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Abstract

With the democratization of collaborative navigation applications and autonomous robots,
mobile mapping has received an increasing attention in recent years, both in academic
and industrial circles. The digitization of the environment not only provides detailed
and extensive knowledge enabling end-users to anticipate and plan their journeys, but
also guarantees the availability of reliable up-to-date information in critical scenarios, for
instance, when sensors of an autonomous car fail to perceive the surroundings. Mobile
mapping raises, however, many challenges in terms of robustness, accuracy and scalabil-
ity. Processing mapping data requires methods capable of handling massive data, with
centimetric accuracy while coping with the acquisition speci�cities such as variability in
levels of detail, occlusions, and strong variations in lighting conditions.

In the context of the French ANR project pLaTINUM, this thesis focuses on the develop-
ment of a global geolocalised map of urban environments comprised of 3D representations
based on geometric, photometric and semantic information. Firstly, a comparative inves-
tigation of suitable geometric representation options yields to the reconstruction of a large
scale, high de�nition map with a textured 3D mesh. This representation is the result of a
multi-modal fusion of oriented images and geo-referenced LiDAR scans acquired by a ter-
restrial mobile mapping platform. Subsequently, we propose to infer high level semantics
to the reconstructed map by exploiting the complementarity between the two acquisition
modalities: photometry and geometry. Throughout the rich literature regarding this sub-
ject, we have identi�ed a need of an annotated multi-modal urban dataset comprising a
large scale textured mesh. This has led us to produce our own dataset composed of 3D
point clouds, 2D geolocalized panoramic and perspective images, depth and re�ectance
maps, and a 3D textured mesh with the corresponding ground truth annotations for each
modality.

Secondly, we assume that the global map is represented by means of 3D point cloud
structured by an adjacency graph. We introduce a novel supervised over-segmentation
approach. This method operates in two steps: (i) local descriptors of 3D points are com-
puted via deep metric learning, (ii) the point cloud is partitioned into uniform clusters
called superpoints. The descriptors are learned such that they present high contrast at
the interface between objects, thereby encouraging the partition to follow their natural
contours. Our experiments on indoor and outdoor scenes show the clear superiority of
our approach over state-of-the-art point cloud partitioning methods. We further illustrate
how our method can be combined with a superpoint-based classi�cation algorithm to en-
hance the performance of semantic segmentation of 3D point clouds, also improving the
state-of-the-art in this �eld.

Finally, we extend this approach to textured meshes. Triangles, structured this time
by the dual graph of the mesh, are partitioned into homogeneous groups called super-
facets. Much like point clouds, local descriptors of the textured mesh are learned so that
the boundaries of the objects exhibit high contrast. These descriptors are the result of
merging descriptors learned from the convolution of the mesh edges on the one hand, and
the texture descriptors extracted from the 2D image domain on the other. The experi-
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ments conducted on our own multi-modal dataset, show the superiority of our approach
compared to state-of-the-art methods for the task of 3D mesh over-segmentation.
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Résumé

Avec la démocratisation des applications collaboratives d'assistance à la navigation et
l'avènement de robots autonomes, la cartographie mobile suscite ces dernières années une
attention croissante, tant dans les milieux académiques qu'industriels. La numérisation
de l'environnement o�re non seulement une connaissance �ne et exhaustive permettant
aux usagers d'anticiper et de plani�er leurs déplacements, mais garantit aussi la disponi-
bilité d'informations �ables à tout instant notamment en cas d'éventuelle défaillance des
capteurs visuels d'un véhicule autonome. S'agissant d'un enjeu crucial pour une naviga-
tion �able, la cartographie mobile soulève en revanche de nombreux dé�s en matière de
robustesse, de précision et de passage à l'échelle. Cette problématique fait appel à des
méthodes qui requièrent une capacité de traitement de données massives avec une pré-
cision centimétrique tout en gérant les spéci�cités de l'acquisition, incluant la variabilité
du niveau de détails, des occultations et des fortes variations de luminosité.

Dans le cadre du projet ANR pLaTINUM, cette thèse porte sur le développement d'un
référentiel global géolocalisé de l'environnement urbain constitué de représentations 3D
basées sur des informations géométriques, photométriques et sémantiques. Dans un pre-
mier temps, une investigation approfondie de la représentation géométrique la plus adap-
tée à un tel référentiel, permet une reconstruction d'une carte haute dé�nition à large
échelle sous forme d'un maillage 3D texturé. Cette représentation est mise en place par
fusion multimodale d'images orientées et de balayages LiDAR géo-référencés acquis depuis
une plate-forme de cartographie mobile terrestre. Par la suite, nous proposons d'intégrer
l'aspect sémantique au référentiel reconstruit, en exploitant la complémentarité entre les
modalités d'acquisition photométriques et géométriques. À travers la riche littérature
sur le sujet, nous identi�ons l'absence d'un jeu de données urbain multimodal annoté
incluant un maillage texturé à large échelle. Nous levons ce verrou par la production de
notre propre jeu de données composé de nuages de point 3D, d'images 2D perspectives et
panoramiques géolocalisées, de cartes de profondeur et de re�ectance ainsi qu'un maillage
texturé avec les annotations correspondantes à chaque modalité.

Dans un second temps, nous considérons le référentiel comme un nuage de points 3D
structuré par un graphe d'adjacence. Nous introduisons une nouvelle approche de sur-
segmentation par apprentissage supervisé. Cette méthode opère en deux temps: calcul
de descripteurs locaux des points 3D par apprentissage profond de métrique, puis par-
tition du nuage de points en zones uniformes, appelées superpoints. Les descripteurs
sont appris de telle sorte qu'ils présentent de forts contrastes à l'interface entre objets,
incitant la partition résultante à suive leurs contours naturels. Nos expériences sur des
scènes d'intérieurs et d'extérieurs montrent la nette supériorité de notre approche sur les
méthodes de partition de nuage de points de l'état de l'art, qui ne reposaient pas jusqu'à
là sur l'apprentissage machine. Nous montrons également que notre méthode peut être
combinée à un algorithme de classi�cation de superpoints pour obtenir d'excellents ré-
sultats en terme de segmentation sémantique, améliorant aussi l'état de l'art sur cette
problématique.

En�n, nous étendons cette approche aux maillages texturés. Les triangles, structurés cette
fois-ci par le graphe d'adjacence du maillage, sont partitionnés en groupes homogènes ap-
pelés superfacettes. À l'instar des nuages de points, des descripteurs locaux du maillage
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texturé sont appris de façon à ce que les frontières d'objets sémantiquement distincts
présentent un contraste élevé. Ces descripteurs sont le résultat d'une fusion des descrip-
teurs appris sur le maillage par convolution des arêtes d'une part, et des descripteurs de
texture d'autre part. Les expériences réalisées sur notre propre jeu de données multi-
modal illustrent la supériorité de notre approche par rapport aux méthodes de l'état de
l'art pour la sur-segmentation d'un maillage.
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Introduction

A few decades ago, the simple idea that driver-less cars exist or machines surpassing
humans at common daily tasks, would have been met with incredulity. Nowadays, this
utopia has become a reality. Machines are now able to beat humans at an entire raft of
complex tasks ranging from notoriously hard strategy games 1, data science [1], writing
pop songs 2, creating original art pieces 3 or even at spotting issues in legal contracts 4.
These achievements have created an unprecedented enthusiasm for applications based on
arti�cial intelligence (AI).

Autonomous navigation of aerial and terrestrial robots (e.g. cars, drones, etc.), in par-
ticular, is not immune to this increasing AI-based trend. Currently, we are arguably
witnessing the heyday of the self-driving revolution. Research and development corpo-
rations all over the world are racing towards developing autonomous agents capable of

1https://deepmind.com/research/case-studies/alphago-the-story-so-far
2http://www.bbc.com/culture/story/20180112-is-this-the-worlds-first-good-robot-album
3https://deepart.io/
4https://www.lawgeex.com/resources/aivslawyer/
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http://www.bbc.com/culture/story/20180112-is-this-the-worlds-first-good-robot-album
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CHAPTER 1. GENERAL INTRODUCTION

providing reliable navigation services. This competition resulted in an arsenal of products
deployed in our daily life such as Tesla, Lyft and Uber self-driving cars among others.

In order to be able to plan a path and navigate towards a speci�c target, an au-
tonomous agent has to apprehend its surroundings as would humans do. In an unknown
environment, humans rely on a map to reach a desired destination. In a similar way, a
robot has to be endowed with a map to accomplish a certain navigation or planning task.
Constructing such a map entails two crucial issues. The �rst one consists in the availabil-
ity of su�ciently rich and diverse collected data along with an appropriate exploitation.
The second is about the ability of the machine to interpret and semantically understand
these data. The former problem is more related to close range remote sensing or mapping,
while the latter falls under the topic of scene understanding. These two challenges will be
kept in the foreground of this dissertation.

By taking a closer look at the rich literature, we notice that these two research axes are
intertwined. As a matter of fact, in the context of autonomous navigation, a substantial
improvement in scene understanding has been accomplished in the recent years thanks
to the ubiquity and diversity of large volumes of mapping data. This success can be
mainly explained by the surge of data-driven paradigms over hand-crafted ones notably
deep learning.

Deep learning techniques di�er from the rest of machine learning approaches in that
descriptors are learnt as part of the training process. Commonly referred to as learning
representations, no one can deny the wave of attention this concept brought to Convo-
lutional Neural Networks (CNNs). This surge started when AlexNet [2] outperformed
competing hand-crafted methods by a signi�cant margin in several recognition tasks on
2D images. Three-dimensional data e.g. point clouds or meshes were also a�ected by this
shift in focus towards deep learning approaches. However, unlike 2D images , learning
representations from 3D data is a strenuous challenge [3]. Point clouds and 3D mesh
geometries in particular can not be trivially de�ned as functions on the Euclidean space
sampled on a grid. The lack of a grid-like structure inhibits the use of one of the CNNs
fundamental core components which is convolution. Furthermore, from the perspective of
autonomous driving, massive amounts of multi-modal data have to be acquired to guar-
antee a reliable level of robustness. According to a Rand Corporation report 5, a �eet of
1000 vehicles driving nonstop for 50 years is required to gather su�cient real testing data
to conclude a 20% advantage for autonomous vehicles over human drivers. Therefore,
speci�c methods have to be designed with the goal of constructing a precise map on one
hand, and e�ciently handle the consequent large volume of hybrid data on the other.

The purpose of this thesis is twofold. First, we want to explore new ways on how to
reconstruct a 3D map of an urban environment from multi-modal mapping data. Second,
we want to make use of the recent advances in scene understanding to learn new repre-
sentations from hybrid 3D data. Throughout this dissertation, we will try to answer the
following questions:

� What are the main characteristics of a reliable 3D map ?

� How can we reconstruct such map given a multi-modal mapping acquisition ?

� What is the best strategy to fuse these hybrid data ?

5https://www.rand.org/pubs/research_reports/RR1478.html
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� How can we learn expressive representations of multi-modal 3D data while remaining
e�ciently able to handle their large scale ?

The remainder of this chapter is organized as the following. First in Section 1.1, we
present the general context of this thesis. In section 1.3 we clearly state the objectives
and challenges of our study and demonstrate how it is a valid scienti�c problem. Section
1.2 clari�es the main research axes. Finally the thesis outline and contributions are
summarized in Section 1.4.

1.1 General context

A Geographic Information System (GIS) is a general framework for managing, analyzing
and visualizing geographic spatial data. GISs represent a strategic clue for many civil and
military applications. Over the past 15 years, the global GIS market has experienced a
rapid growth, rising from less than 1 billion USD in 2000 to more than 10 billion USD in
2015, of which around 10% is allocated to 3D applications. Consequently, this market is
becoming extremely competitive; resulting in a wide variety of geo-referenced databases.
At the moment, the most well-known and probably the most used database is developed
by Google, through its products Google Earth, Google Maps and Google StreetView.
OpenStreetMap 6 is also a salient example of open source GIS as it allows individuals to
contribute with additional content such as videos, images, or GPS tracks. At the national
level, the french mapping agency (IGN) provides topographic maps on a national scale
via the Geoportail 7. The latter has been recently upgraded to allow the access to 3D
urban models after integrating the interactive web 3D viewer iTowns8. Among the many
existing GISs, few are those containing 3D representations (models of objects/ buildings
or digital elevation models DEMs) along with their corresponding semantic information.
In addition to their content, these GISs di�er mainly by their coverage (local, global),
their resolution (centimeters to kilometers), access to their data (free, paid, internet ac-
cess, etc.), their update frequency, and above all their use cases.

The current usage of these geo-referenced systems is rather focused on the analysis of
images or maps of a given place for applications ranging from simple virtual visit to the
extraction of information related to various professions (agriculture, natural disaster man-
agement, etc.). However, they are not well suited for autonomous navigation applications
mainly because they were not designed for it. The provided content, the data access
procedure, and the memory volume which they occupy are not adapted for this speci�c
use case. Indeed, when it comes to comparing the video stream of an on-board camera
with an a priori digital model of the environment for example, the volume of data and
processing becomes quickly considerable. As a result, the numerous works on mobility
and autonomous navigation rarely use the existing 3D geo-localized databases, but rather
ad-hoc data acquired for the occasion, or derived from the aforementioned GISs. This
con�rms the need for dedicated representations of the environment, di�erent from those
used traditionally.

In this context, the LAGADIC team at INRIA-Sophia Antipolis, the Le2i laboratory

6https://www.openstreetmap.org
7https://www.geoportail.gouv.fr/
8http://www.itowns-project.org/
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from the university of Burgundy, INSA-Rouen university and the french mapping agency
(IGN), have joined in an ANR project coined as pLaTINUM (Long Term MappINg for
Urban Mobility) whose purpose, broadly speaking, is to provide navigation services for
remote agents. This Ph.D. thesis was funded by this project and contributes to it. Here-
after, we present the pLaTINUM project in details.

1.1.1 pLaTINUM project

This thesis is part of the inter-disciplinary ANR project pLaTINUM. The goal of this
project consists in developing a geographical information system (GIS), stored on a cloud
and made of a set of 3D representations based on geometric, photometric, and semantic
information. This system must be able to update and enrich its content automatically
based on data transmitted by remote agents, which can be either autonomous vehicles or
simply users of an application (e.g. augmented or mixed reality) requiring more precise
localization and orientation than what GPS allows. Through this collaborative applica-
tion, an agent is supposed to receive localization information during navigation. In turn,
the latter will inform the cloud about the local detected changes, which will be processed
in order to update the geo-localized map.

A typical functional scenario can be envisioned as follows: an agent arriving in an area
covered by the cloud, issues a navigation request. The latter can be an approximate GPS
position and/or one or more images of the surroundings or a semantic request (e.g. next
to a park). In return, the cloud will send the local maps of the potential candidate places
corresponding to the area around the agent. The received information will be used to
precisely locate and register the underlying data with that of the selected map. The same
agent is also expected to participate in updating the cloud. The latter will validate or not
the new data based on the previously available information.

1.1.2 pLaTINUM expectations

As illustrated in the functional diagram of the project in Figure 1.1, the project part-
ners are expecting a global geo-localized 3D map encompassing geometric, photometric,
and semantic information which will serve for later applications (localization, navigation,
update, etc.). More in details, we were assigned the set of work packages framed in red.
First, in the work package 4.1 we have to collect multi-modal data using a mobile mapping
system. The latter allows a joint acquisition of oriented RGB images and geo-referenced
LiDAR scans. This data will be mutually used by our ourselves in this thesis and by
the project partners for validating their localization and navigation algorithms. Second,
we are supposed to design and deliver an appropriate representation of the acquired data
in the form of a 3D map that is compatible with the project requirements. The goal
of the work package 1.1 is to ensure the consistency between the image data and the
LiDAR scans, in particular by determining the visibility of each LiDAR point in the 2D
image. Visibility computation is an essential prerequisite for the joint use of LiDAR data
with their metro-logical precision and 2D images with the richness of their radiometric
information. Ideally, this map has to be a three-dimensional hybrid representation of
the acquired environment combining both the geometric information acquired from the
LiDAR and the radiometric information captured by the cameras.

Work package 1.2 concerns scene understanding. In this step, we want to enrich the
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Figure 1.1: pLaTINUM project functional diagram. Our thesis lies within the work packages
framed in red.

3D reconstructed map from WP 1.1 with semantics of objects constituting the observed
scene while being able to handle its large scale. The expected qualities of this 3D map
are mainly precise geo-referencing, resolution and semantic �delity. The reconstructed 3D
map should enable highly precise geo-referencing of the collected data more than what
a GPS allows. Resolution determines what is the size of the smallest object/detail that
should be represented in the map. Fidelity in this context means that the scanned digital
objects in the scene and their real counterparts must have the same semantic label. This
allows the decomposition of the scanned space into semantically navigable zones (e.g. side-
walks for pedestrians, roads for vehicles, etc.) along with tra�c signs. In the following
section, we overview the scienti�c problems related to our thesis subject and analyze the
consequent challenges to be tackled in our work.

1.2 Research axes

As can be seen throughout the aforedescribed work packages, our thesis is centered around
two principle research axes - namely mobile mapping and scene understanding. In the
following sections, we detail the background related to these two aspects.
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1.2.1 Mobile mapping

Mapping is the process of acquiring and managing geo-referenced spatial data of a given
environment. Historically mapping was performed using manual surveying which often
requires several months if not years to cover a relatively large area. With the recent tech-
nological advances, mapping can be performed using a multi-sensor system mounted on
various platforms such as satellites, drones, water-based vessels among others. Terrestrial
mobile mapping systems in particular make use of land-based vehicles as platforms inte-
grating di�erent types of sensors to collect geo-referenced data. This close-range mapping
system takes advantage of the proximity to the observed scene enabling, thereby, a much
�ner and precise acquisition.

Figure 1.2: Illustration of a terrestrial mobile mapping system. Image from [4]

Amobile mapping system relies on vehicle-oriented sensors and object/feature-oriented
sensors to compute geo-referenced data. Commonly referred to as direct geo-referencing,
this procedure comes as an alternative to the traditional expensive methods of data geo-
referencing. Instead of relying on ground control points (GCP) and the triangulation
photogrammetric block, direct geo-referencing [5] uses a combination of GPS and IMU
to compute the exterior orientation (position and orientation) of sensors. This concept is
illustrated in Figure 1.2.

1.2.1.1 Components

A mobile mapping system is generally comprised of positioning sensors (e.g. Global Posi-
tioning System (GPS), Inertial Navigation System (INS)) and mapping sensors (e.g. Li-
DAR, camera, etc.). In this section we present the components of a terrestrial mobile
mapping vehicle. A particular focus will be devoted to mapping sensors as the acquired
data by these means will be the center of interest of our study.

� Positioning sensors: These sensors are used to compute the instantaneous absolute
locations of the mobile mapping vehicle in a global coordinate system (e.g. Lambert 93)

6
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while moving in a certain area. A combination of a GPS and an inertial measurement
unit (IMU) is commonly used to determine the pose of the platform in a global frame.
GPS records (X, Y, Z) coordinates while IMU records the orientation represented by the
three angles (Pitch, Yaw and Roll). The joint use of GPS and IMU allows a more accurate
geo-referencing procedure. When GPS tracks are not available or masked due to signal
occlusion, IMU measurements serve for correcting the geo-referencing. Alternatively,
IMU drifts accumulated during acquisition time are controlled by the GPS updates.

� Mapping sensors: are trusted for providing positional information of the scanned
objects/features with respect to a local coordinate system relative to the mobile plat-
form. Mapping sensors can be broadly divided into tow groups; passive imaging sensors
(e.g. RGB camera) and active imaging sensor (e.g. LiDAR). Active sensors are di�er-
ent from passive sensors by their capability to provide their own source of lighting or
illumination. In the following, we focus on LiDAR and camera since they are the main
mapping sensors used in our study.

Much like the human eye, RGB cameras capture wavelengths between 400nm to 780nm.
The acquired data using this device are represented as 2D grids with three separate
channels: R, G and B, corresponding to colors in the visible spectrum. These devices
are the most commonly used in autonomous navigation perception systems to extract
information about the surroundings of the vehicle due to their low cost, high quality
color information, and high resolution. The quality of RGB data is highly in�uenced by
variations in illumination and weather conditions (e.g. rain, fog, snow etc.). Therefore,
these devices are usually combined with LiDAR sensors to increase its robustness. Other
types of cameras are also leveraged for mobile mapping acquisition such as near-infrared
cameras (NIR) (wavelengths between 780 nm to 3 µm) or mid-infrared (MID) (wave-
lengths between 3 µm to 50 µm) known as thermal cameras. The use of IR cameras
complements RGB cameras in particular scenario where lighting conditions are highly
a�ected (e.g. driving with a sun glare) or for pedestrian detection in nighttime.

A Light Detection And Ranging (LiDAR) is an active sensor based on the time-of-�ight
technology. This sensor emits laser beam towards a certain target and measures the
return time of the re�ected pulses to determine the distance to the scanned target. The
intensities of the re�ected pulses can also be measured to produce a texture-like informa-
tion, referred to as intensity. This value quanti�es how much of the emitted laser beam
is back-scattered on the receiver by the hit surface. The emitted laser belongs to the
Class 1 which means it is harmless under all conditions of normal use. Using an active
sensor such as LiDAR, o�ers unmatched advantages especially a direct access to depth
information without using any complex algorithms. In contrast, similar to cameras, Li-
DAR is a�ected by weather conditions (e.g. rain, snow, etc.) and dusty environments
because of light di�raction in these circumstances. Moreover, these devices su�er from
their limited range, typically between 50 to 100m.

1.2.1.2 Challenges

Processing mobile mapping data is a challenging task for several reasons. First, the col-
lected data have to be geo-referenced with higher precision than GPS devices. As discussed
earlier, GPS signals are frequently masked in urban environments because of occlusions.
While GPS errors can be corrected by IMU measurements, sometimes this is not su�cient.
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Higher precision can be achieved either by an auto-consistency check (i.e. registering the
collected data on itself by mapping the same street multiple times for instance) or by
using an additional external geo-localized source of data (e.g. geo-referenced landmarks,
ground control points, or precise aerial images). Second, mobile mapping acquisitions
result in large volumes of data. The scale of the collected data calls for e�cient process-
ing tools in terms of number of operations and memory footprint. Furthermore, as the
acquisition of mapping data is commonly conducted in dynamic environments, we need to
handle mobile objects (e.g. pedestrians, cars, etc.) and temporarily variant objects such
as vegetation, roadworks, and urban furniture, etc.

Finally, the heterogeneity of the acquired data (geo-referenced point clouds and oriented
RGB images) makes their fusion not straightforward. In Figure 1.3, we show a super-
imposition of LiDAR and camera modalities to illustrate their intrinsic geometric and
radiometric structures. Usually mobile mapping data are used for building a map of the
scanned environment which will serve for a wide range of applications. However it is not
clear how such multi-modal data can be e�ciently merged to accomplish the intended
task. Moreover, an optimal exploitation of these two sources of information would require
a perfect registration which is not possible most of the time. As a matter of fact, the
moving platform can be subject to vibrations due to road slops or speed bumps inducing
non-negligible registration errors.

1.2.1.3 Applications

The recent development of mobile mapping systems is driven by the need for large scale
urban data mainly for intelligent transportation applications and geographical informa-
tion systems. Many applications bene�t from MMS data. Infrastructure mapping, in
particular is among the most common applications of MMS data as it involves several
attractive domains such as autonomous driving, 3D city modeling and urban monitoring.

� Urban modeling and monitoring: In the �eld of architecture, the availability of
mobile mapping data facilitates urban modeling. Thanks to MMS data density, the
extraction and reconstruction of 3D buildings become much easier. Mapping data provide
a much higher level of detail on building façades, but needs to be complemented by aerial
data for roof modeling. In recent years, we become able to generate building models with
di�erent level of details (LoD1, LoD2 and LoD3) at the scale of an entire city. Moreover,
these data allow the development of automatic tools for monitoring permanent urban
structures, inventory of road signs and urban furniture as well as detecting potential
urban changes.

� Autonomous driving: Geographical information systems (GISs) rely on mapping data
to save and update a digital version of the scanned spatial environments. Autonomous
driving is a critical application for which human safety is at stake. In these applications, a
GIS provides a crucial information serving as backup when perception or communication
system fails. The objects of interest in these o�-line maps are permanent structures such
as roads, pavements, buildings, etc. This application takes advantage of the multi-modal
aspect that mobile mapping acquisitions provide along with the precise geo-referencing
of the acquired data. The featured tasks are mainly high level recognition problems such
as object detection, semantic and instance segmentation. The latter aspects are related
to a larger research axe which is scene understanding.

8
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Figure 1.3: Superimposed LiDAR 3D point cloud with a 2D image.

1.2.2 3D scene understanding

Scene understanding is a process by which a machine analyzes and interprets an observed
scene using one or more sensors. This process requires a high level abstraction of the sensed
scene which inevitably calls for relevant information extraction and �ltering. This �eld
includes, but is not limited to, segmentation and semantic segmentation. The �rst building
block for scene understanding called segmentation consists in partitioning the scene into
coherent homogeneous parts without associating them with a semantic label. Semantic
segmentation extends the raw segmentation by associating each data point (e.g. pixel
for images, point for 3D point clouds) with a label among a set of de�ned semantic
classes. A more complicated task is instance segmentation which consists in detecting
and segmenting each object instance for all the foreground objects in the scene. More
recently panoptic segmentation was introduced by Kirillov et al. in [6]. The latter task
combines semantic segmentation and instance segmentation at the same time. The end
goal of this task is to identify two categories; things and stu�. Things refer to the set of
countable objects e.g. cars, pedestrians, furniture, etc., while Stu� designate the set of
uncountable objects e.g. road, pavement, etc. Figure 1.4 illustrates the discussed three
modes of scene understanding applied to 2D images.

In the scope of pLaTINUM project, we are interested in a particular aspect of semantic
mapping which is semantic segmentation of 3D data. The tremendous success of deep
learning approaches in a wide range of 2D scene understanding tasks has motivated the
community to investigate the applicability of these learning-based frameworks to three-
dimensional data. This however poses important methodological challenges as the nature
of the data to process is di�erent.

1.2.2.1 Challenges

Driven by the recent advances in deep learning applied to 2D images, a considerable ef-
fort has been devoted to translating and/or adapting these 2D architectures to 3D data

9
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(a) Input image (b) Semantic segmentation

(c) Instance segmentation (d) Panoptic segmentation

Figure 1.4: Illustration of semantic, instance and panoptic segmentation on a 2D image. Images
from [6]

notably point clouds and 3D meshes. These 3D data structures are intrinsically di�erent
from classic 2D images which can be de�ned as functions on the Euclidean space sam-
pled on 2D grids. The absence of a grid-like structure makes the use of convolutional
networks extremely challenging. Moreover, the geometric properties of 3D data can be
represented in various forms depending on the use case. This diversity inhibits the devel-
opment of an uni�ed architecture that is able to �t to the desired applications. Last but
not least, a major problem of 3D data is mainly related to its large scale. Autonomous
navigation applications in particular require processing large volumes of data. Before the
emergence of deep learning approaches, probabilistic graphical models were the standard
in 3D mapping data classi�cation due to their ability to leverage the contextual informa-
tion e�ciently [7]. Although being highly optimized, these graphical models are known
to be local methods in the sense that the model complexity grows with the number of
graph nodes and edges encoding respectively data points and their pairwise interactions.
Applying these techniques on mobile mapping data with millions if not billions of 3D
points/triangles is not feasible. Finally, unlike 2D images for which providing a ground
truth at large scale is relatively easy, annotating 3D data is an extremely expensive and
overwhelming task.
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1.3 Thesis positioning

With the recent advances in arti�cial intelligence applications and the proliferation of
acquisition devices, we have seen the dawning of a new era of autonomous robots. The
ubiquity and diversity of mapping data have opened the door to several research ques-
tions notably regarding the optimal exploitation of di�erent data modalities for safer and
more e�cient navigation. The latter requires reconstructing a 3D map of the surrounding
environment such that an autonomous agent is capable of localizing itself and plan a path
to a certain destination. In the literature, a 3D map is commonly represented as sparse
landmarks [8], 3D point clouds [9], occupancy grids or voxels [10], 2.5D elevation [11] or
3D mesh [12]. These maps are often reconstructed based on geometric keys while dis-
carding radiometric information coming from cameras. These radiometric sensors provide
practical photometric information useful for obstacle avoidance and path planning [13].
We argue that a joint exploitation of both geometry and radiometry of the scene would
bene�t from the complementarity of these di�erent acquisition modalities (precision of
the LiDAR and high resolution of Cameras).

While a hybrid 3D map combining geometry and photometry would o�er crucial clues
about the surrounding space, it is not su�cient for a reliable autonomous navigation.
The autonomous agent needs also to grasp the semantic of the objects composing the
environment. In the context of scene understanding, deep learning has gained an over-
whelming attention among the computer vision community resulting in a wide variety
of semantic segmentation approaches applied to di�erent data modalities/representations
such as AlexNet [2] for 2D images, PointNet [14] for raw point clouds, VoxelNet [15]
for 3D voxels, and MeshCNN [16] for 3D meshes. Unlike 2D images, each of the afore-
mentioned learned representations has proposed a di�erent approach to circumvent the
irregularity of 3D data and the lack of the commonly known input as a grid-like structure.
However, all these methods share a common weakness notably in their inability to handle
large scale data. More recently, Landrieu and Simonovsky [17] have introduced a new
scalable semantic segmentation approach of point clouds. The scalability of this method
was made possible thanks to a pre-processing step consisting of an over-segmentation of
the input large scale point clouds resulting in a set of geometrically and radiometrically
homogeneous points called superpoints. The latter are inspired by their 2D counterparts
i.e. superpixels (e.g. SLIC superpixels [18]). These superstructures allow to process a
set of data points at once instead of parsing individual points one by one. While being
e�cient, we argue that the way these superstructures are designed is sub-optimal. In
SPG [17], 3D points that share the same geometric and photometric hand-crafted fea-
tures (e.g. , verticality, planarity, eleveation, rgb color, etc.) are set to belong to the same
superpoint while they may truly belong to objects of di�erent semantic natures. As the
subsequent semantic segmentation depends on the quality of the computed superpoints,
we believe that learning the over-segmentation as well will enhance the results.

The success of deep learning approaches is partially tied to the availability of large scale
rich data. In the context of autonomous navigation, several outdoor multi-modal datasets
[19�21] have been proposed to evaluate qualitatively and quantitatively recognition meth-
ods. Even though most of these datasets are large scale, the majority of them come with
the standard acquisition modalities typically 2D perspective images, depth maps and Li-
DAR point clouds. On the other hand, indoor datasets [22�24] o�er more interesting data
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formats using RGB-D devices. In addition to the annotated point clouds and perspective
2D images, these indoor datasets provide omnidirectional 360◦ RGB images and 3D tex-
tured meshes with their respective ground truth annotations. These data formats have
stimulated the development of new approaches [25, 26] that contributed to the prosperity
of indoor autonomous navigation. We believe similar set up should be provided for out-
door scenes to boost research in this direction.

Finally, it should be emphasized that the related work will be discussed in details in
the coming chapters. More related to our thesis subject, we can conclude that, we have
three main unresolved issues from the literature:

� To the best of our knowledge there is no available large scale multi-modal multi-
format dataset comprised of 2D/3D data with their corresponding ground truth
annotations.

� The current representations of 3D maps are limited to geometric properties. A
new representation of the 3D map allowing a joint exploitation of photometric and
geometric information is required.

� Current semantic segmentation methods are not able to leverage the local contextual
information of 3D scenes while remaining able to e�ciently handle its large scale.

Our contributions are centered around these three issues. In the next section, we �rst
present a summary of our contributions, then we expose the organization of the rest of
this document.

1.4 Thesis outline and contributions

1.4.1 Summary of contributions

As discussed earlier the objective of this thesis is to develop a global geo-referenced 3D
map based on a novel representation comprising relevant geometric, photometric and
semantic information. In this section, we present four contributions towards this goal.

� Our �rst contribution is a large scale multi-modal dataset that encapsulates a wide vari-
ety of common sensing modalities consisting of equirectangular depth maps, re�ectance
maps, both panoramic and perspective RGB images, 3D point clouds and 3D textured
meshes along with pixel-wise, point-wise and face-wise annotations. In addition, we
demonstrate the usefulness of the provided data by evaluating state-of-the-art meth-
ods in several computer vision tasks such as 2D image and 3D point cloud semantic
segmentation as well as monocular omnidirectional depth estimation.

� As a second contribution, we propose a novel compact representation of a 3D map by
reconstructing a textured mesh fusing the geometry of LiDAR scans and the radiometry
of mobile mapping images. This work led to the following publication [27].

� Our third contribution consists in a thorough study and classi�cation of the literature
regarding over-segmentation methods of both 2D images, 3D point clouds and meshes.
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� Finally we propose the �rst supervised over-segmentation method operating on both
3D point clouds and 3D textured meshes. We show that our method outperforms the
competing algorithms in this task. We further achieve state-of-the-art results on the
task of point cloud semantic segmentation when combining our method to an over-
segmentation-based method designed for semantic segmentation [17]. The supervised
over-segmentation of point clouds led to these two publications [28, 29].

1.4.2 Organization

As can be seen in the previous section, the research axes that we are interested in, cover
di�erent scienti�c problems. Therefore instead of presenting the related work in a sepa-
rate chapter, we opted for a per-research axe approach. For each chapter, we review the
most related work to ours before introducing the proposed contribution. The rest of this
document is organized in three main chapters followed by a general conclusion.

In chapter 2, we introduce the �rst contribution of our thesis which is a multi-modal
urban dataset. An extensive overview of the most relevant datasets close to our work is
given in Section 2.1. We present our dataset in Section 2.2. First, the acquisition setup
is exposed in Section 2.2.1. We explain the process of generating spherical images in
Section 2.2.2, panoramic depth in Section 2.2.3 and re�ectivety maps in Section 2.2.4.
Data, annotation protocol and tools are presented in Section 2.2.5. Finally, we conclude
this chapter by discussing potential future work.

Chapter 3 presents our second contribution which is the reconstruction of a large scale
textured 3D mesh. In Section 3.1, we give an overview of the work related to the di�er-
ent blocks of our framework; namely − surface reconstruction and texture mapping. We
present surface reconstruction algorithm in Section 3.2. The texture mapping approach
is explained in Section 3.3. Finally, in Section 3.4 we expose our experimental results.

In chapter 4, we present our two last contributions which concern a supervised over-
segmentation method for semantic mapping. In Section 4.1, the existing related work to
over-segmentation and deep learning on 3D data is presented along with theoretical de�-
nitions of the main concepts of our method. We explain our approach in details in Section
4.2. Both Sections 4.3 and 4.4 introduce two applications of our method respectively on
3D point clouds and textured meshes.

Finally, we conclude this thesis in Chapter 5 where we discuss open problems and potential
future work.
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Abstract

In this chapter, we present a multi-modal multi-format outdoor dataset. We start by
reviewing and comparing the existing outdoor urban datasets. Then, we present the
tools and methods of collecting and generating our hybrid data. Finally, we highlight its
usefulness by testing several methods from the literature on the task of 3D point cloud
semantic segmentation and omnidirectional monocular depth estimation.

