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General Introduction

1 Motivation
(Mathematical) induction is a most successful proof technique to reason on data structures of unbounded
size like naturals and lists. Already known by the ancient greeks and rediscovered by Pascal and Fermat
at the second half of the seventeenth century, it became a precious formal tool for mathematicians to such
an extent that Poincaré considered it, at the beginning of the twentieth century, as the mathematical
reasoning par excellence [Poincaré, 1902]. This is also the case for computer science. The fundamental
notion of computable function can be defined in many equivalent models of computation, among which
the Turing machines [Turing, 1936] and the (µ-)recursive functions [Kleene, 1936]. There is a strong link
between recursion and induction; for example, the correctness of primitive recursive functions is proved
by induction on naturals.

After the inception of computers, McCarthy saw an interest for its mechanization and coded into Lisp
the recursion induction [McCarthy, 1963], a method for proving the equivalence between two recursively
defined functions. Later on, Burstall [Burstall, 1969] showed the importance of structural schemata-
based induction to verify properties about recursively defined data structures. Since then, a lot of
‘proof by induction’ methods have been proposed and contributed to many successful stories about the
validation and verification of (critical) programs. A closer look on the applications of induction-based
theorem provers as ACL2 [Kaufmann and Moore, 1999]1 may identify the following (non-exhaustive list
of) application domains:

• data structures (fully ordered sets, finite sets, powerlists),

• processor modelling and hardware verification (assynchronous circuits, self-timed circuits, x86 in-
struction set architecture, flash memories, AMD processors, pipelined machines),

• programming languages and software verification (Java-like bytecode, cryptographic language com-
pilers, verification condition generation, program verification strategies),

• floating point and real arithmetic (register-transfer logic, continuity and differentiability, floating
point operations: addition, division, square root),

• concurrency (cache coherence, interactive consistency),

• model checking (predicate abstraction, reduction of invariant proofs, compositional and µ- calculus
model checking), and

• logic and metamathematics (quadratic unification, Higman’s lemma, Dickson’s lemma, synthesized
SAT-provers, decision procedures for propositional logic, rewriting, computer algebra).

Some repositories2 contain benchmarks and challenge problems for induction-based theorem provers. An
example of non-trivial property that can be proved by induction is rev(rev(l)) = l, for every list l, where
rev is the function that computes the reverse of a list.

1https://www.cs.utexas.edu/users/moore/publications/acl2-papers.html
2e.g., https://tip-org.github.io/
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General Introduction

We are interested in the use of induction to reason on programs specified in a first-order language.

2 Some induction principles for first-order reasoning

Peano induction is one of the classical examples of induction principles: to prove a formula P (x), for any
natural x, it is enough to prove both P (0) and P (S(x′)), where x′ is a fresh natural variable, by allowing
to use P (x′) in the proof of P (S(x′)). The power of induction reasoning stands in the use of ‘not-yet
proved’ facts, as P (x′).

Other induction principles, adapted for first-order reasoning, are issued from the Knuth-Bendix
saturation-based completion procedure [Knuth and Bendix, 1970]. It opened the way to rewrite-
based automated reasoning methods like the inductionless induction [Musser, 1980, Goguen, 1980,
Huet and Hullot, 1980, Lankford, 1980] and other reductive induction methods as implicit induc-
tion [Kounalis and Rusinowitch, 1990a, Reddy, 1990]. A more recent induction reasoning technique for
first-order logic with inductive definitions (FOLID) is cyclic induction [Brotherston and Simpson, 2011].

Not all induction reasoning techniques are equivalent when proving properties. In the frame of FOLID,
it has been shown in [Berardi and Tatsuta, 2019] that Peano-like induction reasoning is not as powerful
as cyclic induction reasoning, by using arguments based on the 2-Hydra problem.

The 2-Hydra problem is a particular case showing the termination of the battle between Hercules and
Hydra [Dershowitz and Moser, 2007] when Hydra has at most two heads that hang on the top of necks
of different lengths. Hercules prevails if either Hydra has i) no heads at all, or ii) the length of the first
neck is 1 unit and it has lost the second head (i.e., the length of the neck is 0), or iii) the length of the
second neck is 1 unit, as in Figure 1.

Figure 1: The cases when Hercules wins.

Hercules can cut the Hydra’s necks according to the following rules. If both necks have strictly positive
lengths, then Hercules can cut them such that the first neck is shorter by 1 unit and the second by 2
units (see the case iv in Figure 2). If Hydra has already lost one of the heads and the neck of the other
head has a length l of at least 2 units, the first head will have a neck of length l− 1 units and the second
head a neck of length l − 2 units (see the cases v and vi in Figure 2).

In FOLID, the six cases can be formalised as the axioms of a binary inductive predicate p:

i) p(zero, zero),

ii) p(succ(zero), zero),

iii) ∀x, p(x, succ(zero)),

viii



2. Some induction principles for first-order reasoning

Figure 2: The cases when Hercules cuts the necks of Hydra.

iv) ∀x y, p(x, y)→ p(succ(x), succ(succ(y))),

v) ∀y, p(succ(y), y)→ p(zero, succ(succ(y))), and

vi) ∀x, p(succ(x), x)→ p(succ(succ(x)), zero),

where zero and succ (the ‘successor’ function) are intended to represent the usual constructors of natural
numbers. In this setting, Hercules always wins over Hydra if ∀ x y, p(x, y) holds whenever x and y
are natural numbers, where the property of being a natural number is captured by another inductive
predicate. In [Berardi and Tatsuta, 2019], it has been shown that this property cannot be proved by
induction principles similar to Peano induction.

The Noetherian induction principle. Peano induction is a particular case of a more general
induction principle called Noetherian induction or well-founded induction. It allows to prove the validity
of a property φ for any element from a potentially infinite poset (E , <), provided that < is a well-founded
ordering which excludes the occurrence of any infinite strictly decreasing sequence of elements. The
Noetherian induction principle can be formally stated as follows:

Noetherian induction. (∀m ∈ E , (∀k ∈ E , k < m⇒ φ(k))⇒ φ(m))⇒ ∀p ∈ E , φ(p).

Thanks to the well-founded property of the ordering, the assumptions φ(k), called induction hypotheses
(IHs), can be soundly applied in the proof of the induction conclusion φ(m). The soundness proof will
be shown for the contrapositive version of the Noetherian induction, called the ‘Descente Infinie’ (or
Infinite Descent) induction, but a similar proof can be built also for the soundness of the Noetherian
induction principle.

‘Descente Infinie’ induction. (∀m ∈ E ,¬φ(m)⇒ (∃k ∈ E , k < m ∧ ¬φ(k)))⇒ ∀p ∈ E , φ(p).

The soundness proof is by contradiction. If there exists an element m0 ∈ E such that ¬φ(m0), according
to the induction principle, there is a smaller element m1 such that ¬φ(m1), for which there is an even
smaller element m2 such that ¬φ(m2), and so on. In this way, an infinite strictly descending sequence of
elements of E is built. This contradicts the well-foundedness property of the ordering.

In a first-order setting, two useful classes of Noetherian/‘Descente Infinie’ induction instances are
distinguished, for which the elements of E are i) (vectors of) terms, and ii) (first-order) formulas. For
the latter case, φ can be the second-order identity predicate in order to keep up with the first-order setting.

ix



General Introduction

3 Term-based Noetherian induction reasoning and its limitations
Term-based instances of the Noetherian induction principle include the conventional induction methods,
based on induction schemas that explicitly define the IHs to be used in the proof of each induction
conclusion. The information justifying the soundness property is locally embedded inside the induction
schemas, hence their natural integration into deductive, sequent-based inference systems in terms of
induction rules. During a proof, it may happen to define useless IHs or to ask for crucial IHs that are
not yet defined. The case of mutual induction, for which instances of a formula are used as IHs in the
proof of other formulas, and viceversa, is hardly manageable with non-mutual recursion and leads to
more technical and complex proofs.

The term-based Noetherian induction methods build explicit induction schemas attaching eagerly
IHs to induction conclusions. In this approach, the proof of an induction conclusion is further developed,
expecting that the IHs be applied at some proof step. Defining the right induction schemas may need
several proof attempts, especially when some knowledge about the way the proof will be performed is
lacking. In practice, it may happen that IHs be defined but not used or that IHs be required but not
defined. The latter case is challenging especially when defining induction schemas for the management
of mutual induction reasoning where a property can help proving another property, and conversely.

Today, it is hardly imaginable a modern theorem prover not integrating ‘proof by induction’ features.
Explicit induction schemas can be automatically generated from the analysis of inductive predicate,
recursive function or datatype definitions, a feature that is implemented by many formal reasoning tools
like the Coq proof assistant [The Coq development team, 2020]. The following example outlines, by the
means of Coq, the main problems that may arise when using Peano-like induction principles, and explicit
induction reasoning in general, for proving properties about mutually defined functions.

Example 1 (Coq specification and proofs of the P&Q example) This example has been adapted
from [Wirth, 2004]. By using the specification language of Coq, let us define two mutually defined induc-
tive predicates P and Q, as well as N intended to define natural numbers. Let us also provide the main
steps of the Coq proof script of the lemma p is true, stating that P holds for any natural, to be used later
to prove our main theorem stating that (Q x y) holds for every natural x and y:

Variable T: Set.
Variable zero: T.
Variable succ: T → T.

Inductive P: T → Prop :=
p1: P zero

| p2: ∀ x, (P x ∧ Q x (succ x)) → P (succ x)
with

Q: T → T → Prop :=
q1: ∀ y, Q y zero

| q2: ∀ x y, (Q x y ∧ P x) → Q x (succ y).

Inductive N: T → Prop :=
n1: N zero

| n2: ∀ x, N x → N (succ x).

Theorem p is true : ∀ u, N u → P u.
Proof.
[...].
induction H. (* u is the induction variable *)
- Case "zero". apply p1.
- Case "succ". apply p2. [...].
generalize (succ x).
[...].
induction H1. (* second induction step *)
+ SCase "zero". apply q1.
+ SCase "succ". apply q2. [...].

Qed.

The type T is generic and the variables ‘zero’ and ‘succ’ are meant again to be the constructors of
naturals. Each inductive definition is built from labelled axioms that represent either atoms or implication
formulas.

The Coq proof scripts are not meant to be read but executed using Coq proof environments as
CoqIDE.3 The advantage of using proof environments is due to a better undertanding of each proof step
by displaying the current proof state. In the following, we will explain to the readers of p is true’s proof

3https://coq.inria.fr/refman/practical-tools/coqide.html
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script4 the main induction proof steps. The induction principle, denoted by N ind, is called using the
induction command. The proof scripts of the resulting induction cases are indented and prefixed by a
symbol, e.g., ’-’ or ’+’, followed by some comment, e.g., Case “zero”, related the current case. Coq builds
automatically N ind from the recursive definition of N:

forall P : T -> Prop,
P zero ->
(forall x : T, N x -> P x -> P (succ x)) ->
forall t : T, N t -> P t

which has the same induction cases as the Peano induction principle.
The induction cases are built depending on the argument given to induction which is a label of a

premise formula of the form (N v), where v is the induction variable to be instantiated by the induction
schema. If P is a property defined over the terms t satisfying (N t), N ind states that (P t) holds for
all terms t of type T if both induction cases (P zero) and (P (succ x)) hold, where x is a fresh variable.
It also states that (P x) can be soundly used in the proof of (P (succ x)) as IH. It can be noticed that
the proof requires two induction steps, one embedded into the other. The first step uses u as induction
variable, while the second step uses as induction variable the generalization of the term (succ x). The
notation [...] means that some non-relevant Coq script is missing or some IH was applied at (S)Case
“succ”.

The lemma can be used in the proof of our main theorem. The proof requires only one induction step
that applies one more time the N ind induction principle:

Theorem q is true : ∀ u v, N u → N v → Q u v.
Proof.
[...]. induction H0. (* v is the induction variable *)
- Case "zero". apply q1.
- Case "succ". apply q2.
[...]. apply p is true. [...].

Qed.

It is hard to find a global proof for the main theorem from Example 1 where the N ind induction
principle is applied only once. This is because the proof of ∀u, (P u) needs an instance of ∀x y, (Q x y),
and vice versa. In another proof attempt, one can take advantage of the fact that the main theorem is
a consequence of the conjunction ∀x y, (P x) ∧ (Q x y). However, the proof of the conjunction lemma
is as difficult as the global proof, requiring also three induction steps. It can be noticed that the proof
attempts for other conjunction lemmas, as ∀x y, (P y) ∧ (Q x y) for which the shared variable is y, and
∀u x y, (P u) ∧ (Q x y), where no variable is shared, will fail.5

From the previous proof attempts, we conclude that one of the main difficulties encountered when
using the term-based approach is to devise successful induction schemas.

4 Formula-based Noetherian induction reasoning and its advan-
tages

Simpler proof derivations, based only on variable instantiations and unrolls of the definitions of P and
Q, can be built using formula-based instances of the Noetherian induction principle. This approach uses
lazy and mutual induction reasoning to stop the proof development of formulas if they are instances of

4The full Coq script is available at https://drive.google.com/file/d/10HUmH4ywl1O1PSPjODH58zXwL6K_KBeL/
view?usp=sharing

5The details of the Coq proof can also be accessed at https://drive.google.com/file/d/
10HUmH4ywl1O1PSPjODH58zXwL6K_KBeL/view?usp=sharing
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previously generated formulas. The result of such a terminating proof development is referred to as a
pre-proof.

Example 2 (a Coq pre-proof of the P&Q example)

Theorem cyclic: ∀ x y, N x → N y → Q x y.
Proof.

[...].
(* instantiate y from (Q x y) *)

inversion H0. [...].
(* case (Q x zero) *) apply q1. [...].
(* case (Q x (succ y’)) *) apply q2. [...].
(* the proof of (Q x y’) requires induction reasoning *)

Focus 2.

(* instantiate x from (P x) *)
inversion H. [...].

(* case (P zero) *) apply p1. [...].
(* case (P (succ x’)) *) apply p2. [...].
(* the proof of (P x’) requires induction reasoning *)

Focus 2.

(* the proof of (Q x’ (succ x’)) requires induction reasoning *)
Admitted.

The inversion tactic is a different way to instantiate variables from an inductive atom P (a) given
as a premise, also derived from the definition of the inductive predicate P . ‘Focus 2’ is used to process the
next branch in the tree structure of the Coq pre-proof. The command ‘Admitted’ informs Coq to abandon
the proof. As it is, Coq is not able to validate the above proof script.

Checking the soundness of pre-proofs. Not every pre-proof is sound. In our context, the soundness
property boils down to validate the usage of IHs by the application of some induction principle. A formula-
based induction proof is a pre-proof that satisfies the ordering constraints required by the application of
formula-based Noetherian induction principles. The validation of IHs may be tricky because one have to
find the orderings that satisfy the ordering constraints. To show how the ordering constraints are built,
we will represent the pre-proofs as directed graphs (digraphs).

Example 3 (a formula-based induction proof of the P&Q example) Figure 3 is a digraph rep-
resentation of the Coq pre-proof from Example 2, where the nodes represent atoms of the form (P t) and
(Q t1 t2) found in the conclusion of the main steps of the pre-proof. Each downward arrow link a node
with the new nodes issued after the process of the node.

The pre-proof starts by instantiating y by zero and (succ y) from the root node labelled by (Q x y).
(Q x zero) is true, by q1. The instantiating substitutions label the corresponding downward arrows. The
instance (Q x (succ y′)) is also true if (P y′) and (Q x y′) are true, by q2. No further transformation
is supported by (Q x y′) which is an instance of the root node using the substitution {x 7→ y′}. The
instantiation relation is graphically represented by an upward dashed arrow labelled by the instantiating
substitution written in boldface style. The variable x of (P x) is further instantiated by zero and (succ x′).
(P zero) is true, by p1, while (P (succ x′)) is true if both (Q x′ (succ x′)) and (P x′) are true, by p2.
(P x′) is an instance of (P x′) using the substitution {x 7→ x′}, while (Q x′ (succ x′)) is an instance of
the root node using the substitution {x 7→ x′; y 7→ (succ x′)}.

Sections 6.2 and 6.3 will show different ways to apply the formula-based Noetherian induction principle
in order to validate the IHs. We will follow the approach detailed in Section 6.3. Let the set E, used
in the definition of the formula-based Noetherian induction, consist of the two formulas ∀t, (P t) and
∀ t1 t2, (Q t1 t2). This approach requires that the nodes labelled by (P x) and (Q x y) be root nodes. This
is already the case for the node labelled by (Q x y) but not for (P x). The node labelled by (P x) can be
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Figure 3: The digraph representation of the Coq pre-proof from Example 2.

duplicated such that one instance is a terminal node in the digraph and the subtree rooted by the other
instance is detached from the digraph to become a new tree. An upward dashed arrow is added to point
the first instance to the second one. The arrow is labelled by an identity substitution which instantiates
x by itself. The final result is the digraph from Figure 4, consisting of two trees.
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Figure 4: The digraph resulting after the duplication of the node labelled by (P x).

The new digraph is normalized such that all the IHs label terminal nodes that point to root nodes. We
say that an IH labelling a terminal node n is validated if it is smaller than some instance of the root
formula of the tree to which n belongs. This instance uses the cumulative substitution resulting from the
composition of the substitutions that label the downward arrows encountered along the path leading the
root to n. Since the IHs are all instances of root formulas, the ordering constraints will compare only
instances of root formulas. If Pσ is the instance of a formula P with the substitution σ, the ordering
constraints for the four IHs of our example are:

• IH (Q x y′): (Q x y){x 7→ x; y 7→ y′} <p (Q x y){x 7→ x; y 7→ (succ y′)},

• IH (P x′): (P x){x 7→ x′} <p (P x){x 7→ (succ x′)},

• IH (Q x′ (succ x′)): (Q x y){x 7→ x′; y 7→ (succ x′)} <p (P x){x 7→ (succ x′)}, and

• IH (P x): (P x){x 7→ x} <p (Q x y){x 7→ x; y 7→ (succ y′)}.

The ordering <p has to be defined such that the ordering constraints, resulting after the application of the
substitutions to the root formulas, are satisfied: (Q x y′) <p (Q x (succ y′)), (P x′) <p (P (succ x′)),
(Q x′ (succ x′)) <p (P (succ x′)) and (P x) <p (Q x (succ y′)). If the measure value of a formula
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(P t) (resp., (Q t1 t2)) is the multiset {t, t} (resp., {t1, t1, t2}), the ordering constraints are boiled down
to the following comparisons between multisets of terms: {x, x, y′} <p {x, x, (succ y′)}, {x′, x′} <p
{(succ x′), (succ x′)}, {x′, x′, (succ x′)} <p {(succ x′), (succ x′)}, and {x, x} <p {x, x, (succ y′)}. It
can be shown that the constraints are satisfied if <p is the multiset extension of a multiset path ordering
(mpo) [Baader and Nipkow, 1998] based on the precedence over the function symbols stating that ‘zero’
is smaller than ‘succ’.

Several formula-based instances of the Noetherian induction principles can be applied for checking
whether a pre-proof is a proof. Validating the IHs can be done after building the pre-proofs or during their
development. Also, the ordering constraints may be implicitly satisfied if reductive proof procedures are
used. The attribute ‘reductive’ relates to the fact that every inference step transforms formula instances
into strictly smaller ones or, sometimes, smaller or equal ones. An example of reductive induction
technique is the rewrite-based implicit induction, suggested in [Kounalis and Rusinowitch, 1990b] and
defined later in [Bronsard et al., 1994]. In this case, there is only one application of the formula-based
induction principle by using a unique induction ordering defined over all the formulas encountered during
the proof derivation. The reductive induction reasoning can be easily automatised and multiple induction
steps can be performed during a proof session, as it is witnessed by the proofs generated with SPIKE, an
implicit induction prover [The SPIKE development team, 2020].

The non-trivial induction reasoning requires the usage of IHs. Intrinsically, it is cyclic in the sense
that it includes cases where the proof of a formula φ depends on (an instance of) φ given as IH. In some
cases, the validity of IHs can also be checked without employing Noetherian induction reasoning and
ordering constraints. An example is the CLKIDω inference system [Brotherston and Simpson, 2011] that
can reason on FOLID. Its implementation in the Cyclist prover [Brotherston et al., 2012] uses a proof
strategy guided by building cycles of formulas that satisfy some global trace condition and automata-based
methods for checking its validity.

The manual check of the validity of IHs may be tedious, error-prone and costly. For example, the
automatically generated implicit induction proofs may contain thousands of proof steps that make hard
to explicitly state and verify the ordering constraints. For these reasons, their mechanical certification
becomes a necessity. Some certifying proof environments based on type theory, such as Coq and
Isabelle [Nipkow et al., 2002], have a higher-order specification language that allow the definition and
the direct application of instances of the Noetherian induction principle. In Coq, Noetherian induction
principles can also be derived from recursion-based specifications. They can be formalised in two ways, by
the means of: i) the functional programming style, based on pattern matching constructions, and ii) the
logic programming style, based on inductive predicates. Both styles allow to encode recursion but each
of them has limitations. Any function should be total and terminating, the built-in termination criterion
being supported by a structural recursion analysis checking that one of the function arguments decreases
according to a well-founded ordering. On the other hand, any inductive predicate is defined by the
means of a set of formulas written in a ‘Horn-clause’ implication form, but no termination proof is needed.

5 Goals and structure of the content

Goals. Our main objectives are: i) to understand the relations between term- and formula-based
induction principles in order to bridge the gap between the underlying proof methods, ii) to free the
inductive reasoning from computation, and iii) implement it more effectively and trustworthily.

Structure of the content and contributions. The rest of the document is structured in three parts.
The first part is more theoretical and has three chapters. Chapters 1 and 2 are based on the work
published in [Stratulat, 2012]. Chapter 1 gives an overview of the term- and formula-based instances
of the Noetherian induction principle. Chapter 2 introduces a cyclic and non-reductive formula-based
induction proof method and its relation with reductive methods as those based on implicit induction. The
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last chapter, based on [Stratulat, 2016, Dramnesc et al., 2019], studies the relations between term- and
formula-based proofs. Firstly, we show how to implement cyclic reasoning in Coq and identify conjectures
that are, on the one hand, easy to be proved by cyclic induction but are, on the other hand, hard to be
proved by using explicit induction. The last part of Chapter 3 shows how cyclic reasoning was converted
to explicit induction reasoning and mechanized during a concrete application: the synthesis of sorting
algorithms for binary trees.

The second part also has three chapters but is more practical. Chapter 4 introduces the SPIKE prover,
based on [Stratulat, 2020]. Chapter 5, synthesizing results from [Barthe and Stratulat, 2003], presents
an industrial-size application of the implicit induction and SPIKE: the validation of the JavaCard plat-
form. Chapter 6, based on [Stratulat, 2010, Stratulat and Demange, 2011, Henaien and Stratulat, 2013,
Stratulat, 2017b], gives a methodology for the Coq certification of implicit and cyclic induction reasoning
for recursive-based specifications using the functional and logic programming styles.

The last part, consisting of two chapters, reveals bridges of the Noetherian induction reasoning with
other reasoning techniques. Chapter 7, based on [Stratulat, 2017a, Stratulat, 2018], introduces a different
method to validate cyclic FOLID proofs, via ordering constraints. This approach allows to represent cyclic
FOLID induction reasoning as Noetherian induction reasoning that can be validated by Coq. The second
chapter presents a connection between saturation-based and Noetherian induction reasoning, published
in [Stratulat, 2005, Stratulat, 2007].

The document ends with proposals for future projects.

6 List of main contributions

We briefly highlight the main contributions related to the use of the Noetherian induction principle in
first-order reasoning.

Taxonomy for the first-order instances of the Noetherian induction principle. In Chapter 1,
we proposed a classification of the first-order instances of the Noetherian induction principle into term-
and formula-based instances. This allowed us to classify different induction reasoning techniques and
induction principles for first-order reasoning. We showed that every term-based proof can be directly
converted to a formula-based one. In the other direction, the direct conversion is possible only for a
class of formula-based proofs. Section 3.1 gave several examples of formula-based proofs that are hard or
impossible to be proved using term-based induction principles that may be issued from the formula-based
proofs, e.g., using the same variable instantiation schemas. On the other hand, Section 3.2 presented
a class of formula-based proofs that can be translated into term-based ones. The question whether
every formula-based proof can be converted to a term-based one remains open. Our effort to better
understand the relations between formula- and term-based instances is continued in the detailed project
from Section C.1.

Formula-based induction proof technique. In Chapter 2, we proposed a cyclic and non-reductive
formula-based reasoning technique and applied it to prove conjectures about conditional specifications.
The paper [Stratulat, 2012] presenting it received a best paper award at the Alan Turing Centenary
Conference in 2012.

Certification of formula-based induction reasoning. Our experiments conducted on the JavaCard
application, described in Chapter 5, with the SPIKE prover, presented in Chapter 4, have automatically
generated some proof scripts consisting of thousands of steps that are time-consuming or very hard to be
checked by humans. This motivated our research on the mechanical certification of the implicit induction
proofs produced by SPIKE and, more general, of the formula-based induction reasoning using the Coq
certification environment, as described in Chapter 6. This work was done in collaboration with Vincent
Demange and Amira Henaien during their PhD period.
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Connections between formula-based Noetherian induction reasoning and other kinds of first-
order reasoning. In Chapter 7, we showed that the soundness conditions for a class of FOLID cyclic
pre-proofs can be deduced from a set of ordering and derivability constraints issued from the analysis of
the pre-proofs. The similarity between these ordering constraints and those occurring in formula-based
proofs allowed us to extend the certification methodology for formula-based reasoning to certify FOLID
cyclic proofs. In other direction, in Chapter 8 we identified similarities between reductive induction-based
inference systems, as the implicit induction inference systems, and saturation-based inference systems,
as the paramodulation- and resolution-based systems. For example, we showed that the derivations
produced by these inference systems do not eliminate the minimal counterexamples. A methodology for
building sound reductive induction-based systems has been adapted for saturation-based systems and
used to improve some of the existing ones.

Case studies, computer experiments and software developments. The strengths and limits of
our results have been illustrated by examples, non-trivial case studies and computer experiments. The
most important software developments are the new version of the SPIKE prover and E-Cyclist (the
extension of the FOLID Cyclist prover with the new checking method for the soundness of FOLID
pre-proofs).
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First-Order Instances of the Noetherian
Induction Principle
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Induction reasoning is helpful when establishing properties about programs and specifications built
from recursively defined domains and data structures. The properties of interest are inductive, i.e.,
they are valid only in distinguished models, e.g., term-generated, standard or non-standard models as
the Henkin models. However, it is hardly imaginable to perform induction reasoning exclusively with
reasoning techniques working only for inductive models. Indeed, the current inductive theorem provers
mix them with deductive techniques that can validate properties in all models.

This chapter, based on [Stratulat, 2012], gives an overview of the use of the Noetherian induction
principle to build first-order proofs valid in term-generated models.

Structure of the chapter. The chapter has five sections. After the introduction of basic notions in Sec-
tion 1.1, Section 1.2 defines the term- and formula-based instances of the Noetherian induction principle,
adapted when reasoning on first-order logic. Sections 1.3 and 1.4 overview the term- and formula-based
induction proof methods. The features of each of these methods are analysed by the means of different
proofs of a very simple running example. The last section concludes.

1.1 Basic notions
Let F (resp. P) be a ranked alphabet of function (resp. predicate) symbols and V a countable set of
variables. T (F ,V) denotes the set of terms over F and V, and T (F) its subset of ground terms. The
expression P (t1, . . . , tn) is an atom, where P ∈ P is an n-ary predicate and t1, . . . , tn are terms. The set
A(P,F ,V) (resp. A(P,F)) denotes the set of atoms over P, F and V (resp. P and F). Let L represent
a decidable set of first-order formulas over A. We denote by Ax the axioms that build a specification,
consisting of formulas from L. New terms and formulas can be obtained by substitution operations,
representing finite mappings between variables and terms, of the form {x1 7→ t1, . . . , xn 7→ tn}, where xi
(i ∈ [1..n]) are distinct. A renaming substitution has all substituting terms as variables. In addition,
if every substituting variable is the same as the substituted variable, the substitution is an identity
substitution. Given a substitution σ and a term t (resp. formula φ), tσ (resp. φσ), sometimes written
(t, σ) or t[σ] (resp. (φ, σ) or φ[σ]), denotes the instance of t (resp. φ) by the substitution σ. Given two
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Chapter 1. First-Order Instances of the Noetherian Induction Principle

substitutions σ1 and σ2, by ψ(σ1σ2) we denote (ψσ1)σ2, for any term or formula ψ; σ1σ2 means that σ1

is composed with σ2. We are referring to ground substitutions if the mapping terms are ground.
Semantically, given a first-order structure S with domain D, we write fS to denote the interpretation

of the symbol f ∈ F in S. The variables are interpreted by a valuation (total) function from variables
of V to D. It can be extended to non-variable terms as follows: if t(s1, . . . , sn) is a term such that
tS : Dn → D is the interpretation of t, its interpretation is obtained by replacing each of its i) function
symbol f by fS , and ii) variable by its valuation. Every n-ary predicate symbol from P is interpreted as
an n-ary relation on D. We write S |=ζ φ for a formula φ that is true in S using the valuation function
ζ. Any interpretation < S, ζ > satisfying Ax is a model of Ax. A formula φ is a deductive consequence
of a set of formulas Φ, denoted by Φ |= φ, if φ holds in all models of Ax whenever ψ holds in all models
of Ax, for any ψ ∈ Φ. A formula is deductively valid w.r.t. Ax iff it is a deductive consequence of Ax.

Deductive relation. Let P(L) denote recursive sets over L. The recursively enumerable deductive
relation `⊆ P(L)× L satisfies the properties:

• if φ ∈ Ax, then Ax ` φ,

• if Ax ` φ and Ax ⊆ Ax′, then Ax′ ` φ,

• if Ax ` φ and Ax ∪ {φ} ` φ′, then Ax ` φ′, and

• if Ax ` φ, then Ax ` φσ, for any substitution σ.

In practice, the first-order (deductive) systems that implement the deductive relation are normally
sound , i.e., Ax ` φ implies Ax |= φ, and complete, i.e., Ax |= φ implies Ax ` φ, for any formula φ.

Inductive relations. We are interested in the case when Ax has term-based (Herbrand) models, i.e.,
whose valuation functions transform variables into ground terms. A formula φ is an inductive consequence
of the axioms if φ holds in all Herbrand models of Ax. The inductive theory of Ax consists of all inductive
consequences of Ax. In general, it is neither decidable, nor semi-decidable. For various reasons which
depend not only on the nature and form of the axioms but also on the user’s intuition, monotonicity
behavior and operational feasibility criteria [Wirth and Gramlich, 1994], only a non-empty subset of the
Herbrand models of Ax is considered. For example, when Ax is a set of universally quantified Horn
clauses with equality, it is convenient to reason on the unique initial (minimal) model of Ax. The choice
of the model subset influences the way the variables are instantiated during the induction proofs.

In this chapter, we consider that such subset, denoted by M, exists and it is already fixed before
performing any induction reasoning. To simplify the presentation, we assume that all variables are
universally quantified. A formula φ is a M - consequence (or just consequence) of a set of formulas Φ,
denoted by Φ |=M φ, if S |=ζ φ whenever S |=ζ ψ, for any ψ ∈ Φ and model < S, ζ > from M. A
formula φ isM-valid (or just valid), denoted by |=M φ iff it is a consequence of Ax. The two notions of
consequence relation may coincide for particular cases; for example, a positive clause φ is an inductive
consequence of a set of universally quantified Horn clauses with equality iff φ is valid in their initial
model [Gramlich, 2005].

A formula φ is false, denoted by 6|=M φ, if it is not valid. Any false formula has (or contains) at least
one false ground instance, called counterexample. It can be easily shown that, for any formula φ and set
of formulas Ψ, if Ψ |=M φ and 6|=M φ then it exists a formula ψ ∈ Ψ such that 6|=M ψ.

Sufficient completeness. The axioms define very often functions based on constructors that are suffi-
ciently complete. In this case, the set F is split into defined function (DF) and constructor (C) symbols.
In addition, the models fromM are constructor models, i.e., whose valuation functions transform vari-
ables into ground constructor terms from T (C).

A function symbol f ∈ DF is sufficiently complete if any ground term of the form f(t) is deductively
equivalent to a constructor ground term from T (C), where t is a term vector of the form (t1, . . . , tn) with
ti ∈ T (C),∀i ∈ [1..n].
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1.2. The term- and formula-based instances

Induction orderings. The induction orderings are assumed to satisfy essential properties related to well-
foundedness and stability under substitutions, as defined below. Well-foundedness implies the existence
of minimal elements.

Lemma 1 Let (E , <) be a well-founded poset. For any non-empty subset of E, there is a minimal element.

Proof By contradiction, assume that E has a non-empty subset E ′ without minimal elements, i.e., for
each element of E ′ there is a smaller element in E ′. Let x1 be an arbitrary element of E ′. Since it is not
minimal, it exists an element x2 of E ′ smaller than x1. The same reasoning is performed on x2, and so
on, to finally build an infinite strictly decreasing sequence of elements of E ′. Contradiction because the
ordering is well-founded. �

A binary relation R is stable under substitutions if whenever sR t then (sσ)R (tσ), for any substitution
σ and terms or formulas s and t. R is stable under contexts if, for any two terms s and t such that
sR t and any term l〈s〉, then l R r, where r can be any term built by replacing in l occurrences of s
by t. A quasi-ordering is stable under substitutions if its strict and equivalent parts are stable under
substitutions. A reduction ordering is a transitive and irreflexive relation that is well-founded and stable
under substitutions and contexts. Given a set of formulas Ψ, by Ψ≤ψ (resp., Ψ<ψ) are denoted the
instances of formulas from Ψ that are smaller or equal (resp., strictly smaller) than ψ w.r.t. ≤ (resp., <).
An quasi-ordering is total if any two distinct elements are comparable.

In a first-order setting, the set E may contain an infinite number of elements that can be either ground
terms or ground formulas. An effective reasoning can be pursued only on finite descriptions of them by
the means of terms and/or formulas with variables. Hopefully, this reasoning can be projected and reused
to the ground level when needed if the ordering is stable under substitutions.

An example of syntactic reduction ordering over terms is the recursive path ordering
(rpo) [Dershowitz, 1982b, Kamin and Lévy, 1980, Lescanne, 1983]. Let us assume the status function
τ for F that returns τ(f) ∈ {Lex,Mul}, foreach f ∈ F , where Lex (resp., Mul) stands for lexicographic
(resp., multiset) status. Given a precedence over F , denoted by the well-founded quasi-ordering ≤F , the
rpo ≺rpo is recursively defined, as follows: for all terms s, t ∈ T (F ,V), t ≺rpo s if s ≡ f(s1, . . . , sm)
and i) either si ≡ t or t ≺rpo si for some si, 1 ≤ i ≤ m, or ii) t ≡ g(t1, . . . , tn), ti ≺rpo s for all
i, 1 ≤ i ≤ n and either a) g <F f , or b) f ∼F g, f and g have the same arity and status, and
(t1, . . . , tn) ≺τ(f)

rpo (s1, . . . , sn). ≺Lex
rpo is the lexicographic extension of ≺rpo: (a1, . . . , an) ≺Lex

rpo (b1, . . . , bn)

if either i) a1 ≺rpo b1 or ii) a1 ∼rpo b1 and (a2, . . . , an) ≺Lex
rpo (b2, . . . , bn), where ∼rpo is recursively defined

as: t ∼rpo t, for any term t, and f(a1, . . . , an) ∼rpo g(b1, . . . , bn) if f ∼F g and, for each i ∈ [1..n],
ai ∼rpo bi. We refer to multiset path ordering (mpo) instead of rpo when the status of all function
symbols is Mul. Two terms s and t are equivalent if s ∼rpo t. ≺Mul

rpo , also denoted by ≺≺rpo, is the multiset
extension of ≺rpo: (A ≡ )(a1, . . . , an) ≺≺rpo (b1, . . . , bn)( ≡ B) if there are two finite multisets X and Y
such that B = (A −X) ] Y , X 6= ∅ and ∀y ∈ Y , ∃x ∈ X, y < x holds, where ] (resp., −) is the union
(resp., difference) on multisets. In practice, X (resp., Y ) is A (resp., B) after having deleted pairwisely
the common elements. Two multisets of terms are equivalent if they are reduced to empty sets after
deleting pairwisely their equivalent terms. The multiset extension of any well-founded ordering is also
well-founded [Baader and Nipkow, 1998].

1.2 The term- and formula-based instances

As a running example, let us prove the conjecture x+0 = x, for all natural x, using the axioms 0+x = x,
for any natural x, and S(x) + y = S(x + y), for any naturals x and y, that define the addition symbol
‘+’ over the naturals based on the constructor symbols 0 and S. ‘=’ is the only predicate symbol and
the deductive system is based on equational logic [Baader and Nipkow, 1998]. ‘+’ is sufficiently complete
and the unique model fromM is the initial model of the axioms since it fits well to reason over naturals.

Let n be an arbitrary natural, hence it is either 0 or a successor of another natural n′. In the first
case, 0 + 0 = 0 is deductively valid as an instance of the first axiom. The second case, S(n′) + 0 = S(n′),
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Chapter 1. First-Order Instances of the Noetherian Induction Principle

is deductively equivalent to S(n′ + 0) = S(n′) using the second axiom. The IH n′ + 0 = n′ can help to
replace S(n′ + 0) by S(n′) in order to obtain an identity and finish the proof.

The sound use of n′ + 0 = n′ can be argued by two different instances of the Noetherian induction
principle, recalled below

Noetherian induction. (∀m ∈ E , (∀k ∈ E , k < m⇒ φ(k))⇒ φ(m))⇒ ∀p ∈ E , φ(p),

according to the cases when the set E consists of ground terms or ground formulas. The underlying
induction orderings over (vector of) terms and formulas are generically denoted by<t and<f , respectively.

Term-based Noetherian induction. Let φ be a first-order formula defining a property to be checked
for a non-empty set of term vectors E . If

⋃
k∈E,k<tm{φ(k)} |=M φ(m), for any term vector m ∈ E , then

∀p ∈ E , |=M φ(p).

Proof (soundness) By contradiction, if φ(m) is assumed to be false for some m ∈ E , we define the
non-empty subset E ′ ⊆ E representing all term vectors for which φ is false. By Lemma 1, E ′ has minimal
term vectors, and let m′ be such a term vector. The term-based Noetherian induction rule can be applied
to prove the existence of a term vector from E ′ smaller than m′, so contradiction. �

A well-known term-based Noetherian induction principle is the Peano induction principle.

Example 4 (Peano induction proof of x+ 0 = x) The IH P (x′) can be soundly used in the proof of
P (S(x′)) because x′ < S(x′), where < is the ‘smaller’ relation over the naturals. In our example, P (x)
stands for x+ 0 = x, so n′ + 0 = n′ is the IH for proving S(n′) + 0 = S(n′).

On the other hand, the IH n′+ 0 = n′ can also be legitimated by formula-based Noetherian induction
principles.

Formula-based Noetherian induction. Let E be a non-empty set of first-order formulas. If for any
formula δ ∈ E ,

⋃
γ∈E,γ<f δ{γ} |=M δ then ∀ρ ∈ E , |=M ρ.

Proof (soundness) The Noetherian induction principle presented in the introductory part is instanti-
ated such that E consists of first-order formulas and the predicate φ is the identity relation, i.e., φ(x) = x,
for any formula x ∈ E . �

Formulated into a ‘Descente Infinie’ setting, this principle states that a potentially infinite set of first-
order formulas are true if for any false formula there is another formula which is also false but smaller
w.r.t. the well-founded ordering. The proof of this statement is by contradiction: we assume a false
formula in E . We consider the non-empty subset set E ′ of E consisting of all the false formulas from E .
By Lemma 1, there exists a minimal false formula in E ′ for which there is no smaller false formula, so
contradiction.

Example 5 The formula-based Noetherian induction principle can be applied if the proof of x + 0 = x
has been generated using some reductive system such that, for any natural x′, x′ + 0 = x′ is smaller than
S(x′ + 0) = S(x′) which is in turn smaller than S(x′) + 0 = S(x′).6 The set E consists of all formulas
encountered in the proof script of x + 0 = x, i.e., {x + 0 = x, 0 + 0 = 0, S(x′) + 0 = S(x′), S(x′ + 0) =
S(x′), S(x′) = S(x′)}. The soundness proof uses a reductio ad absurdum reasoning at the ground level.
By contradiction, we assume that E has a counterexample. Since the ordering is well-founded, there is
a minimal counterexample of it. It can only be an instance of x + 0 = x because the deductively valid
formulas and the formulas deductively equivalent with but greater than x + 0 = x cannot have minimal
counterexamples. Let it be n′ + 0 = n′, for some natural n′. n′ should be of the form S(n′′) since
0 + 0 = 0 is deductively true. In the proof script, S(x) + 0 = S(x) is transformed into the smaller equality

6Such an ordering over equalities can be the multiset extension of the mpo based on the increasing precedence over the
function symbols 0, S, and +.
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1.3. Term-based Noetherian induction principles

S(x + 0) = S(x), for any natural x, so S(n′′ + 0) = S(n′′) is a smaller counterexample thanks to the
‘stability under substitutions’ property of the ordering. In the next step of the proof script, S(x+0) = S(x)
is transformed into an identity using x + 0 = x, for any x. Instantiating x with n′′, we conclude that
n′′ + 0 = n′′ should be false. We get a contradiction since n′′ + 0 = n′′ is a counterexample of x+ 0 = x,
smaller than n′ + 0 = n′.

1.3 Term-based Noetherian induction principles
Most of the term-based Noetherian induction principles promote eager induction, an approach that defines
the IHs (sometimes long) before their use by means of (explicit) induction schemas [Aubin, 1979] usually
resulted from the recursion analysis of recursively defined functions. Given a formula, an induction
schema firstly identifies a subset of its variables to be instantiated, called induction variables, then
defines the IHs as well as the induction conclusions as instances of the formula. The IHs associated to
an induction conclusion are explicitly added to its conditions and are expected to participate in further
developments of the proof. Some variables from the terms instantiating the induction variables are shared
between the induction conclusions and their associated IHs.

A well-known example of ‘induction schema’-based induction principle that fits well for constructor-
based sorted specifications is the structural induction [McCarthy and Painter, 1967], which generalizes
the Peano and mathematical inductions.

Theorem 1 (soundness of structural induction) Let φ be a formula to be checked for the elements
of a sort S. If ∀f : S1, . . . , Sn → S ∈ C,∀x1, . . . , ∀xn, {φ(xi1) ∪ . . . ∪ φ(xik)} |=M φ(f(x1, . . . , xn)) then
∀p ∈ S, |=M φ(p), where the variables xi1 , . . . , xik are those variables among x1, . . . , xn that have the sort
S.

Proof The structural induction principle exploits the fact that x is structurally smaller than f(. . . , x, . . .).
The term-based induction principle is applied further. �

In turn, it is generalized by the cover set induction [Zhang et al., 1988] which is inspired from the
idea of [Boyer and Moore, 1979] according to which the induction schemas are built from the recursive
definitions of the functions appearing in the conjecture to be proved. The cover set induction principle
assumes that a sort is characterized, or covered, by a finite set of terms called (term) cover set . The
cover set notion can be generalized to a set of term vectors that cover a product of sorts S1 × S2 × . . ..
Formally, {t1, . . . , tn} is a cover set of the product of sorts E if, for any formula φ, whenever 6|=M φ(u),
for some term vector u ∈ E , it exists j ∈ [1..m] and a substitution σ such that tjσ ≡ u, where ≡ is the
(syntactical) identity relation.

Theorem 2 (soundness of cover set induction) Let Ψ be a non-empty cover set {t1, . . . , tm} of the
product of sorts E and φ a formula to be checked for the elements of E. If

⋃
k∈E,k<tt{φ(k)} |=M φ(t), for

any term vector t ∈ Ψ, then ∀p ∈ E , |=M φ(p).

Proof By contradiction, assume that ∃p′ ∈ E such that |=M φ(p′) is false. We consider E ′ ⊆ E defined as
{p | p ∈ E , |=M φ(p) is false}. E ′ is not empty since p′ ∈ E ′. By the well-foundedness property of <t and
Lemma 1, there is a minimal term vector u ∈ E ′ such that 6|=M φ(u). By the definition of the term cover
set, it exists j ∈ [1..m] and a substitution σ such that tjσ ≡ u. On the other hand,

⋃
k∈E,k<ttj{φ(k)} |=M

φ(tj). By the ‘stability under substitutions’ property of <t, we have
⋃
k∈E,kσ<ttjσ{φ(kσ)} |=M φ(tjσ).

Since 6|=M φ(tjσ), it exists k′ ∈ E such that k′ <t u and 6|=M φ(k′). Therefore, k′ ∈ E ′. Contradiction
with the minimality of u. �

The main shortcomings of the schemata-based approaches are related to the management of the IHs,
when: i) the generated IHs do not contribute to the proof, and ii) the IHs that are required at some point
of the proof are not yet generated or impossible to be defined with the ‘recursion analysis’ method. Its
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Chapter 1. First-Order Instances of the Noetherian Induction Principle

main advantage is the local scope of the induction ordering, at the level of the induction schema. This
allows for flexibility in the ordering management during a proof; the ordering constraints are checked
only when defining the induction schemas and, on the other hand, a different induction ordering may be
used for each induction schema. Moreover, the schemata-based induction can be easily integrated into
sequent-based deductive systems in terms of sound inference rules.

Another shortcoming is the treatment of mutual induction which cannot be directly performed because
the induction conclusion and its attached IHs are instances of the same formula. However, several
partial solutions have been proposed. Boyer and Moore [Boyer and Moore, 1988a] build the induction
schema from a new function that calls the mutually defined functions according to the value of an extra
argument. Sometimes, the conjecture should be strengthened or auxiliary lemmas about the mutually
defined functions should be provided by the users. A more automatic solution has been provided by
Kapur and Subramaniam [Kapur and Subramaniam, 1996] to deal with a class of mutually recursive
functions that can transform the mutual recursion into simple recursion by unrolling the cover sets and
expanding the function definitions. The multi-predicate induction schemas proposed by Boulton and
Slind [Boulton and Slind, 2000] have one predicate for each of the mutually recursive functions and avoid
the need for expanding the functions into a single function. However, if the conjecture embeds different
recursive function symbols the induction schemas have to be combined [Boyer and Moore, 1979].

1.4 Formula-based Noetherian induction principles

Inductionless induction, also known as proof by consistency , is the first proof method integrating
formula-based Noetherian induction. Proposed by Musser in [Musser, 1980], it uses the saturation-
based Knuth-Bendix’s completion algorithm [Knuth and Bendix, 1970] to prove inductive properties.
The method can prove a set of equalities as consequences of a consistent set of equality axioms by i)
adding them to the axioms, ii) orienting the new set of equalities into rewrite rules, and ii) showing
their consistency if the completion algorithm saturates, i.e., until no new7 equality is generated. As
time went by, the method has been improved [Huet and Hullot, 1980, Dershowitz, 1982a, Fribourg, 1986,
Jouannaud and Kounalis, 1986, Kapur et al., 1986, Bachmair, 1988, Küchlin, 1989]. For an overview of
inductionless induction, the reader may consult [Comon, 2001, Comon and Nieuwenhuis, 2000].

By clearly separating the axioms from the formulas to be proved, the implicit induction inference
systems are reductive procedures, many of them being rewrite-based and saturation-free. Initially,
Reddy [Reddy, 1990] proposed a proof method called term-rewriting induction, implemented by an infer-
ence system which computes formula cover sets. They are issued from the instantiation of some variables
of a formula with a term cover set associated to the product of their sorts defined in terms of cover
substitutions. Each formula instance is reduced afterwards with rewrite rules from the axioms; in this
way, whenever the formulas from the formula cover set are valid, the covered formula is also valid. Bach-
mair [Bachmair, 1988] showed that formula cover sets are fundamental for the proofs by consistency.
This is also true for the proofs by implicit induction. In the following, we refine formula cover sets as
(general) cover sets and strict cover sets. Formally, Σ = {σ1, . . . , σn} is a set of cover substitutions of a
formula φ(x) if the set of mapping term vectors built for each substitution from Σ is a term cover set of
the (product) sort of x. A set of formulas {φ1, . . . , φn} is a formula cover set (resp. strict formula cover
set) of a formula φ built on the set of cover substitution {σ1, . . . , σn} if φi |=M φσi and φi ≤f φσi (resp.
φi <f φσi), for any i ∈ [1..n].

The term-rewriting method does not need to be refutationally complete, as required
by [Bachmair, 1988], and the specifications may not be ground confluent in order to prove inductive
properties.8 Kounalis and Rusinowitch [Kounalis and Rusinowitch, 1990b] went even further and pro-
posed a completion-free induction technique based on test sets [Kapur et al., 1986].

To simplify the rest of the presentation, we will denote the ordering over formulas <f by < and refer
to (strict) formula cover sets as (strict) cover sets, if otherwise stated.

7w.r.t. some redundancy criteria.
8However, these properties are required to refute conjectures.
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1.4. Formula-based Noetherian induction principles

Theorem 3 (soundness of term-rewriting induction) Let {φσ1, . . . , φσn} be a set of instances
of the formula ∀x ∈ E , φ(x) built from the cover-substitutions σ1, . . . , σn, respectively. If ∀i ∈
[1..n],

⋃
φθ<φσi

φθ |=M φσi then ∀x ∈ E, |=M φ(x).

Proof By absurd, assume that ∀i ∈ [1..n],
⋃
φθ<φσi

φθ |=M φσi but it exists u ∈ E such that 6|=M φ(u).
We consider E ′ defined as {φθ | 6|=M φθ}. E ′ is not empty since φ(u) ∈ E ′. Since < is well-founded, there
is a minimal instance φτ in E ′, by Lemma 1. Also, σ1, . . . , σn are cover-substitutions for φ, so there exist
j ∈ [1..n] and a substitution ε such that φτ ≡ φσjε and 6|=M φσjε. Since

⋃
φθ<φσi

φθ |=M φσi for all
i ∈ [1..n], this is also true for j, so

⋃
φθ<φσj

φθ |=M φσj . By the ‘stability under substitutions’ of <,
we have

⋃
φθε<φσjε

φθε |=M φσjε. On the other hand, 6|=M φσjε, so there is a substitution θ′ such that
6|=M φθ′ε and φθ′ε < φσjε(≡ φτ). Contradiction with the minimality of φτ . �

The term-rewriting induction principle cannot directly perform mutual induction reasoning because
all the involved formulas are instances of only one formula. It has been superseded by the im-
plicit induction principle, as suggested in [Kounalis and Rusinowitch, 1990b] and formally presented
in [Bronsard et al., 1994].

Theorem 4 (soundness of implicit induction) Let E be a set of formulas and assume that for any
formula δ ∈ E,

⋃
γ∈E,γ<δ{γ} |=M δ. Also, let φ be a formula to be checked for a non-empty set S of term

vectors. If ∀p ∈ S, φ(p) ∈ E then ∀p ∈ S, |=M φ(p).

Proof By the formula-based Noetherian induction principle, any formula δ from E holds. Since ∀p ∈
S, φ(p) ∈ E , then ∀p ∈ S, |=M φ(p). �

In practice, the implicit induction technique is applied on the set E of all instances of the formulas
encountered in a proof derivation. The formula φ(p) is one of its initial conjectures and the ordering
constraints from the relation ∀δ ∈ E ,

⋃
γ∈E,γ<δ{γ} |=M δ are guaranteed by reductive inference systems.

They consist of inference rules representing transitions between states consisting of pairs of sets of
formulas of the form (E,H), where E are conjectures and H are premises. By applying an inference rule,
one of the conjectures, called current conjecture, is firstly transformed into a (potentially empty) set of new
conjectures, then it may be added to the set of premises in order to participate to further transformations.
A derivation is a successive application of inference rules. A proof of a set of formulas E0 produced with
the inference system J is a finite n+1-state derivation of the form (E0, ∅) `J (E1, H1) `J . . . `J (∅, Hn).

An inference system is sound if the minimal counterexamples are persistent in any derivation, i.e.,
whenever the current conjecture has a minimal counterexample, an equivalent one exists in the set of
conjectures from a future state.

Theorem 5 Let I be a sound inference system. For any proof (E0, ∅) `I . . . `I (∅, Hn), we have
|=M E0.

Proof By contradiction, assume that E0 has a false formula, hence a counterexample. By Lemma 1, in
the set E there exists a minimal counterexample φ. Since I is sound, this counterexample is persistent and
should be among the ground instances of the conjectures from the last state of the proof. Contradiction,
since the proof finishes with an empty set of conjectures. �

A simple sound inference system is I:

Generate: (E ∪ {φ}, H) `I (E ∪Ψ, H ∪ {φ}),
where Ψ is a strict cover set of φ.

Simplify: (E ∪ {φ}, H) `I (E ∪ Φ, H),
if (E ∪ Φ ∪H)≤φ |=M φ.

By Ψ≤ψ (resp. Ψ<ψ) are denoted the instances of formulas from Ψ that are smaller than or equal to
(resp. strictly smaller than) ψ. The Generate rule replaces the current conjecture with a strict cover
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set of it, then adds it to the set of premises. Simplify replaces φ from the state (E ∪ {φ}, H) with Φ if
φ is a consequence of the set of IHs (E ∪ Φ ∪H)≤φ.

Lemma 2 The premises from any I-derivation starting with an empty set of premises do not have min-
imal counterexamples.

Proof Let us notice that the premises from any derivation that starts with an empty set of premises
are added exclusively by Generate. By contradiction, assume that Generate applies on a current
conjecture φ that has a minimal counterexample φτ . By definition, the strict cover set Ψ for φ has
a formula γ that covers φτ , i.e., there is a cover substitution σ and another substitution ε such that
φσε ≡ φτ and

⋃
γ<φσ{γ} |=M φσ. Thanks to the ‘stability under substitutions’ property of <, we have⋃

γε<φσε{γε} |=M φσε. On the other hand, 6|=M φσε. Therefore, there is a ground instance from Ψ which
is a counterexample smaller than φτ . Contradiction. �

Theorem 6 (Soundness of I) I is sound for any derivation starting with an empty set of premises.

Proof Assume that a conjecture φ has a minimal counterexample φτ . Generate cannot be applied on
φ, by Lemma 2. If Simplify is applied to φ in the state (E ∪ {φ}, H), we have (E ∪Φ∪H)≤φτ |=M φτ .
Again by Lemma 2, H cannot have minimal counterexamples. Therefore, a minimal counterexample
equivalent to φτ should exist in the conjectures E ∪ Φ from the next state. �

I is an inference system that abstracts the computation, hence it cannot be used in practice. Its
main role is to capture the induction reasoning by defining the formulas that can be used as IHs during
a proof. Its concrete implementations show how the current conjecture is transformed, by the means
of adequate reasoning techniques that may use the IHs defined by the implemented (abstract) inference
rules. In addition, any such concrete implementation of I is sound since I has been shown sound by
Theorem 6. The equality x + 0 = x from the running example can be proved with the inference system
Ii that allows to reason on equalities containing natural variables:

GenNat (G): (E ∪ {φ}, H) `Ii (E ∪ {φ1, φ2}, H ∪ {φ}),
where φ has a natural variable that is instantiated by 0 and S(x′) and x′ is a fresh variable;
φ1, φ2 are the result of rewriting the instances of φ with axioms.

