In this chapter, we present a multi-modal multi-format outdoor dataset. We start by reviewing and comparing the existing outdoor urban datasets. Then, we present the tools and methods of collecting and generating our hybrid data. Finally, we highlight its usefulness by testing several methods from the literature on the task of 3D point cloud semantic segmentation and omnidirectional monocular depth estimation.
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Last but not least, None of this could have happened without the support of my family: my parents and brothers who encouraged me from the beginning to take this path, my wife who endured this long process with me, oering always unconditional support. v vi Abstract With the democratization of collaborative navigation applications and autonomous robots, mobile mapping has received an increasing attention in recent years, both in academic and industrial circles. The digitization of the environment not only provides detailed and extensive knowledge enabling end-users to anticipate and plan their journeys, but also guarantees the availability of reliable up-to-date information in critical scenarios, for instance, when sensors of an autonomous car fail to perceive the surroundings. Mobile mapping raises, however, many challenges in terms of robustness, accuracy and scalability. Processing mapping data requires methods capable of handling massive data, with centimetric accuracy while coping with the acquisition specicities such as variability in levels of detail, occlusions, and strong variations in lighting conditions.

In the context of the French ANR project pLaTINUM, this thesis focuses on the development of a global geolocalised map of urban environments comprised of 3D representations based on geometric, photometric and semantic information. Firstly, a comparative investigation of suitable geometric representation options yields to the reconstruction of a large scale, high denition map with a textured 3D mesh. This representation is the result of a multi-modal fusion of oriented images and geo-referenced LiDAR scans acquired by a terrestrial mobile mapping platform. Subsequently, we propose to infer high level semantics to the reconstructed map by exploiting the complementarity between the two acquisition modalities: photometry and geometry. Throughout the rich literature regarding this subject, we have identied a need of an annotated multi-modal urban dataset comprising a large scale textured mesh. This has led us to produce our own dataset composed of 3D point clouds, 2D geolocalized panoramic and perspective images, depth and reectance maps, and a 3D textured mesh with the corresponding ground truth annotations for each modality.

Secondly, we assume that the global map is represented by means of 3D point cloud structured by an adjacency graph. We introduce a novel supervised over-segmentation approach. This method operates in two steps: (i) local descriptors of 3D points are computed via deep metric learning, (ii) the point cloud is partitioned into uniform clusters called superpoints. The descriptors are learned such that they present high contrast at the interface between objects, thereby encouraging the partition to follow their natural contours. Our experiments on indoor and outdoor scenes show the clear superiority of our approach over state-of-the-art point cloud partitioning methods. We further illustrate how our method can be combined with a superpoint-based classication algorithm to enhance the performance of semantic segmentation of 3D point clouds, also improving the state-of-the-art in this eld.

Finally, we extend this approach to textured meshes. Triangles, structured this time by the dual graph of the mesh, are partitioned into homogeneous groups called superfacets. Much like point clouds, local descriptors of the textured mesh are learned so that the boundaries of the objects exhibit high contrast. These descriptors are the result of merging descriptors learned from the convolution of the mesh edges on the one hand, and the texture descriptors extracted from the 2D image domain on the other. The experivii ments conducted on our own multi-modal dataset, show the superiority of our approach compared to state-of-the-art methods for the task of 3D mesh over-segmentation. viii Résumé Avec la démocratisation des applications collaboratives d'assistance à la navigation et l'avènement de robots autonomes, la cartographie mobile suscite ces dernières années une attention croissante, tant dans les milieux académiques qu'industriels. La numérisation de l'environnement ore non seulement une connaissance ne et exhaustive permettant aux usagers d'anticiper et de planier leurs déplacements, mais garantit aussi la disponibilité d'informations ables à tout instant notamment en cas d'éventuelle défaillance des capteurs visuels d'un véhicule autonome. S'agissant d'un enjeu crucial pour une navigation able, la cartographie mobile soulève en revanche de nombreux dés en matière de robustesse, de précision et de passage à l'échelle. Cette problématique fait appel à des méthodes qui requièrent une capacité de traitement de données massives avec une précision centimétrique tout en gérant les spécicités de l'acquisition, incluant la variabilité du niveau de détails, des occultations et des fortes variations de luminosité.

Dans le cadre du projet ANR pLaTINUM, cette thèse porte sur le développement d'un référentiel global géolocalisé de l'environnement urbain constitué de représentations 3D basées sur des informations géométriques, photométriques et sémantiques. Dans un premier temps, une investigation approfondie de la représentation géométrique la plus adaptée à un tel référentiel, permet une reconstruction d'une carte haute dénition à large échelle sous forme d'un maillage 3D texturé. Cette représentation est mise en place par fusion multimodale d'images orientées et de balayages LiDAR géo-référencés acquis depuis une plate-forme de cartographie mobile terrestre. Par la suite, nous proposons d'intégrer l'aspect sémantique au référentiel reconstruit, en exploitant la complémentarité entre les modalités d'acquisition photométriques et géométriques. À travers la riche littérature sur le sujet, nous identions l'absence d'un jeu de données urbain multimodal annoté incluant un maillage texturé à large échelle. Nous levons ce verrou par la production de notre propre jeu de données composé de nuages de point 3D, d'images 2D perspectives et panoramiques géolocalisées, de cartes de profondeur et de reectance ainsi qu'un maillage texturé avec les annotations correspondantes à chaque modalité.

Dans un second temps, nous considérons le référentiel comme un nuage de points 3D structuré par un graphe d'adjacence. Nous introduisons une nouvelle approche de sursegmentation par apprentissage supervisé. Cette méthode opère en deux temps: calcul de descripteurs locaux des points 3D par apprentissage profond de métrique, puis partition du nuage de points en zones uniformes, appelées superpoints. Les descripteurs sont appris de telle sorte qu'ils présentent de forts contrastes à l'interface entre objets, incitant la partition résultante à suive leurs contours naturels. Nos expériences sur des scènes d'intérieurs et d'extérieurs montrent la nette supériorité de notre approche sur les méthodes de partition de nuage de points de l'état de l'art, qui ne reposaient pas jusqu'à là sur l'apprentissage machine. Nous montrons également que notre méthode peut être combinée à un algorithme de classication de superpoints pour obtenir d'excellents résultats en terme de segmentation sémantique, améliorant aussi l'état de l'art sur cette problématique.

Enn, nous étendons cette approche aux maillages texturés. Les triangles, structurés cette fois-ci par le graphe d'adjacence du maillage, sont partitionnés en groupes homogènes appelés superfacettes. À l'instar des nuages de points, des descripteurs locaux du maillage ix texturé sont appris de façon à ce que les frontières d'objets sémantiquement distincts présentent un contraste élevé. Ces descripteurs sont le résultat d'une fusion des descripteurs appris sur le maillage par convolution des arêtes d'une part, et des descripteurs de texture d'autre part. Les expériences réalisées sur notre propre jeu de données multimodal illustrent la supériorité de notre approche par rapport aux méthodes de l'état de l'art pour la sur-segmentation d'un maillage.
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Introduction

A few decades ago, the simple idea that driver-less cars exist or machines surpassing humans at common daily tasks, would have been met with incredulity. Nowadays, this utopia has become a reality. Machines are now able to beat humans at an entire raft of complex tasks ranging from notoriously hard strategy games 1 , data science [START_REF] James | Deep feature synthesis: Towards automating data science endeavors[END_REF], writing pop songs 2 , creating original art pieces 3 or even at spotting issues in legal contracts 4 .

These achievements have created an unprecedented enthusiasm for applications based on articial intelligence (AI).

Autonomous navigation of aerial and terrestrial robots (e.g. cars, drones, etc.), in particular, is not immune to this increasing AI-based trend. Currently, we are arguably witnessing the heyday of the self-driving revolution. Research and development corporations all over the world are racing towards developing autonomous agents capable of 1 https://deepmind.com/research/case-studies/alphago-the-story-so-far 2 http://www.bbc.com/culture/story/20180112-is-this-the-worlds-first-good-robot-album 3 https://deepart.io/ 4 https://www.lawgeex.com/resources/aivslawyer/ providing reliable navigation services. This competition resulted in an arsenal of products deployed in our daily life such as Tesla, Lyft and Uber self-driving cars among others.

In order to be able to plan a path and navigate towards a specic target, an autonomous agent has to apprehend its surroundings as would humans do. In an unknown environment, humans rely on a map to reach a desired destination. In a similar way, a robot has to be endowed with a map to accomplish a certain navigation or planning task.

Constructing such a map entails two crucial issues. The rst one consists in the availability of suciently rich and diverse collected data along with an appropriate exploitation.

The second is about the ability of the machine to interpret and semantically understand these data. The former problem is more related to close range remote sensing or mapping, while the latter falls under the topic of scene understanding. These two challenges will be kept in the foreground of this dissertation.

By taking a closer look at the rich literature, we notice that these two research axes are intertwined. As a matter of fact, in the context of autonomous navigation, a substantial improvement in scene understanding has been accomplished in the recent years thanks to the ubiquity and diversity of large volumes of mapping data. This success can be mainly explained by the surge of data-driven paradigms over hand-crafted ones notably deep learning.

Deep learning techniques dier from the rest of machine learning approaches in that descriptors are learnt as part of the training process. Commonly referred to as learning representations, no one can deny the wave of attention this concept brought to Convolutional Neural Networks (CNNs). This surge started when AlexNet [START_REF] Krizhevsky | ImageNet Classication with Deep Convolutional Neural Networks[END_REF] outperformed competing hand-crafted methods by a signicant margin in several recognition tasks on 2D images. Three-dimensional data e.g. point clouds or meshes were also aected by this shift in focus towards deep learning approaches. However, unlike 2D images , learning representations from 3D data is a strenuous challenge [3]. Point clouds and 3D mesh geometries in particular can not be trivially dened as functions on the Euclidean space sampled on a grid. The lack of a grid-like structure inhibits the use of one of the CNNs fundamental core components which is convolution. Furthermore, from the perspective of autonomous driving, massive amounts of multi-modal data have to be acquired to guarantee a reliable level of robustness. According to a Rand Corporation report 5 , a eet of 1000 vehicles driving nonstop for 50 years is required to gather sucient real testing data to conclude a 20% advantage for autonomous vehicles over human drivers. Therefore, specic methods have to be designed with the goal of constructing a precise map on one hand, and eciently handle the consequent large volume of hybrid data on the other.

The purpose of this thesis is twofold. First, we want to explore new ways on how to reconstruct a 3D map of an urban environment from multi-modal mapping data. Second, we want to make use of the recent advances in scene understanding to learn new representations from hybrid 3D data. Throughout this dissertation, we will try to answer the following questions:

What are the main characteristics of a reliable 3D map ?

How can we reconstruct such map given a multi-modal mapping acquisition ?

What is the best strategy to fuse these hybrid data ? 5 https://www.rand.org/pubs/research_reports/RR1478.html 1.1. GENERAL CONTEXT How can we learn expressive representations of multi-modal 3D data while remaining eciently able to handle their large scale ?

The remainder of this chapter is organized as the following. First in Section 1.1, we present the general context of this thesis. In section 1.3 we clearly state the objectives and challenges of our study and demonstrate how it is a valid scientic problem. Section 1.2 claries the main research axes. Finally the thesis outline and contributions are summarized in Section 1.4.

General context

A Geographic Information System (GIS) is a general framework for managing, analyzing and visualizing geographic spatial data. GISs represent a strategic clue for many civil and military applications. Over the past 15 years, the global GIS market has experienced a rapid growth, rising from less than 1 billion USD in 2000 to more than 10 billion USD in 2015, of which around 10% is allocated to 3D applications. Consequently, this market is becoming extremely competitive; resulting in a wide variety of geo-referenced databases.

At the moment, the most well-known and probably the most used database is developed by Google, through its products Google Earth, Google Maps and Google StreetView.

OpenStreetMap 6 is also a salient example of open source GIS as it allows individuals to contribute with additional content such as videos, images, or GPS tracks. At the national level, the french mapping agency (IGN) provides topographic maps on a national scale via the Geoportail7 . The latter has been recently upgraded to allow the access to 3D urban models after integrating the interactive web 3D viewer iTowns8 . Among the many existing GISs, few are those containing 3D representations (models of objects/ buildings or digital elevation models DEMs) along with their corresponding semantic information.

In addition to their content, these GISs dier mainly by their coverage (local, global), their resolution (centimeters to kilometers), access to their data (free, paid, internet access, etc.), their update frequency, and above all their use cases.

The current usage of these geo-referenced systems is rather focused on the analysis of images or maps of a given place for applications ranging from simple virtual visit to the extraction of information related to various professions (agriculture, natural disaster management, etc.). However, they are not well suited for autonomous navigation applications mainly because they were not designed for it. The provided content, the data access procedure, and the memory volume which they occupy are not adapted for this specic use case. Indeed, when it comes to comparing the video stream of an on-board camera with an a priori digital model of the environment for example, the volume of data and processing becomes quickly considerable. As a result, the numerous works on mobility and autonomous navigation rarely use the existing 3D geo-localized databases, but rather ad-hoc data acquired for the occasion, or derived from the aforementioned GISs. This conrms the need for dedicated representations of the environment, dierent from those used traditionally.

In this context, the LAGADIC team at INRIA-Sophia Antipolis, the Le2i laboratory from the university of Burgundy, INSA-Rouen university and the french mapping agency (IGN), have joined in an ANR project coined as pLaTINUM (Long Term MappINg for Urban Mobility) whose purpose, broadly speaking, is to provide navigation services for remote agents. This Ph.D. thesis was funded by this project and contributes to it. Hereafter, we present the pLaTINUM project in details.

pLaTINUM project

This thesis is part of the inter-disciplinary ANR project pLaTINUM. The goal of this project consists in developing a geographical information system (GIS), stored on a cloud and made of a set of 3D representations based on geometric, photometric, and semantic information. This system must be able to update and enrich its content automatically based on data transmitted by remote agents, which can be either autonomous vehicles or simply users of an application (e.g. augmented or mixed reality) requiring more precise localization and orientation than what GPS allows. Through this collaborative application, an agent is supposed to receive localization information during navigation. In turn, the latter will inform the cloud about the local detected changes, which will be processed in order to update the geo-localized map.

A typical functional scenario can be envisioned as follows: an agent arriving in an area covered by the cloud, issues a navigation request. The latter can be an approximate GPS position and/or one or more images of the surroundings or a semantic request (e.g. next to a park). In return, the cloud will send the local maps of the potential candidate places corresponding to the area around the agent. The received information will be used to precisely locate and register the underlying data with that of the selected map. The same agent is also expected to participate in updating the cloud. The latter will validate or not the new data based on the previously available information.

pLaTINUM expectations

As illustrated in the functional diagram of the project in Figure 1.1, the project partners are expecting a global geo-localized 3D map encompassing geometric, photometric, and semantic information which will serve for later applications (localization, navigation, update, etc.). More in details, we were assigned the set of work packages framed in red.

First, in the work package 4.1 we have to collect multi-modal data using a mobile mapping system. The latter allows a joint acquisition of oriented RGB images and geo-referenced LiDAR scans. This data will be mutually used by our ourselves in this thesis and by the project partners for validating their localization and navigation algorithms. Second, we are supposed to design and deliver an appropriate representation of the acquired data in the form of a 3D map that is compatible with the project requirements. The goal of the work package 1.1 is to ensure the consistency between the image data and the LiDAR scans, in particular by determining the visibility of each LiDAR point in the 2D image. Visibility computation is an essential prerequisite for the joint use of LiDAR data with their metro-logical precision and 2D images with the richness of their radiometric information. Ideally, this map has to be a three-dimensional hybrid representation of the acquired environment combining both the geometric information acquired from the LiDAR and the radiometric information captured by the cameras.

Work package 1.2 concerns scene understanding. In this step, we want to enrich the walks for pedestrians, roads for vehicles, etc.) along with trac signs. In the following section, we overview the scientic problems related to our thesis subject and analyze the consequent challenges to be tackled in our work.

Research axes

As can be seen throughout the aforedescribed work packages, our thesis is centered around two principle research axes -namely mobile mapping and scene understanding. In the following sections, we detail the background related to these two aspects.

Mobile mapping

Mapping is the process of acquiring and managing geo-referenced spatial data of a given environment. Historically mapping was performed using manual surveying which often requires several months if not years to cover a relatively large area. With the recent technological advances, mapping can be performed using a multi-sensor system mounted on various platforms such as satellites, drones, water-based vessels among others. Terrestrial mobile mapping systems in particular make use of land-based vehicles as platforms integrating dierent types of sensors to collect geo-referenced data. This close-range mapping system takes advantage of the proximity to the observed scene enabling, thereby, a much ner and precise acquisition. A mobile mapping system relies on vehicle-oriented sensors and object/feature-oriented sensors to compute geo-referenced data. Commonly referred to as direct geo-referencing, this procedure comes as an alternative to the traditional expensive methods of data georeferencing. Instead of relying on ground control points (GCP) and the triangulation photogrammetric block, direct geo-referencing [START_REF] Rizaldy | Direct georeferencing: A new standard in photogrammetry for high accuracy mapping[END_REF] uses a combination of GPS and IMU to compute the exterior orientation (position and orientation) of sensors. This concept is illustrated in Figure 1.2.

Components

A mobile mapping system is generally comprised of positioning sensors (e.g. Global Positioning System (GPS), Inertial Navigation System (INS)) and mapping sensors (e.g. Li-DAR, camera, etc.). In this section we present the components of a terrestrial mobile mapping vehicle. A particular focus will be devoted to mapping sensors as the acquired data by these means will be the center of interest of our study.

Positioning sensors: These sensors are used to compute the instantaneous absolute locations of the mobile mapping vehicle in a global coordinate system (e.g. Lambert 93) while moving in a certain area. A combination of a GPS and an inertial measurement unit (IMU) is commonly used to determine the pose of the platform in a global frame. GPS records (X, Y, Z) coordinates while IMU records the orientation represented by the three angles (Pitch, Yaw and Roll). The joint use of GPS and IMU allows a more accurate geo-referencing procedure. When GPS tracks are not available or masked due to signal occlusion, IMU measurements serve for correcting the geo-referencing. Alternatively, IMU drifts accumulated during acquisition time are controlled by the GPS updates.

Mapping sensors: are trusted for providing positional information of the scanned objects/features with respect to a local coordinate system relative to the mobile platform. Mapping sensors can be broadly divided into tow groups; passive imaging sensors (e.g. RGB camera) and active imaging sensor (e.g. LiDAR). Active sensors are dierent from passive sensors by their capability to provide their own source of lighting or illumination. In the following, we focus on LiDAR and camera since they are the main mapping sensors used in our study.

Much like the human eye, RGB cameras capture wavelengths between 400nm to 780nm.

The acquired data using this device are represented as 2D grids with three separate channels: R, G and B, corresponding to colors in the visible spectrum. These devices are the most commonly used in autonomous navigation perception systems to extract information about the surroundings of the vehicle due to their low cost, high quality color information, and high resolution. The quality of RGB data is highly inuenced by variations in illumination and weather conditions (e.g. rain, fog, snow etc.). Therefore, these devices are usually combined with LiDAR sensors to increase its robustness. Other types of cameras are also leveraged for mobile mapping acquisition such as near-infrared cameras (NIR) (wavelengths between 780 nm to 3 µm) or mid-infrared (MID) (wavelengths between 3 µm to 50 µm) known as thermal cameras. The use of IR cameras complements RGB cameras in particular scenario where lighting conditions are highly aected (e.g. driving with a sun glare) or for pedestrian detection in nighttime.

A Light Detection And Ranging (LiDAR) is an active sensor based on the time-of-ight technology. This sensor emits laser beam towards a certain target and measures the return time of the reected pulses to determine the distance to the scanned target. The intensities of the reected pulses can also be measured to produce a texture-like information, referred to as intensity. This value quanties how much of the emitted laser beam is back-scattered on the receiver by the hit surface. The emitted laser belongs to the Class 1 which means it is harmless under all conditions of normal use. Using an active sensor such as LiDAR, oers unmatched advantages especially a direct access to depth information without using any complex algorithms. In contrast, similar to cameras, Li-DAR is aected by weather conditions (e.g. rain, snow, etc.) and dusty environments because of light diraction in these circumstances. Moreover, these devices suer from their limited range, typically between 50 to 100m.

Challenges

Processing mobile mapping data is a challenging task for several reasons. First, the collected data have to be geo-referenced with higher precision than GPS devices. As discussed earlier, GPS signals are frequently masked in urban environments because of occlusions.

While GPS errors can be corrected by IMU measurements, sometimes this is not sucient.
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Higher precision can be achieved either by an auto-consistency check (i.e. registering the collected data on itself by mapping the same street multiple times for instance) or by using an additional external geo-localized source of data (e.g. geo-referenced landmarks, ground control points, or precise aerial images). Second, mobile mapping acquisitions result in large volumes of data. The scale of the collected data calls for ecient processing tools in terms of number of operations and memory footprint. Furthermore, as the acquisition of mapping data is commonly conducted in dynamic environments, we need to handle mobile objects (e.g. pedestrians, cars, etc.) and temporarily variant objects such as vegetation, roadworks, and urban furniture, etc.

Finally, the heterogeneity of the acquired data (geo-referenced point clouds and oriented RGB images) makes their fusion not straightforward. In Figure 1.3, we show a superimposition of LiDAR and camera modalities to illustrate their intrinsic geometric and radiometric structures. Usually mobile mapping data are used for building a map of the scanned environment which will serve for a wide range of applications. However it is not clear how such multi-modal data can be eciently merged to accomplish the intended task. Moreover, an optimal exploitation of these two sources of information would require a perfect registration which is not possible most of the time. As a matter of fact, the moving platform can be subject to vibrations due to road slops or speed bumps inducing non-negligible registration errors.

Applications

The recent development of mobile mapping systems is driven by the need for large scale urban data mainly for intelligent transportation applications and geographical information systems. Many applications benet from MMS data. Infrastructure mapping, in particular is among the most common applications of MMS data as it involves several attractive domains such as autonomous driving, 3D city modeling and urban monitoring.

Urban modeling and monitoring: In the eld of architecture, the availability of mobile mapping data facilitates urban modeling. Thanks to MMS data density, the extraction and reconstruction of 3D buildings become much easier. Mapping data provide a much higher level of detail on building façades, but needs to be complemented by aerial data for roof modeling. In recent years, we become able to generate building models with dierent level of details (LoD1, LoD2 and LoD3) at the scale of an entire city. Moreover, these data allow the development of automatic tools for monitoring permanent urban structures, inventory of road signs and urban furniture as well as detecting potential urban changes.

Autonomous driving: Geographical information systems (GISs) rely on mapping data to save and update a digital version of the scanned spatial environments. Autonomous driving is a critical application for which human safety is at stake. In these applications, a GIS provides a crucial information serving as backup when perception or communication system fails. The objects of interest in these o-line maps are permanent structures such as roads, pavements, buildings, etc. This application takes advantage of the multi-modal aspect that mobile mapping acquisitions provide along with the precise geo-referencing of the acquired data. The featured tasks are mainly high level recognition problems such as object detection, semantic and instance segmentation. The latter aspects are related to a larger research axe which is scene understanding. 

3D scene understanding

Scene understanding is a process by which a machine analyzes and interprets an observed scene using one or more sensors. This process requires a high level abstraction of the sensed scene which inevitably calls for relevant information extraction and ltering. This eld includes, but is not limited to, segmentation and semantic segmentation. The rst building block for scene understanding called segmentation consists in partitioning the scene into coherent homogeneous parts without associating them with a semantic label. Semantic segmentation extends the raw segmentation by associating each data point (e.g. pixel for images, point for 3D point clouds) with a label among a set of dened semantic classes. A more complicated task is instance segmentation which consists in detecting and segmenting each object instance for all the foreground objects in the scene. More recently panoptic segmentation was introduced by Kirillov et al. in [START_REF] Kirillov | Panoptic Segmentation[END_REF]. The latter task combines semantic segmentation and instance segmentation at the same time. The end goal of this task is to identify two categories; things and stu. Things refer to the set of countable objects e.g. cars, pedestrians, furniture, etc., while Stu designate the set of uncountable objects e.g. road, pavement, etc. Figure 1.4 illustrates the discussed three modes of scene understanding applied to 2D images.

In the scope of pLaTINUM project, we are interested in a particular aspect of semantic mapping which is semantic segmentation of 3D data. The tremendous success of deep learning approaches in a wide range of 2D scene understanding tasks has motivated the community to investigate the applicability of these learning-based frameworks to threedimensional data. This however poses important methodological challenges as the nature of the data to process is dierent.

Challenges

Driven by the recent advances in deep learning applied to 2D images, a considerable effort has been devoted to translating and/or adapting these 2D architectures to 3D data notably point clouds and 3D meshes. These 3D data structures are intrinsically dierent from classic 2D images which can be dened as functions on the Euclidean space sampled on 2D grids. The absence of a grid-like structure makes the use of convolutional networks extremely challenging. Moreover, the geometric properties of 3D data can be represented in various forms depending on the use case. This diversity inhibits the development of an unied architecture that is able to t to the desired applications. Last but not least, a major problem of 3D data is mainly related to its large scale. Autonomous navigation applications in particular require processing large volumes of data. Before the emergence of deep learning approaches, probabilistic graphical models were the standard in 3D mapping data classication due to their ability to leverage the contextual information eciently [START_REF] Niemeyer | Conditional random elds for urban scene classication with full waveform LiDAR data[END_REF]. Although being highly optimized, these graphical models are known to be local methods in the sense that the model complexity grows with the number of graph nodes and edges encoding respectively data points and their pairwise interactions.

Applying these techniques on mobile mapping data with millions if not billions of 3D points/triangles is not feasible. Finally, unlike 2D images for which providing a ground truth at large scale is relatively easy, annotating 3D data is an extremely expensive and overwhelming task.

1.3. THESIS POSITIONING

Thesis positioning

With the recent advances in articial intelligence applications and the proliferation of acquisition devices, we have seen the dawning of a new era of autonomous robots. The ubiquity and diversity of mapping data have opened the door to several research questions notably regarding the optimal exploitation of dierent data modalities for safer and more ecient navigation. The latter requires reconstructing a 3D map of the surrounding environment such that an autonomous agent is capable of localizing itself and plan a path to a certain destination. In the literature, a 3D map is commonly represented as sparse landmarks [8], 3D point clouds [9], occupancy grids or voxels [10], 2.5D elevation [11] or 3D mesh [12]. These maps are often reconstructed based on geometric keys while discarding radiometric information coming from cameras. These radiometric sensors provide practical photometric information useful for obstacle avoidance and path planning [START_REF] Costante | Perception-aware path planning[END_REF].

We argue that a joint exploitation of both geometry and radiometry of the scene would benet from the complementarity of these dierent acquisition modalities (precision of the LiDAR and high resolution of Cameras).

While a hybrid 3D map combining geometry and photometry would oer crucial clues about the surrounding space, it is not sucient for a reliable autonomous navigation.

The autonomous agent needs also to grasp the semantic of the objects composing the environment. In the context of scene understanding, deep learning has gained an overwhelming attention among the computer vision community resulting in a wide variety of semantic segmentation approaches applied to dierent data modalities/representations such as AlexNet [START_REF] Krizhevsky | ImageNet Classication with Deep Convolutional Neural Networks[END_REF] for 2D images, PointNet [14] for raw point clouds, VoxelNet [15] for 3D voxels, and MeshCNN [16] for 3D meshes. Unlike 2D images, each of the aforementioned learned representations has proposed a dierent approach to circumvent the irregularity of 3D data and the lack of the commonly known input as a grid-like structure.

However, all these methods share a common weakness notably in their inability to handle large scale data. More recently, Landrieu and Simonovsky [17] have introduced a new scalable semantic segmentation approach of point clouds. The scalability of this method was made possible thanks to a pre-processing step consisting of an over-segmentation of the input large scale point clouds resulting in a set of geometrically and radiometrically homogeneous points called superpoints. The latter are inspired by their 2D counterparts i.e. superpixels (e.g. SLIC superpixels [18]). These superstructures allow to process a set of data points at once instead of parsing individual points one by one. While being ecient, we argue that the way these superstructures are designed is sub-optimal. In SPG [17], 3D points that share the same geometric and photometric hand-crafted features (e.g. , verticality, planarity, eleveation, rgb color, etc.) are set to belong to the same superpoint while they may truly belong to objects of dierent semantic natures. As the subsequent semantic segmentation depends on the quality of the computed superpoints, we believe that learning the over-segmentation as well will enhance the results.

The success of deep learning approaches is partially tied to the availability of large scale rich data. In the context of autonomous navigation, several outdoor multi-modal datasets [1921] have been proposed to evaluate qualitatively and quantitatively recognition methods. Even though most of these datasets are large scale, the majority of them come with the standard acquisition modalities typically 2D perspective images, depth maps and Li-DAR point clouds. On the other hand, indoor datasets [2224] oer more interesting data formats using RGB-D devices. In addition to the annotated point clouds and perspective 2D images, these indoor datasets provide omnidirectional 360 • RGB images and 3D textured meshes with their respective ground truth annotations. These data formats have stimulated the development of new approaches [25,26] that contributed to the prosperity of indoor autonomous navigation. We believe similar set up should be provided for outdoor scenes to boost research in this direction.

Finally, it should be emphasized that the related work will be discussed in details in the coming chapters. More related to our thesis subject, we can conclude that, we have three main unresolved issues from the literature:

To the best of our knowledge there is no available large scale multi-modal multiformat dataset comprised of 2D/3D data with their corresponding ground truth annotations.

The current representations of 3D maps are limited to geometric properties. A new representation of the 3D map allowing a joint exploitation of photometric and geometric information is required.

Current semantic segmentation methods are not able to leverage the local contextual information of 3D scenes while remaining able to eciently handle its large scale.

Our contributions are centered around these three issues. In the next section, we rst present a summary of our contributions, then we expose the organization of the rest of this document.

Thesis outline and contributions 1.4.1 Summary of contributions

As discussed earlier the objective of this thesis is to develop a global geo-referenced 3D map based on a novel representation comprising relevant geometric, photometric and semantic information. In this section, we present four contributions towards this goal.

Our rst contribution is a large scale multi-modal dataset that encapsulates a wide variety of common sensing modalities consisting of equirectangular depth maps, reectance maps, both panoramic and perspective RGB images, 3D point clouds and 3D textured meshes along with pixel-wise, point-wise and face-wise annotations. In addition, we demonstrate the usefulness of the provided data by evaluating state-of-the-art methods in several computer vision tasks such as 2D image and 3D point cloud semantic segmentation as well as monocular omnidirectional depth estimation.

As a second contribution, we propose a novel compact representation of a 3D map by reconstructing a textured mesh fusing the geometry of LiDAR scans and the radiometry of mobile mapping images. This work led to the following publication [START_REF] Boussaha | Large Scale Textured Mesh Reconstruction From Mobile Mapping Images and LiDAR Scans[END_REF].

Our third contribution consists in a thorough study and classication of the literature regarding over-segmentation methods of both 2D images, 3D point clouds and meshes.

THESIS OUTLINE AND CONTRIBUTIONS

Finally we propose the rst supervised over-segmentation method operating on both 3D point clouds and 3D textured meshes. We show that our method outperforms the competing algorithms in this task. We further achieve state-of-the-art results on the task of point cloud semantic segmentation when combining our method to an oversegmentation-based method designed for semantic segmentation [17]. The supervised over-segmentation of point clouds led to these two publications [START_REF] Landrieu | Point Cloud Oversegmentation With Graph-Structured Deep Metric Learning[END_REF][START_REF] Landrieu | Supervized Segmentation with Graph-Structured Deep Metric Learning[END_REF].

Organization

As can be seen in the previous section, the research axes that we are interested in, cover dierent scientic problems. Therefore instead of presenting the related work in a separate chapter, we opted for a per-research axe approach. For each chapter, we review the most related work to ours before introducing the proposed contribution. The rest of this document is organized in three main chapters followed by a general conclusion.

In chapter 2, we introduce the rst contribution of our thesis which is a multi-modal urban dataset. Chapter 3 presents our second contribution which is the reconstruction of a large scale textured 3D mesh. In Section 3.1, we give an overview of the work related to the dierent blocks of our framework; namelysurface reconstruction and texture mapping. We present surface reconstruction algorithm in Section 3.2. The texture mapping approach is explained in Section 3.3. Finally, in Section 3.4 we expose our experimental results.

In chapter 4, we present our two last contributions which concern a supervised oversegmentation method for semantic mapping. In Section 4.1, the existing related work to over-segmentation and deep learning on 3D data is presented along with theoretical denitions of the main concepts of our method. We explain our approach in details in Section 

Introduction

Deploying an autonomous navigation system in real world urban environments is far from being a trivial task. When humans are removed from the navigation equation, such fully automated systems require high performing sensors along with sophisticated algorithms to achieve accurate and robust perception, localization, planning and control especially when safety concerns are at stake. In the last decade, the former aspect i.e. [21] that each single sensor has its own failure mode in dicult conditions. A LiDAR in particular provides less semantic information. For instance, this sensor is unable to capture words on a sign or determine the color of the trac lights not to mention the limited range typically up to 50 -100m.

That is why hybrid datasets are of a paramount importance since they provide complementary multi-modal data of the scanned environment.

To address the aforementioned issues, several multi-modal datasets have been proposed [1921,49,[START_REF] Choi | KAIST Multi-Spectral Day/Night Data Set for Autonomous and Assisted Driving[END_REF]. However, all these datasets provide exclusively the traditional data formats; typically point clouds and/or RADAR measurements if available with RGB images and GPS/IMU data. Since there is no consensus among researchers regarding what is the best suited data format in terms of performance and eciency for an autonomous navigation system, we believe that the community should have access to an unied but diverse multi-modal multi-format benchmark where a neat evaluation can be performed using a standalone data type or a combination of them. As part of the pLaTINUM project, we

propose a new dataset that is designed with the explicit goal to spur research on how to generalize to complex unseen environments using a data fusion scheme of diverse data formats. Although indoor RGBD datasets containing similar data types exist [22,24,[START_REF] Armeni | Joint 2D-3D-Semantic Data for Indoor Scene Understanding[END_REF] , to the best of our knowledge this outdoor dataset is the rst one of its kind that provides annotated textured meshes along with point clouds, equirectangular images, depth and LiDAR intensity maps.

