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Abstract

There is an increasing demand for practical tools to explore the evolution of scientific research

published in bibliographic archives such as the Web of Science (WoS), arXiv, PubMed or

ISTEX. Revealing meaningful evolution patterns from these document archives has many

applications and can be extended to synthesize narratives from datasets across multiple

domains, including news stories, research papers, legal cases and works of literature. In this

thesis, we propose a data model and query language for the visualization and exploration

of topic evolution graphs. Our model is independent of a particular topic extraction and

alignment method and proposes a set of semantic and structural metrics for characterizing

and filtering meaningful topic evolution patterns. These metrics are particularly useful for the

visualization and the exploration of large topic evolution graphs. We also present a prototype

implementation of our model on top of Apache Spark and experimental results obtained for

four real-world document archives.
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Résumé

Il existe une demande croissante d’outils pratiques pour explorer l’évolution de la recherche

scientifique publiée dans des archives bibliographiques telles que le Web of Science (WoS),

arXiv, PubMed ou ISTEX. La révélation de modèles d’évolution significatifs à partir de ces ar-

chives documentaires a de nombreuses applications et peut être étendue pour synthétiser des

récits à partir d’ensembles de données dans plusieurs domaines, y compris les nouvelles, les

articles de recherche, les cas juridiques et les œuvres littéraires. Dans cette thèse, nous propo-

sons un modèle de données et un langage d’interrogation pour la visualisation et l’exploration

de graphes d’évolution de sujets. Notre modèle est indépendant d’une méthode particulière

d’extraction et d’alignement de sujets et propose un ensemble de métriques sémantiques et

structurelles pour caractériser et filtrer des modèles d’évolution de sujets significatifs. Ces

métriques sont particulièrement utiles pour la visualisation et l’exploration de grands graphes

d’évolution de sujets. Nous présentons également un prototype d’implémentation de notre

modèle sur Apache Spark et les résultats expérimentaux obtenus pour quatre archives de

documents du monde réel.
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1.1 Modeling Science Evolution

The evolution of science and technology is an important indicator for the industrial and

economic progress of our society. The study of science evolution can help (1) scientists who

want to position themselves in their field [1], (2) policy makers who want to spot emerging

fields, foster innovation and get key indicators to assist them in decision-making processes [2,

3], (3) industrialists who have to find their way through the scientific production and evaluate

the potential for innovation and technological transfer [4, 5], (4) librarians who need to

propose classifications of documents [6, 7], and (5) philosophers and historians of science to

test their theories with data [8, 9]. Within this context, there is an increasing demand from

experts for practical tools that assist them to extract information about the scientific progress
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1 Introduction

and technological innovations published in bibliographic archives such as the Web of Science

(WoS)1, arXiv2, PubMed [10] or ISTEX3.

The evolution of scientific archives can broadly be studied by adopting a cognitive view

or a social view on the evolution dynamics. The cognitive view of scientific archive evolution

emphasizes the shared knowledge and the change of ideas present in the content of doc-

ument [11, 12], whereas the social view takes account of authorship information and social

interactions represented, for example, in co-authorship and citation graphs [13, 14, 15]. There

also exist methods which combine both views to study science evolution [16, 17, 18].

In this thesis, we adopt the cognitive view and analyze science evolution patterns extracted

from the textual document contents (title, abstract and main contents). The choice of the

cognitive view reduces the number of analysis features, but it also decreases the “social” bias

and makes it easier to detect possible interactions between scientific ideas and contributions,

independently of any particular scientific community.

Scientific ideas, concepts and contributions published in textual documents at different

periods of time can be represented by topics extracted from the document content. By

connecting or aligning topics from different periods, for example by using their similarities,

it is possible to generate a structured representation of the research progress in scientific

document archives. Topic alignments define a topic evolution network or phylomemy [19]. The

notion of phylomemy or phylomemetic network is inspired from the notion of phylogenetic

tree representing the characteristics and evolution of species and derived from the genes of

their members. Phylomemetic networks track the evolution of science by identifying and

analyzing science evolution patterns like the emergence and decay of research topics or the split

of one research topic into several subtopics, etc.

Example 1 Figure 1.1 shows two snippets of a single topic evolution network (phylomemy) extracted

from the arXiv4 corpus. The graph covers the period between 2000 and 2006 decomposed into three

3-year time periods overlapping by one year. Each topic is represented by a rectangle containing the

top-10 weighted topic terms obtained by a NLP document pre-processing and topic extraction workflow.

The terms in each topic can be classified into four disjoint categories with respect to their temporal

evolution. Emerging terms are shown in green, decaying term boxes are colored in red, stable terms

1https://clarivate.com/webofsciencegroup/solutions/web-of-science/
2https://arxiv.org/
3https://www.istex.fr/
4https://arxiv.org/
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Figure 1.1: Topics containing term “database” extracted from arXiv, green = emerging terms, blue =
stable terms, red = decaying terms

which exist both, in ancestor topics and in descendant topics, are grouped in blue boxes and specific

terms which appear only in the current topic are in white. The thickness of the alignment edges

reflects the similarity of the connected topics (e.g., cosine similarity on term vectors). Several topics in

both subgraphs contain the term “database” and we can observe different evolution patterns. The left

subgraph shows that in period 2002− 2004, topic 77 (“databases, queries, optimization, integration”)

splits in two research directions “databases, queries and constraints” (topics 100, 188) and “prediction,

probability, random” (topics 104, 191, 152). The right subgraph covers the same period with topics

related to “data mining” (83), “data access interfaces” (90), “information retrieval” (92), “logics,

semantics” (80) and “knowledge, reasoning” (54). The first three topics converge in 2002− 2004 into

a single topic on “object, xml, store, data mining” (146) which splits in the period of 2004− 2006 into

“storage servers” (170), “data technique” (168), “data mining and management” (158) and “knowledge

and ontologies” (150).
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1.2 The EPIQUE project

This thesis has been financed by the ANR EPIQUE project5. The main goals of the EPIQUE

project are:

• The definition and implementation of new innovative tool for the reconstruction and

exploration of multi-scale dynamics in complete real-world scientific corpora and for

obtaining new insights in the evolution of complex human generated knowledge and

information.

• The definition of a uniform framework for specifying, implementing and integrating large-

scale text and graph mining tasks which can be customized independently of the higher-

level mining algorithms with respect to specific cost models and hardware constraints

(memory, CPU).

• The validation of classical hypotheses concerning the evolution of scientific fields and con-

tent and to test and improve these hypotheses in the light of the reconstructed phylomemies

and of general patterns detectable within them. From the perspective of philosophy of

science, EPIQUE should enable the empirical validation of theories on science evolution

which have been formulated by considering only a few canonical texts. Preliminary results

on small document collections covering particular scientific fields already demonstrate that

phylomemetic graphs reveal novel semantic insights about science evolution [19]. Complete

scientific archives like the Web of Science can more reliably be seen as a plausible testimony

of scientific activity and taking into account of the whole corpus not only applies to more

scientific fields but also reveals a deeper understanding of inter-disciplinary evolution.

To achieve these goals, the EPIQUE project includes four academic partners:

• Computer Science Laboratory of Sorbonne Université (Lip6, project coordinator): The LIP6

Database research team has a long experience of research in large-scale distributed data

management, data integration, web data processing and data quality.

• Institute for History and Philosophy of Sciences and Techniques (IHPST): IHPST is the

leading French laboratory in philosophy of science and has produced works on epistemol-

ogy of computer simulation and the epistemology of big data science that are relevant to

the current project.

5https://iscpif.fr/epique/
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1 Introduction

Figure 1.2: EPIQUE Workflow

• Complex Systems Institute of Paris Ile-de-France (ISC-PIF): ISC-PIF is an interdisciplinary

research and training center of CNRS that promotes the development of French, European

and international strategic projects on complex adaptive systems. ISC-PIF helps its partners

to pool their resources for large corpora mining and analysis, and is in charge of several

technological platforms in the domains of high performance computing, big data, digital

humanities or visualisations.

• Research Institute of Computer Science and Random Systems (IRISA Rennes): The IRISA

DRUID research team is specialized in data modeling, data protection and crowdsourcing.

This thesis mainly concerns the goal of defining and implementing the general EPIQUE

framework for generating and analyzing phylomemetic networks. This framework is based

on scalable text and graph mining algorithms and integrated in a workflow composed of four

main steps (Figure 1.2):

1. The term extraction step applies preprocessing (term extraction, stop-word removal,

deformation, term extraction) and transforms each document into a set of weighted

terms.

2. The transformed documents are then grouped according to periods predefined by the

user.

3. The topic detection step consists first of detecting topics (sets of strongly semantically

related terms) in the term sets. In the framework of the project, we consider different

ways of topic extraction, and in particular word embedding [20], word co-occurrence [21]

and probabilistic models (LDA [22]).

4. Subjects extracted from different time intervals are then compared to each other, for

example using the Jaccard [23] distance or the cosine distance, to generate the phy-

lomemetic graph with alignments (split, merge, equivalent) representing their temporal

evolution. The analysis and customization step of the phylomemetic graph that allows
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experts to interact with the workflow by generating and visualizing phylomemetic trees

and by customizing the workflow by modifying the data (e.g. removing or adding a

term in a topic) and the parameters (e.g. the time interval for splitting the document

collection).

Example 2 The evolution graphs in Figure 1.1 are obtained by applying a workflow to the subsets of

documents covering each time period. This workflow includes a standard NLP document preprocessing

step and applies the Latent Dirichlet Allocation (LDA) method to extract a predefined number of

weighted term vectors (topics) describing the scientific publication activity for each period. Finally,

topics from two subsequent periods are linked by applying cosine similarity [24].

Facing archives of increasing size, the EPIQUE workflow is not a sequence of independent

tasks on a given dataset, but an integrated framework which allows experts to interact and to

control the whole process through high level languages and interfaces (e.g. for specifying the

scientific field and time-range of interest).

1.3 Research Challenges

This thesis addresses three main issues when building and exploring topic evolution networks:

1.3.1 Challenge 1: Scalability

Scalability is the first important challenge of our work. Most current science evolution

workflows focus on domain-specific datasets. For instance, [19] studies the dynamics of

phylomemies using documents in the domain of embryology. Computer Science articles from

DBLP are analyzed in [25] to map the evolution of scientific fields. [26] conducts a lead-lag

analysis to identify different topic evolution patterns for preprints and papers in astrophysics,

etc. The size of these datasets is limited. Our first challenge is to build global maps of the

evolution of science on large scientific domains by applying appropriate scientometric models

on large databases like the Web of Science, MedLine or Open Archives likes arxiv. It is an

ambitious goal of making sense of unstructured text through generic data processing tasks

(term extraction, stop-word removal, stemming, index term generation and term selection)

which become complex when dealing with very large amounts of digitized text. In this
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thesis we explore the development of new scalable solutions exploiting recent parallel data

processing frameworks like Hadoop [27], Spark [28], and Pregel [29].

1.3.2 Challenge 2: Tuning and Quality

The second challenge concerns the quality of phylomemetic networks. The generation of

topic evolution networks is a difficult task including complex unsupervised text and graph

mining algorithms. Its workflow usually consists of several steps, which can be performed

in different ways by choosing different algorithms and parameters. Building “meaningful”

topic evolution networks is an iterative process where domain experts must choose the right

algorithms and parameters for each step of the phylomemy generation workflow, especially

for the topic extraction step and the topic alignment step, and correctly tune method-specific

hyper-parameters and thresholds with respect to a given dataset and an expected output.

Each method depends on parameters which can significantly affect the quality of topic sets

and the quality of evolution graphs. Most of these parameters are dataset-specific and require

empirical tuning. Besides, the tuning process also includes the threshold-based filtering of

topic alignment edges to produce phylomemies for different levels of detail. To solve this

challenge, we explore different solutions to accelerate the graph generation workflow and to

assist experts in choosing the optimal number of topics per period to produce highly divers

topic evolution networks.

1.3.3 Challenge 3: Interactive Exploration and Analysis

Figure 1.3 gives an example of a phylomemetic graph extracted from a subset of the arXiv

corpus covering 20 years of publications. This corpus is split into 20 periods where each

period contains 50 topics. If a corpus is extremely large and the content is quite diverse,

we can obtain a very large topic evolution network like Figure 1.3 which is too complex

to be visually analyzed. Existing graph visualisation standards and tools like Gephi 6 [30]

or Graphviz 7 [31] can be used to generate high-quality visualisations, but their use for

exploring large graphs and identifying meaningful evolution patterns is still limited. An

important goal of our thesis is to allow experts to explore phylomemies interactively by

filtering interesting subgraphs according to particular evolution patterns. For example, a

6https://gephi.org/
7https://www.graphviz.org/
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Figure 1.3: A phylomemetic graph over arXiv corpus

user may want to find all topics containing the term “database” and connected by a path

to a future topic with emerging term “deep learning” in such a large and heterogeneous

graph. This is practically impossible to achieve by exploring the visual representation and

without any filtering capacities. Some users also want to spot interesting evolution patterns

by their structure. For example, find topics of which the diameters of their patterns are more

than 5 and which evolve into more than 3 domains. But evidently, most of the patterns in

Figure 1.3 are connected together consisting a huge part of the phylomemy making it hard

to identify important patterns. By adjusting the topic alignment thresholds, it is possible to

reduce the complexity, but this also reduces the opportunity to detect interesting evolution

patterns. To solve this challenge, we introduce a new query language for filtering topics and

topic sub-graphs according to their content and structure.

1.4 Contributions and thesis outline

The main contributions of this thesis are listed as follows:

8
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1.4.1 Topic Evolution Framework

Topic Evolution Model and Query Language We proposed a generic framework for the

computation and interactive exploration of evolution networks. This framework includes

a high-level data model using standard document and data processing technologies for

extracting, storing and exploring meaningful topic evolution networks. This model relies on

the notion of pivot topic graphs describing the content and the evolution dynamics of topics at

different levels of detail, and includes a high-level filter-based query language which enables

users to interactively explore the evolution of topics by composing structural, temporal and

semantic topic filters and specify their search criteria in a simple and sound way. These topic

filters consist of structural conditions on the evolution graph properties like average out- and

indegree, and temporal conditions on the topic term trends like the emergence and decay

of terms. This generic topic evolution framework allows users to interactively explore and

analyze topic evolution networks (phylomemies). The extraction of meaningful evolution

patterns from very large document archives through the framework will be introduced in

Section 3.1 of Chapter 3 and the model for the interactive exploration of large topic evolution

networks will be explained in Chapter 4. The presentation of the model also includes a formal

analysis of the monotonicity properties of pivot filter expressions.

Diversity-based Topic Number Estimation In this model, we also defined a quality metric

based on topic diversity which guarantees that a topic evolving toward many topics actually

represents a significant evolution. We proposed a topic extraction method that automatically

computes for each period, a set of topics that meets a given diversity condition. This diversity-

based measure for estimating the quality of a topic set solves the challenge of topic number

tuning and helps users to extract representative topics. The definition of this measure will be

given in Section 3.2 of Chapter 3.

Prototype Implementation We implemented a scalable proof of concept prototype on top

of Apache Spark for processing large scientific corpora containing millions of documents

and finding meaningful topic evolution networks for both stable topics and highly evolving

ones. The prototype including a pivot graph generation interface (notebook) and an interface

(notebook) for exploring and analyzing pivot graphs is able to address all previous challenges

and will be illustrated in Chapter 6.

9
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1.4.2 Pivot graph computation

Two Topic Alignment Strategies To generate multi-stage topic evolution networks, we

proposed two alignment strategies where one takes account of the similarities of all topic

pairs which has been integrated in our prototype and another one focuses on aligning topics

only from consecutive periods and uses a nearest-neighbor condition to select candidate topics.

Both strategies addressed the problem of computing a very large number of cosine-based

topic alignments on top of Apache Spark. We also highlighted that Spark’s native distributed

cosine similarity computation can be improved for the nearest-neighbor strategy in our

context of graph evolution of scientific documents. The more detailed description will be

provided in Section 3.3 of Chapter 3.

Two Pivot Graph Computation Strategies To achieve a high level of interactivity, we firstly

proposed an incremental join-based transitive closure algorithm for the materialization of

pivot graphs and the graph properties by computing and storing all possible aggregated

values in advance. This kind of materialization is computation and storage-intensive, but also

can directly benefit of standard big data technologies to achieve scalability. Its main benefit

is that even complex structural and temporal topic filters can be implemented by simple

value-based selections on the generated topic properties. To avoid many join operations of the

join-based materialization strategy, we proposed an alternative pivot graph materialization

strategy based on GraphX [32] using Bulk Synchronous Parallel Paradigm [29]. The objective

of proposing these two pivot graph computation strategies is to solve the scalability challenge.

These two strategies will be discussed in Sections 5.1 and 5.2 of Chapter 5.

1.4.3 Experimental Evaluation

We preprocessed several corpora of different scales, such as a small corpus about economics,

Glyphosate, arXiv, Nature, Wiley and Elsevier, etc., where most of them are issued from the

ISTEX [33] platform which is an online access to more than 23 million articles from all scientific

disciplines. We then conducted a detailed experimental evaluation on the performance of

different EPIQUE workflow steps including the LDA generation, the topic alignment, the

pivot graph computation, the topic labeling and the graph metrics computation over four

of the previously mentioned real-world datasets. This evaluation also includes experiments

measuring the scalability of our pivot graph generation algorithm over larger synthetic topic
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evolution networks. These experiments prove that each step of our framework is capable of

efficiently handling large datasets (scientific document collections or evolution graphs). The

detailed descriptions of these experiments are distributed across the thesis and will be given

in Sections 3.2 and 3.3 of Chapter 3 and Section 5.3 of Chapter 5.

1.5 List of Publications

The related publications of this thesis are listed as follows:

• (2019) Ke Li, Bernd Amann, Hubert Naacke. EPIQUE: Extracting Meaningful Science

Evolution Patterns. Poster@BDA 2019.

• (2019) Hubert Naacke, Ke Li, Bernd Amann, Olivier Curé. Efficient similarity-based

alignment of temporally-situated graph nodes with Apache Spark. IEEE International

Conference on Big Data (Big Data).

• (2020) Ke Li, Hubert Naacke, Bernd Amann. EPIQUE: Extracting Meaningful Science

Evolution Patterns from Large Document Archives. Demo@International Conference on

Extending Database Technology (EDBT 2020).

• (2020) Ke Li, Hubert Naacke, Bernd Amann. Exploring the Evolution of Science with Pivot

Topic Graphs. International Workshop on Big Data Visual Exploration and Analytics BigVis

(EDBT 2020).

• (2020) Ke Li, Hubert Naacke, Bernd Amann. EPIQUE: Extracting Meaningful Science

Evolution Patterns from Large Document Archives. Demo@BDA 2020.

• (2020) Ke Li, Hubert Naacke, Bernd Amann. EPIQUE: A Graph Data Model and Query

Language for Exploring the Evolution of Science. BDA 2020.

• (2021) Ke Li, Hubert Naacke, Bernd Amann. An Analytic Graph Data Model and Query

Language for Exploring the Evolution of Science. Special Issue on Interactive Big Data

Visualization and Analytics of the Big Data Research Journal, Elsevier (under revision).
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2.1 Topic Modeling

Topic modeling can be applied to solve various problems like document classification [34, 35,

36, 37], sentiment analysis [38, 39], topic discovery [22, 40] and image object localization [41,

42]. In our work, we apply topic model mainly for extracting a representative set of topics

describing a collection of documents.

Most topic models are based on the assumption that groups of words describing a semantic

concept (topic) will often occur together in semantically similar documents. Various methods

have been applied to the topic modeling problem, such as Frequent Itemset mining [43],

Community Detection and Clique Percolation [44], Word Embedding [20] and Statistical

Topic Modeling [45]. All these models are based on a preprocessing phase where each text

document is first transformed into a structured (sequence, graph) or unstructured (set) of
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terms. These structures are then analyzed taking account of the term co-occurrence in these

structures. We will first give a short description of the different topic modeling approaches

and then concentrate on the statistical topic model which we applied in our work.

2.1.1 Topic Modeling Approaches

• Frequent Itemset [43]: A topic is a set of terms that are relevant to one or several documents

and describe their contents. One hypothesis about topic extraction is to consider the set of

terms that show up together in certain number of documents as a topic. Frequent Item-set

Mining consists in detecting sets of items (terms) that often appear together in the same

transaction (document). It has been applied to market basket analysis where it aims at

finding regularities in the shopping behavior of customers of supermarkets, mail-order

companies, on-line shops etc. Figure 2.1 illustrates the use of Frequent Itemset for topic

extraction. Documents can be considered as transactions, while indexed terms of each

document can be regarded as items. Then, from the example corpus, two topics can be

extracted where one topic contains “influenza” and “fever”, and another one contains

“cancer” and “tobacco”.

Figure 2.1: Topic extraction by Frequent Item-set Mining

• Clique Percolation [44]: The Clique Percolation Method (CPM) is a popular approach for

analyzing the overlapping community structure of networks. The term network community

is usually defined as a group of nodes that are more densely connected to each other than

to other nodes in the network. The clique percolation topic model considers terms as nodes

and topics as communities in the network. One advantage of this approach is that clusters

can overlap and a given term can thus be present with various meanings in different topics.
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[46] applies k-clique percolation for extracting overlapping topics (paradigmatic fields)

from scientific documents and defining an asymmetric topic proximity metric to represent

the hierarchical structure of scientific activity.

[47] proposes ACPM, an extension of CPM to analyze the dynamics between topics and to

identify topic clusters exhibiting an increase of collaborations that potentially will lead to

the emergence of new topics. The approach generates semantic enhanced topic networks

selecting all keywords from the publications in a given year that also appear as concepts in

the CSO1 Computer Science Ontology [48].

• Word Embedding [20]: Word Embedding represents words as vectors (embedding) such

that words with a similar meaning are represented by similar vectors. The real-valued vector

representation is learned from a corpus for a predefined fixed sized vocabulary. Vocabulary

terms are mapped into a high-dimensional vector space such that terms frequently used in

the same context appear close together in this space. Then the identified denser regions in

this space can be considered as scientific fields.

