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RÉSUMÉ EN FRANÇAIS

Contexte

Les images 2D classiques, qui ont jusqu’à présent été largement utilisées en photogra-
phie et en vidéo, sont une représentation plate d’une scène 3D, de laquelle il est diffi-
cile d’extraire des informations de profondeur pour la reconstruction 3D de la scène. Ce
manque d’informations sur la géométrie rend les photographies 2D inadaptées aux ap-
plications qui nécessitent une reconstruction réaliste de la géométrie 3D ou un sentiment
d’immersion dans une scène 3D. Par conséquent, de nouveaux types d’imagerie capables de
sauvegarder ou de reconstruire facilement les informations de géométrie sont maintenant
étudiées plus attentivement, par exemple: les images RGBD utilisées dans les automobiles
et les drones, les images stéréo utilisées en réalité augmentée et en réalité virtuelle, ainsi
que les images produites par les caméras commerciales de nouvelle génération à champ
de lumière. Les caméras à champ de lumière capturent une scène à partir de différentes
perspectives, produisant ainsi une grille d’images qui représente la scène telle qu’elle peut
être observée à partir de différentes positions. Par conséquent, à partir d’une seule exposi-
tion, il est possible de récupérer suffisamment d’informations pour reconstruire au moins
partiellement la géométrie de la scène, en se basant sur les champs de lumière capturés.
Cette propriété a fait des champs de lumière une technologie d’imagerie prometteuse, qui
a suscité beaucoup d’intérêt au cours de la dernière décennie.

Outre l’imagerie 3D, une autre tendance apparue au cours des deux dernières décennies
est le développement d’algorithmes guidés par les données. Cette évolution est très large-
ment due aux progrès significatifs effectués dans le développement des cartes graphiques
(GPU en anglais). La nouvelle technologie GPU est suffisamment puissante pour prendre
en charge des calculs intensifs en très peu de temps. Par exemple, l’Intel Pentium sorti
en 2000 peut effectuer 7 Giga de FLOPS, tandis que le dernier GPU Nvidia GeForce
RTX 3080 sorti en 2020 peut manipuler 29,8 Tera de FLOPS. De plus, des systèmes
GPU distribués à grande échelle peuvent être utilisés afin de tirer parti de leurs capac-
ités de traitement conjointes. Grâce à ces deux facteurs, il est désormais possible pour
les algorithmes de données de traiter d’énormes quantités de données et d’apprendre des
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modèles complexes, ce qui est difficile voire impossible pour les méthodes classiques. Grâce
à l’augmentation de la puissance de calcul, on assiste également à des évolutions significa-
tives pour ces algorithmes d’apprentissage : initialement de simples régression linéaires et
machine à vecteur de support, les méthodes modernes sont aujourd’hui devenues beau-
coup plus intensives en calcul, comme le sont par exemple les méthodes d’apprentissage
profond. Il a également été démontré que cet apprentissage profond est capable de traiter
efficacement un large éventail de problèmes de vision par ordinateur classiques, tels que
la super-résolution d’image, la classification, la détection des contours, la segmentation,
etc., ce qui a donné lieu à une série d’innovations importantes pour des applications telles
que la détection des piétons en temps réel, la voiture autonome, le transfert de style de
peinture, ou encore la synthèse de visage, etc.

Il faut noter que les développements de l’imagerie 3D et de l’apprentissage profond ne
sont pas déconnectés. Au contraire, de nombreuses percées récentes dans le domaine de
l’imagerie 3D ont été réalisées à l’aide de méthodes basées sur l’apprentissage profond.
L’imagerie par champs de lumière fait partie des modalités d’image pouvant bénéficier
des avancées récentes en apprentissage profond.

Motivations et objectifs

Un champ de lumière peut être décrit comme une collection de rayons lumineux émis
par une scène 3D et vus à partir de n’importe quel point de coordonnées (x, y, z), selon dif-
férentes orientations, pour différentes longueurs d’onde et à différents instants. Le champ
de lumière peut ainsi être défini par une fonction de rayonnement 7D qui peut, sous cer-
taines hypothèses détaillées dans le manuscrit, être simplifiée en une fonction 4D avec
deux ensembles de coordonnées : les coordonnées angulaires qui peuvent être vues comme
des points de vue différents, et les coordonnées spatiales des points sur la scène. Alors
qu’un échantillonnage angulaire fin du champ de lumière peut nécessiter l’enregistrement
d’un nombre infiniment élevé de directions ou de points de vue, en pratique le nombre
de points de vue est limité et dépend du dispositif de capture. Le concept de champs de
lumière est donc assez large et englobe des vues structurées sur un plan avec une disparité
constante entre les vues, ainsi que des captures non structurées (par exemple, des captures
effectuées par un téléphone portable avec un déplacement sans contrainte dans la scène).
Dans cette thèse, nous nous concentrons sur les champs de lumière structurés, qui sont
une collection d’images capturées à partir d’un certain nombre de points de vue structurés
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(a) Champ de lumière représenté sous forme
d’un tableau d’images 8× 8

(b) Champ de lumière représenté sous forme
d’image microlentilles

Figure 1 – Champ de lumière représenté sous forme de (a) Tableau d’image. (b) image microlentille.
Le champ de lumière utilisé vient de [1]

.

(normalement plus de 2 points de vue), où deux vues adjacentes horizontalement et verti-
calement ont toujours une baseline égale. Afin d’apporter une meilleure compréhension de
la notion de champ de lumière, nous montrons Fig. 1(a) un champ de lumière représenté
sous la forme d’un tableau d’images, chaque image étant obeservée de points de vue dif-
férents. Dans la Fig. 1(b), nous montrons également la représentation microlentilles d’un
champ de lumière, qui peut être considéré comme des données brutes capturées par le
capteur de la caméra.

Les observations à partir de plusieurs positions de visualisation offrent suffisamment
d’informations pour déduire la géométrie de la scène. Néanmoins, cela signifie que le champ
de lumière est une modalité d’image riche en données, peu optimisée pour le stockage et
la transmission, et elle contient naturellement beaucoup de redondances. L’utilisation en
pratique des champs de lumière constitue donc un défi intéressant et important. D’une
part, nous souhaitons reconstruire la géométrie de la scène 3D aussi précisément que
possible à partir d’un champ de lumière capturé; d’autre part, nous espérons que cette
reconstruction pourra utiliser le moins de vues de champ de lumière possible. Nous posons
donc la question:

1.Comment estimer précisément et efficacement une carte de profondeur en utilisant
un petit sous-ensemble de vues dans un champ de lumière?

Pour répondre à cette question, nous proposons un algorithme d’estimation de dis-
parité prenant en entrée un ensemble parcimonieux de vues de champs de lumière. Les
techniques d’estimation basées sur les EPIs et les "focal stacks" n’étant disponibles que
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pour des champs de lumière densément échantillonnés, nous décidons d’utiliser une tech-
nique d’estimation par correspondance, couramment utilisée pour l’estimation de dispar-
ité dans les images stéréo. Cependant, appliquer naïvement des méthodes d’estimation de
disparité pensées pour des images stéréo sur des données de champs de lumière ne peut
que produire des estimations de faible qualité, avec des valeurs de disparité imprécises
dans les régions occultées. Puisqu’elles ne font usage que de deux vues, les informations
présentes dans les autres vues considérées ne sont pas exploitées durant l’estimation. Dans
cette thèse, nous cherchons à étendre la technique de correspondance en stéréo pour des
champs de lumière, afin de produire des prédictions de disparité à haute qualité avec
moins d’erreurs dans les régions occultés, en se basant sur plusieurs vues. En plus de cela,
nous souhaitons construire notre algorithme en utilisant des techniques d’apprentissage
profond, afin d’avoir un temps d’exécution nettement moins important que les méthodes
classiques.

Le deuxième problème abordé dans notre recherche peut être considéré comme une
extension du problème mentionné précédemment:

2.Pouvons-nous récupérer un champ de lumière entier à partir d’un petit sous-ensemble
de vues et les valeurs de profondeur estimées correspondantes?

Pour répondre à cette question, nous présentons un algorithme de synthèse de vues
pour les champs de lumière. Concevoir en détail une méthode de synthèse pose plusieurs
problèmes, qui se doivent d’être traités. 1) Bien qu’un algorithme d’estimation de pro-
fondeur ait été déjà proposé pour répondre à la 1ère question, il est important de ré-
duire encore davantage la taille du modèle, et de s’assurer de sa différentiabilité avant de
l’intégrer dans un modèle de synthèse de vues. 2) Les nouvelles vues sont synthétisées en
explorant les informations présentes dans les vues d’entrée, il arrive qu’à cause d’imprécisions
dans l’estimation de disparité, des pixels issus de différentes vues ne soient pas bien alignés,
donnant lieu à des régions floues dans les nouvelles vues. En particulier, quand la scène
comporte de nombreuses structures fines, et de nombreuses textures, ce flou peut dé-
grader significativement la qualité de synthèse finale. L’algorithme conçu doit pouvoir
traiter ce problème de flou issu du mauvais alignement de pixels, et mieux reconstruire
les structures fines, ainsi que les textures, dans les vues synthétisées. 3) Nous aimerions
que l’algorithme soit en mesure de reconstruire les champs de lumière pour une résolution
angulaire arbitraire.

Le deuxième travail dans cette thèse pose le problème de la synthèse de vues pour
les champs de lumières, et vise à répondre à ce trois difficultés, et nous croyons que
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cette méthode de synthèse de vues s’avèrera utile pour toute une série d’applications. En
effet, premièrement, un procédé de reconstruction qui n’utilise qu’un petit sous-ensemble
de vues pour la reconstruction de scène allégerait le stockage et la transmission que
les champs de lumière denses imposent généralement aux systèmes de transmission et
d’acquisition. Deuxièmement, certains champs de lumière capturés présentent une grande
disparité entre les vues adjacentes, ce qui conduit à des discontinuités perceptibles lors du
changement de point de vue. De tels champs de lumière sont difficilement utilisables pour
des applications immersives. Pour de telles applications, la reconstruction serait nécessaire
pour générer des perspectives plus denses ou pour synthétiser certaines perspectives qui
n’étaient pas disponibles auparavant (par exemple, des perspectives situées en dehors de
la grille de points de vue capturée). Un tel contexte fournit une motivation dans notre
travail pour développer un algorithme qui peut nous permettre de récupérer des champs
de lumière entiers à partir d’un échantillon clairsemé des vues capturées.

On fait l’observation que les séquences vidéo comme les séquences de champs de lumière
peuvent être considérées comme des échantillonnages d’une scène, l’une dans la dimension
angulaire et l’autre dans la dimension temporelle, et que des vues de champs de lumière
peuvent mener à des discontinuités en naviguant au sein de la scène. De même, des
séquences vidéo sous-échantillonnées peuvent mener à des mouvements saccadés. Face à
cela, nous étudions si la méthode de synthèse de vues proposée comme réponse à la 2e
question pour suréchantillonner la résolution angulaire du champ de lumière peut être
étendue encore davantage pour suréchantillonner une séquence vidéo. Ceci introduit le 3e
point de discussion de notre thèse.

3.Une architecture de synthèse de vue pour un champ de lumière peut-elle être général-
isée pour résoudre un problème de synthèse de vue temporelle?

De la même manière qu’une méthode de synthèse de vues en champs de lumière
peut être utile pour toute une série d’applications, un système d’interpolation vidéo est
également utile dans de nombreuses situations. Par exemple, en utilisant une méthode
d’interpolation vidéo, il est possible de générer des vidéos à grand nombre d’images par
seconde, ce qui est positif pour la perception humaine. Cela peut également s’avérer utile
pour des tâches de compression vidéo, où il est possible de stocker et transmettre les
images clé d’une vidéo, puis de reconstruire la séquence vidéo dans son intégralité en in-
terpolant les images intermédiaires. Ces applications importantes nous ont motivé à nous
pencher sur la question de l’interpolation vidéo.

Concevoir un algorithme générique, applicable pour de la synthèse de vues en champ
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de lumière et l’interpolation vidéo, n’est pas une tâche triviale. En effet, nous souhaiterions
que l’architecture du réseau change aussi peu que possible quand la tâche à traiter est
modifiée. D’un autre côté, l’algorithme proposé devrait être en mesure de produire des
résultats de qualité élevée pour les deux tâches, et ce même si les vues en champ de lumière
et les séquences vidéo ont des propriétés différentes. Il est important d’aboutir à une
méthode capable de traiter efficacement ces deux types de données. De plus, nous avons
identifié, dans notre système de synthèse de vues, des choix de conception proposés pour la
2e question qui peuvent limiter l’efficacité, pour l’entraînement comme pour le test. Dans
ce travail, nous nous intéressons également à ces composants sous-optimaux, et cherchons
à améliorer la performance globale en réalisant des nouveaux choix d’architecture.

En résumé, la réponse à chaque question posée jusqu’ici implique un problème beau-
coup étudié (estimation de disparité, synthèse de vue et interpolation vidéo) dans le
domaine de l’imagerie en champ de lumière ou du traitement vidéo. L’objectif global de
notre travail est de construire une série d’algorithmes répondant à ces questions. Ces
algorithmes peuvent être soit appliqués uniquement pour résoudre les problèmes susmen-
tionnés, ou servir de sous-modules pour résoudre d’autres problèmes liés aux champs de
lumière ou aux vidéos, par exemple, les méthodes pour le synthèse de vue de champ de
lumière peuvent être intégrés dans un pipeline de compression. De plus, nous essayons
de garder nos méthodes proposées suffisamment générales pour pouvoir s’adapter aux
données de champ de lumière synthétiques et réelles avec une large gamme de disparité,
voire applicables aux données vidéo. Grâce aux techniques d’apprentissage profond, nos
méthodes basées sur l’apprentissage sont applicables pour certains usages industriels, avec
une complexité de calcul raisonnable.

Résumé des contributions

La thèse est organisée de la manière suivante:
Le Ch. 1 donne une introduction générale sur l’imagerie par champ de lumière. Dans

la première section, nous donnons d’abord la définition des champs de lumière et intro-
duisons quelques notations utilisées tout au long de la thèse. Ensuite, nous résumons
les systèmes d’acquisition de champ de lumière, la visualisation des données et donnons
des exemples d’applications courantes. Nous présentons également brièvement les ensem-
bles de données de champ de lumière existants et leurs caractéristiques. Comme l’une de
nos contributions est de créer un jeu de données synthétique, nous présentons quelques
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paramètres de configuration et des détails techniques sur notre jeu de données créé. Dans la
deuxième section, nous nous concentrons principalement sur l’estimation de la profondeur,
la synthèse de vue et l’interpolation vidéo, ces trois problèmes liés à notre travail, et nous
résumons les méthodes de l’état de l’art dans chaque domaine en introduisant les principes
de ces méthodes.

Dans le Ch. 2, nous proposons un système d’estimation de la profondeur (ou de la
disparité) basé sur l’apprentissage qui convient à la fois aux champs de lumière échantil-
lonnés de manière dense et clairsemée. Le système proposé se compose de trois étapes de
traitement: un module qui estime la carte de profondeur initiale en se basant sur un réseau
d’estimation de flux optique, une opération de fusion avec traitement d’occlusion et enfin
un réseau de raffinement. L’estimation peut être effectuée à partir d’un sous-ensemble
flexible de vues d’entrée, qui utilise pleinement les informations à vues multiples dans un
champ de lumière. La fusion des cartes de profondeur initiales, reposant sur deux types de
mesures d’erreur de warping, nous permet d’avoir une estimation précise à la fois dans les
régions occultées et le long des contours. De plus, contrairement aux méthodes nécessitant
le calcul des volumes de coûts, notre approche ne nécessite pas de définir la gamme de
profondeur au préalable. Les résultats expérimentaux montrent que la méthode que nous
proposons a obtenu des performances supérieures à celles des méthodes de l’état de l’art
avec un sous-ensemble plus petit et plus flexible de vues d’entrée, et génère des cartes de
profondeur plus précises.

Dans le Ch. 3, nous présentons un système basé sur l’apprentissage profond pour
la synthèse de vues de champ de lumière à partir d’un sous-ensemble de vues d’entrée.
S’appuyant sur un réseau d’estimation de flux optique léger pour obtenir des cartes de
profondeur brutes, notre méthode utilise deux modules de reconstruction dans les do-
maines pixel et caractéristiques respectivement. Pour notre reconstruction au niveau
des pixels, les occlusions sont explicitement gérées par un filtre d’interpolation dépendant
de la disparité, tandis que l’inpainting sur les zones désoccultées est appris par des couches
convolutives. En raison des incohérences de disparité, la reconstruction basée sur les pixels
peut donner lieu à du flou dans les zones hautement texturées ainsi que sur les contours
des objets. Au contraire, la reconstruction basée sur les caractéristiques fonctionne bien
sur les hautes fréquences, ce qui rend la reconstruction dans les deux domaines complé-
mentaire. L’apprentissage de bout en bout est finalement effectué, notamment par le biais
d’un module de fusion fusionnant des reconstructions basées sur des pixels et des carac-
téristiques. Les résultats expérimentaux montrent qu’il atteint des performances d’état de
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l’art avec des ensembles de données synthétiques et réels. Et il est même capable d’étendre
la baseline du champ de lumière en extrapolant des vues de haute qualité sans nécessiter
d’entraînement supplémentaire.

Dans le Ch. 4, en se basant sur nos travaux précédents, nous proposons une architec-
ture résiduelle profonde qui peut être utilisée à la fois pour synthétiser des vues angulaires
de haute qualité dans des champs de lumière et dans des vidéos classiques. Le système
proposé consiste en un estimateur de flux optique optimisé pour la synthèse de vues, un
encodeur de caractéristiques pouvant être entraîné et un réseau convolutif résiduel pour
la reconstruction de vues basée sur les pixels et les caractéristiques. Parmi ces modules,
la mise au point de l’estimateur de flux optique spécifiquement pour la tâche de synthèse
de vue donne des informations de profondeur de scène ou de mouvement qui sont bien
optimisées pour le problème ciblé. En coopération avec l’encodeur pouvant être entraîné
de bout en bout, le bloc de synthèse utilise à la fois une synthèse basée sur des pixels et des
caractéristiques avec des blocs de connexion résiduels, et les deux vues synthétisées sont
fusionnées à l’aide d’un masque souple appris pour obtenir la vue finalement reconstruite.
Les résultats expérimentaux avec divers jeux de données montrent que notre méthode se
positionne favorablement par rapport à d’autres méthodes, avec un gain important pour
la synthèse de vue de champ de lumière. De plus, avec peu de modifications, notre méth-
ode peut également être utilisée pour l’interpolation vidéo, générant des images de haute
qualité par rapport aux méthodes d’interpolation. De plus, nous intégrons les méthodes
proposées dans Ch. 3 et Ch. 4 dans un système de compression de champ de lumière, mon-
trant ainsi que le nouveau système peut surpasser le codage HEVC inter pour le champ
de lumière et JPEG-Pleno avec un gain important en débit pour la tâche de compression.

Enfin, nous concluons notre thèse en résumant nos contributions et en discutant des
perspectives futures de nos travaux.
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INTRODUCTION

Context

Nowadays, multimedia consumers are searching for more realistic immersive expe-
riences in applications such as movies, visio-conferences, and video games. This rising
demand indicates a large commercial market and promising investment prospects, hence
draws a considerable amount of attention from both industry and academia.

Classic 2D images that have hitherto been widely used in photography and video
(where each frame is treated as an image) are merely a flat representation of a 3D scene,
in which depth information that is crucial for reconstructing the 3D scene is neglected.
This lack of geometry information makes 2D photographs unsuitable for applications that
require realistic 3D geometry reconstruction or a feeling of immersion in a 3D scene. Con-
sequently, new types of imaging that can store or easily reconstruct geometry information
are now coming into the spotlight, for example: RGBD images used in automobiles and
drones, stereo images used in augmented reality (AR) and virtual reality (VR), and light
field images such as those produced by new-generation commercial light field cameras.
Light field cameras capture a scene from different perspectives, thereby producing an
array of images that represents the captured scene as observed from different viewing
positions. Therefore, from a single exposure, it is possible to retrieve enough information
to at least partially reconstruct the scene geometry based on the captured light field. This
property has made light fields a promising imaging technology that has gained a lot of
interest over the past decade.

Besides 3D imaging, another trend that has appeared over the last two decades is
the development of data-driven algorithms. This has largely been triggered by significant
advancements in Graphics Processing Unit (GPU) technology. The new GPU technology
is powerful enough to support intensive computation in a very short time. For example, the
Intel Pentium released in 2000 can conduct 7 Giga floating-point operations per second
(7 GFLOPS), while the newest GPU Nvidia GeForce RTX 3080 released in 2020 can
manipulate 29.8 Tera FLOPS. Moreover, large-scale distributed systems of GPUs can
be used to take advantage of their joint processing capabilities. Thanks to these two
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factors, it is now feasible for data-driven algorithms to process massive amounts of data
and learn complicated patterns, which is hard or even impossible for classical methods.
Even for data-driven algorithms, one can witness that, as the computing power increases,
methods evolve from simple Linear Regression and Support Vector Machine (SVM) to
computationally intensive methods such as Deep Learning methods. Deep Learning has
also been shown to be able to deal effectively with a wide range of classical computer vision
problems, such as image super-resolution, classification, edge detection, segmentation, etc.
This has given rise to a series of exciting innovations in applications such as real-time
pedestrian detection, autopilot, painting style transfer, face synthesis, etc.

One should note that the developments of 3D imaging and Deep Learning are not
separate. On the contrary, many recent breakthroughs in 3D imaging have been achieved
with the help of Deep Learning-based methods. In the process, Deep Learning has also
successfully found more practical usage scenarios, waging a technological revolution in
fields like cinematography and computational imaging. Light field imaging is amongst the
new computational imaging modalities that is benefiting from the recent advances of Deep
Learning.

Motivation and Goals

A light field refers to the collection of light rays emitted by a 3D scene and seen from
any point of coordinates (x, y, z), along different orientations, in different wavelength and
at different time instants. The light field can thus be defined by a 7D radiance function
which can, under some assumptions detailed later in the manuscript, be simplified into
a 4D function with two sets of coordinates, the angular coordinates which can be seen
as different viewpoints and the spatial coordinates of the points on the scene. While a
fine angular sampling of the light field may require recording an infinitely high number
of directions, or viewpoints, in practice the number of viewpoints is limited and depends
on the capture device. The concept is therefore quite broad and encompasses structured
view captures on a plane with constant disparity between views, as well as unstructured
captures with e.g. a mobile phone with an un-constrained displacement in the scene. In
this thesis, we focus on structured light fields, which are a collection of images captured
from a number of structured viewpoints (normally more than 2 points of view), where
both two horizontally and vertically adjacent views always have equal baseline.

The observations from multiple viewing positions offer enough clues to infer the ge-
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ometry of the scene. Nevertheless, it means that the light field is a data-heavy image
modality, being unfriendly to both storage and transmission, and naturally contains a
lot of redundancies. This leads to an interesting and meaningful challenge for light field
practical usage. On one hand, we wish to reconstruct 3D scene geometry as precisely as
possible from a captured light field; On the other hand, we hope that this reconstruction
can utilize as few light field views as possible. We therefore pose the question:

1.How to precisely and efficiently estimate a depth map using a small subset of views
in a light field?

One straightforward solution is to apply a stereo image depth estimation algorithm
by taking a pair of views out of a light field, but this is not sufficiently precise and is
unable to handle occlusions due to the lack of multi-view information. This challenging
issue motivates us to develop a new, light field-specific algorithm that estimates depth
by making use of a limited number of perspectives. We would furthermore like to build
this algorithm based on deep learning, in order to take advantage of deep learning’s
computational efficiency.

The second challenging issue addressed in our research may be considered as an ex-
tension of the previously-mentioned issue:

2.Can we retrieve the entire light field from a small subset of views and the correspond-
ing estimated depth values?

