
HAL Id: tel-03260833
https://hal.science/tel-03260833v1

Submitted on 15 Jun 2021 (v1), last revised 17 Jun 2021 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Acoustic foams with pore size distributions and
controlled interconnections:

Structures-properties-fabrication relationships
Cong Truc Nguyen

To cite this version:
Cong Truc Nguyen. Acoustic foams with pore size distributions and controlled interconnections:
Structures-properties-fabrication relationships. Mechanics of materials [physics.class-ph]. Université
Paris-Est (COMUE), FRA., 2021. English. �NNT : �. �tel-03260833v1�

https://hal.science/tel-03260833v1
https://hal.archives-ouvertes.fr


UNIVERSITÉ PARIS-EST SUP

École doctorale Sciences, Ingénierie et Environnement

THÈSE
pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ GUSTAVE EIFFEL
Spécialité: Mécanique

Présentée par

Cong Truc NGUYEN

Mousses acoustiques à distributions de tailles de pores et
interconnexions contrôlées:

Relations structures, propriétés, fabrication

Soutenue le 26 mai 2021 devant le jury composé de

O. DOUTRES

M.-A. GALLAND

C. PERROT

J. GUILLEMINOT

F. DETREZ

V. LANGLOIS

E. SADOULET-REBOUL

F. SGARD

A. DUVAL

B. VANDAMME

Ecole de Technologie Supérieure (CA)

Ecole Centrale de Lyon (FR)

Université Gustave Eiffel (FR)

Duke University (USA)

Université Gustave Eiffel (FR)

Université Gustave Eiffel (FR)

Université de Franche-Comté (FR)

IRSST (CA)

CERA - Trèves group (FR)

EMPA (CH)

Rapporteur

Rapportrice

Directeur

Co-directeur

Co-encadrant

Co-encadrant

Examinatrice

Président

Invité

Invité

Laboratoire Modélisation et Simulation Multi Echelle MSME UMR 8208 CNRS





Résumé

Les mousses sont utilisées fréquemment notamment en raison de leurs propriétés d’absorption
et d’isolation sonore. Les exigences accrues en matière de réductions d’émissions de CO2 com-
binées à des exigences de performances acoustiques, thermiques, et de tenue au feu impliquent
un effort significatif tourné vers l’allègement des traitements acoustiques—à performances égales
ou supérieures. L’introduction de particules fines lors du processus de moussage, réalisée afin
d’améliorer la tenue au feu, perturbe les sites de nucléation, ce qui conduit à la production de
microstructures désordonnées où coexistent localement des cellules de tailles très contrastées. Ce
travail de thèse traite de la construction d’outils numériques pour la modélisation du comportement
acoustique de mousses polydisperses à partir d’une démarche multi-échelle et multi-physique.
L’objectif principal est de pouvoir développer des relations entre la géométrie locale et le macro-
comportement acoustique, afin de pouvoir guider la fabrication de mousses dans le but d’optimiser
leurs performances acoustiques. Nous nous intéressons plus particulièrement au cas de mousses
qui, présentant une forte hétérogénéité locale de tailles de pores, ne peuvent être décrites par une
cellule périodique idéalisée (modèle déterministe). Des techniques d’imagerie avancées (microto-
mographie axiale à rayons-X et microscopie électronique à balayage) sont utilisées, dans un pre-
mier temps, pour identifier les caractéristiques morphologiques des microstructures étudiées. Les
caractéristiques géométriques obtenues sont ensuite modélisées afin de reconstruire des partitions
spatiales proches de celles mesurées. La perméabilité visqueuse, paramètre clé au regard de la
détermination des propriétés acoustiques, est estimée par une simulation de type "pore-network".
Nous quantifions, au travers de telles simulations, que la perméabilité d’une mousse est forte-
ment influencée, non seulement par la présence des membranes, mais aussi par la variation de la
taille des pores. L’effet de l’épaisseur de membrane sur les paramètres visqueux (longueur carac-
téristique visqueuse et tortuosité) décrivant le comportement asymptotique haute fréquence est, de
plus, finement étudié. Les résultats obtenus montrent, en particulier, qu’il est possible de modéliser
l’effet de l’épaisseur de membranes minces par des membranes virtuelles sans épaisseur pour le
calcul de la longueur caractéristique visqueuse. Enfin, les propriétés acoustiques d’un échantillon
réel de mousse ayant une distribution étendue de tailles de pores sont modélisées. Une bonne
concordance avec les données expérimentales obtenues à partir d’un tube d’impédance confirme
la validité de la méthode proposée.

Mots-clés: Mousses acoustiques, microstructures, distribution étendue de tailles de pores,
mousse polydisperse, méthode multi-échelle.
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Abstract

Foam materials are frequently used in engineering applications, due to their absorption and sound
insulation properties. At the same time, the evolution of CO2 emission goals, together with new
standards for acoustic, thermal, and fire resistance performance, calls for further developments that
seek to reduce the impact of acoustic treatments—while maintaining, or even improving, global
performance. Fine particles are usually introduced during the foaming process to improve fire
resistance. By disrupting the nucleation sites, this procedure leads to disordered microstructures
where cells of very different sizes coexist locally. This thesis work deals with the construction
and experimental validation of a computational multi-scale-informed framework for modeling the
acoustic behavior of polydisperse foams. The main objective is to model the relationships between
the local foam geometry and the acoustic behavior exhibited at macroscale, with a view towards
devising foam manufacturing conditions under acoustic performance targets. Here, we restrict
our attention to the case of foams which present strong local heterogeneities in terms of pore
sizes and therefore cannot be described by a deterministic unit cell. Advanced imaging techniques
(namely, axial X-ray microtomography and scanning electron microscopy) are first deployed to
identify relevant morphological characteristics on the studied microstructures. The geometrical
properties thus obtained are then used in order to reconstruct spatial partitions consistent with the
observations. The viscous permeability, which is a key parameter for the determination of acoustic
properties, is estimated through "Pore-Network" simulations. The numerical predictions show that
the permeability of a foam is strongly influenced, not only by the presence of membranes, but also
by the variation of pore sizes. The effect of membrane thickness on viscous parameters (i.e.,
the viscous characteristic length and the tortuosity) describing the asymptotic behavior at high
frequencies is also thoroughly studied. For the calculation of the viscous characteristic length, the
results show that the effect of thin-membrane thickness can equivalently be modeled by virtual
membranes without thickness. Finally, the acoustic properties of a real foam sample presenting a
wide pore size distribution are modeled. Good agreement with experimental data obtained from
an impedance tube is observed, which supports the relevance of the proposed approach.

Keywords: Acoustic foams, microstructures, wide pore size distribution, polydisperse foam,
multiscale method.
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CHAPTER I. GENERAL INTRODUCTION

I.1 Industrial context

Porous materials such as cellular foams (which consist of a frame structure with an interstitial fluid,
e.g., air, filling the voids) are well known for their good sound absorption and thermal insulation
qualities. As a consequence, they are widely used in industrial applications such as construction
and transport (automobile, rail, aeronautics, etc.). In the automotive industry for example, porous
materials appear frequently in the cabin, the trunk, the engine bay and the body in order to reduce
noise pollution and improve users’ comfort (see Fig. I.1).

Figure I.1: Use of porous materials in automotive industry. Photo source: TREVES website.

New environmental (e.g., CO2 emission) standards for sustainable development, combined
with constraints on acoustic, thermal, and flame retardant performance, have led manufacturers to
increasingly lighten materials. This evolution comes in parallel with the ongoing replacement of
fibrous media by foams due to public health concerns, since fibers with diameters of less than 6µm
are likely to be carcinogenic (if not bio-soluble). These public health objectives and environmental
standards thus play a crucial role in the deployment of innovative solutions, while lightening and
improving the insulation character are antagonistic elements in acoustics.

In this context where solutions by trial-and-error prove to be costly and ineffective, multi-scale
and multi-physics approaches leading to a detailed understanding of the involved physics become
inevitable. Thus, significant efforts have been made over the last decades to define multi-physics
models of acoustic foams, through i) the identification of idealized microstructures, ii-1) the res-
olution of boundary value problems governing physical phenomena of interest at the local scale,
ii-2) solution field averages leading to the calculation of macroscopic parameters, iii) experimental
validation comparing the calculated macroscopic parameters with properties measured on physical
samples. Such a multi-scale approach has led to substantial progress allowing both a better under-
standing of the physical origin of the visco-thermal and visco-elastic structural dissipation effects,
and also helped engineers design the new generation of insulation systems. Indeed, multi-scale
approaches enable the chemist and the acoustic engineer to work in a synergistic manner, using
microstructural information, and to converge towards an optimal acoustical material design.

In order to improve the flame retardant of acoustic foams, fine particles are often introduced
during the foaming process. An unanticipated effect of the introduction of these fine particles
is to disrupt the nucleation sites, leading to disordered microstructures where locally bubbles of
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very contrasting sizes coexist. These new candidates have proved to be interesting from an acoustic
point of view, paving the way for the development of new generation insulating systems. However,
the coexistence of very contrasting bubble sizes leads to local heterogeneity, and the representative
volume element (RVE) can no longer be obtained by means of a single cell capable to reproduce
most of physics.

Additionally, in the highly competitive context of the automotive industry, partnership research
is an asset that makes it possible to identify scientific and technological issues or obstacles to
be overcome while constituting interdisciplinary and complementary work teams (chemistry and
processes on the one hand, computational mechanics on the other). Therefore, this thesis work is
dedicated to the modeling of acoustic foams with random distribution of pore size and membranes
in the industrial-academic partnership between TREVES Products Services & Innovation (CERA
- Centre d’Étude et de Recherche pour l’Automobile du groupe Trèves) and the Laboratory of
Multi-scale Modeling and Simulation (UMR 8208 CNRS), Paris-Est Marne-La-Vallée University,
France, under CIFRE agreement No. 2017/1098.

I.2 Scientific context

Acoustic properties of porous materials such as foams are driven by the structural and visco-
thermal dissipation of the sound propagation in these materials. In order to describe these behav-
iors, several approaches are proposed.

The empirical approach is not only the simplest but also the most used. It is based on obser-
vations and experimental characterizations to identify the empirical laws that can be used for the
analysis of acoustic properties. The most famous empirical model was proposed by Delany and
Bazley in 1970 [27] in which the characteristic impedance and the complex wave number depend
on ratio between frequency and air flow resistivity by power laws. Miki [69] proposed an improve-
ment of the behavior at low frequencies, thus making it possible to ensure a positive and physical
value of the characteristic impedance. An additional correction was proposed by Beranek and Ver
[100]. Allard and Champoux [3] derived another empirical model in which the dynamic density
and the dynamic compressibility are defined with an additional validation at low frequencies. In
general, empirical models are easy to use. However, they are generally limited to a specific class
of materials and are not adapted to the optimization of microstructures.

Semi-phenomenological approaches make it possible to determine the acoustic behavior of
materials from analytical solutions associated with simple geometries by introducing one or more
form factors to describe the dependence on more complex local geometries. An analytical solution
for a network of parallel circular cylindrical pores was developed by Zwikker and Kosten [111]
by treating viscous and thermal effects separately. Biot (1956a,1956b) [8, 7] developed a theory
on the propagation of elastic waves in a saturated porous medium having a deformable and elastic
skeleton. A semi-phenomenological model describing viscous-inertial mechanisms with a rigid
frame assumption was derived in the work of Johnson, Koplik and Dashen [49], it was then refined
by Pride [79]. Effect of thermal dissipation was carried out by Champoux and Allard [20] as well
as Lafarge et al. [56]. Biot’s theory can be used to take account of structural dissipation [47].
The inputs of these approaches are macroscopic parameters having a physical significance linked
to the low or high frequency asymptotic behaviors of the porous medium involved and giving a
physical understanding of the porous material behavior. Originally, input macroscopic parameters
are measured by experiments.

Based on the homogenization theory of periodic structures, the equations governing properties
of fluid in porous media, i.e., a coupled visco-thermal problem, can be solved by two uncoupled
viscous-thermal problems performed on a RVE [110]. This approach links material microstructure
features to their acoustical behavior. However, since the calculations must be carried out for the full
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interested range of frequencies, main limits of this approach lie on computational cost, particularly
in the case of three-dimensional geometry, the most useful for the study of optimal microstructures.
Nevertheless, the low and high frequency asymptotic solution of this approach could give the input
parameters of semi-phenomenological models (instead of direct measurements). Such an approach
is called a hybrid multi-scale method and it is most promising for our work.

Using one of the above approaches, several studies were carried out on the effect of microstruc-
tural features on the acoustic performance of foams. It was shown in a series of works by Hoang
et al. [76, 94, 95, 45, 46] that the average pore size governs acoustic properties of open-cell foams
with narrow pore size distributions. For a wider distribution of pore size, the acoustical behav-
ior is controlled by critical pore sizes that are deduced from porosity and viscous permeability.
When the foams have fully or partially closed membranes, additional identification of membrane
content is necessary. In these works as well as in Park et al. [75], the effect of membranes was
studied via aperture ratio (or closure rates) through a hybrid multi-scale method. By using semi-
phenomenological approaches with an empirical link of foam microstructure and non-acoustic
properties as in the works of Doutres et al. [29, 30] or by numerical homogenization as in Park’s
work, effect of closed membranes was also investigated. Recently, by using different approaches
both without and with elasto-acoustic coupling, Trinh et al. [97] and Gao et al. [37] showed
the importance of taking into account both the fraction of closed membranes and aperture ratio
of open ones for the acoustic modeling of the foams having both fully closed and partially open
membranes. All of the above works study the effect of membranes content on foam absorption.
However, it could be seen that these works were carried out mainly on the basis of one or a net-
work of single pore size, i.e., Kelvin or Weaire-Phelan cell structure. One may observe that the
effects of polydispersity on the mechanical behavior of cellular foams can be found in the litera-
ture [81, 64, 66, 39, 67] but their effects on acoustic properties of foam with complex membrane
contents, i.e., both fully closed and partially closed membranes, are still to be elucidated.

I.3 Study objectives

The next key step is to control a random distribution of pore size and their interconnections (mem-
brane sizes). The main objective of this thesis is to model the acoustic behavior of heterogeneous
or chaotic foams (random wide distribution of pore size and interconnections in a restricted RVE)
through the multi-scale approaches in order to assess the dependence of transport and acoustic
properties of material as a function of microstructure parameters. The obstacles to be removed
remain in particular on the morphological modeling of complex RVE, the computational cost of
which increases rapidly with the number of cellular pores treated. To find a compromise aimed at
capturing physics without resorting to prohibitive computing times, the following steps are neces-
sary:

1. Acquisition: The first step consists in acquiring the characteristics of the local geometry of
the acoustic foams studied. An approach combining axial X-ray microtomography (µCT)
and analysis of images obtained by scanning electron microscopy (SEM) will be used. These
two techniques are complementary [37]. The µCT is well suited to the determination of pore
size distributions. However, its resolution is insufficient to estimate the sizes of interconnec-
tions and their distribution. By performing sections on two orthogonal planes of the foam
samples studied, SEM images allow us to study the sizes of interconnections between pores
by local estimation of the membrane apertures ratio and their distributions. Even if this last
technique is destructive and can damage the membranes on the section plane, the SEM im-
ages have the particularity of being acute over a large depth of field, which allows to finely
characterize the first undamaged layer.
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2. Reconstruction: Using data from the microstructure of foam samples, simplified three-
dimensional cell models will be reconstructed based on the Laguerre tessellation. To reduce
the computational cost, ligaments system and thickness of membranes will not be modeled.

3. Calculation of acoustic properties through a hybrid multi-scale method with the search of
low computational cost techniques of the calculations in order to allow computational esti-
mates on reconstructed microstructures containing a large number of heterogeneous cells.

4. Validation using laboratory experiments: acoustic properties of virtual samples character-
ized from the above mentioned steps will be compared with experimental data independently
measured from a three-microphones impedance tube in order to validate the proposed multi-
scale approach.

This thesis is organized as follows. Chapter II is devoted to a literature review on numerical
approaches for the acoustic properties calculation of porous media. The microstructure of a real
polydisperse foam is characterized and reconstructed in chapter III. As a key parameter of trans-
port and acoustic properties, the permeability of polydisperse foams is studied in chapter IV. In
chapter V, effect of membrane thickness on the viscous characteristic length is investigated. In
order to deal with computational cost, a calculation technique of this characteristic length from an
equivalent geometry of zero-thickness membranes is proposed. Chapter VI presents the simulation
of the acoustic behavior of a real polydisperse foam sample. Finally, a general conclusion of the
thesis and some perspectives for future work are presented in chapter VII.
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CHAPTER II. NUMERICAL APPROACH FOR SOUND ABSORPTION OF POROUS
MEDIA

II.1 Introduction

In this thesis, we are particularity interested in the sound absorption coefficient which represents
the proportion of the sound energy that an acoustical layer is able to absorb. In the case of a porous
layer of finite thickness in contact with air on its front face and fixed to a rigid impervious wall on
its rear face, the sound absorption coefficient is related to the surface reflection coefficient R (ω)
which is the ratio of the pressures created by the outgoing (p′(M)) and the ingoing waves (p(M))
at the surface of the porous layer (Fig. II.1). The sound absorption coefficient at normal-incident
(SACNI) corresponds to the ingoing waves perpendicular to the surface of the porous layer. The
SACNI varies from 0 for total reflection to 1 for total absorption.

SACNI (ω) = 1−
∣∣R (ω)

∣∣2 = 1−
∣∣∣∣p′(M)

p(M)

∣∣∣∣2 . (II.1)

H

Porous
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Figure II.1: The normal-incident waves in a porous layer of thickness H backed by a rigid
impervious wall.

In this chapter, a bibliographical revision about numerical approaches to the acoustic proper-
ties of porous materials is provided. Firstly, the sound propagation in rigid-frame porous media
will briefly be described by the governing equations. By applying the two-scale asymptotic ho-
mogenization method which is based on periodicity, the sound propagation will be written as a
Helmholtz equation and the air saturating in porous media will be considered as an equivalent fluid
having complex properties, i.e., mass density and bulk modulus. Then the semi-phenomenological
models will be presented, their input parameters will be calculated from an approximation of three
asymptotic behaviors of equivalent fluids: static viscous, inertial and static thermal. Therefore, the
SACNI of rigid-frame porous layer can be computed. Finally, the Biot’s theory will be introduced
with assuming complex properties of equivalent fluid to predict the sound absorption coefficient at
normal-incident of a porous material having an elastic frame.

II.2 Direct simulation

In a harmonic regime, the flow of a compressible fluid (air) saturating pore domain Ωf of a porous
medium Ω with rigid skeleton is described by the linearized Navier-Stokes-Fourier equations [47,
110] including the mass conservation II.2a, momentum conservation II.2b, energy conservation
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II.2c and the equation of state II.2d:

ρ0∇ · u + iωρ = 0 in Ωf , (II.2a)

η

(
∇2u +

1

3
∇ (∇ · u)

)
−∇p = iωρ0u in Ωf , (II.2b)

κ∇2T = iωρ0CpT − iωp in Ωf , (II.2c)
p

P0
=

ρ

ρ0
+
T

T0
in Ωf , (II.2d)

in which u, p, ρ and T are the fluid velocity, pressure, density and temperature, respectively.
The dynamic viscosity, thermal conductivity, and heat capacity at constant pressure of the air
are denoted by η, κ and Cp, respectively. ρ0 is the air density at the ambient pressure P0 and
temperature T0. The angular frequency ω = 2πf with f is the frequency, i is the imaginary
unit. The above equations describe a coupled visco-thermal problem in the porous medium. The
direct simulation solves this problem on the fluid domain Ωf of whole porous layer (thickness H)
attached to a rigid wall and an adjacent thin layer of air (thicknessHa) is added to put a plane wave
source with adiabatic pressure condition (see Fig. II.2). The no-slip and isothermal conditions are
imposed on both the fluid-solid interface ∂Ω and the rigid wall:

u = 0, (II.3a)

T = 0. (II.3b)

Air Porous material
R

ig
id

 w
a
ll

Ha H

Adiabatic
pressure

Figure II.2: Direct simulation schema.

The simulation gives the complex-valued solutions of u, p, ρ and T for each frequency ω.
There, the SACNI of the porous material SACNI (ω) is computed by:

SACNI (ω) = 1−
∣∣∣∣Zs (ω)− Z0

Zs (ω) + Z0

∣∣∣∣2 , (II.4)

where the surface acoustic impedance Zs (ω) = p (ω) /u (ω) can be computed at any single point
on the external boundary of the adjacent air layer and Z0 is the impedance of air [110].

This method is computationally very demanding since it requires solutions for each frequency
and the simulation has to be performed on a large fluid domain even when the symmetrical proper-
ties of porous material are taken into account by applying the periodic or symmetric conditions on
the lateral fluid boundaries. Therefore, it is suitable for the models of 2D or 3D simple geometries.
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II.3 Homogenization of rigid-frame porous media

In this section, we will recall how the sound propagation in a porous media is described by us-
ing the two-scale asymptotic homogenization method [48] based on periodicity. Let us consider
a periodic porous material in which the size of local heterogeneities determines a microscopic
characteristic length l and the sound wavelength λ determines a macroscopic characteristic length
L = λ/2π. The condition of scale separation is assumed, i.e., ε = l/L� 1.

L l

Ωf

∂Ω

a) b)

Figure II.3: Macroscopic scale description a) and microscopic scale description b) of a periodic
porous media.