SimpEq (S): (E ∪ {φ}, H) `Ii (E ∪ Φ, H),
if either i) φ is a tautology; in this case Φ is empty;
or, ii) φ is rewritten to ψ with rewrite rules from Ax ∪ (E ∪ Φ ∪H)≤φ; in this case, Φ is {ψ}.

GenNat builds a strict cover set of an equality integrating a natural variable by firstly replacing
the variable by 0 and the successor of a fresh natural variable, then rewriting the two instances by the
rewrite rules resulted from orienting the axioms from left to right whenever the lhs is greater than the
rhs. The rewriting results are stored as new conjectures and the equality as a new premise. Therefore,
it implements Generate. On the other hand, SimpEq implements Simplify. It either deletes the
tautologies or performs rewrite operations based on the same ordering over equalities mentioned in the
footnote 6, and on the IHs defined by Simplify.

Example 6 (Ii-proof of x+ 0 = x) Let 0 + x → x and S(x) + y → S(x + y) be the two rewrite rules
resulting from orienting from left to right the axioms defining ‘+’. The equality x+0 = x can be proved with
Ii, as follows: ({x+ 0 = x}, ∅) `GIi ({0 = 0, S(x′+0) = S(x′)}, {x+0 = x}) `SIi ({S(x′ + 0) = S(x′)}, {x+

0 = x}) `SIi ({S(x′) = S(x′)}, {x+ 0 = x}) `SIi (∅, {x+ 0 = x}). In the derivation, the current conjectures
from every state are underlined. The induction reasoning is performed during the second last SimpEq
application: the instance x′ + 0 = x′ of the premise x + 0 = x is applied as IH in order to reduce
S(x′ + 0) = S(x′) to the identity S(x′) = S(x′). Since Ii is an instance of I, it is sound, so x+ 0 = x is
valid, by Theorem 5.

We present a more effective inference system, denoted by Is, that instantiates I. It integrates the
narrowing-based inference rule ConjSup:
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1.4. Formula-based Noetherian induction principles

ConjSup (Cs): (E ∪ {φ}, H) `Is (E ∪ ∪ni {φi}, H ∪ {φ}),
where φi = φ[ri]pσi for any rewrite rule li → ri from
Ax such that σi = mgu(φ|p, li) and φ|p, with i ∈ [1..n]

The narrowing operation is based on unification. mgu(s, t) denotes the most general unifier between
s and t, for any terms s and t, i.e. the most general substitution σ such that sσ ≡ tσ.

ConjSup is adapted from [Comon and Nieuwenhuis, 2000] to perform conjecture superposition on a
set of axioms that is saturated under superposition and equality reasoning.9 It firstly chooses from an
equality φ one of the non-variable subterms φ|p at a position p, then unifies it with the left hand sides of all
rewrite rules from the axioms. Any time the unification process is successful, the subterm is replaced by
the corresponding unification instance of the right-hand side of the rewrite rule and the resulted equality
becomes a new conjecture. If the set of new conjectures is not empty, the current conjecture is saved as
premise. φ[ri]p indicates that φ has the subterm ri at position p. In [Stratulat, 2005, Stratulat, 2007], it
has been shown that ∪ni {φi} from similar narrowing-based inference rules is a strict cover set of φ, as it
is the case for ConjSup.

Example 7 (Is-proof of x+ 0 = x) The proof starts by applying the rule ConjSup on the subterm
x + 0 of x + 0 = x. Since x + 0 unifies with the left-hand sides of the two axioms defining ‘+’, the new
conjectures are 0 = 0 and S(x′ + 0) = S(x′), where x′ is a fresh variable. x + 0 = x is added to the
premises, to finally obtain a result similar to that of GenNat in the precedent Ii-proof. The rest of the
proof can be successfully done as for the Is-proof if Is integrates a rule like SimpEq.

In practice, ConjSup may generate less new conjectures than GenNat. For example, if S(u) + 0 =
S(u) is the current conjecture, ConjSup will generate the singleton {S(u+0) = S(u)}, which is equivalent
to a rewrite step, while GenNat yields the set of conjectures {S(0 + 0) = S(0), S(S(u+ 0)) = S(S(u))}.

Different sound abstract reductive systems exist in the literature. I is very similar to the Im-
plicit Induction procedure from [Bronsard et al., 1994], which is a generalization of the hierarchical
induction procedure from [Reddy, 1990] and of the inductive procedures for conditional equalities
from [Kounalis and Rusinowitch, 1990b, Bronsard and Reddy, 1991, Bouhoula et al., 1995]. A very gen-
eral inference system was proposed in [Stratulat, 2001], based on the notion of contextual cover set,
that generalizes those of cover set and strict cover set. It is conducted by a methodology to build
sound implicit induction procedures using the compositional properties of contextual cover sets. The
methodology also allowed to represent saturation-based inference systems as instances of the general in-
ference system [Stratulat, 2005, Stratulat, 2007]. It witnesses that the implicit induction and saturation-
based procedures share the same logic. This is not surprising since Bachmair [Bachmair, 1988] and
Reddy [Reddy, 1990] already shown that the set of critical pairs generated by completion can build
(strict) cover sets.

When dealing with equality reasoning, the reductive constraints between the current and new
conjectures can be implicitly satisfied by the reductive inference rules if the equational specifications are
represented in terms of rewrite systems and the IHs are orientable, as for the inductionless induction
methods. Various solutions have been proposed to partially weaken the constraints related to IHs.
In [Stratulat, 2008], the proposed method allows for relaxed rewriting [Bouhoula et al., 1995] to deal
with unorientable IHs by integrating explicit induction schemas when building cover sets. It covers
the term [Reddy, 1990], ordered [Dershowitz and Reddy, 1993], enhanced and incremental [Aoto, 2006]
rewriting induction procedures.

Mutual recursion represents a form of recursion for which data types or functions are mutually defined.
It is ubiquitous in computer science. Crucial data structures like graphs, forests of trees and some
programming language constructions, as the set of syntax rules using the BNF notation, can be naturally
represented as mutually recursive data types. On the other hand, the mutually recursive functions,
very common in functional programming, can code effectively algorithms based on (mutually) recursive

9More about the links between superposition calculus and induction reasoning can be found in Chapter 8.
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Chapter 1. First-Order Instances of the Noetherian Induction Principle

data structures. Mutual induction is the most natural induction technique to reason on datatypes and
functions defined using mutual recursion.

The formula-based Noetherian induction reasoning can involve instances of different formulas, which
makes easy the management of mutual induction [Stratulat, 2010]. As shown below, any term-based
Noetherian induction principle can be represented as formula-based one but the instantiation constraints
are so strong that the ability to perform mutual induction is lost. This instantiation result argues a
certain resemblance between (parts of) implicit and conventional induction proofs, firstly advocated in
Musser’s paper [Musser, 1980]. For example, the I-proof of the running example is very similar to the
term-based version; as for an explicit induction schema, Generate instantiates variables and adds the
current conjecture in the set of premises, but the resemblance stops here. [Sprenger and Dam, 2003] and
[Brotherston and Simpson, 2011] include similar instantiation results. Also, the formula-based Noethe-
rian induction procedures can perform lazy induction such that the IHs are provided by request. For
example, during any of the proofs of x + 0 = x with formula-based Noetherian induction methods, the
smaller instances of previous conjectures to be applied as IH are needed to be known only at the moment
of their application.

In some cases, the implicit induction proofs are more automatic than those based
on conventional induction [Bouhoula and Rusinowitch, 1995], in other cases the contrary hap-
pens [Kapur and Subramaniam, 1996]. Further analyses and comparisons have been conducted
in [Garland and Guttag, 1988, Jouannaud and Kounalis, 1989, Kapur and Zhang, 1994, Naidich, 1996,
Comon, 2001, Wirth, 2005].

The following theorem is important from both theoretical and practical points of view.

Theorem 7 Any term-based Noetherian induction principle can be represented as a formula-based
Noetherian induction principle.

Proof Let us consider a term-based Noetherian induction principle that proves the validity of a formula φ
for all term vectors from a non-empty set E , i.e., if for any term vectorm ∈ E ,

⋃
k∈E,k<tm{φ(k)} |=M φ(m)

then ∀p ∈ E , |=M φ(p). Let E ′ be the set {φ(p) | p ∈ E}. The equivalent formula-based Noetherian
induction principle can be stated as: if for any formula φ(m) ∈ E ′,

⋃
φ(k)∈E′,φ(k)<fφ(m){φ(k)} |=M φ(m)

then we have |=M φ(p), ∀φ(p) ∈ E ′, where φ(k) <f φ(m) is defined as k <t m. �

Corollary 1 Any term-based Noetherian induction proof can be justified with formula-based induction
arguments.

In practice, the term-based Noetherian induction reasoning can therefore be directly integrated by
formula-based Noetherian induction inference systems. Unfortunately, the opposite holds only for par-
ticular cases.

Theorem 8 The formula-based Noetherian induction principle can be represented as a term-based
Noetherian induction principle if E consists only of instances of a same formula.

Proof The formula-based Noetherian induction principle that proves the validity of a non-empty
set of instances of some formula φ is formalized as following: if for any formula φ(m) ∈ E ,⋃
φ(k)∈E,φ(k)<fφ(m){φ(k)} |=M φ(m) then we have |=M φ(p), ∀φ(p) ∈ E . Let E ′ be the set {p | φ(p) ∈ E}.

The equivalent term-based Noetherian induction principle can be stated as: if for any term vector
m ∈ E ′,

⋃
φ(k)∈E′,k<tm{φ(k)} |=M φ(m) then we have |=M φ(p), ∀p ∈ E ′, where k <t m is defined

as φ(k) <f φ(m). �

1.5 Conclusions
We have given an overview of the Noetherian induction proof methods for first-order logic and term-
generated models. We compared different instances of the Noetherian induction principle and inference
systems based on them. A crucial step was to abstract the computation in order to distile the induction
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reasoning from the implementation details. Some examples of concrete implementations instantiating
the abstract inference systems are presented, but most of the problems and challenges that face current
implementations are not discussed here (see, e.g., [Gramlich, 2005] for an overview).
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This chapter presents a formula-based Noetherian induction proof method that is cyclic and non-
reductive, published in [Stratulat, 2012].

Structure of the chapter. The chapter has six sections. Sections 2.1 and 2.2 present an inference sys-
tem and proof strategy, respectively, for building cyclic and non-reductive formula-based proofs. The
definition of a cycle, the soundness proof of the inference system and the connections between reduc-
tive and non-reductive proofs are given in Section 2.3. A full example of proof using this method and
requiring mutual induction reasoning is presented in Section 2.4. Section 2.5 compares implicit proofs
and proofs built with an implementation of the method and the DRaCuLa strategy in the SPIKE the-
orem prover [Bouhoula et al., 1992, Stratulat, 2001, Barthe and Stratulat, 2003] for the validation of a
non-trivial application. Section 2.6 concludes.

2.1 The inference system
The features of formula- and term-based Noetherian induction proof techniques mutually complement
each other. In the following, we propose a new induction proof method which preserves the advantages
of conventional and implicit induction techniques. The heart of the method is the DRaCuLa strategy,
designed for performing:

• formula-based ‘Descente Infinie’ / Noetherian induction,

• Rarefied ordering constraints by reductive-free induction,

• Customized term-based Noetherian induction, and

• Lazy and mutual induction.

13



Chapter 2. A Cyclic and Non-reductive Formula-based Noetherian Induction Proof Method

A DRaCuLa-based inference system consists of a set of inference rules representing transitions between
sets of conjectures. We introduce the inference system D made of three non-reductive abstract inference
rules:

Deduction (D): E ∪ {φ} `D E ∪ Φ,
if Φ |= φ.

Split (S): E ∪ {φ} `D E ∪ Φ,
if Φ is a cover set of φ with at least two elements.

Induction (I ): E ∪ {φ} `D E ∪ Φ,
if Φ ∪Ψ |=M φ and Ψ is a non-empty set of
checked IHs.

Deduction (resp. Split) replaces the current conjecture by new formulas for which it is a deductive
consequence (resp. by one of its cover sets). In addition, Split is intended to deal with variable instan-
tiations during a proof derivation, hence the requirement for the cover set to have at least two elements.
Induction treats the case when IHs are needed to build the new conjectures, but it can be applied only
when the IHs are checked according to the DRaCuLa strategy.

It is assumed that each conjecture φ has attached a history consisting of a list of conjecture
instances represented as pairs (φi, σi) and involved in producing φ. Formally, it is denoted by
−−−−−−−−−−−−−−→
...(φi,σi)(φi+1,σi+1)...

φ, where the history is shown under the horizontal arrow pointing to φ. The time

flows from left to right, for example φi was created before φi+1. The conjectures from the history of φ
are its ancestors. Each instantiating substitution from the history is an identity substitution, excepting
when Split is applied. For this case, the cover substitution involved in producing φ is considered
instead. The offsprings of a formula φ are all formulas from a derivation having φ in the history. In
addition, φ has attached a set of IHs to be checked before Induction can be applied.

2.2 The DRaCuLa proof strategy

When a proof starts, the history and the set of attached IHs for each conjecture from the set of initial
conjectures E0 are empty. The DRaCuLa strategy mingles proof development, as implemented by the
procedure ‘Develop’ (see Algorithm 1), with IH checking performed by the function ‘Check’ (see Algo-
rithm 2). Algorithm 1 applies D-inference rules one by one starting from E0. The application of any
Induction rule E ∪ {φ} `ID E ∪Φ attaches the set Ψ of IHs to φ and is delayed until all IHs from Ψ are
checked. In this case, φ is in stand-by and no other rule rule can be applied to it as long as the set of
attached IHs is not completely checked. Any IH is an instance (φ1, δ), where φ1 is a previous conjecture
encountered in the derivation. Two cases may arise for successfully checking (φ1, δ): i) if φ1 was already
proved, i.e., φ1 has no offsprings in E, and ii) if (φ1, δ) is part of a cycle built from φ and other conjec-
tures in stand-by. Otherwise, the proof keeps developing other conjectures, hoping that the newly added
conjectures build cycles that successfully check (φ1, δ). The proof process successfully finishes when the
set of conjectures becomes empty. Also, the proof development may be blocked if all conjectures from
the current state are in stand-by. In practice, the deadlock can be avoided since other rules like Split
and Deduction can be applied on the stand-by conjectures if the set of attached IHs is reinitialized.
Finally, a proof may run infinitely if a crucial IH cannot be checked.

Definition 1 (n-cycle) Let us consider n conjectures φ1, . . . , φn such that, for each i ∈ [1..n], φi is

explicitly represented with its history chunk involved in the cycle as
θi=σ

1
i ...σ

mi
i−−−−−−−−−−−−−→

(φ1
i ,σ

1
i )...(φ

mi
i ,σ

mi
i )

φi and has attached

the IH (φ1
(i+1) mod n

, δ(i+1) mod n). The n conjectures form a n-cycle if φ1
(i+1) mod n

δ(i+1) mod n is

smaller than φ1
i θi, for any i ∈ [1..n].
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2.2. The DRaCuLa proof strategy

Algorithm 1 Develop(E): applies successively D-inference rules to build a proof of the conjectures from
E

while E is not empty do
IHS := {ψ | ∃φ ∈ E that attached the unchecked IH ψ}
choose φ ∈ E with no unchecked IHs
choose an inference rule to apply on φ
if the set of IHs attached to φ is not empty then
the chosen inference rule should be Induction

else
if Induction was chosen with the set Ψ of IHs then
assign as unchecked and attach all IHs from Ψ to φ
IHS := IHS ∪ Ψ

end if
end if
if the chosen inference rule is Induction then
ok IHs := ∅
for all (φ1

i , δi) ∈ IHS do
offsprings φ1

i := {φ′ | −−→
hist

φ′ ∈ E and φ1
i ∈ hist}

if offsprings φ1
i is empty then

ok IHs := ok IHs ∪ {(φ1
i , δi)} {φ1

i was proved}
end if

end for
ok IHs := Check(IHS \ ok IHs, E) ∪ ok IHs
mark all IHs from ok IHs as checked

end if
if all attached IHs to φ are checked then
apply the chosen inference rule E ∪ {−−→

hist
φ} `D E ∪ Φ

attach to each conjecture from Φ an empty set of IHs
if inference rule is Split then
update any cover instance φ′ ≡ (φ, σ) to −−−−−−→

hist;(φ,σ)
φ′

else
update each φ′ ∈ Φ to −−−−−−−→

hist;(φ,σid)
φ′, where

σid is the identity substitution instantiating all variables of φ.
end if
E := (E\{φ}) ∪ Φ

end if
end while

15



Chapter 2. A Cyclic and Non-reductive Formula-based Noetherian Induction Proof Method

Algorithm 2 Check(IHS, E): identifies cycles based on IHs from IHS and conjectures from E

Ensure: return all IHs from the identified cycles
ok IHs := ∅
repeat
find a non-empty list of n conjectures φ1, . . . , φn from E, −−−−−−−−−−−−−−→

...(φ1
i ,σ

1
i )...(φ

m1
i ,σ

m1
i )

φi, i ∈ [1..n]

if (φ1
1, δ1) ∈ IHS and is attached to φn and φ1

1δ1 is smaller than φ1
nθn, where θn is the cumulative

substitution σ1
n . . . σ

mn
n then

if n == 1 then
{ 1-cycle is found !}
ok IHs := ok IHs ∪ {(φ1

1, δ1)}
IHS := IHS \ {(φ1

1, δ1)}
else
if for each i ∈ [1..n− 1]: (φ1

i+1, δi+1) ∈ IHS and is attached to φi, and φ1
i+1δi+1 is smaller than

φ1
i θi, where θi is the cumulative substitution σ1

i . . . σ
mi
i then

{n-cycle (n > 1) is found !}
ok IHs := ok IHs ∪ ∪ni=1 {(φ1

i , δi)}
IHS := IHS \ ∪ni=1 {(φ1

i , δi)}
end if

end if
end if

until no cycle is found
return ok IHs

Figure 2.1 illustrates a n-cycle. The relation between the conjecture attaching an IH and the IH is
graphically represented with a non-horizontal arrow. The cumulative substitution θi written above the
horizontal arrow pointing to a conjecture φi allows to produce it from φ1

i θi using a Split-free derivation,
for any i ∈ [1..n]. The main strength of the method is the fact that the induction reasoning involves only
ordering constraints between instances of the conjectures starting the history chunks.

Implementation in SPIKE. The DRaCuLa strategy has been implemented in the SPIKE implicit
induction prover. More details about its usage are given in Chapter 4.

. . .∪ {
θ1=σ1

1 ...σ
m1
1−−−−−−−−−−−−−→

(φ1
1,σ

1
1)...(φ

m1
1 ,σ

m1
1 )

φ1} `ID . . . ∪ Φ1 s.t. (φ1
2, δ2) ∈ Ψ1

δ2

ww. . .∪ {
θ2=σ1

2 ...σ
m1
2−−−−−−−−−−−−−→

(φ1
2,σ

1
2)...(φ

m2
2 ,σ

m2
2 )

φ2} `ID . . . ∪ Φ2 s.t. (φ1
3, δ3) ∈ Ψ1

δn ...

ww. . .∪ { θn=σ1
n...σ

m1
n−−−−−−−−−−−−−→

(φ1
n,σ

1
n)...(φ

m1
n ,σ

m1
n )

φn} `ID . . . ∪ Φn s.t. (φ1
1, δ1) ∈ Ψn

δ1

II

Figure 2.1: A cycle for checking n IHs.
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2.3. Building cycles

2.3 Building cycles
The cycle identification process may be costly if there are considered all the permutations built from
subsets of the stand-by conjectures from the current state. Since each permutation represents a potential
cycle, all the ancestors of the conjectures from the permutation may be tested to satisfy the ordering
constraints. A more efficient alternative that avoids this combinatorial explosion problem is to build
cycles incrementally and by need, as follows. Anytime a new IH (φ, δ) attached to a conjecture φ0 is
about to be checked and φ is not yet proved, the strategy for choosing the current conjecture privileges the
offsprings of φ from the current state that already participate in the cycle. If the corresponding ordering
constraints are satisfied, the cycle is built. Otherwise, the ordering constraint related to the conjecture
initiating the history chunk of φ0 will be verified. If it is satisfied, a new history chunk starting with φ
is added to the cycle. In this case, the proof of the offspring of φ continues to be developed until either
it is proved, or a new IH required during the proof development is to be checked as previously. If the
ordering constraint is not satisfied, Induction cannot be applied on φ and the proof of φ continues to
be developed either by checking other IHs or by applying a rule other than Induction.

Definition 2 (D-proof) Any D-derivation built by Develop(E0) and finishing with an empty set of
conjectures is a D-proof of E0, for any set of conjectures E0.

Theorem 9 (soundness of D) For any set of conjectures E0, if there is a D-proof of E0 then |=M E0.

Proof By contradiction, assume that there is φ0 ∈ E0 such that 6|=M φ0. Since Develop(E0) builds
a derivation that finishes with an empty set of conjectures, there is a last step in the derivation when
a false conjecture, denoted by φ′, was processed. The applied rule is neither Deduction, nor Split
because another false conjecture would be in the next step. So Induction has to be applied on φ′. The
derivation should include at least one cycle checking IHs attached to false conjectures such that the new
conjectures resulted from the application of the Induction rules from the cycle are true. Otherwise, the
derivation does not perform inductive reasoning. More exactly, it can be transformed into a hierarchy of
deductive proofs of conjectures from the proof of E0, where the IHs are lemmas resulted from previously
(deductively) proved conjectures, as follows. All the proofs that did not use IHs are at the bottom of the
hierarchy, so they are true. The next upper level in the hierarchy consists of all proofs using as lemmas
the conjectures proved at the bottom level, so they are true, too. And so on, by stepping up in the
hierarchy level by level, the current level proofs use as lemmas only conjectures proved at a lower level.
The hierarchy is bounded since the proof of E0 has a finite number of conjectures. It results that all
conjectures from the proof of E0, including φ0, are true. Contradiction, since φ0 is false.

A classical induction reasoning will be performed on the number of cycles checking IHs attached to
false conjectures in the proof of E0.

The base case: We assume that there is only one n-cycle checking IHs attached on false conjectures

such that for each i ∈ [1..n], φi is explicitly represented in the cycle as
θi=σ

1
i ...σ

mi
i−−−−−−−−−−−−−→

(φ1
i ,σ

1
i )...(φ

mi
i ,σ

mi
i )

φi and has

attached the IH (φ1
(i+1) mod n

, δ(i+1) mod n). Moreover, φ1
(i+1) mod n

δ(i+1) mod n is smaller than φ1
i θi,

for any i ∈ [1..n].
Any false instance of φ0 should lead to one of the conjectures from the n-cycle, otherwise an extra cycle

including false conjectures should exist in the proof. More exactly, for any counterexample φ0τ0, there
is a conjecture φ from the n-cycle whose history is of the form −−−−−−−−−−−−−−−−−→

(φ0,σ0)(φ1,σ1)......(φp,σp)
φ and φ0τ0 is an

instance of φ0σ0. Moreover, any conjecture instance φiθi is false, where θi is the cumulative substitution
between φi and φ, for all i ∈ [1..p]. Otherwise, an extra cycle including false conjectures should exist in
the proof, which leads to a contradiction.

W.l.o.g, we assume that φ is represented in the n-cycle by φn and the Induction rule applied on φn
is En ∪ {φn} `ID En ∪ Φn using the non-empty set Ψn of IHs such that Φn ∪ Ψn |=M φn and 6|=M φn.
Φn is valid, otherwise there is an extra cycle including false conjectures which is applied in the proof
of Φn. Since Φn is valid and Φn ∪ Ψn |=M φn, there is a false IH in Ψn. We can show that the IHs
from Ψn, different from (φ1

1, δ1), are true. More exactly, if (ψ, δ) is such an IH, it cannot be proved only
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with deductive reasoning, so there should exist a new cycle checking ψ. This cycle cannot have false
conjectures, so it includes neither φn nor any false offsprings of ψ. Therefore, ψ is true, which also holds
for ψδ. We conclude that (φ1

1, δ1) is the only false IH attached to φn.

The history chunk of φn is represented in the n-cycle as
θn=σ1

n...σ
mn
n−−−−−−−−−−−−−−→

(φ1
n,σ

1
n)...(φmnn ,σmnn )

φn. Since φ1
nθn is false, let

φ1
nθnτ be a minimal counterexample of it. Moreover, φnτ is a counterexample because no cycle including

false conjectures can be built on the path leading from φ1
nσ

1
n to φn. Thanks to the ‘stability under

substitutions’ property of the induction ordering, we deduce that φ1
1δ1τ is false and smaller than φ1

nθnτ .
For similar reasons, it cannot be proved outside the n-cycle, so it is an instance of φ1

1θ1. Let this false
instance be φ1

1θ1τ1 such that φ1
1θ1τ1 ≡ φ1

1δ1τ . A similar reasoning is performed on φ1
1θ1τ1 as for φ1

nθnτ
to show that there is a false instance φ1

2θ2τ2 ≡ φ1
2δ2τ1 which is smaller than φ1

1θ1τ1. And so on, there
is a false instance φ1

nθnτn ≡ φ1
nδnτn−1 which is smaller than φ1

n−1θn−1τn−1. By the transitivity of the
ordering, we have that φ1

nθnτn is smaller than φ1
nθnτ . Moreover, it is false, so contradiction with the

minimality assumption of φ1
nθnτ .

The step case: We assume that Develop(E0) has produced a proof having m (> 1) cycles includ-
ing false conjectures. By induction hypothesis, any proof using a smaller number of cycles with false
conjectures is sound.

We follow a reasoning similar to that employed for the base case. We will focus on the last generated
cycle from the proof of E0 having false conjectures. Assuming that it is built from n (> 1) conjec-

tures, each φi with i ∈ [1..n] is explicitly represented as
θi=σ

1
i ...σ

mi
i−−−−−−−−−−−−−→

(φ1
i ,σ

1
i )...(φ

mi
i ,σ

mi
i )

φi and has attached the IH

(φ1
(i+1) mod n

, δ(i+1) mod n). Moreover, φ1
(i+1) mod n

δ(i+1) mod n is smaller than φ1
i θi, for any i ∈ [1..n].

It can be noticed that any false instance of φ0 should lead to one of the conjectures from the n-cycle,
otherwise the proof of such a false instance should have ‘less than m’ cycles having false conjectures
since the last cycle is not included in the proof. By the induction hypothesis, the proof is sound, so
contradiction with the assumption that the instance of φ0 is false. Therefore, for any counterexample
φ0τ0 that is instance of φ0σ0, there is a conjecture φ from the n-cycle whose history is of the form
−−−−−−−−−−−−−−−−−→
(φ0,σ0)(φ1,σ1)......(φp,σp)

φ. In addition, any conjecture instance φiθi is false, where θi is the cumulative

substitution between φi and φ, for all i ∈ [1..p]. Otherwise, φ0τ0 can be proved with ‘less than m’ cycles
having false conjectures, so contradiction.

Again, we assume that φ is represented in the n-cycle by φn and the Induction rule applied on φn
is En ∪{φn} `ID En ∪Φn using the non-empty set Ψn of IHs such that Φn ∪Ψn |=M φn and 6|=M φn. Φn
is valid, otherwise there is an extra cycle including false conjectures which is applied in the proof of Φn
which contradicts the assumption that the n-cycle is the last generated one in the proof of E0. Since Φn
is valid and Φn ∪ Ψn |=M φn, there is a false IH in Ψn. The IHs from Ψn, excepting (φ1

1, δ1), are true.
More exactly, if (ψ, δ) is such an IH, it has to be proved with ‘less than m’ cycles having false conjectures
since the n-cycle cannot be included in the proof, i.e., either (ψ, δ) is checked by a cycle including φn and
generated before the n-cycle, or ψ was proved before generating the n-cycle. For the last case, ψ is true
by induction hypothesis, which also holds for ψδ. We conclude that (φ1

1, δ1) is the only false IH attached
to φn.

As for the base case, we represent the history chunk of φn from the n-cycle as
θn=σ1

n...σ
mn
n−−−−−−−−−−−−−−→

(φ1
n,σ

1
n)...(φmnn ,σmnn )

φn.

Since φ1
nθn is false, we consider φ1

nθnτ as being a minimal counterexample of it. In addition, φnτ should
be a counterexample, otherwise φ1

nθnτ can be proved with ‘less than m’ cycles having false conjectures.
Thanks to the ‘stability under substitutions’ property of the induction ordering, we deduce that φ1

1δ1τ is
false and smaller than φ1

nθnτ . It should be an instance of φ1
1θ1, otherwise it can be proved outside the

n-cycle using ‘less than m’ cycles including false conjectures. We denote this false instance by φ1
1θ1τ1,

hence φ1
1θ1τ1 ≡ φ1

1δ1τ . A similar reasoning is performed on φ1
1θ1τ1 as for φ1

nθnτ to show that there
is a false instance φ1

2θ2τ2 ≡ φ1
2δ2τ1 which is smaller than φ1

1θ1τ1. And so on, there is a false instance
φ1
nθnτn ≡ φ1

nδnτn−1 which is smaller than φ1
n−1θn−1τn−1. By the transitivity of the ordering, we have

that φ1
nθnτn is smaller than φ1

nθnτ . Moreover, it is false, so contradiction with the minimality assumption
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of φ1
nθnτ .

�

The DRaCuLa-based n-cycles from the D-proofs, for short D-cycles when n is not relevant, need less
ordering constraints than the reductive cycles encountered in reductive induction derivations, for example
the implicit induction and ‘cyclic’ proofs. More exactly, a reductive cycle requires that, for any history
chunk −−−−−−−−−−−−−−−−→

(φ0,σ0)(φ1,σ1)...(φm,σm)
φ with m > 0, φiσi to be greater than or (sometimes) equal to φi+1, for all

i ∈ [0..m− 1]. Moreover, φmσm should be greater than (or equal to) φ. As for the D-cycles, the IHs are
instances of previous conjectures starting a history chunk, but they are required to be smaller than or
equal to the conjecture they are applied to.

Lemma 3 Any reductive n-cycle with an average of m conjectures per history chunk should satisfy (m+
1)× n ordering constraints.

Proof There are n×m ordering constraints concerning the conjectures from the history chunks, and n
ordering constraints related to the IHs. �

For example, there is only one reductive cycle in the Iii -proof of x+ 0 = x from Example 6:

θ={x 7→S(x′)}−−−−−−−−−−−−−→
(x+0=x,{x 7→S(x′)})

S(x′ + 0) = S(x′)

δ={x 7→x′}

dd

The two associated ordering constraints are: S(x′) + 0 = S(x′) greater than S(x′ + 0) = S(x′) which
should be greater than x′ + 0 = x′.

Lemma 4 Any DRaCuLa-based n-cycle should satisfy n ordering constraints.

Proof By the construction of D-cycles. �

One possible D-proof of x+ 0 = x can be built with the concrete inference system Dc:

DedNat (Dc): E ∪ {φ} `Dc E ∪ Φ,
if either i) φ is a tautology; in this case Φ is empty,
or ii) φ is rewritten by rewrite rules from Ax to ψ;
in this case Φ is {ψ}.

SplitNat (Sc): E ∪ {φ[x]} `Dc E ∪ {φ[0], φ[S(x′)]},
where x′ is a fresh natural variable.

IndNat (Ic): E ∪ {φ} `Dc E ∪ Φ,
if φ is rewritten with an IH that is checked by a D-cycle.

Example 8 (Dc-proof of x+ 0 = x) The generated proof is: {x+ 0 = x} `ScDc {0 + 0 = 0, S(x′) + 0 =

S(x′)} `Dc(2)
Dc

{S(x′) + 0 = S(x′)} `DcDc {S(x′ + 0) = S(x′)} `IcDc {S(x′) = S(x′)} `DcDc ∅. `
Dc(2)
Dc

means
that DedNat firstly rewrites with the axioms defining ‘+′, then deletes the resulted tautology. The IH
from the IndNat step is checked by the D-cycle:

θ={x 7→S(x′)}−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
(x+0=x,{x 7→S(x′)});(S(x′)+0=S(x′),{x′ 7→x′})

S(x′ + 0) = S(x′)

δ={x 7→x′}

ii

Even if the history chunk has more conjectures, there is only one ordering constraint to be satisfied,
i.e., x′ + 0 = x′ should be smaller than S(x′) + 0 = S(x′).
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DedNat (resp. SplitNat, resp. IndNat) implements Deduction (resp. Split, resp. Induction).
Therefore Dc is sound since D is sound, by Theorem 9.

Lemma 5 Any reductive n-cycle is a DRaCuLa-based n-cycle.

Proof Assume that a reductive n-cycle exists, represented as a non-empty list of n conjectures φ1, . . . , φn

of the form
θi=σ

1
i ...σ

m1
i−−−−−−−−−−−−−−→

...(φ1
i ,σ

1
i )...(φ

m1
i ,σ

m1
i )

φi, i ∈ [1..n]. By construction, for each i ∈ [1..n], the reductive con-

straints require that φki σki be greater than (and sometimes equal to) φk+1
i (k ∈ [1..m1−1]) and φm1

i σm1
i be

greater than (or equal to) φi. By instantiating each φki σki by σk+1
i . . . σm1

i and due to the ‘stability under
substitution’ of the ordering, it results the decreasing sequence φ1

i θ
1
i , φ2

i θ
2
i , . . . , φ

m1
i θm1

i , φi, where θ
j
i is the

cumulative substitution σji . . . σ
m1
i . By the transitivity of the ordering relation, φ1

i θ
1
i is greater than φi.

Moreover, by construction, φi should be greater than or equal to the IH φ1
(i+1) mod n

δ(i+1) mod n. Apply-

ing again the transitivity property of the ordering relation, φ1
i θ

1
i is greater than φ1

(i+1) mod n
δ(i+1) mod n.

Therefore, the reductive n-cycle is a DRaCuLa-based n-cycle since φ1
i θ

1
i is greater than

φ1
(i+1) mod n

δ(i+1) mod n, forall i ∈ [1..n]. �

Theorem 10 (generalisation of reductive induction) Any reductive induction proof is a D-proof.

Proof Given a reductive induction proof, its reductive cycles can be represented as D-cycles, by
Lemma 5. Moreover, the DRaCuLa strategy requires no ordering constraints for the proof parts outside
the reductive cycles. �

The DRaCuLa-based proofs are more flexible in terms of induction orderings because the ordering
constraints inside the D-cycles can be formulated with different induction orderings. This is not the case
for the reductive proofs which are governed by only one global induction ordering that should satisfy all
the reductive constraints. As a side-effect, the axioms and IHs involved in a proof may satisfy additional
constraints. For example, the term ordering used by rewrite-based specifications to orient the axioms
into rewrite rules should be compatible with the induction ordering, i.e., the union of the two ordering
relations should be an induction ordering. The specifications fitting for DRaCuLa-based reasoning no
longer need them, those adapted for term-based Noetherian induction reasoning [Walther, 1994] being
good candidates.

Theorem 11 (generalisation of term-based Noetherian induction) Any term-based Noetherian
induction proof can be customized to a ‘1-cycle’-based D-proof.

Proof According to the term-based Noetherian induction principle, one can use φ1(k) as IH in the proof
of φ1(m), as long as k <t m. On the other hand, according to Theorem 7, the ordering constraint can
be reformulated using a formula-based Noetherian induction principle as: φ1(k) should be smaller than
φ1(m), by considering the measure value of v as being that for φ1(v), for any term vector v. Assuming
that φ1(k) is an IH attached to the offspring φf of φ1(m), the induction principle can be schematized by
the 1-cycle

θ=σ...σ′−−−−−−−−−→
(φ1σ)...(φ′,σ′)

φf ,

δjj

where φ1(m) is (φ1, θ) and φ1(k) is (φ1, δ). �

Example 9 (customisation of a Peano induction proof) The Peano induction proof of x + 0 = x
from Example 4 builds a 1-cycle similar to the D-cycle issued from the reductive Ii-proof from Example 6,
excepting that the induction ordering is defined over terms. Its customisation to a D-cycle is done by
defining the measure value of the equality x + 0 = x as being the term x, for any natural x. Therefore,
the constraint ‘S(x′) + 0 = S(x′) greater than x′ + 0 = x′’ boils down to ‘S(x′) greater than x′’.
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2.4. Managing mutual induction

2.4 Managing mutual induction
The following set of axioms mutually defines over the naturals the functions even, odd and their condi-
tional versions even1 and odd1, respectively:

even(0) = True (2.1)
even(S(0)) = False (2.2)

even(S(S(x))) = even1(S(S(x)) + 0) (2.3)

even1(0) = True (2.4)
even1(S(0)) = False (2.5)

odd(x) = False⇒ even1(S(S(x))) = even(x) (2.6)
odd(x) = True⇒ even1(S(S(x))) = False (2.7)

odd(0) = False (2.8)
odd(S(0)) = True (2.9)

odd(S(S(x))) = odd1(S(S(x)) + 0) (2.10)

odd1(0) = False (2.11)
odd1(S(0)) = True (2.12)

even(x) = True⇒ odd1(S(S(x))) = odd(x) (2.13)
even(x) = False⇒ odd1(S(S(x))) = True (2.14)

It can be noticed that all defined functions are terminating, sufficiently complete and consistent.
The conjectures to be proved are: φ1

1 : even(x + x) = True and φ1
2 : odd(y + y) = False, using

induction reasoning to be performed w.r.t. the initial model of the axioms. We assume that the
previous proved conjecture x + 0 = x is available as lemma, as well as the lemma x + S(y) = S(x + y)
which can be similarly proved. The ordering over conditional equalities is the multiset extension of
the rpo ordering based on the precedence <F and equivalence ∼F relations over the function symbols:
True <F False <F 0 <F S <F + <F (even ∼F odd ∼F even1 ∼F odd1). The cyclic proof can be done
using the inference system Dc if it is extended with the following rule:

DedCase (D′c): E ∪ {φ} `Dc E ∪ Φ,
if a case analysis is performed on φ with rewrite rules
from Ax; in this case, Φ is made of the rewriting results.

The rewrite rules used by DedCase are conditional, of the form d1 = True ⇒ l1 = r1 and d2 =
False ⇒ l2 = r2 such that both d1 and d2, resp. l1 and l2, are equal modulo renaming using the same
renaming substitution. The case analysis is done as follows: if φ is an equality of the form u = v such
that u can be matched by l1 and l2 with the substitutions σ1 and σ2, respectively, then Φ consists of the
set {d1σ1 = True⇒ r1σ1 = v, d2σ2 = False⇒ r2σ2 = v}. A tautology is an equality of the form t = t,
or a conditional equality of the form . . .⇒ t = t or e⇒ e, for any term t and equality e.

The initial state of the Dc-proof is {φ1
1, φ

1
2}. SplitNat is applied on φ1

1 to result φ′1 : even(0 +
0) = True and φ2

1 : even(S(x′) + S(x′)) = True. φ′1 is rewritten by the axioms to the tautology
φ1 : True = True, then deleted by DedNat. φ2

1 is rewritten by the lemmas x + S(y) = S(x + y) and
x + 0 = x to φ3

1 : even1(S(S(x′ + x′))) = True. By case analysis with DedCase on φ3
1, it results

φ31
1 : odd(x′ + x′) = False ⇒ even(x′ + x′) = True and φ32

1 : odd(x′ + x′) = True ⇒ False = True.
IndNat is applied on φ31

1 by rewriting with the IH (φ1
1, δ
′′
1 ), where δ′′1 = {x 7→ x′}. The IH is checked by
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Figure 2.2: The skeleton of the Dc-proof.

the 1-cycle represented by
θ1={x7→S(x′)}−−−−−−−−−−−−−−−−−−−→

(φ1
1,{x 7→S(x′)})(φ2

1,id)(φ3
1,id)

φ31
1 since φ1

1δ
′′
1 is smaller than φ1

1θ1. The rewriting

operation produces the tautology φ311
1 : odd(x′ + x′) = True ⇒ True = True which is deleted by

DedNat. Then, IndNat is expected to be applied on φ32
1 by rewriting this time with the IH (φ1

2, δ
′
2),

where δ′2 = {y 7→ x′}. Hence, φ32
1 is put in stand-by and the proof of φ1

2 starts by following similar steps as
for φ1

1. Firstly, SplitNat is applied to result φ′2 : odd(0+0) = False and φ2
2 : odd(S(y′)+S(y′)) = False.

φ′2 is rewritten to the tautology φ2 : False = False, then deleted by DedNat. φ2
2 is successively rewritten

by the lemmas to φ3
2 : odd1(y′ + y′) = False by DedNat, then by case analysis with DedCase to

φ32
2 : even(y′ + y′) = True ⇒ odd(y′ + y′) = False and φ31

2 : even(y′ + y′) = False ⇒ True = False.
φ32

2 is further simplified to the tautology φ321
2 : even(y′ + y′) = True ⇒ False = False by IndNat

with the IH (φ1
2, δ
′′
2 ), where δ′′2 = {y 7→ y′}. The IH is checked by the 1-cycle with the history chunk

θ2={y 7→S(y′)}−−−−−−−−−−−−−−−−−−−→
(φ1

2,{y 7→S(y′)})(φ2
2,id)(φ3

2,id)
φ32

2 since φ1
2δ
′′
2 is smaller than φ1

2θ2. IndNat can also be applied on φ31
2 by

rewriting with the IH (φ1
1, δ
′
1), where δ′1 = {x 7→ y′}. The 2-cycle consisting of the history chunks

θ1={x 7→S(x′)}−−−−−−−−−−−−−−−−−−−→
(φ1

1,{x7→S(x′)})(φ2
1,id)(φ3

1,id)
φ32

1 and
θ2={y 7→S(y′)}−−−−−−−−−−−−−−−−−−−→

(φ1
2,{y 7→S(y′)})(φ2

2,id)(φ3
2,id)

φ31
2 can check the two IHs since φ1

2δ
′
2 is

smaller than φ1
1θ1 and φ1

1δ
′
1 is smaller than φ1

2θ2. The two IndNat operations are further applied to give
the tautologies φ321

1 : False = True⇒ False = True and φ311
2 : True = False⇒ True = False, which

are finally deleted by DedNat. The skeleton of the Dc-proof is given in Figure 2.2.
Let us notice that the conjectures φ1

1 and φ1
2 cannot be proved by reductive reasoning since the axioms

cannot be simultaneously oriented from left to right and transformed into rewrite rules, in particular (2.3)
and (2.6), as well as (2.10), (2.14) and the axioms defining ’+’. The D-proof cannot either be redone by
term-based Noetherian induction reasoning because of its 2-cycle.

Due to the unorientable axioms 2.3 and 2.10, SPIKE cannot produce an implicit induction proof of
the conjectures. However, SPIKE succeeds to reproduce the cyclic proof using the DRaCuLa strategy.
The cyclic proof script is available at http://code.google.com/p/spike-prover/.

2.5 Representing implicit induction proofs as cyclic proofs

Implicit induction proofs can be represented, as any reductive induction proofs, as D-proofs, according to
Theorem 10. Table 2.1 gives some statistics about the implicit induction proofs of a bunch of conjectures
involved in the validation process [Rusinowitch et al., 2003] of a conformance algorithm for the ABR
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2.5. Representing implicit induction proofs as cyclic proofs

# conjecture reductive constraints IHs cycles
1. firstat timeat 23 2 2
2. firstat progat 24 2 2
3. sorted sorted 5 0 0
4. sorted insat1 37 2 2
5. sorted insin2 45 2 2
6. sorted e two 5 0 0
7. member t insin 72 8 4
8. member t insat 41 5 4
9. member firstat 37 3 3

10. timel insat t 10 1 1
11. erl insin 11 1 1
12. erl insat 10 1 1
13. erl prog 38 2 2
14. time progat er 20 1 1
15. timeat tcrt 16 1 1
16. timel timeat max 43 1 1
17. null listat 17 2 2
18. null listat1 3 0 0
19. cons insat 4 1 1
20. cons listat 3 0 0
21. progat timel erl 48 1 1
22. progat insat 156 4 2
23. progat insat1 63 3 2
24. timel listupto 7 0 0
25. sorted listupto 49 3 3
26. time listat 27 1 1
27. sorted cons listat 62 2 2
28. null wind2 7 0 0
29. timel insin1 17 1 1
30. null listupto1 3 0 0
31. erl cons 11 0 0
32. no time 35 2 2
33. final 29 2 2

Total 978 54 46

Table 2.1: Statistics of the induction reasoning w.r.t. the ABR implicit induction proofs.

protocol [Rabadan and Klay, 1997] using SPIKE.10 It illustrates the name of the conjectures, the number
of reductive ordering constraints, the number of IHs and the number ofD-cycles. The number of reductive
ordering constraints is given by the number of reductive steps in the proof. For example, the implicit
induction proof of the conjecture progat insat requires 152 reductive ordering constraints but only 4
applications of IHs.

Interpreting implicit induction proofs as cyclic proofs allows to improve their certification process
by Coq, as explained in Chapter 6, where every single proof step should be checked. On the one
hand, the number of reductive ordering constraints, as indicated by Lemma 3, can be important.
In [Stratulat, 2010], it has been shown that the validation of the ordering constraints for some proofs
can last four times longer than for the validation of the deductive reasoning. On the other hand, the
validation time can be dramatically reduced if the implicit induction proofs are interpreted as D-proofs
because of the small number of non-reductive ordering constraints, as shown by Lemma 4. For example,

10The implicit induction and cyclic proof scripts and can also be accessed from http://code.google.com/p/
spike-prover/
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by inspecting the representation of the proof script of the conjecture progat insat as a D-proof, it has
been noticed that only two IHs are checked by 1-cycles, while the other two IHs do not need induction
reasoning to be proved. Therefore, the validation process of the D-proof would require to check only 2
non-reductive ordering constraints. The IHs not requiring induction reasoning can be proved in priority
using a different proof strategy, then considered as lemmas during the rest of the proof.

2.6 Conclusions
We have presented an induction proof technique that captures the first-order induction reasoning by
the means of non-reductive cycles which can be built using different formula-based Noetherian induction
orderings. It has been shown enough powerful to subsume any term-based and reductive formula-based
Noetherian inductive proof methods by combining the best features of conventional and implicit induction
proof techniques.

Implemented in SPIKE, the proposed technique can substantially diminish the number of ordering
constraints required when certifying implicit induction proofs.
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This chapter presents different applications of Theorem 8, defining the conditions for which formula-
based Noetherian induction principles can be directly converted to term-based Noetherian induction
principles. We show that this conversion result can be extended at the proof level. Indeed, we give
examples where structural induction proofs can be directly built from cyclic induction proofs. On the
other hand, we show that the use of the explicit induction schemas, based on the variable instantiation
schemas used in cyclic induction proofs, requires user creativity embodied in the definition of new
lemmas and for guiding the way the explicit induction schemas are applied.

Structure of the chapter. This chapter has three sections. Section 3.1 reproduces Coq experiments
published in [Stratulat, 2016] that aim at building term-based Noetherian induction proofs for con-
jectures already proved using formula-based Noetherian induction. In Section 3.2, we use the gen-
eration of explicit induction principles from formula-based Noetherian induction principles that are
lazily built for synthesising sorting algorithms for binary trees. The results have been partially pub-
lished in [Dramnesc et al., 2019, Dramnesc et al., 2016a, Dramnesc et al., 2016b, Dramnesc et al., 2015a,
Dramnesc et al., 2015b, Dramnesc et al., 2015c]. The last section concludes.
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Chapter 3. Building Explicit Induction Proofs for Conjectures Proved with Cyclic Induction

3.1 Coq experiments

In this section, we firstly define a set of conjectures that can be proved by using cyclic induc-
tion, based on the variable instantiation schema of the Peano principle. All cyclic proofs follow
a similar scenario. Next, we implement the cyclic induction reasoning in the Coq proof assis-
tant [The Coq development team, 2020]. Finally, we show that the scenarios for proving these conjectures
with Peano induction differ in terms of the number of induction steps and lemmas, as well as proof sce-
nario. We identify three conjectures from this set that are hard or impossible to be proved by Peano
induction.11

Related works. Previous works have tempted to convert term- to formula-based Noetherian in-
duction proofs. Musser [Musser, 1980] was the first to compare conventional with inductionless
induction methods. Since then, a lot of effort was put into clarifying the relations between ex-
plicit and implicit induction principles, [Garland and Guttag, 1988, Jouannaud and Kounalis, 1989,
Kapur and Zhang, 1994, Naidich, 1996, Comon, 2001, Wirth, 2005] being among the most notable.
Other studies have been conducted to reduce the gap between them. Protzen [Protzen, 1994] proposed
a proof strategy to perform lazy induction on particular explicit induction proofs. Kapur and Sub-
ramaniam [Kapur and Subramaniam, 1996] devised a method that extends schemata-based induction
to deal with a special class of mutually defined functions. Courant [Courant, 1996] identified a class
of implicit induction inference systems for which the proofs can be reconstructed into conventional
induction proofs. Reddy [Reddy, 1990] designed implicit induction inference rules that look similar
to schemata-based induction rules. This feature has been implemented by subsequent formula-based
induction systems [Bronsard and Reddy, 1991, Bouhoula et al., 1992, Avenhaus et al., 2003] to generate
more compact and readable proofs. Instantiation results similar to ours have been achieved more
recently for particular cases of cyclic proof systems. Sprenger and Dam [Sprenger and Dam, 2003]
have shown the equivalence of two Gentzen-style proof systems for first-order µ-calculus with explicit
approximations; one of them integrates local term-based induction rules, while the other lacks such
induction rules. In turn, the second can build finite ω-regular proof trees for which the induction
reasoning is argued by an external global induction discharge condition associated to the proof structure.
In the same line, Brotherston and Simpson [Brotherston and Simpson, 2011] compared two classical
first-order sequent calculus proof systems; the local induction is performed using conventional induction
together with a rule that deals with a class of mutual inductive definitions. In this context, they
showed that any proof using local induction arguments can be represented as a proof using global
induction arguments and conjectured that the other direction also holds. Later, Berardi and Tatsuta
proved that the conjecture does not hold, by providing the 2-Hydra example [Berardi and Tatsuta, 2019].

Defining the set of conjectures. Let R be a set of ternary inductive predicate symbols taking natural
numbers as arguments such that each symbol R ∈ R is defined by a set of axioms of the form:

R(0, u, 0) (3.1)
R(x1, y1, y2)⇒ R(S(x), u, 0) (3.2)
R(x′1, y

′
1, y
′
2)⇒ R(0, u, S(v)) (3.3)

R(x1, y1, y2) ∧R(x′1, y
′
1, y
′
2)⇒ R(S(x), u, S(v)) (3.4)

where S is the ‘successor’ function and the variables x, u, v are universally quantified. The values of the
parameters x1, y1, y2 and x′1, y′1, y′2 ofR occurring in the condition part of the axioms are defined in order to
satisfy the following ordering constraints: i) R(x1, y1, y2) < R(S(x), u, 0), ii) R(x′1, y

′
1, y
′
2) < R(0, u, S(v)),

iii) R(x1, y1, y2) < R(S(x), u, S(v)), and iv) R(x′1, y
′
1, y
′
2) < R(S(x), u, S(v)), by using a well-founded

ordering <. This ordering is defined such that R(z1, z2, z3) < R(z′1, z
′
2, z
′
3) if {{z1, z1}, {z2, z2, z3}} <

< {{z′1, z′1}, {z′2, z′2, z′3}}, for any naturals z1, z2, z3, z
′
1, z
′
2, z
′
3. Here, << is the multiset extension of an

ordering over multisets of terms which, in turn, is the multiset extension of the mpo ordering, defined
over naturals and denoted by <t, based on the precedence over the function symbols stating that 0 is

11The full Coq scripts of the proofs can be found at https://drive.google.com/file/d/19-8D4Cee8I4I_
98RygwHYUtS-BbZrNMt/view?usp=sharing
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smaller than S. It can be shown that this mpo ordering is well-founded and satisfies, for example, that
0 <t S(x) and x <t S(x), for any natural x. Since every multiset extension of a well-founded ordering is
also well-founded, we conclude that < is well-founded.

We recall that a multiset A is smaller than another multiset B w.r.t. the multiset extension of some
ordering ≺ if, after pairwisely deleting the common elements from A and B we get the multisets A′ and
B′, respectively. In addition, for each element x in A′, there is an element y in B′ such that x ≺ y. In
our case, the ordering constraints

1. i) and iii) are, respectively, {{x1, x1}, {y1, y1, y2}} << {{S(x), S(x)}, {u, u, 0}} and
{{x1, x1}, {y1, y1, y2}} � {{S(x), S(x)}, {u, u, S(v)}}.
They are satisfied if x1 is an element from {0, u, x} and the pair (y1, y2) an element from
{(0, 0), (0, x), (x, 0), (0, S(x)), (x, S(x)), (x, x)}. Notice that the pairs of the form (S(x), ) and the
pairs including u cannot be assigned to (y1, y2);

2. ii) and iv) are, respectively, {{x′1, x′1}, {y′1, y′1, y′2}} << {{0, 0}, {u, u, S(v)}} and
{{x′1, x′1}, {y′1, y′1, y′2}} << {{S(x), S(x)}, {u, u, S(v)}}. They are also satisfied if x′1 is an el-
ement from {0, u, v} and (y′1, y

′
2) is from {(0, 0), (0, u), (0, v), (u, v), (v, u), (u, 0), (v, 0), (v, v)}. The

pair (u, u) cannot be assigned to (y′1, y
′
2).

Therefore, the set R will have 3 × 6 × 3 × 8 = 432 inductive predicate symbols. Finally, the set of
conjectures for our purpose is {∀x u v,R(x, u, v) | R ∈ R}.

3.1.1 Proving by cyclic induction
For any R ∈ R, the conjecture ∀x u v,R(x, u, v) can be proved by cyclic induction reasoning using only
variable instantiations and unfoldings with the axioms defining R, as shown in the proof digraph from
Figure 3.1.

R(x, u, v)

{x7→0}

ww

{x 7→S(x′)}

))
R(0, u, v)

{v 7→0}

zz
{v 7→S(v′)}

��

R(S(x′), u, v)

{v 7→0}

��

{v 7→S(v′)}

++
R(0, u, 0) R(0, u, S(v′))

��

R(S(x′), u, 0)

uu

R(S(x′), u, S(v′))

��ss
R(x1, y1, y2)

{x7→x1;u7→y1;v 7→y2}{x7→x1;u7→y1;v 7→y2}{x7→x1;u7→y1;v 7→y2}

EE

R(x′1, y
′
1, y
′
2)

{x 7→x′1;u 7→y′1;v 7→y′2}{x 7→x′1;u 7→y′1;v 7→y′2}{x 7→x′1;u 7→y′1;v 7→y′2}

II

R(x1, y1, y2)

{x7→x1;u7→y1;v 7→y2}{x7→x1;u7→y1;v 7→y2}{x7→x1;u7→y1;v 7→y2}

^^

R(x′1, y
′
1, y
′
2)

{x7→x′1;u7→y′1;v 7→y′2}{x7→x′1;u7→y′1;v 7→y′2}{x7→x′1;u7→y′1;v 7→y′2}
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Figure 3.1: The digraph of the cyclic proof of ∀x u v,R(x, u, v), for any R ∈ R.

