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Introduction

On commence par introduire les objets centraux d’étude de cette thése ainsi
qu’expliquer leur intérét. Ensuite, on présentera les résultats principaux obtenus
par lauteur.

1. Signes locaux

Soient p un nombre premier, K/Q, une extension finie et k/IF,, I'extension
des corps résiduels induite. On notera |k| le cardinal de k. On choisit une cloture
algébrique K de K. Par convention, toute extension algébrique de K considé-
rée dans ce texte sera contenue dans K. Soit 'y := Gal(K/K) le groupe de
Galois absolu, Ix C T'k le sous-groupe d’inertie et K™ := K’ Pextension
maximale non-ramifiée de K. Le corps résiduel de K, noté k, est une cloture
algébrique de k. On choisit ¢ € 'k un relévement du Frobenius géométrique
de Gal(k/k) = ' /I. On définit le groupe de Weil de K par

Wi :={ip" |i€lx,neZ} CTk.

Le groupe Wi ne dépend pas du choix de ¢ et a une structure de produit semi-
direct W = I x 2.

On désigne par (7) le symbole de Legendre sur k* et par (-, -) k le symbole
quadratique de Hilbert sur K* x K*.

1.1. Représentations (-adiques. Soient ¢ # p un nombre premier et V;
un Qy-espace vectoriel de dimension finie muni de la topologie ¢-adique. Une
représentation (-adique de I sur V4 est un morphisme continu de groupes
P FK — GL(Vg)

1.2. Représentations de Weil. Le groupe Wi est muni de la topologie
engendrée par les sous-groupes ouverts de . Une représentation de Weil est
un morphisme continu de groupes p: Wy — GL(V') ot V est un C-espace vec-
toriel de dimension finie et GL(V') est muni de la topologie discréte. La conti-
nuité de p et équivalente 2 la finitude de I'image p(Ix). On note Repc (Wi ) la
catégorie des représentations de Weil et Ly, la représentation triviale.

1.3. Représentations de Weil-Deligne. Par une représentation de Weil-
Deligne on entend un couple p' = (p, N') d’une représentation p € Repc (Wk)
avec espace sous-jacent V' et d’une application linéaire N € End(V') nilpotente,

1



2 INTRODUCTION

telle que N commute avec p(Ix), et p(¢)Np(¢)~! = |k|~1N. L'application N
est parfois appelée Popérateur de monodromie.

1.4. Monodromie /-adique. Soit py une représentation ¢-adique avec es-
pace sous-jacent V;. En général, I'image p¢(I) n’est pas finie. En suivant Gro-
thendieck (voir [Del73, Thm. 8.2]) on peut associer A py une représentation
de Weil-Deligne de maniére fonctorielle. En effet, on choisit un morphisme
continu non-trivial ¢,: Ix — Qg et un plongement ¢ : Q; < C. Alors il existe
une extension finie L/ K et une unique application nilpotente N € End(V;®,C)
telles que pour tout i € I, on a py(i) = exp(t o tg(i)N). Pour tout ip" € Wi
on pose

p(ie") = (pe(ie") ®, C) - exp(—t o t(i)N).
Alors (p, N) est une représentation de Weil-Deligne dont classe d’isomorphisme

ne dépend pas des choix de ¢ et ;. A priori, elle dépend de ..
En particulier, si p(Ix) est fini, alors p = pylw, ®, C et N = 0.

1.5. Cohomologie ¢-adique. Soit X une variété lisse et propre sur K,
qu’on notera X/K. Pour toute extension L/K on notera X7, ou X X L le
changement de base de X 4 L. Pour tout entier ¢ > 0, l'action de T'x sur
H! (X7, Q) définit une représentation ¢-adique. Dans ce texte on va étudier
les variétés abéliennes A/K et les représentations /-adiques associées

p q

pe: T = GL(HL (A%, Qp)).

Das ce cas, dim py = 2dim A et la représentation duale p est induite par la
I'c-action sur le module de Tate T; A := lim A[¢"]. De plus, la classe d’isomor-

phisme de la représentation de Weil-Deligne associée & p; ne dépend pas des
choix de ¢ et de ¢ (fait dans , voir, p. ex., [Sab07, Cor. 1.15].

1.6. Facteurs epsilon. On se donne une représentation de Weil-Deligne
P’ = (p, N) avec espace sous-jacent V. On fixe un caractére additif localement
constant ¢): K — C* et une mesure de Haar dz sur K. Soit Ind 'opérateur
d’induction sur les représentations linéaires de groupes. Pour toute extension
finie L/K on désigne par Try i : L — K lapplication de trace. En suivant
[Roh94, §11] on définit le facteur epsilon de p’ comme

e(p', v, dx) = €(p,,dx)d(p),
avec
8(¢) 1= det (—p()| V" (ker 1)

et ol €(p, 1, dz) € C* est 'unique nombre satisfaisant les axiomes suivants :

(i) si 0 — p1 — p2 — p3 — 0 est une suite exacte dans Repg (W) alors
6([)27 Y, d.’L’) = 6(p17 wu d.’L')G(pg, wv d.’IJ),
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(ii) pour toute extension finie L/K, toute mesure de Haar dz, sur L et
toute p € Repc (W) on a

e(ndlV < Ty, v, da) \"
)

IndVx dz) = T d
€(In WLp’w’ ) =elpvo TL/K 2 <E(HWL?¢OTTL/K7(1$L

(iif) pour toute extension finie L/K, tout caractére additif ¢1,: L — C*,
toute mesure de Haar dz, sur L et toute £ € Repe (W) de dimension
1, le nombre €(&, ¢y, dzp) est le coefhcient de ’équation fonctionnelle

de Tate associée a &, voir [Tat79, §3.2], [Roh94, §11] ou|l.1.18

REMARQUE 1.7. Les facteurs e généralisent la notion de sommes de Gauss.
En effet, pour un caractére modérément ramifié £ € Repe(Wik), le facteur
€(&, 1, dx) est donné par une somme de Gauss classique sur k%, voir, p. ex.,
[AS10, Prop. 8.7.(i)].

1.8. Signe local. Pour une représentation de Weil-Deligne p’ on définit
le signe local
e(p', ¥, dx)
(o, ¥, da)|”
1l résulte des propriétés basiques des facteurs epsilon (voir [Roh94, §11, Prop.])

w(p', ) ==

que w(p’, ) ne dépend pas du choix de dz.

Soit A/K une variété abélienne. On définit son signe local par w(A/K) :=
w(p', 1) ot p est la représentation de Weil-Deligne obtenue 2 partir de la re-
présentation (-adique sur H} (A7, Q) comme dans Dans ce cas, accou-
plement de Weil sur H/ (A%, Q) induit une structure symplectique sur p’ qui
implique que w(A/K) € {£1} et que w(A/K) ne dépend pas du choix de ¢
(voir [Roh94, §12]).

2. Conjectures autour des signes globaux

Soient X un corps de nombres et A/ une variété abélienne définie sur K.

2.1. Signe global. Pour chaque place v de & on considére le complété
K, en v et la variété abélienne induite A, /H,. En toute place infinie on définit
w(Ay/Hy) = (—1)4 4, Pour les places finies v, les signes locaux w(A, /%)
ont été définis dans M Pour toute place finie v ot la réduction de A, /%, est
bonne (voirplus bas) on a w(A,/¥,) = 1. Le nombre de places de &
ot la réduction n’est pas bonne est fini et on peut définir le signe global comme
w(A/H) =[], w(A,/Hy), le produit parcourt toutes les places v de H.

2.2. Conjecture de parité. La conjecture de Hasse—Weil prédit que la
fonction L complétée de A/H, notée A, se prolonge analytiquement sur C et
satisfait I'équation fonctionnelle

AAJH, s) = w(AJH)A(A/F, 2 — s).
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Elle implique, en particulier, que
w(A/S’{) — (_1)0rd5:1 A(A/S'{,s)'

L’entier ords—1 A(A/X, s) est appelé le rang analytique de A/X. Le rang de
Mordel-Weil de A/H est défini comme le rang du groupe des points rationnels
A(H). La conjecture de Birch et Swinnerton-Dyer athrme que

ords—1 A(A/H,s) =1k A(K).
La combinaison des deux conjectures implique que
(=)A= w(A/%).

Cette derniére équation est appelée la conjecture de parité. En particulier, elle
implique que si w(A/¥) = —1, alors le groupe A(X) contient un élément
d’ordre infini.

2.3. Conjecture de p-parité. Pour tout nombre premier p, il est conjec-
turé que la partie de p>°-torsion du groupe de Shafarevich-Tate de A/ est
fini. Si C’est le cas, 'entier rk A(F) est égal au co-rang rk,(A/F) du groupe de
Selmer hﬂ Sel®™) (A/%K), voir [Dok13, §2]. On peut donc espérer que ’égalité

(~1)™ AT = w(A/%)

est valable indépendamment des conjectures mentionnées ci-dessus. On lap-
pelle la conjecture de p-parité. Si A/H admet une isogénie de degré pdim4
et satisfait d’autres hypothéses techniques (voir [CFKS10, Thm. 2.3]), alors on
peut décomposer (—1)™*#(4/%) en un produit infini de facteurs locaux indexés
par toutes les places v de . En comparant chaque facteur local avec le signe lo-
cal w(Ay/H,) on peut tenter de démontrer la conjecture de p-parité. Plusieurs
preuves de cas particuliers adoptent cette stratégie et utilisent des formules de

signes locaux.

3. Quelques invariants classiques

Dans cette section on va introduire quelques invariants associés 4 une variété
abélienne A définie sur une extension finie K/Q,,. Ils figurent dans les formules
de signes locaux connues précédemment ainsi que dans les résultats de cette
thése. On note v la valuation de K normalisée par vg (K*) = Z. Soit Ok son
anneau des entiers.

Parmi les invariants d’une représentation de Weil-Deligne nous avons son
conducteur d’Artin, noté a(-). Soient p; une représentation f-adique et p/ =
(p,N) la représentation de Weil-Deligne attachée comme expliqué dans [1.4]
On pose a(pg) := a(p’). Si maintenant p; est associée a une variété abélienne
A/K comme dans|1.5] alors a(p) est indépendant du choix de ¢ et on définit

a(A/K) = a(py).
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Soit dl /O le modéle de Néron de A/K. On note dj, sa fibre spéciale et o,
la composante neutre de cette derniére. Le groupe ® := ol /o est fini et on
pose ¢(A/K) := |®(k)|. On I'appelle le nombre de Tamagawa local. En général,
g, est une extension d’une variété abélienne B par le produit d’'un tore T et d’un
groupe unipotent U. Les dimensions de B, T' et U sont respectivement appelées
les rangs abélien, torique et unipotent de A/K.

On définit les types de réduction de A/K selon le tableau m

TasLeau 1. Types de réduction de A/K.

Réduction Condition
bonne dimU = dimT =0
torique | dimU =dim B =0
additive | dim7 =dim B =0

semi-stable dimU =0

Rappelons que la construction de /O ne commute pas avec un chan-
gement de base quelconque. On dit que A/K a réduction potentiellement de
type * s'il existe une extension finie L/ K telle que Ay,/L a réduction de type .
D’aprés le théoréme de réduction semi-stable de Grothendieck, toute variété
abélienne A/K a réduction potentiellement semi-stable. En général, en passant
A une extension finie de K le rang unipotent décroit est les rangs abélien et
torique augmentent.

Grothendieck a aussi établi un critére de réduction semi-stable en termes des
représentations (-adiques. En effet, A/K a réduction semi-stable si et seulement
si tout élément de p;(I) est unipotent. Le critére de Néron-Ogg-Shafarevich
affirme que p;(Ix) est trivial si et seulement si A/K a bonne réduction. En
particulier, A/K a potentiellement bonne réduction si et seulement si py(Ix)
est fini. Dans ce cas, si on note I} C I le sous-groupe de ramification sauvage,
alors pg(I) est une extension d’'un groupe cyclique fini d’ordre premier 4 p par
le p-groupe fini py(I}Y). D’aprés Serre-Tate [ST68, p. 497, Cor. 2], si ps(I}¥)
est non-trivial, alors p < 2dim A + 1.

Supposons que J/K est la jacobienne d’une courbe projective lisse C/K de
genre g. Alors dim p; = 2dim J = 2g. La courbe C'/K admet un unique mo-
déle minimal régulier (projectif, plat) €/0x. On note m(C/K) le nombre des
composantes irréductibles de la fibre spéciale géométrique €5 de €. Si C'/K
est une courbe hyperelliptique, alors elle admet une équation de Weierstrass
Y% = P(X) avec P € K[X] de degré 2g + 1 ou 2g + 2. Pour une telle équa-
tion on définit son discriminant A € K* en suivant Liu [Liu96, §2] (voir aussi
[l1.2.2 pour le cas g = 2). La classe de A dans K™ /(K *)? ne dépend pas du choix
de I’équation de Weierstrass. Pour une courbe elliptique il existe une équation
de Weierstrass minimale dont le discriminant Ay, est appelé minimal. La va-
luation vk (Amin) ne dépend pas de 'équation minimale choisie. Dans le cas
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général des courbes hyperelliptiques, il y a plusieurs fagons non-équivalentes de
définir un discriminant minimal. Dans le cas de genre 2 les relations entre des
discriminants minimaux ont été étudiées par Liu [Liu94a].

4. Résultats précédents sur les signes locaux

4.1. Résultats généraux. La théorie des facteurs epsilon a été développée
par Tate [Tat67]], Dwork [Dwo56], Langlands [Lan70] et Deligne [Del73].

Quelques formules pour les facteurs epsilon et les signes locaux ont été éta-
blies par Frohlich-Queyrut [FQ73, Thm. 3] et Abbes-Saito [AS10, §8].

Le résultat principal de Rohrlich [Roh11] montre que si p est une représen-
tation de Weil (complexe) avec une certaine structure symplectique, alors son
signe local est égal a ceux de ses conjuguées par I'action de Aut(C).

4.2. Courbes elliptiques. Le signe local d’'une courbe elliptique E/K sur
un corps p-adique K avec p > 5 a été calculé par Rohrlich [Roh93; Roh96]. Les
cas de réduction potentiellement torique et de potentiellement bonne réduction
sont traités séparément. Dans le dernier cas le signe local dépend seulement du
corps résiduel k et de lentier |p/(Ix)| = ngd('UK%imin):l2)’ voir aussi [DD10,
Thm. 3.1].

Pour une courbe elliptique définie sur Q, Connell [Con94] a établi des for-

mules pour le signe local en 2 et en 3 sous certaines hypothéses. Dans le méme
contexte, Halberstadt [Hal98]] a produit des tableaux complets pour déterminer
le signe local a partir d’'une équation de Weierstrass minimale de la courbe. Sa
méthode est indirecte : en utilisant les résultats de modularité on calcule d’abord
le signe global et puis on détermine les signes locaux inconnus via le produit in-
fini.

Le cas d’une courbe elliptique sur un corps 3-adique général a été étudié par
Kobayashi [Kob02]. Le signe local est déterminé en termes du type de Kodaira—
Néron et d’'une équation de Weierstrass particuliere dans le cas ot p; est sau-
vagement ramifiée (i.e. |ps(I})| est non-trivial). On reformule ce résultat dans
Thm. m en termes qui ne référent pas directement aux équations de Weiers-
trass.

Dans le cas d’une courbe elliptique 2-adique générale, les résultats de
Dokchitser-Dokchitser [DDO08| permettent de calculer le signe local en calcu-
lant des signes locaux de caractéres explicites associés a extension de rationalité
des points de 3-torsion. Combiné avec les résultats mentionnés ci-dessus ¢a
permet de déterminer le signe local d’une courbe elliptique E/K quelconque.
Par conséquent, on peut calculer le signe global de toute courbe elliptique dé-
finie sur un corps de nombres. La procédure compléte a été mise en ceuvre sur
Magma par T. Dokchitser.

Enfin, Sabitova [Sab14] montre comment les signes locaux d’une courbe
elliptique se comportent par rapport 3 un changement du corps de base.
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4.3. Variétés abéliennes. Sabitova [Sab07, Prop. 1.10] montre qu’afin de
déterminer le signe local d’une variété abélienne A/K on peut se ramener a cal-
culer le signe local d’une variété abélienne de potentiellement bonne réduction
et le signe local d’une représentation de Galois provenant d’un tore.

Les travaux de Brumer—-Kramer—Sabitova [BKS18] permettent de calculer
les signes locaux des variétés abéliennes avec réduction additive potentiellement
torique et des jacobiennes de courbes stables. Dans ce dernier cas, les formules
sont données en termes de la géométrie de la fibre spéciale d’'un modéle stable.

La formule de Cesnavicius [Ces18, Thm. 1.6] montre comment le signe lo-
cal de A/K varie par rapport 4 un changement de base non-ramifié. Ce chan-
gement est controlé par le degré de I'extension non-ramifiée en question et le
conducteur a(A/K).

Dans le cas ot pg(I}¥) est trivial, Bisatt [Bis19] a obtenu des formules pour
le signe local en comptant les valeurs propres de 'image par p; d’'un générateur
topologique de I /I}.

Récemment, Bisatt [Bis21] a produit des formules pour les signes locaux
associés aux jacobiennes de courbes hyperelliptiques de genre g = 25* ayant
ramification maximale (i.e. |p¢(Ix)| = 2(p — 1)p) généralisant les résultats de
Kobayashi. Ses formules dépendent d’une équation particuliére de Weierstrass.

5. Multiplication réelle

Ici on présente les résultats du chapitre ll‘ de cette these. Ils font 'objet de la
prépublication [Mel19].

5.1. Les hypotheses. Soit A/K une variété abélienne de dimension g dé-
finie sur un corps p-adique K/Q, avec p # 2. On suppose que A/K a multipli-
cation réelle, i.e. qu’il existe une involution de Rosati, un corps de nombres F//Q
totalement réel de degré g et un plongement d’anneaux i: F' — Endg (A)®7Q
tels que i(F') est fixé par l'involution. Sous ’hypothése additionnelle que py(Ix)
est abélien on donne des formules pour le signe local en termes des invariants
classiques de A/K introduits dans la section [3| Pour cela on s’inspire des mé-
thodes développées par Rohrlich dans le cas de courbes elliptiques.

THEOREME 5.2 (Prop. [[.3.12] Cor. [l.4.8). Supposons que A/K a multiplication
réelle et que sa réduction est potentiellement bonne. Désignons par ep” = |pg(Ifc)| avec
pte, et par a(A/K) le conducteur d’Artin de A/ K.

(1) Si g est pair, alors w(A/K) = 1;

(2) Si pe(Tk) est commutatif, alors WT_I €Zet
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(3) Si pe(Tk) est non-commutatif et po(Ifc) est commutatif, alors a(éiéf() €,

“CIT—H e Z et
w(A/K) = ()

5.3. Conséquences géométriques. On montre dans la Prop. |I2_6 que
Ihypothése de multiplication réelle donne une trichotomie géométrique sur
A/K :saréduction est soit bonne, soit torique, soit additive. De plus, si la réduc-
tion est additive, alors elle est soit potentiellement bonne, soit potentiellement
torique. Ces résultats généralisent la situation observée dans le cas de courbes
elliptiques. Dans le cas ott A/K a réduction torique, la composante neutre de
la fibre spéciale du modeéle de Néron est un tore 7. Si T' ~ G, on dit que la
réduction est torique déployée, sinon on dit que la réduction est torique non-
déployée. 1l suit de @ que soit T' ~ G, soit T ne contient aucune copie de
G,,.

THEOREME 5.4 (Prop. [L5.1, Cor. [L.5.4). Supposons que AJK a multiplica-
tion réelle et que sa réduction n'est pas potentiellement bonne. Alors A/ K a réduction

potcntiellement torique et

(—=1)9 i la réduction est torique déployée;
w(A/K) =<1 si la réduction est torique non-déployée;

(_Tl)g si la réduction est additive.

De plus, ces trois cas sont les seuls possibles.

RemarQuE 5.5. Comme conséquence de théorémes ci-dessus on obtient
w(A/K) = 1 pour toute variété abélienne A/K avec multiplication réelle et
de dimension paire. Il suit que pour toute variété abélienne A/F de dimension
paire définie sur un corps de nombres H avec multiplication réelle, son signe

global est w(A/%) = 1.

5.6. Esquisse de la preuve. Soit F le corps totalement réel de la défini-
tion de multiplication réele[5.1] On montre dans Prop. [1.3.3] et [l.5.2| que py est
F ®q Qq-linéaire et que les polynémes caractéristiques de po(Wg ) sont a co-
efficients dans F. Il s’ensuit que la représentation de Weil-Deligne complexe
p’ associée se décompose en g facteurs directs qui sont conjugués pour I'action
de Aut(C). On montre dans Prop. [l.3.4 que ces facteurs ont des propriétés qui
ressemblent a celles de représentations provenant de courbes elliptiques. D’aprés
le théoréme de Rohrlich [Roh11, Thm. 1] les signes locaux de ces facteurs sont
tous égaux. Dans le cas de potentiellement bonne réduction on sépare I'ana-
lyse en deux cas selon la commutativité de p;(I'x). Le cas commutatif peut étre
traité directement, voir Thm. Dans le cas non-commutatif on se raméne
a calculer le signe local d’un caractére. Celui-ci est calculé grice au théoréme

de Frohlich-Queyrut, voir Thm.
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6. Surfaces jacobiennes et ramification maximale

Ici on présente le résultat principal du chapitre [[I} Ces travaux font I'objet
de [Mel21].

6.1. Le cadre. Soit C'/K une courbe hyperelliptique de genre 2 définie
sur une extension finie K//Q,. On suppose que sa jacobienne .J/K a potentiel-
lement bonne réduction et que p(I}) est non-triviale. On a vu dans la section[3]
qu’alors p < 5. Pour simplifier on suppose dans cette section et dans la plupart du
chapitreque p = 5. Liu [Liu93, Cor. 4.1] montre que C/K a potentiellement
bonne réduction, i.e. il existe une extension finie L/K pour laquelle le modéle
minimal régulier 6’ de C7, est lisse sur O, Liu [Liu94b| §5.1] donne également
un analogue pour lalgorithme de Tate : il existe un modéle de Weierstrass de
C/K donné par I’équation

(6.1.1) Y?=P(X)= X"+ asX* + a3 X® + au X? + a5 X + ag

telle que P(X) € Og[X] est irréductible et 1 < vi(as) < 9, vk(ag) # 5.
En outre, 'entier v (ag) détermine complétement le type de la fibre spéciale
géométrique B de B/Ok en suivant la classification due 3 Namikawa-Ueno
[NU73]. En particulier, vx(ag) détermine m(C/K), le nombre des compo-
santes irréductibles de 6.

6.2. L’action d’inertie maximale. Sous les hypothéses de[6.1] on montre
dans [[1.3.5 que p,(I}¥) est d'ordre 5 et que py(Ix) est isomorphe 3 un sous-
groupe de produit semi-direct C5 x Cg ot Cg agit sur C5 2 travers de Cg —
Cy ~ Aut(Cs). Grace a la Prop. [[1.3.13} le quotient p¢(Ix)/pe(I}) dépend
seulement de la valuation vy (A) d’un discriminant A de C/K (voir[[1.2.2 pour
la définition), et donc I'entier v (A) détermine la structure exacte de py(If).
On s’intéresse au cas ol py(Ix) ~ C5 x Cg. On montre dans Prop. M que
cette condition est équivalente a la condition que la valuation v (A) est impaire
et également  la condition que le conducteur a(J/K) est impair.

TueoreM 6.3 (Thm. [[L.6.1). Soit p =5 et soit C /K une courbe hyperelliptique
de genre 2. On suppose que py est sauvagement ramifiée et que pour un discriminant
A de C/K la valuation vi (A) est impaire. Etant donné une équation de Weierstrass

comme dans (6.1.1), le signe local est donné par

(6.3.1) w(C/K) = —(—1)FFsl . <m(C/kK)+3) (A, ag) k-

REMARQUE 6.4. Le choix de A ci-dessus n’est pas important car sa classe
dans K* /(K*)? ne dépend pas de ce choix. Par contre, il est nécessaire d’avoir

5 )[ vK(aﬁ).
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6.5. Esquisse de la preuve. On utilise une approche analogue a celle de
Kobayashi [Kob02]. La représentation de Weil p associée 2 A/K est induite par
un caractére x du Wy avec H = K(v/—A). Dans@on montre comment se
ramener au calcul du signe local w(x, ¢), avec un caractére additif p: K — C*
bien choisi. Une ¢-jauge de x est un élément de H* qui permet de comparer le
caractére multiplicatif y avec le caractére additif ¢ (voir[l1.1.3). Dans Cor. @
on exprime w(x, ) en termes d’une ¢-jauge explicite ¢ en utilisant la théorie
explicite des corps de classes locaux due 2 Serre. On explique dans M com-
ment choisir ¢ en fonction de ’équation (6.1.1). Il reste  calculer x(c), ici on a
identifié x avec un pseudo-caractére de H* en utilisant le morphisme de réci-
procité d’Artin. Pour ce faire, il faut étudier la configuration des racines de P.
On choisit une extension L/ K explicite pour laquelle C,/L a bonne réduction,
i.e. son modéle minimal régulier €’ /O, est lisse. On étudie la fibre spéciale 6;,
grice 4 la théorie d’Artin—Schreier et on détermine Tr(p) en comptant les points
sur @y, , voir Prop. [[1.4.8. Dans le cas ot [k : IF5] est pair on utilise un résultat
de Yelton [Yel15] sur le corps de rationalité K'(.J[4]) des points de 4-torsion de
J. Dans le cas ot [kk : F5] est impair, une analyse plus fine est nécessaire. On
exploite un lien entre le choix de x;, le choix de L, et la configuration des racines
de P (voir Prop. [[1.4.10] Lemme [[L.6.7).

Linvariant m(C/K) dans la formule du Thm. [6.3| vient de la congruence
vk (ag) = (m(C/K)+3) mod (IFX)? pour le coefficient ag de 'équation (6.1.1),
qui est démontrée dans le Cor. [[1.3.21]

7. Courbes elliptiques revisitées

On présente le résultat principal de la section qui fait partie de [Mel21].

Soit F/ K une courbe elliptique ayant potentiellement bonne réduction. On
suppose que I'image py(Ix) n’est pas abélienne. Alors py(I}¥) est non-triviale,
d'ott p = 2 ou p = 3. Dans le cas oit p = 3 les signes locaux ont été déter-
minés par Kobayashi [Kob02] en termes d’une équation de Weierstrass parti-
culiére, analogue a . Nous donnons une caractérisation plus géométrique
en termes des invariants introduits dans la section 3,

TueoreME 7.1 (Thm. [11.8.10). Soient K /Qs une extension finie et E/K une
courbe elliptique de potentiellement bonne réduction pour laquelle py(Ix) est non-

abélienne. Soit H = K (v/A) pour un discriminant A de E /K. On note |- | la fonction
partie enticre sur R et vz la valuation 3-adique sur Q. Alors a(E/K) et m(E/K)
sont impairs, c(E/H) est 1 ou 3, et on a

w(E/K) = (=1)v(®/m) . (—kl)

REMARQUE 7.2.

a(E/K)«;m(E/K) +Lm(E/6K>+1J

(1) La condition que p¢(Ix) est non-commutative est équivalente  la con-
dition que la valuation v (A) est impaire et a(E/K) > 3.
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(2) Lextension H/K ne dépend pas du choix de A. Sous les hypothéses
du Thm.[7.1]le corps de rationalité K (E[2]) des points de 2-torsion de
E déhnit une extension totalement ramifiée de K de degré 6. Dans ce
cas H/K est lunique sous-extension quadratique de K(E[2])/K.

