the space of piecewise polynomials of degree ≤ p. The
definition of the space RTp is given in Table 2.1.
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Triangle (2D) Tetrahedron (3D)

RTp (Pp)2 +
(
x
y

)
P̄p (Pp)3 +

xy
z

 P̄p

Pp (space
of polynomials of span{xiyj , i, j ≥ 0, i+ j ≤ p} span{xiyjzk, i, j, k ≥ 0, i+ j + k ≤ p}
degree at most p)

P̄p (space
of polynomials of span{xiyj , i, j ≥ 0, i+ j = p} span{xiyjzk, i, j, k ≥ 0, i+ j + k = p}

degree p )

dim Pp
(p+ 1)(p+ 2)

2
(p+ 1)(p+ 2)(p+ 3)

6

dim (Pp)d (p+ 1)(p+ 2) (p+ 1)(p+ 2)(p+ 3)
2

dim P̄p p+ 1 (p+ 1)(p+ 2)
2

dim RTp (p+ 1)(p+ 3) (p+ 1)(p+ 2)(p+ 4)
2

Table 2.1. – Definition of the RTp space

Example: Determination of the Monomials for the Two-Dimensional Raviart-Thomas Space In
this example, the 8 monomials which form the 2D RT1 basis are determined.

P1(x, y) = span{1, x, y}, (2.70)

P2
1(x, y) =

{(
1
0

)
,

(
x
0

)
,

(
y
0

)
,

(
0
1

)
,

(
0
x

)
,

(
0
y

)}
, (2.71)

P̄1(x, y) = span{x, y}, (2.72)

(
x
y

)
P̄1 =

{((
x
y

)
x

)
,

((
x
y

)
y

)}
=
{(

x2

xy

)
,

(
xy

y2

)}
, (2.73)

RT1 =
{(

1
0

)
,

(
x
0

)
,

(
y
0

)
,

(
0
1

)
,

(
0
x

)
,

(
0
y

)
,

(
x2

xy

)
,

(
xy

y2

)}
. (2.74)
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2.3.4. The Spectral Difference Scheme Using Raviart-Thomas Elements

Let us consider the following scalar conservation law under its differential form:

∂u(x, t)
∂t

+∇ · f(u) = 0, in Ω× [0, tf ], (2.75)

where u is a state variable, ∇ is the differential operator in the physical domain, tf is the final time of
the computation and f is the flux vector. In the case of a 2D triangular mesh, f = (f, g) where f and g
are flux densities in the x and y directions respectively and x = (x, y). In the case of a 3D tetrahedral
mesh, f = (f, g, h) where f , g and h are flux densities in the x, y and z directions respectively and
x = (x, y, z). The computational domain Ω is discretized into N non-overlapping cells (triangles or
tetrahedra) and the i-th element is denoted Ωi:

Ω =
N⋃
i=1

Ωi. (2.76)

2.3.4.1. Reference Element

For implementation simplicity, Eq. (2.75) is solved in the reference domain. Each cell Ωi of the
domain Ω is mapped into a reference triangle:

T := {(ξ, η) : 0 ≤ ξ, η ≤ 1, ξ + η ≤ 1} , (2.77)

or a reference tetrahedron:

Te := {(ξ, η, ζ) : 0 ≤ ξ, η, ζ ≤ 1, ξ + η + ζ ≤ 1} . (2.78)

The transformation can be written as:

x =
n∑
i=1

Mi(ξ)xi, (2.79)

where xi are the Cartesian coordinates in the physical domain of the n vertices of the cell and Mi(ξ)
are the shape functions. The Jacobian matrix of the transformation given by Eq. (2.79) from the
physical to the reference element is determined from the shape functions derivatives and the physical
nodes coordinates. Jacobian matrix’s expressions are given in Appendix A for the linear (A.3.1) and
quadratic (A.3.2) triangle and the linear (A.4.1) tetrahedron. In the reference domain, Eq. (2.75)
becomes:

∂û(ξ, t)
∂t

+ ∇̂ · f̂ = 0, (2.80)

where ∇̂ is the differential operator in the reference domain and û, f̂ are the solution and the flux in
the reference domain defined by:

û = |J |u, (2.81)

and
f̂ = |J |J−1f . (2.82)

The SDRT method solves the hyperbolic equations in the reference element following the procedure
described below.
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2.3.4.2. Solution Approximation

The solution û is approximated as a polynomial of degree p using a modal expansion:

ûh(ξ) =
NSP∑
m=1

ūm Ψm(ξ). (2.83)

As mentioned in section 2.3.1, the complete polynomial basis Ψm is chosen as the PKD orthonormal
basis, denoted Φm and defined in 2D as:

Φm =
√

(i+ 1/2)(i+ j + 1) P 0,0
i (ξ)

(1− η
2

)i
P 2i+1,0
j (η), i+ j ≤ p, (2.84)

and in 3D as:

Φm =
√

(i+ 1/2)(i+ j + 1)(i+ j + k + 3/2) P 0,0
i (ξ)

(1− η
2

)i
P 2i+1,0
j (η)

(1− ζ
2

)i+j
P

2(i+j+1),0
k (ζ),

i+ j + k ≤ p, (2.85)

where the subscript m ∈ J1, NSP K has replaced the subscript (i, j) in 2D (respectively (i, j, k) in 3D)
with any arbitrary bijection m ≡ m(i, j) (respectively m ≡ m(i, j, k)). In Eq. (2.83), the coefficients
ūm are given by:

ūm =
NSP∑
j=1

ûj (Φm(ξj))−1 , (2.86)

where ûj is the solution value at the solution point ξj . The polynomial approximation ûh of the
solution u is thus defined by:

ûh(ξ) =
NSP∑
m=1

NSP∑
j=1

ûj (Φm(ξj))−1 Φm(ξ). (2.87)

It is recalled that for a triangle, the number of SP needed to represent the solution as a polynomial
of degree p is:

N tri
SP = (p+ 1)(p+ 2)

2 , (2.88)

whereas for a tetrahedral, NSP is given as:

N tet
SP = (p+ 1)(p+ 2)(p+ 3)

6 . (2.89)

2.3.4.3. Solution Computation at Flux Points

To compute the flux values at FP (denoted ξk, k ∈ J1, NRT
FP K), the solution values at those points

need to be determined. With the polynomial distribution given by Eq. (2.87), the solution at FP can
be computed as:

ûh(ξk) =
NSP∑
m=1

NSP∑
j=1

ûj (Φm(ξj))−1 Φm(ξk) =
NSP∑
m=1

NSP∑
j=1

ûj (Vj,m)−1 Φm(ξk). (2.90)

Numerically, the extrapolation step is represented by the transfer matrix Tkj =
[
(Vj,m)−1 Φm(ξk)

]
.
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2.3.4.4. Definition of the Flux Polynomial from the Set of Flux Values at Flux Points

Now that solution values at FP are known, the flux values f̂k at the k-th flux point are assumed to
be computed. The details of the flux values computation will be given below. First, the flux vector is
approximated in the reference domain by f̂h in the RT space as:

f̂h(ξ) =
NRT
FP∑
k=1

f̂kψk(ξ), (2.91)

where NRT
FP is the number of DoF needed to represent a vector-valued function in the RTp space,

defined as:

NRT
FP = N tri

FP = (p+ 1)(p+ 3) (2D), NRT
FP = N tet

FP = 1
2(p+ 1)(p+ 2)(p+ 4) (3D), (2.92)

and ψk are interpolation functions which form a basis in the RT space with the property:

ψj(ξk) · n̂k = δjk, (2.93)

where δ is the Kronecker symbol and n̂k is the outward unit normal vectors defined at the flux point
ξk. At this level, it must be highlighted that some flux points will be located inside the element and
the definition of the normal vector needs to be described accurately. For interior FP, one physical
point is associated with several DoF through the definition of unit vectors in different directions.
In 2D (respectively 3D), one physical interior flux point is associated with two (respectively three)
degrees of freedom whose normal vectors are n̂ = (1, 0)> and n̂ = (0, 1)> (respectively n̂ = (1, 0, 0)>,
n̂ = (0, 1, 0)> and n̂ = (0, 0, 1)>) in the reference element. An example of SP and FP distributions
and their associated degrees of freedom on the reference triangle and on the reference tetrahedron is
given in Fig. 2.2.
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(a) Reference triangle, p = 2
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(b) Reference tetrahedron, p = 1

Figure 2.2. – Points distribution and associated DoF in the triangular and tetrahedal reference ele-
ments: SP ( ), interior FP ( ), edge FP ( )

In Eq. (2.91), the vector-valued interpolation basis functions ψk can be expressed from the known
monomial basis defined in section 2.3.3. To do so, the first step is to express the known monomial
basis φn, n ∈ J1, NRT

FP K in the RT space defined as a linear combination of the basis functions ψk:

φn(ξ) =
NRT
FP∑
k=1

an,kψk(ξ). (2.94)
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To determine the unknown coefficients an,k, Eq. (2.94) is multiplied by n̂k and then by enforcing the
condition given by Eq. (2.93):

φn(ξ) · n̂k = an,kψk(ξ) · n̂k, (2.95)

and

φn(ξk) · n̂k =
NRT
FP∑
l=1

an,kψl(ξk) · n̂k, (2.96)

so
an,k = φn(ξk) · n̂k. (2.97)

The interpolation functions ψk can thus be determined as:

ψk(ξ) =
NRT
FP∑
n=1

(φn(ξk) · n̂k)−1φn(ξ). (2.98)

2.3.4.5. Determination of the Scalar Flux Values

The last step is to determine the scalar flux values f̂k at FP on which the polynomial approximation
given by Eq. (2.91) relies on. In the case of a first-order partial differential equation as given by
Eq. (2.80), the flux are only functions of the solution. For interior FP, the flux values in the reference
domain, denoted f̂k, are computed directly from the approximated solution value and projected on
the unit normal vector previously defined. For FP located on edges, f̂k is computed using a standard
numerical flux function given as a solution of a Riemann problem using two extrapolated quantities,
one on each side of the interface.

f̂k =


f̂ · n̂k = |J |J−1fk(uh(ξk)) · n̂k, ξk ∈ T \ ∂T (or ∈ Te \ ∂Te),(
f̂k · n̂k

)∗
=
(
fk · |J |(J−1)>n̂k

)∗
, ξk ∈ ∂T (or ∈ ∂Te),

(2.99)

where
(
f̂k · n̂k

)∗
is the standard numerical flux in the reference element and uh(ξk) = 1

|J |
ûh(ξk) is the

approximated solution in the physical domain. The flux vector approximation f̂h is finally defined by:

f̂h(ξ) =
NRT
FP∑
k=1

f̂k (φn(ξk) · n̂k)−1φn(ξ). (2.100)

2.3.4.6. Differentiation of the Flux Polynomial at Solution Points

Once the flux vector is approximated on the reference element by Eq. (2.100), it can be differentiated
at SP:

∇̂ · f̂(u) =
(
∇̂ · f̂h

)
(ξj)

= f̂k
(
∇̂ ·ψk

)
(ξj)

= f̂k ∇̂ ·

NRT
FP∑
n=1

(φn(ξk) · n̂k)−1φn(ξj)


= f̂k

NRT
FP∑
n=1

(φn(ξk) · n̂k)−1 ∇̂ · φn(ξj).

(2.101)
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The term
(
∇̂ ·ψk

)
(ξj) in Eq. (2.101) can be written as a matrix of size [NSP ×NRT

FP ] called differen-
tiation matrix and computed as:

Djk =
[(
∇̂ ·ψk

)
(ξj)

]
=
[
(φn(ξk) · n̂k)−1 ∇̂ · φn(ξj)

]
. (2.102)

2.3.4.7. Semi-Discretized Form

The final form of the Spectral Difference scheme using Raviart-Thomas element discretization can
be written for each degree of freedom of the solution function in each cell i as:

dû
(i)
j

dt
+
NRT
FP∑
k=1

f̂
(i)
k

(
∇̂ ·ψk

)
(ξj) = 0, j ∈ J1, NSP K, i ∈ J1, NK, (2.103)

and the solution can be time-integrated using any standard time integration scheme (Runge-Kutta
scheme for instance).

2.3.5. Comparison Between Spectral Difference and Flux Reconstruction Methods for
Simplex Elements

The FR/CPR technique was introduced as a way to recover SD, DG and other schemes for any
linear hyperbolic equation. But an open question concerns possible differences between the SDRT
technique and the FR/CPR scheme. Let us consider the FR/CPR method described by Castonguay
and Williams in their respective Ph.D. thesis [99, 158].

– Triangular element

• FR/CPR method: The flux polynomial definition involves (p+ 1)(p+ 2)
2 SP (located inside

the element) and (p+ 1) FP located on each edge.
• SDRT method: The flux polynomial relies on (p + 1)(p + 3) FP, including (p + 1) FP on

each edge. The number of FP located inside the element is thus p(p+ 1).
• Methods will differ if:

(p+ 1)(p+ 2)
2 6= p(p+ 1) =⇒ p 6= 2 and p 6= −1. (2.104)

– Tetrahedral element

• FR/CPR method: The flux polynomial definition requires (p+ 1)(p+ 2)(p+ 3)
6 SP (lo-

cated inside the element) and (p+ 1)(p+ 2)
2 FP located on each edge.

• SDRT method: The flux polynomial is build from (p+ 1)(p+ 2)(p+ 4)
2 FP, including

(p+ 1)(p+ 2)
2 FP on each edge. The number of FP located inside the element is thus

p(p+ 1)(p+ 2)
2 .

• Methods will differ if:

(p+ 1)(p+ 2)(p+ 3)
6 6= p(p+ 1)(p+ 2)

2 =⇒ p 6= −2, p 6= −1 and p 6= 3
2 . (2.105)

The present analysis to build a link between SDRT and FR flux polynomial computation is valid for
any hyperbolic equation. For the linear advection equation, a connection could be established due to
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the linear relation between the solution and the flux, as performed by Jameson [83]. The definition of
this link is out of the scope of the present thesis.

In this section, mathematical foundations of the SDRT approach introduced by Balan et al. [142]
were detailed. The SDRT method was described on triangles and extended to the treatment of
tetrahedral elements. Recalling the standard SD approach and the SDRT scheme formulations now
allows us to establish the SD/SDRT formulation on prismatic elements.
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2.4. Prismatic Elements Formulation
The Spectral Difference method can be easily formulated on prismatic elements by considering the

tensor product between the SDRT scheme on a triangle and the standard SD scheme in 1D. Let us
consider the 3D scalar conservation law under its differential form:

∂u(x, t)
∂t

+∇ · f(u) = 0, in Ω× [0, tf ], (2.106)

where u is the state variable, ∇ is the differential operator in the physical domain and f = (f, g, h)
where f , g and h are flux densities in the x, y and z directions respectively and x = (x, y, z). The
computational domain Ω is discretized into N non-overlapping prismatic cells and the i-th element is
denoted Ωi:

Ω =
N⋃
i=1

Ωi. (2.107)

2.4.1. Reference Element
For implementation simplicity, Eq. (2.106) is solved in the reference domain. Each cell Ωi of the

domain Ω is mapped into a reference prismatic element:

P := {(ξ, η) : 0 ≤ ξ, η ≤ 1, ξ + η ≤ 1} × {ζ : 0 ≤ ζ ≤ 1}. (2.108)

The transformation is written as:
x =

n∑
i=1

Mi(ξ)xi, (2.109)

where xi are the Cartesian coordinates in the physical domain of the n = 6 vertices of the prism and
Mi(ξ) are the shape functions. The shape functions and the Jacobian matrix expressions are given in
Appendix A for the linear prismatic element (A.4.2). By introducing the transformed variables in the
reference domain û = |J | · u and f̂ = |J |J−1 · f , Eq. (2.106) becomes:

∂û(ξ, t)
∂t

+ ∇̂ · f̂ = 0, (2.110)

where ∇̂ is the differential operator in the reference domain.

2.4.2. Solution Approximation
The solution û is approximated as a polynomial of degree p using the tensor product between the

2D expansion using PKD basis and the standard 1D Lagrangian interpolation from its values at a set
of Npri

SP SP defined as:
Npri
SP = N tri

SP N
1d
SP = 1

2 (p+ 1)2 (p+ 2). (2.111)

To highlight the tensor product properties, the SP ξj , j ∈ J1, Npri
SP K are denoted:

ξ(j1,j2), j1 ∈ J1, N tri
SP K, j2 ∈ J1, N1d

SP K, (2.112)

where j1 indicates the position of the solution point on the triangle in the (ξ, η) plane and j2 indicates
the position in the ζ-direction. The polynomial approximation ûh of the solution û is defined by:

ûh(ξ) =
Ntri
SP∑

m=1

N1d
SP∑

j2=1
ûj1,j2 (Φm(ξj1,j2))−1 Φm(ξ) lj2(ξ), (2.113)

where ûj1,j2 is the value of the solution û at the solution point ξj1,j2 located at the position (ξj1 , ηj1 , ζj2).
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2.4.3. Definition of the Flux Polynomial from the Set of Flux Values at Flux Points
The flux vector is approximated as the tensor product of the 2D approximation of (f̂ , ĝ) (the flux

components in the (ξ, η) plane) in the RT space and the 1D Lagrangian approximation of the ζ-
component ĥ. The two polynomial approximations are done independently on separate sets of FP.
The 2D approximation is performed on a first set of FP denoted:

ξ(k1,j2), k1 ∈ J1, N tri
FP K, j2 ∈ J1, N1d

SP K. (2.114)

The solution values at this first set of points (k1, j2) are computed using:

ûh(ξ(k1,j2)) =
Ntri
SP∑

m=1
ûj1,j2 (Φm(ξj1,j2))−1 Φm(ξ(k1,j2)), (2.115)

and the 2D flux approximation reads:

f̂2D
h (ξ) =

N1D
SP∑

j2=1

Ntri
FP∑

k1=1
f̂(k1,j2)ψ(k1,j2)(ξ), (2.116)

with the flux values:

f̂(k1,j2) =


f̂
(
ûh
(
ξ(k1,j2)

))
· n̂(k1,j2), ξ(k1,j2) ∈ P \ ∂P,(

f(k1,j2) · |J |(J−1)>n̂(k1,j2)
)∗
, ξ(k1,j2) ∈ ∂P.

(2.117)

The 1D Lagrangian approximation is performed on a second set of FP denoted :

ξ(j1,k2) j1 ∈ JN tri
SP K, k2 ∈ J1, N1d

FP K. (2.118)

The solution values at this second set of points (j1, k2) are computed using:

ûh(ξ(j1,k2)) =
N1d
SP∑

j2=1
ûj1,j2 lj2(ξ(j1,k2)), (2.119)

and the 1D flux approximation reads:

f̂1D
h (ξ) =

Ntri
SP∑

j1=1

N1d
FP∑

k2=1
f̂(j1,k2) lk2(ξ), (2.120)

with the flux values:

f̂(j1,k2) =


f̂(ûh(ξ(j1,k2))), ξ(j1,k2) ∈ P \ ∂P,

f̂∗(j1,k2), ξ(j1,k2) ∈ ∂P.
(2.121)

The SP, the two sets of FP points and the associated DoF are represented in Fig. 2.3
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Figure 2.3. – Points distribution in the prismatic reference element for p = 1: SP ξ(j1,j2) ( ), FP in
the (ξ, η) plane ξ(k1,j2) (edge: , interior: ), FP in the ζ-direction ξ(j1,k2) ( )

2.4.4. Differentiation of the Flux Polynomial at Solution Points
Once the flux vector is approximated on each set of FP in the reference element by Eq. (2.116) and

Eq. (2.120), it can be differentiated at SP:

∇̂ ·
(
f̂(u)

)
=
(
∇̂ · f̂2D

h

)
(ξj1,j2) +

(
∇̂ · f̂1D

h

)
(ξj1,j2)

= f̂(k1,j2)
(
∇̂ ·ψ(k1,j2)

)
(ξj1,j2) + f̂(j1,k2) ·

∂lk2

∂ζ
(ξ(j1,j2)).

(2.122)

2.4.5. Semi-Discretized Form
The final form of the Spectral Difference scheme on prismatic elements can be written for each

degree of freedom of the solution function in each cell i as:

du
(i)
j

dt
+
(
f̂

(i)
(k1,j2)

(
∇̂ ·ψ(k1,j2)

)
(ξj1,j2) + f̂

(i)
(j1,k2) ·

∂lk2

∂ζ
(ξ(j1,j2))

)
= 0,

j1 ∈ J1, N tri
SP K, j2 ∈ J1, N1d

SP K, k1 ∈ J1, N tri
FP K, k2 ∈ J1, N1d

FP K, i ∈ J1, NK, (2.123)

and the solution can be time-integrated using any standard time integration scheme (Runge-Kutta
scheme for instance).
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2.5. Pyramidal Elements
Like prismatic elements, pyramids are mainly used to link tetrahedral and hexahedral elements.

However, contrary to other 3D simplices, it was demonstrated that in addition to polynomial func-
tions, the pyramid approximation space necessary contains rational functions [159, 160].

In 2010, Bergot et al. [161] proposed an L2 orthogonal basis on the pyramid for second-order and
higher pyramid elements leading to stable and efficient solutions. Their application to Discontinuous
Galerkin was studied in [162] and validated through numerical experiments. This basis has then been
used by Chan and Warburton [163] to optimize the nodes distribution in the pyramid: on a pyramid
triangular face, points are located as the same position as on a tetrahedron face, whereas on a pyramid
quadrilateral face, points are located as the same position as on a hexahedron face. Validation for a
GPU-accelerated time-domain DG method using hybrid grids composed of hexahedral, tetrahedral,
prismatic and pyramidal elements was done in [164]. Additionally, Chan and Warburton proposed to
split a pyramidal element into two tetrahedra and study different points distribution in [165].

The Flux Reconstruction approach was implemented for the treatment of pyramids in the solver
PyFR [166]. However, in 2013, the FR stability was not proven for prisms and pyramids [99]. In 2020,
a spectral analysis was conducted by Pereira and Vermeire in [167] for hexahedral, tetrahedral and
prismatic elements. To the author’s knowledge, such an analysis was conducted on pyramids neither
for the FR nor for the SD method. Pyramidal elements have not been implemented during this thesis
but stability properties should be investigated in the future. If stability results were not conclusive,
the approach of splitting a pyramidal element into two tetrahedra should be preferred.

Although prismatic and pyramidal elements remain important to link tetrahedral and hexahedral
cells, it is chosen in this thesis to focus on the SDRT stability properties and implementation on
triangles and tetrahedra. This choice is motivated by three reasons:

– Since the Spectral Difference formulation on prismatic elements simply follows the tensor prod-
uct between a 1D standard SD and a 2D SDRT scheme, the investigation of the 2D SDRT
scheme stability properties should first be considered. Once a stable 2D SDRT formulation is
proposed, the extension to prismatic elements does not seem to raise any specific difficulties.

– On the other hand, the treatment of pyramidal elements is more complex and not as well
studied in the literature as the treatment of tetrahedra.

– Finally, using a grid fully composed of tetrahedral elements allows one to deal with complex
geometries. A full prismatic or pyramidal grid does not offer as much flexibility. The possibility
to run 3D computations on tetrahedral grids is thus preferred.
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Chapter 3
Linear Stability Analysis for the
Spatial Discretization
In this chapter, the stability of the SD and SDRT spatial discretizations is investigated using the
advection equation. First, the general eigenvalues analysis is presented. This analysis consists in
studying the eigenvalues spectrum of the spatial operator, which is written under a matrix form.
The eigenvalues analysis is applied to two methods to determine the stability: the common Fourier
analysis and a new procedure, which considers a domain composed of a fixed number of cells (FNC
method) without assuming the solution as a harmonic place wave.
The FNC approach is introduced to reduce the computational time needed to compute the spatial
operator matrix, leading to the possibility to study multiple SDRT implementations depending on
the choice of the interior FP location. It is first applied to the standard 1D SD scheme to verify
its consistency with Fourier analysis results. It is shown that the FNC approach can recover the
common 1D SD stability results regarding the interior FP location.
The SDRT linear stability is then studied on triangular grids using both approaches. The SDRT
stability is established up to the fourth-order using the Fourier analysis. Employing the FNC method,
sets of interior FP leading to a stable SDRT scheme for p > 3 on two triangles are determined. The
method limitations are then shown by increasing the number of triangles in the domain.
Finally, the Fourier analysis of the SDRT is eventually conducted on tetrahedral elements.
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3.1. Stability Analysis Methods
3.1.1. Eigenvalue Analysis

Let us consider the linear advection equation

∂u(x, t)
∂t

+∇ · f = 0, in Ω× [0, tf ], (3.1)

within a domain Ω, where u is a conserved scalar quantity and f = c ·u is the flux. The velocity vector
c is defined by:

c =



cx, cx ∈ [−1, 1] (1D),

(cx, cy) = (cos θ, sin θ)> , θ ∈ [0, 2π] (2D),

(cx, cy, cz) = (sin θ2 cos θ1, sin θ2 sin θ1, cos θ2)> , (θ1, θ2) ∈ [0, 2π]2 (3D),

(3.2)

and the domain Ω is subdivided into N non-overlapping elements Ωi, i ∈ J1, NK.

3.1.1.1. Matrix Form of the Spatial Operator

To analyze a scheme stability using eigenvalue analysis, the spatial discretization of Eq. (3.1) is
formulated under a matrix form. To do so, the column vector Ûi

j of size NSP whose components are
the solution values in the reference element at the j-th SP in the i-th cell is introduced:

Ûi
j = [ûi(ξj)]1≤j≤NSP . (3.3)

The solution values at FP are obtained by multiplying Ûi
j by the transfer matrix Tkj , which represents

the extrapolation step, leading to the column vector V̂i
k of size NFP :

V̂i
k = [ûi(ξk)]1≤k≤NFP = TkjÛi

j . (3.4)

From the solution values at FP, the flux values are then computed. At cell interfaces, two different
solution values are available at the same point. An upwind Godunov scheme is used as the numerical
flux to ensure the flux continuity. For the standard SD scheme, the flux vector values read:

f̂k =



(
|J |J−1 · c

)
ui(ξk), ξk ∈ Ω \ ∂Ω,

(
c · nik

)(1 + sign(c · nik)
2 ui(ξk) + 1− sign(c · nik)

2 unei(ξk)
)
, ξk ∈ ∂Ω,

(3.5)

whereas for a SDRT scheme, the flux scalar values read:

f̂k =


|J |J−1

(
c · n̂ik

)
ui(ξk), ξk ∈ Ω \ ∂Ω,

(
c · nik

)(1 + sign(c · nik)
2 ui(ξk) + 1− sign(c · nik)

2 unei(ξk)
)
, ξk ∈ ∂Ω,

(3.6)

where unei(ξk) is the solution value coming from the neighboring cell. Given that the flux is linear,
the flux computation can be expressed as a matrix product vector between a velocity matrix denoted
C and the vector V̂i

k containing the solution values at FP:

F̂i
k = C · V̂i

k. (3.7)
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Since solving a Riemann problem implies two states, the velocity matrix C has to associate to each
FP located at the cell interface of the i-th cell the correct neighboring FP located on the adjacent cell.
The matrix C actually accounts for the mesh connectivity, thus its size is [NFP ×N,NFP ×N ]. Its
analytical expression depends on the considered computational domain and will be given case-by-case.
The vector F̂i

k, containing the flux values at FP, is eventually multiplied by the derivation matrix
Djk, leading to the flux derivative values at SP. The semi-discrete scheme under a matrix form on the
domain Ω is finally:

∂Û1
j (t)
∂t...

∂Ûi
j(t)
∂t...

∂ÛN
j (t)
∂t


+



Djk . . . 0 . . . 0
... . . . ... . . . ...
0 . . . Djk . . . 0
... . . . ... . . . ...
0 . . . 0 . . . Djk


C



Tkj . . . 0 . . . 0
... . . . ... . . . ...
0 . . . Tkj . . . 0
... . . . ... . . . ...
0 . . . 0 . . . Tkj





Û1
j (t)
...

Ûi
j(t)
...

ÛN
j (t)


= 0,

i ∈ J1, NK, j ∈ J1, NSP K, k ∈ J1, NFP K. (3.8)

The overall spatial discretization (extrapolation, flux computation, differentiation) on the computa-
tional domain can be written in a compact matrix form:

∂Ûi(t)
∂t

= M Ûi(t), (3.9)

where
M = −bdiag(D) C bdiag(T). (3.10)

In Eq. (3.10), the operator bdiag() applied to an arbitrary square matrix A gives a block diagonal
matrix such that the main-diagonal blocks are the square matrix A and all off-diagonal blocks are
zeros matrices. The stability of the spatial discretization can be investigated through an eigenvalues
analysis using Eq. (3.9). The spectrum of the SD (or SDRT) spatial discretization is obtained by
computing eigenvalues of the spatial operator matrix M. The eigenvalues of M, denoted λM, form a
spectrum ρM in the complex plane. For a given advection angle, there are NSP eigenvalues per cell,
leading to a spectrum composed of N × NSP eigenvalues. If the real part of all eigenvalues of M,
denoted Re(λM), is non-positive, then the spatial discretization is stable.

3.1.1.2. Impact of the Different Parameters on the Stability

According to Eq. (3.10), the spatial operator matrix M depends on the transfer matrix T, the
velocity matrix C and the differentiation matrix D:

– The transfer matrix is expressed from the polynomial basis (the Lagrangian basis for tensor
product cells, the PKD basis for simplex cells) at SP and FP locations.

– The velocity matrix relies on the velocity vector c and the normal vector defined at each flux
point.

– The differentiation matrix involves the polynomial basis in which the flux is differentiated (the
Lagrangian basis for tensor product cells, the Raviart-Thomas basis for simplex cells) at SP and
FP locations as well as on the normal vector defined at each flux point.

The velocity vector is set through the definition of cx in 1D, or through the advection angle (θ in 2D,
(θ1, θ2) in 3D) as described by Eq. (3.2). The linear stability will be studied for several values of the
advection angle.

43



Chapter 3 : Linear Stability Analysis for the Spatial Discretization

As presented in Chapter 2, for tensor product cells, the polynomial basis is the Lagrangian basis
for both extrapolation and differentiation whereas for simplex cells, the PKD basis and the Raviart-
Thomas basis are used for the extrapolation and the differentiation (respectively). Those polynomial
bases rely on the SP and FP sets of points and the normal vector associated with each FP. Since it
was shown by Van den Abeele et al. [132] that the SD scheme stability is independent of the SP po-
sition, our main concern is to find a set of FP leading to a stable SDRT scheme for all advection angles.

