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The objective of this thesis is to develop new nonparametric estimation techniques to deal with the problem of edge effect. First, we consider a shrinkage method using Bernstein polynomials and a finite Gaussian mixture model to construct a semi-parametric density estimator. Efficiency and feasibility were confirmed by theoretical results and then by applications on simulated real data sets. Then, we adopted a method based on twotime scale stochastic approximation algorithms and Bernstein polynomials to improve the Tenbush's regression estimators. Some of its asymptotic properties were also discussed. Experimental studies were conducted to compare this new approach with the Bernstein estimator and the classical kernel estimator. Finally, we introduce a new method based on the Lagrange polynomial and Chebytchev-Gauss points to construct non-parametric estimators. We compare the new estimators with approaches based on Bernstein polynomials as well as with approaches based on kernels. Applications based on real data are envisaged to show the efficiency of these new methods as well as to compare them with other estimators.
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Introduction

Estimation is an intrinsic topic of statistics. For example, the estimation of regression function is undoubtedly a useful tool of data analysis to explore the relationship between a response variable and an explanatory variable. In addition, it has much to offer in terms of such applications as forecasting future opportunities and risks in business, predicting the causal relationships between parameters in biological systems and various other situations. It makes it possible to tackle observed phenomena, in a variety of fields such as geology, oceanography, economics, epidemiology, environmental sciences. These phenomena are often characterized by a real random variable X. Hence, the need to estimate the probability density function f seems to be quite crucial. Basically, existing estimation algorithms can be categorized into either parametric or non parametric approaches.

⋆ Within the parametric framework, in the case of density estimation, we suppose that the model f θ is known, where θ is a vector parameter whose exact values are unknown. We, thus, reduce the problem of estimating f θ to the problem of estimating the parameter θ, which stands for the main objective of the parametric approach. Several authors have developed statistical parametric models. Among them, we state the Expectation Maximization (EM ) algorithm proposed by [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm[END_REF].

⋆ The non-parametric approach supposes no particular shape for the probability density f . In this situation, it is natural to estimate one of the unknown functions characterizing the model (density function, regression...): this is the objective of functional estimation. In this context, several methods have been set forward for smooth estimation of density and distribution functions. The most popular one, called kernel method, was elaborated by [START_REF] Rosenblatt | Remarks on Some Nonparametric Estimates of a Density Function[END_REF]. The advances were carried out by [START_REF] Parzen | On Estimation of a Probability Density Function and Mode[END_REF] so as to estimate a density function. These estimators have been further developed using stochastic approximation methods to make it updated from a sample of size n to one of size n + 1 (see [START_REF] Mokkadem | The stochastic approximation method for the estimation of a multivariate probability density[END_REF] and [START_REF] Slaoui | The stochastic approximation method for the estimation of a distribution function[END_REF]). However, kernel methods display estimation problems at the edges, when we have a random variable X with density function f supported on a compact interval. Several solutions to this problem have been identified in the literature. See, for instance, the original work of [START_REF] Vitale | A bernstein polynomial approach to density function estimation[END_REF] and extensions given by [START_REF] Tenbusch | Two-dimensional Bernstein polynomial density estimators[END_REF], [START_REF] Babu | Application of Bernstein Polynomials for smooth estimation of a distribution and density function[END_REF], [START_REF] Kakizawa | Bernstein polynomial probability density estimation[END_REF] and [START_REF] Babu | Smooth estimation of a distribution function and density function on a hypercube using Bernstein polynomials for dependent random vectors[END_REF].

The contribution of this thesis lies in establishing the interface between these large categories of estimations. The basic target of this research work resides in crystallizing new techniques of estimation using Bernstein polynomial and Lagrange polynomial in order to resolve the boundaries effects of kernel estimators. It rests upon the following parts:

• Non parametric estimation using Bernstein polynomials.

• Non parametric estimation using Lagrange polynomials.

This manuscript is structured as follows.

Part I First, our central focus is on considering the Bernstein polynomial in order to construct non parametric recursive estimators of regression function and semi parametric density approach. This is particularly appealing since Bernstein polynomials are known to yield very smooth estimates that typically have acceptable behaviour at the boundaries.

Contribution of Chapter 2:

In this chapter, we introduce a brief review of the scientific background and display the terminology notations required to discuss the parametric and non parametric approaches. The opening was marked by recalling some basic definitions of parametric models. Afterwards, we explored the commonly used methods for non parametric estimation. In a nut shell, this chapter corresponds to the cornerstone for the subsequent chapters of this thesis.

Contribution of Chapter 3: This chapter revolves around the alleviation of the boundary problem when the probability density function has a bounded support. To this extent, we set forward a shrinkage method using the Bernstein polynomial and a finite Gaussian mixture model to construct a semi parametric density estimator, which improves the approximation at the edges. Some asymptotic properties of the proposed approach are addressed, such as its probability convergence and its asymptotic normality. In order to assess the performance of the proposed estimator, a simulation study and some real data sets are undertaken.

Contribution of Chapter 4:

In this chapter, we introduce a recursive estimators of the regression function grounded upon the two-time-scale stochastic approximation algorithms and the Bernstein polynomials. We investigate the asymptotic properties of these estimators. We compare the proposed estimators to the classic regression estimator using the Bernstein polynomial defined by Tenbusch. Results revealed that our identified recursive estimators can overcome the problem of the edges related kernel regression estimation with a compact support. The proposed recursive two-time-scale estimators are compared to the non recursive estimator elaborated by Tenbusch. The performance of the two estimators is illustrated via simulations as well as two real datasets.

Part II

The second goal of this research project is to display what seems to be a new method based on Lagrange polynomial L i and Tchebytchev-Gauss points in order to construct non parametric estimators and their recursive versions. The Tchebytchev-Gauss points (x i ) 1≤i≤m correspond to the optimal choice of grids that give the best convergence m i=1 v(x i )L i (.) → v(.) uniformly, when m → ∞, for any continuous function v of class C k (for k ≥ 1) on the interval [-1, 1] . This finding was handled by Jackson in the early 20th century (see [START_REF] Jackson | Über die Genauigkeit der Annäherung stetiger Funktionen durch ganze rationale Funktionen gegebenen Grades und trigonometrische Summen gegebener Ordnung[END_REF], [START_REF] Jackson | On approximation by trigonometric sums and polynomials[END_REF]), which stands for the main idea of the proposed estimators.

Contribution of Chapter 5:

In this chapter, we exhibit a new method to estimate distribution function, based on Lagrange polynomials and Tchebytchev-Gauss points. Some asymptotic properties of the proposed estimator are explored, such as its asymptotic bias, variance, mean squared error and Chung-Smirnov propriety. The asymptotic normality and the uniform convergence of the proposed estimator are equally tackled. To sum up, we would simply assert that the performance of the proposed estimator is explored through a certain simulation examples. This research work was the subject of the following publication: [START_REF] Helali | Estimation of a distribution function using Lagrange polynomials with Tchebychev-Gauss points[END_REF].

Contribution of Chapter 6:

In this chapter, we are basically concerned with introducing a recursive distribution estimator using Robbins Monro's al-gorithm and Lagrange polynomial. Such asymptotic properties of the proposed estimator are examined, such as its asymptotic bias and variance. The asymptotic normality is also enacted. We attempt to demonstrate that the proposed estimator outperforms the non recursive distribution function introduced in the previous chapter, in terms of the asymptotic mean squared error and the computational costs. Generally, the proposed estimator compares favorably with other competitors in theoretical comparisons, as well as in simulation study and in real data sets examples.

Thesis organization Chapters 2, 3, 4, 5 and 6 illustrate the contributions of the thesis as pointed out above. The chapter concludes in a classical way, with a mini chapter to wrap up the whole work and offer some research perspectives, while the closing section highlights the different references invested in the document.

Chapter 2

Mathematical preliminaries

In this chapter, the readers are introduced to some basic concepts of statistical estimation. We first briefly display generalities and outstanding examples of the parametric estimation. Then, we provide general approaches of non parametric estimation and we detail methods allowing to determine optimal choice of smoothing parametric estimation. Subsequently, we introduce the Robbins-Monro stochastic algorithm which creates the recursive estimators. In this chapter, we consider X, X 1 , . . . , X n (n ∈ N ⋆ ), a sequence of independent and identically distributed (i.i.d.) random variables having a common unknown density function f and a distribution function F . In addition, departing from the exhibited material, we shall invest the most pertinent concepts as well as prominent results leading us to opt for this specific path of research.

Parametric estimation

In this section, we first present the basic definitions and properties for the parametric estimation characterizing the unknown density f . Then, we shall provide a description of the finite mixture Gaussian model and the EM algorithm.

Definition of parametric estimation

Let's consider first the following definition.

Definition 2.1. A parametric family of densities is a parametric family of densities on R, defined by

F = {f θ , θ ∈ Θ},
where f θ is a distribution on R and Θ is a subset of R p .

The basic idea of Definition (2.1) is that for the parametric estimation approach, the model structure of the distribution function is known beforehand. As matter of fact, there are usually uniquely a few characteristic parameters in the distribution functions that are needed to be estimated using different methods, such as the Maximum Likelihood (ML) method, Least Square approach and Moment method. The ML estimator is likely to be the most addressed notion theoretically, and the most used in practice, which is illustrated in the following definition.

Definition 2.2. Assume all the distributions f θ have a probability density function (pdf) l θ on R. Then the ML estimator θ M L of θ is defined by

θ M L ∈ argmax θ∈Θ l θ (x).
Let us display a simple example for the ML estimator.

Example 2.1.1. Consider θ ∈ R, and l θ is the pdf of n observations x 1 . . . , x n from the Gaussian distribution N (θ, 1) with mean θ and variance 1. In this case, we write

l θ (x 1 , . . . , x n ) = (2π) -1/2 exp - 1 2 n i=1 (x i -θ) 2 . (2.1.1)
Maximizing the equation (2.1.1) yields the ML estimator θ M L = 1 n n i=1

x i . One can also calculate E( θ M L ) = θ. Therefore, the ML estimator is unbiased here.

Besides, owing to missing data, we need to find an estimator using an iterative algorithm. The most frequently used algorithm is the EM algorithm. It was developed by [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm[END_REF]. It is beneficial in a variety of incomplete-data problems.

Expectation maximization algorithm

The EM algorithm is an iterative way to find the ML estimator for the parameter θ, when data are incomplete or have unobserved latent variables. Each EM iteration alternates with an Expectation (E-step) and a maximization (M-step):

-The E-step holds the conditional expectation of the complete data log-likelihood given the observed data, using the current fit for the parameters.

-The M-step computes parameters maximizing the expected log-likelihood found in the E-step.

The computation of the likelihood equation is costly and time consuming as this equation tends to become complex. Therefore, the EM algorithm rests on simplifying this equation by using the log-likelihood equation instead of the likelihood equation. The EM algorithm stands for a popular tool in statistical estimation issues involving incomplete data or problems which can be posed in a similar form, such as the mixture parameters estimation (see [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm[END_REF], [START_REF] Mclachlan | Finite mixture models[END_REF]). For a better and thorough understanding of the EM algorithm, we try to elaborate in the next paragraph, the case of a Gaussian mixture model.

The Gaussian mixture model:

Within the parametric framework, it is noteworthy that the Gaussian mixture model can be used to estimate any density function. Consider X 1 , . . . , X n , a sequence of i.i.d. with common Gaussian mixture density defined by

g(x|θ) = K k=1 π k N (µ k , σ k )(x), (2.1.2) where θ = (π, µ, σ) = (π 1 . . . , π K , µ 1 . . . , µ K , σ 1 , . . . , σ K ), satisfies 0 ≤ π k ≤ 1, K k=1 π k = 1, µ k ∈ R, σ k > 0, for k = 1 . . . , K where K > 0,
and

N (µ, σ)(x) = 1 σ √ 2π exp - (x -µ) 2 2σ 2 .
Finally, for each observed data point X i , we associate a component label vector Z i in order to manage the data clustering. This random vector Z i = (Z ik ) 1≤k≤K is defined such that Z ik = 1 if the considered observation X i is drawn form the k kt component of the mixture, and Z ik = 0 otherwise. Consequently, Z i is distributed as a multivariate Bernoulli distribution with vector parameters (π 1 , . . . , π K ) as follows:

P (Z i = z i ) = K k=1 π z ik k .
Within the EM framework, (X 1 , . . . , X n , Z 1 , . . . , Z n ) corresponds to the complete data and (Z 1 , . . . , Z n ) stands for the hidden data. Hence, the complete-data log likelihood is expressed by

L(X 1 , . . . , X n , Z 1 , . . . , Z n , θ) = n i=1 K j=1 Z ij [log(π j ) + log (N (µ j , σ j )(X i ))] . (2.1.3)
The two steps of the EM algorithm, after l iterations, are:

• E-step: The conditional expectation of the complete data log-likelihood given the observed data, using the current fit θ (l) , is defined by

ϕ θ|θ (l) = E θ (l) (L(X 1 , . . . , X n , Z 1 , . . . , Z n , θ)|X 1 , . . . , X n ) . (2.1.4)
The posterior probability that X i belongs to the j th component of the mixture at the l th iteration, is expressed as

τ (l) ij = E θ (l) (Z ij |X 1 , . . . , X n ) = π (l) j N µ (l) j , (σ 2 ) (l) j (X i ) K h=1 π (l) h N µ (l) h , (σ 2 h (l) (X i )
.

(2.1.5)

Finally, we get

ϕ θ|θ (l) = n i=1 K j=1 τ (l) ij [log(π j ) + log (N (µ j , σ j )(X i ))] .
(2.1.6)

• M-step: It consists of a global maximization of ϕ θ|θ (l) with respect to θ: l) .

θ (l+1) = arg max θ ϕ θ|θ (
(2.1.7)

The updated estimates verify the following recursive formulas

π (l+1) j = 1 n n i=1 τ (l) ij , (2.1.8) µ (l+1) j = n i=1 τ (l) ij X i n i=1 τ (l) ij , (2.1.9) (σ 2 j ) (l+1) = n i=1 τ (l) ij X i -µ (l+1) j 2 n i=1 τ (l) ij .
(2.1.10)

We repeat these two steps until θ (l+1)θ (l) < ǫ, where ǫ is a fixed threshold of convergence. The convergence properties of the EM algorithm have been investigated by [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm[END_REF] and by [START_REF] Wu | On the convergence properties of the EM algorithm[END_REF]. Relying upon Jensen's inequality, it can be noticed that, as ϕ θ|θ (l) is increasing, the log-likelihood function is also increasing (see [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm[END_REF]). Consequently, the EM algorithm converges within a finite iterations number and gives the parameters maximum likelihood estimates. Therefore, under some conditions and according to [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm[END_REF], we have

lim l→∞ π (l) j = π j , lim l→∞ µ (l) j = µ j and lim l→∞ (σ 2 j ) (l) = σ 2 j almost surely (a-s). (2.1.11)
In what follows, we denote by θ = ( π 1 , . . . , π K , µ 1 , . . . , µ K , σ 1 , . . . , σ K ).

In general, the parametric estimation will be more powerful if the form of the distribution function is somehow known in advance. In addition, the estimation technique is much simpler. However, sometimes, there is not enough prior information about the model of the distribution. To solve the problem, non-parametric estimation approach is set forward.

Non parametric estimation

Within the framework of the non parametric estimation, knowing that F is continuous, we consider the estimation of F by using smooth functions instead of the empirical distribution function, which is not continuous. Numerous methods have been set forward for smooth estimation of density and distribution functions. The most popular one, is called kernel method. In this section, we recall some results concerning kernel estimators. However, these methods have estimation problems at the edges, when we have a random variable X with distribution function supported on a compact interval. For this reason, we recall then, the estimators using Bernstein polynomials in order to overcome this problem. Moreover, we detail methods allowing to determine optimal choice of smoothing parametric estimation.

Kernel estimators

Kernel method is introduced by [START_REF] Rosenblatt | Remarks on Some Nonparametric Estimates of a Density Function[END_REF]. The advances were carried out by [START_REF] Parzen | On Estimation of a Probability Density Function and Mode[END_REF] to estimate density function. Let f defined on R. We consider first the definition of a kernel.

Definition 2.3. A function K with a symmetric support [a, b] is called a kernel, if it is a positive function, such as b a |K(x)|dx < ∞,, K(-x) = K(x), b a xK(x)dx = 0, b a x 2 K(x)dx < ∞ and b a K 2 (x)dx < ∞.
All of these conditions make an asymptotically unbiased estimator with variance tending to zero when n → ∞ (see [START_REF] Tsybakov | Lower bounds on the minimax risk[END_REF]). Some classical examples of Kernels are the following.

Example 2.2.1.

-The rectangular Kernel:

K(u) = 1 2 1 {|u|≤1} .
-The triangular Kernel:

K(u) = (1 -|u|)1 {|u|≤1} .
-The Epanechnikov Kernel:

K(u) = 3 4 (1 -u 2 )1 {|u|≤1} .
-The Gaussian Kernel:

K(u) = 1 √ 2π exp (-u 2 /2).

Kernel density estimation:

The Kernel estimator (see [START_REF] Rosenblatt | Remarks on Some Nonparametric Estimates of a Density Function[END_REF] and [START_REF] Parzen | On Estimation of a Probability Density Function and Mode[END_REF]) of the density function is provided by

f n (x) = 1 nh n n p=1 K x -X p h n , ∀x ∈ R, (2.2.1)
where (h n ) dependent on the size n, is a bandwidth (smoothing parameter, a sequence of positive real numbers that goes to zero). This approach is asymptotically unbiased with a variance that goes to zero when n → ∞ with an optimal choice of the bandwidth (h n ). Multiple approaches were invested to estimate the smoothing parameter (h n ). The most ones beneficial are the cross-validation criterion and the Plug-in approach, which are further developed in the subsection (2.2.3).

Kernel distribution estimation:

The kernel distribution estimator was introduced by Nadaraya (1964) and was defined as

F n (x) = 1 n n p=1 K x -X p h n , ∀x ∈ R, (2.2.2)
where K(y) = y -∞ K(u)du. Some theoretical properties of the estimator F n were explored (see among many others, Nadaraya (1964), [START_REF] Reiss | Nonparametric estimation of smooth distribution functions[END_REF] and [START_REF] Peter | Kernel estimation of a distribution function[END_REF]). [START_REF] Reiss | Nonparametric estimation of smooth distribution functions[END_REF] and Falk (1977) showed that Nadaraya's kernel distribution estimator (5.1.1) has an asymptotically better performance than the empirical distribution function which does not consider the smoothness of F .

Kernel regression estimation:

Regression corresponds to a set of statistical methods that are widely used to analyze the relationship between a target variable and one or more other variables. Let 

(X, Y ), (X 1 , Y 1 ), . . . , (X n , Y n ) be i.i.d.
Y = r(X) + ǫ, (2.2.3)
where ǫ and X are independent with E(ǫ) = 0. Then, the regression function is r(x) = E(Y |X = x), which models the relationship between X and Y . In what follows, the random variable Y is supposed to be integrable. The kernel regression estimator r is based on the concept of the kernel density estimator as r n (x) = y g n (x, y)dy g n (x, y)dy 1 { gn(x,y)dy =0} = y g n (x, y)dy

f n (x) 1 { fn(x) =0} , (2.2.4)
where g n is a kernel estimator of g defined as

g n (x, y) = 1 nh 2 n n p)1 K x -X p h n K y -Y p h n . (2.2.5) Using Equation (2.2.5) leads to R y g n (x, y)dy = 1 nh n n p=1 K x -X p h n R y -Y p h n K y -Y p h n dy + R Y p h n K y -Y p h n dy = 1 nh n n p=1 K x -X p h n h n R uK(u)du + Y p R K(u)du .
Substituting this result into (2.2.4), according to Equation (2.2.1) and definition of the kernel function (2.3), we get the Nadaraya-Watson estimator of the regression function r (see Nadaraya (1964) and [START_REF] Watson | Smooth regression analysis[END_REF]) defined as,

r n (x) = n p=1 Y p K x-Xp hn n p=1 K x-Xp hn 1 n p=1 K x-Xp hn =0 . (2.2.6)
This estimator exhibits an undesirable behaviour at the boundaries of the support of X (bias is of order h in the boundary region while it is of order h 2 away from the boundaries, see Wan and [START_REF] Wand | Kernel smoothing[END_REF], Section 5.6.1). In fact, it is well known that kernel estimators have a bias that is larger by a full order of magnitude in the boundary region, when we have a random variable X with density function supported on a compact interval.

