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Résumé en français

Motivation
Un ERP (Enterprise Resource Planning) ou encore parfois appelé PGI (Progiciel de Gestion Intégré) est un système
d’information qui permet de gérer et suivre au quotidien l’ensemble des informations et des services opérationnels d’une
entreprise. Développé par un éditeur unique, l’ERP est ensuite déployé sur différents sites industriels. Il doit ainsi être
hautement paramétrable afin de pouvoir s’adapter aux différentes situations auxquelles il est confronté. Les ERP sont
souvent composés de différents modules, qui répondent à des besoins métiers différents.
La société Infologic développe un ERP, appelé Copilote, spécialisé pour les entreprises du secteur agro-alimentaire. Il
intègre notamment un module permettant d’ordonnancer les opérations de production dans les ateliers, ainsi qu’un
module permettant d’ordonnancer les opérations de préparation de commandes. Ces modules doivent donc apporter
des solutions à différents problèmes d’ordonnancement. De plus, comme chaque entrepôt utilisant ces modules a un
fonctionnement différent, les problèmes d’ordonnancement à traiter ont des contraintes et des objectifs différents.

La problématique est donc d’avoir une méthode qui puisse traiter les différents problèmes d’ordonnancement rencontrés
par Copilote, tout en apportant des solutions de la meilleure qualité possible. Les ERP étant hautement configurables, il
est possible d’envisager une stratégie où les méthodes de résolutions pour les problèmes d’ordonnancement sont choisies
par l’installateur de l’ERP ou par l’utilisateur lui-même. Cependant, une telle stratégie nécessite que les utilisateurs aient
des connaissances expertes, à la fois sur la taxonomie des problèmes d’ordonnancement et sur les méthodes de résolution
utilisées. En pratique ces deux conditions sont rarement réunies, ce qui motive l’idée d’avoir une méthode qui sache
s’adapter automatiquement aux problèmes qu’elle rencontre.

Par ailleurs, bien que la littérature concernant les problèmes d’ordonnancement soit vaste, une contrainte particulière
rencontrée par les utilisateurs de Copilote ne peut que difficilement être modélisée en utilisant les éléments connus de la
littérature. Cette contrainte modélise la réalité suivante : lors du processus de préparation de commandes, les opérateurs
préparent différents produits pour réaliser chaque commande. Cependant sitôt qu’un produit d’une commande est prêt,
il doit être positionné sur une palette. La palette reste ouverte jusqu’à ce que tous les produits de la commande aient été
préparés. Par ailleurs, cette palette occupe de la place sur le sol, et cette place est limitée. La contrainte impose donc que
le nombre de palettes qui sont simultanément ouvertes ne dépasse pas une certaine quantité.

Finalement, les commandes que traitent les préparateurs de commandes arrivent tout au long de la journée. Ainsi, il n’est
pas envisageable de calculer un ordonnancement des tâches le matin qui serait suivi toute la journée. Les algorithmes
utilisés doivent donc être capables de réagir à l’arrivée de nouvelles commandes afin de positionner leur préparation
dans le calendrier des préparateurs. Néanmoins, les préparateurs ayant connaissance des tâches qui leur sont assignées,
perturber sans cesse leur planning est source d’inconfort dans leur travail. Ainsi il est nécessaire d’essayer de perturber
le moins possible leur planning, tout en essayant de préparer un maximum de commandes dans les temps.

Objectifs et contributions
Un premier objectif de cette thèse consiste à modéliser et étudier la contrainte évoquée ci-dessus limitant le nombre de
commandes qui peuvent être traitées en simultané. Nous montrons en particulier dans cette thèse, que si l’on connaît
les tâches que chaque préparateur de commandes doit effectuer, et dans quel ordre il doit les effectuer, alors trouver une



12 Contents

date de début et une date de fin pour chacune de ces tâches telles que cette contrainte soit respectée est un problème
NP−complet. Nous examinons notamment l’impact de ce résultat sur les différents algorithmes d’ordonnancement existant
dans la littérature. Nous introduisons également un nouvel algorithme, combinaison de deux algorithmes existants, et
nous montrons qu’il est particulièrement bien adapté à ce problème d’ordonnancement.

Par ailleurs nous évaluons expérimentalement plusieurs algorithmes d’ordonnancement de l’état de l’art sur un jeu de
données fourni par Infologic. En considérant différentes contraintes et différentes fonctions objectif, nous évaluons leur
impact sur les algorithmes utilisés. En particulier, cela nous permet d’identifier quels algorithmes sont efficaces pour
traiter les différentes contraintes. Nous constatons en effet qu’aucun algorithme est meilleur que tous les autres pour
toutes les contraintes.

Comme mentionné ci-dessus, Copilote doit être capable de gérer le mieux possible les différents problèmes d’ordonnan-
cement qu’il rencontre. Cependant aucun algorithme n’est meilleur que tous les autres sur tous les problèmes, et, par
ailleurs, les utilisateurs n’ont souvent pas l’expertise nécessaire pour choisir la méthode la plus adaptée au problème qu’ils
rencontrent. Pour cette raison nous étudions l’intérêt d’utiliser une méthode de sélection automatique d’algorithme, qui
choisit en fonction des caractéristiques du problème à traiter la méthode de résolution la plus adaptée.

Nous évaluons également l’impact sur la qualité des solutions trouvées du fait de ne pas modifier les tâches assignées aux
différents préparateurs de commandes. Plus précisément, à chaque arrivée d’une nouvelle commande, nous interdisons de
modifier les ε prochaines minutes du planning des opérateurs. Nous évaluons dans cette thèse l’influence de ce paramètre
ε.

Plan de la thèse
La première partie de cette thèse vise à la positionner au sein de l’état de l’art. En particulier, dans le chapitre 1 nous
introduisons quelques éléments concernant les problèmes d’optimisation sous contraintes ainsi que quelques éléments de
la théorie de la complexité. Nous présentons également une taxonomie des problèmes d’ordonnancement et situons les
problèmes d’ordonnancement étudiés dans cette thèse au sein de cette taxonomie. Dans le chapitre 2 nous présentons et
illustrons certaines des principales méthodes utilisées dans la littérature pour résoudre ces problèmes.

Dans la deuxième partie de la thèse nous introduisons et étudions une nouvelle contrainte pour les problèmes d’ordonnan-
cement (nommée contrainte cumulative de groupe (GC)), que nous utilisons pour modéliser le problème, précédemment
évoqué, de place disponible pour traiter plusieurs commandes en parallèle. Dans le chapitre 3 nous introduisons formel-
lement cette contrainte et nous étudions ses liens avec des problèmes proches présents dans la littérature. Nous donnons
également la preuve de NP-complétude mentionnée précédemment et nous étudions son impact sur les méthodes de réso-
lution existantes. En particulier, dans le chapitre 4 nous proposons différentes approches pour adapter ces méthodes de
résolution afin qu’elles puissent prendre en compte cette nouvelle contrainte.

Dans la dernière partie de cette thèse, nous évaluons expérimentalement les différentes méthodes sus-mentionnées sur le
jeu de données fournis par Infologic. En particulier, dans le chapitre 5 nous décrivons de manière précise notre de jeu de
données ainsi que notre contexte industriel. Nous évoquons également plusieurs articles évaluant l’intérêt de la mise en
place de techniques d’ordonnancement au sein de l’industrie. Dans le chapitre 6 nous donnons les résultats de l’évaluation
expérimentale des méthodes utilisées sur notre jeu de données. En particulier, nous évaluons l’impact des différentes
contraintes utilisées dans les différents problèmes d’ordonnancement sur les méthodes présentées. Dans le chapitre 7 nous
introduisons et évaluons l’intérêt d’utiliser la méthode de sélection automatique d’algorithmes. Cette méthode utilise des
techniques de machine learning pour choisir automatiquement quel algorithme utiliser en fonction des caractéristiques de
l’instance à résoudre. Finalement, dans le chapitre 8 nous étudions un problème d’ordonnancement en prenant en compte
son aspect dynamique. En particulier, les différentes commandes à réaliser ne sont pas toutes connues à l’avance et sont
révélées à mesure que l’algorithme s’exécute. Après une courte présentation des techniques utilisées dans la littérature
pour traiter les problèmes dynamiques, nous évaluons l’impact lié au fait d’interdire de modifier les futures tâches que
doivent réaliser les opérateurs.
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Publications
La contrainte GC a été introduite dans un article publié à la conférence The Genetic and Evolutionary Computation
Conference (GECCO) [GNS20b] en 2020, avec la sélection automatique de paramètres pour les algorithmes de colonies de
fourmis (une partie du chapitre 7). L’étude théorique de la contrainte GC (notamment la preuve de NP−Complétude),
ainsi que l’algorithme combinant CPO et ACO ont été publiés à la conférence international conference on principles and
practice of CP en 2020 [GNS20a].
Nous prévoyons de publier dans un article de journal, les résultats expérimentaux du chapitre 6 qui évaluent l’impact des
différentes contraintes sur les différents algorithmes. Nous prévoyons également d’y inclure les adaptations considérant la
contrainte GC décrites au chapitre 4, ainsi que l’utilisation de la sélection automatique d’algorithme sur le jeu de données
complet (chapitre 7).
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Introduction

Motivation
An ERP (Enterprise Resource Planning) is an information system that allows to manage and monitor on a daily basis,
all the information and operational services of a company. Developed by a single editor, the ERP is then deployed on
different industrial sites. It must therefore be highly configurable in order to be able to adapt to the different situations
it faces. ERPs are often composed of different modules, which meet different business needs.
The company Infologic develops an ERP, called Copilote, specialized for companies in the food industry. In particular,
it integrates a module for scheduling production operations in the workshops, as well as a module for scheduling order
preparation operations. These modules must therefore provide solutions to various scheduling problems. In addition,
since each warehouse using these modules operates differently, the scheduling problems to be dealt with have different
constraints and objectives.

The problem is therefore to have a method that can handle the different scheduling problems encountered by Copilote,
while providing the best possible solutions. Since ERPs are highly configurable, it is possible to envisage a strategy
where the methods for solving scheduling problems are chosen by the ERP installer or by the user himself. However,
such a strategy requires users to have expert knowledge on both the taxonomy of scheduling problems and the resolution
methods used. In practice, these two conditions are rarely met, which motivates the idea of having a method that can
automatically adapt to the problems encountered.

Moreover, although the literature on scheduling problems is vast, a particular constraint encountered by users of Copilote
is difficult to model using known elements of the literature. This constraint models the following reality: during the order
picking process, operators prepare different products to fulfill each order. However, as soon as a product in an order is
ready, it must be positioned on a pallet. The pallet remains open until all products in the order have been prepared.
In addition, this pallet takes up space on the floor, and this space is limited. The constraint therefore requires that the
number of pallets that are simultaneously opened does not exceed a certain quantity.

Finally, the orders processed by the order pickers arrive throughout the day. Thus, it is not possible to calculate a task
schedule in the morning that would be followed throughout the day. The algorithms used must therefore be capable of
reacting to the arrival of new orders in order to position their preparation in the pickers’ schedule. Nevertheless, since
the pickers are aware of the tasks assigned to them, constantly disrupting their schedule is a source of discomfort in their
work. It is therefore necessary to try to disrupt their schedule as little as possible, while trying to prepare a maximum
number of orders in time.

Goals and contributions
A first objective of this thesis is to model and study the above-mentioned constraint limiting the number of orders that
can be processed simultaneously. We show in particular in this thesis, that if we know the tasks that each order picker
must perform, and in what order he must perform them, then finding a start date and an end date for each of these tasks
such that this constraint is respected is NP − complete problem. We examine in particular the impact of this result on
the different scheduling algorithms existing in the literature. We also introduce a new algorithm, a combination of two
existing algorithms, and show that it is particularly well adapted to this scheduling problem.
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In addition, we experimentally evaluate several state of the art scheduling algorithms on a data set provided by Info-
logic. By considering different constraints and objective functions, we evaluate their impact on the algorithms used. In
particular, this allows us to identify which algorithms are efficient in dealing with the different constraints. Indeed, we
find that no algorithm is better than all others for all constraints.

As mentioned above, Copilote must be able to handle as well as possible the different scheduling problems it encounters.
However, no algorithm is better than all others on all problems, and users often do not have the expertise to choose
the best method for the problem they encounter. For this reason we study this interest of using a method of automatic
algorithm selection, which chooses according to the characteristics of the problem to be treated the most suitable method
of resolution.

We also evaluate the impact on the quality of the solutions found by not modifying the tasks assigned to the different
order pickers. More precisely, each time a new order arrives, we forbid to modify the next x minutes of the operators’
schedule. We evaluate in this thesis the influence of this x parameter.

Outline of the thesis
The first part of this thesis aims to place it within the state of the art. In particular, in Chapter 1 we introduce some
elements concerning constrained optimization problems as well as some elements of complexity theory. We also present
a taxonomy of scheduling problems and situate the scheduling problems studied in this thesis within this taxonomy. In
Chapter 2 we present and illustrate some of the main methods used in the literature to solve these problems.

In the second part of the thesis we introduce and study a new constraint for scheduling problems (named group cumulative
constraint (GC)), which we use to model the previously mentioned problem of available space to process several orders in
parallel. In Chapter 3 we formally introduce this constraint and we study its links with related problems in the literature.
We also give the proof of NP-completeness mentioned above and we study its impact on existing resolution methods.
In particular, in Chapter 4 we propose different approaches to adapt these solving methods so that they can take into
account this new constraint.

In the last part of this thesis, we experimentally evaluate the different methods mentioned above on the dataset provided
by Infologic. In particular, in Chapter 5 we describe our dataset and our industrial context. We also mention several
articles evaluating the interest of implementing scheduling techniques within the industry. In Chapter 6 we give the results
of the experimental evaluation of the methods used on our dataset. In particular, we evaluate the impact of the different
constraints used in the different scheduling problems on the methods presented. In Chapter 7 we evaluate the interest
of using the method of automatic algorithm selection. This method uses machine learning techniques to automatically
choose which algorithm to use according to the features of the instance to be solved. Finally, in Chapter 8 we study
a certain scheduling problem by taking into account its dynamic aspect. In particular, the different commands to be
performed are not all known in advance and are revealed while the algorithm is running. After a short presentation of the
techniques used in the literature to deal with dynamic problems, we evaluate the impact of prohibiting the modification
of future tasks to be performed by operators.

Publications
The constraint GC was introduced in a paper published at the The Genetic and Evolutionary Computation Conference
(GECCO)[GNS20b] in 2020, with the automatic selection of parameters for ant colony algorithms (part of Chapter 7).
The theoretical study of the constraint GC (including the proof ofNP−Completeness), as well as the algorithm combining
CPO and ACO were published at the international conference on principles and practice of CP in 2020 [GNS20a].
We plan to publish in a journal article, the experimental results of Chapter 6 which evaluate the impact of the different
constraints on the different algorithms. We also plan to include the adaptations considering the GC constraint described
in Chapter 4, as well as the use of the automatic algorithm selection on the complete dataset (Chapter 7).



17

Notations

Input Data
J set of jobs
n number of jobs
j or k ∈ J lowercase letters used to designate jobs
pj processing time of job j
rj release date of job j
dj due date of job j
sjk sequence-dependent setup-time between jobs j and k
M set of machines
m number of machines
i ∈M lowercase letter used to designate machines
si speed of machine i
Ai = ([bi1, e

i
1], [b

i
2, e

i
2], . . . , [b

i
|Ai|, e

i
|Ai|]) Available periods of machine i,

with bi1 < ei1 < bi2 < ei2 < . . . < bi|Ai| < ei|Ai|
P Set of groups, i.e. partition of J in |P| groups

each job j ∈ J belongs to exactly one group g ∈ P
g lowercase letter used to designate groups in P
h time horizon
H = {0, 1, . . . , h} all considered time points
t ∈ H lowercase letter used to designate time points

Given a set X , we denote |X | its cardinality and P(X ) its power set, i.e. the set of all subsets of X including the empty
set and X itself (in the literature P(X ) is sometimes also denoted 2X ).
Notation ∃!x ∈ X means that there exists a unique element x in X .
[l, u] denotes the set of all integers ranging from l to u. All the notations used are summarized in Fig 1.
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Variables
Bj start time (or begin time) of job j
Cj completion time (or end time) of job j
Ij machines to which j is assigned
Ci end time of machine i

Ci = max
j∈J :Ij=i

Cj

Bg start time of group g
Bg = min

j∈g
Bj

Cg end time of group g
Cg = max

j∈g
Cj

Performance measures
A set of algorithms
a ∈ A lowercase letter used to designate algorithms
I set of instances
x ∈ I lowercase letter used to designate an instance
xta the value of the best solution found by

a for x within t seconds
x∗ = min

a∈A
x3600a the reference solution, the best solution found by

any algorithm after one hour of computation

irta,x =

{
1 if xta = x∗

x∗/xta otherwise the inverse ratio

trefa,x =

{
∞ if ir3600a,x < 1
argmin
t∈[0,3600]

irta,x = 1 otherwise the time needed by algorithm a to find

the reference solution on instance x
topta,x the time needed by algorithm a to solve instance x

and prove optimality
mema,x the maximum amount of memory used

Figure 1: Used notations for scheduling problems
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Part I

Background on Scheduling
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Chapter 1

Definitions
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Constrained Optimization Problems (COPs) allow modeling real-life problems, in which a function must be optimized and
some constraints must be satisfied. It gives a framework which allows us to study both solving methods and computational
complexity of problems. In section 1.1 we introduce COPs. Among problems which can be modeled as COPs, lie the
scheduling problems. Scheduling problems aim at assigning start and end times and resources to jobs. The literature
regarding scheduling problems is vast, and their industrial applications are numerous. In section 1.2, we describe more
precisely scheduling problems in order to define the scope of this thesis. Many of these problems are challenging from
a computational point of view. In section 1.3, we introduce some background on computational complexity in order to
better understand the challenge.

1.1 Constrained Optimization Problems
Many problems involve finding a set of values that satisfy some constraints. These problems are called Constraint
Satisfaction Problems. In this section, we recall the main definitions related to these problems. We refer the reader to
[RVBW06] for more details.

A Constraint Satisfaction Problem (CSP) involves finding solutions to a constraint network, that is, assigning values to
variables so that constraints are satisfied. Each variable has a domain, which is the set of values that may be assigned to
it. In this thesis, we only consider finite domains and, without loss of generality, we assume that all domains only contain
integer values, i.e., are finite subsets of Z.

More formally, let us first define what is a constraint.
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Definition 1.1.1 (Constraint). A constraint c is a relation defined on a sequence of variables X(c) = (xi1 , . . . , xi|X(c)|),
called the scope of c. c is the subset of Z|X(c)| that contains the combinations of values τ ∈ Z|X(c)| that satisfy c. |X(c)|
is called the arity of c.

A constraint may be defined in intention, by using mathematical operators, or in extension, by listing all the tuples in
the relation.

Example 1.1.1. The constraint c ≡ x1 < x2 ∧ x2 < x3 is the relation defined in intention that contains every tuple
(a, b, c) ∈ Z3 such that a < b and b < c. The tuple (4, 7, 8) satisfies c whereas the tuple (4, 1, 2) does not satisfy c. The
arity of c is 3.

The constraint c′ ≡ {(1, 2, 3), (2, 1, 3)} is the relation defined in extension which is satisfied by two tuples: (1,2,3) and
(2,1,3).

Definition 1.1.2 (CSP).
A CSP is defined by a triple (X,D,C) such that:

• X = (x1, . . . , xn) is a finite sequence of integer variables;

• D = D(x1)× . . .×D(xn) is the domain for X, where D(xi) ⊂ Z is the finite set of values that may be assigned to
the variable xi;

• C = {c1, . . . , cm} is a set of constraints such that, for each constraint ci ∈ C, every variable in X(ci) belongs to X.

The variables of a CSP and the scheme of a constraint ci are sequences of variables and not sets because the order of
values matters for tuples in D or ci. However, we may use set operators on sequences. In particular, given two constraints
ci and cj , we denote X(ci) ⊆ X(cj) the fact that every variable in the scope of ci also belongs to the scope of cj , whatever
their order in the scopes. Also, given a constraint c and a variable x, we denote x ∈ X(c) the fact that x belongs to the
scope of c.

Given a tuple τ on a sequence of variables Y , and another sequence of variables W ⊂ Y , we denote τ [W ] the restriction
of τ for the variables of W , ordered according to W .

Solving a CSP involves assigning variables to values so that constraints are satisfied.

Definition 1.1.3 (Assignment).
Let (X,D,C) be a CSP.

• An assignment A on Y = (x1, . . . , xk) ⊆ X is a tuple of values (v1, . . . , vk) such that vi is the value assigned to xi.
A[xi] denotes the value assigned to xi in A, i.e., vi.

• An assignment A on Y is valid if for all xi ∈ Y,A[xi] ∈ D(xi).

• An assignment A on Y is partial if Y ⊂ X and complete if Y = X.

• An assignment A on Y is locally consistent if it is valid and for every ci ∈ C such that X(ci) ⊆ Y , A[X(ci)] satisfies
ci. If A is not locally consistent, it is locally inconsistent.

• A solution is a complete assignment A on X which is locally consistent. The set of solutions of (X,D,C) is denoted
sol(X,D,C).

• An assignment A on Y is globally consistent (or consistent) if it can be extended to a solution (i.e., there exists
A′ ∈ sol(X,D,C) with A = A′[Y ]).

Example 1.1.2. Let us consider the following CSP:

• X = {x1, x2, x3};
• D(x1) = {1, 2, 3, 4}, D(x2) = N, D(x3) = {3, 4, 5, 6};
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• C = {c1, c2, c3} where
– c1 ≡ x1 ≥ x3
– c2 ≡ x2 ≥ x1 + x3

– c3 ≡ 2 ∗ x1 ≤ x2
The complete assignment A = (4, 9, 3) on Y = (x1, x2, x3) is a solution for this CSP.
For this CSP, the partial and valid assignment A = (2, 4) on Y = (x1, x2) assigns 2 to x1and 4 to x2. A is locally
consistent because it satisfies the constraint c3, which is the only one such that X(c3) ⊆ Y (indeed x3 is both in X(c1)
and in X(c2)). However, A is not globally consistent because it cannot be extended to a solution. Indeed whatever the
value of x3 in Dx3 , c1 cannot be satisfied.

Definition 1.1.4 (Constrained Optimization Problem (COP)).
A COP is defined by a quadruplet (X,D,C, f) such that (X,D,C) is a CSP, and f : X → R is an objective function
which is to be optimized.

Example 1.1.3. Let us consider the CSP defined in example 1.1.2, where we add the following objective function:
f(x1, x2, x3) = x1 + x2 + x3, which we try to minimize.
The solution (3, 6, 3) minimizes f .

Many real-life problems can be modeled as COP. In this thesis, we especially focus on scheduling problems described
more precisely in the next section.

1.2 Scheduling problems
The term scheduling is used to describe the activities which try to set order and time for planned events. Depending on
the context, the events are sometimes designated by the terms jobs, operations or activities. Moreover, along with order
and time, one sometimes wants to assign resources while scheduling events.

Scheduling problems are age-old problems. The idea of splitting projects into smaller activities and sequencing those
activities exists since complex projects exist. Projects like pyramids in the Antiquity certainly needed scheduling in
some way. Since that time, the way problems are modeled as scheduling ones and the methods used to schedule tasks
have considerably evolved. The reader interested in the history of scheduling should refer to [HW06]. The evolution of
scheduling as computer science is very close to computer science evolution itself. It means that with the development
of computers in the mid-twentieth century, scheduling problems were among the first problems solved using computers.
Already at that time, scheduling problems interested both academics and industries. The work of George Dantzig
[Cot06] illustrates this interest as a theoretical point of view, whereas the CPM and PERT methods (1957), developed
respectively by the company E. I. du Pont de Nemours and Company and by the U.S. Navy Special Projects Office,
Bureau of Ordnance (SPO), illustrate scheduling theories’ applications.

Nowadays, there exist many variants for scheduling problems. [Pin16] describes a wide range of them. This section aims
at describing some of these variants.

At the core of the scheduling theory lies the notion of jobs. We denote J the set of all the jobs of the considered problem.
A job has a set of characteristics that depends on the problem at hand. For example, in simplest models, a job j only
has a processing time pj , whereas in more complex models j may also have a release date rj (i.e., the earliest time at
which j can be processed), a due date dj (i.e., the time at which the processing of j should be finished), ...
Along with the jobs, scheduling models often use a setM of machines. We denotem the cardinality ofM (i.e., m = |M|),
and we use i to designate machines. Machines also have characteristics that depend on the problem at hand.

Machines are not essential to define scheduling problems. There is a complete branch of scheduling theory which does
not use (or not systematically) machines: in that case, we speak about Project Scheduling, or more precisely, about
Resource-Constrained Project Scheduling Problem (RCPSP).
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Symbol Definition
α

1 single machine model
P identical parallel machines
Q uniform parallel machines
R unrelated parallel machines
F Flow Shop Problem
J Job Shop Problem
O Open Shop Problem
PS (Resource-Constrained) Project Scheduling Problem

β
rj presence of release dates
Mj machines eligibility
brkdwn machines scheduled breakdowns
prmp preemption authorized
prec precedence constraints
sjk sequence-dependent setup times
fmls job families

γ
Cmax Minimizing the makespan
Cj Minimizing the sum of the completion times
Tj Minimizing the sum of the jobs’ tardiness
Lmax Minimizing the maximum jobs’ lateness
Ej Minimizing the sum of the jobs’ earliness
Ej + Tj Minimizing the sum of the jobs’ earliness

and the sum of the jobs’ tardiness
Uj Minimizing the number of late jobs
− No objective function,

just find a schedule that respects all the constraints

Figure 1.1: Some possible values for α, β, and γ in the Graham notation

As aforementioned, there are many scheduling problems, and taxonomy has emerged to classify scheduling problems
[GLLK79]. Hence scheduling problems are often described using the notation α|β|γ (called the Graham notation) where
α describes the machine environment, β describes the characteristics of the jobs and constraints of the problem, and
γ describes the objective function. Fig 1.1 summarizes the different values α, β, and γ can take and the next sections
describe more precisely these values.

1.2.1 Machine environment α
α can take values into two subsets: on the first hand, there are the values that describe an environment with parallel
machines (values 1, P , Q and R), and on the other hand, there are the values which describe an environment with
machines in series (F , J and O).

Single Machine Models α = 1

In single machine models, one aims at scheduling a set of jobs on a single machine. Despite their simple formulation,
single machine models are exciting. Scheduling problems on more than one machine are often solved using decomposition,
where subproblems consist in scheduling on a single machine. Furthermore, single machine problems have interesting
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j1

j2

j3 j4

j5

i1

i2

0 1 2 3 4 5 6

(a) The jobs are not yet assigned

i1 j1 j5 j2

i2 j4 j3

0 1 2 3 4 5 6 7

(b) The jobs are assigned to machines.

Figure 1.2: An example of a problem where α = P with two identical parallel machines. The length of a job represents
its duration.

properties to calculate bounds or approximation schemes, which are in general much more complicated in other scheduling
environments. It is also essential to highlight single machine models’ pedagogic interest: it is often easier to find or explain
theories in single machine scheduling problems than in a more complex environment. Moreover, it is not rare to consider
a property in a multi-machine environment as a generalization of a single machine model’s property.
Example of single machine models can be found in [AA14, LBG91, FMM01, NSBL18].

Parallel machine models

In parallel machine models, the set M consists of several machines that can process the jobs. Any of the machines
can process the jobs in J , and each job needs to be processed on only one machine. Three values for α model such
environment :

• Identical parallel machines α = P : in that case, the machines in parallel are identical, which means that the duration
of a job on any machine is equal to its processing time. Fig 1.2 shows an example of such an environment. The
length of a job represents its duration. [WWY+18, Mok04, CGT95, MSCK09] study parallel machine scheduling
problems. It is important to notice that even if the machine environment is the same, the problem can differ
according to the constraints and the objective functions.

• Uniform parallel machines α = Q: in that case each machine has its own speed. It means that if a job j with
processing time pj is scheduled on a machine i with speed si then the duration of j is equal to

pj
si
. Fig 1.3 shows

an example of such environment. [FL13] gives an example of such machine environment.

• Unrelated parallel machines α = R: in that case the duration of the job j on machine i is equal to pij and is
independent of the duration pi′j of the job j on another machine i′. Fig 1.4 shows an example of such environment.
[PFG04] presents a survey about unrelated parallel machines scheduling with different objective functions, [FR12]
also presents a problem with such environment.

P , Q, and R are sometimes followed by indices m to indicate the number of machines in parallel. For example, P3

indicates that there are three machines in parallel.

Machine in series - Multi-stage models - Shop problems

We use different names to designate the cases where machines are in series : multi-stage models or shop problems.
Three main variants exist for these models: the Flow Shop Problem, the Job Shop Problem and the Open Shop Problem.

In the Flow Shop Problem [RTF18] (denoted with α = F in the Graham notation), with m machines, each job j consists
of m operations oj,1, oj,2, . . . , oj,m where oj,k must be scheduled on machine k for all k ∈ M. Hence, the route followed
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j1
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i1

i2

0 1 2 3 4 5 6

s=1
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(a) The jobs are not yet assigned. Machine i2 has a speed of
0.5

i1 j1 j5 j2

i2 j4 j3

0 1 2 3 4 5 6 7

s=1

s=0.5

(b) The jobs are assigned to machines. Jobs assigned to i2
takes twice more time to complete than if they were scheduled
on i1

Figure 1.3: An example of a problem where α = Q with two parallel machines where each machine has its own speed.

On i1

On i2

j1

On i1

On i2

j2

On i1

On i2

j3

i1

i2

0 1 2 3 4 5 6

(a) There are three jobs. The job durations depend on the machine
and are unrelated. For example j1 is longer on i1 than on i2 whereas
job j2 is longer on i2 than on i1. Job j3 has the same duration on
both machines.

i1 j2 j1

i2 j3

0 1 2 3 4 5

(b) Once assigned, job j2 has duration 2 because it is on
machine i1, job j1 has duration 3 and job i3 has duration
2.

Figure 1.4: An example of a problem where α = R with two unrelated parallel machines. The job durations depend on
the machine they are assigned to.
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by the jobs is the same for every job. Each operation has its own duration on each machine: pj,k for the kth operation
of job j.

In the Job Shop Problem (denoted with α = J in the Graham notation), each job j consists of nj operations oj,1, . . . , oj,nj
where each operation must be executed on a specific machine and where operation oj,i+1 cannot start before operation
oj,i has ended.
The Job Shop problem is a well-studied one, and many articles deal with it. [MCZ10, CK16] give surveys about it with
some references.

In the Open Shop Problem (denoted α = O in the Graham notation), each job j consists of nj operations oj,1, . . . , oj,nj
where each operation must be executed on a specific machine but, contrary to the job shop problem the operation can be
executed in any order. However, two operations of the same job cannot be simultaneously under execution. [HZC+19]
gives a survey of several techniques used to solve open shop problems.

A natural extension of these problems involves combining parallel machine scheduling with multi-stage models. Such
generalizations are known under the name flexible (for example Flexible Flow Shop (denoted FF or FFm), Flexible Job
Shop (denoted FJ or FJm) or Flexible Open Shop (denoted FO or FOm)). For example, in the Flexible Flow Shop,
there are several stages, and each stage consists of several parallel machines. Hence the jobs are sets of operations, whose
first operation needs to be processed on one of the parallel machines of the first stage, the second operation needs to be
processed on one of the parallel machines of the second stage, and so on.