In this chapter, we present our new dataset encompassing both LiDAR and image modalities in which we provide a variety of mutually registered and geo-referenced data, namely, annotated spherical and perspective images, depth and LiDAR reectance maps as well as annotated 3D point clouds and 3D textured meshes. This chapter is organized as the following: In Section 2. 

Related work

The last few years have witnessed the release of a large number of urban datasets which played a crucial role in pushing state-of-the-art research in autonomous driving making the task of newcomers to cope with the existing work and still up-to-date more challenging.

Therefore, it becomes necessary to organize the sparse related literature into structured one in order to ease accessibility. In this section, we give an extensive overview of the existing datasets related to the autonomous navigation setting. Most of these datasets are focused either on 2D RGB images and video frames or 3D point clouds independently.

On the other hand, few hybrid datasets have been introduced to allow a separate or joint processing of several imaging modalities.

First, we start by presenting the well known 2D datasets. Then, we overview the recent LiDAR-only datasets. Finally, synthetic and multi-modal datasets are discussed followed by an extensive comparison between all the available datasets.

Image-only datasets

Since the early ages of computer vision, 2D RGB image-only datasets have been widely used for scene understanding applications such as object detection, tracking, classication and segmentation. In the following, we present the most relevant 2D urban datasets used to train and evaluate algorithms in the context of autonomous navigation in their chronological order. The dataset provides 5000 images with high quality annotations at the pixel-level including instance-level annotations for both vehicles and pedestrians in addition to 20000 [START_REF] Cordts | The Cityscapes Dataset for Semantic Urban Scene Understanding[END_REF]. Mapillary contains 25000 high resolution images recorded from all over the world covering the six continents at various season, daytime, and weather conditions. These road-scene images were captured from various viewpoints using a broad range of imaging devices (mobile phones, tablets, professional cameras...) by photographers with dierent levels of experience; hence oering a richness of details and a global geographic reach. Dense and ne-grained annotations are available for 7 major categories (Object, nature, animal, human, void, marking and construction) leading to 152 object sub-categories with additional instance-specic labels for 100 classes.

Similarly to [START_REF] Cordts | The Cityscapes Dataset for Semantic Urban Scene Understanding[END_REF], Vistas benchmark proposes several challenges to evaluate computer vision algorithms such as the classic semantic segmentation task, object detection and more recently panoptic segmentation.

Apolloscape dataset [41]:

Released by Baidu, Apolloscape 3 is a large scale video dataset with rich annotations designed with the aim to deal with the challenges of street-scenes understanding in various trac conditions. The data volume of this dataset is nearly 10 times greater than the 2 https://www.mapillary.com/dataset/vistas 3 http://apolloscape.auto/ driving dataset Cityscapes [START_REF] Cordts | The Cityscapes Dataset for Semantic Urban Scene Understanding[END_REF]. The initial release contains 143906 video frames with perpixel dense semantic labels. Instance-level annotations of 89430 images are also provided for the movable objects in the collected scenes. Moreover, the dataset oers 28 dierent lane markings annotations dened based on lane boundary attributes including color and type.

The featured tasks targeted by this benchmark are mainly semantic segmentation with 25 classes divided in 5 groups (movable, nature, object, infrastructure, surface) as well as instance-level video object segmentation. Fine-grained annotations of the 10 th second keyframe of each collected video is provided leading to 120 million annotated images. In addition to the classic recognition tasks; namely object detection using bounding boxes, semantic segmentation and instance segmentation with dense pixel-wise annotations, 200K additional keyframes were also labeled to perform lane markings recognition as well as driveable areas segmentation as shown in 

Other datasets [5355]

Other interesting datasets were also introduced to boost research in autonomous driving.

In the following, we describe these methods briey.

In [START_REF] Ha | MFNet: Towards real-time semantic segmentation for autonomous vehicles with multi-spectral scenes[END_REF], Ha et al. propose a multi-modal dataset 5 containing 1569 RGB-thermal urban scene images (820 taken at daytime and 749 taken at nighttime) captured in both visible and thermal infrared spectrum (814 µm) annotated exclusively with 8 classes of obstacles usually encountered in a driving scenario (curve, bike, car, car stop, color cone, guardrail, bump and person). In [START_REF] Karasawa | Multispectral Object Detection for Autonomous Vehicles[END_REF], the same setup is adopted to generate RGB-thermal dataset but this time tailored for the task of object detection.

Built upon Cityscapes dataset [START_REF] Cordts | The Cityscapes Dataset for Semantic Urban Scene Understanding[END_REF], Zhang et al. introduce [START_REF] Zhang | CityPersons: A Diverse Dataset for Pedestrian Detection[END_REF] CityPersons: a new layer from [START_REF] Cordts | The Cityscapes Dataset for Semantic Urban Scene Understanding[END_REF] dedicated exclusively for the task of pedestrian detection. For each frame of the 5000 ne-annotations, bounding boxes annotations of the pedestrians in the scene are provided.

Discussion

Compared to the existing outdoor driving datasets, Apolloscape [START_REF] Huang | The ApolloScape Dataset for Autonomous Driving[END_REF] is the rst dataset that provides a rendered depth map of the static background for each pixel-level annotated image along with the pose information at centimeter level. [START_REF] Roynard | Paris-Lille-3D: A large and high-quality ground-truth urban point cloud dataset for automatic segmentation and classication[END_REF] Using a mobile mapping truck equipped with a Velodyne HDL-32E LiDAR mounted on its rear, this dataset 10 was collected in two dierent agglomerations in Lille and a third one in Paris France. Nearly two kilometres of acquisition were conducted leading to more than 140 Million points annotated manually with respect to 50 classes similar to [START_REF] Vallet | TerraMobilita/iQmulus urban point cloud analysis benchmark[END_REF] with minor changes. Indeed each annotated point has several attributes namely its XYZ-position, the position of the LiDAR as well as intensity, per-point and per-object labels.

Discussion

Oakland dataset [START_REF] Munoz | Contextual classication with functional max-margin markov networks[END_REF] is a relatively small dataset designed before the emergence of deep learning in order to evaluate methods based on graphical probabilistic models which suer from their limited scaling capabilities making them not suited to simulate real-world largescale driving scenarios.

Paris-rue-Madame [START_REF] Serna | Paris-rue-Madame Database -A 3D Mobile Laser Scanner Dataset for Benchmarking Urban Detection, Segmentation and Classication Methods[END_REF] was segmented and annotated using a semi-automatic method thereby introducing an algorithmic bias that cannot be corrected with hand renement.

An illustration of the annotation inaccuracies in this dataset is shown in Figure 2.5. IQMULUS & TerraMobilita dataset [START_REF] Vallet | TerraMobilita/iQmulus urban point cloud analysis benchmark[END_REF] proposes an innovative way to annotate the point cloud by considering the sensor-space topology projection of the 3D points into 2D

images. In addition to the loss in precision during annotation because of the occlusions induced by projecting 3D objects into 2D, only a small part of this dataset was released making the task of training data-hungry learning algorithms complicated.

Paris-Lille 3D dataset [START_REF] Roynard | Paris-Lille-3D: A large and high-quality ground-truth urban point cloud dataset for automatic segmentation and classication[END_REF] tries to circumvent the labeling and occlusions problems of the previously released LiDAR-only datasets by rst adopting a fully manual annotation 10 http://npm3d.fr/paris-lille-3d

policy in order to reduce the algorithmic bias of semi-automatic annotation methods and second using a multi-ber LiDAR to ensure a watertight acquisition of the environment. Using the available camera parameters (intrinsic + pose), ve virtual video sequences of [57] were projected into the 3D space giving birth to a new dataset vKITTI3D

14 [58] composed of a collection of 3D annotated point clouds with respect to 13 semantic classes similar to [57]; terrain, building, road, car, trac signs, among others. ing feedback instructions such as freezing and replayinga feature that is not available in real-world conditions. However, we think that this trend suers from several disadvantages. First, as far as we are concerned virtual datasets have a limited perceptual, physical and behavioural modeling capabilities of real urban scenes since most of them are based on game engines. Figure 2.6 shows a sample from [START_REF] Ros | The SYNTHIA Dataset: A Large Collection of Synthetic Images for Semantic Segmentation of Urban Scenes[END_REF] which depicts low resolution texture when zooming. Second, to the best of our knowledge, few of these studies [START_REF] Ros | The SYNTHIA Dataset: A Large Collection of Synthetic Images for Semantic Segmentation of Urban Scenes[END_REF] [60] have demonstrated the transferability of these simulation-based trained models to a real driving scenario in an urban environment for deployment. Similar to [20], the featured tasks are mainly object detection and tracking.

Other datasets [6163]

Oxford RobotCar dataset 22 proposes a 1000Km acquisition of multi-modal data including raw 20 million RGB images along with LiDAR and INS data after traversing 100 times the same route in Oxford, UK during one year, albeit no semantic labels are available.

In [START_REF] Chen | LiDAR-Video Driving Dataset: Learning Driving Policies Eectively[END_REF] a large scale driving dataset was designed to assess the task of driving behaviour prediction. It is comprised of more than 10K frames of diverse trac scenes collected using a mobile platform equipped with a load of perception sensors namely a Veldoyne HDL-32E LiDAR scanning with a density equal to 700K points per second and an RGB dashboard camera capturing video sequences at a rate of 30-frames per second.

[63] proposes an outdoor multi-modal dataset for place categorization. It encompasses two parts. The rst one consists of 650 static panoramic scans of size 9 million 3D colored points each, captured using a FARO FOCUS3D scanner synchronized with an RGB camera. The second one contains more than 32K sparse full-surround scans (70K 3D points) collected using a Velodyne HDL-32E LiDAR.

Discussion

Compared to image-only and LiDAR-only datasets, the number and size of the hybrid datasets remain relatively small. Table 2.4 shows a comparison between the most recent driving multi-modal datasets in terms of size, location, sensor diversity and the provided annotations. Indeed, this can be explained by the expensive cost of collecting and annotating such datasets. Furthermore, the majority of current multi-modal datasets feature tasks like 2D/3D object detection and tracking since providing 2D/3D annotations for these tasks is much easier than cumbersome and dense pixel-wise/point-wise annotations for semantic segmentation or instance segmentation. Moreover, despite the proliferation of imaging modalities and the tremendous advances in multi-modal deep learning techniques, most of the aforementioned datasets collected with RGB/thermal camera and static/dynamic LiDAR, provide only the traditional data formats typically 2D images and 3D LiDAR point clouds. Other interesting data formats which have been proven to be useful for indoor navigation [22,24,[START_REF] Armeni | Joint 2D-3D-Semantic Data for Indoor Scene Understanding[END_REF] and better reects the geometry/radiometry of the scene such as depth maps, LiDAR reectance maps, panoramic images, and textured meshes, can be easily derived with almost no extra-cost. Therefore, we decided to design the rst outdoor urban multi-modal driving dataset that provides the aforementioned sensing modalities.

pLaTINUM dataset

As discussed above, 3D multi-modal datasets are of a particular importance compared to single-modal ones since they provide the entire geometry of the objects and their surrounding context along with complementary RGB information which oers dense appearance 22 https://robotcar-dataset.robots.ox.ac.uk/ Features KITTI [49] Panoramic3D [START_REF] Jung | Multi-modal panoramic 3D outdoor datasets for place categorization[END_REF] Oxford [START_REF] Maddern | 1 year, 1000 km: The Oxford RobotCar dataset[END_REF] KAIST [START_REF] Choi | KAIST Multi-Spectral Day/Night Data Set for Autonomous and Assisted Driving[END_REF] Apollo [19] H3D [20] NuScenes [21] Year features. This type of datasets enables the development of joint and cross-modal learning models a strategy that has been proven to be successful in various scene understanding tasks. In this section we present pLaTINUM dataset; a large scale multi-modal dataset providing 2D and 3D mutually registered data recorded using a mobile mapping vehicle (an upgraded version of Stereopolis II [START_REF] Paparoditis | Stereopolis II: A multipurpose and multi-sensor 3D mobile mapping system for street visualisation and 3D metrology[END_REF]). Our dataset belongs to the fourth category of the previously discussed datasets. In contrast to the previous work, pLaTINUM dataset encompasses several data formats that recently have drawn much attention in the vision community namely spherical images and their corresponding 360 • ground truth depth maps, LiDAR reectivety maps and textured meshes. In addition, traditional data formats such as 3D LiDAR point clouds as well as 2D front-facing images are also provided. The featured tasks are mainly point-wise and pixel-wise semantic segmentation and omnidirectional 360 • monocular depth estimation.

Acquisition details

In this section we start rst by describing the driving plan, the sensors setup, the policy of generating spherical images as well as rendering depth and reectivity maps. Second, we explain the annotation process of the 2D images and 3D point clouds followed by overall statistics. The nal geo-referenced frame which consists of a 3D textured semantic mesh is left to the next chapter as it represents a standalone contribution.

Driving plan

The dataset was recorded in the city of Rouen located in the north-west of France using a mobile mapping platform. It consists of nearly 6 hours of acquisition (more than 2 hours of continuous surveying) at an average speed of 15Km/h resulted in nearly 17 kilometers of mapped routes as illustrated in Figure 2.7. The driving streets were carefully chosen to capture a diverse set of urban and residential locations in general trac situations with many static and dynamic objects. This acquisition was made on March 16, 2016 at two dierent time slots (morning and afternoon).

Sensors setup

Developed by the French National Mapping Agency (IGN), the upgraded version of Stereopolis II [START_REF] Paparoditis | Stereopolis II: A multipurpose and multi-sensor 3D mobile mapping system for street visualisation and 3D metrology[END_REF] is equipped with the following set of sensors: 

Spherical image generation

Spherical or panoramic images are a very popular representation especially within the robotics community. Usually captured using 360 • cameras, these full surrounding images are increasingly inuential in several contemporary technologies such as virtual and augmented reality (VR/AR), mobile robots and social media. However, this is not yet the case for autonomous driving. Even though, omnidirectional images are considered by far a more pertinent representation of the environment than conventional planar images since they provide an entire 360 • eld of view, so far the recent automotive datasets have mainly focused on producing perspective forward-facing images to assess object detection, tracking and semantic segmentation among others. To address the lack of annotated spherical images in the current urban driving datasets, [START_REF] Payen De | Eliminating the Blind Spot: Adapting 3D Object Detection and Monocular Depth Estimation to 360 Panoramic Imagery[END_REF] proposed an approach to adapt the recent deep network architectures trained on front-facing rectilinear images to operate on equirectangular panoramic imagery producing thereby a new benchmark based on CARLA simulator [START_REF] Dosovitskiy | CARLA: An Open Urban Driving Simulator[END_REF] to evaluate object detection. To the best of our knowledge, there is no publicly available real-world benchmark to assess semantic segmentation based on spherical 360 • urban images. Therefore we provide a collection of annotated equirectangular images to deal with the lack of such type of data in the driving datasets. In this section, we explain our method of generating the spherical images and we show the obtained results.

Problem statement

Recent mobile devices and VR/AR headsets provide directly omnidirectional images. In the autonomous driving setting such images could be obtained directly using a a dualsheye pair or 360 • action camera. As shown in Section 2.2.1, our mobile mapping vehicle is equipped with f ive cameras, each one of them is facing a dierent direction. This results in a set of ve non-overlapping perspective images that are not able to perceive the entire 360 • eld of view if treated separately. One way to get a full-surrounding view is to smoothly stitch these images into a single one following a planar, cylindrical or spherical geometry. Most of the traditional methods use the following pipeline introduced by Brown and Lowe [START_REF] Brown | Automatic Panoramic Image Stitching using Invariant Features[END_REF] to reconstruct a panoramic image from dierent perspective images:

Extract and match features between a pair of images Compute a transformation from the second to the rst image Warp the second image so it overlays the rst one

Blend the images where they overlap Repeat the same procedure iteratively for the rest of the images to be stitched.

Thanks to the GPS/IMU system, we are able to provide the position and orientation in the camera and world frames for all the recorded perspective images. Indeed, having the pose information allows us to frame the stitching problem as an equirectangular projection of the rectilinear images sampled in a 3D spherical or cylindrical geometry. In Figure 2.10, we show an illustration of the process of generating our panoramic images from the raw perspectives images. This methodology enables us to bypass the slow features' computation and matching step of the traditional methods. Let I f ∈ I W f ×H f ×3 be the corresponding at RGB image in equirectangular projection dened by the set of 2D pixels (u equi , v equi ) as

I f = {(u equi , v equi )|u equi ∈ [0, W f ] , v equi ∈ [0, H f ]}
W f and H f being respectively its width and height.

For a 3D point P (x, y, z) ∈ R 3 on the viewing sphere I s dened by its polar coordinates (θ, φ), the corresponding 3D position in the Cartesian coordinate system following the convention in Figure 2.10 is dened as

     x = cos(θ) sin(φ) y = sin(θ) sin(φ) z = cos(φ) (2.1)
In contrast the equirectangular projection is conveniently dened in terms of the longitude θ and latitude φ of the sphere. From Eq. 2.1 we can compute

θ = arctan(x/z) φ = arcsin(y/r) with r = x 2 + y 2 + z 2 (2.2)
For the sake of simplicity, the computation of (θ, φ) can be rewritten in a matricial form using the function Ψ followed by an homogeneous normalization :

θ φ = Ψ .   x y z   = Ψ .   x/z y/z 1   (2.3)
Typically the projection of P into a 2D image pixel (u, v) using a traditional rectied rectilinear camera model is dened by

u v = C rect .   x y z   = C rect .   x/z y/z 1   where C rect =   f 0 c x 0 f c y 0 0 1   (2.4)
f , (c x , c y ) are respectively the focal length and the principal points of the camera.

In a similar way to the rectilinear projection, using Eq. 2.5 the equirectangular projection I f of the spherically sampled image I s can be written as

  u equi v equi 1   = C equi .   θ φ 1   = C equi .Ψ .   x/z y/z 1   where C equi =   γ 0 c θ 0 γ c φ 0 0 1   (2.5)
In the projection matrix C equi Eq. 2.5, γ is the angular resolution parameter akin to the focal length in rectilinear cameras and can be dened as the ratio between the horizontal eld of view f ov θ and the image width W f or the vertical eld of view f ov φ and the image height

H f : γ = f ov θ /W f = f ov φ /H f (2.6)
To get a plausible equirectangular projection covering the 360 • scene, γ needs to be tuned accordingly with respect to our mobile mapping vehicle conguration.

By combining the denitions from Eq. 2.4 and Eq. 2.5, we can easily establish the relationship between the rectilinear and equirectangular image coordinates projections:

  u equi v equi 1   = C equi . Ψ . C -1 rect .   u v 1   = Γ .   u v 1   with Γ = C equi . Ψ . C -1 rect (2.7)
This linear mapping in Eq. 2.7 allows the back and forth projections between the perspective rectilinear image and the equirectangular image a key enabler of our approach to generate and annotate the panoramic images.

Results and discussion

Generating a full-surrounding 360 • image from an equirectangular projection of the sampled rectilinear images on a spherical geometry is much faster than the traditional methods that require computing handcrafted features. Moreover, by using such sampling strategy, the equirectangular projection becomes agnostic to the number of input perspective images as long as they cover the 360 • eld of view. However, by doing so the nal reconstructed panorama depicts a radiometric distortion and visible seams because of the overlap between the perspective images having interlaced elds of view as shown in Figure In Figure 2.12, we show the equirectangular projection of the 5 perspective images with dierent angular resolutions γ. By considering the altitude and longitude of the 5 cameras with respect to the vehicle coordinate system, we nd experimentally that for a panoramic image of size 8000 × 3200 the appropriate value for the vertical eld of view is between f ov φ ∈ [10 

Depth maps reconstruction

One of the fundamental challenges in 3D vision is understanding the three dimensional geometry of the real-world scenes. Known as depth estimation, this problem has been extensively studied by the computer vision community. Historically performed using a stereo-pair of images [START_REF] Scharstein | A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms[END_REF], several overlapping images from dierent view-points [START_REF] Furukawa | Multi-View Stereo: A Tutorial[END_REF] or by changing lighting in a static scene with a xed camera [START_REF] Abrams | Heliometric Stereo: Shape from Sun Position[END_REF], in the recent years, a particular focus has been directed towards monocular depth estimation where the goal is to estimate the depth of a 3D scene from a single RGB image [7174]. With the democratization of 360 • omnidirectional content, it becomes necessary to investigate the transferability of the recent advances in scene understanding from classic 2D perspective images to the full-surrounding panoramic images. However, the main bottle-neck for monocular depth estimation, in particular, remains the scarcity of datasets containing enough ground truth of equirectangular depth maps coupled with RGB panoramic images. In this context, only recently, a rst attempt to tackle this problem has been introduced by Zioulis et al. [25] in which the authors proposed for the rst time a network that is able to learn the task of monocular depth estimation from a single equirectangular RGB image. In order to evaluate the performance of the proposed architecture, [25] handle the unavailability of data by virtually rendering panoramic images from existing datasets (Matterport3D [22] and S3DIS [START_REF] Armeni | 3D Semantic Parsing of Large-Scale Indoor Spaces[END_REF]) in addition to their corresponding depth maps extracted from the z-buer using Blender software 23 . While they show impressive results on indoor data, to the time of writing there is no outdoor dataset that we are aware of, which allows monocular depth estimation from spherical images of urban environments. Therefore, extrapolating these methods to the autonomous driving context is unfeasible for the moment.

To circumvent this issue, we present the rst outdoor dataset containing both spherical RGB images and their corresponding ground truth depth maps. In this section, we explain the process of generating the spherical depth maps from our recorded data.

Rendering depth maps

To render the spherical depth maps from 3D indoor scenes, [25] used a path tracing renderer software by placing a point light source and a virtual spherical camera at the same position in the scene. This oers a colored image with its corresponding depth map extracted from the z-buer that was generated as a result of the graphics rendering process. In our case, we implemented our own renderer using the PBRT library 24 . We consider the dense mesh 25 generated from the LiDAR acquisition as our 3D ground truth as its precision is at centimeter level. Since images and the mesh modalities are mutually registered and precisely timestamped, for each depth map we choose the origin O of the ray to be traced into the 3D mesh as the barycenter of the ve perspective images' optical centers recorded at an instant t during the acquisition. In this way, the extracted depth values are the set of distances between the origin of the traced rays and the intersections with each triangle in the 3D mesh as shown in Figure 2.13. Akin to the panoramic images generation process, the reconstructed depth maps are sampled on a spherical geometry followed by an equirectangular projection.

Results and discussion

In a similar way to the panoramic images, equirectangular depth maps are reconstructed every spacing distance equal to 3 meters. To cover as much objects as possible in the rendered scene, we set the maximum depth value to 100 meters which corresponds to the maximum observable range of the used LiDAR in this survey. In Figure 2.14, we show the reconstructed equirectangular depth maps at dierent maximum range values. The images are saved as 16-bit PNGs. All depths beyond this maximum range assumes a value of 65535. Inversely, when the traced ray does not intersect any triangle in the 3D mesh, we assume a zero depth value (a vacuum). Adopting a ray-tracing-based strategy to compute the ground truth depth maps oers complete depth measurements even for the moving objects in the scene which commonly results in holes and artifacts when stereo-based techniques are used instead. That is why Apolloscape dataset [START_REF] Huang | The ApolloScape Dataset for Autonomous Driving[END_REF] provides exclusively depth maps of the static background.

Nevertheless, this implies that the quality of the depth reconstruction depends mainly on the geometry of the mesh. Typically, the rendered depth maps are aected by two crucial factors; the mesh resolution and its water-tightness. For the former, the used LiDAR RIEGL VQ-250 is considered dense and accurate enough to be reliable since it provides nearly 250K points per second with a high precision at centimeter level. At this stage we abstain from decimating the dense mesh in order to preserve its density which comes at the cost of computation time which itself grows linearly with the number of triangles in the mesh. On the other hand, reconstructing a watertight mesh from a terrestrial mobile mapping LiDAR data is not guaranteed. In fact, due to the acquisition conguration illustrated in Figure 2.9, the nal reconstructed mesh is likely susceptible to have occlusions. This can occur especially in both sides of the mapped streets where there are parked cars hiding the opposite side of the sidewalks or whenever the mobile mapping platform scans objects that are orthogonal to the scanning plan of the LiDAR.

As a result some of the depth maps might be incomplete. More discussion about this aspect is available in the next chapter.

Reectance maps generation

In the context of autonomous navigation, restraining the urban scene analysis exclusively to a geometric point of view could be insucient for a comprehensive scene understanding.

In the literature, the main radiometric property that has been extensively explored is the In order to solve various driving perception problems such as lane markings and road detection, several studies [START_REF] Homayounfar | Hierarchical Recurrent Attention Networks for Structured Online Maps[END_REF][START_REF] Lang | PointPillars: Fast encoders for object detection from point clouds[END_REF] proposed to leverage the radiometric information in the near-infrared domain provided by LiDAR sensors. Called reectance, this measurement corresponds to the intensity of reection observed on the photo-detector of a LiDAR sensor when a laser beam hits the scanned surface. A very popular feature in the remote sensing community, this radiometric measure is essentially aected by 3 factors; the distance to the object, the angle between the emitted ray and the normal to the scanned surface as well as the photometric properties of the scanned material. For instance, road markings such as lanes and pedestrian crossings are characterized by a higher reectivity compared to the road pavement which make such information useful for the task of detecting these objects. Therefore, in addition to the equirectangular RGB images and depth maps, we provide also in our dataset the LiDAR intensity maps.

Rendering reectivity maps:

Akin to the process of rendering 360 • full surrounding depth maps, we use a ray-tracingbased approach to render reectivity maps from the 3D LiDAR mesh considered as our ground truth. As illustrated in Figure 2.13, rays are traced from the barycenter of the ve optical centers of the perspective images to the 3D mesh sampled in a spherical geometry. In fact, real-world surface materials are typically subject to local variations over the surface due to illumination changing or their physical inherent properties. In order to be able to appropriately model these spatial variations, we need to compute a mapping between the scanned surface parameters' space (u, v) and the rendered image space dened by (x, y). Then the reectivity is modeled by the local spacial variation at the intersection point between the traced ray and the closest primitive in the 3D mesh computed using the partial derivatives of the mappings u(x, y) and v(x, y) from the image space (x, y) to the parametric space (u, v); ∂u ∂x , ∂u ∂y , ∂v ∂x , ∂v ∂y

Results and discussion

As for the case of depth maps and panoramic images we render a reectivity map each 3 meters. In Figure 2.15, we show the LiDAR reectivity map obtained by casting rays with a maximum range equal to 100 meters into the 3D mesh sampled in a spherical geometry and followed by an equirectangular projection. Meanwhile, several studies tried to ensure a uniformly-distributed reectivity. For instance, Guan et al. [START_REF] Guan | Automated Road Information Extraction From Mobile Laser Scanning Data[END_REF] propose to use a multi-thresholding technique which partitions the road into subsets by computing an optimal threshold for each subset. Yet, this approach remains not robust to noise. Furthermore, the reectivity maps rendering process depends essentially on the resolution and water-tightness of the 3D reconstructed mesh akin to the case of depth maps. As a result some of the rendered maps might depict holes or missing intensity values.

Data overview

The overall acquisition resulted in nearly 2 billion geo-referenced 3D points and about 40K oriented perspective images which corresponds to more than 500 GB of raw data.

The dataset is organized in 3 sessions. Each session encompasses between 3 and 6 sections.

A session is a time period during which a certain trajectory has been surveyed. A section, on the other hand, consists of a time interval which starts when triggering the acquisition software and ends by shutting it down. In each section, we provide raw RGB perspective 

Annotation Policy

Generating ground truth data for training and evaluating learning-based algorithms is an extremely challenging task. In order to alleviate the prohibitive cost of manually annotating data, there has been several attempts to produce automatic or semi-automatic annotation tools to generate ground truth for dierent computer vision tasks as discussed in this survey [79]. However, as soon as such methods are adopted, ground truth will include algorithmic bias resulting in an extra-eort to handle labels inaccuracies and its 26 Geolabx is a geo-visualization tool developed in LASTIG errors rate. In our dataset we provide both dense pixel-wise 2D annotations of spherical and perspective images as well as dense point-wise 3D point clouds and 3D textured meshes. We annotated 15 classes covered by 5 groups. Table 2.5 shows the hierarchy of the annotated classes. The ID 0 indicates the ignored labels that correspond to none of the aforementioned classes which are not evaluated during testing. The specication of the classes is similar to common driving datasets such as Apolloscapes [START_REF] Huang | The ApolloScape Dataset for Autonomous Driving[END_REF] and Cityscapes [START_REF] Cordts | The Cityscapes Dataset for Semantic Urban Scene Understanding[END_REF] with minor dierences. In the following, we explain the details of the annotation methodology. In Figure 2.17, we show statistics of the annotated 3D point clouds for each semantic class. We observe that the distribution of the annotated points w.r.t. to dierent semantic classes is unbalanced. For instance, the number of annotated points for the building class represent more than 47% of the entire dataset. In contrast, the movable objects category represent no more than 4% of the dataset. This is expected in a typical urban environment where the majority objects belong to the categories surface and infrastructure.

Groups

2D Annotations: For 2D annotations, we used a web-based tool introduced in Tangseng et al. [START_REF] Tangseng | Looking at Outt to Parse Clothing[END_REF]. The online tool starts by computing SLIC [START_REF] Achanta | SLIC Superpixels Compared to State-of-the-Art Superpixel Methods[END_REF] superpixels on the y via a web browsing interface. The user can easily adjust the resolution of the over-segmentation to t to the complexity of the annotated scene and subsequently associate labels to each segment.

3D Annotations: 3D manual annotation is considered by far a more cumbersome task than 2D annotations since there is no proper denition of occlusion and borders ditionally, annotating 3D data can be performed manually as in Roynard et al. [START_REF] Roynard | Paris-Lille-3D: A large and high-quality ground-truth urban point cloud dataset for automatic segmentation and classication[END_REF], or semi-automatically Vallet et al. [START_REF] Vallet | TerraMobilita/iQmulus urban point cloud analysis benchmark[END_REF]. Akin to [START_REF] Roynard | Paris-Lille-3D: A large and high-quality ground-truth urban point cloud dataset for automatic segmentation and classication[END_REF], we used CloudCompare tool 27 to annotate 3D point clouds. To transfer these labels to the 3D mesh, we compute for each vertex in the mesh its rst nearest neighborhood in the labeled point cloud.

Afterwards, the label of each triangle will be a major vote between the labels of its 3 vertices. In case where each vertex of the same face has a dierent label, we attribute a miscellaneous label for that triangle.

In Table 2 

Evaluation

Given 3D per-point, per-face annotations along with 2D pixel-wise annotations of perspective/panoramic images with their camera pose information as well as omnidirectional ground truth depth maps, numerous computer vision tasks could be dened. In the current release, we mainly focus on 3D point clouds semantic segmentation, as well as 360 • monocular depth estimation. For each task, we choose a method from the literature to evaluate on our dataset. The selected approaches are not necessarily the current state-of-the-art in the underlying task but they are known to be competitive. Overall Accuracy: OA is a global metric dened as the ratio of correct predictions divided by the overall number of (annotated) points.

Semantic segmentation of 3D point clouds:

OA = T race(CM ) Sum(CM ) (2.8) 
Class Intersection over Union IoU: this per-class metric is dened as the ratio between true positives divided by the sum of false positives, false negatives and true positives.

IoU i = CM i,i CM i,i + i =j (CM i,j + CM j,i ) (2.9)
We split the dataset into train and test subsets such that the test set represents nearly 20% of the overall dataset. We use the implementation of SPG 28 [17] with the default parameterization.

In Table 2.7, we show the obtained OA, and IoU on our dataset. The detailed perclass IoU scores are presented in the appendix along with illustrations of semantic segmentation results.

Method OA IoU SPG [17] 87.89 31.69

Table 2.7: Semantic segmentation results on our dataset using the method of [17] Omnidirectional monocular depth estimation: To investigate the usefulness of our dataset for 360 • monocular depth estimation, we leverage the deep model proposed by Payen et al. in [START_REF] Payen De | Eliminating the Blind Spot: Adapting 3D Object Detection and Monocular Depth Estimation to 360 Panoramic Imagery[END_REF]. This network architecture is mainly based on the pioneering work of Godard et al. [START_REF] Godard | Unsupervised Monocular Depth Estimation with Left-Right Consistency[END_REF] for unsupervised monocular depth estimation. The network 28 https://github.com/loicland/superpoint_graph was retrained on the omnidirectional domain-adapted KITTI dataset [49] by projection and style transformation using CycleGAN [START_REF] Zhu | Unpaired Imageto-Image Translation Using Cycle-Consistent Adversarial Networks[END_REF]. We directly evaluate the pre-trained model on our test subset composed of 200 full-surrounding depth images. To ensure an equivalent evaluation setup as in [START_REF] Payen De | Eliminating the Blind Spot: Adapting 3D Object Detection and Monocular Depth Estimation to 360 Panoramic Imagery[END_REF], the maximum range depth is set to 50 meters. We also crop our panoramic images and their corresponding depth maps to get panoramas of size 2048 × 300. Following the evaluation protocol of Eigen et al. in [START_REF] Eigen | Depth Map Prediction from a Single Image using a Multi-Scale Deep Network[END_REF], for each predicted depth map d in the test set T and its corresponding ground truth depth map d * , we report the following scores for:

Depth accuracy:

% of d i s.t. max( d i d * i , d * i d i ) = δ < threshold (2.10)
Absolute relative dierence:

Abs.Rel = 1 |T | d∈T |d -d * |/d * (2.11)
Squared relative dierence:

Sq.Rel = 1 |T | d∈T ||d -d * || 2 d * (2.12)
Root mean square error:

RMSE = 1 |T | d∈T ||d i -d * i || 2 (2.13)
Logarithmic root mean square error: [START_REF] Payen De | Eliminating the Blind Spot: Adapting 3D Object Detection and Monocular Depth Estimation to 360 Panoramic Imagery[END_REF] trained on KITTI dataset [49] and tested on our own test set and synthetic data generated from [START_REF] Dosovitskiy | CARLA: An Open Urban Driving Simulator[END_REF]. ( ): higher better, ( †) lower better Due to the absence of a real world outdoor dataset which provides ground truth depth maps, it was not possible to perform a quantitative evaluation of depth recovery methods. Payen et al. [START_REF] Payen De | Eliminating the Blind Spot: Adapting 3D Object Detection and Monocular Depth Estimation to 360 Panoramic Imagery[END_REF] mitigate this by generating synthetic depth maps using CARLA simulator [START_REF] Dosovitskiy | CARLA: An Open Urban Driving Simulator[END_REF]. Despite we have a considerable number of panoramic depth maps (4000) in our dataset, we are not able to perform training from scratch nor ne-tuning as the model requires rectied stereo pairs of equirectangular images as input. Since we do not have such set up in our dataset, the evaluation is based on a direct inference of the pre-trained model on our test set. In Table 2.8, we present the quantitative results of the depth recovery method of [START_REF] Payen De | Eliminating the Blind Spot: Adapting 3D Object Detection and Monocular Depth Estimation to 360 Panoramic Imagery[END_REF] trained on two dierent version of KITTI dataset [49] and tested on the proposed synthetic dataset as well as on our own dataset. KITTI in the rst column of Table 2.8 denotes that the model was trained using the set of rectilinear perspective images from [49]. KITTI.proj means that the network is trained on the panoramic images which are the result of equirectangular projection of the rectilinear images from [49]. It should be noted that the network proposed in [START_REF] Payen De | Eliminating the Blind Spot: Adapting 3D Object Detection and Monocular Depth Estimation to 360 Panoramic Imagery[END_REF] was neither pre-trained nor ne-tuned on the simulated data [START_REF] Dosovitskiy | CARLA: An Open Urban Driving Simulator[END_REF]. Both the synthetic depth maps and our depth maps are used for dataset cross-validation in this experiment.

log RMSE = 1 |T | d∈T || log(d i ) -log(d * i )||
We observe that testing the model on our validation set gives competitive results compared to the simulated data, especially when the model is trained on equirectangular images (KITTI.proj). This conrms the usefulness of our computed depth maps.