Support problem:

We suppose for simplicity that there is a single known boundary to the support of the density function f which we might as well take to be at the origin. Then, we deal with positive data. For convenience, we consider a symmetric kernel (for instance, normal kernels). Away from the boundary, which means that at any x > h n , the usual asymptotic mean and variance expressions are applied. Let us now suppose that f has two continuous derivatives everywhere, and that as n → ∞, h n → 0, and nh n → 0. Hence

E( f n (x)) ≃ f (x) + 1 2 h 2 n f ′′ (x) x 2 K(x)dx,
and

V ar( f n (x)) ≃ (nh n ) -1 f (x) K 2 (x)dx.
Near from the boundary, the expression of the mean and the variance are different. Let

x = ph n , we have

E( f n (x)) ≃ f (x) p -∞ K(x)dx -f ′ (x) p -∞ xK(x)dx + 1 2 h 2 n f ′′ (x) p -∞ x 2 K(x)dx,
and

V ar( f n (x)) ≃ (nh n ) -1 f (x) p -∞ K 2 (x)dx.
These bias phenomena are named boundary bias. Multiple authors set forward methods for reducing these phenomena such as data reflection [START_REF] Wiley | Incorporating support constraints into nonparametric estimators of densities[END_REF]), boundary kernels [START_REF] Müller | Smooth optimum kernel estimators near endpoints[END_REF] and Müller and Wang (1994)), the local linear estimator [START_REF] Lejeune | Smooth estimators of distribution and density functions[END_REF] and [START_REF] Jones | Simple boundary correction for density estimation kernel[END_REF]), the use of beta and gamma kernels [START_REF] Chen | Empirical likelihood confidence intervals for nonparametric density estimation[END_REF][START_REF] Chen | Beta kernel estimators for density functions[END_REF]). For a smooth estimate of a density function with a finite known support, Vitale's method [START_REF] Vitale | A bernstein polynomial approach to density function estimation[END_REF]) based on the Bernstein polynomials is illustrated in the next subsection.

Bernstein estimators

In order to overcome the boundaries problem in the case of density estimation and the case of distribution estimation, various methods were addressed such as the Bernstein polynomial estimators (see the works of [START_REF] Vitale | A bernstein polynomial approach to density function estimation[END_REF], [START_REF] Tenbusch | Two-dimensional Bernstein polynomial density estimators[END_REF], [START_REF] Babu | Application of Bernstein Polynomials for smooth estimation of a distribution and density function[END_REF] and [START_REF] Kakizawa | Bernstein polynomial probability density estimation[END_REF]). The first steps in non parametric estimation methods based on Bernstein polynomials were undertaken in 1912 in order to construct a probabilistic demonstration of the classical Weierstrass theorem which corresponds to what follows:

Theorem 2.2.1. Any continuous function f on a segment [a, b] is a uniform limit of polynomial functions on this segment. In other words, for everything ǫ > 0, there is a Q polynomial such as:

∀x ∈ [a, b], |f (x) -Q(x)| < ǫ.
Within this framework, [START_REF] Bernstein | Démonstration du théorème de Weierstrass fondeée sur le calcul des probabiliteés[END_REF] introduced a family of polynomials, defined as follows.

Bernstein polynomials

Definition 2.4. For m ∈ N and 0 ≤ k ≤ m, we call Bernstein's polynomial,

b k (m, x) = C k m x k (1 -x) m-k .
These polynomials have several properties, such as Proposition 2.1. Bernstein polynomials have the following properties:

1. Partition of the unit:

m k=0 b k (m, x) = 1, ∀x ∈ [0, 1]. 2. Positive: b k (m, x) ≥ 0, ∀k ∈ {0, . . . , m}. 3. Symmetry: b k (m, x) = b m-k (m, 1 -x), ∀k ∈ {0, . . . , m}. 4. Recurrence formula: b k (m, x) =      (1 -x)b k (m -1, x) if k = 0, (1 -x)b k (m -1, x) + xb k-1 (m -1, x) if k ∈ {1, . . . m -1}, xb k-1 (m -1, x) if k = m.
From a probabilistic point of view, the polynomial b k (m, p) is the probability

P (X = p)
, where X is a random variable following a binomial law of parameter (m, p). This is the idea that Bernstein adopted in his demonstration of the Weierstrass theorem, which is otherwise written as follows.

Theorem 2.2.2. Let f : [0, 1] → R be a continuous function. We define the Bernstein polynomial associated with f of order m ∈ N in terms of:

∀x ∈ [0, 1], B m (f )(x) = m k=0 f k m b k (m, x).
Thus, we have

lim m→∞ ||f -B m (f )|| = lim m→∞ sup x∈[0,1] |f (x) -B m (f )(x)| = 0.
As an excellent reference for properties of Bernstein polynomials, we refer the reader to [START_REF] Lorentz | Bernstein polynomials[END_REF]. [START_REF] Vitale | A bernstein polynomial approach to density function estimation[END_REF] invested the preceding theorem to construct an estimator of the distribution function which will be discussed in the next paragraph. In the following, we assume that m = m n depends on n. (1975) defined the estimator of F as follows,

Distribution estimation

Vitale

Fn,m (x) = m k=0 F n k m b k (m, x), (2.2.7)
where

F n (x) = 1 n n i=1
1 X i ≤x is the empirical distribution function. We note that Fn,m (0) = 0 and Fn,m (1) = 1.

The estimator defined in (2.2.7) was tackled by [START_REF] Babu | Application of Bernstein Polynomials for smooth estimation of a distribution and density function[END_REF] and [START_REF] Leblanc | A bias-reduced approach to density estimation using Bernstein polynomials[END_REF]Leblanc ( , 2012a)). The bias and the variance of the estimator Fn,m are given in the following proposition.

Proposition 2.2 (Leblan 2012). Let F be a continuous function and let it admit two continuous and bounded derivatives on [0, 1]. We have for x ∈ (0, 1) that

Bias( Fn,m (x)) = m -1 b(x) + o(m -1 ),
where b(x) = [x(x -1)f ′ (x)]/2. Besides, we have

V ar( Fn,m (x)) = n -1 σ 2 (x) -m -1/2 n -1 V (x) + o x m -1/2 n -1 , where σ 2 (x) = F (x)[1 -F (x)] and V (x) = f (x)[2x(1 -x)/π] 1/2 .
We note that if we consider h = m -1 as the 'bandwidth' of the Bernstein estimator, the bias of Fn,m becomes O(m -1 ) = O(h), which is bigger than the typically obtained bias using kernel estimators which have basically at least a bias as small as O(h 2 ) (except possibly near from the boundaries). In addition, the previous proposition implies that,

MSE( Fn,m ) = n -1 σ 2 (x) -m -1/2 n -1 V (x) + m -2 b 2 (x) + o(m -2 ) + o x m -1/2 n -1 .
The optimal choice of the order m that minimizes MSE is indicated by

m opt = n 2/3 4b 2 (x) V (x) . 2/3
. it is noteworthy that the plug-in approach elaborated by [START_REF] Altman | Bandwidth selection for kernel distribution function estimation[END_REF] and the cross-validation method of [START_REF] Bowman | Bandwidth selection for the smoothing of distribution functions[END_REF] can also be adapted in the practical choice of m. For further details, please refer back to the section (2.2.3). Starting from the distribution estimator Fn,m , Vitale constructed the density estimator f n,m which will be handled in the following paragraph.

Density estimation

To obtain the density estimator f n,m using the Bernstein polynomial, we first write the distribution estimator in the [START_REF] Babu | Application of Bernstein Polynomials for smooth estimation of a distribution and density function[END_REF] form as follows,

Fn,m (x) = m k=0 f n k m B k (m, x), (2.2.8)
where

f n (0) = 0, f n (k/m) = F n (k/m) -F n ((k -1)/m) for k = 1 . . . m and B k (m, x) = m j=k b j (m, x). With respect to x Equation (2.2.8), we obtain fn,m (x) = m k=0 f n k m d dx B k (m, x) = m m-1 k=1 F n k + 1 m -F n k m b k (m -1, x).
(2.2.9)

This estimator was introduced by [START_REF] Vitale | A bernstein polynomial approach to density function estimation[END_REF] and examined by [START_REF] Babu | Application of Bernstein Polynomials for smooth estimation of a distribution and density function[END_REF]. In addition, [START_REF] Bouezmarni | Bernstein estimator for unbounded density function[END_REF] considered the case of unbounded densities As for, [START_REF] Tenbusch | Two-dimensional Bernstein polynomial density estimators[END_REF] and [START_REF] Babu | Smooth estimation of a distribution function and density function on a hypercube using Bernstein polynomials for dependent random vectors[END_REF], they generalized this estimator to the multidimensional case. For additional details, the reader can consult the work of [START_REF] Leblanc | On the boundary properties of bernstein polynomial estimators of density and distribution functions[END_REF] and [START_REF] Babu | Application of Bernstein Polynomials for smooth estimation of a distribution and density function[END_REF]. Results are then exhibited for the bias and the variance of the estimator fn,m .

Proposition 2.3 (Leblan 2012). Let f be a density function. We assume that f is a continuous function with two derivatives bounded on [0, 1]. For x ∈ [0, 1], we have

Bias( fn,m (x)) = m -1 δ 1 (x) + o(m -1 ),
where

δ 1 (x) = 1 2 [(1 -2x)f ′ (x) + x(1 -x)f ′′ (x)].
On the other side, we have

V ar( fn,m (x)) = m 1/2 n f (x)ψ(x) + o n m 1/2 n if x ∈]0, 1[, m n f (x) + o x m n if x = 0, 1, where ψ(x) = (4πx(1 -x)) -1/2 .
If we consider that h = m -1 the bandwidth of the density estimator fn,m , we get a bias of the order of O(h) for the estimator fn,m , which is bigger than that obtained by the kernel estimator f n . On the other side, the variance of the estimator fn,m is of the order of O(h -1/2 /n)) for x ∈]0, 1[, which is small that that of the kernel estimator, which is of the order of O(h -1 /n). We also notice that the variance is of the order of O(m 1/2 /n) within the interval ]0, 1[, but it is of a higher order that is equal to O(m/n) at the boundaries. Based on the density estimator fn,m defined in (2.2.9), [START_REF] Tenbusch | Nonparametric curve estimation with Bernstein estimates[END_REF] identified a regression estimator using Bernstein polynomials, which is elucidated in the next paragraph.

Regression estimation

Let (X, Y ), (X 1 , Y 1 ), . . . , (X n , Y n ) be i.i.d. pairs of random variables with joints density function g(x, y) and let f such that f (x) = R g(x, t)dt, denote the density of X which is

supported on [0, 1]. Let E(|Y |) < ∞. The Bernstein estimator of the regression function r is x ∈ [0, 1] rn,m (x) =                n i=1 Y i m k=1 1 { k m <X i k+1 m } b k (m -1, x) n i=1 m k=1 1 { k m <X i k+1 m } b k (m -1, x) if m k=1 1 { k m <X i k+1 m } b k (m -1, x) = 0, 0 if m k=1 1 { k m <X i k+1 m } b k (m -1, x) = 0.
(2.2.10) Like the smoother kernel, the Bernstein estimator corresponds to an intuitive estimator of a regression function. At each point x 0 , the estimator is a weighted mean of the sample Y i . However, contrarily to the kernel estimator, the Bernstein estimator does not always use the same weight function (kernel). The Bernstein estimator rather adjusts the weight function to the positions of the X i 's in the predictor space. This adjustment of the weight function amounts in better boundary behavior of the Bernstein estimator compared to the Nadaraya-Watson estimator. To get a pertinent estimation by the kernel method or Bernstein polynomials, it is significant to choose the smoothing parameters (h n ) and m. Some methods as far as the choice of these parameters are displayed in the next paragraph.

Choice of smoothing parameter

Within the framework of non parametric estimators, several approaches were used to estimate the smoothing parameter. Among the most famous and useful ones, we mentioned the cross-validation criterion and the Plug-in approach. A detailed comparison of these techniques is stated in [START_REF] Delaigle | Practical bandwidth selection in deconvolution kernel density estimation[END_REF]. We are basically interested in following the principle of cross-validation.

Cross validation method

Step 1: The starting sample (X 1 , . . . , X n ) is cut into V packets L 1 , . . . , L V of the same size n/V .

Step 2: For v = 1 . . . V , (a) We proposed an estimator f v h of the density f from all observations, except the L v package. Step 3: A global risk estimator is constructed

MISE CV f (h) = 1 V V v=1 MISE v (h) and h opt = arg min h>0 MISE CV f (h).
In the following section, we will handle recursive estimators using the stochastic algorithm of [START_REF] Robbins | A Stochastic Approximation Method[END_REF].

Non parametric recursive estimation

Stochastic algorithms were frequently used in many research applications involving sequential change detection, system identification and transmission systems. The recursive estimators can be updated with each supplementary new observation and grant multiple advantages. They do not need extensive storage of data and they are fast to compute.

Methodology

The general form of stochastic algorithm is:

θ n = θ n-1 + γ n φ (θ n-1 , W n ) + γ 2 n µ n (θ n-1 , W n ) , (2.3.1)
where

• (γ n ) is a positive sequence of real numbers decreasing towards zero.

• (θ n ) the sequence to be recursively updated.

• (W n ) is a sequence of random variables representing the on-line observations.

• φ(θ, W ) is the function which essentially defines how the parameter θ is updated as a function of new observation.

• µ n (θ n-1 , W n ) is a small perturbation on the algorithm.

The behavior of this algorithm was investigated by Benveniste et al (1990), the special case when µ n = 0 was considered by [START_REF] Delyon | General results on the convergence of stochastic algorithms[END_REF]. Algorithm (4.7.10) coincides with the one analysed by [START_REF] Kushner | General convergence results for stochastic approximations via weak convergence theory[END_REF], [START_REF] Ljung | Strong Convergence of a Stochastic Approximation Algorithm[END_REF] and [START_REF] Ruppert | Almost Sure Approximations to the Robbins-Monro and Kiefer-Wolfowitz Processes with Dependent Noise[END_REF]:

θ n = θ n-1 + γ n [φ(θ n-1 ) -W n + η n ] , (2.3.2)
where

• η n stands for a random variables converges to 0 almost surely.

• φ corresponds to a measurable unknown function.

They asserted that (2.3.2) includes the [START_REF] Robbins | A Stochastic Approximation Method[END_REF] and [START_REF] Kiefer | Stochastic Estimation of the Maximum of a Regression Function[END_REF] stochastic approximation processes, which allow the search for zero θ ⋆ of the function φ. The application of Robbins-Monro's procedure to construct a stochastic approximation algorithm was identified by Révész (1973Révész ( , 1977) ) and extended by [START_REF] Tsybakov | Recurrent Estimation of the Mode of a Multidimensional Distribution[END_REF].

Most of the classical results for the Robbins-Monro and Kiefer-Wolfowitz processes require the assumption E [W n |F n-1 ] = 0, where F n-1 stands for the σ-algebra of the events occurring up the time n -1. Under standard conditions on the function φ and on the sequence (γ n ), [START_REF] Kushner | Stochastic approximation and recursive algorithms and applications[END_REF] highlighted that θ n → θ ⋆ almost surely (a.s.).

In the following subsections, two examples of recursive estimators are constructed using the Robbins and Monro algorithm.

Recursive kernel distribution estimator

In order to construct a stochastic algorithm, which approximates the function F at a given point x, Slaoui (2014) defined an algorithm to search the zero of the function h : y → F (x)y as follows:

(i) we set F 0 (x) ∈ [0, 1].
(ii) For all n ≥ 1, we set

F n (x) = F n-1 (x) + γ n Q n (x),
where the stepsize (γ n ) is a positive sequence of real numbers decreasing to zero and

(Q n ) is a sequence of functions Q n : R → R defined by Q n (x) = φ(F n-1 (x)) -W n + η n . Using the fact that E(W n |F n-1 ) = 0, where F n-1 stands for the σ-algebra of the events occurring up the time n -1, it comes E(Q n (x)) = F (x) -F n-1 (x) + η n .
Following the approach of Révész (1973Révész ( , 1977) ) and noting that

E K(h -1 n (x -X n )) = F (x) + ξ n (x),
where ξ n (x) goes to zero as n goes to infinity and

K(z) = z -∞ K(u)du, we set Q n (x) = K(h -1 n (x -X n )) -F n-1 (x).
Therefore, the recursive estimator F n of the distribution function F at the point x can be stated as

F n (x) = (1 -γ n )F n-1 (x) + γ n K(h -1 n (x -X n )). (2.3.3)
Further more, we suppose that

F 0 (x) = 0. Let Π n = n j=1
(1γ j ). As a matter of fact, we infer from Equation (6.1.3) that F n can be rewritten as

F n (x) = Π n n k=1 Π -1 k γ k K x -X k h k . (2.3.4)
it is inferred that, with an adequate choice of the stepsize (γ n ) and the bandwidth (h n ), the MW ISE (Mean Weighted Integrated Squared Error) of the Slaoui'estimator F n (7) is smaller than that of Nadaraya's estimator F n (5.1.1). A similar steps were invested by [START_REF] Jmaei | Recursive distribution estimators defined by stochastic approximation method using Bernstein polynomials[END_REF] to construct a recursive distribution estimator using Bernstein polynomials in order to resolve the edge effects of kernel estimators.

Recursive kernel regression estimator

Slaoui ( 2016) developed a stochastic algorithm to construct a semi-recursive estimator of the regression function r(x) = E(Y |X = x). First we construct a stochastic algorithm for the estimation of the function a : x → r(x)f (x). Then, we define an algorithm of search for the zero of the function l : y → a(x)y as follows:

(i) We set a 0 (x) ∈ R.

(ii) For all n ≥ 1, we set a n (x) = a n-1 (x)+β n W n , where the stepsize (β n ) is a sequence of positive real numbers that goes to zero and

W n (x) = h -1 n Y n K(h -1 n (x-X n ))-a n-1 (x).
Then, the considered estimator to recursively estimate the function a at the point x can be written as

a n (x) = S n n k=1 S -1 k β k h -1 k Y k K x -X k h k ,
where S n = n j=1 (1β j ) and a 0 (x) = 0. Moreover, we use the estimator introduced in [START_REF] Mokkadem | The stochastic approximation method for the estimation of a multivariate probability density[END_REF] to estimate recursively the density f at the point x as follows

f n (x) = (1 -γ n )f n-1 (x) + γ n h -1 n K(h -1 n [x -X n ]),
where the stepsize (γ n ) is a sequence of positive real numbers that goes to zero. Let f 0 (x) = 0, and Π n = n j=1 (1γ j ). Then, it follows that one can estimate f recursively at the point x by

f n (x) = Π n n k=1 Π -1 k γ k h -1 n K x -X k h k .
Therefore, we consider the semi-recursive estimator for the regression function r at the point x

r n (x) = an(x) fn(x) if f n (x) = 0, 0 otherwise.
This semi-recursive estimator is very competitive to the non recursive one (2.2.6) at the level of estimation error and it proves to be much better in terms of computational costs using certain selected bandwidth (h n ) and several special stepsizes (γ n ) and (β n ).

Part I Non parametric estimation using Bernstein polynomials

Chapter 3

Semi parametric estimator using Bernstein polynomials

Key words and phrases: Asymptotic properties, Bernstein polynomial, EM algorithm, Gaussian mixture model, Kernel estimator, Shrinkage estimator.

Abstract 1: The central focus of this chapter is upon the alleviation of the boundary problem when the probability density function has a bounded support. Mixtures of beta densities have led to different methods of density estimation for data assumed to have compact support. Among these methods, we mention Bernstein polynomials which leads to an improvement of edge properties for the density function estimator.

In this chapter, we set forward a shrinkage method using the Bernstein polynomial and a finite Gaussian mixture model to construct a semi parametric density estimator, which improves the approximation at the edges. Some asymptotic properties of the proposed approach are investigated, such as its probability convergence and its asymptotic normality. In order to evaluate the performance of the proposed estimator, a simulation study and some real data sets are carried out.