The FP location has a direct impact on the SD scheme stability. In 1D, it was shown by Van
den Abeele [132] that if FP are chosen as the Chebyshev-Gauss-Lobatto nodes, the standard 1D SD
scheme can be unstable for p > 2. Following this work, Jameson [83] has proven that the stability of
the SD scheme for all orders of accuracy in the case of a 1D linear advection ’provided that the interior
fluxes collocation points are placed at the zeros of the corresponding Legendre polynomial’.

For triangular elements, it was observed by Balan et al. [141] that the placement of FP on edges
does not affect the linear stability properties for second- to fourth-order accurate SDRT schemes. To
simplify the 2D hybrid implementation, the position of FP located on the edge is set to the Gauss-
Chebyshev points given by Eq. (2.12). FP on edges for a quadrilateral and a triangle are thus located
at the same coordinates. By doing so, there is no need to apply mortar techniques as introduced
by Kopriva [106]. This technique is useful when FPs between interfaces are not matching (e.g. p or
h-refinement), and consists in a solution projection from both interfaces into an intermediate interface,
called a mortar. The flux is uniquely defined on the mortar by solving a Riemann problem and is
then projected back onto each face. However, the projection steps bring an additional cost, which can
be easily avoided for hybrid grids by setting the position of FP located on the edge to the Gauss-
Chebyshev points. In a same way, for the extension to 3D, FP located on a prismatic element square
face (respectively triangular face) should be placed at the very same coordinates as FP located on an
hexahedral element face (respectively tetrahedral element face). Since the edge (in 2D, or face in 3D)
FP position is chosen to be fixed, the remaining unknown is the interior FP location. For a SDRT
scheme, the number of interior FP is given by:

N tri
i = p (p+ 1) (2D), N tet

i = p (p+ 1) (p+ 2)
2 (3D). (3.11)

As mentioned in section 2.3.4.4, the number of physical interior points is reduced from Ni to Ni/d,
where d is the dimension, by considering one physical point as d separate DoF with different ’normal’
vectors n̂. Each physical interior flux point is associated with d normal vectors given as:

n̂ = (1, 0)>, n̂ = (0, 1)> (2D), (3.12)
n̂ = (1, 0, 0)>, n̂ = (0, 1, 0)>, n̂ = (0, 0, 1)> (3D). (3.13)

The number of physical interior FP, denoted Npi, is thus given as:

N tri
pi = p (p+ 1)

2 (2D), N tet
pi = p (p+ 1) (p+ 2)

6 (3D), (3.14)

which correspond to the number of SP for a SDRT(p−1) scheme.

In the following, two different methods to analyze the scheme stability are introduced: the common
Fourier stability analysis and a new approach, which considers a fixed number of cells rather than
imposing a planar harmonic wave. For both methods, the stability is studied through eigenvalues
analysis. However, the spatial operator matrix M is not defined in the same way for both methods.
To avoid confusion, the matrix M associated with the Fourier stability analysis will be denoted Mz,
whereas the matrix M associated with the analysis on a Fixed Number of Cells (FNC) will be denoted
Mn.
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3.1.2. Fourier Stability Analysis
The Fourier (or Von Neumann) method for stability analysis in 1D considers a computational

domain of length L. The domain is divided into N cells of size ∆x = L/N . By repeating the domain
periodically, the solution can be expressed as a finite Fourier series on the domain 2L:

ui = ũj exp(Ikjxi) = ũj exp(Ikji∆x), (3.15)

where kj = jπ

N∆x is the wavenumber, ũj is the amplitude of the jth harmonic of ui and I is the
imaginary unit (I2 = −1). The shortest and the largest wavelengths are respectively lmin = 2∆x
and lmax = 2L, leading to the minimum and maximum wavenumbers kmin = π/L and kmax = π/∆x.
Therefore, to represent all harmonics on a finite mesh, k∆x should cover the range [−π, π]. The prod-
uct k∆x represents the grid frequency, denoted κ. The maximum value π corresponds to the frequency
of the wavelength 2∆x, which is the highest frequency resolvable on the mesh (Nyquist–Shannon sam-
pling theorem).

For 2D and 3D cases, the analysis is performed by introducing the wave number vector k:

k =


k(cosϑ, sinϑ)>, ϑ ∈ [0, 2π] (2D),

k (cosϑ1 sinϑ2, sinϑ1 sinϑ2, cosϑ2)> , (ϑ1, ϑ2) ∈ [0, 2π]2 (3D),
(3.16)

k being the wavenumber of the harmonic wave and ϑ (in 2D) and (ϑ1, ϑ2) (in 3D) its orientation angles.

The spatial harmonic solution given by Eq. (3.15) is imposed in the matrix form of the spatial
scheme, leading to a relation:

dŨi(t)
dt

= MzŨi(t), (3.17)

where Ũi is a complex vector composed of ui harmonic amplitudes and Mz depends on the advection
velocity c, the wavenumber k and the orientation angle (ϑ in 2D, (ϑ1, ϑ2) in 3D). The stability of the
spatial operator can be studied through the spectrum of Mz using eigenvalues analysis.

As detailed in section 3.1.1.2, the stability of SD schemes seems to be strongly dependent on the
interior FP locations. To determine stable SDRT schemes on triangles, the spectrum of Mz should
be studied for multiple FP locations. However, using Fourier analysis, the computation matrix Mz is
dependent on a large number of parameters: the spectrum of the spatial operator has to be computed
for each advection angle, each grid frequency and, for 2D and 3D cases, each orientation angle. To
reduce the number of parameters on which the spatial operator depends and thus the computational
time needed to study each set of FP location, another stability analysis method is proposed.
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3.1.3. Stability Analysis on a Fixed Number of Cells
As it was presented in the previous section, the Fourier method is the most common way to investi-

gate linear stability. Additionally to the advection angle discretization, the computation of the spatial
operator is dependent on the grid frequency. In this section, a different stability analysis - the Fixed
Number of Cells (FNC) approach - is proposed to avoid the grid frequency dependency.

Rather than imposing a planar harmonic wave as the initial solution, no initial condition is specified
and the periodic boundary conditions are imposed through the numerical flux. This approach requests
to write the matrix form of the SDRT discretization through one global matrix Mn of size [N ×NSP ]
where the value of N is fixed. By doing so, the spatial operator only depends on the advection angle
and the computation of eigenvalues becomes less expensive. Moreover, it must be highlighted that
using this formulation, the matrix Mn does not depend on the initial solution. Consequently, if the
real part of all eigenvalues of the spatial operator matrix is negative, i.e. Re(λMn) ≤ 0, the linear
stability of the SDRT scheme is ensured on the considered domain regardless of the initial solution.
By considering a small domain, multiple interior FP locations can be tested in a reasonable computa-
tional time. Since the spatial stability of SD schemes seems to be strongly related to the interior FP
location, whether for the standard SD scheme [83, 132] or the SDRT formulation [141], this approach
could be a first step towards the definition of stable SDRT schemes.

However, stability results are only valid for the considered domain, and since the time required to
compute the global matrix Mn quickly increases with the number of cells, the approach is limited to
small computational domains. One could assume that obtaining a stable scheme on a small domain
is sufficient to ensure the scheme stability on any domain, but this hypothesis has to be assessed. To
evaluate the capability of the FNC approach to give general stability results, it is first applied to the
standard 1D scheme on computational domains of different sizes. The aim is to verify that results are
consistent with the common stability conclusions about interior FP location.
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3.2. Standard One-Dimensional Spectral Difference Scheme
3.2.1. Matrix form

Eq. (3.1) is solved on a 1D regular mesh composed of N cells denoted Si, i ∈ J1, NK with periodic
boundary conditions. Figure 3.1 show an example for the case N = 3. The velocity c = cx varies
within [−1, 1].

Figure 3.1. – Computational domain for the 1D FNC linear stability analysis - Example of SP ( )
and FP ( ) distributions for p = 3, N = 3

The extrapolation matrix in Eq. (3.8) is given as:

Tkj = lj(ξk). (3.18)

Using the example of N = 3, the velocity matrix of size [N · (p+ 2)] is:

C = c



1− sign(c)
2 O1,p · · · · · · · · · O1,p

1 + sign(c)
2

Op,1 Ip,p
. . . Op,1

... . . . S . . . ...

... . . . Ip,p
. . . ...

... . . . S . . . ...
Op,1

. . . Ip,p Op,1
1− sign(c)

2 O1,p · · · · · · · · · O1,p
1 + sign(c)

2



, (3.19)

where

S =

1 + sign(c)
2

1− sign(c)
2

1 + sign(c)
2

1− sign(c)
2

 , (3.20)

and sign(c) = c/|c|. This pattern can easily be extended to N cells. The differentiation matrix is:

Djk = ∂lk
∂ξ

(ξj). (3.21)
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3.2.2. Stability Analysis on a Fixed Number of Cells
To verify that the stability results given by the FNC method are consistent for the 1D standard SD

scheme, the first step is to recover the usual stability results regarding the influence of the interior
FP location. For p = 4, the eigenvalues of the matrix Mn = −diag(D) C diag(T) for two possible
FP locations (Chebyshev-Gauss-Lobatto and Legendre nodes) are plotted in Fig. 3.2 for a domain
composed of 2 elements (left) and for a domain composed of 9 elements (right). Considering symmetry
properties, the velocity cx is reduced from [−1, 1] to [0, 1]. A closer view at Re(λMn) = 0 is presented
on the same figure. For both domains, as expected, the spectrum of Mn obtained when using the
Chebyshev-Gauss-Lobatto nodes as FP reveals positive values of Re(λMn), indicating that the SD
scheme is unstable. The spectrum obtained with the Legendre nodes only presents negative values of
Re(λMn), establishing the scheme stability. The discretization of the velocity clearly appears on each
spectrum: eigenvalues form lines composed of 10 points, corresponding to 10 velocity values. The
number of eigenvalues for each velocity value is given by N(p+ 1).

(a) N = 2 (b) N = 9

Figure 3.2. – Spectrum of the matrix Mn for the standard 1D SD scheme, p = 4: Chebyshev-Gauss-
Lobatto FP (+), and Legendre FP( )

The FNC approach seems to be able to recover the standard 1D SD scheme stability results regarding
the possible interior FP locations. This first study allows us to consider the FNC approach to study
the SDRT scheme stability on triangles.
Before that, a complete Fourier stability analysis is presented for SDRT schemes based on a poly-
nomial approximation of degree p ∈ J2, 5K using different interior FP locations based on quadrature
rules. The FNC method is then used on two triangles to study multiple interior FP locations for
orders of accuracy higher than four. The stability results of both analyses are finally compared by
expanding the number of cells used in the FNC approach.
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3.3. Spectral Difference Using Raviart-Thomas Elements Scheme on
Triangular Elements

3.3.1. Flux Points Numbering

For clarity purposes, the FP numbering in the reference triangle needs to be settled and their normal
vector defined. On each edge, there are N tri

e = (p+ 1) FP. Since this section is dedicated to triangular
element, they will simply be denoted Ne. The FP located on edges are represented with red circles
and numbered as follow:

– on face 1 (η = 0), k ∈ J1, NeK, k increasing with ξ, n̂ = (0,−1)>,
– on face 2 (η = 1− ξ), k ∈ JNe + 1, 2NeK, k increasing with η, n̂ = (1, 1)>,
– on face 3 (ξ = 0), k ∈ J2Ne + 1, 3NeK, k increasing when η decreases, n̂ = (−1, 0)>.

The remaining N tri
i = p (p + 1) FP, simply denoted Ni in this section, are located in the interior

and represented with blue squares. Since one physical point is considered as two separate DoF with
different normal vectors, there are Ni/2 physical FP. FP associated with the unit vector n̂ = (1, 0)>
in the reference element are numbered with k ∈ J3Ne + 1, 3Ne + 1 + Ni/2K whereas FP whose unit
vector is n̂ = (0, 1)> are numbered with k ∈ J3Ne + 1 +Ni/2, 3Ne + 1 +NiK. An example of the FP
numbering and their associated normal vector is given in Fig. 3.3 for the case p = 2.

0.0 0.5 1.0
ξ

0.0

0.5

1.0

η

ξFP1 ξFP2 ξFP3

ξFP4

ξFP5

ξFP6

ξFP7

ξFP8

ξFP9
ξFP10 ,ξFP13 ξFP11 ,ξFP14

ξFP12 ,ξFP15

Figure 3.3. – FP numbering in the reference triangular element - Example of FP distribution for p = 2
(edge: , interior: )

3.3.2. Interior Flux Points Locations Based on Quadrature Rules

Now that the FP numbering is settled, the choice of the interior FP location can be addressed. It is
recalled here that FP located on edges are placed at the Gauss-Chebyshev points given by Eq. (2.12)
and that the number of physical interior FP is given by Eq. (3.14). The placement of interior FP leading
to stable SDRT schemes was studied for p ∈ J1, 3K by May and Schöberl [143]. Their conclusions can
be summarized as follow:

– For SDRT1, the interior physical FP is placed at the triangle centroid;
– For SDRT2, interior physical FP are placed according to the three-points quadrature rule of order

2. This quadrature rule was given by many authors [168–174] as the higher order three-points
rules;
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– For SDRT3, interior physical FP are located at the six-point quadrature rule of order 4 given by
[169–177].

Choosing a quadrature rule associated with the same number of points as the interior physical FP
seems to be a promising choice. To be suitable, the quadrature rule should not include integration
points located on edges or outside the triangle. Among the available literature, several appropriate
quadrature rules are found for p > 3:

– For SDRT4, the 10-points quadrature rules of order 5 of Vioreanu-Rokhlin [173] and Williams-
Shunn-Jameson [174];

– For SDRT5, the 15-points quadrature rule of order 7 of Williams-Shunn-Jameson [174], Witherden-
Vincent [177], Xiao-Gimbutas [172], Vioreanu-Rokhlin [173], Papanicolopulos [178] and Laursen-
Gellert [169].

– For SDRT6, the 21-points quadrature rule of order 8 of Williams-Shunn-Jameson [174] and
Vioreanu-Rokhlin [173] and the 21-points quadrature rule of order 9 of Laursen-Gellert [169]

3.3.3. Fourier Stability Analysis

In this section, the Fourier analysis presented by Castonguay in his Ph.D. thesis [158] for the FR
method is adapted to the SDRT scheme and results are presented for p ∈ J4, 6K.

Let us consider the 2D linear advection problem given by Eq. (3.1) on a square domain Ω = [0, L]2
with periodic boundary conditions. The domain Ω is meshed as a Cartesian mesh composed of
Nx × Ny quadrilateral elements of size ∆x × ∆y. The mesh is distorted using the skew angle µ.
Each quadrilateral cell is then divided into two triangles, identified as Ti1,i2,1 and Ti1,i2,2, i1 ∈ J1, NxK,
i2 ∈ J1, NyK (Fig. 3.4). To properly define the mesh pattern, two vectors are introduced: B1 = (∆x, 0)
and B2 = ∆x(cosµ, sinµ). The mesh is made dimensionless using a scaling by the Cartesian mesh
edge length ∆x, leading to the dimensionless vectors B̂1 = (1, 0) and B̂2 = (cosµ, sinµ).

Figure 3.4. – Mesh generating pattern used for the 2D Fourier stability analysis on triangles

Defining Ûi1,i2
j = [Ûi1,i2,1

j , Ûi1,i2,2
j ]> as the vector collecting the solution in the reference domain on

the two triangles Ti1,i2,1 and Ti1,i2,2 for each SP j ∈ J1, NSP K, the SDRT spatial discretization using
an upwind flux on this mesh takes the form:

dÛi1,i2
j

dt
= −||c||∆x

[
M0,0Ûi1,i2

j +M−1,0Ûi1−1,i2
j +M+1,0Ûi1+1,i2

j +M0,−1Ûi1,i2−1
j +M0,+1Ûi1,i2+1

j

]
. (3.22)
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In Eq. (3.22), M0,0, M−1,0, M+1,0, M0,−1 and M0,+1 are matrices of size [2NSP , 2NSP ] containing the
three steps of the spatial discretization (extrapolation, flux computation and differentiation), which
depend on the advection angle θ, the grid angle µ as well as on the SP and FP locations. The
exact formulation of those matrices is given in Appendix D.1. The discrete numerical solution is now
assumed under the form of a planar harmonic wave:

Ûi1,i2 = Ũ exp
(
Ik (i1B1 + i2B2)

)
, (3.23)

where Ũ is a complex vector of dimension 2N tri
SP , independent of i1 and i2, and k = k(cosϑ, sinϑ)>,

k being the wavenumber of the harmonic wave and ϑ its orientation angle.
Using the non-dimensional quantities previously introduced, the discrete numerical solution is:

Ûi1,i2 = Ũ exp
(
Iκ
(
(i1 + i2 cosµ) cosϑ+ i2 sinµ sinϑ

))
, (3.24)

κ = k∆x being the grid frequency. Injecting Eq. (3.24) into Eq. (3.22), one gets:

dŨ
dt

= −||c||∆x
[
M0,0 + M−1,0 exp

(
− Iκ cosϑ

)
+ M+1,0 exp

(
Iκ cosϑ

)
+ M0,−1 exp

(
− Iκ(cosµ cosϑ+ sinµ sinϑ)

)
+ M0,+1 exp

(
Iκ(cosµ cosϑ+ sinµ sinϑ)

)]
Ũ

= ||c||∆xMzŨ.

(3.25)

The complete spectrum of the SDRT spatial operator λMz can be obtained by computing the eigen-
values of Mz. The matrix Mz depends on:

– the SP location,
– the FP location,
– the advection angle θ ∈ [0, 2π],
– the grid frequency κ ∈ [−π, π],
– the harmonic plane orientation ϑ ∈ [0, 2π],
– the skew angle µ ∈ [0, π/2].

Using the eigenvalue analysis, the SDRT spatial discretization is stable under a Fourier stability anal-
ysis if Re(λMz) is non-positive. The Fourier analysis was applied to the SDRT scheme for triangular
[142, 143] and hybrid grids [144]. In both cases, the SDRT scheme is found linearly stable up to
p = 3 using the interior FP location given in section 3.3.2. Efforts were made to determine stable
formulations for p > 3 but results were not successful.

The spectrum of the spatial SDRT operator is computed for p ∈ J4, 6K using Fourier analysis for
different implementations (i.e. different interior FP locations) for κ ∈ [−π, π], ϑ ∈ [0, 2π], θ = 0 and
µ = π/2. The SP location is set to the Williams-Shunn-Jameson quadrature points [174]. Values of
max(Re(λMz)) are displayed in Table 3.1 for each SDRT implementation based on interior FP locations
taken as the quadrature rules presented in section 3.3.2. The first observation is that all SDRT
implementations show positive values of max(Re(λMz)), indicating that the spatial discretization is
unstable. One can then note that only two quadrature rules are appropriated for both p = 4, p = 5
and p = 6: the Williams-Shunn-Jameson and the Vioreanu-Rokhlin. For the three polynomial degrees
p, the use of the WSJ quadrature rule as the interior FP leads to smaller values of max(Re(λMz))
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compared to the Vioreanu-Rokhlin quadrature rule. For the SDRT5 scheme, two of the quadrature
rules (Laursen-Gellert and Papanicolopulos) lead to very high values of max(Re(λMz)), whereas the
smaller value is given by the Witherden-Vincent quadrature rule. For the SDRT6 scheme, positive
values of max(Re(λMz)) are obtained for each quadrature rule.

Quadrature rule SDRT4 SDRT5 SDRT6
Williams-Shunn-Jameson [174] 1.11 · 10−5 5.85 · 10−5 2.87 · 10−3

Vioreanu-Rokhlin [173] 8.29 · 10−3 1.75 · 10−2 2.92 · 10−2

Laursen-Gellert [169] - > 1012 9.82 · 10−1

Witherden-Vincent [177] - 1.31 · 10−5 -
Xiao-Gimbutas [172] - 7.33 · 10−2 -
Papanicolopulos [178] - > 1012 -

Table 3.1. – Values of max(Re(λMz)) for θ = 0 using different quadrature rules as the interior FP
locations

Spectra of unstable discretizations are plotted in Fig. 3.5 for SDRT4 using Williams-Shunn-Jameson
(Fig. 3.5a) and Vioreanu-Rokhlin (Fig. 3.5b) quadrature rules and for SDRT5 using Williams-Shunn-
Jameson (Fig. 3.5c) and Witherden-Vincent (Fig. 3.5d). A closer view on each spectra allows one to
clearly see the positive eigenvalues real part of the spatial operator Mz.

(a) SDRT4, Williams-Shunn-Jameson rule (b) SDRT4, Vioreanu-Rokhlin rule

(c) SDRT5, Williams-Shunn-Jameson rule (d) SDRT5, Witherden-Vincent rule

Figure 3.5. – Fourier footprint of the SDRT4 and SDRT5 spatial discretizations on triangles for θ = 0
using different interior FP locations
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3.3.4. Stability Analysis on a Fixed Number of Cells
The FNC approach introduced in section 3.1.3 is considered to seek stable SDRT schemes for p > 3

by studying multiple interior FP locations.

Analysis on Two Triangles The behavior of the SDRT scheme is studied on a regular mesh composed
of two triangles T1 and T2 (Fig. 3.6) with periodic boundary conditions. It is recalled here that the main
difference with the common Fourier analysis is that no plane harmonic wave is injected. The periodic
boundary conditions are imposed through the numerical flux. The velocity vector is c = (cos θ, sin θ)>.
Using symmetry properties, the choice of the advection angle is reduced to θ ∈ [0, π/4].

0.0 0.5 1.0
ξ

0.0

0.5

1.0

η

T1

T2

Figure 3.6. – Computational domain for the FNC linear stability analysis on triangles - Example of
FP distribution for p = 2, N = 2 (edge: , interior: )

On the computational domain Ω = (T1, T2), Eq. (3.8) takes the form:
∂ÛT1

j (t)
∂t

∂ÛT2
j (t)
∂t

 = −

Djk 0

0 Djk

C

Tkj 0

0 Tkj


ÛT1

j (t)

ÛT2
j (t)

 , j ∈ J1, N tri
SP K, k ∈ J1, N tri

FP K, (3.26)

where ÛT1
j and ÛT2

j as the vectors collecting the solution values at SP for the triangle T1 and T2. The
transfer matrix is given by Eq. (2.90):

Tkj =
Ntri
SP∑

m=1
(Φm(ξj))−1 Φm(ξk), (3.27)

and the differentiation matrix by Eq. (2.101):

Djk =
Ntri
FP∑
n=1

(φn(ξk) · n̂k)−1 ∇̂ · φn(ξj). (3.28)
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The velocity matrix C should verify Eq. (3.6) while taking into account the mesh connectivity and
the periodic boundary conditions. Following the FP numbering previously settled, it can be expressed
as:

C =


CL O3Ne,Ni CR O3Ne,Ni

ONi,3Ne CI
Ni ONi,3Ne ONi,Ni

CR O3Ne,Ni CL O3Ne,Ni
ONi,3Ne ONi,Ni ONi,3Ne CI

Ni

 , (3.29)

where CI , CL and CR are defined by:

CI =
[
diag(|J |J−1(c · n̂))

]
Ni,Ni

, (3.30)

CL = (c · n)
[
diag(1 + sign(c · n)

2 )
]

3Ne,3Ne
, (3.31)

and

CR = (c · n)

bdiag(


0 . . .

1− sign(c · n)
2... ... ...

1− sign(c · n)
2 . . . 0


Ne,Ne

)


3,3

. (3.32)

where, when applied to an arbitrary square matrix A, the operator bdiag() gives a block diago-
nal matrix such that the main-diagonal blocks are the square matrix A and all off-diagonal blocks
are zeros matrices. The stability of the scheme on two triangles is then study through the matrix
Mn = −diag(D) C diag(T).

Optimization process To study multiple interior FP location, an optimization problem is consid-
ered. The aim is to minimize Re(λMn) by considering the interior FP location as the optimization
parameters. The optimization algorithm used is the Differential Evolution algorithm from the SciPy
library [179]. This algorithm optimizes a given problem by considering a population of candidate
solutions (here, the interior FP location) and improves them according to a given measure of quality
(here, Re(λMn)). The choice of this algorithm is motivated by the ability of Differential Evolution to
search very large spaces of candidate solutions.

To set up the interior FP position, a symmetry along y = x is imposed in the triangle. The position
of the interior FP located on this line is defined by a parameter αi ∈]0, 0.5[. For p = 4 (respectively
p = 5), the number of FP on this line is 2 (respectively 3). Note that this choice is arbitrary. To set
up the position of the remaining interior FP, two parameters (βi, γi) ∈]0, 1[×]0, βi/2[ per points are
needed. The parameter βi is used to browse the triangle from 0 to y = −x + 1 using y = −x + βi.
The parameter γi is used to adjust the position of the point on the line y = −x+ βi. Because of the
symmetry rule, one set (βi, γi) gives two FP located at (βi/2 + γi, βi/2− γi) and (βi/2− γi, βi/2 + γi),
thus the number of parameters in the optimization problem is equal to Ni/2. An example of the set
up for p = 3 is given in Fig. 3.7 and the associated coordinate parameters are given in Table 3.2.
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Flux Point (ξ, η)

ξ10 (α1, α1)

ξ14 (α2, α2)

ξ11 (β1/2 + γ1, β1/2− γ1)

ξ13 (β1/2− γ1, β1/2 + γ1)

ξ12 (β2/2 + γ2, β2/2− γ2)

ξ15 (β2/2− γ2, β2/2 + γ2)
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y = x

y = −x+ β1 y = −x+ β2

ξFP10

ξFP11 ξFP12

ξFP13
ξFP14

ξFP15

Table 3.2. – Interior FP coordinate
parameters for SDRT3

Figure 3.7. – Interior FP set up in the reference
triangle for SDRT3

The Differential Evolution algorithm is run for SDRT schemes up to the sixth-order (p = 5). For
each scheme, several sets of interior FP lead a spectrum composed of non positive values of Re(λMn).
This result indicates that the definition of a stable SDRT formulation on two triangles is not unique.
One of the possible sets of coefficients to built the position of the interior FP is plotted in Fig. 3.8 for
SDRT4 and SDRT5. From this figure, it can be noted that the interior FP are not evenly distributed.
This is due to the fact that the Differential Evolution algorithm did not take into account an initial
interior FP distribution, which could be given by a quadrature rule for example. The interior FP
distribution determined by the Differential Evolution optimization process might then be associated
with a significant extrapolation error.
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Figure 3.8. – Sets of FP determined using FNC analysis in the reference triangle
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Quadrature rules While the optimization process was running, the capability of the published
quadrature rules given in section 3.3.2 to lead to stable formulations for p > 3 on two triangles was
also analyzed.

For SDRT4 and SDRT5 schemes, two quadrature rules per order lead to a linearly stable scheme:
the Williams-Shunn-Jameson [174] and the Vioreanu-Rokhlin [173] quadrature rules for the SDRT4;
the Williams-Shunn-Jameson [174] and the Witherden-Vincent [177] quadrature rules for the SDRT5.
Spectra of SDRT formulations obtained with the FNC approach using the quadratures rules and the
optimization process as interior FP are given in Fig. 3.9. All values of max(Re(λMn)) are negative.
For SDRT implementations based on interior FP located at quadrature points, these results differ
with the standard Fourier analysis results presented in the previous section.

(a) SDRT4: Williams-Shunn-Jameson rule (+),
Vioreanu-Rokhlin rule (×), Optimization (•)

(b) SDRT5: Williams-Shunn-Jameson rule (+),
Witherden-Vincent rule (×), Optimization (•)

Figure 3.9. – Spectra of matrix Mn obtained using the FNC method for SDRT4 and SDRT5 schemes

Comments on SDRT6 For the SDRT6 scheme, none of the tested quadrature rules led to a stable
scheme on two triangles. When using the optimization process for p = 6, the optimization becomes
too expensive in time: the CPU time per set of points is almost 3 times higher than for p = 4 and,
given the large number of interior FP, the process has to be run longer. The differential algorithm
did not manage to detect a non-positive spectrum before it was stopped. This does not state the fact
that stable formulations could not be obtained in the future.

Differential Evolution Optimization using Fourier Analysis The Differential Evolution optimiza-
tion process has also been run using the standard Fourier analysis. However, since it implies a grid
frequency discretization, the computation of Mz eigenvalues is done repeatedly for each grid fre-
quency. To compute eigenvalues on a triangular grid using SDRT4 for a given velocity using µ = π/2
and ϑ ∈ [0, 2π], κ ∈ [−π, π], each discretized using 11 values, the Fourier analysis is 15 times slower
than the FNC method. The optimization process based on the Differential Evolution did not manage
to found any stable sets of interior FP using the Fourier analysis.
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Considering a small computational domain composed of two triangles, stable spectra of the spatial
operator matrix Mn were obtained for SDRT4 and SDRT5 by setting the interior FP position us-
ing two different means (through an optimization process and published quadrature rules). Results
given by this analysis on two triangles differ with the standard Fourier analysis since spectra showing
stable SDRT discretizations were obtained for SDRT implementations based on interior FP located
at quadrature points.
The FNC approach is now used to investigate the stability of the SDRT discretization on computa-
tional domains composed of a larger number of cells. The aim is to examine the assumption that the
stability on two triangles would lead to stability on any domain.

Analysis on 2N2 Triangles The analysis performed on two triangles in the previous section is now
extended to a regular domain composed of 2N2 triangles. An example of the considered domain
is given in the case of N = 5 in Fig. 3.10. The aim is to verify that the FP locations previously
determined lead to stable SDRT formulations when the number of cells increases.

Figure 3.10. – Computational domain for the FNC linear stability analysis on triangles - Example for
N = 5

In Fig. 3.11, the maximum of the real part of M eigenvalues is plotted as a function of N for the
advection angle θ = 0 for SDRT4 (right) and SDRT5 (left). The interior FP location is taken as the
William-Shunn-Jameson quadrature points. The first observation that can be made is that when the
number of cells increases, the spatial discretization becomes unstable, with a maximum eigenvalue
real part of order 10−5. In fact, as N increases, the maximum eigenvalue real part tends to the values
given by the Fourier analysis. There is a dependency between the number of cells N and the value of
max(Re(λMn)). For p = 4, the scheme is stable for N = 1 and N = 2. When N increases, the spatial
discretization becomes unstable. If N is a multiple of 3, then the same value is always obtained. For
p = 5, the only stable case is N = 1. The same value of max(Re(λM)) is obtained if N is even.