Our EPIQUE project partners from IRISA Rennes study the structures of scientific topics

and their evolution by using the Word Embedding [49]. They trained a word embedding

model on the Wiley corpus of a given time period and applied the cosine similarity to

compute the distance matrix of the data points. By applying a new hierarchical clustering

method [49], they obtained a rich structured representation of the topic clusters extracted

for different periods and their evolution.

• Statistical Topic Models [45]: Statistical topic modeling is based on the distributional

hypothesis that words that are close in meaning will occur in similar documents. The

analysis of the relationships between a set of documents and a set of terms (document-

term matrix) produces a fixed number of topics, the distribution of the topics over the

documents (document-topic matrix) and the distribution of the terms over the topics

(topic-term matrix). The goal of topic modeling is to uncover these distributions (latent

variables) that shape the meaning of the document and the whole corpus.

1http://cso.kmi.open.ac.uk/
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2.1.2 Latent Topic Models

Statistical topic models have become the standard model for analyzing the content and

efficiently extracting key information contained in large-scale corpus. Our topic evolution

workflow also uses the statistical topic model LDA (Latent Dirichlet Alloction) which we will

study in more detail in the following section.

Latent Semantic Indexing LSI [50] learns latent topics by performing a matrix decomposi-

tion on the document-term matrix using Singular Value Decomposition (SVD) [51]. LSI can

be considered as a dimension reduction [52] or noise reduction [53] technique. It assumes that

words (terms) that are close in their meaning will often occur together in similar documents.

A matrix containing word weights (e.g. word counts) per document (rows represent each

document and columns represent unique words) is constructed from a document collection

and SVD is used to reduce the number of columns while preserving the similarity structure

among rows.

Consider a set of m text documents using a total number of n unique terms (words). We

wish to extract k topics from all the text data in the documents (k has to be specified by the

user). Let A be an n×m matrix having TF-IDF [54] scores whose rows represent documents

and columns represent terms. As displayed in Equation (2.1), SVD decomposes a matrix into

three other matrices, matrix U, matrix S, and VT (transpose of matrix V).

A = USVT (2.1)

Figure 2.2: Graphical model of LSI

Figure 2.2 shows the graphical model of LSI. Each row i of the matrix Uk is a vector of

length k (number of topics) which contains the weight of each topic in the corresponding
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document. Uk is called the document-topic matrix. The term vector representation of the

k topics can be found in the matrix Vk
T where each vector of length n (number of terms)

contains the weight of each term in the corresponding topic (topic-term matrix).

The document-topic matrix Uk and topic-term matrix Vk
T are a compact vector representa-

tion of the documents and topics which can be used to identify similar topics (term vectors)

and similar documents (topic vectors) using for example Cosine similarity [24].

LSI can be implemented very easily. However, LSI assumes a Gaussian distribution of the

terms in the documents and does not reflect most real term-document distribution, which are

in general skewed. The obtained results are also difficult to interpret. Moreover, LSI involves

SVD, which is computationally intensive and hard to update as new data comes up. Another

challenge of SVD is that it is hard to find an optimal number of topics k.

Probabilistic Latent Semantic Analysis Instead of using matrices (SVD), probabilistic La-

tent Semantic Analysis (pLSA) [55] uses a probabilistic method where the core idea is to

find a probabilistic model that generates documents as mixtures of a low-dimensional set of

topics.

LSA models the probability of each (word, document) co-occurrence as a mixture of

conditionally independent multinomial distributions as shown in Equation (2.2) with Z being

the words’ topic.

P(W, D) = P(D)∑
Z

P(Z|D)P(W|Z) (2.2)

Figure 2.3: Graphical model of pLSA

Figure 2.3 shows the graphical model of pLSA as a Bayesian network where the boxes are
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“plates” representing replicates. The outer plate M represents documents, while the inner

plate N represents the repeated choice of topics and words within a document. Each node is a

variable in the model and edges encode probabilistic dependencies between the two variables.

Shaded nodes denote that the variables were observed. Given a document d (with probability

P(d)), a topic z is present in that document with probability P(z|d) and given a topic z (with

probability P(z)), a word w is drawn from z with probability P(w|z).

The results of pLSA have a clear probabilistic interpretation. However, the number of pa-

rameters grows linearly with the number of documents and it is difficult to assign probabilities

to documents which are not part of the training set.

Latent Dirichlet Allocation LDA [22] is a Bayesian version of pLSA and follows the intuition

that the probability distribution over words is skewed. It therefore applies a sparse Dirichlet

prior [56] to model the per-document topic and per-topic word distributions.

Figure 2.4: Graphical model of LDA

Figure 2.4 shows the graphical model for LDA. From a dirichlet distribution Dir(α), LDA

draws a random sample representing the topic distribution, or topic mixture, of a particular

document. This topic distribution is θ. From θ, it selects a particular topic Z based on the

distribution. Next, from another dirichlet distribution Dir(β), LDA selects a random sample

representing the word distribution of the topic Z. This word distribution is φ. From φ, the

particular word W is finally chosen.

Formally, the process for generating each word from a document is as follows:

1. Choose random per document topic distribution vector θi ∼ Dir(α) (where i =

1, ..., M; θi ∈ ∆K)

• θi,k = probability that document i ∈ 1, ..., M has topic k ∈ 1, ..., K.

2. Choose random per topic word distribution vector φk ∼ Dir(β) (where k = 1, ..., K; φk ∈
∆V)
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• φk,v = probability of word v ∈ 1, ..., V in topic k ∈ 1, ..., K.

3. Choose topic from the multinomial distribution θi zi,j ∼ Multinomial(θi) (where zi,j ∈
1, ..., K)

• zi,j = is a topic

4. Choose word from the multinomial distribution φzi,j wi,j ∼ Multinomial(φzi,j) (where

wi,j ∈ 1, ..., V)

• wi,j = is the weight of word j in topic zi,j

LDA extracts human-interpretable topics from a corpus, where each topic is characterized

by the words it is most strongly associated with. LDA can generalize to new documents

easily and only needs the definition of two Dirichlet priors (word and topic distribution)

and an additional parameter K which denotes the number of topics to be generated. We

have addressed the problem of choosing the optimal number of topics by proposing a

diversity-based measure (Section 3.2.1).

Hierarchical Dirichlet Process HDP [57] is an extension of LDA which addresses the case

where the number of topics is not known a priori. Much like LDA, HDP models topics as

mixtures of words of a certain number of topics. However, the number of topics is not a

predefined constant, but a random variable generated by a Dirichlet process. A common base

distribution is selected which represents the countably-infinite set of possible topics for the

corpus, and the finite distribution of topics for each document is sampled from this base

distribution.

Figure 2.5: Graphical model of HDP
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HDP is a nonparametric topic model which allows the mixture models (documents) to share

components (topics). More precisely, a base distribution draws topics (term-distributions)

from an uncountable set of topics. Then each document would be constructed from a

completely unique set of topics. By feeding the base distribution into a Dirichlet process,

the topics are allowed to be shared across documents. Thus, it is a distribution over a set

of random probability measures: one probability measure Gj which is a distribution over a

countably-infinite number of topics for each document j, and a global probability measure G0

which is a distribution over a countably-infinite number of topics. As shown in Figure 2.5,

the global probability measure G0 is distributed as DP(γ, H), with H the base measure and γ

the concentration parameter, such as

G0|γ, H ∼ DP(γ, H) (2.3)

The probability measure Gj can be obtained from the upper level of DP sampling, such as

Gj|α, G0 ∼ DP(α0, G0) (2.4)

If an HDP model can be used as a grouped data about the prior term distribution of θji, for

any document j, it assumes that θj0, θj1, ..., θji are independent identically distributed random

topics of Gj, such as

θji|Gj ∼ Gj (2.5)

Each term distribution θji can be used to generate the corresponding observed term xji,

such as

xji|θji ∼ F(θji) (2.6)

.

With HDP, the maximum number of topics can be unbounded and learned from the data

rather than specified in advance. However, it has been shown that HDP is inconsistent for

estimating the number of topics, which means that the posterior distribution on the number

of clusters does not converge to the true number of topics, even with an infinite amount of

data [58]. Furthermore, HDP does not scale to very large document corpus.
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2.1.3 Dynamic Topic Modeling

The goal of dynamic topic models [59, 60, 61, 62] is to capture the evolution of topics in

a sequential document corpus. These models not only extract topics from documents for

different time periods, but also detect trends of the term usage within these topics. This

allows them to achieve better accuracy than static topic models for the prediction of the topics

of a given period from the topics of the previous period.

For example, [60] develops a Dynamic Topic Model (DTM) where corpus are divided into

different time slices using the document timestamps. The topics of each time slice are modeled

using LDA where the topics associated with one slice evolve from topics associated with the

last slice. For taking account of the temporal dimension during the topic extraction process,

DTM chains together the topic parameters at each time slice using a linear Kalman filter [63].

Each topic is drawn using a logistic normal distribution [64] and defines an evolution path

from the topic of the first slice to the topic of the last slice.

Topics over Time (TOT) [62] is different from DTM. Instead of modeling topic evolution

using discretized time periods or the Markov assumption [65] over state transitions, TOT

parametrizes a continuous distribution over time where topics generate both timestamps as

well as words. Parameter estimation is thus driven to discover topics that simultaneously

capture word co-occurrences and localization of those patterns in time. Figure 2.6 gives the

graphical model of TOT. As can be seen, TOT is a generative model of timestamps and the

words in the timestamped documents, and all the timestamps of the words in a document are

observed as the same as the timestamp of the document.

Figure 2.6: Graphical model of TOT

[59] introduces a novel inference algorithm which makes fewer restricting assumptions by

using Gibbs Sampling [66]. They also present a Metropolis-Hastings [67] based sampler for
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topic assignments for each word token. Their algorithm achieves lower perplexity [68] and is

also orders of magnitude faster than the baselines in both single machine and distributed

environments.

In our work, we are interested in generating and exploring topic networks connecting

similar topics from different time periods and the use of such dynamic models would

obviously have sense. However the computation complexity quickly increases as time

granularity increases and we decided to apply a different solution. In order to achieve

a "smooth term semantics shift" in topics from different periods, we define overlapping

time periods to extract subsets of documents and apply static LDA topic extraction to each

overlapping subset. As our experiments show, this strategy allows us to produces meaningful

topic alignments with lower processing costs. The comparison with an approach using

dynamic topic models over disjoint periods is an open future work.

2.2 Topic Evolution Models

Since we only focus on the change of evolution patterns extracted from the textual document

content in our work, we will review some literature on the cognitive view of topic evolution

in this section. This kind of topic evolution models mainly can be distinguished between

topic trend analysis and topic evolution networks.

2.2.1 Topic Trend Analysis

Topic detection and trend analysis studies the temporal evolution of topics within a document

stream. The process consists of detecting emerging topics and following their evolution

including their decay. We can distinguish between two topic trend analysis tasks: (1) the topic

detection task detects new topics in the incoming document stream, generally by applying

unsupervised clustering methods and (2) the topic tracking task which, given a seed of

documents and their topics, monitor the document stream for further documents on the same

topics.

[69] is the first article which gives a full conversion of an unsupervised Topic Detection

system into a supervised Topic Tracking system. They use an unsupervised cluster-dependent

algorithm for the topic detection as discussed in [70] which assigns each document a cluster
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by computing the document-cluster similarity. Then if a document has been labeled as a seed

document of a topic, any subsequent document that is placed into the same cluster of the

seed document is a candidate for labeling as on-topic for the topic of the cluster. Topic trend

analysis has been applied to follow event-based topics across incoming document streams,

such as newswire documents [69], US Patent database [71], etc., and to detect emerging trends

in scientific literature [72].

Topic Trend Analysis in Scientific Literature

A Gibbs Sampling based implementation of LDA has been applied by [73] to analyse 28 154

abstracts published in PNAS from 1991 to 2001. The authors proposed a method for esti-

mating the optimal number of topics (based on the log likelihood) by using Bayesian model

selection [74] and studies the evolution of topics by applying a linear trend analysis on the

mean θ values (document distributions over the topics) by year.

[75] also applies unsupervised topic modeling to the ACL Anthology2 to analyze historical

trends in the field of Computational Linguistics from 1978 to 2006 by using the observed

probability of each topic given the current year. They induce topic clusters using LDA,and

use the trends in these topics over time and over conference venues to address questions

about the development of the field. They found that three conferences are converging in the

topics they cover by applying Jensen-Shannon divergence [76] of topic distributions.

Hu et al. [26] is another example which applied LDA and regression analysis to identify

different topic evolution (topic popularity and duration of topic popularity) patterns for

preprints and papers from arXiv and the Web of Science (WoS) in astrophysics for the last

20 years (1992− 2011). The number of publications in WoS and the number of preprints in

arXiv along the years for each topic have been modeled as curves by a regression model. The

paper redefines the notion of topic trend and popularity, and demonstrates that topics in WoS

lose their popularity much earlier than similar topics in arXiv and open access preprints (like

arXiv) have stronger growth tendency as compared to printed publications.

How “cognitive science” as a field has changed over the last three decades has been

explored by [77] using LDA topic model. They proposed a topical weighted-contribution

method (weighted contribution of each topic by year) to analyze trends in scientific fields

over time, focusing on the 34 years of Cognition articles published between 1980 and 2014

2https://www.aclweb.org/anthology/
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(3104 abstracts). They have found that over the last three decades, Cognition articles are

increasingly framed in terms of experiments, rather than abstract theories.

Breakthrough research may not be the mainstream area, but can attract a significant amount

of citations. For that reason, [78] develops a graphical model of Topical Impact over Time

(TIoT) to capture the temporal dynamics in the impact of latent topics from a corpus of

documents. They propose a LDA-style topic model using citation counts to quantify topical

impact, which can be used for detecting trending topics and suggesting impactful papers in a

bibliographical database. This model can be used for the design of digital libraries and social

media platforms, as well as evaluation of scientific contributions and policies.

Figure 2.7: Steps for generating topic popularity introduced by [79]

Topic trend analysis can be summarized as the steps shown in Figure 2.7. Topic models

like LDA are applied to the entire corpus. Then a document-topic matrix can be obtained as

the result which contains for each document the topic distribution. This distribution can be

considered as the topic contribution to the corpus. Since each document has a timestamp,

topic trends like topic popularity can be acquired by aggregating the topic contribution by

time period.

2.2.2 Topic Evolution Networks

Topic trend analysis explores the temporal evolution of different topic properties like popu-

larity, importance, utility or interest. Whereas the set of analyzed topics can evolve in time,

trend analysis does not take account of the topic relationships and the structural evolution of

topics in time. Our work models the evolution of topics by networks connecting similar topics

from different time periods without measuring and comparing their distribution, popularity
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and impact.

Topic evolution networks represent the structural evolution of topics in time, considering

that during some time period topics can split into two or more new more sub-topics or be

merged with other topics into a single new topic. These structural changes are generally rep-

resented by directed acyclic networks connecting (aligning) topics extracted from documents

published at different periods. Existing evolution network based frameworks mainly can be

distinguished by the chosen topic extraction (Section 2.1) and topic alignment methods.

Topic Alignment Measures

The first two methods are term-based similarity measures which are frequently used to

compute text similarity:

• Cosine similarity [24] calculates similarity by measuring the cosine of angle between two

vectors. With cosine similarity, we need to convert topics into vectors of term distribution.

Here is the cosine similarity formula:

similarity = cos (θ) =
A · B
‖A‖ ‖B‖ =

∑n
i=1 AiBi√

∑n
i=1 A2

i

√
∑n

i=1 B2
i

It will generate a metric that says how related are two vectors by looking at the angle. The

Cosine similarity of two vectors will range from 0 to 1. If the Cosine similarity value is 1, it

means two vectors have the same orientation. The value closer to 0 indicates that the two

vectors have less similarity.

The cosine similarity performs well on distinguishing the correlations between sparse

vectors, where it highlights the contribution of the top rank terms with high probabilities

and weaken the noise produced by the terms with low probabilities. In our work, LDA

topics are sparse term vectors where each vector only contains no more than 10 most

important terms, while all other terms have much smaller weights. This alignment approach

is also used in the work of [80].

• Jaccard similarity [23] measures similarity between finite sample sets, and is defined as the

size of the intersection divided by the size of the union of the sample sets:

J(A, B) =
|A ∩ B|
|A ∪ B|
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Here A and B are topics of term sets where the appearance of each term indeed makes

sense instead of the frequency. The Jaccard similarity value is in a range of 0 to 1. If the

two term sets are identical, Jaccard similarity is 1. The Jaccard similarity value is 0 if there

are no common terms between two topics. [19, 80] applied this measure to align scientific

topics in their works.

Here are some differences between Cosine similarity and Jaccard similarity:

1. Cosine similarity takes total length of term vectors while Jaccard similarity takes only

unique set of the terms for each topic.

2. Cosine similarity is good for cases where duplication matters while analyzing topic

similarity whereas Jaccard similarity is good for cases where duplication does not

matter.

The following functions measure the similarity or distance between two discrete probability

distributions:

• Bhattacharyya coefficient (BHD) [81] is a measure of similarity between two probability

distributions. Here we use p and q to represent term vectors, pi and qi to represent the

weights of the i-th term and nv to represent the length of vectors:

B(p, q) =
nv

∑
i=1

√
piqi

It is the maximum value of 1 which is attained when there is the greatest degree of

similarity between p and q (i.e. p = q) and 0 the least. [82] and [80] modeled the evolution

of topics using the Bhattacharyya coefficient.

• Hellinger distance [83] is another measure to quantify the similarity between two probability

distributions. With the same parameters as mentioned above, we have:

H(p, q) =
1√
2

√
nv

∑
i=1

(
√

pi −
√

qi)2

Also,

1− H2(p, q) =
nv

∑
i=1

(
√

piqi)

Therefore, It is straightforward to demonstrate that the Hellinger distance is related to
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Bhattacharyya coefficient B(p, q) as it can be defined as

H(p, q) =
√

1− B(p, q)

It takes on a value between 0 and 1, with 0 signifying the greatest degree of similarity

between p and q (in this case p = q) and 1 the least. The work of [80] tracked the topical

structural changes by applying the Hellinger distance as well as BHD and Jaccard similarity.

• Kullback-Leibler divergence (KLD) [84] (also called relative entropy) is a measure of how one

probability distribution is different from a second, reference probability distribution. It is a

distribution-wise asymmetric measure. For example, the Kullback-Leibler divergence from

q to p is defined to be

DKL(p||q) =
nv

∑
i=1

pilog(
pi

qi
)

A Kullback-Leibler divergence of 0 indicates that the two distributions in question are

identical, otherwise it can take values between 0 and ∞. It measures the amount of

information lost in the approximation of the probability distribution pi with qi. KL

divergence is not a real distance metric because it is not symmetric. For example:

DKL(p||q)! = DKL(q||p)

[82] found that BHD and KLD can capture different types of topic relatedness. BHD can be

used to track gradual topic evolution, speciation, and convergence, whereas KLD can used

to detect topic splitting and merging.

• Jensen-Shannon divergence [76] is known as another method of measuring the similarity

between two probability distributions. It is defined as the average of the KL divergence of

each distribution to the average of the two distributions:

JSD(p||q) = 1
2

DKL(p||m) +
1
2

DKL(q||m)

where

m =
1
2
(p + q)

It is a symmetric, smoothed and normalized version of the KL divergence with values

between 0 (identical) and 1 (maximally different), and can be used as a distance metric.
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Combined with cosine similarity, Jensen-Shannon divergence is employed in [85] to compare

with their proposed topic similarity algorithm.

Topic Evolution Network in Scientific Literature

There exist fewer works of topic evolution network than the works of topic trend analysis.

Most of them concentrate on the evolution of scientific fields by analyzing scientific literature.

[19] comes up with a method to enable a bottom-up reconstruction of the dynamics of

scientific fields and they apply it to two large-scale case studies: “embryology research” and

“networks in biology” corpora. They generate topics using directed cliques of co-occurring

terms and align inter-temporal scientific fields by Jaccard similarity [23] in their phylomemetic

networks. Their work demonstrates that their bottom-up approach is well-adapted to revealing

the robust patterns of science evolution.

[82] is the first work that discusses and distinguishes between two groups of particularly

challenging topic evolution phenomena: topic splitting and speciation and topic convergence

and merging. They apply Hierarchical Dirichlet Process (HDP) [57] to generate topics and

Bhattacharyya similarity [81] to track gradual topic evolution, speciation, and convergence.

The alignment process also applies (asymmetric) Kullback-Leibler divergence (KLD) [84] for

detecting topic split and merge.

Using a data set on information retrieval (IR) publications, [79] examines how research

topics evolve by analyzing the topic trends from documents and evolving dynamics which

presents the splitting and merging of topics and the underlying knowledge transfer among

topics. For this study, they apply LDA to extract global topics and use the aggregation of

the per-document topic distribution by year as their popularities to detect topic trends. From

each time span, they extract local topics using LDA. The correlation between local topics

and between a local topic and a global topic is measured by cosine similarity [24]. Then the

splitting and merging of local topics indicates the existence of knowledge transfer within a

global topic or between global topics.

[80] proposes a HDP-based framework for the discovery of the topical content of a data

corpus and the tracking of its complex structural changes across the temporal dimension

by using Hellinger distance [83], BHD [81] and Jaccard similarity [23]. In constructing a

similarity graph they use a threshold to eliminate automatically weak edges, retaining only
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the connections between sufficiently similar topics in adjacent epochs. Instead of using a

similarity threshold, they prune the graph based on the the operating point on the cumulative

distribution function (CDF) [86]. They found that the introduction of some overlap (25-50%

of the epoch length) in successive epochs could significantly enhance the relatedness of topic

nodes in an evolution graph.

Our thesis adapts the notion of phylomemy from the work [19] of one of our partners,

ISC-PIF, and extends previous works on topic evolution networks by proposing a formal

query language based on a set of semantic and structural graph filters to define complex topic

evolution patterns and a query-by-example interface to visualize topic evolution graphs at

different levels of detail.

