
HAL Id: tel-03278305
https://hal.science/tel-03278305v1

Submitted on 5 Jul 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Contribution to automatic performance analysis of
parallel applications

François Trahay

To cite this version:
François Trahay. Contribution to automatic performance analysis of parallel applications. Operating
Systems [cs.OS]. Institut Polytechnique de Paris, 2021. �tel-03278305�

https://hal.science/tel-03278305v1
https://hal.archives-ouvertes.fr

626

Contribution to automatic performance
analysis of parallel applications

Habilitation à Diriger les Recherches de l’Institut Polytechnique de Paris
préparée à Télécom SudParis

École doctorale n◦626 École doctorale de l’Institut Polytechnique de Paris (EDIPP)
Spécialité : Informatique

Soutenue à Palaiseau, le 29/06/2021, par

FRANÇOIS TRAHAY

Composition du Jury :

Pascal FELBER
Professeur, Université de Neuchâtel Rapporteur

Brice GOGLIN
Directeur de recherche, INRIA Bordeaux Sud-Ouest Rapporteur

Lionel SEINTURIER
Professeur des universités, Université de Lille Rapporteur

Raymond NAMYST
Professeur des universités, Université de Bordeaux Examinateur

Gaël THOMAS
Professeur, Télécom SudParis Examinateur

Contents

1 Introduction 1
1.1 Hardware resources become complex . 1
1.2 Applications mix programming models . 2
1.3 Contributions . 2

1.3.1 Collecting performance data . 3
1.3.2 Analyzing performance data . 3
1.3.3 Remainder of this document . 4

2 Collecting performance data 5
2.1 Collecting execution traces with EZTrace . 5

2.1.1 Plugin-based tracing tool . 6
2.1.2 Instrumentation . 7
2.1.3 Trace generation . 8

2.2 Collecting memory accesses with NumaMMA 9
2.3 Conclusion . 10

3 Analyzing performance data 13
3.1 Detecting the structure of a trace . 14

3.1.1 Related work . 14
3.1.2 Contribution . 15

3.2 Differential execution analysis . 17
3.2.1 Related work . 17
3.2.2 Contribution . 19

3.3 Detecting scalability issues with ScalOMP . 20
3.3.1 Related work . 21
3.3.2 Contribution . 21

3.4 Conclusion . 22

4 Ongoing and future works 23
4.1 Performance analysis of data management . 23
4.2 Feeding runtime and compilers with performance data 24
4.3 Analyzing high performance data analytics applications 25

i

ii CONTENTS

Personal bibliography 27

Bibliography 31

Chapter 1

Introduction

The development of parallel computing over the last decade has changed the landscape of com-
puter science. While parallelism was mostly found in niche domains such as high performance
computing, the evolution of hardware has democratized the access to parallel machines. As a
result, multiple research domains have faced breakthroughs thanks to the availability of par-
allel computing power: bioinformatics can now compare genomics efficiently [26], artificial
intelligence develop machine learning algorithms capable of inferring model from millions of
data [24]. In order to exploit modern parallel architectures, developers face several challenges.

1.1 Hardware resources become complex
For decades, parallelism was mostly found in supercomputers that interconnect many sequen-
tial machines through a network. Processing data in parallel then required to distribute the
computation and to exchange data over the network. Thanks to the development of multi-
core processors in the 2000s, parallel programming paradigms that rely on shared memory
rapidly grew. Since then, on chip parallelism increase continuously. Multicore processors
now commonly include dozens of cores, each core can run several threads with Simultaneous
MultiThreading (SMT), and each processing unit implements large vector instructions (such as
AVX-512). From the application point of view, this increase in the number of processing units
allows for finer grain parallelism. However, exploiting efficiently all the computing resources
requires that the program exposes enough parallelism.

In the meantime, accelerators that consist of thousands of simple CPUs have become widespread.
149 of the top 500 supercomputers are now equipped with accelerators, such as NVidia GPUs [5].
Accelerators provide supercomputing center with an energy efficient computing power. How-
ever, the transition to heterogeneous architectures makes the development of parallel applica-
tions complex since they need to manage data transfers and synchronizations between the host
and the device.

Overall, the increase in the number of processing units increases the need for a performant data
management subsystem. To mitigate the memory wall, processors now integrate large cache

1

2 CHAPTER 1. INTRODUCTION

memories, and multiple memory controllers are distributed to form Non-Uniform Memory
Access (NUMA) architectures. To avoid memory bottlenecks, threads and memory objects
have to be carefully placed so that most memory accesses hit caches or local memory.

Storage is the other type of data management system that changed greatly over the past decade.
While Hard Disk Drives (HDD) take several milliseconds to fetch data, leaving the application
stalled for millions of CPU cycles, hardware manufacturers invented new types of permanent
storage with lower latencies and higher throughput. Solid State Drives (SSDs) lower the fetch
latency to a few dozens of microseconds, or even a few microseconds for NVMe SSDs. This
can significantly improve the performance of some applications. This also results in software
becoming the main source of overhead of the I/O stack.

Understanding and optimizing the performance of an application running on a modern parallel
computer thus requires a fine knowledge of low level details. Many hardware components can
become the source of performance problems.

1.2 Applications mix programming models
In addition to the complexification of the hardware, the software stack evolved to adapt to the
increasing parallelism of computers. Clusters of single core computers were commonly ex-
ploited using a message-passing paradigm such as MPI, where workers are distributed over
the compute nodes, and exchange message over the network. The introduction of multicore
processors and accelerators has permitted new types of paradigms to appear. Instead of run-
ning several MPI ranks per multicore machines, which increases the number of MPI ranks,
duplicates memory, and requires to allocate additional network buffers, it is possible to mix
a distributed model like MPI with a shared memory model. For instance, each MPI process
can spawn OpenMP threads to process parallel region and to exploit multiple cores. Such
composition of models exploits all the processing units while limiting the memory overhead
of single-model paradigms like MPI. Similarly, clusters of heterogeneous computers can be
exploited by mixing MPI with accelerators models. For instance, CUDA or OpenCL allow
developers to describe blocks of code that run on an accelerator (such as a GPU), and provide
primitives for explicitely transfering data from the main memory to the accelerator memory.

Due to the complex software stack that mixes programming paradigms, developing a parallel
application that efficiently exploits the hardware is tedious. Performance problems may be
located in multiple pieces of software, or be due to bad interactions between programming
models.

1.3 Contributions
Understanding and improving the performance of a parallel application is difficult for a devel-
oper who is most of the time expert in a specific application domain. My research activities
aim at designing tools that relieve developers from the burden of analyzing performance. Over
the last ten years, my research has focused on two phases of performance analysis: collecting

1.3. CONTRIBUTIONS 3

data when an application executes [C3], [R2], [W2], [C10], and analyzing the collected data in
order to understand and to improve the performance of applications [W1], [J2], [C6].

This research has been conducted with three PhD students (one of which having already de-
fended), one post-doc researcher, three master students during their internship, and 21 master
students who collaborated as part of their master project.

1.3.1 Collecting performance data
Understanding the performance of an application is difficult. It necessitates performance col-
lection tools that are able to capture the application behavior as well as low level metrics that
indicate how the hardware resources are exploited.

To capture the execution of a parallel application, we developed a tracing tool named EZ-
Trace [C10]. EZTrace is a convenient way to generate execution traces of parallel applica-
tions. It automatically instruments a pre-defined set of functions (that corresponds to the main
paradigms used in parallel programming such as MPI, OpenMP, or CUDA) [W2] and records
events in a trace each time the application calls the instrumented functions [R2]. In addi-
tion to providing plugins for the main parallel programming libraries, EZTrace uses a plugin
generation mechanism that allows developers to easily create new plugins to instrument their
application functions [C10].

As application memory access pattern may significantly impact performance, we also devel-
oped NumaMMA [C3], a lightweight memory profiler that captures the memory accesses of
threads and relates them to the memory objects allocated by the application. The collected data
is processed in order to measure the impact of memory objects on performance, and to detect
how threads access these objects.

1.3.2 Analyzing performance data
The performance data collected during the application execution have to be analyzed in order
to spot the cause of performance issues. Users can browse the collected data with text tools,
or with visualization techniques [W3]. However, analyzing data automatically simplifies this
task.

In order to process large traces that contain millions of events, we designed an algorithm that
detects the structure of a program from a sequential trace [C6]. Once the sequences of events
that repeat in a trace are detected, we compare them and filter out those with similar duration
in order to reduce the quantity of information that users have to manually analyze. In another
work [J2], we use a differential analysis technique that compares repetitive sequences of events
in order to find several kinds of bottlenecks (lock contention, I/O or network contention, mem-
ory contention, etc.) in applications, and to estimate their impact on the application run time.

While the previous works are generic and do not address a particular programming model, we
also study in details the OpenMP paradigm. We propose a simple methodology for analyz-
ing OpenMP applications with a tool called ScalOMP [W1]. This tool instruments OpenMP

4 CHAPTER 1. INTRODUCTION

applications to collect performance data. It identifies various scalability issues (such as load
imbalance, lock contention, or task granularity), and suggest optimizations to the application
developer.

1.3.3 Remainder of this document
The remainder of this document is organized as follows. Chapter 2 presents our work on per-
formance data collection tools, including EZTrace and NumaMMA. In Chapter 3, we present
several works on automatic performance analysis: the detection of a program structure from a
trace, the detection of contention that uses differential analysis, and the design of the scalability
analysis tool for OpenMP programs. Finally, Chapter 4 concludes this document and discusses
ongoing and future work.

Chapter 2

Collecting performance data

Contents
2.1 Collecting execution traces with EZTrace 5

2.1.1 Plugin-based tracing tool . 6

2.1.2 Instrumentation . 7

2.1.3 Trace generation . 8

2.2 Collecting memory accesses with NumaMMA 9

2.3 Conclusion . 10

Collecting performance data of an application is the first step of the performance analysis pro-
cess. This chapter describes several performance collection tools that we designed. These tools
were designed with several constraints:

• They must require as little configuration effort as possible from the user. For instance,
recompiling the application and its library in order to instrument them should be avoided;

• Observing an application should not affect its behavior;

• The tools should collect enough data to make the analysis useful.

In this chapter, we present several performance data collection tools that we developed over
the past ten years. Section 2.1 present a tracing tool named EZTrace. Section 2.2 describes
NumaMMA, a memory profiler.

2.1 Collecting execution traces with EZTrace
Understanding precisely the behavior and the performance of a parallel application is tedious.
The complexity of a supercomputer hardware as well as the use of various programming models
like MPI, OpenMP, MPI+threads or MPI+GPUs makes it more and more difficult to understand

5

6 CHAPTER 2. COLLECTING PERFORMANCE DATA

the performance of an application. For decades, various tools have been developed in order to
help developers understand their application performance. Two main kinds of tools exist:

Profiling tools. Profiling tools collect performance data at runtime and report the aggregate
data [4], [23], [66], [75], [104], [107], [117]. For instance, profilers such as Perf [66], Opro-
file [104], GProf [117] report the numbers of calls to a function, or the average time spent in
that function. Other tools like PAPI [107], or Likwid [75] collect various performance coun-
ters (number of cache misses, number of floating point operations, etc.) Profiling tools usually
collect data with a low overhead. However, since the collected data is aggregated over the
application lifetime, analyzing precisely a performance problem is complex.