Analyses for interior FP location given by the optimization process or by other quadrature rules lead
to the same conclusion: the SDRT spatial discretization is not stable when the number of cells in the
computational domain increases. By considering a computational domain composed of a fixed number
of cells, the stability results are strongly dependent on the number of cells. A pattern exists depending
on the nature of N (multiple of 3 for p = 4, even for p = 5) but conclusions can not be extended to a
general case. Similar observations were made when studying the CFL limit of the standard 1D scheme
with the FNC approach. Those results, presented in Appendix C, show that the approach can recover
the Fourier stability analysis results if the DoF number, given by NDoF = (p+ 1)N , is even. For both
the standard 1D SD and the SDRT scheme, the Fourier analysis gives a more general framework.
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Figure 3.11. – Maximum eigenvalue real part of Mn determined using the FNC analysis for different
domain size

To describe the stability behavior of the SDRT scheme in a general framework, the FNC approach
is put aside in favor of the common Fourier analysis. The Fourier stability analysis presented in
section 3.3.3 showed the instability of SDRT schemes for orders of accuracy higher than 4. To
overcome this limitation, two different solutions will be explored.
The first possibility is based on the observation that using specific quadrature rule as the interior
FP location, positive real parts of the SDRT spatial operator eigenvalues are of small order. These
small positive values could then be dissipated by the numerical dissipation induced by the temporal
discretization. Chapter 4 investigates this option.
The second possibility consists in finding interior FP locations leading to SDRT discretization proven
as stable under a Fourier analysis. Optimization algorithms seem to be a promising technique to
determine such sets of FP. However, the Differential Evolution algorithm introduced in this chapter
is not compatible with the Fourier analysis because of a high computational time. Additionally,
since no initial condition can be specified, there is no guarantee that interior FP determined using
the Differential Evolution algorithm would lead to a negligible extrapolation error. To overcome
those limitations, the use of a gradient descent algorithm could be the solution since this method
is less costly in time and can take an initial solution into account. This alternative is addressed in
Chapter 5.
Before that, the Fourier analysis is applied to tetrahedral elements.
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3.4. Spectral Difference Scheme Using Raviart-Thomas Elements on
Tetrahedral Elements

The previous section has shown that the Fourier analysis is the proper way to address the SDRT
scheme stability in a general framework. It is thus the only analysis conducted to study the stability
of the SDRT scheme on tetrahedral elements.

3.4.1. Reference Element Convention and Points Numbering
For clarity purposes, the SP and FP numbering and their associate normal vector in the reference

tetrahedron are settled in this section. The reference tetrahedron is defined through its four nodes
and four faces. The face numbering is chosen to be consistent with the CFD General Notation System
(CGNS). The number of SP is N tet

SP = (p+ 1)(p+ 2)(p+ 3)/6. They are represented by green triangles
in Fig. 3.12a. On each face, there are N tet

f = (p+ 1)(p+ 2)/2 FP, simply denoted Nf here since this
section is dedicated to tetrahedral elements. They are denoted ξk, where k is defined in the following,
and associated with the normal vectors:

– Face 1: N1, N3, N2, k ∈ J1, Nf K, n̂ = (0, 0,−1)>,
– Face 2: N1, N2, N4, k ∈ JNf + 1, 2Nf K, n̂ = (0,−1, 0)>,
– Face 3: N2, N3, N4, k ∈ J2Nf + 1, 3Nf K, n̂ = (1, 1, 1)>,
– Face 4: N3, N1, N4, k ∈ J3Nf + 1, 4Nf K, n̂ = (−1, 0, 0)>.

Additionally, a convention has to be chosen to set the distribution of FP on a same face. Let us
consider a face defined by three nodes (NA, NB, NC). FP will be numbered using a 2D spatial system
formed by the vectors −−−−→NA NB and −−−−→NA NC . The face origin is thus the point NA. The index k will be
increasing among the −−−−→NA NB direction first, and then among −−−−→NA NC . On each face, the 2D spatial
system is chosen as:

– Face 1: (NA, NB, NC) = (N1, N3, N2),
– Face 2: (NA, NB, NC) = (N1, N2, N4),
– Face 3: (NA, NB, NC) = (N2, N3, N4),
– Face 4: (NA, NB, NC) = (N1, N4, N3).

This convention is illustrated in Fig. 3.12b, 3.12c, 3.12d, 3.12e. The remaining N tet
i = p(p+1)(p+2)/2

FP, simply denoted Ni, are located inside the tetrahedron. The number of physical FP is reduced to
Ni/3 by considering each interior FP as three different degree of freedom associated with the normal
vector n̂ = (1, 0, 0)>, n̂ = (0, 1, 0)>, n̂ = (0, 0, 1)> (Fig. 3.12f).
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Figure 3.12. – Points distribution in the tetrahedral reference element for p = 1: SP ξj ( ) and FP
ξk (face ( ) and interior ( ) )
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3.4.2. Choice of Solution Points and Flux Points Location
The location of SP and FP needs to be chosen for the reference tetrahedron. The number of SP is

given by:
N tet
SP = 1

6(p+ 1)(p+ 2)(p+ 3). (3.33)

The number of FP located on each face is equal to (p+ 1)(p+ 2)/2, which corresponds to the number
of SP on a triangle. By choosing their location to be the same as the SP on a triangle, it is ensured
that a tetrahedral and a prismatic element will share the same FP on faces, avoiding the need to apply
mortar techniques as detailed in Section 3.1.1.2. The number of interior FP is given by:

N tet
i = 1

2p(p+ 1)(p+ 2). (3.34)

Since each physical FP is counted as three separated DoF, the number of physical interior FP for
which the position has to be settled is N tet

pi = 1
6p(p + 1)(p + 2). The number of SP and physical

interior FP is summarized in Table 3.3. It can be noted that the number of physical interior FP for a
SDRTp scheme correspond to the number of SP for a SDRTp−1 scheme.

p N tet
SP N tet

pi

1 4 1
2 10 4
3 20 10
4 35 20
5 56 35
6 84 56

Table 3.3. – Number of SP and physical interior FP for SDRT scheme on tetrahedral elements

To set the SP and physical interior FP locations on tetrahedral elements, quadrature rules available
in the literature are studied. To be suitable for the SDRT implementation, the quadrature rules
should not have points located on corner, edge or face. Three quadrature rules are found to lead to
the appropriate number of points for each degree p while fulfilling this requirement: the Newton-Cotes
Open (NCO) [180], the Vioreanu-Rokhlin [173] and the Shunn-Ham [181] quadrature rules. Since those
quadratures rules are suitable for each degree p, they can be used for both the SP and the physical
interior FP by choosing the adequate quadrature order. Other quadrature rules can lead to the proper
number of points for a given degree p and will be given below. The SP are chosen to be located at
the Shunn-Ham quadrature points. For the physical interior FP:

– For p = 1, all the studied quadrature rules led to the same physical interior point located at
(ξ, η, ζ) = (0.25, 0.25, 0.25).

– For p = 2, it is noted that several quadrature rules lead to the very same set of points (Keast
[182], Vioreanu-Rokhlin [173], Shunn-Ham [181], Witherden-Vincent [177], Yu [183], Hammer-
Marlowe-Stroud [168], Liu-Vinokur [184]). This set of point will be studied here as the Shunn-
Ham quadrature rule. Three other quadrature rules containing four points will be studied: the
Jaśkowiec-Sukumar [185], the Xiao-Gimbutas [172] and the NCO [180].

– For p > 2, the studied quadrature rules are Shunn-Ham, Vioreanu-Rokhlin and NCO, which
contain the appropriate number of points for each p.

3.4.3. Matrix Form
Let us consider the 3D linear advection problem given by Eq. (3.1) on a domain Ω = [0, L]3 with

periodic boundary conditions. The velocity vector is c = (sin θ2 cos θ1, sin θ2 sin θ1, cos θ2)> where
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(θ1, θ2) ∈ [0, π/4]. The domain Ω is meshed as a Cartesian mesh composed of Nx×Ny×Nz hexahedral
elements of size ∆x × ∆y × ∆z, with ∆x = ∆y = ∆z. Each hexahedral cell is then divided into
tetrahedron. An hexahedron can be decomposed into a minimum of five tetrahedral elements, but
to ensure the periodicity, six tetrahedron are required. The six tetrahedron of the hexahedral cell
(i1, i2, i3) are denoted T i1,i2,i3,1, T i1,i2,i3,2, T i1,i2,i3,3, T i1,i2,i3,4, T i1,i2,i3,5, T i1,i2,i3,6 and are represented in
Fig. 3.13.
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Figure 3.13. – Computational domain for the Fourier stability analysis on tetrahedral elements

Defining:

Ûi1,i2,i3
j = [Ûi1,i2,i3,1

j , Ûi1,i2,i3,2
j , Ûi1,i2,i3,3

j , Ûi1,i2,i3,4
j , Ûi1,i2,i3,5

j , Ûi1,i2,i3,6
j ]>, (3.35)

as the vector collecting the solution in the reference domain on the six tetrahedron for each SP
j ∈ J1, NSP K on cell (i1, i2, i3), the SDRT spatial discretization using an upwind flux on this mesh
takes the form:

dÛi1,i2,i3
j

dt
= −||c||∆x

[
M0,0,0 Ûi1,i2,i3

j + M−1,0,0 Ûi1−1,i2,i3
j

+ M+1,0,0 Ûi1+1,i2,i3
j

+ M0,−1,0 Ûi1,i2−1,i3
j

+ M0,+1,0 Ûi1,i2+1,i3
j

+ M0,0,−1 Ûi1,i2,i3−1
j

+ M0,0,+1 Ûi1,i2,i3+1
j

]
.

(3.36)

62



3.4 Spectral Difference Scheme Using Raviart-Thomas Elements on Tetrahedral Elements

In Eq. (3.22), M0,0,0, M−1,0,0, M+1,0,0, M0,−1,0, M0,+1,0, M0,0,−1 and M0,0,+1 are matrices of size
[6NSP , 6NSP ] containing the three steps of the spatial discretization (extrapolation, flux computation
and differentiation), which depend on the advection angles as well as on the SP and FP locations.
The exact formulation of those matrices is given in Appendix D.2.

3.4.4. Fourier Stability Analysis
To perform the Fourier stability analysis on tetrahedral elements, the discretized numerical solution

is assumed under the form of a planar harmonic wave:

Ûi1,i2,i3 = Ũ exp
(
Ik (i1x + i2y + i3z)

)
, (3.37)

where

(x,y, z) =


∆x

0
0

 ,
 0

∆x
0

 ,
 0

0
∆x


 (3.38)

are the vectors defining the mesh, Ũ is a complex vector of dimension 6N tet
SP , independent of i1, i2

and i3, and

k = k

cosϑ1 sinϑ2
sinϑ1 sinϑ2

cosϑ2

 , (3.39)

k being the wave number of the harmonic wave and (ϑ1, ϑ2) its orientation angles. Using non-
dimensional quantities, Eq. (3.37) becomes:

Ûi1,i2,i3 = Ũ exp
(
Iκ (i1 cosϑ1 sinϑ2 + i2 sinϑ1 sinϑ2 + i3 cosϑ2)

)
, (3.40)

κ = k∆x being the grid frequency. Injecting Eq. (3.40) into Eq. (3.36), one gets:

dŨ
dt

= −||c||∆x
[
M0,0,0 + M−1,0,0 exp(−Iκ cosϑ1 sinϑ2)

+ M+1,0,0 exp(Iκ cosϑ1 sinϑ2)
+ M0,−1,0 exp(−Iκ sinϑ1 sinϑ2)
+ M0,+1,0 exp(Iκ sinϑ1 sinϑ2)
+ M0,0,−1 exp(−Iκ cosϑ2)

+ M0,0,+1 exp(Iκ cosϑ2)
]

Ũ

= ||c||∆x Mz Ũ.

(3.41)

The complete spectrum of the SDRT spatial operator λMz is obtained by computing the eigenvalues
of Mz over the grid frequency κ ∈ [−π, π] considering (ϑ1, ϑ2) ∈ [0, 2π]. For p = 1, the spectrum of
Mz is plotted in Fig. 3.14a for (θ1, θ2) ∈ (0, π/8, π/4)2. A closer view on the spectrum allows to see
the non-positivity of Re(λMz) and to establish the stability of the spatial discretization.

For p = 2, there are 4 interior physical FP. In Fig. 3.14b, the spectrum of the SDRT2 discretization
using the Shunn-Ham rule for interior FP is plotted for (θ1, θ2) ∈ (0, π/8, π/4)2. A closer view on the
spectrum allows to see the non-positivity of Re(λMz), indicating a stable SDRT scheme.

63



Chapter 3 : Linear Stability Analysis for the Spatial Discretization

(a) SDRT1 (b) SDRT2, Shunn-Ham rule

Figure 3.14. – Spectrum of matrix Mz for stable SDRT schemes on tetrahedral elements, (θ1, θ2) ∈
(0, π/8, π/4)2

In Fig. 3.15, the spectrum is plotted for the particular case (θ1, θ2) = (0, 0) for the three other
quadrature rules: the Jaśkowiec-Sukumar (Fig. 3.15a ), the Xiao-Gimbutas (Fig. 3.15b) and the
NCO (Fig. 3.15c). The SDRT scheme using those three quadrature rules is found unstable with
max(Re(λMz)) ∼ 3 · 10−4 for Jaśkowiec-Sukumar, max(Re(λMz)) ∼ 3 · 10−2 for Xiao-Gimbutas and
max(Re(λMz)) ∼ 4 ·10−3 for NCO. Using the NCO instead of the Shunn-Ham rule for the SP location
did not influence the stability.

(a) Jaśkowiec-Sukumar rule (b) Xiao-Gimbutas rule (c) NCO rule

Figure 3.15. – Spectrum of matrix Mz for unstable SDRT2 schemes on tetrahedral elements, (θ1, θ2) =
(0, 0)

For p > 2, the SDRT stability was studied using the position of physical interior FP as Shunn-
Ham, NCO and Vioreanu-Rokhlin quadrature rules. None of these rules were able to lead to stable
formulations, with a max(Re(λMz)) of ∼ 80, 400 and 5000 for p = 3, 4 and 5 (respectively).

The SDRT scheme on tetrahedral elements is demonstrated as linearly stable under a Fourier analysis
up to the third-order of accuracy, provided that the FP location is defined according to the Shunn-
Ham quadrature rule.
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Chapter 4
Linear Stability Analysis for the
Coupled Time-Space Discretization
The linear stability analysis of the spatial discretization conducted in the previous chapter led to the
conclusion that the Fourier analysis is the proper way to determine an SD scheme stability. Under
a Fourier analysis, the SDRT spatial discretization on triangles was shown as unstable for orders of
accuracy higher than four. However, the positive eigenvalues real part value of the spatial operator
spectrum are of small order.
This chapter extends the Fourier analysis to the study of the coupled time-space discretization to
address two points. The first one examines the impact in terms of stability of the time integration
scheme for spatially stable SDRT schemes. The aim is to ensure that the full discretization remains
stable. The second one addresses the ability of time integration schemes to stabilize spatially unsta-
ble SDRT schemes through their numerical dissipation properties.
First, explicit Runge-Kutta time integration methods are presented and applied to the semi-
discretized SD matrix form. The stability of the SDRT spatial scheme on triangles coupled with
different Runge-Kutta methods is then analyzed for spatially stable (SDRT2 and SDRT3) and spa-
tially unstable schemes (SDRT4 and SDRT5). Finally, the behavior of spatially stable SDRT1 and
SDRT2 schemes on tetrahedral elements coupled with temporal schemes is studied.

Overview

4.1. Temporal Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.1.1. Runge-Kutta Integration Methods . . . . . . . . . . . . . . . . . . . . . . 66
4.1.2. Matrix Form of the Coupled Time-Space Discretization . . . . . . . . . . . . 67
4.1.3. Fourier Analysis of the Coupled Time-Space Discretization . . . . . . . . . . 67
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4.2.1. Spatially Stable Schemes: SDRT2 and SDRT3 . . . . . . . . . . . . . . . . . 69
4.2.2. Spatially Unstable Schemes: SDRT4 and SDRT5 . . . . . . . . . . . . . . . 73

4.3. Tetrahedral Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
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4.1. Temporal Integration
4.1.1. Runge-Kutta Integration Methods

Let us considering a differential equation:

∂u

∂t
= R(u). (4.1)

A general m-stage Runge-Kutta (RK) method for Eq. (4.1) can be written as in [186]:
u(l) =

l−1∑
k=0

(
αlku

(k) + ∆tβlkR(u(k))
)
, l = 1, ...,m,

u(0) = u(n), u(m) = u(n+1),

(4.2)

where, in the case of Eq. (3.1), R(u(k)) = −∇ · f(u(k)).

An alternative form of Eq. (4.2) can be written as in [187]:

u(n+1) = un +
m∑
j=1

γj ∆tj ∂
jun

∂tj
. (4.3)

Several time integration schemes are considered in this chapter and are listed below. For each
scheme, the associated coefficients are given in Appendix F.

– The family of Total Variation Diminishing (TVD) time discretization [186] introduced by Got-
tlieb and Shu, later called Strong Stability Preserving (SSP) schemes [188]. The nonlinear stabil-
ity property of these methods makes them particularly appropriated for the time-integration of
hyperbolic partial differential equations. The class of SSP schemes was extended by Spiteri and
Ruuth in [189]. The optimal m-stage SSP RK method of order n will be denoted SSPmsno.
Coefficients (α, β) are given in Table F.1 for 2-stage to 4-stage schemes, and in Table F.2 for
5-stage schemes.

– The 4-stage RK scheme introduced by Jameson in [190] for multigrid calculations, denoted
RK4J in this work. The set of coefficients is chosen to improve the damping of high frequency
modes. They are given in Table F.1.

– The standard explicit 4-stage RK algorithm, denoted RKs4s. The low-storage formulation
based on Eq. (4.3) is given in Table F.3.

– The low storage RK schemes given by Bogey and Bailly in [187], which were optimized to ensure
low dissipation and low dispersion properties, denoted RKo5s and RKo6s. The formulation is
based on Eq. (4.3) and the associated coefficients γ are given in Table F.3.
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4.1 Temporal Integration

4.1.2. Matrix Form of the Coupled Time-Space Discretization

The system of linear differential equations given by Eq. (3.9) is time-integrated. The matrix form
of the time-integrated Eq. (3.9) using Eq. (4.2) is:

G(l) =
l−1∑
k=0

(αlkI + ∆tβlkM) G(k), l = 1, ...,m,

G(0) = I, Û(n+1) = G Û(n),

(4.4)

where Û(n) is Ûi
j at time n. The amplification factor of the coupled time-space discretization from

time n to n+ 1 is thus given by G(m) which will simply denoted G.
Using the formulation given by Eq. (4.3), the matrix form is:

Û(n+1) =

I +
m∑
j=1

γj∆tjMj

 Û(n)

⇔ Û(n+1) = GÛ(n).

(4.5)

4.1.3. Fourier Analysis of the Coupled Time-Space Discretization

The semi-discretized matrix form containing the planar harmonic wave given by Eq. (3.25) integrated
in time using Eq. (4.4) is:

G(l) =
l−1∑
k=0

(αlkI + νβlkMz) G(k), l = 1, ...,m,

G(0) = I, Ũ(n+1) = G Ũ(n),

(4.6)

where G = G(m) and ν is the CFL number defined by:

ν = ||c||∆t∆x (4.7)

Using Eq. (4.5), it becomes:

Ũ(n+1) =

I +
m∑
j=1

γjν
jMj

z

 Ũ(n)

⇔ Ũ(n+1) = GŨ(n).

(4.8)

Note that the CFL expression given by Eq. (Eq. (4.7)) is the classical definition of the CFL num-
ber. To compare CFL numbers used in high-order discontinuous methods with classical methods (like
Finite Volume, Finite Element or Finite Difference), one can introduced an equivalent CFL number
ν̂ defined as ν̂ = (p + 1)ν [133]. This equivalent CFL number makes sense in the one-dimensional
case since (p + 1) is a length scale corresponding to the mean distance between two adjacent SP.
However, this definition is not necessarily the most adequate one on triangles, as shown by Chalmers
and Krivodonova [191] for the DG method. To the author’ knowledge, there is no consensus on the
definition on an equivalent CFL number for high-order discontinuous methods on simplex cells. The
classical CFL definition is thus preferred in the manuscript.
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The stability condition on the coupled time-space discretization is thus obtained by requiring that
the amplitude of any harmonic does not grow in time, i.e.:

|G| =
∣∣∣∣∣Ũ(n+1)

Ũ(n)

∣∣∣∣∣ ≤ 1. (4.9)

In other words, to ensure a stable discretization, the spectral radius of the matrix G, denoted ρG
should be lower than 1, meaning that all the eigenvalues λG should be in the unit circle of the
complex plane. The transfer matrix G between time steps n and n+ 1 is the amplification factor (or
the Fourier symbol) of the full discretization.
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4.2. Triangular Elements
The amplification matrix G depends on the SDRT spatial operator through the matrix Mz and

on the CFL number ν = ‖c‖∆t/∆x. The stability of the coupled time-space discretization using
Fourier analysis is studied depending on the CFL number. The interior FP locations are taken as
Williams-Shunn-Jameson [174] quadrature points. For each different temporal schemes introduced in
section 4.1.1, the spectral radius ρG is computed as a function of the CFL number for the following
parameters:

– the advection angle θ ∈ [0, 2π],
– the grid frequency κ ∈ [−π, π],
– the harmonic plane orientation ϑ ∈ [0, 2π],
– the skew angle µ = (π/2, π/3, π/4).

The stability limit is determined by increasing the CFL number incrementally until the spectral radius
ρG becomes greater than 1.

4.2.1. Spatially Stable Schemes: SDRT2 and SDRT3

First, the Fourier analysis of SDRT schemes proven as spatially stable, i.e. SDRT2 and SDRT3, is
conducted. The aim is to study the stability properties of the coupled time-space discretizations.

4.2.1.1. Suitable Temporal Schemes

The Fourier analysis of the fully discretized linear advection equation is carried using temporal
schemes introduced in section 4.1.1. For a large number of temporal schemes, the stability condition
ρG ≤ 1 is verified up to a specific CFL value. Those schemes are thus suitable with the SDRT2 and
SDRT3 spatial discretizations. Their stability limits are summarized in Table 4.1. The CFL numbers
were determined numerically using the following parameters:

– θ ∈ [0, 2π],∆θ = π/8,
– κ ∈ [−π, π],∆κ = π/8,
– ϑ ∈ [0, 2π],∆ϑ = π/8,
– µ = (π/2, π/3, π/4).

Temporal scheme SDRT2 SDRT3
SSP3s3o 0.172 0.108
SSP4s3o 0.252 0.166
SSP5s3o 0.330 0.229
SSP5s4o 0.282 0.185
RKs4s 0.192 0.120
RKo5s 0.231 0.144
RKo6s 0.286 0.179
RK4J 0.179 0.123

Table 4.1. – CFL stability limits for SDRT2 and SDRT3 on triangles coupled with different temporal
schemes

69



Chapter 4 : Linear Stability Analysis for the Coupled Time-Space Discretization

The stability of the full discretization can be highlighted through the behavior of max(ρG) as the
CFL number increases. This evolution is plotted on Fig. 4.1 for two temporal schemes - SSP3s3o and
SSP5s4o - using SDRT2 (Fig. 4.1a) and SDRT3 (Fig. 4.1b). To ease the visualization, each max(ρG)
value is associated with a marker. If max(ρG) ≤ 1 (respectively max(ρG) > 1), the associated marker
is a triangle (respectively a circle). From Fig. 4.1, it can be observed that the coupled time-space
discretization is stable up to a given CFL number. Precise values of the maximum allowable CFL
numbers associated with SSP3s3o and SSP5s4o schemes can be retrieved in Table 4.1.

(a) SDRT2 (b) SDRT3

Figure 4.1. – Stability behavior of the coupled time-space discretizations for spatially stable SDRT
schemes on triangles using SSP3s3o and SSP5s4o temporal schemes

4.2.1.2. Highlight of a Severe Stability Condition for Second-Order Temporal Schemes

While conducting the Fourier analysis, it was noted that a stable SDRT discretization can lead to
an unstable coupled time-space discretization for a given temporal schemes for usual CFL numbers.
This instability was noted by Balan et al. [142] when using SSP2s2o coupled with a SDRT2 or SDRT3,
where a CFL number ensuring max(ρG) ≤ 1 could not be determined. The behavior of max(ρG) as
a function of the CFL number is plotted on Fig. 4.2 for different second-order temporal schemes -
SSP2s2o, SSP3s2o and SSP4s2o - using SDRT2 and SDRT3.

For SDRT2 (Fig. 4.2a), the triangular marker indicated that all temporal schemes are stable for
ν ≤ 0.01. However, each scheme leads to unstable discretization for higher CFL values. When using
SSP2s2o, max(ρG) is strictly higher than 1 for ν = 0.015 with a value of approximately 1 + 2 · 10−13,
denoted by a circle. In fact, as the CFL number increases, this value grows up to ∼ 1 + 9 · 10−4

(for ν = 0.135) before it becomes noticeable on the plot. Using SSP3s2o (respectively SSP4s2o),
max(ρG) ≤ 1 is ensured until ν = 0.015 (respectively ν = 0.02).

For SDRT3 (Fig. 4.2b), the three different second-order temporal schemes lead to max(ρG) > 1 even
for ν = 0.01. This extremely small stability limit makes the second-order temporal schemes presented
here impractical.
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(a) SDRT2 (b) SDRT3

Figure 4.2. – Stability behavior of the coupled time-space discretizations for spatially stable SDRT
schemes on triangles using second-order temporal schemes

This results is verified numerically by considering the 2D linear advection of a sine. The initial
solution of Eq. (3.1) is taken as:

u(x, y, 0) = sin (π(x+ y)) , (4.10)

and the velocity vector is c = (cos θ, sin θ)> where θ = π/8. The computational domain is Ω =
[−1, 1]× [−1, 1] and periodic boundary conditions are used in both x and y directions. At interfaces,
an upwind flux is used as the numerical flux. Following the notations introduced in section 3.3.3,
Eq. (3.1) is solved on a regular mesh obtained using Nx = Ny = 5 and µ = π/2. The initial solution
is shown in Fig. 4.3. The computation is run using SDRT2 associated with SSP2s2o and SSP3s3o.
In both case, the CFL number is ν = 0.1. Figure 4.4 shows the evolution of the solution maximum
absolute value at SP obtained using SSP2s2o and SSP3s3o. At each time, the maximum value can
be different depending on the location of the SP capturing the maximum value. Here, the interval in
which different maximum values are included is small compared to the scale of max|u|, leading to a
thick straight line. In Fig. 4.4a, it can be clearly seen that the solution obtained using SSP2s2o grows
up when the time increases, with a amplification of ∼ 5 times the initial solution at tf = 104 s. When
using SSP3s3o (Fig. 4.4b), no amplification is observed: max|u| shows a decreasing behavior. The
solution is lost due to numerical dissipation, which is expected since a very coarse mesh was used with
a third-order spatial discretization.

Figure 4.3. – Solution
initialization
for the sine advection

(a) SSP2s2o (b) SSP3s3o

Figure 4.4. – Evolution of max|u| using SDRT2 on triangular
mesh, θ = π/8, ν = 0.1
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Chapter 4 : Linear Stability Analysis for the Coupled Time-Space Discretization

The analysis of the coupled time-space discretization for spatially stable SDRT schemes have high-
lighted the importance of the effect of temporal integration. Temporal schemes of the second-order
SSP family associated with spatially stable SDRT schemes have revealed positive values of the ampli-
fication factor spectral radius for a CFL number ν > 0.02. Even if positive values are of small order,
they were shown as leading to an unstable computation. The severe condition on the CFL number
should thus be respected but would lead to a high computational cost. Therefore, second-order SSP
temporal schemes should be avoided for the benefit of time integration schemes leading to a stable
time-space discretization. Suitable temporal schemes were given in section 4.2.1.1.
This section has demonstrated that to ensure stable computations, the Fourier analysis should be
conducted on the fully (time and space) discretized equation.
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4.2.2. Spatially Unstable Schemes: SDRT4 and SDRT5

For accuracy orders higher than 4, SDRT schemes were shown as spatially unstable in section 3.3.3.
However, using the Williams-Shunn-Jameson (WSJ) quadrature points as the interior FP location, the
positive eigenvalues are quite small (∼ 10−5) for SDRT4 and SDRT5. The Fourier stability analysis
of the coupled time-space discretization is thus conducted to determine if the numerical dissipation
induced by the temporal scheme can stabilize the instability due to the spatial discretization. A
first study is conducted for the advection angle θ = π/8. This study aims to highlight the stability
behaviors and to establish the coherence between the Fourier stability analysis and the numerical
implementation of the SDRT method in JAGUAR.

4.2.2.1. Analysis for θ = π/8

The Fourier analysis of the coupled time-space discretization is conducted using θ = π/8, ϑ = π,
µ = π/2 and κ ∈ [−π, π]. Results are plotted for the SDRT4 (Fig.4.5) and SDRT5 (Fig.4.6) space
discretization coupled with different temporal schemes. For each scheme, the behavior of the maximum
radius value is plotted for a CFL number ν ∈ [0.01, 0.1]. A triangular marker indicates a stable scheme
(max(ρG) ≤ 1) whereas a circle is used to mark an unstable behavior (max(ρG) > 1). Three different
behaviors are observed:

– The coupled time-space discretization is unstable for all CFL numbers and shows increasing
max(ρG) values. Schemes associated with this behavior will be denoted as unstable.

– The coupled time-space discretization is unstable for small CFL numbers but becomes stable
from a given CFL number until reaching a second CFL stability limit. Those schemes are stable
in an interval, i.e. stable under a double CFL condition.