In Figure 2.18, we show illustrations of equirectangular samples from our datasetnamely a panoramic image and the corresponding ground truth annotation, spherical depth and intensity maps. 

Conclusion

As an eort to facilitate the task of the computer vision and robotics communities in terms of easy and organized access to up-to-date information in order to keep truck of the recent outdoor urban datasets, we have conducted throughout this chapter an extensive investigation of the current state-of-the art datasets. This study allowed us to identify an urgent need of a multi-modal benchmark in which imaging modalities could be In the literature [8890], we can nd two fundamental representations of a 3D map: a metric map and a topological map. In the former type of maps, the objects of the environment are represented by their 3D coordinates in an absolute frame, whereas in the latter type (i.e. topological) the map is abstracted as a graph where the nodes represent special entities (e.g. co-visibility, distance) and the edges express the accessibility between the dierent nodes. Topological maps are by far less precise than metric maps as the objects of the environments are substantially abstracted to a high level representation (a graph) which impact the precision of the localization and navigation process. As discussed earlier in the introduction chapter, the goal here is to build an o-line 3D map that encapsulates as much information as possible about the explored space. Therefore, in this study we are only concerned with the approaches which represent a 3D map as a metric map.

Among the dierent types of metric maps, we can mainly distinguish between four families of representations each of which relies on a dierent geometry based on landmarks [8,9194], surfel/point clouds [9,9599], occupancy-grids/voxels [10,100104] and surface meshes [12,105109].

From the autonomous driving perspective, the rst layer of a high denition map (HD map) being the geometric layer, must be able to eciently and faithfully represent the surrounding world at an unprecedented centimeter resolution. That is, navigable zones, sidewalk curbs and boundaries, road slopes, sharp edges as well as surface deformations have to be precisely reconstructed with the lowest possible rate of noise and artifacts.

We argue that one of the most appropriate representation among the aforementioned ones is the mesh-based approach where the operating space is represented as an explicit triangulated surface. 3D triangulated surfaces are a widely used and extensively studied concept since the early stages of computer vision [START_REF] Berger | A benchmark for surface reconstruction[END_REF][START_REF] Berger | A Survey of Surface Reconstruction from Point Clouds[END_REF]. Their ability to reproduce the required high-level of details while remaining ecient in handling massive data has been successfully proven in many occasions [START_REF] Ondrú²ka | Mobilefusion: Real-time volumetric surface reconstruction and dense tracking on mobile phones[END_REF][START_REF] Dai | Bundlefusion: Real-time globally consistent 3d reconstruction using on-the-y surface reintegration[END_REF]. In the context of urban mobile mapping, most of these mesh-based maps are built using either multiple images from dierent views or raw LiDAR point clouds [START_REF] Musialski | A Survey of Urban Reconstruction[END_REF]. However, since the recent acquisition platforms are often equipped with LiDAR and RGB cameras, it would be a waste if these two modalities remain essentially exploited independently. As a matter of fact, a joint exploitation would benet from the high complementarity of these two sources of information:

3.1. OVERVIEW High resolution of the images v.s high precision of the LiDAR range measurements.

Passive RGB images VS active intensity measurements in near infrared.

Dierent acquisition geometries.

A straightforward way to combine both sources of information consists in projecting RGB images onto the 3D mesh reconstructed from the LiDAR point clouds such that each vertex has a color attribute. Nonetheless, per-vertex color encoding means that the radiometric information is mainly tied to the mesh resolution which results in a photometrically poor representation in case of sparse triangulation of the surface. Therefore, a more compact and convincing fusion strategy of RGB images and LiDAR point clouds into a single representation is required. To this end, we propose to use a popular concept within the computer graphics community in order to represent a 3D map of the environment:textured meshes. Being the central representation of virtual scenes, textured meshes have been mainly leveraged in video games and animation movies industry where graphics cards are highly optimized for their processing and visualization.

While 3D textured meshes are a common representation in controlled indoor environments [22,24] thanks to hand-held consumer-grade devices such as Matterport 1 which systematically generates a 3D textured mesh using the collected RGB-D data, this remains a very challenging task for outdoor scenes due to numerous diculties. First, acquisition constraints are more complicated in the case of urban mapping due to its dynamic nature and extremely changing lighting conditions. Second, a confusing trade-o between quality of the reconstructed textured scene and the scalability of the used method has to be always taken into consideration. Finally, akin to the indoor case, a full automatic pipeline that does not involve the end-user interaction is not guaranteed. At the time of writing our paper, a similar work to ours Romanoni et al. [START_REF] Romanoni | Mesh-based 3D textured urban mapping[END_REF] was published corroborating the growing importance of such maps in which authors propose to represent the 3D map of an urban environment as a textured mesh. While their method handle large scale scenes, this is accomplished at the expense of the output quality and the level of automation.

The produced textured mesh is a low resolution representation where ne details were discarded failing, thereby, to satisfy the requirements of modern HD maps. The latter method will be discussed in detail in the related work section.

In this chapter, we present a visibility consistent 3D mapping pipeline to automatically reconstruct high quality large scale urban textured mesh using both oriented images and geo-referenced point clouds coming from a terrestrial Mobile Mapping System (MMS). In Section 3.1, we give an overview of the work related to the dierent blocks of our framework. A simple yet fast and scalable algorithm for surface reconstruction is presented in Section 3.2. The texture mapping approach is explained in Section 3.3. Finally, in Section 3.4 we expose our experimental results and conclude the chapter in Section 3.5.

Overview

In this section, we rst start by discussing the main representations of a 3D scene used for mapping and navigation purposes. Second, we present the previous work related to the 1 https://matterport.com textured mesh representation taking a broad perspective across computer vision, robotics, computer graphics and photogrammetry.

3D metric map representations

In autonomous navigation, a 3D scene can be represented by various geometries. In the literature, these representations can be grouped into four categories based on the geometry of elements constituting the scene, namely, sparse landmarks, dense surfels The scene is reconstructed using a set of sparse and distinguishable landmarks corresponding to discriminative primitives (e.g. corners, segments, lines) with known absolute pose.

Whilst such representation has been investigated since the early stages of localization and mapping as it allows for a fast processing, it remains a low-resolution representation of the 3D geometry. In practice, the sparsity feature is unsuitable for obstacle avoidance not to mention visualization and rendering. Despite their versatility and constant time access, voxels or occupancy grids are prone to erroneous discretization and heavy memory footprint as the entire map has to be allocated in memory.

Surface mesh-based representations[12, 105109]:

A more ecient spatial-partionning strategy which has been shown to be more compact consists of surface mesh models where the scene is a set of vertices connected by edges forming triangles. This representation has the advantage of being a continuous geometry 2 a set of small surface elements (usually discs as in [9]) which store local statistics of 3D points (e.g. mean, covariance) and orientation. 3.1.1.5 Other representations [11,[START_REF] Kaess | Simultaneous localization and mapping with innite planes[END_REF]:

In addition to the aforementioned representations, other types of maps were also used.

For instance, 2.5D elevation maps [11] consisting of 2D grids where each cell stores an estimated local height of the scene. While such maps allows for fast constant time access, robots are not able to distinguish between free or unknown space when navigating making it inappropriate for obstacle avoidance. Plane-based maps [START_REF] Kaess | Simultaneous localization and mapping with innite planes[END_REF] were also introduced. In this case, entities of the scene are approximated by simple planes. These are a set of methods that rely on 2D images in order to generate indirectly 3D point clouds. Inspired by the way a human perceive objects, stereo vision relies on multiple images (at least two) to restore the depth information using photogrammetry principles.

MVS reconstruction methods [START_REF] Furukawa | Multi-view stereo: A tutorial[END_REF] have reached a high level of maturity making it possible even for city scale reconstruction [117,[START_REF] Furukawa | Towards Internet-scale multi-view stereo[END_REF]. The proliferation of these methods has been further boosted thanks to the democratization of the acquisition low cost devices.

However, since 2D images are always acquired by passive sensors (electro-optical RGB cameras), the quality and precision of the reconstructed scene is inuenced by illumination variation and textureless objects (e.g. water, snow). is not a new surface reconstruction algorithm, we will settle for a brief review of the related work especially methods used in evaluation. Following the nomenclature proposed by Berger et al. [START_REF] Berger | A benchmark for surface reconstruction[END_REF], surface reconstruction problem can be essentially grouped into two major categories with respect to their type of smoothness prior: Global (Indicator function [START_REF] Michael | Poisson surface reconstruction[END_REF][START_REF] Michael | Screened poisson surface reconstruction[END_REF], Radial Basis Function [START_REF] Carr | Reconstruction and representation of 3D objects with radial basis functions[END_REF]) and local methods (point-set surface [123125],

Multilevel Partition of Unity (MPU) [START_REF] Ohtake | Multi-level partition of unity implicits[END_REF][START_REF] Xiao | Multi-Level Partition of Unity Algebraic Point Set Surfaces[END_REF]). Other popular surface reconstruction algorithms exist, but they are out of the scope of this study.

Radial Basis Function [START_REF] Carr | Reconstruction and representation of 3D objects with radial basis functions[END_REF]: In this class of methods, the surface is reconstructed as a zero level set 3 of a signed scalar eld Φ estimated using a well-known method originally designed for scattered data interpolation called Radial Basis Functions (RBFs). Using a linear combination of radially symmetric functions RBFs, the implicit surface can be dened as:

Φ(x) = i w i φ(||x -x i ||) + p(x) (3.1) 
where p(x) is a low degree polynomial that improves the extrapolation capability of RBFs centered at nodes x i ∈ R 3 . One way to nd the coecients w i consists in imposing interpolation constraints satisfying the denition of an implicit surface Φ = 0. However by doing so, this will lead to the trivial solution given by the identical zero function. That is why [START_REF] Carr | Reconstruction and representation of 3D objects with radial basis functions[END_REF] proposed to use additional constraints based on o-surface points dened by the normals to the surface as illustrated in Indicator function [START_REF] Michael | Poisson surface reconstruction[END_REF][START_REF] Michael | Screened poisson surface reconstruction[END_REF] : These set of methods estimate the surface using a labeling that discriminates the interior and exterior of a solid shape called indicator Formally this can be solved by minimizing the following equation:

argmin χ ||∇χ(x) -N (x)|| 2 2 dx (3.2)
The surface is subsequently generated by isocontouring. Popular methods of this category are Poisson [START_REF] Michael | Poisson surface reconstruction[END_REF] and its extension the Screened Poisson [START_REF] Michael | Screened poisson surface reconstruction[END_REF] algorithms.

Whilst this gradient-based formulation ensure the robustness of reconstruction to data imperfections such as non-uniform sampling, noise and outliers, tting directly the gradient of a scalar function may result in an undesirable over-smoothing [START_REF] Michael | Poisson surface reconstruction[END_REF] or over-tting [START_REF] Michael | Screened poisson surface reconstruction[END_REF]. In addition, since these methods are based on normal orientation, in case of a densely distributed normal ips (especially surface details), this category of methods fail to faithfully reconstruct the surface.

Point-set surface [123125]: This class of methods dene a smooth surface as a set of stationary points 5 computed using a projection operator of points in the ambient space or as an implicit surface based on Moving Least Square (MLS) [START_REF] Cheng | A Survey of Methods for Moving Least Squares Surfaces[END_REF]. The rst work of Levin [START_REF] Levin | Mesh-independent surface interpolation[END_REF] starts by fetching for each point in the ambient space its closest projection in the 3D point cloud such that its normal goes through its projection.

Figure 3.5, illustrates the problem setting. Afterwards, the approximation order is improved using a controllable polynomial t making the approach will suited for noise ltering. A subsequent work of Amenta and Kil [START_REF] Amenta | Dening point-set surfaces[END_REF] has shown that 5 a point is considered stationary if its projection is the identity x = P (x)

the polynomial tting step can be omitted to improve eciency while producing the same results by tting the best plane dened by a weighted average of local neighborhood normals. The surface is subsequently dened as a scalar eld equal to the distance between evaluation point and the prescribed tted plane. However the plane tting operation is subject to instability in high curvature regions with low sampling rate inducing, thereby, errors in the nal reconstruction. To alleviate this problem Guennebaud and Gross [START_REF] Guennebaud | Algebraic point set surfaces[END_REF] propose a higher order tting strategy based on an algebraic sphere. In this way stability is signicantly improved where plane-tting based methods fail.

Figure 3.5: q is the projection of the evaluation point x. The orange curve is the polynomial t [START_REF] Levin | Mesh-independent surface interpolation[END_REF]. It is replaced by a planar t in [START_REF] Amenta | Dening point-set surfaces[END_REF] and an algebraic sphere in [START_REF] Guennebaud | Algebraic point set surfaces[END_REF] Figure 3.6: The algebraic spheres (blue, red and green) are tted per cell in [START_REF] Xiao | Multi-Level Partition of Unity Algebraic Point Set Surfaces[END_REF] instead of per-point as in [START_REF] Guennebaud | Algebraic point set surfaces[END_REF]. Weighted distance elds (w 1 (x).u 1 (x)) and (w 2 (x).u 2 (x), w 3 (x).u 3 (x)) are subsequently blended to give the nal implicit surface represented by the black curve S p . Image from [START_REF] Xiao | Multi-Level Partition of Unity Algebraic Point Set Surfaces[END_REF].

Multi-level partition of unity [START_REF] Ohtake | Multi-level partition of unity implicits[END_REF][START_REF] Xiao | Multi-Level Partition of Unity Algebraic Point Set Surfaces[END_REF]: This set of techniques is based on a hierarchical partitioning. Ohtake et al. [START_REF] Ohtake | Multi-level partition of unity implicits[END_REF] rst build an octree on top of the point 3.1. OVERVIEW cloud. A set of local distance elds are subsequently dened in such a way the points in each cell and nearby are approximated by a bi-variate quadratic polynomial. The same procedure is recursively repeated for each cell in case of a large residual error. Merging these per-cell distance elds results in a smoothly global implicit surface. Inspired by the success of algebraic high order primitive tting approach [START_REF] Guennebaud | Algebraic point set surfaces[END_REF], Xiao [START_REF] Xiao | Multi-Level Partition of Unity Algebraic Point Set Surfaces[END_REF] propose to use the same hierarchical partitioning as in [START_REF] Ohtake | Multi-level partition of unity implicits[END_REF],

albeit, per-cell points are instead approximated by algebraic spheres. While MPUbased approaches are known to be faster and more ecient compared to Point-set surface based methods, they fail to address point clouds with missing data using extrapolation before fusing local approximated functions. In Figure 3.6 we show an illustration of the Multi-level partition of unity reconstruction.

Texture mapping: a review

From the computer graphics perspective, texturing a 3D mesh is typically a two-step approach. First for each triangle in the 3D surface, we need to pick up the best view to be used as a preliminary texture. Second, to minimize seams between adjacent texture patches, the mapping resulted from step one has to be locally and globally optimized for photo-metric consistency. A large body of work has been achieved to solve the rst step, coined as the view selection problem. These methods can be classied into two groups: We note that few attempts proposed hybrid approaches [START_REF] Allène | Seamless image-based texture atlases using multi-band blending[END_REF] where they select a single view per-face then blend at borders of patches.

Surface reconstruction

As discussed above, surface reconstruction has been extensively studied from the computer graphics perspective Berger et al. [START_REF] Berger | A Survey of Surface Reconstruction from Point Clouds[END_REF] where the input point clouds are basically limited in size and most of the proposed methods do not cope with the level of challenges a mobile mapping acquisition imposes. In practice, most of the proposed algorithms do not handle typical mobile mapping acquisitions characterized with their huge size (city scale), particular noise and artifacts, miss-aligned scans, occluded objects, and extremely varying density. With the recent advances in autonomous navigation, the interest of reconstructing a surface out of a mobile mapping acquisition has gained an increasing attention over the few past years [START_REF] Romanoni | Mesh-based 3D textured urban mapping[END_REF][START_REF] Roldão | 3D Surface Reconstruction from Voxel-based Lidar Data[END_REF][START_REF] Li | Dense Surface Reconstruction from Monocular Vision and LiDAR[END_REF]. Older studies [START_REF] Brun | On-the-way city mobile mapping using laser range scanner and sheye camera[END_REF][START_REF] Carlberg | Fast surface reconstruction and segmentation with ground-based and airborne lidar range data[END_REF] have been also conducted to solve this problem. For instance, Brun et al. [START_REF] Brun | On-the-way city mobile mapping using laser range scanner and sheye camera[END_REF] propose to use an incremental 2D Delaunay triangulation of a 2D parametrization of the 3D points in a cylindrical coordinate system. Even though this approach is fast and ecient enough to handle large scale data, the produced 3D mesh is not only over-smoothed (objects like cars and sidewalk are barely distinguishable), but also it depicts elongated triangles and isolated pieces. In the work of Carlberg et al. [START_REF] Carlberg | Fast surface reconstruction and segmentation with ground-based and airborne lidar range data[END_REF], a nearest neighbor approach is adopted to identify adjacent points on consecutive line scans, then edges of triangles are incrementally extended with respect to their chronological order until detecting a discontinuity xed by a threshold. While several artifacts were eciently handled such as holes and redundant triangles, other common acquisition challenges remain unsolved especially varying density and line scans intersections (when the vehicle follow sharp turns).

More sophisticated approaches have been recently introduced. The closest work to ours

Romanoni et al. [START_REF] Romanoni | Mesh-based 3D textured urban mapping[END_REF] propose a LiDAR based method that partitions the space into a set of tetrahedra which are subsequently classied according to visibility rays as occupied or free tetrahedron. The boundary between these two classes is then the nal surface mesh.

However, prior to the visibility consistency-check step, moving objects and cars need to be explicitly removed otherwise the nal surface will contain noise and artifacts due to transparent objects traversed by the LiDAR beams. Roldao et al. [START_REF] Roldão | 3D Surface Reconstruction from Voxel-based Lidar Data[END_REF] start by approximating local planar surfaces using an adaptive neighborhood. A global implicit surface is reconstructed afterwards by computing the Truncated Signed Distance Function (TSDF) from the condences of the statistical distribution stored in a voxel representation build on top of the LiDAR acquisition. The explicit surface is nally extracted using Marching cubes [START_REF] Lorensen | Marching cubes: A high resolution 3D surface construction algorithm[END_REF]. While the adaptive neighborhood kernel make the method robust to noise and varying density of the LiDAR point clouds, a trade-o between density and accuracy of the reconstruction, which is tied to the size of the neighborhood kernel, needs to be considered for each dataset.

In summary, we believe that the inherent topology of a mobile LiDAR sensor provides pertinent information regarding the adjacency relationship between 3D points that is most of the time ignored. In our work, we build on top of the methods of Brun et al. [START_REF] Brun | On-the-way city mobile mapping using laser range scanner and sheye camera[END_REF] and Carlberg et al. [START_REF] Carlberg | Fast surface reconstruction and segmentation with ground-based and airborne lidar range data[END_REF] which exploit the sensor topology. We propose a scalable and fully automatic surface reconstruction method out of a mobile mapping acquisition based on LiDAR measurements projected into the Sensor space topology.

Sensor topology

The sensor space topology was rstly introduced by [START_REF] Vallet | TerraMobilita/iQmulus urban point cloud analysis benchmark[END_REF] as an intermediate 2D representation of LiDAR acquisition that serves for semi-automatic annotation of 3D point clouds. This spatial geometry originates from the particular LiDAR conguration ensuring a constant time interval not only between consecutive emitted pulses but also between each rotation. Such parameterization allows the recovery of a regular topology out of the point cloud stream in such a way for an emitted pulse at time t the neighboring pulses are the immediately preceding and succeeding pulses respectively at time t -∇t and t + ∇t and the closest ones on the preceding and succeeding rotations. Thanks to the continuous sampling of the used scanner, the last pulse of each rotation is connected to the rst pulse in the following one. In our application we make use of this particular topology to extract a dense mesh out of the acquired 3D point cloud. This process is explained in details in the following section. 

Mesh extraction

During urban mapping, the mobile platform may stop for a moment because of external factors (e.g. road sign, red light, trac congestion . . . ) which results in massive redundant data at the same scanned location. Thus, a ltering step is mandatory to get a uniform distribution of scan-lines. To do so, we x a minimum distance between two successive line scans and we remove all lines whose distances to the previous (unremoved) line is less than a xed threshold. In practice, we use a threshold of 1cm, close to the LiDAR accuracy.

Once the regular sampling is done, we consider the resulting point cloud in the aforedescribed sensor space where one dimension is the acquisition time t and the other is the rotation angle θ. Let θ i be the angle of the i th pulse and E i the corresponding echo. In case of multiple echoes, E i is dened as the last (furthest) one, and in case of no return, E i does not exist so we do not build any triangle based on it. In general, the number N p of pulses for a 2π rotation is not an integer so

E i has six neighbors E i-1 , E i+1 , E i-n , E i-n-1 , E i+n , E i+n+1
where n = N p is the integer part of N p . These six neighbors allow to build six triangles.

In practice, we avoid creating the same triangle more than once by creating for each echo E i the two triangles it forms with echoes of greater indexes: E i , E i+n , E i+n+1 and E i , E i+n+1 , E i+1 (if the three echoes exist) as illustrated in Figure 3.9. This allows the algorithm to incrementally and quickly build a triangulated surface based on the input points of the scans. In practice, the (non integer) number of pulses N p emitted during a 360 deg rotation of the scanner may slightly vary. To ensure robustness, we check if θ i+n < θ i < θ i+n+1 and if it doesn't, we increase or decrease n until it does. This was made possible and convenient thanks to not only the geometry of acquisition but also to the constant timestamps between each emitted pulse and each rotation of the LiDAR.

Cleaning

The triangulation of 3D measurements from a mobile mapping system usually comes with several imperfections such as elongated triangles, noisy unreferenced vertices, holes in the model, redundant triangles to mention a few. In this section, we focus on three main issues that frequently occur with mobile terrestrial systems and aect signicantly the texturing results if not adequately dealt with, namely, elongated triangles, isolated pieces and holes.

Elongated triangles ltering

In practice, neighboring echoes in sensor topology might belong to dierent objects at dierent distances. This generates very elongated triangles connecting two objects (or an object and its background). Such elongated triangles might also occur when the MMS follows a sharp turn. We lter them out by applying a threshold on the maximum length of an edge before creating a triangle, experimentally set to 0.5m for the data used in this study.

Isolated pieces removal

In contrast with camera and eyes that captures light from external sources, the LiDAR scanner is an active sensor that emits light itself. This results in measurements that are 

Hole lling

After the surface reconstruction process, the resulting mesh may still contain a consequent number of holes due to speculate surfaces deecting the LiDAR beam, occlusions and the non-uniform motion of the acquisition vehicle. To overcome this problem we use the recursive hole lling method introduced in [START_REF] Liepa | Filling Holes in Meshes[END_REF]. The algorithm takes a user-dened parameter which consists of the maximum hole size in terms of number of edges and closes the hole in a recursive fashion by splitting it until it gets a hole composed exactly with 3 edges and lls it with the corresponding triangle.

Scalability

The interest in mobile mapping techniques has been increasing over the past decade as it allows the collection of dense, accurate and detailed data at the scale of an entire city with a high productivity. However, processing such data is limited by various diculties specic to this type of acquisition especially the very high data volume (up to 1 TB by day of acquisition [START_REF] Paparoditis | Stereopolis II: A multipurpose and multi-sensor 3D mobile mapping system for street visualisation and 3D metrology[END_REF]) which requires ecient processing tools in terms of number of operations and memory footprint. In order to perform an automatic surface reconstruction over large distances, memory constraints and scalability issues must be addressed. To do so, we adopt a slicing-based strategy. First, the raw LiDAR scans are sliced into N chunks of 10s of acquisition which corresponds to nearly 3 million points per chunk. Each recorded point cloud (chunk) is processed separately as explained in the work-ow of our pipeline presented in Figure 3.10, allowing a parallel processing and faster production.

Yet, whereas the aforementioned ltering steps alleviate the size of the processed chunks, the resulting models remain unnecessarily heavy as at surfaces (road, walls) may be represented by a very large number of triangles that could be drastically reduced without loosing in detail. To this end, we apply the decimation method of [START_REF] Lindstrom | Fast and memory ecient polygonal simplication[END_REF][START_REF] Lindstrom | Evaluation of Memoryless Simplication[END_REF]. The algorithm proceeds in two stages. First, an initial collapse cost, given by the position chosen for the vertex that replaces it, is assigned to every edge in the reconstructed mesh. Then, at each iteration the edge with the lowest cost is selected for collapsing and replacing it with a vertex. Finally, the collapse cost of all the edges now incident on the replacement vertex is recalculated.

In the following section, we present the adopted texture mapping approach based on the work of Waechter et al. [START_REF] Waechter | Let There Be Color! Large-Scale Texturing of 3D Reconstructions. English[END_REF].

Texture mapping

In this section, we expose the used approach for texturing large scale 3D realistic urban scenes acquired by our mobile mapping platform. Based on the work of [START_REF] Waechter | Let There Be Color! Large-Scale Texturing of 3D Reconstructions. English[END_REF], we adapt the algorithm so it can handle our camera model (with ve perspective images). In the following, we give the outline of this texturing technique and its requirements.

Preprocessing

To work jointly with oriented images and LiDAR scans acquired by a mobile mapping system, the rst requirement is that both sensing modalities have to be aligned in a Following the approach of [START_REF] Waechter | Let There Be Color! Large-Scale Texturing of 3D Reconstructions. English[END_REF], texturing a 3D model with oriented images is a twostage process. First, the optimal view per triangle is selected with respect to certain criteria yielding a preliminary texture. Second, a local and global color optimization is performed to minimize the discontinuities between adjacent texture patches.

View selection

Let us consider a triangular mesh M dened by its set of faces such that M = {t 1 , ..., t m } where m are the number of triangles in M along with a set of registered camera views V = {v 1 , ..., v n } where |V | = n. Our objective is to compute the visibility of each triangle t ∈ M in the set of camera views V . This can be framed as computing a labeling L = {l 1 , ..., l m } ∈ {1, ..., n} m prescribing to each triangle its corresponding camera view. Since a given triangle t can lie within the eld of view of multiple cameras, not all these views are equally suited for texturing t. Therefore, an appropriate cost α j i which reects the quality of the camera view v j w.r.t. a triangle t i should be carefully designed. Thus an optimal labeling L can be dened as L = l i | l i = argmin i α j i . In the literature, the quality of a view can be assessed by its proximity to the triangles, a fronto-parallel viewing direction and its high resolution [START_REF] Victor | Seamless Mosaicing of Image-Based Texture Maps[END_REF]. However, restraining the optimality of view selection to the quality of camera views means that undesirable texturing eects especially visible seams will not be handled. In practice, if two adjacent triangles t i , t j ∈ M are textured from dierent camera views, severe seams that alter the quality of the nal texture will appear as demonstrated by Lempitsky and Ivanov [START_REF] Victor | Seamless Mosaicing of Image-Based Texture Maps[END_REF]. To circumvent this eect, we need to maximize the quality of views while simultaneously minimizing the seams' visibility.

Akin to the work of Waechter et al. [START_REF] Waechter | Let There Be Color! Large-Scale Texturing of 3D Reconstructions. English[END_REF], a two-terms energy formulation is adopted to compute a labeling L that assigns a view l i to be used as texture for each mesh face t i :

E(l) = t i ∈M E d (t i , l i ) + λ t i ,t j ∈Edges E s (t i , t j , l i , l j ) (3.3)
where λ is the weight balancing the smoothness and the data term and

E d = - φ(t i ,l i ) ||∇(I l i )|| 2 dp (3.4) E s = [l i = l j ] (3.5)
The data term E d (3.4) computes the gradient magnitude ||∇(I l i )|| 2 of the image into which face F i is projected and sum over all pixels of the gradient magnitude image within face F i 's projection φ(F i , l i ). This term is large if the projection area is large which means that it prefers close, orthogonal and in-focus images with high resolution. The smoothness term E s (3.5) minimizes the seams visibility (edges between faces textured with dierent images). In the chosen method, this regularization term is based on the Potts model ([.] the Iverson bracket) which prefers compact patches by penalizing those that might give severe seams in the nal model and it is extremely fast to compute. Finally, E(l) (3.3) is minimized with α-expansion [START_REF] Boykov | Fast Approximate Energy Minimization via Graph Cuts[END_REF].

Color adjustment

After the view selection step, the obtained model exhibits strong color discontinuities due to the fusion of texture patches coming from dierent images and to the exposure and illumination variation especially in an outdoor environment. Thus, adjacent texture patches need to be photometrically adjusted. To address this problem, rst, a global radiometric correction is performed along the seam's edge by computing a weighted average of a set of samples (pixels sampled along the discontinuity's right and left) depending on the distance of each sample to the seam edge extremities (vertices). Then, this global adjustment is followed by a local Poisson editing [67] applied to the border of the texture patches. Finally, the corrections are added to the input images, the texture patches are packed into texture atlases, and texture coordinates are attached to the mesh vertices.

Experimental results

In this section, we present the qualitative and quantitative results of each step of our pipeline namely surface reconstruction and texture mapping.

Mesh reconstruction

To highlight the interest of our sensor topology-based reconstruction method, we use point clouds coming from RIEGL-VQ250 LiDAR used in the pLaTINUM project mapping survey. Compared to a Velodyne HDL64-E, this sensor has a much simpler acquisition geometry making, thereby, the task of restoring its topology straightforward. In Figure 3.13, we show qualitative results of the reconstructed mesh based on the sensor topology technique. As we can notes from Figure 3.13, the resulting mesh is extremely dense even in at regions where geometric information can be substantially simplied without altering the precision of the reconstruction. We dene the compression rate of the reconstructed mesh as C = 1 -θ dec θraw where θ raw is the initial size of the mesh (in number of triangles) and θ dec is the size of the decimated mesh.

Figure 3.12: The compression rate with respect to the Hausdor distance HD In Figure 3.12, we illustrate the compression rate of the mesh with respect to its reconstruction error. In practice, we congure the algorithm such that the approximation error is below 3.5cm, which allows in average to reduce the number of triangles to around 30% of the input number of faces. Figure 3.14 exhibits a part of the reconstructed mesh with and without the constraint on the maximum length of the triangle edges. This is an important pre-processing step since a regular triangulation allows for an ecient view selection In order to evaluate quantitatively the proposed approach, we compare it against the acquired point cloud. For a fair evaluation, we follow the same procedure as in The Average distances (AD) from the set P to GT denoted AD P →GT and inversely from GT to P denoted AD P →GT are dened respectively as:

AD P →GT = p∈P 1 n min p ∈GT ||p -p || (3.7) AD GT →P = p ∈GT 1 m min p∈P ||p -p|| (3.8)
The Residual Mean Square distances (RMSD) from the set P to GT denoted RM SD P →GT and inversely from GT to P denoted RM SD P →GT are dened respectively as:

RM SD P →GT = p∈P 1 n min p ∈GT ||p -p || 2 (3.9) RM SD GT →P = p ∈GT 1 m min p∈P ||p -p|| 2 (3.10)
The one-sided Hausdor distances (HD) from the set P to GT denoted HD P →GT and inversely from GT to P denoted HD P →GT are dened respectively as:

HD P →GT = max p∈P min p ∈GT ||p -p || (3.11) HD GT →P = max p ∈GT min p∈P ||p -p|| (3.12)
The accuracy is dened w.r.t. AD P →GT , RM SD P →GT , HD P →GT while the completeness is dened w.r.t. AD GT →P , RM SD GT →P , HD GT →P . We also use the Symmetric Hausdor Distance dened as the average distance of the two one-sided HD distances: We choose to evaluate the reconstruction error using one-sided distances as they provide additional information. Increasing distances from the reconstruction to the reference indicate the areas that have been deviated from their true position in the reference while higher distances from the reference to the reconstruction represent unreconstructed parts due to missing or sparse data in the reference. From Table 3.3, we observe that our method has the lowest distances achieving a good compromise between accuracy (P → GT ) and completeness (GT → P ) compared to other methods. This is was expected as our reconstruction is a simple triangulation of the geo-referenced 3D points w.r.t. the scanner rotation and the time of acquisition. In contrast to global methods; Poisson [START_REF] Michael | Poisson surface reconstruction[END_REF] and Screened Poisson [START_REF] Michael | Screened poisson surface reconstruction[END_REF] where a prior normal estimation step is required which it has its share of error in the nal reconstruction, our method relies on accurate information provided by the sensor (time and rotation angle for each echo/pulse). Being a local method, Ball pivoting [START_REF] Bernardini | The Ball-Pivoting Algorithm for Surface Reconstruction[END_REF] is able to reconstruct a more precise mesh than Poisson and Screened Poisson, but it comes at the expense of the reconstruction time and limited scale.