Table 2.1 shows a summary of the presented approaches for modeling the evolution of

topics in scientific archives.
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Table 2.1: Topic Models for Trend and Evolution Analysis

Ref Topic model Tuning Alignment method Evolution Use case
[73] LDA on entire

corpus
log likelihood
using bayesian
model selection

trend analysis on the
document-topic distribu-
tion by year

trend 28154 abstracts in PNAS
(1991-2001)

[75] LDA on entire
corpus

manual empirical probability
p(z|y) that an arbitrary
paper d written in year
y was about topic z

trend historical trends in the
field of Computational
Linguistics of ACL An-
thology from 1978 to 2006

[26] LDA on entire
corpus

regression to fit trend
curve of number of pub-
lications for each topic

trend arXiv and the Web of
Science (WoS) in astro-
physics (1992-2011)

[77] LDA on entire
corpus

topics that
have a sig-
nificant topic
contribution

weighted contribution of
each topic per year (pro-
portion of words gener-
ated by each topic)

trend Cognition articles pub-
lished between 1980 and
2014 (3104 abstracts)

[78] LDA-style
topic model on
entire corpus

model citation counts as
topic impact

trend D-Lib Magazine and The
Library Quarterly from
2007 to 2017

[19] directed clique
of co-occuring
terms

co-occurrence
proximity
measure

Jaccard distance network WOS (embryology re-
search 200 000 articles
from 1991 to 2010) and
Medline (networks in
biology 140 000 articles)

[82] HDP on each
period

non-parametric BHD to track gradual
topic evolution, specia-
tion, and convergence
KLD to detect topic split-
ting and merging

network Pubmed (22,508 articles
on ASD (autism spec-
trum disorder) and 31,706
on MetS (metabolic syn-
drome))

[79] LDA on entire
corpus for
global topics
LDA on each
period for
local topics

empirical analy-
sis

topic trend: per-
document topic dis-
tribution by year topic
evolution: Cosine
similarity

trend net-
work

WoS (20 359 documents in
Information retrieval for
1956 - 2014)

[80] HDP on each
period

non-parametric Hellinger distance, BHD,
Jaccard distance

network Pubmed (22,508 articles
on ASD (autism spec-
trum disorder) and 31,706
on MetS (metabolic syn-
drome))
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Producing meaningful topic evolution graphs is difficult and needs an important tuning effort

and expertise in statistical text mining. In the EPIQUE project, we aim at building a generic

topic alignment workflow for the extraction of meaningful evolution patterns from very large

document archives and the interactive exploration of large topic evolution graphs.

This chapter precisely explains the phylomemy generation workflow (Section 3.1) as well

as a diversity-based quality measure for the extraction of representative topics (Section 3.2.2).

Finally, it describes two efficient topic alignment strategies which are capable of computing

large cosine-based topic alignments on top of Apache Spark(Section 3.3).
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3.1 Phylomemy Generation Workflow

Figure 1.2 illustrates the main steps of the EPIQUE phylomemy generation workflow. The

workflow mainly consists of 4 steps transforming a document archive into a phylomemy: (1)

Data preprocessing (tokenization, stopword removal, stemming, term indexation), (2) Corpus

periodization, (3) Topic extraction and (4) Topic evolution alignment. Each step produces

intermediate results for the next step and the quality of the final result obviously depends on

these intermediate results. We will describe each step in detail and explain its influence on

the final result.

Workflow Input The input of the EPIQUE workflow can be any scientific document corpus

where each document has at least a publication date and a text describing the content of the

publication such as the title, the abstract or the keywords. All scientific archives like Web of

Science1, arXiv2, Medline3, DBLP4, etc. satisfying these simple conditions can be exploited by

the workflow. Observe that we do not take account of any other metadata like the authors,

venue (journal, conference) or bibliographic references (see Chapter 1 on Page 2). The quality

of the final result depends on the textual input but also some other parameters which will

be described later. As we will see in Section 3.2.2, in particular the diversity of the extracted

topics depends on the variety and the amount of available relevant terms describing the

scientific content of each document.

3.1.1 Data Preprocessing

The workflow starts with a standard text preprocessing pipeline of lexical analysis, stopword

removal, stemming, index term generation and term selection. The main goal of this step is

to extract for each document a weighted list of terms (term vector) which precisely describe

its content.

Our implementation of this step allows experts to choose among two term extraction meth-

ods where the first method indexes terms by using a predefined domain-specific vocabulary

list and the second method extracts important words by applying an automatic term extraction

1https://clarivate.com/webofsciencegroup/solutions/web-of-science/
2https://arxiv.org/
3https://www.nlm.nih.gov/medline/medline_overview.html
4https://dblp.org/
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process implemented using the Stanford natural language processing toolkit, CoreNLP [87]

which provides multiple Computational Linguistics [88] tools. More precisely, we have applied

the depparse() function which allows to extract a graphical representation, i.e. dependency

tree [89], of a sentence that provides a simple description of the grammatical relationships

between words in a sentence. For example, the amod relations contain all adjectival modifiers

with their modified noun phrases. Combined with part-of speech tags [90] generated by the

pos() function, we can easily spot adjectives and adverbs, and then remove them as one of our

textual data cleansing steps. The list of extracted keywords obviously plays an important role

for the following topic extraction step which has a direct impact on the quality of the final

phylomemetic graph and might need some additional tuning by providing domain-specific

vocabularies or adding new terms to the stop term list.

3.1.2 Corpus Periodization

This step consists of decomposing the term vectors obtained for input document according

to several contiguous, possibly overlapping, time windows. Each time window defines a

corpus period, which is the subset of documents published during the corresponding time

period. Windows might overlap which means that the same document may appear in two

successive periods. The choice of the window size and the overlap degree (sliding=overlap,

landmark=no overlap) is significant for several reasons. The window size controls the number

of documents in each period which is important for the following topic extraction step which

requires a minimal number of documents as input. The overlap degree controls the “semantic

topic shift” between two periods which decreases with increasing overlap. The window size

depends on the granularity of the document time-stamps (year, month, day) and the number

of available documents in each period. We assume that these two parameters are fixed by

the expert depending on the input corpus and the kind of evolution study she wants to

undertake. As we will see in Section 3.2.2, an important goal in the choice of these parameters

is to achieve for each period a highly diverse set of topics.

3.1.3 Topic Extraction

In this step, each corpus period is fed to a topic model for extracting a set of topics that can

be aligned in the following topic alignment step. The output of the topic model describes

each topic as a set of terms or a weighted term vector. The choice of the output (term sets
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or weighted term vectors) depends on the alignment method used for aligning topics from

different periods.

We use the Latent-Dirichlet-Allocation method (LDA) [22] implemented by the machine

learning library Spark MLlib [91] to extract topics from each corpus period. LDA produces

a topic-term matrix and a document-topic matrix. The former allows us to construct topic

evolution networks (phylomemies) and the latter allows for providing additional analysis such

as topic importance, topic-document distribution, etc. Among the different input parameters

(see Chapter 2 on Page 18), LDA also requires a fixed number of topics defined by the user.

This parameter influences the diversity of the extracted topics and the quality of the final

phylomemy networks. A low topic number generates a small set of generic topics which are

insufficient to distinguish specific scientific domains whereas a high number might generate

many similar topics as it will be explained in Section 3.2.2

3.1.4 Topic Evolution Alignment

A phylomemetic network represents the evolution links connecting topics from different

periods. The weight of a link between a topic t from a period to a topic t′ of the next period

expresses the probability that t has evolved into t′. This probability is estimated by the

similarity between t and t′ and called the evolution degree. We can define different networks

by applying different similarity thresholds. These thresholds determine the complexity of

the evolution graph and the evolution degree of topics. Higher thresholds create simpler

phylomemies with more strongly connected topics and less alignment connections whereas

lower thresholds allow to generate more complex phylomemies connecting many dissimilar

topics.

Topics generated by LDA are weighted term vectors representing the term distribution in

topics. These vectors are aligned with an appropriate similarity measure. It is possible to

choose among different similarity measures, like Jaccard distance [23], Cosine similarity [24],

Bhattacharyya distance (BHD) [81] or Hellinger distance [83] to estimate the evolution

similarity between two topics in two different time periods. In our implementation, we

applied cosine similarity because the term distribution is a sparse vector and cosine similarity

performs well on measuring the correlations between sparse vectors. Furthermore, Apache

Spark proposes a distributed map-reduce [92] implementation of cosine similarity, which is

efficient for our high-dimensional weighted vector setting.
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The quality of a phylomemy mainly depends on the quality of the topics extracted from

the previous step. Besides this quality issue, the performance to compute a phylomemy has

to be taken into consideration as well. We will show in the following section how our system

assists experts in efficiently producing high quality phylomemies.

3.2 Topic Extraction

LDA is widely used for various different tasks and implemented in many ML libraries, such

as Apache Spark MLlib [91], Scikit-Learn5 et Gensim6. Its popularity can be explained by

its high performance and simple usage since it only requires the definition of some basic

parameters like the number of topics to be extracted and the size of the vocabulary to be

used for indexing. The quality of the topic model is generally evaluated using indicators like

Perplexity [68] which is a measurement of how well a probability model predicts a sample

and Likelihood [93] which measures the goodness of fit of a statistical model to a sample of

data for given values of the unknown parameters. However, our experiments have shown

that these two measures are not well adapted to our goal of generating many diverse topics

covering different scientific domains. Moreover, [94] has shown that perplexity and likelihood

are not strongly correlated to human judgment because they do not consider the context and

semantic associations between words. In this section, we will introduce a diversity-based

measure for estimating the quality of a topic set and show some experimental results for

different scientific archives.

3.2.1 Diversity Estimation

In order to build phylomemies over more representative topic sets, we propose topic diversity

for estimating the quality of a topic set. The topic diversity inside a period can be estimated

by observing the dissimilarity distribution over all topic pairs inside the period.

Suppose that T represents a set of topics over a set of periods P . We denote by pi ∈ P the

period of topic ti and two topics ti and tj are in the same period if pi = pj. We denote by

Tk = {ti|ti ∈ T ∧ pi = pk} the set of topics at time period pk ∈ P . Observe that time periods

can overlap in time, but each topic is attached to a single period. Finally, we denote by Tp

5https://scikit-learn.org/stable/
6https://radimrehurek.com/gensim/
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a set of topics in the same period p ∈ P and sim : T × T → [0, 1] a topic evolution function

estimating the evolution similarity between any topics in T. We use cosine similarity as the sim

function which will be explained in detail in Section 3.3. Then the diversity ratio of topics in

Tp is computed by the following formula:

DTp =
|(1− sim(ti, tj)) > s|

|(ti, tj)|
where ti, tj ∈ Tp (3.1)

In the above formula, s is a dissimilarity threshold which allows to filter highly divers topic

pairs. Observe that DTp ∈ [0, 1]. A high value signifies that most topics in Tp are dissimilar,

whereas a low value indicates that there are many similar topics in Tp.

Experimental results using this diversity measure are shown in Section 3.2.2.

3.2.2 Experimental Evaluation

We defined two experimental evaluations concerning the topic generation step. The first series

of experiments evaluate the scalability of the parallel Apache Spark’s LDA implementation.

The second series of experiments illustrate the importance of choosing the right number of

topics for achieving high diversity.

These experiments were conducted on four real-world data sets of different scales by using

the titles and the abstracts of each document. The smallest dataset contains 4640 documents

about research related to the Glyphosate herbicide. The second dataset ISTEX contains 13 423

articles in the domain of ecological economics and environmental economics. The arXiv

corpus is a repository of electronic preprints approved for publication after moderation. This

repository consists of 1.15 million scientific publications in the fields of mathematics, physics,

astronomy, electrical engineering, computer science (arXiv.CS), etc. The last dataset is a

sample of the Wiley online library which contains 1 million documents covering the fields of

arXiv and additional fields such as agriculture, art, humanities, etc.

The statistics for these four data sets are summarized in Table 3.1, where #Document is

the total number of documents and #T is the number of topics per period we used in our

experiments which is chosen according to our proposed diversity-based quality measure

(Section 3.2.2). All datasets cover 20 years of publications which are split into 10 periods by

using a sliding 3-year time window with an overlap of 1 year. The number of documents
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covered by each period is different but remains in the same order of magnitude. We did not

apply any sampling before generating the document-term matrix and executing LDA topic

extraction.

Table 3.1: Dataset statistics

Datasets #Document Period #Periods (total) #T/period

Glyphosate 4640 1994− 2013 10 30
ISTEX 13 423 1991− 2010 10 30
arXiv 1 156 114 1998− 2017 10 100
Wiley 1 023 515 1996− 2015 10 200

The computation is executed on top of Apache Spark version 2.4, Scala version 2.11 and

Java version 8. Spark allows parallelization at the CPU core level and at the machine level

(cluster). Our experiments have shown that most steps (except the data preprocessing step)

can be efficiently executed on a single machine where the performance depends on the

number of CPU cores. In the following experiments on the real world datasets, we show the

results obtained by the execution on a single machine with a hyperthreaded 3.1 GHz Intel

Core i7-7920HQ processor (4 CPU cores), 16 GB RAM and a 512 GB SSD disc.

LDA Computation and Scalability

The goal of the first experiment is to evaluate the scalability of the parallel Apache Spark’s

LDA implementation. LDA is applied on a document-term matrix containing the term

frequency for each term/document pair. This matrix is obtained by preprocessing the full

archives of raw text documents (title + abstract). The preprocessing includes special character

removal, tokenization, stopword removal, stemming and term generation (including frequent

ngram detection). This preprocessing takes up to 6 hours for large archives like Wiley (> 1M

documents), but is completely automatic and has to be done only once.

Figure 3.1 displays the LDA performance on a single machine. We evaluated the total

LDA execution time on the document term matrix of each corpus wrt. different CPU core

numbers. For the two small corpus Glyphosate and ISTEX, LDA takes about 1− 2 minutes.

It is interesting to see that the cost slightly increases with more CPUs, which can be explained

by an increase of the parallelization overhead. For the larger corpus with a million documents

such as arXiv and Wiley, each LDA model takes between 2.5 and 7.5 minutes and the

parallelization overhead is compensated by the benefit of parallelizing the LDA tasks.
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Figure 3.1: LDA performance on local machine wrt. number of CPU cores

Figure 3.2: Average execution time for computing LDA VS. #T
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Figure 3.2 presents the the average execution time for computing the LDA model per

period by using 4 CPU cores with respect to different numbers of topics (#T) for each corpus.

The performance of LDA computation mainly depends on the number of documents and the

number of extracted topics per period. For example, for Glyphosate with 4640 documents

and 30 topics per period, LDA takes about 15 seconds, whereas it almost takes ten times more

for the same number of topics and about 1 million documents (arXiv). For the arXiv corpus,

it takes about 110 seconds to compute a LDA model with 30 topics, whereas extracting 200

topics doubles the execution time.

Diversity Computation and Results

(a) 1998-2000 (b) 2008-2010

Figure 3.3: Dissimilarity distribution (diversity) by number of topics in arXiv.CS

The goal of this experiment is to show that our topic diversity measure allows to find

a range of optimal topic number #T for a given corpus and the number of optimal topic

numbers depends on the size of the corpus. Figure 3.3a and Figure 3.3b show the topic

diversity obtained for different LDA models applied to 1164 documents published in arXiv.CS

during 1998 to 2000 and 16 072 documents published in arXiv.CS during 2008 to 2010. Each

LDA model corresponds to a different number of topics #T ranging from 10 to 150. For

example, for the smaller corpus, we can see in Figure 3.3a that for a topic number #T ranging

between 40 and 60, less than 5 percent (blue line) of all topic pairs have a dissimilarity value

lower than 0.9 and any number in this range is a good choice. Figure 3.3b shows that for the

larger corpus, LDA achieves high diversity even for 140 topics.

Figure 3.4a and Figure 3.4b give two other examples of topic diversity evaluation over the
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(a) 1994-1996 (b) 2004-2006

Figure 3.4: Dissimilarity distribution (diversity) by number of topics in Glyphosate

(a) Dissimilarity distribution for 30 topics (b) Dissimilarity distribution for 80 topics

Figure 3.5: Dissimilarity distribution of topic pairs in Glyphosate during 1994-1996
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Glyphosate corpus obtained by applying different LDA models to 489 documents published

during 1994 to 1996 and 679 documents published during 2004 to 2006. It can be easily seen

that the similar amount of documents leads to similar behaviors in terms of the range of

optimal topic number #T estimated by the topic diversity measure.

Figure 3.5a and Figure 3.5b display the detailed dissimilarity distribution for 30 topics and

80 topics extracted from the documents in Glyphosate corpus published during 1994 to 1996,

which correspond to the dissimilarity distribution for 30 topics and 80 topics in Figure 3.4a.

In Figure 3.5a, more than 95% of all topic pairs have a dissimilarity value higher than 0.985

(where the 5th percentile line is located) which indicates a pretty good topic diversity value

since our diversity threshold is 0.9. Whereas Figure 3.5b is an example of topics with low

diversity where the 5th percentile value of the dissimilarity distribution only reaches 0.27,

which reveals more similar topics in the topic set.

Our experiments on the different scientific document archives have confirmed that the

diversity of topics produced by LDA mainly depends on the size of the analyzed document

set (see Table 3.1). In our implementation, we propose experts to generate the visual diversity

diagram on a chosen period and to choose a fixed number of topics in the optimal range,

where higher topic numbers produce topics described by a more specific vocabulary than

lower numbers. The extension to an automatic grid-search based topic number estimation

step is straightforward.

3.3 Topic Alignment

Phylomemies might contain thousands of topics and alignment edges which are computed

by comparing millions of topic pairs with some similarity function. In this section, we are

addressing the efficiency of topic alignment computation on top of the unified analytical

Apache Spark engine.

To generate multi-stage topic evolution graphs, we propose two topic alignment strategies

where one takes account of the similarities of all topic pairs which is important for our topic

evolution model (Chapter 4), whereas another one focuses on aligning topics only from

consecutive periods and uses a nearest-neighbor condition to select candidate topics. For the

second strategy, we highlight that Spark’s native distributed cosine similarity computation

can be improved in our context of graph evolution of scientific documents.
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3.3.1 Full Matrix Alignment Computation

The formal alignment model is based on graphs for representing the evolution of a set of

topics T over a set of periods P . We use the same notions as defined in Section 3.2.1. The

Spark’s distributed cosine similarity implementation takes as input a single set of topics T

and computes the set of all similarity values between topics in T:

ST = {sim(ti, tj)|ti, tj ∈ T} where sim(ti, tj) =
ti.tj

||ti||.||tj||
(3.2)

This is a MapReduce algorithm which is a programming model and an associated implemen-

tation introduced by Google [92] for processing and generating big data sets with a parallel,

distributed algorithm on a cluster. A MapReduce program is composed of a map procedure,

which performs filtering and sorting (such as mapping words in a document by the number

of occurrences, the value 1 for each word), and a reduce method, which performs a summary

operation (such as counting the sum of the number of occurrences for each word, yielding

word frequencies).

This MapReduce algorithm consists in decomposing each topic vector ti ∈ T into n sub-

vectors (partitions) and distribute these sub-vectors tk
i , 1 ≤ k ≤ n across all the cluster nodes.

Considering ti as a vector of length d (terms), and using a cluster of M nodes, then each

topic is partitioned into M sub-vectors of length q = d/M and the sub-vectors of all topics at

the same position k are stored on the same node Nk. Figure 3.6 illustrates the data structure

of a topic-term matrix implemented by RowMatrix7, which is a row-oriented distributed

matrix on Spark. In the matrix, each column corresponds to a topic vector of length d, and is

partionned into M sub-vectors of length d/M and distributed across all the cluster nodes. A

first map step locally computes on each node Nk the square of the partial norms of every tk
i :

||tk
i ||2 = ∑

(k−1)q<l≤kq
ti[l]2

The following reduce step sums the partial norms to get the final norms replicated on all

nodes:

||ti|| =
√

∑
1≤k≤n

||tk
i ||2 =

√
∑

1≤l≤d
ti[l]2

7https://spark.apache.org/docs/2.2.0/api/java/org/apache/spark/mllib/linalg/distributed/RowMatrix.html
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A second map step evaluates the partial scalar products of every sub-vector couple (tk
i , tk

j ):

tk
i .tk

j = ∑
(k−1)q<l≤kq

ti[l].tj[l]

And a final reduce step computes the complete scalar products and the final cosine similarity

values on all nodes:

ti.tj = ∑
1≤k<n

tk
i .tk

j

Figure 3.6: Distributed matrix implementation in Spark

This algorithm is implemented by the function columnSimilarities() of class RowMatrix.

The columnSimilarities() function computes locally on each node cosine similarities between

any pair of sub-vector columns at the same position and finally returns an n × n sparse

upper-triangular matrix of cosine similarities between columns of this matrix as shown in

Figure 3.7.

Since our topic evolution model which will be presented in Chapter 4 takes account of the

evolution (similarity) between topics from distant periods, we propose a full-matrix alignment

computation strategy in the following. This alignment computation strategy adopts the idea
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Figure 3.7: Upper-triangular matrix of cosine similarities between topic vectors

that sub-vectors of the complete topic-term matrix (containing all topic vectors from all periods)

are distributed across all cluster nodes and the partial evolution similarities of all topic pairs

are computed on each node. The similarities between topics of the same period are also

calculated to evaluate the topic diversity of each topic period.

In our implementation, the largest topic set is from the Wiley corpus (among the real-world

datasets that we use) containing 2000 topics in total (200 topics per period). This number of

topics can easily be managed by current big data framework on a single node.

Figure 3.8: Full matrix alignment computation performance on local machine

Figure 3.8 shows the performance evaluation of full matrix alignment computation for the

4 datasets on a local machine with the settings as described in Section 3.2.2. The number

of topics of each corpus is reported in Table 3.1. As can be seen, the execution time grows
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linearly with the number of topics. More precisely, 300 topics are extracted from the the

Glyphosate corpus and the ISTEX corpus respectively, and it takes about the same time to

compute the full matrix for both corpora. The total number of topics extracted from the arXiv

corpus is 1000 and the alignment computation takes three times larger than the two previous

datasets. Then for the Wiley corpus (2000 topics), the full matrix computation time is 2 times

longer than the the execution time for arXiv.