– The coupled time-space discretization is stable up to a CFL stability limit.
For both SDRT4 and SDRT5, the coupled time-space discretization is found unstable for all CFL

numbers if the RKo6s is used. The RKo6s was optimized to minimize dispersion and dissipation error,
thus it is not able to dissipate the instability due to the spatial SDRT discretization.

The RKo5s has also been designed as a low dissipation scheme, but it is shown in [187] that it
leads to higher dissipation errors than the RKo6s (about one order of magnitude). The same study
indicates that the RKs4s dissipation error is one order of magnitude higher than the RKo5s. Those
two schemes are thus able to dissipate instabilities due to the spatial discretization for a high enough
CFL number, before reaching a second CFL limit.

Concerning the SSP schemes, two of the third-order ones (SSP3s3o and SSP4s3o) were able to
stabilize the SDRT4 and SDRT5 spatial discretization, even for small CFL numbers. The SSP5s3o
however is unstable for ν < 0.02 for both spatial discretizations. The four-order SSP scheme does not
have enough dissipation for small CFL numbers for both spatial discretizations.

Additionally to the third-order SSP, the RK4J scheme also manage to dissipate the spatial dis-
cretization instabilities. This scheme was introduced by Jameson ’to improve the damping of high
frequency modes’ [190], thus this result is consistent.

For the case θ = π/8, it can be concluded that SDRT4 and SDRT5 spatial discretizations can be
stabilized by the dissipation induced by the time-integration for specific temporal schemes.
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(a) SSP3s3o (b) SSP4s3o (c) SSP5s3o (d) SSP5s4o

(e) RKs4s (f) RKo5s (g) RKo6s (h) RK4J

Figure 4.5. – Stability behavior of the coupled time-space discretizations for SDRT4 on triangles for
θ = π/8

(a) SSP3s3o (b) SSP4s3o (c) SSP5s3o (d) SSP5s4o

(e) RKs4s (f) RKo5s (g) RKo6s (h) RK4J

Figure 4.6. – Stability behavior of the coupled time-space discretizations for SDRT5 on triangles for
θ = π/8
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A summary of the stability limits in the case θ = π/8 is given in Table 4.2. One could note
that results obtained using SSP2s2o, SSP3s2o and SSP4s2o have not been presented in this section.
The Fourier analysis of those schemes was conducted and showed an unstable behavior for all CFL
numbers. Since it has already been underlined that those second-order temporal schemes could lead
to unstable computations, even for spatially stable SDRT discretization, and given the large amount
of studied temporal schemes, they were voluntary excluded from the study.

SDRT4 SDRT5

Temporal Scheme ν Temporal Scheme ν

Unstable

RKo6s - RKo6s -
SSP2s2o - SSP2s2o -
SSP3s2o - SSP3s2o -
SSP4s2o - SSP4s2o -

Stable in an interval

SSP5s4o [0.07, 0.13] SSP5s4o [0.06, 0.1]
RKs4s [0.06, 0.09] RKs4s [0.05, 0.06]
RKo5s [0.03, 0.11] RKo5s [0.03, 0.07]
SSP5s3o [0.02, 0.16] SSP5s3o [0.02, 0.12]

Stable
RK4J 0.08 RK4J 0.06

SSP3s3o 0.08 SSP3s3o 0.05
SSP4s3o 0.12 SSP4s3o 0.09

Table 4.2. – CFL stability limits for SDRT4 and SDRT5 on triangles coupled with different temporal
schemes, θ = π/8

To verify the consistency of the Fourier analysis results, a numerical study considering the advec-
tion of a sine introduced in section 4.2.1.2 is conducted. The computation is run using SDRT5 on a
mesh associated with the properties Nx = Ny = 15, µ = π/2. Several temporal schemes are studied.
First, the RK4J and the SSP4s3o, i.e. two schemes demonstrated as stable by the Fourier analysis for
θ = π/8 for all CFL numbers. The computation is run with a CFL number ν = 0.01. The SSP5s3o,
which was then demonstrated as stable in an interval of CFL, is used. Two computations are run using
ν = 0.01 (unstable) and ν = 0.1 (stable). The stability of the computation is determined by monitor-
ing the maximum absolute value of the solution max|u| at SP. Each computation is run up to tf = 100s.

Figure 4.7 shows the evolution of max|u| at SP. As in the previous section, the maximum value can
be different depending on the location of the SP capturing the maximum value at each time, leading to
a thick line representation of max|u|. The simulations using RK4J (Fig. 4.7a) and SSP4s3o (Fig. 4.7b)
with ν = 0.01 show that the maximum absolute value is decreasing when the time increases, indicating
stable computations. It can be noted that using RK4J, the value of max|u| has decreased by ∼ 10%
of its value whereas using SSP4s3o allows one to preserve ∼ 99.99% of the initial value. Results of
the use of SSP5s3o are plotted for ν = 0.01 in Fig. 4.7c and for ν = 0.1 in Fig. 4.7d. As predicted by
the Fourier analysis, using ν = 0.01 leads to an unstable computation (amplification of the solution
value) whereas using ν = 0.1 gives decreasing solution values. At tf = 100 s, ∼ 99.95% of the solution
is preserved. The numerical study results are consistent with the stability behavior predicted by the
Fourier analysis.
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(a) RK4J, ν = 0.01 (b) SSP4s3o, ν = 0.01 (c) SSP5s3o, ν = 0.01 (d) SSP5s3o, ν = 0.1

Figure 4.7. – Evolution of max|u| using SDRT5 on triangles for θ = π/8

4.2.2.2. Analysis in the General Case

The Fourier analysis is now extended to the general case, i.e. for θ ∈ [0, 2π]. The following
parameters are considered:

– θ ∈ [0, 2π],∆θ = π/8,
– κ ∈ [0, π],∆κ = π/32,
– ϑ ∈ [0, 2π],∆ϑ = π/8,
– µ = (π/2, π/3, π/4).

The grid frequency range is reduced to [0, π] due to symmetry and ∆κ is taken smaller. Second-order
temporal schemes and the RKo6s scheme, which were shown as unstable for θ = π/8, will not be
considered in the general analysis. The Fourier analysis results are plotted for SDRT4 in Fig. 4.8. In
Fig.4.8a, SSP5s4o, RKs4s and RKo5s show a diminishing - but still unstable - behavior. The spectral
radius is of order 1+10−7 and this value remains bounded until a specific CFL (ν = 0.133 for SSP5s4o,
ν = 0.087 for RKs4s and ν = 0.104 for RKo5s) where max(ρG) becomes of order 10−2. In Fig. 4.8b,
the behavior of SSP3s3o, SSP4s3o, SSP5s3o and RK4J is plotted. For third-order RK schemes,
the coupled time-space discretization is unstable (max(ρG) > 1, marked by circles) for small CFL
numbers but becomes stable (max(ρG) ≤ 1, marked by triangles) when the CFL number increases.
The discretization then becomes unstable with higher spectral radius values when the upper CFL limit
is attained. Finally, for the RK4J, the coupled time-space discretization is stable up to ν = 0.085.

(a) (b)

Figure 4.8. – Stability behavior of the coupled time-space discretizations for SDRT4 on triangles for
θ ∈ [0, 2π]
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For SDRT5, the Fourier analysis results are plotted in Fig. 4.9. The RK4J is stable up to ν = 0.063.
All other temporal schemes reveal an unstable behavior for all CFL number with max(ρG) of order
∼ 1 + 10−6. Table. 4.3 gives a summary of the Fourier analysis conclusions in the general case.

(a) (b)

Figure 4.9. – Stability behavior of the coupled time-space discretizations for SDRT5 on triangles for
θ ∈ [0, 2π]

SDRT4 SDRT5

Temporal Scheme ν Temporal Scheme ν

Stable in an interval
SSP3s3o [0.036, 0.077] - -
SSP4s3o [0.045, 0.117] - -
SSP5s3o [0.06, 0.158] - -

Stable RK4J 0.08 RK4J 0.06

Table 4.3. – CFL stability limits for SDRT4 and SDRT5 on triangles coupled with different temporal
schemes, θ ∈ [0, 2π]

4.2.2.3. Analysis for SDRT5, θ = 0

It was noted that the instability of the coupled time-space discretization is revealed for specific
values of the advection angle (θ = 0 or θ = π/2 for example). A test case using SDRT5 coupled
with SSP3s3o using θ = ϑ = 0 and ν = 0.05 is presented on Fig. 4.10. First, the maximum radius is
plotted as a function of the CFL number on Fig. 4.10a. It can be seen that the coupled time-space
discretization is unstable. The CFL number is then fixed to 0.05 and the maximum radius is plotted
as a function of the grid frequency on Fig. 4.10b. Radius value higher than 1 come from κ ∈]0, π/2[,
but the discretization is stable for κ ∈ [π/2, π]. The advection of a sine is computed using ν = 0.05
on a mesh associated with the properties Nx = Ny = 15, µ = π/2, and the maximum absolute value
of the solution at SP is plotted in Fig. 4.10c up to tf = 100 s. As in previous computations, the
maximum value varies depending on the location on the SP: due to the extrapolation step, some SP
can not capture the maximum value of u. Since a periodic problem on a regular mesh is considered, the
maximum absolute value of u is obtained from the same SP every NSP iteration. This is highlighted
by the formation of different parallel straight lines. All of them are decreasing, which indicate that
the computation is stable. The same decreasing behavior is observed for Nx = Ny ∈ [5, 20, 51, 100].
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(a) Stability behavior (b) Stability behavior, ν = 0.05 (c) Sine advection, ν = 0.05

Figure 4.10. – Stability study of SDRT5 coupled with SSP3s3o using θ = ϑ = 0 on triangular elements

The same stability study is conducted for SSP4s3o, SSP5s3o and RK4J (Fig. 4.11). For third-order
schemes, the same behavior is observed: the scheme is unstable for κ ∈]0, π/2[ and becomes stable
for κ ∈ [π/2, π]. For κ ∈ [π/2, π], dissipation errors are clearly reduced when the number of stages
increases. Using the RK4J, the computation is stable for all grid frequencies. However, the dissipation
error is of order 10−3. Plots associated with RKs4s, RKo5s and SSP5s4o are not presented here since
they all led to max(ρG) > 1 for κ ∈]0, π].

(a) SSP4s3o (b) SSP5s3o (c) RK4J

Figure 4.11. – Study of SDRT5 on triangles coupled with different temporal schemes using θ = ϑ = 0,
ν = 0.05
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4.2.2.4. Analysis of Other FP Locations

This study was conducted on alternative sets of interior FP considered in Chapter 3, which locations
were taken according to other existing quadrature rules or determined using the Differential Evolution
optimization process of the FNC analysis. For SDRT4, the interior FP location taken as the Vioreanu-
Rokhlin quadrature rule leads to an unstable time-space discretization in the general case θ ∈ [0, π]
for all temporal schemes. For SDRT5, the Witherden-Vincent rule was studied since the maximum
value of max(Re(λMz)) is of order 10−5. Other quadrature rules led to higher values and were then
not considered. The coupled time-space discretization was found stable using Witherden-Vincent
quadrature points as the interior FP locations if the spatial scheme is associated with the RK4J
temporal scheme, with a maximum CFL limit ν = 0.06. Both quadrature rules (Williams-Shunn-
Jameson and Witherden-Vincent) thus lead to the same stability limit. Finally, the interior FP sets
determined from the Differential Evolution optimization process of the FNC analysis led to unstable
discretizations for all temporal schemes.

In section 3.3.3, the unstable behavior of the spatial SDRT operator on triangular grids for p > 3 was
shown. In this section, the Fourier stability analysis of the SDRT spatial discretization previously
detailed was extended for p = 4 and p = 5 to the coupled time-space discretization to study the
effect of the time integration scheme on the stability.
It was demonstrated that for SDRT4 and SDRT5, it is possible to obtain stable discretizations by
using the proper time integration scheme. For both schemes, the RK4J scheme is the only one
that was proven as leading to a stable time-space discretization for all advection angles and all
grid frequencies. The numerical dissipation induced by the RK4J can dissipate spatial instability;
however, this high numerical dissipation error also means that the RK4J scheme probably won’t be
an appropriate choice to obtain high-order accuracy for unsteady problems. This statement will be
verified numerically in Chapter 6, section 6.1.2.
Third-order SSP schemes (SSP3s3o, SSP4s3o and SSP5s3o) can stabilize the SDRT4 scheme if the
CFL number is chosen in the stability interval, i.e. high enough to dissipate instability due to the
spatial discretization, but small enough to ensure a stable discretization. For SDRT5 coupled to a
third-order SSP scheme, it was shown that the discretization is stable for θ = π/8 but not for all
advection angles. The particular case of θ = 0 has revealed that the instability is due to small grid
frequencies (κ ∈]0, π/2[).
Finally, the study of other sets of interior FP indicates that the Williams-Shunn-Jameson quadrature
rule remains the most adequate for interior FP location. The SDRT implementation based on the
interior FP located at Williams-Shunn-Jameson quadrature points will now be denoted the SDRTWSJ

scheme.
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4.3. Tetrahedral Elements
The Fourier analysis of the coupled time-space discretization is now conducted on tetrahedral el-

ements for SDRT1 and SDRT2. The interior FP locations are in both case taken as following the
Shunn-Ham quadrature rule. As for the analysis on triangles, the spectral radius ρG is computed
based on the CFL number and the spatial SDRT operator Mz defined by Eq. (3.41). Additionally to
the SP and FP locations, the matrix Mz depends on the advection velocity defined by (θ1, θ2), the
grid frequency κ and the harmonic wave orientation angles (ϑ1, ϑ2). These parameters are taken as:

– θ1 ∈ [0, 2π],∆θ1 = π/8,
– θ2 ∈ [0, 2π],∆θ1 = π/8,
– κ ∈ [0, π],∆κ = π/8,
– ϑ1 ∈ [0, 2π],∆ϑ1 = π/8,
– ϑ2 ∈ [0, 2π],∆ϑ2 = π/8.
All temporal schemes introduced in section 4.1.1 are studied. For SDRT1, the same behavior is

observed for all temporal schemes: the coupled time-space discretization is stable up to a stability
limit CFL number. For SDRT2, stability analysis results are plotted in Fig. 4.12. The second-order
SSP schemes (Fig. 4.12b) have been separated from other temporal schemes (Fig. 4.12a) because of
their different stability behavior. Temporal schemes on Fig. 4.12a present an usual behavior: schemes
are stable (max(ρG) ≤ 1, triangle markers) up to a CFL stability limit. At first sight, it seems that
the same stability behavior is observed for second-order SSP schemes (Fig. 4.12b) with a CFL limit
(ν = 0.11 for SSP2s2o, ν = 0.21 for SSP3s2o, ν = 0.29 for SSP4s2o) but the circle markers indicates
that the scheme is unstable (max(ρG) > 1). At the specified CFL numbers, the associated max(ρG)
values are actually of order 10−6 (SSP2s2o), 10−5 (SSP3s2o) and 10−4 (SSP4s2o). A closer view at
small CFL numbers allows one to determine the proper stability limits: ν = 0.06 for SSP2s2o, ν = 0.09
for SSP3s2o and ν = 0.11 for SSP4s2o. The CFL stability limits are summarized for all temporal
schemes in Table 4.4.

(a) (b)

Figure 4.12. – Stability behavior of the coupled time-space discretizations for SDRT2 on tetrahedron
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4.3 Tetrahedral Elements

Temporal scheme SDRT1 SDRT2
SSP2s2o 0.18 0.06
SSP3s2o 0.33 0.09
SSP4s2o 0.47 0.11
SSP3s3o 0.22 0.14
SSP4s3o 0.33 0.21
SSP5s3o 0.45 0.29
SSP5s4o 0.37 0.23
RKs4s 0.25 0.15
RKo5s 0.30 0.18
RKo6s 0.38 0.23
RK4J 0.24 0.15

Table 4.4. – CFL stability limits for SDRT1 and SDRT2 on tetrahedron coupled with different tem-
poral schemes
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Chapter 5
Optimization Process Based on the
Fourier Analysis
In Chapter 4, a linear stability analysis for the coupled time-space discretization was presented. The
study especially examines the behavior of spatially unstable SDRT implementations using Williams-
Shunn-Jameson quadrature points as interior FP, denoted as the SDRTWSJ scheme. It was shown that
those schemes can be stabilized if a proper time integration scheme is used. Two different solutions
were highlighted. The first consists in using the RK4J temporal scheme: stability is ensured for
all advection angles but the error associated with numerical dissipation is high. The second one
consists in using third-order SSP temporal schemes, which are associated with better dissipation and
dispersion properties. However, the stability of the coupled time-space discretization is subject to
conditions: for SDRT4, the CFL number must lie into a given range, whereas for SDRT5, the stability
is not ensured for all advection angles. The fact that this second possibility is strongly dependent
on the advection angle or on a double condition on the CFL number makes it impracticable. It will
thus not be considered anymore in the following.
For a general framework, these conditions seem to be too restrictive. To overcome this limitation,
this chapter presents new sets of interior FP leading to stable SDRT formulations for p > 3, called
SDRTOPT. These sets of points are determined through an optimization process based on the Fourier
analysis for the spatial discretization similar to the one presented in Chapter 3. The main difference
is that this chapter considers an optimization algorithm based on the gradient descent method.
The optimization process is first presented for triangular elements. Sets of interior FP leading to
stable SDRT formulations are then given and the Fourier analysis results of the spatial discretization
associated with different temporal schemes are shown. The optimization process is then applied to
the SDRT6 scheme and finally to tetrahedral elements.
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Chapter 5 : Optimization Process Based on the Fourier Analysis

5.1. Triangular Elements
5.1.1. Optimization Algorithm

The Fourier analysis for the spatial SDRT discretization on triangular elements presented in sec-
tion 3.3.3 is considered. It is recalled here that the Fourier analysis leads to the definition of the
matrix Mz, which is fully defined through:

– the polynomial degree p,
– the SP location,
– the FP location,
– the advection angle θ ∈ [0, 2π],
– the grid frequency κ ∈ [−π, π],
– the harmonic plane orientation ϑ ∈ [0, 2π],
– the skew angle µ ∈ [0, π/2].

To determine spatially stable SDRT formulations for orders of accuracy higher than four, the Fourier
analysis is used in an optimization problem. The function to minimize is the maximum of the real
part of the matrix Mz eigenvalues and the optimization parameters are the interior FP locations.

The difference with the algorithm presented in section 3.3.3 is that here, the optimization pro-
cess solves the problem of minimizing a function locally using a gradient descent method called the
L-BFGS-B method from the SciPy library [179]. The L-BFGS-B algorithm is part of the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) algorithms, which are iterative methods for solving unconstrained
nonlinear optimization problems. The descent direction is determined by preconditioning the gradient
with curvature information. Contrary to the Differential Evolution algorithm, using this optimization
algorithm allows taking into account an initial value for the optimization parameters. Additionally, the
computational time needed to perform one iteration is way faster with a descent method algorithm.
This is due to the fact that for one iteration, the Differential Evolution algorithm has to evolve the
entire population; the function is evaluated [(Population size) ∗ (Number of parameters)] times. As an
example, the time needed for one iteration of the optimization algorithm based on the Fourier analysis
for SDRT4 is approximately 32 seconds using the Differential Evolution algorithm versus 7 seconds
using the L-BFGS-B method.

The full algorithm is detailed by Algorithm 1 for the SDRT4 scheme. First, the constant parameters
are settled: the polynomial degree p is set to 4, the SP location is set to the position given by the
15-points Williams-Shunn-Jameson quadrature rule and the position of FP located on edges is set
to Gauss-Chebyshev points. As detailed in section 3.1.1.2, the SP location have no impact on the
scheme stability and the edge FP location in a triangle needs to be the same as the edge FP location
in a quadrilateral (Gauss-Chebyshev points) to avoid using mortar techniques in hybrid computations.
The interior FP coordinates are then parametrized by a set of coefficients to ensure symmetry. The
parametrization is given in Appendix E for p ∈ J4, 6K. The initial interior FP location, stored in x0,
is chosen as the 10-points Williams-Shunn-Jameson quadrature rule, expressed using the optimization
parameters. Bounds are given to ensure that all interior FP are included in the triangle. The op-
timization is then run: the scipy.optimize.minimize function based on the L-BFGS-B method called
the function MAIN, using x0 as the initial interior FP location and taking bounds into account.
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5.1 Triangular Elements

The function MAIN returns the maximum of all eigenvalues real part of the matrix Mz. The interior
FP coordinates are first computed based on the optimization parameters, which allows to compute
the transfer matrix T and the differentiation matrix D. Using symmetry properties, the matrix Mz
is computed for:

– the advection angle θ ∈ [0, π],∆θ = π/8,
– the grid frequency κ ∈ [0, π]∆κ = π/32,
– the harmonic plane orientation ϑ ∈ [0, π],∆ϑ = π/8,
– the skew angle µ = π/2.

Finally, the maximum of the real part of all the eigenvalues of Mz, denoted rm, is returned and will
be minimized by the optimization algorithm.
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Chapter 5 : Optimization Process Based on the Fourier Analysis

Algorithm 1 Fourier analysis optimization algorithm on triangles for SDRT4

Constants
p← 4
SP location: ξSP1:15 ← WSJ 15-points rule
Edge FP location: ξFP1:5 ← Gauss-Chebyshev points . Edge 1

ξFP6:10 ← Gauss-Chebyshev points . Edge 2
ξFP11:15 ← Gauss-Chebyshev points . Edge 3

Optimization Parameters
α1 = 0.333333333333333, α2 = 0.055564052669793
β1 = 0.365789252254277, γ1 = 0.112639085608754
β2 = 0.704466288264107, γ2 = 0.281977603613669 . WSJ 10-points rule
β3 = 0.929744459481616, γ3 = 0.169338518004915
β4 = 0.944435947330207, γ4 = 0.416653920995311
x0 = (α1, α2, β1, β2, β3, β4, γ1, γ2, γ3, γ4)
Bounds = (α1, α2 ∈]0, 0.5[, β1, β2, β3, β4, γ1, γ2, γ3, γ4 ∈]0, 1[)
Optimization Process
call scipy.optimize.minimize(MAIN, x0, Bounds, method=’L-BFGS-B’)

function main
ξ16 = (β4/2 + γ4, β4/2− γ4), ξ17 = (β1/2 + γ1, β1/2− γ1)
ξ18 = (β1/2− γ1, β1/2 + γ1), ξ19 = (α2, α2)
ξ20 = (β3/2− γ3, β3/2 + γ3), ξ21 = (β2/2 + γ2, β2/2− γ2)
ξ22 = (β4/2− γ4, β4/2 + γ4), ξ23 = (β3/2 + γ3, β3/2− γ3)
ξ24 = (α1, α1), ξ25 = (β2/2− γ2, β2/2 + γ2)
ξFP26:35 = ξFP16:25
Compute Transfer Matrix T
Compute Differentiation Matrix D
for µ = π/2 do . Skew angle

for ϑ ∈ [0, π],∆ϑ = π/8 do . Harmonic plane orientation
for θ ∈ [0, π],∆θ = π/8 do . Advection angle

Compute M0,0,M−1,0,M+1,0,M0,−1,M0,+1

for κ ∈ [0, π],∆κ = π/32 do . Grid frequency
Compute Mz using:

Mz = −
[
M0,0 + M−1,0 exp

(
− Iκ cosϑ

)
+ M+1,0 exp

(
Iκ cosϑ

)
+ M0,−1 exp

(
− Iκ(cosµ cosϑ+ sinµ sinϑ)

)
+ M0,+1 exp

(
Iκ(cosµ cosϑ+ sinµ sinϑ)

)]
Compute max(Re(λMz))
rm = max(rm,max(Re(λMz)))

end for
end for

end for
end for
return rm

end function
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5.1 Triangular Elements

5.1.2. Spatially Stable SDRT4 and SDRT5 Formulations
5.1.2.1. Sets of Interior Flux Points

The optimization process based on the L-BFGS-B algorithm was able to determined spatially stable
SDRT4 and SDRT5 formulations. Parameters leading to stable formulations are given in Table 5.1. It
should be underlined that there is no proof of the uniqueness of the set of interior FP leading to stable
SDRT formulations. The interior FP coordinates leading to stable SDRT formulations are actually
very close to the coordinates given by the Williams-Shunn-Jameson quadrature rule. This was an
expected result due to the local optimization process that looks for a stable formulation close from
the initial guess. Both sets of points are compared in Fig. 5.1. However, as shown in the next section,
stability conclusions are quite different.

SDRT4

α1 0.333662142203650535776660035481 −
α2 0.055020323277656914273681110217 −

β1, γ1 0.365059009419342217483972490299 0.108257446975053225890484043248
β2, γ2 0.708381218412728386191190566024 0.280178103202688211226245584839
β3, γ3 0.926728983000098982536485436867 0.171864737328125433135639354987
β4, γ4 0.944808774978659671184288981749 0.417031665213158209137844778525

SDRT5

α1 0.036016387170921100591147734349 −
α2 0.242883711163165288970944288849 −
α3 0.473302808618061232603935195584 −

β1, γ1 0.248653272121269142136412710897 0.075375559486304394285482999294
β2, γ2 0.526107168266496727504488717386 0.209538637206618832964366561100
β3, γ3 0.757463072390737846006913969177 0.136207500360293581875836821382
β4, γ4 0.800198118640534361567517862568 0.351271727643196640666900520955
β5, γ5 0.950995381781191140291298324883 0.275567788676654157331569194866
β6, γ6 0.963872542677753130213602617005 0.446716481619443550599157788383

Table 5.1. – Coordinate parameters of interior FP determined using the optimization process on
Fourier analysis

(a) SDRT4 (b) SDRT5

Figure 5.1. – Sets of FP determined using the optimization process on Fourier analysis compared to
Williams-Shunn-Jameson sets
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Chapter 5 : Optimization Process Based on the Fourier Analysis

5.1.2.2. Fourier Analysis of the Spatial Discretization

The Fourier analysis of the spatial SDRT discretization based on the interior FP determined by the
optimization process is conducted. The spectrum of Mz is first computed for:

– the advection angle θ = 0,
– the grid frequency κ ∈ [−π, π],
– the harmonic plane orientation ϑ ∈ [0, 2π],
– the skew angle µ = π/2.

These conditions are exactly the same as the ones used in section 3.3.3, where the SDRTWSJ dis-
cretization was proven as unstable for p = 4 and p = 5. Spectra obtained for the unstable SDRTWSJ

scheme rule shown in Fig. 3.5 are shown again in Fig. 5.2a and Fig. 5.2b to easily compare the impact
of the interior FP location. The spectrum of Mz using the interior FP determined by the optimization
process is displayed in Fig. 5.2c for SDRT4 and in Fig. 5.2d for SDRT5. For each order, the Fourier
footprint obtained using the SDRTOPT is similar to the one obtained with the SDRTWSJ scheme ex-
cept that positive eigenvalues have been pushed to the negative side, leading to stable formulations.

Spectra are then computed in the general case, i.e. for:
– the advection angle θ ∈ [0, π],
– the grid frequency κ ∈ [−π, π],
– the harmonic plane orientation ϑ ∈ [0, 2π],
– the skew angle µ ∈ [π/2, π/3, π/4].

Corresponding Fourier footprints are shown in Fig. 5.2e for SDRT4 and in Fig. 5.2f for SDRT5. From
these spectra, the linear stability of the SDRTOPT spatial discretization is clearly established since
the real part of all eigenvalues is negative.
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5.1 Triangular Elements

(a) SDRTWSJ
4 , θ = 0 (b) SDRTWSJ

5 , θ = 0

(c) SDRTOPT
4 , θ = 0 (d) SDRTOPT

5 , θ = 0

(e) SDRTOPT
4 , General Case (f) SDRTOPT

5 , General Case

Figure 5.2. – Fourier footprint of the SDRT4 (left) and SDRT5 (right) spatial discretizations on tri-
angles
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Chapter 5 : Optimization Process Based on the Fourier Analysis

5.1.2.3. Fourier Analysis of the Coupled Time-Space Discretization

The linear stability of the coupled time-space discretization is now analyzed through the study of
the spectral radius of the amplification factor ρG (see section 4.1.3). Since the SDRTOPT discretiza-
tion is spatially stable, a stable behavior for the full discretization is expected for a CFL number in a
range from zero to a maximum stability limit. This stability limit should also be determined for each
temporal scheme.

The following parameters are considered in the study:
– θ ∈ [0, 2π],∆θ = π/8,
– κ ∈ [−π, π],∆κ = π/32,
– ϑ ∈ [0, 2π],∆ϑ = π/8,
– µ = (π/2, π/3, π/4).

The evolution of the maximum value of the spectral radius ρG as the CFL number ν increases is plotted
in Fig. 5.3 for different temporal schemes. The visualization convention introduced in Chapter 4 is used
here: each max(ρG) value is associated with a marker. If max(ρG) ≤ 1 (respectively max(ρG) > 1),
the associated marker is a triangle (respectively a circle). As expected due to the linear spatial stability,
the evolution shows a fully stable behavior (triangular marker) up to a maximum CFL number. These
stability limits are accurately given in Table 5.2.

(a) SDRTOPT
4 (b) SDRTOPT

4

(c) SDRTOPT
5 (d) SDRTOPT

5

Figure 5.3. – Stability behavior of the coupled time-space discretizations for SDRTOPT schemes on
triangles
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5.1 Triangular Elements

SDRTOPT
4 SDRTOPT

5

Temporal Scheme ν Temporal Scheme ν

RK4J 0.086 RK4J 0.064
RKs4s 0.086 RKs4s 0.060
RKo5s 0.103 RKo5s 0.072
RKo6s 0.128 RKo6s 0.090
SSP3s3o 0.077 SSP3s3o 0.054
SSP4s3o 0.118 SSP4s3o 0.086
SSP5s3o 0.158 SSP5s3o 0.122
SSP5s4o 0.133 SSP5s4o 0.095

Table 5.2. – CFL stability limits for SDRTOPT schemes on triangles coupled with different temporal
schemes
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5.1.3. Study for the SDRT6 Scheme
The linear stability analysis was conducted for the SDRTWSJ

6 scheme in Chapter 3, section 3.3.3.
The corresponding spectrum of the matrix Mz is here shown in Fig. 5.4a for an advection angle θ = 0.
The spatial discretization is unstable, with a maximum eigenvalues real part of order 10−3.
The optimization process is run for the SDRT6 scheme. The parametrization of the interior FP loca-
tion is given in Appendix E. Given the large number of optimization parameters, the algorithm is first
run for the case θ = 0. A stable SDRTOPT

6 formulation is found in this case. The corresponding Mz
spectrum is shown in Fig. 5.4b and the associated optimization parameters are given in Table 5.3.