The solution to this issue could be useful for a range of applications. This is because,
firstly, a reconstruction method that utilizes only a small subset of views for scene recon-
struction would alleviate some of the storage and transmission burdens that dense light
fields typically impose on transmission and display systems. Secondly, some captured light
fields have a large disparity between adjacent views, which leads to perceptible discon-
tinuities when changing viewing perspectives. Such light fields are hardly applicable for
immersive applications. For such applications, reconstruction would be required to gen-
erate denser perspectives or to synthesize some perspectives that were unavailable before
(e.g., perspectives located outside the captured viewpoint grid). Such a context provides
further motivation in our work to develop an algorithm that can enable us to retrieve
entire light fields from a sparse sampling of the captured views.

Although the proposed architecture for the previous issue enables us to upsample a
light field in the angular dimension based on given views, there are still some network
design issues for both training efficiency and test effectiveness. Therefore, we firstly focus
on improving the proposed scheme with novel designs. Then we take a fresh step from
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light field view synthesis problem to classical video frame interpolation by posing the
question:

3.Can a view synthesis architecture for light field be generalized to solve temporal view
synthesis problem?

As both light field and video sequence can be considered as scene samplings, one
in the angular dimension and the other in the temporal dimension. Undersampled light
field views may lead to perspective discontinuities when navigating within the scene,
and undersampled video sequence will likewise suffer from jerky motion. Therefore, the
motivation of this work is to generalize a network which is proven effective for light field
angular upsampling to solve a similar video temporal upsampling problem.

The overall goal of our work is to build a series of algorithms addressing some of the
most common challenges in light field processing or even video processing domains, such
as depth estimation, view rendering, frame rate up-conversion etc. These algorithms can
either be applied solely to solve the aforementioned issues, or serve as sub-modules to
address other problems related to light fields or videos, for example, methods for light
field view synthesis can be integrated into a compression pipeline. In addition, we try
to keep our proposed methods general enough to adapt to both synthetic and real-world
light field data with a wide baseline range, or even applicable to video data. Thanks to
deep learning techniques, our learning-based methods are practical for some industrial
usage with a reasonable computational complexity.

Thesis structure & Contributions

The dissertation is organised in the following manner:
Chapter 1 gives an overall introduction about light field imaging. In the first section,

we first give the definition of light fields and introduce some notations used throughout
the thesis. Then we summarize light field acquisition systems, data visualization and
give examples of typical applications. We also briefly present existing light field datasets
and their characteristics. As one of our contributions is to create a synthetic dataset, we
thus present some configuration settings and technical details about our created dataset.
In the second section, we mainly focus on depth estimation, view synthesis and video
frame interpolation these three problems related to our work, summarizing state-of-the-
art methods in each domain and introducing principles of these methods.

In Chapter 2, we propose a learning-based depth (or disparity) estimation frame-
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work that is suitable for both densely and sparsely sampled light fields. The proposed
framework consists of three processing steps: an initial depth estimation module based on
optical flow estimation network, a fusion operation with occlusion handling and finally
a refinement network. The estimation can be performed from a flexible subset of input
views, which makes full use of multi-view information in a light field. The fusion of ini-
tial depth estimates, relying on two types of warping error measures, allows us to have
an accurate estimation in both occluded regions and along the contours. Additionally, in
contrast with methods requiring computation of cost volumes, our approach does not need
any depth range prior. Experimental results show that our proposed method achieved su-
perior performance than state-of-the-art methods with a smaller and more flexible subset
of input views, and generates depth maps that are more accurate.

In Chapter 3, we present a deep learning-based framework for light field view syn-
thesis from a subset of input views. Building upon a lightweight optical flow estimation
network to obtain raw depth maps, our method employs two reconstruction modules in
pixel and feature domains respectively. For our pixel-wise reconstruction, occlusions
are explicitly handled by a disparity-dependent interpolation filter, whereas inpainting on
disoccluded areas is learned by convolutional layers. Due to disparity inconsistencies, the
pixel-based reconstruction may lead to blurriness in highly textured areas as well as on
object contours. On the contrary, the feature-based reconstruction well performs on high
frequencies, making the reconstruction in the two domains complementary. End-to-end
learning is performed finally including a fusion module merging pixel and feature-based
reconstructions. Experimental results show that it achieves state-of-the-art performance
with both synthetic and real-world datasets. And it is even capable to extend light field’s
baseline by extrapolating high quality views without additional training.

In Chapter 4, based on our previous work, we propose a deep residual architec-
ture that can be used both for synthesizing high quality angular views in light fields
and temporal frames in classical videos. The proposed framework consists of an optical
flow estimator optimized for view synthesis, a trainable feature extractor and a residual
convolutional network for pixel and feature-based view reconstruction. Among these mod-
ules, the finetuning of the optical flow estimator specifically for the view synthesis task
yields scene depth or motion information that is well optimized for the targeted prob-
lem. In cooperation with the end-to-end trainable encoder, the synthesis block employs
both pixel-based and feature-based synthesis with residual connection blocks, and the
two synthesized views are fused with the help of a learned soft mask to obtain the final
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reconstructed view. Experimental results with various datasets show that our method
performs favorably against other methods with a large gain for light field view synthesis.
Furthermore, with a little modification, our method can also be used for video frame
interpolation, generating high quality frames compared with interpolation methods. Ad-
ditionally, we integrate the methods proposed in Ch. 3 and 4 into a light field compression
pipeline, showing that the new pipeline can outperform light field HEVC inter coding and
JPEG-Pleno[2] with a large gain in terms of bitrate for compression task.

Finally, we conclude our thesis by summarizing our contributions and discussing the
future perspectives of our work.
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Chapter 1

BACKGROUND

1.1 Light field imaging

1.1.1 Definition for Light Field

The term ‘Light Field’ was first used by Gershun [3] to describe a collection of light
rays that pass through every point in 3D space along different directions. Adelson and
Bergen proposed the plenoptic function as a complete representation of a light field [4].
A plenoptic function is usually represented in 7-dimensional form as follows:

L(θ, φ, λ, t, Vx, Vy, Vz), (1.1)

in which variables Vx, Vy and Vz can pinpoint the position in 3D space. Variables θ and
φ are polar coordinates indicating light ray direction. Finally, the variable t denotes the
moment of observation, and λ is the wavelength of a certain light ray. In the case of a
static light field, the dimension t can be excluded, and λ can be also replaced by its RGB
components in a color system.

A simplified light field representation termed the ‘Lumigraph’ was proposed by
Gortler et al. [5], assuming that the rays traverse a space with no occlusion and that
the radiance stays constant along a light ray. The plenoptic function can consequently
be represented by the values of the radiance of rays intersecting two parallel planes. This
model based on two parallel planes is normally termed the ‘Two-plane parameteriza-
tion’[6] and is illustrated in Figure 1.1.

In Figure 1.1, the two intersection points are denoted (x, y) and (u, v) respectively.
The plane of (x, y) is termed the spatial plane as it describes the location of light rays
when passing through a single lens (if all the light rays traverse the same point (u0, v0), it
models a pinhole camera). The plane of (u, v) is termed the angular plane as it defines
the perspective (angle) of observation. A static light field is then represented as a 4D
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Figure 1.1 – Two-plane parameterization of the light field function.

function L(x, y, u, v) based on these two-plane parameterization. For the sake of notation
consistency, we adopt this 4D function to represent a light field in the rest of this thesis.

1.1.2 Light Field Acquisition Devices

Light fields sample a scene in both the spatial and angular dimensions. When a con-
ventional camera captures a scene, the light rays that come from different directions and
reach the same spot on the sensor are integrated, so important angular information is
consequently neglected. Therefore, this type of camera isn’t suitable for the acquisition
of light fields. Considering this limit of conventional cameras, more specialized devices
for light field acquisition have been proposed in recent decades. These light field capture
systems record the light rays’ intensities while also preserving their direction informa-
tion. Existing light field capture equipments can be roughly classified into four categories:
camera arrays, plenoptic cameras, camera with modulation masks and others.

Camera arrays

The key idea in the design of camera arrays is to employ multiple cameras placed at
different perspectives to increase the angular sampling. Based on this idea, both physical
equipments and 3D graphics software plugins have been created for capturing a light field.
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(a) MIT camera array (b) Stanford multi-camera array

Figure 1.2 – Camera arrays for light field acquisition. (a) MIT camera array with 64 cameras. (b)
Stanford camera array with 100 VGA video cameras. Figures are respectively from [7] and [8]

Physical equipment The first camera array was designed by Yang et al. [7] in 2002,
which is shown in Fig. 1.2(a). This camera array is composed of 64 cameras placed in a
8 × 8 grid, with resolution of each camera being 320 × 240. Additionally, this array can
capture light fields with a sampling rate of 18 FPS and a delay time of 80ms, meaning
that it supports real-time light field acquisition. Then in 2004, Wilburn et al. propose a
dense camera array [9] using 53 CMOS image sensors, which is able to capture light fields
with a higher sampling rate (30 FPS) and a higher resolution (640 × 480). They further
improve their work by proposing a larger-scale of camera array in 2005, the Stanford
Multi-Camera Array [8](shown in Fig. 1.2(b)), where 100 VGA video cameras placed on
a 2D grid can record live, synchronized video from all viewpoints at once, and light fields
are later obtained by post-processing these recorded video streams. There are also some
other camera arrays that have been built in recent years, both by academia and industry
(such as Technicolor’s camera array [10] for light field acquisition).

Since a camera array is composed of a set of synchronized cameras, the spatial resolu-
tion of a captured light field is dependent on the resolution of each single camera, and the
angular resolution is dependent on the total number of cameras used. It can hence capture
light fields with higher spatial resolution than plenoptic cameras (introduced in the fol-
lowing section), and also with reasonable angular resolution if there are enough cameras
installed and rectified. In comparison with plenoptic cameras, camera arrays have a larger
parallax or baseline, making captured light fields have larger disparity values between
angular views. High spatial resolution and large parallax allow camera arrays to support
many interesting applications, such as 3D reconstruction. Although camera arrays have
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such advantages, their shortcomings are likewise obvious: a complicated camera array is
not only expensive, energy-intensive and bulky, but also requires extra calibration and
synchronization procedures after installing all cameras, to make sure that every view is
well rectified. Such work is not trivial and sometimes necessitates engineering expertise.
A badly configured camera array tends to produce artifacts in captured views, or even
fails to generate usable light fields. Since image rectification and synchronization is not a
research focus in this thesis, we assume that all the light fields used in our work are well
rectified and synchronized.

Efforts are made by industries in recent years to reduce the cost and volume of cam-
era arrays, in 2013, Pelican proposed an ultra-thin monolithic camera array (shown in
Fig. 1.3) [11] designed for portable devices. Thanks to optical design optimization [12]
and applications of light field super-resolution algorithms [13, 14], it can record a 4 × 4
views, with each view being an 8 Megapixel JPEG image, or record light field video in
1080p with frame rate 30fps.

(a) Pelican camera array on a
chip

(b) Nokia Lumia powered by
Pelican camera array

Figure 1.3 – Pelican camera array on chip and corresponding portable equipment. Figures are from
website light-field forum [15].

3D graphics software As installing a physical camera array is always expensive
and complicated, it is not always available for some research usage. Here we introduce a
novel light field acquisition approach using camera arrays in 3D graphics software, which
is adopted in our research as well. This approach is based on the open source software
Blender [16] generally used for creating animation films, virtual games, 3D printed models
etc. After creating a virtual scene and setting up a camera array with proper configuration,
photorealistic light fields will be synthesized by a rendering engine after simulating all
lighting conditions and physical effects. Fig. 1.4 illustrates some examples from the user
interface of Blender, for rendering a light field. With Fig. 1.4(a) a raw model and camera
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1.1. Light field imaging

(a) Blender model and camera ar-
ray setting

(b) Blender rendered scene (c) Rendered sub-aperture image

Figure 1.4 – Blender user interface, with (a) Model and camera array setting page. (b) Rendered entire
scene. (c) Central sub-aperture image captured by camera array.

array grid, Fig. 1.4(b) the entire scene rendered using its Cycle engine, and Fig. 1.4(c) the
rendered central sub-aperture view. Let us note that in Fig. 1.4(c), the object materials,
shadows, reflections and other physical effects are well simulated by the rendering engine,
yielding realistic light fields applicable in research. Furthermore, as Blender supports film
animation with a variable frame rate, dynamic light fields generated by Blender with a
high frame rate will be useful for researches on light field video. Besides Blender, there
also exist some other graphics software that can be used for generating synthetic light
fields, such as Maya [17] and 3ds Max [18] with a commercial license.

Compared with a physical camera array, the largest advantage of using 3D graphics
software is its flexibility. Parameters such as camera baseline or sensor size, that are
almost impossible to be changed after installation of physical camera arrays, are easily
re-configured in 3D software.

Plenoptic cameras

The second category of light field acquisition devices is the plenoptic camera. The main
idea for its design is based on the work of Adelson et al.[21], where a single main lens is
incorporated along with a lenticular array placed at the sensor plane. Light rays bounded
by the main lens aperture will be re-organized by the lenticular array, allowing the camera
to provide information about how the scene would look from various perspectives along a
continuous trajectory. Thanks to the usage of microlenses, plenoptic cameras are compact
and low-cost. So far, there has been two kinds of plenoptic cameras on the market: the
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(a) Lytro 1st generation camera (b) Lytro Illum camera (c) Raytrix camera

Figure 1.5 – Commercial plenoptic cameras (unfocused 1.0 camera Lytro and focused 2.0 camera
Raytrix). (a) Lytro 1st generation camera. (b) Lytro Illum camera. (c) Raytrix camera. Figures are from
websites CLIM [19] and [20].

Lytro camera based on unfocused 1.0 design, which targets consumer market, and Raytrix
camera based on focused 2.0 design, which aims at industrial customers.

Unfocused 1.0 cameras The first commercial hand-held plenoptic camera has been
proposed by Ng et al. [22] in 2005 and later marketed as Lytro (shown in Fig. 1.5(a) and
1.5(b)) respectively in 2011 (Lytro 1st generation) and 2014 (Lytro Illum). The imaging
principle of Lytro (unfocused 1.0 camera) is illustrated in Fig. 1.6(a), a micro-lens array
is placed between the main lens and sensor, in the focal plane of the main lens. A bundle
of light rays passing through the main lens and focused on the image plane will simulta-
neously traverse the focal plane of micro-lens. And after passing through the micro-lens,
these light rays will be re-directed and will converge at infinity (i.e. never focused). Finally,
on the sensor area right behind each micro-lens, incoming light rays from different direc-
tions will be detected as different pixels. We name this collection of pixels behind each
micro-lens as a micro-lens image. By this design, the spatial resolution of captured light
fields is dependent on the number of micro-lenses in the array and the angular resolution
depend on the number of pixels within each micro-lens image. The micro-lens size (or
micro-lens number) of such a plenoptic camera is always determined by the aperture or
f-number of the mains lens, a too small micro-lens size will result in overlap of micro-lens
image, while a too large size will consequently leads to waste of sensor area.

Let us note that light fields captured by a Lytro is a collection of micro-lens images,
whose visualization will be introduced later in Ch. 1.1.3. The conversion from micro-lens
images to sub-aperture images necessitates a rearrangement of pixels by extracting co-
located pixels from each micro-lens image and placing them within an image, at spatial
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1.1. Light field imaging

(a) Unfocused 1.0 camera design (Lytro) (b) Focused 2.0 camera design (Raytrix)

Figure 1.6 – Optic designs of unfocused 1.0 camera and focused 2.0 camera. In (a), the focal plane of
micro-lens array overlaps the image plane of the main lens, hence a bundle of light rays focused on the
image plane will be re-organized into parallel rays after micro-lens array. In (b), micro-lens array will
focus on the image plane of the main lens, light rays focused on the image plane of the main lens will be
focused again by micro-lens array.

coordinates that correspond to their source micro-lens images.
In comparison with camera arrays, plenoptic camera is a much more compact piece

of equipment in lower price. Nevertheless, since spatial sampling and angular sampling of
scene share the same sensor, a denser angular resolution will inevitably lead to a sparser
spatial resolution. Limited by its aperture size, plenoptic camera has a smaller FOP than
a cameras array, which means a smaller disparity value between adjacent angular views.

Focused 2.0 cameras One can increase spatial resolution of captured light fields by
slightly changing optical design of plenoptic camera, this is the case of focused 2.0 cam-
eras (Raytrix [20], shown in Fig. 1.5(c)). The main difference in the optical setup between
unfocused 1.0 camera and focused 2.0 camera is the position of micro-lens array. The
micro-lens array is placed farther away from main lens, with whose distance to the image
plane of the main lens being larger than fMLA. This design makes the micro-lens array
focus on the image plane of the main lens (like shown in Fig. 1.6(b)). Or we can equiva-
lently consider each micro-lens as a pin-hole camera, each camera captures a fraction of
virtual image inside the camera. Objects that are in focus of the main lens (like object
A in Fig. 1.6(b)) will be mapped onto the sensor with a high spatial resolution, points
of objects that are out of focus of the main lens (such as object B in Fig. 1.6(b)) will be
captured by several micro-lens images on the sensor, hence encoding angular information
over these micro-lens images. The decoding of light fields captured with Raytrix neces-
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sities a pre-estimated scene depth and complicated processing algorithms. This type of
camera and bundled software are generally in high prices and mostly ordered by industry
communities.

Figure 1.7 – Camera with modulation mask. Light rays traversing the main lens will be modulated by
a translucent mask before being mapped onto the sensor. Figure on the left is schematic diagram, and
figure on the right is a realized camera. Figures are from the project website [23].

Cameras with modulation mask

Coded mask designs have been considered instead of micro-lens arrays to modulate 4D
light fields into 2D projections on the sensor, as shown in Fig. 1.7. Different reconstruction
algorithms can then be used to restore the light field from its 2D projection [24, 25, 26], and
the coded mask. The light field acquisition and reconstruction problems are formulated by
a compressive sensing framework, in which the sensing matrix is materialized by a coded
physical mask. Thanks to the use of a coded mask, instead of recording a spatial multiplex
of 2D slices of the light field, as in micro-lens based camera architectures, the photosensor
records a set of linear measurements from which a higher resolution light field can be
reconstructed. Babacan et al. [27] place a randomly coded mask on the aperture plane to
obtain incoherent measurements of the light field. Multiple shots are captured as random
linear combinations of angular images by separately opening one region of the aperture
and blocking the light in the others. The authors in [25] propose a camera architecture
that records optically coded projections on a single image sensor, while the authors in [28]
and [26] use respectively a random binary mask or a moving color coded mask affixed to
the sensor to extract incoherent measurements. The authors in [29] propose a multi-mask
camera model encompassing the colour filter array as well as the previous designs.
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(a) Stanford light field lego
gantry

(b) Smartphone application (c) Light field capture rig

Figure 1.8 – Light field acquisition systems. (a) Light field gantry with lego. (b) Unstructured light
field acquisition with a smartphone. (c) Spherical light field capture rig. Figures are respectively from
[34], [35] and [36].

While the previous methods rely on patch-based dictionaries with a sparsity assump-
tion for light field reconstruction from the set of sparse measurements, Choudhury et al.
[30] employ learned convolutional sparse coding features to synthesize light field views.
Light fields can also be reconstructed from a set of measurements using convolutional
neural networks (CNN) [31, 32, 33], given a pre-defined coded mask.

The advantage of cameras with modulation mask is that they can increase angular
resolution without decreasing spatial resolution. However, as the modulation mask is not
a transparent medium, light efficiency is decreased, which may lead to a lower signal-to-
noise ratio for the reconstructed light fields.

Others

In this thesis, we classify the acquisition methods that do not fall into the previous
categories as the fourth class, including the light field gantries, and apparatus for capturing
unstructured light fields. A light field gantry [34] is a specialized equipment to capture
light fields, where a digital camera is mounted on a gantry controlled by a computer to
move on a 2D plane (like shown in Fig. 1.8(a)). Although a gantry is easy to install and less
expensive than a camera array, it is only suitable for capturing static light fields. Recently,
applications of unstructured light fields have started becoming a hot topic in industry.
Views captured on an irregular grid can enable the reconstruction of more complex 3D
scenes. Several types of acquisition systems have been proposed. For example, in [37], the
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(a) Lumigraph obtained with a plenoptic camera (b) 8 × 8 sub-aperture views obtained by re-
organizing pixels of a lumigraph

Figure 1.9 – Visualization of a light field, with (a) lumigraph captured by Lytro Illum. (b) 8 × 8
subaperture views obtain by pixel re-organization. The light field used is from [1].

authors take advantage of the augmented reality toolkit available on a smartphone, to
develop an application for sampling unstructured light fields of a real scene such as shown
in Fig. 1.8(b). The authors in [36] propose a light field capture rig composed of 46 action
sports cameras mounted to an acrylicdome as shown in Fig. 1.8(c), to record immersive
light fields. Other equipments, such as the 16-camera rig in [38], have also been invented
to capture unstructured light field views.

1.1.3 Light Field Visualization

Lumigraph

As introduced in Sec. 1.1.2, by placing a micro-lens array between the main lens and
the sensor, a plenoptic camera captures a lumigraph, with the output of the sensor being
a matrix of microlens images. Pixels within the same microlens image are derived from
light rays having different orientations. Fig. 1.9(a) shows a lumigraph obtained with a
plenoptic camera. We can see that this lumigraph is not in focus, as the micro-lens array,
and not the sensor is placed in the focal plane of the main lens. Therefore, we need a
post-refocusing process to retrieve focused images at different focus planes.

Sub-aperture image

A lumigraph captured by a plenoptic camera places pixels from all angular views
within a single 2D plane. By re-organizing pixels from different angular viewpoints, we
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Figure 1.10 – Epipolar Plane Images (EPI) can be obtained by fixing one spatial and one angular
dimension like shown in the left figure. Corresponding horizontal and vertical EPIs are shown in the right
figure. The light field used is from [1].

can obtain a sub-aperture image array, where each image can be considered as an ob-
servation from a different perspective (e.g., as shown in Fig. 1.9(b)). Unlike a plenoptic
camera, which requires pixel re-organization to obtain sub-aperture images, camera ar-
rays and 3D graphics software can directly produce an array of sub-aperture images after
synchronization and rectification of cameras.

Epipolar Plane Image

Another way of visualizing a light field is an Epipolar Plane Image (EPI), which is
obtained by fixing one spatial and one angular dimension as shown in Fig. 1.10. Compared
with a lumigraph or sub-aperture image array, with an EPI it is difficult to have the whole
scene geometry information, as an EPI is merely composed of pixel vectors from a single
row or column of views. However, the slopes of lines on the EPI are related to the depth
values of corresponding pixels, so one can infer the geometry of the scene EPI by EPI.
Occlusion regions can also be identified by intersections of those lines. EPIs are widely used
to estimate the depth of a scene or to interpolate intermediate angular views. However,
EPIs can be used for depth estimation, by analyzing the slopes of 1D structures only in
the case of dense light fields. In the case of sparse light fields, large disparities between
views may cause discontinuity of the corresponding pixels in each angular view on the
EPI lines, hence leading to aliasing artifacts on the EPIs.
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1.1.4 Examples of applications

A light field samples a scene in both the spatial and angular dimensions, and the
angular information is important for a variety of applications such as, to give only a
few examples, computational photography with digital re-focusing, face recognition and
reconstruction, fluid flow reconstruction, object or material recognition, saliency detection.

Digital refocusing for computational photography

One typical application of light field data is computational photography with the
digital refocusing capability [22]. Images captured with a conventional camera always
have a determined focus plane after exposure, while with a light field, we can compute
photographs with a focus on different focus planes from a single exposure. The refocused
image Ip with the focus plane p can be obtained through a ‘shift-and-average’ algorithm
as follows:

Ip(u0,v0)(x, y) = 1
N

∑
(u,v)∈V

L(x− p(u− u0), y − p(v − v0), u, v), (1.2)

where (u0, v0) denotes the angular position of the reference view, V is a set of angular
positions around (u0, v0) and N is the total number of views in V . In Fig. 1.11, we show
a set of photographs focused on different depth planes after digital refocusing.