The root node is labeled by R(x, u, v), the other nodes being labeled by inductive atoms that are
instances of it. Each non root-node n is pointed by a solid arrow starting from some other node n′. If p′
is the inductive atom labelling n′, then the inductive atom labelling n results either i) by instantiating
some variable from p′ by 0 and S(x), where x is a fresh variable, or ii) by unfolding p′ using one of the
conditional axioms (3.3)-(3.4). In the first case, the instantiating substitution annotates the corresponding
solid arrow. The inductive atom labeling each leaf node either instantiates (3.1) or the inductive atom
labeling the root node. In the last case, a dashed arrow is firstly created by leading the leaf node to the
root node, then annotated with the instantiating substitution, written in boldface.

The proof digraph from Figure 3.1 contains cycles by following the arrows in the digraph. In general,
not all proof derivations, for which the root formula is instantiated by leaf formulas, are sound. In our
case, the soundness is guaranteed by the ordering constraints i) - iv), as shown by the cyclic induction
method from [Stratulat, 2012], also presented in Chapter 2.
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The Coq implementation. Let us assume that R is one of the inductive predicates symbols from R,
defined by the axioms:

R(0, u, 0) (3.5)
R(u, x, S(x))⇒ R(S(x), u, 0) (3.6)

R(v, u, v)⇒ R(0, u, S(v)) (3.7)
R(u, x, S(x)) ∧R(v, u, v)⇒ R(S(x), u, S(v)) (3.8)

We will show how the cyclic induction reasoning for proving ∀x u v,R(x, u, v) can be certified in Coq.

R can be specified in Coq as an inductive predicate, denoted here by R:

Inductive R: nat → nat → nat → Prop :=
r 1: ∀ u, R 0 u 0 |
r 2: ∀ x u, R u x (S x ) → R (S x ) u 0 |
r 3: ∀ u v, R v u v → R 0 u (S v) |
r 4: ∀ x u v, R u x (S x ) → R v u v → R (S x ) u (S v).

The scenario from the cyclic proof from Figure 3.1 can be reproduced if the conjecture to be proved
is (temporarily) considered as an hypothesis before its usage.

Hypothesis R admitted : ∀ x u v, R x u v.

Theorem R assumption: ∀ x u v, R x u v.
Proof.
destruct x ; intros.
- Case "x=0". destruct v.

+ SCase "v=0". apply r 1.
+ SCase "v=S v". apply r 3. apply R admitted .

- Case "x=S x". destruct v.
+ SCase "v=0". apply r 2. apply R admitted .
+ SCase "v=S v". apply r 4; apply R admitted .

Qed.

The tactic destruct, when applied on a natural variable v, instantiates it by 0 and (S v).

It can be easily noticed that the cycles from the proof digraph from Figure 3.1 form a unique strongly
connected component , i.e., a maximal sub-graph such that, given any two different nodes in it, there
is a path between them in each direction. The induction reasoning performed along these cycles can
be captured by an explicit induction schema issued from the definition of a terminating and recursive
boolean function, denoted by f P, taking as argument a triplet of naturals.

Function f P (a: nat × nat × nat) {wf (fun u v : nat× nat×nat ⇒ match u,v with
(u1, x1, y1), (u2, x2, y2)⇒ mless ({{[u1, u1]}} + {{[x1, x1, y1]}}) ({{[u2, u2]}}

+ {{[x2, x2, y2]}}) end) a}: bool :=
match a with

| (x’, y) ⇒ match x’ with
| (u, x) ⇒
match u, x, y with
| 0, , 0 ⇒ true
| (S x ), u, 0 ⇒ f P (u, x, (S x))
| 0, u, (S v) ⇒ f P (v, u, v)
| (S x ), u, (S v) ⇒ andb (f P(v, u, v)) (f P(u, x, (S x)))

end
end
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end.

The function f P firstly decomposes the triplet given as argument, then performs a case analysis on
the resulting naturals to finally get a different (functional) representation of the definition of R.

As any function whose definition is accepted by Coq, f P should terminate. The Coq environment
generates proof obligations requiring that its argument should decrease after each recursive call w.r.t.
the well-founded ordering provided after the wf keyword, where mless is the multiset extension of
the multiset extension of the ‘less than’ syntactic ordering over naturals, defined using the CoLoR
library [Blanqui and Koprowski, 2011].12 Once the proof obligations are discharged, Coq automatically
generates a functional (induction) schema f P ind.

An explicit induction proof can be built for the theorem RP true which is similar to R assumption
when using RP, the version of R with only one (triplet) argument.

Definition RP z := R (fst (fst z )) (snd (fst z )) (snd z ).

Theorem RP true: ∀ u x y, RP (u, x, y).
Proof.
intros u x y. pattern (u, x, y). pattern (f P (u, x, y)).
apply f P ind; intros; unfold RP; simpl. (* apply the induction schema *)
apply r 1. (* follow the cyclic proof *)
apply r 2; unfold RP in H ; simpl in H ; trivial.
apply r 3. unfold RP in H ; simpl in H. trivial.
apply r 4; unfold RP in H0 ; simpl in H0 ; trivial.

Qed.
Finally, the R admitted hypothesis can be proved.

Theorem R admitted: ∀ x u v, R x u v.
(* the proof follows directly from RP true *)

Similarly, ∀ x u v, R′(x, u, v) can be certified in Coq, for any R′ ∈ R, using a similar scenario for
which only the termination proof is different.

3.1.2 Proving by structural induction

The cyclic proofs of the conjectures ∀ x u v, R′(x, u, v), where R′ ∈ R only instantiate natural variables
using 0 and the successor of new variables. The explicit induction schema that is based on this variable
instantiation schema is the Peano induction, a structural induction principle issued from the analysis
of the recursive definition of naturals. To recall it, in order to prove a formula P (x), where x is a
natural variable to be instantiated, also called induction variable, it is enough to prove both P (0) and
∀x′, P (x′) ⇒ P (S(x′)), where P (x′) is an induction hypothesis and x′ a fresh variable. P (x′) can be
soundly used in the proof of P (S(x′)) because the number of ‘S’ symbols in x′ is smaller than in S(x′),
for any natural x′, and the ‘less than’ ordering over naturals is well-founded. In Coq, the Peano induction
is automatically generated from the recursive definition of the nat datatype. It can be applied using the
tactic induction which takes as argument the induction variable.

To distinguish each R′ from R, they are represented under the form of Rijkl, where

• i is the position of x1 from the axioms (3.2) and (3.4) in the list [0, u, x],

• j is the position of (y1, y2) from the axioms (3.2) and (3.4) in the list
[(0, 0), (0, x), (x, 0), (0, S(x)), (x, S(x)), (x, x)],

• k is the position of x′1 from the axioms (3.3) and (3.4) in the list [0, u, v], and

• l is the position of (y′1, y
′
2) from (3.3) and (3.4) in [(0, 0), (0, u), (0, v), (u, v), (v, u), (u, 0), (v, 0), (v, v)].

12More details about the definition of syntactic orderings in Coq is given in Chapter 6.
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For example, the symbol R, defined by the axioms (3.5)-(3.8), will be referred to as R2534.
Similarly in Coq, the axioms defining Rijkl, denoted by Rijkl, are labelled as rijkl 1, rijkl 2, rijkl 3,

and rijkl 4. In addition, the theorem to be proved is denoted as Rijkl true.

All proofs of Rijkl true have the following structure:
Theorem Rijkl true: ∀ x u v, Rijkl x u v.
Proof.
destruct x ; destruct v ; intros.
(* case x=0, v=0 *) apply rijkl 1.
(* case x=0, v=(S v) *) apply rijkl 3. (* to complete *)
(* case x=(S x ), v=0 *) apply rijkl 2. (* to complete *)
(* case x=(S x ), v=(S v) *) apply rijkl 4. (*to complete*)

Qed.
This proof scenario is similar to that from Figure 3.1, excepting that the proof of the formulas

labelling the lowest nodes in the proof digraph should be provided.

Different proof scenarios can be distinguished to complete the proof of Rijkl true. Table 3.1 presents
some proof statistics for each case, where the second (resp., third) column gives the number of induction
(resp., destruct) calls, and the fourth column the number of times ‘apply rijkl 4’ was called. The
fifth column displays the number of intermediate lemmas and the last column the depth of the proof tree,
issued by expanding the calls to the lemmas and by considering as one ‘big step’ each sequence of steps
different from induction, destruct, split (for dealing with conjunctions) and ‘apply rijkl 4’. We
do not claim that our proofs have a digraph with minimal depth, our intention is only to give an idea
about the degree of difficulty of each proof.

Scenario 1: no induction steps. This is the most trivial one. We consider the case R1111.
Theorem R1111 true: ∀ x u v, R1111 x u v.
Proof.
destruct x ; destruct v ; intros.
apply r1111 1.
apply r1111 3. apply r1111 1.
apply r1111 2. apply r1111 1.
apply r1111 4; apply r1111 1.

Qed.
Overall, 78 cases have no induction steps in their proofs. These proofs are performed mainly by

instantiating variables and unfolding axioms, the maximal depth being of 7 (e.g., for R1132 true).

Scenario 2: one induction step. We consider the case R1113 where an induction step is performed
in the proof of the additional lemma.
Theorem R1113 10v: ∀ v, R1113 0 0 v.
Proof.
induction v.
- Case "v=0" . apply r1113 1.
- Case "v=S v". apply r1113 3. apply IHv.

Qed.
Theorem R1113 true: ∀ x u v, R1113 x u v.
Proof.
destruct x ; destruct v ; intros. apply r1113 1.
apply r1113 3. apply R1113 10v.
apply r1113 2. apply r1113 1.
apply r1113 4; apply R1113 10v.

Qed.
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Scenario 3: two induction steps. We detail the case R1115 where two induction steps are performed
in the proof of the conjunction lemma:

Theorem R1115 mix: ∀ u v, R1115 0 v u ∧ R1115 0 u v.
Proof.
induction u; intros.
- Case "u=0". split. apply r1115 1. destruct v. apply r1115 1. apply r1115 3. apply

r1115 1.
- Case "u=S u". split. apply r1115 3. apply IHu. induction v.
+ SCase "v=0". apply r1115 1.
+ SCase "v = S v". apply r1115 3. apply r1115 3. apply IHu.

Qed.

Theorem R1115 true: ∀ x u v, R1115 x u v.
Proof.
destruct x ; destruct v ; intros. apply r1115 1.
apply r1115 3. apply R1115 mix.
apply r1115 2. apply r1115 1.
apply r1115 4; apply R1115 mix.

Qed.

Scenario 4: more than two induction steps. We chose to comment the cases R2535 and R2534.
The proof of R2535 true required 3 induction steps and its digraph has the deepest depth (19). On the
other hand, in spite of our efforts, the proof of R2534 true, as well as R2634 true and R2636 true, could
not have been completed.

Statistics for the Coq proofs.

Table 3.1: Statistics about the proofs by Peano induction of Rijkl true.

Case IS DS CR Lemmas Depth Case IS DS CR Lemmas Depth
R1111 0 2 1 0 3 R2411 0 3 2 1 5
R1112 0 3 1 1 4 R2412 0 4 2 2 5
R1113 1 2 1 1 4 R2413 1 3 2 2 6
R1114 1 2 1 1 4 R2414 1 3 2 2 6
R1115 2 2 1 1 6 R2415 1 5 2 2 5
R1116 0 2 1 0 3 R2416 0 3 2 1 5
R1117 0 2 1 0 3 R2417 0 3 2 1 5
R1118 1 2 1 1 4 R2418 1 3 2 2 6
R1121 0 3 1 1 4 R2421 0 4 2 2 6
R1122 1 2 2 1 5 R2422 0 4 2 2 5
R1123 1 4 2 1 6 R2423 3 6 3 2 9
R1124 1 4 2 1 6 R2424 4 5 3 2 9
R1125 2 2 3 1 7 R2425 1 4 5 2 9
R1126 0 3 1 1 4 R2426 0 4 2 2 6
R1127 0 3 1 1 4 R2427 0 4 2 2 6
R1128 1 4 2 1 6 R2428 1 5 5 3 9
R1131 0 3 1 1 4 R2431 1 3 2 2 6
R1132 0 6 2 1 7 R2432 4 8 3 2 9
R1133 1 2 2 1 5 R2433 1 3 3 2 7
R1134 1 2 2 1 5 R2434 7 5 11 2 12
R1135 1 6 3 1 8 R2435 3 6 7 2 12
R1136 0 4 1 1 5 R2436 3 5 2 2 7
R1137 0 3 1 1 4 R2437 1 6 4 2 8
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Table 3.1 – Continued
Case IS DS CR Lemmas Depth Case IS DS CR Lemmas Depth

R1138 1 2 2 1 5 R2438 1 3 4 2 8
R1211 0 3 1 1 4 R2511 1 3 4 1 7
R1212 0 3 1 1 4 R2512 1 5 4 2 8
R1213 1 2 1 1 3 R2513 2 4 4 2 8
R1214 1 2 1 1 4 R2514 2 5 3 2 9
R1215 1 4 1 1 5 R2515 2 6 4 2 9
R1216 0 3 1 1 4 R2516 1 4 4 2 8
R1217 0 3 1 1 4 R2517 1 4 4 1 7
R1218 1 3 1 2 4 R2518 2 4 4 2 8
R1221 0 4 1 2 4 R2521 2 4 4 2 8
R1222 0 4 2 2 6 R2522 2 4 5 2 9
R1223 1 4 2 2 7 R2523 4 6 4 2 11
R1224 2 4 2 2 6 R2524 4 4 7 2 11
R1225 1 4 3 2 8 R2525 3 6 16 3 16
R1226 0 4 1 2 5 R2526 2 4 8 2 11
R1227 0 4 1 2 5 R2527 2 5 8 3 11
R1228 1 5 3 3 10 R2528 2 6 17 3 18
R1231 1 2 1 3 5 R2531 2 4 4 2 8
R1232 1 4 2 3 8 R2532 2 6 7 3 13
R1233 1 3 2 3 7 R2533 2 4 7 2 9
R1234 2 2 3 3 8 R2534 - - - - -
R1235 2 5 3 3 9 R2535 3 7 18 3 19
R1236 1 3 1 3 6 R2536 2 5 9 3 13
R1237 1 2 1 3 5 R2537 2 4 11 2 12
R1238 1 2 1 3 6 R2538 2 4 14 2 13
R1311 0 2 1 0 3 R2611 1 5 3 1 8
R1312 0 3 1 1 4 R2612 1 8 3 2 8
R1313 1 2 1 1 4 R2613 2 7 3 2 9
R1314 1 2 1 1 4 R2614 2 8 4 2 11
R1315 1 4 1 1 5 R2615 2 5 4 2 10
R1316 0 3 1 1 4 R2616 1 6 3 1 8
R1317 0 2 1 0 3 R2617 1 6 3 1 8
R1318 1 2 1 1 4 R2618 2 7 3 2 9
R1321 0 3 1 1 4 R2621 2 8 3 2 10
R1322 0 3 1 1 4 R2622 2 8 5 2 12
R1323 1 4 2 1 6 R2623 6 9 5 3 14
R1324 1 4 2 1 6 R2624 10 2 7 3 13
R1325 1 3 3 1 8 R2625 3 7 17 3 18
R1326 0 3 1 1 4 R2626 2 6 5 2 14
R1327 0 3 1 1 4 R2627 2 7 6 3 15
R1328 1 4 2 1 6 R2628 2 7 8 2 16
R1331 0 3 1 1 4 R2631 2 7 3 2 12
R1332 0 7 2 1 7 R2632 4 10 5 3 13
R1333 1 2 2 1 5 R2633 2 6 4 2 13
R1334 1 2 2 1 5 R2634 - - - - -
R1335 1 6 3 1 8 R2635 3 9 11 4 16
R1336 0 3 1 1 4 R2636 - - - - -
R1337 0 3 1 1 4 R2637 2 7 6 2 15
R1338 1 2 2 1 5 R2638 2 7 6 2 14
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Table 3.1 – Continued
Case IS DS CR Lemmas Depth Case IS DS CR Lemmas Depth

R1411 0 2 1 1 3 R3111 1 2 1 1 4
R1412 0 3 1 2 4 R3112 1 3 1 1 4
R1413 1 2 1 2 4 R3113 2 2 1 2 4
R1414 1 2 1 2 4 R3114 2 2 1 2 4
R1415 1 4 1 1 5 R3115 2 4 1 2 5
R1416 0 3 1 2 4 R3116 1 2 1 1 4
R1417 0 2 1 1 3 R3117 1 2 1 1 4
R1418 1 2 1 2 4 R3118 2 2 1 2 4
R1421 0 3 1 2 4 R3111 1 2 1 1 4
R1422 0 3 2 2 5 R3122 1 3 2 2 5
R1423 3 4 2 1 7 R3123 4 4 2 2 7
R1424 2 4 2 2 6 R3124 2 4 2 2 7
R1425 1 3 3 2 7 R3125 2 4 4 2 8
R1426 0 3 1 2 4 R3126 1 3 1 2 4
R1427 0 3 1 2 4 R3127 1 3 1 2 5
R1428 2 4 3 3 8 R3128 3 5 4 2 9
R1431 1 2 1 2 4 R3131 1 3 1 2 5
R1432 4 5 2 1 8 R3132 1 4 2 2 7
R1433 1 2 2 2 5 R3133 2 2 2 2 6
R1434 2 2 3 2 5 R3134 2 2 2 2 6
R1435 2 5 3 3 9 R3135 4 8 4 2 11
R1436 1 3 1 3 5 R3136 1 4 1 2 6
R1437 1 2 1 2 4 R3137 1 3 1 2 5
R1438 1 2 2 2 5 R3138 2 2 2 2 6
R1511 0 2 1 1 3 R3211 1 2 2 1 5
R1512 0 3 1 2 4 R3212 1 3 2 2 5
R1513 1 2 1 1 4 R3213 1 3 2 2 5
R1514 1 3 1 2 5 R3214 3 2 2 2 6
R1515 1 4 1 2 5 R3215 2 4 2 2 5
R1516 0 3 1 2 4 R3216 1 2 2 1 5
R1517 0 2 1 1 3 R3217 1 2 2 1 5
R1518 1 2 1 2 4 R3218 2 2 2 2 6
R1521 1 2 1 2 4 R3211 1 3 2 2 6
R1522 1 2 2 2 5 R3222 2 2 3 2 5
R1523 4 4 3 3 7 R3223 5 4 3 2 7
R1524 3 2 2 2 6 R3224 3 4 3 2 9
R1525 2 3 4 3 7 R3225 2 4 5 2 9
R1526 1 2 1 2 4 R3226 1 3 2 2 6
R1527 1 2 1 2 4 R3227 1 3 2 2 6
R1528 1 5 5 2 10 R3228 1 4 5 2 11
R1531 1 2 1 2 4 R3231 1 2 2 1 6
R1532 1 2 3 3 9 R3232 1 4 3 2 9
R1533 1 2 2 2 5 R3233 1 4 2 1 6
R1534 1 2 2 2 5 R3234 2 2 3 2 7
R1535 2 6 6 3 13 R3235 2 6 5 2 13
R1536 1 3 1 3 5 R3236 1 3 2 2 7
R1537 1 2 1 2 4 R3237 1 2 2 1 6
R1538 1 2 2 2 5 R3238 1 2 3 1 6
R1611 0 3 1 1 4 R3311 1 2 2 1 4
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Table 3.1 – Continued
Case IS DS CR Lemmas Depth Case IS DS CR Lemmas Depth

R1612 0 4 1 2 5 R3312 1 3 1 2 4
R1613 1 3 1 2 5 R3313 2 2 1 2 4
R1614 1 3 1 2 5 R3314 2 2 1 2 4
R1615 1 4 1 2 5 R3315 2 4 1 2 5
R1616 0 3 1 2 4 R3316 1 2 1 1 4
R1617 0 3 1 2 4 R3317 1 2 1 1 4
R1618 1 3 1 2 5 R3318 2 2 1 2 4
R1621 2 2 1 2 5 R3311 1 3 1 2 5
R1622 1 2 3 1 6 R3322 1 3 1 2 5
R1623 4 5 3 2 10 R3323 3 5 2 2 7
R1624 8 3 3 3 11 R3324 2 4 2 2 7
R1625 2 4 7 2 11 R3325 2 4 4 2 8
R1626 1 3 1 2 5 R3326 1 3 2 2 5
R1627 1 3 1 2 3 R3327 1 4 2 2 5
R1628 2 4 4 2 8 R3328 2 6 4 4 10
R1631 1 2 1 1 5 R3331 1 3 1 2 5
R1632 3 4 3 2 10 R3332 1 7 2 2 8
R1633 1 2 2 1 6 R3333 2 2 2 2 7
R1634 1 2 2 1 6 R3334 2 2 2 2 6
R1635 2 6 5 2 12 R3335 2 4 3 2 9
R1636 1 2 1 1 5 R3336 1 3 1 2 5
R1637 1 2 1 1 5 R3337 1 3 1 2 5
R1638 1 2 2 1 6 R3338 2 2 2 2 6
R2111 0 3 1 1 4 R3411 1 2 2 1 5
R2112 0 4 1 2 4 R3412 1 3 2 2 5
R2113 1 3 1 2 4 R3413 2 2 2 2 6
R2114 1 3 1 2 4 R3414 3 2 2 2 6
R2115 1 5 1 2 5 R3415 2 4 2 2 5
R2116 0 4 1 2 4 R3416 1 3 2 2 5
R2117 0 4 2 2 4 R3417 1 2 2 1 5
R2118 1 3 1 2 4 R3418 2 2 2 2 6
R2121 0 3 1 1 4 R3421 1 3 2 2 6
R2122 0 4 2 2 4 R3422 1 3 2 2 6
R2123 2 5 2 2 8 R3423 4 5 3 2 9
R2124 1 5 2 2 6 R3424 3 4 3 2 9
R2125 1 6 4 2 9 R3425 2 4 4 2 9
R2126 0 4 1 2 4 R3426 1 3 2 2 6
R2127 0 4 1 2 4 R3427 1 3 2 2 6
R2128 1 5 2 2 5 R3428 1 4 5 2 10
R2131 0 3 1 1 4 R3431 1 3 2 2 6
R2132 0 6 2 2 6 R3432 1 7 3 2 9
R2133 1 3 2 2 5 R3433 1 2 4 1 7
R2134 1 3 2 2 5 R3434 2 2 5 2 9
R2135 1 7 3 2 8 R3435 2 5 4 2 11
R2136 0 5 1 2 5 R3436 1 3 2 2 7
R2137 0 4 1 2 4 R3437 1 2 2 1 7
R2138 1 3 2 2 5 R3438 1 2 4 1 7
R2211 0 7 2 1 7 R3511 1 2 2 1 5
R2212 0 5 2 2 7 R3512 1 3 2 2 5
R2213 1 4 2 2 7 R3513 2 2 2 2 6
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Table 3.1 – Continued
Case IS DS CR Lemmas Depth Case IS DS CR Lemmas Depth

R2214 1 6 2 2 7 R3514 2 4 2 2 7
R2215 1 9 2 2 7 R3515 2 4 2 2 7
R2216 0 7 2 1 6 R3516 1 3 2 2 5
R2217 0 7 2 1 6 R3517 1 2 2 1 5
R2218 1 7 2 2 8 R3518 2 2 2 2 6
R2221 0 9 2 2 7 R3521 2 2 2 2 6
R2222 0 9 3 2 7 R3522 1 3 4 2 8
R2223 3 4 2 1 7 R3523 4 5 4 2 10
R2224 4 6 3 2 10 R3524 3 2 2 1 6
R2225 1 9 4 2 11 R3525 2 5 9 2 12
R2226 0 8 2 2 8 R3526 1 3 2 2 8
R2227 0 9 2 2 8 R3527 1 3 2 2 6
R2228 0 6 3 2 9 R3528 1 4 9 2 12
R2231 0 4 2 2 8 R3531 1 3 2 2 6
R2232 1 4 2 2 8 R3532 1 4 4 2 10
R2233 1 4 2 2 9 R3533 1 2 4 1 7
R2234 2 4 4 3 9 R3534 1 2 4 1 7
R2235 2 11 6 3 17 R3535 2 6 5 2 13
R2236 1 5 2 3 8 R3536 1 3 2 2 7
R2237 1 4 3 2 9 R3537 1 2 2 1 6
R2238 1 5 4 2 10 R3538 1 2 4 1 7
R2311 1 4 1 1 5 R3611 1 2 2 1 5
R2312 1 5 1 2 5 R3612 1 3 2 2 5
R2313 2 4 1 2 5 R3613 2 2 2 2 6
R2314 2 4 1 2 5 R3614 2 4 2 2 7
R2315 2 6 1 2 5 R3615 2 4 2 2 7
R2316 0 6 1 2 5 R3616 1 2 2 1 5
R2317 1 4 1 1 5 R3617 1 2 2 1 5
R2318 2 4 1 2 5 R3618 2 2 2 2 6
R2321 1 5 1 2 5 R3621 1 3 2 2 6
R2322 1 5 1 2 5 R3622 1 3 4 2 8
R2323 3 7 2 2 7 R3623 4 5 5 2 10
R2324 2 6 2 2 8 R3624 3 2 2 1 6
R2325 2 6 4 2 10 R3625 2 4 9 2 12
R2326 1 5 1 2 6 R3626 1 3 2 2 6
R2327 1 4 1 1 5 R3627 1 3 2 2 6
R2328 3 7 4 2 10 R3628 1 4 7 2 12
R2331 1 3 1 2 5 R3631 1 3 2 2 7
R2332 1 6 2 2 8 R3632 1 7 4 2 10
R2333 2 4 2 2 5 R3633 1 2 3 1 6
R2334 2 4 2 2 5 R3634 1 2 4 1 7
R2335 2 7 3 2 10 R3635 2 9 6 2 14
R2336 1 5 1 2 6 R3636 1 3 2 2 7
R2337 1 4 1 1 5 R3637 1 2 2 1 6
R2338 2 4 2 2 7 R3638 1 2 2 1 5
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3.2 Lazy generation of induction schemas for algorithm synthesis

By algorithm synthesis we understand finding an algorithm which satisfies a given specification. We
are working in the context of proof-based synthesis of functional algorithms, starting from their for-
mal specifications. A formal specification is expressed as two predicates: the input condition I[X]
and the output condition O[X,T ].13 The desired function F must satisfy the correctness condi-
tion ∀

X
(I[X] ⇒ O[X,F [X]]), which corresponds to the synthesis conjecture: ∀

X
∃
T

(I[X] ⇒ O[X,T ]).

An algorithm which implements F can be extracted from the (constructive) proof of this conjecture.
The algorithm is expressed as a list of clauses (conditional rewrite rules) of the form: C[Z] =⇒
F [P [Z]] = T [Z], where Z is a vector of variables, P [Z] is a pattern over these variables (with
the property that it matches unambiguously certain elements of the domain), and T [Z] is a term
over the matching variables. In [Dramnesc et al., 2019, Dramnesc et al., 2016a, Dramnesc et al., 2016b,
Dramnesc et al., 2015a, Dramnesc et al., 2015b, Dramnesc et al., 2015c], we focused on developing effec-
tive and efficient techniques for mechanizing the synthesis–proofs of sorting algorithms over the domain
of binary trees, the synthesis–proofs of the auxiliary functions occurring in these algorithms, and the
proofs of the additional properties which are necessary in the synthesis–proofs.

Our approach is experimental: we try various scenarios and techniques and refine them in order
to obtain efficient proofs and various algorithms. The way the constructive proof is built is essential
since the definition of the algorithm depends on it. For example, case splits may generate conditional
branches and induction steps may produce recursive definitions. Hence, the use of different case reasoning
techniques and induction principles may output different algorithms. The soundness of the proof rules
and of the extraction procedure guarantee the correctness of the algorithm.

The focus of our work is on proof automation. In our experiments all the proofs are produced com-
pletely automatically, while the theory exploration (identification of all necessary auxiliary statements),
the selection of the assumptions and of the induction principles used by the prover in each proof, and the
construction of the conjectures from the failing proofs are performed manually.

The implementations of the case studies presented in this chapther have been carried out in the
frame of the Theorema system [Buchberger et al., 2016] which is itself implemented in Mathemat-
ica [Wolfram, 2003]. Theorema offers significant support for automating the algorithm synthesis; in
particular, the new proof strategies and inference rules have been quickly prototyped, tested and inte-
grated in the system thanks to its extension features. Also, the proofs are easier to understand since they
are presented in a human-oriented style. Moreover the synthesized algorithms can be directly executed
in the system. The implementation files and the full proofs are presented in [Dramnesc et al., 2015b].

Our main results include the novel synthesized algorithms: five sorting algorithms plus the auxiliary
functions necessary for them: one algorithm for Insert (insert an element into a sorted tree), and three
algorithms for Merge (merge two sorted trees into a sorted one).

More importantly, our experiments reveal a valuable arsenal of proof techniques (inference rules and
proof strategies) which are both of general interest in natural–style proving, as well of particular interest
in proof–based algorithm synthesis and in proving over the domain of binary trees.

The induction reasoning performed during the proof construction is lazy, meaning that the induction
hypotheses are used by need, hence avoiding unnecessary backtracking steps. The lazy induction reasoning
can be afterwards captured by explicit induction schemas such that the whole reasoning is reconstructed
to an explicit induction proof which is successfully conducted at the end with the Theorema system. It
may happen that different proof scenarios generate different induction schemas. Some of the auxiliary
functions, e.g. Merge, use nested recursion. In this case is difficult to guess an induction principle which
can be applied. Our novel combinatorial technique combined with lazy induction is able to find the
appropriate induction principle, by guessing a suitable witness term.

By theory exploration in Theorema we produce 3 axioms, 11 definitions, and more than 200 properties.
These theories are useful for the further study of properties and algorithms on binary trees. Although
produced “manually”, these theories can be of interest for the study of possible automation of the theory
exploration process.

13The square brackets are used for function and predicate applications instead of round brackets.
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Related Work. Algorithm synthesis and program generation is currently a challenging problem for
programming and verification communities.14 Note however that our work does not address program
generation, which consists in transforming the description of an algorithm given in a certain formalism,
into a program expressed in a certain language.

Automation of Theory Exploration is an active area of research – see e. g. [Colton, 2012], however in
our research we did not focus on the mechanization of this process. Rather, we apply the basic principles
described in [Buchberger, 2000] in order to perform top–down in parallel with bottom–up exploration,
by adding the notions and properties which are necessary for our proofs.

Induction Reasoning is used successfully for algorithm synthesis – see e. g. [Bundy et al., 2006,
Johansson et al., 2011, McCasland and Bundy, 2006]. Powerful techniques (for instance rippling) have
been developed for overcoming a basic drawback of explicit induction: it may be that the desired algo-
rithm cannot be constructed using the apriori given induction. Our research complements this efforts by
introducing a combinatorial technique for the generation of the witness terms, as well as a lazy induction
method based on Noetherian ordering, which is able to discover new explicit induction schemes.

We perform Algorithm Synthesis by following the classical proof–based synthesis approach as presented
in e. g. [Bundy et al., 2006]. The work of [Gulwani, 2010] is a comprehensive overview of the most
common approaches used to tackle the synthesis problem. In [Basin et al., 2004] we find a comparison
between three synthesis methods: constructive/deductive synthesis, schema-based synthesis and inductive
synthesis. We do not focus on the theoretical aspects of algorithm synthesis, but we follow an experimental
approach in which we can find efficient proof methods. Concerning the sorting of binary trees, in classical
approaches – see e. g. [Knuth, 1998] the problem of sorting them directly is not investigated, and we did
not find other descriptions of such algorithms.

In the following, we present the context of binary trees and the notations, introduce the synthesis
problem and describe the main synthesis method: the construction of the synthesis conjecture, its proof
by induction, and the extraction of the algorithm from the proof.

General Conventions. Similar to the Theorema style, we use square brackets for function and for
predicate application (e.g., f[x] instead of f(x) and P[a] instead of P(a)). Moreover, the quantified variables
are written under the quantifier, that is ∀

x
(“for all x”) and ∃

T
(“exists T ”). Sometimes, the place under the

quantifier also contains a property of the quantified object.

3.2.1 Sorting of binary trees

We consider binary trees over elements from a domain with a total ordering. The two types however are
not explicitly present in the formulas, but only implicit by notation and by using predicate and function
symbols which are not overloaded. Lower-case letters (e.g., a, b, n) represent tree elements, and upper-case
letters (e.g., X,T, Y, Z) represent trees.

From the names of variables present in the original formulas, the provers generates meta–variables
(denoted usually by starred symbols — e.g., T ∗, T ∗1 , Z∗) and Skolem constants (e.g., X0, X1, a0).

The ordering between tree elements is denoted by the usual ≤, and the ordering between a tree and
an element is denoted by: � (e.g., T � z states that all the elements from the tree T are smaller or equal
than the element z, z � T states that z is smaller or equal than all the elements from the tree T ).

We use two constructors for binary trees, namely: ε for the empty tree, and the triplet 〈L, a,R〉 for
non-empty trees, where L and R are trees and a is the root element.

Predicates: ≈ and IsSorted have the following interpretations, respectively: X ≈ Y states that X and
Y have the same elements with the same number of occurrences (but may have different structures), i.e.,
X is a permutation of Y ; IsSorted[X] states that X is a sorted tree. A tree is a sorted (or search, or
ordered) tree if it is either ε or of the form 〈L, a,R〉 such that i) L � a � R, and ii) L and R are sorted
trees.

14http://research.microsoft.com/en-us/um/people/sumitg/pubs/synthesis.html
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3.2.2 Synthesis problem and method
As stated in the introduction, the specification of the target function F consists of two predicates: the
input condition I[X] and the output condition O[X,T ], and the correctness property for F is ∀

X
(I[X]⇒

O[X,F [X]]). The synthesis problem is expressed by the conjecture: ∀
X
∃
T

(I[X] ⇒ O[X,T ]). The proof-
based synthesis consists in proving this conjecture in a constructive way and then extracting the algorithm
for the computation of F from this proof.

In the case of sorting, the input condition specifies the type of the input, therefore it is missing since
the type is implicit. The output condition O[X,T ] is X ≈ T ∧ IsSorted[T ] thus the synthesis conjecture
becomes:

Conjecture 1 ∀
X
∃
T

(X ≈ T ∧ IsSorted[T ])

This conjecture can be proved in several ways. Each constructive proof is different depending on the
applied induction principle and the content of the knowledge base (the set of assumptions provided to
the prover). Hence, different algorithms are extracted from different proofs.

3.2.3 Induction principles and algorithm extraction
The illustration of the induction principles and algorithm extraction in this subsection is similar to the
one from [Dramnesc and Jebelean, 2011] for lists, but the induction principles are adapted for trees and
the extracted algorithms are more complex.

The following induction principles are direct term-based instances of the Noetherian induction principle
and can be represented using induction schemas. Consider the domain of binary trees with a well-founded
ordering <t and denote by <<t the multiset extension of <t as a well-founded ordering over vectors of
binary trees. An induction schema to be applied to a predicate ∀

x
P [x] defined over a vector of tree variables

x is a conjunction of instances of P [x] called induction conclusions that ‘cover’ ∀
x
P [x], i.e., for any value

v from the domain of x, there is an instance of an induction conclusion P [t] that equals P [v], where t is a
vector of trees. An induction schema may attach to an induction conclusion P [t], as induction hypotheses,
any instance P [t′] of ∀

x
P [x] as long as t′ <<t t. The induction conclusions without (resp., with) attached

induction hypotheses are base (resp., step) cases of the induction schema.
In the current presentation we will use the multiset of elements as measure values for binary trees.

Checking strict ordering E <t E
′ between two expressions E,E′ representing trees reduces to check strict

inclusion between the multisets of symbols (constants and variables except ε) occurring in the expressions.
This is because the expressions representing trees contain only functions which preserve the number of
elements i.e., the elements of the returned tree, on the one hand, and from the arguments, on the other
hand, build equivalent multisets (Concat, Insert, Merge).

In our experiments, we use the following induction principles for proving P as unary predicates over
binary trees.

Induction-1:
(
P [ε]

∧
∀

n,L,R

(
(P [L] ∧ P [R]) =⇒ P [〈L, n,R〉]

))
=⇒ ∀

X
P [X]

This is the standard structural induction based on the definition of trees.
The ‘covering’ property of the two induction conclusions P [ε] and P [〈L, n,R〉] is satisfied since any

binary tree is either ε or of the form 〈L, n,R〉. P [L] and P [R] are induction hypotheses attached to
P [〈L, n,R〉], and it is very easy to see that their terms are smaller than the one of the induction conclusion.

In order to synthesize the sorting algorithm as a function F [X], we consider the output condition
O[X,T ] :

(
X ≈ T∧IsSorted[T ]

)
. Induction-1 can be applied to prove the synthesis conjecture ∀

X
∃
T
O[X,T ]

by taking P [X] as ∃
T
O[X,T ].

The proof is structured as follows:
Base case: We prove ∃

T
O[ε, T ]. If the proof succeeds to find a ground witness =1 such that O[ε,=1],

then we know that F [ε] = =1.
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Step case: For arbitrary but fixed n, L0 and R0 (new constants), we prove ∃
T
O[〈L0, n,R0〉, T ]. We

assume as induction hypotheses ∃
T
O[L0, T ] and ∃

T
O[R0, T ], which are Skolemized by introducing two new

constants T1 and T2 for each existential T. The existential quantified variable from the goal becomes the
meta–variable T ∗ (for which we need to find a substitution term). If the proof succeeds to find a witness
T ∗ = =2[n,L0, R0, T1, T2] (term depending on n,L0, R0, T1 and T2), then we know that F [〈L, n,R〉] =
=2[n,L,R, F [L], F [R]].15

The extracted algorithm from the proof is expressed as:

∀
n,L,R

(
F [ε] = =1

F [〈L, n,R〉] = =2[n,L,R, F [L], F [R]]

)
This function definition expressed as two equalities can be easily transformed into a functional program

by using appropriate decomposition functions which extract the root, the left branch, and the right branch
from the tree.

The theoretical basis and the correctness of this proof-based synthesis scheme is well known – see for
instance [Bundy et al., 2006].

For the following induction principles, the proof and the algorithm extraction are similar to
Induction-1, therefore we give only the structure of the extracted algorithm for each induction principle.

Induction-2:(
P [ε]

∧
∀
n,L

(
P [L] =⇒ P [〈L, n, ε〉]

)∧
∀

n,L,R

(
(P [〈L, n, ε〉] ∧ P [R]) =⇒ P [〈L, n,R〉]

))
=⇒ ∀

X
P [X]

This induction principle was suggested by the experiments, according to the induction schema dis-
covery explained in Subsection 3.2.4, and illustrated at the end of that subsection.

The extracted algorithm is:

∀
n,L,R

 F [ε] = =1

F [〈L, n, ε] = =3[n,L, F [L]]
F [〈L, n,R〉] = =5[n,L,R, F [〈L, n, ε〉], F [R]]


Induction-3:(

P [ε]
∧
∀
n
(P [〈ε, n, ε〉])

∧
∀
n,L

(P [L] =⇒ P [〈L, n, ε〉])
∧
∀
n,R

(P [R] =⇒ P [〈ε, n,R〉])
∧

∀
n,L,R

((P [L] ∧ P [R]) =⇒ P [〈L, n,R〉])
)

=⇒ ∀
X
P [X]

This is an expression of Induction-1 which makes explicit the cases of empty subtrees, also discovered
experimentally using the induction schema discovery. L and R are assumed to be non-empty trees.
In order to encode this conveniently during the proof, they are replaced by 〈A, a,B〉 and 〈C, b,D〉,
respectively.

The extracted algorithm is:

∀
n,a,b,A,B,C,D


F [ε] = =1

F [〈ε, n, ε〉] = =2[n]
F [〈〈A, a,B〉, n, ε〉] = =3[n,A, a,B, F [〈A, a,B〉]]
F [〈ε, n, 〈C, b,D〉〉〉] = =4[n,C, b,D, F [〈C, b,D〉]]
F [〈〈A, a,B〉, n, 〈C, b,D〉〉] = =5[n, a, b, A,B,C,D,

F [〈A, a,B〉], F [〈C, b,D〉]]


3.2.4 Refining induction by lazy reasoning
As shown in the general introduction, sometimes the concrete induction principle which is used for proving
does not succeed. In this case, one needs to think about a more powerful principle and reiterate the proof

15T1 and T2 are replaced by F [L] and F [R], respectively.
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attempt. We present here a technique able to find automatically and in a lazy way, during the proof,
new term-based Noetherian induction principles which are necessary.

The technique helps to prove a formula ∀
x
Φ[x] by lazy induction, where x is a vector of variables.

Firstly, we start to instantiate variables from x, then transform the resulted instances by using deductive
rules. The instantiation and deduction steps can be intertwined up to the moment when instances of
Φ[x] are encountered. Finally, an instance Φ[t] can be used as induction hypothesis for the induction case
Φ[x]θ if t <<t xθ, where the vectors t and xθ are represented as multisets of terms. This is a particular
case of the formula-based Noetherian induction method presented in Chapter 2 for which the cyclic proofs
have only 1-cycles and the IHs are instances of the root formula.

The cumulative substitution θ is built from the proof. To illustrate its computation, we represent the
proof derivation as a tree for which the root node is labeled by Φ[x]. Two kinds of non-root nodes are
distinguished: instantiation nodes and deductive nodes. The instantiation nodes are direct successors of
a node N labeled by a formula with free variables for which some of them are instantiated with terms
whose variables are fresh. The set of instance formulas labeling all the instantiation nodes should cover
the formula labeling N and can be built from the sort of the instantiated variables. For example, if N
is labeled by the formula Φ[X], a covering set of instance formulas is {Φ{X 7→ ε},Φ{X 7→ 〈L, n,R〉}},
where L, n, R are fresh variables. In the graphical representation of a proof tree, the relation between
a node and its direct instantiation nodes are represented by downward solid arrows annotated by the
corresponding instantiation substitution. The deductive nodes are direct successors of nodes to which
a deductive operation has been applied. These relations are graphically represented as curly arrows
annotated by identity substitutions. The cumulative substitution is the composition of the substitutions
annotating the nodes from the path leading from the root node, in our case the node labeled by Φ[x], to
the node labeled by the induction hypothesis, in our case Φ[t]. This scenario can be illustrated as below:

Φ[x]

θk1

��

θ1

��
Φ[x]θk1 . . . Φ[x]θ1

θ2

��
Ψ[y]

θn−1... ��
θk3

�� . . . Ψ[y]θn−1

θn
��

Φ[t]

ll

In our scenario, Φ[t] is an instance of Φ[x]. In addition, it can be used as an induction hypothesis if t
is smaller than xθ1θ2 · · · θn−1θn.

Example 10 By lazy induction, one can benefit of more effective induction reasoning, involving only
useful induction hypotheses.

Let us assume the following scenario for processing a formula Φ[X], where X is a binary tree:

Φ[X]

{X 7→ε}

��

{X 7→〈L,n,R〉}

  
Φ[ε] Φ[〈L, n,R〉]

θid

��
Φ[R]

qq
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Here, θid is the identity substitution {L 7→ L;n 7→ n;R 7→ R}. Φ[R] can be used as induction
hypothesis in the proof of the case Φ[〈L, n,R〉] because R has a number of elements smaller than 〈L, n,R〉.

The corresponding explicit induction principle is:(
P [ε]

∧
∀

n,L,R

(
P [R]) =⇒ P [〈L, n,R〉]

))
=⇒ ∀

X
P [X]

Example 11 More specific induction schemas can also be generated by lazy induction, as shown in the
following scenario:

Φ[X]

{X 7→ε}

||

{X 7→〈L,n,R〉}

%%
Φ[ε] Φ[〈L, n,R〉]

{R 7→〈...〉}yy

{R 7→ε}

��

θid //

θid

uu

Φ[〈L, n, ε〉]

ss

Φ[R]

EE

Φ[〈L, n, 〈. . .〉〉] Φ[〈L, n, ε〉]
θid

''
Φ[L]

uu

The corresponding explicit induction principle is:(
P [ε]

∧
∀
n,L

(
P [L] =⇒ P [〈L, n, ε〉]

)∧
∀

n,L,R

(
(P [〈L, n, ε〉] ∧ P [R]) =⇒ P [〈L, n,R〉]

))
=⇒ ∀

X
P [X]

3.3 Conclusions
We have defined a set of conjectures that can be proved using cyclic induction by following a similar
scenario and based on the variable instantiation schema of the Peano induction. We have shown how to
implement the cyclic induction reasoning in Coq, by means of external libraries and functional schemas
issued from the definition of new function symbols. The associated explicit induction principles, auto-
matically generated by Coq, are more complex than the Peano induction principle. On the other hand,
all but three conjectures have also been proved by Peano induction but their proofs are ad hoc and do not
follow the cyclic proof script. Indeed, they are very different in terms of scenario, length and difficulty.

The procedure for generating explicit induction principles from cyclic induction reasoning was success-
fully used for the synthesis of algorithms for binary trees. It led to discovering new recursion structures
that are not given from the beginning by the induction principle, new induction schemas and new algo-
rithms with nested recursion.
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SPIKE, an induction-based theorem prover built to reason on conditional theories with equality, is one
of the few formal tools able to perform automatically mutual and lazy induction. Designed at the begin-
ning of 1990s, it has been successfully used in many non-trivial applications and served as a prototype for
different proof experiments and extensions. The first paper introducing SPIKE is [Bouhoula et al., 1992],
published shortly after the tool was created. The goal of this chapter is to highlight and bring together
in one spot the major changes supported by SPIKE since then.

Context. Historically, SPIKE was built during a period when several formula-based Noethe-
rian induction methods issued from Musser’s completion-based inductionless induction (or proof-by-
consistency) technique [Musser, 1980] have been designed. Some of them have been implemented
into theorem provers, for example, RRL [Kapur and Zhang, 1988] integrated the test-set induction
method [Kapur et al., 1986], and Focus [Bronsard and Reddy, 1991] a generalization of the term-rewriting
induction [Bronsard et al., 1994] for conditional theories. Inspired by the rewriting techniques previously
tested with the ORME system [Lescanne, 1990], SPIKE [Bouhoula et al., 1992] implemented a different
induction method [Kounalis and Rusinowitch, 1990b, Bouhoula et al., 1995] that combines features from
explicit induction and inductive completion techniques.

As time went by, SPIKE was continuously considered among the ‘active’ automatic induction-
based provers; it mainly served as a prototype for testing several extensions of conditional theories
and induction-based reasoning techniques that led to many successful proof experiments on non-trivial
applications. In this chapter, we highlight the major changes supported by SPIKE since the pub-
lication of [Bouhoula et al., 1992], which gave rise to its current version. The source code, exam-
ples of specification files, and papers related to different applications and extensions are available on-
line [The SPIKE development team, 2020].

The content of this chapter is based on the paper [Stratulat, 2020]. In the rest of the chapter, we set
the theoretical backgrounds of the reasoning by induction on equational clauses, then we introduce the
inference system of SPIKE and the layout of a standard specification file. In the end, we show how to
prove conjectures and interact with the tool.
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4.1 The inference system and proof strategies

In this section, we first present the general setting for proving by implicit induction, then introduce the
inference system of SPIKE followed by the layout of specification files. Finally, we present the different
ways the user can interact with the tool.

4.1.1 The ‘reasoning by implicit induction’ setting

SPIKE implements an instance of the formula-based Noetherian induction principle applied on a Noethe-
rian poset of equational clauses (or just clauses). Several clauses can be simultaneously tested to verify
whether they are consequences of a given set of axioms Ax written as conditional equalities. SPIKE can
reason on sorted and constructor-based specifications that should satisfy some properties, like the ground
convergence and (strongly sufficient) completeness [Bouhoula, 1997]. These constraints guarantee the
existence of the initial model for Ax. Formally, assuming thatM is the initial model of Ax, we denote
by Φ |=M φ the fact that the clause φ is an initialM-consequence (or just consequence) of a set of con-
ditional equalities Φ. φ is initiallyM-valid (or just valid) and denoted by |=M φ iff it is a consequence
of Ax.

The induction proof method used by SPIKE, called implicit induction and detailed in Chapter 1,
is based on reductive techniques as rewriting. By implementing the formula-based Noetherian in-
duction principle, it can naturally perform lazy and mutual induction steps. The mutual induction
feature helped SPIKE to prove the Gilbreath Card trick problem [Huet, 1991], firstly with 5 lem-
mas [Bouhoula and Rusinowitch, 1993] then with only 2 lemmas [Bouhoula and Rusinowitch, 1995],
while other provers using different proof techniques succeeded with significantly more lemmas
(see [Bouhoula and Rusinowitch, 1995] for a comparison).

The ground convergence and completeness properties of a specification can be checked more eas-
ily, by using syntactic criteria, if the specification is many sorted and the set of function sym-
bols is split into constructor and defined function symbols. SPIKE was initially designed to deal
with free constructors such that there is no equality relation between any two different construc-
tor symbols. Several extensions have been introduced in SPIKE since [Bouhoula et al., 1992] in or-
der to deal with: i) non-free constructors [Bouhoula and Jouannaud, 2001], ii) parameterized specifica-
tions [Bouhoula, 1994b, Bouhoula, 1996], iii) associative-commutative theories [Berregeb et al., 1996], iv)
observational proofs [Berregeb et al., 1998, Bouhoula and Rusinowitch, 2002], and v) simultaneous check
of the completeness and ground convergence properties of a specification [Bouhoula, 2009]. Most of them
led to distinct proof systems that are no longer maintained in spite of their theoretical and practical
interests.

4.1.2 The inference system

In [Bouhoula et al., 1992], the inference rules and the proof strategy implementing the implicit induction
method were built-in. Each rule is a transition between pairs (E,H), where E are conjectures and H
are premises consisting of previously processed conjectures that do not have minimal counterexamples,
i.e., minimal ground clauses that are not valid. By applying a rule, a conjecture from the current proof
state is replaced by a potentially empty set of new conjectures, and may be added as a premise in order
to participate to further inference steps. Proof derivations are built by successively applying inference
rules starting from an initial state. They may finish with i) success, if they end with an empty set of
conjectures, ii) error, if a counterexample is detected, and iii) failure, if none of the previous cases is
encountered and no rule can be applied. A proof is a successful derivation that starts with an empty set
of premises.

Later on, different proof needs led to hardcode into the system several variants of a same rule.
More flexibility has been achieved with the addition of a strategy language [Alouini and Bouhoula, 1997]
allowing to define new proof strategies by the user. It has been combined later with a methodology for
building modular inference rules using contextual cover sets (CCSs), detailed later in Section 8.1. The core
of the methodology is the abstract inference system A, defined and proved sound in [Stratulat, 2001]. A is
similar to the inference system I from Chapter 1 and is made of two rules: AddPremise and Simplify,

46



4.1. The inference system and proof strategies

defined as:

AddPremise: (E ∪ {φ}, H) `A (E ∪ Φ, H ∪ {φ}),
if, for any counterexample φτ of φ, there is a counterexample ψ in
i) E ∪ Φ such that ψ < φτ , or
ii) H such that ψ ≤ φτ .

Simplify: (E ∪ {φ}, H) `A (E ∪ Φ, H),
if, for any counterexample φτ of φ, there is a counterexample ψ in
E ∪ Φ ∪H such that ψ ≤ φτ .

Each inference rule replaces a conjecture φ with a potentially empty set of new conjectures Φ. Φ is
built in two steps as a CCS of φ, thanks to the compositional properties of CCSs. Firstly, an intermediate
CCS of φ is built, then for each intermediate clause another CCS is built and stored as new conjectures.
The set of IHs allowed by a rule to be used when building a CCS is referred to as context. AddPremise
adds φ as a premise and Simplify allows bigger contexts. It has been shown in [Stratulat, 2001] that i)
the abstract inference system is sound, i.e., one can conclude from a proof that its initial conjectures are
valid, and ii) the inference rules define the biggest contexts compared to similar abstract rules proposed
in the literature. For practical reasons, the abstract system was extended with a third rule, Delete,
that is a particular case of Simplify when Φ is empty.

Any SPIKE inference rule instantiates one of the abstract rules by implementing its elementary CCSs,
i.e. the CCSs that are not built using composition operations, by the means of reasoning modules. A
reasoning module can produce a CCS with a particular reasoning technique using in terms of IHs clauses
from the context defined by the instantiated abstract rule. The main reasoning techniques are based on
rewriting, case analysis and variable instantiations.

We give as example the definition of a rewriting-based inference operation implemented as an instance
of Simplify:

rewriting_rule = simplify(id,[rewriting(rewrite,L|R|C,*)]);

In the first step, the identity reasoning module id builds {φ} as the intermediate CCS for φ. The
application of the rule succeeds if, in the second step, the rewriting module succeeds to rewrite once,
due to the rewrite argument and at any position (*), the only clause φ of {φ} with conditional rewrite
rules from the lemmas (L), axioms (R) and current context (C). The resulting clause is the unique clause
of Φ.

Some of the reasoning techniques have been changed since [Bouhoula et al., 1992]. For exam-
ple, the technique for instantiating variables with elements of a test-set, based on the depth of the
lhs of the axioms [Bouhoula and Rusinowitch, 1995], was replaced by a narrowing technique involving
only the axioms defining the head symbol of some (sub)term including the variables to be instanti-
ated [Barthe and Stratulat, 2003].

New reasoning techniques have been added to deal with non-trivial applications. The im-
plementation of a combination between a decision procedure for linear arithmetic and a congru-
ence closure algorithm [Stratulat, 2000b, Armando et al., 2002] allowed to validate the MJRTY algo-
rithm [Boyer and Moore, 1991] using a lemma proposed by N. Shankar (according to [Howe, 1993]); also,
more than 60% of the conjectures required to certify the conformity algorithm for a telecommunica-
tion protocol [Rusinowitch et al., 2003] have been automatically proved. This implementation, as well as
the ‘black-box’ integration schema of the Z3 [De Moura and Bjørner, 2008] SMT solver as a reasoning
module, are described in [Stratulat, 2014]. SPIKE also includes several decision procedures for prov-
ing inductive theorems without induction reasoning [Aoto and Stratulat, 2014]. They help to decide the
inductive validity of equations involving natural numbers and lists.

The validation of the JavaCard platform [Barthe and Stratulat, 2003], detailed in Chapter 5, was
the most challenging case study ever experienced by SPIKE. The inference system has been adapted to
manage variables of parameterized sorts as well as existential variables. New inference rules have been
designed to better handle the information from the conditional part of (conditional) conjectures, like i)
the auto simplification rule in order to rewrite with an equality condition other parts of the conjecture,
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and ii) the augmentation rule which adds new conditions issued from the conclusion of a conditional
equality given as lemma if the conditions of the lemma are proved from the conditions of the conjecture.
The efficiency of the implementation has been improved for dealing with specifications counting more
than 400 defined function symbols and 2200 axioms, for example by recording the failure context at the
conjecture level in order to avoid useless computation.