However, when considering the general case θ ∈ [0, 2π] (Fig. 5.4c), the interior FP determined using
the optimization for θ = 0 lead to an unstable SDRT formulation. The optimization process should
then be run for θ ∈ [0, 2π]. However, considering the large amount of optimization parameters, the
computation becomes extremely costly and did not manage to find a stable SDRT6 scheme. Finally,
the study of the coupled time-space discretization shows that the RK4J was not able to stabilize the
SDRT6 scheme in a general framework (θ ∈ [0, 2π]) using neither Williams-Shunn-Jameson quadrature
points (max(ρG) ∼ 10−6) nor the optimization points (max(ρG) ∼ 10−7).

(a) θ = 0, SDRTWSJ
6 (b) θ = 0, SDRTOPT

6 (c) General Case, SDRTOPT
6

Figure 5.4. – Fourier footprint of the SDRT6 spatial discretizations on triangles

SDRTOPT
6

α1 0.025601729975188152604870239770 −
α2 0.176111132950327875512641639943 −
α3 0.398061165124505511592190032388 −

β1, γ1 0.180524923708336115790729081709 0.059771932372879116313058034393
β2, γ2 0.393813927660607965286487797130 0.155450185809347496412868849802
β3, γ3 0.597070700120643449437807248614 0.100637371287577992440276375419
β4, γ4 0.644785985610853984439927444328 0.275192738170610518011471867794
β5, γ5 0.955432480804950801100972057611 0.126303970969899315157647379237
β6, γ6 0.820859390566581081927211016591 0.229642693685824350602331378468
β7, γ7 0.850697660514036169132623399491 0.384732707035698173747562123026
β8, γ8 0.966062410823000927706516449689 0.332382988539032642183457255669
β9, γ9 0.969853309157741039214783995703 0.465127005177082608611272007693

Table 5.3. – Coordinate parameters of interior FP determined using the optimization process on
Fourier analysis for SDRT6, θ = 0
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5.2. Tetrahedral Elements
5.2.1. Optimization Algorithm

The Fourier analysis for the spatial SDRT discretization on tetrahedral elements presented in sec-
tion 3.4.4 is considered. The Fourier analysis leads to the definition of the matrix Mz, which is fully
defined through:

– the polynomial degree p,
– the position of the SP,
– the position of the FP,
– the advection angles (θ1, θ2) ∈ [0, 2π]2,
– the grid frequency κ ∈ [−π, π],
– the harmonic plane orientation angles (ϑ1, ϑ2) ∈ [0, 2π]2.

The position of the interior FP is parametrized by four parameters (α, β, γ, δ) in a similar definition
as the Shunn-Ham quadrature rule and is given in Appendix E. Due to that simple parametriza-
tion, constraints have to be imposed on the optimization parameters in order for the interior FP
to be located strictly inside the tetrahedron. To do so, the optimization process is based on the
scipy.optimize.minimize function using the Sequential Least SQuares Programming (SLSQP) algo-
rithm from the SciPy library [179]. The SLSQP optimizer is a sequential least squares programming
algorithm that uses the Han–Powell quasi–Newton method and allows to impose constraints. As in
the previous section, the function to minimize is the maximum of the real part of the eigenvalues of
the matrix Mz and the optimization parameters are the interior FP locations.

The full algorithm is detailed by Algorithm 2 for the SDRT3 scheme. The polynomial degree p is set
to 3 and the SP location is set to the position given by the 20-points Shunn-Ham quadrature rule. The
position of FP located on edges is set to the 10-points Williams-Shunn-Jameson quadrature rules to
ensure that the FP located on a tetrahedral and a prismatic element match exactly. The optimization
parameters are initialized using the 10-points Shunn-Ham quadrature rule. Interior FP coordinates
are parametrized by a set of coefficients to ensure symmetry. Constraints are given to ensure that all
interior FP are included in the tetrahedron. The optimization is then run: the optimization function
based on the SLSQP method called the function MAIN, using x0 as the initial interior FP location
and taking constraints into account.

The function MAIN returns the maximum of all eigenvalues real part of the matrix Mz. The interior
FP coordinates are first computed based on the optimization parameters, which allows to compute
the transfer matrix T and the differentiation matrix D. The matrix Mz is computed for the particular
case (θ1, θ2) = (0, 0), (ϑ1, ϑ2) = (0, 0) and κ ∈ [0, π],∆κ = π/32. The maximum of the real part of all
the eigenvalues of Mz, denoted rm, is returned and will be minimized by the optimization algorithm.
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Algorithm 2 Fourier analysis optimization algorithm on tetrahedral elements for SDRT3

Constants
p← 3
SP location: ξSP1:20 ← Shunn-Ham 20-points rule
Face FP location: ξFP1:10 ← Williams-Shunn-Jameson 10-points rule . Face 1

ξFP11:20 ← Williams-Shunn-Jameson 10-points rule . Face 2
ξFP21:30 ← Williams-Shunn-Jameson 10-points rule . Face 3
ξFP31:40 ← Williams-Shunn-Jameson 10-points rule . Face 4

Optimization Parameters
α = 0.7784952948213298
β = 0.0738349017262234 . Shunn-Ham 10-points rule
γ = 0.4062443438840509
δ = 0.0937556561159491
x0 = (α, β, γ, δ)
Constraints = {0.25 < α < 1, 0 < β < 0.25, 0.25 < γ < 0.5, 0 < δ < 0.25,
(α+ β + β, β + α+ β, β + β + α, β + β + β) < 1,
(γ + γ + δ, γ + δ + γ, γ + δ + δ, δ + γ + γ) < 1,
(δ + γ + δ, δ + δ + γ) < 1}
Optimization Process
call scipy.optimize.minimize(MAIN, x0, Constraints, method=’SLSQP’)

function main
ξ41 = (α, β, β), ξ42 = (β, α, β), ξ43 = (β, β, α), ξ44 = (β, β, β), ξ45 = (γ, γ, δ)
ξ46 = (γ, δ, γ), ξ47 = (γ, δ, δ), ξ48 = (δ, γ, γ), ξ49 = (δ, γ, δ), ξ50 = (δ, δ, γ)
ξ51:60 = ξ41:50
ξ61:70 = ξ51:60
Compute Transfer Matrix T
Compute Differentiation Matrix D
(ϑ1, ϑ2) = (0, 0) . Harmonic plane orientation angles
(θ1, θ2) = (0, 0) . Advection angles
Compute M0,0,0,M−1,0,0,M+1,0,0,M0,−1,0,M0,+1,0,M0,0,−1,M0,0,+1

for κ ∈ [0, π],∆κ = π/32 do . Grid frequency
Compute Mz using:

Mz = −
[
M0,0,0 + M−1,0,0 exp(−Iκ cosϑ1 sinϑ2) + M+1,0,0 exp(Iκ cosϑ1 sinϑ2)

+ M0,−1,0 exp(−Iκ sinϑ1 sinϑ2) + M0,+1,0 exp(Iκ sinϑ1 sinϑ2)

+ M0,0,−1 exp(−Iκ cosϑ2) + M0,0,+1 exp(Iκ cosϑ2)
]

Compute max(Re(λMz))
rm = max(rm,max(Re(λMz)))

end for
return rm

end function
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5.2 Tetrahedral Elements

5.2.2. Fourier Analysis of the Spatial Discretization

The spectrum of Mz is plotted in Fig. 5.5a for the SDRT3 using the Shunn-Ham rule as the interior
FP location. As mentioned in Chapter 3, section3.4.4, max(Re(λMz)) is of order ∼ 80. The opti-
mization algorithm was able to determined a minimum for the MAIN function. The corresponding
spectrum is shown in Fig. 5.5b. Even if there is a clear reduction of the maximum eigenvalue real
part (max(Re(λMz)) ∼ 35), the spatial discretization remains unstable. The minimum found by the
optimization algorithm could be a local minimum; however, changing the initial FP location (x0) led
to the same value.

(a) Shunn-Ham interior FP (b) Optimization interior FP

Figure 5.5. – Fourier footprint of the SDRT3 spatial discretizations on tetrahedral elements,
(θ1, θ2, ϑ1, ϑ2) = (0, 0, 0, 0)

5.2.3. Influence of Flux Points Located on Faces

It was mentioned in Chapter 3, section 3.4.4 that using different SP locations (either the NCO
or the Shunn-Ham rule) did not influence the stability. Actually, it led to the exact same value of
max (Re(λMz)). This result extends the statement that the SP location has no impact on the stability
to tetrahedra. However, the influence of FP located on faces has not been studied yet. To do so, the
SP location is fixed at the Shunn-Ham rule [181] whereas different locations of interior FP and FP
located on faces are studied.

For p = 3, there are 10 FP located on each face (denoted Face FP). Several location are studied: the
10-points quadrature rules on a triangle from Williams-Shunn-Jameson (WSJ) [174] and Vioreanu-
Rokhlin (VR) [173]) and the set of 10-points determined using the optimization process in the previous
section given by Table 5.1, denoted OPT. For interior FP, the three quadrature rules on a tetrahedron
introduced in section 3.4.4 are considered: the Shunn-Ham [181], the Vioreanu-Rokhlin (VR) [173]
and the Newton-Cotes Open (NCO) [180] quadrature rules.

Table 5.4 shows values of max(Re(λMz)) for all the possible combinations of FP locations. They
were obtained using (θ1, θ2, ϑ1, ϑ2) = (0, 0, 0, 0) and κ ∈ [0, π],∆κ = π/32. From this table, the impact
of the position of the FP located on faces is clearly highlighted. The impact of the Face FP is even
more important than the impact of interior FP: the interval of values obtained by changing the Face
FP location is larger than by changing the interior FP location.
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Interior FP
Face FP

WSJ [174] VR [173] OPT

Shunn-Ham [181] 78.41 156.04 70.53
VR [173] 79.17 153.82 72.59
NCO [180] 68.74 110.68 95.92

Table 5.4. – Impact of the FP located on faces: values of max(Re(λMz)) for SDRT3, (θ1, θ2, ϑ1, ϑ2) =
(0, 0, 0, 0)

In this chapter, an optimization process based on the Fourier analysis was conducted for triangular
and tetrahedral elements.
For triangles, interior FP leading to stable SDRT schemes were determined for polynomial approx-
imations of degree four and five. The implementation based on the interior FP located at the
optimization points is called SDRTOPT. The Fourier analysis of the time-space discretization veri-
fied that the full discretization remains stable under a CFL limit, which was numerically determined
for several time integration schemes. The SDRTOPT implementation is stable for all advection an-
gles up to a given CFL limit for temporal schemes associated with good dissipation and dispersion
properties. For unsteady problems, it thus seems to be a more viable solution for p = 4, 5 than using
the SDRTWSJ. The two implementations will be compared in the next chapter for an unsteady test
case in section 6.1. Note that for steady problems, the SDRTWSJ implementation associated with the
RK4J temporal scheme remains a possibility for p = 4, 5. Finally, for the SDRT6 scheme, improve-
ments were shown by the optimization process for the particular case of θ = 0 but an implementation
considered stable under the Fourier analysis could not be determined at the moment.
For tetrahedral elements, the optimization process did not manage to determine stable SDRT formu-
lation for a fourth-order of accuracy. However, the optimization problem presented in this chapter
only considered the interior FP location as an optimization parameter whereas the FP located on
faces were fixed at Williams-Shunn-Jameson quadrature points. As it was demonstrated, the position
of FP located on faces has an important impact on the scheme stability. Therefore, an optimiza-
tion problem considering both the interior FP location and the position of FP located on faces as
optimization parameters could be able to determine stable SDRT formulations for p > 2.
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Chapter 6
Validation for First-Order Partial
Differential Equations
In this chapter, a set of numerical experiments are conducted for first-order PDEs. First, the 2D linear
advection equation is considered to assess the accuracy of the two different SDRT implementations
for an unsteady problem using polynomial approximations of degree four and five: the SDRTWSJ

stabilized by the RK4J temporal scheme proposed in Chapter 4 and the SDRTOPT based on interior
FP determined in Chapter 5. The Euler equations are then considered in two test cases. The first
one is the 2D convection of an isentropic vortex (COVO) on regular triangular and hybrid grids.
The order of accuracy is verified in the nonlinear case for both types of grids using p ∈ J2, 5K. The
second test case presents a convergence study for the 3D Euler equations using tetrahedral grids for
p ∈ J1, 2K.
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6.1. 2D Linear Advection Equation
6.1.1. Advection of a Sine

The 2D linear advection equation given by Eq. (3.1) is considered. The initial solution is taken as:

u(x, y, 0) = 1 + 0.5 sin (π(x+ y)) , (6.1)

and the velocity vector is c = (U, V )> = (cos θ, sin θ)> where θ = 0. The analytical solution ua can
be computed at any time using:

ua(x, y, t) = 1 + 0.5 sin (π(x+ y − t(U + V )) . (6.2)

The computational domain is Ω = [−1, 1]2. Computations are performed on a regular triangular mesh
composed of 2 · 152 triangular cells shown in Fig. 6.1 and periodic boundary conditions are used in
both x and y directions. At interfaces, an upwind flux is used as the numerical flux.

Figure 6.1. – Regular triangular grid used for the SDRT implementation comparison

To compare the accuracy of each SDRT implementation, the L2 error is computed on the domain
as:

L2 =

√√√√∫Ω (uha − unum)2 dΩ∫
Ω dΩ , (6.3)

where uha is the polynomial approximation of the analytical solution ua. In Eq. (6.3), the integral on
the top can be expressed as the following sum on each cell:∫

Ω
(uha − unum)2 dΩ =

N∑
i=1

∫
Ωi

(
u

(i)
ha − u

(i)
num

)2
dΩ, (6.4)

where N is the number of cells on the domain Ω. Integration is then performed in the reference domain
using a quadrature rule such that:

N∑
i=1

∫
Ωi

(
u

(i)
ha − u

(i)
num

)2
dΩ =

N∑
i=1

Nq∑
j=1

A |J (i,j)| ωj
(
u

(i)
ha(ξj)− u

(i)
num(ξj))

)2
, (6.5)

where A is the reference element area (A = 1/2 for a triangular element), |J (i,j)| is the Jacobian
determinant at the j-th integration point of the i-th cell and Nq is the number of quadrature points.
The quadrature points are located at ξj and associated with the weight ωj . Since uha and unum are
polynomials of degree p, the term

(
u

(i)
ha − u

(i)
num

)2
should be approximated using a quadrature of order

2p. On triangles, the integration is carried out using the 175-points symmetric quadrature given by
Wandzura and Xiao [192], which can be used up to degree 30.
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6.1.2. Assessment of SDRTWSJ - RK4J Accuracy

The first implementation to be studied is the SDRTWSJ. It is recalled here that the linear stability
analysis of the coupled time-space discretization presented in Chapter 4 showed that spatially unstable
SDRTWSJ

4 and SDRTWSJ
5 discretizations can be stabilized using the RK4J temporal scheme. However,

it was noted that the numerical dissipation error induced by the RK4J scheme is higher than other
temporal schemes.

The advection test case presented in section 6.1.1 is run using the SDRTWSJ
4 -RK4J and SDRTWSJ

5 -
RK4J discretizations and compared to the solution obtained using a SDRTWSJ

3 scheme associated
with the SSP3s3o. The aim is to determined if it is better to use a high-order spatial scheme or a
smaller polynomial approximation degree associated with a temporal scheme with better dissipation
and dispersion properties.

Results obtained with a SDRTWSJ
3 spatial discretization coupled with the SSP3s3o are compared

with results obtain with a SDRTWSJ
4 and SDRTWSJ

5 spatial discretizations associated with the RK4J
in Fig. 6.2. For both temporal schemes, the CFL number is ν = 0.05. The computation is run for
two final times: tf = 20 s (Fig. 6.2a) and tf = 200 s (Fig. 6.2b). In both case, the SDRTWSJ

3 -SSP3s3o
lead to a very accurate solution and can barely be distinguished from the analytical solution. On the
other hand, the use of SDRTWSJ

4 -RK4J or SDRTWSJ
5 -RK4J shows numerical dissipation: at tf = 20 s,

93% of the sine amplitude is preserved but at tf = 200 s, only half of the sine amplitude remains. At
both time, solutions for SDRTWSJ

4 and SDRTWSJ
5 seems very closed: the same L2 error is actually

obtained using either p = 4 or p = 5 (Table 6.1). The numerical error is thus fully driven by the
temporal scheme, and not by the spatial scheme. To reduce the error and get a better accuracy, the
CFL number should be decreased, leading to a higher computational time. This comparison indicates
that using the RK4J temporal scheme is not a practicable option to obtain high-order accuracy for
unsteady computations at a reasonable cost.

(a) tf = 20 s (b) tf = 200 s

Figure 6.2. – Assessment of the RK4J and SSP3s3o accuracy for the SDRTWSJ implementation -
Cross-section of the solution u at y = 0
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tf = 20 s tf = 200 s
SDRTWSJ

3 - SSP3s3o 5.08731 · 10−5 3.71342 · 10−4

SDRTWSJ
4 - RK4J 2.25318 · 10−2 1.70558 · 10−1

SDRTWSJ
5 - RK4J 2.25318 · 10−2 1.70558 · 10−1

Table 6.1. – Assessment of the RK4J and SSP3s3o accuracy for the SDRTWSJ implementation - L2
error

6.1.3. Assessment of SDRTOPT Accuracy

The same test case is now run using SDRTOPT
4 and SDRTOPT

5 discretizations. The aim is to verify
that the small change in the interior FP location does not impact the scheme accuracy. To do so, so-
lutions are compared with the SDRTWSJ

3 scheme, whose interior FP at located at the WSJ quadrature
points.

For the three SDRT schemes, solutions are time-integrated using the SSP3s3o temporal scheme and
the CFL number is ν = 0.05. Results are presented in Fig. 6.3. At the final time tf = 20 s (Fig. 6.3a),
all of the SDRT schemes perfectly match the analytical solution. In the close view, a very small
amount of dissipation can be seen. The three schemes seem to lead to the same accuracy, but the L2
error values presented in Table 6.2 allows one to see that a better solution is obtained with SDRTOPT

4
and SDRTOPT

5 schemes. At tf = 200 s (Fig. 6.3b), the accuracy difference becomes more visible on
the close view, where the solution obtained with SDRTWSJ

3 has dissipated a little more. The L2 error
values corroborate this statement: the accuracy increases with the polynomial approximation degree.
This result indicates that slightly changing the interior FP location has a negligible impact on the
scheme accuracy and validates the proposed SDRTOPT implementation to obtain high-order accuracy
for unsteady problems using a polynomial approximation of degree four or five.

(a) tf = 20 s (b) tf = 200 s

Figure 6.3. – Assessment of the SDRTOPT implementation accuracy - Cross-section of the solution u
at y = 0
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tf = 20 s tf = 200 s
SDRTWSJ

3 - SSP3s3o 5.08731 · 10−5 3.71342 · 10−4

SDRTOPT
4 - SSP3s3o 8.70316 · 10−6 8.62779 · 10−5

SDRTOPT
5 - SSP3s3o 8.50374 · 10−6 8.50279 · 10−5

Table 6.2. – Assessment of the SDRTOPT implementation accuracy - L2 error

This first test case has allowed us to numerically assess the accuracy of the two proposed SDRT
implementations. For unsteady problems, the SDRTWSJ-RK4J is not a practicable option due to
the high dissipation error induced by the temporal scheme. It however remains a possible SDRT
implementation for steady flows and obviously for p ≤ 3 associated with other temporal schemes. On
the other hand, SDRTOPT schemes based on a polynomial approximation of degree p = 4 and p = 5
can be associated with temporal schemes with good dissipation properties and led to very accurate
results. Their accuracy order, which should be p+ 1, will be determined in the next section using a
2D Euler test case.
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6.2. Convection of an 2D Isentropic Vortex
A nonlinear case is now studied by considering the two-dimensional Euler equations:

∂u
∂t

+ ∂f
∂x

+ ∂g
∂y

= 0, in Ω× [0, tf ], (6.6)

where u, f and g are given by:

u =


ρ
ρU
ρV
E

 , f =


ρU

ρU2 + P
ρUV

U(E + P )

 , g =


ρV
ρV U

ρV 2 + P
V (E + P )

 . (6.7)

In Eq. (6.7), ρ is the density, U (respectively V ) is the velocity component in the x (respectively y)
direction, E is the total energy and P is the pressure determined from the following equation of state:

P = (γ − 1)
(
E − 1

2ρ(U2 + V 2)
)
, (6.8)

where the constant ratio of specific heats γ is equal to 1.4 for air.

To assess the SDRT scheme accuracy and capability to preserve vorticity in an unsteady inviscid
flow, the convection of an isentropic vortex (COVO) test case from the International Workshop on
High-Order CFD Methods [193] is studied. An isentropic vortex is transported by an inviscid uniform
flow defined by P∞ = 105 Pa, T∞ = 300 K, M∞ = U∞/

√
γRgasT∞ = 0.5. The fluid is assumed to be

a perfect gas, with a constant ratio of specific heats γ = 1.4. An isentropic vortex of characteristic
radius R = 0.005 m and strength β = 0.2 is added to this mean flow around the point of coordinates
(Xc, Yc) = (0.05, 0.05) through perturbation in U , V and the temperature T . The computation is thus
initialized by the local velocity components U0 and V0 as well as temperature T0:

U0 = U∞

(
1− β (y − Yc)

R
exp (−r2/2)

)
, (6.9)

V0 = U∞β
(x−Xc)

R
exp (−r2/2), (6.10)

T0 = T∞ −
U2
∞β

2

2Rgas
(γ − 1)
γ

exp (−r2), (6.11)

where
r =

√
(x−Xc)2 + (y − Yc)2

R
. (6.12)

Since the vortex is isentropic, the density can be computed using:

ρ0 = ρ∞

(
T0
T∞

) 1
γ−1

, (6.13)

where ρ∞ = P∞
RgasT∞

. Euler equations are solved on the computational domain Ω = [0, L]2 where

L = 0.1 m. Translational periodic boundary conditions are imposed for the left/right and top/bottom
boundaries respectively. The SSP3s3o scheme introduced for the coupled time-space analysis is con-
sidered for the simulations. The time step is chosen sufficiently small so that the error from the time
discretization is negligible compared to the spatial discretization error by setting the CFL number to
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10−2. At interfaces, Roe’s Riemann solver [194] was used to compute the numerical flux. The SDRT
implementation is as follow: the SDRTWSJ is used for p = 2 and p = 3 whereas the SDRTOPT is used
for p = 4 and p = 5. Two different types of grids are considered: triangular and hybrid (quadrilaterals
and triangles). The numerical scheme used for quadrilateral cells is the standard SD method based
on the interior FP located at the zeros of the corresponding Legendre polynomials.

6.2.1. Triangular Grids

6.2.1.1. Comparison at 50 Periods

To assess the accuracy difference between the different SDRTp schemes, the COVO test case is
first run on triangular grids until 50 periods using approximately 18, 000 DOF. Computations are
performed on different mesh refinements so that the number of DoF between orders is as equivalent as
possible. Considering a regular mesh composed of 2N2 triangles, chosen grids are N = (40, 30, 25, 20)
for p = (2, 3, 4, 5), leading to a total number of DOF of (19200, 18000, 18750, 16800). Figure 6.4 gives
the initial solution by showing ρV contours (product of the density ρ and the y-velocity V ) on the
mesh used for the SDRT5 scheme (N = 20).

Figure 6.4. – Initialization of the COVO test
case using SDRT5 and N = 20
on a triangular grid

Figure 6.5. – Cross-section of ρV at y = 0.05 m
after 50 periods using SDRTp
schemes, p ∈ J2, 5K, on triangular
grids for ∼ 18, 000 DOF

Results obtained with each SDRT scheme after 50 periods are compared in Fig. 6.5 by plotting
the product ρV compared to the analytical solution on a cross-section at y = 0.05 m. The visualiza-
tion process on triangular grids is done by extrapolating the solution at SP to high-order Lagrange
elements nodes. Results obtained with SDRT2 shows dissipation and dispersion whereas the SDRT3
scheme only leads to a small amount of dissipation and no dispersion. Both SDRT4 and SDRT5 lead
to a very accurate solution; a close view shows that both of them exactly match the analytical solution.

In Fig. 6.6, ρV contours obtained with each SDRT scheme are displayed, where the accuracy im-
provement when the SDRT scheme order increases is highlighted.
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Figure 6.6. – ρV contours after 50 periods using SDRTp schemes, p ∈ J2, 5K, on triangular grids for
∼ 18, 000 DOF

6.2.1.2. Convergence Study

A mesh refinement study is then performed using regular triangular grids of different size. To verify
the order of accuracy of the SDRT scheme, the L2 error on the density can be computed at each
period on the domain as:

L2 =

√√√√∫Ω (ρh0 − ρnum)2 dΩ∫
Ω dΩ , (6.14)

where ρh0 is the polynomial approximation of the initial solution ρ0. Integration is performed as
detailed by Eq. (6.5) in section 6.1.1 using the 175-points symmetric quadrature given by Wandzura
and Xiao [192].

The L2 norm of the density error is plotted in Fig. 6.7 after 5 and 50 time-periods. For each
SDRT scheme, the L2 error is compared with the expected order slope. For both final times, the
expected order of accuracy p + 1 is retrieved. The precise overall order of accuracy, computed using
a least-squares polynomial fit of degree one, is given in Table 6.3)
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(a) After 5 periods (b) After 50 periods

Figure 6.7. – L2 error and theoretical order of accuracy slopes for the COVO test case on triangular
grids

Scheme Order of accuracy
SDRT2 3.03
SDRT3 4.02
SDRT4 4.98
SDRT5 6.19

(a) After 5 periods

Scheme Order of accuracy
SDRT2 3.08
SDRT3 4.46
SDRT4 4.95
SDRT5 6.11

(b) After 50 periods

Table 6.3. – Overall accuracy orders for the COVO test case on triangular grids

6.2.2. Hybrid Grids
6.2.2.1. Comparison at 5 Periods

The COVO test case is now run using 2D regular hybrid grids. The left part of the computational
domain (x ∈ [0, 0.05]) is meshed using quadrilateral elements whereas the right part (x ∈ [0.05, 0.1])
is meshed with triangles. The mesh is composed of 1

2N
2 quadrilaterals and N2 triangles. An exam-

ple is given in Fig. 6.8 for N = 16 where the initial solution obtained using a SD/SDRT5 scheme is
also displayed. Computations are performed on different grids so that the number of DoF between
orders is approximately 10, 000. The very same polynomial degree is used for both triangular and
quadrilateral elements. For p = (2, 3, 4, 5), N = (32, 24, 18, 16) is used, leading to a total number of
DOF of respectively (10752, 10368, 9360, 9984). Note that the mesh used for p = 4 should lead to 8910
DOF but for some reason, the mesh generator built a grid composed of 180 quadrilateral cells and 324
triangles.

Results obtained with each SD/SDRTp schemes after 5 periods are compared in Fig. 6.9 by plotting
the product ρV compared to the analytical solution on a cross-section at y = 0.05m. The first thing to
note is that the visualization process is here done using a Delaunay triangulation from the solution at
SP. The resulting curve is then less smooth than for full triangular grids, where high-order Lagrange
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elements were used. Apart from that, using hybrid grids leads to the same results as triangular grids:
the accuracy increases with the scheme polynomial degree, as shown on the close view.

Figure 6.8. – Initialization of the COVO test
case using SD/SDRT5 and
N = 16 on a hybrid grid

Figure 6.9. – Cross-section of ρV at y = 0.05 m
after 5 periods using SD/SDRTp
schemes, p ∈ J2, 5K, on hybrid grids
for ∼ 10, 000 DOF

Contours of ρV obtained with each SD/SDRT scheme are displayed in Fig. 6.10. The solution given
by using p = 2 shows numerical dispersion and dissipation. From p = 3, an acceptable solution is
obtained, even if negative and positive maximum values are only captured by p = 4 and p = 5.

Figure 6.10. – ρV contours after 5 periods using SD/SDRTp schemes, p ∈ J2, 5K, on hybrid grids for
∼ 10, 000 DOF
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6.2.2.2. Convergence Study

As for triangular grids, a convergence study is now performed using hybrid grids of different size.
The L2 error is computed using Eq. (6.14) and Eq. (6.5) with A = 1 and A = 1/2 for a quadrilat-
eral and a triangular element, respectively. As in the previous section, the integration on triangles
is carried out using the 175-points symmetric quadrature given by Wandzura and Xiao [192]. On
quadrilaterals, the integration is performed using the tensor product of two 1D integration at SP, with
the appropriate Gauss-Chebyshev weights.

The L2 norm of the density error is plotted in Fig. 6.11 after 5 time-periods and compared with
the expected order slope. For all schemes, the expected order of accuracy p+ 1 is perfectly retrieved,
as shown precisely in Table 6.4 where the overall order of accuracy computed using a least-squares
polynomial fit of degree one is given.

couc Scheme Order of accuracy
SD/SDRT2 3.00
SD/SDRT3 4.02
SD/SDRT4 5.05
SD/SDRT5 6.09

Table 6.4. – Overall accuracy orders for the
COVO test case on hybrid grids
after 5 periods

Figure 6.11. – L2 error and theoretical order of accu-
racy slopes for the COVO test case on
hybrid grids after 5 periods
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6.3. 3D Euler Equations
Let us consider the three-dimensional Euler equations:

∂u
∂t

+ ∂f
∂x

+ ∂g
∂y

+ ∂h
∂z

= 0, in Ω× [0, tf ], (6.15)

where u, f , g and h are given by:

u =


ρ
ρU
ρV
ρW
E

 , f =


ρU

ρU2 + P
ρUV
ρUW

U(E + P )

 , g =


ρV
ρV U

ρV 2 + P
ρVW

V (E + P )

 , h =


ρW
ρWU
ρWV

ρW 2 + P
W (E + P )

 . (6.16)

In Eq. (6.16), ρ is the density, U (respectively V , W ) is the velocity component in the x (respectively
y, z) direction, E is the total energy and P is the pressure determined from the following equation of
state:

P = (γ − 1)
(
E − 1

2ρ(u2 + v2 + w2)
)
, (6.17)

where the constant ratio of specific heats γ is equal to 1.4 for air.