Introduction

Deploying an autonomous navigation system in real world urban environments is far from
being a trivial task. When humans are removed from the navigation equation, such fully
automated systems require high performing sensors along with sophisticated algorithms
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to achieve accurate and robust perception, localization, planning and control especially
when safety concerns are at stake. In the last decade, the former aspect i.e. perception,
which is mainly related to scene understanding, has witnessed a signi�cant improvement
with recent advances of data driven methods based on deep learning [30�37]. This surge
in data driven approaches magni�es the need for benchmark datasets to conduct training
and evaluation of deep models.

In this context, benchmarking e�orts have a long tradition in the computer vision and
robotics communities attempting to cover a wide range of real-life tra�c scenarios using
single or multiple sensors. Due to the ease of capturing and annotating 2D RGB images,
there is a plethora of large scale image-only datasets [38�43]. Although cameras allow for
accurate measurements of radiometric information on the image plane, this device su�er
from several sensing capability limitations in terms of sensitivity to lighting conditions as
well as a lack of the precise 3D geometric information. On the other hand, with recent
developments in 3D range scanners, a great deal of e�ort has been devoted to produc-
ing LiDAR-only datasets [44�48] providing large volumes of point clouds used to solve
common computer vision problems that require dense and high level of details such as
mapping, localization, semantization to mention a few. However, despite the accuracy
and precision a LiDAR may o�er, it has been established [21] that each single sensor has
its own failure mode in di�cult conditions. A LiDAR in particular provides less semantic
information. For instance, this sensor is unable to capture words on a sign or determine
the color of the tra�c lights not to mention the limited range typically up to 50− 100m.
That is why hybrid datasets are of a paramount importance since they provide comple-
mentary multi-modal data of the scanned environment.

To address the aforementioned issues, several multi-modal datasets have been proposed
[19�21, 49, 50]. However, all these datasets provide exclusively the traditional data for-
mats; typically point clouds and/or RADAR measurements if available with RGB images
and GPS/IMU data. Since there is no consensus among researchers regarding what is the
best suited data format in terms of performance and e�ciency for an autonomous naviga-
tion system, we believe that the community should have access to an uni�ed but diverse
multi-modal multi-format benchmark where a neat evaluation can be performed using a
standalone data type or a combination of them. As part of the pLaTINUM project, we
propose a new dataset that is designed with the explicit goal to spur research on how
to generalize to complex unseen environments using a data fusion scheme of diverse data
formats. Although indoor RGBD datasets containing similar data types exist [22, 24, 51]
, to the best of our knowledge this outdoor dataset is the �rst one of its kind that provides
annotated textured meshes along with point clouds, equirectangular images, depth and
LiDAR intensity maps.

In this chapter, we present our new dataset encompassing both LiDAR and image modal-
ities in which we provide a variety of mutually registered and geo-referenced data, namely,
annotated spherical and perspective images, depth and LiDAR re�ectance maps as well
as annotated 3D point clouds and 3D textured meshes. This chapter is organized as the
following: In Section 2.1, we give an overview of the most relevant datasets close to our
work. We present our dataset in Section 2.2. First, the acquisition setup is exposed
in Section 2.2.1. We explain the process of generating spherical images in Section 2.2.2,
panoramic depth in Section 2.2.3 and re�ectivety maps in Section 2.2.4. Data, annotation
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protocol and tools are presented in Section 2.2.5. Finally, we conclude this chapter by
discussing potential future work.

2.1 Related work

The last few years have witnessed the release of a large number of urban datasets which
played a crucial role in pushing state-of-the-art research in autonomous driving making
the task of newcomers to cope with the existing work and still up-to-date more challenging.
Therefore, it becomes necessary to organize the sparse related literature into structured
one in order to ease accessibility. In this section, we give an extensive overview of the
existing datasets related to the autonomous navigation setting. Most of these datasets
are focused either on 2D RGB images and video frames or 3D point clouds independently.
On the other hand, few hybrid datasets have been introduced to allow a separate or joint
processing of several imaging modalities.
First, we start by presenting the well known 2D datasets. Then, we overview the recent
LiDAR-only datasets. Finally, synthetic and multi-modal datasets are discussed followed
by an extensive comparison between all the available datasets.

2.1.1 Image-only datasets

Since the early ages of computer vision, 2D RGB image-only datasets have been widely
used for scene understanding applications such as object detection, tracking, classi�cation
and segmentation. In the following, we present the most relevant 2D urban datasets
used to train and evaluate algorithms in the context of autonomous navigation in their
chronological order.

2.1.1.1 Cityscapes dataset [40]:

The Cityscapes dataset 1 is one of the most commonly used datasets for semantic urban
scene understanding. The dataset is comprised of various set of stereo video sequences
acquired by a mobile car in 50 cities in Germany and neighboring countries during the
span in several months covering di�erent seasons of the year.

(a) Coarse annotation (b) Fine annotations

Figure 2.1: Illustration of the �ne and coarse annotations from Cityscapes dataset [40]

The dataset provides 5000 images with high quality annotations at the pixel-level
including instance-level annotations for both vehicles and pedestrians in addition to 20000

1https://www.cityscapes-dataset.com/
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coarse annotations as shown in Figure 2.1. These annotations are divided into 8 major
categories; construction, nature, vehicle, �at, object, sky, human and void. Apart from the
class sky, each group is split into several subgroups forming 30 visual classes in total. The
proposed benchmark o�ers three di�erent tasks for semantic urban scene understanding;
pixel-level and instance-level semantic labeling as well as panoptic semantic segmentation
more recently.

2.1.1.2 Mapillary vistas dataset [52]:

Mapillary Vistas dataset 2 is one of the largest 2D street-level image datasets. It is
�ve times larger than Cityscapes [40]. Mapillary contains 25000 high resolution images
recorded from all over the world covering the six continents at various season, daytime,
and weather conditions. These road-scene images were captured from various viewpoints
using a broad range of imaging devices (mobile phones, tablets, professional cameras...)
by photographers with di�erent levels of experience; hence o�ering a richness of details
and a global geographic reach. Figure 2.2 depicts a sample of the dataset showing the
accurate annotations and the diversity in the distribution of classes in di�erent weather
conditions.

(a) �ne annotation of a complex scene (b) annotations in a snowy weather

Figure 2.2: Illustration of the �ne annotations from Mapillary Vistas dataset [52]

Dense and �ne-grained annotations are available for 7 major categories (Object, na-
ture, animal, human, void, marking and construction) leading to 152 object sub-categories
with additional instance-speci�c labels for 100 classes.

Similarly to [40], Vistas benchmark proposes several challenges to evaluate computer
vision algorithms such as the classic semantic segmentation task, object detection and
more recently panoptic segmentation.

2.1.1.3 Apolloscape dataset [41]:

Released by Baidu, Apolloscape 3 is a large scale video dataset with rich annotations
designed with the aim to deal with the challenges of street-scenes understanding in various
tra�c conditions. The data volume of this dataset is nearly 10 times greater than the

2https://www.mapillary.com/dataset/vistas
3http://apolloscape.auto/
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driving dataset Cityscapes [40]. The initial release contains 143906 video frames with per-
pixel dense semantic labels. Instance-level annotations of 89430 images are also provided
for the movable objects in the collected scenes. Moreover, the dataset o�ers 28 di�erent
lane markings annotations de�ned based on lane boundary attributes including color and
type.

The featured tasks targeted by this benchmark are mainly semantic segmentation with
25 classes divided in 5 groups (movable, nature, object, infrastructure, surface) as well as
instance-level video object segmentation.

2.1.1.4 BDD100K dataset [43]:

This dataset 4 encompasses 100K high resolution videos (720p) at high frame rates (30fps)
collected from more than 50K rides of normal real-world driving sessions covering Berke-
ley, San Francisco, New York and other regions in the United-States. Each video is
about 40-second long and comes with GPS/IMU data recorded using mobile phones to
show rough trajectories. To ensure a high level of diversity, BDD100K was recorded in
a crowd-sourcing manner like [52] in di�erent weather conditions including sunny, rainy
and snowy as well as at daytime and nighttime.

(a) Annotation of a driveable area (b) Annotation of lane markings

Figure 2.3: Illustration of lane marking and driveable area annotations from BDD100K [43]

Fine-grained annotations of the 10th second keyframe of each collected video is pro-
vided leading to 120 million annotated images. In addition to the classic recognition tasks;
namely object detection using bounding boxes, semantic segmentation and instance seg-
mentation with dense pixel-wise annotations, 200K additional keyframes were also labeled
to perform lane markings recognition as well as driveable areas segmentation as shown in
Figure 2.3.

2.1.1.5 Other datasets [53�55]

Other interesting datasets were also introduced to boost research in autonomous driving.
In the following, we describe these methods brie�y.

In [53], Ha et al. propose a multi-modal dataset 5 containing 1569 RGB-thermal urban
scene images (820 taken at daytime and 749 taken at nighttime) captured in both visible
and thermal infrared spectrum (814µm) annotated exclusively with 8 classes of obstacles

4https://bdd-data.berkeley.edu/
5https://www.mi.t.u-tokyo.ac.jp/static/projects/mil_multispectral/
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usually encountered in a driving scenario (curve, bike, car, car stop, color cone, guardrail,
bump and person). In [54], the same setup is adopted to generate RGB-thermal dataset
but this time tailored for the task of object detection.

Built upon Cityscapes dataset [40], Zhang et al. introduce [55] CityPersons: a new
layer from [40] dedicated exclusively for the task of pedestrian detection. For each frame
of the 5000 �ne-annotations, bounding boxes annotations of the pedestrians in the scene
are provided.

2.1.1.6 Discussion

Compared to the existing outdoor driving datasets, Apolloscape [41] is the �rst dataset
that provides a rendered depth map of the static background for each pixel-level annotated
image along with the pose information at centimeter level. Figure 2.4 depicts a labeled
scene with its corresponding static depth map. While depth information is robust to light
variations, the dataset provides only static depth of urban scenes which are known to be
very dynamic where there is substantial motion.

(a) pixel-level annotated scene (b) depth map of the static background

Figure 2.4: Illustration of an annotated scene and its corresponding depth map of the static
background from [41]

Table 2.1 shows a comparison between the di�erent datasets in terms of the size, mean
of acquisition, weather conditions and locations.

Dataset Year # Images # labels Lane labels Location Acquisition

Cityscapes [40] 2016 25K 30 no 50 cities (Europe) moving car

Mapillary Vistas [52] 2017 25K 152 2 6 continents crowdsourced

BDD100K [43] 2017 120 M 19 8 United-states mobile mapping

Apolloscape [41] 2018 144K 25 28 China mobile mapping

Table 2.1: Image-only datasets comparison

Both Vistas [52] and Cityscapes [40] datasets do not provide pose information of
each image due to the way how they were collected. The lack of the geo-referencing
information is a major obstacle for several computer vision applications such as image-
based localization, pose estimation and mapping among others. Indeed, 2D images in
general are the result of a perspective projection of a 3D scene into the camera plan. We
argue that such representation does not capture the inherent structure of the recorded 3D
scene. In fact, pixels in image space have di�erent physical measurement in the 3D real-
world. Consequently, several 3D datasets captured by LiDAR sensors were introduced to
handle the limitations of 2D-only datasets.
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2.1.2 LiDAR-only datasets

Due to the popularity of the autonomous driving technology, LiDAR-only datasets have
received an increasing attention during the past few years. In this section, the most recent
urban LiDAR-only datasets are discussed in details.

2.1.2.1 Oakland dataset [44]

Acquired by a mobile mapping system equipped with a mono�ber LiDAR in Oakland,
Pittsburgh, this dataset 6 contains nearly 1.6 Million points annotated w.r.t. 44 classes
divided mainly into �ve categories; vegetation, wire, ground, pole/tree-trunk and facade.
The goal of this benchmark is to assess the task of 3D dense point-wise semantic segmen-
tation.

2.1.2.2 Paris-rue-Madame database [45]

This dataset 7 contains 3D MLS data acquired in the street Rue-Madame of the 6th

district in Paris, France using a mobile mapping plateform prototype called LARA2-3D
equiped with a Velodyne HDL32 sensor. It consists of 160 meters of acquisition leading
to 20 million points having each 4 attributes (X, Y, Z, and re�ectivety) in addition the
label and class attributes coming from the per-point and per-object annotations which
have been carried out manually with respect to 26 classes distribution. The featured
recognition tasks of this benchmark are mainly point-wise semantic segmentation and
object segmentation.

2.1.2.3 IQMULUS & TerraMobilita [46]

The TerraMobilita benchmark 8 consists of a large scale 3D MLS data acquired from a
dense urban environment in Paris, France using a mobile mapping system equipped with
a LiDAR sensor of type RIEGL VQ-250. Among the 10 km recorded data, only 210
meters approximately were manually annotated at point-level and object-level allowing
for tasks like 3D dense semantic segmentation and object segmentation. In addition to
the label and class attributes, XYZ, intensity and number of echoes of the LiDAR for
each point are also provided. The hierarchy of the semantic classes is de�ned with respect
to three major classes; Surface including (ground, building, etc.), Object (natural, static
and dynamic) and Others (unclassi�ed, unde�ned, etc.).

2.1.2.4 Semantic3D dataset [47]

Semantic3D 9 is a large scale point cloud dataset containing nearly 4 billion annotated
3D points of rural and urban environments in central Europe. Recorded using a high
resolution static scanner, dense per-point labels are provided with the goal to evaluate
semantic segmentation algorithms with respect to 8 classes; man-made terrain, natural
terrain, low vegetation, high vegetation, cars, scanning artifacts and buildings. Moreover,
colorization is also performed using camera images captured during the scan o�ering
thereby per-point RGB attributes.

6https://www.cs.cmu.edu/~vmr/datasets/oakland_3d/cvpr09/doc/
7http://www.cmm.mines-paristech.fr/~serna/rueMadameDataset.html
8http://data.ign.fr/benchmarks/UrbanAnalysis/
9http://www.semantic3d.net/
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2.1.2.5 Paris-Lille 3D dataset [48]

Using a mobile mapping truck equipped with a Velodyne HDL-32E LiDAR mounted on
its rear, this dataset 10 was collected in two di�erent agglomerations in Lille and a third
one in Paris France. Nearly two kilometres of acquisition were conducted leading to
more than 140 Million points annotated manually with respect to 50 classes similar to
[46] with minor changes. Indeed each annotated point has several attributes namely its
XYZ-position, the position of the LiDAR as well as intensity, per-point and per-object
labels.

2.1.2.6 Discussion

Oakland dataset [44] is a relatively small dataset designed before the emergence of deep
learning in order to evaluate methods based on graphical probabilistic models which su�er
from their limited scaling capabilities making them not suited to simulate real-world large-
scale driving scenarios.

Paris-rue-Madame [45] was segmented and annotated using a semi-automatic method
thereby introducing an algorithmic bias that cannot be corrected with hand re�nement.
An illustration of the annotation inaccuracies in this dataset is shown in Figure 2.5.

Figure 2.5: Illustration of the annotation inaccuracies from [48]: Wheels of the vehicle are
confused with the ground

The huge size of Semantic3D dataset [47] can be explained by the type of the LiDAR
used to collect this dataset. A static LiDAR scanner is known to be more precise and
denser than mobile scanners. However this advantage comes with several shortcomings
mainly the an-isotropic density of the obtained point cloud since it depends on the varying
distance of the static LiDAR and the scanned objects in the scene as well as the induced
occlusions due to the �xed position of the scanner.

IQMULUS & TerraMobilita dataset [46] proposes an innovative way to annotate the
point cloud by considering the sensor-space topology projection of the 3D points into 2D
images. In addition to the loss in precision during annotation because of the occlusions
induced by projecting 3D objects into 2D, only a small part of this dataset was released
making the task of training data-hungry learning algorithms complicated.

Paris-Lille 3D dataset [48] tries to circumvent the labeling and occlusions problems of
the previously released LiDAR-only datasets by �rst adopting a fully manual annotation

10http://npm3d.fr/paris-lille-3d
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policy in order to reduce the algorithmic bias of semi-automatic annotation methods and
second using a multi-�ber LiDAR to ensure a watertight acquisition of the environment.
However, their LiDAR measurement range is limited to only 20 meters. Additionally
their dataset consists of 2 straight paths with no cross-roads or sharp turns to mimic real-
life navigation scenarios. In table 2.2, we provide an overview of the urban LiDAR-only
datasets in terms of size, type of the LiDAR and location.

Dataset Year Size (m) LiDAR # classes # points Location

Oakland [44] 2009 1510 SICK-LMS laser 4 1.6 M Oakland

Paris-rue-Madame [45] 2013 160 Velodyne HDL32 17 20 M Paris

TerraMobilita [46] 2014 210 RIEGL LMSQ-120i 22 15 M Paris

Semantic3D [47] 2017 N/A Static scanner 8 4 B central Europe

Paris-Lille 3D [48] 2018 1940 Velodyne HDL32 50 140 M Paris Lille

Table 2.2: LiDAR-only datasets comparison

Similar to the 2D case, annotating 3D data manually or semi-automatically is a hard
task since it implies a trade-o� between the annotation accuracy and manpower required
to conduct manual annotations. That is why synthetic datasets has bloomed in recent
years.

2.1.3 Synthetic datasets

Alternatively to collecting and manually annotating 2D or 3D data, synthetic datasets
propose a new paradigm to assess vision algorithms in the context of autonomous driving
called virtual simulation. In the literature, several approaches have been proposed to get
as much as possible rich and diverse data of urban environments through simulation. In
this section we review the most popular virtual datasets and simulators.

2.1.3.1 SYNTHIA dataset [56]:

SYNTHIA dataset 11 is a set of photo-realistic images rendered from a virtual city with an
European style created using Unity game engine 12 acquired from di�erent view-points in
several locations. A large volume of data is provided (more than 200000 HD images with
their corresponding pixel-wise annotations). Populated with realistic urban models, it
o�ers a collection of rich and diverse scenes mimicking the real world driving scenarios in
various weather conditions including rainy, cloudy and snowy weather as well as a drastic
change in illumination conditions overall the dataset.

2.1.3.2 Virtual KITTI & vKITTI3D datasets [57, 58] :

Virtual KITTI 13 is a synthetic photo-realistic dataset built upon the original KITTI
dataset [49] using a real-to-virtual world cloning method. It consists of 50 high-resolution
monocular video sequences resulted in nearly 21160 frames generated from 5 di�erent
virtual worlds created using Unity software. These images are fully annotated for 2D
object detection and tracking, instance and semantic segmentation.

11http://synthia-dataset.net/
12https://unity.com/fr
13https://europe.naverlabs.com/research/computer-vision/proxy-virtual-worlds/

23

http://synthia-dataset.net/
https://unity.com/fr
https://europe.naverlabs.com/research/computer-vision/proxy-virtual-worlds/


CHAPTER 2. A MULTI-MODAL DATASET FOR URBAN SCENE
UNDERSTANDING

Using the available camera parameters (intrinsic + pose), �ve virtual video sequences
of [57] were projected into the 3D space giving birth to a new dataset vKITTI3D 14 [58]
composed of a collection of 3D annotated point clouds with respect to 13 semantic classes
similar to [57]; terrain, building, road, car, tra�c signs, among others.

2.1.3.3 VIPER dataset [59]:

The VIsual PERception dataset referred to as VIPER 15 is a virtual dataset built based
on the modern game Grand Theft Auto V (GTA) without acessing its source code. It
consists of more than 250000 frames coming from a set of video sequences collected while
driving, riding or walking a total of 184 kilometers in the simulated urban environment
under di�erent ambient conditions. The benchmark features diverse vision tasks since it
o�ers annotations for 3D scene layout, optical �ow object detection, tracking, semantic
and instance segmentation.

2.1.3.4 CARLA Simulator [60]:

CARLA 16 is an open-source simulation-platform for urban driving. CARLA simulates a
dynamic urban environment composed of 3D models of static objects such as buildings,
tra�c signs and infrastructure as well as dynamic objects like pedestrians and vehicles.
By providing a simple interface between an agent and the virtual world, di�erent naviga-
tion scenarios were implemented to imitate various tra�c real-world con�gurations under
di�erent weather and illumination conditions. This tool provides also several sensors and
pseudo-sensors simulations including RGB cameras, ground-truth depth maps and dense
pixel-wise annotations for semantic segmentation w.r.t. 12 classes; sidewalk, building,
fence, road, sign and others.

2.1.3.5 Discussion

Operating and instrumenting a mobile platform in order to collect urban driving data for
training and evaluating autonomous navigation algorithms require signi�cant funds and
manpower. That is why the computer vision and robotics communities are increasingly
investing much more time and e�ort in producing simulation-based datasets. Table 2.3
depicts a comparison between the previously described state-of-the-art virtual datasets.

Dataset Year Modality # classes Annotation Origin

SYNTHIA [56] 2016 2D 13 220K images rendered
Virtual KITTI [57] 2016 2D 13 21K frames synthesized
vKITTI3D [58] 2017 3D 13 15M points synthesized
VIPER [59] 2017 2D 12 254K frames rendered
CARLA [60] 2017 2D + depth 12 Unlimited simulated

Table 2.3: Synthetic datasets comparison

Such virtual benchmarks facilitate not only the data collection and annotation policy
but also the reproducibility and controllability of certain complicated and risky driving

14https://github.com/VisualComputingInstitute/vkitti3D-dataset
15https://playing-for-benchmarks.org/
16http://carla.org/
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real-world scenarios without any physical engagement. Besides, they o�er an opportunity
for standardizing driving tests under di�erent weather conditions and locations by giv-
ing feedback instructions such as freezing and replaying − a feature that is not available
in real-world conditions. However, we think that this trend su�ers from several disad-
vantages. First, as far as we are concerned virtual datasets have a limited perceptual,
physical and behavioural modeling capabilities of real urban scenes since most of them are
based on game engines. Figure 2.6 shows a sample from [56] which depicts low resolution
texture when zooming. Second, to the best of our knowledge, few of these studies [56]
[60] have demonstrated the transferability of these simulation-based trained models to a
real driving scenario in an urban environment for deployment.

Figure 2.6: A sample from [56] that shows unrealistic low resolution texture

On the other hand, multi-modal datasets acquired with mobile mapping vehicles have
recently drawn too much attention.

2.1.4 Hybrid datasets

Generating hybrid datasets comprised of GPS/IMU data, RGB cameras and range sensors
(LiDAR and/or RADAR) can be a prohibitively expensive task. In fact, such datasets are
more challenging to collect and annotate compared to single-modal datasets since they
require integrating, synchronizing and calibrating di�erent sensors at the same time. In
this section, we present the current state-of-the-art hybrid datasets that are related to
our work.

2.1.4.1 KITTI dataset [49]:

KITTI vision benchmark 17 is one of the most well-known driving benchmarks. It is a
multi-modal dataset collected using a moving car while driving in Karlsruhe Germany
for nearly 6 hours. Diverse tra�c scenarios of dynamic and static objects were recorded

17www.cvlibs.net/datasets/kitti
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in rural and city areas using a variety of sensor modalities including RGB and gray-
scale cameras, a 3D low-cost Velodyne laser scanner and a high-precision GPS/IMU unit
resulted in 120K 3D point clouds and 41K frames. Annotations are provided in forms
of 3D bounding boxes of nearly 200K objects. Several vision tasks can be assessed using
this benchmark including stereo matching, optical �ow estimation and object detection,
among others.

2.1.4.2 Apollo dataset [19]:

In order to assess the task of future trajectory prediction of tra�c agents in urban en-
vironments, Baidu research released a large-scale hybrid dataset 18. To generate these
tra�c trajectories, a set of sensors mounted on a mobile mapping platform were used
including RGB cameras, LiDAR (Velodyne HDL 64E S3), a RADAR and a localization
inertial navigation system (GPS/IMU). It consists of more than 146K HD images with
20K point clouds. The featured tasks are object detection, lane segmentation, scene
parsing and self-localization.

2.1.4.3 KAIST dataset [50]:

Targeting complex urban environment, KAIST 19 is a multi-spectral dataset that provides
RGB/thermal images, RGB stereo images, LiDAR point clouds and GPS/IMU data at
di�erent time slots (day an night). Captured in various region in Seoul, South Korea, this
benchmark was designed with the goal to deal with a wide range of vision problems in
urban environments such as localization, depth estimation, object detection, scene parsing
and driveable region detection. More than 8.9K annotated frames are available for the
previously mentioned tasks.

2.1.4.4 H3D dataset [20]:

H3D 20 is a large-scale multi-modal dataset collected in diverse areas in San Francisco,
USA by the Honda Research Institute using a moving car equipped with 3 full-HD RGB
cameras, a Veldoyne HDL-E64 S2 and GPS/IMU unit. As opposed to KITTI dataset
[49], this dataset is considered among the �rst ones that provide full-surround (360◦ view)
3D multi-object annotations. It consists of 27K frames collected from 160 crowded urban
scene with a total of 1.1 million 3D bounding box annotations. The main featured vision
tasks are 3D object detection and tracking.

2.1.4.5 NuScenes dataset [21]

NuScenes 21 is so far the largest multi-modal dataset for autonomous driving at the
time of writing. Recorded in two cities that are known with their high density tra�c
and challenging situations (Boston and Singapore), 1000 20s-length driving scenes were
manually selected to cover a wide range of driving manoeuvres and unexpected behaviours
of the dynamic objects in the scene. Using a set of synchronized sensors (6 RGB cameras,
a LiDAR, a RADAR and an inertial navigation system GPS/IMU), this benchmark o�ers

18http://apolloscape.auto/
19http://irap.kaist.ac.kr/dataset/
20https://usa.honda-ri.com/h3d
21https://www.nuscenes.org/
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approximately 1.4 million geo-referenced images, 390K LiDAR spans, 1.4 million RADAR
sweeps in di�erent weather and day/night times. In addition to 360◦-view annotations
for the entire sensor modalities resulted in 1.4 million object bounding boxes, NuScenes
provides annotations for the classes attributes such as pedestrian pose and car states.
Similar to [20], the featured tasks are mainly object detection and tracking.

2.1.4.6 Other datasets [61�63]

Oxford RobotCar dataset 22 proposes a 1000Km acquisition of multi-modal data including
raw 20 million RGB images along with LiDAR and INS data after traversing 100 times
the same route in Oxford, UK during one year, albeit no semantic labels are available.

In [62] a large scale driving dataset was designed to assess the task of driving behaviour
prediction. It is comprised of more than 10K frames of diverse tra�c scenes collected
using a mobile platform equipped with a load of perception sensors namely a Veldoyne
HDL-32E LiDAR scanning with a density equal to 700K points per second and an RGB
dashboard camera capturing video sequences at a rate of 30-frames per second.

[63] proposes an outdoor multi-modal dataset for place categorization. It encompasses
two parts. The �rst one consists of 650 static panoramic scans of size 9 million 3D
colored points each, captured using a FARO FOCUS3D scanner synchronized with an
RGB camera. The second one contains more than 32K sparse full-surround scans (70K
3D points) collected using a Velodyne HDL-32E LiDAR.

2.1.4.7 Discussion

Compared to image-only and LiDAR-only datasets, the number and size of the hybrid
datasets remain relatively small. Table 2.4 shows a comparison between the most recent
driving multi-modal datasets in terms of size, location, sensor diversity and the provided
annotations. Indeed, this can be explained by the expensive cost of collecting and anno-
tating such datasets. Furthermore, the majority of current multi-modal datasets feature
tasks like 2D/3D object detection and tracking since providing 2D/3D annotations for
these tasks is much easier than cumbersome and dense pixel-wise/point-wise annotations
for semantic segmentation or instance segmentation. Moreover, despite the proliferation
of imaging modalities and the tremendous advances in multi-modal deep learning tech-
niques, most of the aforementioned datasets collected with RGB/thermal camera and
static/dynamic LiDAR, provide only the traditional data formats typically 2D images
and 3D LiDAR point clouds. Other interesting data formats which have been proven to
be useful for indoor navigation [22, 24, 51] and better re�ects the geometry/radiometry of
the scene such as depth maps, LiDAR re�ectance maps, panoramic images, and textured
meshes, can be easily derived with almost no extra-cost. Therefore, we decided to design
the �rst outdoor urban multi-modal driving dataset that provides the aforementioned
sensing modalities.

2.2 pLaTINUM dataset

As discussed above, 3D multi-modal datasets are of a particular importance compared to
single-modal ones since they provide the entire geometry of the objects and their surround-
ing context along with complementary RGB information which o�ers dense appearance

22https://robotcar-dataset.robots.ox.ac.uk/
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Features KITTI [49] Panoramic3D[63] Oxford [61] KAIST [50] Apollo [19] H3D [20] NuScenes[21]

Year 2012 2016 2017 2018 2019 2019 2019

Sensors
Stereo camera +
LiDAR+ INS

Camera + static
mobile LiDAR +
GPS/IMU unit

�sheye/stereo
+ 2D/3D LiDAR
+ GPS/IMU

RGB/thermo
cameras

Stereo cameras
+ 3D LiDAR +

GPS/IMU

3 RGB cameras
+ 3D LiDAR
+ GPS/IMU

6 RGB cameras +
LiDAR + RADAR

+ GPS/IMU

Annotations

2D/3D bounding
box + pixel/
instance-level

labels

labels for
classi�cation

not annotated
2D bounding
box + drivable
regions labels

2D/3D
pixel/instance
-level labels

3D bounding
box

3D bounding
box + pedestrian

pose

Size
7481 frames
80256 objects

650 dense scan
32000 sparse

scans

20 million
images + 3 M

frames

7512 frames
308913 objects

143906 images
89430 objects

27K frames
> 1 million
objects

1.4 million
image + RADAR
390K LiDAR

Location karlsruhe Fukuoka Oxford Seoul China San Francisco Boston/Singapore

RGB images 3 7 3 3 3 3 3

Panorama 7 3 7 7 7 7 7

Depth maps 3 7 3 3 3 7 7

re�ectance 7 7 7 7 7 7 3

Point clouds 3 3 3 7 3 3 3

Textured mesh 7 7 7 7 7 7 7

Table 2.4: An overview of the multi-modal driving datasets

features. This type of datasets enables the development of joint and cross-modal learning
models � a strategy that has been proven to be successful in various scene understanding
tasks. In this section we present pLaTINUM dataset; a large scale multi-modal dataset
providing 2D and 3D mutually registered data recorded using a mobile mapping vehicle
(an upgraded version of Stereopolis II [64]). Our dataset belongs to the fourth cate-
gory of the previously discussed datasets. In contrast to the previous work, pLaTINUM
dataset encompasses several data formats that recently have drawn much attention in the
vision community namely spherical images and their corresponding 360◦ ground truth
depth maps, LiDAR re�ectivety maps and textured meshes. In addition, traditional data
formats such as 3D LiDAR point clouds as well as 2D front-facing images are also pro-
vided. The featured tasks are mainly point-wise and pixel-wise semantic segmentation
and omnidirectional 360◦ monocular depth estimation.

2.2.1 Acquisition details

In this section we start �rst by describing the driving plan, the sensors setup, the policy of
generating spherical images as well as rendering depth and re�ectivity maps. Second, we
explain the annotation process of the 2D images and 3D point clouds followed by overall
statistics. The �nal geo-referenced frame which consists of a 3D textured semantic mesh
is left to the next chapter as it represents a standalone contribution.

2.2.1.1 Driving plan

The dataset was recorded in the city of Rouen located in the north-west of France using a
mobile mapping platform. It consists of nearly 6 hours of acquisition (more than 2 hours
of continuous surveying) at an average speed of 15Km/h resulted in nearly 17 kilometers
of mapped routes as illustrated in Figure 2.7. The driving streets were carefully chosen to
capture a diverse set of urban and residential locations in general tra�c situations with
many static and dynamic objects. This acquisition was made on March 16, 2016 at two
di�erent time slots (morning and afternoon).

2.2.1.2 Sensors setup

Developed by the French National Mapping Agency (IGN), the upgraded version of Stere-
opolis II [64] is equipped with the following set of sensors:
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Figure 2.7: Illustration of the mapped trajectory in Rouen, France

� 5 full HD cameras: mounted on a panoramic head within a rigid body to ensure
stability of the relative camera poses during acquisition. Each camera is facing a
di�erent viewing direction which corresponds to the �ve upper faces of a cube as
shown in Figure 2.8. This allows the acquisition of 5 high resolution 12-bit RGB
perspective images (2048 × 2048) that are thereafter linearly converted to 8-bit
images. To ensure the same exposure time, the 5 cameras are perfectly synchronized
in such a way they are triggered at the same time for each spacing distant equal to
3 meters.

(a) Illustration of the �ve upper faces of a cube
acquired by the 5 cameras installed on Stereopolis

(b) Top view of the acquisition geometry: 5 cameras
recording 5 images each 3 meters while moving

Figure 2.8: Illustration of the acquisition con�guration of the 5 RGB cameras

� 1 LiDAR RIEGL VQ-250: mounted transversely on the rear of the platform, it
scans the orthogonal plane to the front-facing trajectory of the moving vehicle with
a 360◦ �eld-of-view as depicted in Figure 2.9. It rotates at a frequency equal to 100
Hz and emits 3000 pulse per rotation which corresponds to an approximate angular
resolution equal to 0.12◦. Each pulse has between 0 to 8 echoes producing thereby
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an average of 250000 points per second. This scanner is able to acquire highly dense
point clouds and precise/accurate measurements.

(a) the used LiDAR RIEGL VQ-250 in this survey (b) the orthogonal plan to the trajectory is scanned

Figure 2.9: Illustration of the acquisition con�guration of LiDAR while the car is moving

� Inertial navigation system: comprised of two GPS devices, an Inertial Measure-
ment Unit (IMU) and a wheel odometer. This system provides an instantaneous
absolute position and orientation of the vehicle in the global system reference.

2.2.2 Spherical image generation

Spherical or panoramic images are a very popular representation especially within the
robotics community. Usually captured using 360◦ cameras, these full surrounding im-
ages are increasingly in�uential in several contemporary technologies such as virtual and
augmented reality (VR/AR), mobile robots and social media. However, this is not yet
the case for autonomous driving. Even though, omnidirectional images are considered by
far a more pertinent representation of the environment than conventional planar images
since they provide an entire 360◦ �eld of view, so far the recent automotive datasets have
mainly focused on producing perspective forward-facing images to assess object detec-
tion, tracking and semantic segmentation among others. To address the lack of annotated
spherical images in the current urban driving datasets, [65] proposed an approach to adapt
the recent deep network architectures trained on front-facing rectilinear images to oper-
ate on equirectangular panoramic imagery producing thereby a new benchmark based on
CARLA simulator [60] to evaluate object detection. To the best of our knowledge, there
is no publicly available real-world benchmark to assess semantic segmentation based on
spherical 360◦ urban images. Therefore we provide a collection of annotated equirect-
angular images to deal with the lack of such type of data in the driving datasets. In
this section, we explain our method of generating the spherical images and we show the
obtained results.

2.2.2.1 Problem statement

Recent mobile devices and VR/AR headsets provide directly omnidirectional images. In
the autonomous driving setting such images could be obtained directly using a a dual-
�sheye pair or 360◦ action camera. As shown in Section 2.2.1, our mobile mapping vehicle
is equipped with five cameras, each one of them is facing a di�erent direction. This
results in a set of �ve non-overlapping perspective images that are not able to perceive
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the entire 360◦ �eld of view if treated separately. One way to get a full-surrounding
view is to smoothly stitch these images into a single one following a planar, cylindrical or
spherical geometry. Most of the traditional methods use the following pipeline introduced
by Brown and Lowe [66] to reconstruct a panoramic image from di�erent perspective
images:

� Extract and match features between a pair of images

� Compute a transformation from the second to the �rst image

� Warp the second image so it overlays the �rst one

� Blend the images where they overlap

� Repeat the same procedure iteratively for the rest of the images to be stitched.