(3) Sous les hypothéses du Thm. l’entier ¢(E/H) vaut 1 ou 3. Le sym-
bole de Kodaira—Néron de E/K (voir [Silo4, IV.8.2]) est I1, IT*, IV
ouIV*et L%j vaut 1 si «*» apparait dans le symbole et 0 sinon.

7.3. Preuves. On donne deux preuves du Thm.[7.1] Pour la premiére (voir
page [70) on commence avec la formule originale de Kobayashi et on applique
Palgorithme de Tate afin de déterminer le nombre de Tamagawa sur H 2 partir
d’'une équation de Weierstrass sur K. Pour la deuxiéme (voir page[72) on utilise
la formule des Dokchister [DD11, Thm. 6.3] et on se rameéne a calculer les
différentielles de Néron de F sur certaines extensions finies de K.

8. Lien avec des nombres de Tamagawa

Le théoréme présenté ici est le résultat principal du chapitre I11|

Reprenons pour l'instant le cadre[6.1] Partant de la formule obtenue dans
le Thm. on voudrait remplacer le facteur (A, ag) x par un terme plus géo-
métrique. La démonstration du Thm.[7.1|suggere que le nombre de Tamagawa
¢(J/H) sur une extension H/K bien choisie pourrait jouer ce réle. On montre
une formule qui généralise cette idée pour des courbes hyperelliptiques plus gé-
nérales. Soient p > 2 un nombre premier et K/Q, une extension finie.

THEOREME 8.1 (Prop. [[11.1.2, Prop. [I11.4.1). Soit C'/K une courbe hyperellip-
tique de genre g = %1 telle que py est sauvagement ramifiée. Alors sa jacobienne J | K
a potentiellement bonne réduction et C /K est définie par une équation

(8.1.1) Y?=P(X)=XP+...+ag

avec P € O [X] irréductible, 0 < vi (ag) < 2p et vi(ag) # p.
On suppose que vk (A) est impaire pour un discriminant A de C'/ K. Soit H :=
K(VA). Alors

-1 vk (ao)
(5.1.2) (A ag)xc - <k> (1)),
REMARQUE 8.2. L'extension H/K ne dépend pas du choix de A. De plus,
si K(J[2])/K désigne I'extension de rationalité des points de 2-torsion de J,
alors, sous les hypothéses du théoréme, K (J[2])/K est totalement ramifiée de
degré pair (p—1)p. L’extension K (J[2])/K contient une unique sous-extension
quadratique, qui est H/K.

8.3. Esquisse de la preuve. Lexistence de I'équation (8.1.1) généralise le
résultat de Liu [Liu94b, §5.1] produisant ’équation (6.1.1). Notre preuve suit
Papproche de Liu, voir Prop. [lI.1.2. Pour montrer ’égalité (8.1.2) on construit
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d’abord un modeéle régulier explicite de C'/ K. On utilise I'algorithme général de
Dokchitser [Dok18] qui produit un modéle a croisements normaux en fonction
du polytope de Newton de @ La fibre spéciale géométrique €. de ce mo-
déle, avec I’action de Galois, est décrite dans III.2.15} Ensuite, dans Prop. M
on explicite la matrice d’incidence de 6. Cette information est suffisante pour
appliquer les résultats de Bosch-Liu [BL99] et pour montrer (voir Thm.[[I1.3.1)

la formule
: X\2.
(8.3.1) (J/K) = {p siao € (K7)%
1 sinon.

L’égalité (8.1.2) est une conséquence de (8.3.1).

8.4. Applications aux signes locaux. On utilise pour réécrire la
formule sans référence directe 2 une équation de Weierstrass particuliére,
voir Cor. [I1.4.3.

De maniére similaire, I’équation (8.1.2) peut étre utilisée pour donner une
autre preuve du Thm.|7.1} et aussi pour reformuler le résultat de Bisatt [Bis21,
Thm. 2.1] en termes plus géométriques.



CHAPTER | m———

ON THE ROOT NUMBERS OF ABELIAN
VARIETIES WITH REAL MULTIPLICATION

ABsTRACT. Let A/K be an abelian variety with real multiplication defined
over a p-adic field K with p > 2. We show that A/K must have either
potentially good or potentially totally toric reduction. In the former case
we give formulas of the local root number of A/K under the condition that
inertia acts via an abelian quotient on the associated Tate module; in the latter
we produce formulas without additional hypotheses.

Introduction

Let A be an abelian variety defined over a number field #. The Hasse—
Weil conjecture (see, e.g., [Ser70, §4.1]) predicts that its completed L-function
A(A/Z, s) has a meromorphic continuation to the whole of C and satisfies a
functional equation

AA/H, s) = w(AJH)N(AJK,2 — s).

The coefhicient w(A/H) is called the global root number. A straightforward
consequence of the conjecture is the equality w(A/H) = (—1)°rds=1 AA/Fs),
On the other hand, the Mordel-Weil theorem tells us that the group of rational
points A(X) is finitely generated. Its rank rk(A/%) is notably hard to compute
in general and, granting analytic continuation of A at s = 1, is predicted to be
equal to ords—; A(A/HK, s) by the Birch and Swinnerton-Dyer conjecture. As
a consequence of the two aforementioned conjectures, we get a third one, the

Parity Conjecture, which is the equality
(—1)™AH) = (A/).

Deligne [Del73]] shows that the global root number can be defined uncon-
ditionally as the product of local factors [ [, w(A, /¥, ) where v runs through all
the places of # and all but finitely many factors are 1. For each v, the local root
number w(A,/X,) is defined via the respective local complex Weil-Deligne
representation by using the theory of e-factors, see [Del73, §4]. It is expected
that the geometric properties of A impose enough conditions on the associated
Weil-Deligne representations to allow a complete and explicit determination
of the root number. Let us briefly review the existing formulas in the next
paragraphs.

13
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For each infinite place, the Weil-Deligne representation is defined using the
Hodge decomposition of H!(A(C), C) and the root number is always (—1)dim4
(see [Sab07, Lemma 2.1]).

For a finite place v of residual characteristic p the Weil-Deligne represen-
tation is obtained via an ¢-adic Galois representation for any ¢ # p (or even for
¢ = p following Fontaine). We know that w(A,/¥,) = 1 if A has good reduc-
tion at v. In general, the existence of the Weil pairing forces w(A, /%,) = *1.

Let K/Q, be a finite extension and let A/K be an elliptic curve. When
p = 5, the local root number was computed by Rohrlich [Roh96]. In this
case, the root number is essentially determined by the Néron-Kodaira reduc-
tion type of A/K. Kobayashi [Kob02] has extended Rohrlich’s results to include
the case p = 3, where we find a dependancy on the Artin conductor a(A/K).
Kobayashi’s general formula also includes some coeflicients of a Weierstrass
equation. The case p = 2 has been studied by Connell [Con94] and the Dok-
chitsers [DDOS].

For a general abelian variety, a framework for studying the associated Weil-
Deligne representation and its root number was developed by Sabitova [Sab07].
Under the condition that the inertia action on the Tate module is tame, Bisatt
[Bis19] gives explicit formulas.

0.1. The setup and results. Let p be a prime and let K/Q,, be a finite ex-
tension. Let A/K be abelian variety of dimension g together with a polarization
A: A — AY defined over K. Let -T denote the corresponding Rosati involution
on End%(A) := Endg (A) xz Q. If there exists a totally real field F' of degree
[F': Q] = g and an inclusion of rings ' — End)(A) such that the image of
F is fixed by -, then we say that A has real multiplication (RM) by F' over K.
For example, every elliptic curve has real multiplication by Q. In this chapter
we generalize the methods used in the case of elliptic curves for the RM setting
and produce formulas for local root numbers w(A/K) that extend previously
known results. Let ' = Gal(K/K), Ik, and g be respectively the absolute
Galois group, the inertia subgroup, and the order of the residue field of K. We
fix a prime ¢ # p and we denote by p, the ¢-adic Galois representation of I'
on H} (A%, Q). By a(A/K) we denote the Artin conductor of py, which is
independent of ¢. The main results of this chapter are the following.

Treorem 0.2 (Cor. [4.8). Let A/K be an abelian variety of dimension g with
real multiplication. Let us suppose that p # 2 and that A/K has potentially good
reduction, so that p¢(Ifc) is a finite group of some order ep™ with p { e.

(1) If pe(T k) is commutative, then % € Z and

glag—1)

w(A/K) = (-1)"

)
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a(A/K)

o and

(2) If pu(T k) is non-commutative and py(Ix) is commutative, then

qr+1

A5 are integers, and we have

a(AZ/K) +g(q12+1) .

w(A/K) = (=1)

Tueorem 0.3 (Prop. 2.6|and Cor. . Let A/K be an abelian variety with
real multiplcation. We suppose that p # 2 and that AJK does not have potentially
good reduction. Then A/K has potentially totally toric reduction and

(—1)¢ if the reduction (over K) is split multiplicative;
w(A/K) =<1 ifthe reduction is non-split multiplica[ive;
(—1)7 o if the reduction is additive.

In addition, the three possibililies in the aboveformula are the only ones.

Tueorem 0.4 (Prop. [3.12 Cor.[5.4). If A/K is an abelian variety of even
dimension with real multiplication , then w(A/K) = 1.

Cororrary 0.5. Let K be a number field. If A/X is an abelian variety with real
multiplication and dim A is even, then w(A/H) = 1.

Prook. The local root number at each finite place of  is 1 by Thm
At infinite places they are also 1 by [Sab07, Lemma 2.1]. O

0.6. The structure of the chapter. In Section |1| we recall the general
theory of local Weil-Deligne representations and root numbers associated to
abelian varieties. In Section [2] we present some properties of p;(4/K) implied
by the structure of Endg (A/K) for a general field K'; we prove some geomet-
ric restrictions in the RM case over a p-adic field. These results are probably
known to specialists but are somewhat difficult to find in the existing literature,
so we include the details for the sake of completeness. In Sectionlﬂwe continue
the study by assuming potentially good reduction. The results of Sections l%
and [3|are then used in Section [4|to prove Thm. [0.2]and in Section [5|to prove

Thm.[0.3]

0.7. Notation and conventions. Given a field K, we fix a separable clo-
sure K and denote the absolute Galois group by ' := Gal(K/K), equipped
with the Krull topology. We will suppose implicitly that every separable exten-
sion of K mentioned in the text lies inside K. Note that if K is perfect, then K
is an algebraic closure of K. For a topological ring R, we denote by Repy(I'x)
the category of continuous R-linear finite-rank representations of I'x.

Let K be a field equipped with a valuation vg. We write O, mg, and kg
for, respectively, the ring of integers associated to v, the maximal ideal of O,
and the residue field O /mg. Whenever vk is discrete, we suppose that vk is
normalized, i.e., that v (K*) = Z. An element wg of valuation one is called
a uniformizer of K.
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If K is a local field, then, in particular, kx is a finite field of some order ¢k.
In this case we have a canonical topological generator Froby, : z +— x9% of Ty,
called the arithmetic Frobenius element. Let 7: I'x — I, be the surjection
induced by an isomorphism Oz/mz ~ ki, and denote by ¢k a geometric
Frobenius lift, i.e., an element in I' i which is sent to Frob,;; via .

For an abelian variety A/K defined over a field K, let AY/K be its dual
variety, and let End% (A) := Endk (A) ®z Q. When K is the fraction field of a
Dedekind domain @, we denote by o the corresponding Néron model over @,
by oy, the special fiber over a residue field &, and by 19 the identity component
of that special fiber.

1. From Galois representations to root numbers

Let p be any prime number and let K/Q, be a finite extension. We give
a brief summary of the general theory of local root numbers, which we will
define via Weil-Deligne representations.

1.1. Structure of the absolute Galois group. The elements of I'x that
induce the trivial automorphism of k7 define a normal closed subgroup I,
the inertia subgroup of T'x, which cuts out the maximal unramified extension
K .= K% of K. The quotient T'x /If¢ = Ty, is the profinite completion
<ng\kx> of the infinite cyclic group generated by the Frobenius element. Let
ok € T'k be alift of the geometric Frobenius. The closure of the subgroup
generated by ¢ is the subgroup @ C Tk isomorphic to I'y,.. Thus, we
have a splitting I'x = Ix <<p/;>

On the other hand, the elements acting trivially on K /(1 + my) define a
normal pro-p subgroup I}V of ', called the wild inertia subgroup, which cuts
out the maximal tamely ramified extension K*/K. The tame inertia group is
the quotient I}, := Iy /I}¥, which is isomorphic to the pro-p-complementary
completion [ ], Z,;y of Z. For every j € I'x we have ©Rjer = 71 mod I,
An application of the profinite version of the Schur-Zassenhaus theorem (see,
e.g., [RZ10, Thm. 2.3.15]) shows that It lifts to a profinite subgroup of I,
thus giving a semidirect product structure on Ix. Each lift of the tame inertia is
determined by a choice of a topological generator 7 € Ix. As a consequence
of the above discussion, we have

(1.1.1) T = (I}% x <§>/) x (oK),

where - denotes the pro-p-complementary completion. We will need the
following more refined result.

Tueorem 1.2 (Iwasawa). For every lift T € Ifc of a topological generator of
It we can choose ¢ so that we have

—/ /\)
)

Pie = 1% 0 (i) = (o)
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and 3 Ticpre = THE.

Proor. This is essentially [Iwa55, Thm. 2]. We first choose any lifts px €
I'k and 7 € If, for which (1.1.1) holds. Following [Iwa55, Lemma 4], we can

!/ /
modify ¢k so that . - (i) - pr = (7). Then, pptrr K is in (T TE) N
(i) = {7 }. The closed subgroup H := (1) - (¢K) C 'k has the desired
semi-direct product structure. Also, we have I}Y H = ', and H N I} is trivial,

thus proving the theorem. O

1.3. Weil groups and representations. Let K'/K be a Galois extension
such that KW C K’. We have an isomorphism kg ~ kx. The arguments used
to obtain (1.1.1) apply similarly to show that the exact sequence

0— I(K'/K)— Gal(K'/K) 5 T, — 0
splits, giving a semidirect product structure
(1.3.1) Gal(K'/K) = I(K'/K) % (pr)

where I(K'/K) := Ix /I C Gal(K'/K) is the inertia subgroup. The Weil
group of K'/K is defined as

W(K'/K) := 7! ((Frobg,.)).

In other words, W(K'/K) consists of the elements of Gal(K’/K) that 7 sends

to Frobj, for some n € Z. We note that

(1.3.2) W(K'/K) =1(K'/K) x {¢pf).

We equip W(K'/K) with the topology generated by the open subgroups of
I(K'/K) and their translates. We denote Wy := W(K/K).

Let F be a field of characteristic zero. An F-linear Weil representation is
defined as a continuous representation p: Wx — GL(V) where V is a finite-
dimensional F-vector space, and GL(V) is equipped with the discrete topol-
ogy. Continuity is equivalent to p(I) being a finite group. Let us note that if
F = C, then we get an equivalent definition if we equip GL(V') with the stan-
dard topology (see [Roh94, §2]). The category of F-linear Weil representations
over K will be denoted by Repy(Wk). Every f € End(V') gives the transpose
endomorphism fT € End(V*) on the dual vector space. The dual representa-
tion of p € Repp(Wk) is given by p*(g) := p(g~1)T for every g € W.

1.4. Unramified Weil characters. Let R be a ring in which p is invert-
ible. We define the cyclotomic character wg : W — R* to be the unramified
character such that wi (¢r) = ¢x'. When R = C, for any z € C, we define
the unramified complex Weil character w# by taking b = —In(gk) and then
setting w (k) = exp(zb). We note that any unramified complex Weil char-
acter is of the form w#% for some z € C. For a complex Weil representation p
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on V, we define the Tate twist p(z) := p ® w} for any z € C and denote the
underlying vector space by V().

1.5. Weil-Deligne representations. Let F be a field of characteristic ze-
ro. An F-linear Weil-Deligne (WD for short) representation is a pair (p, N)
where p is an F-linear Weil representation on V and N is a nilpotent F-
endomorphism of V, called the monodromy operator, satisfying pNp~! =
wig N. The F-linear WD-representations form a category Repp (W}, ) where
the morphisms between two WD-representations are the morphisms between
their respective Weil representations that commute with the monodromy op-
erators. Trivially, there is an equivalence between the category Repp(Wk)
and the full subcategory of F-linear WD-representations with trivial mon-
odromy. If p’ = (p,N) and ¢/ = (o, P) are two WD-representations, then
we define their direct sum as p' @ o/ = (p ® o, N & P), their tensor prod-
uctas p' ® o’ = (p® o, N ® id+id ®P), and the dual representation of p’ as
()" = (p*,=NT).

RemaARK 1.6. As in [Del73| 8.3.6], one may define the Weil-Deligne group
W as a group scheme over Q that is the semidirect product of Wk by G,
where for every Q-algebra R, every z € G4(R), and every o € Wk we have
oxo~! = wg(o)z. A representation of the group scheme W, over a field of
characteristic 0 may be shown to correspond to a pair (p, N) as above.

1.7. (-adic monodromy. Let ¢ # p be a prime number, px a geomet-
ric Frobenius lift, and ¢;: Ix — Q, a nontrivial continuous homomorphism.
Grothendieck’s /-adic monodromy theorem (see [Del73, 8.4.2]) provides a fully
faithful functor

WD: Repg,(T'x) — Repg, (W)
pe = (W(pe), Np, ).

The construction of W(p,) depends on the choice of ¢k, and N, is the unique
nilpotent endomorphism such that py(j) = exp(t¢(j)N,,) for every j in a suf-
ficiently small open subgroup of Ix. In particular, if p,(Ix) is finite, then
N,, = 0. By [Del73, 8.4.3], the isomorphism class of WD(py) is independent
of the choices of ty and .

1.8. Complex WD-representations. Let p; € Repg,(I'x). We fix an
embedding i: Q; — C for the rest of the text. By extending the scalars
of WD(p) to C via i we obtain a complex WD-representation WD;(pg) =
(Wi(pe), Nip,)- As the notation indicates, the isomorphism class of WD;(py)
generally depends on i.

1.9. Geometric (-adic representations. Let K be any field with a sepa-
rable closure K, and let ¢ # char(K') be a prime. If X/K is a smooth and proper
variety, then we have a natural /-adic Galois representation on the (m-th) ¢-adic
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cohomology group HY' (X, Zy) ®z, Qq for each m > 0. For a commutative
algebraic group G over K, one defines its ¢-adic Tate module as the projective
limit of K-valued ¢"-torsion points

T,G = lim G(K) ("]

equipped with the ¢-adic topology. The natural I g-action on T;G is contin-
uous and defines a Qy-linear representation on V,G := T)G ®z, Q. For an
abelian variety A/K of dimension g, the Z;-module T;A is free of rank 2g,
and its dual (T;A)* is canonically isomorphic to Hj (A, Zy) in Repg, (Uk).
We will denote the corresponding ¢-adic Galois representation on (V;A)* by
pe(A/K) or simply by p, when the context is clear.

The multiplicative group G,,/K induces a Z,-linear Galois representation
on T;G,, of dimension one, which corresponds to a character wg: ' — Z;'.
For every n € Z and every (-adic representation p on V, we define the Tate
twist by p(n) := p ® w)t and denote its underlying space by V' (n).

For the rest of Section [I/ we return to the case where K is a finite extension
of Qp and ¢ # p. Restricting the Ik -action on T;G,,, to W we obtain exactly
the unramified character wi : Wi — Z of|

1.10. Reduction of abelian varieties. Let K/Q, be a finite extension. An
abelian variety A/K is said to have good (resp. semistable, synonymous with
semi-abelian) reduction if the identity component o1 of the special fiber of the
Néron model is an abelian variety (resp. a semi-abelian variety). More gener-
ally, the reduction is potentially good (resp. potentially semistable) if there exists
a finite extension L/K such that A/L has good (resp. semistable) reduction. We
will say that A/K has bad reduction if it does not have good reduction. Recall
the following well-known results.

TueoreM 1.11. An abelian variety A/K:
(1) has good reduction if and only if py is unramified, i.e, if and only if Ixc acts
trivially on Vo A (Néron-Ogg=Shafarevich criterion);
(2) has semistable reduction if and only if py|1, is unipotent (Grothendieck’s
inertial criterion);
(3) always has potentially semistable reduction (Grothendieck’s semistable reduc-
tion theorem).

Proor. For (1) see [ST68, Thm. 1]; for (2) see [SGA 7.1, p. 350, Prop. 3.5];
for (3) see [SGA 7.1, p. 21, Thm. 6.1]. O

DEeriNiTION 1.12. Given an abelian variety A/K with potentially good re-
duction, an extension L'/K will be called inertially minimal (IM) for A/K if
L'K"™ = M where M /K™ is the extension cut out by ker p/|7,.

Lemma 1.13. Let A/ K be an abelian variety with potentially good reduction. Let

M/K be as in Def.[1.12] Then
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(1) An extension L' /K is IM for A/K if and only if I, = ker pg|re = Ins.
This is also equivalent to the condition that A has good reduction over L'
and has bad reduction over any smaller extension L" /| K such that L' | L" is
ramified.

(2) The extension M/ K is Galois;

(3) For any choice of a Frobenius lift o, there exists a finite totally ramified
extension L' | K which is fixed by ¢k and is IM for A/K;

(4) Let L' /K be an IM-extension for A/K and let L/ K be its Galois closure
in K. Then LK is also IM for A/ K. In particular, L/ L' is unramified.

Proor. The first equivalence of (1) follows from Galois theory, and the sec-
ond is a reformulation of the Néron-Ogg—Shafarevich criterion. For (2) we
observe that ker pg|r,, = Ix N ker py, which is normal in T'x. For any ¢k,
the subgroup Iy - (oK) C Tk (cf. (1.1.1)) is closed (as a product of two com-
pact subgroups) and has finite index, thus is open. It cuts out a finite totally
ramified extension L'/ K with I, = Iy, so (3) follows. The part (4) follows
from the observation that L C M (since M/K is Galois), which implies that
Iy =1y CIp C Iy (]

1.14. p-adic uniformization. Let A/K be an abelian variety of dimen-
sion g. As stated in [Cha00, Prop. 3.1], there exists a semi-abelian variety E/K
of dimension g, defined by a Raynaud extension 0 — 7" — E — B — 0 where

(i) T is a torus over K,
(ii) B is an abelian variety over K with potentially good reduction,
(iii) the rigid analytification of A/K is the rigid analytic quotient of the
analytification of E/K by a free Galois sub-Z-module M C E(K) of
rank 7 = dim 7.

We denote (k,0) = WD;(ps(B/K)), note that the monodromy is trivial
by Thm. [1.11}(1) and [1.7] Let X(T) := Homz(T,Gm), and let n: Wg —
GL(X(T)q) be the representation given by the Galois action on X(T)q :=
X(T) ®z Q, which has finite image.

ProposiTioN 1.15 ([Sab07, Prop. 1.10]). There is an isomorphism of WD-rep-

resentations
WDi(pe(A/K)) = (5,0) @ (n(—1) ®sp(2))

where sp(2) = (1 ® wi, (1)) is the so-called special WD-representation. The rep-
resentations W;(pe(B/K)) and W;(pe(A/K)) are semisimple, and the isomorphism
classes of WD;(p¢(B/K)) and WD;(ps(A/K)) are independent of £ and i.

REMARK 1.16.
(1) The Galois modules X (T)q and M ® Q are isomorphic, see [Sab07,
Lemma 1.11].
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(2) Let us recall a few ideas behind the construction of T' in order to give a
direct description of 7. By Thm.[1.11}(3), there exists a finite Galois ex-
tension L/ K such that the identity component ¢}, of the special fiber
of the Néron model of A/L is a semi-abelian variety. By replacing L
with a larger extension, we may suppose that the maximal subtorus T
of sﬂgL is split. By the universal property of the Néron model, the k-
scheme T is equipped with a kz-semilinear Gal(L/K)-action. The
resulting T g-representation on X (T)q = Homy, (T,G,,) ®z Q is
isomorphic to 7.

1.17. Local reciprocity. Local class field theory provides a reciprocity
isomorphism for any finite Galois extension L/K of local fields:

Or/K : KX/NL/K(LX) = Gal(L/K)ab.

There exist exactly two canonical choices for 6}, , and they are inverses of
each other. Following Deligne, we normalise 6/, by supposing that it sends
the class of a uniformizer of K to the class of a geometric Frobenius lift. Using
the projective limit of these reciprocity maps as well as the Existence Theorem
we obtain (see, e.g., [Kna97, Cor. 2.5]) an isomorphism

O : KX =5 Wb,

1.18. The epsilon factor. We fix a nontrivial locally constant additive
character 5 : K — C* and a Haar measure drx on K. We let n(vyk) =
max{n € Z|¢x(my") = 1}. For a complex WD-representation p' = (p, N)
with underlying vector space V, we define the e-factor of p’ as the product

E(pla wKa de) = E(p, 7/1K, de)(S(p/)7
where
o(p') = det (_P(SOK)‘ VIK/(kerN)IK>

and €(-, ¢, dzg) is the unique function satisfying the following axioms (see
[Del73, Théoréme 4.1]):

(i) The map (-, ¥k, dzk): Repc(Wk) — C* is multiplicative in short
exact sequences of Weil representations, i.e., it induces a group ho-
momorphism from the Grothendieck group of virtual complex Weil
representations to C*.

(ii) For any finite extension L/K, any dzr, and any p € Repc (W) we
have

e(Indl < Lyy, , e, darge) \ 7
)

Wik _
e(Indy X p, Yx,dek) = e(p, Y oTrr i, dar) (6(]1WL,¢K o Trx, doz
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(iii) For any finite extension L/K, any ¢, any dzr, and any one-dimen-
sional ¢ € Repe(Wp,) with Artin conductor a(¢) we have

fc,1®LX €10 (x)r(x)dey,  if € is ramified,

b 7d =
6(§ wL QTL) {(&'le)(QL(C)) f@)L de iff 18 unramiﬁed,

where ¢ € L is any element of valuation n(¢r,) + a(§).

The condition (iii) expresses the fact that the e-factor is the coefficient in Tate’s
local functional equation of the L-function of &, as described in [Tat79, §3].