Introduction

Density estimation is a widely adopted tool for multiple tasks in statistical inference, machine learning, visualization, and exploratory data analysis. Existing density estimation algorithms can be categorized into either parametric, semi parametric, or non parametric approaches. In the non parametric framework, several methods have been set forward for smooth estimation of density and distribution functions. The most popular one, called kernel method, was introduced by [START_REF] Rosenblatt | Remarks on Some Nonparametric Estimates of a Density Function[END_REF]. The advances were carried out by [START_REF] Parzen | On Estimation of a Probability Density Function and Mode[END_REF] to estimate a density function. The reader is recommended to consult the chapter of [START_REF] Härdle | Smoothing techniques with implementation in S. S[END_REF] for an introduction of several kernel smoothing techniques. However, kernel methods display estimation problems at the edges, when we have a random variable X with density function f supported on a compact interval. Moreover, if X 1 , . . . , X n is a sample with same density f , it is well known in non parametric kernel density estimation that the bias of the standard kernel density estimator

f n (x) = 1 nh n n i=1 K x -X i h n , (3.1.1)
is of a larger order near the boundary than that in the interior, where K is a kernel (that is, a positive function satisfying K(x)dx = 1), and (h n ) is a bandwidth (that is, a sequence of positive real numbers that goes to zero). Let us now suppose that f has two continuous derivatives everywhere, and that as n → ∞, h = h n → 0 and nh → 0. Let x = ph for p > 0. Near the boundary, the expression of the mean and the variance are indicated as

E f n (x) ≃ f (x) p -∞ K(x)dx -f ′ (x) p -∞ xK(x)dx + 1 2 h 2 f ′′ (x) p -∞ x 2 K(x)dx, and 
V ar f n (x) ≃ (nh) -1 f (x) p -∞ K 2 (x)dx.
These bias phenomena are called boundary bias. Numerous authors have elaborated methods for reducing these phenomena such as data reflection [START_REF] Wiley | Incorporating support constraints into nonparametric estimators of densities[END_REF]), boundary kernels [START_REF] Müller | Smooth optimum kernel estimators near endpoints[END_REF], [START_REF] Müller | On the boundary kernel method for nonparametric curve estimation near endpoints[END_REF] and Müller and Wang (1994)), the local linear estimator [START_REF] Lejeune | Smooth estimators of distribution and density functions[END_REF] and [START_REF] Jones | Simple boundary correction for density estimation kernel[END_REF]), the use of beta and gamma kernels [START_REF] Chen | Beta kernel estimators for density functions[END_REF] and [START_REF] Chen | Probability density function estimation using gamma kernels[END_REF]), the bias reduction [START_REF] Leblanc | A bias-reduced approach to density estimation using Bernstein polynomials[END_REF] and Slaoui ( 2018)). For a smooth estimator of a density function f with finite known support, there have been several methods such as Vitale's method (see [START_REF] Vitale | A bernstein polynomial approach to density function estimation[END_REF]) which is based on the Bernstein polynomials and expressed as

f1,n,m (x) = m m-1 k=0 F n k + 1 m -F n k m b k (m -1, x), (3.1.2)
where F n is the empirical distribution function and b k (m, x) is the Bernstein polynomial. This estimator was investigated in literature [START_REF] Ghosal | Convergence rates for density estimation with Bernstein polynomials[END_REF], [START_REF] Babu | Application of Bernstein Polynomials for smooth estimation of a distribution and density function[END_REF], [START_REF] Kakizawa | Bernstein polynomial probability density estimation[END_REF], [START_REF] Rao | Estimation of distribution and density functions by generalized Bernstein polynomials[END_REF]) and more recently by [START_REF] Leblanc | A bias-reduced approach to density estimation using Bernstein polynomials[END_REF], [START_REF] Igarashi | On improving convergence rate of Bernstein polynomial density estimator[END_REF] and [START_REF] Slaoui | Recursive density estimators based on Robbins-Monro's scheme and using Bernstein polynomials[END_REF].

Within the parametric framework, it is noteworthy that the Gaussian mixture model, can be used to estimate any density function, without any problem of estimation on the edge. This refers to the fact that the set of all normal mixture densities is dense in the set of all density functions under the L 1 metric (see [START_REF] Li | Mixture density estimation[END_REF]). The investigation of mixture models stands for a full field in modern statistics. It is a probabilistic model introduced by [START_REF] Pearson | Contributions to the mathematical theory of evolution[END_REF] to illustrate the presence of subpopulations within an overall population. It has been developed so far by various authors like [START_REF] Mclachlan | Finite mixture models[END_REF]. It is used for data classification and it provides efficient approaches of model-Based clustering. [START_REF] Roeder | Practical Bayesian density estimation using mixtures of normals[END_REF] demonstrated that when a Gaussian mixture model is used to estimate a density nonparametrically, the density estimator that uses the Bayesian information criterion of [START_REF] Schwarz | Estimating the dimension of a model[END_REF] to select the number of components in the mixture, is consistent (see [START_REF] Leroux | Consistent estimation of a mixing distribution[END_REF]).

However, we obtain the nonparametric kernel estimate of a density if we fit a mixture of n components in equal proportions 1/n, where n is the size of the observed sample. As a matter of fact, it can be inferred that mixture models occupy an interesting niche between parametric and nonparametric approaches to statistical estimation.

The problem at the edge does not arise for the parametric model. For this reason, the basic idea of this work is to consider a shrinkage method using the Bernstein (Vitale's estimator) and the Gaussian mixture estimators, to construct a shrinkage density estimator, in order to improve the approximation at the edge. A shrinkage estimator is a convex combination between estimators (see [START_REF] James | Estimation with quadratic loss[END_REF]). Basically, this implies that a naive or raw estimate is improved by combining it with other information.

The remainder of this chapter is organized as follows. In the next section, we introduce a new semi parametric estimation approach based on the shrinkage method using the Bernstein polynomials and the Gaussian mixture densities. In Section 6.3, the consistency of the proposed estimator is exhibited as well as its asymptotic normality. Section 6.4 highlights a simulation study that compares the performance of the proposed approach with the Bernstein estimator and with the standard Gaussian kernel estimator. The closing Section 6.5 crowns the whole work, wraps the conclusion and provides new perspectives for future work.

Proposed approach

The proposed semi parametric approach rests upon the shrinkage combination between the Gaussian mixture model and the Bernstein density estimators using the EM algo-rithm for the parameters estimations. The literature on shrinkage estimation is enormous. From this perspective, it is noteworthy to mention the most relevant contributions. [START_REF] James | Estimation with quadratic loss[END_REF] were the first to introduce the classic shrinkage estimator. [START_REF] Stein | Estimation of the mean of a multivariate normal distribution[END_REF] provided theory for the analysis of risk. Oman (Oman (1982a,b)) developed estimators which shrink Gaussian density estimators towards linear subspaces. An indepth investigation of shrinkage theory is displayed in Chapter 5 of Lehmann and Casella (1992).

The proposed semi parametric approach based upon estimating the density function f , relies on the same principle of Stein's works, and there are two aspects along this line. The first setting is non-parametric in the sense that we do not assume any parametric form of the density. The non-parametric setting is very important as it allows us to perform statistical inference without making any assumption on the parametric form of the true density f . The second setting is to consider the Gaussian mixture model, as a parametric estimator, of the unknown density f .

In what follows, we consider X 1 , . . . , X n a sequence of i.i.d. random variables having a common unknown density function f supported on [0, 1]. We develop here a shrinkage method to estimate the density function, which is divided into three steps:

Step 1 We consider the Bernstein estimator of the density function f which is defined as

f1,n,m (x) = m m-1 i=0 F n i + 1 m -F n i m b i (m -1, x) (3.2.1)
Step 2 We consider the Mixture Gaussian density as an estimator of the density function f , given by

f2,n (x) = K k=1 π k N ( µ k , σ k )(x), (3.2.2)
where µ k , σ k and π k are estimated by the EM algorithm defined in (2.1.11).

Step 3 We consider the shrinkage density estimator f n,m form defined by

f Sh n,m (x) = λ f1,n,m (x) + (1 -λ) f2,n (x)
, and we use the EM algorithm to estimate the parameter λ ∈ [0, 1] of the proposed model.

By the same way as considered in Section 2.1.2 of chapter 2, the two steps of the EM algorithm, after t iterations, are denoted in terms of:

1. E-step: The conditional expectation of the complete data log-likelihood given the observed data, using the current λ (t) , is provided by

Q(λ|λ (t) ) = n i=1 E λ (t) (W i1 | X i ) log f1,n,m (X i ) + E λ (t) (W i2 | X i ) log f2,n (X i ),
where

W i = (W i1 , W i2
) is a discrete random vector, following a multivariate Bernoulli distribution with vector parameters (λ, 1λ). Using Bays's formula, we obtain the posterior probability in the t th iteration denoted by

τ (t) i1 = f1,n,m (X i )λ (t) λ (t) f1,n,m (X i ) + (1 -λ (t) ) f2,n (X i ) , and 
τ (t) i2 = f2,n (X i )λ (t) λ (t) f1,n,m (X i ) + (1 -λ (t) ) f2,n (X i ) = 1 -τ (t) i1 .
2. M-step: It consists of a global maximization of Q(λ|λ (t) ) with respect to λ:

λ (t+1) = argmax λ Q(λ | λ (t) ).
The updated estimate of λ is indicated by:

λ (t+1) = 1 n n i=1 τ (t) i1 .
The estimation of λ is obtained from by iterating the EM algorithm until convergence:

lim t→∞ λ (t) = λ. (3.2.3)
Therefore, the proposed estimator of the density function f is defined by

f Sh n,m (x) = λ f1,n,m (x) + (1 -λ) f2,n (x). (3.2.4)
Basically, it is a shrinkage estimator that shrinks the Bernstein estimator towards the Gaussian Mixture density by a specified amount of λ. If λ = 1, the estimator f Sh n,m reduces to the Bernstein estimator f1,n,n .

Convergence

In this section, we derive some asymptotic properties of the proposed estimator f Sh n,m when the sample size tends to infinity. First, we assume that λ and K are fixed. The following proposition gives the probability convergence of the proposed estimator f Sh n,m .

Proposition 3.1 (Probability convergence). If m = o (n/ log(n)), then for x ∈ [0, 1] we have f Sh n,m (x) P -→ n,m→+∞ λf (x) + (1 -λ)f 2 (x),
where

f 2 (x) = K j=1 π j N (µ j , σ 2 j )(x), π j = E(Z 1j ), µ j = E(X 1 | Z 1j = 1), σ 2 j = V ar(X 1 | Z 1j = 1) for j = 1, . . . , K and P -→ denotes the convergence in probability.
The proof of Proposition 3.1 necessitates the following technical Lemma.

Lemma 3.1. Let (S n ) n≥1 be a sequence of i.i.d. random variables in the space of square integral functions L 2 with a common mean µ and let (T n ) n≥1 be a sequence of random variables. Hence,

E(S n |T n ) L 2 -→ n→+∞ µ, where S n = 1 n n i=1 S i ,
where L 2 denotes the mean quadratic convergence L 2 .

The proof of this lemma is reported in [START_REF] Zitouni | Asymptotic properties of the estimator for a finite mixture of exponential dispersion models[END_REF].

Proof: [Proof of Proposition 3.1] First, using Lemma 3.1 and following the same steps as the proof of Theorem 4.4 in [START_REF] Zitouni | Asymptotic properties of the estimator for a finite mixture of exponential dispersion models[END_REF], we prove that

π j P -→ n→+∞ π j , lim n→∞ µ j P -→ n→+∞ µ j , and σ 2 j P -→ n→+∞ σ 2 j .
Then according to Slutsky's Theorem, we get

K k=1 π k N ( µ k , σ k )(x) P -→ n→+∞ K j=1 π j N (µ j , σ 2 j )(x). (3.3.1)
Second, based on Theorem 3.1 in [START_REF] Babu | Application of Bernstein Polynomials for smooth estimation of a distribution and density function[END_REF], we obtain that f1,n,m (x)

P -→ n→+∞ f (x) for x ∈ [0, 1]. (3.3.2)
In addition, referring to (3.3.1) and (3.3.2) and grounded on the application of Slutsky's Theorem, we conclude the proof.

To study the asymptotic normality of the estimator f Sh n,m given by (3.2.4), we set forward the following assumptions in [START_REF] Redner | Mixture densities, maximum likelihood and the EM algorithm[END_REF] (A1) For almost x ∈ [0, 1], and for all i, j, h = 1 . . . , K, the partial derivatives ∂g/∂ξ i , ∂ 2 g/∂ξ i ∂ξ j and ∂ 3 g/∂ξ i ∂ξ j ∂ξ h of the density g exist and satisfy that ∂g(x|θ) ∂ξ i , ∂ 2 g(x|θ) ∂ξ i ξ j and ∂ 3 g(x|θ) ∂ξ i ξ j ξ h are bounded respectively by J i , J ij J ijh , where J i and J ij are integrable, and J ijh , satisfies

1 0 J ijh (x)g(x| θ)dx < ∞, and (ξ 1 , . . . , ξ ν ) = (π 1 , . . . , π K , µ 1 . . . , µ K , σ 1 , . . . , σ K ).
(A2) The Fisher information matrix I(θ) is positively defined at θ.

Proposition 3.2 (Normality asymptotic). Under the regularity conditions

(A1)-(A2), if f (x) > 0 for all x ∈ [0, 1], 2 ≤ m ≤ (n/ log n) and lim n,m→∞
n 2/3 /m = 0, then we get

n 1/2 m -1/4 f Sh n,m (x) -λf (x) -(1 -λ)f 2 (x) D -→ n,m→+∞ N 0, λ 2 γ(x) , where γ(x) = f (x)(4πx(1 -x)) -1/2 , for x ∈]0, 1[ and D -→ denotes the convergence in distribution.
Proof: [Proof of Proposition 3.2] Using Theorem 3.2 in [START_REF] Babu | Application of Bernstein Polynomials for smooth estimation of a distribution and density function[END_REF], we obtain

n 1/2 m -1/4 ( f1,n,m (x) -f (x)) D -→ n,m→+∞ N (0, γ(x)).
Thus

n 1/2 m -1/4 (λ f1,n,m (x) -λf (x)) D -→ n,m→+∞ N (0, λ 2 γ(x)).
According to Theorem 3.1 in [START_REF] Redner | Mixture densities, maximum likelihood and the EM algorithm[END_REF], we obtain

√ n( θ -θ) D -→ n→+∞ N (0, I(θ) -1 ). Using delta method, we get √ n( f2,n (x| θ) -f 2 (x|θ)) D -→ n→+∞ N 0, Df 2 (x|θ)I(θ) -1 Df 2 (x|θ) T , with Df 2 (x|θ) is the Jacobian matrix of f 2 (x|θ) = f 2 (x) and f2,n (x| θ) = f2,n (x) . Since m -1/4 → 0 if m → ∞
, then using Slutsky's Theorem, we conclude the proof.

The following corollary is a consequence of the previous proposition which gives an asymptotic confidence interval of the density f , for a risk α ∈]0, 1[.

Corollary 3.3.1. The 100(1 -α)% asymptotic confidence interval of f (x) is given by f Sh n,m ± z 1-α 2 λ γ(x) √ nm -1/4 ,
where z 1-α 2 is the normal (1 -α 2 ) quantile. In the next section, we study the performance of the proposed estimator in estimating different distributions by comparing it to the performances of the Bernstein estimator and of the Gaussian kernel estimator.

Numerical studies

Comparison study

In this section, we investigate the performance of the proposed estimator given in (3.2.4), through estimating different densities by comparing it to the performances of Bernstein density estimator defined by fn,m

(x) = m m-1 k=1 F n k + 1 m -F n k m b k (m -1, x) and
of the standard Gaussian kernel estimator defined by

f n (x) = 1 nh n n i=1 K x -X i h n .
We apply the Bernstein estimator when the sample is concentrated on the interval [0, 1]. For this purpose, we need to make some suitable transformations in different cases that are listed below:

1. Suppose that X is concentrated on a finite support [a, b], then we work with the sample values Y 1 , . . . , Y n where

Y i = (X i -a)/(b -a).
2. For the density functions concentrated on R, we can use the transformed sample

Y i = 1/2 + π -1 arctan(X i ) which transforms the range to the interval [0, 1].
3. For the support R + , we can use the transformed sample

Y i = X i /(1 + X i ), which transforms the range to the interval [0, 1].
In the simulation study, three sample sizes are considered, n = 50, n = 100, and n = 200, as well as the following density functions:

(a) the beta mixture density 0.5B(3, 9) + 0.5B(9, 3).

(b) the beta mixture density 0.5B(3, 1) + 0.5B(10, 10).

(c) the normal mixture density 1/4N (2, 1) + 3/4N (-3, 1).

(d) the Chi-square χ n (2) density.

(e) the gamma mixture density 0.5G(1, 6) + 0.5G(6, 1).

(f) the gamma mixture density 0.5G(1, 2) + 0.5G(4, 2).

Our sample will be decomposed into a learning sample of size 2/3 of the considered sample on which the various statistical methods are constructed and a second sample of size 1/3 of the considered sample on which the predictive performances of the three methods are tested. For each density function f and sample size n, we compute the Integrated Squared Error (ISE), the integrated absolute error (IAE) and the Kullback-Leibler divergence (KL) of the estimator f Sh n,m over N = 500 trials,

ISE = 1 N N k=1 ISE( f k ), IAE = 1 N N k=1 IAE( f k ) and KL = 1 N N k=1 KL( f k ),
where f k is the estimator computed from the k th sample, and

ISE[ f k ] = 1 0 f k (x) -f (x) 2 dx, IAE( f k ) = 1 0 | f k (x) -f (x)|dx, KL( f k |f ) = 1 0 f k (x) log f k (x) f (x) dx.
To select the optimal parameter K, we use the Gap Statistics algorithm. In each case, we approximated the ISE of the Bernstein estimator (3.2.1), the proposed estimator (3.2.4) (for integers 1 ≤ m ≤ 300 ) and the kernel estimator (3.1.1) (for h = i/1000 with 1 ≤ i ≤ 300) using N = 500 random samples of sizes n = 50, n = 100 and n = 200. Departing from Tables 6.1, 6.2 and 6.3, we deduce that,

• For the case (b) of the beta mixture, the average KL of the kernel density estimator. is smaller than that obtained by the proposed density estimator (3.2.4) and the Bernstein estimator. However, in all the other cases, using an appropriate choice of the degree m, the average KL of the density estimator (3.2.4) is smaller than that achieved by the kernel estimator estimator and the Bernstein estimator even when the sample size is large for same cases.

• Almost in all considered cases, the averages ISE and IAE of the density estimator (3.2.4) is smaller than those obtained by the Bernstein estimator and those of the kernel estimator. Referring to Figure (3.4.1), we infer that all the estimators for the gamma mixture density 0.5G(6, 1) + 0.5G(1, 6) do not have good approximations near x = 0. However, the ISE of the proposed estimator is closer to zero compared to the Bernstein estimator and the kernel estimator, specially near the edge x = 1.

In addition, the performed simulations reveal that, on average, the proposed approach can lead to satisfactory estimates near the boundaries, better than the classical Bernstein estimator. 

Real dataset

Old faithful data

In this subsection, we consider the well known Old Faithful data displayed in Table 2.2 of [START_REF] Silverman | Density estimation for statistics and data analysis[END_REF]. These data concern the eruption lengths (in minutes) of 107 eruptions of the Old Faithful geyser in Yellowstone National Park, U.S.A. These data are such that min i (x i ) = 1.67 and max i (x i ) = 4.93. Then, it is convenient to assume that the density of eruption times is defined on the interval [1.5, 5] and transform the data into the interval unit. The Monte Carlo procedure was performed and resulted in h = 0.1327 for the standard kernel estimator, m = 60 for the Bernstein estimator and the proposed estimator.

These estimators are exhibited in Figure 1 (right panel) along with an histogram of the data. All the estimators are smooth and seem to capture the pattern highlighted by the histogram. We record that the proposed estimator outperforms the other estimators near the boundaries.

Tuna data

The last example concerns the tuna data reported in [START_REF] Chen | Empirical likelihood confidence intervals for nonparametric density estimation[END_REF]. The data are derived from an aerial line transect survey of Southern Bluefin Tuna in the Great Australian Bight.