Thanks to the GPS/IMU system, we are able to provide the position and orientation in the
camera and world frames for all the recorded perspective images. Indeed, having the pose
information allows us to frame the stitching problem as an equirectangular projection
of the rectilinear images sampled in a 3D spherical or cylindrical geometry. In Figure
2.10, we show an illustration of the process of generating our panoramic images from
the raw perspectives images. This methodology enables us to bypass the slow features'
computation and matching step of the traditional methods.

Figure 2.10: Full-surrounding 360◦ image generation process. Left: the 5 input perspective
images. Middle: Resampling of the input in the spherical geometry. Right: Equirectangular
projection to �atten the sphere

Formally, let Is be an image sampled on a spherical coordinate system de�ned by (θ, φ)
where θ ∈ [0, 2π] , φ ∈ [0, π] are respectively its longitude and latitude.

Let If ∈ IWf×Hf×3 be the corresponding �at RGB image in equirectangular projection
de�ned by the set of 2D pixels (uequi, vequi) as

If = {(uequi, vequi)|uequi ∈ [0,Wf ] , vequi ∈ [0, Hf ]}

Wf and Hf being respectively its width and height.
For a 3D point P (x, y, z) ∈ R3 on the viewing sphere Is de�ned by its polar coordinates

(θ, φ), the corresponding 3D position in the Cartesian coordinate system following the
convention in Figure 2.10 is de�ned as

x = cos(θ) sin(φ)

y = sin(θ) sin(φ)

z = cos(φ)

(2.1)
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In contrast the equirectangular projection is conveniently de�ned in terms of the lon-
gitude θ and latitude φ of the sphere. From Eq. 2.1 we can compute{

θ = arctan(x/z)

φ = arcsin(y/r) with r =
√
x2 + y2 + z2

(2.2)

For the sake of simplicity, the computation of (θ, φ) can be rewritten in a matricial
form using the function Ψ followed by an homogeneous normalization :

[
θ
φ

]
= Ψ .

xy
z

 = Ψ .

x/zy/z
1

 (2.3)

Typically the projection of P into a 2D image pixel (u, v) using a traditional recti�ed
rectilinear camera model is de�ned by

[
u
v

]
= Crect .

xy
z

 = Crect .

x/zy/z
1

 where Crect =

f 0 cx
0 f cy
0 0 1

 (2.4)

f , (cx, cy) are respectively the focal length and the principal points of the camera.
In a similar way to the rectilinear projection, using Eq. 2.5 the equirectangular pro-

jection If of the spherically sampled image Is can be written as

uequivequi
1

 = Cequi .

θφ
1

 = Cequi .Ψ .

x/zy/z
1

 where Cequi =

γ 0 cθ
0 γ cφ
0 0 1

 (2.5)

In the projection matrix Cequi Eq. 2.5, γ is the angular resolution parameter akin
to the focal length in rectilinear cameras and can be de�ned as the ratio between the
horizontal �eld of view fovθ and the image width Wf or the vertical �eld of view fovφ
and the image height Hf :

γ = fovθ/Wf = fovφ/Hf (2.6)

To get a plausible equirectangular projection covering the 360◦ scene, γ needs to be tuned
accordingly with respect to our mobile mapping vehicle con�guration.

By combining the de�nitions from Eq. 2.4 and Eq. 2.5, we can easily establish the
relationship between the rectilinear and equirectangular image coordinates projections:

uequivequi
1

 = Cequi . Ψ .

(
C−1rect .

uv
1

) = Γ .

uv
1

 with Γ = Cequi . Ψ . C−1rect (2.7)

This linear mapping in Eq. 2.7 allows the back and forth projections between the per-
spective rectilinear image and the equirectangular image � a key enabler of our approach
to generate and annotate the panoramic images.
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2.2.2.2 Results and discussion

Generating a full-surrounding 360◦ image from an equirectangular projection of the sam-
pled rectilinear images on a spherical geometry is much faster than the traditional methods
that require computing handcrafted features. Moreover, by using such sampling strat-
egy, the equirectangular projection becomes agnostic to the number of input perspective
images as long as they cover the 360◦ �eld of view. However, by doing so the �nal re-
constructed panorama depicts a radiometric distortion and visible seams because of the
overlap between the perspective images having interlaced �elds of view as shown in Figure
2.11. In our application, we simply compute an average value of the pixels that are in the
overlap regions normalized to the RGB frame [0, 255]. More sophisticated methods such
as Poisson editing [67] can be used to get better visual results, albeit at the expense of
the computation time.

(a) Visible seams at the overlap between perspective images

(b) The average of the pixels at the overlap partially correct the �nal panorama

Figure 2.11: Illustration of the visible seams in the overlap between perspective images at a
vertical �eld of view fovφ ∈ [10◦, 80◦] (best viewed on screen)

In Figure 2.12, we show the equirectangular projection of the 5 perspective images
with di�erent angular resolutions γ. By considering the altitude and longitude of the 5
cameras with respect to the vehicle coordinate system, we �nd experimentally that for a
panoramic image of size 8000× 3200 the appropriate value for the vertical �eld of view is
between fovφ ∈ [10◦, 130◦].

As depicted in Figure 2.10, in an equirectangular projection, the longitude and latitude
of the sphere are mapped to a vertical and horizontal grid coordinates. As the sphere
is a non-developable surface, this mapping induces a signi�cant distortion near the pole
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The generated RGB panorama with fovφ ∈ [10◦, 80◦]

The generated RGB panorama with fovφ ∈ [10◦, 180◦]

The generated RGB panorama with fovφ ∈ [10◦, 130◦]

Figure 2.12: The generated panoramic images at di�erent vertical �elds of view

regions of the image which results in stretched pixels that make objects of the scene appear
di�erently depending on their latitude in the sphere. As a result, classic convolutional
neural networks CNNs, for instance, fail to encode the invariance related to this geometric
transformation, hence reducing their discriminative powers.

2.2.3 Depth maps reconstruction

One of the fundamental challenges in 3D vision is understanding the three dimensional
geometry of the real-world scenes. Known as depth estimation, this problem has been
extensively studied by the computer vision community. Historically performed using a
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stereo-pair of images [68], several overlapping images from di�erent view-points [69] or by
changing lighting in a static scene with a �xed camera [70], in the recent years, a particular
focus has been directed towards monocular depth estimation where the goal is to estimate
the depth of a 3D scene from a single RGB image [71�74]. With the democratization of
360◦ omnidirectional content, it becomes necessary to investigate the transferability of
the recent advances in scene understanding from classic 2D perspective images to the
full-surrounding panoramic images. However, the main bottle-neck for monocular depth
estimation, in particular, remains the scarcity of datasets containing enough ground truth
of equirectangular depth maps coupled with RGB panoramic images. In this context, only
recently, a �rst attempt to tackle this problem has been introduced by Zioulis et al. [25]
in which the authors proposed for the �rst time a network that is able to learn the task
of monocular depth estimation from a single equirectangular RGB image. In order to
evaluate the performance of the proposed architecture, [25] handle the unavailability of
data by virtually rendering panoramic images from existing datasets (Matterport3D [22]
and S3DIS [75]) in addition to their corresponding depth maps extracted from the z-bu�er
using Blender software 23. While they show impressive results on indoor data, to the time
of writing there is no outdoor dataset that we are aware of, which allows monocular depth
estimation from spherical images of urban environments. Therefore, extrapolating these
methods to the autonomous driving context is unfeasible for the moment.

To circumvent this issue, we present the �rst outdoor dataset containing both spherical
RGB images and their corresponding ground truth depth maps. In this section, we explain
the process of generating the spherical depth maps from our recorded data.

2.2.3.1 Rendering depth maps

To render the spherical depth maps from 3D indoor scenes, [25] used a path tracing
renderer software by placing a point light source and a virtual spherical camera at the
same position in the scene. This o�ers a colored image with its corresponding depth
map extracted from the z-bu�er that was generated as a result of the graphics rendering
process. In our case, we implemented our own renderer using the PBRT library 24. We
consider the dense mesh 25 generated from the LiDAR acquisition as our 3D ground truth
as its precision is at centimeter level. Since images and the mesh modalities are mutually
registered and precisely timestamped, for each depth map we choose the origin O of the
ray to be traced into the 3D mesh as the barycenter of the �ve perspective images' optical
centers recorded at an instant t during the acquisition. In this way, the extracted depth
values are the set of distances between the origin of the traced rays and the intersections
with each triangle in the 3D mesh as shown in Figure 2.13. Akin to the panoramic images
generation process, the reconstructed depth maps are sampled on a spherical geometry
followed by an equirectangular projection.

2.2.3.2 Results and discussion

In a similar way to the panoramic images, equirectangular depth maps are reconstructed
every spacing distance equal to 3 meters. To cover as much objects as possible in the
rendered scene, we set the maximum depth value to 100 meters which corresponds to the

23https://www.blender.org/
24https://www.pbrt.org/
25The mesh reconstruction process is explained in details in the next chapter
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maximum observable range of the used LiDAR in this survey. In Figure 2.14, we show
the reconstructed equirectangular depth maps at di�erent maximum range values. The
images are saved as 16-bit PNGs. All depths beyond this maximum range assumes a value
of 65535. Inversely, when the traced ray does not intersect any triangle in the 3D mesh,
we assume a zero depth value (a vacuum).

Figure 2.13: Rays are traced from the center O of the spherical depth map to the triangular
mesh. When there is no intersection depth is equal to zero (the red ray).

Adopting a ray-tracing-based strategy to compute the ground truth depth maps o�ers
complete depth measurements even for the moving objects in the scene which commonly
results in holes and artifacts when stereo-based techniques are used instead. That is
why Apolloscape dataset [41] provides exclusively depth maps of the static background.
Nevertheless, this implies that the quality of the depth reconstruction depends mainly
on the geometry of the mesh. Typically, the rendered depth maps are a�ected by two
crucial factors; the mesh resolution and its water-tightness. For the former, the used
LiDAR RIEGL VQ-250 is considered dense and accurate enough to be reliable since it
provides nearly 250K points per second with a high precision at centimeter level. At
this stage we abstain from decimating the dense mesh in order to preserve its density
which comes at the cost of computation time which itself grows linearly with the number
of triangles in the mesh. On the other hand, reconstructing a watertight mesh from a
terrestrial mobile mapping LiDAR data is not guaranteed. In fact, due to the acquisition
con�guration illustrated in Figure 2.9, the �nal reconstructed mesh is likely susceptible
to have occlusions. This can occur especially in both sides of the mapped streets where
there are parked cars hiding the opposite side of the sidewalks or whenever the mobile
mapping platform scans objects that are orthogonal to the scanning plan of the LiDAR.
As a result some of the depth maps might be incomplete. More discussion about this
aspect is available in the next chapter.

2.2.4 Re�ectance maps generation

In the context of autonomous navigation, restraining the urban scene analysis exclusively
to a geometric point of view could be insu�cient for a comprehensive scene understanding.
In the literature, the main radiometric property that has been extensively explored is the
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Maximum depth range = 30 meters

Maximum depth range = 60 meters

Maximum depth range = 100 meters

Figure 2.14: The reconstructed depth map at di�erent maximum ranges. Distant buildings
appears at a maximum range of 100 meters

RGB information recorded basically from traditional cameras in the visible spectrum.
In order to solve various driving perception problems such as lane markings and road
detection, several studies [76, 77] proposed to leverage the radiometric information in the
near-infrared domain provided by LiDAR sensors. Called re�ectance, this measurement
corresponds to the intensity of re�ection observed on the photo-detector of a LiDAR sensor
when a laser beam hits the scanned surface. A very popular feature in the remote sensing
community, this radiometric measure is essentially a�ected by 3 factors; the distance to
the object, the angle between the emitted ray and the normal to the scanned surface as
well as the photometric properties of the scanned material. For instance, road markings
such as lanes and pedestrian crossings are characterized by a higher re�ectivity compared
to the road pavement which make such information useful for the task of detecting these
objects. Therefore, in addition to the equirectangular RGB images and depth maps, we
provide also in our dataset the LiDAR intensity maps.
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2.2.4.1 Rendering re�ectivity maps:

Akin to the process of rendering 360◦ full surrounding depth maps, we use a ray-tracing-
based approach to render re�ectivity maps from the 3D LiDAR mesh considered as our
ground truth. As illustrated in Figure 2.13, rays are traced from the barycenter of the
�ve optical centers of the perspective images to the 3D mesh sampled in a spherical
geometry. In fact, real-world surface materials are typically subject to local variations
over the surface due to illumination changing or their physical inherent properties. In
order to be able to appropriately model these spatial variations, we need to compute a
mapping between the scanned surface parameters' space (u, v) and the rendered image
space de�ned by (x, y). Then the re�ectivity is modeled by the local spacial variation at
the intersection point between the traced ray and the closest primitive in the 3D mesh
computed using the partial derivatives of the mappings u(x, y) and v(x, y) from the image
space (x, y) to the parametric space (u, v); ∂u

∂x
, ∂u
∂y
, ∂v
∂x
, ∂v
∂y

2.2.4.2 Results and discussion

As for the case of depth maps and panoramic images we render a re�ectivity map each 3
meters. In Figure 2.15, we show the LiDAR re�ectivity map obtained by casting rays with
a maximum range equal to 100 meters into the 3D mesh sampled in a spherical geometry
and followed by an equirectangular projection.

Figure 2.15: Illustration of the obtained LiDAR intensity map

Even though the LiDAR intensity maps are considered a pertinent radiometric infor-
mation that enables a neat discrimination between several urban semantic classes such as
road markings and vegetation, in practice, it remains counter-intuitive how to make use
of raw re�ectivity. In essence, this radiometric feature deteriorates with di�cult acquisi-
tion geometry (decreased incidence angle and increased distance to the scanned objects),
poor environmental conditions (rainy and sunny weather), or material surface properties
(specular or di�use). Such complicated conditions results in unevenly-distributed LiDAR
intensity across the scene making this feature irrelevant most of the time. Hence, the task
of identifying re�ectivity-sensitive objects based on the LiDAR radiometry becomes more
challenging. Meanwhile, several studies tried to ensure a uniformly-distributed re�ectiv-
ity. For instance, Guan et al. [78] propose to use a multi-thresholding technique which
partitions the road into subsets by computing an optimal threshold for each subset. Yet,
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this approach remains not robust to noise. Furthermore, the re�ectivity maps rendering
process depends essentially on the resolution and water-tightness of the 3D reconstructed
mesh akin to the case of depth maps. As a result some of the rendered maps might depict
holes or missing intensity values.

2.2.5 Data overview

The overall acquisition resulted in nearly 2 billion geo-referenced 3D points and about
40K oriented perspective images which corresponds to more than 500 GB of raw data.
The dataset is organized in 3 sessions. Each session encompasses between 3 and 6 sections.
A session is a time period during which a certain trajectory has been surveyed. A section,
on the other hand, consists of a time interval which starts when triggering the acquisition
software and ends by shutting it down. In each section, we provide raw RGB perspective
images in PNG format, their corresponding pose and meta-data �les in XML format,
Spherical panorama, depth and re�ectivity images in equirectangular projection in PNG
format. In addition, 3D annotated point clouds and textured meshes are divided into
temporal chunks and stored respectively in PLY and OBJ formats. Figure 2.16 illustrates
a sample of our LiDAR point cloud and the corresponding registered images (in blue)
collected in Rouen and visualized using Geolabx 26.

Figure 2.16: Top view of a sample from our dataset that shows LiDAR point cloud and the
recorded images (in blue)

2.2.5.1 Annotation Policy

Generating ground truth data for training and evaluating learning-based algorithms is
an extremely challenging task. In order to alleviate the prohibitive cost of manually
annotating data, there has been several attempts to produce automatic or semi-automatic
annotation tools to generate ground truth for di�erent computer vision tasks as discussed
in this survey [79]. However, as soon as such methods are adopted, ground truth will
include algorithmic bias resulting in an extra-e�ort to handle labels inaccuracies and its

26Geolabx is a geo-visualization tool developed in LASTIG
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errors rate. In our dataset we provide both dense pixel-wise 2D annotations of spherical
and perspective images as well as dense point-wise 3D point clouds and 3D textured
meshes. We annotated 15 classes covered by 5 groups. Table 2.5 shows the hierarchy of
the annotated classes. The ID 0 indicates the ignored labels that correspond to none of the
aforementioned classes which are not evaluated during testing. The speci�cation of the
classes is similar to common driving datasets such as Apolloscapes [41] and Cityscapes
[40] with minor di�erences. In the following, we explain the details of the annotation
methodology.

Groups Classes IDs Details

Movable
objects

Person 7
includes

pedestrian/rider
motorbike 10
bicycle 9

Vehicle 8
includes bus
car and trucks

Surface
Road 1

Sidewalk 3

Infrastructure

Building 4
includes

walls/fences
Road marks 2
Tra�c light 11
Tra�c sign 12

hardscape 13
includes pole,

trash can, barriers

Nature
Low vegetation 5

Tree 6
Sky 14

Void 0
other classes

or confusing objects

Table 2.5: Hierarchy of classes in our dataset

In Figure 2.17, we show statistics of the annotated 3D point clouds for each semantic
class. We observe that the distribution of the annotated points w.r.t. to di�erent semantic
classes is unbalanced. For instance, the number of annotated points for the building class
represent more than 47% of the entire dataset. In contrast, the movable objects category
represent no more than 4% of the dataset. This is expected in a typical urban environment
where the majority objects belong to the categories surface and infrastructure.

� 2D Annotations: For 2D annotations, we used a web-based tool introduced in Tangseng
et al. [80]. The online tool starts by computing SLIC [81] superpixels on the �y via a web
browsing interface. The user can easily adjust the resolution of the over-segmentation
to �t to the complexity of the annotated scene and subsequently associate labels to
each segment.

� 3D Annotations: 3D manual annotation is considered by far a more cumbersome
task than 2D annotations since there is no proper de�nition of occlusion and borders
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(a) Infrastructure (b) Movable objects

(c) Surface (d) Nature

Figure 2.17: Statistics on the distribution of the annotated point clouds per-class

of objects in the 3D space. Besides, 3D data has usually a very sparse topology. Tra-
ditionally, annotating 3D data can be performed manually as in Roynard et al. [48],
or semi-automatically Vallet et al. [46]. Akin to [48], we used CloudCompare tool 27

to annotate 3D point clouds. To transfer these labels to the 3D mesh, we compute
for each vertex in the mesh its �rst nearest neighborhood in the labeled point cloud.
Afterwards, the label of each triangle will be a major vote between the labels of its 3
vertices. In case where each vertex of the same face has a di�erent label, we attribute
a miscellaneous label for that triangle.

In Table 2.6, we show the statistics of the ground truth 3D and 2D modalities in our
dataset at the time of writing.

Modality
perspective
RGB images

Spherical
RGB images

Depth
maps

Re�ectance
maps

3D point
clouds

3D mesh
faces

Statistics 750 150 4000 4000 53562109 106477878

Table 2.6: Statistics on the annotated modalities in our dataset

Compared to the performance of SPG achieved on benchmark datasets such as S3DIS
[51], we observe a clear decrease in terms of mIoU. We believe that this stems from the
imbalanced distribution of classes in our dataset. Several strategies exist to mitigate

27https://www.danielgm.net/cc/
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this issue. However, in this study, we simply want to highlight the usefulness and the
challenging nature of our data.

2.2.5.2 Evaluation

Given 3D per-point, per-face annotations along with 2D pixel-wise annotations of per-
spective/panoramic images with their camera pose information as well as omnidirectional
ground truth depth maps, numerous computer vision tasks could be de�ned. In the
current release, we mainly focus on 3D point clouds semantic segmentation, as well as
360◦ monocular depth estimation. For each task, we choose a method from the litera-
ture to evaluate on our dataset. The selected approaches are not necessarily the current
state-of-the-art in the underlying task but they are known to be competitive.

� Semantic segmentation of 3D point clouds: To assess the task of 3D point cloud
semantic segmentation on our dataset, we use the SuperPoint Graph algorithm (SPG)
introduced by Landrieu and Simonovsky in [17]. We consider the Overall Accuracy
(OA), and the Intersection over Union (IoU) de�ned w.r.t. to the confusion matrix CM
of size k × k where k = 14 corresponds to the number of classes. A detailed de�nition
of these metrics is provided in Chapter 4.
Overall Accuracy: OA is a global metric de�ned as the ratio of correct predictions
divided by the overall number of (annotated) points.

OA =
Trace(CM)

Sum(CM)
(2.8)

Class Intersection over Union IoU: this per-class metric is de�ned as the ratio
between true positives divided by the sum of false positives, false negatives and true
positives.

IoUi =
CMi,i

CMi,i +
∑

i 6=j(CMi,j + CMj,i)
(2.9)

We split the dataset into train and test subsets such that the test set represents nearly
20% of the overall dataset. We use the implementation of SPG 28 [17] with the default
parameterization.
In Table 2.7, we show the obtained OA, and IoU on our dataset. The detailed per-
class IoU scores are presented in the appendix along with illustrations of semantic
segmentation results.

Method OA IoU

SPG [17] 87.89 31.69

Table 2.7: Semantic segmentation results on our dataset using the method of [17]

� Omnidirectional monocular depth estimation: To investigate the usefulness of
our dataset for 360◦ monocular depth estimation, we leverage the deep model proposed
by Payen et al. in [65]. This network architecture is mainly based on the pioneering
work of Godard et al. [82] for unsupervised monocular depth estimation. The network

28https://github.com/loicland/superpoint_graph
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was retrained on the omnidirectional domain-adapted KITTI dataset [49] by projection
and style transformation using CycleGAN [83]. We directly evaluate the pre-trained
model on our test subset composed of 200 full-surrounding depth images. To ensure an
equivalent evaluation setup as in [65], the maximum range depth is set to 50 meters. We
also crop our panoramic images and their corresponding depth maps to get panoramas
of size 2048 × 300. Following the evaluation protocol of Eigen et al. in [84], for each
predicted depth map d in the test set T and its corresponding ground truth depth map
d∗, we report the following scores for:
Depth accuracy:

% of di s.t. max(
di
d∗i
,
d∗i
di

) = δ < threshold (2.10)

Absolute relative di�erence:

Abs.Rel =
1

|T |
∑
d∈T

|d− d∗|/d∗ (2.11)

Squared relative di�erence:

Sq.Rel =
1

|T |
∑
d∈T

||d− d∗||2

d∗
(2.12)

Root mean square error:

RMSE =
1

|T |
∑
d∈T

||di − d∗i ||2 (2.13)

Logarithmic root mean square error:

log RMSE =
1

|T |
∑
d∈T

|| log(di)− log(d∗i )||2 (2.14)

Train data Test data Abs.Rel† Sq.Rel† RMSE† log RMSE†
Depth Acc.?

δ < 1.25

KITTI CARLA [60] 0.247 7.652 3.484 0.465 0.697
KITTI Ours 0.238 7.23 3.216 0.484 0.654

KITTI.proj CARLA [60] 0.251 7.381 3.451 0.445 0.732
KITTI.proj Ours 0.242 5.743 2.97 0.354 0.741

Table 2.8: Depth recovery quantitative results using the method of [65] trained on KITTI dataset
[49] and tested on our own test set and synthetic data generated from [60]. (?): higher better,
(†) lower better

Due to the absence of a real world outdoor dataset which provides ground truth depth
maps, it was not possible to perform a quantitative evaluation of depth recovery meth-
ods. Payen et al. [65] mitigate this by generating synthetic depth maps using CARLA
simulator [60]. Despite we have a considerable number of panoramic depth maps (4000)
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in our dataset, we are not able to perform training from scratch nor �ne-tuning as the
model requires recti�ed stereo pairs of equirectangular images as input. Since we do
not have such set up in our dataset, the evaluation is based on a direct inference of the
pre-trained model on our test set. In Table 2.8, we present the quantitative results of
the depth recovery method of [65] trained on two di�erent version of KITTI dataset
[49] and tested on the proposed synthetic dataset as well as on our own dataset. KITTI
in the �rst column of Table 2.8 denotes that the model was trained using the set of
rectilinear perspective images from [49]. KITTI.proj means that the network is trained
on the panoramic images which are the result of equirectangular projection of the rec-
tilinear images from [49]. It should be noted that the network proposed in [65] was
neither pre-trained nor �ne-tuned on the simulated data [60]. Both the synthetic depth
maps and our depth maps are used for dataset cross-validation in this experiment.

We observe that testing the model on our validation set gives competitive results com-
pared to the simulated data, especially when the model is trained on equirectangular
images (KITTI.proj). This con�rms the usefulness of our computed depth maps.

In Figure 2.18, we show illustrations of equirectangular samples from our dataset −
namely a panoramic image and the corresponding ground truth annotation, spherical
depth and intensity maps. Figure 2.19 depicts a textured scene along with both 3D point
clouds and 3D mesh.

(a) Panoramic image (b) Ground truth annotation of the panoramic

(c) Equirectangular depth map (d) Equirectangular intensity map

Figure 2.18: Illustration of panoramic data in our dataset.

2.3 Conclusion

As an e�ort to facilitate the task of the computer vision and robotics communities in
terms of easy and organized access to up-to-date information in order to keep truck
of the recent outdoor urban datasets, we have conducted throughout this chapter an
extensive investigation of the current state-of-the art datasets. This study allowed us to
identify an urgent need of a multi-modal benchmark in which imaging modalities could be
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(a) 3D textured mesh

(b) 3D mesh annotation

(c) 3D Point cloud annotation

Figure 2.19: Illustration of the quality of annotations in our 3D multi-modal dataset

assessed separately or jointly using a wide range of data-fusion-based methods to achieve
accurate and robust semantic segmentation and monocular depth estimation. To narrow
this gap, we made available to the community a large scale dataset of urban environments
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recorded in the region of Rouen, France using a mobile mapping vehicle. This hybrid
dataset can serve not only for the infrastructure management and monitoring but also for
applications related to autonomous driving context. At the time of writing, our dataset
contains 4000 ground truth 360◦ depth maps, 4000 full surrounding LiDAR intensity
maps, 150 annotated high resolution spherical RGB, 750 perspective images with their
pose information, more than 53 million point-wise and instance-wise annotated 3D points
and nearly 1.5 kilometers of per-face annotated 3D textured mesh resulted in more than
106 million triangles. For now the released subset represents only around 10% of the
full acquisition. Our intention is to gradually release the rest of the annotated data to
the community. Another acquisition in the same location has been conducted in 2019
three years after the initial one, albeit this time it will be leveraged to evaluate the task
of 3D change detection. The source code 29 to generate spherical RGB images, depth
and re�ectivity in equirectangular projection is now part of an open source library called
LibOri developed at LASTIG laboratory and available online.

In the next chapter, we discuss the process of generating 3D geolocalized textured
meshes from the collected mobile mapping data.

29https://github.com/IGNF/libOri
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Abstract

In the previous chapter, we presented a new multi-modal dataset for outdoor scene under-
standing. We explained in details the process of generating depth and intensity maps as
well as 2D panoramic images and 3D point clouds along with their semantic ground truth.
In this chapter, we �rst introduce a novel representation of the space as a 3D textured
mesh which is suitable for mobile robots navigation. Second, we explain the process of
reconstructing this 3D map. Finally, we evaluate and discuss the full pipeline.



CHAPTER 3. LARGE SCALE TEXTURED MESH RECONSTRUCTION

Introduction

To be able to plan a path and navigate towards a target, an autonomous agent, being a
robot or a driver-less car, has to apprehend the operating environment the way a human
does. Such ability cannot be acquired without a high-level abstraction of the surrounding
space along with tools for robot-human communication. A �rst step towards achieving
this goal is mapping. Building a 3D map of the surrounding environment is a critical
component of indoor/outdoor perception and navigation. Historically, localization and
navigation within a map is performed using Simultaneous Localization And Mapping
(SLAM) techniques [85�87]. These methods have spawned a considerable and an ongoing
body of work regarding the appropriate geometric modeling of explored environments.
As a result, several approaches have been introduced to answer the question of what is
the most suitable representation in terms of �delity and robustness guarantying a reliable
navigation.

In the literature [88�90], we can �nd two fundamental representations of a 3D map: a
metric map and a topological map. In the former type of maps, the objects of the environ-
ment are represented by their 3D coordinates in an absolute frame, whereas in the latter
type (i.e. topological) the map is abstracted as a graph where the nodes represent special
entities (e.g. co-visibility, distance) and the edges express the accessibility between the
di�erent nodes. Topological maps are by far less precise than metric maps as the objects
of the environments are substantially abstracted to a high level representation (a graph)
which impact the precision of the localization and navigation process. As discussed earlier
in the introduction chapter, the goal here is to build an o�-line 3D map that encapsulates
as much information as possible about the explored space. Therefore, in this study we
are only concerned with the approaches which represent a 3D map as a metric map.

Among the di�erent types of metric maps, we can mainly distinguish between four fami-
lies of representations each of which relies on a di�erent geometry based on landmarks [8,
91�94], surfel/point clouds [9, 95�99], occupancy-grids/voxels [10, 100�104] and surface
meshes [12, 105�109].

From the autonomous driving perspective, the �rst layer of a high de�nition map (HD
map) being the geometric layer, must be able to e�ciently and faithfully represent the
surrounding world at an unprecedented centimeter resolution. That is, navigable zones,
sidewalk curbs and boundaries, road slopes, sharp edges as well as surface deformations
have to be precisely reconstructed with the lowest possible rate of noise and artifacts.
We argue that one of the most appropriate representation among the aforementioned
ones is the mesh-based approach where the operating space is represented as an explicit
triangulated surface. 3D triangulated surfaces are a widely used and extensively studied
concept since the early stages of computer vision [110, 111]. Their ability to reproduce the
required high-level of details while remaining e�cient in handling massive data has been
successfully proven in many occasions [112, 113]. In the context of urban mobile mapping,
most of these mesh-based maps are built using either multiple images from di�erent views
or raw LiDAR point clouds [114]. However, since the recent acquisition platforms are of-
ten equipped with LiDAR and RGB cameras, it would be a waste if these two modalities
remain essentially exploited independently. As a matter of fact, a joint exploitation would
bene�t from the high complementarity of these two sources of information:
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� High resolution of the images v.s high precision of the LiDAR range measurements.

� Passive RGB images VS active intensity measurements in near infrared.

� Di�erent acquisition geometries.

A straightforward way to combine both sources of information consists in projecting
RGB images onto the 3D mesh reconstructed from the LiDAR point clouds such that
each vertex has a color attribute. Nonetheless, per-vertex color encoding means that the
radiometric information is mainly tied to the mesh resolution which results in a photo-
metrically poor representation in case of sparse triangulation of the surface. Therefore,
a more compact and convincing fusion strategy of RGB images and LiDAR point clouds
into a single representation is required. To this end, we propose to use a popular concept
within the computer graphics community in order to represent a 3D map of the environ-
ment:textured meshes. Being the central representation of virtual scenes, textured meshes
have been mainly leveraged in video games and animation movies industry where graphics
cards are highly optimized for their processing and visualization.

While 3D textured meshes are a common representation in controlled indoor environ-
ments [22, 24] thanks to hand-held consumer-grade devices such as Matterport 1 which
systematically generates a 3D textured mesh using the collected RGB-D data, this remains
a very challenging task for outdoor scenes due to numerous di�culties. First, acquisition
constraints are more complicated in the case of urban mapping due to its dynamic nature
and extremely changing lighting conditions. Second, a confusing trade-o� between qual-
ity of the reconstructed textured scene and the scalability of the used method has to be
always taken into consideration. Finally, akin to the indoor case, a full automatic pipeline
that does not involve the end-user interaction is not guaranteed. At the time of writing
our paper, a similar work to ours Romanoni et al. [109] was published corroborating the
growing importance of such maps in which authors propose to represent the 3D map of
an urban environment as a textured mesh. While their method handle large scale scenes,
this is accomplished at the expense of the output quality and the level of automation.
The produced textured mesh is a low resolution representation where �ne details were
discarded failing, thereby, to satisfy the requirements of modern HD maps. The latter
method will be discussed in detail in the related work section.

In this chapter, we present a visibility consistent 3D mapping pipeline to automatically
reconstruct high quality large scale urban textured mesh using both oriented images and
geo-referenced point clouds coming from a terrestrial Mobile Mapping System (MMS). In
Section 3.1, we give an overview of the work related to the di�erent blocks of our frame-
work. A simple yet fast and scalable algorithm for surface reconstruction is presented in
Section 3.2. The texture mapping approach is explained in Section 3.3. Finally, in Section
3.4 we expose our experimental results and conclude the chapter in Section 3.5.

3.1 Overview

In this section, we �rst start by discussing the main representations of a 3D scene used for
mapping and navigation purposes. Second, we present the previous work related to the

1https://matterport.com
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textured mesh representation taking a broad perspective across computer vision, robotics,
computer graphics and photogrammetry.

3.1.1 3D metric map representations

In autonomous navigation, a 3D scene can be represented by various geometries. In
the literature, these representations can be grouped into four categories based on the
geometry of elements constituting the scene, namely, sparse landmarks, dense surfels 2

or point clouds, occupancy grids or voxels and triangulated meshes. Other interesting
representations were also proposed such as elevation/plane-based maps. In Figure 3.1 we
show some of these representations (landmark-based, surfel/point-based, voxel-based and
2.5D elevation-based. In table 3.1, we brie�y report the advantages and drawbacks of
each of the discussed representations.

3.1.1.1 Landmarks-based representations [8, 91�94]:

The scene is reconstructed using a set of sparse and distinguishable landmarks correspond-
ing to discriminative primitives (e.g. corners, segments, lines) with known absolute pose.
Whilst such representation has been investigated since the early stages of localization and
mapping as it allows for a fast processing, it remains a low-resolution representation of
the 3D geometry. In practice, the sparsity feature is unsuitable for obstacle avoidance not
to mention visualization and rendering.

3.1.1.2 Surfel/Point clouds-based representations [9, 95�99]:

In contrast to the latter representation, dense representations which model the 3D scene
by means of point clouds or surfels are widely used. Thanks to their density, these
representations o�er rich and visually ergonomic models. However, their unstructured
nature in addition to their low level modeling capabilities easily a�ected by noise make
them neglect the topology and boundary of objects in the scene.

3.1.1.3 Occupancy-grid/voxel-based representations [10, 100�104]:

Alternatively occupancy-grid/voxel-based representations have gained popularity in the
few past years. In this case, the 3D scene is decomposed into cubes (voxels) arranged in a
regular grid or in an adaptive octree where each node stores the binary occupancy value
(occupied, empty) or the distance to the surface commonly referred to as the Signed Dis-
tance Function (SDF), or more recently the Truncated Signed Distance Function (TSDF).
Despite their versatility and constant time access, voxels or occupancy grids are prone to
erroneous discretization and heavy memory footprint as the entire map has to be allocated
in memory.

3.1.1.4 Surface mesh-based representations[12, 105�109]:

A more e�cient spatial-partionning strategy which has been shown to be more compact
consists of surface mesh models where the scene is a set of vertices connected by edges
forming triangles. This representation has the advantage of being a continuous geometry

2a set of small surface elements (usually discs as in [9]) which store local statistics of 3D points
(e.g. mean, covariance) and orientation.
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(a) Sparse feature-based representation (b) Dense point cloud representation

(c) Voxel-based representation (d) 2.5D elevation-based representation

Figure 3.1: Illustration of various 3D representations used for mapping

o�ering not only an explicit surface deformation modeling, but also a well de�ned objects'
boundaries and most importantly its ability to e�ciently represent and smoothly render
unbounded extended areas with well-established graphics pipelines.