As shown in [Bronsard et al., 1994], the implicit induction method is based on a unique induction
ordering, globally defined over the set of clauses derived during a proof. It is implemented by reductive
inference systems such that, at the ground level, the new conjectures from any proof step are smaller than
(and sometimes equal to) the replaced conjecture. The reductive techniques, as rewriting, introduce new
ordering constraints to be satisfied by the specification as well as the conjectures from the proof derivation.
The induction ordering is the multiset extension of the mpo ordering [Baader and Nipkow, 1998] over
terms using a precedence over the function symbols provided by the user. The mpo ordering also serves
to orient the axioms into rewrite rules. Since some reasoning techniques, like the instantiation of variables
from the current conjecture, require the reduction of the instances by rewriting, SPIKE warns the user
if the mpo ordering built from the input precedence cannot orient the axioms into rewrite rules. If no
precedence is provided by the user, SPIKE analyses the axioms and tries to infer a successful precedence.

The inference system of SPIKE has been extended to implement for the first time reductive-free cyclic
proofs [Stratulat, 2012], also described in Chapter 2, by keeping the best features of explicit and implicit
induction reasoning. To recall, a cycle consists of a circular linked list of proof derivation chunks, called
history chunks. Each link symbolises the application of an instance of the head conjecture from a history
chunk as IH in the proof of the conjecture ending the previous history chunk in the list. Following the
DRaCuLa proof strategy, the cycle can discharge its linking IHs by checking ordering constraints involving
only instances of the conjectures starting the history chunks. Therefore, the cyclic induction reasoning
allows to use non-reductive proof techniques along history chunks and axioms not orientable into rewrite
rules as long as the ordering constraints are satisfied.

A useful property for an inference system is the refutational soundness, which guarantees that, when-
ever a counterexample is detected at the current step, the initial conjectures are refuted. Very few
inference rules implemented by SPIKE may add new counterexamples during the proof derivation, e.g.,
by the generalisation of existential into universal variables [Barthe and Stratulat, 2003]. By attaching his-
tory information to each conjecture, the detected counterexamples can lead to particular ground instances
of the initial conjectures that can be further checked for validity.

The refutational completeness is another useful property, satisfied by previous inference sys-
tems [Bouhoula et al., 1995, Bouhoula, 1997]. Since the addition of a strategy language, this property
is no longer guaranteed because the fairness of the inference system, forbidding persistent conjectures
along its derivations, may be broken. However, the user still can use some built-in strategies known to be
refutationally complete. A classical proof strategy mainly privileges the inference rules that are instances
of Delete, then Simplify, and finally AddPremise. We give as example the definition of the fullind
strategy.

% instances of Delete
tautology_rule = delete(id, [tautology]);
subsumption_rule = delete(id, [subsumption (L|C)]);
negative_clash_rule = delete(id, [negative_clash]);

% instances of Simplify
decomposition_rule = simplify(id, [negative_decomposition]);
total_case_rewriting_rule = simplify(id, [total_case_rewriting

(simplify_strat, R, *)]);

% instances of AddPremise
case_rewriting = add_premise(total_case_rewriting(simplify_strat, R, *),[id]);
split_rule = add_premise(generate,[id]);

% proof strategies
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stra = repeat (try (tautology_rule,
negative_clash_rule, subsumption_rule,
decomposition_rule, rewriting_rule,
print_goals, case_rewriting ));

fullind = (repeat(stra, split_rule),
print_goals_with_history);

start_with: fullind

The reasoning module total case rewriting, implementing the conditional rewriting technique,
was used to build instances of both Simplify and AddPremise. try and repeat take a list of rules
as arguments. try visits each rule in the list until the first succeeds. repeat executes them repeatedly
until no new conjecture is produced or a counterexample is found. The print * rules print the current
state of the proof. start with points to the used strategy.

4.1.3 The layout of a specification file

The structure of a standard SPIKE specification from the file name.spike is:

specification: name
% the axiomatic definition of a many sorted constructor-based specification
sorts: list of sorts
constructors: list of constructor symbols
defined functions: list of defined function symbols
axioms: list of axioms for each defined function symbols
% the induction ordering
greater: list of precedencies over the function symbols
equiv: list of equivalent function symbols
% the completeness and ground convergence properties
properties: list of properties
% the proof strategies
strategy: list of inference rules and proof strategies
% the priority over the head symbols used by the instantiation technique
conjectures: list of conjectures

User interactions. The proofs, generated by the command spike bc name.spike, are highly auto-
matic, the user interactions mainly defining i) the precedence used by the mpo ordering, ii) the inference
rules and the proof strategy, iii) the precedence over the head symbols of the (sub)terms to which the
new instantiation technique can be applied, and iv) lemmas. Once a conjecture has been proved, it can
participate as lemma in the proof of further conjectures listed in the conjectures section.

On the other hand, the generated proofs may involve many non-trivial inference steps for which
the human checking process is tedious and error-prone. We have shown how to i) validate SPIKE
proofs [Stratulat, 2010, Stratulat and Demange, 2011] using the certification environment provided by the
Coq system [The Coq development team, 2020], and ii) define Coq tactics that call directly SPIKE and
transform the generated proofs into Coq scripts [Henaien and Stratulat, 2013], according to a method-
ology that automatically translates into Coq script the proof steps performed by most of its inference
rules.

The user can also interact with SPIKE by the means of i) extra sections, for example use: nats;16

for activating the combination of the decision procedure for linear arithmetic and the congruence closure
procedure, and ii) command-line arguments given to spike bc, as:

-debug: to identify syntactic errors in the specification file,

16To be added just after the specification section.
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-maximal: to print the proof in detail,

-coqc spec and -coqc: to generate the Coq specification, and translate the generated proof into
Coq script, respectively, and

-dracula: to generate cyclic proofs using the DRaCuLa strategy.

Coding languages. SPIKE was initially written in the ‘light’ version of the
Caml [Cousineau and Mauny, 1998] functional language by Adel Bouhoula during his PhD the-
sis [Bouhoula, 1994a]. SPIKE has been completely redesigned for adopting an object-oriented paradigm
along the ∼ 18500 lines of OCaml [Leroy et al., ] code.

Some of the original features are still missing, like the graphical interface and the procedures for
checking the completeness and ground convergence properties.

4.2 A complete example of SPIKE specification
We provide the SPIKE specification of different definitions of ‘even’ and ‘odd’ operations that have been
tested with the DRaCuLa strategy, as described in Chapter 2.

specification: even2odd_unoriented

sorts: nat bool;

constructors :

0 : -> nat;
S_ : nat -> nat;
True : bool;
False: bool;

defined functions:

even1_ : nat -> bool;
odd1_ : nat -> bool;
even_ : nat -> bool;
odd_ : nat -> bool;
plus__ : nat nat -> nat;

axioms:

plus(0, x) = x;
plus(S(x), y) = S(plus(x,y));

even(0) = True;
even(S(0)) = False;
even(S(S(x))) = even1(plus(S(S(x)),0)); % not orientable

even1(0) = True;
even1(S(0)) = False;
odd(x) = False => even1(S(S(x))) = even(x);
odd(x) = True => even1(S(S(x))) = False;

odd(0) = False;
odd(S(0)) = True;
odd(S(S(x))) = odd1(plus(S(S(x)),0)); % not orientable

odd1(0) = False;
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odd1(S(0)) = True;
even(x) = True => odd1(S(S(x))) = odd(x);
even(x) = False => odd1(S(S(x))) = True;

greater:

plus : S 0;
even : True False S 0 plus;
even1: True False;
odd : True False S plus;
odd1 : True False;

equiv: even even1 odd odd1;
properties:

system_is_sufficiently_complete ;
system_is_strongly_sufficiently_complete ;
system_is_ground_convergent ;

strategy:

% instances of Delete
tautology_rule = delete(id, [tautology]);
subsumption_rule =

delete(id, [subsumption (L|C)]);
negative_clash_rule =

delete(id, [negative_clash]);

% instances of Simplify
decomposition_rule =

simplify(id, [negative_decomposition]);
rewriting_rule =

simplify(id,[rewriting(rewrite, L|R|C, *)]);
total_case_rewriting_rule =

simplify(id, [total_case_rewriting (
simplify_strat, R, *)]);

% instances of AddPremise
case_rewriting =

add_premise(total_case_rewriting(
simplify_strat, R, *),[id]);

split_rule = add_premise(generate,[id]);

% proof strategies
stra = repeat (try (tautology_rule,

negative_clash_rule,
subsumption_rule,
decomposition_rule,
rewriting_rule,
print_goals,
case_rewriting ));

fullind = (repeat(stra, split_rule),
print_goals_with_history);

start_with: fullind

conjectures:
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plus(x, S(y)) = S(plus(x,y));

conjectures:

even(plus(x,x)) = True;
odd(plus(x,x)) = False;

4.3 Conclusions
We have given an overview of the current version of SPIKE and highlighted the main changes and extensions
since [Bouhoula et al., 1992]. Additional information about SPIKE and its applications can be found on the
website [The SPIKE development team, 2020].
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The bytecode verifier (BCV), which performs a static analysis to reject potentially insecure programs, is a
key security function of the Java(Card) platform. Over the last few years there have been numerous projects
to prove formally the correctness of bytecode verification, but relatively little effort has been made to provide
methodologies, techniques and tools that help such formalisations. [Barthe et al., 2001b, Barthe et al., 2002b]
developed a methodology and a specification environment featuring a neutral mathematical language based on
conditional rewriting, that considerably reduce the cost of specifying virtual machines.

In this chapter, based on [Barthe and Stratulat, 2003], we show that such a neutral mathematical language
based on conditional rewriting is also beneficial for performing automatic verifications on the specifications, and
illustrate in particular how implicit induction techniques can be used for the validation of the Java(Card) Platform.
More precisely, we report on the use of SPIKE, presented in Chapter 4, to establish the correctness of the BCV.
The results are encouraging, as many of the intermediate lemmas required to prove the BCV correct can be proved
with SPIKE.

Settings. Virtual machines, such as the Java(Card) Virtual Machine, provide a means to ensure security of
mobile code, because the virtual machine controls the interaction between the applet and its environment and
hence reduces the risk of malicious applets performing a security attack. Furthermore, such architectures rely on
several mechanisms, known as security functions. A crucial such security function of the Java(Card) architecture
is the bytecode verifier which performs a static analysis on programs and rejects potentially insecure programs.

Over the last few years there have been numerous projects to specify such virtual machines and their bytecode
verifiers, and to prove the correctness of bytecode verification. While several projects have been very successful in
their work, such endeavours are labour-intensive and suffer from the lack of adequate tool support, see the related
works from Section 5.4. Our line of work is precisely to develop methodologies, techniques and tools that reduce
the cost of developing and maintaining such formalisations.
CertiCartes In early work [Barthe et al., 2001b, Barthe et al., 2002b], we have developed a robust methodology

to validate bytecode verifiers. The methodology consists in defining three virtual machines:

• a reference, so-called defensive, virtual machine where values are tagged by their type and where
typing information is verified at run-time;
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• an abstract virtual machine that manipulates types and that is used for bytecode verification;

• a “standard”, so-called offensive, virtual machine, where values are untyped, and which relies on
successful bytecode verification to eliminate type verification at run-time.

The advantages of our methodology is three-fold:

1. the offensive and abstract virtual machines can be derived from the defensive virtual machine using
abstraction techniques;

2. the correctness of bytecode verification is now crisply stated as: “the offensive and defensive virtual
machines coincide on those programs that pass bytecode verification”;

3. the correctness of bytecode verification follows from the correctness of the abstractions of the de-
fensive virtual machine into an offensive and an abstract virtual machine respectively, and from a
generic development that establishes the correctness of the derivation of the bytecode verifier from
the abstract virtual machine—the development is presented in [Nipkow, 2001] and further refined in
[Barthe and Dufay, 2003, Klein, 2003].

Jakarta In previous work [Barthe et al., 2002a, Barthe et al., 2001a], we argue that a neutral mathematical lan-
guage is beneficial for performing automatic transformations on the specifications. Further, we introduce
the Jakarta Specification Language (JSL), a simple typed specification language based on conditional rewrit-
ing, and the Jakarta Transformation Kit (JTK), an abstraction engine which constructs an offensive and
an abstract virtual machine from the defensive virtual machine. The results with the JTK are encouraging,
as it automates to a large extent the derivation of the offensive and abstract virtual machine; indeed, user
interaction is limited to abstraction scripts that contain information on how the abstractions are to be
constructed, and that are typically 10 times shorter than the latter.

Structure of the chapter. The chapter has four sections. Section 5.1 provides the necessary background on
CertiCartes and introduces the problem to be addressed. Section 5.2 describes the main improvements that were
implemented in SPIKE to handle the specification and validation of virtual machines. In Section 5.3, we turn
to the application of SPIKE for proving the cross-validation of virtual machines. Section 5.4 discusses about
related works.

5.1 A primer on CertiCartes
CertiCartes is an in-depth feasibility study in the formal verification, using the Coq proof assistant
[The Coq development team, 2020], of the JavaCard Platform—recall that JavaCard is a dialect of Java tailored
towards programming multi-application smartcards. In a nutshell, CertiCartes contains formal specifications of
(one-step execution of) a defensive, an abstract and an offensive JavaCard Virtual Machine (JCVM) and of the
BCV, and a proof that the defensive and offensive VMs coincide on those programs that pass bytecode verification.

Virtual Machines In order to formalize the semantics of the virtual machines:

• we model programs as a triple consisting of a list of classes, a list of interfaces, and a list of methods.
Classes, interfaces and methods are represented likewise as appropriate tuples;

• we define for each machine a notion of state: dstate which builds upon typed values for the defensive
machine, astate which takes types as values for the abstract machine, and ostate which builds upon
untyped values for the offensive machine. Further, we define an associated notion of return states: drstate
for the defensive machine, arstate for the abstract machine, and orstate for the offensive machine, that
extends states with a tag to account for normal/abnormal termination, and in the case of the abstract
machine returns lists of states to account for non-determinism;

• we model the semantics of each JavaCard bytecode b as a function ?exec_b: ?state→ r?state, where
? ranges over d, a and o—note that in our formalisation, the JCVM instruction set is factorized into 45
generic instructions, as many instructions only differ by the type of their arguments, and can be factorized
using a polymorphic instruction. Typically, the function ?exec_b extracts values from the state, performs
type verification on these values, and extends/updates the state with the results of executing the bytecode;

• we model one-step execution as a function ?exec: ?state→r?state which inspects the state to extract
the JavaCard bytecode b to be executed and then calls the corresponding function ?exec_b.

In order to prove the correctness of the BCV, we must prove three crucial properties about virtual machines:
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Figure 5.1: Commutative diagram of defensive and offensive execution.
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Figure 5.2: Commutative diagram of defensive and abstract execution.

• CDO: the offensive abstract virtual machine is a sound abstraction of the defensive virtual machine, as
illustrated by the commuting (up to the absence of typing error in the defensive execution) diagram in
Figure 5.1, where s2os is the function mapping states to offensive states (by omitting types from values),
and rs2ors denotes its lifting to return states;

• CDA: the abstract virtual machine is a sound abstraction of the defensive virtual machine, as illustrated
by the commuting (up to subtyping, as indicated by the � relation in the right arrow, and under suitable
conditions, e.g. that execution does not raise an exception and keeps in the same frame) diagram in
Figure 5.2, where s2as is the function mapping states to abstract states (by projecting values to types),
and rs2ars denotes its lifting to return states;

• MON: the abstract virtual machine is monotonic w.r.t. the order induced by the inheritance relations on
classes and interfaces.

For each of the properties considered, the proof proceeds by a case analysis on the bytecode to be executed, and
then by an analysis of the possible outcomes of execution.

Bytecode verifier The BCV is derived by instantiating a dataflow analyser with the abstract JCVM, and
its correctness is derived from CDO, CDA and MON, using a generic (i.e. independent from the specifics of the
JCVM) proof that justifies the dataflow analysis and the compositional, method-by-method, algorithm underlying
bytecode verification, see [Barthe and Dufay, 2003, Klein and Nipkow, 2003, Nipkow, 2001].

5.2 Improvements of SPIKE
SPIKE provides an environment to verify clausal formulas in the initial model of many-sorted constructor-based
theories presented by first-order conditional rules, and hence seems to be a good candidate for proving CDA, CDO
and MON. Nevertheless, the standard distribution of SPIKE could not be used, since its specification language
is too restricted, and its proof engine is not sufficiently optimized. Below we report on a number of improvements
that were undertaken in order to apply SPIKE to our problem.

5.2.1 At the specification language
Parameterized Specifications The JavaCard VMs specifications are based on an important number of
parameterized datatypes and functions. In particular, polymorphic lists are used intensively in the memory
model: for example the heap is described as a list of objects, and the stack as a list of frames; further, each frame
comes up with an operand stack and a set of local variables, each of which is described as a list of values. However,
such parameterized specifications are not handled by the standard version of SPIKE. In order to perform our case
study, we had to extend the syntax, type checking and inference system of SPIKE to deal with parameterized
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specifications—a similar work is described in detail in [Bouhoula, 1996], but had not been integrated in the
standard version of SPIKE.

Introduction of Existential Variables The axioms of standard SPIKE specifications consist in condi-
tional rewrite rules of the form

l1 = r1, . . . , ln = rn ⇒ g → d

where all variables in conditions and d are required to occur in g. Formally, SPIKE requires that var(d) ⊆ var(g)
and that for 1 ≤ i ≤ n, var(li) ⊆ var(g) and var(ri) ⊆ var(g). However, most functions defining the semantics of the
JCVM fail to meet this requirement, as variables in the ris are fresh. In order to handle the JCVM specifications,
we have enhanced SPIKE with the ability to handle such variables, which we call existential.

Obtaining SPIKE specifications of the JCVMs We have implemented mechanisms that may be used
to compile a large class of Coq specifications to JSL and SPIKE, and that have been used to produce SPIKE
specifications of the JCVMs from CertiCartes.

5.2.2 At the proof engine
We only provide a concise and informal description of the extensions that we have implemented, and briefly
indicate their impact on soundness.

Adaptation of the Inference System

In order to handle the extensions of the specification language, we have modified the inference system, and in
particular the Generate rule, an instance of the abstract rule AddPremise from Chapter 4. Similar to the
ConjSup rule from Chapter 1, it instantiates variables and rewrites with conditional rewrite rules the clause
instances using narrowing techniques. First, the parameterized variables cannot be instantiated by Generate
rules during the proofs. Second, the Generate rule is modified so that SPIKE i) forbids the instantiation
of existential variables, unless all induction variables are tagged as existential; ii) does not put the current
conjecture in the set of premises if its cover set instances are simplified with conditional rewrite rules introducing
existential variables. W.r.t. i), observe that if no special provision were made, no inference rule could be applied
if all induction variables are tagged as existential. In some circumstances however, we may want the proof to
proceed, and so we force such a behavior by generalizing existential variables to universal ones in order to perform
Generate. One drawback of this solution is the loss of refutational soundness, as the new rule potentially
introduces new artificial counterexamples in the derivation by a generalization operation. Nevertheless, the new
rule preserves the soundness of the system. W.r.t. ii), existential variables break the order condition requiring
that the left hand side be greater than the conditions and the right hand side. This implies that if the current
conjecture would contain a counterexample, the new set of conjectures cannot guarantee a smaller one. However,
this condition is crucial for allowing the current conjecture to participate to further inferences [Stratulat, 2001].
In such cases, the transformation of a cover set instance Cσ can be considered as an instance of Simplify rule
from Chapter 4, which in addition (w.r.t. the Generate rule) allows the use of H instances equivalent to Cσ.
Summing up, the resulting system is sound, but not refutationally sound.

Improvements over the Inference System

New Induction Schemas In the standard implementation, Generate produces intermediate instances of
the current conjecture C using cover substitutions that instantiate some of its (induction) variables with elements
of the cover set of their types. Therefore, the number of cover substitutions is exponential w.r.t. number of
induction variables. For real applications such as the cross-validation of the JCVMs, this induction scheme may
quite often generate thousands of cover substitutions. Such cases imply prover performances unacceptably poor.

In order to overcome this problem, we have implemented the following narrowing-based induction scheme,
which leads to a major improvement in terms of performance: assume that there exists a (sub)term t of C whose
head symbol is defined and that unifies with left-hand sides of the axioms defining the head symbol. From the
most general unifier, we can immediately deduce that the cover substitution σ and the axiom that can simplify Cσ.
Therefore, the number of cover substitutions is limited to the number of axioms defining the head symbol, usually
ranged to tens. As explained above, the improved schema is sound because the specification is constructor-based,
complete and strongly complete. The last property guarantees that the disjunction of the conditions related to
instances of axioms having the same left-hand side is valid.

Although of no incidence for our purpose, this scheme is not fit to prove conjectures having different (sub)terms
that share induction variables, as for the associativity of the addition over naturals; it leads to a proof divergence.
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Auto Simplification: (E ∪ {C[s = t]}, H) −−−→
Ax
spike (E ∪ {C ′}, H)

if s >e t and C ′ is the clause C rewritten
with s→ t, excepting the term s of s = t

Congruence Closure: (E ∪ {. . . s = t . . . ∧ t = u ∧ . . .⇒ l}, H) −−−→
Ax
spike (E ∪ {C ′}, H)

where C ′ ≡ . . . s = t . . . ∧ t = u ∧ . . . s = u⇒ l

Augmentation: (E ∪ {cond⇒ l︸ ︷︷ ︸
C

}, H) −−−→
Ax
spike (E ∪ {cond ∧ t⇒ l}, H)

if there exists a clause cond′ ⇒ p of R ∪H�cC ∪ E≺cC
s.t. every literal of cond′ is subsumed by cond

Figure 5.3: New inference rules.

Therefore, we have adapted the following heuristics: recursively, if the (sub)term t shares induction variables with
other (sub)term t′ of C, compute also the cover substitutions and apply the heuristics for t′ as for t. Since the
number of (sub)terms of C is finite, this heuristics terminates. At the end, by the combination of the partial cover
substitutions, it returns a set of cover substitutions such that the resulted instances of C can be simplified at any
position corresponding to the terms treated by the heuristics (like t and t′). In our proofs, the number of cover
substitutions still remains ranged to tens.

New Inference Rules The following inference rules, illustrated in Figure 5.3, have been added in order to
exploit the conditions of conjectures:

1. auto simplification. It allows the rewriting of a conjecture with its negative literals, and allows to eliminate
an existential variable from the rest of a conjecture as soon as it appears in a top position in equalities.
Note that the order >e is an extension of the usual recursive path ordering to existential variables: for
example, an existential variable x is always greater than any term that does not contain x and is not itself
an existential variable;

2. congruence closure. If a conjecture contains as conditions the literals of the form s = t and t = u then
the new literal s = u is added to the conditions. The new literals are built using a completion algorithm
having as input all the negative literals of the current conjecture. The procedure is refined by looking
in priority for new equalities between constructor terms. If the head symbols of the both sides of a new
equality are the same, we can derive new equalities by a decomposition operation, otherwise the clause is
eliminated from the set of conjectures;

3. augmentation. Given a conditional clause, its conclusion can be added to the conditions cond of a
conjecture if the conditions of the clause are discharged by cond [Boyer and Moore, 1988b]. The typical use
of this rule in our applications is when the clause is a non-orientable user-defined lemma.

Additional applicability conditions are put such that each of these inference rules is an instance of the Simplify
rule. Hence the soundness of these rules follows from the soundness of the abstract inference system A from
Chapter 4.

The application strategy of the inference rules is standard, by trying firstly the Simplify rules that do not
add new conjectures, then the other Simplify rules and, finally, the Generate rules.

Implementation Optimisations Another major improvement in terms of execution time is the recording
of the failures of the inference rules application in order to avoid useless computation. Some of the recordings
are performed at the level of clauses (for example, for subsumption), others at the level of terms (for example,
for rewriting). If a rewrite operation with an unconditional rule fails at a given position of a conjecture, the
rule’s identification number is associated to that position such that the rule is avoided in the further rewriting
operations as long as the term containing the position does not change.
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5.3 Applications to JavaCard
In this section, we describe the results of our experiments of using the extended version of SPIKE to prove CDO,
CDA and MON. For each instruction, we have three modules, one for each property CDA, CDO, and MON; this
separation has no other purpose than convenience for carrying our experiments and collecting statistics. Each
module consists of three parts: an algebraic specification, in our case parts of the description of the JCVMs,
a logical theory to be proven, in our case some assumptions about the program and statements of CDA, CDO
and MON, and a strategy that determines the prover’s behavior during the proofs. The modules are available at
https://members.loria.fr/SStratulat/files/verificard.tgz for the Linux distributions.

The module begins with the name of the specification, and follows by declaring the types (or sorts), constructor
symbols, and defined functions of the specification. Then the behavior of defined functions is specified by means
of clauses. The module is completed by fixing a proof strategy, and by declaring of the conjectures to be proven;
note that conjectures are formulated as equational clauses.

5.3.1 CDO
The new version of SPIKE has been used to verify CDO for most instructions (41 out of 45). Figure 5.4 provides
an excerpt of the SPIKE module used to prove CDO for the function CONV, that factors several of the conversion
bytecodes of the JCVM: s2b (short to bytes), s2i (short to integers), i2b (integers to bytes), i2s (integers to short).
Figure 5.1 provides some statistics about this experiment. In the second column, we indicate if the proof has been
already done (yes) or not yet (n.y.). The third column presents the number of lemmas introduced by the user
(and proved previously by SPIKE), while the other columns show respectively the number of Generate rules,
normalization operations with unconditional rules, case rewriting with conditional rules, syntactic subsumption
rules, tautology elimination rules and the execution time. Note that most proofs are automatic, i.e. do not require
users to provide SPIKE with additional lemmas, and done in a reasonable time.

5.3.2 CDA and MON
We are now working on the proofs of CDA and MON, and have proven both properties for around half of
the instructions. These properties are more challenging to prove than CDO, in particular because they rely
on a number of invariants about JavaCard programs and the JCVM memory model. Thus users must provide
appropriate invariants for the proofs to go through; as the formulation of such invariants can only be made during
proofs, the benefits of automation are less clear for CDA and MON.

5.3.3 Assessment
We briefly comment on the effectiveness of the tool, and establish a comparison with our work on CertiCartes.

Automation SPIKE provides a reasonable level of automation, and there is no need to tune the strategy for
each lemma to be proved. The best results are achieved with CDO, which for many bytecodes can be proved
automatically, i.e. without requiring the users to provide intermediate lemmas. As explained above, the level of
automation is lower for CDA and CDO. We detail below two directions for improvement.

Counterexamples SPIKE provides useful feedback to the specifier. By permitting the automatic refutation
of false conjectures, SPIKE highlights, at a relatively low cost, possible problems in the specifications. This is
essential for complex, large-scale formalisations which are bound to contain bugs, at least in their initial stages.

Expressivity SPIKE is expressive enough for specifying the virtual machines, and the properties CDO, CDA
and MON. However it is not expressive enough to prove the correctness of the BCV, see below.

Comparison with CertiCartes CDA, CDO and MON have been proved independently in the Coq proof
assistant. The comparison is without surprise, e.g. SPIKE provides a better level of automation than Coq, but
on the other hand proofs that are not automatic may be harder to go through in SPIKE. Further, Coq is more
expressive than SPIKE, and provides an adequate environment to specify (and prove) some properties of the
JavaCard platform that cannot even be stated in SPIKE—most of the work reported in [Barthe and Dufay, 2003]
cannot be cast in SPIKE.

Directions for improvement We see two directions of work for optimizing the usefulness of SPIKE in the
context of the certification of the JavaCard Platform:

• Automatic generation of intermediate lemmas: for a number of bytecodes, SPIKE requires users to
provide intermediate results for establishing CDO, CDA and MON. Many of such lemmas are of a similar
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specification : CONV

sorts : list type_prim jcvm_state ...

constructors :
Nil: -> (list ’A ); Cons__: ’A (list ’A) -> (list ’A );...

defined functions :
CONV___ : type_prim type_prim jcvm_state -> returned_state;...

axioms :

% cONV :1

stack_f (u1) = Nil =>
cONV (u2, u3, u1) -> abortCode (State_error, u1) ;

% cONV :2

stack_f (u1) = Cons (e2, e3),
extr_from_opstack (u4, opstack(e2)) = Inl (Pair (e5, e6))
=> cONV (u4, u7, u1) -> update_frame
(push_opstack (VPrim (tpz2vp (u7, t_convert (u4, u7, e5))), e6, e2),
u1) ;

% cONV :3

stack_f (u1) = Cons (e2, e3),
extr_from_opstack (u4, opstack (e2)) = Inr (e5)
=> cONV (u4, u6, u1) -> abortCode (e5, u1) ;

strategy : ...

conjectures :

state = Build_jcvm_state( sh, hp, Cons (h, lf)),
res = cONV(n, z0, state) =>
res = abortCode( Type_error, state),
res = abortCode( Signature_error, state),
rs2ors( res) = ocONV (n, z0, s2os(state));

Figure 5.4: An excerpt of a SPIKE specification formalizing the instruction CONV.

59



Chapter 5. Application: Validation of the JavaCard Platform

instruction proved lemmas Generate U. R. C. R. Subsumption Taut. time
ACONST NULL yes 0 0 4 1 0 1 0.5s

ALOAD n.y. 0 0 0 0 0 0 0.0
ARITH yes 33 100 8771 2893 979 2178 8m

ARRAYLENGTH yes 22 23 880 199 105 567 16s
ASTORE n.y. 0 0 0 0 0 0 0.0
ATHROW yes 24 24 2021 29 168 3496 1m42s

CHECKCAST yes 79 88 1531 382 153 4741 1m44s
CONST yes 0 1 24 7 0 7 0.5s
CONV yes 0 94 999 405 12 495 0.54s
DUP yes 0 4 21 3 2 26 0.13s
DUP2 yes 0 4 45 4 4 62 0.25s

GETFIELD yes 24 49 4080 1074 347 4581 1m57s
GETFIELD THIS yes 24 49 4080 1074 347 4581 1m56s
GETSTATIC yes 0 22 313 25 23 543 2.58s

GOTO yes 0 0 4 1 0 1 0.07s
ICMP yes 0 93 283 6 135 156 1.9s

IFNONNULL yes 0 20 85 23 13 54 0.47s
IFNULL yes 0 22 89 15 13 56 0.85s

IF ACMP COND yes 13 38 147 31 48 99 1.3s
IF COND yes 0 46 175 117 97 81 0.4s

IF SCMP COND yes 0 75 288 130 116 163 1.3s
INC yes 0 10 217 29 22 566 1.5s

INSTANCEOF yes 66 72 4173 1838 1203 5388 297m
INVOKEINTERFACE yes 47 53 951 171 261 2026 0.38s
INVOKESPECIAL yes 41 54 633 103 166 1097 13s
INVOKESTATIC yes 8 12 42 7 13 72 0.4s
INVOKEVIRTUAL yes 49 57 891 172 251 1576 31s

JSR yes 0 0 4 1 0 1 0.15s
LOAD yes 0 17 196 25 20 417 1.7s

LOOKUPSWITCH yes 19 33 3434 1208 372 7414 52.4s
NEG yes 2 16 87 38 24 76 1.2s
NEW yes 1 7 26 3 4 33 0.17s

NEWARRAY yes 22 31 4239 435 574 7540 1m07s
NOP yes 0 0 4 1 0 1 0.05s
POP yes 0 6 25 3 3 26 0.1s
POP2 yes 0 9 31 3 3 27 0.1s
PUSH yes 0 1 9 1 0 10 0.4s

PUTFIELD n.y. 0 0 0 0 0 0 0.0
PUTFIELD THIS n.y. 0 0 0 0 0 0 0.0
PUTSTATIC yes 21 57 643 155 124 1096 9s

RET yes 0 6 36 3 4 37 0.14s
RETURN yes 8 11 200 33 2 199 0.92s
STORE yes 0 55 554 139 95 2028 9.8s
SWAP yes 0 13 51 4 5 64 0.3s

TABLESWITCH yes 17 86 13651 10830 1190 4302 15m43

Table 5.1: Statistics for CDO proofs carried on a PC equipped with a 3.06 GHz Pentium processor and
512 Mbytes RAM.
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shape, and could be generated automatically so as to minimize user interactions. One possibility that we
are exploring is to exploit the abstraction script used to generate the offensive/abstract machine from the
defensive one for generating such lemmas;

• Connection with Coq: while SPIKE provides a reasonable level of automation, not all proofs can be
performed automatically. Further, Coq is more expressive than SPIKE, as explained above. In this respect,
it may be beneficial to connect Coq and SPIKE so that Coq users may appeal to SPIKE to discharge some
proof obligations automatically, as is done for example for Coq and Elan [Nguyen et al., 2002]. In particular,
such a connection would allow users to discharge automatically many trivial (sub)cases of CDA and MON,
namely those which do not rely on any invariant. Some preliminary work is presented in Chapter 6.

5.4 Conclusions and related works
Our work is an attempt to apply rewriting techniques to validate security architectures for low-level languages
used in smartcards. There have been a number of other applications of rewriting techniques to security, but
these works focus on different aspects of security, such as network security and cryptographic protocols, see e.g.
[Cervesato et al., 1999, Denker et al., 2000].

Our work is related to existing efforts to provide formal specification and correctness proofs for open platforms,
including those carried by E. Giménez and co-authors at Trusted Logic, by J.-L. Lanet and co-workers at Gemplus
[Casset et al., 2002] (abstract B machines for the JCVM and BCV), by T. Nipkow and co-workers at Munich
[Klein and Nipkow, 2003] (Java, JVM, BCV, and compiler in Isabelle), by J Strother Moore and co-workers at
U. of Texas (JVM and BCV in ACL2)—note that some other works, e.g. [Stärk et al., 2001, Coglio et al., 1998]
provide machine executable semantics, but pencil-and-paper formal proofs. We refer to [Hartel and Moreau, 2001]
for further information, and limit ourselves to notice that most of these specifications implicitly use a restricted
framework, but our work is distinctive by expliciting and taking advantage of this restricted framework.

Closest to our work is the work by A. Gordon and D. Syme [Syme and Gordon, 2002], which aims at automatic
type-safety proofs for low-level languages. They identify a restricted framework in which specifications and
properties can be expressed, and enhance the proof assistant HOL with suitable decision procedures, inspired
from SVC (Stanford Validity Checker), to achieve a high degree of automation. Our methodology, which aims
at validating automatically derived abstractions, seems crisper but we lack grounds for comparison —it would be
interesting to validate, as they do, the .NET virtual machine, for carrying such a comparison.
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Compared to the term-based Noetherian induction instances, the formula-based instances are not directly
supported by the current proof assistants. In this chapter, we present general formal tools for certifying formula-
based Noetherian induction proofs by the Coq proof assistant, then show how to apply them to certify proofs
of conjectures about conditional specifications, built with: i) a reductive rewrite-based induction system, and
ii) a reductive-free cyclic induction system. The generation of reductive proofs and their certification process
can be easily automatised, without requiring additional definitions or proof transformations, but may involve
many ordering constraints to be checked during the certification process. On the other hand, the reductive-free
proofs generate fewer ordering constraints, may involve more general specifications and the certification process is
more effective. However, their proof generation is less automatic and the generated proofs need to be normalised
before being certified. The methodology for certifying reductive-free cyclic induction proofs related to conditional
specifications can be easily adapted to certify any formula-based Noetherian induction reasoning.

In practice, the methodology has been implemented to automatically certify implicit induction proofs generated
by the SPIKE theorem prover as well as reductive-free cyclic proofs built by the same system but in a less automatic
way.

The content of the chapter is based on the papers [Stratulat, 2010, Stratulat and Demange, 2011,
Henaien and Stratulat, 2013, Stratulat, 2017b].
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Structure of the chapter. The chapter is organised in five sections, as follows. The Coq formalisation of the
formula-based Noetherian induction principle and the certification methodology are presented in Section 6.1.
Section 6.2 introduces different implicit induction inference systems. A first attempt to certify the proofs of the
theorems for the P&Q example, given in the General Introduction, is presented. Afterwards, the certification of
the implicit proof of the property on even and odd is explained using a functional programming style. The proofs
of these properties are redone in Section 6.3 using cyclic inference systems and showed that the certification of
the cyclic proof concerning the P&Q example is successful by using a logic programming style. The instructions
for generating implicit and cyclic proofs by the SPIKE prover as well as their conversion into Coq script are
presented in Section 6.4. Section 6.5 concludes.

The full source code, including the used libraries, reasoning systems, specifications and proofs, is pro-
vided as supplementary material at https://members.loria.fr/SStratulat/files/jsc-pas.zip and
on SPIKE’s website https://github.com/sorinica/spike-prover.

6.1 Formalising formula-based Noetherian induction proofs
The Coq formalisation of formula-based Noetherian induction proofs is based on ideas presented
in [Stratulat, 2010, Stratulat and Demange, 2011], initially developed for certifying implicit induction proofs.
Mainly, we associate to each formula a measure value that will help to compare formulas, hence to define the
induction ordering <f . Given a list LF of pairs of the form (φ, µφ) including the formulas to be proved and their
corresponding measure values, the formula-based Noetherian induction principle can be reformulated as follows:

(∀p ∈ LF, (∀p′ ∈ LF, snd(p′) <f snd(p)⇒ fst(p′))⇒ fst(p))⇒ ∀p ∈ E , fst(p),
where the fst (resp., snd) function returns the first (resp., second) projection of a pair.

In Coq, the conditional part of the outermost implication can be formalised as:

Lemma main : ∀ F, In F LF → (∀ F’, In F’ LF → less (snd F’ ) (snd F ) → fst F’ ) → fst F.

We assume that the induction ordering, denoted by less, is well-founded and stable under substitutions. In
the following, less is assumed to implement <f as a multiset extension of an rpo. In this case, the measure value
of a formula can be represented as the multiset of terms occurring in it. Given two pairs (φ1, µφ1) and (φ2, µφ2),
we say that φ1 is smaller than φ2 if less µφ1 µφ2 holds.

The main induction steps for proving the validity of the formula φ from each pair of LF are:

1. the deduction part: choose the (instances of) formulas from LF as IHs that help proving φ;
2. the ordering part: show that the chosen IHs in the deduction part are smaller than φ.

The ordering part can be omitted if the deduction part does not involve induction reasoning. The deduction
part can be performed with different inference systems, as it will be shown in Sections 6.2, 6.3, and 6.4.

The less ordering has to be defined explicitly, for example, using the syntactic representations of terms provided
by the COCCINELLE library [Contejean et al., 2007, Contejean et al., 2010], a Coq library modelling mathe-
matical notions for rewriting such as term algebras and induction orderings, or using the more general CoLoR
library [Blanqui and Koprowski, 2011]. Both libraries can be used independently or combined, but in the subse-
quent examples only COCCINELLE will be used.

6.1.1 Formalising the induction ordering and measure values with COC-
CINELLE

Formalising the induction ordering A COCCINELLE abstract term is recursively defined as:

Inductive term : Set :=
| Var : variable → term
| Term : symbol → list term → term.
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COCCINELLE mutually defines the rpo, denoted by rpo, and its multiset extension rpo mul, together with
other inductive predicates:

Inductive rpo (bb : nat) : term → term → Prop :=
| Subterm : ∀ f l t s, mem equiv s l → rpo eq bb t s → rpo bb t (Term f l)
| Top gt :

∀ f g l l’, prec g f → (∀ s’, mem equiv s’ l’ → rpo bb s’ (Term f l)) →
rpo bb (Term g l’ ) (Term f l)

| Top eq lex :
∀ f g l l’, status f = Lex → status g = Lex → prec eq f g → (length l = length l’ ∨ (length l’ ≤ bb ∧

length l ≤ bb)) → rpo lex bb l’ l →
(∀ s’, mem equiv s’ l’ → rpo bb s’ (Term g l)) →
rpo bb (Term f l’ ) (Term g l)

| Top eq mul :
∀ f g l l’, status f = Mul → status g = Mul → prec eq f g → rpo mul bb l’ l →

rpo bb (Term f l’ ) (Term g l)

with rpo eq (bb : nat) : term → term → Prop :=
| Equiv : ∀ t t’, equiv t t’ → rpo eq bb t t’
| Lt : ∀ s t, rpo bb s t → rpo eq bb s t

with rpo lex (bb : nat) : list term → list term → Prop :=
| List gt : ∀ s t l l’, rpo bb s t → rpo lex bb (s :: l) (t :: l’ )
| List eq : ∀ s s’ l l’, equiv s s’ → rpo lex bb l l’ → rpo lex bb (s :: l) (s’ :: l’ )
| List nil : ∀ s l, rpo lex bb nil (s :: l)

with rpo mul ( bb : nat) : list term → list term → Prop :=
| List mul : ∀ a lg ls lc l l’,

permut0 equiv l’ (ls ++ lc) → permut0 equiv l (a :: lg ++ lc) →
(∀ b, mem equiv b ls → ∃ a’, mem equiv a’ (a :: lg) ∧ rpo bb b a’ ) →
rpo mul bb l’ l.

Both rpo and rpo mul take a natural argument bb representing the maximal number of arguments of a function
and used for proving its termination. equiv (resp., permut0) is the inductive predicate that checks if two terms
are equivalent (resp. two lists of terms are permutable). length (resp., mem) is the usual function computing the
length of a list (resp., whether a term is member of a list of terms).

The definitions of the status, prec and prec eq functions are problem dependent. For the P&Q example, they
(and other intermediary functions) are defined as:

Inductive symb : Set :=
| id zero
| id succ
| id P
| id Q

Definition status (f :symb) :=
match f with
| id zero ⇒ Mul
| id succ ⇒ Mul
| id P ⇒ Mul
| id Q ⇒ Mul

end.
Definition index (f :symb) :=

match f with
| id 0 ⇒ 2
| id succ ⇒ 3
| id P ⇒ 9
| id Q ⇒ 9

end.

Definition prec bool (x y :A) : bool :=
blt nat (index x ) (index y).

Definition prec (x y :A) :=
prec bool x y = true.

Definition prec eq (x y :A) : Prop :=
index x = index y.

The abstract COCCINELLE terms become concrete by defining the inductive set for function symbols (sym-
bol), denoted above by symb. The precedence prec defined over symb is based on a (index) function that associates
a natural value to each function symbol. Two symbols are equivalent if and only if they have the same indexes.
The well-foundedness property of prec can now be formalised as:
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Theorem prec wf: well founded prec.

The ‘stability under substitutions’ and well-foundedness properties of rpo mul are scripted as:

Theorem rpo mul subst : ∀ A B : (list term), ∀ bb:nat, rpo mul bb A B →
∀ σ, rpo mul bb (map (apply subst σ) A) (map (apply subst σ) B).

Theorem wf rpo mul : well founded prec → ∀ bb, well founded (rpo mul bb).

Finally, the less induction ordering is defined as an instance of rpo mul initialising some internal data struc-
tures. For example, the value given as argument to rpo and rpo mul is set to the constant max size (usually a
big natural value):

Notation less := (rpo mul (bb (empty rpo infos max size))).

Formalising the measure values Formulas and their measure values should share variables such that whenever
a formula φ changes by instantiation, its measure value µφ changes accordingly. The pair (φ, µφ) can be represented
as the anonymous function fun x⇒ (φ, µφ), where µφ is the measure of φ formalised as a list of COCCINELLE
terms and x is the vector of universally quantified variables shared between µφ and φ.

The process for converting terms from the LF formulas into COCCINELLE terms can be fully automatised,
as follows:

• for each inductive set representing a type employed in the specification, a new model function translating
its constructor terms can be defined. For example, the translation function defined for nat, the Coq builtin
type for naturals built from the constructors O and S, is:

Fixpoint model n (v : nat): term :=
match v with
| O ⇒ (Term id 0 nil)
| (S x ) ⇒ let r := model n x in

(Term id S (r ::nil))
end.

For non-inductive types, we have to define translation axioms. E.g., the translation axioms for the type T
from the P&Q example, are:

Axiom model nat 0 : model nat zero = (Term id zero nil).
Axiom model nat succ: ∀ (u1 : T ), model nat (succ u1 ) = (Term id succ ((model nat u1)::nil)).

• the COCCINELLE counterpart of any function or predicate symbol f will be denoted by the symbol id f
prefixed by Term. The arguments of id f are given as a Coq list;

• the COCCINELLE counterpart of any variable x of sort s will be the term (model s x).

Example 12 The measure value used for (Q x zero) in the formula-based Noetherian induction proof from Fig-
ure 3 can be represented as the following COCCINELLE term list: (model nat x :: model nat x :: (Term id zero
nil) :: nil), corresponding to the literate translation of the multiset {x, x, zero}.

6.1.2 Proving formulas from LF
The LF list from the main lemma should be adapted to include anonymous functions instead of pairs. The new
LF should have the type of the form:

Definition type LF := argument sort → (Prop × (List.list term)),

where argument sort is the sort written in a curried form of the most general version of the vector of shared
variables allowing to define each anonymous function from LF.

By using the new LF definition, the main lemma becomes:
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Lemma main : ∀ F, In F LF → ∀ u, (∀ F’, In F’ LF → ∀ u′, less (snd (F’ u′)) (snd (F u)) → fst (F’ u′)) → fst (F
u).

All formulas from the LF list can be automatically certified by proving the all true theorem, based on the main
lemma and the general Noetherian induction principle built in Coq:

Theorem all true: ∀ F, In F LF → ∀ u: nat, fst (F u).

As a case study, the methodology will be used in Sections 6.2 and 6.3 for certifying proofs of conjectures about
conditional specifications.

6.2 Certifying implicit induction proofs

6.2.1 Inference systems for implicit induction
We define a minimalistic and concrete implicit induction inference system, denoted by Ibs , able to prove the
conjectures from the P&Q example.

InstNat (I ): (E ∪ {φ〈x〉}, H) `Ibs (E ∪ {φ{x 7→ 0}, φ{x 7→ S(x′)}}, H),
where x′ is a fresh variable.

DelInst (D): (E ∪ {φ}, H) `Ibs (E, H),
if ∃ψ ∈ H ∪Ax and a substitution σ such that φ ≡ ψσ.

RedEq (R): (E ∪ {φ}, H) `Ibs (E ∪
⋃
i{liσ = riσ}, H ∪ {φ}),

if there is an axiom
∧
i li = ri ⇒ l = r and a substitution σ such that φ ≡ (lσ = rσ).

InstNat replaces an equality φ with a natural variable x by two equalities derived from φ by instantiating
φ with 0 and the successor of a fresh natural variable, respectively. DelInst deletes the processed conjecture if
it is an instance of a premise or axiom. Finally, RedEq replaces any unconditional equality that matches the
conclusion of a conditional axiom with the set of the corresponding instances of the conditions of the conditional
axiom. In addition, the processed conjecture is added as premise.

The specification of the predicates P and Q will be done using conditional axioms, built from the translation
of the inductive definitions of the predicates P and Q into the boolean functions p and q, respectively:

p(0) = true (6.1)
p(x) = true ∧ q(x, S(x)) = true⇒ p(S(x)) = true (6.2)

p(x) = false⇒ p(S(x)) = false (6.3)
q(x, S(x)) = false⇒ p(S(x)) = false (6.4)

q(x, 0) = true (6.5)
p(x) = true ∧ q(x, y) = true⇒ q(x, S(y)) = true (6.6)

p(x) = false⇒ q(x, S(y)) = false (6.7)
q(x, y) = false⇒ q(x, S(y)) = false (6.8)

where false and true are the usual boolean constants.

In order to define the ordering < for this example, the measure value of an equality of the form
∧
i li = ri ⇒

l = r is defined as the multiset of terms
⋃
i |li| ∪

⋃
i |ri| ∪ |l| ∪ |r|, where |t| is defined as

• {x, x} if t is of the form p(x),

• {x, x, y} if t is of the form q(x, y),

• {t}, otherwise.
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The ordering used for comparing multisets of terms is the multiset extension of the mpo using the precedence
false <F true <F 0 <F S. It can be noticed that for any conditional axiom defining p and q, of the form∧
i ei ⇒ e, we have that ei < e. This property will be useful for the sound application of the RedEq rule.

The Ibs -proof of the equality q(x, y) = true is:

({q(x, y) = true}, ∅) `IIbs
({q(x, 0) = true, q(x, S(y′)) = true}, ∅) `DIbs
({q(x, S(y′)) = true}, ∅) `RIbs
({p(x) = true, q(x, y′) = true}, {q(x, S(y′)) = true}) `IIbs
({p(0) = true, p(S(x′)) = true, q(x, y′) = true}, {q(x, S(y′)) = true}) `DIbs
({p(S(x′)) = true, q(x, y′) = true}, {q(x, S(y′)) = true}) `RIbs
({p(x′) = true, q(x′, S(x′)) = true, q(x, y′) = true},
{p(S(x′)) = true, q(x, S(y′)) = true}) `DIbs
({p(x′) = true, q(x, y′) = true}, {p(S(x′)) = true, q(x, S(y′)) = true}) `IIbs
({p(0) = true, p(S(x′′)) = true, q(x, y′) = true},
{p(S(x′)) = true, q(x, S(y′)) = true}) `DIbs
({p(S(x′′)) = true, q(x, y′) = true}, {p(S(x′)) = true, q(x, S(y′)) = true}) `DIbs
({q(x, y′) = true}, {p(S(x′)) = true, q(x, S(y′)) = true}) `IIbs
({q(x, 0) = true, q(x, S(y′′)) = true}, {p(S(x′)) = true, q(x, S(y′)) = true}) `DIbs
({q(x, S(y′′)) = true}, {p(S(x′)) = true, q(x, S(y′)) = true}) `DIbs
(∅, {p(S(x′)) = true, q(x, S(y′)) = true})

where the underlined equalities are the processed conjectures from each proof state.

Theorem 12 (soundness of Ibs) The inference system Ibs is sound.

Proof It follows directly from the soundness of the inference system A, presented in Section 4.1.2, if we prove
that each Ibs -rule is the instance of an A-rule.

• InstNat is an instance of Simplify because if the processed conjecture φ〈x〉 has a counterexample then it
should be in the set of new conjectures {φ{x 7→ 0}, φ{x 7→ S(x′)}}

• DelInst is an instance of Simplify because whenever the equality instantiated by the processed conjecture
φ is

– an axiom, then φ has no counterexamples, or

– a premise ψ from the current state, then any counterexample φτ is an instance of ψ.

• RedEq, using the conditional axiom
∧
i li = ri ⇒ l = r for which there is a substitution σ such that the

processed conjecture φ is (lσ = rσ), is an instance of AddPremise. This is because whenever φ has a
counterexample φτ , one of the equalities from the multiset

⋃
i{liστ = riστ} is a counterexample smaller

than φτ(≡ (lστ = rστ)), by the fact that li = ri < l = r, for each i, and the ‘stability under substitutions’
property of <.

�

Thanks to Theorem 12, we can conclude that q(x, y) = true is a consequence of the axioms defining p and q.

6.2.2 A first attempt to certify the proof of q(x, y) = true

A translation of the functions p and q in Coq, using a functional programming style, can be

Fixpoint p (u:nat) : bool :=
match u with
| 0 ⇒ true
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| (S u’ ) ⇒ if andb (p u’ ) (q u’ (S u’ )) then true else false
end
with
q (x y : nat): bool :=
match y with
| 0 ⇒ true
| (S y’ ) ⇒ if andb (p x ) (q x y’ ) then true else false

end.
Unfortunately, Coq is not able to prove automatically the termination of the P and Q functions, yielding

the message Error: Cannot guess decreasing argument of fix. Moreover, specifying user-defined
well-founded orderings for proving that an argument is decreasing is not allowed for mutually recursive functions,
as it is clearly stated by the message Error: Cannot use mutual definition with well-founded
recursion or measure. We will show in Subsection 6.3.3 how to handle this situation using the logic
programming style.

6.2.3 Coq formalizations of implicit induction proofs
In the rest of the section, we will stick to formalize implicit induction proofs that involve equational specifications
convertible into valid Coq script, by using a functional programming style. Let us consider the function symbols
even and odd, recursively defined over naturals, as:

even(0) = true (6.9)
even(S(x)) = odd(x) (6.10)

odd(0) = false (6.11)
odd(S(x)) = even(x) (6.12)

as well as the addition over naturals, denoted by ‘+’ and defined by the axioms:

0 + x = x (6.13) S(x) + y = S(x+ y) (6.14)

The Coq translation of the equational definitions yields functions whose termination can be automatically
checked:

Fixpoint plus (x y : nat): nat :=
match x with
| O ⇒ y
| S x’ ⇒ S (plus x’ y)
end.

Fixpoint even (x : nat): bool :=
match x with
| 0 ⇒ true
| S x’ ⇒ odd x’
end

with odd (x : nat): bool := match x with
| 0 ⇒ false
| S x’ ⇒ even x’
end.

We can go further and try to prove the more complex conjecture

odd(u1 + u2) = true ∧ even(u2 + u3) = true⇒ odd(u1 + u3) = true (6.15)

by using reductive reasoning techniques. Rewriting is a most effective reductive technique for reasoning on
equational specifications.

Let ≺ be a reduction ordering over terms and ρ a set of rewrite rules. A term u can be rewritten to u′ by
the rewrite operation u→ρ u

′ if there are a rewrite rule l = r ∈ ρ and a substitution σ such that lσ is a subterm
of u. The rewrite operation builds u′ from u by replacing the subterm lσ by rσ. By abuse of notation, →ρ is
extended to rewrite conditional equalities: if a conditional equality e′ of the form

∧
i li = ri ⇒ l = r has a term

s ∈
⋃
i{li, ri} ∪ {l, r} that is rewritten to s′ using rewrite rules from ρ then we write e →ρ e

′, where e′ derives
from e by replacing s with s′.

Example 13 The axioms (6.9)-(6.14) can be oriented from left to right using as reduction ordering the mpo
built from the precedence over the function symbols stating that false <F true <F 0 <F S <F + <F even and
even ∼F odd.
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Let ≤ be the well-founded and ‘stable under substitutions’ quasi-ordering over the equalities whose strict
part is the multiset extension ≺≺ of the reduction ordering ≺. The measure value of an equality of the form∧
i li = ri ⇒ l = r is defined for this example as the multiset of terms

⋃
i{li, ri} ∪ {l, r}.

Theorem 13 (reductiveness of rewriting) Let ρ be a set of rewrite rules and e, e′ two equalities. If e→ρ e
′,

then e′ ≺≺ e.

Proof Let us assume that e is of the form
∧
i li = ri ⇒ l = r and that s ∈

⋃
i{li, ri} ∪ {l, r} was rewritten to s′

by a rewrite rule g → d from ρ. Then, there is a substitution σ such that gσ is a subterm of s. By the ‘stability
under substitutions’ property of ≺, we have that dσ ≺ gσ, and by the ‘stability under contexts’ property, s′ ≺ s
holds.

On the other hand, the measure value of
∧
i li = ri ⇒ l = r is the multiset

⋃
i{li, ri}∪{l, r}, s being one of its

elements. By the definition of the multiset extension relation, the replacement of s by s′ in this multiset yields a
smaller multiset, hence e′ ≺≺ e. �

Proofs of the conjecture (6.15) can be built using the inference system Ifs :

GenNat (G): (E ∪ {φ〈x〉}, H) `
I
f
s

(E ∪ {φ1, φ2}, H ∪ {φ}),
where φ{x 7→ 0} →Ax φ1, φ{x 7→ S(x′)} →Ax φ2 and x′ is a fresh variable.