An aircraft with two spotters on board flies randomly over allocated line transects. These data correspond to the perpendicular sighting distances (in miles) of 64 detected tuna schools to the transect lines. The survey was conducted in summer when tuna data tend to stay on the surface. The data are such that min i (x i ) = 0. 

Conclusion

In this chapter, we proposed a shrinkage estimator of a density function based on the Bernstein density estimator and using a finite Mixture Gaussian density. This method rests on three steps. The first step consists of considering the Bernstein estimator f1,n,m . The second relies upon the Gaussian Mixture density f2,n as an estimator of the unknown density f . The last step consists of considering the shrinkage form λ f1,n,m + (1λ) f2,n and EM algorithm in order to estimate the parameter λ. The asymptotic properties of this estimator were established. Afterwards, we demonstrated the effectiveness of the proposed method using some simulated and real data. We clarified how it can lead to very satisfactory estimates near the boundaries and in terms of ISE, IAE and KL. Eventually, we would simply assert that our research work is a step that may be taken further, extended and built upon as it lays the ground and paves the way for future works to elaborate a semi parametric regression estimator using the shrinkage method. We also plan to work on the case where λ is a random variable.

Introduction

Nonparametric regression estimation methods have attracted a great deal of attention as researchers have realized that parametric regression is not suitable for adequately fitting curves to many datasets that arise in practice. There are many reasons for choosing the nonparametric regression methods, no assumption should be made on the form of the regression function, the complexity of the model will be determined completely by the data, it is applicable for various design situations and it is easy to interpret.

There have been several monograph on the nonparametric regression estimation, see for instance [START_REF] Eubank | Spline Smoothing and Nonparametric Regression[END_REF], [START_REF] Müller | Nonparametric Analysis of Longitudinal Data[END_REF], [START_REF] Härdle | Applied nonparametric regression[END_REF], [START_REF] Hastie | Generalized Additive Models[END_REF], where it is shown that nonparametric regression techniques have much to offer in applications, such as observational astronomy, forecasting future opportunities and risks in business, causal relationships between parameters in biological systems and various other situations.

The most famous nonparametric estimator of the regression function r : x → E(Y |X = x), was proposed by Nadaraya (1964) and [START_REF] Watson | Smooth regression analysis[END_REF]. In the current work, we are concerned by the recursive estimation of a regression function. Recursive estimation have become an increasingly important area of research. In many situations, data arrives regularly so that it is impossible to store them in a traditional database. In such a context, building a recursive estimator which does not require to store all the data in memory is of great interest.

The recursive regression estimation was introduced first by [START_REF] Kiefer | Stochastic Estimation of the Maximum of a Regression Function[END_REF], extended by Révész (1973) using the Robbins-Monro's procedure, generalized by [START_REF] Mokkadem | The stochastic approximation method for the estimation of a multivariate probability density[END_REF] and studied by Slaoui (2015a,b,c). The semi-recursive approach was introduced by Slaoui (2016), while the recursive regression estimation for independent functional data was established by [START_REF] Slaoui | Wild Bootstrap Bandwidth Selection of Recursive Nonparametric Relative Regression for Independent Functional Data[END_REF][START_REF] Slaoui | Recursive nonparametric regression estimation for independent functional data Statist[END_REF].

However, kernel methods and their recursive improvements have estimation problems in the edges when the regression function has a bounded support. To overcome this problem, their have been many methods such as the approach of regression estimation using Bernstein polynomials proposed by [START_REF] Tenbusch | Nonparametric curve estimation with Bernstein estimates[END_REF].

Bernstein polynomial was used in several directions to estimate a density of probability and distribution functions. See for instance, the original work of [START_REF] Vitale | A bernstein polynomial approach to density function estimation[END_REF], extended by [START_REF] Tenbusch | Two-dimensional Bernstein polynomial density estimators[END_REF], [START_REF] Ghosal | Convergence rates for density estimation with Bernstein polynomials[END_REF], [START_REF] Babu | Application of Bernstein Polynomials for smooth estimation of a distribution and density function[END_REF], [START_REF] Kakizawa | Bernstein polynomial probability density estimation[END_REF], [START_REF] Kakizawa | A note on generalized bernstein polynomial density estimators[END_REF], [START_REF] Rao | Estimation of distribution and density functions by generalized Bernstein polynomials[END_REF], [START_REF] Leblanc | A bias-reduced approach to density estimation using Bernstein polynomials[END_REF]Leblanc ( , 2012a,b),b), [START_REF] Igarashi | On improving convergence rate of Bernstein polynomial density estimator[END_REF], [START_REF] Jmaei | Recursive distribution estimators defined by stochastic approximation method using Bernstein polynomials[END_REF] and [START_REF] Slaoui | Recursive density estimators based on Robbins-Monro's scheme and using Bernstein polynomials[END_REF].

Let (X, Y ), (X 1 , Y 1 ), . . . , (X n , Y n ) be i.i.d. pairs of random variables with joints density function g(x, y) and let f such that f (x) = R g(x, t)dt, denote the density of X which is supported on [0, 1]. We denote by a(x) = f (x)r(x) and let E(|Y |) < ∞. The non recursive estimator defined by [START_REF] Tenbusch | Nonparametric curve estimation with Bernstein estimates[END_REF] 

such that f (x) = 0, for x ∈ [0, 1] rn,m (x) =                n i=1 Y i m k=1 1 { k m <X i k+1 m } b k (m -1, x) n i=1 m k=1 1 { k m <X i k+1 m } b k (m -1, x) if m k=1 1 { k m <X i k+1 m } b k (m -1, x) = 0, 0 if m k=1 1 { k m <X i k+1 m } b k (m -1, x) = 0, (4.1.1) where b k (m, x) is the Bernstein polynomial of order m.
The aim of this chapter is to introduce two-time-scale stochastic approximation algorithms in order to define a class of recursive estimators of a regression function based on Bernstein polynomials. The two-time-scale stochastic approximation algorithms have been defined by [START_REF] Borkar | Stochastic approximation with two time scales[END_REF], [START_REF] Konda | Actor-Critic-Type Learning Algorithms for Markov Decision Processes[END_REF], [START_REF] Bhatnagar | Two timescale algorithms for simulation optimization of hidden Markov models[END_REF], their convergence rate studied by Konda and Tsitsiklis (1999), Mokkadem and Pelletier (2006a) and [START_REF] Slaoui | Application des méthodes d'approximations stochastiques à l'estimation de la densité et de la régression[END_REF].

In order to construct a recursive regression estimator defined by the two-time-scale stochastic algorithm, at a point x such as f (x) = 0, we define an algorithm of search of the common zero of the functions:

l 1 : (y, z) → f (x) -y and l 2 : (y, z) → r(x)f (x) y -z.
We proceed in the following way, for x ∈ [0, 1]: i) f 0 (x) > 0 and r 0 (x) ∈ R, ii) for n ≥ 1

f n (x) = f n-1 (x) + γ n W (1) n (x) r n (x) = r n-1 (x) + β n W (2) n (x)
where W

(1) n and W

(2) n are the observations of the functions l 1 and l 2 at the point

(f n-1 (x), r n-1 (x))
, and where the stepsizes (γ n ) and (β n ) are two sequences of positive real numbers that go to zero such that γ n ≤ 1 and lim n→∞ β n γ -1 n = 0. Then, we estimate f (x) and a(x) respectively by

m m-1 k=0 1 { k m <Xn≤ k+1 m } b k (m -1, x) and mY n m-1 k=0 1 { k m <Xn≤ k+1 m } b k (m -1, x).
Then, the two-time-scale stochastic approximation algorithm can be rewritten as:

       f n (x) = (1 -γ n )f n-1 (x) + γ n m m-1 k=0 1 { k m <Xn≤ k+1 m } b k (m -1, x), r n (x) = (1 -β n )r n-1 (x) + βnmYn f n-1 (x) m-1 k=0 1 { k m <Xn≤ k+1 m } b k (m -1, x). (4.1.2)
The aim of this chapter is to study the properties of the regression estimators defined in (4.1.2), as a competitor for the non recursive estimator (4.1.1).

The remainder of this chapter is organized as follows. In the next section, we present the assumptions and notations that we need to give the proprieties of our proposed two-time-scale estimators (4.1.2). In Section 6.3, we state our main results. Section 6.4 is devoted to give some numerical comparison between our proposed recursive estimators (4.1.2) and the non recursive estimtaor 6.3 through some simulation studies and then through two real datasets. Some concluding remarks and possible future developments are mentioned in Section 4.6. While, all the mathematical developments are deferred to the Section 6.6.

Assumptions and notations

We define the following class of regularly varying sequences. Definition 4.1. Let v ∈ R and (v n ) n≥1 be a nonrandom positive sequence. We say that

(v n ) ∈ GS(v) if lim n→+∞ n 1 - v n-1 v n = v.
This condition was introduced by [START_REF] Galambos | Regularly Varying Sequences[END_REF] to define regularly varying sequences. To study asymptotic the behaviours of the estimator r n defined by equations (4.1.2) inside the interval [0, 1], we consider the following assumptions for a ∈ (0, 1/3):

(A1) (i) (m n ) ∈ GS (a) with a ∈ (0, 1). (ii) (β n ) ∈ GS(-β) with β ∈ (3a, 1]. (iii) (γ n ) ∈ GS(-α) with α ∈ (min{3a, a + 1 -β}, β], such that lim n→∞ β -1 n γ n ln n k=1 γ k -1 = ∞. (iii) lim n→∞ (nβ n ) > min {a, (β -a/2) /2} 1 {x∈(0,1)} + min {a, (β -a) /2} 1 {x∈{0,1}} . (A2) (i) v → g(v, w) is continuous on R.
(ii) For t > 0, v → R |w| t g(v, w)dw is a bounded function.

Discussion of the assumptions 1. Assumptions (A1) and (A2) are regularity conditions which permit us to evaluate the bias term and the variance term of the proposed estimator.

2. The intuition behind the use of such bandwidth (h n ) belonging to GS (-a) is that the ratio h n-1 /h n is equal to 1 + a/n + o (1/n), similarly, we use the stepsize (β n ) belonging to GS (-β) then the ratio β n-1 /β n is equal to 1 + β/n + o (1/n), the application of Lemma 6.1 ensures that the bias and the variance will depend only on h n and β n and not on h 1 , . . . , h n and β 1 , . . . , β n then the MISE will depend only on h n and β n , which will be helpful to deduce an optimal bandwidth and an optimal stepsize.

3. In order to help the readers to follow the main results obtained in this chapter, we underline that the application of Lemma 6.1 under the assumption (A2) ensures,

Π n n k=1 Π -1 k β k = 1 + o (1), Π n n k=1 Π -1 k β k h 2 k = O (h 2 n ) and Π 2 n n k=1 Π -2 k β 2 k h -1 k = O β n h -1 h .
4. Assumption (A2) (iii) on the limit of (nβ n ) as n goes to infinity is usual in the framework of stochastic approximation algorithms. It implies in particular that the limit of [nβ n ] -1 is finite.

Throughout this chapter, we will use the following notations:

ξ = lim n→∞ (nβ n ) -1 , ψ(x) = (4πx(1 -x)) -1/2 , W n (x) = m n Y n mn-1 k=0 1 { k mn <Xn≤ k+1 mn } b k (m n -1, x), Z n (x) = m n mn-1 k=0 1 { k mn <Xn≤ k+1 mn } b k (m n -1, x), ∆ 1 (x) = 1 2 [(1 -2x)f ′ (x) + x(1 -x)f 2 (x)], ∆ 2 (x) = 1 2 [(1 -2x)(r ′ (x)f (x) -r(x)f ′ (x)) +x(1 -x) r (2) (x)f (x) + r(x)f (2) (x) + 2f ′ (x)r ′ (x) , = m -2 n Bias 2 (x) (1 -aξ) 2 1 A 1 a,x A 2 a,x [1 + o (1)] + β n m 1/2 n Var [Y |X = x] ψ (x) 2 -(β -a/2) ξ 1 A 4 a,x [1 + o x (1)] +β n m n Var [Y |X = x] 2 -(β -a) ξ 1 A 3 a,x [1 + o (1)] + 1 A 1 a,x A 2 a,x o m -2 n + 1 A 4 a,x o β n m 1/2 n +1 A 3 a,x o (β n m n ) . (4.3.5)
To minimize the MSE of r n (x) for x ∈ (0, 1) such that ψ(x) > 0, the stepsize (β n ) must be chosen in GS(-1) and (m n ) must be in GS(2/5). To minimize the MSE of r n (x) for x ∈ {0, 1} such that ψ(x) > 0, the stepsize (β n ) must be chosen in GS(-1) and (m n ) must be in GS(1/3).

Corollary 4.3.1. Let Assumptions (A1)-(A2) hold. To minimize the MSE of the proposed two-time-scale recursive estimators r n (x), the stepsize (γ n ) must be chosen equal to (n -1 ). The optimal order (m n ) should be equal to 2 6/5 5 3

2/5

Bias 4/5 (x)

ψ (x) 2/5 Var [Y |X = x] 2/5 n 2/5 1 {x∈(0,1)} + 6 1/3 Bias 2/3 (x) Var [Y |X = x] 1/3 n 1/3 1 {x∈{0,1}} ,
and the corresponding MSE must be equal to

MSE [ r n (x)] = 5 4 2 -2/5 5 3 6/5 ψ (x) 4/5 Var [Y |X = x] 4/5 Bias 2/5 (x) n -4/5 [1 + o (1)] 1 {x∈(0,1)} + 3 3 2 -1/3 3 2 4/3 Var [Y |X = x] 2/3 Bias 2/3 (x) n -2/3 [1 + o (1)] 1 {x∈{0,1}} .
Finally, the following proposition shows the asymptotic normality of the recursive estimators r n .

Theorem 4.3.1 (Asymptotic normality of r n ).

1. In the case when x ∈ (0, 1), if there exists c ≥ 0 such that

β -1 n m -5/2 n → c, (resp. the case when x ∈ {0, 1}, if β -1 n m -3 n → c), then V n (r n (x) -r(x)) D → N √ c (1 -aξ) Bias (x) , V (x) .
2. In the case when x ∈ (0, 1), if

β -1 n m -5/2 n → ∞, (resp. the case when x ∈ {0, 1}, if β -1 n m -3 n → ∞), then m n (r n (x) -r(x)) P → 1 (1 -aξ)
Bias (x) .

Numerical studies

The aim of this subsection is to compare our proposed two-time-scale estimators (4.1.2) with the non recursive estimator (4.1.1), through a simulation. We consider the regression model

Y = r(X) + ε,
where X ∼ N (0, 1) and ε ∼ N (0, σ 2 ), where σ ∈ {0.05, 0.1, 1}. When using our proposed two-time-scale algorithm (4.1.2), the stepsizes (γ n , β n ) are chosen to be equal to (n -0.98 , 0.31n -0.99 ). Moreover, in order to select the smoothing parameter (m n ), we consider a Monte Carlo procedure for each point x ∈ [0, 1]. We determine the parameter m for 1 ≤ m ≤ 400 by minimizing

1 N N i=1 [r i n,m (x) -r(x)] 2 ,
with r i n,m is the estimator of r n,m computed from the ith sample of size n. We choose N = 500 trials for the Monte Carlo simulation. In our simulation study, we consider three sample sizes; n = 50, n = 100, n = 200 and the following regression functions: (c) r(x) = 1 + 0.6x.

For each model and sample size n, we approximate the average integrated squared error (ISE) and the integrated absolute error (IAE) of the estimator using N = 500 trials of sample size n:

ISE = 1 N N k=1 ISE[r k ], IAE = 1 N N k=1 IAE[r k ],
where r k is the estimator computed from the kth sample, and

ISE(r k ) = 1 0 (r k (x) -r(x)) 2 dx, IAE(r k ) = R |r k (x) -r(x)|dx.
Table 6.2 shows that in terms of the average ISE and IAE of the two considered estimators, the proposed two-time-scale recursive estimators (4.1.2) have a smaller ISE and smaller IAE compared to the non recursive estimator (4.1.1) by using any one of the three regression functions and by considering any one of the three different noise variance.

Real dataset

An interesting subject of any dataset is to estimate the unknown regression in order to predict the response variable Y when we know the explanatory variable X. In this section, we apply our proposed two-time-scale estimators r n defined in (4.1.2) and the non recursive estimator rn,m given in (4.1.1) on the following two datasets.

1. Firstly, we consider the CO2 dataset1 which contained 60 observations on two variables: Year and CO2 in August. Scientists recorded CO2 levels, in parts per million (ppm), in the atmosphere for each Year from the start of 1958 through 2018. Finally, we used the Monte-Carlo method to obtain m = 60 for our recursive estimator r n and m = 50 for the non recursive estimator rn,m . We observe that our estimator is more close to the observed data, than the non recursive estimator, especially near the boundaries.

2. Secondly, we consider the wage1 dataset which appear in R package np (see [START_REF] Wooldridge | Basic regression analysis with time series data[END_REF]). Cross-section wage data consisting of a random sample taken from the U.S. Current Population Survey for the year 1976. There are 526 observations of the average hourly earnings and the years of education. We used the Monte-Carlo method to obtain m = 68 for our recursive estimator r n and m = 170 for the non recursive estimator rn,m . We observe that our estimator is more close to the observed data, than the non recursive estimator, especially near the boundaries. [Qualitative comparison between the two considered estimators.

Here we consider the CO2 dataset using our proposed estimator r n with the stepsize (γ n , β n ) = (n -0.98 , 0.31n -0.99 ) and the non recursive estimator rn,m ]

Concluding remarks

In the present chapter we investigated a recursive nonparametric regression estimator to overcome the edge estimation problem based on Bernstein polynomials and stochastic algorithm with two-time-scale. The proposed estimator asymptotically follows normal distribution. Moreover, our proposed estimators attained the asymptotic convergence rate O n -4/5 within the interval (0, 1) and O n -2/3 near the edges {0, 1}. A future research direction would be to extend our findings to the setting of serially dependent observations, α-mixing framework like in [START_REF] Khardani | Recursive kernel density estimation and optimal bandwidth selection under alpha-mixing data[END_REF]. Another direction is to investigate the data-driven bandwidth selection procedures (see Slaoui (2015c)), which requires non trivial mathematics, this would go well beyond the scope of the present chapter. We plan also to extend our approach to the case of locally linear two-time-scale recursive regression (see [START_REF] Härdle | Nonparametric and Semiparametric Models[END_REF] in the case of locally linear regression). [Qualitative comparison between the two considered estimators.

Here we consider the The wage1 dataset of the package np using our proposed estimator r n with the stepsize (γ n , β n ) = (n -0.98 , 0.31n -0.99 ) and the non recursive estimator rn,m ]

Auxiliary results and Mathematical developments

This section is devoted to the detailed proofs of our results. Throughout this chapter we consider the following notations:

ξ ′ = lim n→∞ (nγ n ) -1 , s n (x) = n k=1 γ k , Π n = n j=1 (1 -β j ), Q n = n j=1 (1 -γ j ), C = 1 √ 2 + 4 1 -2/3 .
Let us first state the following technical lemmas.