While being accurate, the sensor-topology-based reconstruction is not able to handle occlusions as the LiDAR has a xed pose in the vehicle coordinate system such that orthogonal objects to the moving direction of the car whose geometry is planar (coplanar to the scanning plan of the LiDAR) are not reconstructed. Finally, our method remains essentially dependent on the known sensor geometry and conguration making it unsuitable for arbitrary point clouds. Therefore, our algorithm suers from its reduced generalization capabilities.

Texture mapping

In this section, we show qualitative texturing results (Figure 3.16). The inuence of the color adjustment step on the nal textured models is shown in Figure 3.17 

Discussion:

As argued by Waechter et al. [START_REF] Waechter | Let There Be Color! Large-Scale Texturing of 3D Reconstructions. English[END_REF], the chosen data term E d must account not only for the geometry of the image, but also it needs to consider its radiometric content in order to select the best view for each triangle. In recent work of Fu et al. [START_REF] Fu | Texture Mapping for 3D Reconstruction With RGB-D Sensor[END_REF], the chosen data term favors views with the largest projection area. However this implies that blurred views in addition to background-facing views are going to be also selected as texture. Therefore, we stick to the original formulation of [START_REF] Waechter | Let There Be Color! Large-Scale Texturing of 3D Reconstructions. English[END_REF]. However, whilst the chosen E d accounts for views with large projection area and a high gradient magnitude at the same time, it over-ts to radiometric artifacts such as shadows or severe variation in illumination as depicted in Figure 3.17. Moreover, this data term is more susceptible to select views with high-frequency content to texture the background which corresponds most of the time to occluders.

Finally, we note that while this energy-minimization-based method produce accurate and visually compelling texture mapping results, they remain limited to the scale of the input data. That is why a temporal slicing strategy is adopted to texture the entire dataset. However, it should be noted that using local methods requires an explicit merging approach of these temporal chunks to avoid inconsistencies between adjacent textured triangles in consecutive chunks.

Performance evaluation:

We evaluate the performance of each step of our pipeline on the dataset described in the previous chapter acquired by Stereopolis II [START_REF] Paparoditis | Stereopolis II: A multipurpose and multi-sensor 3D mobile mapping system for street visualisation and 3D metrology[END_REF] In Table 3.4, we present the required input data to texture a chunk of acquisition (10s); the average number of views and the number of triangles after decimation. Figure 3.19 shows the timing of each step in the pipeline to texture the described setting. Using a 16-core Xeon E5-2665 CPU with 12GB of memory, we are able to generate a 3D mesh of nearly 6 Million triangles in less than one minute compared to the improved version of Poisson surface reconstruction Kazhdan et al. [START_REF] Michael | Screened poisson surface reconstruction[END_REF] which reconstruct a surface of nearly 20000 triangle in 10 minutes. Moreover, in order to texture small models with few images (36 of size (768 × 584)) in a context of super-resolution, the algorithm of Goldlucke et al. [START_REF] Goldlücke | A Super-Resolution Framework for High-Accuracy Multiview Reconstruction[END_REF] takes several hours (partially on GPU) compared to the few minutes we take to texture our huge models. Finally, all the dataset (17K m of LiDAR acquisition + 40K

images) is textured in less than 30 computing hours.

Conclusion

In this chapter, we have demonstrated a full pipeline to produce textured mesh from mobile mapping images and LiDAR scans data at city scale. It is mostly based on state-of-the-art techniques that have gained a level of maturity compatible with such large scale processing. While being simple, the sensor topology-based reconstruction is quite novel.

Through this reconstruction method, We have shown that available sensor information, which is ignored most of the time, can be adequately leveraged to produce dense and accurate large-scale surface. Apart from autonomous navigation, we believe that such textured mesh can nd multiple applications, directly through visualization of a mobile mapping acquisition, or more indirectly for processing jointly image and LiDAR data: urban scene analysis, structured reconstruction, among others. This work leaves however prominent topics unsolved, and most importantly the handling of overlaps between acquired data, at intersections or when the vehicle passes multiple times in the same scene.

Dealing with these issues poses numerous challenges:

Precise registration over the overlaps, referred to as the loop-closure problem.

Change detection.

Data fusion over the overlaps, which is strongly connected to change detection and how changes are handled in the nal model.

Moreover, our work proposed a reconstruction method based exclusively on LiDAR information, albeit we believe that the images hold a pertinent geometric information that could be used to complement the LiDAR reconstruction, in areas occluded to the LiDAR but not to the cameras (which often happens as their geometries are dierent). The recent work of Li et al. [START_REF] Li | Dense Surface Reconstruction from Monocular Vision and LiDAR[END_REF] adopting this multi-modal approach, has shown promising reconstruction results.

Finally, an important issue that was partially tackled in the texture mapping step which is the presence of mobile objects. Because the LiDAR and images are most of the time not acquired strictly simultaneously, mobile objects might have an incoherent position between image and LiDAR, which is a problem that should be tackled explicitly. The code source used to generate the 3D map as a textured mesh is publicly available online 6 .

In the next chapter, we present a new approach to incorporate semantic attributes to the current representation which is, for now, based on geometric and photometric information. 6 https://github.com/mboussah/MMS-texturing

Introduction

The lack of a high level understanding of the surrounding environments is one of the major stumbling blocks towards achieving reliable autonomous navigation. The next level of autonomous agents need to be endowed with the capacity of apprehending the scene in a human-centric manner. That is a wide knowledge of what objects are, their types as well as their spatial arrangements is required. As such, 3D maps to come have to extend beyond geometric and photometric layers to grasp also semantics of objects constituting the observed scene. In practice, the inclusion of rich semantic attributes involving human concepts within these maps is a key enabler for self-controlled agents across a wide variety of tasks ranging from obstacle avoidance [START_REF] Ma | A saliency-based reinforcement learning approach for a UAV to avoid ying obstacles[END_REF] to path planning [START_REF] Alzugaray | Learning the hidden human knowledge of UAV pilots when navigating in a cluttered environment for improving path planning[END_REF]. The importance of semantic knowledge has been further demonstrated via the large existing body of work devoted to solve the semantic mapping problem [START_REF] Kostavelis | Semantic mapping for mobile robotics tasks: A survey[END_REF].

With the recent advances in 3D sensing technologies and the ubiquity of aordable 3D acquisition devices such as time-of-ight cameras and low cost LiDAR, the access to 3D data has never been easier. Driven by the breakthrough in deep learning applied to 2D data, a great deal of eort has been directed towards translating these techniques to the 3D setting. As seen in the previous chapter, 3D data comes in dierent representations each of which with varying structural and geometric properties. The wave of attention dedicated to three-dimensional space, has resulted in a plethora of recognition and classication techniques applied to data represented as point clouds [14,[START_REF] Ruizhongtai | PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space[END_REF], voxels [15,[START_REF] Maturana | VoxNet: A 3D Convolutional Neural Network for real-time object recognition[END_REF],

octrees [START_REF] Riegler | OctNet: Learning Deep 3D Representations at High Resolutions[END_REF], and meshes [16]. Inferring semantics directly on 3D data has a prominent advantage over 2D representations since they are oblivious to view-dependent eects of 2D images such as background clutter, perspective, varying lighting conditions and occlusion. However, since most of 3D data is either acquired using structured-light 3D scanners (LiDAR) or generated using multi-view stereo and structure-from-motion, compared to 2D images with sub-centimetric resolution, the generated point clouds suer from low resolution (up to 1 cm in the best case). Therefore, the developed 3D deep networks fail to capture ne-scale semantic patterns compared to their 2D CNNs counterpart.

To guarantee the high resolution properties of 2D images along with occlusion-free and view-agnostic properties of 3D mesh surfaces, we propose to use textured meshes as our 3D representation ensuring, thereby, a combined benet from 2D and 3D. Nonetheless, as opposed to 2D images which are dened as functions on an Euclidean space (plane), sam-pled on a 2D grid structure, 3D textured meshes do not preserve such regularity making the denition of convolution and pooling operators dicult. Moreover, a major problem that needs to be eciently dealt with is the large scale of 3D data which remains an obstacle to most of state-of-the-art 3D deep networks.

Before the emergence of deep learning, one of the pioneering approaches in the literature introduced by Riemenschneider et al. in [START_REF] Riemenschneider | Learning Where to Classify in Multi-view Semantic Segmentation[END_REF], adopt a probabilistic graphical model formulation in order to infer semantics to a map represented as a 3D mesh. Whilst the method proposed in [START_REF] Riemenschneider | Learning Where to Classify in Multi-view Semantic Segmentation[END_REF] is highly optimized to circumvent data redundancy, energybased methods in general are known to be local algorithms that operate on a limited scale of data. Consequently, an extra-merging step is required as a post-processing to ensure consistent semantics across the segments of the entire scene. Alternatively, several methods in the literature have proposed a pre-processing step before inferring semantics. The latter consists in computing an over-segmentation leading to a set of segments, namely superpixels for 2D images [18], superpoints [START_REF] Guinard | Weakly supervised segmentation-aided classication of urban scenes from 3D LiDAR point clouds[END_REF] for point clouds and superfacets [START_REF] Rouhani | Semantic segmentation of 3D textured meshes for urban scene analysis[END_REF] for 3D meshes. Thanks to these superstructures, semantic segmentation is carried out at a higher level by associating a label to an entire segment instead of each single pixel/point/triangle unit. To handle large scale scenes while taking advantage of powerful deep learning networks, a recent work of Landrieu and Simonovsky [17] is among the rst attempts that has achieved extremely competitive performance by making use of these hand-crafted-based superstructures. Even though, all these over-segmentation methods substantially simplify the subsequent task of semantic segmentation, we argue that, all of them rely on the assumption that if the produced segments are geometrically and/or radiometrically homogeneous, they are semantically homogeneous. As far as we are concerned this assumption should be challenged since the quality of semantic segmentation results depends on the quality of the computed over-segmentation. To overcome this limitation, two recent works of Jampani et al. [START_REF] Tu | Learning Superpixels With Segmentation-Aware Anity Loss[END_REF][START_REF] Jampani | Superpixel Sampling Networks[END_REF] have reported signicant improvements upon hand-crafted approaches by introducing for the rst time a supervised approach to generate task-specic superpixels in 2D images.

To this end, motivated by the success of learned over-segmentation techniques in 2D images, we propose in this chapter a deep-learning-based framework to extend this concept to 3D point clouds and 3D textured meshes in order to be able to handle large scale data while appropriately dealing with the irregularity of these 3D representations. More in details, we propose to frame point clouds and 3D mesh oversegmentation as a deep metric learning problem structured by an adjacency graph dened on the input point cloud or the textured mesh. We introduce the graph-structured contrastive loss, a loss function which learns to embed 3D points homogeneously within objects and with high contrast at their interface. This loss can be adapted to the non-dierentiable task of oversegmentation by using our cross-partition weighting strategy. The points / triangles'embeddings themselves are computed from the local geometry and radiometry by lightweight models inspired from PointNet [14] for 3D points and MeshCNN [16] for 3D textured meshes.

Finally, the superpoints / superfacets are dened as a piece-wise-constant approximation of the learned embeddings in the adjacency graph.

The remainder of this chapter is structured as follow: In Section 4.1, the closely related work in the literature is presented along with theoretical denitions of the main concepts of our method. Our approach is explained in details in Section 4.2. Both Sections 4.3 and 4.4 introduce two applications of our method respectively on 3D point clouds and textured meshes. Finally, we conclude this chapter in Section 4.5 giving some insights and discussing potential future work.

Overview

In this section, we start by dening the key concepts of our approach as well as the existing literature regarding this subject. The most related methods to our work are explained in details with a particular focus on methods used in our evaluation experiments.

Over-segmentation

A clear denition of what an over-segmentation might be was rst introduced by Ren and Malik [START_REF] Ren | Learning a Classication Model for Segmentation[END_REF] for 2D images. According to [START_REF] Ren | Learning a Classication Model for Segmentation[END_REF], an over-segmentation is a partitioning or grouping of 2D image pixels into meaningful regions w.r.t. to color, texture and other low-level properties. While in the latter work, authors employ the term superpixels to refer to the result of an over-segmentation, others such as Veksler et al. [START_REF] Veksler | Superpixels and Supervoxels in an Energy Optimization Framework[END_REF] draw a line between over-segmentation algorithms and superpixels algorithms. Stutz et al. [START_REF] Stutz | Superpixels: An evaluation of the state-of-the-art[END_REF] use the convention that superpixel algorithms allow ne control over the number of generated superpixels, while over-segmentation methods do not. However the terms superpixels and over-segmentation are employed interchangeably as in [START_REF] Ren | Learning a Classication Model for Segmentation[END_REF] in most of the rest of the literature. Since both of these concepts share the same goal which is facilitating subsequent tasks by substantially reducing the number of primitives, we believe that there is no use in dierentiating between the two concepts. As a matter of fact, the large majority of over-segmentation methods, by design, allow to control the number of segments regardless to the used modality being 2D images, 3D point clouds or 3D meshes as will be discussed in the coming section. The only subtle nuance lies in the number of generated segments whether it is known in advance or not. For this reason, in the rest of this study, we refer to the result of an over-segmentation method as the set of superstructures.

It should be emphasized that this ambiguity resulted in a divergence among computer vision and photogrammetry researchers about a unique designation of an over-segmentation result in 3D. In some studies, segments generated from a point cloud over-segmentation are called superpoints [START_REF] Ben-Shabat | Graph based over-segmentation methods for 3D point clouds[END_REF], in others [START_REF] Lin | Toward better boundary preserved supervoxel segmentation for 3D point clouds[END_REF], they are referred to as supervoxels. For sake of clarity, we propose an unied denition regarding the over-segmentation output. For 2D images, an over-segmentation results in superpixels. In videos we refer to them as supervoxels. Superstructures computed by an over-segmentation of point clouds are called superpoints. For 3D meshes, we refer to them as superfacets or supertetras depending on the type of the mesh whether it is a triangular or tetrahedral mesh.

As a generalization of what is advocated in [START_REF] Ren | Learning a Classication Model for Segmentation[END_REF], we believe that pixels, points and triangles are respectively the consequence of discretization of digital 2D images and 3D scenes which make them unnatural entities. Superstructures come as an alternative to these units by representing objects of a scene by a set of perceptually meaningful atomic regions. The usage of over-segmentation in the literature is mainly justied by the gain of computational eciency. For instance, in semantic segmentation of a 3D point cloud P containing n points, the solution space of a labeling L of P has a dimension equal to L n . An over-segmentation resulting in m superpoints (with typically m n) will greatly reduce the solution space to L m . While investigating these methods, we observed that the community have proposed a set of properties superstructures should satisfy. We can conclude that most of the researchers share the idea that a reliable over-segmentation must fulll the following three criteria: (P 1) object-purity: the computed superstructures must not straddle dierent objects having dierent semantic labels.

(P 2) border recall: the interface between superstructures must coincide with the borders of ground truth objects;

(P 3) regularity: the shape and contours of the extracted segments must be regular and simple as naturally objects do not exhibit wiggly shapes.

In the following, we review the existing work concerning over-segmentation techniques applied to 2D images, 3D point clouds and 3D meshes. For each of these modalities we can roughly classify these methods as graph-based or cluster-based w.r. [START_REF] Picciau | Supertetras: A Superpixel Analog for Tetrahedral Mesh Oversegmentation[END_REF] tetrahedral mesh superfacets + + + ++ SEAL [START_REF] Tu1 | Learning superpixels with segmentation-aware anity loss[END_REF] 2D images superpixels + + ++ + + ++ SSN [START_REF] Jampani | Superpixel Sampling Networks[END_REF] 2D images superpixels + + ++ + + ++ Table 4.1: An overview of several over-segmentation methods in the literature.

In Table 4.1, we show an exhaustive summary of the most known state-of-the-art over-segmentation methods classied w.r.t. their modality, output, the type of the used features (learned or computed) as well as two dierent evaluation criteria (i.e. Object purity and computational eciency).

4.1.1.1 2D image/video over-segmentation (Superpixels/Supervoxels):

Before the surge of deep-learning-based approaches, unsupervised 2D superpixel segmentation has been extensively studied in the scope of many investigations and applications.

These methods can be broadly split into two groups:

Graph based methods: Superpixels are computed by partitioning the image considered as an undirected graph where pixels are the graph nodes and the pixels' anities are the edges. Felzenszwalb and Huttenlocher [START_REF] Felzenszwalb | Ecient Graph-Based Image Segmentation[END_REF] construct a graph such that the nodes are the image pixels and the edges correspond to its 8-neighborhood adjacency. Nodes are merged subsequently w.r.t. to the edge weights dened by pixels' color dierences and variations.

The work of Grundmann et al. [START_REF] Grundmann | Ecient hierarchical graph-based video segmentation[END_REF] is a generalization of the method of [START_REF] Felzenszwalb | Ecient Graph-Based Image Segmentation[END_REF] for image superpixels to videos. A 3D graph including the temporal dimension of images is build on top of video sequences and partitioned with respect to the optical ow of regions to ensure the consistency of the grouped pixels into spatio-temporal supervoxels. However, both [START_REF] Grundmann | Ecient hierarchical graph-based video segmentation[END_REF][START_REF] Felzenszwalb | Ecient Graph-Based Image Segmentation[END_REF] tend to produce superpixels/supervoxels with irregular size and shapes and straddle dierent objects violating, thereby, the object purity property (P 1). Liu et al. [START_REF] Liu | Entropy rate superpixel segmentation[END_REF] formulated superpixel computation as a graph partitioning problem w.r.t. an objective function based on the entropy rate of a random walk on the graph. In contrast to this category of algorithms where a bottom-up approach is adopted by merging pixels into superpixels, [START_REF] Ren | Learning a Classication Model for Segmentation[END_REF][START_REF] Veksler | Superpixels and Supervoxels in an Energy Optimization Framework[END_REF] are top-down methods where the graph is partitioned into disjoint subgraphs constituting the superpixels. In Ren and Malik [START_REF] Ren | Learning a Classication Model for Segmentation[END_REF] the graph built on top of the image is partitioned with respect to hand-crafted texture and contour features using the normalized cut algorithm. While [START_REF] Ren | Learning a Classication Model for Segmentation[END_REF] produces regular superpixels, it is expensive to compute for small images. Using a more ecient partitioning algorithm, an energy minimization formulation solved using graph-cut [START_REF] Boykov | An Experimental Comparison of Min-Cut/Max-Flow Algorithms for Energy Minimization in Vision[END_REF] is adopted by Veksler et al. [START_REF] Veksler | Superpixels and Supervoxels in an Energy Optimization Framework[END_REF] to generate compact superpixels for 2D images and consistent supervoxels for video sequences.

Clustering based methods: These methods start with identifying initial cluster centers over the image and progressively rene them until the specied criteria are met. The most famous method in this category is the Simple Linear Iterative Clustering SLIC introduced by Achanta et al. in [18]. Based on k-means clustering, the algorithm is initiated by a set of seed pixels serving as initial cluster centers. Then all pixels are assigned to their nearest center and a new cluster center is computed. The latter steps are repeated several times until stability of cluster centers. Pixel-superpixel assignment is based on color and spatial information. In addition to the latter features, [START_REF] Weikersdorfer | Depth-adaptive superpixels[END_REF] proposed to leverage depth information for computing superpixels using the same clustering method.

Figure 4.1: Illustration of superpixels generated on 2D images using the method in [START_REF] Liu | Entropy rate superpixel segmentation[END_REF]. Image from [START_REF] Liu | Entropy rate superpixel segmentation[END_REF] In Figure 4.1 we show an illustration of superpixels generated using [START_REF] Liu | Entropy rate superpixel segmentation[END_REF] method.

Despite their conceptual diversity, these methods share the fact that they exclusively rely on hand-crafted features to generate superpixels. Although, the assumption that 4.1. OVERVIEW objects having similar geometric and/or radiometric properties share the same semantic label is not always guaranteed. Besides, recent studies (e.g. surveyed by Garcia et al. in [START_REF] Garcia-Garcia | A survey on deep learning techniques for image and video semantic segmentation[END_REF]) have demonstrated that hand-crafted features were largely outperformed by deeply learned features in many occasions. Meanwhile, inspired by the success of deep learning supervised applications, a minority has recently started to exploit deep techniques for 2D superpixel segmentation. Jampani et al. [START_REF] Tu | Learning Superpixels With Segmentation-Aware Anity Loss[END_REF] proposed SEAL a non dierentiable graphbased superpixel segmentation approach which predicts 4-connected pixel anities on image graph by incorporating the segmentation error into the loss during anity learning to generate better boundary-preserving superpixels. Later, superpixel sampling networks (SSN) were proposed [START_REF] Jampani | Superpixel Sampling Networks[END_REF]. In this work, Jampani et al. developed an end-to-end trainable framework by tailoring a clustering-based approach SLIC [18] to be back-propagable using a soft assignment instead of k-means pixel-superpixel hard association during clustering akin to the works surveyed in Aljalbout et al. [START_REF] Aljalbout | Clustering with Deep Learning: Taxonomy and New Methods[END_REF]. On the other hand, many extensions of 2D superpixel segmentation methods have been proposed to generate 3D superpoints by over-segmentation. Graph-based methods: These variants of approaches start with constructing a connectivity graph that denes the space of possible superpoints. Second, for each 3D point a descriptor is estimated to encode the local geometry and colorimetry. A dissimilarity measure based weight is subsequently assigned to each edge of the graph. Finally, a sequential subgraph merging [START_REF] Ben-Shabat | Graph based over-segmentation methods for 3D point clouds[END_REF] or cutting [START_REF] Guinard | Weakly supervised segmentation-aided classication of urban scenes from 3D LiDAR point clouds[END_REF] criteria are chosen to obtain the oversegmentation. Ben-Shabat et al. in [START_REF] Ben-Shabat | Graph based over-segmentation methods for 3D point clouds[END_REF] proposed three extensions of 2D local variation graph-based method to 3D superpoint segmentation and studied dierent strategies for constructing the graph, edge weights assignment and subgraph merging. In the work of Guinard et al. [START_REF] Guinard | Weakly supervised segmentation-aided classication of urban scenes from 3D LiDAR point clouds[END_REF], a non-parametric segmentation model formulated as an energy minimization problem is proposed to partition the 3D point cloud to simple yet geometrically homogeneous shapes and solved using Cut-pursuit algorithm [178] (an ecient graph partitioning method introduced later). However, similar to the 2D case only handengineered features are used as descriptors to produce the partition (spatial coordinates and color in [START_REF] Ben-Shabat | Graph based over-segmentation methods for 3D point clouds[END_REF], local features (linearity, planarity, verticality) in [START_REF] Guinard | Weakly supervised segmentation-aided classication of urban scenes from 3D LiDAR point clouds[END_REF]).

Clustering-based methods: In this category of methods, the pioneering work of Papon et al. Voxel Cloud Connectivity Segmentation VCCS [START_REF] Papon | Voxel Cloud Connectivity Segmentation -Supervoxels for Point Clouds[END_REF] starts by uniformly partitioning the point cloud using an octree into voxels that serve as an initialization for a local k-means clustering method. A subset of points are chosen as superpoint centers which are iteratively grown afterwards based on computed handcrafted features of adjacent points (e.g. x, y, z spatial coordinates and L, a, b color channels). Apart from its ve hard adjustable parameters, the main disadvantage lies in its inability to properly deal with point clouds having non-uniform density since it requires a careful choice of voxel resolution so that more than one object cannot overlap within the same voxel. In this case, VCCS leads to badly preserved boundaries violating border recall property (P 2).

Similar works followed the latter attempting to address the problem. Song et al. [START_REF] Song | Boundary-enhanced supervoxel segmentation for sparse outdoor LiDAR data[END_REF] rstly detect the boundary points in LiDAR point clouds by estimating the discontinuity of consecutive points. Second, a clustering process is performed on a neighborhood graph constructed upon the point cloud and excluding edges connected by the detected boundary points. However, the assumption that the points are sequentially ordered reduces its generalization capabilities to other types of point clouds. In the work of Lin et al. [START_REF] Lin | Toward better boundary preserved supervoxel segmentation for 3D point clouds[END_REF], superpoints generation is formulated as a subset selection problem aiming to nd a representative point for each superpoint to reduce the problem dimension. This involves an energy minimization based on dissimilarity distances between points and the superpoints representatives. Solving this energy does not require the initialization of seed points yielding to an adaptive resolution that preserves object boundaries more eciently. VCCS superpoints [START_REF] Papon | Voxel Cloud Connectivity Segmentation -Supervoxels for Point Clouds[END_REF], right: superpoints constructed using Lin et al. [START_REF] Lin | Toward better boundary preserved supervoxel segmentation for 3D point clouds[END_REF]. Image from [START_REF] Lin | Toward better boundary preserved supervoxel segmentation for 3D point clouds[END_REF] 4.1.1.3 3D mesh over-segmentation (Superfacets / Supertetras)

Much like superpoints and superpixels/supervoxels, superfacets/supertetras can be computed using two types of approaches:

Graph-based: In this category, 3D mesh is represented by its dual graph where faces correspond to graph nodes and mesh adjacency constitute the set of edges. In the work of Wu et al. [START_REF] Wu | Interactive shape cosegmentation via label propagation[END_REF] , superfacets are computed as a pre-processing for a co-segmentation 1 task. the over-segmentation is the result of graph partitioning using normalized cuts with respect to geometric descriptors (e.g. signed distance function (SDF) [START_REF] Shapira | Consistent partitioning of meshes[END_REF], average geodesic distance (AGD) [START_REF] Kimmel | Fast marching methods on triangulated domains[END_REF] associated with each face of the mesh. However partitioning a graph using normalized cuts is computationally expensive as discussed for 2D images.

Cluster-based: Inspired by the SLIC approach introduced in [18] for superpixel image segmentation, Simari et al. [START_REF] Simari | Fast and Scalable Mesh Superfacets[END_REF] present a clustering method for 3D mesh oversegmentation. Based on k-means algorithm, the proposed method is a three-step approach. First superfacets centroids are iteratively initialized all over the input mesh.

The rst one being the closest triangle to the center of the entire mesh, consecutive centroids are placed subsequently w.r.t. to the maximum euclidean distance to the nearest already placed center. Second, all the faces of the mesh are assigned to their nearest centroids by computing its shortest path distance making thereby a rst over-segmentation. 1 Co-segmentation is the task of jointly segmenting the same object/shape in dierent set of 2D images or 3D mesh 4.1. OVERVIEW The latter is rened in an iterative fashion in such a way centroids are updated w.r.t. to the mean centroid of the said superfacet. This procedure is repeated until superfacets centroids are stabilized over the algorithm iterations. A similar extension of this algorithm have been proposed by Picciau et al. in [START_REF] Picciau | Supertetras: A Superpixel Analog for Tetrahedral Mesh Oversegmentation[END_REF], albeit this time for tetrahedral mesh over-segmentation to produce supertetras.

While this class of methods allows for a good trade-o between eciency and accuracy, clustering based methods depend on seed initialization which are tuned with regards to the topology of the underlying 3D mesh. Besides they do not handle the non-uniform sizes and shapes of mesh faces which inuence substantially the over-segmentation quality. Cohen-Steiner et al. proposed VSA (variational shape approximation) in [START_REF] Cohen-Steiner | Variational shape approximation[END_REF], which is a k-means style algorithm. VSA circumvent the latter problems by alternating between a geometric partitioning of the mesh using a region growing approach with respect to geometric similarities of triangular faces and a proxy tting step that minimize the distortion error for a given partition. In order to compute an over-segmentation on textured meshes, Rouhani et al. in [START_REF] Rouhani | Semantic segmentation of 3D textured meshes for urban scene analysis[END_REF] extended VSA [START_REF] Cohen-Steiner | Variational shape approximation[END_REF] by adding a photometric similarity measure that preserve image discontinuities in the texture map. [START_REF] Wu | Interactive shape cosegmentation via label propagation[END_REF], Bottom: superfacets computed using Simari et al. [START_REF] Simari | Fast and Scalable Mesh Superfacets[END_REF].

Image from [START_REF] Simari | Fast and Scalable Mesh Superfacets[END_REF] Surprisingly, despite the huge progress in the eld of deep learning applied to the 3D domain [1416] and the ubiquity of annotated 3D large scale datasets [21,24], to the best of our knowledge, there is no supervised over-segmentation technique, so far, that leverages deep-learning-based embeddings to compute an over-segmentation neither on 3D point clouds nor on 3D meshes. The irregular structure of 3D meshes and the disorder of point cloud compared to structured regular lattice characterizing 2D images explain the slow progress in supervised over-segmentation. Therefore, to spur research in this eld, we propose to leverage deep embeddings to learn the over-segmentation task. This can be achieved using an interesting approach called deep metric learning. In the following, we dene the deep metric learning problem then we give an overview of the most related work to ours.

Deep metric learning

Metric learning is about learning distance functions that are compatible with a certain similarity standard. Since the denition of a given similarity criteria is task-dependent, the success of such approaches is mainly related to the ability of aligning the learning objectives to the intended task. In practice, metric learning approaches [START_REF] Kulis | Metric Learning: A Survey[END_REF] aim at learning feature representations such that it promotes close embeddings for similar data points in the feature space while penalizing close features of dissimilar data points. The increasing interest to these class of methods has been further boosted by the democratization of deep learning techniques on 2D images [38]. This success allowed for the development of an extension of traditional metric learning called deep metric learning where data features are encoded using deep neural networks instead of hand-crafted methods.

In the last few years, deep metric learning has proven its eectiveness across a large spectrum of recognition applications ranging from face recognition [START_REF] Liu | SphereFace: Deep Hypersphere Embedding for Face Recognition[END_REF], medical image classication [START_REF] Medela | Few Shot Learning in Histopathological Images: Reducing the Need of Labeled Data on Biological Datasets[END_REF], visual search for product similarity [START_REF] Bell | Learning visual similarity for product design with convolutional neural networks[END_REF] and person re-identication [START_REF] Chen | Deep View-Aware Metric Learning for Person Re-Identication[END_REF] among others. In all these applications, task-specic deep architectures are trained to minimise a well-designed loss function where a non linear feature representation is learned to bind to one another embeddings from similar classes while maintaining embeddings of dierent classes distant in the feature space. In the context of deep metric learning, the design of an adequate loss function has received a substantial attention in recent years.

The desired properties of these objective functions are their fast convergence and their ability to reach a good (local) minimum during optimization. The most investigated loss functions in the literature are the contrastive loss [START_REF] Chopra | Learning a Similarity Metric Discriminatively, with Application to Face Verication[END_REF] and the triplet loss [START_REF] Kilian | Distance Metric Learning for Large Margin Nearest Neighbor Classication[END_REF]. In the following we give a detailed overview of each type of these objective functions.

Contrastive loss:

The contrastive loss is an euclidian-distance-based loss function that measures similarity between positive and negative pairs of samples in the dataset. Positive pairs are the set of data points belonging to the same class while the negative pairs inversely have distinct class labels. Let {x 1,i , x 2,i } be a pair of input data points and {e 1,i , e 2,i } the corresponding embeddings computed by a task-specic deep network. Operating on positive and negative pairs labeled respectively by y i = 0 and y i = 1, the contrastive loss is dened as:

L contrast = 1 N N i=1 [(1 -y i ) e 1,i -e 2,i 2 
2 + (y i )max(0, m -e 1,i -e 2,i 2 ) 2 ] (4.1)
where m is a preset margin and N is the batch size used for training. In Figure 4.4

we show an illustration of one gradient iteration using the contrastive loss.

Triplet loss:

The triplet loss was proposed as an extension to the contrastive loss by considering a query sample called an anchor in addition to the positive and negative samples. This function reduce the distance between the embeddings of the anchor and the positive sample while simultaneously enlarging the distance between the anchor and the negative sample. Formally, we consider the set of input data points {x a i , x p i , x n i } and their corresponding computed embeddings {e a i , e p i , e n i } denoting respectively the anchor a from which (n from a dierent class). The triplet loss can be written as:

L triplet = 1 N N i=1 max(0, e p i -e a i 2 2 -e n i -e a i 2 2 + λ) (4.2)
where N is the batch size and λ is a parameter to avoid the convergence to the trivial solution. + λ. In this case, the loss will have no impact on the embeddings as the gain is equal to 0.

This results in poor performance and convergence problems as a good local minimum is not reached. To this end, triplet mining [START_REF] Schro | FaceNet: A unied embedding for face recognition and clustering[END_REF] is commonly applied to mitigate this issue. Concretely, this technique considers only the triplets that give a positive loss. This can be achieved using hard negative mining which consists in selecting triplets where the negative sample is strictly closer to the anchor than the positive sample. A semi-hard negative mining can be also leveraged where the negative sample is not necessarily closer to the anchor than the positive but still give positive loss.

We abstain from using this type of loss in our over-segmentation approach as providing a set of triplets from the data we are using is not straightforward. Furthermore, apart from the tricky training procedure, this loss suers from slow convergence as well as a tendency to reach local optima as discussed by Sohn [START_REF] Sohn | Improved Deep Metric Learning with Multi-class N-pair Loss Objective[END_REF] since at each update, the comparison is performed with only one negative sample while ignoring the rest of them in the same batch. Instead, we propose an adaptation of the contrastive loss but dierent from [START_REF] Engelmann | Know What Your Neighbors Do: 3D Semantic Segmentation of Point Clouds[END_REF],

where this loss is used to improve features of 3D point clouds in a dense classication context, our task is related to over-segmentation through graph partitioning.

Graph theory

Graph theory is a branch of science whose purpose is to study graphs. A graph is a mathematical representation of a set of data elements where inner pairwise relations are linked through connections. Graph theory has been successfully used in a wide range of applications ranging from communication networks, transportation, social media and chemistry to mention a few. In particular, computer vision is one of the disciplines that heavily rely on this representation in several low-level tasks such as segmentation and tracking in addition to high-level tasks commonly referred to as recognition (classication, semantic parsing, etc.). The popularity of this representation stems from its powerful properties:

well-grounded and mathematically proven methods exibility and high level of abstraction versatility: can represent a wide variety of data across dierent disciplines of science.

In essence, data elements are called nodes or vertices of the graph and the links connecting them are called edges. In social media, the nodes of the graph can be the set of subscribed people and the edges connecting them are their friendships. In chemistry, proteins can be considered as the vertices of the graph while their interactions are modeled by the graph edges. In computer vision, pixels of 2D images, points of 3D point clouds or faces of a 3D mesh correspond to the node of the graph whereas the spatial adjacency is modeled by the graph edges. Our contribution in this chapter is inspired by mature graph-based approaches. Before introducing our method, we start by dening some of the commonly used graph taxonomies.