Tracing tools. Tracing tools collect timestamped performance data and generate execution
traces that depict the status of threads during the application lifetime [2], [3], [67], [79], [82],
[91], [99], [113], [116]. The execution traces can be analyzed post-mortem using a visualization
tool[3], [30], [W3], [113]–[115], or using an analysis tool that detects typical performance
problems [3], [67]. Since the collected events describe precisely how the application behaves,
tracing tools allow in-depth analysis of performance problems. However, collecting events can
degrade the performance of applications and may generate large trace files that are difficult to
analyze.

The use of tracing tools is a great help for understanding the performance of an application.
However, the variety of scientific libraries and programming models makes it mandatory for
such tools to be generic. Instrumenting an application with these tools can be tedious because
it requires to modify the source and to recompile the program. Allowing easy instrumentation
of any kind of library or application is crucial in order to work on most modern platforms and
to meet the requirements of emerging programming models.

Contribution. We developed EZTrace1 [C10], a generic framework for performance anal-
ysis. EZTrace uses a two phases mechanism based on plugins for tracing applications. This
permits to specify easily the functions to analyze and the way they should be represented.
Moreover, EZTrace provides an easy to use script language that allows the user to instrument
functions without modifying the source code of the application.

The contribution of the EZTrace project are threefold. First, we developed a generic plugin-
based tracing tool that allows users to trace multiple libraries simultaneously. Second, we
designed a light instrumentation mechanism that does not necessitate to recompile the applica-
tion and its dependencies. Third, we created a compact trace format for recording events with
a low overhead.

2.1.1 Plugin-based tracing tool
When we started developing EZTrace in 2010, most tracing tools were dedicated to a single
programming model like MPI [113], [116], or OpenMP [110]. While some tools permitted

1Available as open source at https://gitlab.com/eztrace/eztrace

https://gitlab.com/eztrace/eztrace

2.1. COLLECTING EXECUTION TRACES WITH EZTRACE 7

to instrument user-defined functions [91], [99], probes had to be manually inserted into the
application source code.

EZTrace relies on plugins for selecting the libraries to be analyzed [C10]. Each pre-defined
plugin is in charge of analyzing a specific library (e.g. MPI, OpenMP, Pthread, or CUDA) by
intercepting calls to a set of function (e.g. MPI Send, MPI Recv, etc.) and recording events.
When running an application with EZTrace, a user can select one or several EZTrace plugins
depending on the programming models used by the application.

Additionally, a user can define a new plugin for their application or library. This can be done
either by writing the C code of the plugin, or by using a Domain Specific Language that de-
scribes the functions to intercept and their meaning. As a result, external projects such as the
Plasma linear algebra library [77], or the NewMadeleine communication library [C4], [88] have
developed EZTrace plugins for instrumenting their source code.

In order to define a plugin, a user has to provide the prototype of the functions to instrument.
EZTrace provides a tool that automates this step by extracting information from the debugging
symbols. As a result, EZTrace can automatically generate a plugin for instrumenting all the
functions of an application.

2.1.2 Instrumentation
In order to record events, tracing tools need to instrument the application by inserting probes
(e.g. at the beginning/end of functions of interest). Several instrumentation mechanisms are
commonly used.

Manual modification of the application source code. A developer can modify the source
code of a program to insert probes in order to analyze specific parts of the program execution.
Many tracing tools provide a means to manually insert probes [52], [C10], [91], [99]. This
mechanism is typically used in task scheduling systems like StarPU [55], OpenStream [30],
or XKaapi [44] for tracing the execution of tasks, or in runtime systems like Marcel [93], or
NewMadeleine [88] for analyzing the runtime internals. This instrumentation method makes
it possible to control the precise location of probes, at the expense of an implementation com-
plexity.

Instrumentation during the compilation. In order to automate the insertion of probes in
applications, some tracing tools rely on compilers for instrumentation [52], [91], [99]. The
compiler inserts calls to callbacks at the entry and exit of functions. Compared to the manual
instrumentation, this method is less precise as it is limited to the function boundaries. However,
the insertion of probes is automatic, which reduces the user burden. Still, the application and
its dependencies have to be recompiled with special options.

Runtime instrumentation with LD PRELOAD. When running an application that uses shared
libraries, the system loader first loads the required shared libraries and populates a symbol table
that indicates the address of functions. Many performance analysis tools use the LD PRELOAD

8 CHAPTER 2. COLLECTING PERFORMANCE DATA

mechanism to preload wrapper functions in charge of recording events before and after selected
functions [52], [79], [82], [91], [99]. This instrumentation method has the same granularity
as the compiler-based instrumentation, but it can run the application without recompiling it.
However, this method can only intercept calls to functions that are defined in shared libraries.

Binary patching. An alternative solution for instrumentation consists in modifying the pro-
gram binary for inserting probes. Dyninst [112], PIN [101], MAQAO [63], or DynamoRIO [106]
rely on instruction decoding to instrument the code. These tools reverse engineer programs and
directly insert opcodes anywhere in the binary. This can be done either at runtime [101], [106],
[112], or before the execution by patching the ELF binary file [63]. This fine-grain instru-
mentation allows fine-grain modifications of the application. Scripting languages can be used
for automating the insertion of probes [41]. Since these tools reverse engineer the applica-
tion binary code, they are heavily dependent on the CPU architecture and require a significant
development effort for porting to a new CPU architecture.

Contribution. In order to make the instrumentation as simple as possible for the end user,
EZTrace uses two automatic instrumentation methods: runtime instrumentation with LD PRELOAD,
and runtime code patching.

Most binary patching tools are heavily architecture dependent. To make binary patching as
portable as possible, we designed a lightweight instrumentation method [W2] that requires only
a few lines of architecture specific code. Since the expected granularity of the instrumentation
is coarse (i.e. the function entry/exit points), the proposed method hijacks the application flow
by inserting a jump instruction at the function entry. The overwritten opcodes are also moved to
preserve the function integrity. As a result, porting this mechanism to a new CPU architecture
only requires to write a few dozens of lines of code. Our experiments show that the overhead of
the instrumentation at runtime is negligible and does not impact the application performance.

2.1.3 Trace generation
Tracing tools for parallel applications have been developed for decades now, and multiple file
formats where developed accordingly [57], [72], [96], [99], [100], [113], [116]. In order to
avoid altering the behavior of an analyzed application, the overhead of recording events has to
be as low as possible. The scalability of the tracing library when the number of threads grows
can be a significant bottleneck if they use a single buffer [100]. Some trace formats rely on
ASCII encoding [72], [96] which may generate large trace files, although this can be mitigated
by compressing the resulting traces [96]. The semantic of the recorded events also has to
be taken into account: some trace formats specify the semantics of events [57], [96], which
eases the development of trace analysis tools, but restricts the range of recordable events to the
predefined ones. As a result, such trace format is only usable for some libraries (e.g. MPI, or
OpenMP), but not for others (e.g. CUDA, or OpenSHMEM [65]). On the contrary, some trace
formats reduce the semantics of their API in order to make the file format more generic [72],
[100], [116]. This allows to trace any kind of library. However, trace analysis becomes more
complex due to the lack of semantics.

2.2. COLLECTING MEMORY ACCESSES WITH NUMAMMA 9

Contribution. We designed a tracing library called LiTL 2 that records events in a compact
and scalable way, while being generic [R2]. While LiTL is inspired from FXT [100], it differs
in several key points. Each thread records events in a dedicated buffer, which reduces the need
for synchronization and improves the cache friendliness. LiTL does not specify a semantics
for the recorded events, allowing to trace any kind of library. The trace analysis program is in
charge of adding the semantics to the events and to extract, for each event, the parameters that
are packed in order to reduce the trace file size. EZTrace uses LiTL for recording events at
runtime, and converts the generated trace to several trace formats such as Paje [72] or OTF [96]
that can be later analyzed through visualization tools like ViTE [W3].

2.2 Collecting memory accesses with NumaMMA
The performance of processors have significantly increased over the years. The number of
processing units on a computer has raised from a handful of cores to dozens of data hungry
cores that execute vector instructions. As a result, memory becomes a major bottleneck in
parallel applications. While this can be mitigated by Non-Uniform Memory Access (NUMA)
architectures that integrate several memory nodes, the application has to carefully balance its
memory access across the NUMA nodes in order to avoid bottlenecks [42]. In order to help
developers, several approaches have been proposed for analyzing an application memory access
patterns.

Instrumentation of memory accesses. Executing an application with a simulator such as
Simics [109] allows to capture precisely all its memory accesses [56]. Since each instruction
of the program is simulated, this approach significantly degrades the application performance.
Another possibility is to instrument the application binary at runtime with tools like Pin [101]
or Valgrind [92] so that each instruction that reads or writes data is recorded [11], [13], [17],
[18], [20], [80]. Instrumentation of the memory accesses can also be performed offline by
disassembling the application binary [41], [45] and inserting probes at precise locations of the
program.

While the overhead caused by the instrumentation is reduced compared to the simulation ap-
proach, it still causes the application to run up to 20 times slower than the non-instrumented
version. This prevents from using this solution on large applications. Moreover, in addition to
the degradation of performance, collecting all the application memory accesses generates large
amounts of data.

Sampling memory accesses. In order to collect the memory accesses of an application with
a low overhead, it is necessary to reduce the quantity of collected data. This can be done by
leveraging the memory sampling capabilities provided by the hardware. Modern processors im-
plement hardware-based monitoring systems (such as Intel Processor Event Based Sampling,
or AMD Instruction Based Sampling) that periodically save information about the instruction
being executed. This mechanism can be used for collecting the memory addresses that are

2Available as open source at https://github.com/trahay/LiTL

https://github.com/trahay/LiTL

10 CHAPTER 2. COLLECTING PERFORMANCE DATA

accessed [17], [25], [31], [34], [53], [69], [71], [97]. Since only some of the instructions are
collected, this approach is less precise than instrumentation. However, since the instrumen-
tation is performed by the hardware, the collection of samples is more efficient, and it only
degrades the application performance by a few percents. This makes this approach applica-
ble on large applications. Also, compared to the approach based on binary instrumentation,
hardware-based sampling allows to record the level in the memory hierarchy (L1, L2, ...) that
served an access along with the latency of the access, which gives additional information on
performance.

Analyzing memory access patterns. Once the application memory accesses are collected,
several analysis are possible. Some works report the amount of communication between threads
in order to improve thread and data locality [20]. TABARNAC [18] detects how threads con-
currently access data structures. Finally, the memory accesses of thread can be used for auto-
matically placing or moving memory pages in order to improve data locality [29], [42], [97].

Contribution. We developed NumaMMA 3 [C3], a lightweight memory profiler that collects
the memory access pattern of threads. NumaMMA collects information on the application
memory allocations, and uses the processor sampling feature to collect memory access. The
collected data is then processed in order to detect which memory objects are mostly accessed,
and how the threads access these objects.

The contribution of this work is both the coupling of the collected memory accesses with the ap-
plication memory objects, and the original visualization that allows users to detect how threads
use memory objects concurrently. An example of NumaMMA visualization is reported in Fig-
ure 2.1.

Overall, this work makes the following contribution:

• NumaMMA collects the application memory accesses with a low overhead by relying on
hardware sampling;

• NumaMMA reports how memory access patterns inside objects evolve over time;

• NumaMMA provides developers with original visualization means of these memory ac-
cess patterns;

• The evaluation shows that this information can be used for defining a placement strategy
that improves the performance of applications by up to 28 %.