Lemma 4.1 [START_REF] Mokkadem | The stochastic approximation method for the estimation of a multivariate probability density[END_REF]). Let (v n ) ∈ GS(v), (γ n ) ∈ GS(-γ), and let l > 0 such that lvξ > 0. We have

lim n→∞ v n Π l n n k=1 Π -l k γ k v k = 1 l -vξ .
Moreover, for all positive sequence (α n ) such that lim n→∞ α n = 0, and all δ ∈ R

lim n→∞ v n Π l n n k=1 Π -l k γ k v k α k + δ = 0.
Let us now use the following decomposition:

r n (x) -r(x) = 1 f (x) [T n (x) + R n,1 (x) + R n,2 (x) + R n,3 (x) + R n,4 (x)] + R n,5 (x) ,
where

T n (x) = Π n n k=1 Π -1 k β k [W k (x) -r(x)Z k (x)] , (4.7.1) R n,1 (x) = r(x)Π n n k=1 Π -1 k β k γ k [f k (x) -f k-1 (x)] , R n,2 (x) = Π n n k=1 Π -1 k β k [W k (x) -E(W k (x))] f (x) -f k-1 (x) f k-1 (x) , R n,3 (x) = Π n n k=1 Π -1 k β k [E(W k (x)) -a(x)] f (x) -f k-1 (x) f k-1 (x) , R n,4 (x) = r(x)Π n n k=1 Π -1 k β k (f (x) -f k-1 (x)) 2 f k-1 (x) , R n,5 (x) = Π n (r 0 (x) -r(x)) .
Lemma 4.2. Under assumptions (A1)-(A2), we have

f n (x) -f (x) = O max{ γ n ln(s n )v n , v -2 n } . Lemma 4.3. Under assumptions (A1)-(A2), we have R n,1 (x) = R n,2 (x) = R n,3 (x) = R n,4 (x) = R n,5 (x) = o max{ β n v n , v -2 n } . Lemma 4.4. Let E m (x) = m k=0 b 2 k (m, x). We have (i) 0 ≤ E m (x) ≤ 1, for x ∈ [0, 1]. (ii) E m (x) = m -1/2 [ψ(x) + o x ((1)], for x ∈ (0, 1). (iii) E m (0) = E m (1) = 1.
(iv) Let g be any continuous function on

[0, 1]. Then m 1/2 1 0 g(x)E m (x)dx = 1 0 g(x)ψ(x)dx + o(1).
Lemma 4.5. For x ∈ [0, 1], we have

E(Z k (x)) = f (x) + ∆ 1 (x)m -1 k + o(m -1 k ), (4.7.2) E(W k (x)) = r(x)f (x) + ∆ 2 (x)m -1 k + o(m -1 k ), (4.7.3) V ar(W k (x)) = m 1/2 k E(Y 2 | X = x)f (x)ψ(x) + o x m 1/2 k 1 {x∈(0,1)} + E[Y 2 | X = x]f (x)m k + o x (m k ) 1 {x∈{0,1}} , (4.7.4) V ar(Z k (x)) = f (x)ψ(x)m 1/2 k + o x m 1/2 k 1 {x∈(0,1)} + (f (x)m k + o(m k )) 1 {x∈{0,1}} , (4.7.5)
and

Cov(W k (x), Z k (x)) = r(x)f (x)ψ(x)m 1/2 k + o x m 1/2 k 1 {x∈(0,1)} + (r(x)f (x)m k + o x (m k )) 1 {x∈{0,1}} .
(4.7.6)

Proof of lemma 4.2

In order to prove this lemma, we referred to the proposition 3.1 of [START_REF] Slaoui | Recursive density estimators based on Robbins-Monro's scheme and using Bernstein polynomials[END_REF] and we followed the same steps of proof of theorem 2 page 44 of [START_REF] Slaoui | Application des méthodes d'approximations stochastiques à l'estimation de la densité et de la régression[END_REF].

Proof of lemma 4.3

Let us first state the following notation,

(ζ n ) n = √ β n v n if lim n→∞ β n m 2 n v n = ∞, v -2 n otherwise. First, we have R n,5 (x) = o(ζ n ).

Proof of lemma 4.3 for R n,1

We first note that R n,1 can be written as,

R n,1 (x) = Π n n k=1 Π -1 k β k γ k [f k (x) -f k-1 (x)] = Π n n k=1 Π -1 k β k γ k [f k (x) -f (x)] -Π n n k=1 Π -1 k β k γ k [f k-1 (x) -f (x)] = Π n n-1 k=1 Π -1 k β k γ k [f k (x) -f (x)] + β n γ n [f n (x) -f (x)] -Π n Π -1 1 β 1 γ 1 [f 0 (x) -f (x)] -Π n n-1 k=1 Π -1 k+1 β k+1 γ k+1 [f k (x) -f (x)] = Π n n-1 k=1 Π -1 k β k γ k 1 - Π k Π k+1 β k+1 β k γ k γ k+1 (f k (x) -f (x)) + β n γ n (f n (x) -f (x)) -Π n β 1 (1 -β 1 )γ 1 (f 0 (x) -f (x)). (4.7.7)
Moreover, in view of (A1), we infer that

1 - Π k Π k+1 β k+1 β k γ k γ k+1 = 1 - 1 (1 -β k+1 ) β -1 k β -1 k+1 γ k γ k+1 = O(β k ). (4.7.8)
Then, the application of Lemma 4.2 together with (4.7.7) and (4.7.8), ensures that

R n,1 (x) = O Π n n k=1 Π -1 k β 2 k γ k (f k (x) -f (x)) + β n γ n (f n (x) -f (x)) + Π n = O Π n n k=1 Π -1 k β 2 k γ k (γ k v k ln s k ) 1/2 + Π n n k=1 Π -1 k β 2 k γ k v -2 k + β n γ n (γ n v n ln s n ) 1/2 + β n γ n v -2 n +O (Π n ) = O Π n n k=1 Π -1 k β k o β k v k + Π n n k=1 Π -1 k β k o(v -2 k ) + o β n v n + o(v -2 n ) + Π n = O Π n n k=1 Π -1 k β k o(ζ n ) + o(ζ n ) + O(Π n ) = o(ζ n ).
Proof of lemma 4.3 for R n,2

Throughout this proof we use the following notation:

L k (x) = W k (x) -E(W k (x)), G k (x) = f (x) -f k (x) f k (x) , M n (x) = n k=1 Π -1 k β k L k (x)G k-1 (x).
First, we set

F k = σ((X 1 , Y 1 ), . . . , (X k , Y k ))
, and we note that the increasing process of the martingale (M n (x) satisfies,

< M > n (x) = n k=1 E Π -2 k β 2 k L 2 k (x)G 2 k-1 (x) | F k-1 = n k=1 Π -2 k β 2 k G 2 k-1 (x)E L 2 k (x) | F k-1 = n k=1 Π -2 k β 2 k G 2 k-1 (x)E(L 2 k (x)) = n k=1 Π -2 k β 2 k G 2 k-1 (x)V ar(W k (x)).
In view of (4.7.4), the application of Lemma 4.2 ensures that

< M > n (x) = O n k=1 Π -2 k β 2 k f (x) -f k-1 (x) f k-1 (x) 2 v k = O n k=1 Π -2 k β 2 k γ k ln(s k )v k + v -4 k v k = O n k=1 Π -2 k β 2 k v 2 k γ k ln(s k ) + n k=1 Π -2 k β 2 k v -3 k . (4.7.9)
Let us first consider the case when lim n→∞ nβ n = ∞. The application of Lemma 6.1 gives

< M > n (x) = O Π -2 n β n γ n ln(s n )v 2 n + Π -2 n β n v -3 n .
Moreover, we note that for all ǫ > 0 we have

ln(Π -2 n ) = n k=1 ln(1 -β k ) -2 = n k=1 (2β k + o(β k )) = O n k=1 β k k ǫ .
Since we have β n n ǫ ∈ GS(-(β-ǫ)) with (β-ǫ) < 1. The application of Lemma 6.1 ensures that lim

n→∞ nβ n n ǫ n k=1 β k k ǫ = 1 -(β -ǫ). It comes that ln(Π -2 n ) = O(n 1+ǫ β n ). Moreover, the sequences (β n γ n ln(s n )v 2 n ) and (β n v -3 n ) tend to zero. It comes that, ln < M > n (x) = O ln(Π -2 n ) = O n 1+ǫ β n .
Then, the application of Theorem 1.3.15 in [START_REF] Duflo | Random Iterative Models[END_REF], ensures that for any δ > 0,

| M n (x) | = o < M > 1/2 n (x) (ln < M > n (x)) 1+δ 2 + O(1) = o Π -1 n β 1/2 n γ 1/2 n ln(s n ) 1/2 v n + β 1/2 n v -3/2 n (n 1+ǫ β n ) 1+δ 2 + O(1). Now, we set ǫ > 0 and δ > 0 such that (γ n v 2 n ) 1/2 (n 1+ǫ β n ) 1+δ 2
∈ GS(µ) with µ < 0. For more precision, the existence of ε and δ should be ensured by the condition α > a1 {x∈{0,1}} + a 2 1 {x∈(0,1)} + 1β. Moreover, we obtain

Π n |M n (x)| = o (β n v n ) 1/2 (γ n v n ) 1/2 ln(s n ) 1/2 n 1+ǫ β n 1+δ 2 + (β n v n ) 1/2 v -2 n n 1+ǫ β n 1+δ 2 +O(Π n ) = o (β n v n ) 1/2 + v -2 n + o(ζ n ) = o(ζ n ).
Now, in the case when the sequence (nβ n ) is bounded when n goes to infinity. The application of Lemma 6.1 for all (C n ) ∈ GS(0) together with (4.7.9), ensures that

< M > n (x) = O n k=1 Π -2 k β k (β k v k ) (γ k v k ln(s k )) + (β k v k ) v -4 k = O n k=1 Π -2 k β k o (β k v k C k ) + o v -4 k C k = o n k=1 Π -2 k β k o ζ 2 k C k = o Π -2 n ζ 2 n C n .
Moreover, since the sequence (nβ n ) is bounded when n goes to infinity, in this case, we have

Π -1 n ∈ GS(ξ -1 ) and ln (Π -2 n ζ 2 n L n ) = O(ln n).
Then, the application of Theorem 1.3.15 in [START_REF] Duflo | Random Iterative Models[END_REF], ensures that for all δ > 0,

| M n (x) | = o < M > 1/2 n (x) (ln < M > n (x)) 1+δ 2 + O(1) = o Π -1 n ζ n C 1/2 n ln(n) 1+δ 2 + O(1).
Thus, for δ = 1 and L n = (ln n) -2 , we get

Π n | M n (x) |= o(ζ n ), which ensures that R n,2 (x) = o (ζ n ) .
Proof of lemma 4.3 for R n,3

The application of Lemma 6.1 together with Lemma 4.2, ensures that

R n,3 (x) = Π n n-1 k=0 Π -1 k+1 β k+1 [E(W k+1 (x)) -a(x)] f (x) -f k (x) f k (x) = Π n n-1 k=0 Π -1 k+1 β k+1 [∆ 2 (x)m -1 k+1 + o(m -1 k+1 )] f (x) -f k (x) f k (x) = O Π n n-1 k=0 Π -1 k+1 β k+1 m -1 k+1 | f (x) -f k (x) | = o(ζ n ).
Proof of lemma 4.3 for R n,4

The application of Lemma 4.2 ensures that

R n,4 (x) = Π n n k=1 Π -1 k β k O (f (x) -f k-1 (x)) 2 = O Π n n k=1 Π -1 k β k ((γ k v k ln s k ) + v -4 k ) = o(ζ n ).

Proof of Proposition 4.1

The application of Lemma 6.1 together with (4.7.1) and (4.7.2), ensures that in the case when a, (4.7.10) in the case when a, x ∈ A 3 a,x , we have E(T n (x)) = o √ β n m n , and in the case when

x ∈ A 1 a,x A 2 a,x , E(T n (x)) = 1 1 -aξ (∆ 2 (x) -r(x)∆ 1 (x) + o(1))m -1 n ,
a, x ∈ A 4 a,x , we have E(T n (x)) = o β n m 1/2 n .
Let assumptions (A1) -(A ′ 3) hold such as f (x) > 0 for x ∈ {0, 1}. The asymptotic behaviour of r nr is given by the one of T n . More precisely, we establish the following lemma.

Lemma 4.6.

1. In the case when x ∈ (0, 1), if there exists c ≥ 0 such that

β -1 n m -5/2 n → c, (resp. the case when x ∈ {0, 1}, if β -1 n m -3 n → c), then V n T n (x) D → N √ c (1 -aξ) Bias (x) f (x) , V (x) f 2 (x) .
2. In the case when x ∈ (0, 1), if

β -1 n m -5/2 n → ∞, (resp. the case when x ∈ {0, 1}, if β -1 n m -3 n → ∞), then m n T n (x) P → 1 (1 -aξ) Bias (x) f (x) .
Proof: Let us first note that,

T n (x) -E(T n (x)) = Π n n k=1 {v k (x) -E(v k (x))} ,
where

v k (x) = Π -1 k β k (W k (x) -r(x)Z k (x)).
Let us now assume that, when a, x ∈ A 3 a,x A 4 a,x , we have (4.7.11) In the case when a, x ∈ A 1 a,x

V n (T n (x) -E [T n (x)]) D → N 0, V (x) f 2 (x) .
A 2 a,x , (4.3.2) gives m n (T n (x) -E (T n (x))) P → 0. Let us now prove (4.7.11), for this purpose, we set

B k (x) = Π -1 k β k {v k (x) -E(v k (x))} . (4.7.12) Moreover, since Var (T k (x)) = O m 1/2 k [1 + o x (1)] 1 A 4 a,x + m k [1 + o (1)] 1 A 3 a,x , the appli- cation of Lemma 6.1 ensures that Y 2 n = n k=1 Var (B k (x)) = n k=1 Π -2 k β 2 k Var (v k (x)) , = β n m 1/2 n Π 2 n V (x) + o x β n m 1/2 n Π 2 n 1 A 4 a,x + o γ n m n Π 2 n 1 A 3 a,x . 65 
Further, the application of Lemma 6.1 ensure that for all p > 0

E |B k (x)| 2+p = m 2+p k E   |Y k -r(x)| 2+p m k -1 j=0 1 j m k <T k ≤ j+1 m k b j (m k -1, x) 2+p   = O m 3(2+p)/4 k 1 A 4 a,x + O m 2+p k 1 A 3 a,x . (4.7.13) Using the fact that lim n→∞ (nγ n ) > 2α-a 4 1 A 4 a,x + α-a 2 1 A 3 a,x , there exists p > 0 such that lim n→∞ (nγ n ) > 1+p 2+p α -3 4 1 A 4 a,x + 1+p 2+p α -3 2 1 A 3 a,x . Lemma 6.1, gives n k=1 E |B k ((x)| 2+p = O n k=1 Π -2-p k β 2+p k E |T k (x)| 2+p = O γ 1+p n Π -2-p n m 3(2+p)/4 n 1 A 4 a,x + O γ 1+p n Π -2-p n m 2+p n 1 A 3 a,x ,
from which we deduce that

1 Y 2+p n n k=1 E |B k ((x)| 2+p = O m n [γ n m n ] p/2 = o (1) .
The convergence in (4.7.11) then follows from the application of Lyapounov's Theorem. 

Part II

Non parametric estimation using Lagrange polynomials

Introduction

Non parametric distribution estimation is undoubtedly a useful tool of data analysis, which is reflected by the multiple literary works addressing the topic. Let X 1 , . . . , X n be a sequence of i.i.d. random variables having a common unknown distribution function F with associated density f supported on a compact interval. Within the framework of the non parametric estimation, since we know that F is continuous, we consider the estimation of F by using smooth functions rather than the empirical distribution function, which is not continuous. Several methods have been set forward for smooth estimation of density and distribution functions. The most popular one, called kernel method, is introduced by [START_REF] Rosenblatt | Remarks on Some Nonparametric Estimates of a Density Function[END_REF]. The advances were carried out by [START_REF] Parzen | On Estimation of a Probability Density Function and Mode[END_REF] to estimate density function. The kernel distribution estimator was identified by Nadaraya (1964) as

F n (x) = 1 n n i=1 K x -X i h n . (5.1.1)
The properties of F n have been known for a long time, for example its uniform convergence towards F with continuous f (Nadaraya (1964), [START_REF] Winter | Strong uniform consistency of integrals of density estimators[END_REF], [START_REF] Yamato | Uniform convergence of an estimator of a distribution function[END_REF]), then unconditionally on f [START_REF] Singh | Nonparametric estimates of distribution functions[END_REF]) and its asymptotic normality (Watson and Leadletter (1964)). [START_REF] Winter | Convergence rate of perturbed empirical distribution functions[END_REF] also demonstrated that F n checks the Chung-Smirnov property with probability 1. However, Kernel methods have estimation problems at the edges, when we have a random variable X with distribution function supported on a compact interval. In order to overcome this problem, various methods such as the Bernstein polynomial density and distribution estimators were introduced first by [START_REF] Vitale | A bernstein polynomial approach to density function estimation[END_REF] and then extended by [START_REF] Tenbusch | Two-dimensional Bernstein polynomial density estimators[END_REF], [START_REF] Babu | Application of Bernstein Polynomials for smooth estimation of a distribution and density function[END_REF] and [START_REF] Kakizawa | Bernstein polynomial probability density estimation[END_REF]. In particular, following [START_REF] Babu | Application of Bernstein Polynomials for smooth estimation of a distribution and density function[END_REF], the estimator using Bernstein polynomial with order ν > 0 of the distribution F is defined as

Fn,ν (x) = ν k=0 F n (k/ν) b k (ν, x), (5.1.2)
with F n is the empirical distribution function and b k (ν, x) is the Bernstein polynomial. This estimator is asymptotically unbiased. [START_REF] Babu | Application of Bernstein Polynomials for smooth estimation of a distribution and density function[END_REF] found also that Fn,ν to be uniformly strongly consistent. [START_REF] Babu | Smooth estimation of a distribution function and density function on a hypercube using Bernstein polynomials for dependent random vectors[END_REF] adapted the Bernstein estimator to the problem of estimating a multivariate distribution function (including the case of dependent observations under α mixing). [START_REF] Leblanc | Chung-Smirnov property for Bernstein estimators of distribution functions[END_REF] reported that it has the Chung-Smirnov property, as n → ∞.

In this chapter, we present what appears to be a new method based on Lagrange polynomials and Tchebytchev-Gauss points. When we have a random variable X with distribution

F supported on a compact interval [a, b] such as a < b, we can transform X into Y, a random variable with support [-1, 1] through the transformation Y = X -(a + b)/2 (b -a)/2 .
Transformations such as Y = 2X/(1 + X) -1 and Y = 2π -1 arctan(X) can be used to cover the cases of random variables X with support R + and R respectively. Once the random variable X is transformed into Y, we can apply Lagrange polynomials with Tchebytchev-Gauss points to approximate the distribution function of Y on the interval

[-1, 1].
In the theoretical part of this chapter, we consider the case where f is supported on [-1, 1], and we propose an estimator using Lagrange polynomial with order m > 0 of the distribution F using Lagrange polynomial expressed as,

F n,m (x) = m i=1 F n (x i )L i (x), (5.1.3)
where, for all i = 1 . . . m, x i = cos ((2i -1)π/2m) are Tchebytchev-Gauss points,

L i (x) = m j=1 j =i x -x j x i -x j
is the Lagrange polynomial, and F n denotes the empirical distribution function obtained from a random sample of size n. The points (x i ) 1≤i≤m are the zeros of the Tchebytchev polynomial T m (x) = cos(m arccos(x)). Also, according to [START_REF] Austin | Some New Results On, and Applications Of, Interpolation in Numerical Computation[END_REF], using this choice of points, we have

sup x∈[-1,1] m i=1 v(x i )L i (x) -v(x) ≤ (π/2) k ||v (k) || ∞ /((m + 1)(m) . . . (m -k + 2)),
for any continuous function v of class C k (for k ≥ 1) on the interval [-1, 1] . This result was studied by Jackson in the early 20th century (see [START_REF] Jackson | Über die Genauigkeit der Annäherung stetiger Funktionen durch ganze rationale Funktionen gegebenen Grades und trigonometrische Summen gegebener Ordnung[END_REF], [START_REF] Jackson | On approximation by trigonometric sums and polynomials[END_REF]).

His results can also be found in [START_REF] Cheney | Introduction to approximation theory[END_REF], chapter 4, section 6, page 147, which is the main idea of the proposed estimator. As an excellent reference for properties of Lagrange polynomial with Tchebytchev-Gauss points in the deterministic case, we refer the reader to [START_REF] Austin | Some New Results On, and Applications Of, Interpolation in Numerical Computation[END_REF]. To the best of our knowledge, the estimator presented here has not been studied so far, which stands for the basic motivation of the chapter.

The main objective of this chapter is to study the properties of the distribution estimator (5.1.3). We consider first the mean squared error for a fixed x, for -1 < x < 1, and split it into bias squared and variance terms. Then, we establish the uniform convergence of this estimator, the Chung-Smirnov property and the (pointwise) asymptotic normality of the proposed estimator. Basically, the remainder of the chapter is organized as follows. In the next section, we display the assumptions and notations. In Section 6.3, we exhibit our main results. Section 6.4 highlights a simulation study that compares the performance of the proposed estimator F n,m with the Bernstein estimator (5.1.2) and with the kernel (standard Gaussian kernel) estimator (5.1.1). Section 6.6 provides the proofs of our theoretical results.