3.1.1.5 Other representations [11, 115]:

In addition to the aforementioned representations, other types of maps were also used.
For instance, 2.5D elevation maps [11] consisting of 2D grids where each cell stores an
estimated local height of the scene. While such maps allows for fast constant time ac-
cess, robots are not able to distinguish between free or unknown space when navigating
making it inappropriate for obstacle avoidance. Plane-based maps [115] were also intro-
duced. In this case, entities of the scene are approximated by simple planes. While such
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plane-based mapping approaches have demonstrated a faster and more stable optimiza-
tion during navigation, its expressiveness and modeling abilities is limited compared to
dense representations.

Representation References Advantages Drawbacks

Landmarks-based [8, 91�94]
- a light-weight representation
- Fast and e�cient processing

- Sparse representation
-Unsuitable for

obstacle avoidance

Surfel/points-based [9, 95�99]
- Dense/detailed representation
- Subsampling without loosing

details

- Unstructured representation
- Topology and boundary of

objects are neglected

Voxel-based [10, 100�104]
- Versatility

- Constant time access
- Discretization errors

- Heavy memory requirement

Mesh-based [12, 105�109]
- Explicit surface

deformation modeling
- Well de�ned object boundaries

- Handling loop closure is not
straightforward

Elevation-based [11]
- Fast and constant time access
- Probabilistic height estimation

- Unsuitable for
obstacle avoidance

- 2.5D representation

Plane-based [115]
- Fast and stable optimization

during navigation
- Low level expressiveness and

modeling abilities

Table 3.1: Comparison between di�erent representations of a 3D scene

3.1.2 Textured meshes representation:

Recently, textured meshes are gaining more and more attention in the geospatial industry
as Digital Elevation Models (DEMs) coupled with orthophotos, which were well adapted
for vertical high altitude airborne and space-borne acquisition. However, such represen-
tation is not suited for the newer means of acquisition: closer range platforms (drones,
terrestrial mobile mapping vehicles) and oblique imagery requiring a �ner level of details
and a �exibility in handling scalability issues. A key component in generating textured
meshes is reconstructing a surface from 3D point clouds. Depending on the mean of acqui-
sition, 3D point clouds can be directly extracted by LiDAR acquisition during surveying
or indirectly using image-based techniques [114].

As shown in the previous chapter, our mobile mapping platform provides two imaging
modalities, namely, RGB geolocalized images and LiDAR point clouds. Since the con-
�guration of the acquired RGB images allows to generate a dense 3D point cloud using
Multi-View-Stereo (MVS) techniques, we are facing two choices regarding which type of
point cloud to utilize in order to reconstruct the surface; the one derived from MVS or
the raw point clouds collected using the LiDAR. To answer this question, we conducted
a comparative study in which we discuss image-based and LiDAR-based point clouds in
terms of density, accuracy, cost and sensitivity to external factors (illumination, surface
materials).
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3.1.2.1 Image-derived point clouds

These are a set of methods that rely on 2D images in order to generate indirectly 3D point
clouds. Inspired by the way a human perceive objects, stereo vision relies on multiple
images (at least two) to restore the depth information using photogrammetry principles.
MVS reconstruction methods [116] have reached a high level of maturity making it possible
even for city scale reconstruction [117, 118]. The proliferation of these methods has
been further boosted thanks to the democratization of the acquisition low cost devices.
However, since 2D images are always acquired by passive sensors (electro-optical RGB
cameras), the quality and precision of the reconstructed scene is in�uenced by illumination
variation and textureless objects (e.g. water, snow).

3.1.2.2 LiDAR point clouds

Light Detection And Ranging (LiDAR) is an active surveying technique that uses the
time between the emission of laser pulse and its reception on the sensor after re�ection
by the scene to measure the distance to the scanned objects. Depending on the surveying
technique, density and resolution varies dramatically between 10pts/m2 for Aerial LiDAR
Scanner (ALS) to around 1000pts/m2 for Mobile LiDAR Scanner (MLS) [119]. While such
devices allow for a robust acquisition of accurate 3D point clouds regardless the lighting
condition, it may contain noise and artifacts because of the scanned speculate surfaces
(e.g. mirror, windows).

As depicted in Table 3.2, we think that the LiDAR 3D point clouds are more suitable
for our mapping application as it provides high accurate georeferenced 3D points with-
out strong assumptions neither about the accuracy of cameras calibration nor about the
precision of matching algorithms and image quality as in the case of MVS.

Origin Density Accuracy Advantages Drawbacks

Image-based

Depends on the
spatial resolution
of the multi-view

images

Depends on the
camera model

accuracy, matching
algorithms, image

quality and
stereo angle

Low cost;
available RGB color

Precision depends
on several factors
results a�ected
by illumination

LiDAR-based
High density

closer the distance,
higher the density

High accuracy (1cm)

Active intensity
measurements; robust

to illumination
variation; High

precision is guaranteed

Expensive devices
speculate surfaces
results in scanning

artifacts

Table 3.2: Comparison between Image-derived point clouds and MLS point clouds

Figure 3.2 shows the proposed framework to reconstruct the textured mesh. Our ap-
proach is two fold: First we start by reconstructing a triangulated surface from the raw
LiDAR point clouds. Second, after �ltering and repairing the resulted 3D mesh, the regis-
tered oriented images are subsequently mapped to the reconstructed surface by selecting
for each triangle which is the best view. In the following, we review the related work to
our two-step approach (surface reconstruction and texture mapping) for reconstructing
the 3D textured map.
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Figure 3.2: 3D Textured map reconstruction pipeline

3.1.2.3 Surface reconstruction: a review

Surface reconstruction is a well established research area that has been extensively inves-
tigated during the two last decades [110, 111]. As the main contribution of this chapter
is not a new surface reconstruction algorithm, we will settle for a brief review of the re-
lated work especially methods used in evaluation. Following the nomenclature proposed
by Berger et al. [110], surface reconstruction problem can be essentially grouped into two
major categories with respect to their type of smoothness prior: Global (Indicator function
[120, 121], Radial Basis Function [122]) and local methods (point-set surface [123�125],
Multilevel Partition of Unity (MPU) [126, 127]). Other popular surface reconstruction
algorithms exist, but they are out of the scope of this study.

� Radial Basis Function [122]: In this class of methods, the surface is reconstructed
as a zero level set 3 of a signed scalar �eld Φ estimated using a well-known method
originally designed for scattered data interpolation called Radial Basis Functions
(RBFs). Using a linear combination of radially symmetric functions RBFs, the
implicit surface can be de�ned as:

Φ(x) =
∑
i

wiφ(||x− xi||) + p(x) (3.1)

where p(x) is a low degree polynomial that improves the extrapolation capability
of RBFs centered at nodes xi ∈ R3. One way to �nd the coe�cients wi consists
in imposing interpolation constraints satisfying the de�nition of an implicit surface
Φ = 0. However by doing so, this will lead to the trivial solution given by the
identical zero function. That is why [122] proposed to use additional constraints
based on o�-surface points de�ned by the normals to the surface as illustrated in
Figure 3.3. RBFs-based reconstruction methods have the advantage of producing
a globally smooth surface. Moreover in the case of missing data and non-uniform
sampling, the extrapolation power of RBFs ensure a watertight surface. However,
since the implicit function is based on interpolation constraints, the reconstructed
surface depicts topological artifacts when inconsistent o�-surface points are provided
due to bad normal estimation in case of non oriented point clouds.

� Indicator function [120, 121] : These set of methods estimate the surface using a
labeling that discriminates the interior and exterior of a solid shape called indicator
or scalar function. Operating exclusively on oriented 4 point clouds, an implicit
function χ is computed by ensuring that the gradient of the scalar function is aligned
with the normal �eld N . An illustration of the approach is showed in Figure 3.4.

3S is a zero level set of a signed distance function d ⇒ S = {x| d(x) = 0}
4with available normal information
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Figure 3.3: Illustration of o�-surface points. Image from [122]

Figure 3.4: The gradient of the indicator function χ is connected to the normal �eld N of the
point clouds. Image from [111]

Formally this can be solved by minimizing the following equation:

argminχ

∫
||∇χ(x)−N(x)||22dx (3.2)

The surface is subsequently generated by isocontouring. Popular methods of this
category are Poisson [120] and its extension the Screened Poisson [121] algorithms.
Whilst this gradient-based formulation ensure the robustness of reconstruction to
data imperfections such as non-uniform sampling, noise and outliers, �tting directly
the gradient of a scalar function may result in an undesirable over-smoothing [120] or
over-�tting [121]. In addition, since these methods are based on normal orientation,
in case of a densely distributed normal �ips (especially surface details), this category
of methods fail to faithfully reconstruct the surface.

� Point-set surface [123�125]: This class of methods de�ne a smooth surface as a set
of stationary points 5 computed using a projection operator of points in the ambient
space or as an implicit surface based on Moving Least Square (MLS) [128]. The �rst
work of Levin [123] starts by fetching for each point in the ambient space its closest
projection in the 3D point cloud such that its normal goes through its projection.
Figure 3.5, illustrates the problem setting. Afterwards, the approximation order
is improved using a controllable polynomial �t making the approach will suited
for noise �ltering. A subsequent work of Amenta and Kil [124] has shown that

5a point is considered stationary if its projection is the identity x = P (x)
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the polynomial �tting step can be omitted to improve e�ciency while producing
the same results by �tting the best plane de�ned by a weighted average of local
neighborhood normals. The surface is subsequently de�ned as a scalar �eld equal
to the distance between evaluation point and the prescribed �tted plane. However
the plane �tting operation is subject to instability in high curvature regions with
low sampling rate inducing, thereby, errors in the �nal reconstruction. To alleviate
this problem Guennebaud and Gross [125] propose a higher order �tting strategy
based on an algebraic sphere. In this way stability is signi�cantly improved where
plane-�tting based methods fail.

Figure 3.5: q is the projection of the evaluation point x. The orange curve is the polynomial �t
[123]. It is replaced by a planar �t in [124] and an algebraic sphere in [125]

Figure 3.6: The algebraic spheres (blue, red and green) are �tted per cell in [127] instead of
per-point as in [125]. Weighted distance �elds (w1(x).u1(x)) and (w2(x).u2(x), w3(x).u3(x)) are
subsequently blended to give the �nal implicit surface represented by the black curve Sp. Image
from [127].

� Multi-level partition of unity [126, 127]: This set of techniques is based on a
hierarchical partitioning. Ohtake et al. [126] �rst build an octree on top of the point
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cloud. A set of local distance �elds are subsequently de�ned in such a way the
points in each cell and nearby are approximated by a bi-variate quadratic polyno-
mial. The same procedure is recursively repeated for each cell in case of a large
residual error. Merging these per-cell distance �elds results in a smoothly global
implicit surface. Inspired by the success of algebraic high order primitive �tting ap-
proach [125], Xiao [127] propose to use the same hierarchical partitioning as in [126],
albeit, per-cell points are instead approximated by algebraic spheres. While MPU-
based approaches are known to be faster and more e�cient compared to Point-set
surface based methods, they fail to address point clouds with missing data using
extrapolation before fusing local approximated functions. In Figure 3.6 we show an
illustration of the Multi-level partition of unity reconstruction.

3.1.2.4 Texture mapping: a review

From the computer graphics perspective, texturing a 3D mesh is typically a two-step
approach. First for each triangle in the 3D surface, we need to pick up the best view to
be used as a preliminary texture. Second, to minimize seams between adjacent texture
patches, the mapping resulted from step one has to be locally and globally optimized for
photo-metric consistency. A large body of work has been achieved to solve the �rst step,
coined as the view selection problem. These methods can be classi�ed into two groups:

Figure 3.7: Both images I1, I2 are in the �eld of view of triangle ti at di�erent respective
distances d1, d2 (d1 < d2) such that only few pixels in I1 are visible to ti while the distant view
I2 is entirely visible to ti.

� Blending-based selection [129, 130]: In this category of methods, for each face
in the 3D mesh, multiple views are selected and subsequently blended to achieve a
seamless texture across the borders of patches. While such fusion strategy ensures
consistency of adjacent texture patches to a certain extent, it comes with several
shortcomings. If the reconstructed geometry is slightly inaccurate, which is almost
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always the case, texture patches will be misaligned resulting in visible seams in the
�nal model. Moreover, during a mapping survey, most of the oriented images are
collected at di�erent distances to the scanned objects in the scene. As illustrated
in Figure 3.7, when blending these views together the distant ones will blur out the
closest resulting in an over-smoothed texture depicting ghosting e�ects.

� Best view selection [131�133]: In contrast to the blending-based view selection,
these methods propose to exclusively select one view per-triangle. This strategy has
the advantage of being faster compared to blending-based techniques. Besides, only
borders of texture patches are concerned by a radiometric adjustment in opposition
to blending where this step has to be locally performed for each triangle. Hence,
in our application, we abstain from blending and we choose the per-face best view
selection category.

We note that few attempts proposed hybrid approaches [134] where they select a
single view per-face then blend at borders of patches.

3.2 Surface reconstruction

As discussed above, surface reconstruction has been extensively studied from the com-
puter graphics perspective Berger et al. [111] where the input point clouds are basically
limited in size and most of the proposed methods do not cope with the level of challenges
a mobile mapping acquisition imposes. In practice, most of the proposed algorithms do
not handle typical mobile mapping acquisitions characterized with their huge size (city
scale), particular noise and artifacts, miss-aligned scans, occluded objects, and extremely
varying density. With the recent advances in autonomous navigation, the interest of
reconstructing a surface out of a mobile mapping acquisition has gained an increasing
attention over the few past years [109, 135, 136]. Older studies [137, 138] have been
also conducted to solve this problem. For instance, Brun et al. [137] propose to use an
incremental 2D Delaunay triangulation of a 2D parametrization of the 3D points in a
cylindrical coordinate system. Even though this approach is fast and e�cient enough
to handle large scale data, the produced 3D mesh is not only over-smoothed (objects
like cars and sidewalk are barely distinguishable), but also it depicts elongated triangles
and isolated pieces. In the work of Carlberg et al. [138], a nearest neighbor approach
is adopted to identify adjacent points on consecutive line scans, then edges of triangles
are incrementally extended with respect to their chronological order until detecting a dis-
continuity �xed by a threshold. While several artifacts were e�ciently handled such as
holes and redundant triangles, other common acquisition challenges remain unsolved es-
pecially varying density and line scans intersections (when the vehicle follow sharp turns).

More sophisticated approaches have been recently introduced. The closest work to ours
Romanoni et al. [109] propose a LiDAR based method that partitions the space into a set
of tetrahedra which are subsequently classi�ed according to visibility rays as occupied or
free tetrahedron. The boundary between these two classes is then the �nal surface mesh.
However, prior to the visibility consistency-check step, moving objects and cars need to
be explicitly removed otherwise the �nal surface will contain noise and artifacts due to
transparent objects traversed by the LiDAR beams. Roldao et al. [135] start by approxi-
mating local planar surfaces using an adaptive neighborhood. A global implicit surface is
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reconstructed afterwards by computing the Truncated Signed Distance Function (TSDF)
from the con�dences of the statistical distribution stored in a voxel representation build
on top of the LiDAR acquisition. The explicit surface is �nally extracted using Marching
cubes [139]. While the adaptive neighborhood kernel make the method robust to noise
and varying density of the LiDAR point clouds, a trade-o� between density and accuracy
of the reconstruction, which is tied to the size of the neighborhood kernel, needs to be
considered for each dataset.

In summary, we believe that the inherent topology of a mobile LiDAR sensor provides
pertinent information regarding the adjacency relationship between 3D points that is most
of the time ignored. In our work, we build on top of the methods of Brun et al. [137] and
Carlberg et al. [138] which exploit the sensor topology. We propose a scalable and fully
automatic surface reconstruction method out of a mobile mapping acquisition based on
LiDAR measurements projected into the Sensor space topology.

3.2.1 Sensor topology

The sensor space topology was �rstly introduced by [140] as an intermediate 2D repre-
sentation of LiDAR acquisition that serves for semi-automatic annotation of 3D point
clouds. This spatial geometry originates from the particular LiDAR con�guration ensur-
ing a constant time interval not only between consecutive emitted pulses but also between
each rotation. Such parameterization allows the recovery of a regular topology out of the
point cloud stream in such a way for an emitted pulse at time t the neighboring pulses are
the immediately preceding and succeeding pulses respectively at time t−∇t and t +∇t
and the closest ones on the preceding and succeeding rotations. Thanks to the continuous
sampling of the used scanner, the last pulse of each rotation is connected to the �rst pulse
in the following one. In our application we make use of this particular topology to extract
a dense mesh out of the acquired 3D point cloud. This process is explained in details in
the following section.

Figure 3.8: LiDAR acquisition viewed in sensor space: vertical axis represent the rotation angle
θ while the horizontal axis corresponds to time t. Image from [140]
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3.2.2 Mesh extraction

During urban mapping, the mobile platform may stop for a moment because of external
factors (e.g. road sign, red light, tra�c congestion . . . ) which results in massive redundant
data at the same scanned location. Thus, a �ltering step is mandatory to get a uniform
distribution of scan-lines. To do so, we �x a minimum distance between two successive
line scans and we remove all lines whose distances to the previous (unremoved) line is
less than a �xed threshold. In practice, we use a threshold of 1cm, close to the LiDAR
accuracy.

Once the regular sampling is done, we consider the resulting point cloud in the afore-
described sensor space where one dimension is the acquisition time t and the other is the
rotation angle θ. Let θi be the angle of the ith pulse and Ei the corresponding echo. In
case of multiple echoes, Ei is de�ned as the last (furthest) one, and in case of no return,
Ei does not exist so we do not build any triangle based on it. In general, the number
Np of pulses for a 2π rotation is not an integer so Ei has six neighbors Ei−1, Ei+1, Ei−n,
Ei−n−1, Ei+n, Ei+n+1 where n = bNpc is the integer part of Np. These six neighbors allow
to build six triangles.

In practice, we avoid creating the same triangle more than once by creating for each
echo Ei the two triangles it forms with echoes of greater indexes: Ei, Ei+n, Ei+n+1 and
Ei, Ei+n+1, Ei+1 (if the three echoes exist) as illustrated in Figure 3.9. This allows the
algorithm to incrementally and quickly build a triangulated surface based on the input
points of the scans. In practice, the (non integer) number of pulses Np emitted during
a 360 deg rotation of the scanner may slightly vary. To ensure robustness, we check if
θi+n < θi < θi+n+1 and if it doesn't, we increase or decrease n until it does. This was
made possible and convenient thanks to not only the geometry of acquisition but also to
the constant timestamps between each emitted pulse and each rotation of the LiDAR.

3.2.3 Cleaning

The triangulation of 3D measurements from a mobile mapping system usually comes with
several imperfections such as elongated triangles, noisy unreferenced vertices, holes in the
model, redundant triangles to mention a few. In this section, we focus on three main
issues that frequently occur with mobile terrestrial systems and a�ect signi�cantly the
texturing results if not adequately dealt with, namely, elongated triangles, isolated pieces
and holes.

3.2.3.1 Elongated triangles �ltering

In practice, neighboring echoes in sensor topology might belong to di�erent objects at
di�erent distances. This generates very elongated triangles connecting two objects (or an
object and its background). Such elongated triangles might also occur when the MMS
follows a sharp turn. We �lter them out by applying a threshold on the maximum length
of an edge before creating a triangle, experimentally set to 0.5m for the data used in this
study.

3.2.3.2 Isolated pieces removal

In contrast with camera and eyes that captures light from external sources, the LiDAR
scanner is an active sensor that emits light itself. This results in measurements that are
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Figure 3.9: Triangulation based on the sensor space topology

dependent on the transparency of the scanned objects which cause a problem in the case of
semitransparent faces such as windows and front glass. The laser beam will traverse these
objects, creating isolated pieces behind them in the �nal mesh. To tackle this problem,
isolated connected components composed by a limited number of triangles and whose
diameter is smaller than a user-de�ned threshold (set experimentally) are automatically
deleted from the �nal model.

3.2.3.3 Hole �lling

After the surface reconstruction process, the resulting mesh may still contain a consequent
number of holes due to speculate surfaces de�ecting the LiDAR beam, occlusions and the
non-uniform motion of the acquisition vehicle. To overcome this problem we use the
recursive hole �lling method introduced in [141]. The algorithm takes a user-de�ned
parameter which consists of the maximum hole size in terms of number of edges and
closes the hole in a recursive fashion by splitting it until it gets a hole composed exactly
with 3 edges and �lls it with the corresponding triangle.

3.2.4 Scalability

The interest in mobile mapping techniques has been increasing over the past decade as
it allows the collection of dense, accurate and detailed data at the scale of an entire city
with a high productivity. However, processing such data is limited by various di�culties
speci�c to this type of acquisition especially the very high data volume (up to 1 TB by
day of acquisition [142]) which requires e�cient processing tools in terms of number of
operations and memory footprint. In order to perform an automatic surface reconstruction
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over large distances, memory constraints and scalability issues must be addressed. To do
so, we adopt a slicing-based strategy. First, the raw LiDAR scans are sliced into N
chunks of 10s of acquisition which corresponds to nearly 3 million points per chunk. Each
recorded point cloud (chunk) is processed separately as explained in the work-�ow of our
pipeline presented in Figure 3.10, allowing a parallel processing and faster production.
Yet, whereas the aforementioned �ltering steps alleviate the size of the processed chunks,
the resulting models remain unnecessarily heavy as �at surfaces (road, walls) may be
represented by a very large number of triangles that could be drastically reduced without
loosing in detail.

Figure 3.10: The proposed work-�ow to produce large scale models

To this end, we apply the decimation method of [143, 144]. The algorithm proceeds in
two stages. First, an initial collapse cost, given by the position chosen for the vertex that
replaces it, is assigned to every edge in the reconstructed mesh. Then, at each iteration the
edge with the lowest cost is selected for collapsing and replacing it with a vertex. Finally,
the collapse cost of all the edges now incident on the replacement vertex is recalculated.
In the following section, we present the adopted texture mapping approach based on the
work of Waechter et al. [145].
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3.3 Texture mapping

In this section, we expose the used approach for texturing large scale 3D realistic urban
scenes acquired by our mobile mapping platform. Based on the work of [145], we adapt
the algorithm so it can handle our camera model (with �ve perspective images). In the
following, we give the outline of this texturing technique and its requirements.

3.3.1 Preprocessing

To work jointly with oriented images and LiDAR scans acquired by a mobile mapping
system, the �rst requirement is that both sensing modalities have to be aligned in a
common frame. Thanks to the rigid setting of the camera and the LiDAR mounted on
the mobile platform yielding a simultaneous image and LiDAR acquisition, we assume
that we have a reasonable accurate registration. However, such setting entails that a
visible part of the vehicle appears in the acquired images. To avoid using these irrelevant
parts as texture, an adequate mask is automatically applied to the concerned images (back
and front-facing images) using the known pose of the vehicle in the camera space. The
results of applying the mask on the front-facing images are shown in Figure 3.11.

(a) Before applying the mask (b) After masking

Figure 3.11: A mask is automatically applied on the collected images to avoid using the visible
part as a texture for the �nal model

Following the approach of [145], texturing a 3D model with oriented images is a two-
stage process. First, the optimal view per triangle is selected with respect to certain
criteria yielding a preliminary texture. Second, a local and global color optimization is
performed to minimize the discontinuities between adjacent texture patches.

3.3.2 View selection

Let us consider a triangular mesh M de�ned by its set of faces such that M = {t1, ..., tm}
where m are the number of triangles in M along with a set of registered camera views
V = {v1, ..., vn} where |V | = n. Our objective is to compute the visibility of each triangle
t ∈ M in the set of camera views V . This can be framed as computing a labeling
L = {l1, ..., lm} ∈ {1, ..., n}m prescribing to each triangle its corresponding camera view.
Since a given triangle t can lie within the �eld of view of multiple cameras, not all these
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views are equally suited for texturing t. Therefore, an appropriate cost αji which re�ects
the quality of the camera view vj w.r.t. a triangle ti should be carefully designed. Thus
an optimal labeling L? can be de�ned as L? =

{
li | li = argminiα

j
i

}
. In the literature,

the quality of a view can be assessed by its proximity to the triangles, a fronto-parallel
viewing direction and its high resolution [131]. However, restraining the optimality of
view selection to the quality of camera views means that undesirable texturing e�ects
especially visible seams will not be handled. In practice, if two adjacent triangles ti, tj ∈M
are textured from di�erent camera views, severe seams that alter the quality of the �nal
texture will appear as demonstrated by Lempitsky and Ivanov [131]. To circumvent this
e�ect, we need to maximize the quality of views while simultaneously minimizing the
seams' visibility.

Akin to the work of Waechter et al. [145], a two-terms energy formulation is adopted
to compute a labeling L that assigns a view li to be used as texture for each mesh face ti:

E(l) =
∑
ti∈M

Ed(ti, li) + λ
∑

ti,tj∈Edges

Es(ti, tj, li, lj) (3.3)

where λ is the weight balancing the smoothness and the data term and

Ed = −
∫
φ(ti,li)

||∇(Ili)||2dp (3.4)

Es = [li 6= lj] (3.5)

The data term Ed (3.4) computes the gradient magnitude ||∇(Ili)||2 of the image into
which face Fi is projected and sum over all pixels of the gradient magnitude image within
face Fi's projection φ(Fi, li). This term is large if the projection area is large which means
that it prefers close, orthogonal and in-focus images with high resolution. The smoothness
term Es (3.5) minimizes the seams visibility (edges between faces textured with di�erent
images). In the chosen method, this regularization term is based on the Potts model ([.]
the Iverson bracket) which prefers compact patches by penalizing those that might give
severe seams in the �nal model and it is extremely fast to compute. Finally, E(l) (3.3) is
minimized with α-expansion [146].

3.3.3 Color adjustment

After the view selection step, the obtained model exhibits strong color discontinuities
due to the fusion of texture patches coming from di�erent images and to the exposure
and illumination variation especially in an outdoor environment. Thus, adjacent texture
patches need to be photometrically adjusted. To address this problem, �rst, a global ra-
diometric correction is performed along the seam's edge by computing a weighted average
of a set of samples (pixels sampled along the discontinuity's right and left) depending on
the distance of each sample to the seam edge extremities (vertices). Then, this global
adjustment is followed by a local Poisson editing [67] applied to the border of the texture
patches. Finally, the corrections are added to the input images, the texture patches are
packed into texture atlases, and texture coordinates are attached to the mesh vertices.
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3.4 Experimental results

In this section, we present the qualitative and quantitative results of each step of our
pipeline namely surface reconstruction and texture mapping.

3.4.1 Mesh reconstruction

To highlight the interest of our sensor topology-based reconstruction method, we use
point clouds coming from RIEGL-VQ250 LiDAR used in the pLaTINUM project mapping
survey. Compared to a Velodyne HDL64-E, this sensor has a much simpler acquisition
geometry making, thereby, the task of restoring its topology straightforward. In Figure
3.13, we show qualitative results of the reconstructed mesh based on the sensor topology
technique. As we can notes from Figure 3.13, the resulting mesh is extremely dense even in
�at regions where geometric information can be substantially simpli�ed without altering
the precision of the reconstruction. We de�ne the compression rate of the reconstructed
mesh as C = 1 − θdec

θraw
where θraw is the initial size of the mesh (in number of triangles)

and θdec is the size of the decimated mesh.

Figure 3.12: The compression rate with respect to the Hausdor� distance HD

In Figure 3.12, we illustrate the compression rate of the mesh with respect to its
reconstruction error. In practice, we con�gure the algorithm such that the approximation
error is below 3.5cm, which allows in average to reduce the number of triangles to around
30% of the input number of faces.

Figure 3.14 exhibits a part of the reconstructed mesh with and without the constraint
on the maximum length of the triangle edges. This is an important pre-processing step
since a regular triangulation allows for an e�cient view selection

In order to evaluate quantitatively the proposed approach, we compare it against
the acquired point cloud. For a fair evaluation, we follow the same procedure as in
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(a) the reconstructed mesh from RIEGL-VQ250 ac-
quisition

(b) zoomed region before decimation

Figure 3.13: Illustration of the reconstructed mesh using the sensor topology of RIEGL-VQ250
LiDAR

(a) Reconstructed mesh with elongated triangles (b) Reconstructed mesh with regular triangles

Figure 3.14: Illustration of the triangles' edge maximum length constraints

[109], where the raw acquired LiDAR point clouds are considered as a ground truth since
they are accurate and dense enough at least locally. The reconstruction is subsequently
performed on a down-sampled version of the point cloud. Our reconstruction results
are compared against the produced mesh by Poisson [120], Screened Poisson [121] and
Ball Pivoting algorithms. In the literature two metrics are mainly leveraged to evaluate
surface reconstruction; accuracy and completeness. Accuracy is de�ned as the distance of
the reconstruction to the reference (the ground truth). Completeness, in contrast, is the
distance from the reference to the reconstruction. In practice, the evaluation is framed
as a set-to-set distance problem. We use three variants of distances; the average distance
(AD), the residual mean square distance (RMSD) and the Hausdor� distance (HD).

Formally, let P be the set of vertices of the reconstructed mesh with |P | = n using the
aforementioned methods and GT the set of ground truth LiDAR point clouds such that
|GT | = m. The distance between the two sets P and GT in a norm ||.||, is de�ned as:

d(P,GT ) = inf{d(p, p′) | p ∈ P, p′ ∈ GT} where d(p, p′) = ||p− p′||. (3.6)

The Average distances (AD) from the set P to GT denoted ADP→GT and inversely
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from GT to P denoted ADP→GT are de�ned respectively as:

ADP→GT =
∑
p∈P

1

n
min
p′∈GT

||p− p′|| (3.7)

ADGT→P =
∑
p′∈GT

1

m
min
p∈P
||p′ − p|| (3.8)

The Residual Mean Square distances (RMSD) from the set P toGT denotedRMSDP→GT
and inversely from GT to P denoted RMSDP→GT are de�ned respectively as:

RMSDP→GT =

√∑
p∈P

1

n
min
p′∈GT

||p− p′||2 (3.9)

RMSDGT→P =

√∑
p′∈GT

1

m
min
p∈P
||p′ − p||2 (3.10)

The one-sided Hausdor� distances (HD) from the set P to GT denoted HDP→GT and
inversely from GT to P denoted HDP→GT are de�ned respectively as:

HDP→GT = max
p∈P

min
p′∈GT

||p− p′|| (3.11)

HDGT→P = max
p′∈GT

min
p∈P
||p′ − p|| (3.12)

The accuracy is de�ned w.r.t. ADP→GT , RMSDP→GT , HDP→GT while the complete-
ness is de�ned w.r.t. ADGT→P , RMSDGT→P , HDGT→P . We also use the Symmetric
Hausdor� Distance de�ned as the average distance of the two one-sided HD distances:

SHD =
1

2
(HDP→GT +HDGT→P ) (3.13)

These scores are reported in table 3.3 for a chunk of 106 points from the down-sampled 3D
point cloud. Figure 3.15 shows qualitative reconstruction results on a challenging scene
using the scalable methods of the literature.

Method
AD(m) RMSD(m) HD(m)

SHD(m)
P → GT GT → P P → GT GT → P P → GT GT → P

Poisson [120] 0.11 0.20 0.39 0.35 8.15 8.142 8.146

Screened Poisson [121] 0.08 0.15 0.23 0.17 3.72 4.61 4.165

Ball pivoting [147] 0.0071 0.0098 0.019 0.064 0.16 5.53 2.845

Ours 0.0022 0.0042 0.0052 0.012 0.05 0.37 0.21

Table 3.3: Surface reconstruction evaluation

3.4.1.1 Discussion:

We choose to evaluate the reconstruction error using one-sided distances as they provide
additional information. Increasing distances from the reconstruction to the reference
indicate the areas that have been deviated from their true position in the reference while
higher distances from the reference to the reconstruction represent unreconstructed parts
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(a) the input point cloud (b) Poisson reconstruction [120]

(c) Ball pivoting [147] (d) Our sensor topology based reconstruction

Figure 3.15: Qualitative reconstruction results from a point cloud of size 106 using Poisson
[120], Ball pivoting [147] and our sensor-topology based reconstruction. We show a small part to
illustrate the accuracy of our reconstruction.

due to missing or sparse data in the reference. From Table 3.3, we observe that our method
has the lowest distances achieving a good compromise between accuracy (P → GT )
and completeness (GT → P ) compared to other methods. This is was expected as our
reconstruction is a simple triangulation of the geo-referenced 3D points w.r.t. the scanner
rotation and the time of acquisition. In contrast to global methods; Poisson [120] and
Screened Poisson [121] where a prior normal estimation step is required which it has
its share of error in the �nal reconstruction, our method relies on accurate information
provided by the sensor (time and rotation angle for each echo/pulse). Being a local
method, Ball pivoting [147] is able to reconstruct a more precise mesh than Poisson and
Screened Poisson, but it comes at the expense of the reconstruction time and limited scale.
While being accurate, the sensor-topology-based reconstruction is not able to handle
occlusions as the LiDAR has a �xed pose in the vehicle coordinate system such that
orthogonal objects to the moving direction of the car whose geometry is planar (co-
planar to the scanning plan of the LiDAR) are not reconstructed. Finally, our method
remains essentially dependent on the known sensor geometry and con�guration making
it unsuitable for arbitrary point clouds. Therefore, our algorithm su�ers from its reduced
generalization capabilities.
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3.4.2 Texture mapping

In this section, we show qualitative texturing results (Figure 3.16). The in�uence of the
color adjustment step on the �nal textured models is shown in Figure 3.17. Before the
radiometric correction, the textured model exhibits severe color discontinuities especially
on the border of the door and on some parts of the road (best viewed on screen). More
results are presented in the appendix to illustrate the high quality textured models in
di�erent places in Rouen, France.

(a) the reconstructed mesh

(b) the corresponding mesh after texturing

Figure 3.16: Texturing result on a small part of street in Rouen, France

In Figure 3.18 we show the in�uence of the regularization parameter λ on the �nal
textured model. Through a grid search, we found experimentally that a value of λ = 0.75
produce more compact texture with less seams. Smaller values result in small patches
while larger values tend to over-smooth the texture over the surface resulting in large
imprecise patches.

3.4.2.1 Discussion:

As argued by Waechter et al. [145], the chosen data term Ed must account not only for
the geometry of the image, but also it needs to consider its radiometric content in order to
select the best view for each triangle. In recent work of Fu et al. [148], the chosen data term
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(a) Before color adjustment (b) After color adjustment

Figure 3.17: The e�ect of color adjustment on the textured mesh. One can observe radiometric
artifacts on border of the door and along the road (best viewed on screen). While some of the
artifacts were partially adjusted, others can not be corrected due to the gradient magnitude of the
data term.

(a) λ = 0.3 (b) λ = 0.75

Figure 3.18: The regularization e�ect of the weight λ on the smoothness term Es. Texture
patches are colored with green

favors views with the largest projection area. However this implies that blurred views in
addition to background-facing views are going to be also selected as texture. Therefore,
we stick to the original formulation of [145]. However, whilst the chosen Ed accounts
for views with large projection area and a high gradient magnitude at the same time, it
over-�ts to radiometric artifacts such as shadows or severe variation in illumination as
depicted in Figure 3.17. Moreover, this data term is more susceptible to select views with
high-frequency content to texture the background which corresponds most of the time to
occluders.