To validate the SDRT scheme implementation on tetrahedral elements, a 3D periodic Euler test case
from [195, 196] is considered. The 3D Euler equations are solved on a cubic computational domain
Ω = [0, L]3 where L = 2 m with periodic boundary conditions. The initial solution is:

ρ = 1 + 0.2 sin(π(x+ y + z)), (U, V,W,P ) = (1, 1, 1, 1). (6.18)

The density initial condition is displayed on Fig. 6.12 for a regular 10× 10× 10 tetrahedral grid using
p = 2.

Figure 6.12. – Initial density condition on a 10× 10× 10 regular tetrahedral grid using p = 2
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The solution is advanced in time using the RKo6s temporal scheme and the simulation is carried out
until tf = 1 s. The time step is chosen sufficiently small so that the error from the time discretization
is negligible compared to the spatial discretization error by setting the CFL number to 10−2. The
analytical solution of the density at any time t [196] is:

ρa = 1 + 0.2 sin(π(x+ y + z − t(U + V +W ))), (6.19)

whereas velocity and pressure remain constant in time.

The convergence study was conducted on two types of grids (regular and irregular). Each mesh is
refined several times and the order of accuracy is verified by computing the density L2 error using the
84 points quadrature rule from [174]. Table 6.5 shows the L2 errors and orders of accuracy for the
two different types of grids. For both second-order and third-order schemes, a p+ 1 order of accuracy
is recovered.

Regular mesh Irregular mesh
p DoF L2 error Order of DoF L2 error Order of

number accuracy number accuracy
3000 2.183E-02 - 2132 7.713E-02 -
24000 5.754E-03 1.92 11792 2.988E-02 1.66

1 81000 2.582E-03 1.98 36460 1.437E-02 1.95
192000 1.458E-03 1.99 82164 8.349E-03 2.00
375000 9.345E-04 1.99 151448 5.448E-03 2.09
7500 1.366E-03 - 5330 2.156E-02 -
60000 1.508E-04 3.18 29480 3.277E-03 3.30

2 202500 4.343E-05 3.07 91150 9.946E-04 3.17
480000 1.813E-05 3.04 205410 4.148E-04 3.23
937500 9.233E-06 3.02 378620 2.173E-04 3.17

Table 6.5. – L2 error and order of accuracy values for regular and irregular tetrahedral grids

Test cases presented in this chapter allow us to validate the implementation of the SDRT scheme for
first-order PDEs on triangular, tetrahedral and 2D hybrid grids. The accuracy of SDRTOPT schemes
based on a polynomial approximation of degree p = 4 and p = 5 on triangular and 2D hybrid grids
was shown as equal to p+1, as expected. On tetrahedral grids, the SDRT implementation is validated
up to the third-order of accuracy.
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Chapter 7
Extension and validation for
Second-Order Partial Differential
Equations
Numerical experiments are now conducted on second-order PDEs, i.e. Navier-Stokes equations. The
procedure to deal with viscous terms using the SDRT approach is first presented. A viscous flow over
a NACA0012 airfoil using quadratic triangular elements is then studied considering three different
viscous flow conditions: symmetric subsonic, asymmetric subsonic and transonic flow. A 2D hybrid
grid is then used to solve a laminar flow around a cylinder at Re = 20. Finally, the Taylor-Green
Vortex is used to validate the SDRT implementation for viscous flows on tetrahedral grids.
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Chapter 7 : Extension and validation for Second-Order Partial Differential Equations

7.1. Extension of the Spectral Difference Approach for Navier-Stokes
Equations on Triangular and Tetrahedral Elements

Let us consider a 2D scalar conservation law in the reference domain:

∂û(ξ, t)
∂t

+ ∇̂ · f̂ = 0, (7.1)

except that now, the flux is defined by :

f̂ = |J |J−1f(u,∇u), (7.2)

leading to a second-order PDE. For the Navier-Stokes equations, the flux can be expressed as:

f = f i(u)− fv(u,∇u), (7.3)

where f i is the inviscid flux and fv is the viscous flux. The viscous flux depends not only on the solution
u but also on its first spatial derivative ∇u. Eq. (7.1) is solved following the very same procedure as
for a first-order PDE except for the determination of the flux values at FP f̂k. The scalar flux values
are now given by:

f̂k = f̂ ik − f̂vk . (7.4)

The inviscid flux values f̂ ik are computed using Eq. (2.99) since the inviscid flux only depends on the
solution:

f̂ ik =


f̂ i · n̂k = |J |J−1f ik(uh(ξk)) · n̂k, ξk ∈ T \ ∂T (or ∈ Te \ ∂Te),(
f̂ ik · n̂k

)∗
=
(
f ik · |J |(J−1)>n̂k

)∗
, ξk ∈ ∂T (or ∈ ∂Te).

(7.5)

To compute f̂vk , which relies on the solution and its gradient, the following procedure, based on a
centered formulation [110] is used. From the approximated solution in the reference domain, the
physical approximated solution uh(ξk) is first computed at FP:

uh(ξk) = 1
|J |

ûh(ξk) = 1
|J |

Tkj ûj . (7.6)

From those values, a polynomial interpolation of degree p+ 1 should be reconstructed for the solution
but this polynomial would be discontinuous at cell interfaces. For this reason, a centered scheme is
used to uniquely define the solution at each flux point by averaging the values from the left and the
right cells, leading to a continuous polynomial interpolation uch:

uch(ξk) =


uh(ξk), ξk ∈ T \ ∂T (or ∈ Te \ ∂Te),

1
2
(
uLh (ξk) + uRh (ξk)

)
, ξk ∈ ∂T (or ∈ ∂Te).

(7.7)

The solution gradient in the reference domain is given as [144]:(
∇̂û
)

(ξj) = Djk n̂k ûch(ξk). (7.8)

In the physical domain, the solution gradient can be expressed as:

∇u = 1
|J |

(
J−1

)>
∇̂û, (7.9)
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and since
ûch = |J |uch, (7.10)

one gets the expression of the solution gradient (∇u) in the physical domain:

(∇u) (ξj) = 1
|J |

Djk

(
uch(ξk)

(
|J |J−1

)>
n̂k
)
. (7.11)

From the solution gradient at SP in the reference domain, the solution gradient in the physical domain
can be interpolated at FP:

(∇u)h (ξk) = Tkj (∇u) (ξj) . (7.12)

The polynomial approximation of the solution gradient (∇u)h is discontinuous at cell interfaces. As
it was done for the solution, a centered scheme is used to defined a single value at cell interface:

(∇u)ch (ξk) =


(∇u)h (ξk) , ξk ∈ T \ ∂T (or ∈ Te \ ∂Te),

1
2
(
(∇u)Lh (ξk) + (∇u)Rh (ξk)

)
, ξk ∈ ∂T (or ∈ ∂Te).

(7.13)

The continuous solution uch and the continuous solution gradient (∇u)ch in the physical domain are
used to compute the viscous flux values:

fvk = f v(uch(ξk), (∇u)ch (ξk)). (7.14)

The viscous flux values in the reference domain are finally given as:

f̂vk =


|J |J−1fvk · n̂k, ξk ∈ T \ ∂T (or ∈ Te \ ∂Te),

f vk · |J |(J−1)>n̂k, ξk ∈ ∂T (or ∈ ∂Te).
(7.15)

To summarize, the flux values read:

f̂k =


|J |J−1

(
f ik − f vk

)
· n̂k, ξk ∈ T \ ∂T (or ∈ Te \ ∂Te),

(
f ik · |J |(J−1)>n̂k

)∗
− f vk · |J |(J−1)>n̂k, ξk ∈ ∂T (or ∈ ∂Te).

(7.16)

The flux polynomial based on the flux values f̂k = f̂ ik − f̂vk is then differentiated by multiplying it by
the differentiation matrix Djk and the semi-discrete equation is integrated in time.
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7.2. 2D Viscous Flow Over a NACA0012 Airfoil

This test case aims to validate the method for the computation of viscous flow with a high-order
triangular curved boundary representation. The compressible Navier-Stokes equations are solved and
a laminar viscous flow over the NACA0012 airfoil is considered. The computational setup is defined
by the angle of attack α, the Mach number M∞ and the Reynolds number Re = ρ∞U∞C/µd∞, where
C is the airfoil chord. Three different laminar flow conditions chosen from the NASA technical report
[197] are considered:

– Case A: Symmetric subsonic flow, M∞ = 0.5, α = 0°, Re = 5000,
– Case B: Asymmetric subsonic flow, M∞ = 0.5, α = 2°, Re = 5000,
– Case C: Transonic flow, M∞ = 0.8, α = 10°, Re = 500.

The NACA0012 airfoil equation used is:

y = ±0.6
(
0.2969

√
x− 0.1260x− 0.3516x2 + 0.2843x3 − 0.1036x4

)
, (7.17)

so the trailing edge has a zero thickness. At the airfoil, a no-slip adiabatic wall condition is imposed. To
avoid spurious reflections on the boundary conditions, the farfield boundary is located 50 chords away
from the airfoil. On the farfield boundary, pressure and temperature are imposed at P∞ = 101325 Pa
and T∞ = 293.15 K and the velocity is imposed depending on the Mach number. Interface flux is
then obtained by applying the approximated Riemann solver at the interface using the prescribed
state outside and the extrapolated internal state. The computational domain is meshed with a C-type
topology and has a total number of 2407 quadratic triangular elements (with 62 cells on the airfoil).
The resulting mesh is shown in Fig. 7.1.
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Figure 7.1. – Unstructured mesh around a NACA0012 airfoil - 2407 quadratic triangular elements

The SDRT2 and SDRT3 implementation is the SDRTWSJ whereas the SDRTOPT is used for SDRT4
and SDRT5. Solutions are time-integrated using the SSP3s3o temporal scheme and as before the
convection flux is Roe’s scheme. Results are presented for SDRT schemes from the third- to the sixth-
order (p ∈ J2, 5K). The CFL number is chosen based on the maximum one affordable using p = 5 for
a SDRTOPT scheme associated with the SSP3s3o temporal scheme, i.e. ν = 0.05. The visualization
process on triangular grids is done by extrapolating the solution at SP to high-order Lagrange elements
nodes.
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To monitor the computation convergence, the L2 norm of the residual on the density between
iteration n and n+ 1 is computed using:

||Res||2 =

√√√√∫Ω (ρn+1 − ρn)2 dΩ∫
Ω dΩ . (7.18)

Integration is performed using the 175-points symmetric quadrature given by Wandzura and Xiao
[192]. The decay of the residual against number of iteration for SDRTp schemes, p ∈ J2, 5K, is shown
for the transonic case in Fig. 7.2. Despite the use of an explicit time-integration scheme, a very good
convergence is obtained.
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Figure 7.2. – Convergence of the residual for the transonic viscous flow over a NACA0012 airfoil

7.2.1. Case A: Symmetric Subsonic Flow
Results are first presented for Case A, which consists in a symmetric laminar flow around the

NACA0012 airfoil defined by M∞ = 0.5, α = 0°, Re = 5000. Mach contours obtained using SDRTp
schemes, p ∈ J2, 5K for the Case A are shown in Fig. 7.3. The separation region occurs close to the
trailing edge, leading to the formation of a symmetric recirculation bubble where the flow is associated
with a low Mach number.

As the degree of the polynomial reconstruction increases, the solution becomes smoother and thus
more accurate. For SDRT2 and SDRT3 schemes (Fig. 7.3a, 7.3b), discontinuous contour lines can be
observed. Those discontinuities are induced by the visualization process, which is done independently
on each triangular element, leading to different solution values at cell interfaces, and express a low
resolution. Mach contour lines become smoother for SDRT4 (Fig. 7.3c) and perfectly continuous for
SDRT5 (7.3d). All SDRT schemes converge to the same steady solution.
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Figure 7.3. – Case A: Mach number contours using SDRTp schemes, p ∈ J2, 5K

The surface skin-friction coefficient Cf and the surface pressure coefficient Cp distributions are plot-
ted in Fig. 7.4 and Fig. 7.5 (respectively) for each accuracy order and compared to NASA results
from [197] (finite volume solver RK/Implicit scheme with matrix dissipation on structured grid) on
the most refined mesh (1024× 512 elements).

Coefficients Cf and Cp are computed using:

Cf = τω
1/2 γ M2

∞ P∞
, (7.19)

Cp = P − P∞
1/2 γ M2

∞ P∞
. (7.20)

In Eq. (7.19) and Eq. (7.20), the skin shear stress τω and the pressure P need to be computed on the
airfoil surface. They are obtained from an extrapolation of the variables at SP to points located at
the surface. In the following results, variables are extrapolated to 100 surface points per edge and an
averaging procedure is applied to obtain a single value at each cell interface.

From Fig. 7.4, the main effect of the SDRT scheme order of accuracy can be observed at the airfoil
leading edge: the peak Cf value is overestimated by 13.8% when using SDRT2 and 12.7% using SDRT3.
This overshoot could be due to the interpolation post-processing step performed independently on each
cell and is most visible for smaller orders since less information per cell is available. For SDRT4 and
SDRT5, a closer view shows a proper estimation of the maximum Cf value, with an overestimation
of 0.8% for SDRT4 and an underestimation of 2.5% for SDRT5. For p = 2, 3 and 4, the maximum Cf
value is slightly shifted: it is located at x/C = 0.009 whereas the NASA data led to a maximum Cf
value located at x/C = 0.007. This offset is could due to the mesh refinement at the leading edge. The
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7.2 2D Viscous Flow Over a NACA0012 Airfoil

SDRT5 leads to a better estimation of the peak shape. Additionally, the SDRT2 scheme overestimates
the Cf coefficient around x/C = 0.1, whereas higher-order SDRT schemes are matching NASA data.
The surface pressure coefficient plot (Fig. 7.5) shows a good agreement with the NASA data. A closer
view highlights the convergence of the results when the accuracy order increases.

Figure 7.4. – Case A: Surface skin-friction
coefficient Cf

Figure 7.5. – Case A: Surface pressure
coefficient Cp

The pressure drag coefficient (CD)p, the skin-friction drag coefficient (CD)f and the total drag
coefficient CD are computed from the curves using [198]:

(CD)p =
(∫ 1

0
(Cpu − Cpl)dy

)
cos(α)−

(∫ 1

0
(Cpu − Cpl)dx

)
sin(α), (7.21)

(CD)f =
∫ 1

0
(Cfu + Cfl)dx, (7.22)

CD = (CD)p + (CD)f , (7.23)

where the subscript u (respectively l) denote the upper (respectively lower) section of the airfoil, as-
sociated with y > 0 (respectively y < 0). Integrals are computed using the trapezoidal rule with more
than 100 control points per edge. Their computed values and the location of the separation point
relative to chord length are given in Table 7.1 and compared with NASA data and results using a
fifth-order SD scheme on quadrilaterals.

The overestimation of the surface skin-friction coefficient previously observed for SDRT2 is retrieved
on the (CD)f value. Even if the (CD)p value is in good agreement with the NASA data using the
refined grid and the fifth-order SD scheme, this leads to an overestimated total drag coefficient. Values
of the different coefficients converge as the order of accuracy increases. Results using SDRT4 are in
excellent agreement with the NASA data using the refined grid (difference of 0.1%), whereas SDRT5
matches results obtained using the fifth-order SD scheme (difference of 0.7%). All of the separation
point locations predicted by SDRT schemes lies in the interval given by the three references up to the
third decimal.
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DoF Number CD (CD)p (CD)f xsep/C

SDRT2 14, 442 0.0583644 0.0220679 0.0362965 0.809
SDRT3 24, 070 0.0573619 0.0239848 0.0333771 0.808
SDRT4 36, 105 0.0554990 0.0225962 0.0329028 0.810
SDRT5 50, 547 0.0543702 0.0218255 0.0325447 0.814

NASA [197] 8, 192 0.0560794 0.0237143 0.0323651 0.809
524, 288 0.0555743 0.0227887 0.0327855 0.808

Fifth-order SD [113] 43, 200 0.05476 0.02225 0.03251 0.814

Table 7.1. – Case A: Comparison of drag coefficients and separation point location

7.2.2. Case B: Asymmetric Subsonic Flow

Results are now presented the subsonic laminar flow (M∞ = 0.5, Re = 5000) with an incidence
angle of α = 2°. The Mach contours presented in Fig. 7.6 indicate the formation of a recirculating
region, which length is larger than for Case A. The flow separation seems to occur further from the
trailing edge. As for Case A, all SDRT schemes converge to the same steady solution, with better
accuracy when the order increases.
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Figure 7.6. – Case B: Mach number contours using SDRTp schemes, p ∈ J2, 5K

The surface skin-friction coefficient Cf and the surface pressure coefficient Cp distributions are plot-
ted in Fig. 7.7 and Fig. 7.8 (respectively) for each accuracy order and compared to NASA results
from [197] on the most refined mesh (1024 × 512 elements). Both plots highlight the non-symmetry
property of the flow for Case B.
Fig. 7.7 allows us to confirm the first comment on the separation point location made from the Mach
contour plot: compared to Case A, the separation occurs approximately at mid-chord, on the up-
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7.2 2D Viscous Flow Over a NACA0012 Airfoil

per surface. Starting from x/C = 0.3, all SDRT schemes lead to a good agreement with the NASA
data. For x/C < 0.3, the SDRT2 and SDRT3 schemes do not manage to match the reference data.
On the other hand, a close view at the leading edge allows us to see that SDRT4 leads to a proper
value of the surface skin-friction coefficient at the upper airfoil section and a slightly overestimated
one for at the lower section. Finally, the SDRT5 scheme was able to properly capture maximum Cf
values in both the upper and the lower airfoil sections. In Fig. 7.8, the surface pressure coefficient
plot obtained using SDRT schemes shows an acceptable shape but seems to be a little bit shifted by a
positive value. As for Case A, a close view shows the convergence of the solution as the order increases.

Figure 7.7. – Case B: Surface skin-friction
coefficient Cf

Figure 7.8. – Case B: Surface pressure
coefficient Cp

The aerodynamic coefficients are computed for each SDRT scheme and compared to NASA refer-
ences in Table 7.2. The SDRT2 scheme leads to a good prediction of CD (1% of difference), but the
surface skin-friction and pressure coefficients are not accurately determined (∼ 4.5% of difference).
For higher-order SDRT schemes, the CD value converges to the NASA reference for the refined grid
(13% for SDRT3, 2.8% for SDRT4 and 0.8% for SDRT5), with close values for (CD)p and (CD)f . The
same behavior is observed for the separation point location, even if it is slightly overestimated (2.8%
for p = 5).

DoF Number CD (CD)p (CD)f xsep/C

SDRT2 14, 442 0.0574735 0.0233123 0.0341613 0.584
SDRT3 24, 070 0.0644525 0.0298255 0.0346270 0.580
SDRT4 36, 105 0.0584788 0.0252599 0.0332190 0.579
SDRT5 50, 547 0.0573627 0.0245549 0.0328078 0.577

NASA [197] 8, 192 0.0572544 0.0251267 0.0321277 0.552
524, 288 0.0568914 0.0243173 0.0325741 0.561

Table 7.2. – Case B: Comparison of drag coefficients and separation point location
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7.2.3. Case C: Transonic Flow
Eventually, results for the transonic flow (Case C) defined by M∞ = 0.8, α = 10°, Re = 500 are

presented. Fig. 7.9 shows the Mach contours obtained using SDRTp schemes, p ∈ J2, 5K. The flow
is accelerated at the airfoil upper surface and creates a small supersonic zone (M > 1). However, as
expected for this case, there is no shock wave developing. Accuracy improvement when using higher-
order SDRT scheme is clearly visible for this case, especially for SDRT2 (Fig. 7.9a) which reveals
highly discontinuous Mach contours. The Mach contours given by the SDRT4 and SDRT5 schemes
(Fig. 7.9c, 7.9d) show continuous lines for most of the domain. The remaining discontinuities located
around the position (x/C, y/C) = (1.4, 0.4) are due to the fact that the mesh used is refined for the
wake given with an angle of attack α = 0°. Apart from this region, the Mach contours obtained show
that the SDRT4 and SDRT5 schemes converge to the same solution.
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Figure 7.9. – Case C: Mach number contours using SDRTp schemes, p ∈ J2, 5K

The surface skin-friction coefficient Cf and the surface pressure coefficient Cp distributions are plot-
ted in Fig. 7.10 and Fig. 7.11. For both coefficients, there is good agreement between the results
obtained from SDRTp schemes and the NASA data. In Fig. 7.10, a closer view shows that all SDRT
schemes were able to capture the maximum value of the surface skin-friction coefficient at the leading
edge. Small discontinuities between cells are observed, resulting from the interpolation post-processing
step performed independently on each cell. The peak at the leading edge is quite accurately repre-
sented. A difference with the NASA data can be noticed at the trailing edge, where SDRT schemes
did not manage to capture the maximum values due to low mesh refinement. A close view indicates
that the SDRT Cf value gets a bit closer to the reference one when the order of accuracy increases.
The surface pressure coefficient plot (Fig. 7.11) shows that all SDRTp schemes lead to excellent agree-
ment with the NASA data, including at leading and trailing edges. As for the first two cases, results
converge when the order increases.
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Figure 7.10. – Case C: Surface skin-friction
coefficient Cf

Figure 7.11. – Case C: Surface pressure
coefficient Cp

The CD, (CD)p, (CD)f , xsep/C values are presented for SDRTp schemes and compared to the NASA
values in Table 7.3. Results for the total drag coefficient are in excellent agreement with the NASA
reference on the refined mesh, with a difference of < 2% for all schemes. For p > 2, all coefficients are
converged up to the third decimal. The location of the separation point is slightly smaller than the
reference ones but remains in good agreement.

DoF Number CD (CD)p (CD)f xsep/C

SDRT2 14, 442 0.272783 0.148275 0.124508 0.357
SDRT3 24, 070 0.270953 0.147087 0.123867 0.356
SDRT4 36, 105 0.270255 0.146632 0.123622 0.355
SDRT5 50, 547 0.270224 0.146715 0.123509 0.355

NASA [197] 8, 192 0.268071 0.146177 0.121894 0.386
524, 288 0.275155 0.147544 0.127611 0.362

Table 7.3. – Case C: Comparison of drag coefficients and separation point location
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7.3. 2D Viscous Flow Around a Circular Cylinder
This test case aims to validate the method for the computation of viscous flow using 2D hybrid

mesh. Let us consider a steady laminar viscous flow at Re = 20 around a cylinder. The Mach
number is M∞ = 0.1 and the Reynolds number is defined by Re = ρ∞U∞d/µd∞, where the dynamic
viscosity is µd∞ = 1.853 · 10−3 Pa s, and the cylinder diameter is d = 1 m. The density ρ∞ and the
velocity U∞ can be deduced from the temperature T = 300 K and the constant ratio of specific heats
γ = 1.4. The cylinder is placed in a rectangular domain. The farfield boundaries are located 10
diameters away from the cylinder in the upstream, upward and downward directions and 30 diameters
away in the downstream direction. A hybrid mesh of 3427 elements is used, with 196 quadrilateral
elements near the cylinder and 3231 triangles in the rest of the domain. A close view of the mesh is
provided in Fig. 7.12. On the farfield boundary, the pressure, temperature and velocity are settled.
At the cylinder surface, a no-slip isothermal wall condition is imposed. On quadrilateral elements,
the standard SD method based on the interior FP located at the zeros of the corresponding Legendre
polynomials is used. On triangles, the SDRTWSJ scheme associated with the RK4J temporal scheme is
used for p ∈ J2, 5K since a steady problem is considered. The same polynomial degree is used for both
triangular and quadrilateral elements. Roe’s Riemann solver is used to compute flux at interface flux
points and the CFL number is set to 0.06 (the maximum one affordable using p = 5 for a SDRTWSJ

scheme associated with the RK4J temporal scheme). The computation convergence is monitored by
computing the L2 norm of the residual on the density between iteration n and n+ 1 using:

||Res||2 =

√√√√∫Ω (ρn+1 − ρn)2 dΩ∫
Ω dΩ . (7.24)

Integration is performed using the 175-points symmetric quadrature given by Wandzura and Xiao
[192]. The decay of the residual against number of iteration for SD/SDRTp schemes, p ∈ J2, 5K, is
shown in Fig. 7.13. As for NACA test cases, computations are very well converged.
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Figure 7.12. – Close view of
the hybrid mesh for the vis-
cous flow around a cylinder

Figure 7.13. – Convergence of the residual for the vis-
cous flow around circular cylinder

Figure 7.14 shows the normalized x-velocity contours and streamlines around the cylinder obtained
using a SD/SDRT5 scheme. Streamlines show a recirculation zone within the wake of the cylinder
where two vortices are generated.
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(a) Normalized x-velocity contours (b) Close view of streamlines and normalized x-velocity con-
tours

Figure 7.14. – Normalized x-velocity contours and streamlines around the cylinder using a SD/SDRT5
scheme

The pressure coefficient Cp and the dimensionless negative vorticity ω̄ on the cylinder surface are
computed using:

Cp = P − P∞
1/2 γ M2

∞ P∞
, (7.25)

ω̄ = µdτω
2M∞

√
γRgasT

, (7.26)

where τω is the skin shear stress and Rgas = 287.05 J kg−1 K−1 is the specific gas constant. The
surface pressure coefficient Cp and the dimensionless negative vorticity ω̄ are respectively plotted in
Fig. 7.15 and Fig. 7.16 and compared to results obtained by Dennis and Chang [199]. Since linear
quadrilateral elements were used, outputs on the cylinder surface shows high oscillations. Outputs
data are thus post-treated using a Savitzky-Golay filter, which is a particular type of low-pass filter
well adapted for data smoothing. All SD/SDRT schemes converge to the same solution. The surface
pressure coefficient is slightly overestimated for θ ∈ [145°, 180°] but presents an excellent agreement
for θ ∈ [0°, 145°]. Likewise, the vorticity is overestimated for θ ∈ [110°, 150°]. For example, at the peak
value around θ = 125°, there is a 5% difference between Dennis and Chang and SD/SDRT results.

Figure 7.15. – Pressure coefficient Cp
distribution on the cylinder surface

Figure 7.16. – Dimensionless negative vorticity ω̄
distribution on the cylinder surface
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To properly quantify the mismatch between results obtained using SD/SDRT schemes and reference
data from Dennis and Chang, the pressure drag coefficient (CD)p, the skin-friction drag coefficient
(CD)f and the total drag coefficient CD are computed using:

(CD)p = 1
2

∫ π

0
(Cpu − Cpl) cos θdθ, (7.27)

(CD)f =
∫ 1

0
(Cfu + Cfl)dx, (7.28)

where
Cf = τω

1/2 γ M2
∞ P∞

, (7.29)

and
CD = (CD)p + (CD)f . (7.30)

Values of the drag coefficients as well as the separation angle θsep and the normalized reattachment
length L/d obtained using SD/SDRT schemes are compared with different reference values in Ta-
ble 7.4. Values presented are computed after applying the Savitzky-Golay filter; however, note that
the maximum difference between values on all coefficients obtained with and without the filter is
around 0.2%. Reference results [199–201] are based on finite difference approximation and Cartesian
grids. The SD/SDRT overestimation compared to Dennis and Chang data observed in Fig. 7.15 and
Fig. 7.16 is retrieved on drag coefficients values. This overestimation could be due to the fact that
linear quadrilateral elements were used. A mesh composed of quadratic elements could lead to better
results. Additionally, using a no-slip adiabatic wall condition at the cylinder surface instead of an
isothermal wall condition could be more appropriate. However, compared to other reference data,
SD/SDRT schemes lead to a proper estimation of drag coefficients, separation angle and reattachment
length. Finally, it can be noted that using the SSP3s3o temporal scheme (associated with a SDRTWSJ

implementation for p ∈ J2, 3K and a SDRTOPT implementation for p ∈ J4, 5K) led to the very same
results, which is consistent since this is a steady test case.

CD (CD)p (CD)f θsep L/d
SD/SDRT2 2.135 1.275 0.860 45.5° 0.915
SD/SDRT3 2.145 1.284 0.860 45.4° 0.915
SD/SDRT4 2.146 1.286 0.860 45.4° 0.916
SD/SDRT5 2.147 1.287 0.860 45.3° 0.916

Dennis and Chang [199] 2.045 1.233 0.812 43.7° 0.94
Russell and Z. Jane Wang [200] 2.13 - - 43.3° 0.94

Calhoun [201] 2.19 - - 45.5° 0.91

Table 7.4. – Comparison of drag coefficients and separation angle for flow over a cylinder

124



7.4 3D Taylor-Green Vortex

7.4. 3D Taylor-Green Vortex
To validate the implementation of the SDRT method for the Navier-Stokes equations using tetrahe-

dral grids, the Direct Numerical Simulation of the Taylor-Green Vortex (TGV) at Re = ρ∞U∞L/µd∞ =
1600 is considered. The TGV test case was proposed in the International Workshop on High-Order
CFD Methods [193] to test the accuracy and performance of high-order methods. A three-dimensional
periodic and transitional flow is considered and defined by:

U = U∞ sin
(
x

L

)
cos

(
y

L

)
cos

(
z

L

)
, (7.31)

V = −U∞ cos
(
x

L

)
sin
(
y

L

)
cos

(
z

L

)
, (7.32)

W = 0, (7.33)

P = P∞ + ρ∞U
2
∞

16

(
cos

(2x
L

)
+ cos

(2y
L

))(
cos

(2z
L

)
+ 2

)
. (7.34)

The flow is governed by the 3D compressible Navier-Stokes equations with constant physical prop-
erties and at low Mach number so that the obtained solutions are close to incompressible solutions.
The test case conditions are summed up in Table 7.5.