3.3.2 Nearest-Neighbor Alignment Computation

The aforementioned strategy computes similarities of all topic pairs which results in a

computation of a full topic-term matrix. But we are also interested in computing multi-stage

topic evolution graphs by aligning topics only from consecutive periods. Thus, we consider a

nearest-neighbor alignment approach that keeps an edge connecting t1 with t2 if and only if:

1. t1 ∈ T1, t2 ∈ T2, with p2 = p1 + 1

2. sim(t1, t2) > sim(t1, nearest neighbor of t1 in T1)

3. ∀ti ∈ T1, sim(t1, t2) ≥ sim(ti, t2)

In other words, t2 gets aligned with t1, if t2 from period p2 = p1 + 1 is closer to t1 than any

other topic in p1, and if t1 is the best candidate among all other topics of p1.

The overall number of similarity values to compute is P× Nsim1(A) + (P− 1)× Nsim2(A)

with:

• Ti set of topics in period pi

• A = |Ti| topics per period8

• P periods

• Nsim1(A) = A×(A−1)
2 similarity values per period for finding the similarity of the nearest

neighbor of each topic in the same period (alignment condition 2)

• Nsim2(A) = A2 values for two consecutive periods (alignment link candidates)

In the following paragraphs, we propose two different implementation approaches to

compute the previously defined nearest-neighbor topic alignments which are both based

8For simplification we assume that all periods contain the same number of topics. This is coherent with the use
of LDA which allows to fix the number of topics generated for each period.
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on the cosine similarity between two topic vectors ti and tj. Both approaches mainly differ

on their ability to efficiently distribute topic sets based on their periods over a cluster of

computers. As shown in the experiment of Section 3.3.2, this distribution ability drastically

impacts the performance of these approaches.

Period-ordering Alignment Computation

In the nearest-neighbor alignment model, only consecutive topic periods are aligned. Formally

given topic sets T1, T2 and T3 occurring at three consecutive periods p1, p2 and p3, only the

alignments from topics in T1 to topics in T2 (T1 → T2) and the alignments from topics in T2

to topics in T3 (T2 → T3) need to be computed. Observe that in this alignment approach,

the evolution from topic sets T1 to T3 is "transitively" captured through alignments with T2.

We denote by Ui = Ti ∪ Ti+1 for 1 ≤ i ≤ P− 1 the topics at consecutive periods pi and pi+1.

By definition, |Ui| = 2× A. This allows us to rely on Spark’s distributed cosine similarity

method for computing SUi , i.e., the similarity between every pair of topics in Ui. By iterating

over the sequence U1, · · · , Um−1, we get the evolution similarities SUi for all periods and select

the expected alignments that satisfy the alignment conditions as defined before (items 2 and

3).

In the general case, each node computes the partial norms and scalar products for all

possible pairs of topics which are then combined in two shuffle/reduce steps. We estimate

the data shuffling cost generated by this distributed computation. We can consider that the

shuffling cost per computed similarity value is constant and therefore proportional to the

number of computed values. Thus, the shuffle cost of finding the nearest neighbor of each

topic in a period can be represented as follows:

CSHUFFLE = Nsim1(A)× u×M =
A× (A− 1)

2
× u×M (3.3)

where A is the number of topics in T, u is the (constant) shuffle cost (number of bytes) per

similarity value and M is the number of computation nodes.

Then the alignment cost for aligning all topics from two consecutive periods is displayed as

follows:
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CALIGN =(P− 1)× CUi = (P− 1)× Nsim1(|Ui|)× u×M (3.4)

=(P− 1)× |Ui| × (|Ui| − 1)
2

× u×M (3.5)

=(P− 1)× A× (2× A− 1)× u×M (3.6)

A first observation is that this implementation computes all similarities between two topics

of the same period pi twice, once for the alignment Ti−1 → Ti pair and once again for the

Ti → Ti+1 pair. For P periods, the amount of redundant similarity values is (P− 2)× A×(A−1)
2 .

Secondly, it also misses opportunities to parallelize the alignment of period pairs, e.g., aligning

all consecutive pairs of periods in parallel. We then propose a solution which overcomes this

drawback in the following.

Shuffle-free Alignment Computation

The nearest-neighbor alignment computation approach we propose in this section takes

advantage of the possibility to distribute the alignment workload more efficiently to favor

local computations whenever possible. In order to avoid redundant computations, this

method is composed of two steps.

The first step computes the similarities among the topics of each period and identifies

for each topic its nearest neighbor in the same period. All the Ti topic sets are distributed

such that each machine of the cluster receives one or more distinct Ti and computes the

corresponding set of similarity measures STi (Equation 3.2). For example, with 4 machines

and 12 periods, assuming a round robin [95] distribution, M1 could receive T1 then T5, then

T9.

The second step computes the topic alignments between consecutive periods. Each machine

sends all its topic sets Ti as well as their related nearest neighbor similarities Snn
Ti

(the subset of

STi restricted to the nearest neighbor of every t ∈ Ti) to the machine that contains Ti+1. Each

node then locally computes the similarities between Ti and Ti+1 and selects the alignments

that satisfy the nearest-neighbor alignment conditions.

An important advantage of this parallel approach is that it is shuffle-free since all similarity

computations are performed locally on each machine. The only data that is transferred to
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every machine are Ti, Snn
Ti

, and Ti+1 with Snn
Ti

being small since its size is linear to |Ti|.

This method is able to handle very large graphs as long as a single machine can handle the

computation of a pair of periods. This meets a typical use case where the text corpus grows

over time and gets more periods to analyse while the average size of a period remains fixed,

i.e., the number of topics in a period is controlled by the LDA step.

Another advantage of this approach is that it efficiently reduces the computation cost by

avoiding redundant similarity computation. More precisely, every similarity between any pair

of topics is computed only once. In particular, between two consecutive periods, it computes

only Nsim2(A) values. Overall, this saves (P− 2)× Nsim1(A) similarity computations with

respect to the method of Section 3.3.2.

Experiments

The following experiment compares the performance of both proposed nearest-neighbor

alignment computation methods for large multi-period graphs.

We compute the alignments of topics along five periods for an increasing number of

topics per period. We compare the response time of the two methods : the period-ordering

alignment method on Page 45 which implies a lot of data shuffling and the shuffle-free

alignment method. We run the experiments using 4 worker machines such that the shuffle-

free method can compute one pair of periods per machine and utilizes the same number of

CPU core as the period-ordering method.

In Figure 3.9, we report the response time of both methods for a varying number of topics.

The relative benefit of the shuffle-free method is increasing with the number of topics and

is up to 4 times faster for 10 000 topics. The main reason is because the shuffle-free method

does not shuffle any data while the period-ordering method shuffles up to 30GB for 10 000

topics, as reported on Figure 3.10.
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Figure 3.9: Similarity for 4 pairs of periods: response time vs. number of topics

Figure 3.10: Similarity for 4 pairs of periods: shuffle size vs. number of topics
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This chapter presents the topic evolution model implemented in the EPIQUE workflow.

The model is based on a multi-stage graph representation of topic evolution networks and

introduces the notion of pivot evolution graphs to model the evolution of individual topics.

Contents

4.1 Topic Evolution Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 Pivot Topic Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3 Pivot Topic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4 Pivot Topic Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.5 Pivot Topic Query Language . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.1 Topic Evolution Model

The motivation of our topic evolution model is based on the observation that the exploration

of phylomemies is an interactive process where experts often want to explore the evolution

starting from some relevant topics (pivot topics in our model) and analyze the subgraphs

(pivot graphs in our model) around these topics. This exploration is guided by the detection

of topic evolution patterns, which might be simple paths connecting topics, but also more

complex evolution subgraphs representing the split of a topic into several sub-topics or the

fusion of several topics into a single topic. Our solution to explore topic evolution graphs is

not to produce a single phylomemy over the whole document corpus but to generate many

subgraphs representing evolution of topics at different levels of detail.

Figure 4.1 explains the main ideas of our topic evolution model. Topic-term vectors

extracted by LDA from different periods are aligned with an appropriate similarity measure

to produce a complete alignment graph Sim (central part). Then the complete alignment
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Figure 4.1: Topic evolution model of EPIQUE workflow

graph Sim can be studied by applying different similarity thresholds, called β thresholds

(β ∈ [0, 1[), to extract several phylomemetic graphs G connecting topics from subsequent

periods.

Figure 4.2 and Figure 4.3 give two examples of the phylomemies over the Glyphosate

corpus with similarity thresholds β ≥ 0.1 and β ≥ 0.9 respectively. It can be easily seen that

the threshold influences the details that can be observed. More precisely, a low β value (e.g.,

β ≥ 0.1 in Figure 4.2), can result in a complex phylomemy connecting all topics which makes

it not easy to analyze the evolution of a given topic. Whereas a high value (e.g., β ≥ 0.9 in

Figure 4.3), may generate a simple phylomemy which contains many small linear subgraphs

containing strongly connected topics and a lot of isolated topics with no information about

their evolution. In between, there are many possible phylomemies which allow to study the

evolution of scientific domains at different levels of detail and choosing a single β threshold

does not allow to find the best phylomemetic graph. Thus, we focus the study of our topic

evolution model on subgraphs.

As shown in Figure 4.1, a phylomemetic graph G is transformed into several groups of

subgraphs defined by a topic t and a set of alignment thresholds βi (βi ∈ [0, 1[). Each group

contains for each topic t and threshold βi the maximal connected subgraph with threshold βi

containing t. This subgraph is called pivot graph and will be defined in Section 4.2. We only

consider subgraphs with at least one edge and ignore isolated topics (single node graphs).
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Figure 4.2: Phylomemy over the Glyphosate corpus with similarity threshold β ≥ 0.1

Figure 4.3: Phylomemy over the Glyphosate corpus with similarity threshold β ≥ 0.9
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The above process to transform a complete alignment graph Sim into groups of subgraphs

mainly composes our topic evolution model as defined in Section 4.2. Then experts can

use the pivot topic query language defined in Section 4.5 which consists of pivot topic functions

(Section 4.3) and pivot topic calculus (Section 4.4) to query the resulting data of our workflow.

4.2 Pivot Topic Graphs

Definition 1 (topic) Let V be a vocabulary of terms and P be an ordered sequence of time periods. A

topic is a pair t = (v, p) composed of a (sparse) weighted term vector v ∈ R|V| and a period p ∈ P.

We will denote by t.terms the term vector and by t.period the period of t.

Definition 2 (topic evolution graph) Let T be a set of topics, sim : T × T → [0, 1] a similarity

function estimating the semantic proximity of the term vectors of two topics. A topic evolution graph

over T is a directed labeled multistage graph G = (T, E, sim) over T where the edges E connect all

topics from consecutive periods with positive similarity values. That is, E = {(ti, tj) ∈ T|sim(ti, tj) >

0∧ tj.period = ti.period + 1}.

Figure 4.4: A subgraph of a topic evolution graph over the arXiv corpus

Example 3 In Figure 4.4, P has 3 periods: p1=“2001− 2001”, p2=“2002− 2002” p3=“2003−
2003”, Tp1 contains topic t187 = (v, p1), where v is a weighted vector with positive weights

for stemmed terms “ f ield”, “solut”, “space”, “scalar”, etc. Whereas the term vector v of topic

t210 = (v, p2) contains “graviti”, “dimens”, “dimension”, etc. Each topic is labeled by its top-10
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highest ranked terms and topic similarity is estimated by the cosine similarity between the corresponding

two term vectors. For example, topic t187 and topic t210 have some stemmed terms in common, such

as “solut”, “space”, “graviti” and “metric”. And the cosine similarity between these 2 topics is

sim(t187, t210) = 0.56.

Topic evolution graphs only connect topics from two subsequent periods and it is not

possible to directly connect two very similar topics t and t′ from two distant periods, i.e.,

|t.period − t′.period| > 1. This condition seems very restrictive and rejects a number of

interesting evolution links. Whereas this restriction could safely be lifted without invalidating

our approach, it also can be justified by several observations:

• Our model does not include any similarity threshold for connecting two topics. This means

in particular that two similar but distant topics can still be connected by a path traversing

some less similar topics (in Section 4.3 we introduce a graph evolution function pevolδ

which allows to compare any topic with any other reachable topic).

• Multistage graphs are visually more comprehensible than general directed acyclic graphs.

• The distance between topics also depends on the periodization scale and it is possible to

generate evolution graphs with different granularity for the same document corpus.

• This restriction also reduces the size and complexity of evolution graphs and the corre-

sponding computation costs and memory/disk space.

Analyzing topic evolution graphs is a complex task which includes various filtering

operations for identifying topics by their terms, removing alignment edges below a certain

threshold, selecting subgraphs with a specific structure etc. To solve this task, we propose a

query language which allows users to extract connected subgraphs containing a given topic t

and all alignment edges with some minimal similarity value β. This decomposition allows

to formulate high-level filters for characterizing the semantic (labels) and structural (split,

merge) evolution of topics in time.

Definition 3 (pivot topics and pivot evolution graphs) Let t be a topic in some topic evolution

graph G = (T, E, sim) and β ∈ [0, 1]. The pair (t, β) is called a pivot topic of t with similarity

threshold β. Then, a connected subgraph G(t, β) = (T′, E′, sim, β) of G is a pivot (evolution)

graph of pivot topic (t, β) if t ∈ T′ and sim(t′, t′′) ≥ β for all similarity edges (t′, t′′) ∈ E′, where

t′ ∈ T′ and t′′ ∈ T′
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Figure 4.5: Pivot graph G(t181, 0.2) over the Glyphosate corpus
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Figure 4.6: Pivot graph G(t181, 0.6) over the Glyphosate corpus

Example 4 Figure 4.5 and Figure 4.6 present two different pivot graphs G(t181, 0.2) and G(t181, 0.6)

extracted from the Glyphosate corpus for the same topic t181 of which the id field is highlighted in

purple. Observe that the pivot graph G(t181, 0.6) contains a single path t181 → t205 → t249 →
t311→ t332→ t370, which is a subgraph of the pivot graph G(t181, 0.2).

We distinguish three particular pivot evolution graphs among all possible pivot graphs of a

given pivot topic (t, β) which allows users to study the evolution of the given pivot topic wrt.

its future subgraph, past subgraph or both of them:

Definition 4 (future, past and history of a pivot topic) The future of some pivot topic (t, β) is

the maximal pivot evolution graph G f uture(t, β) which contains all paths with source t. Equivalently,

the past of some pivot topic (t, β) is the maximal pivot evolution graph G past(t, β) which contains all

paths with target t. The union of the past and future G∗(t, β) = G past(t, β) ∪ G f uture(t, β) is called

the history of pivot topic (t, β).

Example 5 Figure 4.7 shows the past of the pivot topic (t181, 0.6). The future of the same pivot topic

can be seen in Figure 4.6 of Example 4.

By Definition 3, since βi ∈ [0, 1] is a real number, for each topic t there exists an infinite

number of pivot topics (t, βi). However, the number of pivot topics with different pivot

histories is finite and depends on the distribution of the similarity values in the topic

evolution graph. This observation is formalized in the following definition and proposition.

Definition 5 (topic spectrum) Let G∗(t, 0) = (T, E, sim) be the complete history of t (the max-

imal connected subgraph of G containig t) and S(t) = {sim(t, t′)|(t, t′) ∈ E} be the set of distinct

similarity values (edge labels) in G∗(t, 0). We call S(t) the spectrum of t.
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Figure 4.7: Pivot graph G past(t181, 0.6) over the Glyphosate corpus

20
04

-2
00

6

20
00

-2
00

2

20
02

-2
00

4

19
98

-2
00

0

id
:9

2

19
98

-2
00

0

ag
ric

ul
tu

re
ag

ric
ul

tu
ra

l l
an

d
ag

ric
ul

tu
ra

l p
ro

du
ct

io
n

ag
ric

ul
tu

ra
l p

ra
ct

ic
es

in
di

vi
du

al
s

bi
od

iv
er

si
ty

ch
em

ic
al

s
de

cr
ea

se
co

m
po

ne
nt

s
m

an
ag

em
en

t

id
:1

37

20
00

-2
00

2

ag
ric

ul
tu

ra
l p

ra
ct

ic
es

su
st

ai
na

bl
e 

ag
ric

ul
tu

re
ag

ric
ul

tu
ra

l l
an

d

co
nt

ex
t

co
un

tr
ie

s

po
llu

ta
nt

s
go

al
in

di
vi

du
al

s
so

il 
fa

un
a

or
ga

no
ch

lo
rin

es

0.
96

id
:1

81

20
02

-2
00

4

ag
ric

ul
tu

re
tr

an
sg

en
ic

 c
ro

ps
cr

op
s

im
pl

ic
at

io
ns

ag
ric

ul
tu

ra
l p

ro
du

ct
io

n
ag

ric
ul

tu
ra

l b
io

te
ch

no
lo

gy

ge
ne

tic
 e

ng
in

ee
rin

g

ag
ric

ul
tu

ra
l p

ra
ct

ic
es

m
ic

ro
bi

al
 c

om
m

un
iti

es
or

ga
ni

sm
s

id
:2

05

20
04

-2
00

6

bi
ot

ec
hn

ol
og

y
tr

an
sg

en
ic

 c
ro

ps
ge

ne
tic

 e
ng

in
ee

rin
g

fo
od

 p
ro

du
ct

io
n

su
st

ai
na

bl
e 

ag
ric

ul
tu

re
im

pl
ic

at
io

ns
co

un
tr

ie
s

co
nt

ex
t

fo
od

s
eu

ro
pe

an
 u

ni
on

0.
71

0.
95

Figure 4.8: Pivot graph G f uture(t92, 0.7) over the Glyphosate corpus

Example 6 The topic spectrum of the pivot graph G f uture(t92, 0.7) in Figure 4.8 contains values

0.96, 0.95 and 0.71.

Proposition 1 The number of distinct pivot histories G∗(t, β), β ∈ [0, 1], of a topic t is smaller or

equal to the size |S(t)| of the topic spectrum of t.

Proof 1 Suppose that S(t) = {β1, β2, ..., βn} and βi < βi+1 for all 1 ≤ i < n. Then n = |S(t)|
and it is sufficient to show that G∗(t, β) = G∗(t, β′) for all β and β′ where (1) βi ≤ β < β′ < βi+1.

We apply a proof by contradiction. By Definition 4, G∗(t, β) is the maximal connected subgraph

of G containing topic t where all edges (t′, t′′) have a weight sim(t′, t′′) ≥ β. Then it is easy to

see that for all β, β′ where β ≤ β′, G∗(t, β′) ⊆ G∗(t, β). Suppose that both histories G∗(t, β′) and
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G∗(t, β) are different, i.e., G∗(t, β′) ⊂ G∗(t, β). Then there exists an edge (t1, t2) in G∗(t, β) where

(2) β ≤ sim(t1, t2) < β′. By β′ < βi+1 and Definition 5, we also obtain G∗(t, βi+1) ⊂ G∗(t, β′), i.e.,

there exists another edge (t3, t4) in G∗(t, β′) where (3) β′ ≤ sim(t3, t4) < βi+1. From (1), (2) and

(3) we obtain βi ≤ β ≤ sim(t1, t2) < β′ ≤ sim(t3, t4) < βi+1, i.e., there exist two edges in G∗(t, 0)

with two different similarity values in [βi, βi+1[ which is in contradiction with Definition 5.

4.3 Pivot Topic Functions

The goal of our pivot graph model is to define a query language which allows users to

filter topics according to useful criteria concerning the evolution of the vocabulary and the

structure of their pivot evolution graphs.

The first two pivot topic functions return the period and the label of a pivot topic. Both

functions are independent of the β threshold, the future and the past of the pivot topic.

Function period returns the topic period of the pivot topic:

period(t) = t.period (4.1)

All topics t ∈ T are labeled by a subset of terms labels(t) ⊆ V. For example, in our system

labels(t) returns the k first terms in vocabulary V ranked by the weighted vector t.terms:

labels(t) = topk(V): top-k terms in V ranked by vector t.terms (4.2)
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Figure 4.9: Pivot graph G f uture(t204, 0.7) over the Glyphosate corpus
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Example 7 The pivot topic (t204, 0.7) in Figure 4.9 contains the top-10 weighted terms, i.e., “risk

assessment”, “environmental risks, “potential risks”, “ecological risk assessments”, “human health”,

“production system”, “agriculture”, “mutagenicity”, “genetic modification” and “context”, as its label.

The evolution of a topic t can be characterized by the structure of the future pivot evolution

graph G f uture(t, β) and the past pivot evolution graph G past(t, β) of its pivot topics (t, β). In

the following, let δ ∈ { f uture, past} and Gδ(t, β) denote the past (δ = past) or the future

(δ = f uture) of (t, β).

Path Functions The following function computes the set of topics that appear in the past

and in the future of (t, β), respectively:

pathδ(t, β) = {t′|t′ topic in Gδ(t, β)} (4.3)
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Figure 4.10: Pivot graph G f uture(t211, 0.5) over the Glyphosate corpus

Example 8 In Figure 4.10, topics t246, t296, t322, t389 and t392 appear in the future of pivot topic

(t211, 0.5)

Term Evolution Functions Term labels are useful to analyze the evolution of terms within

the topic evolution graphs and to filter topics by their contents. For each pivot topic, we

define the two sets labelspast(t, β) and labels f uture(t, β) of topic labels which contain terms
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appearing, respectively, in the past and the future of pivot topic (t, β):

labelsδ(t, β) = {l|t′ ∈ pathδ(t, β) ∧ l ∈ labels(t′)} (4.4)

Observe that labels(t) is defined independently of β, whereas labels f uture(t, β) and labelspast(t, β)

might change for different β thresholds. The label terms of some pivot (t, β) can be classified

into four disjoint categories:

- Emerging terms which exist in the future but not in the past:

emerge(t, β) = labels f uture(t, β)− labelspast(t, β) (4.5)

- Decaying terms which exist in the past but not in the future:

decay(t, β) = labelspast(t, β)− labels f uture(t, β) (4.6)

- Stable terms which exist in the past and the future:

stable(t, β) = labels f uture(t, β) ∩ labelspast(t, β) (4.7)

- Specific terms which neither exist in the past topics nor in the future topics of pivot topic

(t, β):

speci f ic(t, β) = t.labels− (labels f uture(t, β) ∪ labelspast(t, β)) (4.8)

Example 9 The label terms of the pivot topic (t204, 0.7) in Figure 4.9 are classified into four categories

with “risk assessment”, “environmental risks, “potential risks” and “ecological risk assessments”

as stable terms, “human health” as emerging term, “production system” as decaying term, and

“agriculture”, “mutagenicity”, “genetic modification” and “context” as specific terms.