2.3 Conclusion
The performance collection tools presented in this chapter have been developed over the past
ten years. Most of the research and engineering efforts for developing new features have been
conducted with the help of a post-doc (Roman Iakymchuk worked on LiTL), or master students

3Available as open source at https://numamma.github.io/numamma/

https://numamma.github.io/numamma/

2.3. CONCLUSION 11

Figure 2.1: NumaMMA representation of the threads access pattern to the memory object
cvar in the application LU.A from the NAS Parallel Benchmark OpenMP

during internship (Gaëtan Bossu worked on EZTrace instrumentation, Pierrick Pamart worked
on NumaMMA) or as part of their master project (12 students worked on various EZTrace
extensions, 6 students worked on trace visualization, and 3 students worked on NumaMMA).
EZTrace is available as open-source at https://eztrace.gitlab.io/eztrace/. It has been
the building block of several projects: the INRIA ADT EZPerf that aimed at improving the
usability of EZTrace for HPC applications, and the ongoing IDIOM FUI project that studies
the performance of the whole I/O stack of HPC and Big Data applications. NumaMMA is
available as open-source at https://numamma.github.io/numamma/.

https://eztrace.gitlab.io/eztrace/
https://numamma.github.io/numamma/

12 CHAPTER 2. COLLECTING PERFORMANCE DATA

Chapter 3

Analyzing performance data

Contents
3.1 Detecting the structure of a trace . 14

3.1.1 Related work . 14

3.1.2 Contribution . 15

3.2 Differential execution analysis . 17

3.2.1 Related work . 17

3.2.2 Contribution . 19

3.3 Detecting scalability issues with ScalOMP 20

3.3.1 Related work . 21

3.3.2 Contribution . 21

3.4 Conclusion . 22

Once performance data is collected with an instrumentation tool such as EZTrace or Nu-
maMMA, users have to analyze the data. The analysis of performance data allows users to
understand the global behavior of the application, and to detect the source of a performance
problem. To do so, users can browse the performance data (eg. execution time, hardware coun-
ters, ...), or explore data with a visualization tool (eg. ViTE [W3]). However, the large quantity
of collected data may overwhelm users, and make a manual search of performance problems
tedious.

In this chapter, we explore several approaches for automatically analyzing performance data.
When designing such performance analysis tools, we aim at:

• Detecting problems that would be unnoticed with a manual analysis;

• Processing large quantities of data that would be too tedious to explore manually;

• Providing users with hints on how to optimize their application.

13

14 CHAPTER 3. ANALYZING PERFORMANCE DATA

The remainder of this chapter is organized as follows. Section 3.1 describes how the program
structure can be extracted from an execution trace. In Section 3.2, we present a generic con-
tention detection mechanism. Finally, Section 3.3 describes ScalOMP, a performance analysis
tool that detects the source of scalability issues in OpenMP applications.

3.1 Detecting the structure of a trace
The use of performance analysis tools, such as tracing tools, becomes unavoidable to optimize
a parallel application. However, analyzing a trace file composed of millions of events requires
a tremendous amount of work in order to spot the cause of the poor performance of an applica-
tion.

In this Section, we propose mechanisms for assisting application developers in their exploration
of trace files [C6]. We propose an algorithm for detecting repetitive sequences of events in trace
files. Thanks to this algorithm, the program structure (loops, functions, ...) can be extracted
from an execution trace without prior knowledge. We also propose a method to filter traces in
order to eliminate duplicated information and to highlight points of interest. These mechanisms
allow the performance analysis tool to pre-select the subsets of the trace that are more likely to
contain useful information.

3.1.1 Related work
Analyzing an execution trace and detecting the program overall behavior can serve multiple
goals.

Detecting inefficient patterns. Some performance analysis tools search of pre-defined pat-
terns of events in execution traces. A database contains a series of sequences of events (such as
the late sender pattern) that are classical causes of performance problems. By comparing an ex-
ecution trace with the database, some tools pinpoint inefficient behaviors in applications [105].
This can be combined with compilation techniques to automatically transform the application
in order to improve its performance [87]. Similarly, specific communication patterns can also
be identified at runtime and be replaced with semantically equivalent but faster communication
(such as collective communication primitives) [51].

Another approach consists in detecting the communication patterns based on MPI messages.
This can provide users with a high-level understanding of the application [86], and the com-
munication scheme of multiple applications can be compared to detect similarities [81]. The
communication pattern can be extrapolated in order to estimate the performance of the appli-
cation when it is run on a large number of nodes [49], [60].

Prefetching data. Analyzing a program execution permits to predict its future behavior. For
example, a program memory access pattern may reveal which data will be accessed in the
future. Prefetching this data then improves the cache-hit rate [108]. Memory accesses also
provide a profile for applications and permit to model the performance of programs [111].

3.1. DETECTING THE STRUCTURE OF A TRACE 15

Access patterns are also used for predicting future disk accesses in file systems, allowing to
prefetch blocks of data [89]. A similar mechanism can be used in parallel file systems for
predicting future client accesses [83] or disk accesses [47].

Pattern mining techniques. Another way to analyze an application is to use pattern mining
techniques. This allows to extract features from applications [98], or to detect the sequences
of events that lead to a software bug [54] or a performance problem [35]. However, the per-
formance of the proposed algorithms are prohibitive: detecting patterns in small traces takes
dozens of seconds [68].

Reducing the size of execution traces. In order to limit the size of traces files when appli-
cations run for a long time, or with a high number of MPI ranks, several approaches have been
tested. Scalatrace analyzes the MPI communication patterns and detects common behavior be-
tween processes [82]. Since most MPI ranks of an application have similar communication
schemes, this allows to efficiently compress the trace files and to achieve near-constant size
recording of traces.

Another way to reduce the size of a trace consists of pruning some of its events when the trace
becomes too large [50]. In this work, the authors record events in separate buffers based on
their callstack level. When the trace becomes too large, the lowest level events are pruned,
which limits the trace size while maintaining the coarse view of the application behavior.

3.1.2 Contribution
In this work, we propose a method for assisting users in their search for information in trace
files [C6]. This method relies on an algorithm for finding repetitive patterns of events in execu-
tion traces. While the usual representation of a trace is a sequential list of events, this algorithm
permits to organize the trace by grouping events into loops and sequences, which reflects the
program structure.

Detecting the trace structure. The proposed algorithm analyzes the events of a thread in a
sequential way. It first searches for a sequence of two consecutive events that appears several
time. As illustrated by Figure 3.1, such sequences are replaced with a pattern data structure.

In the next step, we try to form loops with this pattern by searching for pattern instances that
repeat. If found, we replace them with loops data structures, as illustrated by Figure 3.2.

We then try to expand a pattern by comparing the event (or pattern) that follows each instance
of a pattern. As illustrated by Figure 3.3, this can lead to three cases:

• if a pattern P#1 is always followed by the same event c (case 1), we integrate c to P#1;

• if several occurrences of P#1 are followed by an event c, and some others are not (case
2), we create a new pattern P#2 that consists of P#1 and c;

• if an occurrence of P#1 is followed by c only once, this occurrence cannot be expanded.

16 CHAPTER 3. ANALYZING PERFORMANCE DATA

a b c d a b c e
1 2 3 4 5 6 7 8

a b

c d

a b

c e

1 2

3 4

5 6

7 8

P #1 P #1

Figure 3.1: Step 1: find a sequence of
two consecutive events that appears sev-
eral times to form a pattern

c d e
3 4 8

P #1 P #1 P #1 P #1

c d e
3 4 8

P #1

P #1

P #12 x

c d e
3 4 8

P #1

P #1

3 x

Figure 3.2: Step 2: compare each occur-
rence of a pattern with the following event
and form loops

a b

c d

1 2

3 6

P #1

a b

c

7 8

9

P #1

a b c

d

1 2 3

6

P #1

a b c
7 8 9

P #1

(a) Case 1

a b

c

a b

d

1 2

3

4 5

6

P #1 P #1

a b

c

7 8

9

P #1

a b

c
a b

d

1 2

3

4 5

6

P #1

P #1

a b

c

7 8

9

P #1

P #2 P #2

(b) Case 2

Figure 3.3: Step 3: expanding patterns

3.2. DIFFERENTIAL EXECUTION ANALYSIS 17

Once the third step is complete, the algorithm repeats the first step for the next couple of events
in the trace.

Filtering traces. Once the program structure is extracted from the execution trace, and id-
iomatic sequences of events are detected, we analyze their variation. In order to reduce the
quantity of data that user have to analyze, we filter out the sequences that have similar dura-
tion.

Evaluation. We evaluate our implementation by analyzing several execution traces of parallel
applications. We use EZTrace to collect traces that contain the calls to MPI functions by eight
kernels of the NAS Parallel Benchmarks. Analyzing the traces show that:

• The detected patterns of events correspond to the structure of the tested programs: the
outermost patterns correspond to the application iterations;

• The pattern detection algorithm processes large traces in a few seconds in the worst case,
which allows our implementation to be used in real life applications;

• Filtering out useless events significantly reduce the trace size for all the tested applica-
tions. Large traces are reduced by up to 99 %.

3.2 Using differential execution analysis to identify thread
interference

Once the sequences of events of an execution trace are identified, analyzing the variation of their
duration can reveal performance problems. When multiple execution flows access resources
concurrently, they may interfere, i.e. they slow each other down because one thread has to wait
for the other to access the resources, which degrades the performance of the application. This
kind of contention problem may affect many different resources (disk, memory, network, locks,
...), and can be difficult to precisely detect.

In this work, we propose to use differential execution to identify the blocks of code that hamper
the parallelism [J2]. We define, for a given block of code, its SCI (Slowdown Caused by
Interference) score, which gives the theoretical slowdown caused by interference. In order
to evaluate the usability of the SCI score, we developed a profiling toolchain, called ISPOT

(Interference Spotter), that computes the SCI scores of a set of functions provided by the user.
We show that this metric allows to detect several kinds of interference and to assess their impact
on the application performance.

3.2.1 Related work
In this Section, we review existing works that aim at detecting interactions between threads and
their impact on application performance.

18 CHAPTER 3. ANALYZING PERFORMANCE DATA

Detecting memory performance issues. Because the performance and the number of pro-
cessing units in CPUs increase, the memory subsystem may become a major bottleneck. De-
tecting performance problems that are due to memory contention is tedious.

Several works rely on hardware counters (e.g. the Last Level Cache miss counters) for detecting
cache contention [15], [70], [76], [84], [94], [107], NUMA effects [32], or false sharing [46],
[48].

Other approaches capture the application memory access patterns by simulating the memory
subsystem [58], [85], [103], by instrumenting the application binary [11], [33], [61], [80], [90],
or by using instruction sampling [6], [C3], [14], [25], [42], [53], [73].

Analyzing the memory accesses of threads can be used for detecting cache issues [25], [73],
[85], false-sharing [14], [33], [48], [58], [61], [80], [90], [103], or NUMA effects [6], [C3],
[42], [53].

Existing work on the detection of memory performance issues do not quantify the impact of the
problem on the performance of the application, and the developer is often in charge of spotting
which part of their program causes the problem.

Detecting resource contention. Several work have focused on detecting a single type of
resource contention. Analyzing the message rate can help detecting network contention [27],
[39]. Lock contention can be detected by measuring the time spent waiting for locks [28], [38],
[43], [62], [74]. Overall, these projects define metrics that identify a saturation, but they can
not tell if the saturation significantly affects the application performance.

Differential execution analysis To identify the root cause of a performance problem, sev-
eral works use differential execution techniques [37], [95]. By comparing multiple runs of an
application while varying the workload [37], or the level of concurrency [95], the variation of
functions profiles can indicate the root cause of a bottleneck. VProfile uses a similar approach:
it runs an application with the same configuration multiple times, and it compares the functions
variance to pinpoint functions that may suffer from contention [12]. This type of differential
execution analysis requires to run the application with different configuration, which may be
time consuming for long running applications. Moreover, these works help to find the root
cause of a performance defect that is already identified by the user.