1.19. The root number. Given a p' = (p, N) € Repe (W}, ), we define
its root number as

(', ¥YK, dok)

le(¢/sre, dr )|

It follows from basic properties of e-factors (see [Roh94, §11, Prop.]) that the
root number w(p’, i) is independent of the choice of dz, and that it is also
independent of ¥ if det p is real positive, which is always the case for a WD-

w(p', k) =

representation obtained from an abelian variety.

1.20. Some custom conventions. The dependence of e-factors on i
and dz g will not be important in what follows, so we make some particular
choices for the rest of the chapter. We denote by i, the group of all com-
plex roots of unity of orders that are powers of p, and we fix an isomorphism
Qp/Z,, =~ pp-. For a finite extension K/Q, we define ¢ as the composition

Tr ~
Vr: K — Qp — Qp/Zy =5 pipe CC*.

We note that n(yk) is the valuation of any generator of the different ideal
Dk /g, € Ok. We normalize dzk by demanding that dz(Ox) =1 .

ProposiTioN 1.21. Let p' = (p, N) € Repe (W), then
(1) For any unramified character x, we have

e(p/ @ X, v drg) = e(p), i, dagc) - x (o)) dime el

In particular, for any s € R, we have w(p'(s),¥r) = w(p', Yk);

(2) We have w(p', v )w((p")* ¢rc) = det(p(0x(~1)));
(3) If p has a finite image and is self-dual, then

w(p @ sp(2), Yre) = det(p(Ox (—1))) - (~1)1),
where (-|-) denotes the usual inner product on characters of finite groups.

Proor. These properties can be deduced from [Roh94, §11, Prop.(iii)],
[Roh94, §12, Lemma.(iii)], and [Roh96, p. 327, Prop. 6], respectively. O
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2. Abelian varieties with an action by a number field

Let A/K be an abelian variety of dimension g over some field K. We sup-
pose that there exists an inclusion of unitary rings I — End%(A) where F is
a number field of some degree n. We fix a prime number ¢ # char(K). Let us
recall that py is the Q-linear representation of I'c given by the Galois action
on (V,A)*.

2.1. The F-action on (V;A)*. Since the Q-linear Galois representation
pe commutes with the action of the semisimple Q-algebra F, := F ®g Qg on
(Vi A)*, we may interpret py as an Fy-linear representation. It is well known

see [ST61, p. 39, Prop. 2]) that n|2g, and we denote h := 2¢g/n. We have a
p p
decomposition

(2.1.1) F, = HFA

where X runs through all finite places of F above ¢, and where F} is the corre-
sponding completion of F. Consequently, we may decompose

(2.1.2) (Ve =]
A

where V) = (V;A)* ®p, F) is an F-vector space of some dimension hy. By
Fy-linearity of py, the decomposition (2.1.2) is I' g-equivariant, so we obtain a
family of Galois representations py: T'x — Autp, (V)).

Tueorem 2.2 ([Rib76, Thm. 2.1.1]). In the notation above, hy = hfor all \,
so Vy(A)* is a free Fy-module of rank h.

2.3. The Fj-bilinear Weil pairing. Let Pg,: Vi A x V;(AY) — Qu(1) be
the T x~equivariant perfect Q-bilinear Weil pairing. Each f € End% (A) acts on
Vi(AY) via its dual ¥ € End%(A") and satisfies Po,(f(),y) = Po,(z, ¥ (y))
for all (z,y) € VpAxVy(AY). Then, the pairing induces an isomorphism

Fl,: Homg, (ViA, Qr) = Vi(A")(~1)

in Repg, (I'x ), which is End (4) ®q Qq-linear and, in particular, Fy-linear.
We claim that the map

t: Homp,(V,A, Fy) — Homg, (V,A,Qy)

givenby f — Trp, /q, of is an isomorphism in Repp, (I'x). Indeed, it is straigh-
forward to verify that ¢ defines a morphism in Repp, (I'x) and that the Q-
dimensions of the source and the target agree. We are left to verify the injec-
tivity. Let f € Homp,(V,A, F;) be non-zero, and let z € Im(f) \ {0}. By
Fy-linearity, we may suppose that z is the image of 1 € F) via F) < F} for
some \. Then Trp, o,(z) = [F) : Q] # 0, s0 Trp, o, of # 0.
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Composing Fy, with ¢ gives an isomorphism Py : Homp,(V,A, Fy) —
Vi(AY)(—1) in Repg, (T'k), which translates back to a I'x-equivariant perfect
Fy-bilinear pairing

Pr,: ViA x Vo(AY) = Fy(1).

Given a polarization A\: A — A defined over K, let -f: End)(A) —
End)% (A) be the corresponding Rosati involution. By composing the second
argument of Pp, with \, we obtain a map

Pp,: Vi A x Vi A — Fy(1).

ProrosiTiON 2.4. Let A/K be an abelian variety with a polarization X such
that EndY(A) contains a totally real field F' fixed by the Rosati involution -T. The
pairing Plée is altemating, Ey-bilinear, Ik -equivariant, and perfecl. Consequently,

h:= 2[%1%]’4 is an even integer, p; = py(1) in Repp, (U ), and detp,p; = w;{hﬂ.

Prook. By construction, the map Plée is I'-equivariant, Q-bilinear,
non-degenerate, and Fjy-linear in the first variable. As it is standard, for
any f € Endg(A) ®z Qg and a,b € V;A we have Pg,(a,A(a)) = 0 and
Po,(f(a),A(b)) = Pq,(a, A\(fT(b))). Using the isomorphism ¢ we see that the
same statements are true when we replace P, by Pr,. Since -1 acts trivially on
Fy, the pairing Pléé is Fy-bilinear and perfect.

From classical bilinear algebra, the existence of an alternating and perfect
Fy-bilinear pairing on V;A implies that h is even. The I'x-equivariance and
non-degeneracy of Pp, gives (V;A)* = (V;A)(—1) in Repg, (k). Taking the
dual objects we obtain p§ = py(1). It remains to compute the determinant.

For any n > 1, the Fy-module (A"(V,A))* of Fy-multilinear alternating n-
forms on VA is free of rank (Z) It is equipped with a natural Fj-linear Galois
action given by 0P = Po A"p}(c71) for every P € (A"(V,A))* and every o €
I'k (note that we need to put 0! in order to have (7o) P = (o P)). Then, the
pairing Pp, € (A*(VzA))* satisfies 0 Py, = wi(o~ ") Pp,. Using the notion of
alternating product of multilinear forms, see [Bou70, A 111.142, Exemple 3)], we
consider the i /2-fold product ¢ = (P}E)Ahﬂ € (A"(V,A))*, on which o acts
as multiplication by wy (¢) /2. Since I' acts on the Fy-module (A"(V,A))* =
(detp, VeA)* as (detg, pj)* = detp, pg, we are left to check that ¢ # 0. There
is a suitable Fy-basis eq, ..., ej of V, A such that the matrix of P}/}Z in this basis is
diagonal by blocks (% §). If we denote by €, ..., ¢}, the corresponding dual
basis of (V;A)*, then Pp = Z?:/ 2 el | ANel. Itis straightforward to verify that
¢ = (h/2)le}l A ... Ae),and the latter is clearly non-zero. O

2.5. A geometric trichotomy. Let K/Q, be a finite extension, ¢ # p a
prime, and A/K an abelian variety. We consider the identity component gﬁ,gK
of the special fiber of the Néron model of A/ K. By Barsotti-Chevalley theorem
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(see, e.g., [Mil17, Thm. 8.27 and Prop. 16.15]), there exist a unipotent group
U/kk, atorus T'/kg, and an abelian variety B’/kj that fit an exact sequence

(2.5.1) 0T xU—d) — B —0.

The functoriality of the Néron model, along with the well-known facts that
Homy, (7", B') = 0, Homy, (T",U) = 0, and Homy,, (U, B") = 0, implies that
we have a morphism of unitary Q-algebras

(2.5.2) End} (A) — End},_(T") x End), (B').
The following proposition is a slightly sharper version of [Rib76, Prop. 3.6.1].

PROPOSITION 2.6. We suppose that A/ K has real multiplication by F. Then,
exactly one of the algebraic groups T', U, and B’ is nontrivial.

Proor. Let us suppose that 7" is nontrivial. From (2.5.2) we get an inclusion
F < End)_(T"). It follows that X (1) ®z Q is a nontrivial F-vector space.
Then, dim 7" > [F : Q] = dim A = dim o}, so U and B’ are trivial.

It remains to prove that if B is nontrivial, then dim B’ = dim A. We see
from that Endj_(B’) contains F as a subfield. Using Poincaré’s complete
reducibility theorem we may assume that B’ is some n-th power of a simple
abelian variety S’. Then, using Albert’s classification of endomorphism algebras
of simple abelian varieties one can show that [F : Q] < ndim S’ = dim B’, this
is done in [[Cha95, Lemma 6]. O

3. Rationality of representations on Tate modules

3.1. The setup. We fix a prime number p, a finite extension K/Q,, and
an abelian variety A/K having potentially good reduction. Let us suppose that
A/K has real multiplication (RM), i.e., that the Q-algebra End% (A) contains a
totally real number field F* of degree g = dim A as a subalgebra. We recall the
decomposition Fy = F ®q Q; =[], F». In addition, we have

(3.1.1) Fe:=FagoC= ][] C
t: F—=C
Let py be the Galois representation as in M for some £ # p. It is also F-
linear. As in let us fix an embedding i : Q; < C, then the associated com-
plex Weil-Deligne representation is given by the pair (W;(p¢), 0) where W;(py)
denotes the Fc-linear Weil representation obtained by restricting p; ®; g, C to
Wgk.

PRroOPOSITION 3.2. The representation p on (Vy A)* is semisimple in Rep , (W ).

Prook. It suffices to prove semisimplicity of the restriction to a subgroup
Wi C Wk of finite index (after applying the argument of [BHO6, §2.7
Lemma]). Therefore, we may suppose that the reduction is already good
over K. In this case, the inertia acts trivially and the action of the arithmetic
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Frobenius Lpl_(l on VyA = Vpdy,,. is induced by the Frobenius endomorphism ¢
of the reduced abelian variety s, /kr. It is well known that Q[¢] is a semisim-
ple Q-subalgebra of End} (st ). It follows that F; ®q Q[¢] is a semisimple
Q,-algebra, and we conclude that py is semisimple. O

ProrositioN 3.3. For any o € Wk, let Py, € Fy[T)| be the Fy-characteristic
polynomiat of pe(o). Then, Py, has coefficients in F and each F-characteristic
polynomial Py , of p(c) is the image of Py via the inclusion F[T] — F)[T).

Proor. We will prove that V;(A)* is an Fy[o]-module that can be realized
over F, i.e., there exists an Fo]-module W such that W ®q Q; >~ Vy(A)*.
The F-linear representation py induces a morphism of Fy-algebras

V. Fz[o‘] — EndFZ(Vg(A)*)

As explained by [ST68, p. 499, Corollary] and its proof, for every a € F|o]
there exists an integer n and finite extension L/K over which A has good re-
duction and such that the action of na is induced by an endomorphism of the
reduced abelian variety o, . Then, by a classical argument due to Weil (see
[Mum70, p. 181]), the Q,-characteristic polynomial of () has rational coef-
ficients.

The semisimplicity of p, implies that F[v(o)] is a semisimple Q-algebra.
Since F'[v(o)] is also commutative and finite over Q, we may write F'[v(o)] =
[1; Q(c) as a finite product of number fields and, accordingly, (V;A)* = [, Vi.
Each Vj is the underlying space of a semisimple Q,-linear representation
vi: Q(oy) — Endg,(V;). By the above paragraph, for every a € Q(w;),
the Qg-characteristic polynomial of v;(c) has rational coeflicients. Therefore,
[ST61, p. 38, Lemma 1] applies and gives an isomorphism V; ~ Q(a;)% ®q Qy
of semisimple Qy(cv;)-modules for some positive integer d;.

Let us define the F[o]-module W := [, Q(a;)%, so that, by construction,
W ®q Q¢ ~ Vi(A)* as semisimple Fy[o]-modules. Let Q € F[T] be the F-
characteristic polynomial of o acting on W. Then, P, = Q. On the other
hand, Py, can be calculated locally at each X and can be seen as a family of
polynomials (Py ;) in [], FA[T]. Since P, has coefhicients in F', the family is
constant. (]

ProposiTioN 3.4. Let A/K be an abelian variety with RM by F and with
potentially good reduction. Then we have the following decomposition of the complex
Weil representation:

(3.4.1) Wilp)= ] »o
v: F=C

where each p, is a semisimple Weil representation on a complex 2-dimensional vector
space V,. Furthermore:

Yt is well-defined because of Thm.
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(1) The representations p, are Aut(C)-conjugate; i, for every pair of embed-
dings 1,/ : F < C there exists an automorphism v € Aut (C) such that
pv = p, Ry C.

(2) Let M/K be as in Def[1.12 The restrictions p,|1,. have a common kernel
Ing. Each p, thus induces aﬁzithful 2-dimensional representation oftheﬁm'te
group I(M/K).

(3) Each representation p, is essentially symplectic of weight 1, i.e, pb(%) is sym-
plectic. In particular, p¥ = p,(1) and det p, = wi'.

(4) The root number w(p,, k) is 1 or —1.

Proor. By Fc-linearity, the decomposition (3.1.1) implies (3.4.1), and we
have V, = Vy(A)* ®F,, C where the tensor product is taken over the unique
extension Fy — C of ¢ (having fixed i: Q; — C, see . Recall that V,(A)* is
a free Fy-module of dimension 2 (Thm.[2.2), so V, is a complex Weil represen-
tation of dimension 2.

(1) From Prop. |3.3| we conclude that the C-characteristic polynomial of
o € Wi acting on V, is the image via ¢ of a polynomial P, € F[T7] that
is independent of .. We recall that for any two embeddings ¢, //: F' —
C, there exists a u € Aut(C) such that ¢/ = u o «. The characteristic
polynomials of p,(0) ®, C and p, (o) are equal, so, by semisimplicity,
P Oy C~ Py -

(2) Part (1) shows that all the p, have the same kernel, which must be the
kernel of p,. In particular, ker p, |7, = ker pp N I = Iy.

(3) Applying the functor — ®p,, C to the objects of Prop. [2.4] gives the

result.

(4) We use (3) together with Prop. (1),(2) to get
w(pu ¢K)2 = w(pu ¢K)w(PL(1)7 wK)

=w(p,, ¢K)w(Pf> VK )
= det(p, (O (—1))).

We know that det p, = w;(l is unramified, so w(p,, ¥x)? = 1. O

Remark 3.5. Prop. [3.4] shows that (p,), is a family of Aut(C)-conjugate
representations of even dimensions that are essentially symplectic of odd weight.
Then, [Roh11, Thm. 1] shows that w(p,, k) is independent of . Let us fix
some ¢. It follows from @) and multiplicativity of root numbers that

(3.5.1) w(A/K) = w(Wilpe), Yrc) = wlpe, hxc )7

PROPOSITION 3.6. We keep the hypotheses and notation of Prop. [34. Let us
fix an embedding v: F — C and regard p, as a representation of the group G :=
W(M/K)=I(M/K) - {(¢k). Exactly one of the following is true:
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(a) M/K is abelian. In this case p, = x, ® x; 'wy" for a character x,: G —
C*, which is faithful on I(M/K), and there exists a finite totally ramified
cyclic extension L) K which is IM (see Def.for A/K;

(b) M/K is non-abelian. In this case p, is irreducible. If p # 2, then p, =
Indg X, where x, is a character of a normal subgroup H C G of index 2.
Furthermore, every such H is an abelian group containing IV (M /K) such
that H N I(M/K) is cyclic.

Before proving the proposition we establish a few lemmas.
LemMma 3.7. The representation p, is faithful on G.

Proor. The eigenvalues of p, on I(M/K) are roots of unity and the eigen-
values of ¢ have absolute values , /gx. Since p, is faithful on I(M/K), we infer
that p, is faithful on G. O

Lemma 3.8. The following statements are equivalent:

(1) Every IM-extension L' /K for A/K is abelian;

)

)

) pe(Wi) is abelian;

) p.(Wi) is abelian;

) p.: Wi — GLa(C) is reducible;
)

)

Proor. The lemma is a slight generalisation of [Roh93, Prop. 2.(ii)]. (1)
implies that M = L'K™ is abelian over K as the compositum of two abelian
extensions in K, so we have (2). We have (2) = (3) since py factors through
the quotient Gal(M/K) of I'k. Restricting p; to W gives (3) = (4). The
implication (4) = (5) follows from the natural projection W;(ps) — p, (see
(3.4.1)). Schur’s lemma gives (5) = (6), and (6) = (7) follows by semisim-
plicity of p,. The statement (7) implies that p,(G) is abelian, and thus G is
abelian by Lemma [3.7} thus giving (8). We prove (8) = (2) by recalling that
G = W(M/K) is a dense subgroup of Gal(M/K), so commutativity of the
former implies comutativity of the latter. We are left to establish (2) = (1),
which follows by recalling that every IM-extension for A/K is a subextension
of M/K. O

Proor or Prop.[3.6 If M/K is abelian, then p, decomposes into a sum of

two characters (Lemma@ whose product is det p, = wy' (see Prop. M@)),

1 Since wx is unramified, the charac-

so we may write p, = X, @ lew;(
ter x, sends I(M/K) injectively to a finite subgroup of C*, which must be

cyclic. Let us fix a Frobenius lift ¢, and let L = L’ be the extension given
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by Lemmal1.13}(3), which is abelian by Lemma|[3.8] We see that Gal(L/K) =
I(L/K) ~ I(M/K) is cyclic.

Let us suppose that M/K is non-abelian. Lemma [3.8]shows that p, is ir-
reducible. If p # 2, then applying [Tat79, (2.2.5.3)] shows that there exist a
subgroup H C G of index 2 and a character x, of H such that p, = Ind$ x..

By adjunction, the restriction p,|g contains x, as a subrepresentation, so
ol = x. & Xb_lwl}l, and thus p,|y has abelian image. By faithfulness, H is
abelian, and x, identifies the finite group I(M/K) N H with its cyclic image in
Cx.

If H does not contain IV (M/K), then H - I¥(M/K) = G and

2= |G/H| = ‘IW(M/K)/IW(M/K) QH‘-
Therefore, 2 must be a power of p, which is impossible if p # 2. O
Cororrary 3.9. The group IV (M /K) is cyclic if M /K is abelian or if p # 2.

Prooke. If M/K is abelian, then every subgroup of I(M/K) is cyclic by
Prop.[3.6/(a). If M/K is non-abelian and p # 2, then I¥(M/K) is contained in
the cyclic group H N I(M/K). O

Remark 3.10. We note that the subgroup H in the case (b) is not unique
for «. We will show how to make a more precise choice of H in Lemma@

Other restrictions.

Lemma 3.11. Let A/K be an abelian variety of dimension g with RM and po-
tentially good reduction. Let o € py(Ifc) be an element of order d. Denote by ¢ Euler’s
totient function. Then p(d) divides 2g.

Proor. Recall from Prop. that the Fy-characteristic polynomial P, of o
is of degree 2 and has coefficients in F. Since 0¢ = id, the complex roots of P,
are among the roots of X¢—1. Since det o = 1 (by Prop. (3)), the two roots
of P, are roots of unity ¢ and (! of some order d’|d. Then ¢¢ = id, which
implies that d’ = d. On the other hand, a := Tr(o) = ( + (7! € F. Since
has degree max{1, @} over Q, we conclude that ¢(d)|2g. O

As we have seen in Prop. [3.4}(2), the representations p, |, induce faith-
ful Aut(C)-conjugate representations of a finite group I(M/K). Let p'e =
[I(M/K)| with e prime to p. If p # 2, then Cor. [3.9shows that IV(M/K) is
cyclic.

ProrosiTioN 3.12. For A/K as in Lemma the following statements hold:

(1) If g is even, then w(A/K) = 1;

(2) If r = 1 and p # 2, then p"~*(p — 1)|2g; in particular, if g is odd, then
p =3 mod 4;



30 I. REAL MULTIPLICATION

(3) If g is odd, then e can only be s™, 2s™, or 4, wherem > 0 and s = 3 mod 4
is a prime different from p.

Prook. (1) follows from Prop.[3.4](4) and (3.5.1). Applying Lemma to
a generator of I™(M/K) and using ¢(p") = p"~!(p—1) we obtain (2). Suppose
now that g is odd. If ¢(e) is odd, then e is 1 or 2. If p(e) is even, then applying
Lemma[3.11Jto a generator of I*(M/K) gives ¢(e) = 2 mod 4. Now (3) follows
from the usual formulas of ¢(e). O

4, The case of abelian inertia

We continue to work in the setting of 3.1/ and suppose that p # 2. We
adopt the notation of Prop. M and regard each p, as a faithful representation
of G = W(M/K) (see Lemma [3.7). Let us write |I(M/K)| = p"e with e =
[I*(M/K)|, so that p { e. Applying (3.5.1), it suffices to determine the root
number w(p,, k) for a fixed embedding ¢: F' — C.

TueoreM 4.1. If pg(Tk) is abelian, then e | (g — 1) and

aK —1

w(pu, i) = (=1) "¢

Prook. The image py(I'x) is abelian if and only if M/K is abelian by
Lemma so we are in the case (a) of Prop. Then, we have a decom-

position p, = X, ® X; 'wg'. Using multiplicativity of the root number and
Prop. (1),(2) we obtain
w(pe, ) = X0k (-1)) € {£1}.

By Lemma 1.13L there exists a finite IM-extension L/K for A/K. By
Lemmal3.8] L/K is abelian. We identify I(L/K) ~ I(M/K). Then the com-
position (x, o 0[()’@;; can be seen as the following sequence of group homo-

morphisms:
(4.1.1)
0
O — O /Ny i (0F) —= I™(L/K) x T(L/K) <X €.

Let us recall the identification 6 = kx x (1 + mg). The image of k}; is
trivial in IV(L/K), so 0,/ induces a homomorphism 6y, : k. — I'(L/K).
On the other hand, the image of the pro-p group 1+ my is trivial in I*(L/K),
50 O, must be surjective. In particular, e | (¢gx — 1). Since p # 2, the class
of —1 in k is nontrivial, so x,(0x(—1)) = x.(0k, (—1)) = 1 if and only if —1
belongs to the unique subgroup of index e in k., which can be characterized

—1

by {xek}é:que =1}. O
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4.2. Representation having non-abelian image. It remains to study
the case where p;(T'x) is non-abelian, which is the case (b) of Prop. 3.6 (see
Lemma , when M/K is non-abelian. In this case, p, is induced by a char-
acter y, of an abelian normal subgroup H € G = W(M/K) of index 2, which
contains IV(M/K).

LemMa 4.3. We can choose a geometric Frobenius lift ¢ so that p3% is contained
in the center of G.

Proor. Let 7k and ¢ be asin Thm. Since H is commutative of index
2 in G and contains IV (M/K), the element (% is in H and commutes with
every element of IV (M/K). We are left to prove that ¢, > 7% = Tx, which
is equivalent to e dividing ¢% — 1 by the aforementioned theorem. If 7 € H,
there is nothing to prove since H is abelian, so we may suppose that 7 ¢ H.
Then, 72 € H and e = |I'(M/K)| is even.

If o € H, then Tf(qK = Qi TR oK = TE, 50 €|2q — 2, which implies that
el — 1.

If o & H, then px i € H commutes with ¢%, so 7 = 0> (k7K )%,
and we are done. O

HypotHEsis 4.4. The image oflhe inertia subgroup Ik via the representation py
is commutative.

The hypothesis is verified in the following cases:

(1) pe|1, factors through the tame inertia group I}, or, equivalently, A/ K
attains good reduction over a finite (at most) tamely ramified exten-
sion L'/ K, the explicit formulas for root numbers are given by [Bis19,
Thm. 1.4];

(2) A/K is an elliptic curve with discriminant of even valuation, this case
is settled in [Kob02, 5.2. b)];

(3) A/K has complex multiplication, see [ST68, p. 502, Cor. 2].

By Prop. [3.4/(1), the group p¢(Ix) is commutative if and only if p, (I ) is
commutative for any .

LEmMmMma 4.5. If Hypothesis@ is sa[isﬁed, then we can choose H so that, indepen—
dently of v, the representation p, is induced by a character of H and that the extension
M /K is unramified (here H C Gal(M/K) denotes the closure of H).

Proor. Let us set H := I(M/K) x (%) for alift ¢ as in Lemmal[4.3} so
that H identifies with a commutative subgroup of G of index 2, independent of
t. By semisimplicity, the restriction p, | decomposes to a sum of two characters

Pl =X ® X, Wit

and then by the adjunction property we have a nontrivial morphism of complex
G-representations
Ind% x. — pi,
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which is surjective as p, is irreducible (by Lemma 3.8) and therefore an isomor-
phism since the dimensions agree. On the other hand, if L,,/ K is the unramified
quadratic extension, then W (M/L,,) is a subgroup of G of index 2 and contains
I(M/K). The element ¢?% is a lift of Frobl;Llu inTy,, so @3 € W(M/Ly,).
Therefore, H C W(M/L,). The latter inequality is an equality because both
subgroups have index 2 in G, thus H = Gal(M/L,,). O

THEOREM 4.6. We suppose that pg(T ) is non-abelian and that py(Ifc) is abelian.
For the subgroup H C G from Lemma @ we have p, = Indg X.. Then:

(1) a(p,) =2 - a(x.), where a(-) denote the Artin conductor,
(2) e divides qrc + 1, and

a(pe g+l
(8) wlpi, i) = (1) 5

Proor. Let us denote L, := M, which is quadratic and unramified over
K by Lemma|4.5/and its proof. (1) follows from the general formulas of Artin
conductors (see, e.g., [Roh94, §10]).

The formula (ii) for the e-factor of an induced representation gives

(4.6.1) w(pe, ¥i) = w(xe, ¥r,) w(ndf 1y, vg),
since w (L, ¥r,) "' = 1 (from [1.18(iii)).

Let x be the unramified quadratic character of G given by the composition
G — Gal(L,/K) = {~1,1}. Then Ind% 15 2 1 ® xo. Using|[1.18(3), (i) we
have:

(4.6.2) w(Ind$ 15, vx) = w(leg, i )w(xo, Vi) = xo(0x(c)) = (—1)"¥x),

where ¢ € K* has valuation n(v ).
We prove (2) and compute w(x,, ¢, ) in the following lemma.

Lemma 4.7. We have e | (qic + 1) and

(47.1) W r,) = (1) R e

Proor. Let xo be the character corresponding to L, /K as before, and let
t: G — H* = [ be the transfer homomorphism, which corresponds to the
inclusion K* < L via the reciprocity maps. The twisted representation p,(3)
has trivial determinant (see Prop. (3)), so Deligne’s determinant formula

from [Del73, p. 508] gives

(4.7.2) 1 = det (Ind x.(3)) (9) = xo0(9)x.(3)(t(9))
for every g € G. Therefore, for every z € K*,
(4.7.3) (xu(3) 0 01,)(@) = xg ' (0K (x)) = (=1)< ).