The website [Des20] offers several instances of different scheduling problems (unrelated machines problems, flowshop
problems, ...).

1.2.2 Constraints and job characteristics : field β

The following values can be used for the β field :

• rj : to indicate that there are release dates on the jobs. A job j with a release date rj cannot start its processing
before time rj .

• brkdwn: to model scheduled breakdowns on the machines (it models shifts in the teams or scheduled maintenance).
[CHG19] presents mathematical models to deal with such constraints, and [LLSX17] presents a special case where
scheduled maintenance operations have periodic recycles. [KH14] gives a survey of parallel machine scheduling
under availability constraints.

• prmp: to indicate preemptions. A job is preemptable if it can be interrupted and resume later. The amount of
processing a preempted job already has received is not lost. Hence when resumed, only the remaining processing
time needs to be scheduled.

• prec: to indicate precedence constraints. It indicates that a job cannot start before another job is ended. There are
models with other types of precedence constraints: for example, a job cannot start before another job is started.

• Mj : to indicate that some jobs can be scheduled only on a subset of machines in some models. [EO11] describes a
model with such constraints.

• sjk: to indicate sequence dependent setup times. If job k is scheduled just after job j on a same machine, then
a setup time is required (of length sjk) before starting the processing of k. [All15] give surveys of papers which
considers sequence-dependent setup-times between jobs.

• fmls: to indicate job families. It is a generalization of the sequence-dependent setup times. In that case, the jobs
are partitioned into families. There are no setup times between two jobs of the same family, but there exist setup
times when one machine switches from one family to another.

The list is not exhaustive. There exist many other possible values to describe variants of scheduling problems. The
interested reader may refer to [Pin16].
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1.2.3 Objective functions : field γ

There exist many objective functions considered in the literature. In some of them, jobs have due dates. For a given job
j, we denote dj its due date. Furthermore, we denote Cj the completion time of a job (i.e., the time at which a job ends
in a given schedule). The main considered objective functions are :

• Cmax : Minimizing the makespan, i.e. min max
j∈J

Cj . It corresponds to minimizing the time at which the last

executed job ends.

• Cj : Minimizing the sum of the completion time, i.e. min
∑
j∈J

Cj .

• Tj : Minimizing the sum of the tardiness of the jobs, i.e.
min

∑
j∈J

Tj , where, for a job j, Tj is defined as Tj = max(0, Cj − dj).

• Lmax : Minimizing the maximum lateness of the jobs, i.e.
min max

j∈J
Cj − dj .

• Ej : Minimizing the sum of the earliness of the jobs, i.e.
min

∑
j∈J

max(0, dj − Cj).

• Ej+Tj : Minimizing the sum of the earliness of the jobs and the sum of the tardiness of the jobs, i.e. min
∑
j∈J
|dj−Cj |

where |.| denotes the absolute value. In that case, we want that the jobs complete as close as possible to their due
dates.

• Uj : Minimizing the number of late jobs, i.e., if we denote Uj (called unit penalty function) the value such that

Uj =

{
1 if Cj > dj
0 otherwise , then the objective function ismin

∑
j∈J

Uj . In the literature, the meaning of Uj is sometimes

inverted (meaning that Uj equals one if job j is not late). In that case, the objective is to maximize the sum of the
Uj ; and the value of the sum is called the throughput.

• -: in that case, there is no objective function, and the goal is to find a schedule that satisfies all the constraints of
the problem.

It is worth mentioning that when minimizing a sum, we can assign a weight to the different jobs. For example, instead of
minimizing

∑
Tj , it is often the case that the objective is to minimize

∑
wjTj where wj is the weight associated with job

j. It models the case where some jobs are more important than others. Furthermore, when we consider two objectives,
we can have two distinct weights for the jobs. For example some try to minimize

∑
w′jEj + w′′j Tj . It gives more weight

to tardiness than earliness (or vice versa).

Fig 1.5 shows the value of the different objective functions according to the completion time of a job.

1.2.4 Resource-Constrained Project Scheduling Problem (RCPSP)
Project Scheduling (PS) is a variant of scheduling problems in which there are no machines. To be more precise, machines
are not mandatory in Project Scheduling Problems. However, machines can still be modeled in this framework as a
specific resource, and hence Project Scheduling can be seen as a generalization of Machine Scheduling Problems (MS).
In Project Scheduling, precedence constraints are (almost) always considered. Furthermore, in Resource-Constrained
Project Scheduling Problem (RCPSP) lies the notion of resources. The jobs consume the resources, and the quantity of
available resources is limited. Some resources are limited on a per-instant basis (we speak about renewable resources),
some others are limited for the whole project (non-renewable resources), and some others are limited on both a per-instant
basis and for the whole project (doubly constrained resources). There also exist variants which consider the minimization
of resource consumption as an objective (instead of a constraint).
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Figure 1.5: Evolution of the value of the objective function with respect to the completion time Cj of one job j when
γ = Ej (top left), Tj (top rigt), Lj (bottom left) and Uj (bottom right).

The interested reader can refer to the surveys [BDM+99] and [HB10] or to the book [ADN08] for further details on
RCPSP.

1.2.5 Thesis scope
The previous subsections describe a general scope for scheduling problems. It allows us to situate the context of this
thesis. The applicative context of this thesis is described in Chapter 5. In this context, we only consider variants of the
parallel machine scheduling problems.
For each of these problems, we give a mathematical model (in the COP formalism) and we describe classical lower bounds
for the objective function. These lower bounds are essential to prove optimality of solutions. For example, if an algorithm
finds a solution whose value is equal to the lower bound, we know that this solution is optimal, and we can stop the
search.

Assignment problem P ||Cmax
This problem is not really a scheduling problem in the sense that the start and end time of each job do not matter. It
consists in minimizing the makespan while assigning jobs to identical parallel machines. Start and end times of jobs do
not matter because we are only interested in the time at which each machine ends, and for a given machine, that time
can easily be computed by summing all the durations of the jobs assigned to it. Hence we are only interested in the
machine to which each job is assigned. This problem represents the situation where a set of jobs must be divided over
identical machines, and we are only interested in balancing the load between the different machines.

We can use the following COP to model this problem:

• Input Data: A set J of n jobs, such that each job j ∈ J has a processing time pj ∈ N, and a setM of m machines

• Variables: For each job j, a variable Ij which represents the machine that processes j. The domains of these
variables are D(Ij) =M.

• Constraints: No constraint.

• Objective function: Minimizing the makespan, i.e., minmax
i∈M

∑
j∈J :Ij=i

pj
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In this assignment problem, a lower bound can be computed using the following formula:

lb =


∑
j∈J

pj

m


where m is the number of machines, and dxe is the least integer greater than or equal to x. It corresponds to a perfect
load where each machine has the same amount of work.
It is worth mentioning that when there is only one machine, the problem is trivial because all jobs are assigned to the
unique machine.

Release date and due date P |rj |
∑
Tj

It is a basic parallel machine scheduling problem where we try to minimize the sum of tardiness while taking into account
the jobs’ release dates. This problem is a scheduling one because in order to compute the value of the objective function
for one solution, we must know the start and end times of each job.

We can use the following COP to model this problem:

• Input Data: A set J of n jobs, such that each job j ∈ J has a processing time pj ∈ N, a release date rj and a
due date dj ∈ N, a setM of m machines, and a time horizon h ∈ N

• Variables: For each job j, variables Ij and Bj represent the machine that processes j and the start time of j,
respectively. The domains of these variables are D(Ij) =M and D(Bj) = [rj , h].

• Constraints: Jobs assigned to a same machine do not overlap, i.e.,

∀{j1, j2} ⊆ J, Ij1 6= Ij2 ∨ [Bj1 , Bj1 + pj1 ] ∩ [Bj2 , Bj2 + pj2 ] = ∅ (1.1)

• Objective function: Minimizing ∑
j∈J

Tj (1.2)

where for each job j, Tj is defined as
Tj = max(0, Cj − dj) and Cj is defined as Cj = Bj + pj .

In order to model release dates, one can use the constraint ∀j ∈ J Bj ≥ rj ; however, this is simpler to model it by
restricting the domain of Bj to [rj , h] as done here.

In this basic scheduling problem, a lower bound can be computed using the following formula:

lb =
∑
j∈J

minT (j)

where minT (j) is the minimum tardiness of the job j which is equal in that case to minT (j) = max(0, rj + pj − dj). It is
often the case that minT (j) is equal to zero, but there can exist jobs which have their release dates so close to their due
dates that they are necessarily late (even in an optimal schedule).

Speed problem Q|rj |
∑
Tj

In this problem, we consider the machines’ different speeds case. There are still release dates, and the objective function
is also to minimize the total tardiness. Hence this problem is very close to the previous one apart from the machines’
speeds.
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To model this problem, we can use the same input data as for the previous case, except that we now have a speed si
for each machine i. The variables are also identical, and the release date constraint is the same. The constraint 1.1 is
modified in order to take machines’ speed into account:

∀{j1, j2} ⊆ J, Ij1 6= Ij2 ∨
[
Bj1 , Bj1 +

pj1
sIj1

]
∩
[
Bj2 , Bj2 +

pj2
sIj2

]
= ∅ (1.3)

The objective function also consists in minimizing 1.2, with the tardiness of a job defined as Tj = max(0, Cj − dj), but
this time Cj = Bj +

pj
sIj

In this uniform parallel scheduling problem, a lower bound can be computed using the same formula as with the identical
parallel machine scheduling problem:

lb =
∑
j∈J

minT (j)

Nevertheless, here minT (j) the minimum tardiness of the job j must consider that not all the machines have the same
speed. More precisely, we assume that all the jobs can be scheduled on the fastest machine to calculate the lower bound.
Hence we have

minT (j) = max
(
0, rj +

pj
s∗
− dj

)
where s∗ is the speed of the fastest machine, i.e. s∗ = max

i∈M
si

Sequence dependent setup times problem Q|rj , sjk|
∑
Tj

In this problem, we consider an additional constraint, which is the presence of sequence-dependent setup-times. If job
k is scheduled just after job j on the same machine, then a setup time (of length sjk) is required before starting the
processing of k.

To model this problem, we can adapt the COP given for the previous problem. We have an additional input data, which
is the sequence-dependent setup-times sj1,j2 between each ordered pair of jobs (j1, j2) ∈ J2 with j1 6= j2. In our context,
the setup-times are symmetric, meaning that sj1,j2 = sj2,j1 for every jobs {j1, j2} ⊆ J . It is also important to notice that
there is no setup-times for the first job of a machine.
The constraint 1.1 is replaced by:

∀i ∈M,∀j ∈ {j′ ∈ J : Ij′ = i and succ(j) 6= ∅}, Bk >= max(Bj + pj/si, rk) + sj,k (1.4)

where succ(j) = {j′ ∈ J : Ij′ = Ij and Bj′ > Bj} is the set of all jobs that are assigned on i and start after j, and
k = argmin

k′∈succ(j)
Bk′ is the job of succ(j, i) that has the smallest start time.

For this case, the lower bound is the same as in the case with just speeds on the machine. It means that we consider
that there are no setup times for the lower bound.

Breaks problem Q|rj , brkdwn|
∑
Tj

In this case there are scheduled breakdowns on the (uniform parallel) machines (we do not consider the setup times
anymore here). It is essential to notice that in this case, a job can be interrupted by a break and resume after it without
any loss on the work already done. It means that if a job needs x units of time to be computed on a given machine and
y < x units have already been completed on the machine before the break, then only x− y remain to compute after the
break. We use it to represent the workers’ breaks in our application context.

We can adapt the COP given for Q|rj |
∑
Tj problem to model this problem. All the input data are reused, but, for this

problem, we have additional data: for each machine i ∈ M we have a set of periods Ai ⊆ H during which the machine
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is available. This set can be represented as

Ai = ([bi1, e
i
1], [b

i
2, e

i
2], . . . , [b

i
NAi

, eiNAi
])

where NAi is the number of intervals in the list, [bil, e
i
l] for l ∈ [1, NAi ] is the lth period of availability of machine i, and

the bounds on the available periods are such that bi1 < ei1 < bi2 < ei2 < . . . < biNAi
< eiNAi

.
Once again, we need to replace the constraint 1.1 by:

∀i ∈M,∀j ∈ J , Ij = i,∀k ∈ succ(j), |[Bj , Bk] ∩ Ai| ≥ pj/si (1.5)

where |.| is the interval length.
The objective function also consists in minimizing 1.2 but this time

Cj = min
t∈[0,h]

(∣∣[Bj , t] ∩ AIj ∣∣ ≥ pj
sIj

)
Once again, a lower bound can be computed in a similar way as for the speed problem Q|rj |

∑
Tj , meaning that we do

not consider the breaks in the computation of the lower bound.

Breaks and sequence-dependent setup times problem Q|rj , brkdwn, sjk|
∑
Tj

This last case is a combination of the two previous ones. It is important to notice that the setup-times considered in
our problem are due to human activity (adjust a machine to the used product or change the used packaging roll). Thus,
these setup-times cannot be executed during the breaks (as workers are not present during the breaks). Depending
on the context, in the literature, setup-times can sometimes be executed during breaks (for example, if the setup time
corresponds to the action of heating an oven which can be executed even if workers are not present).

The following COP model this problem:

• Input Data:

– A set J of n jobs, such that each job j ∈ J has a processing time pj ∈ N, a due date dj ∈ N and a release
date rj ∈ N

– Sequence-dependent setup-times sj1,j2 ∈ N between each pair of jobs {j1, j2} ⊆ J
– A set M of m machines such that each machine i ∈ M has a speed si, and a set of periods Ai ⊆ H during

which the machine is available

• Variables: For each job j, variables Ij and Bj represent the machine that processes j and the start time of j,
respectively. The domains of these variables are D(Ij) =M and D(Bj) = [rj , h].

• Constraints: Jobs do not overlap and sequence-dependent setup-times start after the jobs’ release-date

∀i ∈M,∀j ∈ J , Ij = i, ∀k ∈ succ(j), |[Bj , Bk] ∩ Ai| ≥ pj/si + sj,k ∧ |[rk, Bk] ∩ Ai| ≥ sj,k (1.6)

• Objective function: Minimizing
∑
j∈J

Tj with Tj = max(0, Cj − dj) where

Cj = min
t∈[0,h]

(∣∣[Bj , t] ∩ AIj ∣∣ ≥ pj
sIj

)
1.3 Computational Complexity
Most of the scheduling problems introduced in the previous section are computationally challenging. In this section,
we first introduce the main complexity classes, to better understand the challenge, and then we introduce reduction
procedures which are used to characterize the complexity classes of new problems. The interested reader can refer to
[AB09] for further information about computational complexity.
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1.3.1 Decision problems
Definition 1.3.1 (Decision problems).
A decision problem is a problem that can be posed as a yes-no question of the input values.

Every CSP π (as defined in section 1.1) can be seen as a decision problem, where the yes-no question is: "Does there
exist a solution to problem π ?".

It is important to highlight links between COP and CSP. Given a COP (X , D, C, f), we can associate a CSP to it, which
consists in the CSP (X ,D, C) with an additional constraint f(X) ≤ h, with h a number (which is a data of the CSP).

Example 1.3.1. Let us consider the scheduling problem which consists in minimizing the maximum lateness for a set
of jobs on a single machine 1||Lmax. In the COP version of the problem, we are looking for a solution that minimizes
Lmax. In the CSP version, we are looking for a solution whose value for Lmax is bounded by a given h.

This relation between a COP and a CSP is important. Let us assume that we have a procedure that solves the CSP;
then, by dichotomy, we can find the optimal value of the COP by using this procedure.

Definition 1.3.2 (Instance of a problem).
An instance of a problem is obtained by specifying the values of all its input parameters.

Example 1.3.2. If we consider the problem assignment problem P ||Cmax defined in the section 1.2.5, an instance is
obtained by specifying the number of jobs, the number of machines and the processing time of each job.
For example an instance of this problem consists in J = {j1, j2, j3} with pj1 = 2, pj2 = 1, and pj3 = 2, andM = {i1, i2}.
Definition 1.3.3 (Size of an instance).
The size of an instance is the number of bits needed to represent it. Given an instance I of a problem, we denote |I| its
size.

1.3.2 Complexity classes
An algorithm A is said to be polynomial if there exists a constant value k such that the number of elementary operations
done by A to solve any instance of size n is in O(nk).

Definition 1.3.4 (Class P - polynomial).
A decision problem π is said to be polynomial if there exists a polynomial algorithm that can solve any instance of π.
The class P (for polynomial) is the set of all the polynomial problems.

In a sense, the polynomial decision problems are easy to solve, meaning that the number of operations needed to solve
them is not exponential with respect to the problem’s size.

Example 1.3.3. Let us consider the 1||Lmax problem. This problem can be solved in polynomial time using the Earliest
Due Date rule (EDD, also known as Jackson’s EDD rule, due to R. Jackson, who studied it in 1954). The EDD rule
consists in sorting all the jobs according to their due date and assigning them to the machine in that order [Stu70].

Definition 1.3.5 (Class NP - nondeterministic polynomial).
A decision problem π belongs to Class NP if there exists an algorithm that can solve any instance of π in polynomial
time on a non deterministic Turing machine. We refer the reader to [AB09] for the definition of non deterministic Turing
machines. A consequence of this definition is that a decision problem π belongs to Class NP if for each instance I of π
such that the answer of I is yes, there exists a certificate c(I) such that

• the size of c(I) is polynomial with respect to the size of I

• the problem of deciding whether c(I) is a correct solution is in P.
Example 1.3.4. Most of the decision problems associated with scheduling problems belong to the NP class. For example
let us consider the decision problem associated with the P ||Cmax problem. A certificate is an assignment A for each
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variable Ij associated with a job j ∈ J . Deciding if A is a solution can be done in polynomial time by computing the
makespan associated with A and checking that it is smaller than or equal to the given bound. Hence P ||Cmax ∈ NP.
Definition 1.3.6 (NP − Complete problems).
A decision problem π is NP − Complete if it is in NP and if it is the most difficult problem among all the problems in
NP. In other words, a decision problem π is NP − Complete if finding a polynomial algorithm to solve π implies that
P = NP.
Example 1.3.5 (P ||Cmax). The decision problem associated with P ||Cmax is NP − Complete [Pin16].

Definition 1.3.7 (NP-Hard problems).
A decision problem is NP − hard if it is at least as difficult as the hardest problem in NP.
Classes P and NP are defined for decision problems, and not for optimization problems. However, when the decision
problem associated with an optimization problem π is NP − complete, we say that π is NP − hard.

1.3.3 Problem reduction
Problem reduction is used to demonstrate that a problem is at least as difficult as another problem.

Definition 1.3.8 (Problem reduction).
Given two decision problems π1 and π2, a reduction from π1 to π2 is a function φ which transforms every instance of π1
into an instance of π2 and which verifies that, for every instance I of π1, the answer for I is yes if and only if the answer
for the instance φ(I) of π2 is yes.

Reductions are used to build a hierarchy of problems. Indeed, if there exists a reduction φ from a problem π1 to another
problem π2, then the complexity class of π1 is upper bounded by both the complexity class of π2 and the complexity of
the reduction φ. In particular, if φ has a polynomial time complexity, and if π1 is known to be NP − complete, then we
can conclude that π2 is NP − hard. Indeed, we can solve any instance I1 of π1 by reducing it to an instance I2 = φ(I1)
of π2 and then solving I2. Hence π2 is at least as hard as π1 and if we could solve π2 in polynomial time, then we could
also solve π1 in polynomial time (and in this case the two classes P and NP would be equal). Finally, if π2 also belongs
to NP, then we can conclude that it is NP − complete.
The first problem to have been proved to be NP − Complete is the SAT -Problem. The interested reader can refer to
[Coo71] to have details about this proof.

Example 1.3.6 (Scheduling problems). As mentioned in example 1.3.5, the decision problem associated with P ||Cmax
is NP−Complete. P |rj |Tj is also NP−Complete [Pin16]. All the other scheduling problems mentioned in section 1.2.5
are generalization of P |rj |Tj . Hence they also are NP − Complete (the reduction from P |rj |Tj to any other scheduling
problem P |β|Tj is trivial).

1.4 Discussion
In this chapter we introduced the notion of Constrained Optimization Problems (COPs). Among the problems, which can
be modeled as COPs, are the scheduling problems. We described three main classes of scheduling problems: the ones with
parallel machines, the ones with machines in series, and the resource-constrained project scheduling projects. In this thesis
we focus on parallel machines scheduling problems and more precisely on uniform parallel machine scheduling problems.
We consider several constraints and objectives: sequence-dependent setup-times, scheduled breakdowns, minimization of
the makespan, minimization of the jobs’ tardiness sum.
We also introduced the notion of computational complexity in this chapter, with a framework which allows to classify
problems (using polynomial reduction). In particular, we have seen that all the scheduling problems described in Section
1.2.5 are NP − hard problems, i.e., they cannot be solved in polynomial time unless P = NP.
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In order to find good solutions to solve NP−Hard COPs, several methods have been developed. Some of these methods
are presented in the next chapter.
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In this chapter we describe several methods which are used to solve COPs. We illustrate these methods on scheduling
problems.
We first describe incomplete approaches, that quickly compute "good" solutions, without any guarantees on the quality of
these solutions. In section 2.1 we present greedy approaches which aim at quickly finding good solutions of COPs. These
greedy approaches are often problem-specific and highly depend on the problem’s structure. Although there often exist
greedy approaches for each COP, they can hardly be generalized to solve unrelated COPs. In section 2.2 we present Ant
Colony Optimization, a meta-heuristic which greedily builds many solutions and which learns from previous constructions
to improve next constructions. In section 2.3 we describe local search and especially tabu search, a method which improves
a current solution by modifying it step by step. The idea of local search is to focus the search on solutions which are
close to the incumbent solution. This notion of proximity between solutions is described more precisely in section 2.3.
Finally, we describe two exact approaches, that find optimal solutions (and prove their optimality), but have exponential
time complexities in the worst case. In section 2.4 we present Linear Programming, the goal of which is to optimize a
linear objective function, subject to linear equality and linear inequality constraints. Finally in section 2.5 we introduce
constraint programming (CP). CP allows a user to define a problem in a declarative way, by means of variables and
constraints, and then to solve it by using generic search procedures.
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j1(8)
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j3(5) j4(8)

j5(2)

(a) Jobs with due dates (in parenthesis). Processing times
of jobs are represented by their sizes.

i1 j1(0) j5(3) j4(0)

i2 j2(1) j7(2) j3(0) j6(0)

0 1 2 3 4 5 6 7

(b) A valid schedule whose objective function value is equal to 6.
Lateness of each job appears in parenthesis

Figure 2.1: A representation of an instance of the parallel machines scheduling problem with tardiness objective P ||∑Tj

Illustration and notations
In order to illustrate this chapter, we will use the scheduling problem P |β|∑Tj where β ⊆ {rj , sjk, brkdwn} is the set
of constraints formally described in section 1.2.5. This problem is known to be NP −Hard [Pin16]. Fig 2.1 shows an
instance of this problem when β = ∅, and a solution whose value is 6.

We use several additional notations in this chapter. Given a scheduling problem, with a set of machinesM and a set of
jobs J , and a (partial or complete) assignment A, we denote Cj the end of job j (or completion time). The expression of
Cj depends on the considered problem. For example, when considering P ||∑Tj , we have Cj = Bj + pj . However, with
other constraints, the value of Cj can be a more complex expression. For example, if we consider the scheduling problem
with scheduled breakdowns on machines, the end of a job is equal to its start time plus its duration and possibly the
duration of all the breaks crossed by the job. We also denote Ci the end of machine i ∈ M in the assignment A, i.e.,
Ci = 0 if no job has been assigned to i in A, and Ci = max{Cj |j ∈ J , Ij = i} otherwise.

2.1 Greedy Approaches
Greedy approaches aim at quickly constructing a solution to a COP, which is as best as possible. Greedy approaches
do not aim at proving the optimality of solutions. They are often used as a component of other methods. For example,
when using local search, greedy approaches are used to generate a first solution which is then improved by local search
(see section 2.3). Greedy approaches are also used to generate solutions in the ACO framework (see section 2.2).

2.1.1 Dispatching rules
When considering scheduling problems, dispatching rules are often used [Pin16]. The general procedure of dispatching
rules is depicted in Algo. 1. The idea is to select the machine that ends the soonest, select a job among the unassigned
ones, and assign that job to the selected machine. We repeat this procedure until all jobs are assigned.

The different dispatching rules vary in the way they select the next job to be assigned among the unassigned ones. Among
dispatching rules, a subset of approaches is known as list scheduling heuristics. The idea of list scheduling is to sort all the
jobs of J according to a given criterion and to assign them according to this order. Among the main used list scheduling
heuristic, we can cite:

• Earliest Due Date (EDD): jobs are sorted in increasing order of their due dates;

• Longest Processing time first (LPT): jobs are sorted in decreasing order of their processing times;

• Shortest Processing time first (SPT): jobs are sorted in increasing order of their processing times;

According to the problem features, some dispatching rules are more adapted than others. For example, SPT is optimal
for 1|brkdwn|∑Cj [Pin16]. LPT is well-suited for P ||Cmax. Indeed longest jobs are processed first, and then shortest
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Algorithm 1: Greedy construction according to dispatching rules
Input : A parallel machine scheduling problem P |β|∑Tj with a set of jobs J , and a set of machinesM
Output: A solution, i.e., a consistent assignment of all variables in X = {Ij , Bj , Cj |j ∈ J } (where Ij , Bj , and

Cj represent the machine, start time, and completion time of job j, respectively.)
1 Cand ← J
2 while Cand 6= ∅ do
3 i← argmin

i′∈M
Ci′

4 Select a job j in Cand
5 Cand ← Cand \ {j}
6 Assign i to Ij
7 Assign to Bj and Cj the smallest possible values that satisfy constraints in β

jobs are assigned in order to balance the load between machines. Furthermore, for this problem we can compute the
following bound [Pin16] :

Cmax(LPT )

Cmax(OPT )
≤ 4

3
− 1

3m

where Cmax(OPT ) is the value of an optimal solution, and Cmax(LPT ) is the value of the solution obtained following
the LPT rule.
As already seen, EDD is optimal for 1||Lmax.
Another dispatching rule (not list-scheduling rule) is the Minimum Slack first rule (MS). This rule selects at time t, when
a machine is freed, among the remaining jobs the job j with the minimum slack: max(dj − pj − t, 0).
Among the main used greedy approaches, we can cite the Apparent Tardiness Cost (ATC) [VM87, Pin16]. This rule
selects at time t, when a machine is freed, among the remaining jobs the job j which maximizes:

1

pj
exp

(
−max(0, dj − pj − t)

Kp

)
where K is a parameter and p is the average processing time of the unscheduled jobs. The value of K can be set manually
or calculated based on some features of the instance (number of jobs, mean processing time, number of machines, due
date tightness factor, ...), more details can be found in [Pin16]. It is important to notice that if K is huge, then the rule
is equivalent to the SPT rule. On the other hand, if K is very small, the rule is equivalent to the Minimum Slack rule
for the jobs when there are no overdue jobs and to SPT for the overdue jobs if there are such jobs.

When considering sequence-dependent setup-times, the rule can be extended in order to take these setup-times into
account. The idea is to find a compromise between the jobs’ processing time, the jobs’ slack, and the setup-times. This
dispatching rule is called the Apparent Tardiness Cost with setups (ATCS) [LP97, Pin16] and consists in selecting at time
t, when a machine i is freed, and the last job on i is k, among the remaining jobs the job j which maximizes:

Rj(t, k) =
1

pj
exp

(
−max(0, dj − pj − t)

K1p

)
exp

(
− sk,j
K2s

)
where K1 and K2 are parameters, p is the average processing time of the unscheduled jobs, and s is the average of the
setup times of the jobs remaining to be scheduled.

2.1.2 Greedy Randomized Approaches
Greedy approaches build one solution. They have polynomial time complexities and (often) find good solutions in a
small amount of time. However, when we have more time to spend on the search, we would like to use that time to find
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better solutions. The first idea to do so is to introduce some randomness in the greedy approaches and to repeatedly
build solutions until our time limit is reached (or another stopping criterion is met). This algorithm is called the Greedy
Randomized Search Procedure (GRS) [FR95].

For example, to introduce randomness in the ATCS procedure, each time a job must be chosen among the unscheduled
ones, instead of choosing the one that maximizes Rj(t, k) we use a roulette wheel to select one job randomly. The

probability are biased such that the probability of selecting job j is equal to
Rj(t, k)∑

j′∈Cand

Rj′(t, k)
.

All the same, for the EDD rule, instead of selecting the job which maximizes
1

dj
we choose job j with probability

1/dj∑
j′∈Cand

1/dj′

2.2 Ant Colony Optimization (ACO)
Ant Colony Optimization (ACO) [CDM91, DS04] is a meta-heuristic which has been used to solve various optimization
problems. It looks like GRS, but in order to improve the search, it learns from the already constructed schedules. The
idea is to learn the components of the good solutions found so far to improve the next solutions’ construction. The
algorithm is depicted in Fig 2.

Many variants of ACO algorithms exist. Among the most used ones we can cite Ant Colony System (ACS) [DG97],
Max-Min Ant System (MMAS) [SH98], or P-ACO (population based ACO)[GM02]. In this thesis, we consider MMAS
which has been shown to obtain good results [DS04].

ACO algorithms use pheromone structures to learn good solution components. The two most widely considered pheromone
structures for scheduling problems are

• Job structure, where a pheromone trail τ(j, j′) is associated with every couple of jobs (j, j′) ∈ J 2 to learn the
desirability of scheduling j′ just after j on a same machine;

• Position structure, where a pheromone trail τ(j, i, n) is associated with each triple (j, i, n) ∈ J ×M× [1, |J |] to
learn the desirability of scheduling job j at position n on machine i.

Many different pheromone structures have been proposed for solving scheduling problems, and a review of 54 of these
algorithms may be found in [TNGF13]. Among these 54 algorithms, Jobs structure are used in 38 papers, and Position
structure are used in 17 papers (some using both).

In line 2 of Alg. 2 pheromone trails are initialized. In the MMAS strategy, all pheromone trails are initialized to τmax,
where τmax is a parameter.

Then, at each iteration of the loop lines 13-20, nants solutions are constructed in a greedy randomised way, where nants
is a parameter which is used to control exploration (the larger nants, the stronger the exploration). At each iteration of
the greedy construction (lines 15-18), a machine i and a job j are chosen, and j is scheduled on i, until all jobs have been
scheduled. The choice of i is made according to some heuristics, which depend on the scheduling problem (a classical
way to do is to select the machine which ends the soonest like in the dispatching rules).
The choice of j is made in a randomized way, according to a probability p(j) which depends on two factors.

The heuristic factor η(j) evaluates the interest of scheduling j on i and its exact definition depends on the scheduling
problem. The heuristic factor is often chosen among the previous presented rules (EDD, SPT, ATCS, ...). For example
we can have η(j) = Rj(t, k) where Rj(t, k) is defined above for the ATCS rule.
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Algorithm 2: MMAS algorithm for scheduling problems
1 Function MMAS

Input : A parallel machine scheduling problem P |β|∑Tj with a set of jobs J , and a set of machinesM
Parameters α, β, nants, τmin and τmax

Output: A solution, i.e., a consistent assignment of all variables in X = {Ij , Bj , Cj |j ∈ J } (where Ij , Bj ,
and Cj represent the machine, start time, and completion time of job j, respectively.)