Graph Evolution Functions The δ-liveliness liveδ(t, β) is defined by the diameter of its pivot

graph Gδ(t, β).

liveδ(t, β) = max{length(path)|path is a path in Gδ(t, β)} (4.9)
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A high total liveliness value livepast(t, β) + live f uture(t, β) describes a long living topic. A

past value livepast(t, β) = 0 means that topic t is emerging and a future value live f uture(t, β) =

0 corresponds to a decaying topic.
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Figure 4.11: Pivot graph G past(t231, 0.9) over the Glyphosate corpus

Example 10 As can be seen in Figure 4.11, the liveliness value of the past of pivot topic (t231, 0.9) is

livepast(t231, 0.9) = 5.

The δ-relative evolution degree revolδ(t, β) is defined by the average topic dissimilarity (edge)

weight in Gδ(t, β) = (T, E, sim).

revolδ(t, β) = 1− avg(ti ,tj)∈E(sim(ti, tj)) (4.10)

A low relative evolution degree states that most topics evolve slowly in time whereas a

high value signifies that most topics have an important “semantic gap”. By definition, we

have revolδ(t, β) ≤ 1− β.

The δ-pivot evolution degree pevolδ(t, β) is defined by the average dissimilarity of all topics

in Gδ(t, β) = (T, E, sim) with respect to the pivot topic t.

pevolδ(t, β) = 1− avgti∈T(sim(t, ti))) (4.11)

A low pivot evolution degree signifies that the pivot topic does not evolve much (all other

topics are similar), whereas a high value indicates that the pivot topic evolves rapidly .
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Figure 4.12: Pivot graph G past(t119, 0.4) over the Glyphosate corpus

Example 11 The relative evolution degree of pivot topic (t119, 0.4) in Figure 4.12 is

revolpast(t119, 0.4) = 1− 0.44 + 0.84 + 0.44
3

= 0.427

whereas its pivot evolution degree is

pevolpast(t119, 0.4) =1− sim(t24, t119) + sim(t19, t119) + sim(t44, t119)
3

=
sim(t24, t119) + sim(t19, t119) + 0.44

3
=0.707

The similarity values sim(t24, t119) and sim(t19, t119) are stored in the topic alignment graph Sim

as mentioned in Section 4.1.

The δ-split degree splitδ(t, β) is defined by the average outdegree of Gδ(t, β) = (T, E, sim).

splitδ(t, β) =
|E|

|{ti|ti ∈ T ∧ (ti, tj) ∈ E}| (4.12)
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A low value signifies that the topics evolve along linear paths and a high value signifies

that the topics split into several future sub-topics. Notice that the splitδ(t, β) function can be

used for the future and the past of a given pivot topic (t, β), but it is more important for the

future graph.
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Figure 4.13: Pivot graph G f uture(t229, 0.4) over the Glyphosate corpus

Example 12 The split degree of pivot topic (t229, 0.4) in Figure 4.13 is split f uture(t229, 0.4) = 9
7 =

1.286.

The δ-convergence degree convδ(t, β) is defined by the average indegree of Gδ(t, β) =

(T, E, sim).

convδ(t, β) =
|E|

|{tj|tj ∈ T ∧ (ti, tj) ∈ E}| (4.13)

A low value signifies that many topics depend on a single parent topic and a high value

signifies that many topics are the result of the fusion of past topics. Thus, this function is

more important for the past graph of a pivot topic.

Example 13 The convergence degree of pivot topic (t92, 0.4) in Figure 4.14 is convpast(t92, 0.4) =
3
2 = 1.5.
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Figure 4.14: Pivot graph G past(t92, 0.4) over the Glyphosate corpus

The previous functions can be used for the structural and quantitative analysis of the

evolution of topics. The objective of the following paragraphs is to explore the impact of

the main parameters, i.e., the β threshold and the topic number #T, on the structure and the

semantics of the generated pivot evolution graphs.

Figure 4.15 shows the distribution of future pivot evolution graphs in arXiv wrt. three

groups of metrics, the relative evolution degree vs. the pivot evolution degree , the split degree vs.

convergence degree and the liveliness vs. the split degree. The figure is organized into 3 lines of

3 sub-graphs where each line corresponds to identical fixed parameters β and #T and each

sub-graph corresponds to a group of metrics. On the first line, we set β = 0.2 and #T = 50.

On the second line, #T remains the same (#T = 50) whereas β is increased to β = 0.5. On

the third line, β remains the same as in the 2nd line (β = 0.5) whereas #T is increased to

#T = 150. Each Figure only shows pivot topic graphs with at least two nodes and the number

of isolated topics is reported in the figure captions.

When comparing Figure 4.15a with Figure 4.15d, we can see that for the lower threshold

β = 0.2, pivot topics evolve more than for the higher value β = 0.5. Lower β values also allow
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(a) β = 0.2, #T = 50, #Pivot = 477, #Iso-
lated = 23

(b) β = 0.2, #T = 50, #Pivot = 477, #Iso-
lated = 23

(c) β = 0.2, #T = 50, #Pivot = 477, #Iso-
lated = 23

(d) β = 0.5, #T = 50, #Pivot = 198, #Iso-
lated = 302

(e) β = 0.5, #T = 50, #Pivot = 198, #Iso-
lated = 302

(f) β = 0.5, #T = 50, #Pivot = 198, #Iso-
lated = 302

(g) β = 0.5, #T = 150, #Pivot = 1014,
#Isolated = 486

(h) β = 0.5, #T = 150, #Pivot = 1014,
#Isolated = 486

(i) β = 0.5, #T = 150, #Pivot = 1014,
#Isolated = 486

Figure 4.15: Distribution of future pivot evolution graphs in arXiv with respect to three groups of
metrics by varying β and #T.
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pivot topics to connect with more topics than higher β values which only connect similar

topics. This is shown in Figure 4.15b which represents a large number of complex pivot topic

graphs with higher split and convergence degrees than the pivot topic graphs in Figure 4.15e.

The previous observation is also confirmed in Figure 4.15c and Figure 4.15f which compare

topic liveliness vs. split degree: the lower threshold β = 0.2 generates pivot graphs which

are more complex than pivot graphs with the same liveliness scores generated by β = 0.5.

Therefore, for a fixed #T, varying β allows for revealing interesting evolution patterns at

different levels of detail where the evolution of some topic might be too complex for low β

values and become more intelligible for higher β values.

When the topic number per period increases (#T = 150 in Figures (g), (h) and (i)), the

workflow generates more pivot graphs, some of which become very complex. For example,

in Figure 4.15g, pivot topics tend to evolve a lot even for a low relative evolution degree.

The pivot graphs in Figure 4.15h are much more complex than the graphs generated by the

same β-threshold with #T = 50 topics (Figure 4.15e and Figure 4.15f). As we can see, the

split degree attains a value of 19 compared with maximal split degree 1.5 in Figure 4.15e. The

increase of #T reduces the proportion of isolated topics, 30% for #T = 150 compared with

60% for #T = 50. This is due to the existence of many similar topics in each period, which

also increases the probability that two topics can be aligned.

Monotonic Pivot Functions: A pivot topic function f can be monotonic with respect to β.

More precisely, if for all topics t and thresholds β ≤ β′ (if f returns a set, then ≤ corresponds

to ⊆ and ≥ corresponds to ⊇):

• f (t, β) ≤ f (t, β′), then f is monotonically increasing;

• f (t, β) ≥ f (t, β′), then f is monotonically decreasing;

• f is non-monotonic otherwise.

A function which is monotonically increasing and monotonically decreasing is called

constant ( f (t, β) = f (t, β′) for all β, β′).

Table 4.1 outlines the monotonicity of each pivot topic function. The “monotonicity” of

each function depends on the fact that G past(t, β′) is a subgraph of G past(t, β) and G f uture(t, β′)

is a subgraph of G f uture(t, β) for all β ≤ β′. Function liveδ is monotonically decreasing

since for any t and β ≤ β′, pivot graph G(t, β′) is a subgraph of G(t, β) with a diameter
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Table 4.1: Monotonicity of pivot topic functions

Function Monotonicity Function Monotonicity

period(t) constant pathδ(t, β) monotonically decreasing
labels(t) constant liveδ(t, β) monotonically decreasing

labelsδ(t, β) monotonically decreasing revolδ(t, β) non-monotonic
emerge(t, β) non-monotonic pevolδ(t, β) non-monotonic
decay(t, β) non-monotonic splitδ(t, β) non-monotonic
stable(t, β) monotonically decreasing convδ(t, β) non-monotonic

speci f ic(t, β) monotonically increasing

liveδ(t, β′) ≤ liveδ(t, β). Term labeling function speci f ic is monotonically increasing, i.e., if

label l is specific for (t, β) (it does not appear in the past or the future of (t, β)), it is also

specific for all (t, β′) where β ≤ β′. Whereas function stable is monotonically decreasing for

the reason that if label l is stable for (t, β′), it is also stable for all (t, β) where β ≤ β′. Functions

labels and period are constant (return the same local label and period independently of β).

pathδ, labels f uture and labelspast functions are monotonically decreasing. And emerge(t, β),

decay(t, β), revolδ(t, β), pevolδ(t, β), splitδ(t, β) and convδ(t, β) are non-monotonic functions.

(a) Pivot topic (t181, 0.2) of Figure 4.5 (b) Pivot topic (t181, 0.6) of Figure 4.6

Figure 4.16: Label comparison of topic t181 wrt. different β values

Example 14 Figure 4.16 zooms in Figure 4.5 and Figure 4.6, and compare the labels for the same topic

t181 wrt. different β values. As we have mentioned before, function stable is monotonically decreasing,

thus stable(t181, 0.6) ⊆ stable(t181, 0.2) (blue box). Whereas function speci f ic is monotonically

increasing, therefore speci f ic(t181, 0.2) ⊆ speci f ic(t181, 0.6) (gray box). emerge(t181, 0.2) 6=
emerge(t181, 0.6) since it is a non-monotonic function. These two pivot topics do not have decaying

labels but the monotonicity of function decay is the same as function emerge.
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4.4 Pivot Topic Calculus

The graph and term evolution functions allow to characterize the degree and the complexity

of the evolution of pivot topics (t, β). Combined with other filters on the topic labels and the

graph structure, it is possible to filter pivot topics satisfying rich topic evolution patterns.

Definition 6 (pivot topic filters) Let t, t′ ∈ T be two topics, M be a set of pivot topic functions,

φ ∈ {=,≤,≥,<,>} be a set of comparison predicates, c be a numerical constant, l be a term (label):

- The expression t′ ∈ pathδ is a path filter which is true for (t, β) if t′ is connected to t by a path in

the future (δ = f uture) or the past (δ = past) of (t, β) and false otherwise;

- The expression l ∈ labelsδ is a term label filter which is true for (t, β) if l is a local (δ is empty),

future (δ = f uture) or past (δ = past) label of (t, β) and false otherwise;

- If evolδ (revolδ or pevolδ) is a graph evolution function, then evolδ φ c is a graph evolution filter

which is true for (t, β) if evolδ(t, β) φ c and false otherwise;

- The expression period φ c is a period filter which is true for a topic (t, β) if t.period φ c and false

otherwise;

- If P and P′ are pivot topic filters, then P ∧ P′, P ∨ P′ and ¬P are complex pivot topic filters with

truth values following the semantics of the logical connectors ∧, ∨ and ¬.
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Figure 4.17: Pivot graph G f uture(t175, 0.8) over the Glyphosate corpus

Example 15 The pivot graph G f uture(t175, 0.8) in Figure 4.17 is filtered by the following pivot topic
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filters:

period ≥ 2002∧ live f uture ≥ 5∧ split f uture ≤ 1.2∧ revol f uture ≤ 0.1∧ pevol f uture ≥ 0.1

In the following we will name filters by the name of the topic functions they use. For

example L ⊆ labels is called a labels filter.

Observe that we can then redefine the term label filters emerge, decay, stable and speci f ic

using labels, labelspast and labels f uture:

- emerging local terms which do not exist in past topics: l ∈ emerge ≡ l ∈ labels∧ labels f uture ∧
l 6∈ labelspast

- decaying local terms which do not exist in future topics: l ∈ decay ≡ l ∈ labels ∧ labelspast ∧
l 6∈ labels f uture

- stable local terms which exist in the past and the future topics of t: l ∈ stable ≡ l ∈
labels ∧ labels f uture ∧ labelspast

- specific local terms which neither exist in the past nor in the future topics of t: l ∈ speci f ic ≡
l ∈ labels ∧ l 6∈ labels f uture ∧ l 6∈ labelspast)

Pivot Filter Monotonicity: The monotonicity property of pivot functions presented in Sec-

tion 4.3 can directly be transposed to pivot topic filters. More precisely, for all monotonically

increasing functions F, predicate pred = l ∈ F (F returns a set) or predicate pred = F ≥ c (F

returns a number) are monotonic1. Symmetrically, for all monotonically decreasing functions

F, predicate pred = l ∈ F (F returns a set) or predicate pred = F ≥ c (F returns a number)

are anti-monotonic2. Finally, if F is constant or non-monotonic, the corresponding filters are

static or non-monotonic. Table 4.2 summarizes this categorization for each function.

Example 16 The filter predicate speci f ic is monotonic since it is the conjunction of two monotonic

predicates: speci f ic ≡ labels ∧ ¬(labels f uture ∨ labelspast) (observe that l ∈ labels f uture ∨ l ∈
labelspast is anti-monotonic and its negation l 6∈ labels f uture ∧ l 6∈ labelspast is monotonic). The

filter predicate stable is anti-monotonic since it is the conjunction of a non monotonic and two anti-

monotonic predicates. The two term evolution predicates emerge and decay are conjunctions of a

1For all (t, β), if l ∈ F holds for (t, β) then l ∈ F holds for all (t, β′) where β′ ≥ β.
2For all (t, β), if l ∈ F holds for (t, β) then l ∈ F holds for all (t, β′) where β′ ≤ β.
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Table 4.2: Monotonicity of complex filter predicates

P P′ P ∧ P′ P ∨ P′ ¬P

monotonic monotonic monotonic monotonic anti-monotonic
monotonic anti-monotonic non monotonic static anti-monotonic
monotonic non monotonic non monotonic monotonic anti-monotonic
monotonic static monotonic static anti-monotonic

anti-monotonic anti-monotonic anti-monotonic anti-monotonic monotonic
anti-monotonic non monotonic non monotonic anti-monotonic monotonic
anti-monotonic static anti-monotonic anti-monotonic monotonic
non monotonic non monotonic non monotonic non monotonic non monotonic
non monotonic static non monotonic static non monotonic

static static static static static

monotonic and an anti-monotonic predicate and, therefore non monotonic (if l ∈ emerge is true for

(t, β) it can be true or false for (t, β′) with β′ > β or β′ < β).

4.5 Pivot Topic Query Language

Let DB(T, sim) = {(t, β)|t ∈ T ∧ β ∈ S(t)} be the set of pivot topics defined by a set of topics

T and a similarity function sim. We call DB the pivot database defined by T and sim. In the

following, we define a query language for extracting pivot topic subsets Pivots ⊆ DB. The

semantics of this query language is based on the pivot topic calculus we have introduced

in Section 4.4.

Let L denote a set of terms and c be a numerical constant. Atomic filter expressions and

their semantics are defined using the topic calculus as shown in Table 4.3a. The first column

corresponds to the query expression, the second column defines the corresponding quantified

filter predicate and the third column shows the monotonicity property of each filter for φ =≤.

Filter expressions can be composed to build complex filter expressions as shown in Table 4.3b.

Finally, the query language defines two projection operators Future and Past (Table 4.3c) which

modify the future/past parameter δ (δ = f uture by default).

Definition 7 (pivot query) Let DB be a pivot database (set of pivot topics), Q be a pivot filter and

I(Q, t, β) be a truth-functional interpretation of the pivot topic predicate Q given pivot topic (t, β).
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The expression DB.Q is a query which returns all pivot topics in DB where Q is true.

DB.Q = {(t, β)|(t, β) ∈ DB ∧ I(Q, t, β)}

Expression F Semantics F Monotonicity (φ =≤)

Contains(L) ∃l ∈ L : l ∈ labels static
Emerge(L) ∃l ∈ L : l ∈ emerge non monotonic
Decay(L) ∃l ∈ L : l ∈ decay non monotonic
Stable(L) ∃l ∈ L : l ∈ stable anti-monotonic
Specific(L) ∃l ∈ L : l ∈ speci f ic monotonic

Live φ c liveδ φ c anti-monotonic
Revol φ c revolδ φ c non monotonic
Pevol φ c pevolδ φ c non monotonic
Split φ c splitδ φ c non monotonic
Conv φ c convδ φ c non monotonic
Period φ c period φ c static

(a) Atomic filter expressions

Expression F Semantics F Monotonicity

F1.F2 F1 ∧ F2 see Table 4.2
Minus(F1) ¬F1 see Table 4.2
F1.Union(F2) F1 ∨ F2 see Table 4.2
Path(F1) ∃t : t |= F1 ∧ t ∈ pathδ anti-monotonic

(b) Complex filter expressions

Expression Semantics

Future δ := f
Past δ := p

(c) Graph projection

Table 4.3: Pivot Filter Expressions

Example 17 Our query language allows to filter pivot topics according to some evolution pattern

defined by the combination of graph evolution filters.

• For example query Q1 filters all pivot topics with high future relative and high pivot evolution

degrees, where each future topic has two child topics in average and there exist future subtopics

related to the pivot topic with a minimal distance of 5 periods:

Q1: DB.Future.Revol(>=0.5).Pevol(>=0.6).Split(>=2).Live(=5)

Q1 : revol f uture ≥ 0.5∧ pevol f uture ≥ 0.6∧ split f uture ≥ 2∧ live f uture = 5

Parameter δ is by default equal to f uture.
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Figure 4.18: Q1 : revol f uture ≥ 0.5∧ pevol f uture ≥ 0.6∧ split f uture ≥ 2∧ live f uture = 5
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The result of query Q1 is shown in Figure 4.18. There are three other examples as displayed in

Figures 4.19 to 4.21. Observe that the user does not specify the β-threshold. Although Figure 4.19 and

Figure 4.21 have the similar structure, they have different evolution pace (corresponding to different β

values). The pivot graph in Figure 4.19 has more emerging terms (green part) whereas the pivot graph

in Figure 4.21 has more stable terms (blue part) which correspond to our queries to select high-evolution

and low-evolution pivot topics respectively. Compared with the pivot graph of topic 178 (Figure 4.21),

pivot topic 257 (Figure 4.20) has a shorter liveliness value and a little bit more complex evolution

structure.
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Figure 4.19: Q2 : revol f uture ≥ 0.5∧ pevol f uture ≥ 0.6∧ split f uture ≤ 1.2∧ live f uture = 3

Apart from these graph structure-based filters, our query language also allows users to define other

multi-dimensional filtering criteria including topic labels and temporal conditions for the selection of

pivot topics:

• Find all topics with stable term “algorithm” and without emerging term “learning”:

Q5: DB.Stable("algorithm").Minus(Emerge("learning"))

Q5 : “algorithm” ∈ stable ∧ “learning” 6∈ emerge

• Find all topics with an emerging term “network” where the past contains a path to a topic with the

stable term “protocol”:

Q6: DB.Emerge("network").Past.Path(Stable("protocol"))
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Figure 4.20: Q3 : revol f uture ≤ 0.4∧ pevol f uture ≤ 0.5∧ split f uture ≥ 1.5∧ live f uture = 3
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Figure 4.21: Q4 : revol f uture ≤ 0.4∧ pevol f uture ≤ 0.5∧ split f uture ≤ 1.2∧ live f uture = 4
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Figure 4.22: Q5 : “algorithm” ∈ stable ∧ “learning” 6∈ emerge
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Q6 : “network” ∈ emerge.pathpast(“protocol” ∈ stable)

Observe that expression Past changes parameter δ to past for the following sub-expression Path.
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Figure 4.23: Q6 : “network” ∈ emerge.pathpast(“protocol” ∈ stable)

The results of queries Q5 and Q6 are illustrated in Figures 4.22 and 4.23.

Our query language allows users to select topics in specific regions of the sub-figures

in Figure 4.15. For example query Q1 in Example 17 chooses all topics which appear in

the upper right window of Figures 4.15a and on the right part of Figure 4.15b on the line

corresponding to the liveliness value 5 in Figure 4.15c.

Figure 4.24: Visualization of pivot graph G f uture(495, 0.5) where #T = 150

Figure 4.24 shows a future arXiv pivot graph generated for #T = 150 and β = 0.5, which

corresponds to a data point in Figure 4.15h where split f uture(t, 0.5) = 8.3 The graph connects

topics with similarity higher than β = 0.5 and has nevertheless a high split and convergence

degree. Figure 4.25 zooms into the rectangle of Figure 4.24 and we can observe that the

topics in the second period are very similar which explains why the single root pivot topic is

connected to more than 20 topics in the second period (this problem is solved by the diversity

test described in Section 3.2.2 which reduces the number of topics per period).
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Figure 4.25: Zoom in Figure 4.24
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Our query evaluation strategy consists of precomputing all pivot graphs G f uture(t, βi) and

G past(t, βi) for a sequence of thresholds β0, β1, ..., βn where βi < βi+1 with the corresponding

labels and graph evolution metrics. The computation of the pivot graphs is done once

independently of any pivot topic queries and the generated tables can be processed using

standard, non-recursive SQL queries for computing topic labels (Section 6.1.2) and graph

evolution metrics (Section 6.1.3) and for evaluating pivot query expressions (Section 6.1.4).