Let x1 be the nontrivial quadratic unramified character of H, so that for all
x € L, we have x; 06 (x) = (—1)"2«(®), Since the valuations v and vy,
agree on K *, the character (x,(3) - x1) o 0y, is trivial on K. The extension
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L,/K is unramified and [L,, : K] = 2, s0 L, = K({aq,—2) Where (2, —2 is a
primitive root of unity of order 2gx — 2. We have (3, , € K*, so applying
[FQ73, Thm. 3] gives

w(xe(3) - x1,%L,) = Xu(3) (0L, (C2qx—2)) - X1 (0L, (Cogic—2))
(4.7.4) = Xu (0L, (C2gxc—2))

the last equality holds because x; and w}(ﬂ are unramified. On the other hand,
applying Prop. (1) gives

(4.7.5) w(x.(3)  x1,%1,) = wxe, ¥r,) - (—1)@ra)taba),

Combining (4.7.4), (4.7.5), and the observation that n(v)x) = n(¢r,, ), we ob-

tain
(4.7.6) w(xe,Yr,) = (—1)"R0)y (07 (Cogi—2))-

Let L/K be a finite, Galois, and IM extension for A/K (see Lemma[l.13).
Then L,L/K is also a Galois and IM extension, so we identify I(M/K) ~
I(L/K) ~I(L,L/Ly). As in the proof of Thm.|4.1] we use the decomposition
67 = ki x (1+mp,) to obtain a surjective homomorph1sm Oy, : kp, —
I'*(L,L/L,) induced by 0r,,. We see from that x, o 0y, is trivial on 0.
It follows that the subgroup ker(x, o 0z, k ) = ker(6y,, ) contains k. This
implies that e = [I(L, L/L,)| divides [k} : k] = qi + 1.

The subgroup ker(x, o 0, | kfu) of index e in kj contains (aq, 2 if and

only if 1 = Cqu ;)/6 = (—l)inJrl Since ( (3) - x1) 0 0p, |k is trivial, ( -
gives (01, (Cog—2))? = 1, and thus (4.7.1) follows.

Plugging (4.6.2) and (4.7.1) into (4.6.1), as well as using (1), we obtain

(3). O

CoroLLary 4.8. Let A/K be as in[3.1, let denote by a( A/ K) its Artin conductor,
and let e be the largest prime-to-p divisor of the order of ps(Ik).

glag—1)

(1) If pe(T i) is commutative, then w(A/K) = (—1)" ¢ ;
(2) If pe(T ) is non-commutative and pe(Ifc) is commutative, then

a(A/K)

w(A/K) = (~1)"F

Proor. Let us recall formula (3.5.1). Then, (1) follows from Thm. the
part (2) follows from Thm. (3) and multiplicativity of Artin conductor. O

9(ag+1)
e .

Remark 4.9. If py(I}) is trivial, then Corollary|4.8/allows us to compute the
root number w(A/K). In this case, if A/K has bad potentially good reduction,
then we always have a(A4/K) = 2g. The obtained formulas are special cases
of the results of [Bis19, Thm. 1.4], as it can be verified by a calculation using

Prop.
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5. Potentially totally toric reduction

Let A/K be an abelian variety of dimension g with RM by F, and recall
the notation and results of [1.14, We suppose that A/K does not have poten-
tially good reduction. Then it must have potentially totally toric reduction by
Prop.[2.6} so B = 0. The analytification A/K is a quotient of the analytification
of a torus T'/ K, which gives rise to a Q-linear Weil representation

n: Wik — GLo(X(T) ®z Q)
with finite image. Prop. Mthen gives
(5.0.1) WDi(pe) = n(—1) @ sp(2).

Let us fix a basis vy, . .., vg4 of the underlying vector space of ) and let e, e1 be
the standard basis of sp(2) = (1 ® wk, (9 §)). Then, in the basis

B:=(v1®ep,..., 09 Dep,v1 Deq,...,v X eq),

the WD-representation WD, (py) is given as

(5.0.2) WD (pf) =~ (77(—1) ®n, (?%)) .

From (5.0.2) one can recover the isomorphism class of the representation py by
a procedure inverse to the one in[1.7] Let us choose a continuous nontrivial
homomorphism ¢;: Ix — Q. Then, in the same basis B, for every j € I,

. ()| 0 0, o, )|
5.0.3 =" $ex - ’
( ) pe(d) ( 0y ﬁ(ﬁ) P (te(j)lg Og> (te(j)n(j) W(j)>

and

(5.0.4) i) = (qxn(@x) Oy ) '

0y |n(px)

ProposITION 5.1. An abelian variety AJK with RM which does not have po-
tentially good reduction must have one of the following reduction types:

(a) sﬂzK is a split torus, or, equivalently, 1 is the trivial representation (Split
multiplicative reduction);

(b) d,gK is a non-split torus, or, equivalently, n is unramified and nontrivial
(non-split multiplicative reduction);

(c) oty is unipotent, but A/L has completely toric reduction for some finite
L/K, or, equivalently, n is ramiﬁea' (ada'itive potentially multiplicative re-
duction).

Prook. Let us suppose that 7 is unramified. Then py|7, is unipotent, as it

can be seen from (5.0.3), so A/K has semistable reduction by Thm. (2),
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and thus o) must be a torus 7" (see Prop. 2.6). After writing the matrices of
the dual representation pj in the dual basis of B, we see that

(Ve A)IE = Vect(vi @ €, . . . , Uy ® €5),

on which ¢ acts as g'n*(px) = n*(1)(¢k). On the other hand, we have
isomorphisms of ¢-adic 'y, -representations (V;A)'X 2 Vyoly . (see [ST68,
Lemma 2]), Vi, = V1" (since dy, /&QgK is finite), and, formally, V;T" =
Hom (X (T") ®z Qu, Q¢)(1). Therefore, the 'y, -action on X (T”) is trivial if
and only if n* is trivial. Since 7 is Q-linear, we have n ~ n*. Therefore, we
conclude that 7 is trivial if and only if T” is split.

Suppose that 7 is ramified. The image of 75|, is finite, so 7|, and, sub-
sequently, py|7, cannot be unipotent. Thm. [1.11/(2) implies that A/K does

not have semistable reduction, so QﬂgK is not a torus and we may conclude via
Prop. O

5.2. F-rationality again. Recalling the description of 7 given by Re-
mark|[1.16}(2) and using we see that 7 is F-linear of dimension one. We
may then regard 7 as a homomorphism np: Wi — F*. We have a decompo-
sition F ®q C 2 [],. p_c C,s0

(5.2.1) noeC= [[ n.
v: F—C
with 1, := nrp ®p, C, where the structural morphism is given by «. Conse-
quently, defining p} := n,(—1) ® sp(2), the isomorphism (5.0.1) gives
(5.2.2) WDi(pe) = [ ).

We note that 7, = ¢ onp, which implies that the 7,’s are Aut(C)-conjugate, and
thus the p’s are also Aut(C)-conjugate. As in Rem. [3.5, we may apply [Roh11,
Thm. 1] to see that w(p), k) is independent of ¢.

THEOREM 5.3. Let us fix some v: F' < C. In the ongoing notation,

-1 if A/K has split multiplicative reduction;

w(pl, bic) = if AJK has non-split multiplicative reduction;
if A/K has additive potentially multiplicative

reduction and p # 2.
Proor. We observe that, since F' is totally real, np and 7, are quadratic.
Applying Prop. (1),(3) gives
w(p,, r) =, (Ox(—1)) - (1)1,
Since 7,’s are Aut(C)-conjugate, we may replace n with any 7, in Prop. M
Let us suppose that 7, is unramified. Then 7,(6x(—1)) = 1. Depending

on whether (n,|1) is 1 or 0, the reduction is split or non-split multiplicative,
respectively, since (n,|1) = 1 if and only if 1, is trivial.
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It remains to treat the case when 7, is ramified. In particular, 7, is non-
trivial, so (7,|1) = 0. More precisely, 7, is of exact order 2, so it factors through
a quotient Gal(L/K) of order 2. If p # 2, then L/K is totally tamely ramified.
In that case, 1,(x(—1)) = 1 if and only if —1 is a norm for L/K. The latter
is equivalent to —1 being a square in kg, which happens exactly when gx =
1 mod 4. O

Cororrary 5.4. For A/K given at the begining of Section|5and for p # 2,

(—1)9 if the reduction (over K) is split multiplicative;
w(A/K)=<1 if the reduction is non-split multiplicative;
(—1)9”(271 if the reduction is additive.

Proor. The formulas follow from (5.2.2), multiplicativity of root numbers,
and Thm[5.3l O

REMARK 5.5. Let # be a number field and let A/ be an abelian variety with
real multiplication by F. For each finite place v of #, we have a decomposition
of associated complex WD-representations WD; (pe(Ay/Hy)) = [1,. pesc P
where each family (o), ,), is composed of Aut(C)-conjugate representations (we
established this for the potentially good reduction case in Prop.[3.4](1) and for
the remaining cases in|5.2). The root numbers w(p}, ,, 1%, ) are independent of

¢ by [Roh11, Thm. 1]. We choose some ¢, fix any place v of ¥, and define
w(p), ,,,) if v is finite,
-1 if v is infinite.

w(LAy/FKy) = {

Furthermore, let us define

w(tA/H) = [ [w(A/%y).

We have w(A/%) = w(tA/FK) ™A, The number w(1A/HK) appears, for ex-
ample, in the functional equation of a certain L-function (see [Nek15, (0.1) and
§4.9]) and, consequently, in a certain version of the p-Parity Conjecture (now
a theorem by Nekoviat [Nek18, Thm. D]).



CHAPTER [  m———

ROOT NUMBERS OF CURVES OF GENUS 1
AND 2 HAVING MAXIMAL RAMIFICATION

ABSTRACT. We consider a curve of genus 2 defined over a 5-adic field such
that the inertia acts on the first £-adic cohomology group through the largest
possible finite quotient, isomorphic to Cs x Cs. We give a few criteria to
identify such curves and prove a formula for their local root numbers in terms
of other invariants.

Our result is analogous to the formulas for the root numbers of ellip-
tic curves, due to Kobayashi. We also present a geometric interpretation
of Kobayashi’s result which eliminates explicit dependency on a particular
Weierstrass equation of a given elliptic curve.

Introduction

Given an abelian variety A defined over a number field &, its global root
number w(A/X) is the sign appearing in the conjectural functional equation
of its completed L-function. Granting the general Birch-Swinnerton-Dyer
conjecture, w(A/H) = —1 exactly when the Mordel-Weil rank is odd. Due
to Deligne [Del73]], we can define w(A/¥) unconditionally by computing the
local root numbers w(A, /3, ) of the localized abelian variety at each place v of
X.

For each infinite place we have w(A,/%,) = (—1)4™4. For a finite place
v of X we follow the general procedure valid over any local field which we
will describe in the next paragraph. In this case the local root number is closely
related to the reduction type of A,/H,. If the reduction is good at v, then
w(Ay/Hy) = 1, which allows us to compute

w(A/H) = [ [w(Au/%y),

the product being taken over all places of #.

Let p be a prime number, let K/Q,, be a finite extension with an alge-
braic closure K, and let A/K be an abelian variety. We choose another prime
number ¢ # p and consider the ¢-adic Galois representation p, on the étale
cohomology group H}. (A%, Q). Applying Grothendieck’s monodromy con-
struction we obtain a complex Weil-Deligne representation WD(p,), whose
isomorphism class does not depend on ¢ (see, e.g., [Sab07, Cor. 1.15]). Next,
following Langlands and Deligne, after choosing an additive character ¢ on K

37



38 II. CURVES OF GENUS 1 AND 2

and a Haar measure dx on K, we consider the e-factor e(WD(py), 9, dx) € C*.
The local root number is then defined as
e(WD(p), ¥, dz)
|e(WD(pe), 9, dz)|
We note that w(A/K) is independent on the choices of ¢, ¢, or dz, see, e.g.,
[Roh94, §11, §12]

It follows (see, e.g., [Cha00, Prop. 3.1]) from the semi-stable reduction the-
orems and the theory of p-adic uniformization that there exist an abelian vari-

w(A/K) =

ety B/K with potentially good reduction and an extension S of B by a torus
T such that the rigid analytification of A is a quotient of the analytification of
S by a lattice. Then, it follows from the result of Sabitova [Sab07, Prop. 1.10]
that w(A/K) can be determined by computing w(B/K) and the Galois ac-
tion on 7. In this chapter we treat the case when A/K itself has potentially
good reduction. This condition is equivalent to T = 0 and, by the criterion
of Néron-Ogg-Shafarevich, to the condition that the image of inertia via py is
finite. By Serre-Tate [ST68, p. 497, Cor. 2] the representation py is always at
most tamely ramified when p > 2dim(A) + 1.

If A/K is an elliptic curve with potentially good reduction, formulas for
root numbers have been given by Rohrlich [Roh96] when p > 5, by Kobayashi
[Kob02] when p = 3, and by the Dokchitsers [DDO08] when p = 2. For general
abelian varieties, the case when py is tamely ramified has been studied by Bisatt
[Bis19].

0.1. The main setup and results. We consider a curve C of genus 2 de-
fined over a 5-adic field K. Let J(C')/K be its Jacobian surface. Our aim is to
produce a formula for w(C/K) := w(J(C)/K) in terms of other invariants of
C/K. We suppose that J(C')/K has potentially good reduction and that the as-
sociated Galois representation py is wildly ramified. We suppose further that p,
has the maximal possible inertia image, isomorphic to the semi-direct product
Cs x Cg where Cg acts on C5 via Cg — Cy =~ Aut(C5). By choosing a Weier-
strass equation we define a discriminant A € K*, whose class in K* /(K *)?
does not depend on the choice of the equation, see[2.2 Let m(C/ K) denote the
number of irreducible components of the geometric special fiber of the minimal
regular model of C'/K.

Let ki be the residue field of K. We denote by (E) the Legendre symbol
on kj and by (-, )k the quadratic Hilbert symbol on K* x K*. We consider
the normalized valuation vk of K such that v (K*) = Z. Let Fj denote the
Frobenius group on 5 elements, defined as the semi-direct product F5 = C5xCy
where Cj acts faithfully on Cs.

Taeorem 0.2 (Prop. Prop. Thm. . Let C/K be a smooth pro-

Jective curve of genus 2 defined over a 5-adic field K. Suppose that py has finite inertia
image of order divisible by 5. There exists an equation Y* = P(X) defining C /K with
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unitary, irreducible P € K[X] of degree 5 having integral coefficients and a constant
term ag ofvaluation prime (o 5.
The image ofinertia prg is the maximal possible, ie., isomorphic to C5 x Cy, lf
and only if any of the following equivalent conditions is verified :
(1) For any discriminant A of C/K the valuation vy (A) is odd;
(2) The Fa-linear Galois representation on the 2-torsion points J(C)[2] has
inertia image isomorphic to the Frobenius group Fi;
(3) The Artin conductor a(C/K) of py is odd.
In this case, the root number is given by
OO (o 4
K

Remark 0.3. The setting of Thm. M is a particular case of the study by
Coppola [Cop20], where a description of py is given. Very recently, building

w(C/K) = (—1)lkxFsl+1 (

on Coppola’s results, Bisatt [Bis21, Thm. 2.1] produced similar formulas of root
numbers of hyperelliptic curves. The results of Thm. have been obtained
independently of [Bis21].

0.4. Kobayashi’s formula for elliptic curves revisited. Thm.|0.2]is an
analogue of [Kob02, Thm. 5.9]. These results rely on particular Weierstrass
equations. For an elliptic curve E/K over a 3-adic field K we find that the
factor (A, ag) x appearing in Kobayashi’s formula can be replaced by a sign de-
pending only on the Tamagawa number of E over H = K(v/A). Since the
extension H/K does not depend on the choice of A, we obtain a formula for
the root number without terms referring to a Weierstrass equation. Recall that
the Tamagawa number of E/H, denoted ¢(E/H), is defined as the number of
rational points |® (k)| where @ is the algebraic group of the connected com-
ponents of the special fiber of the Néron model of E/H.

Let |-] denote the floor function of real numbers, and let v3 denote the
normalized 3-adic valuation on Q.

Tueorem 0.5 (Prop. Thm. [8.10). Let E/K be an elliptic curve defined
over a 3-adic field K. Suppose that E /K has potentially good reduction and that the
associated Galois representation py is wildly ramified. The image of inertia of py is the
maximal possible, i.e., isomorphic to Cs x Cy, if and only if the following equivalent
conditions are verified:

(1) Any discriminant A € K of E/K has odd valuation v (A);
(2) The Fo-linear Galois representation on the 2-torsion points E[2] has inertia
image isomorphic to the symmeltric group S3;
(3) The Artin conductor a(E/K) of py is odd.
In this case, let H := K (\/A). Then the local root number is given by

a(E/K)-;m(E/K)+Lm(E/6K)+1J

(0.5.1) w(E/K) = (_1)v3(c(E/H)) ) (;1)
K
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RemMaRk 0.6. In the setting of Thm.

1. The Kodaira symbol (see [Sil94, IV.8.2]) of E/K can only be I1, IT*,
IV, or IV*, and thus m(E/K) is 1, 9, 3, or 7, respectively. The par-
ticular form of @ was chosen because, for general elliptic curves
with potentially good reduction, the star “*” appears in the Kodaira
symbol if and only if L%J = 1, otherwise L%J = 0.
Another explanation can be derived from (8.14.3).

2. The Kodairasymbol of E/H is always IV of IV*,so ¢(E/H) € {1, 3}.
In contrast, the Tamagawa number ¢(E/K) over the base field K ap-
pears to have no direct influence on the root number. Indeed, the root
number depends only on the isogeny class of E/K, while ¢(E/K), in
general, varies in this class.

0.7. Structure of the chapter. In Section M we recall the theory of e-
factors for characters and give formulas of root numbers for some wildly ram-
ified characters by using explicit local class field theory. In Section [2| we recall
some results from the classical theory of hyperelliptic curves and their conduc-
tors. In Section [3| we specialize to genus 2: we prove the first part of Thm.
and show connections among some invariants of C'/K. In Section|[4 we employ
the theory of Artin-Schreier curves in order to study p, via the automorphisms
of curves over finite fields. In Section H we prove a few characterizations of
the maximal ramification case and exploit some of its implications. Section lg‘ is
dedicated to proving the formula of Thm. where we connect the results
of Sectionm to a particular Weierstrass equation. In Section lj we exhibit some
possible applications of Thm. M In Sectionlﬁ‘we turn our attention to the case

of elliptic curves and give two proofs of (0.5.1).

Notation and conventions

Let p be a prime number, and let K/Q,, be a finite extension. We fix the
notation of [Table 1} We adopt the convention that every algebraic extension of
K used in this text is a subfield of K.

By a Weil representation on a complex vector space V' we mean a group ho-
momorphism p: Wi — GL(V) such that p(I) is finite. For any s € C*, its
Tate twist is p(s) 1= p ® X3,

Let 0 : K* = W2 be Artin’s reciprocity map normalized to send a uni-
formiser to the class of a geometric Frobenius lift. It follows that || - || x := xur©
0k is the non-Archimedean norm on K induced by vk. For every finite Galois
extension L/ K, the map 6 induces an isomorphism 6 : K> /Ny (L*) =
Gal(L/K)™, where Ny, /fc: L* — K* is the norm map. Abusively, we will
make no notational difference between a one-dimensional Weil representation
of Wk and the induced quasi-character of K*.
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TasLE 1. Notation for a p-adic field K

vi  the valuation of K normalized
by vg (K*) = Z;
Ok  the ring of integers;

K an algebraic closure of K;
ki the residue field of K;
Ik the group Gal(K/K);

) . Wy the Weil subgroup of T'g;
wk  a uniformizer;

7 he inerti ]
ki the residue field; Ko riemerta sub.group,
I the wild inertia subgroup;

my  the maximal ideal;

the order |kx|;

K [exc| or  aliftin Wx of the geomet-
m7  the subgroup w0 C K for i k
ric Frobenius;

any n € Z;

Up  14ml forn>1,and UY =065;
(E) the Legendre symbol on &

Xur the unramified (cycloto-
mic) character W, — C*

Such that Xur(SOK) = q[_(l

(,-)k the quadratic Hilbert symbol for every finite K/Q,.

on K* x K*;

Given schemes X, S, S" as well as morphisms X — S and " — S, we will
write Xg := X xg 5, and also Xp := X xgp R := Xg if S’ = Spec R’ and
S = Spec R are afhne.

1. Root numbers and explicit class field theory

Let p > 2 be a prime number and let K/Q,, be a finite extension.

1.1. Additive characters. Let S! denote the subgroup of complex num-
bers of absolute value 1. By an additive character we will mean a locally constant
group homomorphism ¢: K — ' C C*. Let n(1)) denote the largest integer
n such that ¢ is trivial on m3”". The group of additive characters will be denoted
by Hom(K,C*). The Pontryagin duality implies, in particular, that there exists
a nontrivial additive character . Due to Tate [Tat67, Lemma 2.2.1], the map
U : z — ¢(z-) defines an isomorphism ¥: K = Hom(K,C*) of topological
K-vector spaces. We note that n(¥(z)) = n(y) + vk (x). For every m € Z,
the map VU induces an isomorphism

(1.1.1) Ufpy - m 2 Hom(K/m " "), C¥).
For every integer n < —m — n(v), since C* is divisible, the restriction map
€Sy m : Hom(K/m;{m_n(w),CX) —» Hom(m}%/ml_{m_nw), C*)

is surjective. Composing W|m with resy, ,, induces an isomorphism (see, e.g.,
[Mar08, 2.9])

(1.1.2) U : m}’é/m[_{n_n(w = Hom(m}‘(/ml_{m_nw),(?x).
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1.2. In order to simplify the computations of the root number we fix a
particular additive character. We define 1)), on O as the composition

27
t exp| —/—-
bn: O — k "0 717 <—>( +) Cc*.

We see that 1y, is trivial on mg. Since tryp, is nontrivial, 1 is nontrivial.
Using resg _(y)—1 We can non-uniquely extend 1 to an additive character of
K, which we again denote by .. Independently on the choice of this extension
we have n(yy) = —1.

1.3. 1)-gauges of Weil characters. Let¢): K — C* be a fixed nontrivial
additive character. Let y: Wx — C* be a one-dimensional and ramified Weil
representation, and let a(x) denote its Artin conductor. Recall that x induces
a character of K* via 0, and that a() is the smallest integer a such that y is

trivial on Ug. Let
n e V(X)“J .
2

For z € mY,, the map x — x(1 + ) is additive and is trivial on m%X). We let

m = —a(x) — n(y).

The isomorphism W, ,,, of (1.1.2) shows that there exists an element ¢, € K,
called a ¢)-gauge of x, of exact valuation m, unique modulo ml_(n_n(w, such that

for all z € m7%,
(1.3.1) x(1+ ) = (cyx).

1.4. Epsilon factors of characters. In addition to the setting of |1.3] we
fix a Haar mesure dz on K. We recall that the e-factor of x is defined as the

integral
(1:41) rnde) = [ T @)l de
We will be mainly interested in the root number
e(x, v, dx)
w0V =10, dn))

which does not depend on dz. For a,b € C* we will write a ~ b whenever
ab~! is contained in the multiplicative subgroup generated by strictly positive
real numbers and the complex roots of unity of p-power orders. We note that
if p#2and a,b € {—1,1} are such that a &~ b, then a = .
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1.5. The group x(Ik) is finite and cyclic, we denote its order by ep”
with e prime to p. We view the restriction x|z, as a character of the group
Gal(K?/K'). The group ker(x|r, ) cuts out an abelian extension L'/ K con-
taining K™ The closure of the subgroup generated by ¢ in Gal(L'/K) cuts
out a totally ramified abelian extension L/K, such that L’ = LK". We then
have canonical isomorphisms

Gal(K?P/K™) /ker(X|IK

The restriction x|7,, induces a faithful complex character of the finite group
Gal(L/K), and thus Gal(L/K) must be cyclic. Let M /K be the unique subex-
tension of L/K of degree p". Then x°|;, has order p" and induces a faithful
character of the cyclic group Gal(M/K).

The following theorem is an amalgamation of some of the results of [Kob02]
and [AS10].

) = Gal(L'/K") = Gal(L/K).

TueorEM 1.6. Let ¢y, be as in[1.2. Let x: Wi — C* be a Weil character such
that |x(I})| = p. Let ep = |x(Ik)| with e prime to p. Let M /K be as in|1.5. We
denote by o € Gal(M/K) the generator that is sent to exp(%) via x. Let @y be a
uniformizer of M, and let 6, = Npp/pc (1 — U(WLAT)) Let us write §,, = uw}}(K((SX)
with u € 6, whose class in k}; we denote by .

(1) If a(x) is even, then e(x, g, dx) ~ x(6y);
(2) If a(x) is odd, and p = 1 mod 4, then
2u .
(o) % x(0) () - (1R,
K

Lemma 1.7. We have vg(6y) = a(x) — 1 and ¢\,6,, € Uj. In particular,

X ex) = x(0y)-

Proor. The lemma is essentially proved in [Kob02, p. 618]. We repeat
Kobayashi’s argument in our setting.

Let ¢ be the largest integer such that the ¢-th ramification subgroup G of
Gal(M/K) is nontrivial. We then have G* = Gy = Gal(M/K) and G* = {1}
for t' > t, see [Ser79, V.§3]. The reciprocity map (see [Ser79, XV.§2]) and x
induce a commutative diagram

X1

Uk [t g e (Uty) — G = Gal(M/K) &% €

(1.7.1) T T TH

Ut Gal(Kab /Fury

As e is prime to p we observe that a(x) = a(x®) and that a(x®) = ¢ + 1 by the
diagram. Since o € G;\ Gy41, by using [Ser79, IV.Prop. 5] we obtain

(1.7.2) VK (0y) = v (1 - UEZ\?) =t=ua(y) — 1.
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Applying [Ser79, XV.§3, Exercise 1] shows that for all v € U?((X)*l,
(1.7.3) QM/K(U) — oWk /By (v=1)/8 mod mp)
For every z € mc;((X)*l C m,, taking the image of by x¢, we obtain
X°(1+ z) = tp(ed; ' x). Taking the e-th power of gives x°(1 +z) =

i (ecyx). We note that eé;lm%)‘)_l = O, and therefore,

Ur((1 = 8ye)0k) = w(ed! — ecy)mi ™) = 1.
Since n(yy) = —1, we must have 1 — d,¢, € mg. The last part of the lemma
follows from the fact that x(U)) is a finite p-group. O

Proor o THEoREM L.l We wish to apply [AS10, Prop. 8.7, (ii)] which
allows to express the epsilon factor using a refined v-gauge ¢ of x. Abbes—

Saito proves that there exists an element ¢ € K, unique modulo ml_{”'ﬂ, such
that for every z € m%X)fn we have

v (1+2+%) = vile).
Let 7: kg — K be the Teichmiiler lift. We consider the quadratic Gauss sum

Gy = Y di(r(x)?).
rEkK
The formulas Gy, = > K (75)¥r(1(2)) and G, = (%) qx are well-known
(see, e.g., [BEW9S, §1.1]). The Abbes-Saito formula [AS10, (8.7.3)] can be
rewritten as

(1.7.4)
1\ () a0, {1 if a(x) is even,

~ A1 _
(0 i, d7) = x <c>wk(c)<kK> ] S

Since c is also a ¢-gauge of x, we have x7'(c) ~ x(d,) by Lemma For
r € Z large enough, ¢ (p"c) = 1, so ¢¥y(c) =~ 1. If a(x) is even, then it is
straightforward to verify that e(x, ¢y, dz) ~ x(8y), thus (1) holds.