Denitions

In the following, we denote by G = (V, E) the graph G where V = (v 1 , ..., v n ) is the vertex set and E = {e u,v | u, v ∈ V } is the edge set. Denition 1. A directed graph is an ordered pair G = (V, E) such that V is a non-empty set of vertices and E ⊆ V × V is the set of ordered pairs of dierent nodes called edges. Denition 2. An undirected graph is a pair G = (V, E) where V is the set of nodes and E the set of edges composed of the set of two-element subsets of V . The undirected graph can be derived by constraining the relation E ⊆ V × V to be symmetric.

Remark. It is frequently known that additional information can be attached to edges in the form of attributes. For instance, a weight function attributed to edges can be dened as w :

E → R + ∪ {0}. Denition 3. A graph G = (V , E ) is called a sub-graph of G = (V, E) if V ⊂ V and E = {E ij | v i ∈ V , v j ∈ V }. Denition 4. A graph G = (V, E) is called a bipartite graph if V can be partitioned into two subsets V 1 ⊂ V and V 2 ⊂ V such that V 1 ∩ V 2 = ∅ and V 1 ∪ V 2 = V , where the set of edges is dened as E ⊆ V 1 × V 2 .
Denition 5. A graph partition S is dened as a division of the vertex set V into disjoint subsets S = {S 1 , .., S k } such that S i ∩ S j = ∅ and E ⊆ S i × S j for i = j where i S i = V .

Graph construction

A crucial key aspect for the success of graph-based methods is the design of an appropriate graph topology that faithfully models the pairwise interactions between data points.

There is a wealthy literature proposing a wide variety of graph construction methods depending on the structure and topology of the underlying data. In the following we briey explain the most popular static graph topologies. For a more in-depth study on this aspect the reader is referred to the work of Ulrike in [START_REF] Von | A tutorial on spectral clustering[END_REF].

The topology of the graph models the relationships between data points. In order to infer global structure from local information, the constructed graph needs to take into consideration the local neighborhood of each vertex of the graph. The most common graph adjacency topologies are: ε-neighborhood graph: called also ε-graph, all vertices of this graph whose pairwise distance is smaller than ε are connected by an edge. This graph is shown in Figure 4.6 (a). Choosing a constant ε for all the nodes of the graph is not suitable to capture the local neighborhood structure. An improper thresholding of ε may results into subgraphs or disconnected components.

k-nearest neighbor graph: in a k-NN graph, each vertex is connected to the set of vertices that lie within its k-nearest neighborhood vertices as depicted in Figure 4.6 (b).

However the number of nearest neighbor vertices for each node in the graph varies from an object to another. k-NN graph remains more adaptive to scale and density than ε-graph.

Dual graph: this graph is generally build on top of a 3D mesh. The nodes of the graph represent the mesh faces while the edges are the triangles adjacency relationships. The construction of this graph is illustrated in Figure 4.6 (c). Transforming a 3D mesh into a graph is traditionally used for mesh segmentation [START_REF] Shamir | A survey on Mesh Segmentation Techniques[END_REF] by framing the latter task as a graph partitioning problem.

The cut pursuit algorithm

Introduced by Landrieu and Obozinski in [178], the cut pursuit algorithm is a working-set greedy strategy for minimizing functionals involving the total variation structured by a [START_REF] Shamir | A survey on Mesh Segmentation Techniques[END_REF] graph G = (V, E, w) where w ∈ R + are the weights of edges E:

F (x) = f (x) + (i,j)∈E w (i,j) x i -x j (4.3)
where x = (x i ) i∈V ∈ R V is the variable of interest. For these functions the solution x of (4.3) is constant on the elements of a certain coarse partition P of V (i.e.

|P | |V |)

due to the sparsity of its gradients. This solution can be decomposed into a smaller number of connected components of the graph G. In computational statistics and machine learning, the coarseness property of the solution can be exploited to speed-up large scale optimization problems.

As illustrated in Figure 4.7, the cut-pursuit algorithm has two main steps; reduction and renement. Initially all the vertices of the graph are associated to the same connected component. In the reduction step, the graph G is split into constant connected Figure 4.7: Illustration of the dierent steps of the 0 -cut pursuit algorithm. Image from [195] components and a reduced graph G encoding the new adjacency is computed. The reduced problem is solved under the constraint that all the vertices of the same connected component share the same value. In the renement step, the current partition is further split such that the next reduced problem decrease F as much as possible. This is carried out by nding the steepest directional derivatives of F . The aforedescribed cut pursuit algorithm is a versatile graph partitioning approach that can be applied to several data representations as long as they can be modeled by a graph.
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However, graph partitioning methods in general remain intrinsically non-dierentiable as they involve computing connected components and the objective function to be minimized is usually non-continuous and / or non-convex. This non-dierentiability property inhibits the use of such interesting methods in the framework of deep learning as it is very complex even impossible to back-propagate gradients through and update the network weights accordingly during optimization. In our proposed method, we show how we bypass this limitation. In the following, we review the literature on deep learning techniques applied on 3D data.

Deep learning on 3D data

During the past few years, deep learning on 2D images has achieved a tremendous progress in a wide variety of computer vision tasks ranging from classication and segmentation [START_REF] Simonyan | Very Deep Convolutional Networks for Large-Scale Image Recognition[END_REF] to detection and localization [START_REF] Redmon | You Only Look Once: Unied, Real-Time Object Detection[END_REF]. The key recipe for the success of these networks is a combination of convolution, non-linearity and pooling layers yielding to a robust framework which is invariant to a set of variations of the input [START_REF] Lecun | Learning Invariant Feature Hierarchies[END_REF]. Driven by the huge success of these 2D architectures, several attempts [START_REF] Ahmed | Deep Learning Advances on Dierent 3D Data Representations: A Survey[END_REF] have been proposed to transfer this knowledge to the 3D setting. The fundamental challenge that needed to be handled is how to translate deep frameworks operating on 2D images represented as structured 2D grids to three-dimensional data which are characterized by an implicit neighbourhood adjacency with an irregular support. As discussed in Chapter 3, 3D sensed data can be intrinsically represented in several forms among which the most common ones are point clouds and 3D meshes.

Following the terminology from the literature [3], 3D data representations can be broadly classied into two major categories w.r.t. its underlying euclidean properties. A 3D representation is said to be euclidean if it exhibits a grid data structure. Implicitly this means that this representation can be trivially dened as a function on the Euclidean space sampled on a grid. This category includes 3D data represented by a volumetric grid [15,[START_REF] Maturana | VoxNet: A 3D Convolutional Neural Network for real-time object recognition[END_REF][START_REF] Riegler | OctNet: Learning Deep 3D Representations at High Resolutions[END_REF] or using 2D multi-view projections [START_REF] Su | Multi-view Convolutional Neural Networks for 3D Shape Recognition[END_REF][START_REF] Kalogerakis | 3D Shape Segmentation with Projective Convolutional Networks[END_REF]. In contrast, a non-euclidean representation lacks an euclidean vector space structure where the underlying data can be represented by a function. Directed graphs [202], unordered point clouds [14,[START_REF] Ruizhongtai | PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space[END_REF] as well as 3D meshes (or manifolds) [16,26] fall under the latter category. In this section we shed the light on the recent advances in deep learning applied to these 3D representations regardless to the task that were meant for.

Volumetric approaches

This set of methods are among the rst attempts to tailor 2D deep learning on 3D data.

In practice, the input data is volumetrically discretized using a regular voxel grid [15,[START_REF] Maturana | VoxNet: A 3D Convolutional Neural Network for real-time object recognition[END_REF] or using an octree [START_REF] Riegler | OctNet: Learning Deep 3D Representations at High Resolutions[END_REF] resulting into voxels of adaptative sizes so that 3D convolution becomes feasible.

Voxnet [START_REF] Maturana | VoxNet: A 3D Convolutional Neural Network for real-time object recognition[END_REF] construct an occupancy grid of size 32 × 32 × 32 upon the input data (RGBD-D, LiDAR point clouds or 3D CAD models). The proposed network is composed of two convolutional layers, a pooling layer and two fully-connected layers. The particularity of the convolution operator lies in the 3D lter kernel used instead of common 2D lters in case of 2D images.

VoxelNet [15] illustrated in Figure 4.8 starts by partitioning the space of raw input point clouds into equally spaced voxels. Once points are grouped within voxels, a random Image from [START_REF] Riegler | OctNet: Learning Deep 3D Representations at High Resolutions[END_REF] While the latter approach allowed to extend 2D convolution to the 3D setting, for dense 3D data the computational and memory costs grow cubically with data resolution limiting thereby the input resolution to around 30 3 voxels. To overcome this problem, OctNet [START_REF] Riegler | OctNet: Learning Deep 3D Representations at High Resolutions[END_REF] exploits the sparsity properties of 3D data by building hierarchical and adaptive octree that subdivide only cells containing relevant information as shown in Figure 4.9.

This alleviates the memory load when performing 3D convolution. Whilst occupancygrid based methods oer, to some extent, decent results, they are limited to single object classication and small datasets in most of the reviewed methods. Furthermore, the input resolution is substantially reduced to t memory requirements. Consequently, the gain information from working directly in 3D is outweighed by the information loss induced because of data down-sampling.

Multi-view 2D-based methods

In this category, 3D data is represented by a set of multiple images captured from dierent rendered view points. The interest behind this approach is mainly its ability to leverage mature CNNs architectures in addition to large scale annotated data for training not to mention the decreased memory load when processing 2D images. Figure 4.10: Illustration of 3D shape recognition using multi-view convolutional networks. Image from [START_REF] Su | Multi-view Convolutional Neural Networks for 3D Shape Recognition[END_REF] One of the earliest works in multi-view deep learning is the MVCNN introduced in [START_REF] Su | Multi-view Convolutional Neural Networks for 3D Shape Recognition[END_REF]. In its simplest conguration, MVCNN consumes 12 images of a 3D object rendered from dierent view points each of which is fed to an independent CNN. The computed feature maps of each image are passed to a view pooling layer as shown in Figure 4.10 which will be the input to an aggregated CNN. The Convolutional Neural Networks (CNNs) architecture used in [START_REF] Su | Multi-view Convolutional Neural Networks for 3D Shape Recognition[END_REF] is based on VGG backbone [START_REF] Simonyan | Very Deep Convolutional Networks for Large-Scale Image Recognition[END_REF].

Akin to MVCNN [START_REF] Su | Multi-view Convolutional Neural Networks for 3D Shape Recognition[END_REF], the architecture proposed by Kalogerakis et al. [START_REF] Kalogerakis | 3D Shape Segmentation with Projective Convolutional Networks[END_REF] takes as input a set of multiple views of a 3D object optimized for maximal surface coverage and a polygonal mesh. These views are processed independently by pre-trained Fully Convolutional Networks (FCNs) producing condence maps of the same size as the input 512 × 512. Multi-view based methods are more likely to outperform volumetric approaches in terms of eciency as they require less computational cost. Nonetheless, this class of methods is not able to handle missing, occluded or overlapping objects especially in a mobile mapping context where a scanner is moving in a xed scene. That is why we believe this category of methods, as it is designed, is not suited to our application.

Graph approaches

Considerable eort has been directed towards applying deep neural networks on 3D data represented by a graph. Broadly speaking, among this set of methods, we can distinguish between two major approaches w.r.t. the type of convolution used inside these networks; spectral -based and spacial -based. As the key component for the success of deep learning starts with the convolution operator, these two categories of methods dene respectively the convolution in the spectral domain and the spacial domain.

Spectral-ltering-based methods were rst introduced by Bruna et al. [START_REF] Bruna | Spectral Networks and Locally Connected Networks on Graphs[END_REF] through Spectral CNN (SCNN) a deep network operating on graphs. The intuition behind this method is to use the spectral eigen-decomposition of the graph Laplacian to dene convolution in the spectral domain. This way signal patches dened in the euclidean space which correspond to features of the graph nodes are mapped to the spectral domain by projection on the graph Laplacian eigenvectors. Thus the convolution operation scales node features w.r.t. the eigenbasis. It should be noticed however, spectral ltering is a non-local operation as it involves the entire graph which comes with a huge computational burden in addition to the heavy computational cost of the graph Laplacian. To address the aforementioned shortcoming, several studies have proposed a local spectral ltering operation to alleviate the computational cost by approximating graph lters using Chebyshev polynomials Deerrard et al. [START_REF] Deerrard | Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering[END_REF] or a rst-order linear approximation Kipf et al. [START_REF] Kipf | Semi-Supervised Classication with Graph Convolutional Networks[END_REF].

While this local ltering accounts for computational eciency, all the aforedescribed spectral methods share a common weakness. In practice, the dependency of spectral lters on the eigenbasis limits the generalization capability of the network. As demonstrated in the work of Bronstein et al. [3], applying a spectral lter kernel learned w.r.t. to a specic basis on another domain with dierent basis yields completely dierent results.

On the other hand, spatial-ltering-based methods are a much simpler attempt to apply deep learning on data represented by a graph. In these methods, the support for the graph convolution operation is the set of edges connecting neighboring nodes of the graph.

The work of Scarselliet al. [START_REF] Scarselli | The Graph Neural Network Model[END_REF] is among the rst studies applying neural networks on data structured by a graph. Graph Neural Networks (GNNs) are comprised of multiple layers through which local features are learned w.r.t. to the graph nodes. Each vertex is embedded using a Recurrent Neural Network (RNN) which repeatedly propagates features to the neighboring graph nodes until stability. Since this recurrent propagation constitutes a computational bottleneck, Li et al. [START_REF] Li | Gated Graph Sequence Neural Networks[END_REF] have introduced a dierent variant of RNN called gated recurrent unit (GRUs) which perform state updates more eciently. A later work of Simonovsky et al. [202] extends these ideas by explicitly leveraging label edges to 4.1. OVERVIEW perform convolution. Making use of edge labels information, by dynamically generating learnable edge weights while applying convolution, allows the network to benet from the key properties of classic CNNs namely weight sharing and locality.

In general a graph is a versatile and powerful representation. We make use of this concept in our approach for partitioning 3D point clouds and 3D meshes.

Unordered point sets

3D data in its simplest form is represented by the mean of an unordered set of georeferenced 3D points. Most of the prior work applying deep learning on 3D point clouds have adopted the assumption that the network input has to be structured in a regular grid with an explicit connectivity information. Both OctNet [START_REF] Riegler | OctNet: Learning Deep 3D Representations at High Resolutions[END_REF] and VoxelNet [15], discussed earlier, structure point clouds respectively by means of an octree and a voxel grid to preserve the euclidean properties of data before feeding it to deep networks. A dierent category of approaches such as SnapNet [START_REF] Boulch | Snap-Net: 3D point cloud semantic labeling with 2D deep segmentation networks[END_REF] have proposed to rst generate virtual views from the input 3D data leading to a set of 2D images where a wide variety of mature CNNs can be easily applied to perform the desired task (semantic segmentation, object detection, etc.). Once labels or features are extracted, they are reprojected-back to their original form in 3D space. Even though these projective methods arguably handle large scale data to some extent, this gain comes at the expense of the projection reliability. In practice, prominent geometric information is lost in the back and forth projections since 2D images are no more than a rasterization of 3D scenes. The rst pioneer work that directly make use of unordered points as input is PointNet [14]. This deep architecture diers signicantly from the rest of the networks proposed in the literature by its simplicity. Instead of developing an adequate convolution operator with learnable lters, PointNet [14] have shown that using a network comprised exclusively of fully connected layers along with aggregation modules is sucient for encoding convenient spatial information. In principle, PointNet is composed of three building blocks as illustrated in Figure 4.13; a spatial transform network (STN), a multi-layer perceptron and a symmetric function which consists of a max pooling operation.

STN module learns a canonical form of the input points and selects the most informative points characterizing the input shapes. MLP module is a succession of fully connected layers that generate a feature vector for each point independently. Finally the permutation invariant max pooling module aggregates the learned features into a global one which serve for classication purposes or segmentation after further processing. Despite the competitive results achieved by PointNet, the network as it is designed fail to from [14] encode ne-grained patterns of each point and its local neighborhood. PointNet++ [START_REF] Ruizhongtai | PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space[END_REF] mitigates this limitation by proposing a nested hierarchical portioning of points along the network. The intuition behind this idea is mainly inspired by 2D CNNs where the size of feature maps is progressively decreased along the network to learn features at various scales. First input points are partitioned into overlapping regions. Then features are learned at gradually increased neighborhood sizes such that smaller neighborhood capture ne grain features while larger ones encode global geometric shape features. Landrieu and Simonovsky in [17] have proposed an innovative framework through which data is represented eectively, called superpoint graph. The full pipeline, as demonstrated in Figure 4.15 is composed of three major steps. First, an over-segmentation is computed over the entire point cloud resulting in a set of geometrically homogeneous segments. Second, the consequent primitives or so called superpoints are further downsampled and passed subsequently to a PointNet network for embedding. Finally to ensure that long range interactions are preserved between the computed superpoints while computing a contextual segmentation, a graph-based deep learning algorithm [202] performing graph convolution is applied on the adjacency graph having superpoints as nodes and their spatial relations as edges. Even though SPG framework has shown impressive results by improving state-of-the-art in the task of point cloud semantic segmentation, we believe that there is a large margin for improvement. As pointed out in Section 4.1.1, the oversegmentation in SPG framework is based on the work of Guinard et al. [START_REF] Guinard | Weakly supervised segmentation-aided classication of urban scenes from 3D LiDAR point clouds[END_REF] leveraging handcrafted features for superpoints segmentation. As later steps rely essentially on the quality of the over-segmentation, we believe that this step should be also learned in a supervised deep framework to reduce potential errors.

3D Meshes

As discussed above, the success of a deep learning method applied to 3D data is mainly tied to how the convolution operator is appropriately adapted to the topology of data. 3D meshes in particular belong to the category of non-euclidean 3D representations where it is dicult to dene the local convolution support on a 3D surface. Geodesic CNN [START_REF] Masci | Geodesic Convolutional Neural Networks on Riemannian Manifolds[END_REF] is among the rst attempts to circumvent the lack of a support for convolution. In this work, Masci Image from [START_REF] Masci | Geodesic Convolutional Neural Networks on Riemannian Manifolds[END_REF] The proposed network is a succession of non-linearity layers, geodesic convolution layer followed by an angular max pooling in addition to a Fourier transform w.r.t. angular coordinates in order to remove arbitrary rotation ambiguity.

More recently, Huang et al. [26] introduced a consistently-oriented geodesic parameterization for a 3D surface associated with a high resolution signal. Called TextureNet, the network's input is a 3D textured mesh and its output is a set of learned features attached to sampled points on the surface. TextureNet deals with the lack of an unied and seamless local parameterization of the surface, by computing a four-fold rotationally symmetric eld on the surface. This 4-RoSy eld consists of a set of tangent directions attached to vertices that allows to consistently orient adjacent neighborhoods. A 4-RoSy convolution operation dened within this geodesic eld is orientation invariant. The proposed architecture illustrated in Figure 4.17 is a U-Net-like network [START_REF] Ronneberger | U-Net: Convolutional Networks for Biomedical Image Segmentation[END_REF] composed of an encoder and a decoder. In addition to pooling and non-linearity layers, the de facto core of TextureNet is the convolution layer. The latter is comprised of four blocks performing respectively a geodesic patch search followed by a texture grouping then a convolution and aggregation operations w.r.t. to the local geodesic patch.

While the aforedescribed convolution operators in [26,[START_REF] Masci | Geodesic Convolutional Neural Networks on Riemannian Manifolds[END_REF] oer interesting approaches for a consistent local surface parameterization in order to perform convolution, they remain extremely sensitive to the triangulation irregularities since they are attached to geodesic patches dened over the mesh surface not to mention the required computational cost when computed repeatedly during training.
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A dierent approach introduced in Hanocka et al. [16], has proposed a network that is explicitly designed for irregular triangular meshes. The key innovation of this method is that both convolution and pooling are dened on the mesh edges instead of local surface patches. Assuming that the input mesh is manifold with possibly boundary edges, this means that each edge is shared by exactly two faces (i.e. having four adjacent edges or two in case of a boundary edge). For each edge, the convolution is performed w.r.t. to its 1-ring adjacent edges2 as illustrated in Figure 4.18 (a). Such setting entails an ambiguity concerning the edge ordering.

In essence, by considering a counter-clockwise ordering of vertices of the incident faces to the edge e, we can observe that there are two possible ordering namely (e 1 , e 2 , e 3 , e 4 ) or (e 3 , e 4 , e 1 , e 2 ) as shown in Figure 4.19. Such ambiguity hinders the capability of the convolution layer to learn invariant discriminative features. The desired properties of a convolution operator are mainly its invariance to similarity transformations including rotation, translation and scale. To fulll these criteria, Hanocka et al. [16] attach to each edge relative features that are inherently invariant to rotation, translation and scale such as the dihedral angle between adjacent faces, two inner angles (α, β) and the ratios between the underlying edge and its perpendicular belonging to incident faces as illustrated in We recall that a convolution is a correlation between a neighborhood and a template or kernel. Formally, according to [16], for an edge e and its 1-ring neighborhood e 1 , e 2 , e 3 and e 4 associated respectively with features f, f 1 , f 2 , f 3 and f 4 a mesh convolution with a kernel w is dened as: norm of its corresponding feature) and merging the remaining edges by averaging their corresponding features. Note that concretely the input mesh is not decimated while training, albeit the computed feature maps are the subject of pooling. This allows the network to capture key information at multiple scales akin to 2D CNNs. The performance of this approach has been demonstrated on classication and semantic segmentation tasks setting a new state-of-the-art. In our work we adapt this architecture to extract features of mesh faces.

f w 0 + 4 i=1 w i f i where (f 1 , f 2 , f 3 , f 4 ) = (| e 1 -e 3 |,

Review conclusion

To conclude, this short review is far from being an extensive study as our goal is to introduce the most relevant work that inspired our approach. While the literature is full of surveys discussing 2D superpixels such as the recent work of Stutz et al. [START_REF] Stutz | Superpixels: An evaluation of the state-of-the-art[END_REF], oversegmentation of point clouds and 3D meshes is a less studied subject. Our review can be further extended to a more complete and comprehensive survey.

It should be noted that there is a rich literature regarding graph partitioning methods.

We limited the denitions and algorithms presented in this section to the most related notions used in our work so that the reader do not get distracted with overwhelming irrelevant information. A pointer to further thorough studies is most of the time provided in case the reader is interested to know more about the underlying subject.

We believe deep learning on 3D point clouds in particular has witnessed a tremendous progress during the past two years. For a more thorough general study on deep learning applied to 3D data, the reader is referred to [START_REF] Ahmed | Deep Learning Advances on Dierent 3D Data Representations: A Survey[END_REF][START_REF] Ioannidou | Deep Learning Advances in Computer Vision with 3D Data: A Survey[END_REF]. All of the aforedescribed representations have demonstrated an outstanding performance especially PointNet [14], SPG [17] and meshCNN [16]. We make use of these methods to develop our over-segmentation framework for point clouds and 3D textured meshes.

Method

The goal of our method is to produce a high-quality over-segmentation of large scale 3D data represented as point clouds or 3D meshes structured by a graph in order to be used in turn to perform semantic segmentation. First, we build a graph on top of the data 4.2. METHOD points. The structure of this graph is mainly dependent on the geometry of data. Second, we partition the constructed graph supervised by the ground truth segmentation of data points. Finally, we combine our framework with a dense classication algorithm SPG [213] initiated by our over-segmentation to improve semantic segmentation results.

Concretely, our over-segmentation method is a two step approach. First, we learn vertex embeddings in such way they are homogeneous within segments and present high contrast at their borders. Second, we compute a piece-wise constant approximation of these learned embeddings with respect to an adjacency graph as illustrated in Figure 4.20. Formally, let V be a set of data points (3D points of a point cloud or triangles of a 3D mesh) whose adjacency structure is encoded by the graph G = (V, E), with E ⊂ V ×V the set of edges. We assume that this adjacency structure is sparse, in the sense that |E| |V | 2 . For a partition U = (U 1 , • • • , U K ) of V , we denote E trans (U) its set of transition edges, i.e. the set of inter-edges linking dierent elements of U:

v 0 v 1 v 2 v 3 v 4 v 5 v 6 v 7 v 8 P 0 P 1 P 2 (a) Ground truth partition P v 0 v 1 v 2 v 3 v 4 v 5 v 6 v 7 v 8 (b) Learned embeddings e.
E trans (U) = {(u, v) ∈ E | u ∈ U i , v ∈ U j , i = j}.
Inversely, the set of intra-edges i.e. linking points within the same segment is dened as E \ E trans (U). First, we start by associating to each vertex v in V an embedding e v in the m-dimensional unit sphere S m = {x ∈ R m | x = 1}. In the following section 4.2.1 we discuss how such an embedding can be computed. Second, we partition V into the constant connected component of a piecewise-constant approximation of e v with respect to the graph G. The latter step is discussed in Section 4.2.2.

Learning embeddings

Our objective is to learn a vertex embedding function ξ : V → S m such that ξ(V ) is homogeneous within the segments of the ground truth segmentation P, and with high contrast at transition edges E trans (P). Note that as advocated by Wang et al. [START_REF] Wang | Learning ne-grained image similarity with deep ranking[END_REF] constraining these embeddings to be within the m-unit sphere S m not only prevents collapse during the training phase but also normalizes the distance between the embeddings.

As demonstrated by Hornik in [START_REF] Hornik | Approximation capabilities of multilayer feedforward networks[END_REF], neural networks are universal approximators for arbitrary nite input measures. With the huge success of neural networks in large variety of computer vision tasks, the function ξ would be typically a neural network operating on features of the data points corresponding to the vertices V of G. These input features can be pixel colors in 2D images, the local geometry/radiometry of points or triangles in respectively a 3D point cloud or a 3D mesh.

In 2D images, [START_REF] Sharif Razavian | CNN Features O-the-Shelf: An Astounding Baseline for Recognition[END_REF] have shown that taking descriptors as the activations of Convolutional Neural Networks (CNNs) layers outperforms all the hand-engineered features. Following this work [START_REF] Jampani | Superpixel Sampling Networks[END_REF] proposed to use a classic encoder-decoder backbone to compute features from 2D images which serves subsequently to learn task-specic superpixels. The architecture used in [START_REF] Jampani | Superpixel Sampling Networks[END_REF] is illustrated in with Batch norm (BN) and non-linearity (ReLU) layers. Image from [START_REF] Jampani | Superpixel Sampling Networks[END_REF] While it seems simple to embed pixels of 2D images, in the 3D domain however, extracting local features of 3D data is not straightforward. With the recent success of global deep architectures for 3D point cloud and 3D mesh classication especially PointNet [14] and MeshCNN [16] discussed in Section 4.1.4, we propose an adaptation of these two methods respectively in Section 4.3 and Section 4.4 in order to compute dense per-point features for 3D point clouds and per-triangle features for 3D meshes.

Once these embeddings are computed, the over-segmentation is dened subsequently with respect to the adjacency graph G build upon the 3D data.

The generalized minimal partition problem (GMPP)

In our method, the over-segmentation is cast as a graph partitioning problem. We dene these segments by computing the constant connected components in the graph G of a piecewise-constant approximation of the embeddings e v ∈ S V m . This approximation is the solution f of the following optimization problem:

f = arg min f ∈R V ×m v∈V f v -e v 2 + (u,v)∈E w u,v [f u = f v ] , (4.5) 4.2. 
METHOD with w ∈ R E + the edges' weight and [x = y] the Iverson's bracket equal to 0 if x = y and 1 otherwise. To encourage splitting along high contrast areas, we dene the edge weight as

w u,v = λ exp -1 σ e u -e v 2 , λ, σ ∈ R + parameters (4.6)
Known as the Generalized Minimal Partition Problem GMPP and introduced by [178],

the equation (4.5) is neither continuous, dierentiable, nor convex, and therefore the global minimum cannot be realistically retrieved. One way to get good approximate solution eciently consists in using the 0 -cut pursuit algorithm [178] discussed in Section 4.1.3.

Note that the edges' penalty dened in equation (4.6) automatically implements (P 3) for reasonable parameterization of the problem. Thus we can dene S (e) as the segmentation given by the connected components of the approximate solution f of equation (4.5) for a given embedding e. In order to learn vertex embeddings and partition the graph G accordingly, an objective function, which reduce gradually the error between the ground truth segmentation P and the predicted one S during optimization, should be carefully designed.

Graph structured contrastive loss

As mentioned earlier, the object purity property (P 1) is the rst quality of an accurate over-segmentation. A straightforward way to learn such an embedding function ξ would be to choose a metric estimating the object purity as a loss function. In the literature, (P

can be evaluated by measuring the agreement between a ground truth segmentation P and the predicted segmentation S using the under-segmentation error [START_REF] Stutz | Superpixels: An evaluation of the state-of-the-art[END_REF]. This error sums over each segment S ∈ S the number of vertices which are not in the majority segment, i.e. the element of P with the largest overlap with S. Formally, the under-segmentation error L(P, S) can be dened as:

L(P, S) = 1 |V | S∈S min P ∈P |S \ P | . (4.7)
However directly back-propagating through the minimization of L(S (ξ(V )) , P) is dicult, if not impossible for several reasons. First, the GMPP dened in (4.5) used to compute the predicted partition S is non-continuous and non-convex. Second, computing the connected components on a graph is inherently non-dierentiable since this operator is discontinuous as a single tiny change may overhaul the entire partition as illustrated in Instead, we note that if the border recall property (P 2) is implemented (i.e. predicted segments and ground truth objects share the same boundaries), then (P 1) ensues. Therefore, we propose a surrogate back-propagable loss called the graph-structured contrastive loss focusing on correctly detecting the borders between objects and operates on edges instead of vertices. Our loss is dened as:

(e, P) = 1 |E|   (u,v)∈E\Etrans(P) φ (e u -e v ) + (u,v)∈Etrans(P) µ (e) u,v ψ (e u -e v )   , (4.8) 
with φ (resp. ψ) a function favoring similarity (resp. contrast), and µ u,v ∈ R Etrans a weight on transition edges, discussed later. 

φ(x) = δ( x 2 /δ 2 + 1 -1) with δ = 0.3, ψ(x) = max (1 -x , 0) , (4.9)
In the spirit of the original contrastive loss [START_REF] Chopra | Learning a similarity metric discriminatively, with application to face verication[END_REF] discussed in Section 4.1.2, our loss encourages embeddings of vertices linked by an intra-edge to be similar, while rewarding dierent embeddings when linked by a transition edge. Note that our is dierent from the original triplet loss [START_REF] Wang | Learning ne-grained image similarity with deep ranking[END_REF][START_REF] Hoer | Deep metric learning using triplet network[END_REF], as it involves all vertices within a graph (or a sub-graph) at once, and not just an anchor and related positive/negative examples. In this way, it bypasses the problem of example picking altogether. Indeed, the positive and negative examples are directly given by the adjacency structure set by E trans and E \ E trans . A vertex embedding function minimizing this loss will be uniform within elements of P and have high contrasts at E trans (P). Consequently, E trans (S (e) ) should be close to E trans (P). Indeed, the rst term of is the (pseudo)-Huber graph-total variation [START_REF] Peter | Robust regression: asymptotics, conjectures and Monte Carlo[END_REF][START_REF] Charbonnier | Deterministic edge-preserving regularization in computed imaging[END_REF] on the intra-edges (E \ E trans (P)), promoting smooth homogeneity of embeddings within the same object.

ψ, the second part of is the opposite of the truncated graph-total variation [START_REF] Zhang | Some sharp performance bounds for least squares regression with l1 regularization[END_REF] on the transition edges E trans (P). It penalizes similar embeddings at the border between 4.2. METHOD objects. Conscious that our embeddings are restricted to the unit sphere, we threshold this function for dierences larger than 1. In other words, ψ encourages vertices linked by an inter-edge to take embeddings with an euclidean distance of 1, but does not push for a larger dierence.

It should be emphasized that at this stage we do not try to learn semantic information, but rather to compute a signal on a graph such that its constant approximation respects certain properties. That is why, it may happens that objects of dierent classes can share the same embeddings as long as they are not adjacent.

Cross partition weighting

As explained earlier, if the ground truth segments and the predicted ones share the same boundaries (P 2), this will guarantee the object purity (P 1). While (P 2) does imply (P 1), tiny errors in the former can have drastic consequences on the latter. In practice, if one transition edge is missed, this can erroneously fuse two large segments covering dierent objects. Without an appropriate weighting strategy, will fail to take into account the eect of each edge which is susceptible to be largely varying in terms of undersegmentation error L (4.7). By omitting µ (e) u,v from the second part of equation (4.9), will only have a high accuracy in recovering transition edges while being agnostic to the inuence of each e ∈ E trans . In the literature, [START_REF] Tu1 | Learning superpixels with segmentation-aware anity loss[END_REF] proposed to incorporate the object purity by introducing a weighting scheme to the so called segmentation-aware anity loss (SEAL).

In this strategy for an edge (u, v) in a segment S of the predicted partition S, µ implements directly the under-segmentation error (4.7):

µ u,v = 1 + |S | -min P ∈P |S \ P| (4.10)
Although [START_REF] Tu1 | Learning superpixels with segmentation-aware anity loss[END_REF] show impressive results for superpixel segmentation, we were not able to replicate this success to superpoint/superfacet segmentation. In fact, we argue that the edge weights are evenly shared by all transition edges of a given segment regardless of their inuence on the purity and the size of the interface. This excessively favors long interfaces in the loss, and inadequately handles large segments with multiple interfaces. Moreover, as soon as a segment no longer overlaps the object's border, its weight is decreased to 1 making thereby the loss unstable during training.

In order for (4.9) to better represent L (4.7), the edge weights µ ∈ R Etrans(P) + should be set wisely to reect this inuence. To this end, we introduce the cross-partition weighting strategy. First, we build the cross-segmentation graph G (e) = (C (e) , E (e) ), represented in 

E (e) = (U, V ) ∈ C (e) 2 | U × V ∩ E trans = ∅ .
We associate the following weight M 

M (e) U,V = M 0 min (|U | , |V |) for (U, V ) ∈ E (e) (4.12) 
µ

(e) u,v = M (e) U,V | U × V ∩ E trans | for (u, v) ∈ U × V ∩ E trans .
with M 0 a parameter of the model. These weights take into consideration not only the inuence of the edges in the purity but also the shape of the interfaces. Indeed, the under-segmentation error caused by an erroneous fusion of two segments U and V is proportional to min(|U | , |V |). This is explained by the denition of E (e) which implies that two segments U and V of C (e) linked by a super-edge (U, V ) ∈ E (e) are in two dierent ground truth segments.