Lagrange polynomials

Lagrange polynomials, named after Joseph-Louis Lagrange, are used to interpolate a series of points by a polynomial that passes exactly through these points. Let first consider the following theorem.

Theorem 5.2.1. Let x 0 , . . . , x n be n + 1 distinct numbers, and let f be a function defined on a domain [a, b] containing these numbers. Then the polynomial defined by

p n (x) = n i=0 f (x i )L i (x)
is the unique polynomial of degree ≤ n that satisfies

p(x j ) = f (x j ), j = 0 . . . n.
The polynomial p n is called the interpolating polynomial of f and the polynomial L i which meets this equality is Lagrange interpolation polynomial.This Lagrange polynomial is given by

L k (x) = i=0,i =k (x -x i ) (x k -x i )
for each k = 0, . . . , n.

The Lagrange polynomials have several properties, such as Proposition 5.1. 1. For i, j = 0 . . . n, we have

L i (x j ) = 0 if i = j, 1 if i = j, 2. n i=0 L i (x) = 1.
3. Barycentric form

L j (x) = T n (x) T ′ n (x j )(x -x j ) for j = 0 . . . n,
where T n (x) = cos(n arccos(x)) is the Tchebytchev polynomial.

Assumptions and Notations

We consider the following definition.

Bias( F n (x)) = 1 2 h 2 f ′ (x)µ 2 (K) + o(h 2 ),
where µ 2 (K) = 1 0 z 2 K(z)dz. The previous result implies that, in the case when ν = m, the bias of the estimator F n,m is O(m -2 ) is smaller than the one obtained using the Bernstein polynomial, which has a bias of order O(m -1 ). On the one hand, if we consider h = m -1 and f ′ is bounded, we notice that the bias of F n,m is O(m -2 ) = O(h 2 ), which is asymptotically similar to the bias obtained using the kernel estimator F n , that is generally O(h 2 ) except near the boundaries. On the other hand, if f is bounded, it is well known that the variance of the Bernstein estimator and the variance of the kernel estimator are given respectively by

V ar( Fn,ν (x)) = n -1 σ 2 (x) + O(ν -1/2 n -1 ), V ar( F n (x)) = n -1 σ 2 (x) + O(hn -1 ).
In this respect, another consequence of the previous result is that in the case when ν = m, the variance of F n,m is asymptotically similar to the variance of the estimator obtained using Bernstein polynomial. On the other side, in order to compare the proposed estimator and the kernel estimator, we consider some classical choices, which are m = n and h = n -1/3 , this choice is motivated by the optimal bandwidth based on the minimization of the MSE. We notice that in the case where f is bounded and x ∈]0, 1[, the variance of

F n,m is n -1 σ 2 (x) + O(n -3/2
), which is asymptotically smaller than the variance obtained using kernel estimator, namely n -1 σ 2 (x) + O(n -4/3 ). In addition, it is well known that

MSE(F n (x)) = V ar(F n (x)) = n -1 σ 2 (x).
In conclusion, regarding the performance of the proposed estimator, we point out that

• The three considered estimators and the empirical distribution F n are asymptotically equivalent in terms of MSE up to the first order.

• The proposed estimator asymptotically dominates the Bernstein estimator Fn,ν in terms of bias and in terms of MSE in the case when f is bounded.

• Under the assumption (A 2 ), the proposed estimator is asymptotically similar to the kernel estimator F n in terms of bias without any additional assumptions, and dominates the kernel estimator in terms of MSE under some classical conditions.

We complete our study with the following proposition which reveals that F n,m is strongly consistent.

Proposition 5.3 (Uniform convergence of F n,m ). Under assumption (A 1 ), if n, m → ∞, then F n,m -F ∞ → 0 a.s.
In this chapter, we prove that the estimator F n,m satisfied the Chung-Smirnov property, which quantifies its extreme fluctuations about F , as m → ∞, under certain regularity conditions on F . Let G n be any estimator of the distribution function F . Therefore, G n is said to satisfy the Chung-Smirnov property when

lim n→∞ 2n log log n 1/2 sup x∈[-1,1] |G n (x) -F (x)| ≤ 1, a.s.
(5.4.3)

We know that the empirical distribution function F n satisfies the above property. To be more accurate, we have

lim n→∞ 2n log log n 1/2 sup x∈[-1,1] F n (x) -F (x) = 1.
(5.4.4)

This was proved by [START_REF] Chung | An estimate concerning the kolmogroff limit distribution[END_REF] and [START_REF] Smirnov | Approximate laws of distribution of random variables from empirical data[END_REF]. The following proposition demonstrates that F n,m satisfies this property under certain conditions.

Proposition 5.4 (Chung Smirnov property for F n,m ). Let F ∈ Lip(α, c) for some c > 0. If m, n → ∞ and √ nm -α/2 → 0, then F n,m satisfies equation (5.4.3).

Finally, the following proposition indicates the asymptotic normality of the estimator (5.1.3).

Proposition 5.5 (Asymptotic normality of F n,m ). Assume (A 1 ) holds and m, n → ∞. For x ∈ (-1, 1), we have

n 1/2 (F n,m (x) -A m (x)) L → N (0, σ 2 (x)).
Note that, under an appropriate choice of bandwidth, a result similar to proposition 5.5 was recorded by Watson and Leadletter (1964) for general kernel estimators, and by Leblanc (2012a) for the Bernstein estimator of distribution functions.

Application

Simulations

In this section, we investigate the performance of the proposed estimator in estimating different distributions by comparing it to the performances of Bernstein estimator and of the standard Gaussian kernel estimator. We can apply Bernstein estimator and the proposed estimator when the sample is concentrated on the intervals [0, 1] and [-1, 1], respectively. In order to enact the comparison between the estimators (5.1.1), (5.1.2) and (5.1.3), applicable in general, we list below suggested transformations in different cases:

(1) Suppose that X is concentrated on a finite support (2) For the distributions functions concentrated on R, we can use the transformed sample Y i = 1/2 + π -1 arctan(X i ) which transforms the range to the interval [0, 1].

(3) For the support R + , we can use the transformed sample For each distribution function and sample size n, we compute the Integrated Squared Error (ISE) of the estimator over N = 500 trials, (5.5.1) where F is an estimator of the distribution F . To select the smoothing parameters m, ν and h , we consider the Monte Carlo procedure for each point x ∈ [0, 1]. We determine the parameters m (for 1 ≤ m ≤ 300), ν (for 1 ≤ ν ≤ 300) and h (for h = i/1000 with 1 ≤ i ≤ 300), which minimizes ISE, which is approximated by

Y i = X i /(1 + X i
ISE[F ] = 1 0 F (x) -F (x) 2 dx,
1 N N i=1 ISE i ( F ),
where ISE i ( F ) is the value of ISE computed from the ith sample of size n and obtained from (6.4.1).

Real dataset

We consider two examples that highlight the features of the proposed estimator F n,m :

1. At first time, the data show 50 alignments of a coding DNA sequence of the growth factor receptor of a Norwegian rat EGFR (Rattus norvegicus egfr gene, partial cds), which is available in the site https://www.ncbi.nlm.nih.gov/. For convenience, we analyzed the original data rescaled to the unit interval. Finally, we used the Monte Carlo method to obtain m = 50 for our proposed estimator, m = 35 for the Bernstein estimator and h = 0.636438 for the kernel estimator.

2.

At the second time, we used Salvister data which appear in R package kerdiest (Quintela-del-Río and Estévez-Pérez ( 2012)). These data contain 85 observations of the annual peak instantaneous flow levels of the Salt River near Roosevelt, AZ, USA, for the period 1924-2009, obtained from the National Water Information System. For convenience, we analyzed the original data rescaled to the unit interval. Finally, we used the Monte Carlo method to obtain m = 85 for our proposed estimator, m = 80 for the Bernstein estimator and h = 0.06 for the kernel estimator.

3. The third data show the failure time (breakdowns of electronic devices) in operating hours. These data contain 18 observations and are introduced by [START_REF] Wang | A new model with bathtub-shaped failure rate using an additive Burr XII distribution[END_REF]. For convenience, we analyzed the original data rescaled to the unit interval. Finally, we used the Monte Carlo method to obtain m = 18 for our proposed estimator, m = 15 for the Bernstein estimator and h = 0.20559 for the kernel estimator.

4. Moreover, we used attenu data which appear in R package datasets (Joyner and Boore (2004)). These data contain 182 observations of the numeric moment magnitude at various stations for 23 earthquakes in California. For convenience, we analyzed the original data rescaled to the unit interval. Finally, we used the Monte Carlo method to obtain m = 182 for our proposed estimator, m = 180 for the Bernstein estimator and h = 0.0305 for the kernel estimator.

In the real examples, the three estimators are compared with the empirical distribution F n . Then, for any considered estimator F of the distribution function F , we propose to compute the ISE defined as: Departing from Tables 6.3-5.4 and figures 5.3-5.6, we infer that the ISE of the proposed estimator is smaller than the ISE of the Bernstein estimator and the ISE of the kernel estimator, thus demonstrating the effectiveness of our considered estimator. We remark also from figures 5.3-5.6, that the curve of the proposed estimator passes exactly through the Lagrange polynomial interpolation points.

ISE( F ) = 1 0 F (x) -F n (x) 2 dx.

Conclusion

The central focus of this chapter is upon suggesting an estimator of the distribution function using Lagrange polynomials and Tchebytchev-Gauss points. We showed that a few important properties contributing to the popularity of kernel estimator and Bernstein estimator of distribution function are also satisfied by the proposed estimator. The asymptotic laws of the proposed estimator are established under general conditions. We also argued that the proposed estimator asymptotically dominates the Bernstein estimator in terms of bias. Through a simulation study and a simple data set examples, we have demonstrated how the proposed estimator can lead to satisfactory estimates of the distribution function. To sum up, our simulations also suggest that the proposed estimator is quite promising and interesting as it behaves well when compared with both the Bernstein estimator and the Gaussian kernel estimator. To this extent, we could simply assert that our work is a step may be taken further as it lays the ground and offers new perspectives for future works to extend this investigation by considering a recursive version and compare the obtained estimators to the one adopted by [START_REF] Slaoui | The stochastic approximation method for the estimation of a distribution function[END_REF] and [START_REF] Jmaei | Recursive distribution estimators defined by stochastic approximation method using Bernstein polynomials[END_REF]. We plan also to consider the estimation of a density function in a recursive framework and then the estimation of a regression function in a recursive framework by using Lagrange polynomials (see [START_REF] Slaoui | Plug-In Bandwidth selector for recursive kernel regression estimators defined by stochastic approximation method[END_REF], [START_REF] Slaoui | Optimal bandwidth selection for semi-recursive kernel regression estimators[END_REF]).

Appendix

Throughout the proofs, we use the following notations:

R (1) m = m k=1 sin θ k sin(mθ k ) , R (2) m = m k=1 x k sin θ k sin(mθ k ) , R (3) m = m k=1 cos(2θ k ) sin θ k sin(mθ k ) , J m (x) = m k=1 | x k -x | L 2 k (x), S m (x) = m k=1 L 2 k (x), λ m (x) = m k=1 |L k (x)| Lebesgue func- tion, Λ m = max x∈[-1,1]
λ m (x) lebesgue constant, for j ∈ {0, 1, 2}, P j,m (x) = m k=1 k<l

(x k -x) j L k (x)L l (x).
In order to prove Theorems 6.1-6.3, we establish the following technical lemmas 5.1 and 5.2 stated below.

Lemma 5.1. For m ≥ 1, we have

R (1) m = sin(π/2m), R (2) 
m = sin(π/m)/2, R (3) 
m = (sin(3π/2m)sin(π/2m))/2.

Lemma 5.2.

For x ∈ [-1, 1], we have i) m k=1 (x k -x)L k (x) = - T m (x) m R (1) m = - π 2m 2 T m (x) + o(m -2 ), ii) m k=1 (x k -x) 2 L k (x) = T m (x) m xR (1) m -R (2) m = π 2m 2 T m (x)(x -1) + o(m -2 ), iii) m k=1 (x k -x) 3 L k (x) = - T m (x) m R (1) m + R (3) m 2 + x 2 R (1) m -2xR (2) m = - π 2m 2 T m (x)(1 + x 2 -2x) + o(m -2 ).
Proof: [Proof of lemma 1] We first note that R

(1)

m , R (2) 
m and R

(3) m can be rewritten as: sin(kt) = sin(mt/2) sin((m + 1)t/2) sin(t/2) , some classical computations provide

R (1) m = -cos(π/2m) 2 m k=1 [sin (k (π/m + π)) + sin (k (π/m -π))] + sin(π/2m)/2 m k=1 [cos (k (π/m -π)) + cos (k (π/m + m))] . R (2) 
R (1) m = sin(π/2m) = π 2m + o(m -1 ), R (2) m = 1 2 sin(π/m) = π 2m + o(m -1 ), R (3) m = 1 2 (sin(3π/2m) -sin(π/2m)) = π 2m + o(m -1 ).
Proof: [Proof of lemma 2 ] First, we have (see [START_REF] Feldheim | Théorie de la convergence des procédés d'interpolation et de quadrature mécanique[END_REF] page 10)

L k (x) = T m (x) T ′ m (x k )(x -x k ) (5.7.1) and -sin θ k T ′ m (cos θ k ) = -m sin(mθ k ). It follows that m k=1 (x k -x)L k (x) = - T m (x) m R (1) m .
Clearly, we have

E(F n,m (x)) = A m (x).
The expansion of Taylor-Young ensures that for 1 ≤ k ≤ m,

E(F n,m (x)) = F (x) + f (x) m k=1 (x k -x)L k (x) + f ′ (x) 2 m k=1 (x k -x) 2 L k (x) + f ′′ (x) 6 m k=1 (x k -x) 3 L k (x) + o m k=1 (x -x k ) 3 L k (x) .
The application of Lemma 5.1 together with Lemma 5.2 yield the equation (5.4.1). Let's now focus on calculating the variance of our estimator. First, we set

(η i ) 1≤i≤n = m k=1 1 {X i ≤x k } -F (x k ) L k (x) 1≤i≤n , it comes that F n,m (x) -A m (x) = m k=1 F n (x k ) -F (x k ) L k (x) = 1 n m k=1 n i=1 1 {X i ≤x k } -F (x k ) L k (x) = 1 n n i=1 η i . Moreover, since E (F n,m (x) -A m (x)) = 0, it follows that V ar (F n,m (x) -A m (x)) = E (F n,m (x) -A m (x)) 2 = V ar (F n,m (x)) = 1 n 2 n i=1 V ar(η i ) = 1 n E(η 2 1 ).
Now, we define for any x ∈ [-1, 1] and for i ≥ 1, ϕ i (x) = 1 {X i ≤x} -F (x). We infer that

E(η 2 i ) = E   m k=1 ϕ i (x k )L k (x) 2   = E m k,l=1 ϕ i (x k )L k (x)ϕ i (x l )L l (x) = m k,l=1 E [ϕ i (x k )ϕ i (x l )] L k (x)L l (x).
(5.7.2) Moreover, we have

E [ϕ i (x k )ϕ i (x l )] = E 1 {X i ≤x k } -F (x k ) 1 {X i ≤x l } -F (x l ) = E 1 {X i ≤x k } 1 {X i ≤x l } -F (x k )F (x l ) = E 1 {X i ≤min(x k ,x l )} -F (x k )F (x l ) = F (min(x k , x l )) -F (x k )F (x l ) = min(F (x k ), F (x l )) -F (x k )F (x l ).
Substituting this result for (5.7.2) leads to

E(η 2 i ) = m k,l=1 [min(F (x k ), F (x l )) -F (x k )F (x l )] L k (x)L l (x) = m k=1 F (x k )L 2 k (x) + 2 m k=1 k<l F (x k )L k (x)L l (x) -A m (x) 2 .
(5.7.3)

We need now to find an asymptotic expression for (5.7.3). For this reason, we first expand

F (x k ) about x to state that for all 0 ≤ k ≤ m, F (x k ) = F (x) + O(|x k -x|).
This allows us to write the first term of (5.7.3) as

m k=1 F (x k )L 2 k (x) = m k=1 [F (x) + O(|x k -x|)] L 2 k (x) = m k=1 F (x)L 2 k (x) + m k=1 O(|x k -x| L 2 k (x)) = F (x)S m (x) + O(J m (x)), where J m (x) = m k=1 | x k -x | L 2 k (x).
For the second term of (5.7.3), we instead write F (x k ) as

F (x k ) = F (x) + (x k -x)f (x) + O((x k -x) 2 ).
Moreover, we have

2P 0,m (x) + S m (x) = m k,l=1 L k (x)L l (x). Since m k,l=1 L k (x)L l (x) = 1, it comes that P 0,m (x) = 1 2 (1 -S m (x)). Then m k=1 k<l F (x k )L k (x)L l (x) = m k=1 k<l F (x) + (x k -x)f (x) + O((x k -x) 2 ) L k (x)L l (x) = m k=1 k<l F (x)L k (x)L l (x) + m k=1 k<l (x k -x)f (x)L k (x)L l (x) + m k=1 k<l O (x k -x) 2 L k (x)L l (x) = F (x)P 0,m (x) + f (x)P 1,m (x) + O(P 2,m (x)) = 1 2 F (x)(1 -S m (x)) + f (x)P 1,m (x) + O(P 2,m (x)).
Moreover, we have

2 m k=1 k<l F (x k )L k (x)L l (x) = F (x)(1 -S m (x)) + 2f (x)P 1,m (x) + O(m -4 ).
Therefore,

E(η 2 i ) = F (x) + 2f (x)P 1,m (x) + O(J m (x)) + O(P 2,m (x)) -A 2 m (x) = F (x)(1 -F (x)) + 2f (x)P 1,m (x) + O(J m (x)) + O(m -4 ) = σ 2 (x) + 2f (x)P 1,m (x) + O(J m (x)) + O(P 2,m (x)).
(5.7.4) Now, using Cauchy-Schwartz's inequality combined with the fact that |L k (x)| ≤ 1, we get

|J m (x)| = m k=1 |x k -x| L 2 k (x) ≤ m k=1 (x k -x) 2 L k (x) 1/2 m k=1 L 3 k (x) 1/2 ≤ π m 2 + o m -2 S m (x) 1/2
.

On the other side, using the fact that Λ m ≤ 2 π ln(m + 1) + 1 (see [START_REF] Brutman | On the Lebesgue function for polynomial interpolation[END_REF]), we obtain

S m (x) ≤ m k=1 |L k (x)| 2 ≤ Λ 2 m ≤ 4 π 2 ln(m + 1) 2 + 1 + 4 π ln(m + 1).
As a matter of fact, we infer that J m (x) = O(m -1/2 ). Now, it follows from (5.7.1), that

P 2,m (x) = [(1 -x) 2 + O(m -2 )] m k=1 k<l L k (x)L l (x) = [(1 -x) 2 + O(m -2 )] m k=1 k<l O(m -2 ).
It follows that P 2,m (x) = O(m -1 ). Moreover, we have

P 1,m (x) = m k=1 (x k -x)L k (x) m l=k+1 L l (x) = [1 -x + O(m -2 )] m k=1 k<l O(m -2 ).
Hence, we obtain P 1,m (x) = O(m -1 ) and equation (5.4.2) follows.

Proof of proposition 5.3

We first use the fact that

F n,m -F ≤ F n,m -A m + A m -F .
The use of Jackson's theorem, ensures that

lim m→∞ A m -F = 0.
Moreover, we have

F n,m (x) -A m (x) = m k=1 F n (x k ) -F (x k ) L k (x), it comes that F n,m -A m ≤ max 1≤k≤m F n (x k ) -F (x k ) .
In addition, the application of Clivenco-Cantelli's theorem, ensures that

lim n→∞ F n -F = 0,
which conclude the proof.

