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An end-to-end approach of statistical tolerancing under industrial
constraints: Contribution to the design/industrial virtual twin

by Ambre DIET

In the manufacturing process of a product, various assembly steps are necessary. Sev-
eral types of requirements have to be met at each level and involve considerations
about dimensional uncertainties on the parts to be assembled. Tolerancing is the
activity in charge of the management of these uncertainties and takes place both in
the product development phase and in the series production phase. In the context of
the aeronautics industry, in particular with regards to tolerancing on aerostructures,
specificities have to be taken into account in the development of adequate methods
and tools. Prior to production, one of the main issues of tolerancing amounts to allo-
cate tolerance limits suited to a given acceptable scrap rate. The aim is to allow the
actors concerned with tolerance intervals to agree on a consistent and robust tolerance
value. A statistical methodology based on a Chernov bound approach applied to a
sum of uniform distributions is proposed. In the production phase, the availability
of measurement data allows to refine the statistical tolerancing approach. The linear
model often considered can be corrected to serve new approaches. A methodology
to manage acceptance criteria on tolerance values is proposed, basing the decision
support on risk concepts pertinently defined for industrial actors. Within the frame-
work of the revision of tolerance sharing in an assembly, an optimization problem is
formulated with appropriate industrial costs in order to propose the optimal tolerance
re-sharing in a stack chain. Finally, the proposed methodologies are implemented in
tools allowing industrial processing and end-to-end management of tolerances from
elementary parts to final product assembly, thus contributing to the elaboration of
the product virtual twin.
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Résumé
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An end-to-end approach of statistical tolerancing under industrial
constraints: Contribution to the design/industrial virtual twin

by Ambre DIET

Dans le processus de fabrication d’un produit, diverses étapes d’assemblage sont
nécessaires. Plusieurs types d’exigences sont à respecter à chaque niveau et ils im-
pliquent de considérer les incertitudes de dimensions sur les pièces à assembler. Le
tolérancement est l’activité en charge de la gestion de ces incertitudes et intervient
à la fois en phase de développement du produit et en phase série. Dans le contexte
de l’industrie aéronautique, en particulier en ce qui concerne le tolérancement sur
les aérostructures, des spécificités sont à prendre en compte pour l’élaboration de
méthodes et outils adéquats. Avant la mise en production, une des problématiques
principales du tolérancement est l’allocation de limites de tolérance adaptées à un
certain taux acceptable de rebut. Le but est de permettre aux acteurs concernés
par les intervalles de tolérance de s’accorder sur une valeur de tolérance cohérente et
robuste. Une méthodologie statistique basée sur une approche type borne de Cher-
nov appliquée à une somme de distributions uniformes est proposée. En phase de
production, la disponibilité de données de mesure permet de raffiner la démarche du
tolérancement statistique. Le modèle linéaire considéré peut être corrigé à la faveur
de nouvelles approches. Une méthodologie de gestion des critères d’acceptation sur
les valeurs de tolérance est également proposée, en basant l’outil d’aide à la déci-
sion sur des notions de risques définies en adéquation avec les acteurs industriels.
Dans le cadre de la révision du partage de tolérances dans un assemblage, un prob-
lème d’optimisation est formulé avec des coûts industriels appropriés afin de proposer
le re-partage optimal de tolérances dans une chaîne de côte. Enfin, les méthodolo-
gies proposées sont implémentées dans les outils permettant le traitement industriel
et la gestion de bout en bout des tolérances depuis les pièces élémentaires jusqu’à
l’assemblage final du produit, contribuant ainsi à l’élaboration du jumeau virtuel du
produit.
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Chapter 1

Introduction

1.1 Contexte

Dans le processus de fabrication d’un avion, de nombreux domaines de compétence

sont concernés. Parmi eux, le tolérancement est une activité peu connue du grand

public. Dans le département d’ingénierie structure avion, l’équipe tolérancement gère

les incertitudes liées à la géométrie et aux dimensions des différentes pièces à assembler

lors de toutes les étapes dans la fabrication d’un avion, et plus généralement d’un pro-

duit. La nécessité de gérer les tolérances provient des exigences liées à la production,

aux performances ou à l’esthétique du produit. Dans le cas spécifique de la structure

aéronautique, les incertitudes dimensionnelles sont en effet fortement reliées aux exi-

gences imposées par la sécurité, la qualité ou encore la performance (aérodynamique

par exemple) de l’avion ainsi qu’aux exigences d’assemblage (capabilités industrielles,

outillages, . . . ).