We note that setting M 0 = |E| / |V | gives the same importance to the classication of transition and non-transition edges. Indeed, assuming that most edges are non-transition, we have the sum of non-transition edge weights close to |E|. In an over-segmentation context, M 0 must be set higher to prioritize the recovery of object borders.

The weights are at last normalized by the number of edges constituting the interface between U and V in order to distribute evenly the penalty over the number of edges constituting an interface. This prevents long borders from being over-represented in the loss. In In this section, we rst explain how to apply our over-segmentation method to 3D point clouds of indoor and outdoor scenes. Second, we show how the learned superpoints can be successfully combined with a superpoint-based semantic segmentation algorithm to build a 3D semantic map. We start by introducing our local point embedder LPE, a simple neural network which associates each 3D point with a low dimensional embedding that captures its local geometry and radiometry.

3D point cloud embedder LPE

Let C be a 3D point cloud, such that each point i is dened by its position p i ∈ R 3 and d-dimensional radiometric information r i ∈ R d (this can be colors if available, or intensity of LiDAR scans, or be ignored if none is available). Each point i is associated with its local features P i and R i , respectively comprised of the position and radiometry of its k nearest neighbors N i in the input cloud:

P i = {p j | j ∈ N i } , R i = {r j | j ∈ N i }.
For ease of notation, any operator or function f applied to a set of features X is to be understood as being applied to all its elements: f (X) = {f (x) | x ∈ X}.

The goal of our network is to associate each 3D point i with a compact m-dimensional embedding e i characterizing its features (position, color) and the geometry and radiometry of its local neighborhood. The global architecture of the proposed Local Point Embedder (LPE) is illustrated in Figure 4.26:

Our architecture is a lightweight network inspired by PointNet [14]. However, unlike PointNet, LPE does not try to extract information from the whole input point cloud, but rather encodes each point based on purely local information. Our LPE is comprised of two parts; a spatial transform network and a lightweight PointNet-like network. In the following we detail each part of the proposed architecture.

Spatial transform network:

This unit takes the positions of a target point p i and its local k-neighborhood P i . First the neighbors' coordinates are normalized around p i such that the standard deviation of the point's position is equal to 1 (4.15). Then, this neighborhood is rotated around the z axis with a 2 × 2 rotation matrix computed by small PointNet network PTN (4.16). As advocated by [START_REF] Jaderberg | Spatial transformer networks[END_REF], these steps aim to standardize the position of the neighborhood clouds of each point. By doing so, the next network will be able to learn position distribution.

Along the normalized neighborhood position Pi , this unit also outputs geometric point- features pi describing the elevation p (z) i , the neighborhood radius, as well as its original orientation (through the 4 values of the rotation matrix: [Ω x,x , Ω x,y , Ω y,x , Ω y,y ])(4.17).

By keeping track of the normalization operations, the embedding can remain covariant with the original neighborhood's radius, height, and original orientation, even though the points' positions have been normalized and rotated.

In The L 2 block normalizes the output on the unit sphere (4.18).

PointNet-like embedder

The embeddings e i are computed for each point i of C through a shared lightweight PointNet-like network (4.20). The input set-feature X i is set as the concatenation of the neighbour's transformed position Pi and their radiometric information R i , while the input point-feature x i is composed of the neighborhood geometric point-feature pi and the radiometry r i of point i.

L 2 (•) = •/ • (4.18) LPE(X i , x i ) = L 2 (MLP 2 ([max (MLP 1 (X i )) , x i ])) (4.19) 
e i = LPE([ Pi , R i ], [p i , r i ]) (4.20) 
The embeddings computed using our LPE architecture are optimized through our graphstructured constrastive loss discussed in Section 4.2.3 supervized by the ground truth segments until they are homogeneous within objects and present high contrast at their borders.

Residual Point Embedder

We have tested an alternative conguration for the local point embedder LPE, in which they were stacked in layers, similarly to the classical convolutional architecture for images. We rst introduce a slightly changed architecture, the Residual Point Embedder 

R(X

i , x i ) = MLP 2 ([max (MLP 1 (X i )) , x i ]) (4.21) RPE(x i , X i , e ini ) = L 2 (e ini + R(X i , x i )) (4.22)
The second change is the layers architecture. The RPEs in the rst layer compute the embeddings from the local geometric and radiometric information alone, and their initial embedding is set to 0 (4.23) (such that they behave exactly like LPEs). The RPEs in subsequent layers compute new embeddings from the local radiometry and geometry as well as the embeddings computed at the previous layer of the points neighbors E t i (4.24). Note that for a point to be processed by a layer, all its neighbors must have been embedded by the previous layer. This allows the RPEs to have increasingly broader receptive elds, and to correct errors that might have been done by previous layers. Note that the geometric information are only processed by the spatial transform once, cascading its values to all residual layers. e (0)

i = RPE (0) ([ Pi , R i ], [p i , r i ], 0) (4.23) e (t+1) i = RPE (t) ([ Pi , E (t) i ], [p i , r i , e (t) i ], e (t) i ) (4.24)
Alternatively, all initial embeddings can be set to 0, which means that each layer computes a new embedding from the local position and the embeddings of the previous layers.

Numerical experiments

In this section, we show rst our numerical experiments for the task of over-segmentation on two dierent datasets. Second, we combine the learned superpoints with the method of [17] to perform semantic segmentation.

Datasets

We evaluate our full pipeline of over-segmentation and semantic segmentation on two dierent public datasets: S3DIS [23]: this dataset is composed of 6 large-scale indoor areas from 3 dierent buildings. These areas show essentially oce style architecture including conference rooms educational spaces and hallways. S3DIS is a large scale dataset composed of 600 million 3D RGB points acquired automatically using the Matterport scanner. Ground truth annotations are provided for 13 semantic classes of structured elements. These annotations include furniture items and commonly known classes such as door, window, ceiling, oor, chair, sofa, table, etc. Most importantly, in addition to per-point semantic labels, S3DIS oers object annotations which is a key enabler for our supervized oversegmentation method.

vKITTI 3D [START_REF] Engelmann | Exploring Spatial Context for 3D Semantic Segmentation of Point Clouds[END_REF]: built upon the original KITTI dataset [49], vKITTI is a virtual dataset comprised of nearly 15 million 3D points constructed by projecting video sequences into 3D space using camera parameters. Ground truth annotations are provided only for semantic labels of points with respect to 13 classes (terrain, road, sidewalk, road sign, etc.). In order to get a ground truth partition of objects for training, we compute the connected components of the semantic labels of points.

Both datasets are composed of 6 parts which allows us to use 6-fold cross-validation for evaluation. For eciency, We subsample the two datasets using a regular grid of voxels (3cm wide for S3DIS and 5cm wide for vKITTI) as a preprocessing step before oversegmentation. In each voxel, we average the position and color of the contained points. This allows us to decrease the computation time and memory load.

Implementation details

In all our experiments, we set m the dimension of the computed embedding by LPE to 4. The architecture of LPE is a lightweight PointNet-like network operating on the k = 20 nearest neighborhood points of each point with no more than 15000 parameters for eciency reasons. To prevent the creation of many small superpoints in regions of high contrast, we modied the 0 -cut pursuit algorithm 3 [178] by merging components greedily with respect to the objective energy dened in (4.5), as long as they are smaller than a given threshold.

In order to build more robust networks, we added Gaussian noise of deviation 0.03 clamped at 0.1 on the normalized position and color of neighborhood clouds. We also added random rotation of the input clouds for the network to learn rotation invariance.

To preserve orientation information, the clouds are rotated as a whole instead of each neighborhood. This allows the spatial transform to detect change in orientation, which can be used to detect borders.

To limit the spatial extent of the superpoints we concatenate to the points' embeddings their 3D coordinates in (4.5) multiplied by a parameter α spatial , in the manner of [18]. This determines the maximum size that superpoints can reach. To automatically select a minimal superpoint size (in number of points) appropriate to the coarseness of the segmentation, we heuristically set:

n λ min = (max 1 2 n (1)
min , n

min + 1 2 n

(1)

min log( λ)

(4.25)
where n

min is a dataset-specic minimum superpoints size for λ = 1. For example, for n

(1) min = 50, the smallest superpoint allowed for a small regularization strength λ = 0.2 will be 33, while it is 70 for the coarse partition obtained with λ = 6. While specic applications may require setting up this variable manually, this allowed us to produce the regularization paths in Figure 4. [START_REF] Landrieu | Supervized Segmentation with Graph-Structured Deep Metric Learning[END_REF] 

Over-segmentation results

Evaluation metrics: In the literature, several evaluation metrics were proposed to assess qualitatively and quantitatively an over-segmentation with respect to the afore-3 https://github.com/loicland/cut-pursuit MAPPING mentioned properties (P 1), (P 2), and (P 3). For point clouds, the Boundary Recall (BR) and Precision (BP) are used to evaluate the ability of the superpoints to adhere to, and not cross, object boundaries ((P 2), (P 3)). However, these measures are dened with respect to boundary pixels [START_REF] Papon | Voxel Cloud Connectivity Segmentation -Supervoxels for Point Clouds[END_REF] or points [START_REF] Lin | Toward better boundary preserved supervoxel segmentation for 3D point clouds[END_REF]. We argue that for point clouds transition occurs between points and not at points. That is why we think using edges instead of points to compute these metrics is more convenient. To this end, we dene E pred trans the set of predicted transition, i.e. the subset of edges of E that connect two points of C in two dierent superpoints. These metrics are often given with respect to a tolerance, i.e. the distance at which a predicted transition must take place from an actual object's border for the latter to be considered retrieved. We set this distance to 1 edge, which leads us to dene E [START_REF] James | Deep feature synthesis: Towards automating data science endeavors[END_REF] trans the set of inter-edges expanded to all directly adjacent edges in E: In addition to BR and BP, other metrics were introduced to assess the purity of objects in an over-segmentation. The achievable segmentation accuracy (ASA) [START_REF] Liu | Entropy rate superpixel segmentation[END_REF] is an upper-bound measure that gives the total eective segmentation area S with respect to a ground truth partition P. Formally ASA is dened as:

E (1) trans = {(i, j) ∈ E | ∃(i, k) or (j, k) ∈ E trans } .
ASA(S, P) = 1 N S j ∈S max

P i ∈P | S j ∩ P j | (4.28)
We introduce an analog metric to ASA called the Oracle Overall Accuracy (OOA) which characterizes the accuracy of the labeling that associates each superpoint S of a segmentation S with its majority ground-truth label. Formally, let l ∈ K C be the semantic labels of each point within a set of classes K, we dene the OOA of a point cloud segmentation S as:

l oracle (S) = mode {l i | i ∈ S} (4.29) OOA = 1 | C | S∈S i∈S l i = l oracle (S) ,
with [x = y] the function equal to 1 if x = y and 0 otherwise. Note that the OOA is closely related to the ASA [START_REF] Liu | Entropy rate superpixel segmentation[END_REF], but consider the majority labels of all points within a superpixel rather than the label of the objects with most overlap. In this sense, it is a tighter upper bound to the achievable accuracy of a superpoint-based semantic classication algorithm. This metric is also more fair than the under-segmentation error [START_REF] Levinshtein | Turbopixels: Fast superpixels using geometric ows[END_REF] for other methods such as [START_REF] Guinard | Weakly supervised segmentation-aided classication of urban scenes from 3D LiDAR point clouds[END_REF], or our cluster-based approach, as they do not try to retrieve objects directly, but rather regions of C with homogeneous semantic labeling. 300 400 500 600 700 800 900 1,000 92 In Figure 4.29, we report the performance of our algorithm according to three segmentation metrics: OOA, BR, and BP. We observe that for the large scale S3DIS dataset (600 Mpoints), supervised methods provide considerably better results. In particular, our method SSP obtains better accuracy with 300 segments than the state-of-the-art method of Lin et al. with 1500 segments. The advantages for border recall and precision are even more signicant. For the smaller vKITTI3D dataset (15 Mpoints), Lin et al. obtain better results than all supervised methods except our approach. To circumvent the class imbalance issue which is prevalent in most of the real world datasets, we report class-wise scores in addition to the mean over all classes. Alternatively, intersection-over-union (IoU) is common metric in this task as well. IoU also referred to as the Jaccard index is a ratio between the number of elements shared between the ground truth and the prediction divided by the number of all elements across the target and the prediction. More simply the IOU can be dened as:

IoU = T P T P + F P + F N . (4.31) 
Resutls: In Table 4.4 and Table 4.5, we show how our point cloud oversegmentation framework can be successfully used by the superpoint-based semantic segmentation technique of [213] 4 (SPG). We replace the unsupervized superpoint computation with our best-performing approach, SSP. We evaluate the resulting semantic segmentation using standard classication metrics: overall accuracy (OA), mean per-class accuracy (mAcc) and mean per-class intersection-over-union (mIoU). We observe a signicant increase in the performance of SPG, beating concurrent methods on both datasets.

In particular, we observe that our method allows for better retrieval of small objects which translates into much better per-class metrics, although the overall accuracy is not necessarily better than the latest state-of-the-art algorithms. The detailed per-class IoU are reported in the appendix.

We note that since the time of writing this thesis, several semantic segmentation algorithms surpassing our method have been developed as it is an extremely competitive eld. We report only scores of methods that were developed before or at the same time as ours. MAPPING adjacency structure was enough to capture the connectivity of the input clouds. For the sparse scans of vKITTI, we added Delaunay edges [START_REF] Delaunay | Sur la sphere vide[END_REF] (pruned at 50 cm) such that parallel scan lines would be connected. The improvement is less signicant on vKITTI, which could be due to the diculty of constructing an adjacency graph on such a sparse acquisition. The performance is degraded further without color information, as some transitions are not predictable purely from the geometry.

Discussion

Network conguration: For the LPE and the PointNet structure in the spatial transform, we nd that shallow and wide architectures work better than deeper networks. We emphasize that the approximated solution f of the optimization problem (4.5) takes values in R C×m . However, the learned embeddings e i are constrained in the m-unit sphere S m . In practice, this is a shortcoming of our approach as it could lead to suboptimal approximate solutions. In terms of computational speed, the embeddings can be computed very eciently in parallel on a GPU with over 3 million embeddings per second on a 1080Ti GPU. The bottleneck remains solving the graph partition problem in (4.5), which can process around 100, 000 points per second.

The transition edge weight M 0 : The graph-structured contrastive loss presented in Section 4.2.3 requires setting a weight M 0 determining the inuence of inter-edges with respect to intra-edges. Since most edges of G are intra-edges, in practice, we dene M 0 such that M 0 = µc with c = | E |/| V | the average connectivity of G. Note that c can be determined directly from the construction of the adjacency graph (it is equal to k in a k-nearest neighbor graph for example). A value of µ = 1 means that the total inuence in of inter-edges and intra-edges are identical. Since we are interested in oversegmentation, we set µ to 5 in all our experiments, but note that the network is not very sensitive to this parameter, as demonstrated experimentally: a value of µ = 3 gives a relative performance of (-0.2, -0.6, +1.5) while a value of 8 gives (+0.1, -0.5, +1.4).

Applications: 3D semantic map as textured mesh

In this section, we apply our over-segmentation method to 3D textured meshes of urban scenes. We use the dataset introduced in Chapter 1 as there is no dataset that we are aware of which contains both registered geo-localized images and their corresponding 3D textured meshes of outdoor urban scenes along with their respective semantic ground truth annotations. Semantic segmentation of the textured mesh, however, is left as a future work due to time constraints. We start by presenting the embedding function ξ of the 3D textured mesh, a lightweight network inspired by the work introduced in MeshCNN [16] and U-Net [START_REF] Ronneberger | U-Net: Convolutional Networks for Biomedical Image Segmentation[END_REF].

3D textured mesh embedding

Let us consider a 3D triangular mesh M = {V, E, T } dened by its sets of:

     Vertices V = {v i | v i ∈ R 3 , 1 ≤ i ≤ n} , V ⊂ R 3×n Edges E = {e j = {u, v} | u, v ∈ V, 1 ≤ j ≤ p} , E ⊂ V 2×p , Triangles T = {t k = {u, v, w} | {u, v} , {u, w} , {v, w} ∈ E, 1 ≤ k ≤ m} .
where v i is the spatial position (x, y, z) of the vertex i in the 3D space. We note that additional radiometric features can be also available such as RGB color or LiDAR reectance attached either to the vertices V or triangles T . In the following method, we rely on 2D images for extracting radiometric features rather than the discrete photometric information attached to vertices or mesh faces. In Figure 4.31, we show the global network architecture of the function ξ used to embed 3D textured meshes locally called the Local Textured Mesh Embedding network (LTME). As input, our network takes a surface represented as a 3D triangular mesh M along with a set of registered 2D images C and their corresponding poses. First, we start by computing for each triangle t ∈ T in the 3D mesh its projection fragment in the corresponding camera view c t ∈ C. This step is performed o-line using a view selection module (VSM) as a pre-processing before training. Once the pairs of triangles and their corresponding camera views are determined, we compute an embedding function for each acquisition modality separately using respectively a local mesh embedder (LME) for the 3D mesh and a convolutional encoder-decoder (CED) which consists in a U-Netlike network [START_REF] Ronneberger | U-Net: Convolutional Networks for Biomedical Image Segmentation[END_REF] for images. Akin to the LPE architecture presented in Section 4.3.1, our goal is to associate each triangle t ∈ T in the 3D mesh M and each pixel in the 2D corresponding image c t with a low dimensional embedding. Therefore, the nal set of the local textured mesh embeddings will be a concatenation of the mesh faces' embeddings and the pixels' embeddings corresponding to the faces' projection in each camera view. As View Selection Module (VSM): The objective of this module is to select for each triangle t ∈ T (|T | = m the number of triangles in the mesh), the optimal camera view c ∈ C (|C | = k the number of camera views) w.r.t. visibility constraints. For each triangle t ∈ T , the best camera view c t is the one with the largest projection area of triangle t into camera c i.e. c t = arg max c {A[P t (c)]} where A[P t (c)] denotes the projection area of triangle t into the camera view c. The larger this area is, the better t ts into c. This criterion counts also for proximity as a larger projection area implicitly means that the selected view is spatially closer to the underlying face. Other geometric criteria for optimal view selection exist such as the angle between the face normal and the camera direction, albeit we abstain from using this feature as it is scale-invariant [START_REF] Riemenschneider | Learning Where to Classify in Multi-view Semantic Segmentation[END_REF]. Similar to texture mapping procedure described in Chapter 3, we compute a labeling L = {l 1 , .., l m } ∈ {1, .., k} m which associates to each face t ∈ T the best camera view c t . We cast our view selection as a multi-label optimization problem solved using α-expansion [START_REF] Boykov | An Experimental Comparison of Min-Cut/Max-Flow Algorithms for Energy Minimization in Vision[END_REF]. The optimal labeling l is dened as:

VSM

l = arg min l∈L (- t∈T A[P t (l t )] + γ e (s,t) ∈E d [l s = l t ]) (4.32)
As described in (4.32), this energy is a weighted sum of a data term and a regularization term. The rst term evaluates the visibility quality of a triangle t having a label l t corresponding to a camera view c as explained above. The second is a pairwise term favoring the selection of spatially regular views for adjacent triangles which are more likely to share the same label (i.e. camera view). In details, we penalize the set of edges E d common to adjacent triangles s, t ∈ T which were assigned to dierent labels l s = l t . This smoothness term consists of a Potts model where [.] are the Iverson brackets ([x = y] is equal to 1 if x = y and 0 otherwise). Finally γ is the weight balancing smoothness and the data delity.

Once l in equation (4.32) is computed, we are able to determine for each face in 3D space the set of 2D pixels in the corresponding camera view. This mapping from faces of the 3D mesh to pixels of the corresponding 2D views is needed once the image embeddings are computed using a convolutional encoder-decoder network.

Convolutional Encoder-Decoder (CED): In order to embed pixels of a 2D image, we propose to use a convolutional encoder-decoder inspired by state-of-the-art deep convolutional network U-Net [START_REF] Ronneberger | U-Net: Convolutional Networks for Biomedical Image Segmentation[END_REF]. In Figure 4.32 we show the architecture of our network. CED is composed of two parts; a contracting path called encoder and an upsampling paththe decoder. The encoder is a stack of convolutional layers interleaved with batch norm layers (BN), non-linearity layers (ReLU), in addition to pooling layers.

It takes as input an image I of size H × W × d with H, W and d are respectively the height, width and depth (i.e. number of channels) of I. For RGB images the depth d is equal to the dimension of the RGB space which means d = 3.

The decoder part operates on the reduced feature maps resulting from the pooling layers of the encoder. It performs an up-sampling operation to restore the original size of the feature map using the indexes of pixels from the corresponding pooling layers in the encoder. This way, the unpooling layer can precisely localize the lost information in the pooling stage in the encoder. After each unpooling step a previously computed feature For an edge e i ∈ E, the input hand-crafted edge features are represented as a 5dimensional vectors denoted by hf i ∈ R 5 and composed of the dihedral angle between adjacent faces, the inner two angles and the edge ratios between the length of the edge and its perpendicular lines in each adjacent face plan. number of neighbors (by default n = 4 which correspond to the 1-ring neighbors as explained in Section 4.1.4), f is the number of features (initially f = 5) and b is the batch size. This results in deep learned features per-edge denoted lf i which are subsequently organized with regards to the mesh triangles (i.e. we associate to each face t i ∈ T of the mesh its three learned edges' features lf i1 , lf i2 , lf i3 ). Afterwards, the embedding of each face lf t i is obtained by the aggregation of its three edge deep embeddings using a max pooling operation as in (4.34) (the max operation in (4.34) returns the element-wise maximum of vectors lf i1 , lf i2 , lf i3 ). Finally the computed embeddings are passed to a shared multi-layer perceptron (MLP) which allows to further learn a spatial-encoding of faces while reducing the embeddings' dimension to the desired size. Much like CED embeddings, LME embeddings are normalized within the d lme -dimensional unit-sphere (4.36). In practice, LME embeddings are of dimension 3 (e lme ∈ S 3 ).

EC : R f in ×p → R fout×p (4.33)

lf t i = max(lf i1 , lf i2 , lf i3 ) (4.34) L 2 (•) = •/ • (4.35) e lme (t i ) = L 2 (MLP (lf t i )) (4.36)
Using the optimal labeling l (4.32) computed by the view selection module (VSM), we can determine for each face embedding e lme (t), in the 3D mesh its corresponding projection P t in the feature map e ced (c t ) computed by CED. To determine the set of pixels that overlap the triangle's projection in the feature map, rst, for eciency reasons, we loop over the feature map pixels that are located inside the bounding box of the projected triangle. Then we perform an inside-outside test to nd out the set of pixels inside the triangle's projection using the edge function Pineda [START_REF] Pineda | A parallel algorithm for polygon rasterization[END_REF].

Following the notation from Figure 4.34, for the edge dened by vertices A and B and a pixel P , the edge function is dened as the magnitude of the cross product of vectors -→ AP and -→ AB : E AB (P ) = || -→ AP × -→ AB||. Following a clock-wise convention, if E AB (P ) ≥ 0, E BC (P ) ≥ 0 and E CA (P ) ≥ 0, then we consider that the pixel P is inside the triangle's projection on the feature map, otherwise, it is outside (e.g. Pixel R is outside the triangle since E AB (R) < 0). [START_REF] Pineda | A parallel algorithm for polygon rasterization[END_REF] Assuming that the projection area of t into the feature map e ced (c t ) is composed of the set of pixel embeddings e Pt i (c t ) ⊂ e ced (c t ), the local embedding corresponding to the fragment P is obtained by aggregating all the pixel embeddings e Pt i (c t ) using a max pool operation (4.37) (The max operation in (4.37) gives the element-wise maximum of vectors e Pt i (c t )). It should be emphasized that it might happen that a few number of faces can not be seen in any of the camera views. For those triangles we heuristically duplicate LME embeddings to ensure an homogeneous size of nal embeddings. While dierent strategies could be used such as propagating embeddings from adjacent triangles or zero padding, experimentally we found that it has minor eects on over-segmentation results as the number of unseen faces represent no more than 3% of all the dataset.

Numerical experiments

In this section, we show the over-segmentation results of our method on the pLaTINUM dataset acquired and annotated during this project. Since ground truth annotations of the textured mesh is available for only semantic segmentation, we compute objects annotations as the set of connected components of semantic labels of faces in a similar way as for vKITTI dataset [START_REF] Engelmann | Exploring Spatial Context for 3D Semantic Segmentation of Point Clouds[END_REF]. For these experiments, we use the LTME network described above as our embedding function ξ.

Implementation details

Convolutional encoder-decoder (CED): We note that CED is rst pre-trained on an equivalent outdoor urban dataset vKITTI [57] with similar number of classes as our dataset. Due to the relatively small number of annotated images in our dataset, we are not able to train the CED network from scratch using exclusively our own data. Consequently, we ne-tune the model using our set of 2D perspective frontfacing images. We resize the original images of size 2048 × 2048 × 3 to 256 × 256 × 3.

Overall, CED encoder is composed of 5 convolutional layers with an increasing number of lters each of which is followed by a (2, 2) max pooling, batch norm and ReLU layers. The convolution kernel is of size (3,3) for all the convolution layers in CED.

The decoder alternates between (2, 2) upsampling and convolutional layers in addition to a concatenation of feature maps of the encoder. The detailed number of convolution lters used in each convolutional layer is shown in Table 4.6.

Local mesh embedding network (LME): Since our LME network inspired by meshCNN [16] is a translation of Convolutional Neural Networks (CNNs) on 2D images to 3D meshes, the commonly used pre-processing steps (e.g. resizing the input data, centering around the mean, etc.) were also replicated for 3D meshes. We simplify the input meshes in the training and test sets such that they have roughly a similar number of edges. Reducing the resolution of the input meshes is performed using a geometric decimation of an order of magnitude (i.e. an input mesh having 10 6 faces after decimation it will have 10 5 faces). As discussed above, the manifoldness property of the mesh is a key ingredient for the success of the convolution operation on edges since each edge has to be incident to at most two faces i.e. the number of edge neighbors is at most equal to 4. To this end, we transform any invalid, non-manifold mesh instance in the dataset, to a valid one by rst locating all non-manifold edges and then removing all their incident faces before training. It should be noted that a 3D mesh, despite being manifold, may contain boundary edges (i.e. edges which are incident to only one triangle). Since boundary edges have only two neighboring edges, we circumvent this lack by zero padding in the convolution operation as proposed in [16]. Furthermore, We center the input edge-wise hand-crafted features by subtracting the mean edge feature of all the dataset and dividing by its standard deviation.

The proposed LME network comprises 4 edge convolutional layers (EC) with an increasing number of lters, each of which is followed by a batch normalization layer (BN) and a non linearity (ReLU). The output of edge convolution is rst max-pooled and then consumed by a multi-layer perceptron MLP having two hidden layers of size 128 and 64. The detailed conguration of LME is exposed in Table 4.6.

To boost the robustness of the network, several data augmentation techniques can be used. We follow the same protocol advocated by Hanocka et al. [16]. We rst note that the 5-dimensional edge-wise hand-crafted features (angles and edge ratios) used as input to the edge convolution (4.4) are designed to be invariant to the common geometric transformations i.e. rotation, translation and uniform scaling (the same scaling factor applied to (x, y, z) coordinates). Therefore, applying those transformations to the vertices of the mesh is most likely useless. To generate new features we shift the location of 20% of the mesh vertices by applying a random scaling (sampled from the normal distribution of mean µ = 0 and standard deviation σ = 1) on its x, y, z coordinates separately.

Graph structured contrastive loss: For the supervised graph partitioning step, the training is performed using our best conguration achieving the highest scores reported for point cloud over-segmentation. This means that the graph structured contrastive loss dened in equation (4.8) is weighted using the cross partition strategy (4.12).

However, unlike point clouds, we propose a slightly dierent weighting compatible with the mesh topology.

In the case of 3D meshes, the size and shape of triangles vary substantially w.r.t. to the geometry of the reconstructed objects. For instance, large planar objects are represented by few triangles having large areas, while non-at objects are represented by a higher number of triangles having smaller areas. Thus, the edge weights µ ∈ R Etrans(P) + in equation (4.8) should adapt to the varying topology by incorporating indicative geometric indices such as the area of triangles and the length of edges rather than simply their numbers. Formally, following the same notation as the cross partition strategy for point clouds (4.12), the adapted weights can be dened as :

M (e) U,V = M 0 min (A(U ), A(V )) for (U, V ) ∈ E (e) (4.39) µ (e) u,v = M (e) U,V W U ×V ∩Etrans for (u, v) ∈ U × V ∩ E trans .
where A(U ) = u∈U area(u) denotes the area of the segment U and W U ×V ∩Etrans = e∈U ×V ∩Etrans length(e) is the sum of transition edges' lengths. Recall that this weighting strategy is based on the cross-segmentation graph G (e) = (C (e) , E (e) ) dened in equation (4.11) for which (U, V ) ∈ C (e) Where A(.) and P (.) denotes respectively the area and perimeter of a segment. Simari et al. in [START_REF] Simari | Fast and Scalable Mesh Superfacets[END_REF] argue that unlike pixels in 2D images, faces in a 3D mesh usually have nonuniform size or shape. Therefore, the areas and perimeters of faces are better suited for evaluation than merely counting their proportions. As far as we are concerned, we agree with this assessment, albeit with a dierent formulation. We believe that the proposed metrics for point cloud over-segmentation can also be used for evaluating mesh oversegmentation. As for point clouds, we argue that a transition occurs between triangles and not at them. We dene E pred trans the set of predicted transitions, i.e. the subset of edges of E d that connect two triangles of T (or two nodes in V d ) belonging to two dierent superfacets, while E Instead of computing the precision and recall in terms of number of edges, we believe that computing these two metrics w.r.t. to the edges lengths is more suitable in the case of non-uniform triangulated meshes. Formally BR and BP can be dened as follows: where σ is the standard deviation and µ is the edges lengths mean, we found that CV = 0.2374. This low level dispersion around the mean edge length conrms our claim. For those reasons, we assume that computing BR and BP in terms of number of edges and not their length is sucient to evaluate the performance of over-segmentation methods on our dataset at least. Therefore, we stick to the current formulation to assess 3D mesh over-segmentation.

BR = W E pred trans ∩E ( 
The oracle overall accuracy OOA (4.29), on the other hand, bypasses the mesh structure as it considers the semantic labels of the graph nodes which are the set of mesh faces.

Competing algorithms

In order to evaluate the performance of our supervised over-segmentation method, we compare it against superfacet segmentation methods from the literature. We denote our method as LSF which stands for Learned Superfacets. In the following, we introduce three variants of LSF which serve as an ablation experiment to study separately the inuence of the LME and CED modules discussed in Section 4.4.1. We have also implemented a graphbased mesh over-segmentation (HSF-Graph which stands for hand-crafted superfacets) relying on hand-crafted features. Finally, we use the method of Simari et al. [START_REF] Simari | Fast and Scalable Mesh Superfacets[END_REF] which is a cluster-based method (HSF-Cluster). This way, we have a similar set up as in the case of point clouds: Elevation: This feature measures the height of each triangle with respect to the ground: z = zt i -z min zmax-z min where z max (respectively z min ) corresponds to the maximal elevation (resp. the minimal) on the plane XY .

Compactness: For each face t i ∈ T , this feature is computed as a normalized ratio between its perimeter P t i and its area A t i . For a face t i this ratio is dened MAPPING as r i = Pt i At i . The compactness is dened as : c = r i -r min rmax-r min where r max (resp. r min ) are the maximal (resp. the minimal) measured compactness in the mesh. The larger the perimeter of t i given its area, the more elongated t i will be (less compact).

We note that other interesting hand-engineered features exist in the literature such as the average geodesic distance (AGD) [START_REF] Kimmel | Fast marching methods on triangulated domains[END_REF], Shape Diameter Function (SDF) [START_REF] Shapira | Consistent partitioning of meshes[END_REF] among others. However since our experiments are conducted on outdoor urban scenes where the majority of objects' shapes are planar (façade, road, pavement, etc.) we only use features that are most likely boundary-indicative.

HSF-Cluster: This is the clustering-based method of [START_REF] Simari | Fast and Scalable Mesh Superfacets[END_REF] discussed in Section 4.1.4. In Figure 4.35 we show the performance of the described methods on our datasets for dierent number of superfacets in the test set. We observe that our best conguration LSF:LTME-E outperforms the competing methods by a signicant margin. This was expected as supervised deep-learning methods have been shown to be more eective than hand-crafted based methods. Being a hand-crafted method, the cluster-based over-segmentation of [START_REF] Simari | Fast and Scalable Mesh Superfacets[END_REF] HSF-Cluster achieves lower results in terms of boundary precision and recall as well as the segmentation accuracy (ASA) than our proposed graphbased over-segmentation method HSF-Graph. Moreover for more than 10 3 superfacets, HSF-Cluster takes unreasonable time to compute the over-segmentation. This lesser performance typically arises from the sensitivity of cluster-based methods to their initialization. In addition, the reconstructed mesh from the LiDAR acquisition is characterized by a highly variable density such that the nearest objects to the scanner will have denser triangulation while the furthest exhibits a light triangulation not to mention the post processing consisting in hole closing which results most of the time in elongated triangles. This aspect is not taken into consideration by clustering-based methods as they are agnostic to adjacency and structure of the mesh. The graph-based approach HSF-Graph however, is able to produce compact superfacets that adhere faithfully to boundaries, to some extent, despite the limited descriptive capabilities of the chosen features for graph partitioning.

We observe that LSF:LME conguration performs better than LSF:LTME-L on all metrics. As described above, in the latter conguration, only the weights of the local mesh embedder LME are updated during training. Since, CED is already pre-trained for the task of semantic segmentation, we believe that the computed feature maps provide misleading information when fused with LME embeddings, yielding, hence, to a sort of confusion when partitioning the graph. In essence, our graph-structured contrastive loss, which is supervised by object instance annotations, is expected to produce embeddings that are homogeneous within objects and present high contrast at their borders.