The two-scale asymptotic procedure is as follows:

1. Introduce two independent space variables: x for macroscopic scale description and y =
ε−1x for microscopic scale description. The physical variables are function of x and y,
given as:

u = u(0) (x, y) + εu(1) (x, y) +O
(
ε2
)
, (II.5a)

p = p(0) (x, y) + εp(1) (x, y) +O
(
ε2
)
, (II.5b)

T = T (0) (x, y) + εT (1) (x, y) +O
(
ε2
)
, (II.5c)

2. The gradient operator can be modified as: ∇ = ∇x + ε−1∇y, the viscosity and conductivity
coefficients are rescaled by ε2 [10]:

η = ε2η(2), (II.6a)

κ = ε2κ(2). (II.6b)

3. Substitution of asymptotic series of physical variables in Eqs. II.5a-II.5c, gradient opera-
tor, and scaled parameters in Eqs. II.6a-II.6b into governing equations II.2a-II.2d and into
boundary condition equations II.5a - II.5c. Then, the terms of same order of ε are identified.
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At ε−1:

∇yp(0) = 0 in Ωf , (II.7)

∇y · u(0) = 0 in Ωf , (II.8)

u(0) = 0 on ∂Ω, (II.9)

T (0) = 0 on ∂Ω. (II.10)

At ε0:

η(2)∇2
yu(0) −∇yp(1) = iωu(0) +∇xp(0) in Ωf , (II.11)

κ(2)∇2
yT

(0) = iωρ0CpT
(0) − iωp(0) in Ωf , (II.12)

∇x · u(0) +∇y · u(1) + iω

(
p(0)

P0
− T (0)

T0

)
= 0 in Ωf . (II.13)

Equation II.7 means that at leading order, the pressure is purely macroscopic, i.e., pressure p(0)

depends only on x: p(0) = p(0) (x).
The dynamic Stokes flow cell problem is identified from Eqs. II.8, II.9 and II.11. At a given

frequency, linear relationships between the macroscopic pressure gradient and velocity u(0) and
between the macroscopic pressure gradient and local pressure p(1) are assumed [62, 5, 56]:

u(0) (x, y) = −
k̃ (y, ω)

η(2)
· ∇xp(0) (x) , (II.14)

p(1) (x, y) = −χ̃ (y, ω) · ∇xp(0) (x) + p̄(1) (x) , (II.15)

where k̃ (y, ω), χ̃ (y, ω) are a local tensor and a local vector, respectively, p̄(1) (x) is a constant.
k̃ (y, ω), χ̃ (y, ω) are Ω-periodic fields, i.e. satisfy the condition of periodic continuity on the
corresponding fluid boundaries lying on the opposite faces of the periodic cell Ω.

Now, we define an averaging operator:

〈·〉 =
1

Ω

∫
Ωf

(·) dV =
φ

Ωf

∫
Ωf

(·) dV = φ〈·〉f . (II.16)

Here, 〈·〉f = 1
Ωf

(·) dV is the fluid-phase average, φ = Ωf/Ω denotes the porosity. By applying

the operator II.16 to Eq. II.15, we have: 〈χ̃ (y, ω)〉 = 0 due to p̄(1) (x) is a constant field. Similarly,
with Eq. II.14:

〈u(0) (x, y)〉 = −
〈k̃ (y, ω)〉
η(2)

· ∇xp(0) (x) . (II.17)

This is dynamic Darcy’s law [5] where the dynamic viscous permeability tensor K (ω) is calculated
by:

K (ω) = 〈k̃ (y, ω)〉 = φ〈k̃ (y, ω)〉f , (II.18)

and the Darcy’s velocity:

U (x) = 〈u(0) (x, y)〉 = φ〈u(0) (x, y)〉f . (II.19)
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In the case where an isotropic wave propagation in isotropic media or a plane-wave propagation
in the preferential direction defined by a unitary vector e is considered, the dynamic viscous per-
meability function is computed as:

K (ω) =
(

K (ω) · e
)
· e =

(
〈k̃ (y, ω) · e〉

)
· e = 〈k̂ (y, ω)〉 · e = φ〈k̂ (y, ω)〉f · e. (II.20)

Here, k̂ (y, ω) = k̃ (y, ω) · e is the component vector of tensor k̃ (y, ω) projected onto direction
e. Similarly, we have the projection of the vector χ̃ (y, ω) onto e: χ̂ (y, ω) = χ̃ (y, ω) · e. Let us
formally choose the locally-constant pressure gradient: ∇xp(0) = ‖∇xp(0)‖e. Thus, the velocity
u(0) and local pressure p(1) can be rewritten from Eqs. II.14, II.15:

u(0) = − k̂
η(2)
‖∇xp(0)‖, (II.21)

p(1) = −χ̂‖∇xp(0)‖+ p̄(1) (x) . (II.22)

Inserting Eqs. II.21, II.22 into the Eqs. II.11, II.8 and II.9, we obtain the scaled dynamic Stokes
cell problem reformulated with no-slip boundaries:

iωρ0

η(2)
k̂−∇2

yk̂ +∇yχ̂ = e in Ωf ,

∇y · k̂ = 0 in Ωf , (II.23)

k̂ = 0 on ∂Ω

k̂ and χ̂ are Ω-periodic.

In these equations, the scaled-velocity k̂ has unit of permeability (m2) and the scaled-pressure χ̂
has unit of length (m).

The heat conduction cell problem describing heat diffusion effects is identified from Eqs. II.12,
II.10. The solution of unknown temperature T (0) can be given as [62, 56]:

T (0) (x, y) =
k̃′ (y, ω)

κ(2)
iωp(0) (x) , (II.24)

in which k̃ (y, ω) is a local Ω-periodic scalar. The application averaging operator II.16 to Eq. II.24
yields:

〈T (0) (x, y)〉 =
〈k̃′ (y, ω)〉
κ(2)

iωp(0) (x) . (II.25)

This equation defines the dynamic thermal permeability function K′ (ω) [56]:

K′ (ω) = 〈k̃′ (y, ω)〉 = φ〈k̃′ (y, ω)〉f . (II.26)

Inserting Eq. II.24 into Eqs. II.12, II.10 leads to the scaled dynamic thermal diffusion problem
with isothermal boundaries:

iωρ0

κ(2)
k̃′ −∇2

yk̃
′ = 1 in Ωf ,

k̃′ = 0 on ∂Ω, (II.27)

k̃′ is Ω-periodic.

The scaled-temperature k̃′ has unit of permeability (m2).
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By applying the averaging operator II.16 into three terms of Eq. II.13, we have:

〈∇x · u(0)〉 = ∇x · 〈u(0)〉 = ∇x · U (x) , (II.28a)

〈∇y · u(1)〉 = 0, (II.28b)〈
iω

(
p(0)

P0
− T (0)

T0

)〉
= iω


〈
p(0)
〉

P0
−

〈
T (0)

〉
T0

 · · ·
= iω

φ

P0

(
1− P0

T0

iω

κ(2)

〈
k̃′ (y, ω)

〉
f

)
p(0) (x) · · ·

= iω
φ

P0

(
1− P0

T0

iω

φκ(2)
K′ (ω)

)
p(0) (x) . (II.28c)

Thus, Eq. II.13 becomes:

∇x · U (x) + iωB−1
ef (ω) p(0) (x) = 0. (II.29)

This equation describes the harmonic sound propagation in a homogenized porous media having
the effective bulk modulus Bef :

Bef (ω) =
P0

φ

(
1− P0

T0

iω

φκ(2)
K′ (ω)

)−1

. (II.30)

In the case of an isotropic sound wave or a plane-wave propagating in the preferential direction,
we have the dynamic viscous permeability tensor: K (ω) = K (ω) δij where δij is the Kronecker
delta and the Darcy’s velocity given by:

U (x) = −K (ω)

η(2)
∇xp(0) (x) . (II.31)

The Eq. II.29 becomes the Helmholtz equation [47]:

∇2
xp

(0) (x) + ω2 ρef (ω)

Bef (ω)
p(0) (x) = 0, (II.32)

where the effective density ρef is given by:

ρef (ω) =
η(2)

iωK (ω)
, (II.33)

thus, the effective wave number δef , the effective sound speed cef and the effective characteristic

impedance Zef are identified by the well-known relations: δef = ω
ρef
K , cef =

√
Bef
ρef

and Zef =

ρefcef . The sound absorption of a porous layer of thickness H at normally-incident wave backed
by impervious rigid wall can be estimated as:

SACNI (ω) = 1−
∣∣∣∣Zs (ω)− Z0

Zs (ω) + Z0

∣∣∣∣2 , (II.34)

where Zs (ω) is the surface impedance, given by:

Zs (ω) = −i
Zef (ω)

φ
cot
(
δef (ω)H

)
. (II.35)
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In summary, it can be shown that the effective (complex-valued) properties (δef , ρef , Bef , ...)
of a porous media are determined if we know a response function related to viscous effect, for
example: the dynamic viscous permeability K (ω), and a response function related to thermal
effect, for example: the dynamic thermal permeability K′ (ω). Both of K (ω) and K′ (ω) can
be obtained numerically by averaging over the RVE of k̂ and k̃′, i.e., K (ω) = φ

〈
k̂ (ω) · e

〉
f
,

K′ (ω) = φ
〈
k̃ (ω)

〉
f

which are the solutions of scaled dynamic Stokes problem II.23 and scaled

thermal diffusion problem II.27, respectively. This approach requires the calculations for a set of
frequency ω and is also known as the direct multiscale method.

II.4 Semi-phenomenological models and hybrid multiscale method

As demonstrated above, the acoustic behavior of rigid-frame porous media can be determined
using a pair of complex response functions, one characterizes the viscous effect and the other con-
cerns the thermal effect. The semi-phenomenological models propose the analytical expressions
of the frequency dependent visco-inertial and thermal responses of porous media via effective
dynamic density ρef (ω) and effective dynamic bulk modulus Bef (ω).

In 1987, by introducing four transport parameters: the open porosity φ, the static air flow resis-
tivity σ, the high-frequency tortuosity α∞ and the viscous characteristic length Λ, Johnson Koplik
and Dashen [49] presented a semi-phenomenological model to describe the effective dynamic den-
sity ρef (ω) of a porous material with arbitrary pore shapes having a motionless skeleton:

ρef (ω) =
α∞ρ0

φ

1 +
φσ

iωα∞ρ0

√
1 + i

4α2
∞ηρ0ω

σ2Λ2φ2

 , (II.36)

where σ = η/k0 is the flow resistivity of fluid and k0 is the static viscous permeability. In 1991,
based on the previous work of Johnson et al., and by adding the thermal characteristic length Λ′,
Champoux and Allard [20] proposed a formula of the effective dynamic bulk modulus Bef (ω) to
describe the thermal effect for the same kind of porous material:

Bef (ω) =
γP0

φ

γ − (γ − 1)

[
1− i 8κ

Λ′2Cpρ0ω

√
1 + i

Λ′2Cpρ0ω

16κ

]−1

−1

, (II.37)

where γ is the specific heat ratio of the pore fluid. The formulas II.36 and II.37 describing visco-
inertial and thermal dissipative effects with five transport parameters (φ, σ, α∞, Λ, Λ′) constitute
the Johnson-Champoux-Allard (JCA) model.

The expression of Bef (ω) given by Champoux and Allard is then modified in 1993 by Lafarge
et al. [56] who highlight a lack of information at low frequencies for thermal effects by introducing
a new parameter, the static thermal permeability k′0, in order to describe the low frequency behavior
of thermal effects:

Bef (ω) =
γP0

φ

γ − (γ − 1)

1− i φκ

k′0Cpρ0ω
√

1 + i
4k′20 Cpρ0ω
κΛ′2φ2


−1

−1

. (II.38)

The formulas II.36 and II.38 together with 6 transport parameters, i.e., 5 parameters as in the
JCA model plus the static thermal permeability k′0 define the Johnson-Champoux-Allard-Lafarge
(JCAL) model.
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Finally, in the Johnson-Champoux-Allard-Pride-Lafarge (JCAPL) model, visco-inertial dissi-
pative effects inside the porous media are refined by Pride et al. (1993) [79] by introducing a new
macroscopic parameter, the static viscous tortuosity α0, to improve the low-frequency asymptotic
behavior of viscous dissipations. In 1997, D. Lafarge [56] also corrected the low frequency behav-
ior of heat dissipation by adding the static thermal tortuosity α′0. Thus, the final expressions for
ρef (ω) and Bef (ω) obtained as

ρef (ω) =
ρ0α∞
φ

1 +
ηφ

iωρ0k0α∞

1− P + P

√
1 +

M

2P 2

iωρ0k0α∞
ηφ


 , (II.39)

Bef (ω) =
γP0

φ

γ − (γ − 1)

1 +
φκ

iωρ0Cpk′0

1− P ′ + P ′

√
1 +

M ′

2P ′2
iωρ0Cpk′0

φκ



−1

−1

,

(II.40)

where M , P , M ′, P ′ are non-dimensional factors, given by

M =
8k0α∞
φΛ2

, P =
M

4
(
α0/α∞ − 1

) , (II.41)

M ′ =
8k′0
φΛ′2

, P ′ =
M ′

4
(
α′0 − 1

) . (II.42)

Notice that the JCAPL model requires a set of 8 transport parameters: 6 parameters as in the JCA
model plus the static viscous tortuosity α0 and the static thermal tortuosity α′0. Also, the JCA and
JCAL models can be obtained from the JCAPL one by setting, respectively, M ′ = P = P ′ = 1
and P = P ′ = 1.

Recently, the three semi-phenomenological models previously described are being widely used
to characterize various poro-acoustical materials. Below, we will present how to numerically
determine the input transports parameters.

The open porosity φ and the thermal characteristic length Λ′ are pure geometrical parameter
and their calculations are obvious:

φ = Ωf/Ω, (II.43)

Λ′ = 2

∫
Ωf
dV∫

∂Ω dS
. (II.44)

The static viscous permeability which is defined by k0 = limω→0

(
K (ω)

)
is obtained by

resolving the scaled dynamic Stokes problem II.23 for ω → 0:

−∇2
yk̂0 +∇yχ̂0 = e in Ωf ,

∇y · k̂0 = 0 in Ωf , (II.45)

k̂0 = 0 on ∂Ω,

k̂0 and χ̂0 are Ω-periodic,

and then, k0 = φ
〈

k̂0 · e
〉
f
. The static viscous tortuosity α0 is also calculated:

α0 =

〈
k̂0 · k̂0

〉
f〈

k̂0

〉
f
·
〈

k̂0

〉
f

. (II.46)
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Eq. II.45 describe a scaled Stokes problem for a steady-state viscous flow.
By definition, the high-frequency viscous tortuosity is given as α∞ = limω→∞

(
α (ω)

)
where

α (ω) is the dynamic viscous tortuosity defined as:

α (ω) =
φρef (ω)

ρ0
=

φη

iωρ0K (ω)
. (II.47)

In high-frequency regime, the viscosity of fluid can be neglected, i.e., η = 0 and the fluid becomes
inviscid. The dynamic Stokes equations II.11, II.8 and II.9 become:

−iωρ0u(0) = ∇xp(0) −∇yp(1) in Ωf , (II.48)

∇y · u(0) = 0 in Ωf , (II.49)

u(0) · n = 0 on ∂Ω. (II.50)

Note that the no-slip boundary condition (II.9) was replaced by the no-penetration condition
(II.50), where n is the normal unit vector of interface boundary ∂Ω. The solution of the veloc-
ity u(0) and the pressure p(0) can be given by [14]:

u(0) (x, y) = −
Ẽ (y)

iωρ0
· ∇xp(0) (x) , (II.51)

p(1) (x, y) = −ϕ̃ (y) · ∇xp(0) (x) + p̄(1) (x) , (II.52)

where Ẽ (y), ϕ̃ (y) are a local tensor and a local vector, respectively, p̄(1) (x) is a constant. Ẽ (y),
ϕ̃ (y) are Ω-periodic fields. In the case of isotropic media or the sound wave propagate in a
preferential direction e, by introducing the vector field E (y) = Ẽ (y) · e and scalar field ϕ (y) =

ϕ̃ (y) · e, the choice of locally-constant pressure gradient: ∇xp(0) = ‖∇xp(0)‖e leads to:

u(0) (x, y) = −E (y)

iωρ0
· ‖∇xp(0) (x) ‖, (II.53)

p(1) (x, y) = −ϕ (y) · ‖∇xp(0) (x) ‖+ p̄(1) (x) . (II.54)

Inserting these relations into Eqs. II.48-II.50, we obtain the electric conduction problem [14, 25]:

E = e−∇yϕ in Ωf ,

∇y · E = 0 in Ωf , (II.55)

E · n = 0 on ∂Ω,

E and ϕ are Ω-periodic.

Here, where e is a given macroscopic electric field while E is local electric field, ϕ being the local
electric potential is the solution of the Laplace’s problem:

∇2
yϕ = 0 in Ωf , (II.56)

∇yϕ · n = e · n on ∂Ω. (II.57)

Therefore, the high-frequency viscous tortuosity can be calculated as:

α∞ =
〈E · E〉f
〈E〉f · 〈E〉f

. (II.58)

The viscous characteristic length is given as [49]:

Λ = 2

∫
Ωf

E · EdV∫
∂Ω E · EdS

. (II.59)
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ABSORPTION COEFFICIENT AT NORMAL INCIDENCE

Finally, for the thermal effect, the static thermal permeability is defined as k′0 = limω→0

(
K′ (ω)

)
,

the scaled dynamic thermal diffusion problem II.27 at ω = 0 becomes the Poisson’s equation:

−∇2
yk̃
′
0 = 1 in Ωf ,

k̃′0 = 0 on ∂Ω, (II.60)

k̃′0 is Ω-periodic.

Then, the static thermal permeability and the static thermal tortuosity are calculated as:

k′0 = φ
〈
k̃′0

〉
f
, (II.61)

α′0 =

〈
k̃′

2
0

〉
f〈

k̃′0

〉2

f

. (II.62)

In summary, the so-called hybrid multiscale method resolving three uncoupled, frequency-
independent and real-valued problems, i.e., the scaled Stokes problem II.45, the Laplace’s problem
II.56 and the Poisson’s problem II.60 for the transport parameters. These parameters are then used
as inputs for each of the semi-phenomenological models, i.e., JCA, JCAL or JCAPL model to
approximate effective properties of the porous media studied. This method requires significantly
less calculation cost than the direct simulation and direct multiscale method described above and
usually provides accurate predictions.

II.5 Biot’s theory of poroelasticity for predicting the sound absorp-
tion coefficient at normal incidence

When a porous material has elastic skeleton, its effective acoustical properties can be influenced
by the deformation of the skeleton. M.A.Biot (1956) proposed a theoretical formalism to describe
the elastic wave propagation inside an isotropic porous medium saturated with a fluid [7, 8] where
he considered the existence of three waves : two compressional waves and one shear wave with an
assumption that the fluid properties can be considered as equivalent to their values when the solid
phase is not in motion. In other words, the elastic properties of the material frame are considered
independently from the properties of the fluid.

The motion of the poroelastic medium is described by the macroscopic displacement of solid
and fluid phases represented by the vectors us and uf . In the harmonic regime, the equation of
motion can be written in the following form [47]:

−ω2
(
ρ̃11 + us + ρ̃12uf

)
= (PB −N)∇∇ · us +N∇2us +QB∇∇ · uf , (II.63)

−ω2
(
ρ̃22uf + ρ̃12us

)
= RB∇∇ · uf +QB∇∇ · us, (II.64)

with ρ̃11, ρ̃22 are the Biot’s density of the solid and fluid phases, respectively; ρ̃12 is the Biot’s
density which account for the coupling of the solid and fluid phases:

ρ̃11 = ρ11 − iσφ2G (ω)

ω
, (II.65)

ρ̃22 = ρ22 − iσφ2G (ω)

ω
, (II.66)

ρ̃12 = ρ12 + iσφ2G (ω)

ω
, (II.67)
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here ρ12 = −φρ0 (α∞ − 1); ρ11 = ρ1−ρ12 and ρ22 = φρ0−ρ12. ρ1 is the mass density of porous
material. The coefficient G (ω) was first assumed constant by Biot [7, 8] but in order to account
for the viscous effect, it was improved by Johnson et al. [49] in the JCA and JCAL models and by
Pride et al. [79] in the JCAPL model:

G (ω)Johnson =

√
1 + i

4α2
∞ηρ0ω

σ2Λ2φ2
, (II.68)

G (ω)Pride = 1− P + P

√
1 +

M

2P 2

iωρ0k0α∞
ηφ

. (II.69)

where M and P are non-dimensional shape factors determined by Eq. II.41. Therefore, ρ̃22 =
φ2ρef .

In the Eqs. II.63 and II.64, the elastic coefficients PB , QB and RB are given by:

PB =
4

3
N +

(1− φ)
(
1− φ−Bb/Bs

)
Bs + φKbBs/Bf

1− φ−Bb/Bs + φBs/Bf
, (II.70)

QB =
φBs

(
1− φ−Bb/Bs

)
1− φ−Bb/Bs + φBs/Bf

, (II.71)

RB =
φ2Bs

1− φ−Bb/Bs + φBs/Bf
. (II.72)

If the material constituting the frame is not compressible, i.e., Bs = +∞:

PB = 4
3N +Bb + (1−φ)2

φ Bf , (II.73)

QB = Bf (1− φ) , (II.74)

RB = φBf , (II.75)

where Bf = φBef the bulk modulus of the fluid in the pore, the bulk modulus of solid frame Bb
can be evaluated by the following equation:

Bb =
2N (νe + 1)

3 (1− 2νe)
, (II.76)

The shear modulus of the material N is estimated by

N =
E (1 + iηe)

2 (1 + 2νe)
, (II.77)

where E, νe, ηe are the Young’s modulus, Poisson’s coefficient and the loss factor of the frame,
respectively.