Coz identifies the code that should be optimized by slowing down the other parts [19]. This
differential analysis estimates the relative speedup that could be obtained if a function was
optimized. However, Coz does not identify contention problems.

Application logs can be analyzed with data mining techniques in order to identify the inter-
actions between software components in distributed systems [16]. Stitch analyzes logs and
extracts a structure graph that describes how software components interact. If a performance
bottleneck was previously identified, this can pinpoint the component that is the root cause of
the problem. Another work use inference models to build a state machine model that summa-
rizes the application behavior [35]. The state machine model describes how events follow each

3.2. DIFFERENTIAL EXECUTION ANALYSIS 19

82 38 22 48 103
564

22 22 22 22 22 183 (32.5%)
381 (67.5%)

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12

Figure 3.4: Illustration of the SCI metric: based on the original execution trace (on the top),
an ideal improvement without interference is estimated at 32.5% (on the bottom)

other, and indicates the duration between two events. Due to the high complexity of these al-
gorithms, these approaches fail to apply to real-life applications that generate large size traces.
In our experiment [J2], we show that Perfume [35] analyzes a small trace that only consists of
10000 events in 5536 seconds. Thus, processing large traces with millions of events is imprac-
tical with this approach.

3.2.2 Contribution
We propose to reuse the ideas behind differential execution analysis, but instead of comparing
several executions of an application with different settings that may not be comparable, we
compare invocations of blocks of code with each other within a single application run [J2]. In
order to detect the blocks of code that hamper the parallelism, we compare their execution time.
Instead of focusing on the average execution time, which can hide performance bottleneck, we
propose to focus on the fastest one. The intuition is that the fastest execution of a block of
code gives a theoretical better execution. Any longer execution is probably caused by the
interference from another thread when it accesses the same hardware resource or the same
synchronization primitive.

We first identify the structure of the program with the work presented in section 3.1. This
structure corresponds to blocks of code in the application. We then analyze the duration of
these blocks, and for each block of code, we assume that the fastest execution is contention
free. We define the SCI (Slowdown Caused by Interference) metric of a block as the application
theoretical speedup if all occurrences of the block were interference-free. Formally, the SCI
of a block of code is the sum of all (d j − di) (where di is the duration of the fastest execution
of this block, d j is the jth execution occurrence of the block of code) divided by the thread
duration. Figure 3.4 illustrates this metric: the gray boxes correspond to multiple invocations
of a block of code. If the fastest invocation is considered contention free, applying its duration
(here, 22) to all the invocations of the same block approximates the application run time if the
contention was removed.

In order to evaluate the usability of the SCI score, we instrument several applications with EZ-
Trace, and we analyze the resulting traces to compute the SCI scores of all the instrumented
functions. We analyze 27 applications and 4 micro benchmarks, and we found that the SCI

20 CHAPTER 3. ANALYZING PERFORMANCE DATA

score is able to identify bottlenecks caused by false-sharing, contended locks, saturated net-
works, saturated hard drives, imbalanced workload, and inefficient NUMA placements.

In detail, we found that:

• Even when an application suffers high contention, the fastest occurrence of the contented
function has similar performance as in non-contented cases. This shows that the fastest
occurence of a block of code is a good estimate of the performance of the block of code
when it does not suffer interference;

• ISPOT detects interference in 14 time consuming functions from 10 of the evaluated
applications;

• Among the 14 functions, 2 (13%) are false positives that are not caused by interference.
In these cases, the variation of the function duration is caused by the function workload
that varies from one occurence to another. We show that a manual inspection of the
source code easily identifies these blocks of code as false positives, which allows users
to discard them;

• The remaining 12 functions pinpoint actual interference problems caused by false shar-
ing, lock contention, imbalanced load, NUMA memory placement, network stack and
disk I/O. 7 interference bottlenecks were previously identified in other works, while 5
are new;

• Based on this analysis, we can correct 8 functions by modifying at most only 25 lines of
code, which leads to a performance improvement of up to 9 times

3.3 Detecting scalability issues with ScalOMP

Analyzing and improving the performance of a parallel application requires many skills. A de-
veloper has to understand the application domain (e.g. molecular dynamics, climate modeling,
etc.), the program algorithms, details on the machine architecture (e.g. CPU, caches, memory,
etc.), and how runtime systems work (e.g. how threads are scheduled, how MPI communicates
over the network, etc.)

Since this set of required competences is too large for most programmers, we propose to design
performance analysis tools that bridge the gap between high-level algorithmic, and low-level
architectural details.

We propose a simple methodology for analyzing the scalability of OpenMP applications and for
automatically detecting performance bottlenecks [W1]. We implement a performance analysis
tool called ScalOMP, which reports the parallel regions with poor scalability, their potential of
improvement, and optimization hints for fixing the performance problem.

3.3. DETECTING SCALABILITY ISSUES WITH SCALOMP 21

3.3.1 Related work
Detecting scalability issues in parallel applications has been studied for a long time. However,
automatic performance analysis of applications is a more recent field of study. Several works
have focused on detecting the root causes of scalability issues in MPI applications. This can be
done by modeling the performance of applications to find weak scaling issues [40]. Replaying
an execution trace can help identifying the root cause of MPI wait states [64]. ScalAna iden-
tifies patterns in execution traces and compares their run time in order to detect the root cause
that hampers scalability [7].

Other works have focused on detecting and reporting performance problems in multi-threaded
applications. Multiple works target OpenMP applications and detect imbalance in parallel
regions that can affect the scalability [59], model OpenMP applications for predicting their
performance on a given machine [36], or detect false sharing issues [21]. Intel VTune can
estimate the impact of various performance problems such as lock contention, load imbalance,
or scheduling overhead [102]. Automated performance modeling can be used to examine the
scalability of OpenMP runtime constructs [22], or to analyze the memory access patterns of
OpenMP applications [78].

While existing work allow to pinpoint performance problems in OpenMP applications, they
do not estimate the impact of the problems on the application performance. Moreover, once a
problem is identified, the developer has to find a way to fix the scalability issue.

3.3.2 Contribution
In order to facilitate the detection of scalability issues and their resolution, we present a method-
ology for analyzing the scalability of OpenMP applications. We implement this approach in
ScalOMP, a performance analysis tool that collects performance data, analyze them, and re-
ports the OpenMP constructs that limit the scalability. ScalOMP also suggests optimization
strategies to the application developer.

Performance analysis methodology. ScalOMP aims at identifying scalability issues in OpenMP
applications. Several problems may reduce the scalability of parallel applications, including
load imbalance, lock contention, or tasks granularity. When a scalability problem is identi-
fied, several approaches can be used for fixing or mitigating it, from modifying the application
algorithms to changing the execution settings.

The proposed methodology consists of running the application with a varying number of threads,
and measuring the scalability of each OpenMP construct. The output is the list of parallel re-
gions whose scaling issues affect the most the application, along with optimization hints and
their potential time gain.

Detecting OpenMP scaling issues. ScalOMP relies on the OpenMP Tool interface (OMPT)
for instrumenting the application. It inserts probes at several OpenMP key points (such as
the beginning and end of parallel regions, around barriers, etc.) Based on the collected data,

22 CHAPTER 3. ANALYZING PERFORMANCE DATA

ScalOMP computes the parallel efficiency of each OpenMP parallel region, the parallel loops
imbalance, or the time spent waiting on locks. Each metric estimates the impact of a problem
on scaling, and ScalOMP can suggest optimization strategies for each detected performance
problem.

Evaluation of ScalOMP. We evaluate ScalOMP on 16 applications running on a 32 cores
machine. The evaluation shows that ScalOMP instrumentation does not significantly alter the
performance of applications. Moreover, ScalOMP scaling analysis show that:

• ScalOMP detects load imbalance problems in two applications, and estimates their im-
pact on the execution time. Applying the optimization suggested by ScalOMP fixes the
problems, and the resulting execution time corresponds to ScalOMP estimate.

• ScalOMP detects locking issues in one application, and one microbenchmark. It correctly
distinguishes locking issues that are due to contention, and those that are due to too many
uncontended locks. The optimization suggested by ScalOMP improves the application
execution time by up to 267 %.

3.4 Conclusion
The works on the detection of the structure of a trace [C6], and the detection of thread interfer-
ence [J2] were done in collaboration with a PhD student, Mohamed Saı̈d MOSLI BOUKSIAA,
helped by Gaël THOMAS. ScalOMP was designed as part of Anton DAUMEN PhD who I
co-advise with Patrick CARRIBAULT and Gaël THOMAS.

Chapter 4

Ongoing and future works

During the last decades, the world of parallel computing has changed due to the evolution of
hardware platforms that became highly parallel and heterogeneous. As a result, the software
stack evolved and HPC applications now commonly mix paradigms. Developing an application
that efficiently exploits a supercomputer becomes more and more difficult. The number of soft-
ware components required to run a distributed application makes the debugging of performance
tedious.

This document presents several works on performance analysis that we conducted over the
last decade. As a first contribution, we designed EZTrace, a tracing tool for parallel applica-
tions. EZTrace automatically instruments applications and generates execution traces with a
low overhead. We also designed NumaMMA, a tracing tool that captures the memory access
patterns of applications.

As a second contribution, we developed performance analysis techniques that process perfor-
mance data and help developers identifying performance problems. We designed algorithms
that detect the structure of a program from an execution trace. We used this work and proposed
a metric for identifying any type of interference in a parallel application. Finally, we focused
on OpenMP applications and designed a methodology for identifying scalability issues and
suggesting optimization hints.

This journey leads to new research opportunities that are currently being investigated or that
we intend to explore in the future.

4.1 Performance analysis of data management
Recent hardware evolution has bridged the gap between memory technologies and storage sys-
tems. On the one hand, the performance of disks have moved from millisecond-latency hard
disk drives (HDD), to solid state drives (SSD) that fetch data in a few dozens of microseconds,
to NVMe SSDs that achieve latencies of a few microseconds. More recently, non-volatile
memory has been used as high performance persistent storage that achieves latencies of a few

23

24 CHAPTER 4. ONGOING AND FUTURE WORKS

hundreds nanoseconds.

On the other hand, memory has evolved from single memory bank systems where all the mem-
ory access have similar performance, to NUMA architectures where the data locality signifi-
cantly impacts the performance of applications. NUMA systems become widespread and are
even integrated within multicore processors. More recently, non-volatile memory trades persis-
tence for performance, and the NVDIMM latency becomes significantly slower than traditional
RAM [8].

As a result, the performance of memory and I/O becomes more and more non-uniform. Thus,
the storage medium may have a significant impact on performance. One research direction to
explore is to assess the impact of each type of storage on performance.

This is partially addressed in the ongoing FUI project IDIOM that aims at designing a tool
suite for analyzing the performance of the whole I/O stack. As part of this project, we intend to
analyze execution traces and to replay them with performance models in order to estimate the
performance of an application if it used a particular storage system.

In the future, we plan to investigate the performance of the memory subsystem. As the perfor-
mance of memory accesses may vary significantly depending on the type of memory (i.e. DRAM
or NVDIMM), or on the locality, we intend to explore new memory placement strategies that
take into account how threads manipulate objects.

Modeling the performance of applications while taking memory into account is another chal-
lenging track to explore. Our work on ScalOMP show that analyzing performance data allows
to predict how an application will perform with a different setting. However, this performance
prediction becomes less accurate as memory effects (such as cache misses, or NUMA effects)
become significant. A better understanding of how memory affects the performance of appli-
cation is needed to improve performance analysis.