We assume the hypotheses of (2). Then (i) =1,and Gy, ~ —(—1)kxFol,
see [BEWO9S, Thm. 11.5.4]. We also have (-2, wg)r = (%) Taking
into account Lemma and making the relevant substitutions into (1.7.4

we are left to prove that (¢, wg)r = (%) Lemma also shows that

1 a

c € ulwy (X)HU}(. Since a(x) is odd and U} is pro-p, the Hilbert sym-

L - 1
bol is trivial on @ Ka(x)+ UL, thus

(e, mx) K = (1, k) K = (,j;) 0

PROPOSITION 1.8. We continue in the situation ofTheorem IE Let o € Oy be
such that p vy (av), and let Do, = Npg i (1 - %) Then

Dy = vpr(@)d, mod Uss.
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Proor. Kobayashi [Kob02, p. 614] gave a proof in the case p = 3, which
can be generalized for a general p > 2 without significant modifications as
follows. We write a = @}’ @4 for some € 6 17~ By definition of the group
G, we have @ € Uit It follows from (1.7.2) that there exists a y € 6} such
that U(WLA;”) =1+ @', y. Taking the latter to the power vi (a) gives

=1+ vy (@)why mod mhH!,

(O’(’ZHM))UM(O‘)

M
and then after multiplying by @ we obtain

a(a) t+1

(1.8.1) =1+ vy(a)why mod mhf'.

a
By using that vy (a)y € 05, we rewrite (1.8.1) multiplicatively as
a(a) _ o(wnm) 1
1 o= UM(Oé)<1 — ) mod Uj,.
Taking the norm of the latter we obtain D, = vpr(a)Pdy mod Uj.. We finish
the proof by noting that v ()P~ € 14 pOx C U O

Cororrary 1.9. If a(x) is even and o € Oy is such that p { vpr(e), then

D,
E(Xﬂ/)k:,dw) ~ X ( > .

v (@)

Prook. Follows from Thm.[1.6}(1) and Prop. O

2. Conductors and discriminants of curves of genus 2

2.1. The base setting. Let K be a p-adic local field with p # 2, and let
C/K be a smooth, projective, and geometrically connected curve of genus 2
defined over K.

2.2. Generalities. Since the curve C/K is hyperelliptic (see [Liu02,
7. Prop. 4.9]), there exists a non-empty open affine K-subscheme C,g of
C which is defined by a single Weierstrass equation

(2.2.1) Y? = P(X),

where P € K[X] has simple roots and deg P is 5 or 6.

The differentials wo = %, wy = % € H°(Cag, Qé/K) extend to C and
define a K-basis of H°(C, Qlc/K)

We define the discriminant of an equation (2.2.1) in terms of the discriminant
of the polynomial P : let ag be the leading coefficient of 4P, then (following

[Liu9e, §2])

—12 3 . B
(2.2.2) A(P) = {2 disc(4P) if deg P =6,

27122 disc(4P) if deg P = 5.
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In particular, if P(X) = (X — a1)(X — a2)(X — a3)(X — a4)(X — a5), then

(2.2.3) AP)=2° ] (ai—ay)

1<i<j<5

We note that since C' is non-singular, A(P) # 0.
The equation (2.2.1) is unique up to a change of variables

aX +b v/ eY

2.2. X' = —_—
(224) cX +d’ (cX +d)?

where [ “ Z € GLy(K)and e € K*.
c

If Y2 = P'(X’) is the equation obtained from (2.2.1) via (2.2.4), then the

new differentials w( and w/ satisty
/
wo| _ -1 d c\ [wo
w) b a) \wi)’
~30

and the new discriminant is
A(P).

a b
c d

a b

(2.2.5) A(P') =e® .

As an immediate consequence, the class of a discriminant in K> /(K*)? does
not depend on the choice of Weiserstrass equation.

2.3. Minimal equation. Let 6 /O be the minimal regular (integral, pro-
per, and flat) model of C'/K. In fact, 6 is a projective O -scheme (see [Stacks,
Tag 0C5P]). It follows that the dualizing sheaf we g, is isomorphic to the
canonical sheaf of 6 /0 (see [Liu02, 6. Thm. 4.32]) and, in particular, is in-
vertible. Since C'/K is smooth we have wg e, |c = Qé/K. Since @ is integral
and w /o, is torsion-free, restricting sections induces an injection

H°(,wg/0,) = H(C,Qpk)-

We note that H°(C,Q/, /i) is a K-vector space of dimension two and that
H°(8,wg /0y ) is a free Ox-module of rank two.

A hyperelliptic equation will be called minimal if the associated dif-
ferential forms w, w extend to € and define an Ox-basis of H(8, wyg /o, )-
The resulting discriminant Ay, will be called minimal. It is proven in [Liu94a,
Prop. 2] that a minimal equation exists and is unique up to a transformation

given by with (a Z) € GL2(0k) and e € 0. We note that although
C

Appin depends on the choice the minimal equation, its valuation vx (Apin) does
not.
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RemARk 2.4. A minimal equation need not have coefhicients in Ok and,
contrary to the case of elliptic curves, there might not exist a minimal equation
with integral coefhcients.

2.5. Conductors. Let C/K be a smooth, projective, and geometrically
connected curve of some genus g > 1 and let € /O be its minimal regular
model. In this section xy will denote the Euler-Poincaré characteristic relative
to ¢-adic cohomology. Let sw(py) (resp. a(ps)) denote the Swan (resp. Artin)
conductor of the ¢-adic I' g -representation py on H'(Cz, Q;). We define

Art(€/0k) := x(Cg) — x(€g,.) — sw(pe).

If m(C/K) denotes the number of irreducible components of @;_, then by
[Liu94a, Prop. 1] we have

(2.5.1) — Art(8/0k) = a(pg) + m(C/K) — 1.

There exists a different notion of the conductor. Let h: € — SpecOg
denote the structural morphism. Given an invertible sheaf % on € we will use
the construction det(Rh.F), which produces an invertible sheaf on Spec O,
see [KM76, p. 46] for details. The Ox-modules of global sections

M = Ho(det(Rh*(w%%K))) and N = H°((det(Rh.(wg/6,)))*"?)

are free of rank 1. Since & is smooth on C over K, due to Deligne [Del85],
there exists a canonical isomorphism

(2.5.2) det(Rh*(wg??K)) = (det(Rha(weyi))) 2.

The construction det(Rh.) commutes with flat base change by [Har77, 111.9.3],

5o (2.5.2) induces a canonical K-linear isomorphism i: M ®¢, K = N ®¢, K.

It follows that there exists an integer ord Ag o, := n such that (M) = @} N.
Saito [Sai88] has proved that, in fact,

(2.5.3) — Art(8/0k) = ord Ag /g, ,

which generalizes Ogg’s formula for elliptic curves (see also [Liu98]).

2.6. Difference between the minimal discriminant and the conduc-
tor. Let C'/K be a hyperelliptic curve. A natural question is how the invariants
of compare to Vg (Amin) from Their difference was described in
purely geometric terms by Liu [Liu94a] as follows. Let 6y, denote the special
fiber of @, and let 7: € — Y be the contraction of those irreducible com-
ponents D of 6, which satisty deg(wg /o, |p) = 0. Liu shows that ¥ /O is
a projective normal model of C/K. The hyperelliptic involution of C'/K ex-
tends to €/0f and induces an involution j on Y /0. The quotient scheme
P = Y/(j) is a normal proper model of P}, we let  — 9 be its minimal
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desingularization. Let d denote the number of irreducible components of the
geometric fiber Pr e Then [Liu94a, Thm. 1] affirms that d is odd and that

(2.6.1) V(Amin) = — Art(8 /06 ) + %.

3. Wild ramification for Jacobian surfaces

Let C/K be as in@ We denote by J(C)/K the associated Jacobian variety
of dimension 2. Let §(C/K)/Ok denote its Néron model, and let (C/K)° be
the indentity component of §(C'/K). Let £ # p be a prime number. We have
an isomorphism of ¢-adic I -representations

Hélt(cfﬂ Qf) = Helt(‘](c)f7 QZ)?
we denote either of them by py. The main aim of this chapter is to produce a
formula for the root number w(C/K) := w(p,), which is defined via the the
complex Weil-Deligne representation associated to py (see, e.g., [Roh94]).
Let ab(C/K), t(C/K), and u(C/K) denote the abelian, toric, and unipo-
tent ranks of the special fiber #(C/K)3_, respectively. We have

ab(C/K) + t(C/K) +u(C/K) = 2.

3.1. Stable reduction. In order to compare the reduction of a curve and
of its Jacobian we recall some results of [DM69, §2]. Every smooth projective
geometrically connected curve C'/K of genus g > 2 has potentially semi-stable
reduction, i.e., there exists a finite extension L/ K such that one of the following
equivalent conditions holds:

(1) the minimal regular model 6’/6, of C/L has semi-stable geomet-
ric special fiber—the curve C@éL is reduced and its singular points are
ordinary double points;

(2) the canonical model 6., /6y, of Cr,/L (which is obtained by contract-
ing the “(—2)-curves” of ®’/6y,) has stable geometric special fiber—

the curve (6!

can)EL is semi-stable and its components isomorphic to P!

each intersect other irreducible components at at least 3 points;
(3) u(Cr/L) = 0;
(4) the representation py|, is unipotent.
If C,/L has semi-stable reduction, then the 67-scheme ¥(Cp/L)° repre-
sents the relative Picard functor Pic%, /o1 (see [BLR90, Cor. 2, p. 287]).

3.2. Potentially good wild reduction hypothesis. Sabitova’s decom-
position [Sab07, Prop. 1.10] allows to separate the contributions to w(C/K)
coming from the abelian and toric parts of §(CL/L); . We suppose that
ab(Cr/L) = 2, or, in other words, that J(C')/K has potentially good re-
duction. This happens exactly when p;(Ix) is finite. In this case we write
lpe(Ix)| = ep” with e coprime to p. We further suppose that 7 > 1, i.e., py is
wildly ramified. Due to Serre-Tate [ST68, p. 497, Cor. 2], necessarily p < 5.
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3.3. Inertially minimal extensions. It follows from the Néron-Ogg—
Shafarevich criterion that J(C) attains good reduction over L' := Kl
and that L'/ K" is the minimal such extension. We call an algebraic extension
L/K inertially minimal (IM) for J(C)/K if I}, = ker py| .. In other words, L/K
is IM if and only if J(C) has good reduction over L and has bad reduction over

every proper subextension of K" L/K"".

3.4. Good reduction and torsion. For m > 1 we denote by J(C')[m]
the subgroup of m-torsion points of J(C)(K) and by K (J(C)[m]) the smallest
extension of K over which all the points of J(C')[m] are rational. For m > 3
coprime to p, it follows from Serre-Tate [ST68, Cor. 3, p. 498] that the ex-
tension K (J(C)[m])/K is IM for J(C)/K. Similarly, for p # 2, Serre [Ser61]
shows that |pe(Ix(s(c)2p)| < 2. Thus, it K(J(C)[2])/K is not an IM exten-
sion, then there is a totally ramified quadratic extension L/K (J(C')[2]) such
that L/K is IM for J(C)/K. Therefore, if p # 2, then the groups p;(I}}) and
IV(K(J(C)[2])/K) are isomorphic.

3.5. Possible inertia actions. It follows from the Silverberg—Zarhin clas-
sification [SZ05, Thm. 1.7] that if J(C')/K has potentially good reduction and
if py is wildly ramified, then py(If) is isomorphic to a group (in the notation of
[GN])) from the following lists.

a) pr =3, the list is {C’g, Cﬁ, 0127 CgXCg, CgXCG, S3, Cg ><537 Dng, Cg X
Dng, 03 A Cg, Cg X 04, C% A9 Cg}
b) If p = 5, the list is {C5, C10, Dics, C5 x Cg}.

For p = 5 each possible group has the form C5 xCy: where Cyi is a subgroup
of Cg acting on C5 with kernel CoNCyi C Cs. We note that Cs5 C Cy C Dics C
C5 x Cg and that each inclusion is strict and unique.

Recall that the Frobenius group is F5 = C5 x Cy where Cy acts faithfully
on Cs. In particular, F5 and Dics are not isomorphic.

3.6. We suppose from now that K is 5-adic. It follows immediately
from that pe(I}) is cyclic of order 5.

ProrosiTiON 3.7. Let L/K be a finite extension. Under the hypotheses of@
and 3.6, if J(C) has semi-abelian reduction over L, ie, u(Cp/L) = 0, then C has
good reduction over L, i.e, the minimal regular model @' /Oy, is smooth.

/

Proor. From [3.1| we see that (6.,

Oury, is strictly Henselian and the canonical model of Cgurr, /K" L is canon-
ically isomorphic to (6/,,)r. Wild ramification of p, implies that 5 divides
[K"™L : K™]. By studying the possible orders of automorphisms of stable
curves Liu [Liu93, Cor. 4.1.(4)] shows that (%6 )%, /kz, must be smooth. It

follows that (6.,,)r/R and hence €@/, /06, are smooth. We may use [Liu02,

can

10. Prop. 1.21] to conclude that 6€’/6y, is smooth. O

), is a stable curve. The ring R :=
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Remark 3.8. The hypotheses that p, is wildly ramified and that K is 5-
adic are essential. The curve Cp,/L might have bad reduction even if J(C)
has good reduction over L. On the other hand, [BLR90, Example 8, p. 246]
shows that the non-rational irreducible components of C@éL correspond to non-
trivial abelian varieties as quotients of (Cr,/ L)%L. Using this it can be shown
in general that if §(Cr/ L)%L is a simple abelian variety, then Cf,/L has good

reduction.

3.9. An explicit IM extension. Let Y? = P(X) be a hyperelliptic equa-
tion defining C/K. Generalizing the results of Kraus [Kra90], Liu [Liu94b,
§5.1] provides an explicit description in terms of invariants of P of the tame
part of the minimal extension L'/ K" over which C' has stable reduction. By
Prop.[3.7} this extension is precisely the IM extension for J(C) /K defined in[3.3}
The discriminant A(P) (as defined by (2.2.2)) is equal to the Igusa invariant Jy.
Let A5 denote one the so-called affine invariants (see [Liu94b, §2.1] for the def-
inition) of P. After Prop. [3.17|we will always have A5 = 1. We fix an 8th root
of

B:=—A;°A(P)
in K, which we denote by 3'/8. Let L; /K™ be the maximal tamely ramified
subextension of L' /K", then L’/L{ is totally wildly ramified of degree 5. Liu
proves that

Ly = K™ (5'7%).
Let v = vg(B), M = K(J(C)[2]), N := K (8Y/%), H := K (8'4), and
L := MN. We fix a primitive 8th root of unity (3 € K.

Let us recall from [Mum84, 3.39, Cor. 2.11] that M is the splitting field of
P. The extension M/K is finite Galois, while L/K is finite but not necessarily
Galois.

LemMa 3.10. The extension L/ H is Galois.

Prook. The compositum of N/H and HM/H is L/H. Since [N : H] < 2,
the extension N/H is Galois. Since M /K is Galois, so is HM/H. O

ProrosiTioN 3.11. The extension L/ K is inertially minimal for J(C')/ K. The
extension L((g)/K is Galois. In particular, L/ K is a Galois extension if the residual
degree f(K/Qs) is even.

Proor. Combining [3.4 with [3.9]shows that L’ contains LK. Also, from
3.4 we have [pg(Inr)| < 2, 50 pglr,, is at most tamely ramified. It now follows
from [3.9| that J(C') has good reduction over LK. We conclude that LK™ =
L', and thus L/K is IM.

The Galois closure of N/K is N((g). It follows that L((g)/K is Galois. The
field Q5 already contains all the 4th roots of unity, so its quadratic unramified
extension is Q5(Cg). If f(K/Qs) is even, then K contains (g, so L = L((g) is
Galois over K. O
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ProposiTioN 3.12. The group Gal(M/K) is isomorphic to a subgroup of Fs (as
in @) As a consequence, the polynomial P has an irreducible factor over K of degree
5.

Proor. We recall that deg P = 5 or 6, so we may view Gal(M/K) =
Gal(P) as a subgroup of S5 or S, respectively. Since the wild inertia subgroup
of Gal(P) is normal of order 5, the group Gal(P) must be a subgroup of a
normalizer subgroup G of a 5-cycle in S5 or Sg. We naturally have F5 C G
and, in fact, an equality holds because for n = 5, 6 we have

|Sn| n!
G| = ——— = =20
#{5—Sy10W S 1n S’n,} W'—S)'

If P was irreducible over K and had degree 6, then Gal(P) would have a
subgroup of index 6, which is impossible. On the other hand, since Gal(P)
contains a 5-cycle, P must have an irreducible factor of degree at least 5. [

ProrosiTioN 3.13. The group py(Ik) is isomorphic to Cs x Cg, Dics, Cho, or
Cs if and only if v = 1mod 2, v = 2mod 4, v = 4mod 8, or v = 0 mod §,
respectively. In particular, if e(L/K) denotes the ramification index of L/K, then
40 | e(L/K) - v.

Proor. By[3.9)and Prop. [3.11] the tame ramification index of L/K is de-
termined by the residue v mod 8 and is exactly the maximal prime-to-5 divisor

of |p¢(Ix)|. The group p¢(I) can then be identified from the list[3.5]b). O
Lemma 3.14. Every extension F /K of ramification index 2 is abelian.

Prooe. For any uniformiser wx € K we have FF C K" (\/@wg). The
extension K" (/@ )/K is abelian as a compositum of two abelian extensions
K(y/wk)/K and K™ /K. Thus, F/K is also abelian. O

ProposiTioN 3.15. Let o € I} and let 7 € T denote a lift of a topological
generator of the tame inertia group I}.. Let o, € T, and ors) € Urs) be lifts of
the geometric Frobenii. Then:

(1) The images pe(a), pe(t*), and pe(pr) commute;
(2) The images py(7) and pg(prcy)) commute.

In particular, pe(@r,cy)) is central in Tm(py).

Prook. Recall from Prop.wthat plr, is trivial and L' = LK™. Thus, for
(1) we only need to show that the classes oIy, 7411, and ¢ I, in Gal(L'/K) =
'k /I commute. From We have 0° € I, and 78 € I;. We note that the
subfield of L’ fixed by ¢ I, is L.

Let F/K be the subextension of M/K fixed by the unique 5-Sylow sub-
group of Gal(M/K). By Prop. [F : K] divides 4. We claim that L/F is
abelian. We observe that L/F is the compositum of the cyclic extension M/F
and the maximal at most tamely ramified subextension L;/F of L/F. By
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the ramification index of L;/F is at most 2, and therefore L;/F is abelian by
Lemma It follows that L/F is abelian. The extension L’/F is abelian as
the compositum of L/F and K" F/F.

We observe that the closure of the subgroup generated by 74I}% in I cuts
out the unique extension of K" of degree 4, which contains F'. Thus, the class
741y is in Gal(L'/F). On the other hand, o1, and ¢ I, are also in Gal(L'/F),
so they all commute.

For (2) we first note that, for v € I, we have 1) := ’ygpL(Cg)fy_lcpZ(lcg) € Ik.
Since L((g)/K is Galois by Prop. we have v 1,7 € T'p¢y)» and thus
n € L) NIk = Ir. Then py(n) is trivial, hence (2) holds. O

3.16. Particular form of hyperelliptic equation. If deg P = 6, then
Prop. shows that P has a root in K. By applying a change of variables
that sends this root to the point at infinity, we may assume that the
curve C/K is defined by a Weierstrass equation Y? = P(X) with P irreducible
of degree 5. By applying another change of variables, we obtain the following
result, which is a slight reformulation of [Liu94b, Prop. 5.1].

PropositioN 3.17 (Liu). There exists an equation
Y2 =P(X)=X"+aX*+.. . +as,

which defines C/K with as, . . ., as € O such that vk (as) € {1,2,3,4,6,7,8,9}.
The integer vy (ag) determines the Namikawa—-Ueno (NU) type of the minimal reg-
ular model @ /O (see [NU73]) as in Table With respect to this equation, A5 = 1.

Proor. We start with an equation Y? = P(X) with P € K[X] of de-
gree 5 as in The output of [Liu94b, Algorithme, p. 150] is an equation
Y? = Py(X) from which the NU type can be determined by manually com-
puting the blow-ups and normalizations needed to produce the minimal reg-
ular model of C/K (a more systematic approach will be described in [IIL.2).
The NU type is completely described by the integer vx (P (0)). The equation
Y2 = Py (X) satisfies all the conditions demanded in our proposition except the
leading coefhicient a; € O of P; is not necessarily 1. This can be dealt with
by applying another change of variables X = a1 X', Y = a}Y”, which does not
change the valuations of the coefhcients of the equation. The invariant A5 can
be determined via [Liu94b, (5), p. 139]. O

3.18. Ogg and Namikawa-Ueno types. Each possible value of v (ag)
from Prop. [3.17|corresponds to a row in[Table 2. We convert the Namikawa-
Ueno [NU73] notation to the one used in [Ogg66] and then apply the results

from [Liu94a, §5.2] to complete every column of [Table 2| except the last one
(see [2.5|and [2.6| for the notation).
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TastrEe 2. Geometric reduction types

vk (ag) | NU type | Ogg type | m(C/K) | 95 | d | vk (Amin) — alpe)
1 [VIII-1] [0] 1 P! |1 0
3 [VIII-2] [7] 9 P! |1 8
7 [VIII-3] [16] 4 2Pt | 3 4
9 [VIII-4] [20] 13 P! |1 12
2 [IX-1] [8] 5 P! |1 4
4 [IX-2] [36] 3 P |1 2
6 [1X-3] [21] 11 P! |1 10
8 [IX-4] [44] 9 P' |1 8
COROLLARY 3.19. We have
d—3
vk (Amin) — alpe) = m(C/K) + o

In particular, v (Amin) — a(py) is positive and even.

Proor. The formula is obtained by combining (2.5.1) and (2.6.1). The
quantities on the right-hand side of the equation can be read from Table l% O

Remark 3.20. The corollary above generalizes Ogg’s formula for elliptic
curves v (Amin) — a(p) = m(C/K) — 1.

CoroLLary 3.21. For ag as in Prop. we have

(1) vi(ag) =1+ a(pr) — v (Amin) = 2d — m(C/K) mod 5;
(2) vk (ag) =m(C/K) + 3 mod (F)2.

Proor. Both claims are straightforward to verify using Table O

4. Galois action on the special fiber

Let k be a finite field of some characteristic p > 2.

4.1. Artin-Schreier curves. We briefly recall some basic Artin-Schreier
theory. Let F be the map on the field of rational functions k(y) in one variable
given by g — g¢¥. If f € k(y) is not in the image of the map F — Id, then
the equation z? — z = f defines a smooth projective curve Cy over k together
with a finite morphism 7: C; — P}, of degree p. In other words, the function
field k(Cy) = k(z,y) is a cyclic extension of k(y) of degree p. Inversely, every
cyclic extension of k(y) of order p is of this form. For P € P} and P’ € Cy
we denote their associated normalized valuations on k(y) and k(z,y) by vp and
vpr, respectively.
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4.2. Standard form. We may assume that f is in standard form, i.e., each
pole of f is of order prime to p. Indeed, there exists g € k(y) such that f —
(gP — g) is in standard form—this can be done by decomposing f(y) into partial
fractions and writing the numerators as p-th powers modulo the maximal ideals,
see [Has35, §2]. A change of variables z — z—g now transforms f into standard
form. We claim that such f has poles at exactly the branch points of 7. Let
P € P} and let P' € Cf be a point above it, with some branching index e < p,
so vpr(f) = evp(f). If f has a pole at P, then vp(f) < 0 is prime to p, and z
has a pole at P’. Thus, vp/(f) = vpr(2P — z) = pvp(x). It follows that e = p.
Inversely, if vp(f) > 0, then z is integral over the valuation ring Op and its
minimal polynomial is h(z) = P — 2 — f, whose derivative is b’ = —1. The
different ideal of the extension Gp/ /Op contains h/(z), which is of valuation 0,
so P’ must be unramified over P by the Dedekind criterion.

In particular, if 7 has a unique branch point P € P} (k) which is a pole of
y, and f is in standard form, then P is the unique pole of f, so f is a polynomial
in y. If this is the case, then the genus of C/ is given by ¢(C) = w,
see, e.g., [Sti09, 3.7.8.(d)].

For every a € k™ and ¢ € k we denote by C, . the Artin—Schreier curve
given by the equation 2 — x — ¢ = ay®.

Lemma 4.3. Let p = 1 mod 4. On the curve C' o /Iy, we have the automorphisms
o1: (z,y) = (x+1,9),¢: (z,y) — (z,—y), and the endomorphism F : (z,y) —
(xP,yP). They commute painwise and, for all n,r, f € Z, the trace of the pullback
(¢ ool o FFY* on Hélt((CLO)Fp’ Q) is given by

(—1)nt1ipl/2 if fisevenandpfr,
Tr (" ool o FI)*)y =S (=1)"p/2(p—1)  if fisevenandp|r,
(~)"™ N (E)pE if fisodd

Proor. It is straightforward to verify that oy, F, and « commute. The hy-
perelliptic involution ¢ acts as multiplication by —1 on the Jacobian variety, so
(L")* = (=1d)".

The curve C1 has genus %, and dim Hgt((CLo)Fp,Qg) =p—1. Let
Cagt C C1 be the affine open subscheme isomorphic to V(z° —z —y?) C AJQFP-
The set C1 9 \ Cagr contains a single point, which is IF,,-rational. We recall from
the classical theory that the action of F* is semisimple and its eigenvalues have
absolute value \/p. We claim that (F?)* acts as mulplication by p. For this we
only need to show that Tr ((F?)*) = p(p — 1). The Lefschetz trace formula

Tr ((F?)*) = 14p° — [C10(F2)]

leaves us to prove that |C1g(IF,2)| = p + 1. For every x € I, we have
Tre ,/k, (xP) = Tre , /¥, (z). It follows that every (z,y) € Cag(IF,2) must be
such that Tlr]Fp2 JE, (%) = 0, which is equivalent to y? +y?? = 0. The non-zero
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solutions of the latter satisfy y?P~1) = —1, raising this to the odd power %
leads to a contradiction. We conclude that Cyg (IF,2) consists of the points (z,0)
with z € [Fp, and thus the claim holds.