In a normal acoustic field (normal incidence), the shear wave is not excited and only the com-
pression waves propagate in the material. Let us denote ϕs and ϕf are scalar potentials for the
compressional waves in the frame and in the fluid, respectively:

us = ∇ϕs, (II.78)

uf = ∇ϕf . (II.79)

Eqs. II.63 and II.64 can be reformulated as

−ω2

[
PB RB
RB QB

]−1 [
ρ̃11 ρ̃12

ρ̃12 ρ̃22

][
ϕs

ϕf

]
= ∇2

[
ϕs

ϕf

]
, (II.80)
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The squared complex wave numbers δ2
k of the two compressional waves (k = 1, 2) are obtained

from the eigenvalue problem, −δ2
k [ϕk] = ∇2 [ϕk], given as

δ2
k =

ω2

2
(
PBRB −Q2

B

) [PB ρ̃22 +RB ρ̃11 − 2QB ρ̃12 ±
√

∆
]

with k = 1, 2, (II.81)

where

∆ = [PB ρ̃22 +RB ρ̃11 − 2QB ρ̃12]2 − 4
(
PBRB −Q2

B

)(
ρ̃11ρ̃22 − ρ̃2

12

)
, (II.82)

µ1, µ2 are the ratio of the velocity of the air over the velocity of the solid phase for the two
compressional waves:

µk =
PBδ

2
k − ω2ρ̃11

ω2ρ̃12 −QBδ2
k

with k = 1, 2. (II.83)

The characteristic impedances in the solid (superscript s) and fluid phase (superscript f ) of first
(index 1) and second (index 2) Biot compressional waves Zsk, Zfk are:

Zsk = (PB +QBµk)
δk
ω

with k = 1, 2, (II.84)

Zfk =

(
RB +

QB
µk

)
δk
φω

with k = 1, 2. (II.85)

The surface impedance at normal incidence for a H-thickness layer of porous material backed by
an impervious rigid wall in that case is predicted by:

ZBiot
s = −i

(
Zs1Z

f
2 µ2 − Zs2Z

f
1 µ1

)
DZ

, (II.86)

where DZ is given by

DZ = (1− φ+ φµ2)
[
Zs1 − (1− φ)Zf1 µ1

]
tan (δ2H)

+ (1− φ+ φµ1)
[
(1− φ)Zf2 µ2 − Zs2

]
tan (δ1H) . (II.87)

The sound absorption coefficient is then calculated by Eq. II.34. The model using JCAL (JAC,
JCAPL) semi-phenomenological model to estimate the effective properties of fluid (ρef & Bef )
and the Biot’s theory to predict surface impedance at normal incidence is called Biot-JCAL (Biot-
JCA, Biot-JCAPL, respectively). This model makes it possible to take into account the effect of
elasto-acoustic coupling on the SACNI.

II.6 Conclusion

Acoustic properties of a rigid-frame porous material can be obtained by a direct simulation of cou-
pled visco-thermal problems in harmonic regime at macroscopic scale or at microscopic scale of
a periodic porous domain by direct multi-scale method consisting two uncoupled dynamic visco-
thermal problems: the scaled harmonic viscous incompressible flow with no-slip boundary con-
ditions on solid-fluid interface and scaled harmonic thermal diffusion with isothermal boundary
conditions on solid-fluid interface. Therefore, the hybrid multi-scale method which rely on three
uncoupled frequency-independent problems corresponding to the asymptotic behavior at low fre-
quencies of scaled harmonic viscous flow (scaled Stokes flow) and scaled harmonic thermal diffu-
sion (Poisson’s problem) as well as the asymptotic behavior at high frequencies of scaled harmonic
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viscous flow (Laplace’s problem), gives approximate transport parameters which are the input of
the semi-phenomenological models for the estimation of effective properties of equivalent fluid.
The Biot’s theory assuming the independence of equivalent fluid with the deformation of elas-
tic frame can be used to simulate the effect of the coupled elasto-acoustic on sound absorption
coefficient at normal incidence.
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CHAPTER III. EXPERIMENTAL CHARACTERIZATION AND MICROSTRUCTURE
RECONSTRUCTION

III.1 Introduction

This chapter is devoted to the experimental characterization of both microstructural features and
physical properties for polydisperse foams. Here, the foam microstructure is characterized through
2D and 3D imaging, and the information thus obtained is used to generate a periodic representa-
tive volume element (PRVE), based on a Laguerre tessellation. These results will be used, in
particular, as inputs for subsequent numerical analyses (e.g., as input parameters for the semi-
phenomenological JCAL and Biot-JCAL models).

III.2 Graphite polyurethane foams

A polyurethane (PU) foam is a polymer material presenting a cellular structure. It is derived from
polyurethane (which is the product resulting from the polymerization of isocyanates and polyols),
which is combined with other additives through different foaming techniques (e.g., free rising,
water blown, or cast molding). The combustion of PU foam produces large quantities of toxic
fumes with high concentration of carbon monoxide and hydrogen cyanide. Graphite particles are
commonly introduced during the foaming process to improve fire resistance [101, 33, 105, 106, 21,
108]. The addition of graphite particles affects not only flame retardancy, but also other physical
properties such as density, thermal stability, and mechanical properties [21, 68]. In particular, the
presence of graphite particles strongly impacts the morphology of the PU foam. Small graphite
particles can be wrapped and uniformly dispersed in the foam matrix, hence resulting in a strut-like
system, while graphite particles with a size of the same order as pore size tend to be predominantly
located between pore walls [70, 68, 63, 21, 65]. High concentrations of large graphite particles
having poor compatibility with the foam matrix can ultimately result in the collapse of the pores,
which may destroy the closed cellular polyhedra of an otherwise neat foam microstructure [68, 21]
(see Fig.III.1).

a) b)

Figure III.1: Micrographs of a pure PU foam (left) and a PU foam with 15 wt% graphite particles
(right) [68].

Moreover, the graphite particles were shown to modify the distribution of pore size and to
increase the heterogeneity in the PU foam [63, 2]. In this work, we consider a polyurethane
foam which is obtained by adding graphite particles during the manufacturing step, following a
nucleation perturbation technique. Graphite particles with a so called standard size (DE CH0334)
are introduced at 7.3 wt% (≈0.5 mm).
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III.3 Experimental characterization of physical properties

As introduced in the previous chapter, numerical approaches for acoustic porous media require the
determination of physical properties such as the porosity φ, the mass density ρ1, the static airflow
resistivity σ, as well as of the elastic properties: Young’s modulus E, Poisson’s coefficient νe, and
loss factor ηe for the application of Biot’s theory.

III.3.1 Characterization of open porosity and mass density

Salissou and Panneton [86] developed a pressure/mass method to measure open porosity and mass
density of porous materials, based on the perfect gas law. The principle of this method is to
measure the mass of a closed chamber at two different pressure states - one with an empty chamber
and one with a chamber containing the porous material to be characterized; see Fig. III.2.

Low pressure

P , m , V1 1

M1

High pressure

P , m , V2 2

M2

Low pressure

P , m , V-V3 3 s

High pressure

P , m , V-V4 4 s

M3 M4

Vs Vs

a) b)

Figure III.2: Measurement of open porosity: a) Schematic of the experimental setup, b) Picture
of the chamber containing the porous material (available at CERA).

The open porosity φ and the mass density ρ1 of porous material are determined by the follow-
ing equations:

φ = 1− RgT

Vt

(
M2 −M1

P2 − P1
− M4 −M3

P4 − P3

)
, (III.1)

ρ1 =
M3 −M1

Vt
+

(P1 − P3)V + P3Vs
RgTVt

, (III.2)

where Rg is the specific gas constant and T is the temperature (in [K]). In addition, V , Vs, and
Vt are the volume of chamber at the vacuum condition without sample, the volume of the solid
phase, and the total bulk volume of the porous aggregate, respectively. The mass Mi is the total
mass measured on the balance, mi is the mass of gas in the chamber, and Pi is the pressure for the
configuration i ∈ {1, 2, 3, 4} illustrated in Fig. III.2 (a). The values of the open porosity φ and the
density ρ1 of the material are estimated from three measurements, performed on samples with a
thickness estimated to 21 [mm]. These results are listed in Tab. III.1.

Notice that for each measurement, it is necessary to stack up samples to obtain a pile of mate-
rial with a total height of about 60 [mm] (see Fig. III.3).
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φ± δ (−) ρ1 [kg/m3]

Measurement #1 0.912± 0.024 13.31
Measurement #2 0.923± 0.024 13.59
Measurement #3 0.938± 0.017 13.21

Mean ±σX 0.924± 0.013 13.37± 0.19

Table III.1: Measured open porosity and mass density of the foam. Here, δ represents the error on
the measured open porosity, which is mostly controlled by the uncertainty on mass and pressure
reading and the thickness estimation, and σX denotes the standard deviation estimated with the
experimental values.

Figure III.3: Stack of samples used for the measurement of the open porosity and mass density.

It can be seen that this foam is lightweight, ρ1 = 13.37 ± 0.19
[
kg/m3

]
, and exhibits a high

porosity rate, φ ≥ 0.9.

III.3.2 Characterization of static airflow resistivity

The static airflow resistivity σ [N.s.m−4] is defined as the ratio of pressure difference to flow
velocity per unit length. It is related to the static viscous permeability k0 [m2] through the viscosity
of the air saturating the interconnected pores, η = σk0 [Pa.s]. This parameter is often measured
by a standard test method described in DIN EN 29053 (ISO 9053), based on the work of Stinson
and Daigle [93]. The airflow resistance is determined by measuring the pressure drop between
the two faces of a sample, subjected to a constant laminar air flow. The air flow is generated by
a compressor and controlled by a mass flow meter. The pressure difference ∆P [Pa] is measured
for several flow velocities, all greater than 0.5 [mm/s], and the value at velocity 0.5 [mm/s] (which
is recommended by the ISO standard) is typically estimated by means of a linear regression. The
airflow resistance Rf [N.s.m−3] is calculated through the volume flow Qf [m3/s] and sample
surface As [m2]:

Rf =
∆P

Qf
As . (III.3)
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Finally, the static airflow resistivity σ can be deduced as

σ = Rf/ts , (III.4)

where ts [m] denotes the thickness of the sample. In this work, an AFD 300 - AcoustiFlow airflow
resistivity meter was used to conduct measurements for airflow resistivity (see Fig. III.4).

Figure III.4: AFD 300 - AcoustiFlow Airflow resistivity meter.

Results for static airflow resistivity measurements on 6 foam samples (21 [mm] in thickness;
see Fig. III.5) are provided in Tab III.2. It should be noted that these samples are those used for

Sample # σ ± δσ [N.s.m−4]

AI 55600± 3000
AII 65400± 2700
BI 73500± 9700
BII 80100± 6300
CI 65100± 7100
CII 65400± 3000

Mean ±σX 67500± 9900

Table III.2: Static airflow resistivity measured on 6 foam samples. Here, δσ represents the uncer-
tainty due to the equipment, and σX denotes the standard deviation over all measurements.

open porosity measurements, and that the coefficient of variation between the results (about 14%)
indicates significant heterogeneity between foam samples.

III.3.3 Visco-elastic parameters

The visco-elastic parameters such as the Young’s modulus E, the Poisson’s coefficient νe, and the
lose factor ηe can be estimated by the dynamic method of quasi-static compression, proposed by
C. Langlois et al. [57]. In this method, the porous sample is positioned between two rigid plates,
and an accelerometer is fixed to the bottom plate to measure the vertical acceleration a (ω). The
top plate is mounted on a force transducer, fixed to a rigid wall, to measure the reaction force
F (ω). This system is then put on a shaker driven by a pseudo-random noise, as illustrated in Fig.
III.6.
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Figure III.5: Samples used for the characterization of the resistivity and acoustic properties.

Sample

Shaker

Force transducer

Accelermeter

a) b)

Figure III.6: Elastic parameter measurements: a) Schematic of the experimental setup, b) Picture
of the setup including the foam sample.

The mechanical impedance, defined as Zm (ω) = Km (ω)
(
1 + iηe (ω)

)
, is computed from

the reaction force F (ω) and the acceleration a (ω). The apparent compression stiffness Km (ω)
and the loss factor ηe (ω) are then obtained as:

Km (ω) = <
(
Zm (ω)

)
, (III.5)

ηe (ω) =
<
(
Zm (ω)

)
=
(
Zm (ω)

) . (III.6)

Furthermore, the apparent Young’s modulus is given by:

E′ = lim
ω→0

Km (ω)
ts
As

, (III.7)

where ts and As are the thickness and cross-section of the sample, respectively. The ratio of
apparent Young’s modulus E′ to the intrinsic Young’s modulus E defines a polynomial P that
depends on both the Poisson’s coefficient νe and the shape factor fsh, which is defined as half the
radius to the thickness ratio of the sample (that is, f sh = rs/2ts). The polynomials P

(
νe, f

sh
2

)
are pre-computed by EFM simulations (Fig. III.7 left part). By testing two samples with two
different shape factors, Poisson’s coefficient νe can be estimated by solving the nonlinear equation
(Fig. III.7 right part):

E′1

P1

(
νe, fsh1

) =
E′2

P2

(
νe, fsh2

) . (III.8)
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Figure III.7: Estimation of Young’s modulus and Poisson’s coefficient of porous material by
polynomial relations [57].

In this work, two different form samples are utilized, with diameters Φ = 40 [mm] and Φ =
100 [mm] (the latter being used for porosity and static resistivity measurements). Measurement
conditions were as follows: the ambient temperature was 25 [C], the ambient pressure was 1.003
[hPa], the applied compression rate was set to 1%, and the frequency interval was [20− 60] [Hz].
The results are given below, in Tab. III.3.

Test # E [kPa] ηe νe

1 172 0.164 0.49
2 137 0.163 0.49
3 134 0.154 0.43
4 198 0.152 0.46
5 185 0.151 0.47
6 180 0.161 0.44
7 189 0.158 0.46
8 177 0.158 0.47
9 173 0.152 0.47

Mean ±σX 172± 19 0.157± 0.005 0.46± 0.02

Table III.3: Measured elastic parameters for the foam. Here, σX denotes the standard deviation
over the nine samples.

III.4 Characterization of the microstructure

The properties of a material strongly depend on its microstructure. The characterization of a
porous material is often carried out by 2D or/and 3D imaging techniques. Many 2D imaging
techniques such as optical microscopy and scanning and transmission electron microscopy can
be used for microstructural characterization. Optical microscopy allows for an observation on
the shapes, dimensions, and morphology of the microstructure in a near-planar representation.
It is inexpensive and easy to use, but its magnification is usually less than 1500 (resolution of
a few tens of micrometers). In many cases, optical microscopy is supplemented by scanning
electron microscopy (SEM). In general, SEM provides a much finer resolution, on the order of
a nanometer. Regarding the analysis of foams, the geometry of the struts (e.g., their lengths and
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thicknesses) and cells (including their sizes and anisotropy degrees) can be extracted from the
images [43, 76, 15]. Furthermore, overall information related to the existence of membranes can
simply be quantified by evaluating the ratio of the numbers of open and partially-open membranes
[29, 94, 37, 97]. X-ray microtomography is a 3D imaging technique allowing one to visualize
interior features of materials by reconstructing a three dimensional representation. It provides an
accurate and detailed information of the microstructure. However, visualizing thin membranes
(with a thickness less than one micrometer) requires a scanner with high resolution (in the order
of a few nanometers), which leads to a high cost in terms of scanning time and image processing.
Thus, the X-ray microtomography is often coupled with 2D imaging (e.g., optical microscopy
or/and SEM) to characterize foam microstructures [37]: the struts and pore size distribution are
specifically extracted from X-ray microtomography, while membrane opening and distribution are
obtained from the 2D images.

In this work, the microstructure of PU foams is characterized using both X-ray CT and SEM.
The X-ray CT will be used for the characterization of pore size, sphericity, and number of neigh-
bors. Membrane properties (including the thickness, the opening, and the number of edges per
membrane) will be studied on the SEM images.

III.4.1 Pore size and sphericity

X-ray CT setup

X-ray microtomography involves measuring the X-ray intensity of an incident beam, before and
after it passes through the sample. In this method, the sample is positioned on a rotating support
and a source sends an X-ray beam on the sample. The transmitted beam is recorded by a two-
dimensional detector which is generally a combination of a charged coupled device (CCD) sensor
and a scintillator screen (i.e., a material that converts X-ray energy to visible light)—for various
angular positions of the sample. The ratio between the incident and transmitted photon numbers is
then used to digitally reconstruct a 3D image. A schematic illustration of X-ray microtomography
is presented in Fig. III.8a).

In this work, X-Ray micro-tomography experiments were performed at the F2M microtomog-
raphy platform (Ultratom from RX-Solution — see Fig. III.8b), using a micro-focus source Hama-
matsu (230 kV or 160kV) and a "flat-panel" imager Varian (or Photonic Science). A cylindrical
sample of the graphite PU foam (diameter: 3-5 [mm]; height: 15-20 [mm]) was scanned with a
spatial resolution of 6 µm/voxel. For the preliminary test, tube voltage and current were set to 60
[kV] and 100 [µA], respectively.

X-ray CT images processing

Adapted filters and a binarization are needed to reconstruct the struts in foam images. Fig. III.9
shows a µCT image and the strut system reconstructed on the PU foam studied in this thesis with
membranes.

It can be seen in the resulting 3D images that the pores are usually connected, even in the
ideal closed-cell foams (due to the fact that membranes often disappear because of poor X-ray
mass attenuation coefficients). Therefore, for further morphological analysis, the pores have to be
separated as individual ones, which requires some additional steps of processing involving, e.g., a
watershed transform [71, 73, 98].

In this study, X-ray CT image processing for graphite PU foams are performed as follows:

1. First, noise elimination is performed by selecting the domain center, and by applying a ball-
shaped dilatation filter with a radius of 2 voxels.

-Cong Truc NGUYEN- 44



III.4. CHARACTERIZATION OF THE MICROSTRUCTURE

X-ray source

Rotation stage

Detector

Sample

b)

a)

Figure III.8: Micro X-ray measurements: a) Schematic of the system, b) Picture of the experi-
mental setup [72].

a) b) c)

Figure III.9: Example of µCT image processing for a PU foam with membranes: a) Original
image, b) Binarized image, c) Strut system reconstruction.

2. Second, foam struts are obtained through a binarization, by applying Ostu’s method [74]
with an adapted threshold (which is calculated on the fly for each image).

3. Third, a 3D distance transform map of individual pores is computed, together with an inver-
sion of the images obtained in the second step.

4. Last, a segmentation by watershed transform is performed to detect the borders separating
one pore from the others, and the pores thus detected are colored.
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When the above procedure is performed as illustrated in Fig. III.10, the distribution of pore
size can be estimated from the 3D reconstructed foam.

a) b)

c) d)

e)

f)

0
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Graphite particles

0 800

800

Figure III.10: Detection and pore size distribution from X-ray µCT and image analysis. a)
Original image. b) Binarized image generating the strut system of the foam. c) Image obtained
after distance transform and inversion. d) Coloration of the pores detected after segmentation (by
watershed transform). e) and f) 3D visualization of the strut system and graphite particles.

It should be noticed that the procedure also provides us with the relative position of each pore,
together with the corresponding neighboring pores. In order to proceed with pore size estimation,
only complete pores were considered (that is, pores intersecting image borders were be discarded).
On the contrary, pores located at the borders were preserved to estimate the number of neighbors
for the complete pores. All image processing and analysis steps were carried out by using the
open-source FIJI software with the MorphoLibJ plugins [61, 89].

In the pore size distribution, the pore size is represented by a so-called equivalent diameter d,
which represents the diameter of a sphere with a volume equivalent to the volume of the corre-
sponding pore. From now on, and unless otherwise stated, the pore size and normalized pore size
will be referred to as d and d/〈d〉, respectively, where 〈d〉 is the average diameter over all pores.
It is necessary to distinguish between the average of equivalent diameters 〈d〉 and the equivalent
diameter of a sphere with average volume D.

The pore sphericity index s, which can be defined as the ratio of the surface area of the sphere
of equivalent volume to the surface area S of the corresponding pore, is another interesting shape
parameter. The pore sphericity index takes a maximal value of one for a spherical pore and takes
smaller values if the pore shape significantly differs from a sphere. This index is defined by:

s =

(
36π

V 2

S3

)1/3

, (III.9)

and is applicable to represent the anisotropic character of the pores.
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A 3D visualization of strut system is shown in Fig. III.10, e) and f). The effect of graphite
particles on the foam structure can be observed: small pores were created around the graphite
particles that contribute to the rigid skeleton. In this work, a volume of 6×6×6 [mm3] containing
2131 pores was analyzed. The distribution of pore size, together with the complement of the
sphericity index 1− s, are shown in Fig. III.16.