4.2 Feeding runtime and compilers with performance data
Our past research works have led us from designing performance analysis tools that allow users
to manually explore an application behavior, to automatic performance analysis techniques that
pinpoint problems and suggest optimizations. A next step is to automate the optimization once
a performance problem is detected. The results of performance analysis could be communi-
cated to a compiler that could adapt the generated application. Another approach would be to
feed runtime systems with information on the application behavior so that they improve their
decisions.

Alexis COLIN, a PhD student who I co advise with Denis CONAN is currently exploring this
approach as part of the ANR JCJC project PYTHIA. This project aims at providing runtime
systems with an oracle capable of predicting the application future behavior. While a runtime
system makes decisions based on the application current state, knowing the future would permit
to anticipate and to choose the best runtime strategy to minimize the application execution
time. To design the oracle, we take advantage of the determinism of many HPC applications

4.3. ANALYZING HIGH PERFORMANCE DATA ANALYTICS APPLICATIONS 25

that apply the same algorithm on their input data. Collecting an execution trace, and detecting
its structure would help the oracle understand the overall behavior of the program. When an
application executes, its previous execution profile could be provided to the oracle. The oracle
could then follow the application execution and compare it to the previous profile in order to
predict how the program will behave in the future.

In the future, a similar approach could be applied to compiler optimization: analyzing the be-
havior and the performance of a running application could help the compiler apply optimization
based on the code that is actually executed.

4.3 Analyzing high performance data analytics applications
For decades, developers used low level programming languages (such as C or Fortran) for de-
signing parallel applications using a few common libraries (eg. MPI, OpenMP, CUDA, etc.)
Parallel programming was mainly applied to scientific computing and simulation. The recent
development of data analytics has changed the types of applications that run on parallel com-
puters. In addition to traditional HPC simulation, clusters of machines now commonly execute
MapReduce jobs running on Hadoop, or distributed machine learning applications running on
TensorFlow and Horovod. These new distributed computing frameworks rely on the same
building blocks as traditional HPC: executing independent computation on several computers,
loading data from a parallel filesystem, offloading computation to accelerators, and communi-
cating through a high speed network. In the future, we intend to explore these new types of
parallel applications and their challenges in terms of performance anaysis.

The software stack of data analytics significantly differs from HPC. Data analytics applications
are implemented in high-level programming languages such as Python or Java. In order to pro-
vide high performance, the high-level frameworks implement routines in low-level languages
such as C. This makes the development of performance analysis tools complex as they need to
relate low-level events that happen in the C realm to higher-level phases of the application.

The recent shift towards new types of parallel applications creates many research opportunities
on performance analysis. While the HPC software stack has been optimized for decades, high
performance data analytics framework have a shorter history, which makes rooms for perfor-
mance improvement. As deep learning models become more and more complex, and training
data sets become larger, applications require more computing power and need to be distributed
on multiple compute nodes in supercomputers. This raises new problems that need to be ad-
dressed. For instance, many deep learning applications read the data set from disk during each
epoch [10]. Since data sets may consist of terabytes of data stored in many small files [9],
this type of data processing flow may suffer major I/O bottlenecks. In the future, we intend
to analyze distributed machine learning applications in order to identify performance problems
that arise.

26 CHAPTER 4. ONGOING AND FUTURE WORKS

Personal bibliography

International journals
[J1] J. Li, Z. Sha, Z. Cai, F. Trahay, and J. Liao, “Patch-based data management for dual-

copy buffers in RAID-enabled SSDs,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 39, no. 11, pp. 3956–3967, Nov. 2020. DOI:
10.1109/TCAD.2020.3012252.

[J2] M. S. Mosli Bouksiaa, F. Trahay, A. Lescouet, G. Voron, R. Dulong, A. Guermouche,
É. Brunet, and G. Thomas, “Using differential execution analysis to identify thread
interference,” IEEE Transactions on Parallel and Distributed Systems, vol. 30, no. 12,
pp. 2866–2878, Dec. 2019.

[J3] J. Liao, F. Trahay, Z. Cai, S. Chen, Y. Ishikawa, and H. Xiong, “Fine Granularity and
Adaptive Cache Update Mechanism for Client Caching,” IEEE systems journal, 2018.

[J4] J. Liao, Z. Cai, F. Trahay, and X. Peng, “Block Placement in Distributed File Systems
based on Block Access Frequency.,” in IEEE Access, 2018.

[J5] J. Liao, Z. Cai, F. Trahay, J. Zhou, and G. Xiao, “Adaptive Process Migrations in
Coupled Applications for Exchanging Data in Local File Cache,” in ACM Transactions
on Autonomous and Adaptive Systems, 2018.

[J6] J. Liao, F. Trahay, G. Xiao, L. Li, and Y. Ishikawa, “Performing initiative data prefetch-
ing in distributed file systems for cloud computing,” IEEE Transactions on Cloud Com-
puting, vol. 5, no. 3, pp. 550–562, 2017.

[J7] R. Habel, F. Silber-Chaussumier, F. Irigoin, É. Brunet, and F. Trahay, “Combining data
and computation distribution directives for hybrid parallel programming: A transfor-
mation system,” International Journal of Parallel Programming, pp. 1–28, 2016.

[J8] J. Liao, F. Trahay, and G. Xiao, “Dynamic process migration based on block access
patterns occurring in storage servers,” ACM Transactions on Architecture and Code
Optimization, vol. 13, no. 2, Jun. 2016.

[J9] J. Liao, F. Trahay, B. Gerofi, and Y. Ishikawa, “Prefetching on storage servers through
mining access patterns on blocks,” IEEE Transactions on Parallel and Distributed Sys-
tems, vol. PP, no. 99, pp. 1–1, 2015.

27

https://doi.org/10.1109/TCAD.2020.3012252

28 PERSONAL BIBLIOGRAPHY

International conferences with program committee
[C1] A. Lescouet, É. Brunet, F. Trahay, and G. Thomas, “Transparent Overlapping of Block-

ing Communication in MPI Applications,” in IEEE International Conference on High-
Performance Computing and Communications (HPCC), Yanuca Island, Fiji, Dec. 2020.

[C2] P. Sutra, P. Marlier, S. Valerio, and F. Trahay, “A Locality-Aware Software Transac-
tional Memory,” in International Conference on Coordination Models and Languages
(COORDINATION), 2018.

[C3] F. Trahay, M. Selva, L. Morel, and K. Marquet, “NumaMMA: NUMA MeMory Ana-
lyzer,” in International Conference on Parallel Processing (ICPP), 2018, pp. 1–10.

[C4] A. Denis and F. Trahay, “MPI Overlap: Benchmark and Analysis,” in International
Conference on Parallel Processing (ICPP), 2016.

[C5] P. Li, É. Brunet, F. Trahay, C. Parrot, G. Thomas, and R. Namyst, “Automatic OpenCL
code generation for multi-device heterogeneous architectures,” in International Con-
ference on Parallel Processing (ICPP), 2015.

[C6] F. Trahay, É. Brunet, M. S. Mosli Bouksiaa, and J. Liao, “Selecting points of interest
in traces using patterns of events,” in Euromicro International Conference on Parallel,
Distributed and Network Based Processing (PDP), 2015.

[C7] R. Iakymchuk and F. Trahay, “Performance Analysis on Energy Efficient High-Performance
Architectures,” in International Conference on Cluster Computing (CC’13), 2013.

[C8] A. Denis, F. Trahay, and Y. Ishikawa, “High performance checksum computation for
fault-tolerant mpi over infiniband,” in EuroMPI, 2012, pp. 183–192.

[C9] É. Brunet, F. Trahay, and A. Denis, “A sampling-based approach for communication
libraries auto-tuning,” in International Conference on Cluster Computing (IEEE Clus-
ter), Sep. 2011.

[C10] F. Trahay, F. Rue, M. Faverge, Y. Ishikawa, R. Namyst, and J. Dongarra, “EZTrace: A
generic framework for performance analysis,” in IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing (CCGrid), poster session, 2011.

[C11] G. Mercier, F. Trahay, D. Buntinas, and É. Brunet, “NewMadeleine: An Efficient Sup-
port for High-Performance Networks in MPICH2,” in International Parallel and Dis-
tributed Processing Symposium (IEEE IPDPS), May 2009.

[C12] F. Trahay and A. Denis, “A scalable and generic task scheduling system for commu-
nication libraries,” in International Conference on Cluster Computing (IEEE Cluster),
Sep. 2009.

[C13] É. Brunet, F. Trahay, and A. Denis, “A Multicore-enabled Multirail Communication
Engine,” in International Conference on Cluster Computing (IEEE Cluster), Sep. 2008,
pp. 316–321.

International workshops with program committee
[W1] A. Daumen, P. Carribault, F. Trahay, and G. Thomas, “ScalOMP: analyzing the Scal-

ability of OpenMP applications,” in IWOMP 2019: 15th International Workshop on
OpenMP, 2019, pp. 36–49.

29

[W2] C. Aulagnon, D. Martin-Guillerez, F. Rue, and F. Trahay, “Runtime function instru-
mentation with EZTrace,” in PROPER - 5th Workshop on Productivity and Perfor-
mance, Aug. 2012.

[W3] K. Coulomb, A. Degomme, M. Faverge, and F. Trahay, “An open-source tool-chain for
performance analysis,” in Tools for High Performance Computing, 2011.

[W4] F. Trahay, É. Brunet, and A. Denis, “An analysis of the impact of multi-threading on
communication performance,” in CAC 2009: The 9th Workshop on Communication
Architecture for Clusters, held in conjunction with IPDPS 2009, May 2009.

[W5] F. Trahay, É. Brunet, A. Denis, and R. Namyst, “A multithreaded communication en-
gine for multicore architectures,” in CAC 2008: Workshop on Communication Archi-
tecture for Clusters, held in conjunction with IPDPS 2008, 2008.

National conference and book chapters
[F1] F. Trahay, M. Selva, L. Morel, and K. Marquet, “NumaMMA: Numa MeMory Ana-

lyzer,” in Conférence en Parallélisme, Architecture et Système (COMPAS’2018), 2018.
[F2] E.-L. Kern, F. Trahay, and K. Zanin, “Exploration visuelle des traces de calcul haute

performance,” in Datalogie : formes et imaginaires du numérique, Editions Loco,
2016, pp. 152–165.

[F3] M. S. Mosli Bouksiaa, F. Trahay, and G. Thomas, “Détection automatique d’interférences
entre threads,” in Conférence en Parallélisme, Architecture et Système (COMPAS’2016),
2016.

[F4] ——, “Détection automatique d’anomalies de performance,” in Conférence en Par-
allélisme, Architecture et Système (COMPAS’2015), 2015.

[F5] F. Trahay, “Bibliothèque de communication multi-threadée pour architectures multi-
cœurs,” in 19ème Rencontres Francophones du Parallélisme, Sep. 2009.

[F6] ——, “PIOMan : un gestionnaire d’entrées-sorties générique,” in 18ème Rencontres
Francophones du Parallélisme, Feb. 2008.

Research reports
[R1] E. André, R. Dulong, A. Guermouche, and F. Trahay, “DUF : Dynamic Uncore Fre-

quency scaling to reduce power consumption,” Tech. Rep., Feb. 2020, working paper
or preprint. [Online]. Available: https://hal.archives- ouvertes.fr/hal-
02401796.