D’un point de vue plus général, on réduit souvent le tolérancement à son activ-

ité finale qui consiste à rassembler des spécifications dimensionnelles dans les doc-

uments contractuels de définition de l’avion. Dans ce contexte, le tolérancement,

aussi appelé GD&T (pour Geometric Dimensioning and Tolerancing), peut pourtant

être abordé de différentes façons. On distingue souvent le tolérancement géométrique

(GPS pour Geometrical Product Specification) du tolérancement dimensionnel. Le

premier se réfère aux limitations en termes de forme et de position (l’inclinaison, le

parallélisme, la localisation, le battement, . . . ). Le tolérancement dimensionnel fait
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quant à lui référence aux limites de dimension ou de taille des pièces d’un assem-

blage. Ces deux aspects sont complémentaires afin de communiquer au mieux sur les

attentes concernant la géométrie et les dimensions des pièces d’un assemblage. Le

langage du tolérancement est régi par un système de normes internationales réactu-

alisées régulièrement. Les notions, les symboles, et le vocabulaire nécessaires pour la

compréhension et l’interprétation des tolérances y sont définis.

Ce travail de thèse porte sur la gestion des tolérances quelle que soit leur nature.

Les défauts de forme ou d’orientation ne sont pas pris en compte en détail dans les

méthodologies développées. Toutes les problématiques sont ramenées à l’effet d’une

tolérance quelconque sur les dimensions dans un assemblage.

1.2 Notions élémentaires, terminologie et vocabulaire

Cette section définit précisément les notions requises du tolérancement et nécessaires

pour la suite de ce manuscrit.

1.2.1 Qu’est ce qu’un assemblage ?

Un ensemble est défini par un certain nombre de pièces ou de sous-ensembles assemblés

pour remplir une fonction spécifique. Une caractéristique clé est une exigence pour une

dimension de pièce spécifique. Une même pièce peut avoir plusieurs caractéristiques,

c’est-à-dire différentes dimensions d’intérêt. Par exemple, la hauteur et la longueur

sont deux caractéristiques d’une même pièce. Il existe différentes classes de criticité

pour les caractéristiques :

• PKC (Primary Key Characteristic),

caractéristique finale dont dépend la performance de l’avion.

• AKC (Assembly Key Characteristic),

caractéristique d’assemblage impliquée dans une chaîne de côte avec pour sortie

un PKC.
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• STR (specific Tolerance Requirement),

exigence spécifique non liée à un PKC.

• MKC (Manufacturing Key Characteristic),

caractéristique élémentaire pour la dimension d’une pièce.

Chaque assemblage implique une exigence globale et un certain nombre de carac-

téristiques. Par exemple, une exigence PKC dépend de la valeur de plusieurs AKC.

Pour Airbus, la criticité est définie selon deux axes: l’importance telle que définie

dans la norme européenne dédiée à la qualité en aéronautique EN9100[1] (permet de

choisir entre KC, CTI, . . . ) et le niveau de la tolérance dans la chaîne de côte (si

c’est une exigence finale, il s’agit de PKC ou PCTI autrement ce sera AKC, ACTI,

MKC, . . . ). Ces deux axes de classification vont induire un traitement différent des

tolérances lors des phases de design et de production (niveau ciblé, controle qualité,

. . . ).

1.2.2 Vocabulaire lié au tolérancement dans un assemblage

Comme déjà abordé précédemment, il y a dans un assemblage deux concepts princi-

paux : en entrée de l’assemblage, les contributeurs sont représentés par des caractéris-

tiques de dimensions à assembler entre elles. En sortie, la caractéristique associée à

l’exigence de niveau supérieur est en quelque sorte le résultat de l’assemblage. Le lien

entre les entrées et les sorties est idéalisé par ce qu’on appelle le modèle de tolérance.