Figure 1.11 – Light field refocusing after a single exposure. From left to right, photographs are focused
from foreground to background. Figures are courtesies of [22].
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Face reconstruction and recognition

Light fields can also be applied in face reconstruction and recognition problems. 2D
facial images have been widely applied in the fields like security, mobile payment etc.
In this process, relevant methods for facial image super-resolution [39], feature point
detection [40], facial expression recognition [41] are correspondingly proposed to solve
problems in these applications. 3D face model has advantages over its 2D counterpart
in tackling challenges like variations in illumination, pose and scale. Reconstructing 3D
face from 2D image is an ill-posed problem as it lacks the important depth prior for pixel
projection. Existing methods such as Shape-from-shading (SfS) [42] or 3D Morphable
Model (3DMM) [43] either rely on priors of reflectance properties and lighting conditions,
but usually fail in retrieving facial details. In [44], the authors exploit the EPIs of captured
light fields, and employ a CNN to estimate facial geometry from the extracted EPIs for
further reconstructing corresponding 3D point cloud and surface mesh. Thanks to light
field images, they finally reduce construction errors by over 20% against state of the arts
on public datasets.

Light fields offer a new perspective for Presentation Attack Detection (PAD) of a face
recognition system. The presentation of biometric artefacts at the sensor level has been
one of the main dangerous attack forms for the biometric system, where an unauthorized
person can deceive the security system by presenting information of the genuine user
(e.g. by photos pre-printed or shown on a screen) to the sensor. And face recognition
system based on a single RGB image has quite limited discriminating capability for these
attacks. In [45], the authors apply light field cameras to replace conventional sensors
in a face recognition system, where multiple focus images rendered from each capture
instead of classical RGB images are analyzed by the system. The extracted focus variation
information is proven effective for detecting the presence of spoof.

LF PIV-based 3D fluid flow reconstruction

3D fluid flow reconstruction has been a widely investigated problem in the engineering
and scientific fields. Particle Imaging Velocimetry (PIV) that estimates the motions of par-
ticles injected inside the fluid is one of the standard solutions for this flow reconstruction
problem. However, challenges still exist in the usage of PIV, since particles have similar
appearances and are distributed at different depths, occlusions among them increase the
tracking difficulty as well. Light field imaging is shown to be an effective solution for this
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application, this is the work in [46]. The authors rely on the post-capture refocusing ca-
pability of light fields, using focal stacks to establish correspondences between particles at
different depths. The focal stack symmetry property is also exploited to estimate accurate
depths for those heavily occluded particles. Experimental results show that, in coopera-
tion with other processing steps, this LF PIV-based solution finally yields an accurate 3D
fluid flow reconstruction.

Material and object recognition applications

There are some other applications that make use of the angular information provided
by light fields, and yield promising results. For example, the authors in [47] carry out a
material recognition task on light field data by measuring the intensity variation under
different viewing angles, and they gain 7% better recognition compared to using classical
images. In [48], the authors propose a novel scale-invariant feature detector and descriptor
that is built upon 4D light field data, which shows its usefulness for structure from motion
and other tasks that match features across viewpoints of a scene. Light field imaging
having additional angular patterns is also an effective alternative to RGB imaging in
the detection of salient regions. The authors in [49] design a CNN dedicated to light
field microlens image data, and show that it outperforms other, regular 2D image-based
saliency detection methods.

In this section, we have summarised just a few applications of light fields, but there
are many more computer vision applications that can also benefit from using light fields,
e.g. , image segmentation [50].

1.1.5 Light field datasets

In this chapter, we will briefly introduce some public light field datasets that are
commonly used by the research community and also in our work. Moreover, as a part of
our contributions, we have also created our own synthetic light field dataset with the help
of 3D graphics software Blender.

Real-world LF dataset

UCSD Illum dataset The UCSD Illum dataset was first proposed in the work of
Kalantari et al. in [1], where they constructed a light field dataset captured with a Lytro
Illum camera. The training set for this dataset contains 100 scenes (28 scenes are imported
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from the Stanford Light Field Archives [51]), and the test set includes 30 scenes. All the
scenes were with resolution 376 × 541 × 14 × 14. As the border views of a decoded light
field are usually black, we use the central 8× 8 views for training and for testing.

INRIA Illum dataset Like the UCSD Illum dataset, the INRIA Illum dataset is
another real-world light field dataset captured with a Lytro Illum camera. It is composed
of 58 light field scenes with a resolution of 376×541×14×14 without gamma correction.
In our work, we use only the central regions of captured light fields, due to the same
reason as with the UCSD Illum dataset.

There also exist other real-world light field datasets captured with a plenoptic camera,
such as the EPFL LF dataset [52], the Stanford Light Field Archives [51] captured with a
Lytro camera, the Light Field Video dataset captured with Raytrix [53] etc. We will not
make an exhaustive introduction of these datasets here, as we have not used them for the
work in this thesis.

Synthetic LF dataset

HCI synthetic dataset As mentioned earlier, 3D graphics software is a powerful
tool for generating photorealistic light fields. One well-known synthetic light field dataset
created with Blender is the HCI dataset (HCI old) proposed in [54]. This dataset contains
5 light fields with resolution 768 × 768 × 9 × 9 (stilllife, buddha, buddha2, butterfly,
monasRoom), 1 light field with resolution 1024 × 768 × 9 × 9 (medieval) and 1 light
field with resolution 1024× 576× 9× 9 (horses). The disparity maps for all the views are
also provided.

Another synthetic light field dataset, proposed in [55], is the 4D Light Field Benchmark
(or HCI new). This dataset includes 28 light fields with resolution 512×512×9×9. Among
them, 16 scenes in the ‘Additional’ category are provided with disparity maps for all the
views, whereas for the 8 others in the ‘Stratified’ and ‘Training’ categories, the disparity
information is available only for the central view. Disparity maps for the 4 scenes in the
‘Test’ category are not accessible, for the sake of online competition.

INRIA synthetic dataset The supervised learning of CNN models for depth or
disparity estimation [56, 57] requires large datasets with ground truth disparity informa-
tion. However, for existing datasets with ground truth disparity, the quantity and scene
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Figure 1.12 – Examples of scenes from our two datasets. The 1st and 2nd rows show four scenes and
the corresponding disparity maps from SLFD, while the 3rd and the 4th rows show four examples of
scenes and the corresponding disparity maps from DLFD.

variety of light field data are not sufficient for training a model. In addition, these datasets
are limited to densely sampled light fields with narrow baselines.

Considering these limitations of light field datasets, we have created two synthetic
datasets: a Sparse Light Field Dataset (SLFD) including 53 scenes with disparity range [-
20,20] pixels between adjacent views, and a Dense Light Field Dataset (DLFD) containing
43 scenes with disparity range [-4,4] pixels. Each light field has the same resolution of
512× 512× 9× 9 as the light fields in the HCI new dataset. Both SLFD and DLFD are
provided with the disparity and depth maps for every viewpoint in the light fields. To the
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best of our knowledge, SLFD is the first sparsely sampled light field dataset that provides
ground truth depth and disparity information for every light field view.

The rendering of the light field scenes is performed with the open source software
Blender and a light field generation addon, whose installation and usage are detailed in
https://github.com/lightfield-analysis/blender-addon . The elementary models
are downloaded from the websites Chocofur [58] ad Sketchfab [59] with a non-commercial
CC license, and are assembled to create various 3D, mostly indoor scenes. The scenes
contain textureless background, specular reflection, diffusion and object occlusion, which
makes our dataset useful to measure the effectiveness of depth estimation algorithms.
The 3D scene models in SLFD and DLFD are partly shared, but they are rendered with
different camera baselines. Fig. 1.12 shows some examples of light field scenes and their
corresponding disparity maps. As two HCI light field datasets have same disparity range
as our DLFD, we can mix the HCI light field scenes with our DLFD when training a
network.

Other datasets

Apart from light field datasets captured with a plenoptic camera or rendered with
Blender, datasets captured with camera arrays are also available. The latter include, for
example, the Google camera array dataset in [60], which contains 6 calibrated light fields
of 5× 5 views, or the dataset ‘Space’ proposed in [38], which contains unstructured light
fields captured with a 16-camera array etc. Here we will not detail much these datasets,
as they are not the focus of our work.

1.2 Scene depth from light field and view synthesis:
State of the art

In Ch. 1.1.4, we listed some novel applications powered by light fields, in which vision
problems that are usually hard for classical images to handle are well tackled thanks to
directional information of light fields. Albeit useful in such applications, light fields still
need to face many challenges caused by their acquisition hardware, data redundancy etc.
before a larger-scale adoption. Depth (or disparity) estimation and view synthesis from
light fields, amongst these challenges, are two widely investigated topics and involve a
large variety of practical usages. For example, the aforementioned facial reconstruction
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and fluid flow reconstruction both involve estimating scene depth from captured light
fields, and accurate estimates will certainly favor the following reconstruction procedures.
View synthesis shows its importance in solving the spatio-angular trade-off of plenoptic
cameras, and in applications like augmented and virtual reality which necessitate contin-
uous perspectives when navigating within the scene. Let us note that depth estimation
and view synthesis are tightly related problems, since synthesizing novel views sometimes
relies on scene geometry as a prior for image warping.

Our work in this thesis mainly encompasses the problems of depth estimation and
view synthesis from light fields. Additionally, although originally designed for light fields,
our view synthesis solution is further extended to fit video sequences, as methods for light
field view synthesis and video frame interpolation follow very similar principles. In the
following sections, we will give an overview of prior work on depth estimation from light
field and on view synthesis (from both light field and video sequence).

1.2.1 Light field depth estimation

Scene depth estimation is a highly-studied problem in the computer vision domain,
and it is indeed needed for a variety of processing problems such as 3D reconstruction
and view synthesis. Approaches using monocular image [61, 62, 63, 64, 65] or stereo image
pairs [66, 67, 68, 69, 70, 71, 72, 73, 74, 75] for scene depth estimation have been widely in-
vestigated in recent decades. In comparison with those using a single RGB image or stereo
image pair, methods using a light field have more available directional information of the
scene to yield accurate predictions, especially in the occluded regions. As a consequence,
depth estimation from light fields has become a novel active field with the emergence of
commercial light field cameras.

We can classify the depth estimation methods into three categories according to the
type of data used (EPI, sub-aperture view and focal stack), i.e. EPI-based approaches,
pixel matching-based approaches and focal stack-based ones.

For those densely sampled light fields with small baselines, the corresponding pixels
in different views of a light field form a line in an EPI, whose slope is proportional to the
disparity value [76]. This property is employed to estimate depth by analyzing the spe-
cific linear structures in the EPI. For example, the authors in [77] use structure tensors
to locally estimate these slopes, then this local estimation is placed in a global opti-
mization framework using a variational approach. The authors in [78] propose a spinning
parallelogram operator for disparity estimation in the EPI, accompanied by a confidence

40



1.2. Scene depth from light field and view synthesis: State of the art

measure to handle ambiguities and occlusions. Recently, classical analysis of EPI struc-
ture is replaced with deep neural networks, where EPI stacks are taken by a network to
estimate a disparity map of the reference view. In [57], the authors concatenate the views
in the same row to form an EPI volume, and feed it to a 3D convolution-based U-Net
architecture [79] to estimate disparity maps for all input views. Albeit more efficient than
non-learning-based approaches, it predicts disparity maps containing severe artifacts on
the object contours. While in [80], instead of using EPI volume formed in one single di-
rection, the authors propose a multistream architecture that takes EPI volumes formed in
four directions (horizontal, vertical, left and right diagonal) and outputs a disparity map
for the reference view. The exploitation of multi-directional EPI volumes deters contour
artifacts in disparity maps, and achieves state-of-the-art performance. However, the ar-
chitecture in [80] is constructed using 2D convolutional layers, which means the number
of views used to form EPI volumes is fixed, users have to train several models for light
fields in different angular resolutions. EPI-based methods depend on the linear structure
in the EPI, hence are well suited for densely sampled light fields with small baselines, but
fail for light fields with large baselines, as the linear structure is destroyed due to severe
aliasing artifacts.

In the case where light fields are with large disparity values, pixel matching-based
approaches show their superior performance in estimating accurate disparity maps. In
contrast to EPI-based methods, pixel matching-based schemes adopt techniques from
classical stereo reconstruction, i.e. , matching corresponding pixels in all sub-aperture im-
ages of the light field, essentially using robust patch-based block matching. To give a few
examples, the authors in [81] estimate disparity by computing a matching cost volume
between the central sub-aperture image and sub-aperture images warped using the phase
shift theorem. Besides matching pixels across multiple views, the matching procedure can
also be carried out on several stereo image pairs. In [82], after dividing a light field into
several stereo image pairs, the authors estimate corresponding disparities through a mul-
tiscale and multiwindow (MSMW) stereo matching method, and then process them with
an optical flow-based interpolation. The final disparity is obtained by a median fusion of
the initial disparities. The approach in [83] consists of estimating disparities between the
four corner views, then propagating them to the target viewpoint. Correlation between
viewpoints is exploited by a low rank approximation model to cope with occlusions. The
authors in [84] employ an empirical Bayesian framework to estimate scene-dependent pa-
rameters for inferring scene disparity. This algorithm is free of additional cues exploiting
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dense view sampling, hence it is relevant for both dense and sparse light fields. Methods re-
lying on stereo matching in their pipelines may adopt state-of-the-art disparity estimation
methods [56, 85] or optical flow estimation methods [86, 87, 88, 89, 90] to ensure accurate
initial disparities. This is the case of [91], where the authors employ a state-of-the-art op-
tical flow estimation network FlowNet 2.0 [87] to predict accurate disparity candidates,
then propagating them from input viewpoints to the target position and performing an
occlusion-aware soft 3D reconstruction. In comparison with EPI-based approaches, pixel
matching-based approaches are more suitable for light fields with large baselines, e.g. light
fields captured using camera arrays, but are more sensitive to lighting conditions varia-
tions. The change of lighting from one view to another may lead to massive mismatched
pixels.

The last category of depth estimation methods is based on focal stack. A focal stack
refers to a collection of images focused at different depths. Scene depth can be estimated by
analyzing either focus variation (depth from defocus) or sharpness of pixels in a sequence
of images (depth from focus). By digital refocusing, a light field can be used to produce
a synthetic focal stack for scene depth estimation. Here, we take the work in [92, 93]
as examples. The authors in [92] propose a pipeline that combines both defocus cue
and correspondence cue to estimate scene depth. They first construct 2D slice of EPI
by considering horizontal spatial dimension and vertical angular dimension. Then the
defocus cue is obtained by computing the horizontal spatial variance after vertical angular
integration, and the correspondence cue by computing the vertical angular variance. To
exploit the strengths of both cues, they finally fuse two local estimates into a high quality
depth map using Markov Random Fields (MRFs). While in [93], the authors propose a
depth estimation pipeline by exploiting two features of the focal stack: one is the symmetry
of the non-occluded pixel along the focal depth dimension centered at the in-focus slice.
The other is the data consistency between synthesized focal stack using estimated depth
and that computed directly from the light field. And an iterative optimization procedure is
finally carried out to incorporate both features for obtaining better depth maps. Although
a focal stack is easy to be produced from light field captures, the depth estimated from
focal stack, when compared with those from the other two types of approaches, is still
prone to artifacts and less accurate. In addition, focal stack-based approaches are generally
used for densely sampled light fields with small baselines, since sparsely sampled light fields
with large baselines will generate focal stacks full of artifacts.
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1.2.2 Light field view synthesis

Like we have introduced previously, light fields captured with plenoptic cameras suffer
from a spatio-angular trade-off, this problem is addressed by applying super-resolution
(SR) algorithms to enhance the resolutions in the spatial (spatial SR) [94, 95, 96, 97],
angular (angular SR or view synthesis) [1, 60, 37, 98] or both (spatio-angular SR) di-
mensions [77, 99]. One main aspect of our work in this thesis is about light field angular
SR or view synthesis. The problem of view synthesis consists of generating novel views
based on a set of camera captures. A straightforward solution to this problem is to first
estimate the scene’s 3D geometry as a prior, novel views are then obtained by projecting
given views to the desired viewpoints. However, 3D modeling of the scene is not trivial,
in the case where the scene contains complex structures, a poorly constructed 3D model
may lead to synthesis failures. We put this type of global geometry-based methods aside
from our discussion since accurate 3D reconstruction appears to be another long story.

Depth-dependent schemes

Instead of using global geometry of the scene, a more practical manner to realize
view projection is to employ local geometry i.e. scene depth, in an explicit form of depth
map, or implicit forms of Plane Sweep Volume (PSV), Multi-Plane Image (MPI) etc.
We classify this family of synthesis methods using scene depth into the first category as
depth-dependent schemes.

A typical depth-dependent synthesis pipeline involves two-stage processing: first esti-
mating a depth map, then warping the source views based on the estimated depth and
blending them into the target view. Efforts to improve such a Depth Image-Based Ren-
dering (DIBR) pipeline consist in reducing depth errors and in handling non-Lambertian
surfaces in the scene. Taking the work in [100, 77] as examples, the authors in [100] adopt
the superpixels augmented with synthesized depth to operate a local shape-preserving
warping which compensates for depth inaccuracy. The warped views are merged, with
weights specified by camera orientation but also the reliability of depth information in
each warped superpixel. While the authors in [77] impose some smoothness constraints in
EPIs when synthesizing novel views. They first propose a 2D structure tensor to estimate
disparity values in EPIs, then based on the estimated disparity map, they warp views to
the target position and optimize final synthesis results under a smoothness constraint in
EPIs.
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In recent years, deep neural networks have shown great success in coping with vari-
ous computer vision tasks, and learning-based DIBR pipeline has also been investigated.
In [1], the authors cascade two convolutional networks to synthesize the intermediate
views with given four corner views, whose input is the concatenated means and standard
deviations computed among four corner views warped from source positions to the tar-
get position using a series of discretized disparity values. The first network analyzes the
mean and standard deviation features to predict a depth map. After backward warping
four corner views to the target position with the learned depth map, the second CNN
blend these warped views to output the color of the target view. In comparison with a
non-learning-based DIBR approach, end-to-end training such a learning-based pipeline
merely requires minimizing synthesis error between the final output and ground truth,
without paying much attention to the intermediate depth accuracy. However, this net-
work, mostly designed for dense structured light fields, fail in occluded regions, especially
for sparse light fields having large parallax. Due to the depth imprecision, the synthesized
views also suffer from blurriness, tearing and ghosting effects. The authors in [101] con-
struct a similar architecture as in [1] to retrieve a densely sampled light field from a single
image, where the first network estimates the scene depth, and the second one tackles ray
occlusions. This scheme is only suitable for retrieving densely sampled light fields having
simple scenery.

Both of the work in [100, 1, 101, 77] involve predicting an explicit depth map for the
following image warping procedure. Recently, methods using implicit depth priors such as
PSV, MPI, sheared EPIs and multiple depth candidates have likewise yielded promising
synthesis results. Instead of using a depth map, the authors in [60] propose a soft model
of scene geometry that retains uncertainty in form of a distribution over depth values,
from which they further formulate soft visibility functions used for depth refinement as
well as for view synthesis procedures. Final synthesis is a blending of K nearest views
with weights based on consensus and visibility scores, where consensus scores give the
probability for a pixel coordinate (x, y) of a given camera that the input views agree for
sampled depths defined within the interval [zmin, zmax], and visibility scores measure how
much a pixel coordinate can still see through the scene from a sampled depth within the
interval [zmin, zmax]. Although being able to generate smooth and plausible renderings of
difficult content, textureless regions and soft object edges, the iterative optimization and
blending score computation make this algorithm computationally intensive and memory-
consuming for its practical application.
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More efficient algorithms are proposed by combining deep learning techniques and
implicit depth priors. In [98], the authors shear EPIs with different disparity values, and
train a CNN to score each sheared EPI, the final synthesized view is a blending of sheared
EPIs according to their confidence scores. Like EPI-based solutions proposed for other
vision tasks, this EPI-based synthesis pipeline is only suitable for densely sampled light
fields. Furthermore, one can observe a synthesis quality degradation when the target view
is distant from the source views. Besides sheared EPIs, MPI is also proposed for view
synthesis problem, especially for those with large baselines. The MPI representation is
generally composed of color images and corresponding alpha maps, the multiplication of
both will produce a set of scene slices, with whose pixels belonging to a certain depth
range. The authors in [102] employ MPI representation to realize baseline magnification
by extrapolating novel views from narrow-baseline captures. In the same vein, the authors
in [37] adopt MPIs for light field view interpolation task. They construct a 3D convolution-
based network that takes PSV to predict MPI (including color images and transparency
maps) for each input view, then warp these MPIs to the target position and merge them
via a weighted combination. The usage of 3D convolutions in the architecture makes it
capable to support a variable number of input views, and the usage of MPI has shown its
power for wide-baseline view synthesis task. Nevertheless, as this method is designed to
synthesize novel views from unstructured inputs, it is necessary to estimate the camera
pose for each view. The camera pose estimation is always time-consuming and sometimes
fails due to insufficient input views and small parallax. In comparison with MPI, of which
each slice corresponds to a certain depth, the authors in [103] propose the notion of depth
probability volume, for image warping procedure and selection of image patches for view
refinement. This method shows better view extrapolation effectiveness than the work in
[102].

Here, we just want to remind readers that methods in [1, 98, 37] all involve the appli-
cations of PSV, but in different manners: the authors in [37] directly use PSV as input
of their CNN to learn MPIs, while the authors in [1] calculate means and standard devi-
ations of the PSV as input features. The authors in [98] use sheared EPIs, which can be
considered as a variant of PSV, as EPI is sheared with different depth values. The form
of EPI used is always related to the algorithm designs.
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Depth-independent schemes

The methods mentioned above depend on the estimated scene geometry. While in
parallel, methods exploiting signal priors, e.g. sparsity priors in the 4D Fourier domain,
sparsity in the shearlet transform domain, smoothness on EPI have also been proposed
for view synthesis. We classify this category of synthesis methods as depth-independent
schemes.

The sparsity of Fourier domain is an important property of densely sampled 4D light
fields, which has been exploited to reconstruct entire light fields from a small set of sam-
ples. The authors in [104] propose a linear view synthesis pipeline using the dimensionality
gap of light fields as a prior. This dimensionality gap states that the 4D Fourier transform
of light fields includes only a 3D subset of entries whose energy is significantly higher than
zero. In the pipeline, they first construct a focal stack by performing a ‘shift and average’
operation on a set of views sampled on 1D circular or grid trajectory. Novel views are then
rendered by applying a spatially uniform, depth-invariant deconvolution to the focal stack.
Observing that much of sparsity in continuous spectra is lost in the discrete domain due
to the windowing effect, and this loss of sparsity can severely limit reconstruction qual-
ity, the authors in [105] propose a synthesis algorithm that recovers a discrete signal by
optimizing for sparsity in the continuous domain. More specifically, under a k-sparsity
assumption, the Continuous Fourier Transform (CFT) of light fields can be decomposed
of k continuous positions of frequencies ωi and corresponding coefficients ai. The synthesis
step consists of optimizing the set of {ωi, ai} by minimizing the reconstruction errors with
a gradient descent approach. The initialization of the algorithm requires sampling light
field views in a specific 1D pattern, for example, box and two diagonals, which in general
limits its practical usage.

Light field view synthesis problem can also be tackled using EPIs in different man-
ners. In [106], the authors model the light field view synthesis as a learning-based detail
restoration in the EPIs. They first apply a bi-cubic angular interpolation on input EPIs
from which spatial high frequencies have been removed and use a CNN to restore details
in the angular domain of the interpolated EPIs. The spatial details are then recovered by
a non-blind deblur operation. While the authors in [107] consider the view synthesis prob-
lem as inpaintings in EPIs, they aim at reconstructing EPIs of densely sampled light fields
from its sparse counterpart, by performing regularization in discrete Shearlet transform
domain. It shows superiority in coping with semi-transparent objects. Note that both of
[106] and [107] realize view synthesis EPI by EPI, hence are naturally time-consuming.
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More efficient EPI-based synthesis can be achieved by operating on EPI stacks. The au-
thors in [108] build a pseudo 4D CNN for reconstructing densely sampled light field from
sparse samples, where 4D neural network is composed of 2D strided convolutions for up-
sampling EPI stacks, and a 3D CNN connected with angular conversion operation for
recovering details.