[R2] R. Iakymchuk and F. Trahay, “LiTL: Lightweight Trace Library,” INF - Département
Informatique, Technical Report, Jul. 2013. [Online]. Available: https://hal.archives-
ouvertes.fr/hal-00918733.

https://hal.archives-ouvertes.fr/hal-02401796
https://hal.archives-ouvertes.fr/hal-02401796
https://hal.archives-ouvertes.fr/hal-00918733
https://hal.archives-ouvertes.fr/hal-00918733

30 PERSONAL BIBLIOGRAPHY

PhD Thesis
[T1] F. Trahay, “De l’interaction des communications et de l’ordonnancement de threads au

sein des grappes de machines multi-cœurs,” Ph.D. dissertation, Université Bordeaux 1,
351 cours de la Libération — 33405 TALENCE cedex, Nov. 2009.

Bibliography

References
[2] M. Desnoyers and M. R. Dagenais, “The LTTng tracer: A low impact performance and

behavior monitor for GNU/Linux,” in Ottawa Linux Symposium, vol. 2006, pp. 209–
224.

[3] Intel Trace Analyzer and Collector. [Online]. Available: https://software.intel.
com/content/www/us/en/develop/tools/trace-analyzer.html.

[4] C. Silverstein, Gperftools, https://github.com/gperftools/gperftools.
[5] Top 500 november 2020 list. [Online]. Available: https://www.top500.org/lists/

top500/2020/11/.
[6] C. Helm and K. Taura, “Automatic identification and precise attribution of dram band-

width contention,” in 49th International Conference on Parallel Processing-ICPP, 2020,
pp. 1–11.

[7] Y. Jin, H. Wang, T. Yu, X. Tang, T. Hoefler, X. Liu, and J. Zhai, “ScalAna: Automating
Scaling Loss Detection with Graph Analysis,” in Proceedings of the Conference for
High Performance Computing, Networking, Storage and Analysis, SC’20, ser. SC ’20,
Atlanta, Georgia: IEEE Press, 2020, ISBN: 9781728199986.

[8] E. A. León, B. Goglin, and A. Rubio Proaño, “M&MMs: Navigating Complex Mem-
ory Spaces with hwloc,” in Proceedings of the International Symposium on Memory
Systems Proceedings, MEMSYS’19, Washington, DC, United States, Sep. 2019.

[9] L. Oden, C. Schiffer, H. Spitzer, T. Dickscheid, and D. Pleiter, “IO challenges for hu-
man brain atlasing using deep learning methods-an in-depth analysis,” in Proceedings
of the International Conference on Parallel, Distributed, and Network-Based Process-
ing, PDP’19, 2019, pp. 291–298.

[10] T. Kurth, S. Treichler, J. Romero, M. Mudigonda, N. Luehr, E. Phillips, A. Mahesh,
M. Matheson, J. Deslippe, M. Fatica, et al., “Exascale deep learning for climate analyt-
ics,” in Proceedings of the Conference for High Performance Computing, Networking,
Storage and Analysis, SC’18, 2018, pp. 649–660.

[11] S. Valat and O. Bouizi, “Numaprof, a numa memory profiler,” in Proceedings of the
European conference on Parallel processing, EuroPar’18, 2018, pp. 159–170.

[12] J. Huang, B. Mozafari, and T. F. Wenisch, “Statistical analysis of latency through se-
mantic profiling,” in Proceedings of the EuroSys European Conference on Computer
Systems, EuroSys’17, 2017, pp. 64–79.

31

https://software.intel.com/content/www/us/en/develop/tools/trace-analyzer.html
https://software.intel.com/content/www/us/en/develop/tools/trace-analyzer.html
https://www.top500.org/lists/top500/2020/11/
https://www.top500.org/lists/top500/2020/11/

32 BIBLIOGRAPHY

[13] I. B. Peng, R. Gioiosa, G. Kestor, P. Cicotti, E. Laure, and S. Markidis, “RTHMS: A
tool for data placement on hybrid memory system,” Proceedings of the International
Symposium on Memory Management, ISMM’17, vol. 52, no. 9, pp. 82–91, 2017.

[14] T. Liu and X. Liu, “Cheetah: Detecting false sharing efficiently and effectively,” in
Proceedings of the international symposium on Code Generation and Optimization,
CGO’16, 2016, pp. 1–11.

[15] B. Teabe, A. Tchana, and D. Hagimont, “Application-specific quantum for multi-core
platform scheduler,” in Proceedings of the EuroSys European Conference on Computer
Systems, EuroSys’16, 2016, 3:1–3:14.

[16] X. Zhao, K. Rodrigues, Y. Luo, D. Yuan, and M. Stumm, “Non-intrusive performance
profiling for entire software stacks based on the flow reconstruction principle,” in Pro-
ceedings of the conference on Operating Systems Design and Implementation, OSDI’16,
2016, pp. 603–618.

[17] L. Zhu, H. Jin, and X. Liao, “A tool to detect performance problems of multi-threaded
programs on numa systems,” in 2016 IEEE Trustcom/BigDataSE/ISPA, 2016, pp. 1145–
1152.

[18] D. Beniamine, M. Diener, G. Huard, and P. O. Navaux, “TABARNAC: visualizing and
resolving memory access issues on NUMA architectures,” in Proceedings of the 2nd
Workshop on Visual Performance Analysis, 2015, pp. 1–9.

[19] C. Curtsinger and E. D. Berger, “Coz: Finding code that counts with causal profiling,”
in Proceedings of the Symposium on Operating Systems Principles, SOSP’15, 2015,
pp. 184–197.

[20] M. Diener, E. H. Cruz, L. L. Pilla, F. Dupros, and P. O. Navaux, “Characterizing com-
munication and page usage of parallel applications for thread and data mapping,” Per-
formance Evaluation, vol. 88, pp. 18–36, 2015.

[21] M. Ghane, A. M. Malik, B. Chapman, and A. Qawasmeh, “False sharing detection in
openmp applications using ompt api,” in Proceedings of the International Workshop
on OpenMP Applications and Tools15, 2015, pp. 102–114.

[22] C. Iwainsky, S. Shudler, A. Calotoiu, A. Strube, M. Knobloch, C. Bischof, and F. Wolf,
“How many threads will be too many? on the scalability of openmp implementations,”
in European Conference on Parallel Processing, Springer, 2015, pp. 451–463.

[23] C. January, J. Byrd, X. Oró, and M. O’Connor, “Allinea MAP: Adding Energy and
OpenMP Profiling Without Increasing Overhead,” in Tools for High Performance Com-
puting 2014, 2015, pp. 25–35.

[24] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553,
pp. 436–444, 2015.

[25] X. Liu and B. Wu, “ScaAnalyzer: A tool to identify memory scalability bottlenecks in
parallel programs,” in Proceedings of the Conference for High Performance Comput-
ing, Networking, Storage and Analysis, SC’15, 2015, p. 47.

[26] K. Ocaña and D. de Oliveira, “Parallel computing in genomic research: Advances
and applications,” Advances and applications in bioinformatics and chemistry: AABC,
vol. 8, p. 23, 2015.

33

[27] M. Casas and G. Bronevetsky, “Active measurement of the impact of network switch
utilization on application performance,” in Proceedings of the International Parallel
and Distributed Processing Symposium, IPDPS’14, 2014, pp. 165–174.

[28] F. David, G. Thomas, J. Lawall, and G. Muller, “Continuously measuring critical sec-
tion pressure with the free-lunch profiler,” in Proceedings of the conference on Ob-
ject Oriented Programming Systems Languages and Applications, OOPSLA’14, 2014,
pp. 291–307.

[29] M. Diener, E. H. Cruz, P. O. Navaux, A. Busse, and H.-U. Heiß, “Kmaf: Automatic
kernel-level management of thread and data affinity,” in Proceedings of the Interna-
tional Conference on Parallel Architectures and Compilation, PACT’14, 2014, pp. 277–
288.

[30] A. Drebes, A. Pop, K. Heydemann, A. Cohen, and N. Drach-Temam, “Aftermath: A
graphical tool for performance analysis and debugging of fine-grained task-parallel
programs and run-time systems,” in 7th Workshop on Programmability Issues for Het-
erogeneous Multicores (MULTIPROG, associated with HiPEAC), 2014.

[31] A. Giménez, T. Gamblin, B. Rountree, A. Bhatele, I. Jusufi, P.-T. Bremer, and B.
Hamann, “Dissecting on-node memory access performance: A semantic approach,” in
Proceedings of the Conference for High Performance Computing, Networking, Storage
and Analysis, SC’14, 2014.

[32] M. Liu and T. Li, “Optimizing virtual machine consolidation performance on numa
server architecture for cloud workloads,” in Proceedings of the International Sympo-
sium on Computer Architecture, ISCA’14, 2014, pp. 325–336.

[33] T. Liu, C. Tian, Z. Hu, and E. D. Berger, “PREDATOR: Predictive false sharing de-
tection,” in Proceedings of the symposium on Principles and Practices of Parallel Pro-
gramming, PPoPP’14, 2014, pp. 3–14.

[34] X. Liu and J. Mellor-Crummey, “A tool to analyze the performance of multithreaded
programs on numa architectures,” in Proceedings of the symposium on Principles and
Practices of Parallel Programming, PPoPP’14, 2014.

[35] T. Ohmann, K. Thai, I. Beschastnikh, and Y. Brun, “Mining precise performance-aware
behavioral models from existing instrumentation,” in Proceedings of the International
Conference on Software Engineering, ICSE’14, 2014, pp. 484–487.

[36] B. Putigny, B. Goglin, and D. Barthou, “A benchmark-based performance model for
memory-bound hpc applications,” in Proceedings of the 14, 2014, pp. 943–950.

[37] L. Song and S. Lu, “Statistical debugging for real-world performance problems,” in
Proceedings of the conference on Object Oriented Programming Systems Languages
and Applications, OOPSLA’14, 2014, pp. 561–578.

[38] X. Yu, S. Han, D. Zhang, and T. Xie, “Comprehending performance from real-world
execution traces: A device-driver case,” in Proceedings of the conference on Architec-
tural Support for Programming Languages and Operating Systems, ASPLOS’14, 2014,
pp. 193–206.

[39] A. Bhatele, K. Mohror, S. H. Langer, and K. E. Isaacs, “There goes the neighborhood:
Performance degradation due to nearby jobs,” in Proceedings of the International Con-
ference on High Performance Computing, Networking, Storage and Analysis, 2013,
pp. 1–12.

34 BIBLIOGRAPHY

[40] A. Calotoiu, T. Hoefler, M. Poke, and F. Wolf, “Using automated performance mod-
eling to find scalability bugs in complex codes,” in Proceedings of the Conference for
High Performance Computing, Networking, Storage and Analysis, SC’13, 2013, p. 45.

[41] A. S. Charif-Rubial, D. Barthou, C. Valensi, S. Shende, A. Malony, and W. Jalby,
“Mil: A language to build program analysis tools through static binary instrumenta-
tion,” in Proceedings of the international conference on High Performance Computing,
HiPC’13, 2013, pp. 206–215.

[42] M. Dashti, A. Fedorova, J. Funston, F. Gaud, R. Lachaize, B. Lepers, V. Quema, and
M. Roth, “Traffic management: A holistic approach to memory placement on numa
systems,” in Proceedings of the conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS’13, 2013, pp. 381–394.

[43] K. Du Bois, S. Eyerman, J. B. Sartor, and L. Eeckhout, “Criticality stacks: Identifying
critical threads in parallel programs using synchronization behavior,” in Proceedings of
the International Symposium on Computer Architecture, ISCA’13, 2013, pp. 511–522.