Variable Notation Value Unit
Reynolds number Re 1600 -

Temperature T∞ 300 K
Dynamic viscosity µd∞ 1.846 · 10−5 kg/m/s
Mach number M∞ 0.1 -
Gas constant Rgas 287.058 J/kg/K

Density ρ∞ 8.506 · 10−4 kg/m3

Pressure P∞ 73.254 Pa
Ratio of specific heat γ 1.4 -

Prandtl number Pr 0.71 -
Reference length L 1.0 m

Table 7.5. – Flow conditions for the TGV test case

The computational domain is a cube defined by Ω = [−πL, πL]3 and periodic boundary conditions
are imposed in the three directions. The SDRT implementation for interior FP is based on the Shunn-
Ham quadrature rule. Solutions are time-integrated using the RKo6s temporal scheme and the time
step ∆t is imposed. Roe’s Riemann solver is used to compute flux at cell interfaces. Computations are
carried out on 600 processors. Three different regular grids (M1, M2 and M3) are considered. Their
number of elements and associated time steps are given in Table 7.6.
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Scheme Mesh Number of Elements DOF Number ∆t (sec)

SDRT1

M1 663,552 2,654,208 7.5 · 10−5

M2 1,572,864 6,291,456 5.5 · 10−5

M3 3,072,000 12,288,000 4.5 · 10−5

SDRT2

M1 663,552 6,635,520 4.5 · 10−5

M2 1,572,864 15,728,640 3.5 · 10−5

M3 3,072,000 30,720,000 3.0 · 10−5

Table 7.6. – Computational conditions for the TGV test case

The physical duration of the computation is based on the characteristic convective time tc = L/U∞
and is set to tf = 20tc. The kinetic energy dissipation rate ε is computed for t ∈ [0, tf ] and compared to
a reference incompressible flow solution obtained using a dealiased pseudo-spectral code (developed at
Université Catholique de Louvain, UCL) on a 5123 mesh and provided by the International Workshop
on High-Order CFD Methods [193]. The reference data is denoted ’Spectral-5123’.

Kinetic Energy Dissipation Rate To compute the kinetic energy dissipation rate, one first needs to
compute the kinetic energy Ek, defined by:

Ek(t) =
∫

Ω

1
2ρ(U2 + V 2 +W 2)dΩ. (7.35)

The kinetic energy is computed at each time t as:

Ek(t) =
N∑
i=1

Nq∑
j=1

ωj |J (i,j)|E(i)
k (ξj), (7.36)

where |J (i,j)| is the Jacobian determinant at the j-th integration point of the i-th cell and Nq is the
number of quadrature points. The quadrature points are located at ξj and associated with the weight
ωj . The integration is performed using the 84 points quadrature rule from [174]. The kinetic energy
dissipation rate is defined by:

ε(t) = −dEk
dt (t), (7.37)

and is computed using a first-order upwind scheme. The kinetic energy dissipation rate is rendered
dimensionless by εc = Ek(t = 0)/tc. Results obtained with the second and third-order SDRT schemes
are compared with reference data in Fig. 7.17. Using the second-order SDRT scheme (Fig. 7.17a), the
dimensionless kinetic energy dissipation rate ε/εc evolution is first quite accurate (t/tc ∈ [0, 3]) but
grows too fast from t/tc > 3 for all grid resolutions. The maximal peak value is underestimated (of
4% for M1 and 7% for M2 and M3) and shifted (of 8% for M1 and M2 and 5% for M3). However,
results get closer to the reference data as the number of DOF increases. Using the second-order SDRT
scheme leads to better results (Fig. 7.17b). For t/tc ∈ [0, 9], results obtained using the M1 mesh
slightly overestimate ε/εc whereas results on M2 and M3 grids show an excellent agreement with the
reference data. The improvement of the solution accuracy when the number of DOF increases can be
clearly see at t/tc = 9. Compared to the reference data, the peak value is particularly well predicted
on the M3 mesh (underestimation of 0.7%). For t/tc ∈ [12, 17], ε/εc is a little overestimated but the
final value at t/tc = 20 matches the reference.

126



7.4 3D Taylor-Green Vortex

(a) SDRT1 (b) SDRT2

Figure 7.17. – Dimensionless kinetic energy dissipation rate obtained with second and third-order
SDRT schemes compared to reference data

Computational Cost To assess the performance of the SDRT implementation on tetrahedral ele-
ments, the computational cost is compared to the one obtained with JAGUAR on hexahedral ele-
ments and to other solvers based on nodal Discontinuous Galerkin and Finite Difference method on
hexahedral grids. All of them are based on explicit time integration. The description and efficiency
of each code can be found on the NASA website gathering results of the 3rd International Workshop
on Higher-Order CFD Methods [202]. It should be noted that values presented in this section for the
solver JAGUAR are preliminary results since they are based on a single computation. To compare
the solvers’ performance, the computational speed (in µsec) is computed as:

Speed = Wall Time · Nbr Cores
Nbr It · DoF . (7.38)

Computational efficiency are compared in Fig. 7.18. The type of element used by each solver is indi-
cated by markers (a square marker for hexahedral elements and a triangular marker for tetrahedral
elements). Using JAGUAR, second-order schemes lead to an equivalent efficiency using either hex-
ahedra or tetrahedra. However, from values obtained using third-order schemes, it becomes obvious
that this first implementation for tetrahedra can be improved. The computational efficiency of the
third-order SD scheme on hexahedra is around fifteen microseconds whereas the cost of the SDRT
implementation on tetrahedra is twice higher. This statement is corroborated by the comparison of
JAGUAR to other solvers. All of them lead to better efficiency than the SDRT implementation on
tetrahedra, but the standard SD scheme on hexahedra remains quite competitive. This first SDRT
implementation should thus be optimized in the future to be more efficient.
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Figure 7.18. – Efficiency of the first SDRT implementation in JAGUAR compared with other solvers
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Discussion

The objective of the present thesis was to extend the Spectral Difference method to simplex cells
and hybrid grids. For two-dimensional grids, the stability of the SDRT approach first needed to be
proven on triangular cells for orders of accuracy higher than four. For three-dimensional cases, the
SDRT formulation on tetrahedral and prismatic elements had to be established.

Chapter 1 gave the context of the thesis and underlined the importance of high-order methods
for Large Eddy Simulation. A bibliographic review showed the assets and drawbacks of the existing
high-order discontinuous methods. The current limitations of the Spectral Difference method using
Raviart-Thomas elements on simplex were pointed out. On triangles, the approach was limited to
the fourth-order of accuracy due to a lack of stability proof for higher orders whereas the 3D SDRT
implementation on tetrahedra was not stated yet.

In Chapter 2, the standard SD approach was recalled since tensor-product cells are involved in
hybrid grids. The SDRT method was then detailed for triangles and established for tetrahedral cells.
The formulation was extended to prismatic elements using a tensor product between the standard
1D SD and the 2D SDRT schemes. The complexity induced by the treatment of pyramidal elements
was briefly addressed and a choice was made to focus on triangles and tetrahedra. This choice was
motivated by the fact that those simplex cells offer the possibility to treat complex geometries.

The linear stability of the SDRT scheme was investigated in Chapter 3. To determine stable for-
mulation on triangles for orders of accuracy higher than four, the goal was to study multiple SDRT
implementations depending on the choice of the interior FP location. A new stability method was
proposed as an efficient way to assess the stability of a scheme but it was demonstrated that results
obtained on a domain composed of a fixed number of cells could not be extended in a general frame-
work. This approach was thus put aside in favor of the common Fourier stability analysis. Under a
Fourier stability analysis, different interior FP locations were tested using many existing quadrature
rules. All of them led to small positive real part values in the spatial operator spectra for p > 3.
Finally, the linear stability of the SDRT method was established on tetrahedral elements up to the
third-order of accuracy.

Chapter 4 explored the possibility of stabilizing the SDRT method based on interior FP located
at the Williams-Shunn-Jameson quadrature rule points (SDRTWSJ) on triangles for p > 3 using the
temporal discretization to dissipate the small positive real part values in the spatial operator spectra.
Two options leading to stable coupled time-space discretizations were given. The first one uses the
RK4J temporal scheme to dissipate the spatial instability and was validated for all advection angles.
However, a high numerical dissipation error was found. The second one uses third-order SSP temporal
schemes, which are associated with better dissipation and dispersion properties. However, the stability
of the coupled time-space discretization is subject to conditions: for SDRT4, the CFL number must
lie into a given range, whereas for SDRT5, the stability is not ensured for all advection angles. The
strong dependence on the advection angle or on a double condition on the CFL number makes this
second possibility impracticable. Additionally, the importance of conducting the Fourier analysis on
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the coupled time-space discretization was highlighted since spatially stable SDRT scheme (p = 2 and
p = 3) were shown as leading to an unstable time-space discretization when associated with temporal
SSP schemes of order two for a CFL number ν > 0.02. The coupled time-space discretization was
finally examined for tetrahedral elements. All temporal schemes studied led to stable results when
associated with the SDRT scheme for p = 1 and p = 2 but the severe stability condition for second-
order SSP temporal schemes was also observed.

To overcome the restrictive conditions associated with the solution proposed in Chapter 4, Chap-
ter 5 presented new sets of interior FP leading to spatially stable SDRT formulations (SDRTOPT) for
p = 4 and p = 5. These sets of points were determined through an optimization process based on the
Fourier analysis. Proof of the spatial stability of this formulation was given through a study of the
spatial operator spectrum and the coupled time-space discretization was then studied to determine
CFL stability limits. The optimization process was also conducted for p = 6 on triangles and p = 3 on
tetrahedra but did not lead to concluding results. However, on tetrahedral elements, the optimization
problem only considered the interior FP location as an optimization parameter whereas the FP located
on faces were fixed at Williams-Shunn-Jameson quadrature points. Since it was then demonstrated
that the position of FP located on faces has an important impact on the scheme stability, an opti-
mization problem considering both the interior FP location and the position of FP located on faces
as optimization parameters could be able to determine stable SDRT formulations for p > 2.

In Chapter 6, the SDRTWSJ and SDRTOPT implementations were first compared in terms of accu-
racy for first-order Partial Differential Equations. As expected, the SDRTWSJ stabilized by the RK4J
temporal scheme led to high dissipation errors, fully driven by the RK4J temporal scheme. On the
other hand, the high accuracy of the SDRTOPT scheme was verified using a nonlinear Euler test case
for triangular and 2D hybrid grids. A 3D Euler test case was finally used to retrieve the expected
orders of accuracy on tetrahedral grids using SDRT schemes for p = 1 and p = 2.

Eventually, Chapter 7 presented Navier-Stokes applications. The SDRTOPT implementation was
used to simulate a steady flow over a NACA0012 airfoil on a quadratic triangular mesh for three
different flow conditions. The SDRTWSJ associated with the RK4J temporal scheme was then used to
treat a 2D hybrid mesh and simulate the steady flow around a cylinder. Both SDRT implementations
led to good agreement with reference data. Finally, the simulation of a Taylor-Green vortex was
run using tetrahedral grids. Good agreement with reference data and consistent computational cost
validated the 3D SDRT implementation.
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Perspectives
In this thesis, the Spectral Difference approach was successfully extended to simplex cells and

2D hybrid grids. A linearly stable SDRT formulation was proposed based on interior FP locations
determined using an optimization process up to the sixth-order of accuracy. The implementation of
this formulation has allowed us to simulate various test cases using triangular and 2D hybrid grids.
The extension of the SDRT method to tetrahedral elements and the proof of its stability up to the
third-order has led to the simulation of a 3D turbulent flow.

Determination of Stable SDRT Schemes for Higher Orders
In the future, the determination of linearly stable SDRT schemes for higher orders, especially on

tetrahedral elements, seems to be a key point.
To obtain stable SDRT discretizations associated with a fourth-order of accuracy on tetrahedral el-
ements, an approach consisting in considering the location of FP located on faces as optimization
parameters was proposed. It is important to highlight that if stable SDRT schemes were obtained
by changing the position of FP located on faces, the FP on faces will not be located at the same
coordinates as FP located on a prismatic element triangular face. Since the SP location has no impact
on the scheme stability for triangular elements, a simple solution to solve that issue is to set the
SP location on a triangle at the position of FP located on a tetrahedral face. This way, no mortar
techniques will need to be introduced.
The determination of linearly stable SDRT schemes for higher orders on both triangular and tetra-
hedral elements could also be addressed using a different polynomial space to approximate the flux
vector. The Raviart-Thomas space is indeed the smallest possible space to approximate the flux
divergence; however, considering a larger space might lead to different conclusions.

Future Implementations
Another perspective would be to use implicit temporal schemes with the SDRT discretization in

JAGUAR. In this thesis, only explicit time integration schemes were studied and implemented, leading
to a high number of iterations needed to reach convergence on steady problems. Implicit schemes
would allow us to use higher CFL numbers and thus reduce the computational time. At this moment,
developments are ongoing to implement implicit temporal schemes in JAGUAR for tensor-product
elements. This feature could then be extended to simplex cells.
Additionally, the hybrid mesh capability of the JAGUAR solver should be extended from the two-
dimensional to the three-dimensional case. This requires implementing the SD/SDRT hybrid approach
on prismatic elements and dealing with connectivity between hexahedral, tetrahedral and prismatic
cells.

Extension to Complex Flows
Finally, now that the SDRT implementation has been validated in JAGUAR on basic aerodynamic

test cases, more complex cases should be considered. For example, JAGUAR’s ability to deal with
combustion applications using hexahedral elements is currently developed. Extending it to tetrahedral
elements would be the next objective, provided that the SDRT implementation is first made compatible
with the non-reflecting boundary conditions. Computations of flows with shocks could also be of
strong interest. This point is currently addressed in the 1D case using an entropy stable formulation.
Finally, the aim is to use JAGUAR for industrial configurations to assess its performance and accuracy
compared to other classical solvers.
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AppendixA
Jacobian Matrices
A.1. General Principle

For an element defined by n nodes, the geometrical transformation from the physical to the reference
element takes the form:

x (ξ) =
n∑
i=1

Mi(ξ)xi, (A.1)

where:
– x are the coordinates in the physical domain,
– xi are the Cartesian coordinates in the physical domain of the i-th node of the cell,
– ξ are the coordinates in the reference domain and
– Mi(ξ) are the shape functions.

The Jacobian matrix of the transformation is:

J =
[
∂ x
∂ ξ

]
, (A.2)

thus

J1D =
[
∂x

∂ξ

]
, J2D =


∂x

∂ξ

∂x

∂η
∂y

∂ξ

∂y

∂η

 , J3D =
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∂y

∂ζ
∂z
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∂z

∂η

∂z

∂ζ

 . (A.3)

Injecting Eq. (A.1) into Eq. (A.3) leads to:

J1D =
[
∂x

∂ξ

]
=

n∑
i=1

∂Mi

∂ξ
xi, (A.4)

J2D =


∂x

∂ξ

∂x

∂η
∂y

∂ξ

∂y
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
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∂η
xi

n∑
i=1

∂Mi
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∂Mi

∂η
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 =
[
x1 · · · xi · · · xn
y1 · · · yi · · · yn

]

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(A.5)
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J3D =
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Given that the transformation is non-singular, the inverse transformation is related to the Jacobian
according to:

J−1
1D = ∂ξ

∂x
= 1
|J1D|

, (A.7)
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∂η
− ∂y

∂η

∂z

∂ξ

∂x

∂η

∂z

∂ξ
− ∂x

∂ξ

∂z

∂η

∂x

∂ξ

∂y

∂η
− ∂x

∂η

∂y

∂ξ

 . (A.9)

The Jacobian matrix and its inverse are fully expressed through the coordinates of the nodes in the
physical domain and the shape functions. In the following sections, the shape functions are given for
different elements.

A.2. 1D Elements

A.2.1. Linear Line - n = 2

For a linear line, the geometric transformation is expressed in its polynomial basis (1, ξ) as:

x(ξ) = a+ bξ = [1 ξ]
[
a
b

]
, (A.10)

where a, b are unknowns. The reference linear line is chosen as S := {ξ, 0 ≤ ξ ≤ 1} (Fig. A.1). The
transformation is nodal, thus each physical node verifies Eq. (A.10):[

x1
x2

]
=
[
x(0)
x(1)

]
=
[
1 0
1 1

] [
a
b

]
, (A.11)
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A.2 1D Elements

⇐⇒
[
a
b

]
=
[
1 0
1 1

]−1 [
x1
x2

]
. (A.12)

Injecting Eq. (A.12) into Eq. (A.10):

x(ξ) = [1 ξ]
[
1 0
1 1

]−1 [
x1
x2

]

= [1− ξ ξ]
[
x1
x2

]

= [M1 M2]
[
x1
x2

]
.

(A.13)

The shape functions and their derivatives are:

[M ]> =
[
M1
M2

]
=
[
1− ξ
ξ

]
, (A.14)

[
∂M

∂ξ

]>
=
[
−1
1

]
. (A.15)

Figure A.1. – Linear line reference element Figure A.2. – Quadratic line reference element

A.2.2. Quadratic Line - n = 3

For a quadratic line, the geometric transformation is expressed in its polynomial basis (1, ξ, ξ2) as:

x(ξ) = a+ bξ + xξ2 =
[
1 ξ ξ2

] ab
c

 , (A.16)

where a, b, c are unknowns. Points are numbered following the CGNS convention (Fig. A.2). The
transformation is nodal, thus each physical node verifies Eq. (A.16):x1

x2
x3

 =

 x(0)
x(1)
x(1/2)

 =

1 0 0
1 1 1
1 1/2 1/4


ab
c

 , (A.17)

⇐⇒

ab
c

 =

1 0 0
1 1 1
1 1/2 1/4


−1 x1

x2
x3

 . (A.18)
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Injecting Eq. (A.18) into Eq. (A.16):

x(ξ) =
[
1 ξ ξ2

] 1 0 0
1 1 1
1 1/2 1/4


−1 x1

x2
x3


=
[
1− 3ξ + 2ξ2 2ξ2 − ξ 4(ξ − ξ2)

] x1
x2
x3


= [M1 M2 M3]

x1
x2
x3

 .

(A.19)

The shape functions and their derivatives are:

[M ]> =

M1
M2
M3

 =

1− 3ξ + 2ξ2

2ξ2 − ξ
4(ξ − ξ2)

 , (A.20)

[
∂M

∂ξ

]>
=

4ξ − 3
4ξ − 1
4− 8ξ

 . (A.21)

A.3. 2D Elements
A.3.1. Linear Triangle - n = 3

The geometric transformation is expressed in its polynomial basis (1, ξ, η) as:

x(ξ, η) = a+ bξ + cη = [1 ξ η]

ab
c

 , (A.22)

where a, b, c are unknowns. The reference triangle is chosen as T := {(ξ, η) : 0 ≤ ξ, η ≤ 1, ξ + η ≤ 1}
(Fig. A.3). The transformation is nodal, thus each physical node verifies Eq. (A.22):x1

x2
x3

 =

x(0, 0)
x(1, 0)
x(0, 1)

 =

1 0 0
1 1 0
1 0 1


ab
c

 , (A.23)

⇐⇒

ab
c

 =

1 0 0
1 1 0
1 0 1


−1 x1

x2
x3

 . (A.24)

Injecting Eq. (A.24) into Eq. (A.22):

x(ξ, η) = [1 ξ η]

1 0 0
1 1 0
1 0 1


−1 x1

x2
x3


= [1− ξ − η ξ η]

x1
x2
x3


= [M1 M2 M3]

x1
x2
x3

 .

(A.25)
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A.3 2D Elements

The shape functions are:
M1 = 1− ξ − η, M2 = ξ, M3 = η. (A.26)

The shape functions and their derivatives are:

[M ]> =

M1
M2
M3

 =

1− ξ − η
ξ
η

 , (A.27)

[
∂M

∂ξ

]>
=

−1
1
0

 , [
∂M

∂η

]>
=

−1
0
1

 . (A.28)

Figure A.3. – Linear triangular reference
element

Figure A.4. – Quadratic triangular reference
element

A.3.2. Quadratic Triangle - n = 6

The geometric transformation is expressed in its polynomial basis (1, ξ, η, ξ2, ξη, η2) as:

x(ξ, η) = a+ bξ + cη + dξ2 + eξη + fη2 =
[
1 ξ η ξ2 ξη η2

]


a
b
c
d
e
f


, (A.29)

where a, b, c, d, e, f are unknowns. Points are numbered following the CGNS convention (Fig. A.4).
The transformation is nodal, thus each physical node verifies Eq. (A.29):

x1
x2
x3
x4
x5
x6


=



x(0, 0)
x(1, 0)
x(0, 1)
x(1/2, 0)
x(1/2, 1/2)
x(0, 1/2)


=



1 0 0 0 0 0
1 1 0 1 0 0
1 0 1 0 0 1
1 1/2 0 1/4 0 0
1 1/2 1/2 1/4 1/4 1/4
1 0 1/2 0 0 1/4





a
b
c
d
e
f


, (A.30)
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⇐⇒



a
b
c
d
e
f


=



1 0 0 0 0 0
1 1 0 1 0 0
1 0 1 0 0 1
1 1/2 0 1/4 0 0
1 1/2 1/2 1/4 1/4 1/4
1 0 1/2 0 0 1/4



−1 

x1
x2
x3
x4
x5
x6


. (A.31)

Injecting Eq. (A.31) into Eq. (A.29):

x(ξ, η) =
[
1 ξ η ξ2 ξη η2

]


1 0 0 0 0 0
1 1 0 1 0 0
1 0 1 0 0 1
1 1/2 0 1/4 0 0
1 1/2 1/2 1/4 1/4 1/4
1 0 1/2 0 0 1/4



−1 

x1
x2
x3
x4
x5
x6



=
[
1− 3(ξ + η) + 2(ξ2 + η2) + 4ξη 2ξ2 − ξ 2η2 − η 4(ξ − ξη − ξ2) 4ξη 4(η − ξη − η2)

]


x1
x2
x3
x4
x5
x6



= [M1 M2 M3 M4 M5 M6]



x1
x2
x3
x4
x5
x6



.

(A.32)

The shape functions and their derivatives are:

[M ]> =



M1
M2
M3
M4
M5
M6


=



1− 3(ξ + η) + 2(ξ2 + η2) + 4ξη
2ξ2 − ξ
2η2 − η

4(ξ − ξη − ξ2)
4ξη

4(η − ξη − η2)


, (A.33)

[
∂M

∂ξ

]>
=



−3 + 4ξ + 4η
4ξ − 1

0
4(1− η − 2ξ)

4η
−4η


,

[
∂M

∂η

]>
=



−3 + 4η + 4ξ
0

4η − 1
−4ξ
4ξ

4(1− ξ − 2η)


. (A.34)
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A.3.3. Linear Quadrilateral - n = 4

The geometric transformation is based on the polynomial basis (1, ξ)× (1, η). The reference quadri-
lateral is chosen as Q = {(ξ, η), 0 ≤ ξ, η ≤ 1} (Fig. A.5). The shape functions are simply obtained by
multiplying the 1D shape function of a linear line with respect to the ξ and η direction:

[M ]> =


M1(ξ, η)
M2(ξ, η)
M3(ξ, η)
M4(ξ, η)

 =


M1D

1 (ξ)M1D
1 (η)

M1D
2 (ξ)M1D

1 (η)
M1D

2 (ξ)M1D
2 (η)

M1D
1 (ξ)M1D

2 (η)

 =


(1− ξ)(1− η)
ξ(1− η)
ξη

(1− ξ)η

 . (A.35)

Their derivatives are given by:

[
∂M

∂ξ

]>
=



∂M1D
1 (ξ)
∂ξ

M1D
1 (η)

∂M1D
2 (ξ)
∂ξ

M1D
1 (η)

∂M1D
2 (ξ)
∂ξ

M1D
2 (η)

∂M1D
1 (ξ)
∂ξ

M1D
2 (η)


=


−(1− η)
(1− η)
η
−η

 , (A.36)

[
∂M

∂η

]>
=



M1D
1 (ξ) ∂M

1D
1 (η)
∂η

M1D
2 (ξ) ∂M

1D
1 (η)
∂η

M1D
2 (ξ) ∂M

1D
2 (η)
∂η

M1D
1 (ξ) ∂M

1D
2 (η)
∂η


=


−(1− ξ)
−ξ
ξ

(1− ξ)

 . (A.37)

Figure A.5. – Linear quadrilateral reference
element

Figure A.6. – Quadratic quadrilateral reference
element
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A.3.4. Quadratic Quadrilateral - n = 9

The geometric transformation is based on the polynomial basis (1, ξ, ξ2) × (1, η, η2). Points are
numbered following the CGNS convention (Fig. A.6). The shape functions are simply obtained by
multiplying the 1D shape function of a quadratic line with respect to the ξ and η direction:

[M ]> =



M1(ξ, η)
M2(ξ, η)
M3(ξ, η)
M4(ξ, η)
M5(ξ, η)
M6(ξ, η)
M7(ξ, η)
M8(ξ, η)
M9(ξ, η)


=



M1D
1 (ξ)M1D

1 (η)
M1D

2 (ξ)M1D
1 (η)

M1D
2 (ξ)M1D

2 (η)
M1D

1 (ξ)M1D
2 (η)

M1D
3 (ξ)M1D

1 (η)
M1D

2 (ξ)M1D
3 (η)

M1D
3 (ξ)M1D

2 (η)
M1D

1 (ξ)M1D
3 (η)

M1D
3 (ξ)M1D

3 (η)


=



(1− 3ξ + 2ξ2)(1− 3η + 2η2)
(2ξ2 − ξ)(1− 3η + 2η2)

(2ξ2 − ξ)(2η2 − η)
(1− 3ξ + 2ξ2)(2η2 − η)
4(ξ − ξ2)(1− 3η + 2η2)

(2ξ2 − ξ)4(η − η2)
4(ξ − ξ2)(2η2 − η)

(1− 3ξ + 2ξ2)4(η − η2)
4(ξ − ξ2)4(η − η2)


. (A.38)

Their derivatives are given by:

[
∂M

∂ξ

]>
=



∂M1D
1 (ξ)
∂ξ

M1D
1 (η)

∂M1D
2 (ξ)
∂ξ

M1D
1 (η)

∂M1D
2 (ξ)
∂ξ

M1D
2 (η)

∂M1D
1 (ξ)
∂ξ

M1D
2 (η)

∂M1D
3 (ξ)
∂ξ

M1D
1 (η)

∂M1D
2 (ξ)
∂ξ

M1D
3 (η)

∂M1D
3 (ξ)
∂ξ

M1D
2 (η)

∂M1D
1 (ξ)
∂ξ

M1D
3 (η)

∂M1D
3 (ξ)
∂ξ

M1D
3 (η)



=



(4ξ − 3)(1− 3η + 2η2)
(4ξ − 1)(1− 3η + 2η2)

(4ξ − 1)(2η2 − η)
(4ξ − 3)(2η2 − η)

(4− 8ξ)(1− 3η + 2η2)
(4ξ − 1)(4(η − η2))
(4− 8ξ)(2η2 − η)

(4ξ − 3)(4(η − η2))
(4− 8ξ)(4(η − η2))


, (A.39)
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[
∂M

∂η

]>
=



M1D
1 (ξ) ∂M

1D
1 (η)
∂η

M1D
2 (ξ) ∂M

1D
1 (η)
∂η

M1D
2 (ξ) ∂M

1D
2 (η)
∂η

M1D
1 (ξ) ∂M

1D
2 (η)
∂η

M1D
3 (ξ) ∂M

1D
1 (η)
∂η

M1D
2 (ξ) ∂M

1D
3 (η)
∂η

M1D
3 (ξ) ∂M

1D
2 (η)
∂η

M1D
1 (ξ) ∂M

1D
3 (η)
∂η

M1D
3 (ξ) ∂M

1D
3 (η)
∂η



=



(1− 3ξ + 2ξ2)(4η − 3)
(2ξ2 − ξ)(4η − 3)
(2ξ2 − ξ)(4η − 1)

(1− 3ξ + 2ξ2)(4η − 1)
(4(ξ − ξ2))(4η − 3)
(2ξ2 − ξ)(4− 8η)

(4(ξ − ξ2))(4η − 1)
(1− 3ξ + 2ξ2)(4− 8η)

(4(ξ − ξ2))(4− 8η)


. (A.40)

A.4. 3D Elements

A.4.1. Linear Tetrahedron - n = 4

The geometric transformation is expressed in its polynomial basis (1, ξ, η, ζ) as:

x(ξ, η, ζ) = a+ bξ + cη + dζ = [1 ξ η ζ]


a
b
c
d

 , (A.41)

where a, b, c, d are unknowns. The transformation is nodal, thus each physical node verifies Eq. (A.41):


x1
x2
x3
x4

 =


x(0, 0, 0)
x(1, 0, 0)
x(0, 1, 0)
x(0, 0, 1)

 =


1 0 0 0
1 1 0 0
1 0 1 0
1 0 0 1



a
b
c
d

 , (A.42)

⇐⇒


a
b
c
d

 =


1 0 0 0
1 1 0 0
1 0 1 0
1 0 0 1


−1 

x1
x2
x3
x4

 . (A.43)

143



Chapter A : Jacobian Matrices

Injecting Eq. (A.43) into Eq. (A.41):

x(ξ, η, ζ) = [1 ξ η ζ]


1 0 0 0
1 1 0 0
1 0 1 0
1 0 0 1


−1 

x1
x2
x3
x4



= [1− ξ − η − ζ ξ η ζ]


x1
x2
x3
x4



= [M1 M2 M3 M4]


x1
x2
x3
x4

 .