The polynomial X2 — p is irreducible over Z. Since the characteristic poly-
nomial of F* is in Z[X], it must be (X2 — p)"z".

We have 0 = (of)* — Id = (o] — Id)®,(0}) where ®, € Z[X] is the p-th
cyclotomic polynomial. The characteristic polynomial P, of o} is in Z[X], so
its irreducible divisors can only be X —1 and ®,. Since deg P,, = p—1, we must
have P,, (X) = (X — 1)P"! or P,, = ®,,. The first case is impossible since o7}
in nontrivial. Thus, Tr ((¢7)*) = —1 if r is prime to p, and Tr ((0])*) =p — 1
otherwise. The formulas for the case when f is even hence follow.

If f is odd, then
(4.3.1) Te (" 0 0} 0 FF)*) = (=1)"p’z Tr ((0} 0 F)*).
We use the Lefchetz formula

Tr ((o] 0 F)*) =1+ p — |Fix(o] o F)|.

The points (2, y) € Cost(IF,) fixed by o] o F satisfy x = 2P +randy = y?,soy €
F, and —r = 2P — 2 = y?. The latter equation has exactly (ﬁ) +1= (]FL,,) +1
solutions in y for each r € FF,. Each solution y gives exactly p solutions for
aP —x = y?. We have therefore proved that o7 o F has exactly p ((]FLP) + 1) +1

fixed points, so

(4.3.2) Tr (0} 0 F)*) = — (T> p.

Substituting (4.3.2) into (4.3.1) finishes the proof. O

Remark 4.4. If p = 3 mod 4, then, using similar methods, one can show
that |C1,0(F,2)| = p(2p — 1) + 1 and (F*)? + p = 0. Then, analogous formulas
for the traces can be given.

4.5. We now continue in the setting where K is a 5-adic field and C/K
is a curve of genus 2 whose ¢-adic representation has cyclic wild inertia image
pe(I}¥) of order 5. Recall the notation of[3.9]

4.6. Galois action on the minimal smooth model. Prop.[3.11]tells us
that ker py|1,, = Ir. By the Néron-Ogg-Shafarevich criterion and Prop. |3_7‘,
the curve C/L has good reduction, so its minimal regular model €'/, is
smooth. For every finite Galois extension K’/K containing L, the minimal
regular model of C/ /K is given by the base change C@éK, =8’ xp, Ogs. Ev-
ery element of Gal(K’/K) gives an K'-semilinear automorphism Cx» — C,
which extends uniquely to an O/-semilinear automorphism 6, , — € |
(see, e.g., [LT16, Corollary 1.2]). Passing to the projective limit shows that
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each v € 'k induces an Op-semilinear automorphism 6, — 6; _. The
K K

morphism preserves the special fiber, so we obtain a commutative diagram

/ e’ /
ki ki
C@@? Cg@?

(4.6.1) | |

Spec O SREAN Spec O

Spec kg Spec ki

By functoriality, 'k acts on H, elt(%é ,Qy), and, for every n € Z prime to p,
K

the smooth base change theorem provides an isomorphism of ' x-modules
(4.6.2) H(Cg, Z/nZ) = Hy (€ Z/nZ).

We note that every element v € I'z, acts on C@éﬁ = €' xp, O as id x~.
Since I acts trivially on kg, tEe group Iy, acts trivially on C@é}{, thus inducing
an action of I /I, on C@é by k x-automorphisms. We obtain a chain of group

K

homomorphisms
(+63) Lic/I = Aut(@] ) — Aut (HL(®], Q1)) = Aut(H(Cx, Q1))

ProposiTION 4.7. Let o € I The induced automorphism og OH C@éK descends
to kg, and C@,’CL is kr,~isomorphic to Cq for some a € k. The automorphism of Cy o
induced by o is given by o?y : (z,y) = (z + r,y) with some r € Fs. The image
pe(o) is nontrivial if and only if v # 0.

Proor. If py(0) = 1Id, then o € Iy, so o is the identity on G, by (4.6.3).
In the same way, if py(o) is nontrivial, then the class of o in I /I, has order 5,
so it induces an automorphism on C@éK of order 5.

We have seen in Prop. wthat the classes of o and ¢, commute in T'g /1.
It follows that they commute as scheme-automorphisms of C@éL, which means
that o descends to a kr-automorphism of Gy, -

The main arguments for the remainder are given in [Roq70] and [Hom81],
which we specialize to our situation. Let I' ~ C5 be the image of I} in
Aut(€;, ), andlet7: €, — 6 /T be the quotient map, which is defined over
kr. As a consequence of the Hurwitz formula, [Hom81, Remark 1.2.(A).(b)]
shows that T fixes a unique closed point P in 6; and that €; /T has genus
zero. Since I' commutes with (¢, )¢/, the point (¢r )¢ (P) is also fixed by T,
s0 (¢1)%(P) = P, meaning that P is a kr-rational point. Then 7(P) is kz-
rational, so 7 is in indeed a finite kz-morphism €; — P} . Let k(€;,)
denote the function field of @;, , then kz,(@;,, )" is a rational function field over
kr, and we fix a generator y which has a (unique) pole at P.
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Since k£(6y, )/kr(y) is cyclic of order 5, by applying Artin-Schreier the-
ory we have k(8 ) = kr(x,y) for some x satisfying an equation 2° — z = f
with f € kp(y). It follows from [4.2] that we may assume that f € kz[y].
Since Cgl,m has genus 2, we must have deg f = 2. We may further suppose
that f(y) = ay? + c with a,c € kg, a # 0, thus we have a kr-isomorphism
‘6,’% ~ Cyc.

With our particular choice of L/K in 3.9} the points of J(C)[2] are rational
over L. The isomorphism (4.6.2) implies that the points of .J(Cj)[2] are k-
rational, which means that the polynomial 2° — 2 — ¢ splits completely over 7.
By translating = with one of the roots we find that €., ~Capask 1-schemes.

Lastly, every v € T fixes y, so z —y(x) is a root of X° — X = 0, thus giving
v = o}, for some r € FF5, which is zero if and only if 7 is trivial. O

ProposiTioN 4.8. We fix o € I} Let a € k) and r € F5 be as in Prop.[4.7.
For every m,n € Z we have

_(ﬁ)%Lf5 if n[kr, : Fs] is even and 5 ¢ m,
nlky :Fg]
Trpe(o™ L) = (ﬁ)n‘l 575 if n[kr, : Fs] is even and 5 | m,
nlkr :Fs]
— ()" ()5 ifnlky : Fs] ds odd.

Prooe. From the classical theory of the Frobenius actions on the étale co-
homology group we know that the morphism Fj : (z,y) — (2%, y9) of C
induces the action of ¢, on H élt(C@éK ,Qy).

We fix a square root y/a € kg. Then there is a kx-isomorphism Cy 9 —
91’0 given by (z,y) — (=, %) Using this isomorphism we compute that the
k g-automorphism on C induced by o}, descends to FF5 and is exactly of.
Similarly, Fy induces FI*2 %5l o, on €1 g if (%) = —1 or FlkeFslif () — 1,

Therefore,

Trpe(a™p]) = <kaL> -Tr ((cr{m o F"[k’L:]FS])*> .

The desired formulas now follow from Lemma[4.3] O

4.9. Square classes of differences of Weierstrass roots. Let Y2 = P(X)
be a Weierstrass equation defining C'/K with P € K[X] unitary of degree 5
as in Prop.[3.17, In particular, A5 = 1. Any element ¢ € I}} for which py(c)
is nontrivial acts transitively on the roots of P. We fix a root a; € M of P,
then the other roots are ; := ¢*~!(a). Following Prop. there exists an
a € k' such that €, ~ C,( over kz, and o induces o], € Aut(Cy ) for some
r € Fy. We note that the curve C, is kr-isomorphic to the curve defined
5 _ a4m’

by the equation y? = z , where ¥ = a®y and 2’ = az. We have

ol (2 y) = (2 +ary).

ProposiTiON 4.10. The following properties hold :
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(1) The valuation of cv; — «vj is the same for every i # j;
(2) Assume that [kr, : Fs] is odd. There exists a o € Iy such that ({-) = 1. In
this case, oy — o(ay) € (LX)

Proor. (1) Since Cf,/L has good reduction by Prop. there exists an
affine variable change over L which transforms Y2 = P(X) into an equation
Y"? = P'(X') with coeflicients in 67, and an invertible discriminant (we can use
[Liu96, Lemme 3] and the fact that translating Y by a polynomial in X does
not change the discriminant). An affine transformation modifies all v, (a; — )
by adding the same constant v. The new discriminant has valuation zero, so
we must have vy, (a; — ) + v =0forall i # j.

(2) The existence of o such that () = 1 follows from (;-) = (g:)-

The extension H/K from [3.9]is at most tamely ramified, so o acts trivially
on it. Thus, by Lemma the restriction of o to L gives an automorphism
of L. Then, o induces an L-semilinear automorphism of Cf,/L.

The action of ¢ on the function field K(X,Y) with Y2 = P(X) € K[X] is
trivial. Applying the change of variables X = X’ + a gives the equation

Y2=P(X):=X'(X'—as+a1)... (X' —as+a;) € M[X'].
The o-action extends M-semilinearly to M (X,Y) = M(X',Y) and
o(X) =X —as+a.
Since P is as in Prop.[3.17| we have 40 | e(L/K)vk (A(P)) by Prop.[3.13|

e(L/K)vg (A(P))
Let wy, be any uniformizer of L and § := w, 10 . After applying

another change of variables Y = 6°Y”, X’ = 52X" we obtain

N2 plN n Q2 — 01 n Q5 — Q1
Y™ =pP(X"):=X (X — 52 ><X — 52 ),

and o(X") = X" — 22521 The formula gives
v (A(P") = vp, (6719 6A(P)) = e(L/K)vk (A(P)) — 40v.,(5) = 0.

For all i # j, applying part (1) gives

v <04i6_2aj) = %?}L(AGD)) — 21)[,(5) = 0.

It follows that Y2 = P”(X") defines a smooth model W /6, of C/L,
which is unique up to isomorphism. Its reduction Wy, /kz, must be kz-isomor-
phic to the curve Cy o/kr, defined by y? = 2/5 —a'2’. Let 2" and 3 denote the
classes of X and Y, respectively, in the function field of W}, . By construc-
tion, the points at infinity of both of these models are fixed by the k;-linear

automorphisms induced by o. Since on each curve there is a unique such fixed
point (proven in [Hom81]), there must be an affine variable change v = ay/,
2" = ba’ + c for some a, b, c € kr. Then b° = a?, so b is a square in k.
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On one hand, as pointed out in 4.9|, we have
o(2") = bo(2') + c = ba’ + bar + ¢,

and on the other hand, from the construction of P”, we have

o(z") =ba' +c+ (a1 — %2 1hod mL> :

52

Thus, the class of A2 in ky, is bar, which is a square, so iy —ag € (L*)%. O

ProposiTioN 4.11.

(1) We have H C M.
(2) Forall k # 1, the element a, — oy is a square in L((s).

Prook. For (2), by replacing o with some power, without loss of generality
we may assume that & = 1, [ = 2. Applying (2.2.3) gives

2
(4.11.1) — B =AP) =28 (@ — o) _2(a1_a220n<%—%>.

o] —
i<j 1<) 1 2

The wild ramification subgroup IV (M/K) acts trivially on M* /U},, so

i—2
— o1 O' 062 — Oél .
E =i — 1 mod myy,.
a9 — (] =0 a9 — (]

Then ,

a; — @ . . _
g <Oé1 — a2> = g(j i)? = (288)? = —1 mod myy.
Since U}, is 8-divisible, it follows that 8 € (M*)%, thus giving (1). Recall that
B € (LX), thus (a; — ag)* € (L*)8. It follows that oy — ay is a square in
L(¢s)™, thus proving (2). O

Remark 4.12. Prop.[4.11](2) should be contracted with Prop.[4.10}(2). Un-
less L = L((g), only half of the differences o; — «; are squares in L. Indeed,
suppose that (g ¢ L. Then [kz, : Fs] is odd. For every o € I} such that the
induced r € Fy satisfies (£7) = —1, the proof of Prop. (2) shows that

a1 — o(aq) is not a square in L.

5. Maximal inertia action over 5-adic fields

We continue to work in the setting o We will use the notation of [GN]|
to describe finite groups.

ProrosiTiON 5.1. The following are equivalent :
(1) vi(A) is odd for any discriminant A of C/K;
(2) The extension M /K is totally ramified and Gal(M/K) ~ F;
3) a C/K = a(py) is odd;
(4) pe(Ix) ~= C5 x Cs.
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Prook. (1)and (4) are equivalent by Prop.[3.13| (1) and (3) are equivalent by
Cor. and (2.2.5). Prop. shows that p;(Ix) has a quotient isomorphic
to the inertia subgroup of Gal(M/K). Then [3.5 shows that (2) implies (4).
Suppose (4), then L/K has ramification index 40. By[3.4] the ramification index
of M/K is at least 20. Statement (2) now follows from Prop. O

5.2. The maximal ramification hypothesis. From now on we suppose
that
pe(Ix) ~ Cs5 x Cs.
The associated complex Weil-Deligne representation is given by the Weil rep-
resentation p := py|w, ®q, C and the trivial monodromy operator.

ProposiTiON 5.3. The extension L/K is totally ramified, and [L : M| = 2,
[M:H]=5H:K|=4

Proor. We have [N : H] < 2. It follows from Prop. [4.11}(1) that H C
N N M, and thus [N N M : H] < 2. By Prop.[5.1] vx(A) is odd, so N/K and
H/K are totally ramified of degrees 8 and 4, respectively. Also by Prop. [5.1|
we have 20 = [M : K] =4[NNM : HI[M : NN M],thus NN M = H. It
follows that [L : K] = [N : K][M : H] = 40. Prop. [5.1|and Prop. 3.11] give
I(L/K) =40, so L/K is totally ramified. O

ProrosITION 5.4. We have
Cs x Cs i [kx : 5] is even,

Gal(L(Cs)/K) ~ {C%-F5 if [krc : Fs) is odd.

Prooe. The inertia subgroup I(L(¢s)/K) C Gal(L({s)/K) is isomorphic
to C5 x Cg and has index at most 2 (from Prop. and Prop.[5.3).

It remains to show that if L({s)/L is nontrivial, then Gal(L((s)/K) =~
C3.Fs. In this case we have Gal(L((s)/M) ~ C% since L/M is totally ram-
ified of degree 2. It follows from Prop. [5.1]that Gal(L((s)/K) is an extension G
of F by C3. The extension cannot be split, because otherwise Gal(L((s)/K)
would have C% x Cy as a 2-Sylow subgroup, which has exponent 4 and there-
fore has no element of order 8. In order to identify Gal(L(¢s)/K) as C3.F5 by
using [GN] we are left to show that the extension G is non-central, i.e., that
the subgroup C3 C G which is identified with Gal(L(¢s)/M) C Gal(L((s)/K)
is non-central. Indeed, Gal(L(¢g)/M) cannot be central because Gal(L/K) is
non-Galois (otherwise the Galois closure of N is contained in L, which implies
that (s € L). O

ProrosiTioN 5.5. Under the hypothesis of|5.2 thefollowing statements hold :

(1) The representation p is irreducible;
(2) There exist characters x and x' of Wy such that

(5.5.1) plwy 2 x@x (- ex ex '(-1);
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(3) If x is any of the four characters appearing as direct factors in (5.5.1), then
p~ Indjp x.

Proor. We observe that every irreducible representation of Cs x Cy nec-
essarily has dimension 1 or 4 (see, e.g., [GNJ]). It follows that p|;, is irreducible
since it cannot be a direct sum of 1-dimensional representations. Thus, (1) holds.

The extension L/H is the compositum of the Cs-extension M/H and the
quadratic extension N/H, so Gal(L/H) ~ Cyo. It follows that LK™ /H is
abelian. Therefore, p|yy,, has abelian image and splits into 1-dimensional factors

(5.5.2) plwy ~ X1 ® X2 D X3 D X4
Frobenius reciprocity gives a nontrivial morphism of representations
Wk
IndWH X1 — p-
Since p is irreducible, the morphism is surjective and, in fact, is an isomorphism
because dim(Ind%’Ij X1) = 4 = dim p. Thus, (3) holds.

Furthermore, since H/K is tamely ramified, I}j = I}¥ is normal in W. If
x1(I}) is trivial, then using an explicit construction of the induced represen-
tation we obtain that p(I}}) is trivial, which is impossible. It follows that x; is
wildly ramified.

The twisted representation p(3) is symplectic with respect to the Weil pair-

ing on H}.(J(C)%,Qy), so, in particular, the dual of p is p* 2 p(1) and det p =

Xu- Then (5.5.2) gives
plws = (plwy)” (D) = x7 (D) @xz ' (-1 @xg ' (1) @ xg ' (-1).

Since 1 is wildly ramified, we cannot have x; ~ x7*(—1), so we may suppose
that y2 ~ x; *(—1). We then have y4 ~ x5 '(—1). Posing x = x1 and X’ = x3
gives (2). O

ProposITION 5.6. If x is as in Prop. @.(3), then its Artin conductor a(x) is even.

Prook. Since H/K is totally tamely ramified of degree 4, we have a(py) =
a(p) = a(x) + 3 from [Roh94, §10.(a2)], and a(p;) is odd by Prop.[5.1] O

5.7. Study of the 4-torsion. Let Y? = P(X) be as in Prop. If
ai,...,a5 € K are the roots of P, then M = K(aq, ..., as).

ProposiTiON 5.8. Each point of J(C)[4] is rational over L((g).

Proor. Let M := Q(v—1,04,...,a5) C M. Then the curve C and its
Jacobian are defined over M, and it follows from [[Yel15, Remark 4.2] that

M(I(C))) = M (Vo —a5),., )
The proposition now follows from Prop. [4.111(2). O
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Cororrary 5.9. The map p(prc,)) is given as multiplication by the scalar
VAL(Gs)- As an immediate consequence, the twisted representation p(%) is trivial on

Wiics)-

Prook. Since p(¢p(c,)) is central in Im(p) by Prop. [3.15} it acts as mul-
tiplication by a scalar z € C* by Schur’s lemma. From (5.5.1) we see that

z =27 50 2 = +/TL(Gs)- We note that | /qz(c) is always an integral
power of 5, thus, in particular, 2 = 1 mod 4. On the other hand, Prop.l@lim—

plies that pa(pr ) € Autz, (H(Cg, Z2)) satisfies p2(¢r(cy)) = 1d mod 4.
We therefore conclude that » = | /775 O

6. Computation of root numbers

We will work under the hypotheses of|5.2{and prove our main result.

THEOREM 6.1. Let ag be as in Prop. and let A be any discriminant associated
to any Weierstrass equation defining C' /K. The root number of C /K is given by

w(C/K) = (_1)[kK:1F5]+1 ) (W) (A, ag) k-

Let tp,: K — C* be the additive character from|[1.2] For the basic general
theory and the formulas of root numbers the reader may refer to [Roh94].

6.2. Root number of an induced representation. We have p = Ind%ﬁ %
from Prop. H so the formula of root numbers of induced representations

(see[.1.18) gives
(6.2.1) w(C/K) = w(x, v © Trg/pr) - w(Indyy s 1, 4y,).
Lemma 6.3. We have w(Indyp” 1,4p) = —1.

Prooe. The representation Ind%; 1 is isomorphic to the regular repre-
sentation of Gal(H/K) ~ Cy. Let xa: Wg — C* denote a totally ramified
character of order 4 such that ker x4 = Wyx. We then have a decomposition

(6.3.1) Indyp 1~ 16X & x4 x5
and thus multiplicativity of root numbers gives
w(Ind ik 1, 4b) = w(xd, ¥r) - wlxa ® x5 Ur)-
The general properties of root numbers (see Prop. [I.1.21](2)) give
wxa ® xq ' vr) = xa(@x(=1)),

where 0 is Artin’s reciprocity map. We have x4(0x(—1)) = 1 exactly when
—1is a 4th power in K*, so

wixa ® xq ' r) = (—1)Fsl,
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In order to compute w(x3, 1x) we apply the formula [AS10, (8.7.1)] with 3 =
1 there and 7(x3,¢r) = —Gpur(X3) = (—/p) i Fsl (we use [BEW9S,
Thm. 11.5.2]), which gives

w(X?b ¢k) = (_1)[kK:IF5}+17

thus the lemma follows. O

6.4. Connection with a Weierstrass equation. Let Y2 = P(X) be the
Weierstrass equation defining C/K from Prop. We fix a root a; of the
irreducible polynomial P. Let y be as in Prop. and let o € Iy be an element
such that

(6.4.1) x(0) = exp (27”) .

It follows that o restricts to a generator of Gal(M/H) ~ Cs. We recall that M
is the splitting field of P and note that M = H(o). Having fixed o and «, the
roots of P are aj = 077 (ay). We have

(6.4.2) Ny (ar) = —ag

and

(6.4.3) vy (ar) = va(Nyya(ar)) = v (as) = 4vk (ag).
Let

[eaRe?
doy = Nygy (o1 — a2) = Ny (a1) N/ a (1 N <all)>'

Since a(x) is even by Prop. we may apply Cor. (1.9 (with K = H there)
and find (recall the notation ~ from [1.4)

w(x, Ve o Try i) ~ x 0 0n (var(on) - NM/H(al))_l -x 0 0m(da;)
(6.4.4) ~ x 0 0 (—4vk(ag)ag) " - x 0 O (da,).

Recall that det p = ;2. Let t: W& — WP be the transfer map. Deligne’s
determinant formula [Del73| p. 508] gives

o2 = det (Indmw/g x) = det (Indvvgg 1)-xot.
Composing with 0 and taking into account the decomposition gives
1115 = xd o 0 - (x 0 0| g
Since —4vk (ag)ag € K™ and || - ||k = 1, the above gives
(6.4.5) x 0 O (—4vg(ag)ag) ~ x5 o Ok (—4vk (ag)ag).

We note that —3 € N5k (K(VB)*), so X2 0 0k (—B) = 1. Therefore,
X3 00 is equal to the Hilbert symbol (3, -) k, since both are quadratic ramified
characters trivial on —f. Since 3 differs from any discriminant A of C'/K by
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a square in K*, we have (8, )k = (A,-)k. Applying this to (6.4.5) together
with the formula [Neu99, V.(3.4)] gives

(6.4.6) x 0 O (— 4 (ag)ag) ~ <”K(a6)> (A, ag) k.

Plugging into and applying Cor.[3.21}(2) we obtain

647) w0 Trax) ~ (””L(Cf?”’) (D) X  Orr(da).

6.5. The twisted representation p(3) is trivial on Wr, ) by Cor.

Since p(3) = dWK (x(3)), the character x(3) is trivial on Wy, and there-
fore x(3) o O is tr1v1a1 on Ny ¢ey/m (L(C8) ™). We note also that
(6.5.1) x 00 (da,) = x 00 (ar — az).

LemmMa 6.6. If (ki : FFs] is even, then x 0 0 (dqa,) ~ 1.
Proor. Here we have L((s) = L. Then Prop.[4.11}(2) implies that
a1 — ag € Ny m(L(Gs)™),
thus dy, is a norm from L((s)*. Using|6.5| we have
(6:61) X0 01(dar) = ldas 5" - (x() 0 0) (doy) = ldes I3 = 1. O

LemMaA 6.7. Let (kg : F5) be odd. Let a € ki, and r € 5 be associated to o as
in Prop. E Then for every geometric Frobenius lift o1, € Wi, we have

x(prL) = — (Z;) VK.

Prook. Recall from Prop. that L/K is totally ramified, thus &k, = kg.
Since [k : Fs]isodd, g = q1. = NCTTSY and (§- ) is the restriction of (7~ ) to
IFs.

Let x’ be the other character appearing in Prop. From Prop. 4.8 we
have Tr p(0) = —1, which, together with (6.4.1), forces

(6.7.1) X(0) € {exp (221)% exp (2m)3} .

Cor. [5.9]implies that the eigenvalues of p(¢1) are +/gz. From Prop.
we have Tr p(pr) = 0, so there exists some w = +1 such that

(6.7.2) x(er) =wyqr and  x'(pr) = —w\/qr.

Using (6.4.1), (6.7.1), and (6.7.2) together with a formula for Gauss sums
(see, e.g., [BEWO9S, §1.1]) gives

Trp(opr) = wy/qr (exp (22%) + exp (27”)4 —exp (27”)2 — exp (27”)3>

5qL.
It now follows from Prop. that w = — (%) O
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6.8. Choosing y. We assume that [kx : FF5] is odd. Then [kz : [F5] is
also odd. Although the root number w(x, %y o Trp k) does not depend on
the choice of the character x in Prop.[5.5/(3), in order to carry out a detailed
computation we will need to fix a particular x. Depending on whether or not
ais asquare in k', we may choose o and, consequently, x so that (%) =1and

that we still have (6.4.1).

Lemma 6.9. If [kx : Fs) is odd and x is as in[6.8, then x 0 0 (da, ) =~ —1.
Proor. Applying Lemmafor the chosen x gives

x(pr) = —VaK-
On the other hand, we are also set to apply Prop. [4.10/(2), which tells us that

a1 — g is a square in L. Since —1 is a square in K, it follows that there exists
some b € L such that a; — aa = N (D). Recall from Prop. [5.3| that L/K
and, thus, all its intermediate extensions are totally ramified. Together with

Prop.[4.10,(1) we then obtain

UL(b) = ’UM(Oq — Oég) = ’UM(A) = Q}K(A)

20
By using Prop. [5.1] we then have
vr,(b) = 1 mod 2.
The restriction x|y, is unramified, so the above discussion shows that
x 0 0n(day) = x 0 02(0) = x(p1)"*® = (—va)* "~ —1. O

Proor oF THEOREM [6.1l When [kx : FF5] is even we use Lemma and
when [kg : F5] is odd we choose x as in [6.8] and use Lemma [6.9| to obtain
x 0 0 (day ) & (—1)Fx:Fsl, Plugging this into (6.4.7) then gives

(6.9.1)  w(x,¥r o Trpy k) ~ (—1)FxFsl. (W) (A, a6) k-

Combining (6.9.1) and Lemma [6.3]into (6.2.1) proves the relation ~ between

the two sides of the formula in Thm.[6.1] Since both sides take valuesin {1, -1},
the theorem follows (see[1.4). O

7. Examples of curves of genus 2 with maximal ramification

In this section we give some explicit examples of computations of root num-
bers. All our examples are curves defined over Q. We will use the labels of
[LMFDB] to indentify the curves that appear in the database.

For any prime number ¢ # 5, let p; be the ¢-adic I',-representation asso-
ciated to the curve obtained by extending the coefficients to Q5. We recall that
the Hilbert symbol satisfies (5, 5)q, = (E—j) =1land (5,2:5)q, = —(E;) =-1.