Methods exploiting spatial-angular cues for light field reconstruction are proposed
recently, this type of methods is able to handle both angular and spatial super-resolution
at the same time. To give a few of examples, the authors in [109] describe a spatio-angular
restoration network using 4D convolutions and high-resolution residual blocks, in order
to extract spatial features that preserve geometrical properties. And the authors in [110]
propose a two-stage pipeline which first generates the whole set of novel views, and then
refines spatial texture details. However, these methods can synthesize novel views with
a pre-defined angular upsampling rate (e.g. 2 × 2 to 7 × 7), changing upsampling rate
necessitates to training a new model from scratch.

1.2.3 Video frame interpolation

Light field view synthesis and video frame temporal interpolation methods follow very
similar principles. Although developed in parallel with methods specific to one problem or
to the other one, like those proposed for light field view synthesis, video frame interpolation
methods can be similarly classified into two categories: one category of methods which first
estimate optical flows later used to warp input frames. The second category of methods
does not rely on explicit estimated motion but instead relies on signal priors that are
specific to the input data characteristics.

Flow-based interpolation

Flow-based methods consist in first estimating optical flows between given frames, and
then in interpolating target frames along the motion vectors. This problem of video frame
interpolation can be solved in a multiple frame context for better handling occlusions. To
give an example, the authors in [111] propose a frame rate up-conversion framework using
four consecutive frames as inputs. It first estimates four initial motion vectors (MVs) for
given frames. The four initial MVs are then used to temporally interpolate the intermediate
MVs, and in the determination of the interpolated MVs, the authors employ temporal
matching error and spatial variation of MVs to define a reliability measure for handling

47



Chapter 1 – Background

occlusion areas. Finally, frames warped with the interpolated MVs are fused into a single
frame via a variational image fusion process. Interpolation methods using multiple frames
on one hand is able to better handle occlusions and motion ambiguities, on the other
hand, is more computationally intensive than those with two frames.

More work using two consecutive frames is proposed for the frame interpolation task.
Observing that frame interpolation implicitly solves for dense correspondences between
the input image pair, the authors in [112] propose an approach called Mind (matching
by inverting a deep neural network) to trace back pixel matches from the interpolated
frame generated during the forward-propagation through the trained network. They re-
alize the frame interpolation but with more focus on inferring correspondences between
input frames, the generated frames contain lots of artifacts such as ghosting effects and
blurriness.

The authors in [113] were the first to introduce an architecture with an unsupervised
learning of the optical flow. Similarly to the classical fully convolutional approaches, their
Deep Voxel Flow (DVF) network is trained end-to-end to interpolate an intermediate
frame from two consecutive input frames. The last layer of the network is a non-trainable
interpolation function interpolating the previous layers output and the input frames. The
network thus learns to estimate a kind of optical flow and a temporal mask for the
trilinear interpolation layer. The network outputs a voxel flow which represents the per
pixel displacement (dx, dy) and a temporal mask dt weighting the trilinear blending.
Similar to [112, 113] where the optical flow is learned in the frame interpolation context,
the authors in [114] couple a flow estimation network to a video processing component,
then jointly train them to obtain a task oriented flow (TOFlow) and processed video
frames.

The authors in [115] propose a double U-net pipeline where the first U-net takes two
input frames to predict bi-directional optical flows. The predicted flows are then linearly
combined to approximate the intermediate bi-directional optical flows. The second U-net
is used to refine the intermediate optical flows as well as to predict soft visibility maps
in order to handle motion boundary artifacts. Based on visibility maps and refined flows,
two input frames are warped and linearly merged to get intermediate frames. Since none
of their learned network parameters is time-dependent, their approach is hence able to
synthesize as many intermediate frames as possible, producing a ‘slow motion version’ of
the input video.

Most of the above interpolation methods assume that brightness is constant and mo-
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tion is linear. However, for videos containing complicated motions and brightness, syn-
thesis based on this assumption may lead to imprecise results or even artifacts. Consider-
ing this limitation, the authors in [116] describe brightness and position with high-order
model, in order to predict video content more accurately. More precisely, they approxi-
mate the pixel intensity with a 1st-order polynomial composed of a constant part and an
inter-frame variation part, and the position with a 2nd-order motion trajectory including
an acceleration term and a linear motion term. The coefficients are optimized through
the minimization of an auto-regressive prediction error energy term and a reconstruc-
tion error energy term. More visually pleasant interpolated frames are then produced
with the help of these two polynomials. The final frame is synthesized by performing a
motion-compensated interpolation by pixel-wise intensity variation and motion trajectory.
However, optimization of two energy terms makes this scheme time-consuming and less
practical for usage.

For flow-dependent schemes, the precision of the estimated optical flows can determine
directly the quality of the final synthesis. To better predict optical flows between input
frames, in recent years, some frame interpolation methods adopt off-the-shelf state-of-the-
art flow estimation networks in their pipelines. For example, the work in [117, 118, 119]
all employ a state-of-the-art flow estimator ‘PWC-Net’ [90] to predict motion vectors be-
tween frames, the advanced PWC-Net shows its effectiveness in estimating more accurate
optical flows, especially for those with large motions. The authors in [117] use optical
flows predicted with PWC-Net to warp input frames as well as their deep feature maps
(named contextual information in their work) to the target instant and blend them with
another synthesis network. The application of contextual features improves the quality of
details in the synthesized views. Since this scheme is not end-to-end trainable, the flow
estimation and the view synthesis step are carried out one after another, predicted mo-
tions are thus not optimized for the synthesis task. Besides, occlusions are tackled with
the help of contextual information in the synthesis procedure, but not explicitly handled
in the warping procedure.

Observing that pixels of a closer object should cover those of a further object in the
case of occlusions (pixel overlaps), the authors in [118] propose a depth-aware video frame
interpolation architecture that explicitly copes with occlusions using scene depth, where
they employ an off-the-shelf optical flow estimation network [90] and a single image depth
estimation network [120] respectively for flow and depth inferences. An adaptive warping
layer controlled by optical flow and depth is then used to warp the input frames, depth
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maps, contextual features and optical flows to the target instant. A synthesis network
finally takes these warped tensors and local interpolation kernels as inputs to produce
the output frame. Nevertheless, as we all know, single image depth estimation is a tough
task. The trained depth estimation model can not always produce reliable depth maps
for all types of scenes, which has consequently become a drawback of the proposed frame
interpolation method.

Warping errors are used instead of depth information to handle occlusions in [119].
This is based on the observation that pixels having larger brightness errors are more
likely to be overlaid after warping. The authors propose a differentiable forward warping
operation named ‘softmax splatting’ to warp input frames and corresponding deep fea-
tures without predicting flows at the target instant. Warping errors are involved in the
interpolation of pixel values to tackle overlaps. In comparison with their previous work in
[117], occlusions are better handled both with deeper contextual features and error-based
warping operations. Additionally, the whole pipeline is end-to-end trainable, which means
flows estimated by PWC-Net are optimized for the following synthesis process.

Most of the above methods focus on predicting optical flows between frames, while
the authors in [121] use a multi-flow multi-attention generator to estimate flows between
features. The feature flows are then used to warp and interpolate feature maps of the
input frames to the target position. And the output frame is reconstructed from these
warped deep features. To our best knowledge, this is the first frame interpolation method
using feature flows, which shows its effectiveness in the case of severe occlusions.

Flow-free interpolation

The second category of methods can be referred to as flow-free interpolation methods.
This is the case of kernel-based methods and phase-based ones. kernel-based methods such
as AdaConv [122] and SepConv [123] based on a convolutional neural network estimate
a series of spatially-adaptive interpolation kernels. The synthesized views are obtained
through the convolutions between input frames and these learned kernels. More precisely,
the authors in [122] proposed an adaptive convolution approach for video frame interpo-
lation (AdaConv). For each pixel, parameters for a 2D convolutional kernel are predicted,
then the input frames are convolved at the current pixel location to predict its interpolated
value. The method is able to handle occlusions, blur and brightness changes. However, a
large kernel is required to handle large motion and would be very computationally expen-
sive. This drawback is addressed in [123] by introducing separable convolutions (SepConv)
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using 1D kernels for faster processing. Please note that such spatially-adaptive filters and
optical flows can nevertheless be combined as in [124], where the authors propose an
architecture in which motion vectors and compensation filters are estimated using convo-
lutional neural networks. The architecture includes an adaptive warping layer based on
optical flow and compensation filters for synthesizing the target frame.

Phase-based methods[125, 126] are another kind of motion estimation-free interpo-
lation solutions. They consist of representing motion with per pixel phase shift. Hence
the intermediate frame is a result of operating a phase modification on each pixel. The
authors in [125] proposed an architecture that propagates phase information across ori-
ented multi-scale pyramid levels using a bounded shift correction strategy. This method
yields robust results in the case of strong illumination changes, where flow-based methods
often fail to work. The authors in [126] combine the phase-based approach with a learning
framework to propose a novel architecture named PhaseNet. PhaseNet mirrors the hierar-
chical structure of the input phase decomposition and predicts the phase and amplitude
of the in-between frames. The final frame is reconstructed based on these predictions.
Although this work tackles large motion and higher frequency content better than [125],
it still can’t reach the same level of details as flow-based methods do.
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Chapter 2

DEPTH ESTIMATION IN LIGHT FIELD

2.1 Introduction

Light fields allow estimating 3D scene geometry from a subset of views. As described in
Ch. 1.2, estimation methods can be broadly broadly categorized into EPI-based schemes
[77, 78] or pixel matching-based ones [81, 84, 83]. EPI based methods are only suitable
for densely sampled light fields. Although a few learning-based architectures have been
recently proposed for scene depth (or disparity) estimation from dense light fields based on
EPI[57, 80], yielding promising performances, very few methods have been proposed so far
for sparse light fields. While stereo matching methods allow estimating large disparities,
they need to discretize the disparity space to compute cost volumes. A high discretization
level improves estimation accuracy but yields a heavy computational cost, leading often
to estimating depth at the central viewpoint only. Besides the above disparity estimation
methods, a disparity map can be also estimated with an optical flow estimator, as both
disparity and optical flow measure pixel displacement between two images. Recently, the
field of optical flow estimation has known significant advances thanks to the use of deep
neural networks trained in a supervised or unsupervised manner.

In this chapter, we propose a supervised deep learning framework for estimating scene
geometry, taking at the input a flexible subset of light field views. In order to compute
scene depth, the proposed approach estimates disparity maps for every viewpoint of the
light field. The use of subsets of input views allows us, compared to stereo estimation meth-
ods, to increase the estimation accuracy, while limiting computational complexity. Initial
disparity estimates are computed between aligned stereo pairs using the FlowNet 2.0 op-
tical flow estimation architecture that we fine-tuned to be suitable for disparity estimation
in dense and sparse light fields. These initial estimates are used to warp a flexible set of
anchor views onto a target viewpoint. The fusion of these initial estimates relying on a
winner-takes-all (WTA) strategy with two measures of warping errors reflecting disparity
inaccuracy in occlusion-free and occlusions respectively, allows us to have an accurate
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disparity estimation in occluded regions and along the contours. A refinement network
is then proposed to learn the disparity maps residuals at different scales. The proposed
new architecture relies in part on the one considered in [91], by however extending the
approach into a more general framework, which enables to perform estimation from a
flexible subset of input views.

According to the metrics defined in [55][127], experimental results show that the pro-
posed approach outperforms state-of-the-art light field disparity estimation methods for
both densely and sparsely sampled LF. In addition, it does not require any prior infor-
mation on disparity range as in [84, 78, 81] for example.

2.2 Methodology

2.2.1 Architecture overview

Figure 2.1 – Overview of proposed framework. We take a 5× 5 LF as example. The blue masked view,
called target view Lt, is the view for which we search to estimate the disparity. Views in the yellow
and red rectangles are respectively horizontal and vertical stereo views denoted Ls. Target and stereo
views are used to compute the initial disparity maps di using a fine-tuned FlowNet 2.0 model. Anchor
views La (in dark blue rectangles) can be any subset of views, except the target view, that are used
to compute the warping error for the fusion of initial estimates. A multi-scale residual learning network
corrects fusion artifacts and smooths the final disparity map in a last refinement step.

Given a 4D light field representation L(x, y, u, v), we will refer to a light field view by
the index of its angular position, e.g., Li where i = (ui, vi), and denote dj

i the disparity
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between two views Li and Lj normalized by the distance between the two views.
The proposed learning framework to estimate depth (or disparity) for any light field

viewpoint, from a subset of input views is depicted in Fig. 2.1. The approach is com-
posed of three main steps, i.e. stereo estimation, fusion and refinement. We denote Lt the
target view for which the disparity map is to be estimated. Multiple coarse disparity
maps on this target position are first estimated by a convolutional network trained for
stereo estimation. The model, that we call FN2-ft-stereo, is obtained by fine-tuning a pre-
trained FlowNet 2.0 network with light field stereo pairs. Each of these disparity maps
is computed between Lt (shadowed in blue) and a stereo view Ls located on the same
row (framed in yellow) or on the same column (framed in red). For vertical image pairs, a
rotation of 90◦ is applied such that the displacement flow between these two images only
contains the horizontal component. Accordingly, the obtained disparity map should be
also rotated by 90◦ in the reversed direction. The disparity maps between the target and
the stereo views are denoted ds

t, s ∈ S, with S being the set of used stereo view positions.
These multiple estimates of the disparity information on the target view Lt should be

fused to a single disparity map. To achieve this, we leverage the warping error from a set
of anchor views (framed in blue) La, a ∈ A, with A denoting the set of anchor view
positions. The disparity value corresponding to the smallest error per pixel is selected for
the fused disparity map. In order to better handle the object boundary, the warping error
is computed differently for pixels within occlusion areas or those within occlusion-free
areas.

This fusion is simple and efficient, but is prone to noise and discontinuity because the
decision is made pixel by pixel. Further refinement is realized by a second CNN which
learns in a supervised fashion the residual signals of the disparity at multiple scales by
an encoder-decoder architecture. Our network structure is flexible with respect to the
anchor views, i.e. anchor views can be located at any viewpoint of the light field, and no
additional training is required if the anchor view positions are changed.

2.2.2 Fine-tuned FlowNet 2.0 for disparity estimation

FlowNet 2.0 (FN2 ) [87] is an efficient CNN-based optical flow estimator. Two par-
allel branches of sub-networks are combined, the first specialized in large displacements
estimation and the second in small displacements. The final stage of the network merges
the two previously estimated flows taking into account the flow magnitude. Thanks to
this structure, it is relevant to apply FN2 to estimate disparity for light field views with
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(a) FN2 (b) FN2-ft (c) DispNet-ft (d) FN2-ft-stereo

Figure 2.2 – Disparity estimation errors (display range between 0 and 1) using different models: (a)
FN2 , (b) FN2-ft, (c) DispNet-ft and (d) FN2-ft-stereo. The first row corresponds to the estimation errors
using a stereo pair L2,2 and L2,8. On the second and third row, for FN2 and FN2-ft, the estimation has
been done between the views L5,5 and L8,8, and the horizontal (second row) and vertical (third row) flow
components are shown. Since DispNet-ft and FN2-ft-stereo only take stereo pairs, the horizontal flows
are estimated between L5,5 and L5,8 (the second row), and the vertical flows are estimated between L5,5
and L8,5 (the third row).

variable disparity ranges.
Let us denote f(Li, Lj) = (fxi→j, f

y
i→j)

> the flow estimation operator between the views
Li and Lj. Assuming that the light field is well rectified and regularly spaced in both
angular directions, the disparity map between the view Li and Lj, normalized by the
distance between the views, can be computed as

dj
i =

fxi→j

vi − vj
=

f yi→j

ui − uj
. (2.1)

In order to well adapt the operator f(·, ·) to disparity estimation between two light
field views, we fine-tune the pre-trained FN2 model. Two strategies have been considered.
The first one feeds the model with pairs of light field views Li and Lj with no constraint
on view positions, and the model learns dense optical flows both on the horizontal and
vertical directions. The obtained model is denoted FN2-ft. Another approach is to learn
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the model using image pairs Li and Lj on the same row (ui = uj) or on the same column
(vi = vj). Note that images on the same column are rotated 90◦ to become a horizontal
stereo pair

(
rot(Li), rot(Lj)

)
. The obtained model is thus named FN2-ft-stereo. Formally,

with FN2-ft-stereo, the disparity map for the view Li is computed as

dj
i =


fx

i→j
vi−vj

, if ui = uj
rot−1(fx

i∗→j∗ )
ui−uj

, if vi = vj
(2.2)

where fxi∗→j∗ denotes the horizontal flow component between Li∗ and Lj∗ with Li∗ =
rot(Li). The symbols rot(·) and rot−1(·) are counterclockwise and clockwise rotation of
90◦.

In Fig. 2.2, we compare the estimation accuracy of the FN2-ft-stereo model against
three other models: FN2 (the pre-trained FlowNet 2.0 model), FN2-ft and DispNet-ft,
which is obtained by finetuning a pre-trained DispNet model [56] with our stereo light field
views. The models FN2 and FN2-ft can estimate displacement both in x and y dimensions,
whereas DispNet-ft and FN2-ft-stereo focus on 1D (horizontal or vertical displacements)
estimation. On one hand, FN2-ft-stereo performs better than FN2 and FN2-ft, which
shows the necessity of concentrating on 1D estimation. In addition, FN2-ft-stereo is sig-
nificantly better than DispNet-ft, both being finetuned using the same training set of
stereo light field views.

Therefore, we choose to use FN2-ft-stereo for computing a set Dt

Dt = {ds
t, s ∈ S} (2.3)

of multiple estimates of disparity ds
t between the target view Lt and one of the stereo views

Ls. As each of the candidates ds
t is normalized by the distance between the views in the

considered pair, it represents the amount of disparity between the view and its immediate
neighboring views. In the sequel, we will denote this set of normalized disparity maps as
Dt = {dk, k = 1..K}, with K the number of candidate maps.

2.2.3 Fusion based on warping error maps

Although our FN2-ft-stereo model provides satisfying results for disparity estimation
with stereo pairs, information in other available views of the light field is not exploited.
In this subsection, we propose to fuse the candidate maps in Dt into a single disparity
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map based on the error of warping the anchor views La, a ∈ A onto the target view.

Based on one of the disparity maps dk ∈ Dt, backward warping is applied to project
the anchor view La to the target position t. The warped view is denoted L̃ka→t. The
corresponding warping error ea

k is computed by summing on the three R, G, B color
channels:

∀a ∈ A, ea
k =

∑
R,G,B

(Lt − L̃ka→t)2 (2.4)

Warping errors are then fused by taking into account all the warped views L̃ka→t with
a ∈ A. The fusion is performed either by the ‘average’ or by ‘min’ operations as

emean
k (p) = meanae

a
k(p), a ∈ A (2.5)

emin
k (p) = minae

a
k(p), a ∈ A. (2.6)

Both the error maps emean
k and emin

k suggest the reliability on values in the disparity map
dk, but possess complementary properties. The error map emean

k reflects well the disparity
inaccuracy in the occlusion-free zones, since it averages the contribution from all the
warped views. Nevertheless, in occluded areas, interpolation in large holes becomes the
main cause of warping errors instead of disparity inaccuracy. In this case, emin

k turns out
to be a more relevant measure. Indeed, at a pixel p that can be seen in the warped view
L̃ka′ , but not in another warped view L̃ka, a ∈ A, a 6= a′, the value emean

k (p) is misleading
because of the high contribution of the error ea

k(p). On the contrary, the ‘min’ operation
gets rid of the perturbation from the occluded views. However, if a pixel p is occluded
in all the warped views, neither emean

k (p) nor emin
k (p) gives a reliable measure of disparity

inaccuracy. It is preferable that the anchor view positions a are dispersed in the light field
such that a pixel occluded in one view may be seen in another view. The impact of anchor
view positions on the quality of the final disparity map will be discussed in Ch. 2.4.2.

To fuse at each pixel p the candidate disparity values dk(p), k = 1..K, a winner-takes-
all strategy is employed according to error values emean

k (p) and emin
k (p):

k′ = arg min
k

emin
k (p) (2.7)

docc(p) = dk′(p) (2.8)
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Figure 2.3 – Disparity error (compared to the ground truth) at each step of the fusion process. d−
1 , d

−
2

and d+
1 , d

+
2 are coarse disparity estimates using FN2-ft-stereo, computed with horizontal or vertical image

pairs (‘-’ indicates horizontal image pairs and ‘+’ indicates vertical ones). dnocc and docc are respectively
fused disparity maps via emean and emin, and d̃ is the final resulting map using the binary mask Mf .

and

k′′ = arg min
k

emean
k (p) (2.9)

dnocc(p) = dk′′(p) (2.10)

Two fused disparity maps are obtained, dnocc for occlusion-free zones and docc for occluded
areas. To reduce local inconsistency, a 3×3 mean filter is applied on the error maps emean

k

and emin
k . A binary mask Mf defined as

Mf (p) =

 1 mink(emean
k (p)) > θ

0 otherwise
(2.11)

is used to merge these two resulting disparity maps. The value Mf (p) equals to 1 if
mink(emean

k (p)) exceeds a certain scene-dependent threshold θ, which is fixed at the value
at the 90 percentile (errors at the occluded pixels are generally higher than those at the
non-occluded ones). Note that Mf is not the real occlusion mask contrary to that used
in [83]. However, it can be computed much more efficiently, and it approximates well the
real mask.
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Finally, one unique disparity map at the target position t is obtained as

d̃t = docc �Mf + dnocc � (1−Mf ) (2.12)

where � denotes pixel-wise Hadamard product. Fig. 2.3 demonstrates the gain in the
fusion process. The errors on the estimated disparity compared to the ground truth are
illustrated for each step of the process.

2.2.4 Multi-scale disparity refinement

The fusion step enables us to take advantage of multiple estimates and significantly
improves the estimation accuracy. Nevertheless, as the fusion is implemented by a per
pixel winner-takes-all (WTA) selection, discontinuity may exist in the resulting disparity
map. Further refinement operation is useful for quality enhancement.

The work in [85] proposed a two-stage disparity learning framework. The learned
disparity between a stereo pair is refined with a multi-scale residual learning network. As
input, their network takes two stereo color images, the previously estimated disparity map,
the warped image, as well as the corresponding warping error image. In a multi-view stereo
scenario where we exploit the color information from multiple stereo views Ls, s ∈ S and
anchor views La, a ∈ A, it is obvious that this structure is no longer applicable. Indeed,
the large number of input views, as well as the number of initialized disparity maps,
will rapidly enlarge the size of the network and increase the computational cost during
training. Moreover, the scheme is not flexible with respect to the varying number of input
views.

The fusion of disparity estimates (Ch. 2.2.3) partially resolves this problem. Regardless
of the variable number of stereo views, as well as that of the initialized disparity maps,
only one single disparity map d̃t has been obtained for the target position t. Besides
d̃t, two other images are fed to our refinement network: the target view Lt serving as
color guidance and a binary mask M indicating contour misalignment. The mask M is
computed as

M = |Γ(Ψ(d̃t))− Γ(Ψ(d̃t))� Γ(Ψ(Lt))| (2.13)

with Γ(·) being the dilation operator and Ψ(·) being the canny contour detector (Three pa-
rameters for canny detector: standard deviation of the Gaussian filter is 2, lower threshold
is set to 10% of the max value and higher threshold is set to 20% of the max value).
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Compared to the network used in [85], we change the inputs and the first layer of the
refinement network, and we construct a 9-layer convolutional encoder to extract features
and a 16-layer decoder to retrieve the estimated disparity map. The proposed network
contains about 3.6×107 trainable parameters. During training, the residual signals of the
disparity are learned at different resolution scales n ∈ [0, N ], supervised by the ground
truth disparity. At each scale n, the network generates the residual signal R(n), which is
added to the downsampled disparity map d̃(n)

t

d̂
(n)
t = d̃

(n)
t +R(n), (2.14)

where d̂(0)
t denotes the final obtained full resolution disparity map.