SimpEq (S): (E ∪ {φ}, H) `
I
f
s

(E ∪ Φ, H),
if either i) φ is a tautology; in this case Φ is empty;
or, ii) φ→Ax∪(E∪Φ∪H)≤φ ψ; in this case, Φ is {ψ}.

Subsumption (E): (E ∪ {φ}, H) `
I
f
s

(E, H),
if φ is an instance of an equality from H.

Negative Clash (N ): (E ∪ {φ}, H) `
I
f
s

(E, H),
if φ is a conditional equality and true = false or false = true is a condition of φ.

GenNat firstly instantiates a natural variable of the processed conjecture by 0 and the successor of a fresh
natural variable, then rewrites the two instances with axioms, the results of the rewriting operations being
stored as new conjectures. At the end, the processed conjecture is saved as a new premise. SimpEq either
deletes the tautologies or performs rewrite operations on the processed conjecture with axioms or instances of
equalities from the current state. Subsumption deletes the processed conjecture if it is an instance of a premise.
Finally, Negative Clash deletes the conditional equalities having a false condition of the form true = false or
false = true.

The Ifs -proof of (6.15) is more complex than that of the conjecture q(x, y) = true. For lack of space, the
conditional equalities from this proof will be presented in a more compact way, as atoms. The list of atoms and
their corresponding conditional equalities are:

e 13(u1, u2, u3) : odd(u1 + u2) = true ∧ even(u2 + u3) = true⇒ odd(u1 + u3) = true

e 23(u2, u3) : odd(0 + u2) = true ∧ even(u2 + u3) = true⇒ odd(u3) = true

e 29(u4, u2, u3) : odd(s(u4) + u2) = true ∧ even(u2 + u3) = true⇒
odd(s(u4 + u3)) = true

e 36(u2, u3) : odd(u2) = true ∧ even(u2 + u3) = true⇒ odd(u3) = true

e 49(u4, u2, u3) : even(u4 + u2) = true ∧ even(u2 + u3) = true⇒ even(u4 + u3) = true

e 67(u3) : odd(0) = true ∧ even(u3) = true⇒ odd(u3) = true

e 73(u4, u3) : odd(S(u4)) = true ∧ even(S(u4 + u3)) = true⇒ odd(u3) = true

e 81(u3) : false = true ∧ even(u3) = true⇒ odd(u3) = true

e 91(u4, u3) : even(u4) = true ∧ odd(u4 + u3) = true⇒ odd(u3) = true

e 113(u2, u3) : even(0 + u2) = true ∧ even(u2 + u3) = true⇒ even(u3) = true

e 119(u5, u2, u3) : even(s(u5) + u2) = true ∧ even(u2 + u3) = true⇒
even(s(u5 + u3)) = true

e 138(u2, u3) : even(u2) = true ∧ even(u2 + u3) = true⇒ even(u3) = true
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e 189(u3) : even(0) = true ∧ odd(u3) = true⇒ odd(u3) = true

e 195(u5, u3) : even(S(u5)) = true ∧ odd(S(u5 + u3)) = true⇒ odd(u3) = true

e 237(u3) : even(0) = true ∧ even(u3) = true⇒ even(u3) = true

e 243(u5, u3) : even(S(u5)) = true ∧ even(S(u5 + u3)) = true⇒ even(u3) = true

e 267(u5, u3) : odd(u5) = true ∧ odd(u5 + u3) = true⇒ even(u3) = true

e 275(u3) : false = true ∧ odd(0 + u3) = true⇒ even(u3) = true

e 295(u3) : odd(0) = true ∧ odd(u3) = true⇒ even(u3) = true

e 301(u6, u3) : odd(S(u6)) = true ∧ odd(S(u6 + u3)) = true⇒ even(u3) = true

e 317(u3) : false = true ∧ odd(u3) = true⇒ even(u3) = true

Using the notation with atoms, the proof can be represented as:

({e 13(u1, u2, u3)}, ∅) `GIc
f

({e 23(u2, u3), e 29(u4, u2, u3)}, {e 13(u1, u2, u3)}) `∗SIc
f

({e 36(u2, u3), e 49(u4, u2, u3)}, {e 13(u1, u2, u3)}) `GIc
f

({e 67(u3), e 73(u4, u3), e 49(u4, u2, u3)}, {e 36(u2, u3), e 13(u1, u2, u3)}) `∗S
I
f
s

({e 81(u3), e 91(u4, u3), e 49(u4, u2, u3)}, {e 36(u2, u3), e 13(u1, u2, u3)}) `N
I
f
s

({e 73(u4, u3), e 49(u4, u2, u3)}, {e 36(u2, u3), e 13(u1, u2, u3)}) `S
I
f
s

({e 91(u4, u3), e 49(u4, u2, u3)}, {e 36(u2, u3), e 13(u1, u2, u3)}) `G
I
f
s

({e 91(u4, u3), e 113(u2, u3), e 119(u5, u2, u3)}, {e 49(u4, u2, u3), e 36(u2, u3), e 13(u1, u2, u3)}) `∗S
I
f
s

({e 91(u4, u3), e 138(u2, u3), e 13(u5, u2, u3)}, {e 49(u4, u2, u3), e 36(u2, u3), e 13(u1, u2, u3)}) `E
I
f
s

({e 91(u4, u3), e 138(u2, u3)}, {e 49(u4, u2, u3), e 36(u2, u3), e 13(u1, u2, u3)}) `G
I
f
s

({e 189(u3), e 195(u5, u3), e 138(u2, u3)}, {e 91(u4, u3), e 49(u4, u2, u3), e 36(u2, u3), e 13(u1, u2, u3)}) `S
I
f
s

({e 195(u5, u3), e 138(u2, u3)}, {e 91(u4, u3), e 49(u4, u2, u3), e 36(u2, u3), e 13(u1, u2, u3)}) `∗S
I
f
s

({e 36(u5, u3), e 138(u2, u3)}, {e 91(u4, u3), e 49(u4, u2, u3), e 36(u2, u3), e 13(u1, u2, u3)}) `E
I
f
s

({e 138(u2, u3)}, {e 91(u4, u3), e 49(u4, u2, u3), e 36(u2, u3), e 13(u1, u2, u3)}) `G
I
f
s

({e 237(u3), e 243(u5, u3)}, {e 138(u2, u3), e 91(u4, u3), e 49(u4, u2, u3), e 36(u2, u3), e 13(u1, u2, u3)}) `S
I
f
s

({e 243(u5, u3)}, {e 138(u2, u3), e 91(u4, u3), e 49(u4, u2, u3), e 36(u2, u3), e 13(u1, u2, u3)}) `∗S
I
f
s

({e 267(u5, u3)}, {e 138(u2, u3), e 91(u4, u3), e 49(u4, u2, u3), e 36(u2, u3), e 13(u1, u2, u3)}) `G
I
f
s

({e 295(u3), e 301(u6, u3)}, {e 267(u5, u3), e 138(u2, u3), e 91(u4, u3), e 49(u4, u2, u3), e 36(u2, u3), e 13(u1, u2, u3)}) `∗S
I
f
s

({e 317(u3), e 138(u6, u3)}, {e 267(u5, u3), e 138(u2, u3), e 91(u4, u3), e 49(u4, u2, u3), e 36(u2, u3), e 13(u1, u2, u3)}) `N
I
f
s

({e 138(u6, u3)}, {e 267(u5, u3), e 138(u2, u3), e 91(u4, u3), e 49(u4, u2, u3), e 36(u2, u3), e 13(u1, u2, u3)}) `E
I
f
s

({∅, {e 267(u5, u3), e 138(u2, u3), e 91(u4, u3), e 49(u4, u2, u3), e 36(u2, u3), e 13(u1, u2, u3)})

As for the Ibs -proof of the equality q(x, y) = true, the processed conjectures from each state are underlined. `∗S
I
f
s

means that SimpEq was applied several times. The induction reasoning occurs while executing the Subsumption
rule, the instances of premises used as IHs being built by need.

Theorem 14 (soundness of Ifs ) The inference system Ifs is sound.

Proof As for the proof of Theorem 12, we show that each Ifs -rule is the instance of an A-rule.

• GenNat is an instance of the two-step version of AddPremise, presented in Figure 8.2 and explained in
Subsection 8.1.2. If the processed conjecture φ〈x〉 has a counterexample φτ then it should be in the set of
intermediary conjectures {φ{x 7→ 0}, φ{x 7→ S(x′)}}. Since the two intermediary conjectures are rewritten
with axioms, the set of new conjectures has a counterexample smaller than φτ , by the reductiveness property
of rewriting and the ‘stability under substitutions’ property of ≤.

• SimpEq is an instance of Simplify. If the processed conjecture φ has a counterexample φτ , then φ should
be rewritten to ψ with i) axioms, or ii) other equalities from the current state or from the new set of
conjectures which are smaller or equal than φ. We have that ψ < φ by the reductiveness property of
rewriting and ψτ < φτ by the ‘stability under substitutions’ property of <. If ψτ is false, then ψτ is a
counterexample from the new set of conjectures which is smaller than φτ . If ψτ is true, it means that the
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rewrite rule e was selected from the current state and satisfies e ≤ φ. By the ‘stability under substitutions’
property of ≤, we have that eτ ≤ φτ . Moreover, eτ is a counterexample since φτ is false but ψτ is true.

• Subsumption is an instance of Simplify because whenever the processed conjecture φ is an instance of a
premise, any counterexample of φ is also a counterexample of that premise.

• Negative Clash is an instance of Simplify because the processed conjecture has no counterexamples.

�

By Theorem 14, we conclude that the conjecture (6.15) is a consequence of the axioms defining even, odd and
‘+’.

6.2.4 Certification of implicit induction proofs for Coq formalisations using
the functional programming style

The induction ordering is built similarly as for the P&Q example, shown in Subsection 6.1.1, excepting that the
precedence over the function symbols changes, as follows:

Inductive symb : Set :=
| id 0
| id S
| id true
| id false
| id even
| id odd
| id plus.

Definition index (f : symb) :=
match f with
| id 0 ⇒ 2
| id S ⇒ 3
| id true ⇒ 4
| id false ⇒ 5
| id even ⇒ 10
| id odd ⇒ 10
| id plus ⇒ 7
end.

The formula-based Noetherian induction principle will be applied on the set of all equalities encountered in
the implicit induction proof of e 13(u1, u2, u3). The LF list type LF 13 and its type LF 13 are:

Definition type LF 13 := nat → nat → nat → Prop × List.list term.

Definition LF 13 := [F 13, . . .,F 317], (* all equalities from the proof *)

where the anonymous functions from LF 13 are:

Definition F 13 : type LF 13 :=
fun u1 u2 u3 ⇒
( e 13(u1,u2,u3 ),
Term id odd (Term

id plus (model nat u1 :: model nat u2 :: nil) :: nil)
:: Term id true nil

:: Term id even
(Term id plus

(model nat u2 :: model nat u3 :: nil) :: nil)
:: Term id true nil

:: Term id odd
(Term id plus (

model nat u1 :: model nat u3 :: nil) :: nil)
:: Term id true nil :: nil).

...

Definition F 317 : type LF 13 :=
fun u3 ⇒
( e 317(u3 ),
Term id false nil
:: Term id true nil

:: Term id odd (model nat u3 :: nil)
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:: Term id true nil
:: Term id even (model nat u3 :: nil) :: Term id true nil :: nil).

The measure value attached to any equality e in the corresponding anonymous function is the list of the
literate representation in COCCINELLE of the terms from e.

The main lemma becomes:

Lemma main 13 : ∀ F, In F LF 13 → ∀ u1 u2 u3, (∀ F’, In F’ LF 13 → ∀ e1 e2 e3,
less (snd (F’ e1 e2 e3 )) (snd (F u1 u2 u3 )) → fst (F’ e1 e2 e3 )) → fst (F u1 u2 u3 ).

The proof of the main 13 lemma starts with a case analysis on the anonymous functions from LF 13. We
describe the scenarios for building the Coq script by translating every single implicit induction inference step.
Given an anonymous function F ∈ LF 13,

• the main steps for generating the Coq script for the case when a GenNat rule is applied on an equality e
from F are:

1. generation and application of the instantiation schema. The instantiation schema of variables from e
consists in replacing a variable v of natural sort with 0 and successor of a fresh variable. In Coq, this
can be easily performed with the destruct tactic applied on v. However, an instantiation schema
reproduced by the means of functional schemes [Barthe and Courtieu, 2002] is more flexible than the
instantiation schemas issued from the definitions of inductive sets on which the destruct tactic are
based:

Fixpoint f (u1: nat) {struct u1} : nat :=
match u1 with
| 0 ⇒ 0
| (S u2) ⇒ 0

end.

Functional Scheme f ind:= Induction for f Sort Prop.

The functional scheme can be applied on any natural variable u1, as follows:

pattern u1, (f u1). apply f ind.

2. validation of each instance and ordering constraint. For each equality instance φ generated during the
application of GenNat, we assign to F ′ the anonymous function from LF 13 that corresponds to the
equality resulting from the rewriting of φ in the Ifs -proof. If the axioms are put in the Coq rewrite base,
the logical equivalence between φ and the rewritten instance can be automatically checked by the auto
tactic. The ordering constraints requiring that the measure value of the equality from F ′ be smaller
than µφ are also automatically checked by user-defined tactics. The rewrite model tactic simplifies µφ
by unfolding the model nat translation functions on the subterms of φ of the form (model nat (S u)).
The solve rpo mul tactic i) replaces the terms of the form (model nat u) by COCCINELLE variables,
ii) performs the comparison test, representing a test case for checking Theorem 13, and iii) by the
‘stability under substitutions’ property of rpo mul, preserves the comparison result for the instance
built with the substitution mapping the COCCINELLE variables to the corresponding (model nat u)
terms.

• the scenario corresponding to the application of a SimpEq rule using rewriting is similar to that presented
at the step (2) of the scenario built for GenNat. The tautologies are eliminated by the auto tactic;

• the application of a Negative Clash corresponds to the application of the discriminate tactic;

• the Subsumption steps are ignored because the equality from the anonymous function F is an instance of
an equality from another anonymous function from LF 13.
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Next, we show that any formula from LF 13 is true:

Theorem all true 13 : ∀ F, In F LF 13’ →
∀ (u1 : nat) (u2 : nat) (u3 : nat), fst (F u1 u2 u3 ).

Finally, our property is certified:

Theorem true 13 : ∀ (u1 : nat) (u2 : nat) (u3 : nat), odd (plus u1 u2 ) = true →
even (plus u2 u3 ) = true → odd (plus u1 u3 ) = true.

6.3 Certifying cyclic proofs
In the previous section, we have shown that the computational cost for certifying implicit induction proofs also
depends on the number of equalities encountered in the proofs. In practice, it is common that implicit induction
provers (automatically) generate large proofs, with hundreds or thousands of equalities (see Chapter 5). In this
case, the proof certification effort becomes non-negligeable. We present a different method for proving conjectures
about conditional specifications, based on a reductive-free cyclic induction approach proposed in Chapter 2 for
which the certification process is more effective. The proofs are built by outlining the non-trivial induction
reasoning in terms of cycles of equalities. Compared to the validation process of implicit induction proofs from
Section 6.2, the validation of cyclic proofs needs fewer ordering constraints and shorter LF lists.

6.3.1 Inference systems for cyclic induction
We introduce the abstract inference system D′, similar to the system D from Chapter 2, which consists of the
following three rules:

Deduction: E ∪ {φ} `D′ E ∪ Φ, where
i) ∀ψ ∈ Φ, V ar(ψ) ⊆ V ar(φ), and
ii) Φ has a counterexample whenever φ has a counterexample.

Split: E ∪ {φ} `D′ E ∪ Φ, where
Φ is

⋃
{φσ | σ ≡

⋃
i{xi 7→ ti} and ∀i, xi ∈ V ar(φ) and V ar(ti) are fresh}, and

whenever φ has a counterexample φτ , Φ has φτ as counterexample.

Induction: E ∪ {φ} `D′ E ∪ Φ, where
i) there exists an instance ψδ of a previously generated equality ψ such that

Φ or ψδ has a counterexample whenever φ has a counterexample, and
ii) V ar(ψδ) ⊆ V ar(φ) and ∀ψ′ ∈ Φ, V ar(ψ′) ⊆ V ar(φ).

Compared to the implicit induction inference rules, the D′-rules are transitions between multisets of equalities
that transform an equality (i.e., the processed conjecture) into a set of new equalities (i.e., new conjectures).
Deduction ensures that for any counterexample of the processed conjecture there is a counterexample in the set
of new conjectures. Split is a particular case of Deduction, requiring that the set of new conjectures consists
of instances of the processed conjecture. Finally, Induction is the only rule that performs induction reasoning,
by allowing instances of previously generated equalities in the derivation to be used as IHs when transforming
the processed conjecture. It can be seen as a generalisation of Deduction since for any counterexample of the
processed conjecture we may not require for a counterexample in the set of new conjectures if the equality used
as IH has already a counterexample.

Definition 3 (D′ − preproof) Given a multiset of equalities E0, any finite derivation of the form E0 `D′ . . . `D′
∅ is a D′-preproof of E0.

Concrete inference rules can be built by showing how the new conjectures from the D′-rules are generated
using specific reasoning techniques. Based on the reasoning techniques employed by the inference system Ibs from
Section 6.2, we can build the inference system Ibc :
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DelInst’ (Dc): E ∪ {φ} `Ibc E,
if there are ψ ∈ Ax and a substitution σ such that φ ≡ ψσ.

RedEq’ (Rc): E ∪ {φ} `Ibc E ∪
⋃
i{liσ = riσ},

if
∧
i li = ri ⇒ l = r ∈ Ax and ∃σ such that φ ≡ (lσ = rσ) or φ ≡ (rσ = lσ).

SplitNat (Sc): E ∪ {φ〈x〉} `Ibc E ∪ {φ{x 7→ 0}, φ{x 7→ S(x′)}},
where x′ is a fresh variable.

IndNat (Ic): E ∪ {φ} `Ibc E,
if there are a previously generated equality ψ and a substitution σ such that φ ≡ ψσ.

DelInst’ deletes the processed conjecture if it is an instance of an axiom. RedEq’ firstly checks whether
the processed conjecture is an instance of the conclusion of some axiom, then adds as new conjectures the set of
corresponding instances of the conditions of the axiom. SplitNat applies on conjectures with natural variables
and replaces them by their instances resulted by replacing some natural variable with 0 and successor of a new
variable. Finally, IndNat deletes the processed conjecture if it is an instance of a previous conjecture in the
derivation.

Theorem 15 Any Ibc -rule is an instance of a D′-rule.

Proof We perform a case analysis on the Ibc -rules:

• DelInst’ is an instance of Deduction for the case when the set of new conjectures is empty since the
processed conjecture has no counterexamples;

• RedEq’ is an instance of Deduction because for any counterexample of the processed conjecture φ there
is one in the set of corresponding instances of the equality conditions of the axiom whose conclusion was
instantiated by φ;

• SplitNat is an instance of Split since any counterexample of the processed conjecture is also a counterex-
ample in the set of new conjectures;

• IndNat is an instance of Induction because any counterexample of the processed conjecture is also a
counterexample of the previous equality whose instance was used as IH.

�

An Ibc -preproof of a multiset of equalities E0 is any finite Ibc -derivation that starts with E0 and finishes with
an empty set of equalities.

Example 14 The following Ibc -preproof of {q(x, y) = true} can be built by using the axioms (6.1)-(6.8) and the
proof scenario given at the general introduction:

{q(x, y) = true} `Sc
Ibc
{q(x, 0) = true, q(x, S(y′)) = true} `Dc

Ibc
{q(x, S(y′)) = true} `Rc

Ibc
{q(x, y′) = true, p(x) =

true} `Ic
Ibc

{p(x) = true} `Sc
Ibc

{p(0) = true, p(S(x′)) = true} `Dc
Ibc

{p(S(x′)) = true} `Rc
Ibc

{p(x′) = true, q(x′, S(x′)) = true} `Ic
Ibc
{q(x′, S(x′)) = true} `Ic

Ibc
∅,

where the processed conjectures are underlined.

In order to check the soundness of the induction reasoning employed in D′-preproofs, we will illustrate the
D′-preproofs as oriented graphs for which the nodes are equalities from the preproof and the arrows are of two
kinds: i) downward arrows that link a processed conjecture to any new conjecture, and ii) upward (dashed) arrows
that connect a processed conjecture to the previous conjecture whose instance was used as IH in an induction
step. The instantiating substitutions used in split and induction steps annotate the corresponding arrows, those
from the induction steps being written in boldface style. We denote a node by R node if R is the name of the
D′-rule applied on the equality labelling the node. Also, an IH-node is any node labelled by an equality whose
instance was used as IH.

Example 15 The Ibc -preproof from Example 14 is illustrated as the oriented graph from Figure 6.1.
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Figure 6.1: The Ibc -preproof of {q(x, y) = true} as an oriented graph.

A cycle of a D′-preproof can be represented as a circular list of paths such that each path has nodes from only
one tree derivation of the preproof. Oriented graphs may have minimal cycles, i.e., cycles that do not contain
other cycles, and strongly connected components.

Example 16 The oriented graph from Figure 6.1 has 3 minimal cycles:

• [q(x, y) = true, q(x, S(y′)) = true, q(x, y′) = true],

• [p(x) = true, p(S(x′)) = true, p(x′) = true], and

• [q(x, y) = true, q(x, S(y′) = true, p(x) = true, p(S(x′)) = true, q(x′, S(x′)) = true]

By abuse of notation, the nodes from the paths have been denoted by the labelling equalities.

We can build a well-founded partial ordering <C over the set of strongly connected components C of any
D′-preproof. Given two strongly connected components p1 and p2, we write p1 <C p2 if there is a path in the
cyclic graph of the D′-preproof leading any node of p2 to any node of p1.

6.3.2 Cyclic proofs
A D′-preproof of a multiset of equalities E0, built using a set of axioms Ax, is sound if Ax |= E0. Any sound
preproof is also called a proof. In order to prove the soundness of a preproof p, we define ordering constraints
for normalised cycles for which each path starts with an equality labelling a root of some tree derivation from
the graph of p. This property can be achieved if any non-root IH-node is transformed into a root IH-node, as
illustrated in Figure 6.2 and referred to as the normalisation operation. Any transformation detaches the subtree
rooted by the non-root IH-node, labelled by φ, from the graph to become a new tree, by preserving a copy of the
IH-node. Next, an upward arrow is added to link the copy node with the root node of the new tree. By labelling
it with the identity substitution σφid, the transformation simulates the application of Induction on the formula
labelling the copy node, using as IH-node the root node of the new tree. It can be noticed that the transformation
does not generate new strongly connected components.

A strongly connected component is normalised if each of its minimal cycles is normalised. A D′-preproof is
normalised if each of its strongly connected components is normalised. Since the number of non-root IH-nodes
of a D′-preproof is finite, the normalisation process is finite. Moreover, the normal form is unique, independent
from the order of processing the non-root IH-nodes.

Example 17 The Ibc -preproof from Figure 6.1 has one non-root IH-node, labelled by p(x) = true. The result
of the transformation applied on it is illustrated in Figure 6.3. The minimal cycles of the strongly connected
component are all normalised:

• first cycle: [q(x, u) = true, q(x, S(y′)) = true, q(x, y′) = true],
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Figure 6.2: The transformation of a non-root IH-node.

• second cycle: [p(x) = true, p(S(x′)) = true, p(x′) = true], and

• third cycle: [q(x, y) = true, q(x, S(y′)) = true, p(x) = true],
[p(x) = true, p(S(x′)) = true, q(x′, S(x′)) = true].
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Figure 6.3: The normalised Ibc -preproof of {q(x, y) = true}.

Lemma 6 The normalisation of a D′-preproof of a multiset S of equalities is a new D′-preproof of a multiset S′

of equalities such that S ⊆ S′.

Proof The normalisation process may generate new tree derivations. If S′′ is the set of the equalities labelling
their root nodes, then S′ is S ∪ S′′. �

Example 18 Figure 6.3 also is a Ibc -preproof for {p(x) = true, q(x, y) = true}.

We can associate a substitution σ to each node n of a D′-preproof. If n is a direct offspring of a Split node,
then σ is the instantiating substitution used by the Split operation to generate n, otherwise σ is the identity
substitution. To each path in a tree derivation, of the form [n1, . . . , nk], we can also associate the cumulative
substitution represented by the composition of substitutions σ1 · · ·σk, where each σi (i ∈ [1..k]) is the substitution
associated to the node ni. φ(n) denotes the equality labelling the node n.

Definition 4 (n-cycle discharging IHs) An n-cycle, made of a circular list of n(>0) paths
[n1

1, . . . n
p1
1 ], . . . , [n1

n, . . . , n
pn
n ] from a strongly connected component p, discharges the IHs φ(n1

j )δj (j ∈ [1..n]) if,
for any i ∈ [1..n], we have that φ(n1

next(i))δnext(i) <p φ(n1
i )θi, where θi is the cumulative substitution for the path

[φ(n1
i ), . . . , φ(npii )], next(i) = 1 + (i mod n) and <p is a well-founded and ‘stable under substitutions’ ordering

defined over the instances of the equalities labelling the root nodes of p.

Example 19 The IHs used in the minimal cycles from Figure 6.3 and detailed in Example 17 are discharged if:

• (q(x, y) = true){x 7→ x; y 7→ y′} <p (q(x, y) = true){x 7→ x; y 7→ S(y′)} in the first cycle,

• (p(x) = true){x 7→ x′} <p (p(x) = true){x 7→ S(x′)} in the second cycle, and

• (q(x, y) = true){x 7→ x′; y 7→ S(x′)} <p (p(x) = true){x 7→ S(x′)} and (p(x) = true){x 7→ x} <p (q(x, y) =
true){x 7→ x; y 7→ S(y′)} in the third cycle,
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where p denotes the strongly connected component of the Ibc -preproof in Figure 6.3. The ordering <p has to be
defined such that the following four ordering constraints are satisfied: q(x, y′) = true <p q(x, S(y′)) = true,
p(x′) = true <p p(S(x′)) = true, q(x′, S(x′)) = true <p p(S(x′)) = true and p(x) = true <p q(x, S(y′)) = true.
By proceeding similarly as in Section 6.2, we can define the measure value of an equality l = r as the multiset of
terms |l| ∪ |r|, where |t| is defined as

• {x, x} if t is of the form p(x),

• {x, x, y} if t is of the form q(x, y), and

• {t}, otherwise.
The ordering constraints are satisfied if the induction ordering used for comparing multisets of terms is the multiset
extension of the mpo based on the precedence false <F true <F 0 <F s.

Theorem 16 [soundness of D′-preproofs] Any D′-preproof is sound if the minimal cycles from its normal form
discharge their IHs.

Proof Let P be a D′-preproof and P ′ its normal form such that all minimal cycles from P ′ discharge their
IHs. By contradiction, we assume that P is not sound, i.e., there is an equality e proved by P that is false. By
Lemma 6, e labels one of the root nodes of P ′.

The set C of strongly connected components from the graph of P ′ forms a partition of the nodes from the
graph of P ′. Let <C denote the well-founded ordering defined over the elements of C. We perform a classical
induction reasoning over the elements of C.
The base case. Let us assume that e labels the root node n from one of the <C-minimal strongly connected
components of C, denoted by p. Let us also assume that n is the only node from p. Hence, φ(n) ≡ e. Since
φ(n) is false, it cannot label a leaf node, so there is a D′-rule that was applied on φ(n). The nodes labeled by
the resulting equalities, as well as the corresponding IH-node for the case when Induction was applied on φ(n),
should be from p, by the minimality of p. This contradicts the fact that p has only one node.

Therefore, p should have at least two nodes. Again, let n be some root node from p such that φ(n) ≡ e. We
will show that Induction should be applied with a false IH on φ(n) or on an equality deriving from φ(n). We
will perform a case analysis:

• We assume that Deduction or Split were applied on φ(n) in the inference step E ∪ {φ(n)} `D′ E ∪ Φ.
Since φ(n) is false, it has a counterexample. By the definition of these rules, there is an equality in Φ that
has a counterexample.

• If Induction was applied on φ(n) in the inference step E ∪ {φ(n)} `D′ E ∪ Φ, using an instance of
the previously generated equality ψ as IH, since φ(n) is false, it has a counterexample. Cf. Induction
definition, either Φ or ψ has a counterexample.

Any rule applied on φ(n) can also be applied on some of its counterexamples φ(n)τ for which the IH and
new equalities are ground because the IH and new equalities have variables included in V ar(φ(n)). When a rule
is applied on φ(n)τ , we can have that either i) there is an offspring of n, denoted by n′, such that φ(n′)τ is a
counterexample, or ii) Induction was applied on φ(n) using the IH h and hτ is a counterexample. For the case
ii), we are done, as required. For the case i), we can apply the same reasoning on n′ as for n. Either Induction
was applied with a false IH and we are done, or again case i) holds. This process cannot continue forever since the
visited nodes follow some path in the tree derivation rooted by n, which is finite, so case ii) eventually happens.

We denote by nf the Induction-node identified by this process, by nh its IH-node and by φ(nh)δ the false
coresponding IH, knowing that n and nf may refer to the same node. The path [n, . . . , nf ] is part of a cycle c from
p, of the form [nh, . . .], . . . , [n, . . . , nf ], that links back nh to n. We will show that there is a minimal n-cycle cm of
the form [nh, . . .], . . . , [n, . . . , nf ] which may be different from c. If c is minimal, then cm will denote c. Otherwise,
c includes another cycle c′, meaning that c′ has fewer nodes. In this case, the nodes of c can be described as the
union of the nodes of another cycle c′′, also with fewer nodes, and the nodes of c′. If [n, . . . , nf ] is a path from c′,
then we apply the same reasoning on c′ as for c. Otherwise, [n, . . . , nf ] is a path from c′′ and we can also apply
the same reasoning on c′′ as for c. This process should finish because the number of nodes in p is finite. We denote
by cm the last cycle including [n, . . . , nf ]. Hence, cm is minimal, of the form [nh, . . .], . . . , [n, . . . , nf ]. Then, the
IH φ(nh)δ is discharged by cm, and we have that φ(n)θ >p φ(nh)δ, where θ is the cumulative substitution for the
path [n, . . . , nf ].

We have that φ(n)τ, . . . , φ(nf )τ are the counterexamples identified during the process, and the IH φ(nh)δτ is
a counterexample. It can be noticed that φ(nf ) can be generated from φ(n)θ by applying only the Deduction
rules used on the equalities labeling the nodes encountered when traversing the path [n, . . . , nf ]. So, φ(nf )τ can
be derived from φ(n)θτ by applying the same rules. This is possible only if φ(n)τ is an instance of φ(n)θ, i.e.,
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there is a matching substitution σ such that φ(n)θσ ≡ φ(n)τ . Since φ(nf ) can be generated from φ(n)θ, we have
φ(nf )σ ≡ φ(nf )τ . On the other hand, the substitution θ replaces a set x of variables from φ(n) by terms with
fresh variables, so no variable from x is in φ(nf ). Since φ(nf )σ ≡ φ(nf )τ , the terms mapped in σ and τ by the
variables occurring in φ(n) should be the same. Therefore, we have φ(n)θσ ≡ φ(n)θτ . So, φ(n)θτ ≡ φ(n)τ . By
the ‘stability under substitutions’ property of <p, we have that φ(n)θτ >p φ(nh)δτ , so φ(n)τ >p φ(nh)δτ .

We can apply a similar reasoning on φ(nh)δτ as for φ(n)τ and show that there is a minimal n-cycle c′m of the
form [n′h, . . .], . . . , [nh, . . . , n

′
f ], for which φ(n′h)δ′h is the IH used by the Induction rule applied on φ(n′f ). It can

be shown that φ(nh)δτ >p φ(n′h)δ′hδτ holds. A similar reasoning can be done on the counterexample φ(n′h)δ′hδτ
as for φ(nh)δτ , and so on ad infinitum, to build the infinite strictly <p-decreasing sequence

φ(n)τ >p φ(nh)δτ >p φ(n′h)δ′hδτ >p . . .

This contradicts the fact that <p is well-founded.

The step case. Let us assume that e labels the root node of an arbitrary non <C-minimal strongly connected
component p from C. By induction hypothesis, we assume that the root nodes of any strongly connected component
<C-smaller than p are labelled by true equalities. If p has only one node, the only rule that can be applied on
e is Induction. The new equalities and the IH should label root nodes from strongly connected components
<C-smaller than p, hence they are true by induction hypothesis. By the definition of Induction, e should be
true, hence contradiction.

So, p should have at least two nodes. By using similar arguments as for the base case and using the induction
hypothesis, we can show that an infinite strictly <p-decreasing sequence of counterexamples of equalities labeling
root nodes from p can be built. �

Example 20 (cont. Example 19) The Ibc -preproof from Figure 6.3 is sound because all the IHs from its min-
imal cycles are discharged. Therefore, q(x, y) = true and p(x) = true are true.

6.3.3 Certification of cyclic proofs for Coq formalisations using the logic pro-
gramming style

Let us recall the definition of the inductive predicates P and Q from the P&Q example, by following the logic
programming style:

Inductive P: T → Prop :=
p1: P zero
| p2: ∀ x, (P x ∧ Q x (succ x )) → P (succ x )
with

Q: T → T → Prop :=
q1: ∀ y, Q y zero
| q2: ∀ x y, (Q x y ∧ P x) → Q x (succ y).

Any equality of the form t = true is translated to the atom t. The variables from the equational specifications
and cyclic proofs are either universally quantified or free variables in the corresponding Coq specifications and
proofs.

The formula-based Noetherian induction principle will be applied on the set built only from the equalities
whose instances are used as induction hypotheses in the cycles, in our case, the two atoms labelling the root
nodes. The LF list LF PandQ and its type type LF PandQ are:

Definition type LF PandQ := T → T → Prop × List.list term.
Definition LF PandQ:= [Pu, Qxy].

where the anonymous functions Pu and Qxy associate to the root atoms the measure values defined at Example 19:

Definition Pu : type LF PandQ :=
fun u ⇒ (P u, (model nat u :: model nat u :: nil)).

Definition Qxy : type LF PandQ :=
fun x y ⇒ (Q x y, (model nat x :: model nat x :: model nat y :: nil)).

The main lemma becomes:
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Lemma main PandQ : ∀ F, In F LF PandQ → ∀ u, (∀ F’, In F’ LF PandQ → ∀ u′, less (snd (F’ u′)) (snd (F u))
→ fst (F’ u′)) → fst (F u).

Its proof starts by a case analysis on the possible values of F, which can be either Pu or Qxy. The generation
of the Coq script for each case starts by a split rule instantiating a natural variable with 0 and the successor of
a fresh variable. In Coq, this can be easily performed with the destruct tactic or by the means of functional
schemes, as shown in the proof of Lemma main 13 at the end of Section 6.2.

The proof of each resulted case follows some path from a root node to a leaf node in the cyclic graph from
Figure 6.3. The generation of the Coq script can be automatised since there is a direct Coq translation of the
non-split inference rules, as follows:

• DelInst’ is translated to the apply tactic parameterised by the name of the used axiom;

• RedEq’ is translated by unfolding the definition of the processed conjecture, using again the apply tactic
parameterised by the name of the used axiom;

• the application of IndNat using an induction hypothesis from LF PandQ is translated to

pose proof (HFabs0 F ) as Hind. clear HFabs0.
assert (fst (F u1 0)) as HFabs0.
apply Hind. trivial in n.

The user-defined tactic trivial in is applied on an index n and checks that F is the (n+ 1) element of the
LF PandQ list.

Next, any formula defining the anonymous functions of LF PandQ is proved:

Theorem all true PandQ: ∀ F, In F LF PandQ → ∀ u1: T, fst (F u1).

Finally, ∀u, P (u) and ∀x y,Q(x, y) are certified by the following theorems:

Theorem true Pu : ∀ u, P u.

Theorem true Qxy : ∀ x y, Q x y.

6.3.4 Certification of cyclic proofs for Coq formalisations using the functional
programming style

Conjecture (6.15) can also be proved using the cyclic inference system Ifc , based on the reasoning techniques
underlying Ifs , presented in Section 6.2:

SplitNat’ (S′c): E ∪ {φ〈x〉} `Ifc E ∪ {φ{x 7→ 0}, φ{x 7→ S(x′)}},
where x′ is a fresh variable.

DelTaut (Tc): E ∪ {φ} `Ifc E,
if φ is a tautology.

NegClash (Nc): E ∪ {φ} `Ifc E
if true = false or false = true is in the condition part of φ.

RedAx (Ac): E ∪ {φ} `Ifc E ∪ {ψ},
if φ→Ax ψ.

DelSub (Ec): E ∪ {φ} `Ifc E
if φ is an instance of a previously generated equality.

The SplitNat’ rule is similar to the Ibc -rule SplitNat. DelTaut and NegClash delete tautologies and
conditional equalities with false conditions, respectively. RedAx rewrites the processed conjecture with axioms.
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Finally, DelSub deletes the processed conjecture if it is an instance of a previous equality from the Ifc -preproof.

Theorem 17 Every Ifc -rule instantiates a D′-rule.

Proof We perform a case analysis on the Ifc -rules:

• SplitNat’ is an instance of Split, for the same reasons given for SplitNat in the proof of Theorem 15;

• DelTaut and NegClash are instances of Deduction when the set of new conjectures is empty. This
situation is acceptable because the processed conjectures are valid;

• RedAx is an instance of Deduction because for any counterexample φτ of the processed conjecture φ,
ψτ is a counterexample of the new conjecture ψ;

• DelSub is an instance of Induction for similar reasons given for IndNat in the proof of Theorem 15.

�

In the following, we denote by GenNat’ the derived Ifc -rule that abbreviates the application of SplitNat’
rule on the processed conjecture, followed by the application of RedAx on each of the two new conjectures:

GenNat’ (Gc): E ∪ {φ〈x〉} `Ifc E ∪ {φ1, φ2},
where φ{x 7→ 0} →Ax φ1, φ{x 7→ S(x′)} →Ax φ2 and x′ is a fresh variable.

By defining the atoms:

e′13(u1, u2, u3) : odd(u1 + u2) = true ∧ even(u2 + u3) = true⇒ odd(u1 + u3) = true

e′23(u2, u3) : odd(0 + u2) = true ∧ even(u2 + u3) = true⇒ odd(u3) = true

e′29(u4, u2, u3) : odd((s(u4)) + u2) = true ∧ even(u2 + u3) = true⇒ odd(s(u4 + u3)) = true

e′36(u2, u3) : odd(u2) = true ∧ even(u2 + u3) = true⇒ odd(u3) = true

e′49(u4, u2, u3) : even(u4 + u2) = true ∧ even(u2 + u3) = true⇒ even(u4 + u3) = true

e′67(u3) : odd(0) = true ∧ even(u3) = true⇒ odd(u3) = true

e′73(u4, u3) : odd(s(u4)) = true ∧ even(s(u4 + u3)) = true⇒ odd(u3) = true

e′81(u3) : false = true ∧ even(u3) = true⇒ odd(u3) = true

e′91(u4, u3) : even(u4) = true ∧ odd(u4 + u3) = true⇒ odd(u3) = true

e′113(u2, u3) : even(0 + u2) = true ∧ even(u2 + u3) = true⇒ even(u3) = true

e′119(u5, u2, u3) : even((s(u5)) + u2) = true ∧ even(u2 + u3) = true⇒
even(s(u5 + u3)) = true

e′138(u2, u3) : even(u2) = true ∧ even(u2 + u3) = true⇒ even(u3) = true

e′197(u3) : even(0) = true ∧ odd(u3) = true⇒ odd(u3) = true

e′203(u5, u3) : even(s(u5)) = true ∧ odd(s(u5 + u3)) = true⇒ odd(u3) = true

e′253(u3) : even(0) = true ∧ even(u3) = true⇒ even(u3) = true

e′259(u5, u3) : even(s(u5)) = true ∧ even(s(u5 + u3)) = true⇒ even(u3) = true

e′283(u5, u3) : odd(u5) = true ∧ odd(u5 + u3) = true⇒ even(u3) = true

e′311(u3) : odd(0) = true ∧ odd(u3) = true⇒ even(u3) = true

e′317(u6, u3) : odd(s(u6)) = true ∧ odd(s(u6 + u3)) = true⇒ even(u3) = true

e′333(u3) : false = true ∧ odd(u3) = true⇒ even(u3) = true

one can build the following Ifc -preproof of the conjecture (6.15), represented as a linear derivation:

{e′13(u1, u2, u3)} `Gc
I
f
c

{e′23(u2, u3), e′29(u4, u2, u3)} `Ac
I
f
c

{e′36(u2, u3), e′29(u4, u2, u3)} `∗Ac
I
f
c

{e′36(u2, u3), e′49(u4, u2, u3)} `Gc
I
f
c
{e′67(u3), e′73(u4, u3), e′49(u4, u2, u3)} `Ac

I
f
c
{e′81(u3), e′73(u4, u3), e′49(u4, u2, u3)} `Nc

I
f
c

{e′73(u4, u3), e′49(u4, u2, u3)} `∗Ac
I
f
c
{e′91(u4, u3), e′49(u4, u2, u3)} `Gc

I
f
c
{e′197(u3), e′203(u5, u3), e′49(u4, u2, u3)} `Tc

I
f
c

{e′203(u5, u3), e′49(u4, u2, u3)} `∗Ac
I
f
c

{e′36(u5, u3), e′49(u4, u2, u3)} `Ec
I
f
c

{e′49(u4, u2, u3)} `Gc
I
f
c

{e′113(u2, u3), e′119(u5, u2, u3)} `∗Ac
I
f
c
{e′113(u2, u3), e′13(u5, u2, u3)} `Ec

I
f
c
{e′113(u2, u3)} `Ac

I
f
c
{e′138(u2, u3)} `Gc

I
f
c
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{e′253(u3), e′259(u5, u3)} `Tc
I
f
c

{e′259(u5, u3)} `∗Ac
I
f
c

{e′283(u5, u3)} `Gc
I
f
c

{e′311(u3), e′317(u6, u3)} `Ac
I
f
c

{e′333(u3), e′317(u6, u3)} `Nc
I
f
c
{e′317(u6, u3)} `∗Ac

I
f
c
{e′138(u6, u3)} `Ec

I
f
c
∅

Figure 6.4 illustrates the above preproof as an oriented graph. We can distinguish three strongly connected
components, denoted by p1, p2 and p3, each of them made of only one minimal cycle, as follows:

• [e′13(u1, u2, u3), e′29(u4, u2, u3), e′49(u4, u2, u3), e′119(u5, u2, u3), e′13(u5, u2, u3)] for p1,

• [e′36(u2, u3), e′73(u4, u3), e′91(u4, u3), e′203(u5, u3), e′36(u5, u3)] for p2, and

• [e′138(u2, u3), e′259(u5, u3), e′283(u5, u3), e′317(u6, u3), e′138(u6, u3)] for p3.
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��
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{u2 7→0}

}}
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##
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&&
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Figure 6.4: The graph representation of the Ifc -preproof of {e′13(u1, u2, u3)}.

The normalisation process of the Ifc -preproof applies the transformation from Figure 6.2 to the two non-root
IH-nodes labelled by e′36(u2, u3) and e′138(u2, u3). The normal form of the Ifc -preproof consists in three derivation
trees, rooted by the nodes labelled by e′13(u1, u2, u3), e′36(u2, u3) and e′138(u2, u3).

The soundness of the Ifc -preproof is ensured if the following three constraints are satisfied: e′13(u1, u2, u3){u1 7→
S(S(u5));u2 7→ u2;u3 7→ u3} <p1 e′13(u1, u2, u3){u1 7→ u5;u2 7→ u2;u3 7→ u3}, e′36(u2, u3){u2 7→ u5;u3 7→
u3} <p2 e′36(u2, u3){u2 7→ S(S(u5));u3 7→ u3}, and e′138(u2, u3){u2 7→ u6;u3 7→ u3} <p3 e′138(u2, u3){u2 7→
S(S(u6));u3 7→ u3}. Different well-founded and ‘stable under substitutions’ orderings over multisets of terms can
be used to implement <p1 , <p2 and <p3 , for example the multiset extension of the mpo using any precedence.

The strategy for certifying a normalised D′-preproof integrating a (potentially empty) set C of strongly con-
nected components is based on a partial ordering defined on the components of some partition P over the root
nodes of the normalised D′-preproof. P is built such that two nodes are in the same component if they belong
to the same strongly connected component of C. The partial ordering, denoted by <P , extends <C in such a way
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that, for any two components c1 and c2, we have c1 <P c2 if there is an Induction node in the trees rooted by
nodes from c2 whose corresponding IH-node is a root node from c1. The strategy is to certify the proofs of the
multisets of equalities labelling the root nodes of each component from P , in distinctive steps and in increasing
ordering w.r.t. <P .

Example 21 The certification of the normalised Ifc -preproof of {e′13(u1, u2, u3)} starts with the certification of
the proofs of the equalities labelling the root nodes of the <C-minimal strongly connected components, i.e., p2 and
p3, followed by the certification of the proof of the equality labelling the root node of p1.

The certification process for the proof of the multiset of equalities labelling the root nodes of a component
c of P is similar to that given for implicit induction proofs in Subsection 6.2.4. First, we define the LF list as
the set of anonymous functions built for the equalities labelling the root nodes from c. Second, the instantiation
schemas from the GenNat’ steps are defined using functional schemes, or the destruct tactic. Third, the proof
of the main lemma is built by translating in Coq script the Ifc -steps encountered by following the paths from root
to leaf nodes in the trees rooted by the nodes of c, using similar translations as shown in Subsection 6.2.4. In
addition, the application as IH of any instance of some equation e′n not labelling any node from c is translated
to apply true n. The proposed certification strategy ensures that the proof of the theorem true n is certified
before its use by the apply tactic. Multiple rewrite steps can be performed with the simpl tactic. Finally, the
theorem all true is certified, followed by the certification of the true theorems about the equalities labelling each
node of c.

As example, we will only detail the certification process for the proof of e′13(u1, u2, u3), knowing that the
certification of the proofs for e′36(u2, u3) and e′138(u2, u3) was already completed and done in a similar way. The
LF list for p1 is defined as:

Definition LF 13 := [F 13 ].

where F 13 is defined as F 13 from Subsection 6.2.4.

The functional schemes associated to the GenNat’ steps are defined as:

Fixpoint f 13 (u1 : nat) (u3 : nat) {struct u1}: nat :=
match u1, u3 with
| 0, ⇒ 0
| S u4, ⇒ 0
end.

Functional Scheme f 13 ind := Induction for f 13 Sort Prop.

Fixpoint f 49 (u4 : nat) (u3 : nat) {struct u4}: nat :=
match u4, u3 with
| 0, ⇒ 0
| S u5, ⇒ 0
end.

Functional Scheme f 49 ind := Induction for f 49 Sort Prop.

The Coq script of the main 13 lemma is:

Lemma main 13 : ∀ F, In F LF 13 → ∀ u1 u2 u3, (∀ F’, In F’ LF 13 → ∀ e1 e2 e3,
less (snd (F’ e1 e2 e3 )) (snd (F u1 u2 u3 )) → fst (F’ e1 e2 e3 )) → fst (F u1 u2 u3 ).

Proof.
intros F HF u1 u2 u3 ; case In HF ; intro Hind.

(* GenNat’ on e′13 *)

rename u1 into u1. rename u2 into u2. rename u3 into u3.
rename u1 into u1. rename u2 into u2. rename u3 into u3.

revert Hind.

pattern u1, u3, (f 13 u1 u3 ). apply f 13 ind.

(* case e′23 *)

intros u1 u3. intro. intro HFabs0.
simpl. apply true 36.
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(* case e′29 *)

intros u1 u3. intro u4. intro. intro HFabs0.
simpl.

(* GenNat’ on e′49 *)

destruct u4. (* we could have used instead the functional scheme f 49 ind *)

(* case e′113 *)

simpl. apply true 138.

(* case e′119 *)

pose proof (HFabs0 F 13 ) as Hind. clear HFabs0.
assert (fst (F 13 u4 u2 u3 )) as HFabs0.
apply Hind. trivial in 0.
unfold snd. unfold F 13. rewrite model. abstract solve rpo mul.
simpl. simpl in HFabs0. trivial.
Qed.

The Coq script for the proofs of the remaining theorems is omitted, but it is available online as supplementary
material.

Theorem all true 13 :
∀ F,
In F LF 13 → ∀ (u1 : nat) (u2 : nat) (u3 : nat), fst (F u1 u2 u3 ).

Theorem true 13 :
∀ (u1 : nat) (u2 : nat) (u3 : nat),
odd (plus u1 u2 ) = true →
even (plus u2 u3 ) = true → odd (plus u1 u3 ) = true.

6.4 Automatic certification of SPIKE proofs
The user can also interact with the SPIKE prover by the means of i) extra sections, for example use: nats;17

for activating the combination of the decision procedure for linear arithmetic and the congruence closure procedure,
and ii) command-line arguments given to spike bc, such as -coqc spec, -coqc, and -dracula.

In an automatic way, SPIKE can prove the conjecture (6.15) from Section 6.2 by both implicit and cyclic
induction. The numerical annotations of the atoms from the presented proofs correspond to numbers labelling
conjectures in the SPIKE proofs. SPIKE can also automatically translate the implicit induction proof into valid
Coq script. In order to do this, the Coq script translating the axioms and model functions is inlined in the SPIKE
specification and should be provided by the user. It is prefixed by $ and ignored by SPIKE during the proof
development. On the other hand, the cyclic proof was manually translated into Coq script by modifying the Coq
script generated for the implicit induction proof.

6.5 Conclusions
We have provided the formal tools to certify formula-based Noetherian induction reasoning with Coq. As an
alternative to the built-in explicit induction techniques, we have opened the perspective to directly implement
in Coq formula-based Noetherian induction methods that effectively manage the lazy, simultaneous and mutual
induction reasoning. Compared to the methods consisting in translating particular classes of formula-based
Noetherian induction proofs to an explicit induction form, our approach can generate a constructive Coq proof
from any formula-based Noetherian induction proof. The main challenges to face are i) the explicit representation
of the underlying induction ordering that is not built-in in Coq and that should be supported by external libraries,
and ii) the automatisation of the certification process. Classical Coq proofs can also be built using the ‘Descente
Infinie’ induction principle [Stratulat, 2010].

The formal tools have been used to automatically certify implicit induction and cyclic proofs. The implicit
induction reasoning is reductive and can be easily automatised, while the cyclic reasoning is reductive-free, requires

17To be added just after the specification section. More details about SPIKE are given in Chapter 4.
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fewer ordering constraints and allows for more general specifications, but is less automatisable [Stratulat, 2012].
In practice, the Coq script translating cyclic proofs may be (much) shorter than that for implicit induction proofs,
hence easier to certify. The number of ordering constraints and the size of the LF lists has a strong impact on the
complexity of the generated Coq script. For instance, the script generated from the implicit induction proof of
the conjecture (6.15) deals with a unique LF list of 28 anonymous functions and certifies 30 ordering constraints,
while the Coq script translating the cyclic proof has only three singleton LF lists and 3 ordering constraints to be
checked.

The certification methodology has been tested with SPIKE on different other examples, among which the
validation of a conformity algorithm for a telecommunication protocol [Rusinowitch et al., 2003]. As shown
in [Stratulat and Demange, 2011], most of the lemmas have been automatically certified by Coq. On the other
hand, the methodology is limited for several reasons. SPIKE cannot translate the proof steps built with some of
its inference rules, e.g., those requiring arithmetic reasoning due to the complexity of the underlying decision pro-
cedures, or some rules are correctly translated only under certain conditions. In fact, the translation process does
not guarantee the conversion of any SPIKE proof to a valid Coq script. Also, an inconvenient for the potential
users is represented by the necessity to inline Coq code in the SPIKE specification.
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Motivation. CLKIDω [Brotherston and Simpson, 2011] is the de facto standard sequent-based cyclic inference
system for performing lazy induction reasoning on specifications based on first-order logic with inductive definitions
(FOLID). The CLKIDω proofs are represented as finite derivation trees with nodes labelled by sequents. A
particular feature is that cycles can be built by establishing connections between terminal and non-terminal
nodes labelled with identical sequents. The soundness of CLKIDω proofs is entailed from some global trace
condition by using Infinite Descent induction arguments [Wirth, 2004]. This condition requires that, for every
infinite path in the cyclic derivation of a false sequent, all successive steps starting from some point are decreasing
and certain steps occurring infinitely often are strictly decreasing w.r.t. some semantic ordering.

CLKIDω has been implemented in the Cyclist prover [Brotherston et al., 2012]. Since the global trace
condition is an ω-regular property, Cyclist can check it during the proof construction or post hoc as an inclusion
between two Büchi automata by calling an external model checker. It turns out that the inclusion test may be
costly. Indeed, for any proof P , the approach requires the construction of the automaton complementary to that
accepting strings over infinite progressing traces in P , based on a complementation method for Büchi automata
as described in [Kupferman and Vardi, 2001]. The method ensures that, for every automaton with n states,
the generated complementary automaton has at least 2O(n logn) states [Michel, 1988]. In case of failure of the
inclusion test, previous proof steps should be reconsidered, requiring that existing connections be broken, proof
steps cancelled or different inference rules applied. Hence, it may happen that the test be executed several times
during the proof construction. For the proofs of the toy examples from [Brotherston et al., 2012], the percentage
of time taken by the soundness check include values from 0% to 44%.

Example 22 Following[Brotherston et al., 2012], the predicates P and Q from Example 1 can be specified
in FOLID using the following productions:

⇒ P (0) (7.1)
P (x) ∧Q(x, s(x))⇒ P (s(x)) (7.2)

⇒ Q(x, 0) (7.3)
P (x) ∧Q(x, y)⇒ Q(x, s(y)) (7.4)
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where 0 and s are the usual constructor symbols for naturals. Similarly, N is defined as:

⇒ N(0) (7.5) N(x)⇒ N(s(x)) (7.6)

According to Table 1 from [Brotherston et al., 2012], Cyclist can prove the sequent N(x), N(y) ` Q(x, y) in
about half a second, by building a proof tree with only 13 nodes. The validation process required 181 calls to the
external model checker, among which 171 calls are failing. 31% of the time is spent on the soundness check.

Our approach. A different approach for checking the soundness of derivations built with a restricted version
of CLKIDω, denoted by CLKIDωN , is based on ordering constraints. It is inspired from the material presented
in Chapter 6 about performing cyclic Noetherian induction to check inductive consequences of conditional spec-
ifications. The proofs generated by this approach are normalized to sets of tree derivations and represented as
directed graphs (for short, digraphs) allowing some terminal nodes to be connected to root nodes. The minimal
cycles resulting by following the arrows in the digraph are denoted as cyclic lists of paths leading a root to a
terminal node in the same tree derivation. The ordering constraints for checking the proof soundness involve
only comparisons between instances of root formulas. The main advantages of our approach are twofold: i) the
worst-case time complexity of the validation procedure is polynomial, and ii) the proofs can be certified by Coq
using the approach described in Chapter 6.