III.4.2 Membrane characterization

The characterization of membranes is performed by analyzing the surfaces of foam samples in
SEM images. SEM is based on the detection of secondary electrons emerging from the surface
under the impact of a very fine brush of primary electrons (sweeping across the observed surface).
It therefore requires electrically conductive materials. For non-conductive materials, a metalliza-
tion of the samples is needed. A high performance metallizer by cathode sputtering, coupled with
a magnetron source (Cressington sputter coater 208HR), makes it possible to deposit a conductive
film of a few nanometers (controlled by a quartz probe, here a Cressington MTM 20) on the sur-
face of the samples. Fig. III.11 shows a picture of the MERLIN - Carl Zeiss Scanning Electronics
Microscope system used in this study.

Figure III.11: Picture of the Scanning Electronics Microscope system (available at the Institute
of Chemistry and Materials of Paris-Est University (ICMPE), France).

A polygon is superimposed over each individual window in the images thus obtained. For each
open membrane, an another polygon is used to characterize the area of the corresponding aperture
size (see Fig. III.12). The area of the superimposed polygons is then determined. The proportions
of closed and open membranes, which are denoted by xc and xo respectively, are also identified.
The aperture ratio of open membranes is estimated as to =

√
Aap/Aow, where Aow is the area

of a polygon corresponding to a window for which the membrane is open, and Aap is the area of
the polygon associated with the given aperture. Note that if a membrane has several apertures,
Aow is their total area. The average of aperture ratio 〈to〉 is subsequently deduced. The number
of edges per membrane Ne is also characterized. Due to sample cutting, some membranes may be
destroyed or damaged, in which case they are discarded in the analysis.

For the PU foam under study, dozens of SEM images associated with both the top and bottom
sample surfaces were analyzed, leading to the characterization of hundreds of membranes. The
foam presents many fully-closed membranes. The mean value for the proportion of fully-closed
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Figure III.12: Characterization of membranes on SEM images: top view of foam sample (a),
membrane thickness (b), graphite particle (c), and open membrane aperture ratio (d).

membranes is 〈xc〉 = 0.72, and the average of aperture ratio for the open membranes is estimated
to 〈 to〉 = 0.51 (see Tab. III.4).

d [µm] 1− s [–] 〈xo〉 [–] 〈to〉 [–]

360± 290 0.23± 0.068 0.28± 0.05 0.51± 0.17

Table III.4: Geometrical properties of the PU foam.

The thickness of a membrane is also estimated through SEM images (see Fig. III.12b). Its
average value is in the order of a magnitude of 0.3 [µm], which is slightly smaller than the values
reported elsewhere for polyurethane foams [37, 97]. One can note that the membrane thickness
is very thin when compared to the average pore size 〈d〉 = 360 [µm]. This property will be used
later on to justify that the thickness of the walls separating the cells can be ignored (in order to
reduce the size of the finite element model; see chapter VI).

III.5 Microstructure reconstruction and discussion

As discussed in the previous section dedicated to 2D/3D image processing, the studied foam sam-
ples exhibit a complex cellular structure comprised of struts (or ligaments, or Plateau borders) and
membranes. The membranes can be closed, open, or totally missing, hence allowing the pores to
be connected through windows. The local microstructure obeys Plateau’s laws [52]:

1. Each membrane has a constant mean curvature, to balance the pressure difference between
adjacent pores;

2. Three membranes meet at equal dihedral angles of 120◦ at each strut; and
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3. Four struts join at equal tetrahedral angles of 109.47◦ at each node.

The struts have a concave triangular section and a locally varying thickness, which is highest at
the junction (node) and minimal at the center (see Fig. III.12).

From a modeling viewpoint, foams are usually represented as an irregular packing of space-
filling polyhedrons. Kelvin-cell structures, which are tetrakaidecahedron cells that can fully fill
the space and almost minimize the surface energy [96], are widely employed to model monodis-
perse foams. Several studies on the Kelvin-cell structure have shown that the acoustic behavior
of foams can be controlled by the presence of membranes [94, 29, 37, 97]. However, the Kelvin-
cell structure cannot describe the effect of a wide distribution of pore size in polydisperse foams.
To circumvent this issue, a systematic procedure for the virtual reconstruction of foam structures
based on a random Laguerre tessellation is presented in the next section.

III.5.1 Laguerre tessellation based on a random sphere packing

A random Laguerre tessellation is essentially a weighted generalization of the well-known Voronoi
tessellation. Its construction proceeds as follows (in R3) [4]. Consider a set of random spheres

S = {si(xi, ri), xi ∈ R3, ri > 0, i ≥ 1}, (III.10)

in R3, where xi and ri are the center and radius of the sphere si, respectively. The 3D space is then
filled with a system of convex polytopes, the so-called Laguerre cells C = {ci, i ≥ 1}, which are
defined as

ci = {x ∈ R3 : ‖x− xi‖2 − r2
i ≤

∥∥x− xj
∥∥2 − r2

j , ∀j 6= i} , (III.11)

where ‖·‖ denotes the Euclidean norm in R3. If all the spheres have the same radius, then the
classical Voronoi tessellation is obtained. Because cell facets are not forced to be equidistant to the
cell generators (i.e., the center of the sphere), the Laguerre tessellation is able to generate a wider
range of morphologies as compared to the Voronoi tessellation. Note that, in R3, the Laguerre
tessellations are a normal tessellation [60], which means that each facet is the intersection of
exactly two cells and each edge is the intersection of exactly three facets. For a detailed discussion
about Laguerre tessellations, we refer the reader to [60, 4] for instance.

For foam reconstruction, the Laguerre tessellation often relies on the centers and radii ob-
tained by a random multi-sized dense sphere packing. There are many methods to generate a
random dense multi-sized sphere packing, e.g., sequential deposition, molecular dynamics, or col-
lective rearrangement methods [16]. An example of foam structure reconstruction based on the
discrete element method (with sphere packing generated with the open source code LIGGGHTS
[103]) is shown in Fig. III.13. Here, N spherical particles with an arbitrary radius distribution are
randomly generated within a cube, with no initial velocity. In the initial state, we have a system
of overlapping spheres. Spheres are then allowed to drift because of an elastic repulsive force
(with pair interactions), defined by the Hertz model [107]. In order to avoid boundary effects, pe-
riodic boundary conditions are imposed. When a steady state is reached (i.e., zero velocity for all
spheres), the simulation stops. The dimensions of the cube are chosen to obtain the desired volume
fraction of packing, given by fp =

∑
Vsphere/Vcube. In Fig. III.13, a), sphere packing is generated

with N = 100, fp = 0.7, and sphere volume is assumed to follow a Gamma distribution.

III.5.2 Fitting Laguerre tessellations to foam structures

The Laguerre tessellation strongly depends on the sphere packing simulation. In practice, input
parameters must be calibrated in order to represent a particular foam structure, which is an in-
verse problem that can be solved by minimizing the discrepancy between the model predictions
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a) b) c)

Figure III.13: Reconstruction of a foam structure: a) Random sphere packing, b) Laguerre tessel-
lation, c) Plateau borders.

and physical foam data. A simple least-square method can be used, in which case one seeks to
minimize the objective function

ρ (w) =

√√√√ n∑
i=1

(
ci(w)− c̃i

c̃i

)2

, (III.12)

where w conceptually denotes the set of parameters to be identified and the sets c̃ = {c̃i} and
c = {ci} gather morphological characteristics of the pores in the physical and generated data,
respectively [82]. Various characteristics can be selected, including all second-order moments
for the volume, surface area, number of neighbors, and diameter of the pores. This method was
used to study the elastic properties of closed foams with strongly varying pore sizes in [81], and
of open-cells foams in [64]. One drawback of this strategy is that it requires a large amount
of tessellation-based data to assess model adequacy. In addition, the simulation-based pore size
distribution is generally found in poor agreement with experimental data. The quality of the porous
structure thus obtained (and particularly, the edge-length distribution) may be improved through a
relaxation with Surface Evolver [13]; see [98]. In order to generate the Plateau borders (see Fig.
III.13c), tessellation edges are first replaced by struts with triangular sections, and the system of
cells and struts is then relaxed by Surface Evolver. Finally, tessellation faces can be perforated to
simulate open membranes.

III.5.3 Microstructure reconstruction using Neper software

Recently, R. Quey et al. [80] developed an improved algorithm involving Laguerre tessellations
for the polyhedral description of 3D polycrystals. The principle is to sequentially update the
parameters of the seeds in the tessellation model, optimizing through a genetic algorithm until
some pore properties match with the properties extracted from the experimental data. This strategy
was shown to reproduce the pore size, the pore sphericity distribution, and the number of neighbors
satisfactorily. This algorithm is available in the open-source package Neper, which was used in
this thesis to generate virtual microstructures of foams.

Because the graphite PU foam is highly porous and exhibits many thin membranes, membrane
thickness and Plateau’s borders are not modeled (which reduces the computational cost associated
with subsequent finite element analyses). The proportion of open membranes xo and the aperture
ratio to for the open membranes are taken into account through their average values 〈xo〉 and 〈to〉
as follows:

1. A fraction of 〈xo〉 membranes are randomly selected amongst all membranes. These mem-
branes will be opened with the same aperture ratio 〈to〉.
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2. The graphite PU foam structures are generated with the Neper software. Here, the pore size
and the sphericity s (or equivalently, the transformed variable 1− s) are assumed to follow
probability laws which are identified using the experiments (see Fig. III.16).

3. The structures are then imported in COMSOL (as STL files) to open the membranes (see
Fig. III.14). In order to open a membrane, the centroid C of the membrane under con-
sideration (polygon form) is computed, and the initial polygon is scaled by a factor 〈to〉
(homothety with respect to C). The initial polygon is then perforated using a Boolean oper-
ation (subtraction).

C C C

Figure III.14: Schematic of the opening procedure for a membrane.

With a view towards finite element discretization, it is recommended to discard small faces
(or membranes) in the opening procedure. Specifically, facets are ignored when the condition
λ < ε〈λ〉 is met, where λ is the facet area, 〈λ〉 is the average area, and ε is a given threshold
which is typically taken as 0.01 ≤ ε ≤ 0.10 [53]. In this work, we used ε = 0.05 for the
sake of regularization. Fig. III.15 shows a configuration of periodic geometry of 453 pores and
corresponding mesh.

Figure III.15: Periodic geometry of a foam containing 453 pores.

In Fig. III.16, we show the probability density functions of pore size and 1− s estimated from
the data, fitted with lognormal models, and estimated after the reconstruction.

The coefficient of variation for the pore size is estimated to c = σd/〈d〉 = 0.79 (with σd the
standard deviation of the pore size d), which indicates significant variability. The lognormal fit for
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Figure III.16: Reconstructed (orange solid line), reference (blue solid line), and fitted (red solid
line) probability density functions for (a) pore size distribution and (b) the quantity 1− s.

the pore size distribution is found in good agreement with the experimental results, with is consis-
tent with other results provided elsewhere for cellular materials [82]. Similarly, the lognormal fit
provides a fairly good approximation of the empirical function for the quantity 1− s (recall that s
is the sphericity). It is seen that the distributions for the pore diameter and sphericity are properly
captured in the proposed methodology.

In order to further discuss model adequacy, results on various quantities of interest obtained
through the experimental characterization and through the numerical reconstruction (with 453
pores) are shown in Fig. III.17.

The number of neighboring pores in the reconstructed structure is Nv = 12.5 ± 8.9, which
is larger than the corresponding number Nv = 9.1 ± 8.6 in the physical foam. This discrepancy
could be explained by a number of factors. First, simulated pores are modeled as convex poly-
hedrons with straight struts, which is a simplification with regard to the complexity of the real
foam structure. Second, the presence of graphite particles can affect the polyhedral microstruc-
ture of PU foams, hence decreasing the number of neighboring pores [68, 21]. A small value for
the number of neighboring pores could also be induced by the pore size distribution, as shown
in [54, 98]. Fig. III.17, b), suggests that the number of neighboring pores and pore size are,
indeed, correlated—small pores have fewer neighbors than larger ones, in both the experimental
and simulated results. On the other hand, the average number of edges per face for the simulated
microstructure, 5.07 ± 1.39, is close to the value obtained on the experimental microstructure,
5.07± 1.31 (see Fig.III.17, (c)).

These results support the relevance of the proposed methodology to sample microstructures on
graphite PU foams.

III.6 Conclusion

In this chapter, we presented the experimental methodologies used to characterize morphological
and elastic properties on graphite PU foams. It was shown that the foam sample under investigation
is lightweight, highly porous, and exhibits significant spatial heterogeneity in terms of airflow
resistivity.

The foam microstructure was characterized through X-ray CT microtomography and SEM.
The former technology was used to extract the distributions of pore size, pore sphericity, and num-
ber of neighboring pores. SEM images were used to estimate the average proportion of closed/open
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Figure III.17: Comparison of foam morphology between the experimental results and the data
estimated on the numerical model, for (a) the number of neighbor, (b) the correlation between
the number of neighbors and the normalized equivalent diameter, and (c) the number of edges per
face.

membranes, as well as the average aperture ratio of open membranes. Data show that the foam
contains many membranes and has a wide pore size distribution, which could be related to graphite
particle addition during the fabrication stage. The pore size and pore sphericity distributions can
be well approximated by lognormal models.

A Laguerre tessellation was used to reconstruct a periodic representative volume element of the
foam. Parameters in the numerical model were calibrated by solving an inverse problem involving
experimentally determined morphological properties. Model adequacy was finally confirmed by
comparing a set of relevant morphological properties on digital and physical microstructural data.
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Chapter IV

Static permeability of polydisperse
foams
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CHAPTER IV. STATIC PERMEABILITY OF POLYDISPERSE FOAMS

IV.1 Introduction

Fluid flow through solid foam is involved in various applications, such as heat-exchanger, catal-
yser, filter, acoustic insulator,. . . [28]. Therefore, for such applications, the permeability is a key
parameter to control and to ensure the efficiency of foam material.

Different works have focused on morphological parameters - pore or strut diameter, porosity,
specific surface area, interpore aperture size, etc. - on permeability of monodisperse open-cell
foam [28, 32, 55]. The effect of partially or fully closed membranes on foam permeability have
recently been investigated [58].

Different approaches for modelling foam permeability can be found in the literature. A first
approach is based on the so-called Carman-Kozeny equation [18]: K = C((1− φ)2/φ3)d2

c where
dc is the inverse of the specific surface area ac (pore surface/solid volume), φ is the porosity, and
C is a dimensionless constant depending on the microstructure geometry. In the case of foam
permeability, some alternative choices for the characteristic micro-structure length dc have been
proposed in the literature, such as the pore size or the hydraulic radius dh = 4φ/ac (see [55] for a
recent review). As C depends on the microstructure geometry, these approaches cannot give a full
analytical formulation and require numerical calculations to elucidate the relationship between C
and the microstructure geometry.

A second approach, especially relevant for foam having membranes [58] or porous media hav-
ing small constrictions connecting large pores [28, 78], was suggested by Despois and Mortensen
[28]. In this approach, the fluid flow passing through constrictions is supposed to be governed by
the difference of fluid pressures between interconnected pores. The relationship between fluid flow
and pressure drop used by Despois and Mortensen is due to Sampson’s law [88]. For monodis-
perse foam, the foam permeability can be fully derived by considering PUC symmetries in the case
of ordered foams [58], or by considering a mean pore in the case of disordered foams [78]. This
approach gives a very accurate estimation of foam permeability in a large range of constriction
sizes. Moreover, this approach is similar to the pore-network approach introduced by Fatt [34]
to study the permeability of a network of tubes. The pore-network approach is also very useful
to study the permeability of percolating porous media [50] and can be easily implemented in nu-
merical calculations with low computational costs comparing to others numerical methods (finite
element, finite volume, boundary element). If the permeability of monodisperse and ordered foam
has been extensively studied, the permeability of polydisperse and disordered foam still has to be
elucidated. Due to the natural polydispersity of soil, different equations for permeability can be
found in the literature. For example, Hazen (1920) [44] proposed K = CHazenD

2
10 where D10 is

the grain size for which 10% of grains (in mass) are smaller than D10 and CHazen is an empirical
constant. This formula suggests that D10 is an effective grain size for the permeability. Indeed,
Hazen’s formula is not very accurate to predict the permeability. Formulations derived from the
Carman-Kozeny [51, 17] formula give better predictions. For example, Carrier [19] proposed to
use dc = (

∑
i xi/di)

−1 for the effective grain size to be used in the Carman-Kozeny formula.

In this chapter, the pore-network simulation is validated and used to study the permeability
of random polydisperse foams with various membranes contents. An approximation of mean
pressure field is proposed to estimate the permeability of the fully open-cell foam, i.e., containing
no closed membranes. The effect of small pores in polydisperse foams is studied and the effective
pore size is proposed to estimate the permeability of a polydisperse foam through a monodisperse
one. To complement, the effect of closed membrane proportion is investigated in order to provide
a permeability prediction of a polydisperse foam with random open membrane proportion through
the fully open-cell foam.
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IV.2 Pore-network model for permeability

IV.2.1 Pore-network model for monodisperse foams

Recently, pore-network was proposed for permeability of monodisperse foams having thin and
partially closed membranes [58]. In this model, the fluid flow in foam is governed by the pressure
drops that occur when the fluid flows through the membrane aperture. In the case of circular
aperture, the pressure drops are described by a local flow conductance established by Sampson
[88]:

q(i) = G
(i)
fl ∆P

(i), with G
(i)
fl =

r3
o,i

3η
, (IV.1)

where q(i), ∆P (i) are the local volume fluid flow rate passing through the membrane aperture
i of radius ro,i and the local pressure drop, respectively. G(i)

fl is the local conductance and η is
the dynamic viscosity of the fluid. The pore-network model describes the foam pore-space as
a network of fluid flow conductances. A steady flow of an incompressible fluid is considered.
Consequently, the sum of current flowing towards or away from to the pore i is equal to zero
(similarly to Kirchhoff’s junction rule):

∑Nvi
j=1 G

(ij)
fl (Pi − Pj) = 0 where Pj is the pressure of

pore j being in the neighborhood of pore i which has Nvi neighbors. A macroscopic pressure
gradient is imposed by imposing a pressure difference between top and bottom pores. When the
pores are connected from top to bottom, the pressure in each inner pore can be calculated from the
following matrix form equation:

[G][P ] = [F ], (IV.2)

here, [P ] is a vector containing the pressure of inner pores. [G] is a matrix of local conductances:
−
∑Nvi

j=1 G
(ij)
fl on the diagonal and G(ij)

fl elsewhere. [F ] is a vector containing zeros except for

inner pores having top pores or bottom pores as neighbors where Fi =
∑
G

(ij)
fl (Pi−Pj) in which

Pj is the pressure of top or bottom pores. From the knowledge of pores pressures, the permeability
K is calculated from the flow of fluid Q passing through a cross-section A of foam:

K = η
Q

A

1

λ
, (IV.3)

where λ = ∆P
H with ∆P is the macroscopic pressure gradient applying on foam sample of thick-

ness H . The flow rate Q is equal to the sum of the flow rates passing through NWA open mem-
branes which cover the section A (see Fig. IV.1):

Q =

NWA∑
i=1

q(i) =

NWA∑
i=1

G
(i)
fl ∆P

(i). (IV.4)

Note that this pore-network model with Sampson’s law has been successfully validated by
comparing its predictions to FEM calculations on Kelvin structure and used for monodisperse
foam having thin open membranes [58, 59, 78].

IV.2.2 Validation of Sampson’s law for polydisperse foams

In this section, we want to check the validity of Sampson’s law as well as pore-network method for
the application on polydisperse foam by considering a simple structure of foam: two cylindrical
pores of different sizes R1 and R2 are connected by thin membranes having a circle window of
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Figure IV.1: An illustration of pore-network method in 2D.

radius ro as described in Fig. IV.2. Following Sampson’s law, the fluid flow conductance is given
by GSampson

fl = r3
o/3η. By using FEM simulation, the fluid flow conductance is calculated:

G
Compt.
fl =

Q(
∆P/2

) , (IV.5)

with the flow rate Q is calculated by

Q =

∫
Ωf
uzdV

2 (R1 +R2)
, (IV.6)

where uz is the component of the velocity following direction of the fluid flow.
Fig. IV.3 shows the normalized fluid flow conductance GComput.

fl /G
Sampson
fl as a function of

membrane aperture sizes ro/R2 for various pore size ratios R2/R1.
It appears that as long as the membrane aperture sizes ro/R2 ≤ 0.6, the effect of pore size

ratio R2/R1 is less than 10%, and, Sampson’s law can predict well the fluid flow conductance.
The prediction of Sampson’s law for polydisperse foams (R2/R1 � 1) is even better than for
monodisperse foams (R2/R1) → 1. Moreover, when the membrane aperture sizes ro/R2 → 1,
the fluid flow conductance diverges and Sampson’s law cannot reproduce the FEM result (Fig.
IV.3).