2 Initialize pheromone trails to τmax
3 while Stopping criterion not reached do
4 sol← greedilyBuildSchedules(P, α, β, nants)
5 Multiply every pheromone trail by (1− ρ)
6 Reward pheromone trails according to sol
7 if A pheromone trail is lower than τmin (resp. larger than τmax) then
8 Set it to τmin (resp. τmax)

9 return the best constructed solution

10 Function greedilyBuildSchedules(P, α, β, nants)
Input : A scheduling problem P with jobs J and machinesM

Parameters α, β, nants
Output: A solution
/* Greedy randomised construction of one solution */

11 bestSol← ⊥
12 for k ∈ [1, nants] do
13 Cand ← J
14 while Cand 6= ∅ do
15 choose a machine i ∈M according to some heuristic

16 choose j ∈ Cand w.r.t. probability p(j) = [fτ (j)]
α·[η(j)]β∑

j′∈Cand

[fτ (j′)]α·[η(j′)]β

17 assign i to Ij , and assign the smallest consistent values to Bj and Cj
18 Cand ← Cand \ {j}
19 if The obtained schedule is better than bestSol then
20 bestSol← the obtained schedule

21 return bestSol

The pheromone factor fτ (j, i) represents the learned desirability of scheduling j on i and its definition depends on the
used pheromone structure. For example when considering the job structure, we have fτ (j, i) = τ(j′, j), where j′ is the
last job of i. When considering the position structure fτ (j, i) = τ(j, i, n) where n is the number of jobs on i plus one.

α and β are two parameters that are used to balance these two factors. In particular, when α = 0, we obtain a GRS
procedure, and when α = 0 and β is very large, we obtain a greedy procedure.

Lines 5 to 8 are used to modify pheromone trails according to solutions computed during the last cycle (i.e., according
to the last nants constructed solutions) or according to solutions built since the beginning of the algorithm. Different
methods are used to update pheromone trails.

In MMAS, three parameters are used : τmax, τmin and ρ ∈ [0, 1]. The pheromone trails are updated in two steps.
First, every pheromone trail is decreased by multiplying it with 1 − ρ. ρ is a parameter which controls the speed of
intensification: the larger ρ, the quicker search is intensified towards the best solutions found recently. In a second step,
pheromone trails associated with the best solution among the nants last computed solutions are increased in order to
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Algorithm 3: Local search algorithm
Input : A parallel machine scheduling problem P |β|∑Tj with a set of jobs J , and a set of machinesM, a

neighborhood N
Output: A solution, i.e., a consistent assignment of all variables in X = {Ij , Bj , Cj |j ∈ J } (where Ij , Bj , and

Cj represent the machine, start time, and completion time of job j, respectively.)
1 xincub ← Compute initial solution
2 while Stopping criteria are not met do
3 Choose a neighbor xn ∈ N (xincub)
4 xincub ← xn

5 return the best solution found so far

increase the probability of selecting the components of this solution in the next constructions. Finally we ensure that
each pheromone trail belongs to [τmin, τmax].

There exist several variants of MMAS [GPG02, DS04]. In this thesis, we consider a variant where τmin and τmax are given
parameters, and the best solution of the current cycle is rewarded. More precisely, let Ac (resp. A∗) be the best solution
found among the nants last computed ones (resp. since the beginning of the search), every pheromone trail associated
with Ac is increased by (Ac −A∗)/A∗.
Another strategy consists in setting τmax to 1/A∗, τmin to τmax/5 and the increase is equal to 1/Ac. In particular in that
case, τmax and τmin evolve during the search (as A∗ is updated each time a new best solution is found).

Finally it is worth mentioning that, in some variants, one can apply a local search (sec. 2.3) on the best solution found
during the cycle (line 5) before updating the pheromone trails [DS04]. This local search may also be applied every k
cycles with k a parameter.

2.3 Local Search
Local Search iteratively improves a solution by iteratively modifying some values. The local search algorithm is depicted
in Algo. 3.

The algorithm consists of three steps. In a first step an initial solution is constructed. In a second step, we repeatedly
choose a neighbor in the neighborhood of the current solution. We repeat this operation until the stopping criteria
(maximum number of iteration reached, time limit reached, ...) are met. Finally, we return the best solution found so
far. In the following subsection we will describe more precisely these steps.

2.3.1 Construction of an initial solution
Local search acts on an incumbent solution. However, in order to start the local search algorithm one needs to compute
a first solution. To do so, we often use greedy approaches (i.e., dispatching rules for scheduling problems, as described in
2.1). The main advantage of greedy approaches is that they often compute "good" solutions in a small amount of time.
Hence the time saved during the construction of the initial solution can be spent later on the neighborhood walk.

2.3.2 Neighborhood
The idea of neighborhood is similar to the idea of gradient for continuous problems. Given a differentiable function f
which we want to minimize, and a point x, the gradient of f evaluated in x indicates how f behaves around x. With
discrete problems, it is not possible to compute gradients. Hence, in order to evaluate how the objective function behaves
around our incumbent solution, we use neighborhoods. A neighborhood N is a function that associates a subset of the
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(a) The incumbent schedule (the lateness are displayed in
parenthesis). The score of the solution is 6.
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i2 j2(1) j7(2) j6(0)
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(b) A neighbor where job j3 was moved to the first position on
machine i1. The score is 7.
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i2 j2(1) j3(0) j6(0) j7(5)
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(c) A neighbor where job j7 was moved to the fourth position
on machine i2. The score is 9.

i1 j5(1) j1(0) j4(0)

i2 j2(1) j7(2) j3(0) j6(0)
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(d) A neighbor where job j5 was moved to the first position on
machine i1. The score is 4.

Figure 2.2: Three neighbors of a solution in the insert neighborhood

set of solutions to an incumbent solution. More formally, it is a function

N : S → P(S)
s 7→ N (s)

where S is the set of all the solutions of the problem (where a the notion of solution is described in section 1.1).

Neighborhoods depend on the problem at hand and must be defined for each problem to solve. For scheduling problems,
several neighborhoods exist. Besides, neighborhoods are often described in terms of operators. An operator is a function
that transforms a solution into another solution.

The insert neighborhood (denoted NR) can be described as follows: given a schedule, all its neighbors are the schedules
that are obtained by selecting a job and moving it on another machine or moving it elsewhere on its machine. Fig 2.2
shows some neighbors of a given schedule. This neighborhood’s size is in O(n(n +m)) where n is the number of jobs,
and m is the number of machines. Indeed, for each job j in the incumbent schedule, we can get a neighbor by moving j
before each other job (n possible choices) or at the machine’s last position (m possible choices).

Another neighborhood, named insert most late job (denoted NRMLJ), consists in selecting the job which has the greatest
tardiness in the current schedule and moving it elsewhere.
Given a solution s ∈ A, the neighborhood defined by NRMLJ is included in the one defined by NR (NRMLJ(s) ⊂ NR(s)).
The size of this neighborhood is equal to O(n+m).

Another neighborhood is the one named swap (denoted NS). Given a schedule, all its neighbors are the schedules that
are obtained by selecting a job and swapping it with another job. The size of this neighborhood is in O(n2).
There exist many neighborhoods for scheduling problems. [LBG91, Glo95] introduced the swap and the insert neigh-
borhoods. Many other neighborhoods have been proposed since that time, some of them depending on the considered
constraints and objective functions. For example, [KKJC02] proposes five neighborhoods for an unrelated parallel ma-
chine scheduling problem with setup-times and where objective functions consist of minimizing the sum of tardiness.
For a similar problem, [LYL13] also proposes eight neighborhoods (for example, the insert most late job one). With the
introduction of Large Neighborhood Search [Sha98], new larger neighborhoods have also been introduced. For example,
[LG07] proposes three self-adapting neighborhoods (as an example, one of them consists of sorting all the jobs in an array
according to their start times and then removing all the jobs whose index in the sorted array belongs to βW ·n, (βw+αW )·n
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and to reinsert them elsewhere, where n is the number of jobs of the problem, and βW and αW are two self-adapting
parameters).

2.3.3 Choosing a neighbor in the neighborhood
In order to fully describe the algorithm depicted in Alg. 3, we must precise how we choose a neighbor in the neighborhood
of an incumbent solution. Several strategy exists.

Local descent: The idea of local descent is to always select the best improving neighbor in the neighborhood. In some
variants, if the neighborhood is large, the first improving neighbor met during the walk through the neighborhood is
chosen. This algorithm quickly converges to a solution (as we always select the best neighbor, the objective function
decreases quickly). However, its main drawback is that it get stuck into local minima. Indeed, when reaching a local
optima, there is no improving solution in the neighborhood, and hence local descent stops.

Tabu search: Tabu search [GKL96] works in a similar fashion as local descent. It selects the best neighbor in the
neighborhood. However, in order to avoid getting stuck in local optima, tabu search prevents the algorithm from going
back to a solution it has already visited. This prohibition remains active until a given number of iterations are done (this
number is called the tabu list size, and we call tabu list the list of all neighbors which are prohibited).

In practice, we do not forbid to visit the already visited solutions once again, but we forbid applying the reverse operator
of the applied operator. As an example, if the current solution has been obtained by moving a job j from position l on
machine i to position l′ on machine i′, we forbid to move job j back to position l on machine i. Forbidding operators (or
more precisely reverse operators) instead of forbidding solutions has some advantages: it is smaller to memorize and it
forbids more solutions which favors diversification (which leads to better results in practice).

Different strategies exist to fill the tabu list. For example, [LBG91] proposes seven strategies to fill tabu lists: preventing
a job from going back to a position it has already occupied; preventing two jobs that have already been swapped to be
swapped a second time (even if one of them has been moved between the two swaps); preventing a job from going to a
position whose index is lower than an index the jobs has already occupied; ...

Since [GKL96], there has been much research on the method to improve it.

Tabu list’s size: Under the questions at hand lies the one of the tabu list’s size. The tabu list’s size influences the
algorithm. A big size will favor diversification because it will force the algorithm to get far from the previously found
solutions. On the other hand, a short tabu list will favor intensification.
There exist variants of the algorithm [BT94] where the list’s size is updated dynamically during the execution.

Aspiration criteria: Another idea to improve the algorithm concerns the aspiration criteria. As aforementioned, if
we represent our neighborhood in terms of operators, the algorithm will sometimes ignore never evaluated solutions. It
can be a vested investment to assess them and accept them only if they improve the current best-known solution. We
called this method the aspiration criteria [Sal02].

Incremental search: a critical aspect of the tabu search lies in the walk through the neighborhood. Let’s consider
the neighborhood NR for P ||∑Tj problem. Let’s assume that we are at iteration it of the tabu search algorithm. We
evaluate the neighbor of our incumbent solution (xincub) which is obtained by taking the job j which is on machine i1
and moving it on machine i2 (whatever the positions on i1 and i2). We observe that this neighbor doesn’t improve our
solution. We will consider all the neighbors of xincub in order to find the best one: xbestNeighbor. Now let’s assume that
xbestNeighbor is obtained from xincub by moving job j′ from position x on machine i3 to position y on machine i3. Now at
iteration it+ 1, because nothing has changed on machines i1 and i2 between solutions xincub and xbestNeighbor, we know
that moving job j from machine i1 to machine i2 will not improve our solution, and hence it is not necessary to evaluate
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another time this neighbor.
Such incremental search can speed up the walk through the neighborhood.

Biased search: Another essential point when walking through the neighborhood lies in the walk’s starting point. Let
us consider the neighborhood NR. Suppose we always walk in the neighborhood in the same order: first, we try to move
the job which is on position 1 on machine M1; then, we consider the job which is on position 2 on machine M1; ...; then
the job at position 1 on machineM2; then the job on position 2 on machineM2; and so on. In that case, we will introduce
a bias that will decrease our algorithm’s performance. Instead, it is valuable to explore the neighborhood randomly.

2.4 Linear Programming
Linear Programming (LP) [V+15] aims at optimizing a linear objective function, subject to linear inequality constraints.
The problem to solve must be modeled as:

min
n∑
j=1

cjxj

subject to ∀i ∈ [1,m]
n∑
j=1

aijxj ≤ bi
∀j ∈ [1, n] xj ≥ 0

where xj are variables and cj , aij and bi are constants.

Models are also often written using a matrix form:

min cTx
subject to Ax ≤ b

x ≥ 0

Each inequality
n∑
j=1

aijxj ≤ bi for a given i defines a hyperplane which separates the space into two half-spaces. The

feasible region of the linear program (i.e. the set X such that x ∈ X satisfies Ax ≤ b) is the intersection of many
half-spaces. Fig 2.3 shows an example of the feasible region of a linear program.

As the objective function is linear and all xj variables have continuous domains, we know that if the objective function
has a minimum value on the feasible region, then it has this value on (at least) one of the extreme points [Mur83]. This
property is at the root of a well-known algorithm used to solve linear programs: the simplex algorithm [Dan90].
The algorithm consists in two steps :

• Find an extreme point of the feasible region

• Move from extreme points to extreme points until the optimal value is found

The simplex algorithm is very efficient. However, it is essential to notice that the number of extreme points can be
exponential with respect to the program’s size. Hence this algorithm, even if it is very efficient in practice, is not
polynomial.
Nevertheless, there exist polynomials algorithms [Kha80, Kar84], called interior-points methods, which can solve linear
programs (with continuous variables). Thus linear programming with continuous variables is a polynomial problem.

Modeling: It is crucial to notice that for a given problem, there may exist several linear models that can solve the
problem. According to the chosen model, the resolution can have different performances. In particular, it is possible to
have a model for a problem which has an exponential number of variables or an exponential number of constraints. Thus,
in that case, the model cannot be said to be polynomial. However, it does not mean that the problem is not polynomial.
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Figure 2.3: Feasible region of a linear program. There are 5 inequalities in the model, defining 5 half-spaces. The yellow
region corresponds to the intersection of the 5 half-spaces.

Indeed, there may exist another model with continuous variables for the same problem, which uses a polynomial number
of variables and constraints. Hence finding a model with polynomial numbers of variables and constraint means that the
problem is polynomial, but the reverse is not true.

The model’s choice significantly impacts the resolution’s performance in a more general way. In the industrial world,
linear solvers are often used as black-boxes (i.e., the choice of the algorithms used to solve (i.e., simplex methods, interior-
point methods, ...) and their implementations is not made by the user). Hence, it is often the case that the person who
wants to solve a problem only acts on the model itself and not on the solving process.

Column generation As aforementioned, many problems for which we know an exponential model exist. Let us
assume that a model of such a problem has an exponential number of variables. In an optimal solution for this model, it
is common to have many variables with a value equal to zero. The idea of column generation is to solve this model using
two procedures that take turns.
In the first step, we consider only a subset of the variables, and we solve this partial problem. We call it the master
problem. In a second step, we use a problem-dependent procedure (which we call the slave problem) to check whether
there exists a variable not used in the master problem that can improve the solution if its value is not zero. If such a
variable exists, we add it to the master problem and repeat the two processes.
Adding a new variable to the master model consists in adding a new column to the matrix A. This is why this technique
is called column generation.
In practice, we often add few columns before finding an optimal solution of the problem, and hence it is often the case
that column generation solves problems that remain unsolved if we use linear programming without this technique. Here,
it is essential to have a suitable procedure for the slave problem and a good model for the master problem.

Solvers As mentioned earlier, it is common not to implement the algorithms that solve linear programs and to use,
instead, a solver with all these methods already implemented. Among the well-known solvers, we can cite CPLEX
[Man87b], Gurobi [GO21], COIN-OR [Lou03].
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2.4.1 Mixed Integer Linear Programming
Although linear programming with continuous variables is a polynomial problem, linear programming using integer
variables (or mixing integer and continuous variables) is NP − hard in the general case. When all the variables of a
model can take integer values, we speak about Integer Linear Programming (ILP). When only a subpart of the variables
can take integer values (and the other can take real values), we speak about Mixed Integer Linear Programming (MIP).

Definition 2.4.1 ( Mixed Integer Linear Programming (MIP)).
Mixed Integer Linear Programming (MIP) is a problem that aims at optimizing a linear objective function, subject to
linear equality and linear inequality constraints, where some variables have continuous domains whereas others have
integer domains.

min
n∑
j=1

cjxj

subject to ∀i ∈ [1,m]
n∑
j=1

aijxj ≤ bi
∀j ∈ [1, n] xj ≥ 0
∀j ∈ N xj ∈ N

The subset N ⊆ [1, n] corresponds to the indexes of the variables which have integer domains.

Let us consider once again Fig 2.3. The black dots correspond to points where both x1 and x2 take integer values. We
know that the objective function takes its minimum value on at least one extreme yellow region point. However, no
extreme point of the region corresponds to an integer solution (i.e., a solution where both x1 and x2 take integer values).
In such a case, the simplex algorithm will find assignments with continuous values for each variable, and hence such
assignments will not be solutions of the problem (as some variables must have discrete values).

Branch and bound: A common technique to solve MIPs is branch-and-bound [BM07, LW66, Cla99]. Branch-and-
bound consists of a systematic enumeration of candidate solutions by means of state space search: the set of candidate
solutions is thought of as forming a rooted tree with the full set at the root. The algorithm explores branches of this tree,
which represent subsets of the solution set. Before enumerating a branch’s candidate solutions, the branch is checked
against upper and lower estimated bounds on the optimal solution and is discarded if it cannot produce a better solution
than the best one found so far by the algorithm.
The algorithm depends on efficient estimation of the lower and upper bounds of regions/branches of the search space. If
no bounds are available, the algorithm degenerates to an exhaustive search. Typically, a lower bound for a MIP may be
obtained by solving the LP obtained by relaxing the integrality constraints.

2.4.2 Models for scheduling problems
Many models have been proposed for scheduling problems [Art12]. We will describe some of them in this section.

Assignment problem P ||Cmax
The model 2.4 describes a Linear Programming model for this problem. The model associates one binary variable Xij

for each machine i ∈M and for each job j ∈ J , whose value is equal to 1 if job j is assigned to machine i in the solution
and 0 otherwise. One additional variable, named y, corresponds to the makespan’s value. The constraint (1) states that
each job must be assigned to at least one machine. The constraint (2) states that, for each machine, the makespan y
must be greater than the sum of the durations of the jobs assigned to the machine. Constraints (3) and (4) specify the
domains of the variables.

Release date and due date : P |rj |
∑
Tj

There exist two classical models for this problem.
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Minimize y

subject to
∑
i∈M

Xij ≥ 1 ∀j ∈ J (1)

y ≥
∑
j∈J

pj ∗Xij ∀i ∈M (2)

Xij ∈ {0, 1} ∀j ∈M ∀i ∈ J (3)
y ∈ N (4)

Figure 2.4: LP model for the assignment problem P ||Cmax.

Minimize
∑
j∈J

Tj

subject to
∑
j∈J

F0j =
∑
j∈J

Fj,n+1 = m (1)

∑
k∈J 0\{j}

Fkj =
∑

k∈Jn+1\{j}

Fjk = 1 ∀j ∈ J (2)

rkFkj ≤ Bkj ≤ hFkj ∀k, j ∈ J , k 6= j (3)∑
k∈Jn+1\{j}

Bjk −
∑

l∈Jn+1\{j}

(Blj + plFlj) ≥ 0 ∀j ∈ J (4)

Tj ≥ (
∑

k∈Jn+1\{j}

Bjk) + pj − dj ∀k ∈ J (5)

Fjk, F0j , Fj,n+1 ∈ {0, 1}, Bjk ≥ 0 ∀j, k ∈ J , j 6= k (6)

Figure 2.5: LP model for the scheduling problem P |rj |
∑
Tj . It is based on a flow model.

First model: The first one is depicted in Fig 2.5. It is adapted from the ones in [Art12, MSMA19]. It uses a flow.
Such models are common to solve Vehicle Routing Problems.
We use subscript i to designate a machine (in the setM), the subscript j to designate a job (in the set J ). As a reminder,
pj (resp. dj , rj) is used to designate the processing time of job j (resp. the due date of job j, the release date of job j).
We consider two dummy jobs (denoted 0 and n+1) (whose durations are 0, whose release-dates are 0 and whose due-dates
are h, the horizon). m units of flow leave the source job 0, and m units of flow enters the sink job n + 1. We denote
J 0 = J ∪ {0} and J n+1 = J ∪ {n+ 1}.
We use three types of variables :

• Fkj for (k, j) ⊆ J 2 whose value equals one if job j is positioned just after job k on a same machine. F0j = 1 for
j ∈ J indicates that j is the first job on its machine (otherwise F0j = 0) and Fj,n+1 = 1 for j ∈ J indicates that j
is the last job on its machine (otherwise Fj,n+1 = 0)

• Bjk for (j, k) ⊆ J × (J ∪ {n+ 1}) which corresponds to the start time of job j if it precedes job k (or n+ 1)
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• Tj for j ∈ J which corresponds to the tardiness of job j

We have the following constraints:

• Constraint (1) ensures that m units of flow leave the source and m units of flow enter the sink. This ensures that
at most m machines are used.

• Constraint (2) ensures the flow conservation, meaning that jobs are processed one by one by any machine.

• Constraint (3) ensures that the start of each job is greater than its release date.

• Constraint (4) links flow and start times of jobs. In particular, it ensures that if job j follows job l, then the start
time of j is greater than the start time of l plus the duration of l.

• Constraint (5) sets the value of the tardiness for each job j according to its start time.

Second model: The second one is depicted in Fig 2.6. It is adapted from the one used in [FL13].
We use the subscript l to designate a position on a machine (from 1 to n where n is the number of jobs). M is a large
number.
We use three types of variables :

• Xjil for j ∈ J , i ∈ M, l ∈ [1, n] whose value equals one if job j is assigned to position l on machine i and zero
otherwise.

• Bi,l for i ∈M, l ∈ [1, n] which corresponds to the start time of the lth position on machine i

• Tj for j ∈ J which corresponds to the tardiness of job j

We have the following constraints:

• Constraint (1) ensures that each job is assigned to exactly one position on a machine.

• Constraint (2) ensures that at most one job is assigned to a given position.

• Constraint (3) ensures that the start time of the (l + 1)th position on machine i is greater than the start time of
the lth position plus the duration of the job assigned to that position.

• Constraint (4) ensures that the start time of the lth position on machine i is greater than the release date of j if
job j is assigned to the lth position on machine i.

• Constraint (5) can be decomposed according to two different cases:

– If Xjil is equal to one, the constraint can be written Tj ≥ Bil+pj −dj , and we know that the job j is assigned
to the lth position on machine i. Hence it ensures that the tardiness of job j is greater than the start time of
job j plus its duration minus its due date.

– If Xjil is equal to zero, as M is sufficiently large, the constraint can be written Tj ≥ −M ′ with M ′ a positive
value, hence the constraint is automatically satisfied as Tj ≥ 0

• Constraint (6) specifies the domains of the variables.

Speeds : Q|rj |
∑
Tj

We can easily adapt the model described in Fig 2.6 to the case where machines have different speeds. In such case, we
can simply replace constraint (3) of Fig 2.6 by

Bi,l+1 −Bil ≥
∑
j∈J

pj
si
Xjil
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Minimize
∑
j∈J

Tj

subject to
∑
i∈M

n∑
l=1

Xjil = 1 ∀j ∈ J (1)∑
j∈J

Xjil ≤ 1 ∀i ∈M ∀l ∈ [1, n] (2)

Bi,l+1 −Bil ≥
∑
j∈J

pjXjil ∀i ∈M ∀l ∈ [1, n− 1] (3)

Bil ≥
∑
j∈J

rjXjil ∀i ∈M ∀l ∈ [1, n] (4)

Tj ≥ Bil + (Xjil − 1)M + pj − dj ∀j ∈ J ∀i ∈M ∀l ∈ [1, n] (5)
Xjil ∈ {0, 1}, Bil, Tj ≥ 0 ∀j ∈ J ∀i ∈M ∀l ∈ [1, n] (6)

Figure 2.6: LP model for the scheduling problem P |rj |
∑
Tj .

Sequence dependent setup times : Q|rj , sjk|
∑
Tj

The model described in Fig 2.6 can also be adapted to the case with setup-times. For such a case, we use additional
boolean variables denoted Yjkil for {j, k} ⊆ J i ∈M l ∈ [1, n− 1]. The value of Yjkil is set to one if job j is assigned to
position l on i and if job k is assigned to position l+ 1 on i, and zero otherwise. In other words Yjkil is set to one if and
only if both Xjil and Xki,l+1 are set to one (i.e. Yjkil = Xjil ·Xki,l+1). Then, the difference with the model described in
Fig 2.6 is on constraint (3) which is replaced by

Bi,l+1 −Bil ≥
∑
j∈J

(
pj
si
Xjil +

∑
k∈J

Yjkilsjk

)

We must also add the following constraints:
Yjkil ≤ Xjil

Yjkil ≤ Xki,l+1

Yjkil ≥ Xjil +Xki,l+1 − 1

in order to ensure that:
Yjkil = Xjil ·Xki,l+1

2.5 Constraint Programming
Constraint programming (CP) [RVBW06] allows a user to define a problem in a declarative way, by means of variables
and constraints as described in section 1.1, and then to solve it by using generic search procedures.

2.5.1 Type of data and constraint
Using Linear programming, variables need to be numbers (real or integer), and both constraints and objective function
are linear combinations of these variables. It is not the case for Constraint Programming. In CP, variables can take
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values in an arbitrary set of symbols, and constraints (along with objective function) specify relations between variables
that do not need to be linear combinations.

2.5.2 Constraint propagation
At the heart of Constraint Programming solving lies the notion of propagation. The propagation of a constraint c aims at
filtering its variable domains by removing values that cannot belong to solutions. After this propagation step, the filtered
domains are said to be locally consistent. Different propagation algorithms may be proposed for a same constraint, and
these algorithms may achieve different levels of local consistency. Given two propagation algorithms P1 and P2 for a same
constraint c, we say that P1 is stronger than P2 if, for every variable xi ∈ X(c), we have D1(xi) ⊆ D2(xi) where D1 and
D2 denote the filtered domains obtained by propagating c with P1 and P2, respectively, given the same initial domains.

In this section, we describe generalized arc consistency, which is the most famous local consistency.

Definition 2.5.1 (Generalized Arc Consistency (AC)).
Let be (X,D,C) a CSP, c ∈ C a constraint, and xi ∈ X a variable.

• A value vi ∈ D(xi) is consistent with c if there exists a valid tuple τ satisfying c such that τ [xi] = vi. Such a tuple
is called a support for (xi, vi) on c.

• The domain D is arc consistent on c for xi if all values in D(xi) are consistent with c.

• The CSP (X,D,C) is arc consistent if D is arc consistent for all variables in X on all constraints in C.

• The CSP (X,D,C) is arc inconsistent if ∅ is the only domain tighter than D which is arc consistent for all variables
on all constraints.

Historically, arc consistency is associated with binary CSPs and generalized arc consistency with non-binary CSPs while
both definitions are perfectly the same.

Example 2.5.1. Let us consider the CSP introduced in Example 1.1.2. This CSP is not arc consistent because the value
1 for x1 has no support on the constraint c1 (because ∀v ∈ Dx3 we cannot have 1 ≥ v ).

When the domain of a variable xi is not arc-consistent on a constraint c, we may ensure arc-consistency by removing
inconsistent values from D(xi) and detect arc-inconsistency if the domain becomes empty. This domain filtering step is
called constraint propagation and designing efficient propagation algorithms is a key point for solving CSPs.

2.5.3 Branch and propagate
Constraint propagation filters domains by removing values that cannot belong to solutions. However, it only ensures a
local consistency, and constraint propagation must be combined with a systematic exploration of the remaining search
space to actually find solutions (or prove inconsistency). We often use a branch and propagate principle:

• The initial problem is recursively decomposed into sub-problems by splitting variables’ domains;

• For each sub-problem, constraints are propagated, and if one domain becomes empty then the sub-problem has no
solution

• In a sub-problem, when all the variables’ domains are reduced to singleton, then we have found a solution

There exist different strategies to choose how to split variables’ domains and how to choose the order in which sub-
problems are browsed. The interested reader should refer to [RVBW06] for further details.
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2.5.4 Model and solvers
As for linear programming, a Constraint Programming’s essential aspect lies in how one models a COP, which is then
given to a solver. Among the most known CP Solvers, we can cite CP Optimizer [Man87a, LRSV18], ORTOOLS [PF19],
Gecode [SLT06], Choco [JRL08].

2.5.5 Models for scheduling problems
In this section we will give some models for the scheduling problems described in section 1.2.5. Unless otherwise stated,
the models are described using the CP Optimizer constraint language. More information can be found in [LR08, LRSV18,
Bon17, Man87a]

Scheduling variables and constraints

In order to model scheduling problems, some specific variables and constraints are used. First there is the notion of
interval variables. An interval variable represents an interval of time, i.e., a start time and an end time. Given an interval
ι we denote Bι its start time and Cι its end time. An interval variable ι may be optional, and this is specified in CPO
by adding optional(ι) to the model. When a variable is optional, it may either be present or absent. This is essential to
model situations where jobs can be processed by different machines (or resources). In such a case, an interval variable is
created for each machine, and, in a solution, only one variable is present and all the others are absent. The domain of
the start time ranges from the earliest start time to the latest start time, and the domain of the end time ranges from
the earliest end time to the latest end time. Decisions, made by propagation or during the search, will tend to reduce
these ranges.

Among the constraints used in scheduling we can cite the alternative one. Given a set S of interval variables and an
interval variable ι, the constraint ι = alternative(S) ensures that if ι is present then exactly one variable ι′ ∈ S is present
(every other variable ι” ∈ S \ {ι′} is absent) and the start and end times of ι are equal to those of ι′.

Another used constraint is the startMin constraint. It allows to specify that an interval cannot start before a given time.
Hence, given an interval ι and a time t ∈ [0, H], startMin(ι, t) ensures that ι starts after t (i.e., Bι ≥ t).
We must also mention the intervalSequence constraint. It allows to build a sequence of interval variables from a set
of these variables. Given a set S of intervals, if we denote Spres the set of intervals of S which are present (i.e.,
Spres = {ι′ ∈ S : ι′ is present}), intervalSequence(S) ensures that each interval ι ∈ Spres receives a different value from
the set {1, . . . , |Spres|}. This yields a total order on the execution of these intervals. We denote seq the sequence of intervals
produced by intervalSequence(S), and, for ι ∈ seq we denote seq(ι) the value received from the set {1, . . . , |Spres|}. This
constraint is often used in combination with the noOverlap constraint which is used to model disjunctive resources (such
as machines in parallel machine scheduling). It forces the intervals variables of a sequence not to overlap. Given a set S
of interval variables and seq the sequence such that seq = intervalSequence(S), then noOverlap(seq) ensures that for
every pair of variables ι1, ι2 ⊆ seq, such that seq(ι1) < seq(ι2), ι1 ends before ι2 starts (i.e., Cι1 ≤ Bι2).
Along with a set of interval variables, one can specify a list of job types to the intervalSequence constraint. Doing so,
each job has a type. Then, when combining with the noOverlap constraint, we can specify a setup-time between each
type. Thus, given a set S of intervals, a set of types for each job jobTypes, and a value for the setup-time between each job
type setupT imes, the combination of seq = intervalSequence(S, jobTypes) and noOverlap(seq, jobTypes, setupT imes)
ensures that for every pair of variables ι1, ι2 ⊆ seq, such that seq(ι1) < seq(ι2), ι1 ends setupT imestype(ι1),type(ι2) units
of time before ι2 starts (i.e., Cι1 + setupT imestype(ι1),type(ι2) ≤ Bι2) where type(ι) for an interval ι designate its type,
and setupT imesa,b for a, b two types is the setup time which is due between these two types.