This chapter will discuss the different pivot graph computation models that we proposed.

Section 5.1 introduces three relational computation models where the main difference is the

Transitive Closure computation algorithm that allows to compute paths for pivot graphs. The

baseline algorithm (Section 5.1.1) uses the classic semi-naive approach to avoid recomputing

TC paths that have been found at each β-iteration. The smart algorithm (Section 5.1.2) reduces

the number of TC joins in a logarithmic manner at each β-iteration. And the incremental

approach (Section 5.1.3) computes TC tables incrementally by reusing the results of the

previous β-iteration. It is obvious that the relational pivot graph computation models provoke

many join operations. We then propose a BSP-based [96] pivot graph computation model

(Section 5.2) which applies the Pregel paradigm to generate pivot graphs. Experiments in

Section 5.3 detail the performance evaluation of these models.
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5.1 Relational Pivot Graph Computation

Our first implementation uses the relational data model to represent pivot graphs where

a tuple (t, x, y, rs, ps, d, i) represents an edge (x, y, rs) in pivot graph Gδ(t, βi) of pivot topic

(t, βi) with relative evolution similarity rs, pivot evolution similarity ps of x (Past) and y

(Future) and distance d of x (Past) and y (Future) from t.
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Figure 5.1: Pivot graph G f uture(t121, 0.8) over the Glyphosate corpus

Example 18 We use Figure 5.1 as an example. The table of pivot topic G f uture(t121, 0.8) contains a

tuple (t121, t186, t200, 0.92, 0.99, 2, 0.8) representing that the edge (t186, t200, 0.92) is reached by the

pivot topic (t121, 0.8) with the pivot evolution similarity 0.99 and the distance 2 of topic t200 from

topic t121.
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We use a Datalog-like syntax for presenting three different algorithms to compute pivot

graphs connecting all topics to all other topics reachable by a path. The main difference

among these algorithms lies in the computation of the transitive closure (TC) edges which is

the most important and complex pivot graph computation step.

The first (baseline) algorithm presented in Section 5.1.1 uses a semi-naive method to com-

pute all TC edges for each β threshold separately. The second (smart) algorithm introduced

in Section 5.1.2 improves the first algorithm by using a recursive-doubling technique [97] to

reduce the number of TC joins at each β-iteration. Since the same TC edges may appear for dif-

ferent β values, the idea of avoiding the redundant computation brings about a more efficient

incremental algorithm which is presented in Section 5.1.3. This algorithm avoids redun-

dant computation by exploiting the monotonicity of pivot graphs where δ ∈ { f uture, past},
Gδ(t, βi+1) is a subgraph of Gδ(t, βi) for all 0 ≤ i < n. Both the baseline algorithm and the

incremental algorithm are iteratively joining a partially computed table TC with the table of

graph edges Graph until reaching the fixpoint. The implementation on top of Apache Spark

of the incremental algorithm is discussed in Chapter 6.

5.1.1 Baseline Join-based TC computation

The baseline approach computes all pivot graphs for each beta threshold independently

from the other thresholds. The transitive closure of alignment edges is obtained by a linear

recursive rule. To avoid the recomputation of the same paths, we apply the semi-naive

approach [98] which extends at each iteration only the paths that have been discovered in the

previous iteration.

The input of the Datalog program (Algorithm 1) is defined by three tables:

• a topic table Topics(t, p) storing the topic identifiers t with their periods p;

• a topic similarity matrix Sim(t1, t2, s) where t1 and t2 are two topics and s = sim(t1, t2) is

the similarity between topic t1 and topic t2, and

• a sequence of βi values defined as a binary table Beta(b, i).

The first rule (Line 1) defines Graph(x, y, s) which connects all topics x of period p to all

topics y of period p + 1 where there exists an evolution edge of similarity s = sim(x, y).

Starting from Graph, the following recursive rules (Line 2 and Line 3) compute the transitive

closure of the alignment subgraph of Graph for all topics in T and beta values βi in Beta(b, i)
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where all edges have a weight greater or equal to βi and d is the graph distance between

x and y1. Pivot topic evolution graphs are computed by first generating table TC(x, y, d, i).

Then tables Future and Past contain the pivot topic evolution graphs Gδ(t, βi) of all topics

t, which correspond to the tuple structure as defined at the beginning of Section 5.1. Both

tables are obtained by four non-recursive rules (Line 4 to Line 7).

Algorithm 1 Baseline pivot graph algorithm

1: Graph(x,y,s)← Topics(x,p), Topics(y,p+1), Sim(x,y,s).
2: TC(x,y,1,i)← Graph(x,y,s), Beta(b,i), s>=b.
3: TC(x,z,d+1,i)← TC(x,y,d,i), Graph(y,z,s), Beta(b,i), s>=b.
4: Future(t,t,y,s,s,1,i)← Graph(t,y,s), Beta(b,i), s>=b.
5: Future(t,x,y,rs,ps,d+1,i)← TC(t,x,d,i), Graph(x,y,rs), Sim(t,y,ps).
6: Past(t,x,t,s,s,1,i)← Graph(x,t,s), Beta(b,i), s>=b.
7: Past(t,x,y,rs,ps,d+1,i)← TC(y,t,d,i), Graph(x,y,rs), Sim(x,t,ps).

5.1.2 Smart Join-based TC Computation

The linear transitive closure of the baseline approach can be computed much faster by a

recursive-doubling technique [97]. Instead of joining the partially computed transitive closure

TC table with the edges of the base graph Graph, each iteration of the recursive-doubling

algorithm joins the transitive closure relation with itself. Thus, on a graph of diameter d,

it needs only log2d iterations, rather than d iterations before convergence. But the direct

application of recursive-doubling method does a lot of redundant computation because it

discovers the same TC edges several times. Smart Transitive Closure (Smart TC) independently

proposed by [99] and by [100] is a variant of the recursive doubling method which avoids this

redundant computation.

Intuitively, Smart TC avoids the repeated computation of the same edges by breaking each

path into a prefix, whose length is a power of two and a suffix whose length is not greater

than the length of the prefix. We use a table Q(x, y, d, i, k) to represent the prefix table which

contains all those pairs (x, y) such that the path from x to y has exactly length 2k, where k is

the number of rounds of the TC computation. Table Q is initialized with all edges having

weights greater or equal than βi and length 20 = 1 (Line 2). The table TC is used as the suffix

table and for storing all TC edges at the end of the iterations.

The algorithm works as follows. Both tables Q and TC are initialized by graph Graph

1Since alignment Graph is a multistage graph, all paths between two nodes are of the same length.
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Algorithm 2 Smart pivot graph algorithm

1: Graph(x,y,s)← Topics(x,p), Topics(y,p+1), Sim(x,y,s).
2: Q(x,y,1,i,0)← Graph(x,y,s), Beta(b,i), s>=b.
3: TC(x,y,1,i,0)← Graph(x,y,s), Beta(b,i), s>=b.
4: Q(x,z,d1+d2,i,k)← Q(x,y,d1,i,k-1), Q(y,z,d2,i,k-1).
5: TC(x,y,d,i,k)← TC(x,y,d,i,k-1).
6: TC(x,y,d,i,k)← Q(x,y,d,i,k).
7: TC(x,y,d1+d2,i,k)← Q(x,z,d1,i,k), TC(z,y,d2,i,k).
8: Future(t,t,y,s,s,1,i)← Graph(t,y,s), Beta(b,i), s>=b.
9: Future(t,x,y,rs,ps,d+1,i)← TC(t,x,d,i), Graph(x,y,rs), Sim(t,y,ps).

10: Past(t,x,t,s,s,1,i)← Graph(x,t,s), Beta(b,i), s>=b.
11: Past(t,x,y,rs,ps,d+1,i)← TC(y,t,d,i), Graph(x,y,rs), Sim(x,t,ps).

containing all edges (x, y) where sim(x, y) ≥ βi. Q serves as the prefix table and TC serves as

the suffix table. Then, after each iteration k of rules Line 4 to Line 7, table Q holds all pairs

of nodes connected by paths of length 2k (rule Line 4) and table TC holds all pairs of nodes

connected by paths of length at most 2k+1 − 1 (rules Line 5 to Line 7). For example, after

the first iteration (k = 1), table Q(x, z, d1 + d2, i, 1) holds all paths of length 21 = 2 and table

TC(x, y, d, i, k) holds all paths of length 1, 2 and 3. After the second iteration (k = 2), table

Q(x, z, d1 + d2, i, 2) holds all paths of length 2k = 4 and table TC(x, y, d, i, k) holds all paths

of length 1 to 7.

5.1.3 Incremental Join-based TC Computation

Algorithm 1 and Algorithm 2 compute the TC table for each βi independently from scratch

which means that certain transitive closure edges are computed several times for different

beta values. The incremental approach takes advantage of the monotonicity of the pivot

graphs where TCβi+1 ⊆ TCβi for all 0 ≤ i < n.

The first three rules of the Datalog program Algorithm 3 are almost identical to the first

three rules of Algorithm 1. The main difference is that it starts with the TC computation

for the highest threshold βn. Then for βi where i < n, the algorithm will reuse TCβi+1 to

compute TCβi over new edges with similarity in [βi, βi+1[. For this, the TC computation steps

on lines 2 and 3 of the baseline algorithm (Algorithm 1) are replaced by rules 4 and 5. Rule

4 finds new TC edges which are reachable from TCβi+1 , whereas rule 5 returns the new TC

edges which reach the edges in TCβi+1 . The past and future are then obtained by the same

rules as in Algorithm 1.
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Algorithm 3 Incemental pivot graph algorithm

1: Graph(x,y,s)← Topics(x,p), Topics(y,p+1), Sim(x,y,s).
2: TC(x,y,1,n)← Graph(x,y,s), Beta(b,n), s>=b.
3: TC(x,z,d+1,n)← TC(x,y,d,n), Graph(y,z,s), Beta(b,n), s>=b.
4: TC(x,z,d+1,i)← TC(x,y,d,i+1), Graph(y,z,s), Beta(a,i), Beta(b,i+1), a <= s < b.
5: TC(x,z,d+1,i)← Graph(x,y,s), TC(y,z,d,i+1), Beta(a,i), Beta(b,i+1), a <= s < b.
6: Future(t,t,y,s,s,1,i)← Graph(t,y,s), Beta(b,i), s>=b.
7: Future(t,x,y,rs,ps,d+1,i)← TC(t,x,d,i), Graph(x,y,rs), Sim(t,y,ps).
8: Past(t,x,t,s,s,1,i)← Graph(x,t,s), Beta(b,i), s>=b.
9: Past(t,x,y,rs,ps,d+1,i)← TC(y,t,d,i), Graph(x,y,rs), Sim(x,t,ps).

Cost Estimation We can estimate the cost for computing table TC by the total number of

joins executed during the evaluation. For Algorithm 1, suppose that we have p periods. Then

the computation cost of TC graphs corresponds to p− 1 joins for each beta theshold β1 and

we obtain a constant cost of n× (p− 1) where n is the number of thresholds. For Algorithm 2,

the Smart TC requires k = dlog2(p− 1)e joins to terminate for each βi. For Algorithm 3, the

cost of the TC computation for each threshold only depends on the maximal length of new paths

extending paths already generated for higher thresholds. This length is always smaller or

equal to p− 1 which guarantees that Algorithm 3 produces a lower or an equal number of

joins than Algorithm 1.

Table Size Estimation Both algorithms (baseline and incremental) compute the same tables

with the same number of distinct tuples. We can estimate the size of each table computed

by both algorithms as follows. Let p be the number of periods, t be the number of topics

per period, k be the maximal outdegree and indegree in Graph and b be the number of βi

thresholds. Graph is a (directed acyclic) multistage graph where each topic (except the leaves)

have maximally k child links and the size (number of edges) of Graph is bound by |Graph| ≤
k ∗ t ∗ (p− 1). The size of the transitive closure TC is bound by |TC| ≤ b ∗ k ∗ t ∗ p ∗ (p− 1)/2

(b times the size of the transitive closure of Graph). Finally, both tables Future and Past,

contain for each tuple (x, y, d, i) in the transitive closure TC (x and y are connected by a path

of length d), at most k tuples Future(x, y, z, _, _, _) and at most k tuples Past(y, x, z, _, _, _).

Therefore, the size of Future and Past is bound by k times the size of the transitive closure:

|Future| ≤ b ∗ k2 ∗ t ∗ p ∗ (p− 1)/2. As our experiments show, even for small β-thresholds

(β = 0.2) the maximum indegree and outdegree of a topics is smaller than k = 10 and

we generally assume about t = 100 topics over p = 20 periods. Then, for b = 10 the size

of the transitive closure is |TC| ≤ 10 ∗ 10 ∗ 100 ∗ 10 ∗ 19 = 1.9 ∗ 106 edges and the size of
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|Future| ≤ 1.9 ∗ 107 edges. These numbers are much smaller in practice (see Section 5.3) and

current big data frameworks can easily manage graphs of this size.

5.2 BSP-based Pivot Graph Computation

The join-based TC computation algorithms are mainly based on the efficient distributed

map-reduce algebra of Spark SQL. We will show in Sections 6.1.1 to 6.1.3 how to generate

pivot graphs, topic labels and graph metrics (evolution, convergence and split degrees) and

how to evaluate pivot query expressions (Section 6.1.4) by simple non recursive SQL queries

over the generated relational tables.

However, as will be shown by our experiments (Section 5.3.1), the transitive closure compu-

tation generates many join query tasks with an important task scheduling overhead. Therefore,

we also implemented an alternative pivot graph materialization strategy based on GraphX [32],

an expressive graph-processing framework. GraphX provides the Pregel [29] operator which

implements the Bulk Synchronous Parallel (BSP) [96] messaging abstraction. This operator

can naturally be used for efficiently computing "node-centric graph aggregations" like PageR-

ank [101], Vertex Centrality [102] or single-source shortest path2. It is therefore a natural

candidate for computing pivot graphs, pivot topic labels and graph metrics.

5.2.1 The Pregel operator

Pregel using Bulk Synchronous Parallel Paradigm, introduced by Google [29], is a message-

passing system for processing large-scale graphs, such as web graphs and various social

networks, which is expressive and easy to program. The Pregel operator of GraphX is executed

in a series of iterations called super-steps, where vertices receive the sum of their inbound

messages from the previous super-step, compute a new value for the vertex property, and

then send messages to neighboring vertices in the next super-step. Messages are computed in

parallel as a function of the edge triplet and the message computation has access to both the

source and destination vertex attributes. Vertices that do not receive a message are skipped

within a super step. The Pregel operator terminates iteration and returns the final graph

when there are no messages remaining or the maximum number of iterations is achieved.

2https://en.wikipedia.org/wiki/Shortest_path_problem
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Figure 5.2: Find the maximum value in a graph. Shaded vertices will not send messages.

Example 19 Figure 5.2 explains how Pregel works by showing a sequence of supersteps to make all

vertices to have the maximum value of a vertex in a strongly connected graph where every vertex is

reachable from every other vertex. In superstep 0, all vertices are active and send their values to their

neighbors. Then in each subsequent superstep, messages received by each vertex are combined, and the

largest value is found. If this value is larger than the vertex’s value, then the vertex’s value is updated.

If none of the messages are of higher value than a given vertex, it deactivates itself. Inactive vertices

will stop sending messages, but they can still receive messages and apply information in the messages

received. When no further vertices change their values in a superstep, the algorithm completes. Then

the largest value has been propagated to every vertex in the graph.

5.2.2 The Pregel operator in GraphX

For illustrating the implementation of the Pregel Operator in GraphX, we present a distributed

implementation for computing the liveliness of all future pivot topics.

Listing 5.1: Liveliness computation of future pivot topics by GraphX Pregel

1 import org.apache.spark.graphx._

2 // Initialize the graph such that each vertex has 0 as its liveliness

3 val initialGraph:Graph[Int, Double] = ...

4 // Start Pregel by sending the initial message containing 0 as the liveliness

5 val futureLiveliness = initialGraph.pregel(initialMsg = 0)(

6 (id, oldV, newV) => math.max(oldV, newV), // Vertex program action

7 triplet => { // Send message

8 if (triplet.srcAttr < triplet.dstAttr + 1) {

9 Iterator((triplet.srcId, triplet.dstAttr + 1))

10 } else Iterator.empty

11 },

12 (a, b) => math.max(a, b) // Merge message
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13 )

Listing 5.1 shows the liveliness computation of future pivot graphs expressed by GraphX

Pregel operator in Scala. The future liveliness of a pivot topic corresponds to the graph

diameter (the length of the longest path from the topic to a future descendant topic). Since

future pivot graphs are directed and acyclic, children vertices have smaller future liveliness

than their parent vertices. Therefore, this computation is a bottom-up process. More precisely,

children vertices in each super step in the up coming loop will send message to their parent

vertices if their liveliness is no smaller than their parents’ liveliness. The message to be sent is

the children vertex’s liveliness plus 1.

The initial graph on line 3 is a graph with topic nodes connected by alignment edges. The

Pregel operator initialGraph.pregel contains two argument lists and returns a new graph

f utureLiveliness where each vertex has a liveliness value corresponding to the diameter of its

subgraph. The first argument list contains the configuration parameters including the initial

message, the maximum number of iterations (by default the maximum positive value for a

32-bit signed binary integer), and the edge direction in which to send messages (by default

along out edges). The initial message is to start the computation. This message is passed to all

the vertices to do the first iteration. In this example, we define the initial message initialMsg

by 0 liveliness (line 5).

The second argument list contains three user defined functions after receiving a message

(Vertex program, line 6), for sending a message (Send message, lines 7 to 11) and combining

received messages (Merge message, line 12). The Vertex program takes action after each

received message to set the vertex attribute, i.e., liveliness, to the maximal value of its old value

and the new received value. This action corresponds to the second user defined function (lines

7 to 11). During each super step, each graph edge triplet tiplet(srcAttr, attr, dstAttr) examines

whether a message should be sent from the destination node (child) to its source (parent).

When the parent’s liveliness triplet.srcAttr is smaller than its child vertex’s triplet.dstAttr, a

message with the child vertex’s liveliness plus 1 is sent to the parent vertex (line 9). If the

receiving parent vertex has connections to more than one child vertex and received more than

one messages, Merge message chooses the maximal value (line 12).
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Algorithm 4 Incremental Pregel for Future Pivot Graph Generation

1: Input: G : Graph[V, E] where V contains vid and E contains (src, sim, dst) tuples
2: g : Graph[V, E] where V contains (vid, (live(v), subgraph(v))) and E contains
3: (src, sim, dst) tuples
4: Output: g
5: for i = n...0 do
6: // initialize pivot graph
7: if i=n then
8: g = Graph(g.V, g.E′), g.E′ ∈ g.E, ∀e ∈ g.E′, e.sim > βn
9: else

10: g = Graph(g.V,G.E′
⋃

g.E),G.E′ ∈ G.E, ∀e ∈ G.E′, e.sim ∈ [βi, βi+1[
11: end if
12: // Pregel superstep loop
13: while ∃e, e ∈ g.E, live(e.dst) > live(e.src) do
14: // send messages
15: do the following process in parallel
16: send message (live(e.dst) + 1, (subgraph(e.dst).add(e))) from e.dst to e.src
17: // receive messages and update nodes’ attributes
18: do in parallel when e.src has received message (dstlive, dstedges) from e.dst
19: live(e.src) = max(live(e.src), dstlive)
20: subgraph(e.src) = subgraph(e.src)

⋃
(dstedges)

21: end while
22: end for
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5.2.3 Future Pivot Graph Generation with Pregel

The Algorithm 4 describes the generation of future pivot graphs using the GraphX Pregel

operator. The generation applies the idea of the incremental computation approach as

described in Section 5.1.3 to avoid redundant TC edge computations by reusing TC edges

computed for higher beta thresholds. The input of the algorithm are a phylomemetic graph G
and a pivot graph g where each topic vertex v stores its liveliness value live(v) and its future

subgraph edges subgraph(v). By default, the attributes live(v) and subgraph(v) of all nodes

are initialized by 0 and the empty set respectively.

The computation starts from the highest β value. At the first β iteration (β = βn), each

edge in the initial graph which satisfies the condition sim > βn will be used to generate

pivot graphs (line 8). We use the topic liveliness values to define the super-step condition

to stop the computation process. The algorithm converges when, for each alignment edge

e, the liveliness of the source vertex e.src (parent topic) is greater than the liveliness of its

destination vertex e.dst (child topic), i.e., live(e.dst) < live(e.src). Then at each super-step

(line 13 to line 21), every destination vertex e.dst which satisfies the super-step condition

live(e.dst) >= live(e.src) will send messages to its parent node live(e.src) (line 14 to line 16).

Each message contains a new liveliness value by adding 1 to the topic’s previous liveliness

value as well as the subgraph alignment edges of the vertex. Each (parent) node which

receives these messages will reduce the received values to one value and update its attributes

(line 18 to line 20). After the super-step loop, each vertex contains the incremented maximum

liveliness value and the union of all subgraph edges of its children.

For the remaining beta values (line 10), the computation starts from the all nodes and edges

obtained by the previous iterations (for higher β value) and the subset of edges which satisfy

the condition that sim ∈ [βi, βi+1[. It is easy to see that this initialization reuses the liveliness

and the subgraph edge sets obtained by the previous β iterations.

5.3 Experiments

We conducted various experiments to study the performance of the proposed different pivot

graph computation models. We study join-based computation models by first comparing

the performance of the baseline approach and the incremental approach presented in Sec-

tion 5.1.1 and Section 5.1.3. Then the comparison of the three relational computation models
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demonstrates that the incremental approach performs better by computing fewer number

of TC joins and fewer number of TC edges. Then the parallelization and the scalability of

the pivot graph generation process are discussed in Section 5.3.2. Finally in Section 5.3.3,

we compare the execution time of the incremental join-based model with the incremental

BSP-based model which reveals a better performance.