Structure of the chapter. Mostly based on [Stratulat, 2017a, Stratulat, 2018], the chapter is structured in five
sections. Section 7.1 is a quick presentation to the logical framework based on FOLID and an introduction to
CLKIDωN . In Section 7.2, we introduce the normalized form of CLKIDωN pre-proofs and define ordering and
derivability constraints that guarantee the global trace condition. The implementation of the method is described
in Section 7.3. A comparison with the automata-based method is given. On the other hand, we give an example
that shows that our procedure is semi-decidable. In Section 7.4, we show that FOLID pre-proofs can be dually
represented as cyclic and Noetherian induction proofs. The conclusions are given in the last section.

7.1 The logical framework
The logical setting relies on FOLID with equality, as presented, e.g., in [Brotherston, 2006,
Brotherston and Simpson, 2011].

Syntax. We assume that Σ is a (countable) language built on a finite alphabet of arity-fixed function symbols
F and predicate symbols, and V an enumerable set of variables. Each predicate symbol is either inductive (i.e.,
defined by axioms as below) or ordinary (i.e., not inductive). P (t1, . . . , tn) is an inductive atom, where P is
an inductive predicate symbol and t1, . . . , tn are terms. FV (S) denotes the set of free variables from the set of
formulas S.

Each inductive predicate symbol P is defined by a finite inductive definition set of productions (axioms)
consisting of implication formulas of the form

(
∧h
m=1 Qm(um) ∧

∧l
m=1 Pim(tm))⇒ P (t), (7.7)

where h, l, i1, . . . , il are naturals and Q1, . . . , Qh (resp., Pi1 , . . . , Pil) are ordinary (resp., inductive) predicate
symbols. (7.7) is an unconditional production if h = 0 and l = 0. If not, (7.7) is a conditional production and∧h
m=1 Qm(um)∧

∧l
m=1 Pim(tm) is its condition. Φ denotes the set of productions defining each inductive predicate

symbol.

The CLKIDω
N inference system. CLKIDωN is built from a finite set of inference rules that process sequents. A

sequent is a logical construction of the form Γ ` ∆, where Γ and ∆ are finite multisets of first-order formulas and
referred to as antecedents and succedents, respectively. An inference rule transforms a sequent, called conclusion,
into a (potentially empty) multiset of sequents, called premises; they are separated by a horizontal line followed by
the name of the rule. Most of the CLKIDωN inference rules transform one (principal) formula from the conclusion.
In this case, it is explicitly represented in the sequent. A more detailed presentation of the sequent calculus can
be found elsewhere, e.g., [Negri and v. Plato, 2001].

CLKIDωN consists of the rules contained by the LK system [Gentzen, 1935] and displayed in Figure 7.1,
the rules that process equalities from Figure 7.2, as well as the ‘unfold’ and ‘case’ rules. (= L) is an
instance of the more general CLKIDω version where x can also be a non-variable term.
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Γ ∩∆ 6= ∅ (Ax)
Γ ` ∆

Γ′ ` ∆′
Γ′ ⊆ Γ,∆′ ⊆ ∆ (Wk)

Γ ` ∆

Γ ` F,∆ Γ ` G,∆
(∧R)

Γ ` F ∧G,∆

Γ ` F,∆
(¬L)

Γ,¬F ` ∆

Γ, F ` ∆
(¬R)

Γ ` ¬F,∆
Γ, F ` ∆ Γ, G ` ∆

(∨L)
Γ, F ∨G ` ∆

Γ ` F,G,∆
(∨R)

Γ ` F ∨G,∆
Γ, F,G ` ∆

(∧L)
Γ, F ∧G ` ∆

Γ ` F, F,∆
(contrR)

Γ ` F,∆
Γ ` ∆

(Subst)
Γ[θ] ` ∆[θ]

Γ ` F,∆ Γ, G ` ∆
(⇒ L)

Γ, F ⇒ G ` ∆

Γ, F, F ` ∆
(contrL)

Γ, F ` ∆

Γ, F [{x 7→ t}] ` ∆
(∀L)

Γ, ∀xF ` ∆

Γ ` F,∆
x ∩ FV (Γ ∪∆) = ∅ (∀R)

Γ ` ∀xF,∆
Γ, F ` ∆

x ∩ FV (Γ ∪∆) = ∅ (∃L)
Γ, ∃xF ` ∆

Γ ` F,∆ Γ, F ` ∆
(Cut)

Γ ` ∆

Γ ` F [{x 7→ t}],∆
(∃R)

Γ ` ∃xF,∆
Γ, F ` G,∆

(⇒ R)
Γ ` F ⇒ G,∆

Figure 7.1: Sequent-based rules for classical first-order logic.

(= R)
Γ ` t = t,∆

Γ[{x 7→ u}] ` ∆[{x 7→ u}]
x is not a variable of u (= L)

Γ, x = u ` ∆

Figure 7.2: Sequent-based rules for equality reasoning.

The unfold rule unrolls the definition of the inductive symbol to transform some succedent atom of a
sequent. We denote the unfolding of P (t

′
) with the production (7.7), when P (t

′
) ≡ P (t)[σ], by

Γ ` Q1(u1)[σ],∆ . . . Γ ` Qh(uh)[σ],∆ Γ ` Pi1(t1)[σ],∆ . . . Γ ` Pil(tl)[σ],∆
(R.(7.7))

Γ ` P (t′),∆

The case rule is a left-introduction operation for inductive predicate symbols:

case distinctions (Case P )
Γ, P (s1, . . . , sn) ` ∆

Every production, of the form (7.7) such that t ≡ (t1, . . . , tn), produces the case distinction

Γ, s1 = t1, . . . , sn = tn, Q1(u1), . . . , Qh(uh), Pi1(t1), . . . , Pil(tl) ` ∆ (7.8)

Each variable y from (7.7) is fresh w.r.t. the free variables from the conclusion of the rule (y can be
renamed to a fresh variable, otherwise). Pi1(t1), . . . , Pil(tl) are case descendants of P (s1, . . . , sn).

CLKIDω
N pre-proof trees. A derivation tree for some sequent S is built by successively applying

inference rules starting from S. The terminal nodes in the tree can be either leaves or buds. A leaf is
labelled by a sequent that is the conclusion of a 0-premise inference rule. A bud is every node labelled
by a sequent that is the conclusion of no rule. For each bud, there is a companion, i.e., an internal node
having the same sequent labelling. If a companion is annotated by some sign (e.g., † or ∗), then the buds
related to it are uniquely annotated by that sign followed by a number.

Definition 5 (pre-proof tree, induction function for tree) The pair (D, R) denotes a pre-proof
tree of some sequent S, where D is a finite derivation tree whose root is labelled by S and R is a defined
induction function assigning a companion to every bud in D.

Example 23 A CLKIDωN pre-proof tree of N(x), N(y) ` R(x, y) is

91



Chapter 7. Cyclic Induction Reasoning for FOL with Inductive Definitions

(R.(7.9))
Ny ` R(0, y)

(R.(7.9))
` R(0, 0)

Nx′ ` R(x′, 0) (†1)
(Subst)

Nx′′ ` R(x′′, 0)
(R.(7.10))

Nx′′ ` R(sx′′, 0)
(Case N)

Nx′ ` R(x′, 0) (†)
(R.(7.10))

Nx′ ` R(sx′, 0)

Nx,Ny ` R(x, y) (∗1)
(Subst)

Nssx′, Ny′ ` R(ssx′, y′)
(Cut)

Nx′, Ny′ ` R(ssx′, y′)
(R.(7.11))

Nx′, Ny′ ` R(sx′, sy′)
(Case N)

Nx′, Ny ` R(sx′, y)
(Case N)

Nx,Ny ` R(x, y) (∗)

where the inductive predicate R is defined, as in [Brotherston et al., 2012], by the productions

⇒ R(0, y) (7.9) R(x, 0)⇒ R(sx, 0) (7.10) R(ssx, y)⇒ R(sx, sy) (7.11)

For lack of horizontal space, we have unambiguously omitted the parentheses and commas when denot-
ing some natural and atom N(t), i.e., s(t) (resp., N(t)) becomes st (resp., Nt), where t is the notation
of t without parentheses. This alternative notation will be used in the following, when necessary.

The double line means that (= L) was applied on each premise of (Case). The (Cut) premise Nx′ `
Nssx′ is suppressed on the right-hand branch as in Example 6 of [Brotherston et al., 2012]. The principal
formula for each (Case) application is underlined. Finally, the induction function R is defined such that
the companion of the bud denoted by (∗1) (resp., (†1)) is (∗) (resp., (†)).

Semantics. The semantics for FOLID with equality is defined as in [Brotherston and Simpson, 2011].
Prefixed points of a monotone operator issued from Φ [Aczel, 1977] help to interpret inductive predicates.
A standard model for (Σ,Φ) is a first-order structure defined by the least prefixed point, approached by
an iteratively built approximant sequence.

Definition 6 (validity of a sequent) Let M be a standard model for (Σ,Φ), Γ ` ∆ a sequent and ρ a
valuation which interprets in M the free variables from the sequent. We write Γ |=M

ρ ∆ if whenever G
holds in M using ρ, for all G ∈ Γ, there is some D ∈ ∆ that holds in M using ρ. We say that Γ ` ∆ is
M -true if Γ |=M

ρ ∆, for every ρ. When M is implicit from the context, true is used instead of M -true.

A rule is sound, or preserves the validity, if its conclusion is true whenever its premises are true.
Hence, the conclusion of every 0-premise sound rule is true.

Theorem 18 The CLKIDωN inference rules are sound.

Proof CLKIDωN is an instance of CLKIDω which has been shown sound in
[Brotherston and Simpson, 2011]. �

Definition 7 (sound pre-proof tree) A pre-proof tree of a sequent S is sound if S is true.

7.1.1 Checking the soundness of pre-proofs
Not every pre-proof tree is sound. A very simple example of unsound pre-proof tree can be built for every
false sequent S by firstly adding a copy of some antecedent formula using (contrL) then deleting it using
(Wk). Since the resulting sequent is identical to S, its node is a bud. This finishes the pre-proof tree.

Before presenting the global trace condition, which is a sufficient condition to ensure the soundness
of CLKIDωN proofs, we introduce some preliminary definitions. We denote by S(N) the sequent labelling
any node N . A path is a list [N0, N1, . . .] of nodes in a pre-proof tree such that, for all i ≥ 0, S(N i+1) is
either one of the premises of the rule applied on S(N i) if N i is not a terminal node, or S(R(N i)) if N i

is a bud.

Definition 8 (Trace, Progress point [Stratulat, 2017a]) Let (D, R) be a CLKIDωN pre-proof tree
and let [N0, N1, . . .] be one of its infinite paths and denoted by l. A trace following l is a sequence (τi)i≥0

of inductive antecedent atoms (IAAs) such that, for all i, we have that N i is labelled by Γi ` ∆i and:

1. τi is some Pji(ti) ∈ Γi;
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2. if Γi ` ∆i is the conclusion of (Subst) then τi = τi+1[θ], where θ is the substitution used by the
LK’s (Subst) rule defined as:

Γ ` ∆ (Subst)
Γ[θ] ` ∆[θ]

3. if Γi ` ∆i is the conclusion of (= L) having t = u as principal formula, there is a formula F such
that τi = F and τi+1 = F [{t 7→ u}];

4. if Γi ` ∆i is the conclusion of a (Case) rule then either a) τi+1 = τi, if τi is not the principal
formula of the rule instance, or b) τi is the principal formula and τi+1 is a case descendant of τi.
In the latter case, i is said to be a progress point of the trace;

5. if Γi ` ∆i is the conclusion of any other rule then τi+1 = τi.

Remark 1 Non-equality relations between (instances of) τi and τi+1 in the above definition are possible
only when i is a progress point.

Remark 2 Condition 3 is an abbreviated form of the case dealing with (= L) in Definition 5.4
from [Brotherston and Simpson, 2011], by applying the discussed restrictions to (= L), i.e., if Γi ` ∆i is
the conclusion of (= L), of the form Γ[{x 7→ t; y 7→ u}], t = u ` ∆[{x 7→ t; y 7→ u}] and having t = u as
principal formula, there is a formula F ′ such that τi = F ′[{x 7→ t; y 7→ u}] and τi+1 = F ′[{x 7→ u; y 7→ t}]
under the following conditions: y 6∈ FV (Γi\{t = u} ` ∆i), t is a free variable not occurring in u and
t 6∈ FV (Γ ` ∆).

An infinitely progressing trace is a trace with infinitely many progress points.
In [Brotherston and Simpson, 2011], it has been shown that a pre-proof tree D is sound if it sat-
isfies the global trace condition, i.e., for every infinite path p in D, there is an infinitely progressing trace
following some tail of p.

In the next section, we introduce an approach similar to that used for building Noetherian (well-
founded) induction-based proofs [Stratulat, 2012] to check the global trace condition.

7.2 Defining the ordering-based checking criteria
We define ordering and derivability conditions to be satisfied by the digraph representing some normal
form of the pre-proof. The normalisation procedure transforms the pre-proof into a set of pre-proof trees,
for short pre-proof tree-sets, such that the root of the pre-proof is among the roots of the trees from the
normal form. If the sequent labelling the root of the pre-proof is false, one can build an infinite path
in the digraph, whose nodes are labelled by false sequents and for which there is an infinite progressing
trace following some tail of it.

7.2.1 Normalising pre-proof trees
The normalisation process consists in the exhaustive application of the following three operations.

The first operation applies on an internal node labelled by some premise of (Subst), of the form

...
Γ ` ∆ (Subst)

Γ[σ] ` ∆[σ]

...

The result is displayed in Figure 7.3. The internal node is duplicated and the subtree derivation rooted
by it is detached to become a new tree derivation. At the end, we get two distinct pre-proof trees. The
two occurrences of the duplicated node establish a new bud-companion relation.

93



Chapter 7. Cyclic Induction Reasoning for FOL with Inductive Definitions

Γ ` ∆ (∗1)
(Subst)

Γ[σ] ` ∆[σ]

...

...
Γ ` ∆ (∗)
(new tree)

Figure 7.3: The result of the first operation.

The second operation applies on a non-root companion which is duplicated and the subtree derivation
rooted by it becomes a new pre-proof tree. The result is displayed in Figure 7.4. The sequent labelling
the copy of the companion (∗) becomes the conclusion of a new (Subst) rule. The substitution used by
the new (Subst) rule is chosen such that its premise labels a new bud node labelled by the same sequent
as the conclusion, e.g., the empty substitution. The new bud node will have (*) assigned as companion.

Γ ` ∆ (∗1)
(Subst)

Γ ` ∆
...

...
Γ ` ∆ (∗)
(new tree)

Figure 7.4: The result of the second operation.

The last operation applies on a bud node labelled by some sequent that is the premise of a rule r
different from (Subst) such that

Γ ` ∆ (∗1)
r is transformed to

Γ′ ` ∆′

...

Γ ` ∆ (∗1)
(Subst)

Γ ` ∆ r
Γ′ ` ∆′

...
Let (∗) denote the companion of the bud node. A new application of (Subst) with the empty sub-

stitution was performed on the bud sequent such that the node labelled by its premise becomes the new
bud node whose companion is (∗).

Compared with a similar 2-operation normalisation procedure presented in [Stratulat, 2017a],
only the first operation is shared by the two procedures. The other operation of the procedure
from [Stratulat, 2017a] applies on non-root companions but does not include the (Subst)-step from
Figure 7.4. There is no equivalent for the third operation.

The following properties, related to the normalisation process and the resulting normal form as given
by Lemmas 7 and 8, are satisfied.

Lemma 7 (termination) The normalisation process terminates.

Proof The number of nodes that can be processed by the three operations is finite, for every pre-proof
tree. In addition, it decrements after applying each operation. �

The induction function is extended to allow new bud-companion relations between nodes from different
pre-proof trees.

Definition 9 (rb-path, IH-node) An rb-path is a path of the form [R, . . . ,H,B] that leads the root
R to a bud B in some pre-proof tree of a pre-proof tree-set such that B is the only bud in the path. We
will call H an inductive hypothesis node (for short, IH-node).

A path in a pre-proof tree-set (MD,MR) is a list [N0, N1, . . .] of nodes inMD such that, for all i ≥ 0,
S(N i+1) is one of the premises of the rule applied on S(N i) if N i is an internal node, or S(MR(N i)) if
N i is a bud.
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Lemma 8 The normalisation of any pre-proof (D,R) of a sequent S builds a pre-proof tree-set (MD,
MR) for which

1. all companions are root nodes,

2. there is a pre-proof tree rooted by a node labelled by S, and

3. each of its rb-paths [R, . . . , B] has B as the only node that is labelled by the premise of a (Subst)
rule. A node is a (Subst)-node if and only if it is an (IH)-node.

Proof Claim 1) follows from the exhaustive application of the second operation.
Claim 2) holds because the first operation duplicates only non-root nodes and the third operation

expands bud nodes, so the root nodes do not change. If S labels the root node of a pre-proof tree t having
a non-root companion n, t will be processed by the second operation applied on n but will still have its
root labelled by S.

Claim 3) holds by the construction of the normal forms. �

Example 24 The second operation can be applied on the non-root companion from Example 23, denoted
by (∗), to give the following normalised pre-proof tree-set:

(R.(7.9))
Ny ` R(0, y)

Nx′ ` R(x′, 0) (†1)
(Subst)

Nx′ ` R(x′, 0)
(R.(7.10))

Nx′ ` R(sx′, 0)

Nx,Ny ` R(x, y) (∗)
(Subst)

Nssx′, Ny′ ` R(ssx′, y′)
(Cut)

Nx′, Ny′ ` R(ssx′, y′)
(R.(7.11))

Nx′, Ny′ ` R(sx′, sy′)
(Case N)

Nx′, Ny ` R(sx′, y)
(Case N)

Nx,Ny ` R(x, y) (∗)

(R.(7.9))
` R(0, 0)

Nx′ ` R(x′, 0) (†)
(Subst)

Nx′′ ` R(x′′, 0)
(R.(7.10))

Nx′′ ` R(sx′′, 0)
(Case N)

Nx′ ` R(x′, 0) (†)

7.2.2 Building the digraph of a pre-proof tree-set
Any pre-proof tree-set can also be represented as a digraph of sequents built from the nodes of its tree-
set. The digraph associated to a pre-proof tree-set (MD,MR) is crucial in our setting to check whether
(MD,MR) is a proof tree-set. Its edges are arrows built as follows:

• a forward arrow leads a node N1 to a node N2 if there is a rule that was applied on the sequent
labelling N1 and the sequent labelling N2 is a premise of the rule;

• a back-link (or backward arrow) starts from a bud and ends to its companion.

Some arrows will be annotated by substitutions. Each forward arrow, starting from a (= L)-node
whose principal formula is x = u, is annotated by the equality substitution {x 7→ u}. The forward arrow
starting from a node N that is different from (= L)- and (Subst)-nodes is annotated with the identity
substitution for S(N), which maps the free variables from S(N) to themselves. Finally, the forward
arrows starting from (Subst)-nodes and the back-links are not annotated. They help to build infinite
paths but do not play any role when defining the soundness constraints.

By abuse of notation, a path in a digraph is a (potentially infinite) list of nodes built by following the
arrows in the digraph. An rb-path is any path leading a root to some bud node and does not have other
bud nodes. Unless otherwise stated, we will consider only rb-paths in the digraphs associated
to normalised pre-proof tree-sets.

Remark 3 According to Lemma 8, the bud node B of any such rb-path is the only node in the rb-path
for which S(B) is the premise of a (Subst) rule.
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Definition 10 (cumulative substitution) An rb-path [N1, . . . , Nn, B] (n > 0) can be annotated by the
cumulative substitution σallid σ1 · · ·σn−1, where σi is the substitution annotating the forward arrow leading
Ni to Ni+1, for each i ∈ [1..n − 1], and σallid is the overall identity substitution ∪N∈[N1,...,Nn−1]{x 7→ x |
x ∈ FV (S(N))}.

A list of sequents [S1, . . . , Sn] (n > 0) is admissible if either i) it is a singleton (n = 1), or ii) for every
i ∈ [2..n], Si is the premise of some rule whose conclusion is Si−1. By construction, the list of sequents
labelling the nodes from every path from the digraph associated to a pre-proof tree-set is admissible.

Lemma 9 Let [N1, . . . , Nn−1, Nn, B] be an rb-path. We define its cumulative list lc as
[S(N1)[θc(1,n)], . . . , S(Nn−1)[θc(n−1,n)], S(Nn), S(B)], where θc(i,n) is the cumulative substitution for
[N i, . . . , Nn−1, Nn]. Then, the following properties hold:

1. lc is admissible, and

2. the rule applied on each S(N i) is also applicable on S(N i)[θc(i,n)], ∀i ∈ [1..n − 1], if it is different
from (= L). If the rule is (= L), the (= L)-step can be replaced by a (Wk)-step, where the LK’s
(Wk) rule is defined as

Γ′ ` ∆′ (Wk) if Γ′ ⊆ Γ,∆′ ⊆ ∆
Γ ` ∆

Proof We will perform induction on n. If n = 1, then Nn ≡ N1 and [S(N1)] is a singleton, hence it is
admissible.

If n > 1, let p denote the path [N1, . . . , Nn−1, Nn, B]. By induction hypothesis, we assume that
[S(N1)[θc(1,n−1)], . . . , S(Nn−2)[θc(n−2,n−1)], S(Nn−1)] is admissible, where θc(i,n−1) (i ∈ [1..n − 2]) is the
cumulative substitution annotating [N i, . . . , Nn−1] and the rules applied on S(N i)[θc(i,n−1)] and S(N i)

are the same. We denote by θc(n−1,n−1) the identity substitution for S(Nn−1).
Let θc(i,n) be the cumulative substitution annotating [N i, . . . , Nn−1, Nn], for all i ∈ [1..n − 1]. Let

also θ be the substitution annotating the forward arrow leading Nn−1 to Nn, which can be either an
identity substitution, or an equality substitution. In the first case, for every i ∈ [1..n − 1], θc(i,n) is i)
θc(i,n−1) ∪ {x 7→ x | x ∈ x} if the rule applied on S(Nn−1) is the LK’s rule (∀R) or (∃L), defined below:

Γ ` F,∆
(∀R) if x ∩ FV (Γ ∪∆) = ∅

Γ ` ∀xF,∆

Γ, F ` ∆
(∃L) if x ∩ FV (Γ ∪∆) = ∅

Γ,∃xF ` ∆

and x is the vector of new free variables introduced by these rules, or ii) θc(i,n−1), other-
wise. Since S(N i)[θc(i,n−1)] ≡ S(N i)[θc(i,n)] by induction hypothesis, we can apply the same rules
on S(N i)[θc(i,n)] and S(N i), hence the list [S(N1)[θc(1,n)], . . . , S(Nn−1)[θc(n−1,n)], S(Nn)] is admissible.
[S(N1)[θc(1,n)], . . . , S(Nn−1)[θc(n−1,n)], S(Nn), S(B)] is also admissible since S(B) is the premise of a
(Subst) rule whose conclusion is S(Nn), by property 2) from Lemma 8.

For the second case, θ is an equality substitution. We have that θc(i,n) equals θc(i,n−1)θ, for all i ∈
[1..n − 1]. Since the rule applied on a sequent can also be applied on every instance of it, we have that
[S(N1)[θc(1,n)], . . . , S(Nn−1)[θc(n−1,n)], S(Nn)] is admissible; the rule applied on S(N i) can also be applied
on S(N i)[θc(i,n)], for all i ∈ [1..n− 1]. Notice that the (= L) rule has S(Nn) as premise when applied on
S(Nn−1)[θc(n−1,n)θ]. Let us assume that x = u is the principal formula of S(Nn−1)[θc(n−1,n)]. Then, θ is
{x 7→ u}. On the one hand, (= L) cannot be applied on S(Nn−1)[θc(n−1,n)θ], whose principal formula is
u = u, when u is a non-variable term. On the other hand, the generalised form of (= L) from CLKIDω,
defined in [Brotherston and Simpson, 2011] as
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Γ[{x 7→ u; y 7→ t}] ` ∆[{x 7→ u; y 7→ t}]
(= L) ,

Γ[{x 7→ t; y 7→ u}], x = u ` ∆[{x 7→ t; y 7→ u}]

would replace u by u and delete u = u. If S(Nn−1)[θc(n−1,n)θ] is of the form Γ, u = u ` ∆, the same
result can be achieved with CLKIDωN by applying (Wk) instead:

Γ ` ∆ (Wk)
Γ, u = u ` ∆

So, the list [S(N1)[θc(1,n)], . . . , S(Nn−1)[θc(n−1,n)], S(Nn)] is admissible.
[S(N1)[θc(1,n)], . . . , S(Nn−1)[θc(n−1,n)], S(Nn), S(B)] is also admissible, as shown for the first case. �

A path has cycles if some nodes are repeated in the path. The set of strongly connected components
(SCCs) of a digraph P of some pre-proof tree-set (MD,MR), for which every non-singleton SCC has at
least one cycle, is a partition of P. Additionally, if P is acyclic, each of its nodes is a singleton SCC.

Example 25 The digraph of the normalised pre-proof tree-set from Example 24 is:

Nx,Ny `1 R(x, y)

{x 7→0}

xx

{x7→sx′}

((
Ny `2 R(0, y) Nx′, Ny `3 R(sx′, y)

{y 7→0}

((
{y 7→sy′}

��
Nx′, Ny′ `5 R(sx′, sy′)

��

Nx′ `4 R(sx′, 0)

��

Nx′ `10 R(x′, 0)

{x′ 7→0}

yy
{x′ 7→sx′′}��

Nx′, Ny′ `6 R(ssx′, y′)

π′
��

Nx′ `9 R(x′, 0)

//

`11 R(0, 0) Nx′′ `12 R(sx′′, 0)

π
��

Nssx′, Ny′ `7 R(ssx′, y′)

��

Nx′′ `13 R(x′′, 0)

��
Nx,Ny `8 R(x, y)

GG

Nx′ `14 R(x′, 0)

==

The sequent labelling a node is annotated by the number of the node in the digraph. The digraph has
two non-singleton SCCs: i) π:{N10, N12, N13, N14}, and ii) π′ : {N1, N3, N5, N6, N7, N8}.

7.2.3 Defining the ordering and derivability conditions

The premises for defining the new soundness criterion are similar to [Stratulat, 2017a]. Let π be a SCC
from P and <a an ordering stable under substitutions, defined over the set S of instances of the IAAs
from the sequents labelling nodes inside π. Given a path p in π, we say that an IAA τj derives from an
IAA τi using the trace (τk)(k≥0) along p if i < j. Also, given two arbitrary substitutions γ and δ, we say
that τj [γ] derives from τi[δ] using (τk)(k≥0) along p. <π is the multiset extension of <a.

The ordering constraints from a multiset extension relation comparing two sequent instances can
be combined with derivability constraints on IAAs to give the <π-derivability relation, referred to as
ordering-derivability when the ordering is not known. For this, we assume that every sequent S has
associated a measure value (weight), denoted by AS and represented by a multiset of IAAs of S.

Definition 11 (<π-derivability) Let N i and N j be two nodes occurring in some path p from π, and θ, δ
be two substitutions. We define A′S(Ni)[θ] (resp., A

′
S(Nj)[δ]) as the multiset, resulting from AS(Ni)[θ] (resp.,

AS(Nj)[δ]) after the pairwise deletion of all common IAAs from AS(Ni)[θ] and AS(Nj)[δ]. In addition, we
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assume that for each l ∈ AS(Nj)[δ]\A′S(Nj)[δ], there is l′ ∈ AS(Ni)[θ]\A′S(Ni)[θ] satisfying i) l ≡ l′, and ii)
l is the unique literal from AS(Nj)[δ] that derives from l′ using some trace following p.

Then, S(N j)[δ] is <π-derivable from S(N i)[θ] along p if for each l ∈ A′S(Nj)[δ] there exists l′ ∈
A′S(Ni)[θ] such that l′ >a l and l derives from l′ using some trace following p.

By the definition of <π as a multiset extension of <a, the following results can be proved when
considering some path in π.

Lemma 10 If S is <π-derivable from S′ then AS <π AS′ .

Proof By the definition of the ordering constraint in the <π-derivability relation. �

Lemma 11 The ‘<π-derivability’ relation is stable under substitutions and transitive.

Proof Let S and S′ be two sequents such that S is <π-derivable from S′ along some path p in π. By
Lemma 10, AS′ >π AS . Since <π is stable under substitutions, we have that AS′[σ] >π AS[σ], for every
substitution σ. According to Definition 11, the derivability relations between their IAAs do not change
by instantiation operations. Therefore, S[σ] is <π-derivable from S′[σ] along p. We conclude that the
‘<π-derivability’ relation is stable under substitutions.

To prove the transitivity property, let us assume three sequents S1, S2 and S3 labelling nodes in a
path p built by the concatenation of two paths p1 and p2 such that S3 is <π-derivable from S2 along p2

and S2 is <π-derivable from S1 along p1. We will try to prove that S3 is <π-derivable from S1 along p.
Since S3 is <π-derivable from S2 along p2, by Definition 11 we have that

(i1) for each l3 ∈ A′S3
there exists l2 ∈ A′S2

such that l2 >a l3 and l3 derives from l2 using some trace
following p2, and

(ii1) for each l3 ∈ AS3\A′S3
, there is some l2 ∈ AS2\A′S2

such that l3 ≡ l2 and l3 is the unique IAA that
derives from l2 using some trace following p2,

where A′S3
(resp., A′S2

) is the multiset resulting from AS3
(resp., AS2

) after the pairwise deletion of all
common IAAs from AS3 and AS2 . Also, since S2 is <π-derivable from S1 along p1, we have that

(i2) for each l2 ∈ A′′S2
, there exists l1 ∈ A′S1

such that l1 >a l2 and l2 derives from l1 using some trace
following p1, and

(ii2) for each l2 ∈ AS2
\A′′S2

, there is some l1 ∈ AS1
\A′S1

such that l2 ≡ l1 and l2 is the unique IAA that
derives from l1 using some trace following p1,

where A′′S2
(resp., A′S1

) is the multiset resulting from AS2 (resp., AS1) after the pairwise deletion of all
common IAAs from AS2

and AS1
. We have to check that for each l3 ∈ A′′S3

, there exists l1 ∈ A′′S1

such that l1 >a l3 and l3 derives from l1 using some trace following p, where A′′S3
(resp., A′′S1

) is the
multiset resulting from AS3

(resp., AS1
) after the pairwise deletion of all common IAAs from AS3

and
AS1

. Moreover, for each l3 ∈ AS3
\A′′S3

, there is some l1 ∈ AS1
\A′′S1

such that l3 ≡ l1 and l3 is the unique
IAA that derives from l1 using some trace following p. We consider the following cases:

1. If l3 ∈ A′S3
there exists l2 ∈ A′S2

such that l2 >a l3 and l3 derives from l2 using some trace t2
following p2.

(a) If l2 ∈ A′′S2
there exists l1 ∈ A′S1

such that l1 >a l2 and l2 derives from l1 by using some trace
t1 following p1. Then l1 >a l3 by the transitivity of <a, so l1 ∈ A′′S1

, l3 ∈ A′′S3
and l3 derives

from l1 using the concatenation of t1 and t2 following p.

(b) If l2 ∈ AS2\A′′S2
, there is l1 ∈ AS1\A′S1

such that l2 ≡ l1 and l2 is the unique IAA that derives
from l1 by using some trace t1 following p1. Since l1(≡ l2) >a l3, we have that l1 ∈ A′′S1

,
l3 ∈ A′′S3

and l3 derives from l1 using the concatenation of t1 and t2 following p.
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2. If l3 ∈ AS3
\A′S3

there exists l2 ∈ A′S2
such that l3 ≡ l2 and l3 is the unique IAA that derives from

l2 using some trace t2 following p2.

(a) If l2 ∈ A′′S2
there exists l1 ∈ A′S1

such that l1 >a l2 and l2 derives from l1 by using some trace
t1 following p1. Then, l1 >a (l2 ≡)l3, so l1 ∈ A′′S1

, l3 ∈ A′′S3
and l3 derives from l1 using the

concatenation of t1 and t2 following p.

(b) If l2 ∈ AS2
\A′′S2

there exists l1 ∈ A′S1
such that l1 ≡ l2 and l2 is the unique IAA that derives

from l1 by using some trace t1 following p1. This means that l3 ∈ AS3\A′′S3
, l1 ∈ AS1\A′′S1

with l1 ≡ (l2 ≡)l3 and l3 derives from l1 using the concatenation of t1 and t2 following p. In
addition, l3 is the unique IAA in AS3

that derives from l1.

�

The soundness criterion consists in checking if the sequents labelling (IH)-nodes from every non-
singleton SCC, referred to as induction hypotheses, satisfy some constraints.

Definition 12 (induction hypothesis (IH), IH discharged by a SCC) Let π be a non-singleton
SCC and [R, . . . ,H,B] an rb-path p in π. We say that the induction hypothesis (IH) S(H) is dis-
charged by π if S(H) is <π-derivable from S(R)[θc] along p, where θc is the cumulative substitution
annotating p.

Theorem 19 (soundness) The sequents, labelling the roots from every normalised pre-proof tree-set
whose non-singleton SCCs discharge their IHs, are true.

Proof Let M be a standard model for (Σ,Φ) and assume a normalised pre-proof tree-set. Let also P
denote its digraph whose non-singleton SCCs discharge their IHs. By contradiction, we assume that there
exists a root node N such that S(N) is false. We define a partial (well-founded) ordering <R over the
(finite number of) root nodes from P such that, for every two distinct root nodes N1 and N2, we have
N1 <R N2 if i) N1 and N2 are not in the same SCC, and ii) N1 can be joined from N2 in P.

By induction on <R, we consider the base case when N is a <R-minimal node. (The step case, when
N is not a <R-minimal node, will not be detailed since it can be treated similarly by assuming that all
<R-smaller root nodes are labelled by true sequents.) If N is included in a one-node SCC, N is also a leaf
node. The only 0-premise rules are the LK’s (Ax) rule as well as (R.) when unfolding with unconditional
axioms. In both cases, S(N) is true which leads to a contradiction.

Let us now assume that N is a <R-minimal node from some non-singleton SCC π. We will analyse
all possible scenarios and show that each of them leads to a contradiction. The tree t from P and rooted
by N should have buds labelled by false sequents, otherwise S(N) would be true. Let B be such a bud
such that Nh is its companion and [N, . . . ,H,B] is an rb-path in π. Nh should be a root node from π
because N is <R-minimal; it is labelled by the false sequent S(B). Since the CLKIDωN rules are sound,
by Lemma 9, we conclude that the cumulative instance S(N)[θc] is false, where θc is the cumulative
substitution for [N, . . . ,H,B]. π discharges its IHs, so we have that S(B)[δh](≡ S(H)) is <π-derivable
from S(N)[θc], where δh is the substitution used by the (Subst)-step whose conclusion is S(H). By
Lemma 10, we have that AS(Nh)[δh] <π AS(N)[θc].

We perform a similar reasoning on Nh as for N . There is an rb-path [Nh, . . . ,H ′, Nf ′] such that
the companion of Nf ′ (in π) is Nh′ and S(Nh)[δh] shares false instances with S(Nh)[θc1], where θc1 is
the cumulative substitution annotating [Nh, . . . ,H ′, Nf ′]. By contradiction, we assume that no false
instance of S(Nh)[δh] is shared. Then, one can build a finite bud-free pre-proof tree of S(Nh)[δh], by
using only sound rules. Hence, S(Nh)[δh] is true, so contradiction. Therefore, there are two substitutions
ε and τ such that S(Nh)[δhε] ≡ S(Nh)[θc1τ ] and S(Nh)[θc1τ ] is false. Let S(Nh′)[δ′h](≡ S(H ′)) be the
instance of S(Nh′) used as IH. Since it is discharged by π, we have that AS(Nh)[θc1] >π AS(Nh′)[δ′h].
From AS(N)[θc] >π AS(Nh)[δh] and the previous ordering constraint, we get AS(N)[θcε] >π AS(Nh)[δhε] and
AS(Nh)[θc1τ ] >π AS(Nh′)[δ′hτ ], by the ‘stability under substitutions’ property of <π. Hence,

AS(N)[θcε] >π A(S(Nh)[δhε] ≡) AS(Nh)[θc1τ ] >π AS(Nh′)[δ′hτ ]
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For similar reasons as given for S(Nh)[δh], we can show that S(Nh′)[δ′hτ ] is false, hence it can be treated
similarly as S(Nh)[δh]. And so on, the process can be repeated to produce an infinite strictly <π-
decreasing sequence s of measure values associated to instances of sequents labelling root nodes from π,
of the form

AS(N)[θcε··· ] >π AS(Nh)[θc1τ ··· ] >π AS(Nh′)[··· ] >π . . .

We can associate to s the infinite admissible list ls of its sequents
[S(N)[θcε · · · ], S(Nh)[θc1τ · · · ], S(Nh′)[· · · ], . . .] and define the path p underlying ls as the concate-
nation of the rb-paths from π that built s, i.e., [N, . . . , B,Nh, . . . , Nf ′ , . . .]. By the construction of s,
every successive (Subst)-, bud and root nodes in p are labelled by the same sequent instance in ls, so the
(Subst)-steps are stuttering in ls. By Lemma 10, all (Gen)- can be replaced by (Wk)-steps. p is of the
form [N∞ . . . , N1, . . . , N0] where N0, N1, . . . , N∞ are an infinite number of all the occurrences of N in
p.

We will show that there is a trace following p that has an infinite number of progress points. As ex-
plained in [Brotherston and Simpson, 2011], it means that there is an infinite strictly decreasing sequence
of ordinals, hence contradiction. Since p is the concatenation of rb-paths in π and π discharges its IHs,
for each such rb-path the bud sequent is <π-derivable from the cumulative instance, along the rb-path,
of the root sequent. By Lemma 11, there is an instance S(N∞)[θ∞] such that S(N0) is <π-derivable
from it along p, where θ∞ is the composition of all cumulative substitutions of the rb-paths from l. For
any two consecutive nodes Ni and Ni−1 (i ∈ [1..∞]), we have that S(Ni−1)[θi−1] is <π-derivable from
S(Ni)[θi], where θi (resp., θi−1) are the compositions of all cumulative substitutions of the rb-paths along
[Ni, . . . , N0] (resp., [Ni−1, . . . , N0]).

Let us denote by S (resp, S′) the sequent S(Ni)[θi] (resp., S(Ni−1)[θi−1]), for some i ∈ [1..∞]. By
Definition 11 and the transitivity of the <π-derivability relation, for each IAA l from AS there is an IAA
l′ from AS′ such that l derives from l′. Therefore, there are n traces along the path p′ [N∞, . . . , Ni],
where n is the number of IAAs from S.

We will show that the traces along p′ have an infinite number of progress points. By contradiction,
we assume that this number is finite. Therefore, there is a subpath p′′ of p whose traces have no progress
points and there exists j ∈ [1..∞] such that Nj and Nj−1 belong to p′′. Let us denote by Sj (resp,
Sj−1) the sequent S(Nj)[θj ] (resp., S(Nj−1)[θj−1]). Since Sj−1 is <π-derivable from Sj , we have that
ASj−1

<π ASj . By the definition of <π as a multiset extension of the ordering <a over the instances
of IAAs from the root sequents in π, there should be an IAA l ∈ ASj−1

for which there is another IAA
l ∈ ASj such that l <a l′ and l derives from l′, i.e., l and l′ are from an infinite trace t following (a
subpath of) p′′ which has no progress points. According to the definition of a trace (see Definition 8)
and the way ls was built, l <a l′ is possible only if the subtrace of t from l′ to l has at least one progress
point, so contradiction. Otherwise, l ≡ l′ since i) ls is admissible, ii) the (Subst)-steps are stuttering, iii)
the (Gen)-steps can be replaced by (Wk)-steps, and iv) the instantiation steps that built s preserve the
equality relations. �

Example 26 For the sequents labelling the nodes from the digraph given in Example 24, we define the
measure values ANt`R(t,0) = {Nt}, ∀t, and ANt1,Nt2`R(t1,t2) = {Nt2}, ∀t1, t2. The IH S(N13) is <π-
derivable from S(N10)[{x′ 7→ sx′′}], hence discharged by the SCC π using the trace [Nx′, Nx′′, Nx′′], if
{Nx′′} <π {Nsx′′}. Also, the IH S(N7) is <π′-derivable from S(N1)[{x 7→ sx′; y 7→ sy′}] in the SCC π′

using the trace [Ny,Ny,Ny′, Ny′, Ny′, Ny′] if {Ny′} <π′ {Nsy′}. The ordering constraints hold if <π
and <π′ are the multiset extensions of a rpo <rpo for which z <rpo sz, for every variable z.

By Theorem 19, the root sequents in the pre-proof tree-set, S(N1) and S(N10), are true.

Validation costs. We analyse the worst-case time complexity for validating the soundness of a pre-
proof tree of n nodes with p (< n) buds occurring in non-singleton SCCs. The number of operations for
normalising a CLKIDωN pre-proof of n nodes is given by the sum of non-root companions, non-terminal
(Subst)-nodes and nodes labelled by some sequent that is the premise of a rule r different from (Subst).
So, it is smaller than 3n. Let c be the maximal cost of an operation, including the node duplication
and the creation of a (Subst)-node or bud-companion relation. Their total cost is smaller than 4nc (the
second operation duplicates nodes twice). If c′ is the constant representing the cost for annotating a
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substitution, the cost for building the digraph of the normalized pre-proof tree-set is smaller than nc′.
The partition of a digraph in SCCs can be done in linear time [Tarjan, 1972].

The cost for evaluating the ordering-derivability constraints is computed as follows. If B denotes
a bud occurring in a non-singleton SCC, the IH that instantiates S(B) is unique because B has only
one companion and at most one companion can be the root of the tree including B. The number of
<-derivability constraints is that of their buds, i.e., p. In the worst case, p is n − 1. The validation
cost of a <-derivability constraint is the sum of the costs of derivability and ordering constraints. The
time complexity for checking whether an IAA l derives from another IAA l′ is linear w.r.t. the size of
the history of l, which is a value smaller than n. The time complexity for checking a multiset extension
relation is O(rq), where r and q are the number of IAAs from the measure value of the compared sequents.
In the worst case, when all bud IAAs have their history of length n and p is n− 1, the time complexity
for checking the derivability constraints is O(n2k2), where k is the maximal cardinality of a sequent’s
measure value. Similarly, the worst-case validation cost of the ordering constraints is polynomial in k,
the maximal size of a literal and n, if the time complexity for comparing two IAAs is at most polynomial,
for example by using a Knuth-Bendix ordering [Baader and Nipkow, 1998].

7.3 Implementation
The method has been implemented in Cyclist and its extended version is called E-Cyclist. Cyclist
builds the pre-proofs using a depth-first search strategy that aims at closing open nodes as quickly as
possible. Whenever a new cycle is built, the model checker is called to validate it. If the validation
result is negative, the prover backtracks by trying to find another way to build new cycles. Hence, it may
happen that the model checker be called several times during the construction of a pre-proof.

To each root r from the digraph P of a normalized pre-proof tree-set, the method attaches a measure
M(r) consisting of a multiset of IAAs of the sequent labelling r, denoted by S(r). The procedure for
computing these measure values is given by Algorithm 3.

Algorithm 3 GenOrd(P): to each root r of P is attached a measureM(r)

for all root r do
M(r) := ∅

end for
for all rb-path r → b from a non-singleton SSC do
if there is a trace between an IAA A of S(b) and an IAA A′ of S(r) then
add A toM(rc) and A′ toM(r), where rc is the companion of b

end if
end for

Since the number of rb-paths is finite, Algorithm 3 terminates.

Example 27 The measure values for the roots from the normalised pre-proof tree-set from Example 24
are built as follows.

Firstly, the measure for the roots, denoted by (∗) and (†), are the empty multisets. Then, we analyse
each rb-path found in a non-singleton SCC of the digraph from Example 25. The rb-path from (†) to the
bud (†) has a trace Nx′, Nx′′, Nx′′, Nx′, so the new measure value for (†) is {Nx′}. Finally, the rb-path
from (∗) to the bud (∗) has a trace Ny,Ny,Ny′, Ny′, Ny′, Ny, so the new measure value for (∗) is {Ny}.

Our method is semi-decidable as Algorithm 3 may compute measure values that do not pass the
comparison test for some non-singleton SCCs that are validated by the model checker. For this case, we
considered an improvement consisting of the incremental addition of IAAs from a root sequent that are
not in the measure value of the corresponding root r. Such an addition does not affect the comparison
value along the rb-paths starting from r, it affects only the comparison tests for the rb-paths ending
in the companions of r. This may duplicate some IAAs from the value measure of the roots from the
rb-paths leading to these companions and the duplicated IAAs have to be processed as the added IAAs
from the beginning. And so on, until no changes are performed anymore.
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Table 7.1 illustrates some statistics about the proofs of the conjectures considered in Table 1
from [Brotherston et al., 2012]. They have been produced with CLKIDωN by using or not our im-
proved method integrated in a version of Cyclist tagged as ‘CSL-LICS14’ in the git repository at
https://github.com/ngorogiannis/cyclist. The IAAs are indexed in Cyclist to facilitate
the construction of traces and the way they are indexed influence how the proofs are built. The column
labelled ‘Time-E’ (resp., ‘Time’) is the proof time measured in milliseconds (resp. not) using our method.
‘SC%’ shows the percentage of time taken to check soundness. ‘Depth’ shows the depth of the proof,
‘Nodes’ the number of nodes in the proof, and ‘Bckl.’ the number of back-links in the proof. The last
column shows the number of calls to the model checker as (calls on unsound proof)/(total calls) when
our method is not used. The proofs have been performed on a MacBook Pro with a 2,7 GHz Intel Core i7
processor and 16 GB of memory. We can notice that, by using our method, the execution time is reduced
by a factor going from 1.43 to 5.

Theorem Time-E Time SC% Depth Nodes Bckl. Uns./All
O1x ` Nx 2 7 61 2 9 1 0/1
E1x ∨O2x ` Nx 4 11 63 3 19 2 0/4
E1x ∨O1x ` Nx 2 9 77 2 13 2 2/5
N1x ` Ox ∨ Ex 3 7 52 2 8 1 0/1
N1x ∧N2y ` Q(x, y) 297 425 40 4 19 3 168/181
N1x ` Add(x, 0, x) 1 5 76 1 7 1 0/1
N1x ∧N2y ∧Add3(x, y, z) ` Nz 8 14 38 2 8 1 4/5
N1x ∧ N2y ∧ Add3(x, y, z) `

Add(x, sy, sz)
15 22 32 2 14 1 9/10

N1x ∧N2y ` R(x, y) 266 484 48 4 35 5 149/170

Table 7.1: Statistics for proofs using Cyclist.

Even with the improved version of Algorithm 3, the method remains semi-decidable.

Example 28 Figure 7.5 is the screen capture of a Cyclist derivation built while proving Nx ∧ Ny `
R(x, y). It can be noticed that that the computed measure values did not pass the comparison test while
the model checker succeeds. Luckily, the prover backtracked and finally found the same proof as that built
using the model checker.

The source code of the implementation can be downloaded from https://members.loria.fr/
SStratulat/files/e-cyclist.zip.

7.4 Converting cyclic to Noetherian induction reasoning
Cyclic pre-proofs can also be validated by Noetherian induction reasoning. The conversion process is
explained using as example the Cyclist proof of the P&Q example.

7.4.1 The Cyclist proof

The inductive predicates P , Q and N from the P&Q example are encoded in Cyclist as :

N {
true⇒ N(0)

N1(x)⇒ N(s(x))

} ;

P {
true⇒ P (0)

P1(x) & Q2(x, s(x))⇒ P (s(x))

} ;

Q {
true⇒ Q(x, 0)

Q1(x, y) & P2(x)⇒ Q(x, s(y))

} ;

The Cyclist proof of the P&Q conjecture from Example 2 is given in Figure 7.6.
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Figure 7.5: A case when the comparison tests fail while the model checker succeeds.

Most of the inference rules are similar to those used to build the pre-proof from the previous section.
(L.Unf.) implements the CLKIDωN ’s (Case)-rule; it is prefixed by the inductive predicate symbol that
has served to generate the variable instantiation schema. A case analysis is performed instead when the
argument of the inductive predicate is a non-variable term (see its application on the sequent labelling
the node [12]). (R.Unf.) is similar to the CLKIDωN ’s (R.)-rule, excepting that it is less precise since only
the used inductive predicate symbol is specified instead of the exact axiom. It also allows to unfold inside
the conjunctions from the succedent part of the sequents. (R.And) and (Weaken) correspond to (∧ R)
and (Wk), respectively. Other rules are:

• (Id), applied on leaves labelled with sequents whose succedent is known to be true,

• (Backl), applied on every bud; it is followed by a singleton list containing the companion,

• (Subst), the LK’s substitution rule, and

• (Ex Falso), applied on leaves labelled with sequents whose antecedent is false.

The last rule assumes that the function symbols are distinct. In addition, Cyclist assumes that they
are injective.

Compared to the original pre-proof, the cyclic pre-proof is enriched with the bud-companion relations.
The trace-based soundness arguments showing that it is indeed a proof are not given here. Instead, the
reader may consult Example 5.2.3 from [Brotherston, 2006] presenting a different CLKIDω proof of our
P&Q conjecture.

7.4.2 The conversion procedure
Our conversion procedure is based on the ordering-based checking procedure.
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Figure 7.6: The screenshot of the Cyclist pre-proof built for the P&Q conjecture.

We recall that, due to the bud-companion relations, the Cyclist pre-proof trees can be represented
as graphs that may have non-singleton SCCs, hence allowing for building infinite paths along their cycles.
The checking procedure can normalize any Cyclist pre-proof tree T , having only (L.Unf.)-steps that
instantiate variables along the cycles, into a forest of connected cyclic pre-proof trees for which i) all
companions are root nodes, ii) the root of T is among the root nodes, and iii) every rb-path p, also
denoted by r → b when the root r leads to the bud b, ends with a (Subst)-step which is also the unique
(Subst)-step in p.

For the P&Q example, the result of the normalisation operation generates two trees, where the node
4 is duplicated twice. Once, to separate from the main tree the subtree rooted by it, followed by the
creation of a new bud-companion relation between the nodes 4 and 4′′. The other time, to perform a
stuttering step, by applying a (Subst)-step with the identity substitution. Below is listed the result of
the normalisation step, where only the rb-paths are displayed:

. . .

(Backl)[4]

4′′ : N1x,N2z,N3sz ` Qxz ∧ Px
(Subst)[4′′]

4′ : N1x,N2z,N3sz ` Qxz ∧ Px
(Q R.Unf.)[4′]

2 : N1x,N2z,N3sz ` Qxsz
(N L.Unf.)[1, 2]

0 : N1x,N2y ` Qxy

(Backl)[0]

8 : N1x,N2y ` Qxy
(Subst)[8]

7 : N1x,N2z ` Qxz
(Weaken)[7]

5 : N1x,N2z,N3sz ` Qxz
. . .

. . .

(Backl)[4]

17 : N1x,N2z,N3sz ` Qxz ∧ Px
(Subst)[17]

16 : N1y,N2y,N3sy ` Qyy ∧ Py
(Weaken)[16]

15 : N1y,N2z,N3sz,N4y,N5sy ` Py ∧Qyy ∧ Py
(Q R.Unf.)[15]

14 : N1y,N2z,N3sz,N4y,N5sy ` Py ∧Qysy
(N L.Unf.)[13, 14]

12 : N1y,N2z,N3sz,N4sy ` Py ∧Qysy
(P R.Unf.)[12]

10 : N1y,N2z,N3sz,N4sy ` Psy
(N L.Unf.)[9, 10]

6 : N1x,N2z,N3sz ` Px
(R.And) [5, 6]

4 : N1x,N2z,N3sz ` Qxz ∧ Px

It can be noticed that every infinite path in the Cyclist pre-proof are also reproduced in its normal
form, by duplicating the node 4, and viceversa, by deleting some of its occurrences.

The next step is to associate to each root r a measure value in terms of a multiset of inductive atoms
occurring in the antecedent part of the sequent labelling r such that some derivability and ordering
constraints are satisfied. The derivability constraints consist in checking that, given an rb-path p, some
IAA of the sequent labelling its bud can be derived from some IAA of the sequent labelling its root, by
following a trace along p. For our example, we list all traces along the rb-path

104



7.4. Converting cyclic to Noetherian induction reasoning

• 0→ 4′′: [N1x,N1x,N1x,N1x](=), [N2y,N2z,N2z,N2z](>), [N2y,N3sz,N3sz,N3sz](=),

• 4→ 8: [N1x,N1x,N1x,N1x](=), [N2z,N2z,N2z,N2y](=), and

• 4 → 17: [N1x,N1x,N1y,N1y,N1y,N1y,N1y,N1x](>), [N1x,N1x,N4sy,N4sy,N4y,N4y,
N4y,N2z](>), and [N1x,N1x,N4sy,N4sy,N5sy,N5sy,N3sy,N3sz](=).

Each trace [Ar, ...., Ab] following any of the above rb-paths was annotated by > if it has at least one
progress point, i.e., a step where an IAA changes due to an unfolding occurring inside the application of
(L.Unf.), fact also denoted by Ar > Ab. Otherwise, it is annotated by = and say that Ar and Ab are
equal. An infinitely progressing trace has infinite progress points.

The global trace condition requires that, for any infinite path p, there is an infinitely progressing
trace starting from some point of p. This condition is ensured if for each rb-path r → b of p, we have
M(r) >mul M(c(b)), where c(b) is the companion of b and M(r) (resp., M(c(b))) are the measure values
for r (resp., c(b)). >mul is the trace-based multiset extension of >, i.e., M(r) >mul M(c(b)) if the equal
IAAs from M(r) and M(c(b)) are deleted to get M(r)′ and M(c(b))′ and either i) M(c(b))′ is empty and
M(r)′ is not empty, or ii) for each IAA a ∈M(c(b))′ there is an IAA b ∈M(r)′ such that b > a.

The conversion procedure was implemented in E-Cyclist. For our example, the heuristics proposed
the measure value {N1x,N1x,N2y,N2y} for the node 0 and {N1x,N1x,N2z,N2z,N3sz} for the node 4.
The derivability and ordering constraints hold for each rb-path, as follows:

• the rb-path 0 → 4′′: {N1x,N1x,N2y,N2y} >mul {N1x,N1x,N2z,N2z,N3sz}. The deletion of
equal IAAs gives {N2y} >mul {N2z,N2z} which holds since N2y > N2z;

• the rb-path 4 → 8: {N1x,N1x,N2z,N2z,N3sz} >mul {N1x,N1x,N2y,N2y}. It boils down to
{N3sz} >mul {};

• the rb-path 4 → 17: {N1x,N1x,N2z,N2z,N3sz} >mul {N1x,N1x,N2z,N2z,N3sz}. The equal
IAAs are deleted to issue {N1x,N2z,N2z,N3sz} >mul {N1x,N1x,N2z,N2z}, for which N1x found
on the lhs of >mul is greater than any IAA from {N1x,N1x,N2z,N2z}.