Ce concept est illustré dans un assemblages de trois contributeurs dans la Figure 1.1.

Figure 1.1: Modélisation générale d’un assemblage
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Dans le cadre du tolérancement, on définit la chaîne de côte d’un assemblage asso-

ciée à une exigence comme le catalogue des contributeurs et leurs limites de tolérance.

Ainsi, chaque assemblage dans la fabrication d’un produit est associé à une chaîne de

côte théorique qui servira de brique de base pour les méthodologies d’amélioration de

la démarche du tolérancement.

1.2.3 Niveau d’assemblage

Il existe plusieurs étapes d’assemblage lors de la fabrication d’un avion, avec un ef-

fet de cascade : le résultat d’un assemblage devient une pièce à assembler au niveau

suivant, et ainsi de suite (Figure 1.2). Par conséquent, la variation potentielle d’une

caractéristique a un effet cascade aux différents niveaux.

Figure 1.2: Exemple de différents niveaux d’assemblage

En général, pour un avion, il y a 5 étapes principales d’assemblage : Le niveau des

pièces élémentaires, le niveau de l’assemblage, le niveau du lot de travail, le niveau de

la section et le niveau de l’avion (Figure 1.3).
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Figure 1.3: Niveaux d’assemblage d’un avion

1.2.4 Source de variabilité dans un assemblage

Dans l’Industrie, un produit est conçu et fabriqué pour des spécifications de dimension

bien précises. La dimension théorique d’une caractéristique est appelée valeur nom-

inale. En réalité, le produit ne peut théoriquement pas être produit aux dimensions

exactes spécifiées sur le plan. Il existe différentes sources de variation de dimension.

Pendant la fabrication, il s’agit par exemple de l’outil ou de la machine utilisée, de

l’opérateur, des conditions environnementales (hydrométrie, température, . . . ) ou en-

core des variables dans les procédés. Les conditions de transport et d’assemblage

peuvent aussi influer, notamment si les points de support sont différents d’un poste

de travail à un autre.

Une autre source d’incertitude est le moyen de mesure et sa précision, qui perturbe

la perception du produit. Dans un processus de contrôle, le moyen de mesure et sa

précision sont supposés être adaptés à la caractéristique mesurée. Dans la suite du

manuscrit, il s’agit de la variabilité globale perçue qui est considérée, mélangeant

ainsi les effets extérieurs et la précision de mesure. Cette variabilité est considérée au

travers d’un intervalle de tolérance autour de la valeur nominale d’une caractéristique.

1.3 Motivations

Dans le contexte particulier de l’industrie aéronautique, le but de ces travaux est

d’améliorer la démarche globale du tolérancement statistique dans l’entreprise en

améliorant notablement la prise en compte des retours de production des usines.
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1.3.1 Les problématiques du tolérancement étudiées

Afin de vérifier que les exigences en matière de structure sont conformes aux spécifica-

tions, les dimensions de chaque partie de l’avion doivent être gérées correctement. La

fabrication d’un avion comporte plusieurs étapes, chacune correspondant à un niveau

d’assemblage. Depuis les pièces élémentaires jusqu’à l’avion complet, chaque écart par

rapport à la dimension nominale doit être pris en compte afin d’analyser l’impact sur

les exigences globales et de définir un intervalle de tolérance raisonnable. La cascade

des tolérances est fonctionnelle et correspond à un juste besoin industriel.

De nombreux acteurs sont impliqués dans les spécifications de tolérance : usines,

stress, fournisseurs, transporteurs, . . . . L’équipe de tolérancement est chargée de co-

ordonner toutes ces activités pour spécifier des valeurs de tolérance cohérentes, en

connaissant les différentes contraintes rencontrées tout au long du processus de fab-

rication. Si on considère un assemblage précis à un certain stade du processus de

fabrication, plusieurs problématiques liées au tolérancement apparaissent et sont à

traiter.