Finally, we note that while this energy-minimization-based method produce accurate
and visually compelling texture mapping results, they remain limited to the scale of
the input data. That is why a temporal slicing strategy is adopted to texture the entire
dataset. However, it should be noted that using local methods requires an explicit merging
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approach of these temporal chunks to avoid inconsistencies between adjacent textured
triangles in consecutive chunks.

3.4.3 Performance evaluation:

We evaluate the performance of each step of our pipeline on the dataset described in the
previous chapter acquired by Stereopolis II [142] during this project. It consists of 17km of
6 hours of acquisition of both LiDAR and images yielding nearly to 2 billion georeferenced
points and 40000 full HD images (more than 500 Gigabytes of raw data). The input
data consists of raw LiDAR point clouds with their mutually registered perspective RGB
images.

Acquisition # Views # Faces Image resolution
10s 120 1.8 Million 2048× 2048

Table 3.4: Statistics on the input data per chunk

Figure 3.19: Performance evaluation of a chunk of 10s of acquisition

In Table 3.4, we present the required input data to texture a chunk of acquisition
(10s); the average number of views and the number of triangles after decimation. Figure
3.19 shows the timing of each step in the pipeline to texture the described setting. Using
a 16-core Xeon E5-2665 CPU with 12GB of memory, we are able to generate a 3D mesh
of nearly 6 Million triangles in less than one minute compared to the improved version of
Poisson surface reconstruction Kazhdan et al. [121] which reconstruct a surface of nearly
20000 triangle in 10 minutes. Moreover, in order to texture small models with few images
(36 of size (768 × 584)) in a context of super-resolution, the algorithm of Goldlucke et
al. [149] takes several hours (partially on GPU) compared to the few minutes we take to
texture our huge models. Finally, all the dataset (17Km of LiDAR acquisition + 40K
images) is textured in less than 30 computing hours.

3.5 Conclusion

In this chapter, we have demonstrated a full pipeline to produce textured mesh from
mobile mapping images and LiDAR scans data at city scale. It is mostly based on state-
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of-the-art techniques that have gained a level of maturity compatible with such large scale
processing. While being simple, the sensor topology-based reconstruction is quite novel.
Through this reconstruction method, We have shown that available sensor information,
which is ignored most of the time, can be adequately leveraged to produce dense and
accurate large-scale surface. Apart from autonomous navigation, we believe that such
textured mesh can �nd multiple applications, directly through visualization of a mobile
mapping acquisition, or more indirectly for processing jointly image and LiDAR data:
urban scene analysis, structured reconstruction, among others. This work leaves however
prominent topics unsolved, and most importantly the handling of overlaps between ac-
quired data, at intersections or when the vehicle passes multiple times in the same scene.
Dealing with these issues poses numerous challenges:

� Precise registration over the overlaps, referred to as the loop-closure problem.

� Change detection.

� Data fusion over the overlaps, which is strongly connected to change detection and
how changes are handled in the �nal model.

Moreover, our work proposed a reconstruction method based exclusively on LiDAR in-
formation, albeit we believe that the images hold a pertinent geometric information that
could be used to complement the LiDAR reconstruction, in areas occluded to the LiDAR
but not to the cameras (which often happens as their geometries are di�erent). The
recent work of Li et al. [136] adopting this multi-modal approach, has shown promising
reconstruction results.

Finally, an important issue that was partially tackled in the texture mapping step
which is the presence of mobile objects. Because the LiDAR and images are most of the
time not acquired strictly simultaneously, mobile objects might have an incoherent posi-
tion between image and LiDAR, which is a problem that should be tackled explicitly. The
code source used to generate the 3D map as a textured mesh is publicly available online 6.
In the next chapter, we present a new approach to incorporate semantic attributes to the
current representation which is, for now, based on geometric and photometric information.

6https://github.com/mboussah/MMS-texturing
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CHAPTER 4. SUPERVISED OVER-SEGMENTATION FOR 3D SEMANTIC
MAPPING

Abstract

In the previous chapter, we introduced a new concept regarding the representation of
a 3D map with a textured mesh. First, we explained how we accurately reconstructed
our geometric map as a 3D mesh. Second, we enriched the reconstructed mesh with
radiometric information through texture mapping. Geometry coupled with radiometry,
however, is not su�cient for a reliable navigation. In addition to the latter attributes,
autonomous agents need also to grasp the semantics of the scene. In this chapter, we
present a new approach that enrich a 3D map with semantic information while handling
its large scale. We demonstrate the performance and e�ciency of our method on two types
of indoor/outdoor map representations based on 3D point clouds and textured meshes.

Introduction

The lack of a high level understanding of the surrounding environments is one of the ma-
jor stumbling blocks towards achieving reliable autonomous navigation. The next level
of autonomous agents need to be endowed with the capacity of apprehending the scene
in a human-centric manner. That is a wide knowledge of what objects are, their types as
well as their spatial arrangements is required. As such, 3D maps to come have to extend
beyond geometric and photometric layers to grasp also semantics of objects constituting
the observed scene. In practice, the inclusion of rich semantic attributes involving human
concepts within these maps is a key enabler for self-controlled agents across a wide variety
of tasks ranging from obstacle avoidance [150] to path planning [151]. The importance of
semantic knowledge has been further demonstrated via the large existing body of work
devoted to solve the semantic mapping problem [152].

With the recent advances in 3D sensing technologies and the ubiquity of a�ordable 3D
acquisition devices such as time-of-�ight cameras and low cost LiDAR, the access to 3D
data has never been easier. Driven by the breakthrough in deep learning applied to 2D
data, a great deal of e�ort has been directed towards translating these techniques to the
3D setting. As seen in the previous chapter, 3D data comes in di�erent representations
each of which with varying structural and geometric properties. The wave of attention
dedicated to three-dimensional space, has resulted in a plethora of recognition and classi-
�cation techniques applied to data represented as point clouds [14, 153], voxels [15, 154],
octrees [155], and meshes [16]. Inferring semantics directly on 3D data has a prominent
advantage over 2D representations since they are oblivious to view-dependent e�ects of
2D images such as background clutter, perspective, varying lighting conditions and occlu-
sion. However, since most of 3D data is either acquired using structured-light 3D scanners
(LiDAR) or generated using multi-view stereo and structure-from-motion, compared to
2D images with sub-centimetric resolution, the generated point clouds su�er from low
resolution (up to 1 cm in the best case). Therefore, the developed 3D deep networks fail
to capture �ne-scale semantic patterns compared to their 2D CNNs counterpart.

To guarantee the high resolution properties of 2D images along with occlusion-free and
view-agnostic properties of 3D mesh surfaces, we propose to use textured meshes as our
3D representation ensuring, thereby, a combined bene�t from 2D and 3D. Nonetheless, as
opposed to 2D images which are de�ned as functions on an Euclidean space (plane), sam-
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pled on a 2D grid structure, 3D textured meshes do not preserve such regularity making
the de�nition of convolution and pooling operators di�cult. Moreover, a major problem
that needs to be e�ciently dealt with is the large scale of 3D data which remains an
obstacle to most of state-of-the-art 3D deep networks.

Before the emergence of deep learning, one of the pioneering approaches in the litera-
ture introduced by Riemenschneider et al. in [156], adopt a probabilistic graphical model
formulation in order to infer semantics to a map represented as a 3D mesh. Whilst the
method proposed in [156] is highly optimized to circumvent data redundancy, energy-
based methods in general are known to be local algorithms that operate on a limited
scale of data. Consequently, an extra-merging step is required as a post-processing to
ensure consistent semantics across the segments of the entire scene. Alternatively, several
methods in the literature have proposed a pre-processing step before inferring seman-
tics. The latter consists in computing an over-segmentation leading to a set of segments,
namely superpixels for 2D images [18], superpoints [157] for point clouds and superfacets
[158] for 3D meshes. Thanks to these superstructures, semantic segmentation is carried
out at a higher level by associating a label to an entire segment instead of each single
pixel/point/triangle unit. To handle large scale scenes while taking advantage of pow-
erful deep learning networks, a recent work of Landrieu and Simonovsky [17] is among
the �rst attempts that has achieved extremely competitive performance by making use
of these hand-crafted-based superstructures. Even though, all these over-segmentation
methods substantially simplify the subsequent task of semantic segmentation, we argue
that, all of them rely on the assumption that if the produced segments are geometrically
and/or radiometrically homogeneous, they are semantically homogeneous. As far as we
are concerned this assumption should be challenged since the quality of semantic segmen-
tation results depends on the quality of the computed over-segmentation. To overcome
this limitation, two recent works of Jampani et al. [159, 160] have reported signi�cant im-
provements upon hand-crafted approaches by introducing for the �rst time a supervised
approach to generate task-speci�c superpixels in 2D images.

To this end, motivated by the success of learned over-segmentation techniques in 2D
images, we propose in this chapter a deep-learning-based framework to extend this con-
cept to 3D point clouds and 3D textured meshes in order to be able to handle large scale
data while appropriately dealing with the irregularity of these 3D representations. More
in details, we propose to frame point clouds and 3D mesh oversegmentation as a deep met-
ric learning problem structured by an adjacency graph de�ned on the input point cloud
or the textured mesh. We introduce the graph-structured contrastive loss, a loss function
which learns to embed 3D points homogeneously within objects and with high contrast
at their interface. This loss can be adapted to the non-di�erentiable task of oversegmen-
tation by using our cross-partition weighting strategy. The points / triangles'embeddings
themselves are computed from the local geometry and radiometry by lightweight models
inspired from PointNet [14] for 3D points and MeshCNN [16] for 3D textured meshes.
Finally, the superpoints / superfacets are de�ned as a piece-wise-constant approximation
of the learned embeddings in the adjacency graph.

The remainder of this chapter is structured as follow: In Section 4.1, the closely related
work in the literature is presented along with theoretical de�nitions of the main concepts
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of our method. Our approach is explained in details in Section 4.2. Both Sections 4.3
and 4.4 introduce two applications of our method respectively on 3D point clouds and
textured meshes. Finally, we conclude this chapter in Section 4.5 giving some insights
and discussing potential future work.

4.1 Overview

In this section, we start by de�ning the key concepts of our approach as well as the existing
literature regarding this subject. The most related methods to our work are explained in
details with a particular focus on methods used in our evaluation experiments.

4.1.1 Over-segmentation

A clear de�nition of what an over-segmentation might be was �rst introduced by Ren
and Malik [161] for 2D images. According to [161], an over-segmentation is a partitioning
or grouping of 2D image pixels into meaningful regions w.r.t. to color, texture and other
low-level properties. While in the latter work, authors employ the term superpixels to
refer to the result of an over-segmentation, others such as Veksler et al. [162] draw a line
between over-segmentation algorithms and superpixels algorithms. Stutz et al. [163] use
the convention that superpixel algorithms allow �ne control over the number of generated
superpixels, while over-segmentation methods do not. However the terms superpixels and
over-segmentation are employed interchangeably as in [161] in most of the rest of the lit-
erature. Since both of these concepts share the same goal which is facilitating subsequent
tasks by substantially reducing the number of primitives, we believe that there is no use
in di�erentiating between the two concepts. As a matter of fact, the large majority of
over-segmentation methods, by design, allow to control the number of segments regardless
to the used modality being 2D images, 3D point clouds or 3D meshes as will be discussed
in the coming section. The only subtle nuance lies in the number of generated segments
whether it is known in advance or not. For this reason, in the rest of this study, we refer
to the result of an over-segmentation method as the set of superstructures.

It should be emphasized that this ambiguity resulted in a divergence among computer vi-
sion and photogrammetry researchers about a unique designation of an over-segmentation
result in 3D. In some studies, segments generated from a point cloud over-segmentation
are called superpoints [164], in others [165], they are referred to as supervoxels. For sake
of clarity, we propose an uni�ed de�nition regarding the over-segmentation output. For
2D images, an over-segmentation results in superpixels. In videos we refer to them as su-
pervoxels. Superstructures computed by an over-segmentation of point clouds are called
superpoints. For 3D meshes, we refer to them as superfacets or supertetras depending on
the type of the mesh whether it is a triangular or tetrahedral mesh.

As a generalization of what is advocated in [161], we believe that pixels, points and
triangles are respectively the consequence of discretization of digital 2D images and 3D
scenes which make them unnatural entities. Superstructures come as an alternative to
these units by representing objects of a scene by a set of perceptually meaningful atomic
regions. The usage of over-segmentation in the literature is mainly justi�ed by the gain
of computational e�ciency. For instance, in semantic segmentation of a 3D point cloud
P containing n points, the solution space of a labeling L of P has a dimension equal to

76



4.1. OVERVIEW

Ln. An over-segmentation resulting in m superpoints (with typically m� n) will greatly
reduce the solution space to Lm. While investigating these methods, we observed that
the community have proposed a set of properties superstructures should satisfy. We can
conclude that most of the researchers share the idea that a reliable over-segmentation
must ful�ll the following three criteria:

(P1) object-purity: the computed superstructures must not straddle di�erent objects
having di�erent semantic labels.

(P2) border recall: the interface between superstructures must coincide with the bor-
ders of ground truth objects;

(P3) regularity: the shape and contours of the extracted segments must be regular and
simple as naturally objects do not exhibit wiggly shapes.

In the following, we review the existing work concerning over-segmentation techniques
applied to 2D images, 3D point clouds and 3D meshes. For each of these modalities we
can roughly classify these methods as graph-based or cluster-based w.r.t. their conceptual
design.

Over-segmentation

methods
Modality Output

Graph-

based

Cluster-

based

Object

purity
e�ciency

Learned

features

Entropy rate [166] 2D images superpixels 3 7 +++ ++ 7

Veksler et al. [162] 2D images superpixels 3 7 +++ ++ 7

Grundmann et al. [167] Videos supervoxels 3 7 +++ ++ 7

SLIC [18] 2D images superpixels 7 3 ++ +++ 7

DASP [168] 2D images superpixels 7 3 ++ +++ 7

Benshabat et al. [164] point clouds superpoints 3 7 +++ ++ 7

Guinard et al. [157] point clouds superpoints 3 7 +++ ++ 7

VCCS [169] point clouds superpoints 7 3 ++ +++ 7

Lin et al. [165] point clouds superpoints 7 3 +++ +++ 7

Wu et al. [170] mesh supefacets 3 7 +++ ++ 7

Simari et al. [171] mesh superfacets 7 3 ++ +++ 7

Picciau et al. [172] tetrahedral mesh superfacets 7 3 +++ ++ 7

SEAL [173] 2D images superpixels 3 7 ++++ ++++ 3

SSN [160] 2D images superpixels 7 3 ++++ ++++ 3

Table 4.1: An overview of several over-segmentation methods in the literature.

In Table 4.1, we show an exhaustive summary of the most known state-of-the-art
over-segmentation methods classi�ed w.r.t. their modality, output, the type of the used
features (learned or computed) as well as two di�erent evaluation criteria (i.e. Object
purity and computational e�ciency).

4.1.1.1 2D image/video over-segmentation (Superpixels/Supervoxels):

Before the surge of deep-learning-based approaches, unsupervised 2D superpixel segmen-
tation has been extensively studied in the scope of many investigations and applications.
These methods can be broadly split into two groups:

� Graph based methods: Superpixels are computed by partitioning the image considered
as an undirected graph where pixels are the graph nodes and the pixels' a�nities are the
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edges. Felzenszwalb and Huttenlocher [174] construct a graph such that the nodes are the
image pixels and the edges correspond to its 8-neighborhood adjacency. Nodes are merged
subsequently w.r.t. to the edge weights de�ned by pixels' color di�erences and variations.
The work of Grundmann et al. [167] is a generalization of the method of [174] for image
superpixels to videos. A 3D graph including the temporal dimension of images is build
on top of video sequences and partitioned with respect to the optical �ow of regions to
ensure the consistency of the grouped pixels into spatio-temporal supervoxels. However,
both [167, 174] tend to produce superpixels/supervoxels with irregular size and shapes
and straddle di�erent objects violating, thereby, the object purity property (P1). Liu
et al. [166] formulated superpixel computation as a graph partitioning problem w.r.t. an
objective function based on the entropy rate of a random walk on the graph. In contrast
to this category of algorithms where a bottom-up approach is adopted by merging pixels
into superpixels, [161, 162] are top-down methods where the graph is partitioned into
disjoint subgraphs constituting the superpixels. In Ren and Malik [161] the graph built
on top of the image is partitioned with respect to hand-crafted texture and contour
features using the normalized cut algorithm. While [161] produces regular superpixels, it
is expensive to compute for small images. Using a more e�cient partitioning algorithm,
an energy minimization formulation solved using graph-cut [175] is adopted by Veksler
et al. [162] to generate compact superpixels for 2D images and consistent supervoxels for
video sequences.

� Clustering based methods: These methods start with identifying initial cluster centers
over the image and progressively re�ne them until the speci�ed criteria are met. The most
famous method in this category is the Simple Linear Iterative Clustering SLIC introduced
by Achanta et al. in [18]. Based on k-means clustering, the algorithm is initiated by a
set of seed pixels serving as initial cluster centers. Then all pixels are assigned to their
nearest center and a new cluster center is computed. The latter steps are repeated several
times until stability of cluster centers. Pixel-superpixel assignment is based on color and
spatial information. In addition to the latter features, [168] proposed to leverage depth
information for computing superpixels using the same clustering method.

Figure 4.1: Illustration of superpixels generated on 2D images using the method in [166]. Image
from [166]

In Figure 4.1 we show an illustration of superpixels generated using [166] method.
Despite their conceptual diversity, these methods share the fact that they exclusively
rely on hand-crafted features to generate superpixels. Although, the assumption that
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objects having similar geometric and/or radiometric properties share the same semantic
label is not always guaranteed. Besides, recent studies (e.g. surveyed by Garcia et al. in
[176]) have demonstrated that hand-crafted features were largely outperformed by deeply
learned features in many occasions. Meanwhile, inspired by the success of deep learning
supervised applications, a minority has recently started to exploit deep techniques for 2D
superpixel segmentation. Jampani et al. [159] proposed SEAL a non di�erentiable graph-
based superpixel segmentation approach which predicts 4-connected pixel a�nities on
image graph by incorporating the segmentation error into the loss during a�nity learning
to generate better boundary-preserving superpixels. Later, superpixel sampling networks
(SSN) were proposed [160]. In this work, Jampani et al. developed an end-to-end trainable
framework by tailoring a clustering-based approach SLIC [18] to be back-propagable using
a soft assignment instead of k-means pixel-superpixel hard association during clustering
akin to the works surveyed in Aljalbout et al. [177]. On the other hand, many extensions
of 2D superpixel segmentation methods have been proposed to generate 3D superpoints
by over-segmentation.

4.1.1.2 3D Point cloud Over-segmentation (Superpoints):

While there exists a prominent work on 2D superpixel generation, superpoint segmenta-
tion remains in the development stage. Much like the 2D domain, the literature in 3D
can be divided into two main approaches:

� Graph-based methods: These variants of approaches start with constructing a con-
nectivity graph that de�nes the space of possible superpoints. Second, for each 3D point
a descriptor is estimated to encode the local geometry and colorimetry. A dissimilarity
measure based weight is subsequently assigned to each edge of the graph. Finally, a
sequential subgraph merging [164] or cutting [157] criteria are chosen to obtain the over-
segmentation. Ben-Shabat et al. in [164] proposed three extensions of 2D local variation
graph-based method to 3D superpoint segmentation and studied di�erent strategies for
constructing the graph, edge weights assignment and subgraph merging. In the work
of Guinard et al. [157], a non-parametric segmentation model formulated as an energy
minimization problem is proposed to partition the 3D point cloud to simple yet geomet-
rically homogeneous shapes and solved using Cut-pursuit algorithm [178] (an e�cient
graph partitioning method introduced later). However, similar to the 2D case only hand-
engineered features are used as descriptors to produce the partition (spatial coordinates
and color in [164], local features (linearity, planarity, verticality) in [157]).

� Clustering-based methods: In this category of methods, the pioneering work of Papon
et al. Voxel Cloud Connectivity Segmentation VCCS [169] starts by uniformly partition-
ing the point cloud using an octree into voxels that serve as an initialization for a local
k-means clustering method. A subset of points are chosen as superpoint centers which
are iteratively grown afterwards based on computed handcrafted features of adjacent
points (e.g. x, y, z spatial coordinates and L, a, b color channels). Apart from its �ve
hard adjustable parameters, the main disadvantage lies in its inability to properly deal
with point clouds having non-uniform density since it requires a careful choice of voxel
resolution so that more than one object cannot overlap within the same voxel. In this
case, VCCS leads to badly preserved boundaries violating border recall property (P2).
Similar works followed the latter attempting to address the problem. Song et al. [179]
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�rstly detect the boundary points in LiDAR point clouds by estimating the discontinu-
ity of consecutive points. Second, a clustering process is performed on a neighborhood
graph constructed upon the point cloud and excluding edges connected by the detected
boundary points. However, the assumption that the points are sequentially ordered re-
duces its generalization capabilities to other types of point clouds. In the work of Lin
et al. [165], superpoints generation is formulated as a subset selection problem aiming to
�nd a representative point for each superpoint to reduce the problem dimension. This
involves an energy minimization based on dissimilarity distances between points and the
superpoints representatives. Solving this energy does not require the initialization of seed
points yielding to an adaptive resolution that preserves object boundaries more e�ciently.
Figure 4.2 illustrates over-segmentation results using the algorithms in [165, 169]

Figure 4.2: Illustration of an over-segmentation on point clouds. Left: ground truth, middle:
VCCS superpoints [169], right: superpoints constructed using Lin et al. [165]. Image from [165]

4.1.1.3 3D mesh over-segmentation (Superfacets / Supertetras)

Much like superpoints and superpixels/supervoxels, superfacets/supertetras can be com-
puted using two types of approaches:

� Graph-based: In this category, 3D mesh is represented by its dual graph where faces
correspond to graph nodes and mesh adjacency constitute the set of edges. In the work
of Wu et al. [170] , superfacets are computed as a pre-processing for a co-segmentation
1 task. the over-segmentation is the result of graph partitioning using normalized cuts
with respect to geometric descriptors (e.g. signed distance function (SDF) [180], average
geodesic distance (AGD) [181] associated with each face of the mesh. However parti-
tioning a graph using normalized cuts is computationally expensive as discussed for 2D
images.

� Cluster-based: Inspired by the SLIC approach introduced in [18] for superpixel im-
age segmentation, Simari et al. [171] present a clustering method for 3D mesh over-
segmentation. Based on k-means algorithm, the proposed method is a three-step ap-
proach. First superfacets centroids are iteratively initialized all over the input mesh.
The �rst one being the closest triangle to the center of the entire mesh, consecutive cen-
troids are placed subsequently w.r.t. to the maximum euclidean distance to the nearest
already placed center. Second, all the faces of the mesh are assigned to their nearest cen-
troids by computing its shortest path distance making thereby a �rst over-segmentation.

1Co-segmentation is the task of jointly segmenting the same object/shape in di�erent set of 2D images
or 3D mesh
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The latter is re�ned in an iterative fashion in such a way centroids are updated w.r.t. to
the mean centroid of the said superfacet. This procedure is repeated until superfacets
centroids are stabilized over the algorithm iterations. A similar extension of this algo-
rithm have been proposed by Picciau et al. in [172], albeit this time for tetrahedral mesh
over-segmentation to produce supertetras.

While this class of methods allows for a good trade-o� between e�ciency and accuracy,
clustering based methods depend on seed initialization which are tuned with regards to
the topology of the underlying 3D mesh. Besides they do not handle the non-uniform
sizes and shapes of mesh faces which in�uence substantially the over-segmentation qual-
ity. Cohen-Steiner et al. proposed VSA (variational shape approximation) in [182], which
is a k-means style algorithm. VSA circumvent the latter problems by alternating between
a geometric partitioning of the mesh using a region growing approach with respect to geo-
metric similarities of triangular faces and a proxy �tting step that minimize the distortion
error for a given partition. In order to compute an over-segmentation on textured meshes,
Rouhani et al. in [158] extended VSA [182] by adding a photometric similarity measure
that preserve image discontinuities in the texture map.

Figure 4.3 shows an illustration of an over-segmentation on 3D triangular meshes using
the methods in [170, 171].

Figure 4.3: Illustration of an over-segmentation on triangular meshes. Top: superfacets com-
puted using the method of Wu et al. [170], Bottom: superfacets computed using Simari et al. [171].
Image from [171]

Surprisingly, despite the huge progress in the �eld of deep learning applied to the 3D
domain [14�16] and the ubiquity of annotated 3D large scale datasets [21, 24], to the
best of our knowledge, there is no supervised over-segmentation technique, so far, that
leverages deep-learning-based embeddings to compute an over-segmentation neither on
3D point clouds nor on 3D meshes. The irregular structure of 3D meshes and the disorder
of point cloud compared to structured regular lattice characterizing 2D images explain the
slow progress in supervised over-segmentation. Therefore, to spur research in this �eld,
we propose to leverage deep embeddings to learn the over-segmentation task. This can
be achieved using an interesting approach called deep metric learning. In the following,
we de�ne the deep metric learning problem then we give an overview of the most related
work to ours.
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4.1.2 Deep metric learning

Metric learning is about learning distance functions that are compatible with a certain
similarity standard. Since the de�nition of a given similarity criteria is task-dependent,
the success of such approaches is mainly related to the ability of aligning the learning ob-
jectives to the intended task. In practice, metric learning approaches [183] aim at learning
feature representations such that it promotes close embeddings for similar data points in
the feature space while penalizing close features of dissimilar data points. The increasing
interest to these class of methods has been further boosted by the democratization of deep
learning techniques on 2D images [38]. This success allowed for the development of an
extension of traditional metric learning called deep metric learning where data features
are encoded using deep neural networks instead of hand-crafted methods.

In the last few years, deep metric learning has proven its e�ectiveness across a large
spectrum of recognition applications ranging from face recognition [184], medical image
classi�cation [185], visual search for product similarity [186] and person re-identi�cation
[187] among others. In all these applications, task-speci�c deep architectures are trained to
minimise a well-designed loss function where a non linear feature representation is learned
to bind to one another embeddings from similar classes while maintaining embeddings of
di�erent classes distant in the feature space. In the context of deep metric learning, the
design of an adequate loss function has received a substantial attention in recent years.
The desired properties of these objective functions are their fast convergence and their
ability to reach a good (local) minimum during optimization. The most investigated loss
functions in the literature are the contrastive loss [188] and the triplet loss [189]. In the
following we give a detailed overview of each type of these objective functions.

4.1.2.1 Contrastive loss:

The contrastive loss is an euclidian-distance-based loss function that measures similarity
between positive and negative pairs of samples in the dataset. Positive pairs are the set
of data points belonging to the same class while the negative pairs inversely have distinct
class labels. Let {x1,i, x2,i} be a pair of input data points and {e1,i, e2,i} the corresponding
embeddings computed by a task-speci�c deep network. Operating on positive and negative
pairs labeled respectively by yi = 0 and yi = 1, the contrastive loss is de�ned as:

Lcontrast =
1

N

N∑
i=1

[(1− yi)‖e1,i − e2,i‖22 + (yi)max(0,m− ‖e1,i − e2,i‖2)2] (4.1)

where m is a preset margin and N is the batch size used for training. In Figure 4.4
we show an illustration of one gradient iteration using the contrastive loss.

4.1.2.2 Triplet loss:

The triplet loss was proposed as an extension to the contrastive loss by considering a
query sample called an anchor in addition to the positive and negative samples. This
function reduce the distance between the embeddings of the anchor and the positive
sample while simultaneously enlarging the distance between the anchor and the negative
sample. Formally, we consider the set of input data points {xai , x

p
i , x

n
i } and their corre-

sponding computed embeddings {eai , e
p
i , e

n
i } denoting respectively the anchor a from which
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Figure 4.4: Illustration of one gradient step during contrastive loss optimization for a positive
and negative pairs: data points of the same color belongs to the same class

a distance will be computed from a same class sample (positive p) and negative sample
(n from a di�erent class). The triplet loss can be written as:

Ltriplet =
1

N

N∑
i=1

max(0, ‖epi − eai ‖22 − ‖eni − eai ‖22 + λ) (4.2)

where N is the batch size and λ is a parameter to avoid the convergence to the trivial
solution. Figure 4.5 shows an illustration of one step gradient during minimizing the
triplet loss.

Figure 4.5: Illustration of one gradient step during triplet loss optimization for a triplet of
positive, negative and an anchor samples: data points of the same color belong to the same class

Note that the expressiveness of this loss is hindered when ‖epi − eai ‖22 < ‖eni − eai ‖22 +λ.
In this case, the loss will have no impact on the embeddings as the gain is equal to 0.
This results in poor performance and convergence problems as a good local minimum
is not reached. To this end, triplet mining [190] is commonly applied to mitigate this
issue. Concretely, this technique considers only the triplets that give a positive loss. This
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can be achieved using hard negative mining which consists in selecting triplets where the
negative sample is strictly closer to the anchor than the positive sample. A semi-hard
negative mining can be also leveraged where the negative sample is not necessarily closer
to the anchor than the positive but still give positive loss.

We abstain from using this type of loss in our over-segmentation approach as providing
a set of triplets from the data we are using is not straightforward. Furthermore, apart from
the tricky training procedure, this loss su�ers from slow convergence as well as a tendency
to reach local optima as discussed by Sohn [191] since at each update, the comparison
is performed with only one negative sample while ignoring the rest of them in the same
batch. Instead, we propose an adaptation of the contrastive loss but di�erent from [192],
where this loss is used to improve features of 3D point clouds in a dense classi�cation
context, our task is related to over-segmentation through graph partitioning.

4.1.3 Graph theory

Graph theory is a branch of science whose purpose is to study graphs. A graph is a
mathematical representation of a set of data elements where inner pairwise relations are
linked through connections. Graph theory has been successfully used in a wide range
of applications ranging from communication networks, transportation, social media and
chemistry to mention a few. In particular, computer vision is one of the disciplines that
heavily rely on this representation in several low-level tasks such as segmentation and
tracking in addition to high-level tasks commonly referred to as recognition (classi�cation,
semantic parsing, etc.). The popularity of this representation stems from its powerful
properties:

� well-grounded and mathematically proven methods

� �exibility and high level of abstraction

� versatility: can represent a wide variety of data across di�erent disciplines of science.

In essence, data elements are called nodes or vertices of the graph and the links
connecting them are called edges. In social media, the nodes of the graph can be the set
of subscribed people and the edges connecting them are their friendships. In chemistry,
proteins can be considered as the vertices of the graph while their interactions are modeled
by the graph edges. In computer vision, pixels of 2D images, points of 3D point clouds
or faces of a 3D mesh correspond to the node of the graph whereas the spatial adjacency
is modeled by the graph edges. Our contribution in this chapter is inspired by mature
graph-based approaches. Before introducing our method, we start by de�ning some of the
commonly used graph taxonomies.

4.1.3.1 De�nitions

In the following, we denote by G = (V,E) the graph G where V = (v1, ..., vn) is the vertex
set and E = {eu,v | u, v ∈ V } is the edge set.
De�nition 1. A directed graph is an ordered pair G = (V,E) such that V is a non-empty
set of vertices and E ⊆ V × V is the set of ordered pairs of di�erent nodes called edges.

De�nition 2. An undirected graph is a pair G = (V,E) where V is the set of nodes and
E the set of edges composed of the set of two-element subsets of V . The undirected graph
can be derived by constraining the relation E ⊆ V × V to be symmetric.
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Remark. It is frequently known that additional information can be attached to edges in
the form of attributes. For instance, a weight function attributed to edges can be de�ned
as w : E 7→ R+ ∪ {0}.

De�nition 3. A graph G′ = (V ′, E ′) is called a sub-graph of G = (V,E) if V ′ ⊂ V and
E = {Eij | vi ∈ V ′, vj ∈ V ′}.

De�nition 4. A graph G = (V,E) is called a bipartite graph if V can be partitioned into
two subsets V1 ⊂ V and V2 ⊂ V such that V1 ∩ V2 = ∅ and V1 ∪ V2 = V , where the set of
edges is de�ned as E ⊆ V1 × V2.

De�nition 5. A graph partition S is de�ned as a division of the vertex set V into disjoint
subsets S = {S1, .., Sk} such that Si∩Sj = ∅ and E ⊆ Si×Sj for i 6= j where

⋃
i Si = V .

4.1.3.2 Graph construction

A crucial key aspect for the success of graph-based methods is the design of an appropri-
ate graph topology that faithfully models the pairwise interactions between data points.
There is a wealthy literature proposing a wide variety of graph construction methods
depending on the structure and topology of the underlying data. In the following we
brie�y explain the most popular static graph topologies. For a more in-depth study on
this aspect the reader is referred to the work of Ulrike in [193].

The topology of the graph models the relationships between data points. In order to
infer global structure from local information, the constructed graph needs to take into
consideration the local neighborhood of each vertex of the graph. The most common
graph adjacency topologies are:

� ε-neighborhood graph: called also ε-graph, all vertices of this graph whose pairwise
distance is smaller than ε are connected by an edge. This graph is shown in Figure 4.6
(a). Choosing a constant ε for all the nodes of the graph is not suitable to capture the
local neighborhood structure. An improper thresholding of ε may results into subgraphs
or disconnected components.

� k-nearest neighbor graph: in a k-NN graph, each vertex is connected to the set of
vertices that lie within its k-nearest neighborhood vertices as depicted in Figure 4.6 (b).
However the number of nearest neighbor vertices for each node in the graph varies from
an object to another. k-NN graph remains more adaptive to scale and density than
ε-graph.

� Dual graph: this graph is generally build on top of a 3D mesh. The nodes of the graph
represent the mesh faces while the edges are the triangles adjacency relationships. The
construction of this graph is illustrated in Figure 4.6 (c). Transforming a 3D mesh into
a graph is traditionally used for mesh segmentation [194] by framing the latter task as a
graph partitioning problem.

4.1.3.3 The cut pursuit algorithm

Introduced by Landrieu and Obozinski in [178], the cut pursuit algorithm is a working-set
greedy strategy for minimizing functionals involving the total variation structured by a

85



CHAPTER 4. SUPERVISED OVER-SEGMENTATION FOR 3D SEMANTIC
MAPPING

(a) ε-graph (b) k-nn graph (k = 5) (c) dual graph

Figure 4.6: Illustration of the common construction of static graphs. Image (c) from [194]

graph G = (V,E,w) where w ∈ R+ are the weights of edges E:

F (x) = f(x) +
∑

(i,j)∈E

w(i,j)‖xi − xj‖ (4.3)

where x = (xi)i∈V ∈ RV is the variable of interest. For these functions the solution x?

of (4.3) is constant on the elements of a certain coarse partition P of V (i.e. |P | � |V |)
due to the sparsity of its gradients. This solution can be decomposed into a smaller
number of connected components of the graph G. In computational statistics and machine
learning, the coarseness property of the solution can be exploited to speed-up large scale
optimization problems.

As illustrated in Figure 4.7, the cut-pursuit algorithm has two main steps; reduction
and re�nement. Initially all the vertices of the graph are associated to the same con-
nected component. In the reduction step, the graph G is split into constant connected

Figure 4.7: Illustration of the di�erent steps of the `0-cut pursuit algorithm. Image from [195]

components and a reduced graph G encoding the new adjacency is computed. The re-
duced problem is solved under the constraint that all the vertices of the same connected
component share the same value. In the re�nement step, the current partition is further
split such that the next reduced problem decrease F as much as possible. This is carried
out by �nding the steepest directional derivatives of F .