The measure values built for the roots help also to compare the roots using well-founded orderings.
Given a well-founded ordering <wf over the IAAs and <wfmul its multiset extension, we say that an rb-path
r → b is valid if M(c(b))[δ] <wfmul M(r)[θ], where δ is the substitution used in the Subst-step of r → b and
θ is the cumulative substitution for r → b, i.e., the composition of all substitutions instantiating IAAs
along r → b. In the Noetherian induction setting, M(c(b))[δ] plays the role of induction hypothesis and
M(r)[θ] that of the induction conclusion. We recall that σid denotes the identity substitution.

Showing that every rb-path is valid is enough to conclude that a pre-proof is a Noetherian induction
proof. For our example, the ordering constraints checking the validity of the rb-paths are:

• 0→ 4′′: {Nx,Nx,Nz,Nz,Nsz}[σid] <wfmul {Nx,Nx,Ny,Ny}[{y 7→ sz}],

• 4→ 8: {Nx,Nx,Ny,Ny}[{y 7→ z}] <wfmul {Nx,Nx,Nz,Nz,Nsz}[σid], and

• 4 → 17: {Nx,Nx,Nz,Nz,Nsz}[{x 7→ y; z 7→ y}] <wfmul {Nx,Nx,Nz,Nz,Nsz}[{x 7→ sy}], where
the indexes for the inductive predicates are omitted.

The ordering constraints are satisfied if <wf is a mpo built from any precedence over the symbols
{N, s, 0}. In practice, one can consider that all the inductive predicate symbols are equivalent, hence the
measure values for the roots are multisets built only from their arguments. For our example, the measure
value for the root 0 would be {x, x, y, y} and {x, x, z, z, sz} for the root 4.

7.4.3 Experimental results
We report that the proofs for all these conjectures have been successfully converted to Noetherian in-
duction proofs. Some statistics about the Noetherian induction proofs, as the number of SCCs, the root
sequents and their measure values, are given in Table 7.2:
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Theorem # SCC Root Sequents Measure values
O1(x) ` N(x) 1 O1(x) ` N(x) {x}
E1(x) ∨O2(x) ` N(x) 2 E1(x) ` N(x) {x}

O2(x) ` N(x) {x}
E1(x) ∨O1(x) ` N(x) 1 E1(x) ` N(x) {x}

O1(x) ` N(x) {x}
N1(x) ` O(x) ∨ E(x) 1 N1(x) ` O(x) ∨ E(x) {x}
N1(x) ∧N2(y) ` Q(x, y) 1 N1(x) ∧N2(y) ` Q(x, y) {x, x, y, y}

N1(x) ∧ N2(z) ∧ N3(s(z)) `
Q(x, z) ∧ P (x)

{x, x, z, z, s(z)}

` Add(0, 0, 0) 0
N1(x) ` Add(x, 0, x) 1 N1(x) ` Add(x, 0, x) {x}
N1(x) ∧ N2(y) ∧

Add3(x, y, z) ` N(z)
1 N1(x) ∧ N2(y) ∧ Add3(x, y, z) `

N(z)
{x, z}

N1(x) ∧ N2(y) ∧
Add3(x, y, z) `

Add(x, s(y), s(z))

1 N1(x) ∧ N2(y) ∧ Add3(x, y, z) `
Add(x, s(y), s(z))

{x, z}

N1(x) ∧N2(y) ` R(x, y) 2 N1(x) ∧N2(y) ` R(x, y) {y}
N1(w)∧N3(s(s(w)))∧N4(s(w))∧

N5(0) ` R(s(w), 0)
{w}

Table 7.2: Statistics about the Noetherian induction proofs issued from Cyclist proofs.

7.5 Conclusions
We have presented a new method to validate a class of CLKIDω pre-proof trees by converting them to
pre-proof tree-sets, then showing that the global trace condition is implicitly satisfied if some ordering and
derivability constraints hold. Every infinite path p from a pre-proof tree normalized to a proof (tree-set)
can be built by concatenating path segments from the definition of the minimal cycles of its proof. These
constraints ensure that there is an infinitely progressing trace following some tail of p. The ordering
constraints can also be used to validate cyclic pre-proofs as Noetherian induction proofs.

Our approach allows more flexibility; a different induction ordering can be defined for each SCC with
cycles from the digraph of the proof. This is not the case from the unique induction ordering defined
over the buds of a pre-proof tree with trace manifolds [Brotherston, 2005, Brotherston, 2006]. Also,
our approach does not require pre-proof trees to be in cycle normal form that are, in the worst case,
exponentially bigger.

The soundness check can be done in polynomial time provided that the time complexity for comparing
two IAAs is at most polynomial. We defined proof strategies ensuring that the number of ordering
constraints equals that of the induction hypotheses that are really required in the proof. In practice,
their number is generally small even for proofs concerning real-size applications. For example, every
cyclic induction proof from Table 2.1 includes at most 8 induction hypotheses and 4 minimal cycles.
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This chapter is based on [Stratulat, 2005, Stratulat, 2007]. We present a framework and a methodol-
ogy to build and analyse formula-based Noetherian induction inference systems. A stronger connection
between different proof techniques like those based on implicit induction and saturation is established by
uniformly and explicitly representing them as applications of the formula-based Noetherian induction.
The framework offers a clear separation between logic and computation, by the means of i) an abstract
inference system that defines the maximal sets of induction hypotheses available at every step of a proof,
and ii) reasoning modules that perform the computation and allow for modular design of the concrete
inference rules. The methodology is applied to define a concrete implicit induction inferece system and
two saturation-based inference systems.

In Chapter 1, we have shown that soundness is a vital property of formula-based Noetherian induc-
tion inference systems, which guarantees the persistence of minimal counterexamples in any derivation
containing false conjectures. One straightforward application of it concerns the implicit induction infer-
ence systems which can prove that the conjectures are valid if the derivations end with an empty set.
Another outstanding application refers to saturation-based inference systems; they detect the minimal
counterexamples in the last (saturated) state in finite derivations.

The methodology helps to analyse two existent saturation-based inference systems, one based on
ordered paramodulation, the other on ordered resolution.

Contributions. Below we listed the main contributions of our approach:

Consolidation of the link between saturation and implicit induction procedures. The de-
sign of inference systems that (partially) abstract the computation goes back to the late 80’s, early
90’s [Bachmair, 1988, Reddy, 1990], as a solution for representing classes of concrete inference systems
sharing similar reasoning techniques. In this way, the properties established for abstract systems are
naturally propagated to the instantiating systems. In our framework, we pushed this idea further and
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proposed As, a saturation-based system that completely abstracts the computation, and showed the
resolution-based system RP [Bachmair and Ganzinger, 2001] to be an instance of it. Since As defines
the same induction hypotheses as another implicit induction abstract system [Stratulat, 2005], an even
stronger link between saturation-based and implicit induction procedures has been established. This
result opens the perspective of designing hybrid inference systems that would be able to perform both
implicit induction and saturation-based proofs with minor changes, as explained in [Stratulat, 2005]. It
also means that reasoning techniques can be shared: for example, we expect that the approach for in-
tegrating Computer Algebra algorithms into implicit induction systems [Armando et al., 2002] be easily
adaptable for saturation-based systems.

Definition of stronger redundancy criteria for saturation-based systems. Since similar in-
stantiation results between concrete and abstract systems have already been obtained in [Stratulat, 2001,
Stratulat, 2005], As can be considered as a reference for defining maximal sets of induction hypotheses for
many other saturation-based systems. The proposed methodology leaves room for further extensions of
existing systems, for example for any concrete RP instance described in [Bachmair and Ganzinger, 2001].

Simple and modular design of sound and concrete saturation-based systems. Prover designers
can benefit of our framework to build new and sound saturation-based systems or to extend existing ones.
Thanks to the proposed methodology, any rule can be soundly i) designed to integrate and tune specific
reasoning techniques, by simply showing it as an instance of an As-rule, and/or ii) extended to use maximal
sets of induction hypotheses. In our approach, the soundness proofs are modular; tedious and error-prone
soundness proofs are therefore avoided even for very complex inference systems. The methodology also
ensures that the extended systems preserve their refutational completeness, as we have shown for variants
of RP. However, it cannot serve to establish the refutational completeness of arbitrary system (see later
in the chapter that Property 2 is generally difficult to be proved). Therefore, our methodology completes
rather than competes with other techniques for proving the refutational completeness property.

Structure of the chapter. The chapter is organised in 3 sections. Section 8.1 presents a framework
and a methodology to design and analyse formula-based Noetherian induction inference systems. As a
first application, the framework and methodology are used for building a very simple implicit induction
inference system that is sound by construction. The framework and methodology are later applied in
Section 8.2 to analyse and extend two saturation-based inference systems that use the paramodulation
and resolution techniques. The last section concludes.

8.1 The logical framework

8.1.1 Contextual cover sets (CCSs)

We consider sound formula-based Noetherian induction inference systems consisting of sets of inference
rules that guarantee the persistence of minimal counterexamples in any derivation, i.e. whenever the
processed conjecture has a minimal counterexample, an equivalent counterexample exists in a future
state. For example, if φτ is a minimal counterexample of φ at the step E ∪ {φ} ` E ∪ Φ, the completely
automated inference systems require that a counterexample equivalent to φτ be in the next state E ∪Φ.
More precisely, the condition Γ |= φτ should be satisfied, where Γ can contain both (E ∪Φ)∼φτ and true
formulas: i) the axioms Ax, ii) C1

≤φτ , where C1 has elements of E (but not of Φ) and other conjectures
with no minimal counterexamples, iii) C2

<φτ , where C2 can be any set of conjectures from the derivation,
and iv) Φ≤φτ . It is assumed that ≤ is a Noetherian quasi-ordering over formulas which is stable under
substitutions.

Usually, the minimal counterexample φτ is hard to identify among the other ground instances of φ.
To be sure that this condition is satisfied by φτ , it is sufficient to generalise it for any ground instance of
φ. To sum up, the condition becomes

Ax ∪ C1
≤φγ ∪ C2

<φγ ∪ Φ≤φγ |= φγ, for any ground instance φγ, (8.1)
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i.e. Φ is a (general) contextual cover set (CCS) of φ in the context C = (C1,C2), a concept also defined
in [Stratulat, 2000a, Stratulat, 2000b, Stratulat, 2001].

Several kinds of CCSs are distinguished: i) cover set if C1 = C2 = ∅, ii) strict if Φ≤φγ is re-
placed by Φ<φγ , iii) empty if Φ = ∅, and iv) universal if Ax = ∅. They are not mutually exclu-
sive; for example, any empty CCS is also strict. The notion of cover set as a particular CCS cor-
responds to that from [Bronsard et al., 1996], which is a generalisation of [Reddy, 1990]. Variants of
it can be found in different completion-based induction methods [Bachmair, 1988, Zhang et al., 1988,
Kounalis and Rusinowitch, 1990b, Kapur et al., 1991]. In the definition (8.1), the formulas from C1

≤φγ ,
C2
<φγ and Φ≤φγ can be used to deduce φγ even if they are not true or not yet proved to be true. They

play the role of induction hypotheses.
In the rest of the chapter, the ’contextually cover’ relation is generalised to sets of formulas: Ψ vC

(<C ) Φ iff Φ is a (strict) CCS of any φ ∈ Ψ in the context C.

Properties As shown in [Stratulat, 2001], the ‘contextually covers’ relation is a quasi-ordering: i) (re-
flexivity) Φ vC Φ, for any set of formulas Φ, and ii) (transitivity) for any set of formulas Φ, Ψ and Γ, if
Φ vC Ψ and Ψ vC Γ, then Φ vC Γ. Due to the transitivity property of vC , new ’contextually cover’
relations can be obtained by composition operations.

• horizontal composition. Given the chain of ’contextually cover’ relations Φ1 vC . . . vC Φi vC

Φi+1 vC . . .Φn, then i) Φi vC Φj , for all i, j ∈ [1..n] with i ≤ j, and ii) if Φi <C Φi+1 then
Φk <C Φj , for all k ≤ i and j > i.

• vertical composition. Given the set of formulas Φ = {φ1, . . . , φn} such that ∀i ∈ [1..n], {φi} vC

(resp. <C )Ψi then Φ vC (resp. <C )
⋃n
j=1 Ψj .

Our framework is able to provide maximal sets of induction hypotheses at any step of a derivation by
the means of two inference systems A1 and A2.

8.1.2 The A1 and A2 inference systems
1-AddPremise
(E ∪ {φ}, H) `A1

(E ∪Φ, H ∪ {φ})
if {φ} <(H, E) Φ

1-Simplify
(E ∪ {φ}, H) `A1

(E ∪ Φ, H)
if {φ} v(E∪H, ∅) Φ

Figure 8.1: The one-step inference rules.

Generally, the CCS contexts may have conjectures from the whole derivation to be computed at any
inference step. To automate their computation, a new set of particular formulas will join the set of
conjectures such that the context has only formulas from the current state of the derivation. They are
called premises and represent processed conjectures that do not contain minimal ground formulas. The
inference rules have now the form:

Name (E ∪ {φ}, H) ` (E ∪ Φ, H′) [if Conditions]

where H and H′ are premises. The inference system A from Subsection 4.1.2 can be represented using
CCSs as in Figure 8.1 by the A1 inference system. Its rules replace φ by Φ if Φ is a CCS of φ, whose
context has only formulas from E and H. In its simplest form, it consists of two inference rules that build
the new set of conjectures in just one step. The 1-AddPremise rule firstly computes Φ as a strict CCS
of φ, then adds it to the current set of premises to participate to further computations. 1-Simplify does
not make such addition, but it is less restrictive: Φ can be a general CCS and instances of E equivalent
to φ are allowed. The induction hypotheses from the contexts do not affect the soundness of A1.

Theorem 20 The minimal counterexamples are persistent in any A1-derivation starting with an empty
set of premises.

Proof Similar to the proof of Theorem 6. �
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2-AddPremise
(E ∪ {φ}, H) `A2

(E ∪ {φ} ∪Φ1 ∪ . . . ∪ Φp︸ ︷︷ ︸
Φ

, H ∪ {φ}) if

(a) {φ} v(H,E∪Φ)

⋃p
j=1{ψj} and

(b) {ψj} <(H,E∪{φ}∪(Φ\Φj)) Φj , for each j ∈ [1..p]

2-Simplify
(E ∪ {φ}, H) `A2

(E ∪ {φ} ∪ Φ1 ∪ . . . ∪ Φp︸ ︷︷ ︸
Φ

, H) if

(a) {φ} v(E∪H∪Φ,∅)
⋃p
j=1{ψj} and

(b) {ψj} v(E∪H∪(Φ\Φj),{φ}) Φj , for each j ∈ [1..p]

Figure 8.2: The two-step inference rules.

More complex inference rules can be designed by using the composition properties of CCSs. The
inference rules of the inference system A2 from Figure 8.2 build the new set of conjectures in two steps.
At the step (a) of 2-AddPremise, an intermediate CCS of φ is created, denoted by Ψ. Then, for any
formula from Ψ a strict CCS is built and added as new conjectures. By vertical composition at the step
(b), Φ is a strict CCS of Ψ. Φ is also a strict CCS of φ, by horizontal composition. Similarly, 2-Simplify
builds Φ as a CCS of φ. It can be shown that the two-step inference system is sound as in [Stratulat, 2001]
and following the idea of the proof of Theorem 20. The one-step inference system is an instance of it by
considering {φ} as the (trivial) CCS for {φ} at the step (a) of the corresponding two-step inference rules.

2-AddPremise is asymmetric in the construction of Φ. To be complete, the two-step inference system
should include a variant of 2-AddPremise that creates the strict CCS at the step (a) instead of (b).

8.1.3 Reasoning modules

The inference systems A1 and A2 are abstract because they ignore how the CCSs from its inference rules
are built. The last components of our framework, the reasoning modules, are in charge to compute the
elementary CCSs, i.e. that are not built by composition operations. They represent implementations of
reasoning techniques adequate to the nature of the employed consequence relation. The most part of them
are deductive, like rewriting and subsumption, and can reason on any kind of consequence relation. Some
others are more specific, as the replacement of a natural variable with 0, 1, . . . for the initial consequences,
or work only for particular reasoning domains, like the decision procedures.

A reasoning module is defined by two functions that take as arguments a context and a formula
for which a CCS is built: i) the generation function g, and ii) the condition function cond, such that
whenever g(φ,C) = Φ then {φ} vC Φ under the condition cond(φ,C). All the reasoning modules
presented in the paper have the trivial condition function that returns true, but in general this is not
the case. An inference system is recursive if the validation process of the conditions is performed by
the prover itself. Establishing the soundness of recursive systems is more difficult because of the mutual
dependency created between the prover and the reasoning modules: on the one hand, the inference rules
need reasoning modules that soundly build CCSs and, on the other hand, the reasoning modules need
sound validations of their conditions. An integration schema of reasoning modules in recursive implicit
induction inference systems has been proposed in [Stratulat, 2001]. It has the advantage that elements
of the context given as argument to the condition function can contribute as initial premises to the proof
of the conditions.

8.1.4 Methodology for designing and analysing CCS-based inference systems

The framework can be used to design new inference systems and to analyse, improve and extend exist-
ing CCS-based inference systems. To build a new inference system that reasons on a given inductive
consequence relation, the following steps can be followed:

1. provide a Noetherian ordering over the formulas that is stable under substitutions,
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2. provide a set of reasoning techniques adequate for the consequence relation,

3. define reasoning modules based on the reasoning techniques,

4. instantiate abstract inference rules by showing how their CCSs are created by the reasoning modules.

Kind of CCS produced by the generation function
general strict empty cover set universal

v true true true true true
< false true true false false

Table 8.1: The compatibility predicate.

The soundness of the new inference system is guaranteed if each inference rule is an instance of an
A1-rule by showing i) the compatibility and ii) the context inclusion of its CCSs w.r.t. the corresponding
CCSs defined by the A1-rule. The compatibility predicate is defined in Table 8.1. Any kind of generated
CCS is compatible with general CCSs (third line) and only the strict and the empty CCSs are compatible
with strict CCSs (last line). If the generation function builds a CCS of several kinds, for example a strict
cover set, then the result is the disjunction of the compatibility results for each kind. A context (C11,C12)
is included in (C21,C22) if (C11

≤φ ∪ C12
<φ) ⊆ (C21

≤φ ∪ C22
<φ), for any ground formula φ.

Analysing existing systems is an easier task since the ordering and the reasoning techniques are already
provided. The most difficult steps are the representation of the derivation states under the form of (E,H)
and that of the rules as instances of the abstract rules. Then, the rules can be soundly improved, for
example, by expanding the contexts to the maximal values allowed by the abstract rules. Existing systems
can be expanded modularly with new rules created in a flexible way, as described in the next section.

Theorem 21 (soundness and refutational completeness of variants) Let S be a refutationally
complete inference system that can be extended using the above methodology and let S ′ be such a variant.
Then S ′ is sound and refutationally complete.

8.1.5 Case study: designing an implicit induction inference system
An implicit induction inference system will be designed using our methodology to generate proofs that
validate properties over the naturals from equational specifications.
Ordering The ordering over equalities <e can be defined as a multiset extension of a rpo <t, starting
from a precedence <F over the function symbols, because any equality s = t can be represented as the
multiset {s, t}:

s = t <e l = r if max(s, t)�t max(l, r),
where max(s, t) is the singleton containing the maximal term between s and t (wrt <t) when it exists,
otherwise {s, t}. We recall that <e and <t are Noetherian and stable under substitutions.

For example, given the precedence 0 <F S (the successor function) <F +, then i) x <t 0 + x,
ii) S(x+ y) <t S(x) + y and iii) S(x) + 0 = S(x) <e S(S(x) + 0) = S(S(x)).
Reasoning Techniques An inductive consequence relation appropriate for equalities is the initial conse-
quence, denoted by |=ini, and a typical reasoning technique for it is the replacement of a variable with
finite descriptions of its domain. For the domain of the naturals, the most common are {0, S(x)} and
{0, S(0), S(S(x))}.

Two more general, deductive reasoning techniques, will be used: the elimination of identities of the
form s = s because they cannot contain counterexamples, and the rewriting. By e[t]p is unambiguously
indicated that the equality (or term) e contains the term t at the position p. Then, given a set of rewrite
rules ρ, the rewrite relation  ρ is defined as e′[a′σ]′p  ρ e

′[b′σ]′p if a′ → b′ ∈ ρ and σ is a substitution.
Reasoning Modules The previously presented reasoning techniques will serve to build new reasoning
modules:
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• D. Its generation function is gD(t = t, (∅, ∅)) = ∅ and returns an empty CCS.

• R, with gR(e, (C1,C2)) = {e′}, where e Ax∪C1
≤e∪C

2
<e
e′. It builds a strict CCS.

• Ex, with gEx(e[x]p, (∅, ∅)) = {eσ′, eσ′′} that generates a cover set. σ′ (resp. σ′′) is the substitution
that replaces x by 0 (resp. S(x′) and x′ is a fresh variable).

Delete identity
(E∪{t = t}, H) `P (E∪Φ, H) if Φ = gD(t = t, (∅, ∅))
Rewrite
(E ∪{e}, H) `P (E ∪Φ, H ∪{e}) if Φ = gR(e, (H,E))

Expand
(E ∪ {e}, H) `P (E ∪ Φ, H) if Φ = gEx(e, (∅, ∅))

Figure 8.3: The inference system P.

Inference Rules Our inference system P, similar to the inference system Ibs from Subsection 6.2.1, will
contain the inference rules from Figure 8.3. For example, given the set of orientable axioms that define
the addition over the naturals, 0 + x→ x and S(x) + y → S(x+ y), P can prove x+ 0 = x:

({x+ 0 = x}, ∅) `PEx ({0 + 0 = 0, S(x′) + 0 = S(x′)}, ∅) `PR (twice)

({0 = 0, S(x′ + 0) = S(x′)}, {0 + 0 = 0, S(x′) + 0 = S(x′)}) `PD
({S(x′ + 0) = S(x′)}, {0 + 0 = 0, S(x′) + 0 = S(x′)}) `PEx
({S(0 + 0) = S(0), S(S(x′′) + 0) = S(S(x′′))}, {0 + 0 = 0, S(x′) + 0 =
S(x′)}) `PR
({S(0) = S(0), S(S(x′′) + 0) = S(S(x′′))}, {. . . , S(x′) + 0 = S(x′)}) `PR
({S(0) = S(0), S(S(x′′)) = S(S(x′′))}, {. . .}) `PD (twice)(∅, {. . .}),

where by `PD (resp. `PR and `PEx) is denoted the application of Delete identity (resp. Rewrite and
Expand). The rewrite operations transform the underlined subterms with rewrite rules from the axioms,
excepting the last operation that uses the instance S(x′′) + 0→ S(x′′) from the premises.
Instantiation Result P is and instance of A1, as shown in Table 8.2.

P-rule A1-rule RM, context, kind of CCS
Delete 1-Simplify D, (∅, ∅), empty
Rewrite 1-AddPremise I, (H,E), strict
Expand 1-Simplify Ex, (∅, ∅), cover set

Table 8.2: P-rules as instances of A1-rules.

Each column presents respectively for each P-rule the instantiated A1-rule, together with the name of
the reasoning module, the context and kind of the generated CCS. It is easy to observe from Table 8.1
and Figure 8.1 that the generated CCSs are compatible with and the contexts are included in the contexts
of the corresponding A1-rules. Therefore, P is sound and Ax |= x+ 0 = x can be concluded.

Simpler proofs of x+0 = x can be obtained from instances of two-step A2-rules, like ExpandRewrite
in Figure 8.4. As an instance of 2-AddPremise, it allows the addition of x+0 = x to the set of premises
directly from the first step of the proof for a later use as induction hypothesis in the subsequent Rewrite
operations.
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(E ∪ {e}, H) `P (E ∪ Φ, H ∪ {e})
if Ψ = gEx(e, (∅, ∅)) and Φ =

⋃
e′∈Ψ gR(e′, (H,E))

Figure 8.4: The ExpandRewrite rule.

8.2 Analysing and extending saturation-based inference systems
The proofs by saturation have an important place in the automated reasoning domain, for in-
stance the Handbook of Automated Reasoning contains at least three chapters devoted to this
topic [Bachmair and Ganzinger, 2001, Comon, 2001, Nieuwenhuis and Rubio, 2001]. They provide the
means to detect the minimal counterexamples in the last state of any finite derivation. It is required that
i) the formulas from the last state be saturated, i.e. no new information can be produced by the exhaustive
application of the inference rules, and ii) the inference system be refutationally complete, i.e. the minimal
counterexamples from any saturated formulas are ’easily detectable’. Such a minimal counterexample is
usually the formula that is false in any model, denoted here by �, which is generated if and only if the
saturated formulas are unsatisfiable.

To show the flexibility of our approach, we will prove the refutational completeness of a variant of
A1, denoted by A′, for which the CCSs are universal. Indeed, the set of axioms is empty when applying
the inference rules, but the argumentation for its refutational completeness is based on the existence of
a candidate model [Bachmair and Ganzinger, 2001] (or generated model [Nieuwenhuis and Rubio, 2001])
for any saturated set of formulas, which plays the role of the axioms when defining counterexamples. We
assume that it satisfies the following property:

Property 1 Let (E0, ∅) `A′ · · · `A′ (En, Hn) be a saturated A′-derivation such that IEn be a model for
En. Then, an A′-inference rule is applicable on any formula from En containing a minimal counterex-
ample other than �.

Theorem 22 (A′-refutational completeness) Let (E0, ∅) `A′ · · · `A′ (En, Hn) be a saturated A′-
derivation with � 6∈ En and IEn |= En. If A′ satisfies Property 1, for any ground formula φ from
En, IEn |= φ.

Proof By contradiction, we assume that there is a counterexample in En. Theorem 20 still holds for A′
as it is an instance of A1. Therefore, there is a minimal counterexample γ in the derivation, other than
�, that should be in En. On the other hand, Property 1 guarantees the applicability of an A′-rule on the
formula containing γ, which contradicts the fact that the derivation is saturated. �

In the next subsection, the methodology will be used to analyse a paramodulation-based inference
system.

8.2.1 Case study 1: a paramodulation-based inference system
The saturation-based inference system to analyse, denoted by G in Figure 8.5 and by G
in [Nieuwenhuis and Rubio, 2001], reasons on ground Horn equational clauses of the form e1 ∧ . . .∧ en ⇒
or e1 ∧ . . . ∧ en ⇒ e, where e, e1, . . . , en are equalities and s � τ(Γ) (resp. s � τ(Γ)) means that
s � u (resp. s � u), for any term u from the equalities occurring in Γ. Based on ordered paramodula-
tion, the rule Superposition Left (resp. Superposition Right) transforms (resp. strictly) maximal
literals in the processed conjecture, while Equality Resolution eliminates from the negative part
of a clause the identities involving its maximal term. It can be noticed that all these rules preserve
the processed conjecture in the next derivation. The orderings over terms, ≺, and clauses, ≺c, are
Noetherian and total. The stability of ≺c is guaranteed because the formulas are ground. It has been
shown in [Nieuwenhuis and Rubio, 2001] that G is refutationally complete and that Property 1 is satis-
fied. Moreover, it is (trivially) sound because all the processed conjectures, and therefore the minimal
counterexamples, are preserved in the derivation.
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Superposition Right E `G E ∪ {Γ′,Γ⇒ s[r]p = t}
if Γ′ ⇒ l = r ∈ E s.t. l � r and l � τ(Γ′)
and Γ⇒ s[l]p = t ∈ E s.t. s � t and s � τ(Γ)

Superposition Left E `G E ∪ {Γ′,Γ, s[r]p = t⇒ ∆}
if Γ′ ⇒ l = r ∈ E s.t. l � r and l � τ(Γ′)
and Γ, s[l]p = t⇒ ∆ ∈ E s.t. s � t and s � τ(Γ ∧∆)

Equality Resolution E `G E ∪ {Γ⇒ ∆}
if Γ, s = s⇒ ∆ ∈ E s.t. s � τ(Γ ∧∆)

Figure 8.5: The inference system G.

G-Variant

G is not adapted for the automated reasoning on long derivations. The time required to apply any of
the superposition rules is directly proportional to the size of the current set of conjectures E. Or, this
size increases with every inference step and therefore reduces the prover’s performances. We propose a
G-variant, denoted by G′, that reduces considerably the size of E at the expense of less powerful rules by
applying our methodology using universal CCSs.
A′-representation Firstly, an empty set of premises is appended to any G′ state and the processed
conjecture is no longer added to the new set of conjectures.
Reasoning Modules The new set of conjectures generated by any G′-rule is a strict CCS of the processed
conjecture built by one of the following reasoning modules:

1. SR, used by the Superposition Right-variant, has the generation function, gSR, defined as
gSR(Γ ⇒ s[l]p = t, ({Γ′ ⇒ l = r}, ∅)) = {Γ′,Γ ⇒ s[r]p = t} since Γ ⇒ s[l]p = t �c Γ′ ⇒ l = r.
Moreover, it builds a strict CCS because Γ ⇒ s[l]p = t �c Γ′,Γ ⇒ s[r]p = t, according to the
definition of �c from [Nieuwenhuis and Rubio, 2001].

2. SL intervenes in the definition of the Superposition Left-variant.
gLR((Γ, s[l]p = t ⇒ ∆), ({Γ′ ⇒ l = r}, ∅)) = {Γ′,Γ, s[r]p = t ⇒ ∆} is a strict CCS for similar
reasons as above.

3. ER is used by Equality Reasoning-variant and has gER((Γ, s = s⇒ ∆), (∅, ∅)) = {Γ⇒ ∆} that
generates a strict CCS because s is maximal and Γ, s = s⇒ ∆ �c Γ⇒ ∆.

Instantiation Result Any G′-rule is an instance of the 1-Simplify rule of A′, as shown in Table 8.3. Its

G′-rule A′-rule RM, context, kind of CCS
Superposition Right 1-Simplify SR, (E, ∅), strict
Superposition Left 1-Simplify SL, (E, ∅), strict
Equality Reasoning 1-Simplify ER, (∅, ∅), strict

Table 8.3: G′-rules as instances of A′-rules.

columns have the same meaning as for Table 8.2.

G′-Variants In our setting, the ordering �c is not required to be total. Such non-total (partial) order-
ings can be built, for example, by generalising <e from equalities to conditional clauses. Representing
s1 = t1∧ . . .∧sn = tn ⇒ l1 = r1∨ . . .∨ lm = rm as the multiset {s1, t1, . . . , sn, tn, l1, r1, . . . , lm, rm} allows
for the generation of smaller or equal clauses if: i) non-maximal terms of the processed conjecture are
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reduced by Superposition Left and Superposition Right, and ii) identities of the form s = s are
eliminated by Equality Reasoning even if s is not maximal. These weakened versions of the G′-rules
are still instances of 1-Simplify because it does not require strict CCSs.

Our methodology allows for a fine tuning for powerful and automated inference systems by considering
two new rules for each G′-rule, with contexts defined by the corresponding one-step A′-inference rules:

1. As instances of 1-AddPremise, with respect to their original specifications, Superposition Left
and Superposition Right are constrained to forbid the reduction of the maximal terms at the
root position in order to build a strict CCS. There is no restriction for Equality Reasoning.

2. As instances of 1-Simplify, the rules are not constrained to reduce maximal terms.

An inference system containing only 1-AddPremise instances is as powerful as G: the processed
conjecture is not saved in the new state as a conjecture, but as a premise. Notice that the G′ and its
variants satisfy Property 1 for similar reasons as G.

Theorem 23 The inference system G′ and its variants are sound and refutationally complete.

Proof By Theorem 22 and the instantiation results. �

The saturation process always finishes on ground Horn clauses with any of G, G′ and G′-variants.
This is not the case for (Horn) clauses with variables, where the G′-variants are expected to be more
effective. Techniques for lifting inference systems from the ground to the non-ground case are presented
in [Nieuwenhuis and Rubio, 2001, Bachmair and Ganzinger, 2001].

8.2.2 Case study 2: a resolution-based inference system
This time, we will apply the methodology by extending a variant of A1, denoted by As, with a new
saturation-based rule.

1-AddPremise (E ∪ {φ}, H) `As (E ∪Φ, H ∪ {φ})
if {φ} <(H, E) Φ

1-Simplify (E ∪ {φ}, H) `As (E ∪ Φ, H)
if {φ} v(E∪H, ∅) Φ

1-Saturate (E ∪ {φ}, H) `As (E ∪ Φ, H ∪ {φ})
where Φ is O>(HS , φ)

Figure 8.6: The one-step As-inference rules.

The As inference system. The saturation-based inference system from Figure 8.6, denoted by As,
consists of three rules. The first two (CCS-based) rules are particular cases of the rules from A1, for
which the CCSs are universal. The last rule, 1-Saturate, performs saturation-based reasoning before
adding the processed conjecture to the premises. If Ψ is a set of premises, ΨS denotes all formulas from
Ψ previously added by 1-Saturate. 1-Saturate firstly replaces φ by the new conjectures obtained by
the exhaustive application of saturation-based operations O> (like those based on ordered resolution or
paramodulation) between φ and formulas from HS , then adds φ to H.

In order to prove the refutational completeness of As, the following admissible conditions should be
satisfied: i) ≤ is a well-founded quasi-ordering over conjectures that is stable under substitutions and
ii) for any saturated set of formulas, there exists a candidate model such that As satisfies the following
property:

Property 2 (As-reducibility property for minimal counterexamples) Let (E0, ∅) `As · · · `As
(∅, Hn) be a saturated As-derivation such that � 6∈ Hn and IHnS be a candidate model for the set Hn

S .
Then, for any premise φ having a minimal counterexample from Hn

S , there exists an inference rule in O>
between φ and other formulas from Hn

S that produces a smaller counterexample.
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As is sound if the minimal counterexamples from ∪iEi of any saturated As-derivation (E0, ∅) `As
· · · `As (∅, Hn) are preserved in Hn

S . The next theorem states that As is sound and refutationally
complete.

Theorem 24 (soundness and refutational completeness of As) Let (E0, ∅) `As · · · `As (∅, Hn)
be a saturated As-derivation such that � 6∈ Hn and IHnS be a candidate model for Hn

S . Then, As preserves
in Hn

S any minimal counterexample from ∪iEi. Moreover, if As satisfies Property 2 then IHnS |= φ, for
any ground instance φ of formulas from E0.

Proof To prove the soundness of As, we firstly show that Hn collects all minimal counterexamples from
a derivation. Assume that γ is a minimal counterexample for ∪iEi in IHnS of a saturated derivation
(E0, ∅) `As · · · `As (∅, Hn) and let Ej (with j ∈ [1..n−1]) be the last set of conjectures in the derivation
having a formula φ whose ground instance is a counterexample φτ equivalent to γ (so minimal). Such
a set exists since the derivation ends with an empty set of conjectures. We will show that Hj+1 has
a φτ -equivalent counterexample: i) if 1-AddPremise or 1-Saturate is applied on φ, then φ ∈ Hj+1;
ii) if the 1-Simplify rule (E ∪ {φ}, H) `As (E ∪ Φ), H) is applied on φ and Ej = E ∪ {φ} , then∧

((E∪Φ∪H)≤φτ )⇒ φτ since {φ} v(E∪H, ∅) Φ. As (E∪Φ∪H)<φτ is true in IHnS , the set (E∪Φ∪H)∼φτ
has a φτ -equivalent counterexample. It cannot be a formula from E ∪ Φ (which builds Ej+1), otherwise
Ej is no longer such a last set. So, H (hence Hj+1 and, finally, Hn) has a φτ -equivalent counterexample.

The next step in the soundness proof of As is to show that for any minimal counterexample in
Hn there exists a premise in Hn

S having an equivalent counterexample. Let φ ∈ Hn be a premise
having a minimal counterexample φτ . Notice that φ can be added to Hn either by 1-Saturate or
1-AddPremise. If 1-Saturate was applied, we are done. Otherwise, assume that 1-AddPremise was
applied on φ, as in the transition (E ∪{φ}, H) `As (E ∪Φ, H ∪{φ}). Since {φ} <(H, E) Φ, the relation∧

(H≤φτ ∪E<φτ ∪Φ<φτ )⇒ φτ holds in IHnS . Therefore, IHnS 6|= H≤φτ ∪E<φτ ∪Φ<φτ . On the other hand,
(H ∪ E ∪ Φ)<φτ has no counterexample since φτ is minimal and < is stable. Therefore, IHnS 6|= H∼φτ .
By the stability of ∼, H should have a premise ψ that has a φτ -equivalent counterexample, which has
become premise before φ. The same reasoning can be applied to ψ as for φ, and it can be repeated until
the derivation is scanned back to its beginning and eventually H becomes empty if 1-Saturate has
not yet been applied. In this case, the only rule that can be applied is 1-Saturate and the processed
conjecture is preserved in Hn

S .
The refutational completeness property is shown by contradiction. It is assumed that there exists

a counterexample in E0 and, therefore, a minimal counterexample γ ( 6= �) in Hn
S , by the soundness

property. On the other hand, Property 2 guarantees the existence of an inference rule from O> involving
the set Ψ consisting from the premise from Hn

S having γ and other premises from Hn
S , that produces

a counterexample smaller than γ. Due to the exhaustive application of saturation-based operations in
any Inference Computation rule, such an inference should also occur in the derivation when applying
1-Saturate on the last added premise from Ψ. Contradiction. �

It may be noticed from the proof of Theorem 24 that the soundness of As is not affected if i) the
processed conjecture is preserved in the new set of conjectures, or ii) the following two inference rules
are added:

• EliminatePremise
(E, H ∪ {φ}) `As (E, H)

• BackwardPremise
(E, H ∪ {φ}) `As (E ∪ {φ}, H),

where φ (in both rules) does not have minimal counterexamples.

Corollary 2 As extended with the EliminatePremise and BackwardPremise rules is sound and
refutationally complete when Property 2 is satisfied.

In the following, we analyse the RP ‘ordered resolution’-based inference system for non-ground clauses
from [Bachmair and Ganzinger, 2001]. Before its presentation, we give some basic notions.

116



8.2. Analysing and extending saturation-based inference systems

Basic notions. We recall that a literal is either an atomic formula A or its negation ¬A. A clause is a
disjunction of literals L1 ∨ . . .∨Ln that can be represented as the multiset {L1, . . . , Ln}. To show that a
clause C contains a literal L, C is represented as L∨C ′, where C ′ is the subclause containing the rest of
the literals from C. If L is a literal, then L is its negation. A clause C subsumes a clause D iff there exists
a substitution σ such that Cσ ⊆ D. If D does not subsume C, then C properly (or strictly) subsumes D.

We say that a formula φ is redundant with Φ if φ does not have any minimal counterexample in the can-
didate model IΦ; for example, the standard redundancy criterion from [Bachmair and Ganzinger, 2001]
defines a clause C as being redundant w.r.t. a set N of clauses if there exist some clauses C1, . . . , Ck in
N such that C1, . . . Ck |= C and C > Ci, for all i with 1 ≤ i ≤ k.

The RP system. RP, reproduced in Figure 8.7, is an abstract system used in a framework that models
important classes of reasoning techniques like deduction, deletion and simplification. Its instances help
to describe many proof strategies, as those implemented in the Otter system [McCune, 1994].

Each of its inference rules is a transition between triplets (N | P | O) that store the “newly derived”, the
“processed” and the “old” clauses, respectively. The first three rules eliminate tautologies and subsumed
clauses, while the next two rules simplify clauses by resolution. The sixth rule transfers clauses from N to
P. It suggests that N and P share the same set of clauses, but this partition is done for efficiency reasons;
indeed, the newly derived clauses that are obtained by the application of the last rule are “processed”
before migrating to P. The last rule, Inference Computation, is abstract ; O�S (O, C) performs all
possible resolution-based operations between C and clauses from O. The clauses from O are chosen
according to the selection function S, given as parameter, that helps to define a wide variety of proof
strategies.

As-representation. Our analysis is based on the aforementioned suggestion. The new rules are obtained
by replacing in the RP-rules i) the sets N and P by the set of conjectures E, and ii) O by the premises
H. The resulted inference system, denoted by RP′, is displayed in Figure 8.8. Clause Processing is
now useless and Backward Reduction for P becomes redundant with Forward Reduction, so they
will not be mentioned in RP′.

Admissible Conditions. The inference system RP′, as RP, is abstract.
In [Bachmair and Ganzinger, 2001], RP has many refutationally complete instances, for example
when O�S (H,C) applies the rules from the General Ordered Resolution inference system (see Theo-
rem 5.5 in [Bachmair and Ganzinger, 2001]). The Property 2 is also satisfied, according to Theorem 5.4
from [Bachmair and Ganzinger, 2001]. The quasi-ordering � over clauses is stable under substitutions
and well-founded, having its strict part ≺ total on ground clauses.

Reasoning Modules. We define the following reasoning modules:

1. TD, based on Tautology Deletion, can build an empty CCS. Its generation function, gTD, is defined
as gTD(C, (∅, ∅)) = ∅ if C is a tautology.

2. S, based on Subsumption, can build an empty CCS: gS(C, (C1, ∅)) = ∅ if there exists a clause in C1

that subsumes C.

3. SS, based on Strict Subsumption, can build an empty CCS, too: gSS(C, (∅,C2)) = ∅ if there exists
a clause in C2 that properly subsumes C.

4. SR, based on Subsumption Resolution, can build a strict CCS: gSR(C ∨ L, (C1, ∅)) = {C} if there
exists D ∨ L′ in C1 such that L = L′σ and Dσ ⊆ C.

Instantiation test. Table 8.4 displays the non-trivial RP′-rules that instantiate 1-Simplify from Fig-
ure 8.6, together with the corresponding reasoning modules, context content and kind of their built
CCSs. Any reasoning module provides a CCS compatible with the general CCS of 1-Simplify, and
context smaller than or equal to (E ∪ H, ∅), i.e. the context value defined in 1-Simplify. Also notice
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1. Tautology Deletion:

N ∪ {C} | P | O `RP N | P | O

if C is a tautology

2. Forward Subsumption:

N ∪ {C} | P | O `RP N | P | O

if some clause in P ∪ O subsumes C

3. Backward Subsumption:

- for P: N | P ∪ {C} | O `RP N | P | O

- for O: N | P | O ∪ {C} `RP N | P | O

if some clause in N properly subsumes C

4. Forward Reduction:

N ∪ {C ∨ L} | P | O `RP N ∪ {C} | P | O

if there is D∨L′ in P ∪O s. t. L = L′σ and Dσ ⊆ C

5. Backward Reduction:

- for P: N | P ∪ {C ∨ L} | O `RP N ∪ {C} | P | O

- for O: N | P | O ∪ {C ∨ L} `RP N ∪ {C} | P | O

if there is D ∨ L′ in N s. t. L = L′σ and Dσ ⊆ C

6. Clause Processing:

N ∪ {C} | P | O `RP N | P ∪ {C} | O

7. Inference Computation:

∅ | P ∪ {C} | O `RP N | P | O ∪ {C}

where N collects the clauses generated by O�S (O, C)

Figure 8.7: RP: the original inference system with triplets as proof states.

that Inference Computation can instantiate 1-Saturate. The rule Backward Subsumption for
H is an instance of EliminatePremise; whenever a clause C is strictly subsumed by a clause C ′ and C
has a counterexample, then C ′ has a smaller one (so the premises to which EliminatePremise is applied
never have minimal counterexamples). The rule Backward Reduction is the result of the application
of BackwardPremise, followed by Forward Reduction.

This instantiation result, the satisfaction of the admissible conditions and Corollary 2 conclude that
RP′ (and therefore RP) is sound and refutationally complete.

RP- and RP′-variants. The instantiation result and Theorem 21 suggest that, theoretically, the contexts
from Tautology Deletion and Backward Subsumption for E can be soundly extended to (E ∪
H, ∅). However, from a practical point of view, this is useless since i) a tautology remains a tautology
in any context, and ii) the extended Backward Subsumption would become identical to Forward
Subsumption. In fact, Backward Subsumption is kept in RP for efficiency reasons.

An interesting extension would be to add instances of 1-AddPremise to RP′. For example, when
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8.3. Conclusions

Tautology Deletion (T.D.):

(E ∪ {C}, H) `RP
′

(E,H)

if C is a tautology

Forward Subsumption (F.S.):

(E ∪ {C}, H) `RP
′

(E,H)

if some clause in E ∪H subsumes C

Backward Subsumption (B.S.):

- for E: (E ∪ {C}, H) `RP
′

(E,H)

- for H: (E,H ∪ {C}) `RP
′

(E,H)

if some clause in E properly subsumes C

Forward Reduction (F.R.):

(E ∪ {C ∨ L}, H) `RP
′

(E ∪ {C}, H)

if there is D∨L′ in E ∪H s. t. L = L′σ and Dσ ⊆ C

Backward Reduction (B.R.):

(E,H ∪ {C ∨ L}) `RP
′

(E ∪ {C}, H)

if there is D ∨ L′ in E s. t. L = L′σ and Dσ ⊆ C

Inference Computation (I.C.):

(E ∪ {C}, H) `RP
′

(E ∪ Φ, H ∪ {C})
where Φ collects the clauses generated by O�S (H,C)

Figure 8.8: RP′: the inference system RP with proof states under the form (conjectures, premises).

Forward Reduction builds a strict CCS in the context (H,E), it can send the processed clause
directly to H, without performing Inference Computation. Notice that the original RP ′ may obtain
the same result by firstly applying Inference Computation followed by Backward Reduction,
which is less efficient due to the exhaustive application of O�S rules and to the addition of the resulted
formulas to the set of conjectures. Translated back to RP , such a rule can be N ∪ {C ∨ L} | P | O `RP
N ∪ {C} | P | O ∪ {C ∨ L} if there is D ∨ L′ in O such that L = L′σ, Dσ ⊆ C and L is maximal w.r.t.
any literal in C. In this case, the first argument of O�S in Inference Computation should be limited
only to the formulas from O to which Inference Computation was previously applied.

8.3 Conclusions
The presented work has both applicative and theoretical interests. We have proposed a framework
and a methodology to design and analyse inference systems implementing the formula-based Noetherian
induction principle. A stronger connection between two important fields of the automated deduction,
the implicit induction and saturation-based theorem proving, is established. Their logic is captured
by an abstract inference system: to witness, the inference systems from the given examples have been
shown to be instantiations of it. The orderings over formulas need only to be Noetherian and stable
under substitutions to satisfy the soundness property, as can be observed from the proof of Theorem 20.
Thanks to the clear separation between the logic and computation provided by the framework, it can be
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RP′-rule RM Context Content Kind of CCS
T.D. TD (∅, ∅) empty
F.S. S (E ∪H, ∅) empty
B.S.(for E) SS (∅, E) empty
F. R. SR (E ∪H, ∅) strict

Table 8.4: RP′-rules instantiating the 1-Simplify-rule.

concluded that other ordering properties encountered in the literature, as the totality, are required either
in the computation part or to satisfy additional properties like Property 1.

The abstract systems A1 and A2 are landmarks for the formula-based Noetherian induction inference
systems. As shown for the system A from Section 6.4 [Stratulat, 2000a], they provide the maximal set of
induction hypotheses w.r.t. other similar implicit induction abstract systems. We expect similar results
for the saturation-based inference systems. Usually, the one- and two-step inference rules are sufficient to
apply the methodology, but the framework is able to provide ’more than two’-step rules when necessary.
The computation process has the advantage to be parameterisable; it is performed by reasoning modules
that allow for the modular design of the concrete inference systems.

The methodology indicates how to instantiate the abstract system with specific reasoning techniques
without affecting its soundness. The soundness proofs of concrete procedures become advantageously
simpler because the soundness of the abstract systems was established once for all. They are mainly
reduced to show that any rule is the instance of an abstract inference rule.
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C.1. Detailed project: certification of cyclic reasoning by converting cyclic to explicit induction proofs

Our work opens opportunities for further developments and new ideas. As example, we will develop
in Section C.1 a new proposition for certifying cyclic reasoning by converting cyclic proofs to explicit
induction proofs. It is based on the FOLID logical framework and is more general than that presented in
Subsection 3.2.4. The document finishes by presenting other, less detailed, lines of research.

C.1 Detailed project: certification of cyclic reasoning by convert-
ing cyclic to explicit induction proofs

Another way to certify cyclic reasoning using Coq is to convert cyclic proofs to explicit induction proofs.
In Subsection 3.2.4, we have presented a method for converting to explicit induction proofs cyclic formula-
based Noetherian induction proofs that have only 1-cycles and the IHs are instances of the root formula.
This approach is rather limited; for example, the cyclic Coq pre-proofs from Example 3 can not be
processed because either some IHs are not instances of the root formula or some cycles are not 1-cycles.

In the following, we will present a new and more general conversion procedure, based on the FOLID
logical framework. The reason for choosing FOLID is two-fold: i) it offers a crispy clear formal framework
to explain the conversion procedure, and ii) the FOLID reasoning can be reproduced by Coq scripts.

C.1.1 The LKID and LKIDa explicit induction inference systems
The classical explicit induction inference system for FOLID is the LKID sys-
tem [Brotherston and Simpson, 2011]. It includes the LK’s rules from Figure 7.1, the CLKIDωN ’s
unfold rule, as well as a new rule, denoted by (Ind), which represents a left introduction rule for an
inductive atom Pj(t

′
):

minor premises Γ, Fj(t
′
) ` ∆

(Ind Pj)
Γ, Pj(t

′
) ` ∆

A minor premise is built from each axiom defining a predicate P that is Pj or mutually dependent
with Pj . The minor premise corresponding to (7.7) is

Γ, Q1(u1), . . . , Qh(uh), G1(t1), . . . , Gl(tl) ` F (t
′
),∆ (C.2)

if (7.7) and Γ, Pj(t
′
) ` ∆ do not share variables (otherwise, the variables from (7.7) can be renamed

accordingly), and G1, . . . , Gl, F are IH formulas associated to P1, . . . , Pl, P , respectively. Γ, Fj(t
′
) ` ∆

is called major premise.
LKID has been shown sound, i.e., every LKID inference rule r is sound (see Proposition 3.5

from [Brotherston and Simpson, 2011]) such that the conclusion of r holds whenever its premises hold.

For our purpose, we assume that there is a non-empty set of admissible inductive atoms.

Definition 13 (admissible inductive atom) An inductive atom P (t) is admissible if the sequent
` P (t) is true.

Admissible inductive atoms can be used to build the following new rule:

Definition 14 (the (Adm) rule) (Adm) is the 0-premise rule for the right introduction of any admis-
sible inductive atom P (t):

(Adm P (t))
Γ ` P (t),∆

Lemma 12 (soundness of (Adm)) The (Adm) rule is sound.

Proof By Definition 13. �

123



(R.(C.5))
Nx `3 Qx0

(Gen)
Nx, y = 0 `2 Qxy

Nx `7 Px (∗2)

Nx,Ny `9 Qxy (†1)
(Subst)

Nz,Nx `8 Qxz
(R.(C.6)), (Wk)

Nx,Nz `5 Qxsz
(Gen)

Nx, y = sz,Nz `4 Qxy
(Case N(y))

Nx,Ny `1 Qxy (†)

(R.(C.3))
N0 `13 P0

(Gen)
Nx, x = 0 `12 Px

Nx `17 Px (∗1)
(Subst)

Nz `16 Pz

Nx,Ny `19 Qxy (†2)
(Subst)

Nz,Nsz `18 Qzsz
(R.(C.4)), (Wk)

Nsz,Nz `15 Psz
(Gen)

Nx, x = sz,Nz `14 Px
(Case N(x))

Nx,Nx `11 Px
(ContrL)

Nx `10 Px (∗)

Figure C.9: The input pre-proof tree-set.

Let Pa be an admissible inductive predicate, recursively defined by a set of axioms that can be either
unconditional (of the form of Pa(t)) or conditional (of the form ∧lm=1Pa(tm) ⇒ Pa(t), for some natural
l > 0). Based on the (Adm) rule, the derived rule (Inda)

F (t1), . . . , F (tl) ` F (ti) . . .
(Inda Pa)

` F (t)

abbreviates

(Adm Pa(t))
` Pa(t)

F (t1), . . . , F (tl) ` F (ti) . . .
(Ax)

F (t) ` F (t)
(Ind Pa)

Pa(t) ` F (t)
(Cut), (Wk)

` F (t)

where F (x) is the IH formula associated to Pa for the (Ind) step.

Definition 15 (LKIDa, LKIDa proof) LKIDa is the particular instance of LKID i) for which the
(Ind) rule is replaced by the (Inda) rule, and ii) extended with the (Adm) rule. A finite LKIDa-derivation
tree is a proof if all branches end in a 0-premise rule.

Theorem 25 (soundness of LKIDa) Every sequent Γ ` ∆ is true if there is an LKIDa proof of Γ ` ∆.

Proof LKIDa is a particular version of the sound LKID inference system, that was extended with the
sound (Adm) rule. �

We will show how to convert CLKIDωN pre-proofs to LKIDa proofs. The conversion procedure takes
as input i) a CLKIDωN pre-proof tree-set in normal form, and ii) one of its root sequents S. It outputs a
sequence of LKIDa proofs ending with an LKIDa proof of S.

C.1.2 Overview of the procedure

The input pre-proof tree-set (MD,MR) can be seen as a digraph P, as in Subsection 7.2.2. As example,
we will consider the pre-proof tree-set corresponding to the digraph from Example 4 concerning the P&Q
example.

Example 29 Let us introduce the inductive definitions of P and Q from the P&Q example:
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P (0) (C.3)
P (x) ∧Q(x, s(x))⇒ P (s(x)) (C.4)

Q(x, 0) (C.5)
P (x) ∧Q(x, y)⇒ Q(x, s(y)) (C.6)

A pre-proof tree-set, rooted by the sequents Nx ` Px and Nx,Ny ` Qxy, is illustrated in Figure C.9.
For convenience, the sequents are indexed. The node labelled by the sequent Γ `i ∆ is denoted as N i.

We denote by S(N) the sequent labeling any node N fromMD. We define a partial order ≤R over
the set of root nodes of MD, as follows: for any two distinct nodes N1 and N2, we have N1 <R N2 if
N1 and N2 are not in the same SCC and N1 can be reached from N2. We have N1 =R N2 if both N1

and N2 are in the same SCC. The conversion procedure visits each root fromMD increasingly, by using
as precedence the partial order ≤R. Let Nr be some root. The explicit proof for S(Nr) is recursively
built, as follows:

1. let us assume that Nr is the only node of a singleton SCC. If Nr is a node labeled by a 0-premise
rule, the output is the LKIDa proof consisting of S(Nr) to which the 0-premise rule is applied. If
Nr is a bud, let Nc be its companion. Since Nc is different from Nr, it is <R-smaller than Nr. By
induction hypothesis, its LKIDa proof is already built at this stage. The output is the LKIDa proof
generated in each of the cases.

2. let us now assume that Nr is a root node from a non-singleton SCC π. Then,

(a) define an explicit induction schema to be applied on the conjunction sequent representing the
sequent having an empty antecedent part and the conjunction of the implication formulas of
the root sequents from π as the only formula from the succedent part;

(b) build the explicit induction proof of the conjunction sequent, starting by applying the induction
schema from step (a), then proving each induction case (IC) by following proof steps from π.
The sequents labelling the buds with <R-smaller companions can be proved using the proofs
of the companions;

(c) prove S(Nr) from the proof of the conjunction sequent.