In fact, this configuration of two cylindrical pores can be described by an equivalent pore-
network model as shown in Fig. IV.1b, consisting of 2 conductances G12 and G21 associated with
the behavior of the fluid passing from pore 1 to pore 2 and from pore 2 to pore 1, respectively.
Because the two membranes have the same opening size ro, we have: G12 = G21. We also could
break down each conductance into 2 parts G1 and G2 corresponding to pore 1 and pore 2 (see Fig.
IV.2c). Therefore, the local conductance can be calculated as:

Glocal = G12 = G21 =
G1G2

G1 +G2
. (IV.7)

Considering that Gi with i = 1, 2 is the semi-conductance of the local conductance Gmono in the
case of mono-pores which have size Ri. FEM results show that Gmono depends on the aperture
size ro/Ri, see Fig. IV.3 with R2/R1 = 1 for mono cylindrical pore or Fig. 1 in the Ref. [59] for
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Figure IV.2: Two cylindrical pores of different sizes are connected by perforated membranes. A
pressure drop is applied between the top and the bottom faces, a no-slip condition is applied over
the membrane, and a slip condition is applied on the lateral faces.
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Figure IV.3: Normalized fluid flow conductanceGComput.
fl /G

Sampson
fl of two interconnected pores as

a function of the membrane aperture size ro/R2 for various pore size ratios R1/R2. Comparison
between FEM results (symbols) and predictions of Eq. IV.8 (dashed lines) based on FEM results
of mono-size (i.e., R2/R1 = 1 with solid line).

mono cubic pore. Thus, Gi = 2Gmono
(
ro/Ri

)
. Based on the numerical data of Gmono depending

on ro/Ri, the local conductance of polydisperse pore size in the considered case can be predicted:

Glocal =
2Gmono

(
ro/R1

)
Gmono

(
ro/R2

)
Gmono

(
ro/R1

)
+Gmono

(
ro/R2

) . (IV.8)

As shown in Fig. IV.3, this pore-network model enables to reproduce the FEM results. In the case
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of pore size polydispersity (R2/R1 � 1), aperture size becomes small ro/R1 → 0 increasing the
prediction of Sampson’s law for the larger pore.

In the following sections, we will consider that Sampson’s law is always valid and the pore-
network simulation is suitable for calculating the permeability of polydisperse foams. Note that a
possible improvement of the pore-network model could be possible by choosing a local conduc-
tance given by eq. IV.8 rather than by Sampson’s law.

IV.3 Numerical microstructure of random polydisperse foams

Microstructures of random foams can be simulated by Neper software using the distribution of pore
size and pore sphericity as inputs. Note that, here, the pore size is represented by the diameter d
of a sphere having the same volume. We define the pore size variation coefficient cd as:

cd =
σd
〈d〉

, (IV.9)

where 〈d〉, σd are respectively the average and standard deviation of pore sizes. Similarly, the
pore sphericity is determined by the average 〈s〉 and the standard deviation σs value or the pore
sphericity variation coefficient cs = σs/〈s〉.

A literature review shows that monodisperse foams tend to take on an ordered structure similar
to Kelvin cell [42, 76, 37]. Another ordered monodisperse structure is the Weaire-Phelan structure
which can be more accurate. For these two monodisperse structures, we have cd = 0, 〈s〉 around
0.91 and cs = 0. These two structures differ in particular by the number of average neighbors 14
in the Kelvin structure and 13.5 in the Weaire-Phelan structure. A realistic monodisperse foam
has an average neighbor number in the range of 13-14 [82, 98, 37]. Geometrical features of poly-
disperse foams have not been extensively studied, mostly the pore sphericity. The graphite PU
foam characterized in previous chapter shows a distribution of pore sphericity of s = 0.77± 0.07
with cd = 0.79. Clearly, pore size and pore sphericity are not independent in real foams. Un-
fortunately, from our knowledge, no study in literature has explicitly shown their interdependence
function. Therefore, in this work, the pore sphericity of polydisperse foams (mean value and stan-
dard deviation) is linearly interpolated between the pore sphericity of monodisperse foam which
corresponds to cd ≈ 0 and s = 0.91 and the pore sphericity of the real graphite PU foam having
cd = 0.79 and s = 0.77± 0.07. In accordance with the observation on real foams in the previous
chapter, the pore size and pore sphericity are assumed to follow two lognormal distributions.

The permeability of foam depends not only on connection size (window size) but also on the
network of pore connections or more precisely, on the number of windows per pore (number of
neighbors). With the foam microstructures generated from Neper, the sizes of membranes and the
neighbor number depend on the input distributions of pore size and pore sphericity. Therefore,
sphericity is an important input parameter, and, an unsuitable choice of sphericity may lead to
erroneous number of neighbors or size distribution of the membranes. For example concerning the
sphericity effect, Fig. IV.4 shows the distribution of neighbor number and of faces area Fa of two
monodisperse foam structures cd ≈ 0 with different distributions of pore sphericity: one with an
experimental distribution observed in the graphite foam PU s = 0.77 ± 0.07 and the other with
the pore sphericity s = 0.898± 0.015 close to that of Kelvin and Weaire-Phelan structures which
has been found to be effective for the permeability of monodisperse foams.

Kelvin-like structure gives Nv = 13.76 ± 1.88 in good agreement with the experimental
value while the Neper microstructure calculated with the low sphericity of graphite PU foam gives
Nv = 16.26 ± 2.70 and fails to reproduce the experimental value. It can be shown that the low
sphericity (graphite PU-like) and monodisperse microstructure create a large amount of small faces
which contributes to increase the mean number of neighboring pores.

-Cong Truc NGUYEN- 60



IV.3. NUMERICAL MICROSTRUCTURE OF RANDOM POLYDISPERSE FOAMS

0 1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

0.25

5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

a) b)

Figure IV.4: Neighboring number and face area distributions of a monodisperse foam structure
with different distribution of pore sphericity. Histograms were converted into probability density
functions.

The distribution of pore size and pore sphericity of Neper foam microstructures are given in
Tab. IV.1 and also plotted in Fig. IV.5.

Foam c1 c2 c3 c4 c5 c6

cd 0.08 0.20 0.40 0.60 0.79 0.95
〈s〉 0.898 0.875 0.840 0.805 0.770 0.735
σs 0.015 0.018 0.035 0.052 0.070 0.088

Table IV.1: Pore size variation coefficients cd and pore sphericity s = 〈s〉±σs of generated random
foams.
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Figure IV.5: Distribution of a) Normalized pore size d/〈d〉 and b) 1− Sphericity for generated
random foams.

As shown in Fig. IV.6, we note that the path of evolution of pore sphericity s as a function of
cd encompasses a case observed on polycrystals for which the size distribution of the crystals is
governed by the minimization of the interfacial energy as for foams [84].

The evolution of other geometrical properties with increasing cd is shown in Fig. IV.7: The av-
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Figure IV.6: Evolution of pore sphericity s as a function of cd in this work (in black). Sphericity
of Kevin or Weaire-Phelan cell for modelisation of monodisperse foam (in blue) and sphericity of
grain-growth materials reported in [92] (in red). Symbols represent mean values, error bars show
standard deviation values.

erage number of neighboring pores slightly decreases while the corresponding deviation standard
strongly increases. The average and the deviation standard of the membrane sizes tend to increase
with cd, polydisperse foams have more small membranes than monodisperse foam. This may be
due to the increasing amount of small pores.
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Figure IV.7: Geometrical properties: Neighbors pore number Nv, Membrane surface Fa and
its variation coefficient cFa as a function of cd. Symbols represent mean values, error bars show
standard deviation values.

IV.4 RVE size for the permeability in random foams

Computations of the permeability are made on a Periodic Unit Cell (PUC) as a Representative
Volume Element (RVE). A cubic box of dimension L(i) for iteration i plays the role of a PUC in
which the pores are generated by imposing periodic conditions on both three directions. First, the
distribution of pore size and pore sphericity are defined by their respective average and standard
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deviation values. Among all faces, the open membrane fraction xo and its aperture rate to are
also imposed. Each iteration starts with a choice of cubic box size L(i), based on the pore size
distribution and cubic box size, the pore number N (i)

p can be calculated through the following
relation [80]:

〈d〉 = L(i)

(
6

π

1

N
(i)
p

)1/3 [∫ ∞
0

fd(x)x3dx

]−1/3

, (IV.10)

where fd is the probability density function of the diameters. For the lognormal distribution:

fd =
1

dσp
√

2π
exp

−(ln d− µp)2
2σ2

d

, (IV.11)

µp and σp are parameters of the lognormal distribution:

σp = ln
(
c2
d + 1

)1/2
, (IV.12)

µp = ln 〈d〉 − σ2
p

2 . (IV.13)

Then, n structures are generated by Neper software (in this work n = 5). For each microstructure
configuration (cd, 〈s〉, σs), the permeability is calculated by the pore-network method following
the three spatial directions and then the average over n structures is taken as the final permeability
K(i) of iteration i. This procedure will stop at iteration i when both of two following conditions
are satisfied: (i) the relative error between two consecutive iterations less than ε. (ii) pore number
N

(i)
p ≥ 1.5N

(i−1)
p ≥ 50. The latter ensures that the pore number in the generated structure is wide

enough to represent the pore size distribution. The implemented algorithm is depicted in Fig. IV.8.
Fig. IV.9 shows the evolution of permeability versus the cubic box size for various polydisperse

foams which have the same average pore size 〈d〉 and all membranes are opened xo = 1 with
the same constant aperture rate to . As the PUC size iteratively increases, the permeability K
converges and the standard deviation vanishes. This trend is in good agreement with the work
on permeability of a simple 2D random media of X. Du et al. [31]. Of course, the convergence
rate to RVE depends on the acceptable error ε, however, it can be seen that the RVE size clearly
increases with cd: with a relative error ε = 0.1, the RVE of monodisperse foam (cd ≈ 0) can be
reached at δ = L/〈d〉 = 3 with 52 pores even smaller if the condition of the pore number required
to represent a probability distribution, i.e., Np ≥ 50, is ignored, while for a polydisperse foam
having cd = 1.0 the RVE can only be reached at δ = 9 with 231 pores.

IV.5 Permeability of polydisperse open-cell foam

In this section, we are interested in random foams with open membranes, i.e., xo = 1, in order to
study the effect of pore size variation cd on the permeability.

IV.5.1 Pore-Network results

Three cases are considered: the first case is that all membranes are opened with an identical aper-
ture size ro (ro,i = ro whatever the membrane i). The second case corresponds to all membranes
having an identical aperture ratio to (to,i = to whatever the membrane iwhere to,i =

√
Fao,i/Fai

with Fao,i is the area of the membrane aperture and Fai is the total area of the membrane i includ-
ing the aperture area) and the third case is that each membrane is opened with a random aperture
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Figure IV.8: The iterative procedure for determination of RVE size.
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Figure IV.9: Permeability evolution versus the PUC size for various polydisperse foams. The
mean permeability values are accompanied by a standard deviation corresponding to 15 realiza-
tions. Circle symbols (in red) denote the REV size corresponding to relative error ε = 0.1.

ratio. For the last case, a uniform law is used, the aperture ratios are chosen randomly in the in-
terval [0.5− τ, 0.5 + τ ] with τ varying between 0.01 and 0.49. The average ratio is consequently
fixed 〈to〉 = 0.5.
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Fig. IV.10 shows that the permeability is quite insensitive to τ for various polydispersity de-
gree. From a practical point of view, this result suggests that the calculation of the mean aperture
ratio from experimental membranes characterization of a random foam is sufficient. Thus, there-
after, the case of random aperture ratio will not be considered.

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

Figure IV.10: Permeability evolution versus the variation parameter of the aperture ratio. The
average aperture ratio is fixed 〈to〉 = 0.5. Symbols represent mean values, error bars show standard
deviation values.

The evolution of permeability as a function of pore size variation cd for the case of constant
aperture size and constant aperture ratio is plotted in Fig. IV.11. It is quite surprising that the case
of constant aperture size ro gives a slightly decreasing trend of permeability with the polydisperse
degree cd while the permeability increases strongly for the case of constant aperture ratio to. With
ro constant, the effects of membranes size heterogeneity are not considered, and only the effect
of the pore network structure remains. Therefore, the decreasing trend of permeability may be
caused by the decreasing of the mean number of neighboring pores 〈Nv〉 (see Fig. IV.7a). A
similar effect of closed membrane fraction or of Nv on permeability is observed in monodisperse
foam [58]. On the contrary, for to constant, the aperture size is related to the membrane size.
As shown in Fig. IV.7b, the mean area of membranes 〈Fa〉 slightly increases but the variation
coefficient of membrane area cFa = σFa/〈Fa〉 (where σFa is the standard deviation of membrane
size) increases strongly with cd. Also, the increase of permeability with the polydisperse degree
has been found experimentally in the open-cell foams by Skibinski et al. [91]. Besides, the fact
that increasing the variation coefficient of membranes size increases the permeability was also
found in Westhoff et al. [104]. Of course, there is a close relationship between both effects: small
pores have small membranes and consequently small apertures, and vice versa.

In the next section, the use of mean pressure field approximation to calculate the permeability
of open-cell foam is investigated, and, the respective roles of pore-network structure and mem-
brane aperture will be highlighted.
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Figure IV.11: Permeability calculated by pore-network method (Compt.), predicted by Eq. IV.17
or Eq. IV.22 (Pred.) and Corrected by Eq. IV.20 (Corr.) for polydisperse foams having same
aperture size ro or same aperture rate to. Symbols represent mean values, error bars show standard
deviation values.

IV.5.2 Mean pressure field approximation

As shown in IV.2, permeability is calculated from the total flow rate Q passing through all mem-
brane apertures {i} covering a foam cross-section (Eqs. IV.3 and IV.4). The flow rate passing
through the membrane aperture i depends on the pressure difference ∆Pi between the pores shar-
ing this aperture, and can be estimated from Sampson’s law. Permeability is then given by:

K =
1

3Aλ

NWA∑
i=1

r3
o,i∆Pi. (IV.14)

Apart from Sampson’s law, Eq. IV.14 has no strong assumption. Consequently, the accuracy
of the permeability prediction depends on the accuracy of the pore pressure prediction. The most
simple way to estimate the pore pressure is to consider the mean pressure field approximation. In
this approximation, the pore pressure Pp is linearly dependent on the pore position Zp in the direc-
tion of the macroscopic pressure gradient. Fig. IV.12 shows that the linear relationship between
Pp and Zp is satisfied on average:

Pp − Pmin

Pmax − Pmin
≈ Zp − Zmin

Zmax − Zmin
, (IV.15)

where Pmax − Pmin ≈ ∆P is the macroscopic pressure difference imposed between the top and
the bottom of the sample, and Zmax − Zmin ≈ H corresponds to the thickness of the foam sample
(or the spatial period in numerical simulations). For monodisperse foam (c1), this relationship
is almost perfectly satisfied while a random fluctuation around the mean trend is observed for
polydisperse foam (c6).

In terms of local pore pressure difference ∆Pi, the pressure mean-field approximation can be
written ∆Pi = λ∆zi, where ∆zi is the difference between the positions of the centers of the two
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Figure IV.12: Relation between pressure in the pores Pp and their corresponding positions Zp. a)
constant aperture size, b) constant aperture ratio.

pores connected by the aperture i (measured along the direction of the macroscopic pressure gra-
dient) and λ is the macroscopic pressure gradient. Thus, the error of the mean-field approximation
can be estimated by the standard deviation of (∆Pi −∆ziλ):

err = SD
(
|∆Pi −∆ziλ|

λ〈d〉

)
. (IV.16)

As shown in Fig. IV.13, error clearly increases with the polydisperse degree cd of foam. As
mentioned previously, the increase of pressure prediction error in the case ro constant must be
attributed to the increase of pore-network structure disorder resulting from the increase of polydis-
persity degree, while in the case to constant, a combination of the effect of pore-network structure
disorder and that of membrane-size fluctuations must be considered.
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Figure IV.13: Relative error of mean pressure field approximation.
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Now, we take interest in the permeability prediction with the mean field hypothesis. From the
mean field hypothesis (∆Pi = ∆ziλ) and Eq. IV.14, we find:

K =
1

3A

NWA∑
i=1

r3
o,i∆zi =

NWA

3A
〈r3
o,i∆zi〉WA, (IV.17)

where 〈·〉WA denotes the average on the membranes covering a cross-section of area A. Note that
the average on all the membranes over the volume would give different results. As the probability
of a large pore to be intercepted by a cross-section is higher than the one of a small pore, large
pores are over-represented in surface average, leading to a lower influence of small pores.

In the case of a constant aperture size ro for all membranes, permeability is given by:

K =

{
NWA

3A
〈∆zi〉WA

}
r3
o = αcr

3
o , (IV.18)

where αc = NWA
3A 〈∆zi〉WA is a coefficient depending on the geometry.

In the case of a constant aperture ratio to, the permeability is given by:

K =
NWA

3A
〈r3
w,i∆zi〉WAt

3
o, (IV.19)

where rw,i =
√
Fai/π is the size of the window i.

In the case of constant aperture ratio, the random variables, r3
w,i and ∆zi, are not fully inde-

pendent (non zero covariance) as 〈r3
w,i∆Zi〉WA is not equal to 〈r3

w,i〉WA〈∆zi〉WA (as shown in
Fig. IV.14). However, the increase of K when the polydispersity degree increases shown in Fig
IV.11 is due to the effect of aperture sizes 〈r3

w,i〉WA. Note that, for the case where the aperture
ratio to,i is randomly distributed and independently on the membrane size Fai, the permeability
can be approximated by using Eq. IV.19 with to = 〈to,i〉.
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Figure IV.14: 〈r3〉WA〈∆z〉WA and 〈r3
i ∆Z〉WA as a function of cd with identical aperture ratio

to. Symbols represent mean values, error bars show standard deviation values.
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A comparison of permeabilities predicted by Eqs. IV.18 and IV.19 and the pore-network results
is shown in Fig. IV.11. Its appears that these equations based on the pressure mean-field approxi-
mation can well predict the permeability of polydisperse open-cell foams with an acceptable error
(increasing with the polydispersity degree). However, as for the pressure prediction error err, the
permeability prediction is better for the case of constant aperture size than for the case of constant
aperture ratio. From the calculation of the error estimator err, the mean-field approximation can
be corrected to better predict the pore-network permeabilities as shown in Fig. IV.11:

KCorr = KMF (1− 0.27err) , (IV.20)

where KMF is the permeability predicted by mean-field approximation (Eq. IV.22), and the coef-
ficient 0.27 is an adjusted coefficient.

From a practical point of view, Eq. IV.19 gives all the geometric parameters allowing an
estimation of the permeability from the foam microstructure characterized by imaging methods
(2D and 3D). Indeed, if the foamy material is isotropic, from analysis on two orthogonal sectional
views of the foam (2D image), the parameters NWA/A, 〈r3〉WA and 〈∆z〉WA can be measured.
Then, Fig. IV.14 is useful for the estimation of 〈r3∆z〉WA.

Before moving to the next section dedicated to the effect of small pores on permeability and
to the definition of an effective pore size (two issues linked to the pore size distribution), we want
to discuss about similar questions - the effect of large pores and the definition of an effective
aperture size - from the point of view used in this section based on the fundamental equations of
the pore-network modeling (Eq.IV.14, Sampson law, Kirchhoff nodal rule).

For both cases, ro constant and to constant, we notice that the mean-field approximation pre-
dicts greater permeability values than those found with the pore-network simulations. This obser-
vation highlights the effect of large pores on the pressures of (smaller) neighboring pores in pore-
network simulations while the mean-field approximation neglects this effect. Indeed, the pressure
of a pore i can be described from the pressures of the neighboring pores via the conservation of
mass (or Kirchhoff nodal rule):

Pi =

∑Nvi
j=1 GijPj∑Nvi
j=1 Gij

. (IV.21)

Consequently, the pressure of a pore (Pi) is a weighted average of the pressures of neighboring
pores (Pj). Large pores having many neighboring pores will therefore influence many pores.
This high influence of large pores leads to pull the pressure of small pores towards the pressure
of large pores. Thus, the pressure difference Pj − Pi between two connected pores including a
large pore (and the resulting flow rate) is in average smaller than the ones predicted by the mean
pressure field approximation. Indeed, this approximation does not consider any direct effect of
pore-network structure.

The notion of effective membrane aperture size were introduced in effective medium approach
for monodisperse foam [58]. In this approach, foam permeability is written as permeability of ro
constant foam with an appropriate choice of the aperture size ro, corresponding to the effective
aperture size reff :

K = αcr
3
eff . (IV.22)

Within the framework of the pressure field approximation, the effective local aperture size reff for
polydisperse foam is determined from Eq.IV.17:

r3
eff =

〈r3∆z〉WA

〈∆z〉WA
. (IV.23)
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For monodisperse foam, other models based on Kirkpatrick model [50] give others expressions
for reff [58, 59]. In these models, the effects of aperture size fluctuation and closed membrane
(percolation) on permeability are considered.

IV.5.3 Effect of small pores and effective pore size

One of the hypotheses proposed to progress in the development of a permeability model for a
polydisperse foam is as follows. It is assumed that there is a network of interconnected pores of
medium and large sizes that carry most of the viscous flow, so that the small pores do not contribute
to the effective properties of the medium. In what follows, our aim is to identify the proportion
of these small pores. To check the effect of small pores on the global permeability of open-cell
foam, we consider random foams with a constant aperture ratio, the small pores having a size
lower than a threshold are considered as fully closed (by closing their membranes). In order to do
that, the pores must be sorted from the smallest to the largest following their sizes, and are plotted
with a normalization of the cumulative pore volume Vcum/Vtotal or of cumulative pore number
Np
cum/N

p
total. Then the smallest pores will be closed for the calculation of permeability K, after

which we shall continue to close the larger ones.
Fig. IV.15 shows that in the polydisperse foams, the small pores are numerous but this does

not represent a large volume and it makes a low contribution on the global permeability of foam.
For example, in the foam having cd = 1.0, 85% small pore number represent only about 10% total
volume and if these 85% are closed, the foam lose only 15% of global permeability. The effect of
small pore decreases with the decreasing of cd because less polydisperse degree, more the pores
having same size. It was also seen that the permeability tends to zero before all the pores are
closed. This is brought about by the vanishing of percolation which occurs when the closed pores
number is enough to stop the flow of fluid (the site percolation).