[44] T. Gautier, J. V. Lima, N. Maillard, and B. Raffin, “Xkaapi: A runtime system for data-
flow task programming on heterogeneous architectures,” in Proceedings of the Inter-
national Parallel and Distributed Processing Symposium, IPDPS’13, 2013, pp. 1299–
1308.

[45] J. Jaeger, P. Philippen, E. Petit, A. C. Rubial, C. Rössel, W. Jalby, and B. Mohr, “Binary
instrumentation for scalable performance measurement of openmp applications.,” in
PARCO, 2013, pp. 783–792.

[46] S. Jayasena, S. Amarasinghe, A. Abeyweera, G. Amarasinghe, H. De Silva, S. Rath-
nayake, X. Meng, and Y. Liu, “Detection of false sharing using machine learning,” in
Proceedings of the International Conference on High Performance Computing, Net-
working, Storage and Analysis, 2013, pp. 1–9.

[47] J. Liao, X. Liu, and Y. Chen, “Dynamical re-striping data on storage servers in parallel
file systems,” in Proceedings of the 2013 IEEE 37th Annual Computer Software and
Applications Conference, IEEE Computer Society, 2013, pp. 65–73.

[48] M. Nanavati, M. Spear, N. Taylor, S. Rajagopalan, D. T. Meyer, W. Aiello, and A.
Warfield, “Whose cache line is it anyway?: Operating system support for live detection
and repair of false sharing,” in Proceedings of the EuroSys European Conference on
Computer Systems, EuroSys’13, 2013, pp. 141–154.

[49] J. Panadero, A. Wong, D. Rexachs del Rosario, and E. Luque Fadón, “Predicting the
communication pattern evolution for scalability analysis,” in XVIII Congreso Argentino
de Ciencias de la Computación, 2013.

[50] M. Wagner, A. Knupfer, and W. E. Nagel, “Hierarchical memory buffering techniques
for an in-memory event tracing extension to the open trace format 2,” in Parallel Pro-
cessing (ICPP), 2013 42nd International Conference on, IEEE, 2013, pp. 970–976.

[51] T. Hoefler and T. Schneider, “Runtime detection and optimization of collective com-
munication patterns,” in Proceedings of the 21st international conference on Parallel
architectures and compilation techniques, ACM, 2012, pp. 263–272.

[52] A. Knüpfer, C. Rössel, D. an Mey, S. Biersdorff, K. Diethelm, D. Eschweiler, M.
Geimer, M. Gerndt, D. Lorenz, A. Malony, et al., “Score-p: A joint performance mea-

35

surement run-time infrastructure for periscope, scalasca, tau, and vampir,” in Tools for
High Performance Computing 2011, 2012, pp. 79–91.

[53] R. Lachaize, B. Lepers, and V. Quéma, “Memprof: A memory profiler for numa mul-
ticore systems,” in Proceedings of the Usenix Annual Technical Conference, USENIX
ATC’12, 2012.

[54] P. López Cueva, A. Bertaux, A. Termier, J. F. Méhaut, and M. Santana, “Debugging
embedded multimedia application traces through periodic pattern mining,” in Proceed-
ings of the tenth ACM international conference on Embedded software, ACM, 2012,
pp. 13–22.

[55] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier, “StarPU: a unified platform
for task scheduling on heterogeneous multicore architectures,” Concurrency - Practice
& Experience (CP&E), vol. 23, no. 2, pp. 187–198, 2011.

[56] E. H. M. da Cruz, M. A. Z. Alves, A. Carissimi, P. O. A. Navaux, C. P. Ribeiro, and
J.-F. Méhaut, “Using memory access traces to map threads and data on hierarchical
multi-core platforms,” in Proceedings of the International Parallel and Distributed
Processing Symposium, IPDPS’11, 2011, pp. 551–558.

[57] D. Eschweiler, M. Wagner, M. Geimer, A. Knüpfer, W. E. Nagel, and F. Wolf, “Open
trace format 2: The next generation of scalable trace formats and support libraries.,” in
PARCO, vol. 22, 2011, pp. 481–490.

[58] T. Liu and E. D. Berger, “SHERIFF: Precise detection and automatic mitigation of false
sharing,” in Proceedings of the conference on Object Oriented Programming Systems
Languages and Applications, OOPSLA’11, 2011, pp. 3–18.

[59] M. Woodyard, “An experimental model to analyze openmp applications for system
utilization,” in Proceedings of the International Workshop on OpenMP Applications
and Tools11, 2011, pp. 22–36.

[60] X. Wu and F. Mueller, “ScalaExtrap: Trace-based communication extrapolation for
SPMD programs,” ACM SIGPLAN Notices, vol. 46, no. 8, pp. 113–122, 2011.

[61] Q. Zhao, D. Koh, S. Raza, D. Bruening, W.-F. Wong, and S. Amarasinghe, “Dynamic
cache contention detection in multi-threaded applications,” in Proceedings of the inter-
national conference on Virtual Execution Environments, VEE’11, 2011, pp. 27–38.

[62] E. Altman, M. Arnold, S. Fink, and N. Mitchell, “Performance analysis of idle pro-
grams,” in Proceedings of the conference on Object Oriented Programming Systems
Languages and Applications, OOPSLA’10, 2010, pp. 739–753.

[63] D. Barthou, A. Charif Rubial, W. Jalby, S. Koliai, and C. Valensi, “Performance Tuning
of x86 OpenMP Codes with MAQAO,” in Tools for High Performance Computing
2009, M. S. Müller, M. M. Resch, A. Schulz, and W. E. Nagel, Eds., Springer Berlin
Heidelberg, 2010, pp. 95–113, ISBN: 978-3-642-11261-4.

[64] D. Bohme, M. Geimer, F. Wolf, and L. Arnold, “Identifying the root causes of wait
states in large-scale parallel applications,” in Proceedings of the International Confer-
ence on Parallel Processing, ICPP’10, 2010, pp. 90–100.

[65] B. Chapman, T. Curtis, S. Pophale, S. Poole, J. Kuehn, C. Koelbel, and L. Smith, “In-
troducing openshmem: Shmem for the pgas community,” in Proceedings of the Fourth
Conference on Partitioned Global Address Space Programming Model, 2010, pp. 1–3.

36 BIBLIOGRAPHY

[66] A. C. De Melo, “The new linux perf tools,” in Slides from Linux Kongress, vol. 18,
2010, pp. 1–42.

[67] M. Geimer, F. Wolf, B. J. Wylie, E. Ábrahám, D. Becker, and B. Mohr, “The scalasca
performance toolset architecture,” Concurrency - Practice & Experience (CP&E), vol. 22,
no. 6, pp. 702–719, 2010.

[68] N. R. Mabroukeh and C. I. Ezeife, “A taxonomy of sequential pattern mining algo-
rithms,” ACM Computing Surveys (CSUR), vol. 43, no. 1, p. 3, 2010.

[69] J. Marathe, V. Thakkar, and F. Mueller, “Feedback-directed page placement for ccnuma
via hardware-generated memory traces,” J. Parallel Distrib. Comput., vol. 70, no. 12,
pp. 1204–1219, Dec. 2010, ISSN: 0743-7315.

[70] J. Mars, N. Vachharajani, R. Hundt, and M. L. Soffa, “Contention aware execution: On-
line contention detection and response,” in Proceedings of the international symposium
on Code Generation and Optimization, CGO’10, 2010, pp. 257–265.

[71] C. McCurdy and J. Vetter, “Memphis: Finding and fixing numa-related performance
problems on multi-core platforms,” in Proceedings of the International Symposium on
Performance Analysis of Systems and Software, ISPASS’10, 2010.

[72] B. de Oliveira Stein, J. C. de Kergommeaux, and G. Mounié, “Pajé trace file format,”
Technical report, ID-IMAG, Grenoble, France, 2002. http://www-id. imag. fr/Logiciel-
s/paje/publications, Tech. Rep., 2010.

[73] A. Pesterev, N. Zeldovich, and R. T. Morris, “Locating cache performance bottlenecks
using data profiling,” in Proceedings of the EuroSys European Conference on Com-
puter Systems, EuroSys’10, 2010, pp. 335–348.

[74] N. R. Tallent, J. M. Mellor-Crummey, and A. Porterfield, “Analyzing lock contention
in multithreaded applications,” in Proceedings of the symposium on Principles and
Practices of Parallel Programming, PPoPP’10, 2010, pp. 269–280.

[75] J. Treibig, G. Hager, and G. Wellein, “Likwid: A lightweight performance-oriented tool
suite for x86 multicore environments,” in Proceedings of the International Conference
on Parallel Processing, ICPP’10, 2010, pp. 207–216.

[76] C. Xu, X. Chen, R. Dick, and Z. M. Mao, “Cache contention and application perfor-
mance prediction for multi-core systems,” in Proceedings of the International Sympo-
sium on Performance Analysis of Systems and Software, ISPASS’10, 2010, pp. 76–86.

[77] E. Agullo, J. Demmel, J. Dongarra, B. Hadri, J. Kurzak, J. Langou, H. Ltaief, P.
Luszczek, and S. Tomov, “Numerical linear algebra on emerging architectures: The
plasma and magma projects,” in Journal of Physics: Conference Series, vol. 180, 2009,
p. 012 037.

[78] D. Barthou, A. C. Rubial, W. Jalby, S. Koliai, and C. Valensi, “Performance tuning
of x86 openmp codes with maqao,” in Tools for High Performance Computing, 2009,
pp. 95–113.

[79] P. Carns, R. Latham, R. Ross, K. Iskra, S. Lang, and K. Riley, “24/7 characterization
of petascale i/o workloads,” in 2009 IEEE International Conference on Cluster Com-
puting and Workshops, 2009, pp. 1–10.

[80] S. M. Günther and J. Weidendorfer, “Assessing cache false sharing effects by dynamic
binary instrumentation,” in Proceedings of the Workshop on Binary Instrumentation
and Applications, 2009, pp. 26–33.

37

[81] C. Ma, Y. M. Teo, V. March, N. Xiong, I. R. Pop, Y. X. He, and S. See, “An approach for
matching communication patterns in parallel applications,” in Parallel & Distributed
Processing, 2009. IPDPS 2009. IEEE International Symposium on, IEEE, 2009, pp. 1–
12.

[82] M. Noeth, P. Ratn, F. Mueller, M. Schulz, and B. R. de Supinski, “Scalatrace: Scalable
compression and replay of communication traces for high-performance computing,”
Journal of Parallel and Distributed Computing (JPDC), vol. 69, no. 8, pp. 696–710,
2009.

[83] S. Byna, Y. Chen, X.-H. Sun, R. Thakur, and W. Gropp, “Parallel I/O prefetching using
MPI file caching and I/O signatures,” in High Performance Computing, Networking,
Storage and Analysis, 2008. SC 2008. International Conference for, IEEE, 2008, pp. 1–
12.

[84] I.-H. Chung, G. Cong, D. Klepacki, S. Sbaraglia, S. Seelam, and H.-F. Wen, “A frame-
work for automated performance bottleneck detection,” in Proceedings of the Interna-
tional Parallel and Distributed Processing Symposium, IPDPS’08, 2008, pp. 1–7.

[85] A. Jaleel, R. S. Cohn, C.-K. Luk, and B. Jacob, “Cmp$im: A pin-based on-the-fly
multi-core cache simulator,” in Proceedings of the Fourth Annual Workshop on Mod-
eling, Benchmarking and Simulation (MoBS), co-located with ISCA, 2008, pp. 28–36.