The conversion procedure outputs the LKIDa proofs for each sequent labelling <R-greatest root nodes
or for the conjunction sequent of their non-singleton SCC, if case 2 applies. Next, we detail the operations
executed at case 2.

C.1.3 Generating the explicit induction schema
Let us assume that the SCC with cycles π has k (> 0) roots N i1 , . . . , N ik , where i1, . . . , ik ∈ [1..k] is a
permutation of the values from [1..k]. Fπ(t) denotes the conjunction formula

∧k
j=1 C(S(N ij )) associated

to π. Its conjuncts do not share free variables (otherwise, the free variables are conveniently renamed),
where ∀j ∈ [1..k], S(N ij ) ≡ Γij , P 1

ij
(t1ij ), . . . , P

nij
ij

(t
nij
ij

) ` ∆ij such that Γij has no inductive atoms,

t ≡ (t1i1 , . . . , t
ni1
i1
, . . . , t1ik , . . . , t

nik
ik

), and ni1 , . . . , nik ∈ N∗.
The explicit induction step consists in the application of the (Inda Pπ) rule on the conjunction sequent

` Fπ(t), given that Pπ(t) is an admissible inductive atom and Pπ is a new inductive predicate symbol
associated to π. The axioms defining Pπ are built from the analysis of the tree derivations rooted by
N i1 , . . . , N ik . Each axiom corresponds to some (IC) of the induction schema built from the composition
of individual induction schemas defined for each root sequent S(N ij ) (j ∈ [1..k]). This step is detailed in
the following.

Building the individual induction schemas

An induction schema for a root sequent S is a collection of induction cases (ICs) that attach a (potentially
empty) set of sequents, called induction hypotheses (IH), to an instance of S, called induction conclusion.
The instantiating substitutions are denoted as cumulative substitutions consisting of the composition
of substitutions used in the (Gen)-steps encountered when traversing a given path, as explained in
Subsection 7.2.2.

125



Example 30 The cumulative substitutions for the paths leading a root to a terminal node in the pre-proof
tree-set from Figure C.9 are:

• {x 7→ x; y 7→ 0} for the path [N1, N2, N3];

• {x 7→ x; y 7→ sz; z 7→ z} for [N1, N4, N5, N7] and [N1, N4, N5, N8, N9];

• {x 7→ 0} for the path [N10, N11, N12, N13], and

• the substitution {x 7→ sz; z 7→ z} for the paths [N10, N11, N14, N15, N16, N17] and
[N10, N11, N14, N15, N18, N19].

Definition 16 (individual induction schema) Let Nr be some root from π. The individual induction
schema for S(Nr) is built from a set of ICs. A new IC with the induction conclusion S(Nr)[θ] is generated
for each path p leading Nr to a terminal node Nt of the tree derivation rooted by Nr, where θ is the
cumulative substitution for p. When Nt is a bud whose companion Nh is from π, the explicit induction
hypothesis S(Nh)[δ] is attached to the induction conclusion S(Nr)[θ], where δ is either i) the substitution
underlying some (Subst) rule having S(Nt) as premise, if any, or ii) σS(Nh)

id if S(Nt) is the premise of a
rule other than (Subst).

As shown in Example 30, different paths may have attached the same cumulative substitution. Hence,
an induction conclusion may have attached several explicit IHs.

Example 31 (cont. Example 30) By using the previously computed cumulative substitutions, the ICs
of the individual induction schema for

• Nx ` Px are: i) N0 ` P0, and ii) Nsz ` Psz with the attached explicit IHs Nz ` Pz and
Nz,Nsz ` Qzsz;

• Nx,Ny ` Qxy are: i) Nx,N0 ` Qx0, and ii) Nx,Nsz ` Qxsz with the attached explicit IHs
Nx ` Px and Nz,Nx ` Qxz.

Generating the axioms for Pπ

Pπ is a single recursive inductive predicate defined by the smallest set of conditional axioms of the form

premises⇒ Pπ(ti1 , . . . , tik) (C.7)

and unconditional axioms of the form Pπ(ti1 , . . . , tik), where the size of tij (j ∈ [1..k]) is the sum of
the sizes of each tlij (l ∈ [1..nij ]). Each of the sequents S(N ij )[θ] is the conclusion of an individual IC

defined for S(N ij ), where tij is (t1ij [θ], . . . , t
nij
ij

[θ]) (j ∈ [1..k]). For each of its attached explicit IHs,
there is a premise of (C.7) defined as follows. If the explicit IH is the sequent S(N ir )[δ] (r ∈ [1..k]), the
premise is the induction conclusion of (C.7) for which the rth (sub)vector of its arguments is replaced
by (t1ir [δ], . . . , t

nir
ir

[δ]). The premises of an axiom having replaced distinct (sub)vectors may be factorized
in one premise, which can lead to different definitions for Pπ. For example, if two premises replace
respectively the uth and vth subvector, with u, v ∈ [1..k] and u < v, they can be factorized to give the
premise Pπ(ti1 , . . . , tiu−1

, siu , tiu+1
, . . . , tiv−1

, siv , tiv+1
, . . . , tik).

Example 32 (cont. Example 31) Pπ can be defined by the axioms

Pπ(0, x, 0) (C.8)
Pπ(x, x, z′)⇒ Pπ(0, x, s(z′)) (C.9)
Pπ(z, z, s(z))⇒ Pπ(s(z), x, 0) (C.10)

Pπ(z, z, s(z)) ∧ Pπ(x, x, z′)⇒ Pπ(s(z), x, s(z′)) (C.11)

issued from the individual induction schemas for Nx ` Px and Nx,Ny ` Qxy, by factorising the
premises. For example, the premise of the axiom (C.10) was factorised from the premises Pπ(z, x, 0)
and Pπ(s(z), z, s(z)). Another definition of Pπ can be given with a different factorisation of the premises
for (C.11) when (C.11) is replaced by Pπ(x, z, s(z)) ∧ Pπ(z, x, z′)⇒ Pπ(s(z), x, s(z′)).
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C(Γj [δ] ` ∆j [δ]),Γj [δ] ` ∆j [δ]

(Wk)
. . . , C(Γj [δ] ` ∆j [δ]), . . . ,Γj [δ] ` ∆j [δ]

Nt: bud (companion ∈ π)

proof as for Γ ` ∆

Γj ` ∆j
(Subst)

Γj [δ] ` ∆j [δ]
(Wk)

Γ′,Γj [δ] ` ∆j [δ]

Nt: bud (companion 6∈ π)

(0-premise)
Γ′′ ` ∆′′

Nt: leaf
(one of the three scenarios from above are executed, depending on the nature of Nt)

...(applying successively the rules from the nodes of p, according to Lemma 9)

...
C(S(N1

l ))[δ1], . . . , C(S(Np
l ))[δp],Γ[θ] ` ∆[θ]

(∨R),(¬R)
C(S(N1

l ))[δ1], . . . , C(S(Np
l ))[δp] ` C(Γ ` ∆)[θ]

(a) Proving an individual IC built by following the path p leading Nr to some terminal node Nt.

{
⋃p
i=1{C(S(N i

l ))[δ
i]} ` C(Γ ` ∆)[θ] | ‘(Γ ` ∆)[θ] attaches

⋃n
i=1{S(N i

l )[δ
i]}’ is an indiv. IC}

` C(S(Ni1)) ∧ . . . ∧ C(S(Nik))

(b) The new subgoals after applying (Inda Pπ), (∧L), (∧R) and (Wk) on the conjunction sequent.

. . . . . . . . . . . . . . . . . . .
C(Γ ` ∆),Γ ` ∆

(∧L),(Wk)∧
root N from π C(S(N)),Γ ` ∆

(cont. Figure C.10b)
(Wk)

` C(S(Ni1)) ∧ . . . ∧ C(S(Nik))
(Wk)

Γ `
∧
root N from π C(S(N)),∆

(Cut)
Γ ` ∆

(c) Building the proof of the conjunction sequent for the SCC with cycles π.

Figure C.10: The main steps of the LKIDa proof of S(Nr) ≡ Γ ` ∆.

C.1.4 Generating the explicit induction proof

The explicit induction proof of the conjunction sequent starts by a unique explicit induction step using
(Inda Pπ). Each IC generates a new conjecture whose proof script can be directly issued by following
the paths used to build the individual ICs producing the IC. This is mainly due to Lemma 9.

Applying the (Inda) rule on the conjunction sequent

The scenario for applying (Inda Pπ) on the conjunction sequent is given in Figure C.10b, under the
assumption that Pπ is admissible. The double line denotes a sequence of rule applications following
(Inda Pπ) that transform each premise of (Inda Pπ) into the individual ICs that helped to built it.
It firstly deletes the conjunction symbols from the antecedent part using successive applications of (∧L)
rules, then the conjunction symbols from the succedent part using the (∧R) rule. The antecedent formulas
from each new sequent, that are not among the explicit IHs attached to the induction conclusion from
the succedent, are finally deleted by the (Wk) rule. The IC ‘(Γ ` ∆)[θ] attaches S(N1

l )[δ1] . . . S(Np
l )[δp]’

can be formalised as the sequent C(S(N1
l ))[δ1], . . . , C(S(Np

l ))[δp] ` C(Γ ` ∆)[θ].

Example 33 (cont. Example 32) Let us assume that N is admissible. We can simplify the LKIDa
proof by considering the weaker versions of C(Nu ` Pu) (resp., C(Nx,Ny ` Qxy)) as Pu, for any term
u (resp., Qxy, for any terms x and y). The beginning part of the LKIDa proof of the conjunction sequent
` Pu ∧Qxy is illustrated in Figure C.11, under the assumption that Pπ is also admissible. The missing
proof parts for the sequents denoted by [*] and [**] are given below.
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` P0 (Wk)
Px,Qxy′ ` P0 Px,Qxy′ ` Qxsy′

(∧R)
Px,Qxy′ ` P0 ∧Qxsy′

(∧L)
Px ∧Qxy′ ` P0 ∧Qxsy′ [*]

Pu′, Qu′su′ ` Psu′ Px,Qxy′ ` Qxsy′
(∧R),(Wk)

Pu′, Qu′su′, Px,Qxy′ ` Psu′ ∧Qxsy′
(∧L)

Pu′ ∧Qu′su′, Px,Qxy′ ` Psu′ ∧Qxsy′
(∧L)

Pu′ ∧Qu′su′, Px ∧Qxy′ ` Psu′ ∧Qxsy′ [**]

It can be noticed that the leaves of the derivation are labeled with sequents formalizing ICs of the
individual induction schemas for Nx ` Px and Nx,Ny ` Qxy.

Proving the individual induction cases

The LKIDa derivation for the IC ‘(Γ ` ∆)[θ] attaches S(N1
l )[δ1] . . . S(Np

l )[δp]’ is given in Figure C.10a.
Let p be the path used to build the cumulative substitution θ and leading the root Nr labeled by
(Γ ` ∆) to the unique terminal node Nt in p. The rules applied along p can be used, as indicated
by Lemma 9, to generate the sequent labeling Nt (resp., the node before Nt in p) from the sequent
C(S(N1

l ))[δ1], . . . , C(S(Np
l ))[δp] ` C(Γ ` ∆)[θ] formalising the IC, if p is (Subst)-free (resp., not (Subst)-

free).
The LKIDa proof is built according to the nature of Nt. If Nt is a leaf, p is (Subst)-free and the LKIDa

proof consists in the application of the 0-premise rule on S(Nt). Let us assume that Nt is a bud having
the node Nh as companion, for which S(Nh) ≡ Γj ` ∆j , and δ is i) σ

S(Nt)
id , if S(Nt) is not the premise of a

(Subst) rule, or ii) the underlying substitution of the (Subst)-rule having S(Nt) as premise, otherwise. If
Nh is not from π, the LKIDa proof for S(Nt) is a (Wk)-step to get Γj [δ] ` ∆j [δ], followed by the (Subst)-
step to get S(Nh). It finishes by the LKIDa proof generated for S(Nh) since Nh is <R-smaller than Nr.
Finally, let us assume that Nh is from π. We recall that one can build the derivation of Γj [δ] ` ∆j [δ] from
(Γ ` ∆)[θ], as explained by Lemma 9. Also, we remark that the same derivation is possible if its sequents
have added in the antecedent part the same set of formulas, in particular C(S(N1

l ))[δ1], . . . , C(S(Np
l ))[δp]

which is further represented as . . . , C(Γj [δ] ` ∆j [δ]), . . .. Hence, . . . , C(Γj [δ] ` ∆j [δ]), . . . ,Γj [δ] ` ∆j [δ]
can be built from the IC . . . , C(Γj [δ] ` ∆j [δ]), . . . ,Γ[θ] ` ∆[θ]. The LKIDa proof for S(N t) starts by a
(Wk)-step to get C(Γj [δ] ` ∆j [δ]),Γj [δ] ` ∆j [δ]. It continues by deleting the implication, disjunction and
conjunction operators using successive applications of (⇒ L), (∧R), and (∨L), and finishes using (Ax)
rules; this part is denoted by the horizontal dotted line from Figure C.10a.

Example 34 (cont. Example 33) The LKIDa proofs of the individual ICs are:

(R.(C.3))` P0

(Ax)
Pu′, Qu′su′ ` Pu′

(Ax)
Pu′, Qu′su′ ` Qu′su′

(R.(C.4))
Pu′, Qu′su′ ` Psu′

(R.(C.5))` Qx0

(Ax)
Px,Qxy′ ` Px

(Ax)
Px,Qxy′ ` Qxy′

(R.(C.6))
Px,Qxy′ ` Qxsy′

Building the LKIDa proof of Γ ` ∆

Displayed in Figure C.10c, it starts with a (Cut) rule, where the cut formula is the conjunction sequent
for π. One branch is reduced to C(Γ ` ∆),Γ ` ∆ which can be proved as for the last case discussed for
Figure C.10a. The other branch is developed in Figure C.10b.

Example 35 (cont. Example 34) The proof of Nx,Ny ` Qxy starts by applying (Wk) followed by
(Cut) with the conjunction sequent as cut formula:
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` P0 ` Qx0
(∧R)` P0 ∧Qx0

Pu′, Qu′su′ ` Psu′
` Qx0

(Wk)
Pu′, Qu′su′ ` Qx0

(∧R)
Pu′, Qx′su′ ` Psu′ ∧Qx0

(∧L)
Pu′ ∧Qu′su′ ` Psu′ ∧Qx0 [*] [**]

(Inda Pπ)` Pu ∧Qxy

Figure C.11: The beginning part of the LKIDa proof of ` Pu∧Qxy. The terminal nodes are individual
ICs.

(cont. as in Figure C.11)
` Pu ∧Qxy

(Ax)
Pu,Qxy ` Qxy

(∧L)
Pu ∧Qxy ` Qxy

(Cut)` Qxy
(Wk)

Nx,Ny ` Qxy

We give below some crucial properties of the conversion procedure.

Theorem 26 (termination) The conversion procedure terminates. The set of new inductive predicate
symbols and of the axioms defining them is finite.

Proof Our arguments use the fact that the pre-proof tree-set given as input is finite. Hence, the number
of iterations, given by the number of root nodes from the input proof, is finite. For each iteration, the
operations in the case 1. of the procedure reproduce a tree derivation from the cyclic proof.

For the case 2., the construction of the explicit induction schema is an exhaustive combination of
a finite number of individual induction schemas whose computation terminates. The conversion of the
explicit induction proof terminates because the paths followed in the input proof are finite. �

Theorem 27 (soundness) The output of the conversion procedure, applied on a CLKIDωN pre-proof
tree-set in normal form and one of its root sequents S, is an LKIDa proof of S if the new inductive
predicates are admissible.

Proof Let (MD,MR) be the input CLKIDωN proof. By Theorem 26, the conversion procedure builds
for each sequent labeling a root node in MD a finite LKIDa-derivation whose terminal nodes are all
leaves if the new inductive predicates are admissible. By Definition 15, these derivations are LKIDa
proofs. Since S labels one of the roots ofMD, the conversion procedure builds an LKIDa proof of S. �

Time complexity

It has been shown in Subsection 7.2.3 that the normalization operation of CLKIDωN pre-proof is linear
w.r.t. their number of nodes. Many steps in the execution of the conversion procedure consist in following
paths from root to terminal nodes in the input CLKIDωN pre-proof tree-sets. The most costly operation
stands in the combination of individual induction schemas during the generation of the axioms for the
new admissible inductive predicates. Given a SCC with cycles π, if n is the number of its root nodes and
mi the number of ICs of the individual induction schema for the ith root node (i ∈ [1..n]), the number of
axioms defining Pπ is m1 × · · · ×mn. Each mi (i ∈ [1..n]) is linear with the number of case applications
from the tree rooted by the ith root node, which is bounded by the size k of the input cyclic proof. The
number of SCCs with cycles is also bounded by k. Hence, the worst-case time complexity is kn.

C.1.5 Checking the admissibility property
In the FOLID setting, there are very few admissible inductive predicates, e.g., that defined by the unique
axiom P (x). Very simple and useful inductive predicates, as N , are not admissible.

Example 36 (N is not admissible in FOLID) ` N(a) holds only if a is a natural number, i.e., of
the form sn(0), n ≥ 0.
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However, N becomes admissible in a typed system where the type of the argument of N has the free
constructors 0 and s. The idea is to use typed formalisms that can reproduce the cyclic and explicit
induction reasoning from FOLID. An example of such a formalism is the calculus of inductive construc-
tions [Paulin-Mohring, 2015, Bertot and Castéran, 2004], the logical framework behind Coq, because i)
it accepts inductive definitions, and ii) every CLKIDωN and LKIDa inference rule can be simulated in
Coq. The Coq inference system can directly reproduce the LK, equality, unfold and case rules. The
explicit induction schema built by (Inda), when applied on an admissible inductive predicate Pπ defined
by axioms of the form (C.7), can be also reproduced by some recursive function that terminates and is
complete, by using the functional programming style from Subsection 6.3.4.

In the following, we will show how to build such a function from cyclic pre-proofs.

Definition 17 (constrained CLKIDω
N proof tree/tree-set) A constrained CLKIDωN proof tree

(resp.,tree-set) is every pre-proof tree (resp., tree-set) whose digraph has only n-cycles that discharge
their IHs, according to Definition 12.

Example 37 We show that the pre-proof tree-set from Fig. C.9 can be constrained, too. Its digraph
has one SCC with cycles denoted by π, with two 1-cycles and one 2-cycle. By using the cumulative
substitutions built in Example 30, we define the ordering constraints for each n-cycle:

• for [N1, N4, N5, N8, N9] we have S(N8) <π S(N1)[{x 7→ x; y 7→ sz; z 7→ z}];

• for [N10, N11, N14, N15, N16, N17] we have S(N16) <π S(N10)[{x 7→ sz; z 7→ z}];

• for [N1, N4, N5, N7], [N10, N14, N15, N18, N19] we have the two constraints S(N7) <π S(N1)[{x 7→
x; y 7→ sz; z 7→ z}] and S(N18) <π S(N10)[{x 7→ sz; z 7→ z}].

We define the measure values for each sequent from the pre-proof tree-set, of the form. . . ` Pt (resp.,
. . . ` Qt1t2), as the multiset {Nt,Nt} (resp.,{Nt1, Nt1, Nt2}).

The four ordering constraints are : {Nx,Nx,Nz} <π {Nx,Nx,Nsz}, {Nz,Nz} <π {Nsz,Nsz},
{Nx,Nx} <π {Nx,Nx,Nz}, and {Nz,Nz,Nsz} <π {Nsz,Nsz}. We can notice that the ordering and
derivability constraints are satisfied if <a is defined as a rpo based on any precedence over the symbols
N , 0 and s.

Lemma 13 Let π be a SCC with cycles from the digraph of a constrained CLKIDωN proof tree-set, Fπ(t)
its conjunction formula and Pπ its new inductive predicate. If the principal formulas of the (Case)-steps
are admissible inductive atoms, there is a constrained CLKIDωN proof tree of ` Pπ(t).

Proof Let π be the SCC with cycles from the digraph of a constrained CLKIDωN proof tree-set
(MD,MR) whose conjunction formula is Fπ(t). By construction, the axioms of Pπ are issued from
the individual induction schemas for the k (> 0) root sequents S(N ip) (p ∈ [1..k]) from π.

One can build a constrained CLKIDωN pre-proof tree of ` Pπ(t) by firstly building the pre-proof tree
D of Γ ` Pπ(t), where Γ ≡ {p | p is an admissible IAA of S(N ip), ∀p ∈ [1..k]}. For this, we establish a
‘visiting’ priority among the root sequents of π given, w.l.o.g., by the sequence S(N i1), . . . , S(N ik). Let
also t be (ti1 , . . . , tik), where each tij is (t1ij , . . . , t

nij
ij

) (j ∈ [1..k]).
The process of building D is finished when the successive constructions of the visiting path, unfolding

and bud parts are finished. The ‘visiting path’ part is built by successively considering each root sequent
of π according to the fixed priority. Hence, we start by executing the rules that affect the IAAs along
the paths leading N i1 to each of the terminal nodes of the tree rooted by N i1 in MD, i.e., (Wk),
(contrL), (Gen) and (Case). When finished, the sequent corresponding to a terminal node t is of the
form Γ′ ` Pπ(t1i1 [θc], . . . , t

ni1
i1

[θc], ti2 , . . . , tik), where θc is the cumulative substitution for the path p′i1 ,
leading N i1 to t, and Γ′ is Γ for which the admissible IAAs of S(N i1) are replaced by those of the
sequent resulting after the last application of a rule that generates new admissible IAAs, i.e., by the last
application of (Gen) in p′i1 . We continue to build D by considering N i2 and using some path p′i2 , as it
has been done for N i1 and p′i1 . This part finishes when the derivation for the last root sequent in the
sequence, N ik , was built. At the end, the succedent atom from each resulting sequent is the conclusion
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of some axiom defining Pπ (modulo variable renaming).

The unfolding part applies the unfold rules with the axioms defining Pπ.

The bud part consists in the application of (Wk)/(contrL) to delete/duplicate IAAs in order to
successfully apply (Subst) and generate buds. Let (Subst) be applied on a sequent S of the form Γ `
Pπ(t′′), where Pπ(t′′) is the condition of some axiom defining Pπ (modulo variable renaming). Then the
substitution underlying (Subst) is the composition of the substitutions δ used to define the IHs that
helped to build the condition Pπ(t′′) when defining the axioms of Pπ. Let R be the induction function
assigning the root as companion of every bud node.

We show that the pre-proof tree (D,R) is a constrained proof tree. D has only one SCC with cycles,
let it be denoted by π′, including only 1-cycles represented by paths leading the root to each of its buds.
Every bud sequent is a premise of some (Subst) rule, so the IHs to be discharged by the 1-cycles are the
conclusions of these rules. Let [N, . . . , Nf , B] be such a 1-cycle. In order to show that the IH S(Nf ) is
discharged by this 1-cycle, we define for any arbitrary substitution θ the measure value for the instance
(Γ ` Pπ(ti1 . . . , tik))[θ] of S(N) as the multiset {AS(Ni1 [θ], . . . , AS(Nik [θ]}. According to Definition 12,
it is sufficient to show that S(Nf ) is <<π′-derivable from S(N)[θ′c] along [N, . . . , Nf , B], where θ′c is the
cumulative substitution for the path [N, . . . , Nf , B]. Since N = R(B), we have S(Nf ) ≡ S(N)[δ], where
δ is the substitution underlying the (Subst) rule that has S(B) as premise. Therefore, it is enough to
show that S(N)[δ] is <<π′ -derivable from S(N)[θ′c] along [N, . . . , Nf , B]. This condition holds because, for
each j ∈ [1..k], there is l ∈ [1..k] chosen from an IC, of the form ‘S(N il)[θ′c] attaches {. . . , S(N ij )[δ], . . .}’,
from some individual IC used during the explicit induction proof requiring Pπ such that AS(Nij )[δ] is
<π′ -derivable from AS(Nil )[θ′c]

, where <π′ is defined as <π. The derivability conditions from the <π′ -
derivability relation hold thanks to the way D was build during the ‘visiting path’ part.

Finally, the derivation tree of ` Pπ(t) is built by successively applying (Cut) on every IAA p from
Γ. Since p is admissible, (Adm) can be applied on the sequent ` p, Pπ(t). At the end, we get Γ ` Pπ(t)
that is a bud. Since no new n-cycle is built, the pre-proof tree-set consisting of the two derivation trees
rooted by ` Pπ(t) and Γ ` Pπ(t) is a constrained CLKIDωN proof tree. �

Example 38 The pre-proof tree from Fig. C.12 is a constrained CLKIDωN proof tree (D,R), too. (Gen)
denotes the restricted form of (= L) used by CLKIDωN .

We have to check that their IHs are discharged along the four 1-cycles of the unique SCC π′. It is
sufficient to check that:

• ANx,Ny′,Nx`Pπxxy′ is <<π′-derivable from the cumulative instance AS(†)[{u7→0;x 7→x;y 7→sy′;y′ 7→y′}]
along [‡, . . . , ‡1]. This holds since the two IAA multisets of ANx,Nx,Ny′`Pπxxy′ , i.e.,
{Nx,Nx} and {Nx,Nx,Ny′}, are <π′-derivable from the IAA multiset {Nx,Nx,Nsy′} of
AS(‡)[{u 7→0;x 7→x;y 7→sy′;y′ 7→y′}] along [‡, . . . , ‡1];

• ANu′,Nu′,Nsu′`Pπu′u′su′ is <<π′-derivable from the cumulative instance AS(‡)[{u 7→su′;u′ 7→u′;x 7→x;y 7→0}]
along [‡, . . . , ‡2]. This is true because {Nu′, Nu′} and {Nu′, Nu′, Nsu′} are <π′-derivable from
{Nsu′, Nsu′} along [‡, . . . , ‡2];

• ANu′,Nu′,Nsu′`Pπu′u′su′ is <<π′-derivable from the cumulative instance
AS(‡)[{u 7→su′;u′ 7→u′;x 7→x;y 7→sy′;y′ 7→y′}] along [‡, . . . , ‡3]. This also holds because {Nu′, Nu′} and
{Nu′, Nu′, Nsu′} are <π′-derivable from {Nsu′, Nsu′} along [‡, . . . , ‡3];

• finally, ANx,Nx,Ny′`Pπxxy′ is <<π′-derivable from the cumulative instance
AS(‡)[{u 7→su′;u′ 7→u′;x 7→x;y 7→sy′;y′ 7→y′}] along [‡, . . . , ‡4]. This is true because {Nx,Nx} and
{Nx,Nx,Ny′} are <π′-derivable from {Nx,Nx,Nsy′} along [‡, . . . , ‡4].

Well-founded proof tree-sets and implementation in Coq The well-founded proof trees/tree-
sets are similar to the constrained ones, excepting that there are no derivability constraints and that
the orderings over literals and formulas should be well-founded. Such orderings have been successfully
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(R.(C.8))
` Pπ0x0

(Gen)
y = 0 ` Pπ0xy

Nu,Nx,Ny ` Pπuxy (‡1)
(Subst)

Nx,Nx,Ny′ ` Pπxxy′
(contrL)

Nx,Ny′ ` Pπxxy′
(R.(C.9))

Nx,Ny′ ` Pπ0xsy′
(Gen)

y = sy′, Nx,Ny′ ` Pπ0xy
(Case N)

Nx,Ny ` Pπ0xy
(Gen)

u = 0, Nx,Ny ` Pπuxy

Nu,Nx,Ny ` Pπuxy (‡2)
(Subst)

Nu′, Nu′, Nsu′ ` Pπu′u′su′
(contrL)

Nsu′, Nu′ ` Pπu′u′su′
(Wk)

Nu′, Nsu′, Nx ` Pπu′u′su′
(R.(C.10))

Nu′, Nsu′, Nx ` Pπsu′x0
(Gen)

y = 0, Nu′, Nsu′, Nx ` Pπsu′xy [*]
(Case N)

Nu′, Nsu′, Nx,Ny ` Pπsu′xy
(Gen)

Nu, u = su′, Nu′, Nx,Ny ` Pπuxy
(Case N)

Nu,Nu,Nx,Ny ` Pπuxy (contrL)
Nu,Nx,Ny ` Pπuxy (‡)

Nu,Nx,Ny ` Pπuxy (‡3)
(Subst)

Nu′, Nu′, Nsu′ ` Pπu′u′su′
(contrL)

Nu′, Nsu′ ` Pπu′u′su′ (Wk)
Nu′, Nsu′, Nx,Ny′ ` Pπu′u′su′

Nu,Nx,Ny ` Pπuxy (‡4)
(Subst)

Nx,Nx,Ny′ ` Pπxxy′
(contrL)

Ny′, Nx ` Pπxxy′ (Wk)
Nu′, Nsu′, Nx,Ny′ ` Pπxxy′

(R.(C.11))
Nu′, Nsu′, Nx,Ny′ ` Pπsu′xsy′

(Gen)
y = sy′, Nu′, Nsu′, Nx,Ny′ ` Pπsu′xy [*]

(a) The derivation tree of Nu,Nx,Ny ` Pπuxy.

(Adm Nv)
` Nv, Pπuxy

(Adm Nx)
` Nx,Pπuxy

(Adm Nu)
` Nu,Pπuxy Nu,Nx,Nv ` Pπuxy (‡)

(Cut)
Nx,Nv ` Pπuxy

(Cut)
Nv ` Pπuxy

(Cut)
` Pπuxy

(b) The derivation tree of ` Pπuxy.

Figure C.12: The pre-proof tree-set for showing the admissibility of Pπuxy.
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used in Chapter 6 to certify cyclic induction reasoning in Coq. The same approach has been adopted to
implement the termination orderings for the new inductive predicates, based on i) the Coccinelle library
to associate syntactical weights to Coq formulas and to define Noetherian and ‘stable under substitutions’
orderings over formulas from term algebras, ii) the CoLoR library to build the multiset extensions of the
orderings defined with Coccinelle, and iii) the functional (explicit induction) schemas.

Example 39 (Coq proof of the P&Q example by explicit induction) Compared to Example 1,
we give definitions of the P and Q inductive predicates that accept only naturals as arguments:

Inductive P: nat → Prop :=
p0: P 0 |
p1: ∀ x:nat, (P x) → Q x (S x) → P (S x)

with Q: nat → nat → Prop :=
q0: ∀ x, Q x 0 |
q1: ∀ (x y:nat), Q x y → P x → Q x (S y).
The termination ordering annotates the definition of Pπ using the axioms from Example 32. For

convenience, the triplets (x, y, z) given as argument to Pπ are represented with pairs as (x, (y, z)), for
any natural x, y, z:

Function Pπ (a: nat × (nat × nat)) {wf (fun u v: nat × (nat × nat)⇒ match u,v with (u1, (x1,
y1)), (u2, (x2, y2)) ⇒ mless [[(model nat u1), (model nat u1)], [(model nat x1), (model nat
x1), (model nat y1)]] [[(model nat u2), (model nat u2)], [(model nat x2), (model nat x2),
(model nat y2)]] end) a}: Prop :=

match a with
| (0, ( , 0)) ⇒ True
| (0, (x’, (S y’))) ⇒ Pπ (x’,(x’,y’))
| ((S u’), ( , 0)) ⇒ Pπ (u’, (u’, (S u’)))
| ((S u’), (x’, (S y’))) ⇒ Pπ(u’,(u’,(S u’))) ∧ Pπ(x’,(x’,y’))

end.
where (model nat x) is the Coccinelle representation for the variable x of sort nat and mless is the multiset
extension of an ordering over multisets of terms. The measure value for the atom Pt (resp., Qt1t2) is
the multiset {t, t} (resp.,{t1, t1, t2}), for any terms t, t1, and t2. The user should provide the termination
proof that checks whether the argument a decreases after each call w.r.t. the ordering following the wf
keyword.

Pπ is also complete because all possible cases for its argument a are considered by the match
construction. It helps to define the explicit induction schema Pπ ind as a new functional schema:

Functional Scheme Pπ ind := Induction for Pπ Sort Prop.

The inductive predicate PQ defines the conjunction of their root formulas, which are simplified by
taking into account the logical representation of sequents and that N is admissible:

Inductive PQ: nat × (nat × nat) → Prop :=
r0: ∀ u x y: nat, (P u) ∧ (Q x y) → PQ (u, (x, y)).

The application of Pπ ind will start the proof of PQ (u, (x, y)):
Theorem pq is true : ∀ u x y, PQ (u, (x, y)).
Proof.
intros.
(* application of the explicit induction schema *)
pattern (u, (x, y)), (Pπ (u, (x, y))). apply Pπ ind; intros; apply r0; subst.
(* case P 0 ∧ Q x 0 *)
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- split. apply p0. apply q0.
(* case P 0 ∧ Q x’ (S y’) *)
- inversion H. subst. destruct H1. inversion H1. subst.
split. apply p0. apply q1. trivial. trivial.
split. apply p0. inversion H. subst. destruct H7. apply q1. trivial. trivial.

(* case P (S u’) ∧ Q x 0 *)
- inversion H. subst. destruct H1. split. apply p1. trivial. trivial. apply q0.
(* case P (S u’) ∧ Q x’0 (S y’) *)
- inversion H. subst. inversion H0. subst. destruct H2. destruct H3.
split. apply p1. trivial. trivial. apply q1. trivial. trivial.

Qed.
After the unfolding of PQ in the goal of each induction case, we get only conjunctions. The proof of

each of their conjuncts, resulting after the application of split, is built by firstly unfolding with apply
the definitions of P and Q, as shown in Figure 4. After the use of the inversion and destruct tactics
on the IHs defined by the induction schema, the remaining formulas are proved by trivial because they
also occur in the premise part of the goal.

Finally, the main theorem is proved as a conjunct of the previous theorem:
Theorem q is true : ∀ x y, Q x y.
Proof.
intros.
assert (H:= pq is true x x y). inversion H. destruct H1. trivial.

Qed.

C.1.6 Certifying other cyclic proofs

Conjecture # SCC Root sequents Measure values
1. N1(x) ` O(x) ∨ E(x) 1 N1(x) ` O(x) ∨ E(x) {x}
2. N1(x) ` Add(x, 0, x) 1 N1(x) ` Add(x, 0, x) {x}
3. N1(x) ∧ N2(y) ∧ Add3(x, y, z) `

Add(x, s(y), s(z))
1 N1(x) ∧ N2(y) ∧ Add3(x, y, z) `

Add(x, s(y), s(z))
{x, z}

4. N1(x) ∧N2(y) ` R(x, y) 2 N1(x) ∧N2(y) ` R(x, y) {y}
N1(w) ` R(s(w), 0) {w}

5. N1(x) ∧N2(y) ` p(x, y) 1 N1(x) ∧N2(y) ` p(x, y) {x, y}
6. (memberT (x,insIn(y, z, t)) = true ∧ 0

memberT (x, y) = false) → z = x

Table C.5: Statistics about some cyclic proofs.

Table C.5 gives statistics about the cyclic induction proofs of some relevant conjectures taken from the
repository of Cyclist (Conjectures 1 to 4), the 2-Hydra example [Berardi and Tatsuta, 2019] (Conjecture
5), and the repository of SPIKE (Conjecture 6), by showing the number of SCCs and their root sequents
with the measure values to be used in the definition of the induction ordering. We will discuss the Coq
definitions of Pπ, proposed by the conversion procedure for each conjecture. Only the match cases for
the argument a of Pπ are illustrated.

| 0 ⇒ True
| (S y) ⇒ Pπ y

| (0, ( , )) ⇒ True
| ((S x), ( , 0)) ⇒ True
| ((S x), (u, (S y))) ⇒ Pπ (x,(u,y))

The lhs Pπ definition from above was used in the proof of Conjecture 1 involving the even (E) and
odd (O) predicates, Conjecture 2 concerning the addition (Add), and the formula corresponding to the
first root sequent required by Conjecture 4. Being the simplest one, apply Pπ ind is equivalent to apply
the Peano principle. The rhs definition of Pπ from above was used to prove Conjecture 3.
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C.1. Detailed project: certification of cyclic reasoning by converting cyclic to explicit induction proofs

The lhs definition from below helped to prove the other root sequent for Conjecture 4. The rhs one
was used to prove the 2-Hydra example. Both are complex and arguably hard to be found eagerly.

| (0, )| ((S 0),0)| ((S (S 0)), 0)| ((S (S (S ))), 0) ⇒ True
| ((S 0), (S z)) ⇒ Pπ ((S (S 0)),z)
| ((S (S 0)), (S z)) ⇒ Pπ ((S (S (S 0))),z)
| ((S (S (S y))), (S z)) ⇒ Pπ ((S (S (S (S y)))), z)

| (0,0) | ((S 0),0) | ( , (S 0)) ⇒ True
| ((S (S x )),0) ⇒ Pπ ((S x), x)
| (0, (S (S y))) ⇒ Pπ ((S y), y)
| ((S x), (S (S y))) ⇒ Pπ (x, y)

The last cyclic proof, requiring 8 induction steps, is the largest one. It was built by SPIKE for
the conjecture member t insin from Table 2.1, one of the 79 conjectures that helped to prove the
equivalence between two conformity algorithms for the ATM networks. It will not be presented here
but it can be accessed, as the other proofs and experimental material, from https://drive.google.
com/file/d/10HUmH4ywl1O1PSPjODH58zXwL6K_KBeL/view?usp=sharing

C.1.7 Further lines of research
We showed that the use of types allows to define admissible inductive predicates and the application of
the conversion procedure in logics that can reproduce the FOLID inductive reasoning, e.g., the calculus
of inductive constructions. This allowed us to certify the FOLID cyclic reasoning with Coq.

We also showed in Example 2 that Coq is able to build cyclic pre-proofs. We intend to build a Coq
plugin that validates such pre-proofs. It can be imagined that the user activates a mode before starting
the construction of the pre-proofs such that, when the construction process finishes with ‘Qed.’, the
validation of the pre-proofs is executed.

The validation step can be done in two ways, by using:

1. formula-based Noetherian induction principles, as shown for the cyclic formula-based Noetherian
induction pre-proofs from Chapter 6. Recall that the Coq certification process of implicit induction
proofs can be completely automatized. Since the pre-proofs can be represented as formula-based
Noetherian induction pre-proofs, we expect that the validation step be performed automatically,
too;

2. term-based Noetherian induction principles, as shown in this subsection. We expect that the vali-
dation process be also highly automatic.

The plugin may include minimal user interactions for choosing the right induction orderings or
finishing the termination proofs of the new inductive predicates/functions.

We also plan to certify FOLID cyclic pre-proofs based on a validation process using formula-based
Noetherian induction principles. We illustrate below our approach for the Cyclist pre-proof of the main
P&Q conjecture.

The Coq script. The Cyclist specification of the main P&Q conjecture and its pre-proof from
Figure 7.6 can be translated in the following Coq script:

Theorem true 0: ∀ x y, N x → N y → Q x y.
Proof.
intros x y H H0.
(* instantiate y from Q x y *)
inversion H0. rewrite ← H1.
(* Q x zero *) apply q1.
rename x0 into z.
(* Q x (succ z) *) apply q2. split.
(* the proof of Q x z requires induction *)
Focus 2. (* code follows on the next column *)

(* instantiate x from P x *)
inversion H. rewrite ← H3.
(* P zero *) apply p1.
clear y H0 H2. rename x0 into y.
(* P (succ y) *) apply p2.
assert (Q y y ∧ P y).
(* the proof of Q y y ∧ P y needs induction
*)
Focus 2.

The pre-proof ends by showing the equivalence of Q y y ∧ P y and Q y y ∧ P (succ y):
destruct H0. split; trivial. apply q2. split; trivial.
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Admitted.

The Coq certification. Following the certification methodology from Chapter 6, one should firstly
define the mpo and its multiset extension denoted by less. According to the Coccinelle specification of
the mpo, to each function symbol from the Coq specification corresponds a Coccinelle function symbol
with an arity, status and index :

Inductive symb : Set :=
| id 0
| id S
.

Definition arity (f :symb) :=
match f with
| id 0 ⇒ term spec.Free 0
| id S ⇒ term spec.Free 1
end.

Definition status (f :symb) :=
match f with
| id 0 ⇒ rpo.Mul
| id S ⇒ rpo.Mul
end.

Definition index (f :symb) :=
match f with
| id 0 ⇒ 2
| id S ⇒ 3
end.

The function model nat translates Coq terms to Coccinelle terms:

Variable model nat : T → term.
Axiom model nat 0 : model nat zero = (Term id 0 nil).
Axiom model nat succ : ∀ (u1 : T ), model nat (succ u1 ) = (Term id S ((model nat u1)::nil)).

The above equalities can be used for rewriting during the proofs:

Hint Rewrite model nat 0 model nat succ : model nat.
Ltac rewrite model := autorewrite with model nat.

If the pre-proof has several non-singleton SCCs, one should define a precedence w.r.t. their processing
order, such that the SCC S1 is treated after the SCC S2 if S1 depends on S2. For each SCC S,

1. attach a measure value to each root from S inside a functional to ensure that whenever the root
formula is instantiated the mesure value is also instantiated with the same substitution:

Definition type LF 0 4 := T → T → (Prop × (List.list term)).

Definition F 0 : type LF 0 4:= (fun u1 u2 ⇒ (N u1 → N u2 → Q u1 u2, ((model nat
u1)::(model nat u1)::(model nat u2)::(model nat u2):: nil))).
Definition F 4 : type LF 0 4:= (fun u1 u2 ⇒ (N u1 → N u2 → N (succ u2 ) → Q u1 u2 ∧
P u1, ((model nat u1)::(model nat u1)::(model nat u2)::(model nat u2):: (model nat
(succ u2 )):: nil))).

2. define the list of functionals:

Definition LF 0 4 := [F 0,F 4].

3. define and prove the main lemma by reproducing the parts rooted by the root nodes in the pre-proof;
the buds are validated using well-founded induction arguments:

Lemma main 0 4 : ∀ F, In F LF 0 4 → ∀ u1, ∀ u2, (∀ F’, In F’ LF 0 4 → ∀ e1, ∀ e2, less (snd (F’
e1 e2 )) (snd (F u1 u2 )) → fst (F’ e1 e2 )) → fst (F u1 u2 ).

4. prove all formulas from the list of functionals using a formula-based instance of the well-founded
induction principle [Stratulat, 2012] as the all true conjecture:

Theorem all true 0 4: ∀ F, In F LF 0 4 → ∀ u1 : T, ∀ u2 : T, fst (F u1 u2 ).

5. finally, prove the root conjectures as direct consequences of all true:
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C.2. Other projects

Theorem true 0: ∀ x y, N x → N y → Q x y.

Theorem true 4: ∀ x y, N x → N y → N (succ y) → Q x y ∧ P x.

C.2 Other projects

C.2.1 Strategies for directly building sound CLKIDω
N pre-proofs

We are interested to develop strategies for building sound CLKIDωN pre-proofs without backtracking,
which may lead to faster proof developments. A first attempt would be to use Theorem 19. It suggests
that sequents can also be proved by directly building sound pre-proof tree-sets. For this purpose, we
adapt the DRaCuLa strategy from Chapter 2. Mainly, the trees from a pre-proof tree-set are developed
by applying the CLKIDωN rules, as usual, with the following exceptions:

• when applying a (Subst)-rule, the premise becomes a bud sequent, as shown for the first trans-
formation of the normalization procedure. The next step is to develop a new tree rooted by the
companion of the bud;

• when a bud is about to be created, several scenarios may happen. As a preliminary step, if its
companion is a non-root node, the second transformation of the normalization procedure is applied.
If the bud candidate is part of a SCC that discharges its IHs, the bud is created (scenario 1). If it
is not yet the case, either i) the strategy tries to build a non-singleton SCC, by developing parts
from other trees (scenario 2), or ii) the SCC does not discharge its IHs (scenario 3); in this case, a
backtracking step is required either to redefine the ordering at the SCC level, or to redo previous
steps, or to continue to develop the proof by applying a CLKIDωN rule on the sequent labelling the
bud candidate.

For (scenario 1), not only the current bud candidate is created, but all the bud candidates from the
SCC are built, hence simultaneous induction is performed.

Example 40 The above strategy can build the pre-proof tree from Example 23. The progression in its
construction can be retraced by following the indexes of the sequents labelling the nodes from the digraph
displayed in Example 25.

This proof strategy uses heuristics based on ordering constraints, different from the iterative depth-
first search heuristics used by Cyclist. The induction ordering for each non-singleton SCC should be
defined only when its construction is completely finished. This is because the induction orderings used
to partially discharge some of the IHs may not be sufficient to discharge the new IHs occurring in the
pre-proof. If no ordering is found, backtracking steps may be required.

Example 41 One could have built a new bud of (*) from the pre-proof tree of Example 23, by developing
(†) such that N0 is added as IAA, then (Subst) applied conveniently. The new non-singleton SCC from
its digraph is part of the SCC π′ of the digraph from Example 25. However, the induction ordering <π′ ,
defined in Example 26 and used to discharge the IH N7, cannot be used to discharge the IH N10. Hence,
a different induction ordering is required, if any, to discharge the IHs of the new SCC π′.
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Nx,Ny `1 R(x, y)

{x7→0}

xx

{x 7→sx′}

((
Ny `2 R(0, y) Nx′, Ny `3 R(sx′, y)

{y 7→0}

((
{y 7→sy′}

��
Nx′, Ny′ `5 R(sx′, sy′)

��

Nx′ `4 R(sx′, 0)

��

(Cut)

''
Nx′, Ny′ `6 R(ssx′, y′)

π′
��

Nx′ `9 N0 Nx′, N0 `10 R(x′, 0)

''
Nssx′, Ny′ `7 R(ssx′, y′)

��

Nx,Ny `11 R(x, y)

mm

Nx,Ny `8 R(x, y)

GG

In order to get rid of the backtracking, we can establish a link with reductive reasoning tech-
niques [Stratulat, 2017a]. The idea is that sound pre-proof trees can also be directly generated to satisfy
implicitly the ordering constraints, similar to implicit induction proofs, by using a reductive proof strategy
based on a unique induction ordering <. Such strategy guarantees that, for every two successive nodes
N i and N i+1 from each path p, of the form [N1, . . . , Nn] and occurring in the definition of some minimal
cycle of its digraph, and i ∈ [1..f − 1], we have either AS(Ni+1)[θci+1] ≡ AS(Ni)[θci ]

or S(N i+1)[θci+1] is
<-derivable from S(N i)[θci ] along p, where f is the index of the IH-node in [N1, . . . , Nn] and θcj is the
cumulative substitution for the path [N j , . . . , Nf ] (j ∈ [1..f ]). The derivability constraints are satis-
fied if the syntactic equality relation is not satisfied at least once along p. Indeed, knowing that the
<-derivability relation is transitive (Lemma 11), we have that S(Nf ) is <-derivable from S(N1)[θc1] along
p, as required. If the rule applied at step i is different from (= L), we have that θci ≡ θci+1. In this case,
it is sufficient to ensure instead that AS(Ni+1) ≡ AS(Ni) or S(N i+1) is <-derivable from S(N i) along p,
due to the ‘stability under substitutions’ property of <-derivability (again Lemma 11).

Example 42 As a proof of concept, we define the derived rule (DCase):

S1 . . . Sn
(DCase P )

Γ, P (x) ` ∆ as

S1
(= L)

case distinction . . .
Sn

(= L)
case distinction

(Case P )
Γ, P (x), P (x) ` ∆

(contrL)
Γ, P (x) ` ∆

where x is a vector of variables. We also define the (Bud) rule:

(bud sign)
(Bud)

Γ ` ∆
as

Γ′ ` ∆′ (bud sign)
(Subst)

Γ′[σ] ` ∆′[σ]
(Wk)

Γ ` ∆

if Γ′ ` ∆′ subsumes Γ ` ∆ with substitution σ, i.e., Γ′[σ] ⊆ Γ and ∆′[σ] ⊆ ∆. Different variants of the
subsumption operation are widely employed by the current theorem provers, Cyclist being one of them.

By using the alternative notation without parentheses, a pre-proof of Nx,Ny ` Q(x, y) is built below
by firstly trying to apply the unfold rules followed by (Bud), then (Del) and, finally, (DCase). (Del)
is a restricted version of the (Wk) rule that deletes the IAAs of the form N(t) if none of the inductive
succedent atoms from the conclusion has t as argument. It can be noticed that the history of every IAA
occurring in each premise of any rule r from the above rules but (Bud) has one of the IAAs from the
conclusion of r.
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C.2. Other projects

(R.(7.3))
Nx,N0 ` Qx0

(R.(7.1))
N0 ` P0

(∗1)
(Bud)

Nsz,Nz ` Pz
(†2)

(Bud)
Nz,Nsz ` Qzsz

(R.(7.2))
Nsz,Nz ` Psz

(DCase N)
Nx ` Px (∗)

(Del)
Nx,Nz,Nsz ` Px

(†1)
(Bud)

Nx,Nz,Nsz ` Qxz
(R.(7.4))

Nx,Nz,Nsz ` Qxsz
(DCase N)

Nx,Ny ` Qxy (†)

The proof strategy is reductive if the measure value for each sequent of the form Γ, N(t) ` P (t) (resp.,
Γ, N(t1), N(t2) ` Q(t1, t2) is the multiset of IAAs {N(t), N(t)} (resp., {N(t1), N(t1), N(t2)}) and < is
defined as the multiset extension of the ordering <a over IAAs from Example 25. It can be checked that
the <-derivability constraints are satisfied, by taking into account that the unique non-singeton SCC of the
digraph associated to its normalized pre-proof tree-set includes the rb-paths [(∗), . . . , (∗1)], [(†), . . . , (†1)],
[(∗), . . . , (†2)], and [(†), . . . , copy of (∗)].

By Theorem 19, our approach allows to prove several conjectures simultaneously. This is a feature
specific to formula-based Noetherian induction reasoning which has been already employed by the implicit
induction inference systems in Subsection 6.2. It is particularly useful when the proofs of the conjectures
are mutually dependent.

Example 43 The normalization step for the pre-proof tree from Example 42 can be avoided if the pre-
proof trees of Nx ` Px and Nx,Ny ` Qxy are developed simultaneously.

The ordering constraints are implicitly satisfied by reductive proof strategies.

In the future, we plan to define new (derived) rules and proof strategies that automatically generate
more compact reductive proof derivations and provide a better control of the proof development. We
intend to integrate these strategies in E-Cyclist. The main challenge of our approach remains to find
the ‘good’ induction orderings.

C.2.2 Certification of saturation-based proofs
In a future line of research, we intend to exploit the link established between Noetherian induction
reasoning and saturation-based reasoning in order to apply our certification methodologies from Chapter 6
for certifying the inductionless induction reasoning and other saturation-based reductive reasoning, as
those described in Chapter 8.

C.2.3 Applications
A. Certification of the algorithms issued from algorithm synthesis

Our experiments in the Theorema system from Section 3.2 show how one can discover numerous algorithms
for the same functions, differing in efficiency and complexity if one applies different induction principles
and chooses different alternatives in the proofs. The Coq certification of the synthesized algorithms can
be seen as a test for checking the soundness of our approach.

An alternative to avoid the certification step is the generation of the proofs and the implementation
of the inference rules and strategies directly in Coq. This would ensure that every synthesized algorithm
by these inference rules and strategies is implicitly sound. Some downsides of this approach are: i) its
difficulty to prove the soundness of the inference system, and ii) the inadequacy for rapid prototyping and
testing new ideas. A reasonable compromise would be to devise procedures for translating the Theorema
proofs directly into Coq scripts, by following similar translation procedures as those used for implicit
induction proofs in Subsection 6.2.

B. JavaCard

Further case studies. It would be interesting to provide automatic support for the construction
and cross-validation of the virtual machines for properties other than typing, e.g. initialization or non-
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interference. As such efforts rely on similar methodologies described in Chapter 5, it seems interesting to
use them to prove the appropriate versions of the CDO, CDA and MON properties.

Domain-specific proof environment for certifying low-level languages. A longer term objective
would be to develop an environment that provides automatic support for certifying low-level languages.
We expect the restricted format of JSL will prove useful for this task.
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Résumé
Le principe de la récurrence noethérienne est un des plus généraux principes du raison-
nement formel. Dans le cadre du raisonnement de premier ordre, nous proposons une
classification de ses instances pouvant être partagées en instances basées sur des termes
et des formules. Nous donnons un aperçu du raisonnement par récurrence noethérienne
basé sur des termes et des formules, et établissons des relations entre eux. Nous mon-
trons que toute preuve intégrant du raisonnement par récurrence noethérienne basée sur
des termes peut être convertie en une preuve dont le raisonnement par récurrence est basé
sur des formules. La question de la conversion dans l’autre direction reste ouverte. Pour-
tant, nous identifions certaines classes de preuves par récurrence noethérienne basée sur
des formules qui peuvent être traduites en des preuves dont le raisonnement par récurrence
est basé sur des termes. Nous établissons des liens entre le raisonnement noéthérien basé
sur des formules et d’autres types de raisonnement formel de premier ordre, comme le
raisonnement par récurrence cyclique pour la logique de premier ordre avec des définitions
inductives (FOLID) et le raisonnement basé sur la saturation. Nous avons mis au point
des méthodologies pour certifier le raisonnement noethérien basé sur des formules et le
raisonnement cyclique pour FOLID en utilisant l’assistant de preuve Coq.

Les forces et les limites de nos résultats ont été illustrées par des exemples, des études
de cas non-triviaux et des expériences informatiques. Les développements logiciels les plus
importants sont une nouvelle version du prouveur SPIKE ainsi que E-Cyclist, l’extension
du prouveur Cyclist avec une nouvelle méthode de vérification de la correction de ses pré-
preuves dans FOLID.

Mots-clés: raisonnement par récurrence noethérienne, raisonnement formel de premier
ordre, certification de preuves, SPIKE, Coq.

Abstract
Noetherian induction is one of the most general induction principles used in formal

reasoning. In the frame of the first-order reasoning, we propose a classification of its in-
stances that can be split into term- and formula-based instances. We give an overview of
the term- and formula-based Noetherian induction reasoning, and established relations be-
tween them. We show that every term-based Noetherian induction proof can be converted
to a formula-based one. The question about the conversion in the other direction remains
open. However, we identify certain classes of formula-based Noetherian induction proofs
that can be translated into term-based ones. We establish connections between formula-
based Noetherian reasoning and other kinds of first-order reasoning, as the cyclic induction
reasoning for first-order logic with inductive definitions (FOLID) and saturation-based rea-
soning. Last but not least, we have devised methodologies for certifying formula-based
Noetherian induction proofs and FOLID cyclic proofs using the Coq proof assistant.

The strengths and limits of our results have been illustrated by examples, non-trivial
case studies and computer experiments. The most important software developments are
the new version of the SPIKE prover and E-Cyclist, the extension of the FOLID prover
Cyclist with a new checking method for the soundness of its pre-proofs.

Keywords: Noetherian induction reasoning, first-order formal reasoning, proof certifica-
tion, SPIKE, Coq.
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