In order to determine whether the static permeabilityK of polydisperse foams can be modeled
by monodisperse ones with an effective pore size, we introduce dε being the pore size related to
Vcum/Vtotal = ε. The determination of dε is depicted in Fig. IV.15. Moreover, we can define D1−ε
as the size of an average pore of volume equal to the mean volume of the pores having di > dε:

D1−ε =

(∑
di>dε

d3
i

Np
di>dε

)1/3

. (IV.24)

The sizeD1−ε depends on both the threshold ε and polydisperse degree cd except for monodis-
perse foams in which all pores have almost the same size where D1−ε is a constant, i.e., the size
of pores D (cd = 0) = 〈d〉 = d (see Fig. IV.16). Thus, the permeability is expectedly predicted
under the form:

K (cd) = K (0)

[
D1−ε (cd)

D (0)

]2

. (IV.25)

As shown in Fig.IV.17, the permeability prediction by Eq. IV.25 with the threshold ε = 0.1−
0.15 gives a good agreement with the computed one by pore-network simulation. This support
that the permeability of a polydisperse foam can be estimated using an effective monodisperse
foam with the pore size d = D85−90%. For the sake of a practical estimation of permeability,
we consider d = D90% as the effective pore size of random foam. From a practical point of
view, the permeability of a monodisperse foam having a constant aperture size can be calculated
easily and fast through the Kelvin-cell structure by FEM or pore-network [37, 97, 58]. Knowing
the distribution of pore size, based on Eq. IV.25, the permeability of a polydisperse foam can
be estimated without calculation even without generating the corresponding structure. Indeed, in
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Figure IV.15: Dependence on normalized pore size d/〈d〉 of normalized cumulative pore volume
Vcum/Vtotal (solid lines), of normalized cumulative pore number Np

cum/N
p
total (dashed lines) and of

normalized permeability K/K0 (dash-dot lines) for various coefficients of pore size: a) cd = 0.2
(black color), b) cd = 0.6 (blue color), c) cd = 1.0 (red color). Note that K0 is the permeability
having all open membranes, K is calculated for the case of all membranes of the pore having
di < d are closed.

[59], an analytical formula was proposed to estimate the permeability of some configurations of
Kelvin structure (cd = 0):

K =
η

Db

[
nsqG

sq
fl + 0.5nhexG

hex
fl

]
, (IV.26)

where Db is the size of the unit cell which is related to the pore size d: Db = (π/3)(1/3)d. For a
Kelvin structure with identical aperture ratio to and totally open xo = 1: nsq = 2, nhex = 4 and
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Figure IV.16: Normalized of D1−ε as function of ε.
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Figure IV.17: Prediction of permeability (Pred.) by Eq. IV.25 based on D1−ε together with the
computation by pore-network simulation (Compt.).

G
sq
fl = r3

sq/3η, Ghex
fl = r3

hex/3η with rsq = toDb/2
√

2π, rhex = toDb3
0.75/4

√
π, we have:

K(0)

d2
≈ 0.0283t3o. (IV.27)

Thus, the permeability of a polydisperse foam having identical aperture ratio to can be approxi-
mated by:

K(cd) ≈ 0.0283D2
90% (cd) t

3
o. (IV.28)
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IV.6 Effect of closed membranes

The study of the effect of closed membranes requires a large sample to represent a RVE, however,
the procedure to determine the RVE size presented in section IV.4 needs the generation of several
structures which requires high computing time. In this section, the calculation of permeability
will be performed on foam structures having at least 1000 pores. To check if these structures
are enough to represent a RVE, larger periodic foams were made from smaller ones by using a
duplication process. A double period structure is a periodical duplication of the initial structure
following three perpendicular directions. An example in 2D is shown in Fig. IV.18a.

initial
periodic

 structure
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Figure IV.18: a) A simple example of a double periodic structure is made from an initial structure
in 2D. b) Comparison of permeability calculated on two structures (initial and double) with cd =
1.0 and identical aperture ratio for various open membrane proportion xo.

As shown in Fig. IV.18b, for the most polydisperse foam under our study cd = 1.0 which
requires generally a most size of RVE, there is no significant difference between the simple period
structure and the double structure. Therefore, the initial periodic structure (about 1000 pores)
is enough to be a REV for the study of permeability with the change of open/closed membrane
proportion.

Fig. IV.19 shows the permeabilities simulated with pore-network performed on the samples
having random position of closed membranes and various open membranes proportions xo for ro
constant and to constant.

In the case of ro constant, the permeability exhibits a linear dependence on the open mem-
branes proportion xo except for xo close to the bond percolation threshold xp. While for to con-
stant, the permeability depends not only on xo but also on the polydisperse cd. However the
percolation threshold xp seems independent from the aperture size (ro or to) and the distribution
of pore size cd. Indeed, the bond percolation threshold depends on the lattice used including the
neighbor pore number Nv [36]. For ordered lattices, the bond percolation threshold is close to
1.5/Nv [50]. This means that the average number of open membranes per pore must be greater
than 1.5 to ensure the percolation. In reference to the foams, with the neighbor pore number Nv in
the range [12− 14], the percolation threshold value could be found in narrow range [0.1− 0.125].
It was confirmed by our numerical results.

For ro constant, where the local conductances are identical, the curves of the dimensionless
permeability K(xo)/K(1) can be superposed meaning that K(xo)/K(1) is not dependent on cd.
While for to constant, where the local conductances are related to the corresponding membrane
areas, the values of K(xo)/K(1) are smaller than in the case of the ro constant as observed in the
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Figure IV.19: Dimensionless permeability K(xo)/K(1) as a function of open membrane propor-
tion xo for various polydisperse foams cd. a) Case ro constant b) Case to constant. The dashed
lines correspond to adjusted curves of the form of Eq. IV.29-IV.31.

case of monodispersed foam. Evidently, the relationship between K(xo)/K(1) and xo depends
on the local conductances or the local sizes of aperture. The permeability for an open membrane
proportion close to the percolation threshold can be explained by the open density Rop (= volume
of pores within open pore space/ total volume of pores) [58].
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Figure IV.20: Open density Rop as a function open membrane proportion xo.

As shown in Fig. IV.20 for xo ≥ 0.3, effect of Rop can be ignored. As measuring Rop in a
real foamy material is hard and the behavior near threshold can be characterized by a power law
[50], in order to provide a mathematical model for the prediction of dimensionless permeability,
we assume that K(xo)/K(1) is approximated by a second-order polynomial function of xo in the
range 0.1 ≤ xo ≤ 0.3:

K(xo)

K(1)
= A2

(
x2
o − 0.12

)
+A1 (xo − 0.1) , (IV.29)

with assuming that at xo ≤ 0.1, the permeability vanishes. On the other hand, when the open
membrane proportion is large, i.e. xo ≥ 0.5, Fig. IV.19 shows that the dimensionless permeability
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increases linearly up to 1. Therefore, it is possible to estimate K(xo)/K(1) under the following
form:

K(xo)

K(1)
= C1 (xo − 1) + 1. (IV.30)

For the transition range 0.3 < xo < 0.5, it is reasonable to define another linear approximation for
dimensionless permeability:

K(xo)

K(1)
= B1xo +B0. (IV.31)

The dependence of slopes A2, A1,B1,B0 and C1 on the local conductances may be expressed
through a dependency on variation coefficient of membranes size cFa.
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Figure IV.21: Slope C1 as a function of cFa. Dashed line corresponds to adjusted curve of the
form of Eq. IV.32.

As an example, Fig. IV.21 plotted slope C1 as a function of cFa. Note that the case ro constant
corresponds to cFa = 0. Based on our numerical data, the mathematical expression of these slopes
can be approximated by:

A2(A1, B1, B0, or C1) ≈ p4c
4
Fa − p3c

3
Fa + p2c

2
Fa + p1cFa + p0. (IV.32)

The parameters pi with i = 1, 2, 3, 4 for these slopes are listed in Tab. IV.2.

p4 p3 p2 p1 p0

A2 0.1094 0.1567 −1.6138 1.5960 2.1317
A1 −0.1214 0.3255 0.1242 −0.7588 0.0564
B1 −0.0333 0.2040 −0.3643 0.1015 1.1887
B0 −0.0057 0.0163 0.0059 −0.0553 −0.1748
C1 0.0242 −0.1731 0.3205 −0.0071 1.1677

Table IV.2: Parameters of the polynomials of different slopes.

As shown in Fig. IV.19, the approximated formulas IV.29-IV.31 reproduce correctly the rela-
tionship between the permeability and the open membrane proportion xo in the full range [0.1, 1].
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From a practical point of view, these approximated formulas allow us to predict the permeability
of a polydisperse foam having a proportion of open membranes xo if its full open-membranes’
permeability is known. Note that as presented in section IV.5, the permeability of an open foam
can be estimated by the mean pressure field approximation through geometrical features or by
effective pore size through a monodisperse foam.

As an application on real foam, in the following, we apply the approximation above for perme-
ability estimation of the real graphite polyurethane foam which was fabricated following a nucle-
ation perturbation technique. The microstructures were characterized by imaging techniques: the
treatment of 3D images obtained from micro-tomography X-ray given the distribution of pore size
and the effective pore size D90% was deduced. The membrane contents are measured through 2D
SEM images including average of open membrane proportion 〈xo〉, its average aperture ratio 〈to〉
and the variation coefficient of membrane area cFa. The detail of this characterization procedure
was presented in chapter III.

D90%[µm] 〈xo〉 〈to〉 cFa Kmeas.[×10−10m2] Kcompt.[×10−10m2] Kest.[×10−10m2]

882 0.28 0.51 1.08 2.73± 0.34 2.83± 0.03 2.67

Table IV.3: Comparison of measured permeability, one computed by pore-network and one esti-
mated by proposed approximation of graphite PU foam.

Since 〈xo〉 < 0.3, the permeability is estimated by combining Eqs. IV.28 and IV.29:

Kest. ≈ 0.0283
(
A2(〈xo〉2 − 0.12) +A1(〈xo〉 − 0.1)

)
D2

90%〈to〉
3. (IV.33)

As shown in Tab. IV.3, the permeability calculated by pore-network simulation and the one esti-
mated by the proposed approximation are close to the measurement value.

IV.7 Conclusion

Random polydisperse foams were generated with the increasing of pore size polydispersity to
study the effect of pore size variation on the permeability. The pore-network simulation in monodis-
perse foams based on Sampson’s law of local permeability was extended to the polydisperse foams
for the calculation of permeability. The numerical results showed that the RVE size of foam me-
dia increases with the polydispersity of pore size or with the heterogeneity of microstructure and
the average aperture ratio of membranes can be used as effective aperture ratio in the modeling
of fully open-cell foam permeability. Based on the assumption of pressure mean field, the per-
meability can be estimated through the information of its microstructure [Eq. IV.22]. The small
pores with small membrane were shown to contribute no significance on the permeability of poly-
disperse foam due to its small volume despite its large numbers in pore system. The effective
pore size D90% of a polydisperse foam is the average size after exclusion of small pores which
contribute 10% of the total volume. Thus, it was shown that for this effective size, modeling
polydisperse open-cell foam with identical aperture ratio by monodisperse one, where all pores
are of the same effective size, yields mostly to statistically identical results [Eq. IV.25]. Then,
effect of closed membrane proportion was investigated. By assuming the threshold percolation
(critical concentration of open membrane proportion) always remains unchanged (xp = 0.1) for
all random foam structures and the slopes of dimensionless permeability function K(xo)/K(1)
of open membrane proportion xo depends on the variation of membrane areas, mathematical ex-
pressions were proposed to approximate this behavior in a large range of xo (xo ≥ 0.1, beyond
the percolation threshold) [Eqs. IV.29-IV.31]. The goal of this chapter is to provide an estimation
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of the permeability of a random foam when distribution of pore size, distribution of membranes
including area, proportion of open/closed and the average aperture ratio of open membranes are
measured by imaging techniques presented in the previous chapter.
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Chapter V

On the viscous characteristic length of
thin membranes of foam samples
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CHAPTER V. ON THE VISCOUS CHARACTERISTIC LENGTH OF THIN MEMBRANES
OF FOAM SAMPLES

V.1 Introduction

As shown in chapter II, at the microscopic scale, the permeability of fluid saturated porous media
can be described by the scaled dynamic Stokes problem with no-slip boundaries (Eq. II.23). In a
high-frequency regime, when viscous boundary layer becomes negligible, inertial effects dominate
and the fluid tends to behave as an inviscid flow having no viscous effect (except in the thin
boundary layer). Therefore, at high frequency, viscous fluid flow has an analogy with the electrical
conduction through a conductive fluid saturating the pore space (of a porous material having a non-
conductive skeleton) which is described by the following problem:

E = e−∇yϕ in Ωf ,

∇y · E = 0 in Ωf , (V.1)

E · n = 0 on ∂Ω,

E and ϕ are Ω-periodic.

The high-frequency viscous tortuosity α∞ and the viscous characteristic length Λ can be defined
from local electrical field E:

Λ =
2
∫

Ωf
E2dV∫

∂Ω E2dS
=

2IV
IS

, α∞ =
〈E2〉f
〈E〉2f

. (V.2)

where IV =
∫

Ωf
E2dV and IS =

∫
∂Ω E2dS. The local electric potential ϕ is obtained by the

Laplace problem:

∇2ϕ = 0 in Ωf , (V.3)

∇ϕ · n = e · n on ∂Ω, (V.4)

in which e is a given macroscopic electric field. By considering e is the unit electric field, i.e.,
‖e‖ = 1, as shown in [25], the tortuosity α∞ can be rewritten as:

α∞ =
1

〈E2〉f
=

Ωf

IV
. (V.5)

The electric field E is a function of the potential gradient∇ϕ. When the interface ∂Ω between
fluid and solid phases is smooth the numerical approximation of IS can be obtained routinely.
However, when ∂Ω presents sharp edges (or corrugated geometries), ϕ is not smooth and the
computation of E and Λ may be there very singular in the vicinity of singularity of ∂Ω [35].
Several studies have specifically investigated the high-frequencies’ behavior of two-dimensional
porous media whose internal surface has wedge-sharp geometries [1, 35, 25]. These works showed
that, for the computation of IS as well as the viscous characteristic length Λ, a particular care
(such as a very dense finite element mesh around the sharp edges) is required. Recently, Zielinski
et al. [110] used small smooth fillets to replace the sharp edges in order to ensure a numerical
convergence of Λ. However, adding smooth fillets generates a large number of elements in the
mesh and increases the computation costs. Therefore this method is suitable for simple PUC
structures such as cylindrical pore (2D axisymmetric), Kelvin cell or PUCs based on packed rigid
spherical beads, but not for media having a large number of pores.

Membranes in real high-porous foams have thin thickness: 1-2 µm [97, 37] even less than 0.3
µm for the graphite PU foam studied in this thesis (see chapter III). For the acoustical modeling of
polydisperse and disordered foams, the use of structures having membranes with no thickness can
strongly reduce the time of microstructure reconstruction and the cost of computations. However,
these structures are sharp edged around the apertures connecting the pores. In this chapter, the
effect of thin membrane on the local electric field will be investigated and an alternate technique
for the calculation of viscous characteristic length Λ will be proposed.
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V.2 Analytical solution of Laplace’s equation for spheroidal pores

V.2.1 Problem description

We first consider a particular axisymmetric 3D geometry of pores for which there is a simple
analytical solution of the Laplace equation allowing us to understand the effect of the presence of
membranes on the volume and surface integrals, i.e., IV and IS . The pore geometry considered
is based on the spheroidal oblate coordinates (η, ξ), defined from the rotation of confocal ellipses
and hyperbolas around the axis of symmetry (Fig. V.1). These spheroidal oblate coordinates can
be related to the cylindrical coordinates (r, z) as follows:

r = a
√

1 + ξ2
√

1− η2, (V.6)

z = aξη. (V.7)

Figure V.1: Spheroidal pores.

The two foci of the ellipses are located at the coordinates r = ±a and z = 0. The surfaces
at η = const are associated to the hyperboloids of revolution, while the surfaces ξ = const are
associated to the oblate spheroids.

We will consider the following problem (Fig. V.1): a potential difference 2V0 is applied be-
tween two electrodes located at ξ = ±ξe = ±le/a, and the membrane corresponds to the surface

η = ηp. The size a is chosen so that the radius of the constriction is equal to ro: a = ro/
√

1− η2
p .

The case of a membrane without thickness corresponds to ηp = 0. In this coordinate system, the
Laplace equation is written:

∇2V = 0⇔ ∂

∂ξ

[(
1 + ξ2

) ∂V
∂ξ

]
+

∂

∂η

[(
1− η2

) ∂V
∂η

]
= 0 in Ωf . (V.8)

The boundary condition on the membrane surface (η = ηp) follows:

∂V

∂η
= 0. (V.9)
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V.2.2 Analytic solution

Taking into account the boundary conditions, the solution of the Laplace equation is [85]:

V (ξ) = V0
tan−1 (ξ)

tan−1 (ξe)
. (V.10)

Note that the scale factors of the spheroidal oblate coordinates are given by

hξ = a

√
ξ2 + η2

ξ2 + 1
and hη = a

√
ξ2 + η2

η2 − 1

. The electric field resulting from this potential is given by:

E = −∇V = − 1

hξ

∂V

∂ξ
uξ = − V0

a tan−1 (ξe)
√(

1 + ξ2
) (
ξ2 + η2

)uξ, (V.11)

where uξ represents the unit vector associated with the coordinate ξ (and tangent to the hyperboloid
of revolution), and, 0 ≤ ξ ≤ ξe and ηp ≤ η ≤ 1.

The maximum value of the electric field, max‖E‖, is obtained in the narrowest part of the
constriction (ξ = 0, η = ηp): max‖E‖ ∝ 1/ηp. In the case of a membrane without thickness
ηp = 0, the field has a singularity.

The volume integral, IV =
∫

Ωf
E2dV with dV = 2πa3

(
ξ2 + η2

)
dξdη, is given as:

IV =

∫
Ωf

E2dV = 4V 2
0

πa
(
1− ηp

)
tan−1 (ξe)

. (V.12)

The electric flux Ie passing through the constriction is given by the integral of −E · uξ on the
surface ξ = 0:

Ie =

∫
ξ=0
−E · uξdS =

2πaV0

(
1− ηp

)
tan−1 (ξe)

. (V.13)

We deduce an expression for the electrical conductance Ge due to the constriction:

Ge =
πa
(
1− ηp

)
tan−1 (ξe)

. (V.14)

Note that Eqs. V.12 and V.14 are almost identical. This is due to the fact that the tortuosity
α∞ (and Iv, cf. Eq.V.2) depends on the electrical conductivity [14].

The integral over the pore surface IS =
∫
∂Ω E2dS with dS = 2πa2

√(
1− η2

p

)(
ξ2 + η2

p

)
dξ

is written:

IS =

∫
∂Ω

E2dS =
2πV 2

0(
tan−1 (ξe)

)2 tanh−1


2ξe

√(
1− η2

p

)(
η2
p + ξ2

e

)
η2
p +

(
2− η2

p

)
ξ2
e

 . (V.15)
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V.2.3 Limit for thin membrane

When the membrane thickness becomes small (ηp � 1), the volume integral is defined and is
approximated as

IV ≈
4πV 2

0

tan−1 (ξe)
. (V.16)

Note that even if the electric field E has a singularity as for zero-thickness membrane, IV is always
defined.

Moreover, for constrictions with a small aperture radius (a� 1 or ro � 1) and thin membrane
(ηp � 1), the volume integral is: IV ≈ 8V 2

0 ro and the electrical conductance is equal to: Ge ≈
2ro. This expression explains the linear dependence between the inverse of the tortuosity and the
size of the constriction shown in [59]: α−1

∞ ∝ ro/le when ro/le � 1 (here 2le represents the
size of the pore). This expression for Ge could be useful for the forthcoming construction of a
pore-network model for high-frequency tortuosity of the polydisperse foams (see the perspective
part).

For thin membrane (ηp � 1) the surface integral IS can be approximated by:

IS ≈
2πV 2

0(
tan−1 (ξe)

)2
ln

 1
1
ξ2e

+ 1

− ln

(
η2
p

4

) . (V.17)

When the thickness of the membrane is zero (ηp = 0), the surface integral IS is not defined:

IS ≈
2πV 2

0(
tan−1 (ξe)

)2 lim
ε→0

ln

 1
1
ξ2e

+ 1

− ln

(
1

1
ε2

+ 1

)→ +∞. (V.18)

Note that the pore geometry considered in this section has no constant thickness membrane. How-
ever, the dimensionless parameter ηp can be related to the average thickness em of the membrane,
and to the radius of curvature ρm existing at the level of the throat (narrowest zone of the constric-
tion) as follows:

ρm =

(
d2ρp
dz2

(0)

)−1

= a
η2
p

1− η2
p

≈ η2
pa, (V.19)

em =
1

∂Ω/2

∫
1/2∂Ω

2zdS ≈ 4

3

leηp√
1 + 1

ξ2e

. (V.20)

We feel that the radius of curvature is the physical parameter governing the singularity of the
electrical field.

Equation V.17 expressed as a function of the radius of curvature ρm or of the average thickness
em of the membrane becomes:

IS
D2
p

≈ π

2
(
tan−1 (ξe)

)2
ln

 4
1
ξ2e

+ 1

− ln

(
ρm
a

) , (V.21)

IS
D2
p

≈ π(
tan−1 (ξe)

)2
ln

 8

3
(

1
ξ2e

+ 1
)
− ln

(
em
le

) , (V.22)
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with Dp = 2le represents the pore size. We recall that the aperture radius ro = a
√

1− η2
p and

ξe = le/a. It can be seen that IS
D2
p

depends linearly on the logarithm of the radius of curvature ρm
or of the average thickness em of the membrane.