5.3.1 Comparison of Relational TC Computations

TC Graph Computation Performance

The generation of pivot graphs is the main computation step of our workflow including many

join operations which are necessary to compute the transitive closure (TC graph) of pivot

graphs for different β values.

We compare the performance of two algorithms presented in Section 5.1.1 and Section 5.1.3.

The baseline algorithm computes independently for each β threshold, the pivot graphs of all

corresponding pivot topics from scratch whereas the incremental approach reuses the result

of previous β-iterations to compute the pivot graphs of new topics for a lower β value.

Figure 5.3 shows for each corpus, the transitive closure (TC) computation time of the base-

line algorithm (orange line) and the incremental algorithm (yellow line). These experiments

have been applied on the real-world data sets described in Table 3.1. The β values span

from 0.2 to 0.8. The baseline algorithm (gray bars) applies for each β threshold 9 iterations

(1 join per iteration) for generating the TC edges over all 10 periods, whereas the number

of joins in the incremental version (blue bars) varies between 2 and 7 iterations, except for

the first β value. It can be seen that the execution time of the incremental algorithm (yellow

dotted dashed line) is reduced by about 50% compared to the execution time of the baseline

algorithm (orange dashed line). We also can observe that, even if the size of the joined table

increases exponentially (blue solid line), the execution time mainly depends on the number

of iterations (joins) whereas the cost of each individual join remains constant.

To better illustrate the benefit of the incremental evaluation, we have conducted 3 groups of

experiments for each corpus with β intervals ranging from 0.2 to 0.8 of different granularity

for the purpose of having more β values. The results are shown in Figure 5.4. For the

first group of experiments, the interval step is 0.1 (7 β values), for the second group 0.05

(13 β values) and for the third group 0.02 (31 β values). The bar chart represents the total
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(a) Glyphosate

(b) ISTEX

(c) arXiv

(d) Wiley

Figure 5.3: Correlation between the execution time and the number of iterations of transitive closure
computation for each β iteration
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Figure 5.4: Comparison between the baseline and the incremental TC computation

TC computation time and the line chart represents the total number of TC iterations. It is

easy to see that the computation time mainly depends on the number of iterations and the

incremental algorithm outperforms the baseline solution.

Computation Cost and Data Size Comparisons

Figure 5.3 demonstrates that the execution time of TC computation is proportional to the

number of iterations, i.e., the number of TC joins. Here we compare with the smart approach

the total number of TC joins of the two approaches evaluated in the previous experiment.

And another way to compare these algorithms is to compare the total number of TC edges

(including redundant edges) produced by all algorithms.

We conducted two groups of experiments where we used a 20-period phylomemetic graph

generated from the arXiv3 corpus, chose (0.2, 0.8) as the β interval and set the β step to

0.05 and 0.02 respectively. The results of these two groups of experiments are presented in

Figure 5.5 where each row of 2 subgraphs corresponds to a group of experiment. On the first

row, we set β step to 0.05 ((0.8− 0.2)/0.05 + 1 = 13 β values). On the second row, the β step

is 0.02 ((0.8− 0.2)/0.02 + 1 = 31 β values). When comparing Figure 5.5a with Figure 5.5c,

it can be easily seen that the smart approach benefits of the reduced number of joins in a

logarithmic manner for each β iteration to outperform the baseline algorithm which results

in the total number of joins reduced by half. The incremental approach also benefits of the

reduced number of joins compared with the baseline approach for the reason that the number

of joins depends on the length of the longest path of new edges extending paths already

3https://arxiv.org/
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(a) Total number of TC joins for β step size 0.05 (b) Total number of TC edges for β step size 0.05

(c) Total number of TC joins for β step size 0.02 (d) Total number of TC edges for β step size 0.02

Figure 5.5: Comparison of the total number of TC joins and the total number of TC edges by the 3
join-based approaches over arXiv corpus with 20 periods in total
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generated for higher thresholds. Therefore, a smaller β step leads to new shorter edges at

each β iteration. For this reason, we can explain that in Figure 5.5a, the smart approach

outperforms other approaches whereas in Figure 5.5c, the incremental approach reduces the

number of joins even more than the smart approach.

Except the reduced number of TC joins, the incremental method also benefits of the reduced

size of joined data (TC edges) due to the reuse of TC table of βi+1 value at the βi iteration.

As can be seen, for β step 0.05, the total number of TC edges computed by the incremental

approach which is 433 000 only accounts of 60% of the other approaches. The baseline

algorithm and the smart algorithm generate almost 40% of redundant edges compared to the

increment algorithm. For β step 0.02, the baseline method and the smart method compute

1 398 230 TC edges which is three times larger than the number of TC edges computed by the

incremental approach. The baseline approach and the smart approach generate almost 70%

of redundant edges compared to the increment algorithm. The smaller the β step is, the more

efficiently the incremental approach performs.

5.3.2 Parallelization and Scalability

In this section, we first talk about the performance evaluation of the entire pivot graph

generation process computed by the incremental join-based approach over the four real-world

datasets described in Table 3.1. We found that the incremental algorithm allows to extract

pivot graphs from real-word datasets on a local machine. For demonstrating the scalability of

the pivot graph generation, we then evaluate the TC computation performance on a cluster of

nodes with much larger (synthetic) datasets.

Small real-world pivot topic graphs

Figure 5.6 illustrates the execution time for computing pivot graphs, topic labels and graph

metrics for four different real-world document archives presented in Table 3.1. We measure

the performance obtained for different numbers of CPU cores on a local machine. The β

values span from 0.2 to 0.8 with a step of 0.05 (13 values). As can be seen, the pivot graph

computation time dominates the execution time of these three steps. The execution time

for topic labeling accounts for half of the execution time for pivot graphs and the execution

time for graph metrics remains constant and takes about 10 seconds. Observe that the

best performance has been achieved with a single CPU core on local machine. This can be
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Figure 5.6: Pivot Graph Computation : CPU cores vs. execution time

explained by an increase of the task deployment and coordination overhead which dominates

the query execution time. More precisely, increasing parallelism on a single machine will

also increase stages which results in more operations. Furthermore, cost of supervising small

tasks is significant as well. Finally, the execution of our algorithms mainly generate hundreds

of “short” query tasks, which can efficiently be serialized on a single CPU.

Large Synthetic Pivot Graphs

Figure 5.7: Performance evaluation on the cluster with synthetic datasets

For illustrating the pivot graph computation performance on much larger graphs, we

generated several synthetic datasets (topic graphs) by duplicating the Wiley topic graph.
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The results of these experiments are shown in Figure 5.7. Each line corresponds to the TC

graph computation time of a synthetic topic graph Wx obtained by generating x copies of the

initial Wiley graph containing 2000 topics and 360 000 alignment edges. Thus W1 contains

the topic graph as mentioned in Figure 5.3 whereas W2000 is the largest synthetic dataset

with 4 million topics and 720 million alignment edges. This last graph generates 32 million

pivot graphs with 7, 6 billion edges with a total size of 30 GB on disk.

The number of physical worker nodes ranges from 1 to 8 and each worker node contains

one Spark executor configured with 4 CPU cores and 40 GB memory. Figure 5.7 illustrates the

TC computation time for the synthetic topic graphs W1, W50 W200, W500, W1000 and W2000.

The edges of all graphs are distributed randomly on all worker nodes. As we can see, the

performance benefit for W1 and W50 by increasing the number of worker nodes is very low.

As already mentioned, these two datasets cannot benefit from the cluster since the cost of each

task is small compared to the Spark task scheduling and data shuffling overhead. For larger

graphs, it is possible to achieve a 2X speedup by increasing the number of worker nodes. We

also see that a single node is not able to process W2000. The relative benefit decreases with

the number of nodes. This is mainly due to the removal of duplicate edges during the TC

computation, which needs data shuffling between nodes and adds communication cost.

Figure 5.8: Execution time of different steps to compute TC for W1000 on the cluster VS. number of
worker nodes

Figure 5.8 shows the total execution time according to the different TC computation steps

applied on W1000 with 1 up to 8 worker nodes. The blue bars correspond to the iterative TC

compution costs shown in Figure 5.7 (yellow line). For example, the TC computation time

on one node in Figure 5.8 is 650 seconds which corresponds to the point of the yellow line
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for one node in Figure 5.7. We apply the distributed broadcast join algorithm implemented

in Spark SQL4. The cost of broadcasting the TC table to be joined at each iteration is shown

in orange except for the single node architecture, which can apply a simple centralized join

operator. The total broadcast time mainly depends on the total data size exchanged between

all nodes and is almost constant for 2, 4 and 8 nodes. Loading the data from the distributed

HDFS5 file system into memory is improved up to 10 times (from 268 seconds to 26 seconds)

by using 8 nodes instead of 1 (grey bar on the top).

5.3.3 Join-based versus Pregel-based TC Computation

In this section we compare the performance of the relational and graph-based pivot graph

computations presented in Section 5.1 and Section 5.2. Both computations are distributed.

The relational solution uses a distributed algorithm for joining tables distributed on different

nodes and the graph based solution uses the distributed Bulk-Synchronuous Protocol for

exchanging messages between nodes. The experiment is carried out on the single machine

with a hyperthreaded 3.1 GHz Intel Core i7-7920HQ processor as described in Section 3.2.2.

We have implemented all the three proposed join-based pivot graph computation models and

in an EPIQUE workflow, the choice of the model depends on the user. Since the incremental

approach has the best performance among our relational implementations, it is used to

compare with the incremental implementation of GraphX Pregel. The results are shown in

Figure 5.9. We conducted four groups of experiments for two different β interval granularities

and phylomemies over 10 and 20 periods.

In Figure 5.9, we can see that the incremental GraphX Pregel method always outperforms

the relational incremental approach regardless of the granularity of β intervals. However for

phylomemies with 20 periods, the performance gain obtained by the incremental GraphX

Pregel diminishes. This can be explained by the increased size of the messages exchanged

between the topic nodes (at each superstep, all topic nodes communicate all their descendants

to their parent node).

Figure 5.10 gives a deeper insight about the performance of subgraph computation for each

β iteration of the incremental Pregel method. As can be seen in Figure 5.10a, the execution

time is almost constant for β ∈ [0.8, 0.6] and increases afterwards for the smaller β values

in [0.55, 0.2] decreases. This can be explained by the increased number and increased size
4https://mungingdata.com/apache-spark/broadcast-joins/
5https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
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Figure 5.9: Performance comparison for subgraph computation between the relational incremental
approach and the incremental Pregel approach over arXiv corpus

(a) Execution time of TC computation for each beta
iteration (superstep)

(b) Total number of messages exchanged during
each beta iteration (superstep)

(c) Total size of all messages (graph edge number)
exchanged during each beta iteration (super-
step)

Figure 5.10: Illustration of the impacts on the performance of incremental Pregel tested over arXiv
corpus with 20 periods in total
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of messages being sent during the supersteps as shown in Figure 5.10b and Figure 5.10c.

As shown in Figure 5.10b, the number of messages decreases after the first β iterations and

begins to increase at β = 0.7. The total size of the messages (number of subgraph edges)

β ∈ [0.8, 0.6] iterations is almost constant as shown in Figure 5.10c. Then, from β = 0.6

upwards, the total size of messages for each β value starts to increase whereas the execution

time grows from the same point.

5.3.4 Conclusion

Our previous experiments demonstrate that the execution time of join-based TC computation

mainly depends on the number of join operations. The incremental algorithm outperforms

the baseline algorithm by both reducing the number of joins and the number of TC edges to

be computed. Compared to the smart algorithm, the incremental algorithm reduces more

TC joins when β step is smaller and generates fewer TC edges regardless of β step. The

experiments also reveal that our incremental join-based algorithm dominates the execution

time of the entire pivot graph generation process and allows to efficiently extract pivot graphs

from real-world datasets on a single machine. The performance experimental evaluation on

cluster shows that the distributed computation on several nodes increases the execution cost

due to additional data shuffling and task management overhead. Whereas this observation

questions the choice of using Spark which is mainly designed for parallel data-intensive

computations on clusters. In particular, Spark uses the Hadoop file system (HDFS) [103],

which is designed to efficiently manage large persistent DataFrames and to reduce distributed

data access/storage overhead compared to a standard file system solution. Nevertheless,

the previous experiments do not take account of all workflow steps including the document

storage, preprocessing (stop-word removal, stemming, term extraction) steps which can

benefit of a distributed Spark architecture.
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This chapter presents the implementation of the topic evolution model in the context of the

EPIQUE project. Our implemented workflow is able to handle any scientific document corpus

where each document has a publication date and some text contents (title, abstract, keywords,

etc.). I will first explain our implementation of pivot graph generation and pivot query

evaluation in the following section. Section 6.2 then introduces our prototype implementation

including the architecture of the EPIQUE web application as well as a scenario for pivot graph

generation, exploration and analysis.

Contents
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6.1 Pivot Graph Generation and Query Evaluation

This section explains in detail the implementation of the entire pivot graph generation work-

flow including the subgraph generation step with the incremental approach (Section 6.1.1).

This step mainly generates two Spark Dataframes [104] Past and Future which contain all
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information necessary for the following steps. In particular, I show how to implement the

topic labeling step (Section 6.1.2) and the graph metrics computation step (Section 6.1.3) by

using Spark SQL [104]. Then I illustrate in Section 6.1.4 how pivot queries can be evaluated

using standard SQL queries.

6.1.1 Pivot Graph Computation with Spark

Algorithm 5 shows our pivot graph computation implementation using the Spark

DataFrame [104] model and algebra. A Spark DataFrame is equivalent to a relational

database table and can be transformed into a new DataFrame through relational operations

including projection (select), filter (where), join, and aggregations (groupBy). Algebraic expres-

sions are built by concatenating the relational operators starting from the input DataFrame.

For example, the expression in line 5, applies the following relational selection on DataFrame

Sim:

Graph = σsim>βi∧t1.period+1=t2.period(Sim)

A projection of DataFrame Graph on the three attributes t1, t2, l is shown in line 10 (attribute l

is intialized with value 1). Finally, line 15 defines a relational join between the two DataFrames

newGraph and oldTC followed by a projection where attribute newGraph.d + 1 is incremented

by one:

newTCEdges = πnewGraph.t1,oldTC.t2,newGraph.d+1(newGraph ./newGraph.t2=oldTC.t1 oldTC)

Algorithm 5 computes and stores for each alignment threshold βi (0 ≤ i ≤ n) two tables

Future and Past as defined in Section 5.1. The pivot graph computation relies on an efficient

transitive closure algorithm to connect all the reachable topics starting from any pivot topic.

This computation may be expensive for large and highly connected graphs. The main idea of

the proposed implementation is to benefit from the inclusion property G∗(t, βi+1) ⊆ G∗(t, βi)

(0 ≤ i < n) mentioned in Section 5.1. This property implies that, for decreasing i, the transitive

closure TCi+1 obtained for βi+1 is included in the transitive closure of TCi for βi and therefore

gives the opportunity to reuse the transitive closure results among the successive iterations.

The iterative computation starts on line 3 from the highest value βn. The first step (lines

5) defines the complete Graph for βi containing all alignment edges where sim ≥ βi. The
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Algorithm 5 Pivot graph computation using the Spark data model and algebra

1: Input: topic similarity DataFrame Sim(t1, t2, sim)
2: Output: a pair (Future, Past) of future and past pivot graph DataFrames for each beta

value βi.
3: for i = n...0 do
4: // Graph(t1, t2, sim) : topic alignment graph for βi (rule 1 in Algorithm 1)
5: Graph = Sim.where(sim > βi ∧ t1.period + 1 = t2.period)
6: // Transitive closure computation (rules 3 and 4 in Algorithm 1)
7: if i=n then
8: oldTC = ∅ . oldTC is empty for βn
9: // newGraph(t1, t2, d) : new alignment edges (d=1) where sim ≥ βn

10: newGraph = Graph.select(t1,t2,1 as d)
11: else
12: // newGraph(t1, t2, d) : new alignment edges (d=1) where sim ∈ [βi, βi+1[
13: newGraph = Graph.where(sim < βi+1).select(t1,t2,1 as d)
14: // newTCEdges(t1, t2, d) : new alignment edges (d>1) between newGraph and

oldTC
15: newTCEdges = newGraph.join(oldTC, newGraph.t2 = oldTC.t1)
16: .select(newGraph.t1, oldTC.t2, newGraph.d + 1 as d)
17: newGraph = newGraph.union(newTCEdges) . add newTCEdges to newGraph
18: end if
19: deltaTC = oldTC.union(newGraph) . deltaTC(t1, t2, d): oldTC + newGraph
20: // Semi-naive evaluation (rule 3 in Algorithm 1)
21: newTC = deltaTC . newTC(t1, t2, d) : trans. closure of deltaTC
22: while deltaTC 6= ∅ do
23: deltaTC = deltaTC.join(newGraph, deltaTC.t2 = newGraph.t1)
24: .select(deltaTC.t1, newGraph.t2, deltaTC.d + newGraph.d)
25: newTC = newTC.union(deltaTC)
26: end while
27: // Generate Future(p,t1, t2,sim, d, psim) (rules 4 and 5 in Algorithm 1)
28: Future = Graph.select(t1 as p, t1, t2, sim, 1, sim as psim)
29: FutureTC = newTC.join(Graph, newTC.t2 = Graph.t1)
30: .join(Sim, Sim.t1 = newTC.t1 ∧ Sim.t2 = Graph.t2)
31: .select(newTC.t1 as p, Graph.t1, Graph.t2, Graph.sim, newTC.d+1 as d, Sim.sim

as psim)
32: Future = Future.union(FutureTC)
33: // Generate Past(p,t1, t2,sim, d, psim) (rules 6 and 7 in Algorithm 1)
34: Past = Graph.select(t2 as p, t1, t2, sim, 1, sim as psim)
35: PastTC = newTC.join(Graph,newTC.t1 = Graph.t2)
36: .join(Sim, Sim.t1 = Graph.t1 ∧ Sim.t2 = newTC.t2)
37: .select(newTC.t2 as p, Graph.t1, Graph.t2, Graph.sim, newTC.d+1 as d, Sim.sim

as psim)
38: Past = Past.union(PastTC)
39: store Future and Past on disk . store all future and past pivot graphs for βi
40: oldTC=newTC
41: end for
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following steps (lines 7 to 18) compute the table newGraph with all new direct alignment

edges where sim ∈ [βi, βi+1[ and all new “transitive” alignment edges which exist between

the new nodes and the previous transitive closure table oldTC (oldTC = ∅ for i = n). Observe

that newGraph contains only edges that do not exist in oldTC and connects all new nodes in

newGraph to all reachable nodes in oldTC. However, it still misses the new edges which might

connect two nodes in oldTC by a new path generated by the new edges. These new edges can

be obtained by computing the transitive closure on table deltaTC, which is initialized with all

new edges in newGraph and the old TC edges in oldTC (line 19). We then have the following

definition of deltaTC (the join predicates are ignored for simplification):

deltaTC = (newGraph ./ oldTC) ∪ oldTC ∪ newGraph

We then compute the transitive closure newTC of deltaTC (lines 21 to 26) where each step joins

deltaTC only with new edges in newGraph until reaching the fixpoint where deltaTC = ∅:

newTC0 = deltaTC

deltaTCi+1 = deltaTCi ./ newGraph

newTCi+1 = newTCi ∪ deltaTCi+1

This strategy is similar to the semi-naive transitive closure algorithm [98] and guarantees that

no TC edge is computed twice in the whole process. More precisely, the number of iterations

(joins) is bound by the length of the longest path composed of new edges with sim ∈ [βi, βi+1[.

This can drastically reduce the computation cost as shown in our experiments. The remaining

steps (lines 27 to 38) generate the Future pivot graphs and Past pivot graphs by joining the

tables newTC, Graph and Sim (rules 4 and 7 in Algorithm 1). Both tables are stored at the

end of each iteration step.

6.1.2 Topic Label Computation

Pivot topic labels can be computed with Spark SQL [104] by defining a query over the

pivot evolution Dataframes Future(t, x, y, rs, ps, d, i) and Past(t, x, y, rs, ps, d, i) computed by

Algorithm 5 presented in Section 6.1.1.

The following query creates three temporary views FLabels, PLabels and TmpLabels. The

first two views contain for each pivot topic (t, i) the list of future and the past terms respec-
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tively. The query uses the aggregate function group_concat to concatenate the terms of the

future and past topics for each pivot topic. The view TmpLabels combines the previous two

views in order to facilitate the generation of topic labels in the final query expression applying

the term label predicates defined in Section 4.4. The final query on view TmpLabels uses

three set operators group_intersect, group_except and group_union to compute the stable,

emerging, decaying and specific terms as defined in Section 4.3. The result is stored in a new

table PivotLabels. Notice that a given topic with a given β value has a group of fix labels

(emerging, stable, decaying and specific). These labels depend on future pivot graph and past

pivot graph of that topic. Thus a term can be "stable", although it does not appear anywhere

in the predecessor nodes (or the successor nodes) of a certain pivot topic graph.

Listing 6.1: Topic labeling query

create table PivotLabels as (

with FLabels as (

select t, i, group_concat(y.terms) as futureTerms

from Future

group by t, i

),

PLabels as (

select t, i, group_concat(x.terms) as pastTerms

from Past

group by t, i

),

TmpLabels as (

select t, i,

array_intersect(t.terms, futureTerms) as futureLabel,

array_intersect(t.terms, pastTerms) as pastLabel

from FLabels tab1, PLabels tab2

where tab1.t = tab2.t and tab1.i = tab2.i

)

select t, i,

array_intersect(futureLabel, pastLabel) as stable,

array_except(futureLabel, pastLabel) as emerging,

array_except(pastLabel, futureLabel) as decaying,

array_except(t.terms, array_union(futureLabel, pastLabel)) as specific

from TmpLabels

)
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Example 20 Table 6.1 shows the pivot topic (t51, 0.5) obtained from the ISTEX corpus with its top-10

weighted terms. I will explain the topic labeling process by using the tables related to topic t51 as

shown in Table 6.2. From the Future(t, x, y, rs, ps, d, i) table and Past(t, x, y, rs, ps, d, i) table, we

can find all future topics (t75 and t104) and past topics (t2) of pivot topic (t51, 0.5) as well as their top

weighted terms, as shown in Table 6.2a and Table 6.2b. Then the fusion of all terms in future topics and

in past topics generates the FLabels table (Table 6.2c) and the PLabels table (Table 6.2d) of pivot topic

(t51, 0.5). From the previous two tables, all terms of topic t51 that also appear in future and pas topics

(shown in bold) are selected, respectively, as the f utureLabel and the pastLabel of topic t51 (attributes

in table TmpLabels shown in Table 6.2e). Observe that term "uncertainty" is stable (appears in the

past and the future), whereas "risk" and "probability" are decaying (only appear in the past) and

"decisions" and "information" are emerging (appear only in the future). This final classification is

displayed in Table 6.2f and obtained by the final Spark SQL expression shown in Listing 6.1. The

different colors of the terms correspond to different term labels that have been explained in Figure 1.1.