66 II. CURVES OF GENUS 1 AND 2

ExampLe 7.1 (Genus 2 curve 3125.2.3125.1). Let C'/Q be the hyperelliptic
curve defined by

1
Y2 =X°%4+ -,
1

Its discriminant is A = 5°. It follows that the curve has good reduction at every
prime p except 5 and, possibly, 2. Actually, the reduction is good at 2, and the
smooth model is given by Y? +Y = X°.

Recall that Q5(.J(C)[2])/Qs is the splitting field of X® + 1. Note that
(X’ +1)° + 1 is an Eisenstein polynomial over Zs. Thus, Qs(J(C)[2])/Qs
is wildly ramified. Then p, must also be wildly ramified. By Prop. |3_7L C/Qs
has potentially good reduction.

We observe also that Y2 = (X'+1)5+ 1 satisfies the conditions of Prop.lﬂ
with ag = %. Then m(C/Qs) = 1 from [Table 2L Since A has odd valuation,
Thm.[6.1] gives

w(C/Qs) = <55, 2>Q5 1

The global root number is then w(C/Q) = 1, which is compatible with the
Hasse—Weil and the BSD conjectures since both analytic and Mordeil-Weil
ranks of J(C)/K are 0 (see [LMFDB]).

ExampLE 7.2 (Genus 2 curve 12500.2.12500.1). Let C/Q be the hyperellip-
tic curve defined by

Y2 =5X%+10X3 —4X + 1.

First, we make the change of variables X’ = X;jl, Y = ﬁ in order to
send the rational point X = —1, Y = 0 to infinity and to make the polynomial

on the right-hand side unitary. The resulting equation is

45 90 75 30 )

2 _ AN ¥ 15) Y x4 Y 13 Y y12 "4 <

Y2 = P(X')i= X+ X+ X%+ 22X+ X+ ]
and has discriminant A = 22 - 5°. The polynomial P € Z;5[X’] is Eisenstein
of degree 5, so its splitting field extension Q5(J(C')[2])/Qs5 is wildly ramified.
It follows that p, is wildly ramified. By Prop. |3_7‘, C/Qs5 has potentially good
reduction. The polynomial P satisfies the conditions of Prop.|3.17|with ag = %.

Then, m(C/K) = 1, and Thm.[6.1| gives
w(C/Q5) = (22 .59, 5> =1.
4 Qs

ExampLe 7.3 (Genus 2 curve 703125.a.703125.1). Let C/Q be the hyper-
elliptic curve defined by

Y2:X5—5X3+5X—£.


http://www.lmfdb.org/Genus2Curve/Q/3125/a/3125/1
https://www.lmfdb.org/Genus2Curve/Q/12500/a/12500/1
https://www.lmfdb.org/Genus2Curve/Q/703125/a/703125/1
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Its discriminant is A = 32-57. We make a change of variable X’ = X — 3, then
the equation becomes

185
T
We see again that P is Eisenstein with ag = %. Then, Thm.|6.1|gives

Y2 =P(X'):= X" +15X" + 85X 4 225X"% + 275X’ +

w(C/Qs) = <32 - 57,4i5> "
Qs

ExampLe 7.4. Let C/Q be the curve defined by
Y2 — X5 _ 53

its discriminant is A = 28 . 517, The fact that X® — 53 is irreducible over Qs
can be established by looking at its Newton polygon, which contains a unique
segment of slope % Furthermore, its splitting field is wildly ramified over Qs,
thus p; is wildly ramified. We see that ag = —52, so m(C/Q5) = 9. Then,

Thm. gives
w(€/Q) = () 257, ~5)a; = -1
5

8. Elliptic curves over 3-adic fields

Let p > 2 be a prime number. Throughout this section E/K will be an
elliptic curve over a finite extension K/Q, having potentially good reduction.
Eventually, we will take p equal to 3. It is a classical fact that E/K has poten-
tially good reduction if and only if the invariant j(E) has non-negative val-
uation. Root numbers of such elliptic curves have been thoroughly studied by
Rohrlich [Roh93;Roh96] for p > 5 and, more generally, by Kobayashi [Kob02,
Thm. 1.1] in terms of Weierstrass models. The aim of this section is to prove
a reformulation of Kobayashi’s formula which does not refer to a particular
Weierstrass equation.

If p¢(Ik) is abelian, such formulas can be given by [Kob02, Thm. 1.1] or
Thm. The case where py(I) is non abelian can only happen in particular
setting, see [Kra90] for a classification of possible inertia images.

Lemma 8.1. If p > 2 and py(Ix) in non abelian, then p = 3 and py(Ix) is
isomorphic to the dicyclic group Dicg = C3 x C.

Proor. The ramification of p; cannot be tame. In particular, this rules out
p > 5 by Serre-Tate. Therefore, p = 3 and 3 | |p¢(If¢)|. Similarly as in (4.6.3),
the group pe(Ix) injects into the automorphism group Aut(E) of an elliptic
curve E defined over a finite field of characteristic 3. It it well known (see, e.g.,
[Hus87, 3.(5.2)]) that Aut(E) injects into Dicz. We conclude by noting that
Dicg has no proper non abelian subgroups. O



68 II. CURVES OF GENUS 1 AND 2

8.2. Weierstrass models. The reader may refer to [Sil94] IV.§9] for the
standard formulas for Weierstrass equations. We will be working over 3-adic
fields and their residue fields, so we may assume that E/K is defined by a Weier-
strass equation

y?=Xx3 —|—a2X2 + a4 X + ag

with a9, a4,a6 € K. An elliptic curve is non-singular, i.e., the discriminant

A of an associated Weierstrass equation is nonzero. We define the associated

invariant differential as w = CQ%(.

For any u € K* we may substitute

/ -2
as =u"“a
X = u?X’ ? > A =y 27
) . _ - )
5., thatgive new a) =utay, and )
Y =u’Y", , 6 w =u-w.
ag = U ag,

(8.2.1)

It is clear that applying a change of variables as above we can obtain an
integral Weierstrass equation, i.e., one in which ag, a4, ag € Ox. Homogenizing
an integral Weierstrass equation and applying the Proj construction produces a
projective model of E/K, called a Weierstrass model.

Among the integral Weierstrass equations there are some that minimize
the integer vi(A) > 0. Such an equation gives rise to a minimal Weierstrass
model, denoted by W /O, a minimal discriminant A, and a minimal differential
wx, which extends to . Since Q}E K is of dimension 1 over K, any other

given differential w differs from w g by some scalar in K, which we denote by
W

wi

8.3. Regular models. The elliptic curve E/K admits a minimal regular
(proper) model 6 /0 and a (smooth) Néron model € /0. Both are unique up
to an isomorphism. Given a Weierstrass equation, Tate’s algorithm (see [Sil94,
1V.§9]) provides a way to construct a minimal regular model. In addition, €/0x
can be taken to be the maximal smooth open subscheme of 6 /0.

8.4. Classical invariants. We denote by m(E/K) the number of irre-
ducible components of €; and by a(E/K) the Artin conductor of p,. We
recall Ogg’s formula [Sil94] IV.§11], which relates the aforementioned invari-
ants:

(8.4.1) a(E/K) = vk (Ak) +1—-m(E/K).

The group of components ® := Gk / (8 of the special fiber of the Néron
model is finite. The Tamagawa number ofE/K isdefinedasc(E/K) := |®(kk)|-

8.5. Kodaira types. Let E/K be an elliptic curve with bad but poten-
tially good reduction. In order to indicate the different reduction types over
K we will use Kodaira symbols 11, ITI, IV, I, IV*, II1I*, IT*, which cor-
respond to m(E/K) + 1 = 2,3,4,6,8,9, 10, respectively (see [Sil94, p. 365,
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Table 4.1]). We observe that the star “*” appears in the Kodaira symbol if and

mEITL | _ 1, otherwise | ELOEL | — g,

only if |

8.6. The setting. We suppose from now on that p = 3. We also sup-
pose that ps(Ix) ~ Dics, except in Prop.[8.7} This corresponds to the case
vi) of [Kob02, Thm. 3.1]. Let A be any discriminant of E/K. As shown in
[Kra90, p. 362, Corollaire], the extension K™ (E[2], AY/4)/K" is the minimal
extension of K" over which F attains good reduction, and its Galois group is
isomorphic to Dics.

Let H = K(VA), M = K(E[2]), L = K(E[2],A'*),and F = K(«) for
some fixed a € E[2] \ {0}. We list some general facts and consequences in the
present situation.

(1) The splitting field of a Weierstrass polynomial is M. The extension
M/K is Galois. In particular, Gal(M/K) is isomorphic to a subgroup
of the symmetric group Ss, and M contains H, which is the subfield
fixed by the unique 3-Sylow subgroup of Gal(M/K).

(2) Let e(-/-) denote the ramification index. We have

2.3-2>e(H/K)e(M/H)e(L/M) = e(L/K) = [LK"™ : K™] = 12,

so the extensions H/K, M/H, L/M, and L/K are totally ramified of
degrees 2, 3, 2, and 12, respectively. In particular, vg (A) is odd.

(3) We see from (1) and (2) that, in fact, Gal(M/K) ~ Ss. It follows that
M/ H is cyclic of order 3.

(4) By the Néron-Ogg—Shafarevich criterion, E has good reduction over
L but not over any proper subextension of L/K. However, L/K is
not necessarily Galois.

(5) The Weil-Deligne representation (p, V) associated to p, with some
¢ # 3is given by p = pglw, ®g, C and N = 0. The Weil representa-
tion p is irreducible and is induced by a wildly ramified character y of
Wi (see [Kob02, Prop. 3.3]).

(6) Because py is wildly ramified, a(E/K) > 3, and the Kodaira symbol of
E/K can only be II, IT*, IV, or IV* (see [Kob02, Thm. 3.1]), thus
m(E/K) =1, 9, 3, or 7, respectively. Since the minimal vx (Af) is
odd by (2), the formula shows that m(E/K) +a(FE/K) is even,
and thus that a(E/K) is odd.

(7) After applying, possibly multiple times, the changes of variables in
Steps 2, 8, and 11 of Tate’s algorithm as in [Sil94, IV.§9], we may sup-
pose that the Weierstrass coefficient ag has valuation %, which

is coprime to 3 by (6).

ProposiTION 8.7. Let p = 3 and let py be wildly ramified. Then the following
are equivalent :

(1) vk (A) is odd for any discriminant A of E/K;
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(2) The inertia subgroup of M /K is isomorphic to Ss;
(3) a(E/K) is odd;
(4) pe(Ix) ~ Dics.
Proor. We have seen in[8.6|that (4) implies all the other conditions. Suppose
(1), then e(M/K) > 6, thus necessarily Gal(M/K) ~ I(M/K) ~ Ss3. Suppose
(2), then py(If) is non-abelian, so, by [Kob02, Thm. 3.1], we have (4). Suppose

(3). Since py is wildly ramified, the Koda1ra symbol of E/K is I, IT*, IV, or
IV*, thus m(E/K) is odd. Then, by (8.4.1), vx (Af) is odd, thus (1) holds. O

We recall Kobayashi’s formula in the present setting:

TaeoREM 8.8. [Kob02, Theorem 5.9] Under the hypotheses of | @ and with ag
as in m the root number of E/K is given by

v (Ag)—1
2

w(E/K) = (Mg, agvrc(a6))x - (;;)

Remark 8.9. We can replace the minimal discriminant Ak in the above
formula with any discriminant of a defining Weierstrass equation over K, since
they all define the same class in K* /(K *)%.

The following is the main result of this section for which we will give two
proofs.

TueoreM 8.10. Let E/K be an elliptic curve as in IE Let |-| denote the floor
function of real numbers. Then, the root number is given by

w(E/K) = (_1)v3(c(E/H)) ) <l;1)
K

Remark 8.11. Since every exponent in the formula above can by replaced

a(E/K)«;m(E/K) +Lm(E/6K)+1J

by any integer of the same parity, one may find many equivalent variants of
this. The above form of the formula was deliberately chosen to pertain to
the geometric interpretation described by One might want to eliminate
the slightly awkward double appearance of the invariant m(E/K) or the floor
function. For example, since m(E/K) = 1,3,7, or 9 it can be checked that the
formula of Thm.[8.10]is equivalent to

w(E/K) = (_1)1}3(0(E/H)) ‘ (;1)
K

a(E/K)—1
2

' <m(E2f;) + 1)‘

Proor oF Tum. [8.10/via WEIERSTRASS COEFFICIENTS. From the formula of
tame Hilbert symbols (see [Neu99, V.(3.4)]), for any o, 8 € K* of K -valuations
a, b, respectively, we have

1\ g% mod my
@i = () (),
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Since vk (Ak) = 1 mod 2 (by [8.6[(2)) and 3 t vk (ag) (by [8.6](7)), the above

formula gives

(8.11.1) (Ax,vic(ag)) i = <W<k<§6)>

We fix a uniformizer wy € mpg and denote ag := —5%— € Op. Then, A is
WH

asquare in H, and

agK(AK) 2
— ~ X
A}’f(%) = ag mod (O7;)~,
SO
1\ vk (as) ~
(8.11.2) (A, a6) Kk = -1 (e mod mpy .
kx ku

A straightforward verification in each case of v (ag) = ™5
proves that

(8.11.3) <];;>UK(%) ' (w;(;w)) _ <];1>

Multiplying with and then using produces
1\ L
(8.11.4) (Ak,aevi(as)) K = < )

m(B/K)+1 | _
-1 6 ag mod mpy
o ()
Ogg’s formula (8.4.1) gives
v (Ag)—1 a(E/K)+m(E/K)—2
8.11.5) 1 oo (2 ’
(8.11. = = e
LemMma 8.12. Let E/K be as in[8.6. Independently on the choice of the uniformiser
wy in the de'ﬁnition ofd%, we have

(e mod mu o (e(m/H))
( o >_( 3 .

14| B0

Proor. We apply Tate’s algorithm by following the steps in [Sil94, IV.§9]
over K and over H for each of the Kodaira types over K. We note that a; =
az = 0. Also, we cannot have Kodaira types other than II, IT*, IV, or IV*

over H by (6)
IT: We have vk (ag) = 1, so vg(ag) = 2, and Ep/H has Kodaira symbol
IV. We find that ¢(E/H) = 3if 25 isasquarein H* and ¢(E/H) = 1
H

otherwise.

IT* : We have vk (ag) = 5, so vg(ag) = 10, and we apply a change of

variables over H like in (8.2.1) with v = wp in order to minimize the

Weierstrass equation over . The new coefhicient will be ag = 2¢-.

We find that Ey/H has Kodaira symbol IV* and that ¢(E/H) = 3if

!
28 = 9 jsasquare in H* and ¢(E/H) = 1 otherwise.
Wh WH
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IV : We have vg(ag) = 2, so v (as) = 4, and Er /H has Kodaira symbol
IV*. We find that ¢(E/H) = 3 if 24 isasquare in H* and ¢(E/H) =
H

1 otherwise.

IV*: We have vk (as) = 4, so vg(as) = 8, and we apply a change of vari-
ables like in (8.2.1) with u = wy in order to minimize the Weierstrass
equation over H. The new coefhicient will be ag = 2§-. We find that

H
Epy/H has Kodaira symbol IV and that ¢(E/H) = 3 if 2% = % isa
wH w

H

square in H* and ¢(E/H) = 1 otherwise. O

Plugging (3.11.4) and (8.11.5) into the formula of Thm. and using
Lemma [8.12] concludes the proof of Thm. O

Another proof is based on the following result, whose original proof de-
pends on a certain version of the global 3-parity conjecture (now a theorem by
the same authors).

TueoreM 8.13. [DD11, Theorem 6.3] Let M /K be a Galois extension of group
Ss and let H/K (resp. F/K) be a subextension of degree 2 (resp. 3). We denote
fr =k : Fs] and far = [kas < Fs). For an elliptic curve E /K we have

W(E/K (B Hyw(E)F) = (1) EE7m )+ () +fa-vom (FF)

ReMARK 8.14. We note that in order to determine w(E/K), the only root
numbers that have to compute are associated to elliptic curves whose Galois
representations have non-maximal, thus abelian, inertia image.

Proor or Tum. [8.10/ via MINIMAL DIFrerReNTIALS. We apply Thm. in
the setting[8.6] We compute all the involved terms except w(E/K) and ¢(E/H).

Consider the elliptic curve E/F. It attains good reduction over L and L/F
is a minimal such extension. Since L/F is totally ramified of degree 4, from
[Kob02, Thm. 3.1] we see that the Kodaira type of E/F is I1I or IIT*. Ap-
plying [Kob02, Thm. 1.1] gives

—2

(8.14.1) w(E/F) = <k> =1.

F

The extension L/H is abelian and totally ramified of degree 6, so from

Thm. [1.0.2}(1)we have
-1

(8.14.2) w(E/H) = (-1)"5 = (;) - <l<:K>

As we have seen in the proof of Lemma(8.12, E/H has type IV or IV*, and in
order to minimize the Weierstrass equation over H we had to make a change

of variables (8.2.1) with u = wp exactly in the case where E/K was of type
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II* or IV*. We have noted in that the types I7* and IV* appear exactly

m(E/K)—HJ
6

when | =1,s0

wir 1 Lm(E/6K)+1J 1
(8.14.3) (—1)fH'”H(W) - () _ <>
kH k’K

The Kodaira type of E/M is I;. From Tate’s algorithm ¢(E/M) =1, 2, or
4, so

(8.14.4) vs(c(E/M)) = 0.

I_m(E/GKH—lJ

Since pylc,, has tame and finite ramification, the Weierstrass equation over
M is minimal if and only if the A -valuation of its discriminant is < 12. In-
deed, the “if” part is general and follows from the equations ; the “only
if” part can be deduced from Ogg’s formula over M as a(E/M) = 2
and m(E/M) < 10. We have vy (Ag) = 6 - vg (Ak), so in order to minimise
the equation over M we will need to apply a change of variables with
u € M such that
oag(u) = [ KDy oeB) 2L

We have u = :ﬁ—f‘; and, hence, by applying Ogg’s formula,

(8.14.5) (—1)farom (55) _ <_1>
ki

Plugging (8.14.1), (8.14.2), (8.14.3), (8.14.4), and into the formula

of Thm. terminates the proof of Thm. O

a(BE/K)+m(E/K)—2
2







CHAPTER [I]  ————

ON rocar TAMAGAWA NUMBERS OF
HYPERELLIPTIC CURVES

AssTRACT. For an odd prime number p, let J be the Jacobian of a hyper-

elliptic curve of genus 25* defined over a p-adic field. We suppose that the

attached ¢-adic Galois representation is wildly ramified and give a formula for
the number of rational points of the component group of the Néron model.
As an application in the case where p = 5 and the curve has a discriminant of
odd valuation, we give a formula for the local root number which no longer
requires a Weierstrass equation, building on Thm. M

The setting and main results

Let p > 2 be a prime number. We fix a finite extension K/Q, and its
algebraic closure K. We adopt the convention that every algebraic extension
of K considered in this text is contained in K. By I'x, I, and I}* we denote
the absolute Galois group, the inertia subgroup, and the wild inertia subgroup,
respectively. Let vx be the valuation of K normalized so that vg (K*) = Z.
By Ok, mg, and ki we denote the ring of integers, the maximal ideal, and the
residue field of K, respectively. Let wx € mg be a uniformizer of K. There
exists a unique maximal unramified extension K /K, its residue field kx is an
algebraic closure of kx. We let I'y,. := Gal(kg /kr).

0.1. The hypotheses. Throughout the chapter we fix the following set-
ting. Let C/K be a hyperelliptic curve of genus ¢ = 2%, Let J/K be its
Jacobian, and let p; be the ¢-adic Galois representation on H}(C, Q) =
H/ (J7,Qq) for some prime number ¢ # p. We suppose that py is wildly rami-

fied, i.e., that p,(I}¥) is nontrivial.

0.2. Néron models. Let L/K be an algebraic extension. We form the
Néron model ¥ /0, of the abelian L-variety J;, := J x i L. Let $, /kr, denote
its special fiber. The identity component ¢ of Jx, is an extension of an abelian
variety B by a product of a torus 7" and a unipotent group U. We denote the
abelian, toric, and unipotent ranks of J;,/L by ar, := dim B, t1, := dim T, and
ur, := dim U, respectively. We have ar, +t; +ur = g.

The algebraic group ®1, := i, /% is finite. We define the local Tama-
gawa number of J (or C) over L as ¢(C/L) := ¢(J/L) := |®(kz)|. Under

75
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the hypotheses given in [0.1] it follows from [Lor10, Prop. 2.1.(4)] that ¢(C/L)
divides p.
The main results of this chapter are the following.

Tueorem 0.3 (Prop. Thm. 3.1). Let C/K be as in[0.1. There exists a
Weierstrass equation Y2 = P(X) defining C/K with P € O[X] unitary and
irreducible ofdegree p with constant coe]ﬁcient ag ofprime—to—p valuation v < 2p.
Then the Tamagawa number is given by

p ifag € (K*)?

1 otherwise.

c¢(C/K) = {

Our proof of Thm. relies on Dokchitser’s algorithm [Dok18] which
constructs an explicit regular model of C'/K. We will also use the results of
Bosch-Liu [BL99] that will allow to compute the Tamagawa number by using
the geometry of this regular model.

As an application of Thm. using our previous Thm. we derive
another formula for the local root number (see in the case where p =5
and C'/K has a discriminant of odd valuation. Equivalently, this is the case
where py has the maximal possible inertia action. The new formula no longer
refers to a particular Weierstrass equation.

Treorem 0.4 (Cor. [.3). Let p = 5 and let C/K be as in[0.1. Let A be any
discriminant of C/K, and let H = K(V/A). Let m(C/K) denote the number of
irreducible components of the special geomelricﬁber ofthe minimal regular model of
C/K. Let (i) be the Legendre symbol on ki, and let vs be the normalized 5-adic
valuation on Q. If H/ K is ramified, then the root number is given by

W(C/K) = (—1)ksFs]. (”W) (qystecrm),

1. A particular Weierstrass model

PropOSITION 1.1. Under the hypotheses 0.1, the Jacobian J/K has potentially
good reduction, i.e., there exists a finite extension L/ K for which we haveur, =t = 0.
Also, pe(I}Y) is cyclic of order p.

Proor. Following Grothendieck’s semistable reduction theorem [SGA 7.1,
p. 21, Thm. 6.1], there exists a Galois extension L'/K containing K" over
which C attains semistable reduction, ie., ury = 0. Equivalently, py|,, is
unipotent and, in particular, torsion-free. On the other hand, since the pro-p
and the (-adic topologies are incompatible, p(I}Y) is finite. Therefore, L' /K™
must wildly ramified, and let p” > 1 be its wild ramification index. It follows
from a result by Lorenzini [Lor90, Prop. 3.1] that

pr_l(p— 1) < QUKur +tKUI" — tL/
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Since the formation of the Néron model commutes with étale base change, we
have

2upur +tgw =2u +tg <29 =p— 1.
The two inequalities above imply that ¢;; = 0 and also that » = 1. Therefore,
J/L' has good reduction. The subfield of L’ fixed by a Frobenius lift in I'x
defines a finite extension of K over which .J has good reduction (see [ST68|
p. 498]). O

We propose a slight generalization of Liu’s results [Liu94b, §5.1].

ProposiTioN 1.2. If C/K is as in[0.1, then it is defined by an equation Y2 =
P(X), where P € K[X] is irreducible of degree p. Furthermore, P can be chosen of
the form

P(X)=XP+ap, 1 XP' +... +ay € Og[X]
with ap_1, ..., a9 € Ok such that for all 1 <i < p — 1 we have

—1

(1.2.1) vrc(a;) > vi(ao) - pp ;

and 1 < v (ag) < 2p — 1, vk (ag) # p.

Proor. We know from the classical theory of hyperelliptic curves (see, e.g.,
[Liu02, 7. Prop. 4.24]) that C/K is defined by an equation Y2 = P(X) with
P € K[X] of degree d equal to p or p + 1. Let M := K(J[2]) be the finite
Galois extension of K cut out by the kernel of the I'x-action on the 2-torsion
points J[2]. By Prop. [1.1} the Jacobian J/K has potentially good reduction. It
follows from [Ser61] that Jy;/M attains good reduction over an extension of
M of degree at most 2. Applying the Néron-Ogg-Shafarevich criterion shows
that the finite p-groups IV (M/K) and p,(I}}) are isomorphic.

Since M is the splitting field of P (see, e.g., [Mum84, 3.39, Cor. 2.11]),
the group Gal(M/K) can be regarded as a subgroup G of the symmetric group
Sg. The wild inertia subgroup IV (M/K) is cyclic of order p and is normal in
Gal(M/K), so G must be contained in the normalizer subgroup N of a p-cycle
in Sg. The group N contains the Frobenius group F, = C}, x Cp_; where
Cp—1 acts faithfully on C). Using the conjugation action of Sy on its p-Sylow
subgroups, we compute

|54 a
|N| = , - d —rem
[{p-Sylow’s of Sy} | (d=p)tp(p—1)

We have thus proved that N = F, holds and that Gal(M/K) is isomorphic
to a subgroup of F,. If P is irreducible of degree p + 1, then F,, must have a
quotient of order p + 1, which is impossible. On the other hand, if P has only
irreducible factors of degrees < p, then Gal(M/K) injects into Sj_; for some
r € IN. However, this is impossible since Gal(A/K) has an element of order p
because py is wildly ramified. In any case, we proved that P has an irreducible
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factor of degree p. If deg P = p + 1, the remaining linear factor gives a K-
point on C' which can be sent to infinity by a change of variables. We may now
assume that deg P = p.

In order to complete the proof we extend the arguments of [Liu94b, (5.1)].
We note that the above paragraph shows also that P is irreducible over K. Af-
ter making a change of variables, we may further assume that P is unitary with
integral coefficients (see also Step 1 below). The Newton polygon of P must
have a unique slope, so we obtain with non-strict inequalities. Suppose
that there is an equality for some 1 < iy < p — 1. Then, p divides vx (ag). The
polynomial

__—oxla) p
P(X) :=wp Plwg” X |€Og[X]

is unitary and has coeflicients o and @;, in 6. Then, the derivative of the
class P of P in kx[X] is not identically 0. Therefore, P splits into at least two
coprime factors in k[ X]. By Hensel’s lemma, this factorization lifts to K" [X],
which is impossible. Therefore, the inequalities in must be strict.

The last part of the proof is done algorithmically.

Step 1. Performing a change of variables X — a?X,Y + a?Y with a € K*
and dividing by a? replaces ag by aga=??. With a suitable choice of a
we obtain P such that 0 < vg(ag) < 2p — 1. The inequalities
are needed to ensure that the coeflicients of P stay in Ok.