A very useful constraint to model hierarchical processes is the Span constraint, which states that a master interval should
extend over all of time range covered by slave intervals. More precisely, given a set of intervals S (the slave intervals)
and a (master) interval ι, the span constraint ensures that Bι = min

ι′∈S:ι′ is present
Bι′ and Cι = max

ι′∈S:ι′ is present
Cι′ .
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Minimize max
j∈J

endOf(aj)

subject to aij = interval (pj) ∀j ∈ J ,∀i ∈M (1)

optional(aij) ∀j ∈ J ,∀i ∈M (2)

aj = alternative({aij : i ∈M}) ∀j ∈ J (3)

Si = intervalSequence({aij : j ∈ J }) ∀i ∈M (4)

noOverlap(Si) ∀i ∈M (5)

Figure 2.7: CP model for the assignment problem P ||Cmax.

Besides, the intensity constraint allows us to specify a percentage for a given period of time such that the time needed
to complete a given interval during that period depends on that percentage. The intensity function represents an
instantaneous ratio between the size and the length of an interval variable. For example, if the intensity is 100%, then
the time needed to complete the interval is equal to its processing time; if it is 50%, then it will take twice more time
to complete it; and so on. More precisely, given a function f : [0, h]→ [0, 100], and an interval ι, intensity(ι, f) ensures

that Cι −Bι ≥
Cι∑
t=Bι

f(t)

100
.

We can also cite the cumulative constraints which are used to model the consumption of a resource by an interval variable.
Cumulative constraints are used to model the fact that jobs require resources (e.g., human skills or tools) and that these
resources have limited capacities, i.e., the sum of resources required by all jobs started but not ended must never exceed
resource capacities. Given a set of intervals S such that each interval ι ∈ S consumes conι units of the considered resource,
and l the capacity of the resource, the cumulative constraint ensures that each time t ∈ [0, h] the intervals consumption
is lower than l, i.e.,

∑
ι∈S:ι is present∧bι≤t<cι

conι ≤ l

Assignment problem P ||Cmax:
The model in Fig. 2.4 can also be solved by Constraint Programming solvers (boolean variables are classical in CP
Models and linear relations can also easily be modeled). However another way to see this assignment problem is through
a scheduling point of view. In that case we use interval variables and we schedule them over machines (this model is
closer to the model used in the following sections as it uses interval variables). Such a model is described in model 2.7.
An interval aj is associated with every job j ∈ J , i.e., aj corresponds to the interval [Bj , Cj ], with Bj the start time
of job j and Cj its end (or completion) time. An optional interval variable aij is associated with every job j ∈ J and
every machine i ∈ M: if job j is executed on machine i, then aij = aj ; otherwise aij is absent). Finally, an interval
sequence variable Si is associated with every machine i to represent the total ordering of the present interval variables
in {aij : j ∈ J }.

• (1) and (2) define the interval variable aij whose length is equal to the processing time of job j ;

• Constraint (3) ensures that every job j is scheduled on exactly one machine;

• Constraint (4) defines the sequence of jobs on machine i;

• Constraint (5) ensures that at most one job is executed at a time on machine i
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Release date and due date P |rj |
∑
Tj:

The model for this problem is similar to the one of the previous problem (Fig. 2.7). We only need to add a new constraint
which specifies that interval aij cannot start before the release date rj of job j:

startMin(aij , rj) ∀j ∈ J ,∀i ∈M (6)

The objective function is also different: now, instead of minimizing the makespan, we minimize the sum of all the jobs’
tardiness: ∑

j∈J
max(0, endOf(aj)− dj)

Speed problem Q|rj |
∑
Tj:

In order to model speeds on machines, we only replace, in the previous model, the constraint (1):

aij = interval (pj) ∀j ∈ J ,∀i ∈M (1)

by

aij = interval

(
pj
si

)
∀j ∈ J ,∀i ∈M (1)

Sequence dependent setup times problem Q|rj , sjk|
∑
Tj:

In order to take into account the sequence dependent setup-times we need to modify constraints (4) and (5). Hence, we
first need to replace

Si = intervalSequence({aij : j ∈ J }) ∀i ∈M (4)

by
Si = intervalSequence({aij : j ∈ J }, jobTypes) ∀i ∈M (4)

this allows us to specify the type of each job (the sequence-dependent setup-times depend on the types of each job).
The other modification consists in replacing

noOverlap(Si) ∀i ∈M (5)

by
noOverlap(Si, jobTypes, setupT imes) ∀i ∈M (5)

which allows us to specify the setup time which is due between each type.

This model is written using the constraints available in CP Optimizer. However, such constraints are not available in all
CP solvers. For example, it is impossible to do so with the ORTOOLS solver.
For ORTOOLS, to model sequence-dependent setup times, it is necessary to represent all the assigned jobs in a complete
directed graph (each vertex represents a job, and there is an arc between every two vertices, whose weight is equal to
the duration of the setup-time due between the two jobs). Then, the only thing to do is to add a circuit constraint on
that graph. Thus if an arc is included in the circuit, then the setup time between the two extremities of the arc must be
applied.

Breaks problem Q|rj , brkdwn|
∑
Tj:

To model scheduled breakdowns, we use a function openPeriodi(t) whose value is equal to 100 if machine i is open at
time t and zero otherwise (notice that the break periods are not the same on all the machines). Then we must add the
following new constraint to the model used for the speed problem Q|rj |

∑
Tj

intensity(aij , openPeriodi) ∀j ∈ J ,∀i ∈M (7)



2.5. Constraint Programming 55

Min
∑
j∈J

max(0, endOf(aj)− dj)

s.t. aij = interval

(
pj
si

)
∀j ∈ J , ∀i ∈M (1)

intensity(aij , openPeriodi) ∀j ∈ J , ∀i ∈M (2)

optional(aij) ∀j ∈ J , ∀i ∈M (3)

aj = alternative({aij : i ∈M}) ∀j ∈ J (4)

setupij = interval() ∀j ∈ J , ∀i ∈M (5)

intensity(setupij , openPeriodi) ∀j ∈ J , ∀i ∈M (6)

startMin(setupij , rj) ∀j ∈ J , ∀i ∈M (7)

optional(setupij) ∀j ∈ J , ∀i ∈M (8)

presenceOf(setupij) = presenceOf(aij) ∀j ∈ J , ∀i ∈M (9)

startAtEnd(aij , setup
i
j) ∀j ∈ J , ∀i ∈M (10)

coverij = interval() ∀j ∈ J , ∀i ∈M (11)

optional(coverij) ∀j ∈ J , ∀i ∈M (12)

presenceOf(coverij) = presenceOf(aij) ∀j ∈ J , ∀i ∈M (13)

span(coverij , {aij , setupij}) ∀j ∈ J , ∀i ∈M (14)

Si = intervalSequence({coverij : j ∈ J }, jobTypes) ∀i ∈M (15)

noOverlap(Si) ∀i ∈M (16)

lengthOf(setupij) =

setupT imes[typeOfPrevious(Si, coverij , type[j])][type[j]] ∀j ∈ J , ∀i ∈M (17)

Figure 2.8: A CP model for the Q|rj , brkdwn, sjk|
∑
Tj problem

If the intensity is 0% on a given interval, then no amount of work can be done on that job during this period. Hence
in our case, we set the intensity to 0% for a particular machine for all the jobs during the machine’s breakdowns and to
100% when the machine is not on a break.

Breaks and sequence-dependent setup times problem Q|rj , brkdwn, sjk|
∑
Tj:

As we have already models for the case sequence-dependent setup times and the case breaks a natural idea consists in
combining these models (i.e. adding constraint (7) to the model used for Q|rj , sjk|

∑
Tj). However, doing so does not

lead to the expected result. Indeed, as explained in section 1.2.5, the setup-times cannot be executed during the breaks
(as they correspond to human activities). For this reason, another model is needed. In our case, setup-times must be
seen as sequence-dependent setup activities [Man87a, LRSV18]. The model is described in Fig 2.8.

For each job j ∈ J it uses three variables. The first one aij is used to represent the interval corresponding to the execution
of the job (if it is executed on machine i). The second one setupij is used to represent the setup time of job j (if executed
on machine i). And finally the last one coverij is used to represent the whole job (setup time plus processing time). Hence
the model can be explained as follows:
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• (1) defines the interval variable aij whose length is equal to the processing time of job j divided by the speed of the
machine i ;

• (2) ensures that the processing of the jobs is stopped during the breaks on machines;

• (3) and (4) ensure that every job j is scheduled on exactly one machine;

• (5) defines the setup-time interval for job j (whose length is fixed by constraint (17)) ;

• (6) ensures that the setup-times are not executed during the breaks;

• (7) ensures that the setup-times do not start before the release date of jobs;

• (8) and (9) ensure that the setup-time for job j on machine i is only applied if job j is executed on machine i;

• (10) ensures that the setup-time interval of job j is executed just before the processing interval of the job;

• (11) defines the interval which covers the whole job j (representing its setup-time plus its processing time);

• (12) and (13) ensure that the whole interval for job j on machine i is only applied if job j is executed on machine i;

• (14) ensures that coverij starts when setupij starts and ends when aij ends;

• (15) defines the sequence of jobs on machine i (specifying the type of each job);

• (16) ensures that at most one job is executed at a time on machine i;

• (17) specifies the length of the setup-time interval of each job.
typeOfPrevious(Si, coverij , type[j]) corresponds to the type of the job which is just before job j on machine i (or
type[j] if j is the first job of the machine). setupT imes[t1][t2] is the length of the setup type if we execute a job
of type t2 just after a job of type t1. (if job j is the first job of the machine, we say that the previous type is the
same as the one of j, and hence the length of the setup time interval is zero.);

It is noticeable that this model is much more complicated than the previous ones.

2.6 Discussion
In this chapter we introduced several state-of-the-art methods used to solve scheduling problems. The ways these
methods solve problems are totally different. ACO is an incomplete constructive approach, which repeatedly constructs
new solutions starting from empty solutions. Furthermore it learns from its previous constructions in order to improve
the next ones. Tabu search is an incomplete perturbative approach which always works on the same solution and makes
many little modifications to this solution in order to improve it. ACO and tabu search quickly compute solutions, but
there is no guarantee on the quality of these solutions. ILP and CP are exact approaches which are able to find optimal
solutions and prove optimality, at the expense of exponential time complexities in the worst case. When using Linear
Programming and Constraint Programming the user must define a problem in a declarative way, by means of variables
and constraints. The model is defined using a restricted set of variables and constraints. For example, when using Linear
Programming, all the constraints must be linear. In both cases, models are then solved using generic search procedures.
We illustrated each of these methods on the scheduling problems considered in this thesis. In particular, for ACO we
gave several heuristic approaches (EDD, LPT, MS, ATCS, ...) and two well-known pheromone structures (Jobs and
Position trails). For tabu search we described some neighborhoods and some strategies to fill tabu lists. Concerning
Linear and Constraint programming, we listed several models used to solve the scheduling problems presented in the
previous chapter.

It is crucial to mention that none of these methods outperforms the others on all COPs. Hence, each methods has its
own strengths and weaknesses, and depending on the problem, some are more adapted than others.
We have restricted our attention to the most well known approaches for solving scheduling problems. There exist
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many other methods for solving COPs: Genetic algorithms [SD08, Mit98], Variable Neighborhood Search [HM14], Large
Neighborhood Search [PR10], SAT Solvers [GPFW96, HJS+18], ...

In the next chapters we will introduce a new scheduling problem, and we will show how the methods presented here
can be adapted to this new scheduling problem. We will also present a new method which can be applied on this new
problem as well as on the problems presented so far.
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Part II

The Group Cumulative Scheduling Problem
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In this chapter we introduce a new scheduling problem, called the Group Cumulative Scheduling Problem. In section
3.1 we formally introduce the problem. We describe how it can be modeled and give an example of an instance of this
problem to illustrate. In section 3.2 we describe related problems, especially Cumulative Scheduling Problems, Open
Stacks Problems and Hierarchical scheduling problems. We highlight the common features and the differences between
these problems. In section 3.3 we study the complexity of this problem from a theoretical point of view. We show
that converting a list-schedule into a schedule is an NP − complete problem when considering the Group Cumulative
constraint whereas it is not when we do not consider this constraint.

3.1 Definition
In the Group Cumulative Scheduling Problem (GCSP), jobs are partitioned into groups. The start (resp. end) time of a
group is defined as the smallest start time (resp. largest end time) among all its jobs. A group is said to be active at a
time t if it is started and not ended at time t. The number of active groups must never exceed a given limit.

Definition 3.1.1 (Group Cumulative Scheduling Problems).
The Group Cumulative Scheduling Problems is defined as follows:

• Input Data: A tuple (M,J ,P, l) such that:

– M is a set of machines;

– J is a set of jobs, such that each job j ∈ J has a processing time pj ∈ N;

– P is a partition of J in |P| groups (such that each job j ∈ J belongs to exactly one group g ∈ P). Each group
g ∈ P has a due date dg ;
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Figure 3.1: Schedule examples.
(a) A set J of 9 jobs and a partition P of J in 4 groups represented by colors
(b) Example of schedule on 3 machines which violates GC when l = 2 (there are 3 active groups from time 2 to time 6,
as displayed on the bottom of the figure)
(c) Example of schedule on 3 machines which satisfies GC when l = 2 (an idle time is added between j8 and j7 and
between j3 and j4 to wait the end of the pink group before starting the yellow group)

– l is the maximum allowed number of active groups at any time t

– h ∈ N the time horizon (and H = {0, ..., h})
• Variables: For each job j ∈ J , variables Ij , Bj and Cj represent the machine that processes j, the start time of j
and the completion time of j, respectively. For each group g ∈ P Bg and Cg the start time of g and the completion
time of g, respectively The domains of these variables are D(Ij) =M and D(Bj) = D(Ej) = D(Bg) = D(Eg) = H.

• Constraints:

∀j ∈ J , Cj = Bj + pj (3.1)
∀g ∈ P, Bg = min

j∈g
Bj (3.2)

∀g ∈ P, Cg = max
j∈g

Cj (3.3)

∀{j1, j2} ⊆ J , Ij1 = Ij2 ⇒ Cj1 ≤ Bj2 ∨ Cj2 ≤ Bj1 (3.4)
∀t ∈ H, |{g ∈ P|Bg ≤ t ≤ Cg}| ≤ l (3.5)

Constraint (3.1) relates the end time of a job to its start time and processing time. Constraints (3.2) and (3.3) relate
the start and end time of a group to the start and end times of its jobs. Constraint (3.4) ensures that jobs assigned
on a same machine do not overlap. Constraint (3.5) ensures that the number of active groups never exceeds the
limit l. This constraint is called the Group Cumulative (GC) constraint.

• Objective function: Minimizing
∑
g∈P

Tg with Tg = max(0, Cg − dg)

In Fig. 3.1, we display two examples of schedules: one is not solution of the GCSP, and one that is solution. We can
consider different variants of the GCSP if we consider or not sequence-dependent setup-times, scheduled breakdowns on
machines, precedence between jobs... In order to indicate that a scheduling problem is a variant of the GCSP, we use the
notation GC in the field β of the Graham notation (α|β|γ).
Furthermore, for the GCSP, the objective is to minimize the sum of tardiness over the groups (instead of the sum of jobs’
tardiness in other scheduling problems presented so far). We denote this new objective function

∑
g∈P

Tg in the field γ of
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the Graham notation.
Hence, P |GC|∑Tg corresponds to the GCSP; P |GC, rj , sjk|

∑
Tg corresponds to the GCSP with sequence-dependent

setup-times and release-dates,...

Our industrial application for the GCSP is described precisely in chapter 5. In a word, our application deals with order
preparation. The considered jobs are tasks which must executed to complete orders. Jobs of a same order are put on a
same pallet to be shipped together. Hence, as we start the jobs of an order, we put a pallet on the shop floor, and the
different jobs fill the pallet. The pallet remains on the floor until all its jobs are done. And, the physical space available
for pallets is limited.

3.2 Related problems
We describe in this section the links with three other problems: Cumulative scheduling problems, Open Stacks Problems
and Hierarchical scheduling problems.

3.2.1 Cumulative scheduling problems
Cumulative constraints [AB93, BB18, OQ13, NS03, Bon17] are used to model the fact that jobs require resources (e.g.,
human skills or tools) and that these resources have limited capacities, i.e., the sum of resources required by all jobs
started but not ended must never exceed resource capacities. More formally, given a set J of jobs, and a cumulative
resource of capacity R, such that each job j ∈ J consumes λj units of the cumulative resource, we say that the resource
is satisfied if and only if

∀t ∈ [0, h]
∑
j∈J

Bj≤t<Cj

λj ≤ R

The GCSP can be seen as a generalization of cumulative scheduling problems where the jobs’ consumption is equal to
one (∀j ∈ J , λj = 1). Indeed, a cumulative scheduling problem with a resource of capacity R, is a special case of the
GCSP where we have one group g for each job j ∈ J which contains only j, and where we set the limit of the group
cumulative resource to R. Furthermore, we could consider a variant of the GCSP where each group g ∈ P consumes λg
units of the group cumulative constraint. In such a case, the GCSP would be a generalization of cumulative scheduling
problems (even in the cases where λj 6= 1). The study of such a variant is let as future work, and is out of the scope of
this thesis.

3.2.2 Open Stack Problems
Definition and example

Open Stack Problems are not considered as scheduling problems. They deal with sequencing operations (named patterns
in the terminology), but there is no need to define start (or end) times for these operations (start and end times can
easily be derived from the sequence of operations). The Minimizing Open Stack Problem (MOSP) can be formulated as
follows [AS09, LY02, Yan97]:
We are given a set of piece types I, and a set of patterns J , where a pattern is a subset of piece types (∀j ∈ J, j ⊆ I).
We can define a piece-pattern relationship by an I × J binary matrix P = {pij} where pij = 1 if pattern j contains piece
type i and 0 otherwise. The objective if to find a sequence of the patterns (i.e. a permutation π of the patterns) such
that the maximum number of open stacks is minimized. To complete the definition we must specify what an open stack
is. Given a permutation π of the patterns, we can define an open stacks versus cutting instants matrix Qπ = {qπij} where

qπij =

{
1, if ∃x, y ∈ J s.t. π(x) ≤ j ≤ π(y) and pix = piy = 1
0, otherwise
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Hence, the Qπ matrix has one line for each piece type and one column for each pattern. The columns are in the same
order as in the permutation π. Given a line (i.e. a piece type i) there are ones on that line between the first column x
which represents a pattern such that pix = 1 and the last column y which represents a pattern such that piy = 1, and
there are zeros on the line everywhere else. Hence the ones are consecutive for columns in that matrix. We say that a
stack is open for a piece type i at an instant t ∈ [1, |J |] for a permutation π if qπit = 1. Hence the maximum number of
simultaneous open stacks in a permutation π is

Zπ = max
j∈[1,|J|]

∑
i∈[1,|I|]

qπij

And the objective of the problem is
min
π

Zπ

Fig 3.2 shows an example of such problem.

MOSP can represent the context of woodcutting with limited storage space around the saw machine. In such a context,
there are different panel types. A pattern consists of pieces cut into several panel types. A stack is open for every new
panel type, and it remains open until the last piece of that panel type is cut. However, the space around the saw is
limited, and hence we want to minimize the number of simultaneously open stacks.

A problem close to the MOSP is theMinimization of Order Spread Problem (MORP, also called pattern allocation problem
or cutting sequencing problem). The definition of the MORP is similar to the one of the MOSP. However, instead of
minimizing the maximum number of open stacks at any time, the objective is to minimize the mean lifetime of open
stacks (where the lifetime of a stack is defined as the difference between the time at which the stack is closed and the
time at which it was opened). It is similar to minimizing the sum over all the stacks of their lifetime.
If we consider once again Fig 3.2, the solution in part 3.2c the total lifetime of all the stacks is 5+3+3+3+6+6+3 = 29
whereas the total lifetime of the solution in 3.2d is 2 + 3 + 2 + 2 + 2 + 4 + 2 = 17.

It is worth mentioning that both MOSP [LY02] and MORP [GGJK78] are NP − Complete.

Link with the GCSP

Although both GCSP and Open Stacks Problems (OSP) model real industrial problems where the physical space for
underway tasks is limited, they have significant differences in terms of resolution. For the similarities, in both problems,
there are entities (patterns in the OSP and jobs in the GCSP) which must be ’scheduled’ and which belong to sets (the
sets are piece type for the OSP and the groups for the GCSP). Moreover, these sets consume one unit of a capacity-limited
resource during all the time between the start time of their first entity until the end time of their last entity.
However, there are two main differences. First of all, in OSP, one must find a unique permutation, whereas, in GCSP,
one must divide the jobs over different machines, find permutations for each machine, and find each job’s start time to
satisfy the GC. Furthermore, in the GCSP, each job belongs to exactly one group that consumes one unit of the resource,
whereas in the OSP, a pattern belongs to several piece types, and each piece type consumes one unit of the resource.
For the terminology, for the GCSP we say that a group is active at a time t if t is between the start time and end times
of the group. For the OSP, we say that piece types are open between their start and end times.

3.2.3 Hierarchical scheduling problems
Hierarchical scheduling problems (HSP) [PPR18, PPR19b, PPR19a] are defined by tuples (R,A, C) such that:

• R is a set of disjunctive resources;

• A is a set of activities which must be realized (also called atomic task). Each task is characterized by its duration
dua and by the resources it consumes during its execution Ra ⊂ R

• C is a set of composite tasks, where each composite task c is characterized by
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P1 = {1, 5, 6}
P2 = {2, 4, 7}
P3 = {2, 3, 6}
P4 = {2, 4, 7}
P5 = {1, 3, 6}
P6 = {5, 6}

(a) Content of each pattern. For example pattern P1 contains
item types 1, 5 and 6

P =



1 0 0 0 1 0
0 1 1 1 0 0
0 0 1 0 1 0
0 1 0 1 0 0
1 0 0 0 0 1
1 0 1 0 1 1
0 1 0 1 0 0



(b) Representation of the piece-pattern relationship
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(c) A solution where the sequence of patterns is (1, 2, 3, 4, 5, 6).
During P3 seven stacks are open simultaneously, which is the
maximum reached. The stack of piece type 4 is open while
executing patterns 2, 3 and 4 for example, even if piece type
4 is not in pattern 3. This is a representation of the matrix
Qπ: white cells correspond to 0 in the matrix, whereas gray
or hatched cells correspond to 1. A gray cell corresponds to a
value where pij = 1 whereas hatched cells for a line i correspond
to a value of a pattern z such that piz = 0 and such that
there exist two patterns x and y with π(x) < π(z) < π(y) and
pix = piy = 1
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(d) A solution where the sequence of patterns is (2, 4, 3, 5, 1, 6).
The maximum number of open stacks is equal to 3. The stack
corresponding to piece type 6 is open while executing patterns
3, 5, 1 and 6. As pattern P3 contains three piece types, a lower
bound on the objective function is 3. Hence this solution is
optimal.

Figure 3.2: A representation of an instance of the minimizing open stack problem
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– A subset of tasks SubTskc ⊂ C ∪ A
– A set of resources it consumes during its execution Rc ⊂ R (where its execution starts when its first subtask

starts and ends when its last subtask ends)

– A set of acyclic precedence constraints Pc between the subtasks of c

In order to limit the study to interesting problems, the following assumptions are often made:

• The graph of tasks decomposition is acyclic. More formally, this graph is an oriented graph where we have one
node for each task in A ∪ C and an arc between each composite task c ∈ C and each of its subtask τ ∈ SubTskc.

• Each atomic or composite task is a subtask of at most one task. This implies that the graph of tasks decomposition
is a forest.

• A resource consumed by a composite task c ∈ C is not consumed by any other of its descending task τ . More
formally, for each composite task c ∈ C and for each task τ such that there exists a path between c and τ in the
graph of tasks decomposition, Rc ∩Rτ = ∅.

A hierarchical scheduling problem respecting these three additional constraints is said to be well-formed.

The GCSP can be modeled using this formalism, where atomic tasks are the jobs, and each group is a composite task
(its subtasks being the group’s jobs). Hence the two problems are quite close.
However, as stated above, HSP’s resources are disjunctive, and in the GCSP, the resource is a cumulative one. Further-
more, the tasks in HSP consume resources which are given as input (set Ra), whereas, in GCSP, each job must consume
one unit of a disjunctive resource (the machines), but the resource it uses is a decision variable (not an input). Moreover,
there are in HSP precedence constraints that are not present in GCSP. Besides, these precedence constraints and the fact
that resources are disjunctive are exploited in algorithms presented in the articles mentioned above. For example, they
are exploited to approximate a composite task’s duration by saying that it approximately lasts the sum of the duration
of its subtasks, which are linked by precedence constraint. Alternatively, it approximately lasts the sum of the tasks’
duration, which uses the same disjunctive constraint. However, in the GCSP, a group can contain m jobs in a problem
with m machines. In such a problem, the duration of the group can be the duration of its longest job (if we schedule
them in parallel with the same start time) or the sum of the duration of its jobs (if they are all on the same machine), or
something even greater (if there are other jobs or idle time between the jobs). Hence, approximating a group’s duration
with precision is difficult in the GCSP, and the HSP techniques may not be efficient when applying them to the GCSP.

3.3 Complexity
As aforementioned, the scheduling problem P |rj |

∑
Tj and all its generalizations are NP-hard. However, if we know the

ordered list of jobs that must be scheduled on every machine, then we can compute the start times that minimize the
tardiness sum in polynomial time [Sch96, HK00]. More precisely, a list schedule is a set of m ordered lists l1, . . . lm such
that each job of J occurs in exactly one list. Given a list schedule, we greedily compute optimal start times: for each
machine i, we consider jobs according to the order defined by li and schedule each of these jobs as soon as possible.
Therefore, solving scheduling problems without resource constraints (such as the ones presented in section 1.2.5) amounts
to finding the best list schedule (and start times are derived in polynomial time from these lists).

Let us now consider the cases where we add a classical cumulative constraint (Section 3.3.1), or a GC constraint (Sec-
tion 3.3.2).

3.3.1 Classical cumulative constraints
If we add a classical cumulative constraint to the scheduling problem P |rj |

∑
Tj , the problem of computing the start

times which minimize the sum of tardiness of the jobs given a list schedule becomes NP-hard [NS03]. However, suppose
we remove the objective function (i.e., we only search for a schedule that satisfies the cumulative constraint without



3.3. Complexity 67

i1 j1 j2 j3

i2 j4 j5 j6

i3 j7 j8 j9 j10

(a) There are 3 machines, and we are given a list of jobs for each
machine

i1 j1 j2 j3

i2 j4 j5 j6

i3 j7 j8 j9 j10

0 1 2 3 4 5 6 7 8

(b) Each job is scheduled as soon as possible with respect to the
cumulative constraint. First jobs j1, j4 and j7 are scheduled.
Then we try to schedule job j8 at time 1 but two jobs (j1 and j4)
already consume the resource, so the start time of j8 is delayed
to time 3 (when job j1 ends). The other jobs are scheduled
following the same rules.

Figure 3.3: Example of list-schedule with classical cumulative constraint. Pink jobs consume one unit of the cumulative
resource, whereas white ones do not consume the cumulative resource. The limit of the resource is equal to 2.

i1 j4 j6 j9 j8 j7

i2 j3 j2

i3 j5 j1

Figure 3.4: Example of list-schedule with group cumulative constraint. Whatever the start-times of jobs, this list-schedule
cannot lead to a schedule which respects the GC constraint.

minimizing the tardiness sum). In that case, there always exist at least one solution with the same order as the one
defined in the list schedule, and we can build one of these solutions greedily, by considering jobs in the order of the list
li for each machine i ∈M , and scheduling each job as soon as possible with respect to cumulative constraints.

For example, let us consider the list schedule displayed in Fig. 3.3a, and let us assume that pink jobs require one unit of
resource (whereas white ones do not require any resource), and the capacity of this resource is 2. In this case, the greedy
approach computes start times displayed in Fig. 3.3b.

3.3.2 Group cumulative constraint
However, this is no longer true for the GCSP and some list schedules may not be consistent, i.e., there does not exist a
solution with the same order of jobs even when there is no objective function to optimize.

For example, let us consider the list schedule displayed in Fig. 3.4 (which has the same jobs as in Fig. 3.1). We cannot
find start times that satisfy the group cumulative constraint for this list-schedule when l = 2. Indeed, because of the
sequence of jobs on machine i1, when job j9 starts, jobs j4 and j6 are already started, and jobs j8 and j7 are not yet
ended. Thus when job j9 starts, the yellow and the blue groups are active. So the yellow, blue, and green groups are
necessarily active simultaneously at a given time. Hence this list-schedule cannot lead to a schedule that respects the GC
constraint.

However, deciding whether a list schedule is consistent or not is difficult in the general case.
More precisely, let us denote LS-GCSP the problem of deciding whether there exists a solution of the GCSP that is
consistent with a given list schedule, where a list schedule is consistent with a solution of GCSP if and only if, for every
j1, j2 ∈ J such that j1 occurs before j2 in the same list, we have Cj1 ≤ Bj2 .
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Theorem 3.3.1. LS-GCSP is NP-complete.

Proof. LS-GCSP clearly belongs to NP as we can check in polynomial time if a given assignment is a solution of GCSP,
which is consistent with a list schedule.

Now, let us show that LS-GCSP is NP-complete by reducing the Pathwidth problem to it.

Definition 3.3.1 (Pathwidth Problem).
Given a connected graph G = (N , E) (such that N is a set of nodes and E a set of edges) and an integer w, Pathwidth
aims at deciding whether there exists a sequence (N1, ...,Nn) of subsets of N such that:

1. N =
⋃n
i=1Ni;

2. ∀{u, v} ∈ E ,∃i ∈ [1, n], {u, v} ⊆ Ni;
3. ∀i, j, k ∈ [1, n], i ≤ j ≤ k ⇒ Ni ∩Nk ⊆ Nj ;
4. ∀i ∈ [1, n], #Ni ≤ w.

Pathwidth is NP-complete [KAS79]. Fig 3.5a shows an example of an instance of the Pathwidth problem, and Fig 3.5b
a solution for this instance.

Reduction from Pathwidth to LS-GCSP: Let us first show how to construct an instance of LS-GCSP given an
instance of Pathwidth defined by a graph G = (N , E) and an integer w. We assume that nodes of N are numbered from
1 to |N |. For each edge {u, v} ∈ E , we define three jobs denoted j1uv, j2uv, and j3uv such that every job has a processing
time equal to 1. The partition P associates one group gu with every vertex u such that

gu = {j1uv, j3uv : {u, v} ∈ E ∧ u < v} ∪ {j2uv : {u, v} ∈ E ∧ u > v}

In other words, for each edge {u, v} ∈ E such that u < v, j1uv and j3uv belong to group gu whereas j2uv belongs to group
gv.
There are |E| machines, and the list schedule associates the list (j1uv, j2uv, j3uv) with every edge {u, v} ∈ E such that u < v.
Finally, we set the limit l to w.
Fig. 3.5c gives an example of this transformation. Clearly, this transformation is polynomial with respect to the size of
the Pathwidth instance as J contains 3 ∗ |E| jobs.