The loss is summed over all the resolution scales n ∈ [0, N ] as

L =
N∑
n=0

µnL(n), (2.15)

where µn is the contribution weight for the loss at the scale n and L(n) is the sum of two
losses

L(n) = λ1N (d̂(n)
t , d

(n)
GT) + λ2G(d̂(n)

t , d
(n)
GT), (2.16)

where N denotes the sum of absolute differences (SAD)

N (d1, d2) =
∑

p
|d1(p)− d2(p)| (2.17)

and where G is a gradient term defined as

G(d1, d2) =
∑

p
‖G(d1, d2,p)‖2 (2.18)

with
G(d1, d2,p) =

(
∇xd1(p)−∇xd2(p),∇yd1(p)−∇yd2(p)

)>
. (2.19)
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2.3 Implementation details

2.3.1 Training data preparation

For fine-tuning FlowNet 2.0 , stereo views are extracted on the same row or the same
column of a light field. Image pairs located on the same column are rotated with a coun-
terclockwise 90◦ to convert vertical pixel displacement to horizontal displacement. The
two images in an extracted pair are separated by an angular distance corresponding to a
view index difference l ∈ [2, 3, ...8] for dense light fields, which corresponds to a dispar-
ity range within [-32,32] pixels, whereas for sparse light fields, this distance is set to be
l ∈ [1, 2, 3], corresponding to a disparity range within [-60,60] pixels. In both cases, the
extraction of views is done in such a way that the different distances (or disparities) are
well represented (with same probability) in the training data.

2.3.2 Data augmentation

The authors in [86, 57] performed geometrical and chromatic transformations to in-
crease diversity in the training data. In our experiments, however, we have found that
geometrical transformations such as rotation, translation or scaling that involve data in-
terpolation bring extra errors in the ground truth disparity values, and thus harm the
learning convergence. As a consequence, only chromatic transformation has been applied
by changing the hue, saturation, contrast and brightness of training images. Concretely,
we convert the images from the RGB space to the HSV space, add an offset to the hue and
saturation channels, and then convert the images back to RGB color space. The hue and
saturation offsets are uniformly picked from [−0.3, 0.3] and [0.7, 1.3]. To perform contrast
augmentation, we compute the mean pixel values c̄ of each image channel c, then adjust
c to (c − c̄) × ζ + c̄, where ζ is a contrast factor uniformly picked from [0.7, 1.3]. The
brightness augmentation is implemented by adding a brightness offset to each of the RGB
channels of an image, which is randomly picked from [−0.1, 0.1].

2.3.3 Learning details

Different learning schedules are employed for fine-tuning the FN2-ft-stereo model and
for training the refinement network. In the finetuning step, thanks to the pre-trained
model, a shorter learning schedule can be adopted with an initial learning rate set to
0.0001 for the first 500 epochs. The learning rate is then decreased by half every 200
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epochs. For the training of the refinement network which is randomly initialized, the
schedule is longer with an initial learning rate of 0.0001 for the first 1200 epochs. The
learning rate is then divided by 2 every 200 epochs. We use the Adam optimizer, and
becaused of the limited GPU memory, a batch size of 4 is used. Tensorflow is used to
implement our network. It takes about 2 days to train our network with a NVIDIA Tesla
P100 GPU with 16G GRAM.

2.4 Experiments

2.4.1 Setup

To validate the effectiveness of our proposed framework, we conduct experiments on
both synthetic and on real light fields.

Synthetic Dataset

For sake of comparison, we use the synthetic light fields of the old and new HCI
datasets [55][54] and keep the same test light fields as in [83]: Stilllife, Buddha, Butterfly,
MonasRoom from [54] and Boxes, Cotton, Dino, Sideboard from [55]. We also evaluated
the proposed framework using our own datasets INRIA synthetic dataset introduced in
Ch. 1.1.5. Four test light fields Furniture, Lion, Toy_bricks, Electro_devices are used for
evaluation. The scene Lion contains a single object and the other three scenes contain
multiple objects.

Real Light Fields

We have also tested our framework with real-world light fields, using INRIA illum
dataset and EPFL illum dataset presented in Ch. 1.1.5. Compared with synthetic datasets,
light fields captured by plenoptic cameras are more challenging due to the fact that the
extracted views contain noise and geometrical distortions. Finally, experiments have been
also carried out for real-world sparse dataset captured by Google camera array [60].

2.4.2 Impact of the anchors views

In contrary to other deep learning frameworks [57, 80], our network is flexible with
respect to the number and the positions of the input views. Indeed, it is possible to
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(a) Varying the number of anchor views:(i) 4 cor-
ner views; (ii) 12 views on the diagonals; (iii) 24
border views.

(b) Anchor views at different positions: (i) 4 an-
chor views = 4 stereo views; (ii) 4 anchor views
= 4 corner views; (iii) 4 views located in the same
quadrant; (iv) 4 views randomly selected such that
each quadrant contains one anchor view.

Figure 2.4 – Cumulative percentage of pixels below a certain error threshold for different strategies to
select anchor views: (a) varying the number of anchor views; (b) with a fixed number (4) of anchor views
at different positions.

arbitrarily select a subset of light field views as anchor views.
Fig. 2.4 evaluates the percentage of pixels below a certain error threshold for different

strategies to select anchor views. The higher is this percentage, more accurate is the
estimation. We consider the 7 × 7 central views of the light field “Boxes” is studied.
Fig. 2.4(a) assesses the impact of the number of anchor views on the final estimation
accuracy. The 4 corner views, the 12 views on the diagonals and the 24 views on the
border of the light field are respectively used as the subset A of anchor views. We observe
that using more anchor views is useful for improving estimation accuracy, though the
improvement may be limited. This suggests that when the time consumption or GPU
memory is the bottleneck, less anchor views can be exploited without too much degrading
the estimation accuracy.

In Fig. 2.4(b), the number of anchor views is fixed to 4, and we evaluate the impact
of the anchor view positions on the performance. The assessed sets A of the anchor views
can be: (i) 4 stereo views (A = S), (ii) 4 corner views, (iii) 4 views located in the same
quadrant (the light field can be divided into four quadrants, “northeast”, “southeast”,
“southwest” and “northwest”, according to the location with respect to the target view),
and (iv) 4 views randomly selected such that each quadrant contains one anchor view.

The strategy (iii) achieves the worst performance, since the 4 views located in the
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same quadrant do not contain occlusion information of the other quadrants. The use
of the stereo views as anchor views (i) obtains worse performance than (ii), since the
geometry information of the stereo views is already exploited in the coarse estimation
step. And indeed, for a dense light field such as “Boxes”, geometry information of the 3D
scene can be mostly recovered from the 4 corner viewpoints.

2.4.3 Results with densely sampled synthetic light fields

We compare our approach with both traditional and learning based state-of-the-art
methods for densely sampled light fields. First, 4 reference methods [78, 81, 84, 83] using
traditional approaches are considered. The disparity range is discretized for the methods
[81, 78, 84]. As suggested in the light field depth estimation challenge held in 2017 LF4CV
workshop [127], the number of disparity levels is set to 100 for the method [81] and 256 for
the method [78]. For the method [84], the disparity step is set to 0.01, which corresponds
to the minimal threshold of bad pixel ratios that we use. Both explicit and implicit
discretization operations in [81, 78, 84] need disparity ranges as priors. To estimate the
disparity map for the central view, the methods [78, 81] exploit the whole light field
containing 49 views. The method in [83] takes four corner views to infer the central view
disparity while the method in [84] chooses 5 images in the crosshair with target view in
the center. For our framework, we employ the same crosshair pattern as [84] with 4 images
serving as stereo and anchor views at the same time.

The upper part of Table 2.1 compares the estimation accuracy obtained with 8 HCI
test scenes using different metrics: Mean Square Error (MSE) and Bad Pixel Ratios (BP)
with thresholds 0.01, 0.03 and 0.07 (BP represents the percentage of pixels having an
error superior to a certain threshold). In the experiment, we consider the central 7 × 7
sub-aperture images of the light field and estimate the disparity of the central view. The
experiment shows that our framework achieves superior performances compared with
other methods for most of the scenes both in terms of MSE and BP. In some cases, our
framework yields the second best results with a slight difference only with the method
ranked first. Compared with the methods in [78, 81] which exploits all the light field views,
our method gives better results in spite of the fact that we use only a subset of light field
views. In comparison with the other two methods [84, 83] using a subset of light field
views, our method is competitive and sometimes wins with a large margin.

Fig. 2.5 shows the estimated disparity maps for the central view. Readers are recom-
mended to zoom and view these results on the screen for visual comparison. The methods
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Light fields MSE BP1 BP2 BP3
[81] [78] [84] [83] Ours [81] [78] [84] [83] Ours [81] [78] [84] [83] Ours [81] [78] [84] [83] Ours

Stilllife 2.02 1.72 1.53 2.56 1.07 81.2 76.2 76.0 71.3 70.5 51.0 32.1 41.0 25.0 24.8 20.9 6.8 16.2 9.2 5.8
Buddha 1.13 0.97 0.49 0.82 0.41 57.7 41.2 52.6 34.9 35.3 24.4 14.8 15.0 12.3 7.7 10.1 6.7 2.9 5.4 2.2

MonasRoom 0.76 0.58 0.66 0.53 0.39 46.0 42.5 48.2 38.6 39.0 22.1 17.8 20.2 18.6 13.7 11.7 7.8 10.4 8.2 6.1
Butterfly 4.79 0.74 0.80 1.84 0.58 82.5 78.9 83.4 70.8 73.4 49.1 48.5 50.9 36.0 42.0 15.4 14.1 17.6 6.7 6.3
Boxes 14.15 8.23 11.30 12.71 9.16 72.7 62.3 87.2 65.8 68.4 45.5 28.1 65.0 37.7 38.5 26.4 15.8 42.0 23.9 22.1
Cotton 9.98 1.44 2.04 1.18 0.94 60.5 41.7 75.8 42.6 38.2 23.3 11.1 37.5 10.7 10.6 8.9 2.7 10.4 4.1 3.3
Dino 1.23 0.29 0.67 0.88 0.50 76.6 57.5 84.8 49.1 45.6 48.4 17.9 57.2 20.0 14.5 20.9 3.4 24.1 9.5 4.7

Sideboard 4.16 0.92 1.34 10.31 1.37 67.8 64.3 78.6 61.7 63.6 39.3 31.0 44.1 37.5 26.3 23.0 10.4 15.0 19.6 10.1
Average 4.78 1.86 2.35 3.85 1.80 68.1 58.1 73.3 54.4 54.3 37.9 25.2 41.4 24.7 22.3 17.2 8.5 17.3 12.1 7.6
Furniture - - 0.37 1.94 0.39 - - 86.3 41.3 40.7 - - 73.1 41.3 23.0 - - 36.0 20.2 8.6

Lion - - 0.10 0.87 0.09 - - 35.9 73.0 47.6 - - 23.9 59.5 9.0 - - 5.5 9.5 2.6
Toy_bricks - - 0.22 1.10 0.56 - - 59.5 66.4 50.5 - - 33.2 44.6 23.7 - - 4.7 11.2 12.4

Electro_devices - - 0.20 0.63 0.19 - - 76.9 60.7 52.8 - - 57.4 43.4 30.5 - - 22.5 18.6 8.7
Average - - 0.22 1.14 0.31 - - 64.7 64.7 47.9 - - 46.9 47.2 21.6 - - 17.2 14.9 8.1

Table 2.1 – Quantitative comparison with Non-learning-based methods on synthetic light fields datasets.
Number of input views: [81]-49 views, [78]-49 views, [84]-5 views, [83]-4 views, Ours-5 views. For
the first 8 scenes (dense LFs), MSE denotes 100*Mean Square Error, BP1, BP2, BP3 denote Bad Pixel
Ratios with thresholds 0.01, 0.03, 0.07. For the last 4 scenes (sparse LFs), MSE denotes Mean Square
Error, BP1, BP2, BP3 denote Bad Pixel Ratios with thresholds 0.05, 0.1, 0.3.

in [81] and [83] obtain disparity maps with distorted boundaries, while the method in
[84] loses precision on slanted surfaces where disparity values gradually vary. In contrast,
the methods[78, 84] as well as our framework can estimate disparities with more precise
boundaries. Our method, although it may suffer from a subtle smoothness along bound-
aries, it yields less artifacts within homogeneous and slanted areas, and gives more visually
pleasing results.

We also compare our method against two state-of-the-art methods based on deep
learning [57, 80]. Both of them exploit epipolar geometry of the light field. The method
in [57] retrieves disparity values by exploiting 3D EPI volumes containing texture infor-
mation on two spatial dimensions and one angular dimension, whereas the method in [80]
constructs the input volume by taking views on four different angular directions: horizon-
tal, vertical, left and right diagonals. As these trained models are not publicly available
for 7×7 light field views, we re-trained the models following the instructions in the corre-
sponding papers. Since the network in [80] was implemented without zero-padding after
each convolutional layer, the resulting disparity map loses 11 pixels at each border. For
the sake of comparison, we cropped the same amount of bordering pixels for the method
in [57] and our method as well (this explains the slight difference of measurement of our
method in Table 2.1 and Table 2.2). Quantitative results are shown in Table 2.2. Our
proposed method has several advantages.
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(a) Jeon (b) Zhang (c) Huang (d) Jiang (e) Ours (f) GT (g) Image

Figure 2.5 – Qualitative comparison with non deep learning-based methods. Each row shows the esti-
mated disparity maps with two zoomed areas (homogeneous area framed in red and contour area framed
in blue) for different methods: (a) Jeon et al. [81], (b) Zhang et al. [78], (c) Huang [84], (d) Jiang et al.
[83], (e) Our framework. The (f) Ground truth and (g) Color image are also shown.
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Light fields MSE BP1 BP2 BP3
[57] [80] Ours [57] [80] Ours [57] [80] Ours [57] [80] Ours

Stilllife 3.02 1.96 1.14 84.2 77.3 71.0 56.2 39.4 25.8 22.9 11.5 6.2
Buddha 0.52 0.26 0.43 75.9 39.9 35.7 37.3 5.2 8.0 9.1 1.4 2.3

MonasRoom 1.06 0.60 0.41 76.8 42.5 39.6 41.9 14.5 14.3 16.2 7.8 6.4
Butterfly 1.13 1.41 0.57 85.5 84.3 72.4 57.2 59.7 40.2 22.4 24.1 6.0
Boxes 9.06 5.20 9.97 82.5 62.4 68.4 53.7 27.4 39.6 30.5 15.1 23.6
Cotton 0.97 0.25 0.76 77.8 51.7 36.6 42.0 4.9 10.0 10.9 0.9 2.9
Dino 1.25 0.19 0.53 83.6 41.0 45.1 54.4 6.6 14.6 23.7 1.9 5.0

Sideboard 2.33 0.80 1.45 82.9 58.6 66.0 54.1 21.0 27.9 24.6 6.6 10.9
Average 2.42 1.33 1.91 81.2 57.2 54.4 49.6 22.3 22.6 20.0 8.7 7.9
Furniture 9.18 1.73 0.42 96.4 85.1 40.2 92.8 71.3 23.0 78.8 38.4 8.9

Lion 1.59 3.41 0.09 95.3 87.4 48.7 90.6 76.4 8.7 72.9 56.3 2.6
Toy_bricks 3.70 0.36 0.57 96.0 85.1 49.5 92.0 70.6 23.3 76.5 29.6 12.6
Electro_dev 7.82 0.74 0.20 95.0 80.3 51.5 89.9 60.6 29.2 72.0 22.8 8.9

Average 5.57 1.56 0.32 95.7 84.5 47.5 91.3 69.7 21.1 75.0 36.8 8.3

Table 2.2 – Quantitative comparison with Learning-based methods on synthetic light fields datasets.
Number of input views: [57]-7 views (dense), 3 views (sparse), [80]-25 views (dense), 9 views
(sparse), Ours-5 views, MSE and BP are kept as same as those in Table 2.1.

1/- With less input views (the number of input views for the methods [57], [80] and
our method are respectively 7, 25 and 5), our method outperforms [57] and achieves
competitive results against [80].

2/- Our method benefiting from the WTA fusion and the CNN based refinement is
more robust and generates less artifacts for some light field scenes (c.f. Fig. 2.6).

3/- As [57], our method can predict disparity at each viewpoint, whereas the method
[80] only predicts for the center view.

4/- Compared to EPI based learning frameworks, training our model is less demanding.
Indeed, it is required in [80] to manually mark out and exclude all the reflection, refraction
and textureless regions when preparing training data, which can be very time-consuming
with a large dataset.

As learning-based methods may fail when characteristics in the input images differ
from that in the training dataset, we have tested the robustness of our framework by
adding Gaussian noise to the test light fields in comparison with two other learning-based
methods [57, 80]. Fig. 2.7(a) shows the averaged MSE and Bad Pixel Ratio (threshold 0.07)
over 8 synthetic LFs as a function of the standard deviation of the Gaussian noise. When
increasing the standard variance of the noise, the performances of all the reference methods
degrade, while the quality of depth maps estimated with the proposed framework remains
more stable. To explain this difference in terms of robustness, we show in Fig. 2.7(b) 2.7(c),
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(a) Heber et al. [57] (b) Shin et al. [80] (c) Ours

Figure 2.6 – Qualitative comparison to deep learning-based methods, with methods (a) Heber et al.
[57], (b) Shin et al. [80], (c) Ours.

a clean and a polluted EPI. The added Gaussian noise destroys the geometric structures in
the EPI that are used by methods like [57, 80] for depth estimation, while our framework
exploits spatial information of each sub-aperture image, hence stays more robust against
noise. Apart from the above experimental results on synthetic data, Fig. 2.8 also shows
disparity maps estimated from light fields captured by plenoptic cameras, hence that
are prone to noise and distortions. Fig. 2.8 shows that our framework can still estimate
satisfying disparity maps.

A general flexibility and complexity comparison is summarized in Table 2.3 for all
the compared methods. The proposed framework can adapt to light fields with wide
baselines and, unlike methods using plane sweep volumes, does not require a discretized
depth range at the input. Furthermore, some methods may be limited by their specific
viewpoints selection pattern and cannot be used for estimated disparity maps for views
located at the border of the light field. In contrast, the proposed approach uses a flexible
stereo and anchor view selection pattern that allows us to estimate disparity maps for all
light field views. In terms of computational cost, our framework takes less than 2 seconds
to estimate one disparity map, that is much faster than traditional methods, but a bit
slower than the two learning-based methods [57, 80]. Note that the implementations of
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(a) Evolution of the MSE and BP (threshold = 0.07) measures
obtained with three learning-based estimation methods when
increasing the standard deviation of Gaussian noise added to
the input light fields ∼ N (0, σ2).

(b) EPI without Gaussian noise

(c) EPI with additive Gaussian noise ∼ N (0, 0.022)

Figure 2.7 – (a) Impact of noise on the quality (in terms of MSE and BP) of estimated depth maps.
(b) EPI from scene stilllife without Gaussian noise. (c) Same EPI but with Gaussian noise.

Property [81] [78] [84] [83] [57] [80] Ours
Adaptability to wide baselines × ×

√ √
× ×

√

Estimation for any view × ×
√ √ √

×
√

Without disparity discretization × × ×
√ √ √ √

Computational cost (one view) 960s >1h 127s 16s 0.04s 0.52s 1.93s

Table 2.3 – Flexibility Comparison

the methods [83, 57] estimate disparity maps for all the views in a light field or for views
on one row at one time, consequently we divided their costs by the number of estimated
views. Since the codes of four traditional methods are not available for GPU, they are
tested on an Intel i7 CPU with 16G RAM, whereas the three learning-based methods are
tested on a NVIDIA Tesla P100 GPU with 16G memory.
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Figure 2.8 – Qualitative comparisons for estimated disparity maps. The first three light fields are from
the INRIA Illum Dataset [128], and the last two light fields are from the EPFL Illum dataset [52]. From
top to bottom, figures show the disparity maps estimated with methods in Jeon et al. [81], Zhang et al.
[78], Huang [84], Jiang et al. [83], Heber et al. [57], Shin et al. [80] and our proposed method. The final
row shows the central views of the light fields.

71



Chapter 2 – Depth estimation in light field

Processing step FN2 FN2-ft-stereo Fusion Refinement
MSE 10.94 2.27 2.00 1.91
BP 90.5 63.6 56.2 54.4

Table 2.4 – Contribution of each block in framework. MSE denotes 100*Mean Square Error, BP denotes
Bad Pixel Ratios with threshold 0.01. The values for FN2 and FN2-ft-stereo are averaged values of the
estimations between 4 stereo views and the target view.

Additionally, Table 2.4 gives the contribution of each building block to the perfor-
mance of the proposed framework. Thanks to our new dataset and our new finetuning
strategy, FN2-ft-stereo significantly improves the accuracy of the estimated disparity maps
compared with the original FN2 model. By taking into account multiple anchor views at
different viewpoints (the occluded regions for these views are unlikely all overlapping), the
disparity fusion step is able to cope with errors in occluded regions. And the refinement
aims at coping with disparity discontinuities that may be introduced by the fusion step.
However, due to the fact that the occluded regions have a much smaller pixel number
compared to the whole image, the fusion and refinement steps bring less quantitative
improvement on the entire disparity map than the stereo estimation step.

2.4.4 Results with sparsely sampled synthetic light fields

Among the state-of-the-art approaches mentioned above, the methods in [78] and [81]
derive the disparity estimate from EPI analysis, thus are hardly applicable for sparse light
fields with large baselines. For sparsely sampled light fields, we compare our framework
with the methods in [83, 84, 57, 80], using the objective metrics: Mean Square Error
(MSE) and Bad Pixel Ratios with larger thresholds 0.05, 0.1, 0.3. We consider the central
3× 3 views of the light field, and the evaluation is performed for the estimated disparity
of the central view. The step length in the method in [84] is set to 0.05, corresponding
to the minimal Bad pixel ratio threshold. Both the input view number in [57] and the
stream length in [80] are set to be 3. The rest of the setup is identical to the experiments
for dense light fields. The lower parts of Table 2.1 and 2.2 show that our framework yields
better Bad Pixel Ratios with large margins when compared with other methods. In terms
of MSE, our method ranks the second, slightly lagging behind [84]. The first two rows
in Fig. 2.9 show disparity maps estimated with different methods. Compared with the
first two non deep learning-based methods, our algorithm functions well in both contours
and homogeneous zones. Although our method gives smoother boundaries than those with
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Huang [84] Jiang [83] Heber [57] Shin [80] Ours GT

Figure 2.9 – Visual comparison for estimated disparity maps for sparse light fields. The first two rows
are obtained with synthetic data, while the last two rows are obtained for real-world data.

[84], it works well in slanted zones where the method in [84] tends to fail. For the two deep
learning-based methods [57, 80], even though we have re-trained the corresponding models
with our sparse light field data, the results contain severe deformations and artifacts, since
epipolar line continuity is no longer guaranteed with sparse light fields.

2.4.5 Results with real light fields

To assess the disparity estimation performance of our network with real light fields,
we consider both dense light fields (7× 7 central views are considered) captured with the
Lytro Illum camera [128, 52] and sparse light fields (3 × 3 central views are considered)
captured with camera arrays [60]. Because of the lack of ground truth disparity values,
the prior disparity range required by these methods is set using our estimation results,
with a margin of 10%: [dmin− 0.05(dmax−dmin), dmax + 0.05(dmax−dmin)]. Fig. 2.8 shows
the estimated disparity maps for dense light fields using different methods. Two sparse
light fields are tested in Fig. 2.9. Compared with other methods, our framework gives

73



Chapter 2 – Depth estimation in light field

more accurate estimates on object boundaries, especially for the scenes which have more
texture details. Among all results, our disparity maps have less artifacts in spite of the
fact that relatively less views are used for the estimation. Note that our network has been
trained with only noise-free synthetic light fields. An additional fine-tuning with noisy
images could still improve the estimation accuracy of our network for real light fields.

Overall, regardless their limitations in terms of view number and view selection, the
methods in [81, 83] show inaccuracies at the boundaries, while methods in [78, 84] can give
relatively more accurate estimates at the boundaries. The method in [78] often contains
artifacts in homogeneous regions, while the method in [84] fails on slanted surfaces. Our
experiments with noisy light fields have shown that the performance of the learning-based
methods [57] and [80] depends on the quality of EPI. On the contrary, our method can
estimate accurate depth maps both at the boundaries of objects, and in homogeneous and
slanted regions with an acceptable computational cost. It has also been show to be more
robust to noise than the other two learning-based methods.

2.5 Conclusion
In this chapter, we have proposed a learning based approach to estimate disparity

maps between all light field views. The algorithm takes a variable subset of input views
and estimates accurate disparity maps for both densely and sparsely sampled LF data.