[86] R. Preissl, T. Kockerbauer, M. Schulz, D. Kranzlmuller, B. Supinski, and D. J. Quin-
lan, “Detecting patterns in MPI communication traces,” in Parallel Processing, 2008.
ICPP’08. 37th International Conference on, IEEE, 2008, pp. 230–237.

[87] R. Preissl, M. Schulz, D. Kranzlmüller, B. R. de Supinski, and D. J. Quinlan, “Using
MPI communication patterns to guide source code transformations,” in Computational
Science–ICCS 2008, Springer, 2008, pp. 253–260.

[88] O. Aumage, E. Brunet, N. Furmento, and R. Namyst, “New Madeleine: A fast com-
munication scheduling engine for high performance networks,” in In Proceedings of
the Communication Architecture for Clusters Workshop (CAC 2007), workshop held in
conjunction with IPDPS, 2007, pp. 1–8.

[89] X. Ding, S. Jiang, F. Chen, K. Davis, and X. Zhang, “DiskSeen: Exploiting Disk Layout
and Access History to Enhance I/O Prefetch.,” in USENIX Annual Technical Confer-
ence, vol. 7, 2007, pp. 261–274.

[90] M. Hobbel, T. Rauber, and C. Scholtes, “Trace-based automatic padding for locality
improvement with correlative data visualization interface,” in Proceedings of the Inter-
national Conference on Parallel Architectures and Compilation, PACT’07, 2007.

[91] M. S. Müller, A. Knüpfer, M. Jurenz, M. Lieber, H. Brunst, H. Mix, and W. E. Nagel,
“Developing scalable applications with vampir, vampirserver and vampirtrace.,” in
Parallel Computing (PARCO), vol. 15, 2007, pp. 637–644.

[92] N. Nethercote and J. Seward, “Valgrind: A framework for heavyweight dynamic binary
instrumentation,” ACM Sigplan notices, vol. 42, no. 6, pp. 89–100, 2007.

[93] S. Thibault, R. Namyst, and P.-A. Wacrenier, “Building portable thread schedulers
for hierarchical multiprocessors: The bubblesched framework,” in Proceedings of the
European conference on Parallel processing, EuroPar’07, 2007, pp. 42–51.

[94] S. Eranian, “Perfmon2: A flexible performance monitoring interface for linux,” in Pro-
ceedings of the 2006 Ottawa Linux Symposium, 2006, pp. 269–288.

38 BIBLIOGRAPHY

[95] N. Joukov, A. Traeger, R. Iyer, C. P. Wright, and E. Zadok, “Operating system profiling
via latency analysis,” in Proceedings of the conference on Operating Systems Design
and Implementation, OSDI’06, 2006, pp. 89–102.

[96] A. Knüpfer, R. Brendel, H. Brunst, H. Mix, and W. E. Nagel, “Introducing the open
trace format (OTF),” in International Conference on Computational Science, 2006,
pp. 526–533.

[97] J. Marathe and F. Mueller, “Hardware profile-guided automatic page placement for
ccnuma systems,” in Proceedings of the symposium on Principles and Practices of
Parallel Programming, PPoPP’06, 2006.

[98] H. Safyallah and K. Sartipi, “Dynamic analysis of software systems using execution
pattern mining,” in Program Comprehension, 2006. ICPC 2006. 14th IEEE Interna-
tional Conference on, IEEE, 2006, pp. 84–88.

[99] S. S. Shende and A. D. Malony, “The tau parallel performance system,” The Interna-
tional Journal of High Performance Computing Applications, vol. 20, no. 2, pp. 287–
311, 2006.

[100] V. Danjean, R. Namyst, and P.-A. Wacrenier, “An efficient multi-level trace toolkit for
multi-threaded applications,” in European Conference on Parallel Processing, Springer,
2005, pp. 166–175.

[101] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J. Reddi,
and K. Hazelwood, “Pin: Building customized program analysis tools with dynamic
instrumentation,” Acm sigplan notices, vol. 40, no. 6, pp. 190–200, 2005.

[102] J. Reinders, “Vtune performance analyzer essentials,” 2005.
[103] J. Tao and W. Karl, “Cachein: A toolset for comprehensive cache inspection,” in Pro-

ceedings of the International Conference on Computational Science, ICCS’05, 2005,
pp. 174–181.

[104] W. E. Cohen, “Tuning programs with oprofile,” Wide Open Magazine, vol. 1, pp. 53–
62, 2004.

[105] F. Wolf, B. Mohr, J. Dongarra, and S. Moore, “Efficient pattern search in large traces
through successive refinement,” in Euro-Par 2004 Parallel Processing, Springer, 2004,
pp. 47–54.

[106] D. Bruening, T. Garnett, and S. Amarasinghe, “An infrastructure for adaptive dy-
namic optimization,” in International Symposium on Code Generation and Optimiza-
tion, 2003. CGO 2003., IEEE, 2003, pp. 265–275.

[107] J. Dongarra, K. London, S. Moore, P. Mucci, D. Terpstra, H. You, and M. Zhou, “Ex-
periences and lessons learned with a portable interface to hardware performance coun-
ters,” in Proceedings of the International Parallel and Distributed Processing Sympo-
sium, IPDPS’03, 2003, pp. 289.2–.

[108] J. Lee, C. Park, and S. Ha, “Memory access pattern analysis and stream cache design
for multimedia applications,” in Design Automation Conference, 2003. Proceedings of
the ASP-DAC 2003. Asia and South Pacific, IEEE, 2003, pp. 22–27.

[109] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg, J. Hogberg,
F. Larsson, A. Moestedt, and B. Werner, “Simics: A full system simulation platform,”
Computer, vol. 35, no. 2, pp. 50–58, 2002.

39

[110] J. Caubet, J. Gimenez, J. Labarta, L. DeRose, and J. Vetter, “A dynamic tracing mech-
anism for performance analysis of openmp applications,” in Proceedings of the Inter-
national Workshop on OpenMP Applications and Tools01, 2001, pp. 53–67.

[111] A. Snavely, N. Wolter, and L. Carrington, “Modeling application performance by con-
volving machine signatures with application profiles,” in Workload Characterization,
2001. WWC-4. 2001 IEEE International Workshop on, IEEE, 2001, pp. 149–156.

[112] B. Buck and J. K. Hollingsworth, “An API for runtime code patching,” The Interna-
tional Journal of High Performance Computing Applications, vol. 14, no. 4, pp. 317–
329, 2000.

[113] O. Zaki, E. Lusk, W. Gropp, and D. Swider, “Toward scalable performance visual-
ization with jumpshot,” The International Journal of High Performance Computing
Applications, vol. 13, no. 3, pp. 277–288, 1999.

[114] W. E. Nagel, A. Arnold, M. Weber, H.-C. Hoppe, and K. Solchenbach, “VAMPIR:
Visualization and analysis of MPI resources,” 1996.

[115] V. Pillet, J. Labarta, T. Cortes, and S. Girona, “Paraver: A tool to visualize and analyze
parallel code,” in Proceedings of WoTUG-18: transputer and occam developments,
vol. 44, 1995, pp. 17–31.

[116] D. A. Reed, P. C. Roth, R. A. Aydt, K. A. Shields, L. F. Tavera, R. J. Noe, and B. W.
Schwartz, “Scalable performance analysis: The pablo performance analysis environ-
ment,” in Proceedings of Scalable Parallel Libraries Conference, 1993, pp. 104–113.

[117] S. L. Graham, P. B. Kessler, and M. K. Mckusick, “Gprof: A call graph execution
profiler,” ACM Sigplan Notices, vol. 17, no. 6, pp. 120–126, 1982.

Titre : Contribution à l’analyse automatique de performances d’applications parallèles

Mots clés : Analyse de performance, programmation parallèle, calcul hautes performances

Résumé : Le calcul haute performance est désormais
une ressource stratégique car il permet de simu-
ler des phénomènes physiques complexes afin de
mieux les comprendre. Alors qu’il y a dix ans, le
calcul haute performance était surtout utilisé dans
des domaines spécifiques tels que la modélisation
du climat, les prévisions météorologiques ou la bio-
logie moléculaire, il s’étend désormais à la plupart
des disciplines scientifiques, y compris la génomique
et l’intelligence artificielle. Le traitement de grandes
quantités de données nécessite d’exploiter effica-
cement des machines parallèles et distribués. Lors
de la conception d’une application parallèle, un
développeur doit comprendre comment l’application
s’exécute sur un supercalculateur.
Nos activités de recherche visent à concevoir des
outils qui soulagent le développeur de ce fardeau.
Nos travaux de recherches nécessitent deux phases :
collecter des données lors de l’exécution d’une ap-
plication et analyser les données collectées afin

d’améliorer les performances de l’application.
Dans une première contribution, nous présentons
plusieurs outils de collecte de performances. Nous
présentons EZTrace, un outil permettant de tracer
l’exécution d’applications parallèles. Il permet aux
utilisateurs de capturer facilement le comportement
de leur application. Nous présentons également Nu-
maMMA, un profileur mémoire qui trace les applica-
tions et analyse leurs schémas d’accès à la mémoire.
Notre deuxième contribution porte sur l’analyse au-
tomatique de performances. Nous avons développé
des algorithmes qui détectent la structure globale
d’une application à partir d’une trace d’exécution et
qui éliminent les information superflues. Nous avons
également conçu une métrique capable de détecter
tout type de problème de contention en utilisant une
technique d’analyse d’exécution différentielle. Enfin,
nous avons conçu une méthodologie pour détecter
des problèmes de scalabilité dans les applications
OpenMP.

Title : Contribution to automatic performance analysis of parallel applications

Keywords : Performance analysis, parallel programming, high performance computing

Abstract : High Performance Computing is now a
strategic resource as it allows to simulate complex
phenomena in order to better understand them. While
ten years ago, HPC was mostly used in specific do-
mains such as climate research, weather forecasting,
or molecular modeling, it now spreads to most scien-
tific disciplines including genomics and artificial intel-
ligence. Processing large amounts of data requires to
efficiently exploit parallel and distributed computers.
When designing a parallel application, a developer
has to understand how the application executes on
a supercomputer.
Our research activities aim at designing tools that re-
lieve the developer from this burden. Our research ne-
cessitates two phases : to collect data when an appli-
cation executes, and to analyze the collected data in
order to improve the application performance.

Our first contribution consists of several performance
collection tools. We present EZTrace, a tracing frame-
work for parallel applications that allows users to ea-
sily capture the behavior of their application. We also
present NumaMMA, a memory profiler that traces
applications and analyzes their memory access pat-
terns.
Our second contribution focuses on automatic perfor-
mance analysis. We developed algorithms that de-
tects the overal structure of an application from an
execution trace and that filters out duplicate informa-
tion. We also design a versatile metric that detects any
kind of contention problem by using a differential exe-
cution analysis technique. Finally, we designed a me-
thodology for detecting scalability issues in OpenMP
applications.

Institut Polytechnique de Paris
91120 Palaiseau, France

	Introduction
	Hardware resources become complex
	Applications mix programming models
	Contributions
	Collecting performance data
	Analyzing performance data
	Remainder of this document

	Collecting performance data
	Collecting execution traces with EZTrace
	Plugin-based tracing tool
	Instrumentation
	Trace generation

	Collecting memory accesses with NumaMMA
	Conclusion

	Analyzing performance data
	Detecting the structure of a trace
	Related work
	Contribution

	Differential execution analysis
	Related work
	Contribution

	Detecting scalability issues with ScalOMP
	Related work
	Contribution

	Conclusion

	Ongoing and future works
	Performance analysis of data management
	Feeding runtime and compilers with performance data
	Analyzing high performance data analytics applications

	Personal bibliography
	Bibliography