Table 6.1: Pivot topic (t51, 0.5) of ISTEX corpus
Topic Terms

51 decisions, information, risk, uncertainty, decision-making, probability, air quality,
direction, assessment, complexity

6.1.3 Pivot Graph Metrics Computation

The liveliness, relative evolution degree, pivot evolution degree, split degree and convergence

degree of all pivot evolution graphs can aso directly be computed by a standard SQL

aggregation query. The following query computes these metrics for all future pivot evolution

graphs stored in Future(t, x, y, rs, ps, d, i) :

Listing 6.2: Graph metrics computation query

create table PivotFuture as

select t,i max(d) as liveliness,

1−avg(rs) as revol,

1−avg(ps) as pevol,

count(*)/count(distinct x) as split,

count(*)/count(distinct y) as conv

from Future

group by t,i
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Topic futureNode Terms
51 75 preferences, incentives, allocation, uncertainty, decisions, transaction costs,

public, asymmetric information, social welfare, geographic information systems

51 104 imports, environmental degradation, variety, stakeholders, economic activity,
coastal zones, gap, asymmetric information, environmental accounting, earth

(a) Topic nodes in the future of pivot topic (t51, 0.5)

Topic pastNode Terms
51 2 uncertainty, experience, life, risk reduction, probability, trade, state, risk-aversion,

environmental risks, individuals

(b) Topic nodes in the past of pivot topic (t51, 0.5)

Topic futureTerms
51 preferences, incentives, allocation, uncertainty, decisions, transaction costs, public, social welfare,

asymmetric information, geographic information systems, imports, environmental degradation,
variety, stakeholders, economic activity, coastal zones, gap, environmental accounting, earth

(c) FLabels of pivot topic (t51, 0.5)

Topic pastTerms
51 uncertainty, experience, life, risk reduction, probability, trade, state, risk-aversion, individuals,

environmental risks

(d) PLabels of pivot topic (t51, 0.5)

Topic futureLabel pastLabel
51 decisions, information, uncertainty risk, uncertainty, probability

(e) TmpLabels of pivot topic (t51, 0.5)

Topic stable emerging decaying specific
51 uncertainty decisions, information risk, probability decision-making, air quality, direction,

assessment, complexity

(f) PivotLabels of pivot topic (t51, 0.5)

Table 6.2: Tables of topic labeling process
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6.1.4 Pivot Query Evaluation

The result of the previous steps are four tables, PivotFuture, PivotPast, PivotAll and

PivotLabels. Based on these tables, it is possible to translate a pivot query into a standard

SQL query where each pivot filter becomes a predicate in the query where clause:

Listing 6.3: Pivot query example

select *
from PivotFuture topic, PivotLabels label

where topic.t = label.t and topic.i = label.i

and contains(label.emerging, 'deep␣learning')

and contains(label.stable, 'database')

and topic.liveliness > 8 and topic.split < 3

Example 21 Listing 6.3 expresses the following pivot query which filters all pivot topics with emerging

term “deep learning” and stable term “database”, where each future topic has fewer than three child

topics in average and there exist future subtopics related to the pivot topic with a distance of longer

than 8 periods:

Q: DB.Future.Emerge("deep␣learning").Stable("database").Live(>8).Split(<3)

In our prototype implementation, we defined a class Pivot which encapsulates all

Dataframes and implements each pivot graph filter as a separate function. This allows

to express pivot topic queries as composition (conjunction) of filters. Listing 6.4 explains

the implementation by giving a piece of Python code of the Pivot class of the prototype

exploration interface (Section 6.2). A Pivot object contains some important variables (line

3 to line 6), such as the variable con f containing the workflow configuration, the variable

sparkCon f containing the Spark configuration, the variable f uture containing the future pivot

table Future and the variable past containing the past pivot table Past. A Pivot object by

default contains all future pivot topics and all past pivot topics. The function emerge(kw)

(line 11 to line 21) returns a new Pivot object which creates a new Future table and a new

Past table containing future and past pivot topics with certain keywords in a given list kw

as emerging terms. The function array_contains(col, value)1 on line 16 and line 17 is an SQL

Array function of PySpark2, which is used to check if an element value is present in an array

1https://spark.apache.org/docs/latest/api/python//reference/api/pyspark.sql.functions.array_contains.html
2https://spark.apache.org/docs/latest/api/python/index.html
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type column on DataFrame. In the emerge(kw) function, we use it to find all pivot topics

containing the emerging terms which exist in the term list kw. For other pivot topic filters,

we adopt the same idea that each filter will return a new Pivot object.

Listing 6.4: Pivot class

1 class Pivot:

2 def __init__(self, config, sparkConf, future = None, past = None):

3 self.conf = config # workflow configuration

4 self.sparkConf = sparkConf # Spark configuration

5 self.future = future # future pivot topic table

6 self.past = past # past pivot topic table

7 ...

8 ...

9

10 # return pivot topics containing terms in kw as emerging terms

11 def emerge(self, kw):

12 listFuture = []

13 listPast = []

14 # for every term k in kw, find pivot topics containing k as emerging term

15 for k in kw:

16 listFuture.append(self.future.where(array_contains(self.future['emerging'], k)))

17 listPast.append(self.past.where(array_contains(self.past['emerging'], k)))

18 # union all pivot topic tables

19 pivotFuture = reduce(lambda a,b : a.union(b), listFuture)

20 pivotPast = reduce(lambda a,b : a.union(b), listPast)

21 return Pivot(self.conf, self.sparkConf, pivotFuture, pivotPast)

22 ...

6.2 EPIQUE Prototype

A first prototype [105] of the relational implementation of a generic topic evolution model

is currently used to extract and analyze evolution patterns for different scientific domains

in collaboration with philosophers of science. This prototype is implemented on top of

Apache Spark for processing large scientific corpora containing millions of documents and

finding meaningful topic evolution graphs for both stable topics and highly evolving ones.

Section 6.2.1 introduces the architecture of the EPIQUE web application. Then Section 6.2.2

and Section 6.2.3 present two notebooks3 for the generation and the exploration of pivot

3https://jupyter.org/

106



6 Implementation and Prototype

graphs through an example. A video demonstration of these two notebooks can be found

on the following web site: http://www-bd.lip6.fr/wiki/site/recherche/projets/epique/

demo/start.

6.2.1 Prototype Architecture

Figure 6.1: Architecture overview of EPIQUE web application

Figure 6.1 gives an overview of the architecture of our web application implemented on

top of Apache Spark and Jupyter Notebook [106]. The application is accessible through two

interactive notebooks for building and exploring the pivot evolution graphs.

The evolution graph generation application is implemented in Scala and the EPIQUE API

provides all functions to execute the entire EPIQUE workflow as mentioned in Section 3.1.

The Topic evolution graph generator notebook is executed by the Spylon4 kernel which allows to

use Python and Scala for interacting with Apache Spark through a notebook.

The Topic evolution graph explorator uses a standard Python kernel to take advantage of

advanced Python-3 graphical user interface libraries (ipywidgets5) for facilitating user interac-

tion with the EPIQUE Visualization API dedicated to the analysis and visualization of topic

4https://github.com/Valassis-Digital-Media/spylon-kernel
5https://ipywidgets.readthedocs.io/en/latest/
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evolution graphs. The data storage is based on the Hadoop Distributed File System (HDFS6)

which provides a software framework for distributed storage and processing of big data using

the MapReduce programming model.

6.2.2 The Topic Evolution Graph Generator Notebook

Figure 6.2: Screenshot: workflow configuration

To start the generation workflow, the user selects a corpus file (corpusFile), an optional

vocabulary of terms (termlistAddr) pre-processed by an on-line text-mining tool Gargantext7,

a list of stopwords (stopwordsPath), the time period (startYear and endYear) and a sliding

window (intervalYear and stopYear). Figure 6.2 gives the screenshot of the workflow config-

uration for processing the corpus "GlyphosateWoS" ranging from 1994 to 2013. The topics

are computed for periods of 3 years, where each period overlaps with the preceding and the

following period by two years.

Then the data preprocessing step and the corpus periodization step are executed as

displayed in Figure 6.3 by applying the previous configuration settings.

As shown in Figure 6.4, the notebook allows users to visualize the number of documents

per period. For example, the Glyphosate corpus is split into 10 periods and the number of

documents in each period stays in the same order of magnitude.

6https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
7https://gargantext.org/
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Figure 6.3: Screenshot: data preprocessing and corpus periodization

Figure 6.4: Screenshot: amount of documents per period
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Figure 6.5: Screenshot: topic diversity visualization

The LDA topic extraction step requires a vocabulary and a number of topics to be generated.

This number obviously influences the diversity of the resulting topics. To choose a topic

number for guaranteeing high topic diversity (Section 3.2.1), the application generates a set

of topic models for different topic numbers. The user can then visualize the diversity (topic

dissimilarity distribution) of the extracted topic models and choose the topic models with

high-diversity for each period. A topic diversity distribution for different topic numbers is

reported as shown in Figure 6.5 and, for example, by observing the 5th percentile values (blue

line), the user can retain one of the six models (20, 30, 40, 50, 60 or 70 topics per period) that

achieves more than 95% of pairwise dissimilarities above 0.9.

After setting the LDA topic number for the workflow, the LDA topic model is executed

sequentially wrt. the time windows and as displayed in Figure 6.6.

Finally, Figure 6.7 shows the alignment step where the extracted topics of consecutive

periods are aligned by using cosine similarity. All pivot topic evolution graphs are generated

along with their main temporal, structural and evolution indicators (liveliness, relative evolution

degree, pivot evolution degree, split degree, convergence degree). All topic labels, such as emerging,

decaying, etc. are also generated automatically in this step. The EPIQUE workflow is now

110



6 Implementation and Prototype

Figure 6.6: Screenshot: topic extraction

Figure 6.7: Screenshot: topic alignment
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ready for exploration.

6.2.3 The Topic Evolution Graph Explorator Notebook

Figure 6.8: Screenshot: load all pivot graphs into memory

To start the pivot graph exploration process on the second notebook, the user loads all

pivot graphs generated by the first notebook as shown in Figure 6.8. The final Dataframe

pivots encapsulates all pivot graphs to be explored.

Figure 6.9: Screenshot: analysis tools

The notebook proposes some functions to analyse the content, the labels, the numbers and

the term importance of pivot topics (fig. 6.9). Figure 6.10 is a graphical visualization of the

pivot evolution degree and the relative evolution degree of all topics. The user can choose

among all metrics defined in Figure 4.15.
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Figure 6.10: Screenshot: an example of the analysis tools

Figure 6.11 shows a graphical query interface where users can specify their exploration

goal and visualize pivot topic evolution graphs.

In the next step, the user specifies the exploration goal through the query-by-example

interface (as shown in the demonstration video8) and visualizes pivot topic evolution graphs

as shown in Figure 6.12. The user can zoom out to study the structure of the evolution or

zoom in to study the semantic changes.

The user also can express her exploration goal by combining different filters as defined in

Section 4.5. Figure 6.13 shows the same results as displayed in Figure 6.12. The difference is

that Figure 6.12 is obtained by executing a pivot topic query given through the user interface,

whereas Figure 6.13 is obtained by directly running the same pivot topic query through the

notebook.

Figure 6.14 gives another example of pivot topic query executed through the notebook. In

this example, the user applies a path filter to select pivot topics (as shown in Figure 6.12)

whose future contain topics having “children” as the stable label.

8http://www-bd.lip6.fr/wiki/site/recherche/projets/epique/demo/start
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Figure 6.11: Screenshot: query language user interface
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Figure 6.12: Screenshot: pivot topic evolution graph visualization
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Figure 6.13: Screenshot: query pivot topic evolution graphs by filters
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Figure 6.14: Screenshot: query pivot topic evolution graphs by path filter

6.2.4 Some Pivot Graph Examples

Example 22 Figure 6.15 presents the pivot graph as in Figure 6.12 in more detail. This pivot graph

is filtered by the following user query: “select all pivot topics with cancers and health risks as emerging

terms which appear before 2004.”, which is shown in the user interface (Figure 6.11).

The pivot topic (t152, 0.6) containing terms about human health risks such as cancers and genotoxi-

city splits into two topics in the future where the first topic (t238, 0.6) talks about the organic farming

and the second one (t204, 0.6) talks about health risk assessment.

Example 23 Figure 6.16 presents a pivot graph G f uture(t14, 0.4) extracted from the ISTEX corpus

(see Table 3.1) by the following query: “select pivot topics containing economy and environmental

quality which appear before 1995 with low split degree and low pivot evolution degree”. As can be seen,

the pivot topic (t14, 0.4) talks about the relationship between natural resources (renewable resources,

resource extraction, resource depletion, etc.), environmental quality and economy. In the future, pivot

topic (t14, 0.4) evolves into 3 topics (t150, t210 and t250). More precisely, topic t150 states policies

including environmental policy and trade policy, topic t210 discusses the emission reduction and topic

t250 focuses on forestry (forest managers, forest products, forest resources).
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Figure 6.15: Pivot graph G f uture(t152, 0.6) over the Glyphosate corpus
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Figure 6.16: Pivot graph G f uture(t14, 0.4) over the ISTEX corpus
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Example 24 The query which returns the pivot graph G∗(t842, 0.2) in Figure 6.17 filters all pivot

topics containing images and features as the stable label with low relative evolution degree and low

split and convergence degrees in the arXiv corpus. Pivot topic (t842, 0.2) is evolved mainly from topic

t299 which talks about data analysis. In the period from 2012 to 2014, topic t706 discussing "features"

appears and merges with the future of topic t299 into pivot topic (t842, 0.2) and then splits into two

topics in the period from 2016 to 2017 where topic t942 is about feature engineering (accuracy, loss,

gradient, etc.), whereas topic t978 talks about image processing (objects, images, matching, filtering,

etc.).
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Figure 6.17: Pivot graph G∗(t842, 0.2) over the arXiv corpus
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In this thesis, we have presented the definition and implementation of a new framework for

building and exploring topic evolution networks which represent the progress and evolution

of research in scientific document archives. This framework is capable of extracting topic

evolution networks representing the progress of science published in large scientific document

archives. The obtained networks can be explored using a high-level query language based on

the notion of pivot graphs which represent the evolution of topics at different levels of detail.

The whole frameworks is implemented on top of Apache Spark to achieve scalability and

can be accessed via two notebooks for the generation and the exploration of topic evolution

networks.

7.1 Main Contributions

7.1.1 Topic Evolution Network Computation

The computation of topic evolution networks is mainly composed of two steps, a topic

extraction step and a topic alignment step. For the topic extraction step, we apply the

probabilistic topic model LDA [22], which describes each topic as a weighted term vector.

LDA requires a fixed number of topics predefined by users. This parameter influences the

diversity of the extracted topic set and the quality of the final phylomemy networks. The

thesis addresses the challenge of the quality of topic sets by introducing a diversity-based

measure (Section 3.2). The topic diversity within a period can be estimated by observing

the dissimilarity distribution over all topic pairs within the period. Our experiments on the

different scientific document archives have confirmed that the performance of LDA and the

diversity of topics produced by LDA mainly depends on the size of the analyzed documents

and this diversity-based measure can assist experts in choosing the optimal number of topics

per period to produce highly divers phylomemies.
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For the topic alignment step, we adopt the cosine similarity to align topics from different

time periods. This alignment method performs well on measuring the correlations between

sparse vectors. Moreover, our distributed map-reduce implementation of cosine similarity

on top of Apache Spark has proved its efficiency for our high-dimensional weighted vector

setting in the experimental evaluation.

7.1.2 Pivot Graph Model and Query Language

The data model of our framework relies on the notion of pivot topic graphs which represents

the evolution of each individual topic by a set of multi-stage connected topic evolution

subgraphs (Chapter 4). The pivot graph model includes a high-level filter-based query

language (Section 4.5) which allows users to express complex evolution pattern queries

composed of structural, temporal and semantic topic filters. We also implemented a notebook

including a graphical query interface to filter and explore the evolution of topics in a simple

and sound way.

7.1.3 Implementation and Optimization

A scalable proof-of-concept prototype [105] of our model has been implemented on top of

Apache Spark and Jupyter Notebook using LDA for topic extraction, Spark SQL [104] for

computing pivot topic graphs and PySpark for interactively exploring pivot topic graphs.

An important goal for the implementation of our framework was to achieve a highly-

interactive exploration interface. To achieve low query processing time, we decided to apply

a full materialization approach which consists in precomputing and storing all pivot graphs

before starting the exploration phase. This precomputation includes the computation of topic

alignment, and the materialization of all pivot graphs for different β thresholds including

the pivot topic labels and the graph statistics (evolution degree, liveliness). The final result

can be explored and visualized using a collection of filters that can directly be applied on the

materialized graph properties.

The pivot graph generation is done off-line and on the distributed Apache Spark framework,

and we’ve proposed several optimizations for the different precomputation steps.
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Topic alignment computation: A topic evolution network might contain thousands of

topics and alignment edges which are produced by comparing millions of topic pairs with

some similarity function. We highlight how to adapt the native distributed cosine similarity

computation implemented in Apache Spark to our particular context and to improve the

performance by proposing two topic alignment strategies (Section 3.3). The first strategy (full

matrix alignment) takes account of the similarities of all topic pairs which is important for our

topic evolution model. The second alignment strategy (nearest-neighbor alignment) focuses

on aligning topics only from consecutive periods and uses a nearest-neighbor condition to

select candidate topics. We propose two distributed implementations which mainly differ on

their ability to reduce data-shuffling during the alignment computation.

Pivot graph computation: Pivot graph computation mainly consists in extracting for each

topic several connected subgraphs (pivot graphs) from the topic evolution network. The

pivot graphs of a topic have different minimal edge weights (β thresholds) where any graph

contains all other graphs with a higher minimal weight. We propose an efficient incremental

join-based transitive closure algorithm for the materialization of pivot graphs and the graph

properties in advance (Section 5.1.3). This algorithm benefits of the reduced number of SQL

joins as well as the reduced size of joined data for the TC computation compared to the

baseline approach (Section 5.1.1) and the smart approach (Section 5.1.2). To avoid many join

operations of the join-based materialization strategy, we propose an alternative pivot graph

materialization strategy based on GraphX [32] using Bulk Synchronous Parallel Paradigm [96].

7.2 Future Work

7.2.1 Generic Topic Evolution Workflow

A first direction for extending our current frameworks is to enrich the topic evolution model

by exploiting the LDA document-topic matrix. Currently, we ignore these links between

topics and documents which could be exploited for the topic-based exploration of document

archives and for defining additional topic properties such as topic importance defined by the

number of documents related to a given topic.

A second extension is to integrate other topic extraction and alignment methods as pre-

sented in Section 2.1 in order to generate and compare various types of topic evolution
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networks. The current implementation assumes the same number of topics in each time pe-

riod. Our experiments show that we can in general obtain good results (in terms of diversity)

for a given corpus where each period covers about the same number of documents. Other

topic models which don’t have this restriction (frequent itemset, clique percolation, HDP) are

more flexible and might produce better results for more heterogeneous archives with highly

varying document distributions in time.

The topics extracted by the current workflow are defined by a weighted set of terms. It is

up to the expert to give a semantic interpretation of the topic according to his knowledge of

the most relevant terms. This lack of semantic representation sometimes make it difficult to

give a clear meaning to each topic. Thus, another objective of our future work is to extend

our topic extraction and analysis task with knowledge graphs to allow for a more refined

analysis of scientific domains and their evolution. The proposed approach might consist in

combining text mining methods with semantic web technologies (RDF/SPARQL) [107] and

knowledge graph resources like Wikidata1, DBPedia2 or Yago3.

7.2.2 Topic Evolution Model and Query Language

Our current workflow is based on a complete materialization of all pivot graphs. This

simplifies the query evaluation and achieves high query performance for interactive data

exploration. However, this makes it more difficult to take account of possible updates of the

topic evolution graph. For example, an expert might discover during the exploration of a

graph that some topics are not relevant and should be modified or removed from the initial

network. Such modifications currently imply a complete recomputation step. Another issue

on the current implementation is the storage cost for storing all materialized pivot graphs.

Therefore, we plan to study the implementation of pivot filters over the original topic evolution

graphs (without a preliminary materialization step) which would avoid data preprocessing

and data storage costs but also lead to higher query execution time. Nevertheless, we believe

that there exist many optimization opportunities which can exploit the different algebraic

properties (distributivity, commutativity, monotonicity) of pivot filters for optimizing complex

conjunctive filter plans by cost-based query rewriting strategies.

To accelerate the pivot graph generation for the current materialization strategy by avoiding

1https://www.wikidata.org/wiki/Wikidata:Main_Page
2https://www.dbpedia.org/
3https://yago-knowledge.org/
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many joins for the TC computation, the BSP-based pivot graph computation model (Sec-

tion 5.2) will be integrated into the current prototype. Accordingly, since the BSP computation

does not generate new pivot graphs but only changes the labels of the topic evolution graph

nodes, this also needs a reimplementation of our pivot topic query language adapted to

the BSP-based computation model. This implementation might exploit the existing prop-

erty graph systems [108] like Neo4j [109] and the corresponding graph query languages

Cypher [110] for expressive and efficient data querying in a property graph.
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