To conclude, through the analytic solution of Laplace’s problem for spheroidal pores, we
showed that the surface integral of the square of electric field IS diverges when the membrane
thickness tends to zero (ηp → 0). For thin membrane ηp � 1, IS expresses a logarithmic relation
with the radius of curvature or the average thickness of membrane while the volume integral IV
is always defined. Therefore, as found in literature, the high frequency tortuosity α∞ is always
defined whatever the membrane thickness, while the viscous characteristic length is undefined for
zero-thickness membrane. In the following, we will show that these conclusions are still valid for
other foam structures.

V.3 Geometrical singularities in foam structures without membrane
thickness

The case of no-thickness membrane was firstly considered in several works with 2D corrugated
channels [25, 35] in which apex angle γ = 0, see Fig.V.2. As previously pointed, the surface
integral IS diverges in this case and consequently, the viscous characteristic length tends to zero.
Therefore, the calculation of the viscous characteristic length by means of numerical methods
should encounter convergence problems.

Flow

Sharp-edges

Membrane
without thickness

Pore Pore

Aperture pg

a) b)

Figure V.2: a) Illustration of sharp-edges in a structure without membrane thickness. b) 2D
corrugated pore channels.

To illustrate this point, we consider a 3D foam microstructure, an open-membrane configura-
tion, called K0, of Kelvin cell which is widely used for the modeling of monodisperse foams. In
this configuration the membranes have no thickness and are opened by a circular hole of identical
radius r0. It is true that the type of microstructure as well as the one reconstructed by the proce-
dure described in chapter III shows sharp-edges all around the apertures connecting the pores. The
Laplace equation for obtaining the tortuosity α∞ and the viscous length Λ is resolved by FEM
with the elements which are around the apertures by imposing a constant size he (see Fig.V.3).

As a result, Fig. V.4 shows that while α∞ converges with the refinement of the mesh (reducing
he), Λ tends towards zero with he. The convergence of IV and divergence of IS implies that
the divergence of Λ lies in the evaluation of the surface integral IS . These results are in good
agreement with the ones performed on 2D sharp-edged porous media found in [35, 24].
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THICKNESS

r0
Dp

he

a)

b)

Figure V.3: a) Configuration K0 of Kelvin-cell structure. b) Finite element mesh around the
aperture.
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Figure V.4: Relative changes of transport parameters (TP) with respect to the ratio of he/Dp.
r0/Dp = 0.1, Dp = 1 mm.
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V.4 Effect of membrane thickness and virtual thickness of membranes

To study the effect of membrane thickness on the surface integral IS , three symmetrical config-
urations of Kelvin cell are considered as shown in Fig. V.5: K0, all membranes are opened;
K1, only squared membranes are opened; K2, only hexagonal membranes are opened. Note that
four-squared membranes which are parallel to fluid flow are ignored. Membranes have a non-zero
thickness em. In order to avoid sharp-edged singularity geometries, a fillet of radius em/2 is added
around the apertures as illustrated in Fig. V.6. That ensures a numerical convergence for viscous
characteristic length Λ [110]. To ensure an accurate calculation, the element size applied along the
aperture should be less than 0.1 times the thickness of membrane.

K0 K1 K2

Figure V.5: Top view from the median plane of the Kelvin configurations showing the positions
of closed/open membranes. Note that the horizontal median plane is a plane symmetry.

e
m

2r
0

e /2
m

e
m

2r
0

Figure V.6: Half of an open membrane with non-zero thickness em.

Fig. V.7 shows the surface integral IS normalized by D2
p as a function of em/Dp. It can

be seen that for thin membrane (em/Dp ≤ 10−3), IS/D2
p depends linearly on the logarithm of

the membrane thickness em/Dp. More specifically, there is a relation of the form IS/D
2
p =

A ln
(
em/Dp

)
+B where A and B are two constants depending on the geometry. This relation is

quite analogous to the analytical relation established for the spheroidal pores. By taking various

-Cong Truc NGUYEN- 86



V.5. CONCLUSION

ratios of r0/Dp (not shown here), we also obtained the same result. Note that a similar relation-
ship between the surface integral and the mesh size was found in the FEM convergence problem
shown in the previous section (V.3). Therefore, it seems possible to replace, in FEM calculations,
membranes of non-zero thickness by zero-thickness membranes and by an appropriate size of the
mesh elements around the membrane opening. To check this idea, we compare in Fig V.7 the FEM
calculations of the surface integral performed on the two kinds of microstructure (with and without
thickness).

10-4 10-3 10-2
1.5

2

2.5

3

3.5

4

4.5

5

5.5

K0

K1

K2

Figure V.7: Normalized surface integral IS/D2
p as a function of em/Dp (non-zero thickness,

square marker) or he/Dp (no thickness, circle marker) for different Kelvin-cell configurations.
r0/Dp = 0.1, Dp = 1mm. The dashed lines correspond to adjusted curves of the form A ln (x) +
B with x is em/Dp or he/Dp.

The concordance between the results of these two types of microstructures is clearly observed.
This supports the idea that it is possible to simulate a structure with thin membranes of non-zero
thickness em by imposing the element size he = em along the apertures of a structure with mem-
branes having no thickness, when calculating the viscous characteristic length Λ. Alternatively,
the relation IS/D2

p = A ln
(
he/Dp

)
+ B may also be used to model the thin membranes. More

precisely, by considering two coarser meshes in order to determine the constants A and B of the
studied microstructure, we can deduce its viscous characteristic length Λ instead of imposing a
fine mesh (he = em).

V.5 Conclusion

We presented in this chapter, the effect of thin membranes on the evaluation of surface integral of
the electrical field which causes the divergence of viscous characteristic length when numerical
foam geometries have sharp edges. By working on the analytical solution of Laplace’s equation
for spheroidal pores and FEM simulation performed on Kelvin cell configurations, it was shown
that for structures having smooth thin membranes, there is a logarithmic relationship between the
surface integral IS =

∫
∂Ω E2dS and the thickness em of membranes. This relation combined

with the equivalence between element size being applied around the apertures (in zero thickness
membranes structure) and the desired membrane thickness when the calculating of IS , gives a sim-
ple way to consider the membrane thickness effects, without modeling them in FEM simulations.
As this technique significantly reduces the computational cost, it will be applied to calculate the
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viscous characteristic length of polydisperse foam for which the microstructure contains a large
number of membrane apertures.
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CHAPTER VI. ACOUSTICAL PROPERTIES OF A REAL POLYDISPERSE FOAM

VI.1 Introduction

When a long-wavelength acoustic wave propagates in a porous medium such as foam, the energy
dissipation occurs because of visco-inertial, thermal and structural effects. The sound propaga-
tion problem can be solved using an asymptotic homogenization method performed on virtual
periodic structures, so-called Periodic Unit Cell (PUC), mimicking the microstructure of a real
foam [76, 94, 46, 95, 97]. This approach uses semi-analytical models which require a set of trans-
port parameters as inputs, for example, the Johnson-Champoux-Allard-Lafarge (JCAL) model
[49, 20, 56] requires six transport parameters: porosity, static viscous and thermal permeability,
high-frequency tortuosity, viscous and thermal characteristic lengths. The transport parameters
can be computed from the steady Stokes flow and Laplace’s equation related to viscous and in-
ertial effects, respectively, and from the Poisson’s equation related to heat transfer. Biot’s theory
[7, 8] can be used to take into account the effect of the deformations of the solid skeleton. Further-
more, the Biot-JCAL model was established from an alternative Biot’s formulation for dissipative
porous media with skeleton deformation, as introduced by Becot and Jaouen [6] by considering
the elastic properties of the solid frame to be independent from the properties of the fluid. This
model requires the six above mentioned transport parameters together with the Young’s modulus,
the Poisson’s coefficient and the loss factor of the foam as input parameters.

A PUC can capture the essential behaviors of a foam if its microstructural features are properly
identified. The Kelvin cell, e.g., a tetrakaidecahedron cell with six square faces and eight hexago-
nal faces that can fully fill the space and nearly minimizes the surface energy [96, 102], is widely
used to study monodisperse foams including membranes effects. Based on a Kelvin structure, the
fraction of fully open/fully closed membrane effects was investigated in Doutres et al. [29, 30];
the effect of membrane aperture was studied by Hoang et al.[94, 46] on both the acoustic prop-
erties and the elastic properties of foams. Recently, Gao et al. [37] and Trinh et al. [97] studied
the acoustic properties of foams having both open and closed membranes. These works showed
that the presence of membranes is a key parameter to control the acoustic absorption of foams and
that Kelvin structure is appropriate for modeling monodisperse foams. However, the polydisperse
foams which have a wide pore size distribution cannot be described by such a simple ordered struc-
ture. On the contrary, Voronoi tessellations [23] and Laguerre tessellations [60] are widely used
as models for disordered foams. These tessellations are generated from a set of seeds which are
often determined from a dense (overlapping or non-overlapping) packing of spheres [82, 12, 104]
whose sphere size distribution is assumed as the pore size distribution of foam. Later, in the works
of Redenbach et al. [82, 64, 98] the tessellation models were fitted to real foams by a minimization
of the distance between morphological characteristics of the pores of the real foam and the model.
This method was used to study elastic properties of closed foams with strongly varying pore sizes
[81] or of open-cells foams [64]. The effects of polydisperse pore size on the permeability of
open-cell foams were investigated in [104]. At the present time, however, no complete study has
been carried out on acoustic properties of disordered foams by taking into account both membrane
effects and wide pore size distribution effects.

The addition of graphite particles in PU foam has been shown to modify the flame retardancy,
and the thermal and mechanical properties of PU foams [70, 68, 63, 21, 65]; however, their acous-
tic properties have not been fully studied in literature. In chapter III, the micostructures of a
graphite PU foam having a wide distribution of pore size was characterized by X-ray CT microto-
mography and the SEM images. Its microsctructure was also reconstructed by taking into account
the membrane content. Now, the acoustic properties of this foam will be investigated by applying
the asymptotic homogenization method on reconstructed microstructures to derive the transport
parameters and the sound absorption coefficient at normal incidence.

-Cong Truc NGUYEN- 90



VI.2. MATERIAL AND ACOUSTIC MEASUREMENTS

VI.2 Material and acoustic measurements

The graphite PU foam revealing a high porosity presents a high membrane content and a wide
distribution of pore size characterized by a pore size variation coefficient equal to cd = 0.79. The
distributions of pore size and pore sphericity can be aproximated by two log-normal probability
laws (see chapter III). The morphological properties of graphite PU foam given in Tab. VI.1
was characterized by imaging techniques. Its macroscopic properties determined from physical
measurements are also summarized in Tab. VI.2.

d (µm) 1− s (−) 〈xo〉 (−) 〈to〉 (−)

360± 290 0.23± 0.068 0.28± 0.05 0.51± 0.17

Table VI.1: Geometry properties of PU foam.

φ (−) σ
(
Ns/m4

)
ρ1
(
kg/m3

)
E (kPa) νe (−) ηe (−)

0.92± 0.01 67500± 9900 13.37± 0.19 172± 19 0.46± 0.02 0.157± 0.005

Table VI.2: Physical properties of PU foam.

The characterization of the acoustic behavior of a porous material can be obtained with a three-
microphone impedance tube, as described in the Fig. VI.1. Based on this experimental setup the
sound absorption coefficient at normal incidence is directly measured through the pressure created
by the outgoing and the ingoing waves at the surface of the sample: (SACNI) = 1 − |pref/pinc|2
in which, pref and pinc are respectively the reflective and incident pressures at the surface of
the samples. The supplementary frequency-dependent response functions of the porous material
modeled as an equivalent fluid are determined from the pressure transfer functions between the
microphones [87], i.e., effective density ρef and effective bulk modulus Bef .

S
o
u
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e Micro. 1 Micro. 2

M
ic

ro
. 
3

Sample4 cm

100 cm

Rigid
back

a)

b)

Figure VI.1: Three-microphone impedance tube. a) Schematic illustration, b) Its real picture.

Note that for the same series of six cylindrical foam samples were used to characterize the
elastic, transport, and sound absorbing properties of the porous material under study, with a thick-
ness of 21 mm (see Fig. VI.2) as described in chapter III. A thin layer of Teflon was put around

-Cong Truc NGUYEN- 91



CHAPTER VI. ACOUSTICAL PROPERTIES OF A REAL POLYDISPERSE FOAM

the samples in order to avoid air leakage between the tube walls and the samples; this implies that
there was a slight pre-compression of the samples in radical direction. The influence of this factor
will be used to justify an adjustment of the characterized elastic parameters in the model.

Figure VI.2: Samples used for the measurement of acoustic properties.

VI.3 Methodologies

Based on the characterized distributions of pore size and pore sphericity, the periodic microstruc-
tures of graphite PU foam were reconstructed by Neper software and validated in chapter III from
a morphological point of view. These reconstructed structures will be used for the calculations of
the acoustic properties which were described in chapter II.

To begin with, the foam is considered rigid, the JCAL semi-phenomenological model is used
to predict the effective properties of equivalent fluid i.e., effective density ρef and effective bulk
modulus Bef :

ρef (ω) =
α∞ρ0

φ

1 +
φσ

iωα∞ρ0

√
1 + i

4α2
∞ηρ0ω

σ2Λ2φ2

 , (VI.1)

Bef (ω) =
γP0

φ

γ − (γ − 1)

1− i φκ

k′0Cpρ0ω
√

1 + i
4k′20 Cpρ0ω
κΛ′2φ2


−1

−1

. (VI.2)

In these equations, ρ0, η, κ are the density, dynamic viscosity and thermal conductivity of air,
respectively, P0 ambient mean pressure, Cp the isobaric specific heat, γ the ratio of heat capaci-
ties at constant pressure and volume, i the imaginary unit, ω = 2πf the angular frequency. The
JCAL model requires a set of six input transport parameters

(
φ,Λ′, k0,Λ, α∞, k

′
0

)
. The deter-

mination of the open porosity φ requires an accurate experimental measurement (Chapter III),
while the thermal characteristic length Λ′ is directly deduced from the reconstructed geometry:
Λ′ = 2

∫
Ωf
dV/

∫
∂Ω dS, here, Ωf denotes the fluid volume and ∂Ω is the fluid-solid interface.

The static airflow resistivity is directly related with the static viscous permeability, σ = η/k0.
The low computational cost of the pore-network simulation method, which is based on an analyt-
ical estimate of the permeability for a perforated plate [58], enables an efficient calculation of the
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static permeability k0 for the reconstructed microstructures (Chapter IV). The remaining transport
parameters are computed by the finite element method using a commercial software (COMSOL
Multiphysics). The high-frequency viscous tortuosity α∞ and the viscous characteristic length Λ
are given as:

α∞ =
〈E · E〉f
〈E〉f · 〈E〉f

, (VI.3)

Λ = 2

∫
Ωf

E · EdV∫
∂Ω E · EdS

, (VI.4)

where E is the local electric field, solution of the electric conduction problem:

E = e−∇yϕ in Ωf ,

∇y · E = 0 in Ωf , (VI.5)

E · n = 0 on ∂Ω,

E and ϕ are Ω-periodic,

here, e is a given macroscopic electric field while ϕ is a local electric potential. Finally, the static
thermal permeability k′0 is calculated as:

k′0 = φ
〈
k̃′0

〉
f
, (VI.6)

where k̃′0 is the solution of the Poisson’s equation:

−∇2
yk̃
′
0 = 1 in Ωf ,

k̃′0 = 0 on ∂Ω, (VI.7)

k̃′0 is Ω-periodic.

For rigidly backed porous material of thickness H , the sound absorption coefficient (SACNI) at
normal incidence follows:

SACNI = 1−
∣∣∣∣Zs − Z0

Zs + Z0

∣∣∣∣2 , Zs = −iZef/φ cot
(
δefH

)
, (VI.8)

where c0 is the sound speed in air, Z0 = ρ0c0 is the the impedance of the air and Zs is the normal
incidence surface impedance. The wave number δef (ω) and the characteristic impedance Zef (ω)
are then given by:

δef (ω) = ω
√
ρef (ω) /Bef (ω), Zef (ω) =

√
ρef (ω)Bef (ω). (VI.9)

Secondly, the elasto-acoustic coupling effect due to the solid phase deformation (skeleton and
membranes) on the absorption coefficient is taken into account using the Biot-JCAL model [26, 6]
which relies on the use of Biot’s theories together with a JCAL model. The surface impedance at
normal incidence in that case is predicted by [47]:

ZBiot
s = −i

(
Zs1Z

f
2 µ2 − Zs2Z

f
1 µ1

)
DZ

, (VI.10)
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where DZ is equal to

DZ = (1− φ+ φµ2)
[
Zs1 − (1− φ)Zf1 µ1

]
tan (δ2H)

+ (1− φ+ φµ1)
[
(1− φ)Zf2 µ2 − Zs2

]
tan (δ1H) , (VI.11)

Zsk, Zfk with k = 1, 2 are the characteristic impedances in the solid (superscript s) and fluid phase
(superscript f ) of first (index 1) and second (index 2) Biot compressional waves:

Zsk = (PB +QBµk)
δk
ω

with k = 1, 2, (VI.12)

Zfk =

(
RB +

QB
µk

)
δk
φω

with k = 1, 2, (VI.13)

δ1, δ2 are the complex wave numbers of the two compressional waves, and are given from:

δ2
k =

ω2

2
(
PBRB −Q2

B

) [PB ρ̃22 +RB ρ̃11 − 2QB ρ̃12 ±
√

∆
]

with k = 1, 2, (VI.14)

where

∆ = [PB ρ̃22 +RB ρ̃11 − 2QB ρ̃12]2 − 4
(
PBRB −Q2

B

)(
ρ̃11ρ̃22 − ρ̃2

12

)
, (VI.15)

µ1, µ2 are the ratio of the velocity of the air over the velocity of the solid phase for the two
compressional waves:

µk =
PBδ

2
k − ω2ρ̃11

ω2ρ̃12 −QBδ2
k

with k = 1, 2. (VI.16)

In these equations, PB , QB and RB are the elasticity coefficients,

PB = 4
3N +Bb + (1−φ)2

φ Bf , (VI.17)

QB = Bf (1− φ) , (VI.18)

RB = φBf , (VI.19)

where Bf = φBef is the bulk modulus of the fluid in the pore space, the bulk modulus of the solid
frame Bb can be evaluated by the following equation:

Bb =
2N (νe + 1)

3 (1− 2νe)
. (VI.20)

The shear modulus of the material N is estimated by

N =
E (1 + iηe)

2 (1 + 2νe)
. (VI.21)

Biot’s modified mass densities are expressed as [26, 6]:

ρ̃22 = φ2ρef , (VI.22)

ρ̃12 = φρ0 − ρ̃22, (VI.23)

ρ̃11 = ρ1 − ρ̃12. (VI.24)

The representative periodic geometries without membrane thickness reconstructed by the pro-
cedure described in chapter III have sharp edges all around the windows connecting the pores.
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These sharp edges lead to a value of the viscous length Λ which converges very slowly to zero
[35]. As shown in chapter V, the thickness em of thin membranes can be simulated by the asso-
ciated size he of elements applied along the apertures; and there exists a logarithmic relationship
between the surface integral IS of the square of the electric field and the size of the element he on
the apertures: IS = A lnhe + B. By using two coarser meshes with h(1)

e and h(2)
e , the geometry-

dependent coefficients, A and B, are calculated from:

I
(1)
S = A lnh(1)

e +B, (VI.25)

I
(2)
S = A lnh(2)

e +B. (VI.26)

The viscous characteristic is then deduced as

Λ =
2IV
IS

, (VI.27)

where IV is the integral of the electric field over fluid domain IV =
∫

Ωf
E2dV and IS = A ln em+

B. In this work, the thickness of membranes em is assumed equal to 0.001 times the averaged pore
size 〈d〉, as observed through SEM images.

Due to local heterogeneity, for each size of the reconstructed domain, the calculation is per-
formed on fifteen different configurations (five generated structures, together with three configura-
tions of randomly selected open membranes) along the x, y, and z axis perpendicular to the cubic
unit cell boundaries. Fig. VI.3 shows a configuration of periodic geometry, with 453 pores; and
the corresponding mesh.

a) b)

Figure VI.3: A configuration of periodic geometry of 453 pores a) and corresponding mesh b).

VI.4 Results and discussions

VI.4.1 Macroscopic transport parameters

In this section, we show how the transport properties depend on the size of the structure or more
specifically, on the pore number

(
Np

)
in the structure. The transport parameters are computed

separately on the generated structures by using the method described in section VI.3. The mini-
mum number of pores must be greater than 50 in order to ensure representativity of the pore size
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distribution. As expected, Fig VI.4 shows that the transport parameters tend to converge with Np.
However, all the parameters do not converge with the same rate when increasing the number of
pores: the rate of convergence of Λ, Λ′ and k′0 with Np is higher than the rate of convergence
of (k0) and (α∞) with Np. At Np = 453 which corresponds to L/〈d〉 = 10, the RVE size is
considered to be reached for all of transport parameters.
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Figure VI.4: Dimensionless transport properties versus pore number Np. The error bars represent
the standard deviations.