The proposed framework starts with a stereo estimation step which takes a flexible
number of light field views to give first disparity maps estimates. A fusion step then
aggregates these disparity maps into a single one by conducting pixel-wise selection based
on the warping error. A multiscale residual refinement step is then used to eliminate
noise and improve spatial coherence. In order to train the model so that it can apply to
both sparsely and densely sampled light fields, we have also created two synthetic light
fields datasets with different disparity ranges. To our knowledge, this is the first publicly
available dataset for sparsely sampled synthetic light fields given together with ground
truth disparity maps for all the views.

The effectiveness of our algorithm has been demonstrated with both synthetic and
real light fields datasets, in comparison with several state-of-the-art reference methods.
The proposed algorithm outperforms state-of-the-art algorithms despite of the use of less
input views. It is robust in both homogeneous areas and along the contours, as well as in
slanted zones. Experimental results with real light fields show that our algorithm estimates
consistent objects boundaries, and preserves details in the scene, although the network
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has been only trained using synthetic data.
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Chapter 3

VIEW SYNTHESIS IN LIGHT FIELD

3.1 Introduction

In the previous chapter, we saw how to estimate scene geometry from a subset of
views. We now move beyond the geometry estimation and focus on view synthesis (or
light field angular super-resolution) problem based on estimated disparities.

The problems of enhancing the light field angular resolution can be tackled from
different perspectives, i.e. as a problem of light field reconstruction from a subset of
views using signal priors (e.g. sparsity in the continuous 4D Fourier domain [105]), of
angular super-resolution [77, 107] or of view synthesis. While Image Based Rendering
(IBR) techniques have been predominant over the past years in the field of view synthesis
(see e.g. [60, 129]), this field has significantly evolved thanks to the emergence of learning-
based approaches.

In this chapter, we propose a novel learning-based framework to synthesize light field
views from a sparse set of input views. We design an end-to-end learning framework
combining two reconstruction strategies, one in the pixel domain and the other in the
feature space. A CNN is first used to estimate disparity from the input views. Using the
estimated disparity, we project the input color views and their features to the target view
position. The features are extracted using the lower layers of the VGG19 classification
network[130]. For the pixel-wise reconstruction, occlusions are explicitly handled by a
disparity-dependent interpolation filter, and the target view is predicted based on warped
views using convolutional layers. For the feature-based reconstruction, multi-scale features
at the target viewpoint are successively reconstructed based on warped features from the
input views, and the reconstructed view is inferred from the feature maps of the finest
scale. Finally, a soft mask is learned to merge the results of the pixel-wise and feature-
based reconstructions. The entire Fused Pixel and Feature-based Reconstruction network
(FPFR) is trained in an end-to-end fashion.

Experimental results with both synthetic and real-world light fields, with a large range
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Figure 3.1 – Overview of our end-to-end framework. Given the corner views {Ltl, Ltr, Lbl, Lbr} as input,
the depth estimator (blue) predicts depths {dtl, dtr, dbl, dbr}. PixRNet (orange) reconstructs the target
view L̂Pix

t based on the warped views {L̃tl
t , L̃

tr
t , L̃

bl
t , L̃

br
t }. Parallelly, FeatRNet (purple) infers the features

of the target view based on warped multi-scale input features, extracted from bottom layers of VGG
network. The view L̂Feat

t is then reconstructed. Finally, in the FusNet (green), L̂Pix
t and L̂Feat

t are merged
using a soft mask M , which is learnt from f̆Pix and f̆Feat, denoting input feature maps of the last layer
of PixRNet and FeatRNet, respectively.

of disparities between input views, demonstrate that our proposed framework significantly
outperforms the state-of-the-art methods. Our approach gives excellent reconstruction
quality on fine textures and object boundaries, despite the fact that intermediate disparity
outputs may not be accurate and consistent across input views. Furthermore, we show that
our network can also achieve competitive performances for light field view extrapolation
without additional training.

3.2 Methodology

3.2.1 Architecture overview

We focus on synthesizing a novel view Lt at the target angular position t = (ut, vt) in
a light field, using a given set of input views {Li1 , ..., LiN}, where i = (ui, vi) is the angular
position of source view. More specifically, in our work, we take a sparsely sampled 2× 2
views as inputs. For the sake of convenience, these input views are also denoted by Ltl (top
left), Ltr (top right), Lbl (bottom left) and Lbr (bottom right) according to their relative
position. We also simplify disparity notation dt

i , used in Chapter 2.2.1, denoting disparity
between two views Li and Lt normalized by the distance between the two views, as di,
accordingly, normalized disparity maps of four input views are becoming dtl, dtr, dbl, dbr.

78



3.2. Methodology

Fig. 3.1 shows our learning-based framework. First, a lightweight disparity estimator
module (in blue) estimates one disparity map for each input view. Two parallel recon-
struction schemes are then applied. The target view is synthesized either by PixRNet
(Pixel-wise Reconstruction Network) or FeatRNet (Feature-based Reconstruction Net-
work). For the pixel-wise scheme, given the disparity estimates, the input views are first
projected to the target position by applying forward warping. PixRNet takes as input the
projected views as well as their occlusion masks to synthesize the novel view. PixRNet
provides accurate pixel values in lowly textured areas. However, due to inconsistencies
between disparity values estimated for the different input views, a simple fusion in the
pixel space of the projected views may lead to blurriness in highly textured areas as well
as on object contours. FeatRNet is thus designed to compensate for this drawback. In
FeatRNet, the reconstruction is based on low-level features inferred for the novel view-
point. Extracted from lower layers of VGG19-Net [130], the features of the input views
are warped to the target position at different resolution scales to generate the correspond-
ing target view features, from which the decoder reconstructs the color view. Finally, a
learned soft combination mask obtained by FusNet (Fusion network) merges the outputs
of both PixRNet and FeatRNet.

3.2.2 Disparity estimation

Given the input view set {Ltl, Ltr, Lbl, Lbr} from a rectified and structured light field,
two disparity maps can be computed at each input viewpoint. Let us take the view on
the top left Ltl as an example, disparity can be computed either between the horizontal
pair (Ltl, Ltr) or between the vertical pair (Ltl, Lbl) as

d1 = FNet(Ltl, Ltr)h, (3.1)

d2 = R−1 ◦ FNet(R(Ltl),R(Lbl))h. (3.2)

FNet is a convolutional neural network which estimates an optical flow between two
stereo views, the subscript h denotes taking horizontal component of the optical flow and
normalizing it by their angular distance. In this work, we employ a pre-trained PWC-Net
[90] model which is then finetuned by light field image pairs on the same row. The symbols
R(·) andR−1(·) are counterclockwise and clockwise rotation of 90◦, which enables to treat
vertical pairs in the same way as horizontal ones.

Both d1 and d2 may contain estimation errors due to color inconsistencies or occlusions.
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We further improve disparity accuracy by merging two disparity maps d1 and d2 into a
single one dtl. More specifically, based on each disparity map, other three views Ltr, Lbl
and Lbr are projected to the position of Ltl and the corresponding warping errors e1 (for
d1) and e2 (for d2) are computed as:

ek =
∑

i∈{tr,bl,br}

∑
RGB

|Ltl − L̃ki→tl|, k = 1, 2, (3.3)

where L̃ki→tl represents image warped from current position i to top left corner using
disparity dk. The fusion of d1 and d2 is performed via value selection for each pixel p:

k′ = arg min
k

ek(p), dtl(p) = dk′(p). (3.4)

Similarly, we can obtain disparity maps dtr, dbl and dbr for the other three views.

This part of the work has been inspired from our previous work in Ch. 2 and its variant
[91], however, we made several modification to adapt it into our view synthesis pipeline:

1-) The flow estimator used in our previous work and in [91], which is a time and
computation resource-consuming netwokr FlowNet2.0 [86], here, we adopt a lightweight
PWC-Net architecture to save more resources for other modules, making end-to-end train-
ing the whole pipeline feasible.

2-) In our previous work and in [91], a single disparity for each view is obtained by
taking both minimum and average warping errors into account (details found in Ch. 2.2.3),
and this operation is computationally heavy and underivable, we hence simplify in this
work the disparity fusion step by merely considering warping error minimization.

3.2.3 Pixel-wise reconstruction

The pixel-wise reconstruction module (PixRNet) follows the conventional DIBR ap-
proach to generate novel views. In particular, based on the estimated disparity maps,
input views are warped to the target position and then fused to generate the final view.
Similar design can be found in [1]. Apart from the fact that [1] first infers the disparity
map at the target position and then employs backward projection, and our scheme applies
forward projection, the main advantage of our scheme is the use of disparity-dependent
interpolation which handles occlusion.
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Interpolation with occlusion handling

Let us project the pixel p = (xp, yp) from the input viewpoint i to the target viewpoint
t, at a position with non-integer coordinates p̃ = (xp̃, yp̃), with the disparity value di(p):

p̃ = p + (t− i)di(p). (3.5)

The pixel value L̃t(q) at integer coordinates q = (xq, yq) is interpolated from nearby
values Li(p) as

L̃t(q) =
∑

p Li(p)W (p,q)∑
p W (p,q) + ε

, (3.6)

where ε is a very small value for numeric stability.
The computation of the weights W (p,q) is crucial for end-to-end learning perfor-

mance. Three concerns should be addressed:
1/) The weight computation should be differentiable.
2/) As in traditional interpolation, the distance separating two pixels should be re-

flected in the weight.
3/) Occlusions should be handled.
Therefore, we propose

W (p,q) = wD(p,q)wO(p), (3.7)

with wD being a coordinate distance metrics

wD(p,q) = l(xp̃, xq)l(yp̃, yq), (3.8)

where

l(x1, x2) =

(1− |x1 −x2|), if |x1 −x2| < 1;

0, otherwise,
(3.9)

and wO a term handling occlusions defined as

wO(p) = exp(−λd∗i (p)). (3.10)

The disparity map di is normalized between 0 and 1 to become d∗i . By taking the expo-
nential function, wd gives more importance to the foreground pixels (small normalized
disparity values) rather than background ones (large normalized disparity values). Dis-
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parity normalization also avoids weight saturation at large disparity values.

Disocclusion handling

We concatenate thereby four warped views {L̃tlt , L̃trt , L̃blt , L̃brt } and the corresponding
disocclusion masks {mtl

t ,m
tr
t ,m

bl
t ,m

br
t }. The detection of the disocclusion mask is straight-

forward with forward warping, which identifies spatial positions having no projected pixels
in their neighborhood, i.e. Eq.(3.8) equals to zero for all p. The inpainting on the disoc-
cluded areas is then handled by a small network of 4 convolutional layers to obtain the
reconstructed view L̂Pix

t . The loss function is computed as the mean of absolute differences
(MAD) between the reconstructed view and the ground truth:

L1 = MAD(L̂Pix
t , Lt). (3.11)

3.2.4 Feature-based reconstruction

Due to inconsistencies between disparity estimates for the different input views, a
simple fusion of the projected views in the pixel space may lead to blurriness in highly
textured zones as well as on object contours. Thus, we propose the feature-based recon-
struction module (FeatRNet) as a complementary module of PixRNet.

For each input view Li, we extract low-level features:

∀Li ∈ I, {f 1
i , f

2
i , f

3
i } = FeatExt(Li), (3.12)

with FeatExt(·) being the operator that extracts features from the layers relu1_2,relu2_2
and relu3_4 of a pre-trained VGG19-Net, and f si being feature volumes at scale s (the
resolution of the feature maps in f s+1

i is half of that in f si ). These features are then warped
to the target position in a similar manner as described in Ch. 3.2.3 for the pixels:

∀i,∀s, {f̃ i,s
t ,mi,s

t } = Warp(f si , t). (3.13)

The warped features are input to convolutional layers to infer a feature volume of the
target view at each scale s:

f̂ st =

Conv({f̃ i,s
t ,mi,s

t , ∀i}), if s = 3;

Conv({f̃ i,s
t ,mi,s

t , ∀i}, ↑ f̂ s+1
t ), if s = 1, 2.

(3.14)
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At scale s=1 and 2, the inferred features at the previous scale s + 1 are upsampled
by 2 and fed into the network as well. The upsampling operator ↑ is implemented by a
deconvolution layer. Finally, the target view L̂Feat

t is reconstructed based on features at
the finest scale f̂ 1

t . The reconstruction is supervised both in color and feature space by
computing

L2 = MAD(L̂Feat
t , Lt) +

3∑
s=1

γiMAD(f̂ st , f st ), (3.15)

where the second term in Eq.(3.15) represents the difference between the inferred features
and those of the ground truth target view.

Note that the use of features has been exploited in recent works for light field recon-
struction. However, in most of these works [37, 102], the reconstruction is supervised by a
perceptual loss minimizing the distance between features computed on the reconstructed
view and those of the reference view. Here, we propose instead a bottom-up approach. We
first compute the target view features by warping the warped source view VGG features.
The target view is then inferred from the generated target view features. This is motivated
by the intuition that VGG features optimized for object recognition can be good texture
generative models.

3.2.5 End-to-end learning with fusion

End-to-end learning is finally performed including a fusion module to merge L̂Pix
t and

L̂Feat
t , making the final reconstruction L̂t well perform in both highly textured and tex-

tureless areas. Based on input feature maps of the last layer of PixRNet and FeatRNet, the
FusNet learns a soft mask M with values between 0 and 1 (forced by sigmoid activation),
which minimizes the pixel-wise reconstruction error:

L = MAD(L̂t, Lt), (3.16)

with
L̂t = ML̂Pix

t + (1−M)L̂Feat
t . (3.17)

We demonstrate in Fig. 3.2 the outputs at different stages of our framework and their
corresponding Fourier domains, it is obvious that image reconstructed from pixel cues
is more blurry that the one reconstructed from feature cues, when observing frequency
domain of each image, the energy of pixel-based reconstruction is concentrating in low
frequency domain, while the energy of feature-based reconstruction scatter over all fre-
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(a) Pixel-based reconstruction (b) Feature-based reconstruction

(c) Fused view (d) Reference view

Figure 3.2 – Visualization of the outputs (both in pixel domain and frequency domain) at different
stages of our framework. (a) View reconstructed with pixel cue. (b) View reconstructed with feature cue.
(c) View obtained by fusing pixel and feature-based reconstructions. (d) Ground truth view.

quencies. Final fused view takes advantage of both, both its Fourier domain and pixel
domain are closer to the ground truth view. Finally, we offer in Table 3.1 the architec-
tures of both PixRNet, FeatRNet and FusNet. The architecture of PWC-Net can be found
in [90].

3.3 Training details

3.3.1 Training data preparation

We employ 78 synthetic light fields in INRIA synthetic dataset [131] and 16 light fields
in ‘Additional’ category of new HCI dataset [55] to form our synthetic training set. All
light fields are with resolution 512 × 512 × 9 × 9. We also use 100 scenes proposed in
UCSD Illum dataset [1], which are captured by a Lytro Illum camera with resolution
376 × 541 × 14 × 14, by extracting the 8 × 8 central views of each scene to form our
real-world training set. Since real-world data contains complicated lighting conditions
and artifacts caused by hardware limitations, making it distinct from synthetic data,
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PixRNet k s in/out input
conv3Px 3 1 16/64 concat({L̃i

t,m
i
t,∀i})

conv2Px 3 1 64/32 conv3Px
conv1Px 3 1 32/16 conv2Px
L̂Pixt 3 1 16/3 conv1Px

FeatRNet
conv3_1Ft 3 1 1028/256 concat({f̃ i,3

t ,mi,3
t ,∀i})

conv3_2Ft 3 1 256/256 conv3_1Ft
f̂ 3

t 3 1 256/256 conv3_2Ft

up3 4 2 256/32 f̂ 3
t

conv2_1Ft 3 1 548/128 concat({f̃ i,2
t ,mi,2

t ,∀i},up3 )
conv2_2Ft 3 1 128/128 conv2_1Ft

f̂ 2
t 3 1 128/128 conv2_2Ft

up2 4 2 128/16 f̂ 2
t

conv1_1Ft 3 1 276/64 concat({f̃ i,1
t ,mi,1

t ,∀i},up2 )
conv1_2Ft 3 1 64/64 conv1_1Ft

f̂ 1
t 3 1 64/64 conv1_2Ft

conv0_1Ft 3 1 64/32 f̂ 1
t

conv0_2Ft 3 1 32/32 conv0_1Ft
L̂Featt 3 1 32/3 conv0_2Ft

FusNet
f̆Pix 3 1 16/8 conv1Px
f̆Feat 3 1 32/8 conv0_2Ft

conv3_Fn 3 1 16/8 concat(f̆Pix,f̆Feat)
conv2_Fn 3 1 8/8 conv3_Fn
conv1_Fn 3 1 8/4 conv2_Fn

M 3 1 4/1 conv1_Fn

Table 3.1 – The proposed network architecture. k, s and in/out represent the kernel size, the stride and
the number of input/output channels, whereas ‘up’ and ‘concat’ represent upsampling by deconvolution
and concatenation.

we therefore prepare two models, one trained on synthetic data and the other further
finetuned on real-world data. As light fields from DLFD and SLFD in INRIA synthetic
dataset and those in UCSD Illum dataset captured by a Lytro Illum camera, are with
different baselines, we therefore adopt different configurations when extracting views: for
light fields in DLFD that have narrow baseline, four corner views are selected by an
angular distance corresponding to view index difference l ∈ {5, 6, 7, 8}. For light fields
in SLFD having wide baseline, corner views are extracted with l ∈ {2, 3}. When using
the real-world training set,the corresponding angular distance is set to be l ∈ {6, 7}. The
ground truth view is randomly selected within the square defined by corner views. We
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work on randomly cropped light field patches of size 160×160 and the batch size is 5.

3.3.2 Data augmentation

We also apply geometrical and chromatic transformations to increase the variety of
the training data. The chromatic transformation is carried out by changing the contrast,
color balance, brightness and gamma value. The contrast is sampled within the inter-
val [−0.8, 0.4], the color balance is adjusted with a multiplicative factor sampled within
[0.5, 2], the brightness is modified by adding a value drawn according to a Gaussian dis-
tribution with σ = 0.2, and the gamma value is sampled within the interval [0.7, 1.5].
For the geometrical transform, we randomly rotate the image by 0◦, 90◦, 180◦ or 270◦

counterclockwise and flip it on the left and right.

3.3.3 Training schedule

End-to-end learning from scratch for such a network containing multiple modules can
be intractable. In order to make sure that each module converges well and the final view
inference is correctly learned, we follow a specific training schedule. We first finetune a
pre-trained PWC-Net with stereo pairs of light field views to make it adapt to disparity
estimation. Then, PixRNet and FeatRNet are trained separately using the loss functions
of Eq.(3.11) and Eq.(3.15) respectively. At this stage, the weights of PWC-Net are fixed for
two reasons. The first is to accelerate the model convergence. The second reason is that,
to reduce the size of the complete model, we constrain the two reconstruction schemes
to use the same disparity. Finally, an end-to-end training including PWC-Net, PixRNet
and FeatRNet is performed. Note that at this final stage, as our purpose is to minimize
the pixel-wise reconstruction error (Eq.(3.16)), the training is no longer supervised by the
feature-level reconstruction errors.

The model is trained with a fixed learning rate of 0.00001 and the hyperparameters
are set as λ = 10, γ1 = 1/64, γ2 = 1/32, γ3 = 1/4. The training takes approximately 5
days on a GPU Tesla V100 with 32GB of memory. Our work is implemented with the
tensorflow package.
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LFs Disparity range DeepVS Soft3D LLFF EPI PurePix PureFeat FPFR FPFR*
mona† [-5,5] (10) 38.90 40.92 41.20 37.54 39.90 40.35 42.47 42.86

butterfly† [-6,8] (14) 40.68 42.75 41.35 39.61 41.64 39.33 42.69 42.96
buddha† [-10,6] (16) 41.08 41.86 40.66 40.05 41.24 40.99 42.78 43.06
cotton? [-9,9] (18) 47.24 48.95 47.07 47.97 48.18 46.45 48.58 48.76
boxes? [-7,13] (20) 33.64 32.14 34.97 31.65 33.44 33.90 33.86 34.46
dino? [-10,10] (20) 38.41 41.69 41.26 38.44 40.63 39.38 42.66 42.98

sideboard? [-10,12] (22) 30.91 30.23 32.33 27.30 29.43 30.79 31.85 32.18
Toy_bricks� [-1,22] (23) 28.90 36.58 37.98 31.46 36.55 36.01 38.84 39.35
Elec_devices� [-10,17] (27) 34.09 36.24 36.76 31.55 35.53 34.87 37.63 38.03

stilllife† [-16,16] (32) 26.29 34.73 32.73 32.02 33.96 32.77 36.39 37.05
Lion� [-5,29] (34) 28.05 35.18 35.22 33.91 35.10 34.99 35.47 35.59

Two_vases� [-5,39] (44) 25.65 32.49 35.82 29.09 33.46 34.78 35.56 35.99
Sculpture� [-26,34] (60) 22.31 29.15 29.68 26.22 28.56 29.51 30.09 30.30
Bear� [-38,53] (91) 18.36 28.00 33.22 23.40 29.00 32.64 31.87 33.84

Average - 32.49 36.49 36.43 33.59 36.19 36.20 37.92 38.39

Table 3.2 – Quantitative results (PSNR) for the reconstructed central view on the synthetic test light
fields. The corresponding datasets are indicated by symbols: ? [55], � [131] and † [54]. With the best
performance being bold and the second ones being underlined.

3.4 Experiments

3.4.1 Results with synthetic light fields

We evaluate our framework with test light fields from both HCI datasets [55, 54]
and INRIA synthetic dataset [131]. Our approach is compared against four state-of-the-
art view synthesis methods for light fields which represent well the recent trend in the
domain: conventional DIBR in a deep learning framework (DeepVS [1]), synthesis via
multi-layer scene representation with learning (LLFF [37]) or without learning (Soft3D
[60]), and view interpolation based on learned EPI structure (EPI [98]).

All reference methods except LLFF take 2× 2 corner views to generate intermediate
views. The released model of LLFF requires at least 5 input views. Thus, for comparison
purposes, LLFF is tested with 2×2 views together with a fifth view which is the horizontal
immediate neighbor to the view Ltl. As the performance of learning-based methods can
be highly impacted by the training data, for a fair comparison, all the pre-trained models
are finetuned with the same datasets that our model is trained on. We also replace the
estimated camera poses required by LLFF with ground truth ones, in order to make sure
that the error is merely due to the reconstruction pipeline.

Table 3.2 compares the reconstruction quality of the center view in terms of PSNR. The
vanilla version of our model is named FPFR. FPFR* refers to ‘test-time augmentation’
of our model: the test scene is rotated and flipped before being processed by the network,
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Methods DeepVS[1] LLFF[37] EPI[98] FPFR FPFR*
Runtime 778s 212s 1332s(CPU) 172s 684s

Table 3.3 – Runtime for generating a 768× 768× 7× 7 light field for learning-based methods.

and the final reconstructed image is computed as the average of eight reconstructed views
(after inverse rotation and flipping operation) based on different versions of the same scene.
Note that for comparison purposes, PixRNet and FeatRNet can be trained separately
with the disparity estimation module to become two fully independent view synthesis
models on their own. We denote these two models ‘PurePix’ and ‘PureFeat’, which are
also trained in an end-to-end fashion. Test light fields are arranged according to their
disparity range (from dense to sparse). On average, our method (FPFR and FPFR*)
significantly outperforms other methods: a gain of nearly 2dB is observed against the
best reference method. Our method performs especially well for highly textured scenes
e.g. stilllife. Reconstruction error maps are shown in Fig. 3.4. One can observe that our
method generates less error on the object contours and thin structures in textured regions
(e.g. the tablecloth in stilllife and the wallpaper in sideboard).

Furthermore, Fig. 3.3(a) shows that FPFR consistently generates high quality views
across different viewpoints, whereas the reconstruction quality decreases for other methods
when the target view is distant from the input views.

Note that the single mode schemes PurePix and PureFeat also obtain competitive
results in Table 3.2. In the same vein as DeepVS [1], PurePix is on average 3.7dB better
than DeepVS, especially for sparse scenes. We believe that it is mainly due to the occlusion
and disocclusion handling in our PixRNet design.