Step 2. If vg(ag) = v with v = 0 or p, then (since ki is prefect) we may
choose b € Ok such that ¥ = —aqywy” mod mg. Performing the
change X — X + bw%p produces P for which vk (ag) > v (here
we again need (1.2.1)). If vx (ag) > 2p — 1, then we return to Step 1.

The algorithm ends eventually since Step 1 decreases the valuation of the dis-
criminant of P and Step 2 does not change it (see [Liu96, §2]). O

2. A regular model having normal crossings

We shall construct a regular 6 -model of C'/ K having normal crossings by
following Dokchitser [Dok18]]. We will recall the definitions needed to describe
the model and gradually apply them for the polynomial Y? — P(X) provided

by Prop. M

2.1. Some elements of affine geometry. Let n € IN. By an affine sub-
space A of R™ we mean a subset A C R"™ such that for every a € A, the set
Vi :={v—a|ve A} CR"is an R-vector subspace. The space Vy is inde-
pendent of the choice of a. A map h: A — B between afhne subspaces A C R"
and B C R™ is called an affine map if there exists a linear map h: R” — R and
at € R™ such that for all a € A we have h(a) = h(a)+t. Ifay, ... a; € Aand
[1,- .., ur € R are such that Zle w; = 1, then Zle pia; € A and for every
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affine map h: A — B we have h(>-F_| pia;) = S8 | pih(a;). By Conv(S) we
denote the convex hull of a subset S C R™.

Similarly, a subset A C Z" is called an affine lattice if for every I € A, the
subset A — 1 C Z™ is a free Z-submodule. A map h: A — A’ between afhne
sublattices A C Z"™ and A’ C Z™ is called affine if there exists a Z-linear map
h: Z" — Z™ and a t € Z™ such that for all | € La we have k(1) = h(l) +
We will view Z" as the canonical lattice in R™.

2.2. The Newton polytope. Let
QX Y)= Y a;X'V e K[X,Y]
(i,5)€Z2

be a polynomial in two variables. The Newton polygon of Q is
D := Couv({(i,j) € Z* | a;j # 0}) C R*.
Let _
D, := Conv ({(i, j, vk (aij)) € R? | a;; # 0}) C R3,
then the Newton polytope of @ is defined as the lower convex hull of D,, i.e.,
Dy :={seD,|V¥e>0,s—(0,0,¢) ¢ D,} C R

The surface D, is piecewise affine and can be homeomorphically trans-
formed into the polygon D by setting the third coordinate (height) to zero. For
each (¢,7) € D let h(4,7) € R denote its height defined so that (¢, j, h(4, j)) €
D,. The polyhedron D, breaks into a collection of closed two-dimensional faces
and closed one-dimensional edges. We identify each of these components with its
projection in D. Let E; be the set of edges in D, let Es be the set of faces in D,
and let ELZ = FE1 UE,.

2.3. Multiplicities. We note that every face of D, is a convex polygon
whose vertices have integral coordinates. More generally, for every (4,j) €
D NZ? we have h(i, j) € Q. For every A € Ej 5 we define its multiplicity by

oy = min{n € N* | V(i,j) € Z* N\, n - h(i,j) € Z}.

2.4. Let P be a polynomial provided by Prop. M we describe the New-
ton polytope of Y? — P(X). Let ag = uw¥ withu € 65, v € Z. Letu € k};
be the class of . In this case, the produced D and D, are both triangles by

1.2.1), so there is only one face and three edges in D,. The heights are given

by (cf.

me sl if j =0and 0 < i < p,
(41)  h(i.j) =4 vz ifj=1and0<i< PG
0 i (i,) = (0,2).

We represent the polytope D, in[Figure 1 by drawing D and writing the cor-
responding heights of D, for each point of D N Z?2.
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vp=2) . ¥
2p

L1 U/2

Ls

Ficure 1. The Newton polytope of Y2 — P(X)

If v is odd, then the only points of D N Z? with integer heights are (0,0),
(0,2), and (p, 0). If v is even, then one has to add (0, 1) to this list.

Let F' = D be the projection of the face of D,,. It is delimited by three edges:
Ly is the segment joining (0, 0) and (0, 2), Ly is the segment joining (0,2) and
(p,0), and Ls is the segment joining (0,0) and (p,0). The multiplicities are

given in|Table 1l

Taste 1. The multiplicities & associated to Y2 — P(X)

X v even | v odd
F P 2p
Iy 1 2
Lo 1 1
L3 D D

2.5. Restriction. We return to the general case M Let A € E 2 be any
face or edge in D associated to Q(X,Y). The points P € A N Z? such that
h(P) € Z form a set S, and generate an affine sublattice Ay C Z? of rank
n < 2. We note that n = 1 if X is an edge, and n = 2 if X is a face. We
choose an affine isomorphism ¢: Ay — Z™. We denote T(1:%2) := Ti1 T3> and
T? := T7. The restriction of Q to X is defined as

Q=Y a T € K[(T))1<i<nl-
sESH

2.6. Reduction. We suppose that after performing a change of variables
of the form Ty — @' Ty, To — w%(Tg for Q|5 we obtain a polynomial Q)
where Q| has the coefficients in Of. If the Newton polygons (as defined in
of Q| and
Q[x = Q| mod mg € kx[(T})1<i<n]

are equal, then the polynomial Q| is called a reduction of @ at A. In this case, we
consider the kx-subscheme X, C G?, C A" defined by the equation Q|, = 0.
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2.7. We continue where we left off with [2.4/ and determine restrictions
and reductions associated to each of the components F, Ly, Lo, and Lg, see

Figure 1. We denote

0 ifviseven,
v[2] ==
{1 if v is odd.
F : The set
G, — {(0,0),(0,2),(0,1),(p,0)} ifviseven,
" (0,0),(0,2),(p,0)} if v is odd,

generates the lattice A = ((p,0), (0,1+v[2]))z. Let ¢: Ap — Z? be
the affine isomorphism given by 4(0,0) = (0,0), ¥(p, 0) = (1,0) and
(0,1 4+ v[2]) = (0,1). The restriction of Q to F is then calculated as

T? — Ty —ap ifvis even,
Qlr = o
Ty — Ty —ao ifvisodd.
A reduction of @ at F' can be computed in a straightforward manner:

QlF =

— [T -7y —u ifviseven,
T —T) —u if v is odd.

The affine kx-scheme X C G2, cut out by Q| = 0 is smooth.

Ly : The set Sp,, = {(0,0),(0,2), (0,1 + v[2])} generates a lattice of rank
one, which we normalize by letting ¢ (0, 1+v[2]) = 1 and 4(0,0) = 0.
Then, the restriction of @ to L; is computed as

T2 —ay ifvis even,
Q|L1 = . .
T, —ag ifvisodd.

The reduction is given by

T? —u ifviseven,
Q|L1 = . .
T, —u ifvisodd.

If v is even, then Q|r, = 0 cuts out our scheme X1, C G,,, which has
exactly two kg-points, and 'y, permutes the two points nontrivially
if and only if w is not a square in K*. If v is odd, then X7, has a single
point, which is rational.

Ly : The set Sz, = {(0,2), (p,0)} generates the afhine lattice Z(p, —2) +
(0,2). After normalizing it with ¢(p,0) = 1 and ¢(0,2) = 0, we
obtain the restriction Q|z, = 1 — T}. The reduction Q[,, =1 -1} €
kx[T1] cuts out the scheme X, which has a single & x-point.
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L3 : The set Sz, = {(0,0), (p,0)} generates a lattice of rank one, which
we normalize by letting ¢(p,0) = 1 and ¢(0,0) = 0. We obtain the
restriction Q|, = —T1 — ao. The reduction Q|z, = —T} — @ cuts out
the scheme X, which has a single k x-point.

2.8. Slopes. We return to the general case @ For each edge X\ € E)
Dokchitser [Dok18, §3.12] defines a slope, denoted by [s7, s3]. In our applica-
tions, every edge will be “outer”, i.e., one that bounds only one face.

Let ' € E» be a face bounded by A (in other words, A\ C 9F). Let
hT: R?* — R be the unique affine extension of the restriction of the height
function h|p introduced in[2.2] On the other hand, there exists a unique sur-
jective affine map \5.: Z? — Z such that N \nz2 = 0 and M| przz > 0. Next,
we choose points zg, 71 € Z? such that Xi-(z¢) = 0 and Aj.(z1) = 1. Let |-] be
the floor function on R. A slope of an outer edge X at F is defined by the rational
numbers

51 =0 - (W' (z1) — T (z0)) and 55 :=|s7 —1].

The numbers s} and s3 depend on the choices of g and z1, however we will
see that this dependency can be ignored for our purposes.

ReMARK 2.9. In practice, we can choose z¢ and z; as follows. For zo we
take any point in the affine lattice L) generated by A N Z2. The affine line
Conv(Ly) = Conv(A,) divides R? into two closed half-planes, and one of them,
call it H, contains F. Then, we take 21 € (H NZ?) \ L, to be any point with
the minimal distance to the affine line Conv(L)).

Lemma 2.10. The classes of s and s3 in Q/Z and the number s7 — s3 € Q do
not depend on the choices of zo and ;.

Proor. We have s3 = |s7| — 1, so it is enough to prove the claim for s7.

The set AN Z? generates an affine sublattice Ly C Z? of rank one, which is the
kernel of \%.. We may choose z{, xj € ANZ? such that L\ = z{, + Z(x] — x})).

Let 2o € Z? be such that \%(z¢) = 0. It means that xp € Ly, so there exists
n € Z such that xg = z{, + n(z{ — =) = (1 — n)zj, + nzf. Then, by recalling
the properties of affine maps given in@ we have

W (o) = (1= m) - WP (a) + - B ().
If then follows from the definition [2.3|of 8 that 8y - ¥ (z¢) € Z.
Let 71 and 2} be points in Z? such that \j.(z1) = Ai(2}) = 1. Then,
Nio(zf + 1 — z}) = 0. Applying the above paragraph we obtain
Oy - (W (x1) = W () = 0x - W (ah + 21 —27) —6x - BT (z0) € Z. O

Remark 2.11. If M is inner, i.e., if A bounds two faces F; and F>, then a slope
is given by s := 0y - (hf1 (21) — b1 (z0)) and s := 6, - (B2 (21) — A2 (2)).
Lemma also holds for inner edges. In this case, our proof can be adapted
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to show that s3 is invariant in Q/Z. We observe that b1 |, = hf?|, , which
immediately shows that s7 — s is independent of the choice of z;p. Having fixed
some point zg € Ly, for any z1, 2} € (A\5)71(1) we have zg + 21 — 2} € L.
For i = 1,2 we obtain that

S+ (hWFi(z) — WP (ah)) = 65 - (BT (2o + 21 — o) — hF (20))
is an integer independent from .

2.12. Farey-Haros sequences. For every slope given by s} and s3 we will
need a sequence of rational numbers

(2.12.1)
A mo m1 My41 A . m;  Mi41
s]=—>——>...> = s5 such that Vi, det =1.
Vo dy T dy dri1 2 (di dit1 >

Such sequences always exist as subsequences of the Farey—Haros sequences
(see, e.g., [NZM91, §6.1]) translated by integers and can be chosen to be min-
imal. In our case of an outer edge A, the fractions in (2.12.1) can be produced
as follows. We note that the open interval (s3, s?) contains at most one inte-
ger, which is |s7]. Let ’g—: be a rational number with m; and d; > 1 coprime.
Let di11 € Z be such that 0 < d;41 < d; and its class in (Z/d;Z)* is the
multiplicative inverse of the class of m;. Then there exists a unique m;;; € Z
such that m;d; 1 — m;1d; = 1. Applying this construction recursively we will
eventually be left with d, = 1. Then m,; = m, — 1 and d,q = 1. We

note that if dy > 2, then r > 1, and for every i < r — 1 we have d; > 2 and
mi | _ | Mat1ditl ) mig
Ldz‘J o L diy1d; J _ di+1J'
By Lemma 2.1OL changing the choices of 2y and z; in the definition of a
slope translates s} and s by some common integer. We note that translat-

ing each member of a sequence (2.12.1) by some common integer produces a

sequence which also satisfies the determinant requirement. It follows that the

sequence of denominators dy > di > ... > d, = d,41 = 1 constructed above
does not depend on the choices of zy and ;.

RemaRrk 2.13. A sequence (2.12.1) can be also produced as follows. Every
rational number can be written in a unique way as a continued fraction
A 1 1 1 1

s1=co+ =+ ——7——...—
1 ler e |ler

Cc1 —

Cy —

cr

with r € N, ¢g € Z, and ¢1,...¢, € Nso. Let ¢; denote the convergent

v 1 e s vee Mi .
Ot TG T T T Writing g; in the lowest terms gives T = i for
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0<i<r,andmy 1 =co— 1, dry1 = 1. See [Dok18, Remark 3.15] for more
details and references.

2.14. We will now compute the slopes for every A € {Li, Ly, L3}, see

associated to Y2 — P(X) as in[2.4} Recall that the multiplicities d) are
given in [Table 1| For the unique face F, the function ht s given by

hE(i,§) = —— — ~L tu.
(i,7) )

Li: We choose g = (0,2) and 1 = (1,1). Then the slope is given by

Ly _ v(p—2) Li _ | n
sy' =0r, - 75,7 and sy" = [s" —1].

Lo: We choose zp = (0,2) and 21 = (251, 1). Then the slope is given by
sz = % and s52 = |st2 — 1],

L3: We choose g = (p,0) and z; = (0,1). Then the slope is given by
519 = 2 and s5° = [s1® — 1].

2.15. Description of a regular model. As we have seen in |2_7£ the
scheme X, /kg is smooth for each X € {F,Ly, Ly, Ls}. Then, C/K satis-
fies the hypotheses of [Dok18, Thm. 3.13], which produces a regular model
/0. Moreover, the model 6/0Ok has normal crossings, i.e., the special
fiber By, defines an effective divisor on € which has normal crossings, see
[Liu02, 9. Def. 1.6]. The special geometric fiber (T [k is described by the
contributions of the X ’s as follows.

\/I‘k:}(\/ d//// C////
wo. " 4G

doCy ’ dyC5, ’
4, C, XA

Figure 2. The structure of € when v is even. The 'y -ac-

el
d2 02

pCo

tion is trivial if and only if ag € (K*)2.

F : The smooth compactification of Xp is X ~ P. It appears as an
irreducible component of the special fiber with multiplicity 6. This
component will be denoted by C.

Ly : Each point of Xy, (k) corresponds to a chain of transversally inter-
secting P1’s starting at Cp. The multiplicities of the components of

the chain are given by the sequence é;,dy > dp,do > ... > d1,d,
with d;’s as in (2.12.1) for s{” and 351. The Galois action on the set of
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chains is given by the Galois action on X, (k). It is nontrivial if and
only if v is even and ag & (K*)2.

If v is even, then we have two chains. Their components are de-
noted by C4,...,Crand Cf, ..., C).

If v is odd, then we have a single chain C1, ..., C,.

Lo : The set Xy, (k) is a singleton. This gives a single chain of IP'’s start-
ing at C, and the multiplicities of the components are given by the
sequence df > dy > ... > d, as in for s and si2. The
components of the chain will be denoted by CY,...,C”,.

Lg : The set Xy, (ki) is a singleton. This produces a single chain of P'’s
starting at C.
If v is even, then le3 = B € Z, so we find that 7 = 0 in (2.12.1).
This means that L does not contribute to the special fiber.
If v is odd, then s7* = 2 > [2| > 5% sor = 1. We have a
single chain consisting of only one component C{j of multiplicity p.

24,C, W

ell
d2 CQ

pCy
2dyC,

20,0y dICY

2pCh

Ficure 3. The structure of Gr, when v is odd. The Ty, -action
is trivial.

COROLLARY 2.16. We have d, = d!’,, = 1. Moreover, if v is odd (resp. even),
then @y has exactly 1 (resp. 3) irreducible component(s) of mulriplicity 1.

Proor. For each A € {Ly, Lo}, the number s7 is not an integer, so r > 1
and 7 > 1. Also, the only trivial denominators in (2.12.1) are d, = d,41 =
d/y = dl, ., = 1. The corollary can now be deduced from Figures2jand[} O

Remark 2.17. If we take the minimal sequence in , then the regu-
lar model /0 produced above is minimal as a regular model having normal
crossings (see [Dok18, §5]), but, in general, it is not minimal as just a regular
model. The minimal regular model can be obtained from €/0x by sequen-
tially contracting the IPV’s that appear in the special fiber with self-intersection
number —1. Doing this, however, does not preserve the property of having
normal crossings.
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3. Tamagawa numbers via intersection theory

This section is devoted to proving the following.

TueoreM 3.1. Let C/K be as in Iﬂ If P is given by Prop. IZZ, then

p ifag € (K*)?

1 otherwise.

C(C/K)Z{

Let € /0O be the regular model having normal crossings whose special geo-

metric fiber was described in

3.2. Intersection matrices. Let I denote the set of all irreducible compo-
nents of 6. Let Z' denote the free Z-module on I. Then

. (ZT> m 14 2r+¢" ifwviseven,
r =|I| =
2+7r+7" ifwvisodd.

The group Tk, acts Z-linearly on ZI. As seen in the action is trivial
if ag € (K*)? or if v is odd. Otherwise, the Frobenius element in 'y, fixes
Cp,CY,...,CV, and exchanges each C; with C/ for 1 <1 < r.

Viewing any two components C,C’ € I as Weil divisors on Gp,.., we
denote by (C, ') their intersection number. Since the Jacobian J/K has po-
tentially good reduction (by , we see from [BLR9O0, 9.6, Remark 8] that the
configuration of the components of G, 15 "tree-like", and thus, in particular,
(C,C"y =1 whenever C # C" and C' N C’ # @. More directly, we can obtain
the same conclusion by using the fact that 6., has normal crossings together
with the description of the special fiber as in Figures l% and@

Let@: Z! — Z! be the Z-linear and T}, —equivariant map such that for all
C € I we have

ol

(€)= _(c,che.

cel
Let B: ZI — Z be the Z-linear and '), —equivariant map which sends each
element C € T to its multiplicity d¢ in 6, and let

B =Y deCc ez
Ccel
Let ¢; := (C;,C;) and o] := (CV,CV) denote the indicated self-intersection
numbers. We define the tridiagonal matrices

"

11 1 0 41 1. 0
1 1 1 4
B:= -‘2.'11 and B":= 2
0 .1"L7‘ 0 .1“L;{//
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ProposiTion 3.3. The map @ has rank |I| — 1, and ker @ is generated by BT.

We have | det B| = p and | det B"| = 0.

(1) If v is even, then the matrix M of @ in the basis

(Co,Ch,...,Cr,CL, ..., CLCY, ... C")

-
is given in
(2) If v is odd, then the matrix M of @ in the basis

1" 1" 1
(00701,...,07»,01,..., T//,Co)

is given in Eiéure 4@.

(91100110011 0.0

1 l ‘ ‘ ‘
ol R 0 ' 0 tpr1 o010 OLl
0 o 1 |
1 ol B 0 10
0 0 B 0 0 L,
0 1]

i | 0 0 B |o
°p o0 0 | B KR ]
0 l 1+ 0 1+ 0 -2

(a) even v () odd v

FiGURE 4. The matrix M of &

Proor. The divisor given by G, On Boeur is principal, thus for every C' €
I'we have Boa(C) = (C, 6, ) = 0. Since the bilinear form (-, -) is symmetric,
we also have B € kera. Furthermore, if we regard (-,-) as a real quadratic
form, then [Liu02, 9. Thm. 1.23] shows that its isotropic cone is generated b
B'. Therefore, @ has rank |I] — 1 and (ker@) ®z R = R - B By Cor.
BT has some coordinates equal to 1, so we must have kera = Z - BT.

In both (1) and (2), the desired form of M follows from the discussion in
The families B := (C1,...,C,) and B” := (CY,...,C”),) are free in z!
and generate free Z-submodules, denoted by (IB) and (B”), respectively. The
structure of the isotropic cone of (-, -) implies that the restrictions of (-, -) to (BB)
and (B”) are nondegenerate as real bilinear forms. This implies that B and B”
are invertible as matrices with real coefhicients. Rewriting a(BT) = 0 in terms
of the matrices from [Figure 4 and looking at the components in (B) and (B")
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gives respectively

o) [ OF ! —OF
: 0 A 0
(3.3.1) B : = : and B S| = :
: . :
Sp,d, 0 d”, 0

We multiply the equalities of (3.3.1) on the left by the adjugate matrices of
B and B”, respectively, and then compare the bottom coefhicients in order to

obtain | det B| = 5L5Fd =pand |det B"| = j,f =0p. O
17T )

3.4. Computation of Tamagawa numbers. By the I'j, -equivariant
version of Raynaud’s theorem given in [BL99, Thm. 1.1], we have a short exact
sequence of I'y, ~-modules

(3.4.1) 0— Ima — Ker 8 — ®x(kx) — 0.

We denote Z! := (ZT)FRK. Let o: Z! — Z! and B: Z' — Z be the
respective restrictions of @ and 8 to Z!. The set of I', -orbits in T induces a
canonical basis of Z!, denoted by I. Since the Iy, -orbit of Cj is trivial, we
take the first element of I to be Cjy. We will write I explicitly when necessary.

It follows from Prop. that C has a K-point, and thus Bosch-Liu [BL99,
Cor. 1.12] shows that induces a short exact sequence

(3.4.2) 0 — Ima — Ker 8 — & (kx) — 0.

Proor or Tum.[3.1] Following (3.4.2) we only need to compute the or-
der of the quotient Ker / Im o - To do this we shall apply Lorenzini’s formula

[BL99, Remark 1.16] for the matrix M associated to « in the basis I and its
(1,1)-minor, denoted by m} ;. We note that in this formula we have r; = 1
since the Ty, -orbit of Cy is trivial, e; = 1 since kg is perfect, and d = §' = 1
by Cor. M In our setting, Lorenzini’s formula is

(3.4.3) ker B /i a| = il B(Co) ™2 = i, |- 652

If ag € (K*)?, then v must be even, and the discussion in shows that
Tk acts trivially on Z!, so a = @, 8 = B, and M = M. It now follows from

(3.4.3) and Prop. [3.3| that
o(C/K) = [%er B/t o | = |det B - |det B| - p~* = p.
We now suppose that ag ¢ (K*)2. If v is even, then

IZ(Co,cl—i—C{,...,Cr—i-C;,C{/,... H)

s Ut
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is a Z-basis of Z!, in which the matrix of « is given by

Now and Prop. m give

o(C/K) = ‘kerﬂ/hna‘ |det B| - |det B”| - p~2 = 1.
If v is odd, then @ = @ and M = M always, so (3.4.3) and Prop. M give

(C/K) = ]kerﬂ/lma‘ |det B| - [det B"| -2 - (2p)~2 = 1. O

4. Applications to local root numbers

We continue in the setting fixed in[0.1} Let w(C/K) denote the root num-
ber associated to py (see, e.g., or [Roh94, §12]). Let v, denote the nor-
malized p-adic valuation on Q, let (-, )k denote the quadratic Hilbert symbol
on K*, and let () denote the Legendre symbol on ki

ProposiTiON 4.1. Let C/K be as in[0.1, and let P and ag be provided by Prop.[1.2.
We suppose that some discriminant A € K of C/K has odd valuation and let H =
K(VA). Then

1 vk (ao) C/H
(A ao)x - (kK) — —(—1yee/),

Proor. We observe that H/K is a ramified extension of degree 2. Lete = 1
if ap € (H*)? and € = —1 otherwise. Similarly as we did earlier to prove

(I1.8.11.2), by applying [Neu99, V.(3.4)] we obtain

1\ vk (ao)
(Aa CLO)K =€- (1> .
ki

We note that C/H also satisfies the hypotheses of Prop. |1.2] and thus, as
in its proof, P is irreducible over H. The integer vy (ag) = 2vk(ag) is even
and prime to p. If necessary, we make a change of variables like in the proof of
Prop. M Step 1, in order to obtain an irreducible polynomial P’ € Oy [X] with
constant coefficient af, having prime-to-p valuation v (af)) < 2p. We note that
ay = ap mod (H*)? and, in particular, vy (ap) is even. It follows from Thm.
that o)) € (H*)? ifand only if ¢(C/H) = p. Thus ¢ = —(—1)v((¢/H)), O

Remark 4.2. The choice of A in Prop. M is irrelevant since all discrimi-
nants define the same class in K /(K*)2.
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CoroLLARY 4.3. Let p = 5 and let C/K be of genus g = 2 as in|0.1. We
suppose that some discriminant A of C/K has odd valuation and let H = K(VA).
Let m(C/K) denote the number of irreducible components of the special geometric fiber
of the minimal regular model of C' /K. The root number is given by

W(C/) = (—1)kcFs]. (m(C’Zj)—i—fﬂ) (1)),

Proor. Follows from Thm.|[1.0.2, Prop. and (%) =1. O

RemaRrk 4.4. Prop. may be used with Bisatt’s result [Bis21, Thm. 2.1]
in order to obtain another formula of the root number for hyperelliptic curves
of higher genus. It would be interesting to replace the integer v (ag) by an
invariant of C'/ K that does not depend on a Weierstrass equation. The formu-
lae from Thm. and Cor. [4.3| suggest that the invariant m(C/K) might
be suitable for this purpose. Under the hypotheses of [0.1] the integer vy (aq)
determines m(C/K) completely (see Remark [2.17), however the converse in

not true, see (Table 11.2
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Etant donné une variété abélienne définie sur un corps de nombres K on peut considérer sa fonction
L complétée. Il est conjecturé que cette fonction satisfait une équation fonctionnelle sur C. Le coefficient
qui apparait dans I’équation est appelé le signe global, il vaut 1 ou —1. Grace & Langlands et Deligne
on peut exprimer inconditionnellement ce signe global comme un produit eulérien de signes locaux de
variétés localisées, indexé par les places de K.

Le signe local est un invariant associé a une variété abélienne A définie sur un corps p-adique K. Il
est défini en utilisant la représentation galoisienne f-adique p, sur le module de Tate pour un nombre
premier ¢ # p. Dans cette thése on cherche & exprimer le signe local en termes d’autres invariants.
Parmi les invariants utilisés il y a I'ordre du corps résiduel de K, le conducteur d’Artin de py, le type
du modele de Néron, les nombres de Tamagawa. Si A est une jacobienne d’une courbe C', on peut aussi
utiliser les invariants associés a C.

Dans le cas des courbes elliptiques les formules pour les signes locaux sont connues. En s’inspirant de
ces résultats on démontre des formules de signes locaux pour des variétés abéliennes avec multiplication
réelle. Ensuite, on travaille avec des surfaces jacobiennes telles que py est sauvagement ramifiée. D’apres
Serre—Tate, ceci ne peut se produire que pour p < 5. On obtient des formules dans le cas ou p = 5
et py est de ramification maximale. La derniére partie de la thése est consacrée a I’étude des nombres
de Tamagawa associés a des courbes hyperelliptiques en utilisant la construction explicite de modéles
réguliers due a T. Dokchitser et la théorie d’intersection.
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