’Yes’ answer kept from Pathwidth to LS-GCSP: Now, let us show that every solution (N1, ...,Nn) of an instance
of Pathwidth corresponds to a solution of the corresponding instance of LS-GCSP. To this aim, we show how to define
the start time Bjkuv of every job jkuv associated with an edge {u, v} ∈ E , with k ∈ {1, 2, 3}:
First, let a be the index of the first subset in (N1, ...,Nn) which contains both u and v (i.e., a = min{b ∈ [1, n] : {u, v} ⊆
Nb});
Then we define Bj1uv = 3 ∗ a− 3, Bj2uv = 3 ∗ a− 2, and Bj3uv = 3 ∗ a− 1; end times are computed by adding the processing
time 1 to every start time.

In Fig. 3.5d, we display start and end times computed for a solution of the Pathwidth instance of Fig. 3.5a. We can
easily check that start and end times are consistent with the list schedule (3 ∗ a− 3 < 3 ∗ a− 2 < 3 ∗ a− 1).
To show that start and end times satisfy GCSP, we have to show that the number of active groups never exceeds l. If
we consider a time t with 3 ∗ a− 3 ≤ t ≤ 3 ∗ a− 1 (a ∈ [1, n]), then the only groups that can be active at time t are those
associated with nodes in Na. Indeed let gu be a group such that gu is active at t. As gu is active at t, there exists v1
and k1 such that B

j
k1
uv1

≤ t (or B
j
k1
v1u
≤ t) and v2 and k2 such that B

j
k2
uv2

> t (or B
j
k2
v2u

> t). So there exists a1 ≤ a such
that B

j
k1
uv1

= 3 ∗ a1 − 3 or B
j
k1
uv1

= 3 ∗ a1 − 2 or B
j
k1
uv1

= 3 ∗ a1 − 1. And so {u, v1} ∈ Na1 . A similar reasoning allows
us to conclude that there exists a2 ≥ a such that {u, v2} ∈ Na2 . Hence we have a1 ≤ a ≤ a2 and u ∈ Na1 and u ∈ Na2 .
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w = 3
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3

4
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(a) Example of instance of Pathwidth.

w = 3

1

2

3

4

5

N1

N2 N3

N1 = {1, 2}

N2 = {2, 3, 4}

N3 = {3, 4, 5}

(b) Example of solution for instance in (a).
L = 3

i1List for {1, 2} : j112 j212 j312

i2List for {2, 3} : j123 j223 j323

i3List for {2, 4} : j124 j224 j324

i4List for {3, 4} : j134 j234 j334

i5List for {3, 5} : j135 j235 j335

i6List for {4, 5} : j145 j245 j345

(c) List schedule of the instance of LS-GCSP corre-
sponding to (a)

i1 j112 j212 j312

i2 j123 j223 j323

i3 j124 j224 j324

i4 j134 j234 j334

i5 j135 j235 j335

i6 j145 j245 j345

0
1
2

0 1 2 3 4 5 6 7 8N1 N2 N3

(d) Solution of (c) corresponding to (b).

Figure 3.5: Transformation of an instance of the Pathwidth problem into an instance of the LS-GCSP



70 Chapter 3. Study of the GCSP

i1 j112 j212 j312

i2 j123 j223 j323

i3 j124 j224 j324

i4 j134 j234 j334

i5 j135 j235 j335

i6 j145 j245 j345

0
1
2

0 1 2 3 4 5 6 7 8 9 10
t1 t2 t3 t4

w = 3

1

2

3

4

5

N1

N1 = {3, 4}

N2

N2 = {3, 4, 5}

N3

N3 = {2, 3, 4}

N4

N4 = {1, 2}

Figure 3.6: Transformation of a solution of an instance of the LS-GCSP into a solution of the Pathwidth problem. At
time t1 = 0 groups 3 (red) and 4 (green) become active, so N1 = {3, 4}. At time t2 = 1 group 5 (yellow) becomes active
and group 3 and 4 are still active so N2 = {3, 4, 5}. At time t3 = 2 group 2 (orange) becomes active, and group 5 is not
active anymore, so N3 = {2, 3, 4}. Finally at time t4, group 1 (blue) becomes active and group 2 is the only other group
which is still active, so N4 = {1, 2}.

As (N1, ...,Nn) is a solution of the instance of Pathwidth, and because of the point 3 in the definition of the Pathwidth
problem, we know that u ∈ Na.
Hence the only groups that can be active at time t are those associated with nodes in Na. Thus, the number of active
groups at t is lower than |Na|, which is lower than w because of the point 4 in the definition of the Pathwidth problem.
Hence the number of active groups at t is lower than l (because l = w).
Thus the defined start and end times correspond to a solution of the instance of LS-GCSP

’Yes’ answer kept from LS-GCSP to Pathwidth: Finally, let us show that every solution of the instance of
LS-GCSP built from an instance of Pathwidth corresponds to a solution of this Pathwidth instance. A solution of an
instance of LS-GCSP is an assignment of values to Bj and Cj for every job j ∈ J (defining start and end times of j).
For each node u ∈ N , we have a group of jobs gu, and the start time Bu of this group is the smallest start time of
its jobs (i.e., Bu = min{Bj : j ∈ gu}) whereas the completion time Cu of this group is the largest end time of its jobs
(i.e., Cu = max{Cj : j ∈ gu}). Let T = {Bu : u ∈ N} be the set of all group start times, and let (t1, . . . , t|T |) be the
ordered sequence of values in T . The solution of the Pathwidth instance is (N1, . . . ,N#T ) such that for each i ∈ [1, |T |],
Ni = {u ∈ N : Bu ≤ ti < Cu}.
An example of such a construction of a Pathwidth solution from a LS-GC solution is given in Fig 3.6.
We can check that (N1, . . . ,N#T ) is a solution of the Pathwidth instance. We will do it point by point according to the
definition 3.3.1

1. it is trivial to verify that N =
⋃n
i=1Ni;

2. for each edge {u, v} ∈ E with u < v, the list (j1uv, j2uv, j3uv) ensures that when j2uv starts both Gu and Gv are active
groups. Hence, for i ∈ [1, |T |] such that ti = max(Bu, Bv), {u, v} ∈ Ni;
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3. Let us take i, j, k ∈ [1, |T |] with i ≤ j ≤ k, u ∈ Ni and u ∈ Nk then Bu ≤ ti ≤ tj ≤ tk < Cu. Hence u ∈ Nj , and so
Ni ∩Nk ⊆ Nj ;

4. ∀i ∈ [1,#T ], all groups of Ni are active at time ti. So |Ni| ≤ l = w

3.4 Discussion
In this chapter we introduce a new scheduling problem: the Group Cumulative Scheduling Problem (GCSP). We study
this problem from a theoretical point of view. In particular, we compare it with known problems and highlight common
features as well as differences. We also study the computational complexity of the problem (according to the framework
introduced in chapter 1). In particular, we show that some list schedules cannot be transformed into solutions, even when
there is no objective function to optimize, and that the problem of deciding whether a list schedule can be transformed
into a solution or not is NP − complete.
Although this problem is different from the scheduling problem studied so far, it remains a scheduling problem. Hence
the methods described so far to solve scheduling problem can still be used. However they need to be adapted. These
adaptations are the topic of the next chapter.
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Chapter 4

New approaches for solving the GCSP
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As described in the previous chapter, and especially because of theorem 3.3.1, solving methods described so far need to
be adapted to the GCSP. In this chapter we describe methods to deal with the GCSP. More precisely in section 4.1 we
give a CP model in order to solve the GCSP. Then, in section 4.2 we show how we can adapt known solving methods
to solve GCSP. Finally in section 4.3 we present a new algorithm which combines CP Optimizer and ACO. This new
algorithm can be used to solve the GCSP as well as other scheduling problems presented in chapter 1.

4.1 Model for Constraint Programming
In order to ease the modeling of the GCSP variants, we introduce the GC constraint:

Definition 4.1.1 (Group Cumulative constraint).
Given a set J of jobs, a partition P of J in |P| groups (such that each job j ∈ J belongs to exactly one group g ∈ P), an
integer limit l and, for each job j ∈ J , an integer variable Bj (resp. Cj) corresponding to the start time (resp. end time)
of j, the constraint GCJ ,P,l({Bj : j ∈ J }, {Cj : j ∈ J }) is satisfied if and only if |{g ∈ P : min

j∈g
Bj ≤ t < max

j∈g
Cj}| ≤ l

for any time t.

We can easily decompose GC using a classical cumulative constraint. To this aim, we associate a new interval variable
Fg with every group g ∈ P. This variable corresponds to a fictive job, which starts with the group’s earliest job and ends
with its latest job and consumes one resource unit. A simple cumulative constraint on these fictive jobs ensures that the
number of active groups never exceeds l.

More precisely, Fig. ?? describes a CPO model of this decomposition:

• Constraint (4.1) ensures that, for every group g, the fictive job variable Fg spans over all jobs in the group;

• Constraint (4.2) defines the cumul function (denoted Active) corresponding to the case where each fictive job
consumes one unit of the resource;
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span(Fg, {aj : j ∈ g}) ∀g ∈ P (4.1)

Active =
∑
g∈P

pulse(Fg, 1) (4.2)

lowerOrEqual(Active, l) (4.3)

• Constraint (4.3) ensures that Active never exceeds l, thus ensuring the cumulative constraint on fictive jobs.

This model uses the CPO language. However, it can be easily modeled in any Constraint Programming language which
uses scheduling variables and constraints (interval variables, sequence variables, cumulative constraints, ...). In particular
the span constraint can be replaced by the two following constraints:

startOf(Fg) = min
j∈g

startOf(aj) ∀g ∈ P (4.4)

endOf(Fg) = max
j∈g

endOf(aj) ∀g ∈ P (4.5)

Then the cumulative constraint is applied on the Fg intervals.

If we can quite easily decompose the GC constraint with classical CP constraints, we shall see in experimental results
reported in Chapters 5 and 6 (see Fig. 5.2, for example) that adding this constraint to a scheduling problem degrades CPO
performance. This may be explained by the fact that CPO exploits precedence relations to solve scheduling problems
[LRSV18]: all temporal constraints are aggregated in a temporal network whose nodes represent interval start and end
time-points and whose arcs represent precedence relations. Also, CPO integrates a Large Neighborhood Search (LNS)
component based on the initial generation of a directed graph whose nodes are interval variables and edges are precedence
relations between interval variables. However, when using the GC constraint, such precedence relations are harder to
exploit because of theorem 3.3.1.

It is important to notice that several methods exist to deal with cumulative resources (timetable techniques, edge-finding,
not first not last, energy precedence) [Bon17]. Some of these methods derive from the notion of energy. Given a job j ∈ J
its energy is defined as the product of its duration times its resource consumption: pj ×λj . In the case of the GCSP, the
group durations is unknown beforehand. As aforementioned, approximating a group’s duration with precision is difficult
and the methods which use energy to solve cumulative scheduling problems may not be efficient when applying them to
the GCSP.

4.2 Adapting solving methods to the GCSP

4.2.1 Local search
Local search is harder to implement when using the GC constraint. Indeed, most of the neighborhoods used for scheduling
problems deal with sequences of jobs on the different machines (list-schedules). Such neighborhoods are especially efficient
when it is easy to compute a schedule from a list-schedule. However theorem 3.3.1 shows that, for the GCSP, such
computation is NP-Complete.
Furthermore, as explained in section 2.3.3, tabu search is more efficient if we can evaluate the neighborhoods incrementally.
However, for the GCSP, such incremental computation is more complicated. Indeed, let us assume we have an instance
with three machines, if we swap two jobs on machine i3 for example, for the GCSP (and also with classical cumulative
constraints), this move can have an impact on jobs that are on machines i1 and i2.
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Algorithm 4: Algorithm to obtain a schedule from a list-schedule for the GCSP
Input : A GCSP (M,J ,P, l) and a list-schedule
Output: A feasible schedule or failure

1 Schedule each job as soon as possible according to the list-schedule
2 Let Gmoved be an empty sequence
3 while The GC constraint is not satisfied do
4 if There exist two sequences x and s s.t. Gmoved = x.s.s then
5 return failure

6 Let tmin be the smallest t such that |{g ∈ P : Bg ≤ t < Cg}| > l
7 Gactive ← {g ∈ P|Bg ≤ tmin < Cg}
8 conflictSolved← False
9 G′ ← Gactive

10 while not conflictSolved do
11 g′ ← argmax

g′∈G′
Bg′

12 G”← {g” ∈ Gactive \ {g′}|∀j” ∈ g” ∀j′ ∈ g′, Ij” 6= Ij′ ∨Bj” < Bj′}
13 if G” 6= ∅ then
14 g”← argmin

g”∈G”
Cg”

15 Introduce idle times before jobs of g′ s.t. ∀j′ ∈ g′ Bj′ ≥ Cg”
16 conflictSolved← true
17 Add the pair (g′, g”) at the end of Gmoved
18 else
19 Remove g′ from G′
20 if G′ = ∅ then
21 return failure

22 return The current schedule

In order to deal with the GCSP, one must define a procedure that can compute the start and end times of jobs that
respect both the list-schedule and the GC constraint (and which tries to minimize the objective function). Such procedure
is necessarily approximated if we want to evaluate neighborhoods in polynomial time (unless P = NP) because of
theorem 3.3.1. Algo. 4 gives such a procedure, and Fig. 4.1 illustrates it on a small example. It works as follow:

• First it computes start and end times of jobs as if there is no GC constraint (line 1)

• Then, while the GC is not respected, it looks for the first point in time t where the constraint is violated

• Then we compute the set Gactive of groups which are active at that time (i.e., which participate at the violation of
the constraint, line 7)

• Then we try to solve the conflict at hand. To do so, we select two groups g′ and g” in Gactive and we introduce
idle times such that g′ starts after the end of g”. Doing so, g′ and g” will not be active simultaneously, and hence
the number of active groups at t will decrease of at least one unit.

• To do so we select for g′ the group which starts the latest, line 11.

• Then we have to select g”. However not all the active groups can be considered for g”. Indeed we want to introduce
idle times on machines so that g′ starts after the end of g”. To do so we increase the start times of the jobs of g′
so that ∀j′ ∈ g′ Bj′ ≥ Cg” (line 15). However, when we increase the start time of a job j′ ∈ g′, we also increase
the start and end times of all the jobs that are on the same machine as j′ and which are scheduled after j′. In
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particular if there is a job j” of g”, which is after j′ on the same machine, then as we increase the start time of j′
we also increase the end time of j”; and, hence as we increase Bj′ we also increase Cg”, and thus, in such a case, it
is not possible to have Bj′ ≥ Cg”. To avoid this situation, we limit the set of candidates G” (line 12) to the group
g” such that for each job j” ∈ g” and for each job j′ ∈ g′ either j” and j′ are on different machines or j′ starts
after j”.

• If G” is not empty, then, in lines 14 and 15 we select the group in G” which ends the soonest (in order to minimize
the length of idle times), and we introduce idle times such that g′ starts after g”. Doing so we have solved the
conflict at time tmin.

• If G” is empty, then we cannot moved g′ such that it starts after another group of Gactive. In such a case we remove
g′ from G′ and we start with another group. If G′ = ∅, then we have failed to solve this conflict, and we return
failure.

• It is important to notice that we can have an instance in which we move group g1 after group g2, and in the
next iteration we move g2 after g3, and then g3 after g1, and once again g1 after g2, and we repeat this cycle
indefinitely (see Fig. 4.2). In order to avoid this situation, we maintain a sequence Gmoved which contains all the
couples of groups (g′, g”) such that we have made g′ start after g” (line 17). As soon as a sub-sequence s appears
twice consecutively in Gmoved, we stop the search and return failure (line 4). More formally, if there exists two
sub-sequences of job couples x and s such that Gmoved = x.s.s, we return failure.

It is important to notice that, as stated in theorem 3.3.1, computing a schedule from a list-schedule for the GCSP is
NP-Complete. In particular, Algo. 4 sometimes returns "failure" whereas there does exist a schedule that respects both
the list-schedule given as input and the GC constraint.
Further remarks must be made about Gmoved:

• Different strategies can be implemented in order to stop the search when it seems that the algorithm is stuck. For
example, we could stop the search as soon as we add another time a couple (g′, g”) which is already in Gmoved.
Such a strategy stops the search earlier than our strategy. Indeed, as illustrated in Fig. 4.1, where (B,R) appears
twice in Gmoved, such a strategy sometimes returns failures whereas with some additional iterations a solution can
be found.

• As the number of job couples is finite, we cannot build an infinite sequence such that for all sub-sequences of job
couples x and s Gmoved 6= x.s.s. Hence this prove that the algorithm terminates.

• However, the complexity of the algorithm is exponential with respect to the number of groups in the instance in
the worst case. Indeed, we possibly need to add an exponential number of job couples to Gmoved before having two
sub-sequences of job couples x and s such that Gmoved 6= x.s.s.

• In practice, the algorithm often terminates within a reasonable number of iterations.

4.2.2 Greedy constructions
As seen in Section 2.1, solutions of (parallel machines) scheduling problems are often computed iterating the two following
steps:

1. Select the machine which ends the sooner (break ties arbitrary)

2. Select a job among the unscheduled ones and add it at the end of the selected machine (and compute its start and
end times)

until all jobs are assigned.
For the GCSP, if one can select any job among the unscheduled ones, it is possible to get sequences of jobs on machines
such that no schedule which respects the GC constraint can be computed.
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(a) At the start of the algorithm we have Gmoved = ∅. The
first conflict occurs at t = 2. At that time Gactive = {R,B, Y }.
We take g′ = B as the blue group is the one which starts the
latest. We have G” = {R, Y } and we take g” = R as the red
group is the one which ends the soonest. So we put B after R
by introducing idle time before j6 so that it starts after the end
of j3.
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(b) Now, Gmoved = {(B,R)}. A second conflict occurs at t = 3.
At that time Gactive = {R,P, Y }. We take g′ = P . We have
G” = {Y } (R /∈ G” because we cannot make P start after the
end of R, as j3 is on the same machine as j2 and starts after
j2). So we put P after Y . We introduce idle time before j2 so
that it starts after the end of j9.
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(c) Now, Gmoved = {(B,R), (P, Y )}. A third conflict occurs at
t = 6. At that time Gactive = {R,B, Y }. We take g′ = B, and
we have G” = {Y,R}, and thus, g” = Y . Hence we introduce
idle time before j6 so that it starts after the end of j9.
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(d) Gmoved = {(B,R), (P, Y ), (B, Y )}. A fourth conflict occurs
at t = 7. At that time Gactive = {R,B, P}. We take g′ = P .
However we have G” = ∅ (j2 can start after j3 so R /∈ G” and
j7 cannot start after j8 so B /∈ G”). Hence we remove P from
G′ and we take g′ = B. Now, we have G” = {R}. Hence we
introduce idle time before j6 so that it starts after the end of
j3.

Figure 4.1
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(e) Now, we have Gmoved = {(B,R), (P, Y ), (B, Y ), (B,R)}, and there are no more conflicts. We can notice that (B,R) appears
twice in Gmoved.

Figure 4.1: An example of execution of Algo. 4. There are three machines, four groups (yellow, red, blue, and pink,
denoted respectively Y , R, B and P ), and the limit l on the number of active groups at any time is equal to 2.
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(a) At t = 0, Gactive = {R,B, Y }. We take g′ = R, g” =
B and we add (R,B) to Gmoved.
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(b) At t = 1, Gactive = {B,P, Y }. We take g′ = P . However, because j3
is after j2 and j9 is after j8, we have G” = ∅. So we take g′ = B, and
g” = Y . We introduce idle times and we add (B, Y ) to Gmoved
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(c) At t = 1, Gactive = {R,P, Y }. Taking g′ = R leads
to G” = ∅, and the same happens with g′ = P . So, we
take g′ = Y , and we have g” = R. We introduce idle
times and we add (Y,R) to Gmoved
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(d) At t = 6, Gactive = {R,P,B}. Taking g′ = B or g′ = P leads to
G” = ∅. So, we take g′ = R, and we have g” = B. We introduce idle
times and we add (R,B) to Gmoved
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(e) At t = 9, Gactive = {B,P, Y }. Taking g′ = Y or g′ = P leads to G” = ∅. So, we take g′ = B, and we have g” = Y . We introduce
idle times and we add (B, Y ) to Gmoved. After this move, we have Gmoved = ((R,B), (B, Y ), (Y,R), (R,B), (B, Y )). Hence we
notice that, without a stopping criterium on Gmoved, we indefinitely repeat the sequence ((R,B), (B, Y ), (Y,R)).

Figure 4.2: An example of execution of Algo. 4 where no solution can be found. There are three machines, four groups
(yellow, red, blue, and pink, denoted respectively Y , R, B and P ), and the limit l on the number of active groups at any
time is equal to 2.
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Algorithm 5: Construction of a solution for a GCSP
Input : A GCSP (M,J ,P, l)
Output: A schedule

1 S ← ∅
2 while J 6= ∅ do
3 inext ← argmini∈M endTime(i)
4 Gopen = {g ∈ P|∃j ∈ J , gj = g and ∃j′ ∈ S, gj′ = g}
5 if |Gopen | < l then Cand← J ;
6 else Cand← {j ∈ J : gj ∈ Gopen} ;
7 choose j ∈ Cand which maximizes the ATCS formula (see sec. 2.1)
8 ij ← inext
9 compute the start time Bj and the completion time Cj of j

10 remove j from J and add it to S
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j4
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j8

j9

(a) All the unassigned jobs

j7

j8

j9

i1 j1 j2 j3

i2 j4 j5 j6

0 1 2 3 4 5 6 7 8

(b) A partial schedule

Figure 4.3: Example of active, closed and open groups. Red and green groups are closed because all their jobs are
scheduled. The yellow group is also closed because none of its jobs is scheduled. The blue group is open because its job
j6 is scheduled whereas its job j8 is not scheduled. If we consider Algo. 5, the next job must be assigned on machine i2,
at time 5. We can notice that, at that time, the green group is active. Hence, at t = 5 the green group is closed and
active. Let’s assume that the limit l of the GCSP is equal to 2. As |Gopen | < l, any job can be scheduled. In particular,
it is allowed to schedule job j9 on i2 at time t = 5. If we do so, as j8 will necessary ends after t = 6 the blue, yellow, and
green groups will be active at time t = 6, which violates the constraint. Hence, to avoid this situation, if we choose to
schedule j9 on i2, we introduce one unit of idle time to ensure that the yellow group starts after the end of the green one.

Hence, to deal with the GCSP, one needs to adapt the ATCS procedure. Algo. 5 describes this new algorithm.
It is quite similar to the ATCS procedure, but it sometimes reduces the set of candidate jobs. To this aim, we first
compute the set Gopen of groups g such that at least one job of g has been scheduled in S and at least one job of g has
not yet been scheduled. It is important to notice that the notion of open groups is different from the notion of active
groups as illustrated in Fig 4.3. On the first hand, open groups are defined only on partial assignments, when some jobs
of the group are scheduled whereas some others are not yet scheduled. In particular, the notion of open groups does not
depend on the time t we consider. A group which is not open is said to be closed. On the other hand, active groups are
defined for complete assignments and depend on the time t we consider. In order to ease the comprehension we extend
the notion of active groups to partial assignments. In such a case, if a group g is closed, and none of its jobs are assigned
we say that g is not active for any time t ∈ [0, h]. If g is closed and all its jobs are assigned we say that g is active at a
time t if some of its jobs are started and some others are not yet ended at t (like in the case of complete assignments).
Finally for an open group g we say that g is active at time t if t ≥ min

j∈g
j is scheduled

Bj .

If |Gopen | < l, then we can select any job of J (line 5). Indeed in such a case, we know that we can obtain a schedule
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satisfying the GC by introducing idle times if necessary. Otherwise, |Gopen | is equal to l, and in this case, we restrict
Cand to the jobs that are not yet scheduled and that belong to an order of Gopen (line 6). Note that this filtering
procedure may remove from Cand some jobs that could lead to better schedules. However, as it is NP-complete to decide
if a job can be scheduled without violating the GC constraint, we use this simple filtering procedure to ensure feasibility.
In line 9, sometimes we must introduce some idle time on machine inext. Indeed it is possible that at time Cinext (the
end time of machine inext) the number of active groups is equal to l (see Fig. 4.3 for example). Hence we introduce idle
times so that the start time of j is the smallest t such that the number of active groups at t is lower than l. Such a t
necessary exists. Indeed, we know that at time t = max

i∈M
Ci, the active groups are only the open ones. Hence at that time,

because of the choice of Cand, either this number is lower than l or j belongs to an open group and we can schedule j
without increasing the number of active groups.

4.2.3 Ant Colony Optimization
Classical ACO algorithms for scheduling problems (described in section 2.2) may be adapted in a straightforward way to
the GCSP by reducing the set Cand used at line 13 of Algo. 2 as done in lines 5-6 of Algo. 5. The two classical pheromone
structures Position and Jobs recalled in Section 2.2 may be used for the GCSP.

However, when dealing with a GC constraint (or a classical cumulative constraint), it can be necessary to introduce some
idle times on the machines to satisfy it. Hence these new characteristics for the problem should be taken into account.
For this reason, we introduce a new pheromone structure, which consists in learning when each job should start. More
formally, let HstepSize be the time horizon, discretized according to a given step size stepSize (i.e., HstepSize is a finite
set of contiguous time intervals such that the first interval starts at the beginning of the day, the last interval ends at
the end of the day, and the size of each interval is equal to stepSize). For each couple (j, ν) ∈ J × HstepSize, we define
a pheromone trail τ(j, ν) which represents the learned desirability of scheduling job j at time step ν. The pheromone

factor used to compute the probability of selecting a job in Algo. 2 is defined by: fτ (j) = τ(j,
Ci

stepSize
) where i is the

considered machine, and Ci is the end time of machine i. In a similar way, given a schedule that we want to reward, in

which a given job j ∈ J starts at Bj we increase the pheromone trail τ
(
j,

⌊
Bj

stepSize

⌋)
and we decrease all pheromone

trails τ(j, h′) for h′ ∈ H.
It is important to notice that with this structure, we must memorize the pheromone value for each pair (j, ν) ∈ J ×
HstepSize, which represents n ∗ h

stepSize
values. Furthermore, the horizon h is often a huge value. Hence the pheromone

can take a huge amount of memory. However, in the MMAS framework, each pheromone trail is initialized with value
τmax, and a trail which is never rewarded decreases of (1− ρ) at each iteration, until reaching value τmin. Hence, a never
rewarded trail has value max((1− ρ)kτmax, τmin) at iteration k. Hence to save time and memory, we proceed as follows:

• For each job j ∈ J we maintain an interval [sjmin, e
j
max]. At the beginning of the search the interval is empty. The

idea is to keep in memory only the values of the pheromone trails (j, ν) for ν ∈ [sjmin, e
j
max].

• Whenever a pheromone trail (j, ν) must be rewarded, if ν ∈ [sjmin, e
j
max], then it is rewarded in classical way;

otherwise we extend the interval such that ν ∈ [sjmin, e
j
max] (i.e., if ν > ejmax (resp. ν < sjmin), then we set

ejmax = ν (resp. sjmin = ν)).

• Evaporation is only applied in interval [sjmin, e
j
max].

• Whenever one wants to know the value of τ(j, ν) for (j, ν) ∈ J ×HstepSize, if ν ∈ [sjmin, e
j
max], then we return its

value (which is maintained), otherwise we return max((1− ρ)kτmax, τmin), where k is the current iteration.
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Algorithm 6: Hybrid approach combining CPO and ACO
Input : A scheduling problem P with jobs J and machinesM

Parameters α, β, nants, pheromone structure and pheromone system, τmin, τmax
Parameters k, b and g

Output: A schedule, i.e., the machine Ij , start time Bj and completion time Cj for each job j ∈ J
1 iter ← 0
2 Initialize pheromone trails to τmax
3 while Stopping criterion not reached do
4 sol← greedilyBuildSchedules(P, α, β, nants) (defined in Algo. 2)
5 update pheromone trails according to sol
6 iter ← iter + 1
7 if iter = 0 mod (k) then
8 Execute CPO using the best solution found in the last k iterations as starting point until b backtracks

have been done
9 Update pheromone trails with the solution found by CPO

10 b← b ∗ g

11 return the best constructed solution

4.3 New Hybrid CPO-ACO approach
Many hybrid approaches combine exhaustive solvers (such as CP or Integer Linear Programming, for example) with
meta-heuristics [BPRR11]. Some of these hybrid approaches are referred to as matheuristics [MSV10]. A well-known
example of hybrid approach is LNS [Sha98] which uses an exact approach such as CP to explore the neighborhood of a
local search.

Different hybrid CP-ACO approaches have been proposed such as, for example, [ME04, Mey08, KAS08, KAS10, Sol10,
DGRU13]. Some approaches use constraint propagation during the construction of solutions by ACO (lines 13-18 of
Algo. 2), to filter the set of candidate components and remove those that do not satisfy constraints [Mey08, KAS08].
Some other approaches use ACO to learn ordering heuristics which are used by CP [ME04, KAS10]. In [DGRU13], a
bi-level hybrid process is introduced where ACO is used to assign a subset of variables, and the remaining variables are
assigned by CP.

In this section, we introduce a new hybrid CPO-ACO approach where ACO and CPO are alternatively executed and
exchange solutions: solutions found by ACO are used as starting points for CPO, whereas solutions found by CPO are
used to update pheromone trails. Algo. 6 describes it more precisely. The ACO part (lines 2 to 5) is similar to Algo. 2.
Then, every k iterations (line 7), we call CPO. When calling CPO, we supply it with the best solution constructed during
the k last iterations of ACO, and this solution is used by CPO as a starting point (line 8). Each call to CPO is limited
to a given number of backtracks. Once CPO has reached this limit, we get the best solution found by CPO and update
pheromone trails according to this solution (line 9).

The limit on the number of backtracks follows a geometric progression, as often done in classical restart strategies [Wal99]:
the first limit is equal to b, and after each call to CPO, this limit is multiplied by g (line 10). Hence, our hybrid CPO-ACO
approach may be viewed as a particular case of restarts where ACO is run before each restart to provide a new initial
solution, and the best solution after each restart is given back to ACO to reinforce its pheromone trails.

Our hybrid CPO-ACO algorithm has three parameters along with the ACO parameters: the number k of ACO cycles,
which are executed before each call to CPO, and the values b and g used to fix the limit on the number of backtracks of
CPO.
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4.4 Discussion
In this chapter we study the consequences of the theorem 3.3.1 on solving approaches. In particular, we show that
it impacts the methods presented in chapter 2. In order to solve the GCSP with Constraint Programming we give a
decomposition (using existing constraints) of the GC constraint. In particular we use the span and cumulative constraints.
Another approach can consist in introducing a new global constraint with its own propagators in order to propagate the
GC. This is let as future work.
For ACO, the main difference consists in only considering a subset of the set of candidates whenever a new job must be
added to a solution under construction in order to ensure that the greedy constructions always lead to a valid solution.
For tabu search we develop a new algorithm (Algo. 4) in order to convert a list-schedule into a schedule (if it is possible).
As this problem is NP − Complete, this method is a heuristic one, i.e., it may fail whereas a valid schedule exists.
Finally in section 4.3 we introduce a new algorithm which combines CPO and ACO. Using this algorithm, CPO and
ACO takes turn, each exploiting the solution found by the other.