We compare the runtime of the three learning-based reference methods[1, 37, 98]
against ours. In Table 3.3, we record the running time for synthesizing a light field of
resolution 768 × 768 × 7 × 7 on a GPU of type Nvidia Tesla V-100 with 32GB memory.
(The method [98] is run on CPU Intel i7-7600U 2.80GHz 16GB RAM. We did not suc-
ceed in running it on GPU, and in their paper the running time comparison was also done
with CPU.) The running time includes model loading and computation of color views.
Our proposed framework, when compared with other learning-based methods, still out-
performs others in terms of computational complexity. Although runtime has increased
by several times due to a test-time augmentation application, it is an acceptable price
when considering the PSNR gains it brings.
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(a) PSNR for interpolated viewpoints (b) View indices (c) PSNR for extrapolated viewpoints

Figure 3.3 – Average PSNR over 8 synthetic scenes ([55, 54]) for each novel viewpoint. (a) Interpolation.
(c) Extrapolation. (b) View indices for interpolation and extrapolation. 4 input views (red slash) are used
for FPFR, DeepVS[1], EPI[98] or FDL[132], whereas 5 input views (grey) are used for LLFF[37].

LFs DeepVS[1] Soft3D[60] LLFF[37] EPI[98] FPFR
Cars 31.53 27.68 29.06 28.17 32.05

Flower1 33.13 30.29 30.00 30.44 34.19
Flower2 31.95 30.52 28.90 29.26 33.80
Rock 34.32 32.67 32.60 32.46 36.48
Leaves 27.97 27.34 27.74 26.48 32.27
Seahorse 32.03 30.41 28.50 26.62 34.68
Average 31.82 29.82 29.47 28.90 33.91

Table 3.4 – Quantitative results (PSNR) for the reconstructed view (5,5) on the real-world data (8× 8
views) [1]. With the best performance being bold and the second ones being underlined.

3.4.2 Results with real light fields

For real-world experiments, we use the same training and test sets as used in [1] (UCSD
Illum dataset, which is introduced in Chaptre 1.1.5). For a fair comparison, all learning-
based models are finetuned with the same dataset. Table 3.4 shows that our approach
achieves the highest PSNRs. Note that a gain of 4.3dB is obtained for the scene leaves.
As for synthetic data, similar observations can be made in Fig. 3.4 for real-world scenes:
we obtain more accurate contours and well preserved textures.

3.4.3 Ablation study

Pixel vs. feature

To put in evidence the different tasks the pixel-wise and feature-based reconstruction
carry out, in Fig. 3.5 we show examples of feature maps taken from the last layers in
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Light field view DeepVS [1] Soft3D [60] LLFF [37] EPI [98] FPFR

Figure 3.4 – Visual comparison of reconstruction error maps for different methods. With larger error
value in red, and smaller one in blue. 90
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Figure 3.5 – Feature maps taken from the last latent layers of PixRNet and FeatRNet.

PixRNet and FeatRNet, from which the color view is reconstructed. We observe highly
enhanced textures and clear line structures in FeatRNet feature maps, whereas PixRNet
feature maps can provide information such as brightness, color and contrast, etc.

Feature-based reconstruction vs. perceptual loss

A common practice to optimize the view reconstruction quality via the feature space
is to apply the so-called perceptual loss [133] when performing end-to-end learning. To
valid our concept of merging the pixel-wise reconstruction with the feature-based one, we
compare FPFR with the single mode scheme PurePix learned end-to-end with a perceptual
loss. In experiments, we observe that FPFR is about 0.7dB better.

Fusion vs. single mode

With Fig. 3.6, we first analyse the convergence behavior at different stages of the
network (the output of PixRNet L̂Pix

t in cyan, that of FeatRNet L̂Feat
t in red, and the final

output L̂t in blue). The fusion pushes each mode to excel in its domain: the image L̂Pix
t

is more accurate on colors and low frequencies, whereas L̂Feat
t contains a higher level of

texture than the reference image (this explains the clear degradation of the PSNR for
L̂Feat

t during training). Therefore, the final image L̂t (blue curve) obtains better quality
both in low and high frequencies (see Fig. 3.2). In Fig. 3.6, we also compare FPFR with
single mode schemes PurePix (in green) and PureFeat (in yellow). A clear advantage is
observed for FPFR.
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Figure 3.6 – Learning curves of different end-to-end schemes (FPFR, PurePix and PureFeat). For
FPFR, the curves for intermediate outputs (L̂Pix

t and L̂Feat
t ) are also shown.

Single-scale vs. multi-scale

A single-scale architecture (s = 1) for feature-based reconstruction is compared with
its multi-scale counterparts (s = 1, 2, 3). In experiments, a gain of about 0.5dB is observed
in favor of the multi-scale architecture.

3.4.4 Extrapolation

Extrapolation of light fields with plausible disocclusions can be a more difficult task
than interpolation, since less information of the target view is known in the input views.
In Fig. 3.3(c), we evaluate the inherent capacity of our framework to extrapolate against
two reference methods FDL[132] and LLFF [37]. As input, our method and FDL take 4
corner views (red slashes in Fig. 3.3(b)) of a subset of 3× 3 views with narrow baseline.
Since LLFF requires at least 5 views, the central view is also included in input views (grey
in Fig. 3.3(b)). The output is an extended light field with 9× 9 views (4× baseline). One
can observe that our method outperforms reference methods by a large margin. Wider
the extended baseline, more important is our gain. Note that both LLFF and our model
are trained for interpolation tasks, here we evaluate the inherent capacity to extrapolate
without any further training.
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3.5 Conclusion

In this chapter, we have presented a novel learning-based model for light field view
synthesis. In order to obtain high quality reconstruction both in low and high frequen-
cies, end-to-end learning is performed including a pixel-wise reconstruction module and a
feature-based reconstruction module. Experiments have demonstrated that the proposed
model achieves state-of-the-art performance both for synthetic and real-world light fields.
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Chapter 4

FROM ANGULAR DIMENSION TO

TEMPORAL DIMENSION

4.1 Introduction

In the previous chapter, we have concentrated on view synthesis (or angular SR)
problem in light field and proposed a novel learning-based architecture capable of re-
constructing novels views from a given subset of input views to finally increase angular
sampling rate. If considering this undersampling problem in a broader perspective, we
can find light field isn’t the only visual content that suffers from perception degradation
caused by undersampling. One typical example is classical video sequence, where a small
video frame rate can lead to jerky motion. Despite the fact that light field and video
are essentially two different types of media content, they both sample a scene in similar
manners: a light field records the scene by capturing several angular views at a certain
instant, i.e. sampling a scene in spatial and angular dimensions. While a video records
scene through frames captured at a series of consecutive instants but at each instant from
a single viewpoint, which means sampling a scene in spatial and temporal dimensions. The
similarity of sampling a scene motivates us to generalize our previous workflow dedicated
for light field angular upsampling to video temporal upsampling problem (from angular
dimension to temporal dimension). Moreover, in this generalization process, we found
that some network designs used in Ch. 3 can be further improved to gain a better view
synthesis performance. Therefore, in this chapter, we mainly focus on two aspects: the
improvement of light field view synthesis (LFVS) pipeline, and adaptation from angular
dimension to temporal dimension for video frame interpolation (VFI) task.

In summary, our novel pipeline extends previous FPFR architecture presented in Ch. 3
in several ways:

1.) While the weights in the FPFR depth estimator are pre-trained using ground
truth optical flows, here we instead pre-train the weights of the optical flow estimator to
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be optimized for the view synthesis problem or the temporal frame interpolation problem,
without using ground truth optical flows or disparity maps. The pre-training of the flow
estimator for the target tasks make the disparity maps or the optical flows better adapted
for the targeted reconstruction problem and in addition reduces the time needed for end-
to-end training.

2.) We replace the fixed VGG19 [130] encoder by a lighter and trainable one. Instead
of using a feature extractor trained for image classification, the proposed simpler trainable
encoder allows us to extract deep features better suited for the following reconstruction
steps.

3.) The introduction of residual connections in both pixel-based and feature-based
synthesis convolutional modules is shown to improve the quality for light field view syn-
thesis.

This novel architecture denoted as FPFR+ not only gives synthesized light fields views
with a higher quality compared with FPFR, and outperforms state-of-the art methods for
both dense and sparse light fields, but it can also be used for video frame rate conversion
with high quality results. Comprehensive and intensive experiments show that the pro-
posed architecture produces high quality results in terms of quantitative and qualitative
measures, for both light field view synthesis and video frame interpolation compared with
the state-of-the-art methods. We indeed show that the quality of interpolated frames ob-
tained with the proposed method is quite competitive compared with the one obtained
with reference methods specifically dedicated to the temporal frame interpolation prob-
lem.

4.2 Methodology

4.2.1 Architecture overview

In the following we consider both video sequences and light fields. Although in previous
chapters, we adopt Li, with i = (u0, v0) to denote a view in light field. In this chapter, for
the sake of simplicity, we unify the notation for both video frame and light field views,
by using It to represent a frame captured at instant t, and using Ii to represent angular
view at position i = (u0, v0).

Our proposed architecture is an extension of work in Ch. 3, hence it can naturally be
used to reconstruct a densely sampled light field from a subset of input views. Moreover,
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Figure 4.1 – Overview of the proposed deep architecture for both light field view synthesis and video
frame temporal interpolation. In the case of the light field view synthesis problem, the input views are
4 sparse light field views (e.g. corner views) with i = {tl, tr, bl, br} being the index of the source view
positions, and j the index of the target view position. In the case of video frame temporal interpolation,
the input views are temporally adjacent views, with i = {0, 1} the index of source frame time instants,
and j = t the target frame instant.

we show here that it can also be used to reconstruct a video sequence from a subset of
input frames. Like explained in the introduction, we made several modifications based on
previous architecture. The novel architecture is depicted in Fig 4.1. For both problems, it is
composed of the same three modules like in Ch. 3.2.1. The first module Flow estimation
(blue) which will compute disparity maps for the angular view synthesis problem and
optical flows for the frame temporal interpolation problem. The flow estimation module
is followed by a pixel-based view synthesis module, PixRNet (orange), and by a feature-
based view synthesis module, called FeatRNet (violet). The outputs of these two synthesis
modules are then merged using a learned soft fusion mask generated by a network called
FusNet (green).

Depending on the targeted problem, the application of the above architecture varies
only in terms of input images and in the semantic of the estimated flows. In the case
of light field angular view synthesis, the inputs of the architecture are 2 × 2 light field
views {Itl, Itr, Ibl, Ibr}. In the case of video frame temporal interpolation, the inputs of the
architecture are two temporally adjacent frames I0 and I1 and the architecture produces
temporally intermediate frames. Depending on the targeted problem, the flows estimated
by the Flow estimation module are disparity maps in the case of light field angular view
synthesis, whereas are they are bi-directional optical flows in the case of temporal frame
interpolation.
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4.2.2 Flow estimation

The Flow estimation module predicts disparity maps for angular view synthesis or
bidirectional motions for temporal interpolation.

Disparity maps

In the case of light field view synthesis, given four corner views {Itl, Itr, Ibl, Ibr}, we
adopt the same workflow as in Ch. 3.2.2 to estimate a single disparity map for each input
view. Please refer to Ch. 3.2.2 for details. However, despite the fact that the same state-
of-the-art flow estimation network PWC-Net [90] are employed as flow estimator FNet,
we utilize a novel finetuning strategy that optimizes its weights for the targeted view
synthesis or temporal interpolation tasks without using any ground truth optical flows.
The training strategy hence differs from the one in Ch. 3, where we finetune PWC-Net
with ground truth disparity maps between light field image pair, More details will be
presented in Ch. 4.2.3.

Bidirectional optical flows

In the case of temporal interpolation task, the flow estimation module takes two input
frames I0 and I1 and output a forward flow (from instant 0 to 1) and a backward flow
(from instant 1 to 0):

flow0→1 = FNet(I0, I1), (4.1)

flow1→0 = FNet(I1, I0). (4.2)

The estimated optical flows have horizontal and vertical components. Moreover, as
there is only one estimated motion for each view, further refinement by fusion is not
required. Both flows are used for forward and backwarp warping when performing the
temporal interpolation, as explained later in Ch. 4.2.3.

4.2.3 View warping and fusion

Based on the estimated optical flows or disparity maps, the input views and their fea-
ture maps are warped onto the target view position j via a differentiable forward warping
operation while computing at the same time binary occlusion masks. The warped images
and feature maps are respectively fed into the PixRNet and FeatRNet synthesis modules
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along with the occlusion masks to synthesize two views Îpixj and Îfeatj . Viewing Îpixj and
Îfeatj have complementary properties in homogeneous and textured regions, finally, the
FusNet module learns a soft mask M to merge Îpixj and Îfeatj into an image Îj which well
reconstructs both homogeneous and textured regions.

Image forward warping

Backward warping (BW) has been a widely used operation for various image processing
tasks, e.g. image classification [134], depth image based rendering (DIBR) [1, 37] etc. It
consists in projecting pixels from one source view to a target one, using the optical flow
associated to the target view, hence requires the optical flow at the target position. In
Ch. 3.2.3, we adopt a forward projection (or warping) operation, which does not require
flow estimation at the target position, and can moreover better handle occlusions via
disparity-dependent interpolation. As corresponding operation details for light field view
synthesis have already been presented in Ch. 3.2.3, we thus explain in this part how image
forward warping and interpolation are conducted in the case of video frame interpolation.

Let us assume that we would like to project a pixel p = (xp, yp) from a source frame
to a target frame. Given optical flow flow0→1 between source frames I0, I1 and the target
intermediate instant t in the case of video frame interpolation, the non-integer coordinates
of the projected pixel p̃ = (xp̃, yp̃) can be computed as:

p̃ = p + t× flow0→1(p) (4.3)

where the term t× flow0→1 approximates the flow flow0→t between the frame I0 and the
frame at time instant t, which is then used to warp pixels of frame I0. The frame I1 is
similarly warped using flow1→t = (1− t)× flow1→0.

The pixel value Ĩ0→t(q) at integer coordinates q = (xq, yq) of the warped image will
be interpolated as a weighted sum of nearby source pixels or I0(p):

Ĩ0→t(q) =
∑

p I0(p)W (p,q)∑
p W (p,q) + ε

, (4.4)

with
W (p,q) = wD(p,q)wO(p), (4.5)

an interpolation weight term as the product of a distance term wD and an overlap handling
term wO. Readers can refer to Eq. 3.8 and Eq. 3.9 for the computation of wD.
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The term wO is used for handling overlapping warped pixels, since pixels from fore-
ground and background are often overlaid in occluded regions. In the light field view syn-
thesis problem, we use the disparity maps di of each input view to compute this weight
(Eq. 3.10). However, disparity maps are not available for the video frame interpolation
problem, and since scene depth is difficult to estimate from a monocular video, we use
the warping error for handling overlapping pixels.

More precisely, in the case of video frame interpolation, we use brightness error e∗0 to
calculate wO as

wO(p) = exp(−λe∗0(p)), (4.6)

The exponential function gives more importance to pixels having smaller brightness error
and less importance to those with larger brightness error. The brightness error e0 of I0 is
calculated as

e0 =
∑
RBG

|I0 − BW(I1, f low0→1)|, (4.7)

where I0 and I1 are the two input frames and BW denotes the backward warping opera-
tion.

Non occupied pixel positions on the target view after pixel warping are indicated
as disoccluded positions via a binary mask M̃ . However, to detect disoccluded pixels in
a differentiable manner, and to handle interpolation in disoccluded positions, we also
warp the weight map wO. For each warped position, we thus have RGB and weight
values. If there is no pixels in the neighbourhood, then wD is 0 in all neighbourhood
positions, indicating, in a differentiable manner, that the corresponding pixel position is a
disoccluded pixel. The warped weights are also used to compute the interpolation weights.

Here, by taking forward warping for both light field view synthesis and video frame
interpolation cases into account, we can summarize FW operation as follows:

Ĩ0→t, M̃0→t = FW(I0, f low0→t, e0) (4.8)

for VFI, or
Ĩi→j, M̃i→j = FW(Ii, di, i, j) (4.9)

for LFVS.
Both disparity and brightness error are effective cues in handling pixel overlaps, as the

larger is the brightness error of a pixel, or the larger is its disparity value, the more likely
it will be overlaid after warping. Similar brightness error-based image warping operation,
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(a).Warped view before FT (b).Warped view after FT

Figure 4.2 – Visual comparison of views before & after finetuning (FT). The views in the 1st row are
from the INRIA synthetic dataset [131], while those in the 2nd row are from the video frame interpolation
dataset in [135]

called ‘softmax splatting’, can be found in [119].

Finetuning the flow estimation module

Depth-dependent LFVS approaches such as in [60] and our previous work, or flow-
based VFI schemes such as in [118, 117], using an off-the-shelf disparity or optical flow
estimation module, both rely on a good initialization of that module whether or not
end-to-end finetuning is conducted later. However, most of these concerned networks are
trained on synthetic datasets with ground truth disparities [56, 89] or optical flows [136,
86], and are not fully adapted to the view synthesis problem. Here, based on our afore-
mentioned FW operation, we propose instead a simple but effective finetuning procedure
that enables us to finetune the initial flow estimation module under view synthesis or
frame-interpolation supervision, i.e. without any ground truth disparity maps or optical
flows.

More specifically, in the case of LFVS, given four input views Itl, Itr, Ibl, Ibr and
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corresponding disparity maps dtl, dtr, dbl, dbr estimated by Flow estimation module, we
aim at synthesizing the view at j. We finetune the estimated flows, without using ground
truth flows, by optimizing

argminθ
∑

i∈{tl,tr,bl,br}
|(Ĩi→j − Ij)M̃i→j|1 (4.10)

where θ is the set of parameters of the FNet module, and Ĩi→j, M̃i→j are obtained by the
FW operation in Eq. 4.9.

In the case of VFI, given the input frames I0, I1 and the associated estimated flows
flow0→1, flow1→0, we interpolate a frame at an intermediate instant t, by optimizing

argminθ
∑

t′∈{0,1}
|(Ĩt′→t − It)M̃t′→t|1, (4.11)

where Ĩt′→t, M̃t′→t are obtained via Eq. 4.8, with flow0→t = t× flow0→1 and flow1→t =
(1− t)× flow1→0.

Fig. 4.2 illustrates the warped images obtained before and after finetuning. Before
finetuning, we can observe severe deformations in regions like bear’s ear and licence plate
that are challenging for the synthesis process. These artifacts are corrected thanks to the
finetuning procedure.

Pixel and feature-based reconstruction

Thanks to the finetuned Flow estimation module, we can obtain disparity maps or
optical flows optimized for synthesis. The synthesis proceeds in parallel in both pixel and
deep feature domains. Since it has been explained once in Ch. 3 for LFVS, in this part,
we will present synthesis procedure with more of focus on VFI case and new designs of
our network.

In the case of VFI, PixRNet takes concatenated warped frames {Ĩ0→t, Ĩ1→t} and masks
{M̃0→t, M̃1→t} to learn the reconstructed Îpixt . Different from our previous PixRNet in
Ch. 3 that cascades four simple convolutional layers, we replace the first three layers
with novel residual convolutional block (RCB) architecture illustrated in Fig 4.3. A RCB
is composed of three convolutional layers, where the first layers with kernel size 1 × 1
convert C1 input channels to C2 channels. Then two cascaded convolutional layers with
kernel size 3× 3 learn a residual map acting on the input. Moreover, in comparison with
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Figure 4.3 – Architecture of Residual Convolutional Block (RCB) with input tensor of dimension
[B,H,W,C1] and output tensor of dimension [B,H,W,C2].

the original design in Ch. 3, we quadruple the number of channels in RCB to further
enhance its learning ability. The usage of RCB improves the reconstruction efficiency.
More details will be investigated in Ch. 4.4.3.

Same as in Ch.3.2.4, due to inconsistency between disparities or optical flows of in-
put views, those warped views or frames are not fully aligned and the fusion may yield
blurriness especially in highly textured regions and object contours. To overcome this
limitation, we use FeatRNet as an complementary feature-based reconstruction module,
in which an encoder is employed to extract deep features at three different resolutions
later used in a pyramidal reconstruction step. However, some modifications are also made
in FeatRNet. Besides using RCBs to replace convolutional layers, a trainable encoder is
employed to substitute previous VGG19 encoder with fixed weights, and it is 1-) more
lightweight than the VGG19 encoder (1.9M parameters vs 2.3M parameters). 2-) more
flexible to extract features suitable for synthesis.

The feature maps of input frames are extracted at three different resolutions as:

{f 1
t′ , f

2
t′ , f

3
t′} = FeatExt(It′),∀t′ ∈ {0, 1} (4.12)

where FeatExt denotes the feature extraction operation and the extracted feature maps
f s+1
t′ are at half resolution compared with f st′ . Like in the PixRNet module, these feature
maps are then warped to the desired instant t using forward warping as

f̃ st′→t, m̃
s
t′→t = FW(It′ , f lowt′→t, et′), ∀t′ ∈ {0, 1} (4.13)

Warped features and masks at lower levels are first concatenated and fused by RCBs, and
then 2× upsampled by a deconvolutional layer to be fed to the next level. Finally, at the
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highest level, the warped feature maps and the occlusion masks along with upsampled
features are merged to get the desired view Îfeatt . In case of LFVS, the FeatRNet module
will follow the same reconstruction process to obtain Îfeatj .

The adoption of novel encoder have also helped us to simplify the training schedule
of network. In Ch.3, feature maps of the ground truth image are extracted using a fixed
VGG19 encoder to supervise the feature reconstruction at each level of the FeatRNet
module. While with a trainable encoder, the extracted feature maps of the ground truth
image vary with the learned encoder weights, and supervising the feature reconstruction
with varying ground truth feature maps results in model performance oscillations during
training. We therefore no longer supervise feature reconstruction and directly focus on
the final reconstruction of Îfeatt (or Îfeatj ) in the FeatRNet module. The simplified training
schedule will be detailed later in Ch. 4.3.2.

To make final view well performs in both homogeneous and textured regions, the same
FusNet as in Ch. 3 is employed to merge two reconstructed views into the final target view
Ît (or Îj) with a soft maskM having value between 0 and 1 (forced by sigmoid activation)
as follows

Ît = MÎpixt + (1−M)Îfeatt . (4.14)

To train the entire architecture, we propose a loss function composed of three recon-
structed views as follows

L = γ1Ll(Îpixj , Ij) + γ2Ll(Îfeatj , Ij) + γ3Ll(Îj, Ij), (4.15)

where Ll represents a Laplacian loss [137] with 3 levels. {γ1, γ2, γ3} are weight hyperpa-
rameters.

4.3 Implementation details

4.3.1 Training data preparation and augmentation

In case of LFVS, we adopt the same data preparation and augmentation strategies to
process training data, readers can refer to Ch. 3.3.1 and Ch. 3.3.2 for setting details.

For VFI, we adopt the widely used Vimeo90K dataset in [114] for training. This train-
ing set contains 51,313 video triplets with resolution 256× 448. We use the intermediate
frame as ground truth and other two frames as inputs, and randomly crop patches in size
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160× 160 during training, the batch size is set to 18.

4.3.2 Training schedule

Like previously mentioned, by adopting novel encoder, we have simplified the training
schedule. The training schedule of the model can be divided into an initialization step
followed by an end-to-end optimization step. In the initialization step, we fix the weights
in the FNet module and set γ1 = γ2 = γ3 = 1 in the loss function. The training will
enable both PixRNet, FeatRNet and FusNet to generate views that approximate the
ground truth view. We set the learning rate to 0.0001 for this step, and the whole pipeline
is trained for 3000 epoches in the case of VSLF and for 30 epoches in the case of VFI.

Then, by setting γ1 = γ2 = 0 and γ3 = 1 in the loss function, we end-to-end train the
framework to optimize the final synthesized view, which makes PixRNet and FeatRNet
to retrieve views with complementary properties. The learning rate in this stage is set to
0.00001 and we stop the training when there is no performance amelioration within 2000
epoches for LFVS or 20 epoches for VFI.