Proof of proposition 5.4

First, we note that for all m ≥ 1,

F n,m -F ≤ F n -F + A m -F .
Moreover, as F ∈ Lip(α, c), [START_REF] Jackson | Über die Genauigkeit der Annäherung stetiger Funktionen durch ganze rationale Funktionen gegebenen Grades und trigonometrische Summen gegebener Ordnung[END_REF][START_REF] Jackson | On approximation by trigonometric sums and polynomials[END_REF] implies that

A m -F = O log(m) m α/2 . It follows that lim n→∞ u n F n,m -F ≤ lim n→∞ u n F n -F + lim n→∞ u n A m -F ,
where u n = (2n/ log log n) 1/2 , for all n ≥ 1. Now, using equation (5.4.4), we obtain

lim n→∞ u n F n -F = 1 a.s. Moreover, since n 1/2 m -α/2 → 0 when n, m → ∞, we have lim n→∞ u n A m -F = lim n→∞ (2n) 1/2 (log log n) 1/2 log m m α/2 = lim n→∞ √ n m α/2 = 0. It comes that, lim n→∞ u n F n,m -F ≤ 1.
This completes the proof of proposition 5.4.

Proof of proposition 6.3

Since we have

F n,m (x) -A m (x) = 1 n n i=1 η i .
It follows that,

n 1/2 (F n,m (x) -A m (x)) = n i=1 η i n 1/2 .
Now, in order to check the Lindeberg condition, we notice for all n ≥ 1 and for i = 1, . . . , n

X i,n = η i n 1/2 and s 2 n = n i=1 E(X 2 i,n ).
We have

n 1/2 (F n,m (x) -A m (x)) = n i=1 X i,n , with (X i,n ) i≥1 is a sequence of i.i.d. random variables such that E(X i,n ) = 0. Further, we have for n ≥ 1, s 2 n = n i=1 E(X 2 i,n ) = n i=1 1 n E(η 2 i ) = E(η 2 1 ).
However, in the light of (5.7.4), we have lim n→∞ s 2 n = σ 2 (x). Indeed, using the Cauchy-Schwarz inequality, L k (x) ≤ 1 and by inferring the proof of proposition 6.1, we get

lim n→∞ J m (x) = 0 and lim n→∞ P 1,m (x) = 0. Moreover, since m k=0 L k (x) = 1, we have |η 1 | = m k=1 1 {X i ≤x k } -F (x k ) L k (x) ≤ m k=1 1 {X i ≤x k } -F (x k ) L k (x) ≤ m k=1 (1 + 1)L k (x) = 2. It comes that X 2 1,n 1 |X 1,n | sn >ε = η 2 1 n 1 {|η 1 |>snn 1/2 ε} ≤ 4 n 1 {|η 1 |>snn 1/2 ε} . 90 Hence, n i=1 E X 2 i,m 1 |X i,m | sn >ε ≤ 4 n n i=1 1 {|η i |>snn 1/2 ε} .
Moreover, we have s 2 n → σ 2 (x) when n → ∞, then Lindeberg's condition

lim n→∞ 1 s 2 n n i=1 E X 2 i,n 1 |X i,n | sn >ε = 0,
is fulfided. thus by Lindeberg-Feller's central limit theorem, we get

n 1/2 (F n,m (x) -A m (x)) L → N (0, σ 2 (x)),
which concludes the proof.

Introduction

Distribution estimation is undoubtedly a beneficial tool of data analysis, occurring in multiple domains like actuarial sciences or finance, life sciences, engineering, under different names such as lifetime, survival distributions. Let X 1 . . . X n be a sequence of i.i.d. random variables having an underlying unknown distribution function F and associated density function f . Within the parametric framework, the model structure is already determined. For instance, the normal distribution form N (µ, σ 2 ). The unique target is to estimate the parameters, namely µ and σ. In the non parametric setting, the model structure is not identified. In this chapter, our central focus is upon introducing a recursive distribution estimator using Robbins Monro's algorithm and Lagrange polynomial. Some asymptotic properties of the proposed estimator are investigated, such as its asymptotic bias and variance. The asymptotic normality is also established. We show that the proposed estimator outperforms the non recursive distribution function in terms of the asymptotic mean squared error. Generally, the proposed estimator compares favorably with other competitors in theoretical comparisons, a simulation study and a real data sets examples.

The application of Robbins-Monro's procedure to construct a stochastic approximation algorithm was introduced by Révész (1973Révész ( , 1977) ) and extended by [START_REF] Tsybakov | Recurrent Estimation of the Mode of a Multidimensional Distribution[END_REF]. As examples for recursive estimators of the distribution function, we display the recursive kernel distribution estimator identified by Slaoui (2014)

F n,K (x) = Π n n k=1 Π -1 k γ k K x -X k h k , (6.1.1)
where K(z) = z -∞ K(u)du, K is a kernel and (h n ) is a bandwidth; and the recursive distribution estimator using the Bernstein polynomial defined by Jmaei et al. ( 2017)

F n,B (x) = Π n n k=1 Π -1 k γ k B k (x), (6.1.2) where B n (x) = m k=0 1 {Xn≤k/m} b k (m, x) and b k (m, x) = C k m x k (1 -x) m-k
is the Bernstein polynomial of order m > 0. In this chapter, we construct a stochastic algorithm, which approximates the function F using Lagrange polynomial, at a given point x. We suppose that f is supported on [-1, 1] and we define an algorithm of search of the zero of the function φ : y → F (x)y. Using [START_REF] Robbins | A Stochastic Approximation Method[END_REF] recursive scheme, we set:

(i) F 0 (x) ∈ [0, 1], (ii) For all n ≥ 1, we set F n (x) = F n-1 (x) + γ n J n (x)
, where the stepsize (γ n ) is a positive sequence of real numbers decreasing to zero and

(J n ) is a sequence of functions J n : R → R defined by J n (x) = φ(F n-1 (x)) -W n + β n .
Using the assumption of Robbins-Monro's procedure defined by E(W n |F n-1 ) = 0, where F n-1 stands for the σ-algebra of the events occurring up the time n -1, we have

E(J n (x)) = F (x) -F n-1 (x) + β n .
Following the approach of Révész (1973Révész ( , 1977) ) and noting that E m k=1

1 {Xn≤x k } L k (x) = F (x) + ξ n (x)
, where ξ n (x) goes to zero as n goes to infinity, we set

J n (x) = m k=1 1 {Xn≤x k } L k (x) -F n-1 (x).
Therefore, the recursive estimator F n of the distribution function F at the point x can be started as

F n (x) = (1 -γ n )F n-1 (x) + γ n m k=1 1 {Xn≤x k } L k (x). (6.1.3)
Moreover, we suppose that F 0 (x) = 0. We let

Π n = n j=1 (1 -γ j ) and Z n (x) = m k=1 1 {Xn≤x k } L k (x).
Then, it follows from the Equation (6.1.3) that F n can be rewritten as

F n (x) = Π n n k=1 Π -1 k γ k Z k (x). (6.1.4)
The basic objective of this chapter is to investigate the properties of the recursive distribution estimator defined by the stochastic approximation algorithm (6.1.4). The assessment of its performance is fulfilled through enacting its comparison with the non recursive distribution estimator defined by [START_REF] Helali | Estimation of a distribution function using Lagrange polynomials with Tchebychev-Gauss points[END_REF] and the recursive estimators (6.1.1) -(6.1.2). The remainder of the chapter is organized as follows. In Section 6.2, we highlight the notations and assumptions. In section 6.3, we display the main results: the bias, variance and asymptotic normality. Section 6.4 is devoted to the application results obtained, first through simulations (subsection 6.4.1) and second using a real data set (subsection 6.4.2). We draw the conclusion in Section 6.5, and Section 6.6 exhibits the proofs of the theoretical results.

Assumptions and notations

We first define the following class of regularly varying sequences.

Definition 6.1. Let γ ∈ R and (ψ n ) n≥1 be a nonrandom positive sequence. We write

(ψ n ) ∈ GS(γ), if lim n→∞ n 1 - ψ n-1 ψ n = γ. (6.2.1)
Condition (6.2.1) was introduced by [START_REF] Galambos | Regularly Varying Sequences[END_REF] to define regularly varying sequences (see also [START_REF] Bojanic | A Unified Theory of Regularly Varying Sequences[END_REF]). Note that the acronym GS stands for (Galambos and Seneta). Typical sequences in GS(γ) are, for b ∈ R, n γ (log n) b , n γ (log log n) b , and so on. To investigate the asymptotic behaviours of the estimator (6.1.4), we make the following assumptions: [START_REF] Helali | Estimation of a distribution function using Lagrange polynomials with Tchebychev-Gauss points[END_REF] showed that the MSE of (6.3.7) is provided by

MSE(F n,m (x)) = π 2 m -4 T 2 m (x)b 2 (x) + n -1 σ 2 (x) + O(n -1 m -1/2 ) + o(m -4 n ).
Noteworthy that when n goes to infinity, MSE(

F n (x)) ∼ m -4 n + n -1 + n -1 m -1 n and MSE(F n,m (x)) ∼ m -4 n + n -1 + n -1 m -1/2 n
. It follows that, the proposed estimator asymptotically dominates the non recursive estimator in terms of MSE. On the other setting, the main merit of the proposed estimator, is that its update, when new sample points are available, requires less computational cost than the non recursive estimator.

Finally, the following proposition shows the asymptotic normality of the proposed recursive estimator (6.1.4).

Proposition 6.3 (Asymptotic normality of F n ). Let Assumptions (A1)-(A5) hold. If lim n→+∞ γ -1 n m -4 n = 0, then γ -1/2 n (F n (x) -F (x)) D → N 0, 1 2 -αξ σ 2 (x) .
Here D → denotes the convergence in distribution and N corresponds to the Gaussian distribution.

Note that, under an appropriate choice of bandwidth, a result similar to Theorem 1 was shown by [START_REF] Slaoui | The stochastic approximation method for the estimation of a distribution function[END_REF] for recursive kernel estimators, and by [START_REF] Jmaei | Recursive distribution estimators defined by stochastic approximation method using Bernstein polynomials[END_REF] for results from recursive Bernstein estimator of distribution functions. The following corollary is a consequence of the previous proposition which provides an asymptotic confidence interval of the distribution F , for a confidence level 0 < α < 1.

Corollary 6.3.2. If lim n→+∞ γ -1 n m -4 n = 0, then the 100(1 -α)% asymptotic confidence interval of F (x) is given by F n (x) ± z 1-α 2 σ(x)γ 1/2 n √ 2 -αξ ,
where z 1-α 2 is the normal 1 -α 2 quantile.

In the next section, we shall explore the performance of the proposed recursive estimator in estimating different distributions by comparing it to the performances of the recursive Bernstein estimator (6.1.2), as well as that of the recursive Gaussian kernel estimator (6.1.1) and of the non recursive estimator using Lagrange polynomials (6.3.7). the parameters m (for 1 ≤ m ≤ 300), ν and h (for h = i/1000 with 1 ≤ i ≤ 300), which minimizes ISE, that is approximated by

1 N N i=1 ISE i ( F ),
where ISE i ( F ) is the value of ISE computed from the ith sample of size n and obtained from (6.4.1). 

Real dataset

The basic target of this subsection is to compare the performance of the proposed estimator defined in (6.1.4) to that of the non recursive estimator defined in (6.3.7). We consider two examples that highlight the features of the proposed estimator F n :

1. We analyze the suicide data portrayed in Table 2.1 of [START_REF] Silverman | Density estimation for statistics and data analysis[END_REF]. This data set consists of duration (in days) of psychiatric treatment for 86 patients used as experiments in a study of suicide risks. The maximum treatment duration is 800 days (the data are such that min(x i ) = 1 and max(x i ) = 737). Finally, we used the Monte Carlo method to obtain m = 86 for the proposed estimator where c = 0.05, and m = 86 for the non recursive estimator.

2. We use Salvister data which appear in the R package kerdiest (Quintela-del-Río and Estévez-Pérez ( 2012)). This data involve 85 observations of the annual peak instantaneous flow levels of the Salt River near Roosevelt, AZ, USA, for the period 1924 -2009, reported from the National Water Information System. Finally, we used the Monte Carlo method to obtain m = 80 for the proposed estimator where c = 0.3, and m = 85 for the non recursive estimator.

In the real examples, the two estimators (6.3.7) and (6.1.4) are compared with the empirical distribution F n . Then, for any considered estimator F of the distribution function F , we propose to compute the ISE defined as: Visually, from Figures 6.1-6.2, we conclude that the non-recursive estimator (6.3.7) and the proposed recursive estimator (6.1.4) seem to be close to the true empirical distribution functions. Resting on Table 6.3, we infer that that the ISE of the proposed estimator is smaller than that of the non recursive estimator with optimal parameters (γ n ) and (m n ), thus demonstrating the effectiveness of the considered estimator.

ISE( F ) = 1 0 F (x) -F n (x) 2 dx.

Conclusion

This work elaborates a recursive distribution estimator using Lagrange polynomial with Tchebytchev-Gauss points. The proposed estimator asymptotically follows normal distribution. The ISE of the proposed estimator (6.1.4), with an appropriate choice of the stepsize (γ n ) and the order (m n ), is smaller than that of the non recursive estimator (6.3.7) as well as the recursive estimators (6.1.1)-(6.1.2). In addition, a major advantage of the proposed estimator, lies in the fact that its up date, when new sample points are available, requires less computational cost than the non recursive estimator. To sum up, using the proposed recursive estimator F n , we can get better results than those obtained by estimators (6.3.7), (6.1.1) and (6.1.2). A future research direction would be to extend our findings to the recursive regression estimation using Lagrange polynomial. We plan also to work on the choice of the order (m n ) through a plug-in method (see [START_REF] Slaoui | Optimal bandwidth selection for semi-recursive kernel regression estimators[END_REF]).

Proofs

Let us first state the following technical lemma. Lemma 6.1 [START_REF] Mokkadem | The stochastic approximation method for the estimation of a multivariate probability density[END_REF]). Let (w n ) ∈ GS(w ⋆ ), (γ n ) ∈ GS(-α), and let l > 0 such that lw ⋆ ξ > 0 where ξ = lim n→∞ (nγ n ) -1 . We have

lim n→∞ w n Π l n n k=1 Π -l k γ k w k = 1 l -w ⋆ ξ .
Furthermore, for all positive sequence (α n ) such that lim n→∞ α n = 0, and all ρ ∈ R;

lim n→∞ w n Π l n n k=1 Π -l k γ k w k α k + ρ = 0.
Lemma 6.1 is widely applied throughout the proofs and it is proved in [START_REF] Mokkadem | The stochastic approximation method for the estimation of a multivariate probability density[END_REF]. Its application requires assumption (A5) on the limit of nγ n as n goes to infinity. 6.6.1 Proof of Proposition 6.1

Based on equation (6.1.3), for x ∈ [-1, 1], we have

F n (x) -F (x) = Π n n k=1 Π -1 k γ k (Z k (x) -F (x)) + Π n (F 0 (x) -F (x)).
Chapter 7

Conclusion and perspectives

The manuscript proposed new nonparametric estimation techniques to deal with the problem of edge effect. The aim of first contribution was to build a new semi parametric structure to estimate a density function. Indeed, we proposed a shrinkage estimator of a density function based on the Bernstein polynomial and using a finite Mixture Gaussian model. The asymptotic properties of this estimator were established. Afterwards, we demonstrated the effectiveness of the proposed method using some simulated and real data.

In the second contribution, we investigated a recursive nonparametric regression estimator to overcome the edge estimation problem based on Bernstein polynomials and stochastic algorithm with two-time-scale. The proposed estimator asymptotically follows normal distribution. Moreover, our proposed estimators attained the asymptotic convergence rate O(n -4/5 ) within the interval (0, 1) and O(n -2/3 ) near the edges {0, 1}.

In third contribution, we introduced an estimator of the distribution function using Lagrange polynomials and Tchebytchev-Gauss points. We argued that the proposed estimator asymptotically dominates the Bernstein estimator in terms of bias. Through a simulation study and a simple data set examples, we have demonstrated the proposed estimator is quite promising and interesting as it behaves well when compared with both the Bernstein estimator and the Gaussian kernel estimator.

In our last work, we elaborated a recursive distribution estimator using Lagrange polynomial with Tchebytchev-Gauss points. Using the proposed recursive estimator, we can get better results than those obtained by the previous non recursive estimator, the recursive kernel approach and the recursive Bernstein estimator, with an appropriate choice of the stepsize (γ n ) and the order (m n ). In addition, a major advantage of the proposed estimator, lies in the fact that its up date, when new sample points are available, requires less computational cost than the non recursive estimator.

Our current work revolves around these axes:

⋆ The first axis consists on studying the following estimation of density function base on the the Lagrange polynomial and Tchebytchev-Gauss points, defined as follows:

fn,m (x) = m i=1 m j=1,j =i F n (x i ) x i -x j m k=1,k =(i,j) x -x k x i -x k ,
where F n is the empirical distribution function and for all i = 1 . . . m, x i are the Tchebytchev-Gauss points.

⋆ The second axis consists on studying the following estimation of regression function base on the the Lagrange polynomial and Tchebytchev-Gauss points, defined as follows:

rn,m (x) = m i=1 Y i m k=1 1 X i ≤x k    m j=0 j =k 1 x k -x j m h=0 h =(j,k) x-x h x k -x h    m i=1 m k=1 1 X i ≤x k    m j=0 j =k 1 x k -x j m h=0 h =(j,k) x-x h x k -x h   
. ⋆ An other direction in progress is to study a recursive conditional distribution estimator using Bernstein polynomials and kernel method defined as follows:

F x,n (y) = an(x,y) fn(x) , if f n (x) = 0, 0, otherwise, where for any x ∈ R and y ∈ [0, 1],

a n (x, y) = (1 -β n )a n-1 (x, y) + β n h -1 n K x -X n h n mn k=0
1 {Yn≤k/mn} b k,mn (y), and for any x ∈ R,

f n (x) = (1 -γ n )f n-1 (x) + γ n h -1 n K x -X n h n ,
with (γ n ) and (β n ) sequences of positive real numbers there go to zero. We let

Q n = n i=1 (1 -β i ), Π n = n i=1
(1γ i ) and (a 0 (x, y), f 0 (x)) = (0, 0).

At this stage of analysis, we would assert that our research work is a step that may be extended, built upon and taken further as it lays the ground and paves the way for constructive and fruitful applications. In future research, we may study the following points:

-Applying Lagrange polynomials to estimate the pairwise comparison function.

-Explore the possibility to consider Lagrange polynomial and Tchebytchev-Gauss points in the case of censored data, it is also possible to explore the case of functional data.

-Extend our proposal in Bayesian non parametric estimation framework.

3. 1

 1 ISE for f n , fn,m and f SH n,m . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2 Quantitative comparison between the MSE of f n , of fn,m and of f SH n,m . . . . 4.1 Qualitative comparison between r n and rn,m for CO2 dataset . . . . . . . . . 4.2 Qualitative comparison between tr n and rn,m for wage1 dataset . . . . . . 5.1 Qualitative comparison between Fn,ν , F n and F n,m I . . . . . . . . . . . . . 5.2 Qualitative comparison between Fn,ν , F n and F n,m II . . . . . . . . . . . . 5.3 Qualitative comparison between Fn,ν , F n and F n,m , for S A DNA data. . . . 5.4 Qualitative comparison between Fn,ν , F n and F n,m , for Saltriver data. . . 5.5 Qualitative comparison between Fn,ν (x), F n and F n,m , for failure data. . 5.6 Qualitative comparison between Fn,ν (x), F n and F n,m , for magnitude data. 6.1 Qualitative comparison between F n,m and F n for Suicide data. . . . . . . 6.2 Qualitative comparison between F n,m and F n for Salvister data. . . . . . List of Tables 3.1 ISE for N = 500 trials of fn,m , f n and f Sh n,m , for n = 50, 100, 200. . . . . . 3.2 IAE for N = 500 trials of fn,m , f n and f Sh n,m , for n = 50, 100, 200. . . . . . . 3.3 KL for N = 500 trials of fn,m , f n and f Sh n,m , for n = 50, 100, 200. . . . . . . 4.1 Average ISE and IAE for N = 500 trials of rn,m and r n . . . . . . . . . . . 5.1 ISE for N = 500 trials of Fn,ν , F n and F n,m , for n = 10, 50, 100 I . . . . . 5.2 ISE for N = 500 trials Fn,ν , F n and F n,m , for n = 150, 200, 250 II . . . . . 5.3 ISE of Fn,m , F n and F n,m , for S A DNA data and Saltriver data. . . . . 5.4 ISE of Fn,m , F n and F n,m , for magnitude data and failure time data. . . 6.1 ISE for N = 500 trials of Recursive 1, Recursive 2 and Recursive 3 . . . . 6.2 ISE for N = 500 trials of F n,m and F n , for n = 50, 100, 200. . . . . . . . . 6.3 ISE of F n,m and F n , for Saltriver data and Suicide data. . . . . . . . . 7 Chapter 1

  (b) We proposed an estimator MISEv (h) an estimator of the MISE( f v h ) from L v package observations.