Meanwhile, the obtained feature maps from CED were designed for the task of semantic segmentation not instance segmentation. Due to the clutter eect in 2D images, two close parked cars viewed from behind for example, will be considered as a single semantic object which makes CED embeddings implicitly miss the border separating these two objects.

LSF:LTME-E conguration mitigates this issue by updating the weights of CED during training w.r.t. to our graph-structured contrastive loss so that the learned embeddings in the last feature maps are able to grasp the notion of borders between objects.

In Figure 4.36, we show illustrations of over-segmentation results of our best conguration LSF:LTME-E compared to evaluation methods HSF-Graph and HSF-Cluster [START_REF] Simari | Fast and Scalable Mesh Superfacets[END_REF] for a nearly equal number of superfacets. We observe that our method produces a better over-segmentation with compact and regular superfacets that adhere to objects' boundaries. HSF-Cluster present lower result than all the competing methods. We can clearly observe that the produced superfacets straddle objects having dierent semantic classes (building, sidewalk and road). HSF-Graph exhibits decent results. While planar objects such as road and sidewalk are predicted as a single large superfacet, this method is able to correctly partition the wall. It should be noticed that HSF-Graph produces large superfacets when features faithfully describe a simple geometry of facets in contrast to very small ones at regions where there is an ambiguity. This makes HSF-Graph illustration looks like it has the least number of superfacets compared to the competing methods which is not the case.

Discussion

As depicted in Figure 4.31, 2D images and 3D mesh are fed separately to our LTME network. The intuitive question that arises from this observation is why the network does not consume a raw textured mesh comprised of a 3D model as a triangular mesh along with its texture atlases and trained online. In practice, when implementing this approach we found that extracting pairs of triangles and their corresponding fragments in the adequate camera view is very compute-intensive. In details, we need to parse each of the texture atlases and fetch for each triangle its corresponding texel. Furthermore, as shown in Chapter 2, an additional color adjustment step is conducted to minimize visible seams in the nal model. This will induce a bias to the original radiometric information making it a source of error when computing the embeddings of images. Most importantly, the underlying spatial adjacency of texture patches in a texture atlas is meaningless as they are basically organized that way for eciency reasons with no regards to semantics. From semantic faces-texels association rather than texture mapping. In the literature [START_REF] Riemenschneider | Learning Where to Classify in Multi-view Semantic Segmentation[END_REF], this can be carried out by adopting a dierent energy formulation involving semantic labels.

Moreover, [START_REF] Riemenschneider | Learning Where to Classify in Multi-view Semantic Segmentation[END_REF] have challenged the assertion (advocated by the unary term in (4.32)) implying that a larger area view projection necessarily means a correct semantic association between the underlying face and corresponding texture fragment which is not always true.

We note that compared to point cloud over-segmentation, 3D mesh over-segmentation exhibits lesser results in terms of BR, BP (4.27) and OOA (4.29). We believe that this drop in scores is explained by two major factors. First as discussed earlier, LME operates on edges separately then a pooling operation aggregates edge features for each triangle.

This means that the context knowledge information is taken into account only at the level of the 1-ring edges adjacency. Therefore, dierently from LPE architecture where each point is embedded along with its k-nearest neighbors, LME embeds each triangle with respect to its immediate adjacent faces. Hanocka et al. [16] mitigates this problem by introducing a U-Net-like network as a convolutional encoder-decoder where pooling layers make the network insensitive to the change of features position in the feature map by reducing its size constantly. The pooling operation on meshes introduced in [16] is mainly an edge collapse-based decimation of the input mesh. According to [16], collapsing an edge during pooling must not result in non-manifold edges otherwise the subsequent convolution operations on edges will systematically fail as discussed in Section 4.1.4. However, in our experiments, we were not able to replicate this operation because of technical implementation problems in addition to the inherited challenging topological properties of our reconstructed meshes. As explained in Chapter 2, the reconstructed surface using our sensor-topology-based method depicts holes in the nal model and is not guaranteed to MAPPING be manifold. This problem does not occur in the set up used in [16] as the meshes are manually processed to be watertight and manifold without self-intersections.

Second, lower results stem from the fact that our dataset provides relatively few ground truth annotations for mesh faces. As a matter of fact, the original 3D textured mesh is dense enough and provides more than the required number of annotated triangles for a reliable supervision during training as shown in Chapter 1. Nonetheless, the pre-processing step, which consists in reducing the size of the input mesh by 1 order of magnitude to alleviate the computational complexity, magnies the need for more training examples.

Similar results were reported in Section 4.3.3 for point clouds over-segmentation when we used the small vKITTI 3D dataset [START_REF] Engelmann | Exploring Spatial Context for 3D Semantic Segmentation of Point Clouds[END_REF] instead of S3DIS dataset [23] which is much larger.

Conclusion

Throughout this chapter, we have presented an unied deep-learning-based approach for over-segmenting 3D point clouds into superpoints and 3D meshes into superfacets. To do so, state-of-the-art methods for point cloud embedding PointNet [14] and 3D mesh embedding MeshCNN [16] were tailored to extract local features of points/mesh faces.

Both our supervised superpoint and superfacet methods are the rst over-segmentation approaches based on features learned by deep metric learning. Our approach signicantly improves state-of-the-art of 3D mesh and 3D point cloud over-segmentation. While our learned point cloud over-segmentation combined to a superoint-based method for semantic segmentation [17] have shown impressive results outperforming state-of-the-art algorithms in this task, we were not able to extend this success for 3D meshes due to time constraint. However, we have demonstrated that our learned superfacets outperform competing methods by a large margin. This is a promising indicator that our method is most likely susceptible to perform well for the task of semantic segmentation. Finally, we have released our source code for 3D point cloud over-segmentation to the community to ease reproducibility. The code materials are available in the same repository used for the initial release of SPG [17] 7 . 

Summary

The aim of this thesis was to develop a global geo-localized map, made of a set of 3D representations based on geometric, photometric, and semantic information in order to provide localization and navigation services for remote agents. To do so, we have conducted a comparative study to identify the best suited 3D representation of such Geographical Information System (GIS) achieving a decent trade-o between eciency and delity. Based on mature and well-grounded notions in the eld of computer graphics, we have constructed a high quality large-scale 3D textured mesh using mobile mapping images and LiDAR scans collected during a mapping acquisition campaign in Rouen, France.

Whilst representing the 3D map as a textured mesh oers unmatched advantages in terms of expressiveness by combining photometric and geometric properties, the lack of semantic information makes it less reliable in a context of autonomous navigation. As a rst step to overcome this limitation, we have proposed the rst outdoor multi-modal, multi-format benchmark encapsulating geolocalized RGB perspective and panoramic images, spherical depth and LiDAR intensity maps, 3D point clouds and textured meshes along with their respective ground truth annotations.

Our nal contribution consisted in developing the rst supervised over-segmentation methods operating on 3D point clouds and 3D textured meshes in order to eciently handle large-scale acquisitions consistently. We have demonstrated the superiority of our oversegmentation approach compared to the existing methods in the literature on two public point cloud benchmarks S3DIS [23] and vKITTI3D [58] as well as on our own multi-modal dataset for 3D meshes. By plugging the learned superpoints to a semantic segmentation algorithm SPG [17] based on over-segmentation, we set a new state-of-the-art for the task of 3D point cloud semantic segmentation. To ease the reproducibility of our work by the computer vision community and boost further research in this area, we have released our source code for all the developed algorithms presented in this thesis.

Throughout our research experience during the past three years, we have learnt to improve our time management skills in addition to the newly acquired knowledge. As the results of our work were needed by the project partners (as depicted in the project functional diagram illustrated in the introduction chapter), we were supposed to handle tight deadlines while maintaining high standards of work. These constraints have made us question and rethink our research strategies as well as our design choices several times. Finally, we ended up being fairly satised with the obtained results. We believe that this study can be subject to many interesting upgrades in the future. In the following section, we discuss open problems related to our work and eventual future enhancements on the quantitative and qualitative levels.

5.2 Open problems & Future work

pLaTINUM dataset

While the proposed dataset in Chapter 2 oers rich and diverse modalities to assess the task of outdoor scene understanding, it remains limited in size compared to competing large-scale datasets provided by industries such as Baidu [21] and Honda [20]. This can be clearly explained by the discrepancy in resources invested in producing such benchmarks.

Nevertheless, we believe that we are able to enlarge the current benchmark by providing further annotations to help prototyping scene understanding methods. Since manual annotation is a tedious task, we believe that automatic image annotation methods (AIA) [79] in the literature can be leveraged to facilitate this task. Furthermore, in addition to the current available tasks, we intend to integrate a ner level of intra-building annotation to include the task of façade parsing into our benchmark. In the latter application, more detailed classes such as windows and doors belonging to the class building have to be also annotated.

A large spectrum of testing scenarios can be elaborated to deeply study the inuence of each modality on the overall performance in terms of semantic segmentation. Unfortunately due to time constraints, we were not able to carry out those experiments. Some of the interesting experiments consist in adopting a multi-modal fusion-based strategy to evaluate, for instance, the eect of intensity maps and depth maps fused with RGB images. Then we compare the latter to 3D modality (either the textured mesh or the colored point cloud) to see if it is worth the eort to use pure 3D data as an alternative to 2D or 2.5D data. To the best of our knowledge, in the industrial circle, it remains not clear which of those modalities achieve the best compromise between eciency and accuracy. For example, Tesla driver-less cars rely exclusively on camera for perception.

Others such as UBER autonomous cars are equipped with LiDAR technology. Although using the dataset presented in this thesis seems to be not sucient to draw such strong conclusions, we believe it will give at least valuable initial insights on which modality should be studied further in priority as potential future work.

3D map as textured mesh

More related to autonomous driving, the developed textured 3D map is far from being a ready-to-use byproduct which could be deployed in real driving conditions. A high denition map is a more complicated entity that comprises additional information within geometric, photometric and semantic layers that are beyond the scope of our study. For instance, valuable semantic classes such as road centerlines, curbs and lanes are not taken into consideration in the semantic layer.

One can argue that constructing a HD map as a 3D textured mesh can be considered as an overwhelming task since it involves surface reconstruction which is a problem arguably as hard as semantic segmentation. However, since this map is supposed to be reconstructed as an o-line independent step, we believe it should not be a problem as long as real-time constraints are not required. However, detecting changes and updating the textured mesh accordingly is by far a more complicated task. It should be noted that many industrial leaders in geo-spatial technologies have started to commercialize this solution(i.e. the textured mesh as a geometric layer in high denition maps). Sanborn 1 , for instance, relies on oblique imagery and high precision aerial and mobile LiDAR to reconstruct such maps.

We do not consider our surface reconstruction method as a cutting-edge algorithm outperforming state-of-the-art methods, as much as it is a demonstration how key information provided by the scanner, which are ignored most of the time, can be conveniently leveraged to reconstruct high quality large-scale surface. However, the consequent shortcomings, especially the non reconstructed occluded objects, should be tackled explicitly.

One way to address this issue is to use a fusion-based approach such as WaSURE [START_REF] Caraa | 3D Watertight Mesh Generation with Uncertainties from Ubiquitous Data[END_REF] to reconstruct the surface. In this category of methods, various modalities can be merged together to faithfully reconstruct a 3D surface. Since camera and LiDAR have dierent geometries, objects that are occluded to the LiDAR can be visible to the camera. Therefore, we believe that using both LiDAR scans along with point clouds generated from images might be a reasonable strategy to improve the quality of the reconstruction.

Supervised over-segmentation

The usage of 2D superpixels in a variety of computer vision tasks has remarkably decreased these last years due to the surge of scalable deep learning methods. For 3D data, we believe that over-segmentation remains a key preprocessing step to several applications ranging from data annotation to semantic segmentation and object detection.

Our over-segmentation method is a graph-based approach which relies on the construction of a graph before partitioning. In our related work study, we have broadly discussed the existing graph typologies. We have shown in our experiments, that the topology of the reconstructed graph depends on the data structure. We believe this aspect should be studied more in-depth. Experimentally, we found that the heaviest computational step in our over-segmentation framework remains solving the Generalized Minimal Partition Problem (GMPP). A recent work of Raguet and Landrieu [195] introduced a parallel version of the cut-pursuit algorithm [178] solving functional involving the total variation more eciently. We think integrating this parallel version will improve computational 1 www.sanborn.com time required by the over-segmentation.

Even though our local mesh embedding network LTME shows impressive results for the task of textured mesh over-segmentation, we think that there are many other interesting ways to embed a 3D mesh. In our work, we opted for MeshCNN [16] backbone network which was originally designed to embed faces of a triangular mesh using edge convolution and pooling. However, more versatile approaches could have been used instead such as graphs. Due to technical problems, we were not able to replicate the pooling layers introduced in MeshCNN, as after each edge collapse we have to ensure that the resulted mesh at this step remain manifold so that the next convolution operation holds. On the other hand, it has been shown that pooling is benecial for CNNs on grid-like data as it allows for receptive eld expansion and thus more generalization capability [START_REF] Yu | Multi-Scale Context Aggregation by Dilated Convolutions[END_REF]. We consider that not using pooling is a limitation in our MeshCNN-based network as the extraction of edge features at dierent scales was not feasible due to the mesh topological constraints.

The latter shortcoming, would have not been met if we had considered the 3D mesh as a graph. For instance , Simonovsky et al. [202] perform pooling through graph coarsening which is agnostic to mesh topology.

It should be noted that compared to the number of parameters of our LME network (around 25.10 4 ) , CED number of parameters is much higher (around 1, 3.10 6 . We believe CED network can be substantially simplied by using a lightweight encoder/decoder with depth-wise separable convolutions as proposed in Bahl et al. [START_REF] Bahl | Low-Power Neural Networks for Semantic Segmentation of Satellite Images[END_REF] for instance.

In summary, this study have showed us that the majority of the existing research is basically oriented towards building an explicit map during an exploration phase and then acting based on that representation. However, it should be emphasized that completely dierent approaches are currently being explored targetting essentially autonomous mapless navigation [START_REF] Mirowski | Learning to Navigate in Cities Without a Map[END_REF]. In this class of methods, an agent is capable to navigate an entire city relying exclusively on visual observation using an end-to-end deep reinforcement learning network. We believe that autonomous mapless navigation is a clearly promising area of research that should be investigated further despite the diculties that might get in the way during the real world deployement phase since the validation process involves the security of human beings. 

Models conguration for semantic segmentation

We used the open-source superpoint-graph implementation 2 without any modication beyond changing the oversegmentation step and some changes in the hyper-parameters.

To compensate for the edges missed by the 0 -cut pursuit approximation, due in part to its ignoring the spherical nature of the embeddings, we set the regularization strength λ lower than 1 for vKITTI and S3DIS datasets. This help improve the accuracy and border recall. The subsequent decrease in border precision is compensated by the fact that the SPG, through its context leveraging module, can learn to propagate the semantic information to small superpoints. For the same reason, we chose a lower superpoint size for S3DIS from the segmentation experiments.

2 github/loicland/superpoint-graph

We extended the superpoint graph subsampling threshold to 4-hops instead of 3, because our method SSP tends to produce thin components near interfaces. Since the vKITTI dataset is much smaller than S3DIS, we chose smaller networks to mitigate overtting.

Illustrations of semantic segmentation results

In this section, we show more illustrations of our over-segmentation method combined with the semantic segmentation method of Landrieu et al. [17]. In Figure 2, we show a successful semantic segmentation of a complex scene from S3DIS dataset [23]. Figure 3 shows a failure case in which a white board is over-segmented in too many small superpoints.

This makes their classication harder by the semantic segmentation network. In Figure 4, we see a successful semantization of an urban outdoor scene from vKITTI3D. Finally, in dataset [58] 
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Figure 1 . 1 :

 11 Figure 1.1: pLaTINUM project functional diagram. Our thesis lies within the work packages framed in red.

Figure 1 . 2 :

 12 Figure 1.2: Illustration of a terrestrial mobile mapping system. Image from[4] 

Figure 1 . 3 :

 13 Figure 1.3: Superimposed LiDAR 3D point cloud with a 2D image.

Figure 1 . 4 :

 14 Figure 1.4: Illustration of semantic, instance and panoptic segmentation on a 2D image. Images from[START_REF] Kirillov | Panoptic Segmentation[END_REF] 
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 111 Cityscapes dataset[START_REF] Cordts | The Cityscapes Dataset for Semantic Urban Scene Understanding[END_REF]:The Cityscapes dataset 1 is one of the most commonly used datasets for semantic urban scene understanding. The dataset is comprised of various set of stereo video sequences acquired by a mobile car in 50 cities in Germany and neighboring countries during the span in several months covering dierent seasons of the year.

Figure 2 . 1 :

 21 Figure 2.1: Illustration of the ne and coarse annotations from Cityscapes dataset[START_REF] Cordts | The Cityscapes Dataset for Semantic Urban Scene Understanding[END_REF] 

Figure 2 .Figure 2 . 2 :

 222 Figure 2.2: Illustration of the ne annotations from Mapillary Vistas dataset[START_REF] Neuhold | The Mapillary Vistas Dataset for Semantic Understanding of Street Scenes[END_REF] 
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 114 BDD100K dataset[START_REF] Yu | BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling[END_REF]:This dataset4 encompasses 100K high resolution videos (720p) at high frame rates (30f ps) collected from more than 50K rides of normal real-world driving sessions covering Berkeley, San Francisco, New York and other regions in the United-States. Each video is about 40-second long and comes with GPS/IMU data recorded using mobile phones to show rough trajectories. To ensure a high level of diversity, BDD100K was recorded in a crowd-sourcing manner like[START_REF] Neuhold | The Mapillary Vistas Dataset for Semantic Understanding of Street Scenes[END_REF] in dierent weather conditions including sunny, rainy and snowy as well as at daytime and nighttime.

Figure 2 . 3 :

 23 Figure 2.3: Illustration of lane marking and driveable area annotations from BDD100K[START_REF] Yu | BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling[END_REF] 

Figure 2

 2 Figure 2.3.

Figure 2 .

 2 4 depicts a labeled scene with its corresponding static depth map. While depth information is robust to light variations, the dataset provides only static depth of urban scenes which are known to be very dynamic where there is substantial motion.

  (a) pixel-level annotated scene (b) depth map of the static background

Figure 2 . 4 :

 24 Figure 2.4: Illustration of an annotated scene and its corresponding depth map of the static background from[START_REF] Huang | The ApolloScape Dataset for Autonomous Driving[END_REF] 

Figure 2 . 5 :

 25 Figure 2.5: Illustration of the annotation inaccuracies from [48]: Wheels of the vehicle are confused with the ground

Figure 2 . 6 :

 26 Figure 2.6: A sample from [56] that shows unrealistic low resolution texture

Figure 2 . 7 :

 27 Figure 2.7: Illustration of the mapped trajectory in Rouen, France

Figure 2 . 8 :Figure 2 . 9 :

 2829 Figure 2.8: Illustration of the acquisition conguration of the 5 RGB cameras

Figure 2 .

 2 Figure 2.10: Full-surrounding 360 • image generation process. Left: the 5 input perspective images. Middle: Resampling of the input in the spherical geometry. Right: Equirectangular projection to atten the sphere

2. 11 .Figure 2 . 11 :

 11211 Figure 2.11: Illustration of the visible seams in the overlap between perspective images at a vertical eld of view f ov φ ∈ [10 • , 80 • ] (best viewed on screen)

  As depicted inFigure 2.10, in an equirectangular projection, the longitude and latitude of the sphere are mapped to a vertical and horizontal grid coordinates. As the sphere is a non-developable surface, this mapping induces a signicant distortion near the pole The generated RGB panorama with f ov φ ∈ [10 • , 80 • ] The generated RGB panorama with f ov φ ∈ [10 • , 180 • ] The generated RGB panorama with f ov φ ∈ [10 • , 130 • ]

Figure 2 . 12 :

 212 Figure 2.12: The generated panoramic images at dierent vertical elds of view

Figure 2 . 13 :

 213 Figure 2.13: Rays are traced from the center O of the spherical depth map to the triangular mesh. When there is no intersection depth is equal to zero (the red ray).

Figure 2 . 14 :

 214 Figure 2.14: The reconstructed depth map at dierent maximum ranges. Distant buildings appears at a maximum range of 100 meters

Figure 2 . 15 :

 215 Figure 2.15: Illustration of the obtained LiDAR intensity map

  images in PNG format, their corresponding pose and meta-data les in XML format, Spherical panorama, depth and reectivity images in equirectangular projection in PNG format. In addition, 3D annotated point clouds and textured meshes are divided into temporal chunks and stored respectively in PLY and OBJ formats.

  Figure 2.16 illustrates a sample of our LiDAR point cloud and the corresponding registered images (in blue) collected in Rouen and visualized using Geolabx26 .

Figure 2 . 16 :

 216 Figure 2.16: Top view of a sample from our dataset that shows LiDAR point cloud and the recorded images (in blue)

Figure 2 . 17 :

 217 Figure 2.17: Statistics on the distribution of the annotated point clouds per-class

Figure 2 .

 2 19 depicts a textured scene along with both 3D point clouds and 3D mesh.

  Figure 2.18: Illustration of panoramic data in our dataset.

  (a) 3D textured mesh (b) 3D mesh annotation (c) 3D Point cloud annotation

Figure 2 . 19 :

 219 Figure 2.19: Illustration of the quality of annotations in our 3D multi-modal dataset
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 2 point clouds, occupancy grids or voxels and triangulated meshes. Other interesting representations were also proposed such as elevation/plane-based maps. In Figure 3.1 we show some of these representations (landmark-based, surfel/point-based, voxel-based and 2.5D elevation-based. In table 3.1, we briey report the advantages and drawbacks of each of the discussed representations. 3.1.1.1 Landmarks-based representations [8, 9194]:
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 112 Surfel/Point clouds-based representations[9, 9599]:In contrast to the latter representation, dense representations which model the 3D scene by means of point clouds or surfels are widely used. Thanks to their density, these representations oer rich and visually ergonomic models. However, their unstructured nature in addition to their low level modeling capabilities easily aected by noise make them neglect the topology and boundary of objects in the scene.3.1.1.3 Occupancy-grid/voxel-based representations [10, 100104]:Alternatively occupancy-grid/voxel-based representations have gained popularity in the few past years. In this case, the 3D scene is decomposed into cubes (voxels ) arranged in a regular grid or in an adaptive octree where each node stores the binary occupancy value (occupied, empty) or the distance to the surface commonly referred to as the Signed Distance Function (SDF), or more recently the Truncated Signed Distance Function (TSDF).

  Figure 3.1: Illustration of various 3D representations used for mapping

3. 1 . 2

 12 Textured meshes representation:Recently, textured meshes are gaining more and more attention in the geospatial industry as Digital Elevation Models (DEMs) coupled with orthophotos, which were well adapted for vertical high altitude airborne and space-borne acquisition. However, such representation is not suited for the newer means of acquisition: closer range platforms (drones, terrestrial mobile mapping vehicles) and oblique imagery requiring a ner level of details and a exibility in handling scalability issues. A key component in generating textured meshes is reconstructing a surface from 3D point clouds. Depending on the mean of acquisition, 3D point clouds can be directly extracted by LiDAR acquisition during surveying or indirectly using image-based techniques[START_REF] Musialski | A Survey of Urban Reconstruction[END_REF].As shown in the previous chapter, our mobile mapping platform provides two imaging modalities, namely, RGB geolocalized images and LiDAR point clouds. Since the conguration of the acquired RGB images allows to generate a dense 3D point cloud using Multi-View-Stereo (MVS) techniques, we are facing two choices regarding which type of point cloud to utilize in order to reconstruct the surface; the one derived from MVS or the raw point clouds collected using the LiDAR. To answer this question, we conducted a comparative study in which we discuss image-based and LiDAR-based point clouds in terms of density, accuracy, cost and sensitivity to external factors (illumination, surface materials).

Figure 3 .

 3 Figure3.2 shows the proposed framework to reconstruct the textured mesh. Our approach is two fold: First we start by reconstructing a triangulated surface from the raw LiDAR point clouds. Second, after ltering and repairing the resulted 3D mesh, the registered oriented images are subsequently mapped to the reconstructed surface by selecting for each triangle which is the best view. In the following, we review the related work to our two-step approach (surface reconstruction and texture mapping) for reconstructing the 3D textured map.

Figure 3 . 2 :

 32 Figure 3.2: 3D Textured map reconstruction pipeline

Figure 3 . 3 .

 33 Figure 3.3. RBFs-based reconstruction methods have the advantage of producing a globally smooth surface. Moreover in the case of missing data and non-uniform sampling, the extrapolation power of RBFs ensure a watertight surface. However, since the implicit function is based on interpolation constraints, the reconstructed surface depicts topological artifacts when inconsistent o-surface points are provided due to bad normal estimation in case of non oriented point clouds.

  or scalar function. Operating exclusively on oriented 4 point clouds, an implicit function χ is computed by ensuring that the gradient of the scalar function is aligned with the normal eld N . An illustration of the approach is showed in Figure3.4.3 S is a zero level set of a signed distance function d ⇒ S = {x| d(x) = 0} 4 with available normal information
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 3334 Figure 3.3: Illustration of o-surface points. Image from[START_REF] Carr | Reconstruction and representation of 3D objects with radial basis functions[END_REF] 

Figure 3 . 7 :

 37 Figure 3.7: Both images I 1 , I 2 are in the eld of view of triangle t i at dierent respective distances d 1 , d 2 (d 1 < d 2 ) such that only few pixels in I 1 are visible to t i while the distant view I 2 is entirely visible to t i .

Figure 3 . 8 :

 38 Figure 3.8: LiDAR acquisition viewed in sensor space: vertical axis represent the rotation angleθ while the horizontal axis corresponds to time t. Image from[START_REF] Vallet | TerraMobilita/iQmulus urban point cloud analysis benchmark[END_REF] 
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 39 Figure 3.9: Triangulation based on the sensor space topology

Figure 3 . 10 :

 310 Figure 3.10: The proposed work-ow to produce large scale models

  Figure 3.11: A mask is automatically applied on the collected images to avoid using the visible part as a texture for the nal model

Figure 3 . 13 :Figure 3 . 14 :

 313314 Figure 3.13: Illustration of the reconstructed mesh using the sensor topology of RIEGL-VQ250 LiDAR

Figure 3 . 15 :

 315 Figure 3.15: Qualitative reconstruction results from a point cloud of size 10 6 using Poisson [120], Ball pivoting [147] and our sensor-topology based reconstruction. We show a small part to illustrate the accuracy of our reconstruction.

Figure 3 . 16 :

 316 Figure 3.16: Texturing result on a small part of street in Rouen, France

Figure 3 . 17 : 75 Figure 3 . 18 :

 31775318 Figure3.17: The eect of color adjustment on the textured mesh. One can observe radiometric artifacts on border of the door and along the road (best viewed on screen). While some of the artifacts were partially adjusted, others can not be corrected due to the gradient magnitude of the data term.

Figure 3 . 19 :

 319 Figure 3.19: Performance evaluation of a chunk of 10s of acquisition

Figure 4 .

 4 Figure 4.2 illustrates over-segmentation results using the algorithms in[START_REF] Lin | Toward better boundary preserved supervoxel segmentation for 3D point clouds[END_REF][START_REF] Papon | Voxel Cloud Connectivity Segmentation -Supervoxels for Point Clouds[END_REF] 

Figure 4 . 2 :

 42 Figure 4.2: Illustration of an over-segmentation on point clouds. Left: ground truth, middle:

Figure 4 .

 4 Figure 4.3 shows an illustration of an over-segmentation on 3D triangular meshes using the methods in [170, 171].

Figure 4 . 3 :

 43 Figure 4.3: Illustration of an over-segmentation on triangular meshes. Top: superfacets computed using the method of Wu et al. [170], Bottom: superfacets computed using Simari et al. [171].

Figure 4 . 4 :

 44 Figure 4.4: Illustration of one gradient step during contrastive loss optimization for a positive and negative pairs: data points of the same color belongs to the same class

Figure 4 .

 4 [START_REF] Rizaldy | Direct georeferencing: A new standard in photogrammetry for high accuracy mapping[END_REF] shows an illustration of one step gradient during minimizing the triplet loss.

Figure 4 . 5 :

 45 Figure 4.5: Illustration of one gradient step during triplet loss optimization for a triplet of positive, negative and an anchor samples: data points of the same color belong to the same class

Figure 4 . 6 :

 46 Figure 4.6: Illustration of the common construction of static graphs. Image (c) from[START_REF] Shamir | A survey on Mesh Segmentation Techniques[END_REF] 

Figure 4 . 8 :

 48 Figure 4.8: Illustration of VoxelNet feature encoding steps. Image from[15] 

Figure 4 . 9 :

 49 Figure 4.9: Illustration of the hierarchical octree data structure to partition 3D data space.

Figure 4 . 11 :

 411 Figure 4.11: Illustration of the network architecture for 3D shape segmentation with projective convolutional networks. Image from[START_REF] Kalogerakis | 3D Shape Segmentation with Projective Convolutional Networks[END_REF] 

Figure 4 .

 4 12 illustrates the full pipeline for 3D point cloud semantic segmentation.

Figure 4 . 12 :

 412 Figure 4.12: Snapnet framework for point cloud semantic segmentation. Image from[START_REF] Boulch | Snap-Net: 3D point cloud semantic labeling with 2D deep segmentation networks[END_REF] 

Figure 4 . 13 :

 413 Figure 4.13: PointNet architecture for 3D point clouds classication and segmentation. Image

  Figure 4.14 illustrates the architecture proposed in [153].

Figure 4 . 14 :

 414 Figure 4.14: PointNet++ hierarchical architecture for 3D point clouds classication and segmentation. Image from[START_REF] Ruizhongtai | PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space[END_REF] 

Figure 4 .

 4 Figure 4.15: SPG full pipeline for large scale 3D point clouds semantic segmentation. Image from[17] 

  et al. have proposed to construct local patches in local polar coordinates as shown in Figure 4.16.Afterwards, a geodesic convolution is performed by applying a lter kernel subject to angular coordinates at each vertex of the mesh within the constructed local patch.

Figure 4 . 16 :

 416 Figure 4.16: Illustration of the local geodesic patches in polar coordinates on a manifold mesh.

Figure 4 . 17 :

 417 Figure 4.17: TextureNet architecture. Image from[26] 

Figure 4 . 18 :

 418 Figure 4.18: Illustration of convolution and pooling operation on 3D meshes. Image from[16] 

  Figure 4.4.

Figure 4 . 19 :

 419 Figure 4.19: Illustration of the hand-crafted features computed per-edge

e 1 +

 1 e 3 , | e 2 -e 4 |, e 2 + e 4 ) (4.4) Applying symmetric functions | e 1 -e 3 | and | e 2 -e 4 | on relative edge features remove the ordering ambiguity in convolution. Mesh pooling, on the other hand is performed using a task-aware edge collapse operation. In theory, once features are computed for each edge after few convolutions, the pooling consists in selecting which edges to be collapsed w.r.t. the learned task. As shown in Figure 4.18 (b) and (c), pooling consists in reducing ve edges into two by rst collapsing the edge with the lowest strength (the minimum 2

Figure 4 . 20 :

 420 Figure 4.20: Illustration of our method: vertex embeddings are learned such that they are homogeneous within ground truth segments P, and with high contrast at transition edges (in red).

Figure 4 . 21 .

 421 The computed features are the result of concatenating features from the last layer with XYLab features of each pixel.

Figure 4 . 21 :

 421 Figure 4.21: The proposed network is composed of a stack of convolutional layers interleaved

Figure 4

 4 Figure 4.22.

Figure 4 . 22 :

 422 Figure 4.22: Explanation of the non-dierentiability of the connected component operator

  ) and ψ(x)

Figure 4 . 23 :

 423 Figure 4.23: The functions φ (in blue) and ψ (in red) used in the graph-structured contrastive loss.

Figure 4 .

 4 Figure 4.24 and dened as the adjacency graph of the cross-partition between the ground truth object partition P and the predicted partition S (e) . In other words, C is the set of connected components of the graph G when all edges either between objects or between segments are removed, and the super-edge (i.e. set of edges) (U, V ) ∈ E is the set of transition edges of E trans between U and V in C:

P 2 ∩ S 2 P 2 ∩ S 1 3M 0 / 3 M 0 / 1 M 0 / 2 (

 2221312 to each super-edge (U, V ) of E (e) and µ b) Cross-partition graph G.

Figure 4 . 24 :

 424 Figure 4.24: Illustration of the proposed superedge weighting scheme. Left, we represent an erroneous proposed partition S with 3 segment. Right we represent the cross partition graph G with the edge weights M U,V / |U × V ∩ E trans |.

Figure 4 .

 4 25, we further explain our cross-partition weighting strategy using a concrete example of a scene composed of a door (D) and a wall (W). Two segments L (left) and R (right) overlap the door. The super-edge (LW, LD)(resp. (RW, RD)) represent the adjacency between the part of the left (resp. right) segment covering the wall and the part covering the door. With fewer trespassing points and a longer interface than (RW, RD), the weights of the edges constituting (LW, LD) are smaller.

Figure 4 . 25 :

 425 Figure 4.25: Illustration of the cross-partition weighting strategy on a simplied scene

Figure 4 .

 4 Figure 4.26: Our LPE network used to embed each 3D point in a point cloud.

3 Figure 4 . 27 :

 3427 Figure 4.27: Architecture of the spatial transform network.

Figure 4 .

 4 [START_REF] Boussaha | Large Scale Textured Mesh Reconstruction From Mobile Mapping Images and LiDAR Scans[END_REF] we expose the details of the spatial transform part. the network takes a point's coordinate as point-input p i and the coordinates of its neighbors as set-input P i . The vertex r computes the radius of a point cloud (4.13), the vertex z extract the vertical coordinate of a point's position, and the vertex PTN is a small PointNet-like network (4.14) which outputs a 2 × 2 rotation matrix around the z axis (4.16). In this and subsequent gures, set-features (respectively point-features) are represented by a dotted line (respectively a solid line). The numbers above the lines represent the size of the channels. rad = std (P i ) (4.13) Ω = PTN( Pi )(4.14) P i = (P i -p i )/rad (4.15) Pi = {p × Ω | p ∈ P i } (4.16) pi = [p (z) i , rad, Ω]

Figure 4 . 28 :

 428 Figure 4.28: Architecture of the second part of our LPE (4.19), which computes an embedding set-feature X i and point-feature x i encoding the local radiometry and the normalized geometry.