In order to evaluate the GC constraint on the algorithms from an experimental point of view, we compare the results
of these algorithms on a set of instances. This experimental evaluation is the subject of chapter 6. Before commenting
these results, we introduce our new benchmark in the next chapter. In particular, we give a short survey of scheduling
applications in industry and we present our industrial context, and especially the Infologic company.
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In this chapter we introduce our new benchmark. First, we give a short survey of scheduling applications in section 5.1.
We also present our industrial context and, especially the Infologic company. In particular, we describe the Copilote ERP
developed by Infologic and we describe a real industrial application of the GCSP that occurs in this context. We also
explain the interest of studying different scheduling problems, with different constraints and objective functions for an
ERP editor. In section 5.2 we describe more precisely our data-set.

5.1 Description of our applicative context

5.1.1 Scheduling applications
There are many applications of scheduling problems. For example, [BZ09] applies scheduling strategies in automotive
R&D Projects, [Mol05] deals with an order picking problem.
More generally, [HMB+14] lists several fields in which scheduling models and algorithms have led to substantial benefits.
Some fascinating figures for specific examples are given: the application of scheduling theories increased the factory out-
put of 30% in the dairy industry, in a pulp and paper plant scheduling techniques allow an increase of 2% of the efficiency
of the plants (with an estimated saving between 10-20 million EUR/year), in the crude-oil blend field this technique
allows to save approximately 2.85 million USD/year. The article gives other examples of such success stories by applying
scheduling theories.
[GM14] gives a survey about remanufacturing scheduling systems, both from a theoretical point of view and from an
industrial point of view. Remanufacturing is a sustainable business practice that allows products no longer functional
to enter the remanufacturing process to be refurbished or disassembled into usable modules, components, or materials.
Their survey is made of data collected from the automotive parts remanufacturers Association (APRA), a major, es-
tablished, professional association for automotive parts remanufacturers, which represents approximately 37% of all U.S.
remanufacturing revenue. It gives interesting figures about the practice of scheduling (models used, objective functions)
and the potential benefits, and the difficulties met to apply the theory. It also evaluates the gap between theoretical
results and industrial results.
[Pin16], along with its great description of scheduling problems, lists several industrial softwares that help industrial



86 Chapter 5. Description of the Benchmark

companies schedule their operations. It also emphasizes the difficulties linked to the deployment of scheduling tools.
Indeed, although using scheduling tools can be a vested investment, many projects also exist where applying scheduling
in industry fails. [SW96] lists several reasons which help to explain such failures. [Wie97] also explores this gap between
theory and practice. A human scheduler’s role is especially highlighted along with the human-computer interaction. It
gives some insights into why some scheduling tools are used, whereas others are abandoned. In particular, the quality of
the solutions found is not necessarily the main concern of users.

5.1.2 ERP
Enterprise resource planning (ERP) is the integrated management of main business processes, often in real-time and
mediated by software and technology. It is used to plan and manage all the core supply chain, manufacturing, services,
financial, and other organizational processes.
ERPs are made of several modules specialized in a particular part of the company business (for example, sales forecast or
production planning). ERPs are often used in the replacement of different specific softwares. Such specialized softwares
are sometimes more efficient on their task than a module of an ERP. However, the interface with other systems is often
complicated, and maintaining the consistency of data in the whole system becomes a difficult challenge. With an ERP,
this consistency is more comfortable to achieve, which increases efficiency and robustness. ERP has gained more and
more interest since the end of the twentieth century. This growing interest is reflected both in the market weight of
ERPs, and the number of academic publications [CFBA16].

From an editor’s point of view, ERPs are developed to be used by many companies. Obviously, each company has its own
constraints, and each business is different. Hence ERPs need to be highly customizable to be competitive. However, for
ERPs with many modules, this customization can be challenging. Recently, some techniques [Cha18] have been developed
to ease this customization.

Furthermore, some aspects of customization need expert knowledge on the problem at hand. It is especially the case
for the production-scheduling part of ERPs. As aforementioned, there exist numerous variants of scheduling problems
(parallel machines, flow-shop, job-shop,... with different constraints such as sequence-dependent setup times, release
dates, machine eligibility,... and various objective functions). The best method to solve a scheduling problem depends
on the problem’s type. Hence to have good solutions, it is necessary to choose a suitable algorithm with good (hyper-
)parameters. Hence to customize such production-scheduling part, one must have expert knowledge both on solving
methods and on the taxonomy of scheduling problems. For this reason, non-scheduling experts cannot customize such
part of the ERP.

In order to solve this problem, some methods have been developed. For example [MPE03] proposed an expert system
to solve this. They have a portfolio of 75 algorithms (including dispatching rules, sequencing algorithm, improvement-
type algorithms) on the one hand and classification of many scheduling problems on the other hand. They established
a mapping between scheduling problems and algorithms based on many scientific publications. Then they develop an
expert system, which asks questions to the user (such as: "Does the problem consist of some stages in the series with
several machines in parallel at each stage?") which a non-expert can answer, and then, according to the answers, selects
the best algorithm to use. The answers help select the type of scheduling problem, and then the mapping selects the
algorithm that corresponds to that particular type.

5.1.3 Infologic and Copilote
Infologic is a french society created in 1982 in Valence by André Chabert. Infologic develops and integrates its own ERP
system specialized for the agrifood industry. Three ERPs have been developed since the foundation of the company:
Agro V1, Agro V2 and Copilote. As technologies evolved, Agro V1 and Agro V2 became obsolete and have been
replaced with Copilote (although few clients still use Agro V2 ). As shown in Fig 5.1, the main strength of Copilote is
its large functional perimeter. It integrates classical modules such as commercial management, warehouse management,
manufacturing execution, or logistic management. However, Infologic differs from its competitors by integrating some
rare native modules in ERP systems. Copilote integrates its own financial and sales forecasts modules, a very powerful
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Figure 5.1: Copilote functional perimeter

decision-making system that monitors a company’s real-time activities, and an efficient Electronic Data Interchange tool.
Furthermore, as aforementioned for ERP, Copilote is highly customizable, and it has more than 5500 general parameters
that allow configuring modules.

Scheduling problems arise in different parts of the Infologic client’s process. The two main ones are production manage-
ment and order preparation. The first one is concerned with scheduling the production of the different products that the
company sold. The second is concerned with packaging the sold products and their grouping to satisfy customers’ orders.
Although constraints and objectives are different for these two scheduling problems, and although each warehouse has
its own particularities (in terms of constraints or objectives), the idea of Infologic is to develop a unique solver adapted
to the different situations.

5.2 Features of the data-set
As aforementioned, the ERP Copilote is deployed on many client sites. Each site has its own working processes. In
particular, different scheduling models are used to represent the different warehouses. The objective is to develop a generic
solver which is able to solve all the scheduling problems met by Copilote’s users. The modeled problems correspond to
order preparation in the food industry. This preparation is done in two steps: in the first step, products are collected in
the stock (this is the picking part), and in the second step, they are weighted (in the food industry, products are often
sold according to their weight), packaged, and all products of the same order are put on the same pallet (this is the
composting part). Different workers generally do these two steps. Often, a first-team collects the products in the stock
and brings them close to the team that weight, package and gather them. The second team’s work is longer than the first
team’s work. Hence the operations are only sequenced for the second team, and the schedule of the first team is deduced
from the one of the second team (the second team is the bottleneck of the whole process). Depending on the warehouse,
some constraints are modeled or not.
Some people want to model the time taken to change a packaging roll or the time taken to adjust the balance (which is
used to weight the product). In such a case, we use sequence-dependent setup-times to model it. Hence, the setup times
considered here have a particular structure. Each job has two characteristics (namely, the product and the packaging roll
used for the job). When two jobs are sequenced one after the other on the same machine, if they use different products,
a setup time of 16 seconds must be applied, and if they use different packaging rolls, an additional setup time of one
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minute must be applied. Hence the setup-times take values in {0, 16, 76}.
In other warehouses, managers want to consider that workers have breaks at different time intervals; in that case, we
consider scheduled breakdowns on machines. In other cases, it is necessary to take into account the fact that not all
workers work at the same speed (because of their competences or because of the tools they use).
Furthermore, in order preparation, each order comprises several products that must be prepared. However, products of
the same order are sent together to the client. So they must be put on the same pallet to be shipped together. Hence,
once we start preparing an order, we must put a pallet on the ground, and this pallet remains on the ground until all
the orders’ products are completed. The available physical space on the floor is limited, and thus the number of orders
which can be simultaneously underway is limited. The Group Cumulative constraint is used to model this situation.

This work evaluates the interest of a using a generic solver. We have collected data on 548 days of works. Each day
of work consists of a given number of jobs with their duration, release dates, due dates, and the characteristics needed
to calculate the sequence-dependent setup-times. We also have information on the machines: their speed and their
calendar. These instances have been adapted, and some constraints are considered or not according to the problem we
are evaluating. Hence the same instances are used for the different problems, but some information are ignored in some
cases (for example, when we consider a problem in which we try to minimize the makespan, we do not consider the due
dates).

In the collected data, the information about the GC were missing. Hence, in order to evaluate the influence of the
tightness of the GC constraint, we generate two instances for each instance in our data-set. For each raw instance, an
upper bound (denoted x) on the number of active groups is computed as follows: first, a greedy algorithm (ATCS) is
used to compute a solution s for the Q|rj , brkdwn, sjk|

∑
Tj problem (without the GC constraint); then x is assigned to

the maximum number of active groups during the whole time horizon in s. As our goal is to study the impact of GC on
the solution process, we consider two classes of instances: in the first class, denoted loose, the limit l is set to l = 0.7 ∗ x
and in the second class, denoted tight, l is set to 0.3 ∗ x. We use the notation GCloose (resp. GCtight) to indicate that we
consider a variant of the GCSP where the GC constraint is loose (resp. tight).

To evaluate the impact of the GC constraint (and the tightness of the bound l) on the solution process, in Fig. 5.2,
we display the evolution of the cumulative number of solved instances with respect to time for the scheduling problem
Q|rj , sjk|

∑
Tg, where we consider that an instance is solved when CPO has found a solution and proved that this solution

is optimal. In this case, CPO is able to solve 360 instances (among the 548 instances of the benchmark) within one hour.
We also display results on the same set of instances when adding GC for the two classes (which only differ on the value
of l). Clearly, GC increases the hardness of the problem, and increasing the tightness of GC (by decreasing the limit l)
also increases hardness: 318 (resp. 285) instances are solved within one hour for the loose (resp. tight) class.

All the considered scheduling problems are variants of the uniform parallel machine scheduling problem (problem Q|β|γ
in the Graham notation). Some problems can be considered as identical parallel machine scheduling problems (P |β|γ),
but they are just a special case of Q|β|γ where all the machines have the same speed.). However, constraints (β field) and
objective functions (γ field) vary. Hence, by combining constraints and objective functions, we consider the ten following
scheduling problems:

1. P ||Cmax
2. P |rj |

∑
Tj

3. Q|rj |
∑
Tj

4. Q|rj , sjk|
∑
Tj

5. Q|rj , brkdwn|
∑
Tj

6. Q|rj , brkdwn, sjk|
∑
Tj

7. Q|rj , sjk, GCloose|
∑
Tg

8. Q|rj , sjk, GCtight|
∑
Tg
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Figure 5.2: Evolution of the cumulative number of instances solved by CPO with respect to time for the GCSP when l
is loose or tight.

9. Q|rj , sjk, brkdwn,GCloose|
∑
Tg

10. Q|rj , sjk, brkdwn,GCtight|
∑
Tg

The six first considered problems are described precisely in sec 1.2.5. Problems 7 and 8 correspond to Problem 4 with
an additional GC constraint, as defined in Chapter 3 (Definition 3.1.1), where l = 0.7x in Problem 7 and l = 0.3x in
Problem 8. Similarly, Problems 9 and 10 correspond to Problem 6 with an additional GC constraint.

Fig 5.3 shows the distribution of instances according to the number of jobs and number of machines. Some additional
statistics on the data-set can be found in table 5.1

For the start of the machines, they start either at six or at eight. Among the 2233 machines (in all instances), 2121 start
at six, and 112 start at eight.

5.3 Discussion
In this chapter we give a review of industrial applications of scheduling theories. In particular we describe some context
where applying scheduling theories leads to substantial benefits for industrial companies. We also introduce our industrial
context and especially the Infologic company. We describe how a scheduling module in an ERP is confronted to many
different scheduling problems and we present existing approaches to ease customization of ERPs. For a scheduling module
in an ERP, being able to adapt the algorithms to the different scheduling problems is crucial. This adaptation will be
studied more deeply in chapter 7. In the last section of this chapter, we give some relevant figures with regard to our
benchmark. In particular we give some statistics (mean, median, min, max, standard deviation) for different quantities
characterizing our instances: number of jobs, number of machines, number of groups, ...
In the next chapter, we will evaluate the methods described in Chapter 2 and 4 on this new benchmark. In particular,
by adding or removing some constraints we will be able to evaluate the impact of these constraints on the methods used
to solve the problems.
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Figure 5.3: Distribution of instances according to the number of jobs and number of machines

Mean Median Standard
deviation Min Max

Number of
jobs 1112.7 1136.5 546.42 207 3092

Number of
machines 4.07 4 2.22 1 14

Number of
groups 163.4 169 70.2 55 462

Jobs duration
(sec) 97.35 36.0 250.5 3 5400

Release
date 06:35:21 09:01:00 04:49:17 00:00:00 15:24:00

Due dates 14:38:58 14:00:00 03:02:34 09:00:00 23:45:00

Machines
speed 1.08 1.1 0.05 0.7 1.4

Table 5.1: Statistics on the used data-set.
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In this chapter we give our experimental results. We first introduce our experimental settings in section 6.1. In particular,
we describe the used algorithms and the considered performance measures. By considering different constraints for a
same data-set, we can evaluate the impact of each constraint on scheduling problems. In section 6.2 we give the results
for each studied scheduling problem. We also give some explanations and comments about these results. In particular
we show that some methods can handle some constraints easier than others. Finally in section 6.3 we give an overview
of the results for all the considered scheduling problems. This allows the reader to easily compare the results over the
different scheduling problems.

6.1 Experimental settings
All experiments reported in this work have been performed on a processor Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz
with up to 16 GB RAM1. When an experiment exceeds 16GB RAM, it is stopped. Depending on the scheduling problem,
statistics on the RAM consumption are given to evaluate the different approaches’ memory costs.

1We gratefully acknowledge support from the CNRS/IN2P3 Computing Center (Lyon - France) for providing computing and data-processing
resources needed for this work.
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The different studied problems are precisely described in the previous chapter. There are 10 scheduling problems, variants
of the uniform parallel machine scheduling problem.

6.1.1 Algorithms and parameters’ choice
In this subsection, we describe precisely all the settings used for the different algorithms. The considered algorithms
can be gathered into six families: Tabu search, Ant Colony Optimization (ACO), Constraint Programming (CP), Mixed
Integer Linear Programming (MIP), ACO-Tabu and CPO-ACO. For each algorithm, we have tested the influence of
several parameters, in order to select the best configuration.

Tabu search

Our Tabu algorithm (described in Section 2.3) is implemented using the Java language. Hyper-parameters and parameters
have been set as follows:

• We tried four different neighborhoods: insert, swap, insert most late job, and swap most late job (as described
in section 2.3.2). We observed that insert and swap often spend a lot of time at evaluating neighbors which do
not change the value of the objective function. insert and swap favor diversification whereas insert most late job
and swap most late job favor intensification. In our experiment, the two latter neighborhoods often lead to better
results, and we report results obtained with these two neighborhoods only.

• We tried three different strategies to fill tabu lists: preventing a job from going back to a position it has already
occupied, preventing a job from going back to a machine it has already occupied and preventing a job from moving.
Theses strategies have performance which are correlated with the used neighborhood. Indeed, some strategies work
well with some neighborhoods, whereas they have terrible performance with other neighborhoods. We observed
that preventing a job from going back to a position it has already occupied is the best strategy when combined with
the insert and the swap neighborhoods. On the other hand, when using the insert most late job and the swap most
late job neighborhoods, the best results are obtained when we forbid a job from moving again. The latter can be
explained as follows: insert most late job and swap most late job favor intensification, as the set of candidates which
can be selected to move is small (only the one which have the greatest tardiness). On the other hand, preventing
a job from moving favors diversification. Indeed if the jobs with the greatest tardiness are tabu, then it allows to
select jobs with lower tardiness. Hence combining these neighborhoods with this strategy is a good compromise
between intensification and diversification.

• We evaluated different strategies for managing the tabu list length. First we tried to fix the tabu list size, and
we explored different values in the range [3, 30]. We observed that the best value depends on the instance. Then
we tried another approach which consists in having a tabu list size which is function of the number of jobs in the
instance. Hence the size of the tabu list is equal to x ∗ |J |, and we tried values for x in the range [0.2%, 2%] (for
an instance with 1000 jobs, it corresponds to a size in [2, 20]). Finally we tried to have a dynamic tabu list’ size.
We have an additional parameter coeffNoImprov. Each time we realized coeffNoImprov ∗ size iterations, where
size is the tabu list’ size, without improving the best solution, we increase the tabu list’ size of x∗|J |. Once we find
a new improving solution, we reset the size to its initial value. The best results were obtained with this dynamic
strategy.

• When evaluating the neighbors of a solution, we can choose to stop the iteration search as soon as we find an
increasing neighbor. On the other hand, we can also choose to always evaluate the entire neighborhood and select
the best neighbor of the neighborhood. Once again, this choice is highly correlated with the neighborhood choice.
Indeed when considering large neighborhoods (such that insert and the swap ones), selecting the first improving
neighbor leads to better results. On the other hand, with smaller neighborhoods, evaluating the whole neighborhood
and selecting the best neighbor often leads to better results.

We finally consider two tabu search variants with the following parameters: we forbid to move a job which has already
been moved. The tabu list size is set to 0.005|J |, and we take coeffNoImprov = 5, i.e., each time we have done
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5 ∗ tabuListSize iterations without improvement, we increase the size of the tabu list. Finally, we always select the best
neighbor of the neighborhood. We consider two variants with two different neighborhoods:

• TabuI with insert most late job neighborhood (in P ||Cmax (which do not consider tardiness) we consider the insert
neighborhood);

• TabuS with swap most late job neighborhood (in problem P ||Cmax, we consider the swap neighborhood).

ACO

Similarly to Tabu search, our ACO algorithm is implemented in Java. It has a lot of parameters to adjust:

• α and β parameters. For these two values we tried different combinations in the range [1,10]. We observed that
higher values for β often lead to better results. Indeed, given two values η(j) and η(j′) for two jobs j and j′ with
η(j) > η(j′), the bigger β, the more we increase the probability of selecting j rather than j′. The best value for α
is highly correlated with other parameters. A higher value for α will favor intensification (indeed when α is greater
we give more weight to trails which have already been rewarded). Hence when we combine ACO and another
method (tabu search or CPO), it is valuable to have a high value for α. Indeed in such a case, we spend less time
in rewarding solutions (as we spend time in the other method). So, it is interesting to increase intensification. On
the other hand, when ACO is not combined with another method, lower values for α often lead to better results,
as the diversification phase is more important.

• We considered both MMAS and P − ACO. In our preliminary experiments, we observe that both systems have
comparable results, with a small advantage for MMAS. Hence we decided to focus on MMAS

• The values for ρ, τmin and τmax. ρ has a role similar to the one of α, when increasing ρ we favor intensification,
whereas when we decrease it we favor intensification. We try for ρ several values in the range [0.02, 0.3]. Once
again, the best value for ρ is not the same if we combine ACO with another approach or not. For τmin and τmax we

tried the two different strategies described in section 2.2 (manually setting them or setting τmax to
1

f(xbest)
, τmin

to
τmax
5

). When manually setting them, we tried values in the range [0.0001, 4]. We found that manually setting
them often lead to better results. It is important to notice that, in such a case, in order to have a pheromone factor
on a same scale than the heuristic factor, we normalize both of them. It means that when we compute fτ (j) and

η(j), we set fτ (j)←
fτ (j)−min

j′
fτ (j

′)

max
j′
fτ (j′)−min

j′
fτ (j′)

and η(j)←
η(j)−min

j′
η(j′)

max
j′

η(j′)−min
j′

η(j′)
.

• The pheromone structure (to be chosen among Position, Jobs and Time as presented in section 2.2 and 4.2.3).
Depending on the problem, the structures have different performance and none outperforms the others on all
problems.

We finally consider the three following variants of ACO:

• ACO0, which is a Greedy Randomized Search (GRS). GRS is a special case of ACO in which we do not consider
pheromone trails (i.e., α = 0). In this case, the pheromone updating step (lines 5-8 of Algo. 2) is not performed.
We take β = 10;

• ACOJ with Jobs trails;

• ACOP with Position trails;

• ACOT with Time trails;

For ACOJ , ACOP and ACOT we use the following parameters: α = 5, β = 10, nants = 40, MMAS strategy, ρ = 0.95,
τmin = 0.1, τmax = 4.0
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Constraint Programming

We use two solvers for CP: CP Optimizer (CPO) and ORTOOLS. CPO is used with its 12.9.0 version and ORTOOLS with
its 7.4 version. Both solvers are highly customizable [Man87a]. For CPO, we tried to modify the following parameters:

• The search type, where we can choose between depth-first, restart and multi-point (the default being restart). We
observed that the best results are achieved using the restart strategy.

• The inference level of constraints. The possible values are low, basic, medium and extended. Depending on the
value of the inference level, different propagators are used to tighten variables’ domains. We tried the four different
values for the constraints noOverlap and for the constraint cumulative (used in the decomposition of the GC ). For
both constraints, the best results are obtained with the default value (which is the basic inference).

For ORTOOLS we did not try to modify its parameters and we used it with its default values.
Hence we consider the following variants in our experiments:

• CPO which uses the CP Optimizer solver and scheduling variables (and can be applied to all problems);

• ORT which uses the ORTOOLS solver and scheduling variables (and can be applied to all problems);

• CPOA which uses the CP Optimizer solver and consider a model similar to the one used for MIP as described in
section 2.5.5 and which is only applied on the assignment problem P ||Cmax;

• ORTA which uses the ORTOOLS solver and consider a model similar to the one used for MIP as described in
section 2.5.5 and which is only applied on the assignment problem P ||Cmax;

MIP

We use the CPLEX solver for MIP, with its 12.9.0 version. CPLEX is also highly customizable. However we only consider
it with its default values. We consider three variants, with three different models (described in 2.4.2):

• MIPA uses the model described in Fig. 2.4 and is only applied on the assignment problem P ||Cmax
• MIP2 uses the model described in Fig 2.5 and is only applied on problem P |rj |

∑
Tj

• MIP3 uses the model described in Fig. 2.6 and can be applied to problems P |rj |
∑
Tj , Q|rj |

∑
Tj andQ|rj , sjk|

∑
Tj

Combining ACO and another approach (CPO-ACO and ACO-Tabu)

As described in section 2.2, ACO is often combined with local search. Furthermore, in section 4.3, we present a new
algorithm combining CPO and ACO. In both cases, the combined approach (LS or CPO) is triggered every k ACO cycles.
We tried different values for k in the range [1, 20]. The value 5 often lead to good results. Furthermore, in CPO-ACO,
CPO is executed until it backtracks b times. When combining ACO and tabu search, we stop the tabu search when it
has done b iterations without improving the incumbent solution. For b we tried different values in the range [100, 10000].
Furthermore, in order to let more and more time to the approach used in combination with ACO, we increase the value
of b each time it is restarted. We tried two methods in order to increase it: a geometric increase (with coefficient g, i.e.,
after each run b← b ∗ g) and an increase following a Luby sequence [LSZ93]. For CPO-ACO we observed that the best
results are obtained with the geometric increase with values of g in [10, 20]. When combining ACO and tabu search, we
observed that the best results are obtained when not increasing the value of b.

We keep the following approaches for ACO-Tabu:

• ACO − TabuJ with job pheromone trails;

• ACO − TabuT with time pheromone trails;
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where a tabu search is applied every 5 cycles of ACO on the best solution found during the last 5 cycles. The tabu search
is stopped when it does 200 iterations without improving its incumbent solution (the value is never increased). For ACO
we use the same parameters as ACOJ except that ρ = 0.8. Tabu is used with the same parameters as TabuI

For CPO-ACO we consider the following variant denoted CPO − ACO: Jobs trails, α = 10, β = 10, ρ = 0.8, MMAS
strategy, τmin = 0.1, τmax = 4.0, CPO called every 5 cycles, with b = 1000 and a geometric progression with g = 20;

6.1.2 Performance measures
We denote I the set of all instances and A the set of all algorithms. Let x ∈ I be an instance, a ∈ A an algorithm, and
t a time limit. We denote xta the value of the best solution found by a for x within t seconds, and x∗ = min

a∈A
x3600a the

reference solution, i.e., the value of the best solution found by any of the considered algorithm within one hour.

For some instances, x∗ = 0, i.e., there exists a solution without tardiness. In this case, we cannot evaluate the quality

of xta by computing its ratio to the reference solution (i.e.,
xta
x∗

) or its average gap in percentage to the reference solution

(i.e.,
xta − x∗
x∗

). Hence, we consider the inverse ratio defined as follows:

irta,x =

{
1 if xta = x∗

x∗/xta otherwise

The inverse ratio always belongs to [0, 1] and the closer irta,x to 1, the better xta.

For each run of an algorithm a on an instance x, we measure:

• irta,x, for t in [0, 3600];

• the time needed to find the reference solution, denoted trefa,x , i.e., trefa,x = ∞ if ir3600a,x < 1; otherwise trefa,x =
argmin
t∈[0,3600]

irta,x = 1;

• the time needed to find the optimal solution and prove optimality, denoted topta,x (topta,x = ∞ if optimality has not
been proven);

• the maximum amount of memory used by the process (the resident set size, which corresponds to the portion of
memory occupied by the process that is held in main memory (RAM)), denoted mema,x.

For each class of problem I (I is a set of instances of a given problem) and each algorithm a, we display the following
figures:

• the evolution of the average inverse ratio with respect to time, that plots the evolution of
1

|I|
∑
x∈I

irta,x when t ranges

from 0 to 3600 (called Evolution of average inverse ratio in the figures);

• the evolution of the number of reference solutions found with respect to time, that plots the evolution of |{x ∈
I|trefa,x ≤ t}| when t ranges from 0 to 3600 (called Time to reach reference solution in the figures);

• the evolution of the number of optimality proofs with respect to time, that plots the evolution of |{x ∈ I|topta,x ≤ t}|
when t ranges from 0 to 3600 (called Time to prove solutions optimality in the figures);

• the distribution of ir60a,x for all x in I (called Inverse ratios distribution after one minute in the figures);

• the distribution of ir3600a,x for all x in I (called Inverse ratios distribution after one hour in the figures);

• the distribution of mema,x for all x in I (called Distribution of the maximum RAM value in the figures).
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In boxplots, the orange line corresponds to the median, the rectangle corresponds to the first and the third quartile, and
the whiskers correspond to the first and the ninth decile. The dots are outliers.

It is important to notice that the considered approaches can be split into two categories. On the first hand there are the
exact approaches (MIP, CP, CPO-ACO) which can give optimality proofs. On the other hand there are the heuristic
approaches (Tabu, ACO, ACO-Tabu) which cannot give optimality proofs, except in the trivial case where they found
a solution with zero tardiness. In order to allow heuristic approaches to prove optimality for some solutions, at the
beginning of the search we compute a lower bound on the objective function (see section 1.2.5). This bound allows us to
prove solution optimality. Indeed, as soon as a solution whose value is equal to the bound is found, we know that this
solution is optimal. Hence the topta,x measure is considered for all approaches (exact and heuristic).

In Section 6.2, we will discuss the results problem after problem. In section 6.3 we will display only a part of the results
but for all problems. It allows the reader to compare the evolution of the results over the different problems.

6.2 Individual problems’ results
In Section 6.2.1 to 6.2.10, we report and analyze results obtained by the 12 algorithms on our 10 different scheduling
problems. For each problem, we first list the algorithms that are considered in the study (because in some cases some
variants are either meaningless, or not competitive at all). Then, we display the inverse ratio distributions after one
minute and one hour of CPU time and the memory consumption distribution for all the considered algorithms. This
allows us to discard some algorithms, either because they are not competitive, or because they have performance similar
to other algorithms. Finally, we display more detailed results for the algorithms that are not discarded, i.e., the evolution
of the inverse ratio, the number of reference solution found and the number of optimality proofs with respect to time.
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6.2.1 Assignment problem P ||Cmax
Considered algorithms: As mentioned in Section 1.2.5, for problem P ||Cmax we are only interested in knowing which
job is assigned to which machine, and we do not care about the order of jobs on the different machines, or the time at
which they are scheduled. Hence pheromone structure Jobs, Position or Time cannot help improving the search. Hence
we only consider the ACO0 variants in this section. For ACO − Tabu and CPO −ACO pheromone is not used neither.
For this problem the used dispatching-rule is the longest processing time first procedure.

Global analysis: Fig 6.1 shows the results for all the considered algorithms. First of all, we notice that ORTOOLS
has the worst result on that problem. Its mean inverse ratio is equal to 0.53 after one hour with scheduling model and to
0.88 with assignment model. It highlights the importance of the model. We also notice that the median of the maximum
RAM consumed for each instance is ten times greater for the scheduling model than for the assignment model.
For CPO, we notice that the results are slightly better with the scheduling model than with the assignment model.
ACO − TabuJ and ACO − TabuT have similar performance, and they are both slightly outperformed by CPO −ACO.
Hence, we do not report detailed results obtained by ACO− TabuJ and ACO− TabuT . Also, we do not report detailed
results for TabuJ (because it is very similar to TabuS), ORT and ORTA (because they are strongly outperformed by
other approaches), and CPOA (because it is outperformed by CPO).
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Figure 6.1: Results of all algorithms for P ||Cmax
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Detailed results analysis: Fig 6.2 shows the detailed results for the selected algorithms. We notice that MIPA
outperforms other methods on that problem for time limits greater than one second: it finds the best solution on every
instance, and it finds it on 539 (98.4%) instances in less than one minute. It also proves optimality for 358 instances.
ACO0 is also well suited for this problem as it finds the best solution on 547 (99.8%) instances within one hour and on
525 (95.8%) instances within one minute. However, ACO0 proves the optimality of solutions on fewer instances than
MIPA (194 instances, 35.4%).
CPO also finds the reference solution on almost every instance (541, 98.7%) within one hour. However, there are many
instances for which it needs much more time to find this reference solution thanMIPA. For example, to find the reference
solution on 539 instances, it needs 2597 seconds (whereas it needs one minute to MIPA to do so).
Finally, TabuS has good results for really short time limits. It finds the reference solution on half of the instance in less
than 0.3 seconds and it has a mean inverse ratio greater than 0.99 in the same time. However, for longer time limits, the
results are less impressive. After one hour it finds the reference solution on 483 (88%) instances.
CPO −ACO have performance slightly worse than those of ACO alone.
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6.2.2 Release date and due date : P |rj|
∑
Tj

Considered algorithms: All the algorithms are considered for this problem (except the variants of MIP and CP
whose models do not apply). For this problem which does not consider sequence-dependent setup-times, we use the ATC
rule in order to greedily compute solutions.