Figure 3 . 1 :

 31 Figure 3.1: ISE for f n , fn,m and f SH n,m [ISE of the kernel estimator f n , of the Bernstein estimator fn,m and of the proposed density estimator f SH n,m of 0.5G(6, 1) + 0.5G(1, 6) for n = 200]

Figure 3 . 2 :

 32 Figure 3.2: Quantitative comparison between the MSE of f n , of fn,m and of f SH n,m . [Quantitative comparison between the Mean Squared Error of the kernel estimator f n , of the Bernstein estimator fn,m and of the proposed density estimator f SH n,m , of Tuna data (left panel) and of Old Faithful data (right panel).]

  (a) r(x) = cos(x).

  (b) r(x) = (1 + exp(x)) -1 .

Figures 5 .

 5 Figures 5.3 and 5.4 show that our proposed two-time-scale recursive estimators (4.1.2) can give better results compared to the non recursive estimator (4.1.1).

Figure 4 . 1 :

 41 Figure 4.1: Qualitative comparison between r n and rn,m for CO2 dataset .[Qualitative comparison between the two considered estimators.Here we consider the CO2 dataset using our proposed estimator r n with the stepsize (γ n , β n ) = (n -0.98 , 0.31n -0.99 ) and the non recursive estimator rn,m ]

Figure 4 . 2 :

 42 Figure 4.2: Qualitative comparison between tr n and rn,m for wage1 dataset .[Qualitative comparison between the two considered estimators.Here we consider the The wage1 dataset of the package np using our proposed estimator r n with the stepsize

  [a, b], then we work with the sample values Y 1 , . . . , Y n where Y i = (X ia)/(ba).

  ) which transforms the range to the interval [0, 1]. In our simulation study, six sample sizes are considered, n = 10, n = 50, n = 100, n = 150, n = 200, n = 250 and the following distribution functions: 1-The beta distribution B(3, 2), 2-The beta distribution B(2, 2), 3-The gamma distribution G(1, 6), 4-The mixture beta distribution 0.5B(2.5, 6) + 0.5B(9, 1).

  k + kπ) + sin(3θ kkπ)θ k + kπ) + sin(-θ kkπ).Using for t ∈ R,

Here,

  Recursive 1 correspond to the proposed estimator (6.1.4), Recursive 2 corre-spond to the recursive kernel estimator (6.1.1) and Recursive 3 correspond to the recursive Bernstein estimator (6.1.2), for n = 50, n = 100 and n = 200, for (γ n ) = ([2/3 + c]n -1 ), for c = 0.05, c = 0.1 and c = 0.2. The bold values indicate the smallest values of ISE. Table 6.2: ISE for N = 500 trials of F n,m and F n , for n = 50, 100, 200. [ISE for N = 500 trials of the non recursive estimator (6.3.7) and the proposed estimator (6.1.4), for n = 50, n = 100 and n = 200, for the case (γ n ) = ([2/3 + ǫ]n -1 ) with ǫ = 0.05, 0.1, 0.2 and (γ n ) = (n -1

Table 3 .

 3 1: ISE for N = 500 trials of fn,m , f n and f Sh n,m , for n = 50, 100, 200. [ISE for N = 500 trials of Bernstein estimator, standard Gaussian kernel estimator and the proposed estimator f Sh n,m , for n = 50, n = 100 and n = 200.

	The bold values indicate

Table 3 .

 3 2: IAE for N = 500 trials of fn,m , f n and f Sh n,m , for n = 50, 100, 200. [IAE for N = 500 trials of Bernstein estimator, standard Gaussian kernel estimator and the proposed estimator f Sh n,m , for n = 50, n = 100 and n = 200.

	The bold values indicate

Table 3 .

 3 3: KL for N = 500 trials of fn,m , f n and f Sh n,m , for n = 50, 100, 200. [KL for N = 500 trials of Bernstein estimator, standard Gaussian kernel estimator and the proposed estimator f Sh n,m , for n = 50, n = 100 and n = 200.

	The bold values indicate

Table 4 .

 4 1: Average ISE and IAE for N = 500 trials of rn,m and r n . [Average ISE and IAE for N = 500 trials of rn,m and r n with the choice (γ n , β n ) = (n -0.98 , 0.31n -99 ). The bold values indicate the smallest values.]

			ISE		IAE
	Model	n Recursive non recursive Recursive non recursive
	σ = 0.05				
		50	0.108152	0.263466	0.278830	0.512572
	(a)		0.146173	0.275628	0.342211	0.523425
			0.172898	0.265569	0.385824	0.514904
		50	0.149485	0.261717	0.374100	0.511469
	(b)		0.180104	0.250942	0.416693	0.500793
			0.219903	0.256299	0.461882	0.506157
		50	0.192147	0.246308	0.375262	0.495552
	(c)		0.166492	0.241962	0.345006	0.491480
			0.315283	0.242560	0.488220	0.492026
	σ = 0.1				
		50	0.237895	0.279316	0.459012	0.527103
	(a)		0.142256	0.273119	0.339965	0.521741
			0.205788	0.261468	0.429494	0.510851
		50	0.240268	0.262336	0.478994	0.512000
	(b)		0.186827	0.263747	0.422515	0.513192
			0.168894	0.260439	0.403971	0.510155
		50	0.241451	0.236557	0.432593	0.485448
	(c)		0.169090	0.2400389	0.354381	0.489659
			0.669683	0.237169	0.714953	0.486410
	σ = 1				
		50	0.153426	0.245387	0.256094	0.495342
	(a)		0.089536	0.231082	0.242418	0.480270
			0.081775	0.216917	0.234569	0.465104
		50	0.076953	0.238752	0.257034	0.487440
	(b)		0.069710	0.214250	0.231290	0.460268
			0.086527	0.240928	0.263234	0.488604
		50	0.044846	0.259154	0.113061	0.508533
	(c)		0.030788	0.236227	0.074095	0.483667
			0.026170	0.227478	0.078804	0.474521

Table 5 .

 5 3: ISE of Fn,m , F n and F n,m , for S A DNA data and Saltriver data. [ISE of Bernstein estimator, standard Gaussian kernel estimator and the proposed estimator F n,m , for S A DNA data and Saltriver data. The bold values indicates the smallest values of ISE. ] Table 5.4: ISE of Fn,m , F n and F n,m , for magnitude data and failure time data. [ISE of Bernstein estimator, standard Gaussian kernel estimator and the proposed estimator F n,m , for magnitude data and failure time data. The bold values indicates the smallest values of ISE.]

	Data set Proposed estimator Bernstein estimator Kernel estimator
	S A DNA	0.334860e -3	0.647956e -3	0.466513e -3
	Saltriver	4.586125e -5	0.112049e -3	0.756750e -3
	Data set	Proposed estimator Bernstein estimator Kernel estimator
	Failure time	0.000549	0.000760	0.001088
	Magnitude	0.000223	0.000929	0.000695

Table 6 .

 6 1: ISE for N = 500 trials of Recursive 1, Recursive 2 and Recursive 3

	Density	n Recursive 1 Recursive 2 Recursive 3
			c = 0.05	
		50	0.003660	0.004273	0.046308
	B(3, 2)	100 0.002188 200 0.000706	0.002306 0.001306	0.018131 0.011315
		50	0.006846	0.009218	0.131480
	G(1, 6)	100 0.002186 200 0.000272	0.002285 0.000310	0.072287 0.019873
		50	0.001168	0.000995	0.023376
	0.5B(2.5, 6) + 0.5B(9, 1) 100	0.000531	0.000506	0.010810
		200	0.000354	0.000345	0.002522
			c = 0.1	
		50	0.003833	0.004285	0.041341
	B(3, 2)	100 0.002193 200 0.000681	0.002458 0.001232	0.018925 0.010338
		50	0.006211	0.008690	0.047800
	G(1, 6)	100 0.001622 200 0.000160	0.002355 0.000205	0.034586 0.015976
		50	0.001110	0.000953	0.030482
	0.5B(2.5, 6) + 0.5B(9, 1) 100 0.000546	0.000662	0.010861
		200 0.000458	0.000513	0.005940
			c = 0.2	
		50	0.004148	0.004549	0.072466
	B(3, 2)	100 0.002306 200 0.001368	0.002538 0.001633	0.022216 0.012922
		50	0.005435	0.007110	0.092982
	G(1, 6)	100 0.001820 200 8.042e -5	0.001773 0.000155	0.050594 0.018933
		50	0.001081	0.001122	0.027487
	0.5B(2.5, 6) + 0.5B(9, 1) 100 0.000636	0.000657	0.011531
		200	0.000435	0.000323	0.006048

  ). The bold values indicate the smallest values of

			ISE. ]			
					Recursive estimator	
					(γ n ) = ([2/3 + ǫ]n -1 )	
		n Non recursive ǫ = 0.05	ǫ = 0.1	ǫ = 0.2
		50	0.003798	0.003660	0.003714	0.004148
	B(3, 2)	100 200	0.002471 0.001459	0.002188 0.000706	0.002193 0.000681	0.002306 0.001368
		50	0.004998	0.006846	0.006211	0.005435
	G(1, 6)	100 200	0.001477 0.001264	0.002186 0.000272	0.001622 0.000160	0.001820 8.042e -5
		50	0.001203	0.001110	0.001119	0.001081
	0.5B(2.5, 6) + 0.5B(9, 1) 100	0.000718	0.000531	0.000546	0.000636
		200	0.000412	0.000354	0.000458	0.000435

  Table 6.3: ISE of F n,m and F n , for Saltriver data and Suicide data. [ISE of the non recursive estimator Fn,m and the proposed estimator F n , for Saltriver data and Suicide data. The bold values indicate the smallest values of ISE.]

	Data set Proposed estimator Non recursive estimator
	Saltriver	4.5519e -8	6.1417e -8
	Suicide	4.1893e -6	4.4607e -6
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1 {x∈{0,1}} .

Main results

Throughout this chapter we consider the two following sequences:

For simplicity, we let

x ∈ (0, 1) ,

β, 1), x ∈ (0, 1) .

Our first result is the following proposition, which gives the bias and the variance of the proposed recursive estimator r n .

Proposition 4.1 (Bias and Variance of r n ).

1. Let Assumptions (A1) -(A2) hold such as f (x) > 0.

Then

Var [r n (x)] (4.3.2)

The following proposition gives the mean squared error (MSE) of the proposed two-time-scale recursive estimators r n . To study the asymptotic behaviours of the estimator (5.1.3) inside the interval [-1, 1], the following assumption is considered:

Throughout this chapter, we let i = 1 . . . m, x ∈ [-1, 1] for m ≥ 1, and we consider the following notations:

xx j x ix j : Lagrange polynomial, T m (x) = cos(m arccos(x)): Tchebytchev polynomial.

Main Results

Our first result is the following proposition which sets forward the bias and the variance of F n,m .

Proposition 5.2 (Bias and variance of F n,m ). Under assumption (A 1 ), we have for

(5.4.2)

Notice that for x ∈]0, 1[, the bias of the Bernstein estimator Fn,ν and the bias of the kernel estimator F n are given respectively by From figures 6.1-6.2 and tables 6.1-6.2, we conclude that • In the considered distributions (1)-( 4), by choosing the appropriate m, ν and h, the ISE of the distribution estimator (5.1.3) is smaller than that of Kernel estimator 200 200 0.264e -3 0.327e -3 0.522e -3 250 250 0.229e -3 0.289e -3 0.392e -3 150 150 0.540e -3 0.896e -3 0.676e -3 G(1, 6) 200 200 0.107e -3 0.200e -3 0.115e -3 250 250 2.921e -5 4.996e -5 5.429e -5 150 150 0.503e -3 0.501e -3 0.568e -3 0.5B(2.5, 6) + 0.5B(9, 1) 200 200 0.379e -3 0.380e -3 0.486e -3 250 250 0.309e -3 0.309e -3 0.354e -3 (5.1.1) and Bernstein estimator (5.1.2) even when the sample size is very large.

• The ISE decreases as the sample size increases. 

Discussion on the assumptions:

• Assumptions (A1)-(A2) are standard in density estimation.

• Assumptions (A3)-(A4) gives conditions for the stepsize and the degree of the Lagrange polynomial which allows getting the bias and variance of the proposed estimator.

• Assumption (A5) on the limit of (nγ n ) as n → ∞ is usual within the framework of stochastic approximation algorithms. It implies, in particular, that the limit of

Throughout this chapter, we let i = 1 . . . m, x ∈ [-1, 1] for m ≥ 1, and we consider the following notations:

= cos(m arccos(x)): Tchebytchev polynomial.

Main results

The first result is the bias, variance, and mean squared error (MSE) of F n .

Proposition 6.1 (Bias and variance of F n ). Let Assumptions (A1)-(A5) hold.

(1)

The bias and the variance of the estimator F n defined by the stochastic approximation algorithm, depend heavily on the choice of the stepsize (γ n ) and the degree (m n ). Let us first state the following proposition, which provides the MSE of the recursive estimator defined in (6.1.4).

(

(

The following corollary is a by-product of the previous proposition, which affords the optimal orders (m n ) and (γ n ) of the estimator F n minimizing the MSE. Corollary 6.3.1. Let Assumptions (A1)-(A5) hold. To minimise the MSE of F n , we need to choose (m n ) ∈ GS(1/3) and (γ n ) ∈ GS(-1).

The previous result implies that, to minimize MSE(F n (x)), a must be equal to α/3. In this case,

where γ n = γ 0 n -1 . The following remarks show that, for a special choice of the stepsize (γ n ) and the degree (m n ), the proposed distribution estimator F n can dominate the non recursive estimator F n,m and the recursive estimators F n,K and F n,B in terms of MSE.

Remark 6.3.1 (Comparison with estimators (6.1.1) and (6.1.2)). We note that the MSE of the recursive kernel estimator (6.1.1) (see Nadaraya (1964)) and the MSE of the recursive estimator using the Bernstein polynomial (6.1.2) (see [START_REF] Jmaei | Recursive distribution estimators defined by stochastic approximation method using Bernstein polynomials[END_REF]) are established respectively by

and

. Following [START_REF] Slaoui | The stochastic approximation method for the estimation of a distribution function[END_REF], we recall that to minimize the MSE of F n,K (x), we need to choose (γ n ) ∈ GS(-1) and (h n ) ∈ GS(-1/3). Departing from Corollary 3.1 in [START_REF] Jmaei | Recursive distribution estimators defined by stochastic approximation method using Bernstein polynomials[END_REF], we note that to minimize the MSE of F n,B (x), we need to choose (γ n ) ∈ GS(-1) and (m n ) ∈ GS(2/3). In conclusion, if we consider that h n = m -1 n as the "bandwidth" of the estimator (6.1.1), and regarding the performance of the proposed estimator, we point out that the three considered estimators (6.1.1), (6.1.2) and (6.1.4) are asymptotically equivalent in terms of MSE. Besides, with an optimal choice of γ 0 , the proposed estimator can be a competitor of the estimators (6.1.2) and (6.1.1). Remark 6.3.2 (Comparison with the non recursive estimator). The non recursive estimator using Lagrange polynomial is defined by

(6.3.7)

6.4 Numerical studies

Simulations

In this section, we demonstrate the performance of the proposed estimator (6.1.4) in estimating different distributions by comparing it to the performances of the recursive (Gaussian) kernel estimator (6.1.1), of the recursive estimator using Bernstein polynomial (6.1.2) as well as that of the non recursive estimator using Lagrange polynomial (6.3.7).

We can apply the Bernstein estimator (6.1.2) and the Lagrange estimators (6.3.7) and (6.1.4) when the sample is concentrated on the intervals [0, 1] and [-1, 1], respectively. Then, in order to enact the comparison between the Bernstein estimator (6.1.2), the Lagrange estimators (6.1.4)-(6.3.7) and the kernel approach (6.1.1), which are applicable in general, we elaborate below suggested transformations in different cases:

(1) Suppose that X is concentrated on a finite support (2) For the distributions functions concentrated on R, we can use the transformed sample Y i = 1/2 + π -1 arctan(X i ) which transforms the range to the interval [0, 1].

(3) For the support R + , we can use the transformed sample Y i = X i /(1 + X i ) which transforms the range to the interval [0, 1].

In our simulation study, three sample sizes are considered, n = 50, 100, 200 according to the following distribution functions F :

3-The mixture beta distribution 0.5B(2.5, 6) + 0.5B(9, 1).

For each distribution function F and sample size n, we compute the Integrated Squared Error (ISE) of the estimator over N = 500 trials,

where F is an estimator of the true distribution F . To select the smoothing parameters m and h, we consider the Monte Carlo procedure for each point x ∈ [0, 1]. We determine Departing from Tables 6.1 and 6.2, we infer that:

(i) In all the cases, the ISE of the proposed distribution estimator (6.1.4) with an appropriate choice of the stepsize (γ n ) is smaller than that of the other recursive estimators (6.1.1)-(6.1.2) and the non recursive distribution estimator (6.3.7).

(ii) The ISE decreases as the sample size increases.

(iii) Relying upon Table (6.1), we deduce that 1-for small and moderate samples size (n = 50 and n = 100), the proposed recursive estimator displays better results compared to the two other recursive methods in terms of ISE, except for the mixture beta distribution in the cases c = 0.05, c = 0.1 for n = 50. 2-for large samples size n = 200, the proposed recursive estimators have a smaller ISE compared to the other recursive estimators, except for the mixture beta distribution in the cases c = 0.05 and c = 0.2.

(iv) Referring to Table (6.2), we notice that the proposed recursive estimator presents better results compared to the non-recursive distribution estimator in all the cases using an appropriate choice of the stepsize (γ n ). It follows that

(6.6.1)

In addition, we have,

Using Proposition 3.1 in [START_REF] Helali | Estimation of a distribution function using Lagrange polynomials with Tchebychev-Gauss points[END_REF] (and its proof), we obtain

Substituting this result into (6.6.1), leads to

For the case 0 < a ≤ α 3 , we have ξ < 1/2a. The application of lemma 6.1 entails

which follows (6.3.1). In the case α 3 < a < 1, we have ξ < 2/(α + a) and m -2

. The application of lemma 6.1 provides

, which gives (6.3.2).

Next, we have for x ∈ [-1, 1] and n ≥ 1,

Grounded on Proposition 3.1 in [START_REF] Helali | Estimation of a distribution function using Lagrange polynomials with Tchebychev-Gauss points[END_REF], we obtain (6.6.3) Substituting this result into (6.6.2), leads to

In the case α 3 ≤ a < 1, we have lim n→∞ nγ n > (a + α)/2. The application of Lemma 6.1 gives

which proves (6.3.3). In the case α 4 ≤ a ≤ α 3 , we have lim

The application of Lemma 6.1 gives

which gives (6.3.4). In the case 0 < a < α 4 , we have lim n→∞ nγ n > 2a and γ n = o(m -4 n ). The application of Lemma 6.1 gives (6.3.5).

Proof of Corollary

It follows from Proposition 6.2 that 

It follows that, for a given α ∈]1/2, 1], to minimize the MSE(F n (x)), the parameter a must be chosen equal to α/3 and α = 1. In other words, to minimize the MSE of F n , the stepsize (γ n ) must be chosen in GS(-1) and the degree (m n ) in GS(1/3).

Proof of Proposition 6.3

To prove Proposition 6.3, we shall use the following lemma, which will be proved later. Lemma 6.2. If a ≥ α 4 , then

We have γ

n m -4 n = 0, then a ≥ α/4. In the case α/4 ≤ a ≤ α/3, Proposition 6.3 follows from lemma 6.3. In the case α/3 < a < 1, Proposition 6.3 follows from Equation (6.3.2) and lemma 6.3.

Proof: [Proof of lemma 6.2] Let a ≥ α/4. Relying on equation (6.1.3), we have Hence, Lemma 6.2 follows from the application of Lyapounov's theorem.