In Table VI.3, the computed and measured macroscopic parameters are presented. The large
associated standard deviations correspond to a strong anisotropy of the transport properties mainly
for k0 and α∞, which is induced by the pore size and shape inhomogeneity. On average, for the
several simulated microstructures, the computed values are in close agreement with the measured
value of viscous permeability k0. For this PU foam having a significant fraction of closed win-
dows, the strong effect of membranes presence is expressed by high tortuosity and high value of
characteristic lengths ratio Λ′/Λ = 4.56 [29].

φ (−) k0
(
10−10m2

)
α∞ (−) Λ (µm) Λ′ (µm) k′0

(
10−10m2

)
Measurements 0.92± 0.01 2.73± 0.34
Computations 2.83± 0.03 3.77± 0.35 59± 3 270± 1 324± 8

Table VI.3: Macroscopic transport parameters: measurements and computational results
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VI.4.2 Sound absorption coefficient prediction

Concerning the SAC prediction, Fig. VI.5 shows the comparison of measured absorption coeffi-
cients and that simulated with the parameters computed above. The measured data are represented
by the dispersion envelope obtained on all the used samples. The simulations of the SAC at nor-
mal incidence are displayed for the mean values of the calculated transport parameters using the
Johnson Champoux-Allard-Lafarge (JCAL) model. In order to take into account the skeleton de-
formation effect, two simulations were also carried out with the Biot-JCAL model: the first with
the average value of the characterized elastic parameters and the second by adjusting the Young’s
modulus.
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Figure VI.5: Sound absorption coefficient. Sample thickness: 21 mm.

Fig. VI.5 demonstrates that there is a strong poro-elastic coupling between 800 Hz and 4 kHz.
Indeed, to quantify the elasto-acoustic coupling, Pilon et al. [77] developed the Frame Acousti-
cal Excitability (FAE) criterion which takes into account the specific stiffness of the frame, the
visco-inertial coupling between the two phases and the size, or shape factor, of the sample. Our
foam exhibits a high FAE criterion, FAE≈ 57 MW/Kg, which supports the idea of a strong elasto-
acoustic coupling. This value has to be compared with the proposed critical criterion, stating that
when FAE > 2 MW/Kg, the elastic foam may become notably sensitive to the edge constraint.
The JCAL model obviously cannot describe this phenomenon. Therefore, the Biot-JCAL is more
suitable but we can note a difference between the measurements (yellow filled zone) and the sim-
ulation carried out with the average values of the elastic parameters (blue line). This deviation
can be justified by the fact that the quasi-static compression method has a strong dependence on
compression while the measurements with impedance tube lead to a small pre-compression. Fig.
VI.6 shows the intrinsic Young’s modulus measured as function of the compression rate. It can be
seen that decreasing the used compression rate leads to the obtention of a lower Young’s modulus.
We note that at a compression rate around 0.5 %, the value of the characterized Young’s modulus
is consistent with the one used to simulate an acoustical behavior of the foam (Fig. VI.5) in good
agreement with experimental data (E = 140 kPa). Note that, 0.5 is the compression rate in the
quasi-static compression experiments in which the samples tend to expand in the radial direction;
but it is not exactly the same value in the impedance tube measurements, because the samples are
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limited radially by the tube.
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Figure VI.6: Intrinsic Young’s modulus as a function of the compression rate for a sample 40 mm
in diameter.

Moreover, Fig. VI.7 shows the sound absorption coefficient curves for different values of the
Young’s modulus. It can be observed that reducing the Young’s modulus makes it possible to
better describe the elastic coupling effect. However, one can see that the model does not work
perfectly whatever the value of Young’s modulus. It can be explained by the fact that our model
considers a perfect bond between the sample and the impervious rigid wall, which is not the case.
Our measurements show a high sensitivity to the mounting conditions of the sample in the tube
(see appendix A). Moreover, in terms of elastic parameter characterization of porous materials,
F. Chevillotte et al. [22] showed that the obtained results depend on the initial load (stress or
deformation) suggesting that the elastic parameters should be characterized following the final
application of materials.

In order to evaluate the contribution of viscous and thermal dissipation on the SAC curve,
based on Biot-JCAL model with adjusted Young’s modulus (E = 140 kPa), it is possible to define
the Biot-J model which does not take into account the thermal effects by modifying the effective
bulk modulus in Eq. VI.2:

Bef (ω) =
γP0

φ
. (VI.28)

In the same way, the Biot-CAL model is defined with discarding the viscous effects while keeping
the effective bulk modulus in Eq. VI.2 but modifying the effective density in Eq. VI.1

ρef (ω) =
α∞ρ0

φ
. (VI.29)

Fig. VI.8 compares the computed sound absorption coefficient curves with Biot-JCAL, Biot-J and
Biot-CAL together with the measured one. It can be shown that the Biot-CAL which does not take
into account the viscous effect is not convincing. In addition, small deviations between Biot-JCAL
and Biot-J show the importance of viscous and elastic effect. We therefore conclude that for foams
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Figure VI.7: Sound absorption coefficient for various Young’s modulus (Biot-JCAL model).
Sample thickness: 21 mm.

having a large amount of membranes, the absorption is mainly controlled by the viscous flow and
the elastic skeleton effects; whereas the thermal losses do not play a significant role on the sound
absorption for this kind of foams.
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Figure VI.8: Characterized and computed sound acoustical coefficient (E = 140 kPa). Sample
thickness: 21 mm.
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VI.4.3 Effect of membrane content

The membranes can influence the elastic properties [46, 38] through the thickness and opening
size. However, this effect decreases when reducing the membrane thickness, and it could be negli-
gible for foams having membranes thickness such that em/〈d〉 ≈ 0.001. In Fig. VI.9, we plot the
variation of the asymptotic parameters as a function of the membranes aperture rate τo = xoto. The
associated sound absorption coefficients are given in Fig. VI.10. It shows evidently that increasing
τo reduces membrane content, which leads to an increase of the static viscous permeability k0 and
reduction of the tortuosity α∞. Also worth to be mentioned, the pore-volume-to-surface ratio in-
creases with τo, thus Λ and Λ′ increase with τo. The static thermal permeability k′0 slowly increases
with τo because k′0 is not directly related to connectivity of the pore space [90]. This tendency is
in agreement with the one found in the works on monodisperse foams [94, 97]. Roughly speaking,
increasing to and xo gives a similar trend for the studied transport parameters and corresponds
to an increase of the sound absorbing coefficient (in the studied range of variation). However, it
appears necessary to take into account the exact values of both the proportion of open windows xo
and the membrane aperture ratio to to get an accurate estimation of macroscopic parameters and
sound absorption coefficients.
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Figure VI.9: The membrane aperture rate τo dependence of the transport parameters. The black
symbols correspond to the case of to = 0.51, the blue symbols correspond to the case of xo = 0.28.
The error bars correspond to standard deviations.
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Figure VI.10: Sound absorption coefficients of the foams with different membrane aperture ratios
(a), with different opened membrane fraction (b). Sample thickness: 21 mm.

VI.5 Conclusion

This chapter studied the acoustic properties of a graphite PU foam. The foam presented a wide
distribution of pore size and a high fraction of fully-closed membranes. Its microstructure was
studied by advanced image analysis techniques and reconstructed using an advanced Laguerre
tessellation technique by the Neper software. The heterogeneity and anisotropy of foam pores
were both taken into account by means of the fitted distributions of pore sizes and pore sphericity
used as input parameters. The fraction of open membranes, as well as the average aperture ratio
of open membranes, were also included in the three dimensional stochastic model.

A numerical homogenization approach was applied to the modeled microstructures in order to
determine the corresponding transport parameters. Based on the evolution of transport parameters
with simulated pore numbers, an estimate of the size of the RVE was provided, from which the
sound absorption coefficient at normal incidence was derived using the semi-phenomenological
JCAL or Biot-JCAL model in order to take into account the effect of solid skeleton deformation.
This model was assessed by comparing experimental measurements and simulations. The results
showed that the classical JCAL model cannot be used to predict accurately the sound absorbing
coefficient because of a strong poro-elastic coupling. The sound absorption coefficient predicted
by Biot-JCAL was found to agree to the experimental one showing the feasibility of the proposed
methodology for studied foam. By playing with input parameters of Biot-JCAL, the sound absorp-
tion was shown to be dominated by the viscous losses and the elastic effects, while the thermal
dissipations play a minor role on the overall sound absorption of this type of foams.

Based on this validated micro-macro model (from statistical morphology to macroscopic prop-
erties), a parametric study might be pursued to investigate the combined effect of pore size disper-
sion and membranes on transport and acoustic properties. A morphological optimization should
make it possible to determine target microstructures in order to maximize sound absorption and/or
transmission loss for a given frequency range.
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CHAPTER VII. CONCLUSION AND PERSPECTIVES

VII.1 General conclusion

This thesis work focuses on the modeling of acoustic foams with wide distribution of pore sizes and
their interconnections by homogenization approach. The general objective of this project was to
develop a numerical chaining allowing to simulate locally heterogeneous systems of a low density
cellular foam. The developed numerical chaining was applied on a graphite PU foam which is
notably characterized by a strong local heterogeneity in its pore size. A long term objective will be
to propose a modification of the stochastic and locally heterogeneous microstructural parameters
in order to enhance multi-functional properties.

The locally heterogeneous microstructures of foam samples were characterized by advanced
imaging techniques: X-ray computed tomography and scanning electron microscopy. It was shown
that these two techniques are complementary to characterize the foam microstructures. The im-
ages obtained from X-ray computed tomography were processed for pore characterization includ-
ing size, sphericity and neighbor number; while the analyses of SEM images provided informa-
tion on membrane properties comprising surface, proportion of closed/open membranes, aperture
ratio, thickness, number of edges per face (membrane). These morphological features of local
microstructure are important input information for the modeling works.

A stochastic model of the microstructure was then reconstructed by using an optimized La-
guerre tessellation algorithm (Neper software). This periodic partition was shown to represent the
morphological properties of real cellular foam, in terms of pore size and pore sphericity distribu-
tions. These experimental statistical properties were used as input parameters of the morpholog-
ical model. Information on membrane content such as proportion of open membranes and their
aperture ratio was also taken into account. Because of high porosity (low density) and very thin
membranes, the ligaments and membrane thickness were not modeled. That significantly reduced
the number of elements for the FEM simulations.

Concerning the static viscous permeability, an important parameter of transport properties
in porous materials, the pore-network simulation initially developed for mono-size foams was
extended to polydisperse ones. This is a low computational cost method allowing permeability
prediction of a large size domain which can hardly be performed by FEM. A pore-network model
including the use of an average aperture ratio was shown to be sufficient to capture the associated
transport parameters. The mean pressure field approximation was proposed to quickly estimate
permeability of open-cell random foams from the standpoint of the geometrical features only.
Small pores in polydisperse foams was shown to have a weak contribution on permeability due to
their low volume. Furthermore, by excluding these small pores (10% of total volume), the effective
pore size was found in order to simulate polydisperse foams through a mono-sized one. Effect of
closed/open membrane proportion on foam permeability was also investigated. This behavior was
shown to be dependent on the variation coefficient of membranes surface. Then, an expression
was proposed to provide an approximation of the permeability of random foams from measurable
parameters of the geometry: distribution of pore size, distribution of membrane surface, proportion
of open membranes and their average aperture ratio.

The modeling of foam microstructure with membrane having no thickness helps to reduce
computational cost but it cannot describe the effect of real thin membranes on the viscous charac-
teristic length (because the viscous characteristic length tends to zero for a membrane having no
thickness - due to the divergence of the surface integral of the electric field). The effect of mem-
brane thickness was studied on this surface integral. A logarithmic relation was found between
the surface integral and membrane thickness. Moreover, there is an equivalence between mem-
brane thickness to be reproduced and an appropriate finite element mesh. As a result, a simulation
technique of of membrane thickness using a zero-thickness membrane was developed in order to
calculate the surface integral of the electric field. Noteworthy, the proposed technique can be used
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to simulate the acoustic properties of complex random foams by reducing the computational cost.
An acoustic simulation was performed with the reconstructed microstructure corresponding to

the real PU foam studied in this thesis, whose morphological features are locally heterogeneous
and display a wide distribution of pore size (as a consequence of the graphite particles introduc-
tion). The pore size distribution can be approximated by a lognormal probability law. By image
processing, this foamy material also showed high content of thin membrane. A homogenization
hybrid multi-scale method was used, in which the transport parameters governing the phenomena
of acoustic dissipation serve as input data for the semi-phenomenological models: JCAL model
following a rigid skeleton assumption, and the Biot-JCAL formulation when taking into account
the elasto-acoustic coupling. The static viscous permeability was calculated by pore-network sim-
ulations, the remaining parameters were computed by resolving two classic boundary problems
(potential flow, controlled diffusion). The visco-elastic parameters were characterized by experi-
mental measurements. Because of a strong elasto-acoustic coupling observed for the graphite PU
foam, only the Biot-JCAL model enables a good agreement between modeling and impedance
tube measurements, which validates the developed multi-scale approach.

To conclude, our work provides a complete procedure for the numerical simulation of acoustic
foams whose important features are 1) a high porosity and 2) thin membranes (the ration between
membrane thickness and pore size is in the order of 0.001): from the acquisition and reconstruction
of the locally heterogeneous microstructure to the calculation of the macroscopic properties and
determination of the size of the RVE. An important feature of this work is the assessment of
poly-sized pores and random nature of a real foam which opens a new morphological path for the
optimization of foams with enhanced acoustical performances.

VII.2 Perspectives

In our view, several intriguing topics for future research shall be further investigated following this
thesis.

1. It would be of interest to extend the pore-network method to other transport parameters,
particularly for the tortuosity α∞. Actually, the pore-network model for α∞ was developed
for monodisperse foams [59]. It could probably be extended to foams with polydisperse
pore size. As with permeability, low computational methods would be useful for a faster
estimation of transport parameters and would possibly allow the development of results for
complex materials related to percolating effects.

2. A numerical model for Biot’s parameters (elastic ones) would complete our numerical pro-
cedure. Several approaches could be pursued. If the thickness of membranes is of the kind
encountered in graphite PU foam (very thin), one could consider that the solid phase mainly
concentrates in the skeleton (this would allow neglecting this membranes). Following this
assumption, the elastic properties of random polydisperse foams could realistically be sim-
ulated by FEM [46, 38, 81]. Alternatively, a stochastic homogenization method based on
empirical marginal distribution functions and correlation functions of apparent properties
could be selected [64, 40]. Another fruitful path to consider is related to the concept of
permeo-elastic media, including a perfectly rigid skeleton onto which highly flexible thin
membranes are fixed [99, 11]. Moreover, the numerical model derived from idealized pe-
riodic unit cells from which structure-properties relationships were derived [41] could be
extended to the polydisperse foams.

3. A research work for the determination of optimal and manufacturable foam microstruc-
tures based on the developed numerical models could be considered in a more systematic
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approach combining a series of laboratory and numerical experiments. The proposed multi-
scale method developed in this thesis could be used to reduce the number of experimental
tests. Although additive manufacturing techniques may be used to produce and design op-
timal micro-geometries [9, 109, 83], their production remain expensive when compared to
large scale manufacturing techniques based on a foaming process. Moreover, advanced ad-
ditive manufacturing technologies are still limited to production volumes at the scale of a
laboratory experiment and cannot reproduce at the same time thin membranes (resolution in
the order of 0.1 µm, and large sample size). Therefore, a design of experiment would make
it possible to mark out the field of achievable morphologies, in and around this space one
could determine more accurately promising optimal configurations.
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Appendix A

Effect of contact stiffness on the
acoustic measurements

In this appendix, we show experimentally contact stiffness effect between foam samples and
backed rigid wall on the acoustic measurement in an impedance tube of 3 microphones.

First of all, the samples used have a diameter slightly larger than the tube (or a thin layer of
Teflon was put around the samples) in order to avoid air leakage between the tube walls and the
samples, so that it is necessary to apply a slight stress to push it into the tube. The impedance
tube consists of two parts, one on which the microphones 1 and 2 are fixed; and the other part
(thereafter called the sample holder) containing the sample and the microphone 3 (see Fig. A.1).

source
microphones: 1 2

3

sample holder

a) b)

Figure A.1: a) Three-microphone impedance tube. b) Illustration of contact stiffness.

We introduced the sample in the sample holder of the tube arranged vertically and placed a
load on top of it in order to press it against the rigid bottom (the lowest mass exceeds the friction
force on the side walls). Different loads were used in order to test the effect of the stress. We also
carried out a measurement by leaving a small air gap between the rigid bottom and the sample
of approximately 0.5 mm (this case is designed by "0 Pa" thereafter). And we made the same
measurements after reversing the directions of the sample in the tube (directions A and B). The
results are averaged over four measurements.

A.1 Effect of sample placement direction

Fig. A.2 shows the effect of sample placement direction for two extreme stress values tested: "0
Pa" and "190 Pa".

The measurements, for direction A and direction B, are perfectly identical in the "0 Pa" case.
Moreover, it is not shown here but the 4 measurements taken on each side are also perfectly re-
peatable. In the case of foam samples placed with a constraint, the measurements are not perfectly
identical in the two directions of placement of the sample (they are on the other hand relatively
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Figure A.2: Effect of sample placement direction on sound absorption coefficient for "0 Pa" and
"190 Pa".

repeatable at 190 Pa). The no-load "0 Pa" measurements were repeated several times after stress-
ing the sample. The repeatability of the measurements shows that the load has not irreversibly
deformed the sample.

A.2 Effect of constraint variation

The coefficients of sound absorption measured with various loads are plotted in Fig. A.3. The
results are averaged over two direction of sample placement.
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Figure A.3: Effect of sample placement direction on sound absorption coefficient for "0 Pa" and
"190 Pa".

It can be seen that apart from the low frequencies behavior, the constraint used for placement
of the sample in the tube has a significant impact on the absorption coefficient. According to
the measurements, the peaks associated with the vibrations of the foam skeleton depend on this
constraint. In the without constraint "0 Pa" case, a small air gap is placed between the sample
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A.2. EFFECT OF CONSTRAINT VARIATION

and the tube rigid bottom, the resonance peak must be associated with a half wavelength. If the
displacements of foam skeleton are null at the contact with the tube rigid bottom, one must have
a quarter-wave mode. In Fig. A.3, we see that the measurements at low constraint gradually tend
towards measurements with a small air gap (half-wave mode).

This behavior can be explained by considering an effect of contact stiffness between the foam
sample and the tube rigid bottom. The constraint applied to the foam sample allows it to be placed
more or less in contact with the rigid bottom. Rigorous modeling of acoustic behavior of foam
sample in the impedance tube would require taking into account an effect of contact stiffness
at the interface foam sample/tube rigid bottom (the contact stiffness depends on the number of
contacts, which themselves depend on the constraint or load used to place the foam sample into
the tube). The absence of behavior symmetry of the sample under a constraint (difference in the
two directions A and B) (see Fig. A.2 for "190 Pa" case) would come from a difference in surface
state between two sides of the foam sample which can lead to a difference of contact stiffness.

In a classic model for acoustic absorption at normal incidence backed by an impervious rigid
wall, the displacement of the skeleton at the interface with rigid wall is considered null, this implies
that the porous material is perfectly in contact with the tube rigid bottom. With perfectly flat and
parallel surfaces, this is theoretically realistic. But as soon as one considers defects of flatness or
parallelism of the two surfaces in contact, this is no longer possible except by applying a constraint
which can correct these two defects. In our manipulations, it is both the (pre)stress applied to the
sample and the friction force on the side wall which make it possible to maintain contact at the
foam sample/ rigid wall bottom interface. Therefore, in our numerical simulation (chapter VI), we
can reduce the elastic modulus of the skeleton by considering that the contact stiffness decreases
the apparent stiffness of the foam sample:

1

Kapparent
=

1

E′S/L
+

1

Kcontact
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Appendix B

Validation about the use of structures
without thickness modeling

Here, we show the transport parameters computed by FEM of two Kelvin structures: (A) with
and (B) without modeling the thickness of ligaments and membranes. The size of unit cell is
Dp = 1 mm, the membranes have aperture of identical size d0. Note that for the structure (A),
the ligaments have a regular section where the thickness r is chosen based on the porosity φ (see
appendix A in [97]):

r

Db
≈

 1− φ

3
√

3√
2
−
(

10− 3
√

6
)√

(1−φ)
√

2

3
√

3


1/2

. (B.1)

The element size around of the aperture in structure (B) he is equal to thickness of membranes em
in structure (A) (See Tab. B.1) The FEM simulations are performed on an eighth part of Kelvin

φ d0/Dp em/Dp he/Dp

With thickness (A) 0.98 0.1 0.001 −
Without thickness (B) 1.00 0.1 − 0.001

Table B.1: Geometrical parameters of two Kelvin cell type.

cell (see Fig. B) taking advantage of existing symmetries [110] in order to reduce computational
cost.

The results shown in Tab. B.2 with small deviations, which may come from the difference of
porosity, validated the use of structure without thickness modeling (for ligaments and membranes).

Λ′/Dp k0/D
2
p/φ α∞ Λ/Dp k′0/D

2
p/φ

With thickness (A) 0.3186 0.0034 1.1415 0.3005 0.0300
Without thickness (B) 0.3088 0.0033 1.1375 0.2994 0.0298

Table B.2: Comparison of computed transport parameters.
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THICKNESS MODELING

a) b)

Figure B.1: An eighth part of Kelvin cell. a) with and b) without modeling the thickness of
ligaments and membranes.
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