Global analysis: Fig 6.3 shows the results for all the considered algorithms. The first noticeable result is that both
Linear Programming models have terrible performance on that problem (using the CPLEX solver). With the second
model, the reference solution is found on only three instances (and the proof of optimality is given), and for the first
model, the reference solution is not found on any instance. Furthermore, CPLEX needs far more memory than the other
methods (with the second model needing even more memory than the first one). It is important to notice that [FL13]
(from which the second model was adapted) solve instances which never have more than 50 jobs and five machines. In
our case, the number of jobs is often greater, which can explain the difference in terms of results. Hence we do not report
detailed results for MIP models.
All ACO variants have comparable performance (with ACOT slightly better as its first decile of the inverse ratio after
one hour is equal to 0.99 (against 0.97 for ACO0, 0.96 for ACOJ and 0.96 for ACOP )). Hence we only keep ACOT
for the detailed analysis. Similarly both Tabu methods have similar performance. It is noticeable that they both find
the reference solution on more than 90% of instances in less than one minute. Hence, we report detailed results only
for TabuI . ORT is always outperformed by CPO. Hence, we do not report detailed results for ORT . Once again
ACO − TabuJ and ACO − TabuT have similar performance, and they are both slightly outperformed by CPO −ACO.
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(a) Inverse ratios distribution after one minute.
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(b) Inverse ratios distribution after one hour.
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Figure 6.3: Results of all algorithms for P |rj |
∑
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Detailed results analysis: Fig 6.4 shows the detailed results for the selected algorithms. Constraint Programming
achieves the best results on that problem in terms of number of instances on which optimality is proved when using the
CP Optimizer solver (optimality proved on 457 instances, 83.4%).
TabuI is especially well-suited for this problem as it proves optimality on 450 instances (82.1%). The local search’s real
strength for this problem is the time at which it finds good solutions. It takes 1.5 seconds for the TabuI algorithm to find
the reference solution on 75% of instances (the second best method that finds the reference solution on 75% of instances
is CPO in 13 seconds).
Finally, ACOT also has good results, but it finds the reference solution on fewer instances (483 (88.1%) against 538
(98.2%) for CPO, for example).
For time limits lower than 30 seconds, CPO − ACO has performance comparable to those of ACO (or slightly worse).
However, after 30 seconds, it becomes better than ACO and after one hour it has performance comparable to those of
CPO (reference solution found on 536 instances (97.8%) and optimality proved on 456 instances (83.2%)). It offers a
good compromise as it is competitive with heuristic approaches for short time limits, and it is competitive with CPO for
long time limits.
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6.2.3 Speeds : Q|rj|
∑
Tj

Considered algorithms: As Linear Programming has difficulties solving the previous problem, we do not consider it
anymore.

Global analysis: Fig 6.5 shows the results for all the considered algorithms. The results are similar to those of the
previous section, and hence we consider the same algorithms for the detailed analysis. We can notice that ACO variants
have results worse than those of the previous section.
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(b) Inverse ratios distribution after one hour.

A
C
O

T
ab
u J A

C
O

T
ab
u T A

C
O 0

A
C
O J

A
C
O P

A
C
O T

C
P
O

C
P
O

A
C
O O

R
T

T
ab
u I

T
ab
u S

0

5

10

15

M
ax

R
A

M
(i

n
G

B
)

(c) Distribution of the maximum RAM value

Figure 6.5: Results of all algorithms for Q|rj |
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Detailed results analysis: Fig 6.6 shows the detailed results for the selected algorithms. For methods considered
in this section and in the previous one (without speeds on the machine), the most noticeable difference is that the gap
between methods is more significant on that problem. The gap in terms of percentage of instances on which the reference
solution is found between CPO and Tabu was 0.2% in the previous section, whereas the gap is 1.8 % in this case. All
the same, the gap between Tabu and ACO was 9.5% in the previous problem and is now 14.2%.
Combining ACO and CPO allows to takes advantage of both worlds. At the start of the search (in the ten first seconds),
it quickly finds good solutions (as ACOT ), and for longer searches, it finds solutions as good as those found by CPO.
Furthermore, this hybrid method is the one which is able to give the higher number of optimality proofs (390, 71.2%,
against 376 for CPO, 68.6%).
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6.2.4 Sequence dependent setup times : Q|rj, sjk|
∑
Tj

Considered algorithms: The algorithm considered in this section are the same as in the previous section for the same
reasons. For this problem which do consider sequence-dependent setup-times, we use the ATCS rule in order to greedily
compute solutions.
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(b) Inverse ratios distribution after one hour.
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Figure 6.7: Results of all algorithms for Q|rj , sjk|
∑
Tj

Global analysis: Fig 6.7 shows the results for all the considered algorithms. The first noticeable result for this section
is that ORT cannot find the reference solution in any instances. Sequence-dependent setup times consume much memory
when using ORT , and it exceeds the max memory limit (16GB) on more than half of instances. The best-found solution
on any instance has an inverse ratio equal to 0.07.
A second noticeable results is that discrepancies exist between ACO variants (this was not the case on the previous
problems). In particular the three variants which use pheromone outperform ACO0. Moreover, we observe that ACOT
has the best median inverse ratio after one hour (0.90 against 0.88 for ACOP , 0.89 for ACOJ and 0.84 for ACO0) and
ACOJ has the best first quartile inerse ratio after on hour (0.42 against 0.36 for ACOP , 0.37 for ACOT and 0.27 for
ACO0). We only keep ACOT for the detailed results.
We also observe that TabuI has better results than TabuS (the first quartile inverse ratio after one hour equal to 1 and
0.91 respectively). Hence we keep TabuI for the detailed results.
Once again ACO− TabuJ , ACO− TabuT and CPO−ACO have similar performance. CPO−ACO finds the reference
solution on 416 instances (75.9%) against 414 (75.5%), but ACO− TabuJ has a better mean inverse ratio after one hour
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(0.95 against 0.94), and outperforms CPO−ACO for time limits lower than 2500 seconds. Hence we only displayed the
detailed results of ACO − TabuJ .

Detailed results analysis: Fig 6.8 shows the detailed results for the selected algorithms. TabuI performs better than
CPO on that problem regarding the average inverse ratio after one hour (0.92 against 0.87). However, CPO is able to
prove the optimality of solutions on more instances (290 (52.9%) against 320 (58.4%)).
Furthermore, the gap between CPO and TabuI on the first hand and ACOT , on the other hand, is even more significant
than in the previous case. Indeed the mean inverse ratio is equal to 0.66 for ACOT .
The hybrid method ACO − TabuJ behaves like ACOT for short time limits (and, hence is worse than TabuI). However
after ten seconds, it becomes better than ACOT . For time limits greater than one minute it also outperforms TabuI for
all the considered performance measures. Furthermore, after one hour it is the method that has the best mean inverse
ratio (0.95) and which finds the reference solution on the greatest number of instances (414, 75.5%).
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6.2.5 Breaks : Q|rj, brkdwn|
∑
Tj

Considered algorithms: As ORT has generally results worse than those of CPO (and especially on the previous
problem), we do not show its results on this problem and the following ones.

Global analysis: Fig 6.9 shows the results for all the considered algorithms. We can notice that there are fewer
differences between the considered algorithms than in the previous case. Indeed after one hour, all the algorithms have
a median inverse ratio equal to 1, and, except ACOJ and ACOT , they all have a median inverse ratio equal to one after
one minute. We also observe that, contrary to the previous cases, ACO − TabuJ is the method which has the best first
decile (0.98) for the distribution of inverse ratio after one hour. As TabuS does better than TabuI we only keep it for
the detailed analysis. All ACO variants are outperformed by ACO− TabuJ and, hence their results are not displayed in
the detailed results.
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(a) Inverse ratios distribution after one minute.
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Detailed results analysis: Fig 6.10 shows the detailed results for the selected algorithms. It is important to notice
that, contrary to previous cases, CPO − ACO and CPO have similar performance after one hour. CPO − ACO (resp.
CPO) finds the reference solution on 420 instances (76.6% resp. 431, 78.6%) and prove optimality on 335 instances (resp.
324). Both methods have a mean inverse ratio equal to 0.98 after one hour. However, for short time limits, CPO−ACO
clearly outperforms CPO. For example, CPO−ACO has a mean inverse ratio greater than 0.5 after 0.7 seconds, whereas
CPO needs 13.4 seconds to have a mean inverse ratio greater than 0.5.
It is also important to highlight, once again, the good performance of TabuS for short time limits. After 3 seconds, it
finds the reference solution on 336 instances (61.3%, the second best approach after 3 seconds is ACO− TabuJ with 147
instances, 26.8%) and has a mean inverse ratio equal to 0.87 (against 0.57 for ACO − TabuJ).
For really short time limits (lower than 0.5 seconds), ACO − TabuJ is the best method. However, for longer time limits
it is always outperformed by TabuI .
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6.2.6 Breaks and setup times: Q|rj, brkdwn, sjk|
∑
Tj

Considered algorithms: The same algorithms as in the previous section are considered.

Global analysis: Fig 6.11 shows the results for all the considered algorithms. This section’s main result is that CPO
has much more difficulties to find good solutions than in previous problems. As aforementioned, the model is much more
complicated than the ones in the previous sections (see section 2.5.5), and hence it is much more complicated for CPO
to find good solutions. Furthermore, the consumed memory is higher than in the previous sections. For example, in the
case with just the setup-times, the max memory consumed was 1.2GB of RAM on the worst instance, whereas for the
problem dealt with in this section, CPO uses more than 11.5GB on more than 50% instances. Hence we do not consider
CPO in the detailed results. Similarly to CPO, the complex CP model also penalizes CPO − ACO. Hence we do not
consider CPO −ACO neither in the detailed results.
As TabuI is slightly better than TabuS , we only consider TabuI in the detailed results. For a similar reason we do not
consider ACO − TabuJ , and none of the ACO variants as they are all outperformed by ACO − TabuT
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Figure 6.11: Results of all algorithms for Q|rj , brkdwn, sjk|
∑
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Detailed results analysis: Fig 6.12 shows the detailed results for the selected algorithms. The hybrid method
ACO − TabuT finds the reference solution on the greatest number of instances (400, 73.0%) and has the best mean
inverse ratio after one hour (0.97). However, using TabuI alone allows finding good solutions more quickly. After 3
seconds, TabuI finds the reference solution on 204 instances against 95 instances for ACO−TabuT . ACO−TabuT finds
the reference solution on more instances for time limit greater than 98 seconds.
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6.2.7 GCloose no breaks: Q|rj, sjk, GCloose|
∑
Tg

Considered algorithms: The same algorithms as in the previous section are considered.
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(a) Inverse ratios distribution after one minute.

A
C
O

T
ab
u J A

C
O

T
ab
u T A

C
O 0

A
C
O J

A
C
O P

A
C
O T

C
P
O

C
P
O

A
C
O T

ab
u I

T
ab
u S

0.0

0.2

0.4

0.6

0.8

1.0

ir
36

00
a
,x

(b) Inverse ratios distribution after one hour.
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Figure 6.13: Results of all algorithms for Q|rj , sjk, GCloose|
∑
Tg

Global analysis: Fig 6.13 shows the results for all the considered algorithms. The most noticeable result is that
TabuI has great difficulties dealing with the GC constraint. This is a direct consequence of theorem 3.3.1. Indeed tabu
search was efficient for problems listed in previous sections because it was trivial to convert a list-schedule into a real
schedule. The method described in 4.2.1 makes tabu search find solutions, but it requires expensive computation to
convert list-schedules into schedules. The median inverse ratio of TabuI is equal to 0.60 after one hour. However, TabuS
has quite good results for this problem. Its median inverse ratio is equal to 1.0 after one hour. The fact that TabuS has
better results than TabuI could be explained as follows: with TabuI when a job j is removed from a machine and put
on another machine, all the jobs that were after j can start earlier, and all the jobs which are after j on its new machine
will probably start later in the new solution. Hence all the jobs which were after j in the previous solution or which are
after j in the new solution have important changes in their start times. Hence all their groups have a huge probability
of having their start or end times modified by this move, which results in a great probability of creating conflicts for GC
(conflicts which are hard to solve). On the other hand, with TabuS , when we swap two jobs which have approximately
the same durations, the jobs which are after them on their machines will probably not be modified by the move, and
hence the probability of creating conflicts for GC is lower.
Another interesting point is that the gap between ACO0 and other ACO variants is consequent. The median inverse
ratio is equal to 0.73 (resp. 0.86, 0.89 and 0.88) for ACO0 (resp. ACOJ , ACOP and ACOT ). This clearly highlights the
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positive role of the pheromone trails for this problem. As ACOP outperforms other ACO variants, we only keep it for
the detailed results.
For a similar reason, we do not show the detailed results of ACO − TabuJ as it is outperformed by ACO − TabuT .

Detailed results analysis: Fig 6.14 shows the detailed results for the selected algorithms. We remark that combining
ACO and Tabu search works well when considering the GC constraint. As seen above, tabu search has great difficulties
in computing many neighbors due to GC, and hence it is not efficient for long runs. However, it is efficient to improve
a solution quickly when there are many improving neighbors. Thus it is useful when combined with ACO. Indeed, ACO
generates many solutions, and tabu search can quickly improve them. As soon as tabu search begins to stagnate, it is
stopped. Hence we minimize the time spent to convert list-schedules into schedules. Then these improved solutions help
ACO generating new better solutions. After one hour it has a mean inverse ratio equal to 0.83 and it finds the reference
solution on 315 instances (57.5%).
It is also noticeable that CPO−ACO outperforms other approaches after one hour of computation. It finds the reference
solution on 477 instances (87.0%) and proves optimality on 351 instances (64.1%). This approach is especially well-suited
for this problem.
CPO alone also has good results as it finds the reference solution on 353 instances (64.4%) after one hour and has a
mean inverse ratio equal to 0.80. However, for short time limits, it has worse results. ACO − TabuJ needs 1.1 seconds
to reach a mean inverse ratio of 0.3 whereas CPO needs 41 seconds to reach such a mean inverse ratio.
We can also notice that ACOP has better mean inverse ratio over time than TabuS but it finds the reference solution on
less instances (whichever the time limit). This shows that TabuS is able to find the best solution on many instances, but
ACOP often finds better solutions than TabuS . In particular ACOP is less sensitive to the input instance.
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6.2.8 GCtight no breaks: Q|rj, sjk, GCtight|
∑
Tg

Considered algorithms: The same algorithms as in the previous section are considered.

Global analysis: Fig 6.15 shows the results for all the considered algorithms. For this problem, the conclusions found
for the previous problem are even more highlighted. The difficulties encountered by TabuI are more noticeable when
the GC constraint is tighter. Furthermore, TabuS also has bad results on this problem. Indeed with a tight GC the
number of conflicts at each move in the neighborhood is great, and hence both TabuI and TabuS spend too much time
in repairing solutions. For this reason, they are not considered in the detailed results.
We also notice that the gap between CPO−ACO and other approaches is more consequent than in the previous section.
Similarly to the previous case, the role of the pheromone is clearly highlighted. However, ACO− TabuJ outperforms all
ACO variants and ACO − TabuT , and hence these methods are not displayed in the detailed results.
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(b) Inverse ratios distribution after one hour.
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Detailed results analysis: Fig 6.16 shows the detailed results for the selected algorithms. As TabuI has more
difficulties, the combination of ACO and tabu search also has more difficulties. ACO−TabuJ finds the reference solution
on 201 instances (36.7%), whereas it finds it on 317 instances (57.8%) when considering a loose GC.
We also observe that on this problem combining CPO and ACO is really efficient. It finds the reference solution on 483
instances (88.1%, whereas CPO alone finds it on 327 instances (59.7%)).
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6.2.9 GCloose with breaks: Q|rj, sjk, brkdwn,GCloose|
∑
Tg

Considered algorithms: The same algorithms as in the previous section are considered.

Global analysis: Fig 6.17 shows the results for all the considered algorithms. For this problem, similarly to problem
Q|rj , sjk, brkdwn|

∑
Tg which considers both scheduled breakdowns and setup-times, CPO has bad performance. This

is due to the complex model used (see section 2.5.5). Hence combining CPO and ACO also leads to poor performance.
Both approaches consume a lot of memory. Thus, these two approaches are not considered in the detailed results.
Once again, we clearly notice the interest of the pheromone on this problem: ACOJ , ACOP and ACOT have much
higher median inverse ratios (0.89, 0.88, 0.88 respectively) than ACO0 (0.63). As ACOJ has a better median ratio after
one hour than the other ACO variants, we only consider it in the detailed results. We also notice that combining ACO
and Tabu is especially well-suited for this problem as both ACO−TabuJ and ACO−TabuT have a median inverse ratio
equal to one.
For the same reasons mentioned for problem Q|rj , sjk, GCloose|

∑
Tg, the gap between the two Tabu versions is also

important.
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Detailed results analysis: Fig 6.18 shows the detailed results for the selected algorithms. Similarly to problem
Q|rj , sjk, GCloose|

∑
Tg, combining ACO and Tabu leads to good results (ACO − TabuT finds reference solution on 321

instances (58.6%)).
We also notice that time trails have slightly better performance than jobs trails when combined with tabu search, especially
for time limits in [10, 100] seconds. As an example, ACO − TabuT finds the reference solution on 150 instances in 27.5
seconds, whereas ACO−TabuJ needs 67 seconds to do so. This highlights the interest of the newly introduced pheromone
structure.
Similarly to the previous cases considering GC, we observe that ACO has a good mean inverse ratio whereas it does not
find the reference solution on many instances. Once again, this highlights the fact that it often finds solutions close to
the best one, without reaching it.
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6.2.10 GCtight with breaks: Q|rj, sjk, brkdwn,GCtight|
∑
Tg

Considered algorithms: The same algorithms as in the previous section are considered.

Global analysis: Fig 6.19 shows the results for all the considered algorithms. As expected, we notice that both Tabu
variants have difficulties for this problem, and that CPO and CPO − ACO also have terrible performance for this
problem. Hence none of these methods are considered in the detailed results.
We also notice, contrary to previous problems, that ACOJ has a median inverse ratio (0.93) better than the ones of both
ACO − Tabu methods (0.92 for ACO − TabuJ and 0.79 for ACO − TabuT ). We also notice that the pheromone trails
have different performance: ACOj having the best results, and ACOT the worst. As ACO0 is worse than other methods,
we do not consider it in the detailed results.
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Detailed results analysis: Fig 6.20 shows the detailed results for the selected algorithms. We notice that no method
finds the reference solution on more than 204 instances (37.2%). This shows us that the different used algorithms have
complementary strengths and weaknesses for this problem. We observe that according to the parameters (and hyper-
parameters), ACO variants are able to solve different instances.
Another noticeable result is that combining ACO and Tabu search leads to results similar to the ones obtained using
ACO alone. As noticed above, the tighter the GC constraint, the worst the results of tabu search. Hence the hybrid
method also suffers of the difficulties encountered by tabu search.
It also shows that the newly introduced pheromone structure (denoted Time) has performance comparable with the two
other classical pheromone structures, but the three pheromone structures work well on a different subset of instances.
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Figure 6.20: Detailed results for Q|rj , sjk, brkdwn,GCtight|
∑
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6.3 Results over all problems
In Fig 6.21 and Fig 6.22 we show, for the different problems, the plot corresponding to the evolution of the mean inverse
ratio with the reference solution and the evolution of the number of instances on which an optimality proof has been
found. For each problem, we only plot results of the best performing approaches.

This figure shows us that:

• the best performing approaches are very different from a problem to another,

• the best performing approach often depends on the time limit considered,

• the approach that has the best average inverse ratio is not necessarily the approach that is able to prove optimality
for the largest number of instances.
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Figure 6.21: Evolution of the mean inverse ratio (left) and number of optimality proofs (right) for P ||Cmax, P |rj |
∑
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and Q|β|∑Tj with β ∈ {{rj}, {rj , sjk}, {rj , brkdwn}}
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Figure 6.22: Evolution of the mean inverse ratio (left) and number of optimality proofs (right) for Q|rj , brkdwn|
∑
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∑
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Figure 6.23: Number of instances on which trefa,x < 3600 (top of line) and number of instances on which trefa,x is minimal
(among all algorithm for the considered instance). The best value of each line is bold.
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In Fig. 6.23 we display for each problem and each algorithm a the number of instances on which trefa,x < 3600 (top of line)
and the number of instances on which trefa,x is minimal (among all algorithm for the considered instance). The best value
of each line is bold and green. It is important to notice that the bold values are not concentrated in the same column,
proving that, depending on the considered constraints, the best approach vary. On the last line of the table, we display
the mean values over all the problems.2

6.4 Discussion
In this chapter we evaluate a set of state-of-the-art algorithms on a new benchmark of scheduling problems. In particular
the same instances are used but with different constraints. This allows us to evaluate the influence of the different
constraints on the methods.
As a conclusion we can notice that tabu search is especially efficient when considering scheduling problems without GC
constraints. It finds good solutions in small amount of time. However, when adding a GC constraint, it has much more
difficulties to solve problems. This a direct consequence of theorem 3.3.1.
ACO is able to quickly find good solutions on scheduling problems with few constraints, but their quality after one
hour of computation is generally worse than the quality of the solutions found by tabu search or CPO. However, as
more constraints are considered, ACO becomes more competitive with other methods. In particular, when considering
setup-times, breakdowns and GC, variants of ACO are the only methods which are able to find good solutions.
We observe that Linear Programming has great difficulties as soon as start and end times must be found for each job
on our data-set. It is especially well-suited for assignment problems, but it has much more difficulties to deal with the
scheduling problems on our data-set.
CP Optimizer is really well-suited for scheduling problems. It usually finds good solutions after one hour of computation.
The only exception lies in scheduling problems considering both setup-times and breakdowns. In that case, as the model
is much more complicated (see section 2.5.5), it is less competitive with other approaches.
It is also worth mentioning that combining approaches often leads to taking the best of both worlds. For example
combining ACO and Tabu search often leads to results which are better than considering ACO alone or tabu search
alone. This is also the case when considering the newly introduced algorithm CPO-ACO which often combines the speed
of ACO with the quality of CPO. The results are especially outstanding for problems combining setup-times and GC
constraints.

As explained in chapter 5, Copilote ERP faces different scheduling problems and must be able to solve them as best as
possible. However, as seen in this chapter, according to the problem, the method which leads to the best results differs.
Hence, in the next chapter we will apply automatic selection algorithm to automatically find the best algorithm (along
with its parameters) for each instance according to its features.

2For algorithms ACOJ , ACOP and ACOT and for problem P ||Cmax the values obtained by ACO0 have been selected to compute the
mean.
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As seen in the previous chapter, the best algorithm varies depending on the scheduling problem. Moreover, given a single
algorithm, its performance on a given instance highly depends on its parameters (and hyper-parameters). Hence choosing
a single algorithm (with a single parameter configuration) for all instances would prevent from obtaining the best overall
performance. As explained in chapter 5 our goal is to develop a method able to solve the different scheduling problems
faced by the Copilote ERP.
In this chapter we give a proof of concept about automatic algorithm selection. In section 7.1 we present automatic
algorithm selection and we give a short survey of the existing work concerning this problem. In sections 7.2, 7.3 and 7.4
we give the context and the settings we use to apply automatic algorithm selection for our scheduling problems. Finally
in section 7.5 we show some results of Automatic algorithm Selection in our context.

7.1 Definition and goals of automatic algorithm selection
Our goal is to select the best solving approach for each instance of each scheduling problem. A first possibility to
reach this goal is to select, for each kind of scheduling problem, a good approach that performs well on all instances
of the problem. This selection may be done manually (as proposed in [MPE03]], for example) or automatically by
using automatic algorithm configuration tools [HHLS09, AST09, BYBS10, HHL11]. These tools search for the best
(hyper)parameter setting of a parametrised algorithm given a set of training instances, assuming that the best setting for
the training instances will also perform well on other instances of the problem. However, experimental results reported in
the previous chapter show us that an approach that performs very well on some instances may have very poor performance
on other instances of the same problem. Hence, we cannot use this kind of approach in our context, and we propose to
use per-instance algorithm selection.

The problem of algorithm selection has been introduced by [Ric76]. The formulation of the problem can be stated as
follows:

Definition 7.1.1 (Algorithm selection problem).
Given:
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• a set I of problem instances drawn from a distribution D
• a set of algorithms A
• a performance measure m : I × A → R

the per-instance algorithm selection problem is to find a mapping s : I → A that optimizes Ei∼D m(i, s(i)), i.e., the
expected performance measure for instances i distributed according to D. The mapping s is usually learned through an
offline training step. Then, each time a new instance i must be solved, we use s to select the algorithm s(i) that is
expected to perform best on i.

Since its introduction this problem has received a lot of attention [BKK+16, Kot16]. It has been successfully applied
for different problems: for example for the SAT problem [XHHL08, NMJ09], or for Algebraic Systems [DDE+05] or
Multi-Mode Resource Constrained Project Scheduling Problem (MRCPSP) [MDC14]. More recently, algorithm selection
has also been applied to continuous problems. The article [KHNT18] gives a good survey for both discrete and continuous
cases.

The offline training of the mapping model s : I → A is a classification problem, and we can use classical machine
learning algorithms (such as random forests, KNN, neural networks,... for example) to solve it. These algorithms are
usually defined for classifying objects described by numerical vectors. Hence, we must define a procedure for extracting
a numerical vector from an instance.

In this chapter, we use the R package Llama [Kot14] to learn the mapping model.

This preliminary work aims at giving a proof of concept that automatic algorithm selection can help in designing an
approach that can achieve good performance whatever the considered instance. In that context we only consider the
Q|rj , brkdwn, sjk, GCtight|

∑
Tg problem and show that we can improve results by selecting algorithms on a per-instance

basis.

7.2 Performance measure
As stated in Def. 7.1.1, the algorithm selection problem uses a performance measure m : I × A → R to evaluate the
performance of an algorithm on an instance. A classical performance measure is the time needed to solve an instance.
However, in the case of NP − hard problems, some instances cannot be solved within a reasonable amount of time and
we must introduce a time limit (i.e., one hour in our study). Furthermore, we need to define what we mean by "solving
an instance". We may consider that an instance is solved when the optimal solution has been found (and the optimality
proof has been done). However, there are a lot of instances that are not solved to optimality. Hence, we consider that an
instance is solved when the reference solution has been found within the time limit.

Let us define a first performance measure, denoted m01, that simply evaluates whether an instance has been solved or
not:

∀i ∈ I,∀a ∈ A,m01(i, a) =

{
0 if a finds the reference solution on i within one hour
1 otherwise

When using this measure, the selection model aims at maximising the expected number of solved instances within one
hour.

This first measure does not consider the time needed to solve an instance. Let us consider the case where two algorithms
a1 and a2 both solve an instance i, but a1 is much faster than a2. In this case, m01(i, a1) = m01(i, a2) and the selection
model has no reason to prefer a1 to a2.

Hence, we define a second performance measure, denoted mt, to take into account the solving time:

∀i ∈ I, ∀a ∈ A mt(i, a) =

{
trefa,i if trefa,i <∞
3600/min(ir3600a,i , 0.1) otherwise
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where trefai and ir3600ai are performance measures defined in Section 6.1.2. When an instance is not solved, mt(i, a) is
greater than 3600, and the farer from the reference solution, the greater mt(ia). As ir3600ai may be equal to 0, we lower
bound the ratio with 0.1.

When using this second measure, the selection model aims at minimizing the expected time needed to find a good solution.
For example, if trefa1,i = 100, trefa2,i = 1000, trefa3,i = ∞ et ira3,i = 0.5 (i.e. the best solution found by a3 is twice as large as
the reference solution). In this case mt(i, a1) = 100, mt(i, a2) = 1000, and mt(i, a3) = 3600/0.5 = 7200,

Fig. 7.1 shows the results for this two different measures on the considered problem. We display the results of the virtual
best solver (denoted V BSm with m the considered measure in {m01,mt}). The virtual best solver is defined as a solver
that perfectly selects the best approach from A on a per-instance basis; it provides a lower bound on the performance
of any realistically achievable algorithm selector. More precisely, given a performance measure m in {m01,mt}, the
performance of the V BS on an instance i is equal to min

a∈A
m(i, a).

By considering Fig. 7.1 we notice that V BSt finds more quickly the reference solution than V BS01. We also observe that
between 10 and 1000 seconds, V BSt finds better solutions than V BS01. In particular, V BSt reaches a value of mean
irtax = 0.5 for t = 27 seconds whereas V BS01 needs 46 seconds to reach this value. Similarly, V BSt finds the reference
solution on 100 instances in 51 seconds whereas V BS01 needs 154 seconds to find the reference solution on 100 instances.

7.3 Instance features
In order to use Llama, we must describe each instance by a numerical vector. Given a sample X of n values, stat(X)
denotes the tuple that contains the four following values:

• the mean value x = 1/n ∗∑x∈X x

• the minimum value in X

• the maximum value in X

• the variance 1/n
∑
x∈X(x− x)2 where x is the mean value of X.

An instance of Q|rj , brkdwn, sjk, GCtight|
∑
Tg is described by the following features:

• The number of jobs n

• The number of machines m

• The number of groups |P|
• The value of the limit l in the GC constraint

• Statistics on the job durations stat({pj |j ∈ J })
• Statistics on the release dates stat({rj |j ∈ J })
• Statistics on the due-dates stat({dj |j ∈ J })
• Statistics on the sequence-dependent setup-times stat({sj,k|{j, k} ⊆ J })
• The due date tightness as defined in [LPT97]: 1− d/Cmax where d is the average of the due-dates and Cmax is an

approximation of the makespan (see [LPT97] to estimate Cmax)

• The due date range factor: (dmax − dmin)/Cmax
• The setup-time severity: s/p where s is the average of the setup-times and p is the average of the processing-times.

• The job machine factor: n/m
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Figure 7.1: Results for the two different performance measures m01 and mt
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• Statistics on the number of jobs per group stat({|g| : g ∈ P})
• Statistics on the mean job duration in groups stat({1/|g|∑

j∈g
pj |g ∈ P})

• Statistics on the minimum job duration in groups stat({min
j∈g

pj |g ∈ P})

• Statistics on the maximum job duration in groups stat({max
j∈g

pj |g ∈ P})

• Statistics on the variance of job durations in groups stat({1/|g|∑
j∈g

(pj −pg)2|g ∈ P}), where given a group g ∈ P pg

is the mean duration of its jobs (i.e., pg = 1/|g|∑
j∈g

pj)

• Statistics on the number of breaks per machine stat({|Bi||i ∈ M}), where given a machine i ∈ M, Bi is the set of
its breaks, i.e., Bi = {[eil, bil+1]|l ∈ [1, |Ai|]} where Ai, bil and eil are defined in Section 1.2.5.