The aforedescribed cut pursuit algorithm is a versatile graph partitioning approach that
can be applied to several data representations as long as they can be modeled by a graph.
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However, graph partitioning methods in general remain intrinsically non-di�erentiable as
they involve computing connected components and the objective function to be mini-
mized is usually non-continuous and / or non-convex. This non-di�erentiability property
inhibits the use of such interesting methods in the framework of deep learning as it is very
complex even impossible to back-propagate gradients through and update the network
weights accordingly during optimization. In our proposed method, we show how we by-
pass this limitation. In the following, we review the literature on deep learning techniques
applied on 3D data.

4.1.4 Deep learning on 3D data

During the past few years, deep learning on 2D images has achieved a tremendous progress
in a wide variety of computer vision tasks ranging from classi�cation and segmentation
[196] to detection and localization [197]. The key recipe for the success of these networks
is a combination of convolution, non-linearity and pooling layers yielding to a robust
framework which is invariant to a set of variations of the input [198]. Driven by the huge
success of these 2D architectures, several attempts [199] have been proposed to transfer
this knowledge to the 3D setting. The fundamental challenge that needed to be handled
is how to translate deep frameworks operating on 2D images represented as structured
2D grids to three-dimensional data which are characterized by an implicit neighbourhood
adjacency with an irregular support. As discussed in Chapter 3, 3D sensed data can be
intrinsically represented in several forms among which the most common ones are point
clouds and 3D meshes.

Following the terminology from the literature [3], 3D data representations can be
broadly classi�ed into two major categories w.r.t. its underlying euclidean properties. A
3D representation is said to be euclidean if it exhibits a grid data structure. Implicitly
this means that this representation can be trivially de�ned as a function on the Euclidean
space sampled on a grid. This category includes 3D data represented by a volumetric grid
[15, 154, 155] or using 2D multi-view projections [200, 201]. In contrast, a non-euclidean
representation lacks an euclidean vector space structure where the underlying data can
be represented by a function. Directed graphs [202], unordered point clouds [14, 153] as
well as 3D meshes (or manifolds) [16, 26] fall under the latter category. In this section we
shed the light on the recent advances in deep learning applied to these 3D representations
regardless to the task that were meant for.

4.1.4.1 Volumetric approaches

This set of methods are among the �rst attempts to tailor 2D deep learning on 3D data.
In practice, the input data is volumetrically discretized using a regular voxel grid [15, 154]
or using an octree [155] resulting into voxels of adaptative sizes so that 3D convolution
becomes feasible.

Voxnet [154] construct an occupancy grid of size 32 × 32 × 32 upon the input data
(RGBD-D, LiDAR point clouds or 3D CAD models). The proposed network is composed
of two convolutional layers, a pooling layer and two fully-connected layers. The particu-
larity of the convolution operator lies in the 3D �lter kernel used instead of common 2D
�lters in case of 2D images.

VoxelNet [15] illustrated in Figure 4.8 starts by partitioning the space of raw input
point clouds into equally spaced voxels. Once points are grouped within voxels, a random
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Figure 4.8: Illustration of VoxelNet feature encoding steps. Image from [15]

sampling is applied to reduce the number of input points while ensuring a uniform dis-
tribution inside them. Afterwards, a small embedding is computed for the set of points
within each voxel using a simpli�ed multi-layer perceptron (MLP) composed of a stack of
linear layer, batch norm and non-linearity layers aggregated using a max-pooling opera-
tion. Finally those local features are passed to a region proposal network which consist
of a classic Convolutional Neural Networks (CNNs) for object detection.

Figure 4.9: Illustration of the hierarchical octree data structure to partition 3D data space.
Image from [155]

While the latter approach allowed to extend 2D convolution to the 3D setting, for dense
3D data the computational and memory costs grow cubically with data resolution limiting
thereby the input resolution to around 303 voxels. To overcome this problem, OctNet
[155] exploits the sparsity properties of 3D data by building hierarchical and adaptive
octree that subdivide only cells containing relevant information as shown in Figure 4.9.
This alleviates the memory load when performing 3D convolution. Whilst occupancy-
grid based methods o�er, to some extent, decent results, they are limited to single object
classi�cation and small datasets in most of the reviewed methods. Furthermore, the input
resolution is substantially reduced to �t memory requirements. Consequently, the gain
information from working directly in 3D is outweighed by the information loss induced
because of data down-sampling.
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4.1.4.2 Multi-view 2D-based methods

In this category, 3D data is represented by a set of multiple images captured from di�erent
rendered view points. The interest behind this approach is mainly its ability to leverage
mature CNNs architectures in addition to large scale annotated data for training not to
mention the decreased memory load when processing 2D images.

Figure 4.10: Illustration of 3D shape recognition using multi-view convolutional networks. Im-
age from [200]

One of the earliest works in multi-view deep learning is the MVCNN introduced in
[200]. In its simplest con�guration, MVCNN consumes 12 images of a 3D object rendered
from di�erent view points each of which is fed to an independent CNN. The computed
feature maps of each image are passed to a view pooling layer as shown in Figure 4.10
which will be the input to an aggregated CNN. The Convolutional Neural Networks
(CNNs) architecture used in [200] is based on VGG backbone [203].

Akin to MVCNN [200], the architecture proposed by Kalogerakis et al. [201] takes
as input a set of multiple views of a 3D object optimized for maximal surface coverage
and a polygonal mesh. These views are processed independently by pre-trained Fully
Convolutional Networks (FCNs) producing con�dence maps of the same size as the input
512× 512.

Figure 4.11: Illustration of the network architecture for 3D shape segmentation with projective
convolutional networks. Image from [201]
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These con�dence maps are combined together and projected-back to the 3D surface
using a a max pooling projective layer as illustrated in Figure 4.11. Finally the result-
ing con�dence maps are converted to probabilities through a Conditional Random Field
(CRF) layer de�ned on the surface favoring coherent labeling.

Multi-view based methods are more likely to outperform volumetric approaches in
terms of e�ciency as they require less computational cost. Nonetheless, this class of
methods is not able to handle missing, occluded or overlapping objects especially in a
mobile mapping context where a scanner is moving in a �xed scene. That is why we
believe this category of methods, as it is designed, is not suited to our application.

4.1.4.3 Graph approaches

Considerable e�ort has been directed towards applying deep neural networks on 3D data
represented by a graph. Broadly speaking, among this set of methods, we can distinguish
between two major approaches w.r.t. the type of convolution used inside these networks;
spectral -based and spacial -based. As the key component for the success of deep learning
starts with the convolution operator, these two categories of methods de�ne respectively
the convolution in the spectral domain and the spacial domain.

Spectral-�ltering-based methods were �rst introduced by Bruna et al. [204] through
Spectral CNN (SCNN) a deep network operating on graphs. The intuition behind this
method is to use the spectral eigen-decomposition of the graph Laplacian to de�ne con-
volution in the spectral domain. This way signal patches de�ned in the euclidean space
which correspond to features of the graph nodes are mapped to the spectral domain by
projection on the graph Laplacian eigenvectors. Thus the convolution operation scales
node features w.r.t. the eigenbasis. It should be noticed however, spectral �ltering is a
non-local operation as it involves the entire graph which comes with a huge computa-
tional burden in addition to the heavy computational cost of the graph Laplacian. To
address the aforementioned shortcoming, several studies have proposed a local spectral
�ltering operation to alleviate the computational cost by approximating graph �lters us-
ing Chebyshev polynomials De�errard et al. [205] or a �rst-order linear approximation
Kipf et al. [206].

While this local �ltering accounts for computational e�ciency, all the aforedescribed
spectral methods share a common weakness. In practice, the dependency of spectral �lters
on the eigenbasis limits the generalization capability of the network. As demonstrated in
the work of Bronstein et al. [3], applying a spectral �lter kernel learned w.r.t. to a speci�c
basis on another domain with di�erent basis yields completely di�erent results.

On the other hand, spatial-�ltering-based methods are a much simpler attempt to ap-
ply deep learning on data represented by a graph. In these methods, the support for the
graph convolution operation is the set of edges connecting neighboring nodes of the graph.
The work of Scarselliet al. [207] is among the �rst studies applying neural networks on data
structured by a graph. Graph Neural Networks (GNNs) are comprised of multiple layers
through which local features are learned w.r.t. to the graph nodes. Each vertex is embed-
ded using a Recurrent Neural Network (RNN) which repeatedly propagates features to
the neighboring graph nodes until stability. Since this recurrent propagation constitutes
a computational bottleneck, Li et al. [208] have introduced a di�erent variant of RNN
called gated recurrent unit (GRUs) which perform state updates more e�ciently. A later
work of Simonovsky et al. [202] extends these ideas by explicitly leveraging label edges to
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perform convolution. Making use of edge labels information, by dynamically generating
learnable edge weights while applying convolution, allows the network to bene�t from the
key properties of classic CNNs namely weight sharing and locality.

In general a graph is a versatile and powerful representation. We make use of this
concept in our approach for partitioning 3D point clouds and 3D meshes.

4.1.4.4 Unordered point sets

3D data in its simplest form is represented by the mean of an unordered set of georefer-
enced 3D points. Most of the prior work applying deep learning on 3D point clouds have
adopted the assumption that the network input has to be structured in a regular grid with
an explicit connectivity information. Both OctNet [155] and VoxelNet [15], discussed ear-
lier, structure point clouds respectively by means of an octree and a voxel grid to preserve
the euclidean properties of data before feeding it to deep networks. A di�erent category
of approaches such as SnapNet [209] have proposed to �rst generate virtual views from
the input 3D data leading to a set of 2D images where a wide variety of mature CNNs can
be easily applied to perform the desired task (semantic segmentation, object detection,
etc.). Once labels or features are extracted, they are reprojected-back to their original
form in 3D space. Even though these projective methods arguably handle large scale data
to some extent, this gain comes at the expense of the projection reliability. In practice,
prominent geometric information is lost in the back and forth projections since 2D images
are no more than a rasterization of 3D scenes. Figure 4.12 illustrates the full pipeline for
3D point cloud semantic segmentation.

Figure 4.12: Snapnet framework for point cloud semantic segmentation. Image from [209]

The �rst pioneer work that directly make use of unordered points as input is PointNet
[14]. This deep architecture di�ers signi�cantly from the rest of the networks proposed in
the literature by its simplicity. Instead of developing an adequate convolution operator
with learnable �lters, PointNet [14] have shown that using a network comprised exclu-
sively of fully connected layers along with aggregation modules is su�cient for encoding
convenient spatial information. In principle, PointNet is composed of three building blocks
as illustrated in Figure 4.13; a spatial transform network (STN), a multi-layer perceptron
and a symmetric function which consists of a max pooling operation.

STN module learns a canonical form of the input points and selects the most in-
formative points characterizing the input shapes. MLP module is a succession of fully
connected layers that generate a feature vector for each point independently. Finally the
permutation invariant max pooling module aggregates the learned features into a global
one which serve for classi�cation purposes or segmentation after further processing. De-
spite the competitive results achieved by PointNet, the network as it is designed fail to
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Figure 4.13: PointNet architecture for 3D point clouds classi�cation and segmentation. Image
from [14]

encode �ne-grained patterns of each point and its local neighborhood. PointNet++ [153]
mitigates this limitation by proposing a nested hierarchical portioning of points along the
network. The intuition behind this idea is mainly inspired by 2D CNNs where the size
of feature maps is progressively decreased along the network to learn features at vari-
ous scales. First input points are partitioned into overlapping regions. Then features are
learned at gradually increased neighborhood sizes such that smaller neighborhood capture
�ne grain features while larger ones encode global geometric shape features. Figure 4.14
illustrates the architecture proposed in [153].

Figure 4.14: PointNet++ hierarchical architecture for 3D point clouds classi�cation and seg-
mentation. Image from [153]

Whereas PointNet++ outperforms PointNet in classi�cation and segmentation tasks,
the developed architecture is complicated and computationally not e�cient compared to
the gain in accuracy. Most importantly, both PointNet and PointNet++ share a common
weakness which is their unability to handle large scale data. In theory, these architectures
are e�cient for man made shapes with few thousands of points which is not compatible
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with applications requiring data at larger scales. In the context of outdoor navigation, the
size of input data can easily reach millions if not billions of points especially for mobile
mapping acquisition campaigns. A �rst interesting work that deals e�ciently with scale
problem while taking advantage of the new point embeddings method such as PointNet
is Super-Point Graph (SPG) [17].

Figure 4.15: SPG full pipeline for large scale 3D point clouds semantic segmentation. Image
from [17]

Landrieu and Simonovsky in [17] have proposed an innovative framework through
which data is represented e�ectively, called superpoint graph. The full pipeline, as demon-
strated in Figure 4.15 is composed of three major steps. First, an over-segmentation is
computed over the entire point cloud resulting in a set of geometrically homogeneous
segments. Second, the consequent primitives or so called superpoints are further down-
sampled and passed subsequently to a PointNet network for embedding. Finally to ensure
that long range interactions are preserved between the computed superpoints while com-
puting a contextual segmentation, a graph-based deep learning algorithm [202] performing
graph convolution is applied on the adjacency graph having superpoints as nodes and their
spatial relations as edges. Even though SPG framework has shown impressive results by
improving state-of-the-art in the task of point cloud semantic segmentation, we believe
that there is a large margin for improvement. As pointed out in Section 4.1.1, the over-
segmentation in SPG framework is based on the work of Guinard et al. [157] leveraging
handcrafted features for superpoints segmentation. As later steps rely essentially on the
quality of the over-segmentation, we believe that this step should be also learned in a
supervised deep framework to reduce potential errors.

4.1.4.5 3D Meshes

As discussed above, the success of a deep learning method applied to 3D data is mainly
tied to how the convolution operator is appropriately adapted to the topology of data. 3D
meshes in particular belong to the category of non-euclidean 3D representations where it
is di�cult to de�ne the local convolution support on a 3D surface. Geodesic CNN [210]
is among the �rst attempts to circumvent the lack of a support for convolution. In this
work, Masci et al. have proposed to construct local patches in local polar coordinates as
shown in Figure 4.16.

Afterwards, a geodesic convolution is performed by applying a �lter kernel subject
to angular coordinates at each vertex of the mesh within the constructed local patch.
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Figure 4.16: Illustration of the local geodesic patches in polar coordinates on a manifold mesh.
Image from [210]

The proposed network is a succession of non-linearity layers, geodesic convolution layer
followed by an angular max pooling in addition to a Fourier transform w.r.t. angular
coordinates in order to remove arbitrary rotation ambiguity.

More recently, Huang et al. [26] introduced a consistently-oriented geodesic parame-
terization for a 3D surface associated with a high resolution signal. Called TextureNet,
the network's input is a 3D textured mesh and its output is a set of learned features
attached to sampled points on the surface. TextureNet deals with the lack of an uni�ed
and seamless local parameterization of the surface, by computing a four-fold rotationally
symmetric �eld on the surface. This 4-RoSy �eld consists of a set of tangent directions
attached to vertices that allows to consistently orient adjacent neighborhoods. A 4-RoSy
convolution operation de�ned within this geodesic �eld is orientation invariant.

Figure 4.17: TextureNet architecture. Image from [26]

The proposed architecture illustrated in Figure 4.17 is a U-Net-like network [211]
composed of an encoder and a decoder. In addition to pooling and non-linearity layers,
the de facto core of TextureNet is the convolution layer. The latter is comprised of four
blocks performing respectively a geodesic patch search followed by a texture grouping
then a convolution and aggregation operations w.r.t. to the local geodesic patch.

While the aforedescribed convolution operators in [26, 210] o�er interesting approaches
for a consistent local surface parameterization in order to perform convolution, they re-
main extremely sensitive to the triangulation irregularities since they are attached to
geodesic patches de�ned over the mesh surface not to mention the required computa-
tional cost when computed repeatedly during training.

94



4.1. OVERVIEW

A di�erent approach introduced in Hanocka et al. [16], has proposed a network that
is explicitly designed for irregular triangular meshes. The key innovation of this method
is that both convolution and pooling are de�ned on the mesh edges instead of local surface
patches. Assuming that the input mesh is manifold with possibly boundary edges, this
means that each edge is shared by exactly two faces (i.e. having four adjacent edges or
two in case of a boundary edge).

Figure 4.18: Illustration of convolution and pooling operation on 3D meshes. Image from [16]

For each edge, the convolution is performed w.r.t. to its 1-ring adjacent edges 2 as illus-
trated in Figure 4.18 (a). Such setting entails an ambiguity concerning the edge ordering.
In essence, by considering a counter-clockwise ordering of vertices of the incident faces
to the edge e, we can observe that there are two possible ordering namely (e1, e2, e3, e4)
or (e3, e4, e1, e2) as shown in Figure 4.19. Such ambiguity hinders the capability of the
convolution layer to learn invariant discriminative features. The desired properties of a
convolution operator are mainly its invariance to similarity transformations including ro-
tation, translation and scale. To ful�ll these criteria, Hanocka et al. [16] attach to each
edge relative features that are inherently invariant to rotation, translation and scale such
as the dihedral angle between adjacent faces, two inner angles (α, β) and the ratios be-
tween the underlying edge and its perpendicular belonging to incident faces as illustrated
in Figure 4.4.

Figure 4.19: Illustration of the hand-crafted features computed per-edge

2the set of edges forming the faces incident to the underlying edge.
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Afterwards symmetric functions are applied to feature edges depicting an ambiguity.
We recall that a convolution is a correlation between a neighborhood and a template or
kernel. Formally, according to [16], for an edge e and its 1-ring neighborhood e1, e2, e3
and e4 associated respectively with features f, f1, f2, f3 and f4 a mesh convolution with a
kernel w is de�ned as:

fw0 +
4∑
i=1

wifi where (f1, f2, f3, f4) = (| e1 − e3 |, e1 + e3, | e2 − e4 |, e2 + e4) (4.4)

Applying symmetric functions | e1−e3 | and | e2−e4 | on relative edge features remove the
ordering ambiguity in convolution. Mesh pooling, on the other hand is performed using
a task-aware edge collapse operation. In theory, once features are computed for each
edge after few convolutions, the pooling consists in selecting which edges to be collapsed
w.r.t. the learned task. As shown in Figure 4.18 (b) and (c), pooling consists in reducing
�ve edges into two by �rst collapsing the edge with the lowest strength (the minimum `2
norm of its corresponding feature) and merging the remaining edges by averaging their
corresponding features. Note that concretely the input mesh is not decimated while
training, albeit the computed feature maps are the subject of pooling. This allows the
network to capture key information at multiple scales akin to 2D CNNs. The performance
of this approach has been demonstrated on classi�cation and semantic segmentation tasks
setting a new state-of-the-art. In our work we adapt this architecture to extract features
of mesh faces.

4.1.5 Review conclusion

To conclude, this short review is far from being an extensive study as our goal is to
introduce the most relevant work that inspired our approach. While the literature is full
of surveys discussing 2D superpixels such as the recent work of Stutz et al. [163], over-
segmentation of point clouds and 3D meshes is a less studied subject. Our review can be
further extended to a more complete and comprehensive survey.

It should be noted that there is a rich literature regarding graph partitioning methods.
We limited the de�nitions and algorithms presented in this section to the most related
notions used in our work so that the reader do not get distracted with overwhelming
irrelevant information. A pointer to further thorough studies is most of the time provided
in case the reader is interested to know more about the underlying subject.

We believe deep learning on 3D point clouds in particular has witnessed a tremendous
progress during the past two years. For a more thorough general study on deep learning
applied to 3D data, the reader is referred to [199, 212]. All of the aforedescribed repre-
sentations have demonstrated an outstanding performance especially PointNet [14], SPG
[17] and meshCNN [16]. We make use of these methods to develop our over-segmentation
framework for point clouds and 3D textured meshes.

4.2 Method

The goal of our method is to produce a high-quality over-segmentation of large scale 3D
data represented as point clouds or 3D meshes structured by a graph in order to be used
in turn to perform semantic segmentation. First, we build a graph on top of the data
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points. The structure of this graph is mainly dependent on the geometry of data. Second,
we partition the constructed graph supervised by the ground truth segmentation of data
points. Finally, we combine our framework with a dense classi�cation algorithm SPG
[213] initiated by our over-segmentation to improve semantic segmentation results.

Concretely, our over-segmentation method is a two step approach. First, we learn vertex
embeddings in such way they are homogeneous within segments and present high con-
trast at their borders. Second, we compute a piece-wise constant approximation of these
learned embeddings with respect to an adjacency graph as illustrated in Figure 4.20.
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(a) Ground truth partition P

v0 v1

v2v3

v4 v5

v6

v7

v8

(b) Learned embeddings e.

Figure 4.20: Illustration of our method: vertex embeddings are learned such that they are
homogeneous within ground truth segments P, and with high contrast at transition edges (in red).

Formally, let V be a set of data points (3D points of a point cloud or triangles of a 3D
mesh) whose adjacency structure is encoded by the graph G = (V,E), with E ⊂ V ×V the
set of edges. We assume that this adjacency structure is sparse, in the sense that |E| �
|V |2. For a partition U = (U1, · · · , UK) of V , we denote Etrans(U) its set of transition
edges, i.e. the set of inter-edges linking di�erent elements of U : Etrans(U) = {(u, v) ∈ E |
u ∈ Ui, v ∈ Uj, i 6= j}. Inversely, the set of intra-edges i.e. linking points within the same
segment is de�ned as E \ Etrans(U). First, we start by associating to each vertex v in V
an embedding ev in the m-dimensional unit sphere Sm = {x ∈ Rm | ‖x‖ = 1}. In the
following section 4.2.1 we discuss how such an embedding can be computed. Second, we
partition V into the constant connected component of a piecewise-constant approximation
of ev with respect to the graph G. The latter step is discussed in Section 4.2.2.

4.2.1 Learning embeddings

Our objective is to learn a vertex embedding function ξ : V 7→ Sm such that ξ(V ) is homo-
geneous within the segments of the ground truth segmentation P , and with high contrast
at transition edges Etrans(P). Note that as advocated by Wang et al. [214] constraining
these embeddings to be within the m-unit sphere Sm not only prevents collapse during
the training phase but also normalizes the distance between the embeddings.

As demonstrated by Hornik in [215], neural networks are universal approximators for
arbitrary �nite input measures. With the huge success of neural networks in large variety
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of computer vision tasks, the function ξ would be typically a neural network operating
on features of the data points corresponding to the vertices V of G. These input features
can be pixel colors in 2D images, the local geometry/radiometry of points or triangles in
respectively a 3D point cloud or a 3D mesh.

In 2D images, [216] have shown that taking descriptors as the activations of Convo-
lutional Neural Networks (CNNs) layers outperforms all the hand-engineered features.
Following this work [160] proposed to use a classic encoder-decoder backbone to compute
features from 2D images which serves subsequently to learn task-speci�c superpixels. The
architecture used in [160] is illustrated in Figure 4.21. The computed features are the
result of concatenating features from the last layer with XYLab features of each pixel.

Figure 4.21: The proposed network is composed of a stack of convolutional layers interleaved
with Batch norm (BN) and non-linearity (ReLU) layers. Image from [160]

While it seems simple to embed pixels of 2D images, in the 3D domain however,
extracting local features of 3D data is not straightforward. With the recent success of
global deep architectures for 3D point cloud and 3D mesh classi�cation especially PointNet
[14] and MeshCNN [16] discussed in Section 4.1.4, we propose an adaptation of these two
methods respectively in Section 4.3 and Section 4.4 in order to compute dense per-point
features for 3D point clouds and per-triangle features for 3D meshes.

Once these embeddings are computed, the over-segmentation is de�ned subsequently
with respect to the adjacency graph G build upon the 3D data.

4.2.2 The generalized minimal partition problem (GMPP)

In our method, the over-segmentation is cast as a graph partitioning problem. We de�ne
these segments by computing the constant connected components in the graph G of a
piecewise-constant approximation of the embeddings ev ∈ SVm. This approximation is the
solution f ? of the following optimization problem:

f ? = arg min
f∈RV×m

∑
v∈V

‖fv − ev‖2 +
∑

(u,v)∈E

wu,v [fu 6= fv] , (4.5)
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with w ∈ RE
+ the edges' weight and [x 6= y] the Iverson's bracket equal to 0 if x = y and 1

otherwise. To encourage splitting along high contrast areas, we de�ne the edge weight as

wu,v = λ exp

(
−1

σ
‖eu − ev‖2

)
, λ, σ ∈ R+ parameters (4.6)

Known as the Generalized Minimal Partition Problem GMPP and introduced by [178],
the equation (4.5) is neither continuous, di�erentiable, nor convex, and therefore the global
minimum cannot be realistically retrieved. One way to get good approximate solution
e�ciently consists in using the `0-cut pursuit algorithm [178] discussed in Section 4.1.3.
Note that the edges' penalty de�ned in equation (4.6) automatically implements (P3) for
reasonable parameterization of the problem. Thus we can de�ne S(e) as the segmentation
given by the connected components of the approximate solution f ? of equation (4.5) for
a given embedding e. In order to learn vertex embeddings and partition the graph G
accordingly, an objective function, which reduce gradually the error between the ground
truth segmentation P and the predicted one S during optimization, should be carefully
designed.

4.2.3 Graph structured contrastive loss

As mentioned earlier, the object purity property (P1) is the �rst quality of an accurate
over-segmentation. A straightforward way to learn such an embedding function ξ would be
to choose a metric estimating the object purity as a loss function. In the literature, (P1)
can be evaluated by measuring the agreement between a ground truth segmentation P and
the predicted segmentation S using the under-segmentation error [163]. This error sums
over each segment S ∈ S the number of vertices which are not in the majority segment,
i.e. the element of P with the largest overlap with S. Formally, the under-segmentation
error L(P ,S) can be de�ned as:

L(P ,S) =
1

|V |
∑
S∈S

min
P∈P
|S \ P | . (4.7)

However directly back-propagating through the minimization of L(S(ξ(V )),P) is di�cult,
if not impossible for several reasons. First, the GMPP de�ned in (4.5) used to compute
the predicted partition S is non-continuous and non-convex. Second, computing the
connected components on a graph is inherently non-di�erentiable since this operator is
discontinuous as a single tiny change may overhaul the entire partition as illustrated in
Figure 4.22.

Instead, we note that if the border recall property (P2) is implemented (i.e. predicted
segments and ground truth objects share the same boundaries), then (P1) ensues. There-
fore, we propose a surrogate back-propagable loss called the graph-structured contrastive
loss focusing on correctly detecting the borders between objects and operates on edges
instead of vertices. Our loss is de�ned as:

`(e,P) =
1

|E|

 ∑
(u,v)∈E\Etrans(P)

φ (eu − ev) +
∑

(u,v)∈Etrans(P)

µ(e)
u,vψ (eu − ev)

 , (4.8)

with φ (resp. ψ) a function favoring similarity (resp. contrast), and µu,v ∈ REtrans a
weight on transition edges, discussed later.
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(a) A single connected component (b) a small change results in 3 di�erent connected
components

Figure 4.22: Explanation of the non-di�erentiability of the connected component operator

{
φ(x) = δ(

√
‖x‖2/δ2 + 1− 1) with δ = 0.3,

ψ(x) = max (1− ‖x‖, 0) ,
(4.9)

In the spirit of the original contrastive loss [217] discussed in Section 4.1.2, our loss
encourages embeddings of vertices linked by an intra-edge to be similar, while rewarding
di�erent embeddings when linked by a transition edge. Note that our ` is di�erent from
the original triplet loss [214, 218], as it involves all vertices within a graph (or a sub-graph)
at once, and not just an anchor and related positive/negative examples. In this way, it
bypasses the problem of example picking altogether. Indeed, the positive and negative
examples are directly given by the adjacency structure set by Etrans and E \ Etrans. A
vertex embedding function minimizing this loss will be uniform within elements of P and
have high contrasts at Etrans(P). Consequently, Etrans(S(e)) should be close to Etrans(P).

−2 −1 1 2

0.5

1

1.5

2

x

φ(x) and ψ(x)

Figure 4.23: The functions φ (in blue) and ψ (in red) used in the graph-structured contrastive
loss.

We chose φ, the function promoting intra-object homogeneity as represented in Fig-
ure 4.23. Indeed, the �rst term of ` is the (pseudo)-Huber graph-total variation [219, 220]
on the intra-edges (E \Etrans(P)), promoting smooth homogeneity of embeddings within
the same object.

ψ, the second part of ` is the opposite of the truncated graph-total variation [221]
on the transition edges Etrans(P). It penalizes similar embeddings at the border between
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objects. Conscious that our embeddings are restricted to the unit sphere, we threshold
this function for di�erences larger than 1. In other words, ψ encourages vertices linked
by an inter-edge to take embeddings with an euclidean distance of 1, but does not push
for a larger di�erence.

It should be emphasized that at this stage we do not try to learn semantic information,
but rather to compute a signal on a graph such that its constant approximation respects
certain properties. That is why, it may happens that objects of di�erent classes can share
the same embeddings as long as they are not adjacent.

4.2.4 Cross partition weighting

As explained earlier, if the ground truth segments and the predicted ones share the same
boundaries (P2), this will guarantee the object purity (P1). While (P2) does imply (P1),
tiny errors in the former can have drastic consequences on the latter. In practice, if one
transition edge is missed, this can erroneously fuse two large segments covering di�erent
objects. Without an appropriate weighting strategy, ` will fail to take into account the
e�ect of each edge which is susceptible to be largely varying in terms of undersegmentation
error L (4.7). By omitting µ(e)

u,v from the second part of equation (4.9), ` will only have
a high accuracy in recovering transition edges while being agnostic to the in�uence of
each e ∈ Etrans. In the literature, [173] proposed to incorporate the object purity by
introducing a weighting scheme to the so called segmentation-aware a�nity loss (SEAL).
In this strategy for an edge (u, v) in a segment S of the predicted partition S, µ implements
directly the under-segmentation error (4.7):

µu,v = 1 + |S | −min
P∈P
|S \ P| (4.10)

Although [173] show impressive results for superpixel segmentation, we were not able to
replicate this success to superpoint/superfacet segmentation. In fact, we argue that the
edge weights are evenly shared by all transition edges of a given segment regardless of their
in�uence on the purity and the size of the interface. This excessively favors long interfaces
in the loss, and inadequately handles large segments with multiple interfaces. Moreover,
as soon as a segment no longer overlaps the object's border, its weight is decreased to 1
making thereby the loss unstable during training.

In order for ` (4.9) to better represent L (4.7), the edge weights µ ∈ REtrans(P)
+ should be

set wisely to re�ect this in�uence. To this end, we introduce the cross-partition weighting
strategy. First, we build the cross-segmentation graph G(e) = (C(e), E (e)), represented in
Figure 4.24 and de�ned as the adjacency graph of the cross-partition between the ground
truth object partition P and the predicted partition S(e). In other words, C is the set of
connected components of the graph G when all edges either between objects or between
segments are removed, and the super-edge (i.e. set of edges) (U, V ) ∈ E is the set of
transition edges of Etrans between U and V in C:

C(e) =
{
P ∩ S | P ∈ P , S ∈ S(e) and P ∩ S 6= ∅

}
(4.11)

E (e) =
{

(U, V ) ∈ C(e) 2 | U × V ∩ Etrans 6= ∅
}
.

We associate the following weight M (e)
U,V to each super-edge (U, V ) of E (e) and µ(e)

u,v to
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P0

P1

P2

S0

S1

S2

(a) Proposed partition S

P1 ∩ S0

P0 ∩ S0

P2 ∩ S2

P2 ∩ S1

3M0 / 3

M0 / 1

M0 / 2

(b) Cross-partition graph G.

Figure 4.24: Illustration of the proposed superedge weighting scheme. Left, we represent an
erroneous proposed partition S with 3 segment. Right we represent the cross partition graph G
with the edge weights MU,V / |U × V ∩ Etrans|.

each transition edge:

M
(e)
U,V = M0 min (|U | , |V |) for (U, V ) ∈ E (e) (4.12)

µ(e)
u,v =

M
(e)
U,V

| U × V ∩ Etrans |
for (u, v) ∈ U × V ∩ Etrans.

with M0 a parameter of the model. These weights take into consideration not only
the in�uence of the edges in the purity but also the shape of the interfaces. Indeed,
the under-segmentation error caused by an erroneous fusion of two segments U and V is
proportional to min(|U | , |V |). This is explained by the de�nition of E (e) which implies
that two segments U and V of C(e) linked by a super-edge (U, V ) ∈ E (e) are in two di�erent
ground truth segments.

We note that setting M0 = |E| / |V | gives the same importance to the classi�cation of
transition and non-transition edges. Indeed, assuming that most edges are non-transition,
we have the sum of non-transition edge weights close to |E|. In an over-segmentation
context, M0 must be set higher to prioritize the recovery of object borders.

The weights are at last normalized by the number of edges constituting the interface
between U and V in order to distribute evenly the penalty over the number of edges
constituting an interface. This prevents long borders from being over-represented in the
loss. In Figure 4.25, we further explain our cross-partition weighting strategy using a
concrete example of a scene composed of a door (D) and a wall (W). Two segments
L (left) and R (right) overlap the door. The super-edge (LW,LD)(resp. (RW,RD))
represent the adjacency between the part of the left (resp. right) segment covering the
wall and the part covering the door. With fewer trespassing points and a longer interface
than (RW,RD), the weights of the edges constituting (LW,LD) are smaller.
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segment
majority object
trespassing
interface

µLW,LD =

µRW,RD =

Figure 4.25: Illustration of the cross-partition weighting strategy on a simpli�ed scene

4.3 Applications: 3D semantic map as point cloud

In this section, we �rst explain how to apply our over-segmentation method to 3D point
clouds of indoor and outdoor scenes. Second, we show how the learned superpoints can be
successfully combined with a superpoint-based semantic segmentation algorithm to build
a 3D semantic map. We start by introducing our local point embedder LPE, a simple
neural network which associates each 3D point with a low dimensional embedding that
captures its local geometry and radiometry.

4.3.1 3D point cloud embedder LPE

Let C be a 3D point cloud, such that each point i is de�ned by its position pi ∈ R3 and
d-dimensional radiometric information ri ∈ Rd (this can be colors if available, or intensity
of LiDAR scans, or be ignored if none is available). Each point i is associated with its
local features Pi and Ri, respectively comprised of the position and radiometry of its k
nearest neighbors Ni in the input cloud: Pi = {pj | j ∈ Ni} , Ri = {rj | j ∈ Ni}. For ease
of notation, any operator or function f applied to a set of features X is to be understood
as being applied to all its elements: f(X) = {f(x) | x ∈ X}.

The goal of our network is to associate each 3D point i with a compact m-dimensional
embedding ei characterizing its features (position, color) and the geometry and radiometry
of its local neighborhood. The global architecture of the proposed Local Point Embedder
(LPE) is illustrated in Figure 4.26:

Our architecture is a lightweight network inspired by PointNet [14]. However, unlike
PointNet, LPE does not try to extract information from the whole input point cloud, but
rather encodes each point based on purely local information. Our LPE is comprised of
two parts; a spatial transform network and a lightweight PointNet-like network. In the
following we detail each part of the proposed architecture.

4.3.1.1 Spatial transform network:

This unit takes the positions of a target point pi and its local k-neighborhood Pi. First
the neighbors' coordinates are normalized around pi such that the standard deviation of

103



CHAPTER 4. SUPERVISED OVER-SEGMENTATION FOR 3D SEMANTIC
MAPPING

Figure 4.26: Our LPE network used to embed each 3D point in a point cloud.