( 4 . 26 )

 426 This allows us to dene the boundary recall and precision with 1 edge tolerance for a set of predicted transition E pred trans :

Figure 4 . 29 :

 429 Figure 4.29: Performance of the dierent algorithms on the 6-fold S3DIS dataset (rst row) and the 6-fold vKITTI3D dataset (second row).

  S3DIS scene with 58 objects. Superpoint count : SSP 442, VCCS 436, Lin 423. Input cloud Ground truth objects LPE embeddings SSP (ours) VCCS Lin et al. (b) vKITTI scene with 233 objects. Superpoint count: SSP 420, VCCS 422, Lin 425.

Figure 4 . 30 :

 430 Figure 4.30: Illustration of the oversegmentation results using our framework along with the state-of-the-art methods.

Figure 4 . 31 :

 431 Figure 4.31: The architecture of our Local Textured Mesh Embedding network (LTME)

  discussed in Section 4.2.1, normalizing the embeddings to the unit sphere prevents collapse during training. Consequently, both mesh triangles' embeddings e lme and image pixels' embeddings e ced are constrained respectively to the d lme and d ced dimensional unit-spheres S d lme and S d ced . At this stage, the 3D mesh is structured by the dual graph G d (V d , E d ) such that the nodes V d of G d are the set of mesh faces t ∈ T while the edges E d are the adjacency relations in the mesh M . The embedding function ξ : V d → S u × S v representing our LTME is a mapping between the nodes V d of G d and the local computed embeddings.As illustrated in Figure4.31, the proposed architecture is mainly composed of 3 principle modules. In the following we detail each one of them:

Figure 4 . 32 :

 432 Figure 4.32: The architecture of our Convolutional Encoder-Decoder network (CED) for camera views' embedding

Figure 4 . 34 :

 434 Figure 4.34: Illustration of an inside-outside test using the edge function[START_REF] Pineda | A parallel algorithm for polygon rasterization[END_REF] 

  set of ground truth transition edges. By taking a closer look to the proposed metrics in Section 4.3.3, we can notice that both BR and BP(4.27) are oblivious to the mesh topology as their unit of measure is dened w.r.t. to the number of edges of the mesh dual graph G d (V d , E d ) being a transition or non-transition edges.

  shown in Chapter 3, the reconstructed surface is designed to have an almost uniform triangulation by ltering out elongated faces in the mesh. When computing the coecient of variation of the edges lengths E d dened as CV = σ µ

Figure 4 . 35 :

 435 Figure 4.35: Performance of the dierent over-segmentation algorithms on our dataset. We control the number of segments by varying the parameter λ in equation (4.5) between [0.3, 0.7] as for point clouds. Methods tagged with a star ( ) were implemented by ourselves.

Figure 4 .

 4 Figure 4.37, we can see that the semantic adjacency in a texture atlas is not preserved.Training CED on texture atlases will inhibit the network from leveraging the local context knowledge encoding high-level concepts related to semantic adjacency.

  (a) Input mesh (b) Ground truth annotation (c) LTME embeddings (d) LSF (ours) (e) HSF-Cluster [171] (f) HSF-Graph

Figure 4 .

 4 Figure 4.36: Over-segmentation illustration of a textured mesh in our pLaTINUM dataset. Superfacets count : LSF (727), HSF-Graph (713), HSF-Cluster [171] (700)

Figure 4 . 37 :

 437 Figure 4.37: Illustration of a set of texture patches packed into a texture atlas

Figure 5 ,

 5 Figure5, we can observe in the background, road signs with high color contrasts, which are segmented in small superpoints. This makes them very hard to classify and they are missed by the semantic segmentation algorithm.

  (a) Illustration of a chunk of 350 m of textured mesh (b) high resolution zoomed region (c) high resolution zoomed region (d) high resolution zoomed region

Figure 1 :

 1 Figure 1: Illustration of some textured mesh samples reconstructed from our dataset.

Figure 2 :

 2 Figure 2: Illustration of a successful semantic segmentation of a complex scene from S3DISdataset[23] 

Figure 3 :

 3 Figure 3: Illustration of a failure semantic segmentation of a scene from S3DIS dataset[23] 

Figure 4 :

 4 Figure 4: Illustration of a successful semantic segmentation of a complex scene from vKITTI3Ddataset[58] 

Figure 5 :

 5 Figure 5: Illustration of a failure case of semantic segmentation of a scene from vKITTI3D

  

  

  

  

  2 are in the eld of view of triangle t i at dierent respective distances d 1 , d 2 (d 1 < d 2 ) such that only few pixels in I 1 are visible to t i while the distant view I 2 is entirely visible to t i . . . . . . . . . . . . . . . . 57 3.8 LiDAR acquisition viewed in sensor space: vertical axis represent the rotation angle θ while the horizontal axis corresponds to time t. Image from

[START_REF] Vallet | TerraMobilita/iQmulus urban point cloud analysis benchmark[END_REF] 
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  https://www.cityscapes-dataset.com/ coarse annotations as shown in Figure2.1. These annotations are divided into 8 major categories; construction, nature, vehicle, at, object, sky, human and void. Apart from the class sky, each group is split into several subgroups forming 30 visual classes in total. The

	proposed benchmark oers three dierent tasks for semantic urban scene understanding;
	pixel-level and instance-level semantic labeling as well as panoptic semantic segmentation
	more recently.	
	2.1.1.2 Mapillary vistas dataset [52]:
	Mapillary Vistas dataset	2 is one of the largest 2D street-level image datasets. It is
	ve times larger than Cityscapes

1 

Table 2 .

 2 1 shows a comparison between the dierent datasets in terms of the size, mean of acquisition, weather conditions and locations.

	Dataset	Year # Images # labels Lane labels Location	Acquisition
	Cityscapes [40]	2016	25K	30	no	50 cities (Europe)	moving car
	Mapillary Vistas [52] 2017	25K	152	2	6 continents	crowdsourced
	BDD100K [43]	2017	120 M	19	8	United-states	mobile mapping
	Apolloscape [41]	2018	144K	25	28	China	mobile mapping
		Table 2.1: Image-only datasets comparison	
	Both Vistas [52] and Cityscapes [40] datasets do not provide pose information of
	each image due to the way how they were collected. The lack of the geo-referencing
	information is a major obstacle for several computer vision applications such as image-
	based localization, pose estimation and mapping among others. Indeed, 2D images in
	general are the result of a perspective projection of a 3D scene into the camera plan. We
	argue that such representation does not capture the inherent structure of the recorded 3D
	scene. In fact, pixels in image space have dierent physical measurement in the 3D real-
	world. Consequently, several 3D datasets captured by LiDAR sensors were introduced to
	handle the limitations of 2D-only datasets.			

  However, their LiDAR measurement range is limited to only 20 meters. Additionally their dataset consists of 2 straight paths with no cross-roads or sharp turns to mimic reallife navigation scenarios. In table 2.2, we provide an overview of the urban LiDAR-only datasets in terms of size, type of the LiDAR and location.

	Dataset			Year Size (m)	LiDAR	# classes # points Location
	Oakland [44]		2009	1510	SICK-LMS laser	4	1.6 M	Oakland
	Paris-rue-Madame [45] 2013	160	Velodyne HDL32	17	20 M	Paris
	TerraMobilita [46]	2014	210	RIEGL LMSQ-120i	22	15 M	Paris
	Semantic3D [47]		2017	N/A	Static scanner	8	4 B	central Europe
	Paris-Lille 3D [48]	2018	1940	Velodyne HDL32	50	140 M	Paris Lille
				Table 2.2: LiDAR-only datasets comparison
	Similar to the 2D case, annotating 3D data manually or semi-automatically is a hard
	task since it implies a trade-o between the annotation accuracy and manpower required
	to conduct manual annotations. That is why synthetic datasets has bloomed in recent
	years.						
	2.1.3 Synthetic datasets		
	Alternatively to collecting and manually annotating 2D or 3D data, synthetic datasets
	propose a new paradigm to assess vision algorithms in the context of autonomous driving
	called virtual simulation. In the literature, several approaches have been proposed to get
	as much as possible rich and diverse data of urban environments through simulation. In
	this section we review the most popular virtual datasets and simulators.
	2.1.3.1 SYNTHIA dataset [56]:		
	SYNTHIA dataset	11 is a set of photo-realistic images rendered from a virtual city with an
	European style created using Unity game engine	12 acquired from dierent view-points in
	several locations. A large volume of data is provided (more than 200000 HD images with
	their corresponding pixel-wise annotations). Populated with realistic urban models, it
	oers a collection of rich and diverse scenes mimicking the real world driving scenarios in
	various weather conditions including rainy, cloudy and snowy weather as well as a drastic
	change in illumination conditions overall the dataset.
	2.1.3.2 Virtual KITTI & vKITTI3D datasets [57, 58] :
	Virtual KITTI	13 is a synthetic photo-realistic dataset built upon the original KITTI
	dataset [49] using a real-to-virtual world cloning method. It consists of 50 high-resolution
	monocular video sequences resulted in nearly 21160 frames generated from 5 dierent
	virtual worlds created using Unity software. These images are fully annotated for 2D
	object detection and tracking, instance and semantic segmentation.
	11 http://synthia-dataset.net/ 12 https://unity.com/fr 13 https://europe.naverlabs.com/research/computer-vision/proxy-virtual-worlds/

  Boston and Singapore), 1000 20s-length driving scenes were manually selected to cover a wide range of driving manoeuvres and unexpected behaviours of the dynamic objects in the scene. Using a set of synchronized sensors (6 RGB cameras, a LiDAR, a RADAR and an inertial navigation system GPS/IMU), this benchmark oers approximately 1.4 million geo-referenced images, 390K LiDAR spans, 1.4 million RADAR sweeps in dierent weather and day/night times. In addition to 360 • -view annotations for the entire sensor modalities resulted in 1.4 million object bounding boxes, NuScenes provides annotations for the classes attributes such as pedestrian pose and car states.

	in rural and city areas using a variety of sensor modalities including RGB and gray-
	scale cameras, a 3D low-cost Velodyne laser scanner and a high-precision GPS/IMU unit
	resulted in 120K 3D point clouds and 41K frames. Annotations are provided in forms
	of 3D bounding boxes of nearly 200K objects. Several vision tasks can be assessed using
	this benchmark including stereo matching, optical ow estimation and object detection,
	among others.
	2.1.4.2 Apollo dataset [19]:
	In order to assess the task of future trajectory prediction of trac agents in urban en-
	vironments, Baidu research released a large-scale hybrid dataset	18 . To generate these
	trac trajectories, a set of sensors mounted on a mobile mapping platform were used
	including RGB cameras, LiDAR (Velodyne HDL 64E S3), a RADAR and a localization
	inertial navigation system (GPS/IMU). It consists of more than 146K HD images with
	20K point clouds. The featured tasks are object detection, lane segmentation, scene
	parsing and self-localization.
	2.1.4.3 KAIST dataset [50]:
	Targeting complex urban environment, KAIST	19 is a multi-spectral dataset that provides
	RGB/thermal images, RGB stereo images, LiDAR point clouds and GPS/IMU data at
	dierent time slots (day an night). Captured in various region in Seoul, South Korea, this
	benchmark was designed with the goal to deal with a wide range of vision problems in
	urban environments such as localization, depth estimation, object detection, scene parsing
	and driveable region detection. More than 8.9K annotated frames are available for the
	previously mentioned tasks.
	2.1.4.4 H3D dataset [20]:
	H3D	20 is a large-scale multi-modal dataset collected in diverse areas in San Francisco,
	USA by the Honda Research Institute using a moving car equipped with 3 full-HD RGB
	cameras, a Veldoyne HDL-E64 S2 and GPS/IMU unit. As opposed to KITTI dataset
	[49], this dataset is considered among the rst ones that provide full-surround (360 • view)
	3D multi-object annotations. It consists of 27K frames collected from 160 crowded urban 2.1.4 Hybrid datasets scene with a total of 1.1 million 3D bounding box annotations. The main featured vision
	Generating hybrid datasets comprised of GPS/IMU data, RGB cameras and range sensors tasks are 3D object detection and tracking.
	(LiDAR and/or RADAR) can be a prohibitively expensive task. In fact, such datasets are
	more challenging to collect and annotate compared to single-modal datasets since they 2.1.4.5 NuScenes dataset [21]
	require integrating, synchronizing and calibrating dierent sensors at the same time. In this section, we present the current state-of-the-art hybrid datasets that are related to NuScenes 21 is so far the largest multi-modal dataset for autonomous driving at the
	our work. time of writing. Recorded in two cities that are known with their high density trac
	and challenging situations (
	2.1.4.1 KITTI dataset [49]:
	KITTI vision benchmark	17 is one of the most well-known driving benchmarks. It is a
	multi-modal dataset collected using a moving car while driving in Karlsruhe Germany
	for nearly 6 hours. Diverse trac scenarios of dynamic and static objects were recorded
	17 www.cvlibs.net/datasets/kitti

Table 2 .

 2 4: An overview of the multi-modal driving datasets

	Sensors Annotations Size Location RGB images Panorama Depth maps reectance Point clouds Textured mesh	2012 Stereo camera + LiDAR+ INS 2D/3D bounding box + pixel/ instance-level labels 7481 frames 80256 objects karlsruhe	2016 Camera + static mobile LiDAR + GPS/IMU unit labels for classication 650 dense scan 32000 sparse scans Fukuoka	2017 sheye/stereo + 2D/3D LiDAR + GPS/IMU not annotated 20 million images + 3 M frames Oxford	2018 RGB/thermo cameras 2D bounding box + drivable regions labels 7512 frames 308913 objects Seoul	2019 Stereo cameras + 3D LiDAR + GPS/IMU 2D/3D pixel/instance -level labels 143906 images 89430 objects China	2019 3 RGB cameras + 3D LiDAR + GPS/IMU 3D bounding box 27K frames > 1 million objects San Francisco Boston/Singapore 2019 6 RGB cameras + LiDAR + RADAR + GPS/IMU 3D bounding box + pedestrian pose 1.4 million image + RADAR 390K LiDAR

Table 2 .

 2 

		Classes	IDs	Details
	Movable objects	Person motorbike bicycle	7 10 9	includes pedestrian/rider
		Vehicle	8	includes bus car and trucks
	Surface	Road Sidewalk	1 3	
		Building	4	includes walls/fences
	Infrastructure	Road marks Trac light	2 11	
		Trac sign	12	
		hardscape	13	includes pole, trash can, barriers
	Nature	Low vegetation Tree	5 6	
		Sky	14	
	Void		0	other classes or confusing objects

5: Hierarchy of classes in our dataset

  .6, we show the statistics of the ground truth 3D and 2D modalities in our dataset at the time of writing.

	Modality	perspective RGB images	Spherical RGB images	Depth maps	Reectance maps	3D point clouds	3D mesh faces
	Statistics	750	150	4000	4000	53562109 106477878
		Table 2.6: Statistics on the annotated modalities in our dataset	
	Compared to the performance of SPG achieved on benchmark datasets such as S3DIS

[START_REF] Armeni | Joint 2D-3D-Semantic Data for Indoor Scene Understanding[END_REF]

, we observe a clear decrease in terms of mIoU. We believe that this stems from the imbalanced distribution of classes in our dataset. Several strategies exist to mitigate

27 

https://www.danielgm.net/cc/ this issue. However, in this study, we simply want to highlight the usefulness and the challenging nature of our data.

  To assess the task of 3D point cloud semantic segmentation on our dataset, we use the SuperPoint Graph algorithm (SPG) introduced by Landrieu and Simonovsky in[17]. We consider the Overall Accuracy

(OA), and the Intersection over Union (IoU) dened w.r.t. to the confusion matrix CM of size k × k where k = 14 corresponds to the number of classes. A detailed denition of these metrics is provided in Chapter 4.

Table 2 .

 2 8: Depth recovery quantitative results using the method of

	KITTI	CARLA [60]	0.247	7.652	3.484	0.465	0.697
	KITTI	Ours	0.238	7.23	3.216	0.484	0.654
	KITTI.proj CARLA [60]	0.251	7.381	3.451	0.445	0.732
	KITTI.proj	Ours	0.242	5.743	2.97	0.354	0.741

2 (2.14) 

Train data Test data Abs.Rel † Sq.Rel † RMSE † log RMSE † Depth Acc. δ < 1.25

  France using a mobile mapping vehicle. This hybrid dataset can serve not only for the infrastructure management and monitoring but also for applications related to autonomous driving context. At the time of writing, our dataset contains 4000 ground truth 360 • depth maps, 4000 full surrounding LiDAR intensity maps, 150 annotated high resolution spherical RGB, 750 perspective images with their pose information, more than 53 million point-wise and instance-wise annotated 3D points and nearly 1.5 kilometers of per-face annotated 3D textured mesh resulted in more than 106 million triangles. For now the released subset represents only around 10% of the full acquisition. Our intention is to gradually release the rest of the annotated data to the community. Another acquisition in the same location has been conducted in 2019 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49To be able to plan a path and navigate towards a target, an autonomous agent, being a robot or a driver-less car, has to apprehend the operating environment the way a human does. Such ability cannot be acquired without a high-level abstraction of the surrounding

	Chapter
	3
	Large scale textured mesh re-space along with tools for robot-human communication. A rst step towards achieving
	this goal is mapping. Building a 3D map of the surrounding environment is a critical construction component of indoor/outdoor perception and navigation. Historically, localization and
	navigation within a map is performed using Simultaneous Localization And Mapping
	(SLAM) techniques [8587]. These methods have spawned a considerable and an ongoing
	three years after the initial one, albeit this time it will be leveraged to evaluate the task of 3D change detection. The source code body of work regarding the appropriate geometric modeling of explored environments. 29 to generate spherical RGB images, depth and reectivity in equirectangular projection is now part of an open source library called As a result, several approaches have been introduced to answer the question of what is Chapter content the most suitable representation in terms of delity and robustness guarantying a reliable
	LibOri developed at LASTIG laboratory and available online. navigation.
	In the next chapter, we discuss the process of generating 3D geolocalized textured
	meshes from the collected mobile mapping data.
	29 https://github.com/IGNF/libOri

To narrow this gap, we made available to the community a large scale dataset of urban environments recorded in the region of Rouen, 3.1.1 3D metric map representations . . . . . . . . . . . . . . . . . . 50 3.1.2 Textured meshes representation: . . . . . . . . . . . . . . . . . 52 3.2 Surface reconstruction . . . . . . . . . . . . . . . . . . . . . . . 58 3.2.1 Sensor topology . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.2.2 Mesh extraction . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.2.3 Cleaning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.2.4 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.3 Texture mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.3.1 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.3.2 View selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.3.3 Color adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . 65 3.4.1 Mesh reconstruction . . . . . . . . . . . . . . . . . . . . . . . . 65 3.4.2 Texture mapping . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.4.3 Performance evaluation: . . . . . . . . . . . . . . . . . . . . . . 71 3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Introduction
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	While such

1: Comparison between dierent representations of a 3D scene

Table 3 .

 3 3.1.2.2 LiDAR point cloudsLight Detection And Ranging (LiDAR) is an active surveying technique that uses the time between the emission of laser pulse and its reception on the sensor after reection by the scene to measure the distance to the scanned objects. Depending on the surveying technique, density and resolution varies dramatically between 10pts/m 2 for Aerial LiDAR Scanner (ALS) to around 1000pts/m 2 for Mobile LiDAR Scanner (MLS)[START_REF] Qin | 3D change detectionapproaches and applications[END_REF]. While such devices allow for a robust acquisition of accurate 3D point clouds regardless the lighting condition, it may contain noise and artifacts because of the scanned speculate surfaces 2: Comparison between Image-derived point clouds and MLS point clouds

	Origin	Density	Accuracy	Advantages	Drawbacks
			Depends on the		
		Depends on the	camera model		Precision depends
	Image-based	spatial resolution of the multi-view	accuracy, matching algorithms, image	Low cost; available RGB color	on several factors results aected
		images	quality and		by illumination
			stereo angle		
	LiDAR-based	High density closer the distance, higher the density	High accuracy (1cm)	Active intensity measurements; robust to illumination variation; High precision is guaranteed	Expensive devices speculate surfaces results in scanning artifacts

(e.g. mirror, windows).

As depicted in Table

3

.2, we think that the LiDAR 3D point clouds are more suitable for our mapping application as it provides high accurate georeferenced 3D points without strong assumptions neither about the accuracy of cameras calibration nor about the precision of matching algorithms and image quality as in the case of MVS.

Table 3 . 4 :

 34 Statistics on the input data per chunk

	during this project. It consists of 17km of

  while only varying λ.

	parameter	shorthand section S3DIS	vKITTI
	Local neighborhood size	k	4.3.1		20
	# parameters	-	-		13,816
	LPE conguration	-	4.3.1	[32,128],[64,32,32,m]
	STN conguration	-	4.3.1	[16,64],[32,16,4]
	Embeddings dimension	m	4.3.1		4
	Adjacency graph	G	4.2.2	5-nn	5-nn + Delaunay
	exponential edge factor	σ	4.2.2		0.5
	intra-edge factor	μ	4.2.4		5
	spatial inuence	α spatial	4.3.3	0.2	0.02
	smallest superpoint	n (1) min	4.3.3	40	10
	epochs	-	-		50
	decay event	-	-		20,35,45

Table 4 . 2 :

 42 Conguration of the embedding network for the S3DIS and vKITTI datasets.

	We show in Table 4.2 the size of the linear layers, before and after the maxpool
	operation. Over 250, 000 points can be embedded simultaneously on 11GB RAM in the
	training step, while keeping track of gradients.

Table 4 .

 4 Adjacency graph: For both datasets, we nd that setting the local neighborhood size to 20 was enough for embeddings to successfully detect objects' border. Combined with our lightweight structure, this results in a very low memory load overall. The adjacency graph G used for computing the graph-based partition requires more attention depending on the dataset. For the dense scans of S3DIS, the 5-nearest neighbors 4: Performance of dierent methods for the semantic segmentation task on the S3DIS dataset. The top table is for the 6-fold cross validation, the bottom table on the fth fold only.

	Method	OA	mAcc mIoU
	6-fold cross validation	
	PointNet [14] in [223]	78.5	66.2	47.6
	Engelmann et al. in [223] 81.1 66.4	49.7
	PointNet++ [153]	81.0	67.1	54.5
	Engelmann et al. in [192] 84.0 67.8	58.3
	SPG [213]	85.5	73.0	62.1
	PointCNN [227]	88.1 75.6 65.4
	SSP + SPG (ours)	87.9	78.3 68.4
	Fold 5			
	PointNet [14] in [192]	-	49.0	41.1
	Engelmann et al. in [192] 84.2 61.8	52.2
	pointCNN [227]	85.9	63.9	57.3
	SPG [213]	86.4	66.5	58.0
	PCCN [228]	-	67.0	58.3
	SSP + SPG (ours)	87.9 68.2 61.7
	Method	OA	mAcc mIoU
	PointNet [14]	79.7	47.0	34.4
	Engelmann et al. in [192] 79.7 57.6	35.6
	Engelmann et al. in [223] 80.6 49.7	36.2
	3P-RNN [229]	87.8 54.1 41.6
	SSP + SPG (ours)	84.3	67.3 52.0
	Table 4.5: Performance of dierent methods for the semantic segmentation task on the vKITTI
	dataset with 6-fold cross validation.			

  Recall that at this level the features are computed on the primal edges E of the mesh M = {V, E, T }. The dual graph G d (V d , E d ) built on top of M is used subsequently for the supervised graph partitioning step. Figure4.33 shows the architecture of our Local Mesh Embedding network (LME).

Local Mesh Embedder (LME): In this module, we seek to locally embed faces of a triangular 3D mesh in a similar way as for point clouds. The proposed network is based on the work of Hanocka et al. called MeshCNN

[16] 

in which CNN building blocks (i.e. convolution and pooling) on 2D regular images are translated to irregular meshes. LME operates on the edges E of the mesh instead of triangles T to provide a nonuniform geodesic neighborhood which is compatible with the inherent irregularity of the mesh. As explained in Section 4.1.4, we start by computing hand-crafted geometric features for each edge e i ∈ E where |E| = p.

edge e i : triangle t i : hand-crafted feature hf i : learned feature lf i EC : Edge Convolution layer BN : Batch Norm layer ReLU : Rectified Linear Unit Max Pool :Max pooling operation : Shared Multi-Layer Perceptron Per-triangle embeddings 3D mesh MLP SHARED MLP Figure

  4.33: The architecture of our Local Mesh Embedding network (LME)

				t 1				
	Per-edge		e 11	lf 11		t 1	lf t1 (0)
	e 2 e 1 handcrafted features hf 2 hf 1	EC BN ReLU EC BN ReLU	e 12 e 13	lf 12 lf 13	Max Pool		MLP	t 1	lf t1
	e 3	hf 3		t m					t i	lf ti
	e p	hf p		e m1	lf m1				t m	lf tm
				e m2	lf m2	Max		
	:			e m3	lf m3	Pool	t m	lf tm	(0)
					The computed edge features (of
	initial dimension f in = 5) are fed to a stack of edge convolution layers (EC) (4.33) (pro-

ducing f out -dimensional learned features) interleaved with batch normalization (BN) and non-linearity units(ReLU). In details, the edge convolution operation dened in equation (4.4) consists in the multiplication of a multi-channel tensor T (b × f × e × n) with a kernel of size

(5 × 1) 

where e is the maximum number of edges per mesh, n is the

  At last, the nal embedding computed by our LTME network e ltme is the concatenation of mesh faces embeddings e lme (t) with t ∈ T and the corresponding projection fragments embeddings e Pt ced (c t ) (4.38).

	e Pt ced (c t ) = max i∈Pt	(e Pt i (c t ))	(4.37)

e ltme = e lme (t) ⊕ e Pt ced (c t ) ∀ t ∈ T (4.38)

  2 . In table 4.6, we show the conguration of our LTME network. The parameters which are not mentioned in this table and required by the network, use the default values as for point cloud over-segmentation.

	parameter	shorthand Module	Details
	LME # parameters	-	LME	258819
	CED # parameters	-	CED	1314435
	LME conguration	f	LME	[5,32,64,128,256],[256,128,64,3]
	CED encoder conguration	-	CED	[64,64,128,128,256,128]
	CED decoder conguration	-	CED	[128,64,64,32,3]
	Batch size	b	LTME	4
	LME embeddings dimension	d lme	LME	3
	CED embeddings dimension	v	CED	3
	Regularization weight	γ	VSM	0.85
	Adjacency graph	G d	-	Dual graph
	epochs	-	-	150
	decay event	-	-	40,80,120

Table 4 . 6 :

 46 Conguration of the LTME network for pLaTINUM dataset. a segmentation S and a ground truth partition P the under-segmentation error (U E) and compactness (C) are dened respectively as:

	4.4.2.2 Evaluation metrics

In the literature, specic evaluation metrics have been proposed to assess qualitatively and quantitatively 3D mesh over-segmentation. In

[START_REF] Simari | Fast and Scalable Mesh Superfacets[END_REF]

, Simari et al. have tailored two metrics from 2D superpixels to better represent the underlying topology of a 3D mesh.

MAPPING

Namely, for j ∈S A(S j \ P i ) i A(P i )

  LSF:LME: In this conguration the LTME architecture is comprised only of the LME network which operates on 3D meshes. We consider exclusively LME embeddings e lme (t). CED embeddings e Pt ced (c t ) are ignored in this experiment. LSF:LTME-L: CED is trained on vkitti dataset [57] and ne-tuned on our dataset to perform semantic segmentation. During back-propagation, LTME weight updating in this conguration is exclusively restrained to the LME network while CED weights are frozen during training. At each graph partitioning iteration during training, we concatenate CED's pre-computed embeddings for the task of semantic segmentation with the learned LME embeddings e lme (t) for over-segmentation. The goal is to understand the impact of fusing embeddings learned previously on a dierent task (in this case semantic segmentation) with embeddings learned on the desired task (over-segmentation). T while the edges E d are the adjacency relations in the mesh M . Each triangle is represented by a 4-dimensional feature vector characterizing its geometric adjacency inspired by Rouhani et al. [158]: Verticality: This feature is computed as a dot product between the vertical vector n z and the normal of mesh faces t : v =| n z .n t |. The vertical objects such as building facades have low values while horizontal objects such as road and sidewalk have high values. Planarity: Computed for each face t i with respect to its 1-ring neighbors 6 of size n, planarity is dened as p = min(| n t i .n t j |, . . . , | n t i .n tn |). The value of p is high for planar facets and inversely low for non-planar facets.

LSF:LTME-E: This is the original proposed set up. In this conguration the LTME embeddings are computed as explained in equation (4.38) where we concatenate the LME embeddings e lme (t) with CED embeddings e Pt ced (c t ). Both the weights of LME and CED are updated during training until the convergence of the loss. HSF-Graph: This is a graph-based over-segmentation method. We use the Generalized Minimal Partition Problem (GMPP) dened in Section 4.2.2 by the equation (4.5) to partition the 3D mesh represented by its dual graph as dened in Section 4.1.3. The nodes V d of the graph G d are the set of mesh faces t ∈
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https://github.com/loicland/superpoint_graph

Table 1 :

 1 Results on the S3DIS dataset on fold Area 5 (top) and micro-averaged over all 6 folds (bottom). Intersection over union is shown split per class, with the highest value over all methods in bold.

https://www.openstreetmap.org

https://www.geoportail.gouv.fr/

http://www.itowns-project.org/

https://bdd-data.berkeley.edu/

https://www.mi.t.u-tokyo.ac.jp/static/projects/mil_multispectral/

http://apolloscape.auto/

http://irap.kaist.ac.kr/dataset/

https://usa.honda-ri.com/h3d

https://www.nuscenes.org/

https://www.blender.org/

https://www.pbrt.org/

The mesh reconstruction process is explained in details in the next chapter

the set of edges forming the faces incident to the underlying edge.

https://github.com/loicland/superpoint-graph

[START_REF] James | Deep feature synthesis: Towards automating data science endeavors[END_REF]: The superscript stands for the number of edges tolerated to consider the current predicted transition as correctly retrieved similar to the point cloud case in Section 4.3.3 

1-ring neighbors of a face t are the set of immediate neighboring faces to t that shares at least one of its vertices. Their number n varies depending on whether t is a border face in a non-closed manifold mesh or not.
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Competing methods: We denote our method by SSP which stands for Supervised SuperPoints. We compare our approach to the following methods: SSP-cluster: is our adaptation of the soft clustering-based partition approach of Jampani et al. [START_REF] Jampani | Superpixel Sampling Networks[END_REF] to the 3D setting which was initially designed for 2D superpixels as discussed in Section 4.1.1. SSP-SEAL: uses the same supervized graph-based over-segmentation as SSP, albeit the cross-partition weighting scheme in equation (4.12) is replaced by the SEAL weighting strategy proposed by Jampani et al. in [START_REF] Tu1 | Learning superpixels with segmentation-aware anity loss[END_REF] in equation (4.10) as described in Section 4.2.4. Note that this is not equivalent to the framework of [START_REF] Tu1 | Learning superpixels with segmentation-aware anity loss[END_REF] discussed in Section 4.1.1, as they use a dierent loss and clustering algorithm.

Geom-graph: is the graph-based method introduced by Guinard et al. [START_REF] Guinard | Weakly supervised segmentation-aided classication of urban scenes from 3D LiDAR point clouds[END_REF] solving (4.5) on handcrafted features [START_REF] Demantke | Dimensionality based scale selection in 3D lidar point clouds[END_REF] instead of learned ones.

VCCS: is the octree-structured cluster-based method introduced by Papon et al. [START_REF] Papon | Voxel Cloud Connectivity Segmentation -Supervoxels for Point Clouds[END_REF] In Figure 4.30, we show the oversegmentation results of our method and the competing algorithms on vKITTI3D and S3DIS datasets.

We observe that our supervised partition framework produces superpoints of adaptive sizes which closely follow hard-to-segment objects such as white boards or sidewalks. We also notice that the embeddings learn to ignore certain form of intra-object geometric and radiometric variability. In particular, the lamp reections on the white boards are almost completely ignored by the embeddings. Even more interestingly, the embeddings of trees are homogeneous despite the signicant geometric variability between leafs and trunks.

As a consequence, the trees are segmented into one component while the other methods produces many dubious superpoints.

Ablation study

To empirically validate our design choices for dierent steps of our supervized oversegmentation method, we have conducted an ablation study. we present the increase/decrease of the 3 performance metrics at 500 superpoints (linearly interpolated) of alternative methods compared to ours, on the rst cross-validation fold of the S3DIS dataset. In particular we introduce Prop-weight, an alternative version in which the cross-partition weighting is replaced by a simple inversely-proportional weighting of the inter/intra edges.

Predictably, this method gives lesser results as the edges are not weighted according to their inuence in the partition. However, since the weights of the intra-edge are proportionally higher, the border precision is improved. We implemented the weights of the segmentation-aware anity loss of [START_REF] Tu1 | Learning superpixels with segmentation-aware anity loss[END_REF] as well for method SEAL-weights, with comparable results to the Prop-weight. In +TV-TV, we replace our choice of function φ and ψ in the loss by respectively | • | and -| • |, so that our loss is closer to the pairwise anity loss used by [START_REF] Engelmann | Know What Your Neighbors Do: 3D Semantic Segmentation of Point Clouds[END_REF] (but still structured by the graph). However, this approach wouldn't give meaningful partition as the intra-edge term conicts with the constraint that the embeddings are constrained on the sphere. Removing this restriction leads the collapse of the embeddings around 0. We also tried to stack the LPE in layers, using or not a residual structure comparable to the one used in [START_REF] He | Deep residual learning for image recognition[END_REF] to increase their receptive elds. The best results were achieved with two layers: 2-Layers and 2-Residuals. However, we observe that when compared with LPE of a similar number of parameters, the gains are insignicant if not null. We conclude that to embed points in order to detect borders, a small receptive eld with a shallow architecture is sucient.

Publications

The work presented in this thesis has successfully passed a double-blind review process and hence been presented in series of publications amongst which are papers for national and international conferences in photogrammetry, computer vision and machine learning.

In the following, we list these publications: 

Appendix

Illustration of the textured 3D mesh

In Figure 1, we show large scale high resolution samples from our reconstructed 3D textured mesh.

Semantic segmentation of point clouds

In Table 1, we show the detailed semantic segmentation IoU per-class scores on the dataset