The training procedure takes about 4 days for LFVS and 5 days for VFI on a Nvidia
Tesla V100 GPU with 32GB GRAM, the pipeline is implemented using the tensorflow
framework.

LFs Disparity range DeepVS[1] Soft3D[60] LLFF[37] EPI[98] FPFR FPFR+ FPFR+*
mona† [-5,5] (10) 38.90 40.92 41.20 37.54 42.47 43.26 43.57

butterfly† [-6,8] (14) 40.68 42.75 41.35 39.61 42.69 43.52 43.79
buddha† [-10,6] (16) 41.08 41.86 40.66 40.05 42.78 43.50 43.72
cotton? [-9,9] (18) 47.24 48.95 47.07 47.97 48.58 50.48 50.59
boxes? [-7,13] (20) 33.64 32.14 34.97 31.65 33.86 33.41 34.29
dino? [-10,10] (20) 38.41 41.69 41.26 38.44 42.66 43.69 44.09

sideboard? [-10,12] (22) 30.91 30.23 32.33 27.30 31.85 32.37 32.75
Toy_bricks� [-1,22] (23) 28.90 36.58 37.98 31.46 38.84 40.44 40.89
Elec_devices� [-10,17] (27) 34.09 36.24 36.76 31.55 37.63 39.25 39.50

stilllife† [-16,16] (32) 26.29 34.73 32.73 32.02 36.39 37.20 37.74
Lion� [-5,29] (34) 28.05 35.18 35.22 33.91 35.47 35.66 35.75

Two_vases� [-5,39] (44) 25.65 32.49 35.82 29.09 35.56 35.54 36.26
Sculpture� [-26,34] (60) 22.31 29.15 29.68 26.22 30.09 30.02 30.12
Bear� [-38,53] (91) 18.36 28.00 33.22 23.40 31.87 33.41 34.22

Average - 32.49 36.49 36.43 33.59 37.92 38.70 39.09

Table 4.1 – Quantitative results (PSNR) for the reconstructed central view of the synthetic test light
fields. The corresponding datasets are indicated by symbols: ? [55], � [131] and † [54]. The best perfor-
mances are shown in bold and the second best ones are underlined.
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4.4 Experiments

In this section, we evaluate the effectiveness of our novel architecture for both LFVS
and VFI tasks using various datasets.

4.4.1 Light field view synthesis

Results with synthetic light fields

For experiments on synthetic light field data, we keep the same settings as in Ch. 3.4.1
and compare with SOTA view synthesis methods, including our previous architecture
FPFR.

Table 4.1 gives a quantitative evaluation of the synthesized central view in terms of
PSNR, with all tested light fields arranged from dense to sparse according to the disparity
range. In the last two columns, we show the performance of the vanilla version (FPFR+)
and test-time augmented version (FPFR+*) of our method. We can observe from the
table that our novel pipeline outperforms the state-of-the-art methods with most scenes,
and in average gives about 0.8dB gain against the best reference method. Besides testing
on the central view that is the most distant from corner views, we further trace the
PSNR curves when varying the target position for the different methods, Fig 4.4(a) shows
the synthesis quality evolution in terms of viewpoints. We can observe that our method
outperforms reference ones with a very large margin. Furthermore, in comparison with
the FPFR network, our novel architecture gains in average 1dB for views distant from
the corner views, and even more for views that are near the source input views.

Results with real light fields

We also carry out experiments on real light fields with the same setting as in Ch. 3.4.2.
Table 4.2 shows the quantitative measures obtained for the central reconstructed views.
A gain of 0.5dB is observed against FPFR, the best reference method.

Fig. 4.5 shows reconstruction error maps for both synthetic and real-world light fields,
we can observe that our method reconstructs views with less errors, especially on the
object contours and subtle structures in highly textured regions.
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(a) PSNR for interpolated viewpoints (b) View indices (c) PSNR for extrapolated viewpoints

Figure 4.4 – Averaged PSNR curves for the different viewpoints. The 8 synthetic scenes are from
the datasets [54, 55]. (a) Interpolation. (c) Extrapolation. (b) View indices for interpolation (top) and
extrapolation (bottom). 4 input views (red slash) are used for DeepVS[1], EPI[98], Soft3D[60], FPFR,
FDL[132] and FPFR+ (Ours), whereas 5 input views (grey) are used for LLFF[37].

LFs DeepVS Soft3D LLFF EPI FPFR FPFR+
Cars 31.53 27.68 29.06 28.17 32.05 32.86

Flower1 33.13 30.29 30.00 30.44 34.19 34.63
Flower2 31.95 30.52 28.90 29.26 33.80 34.12
Rock 34.32 32.67 32.60 32.46 36.48 37.13
Leaves 27.97 27.34 27.74 26.48 32.27 32.65
Seahorse 32.03 30.41 28.50 26.62 34.68 34.95
Average 31.82 29.82 29.47 28.90 33.91 34.39

Table 4.2 – Quantitative results (PSNR) for the reconstructed view (5,5) with real-world data (8 × 8
views) [1]. The best performances are shown in bold and the second best ones are underlined.

Extrapolation

We have also conduct experiment on view extrapolation task like in Ch. 3.4.4. Fig. 4.4(c)
shows the performances for each method. We can observe that our method yields better
results than the reference methods. Wider is the baseline, more important are the gains
with our approach. Let us note that all learning-based methods used in this test have
been trained for the interpolation task, hence here we assess the inherent extrapolation
capability of each method without any further finetuning.

4.4.2 Video frame interpolation

Besides angular view synthesis in light field, we also assess our pipeline for video frame
temporal interpolation, using two datasets:
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Light field view DeepVS [1] Soft3D [60] LLFF [37] EPI [98] FPFR FPFR+

Figure 4.5 – Reconstruction error maps of view Î5,5 for different synthesis methods, with higher error
value in red and lower error value in blue.
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(a) MEMC-Net [124] (b) FeFlow [121] (c) SMSP [119] Ours GT

Figure 4.6 – Video frame interpolation results in comparison with (a) MEMC-Net [124], (b) FeFlow
[121], (c) SMSP [119]. The 1st two rows use frames from [138], the last three rows use frames from [114].
We use official outputs of SMSP for the last three rows.

— The Vimeo90K datatset [114] that contains 3,782 video triplets with resolution
256× 448, covering a large variety of scenes and actions. We interpolate the inter-
mediate frames using the two adjacent frames as inputs.

— The Adobe240fps dataset [138] that is a real-world video set captured with a hand-
held camera, it is more challenging than Vimeo90K as it contains more motion blur.
We extracted 777 frame triplets (about 10% of the total number of frames) with
resolution 360× 640 and synthesized the intermediate frames.

We compare the quality of the interpolated frames with the one obtained with state-
of-the-art VFI methods, i.e. with MEMC-Net [124], which merges kernel and flow-based
synthesis in its pipeline; FeFlow [121], which exploits a flow of features instead of pixels
for motion estimation; and Softmax Splatting (SMSP) [119], a flow-based framework that
employs pixels and features in the synthesis. For the MEMC-Net and FeFlow methods, We
use the official authors source code and their pre-trained model. However, as the code and
model are not available for SMSP, we re-implemented this method and trained it using the
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Methods Vimeo90K[114] Adobe240fps[138]
PSNR SSIM PSNR SSIM

MEMC-Net[124] 34.43 0.963 31.54 0.927
FeFlow[121] 35.09 0.963 31.50 0.925
SMSP[119] 35.51 0.967 31.60 0.927
SMSP* [119] 36.10 0.970 - -
FPFR+ 35.96 0.970 31.72 0.928

Table 4.3 – Quantitative evaluations (PSNR&SSIM) for the synthesized intermediate frames. The best
performances are shown in bold and the second best ones are underlined.

Vimeo90K training set following the instructions in the paper. We could not reproduce
the results of the paper, therefore, we give in Table 4.3 both results, the ones taken from
the paper [119] (noted as SMSP*), and those obtained with our implementation.

Table 4.3 gives the PSNR and SSIM performances for all tested methods, we can notice
that our proposed architecture, although originally designed for angular view synthesis
in light field, is well suited for temporal video frame interpolation. It can generate inter-
mediate frames of a quality that is comparable to the one of the top-rank official SMSP
method. The table shows that the proposed method outperforms state-of-the-art methods
by a large margin.

Fig 4.6 shows interpolated frames obtained with different methods. Compared with
other methods, our architecture is able to retrieve high quality frames with subtle details.
Let us note that when the input frames contain some blur, like in the 1st row, the reference
methods may suffer from deformation or may fail to synthesize intermediate views, while
our method is more robust and can still generate plausible results.

4.4.3 Ablation study

In this section, we carry out an ablation study to analyze the performance gain brought
by the new architecture when compared with FPFR proposed in Ch. 3.

Residual convolutional block (RCB)

We assess the performance gain obtained by using the RCB instead of simple convolu-
tional layers. We consider the PixRNet module and fix the weights in the FNet module so
that the quality of the synthesized views only depends on the synthesis block. We compare
the three variants shown in Fig 4.7, where Fig 4.7(a) shows the fundamental architecture
adopted in FPFR, Fig 4.7(b) an enhanced architecture with more kernels and layers,
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which can also be considered as the non-residual connection version of Fig 4.7(c), and
where Fig 4.7(c) is our current PixRNet architecture based on RCB. Their corresponding
learning curves are compared in Fig 4.8, with all curves have been obtained using four
light field scenes in old HCI dataset [55]. One can notice that adding kernels and layers
like in Fig. 4.7(c) allows improving the network performance. Residual connections further
ameliorate the synthesis quality.

(a) PixRNet used in
FPFR

(b) PixRNet using CBs (c) PixRNet using
RCBs

Figure 4.7 – Three variants for PixRNet, with (a) fundamental architecture used in FPFR, (b) PixRNet
based on CB (without residual connection), (c) PixRNet based on RCB.

Trainable encoder

Another improvement in our pipeline is the use of a trainable encoder, instead of a
fixed VGG19 encoder. A lightweight trainable encoder that flexibly extracts feature maps
in cooperation with the synthesis step effectively accelerate the network convergence. By
fixing weights in the FNet module, we trace the learning curves of the FeatRNet module
using two different encoders (see Fig. 4.9). We can note that with a trainable encoder, the
FeatRNet module quickly converges to a high PSNR value, which means that the extracted
features are suitable for synthesis. While the features extracted with the VGG19 encoder
originally designed for the classification task are less suitable for the reconstruction task,
and yields slower network convergence.

Global architecture

Finally, Fig. 4.10 shows that the training of the proposed architecture, when compared
with FPFR, converges faster. Tables 4.1 and 4.2 show that this novel architecture is quite
efficient for both light field view synthesis and video frame temporal interpolation.
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Figure 4.8 – Learning curves of different architectures, with (a) PixRNet in FPFR, (b) PixRNet using
RCB, (c) PixRNet using CB.

Figure 4.9 – Training curves for different encoders: (a) FeatRNet using VGG19 encoder; (b) FeatRNet
using a trainable encoder.

4.4.4 Light field compression using view synthesis

Let us note that pipelines proposed in Ch. 3 and Ch. 4 are not only effective for view
synthesis task, but also very useful in some other tasks when serving as a sub-module.
In this part, we take light field compression task as an application example. Although
light fields give a very rich description of a scene and in particular information about the
parallax and depth of the scene which allows constructing panoramic images, 3D viewing
with full parallax. However, this comes with very large volumes of extremely redundant
data, hence very high processing costs and very large storage needs.
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Figure 4.10 – Training curves of FPFR and FPFR+(Ours)

Facing this challenge, light field compression has been a very active field, a variety of
methods have been proposed for light field compression. One typical method to compress
a light field is applying HEVC inter coding of the video with a lozenge sequencing of
all sub-aperture views (denoted as HEVC in the following experiments), another widely
used compression algorithm is JPEG-Pleno [2]. Both HEVC and JPEG-Pleno require to
encode all sub-aperture views in encoder, then decoder decodes transmitted data into a
light field. However, encoding each view of light field isn’t very efficient, we hence show
that by adopting view synthesis techniques proposed in this thesis (FPFR and FPFR+),
a more efficient compression pipeline can be achieved.

Fig. 4.11 illustrates the light field compression pipeline using view synthesis network
FPFR and FPFR+. In this scheme, in order to compress a light field L, we first extract
four corner views {Ltl, Ltr, Lbl, Lbr} and employ HEVC inter coding to encoder these views
on the encoder side. Then on the decoder side, transmitted data are first decoded to obtain
corner views {L′tl, L′tr, L′bl, L′br}, and FPFR or FPFR+ is utilized to reconstruct the whole
light field L′. In comparison with HEVC inter coding or JPEG-Pleno, compression based
on view synthesis doesn’t require to encoder all sub-aperture images, therefore, being
easily to reach a better compression performance.

Fig. 4.12 shows rate-distortion curves for scenes stilllife and buddha in HCI dataset.
We compress four corner views with HEVC inter coding and use FPFR and FPFR+ to
reconstruct the whole 9 × 9 views on the decoder side. While HEVC and JPEG-Pleno
involve all 81 views. It is obvious that a better PSNR-rate performance is achieved with
the help of our view synthesis schemes. As FPFR+ proposed in Ch. 4 has better synthesis
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Figure 4.11 – A light field compression pipeline using view synthesis technique.

performance than FPFR proposed in Ch. 3, corresponding PSNR-rate curve of FPFR+
shows consequently better performance than that of FPFR.

(a) PSNR-rate performance for stilllife (b) PSNR-rate performance for buddha

Figure 4.12 – PSNR-rate performance for view synthesis-based compression scheme. The proposed
methods FPFR and FPFR+ are compared with HEVC and JPEG-Pleno compression solutions.

4.5 Conclusion

In this chapter, we have presented a flexible learning-based architecture for both an-
gular view synthesis for light field and video frame temporal interpolation. The proposed
scheme employs a state-of-the-art flow estimation network to predict flows between in-
put images. The synthesis is then conducted in parallel in pixel-based and feature-based
branches followed by a soft mask fusion to obtain the final synthesized view. Compared
with the FPFR solution originally designed for light field view synthesis, the novel archi-
tecture adopts residual convolutional blocks (RCBs) and a lighter weight trainable encoder
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that allows improving both training efficiency and synthesis performance for light field
view synthesis. The architecture is further generalized to handle video frame temporal
interpolation.

The effectiveness of the proposed solution is demonstrated by comparing with state-
of-the-art methods using both light field synthesis and video interpolation datasets. Ex-
perimental results show that our method tackles well both tasks with high quality results.
Besides view synthesis task, we have also integrated our pipeline into a light field com-
pression workflow, which aims at reconstructing the whole light field from a subset of
views with the help of view synthesis technique. Finally, by using FPFR and FPFR+ in
the scheme, we achieve a better compression performance than two typical compression
algorithms HEVC inter coding and JPEG-Pleno.
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CONCLUSION

5.1 Summary

Light field imaging has been an active research field in recent years. Although it
shows great potential in a variety of computer vision applications, technical challenges
remain to be investigated due to hardware limitations or huge data redundancy before
the technology can actually be used in practice. In this thesis, we address some of the
most common problems encountered in light field applications, as we believe solving such
problems is meaningful and helpful for more practical applications of the light field. In
each of the following three chapters (Ch.2,Ch.3,Ch.4), we pose a key question that reveals
our motivations and objectives before setting about constructing corresponding workflows:

1.How to precisely and efficiently estimate a depth map using a small subset of views
in a light field?

2.Can we retrieve the entire light field from a small subset of views and the correspond-
ing estimated depth values?

3.Can a view synthesis architecture for light field be generalized to solve temporal view
synthesis problem?

And the work in Ch.2,Ch.3,Ch.4 can be considered as the answer to each of these
questions.

We first target the problem of light field depth (or disparity) estimation. Existing
methods relying on EPI structure is merely suitable for densely sampled data, while
others based on pixel-matching technique generate imprecise estimates. Viewing this, we
propose a framework that takes a flexible subset of input views to estimate disparity
maps for both densely and sparsely sampled light fields. It first divides the input set of
views into several stereo image pairs for predicting multiple disparity maps, then applies
a warping error-based fusion and a refinement procedure to output an accurate disparity
map. The proposed pipeline shows superior estimation accuracy compared with other
reference methods with a more flexible subset of input views.
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Another important aspect addressed in this thesis is light field view synthesis, which
consists of rendering novel views from a sparse set of input views. The synthesis can
increase the angular sampling of a light field, hence be an effective solution of light field’s
spatio-angular super-resolution. In this part, we propose a learning-based view synthesis
pipeline that takes sparsely sampled views and outputs a densely sampled light field based
on pixel and feature cues. The synthesized views are of high quality in both homogeneous
and textured regions thanks to the fusion of pixel-based and feature-based reconstructions.
Experimental results show that our proposed method outperforms other reference methods
on both synthetic and real-world light field scenes.

In Ch. 4, based on previous work, we extend our light field view synthesis framework
to solve a video frame interpolation problem. Firstly, we focus on some architecture design
issues, and successfully improve the synthesis quality by adopting novel residual convolu-
tion blocks and a trainable encoder. Then, viewing light field and video sequences as scene
sampling in the angular or temporal dimensions, we adapt the view synthesis architecture
to perform video frame interpolation. Experiments show that our novel architecture is
quite effective for both tasks. In the case of light field view synthesis, it yields better per-
formance than the previous architecture and outperforms other reference methods. And
in the case of video frame interpolation, it generates frames with plausible details and is
shown to be competitive with those produced by the best reference method.

Finally, we conduct an additional experiment by integrating the view synthesis pipelines
proposed in Ch. 3 and Ch. 4 into a light field compression workflow, showing that light
fields can be compressed with a PSNR-rate performance better than using HEVC and
JPEG-Pleno.

5.2 Future work and perspectives
We think there are several possible extensions of this thesis.
In Ch. 2, we propose a framework composed of three modules in charge of initial dis-

parity estimation, error-based fusion and refinement. Although being proven effective for
disparity estimation, it still has two obvious shortcomings: first, the number of param-
eters in FlowNet2.0 is very high, which is an issue for training, and a sub-network by
sub-network training procedure will tremendously prolong the global training schedule.
Then, the winner takes all strategy adopted in the fusion step is non-differentiable, conse-
quently preventing end-to-end finetuning the whole pipeline. Considering these two draw-
backs, future extensions are envisaged to make the pipeline slimmer and differentiable:
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we can replace FlowNet2.0 with other lightweight flow estimation networks, for example,
LiteFlownet proposed in [139], which has much less parameters than FlowNet2.0 while
remaining high estimation quality. Then the fusion step based on winner takes all strat-
egy can be replaced with a soft fusion strategy (e.g. using softmax function to estimate
confidences) to guarantee the derivability of such an operation. The filter numbers in the
refinement network can be reduced as well according to practical GRAM consumption.
In this way, we can obtain a more lightweight depth estimation pipeline, and end-to-end
training such a pipeline may produce better depth estimation results.

Although pipelines in Ch. 3 and Ch. 4 are end-to-end trainable, model size can similarly
be reduced by using LiteFlownet to replace PWC-Net. Moreover, the attention mechanism
that modulates intermediate data with attention vectors along one or multiple dimensions
(e.g. spatial attention, channel-wise attention) [140], has succeeded in a large variety
of computer vision tasks. In our synthesis block, warped images are fused in a CNN
without attention modulation, which means all views (inter-view) and all regions inside
a single image (intra-view) are tackled equally with the same attention. Therefore, a
possible extension of our pipeline is to integrate attention mechanism (both inter-view
and intra-view attentions) into the synthesis block. We expect that by applying attention
mechanism, during the synthesis procedure, our pipeline will pay more attention to the
views warped from nearby inputs than those from distant inputs (inter-view attention),
and to the textured regions than those homogeneous regions within each warped view
(intra-view attention).

Another interesting extension of this work is combining the intra-view attention mech-
anism with deformable convolutions to handle inter-view misalignment. After warping
several angular views to the same position, misaligned contours or textures may attract
‘too much’ attention than those well aligned ones and lead to ‘blurriness’ in the attention
map. While deformable convolutions generating local offsets have potentials to correct
misaligned pixels. We can hence add an attention term in the loss function as a regular-
izer, and optimize deformable convolutions weights in order to minimize attention paid
to misalignment.

Besides extensions on existing works, one of our future work is targeting dynamic light
field data, the work in Ch. 4 handles either light field view synthesis or video frame inter-
polation problem. We plan to construct a novel framework for light field video synthesis
by taking both the angular and temporal renderings into account. This means we should
combine angular view consistency at each instant and inter-frame correlations at each
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viewpoint in our future pipeline to ensure a better synthesis quality. But this is a long
story as lots of challenges remained to be conquered, such as the selection of scene flow
estimator, loss function design and light field video data acquisition etc.

To end this thesis, light field imaging has been a very active domain in recent years.
Although there is still a long journey for light field to become a widely adopted technology,
various algorithms proposed to address its spatio-angular trade-off and other application
problems have gradually made light field an optional imaging modality for cinematog-
raphy, medical care and industrial production. We hope our solutions proposed in this
thesis will be helpful to people who work on or use light field imaging, and pave the way
for a large-scale adoption of light field imaging techniques.
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Titre : L’estimation de la profondeur de champ de lumière et le synthèse de vue basés sur l’appren-
tissage

Mot clés : champs de lumière, estimation de profondeur, synthèse de vue, interpolation de trame

Résumé : Un champ de lumière échantillonne
la scène à partir de différentes perspectives, et
les informations directionnelles contenues dans
chaque vue de champ de lumière permettent
d’obtenir de meilleures performances dans ces
tâches de vision par ordinateur que l’utilisation
d’images 2D classiques. Les contributions prin-
cipales de cette thèse se présentent sous trois
aspects.

Notre première contribution se concentre sur
l’estimation de la profondeur (ou de la dispa-
rité) à partir du champ de lumière avec un sous-
ensemble de vues. Les méthodes existantes
d’estimation de la profondeur conviennent soit à
des champs de lumière simplement échantillon-
nés de manière dense, soit à la prédiction de pro-
fondeurs imprécises avec des artefacts visuels
apparents. Nous proposons un nouveau cadre
basé sur l’apprentissage qui génère des profon-
deurs précises avec un plus petit sous-ensemble

de vues avec une grande variété de plages de
disparités.

Ensuite, dans la deuxième partie, nous nous
concentrons sur le problème de synthèse de vue
en champ de lumière. En adoptant les techniques
d’estimation de la profondeur utilisées dans les
travaux précédents et en combinant des pixels et
des caractéristiques, nous proposons un pipeline
de synthèse dépendant de la profondeur, qui peut
suréchantillonner un champ de lumière à toutes
les dimensions souhaitées et produire des vues
synthétisées de haute qualité.

Dans le dernier aspect, nous améliorons
notre pipeline de synthèse avec de nouvelles ar-
chitectures et l’adaptons à la tâche d’interpolation
de trame vidéo. Le schéma amélioré montre une
performance supérieure pour la tâche de syn-
thèse de vue de champ de lumière et donne des
résultats compétitifs avec les méthodes d’état de
l’art d’interpolation de trame vidéo.

Title: Learning-based depth estimation from light field and view synthesis

Keywords: light fields, depth estimation, view synthesis, frame interpolation

Abstract: A light field samples the scene from
different perspectives, and the directional infor-
mation contained in each light field view makes it
yield better performance in those computer vision
task than using classical 2D images. The main
contributions of this thesis are in three aspects.

Our first contribution focuses on the depth (or
disparity) estimation from light field with a subset
of views. Existing depth estimation methods ei-
ther is suitable for merely densely sampled light
fields, or predict imprecise depths with appar-
ent visual artifacts. We propose a novel learning-
based framework that generates precise depths
with a smaller subset of views with a large variety
of disparity range.

Then in the second part, we focus on light
field view synthesis problem. By adopting depth
estimation techniques used in the previous work
and by combining pixel and feature cues, we
propose a depth-dependent synthesis pipeline,
which can upsample a light field to any desired
dimensions and produce high quality synthesized
views.

In the last aspect, we improve our synthesis
pipeline with some new architectures, and adapt
it to the video frame interpolation task. The im-
proved scheme shows a superior performance for
light field view synthesis task and yields results
competitive with the state-of-the-art video frame
interpolation methods.
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