• Statistics on the mean breaks duration per machine stat({1/(|Bi|)
∑
B∈Bi

|B||i ∈M}), where given an interval B ∈ Bi,

|B| represents its duration (i.e., if B = [e, b] then |B| = b− e).
• Statistics on the min break duration per machine stat({min

B∈Bi
|B||i ∈M})

• Statistics on the max break duration per machine stat({max
B∈Bi

|B||i ∈M})

• Statistics on the variance of break durations per machine stat({1/|Bi|
∑
B∈Bi

(|B| − Bi)
2|i ∈ M}), where given a

machine i ∈M Bi is the mean duration of its breaks (Bi = 1/(|Bi|)
∑
B∈Bi

|B|)

Finally we remove the quantities which are identical for all the instances. For example, the min over all the groups of
the min job duration in the group is always equal to the min job duration over all the jobs.

7.4 Choice of an Approach for Learning the Mapping Model
The R package Llama [Kot14] offers the possibility to connect many algorithm selection approaches. It enables access to
classification, regression, and clustering models for algorithm selection. In particular, it is possible to connect it to the
mlr R package [BLK+16], which itself acts as an interface to the machine learning models provided by other R packages.
In table 7.2a we report the sum of the misclassification penalties over all the instances for the performance measure
m01. The misclassification penalty mpm for a given instance i and a given solver s is the difference of the values of the
performance measure m between the algorithm chosen by the mapping model s and the algorithm chosen by the V BS:
mpm(i, s) = m(i, s(i))−m(i, V BS(i)) where V BS(i) = argmin

a∈A
m(i, a). In particular the misclassification penalty of the

V BS is always zero. Besides, for the performance measure m01, as the V BS finds for each instance an algorithm which
reaches the reference solution, we have ∀i ∈ I m01(i, V BS(i)) = 0. So

mpm01
(i, s) = m01(i, s(i)) =

{
0 if s(i) finds the reference solution on i within one hour
1 otherwise

Hence the sum of the misclassification penalties over all the instances is just the number of instances on which the solver
selected by s is unable to find the reference solution within one hour.
It is interesting to display the misclassification penalties for the measure m01 because it is easily interpretable. Hence
table 7.2a shows that the learners’ performance on the considered problem varies significantly. It is essential to notice
that each learner uses randomness, and so the displayed results for each learner corresponds to the mean value obtained
over four runs. We have tested over 50 learners and the results of only a subpart is displayed. We only display the solvers
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Name Misclass. Name Misclass. Name Misclass.

regr.
random
Forest

325.25 classif.earth 323.75
regr.
Liblinea
RL2L2SVR

323.25

regr.
extraTrees 322.25 regr.ranger 321.25

classif.
Liblinea
RL1LogReg

320.50

regr.rsm 320.00
regr.
random
Forest

318.75 regr.cforest 318.50

regr.gbm 317.50 regr.RRF 317.50

(a) Sum of misclassification penalties for different learners (for m01)

Name Misclas. Name Misclas. Name Misclas.

regr.RRF 3062.81
regr.
Liblinea
RL2L2SVR

3034.11 regr.cforest 3019.46

regr.
extraTrees 3001.38

regr.
random
Forest

2997.00 regr.gbm 2985.81

regr.ranger 2982.48
regr.
random
ForestSRC

2980.83 classif.earth 2973.38

classif.
Liblinea
RL1LogReg

2901.99 regr.rsm 2875.22

(b) Mean misclassification penalty for different learners (for mt)

Figure 7.2: Comparison of different learners

which achieve the best results. The best approach is regr.RRF (an approach based on Random Forest). It finds the best
algorithm on 230.5 instances in average (which represents 42.0% of instances).

Table 7.2b shows the mean of the misclassification penalties over all the instances for measure mt (for the same learners
as in table 7.2a ). We also see that there are differences between learners. However, the results are less interpretable: the
value of the mt(i, V BS(i)) for a given instance i corresponds to the minimum time needed by an algorithm to find the
reference solution. Hence the misclassification penalty of a solver s on an instance i corresponds to the time needed by
the algorithm chosen by s to find the reference solution minus the minimum time needed by any algorithm to find the
reference solution if s finds the reference solution on i. If s does not find the reference solution, then the misclassification
penalty corresponds to 3600/min(ir3600ai , 0.1) minus the minimum time needed by an algorithm to find the reference
solution. We display here the mean misclassification penalty instead of the sum in the previous case to have something
more interpretable. This time, regr.rsm (an approach based on Response Surface Regression) achieves the best results.
Hence we keep this learner for the next experiments.

7.5 Llama results
This section uses per-instance algorithm selection for the problem Q|rj , brkdwn, sjk, GCtight|

∑
Tg. The algorithms which

can be chosen are those used in the previous chapter (see section 6.2.10).
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Algortihm V BS llama SB

ACO0 17 3 0

ACOJ 108 119 0

ACOP 98 182 0

ACOT 50 42 0

ACO − TabuJ 109 169 548

ACO − TabuT 103 16 0

CPO − ACO 14 16 0

TabuI 4 0 0

TabuS 45 1 0

Figure 7.4: Algorithms selected by each selection method

We compare three methods :

• The virtual best solver, denoted V BS

• The single best solver, denoted SB. The single best solver is the algorithm (among those that can be selected) that
minimizes the considered measure over all the instances, i.e., SB = argmin

a∈A

∑
i∈I

mt(i, a). In our case the single best

solver is the method ACO − TabuJ (see results in sec. 6.2.10)

• A per-instance algorithm selector solver denoted llama

We use 10-fold cross-validation to evaluate the performance of llama (i.e., our benchmark is randomly partitioned into
10 subsets, and we repeat 10 experiments where 9 subsets are used to train a selection model which is evaluated on the
remaining subset).

The results are shown in Fig. 7.3.

llama outperforms SB. In particular the mean inverse ratio for llama after one hour is equal to ir3600llama = 0.86 whereas
this ratio for the single best is equal to ir3600SB = 0.79 (which represents an increase of (0.85 − 0.79)/0.79 = 7.5%).
Similarly, the reference solution is found on 249 instances when using llama whereas SB finds it on 204 instances (which
represents an increase of 22%). It is also worth mentioning that llama has an average misclassification penalty equal to
2913 whereas SB average misclassification penalty is equal to 4224 (which represents an increase of 45%).
We also observe that there is still room between llama and V BS for improving the model used to select configurations
(V BS finds the reference solution on the 548 instances, its mean inverse ratio after one hour is equal to 1 and its average
misclassification penalty is equal to 0 by definition). Maybe results could be improved by adding more features to describe
instances. Another possibility could be to use other machine learning algorithms to learn the model.

Fig 7.4 shows the number of instances on which each algorithm has been selected by each selector. We especially notice
that llama seems to select too often the ACOP method in comparison with V BS.

7.6 Discussion
In this chapter we evaluate the interest of using automatic algorithm selection in order to automatically select the best
algorithm for each instance. In particular we introduce some features for our instances, and especially for constraints
such as sequence-dependent setup-times, scheduled breakdowns and GC constraints. Such features can be reused for any
algorithm considering parallel machine scheduling problems. We also compare two performance measures in order to find
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compromise between quality of solution after one hour of computation and speed at which good solutions are found.
Our experimental results show that using automatic algorithm selection on a particular problem allows us to improve
results, compared to the single best algorithm, though we are still rather far from the virtual best solver.

In all the problems considered so far, we assume that all jobs are known beforehand. However in our industrial context
this is often not the case. Hence, in the next chapter we study the Q|rj , sjk, GCtight|

∑
Tg in a dynamic environment.
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In previous chapters, we considered that all the problems data were known beforehand. However, in practice this is often
not the case. Hence algorithms should react to the arrival of new jobs, or to the fact that some jobs are realized on the
shop floor. This chapter aims at studying one particular scheduling problem in a dynamic environment.
In section 8.1 we give further motivation to consider the dynamic problem. In section 8.2 we give a short survey concerning
dynamic optimization. In section 8.3 we describe our dynamic framework and the studied objectives. In section 8.4 we
show our experimental results. Finally in section 8.5 we evaluate the gap between static and dynamic approaches and
give some insights about methods which could help reduce this gap.

8.1 Motivation and definition of the problem
As aforementioned, the scheduling problems dealt with in this thesis concern order preparation. In order preparation,
orders come over time. In particular, some orders arrive during the day and must be shipped before the end of the same
day. In the previous chapters, we considered offline problems where all jobs were known, and we used release dates to
ensure that a job does not start before its release date. However, in our industrial context, the release date rj of a job j
actually corresponds to the time where j is revealed: at time t < rj , we do not know that j will be revealed. Hence, we
cannot schedule all jobs at once: before the beginning of the day, at time t0, we can only schedule every job j such that
rj ≤ t0; then each time some new jobs are revealed, we can schedule these new jobs. Fig 8.1 shows the distribution of
the release dates, i.e., the number of jobs that are revealed during each half-hour in the day (accumulated over all the
instances). In particular, it is noticeable that only 51% (in average) of the jobs are known at the beginning of the day.

8.2 Review of dynamic scheduling problems
Scheduling problems considering uncertainty have been widely studied. Consequently, many terms are used to describe
the different problems, and depending on the authors, sometimes different terms are used to describe the same entity, or
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Figure 8.1: Number of jobs which arrived at each time of the day (grouped in interval of 30 minutes) accumulated over
the 548 instances.

sometimes a similar term is used to describe different entities.
We can first mention the online scheduling problems [Liu09, PST04, LXCZ09]. In such a context, one tries to find
algorithms whose performance is bounded with respect to offline algorithm performance. In particular, this research field
is not interested in studying a given algorithm’s performance over a given data-set, but it aims to calculate bounds for
algorithms that are valid for every instance of a given scheduling problem.

Another approach to scheduling problems under uncertainty is the dynamic approach. [HL05] gives a survey about project
scheduling under uncertainty. According to the scheduling environment, the authors describe two types of methods for
dynamic problems: proactive (robust) methods and reactive methods. In an environment where jobs’ duration is unknown
(but jobs themselves are known), proactive (robust) methods are the most studied. These methods establish schedules
as robust as possible before any uncertainty is revealed. It means that one establishes a schedule, and we have some
probabilistic guarantees that it will not change once the uncertainty will be revealed. The objective is often to optimize
the mean of a function over the different possible scenarios.

By contrast with proactive methods, there are the reactive methods, in which a first schedule is generated, and then it
is modified each time a new job comes. Depending on the rescheduling time, methods are split into two categories.
On the first hand, we have the so-called predictive-reactive scheduling, which consists in calculating an initial schedule
and applying next a repair function each time a new job comes. The repair function must be a polynomial function
(polynomial according to the size of the instance); in particular, the time needed for its application should be negligible.
Most of the time, the repair function only inserts the new jobs in the current schedule. For example the method for
inserting new activities given by [AR00] falls into this category.

On the other hand, we have full rescheduling methods, consisting of recalculating a complete solution each time an
uncertain event occurs. An interesting survey about dynamic scheduling in manufacturing systems can be found in
[OP08]. Furthermore, [BVLB09] gives a theoretical framework for such scheduling, without experimental evaluation
nonetheless. [DDH11] gives a tree-based exact search technique in order to deal with such problems.

[GMW16] gives a survey of rescheduling strategies (with a specific focus on articles that do not deal with full-rescheduling).
Both [GMW16] and [OP08] emphasize the question of ’when to reschedule’. This question arises in many articles, with
varying conclusions. [PF17, SB99] show that rescheduling as frequently as possible leads to better results, whereas
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tcur tcur + εfix

i1 j1 j2 setup j3 j4 st j5

i2 j6 st j7 j8 setup j9 j10 setup j11

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

: already started jobs

: not yet started but fixed jobs

: free jobs

Figure 8.2: Example of a schedule with the already executed part, the fixed part and the free part.

[GM16, MK94] show that scheduling too frequently and not frequently enough decreases performance. More recently
[SFRS20] shows that a rescheduling policy’s performance depends on the plant characteristics, and therefore care should
be taken when selecting a rescheduling policy.

With the question of ’when to reschedule’ comes the question of ’how long lasts the rescheduling’. This question has
received little attention in the articles mentioned above. Depending on the application, the question is not necessarily
relevant. If the jobs’ duration is far greater than the time needed for the computation of solutions, then the question
has little interest. For example, in [SFRS20], schedules are generated for several months, the magnitude of the jobs’
duration is hours, and the computation of solutions is limited to 15 minutes a day. In such a context, the events
which happen during the computation of solutions are negligible. In our case, some jobs last few seconds; hence even
if we use an algorithm for several minutes, the context changes during the algorithm’s execution. This question has
been addressed in the Vehicle Routing Problem (VRP) community. [PGGM13] gives a review on the Dynamic Vehicle
Routing Problem. In particular, it distinguishes between periodic re-optimization and continuous re-optimization. In
the latter case, optimization algorithms are running continuously, and new information (new customer arrival or end of
the current customer service) is integrated continuously. Algorithms for continuous re-optimization are also described in
[PGM12b, PGM12a, BVH04b].

Another question often addressed is the question of the nervousness when the schedule changes. Articles [KCEP08, NH10]
deal with this problem. They include in their objective function the cost of perturbing the current schedule. Hence the
instability of the schedule (and the nervousness of workers associated with it) is considered.

8.3 Objectives and framework
In this chapter we consider only the Q|rj , sjk, GCtight|

∑
Tg problem in a dynamic context. The dynamics of the problem

come from the fact that jobs are revealed during the algorithm’s execution. As aforementioned, several strategies exist to
select ’when to reschedule’. Here we only consider the ’event-based’ rescheduling; it means that we allow a rescheduling
each time a new job is revealed. ’Periodic rescheduling’, as mentioned above, is relevant when we consider a rolling
horizon, but in our case, the entire horizon (which corresponds to a full day of work) is always considered.

In this chapter, we evaluate two objectives. First, as mentioned above, and as seen with Infologic’s clients, the schedule’s
stability is essential. From a practical point of view, operators are aware of their tasks’ near future. It means that they
know the tasks they must perform in the next following minutes, but they are not interested in the tasks which must
start in several hours. Hence, whenever the schedule changes, the tasks that start in the next minutes must not change.
Hence a first goal is to evaluate the loss of forbidding the jobs which must start in the εfix next seconds from moving,
for different values of εfix.
Our second goal is to evaluate the impact of the time let to algorithms to compute new schedules. Hence each time a new
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job is revealed, we let δdur seconds to the algorithm to compute new schedules. Our goal is to evaluate the influence of
this δdur parameter. It is crucial to notice that δdur can be far greater than the jobs’ duration. Hence while the algorithm
is computing new schedules, some jobs are started by the operators. In this case, the algorithm cannot produce new
schedules in which the start time of those jobs changes.

In our framework, we always have a current schedule, denoted scur, which is the schedule followed by the workers on the
shop floor. During the simulation, the current time is denoted tcur. There are two types of event which modify the data
of the problem solved by our algorithm:

(1) A new job is revealed;

(2) A job is fixed because its start time (more precisely the start of its setup-time) becomes lower than tcur + εfix;

These two events are consequences of different actors. (1) is linked with customers’ demands whereas (2) is the consequence
of the time clock. As soon as they happen, events are handle by the algorithm.

Anytime algorithm: The algorithm triggered after each event must be anytime, i.e., it improves the incumbent
solution in a continuous fashion until its execution is halted by a new event (or because it has proven that the incumbent
solution is optimal). Any algorithm introduced in chapter 2 can be used. However, in this chapter we focus on the
CPO − ACO algorithm as results described in section 6.2.8 show that this algorithm achieves good results on the
considered problem.

Handling of event (1): Whenever a new job j is revealed, the anytime algorithm is stopped. The new job is inserted
in the current schedule using a greedy insertion heuristic. It is important to ensure that the newly inserted job is such
that Bstj ≥ tcur + εfix, where Bstj is the start of the setup-time of j. In particular, if j is inserted on a machine i such
that the last job of i ends at tl with tl < tcur + εfix, then an idle time of duration tcur + εfix − tl must be introduced on
machine i between the end of its last job and the start of j. Once the new job’s insertion is ended, the anytime algorithm
can resume and produce new schedules (which contain job j).

Handling of event (2): Whenever the start of the setup-time of a job j, Bst,curj , in the current schedule is such that
Bst,curj ≤ tcur + εfix, the job j becomes fixed. It is removed from the free jobs list. Hence in every new schedule, the
value of the start and end times of j and its machine cannot changed.
The anytime algorithm continuously improves the free jobs’ start and end times to minimize the sum of jobs’ tardiness.
It ends at time h− εfix where h is the end of the day (the horizon).
Fig 8.2 shows an example of a current schedule, with the fixed variables and the free variables.

Insertion heuristic: The insertion heuristic used is the ATCS described in section 2.1. Hence, in the simplest case,
when a single job is revealed, it is scheduled at the end of the machine that ends the soonest. However, in most cases in
our data-set, jobs come in a batch (all jobs of one group are revealed together). In that case, we select the machine that
ends the soonest and the job that best fits this machine (according to the ATCS formula). We repeat the process until
all jobs are inserted.

Fixed jobs: The anytime algorithm knows the jobs which are fixed. Hence, this information must be exploited to
generate schedules that respect the fixed jobs.
For the CPO solver, each time a job j is fixed (with values Bj , Cj and Ij for its start time, end time, and machine),
we stop the solver, and we reduce the domain of the variable aj (which represents the job j see section 2.5.5 for more
information) so that it contains the only value Bj for the start time and only the value Cj for the end time, and we make
the interval aIjj present (to impose the machine of j).
There exist works that aim at removing the realized variables in order to speed up the search [EGS+20]. In our case, we
could have used such techniques by removing each job as soon as it is fixed and only memorizing the group it belongs to.
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i1 j1 j2 setup j3 j4

i2 j5 j6 j7 j8 setup j9 j10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

tcur

(a) At time tcur = 3 with εfix = 0, jobs j1, j2, j5 and j6 are fixed and the setup-time of job j3 starts, hence we also fix job j3
(fixed jobs have red borders).

i1 j1 j2 setup j3

i2 j5 j6

j4
j7

j8

j9
j10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0
1
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3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

(b) When we try to build new schedules (i.e., by re-ordering the free jobs), we remark that neither the green group nor the yellow
one is ended at time t = 10 when job j3 starts. Hence the three groups can potentially be active at time t = 10. Hence whenever
the anytime algorithm builds a new schedule, it must ensure that either the green group or the yellow one ends before t = 10.

j7

j8

j9setup : 4

setup : 3
setup : 2

(c) Ensuring that either the green group or the yellow one ends before t = 10 is not easy. Indeed, let us assume that one wants
to end the yellow group before t = 10. The three jobs j7, j8 and j9 must be executed between time t = 4 and t = 10. Because
of sequence-dependent setup-times between those jobs, to make the yellow group end before t = 10, one must find a permutation
of the unscheduled yellow jobs such that the sum of their durations plus the sum of their setup-times is lower or equal to 6. It is
equivalent to solving the decision version of the problem 1|sij |Cmax, which is known to be NP-Complete [Pin16]

Figure 8.3: A schedule with a fixed part, setup-times and a GC constraint. The GC constraint ensures that at most two
groups are active simultaneously.
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(b) Impact of the parameter δdur.

Figure 8.4: Impact of the two parameters εfix and δdur. Distribution of the inverse ratios irEODa,x for the different
considered approaches.

Also, whenever the last job of a group is fixed, we can remove all the information concerning that group. However, for
the sake of simplicity, we do not consider such techniques in this work.

Special case when considering setup-times and GC: As aforementioned, each time a new job j verifies Bst,curj ≤
tcur + εfix, j becomes fix. When combining setup-times and GC, the problem is more complicated. It is possible that
when we fix some jobs because their setup-times start, then finding a solution which respects those fixed jobs becomes
NP − complete problem. Such an example is illustrated in Fig 8.3.
Hence, to avoid this problem in our online execution, we impose that whenever we fix a job, we also fix all the jobs that
end during the execution of its setup-time. (In the example given in Fig 8.3 it means that when we fix job j3 we also fix
jobs j7, j8 and j9).

8.4 Experimental results
Performance measure: During one simulation, several problems are generated (one problem each time a new job is
revealed and each time a job is fixed). However we are only interested in the last generated schedule (and not in the
intermediate ones). Indeed, in the applicative context we are only interested in knowing, at the end of the day, the total
lateness over all the jobs for the realized schedule (and not for the intermediate ones). Let x be an instance and a an
algorithm, we denote xEODa (for End Of Day) the value of the sum of tardiness over all the jobs in the last realized
schedule. Similarly to what we do for the static case, we denote the reference solution xEOD,∗ the best solution found by
any of the considered algorithm (xEOD,∗ = min

a
xEODa ). We also compute the inverse ratio at time EOD, and we denote

it irEODa,x .

Results analysis: In Fig. 8.4a we compare the results for different values for εfix. For this experiment, the anytime
algorithm is run continuously. It means that it is never stopped between two arrivals of jobs. As expected, we see that
the greatest the value of εfix the worst the results (when εfix grows, the problems are more constrained, which generally
leads to worse solutions). However, we can observe that the gap between approaches grows dramatically as εfix grows.
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εfix = 1 εfix = 0

i1 j1 j2

i2 j3 j4
vi1 = 1

vi2 = 2

d1
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d2 d4

0 1 2 3 4 5 6 7

(a) At the first step, an initial schedule is computed whose total
tardiness is equal to zero. Hence this schedule is optimal.

i1 j1 j2

i2 j3 j4
vi1 = 1

vi2 = 2

d1
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d2 d4
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(b) The initial schedule is the same for both cases, as the problems are
identical.

i1 j1 j2

i2 j3 j4 j5
vi1 = 1

vi2 = 2

d1
d3

d2 d4d5

0 1 2 3 4 5 6 7

tcur εfix

(c) A second schedule is generated at t = 1 when job j5 is
revealed. At that time, with εfix = 1, the pink jobs are fixed.
Hence j5 is scheduled on i2 and has one unit of tardiness. This
schedule is optimal considering the fixed jobs.

i1 j1 j4

i2 j3 j2 j5
vi1 = 1

vi2 = 2

d1
d3

d2 d4d5

0 1 2 3 4 5 6 7 8 9 10

tcur = tcur + εfix

(d) At tcur = 1 with εfix = 0 jobs j2 and j4 are not fixed. Hence it is
possible to generate a schedule whose total tardiness is zero (jobs j4 and j2
are swapped and job j5 is scheduled at the end of i2)

i1 j1 j2 j6

i2 j3 j4 j5
vi1 = 1

vi2 = 2

d1
d3

d2 d4d5
d6

0 1 2 3 4 5 6 7

tcur εfix

(e) At tcur = 4 j6 is revealed and all the other jobs are fixed. j6
is scheduled on i1 and completed in time. So the total tardiness
of this schedule is equal to 1 (only j5 is late).

i1 j1 j4 setup j6

i2 j3 j2 j5 setup j6
vi1 = 1

vi2 = 2

d1
d3

d2 d4d5
d6

0 1 2 3 4 5 6 7 8 9 10

tcur = tcur + εfix

(f) At tcur = 4 with εfix = 0 all the jobs are also fixed. However, whichever
the machine for j6, a two units setup-time is needed (because in that case
j6 is either after j4 or j5). In either case, j6 has a lateness greater than 1.
So the schedule generated with εfix = 0 is worse than the one generated
with εfix = 1, even if all the intermediate generated schedules are optimal.

Figure 8.5: An example where a larger value for εfix leads to a better final schedule. The six jobs are j1 (resp. j2, j3, j4, j5 and
j6) whose processing time is 1 (resp. 4, 2, 6, 6 and 2), whose due-date is 1 (resp. 5, 1, 7, 6, 7) and release date is 0 (resp. 0, 0, 0,
1, 4). The machines are i1 (resp; i2) whose speed is 1 (resp. 2). On the left column εfix = 1 whereas on the right one εfix = 0.
The setup-times are all equal to zero except between j4 and j6 and between j5 and j6, where it is equal to 2.
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Figure 8.6: Comparison of static and dynamic cases

When the next hour cannot be changed (εfix = 3600), three quarters of the instances have an inverse ratio lower than
0.36. With lower values for εfix, the gap is more acceptable. For example, if only the next 5 minutes cannot be changed,
half of the instances have an inverse ratio greater than 0.70. Hence this shows that if a large part of the schedule is fixed,
then the quality of the schedule decreases dramatically. It should be put in comparison with the increase in nervousness
for the operators when changes in near futures occur (which is difficult to quantify)
It is also noticeable that, when εfix = 0, half of the instances have an inverse ratio lower than 0.95. One could expect
that with the lowest εfix the approach would always find the best solution. It is important to notice that, in some cases,
constraining the sub-problems can lead to better results, even if the algorithm is able to find an optimal solution for
every sub-problem. An example of such a case is depicted in Fig. 8.5. This can explain why the approach with εfix = 0
does not always find the reference solution.

In Fig. 8.4b, we compare the results for different values of δdur. As a reminder, each time a new job is revealed, we start
the anytime algorithm, and we let it run δdur seconds to find new (improving) schedules. For these simulation, εfix is
set to 0. Once again, as expected, we observe that the longer the processing, the better the results. However, the gap
between the approaches is less important than in the previous case. For example, when letting only 60 seconds after
each new job arrival, half of the instances have an inverse ratio greater than 0.69. Once again, the continuous approach
does not always find the reference solution. It could also be explained by the fact that finding intermediate sub-optimal
solutions sometimes lead to better results than always finding the optimal solution for each sub-problem.

8.5 Towards anticipation
Fig 8.6 compares the results for the dynamic case (with a continuous run and εfix = 0) and the static case for which all
jobs are known at the beginning of the day. We observe that the gap is important between the two cases, letting room to
improve the dynamic version of CPO−ACO. It is noticeable that for 114 instances (over the 548), the static algorithm
finds solutions worse than the dynamic one. Such a result can be explained by the time let to each algorithm. In the
static case, the algorithm is run for one hour. In the dynamic case, the algorithm is run several times on sub-problems,
but when considering the total time it can represent several hours.

Fig 8.7 shows the correlation between our instances. To build it we define a distance measure between our instances. To
do so, we first define a distance measure between two jobs (the exact definition of this distance is out of the scope of this
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thesis) and then, given two instances, we look for a perfect matching with minimal weight between the two sets of jobs
(adding some dummy jobs to the instance with the lowest number of jobs).

We observe some similarities between our instances, with subgroups among the instances. In particular, we observe
similarities between the instances which concern the same day of a week (Mondays are similar to Mondays, Tuesdays are
similar to Tuesdays, ...). We furthermore observe that Tuesdays and Thursdays also have similarities.

Exploiting these correlations by anticipating the jobs to come could help reduce the gap between dynamic and static
algorithms. Stochastic methods [HB06, BVH05, BVH04a] could be used to do so. In particular these methods compute
some statistics on the past day of work in order to anticipate the more probable scenarios.

8.6 Discussion
In this chapter, we first show the need of studying problems in a dynamic environment (because of the jobs’ arrival). We
also give a survey about dynamic approaches. Here, we are especially interested in evaluating the impact of preventing
the close future from changing. We remark that the longest the fixed part the worst the results. In particular, the
decrease in solution quality is really important when a long part of the schedule cannot move. We also evaluate the
impact of the computation duration. Finally we observe that the gap between static and dynamic results is considerable.
To fill this gap, we decide to measure the distance between our instances. We remark that there exists some regularities
in our data. Hence this can motivate the use of stochastic methods in order to solve our instances.
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Chapter 9

Conclusion

In this thesis, we aimed at solving real uniform parallel machine scheduling problems related to order preparation in
agrifood warehouses. Our solver is integrated within an ERP (Copilote, developed by Infologic) which is used in many
different kinds of warehouses. Hence, it must be able to handle different kinds of constraints and objective functions.
In particular, we have introduced the Group Cumulative constraint, which may be viewed as a cumulative constraint on
groups of jobs. We have studied the theoretical complexity of problems related to this constraint, and we have introduced
new algorithms for handling this constraint. These new algorithms are based on three main kinds of approaches (Ant
Colony Optimization, Tabu Search, and Constraint Programming), and hybrid approaches where ACO is combined with
Tabu Search or CP.

We have introduced a new benchmark, based on real data, for ten different scheduling problems, ranging from a simple
assignment problem, to more constrained problems with release and due dates, different machine speeds, sequence-
dependent setup times, breaks, and/or group cumulative constraints. We have experimentally evaluated and compared
twelve different algorithms on these ten problems, in order to study strengths and weaknesses of different solving ap-
proaches on various kinds of constraints. In particular, we have shown that exact approaches are very efficient for some
problems (e.g., Integer Programming for the assignment problem, or CP for scheduling problems with release and due
dates), whereas hybrid approaches are better suited for solving problems with more constraints (e.g., CPO-ACO for
problems with sequence dependent setup times, or ACO-Tabu for problems with both sequence dependent setup times
and breaks).

As our goal was to design a method which can be applied to solve all the scheduling problems faced by Copilote, and
because the best algorithm to use depends on the considered scheduling problem, we have evaluated the interest of using
an automatic algorithm selection approach called Llama. As a proof of concept on one of our ten problems, we have
shown that using Llama can lead to substantial benefits.

Finally, we also studied the applicability of our hybrid CPO-ACO to a dynamic scheduling problem where jobs are
revealed during the day. In particular, we have evaluated the impact of freezing jobs that have short term start dates (in
order to avoid stressing workers) on the objective function.

Perspectives
Comparing new algorithms: We compare essentially four algorithms (or family of algorithms): ACO, Local Search
(and especially Tabu Search), Linear Programming and Constraint Programming, plus two hybrids methods: CPO-ACO
and ACO-Tabu. It could be interesting to consider other approaches, especially genetic algorithm which are often used in
scheduling problems. We also observe that Linear Programming has bad results on our data-set, it could be interesting
to consider column generation which is also often used to solve scheduling problems. Another idea would consist in
evaluating the multi-threaded version of algorithms.
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Using GC with varying consumption: In the GCSP presented in this thesis, each group consumes one unit of the
cumulative resource. It could be interesting to study the case where each group can consume a different number of units
of the cumulative resource. Such a case should be interesting from an industrial point of view: here we consider that
only one pallet is used to send all the products of an order to the client. However, in some cases, several pallets are used
for a unique order.

Implementing a dedicated propagator: In order to consider the GC constraint in CPO we use a decomposition
of the constraint using the existing span and cumulative constraints. Another approach could consist in implementing a
propagator dedicated to the GC constraint.

Considering other constraints: We consider some constraints in this work. However there exist many other con-
straints that we do not consider. For example we could consider the case where the speeds of machines vary with time.
One perspective could be to consider those constraints. Another perspective could be considering multi-stage problems
and evaluating the methods presented here for these problems.

Considering other instance features: We consider some instance features in order to use automatic algorithm
selection. However we observe that there is room between the virtual best solver and llama. Maybe, by adding other
features to our instances we could improve the performance of automatic algorithm selection.

Extending automatic algorithm selection to all the considered scheduling problems: We study the interest
of automatic algorithm selection only on problem Q|rj , brkdwn, sjk, GCtight|

∑
Tg. It could be relevant to study it on

our whole data-set with the ten problems considered in chapter 6. In particular it would be interesting to see if learning
on a problem could help choosing efficient algorithms (or efficient parameters) for another problem.

Evaluating stochastic methods on our data-set: As stated in chapter 8, the gap between static and dynamic
algorithms is considerable. Moreover there exist regularities in our data-set and hence a part of the jobs to come could
be predictable. Hence, it could be interesting to evaluate stochastic methods on our benchmark.
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