(A.44)

The shape functions and their derivatives are:

[M ]> =


M1
M2
M3
M4

 =


1− ξ − η − ζ

ξ
η
ζ

 , (A.45)

[
∂M

∂ξ

]>
=


−1
1
0
0

 ,
[
∂M

∂η

]>
=


−1
0
1
0

 ,
[
∂M

∂ζ

]>
=


−1
0
0
1

 . (A.46)

(a) Tetrahedron (b) Hexahedron (c) Prism

Figure A.7. – 3D linear reference elements
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A.4 3D Elements

A.4.2. Linear Prism - n = 6

The geometric transformation is based on the polynomial basis (1, ξ, η) × (1, ζ). The reference
prismatic element is chosen as P := {(ξ, η) : 0 ≤ ξ, η ≤ 1, ξ + η ≤ 1} × {ζ : 0 ≤ ζ ≤ 1}and points
are numbered as shown in Fig. A.7c. The shape functions are obtained by multiplying the 2D shape
function of a linear triangle with the 1D shape function of a linear line with respect to the ζ direction:

[M ]> =



M1(ξ, η, ζ)
M2(ξ, η, ζ)
M3(ξ, η, ζ)
M4(ξ, η, ζ)
M5(ξ, η, ζ)
M6(ξ, η, ζ)


=



M2D
1 (ξ, η)M1D

1 (ζ)
M2D

2 (ξ, η)M1D
1 (ζ)

M2D
3 (ξ, η)M1D

1 (ζ)
M2D

1 (ξ, η)M1D
2 (ζ)

M2D
2 (ξ, η)M1D

2 (ζ)
M2D

3 (ξ, η)M1D
2 (ζ)


=



(1− ξ − η) (1− ζ)
ξ (1− ζ)
η (1− ζ)

(1− ξ − η) ζ
ξ ζ
η ζ


. (A.47)

Their derivatives are given by:

[
∂M

∂ξ

]>
=



−(1− ζ)
(1− ζ)

0
−ζ
ζ
0


,

[
∂M

∂η

]>
=



−(1− ζ)
0

(1− ζ)
−ζ
0
ζ


,

[
∂M

∂ζ

]>
=



−(1− ξ − η)
−ξ
−η

(1− ξ − η)
ξ
η


. (A.48)

A.4.3. Linear Hexahedron - n = 8

The geometric transformation is based on the polynomial basis (1, ξ)× (1, η)× (1, ζ). The reference
hexahedron is chosen as H = {(ξ, η, ζ), 0 ≤ ξ, η, ζ ≤ 1} and points are numbered as shown in Fig. A.7b.
The shape functions are simply obtained by multiplying the 1D shape function of a linear line with
respect to the ξ, η and ζ direction:

[M ]> =



M1(ξ, η, ζ)
M2(ξ, η, ζ)
M3(ξ, η, ζ)
M4(ξ, η, ζ)
M5(ξ, η, ζ)
M6(ξ, η, ζ)
M7(ξ, η, ζ)
M8(ξ, η, ζ)


=



M1D
1 (ξ)M1D

1 (η)M1D
1 (ζ)

M1D
2 (ξ)M1D

1 (η)M1D
1 (ζ)

M1D
2 (ξ)M1D

2 (η)M1D
1 (ζ)

M1D
1 (ξ)M1D

2 (η)M1D
1 (ζ)

M1D
1 (ξ)M1D

1 (η)M1D
2 (ζ)

M1D
2 (ξ)M1D

1 (η)M1D
2 (ζ)

M1D
2 (ξ)M1D

2 (η)M1D
2 (ζ)

M1D
1 (ξ)M1D

2 (η)M1D
2 (ζ)


=



(1− ξ) (1− η) (1− ζ)
ξ (1− η) (1− ζ)
ξ η (1− ζ)

(1− ξ) η (1− ζ)
(1− ξ) (1− η) ζ
ξ (1− η) ζ
ξ η ζ

(1− ξ) η ζ


. (A.49)

Their derivatives are given by:

[
∂M

∂ξ

]>
=



− (1− η) (1− ζ)
(1− η) (1− ζ)
η (1− ζ)
− η (1− ζ)
− (1− η) ζ

(1− η) ζ
η ζ
− η ζ


,

[
∂M

∂η

]>
=



−(1− ξ) (1− ζ)
−ξ (1− ζ)
ξ (1− ζ)

(1− ξ) (1− ζ)
−(1− ξ) ζ
−ξ ζ
ξ ζ

(1− ξ) ζ


,

[
∂M

∂ζ

]>
=



−(1− ξ) (1− η)
−ξ (1− η)
−ξ η

−(1− ξ) η
(1− ξ) (1− η)
ξ (1− η)
ξ η

(1− ξ) η


.

(A.50)
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AppendixB
Demonstration of L2 Orthogonality
B.1. 2D

To demonstrate the L2 orthogonality of the PKD basis functions, the following integral must be
evaluated:

〈Φi,j |Φk,l〉 =
∫ 1

−1

∫ −y
−1

Φi,jΦk,ldxdy, (B.1)

which can be written in terms of the collapsed coordinate system (ξ, η):

〈Φi,j |Φk,l〉 =
∫ 1

−1

∫ 1

−1
P 0,0
i (ξ)

(1− η
2

)i
P 2i+1,0
j (η)P 0,0

k (ξ)
(1− η

2

)k
P 2k+1,0
l (η) |J | dξdη, (B.2)

where the Jacobian determinant is

|J | =
∣∣∣∣∂(x, y)
∂(ξ, η)

∣∣∣∣ = 1− η
2 . (B.3)

Eq. (B.2) can be written:

〈Φi,j |Φk,l〉 =
∫ 1

−1

∫ 1

−1

(1− η
2

)i+k+1
P 0,0
i (ξ)P 2i+1,0

j (η)P 0,0
k (ξ)P 2k+1,0

l (η)dξdη

= 1
2i+k+1

∫ 1

−1
P 0,0
i (ξ)P 0,0

k (ξ)dξ
∫ 1

−1
(1− η)i+k+1 P 2i+1,0

j (η)P 2k+1,0
l (η)dη.

(B.4)

The first integral value follows from the orthogonality of Legendre polynomials, which are the special
case (α, β) = (0, 0) of Jacobi polynomials:

∫ 1

−1
P 0,0
i (ξ)P 0,0

k (ξ)dξ = 2δik
2i+ 1 . (B.5)

The first integral is equal to zero if i 6= k. When i = k, using Eq. (2.62), the second integral becomes:

∫ 1

−1
(1− η)i+k+1 P 2i+1,0

j (η)P 2k+1,0
l (η)dη =

∫ 1

−1
(1− η)2i+1 P 2i+1,0

j (η)P 2i+1,0
l (η)dη = 22i+2δjl

2j + 2i+ 2 .
(B.6)

Eq. (B.4) then becomes:

〈Φi,j |Φk,l〉 = δikδjl
(i+ 1/2)(i+ j + 1) . (B.7)

From Eq. (B.7), if i 6= k and j 6= l, 〈Φi,j |Φk,l〉 is necessarily equal to zero, which shows the orthogonality
of the PKD basis in T PKD.
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Chapter B : Demonstration of L2 Orthogonality

B.2. 3D
The integral to evaluate is:

〈Φi,j,k|Φl,m,n〉 =
∫ 1

−1

∫ −z
−1

∫ −1−y−z

−1
Φi,j,kΦl,m,ndxdydz, (B.8)

which can be written in terms of the collapse coordinate system (ξ, η, ζ):

〈Φi,j,k|Φl,m,n〉 =
∫ 1

−1

∫ 1

−1

∫ 1

−1
P 0,0
i (ξ)

(1− η
2

)i
P 2i+1,0
j (η)

(1− ζ
2

)i+j
P

2(i+j+1),0
k (ζ)

P 0,0
l (ξ)

(1− η
2

)l
P 2l+1,0
m (η)

(1− ζ
2

)l+m
P 2(l+m+1),0
n (ζ) |J | dξdηdζ, (B.9)

where the Jacobian determinant is:

|J | =
∣∣∣∣∂(x, y, z)
∂(ξ, η, ζ)

∣∣∣∣ = 1− η
2

(1− ζ
2

)2
. (B.10)

Eq. (B.9) can be written

〈Φi,j,k|Φl,m,n〉 =
∫ 1

−1
P 0,0
i (ξ)P 0,0

l (ξ)dξ
∫ 1

−1

(1− η
2

)i+l+1
P 2i+1,0
j (η)P 2l+1,0

m (η)dη∫ 1

−1

(1− ζ
2

)i+j+l+m+2
P

2(i+j+1),0
k (ζ)P 2(l+m+1),0

n (ζ)dζ. (B.11)

As for the 2D case, the first integral is:∫ 1

−1
P 0,0
i (ξ)P 0,0

l (ξ)dξ = δil
(i+ 1/2) . (B.12)

The first integral is equal to zero if i 6= l. When i = l, using Eq. (2.62), the second integral becomes:∫ 1

−1

(1− η
2

)i+l+1
P 2i+1,0
j (η)P 2l+1,0

m (η)dη = δjm
(i+ j + 1) . (B.13)

The second integral is equal to zero if j 6= m. When i = l and j = m, using Eq. (2.62), the third
integral is evaluated as:∫ 1

−1

(1− ζ
2

)i+j+l+m+2
P

2(i+j+1),0
k (ζ)P 2(l+m+1),0

n (ζ)dζ = 1
22(i+j+1)∫ 1

−1
(1− ζ)2(i+j+1) P

2(i+j+1),0
k (ζ)P 2(i+j+1),0

n (ζ)dζ

= 1
22(i+j+1)

22(i+j+1)+1

2k + 2(i+ j + 1) + 1δkn

= δkn
i+ j + k + 3/2 .

(B.14)

Eventually, Eq. (B.8) becomes:

〈Φi,j,k|Φl,m,n〉 = δilδjmδkn
(i+ 1/2)(i+ j + 1)(i+ j + k + 3/2) . (B.15)

As for the 2D case, if i 6= l, j 6= m and k 6= n, 〈Φi,j,k|Φl,m,n〉 is necessarily equal to zero, which shows
the orthogonality of the PKD basis in T PKDe .
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B.3 Normalized PKD Basis

B.3. Normalized PKD Basis
From Eq. (B.7) and Eq. (B.15), it comes:

‖Φi,j‖2T PKD = 〈Φi,j |Φi,j〉 = 1
(i+ 1/2)(i+ j + 1) , (B.16)

‖Φi,j,k‖2T PKDe
= 〈Φi,j,k|Φi,j,k〉 = 1

(i+ 1/2)(i+ j + 1)(i+ j + k + 3/2) , (B.17)

which leads to the expression of the normalized 2D and 3D PKD basis:

Φi,j =
√

(i+ 1/2)(i+ j + 1) P 0,0
i (ξ)

(1− η
2

)i
P 2i+1,0
j (η), i+ j ≤ p, (B.18)

Φi,j,k =
√

(i+ 1/2)(i+ j + 1)(i+ j + k + 3/2) P 0,0
i (ξ)

(1− η
2

)i
P 2i+1,0
j (η)

(1− ζ
2

)i+j
P

2(i+j+1),0
k (ζ),

i+ j + k ≤ p. (B.19)
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AppendixC
Stability Analysis on a Fixed Number
of Cells - Standard One-Dimensional
Spectral Difference Scheme

To further verify the consistency of the FNC stability analysis with the common Fourier stability
analysis, the semi-discretized matrix form is integrated in time using the low-storage second-order
six-stage Runge-Kutta scheme of Bogey and Bailly (RKo6s) [187]. Stability limits were determined by
Vanharen et al. [133] for this discretization through the maximum allowable CFL number based on a
matrix form of the Fourier analysis by requiring the spectral radius of the matrix G to be lower than 1.

To investigate the dependency of the approach to the number of cells, max (Re (λG)) is plotted as
a function of the CFL number for a number of cells N ∈ J1, 10K in Fig. C.1.
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Figure C.1. – CFL stability limits for the 1D SD scheme determined using FNC analysis depending
on the number of cells
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Chapter C : Stability Analysis on a Fixed Number of Cells - Standard One-Dimensional Spectral
Difference Scheme

From Fig. C.1, the existence of a pattern based on the number of degree of freedom can be noted.
If p is odd, then the stability limit is always found to be the same and corresponds exactly to the
maximum CFL given by the Fourier analysis in [133]. However, if p is even, two cases are possible: if
the number of cells N is even, then the stability limit is always the same (and perfectly matches the
results presented in [133]); if N is odd, then the stability limit is different, and will converge to the
value obtained with a N even when N increases. This results seems to be a consequence of the nature
of the total number of DoF value:

– p is odd and N is odd → p+ 1 is even → NDoF = (p+ 1)N is even,
– p is odd and N is even → p+ 1 is even → NDoF = (p+ 1)N is even,
– p is even and N is even → p+ 1 is odd → NDoF = (p+ 1)N is even,
– p is even and N is odd → p+ 1 is odd → NDoF = (p+ 1)N is odd.
The only case where NDoF is odd is if p is even and N is odd. The fact that the total number of

DoF is odd might influence the periodicity and thus lead to different behavior. When N increases,
the stability limit tends to the ’standard’ one. However, the assumption that a small number of cells
is sufficient to represent the scheme behavior is undermined here. For example, if the analysis is
conducted for p = 4 and N = 3, the stability limit numerically determined will be higher than the one
given by the Fourier analysis and thus lead to unstable computations on a larger mesh. Those results
allow us to conclude that the approach is consistent with the common Fourier analysis results, but
leads to results for a particular domain that can not be considered as general conclusions. For the 1D
case, one can suppose that the approach is representative of the scheme behavior on any mesh provided
that NDoF is even, but such a hypothesis can not be directly extended to triangular elements.
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AppendixD
Matrices Formulation for the Fourier
Analysis
D.1. Triangular Elements

The matrices M0,0, M−1,0, M+1,0, M0,−1 and M0,+1 involved in the SDRT spatial discretization for
the Fourier analysis on triangular elements (Eq. (3.22)) are detailed in this appendix. Those matrices
are given as:

M0,0 =
[

Djk ONSP ,NFP
ONSP ,NFP Djk

]
C0,0

[
Tkj ONFP ,NSP

ONFP ,NSP Tkj

]
, (D.1)

M−1,0 =
[

Djk ONSP ,NFP
ONSP ,NFP Djk

]
C−1,0

[
Tkj ONFP ,NSP

ONFP ,NSP Tkj

]
, (D.2)

M+1,0 =
[

Djk ONSP ,NFP
ONSP ,NFP Djk

]
C+1,0

[
Tkj ONFP ,NSP

ONFP ,NSP Tkj

]
, (D.3)

M0,−1 =
[

Djk ONSP ,NFP
ONSP ,NFP Djk

]
C0,−1

[
Tkj ONFP ,NSP

ONFP ,NSP Tkj

]
, (D.4)

M0,+1 =
[

Djk ONSP ,NFP
ONSP ,NFP Djk

]
C0,+1

[
Tkj ONFP ,NSP

ONFP ,NSP Tkj

]
, (D.5)

with j ∈ J1, N tri
SP K, k ∈ J1, N tri

FP K and Om,n is the zero matrix of size m × n. The transfer matrix is
given by Eq. (2.90):

Tkj =
Ntri
SP∑

m=1
(Φm(ξj))−1 Φm(ξk), (D.6)

and the differentiation matrix by Eq. (2.101):

Djk =
Ntri
FP∑
n=1

(φn(ξk) · n̂k)−1 ∇̂ · φn(ξj). (D.7)

The velocity matrices C0,0,C−1,0,C+1,0,C0,−1 and C0,+1 are given by:

C0,0 =




CL ONe,Ne ONe,Ne ONe,Ni

ONe,Ne CL ONe,Ne ONe,Ni
ONe,Ne ONe,Ne CL ONe,Ni
ONi,Ne ONi,Ne ONi,Ne CI

Ni



ONe,Ne ONe,Ne ONe,Ne ONe,Ni
ONe,Ne CR ONe,Ne ONe,Ni
ONe,Ne ONe,Ne ONe,Ne ONe,Ni
ONi,Ne ONi,Ne ONi,Ne ONi,Ni



ONe,Ne ONe,Ne ONe,Ne ONe,Ni
ONe,Ne CR ONe,Ne ONe,Ni
ONe,Ne ONe,Ne ONe,Ne ONe,Ni
ONi,Ne ONi,Ne ONi,Ne ONi,Ni




CL ONe,Ne ONe,Ne ONe,Ni
ONe,Ne CL ONe,Ne ONe,Ni
ONe,Ne ONe,Ne CL ONe,Ni
ONi,Ne ONi,Ne ONi,Ne CI

Ni




, (D.8)
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C−1,0 =


[
ONFP ,NFP

] 
ONe,Ne ONe,Ne ONe,Ne ONe,Ni
ONe,Ne ONe,Ne ONe,Ne ONe,Ni
ONe,Ne ONe,Ne CR ONe,Ni
ONi,Ne ONi,Ne ONi,Ne ONi,Ni

[
ONFP ,NFP

] [
ONFP ,NFP

]

 , (D.9)

C0,+1 =



[
ONFP ,NFP

] [
ONFP ,NFP

]
ONe,Ne ONe,Ne ONe,Ne ONe,Ni
ONe,Ne ONe,Ne ONe,Ne ONe,Ni
ONe,Ne ONe,Ne CR ONe,Ni
ONi,Ne ONi,Ne ONi,Ne ONi,Ni

 [
ONFP ,NFP

]
 , (D.10)

C0,−1 =


[
ONFP ,NFP

] 
CR ONe,Ne ONe,Ne ONe,Ni

ONe,Ne ONe,Ne ONe,Ne ONe,Ni
ONe,Ne ONe,Ne ONe,Ne ONe,Ni
ONi,Ne ONi,Ne ONi,Ne ONi,Ni

[
ONFP ,NFP

] [
ONFP ,NFP

]

 , (D.11)

C+1,0 =



[
ONFP ,NFP

] [
ONFP ,NFP

]
CR ONe,Ne ONe,Ne ONe,Ni

ONe,Ne ONe,Ne ONe,Ne ONe,Ni
ONe,Ne ONe,Ne ONe,Ne ONe,Ni
ONi,Ne ONi,Ne ONi,Ne ONi,Ni

 [
ONFP ,NFP

]
 , (D.12)

where CI , CL and CR are defined by:

CI =
[
diag(|J |J−1(c · n̂))

]
Ni,Ni

, (D.13)

CL = (c · n)
[
diag(1 + sign(c · n)

2 )
]
Ne,Ne

, (D.14)

and

CR = (c · n)


0 . . .

1− sign(c · n)
2... ... ...

1− sign(c · n)
2 . . . 0


Ne,Ne

. (D.15)

D.2. Tetrahedral Elements

The matrices M0,0,0, M−1,0,0, M+1,0,0, M0,−1,0, M0,+1,0, M0,0,−1 and M0,0,+1 involved in the SDRT
spatial discretization for the Fourier analysis on tetrahedral elements (Eq. (3.36)) are detailed in this
appendix. Those matrices are given as:

M0,0,0 =

 Djk · · · ONSP ,NFP
... . . . ...

ONSP ,NFP · · · Djk

C0,0,0

 Tkj · · · ONFP ,NSP
... . . . ...

ONFP ,NSP · · · Tkj

 , (D.16)
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where Om,n is the zero matrix of size m × n. The same goes for M−1,0,0, M+1,0,0, M0,−1,0, M0,+1,0,
M0,0,−1 and M0,0,+1, associated respectively to the velocity matrices C−1,0,0, C+1,0,0, C0,−1,0, C0,+1,0,
C0,0,−1 and C0,0,+1. The transfer matrix is given by Eq. (2.90):

Tkj =
Ntet
SP∑

m=1
(Φm(ξj))−1 Φm(ξk), (D.17)

and the differentiation matrix by Eq. (2.101):

Djk =
Ntet
FP∑
n=1

(φn(ξk) · n̂k)−1 ∇̂ · φn(ξj). (D.18)

The velocity matrices are given as:

C0,0,0 =



CL CT1,T2 ONFP ,NFP ONFP ,NFP ONFP ,NFP CT1,T6

CT2,T1 CL CT2,T3 ONFP ,NFP ONFP ,NFP ONFP ,NFP
ONFP ,NFP CT3,T2 CL CT3,T4 ONFP ,NFP ONFP ,NFP
ONFP ,NFP ONFP ,NFP CT4,T3 CL CT4,T5 ONFP ,NFP
ONFP ,NFP ONFP ,NFP ONFP ,NFP CT5,T4 CL CT5,T6

CT6,T1 ONFP ,NFP ONFP ,NFP ONFP ,NFP CT6,T5 CL


, (D.19)

C−1,0,0 =

ONFP ,NFP ONFP ,NFP ONFP ,NFP ONFP ,NFP CT1,T5 ONFP ,NFP
ONFP ,NFP ONFP ,NFP ONFP ,NFP CT2,T4 ONFP ,NFP ONFP ,NFP[

O4NFP ,6NFP

]
 , (D.20)

C+1,0,0 =


[
O3NFP ,6NFP

]
ONFP ,NFP CT4,T2 ONFP ,NFP ONFP ,NFP ONFP ,NFP ONFP ,NFP

CT5,T1 ONFP ,NFP ONFP ,NFP ONFP ,NFP ONFP ,NFP ONFP ,NFP[
ONFP ,6NFP

]
 , (D.21)

C0,−1,0 =


[
O2NFP ,6NFP

]
CT3,T1 ONFP ,NFP ONFP ,NFP ONFP ,NFP ONFP ,NFP ONFP ,NFP

ONFP ,NFP ONFP ,NFP ONFP ,NFP ONFP ,NFP ONFP ,NFP CT4,T6[
O2NFP ,6NFP

]
 , (D.22)

C0,+1,0 =

ONFP ,NFP ONFP ,NFP CT1,T3 ONFP ,NFP ONFP ,NFP ONFP ,NFP[
O4NFP ,6NFP

]
ONFP ,NFP ONFP ,NFP ONFP ,NFP CT6,T4 ONFP ,NFP ONFP ,NFP

 , (D.23)

C0,0,−1 =


[
ONFP ,6NFP

]
ONFP ,NFP ONFP ,NFP ONFP ,NFP ONFP ,NFP ONFP ,NFP CT2,T6

ONFP ,NFP ONFP ,NFP ONFP ,NFP ONFP ,NFP CT3,T5 ONFP ,NFP[
O3NFP ,6NFP

]
 , (D.24)
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C0,0,+1 =


[
O4NFP ,6NFP

]
ONFP ,NFP ONFP ,NFP CT5,T3 ONFP ,NFP ONFP ,NFP ONFP ,NFP
ONFP ,NFP CT6,T2 ONFP ,NFP ONFP ,NFP ONFP ,NFP ONFP ,NFP

 , (D.25)

where CL is defined by:

CL =




(c · n) 1 + sign(c · n)

2 · · · 0
... . . . ...

0 · · · (c · n) 1 + sign(c · n)
2


4Nf ,4Nf

O4Nf ,Ni

ONi,4Nf


|J |J−1(c · n̂) · · · 0

... . . . ...
0 · · · |J |J−1(c · n̂)


Ni,Ni


.

(D.26)
The matrix CTi,Tj links the FP between the triangular faces of Ti and Tj . Its expression will depend
on the local connectivity, i.e. the number and the orientation of the two faces in their respective
element. The face number gives the local FP numbering whereas the orientation (how the two faces
are facing each other) gives the FP order. An example of its determination is provided below for two
arbitrary tetrahedral elements.

Determination of the Matrix CTi,Tj - Example for p = 1 Let us consider two tetrahedron T1 and
T2 defined by their four nodes:

T1 : N1, N2, N3, N4 = A,B,C,D, (D.27)

T2 : N1, N2, N3, N4 = A,C,E,D. (D.28)

Following the CGNS notations, their faces are defined by:

– T1, Face 1: A, C, B,
– T1, Face 2: A, B, D,
– T1, Face 3: B, C, D,
– T1, Face 4: C, A, D,

– T2, Face 1: A, E, C,
– T2, Face 2: A, C, D,
– T2, Face 3: C, E, D,
– T2, Face 4: E, A, D.

They are sharing a face corresponding to Face 4 in T1 and Face 2 in T2. In the case of p = 1,
this indicates that the FP numbers on (T1, Face 4) are [10, 12] whereas the FP number (Face 2, T2)
are [4, 6]. The orientation between the faces then needs to be determined in order to know in which
order the FP are facing each other. For two arbitrary faces A and B defined respectively by nodes
(A1, A2, A3) and (B1, B2, B3), three cases are possible:

– A1 = B3, A2 = B2, A3 = B1,
– A1 = B2, A2 = B1, A3 = B3,
– A1 = B1, A2 = B3, A3 = B2.

Our example is illustrated in Fig. D.1 and corresponds to the second case.
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Figure D.1. – Illustration of the orientation determination: T1 (on the left) and T2 (on the right)

In this example, the matrix CT1,T2 will take the following expression:

CT1,T2 = (c · n)



O3Nf ,NFPONf ,Nf


0 1 + sign(c · n)
2 0

0 0 1 + sign(c · n)
2

1 + sign(c · n)
2 0 0

 ONf ,2∗Nf+Ni


ONi,NFP


.

(D.29)
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AppendixE
Interior Flux Points Parametrization
for the Optimization Algorithm
E.1. Triangular Element

Flux Point (ξ, η)
ξ16 (β4/2 + γ4, β4/2− γ4)
ξ17 (β1/2 + γ1, β1/2− γ1)
ξ18 (β1/2− γ1, β1/2 + γ1)
ξ19 (α2, α2)
ξ20 (β3/2− γ3, β3/2 + γ3)
ξ21 (β2/2 + γ2, β2/2− γ2)
ξ22 (β4/2− γ4, β4/2 + γ4)
ξ23 (β3/2 + γ3, β3/2− γ3)
ξ24 (α1, α1)
ξ25 (β2/2− γ2, β2/2 + γ2)
ξ26:35 ξ16:25

Table E.1. – Interior FP coordinate parameters in a triangular element for SDRT4

Flux Point (ξ, η) Flux Point (ξ, η)
ξ19 (α1, α1) ξ27 (β3/2− γ3, β3/2 + γ3)
ξ20 (β6/2− γ6, β6/2 + γ6) ξ28 (β2/2 + γ2, β2/2− γ2)
ξ21 (β6/2 + γ6, β6/2− γ6) ξ29 (β3/2 + γ3, β3/2− γ3)
ξ22 (α3, α3) ξ30 (β5/2 + γ5, β5/2− γ5)
ξ23 (α2, α2) ξ31 (β4/2 + γ4, β4/2− γ4)
ξ24 (β2/2− γ2, β2/2 + γ2) ξ32 (β1/2− γ1, β1/2 + γ1)
ξ25 (β5/2− γ5, β5/2 + γ5) ξ33 (β4/2− γ4, β4/2 + γ4)
ξ26 (β1/2 + γ1, β1/2− γ1) ξ34:48 ξ19:33

Table E.2. – Interior FP coordinate parameters in a triangular element for SDRT5
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Flux Point (ξ, η) Flux Point (ξ, η)
ξ22 (α1, α1) ξ33 (β5/2 + γ5, β5/2− γ5)
ξ23 (α2, α2) ξ34 (β5/2− γ5, β5/2 + γ5)
ξ24 (α3, α3) ξ35 (β6/2 + γ6, β6/2− γ6)
ξ25 (β1/2 + γ1, β1/2− γ1) ξ36 (β6/2− γ6, β6/2 + γ6)
ξ26 (β1/2− γ1, β1/2 + γ1) ξ37 (β7/2 + γ7, β7/2− γ7)
ξ27 (β2/2 + γ2, β2/2− γ2) ξ38 (β7/2− γ7, β7/2 + γ7)
ξ28 (β2/2− γ2, β2/2 + γ2) ξ39 (β8/2 + γ8, β8/2− γ8)
ξ29 (β3/2 + γ3, β3/2− γ3) ξ40 (β8/2− γ8, β8/2 + γ8)
ξ30 (β3/2− γ3, β3/2 + γ3) ξ41 (β9/2 + γ9, β9/2− γ9)
ξ31 (β4/2 + γ4, β4/2− γ4) ξ42 (β9/2− γ9, β9/2 + γ9)
ξ32 (β4/2− γ4, β4/2 + γ4) ξ43:63 ξ22:42

Table E.3. – Interior FP coordinate parameters in a triangular element for SDRT6
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E.2 Tetrahedral Element

E.2. Tetrahedral Element

Flux Point (ξ, η, ζ)
ξ41 (α, β, β)
ξ42 (β, α, β)
ξ43 (β, β, α)
ξ44 (β, β, β)
ξ45 (γ, γ, δ)
ξ46 (γ, δ, γ)
ξ47 (γ, δ, δ)
ξ48 (δ, γ, γ)
ξ49 (δ, γ, δ)
ξ50 (δ, δ, γ)
ξ51:60 ξ41:50
ξ61:70 ξ51:60

Table E.4. – Interior FP coordinate parameters in a tetrahedral element for SDRT3

161





AppendixF
Coefficients for the Runge-Kutta Time
Discretization

Scheme αlk βlk

SSP2s2o [186] 1 1
1/2 1/2 0 1/2

SSP3s2o [189]
1 1/2
0 1 0 1/2
1/3 0 2/3 0 0 1/3

SSP4s2o [189]

1 1/3
0 1 0 1/3
0 0 1 0 0 1/3
1/4 0 0 3/4 0 0 0 1/4

SSP3s3o [186]
1 1
3/4 1/4 0 1/4
1/3 0 2/3 0 0 2/3

SSP4s3o [189]

1 1/2
0 1 0 1/2
2/3 0 1/3 0 0 1/6
0 0 0 1 0 0 0 1/2

RK4J [190]

1 1/4
1 0 0 1/2
1 0 0 0 0 0.55
1 0 0 0 0 0 0 1

Table F.1. – Coefficients (α, β) for the two-, three- and four-stage SSP schemes
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SSP5s3o [189]

αlk

1
0 1

0.56656131914033 0 0.43343868085967
0.09299483444413 0.00002090369620 0 0.90698426185967
0.00736132260920 0.20127980325145 0.00182955389682 0 0.78952932024253

βlk

0.37726891511710
0 0.37726891511710
0 0 0.16352294089771

0.00071997378654 0 0 0.34217696850008
0.00277719819460 0.00001567934613 0 0 0.29786487010104

SSP5s4o [189]

αlk

1
0.44437049406734 0.55562950593266
0.62010185138540 0 0.37989814861460
0.17807995410773 0 0 0.82192004589227
0.00683325884039 0 0.51723167208978 0.12759831133288 0.34833675773694

βlk

0.39175222700392
0 0.36841059262959
0 0 0.25189177424738
0 0 0 0.54497475021237
0 0 0 0.08460416338212 0.22600748319395

Table F.2. – Coefficients (α, β) for the five-stage SSP schemes

RKs4s RKo5s RKo6s
γ1 1 1 1
γ2 1/2 1/2 1/2
γ3 1/6 0.165250353664 0.165919771368
γ4 1/24 0.039372585984 0.040919732041
γ5 0.007149096448 0.007555704391
γ6 0.000891421261

Table F.3. – Coefficients γ for the standard four-stage RK scheme and the optimized five- and six-stage
RK schemes
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