Pi

pi

P̃i

p̃iz
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1 4
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Figure 4.27: Architecture of the spatial transform network.

the point's position is equal to 1 (4.15). Then, this neighborhood is rotated around the z
axis with a 2 × 2 rotation matrix computed by small PointNet network PTN (4.16). As
advocated by [222], these steps aim to standardize the position of the neighborhood clouds
of each point. By doing so, the next network will be able to learn position distribution.
Along the normalized neighborhood position P̃i, this unit also outputs geometric point-
features p̃i describing the elevation p(z)i , the neighborhood radius, as well as its original
orientation (through the 4 values of the rotation matrix: [Ωx,x,Ωx,y,Ωy,x,Ωy,y])(4.17).
By keeping track of the normalization operations, the embedding can remain covariant
with the original neighborhood's radius, height, and original orientation, even though the
points' positions have been normalized and rotated.

In Figure 4.27 we expose the details of the spatial transform part. the network takes
a point's coordinate as point-input pi and the coordinates of its neighbors as set-input
Pi. The vertex r computes the radius of a point cloud (4.13), the vertex z extract the
vertical coordinate of a point's position, and the vertex PTN is a small PointNet-like
network (4.14) which outputs a 2 × 2 rotation matrix around the z axis (4.16). In this
and subsequent �gures, set-features (respectively point-features) are represented by a
dotted line (respectively a solid line). The numbers above the lines represent the size of
the channels.

rad = std (Pi) (4.13)

Ω = PTN(P̃i) (4.14)

P ′i = (Pi − pi)/rad (4.15)

P̃i = {p× Ω | p ∈ P ′i} (4.16)

p̃i = [p
(z)
i , rad,Ω] (4.17)
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Xi

xi

MLP1

m
axp

ool

MLP2 L2 ei

Figure 4.28: Architecture of the second part of our LPE (4.19), which computes an embedding
set-feature Xi and point-feature xi encoding the local radiometry and the normalized geometry.
The L2 block normalizes the output on the unit sphere (4.18).

4.3.1.2 PointNet-like embedder

The embeddings ei are computed for each point i of C through a shared lightweight
PointNet-like network (4.20). The input set-feature Xi is set as the concatenation of
the neighbour's transformed position P̃i and their radiometric information Ri, while the
input point-feature xi is composed of the neighborhood geometric point-feature p̃i and
the radiometry ri of point i.

L2(·) = ·/‖ · ‖ (4.18)

LPE(Xi, xi)=L2 (MLP2 ([max (MLP1(Xi)) , xi])) (4.19)

ei = LPE([P̃i, Ri], [p̃i, ri]) (4.20)

The embeddings computed using our LPE architecture are optimized through our graph-
structured constrastive loss discussed in Section 4.2.3 supervized by the ground truth
segments until they are homogeneous within objects and present high contrast at their
borders.

4.3.2 Residual Point Embedder

We have tested an alternative con�guration for the local point embedder LPE, in which
they were stacked in layers, similarly to the classical convolutional architecture for im-
ages. We �rst introduce a slightly changed architecture, the Residual Point Embedder
RPE, whose design is based on an LPE but takes a supplementary input eini. Instead of
computing a new embedding, the RPE computes a residual (4.21) which is added to this
initial embedding before normalization (4.22):

R(Xi, xi) = MLP2 ([max (MLP1(Xi)) , xi]) (4.21)

RPE(xi, Xi, eini) = L2 (eini +R(Xi, xi)) (4.22)

The second change is the layers architecture. The RPEs in the �rst layer compute the
embeddings from the local geometric and radiometric information alone, and their initial
embedding is set to 0 (4.23) (such that they behave exactly like LPEs). The RPEs
in subsequent layers compute new embeddings from the local radiometry and geometry
as well as the embeddings computed at the previous layer of the points neighbors Et

i

(4.24). Note that for a point to be processed by a layer, all its neighbors must have
been embedded by the previous layer. This allows the RPEs to have increasingly broader
receptive �elds, and to correct errors that might have been done by previous layers. Note
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that the geometric information are only processed by the spatial transform once, cascading
its values to all residual layers.

e
(0)
i = RPE(0)([P̃i, Ri], [p̃i, ri], 0) (4.23)

e
(t+1)
i = RPE(t)([P̃i, E

(t)
i ], [p̃i, ri, e

(t)
i ], e

(t)
i ) (4.24)

Alternatively, all initial embeddings can be set to 0, which means that each layer computes
a new embedding from the local position and the embeddings of the previous layers.

4.3.3 Numerical experiments

In this section, we show �rst our numerical experiments for the task of over-segmentation
on two di�erent datasets. Second, we combine the learned superpoints with the method
of [17] to perform semantic segmentation.

4.3.3.1 Datasets

We evaluate our full pipeline of over-segmentation and semantic segmentation on two
di�erent public datasets:

� S3DIS [23]: this dataset is composed of 6 large-scale indoor areas from 3 di�erent
buildings. These areas show essentially o�ce style architecture including conference
rooms educational spaces and hallways. S3DIS is a large scale dataset composed of 600
million 3D RGB points acquired automatically using the Matterport scanner. Ground
truth annotations are provided for 13 semantic classes of structured elements. These
annotations include furniture items and commonly known classes such as door, window,
ceiling, �oor, chair, sofa, table, etc. Most importantly, in addition to per-point semantic
labels, S3DIS o�ers object annotations which is a key enabler for our supervized over-
segmentation method.

� vKITTI 3D [223]: built upon the original KITTI dataset [49], vKITTI is a virtual
dataset comprised of nearly 15 million 3D points constructed by projecting video se-
quences into 3D space using camera parameters. Ground truth annotations are provided
only for semantic labels of points with respect to 13 classes (terrain, road, sidewalk,
road sign, etc.). In order to get a ground truth partition of objects for training, we
compute the connected components of the semantic labels of points.

Both datasets are composed of 6 parts which allows us to use 6-fold cross-validation for
evaluation. For e�ciency, We subsample the two datasets using a regular grid of voxels
(3cm wide for S3DIS and 5cm wide for vKITTI) as a preprocessing step before over-
segmentation. In each voxel, we average the position and color of the contained points.
This allows us to decrease the computation time and memory load.

4.3.3.2 Implementation details

In all our experiments, we set m the dimension of the computed embedding by LPE
to 4. The architecture of LPE is a lightweight PointNet-like network operating on the
k = 20 nearest neighborhood points of each point with no more than 15000 parameters
for e�ciency reasons. To prevent the creation of many small superpoints in regions of
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high contrast, we modi�ed the `0-cut pursuit algorithm 3[178] by merging components
greedily with respect to the objective energy de�ned in (4.5), as long as they are smaller
than a given threshold.

In order to build more robust networks, we added Gaussian noise of deviation 0.03
clamped at 0.1 on the normalized position and color of neighborhood clouds. We also
added random rotation of the input clouds for the network to learn rotation invariance.
To preserve orientation information, the clouds are rotated as a whole instead of each
neighborhood. This allows the spatial transform to detect change in orientation, which
can be used to detect borders.

To limit the spatial extent of the superpoints we concatenate to the points' embeddings
their 3D coordinates in (4.5) multiplied by a parameter αspatial, in the manner of [18].
This determines the maximum size that superpoints can reach. To automatically select
a minimal superpoint size (in number of points) appropriate to the coarseness of the
segmentation, we heuristically set:

nλ̃min =

[
(max

(
1

2
n
(1)
min, n

(1)
min +

1

2
n
(1)
min log(λ̃)

)]
(4.25)

where n(1)
min is a dataset-speci�c minimum superpoints size for λ̃ = 1. For example,

for n(1)
min = 50, the smallest superpoint allowed for a small regularization strength λ̃ = 0.2

will be 33, while it is 70 for the coarse partition obtained with λ̃ = 6. While speci�c
applications may require setting up this variable manually, this allowed us to produce the
regularization paths in Figure 4.29 while only varying λ̃.

parameter shorthand section S3DIS vKITTI
Local neighborhood size k 4.3.1 20

# parameters - - 13,816
LPE con�guration - 4.3.1 [32,128],[64,32,32,m]
STN con�guration - 4.3.1 [16,64],[32,16,4]

Embeddings dimension m 4.3.1 4
Adjacency graph G 4.2.2 5-nn 5-nn + Delaunay

exponential edge factor σ 4.2.2 0.5
intra-edge factor µ̃ 4.2.4 5
spatial in�uence αspatial 4.3.3 0.2 0.02

smallest superpoint n
(1)
min 4.3.3 40 10

epochs - - 50
decay event - - 20,35,45

Table 4.2: Con�guration of the embedding network for the S3DIS and vKITTI datasets.

We show in Table 4.2 the size of the linear layers, before and after the maxpool
operation. Over 250, 000 points can be embedded simultaneously on 11GB RAM in the
training step, while keeping track of gradients.

4.3.3.3 Over-segmentation results

� Evaluation metrics: In the literature, several evaluation metrics were proposed to
assess qualitatively and quantitatively an over-segmentation with respect to the afore-
3https://github.com/loicland/cut-pursuit
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mentioned properties (P1), (P2), and (P3). For point clouds, the Boundary Recall
(BR) and Precision (BP) are used to evaluate the ability of the superpoints to adhere
to, and not cross, object boundaries ((P2), (P3)). However, these measures are de�ned
with respect to boundary pixels [169] or points [165]. We argue that for point clouds
transition occurs between points and not at points. That is why we think using edges
instead of points to compute these metrics is more convenient. To this end, we de�ne
Epred

trans the set of predicted transition, i.e. the subset of edges of E that connect two
points of C in two di�erent superpoints. These metrics are often given with respect to
a tolerance, i.e. the distance at which a predicted transition must take place from an
actual object's border for the latter to be considered retrieved. We set this distance to
1 edge, which leads us to de�ne E(1)

trans the set of inter-edges expanded to all directly
adjacent edges in E:

E
(1)
trans = {(i, j) ∈ E | ∃(i, k) or (j, k) ∈ Etrans} . (4.26)

This allows us to de�ne the boundary recall and precision with 1 edge tolerance for a
set of predicted transition Epred

trans:

BR =
| Epred

trans ∩ E
(1)
trans |

| Etrans |
, BP =

| Epred
trans ∩ E

(1)
trans |

| Epred
trans |

. (4.27)

In addition to BR and BP, other metrics were introduced to assess the purity of objects
in an over-segmentation. The achievable segmentation accuracy (ASA) [166] is an
upper-bound measure that gives the total e�ective segmentation area S with respect
to a ground truth partition P . Formally ASA is de�ned as:

ASA(S,P) =
1

N

∑
Sj∈S

max
Pi∈P
| Sj ∩ Pj | (4.28)

We introduce an analog metric to ASA called the Oracle Overall Accuracy (OOA)
which characterizes the accuracy of the labeling that associates each superpoint S of
a segmentation S with its majority ground-truth label. Formally, let l ∈ KC be the
semantic labels of each point within a set of classes K, we de�ne the OOA of a point
cloud segmentation S as:

loracle(S) = mode {li | i ∈ S} (4.29)

OOA =
1

| C |
∑
S∈S

∑
i∈S

[
li = loracle(S)

]
,

with [x = y] the function equal to 1 if x = y and 0 otherwise. Note that the OOA is
closely related to the ASA [166], but consider the majority labels of all points within
a superpixel rather than the label of the objects with most overlap. In this sense, it
is a tighter upper bound to the achievable accuracy of a superpoint-based semantic
classi�cation algorithm. This metric is also more fair than the under-segmentation
error [224] for other methods such as [157], or our cluster-based approach, as they do
not try to retrieve objects directly, but rather regions of C with homogeneous semantic
labeling.
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� Competing methods: We denote our method by SSP which stands for Supervised
SuperPoints. We compare our approach to the following methods:

SSP-cluster: is our adaptation of the soft clustering-based partition approach of
Jampani et al. [160] to the 3D setting which was initially designed for 2D superpixels
as discussed in Section 4.1.1.

SSP-SEAL: uses the same supervized graph-based over-segmentation as SSP, al-
beit the cross-partition weighting scheme in equation (4.12) is replaced by the SEAL
weighting strategy proposed by Jampani et al. in [173] in equation (4.10) as described
in Section 4.2.4. Note that this is not equivalent to the framework of [173] discussed
in Section 4.1.1, as they use a di�erent loss and clustering algorithm.

Geom-graph: is the graph-based method introduced by Guinard et al. [157] solving
(4.5) on handcrafted features [225] instead of learned ones.

VCCS: is the octree-structured cluster-based method introduced by Papon et al. [169]and
discussed in Section 4.1.1.

Lin et al. : is the adaptive resolution graph-based method introduced by [165].
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Figure 4.29: Performance of the di�erent algorithms on the 6-fold S3DIS dataset (�rst row)
and the 6-fold vKITTI3D dataset (second row).

In Figure 4.29, we report the performance of our algorithm according to three seg-
mentation metrics: OOA, BR, and BP. We observe that for the large scale S3DIS dataset
(600 Mpoints), supervised methods provide considerably better results. In particular, our
method SSP obtains better accuracy with 300 segments than the state-of-the-art method
of Lin et al. with 1500 segments. The advantages for border recall and precision are
even more signi�cant. For the smaller vKITTI3D dataset (15 Mpoints), Lin et al. obtain
better results than all supervised methods except our approach.
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Input cloud Ground truth objects LPE embeddings

SSP (ours) VCCS Lin et al.
(a) S3DIS scene with 58 objects. Superpoint count : SSP 442, VCCS 436, Lin 423.

Input cloud Ground truth objects LPE embeddings

SSP (ours) VCCS Lin et al.
(b) vKITTI scene with 233 objects. Superpoint count: SSP 420, VCCS 422, Lin 425.

Figure 4.30: Illustration of the oversegmentation results using our framework along with the
state-of-the-art methods.
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Method # parameters OOA BR BP
Best 13,816 96.2 73.3 22.1

Prop-weights 13,816 -2.6 -12.2 +10.4
SEAL-weights 13,816 -1.3 -11.3 +3.8

2-Layers 14,688 -0.1 -0.7 -0.3
2-Residuals 14,688 +0.0 -0.2 -0.7

Table 4.3: Impact of some of our design choice on S3DIS. Best is the SSP method with
cross-partition weights.

In Figure 4.30, we show the oversegmentation results of our method and the competing
algorithms on vKITTI3D and S3DIS datasets.

We observe that our supervised partition framework produces superpoints of adaptive
sizes which closely follow hard-to-segment objects such as white boards or sidewalks. We
also notice that the embeddings learn to ignore certain form of intra-object geometric and
radiometric variability. In particular, the lamp re�ections on the white boards are almost
completely ignored by the embeddings. Even more interestingly, the embeddings of trees
are homogeneous despite the signi�cant geometric variability between leafs and trunks.
As a consequence, the trees are segmented into one component while the other methods
produces many dubious superpoints.

4.3.3.4 Ablation study

To empirically validate our design choices for di�erent steps of our supervized over-
segmentation method, we have conducted an ablation study. we present the increase/decrease
of the 3 performance metrics at 500 superpoints (linearly interpolated) of alternative
methods compared to ours, on the �rst cross-validation fold of the S3DIS dataset. In
particular we introduce Prop-weight, an alternative version in which the cross-partition
weighting is replaced by a simple inversely-proportional weighting of the inter/intra edges.
Predictably, this method gives lesser results as the edges are not weighted according to
their in�uence in the partition. However, since the weights of the intra-edge are propor-
tionally higher, the border precision is improved. We implemented the weights of the
segmentation-aware a�nity loss of [173] as well for method SEAL-weights, with com-
parable results to the Prop-weight. In +TV-TV, we replace our choice of function φ
and ψ in the loss by respectively | · | and − | · |, so that our loss is closer to the pairwise
a�nity loss used by [192] (but still structured by the graph). However, this approach
wouldn't give meaningful partition as the intra-edge term con�icts with the constraint
that the embeddings are constrained on the sphere. Removing this restriction leads the
collapse of the embeddings around 0. We also tried to stack the LPE in layers, using or
not a residual structure comparable to the one used in [226] to increase their receptive
�elds. The best results were achieved with two layers: 2-Layers and 2-Residuals. How-
ever, we observe that when compared with LPE of a similar number of parameters, the
gains are insigni�cant if not null. We conclude that to embed points in order to detect
borders, a small receptive �eld with a shallow architecture is su�cient.
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4.3.3.5 Semantic segmentation resutls

� Evaluation metrics: In order to evaluate our semantic segmentation results, we use
standard metrics from the literature. The most common metric is the accuracy de�ned
as the ratio of the correctly classi�ed elements overall elements of the dataset. When
evaluating machine learning algorithms in general, four categories are usually consid-
ered. True positives (TP) de�ned as the set of elements that are correctly predicted to
belong to a given class whereas true negatives (TN) are the set of elements that are
correctly identi�ed not belonging to a given class. Inversely, false positives (FP) are
the number of negatives labeled as positives while false negatives are the number of
positive examples labeled as negative. Accuracy is de�ned w.r.t. to these categories:

Accuracy =
TP

TP + FN
(4.30)

To circumvent the class imbalance issue which is prevalent in most of the real world
datasets, we report class-wise scores in addition to the mean over all classes. Alterna-
tively, intersection-over-union (IoU) is common metric in this task as well. IoU also
referred to as the Jaccard index is a ratio between the number of elements shared be-
tween the ground truth and the prediction divided by the number of all elements across
the target and the prediction. More simply the IOU can be de�ned as:

IoU =
TP

TP + FP + FN
. (4.31)

� Resutls: In Table 4.4 and Table 4.5, we show how our point cloud oversegmentation
framework can be successfully used by the superpoint-based semantic segmentation
technique of [213]4 (SPG). We replace the unsupervized superpoint computation with
our best-performing approach, SSP. We evaluate the resulting semantic segmentation
using standard classi�cation metrics: overall accuracy (OA), mean per-class accuracy
(mAcc) and mean per-class intersection-over-union (mIoU). We observe a signi�cant
increase in the performance of SPG, beating concurrent methods on both datasets.
In particular, we observe that our method allows for better retrieval of small objects
which translates into much better per-class metrics, although the overall accuracy is
not necessarily better than the latest state-of-the-art algorithms. The detailed per-class
IoU are reported in the appendix.

We note that since the time of writing this thesis, several semantic segmentation
algorithms surpassing our method have been developed as it is an extremely competitive
�eld. We report only scores of methods that were developed before or at the same time
as ours.

4.3.4 Discussion

� Adjacency graph: For both datasets, we �nd that setting the local neighborhood
size to 20 was enough for embeddings to successfully detect objects' border. Combined
with our lightweight structure, this results in a very low memory load overall. The
adjacency graph G used for computing the graph-based partition requires more atten-
tion depending on the dataset. For the dense scans of S3DIS, the 5-nearest neighbors

4https://github.com/loicland/superpoint-graph
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Method OA mAcc mIoU
6-fold cross validation

PointNet [14] in [223] 78.5 66.2 47.6
Engelmann et al. in [223] 81.1 66.4 49.7

PointNet++ [153] 81.0 67.1 54.5
Engelmann et al. in [192] 84.0 67.8 58.3

SPG [213] 85.5 73.0 62.1
PointCNN [227] 88.1 75.6 65.4

SSP + SPG (ours) 87.9 78.3 68.4
Fold 5

PointNet [14] in [192] - 49.0 41.1
Engelmann et al. in [192] 84.2 61.8 52.2

pointCNN [227] 85.9 63.9 57.3
SPG [213] 86.4 66.5 58.0
PCCN [228] - 67.0 58.3

SSP + SPG (ours) 87.9 68.2 61.7

Table 4.4: Performance of di�erent methods for the semantic segmentation task on the S3DIS
dataset. The top table is for the 6-fold cross validation, the bottom table on the �fth fold only.

Method OA mAcc mIoU
PointNet [14] 79.7 47.0 34.4

Engelmann et al. in [192] 79.7 57.6 35.6
Engelmann et al. in [223] 80.6 49.7 36.2

3P-RNN [229] 87.8 54.1 41.6
SSP + SPG (ours) 84.3 67.3 52.0

Table 4.5: Performance of di�erent methods for the semantic segmentation task on the vKITTI
dataset with 6-fold cross validation.
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adjacency structure was enough to capture the connectivity of the input clouds. For the
sparse scans of vKITTI, we added Delaunay edges [230] (pruned at 50 cm) such that
parallel scan lines would be connected. The improvement is less signi�cant on vKITTI,
which could be due to the di�culty of constructing an adjacency graph on such a sparse
acquisition. The performance is degraded further without color information, as some
transitions are not predictable purely from the geometry.

� Network con�guration: For the LPE and the PointNet structure in the spatial trans-
form, we �nd that shallow and wide architectures work better than deeper networks. We
emphasize that the approximated solution f ? of the optimization problem (4.5) takes
values in RC×m. However, the learned embeddings ei are constrained in the m-unit
sphere Sm. In practice, this is a shortcoming of our approach as it could lead to sub-
optimal approximate solutions. In terms of computational speed, the embeddings can
be computed very e�ciently in parallel on a GPU with over 3 million embeddings per
second on a 1080Ti GPU. The bottleneck remains solving the graph partition problem
in (4.5), which can process around 100, 000 points per second.

� The transition edge weight M0: The graph-structured contrastive loss presented in
Section 4.2.3 requires setting a weight M0 determining the in�uence of inter-edges with
respect to intra-edges. Since most edges of G are intra-edges, in practice, we de�ne M0

such that M0 = µc with c = | E |/| V | the average connectivity of G. Note that c can
be determined directly from the construction of the adjacency graph (it is equal to k
in a k-nearest neighbor graph for example). A value of µ = 1 means that the total
in�uence in ` of inter-edges and intra-edges are identical. Since we are interested in
oversegmentation, we set µ to 5 in all our experiments, but note that the network is not
very sensitive to this parameter, as demonstrated experimentally: a value of µ = 3 gives
a relative performance of (−0.2,−0.6,+1.5) while a value of 8 gives (+0.1,−0.5,+1.4).

4.4 Applications: 3D semantic map as textured mesh

In this section, we apply our over-segmentation method to 3D textured meshes of urban
scenes. We use the dataset introduced in Chapter 1 as there is no dataset that we are
aware of which contains both registered geo-localized images and their corresponding 3D
textured meshes of outdoor urban scenes along with their respective semantic ground
truth annotations. Semantic segmentation of the textured mesh, however, is left as a
future work due to time constraints. We start by presenting the embedding function
ξ of the 3D textured mesh, a lightweight network inspired by the work introduced in
MeshCNN [16] and U-Net [211].

4.4.1 3D textured mesh embedding

Let us consider a 3D triangular mesh M = {V,E, T} de�ned by its sets of:
Vertices V = {vi | vi ∈ R3, 1 ≤ i ≤ n} , V ⊂ R3×n

Edges E = {ej = {u, v} | u, v ∈ V, 1 ≤ j ≤ p} , E ⊂ V 2×p,

Triangles T = {tk = {u, v, w} | {u, v} , {u,w} , {v, w} ∈ E, 1 ≤ k ≤ m} .
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where vi is the spatial position (x, y, z) of the vertex i in the 3D space. We note that
additional radiometric features can be also available such as RGB color or LiDAR re-
�ectance attached either to the vertices V or triangles T . In the following method, we
rely on 2D images for extracting radiometric features rather than the discrete photometric
information attached to vertices or mesh faces.
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Figure 4.31: The architecture of our Local Textured Mesh Embedding network (LTME)

In Figure 4.31, we show the global network architecture of the function ξ used to
embed 3D textured meshes locally called the Local Textured Mesh Embedding network
(LTME). As input, our network takes a surface represented as a 3D triangular mesh
M along with a set of registered 2D images C and their corresponding poses. First,
we start by computing for each triangle t ∈ T in the 3D mesh its projection fragment
in the corresponding camera view ct ∈ C. This step is performed o�-line using a view
selection module (VSM) as a pre-processing before training. Once the pairs of triangles
and their corresponding camera views are determined, we compute an embedding function
for each acquisition modality separately using respectively a local mesh embedder (LME)
for the 3D mesh and a convolutional encoder-decoder (CED) which consists in a U-Net-
like network [211] for images. Akin to the LPE architecture presented in Section 4.3.1,
our goal is to associate each triangle t ∈ T in the 3D mesh M and each pixel in the 2D
corresponding image ct with a low dimensional embedding. Therefore, the �nal set of the
local textured mesh embeddings will be a concatenation of the mesh faces' embeddings
and the pixels' embeddings corresponding to the faces' projection in each camera view. As
discussed in Section 4.2.1, normalizing the embeddings to the unit sphere prevents collapse
during training. Consequently, both mesh triangles' embeddings elme and image pixels'
embeddings eced are constrained respectively to the dlme and dced dimensional unit-spheres
Sdlme and Sdced .

At this stage, the 3D mesh is structured by the dual graph Gd(Vd, Ed) such that the
nodes Vd of Gd are the set of mesh faces t ∈ T while the edges Ed are the adjacency
relations in the mesh M . The embedding function ξ : Vd 7→ Su × Sv representing our
LTME is a mapping between the nodes Vd of Gd and the local computed embeddings.
As illustrated in Figure 4.31, the proposed architecture is mainly composed of 3 principle
modules. In the following we detail each one of them:
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� View Selection Module (VSM): The objective of this module is to select for each
triangle t ∈ T (|T | = m the number of triangles in the mesh), the optimal camera
view c ∈ C (|C| = k the number of camera views) w.r.t. visibility constraints. For
each triangle t ∈ T , the best camera view ct is the one with the largest projection
area of triangle t into camera c i.e. ct = arg max

c
{A[Pt(c)]} where A[Pt(c)] denotes

the projection area of triangle t into the camera view c. The larger this area is, the
better t �ts into c. This criterion counts also for proximity as a larger projection area
implicitly means that the selected view is spatially closer to the underlying face. Other
geometric criteria for optimal view selection exist such as the angle between the face
normal and the camera direction, albeit we abstain from using this feature as it is
scale-invariant [156]. Similar to texture mapping procedure described in Chapter 3, we
compute a labeling L = {l1, .., lm} ∈ {1, .., k}m which associates to each face t ∈ T the
best camera view ct. We cast our view selection as a multi-label optimization problem
solved using α-expansion [175]. The optimal labeling l? is de�ned as:

l? = arg min
l∈L

(−
∑
t∈T

A[Pt(lt)] + γ
∑

e(s,t)∈Ed

[ls 6= lt]) (4.32)

As described in (4.32), this energy is a weighted sum of a data term and a regularization
term. The �rst term evaluates the visibility quality of a triangle t having a label lt
corresponding to a camera view c as explained above. The second is a pairwise term
favoring the selection of spatially regular views for adjacent triangles which are more
likely to share the same label (i.e. camera view). In details, we penalize the set of
edges Ed common to adjacent triangles s, t ∈ T which were assigned to di�erent labels
ls 6= lt. This smoothness term consists of a Potts model where [.] are the Iverson
brackets ([x = y] is equal to 1 if x = y and 0 otherwise). Finally γ is the weight
balancing smoothness and the data �delity.

Once l? in equation (4.32) is computed, we are able to determine for each face in 3D
space the set of 2D pixels in the corresponding camera view. This mapping from faces
of the 3D mesh to pixels of the corresponding 2D views is needed once the image
embeddings are computed using a convolutional encoder-decoder network.

� Convolutional Encoder-Decoder (CED): In order to embed pixels of a 2D image,
we propose to use a convolutional encoder-decoder inspired by state-of-the-art deep
convolutional network U-Net [211]. In Figure 4.32 we show the architecture of our
network. CED is composed of two parts; a contracting path called encoder and an up-
sampling path − the decoder. The encoder is a stack of convolutional layers interleaved
with batch norm layers (BN), non-linearity layers (ReLU), in addition to pooling layers.
It takes as input an image I of size H ×W × d with H,W and d are respectively the
height, width and depth (i.e. number of channels) of I. For RGB images the depth d
is equal to the dimension of the RGB space which means d = 3.

The decoder part operates on the reduced feature maps resulting from the pooling layers
of the encoder. It performs an up-sampling operation to restore the original size of the
feature map using the indexes of pixels from the corresponding pooling layers in the
encoder. This way, the unpooling layer can precisely localize the lost information in the
pooling stage in the encoder. After each unpooling step a previously computed feature

116



4.4. APPLICATIONS: 3D SEMANTIC MAP AS TEXTURED MESH

3 64 64
128 128

H/2

W/2

H/4

W/4

H/2

256 128

128 64
64 3

W/2

H

WH
 x

 W

: Input image of size H x W x 3
: Feature map after Conv - BN - ReLU 

: Feature maps concatenation
: Max pooling operation

: Up-sampling operation 

 3..256 : Depth of the feature maps 

: Passing pooling indices from
the encoder 

32
 Encoder  Decoder 

Figure 4.32: The architecture of our Convolutional Encoder-Decoder network (CED) for camera
views' embedding

map from the encoder is concatenated with the current one in the decoder in order to
combine information for more precise predictions. Lastly, a 1 × 1 convolutional layer
allows to extract a feature map having a depth d which corresponds to the dimension of
the computed embeddings for each pixel. CED embeddings are subsequently normalized
within the dced-dimensional unit-sphere. In practice, we found that three dimensional
pixel embeddings eced ∈ S3 are convenient for our application.

� Local Mesh Embedder (LME): In this module, we seek to locally embed faces of
a triangular 3D mesh in a similar way as for point clouds. The proposed network is
based on the work of Hanocka et al. called MeshCNN [16] in which CNN building blocks
(i.e. convolution and pooling) on 2D regular images are translated to irregular meshes.
LME operates on the edges E of the mesh instead of triangles T to provide a non-
uniform geodesic neighborhood which is compatible with the inherent irregularity of
the mesh. As explained in Section 4.1.4, we start by computing hand-crafted geometric
features for each edge ei ∈ E where |E| = p. Recall that at this level the features
are computed on the primal edges E of the mesh M = {V,E, T}. The dual graph
Gd(Vd, Ed) built on top ofM is used subsequently for the supervised graph partitioning
step. Figure 4.33 shows the architecture of our Local Mesh Embedding network (LME).

For an edge ei ∈ E, the input hand-crafted edge features are represented as a 5-
dimensional vectors denoted by hfi ∈ R5 and composed of the dihedral angle between
adjacent faces, the inner two angles and the edge ratios between the length of the edge
and its perpendicular lines in each adjacent face plan. The computed edge features (of
initial dimension fin = 5) are fed to a stack of edge convolution layers (EC) (4.33) (pro-
ducing fout-dimensional learned features) interleaved with batch normalization (BN)
and non-linearity units(ReLU). In details, the edge convolution operation de�ned in
equation (4.4) consists in the multiplication of a multi-channel tensor T (b× f × e× n)
with a kernel of size (5×1) where e is the maximum number of edges per mesh, n is the
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number of neighbors (by default n = 4 which correspond to the 1-ring neighbors as ex-
plained in Section 4.1.4), f is the number of features (initially f = 5) and b is the batch
size. This results in deep learned features per-edge denoted lfi which are subsequently
organized with regards to the mesh triangles (i.e. we associate to each face ti ∈ T of the
mesh its three learned edges' features lfi1, lfi2, lfi3). Afterwards, the embedding of each
face lfti is obtained by the aggregation of its three edge deep embeddings using a max
pooling operation as in (4.34) (the max operation in (4.34) returns the element-wise
maximum of vectors lfi1, lfi2, lfi3). Finally the computed embeddings are passed to a
shared multi-layer perceptron (MLP) which allows to further learn a spatial-encoding
of faces while reducing the embeddings' dimension to the desired size. Much like CED
embeddings, LME embeddings are normalized within the dlme-dimensional unit-sphere
(4.36). In practice, LME embeddings are of dimension 3 (elme ∈ S3).

EC : Rfin×p 7→ Rfout×p (4.33)

lfti = max(lfi1, lfi2, lfi3) (4.34)

L2(·) = ·/‖ · ‖ (4.35)

elme(ti)=L2 (MLP (lfti)) (4.36)

Using the optimal labeling l? (4.32) computed by the view selection module (VSM),
we can determine for each face embedding elme(t), in the 3D mesh its corresponding
projection Pt in the feature map eced(ct) computed by CED. To determine the set of pixels
that overlap the triangle's projection in the feature map, �rst, for e�ciency reasons, we
loop over the feature map pixels that are located inside the bounding box of the projected
triangle. Then we perform an inside-outside test to �nd out the set of pixels inside the
triangle's projection using the edge function Pineda [231].

Following the notation from Figure 4.34, for the edge de�ned by vertices A and B
and a pixel P , the edge function is de�ned as the magnitude of the cross product of
vectors

−→
AP and

−→
AB : EAB(P ) = ||

−→
AP ×

−→
AB||. Following a clock-wise convention, if

EAB(P ) ≥ 0, EBC(P ) ≥ 0 and ECA(P ) ≥ 0, then we consider that the pixel P is inside
the triangle's projection on the feature map, otherwise, it is outside (e.g. Pixel R is out-
side the triangle since EAB(R) < 0).

118



4.4. APPLICATIONS: 3D SEMANTIC MAP AS TEXTURED MESH

-

-

-
+

A B

C

P(X,Y)

R(X,Y)(Xmin , Ymin)

(Xmax , Ymax)

Figure 4.34: Illustration of an inside-outside test using the edge function [231]

Assuming that the projection area of t into the feature map eced(ct) is composed of the set
of pixel embeddings ePt

i (ct) ⊂ eced(ct), the local embedding corresponding to the fragment
P is obtained by aggregating all the pixel embeddings ePt

i (ct) using a max pool operation
(4.37) (The max operation in (4.37) gives the element-wise maximum of vectors ePt

i (ct)).
At last, the �nal embedding computed by our LTME network eltme is the concatenation
of mesh faces embeddings elme(t) with t ∈ T and the corresponding projection fragments
embeddings ePt

ced(ct) (4.38).

ePt
ced(ct) = max

i∈Pt

(ePt
i (ct)) (4.37)

eltme = elme(t)⊕ ePt
ced(ct) ∀ t ∈ T (4.38)

It should be emphasized that it might happen that a few number of faces can not
be seen in any of the camera views. For those triangles we heuristically duplicate LME
embeddings to ensure an homogeneous size of �nal embeddings. While di�erent strategies
could be used such as propagating embeddings from adjacent triangles or zero padding,
experimentally we found that it has minor e�ects on over-segmentation results as the
number of unseen faces represent no more than 3% of all the dataset.

4.4.2 Numerical experiments

In this section, we show the over-segmentation results of our method on the pLaTINUM
dataset acquired and annotated during this project. Since ground truth annotations
of the textured mesh is available for only semantic segmentation, we compute objects
annotations as the set of connected components of semantic labels of faces in a similar
way as for vKITTI dataset [223]. For these experiments, we use the LTME network
described above as our embedding function ξ.

4.4.2.1 Implementation details

� Convolutional encoder-decoder (CED): We note that CED is �rst pre-trained on
an equivalent outdoor urban dataset vKITTI [57] with similar number of classes as
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our dataset. Due to the relatively small number of annotated images in our dataset,
we are not able to train the CED network from scratch using exclusively our own
data. Consequently, we �ne-tune the model using our set of 2D perspective front-
facing images. We resize the original images of size 2048× 2048× 3 to 256× 256× 3.
Overall, CED encoder is composed of 5 convolutional layers with an increasing number
of �lters each of which is followed by a (2, 2) max pooling, batch norm and ReLU
layers. The convolution kernel is of size (3, 3) for all the convolution layers in CED.
The decoder alternates between (2, 2) upsampling and convolutional layers in addition
to a concatenation of feature maps of the encoder. The detailed number of convolution
�lters used in each convolutional layer is shown in Table 4.6.

� Local mesh embedding network (LME): Since our LME network inspired by
meshCNN [16] is a translation of Convolutional Neural Networks (CNNs) on 2D images
to 3D meshes, the commonly used pre-processing steps (e.g. resizing the input data,
centering around the mean, etc.) were also replicated for 3D meshes. We simplify the
input meshes in the training and test sets such that they have roughly a similar number
of edges. Reducing the resolution of the input meshes is performed using a geometric
decimation of an order of magnitude (i.e. an input mesh having 106 faces after deci-
mation it will have 105 faces). As discussed above, the manifoldness property of the
mesh is a key ingredient for the success of the convolution operation on edges since each
edge has to be incident to at most two faces i.e. the number of edge neighbors is at
most equal to 4. To this end, we transform any invalid, non-manifold mesh instance in
the dataset, to a valid one by �rst locating all non-manifold edges and then removing
all their incident faces before training. It should be noted that a 3D mesh, despite
being manifold, may contain boundary edges (i.e. edges which are incident to only one
triangle). Since boundary edges have only two neighboring edges, we circumvent this
lack by zero padding in the convolution operation as proposed in [16]. Furthermore, We
center the input edge-wise hand-crafted features by subtracting the mean edge feature
of all the dataset and dividing by its standard deviation.

The proposed LME network comprises 4 edge convolutional layers (EC) with an in-
creasing number of �lters, each of which is followed by a batch normalization layer
(BN) and a non linearity (ReLU). The output of edge convolution is �rst max-pooled
and then consumed by a multi-layer perceptron MLP having two hidden layers of size
128 and 64. The detailed con�guration of LME is exposed in Table 4.6.

To boost the robustness of the network, several data augmentation techniques can be
used. We follow the same protocol advocated by Hanocka et al. [16]. We �rst note that
the 5-dimensional edge-wise hand-crafted features (angles and edge ratios) used as in-
put to the edge convolution (4.4) are designed to be invariant to the common geometric
transformations i.e. rotation, translation and uniform scaling (the same scaling factor
applied to (x, y, z) coordinates). Therefore, applying those transformations to the ver-
tices of the mesh is most likely useless. To generate new features we shift the location
of 20% of the mesh vertices by applying a random scaling (sampled from the normal
distribution of mean µ = 0 and standard deviation σ = 1) on its x, y, z coordinates
separately.

� Graph structured contrastive loss: For the supervised graph partitioning step, the
training is performed using our best con�guration achieving the highest scores reported
for point cloud over-segmentation. This means that the graph structured contrastive
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loss de�ned in equation (4.8) is weighted using the cross partition strategy (4.12).
However, unlike point clouds, we propose a slightly di�erent weighting compatible with
the mesh topology.

In the case of 3D meshes, the size and shape of triangles vary substantially w.r.t. to
the geometry of the reconstructed objects. For instance, large planar objects are repre-
sented by few triangles having large areas, while non-�at objects are represented by a
higher number of triangles having smaller areas. Thus, the edge weights µ ∈ REtrans(P)

+

in equation (4.8) should adapt to the varying topology by incorporating indicative ge-
ometric indices such as the area of triangles and the length of edges rather than simply
their numbers. Formally, following the same notation as the cross partition strategy for
point clouds (4.12), the adapted weights can be de�ned as :

M
(e)
U,V = M0 min (A(U), A(V )) for (U, V ) ∈ E (e) (4.39)

µ(e)
u,v =

M
(e)
U,V

WU×V ∩Etrans
for (u, v) ∈ U × V ∩ Etrans.

where A(U) =
∑

u∈U area(u) denotes the area of the segment U and WU×V ∩Etrans =∑
e∈U×V ∩Etrans length(e) is the sum of transition edges' lengths. Recall that this weight-

ing strategy is based on the cross-segmentation graph G(e) = (C(e), E (e)) de�ned in
equation (4.11) for which (U, V ) ∈ C(e) 2.
In table 4.6, we show the con�guration of our LTME network. The parameters which
are not mentioned in this table and required by the network, use the default values as
for point cloud over-segmentation.

parameter shorthand Module Details
LME # parameters - LME 258819
CED # parameters - CED 1314435
LME con�guration f LME [5,32,64,128,256],[256,128,64,3]

CED encoder con�guration - CED [64,64,128,128,256,128]
CED decoder con�guration - CED [128,64,64,32,3]

Batch size b LTME 4
LME embeddings dimension dlme LME 3
CED embeddings dimension v CED 3

Regularization weight γ VSM 0.85
Adjacency graph Gd - Dual graph

epochs - - 150
decay event - - 40,80,120

Table 4.6: Con�guration of the LTME network for pLaTINUM dataset.

4.4.2.2 Evaluation metrics

In the literature, speci�c evaluation metrics have been proposed to assess qualitatively
and quantitatively 3D mesh over-segmentation. In [171], Simari et al. have tailored two
metrics from 2D superpixels to better represent the underlying topology of a 3D mesh.
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Namely, for a segmentation S and a ground truth partition P the under-segmentation
error (UE) and compactness (C) are de�ned respectively as:

UE(S,P) =

∑
Pi∈P

∑
Sj∈S A(Sj \ Pi)∑
iA(Pi)

(4.40)

C(S) =
∑
S∈S

P (S)

| S |
√
A(S)

(4.41)

Where A(.) and P (.) denotes respectively the area and perimeter of a segment. Simari
et al. in [171] argue that unlike pixels in 2D images, faces in a 3D mesh usually have non-
uniform size or shape. Therefore, the areas and perimeters of faces are better suited for
evaluation than merely counting their proportions. As far as we are concerned, we agree
with this assessment, albeit with a di�erent formulation. We believe that the proposed
metrics for point cloud over-segmentation can also be used for evaluating mesh over-
segmentation. As for point clouds, we argue that a transition occurs between triangles
and not at them. We de�ne Epred

trans the set of predicted transitions, i.e. the subset of edges
of Ed that connect two triangles of T (or two nodes in Vd) belonging to two di�erent
superfacets, while E(1)

trans
5 is the set of ground truth transition edges. By taking a closer

look to the proposed metrics in Section 4.3.3, we can notice that both BR and BP (4.27)
are oblivious to the mesh topology as their unit of measure is de�ned w.r.t. to the number
of edges of the mesh dual graph Gd(Vd, Ed) being a transition or non-transition edges.
Instead of computing the precision and recall in terms of number of edges, we believe that
computing these two metrics w.r.t. to the edges lengths is more suitable in the case of
non-uniform triangulated meshes. Formally BR and BP can be de�ned as follows:

BR =
W
Epred
trans∩E

(1)
trans

WEtrans

, BP =
W
Epred
trans∩E

(1)
trans

WEpred
trans

, where WX =
∑
e∈X

length(e) (4.42)

However, as shown in Chapter 3, the reconstructed surface is designed to have an al-
most uniform triangulation by �ltering out elongated faces in the mesh. When computing
the coe�cient of variation of the edges lengths Ed de�ned as CV = σ

µ
where σ is the

standard deviation and µ is the edges lengths mean, we found that CV = 0.2374. This
low level dispersion around the mean edge length con�rms our claim. For those reasons,
we assume that computing BR and BP in terms of number of edges and not their length
is su�cient to evaluate the performance of over-segmentation methods on our dataset at
least. Therefore, we stick to the current formulation to assess 3D mesh over-segmentation.
The oracle overall accuracy OOA (4.29), on the other hand, bypasses the mesh structure
as it considers the semantic labels of the graph nodes which are the set of mesh faces.

4.4.2.3 Competing algorithms

In order to evaluate the performance of our supervised over-segmentation method, we
compare it against superfacet segmentation methods from the literature. We denote our

5(1): The superscript stands for the number of edges tolerated to consider the current predicted
transition as correctly retrieved similar to the point cloud case in Section 4.3.3
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method as LSF which stands for Learned Superfacets. In the following, we introduce three
variants of LSF which serve as an ablation experiment to study separately the in�uence of
the LME and CED modules discussed in Section 4.4.1. We have also implemented a graph-
based mesh over-segmentation (HSF-Graph which stands for hand-crafted superfacets)
relying on hand-crafted features. Finally, we use the method of Simari et al. [171] which
is a cluster-based method (HSF-Cluster). This way, we have a similar set up as in the
case of point clouds:

� LSF:LME: In this con�guration the LTME architecture is comprised only of the LME
network which operates on 3D meshes. We consider exclusively LME embeddings
elme(t). CED embeddings ePt

ced(ct) are ignored in this experiment.

� LSF:LTME-L: CED is trained on vkitti dataset [57] and �ne-tuned on our dataset to
perform semantic segmentation. During back-propagation, LTME weight updating in
this con�guration is exclusively restrained to the LME network while CED weights are
frozen during training. At each graph partitioning iteration during training, we concate-
nate CED's pre-computed embeddings for the task of semantic segmentation with the
learned LME embeddings elme(t) for over-segmentation. The goal is to understand the
impact of fusing embeddings learned previously on a di�erent task (in this case semantic
segmentation) with embeddings learned on the desired task (over-segmentation).

� LSF:LTME-E: This is the original proposed set up. In this con�guration the LTME
embeddings are computed as explained in equation (4.38) where we concatenate the
LME embeddings elme(t) with CED embeddings ePt

ced(ct). Both the weights of LME and
CED are updated during training until the convergence of the loss.

� HSF-Graph: This is a graph-based over-segmentation method. We use the General-
ized Minimal Partition Problem (GMPP) de�ned in Section 4.2.2 by the equation (4.5)
to partition the 3D mesh represented by its dual graph as de�ned in Section 4.1.3. The
nodes Vd of the graph Gd are the set of mesh faces t ∈ T while the edges Ed are the
adjacency relations in the mesh M . Each triangle is represented by a 4-dimensional
feature vector characterizing its geometric adjacency inspired by Rouhani et al. [158]:

Verticality: This feature is computed as a dot product between the vertical vector
nz and the normal of mesh faces t : v =| nz.nt |. The vertical objects such as
building facades have low values while horizontal objects such as road and sidewalk
have high values.

Planarity: Computed for each face ti with respect to its 1-ring neighbors 6 of size
n, planarity is de�ned as p = min(| nti .ntj |, . . . , | nti .ntn |). The value of p is high
for planar facets and inversely low for non-planar facets.

Elevation: This feature measures the height of each triangle with respect to the
ground: z =

zti−zmin

zmax−zmin
where zmax (respectively zmin) corresponds to the maximal

elevation (resp. the minimal) on the plane XY .

Compactness: For each face ti ∈ T , this feature is computed as a normalized
ratio between its perimeter Pti and its area Ati . For a face ti this ratio is de�ned

61-ring neighbors of a face t are the set of immediate neighboring faces to t that shares at least one
of its vertices. Their number n varies depending on whether t is a border face in a non-closed manifold
mesh or not.
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as ri =
Pti

Ati
. The compactness is de�ned as : c = ri−rmin

rmax−rmin
where rmax (resp.

rmin) are the maximal (resp. the minimal) measured compactness in the mesh.
The larger the perimeter of ti given its area, the more elongated ti will be (less
compact).

We note that other interesting hand-engineered features exist in the literature such
as the average geodesic distance (AGD) [181], Shape Diameter Function (SDF) [180]
among others. However since our experiments are conducted on outdoor urban scenes
where the majority of objects' shapes are planar (façade, road, pavement, etc.) we only
use features that are most likely boundary-indicative.

� HSF-Cluster: This is the clustering-based method of [171] discussed in Section 4.1.4.

8 9 10 11 12 13 14 15

·102

88

90

92

94

96

98

# segments

O
O
A

(a) OOA for pLaTINUM

8 9 10 11 12 13 14 15

·102

30

40

50

60

70

# segments

B
R

(b) BR for pLaTINUM

8 9 10 11 12 13 14 15

·102

5

10

15

20

25

# segments

B
P

LSF: LTME-E?

LSF: LTME-L?

LSF: LME?

HSF-Graph?

HSF-Cluster [171]

(c) BP for pLaTINUM

Figure 4.35: Performance of the di�erent over-segmentation algorithms on our dataset. We
control the number of segments by varying the parameter λ in equation (4.5) between [0.3, 0.7] as
for point clouds. Methods tagged with a star (?) were implemented by ourselves.

In Figure 4.35 we show the performance of the described methods on our datasets
for di�erent number of superfacets in the test set. We observe that our best con�gura-
tion LSF:LTME-E outperforms the competing methods by a signi�cant margin. This
was expected as supervised deep-learning methods have been shown to be more e�ec-
tive than hand-crafted based methods. Being a hand-crafted method, the cluster-based
over-segmentation of [171] HSF-Cluster achieves lower results in terms of boundary pre-
cision and recall as well as the segmentation accuracy (ASA) than our proposed graph-
based over-segmentation method HSF-Graph. Moreover for more than 103 superfacets,
HSF-Cluster takes unreasonable time to compute the over-segmentation. This lesser
performance typically arises from the sensitivity of cluster-based methods to their initial-
ization. In addition, the reconstructed mesh from the LiDAR acquisition is characterized
by a highly variable density such that the nearest objects to the scanner will have denser
triangulation while the furthest exhibits a light triangulation not to mention the post
processing consisting in hole closing which results most of the time in elongated triangles.
This aspect is not taken into consideration by clustering-based methods as they are ag-
nostic to adjacency and structure of the mesh. The graph-based approach HSF-Graph
however, is able to produce compact superfacets that adhere faithfully to boundaries, to
some extent, despite the limited descriptive capabilities of the chosen features for graph
partitioning.
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We observe that LSF:LME con�guration performs better than LSF:LTME-L on all
metrics. As described above, in the latter con�guration, only the weights of the local
mesh embedder LME are updated during training. Since, CED is already pre-trained
for the task of semantic segmentation, we believe that the computed feature maps pro-
vide misleading information when fused with LME embeddings, yielding, hence, to a sort
of confusion when partitioning the graph. In essence, our graph-structured contrastive
loss, which is supervised by object instance annotations, is expected to produce embed-
dings that are homogeneous within objects and present high contrast at their borders.
Meanwhile, the obtained feature maps from CED were designed for the task of semantic
segmentation not instance segmentation. Due to the clutter e�ect in 2D images, two close
parked cars viewed from behind for example, will be considered as a single semantic object
which makes CED embeddings implicitly miss the border separating these two objects.
LSF:LTME-E con�guration mitigates this issue by updating the weights of CED during
training w.r.t. to our graph-structured contrastive loss so that the learned embeddings in
the last feature maps are able to grasp the notion of borders between objects.

In Figure 4.36, we show illustrations of over-segmentation results of our best con�gu-
ration LSF:LTME-E compared to evaluation methods HSF-Graph and HSF-Cluster
[171] for a nearly equal number of superfacets. We observe that our method produces a
better over-segmentation with compact and regular superfacets that adhere to objects'
boundaries. HSF-Cluster present lower result than all the competing methods. We can
clearly observe that the produced superfacets straddle objects having di�erent semantic
classes (building, sidewalk and road). HSF-Graph exhibits decent results. While planar
objects such as road and sidewalk are predicted as a single large superfacet, this method
is able to correctly partition the wall. It should be noticed that HSF-Graph produces
large superfacets when features faithfully describe a simple geometry of facets in contrast
to very small ones at regions where there is an ambiguity. This makes HSF-Graph
illustration looks like it has the least number of superfacets compared to the competing
methods which is not the case.

4.4.3 Discussion

As depicted in Figure 4.31, 2D images and 3D mesh are fed separately to our LTME
network. The intuitive question that arises from this observation is why the network does
not consume a raw textured mesh comprised of a 3D model as a triangular mesh along with
its texture atlases and trained online. In practice, when implementing this approach we
found that extracting pairs of triangles and their corresponding fragments in the adequate
camera view is very compute-intensive. In details, we need to parse each of the texture
atlases and fetch for each triangle its corresponding texel. Furthermore, as shown in
Chapter 2, an additional color adjustment step is conducted to minimize visible seams in
the �nal model. This will induce a bias to the original radiometric information making
it a source of error when computing the embeddings of images. Most importantly, the
underlying spatial adjacency of texture patches in a texture atlas is meaningless as they
are basically organized that way for e�ciency reasons with no regards to semantics. From
Figure 4.37, we can see that the semantic adjacency in a texture atlas is not preserved.

Training CED on texture atlases will inhibit the network from leveraging the local
context knowledge encoding high-level concepts related to semantic adjacency.

For this reason, we propose to go a step backward before packing the texture fragments
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(a) Input mesh (b) Ground truth annotation

(c) LTME embeddings (d) LSF (ours)

(e) HSF-Cluster [171] (f) HSF-Graph

Figure 4.36: Over-segmentation illustration of a textured mesh in our pLaTINUM dataset.
Superfacets count : LSF (727), HSF-Graph (713), HSF-Cluster [171] (700)

into texture atlases and use the result of the view selection module as an o�-line step to
compute face-texel pairs. However, this comes with several drawbacks. For instance in
a set up containing n camera views and k triangles, the search space is of dimension kn

making computation intractable. The prohibitive cost of computing pairs of faces-texels
can be alleviated by using timestamps information of the camera view. As described
in Chapter 2, both LiDAR and camera view are acquired strictly simultaneously. The
provided timestamps allows to �lter out images that do not lies within the interval of
time during which a given chunk of mesh is acquired. While such �ltering partially re-
duce computation time and memory load still it is not compatible with an online training.

Even though the view selection module has been shown to be e�cient, we believe that
the proposed energy formulation in (4.32) used to compute the pairs of faces and their
corresponding fragments in 2D images can be substantially improved. First, we can
see that (4.32) relies only on geometric information and do note leverage the available
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Figure 4.37: Illustration of a set of texture patches packed into a texture atlas

semantic ground truth annotations. At this stage, the goal of our VSM is to compute
semantic faces-texels association rather than texture mapping. In the literature [156], this
can be carried out by adopting a di�erent energy formulation involving semantic labels.
Moreover, [156] have challenged the assertion (advocated by the unary term in (4.32)) im-
plying that a larger area view projection necessarily means a correct semantic association
between the underlying face and corresponding texture fragment which is not always true.

We note that compared to point cloud over-segmentation, 3D mesh over-segmentation
exhibits lesser results in terms of BR, BP (4.27) and OOA (4.29). We believe that this
drop in scores is explained by two major factors. First as discussed earlier, LME operates
on edges separately then a pooling operation aggregates edge features for each triangle.
This means that the context knowledge information is taken into account only at the level
of the 1-ring edges adjacency. Therefore, di�erently from LPE architecture where each
point is embedded along with its k-nearest neighbors, LME embeds each triangle with
respect to its immediate adjacent faces. Hanocka et al. [16] mitigates this problem by
introducing a U-Net-like network as a convolutional encoder-decoder where pooling lay-
ers make the network insensitive to the change of features position in the feature map by
reducing its size constantly. The pooling operation on meshes introduced in [16] is mainly
an edge collapse-based decimation of the input mesh. According to [16], collapsing an edge
during pooling must not result in non-manifold edges otherwise the subsequent convolu-
tion operations on edges will systematically fail as discussed in Section 4.1.4. However,
in our experiments, we were not able to replicate this operation because of technical im-
plementation problems in addition to the inherited challenging topological properties of
our reconstructed meshes. As explained in Chapter 2, the reconstructed surface using our
sensor-topology-based method depicts holes in the �nal model and is not guaranteed to
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be manifold. This problem does not occur in the set up used in [16] as the meshes are
manually processed to be watertight and manifold without self-intersections.

Second, lower results stem from the fact that our dataset provides relatively few ground
truth annotations for mesh faces. As a matter of fact, the original 3D textured mesh is
dense enough and provides more than the required number of annotated triangles for a re-
liable supervision during training as shown in Chapter 1. Nonetheless, the pre-processing
step, which consists in reducing the size of the input mesh by 1 order of magnitude to
alleviate the computational complexity, magni�es the need for more training examples.
Similar results were reported in Section 4.3.3 for point clouds over-segmentation when
we used the small vKITTI 3D dataset [223] instead of S3DIS dataset [23] which is much
larger.

4.5 Conclusion

Throughout this chapter, we have presented an uni�ed deep-learning-based approach for
over-segmenting 3D point clouds into superpoints and 3D meshes into superfacets. To
do so, state-of-the-art methods for point cloud embedding PointNet [14] and 3D mesh
embedding MeshCNN [16] were tailored to extract local features of points/mesh faces.
Both our supervised superpoint and superfacet methods are the �rst over-segmentation
approaches based on features learned by deep metric learning. Our approach signi�cantly
improves state-of-the-art of 3D mesh and 3D point cloud over-segmentation. While our
learned point cloud over-segmentation combined to a superoint-based method for seman-
tic segmentation [17] have shown impressive results outperforming state-of-the-art algo-
rithms in this task, we were not able to extend this success for 3D meshes due to time
constraint. However, we have demonstrated that our learned superfacets outperform com-
peting methods by a large margin. This is a promising indicator that our method is most
likely susceptible to perform well for the task of semantic segmentation. Finally, we have
released our source code for 3D point cloud over-segmentation to the community to ease
reproducibility. The code materials are available in the same repository used for the initial
release of SPG [17] 7.

7https://github.com/loicland/superpoint_graph
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5.1 Summary

The aim of this thesis was to develop a global geo-localized map, made of a set of 3D
representations based on geometric, photometric, and semantic information in order to
provide localization and navigation services for remote agents. To do so, we have con-
ducted a comparative study to identify the best suited 3D representation of such Geo-
graphical Information System (GIS) achieving a decent trade-o� between e�ciency and
�delity. Based on mature and well-grounded notions in the �eld of computer graphics, we
have constructed a high quality large-scale 3D textured mesh using mobile mapping im-
ages and LiDAR scans collected during a mapping acquisition campaign in Rouen, France.

Whilst representing the 3D map as a textured mesh o�ers unmatched advantages in
terms of expressiveness by combining photometric and geometric properties, the lack of
semantic information makes it less reliable in a context of autonomous navigation. As a
�rst step to overcome this limitation, we have proposed the �rst outdoor multi-modal,
multi-format benchmark encapsulating geolocalized RGB perspective and panoramic im-
ages, spherical depth and LiDAR intensity maps, 3D point clouds and textured meshes
along with their respective ground truth annotations.

Our �nal contribution consisted in developing the �rst supervised over-segmentation meth-
ods operating on 3D point clouds and 3D textured meshes in order to e�ciently handle
large-scale acquisitions consistently. We have demonstrated the superiority of our over-
segmentation approach compared to the existing methods in the literature on two public
point cloud benchmarks S3DIS [23] and vKITTI3D [58] as well as on our own multi-modal
dataset for 3D meshes. By plugging the learned superpoints to a semantic segmentation
algorithm SPG [17] based on over-segmentation, we set a new state-of-the-art for the task
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of 3D point cloud semantic segmentation. To ease the reproducibility of our work by the
computer vision community and boost further research in this area, we have released our
source code for all the developed algorithms presented in this thesis.

Throughout our research experience during the past three years, we have learnt to improve
our time management skills in addition to the newly acquired knowledge. As the results
of our work were needed by the project partners (as depicted in the project functional
diagram illustrated in the introduction chapter), we were supposed to handle tight dead-
lines while maintaining high standards of work. These constraints have made us question
and rethink our research strategies as well as our design choices several times. Finally, we
ended up being fairly satis�ed with the obtained results. We believe that this study can
be subject to many interesting upgrades in the future. In the following section, we discuss
open problems related to our work and eventual future enhancements on the quantitative
and qualitative levels.

5.2 Open problems & Future work

5.2.1 pLaTINUM dataset

While the proposed dataset in Chapter 2 o�ers rich and diverse modalities to assess the
task of outdoor scene understanding, it remains limited in size compared to competing
large-scale datasets provided by industries such as Baidu [21] and Honda [20]. This can be
clearly explained by the discrepancy in resources invested in producing such benchmarks.
Nevertheless, we believe that we are able to enlarge the current benchmark by providing
further annotations to help prototyping scene understanding methods. Since manual an-
notation is a tedious task, we believe that automatic image annotation methods (AIA)
[79] in the literature can be leveraged to facilitate this task. Furthermore, in addition to
the current available tasks, we intend to integrate a �ner level of intra-building annotation
to include the task of façade parsing into our benchmark. In the latter application, more
detailed classes such as windows and doors belonging to the class building have to be also
annotated.

A large spectrum of testing scenarios can be elaborated to deeply study the in�uence
of each modality on the overall performance in terms of semantic segmentation. Unfor-
tunately due to time constraints, we were not able to carry out those experiments. Some
of the interesting experiments consist in adopting a multi-modal fusion-based strategy
to evaluate, for instance, the e�ect of intensity maps and depth maps fused with RGB
images. Then we compare the latter to 3D modality (either the textured mesh or the
colored point cloud) to see if it is worth the e�ort to use pure 3D data as an alternative
to 2D or 2.5D data. To the best of our knowledge, in the industrial circle, it remains
not clear which of those modalities achieve the best compromise between e�ciency and
accuracy. For example, Tesla driver-less cars rely exclusively on camera for perception.
Others such as UBER autonomous cars are equipped with LiDAR technology. Although
using the dataset presented in this thesis seems to be not su�cient to draw such strong
conclusions, we believe it will give at least valuable initial insights on which modality
should be studied further in priority as potential future work.
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5.2.2 3D map as textured mesh

More related to autonomous driving, the developed textured 3D map is far from being
a ready-to-use byproduct which could be deployed in real driving conditions. A high
de�nition map is a more complicated entity that comprises additional information within
geometric, photometric and semantic layers that are beyond the scope of our study. For
instance, valuable semantic classes such as road centerlines, curbs and lanes are not taken
into consideration in the semantic layer.

One can argue that constructing a HD map as a 3D textured mesh can be considered
as an overwhelming task since it involves surface reconstruction which is a problem ar-
guably as hard as semantic segmentation. However, since this map is supposed to be
reconstructed as an o�-line independent step, we believe it should not be a problem as
long as real-time constraints are not required. However, detecting changes and updating
the textured mesh accordingly is by far a more complicated task. It should be noted that
many industrial leaders in geo-spatial technologies have started to commercialize this so-
lution(i.e. the textured mesh as a geometric layer in high de�nition maps). Sanborn 1,
for instance, relies on oblique imagery and high precision aerial and mobile LiDAR to
reconstruct such maps.

We do not consider our surface reconstruction method as a cutting-edge algorithm
outperforming state-of-the-art methods, as much as it is a demonstration how key infor-
mation provided by the scanner, which are ignored most of the time, can be conveniently
leveraged to reconstruct high quality large-scale surface. However, the consequent short-
comings, especially the non reconstructed occluded objects, should be tackled explicitly.
One way to address this issue is to use a fusion-based approach such as WaSURE [232] to
reconstruct the surface. In this category of methods, various modalities can be merged
together to faithfully reconstruct a 3D surface. Since camera and LiDAR have di�erent
geometries, objects that are occluded to the LiDAR can be visible to the camera. There-
fore, we believe that using both LiDAR scans along with point clouds generated from
images might be a reasonable strategy to improve the quality of the reconstruction.

5.2.3 Supervised over-segmentation

The usage of 2D superpixels in a variety of computer vision tasks has remarkably de-
creased these last years due to the surge of scalable deep learning methods. For 3D data,
we believe that over-segmentation remains a key preprocessing step to several applications
ranging from data annotation to semantic segmentation and object detection.

Our over-segmentation method is a graph-based approach which relies on the construc-
tion of a graph before partitioning. In our related work study, we have broadly discussed
the existing graph typologies. We have shown in our experiments, that the topology of
the reconstructed graph depends on the data structure. We believe this aspect should be
studied more in-depth. Experimentally, we found that the heaviest computational step
in our over-segmentation framework remains solving the Generalized Minimal Partition
Problem (GMPP). A recent work of Raguet and Landrieu [195] introduced a parallel
version of the cut-pursuit algorithm [178] solving functional involving the total variation
more e�ciently. We think integrating this parallel version will improve computational

1www.sanborn.com
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time required by the over-segmentation.

Even though our local mesh embedding network LTME shows impressive results for the
task of textured mesh over-segmentation, we think that there are many other interesting
ways to embed a 3D mesh. In our work, we opted for MeshCNN [16] backbone network
which was originally designed to embed faces of a triangular mesh using edge convolution
and pooling. However, more versatile approaches could have been used instead such as
graphs. Due to technical problems, we were not able to replicate the pooling layers intro-
duced in MeshCNN, as after each edge collapse we have to ensure that the resulted mesh
at this step remain manifold so that the next convolution operation holds. On the other
hand, it has been shown that pooling is bene�cial for CNNs on grid-like data as it allows
for receptive �eld expansion and thus more generalization capability [233]. We consider
that not using pooling is a limitation in our MeshCNN-based network as the extraction of
edge features at di�erent scales was not feasible due to the mesh topological constraints.
The latter shortcoming, would have not been met if we had considered the 3D mesh as a
graph. For instance , Simonovsky et al. [202] perform pooling through graph coarsening
which is agnostic to mesh topology.

It should be noted that compared to the number of parameters of our LME network
(around 25.104) , CED number of parameters is much higher (around 1, 3.106. We believe
CED network can be substantially simpli�ed by using a lightweight encoder/decoder with
depth-wise separable convolutions as proposed in Bahl et al. [234] for instance.

In summary, this study have showed us that the majority of the existing research is
basically oriented towards building an explicit map during an exploration phase and then
acting based on that representation. However, it should be emphasized that completely
di�erent approaches are currently being explored targetting essentially autonomous map-
less navigation [235]. In this class of methods, an agent is capable to navigate an entire city
relying exclusively on visual observation using an end-to-end deep reinforcement learning
network. We believe that autonomous mapless navigation is a clearly promising area of
research that should be investigated further despite the di�culties that might get in the
way during the real world deployement phase since the validation process involves the
security of human beings.
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Appendix

Illustration of the textured 3D mesh

In Figure 1, we show large scale high resolution samples from our reconstructed 3D tex-
tured mesh.

Semantic segmentation of point clouds

In Table 1, we show the detailed semantic segmentation IoU per-class scores on the dataset
S3DIS [23]. We also made a video illustration which can be accessed at https://youtu.
be/bKxU03tjLJ4.

Method OA mAccmIoU ceiling�oor wall beamcolumnwindowdoor chair table bookcasesofa board clutter
A5 PointNet [14] � 49.0 41.1 88.8 97.3 69.8 0.1 3.9 46.3 10.8 52.6 58.9 40.3 5.9 26.4 33.2

A5 SEGCloud [236] � 57.4 48.9 90.1 96.1 69.9 0.0 18.4 38.4 23.1 75.9 70.4 58.4 40.9 13.0 41.6
A5 PointCNN [227] 85.9 63.9 57.3 92.3 98.2 79.4 0.0 17.6 22.8 62.1 80.6 74.4 66.7 31.7 62.2 56.7

A5 SPG [213] 86.4 66.5 58.0 89.4 96.9 78.1 0.0 42.8 48.9 61.6 84.7 75.4 69.8 52.6 2.1 52.2
A5 SSP + SPG (ours) 87.9 68.2 61.7 91.9 96.7 80.8 0.0 28.8 60.3 57.2 85.5 76.4 70.5 49.1 51.6 53.3
PointNet [14] in [237] 78.5 66.2 47.6 88.0 88.7 69.3 42.4 23.1 47.5 51.6 42.0 54.1 38.2 9.6 29.4 35.2
Engelmann et al. [237] 81.1 66.4 49.7 90.3 92.1 67.9 44.7 24.2 52.3 51.2 47.4 58.1 39.0 6.9 30.0 41.9
Engelamnn in [238] 84.0 67.8 58.3 92.1 90.4 78.5 37.8 35.7 51.2 65.4 61.6 64.0 51.6 25.6 49.9 53.7

SPG [213] 85.5 73.0 62.1 89.9 95.1 76.4 62.8 47.1 55.3 68.4 73.5 69.2 63.2 45.9 8.7 52.9
PointCNN [227] 88.1 75.6 65.4 94.8 97.3 75.8 63.3 51.7 58.4 57.2 69.1 71.6 61.2 39.1 52.2 58.6

SSP + SPG (ours) 87.9 78.3 68.4 91.7 95.5 80.8 62.2 54.9 58.8 68.4 78.4 69.2 64.3 52.0 54.2 59.2

Table 1: Results on the S3DIS dataset on fold �Area 5� (top) and micro-averaged over all 6
folds (bottom). Intersection over union is shown split per class, with the highest value over all
methods in bold.

Models con�guration for semantic segmentation

We used the open-source superpoint-graph implementation 2 without any modi�cation
beyond changing the oversegmentation step and some changes in the hyper-parameters.

To compensate for the edges missed by the `0-cut pursuit approximation, due in part
to its ignoring the spherical nature of the embeddings, we set the regularization strength
λ̃ lower than 1 for vKITTI and S3DIS datasets. This help improve the accuracy and
border recall. The subsequent decrease in border precision is compensated by the fact
that the SPG, through its context leveraging module, can learn to propagate the semantic
information to small superpoints. For the same reason, we chose a lower superpoint size
for S3DIS from the segmentation experiments.

2github/loicland/superpoint-graph

https://youtu.be/bKxU03tjLJ4
https://youtu.be/bKxU03tjLJ4
github/loicland/superpoint-graph


We extended the superpoint graph subsampling threshold to 4-hops instead of 3, be-
cause our method SSP tends to produce thin components near interfaces. Since the
vKITTI dataset is much smaller than S3DIS, we chose smaller networks to mitigate over-
�tting.

Illustrations of semantic segmentation results

In this section, we show more illustrations of our over-segmentation method combined with
the semantic segmentation method of Landrieu et al. [17]. In Figure 2, we show a successful
semantic segmentation of a complex scene from S3DIS dataset [23]. Figure 3 shows
a failure case in which a white board is over-segmented in too many small superpoints.
This makes their classi�cation harder by the semantic segmentation network. In Figure 4,
we see a successful semantization of an urban outdoor scene from vKITTI3D. Finally, in
Figure 5, we can observe in the background, road signs with high color contrasts, which
are segmented in small superpoints. This makes them very hard to classify and they are
missed by the semantic segmentation algorithm.
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(a) Illustration of a chunk of 350 m of textured mesh

(b) high resolution zoomed region

(c) high resolution zoomed region

(d) high resolution zoomed region

Figure 1: Illustration of some textured mesh samples reconstructed from our dataset.
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(a) Input point cloud (b) Over-segmentation

(c) Semantic segmentation (d) Ground truth

Figure 2: Illustration of a successful semantic segmentation of a complex scene from S3DIS
dataset [23]
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(a) Input point cloud (b) Over-segmentation

(c) Semantic segmentation (d) Ground truth

Figure 3: Illustration of a failure semantic segmentation of a scene from S3DIS dataset [23]
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(a) Input point cloud (b) Over-segmentation

(c) Semantic segmentation (d) Ground truth

Figure 4: Illustration of a successful semantic segmentation of a complex scene from vKITTI3D
dataset [58]
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(a) Input point cloud (b) Over-segmentation

(c) Semantic segmentation (d) Ground truth

Figure 5: Illustration of a failure case of semantic segmentation of a scene from vKITTI3D
dataset [58]
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