Il s’agit d’abord de spécifier les exigences de haut niveau de l’assemblage. Cela

signifie qu’il faut identifier quelles seront les dimensions qui devront être prises en

compte dans l’étape suivante du processus de fabrication. Par exemple, si nous con-

sidérons l’assemblage de plusieurs pièces constituant un cadre de porte, le jeu entre le

cadre et la porte est une des exigences de haut niveau. On suppose que l’étape suiv-

ante est l’installation de la porte dans son cadre. Une illustration simple est présentée

dans la Figure 1.4. L’assemblage du cadre de porte doit être conforme aux exigences

fonctionnelles pour l’étape suivante du processus de fabrication. Cela signifie que la

valeur de la hauteur du cadre doit se situer dans un intervalle précis de valeurs afin

que le jeu soit suffisant. Ainsi, la porte pourra s’insérer dans le cadre, sous réserve

que la porte ne présente pas de défauts de dimensions. Remarquons que pour le fabri-

cant du cadre, la hauteur du cadre devient l’exigence de haut niveau par l’effet cascade.
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Figure 1.4: Exemple simplifié de l’installation d’une porte dans un
cadre de porte

Une fois que les exigences d’assemblage sont identifiées, les spécialistes du tolérance-

ment analysent l’incertitude sur les dimensions des pièces impliquées dans l’assemblage.

L’approche top down consiste à cascader les exigences de haut niveau sur les tolérances

de dimension de ces pièces. L’objectif est de définir un intervalle de tolérance appro-

prié permettant de respecter les exigences de haut niveau. Considérons notre exemple

précédent : même s’il existe un intervalle de valeurs acceptables, la hauteur du cadre

ne doit être ni trop grande ni trop courte car l’exigence fonctionnelle ne serait pas

satisfaite. Le respect de l’exigence dépend de la variabilité des dimensions des pièces

impliquées dans l’assemblage du cadre. Quelle doit être la tolérance sur les dimen-

sions impliquées dans l’assemblage afin que les exigences de haut niveau de cette étape

soient respectées ?

Supposons maintenant que les intervalles de tolérance pour les dimensions im-

pliquées dans l’assemblage soient connues. L’objectif est de prévoir le résultat sur

l’incertitude des exigences de haut niveau. Il s’agit de connaître l’intervalle dans

lequel va évoluer la dimension associée à l’exigence fonctionnelle d’un assemblage,

connaissant les limites de tolérances des dimensions des contributeurs de l’assemblage.

Ensuite, nous pouvons comparer la plage de valeurs obtenue à l’objectif de l’exigence

de niveau supérieur et évaluer la tenue ou non de cette exigence. En suivant l’exemple

de la porte, cela signifie qu’il faut estimer l’intervalle de valeurs de la hauteur du
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cadre en connaissant la dimension des pièces composant le cadre de porte. Si la plage

de valeurs de la hauteur du cadre dépasse l’exigence cible, la porte ne pourra pas

forcément être montée dans le cadre. L’installation de la porte dans l’étape suivante

du processus de fabrication ne sera pas possible : l’exigence de niveau supérieur n’est

pas satisfaite si on considère les intervalles de tolérance initialement définis pour les

dimensions qui contribuent à l’assemblage. Il faudra alors envisager un changement

de nominal, de tolérance, d’outillage ou de procédé par exemple. Cette méthode de

travail est connue sous le nom d’approche bottom up.

Pour un assemblage, on associe généralement une chaîne de côte. Cette chaîne

de côte rassemble les informations des contributeurs de l’assemblage et y associe une

valeur nominale ainsi qu’un intervalle de tolérance. Que ce soit dans une approche

descendante top down ou ascendante bottom up, la méthode permettant de relier les

dimensions d’un contributeur à l’exigence de niveau supérieur est basée sur un modèle

de tolérance. Plusieurs modèles sont envisageables et seront détaillés plus loin. Le plus

souvent, les paramètres de ce modèle de tolérance sont obtenus à partir de l’analyse 3D

des assemblages, où sont modélisés les contributeurs et la caractéristique de l’exigence.

1.3.2 Le processus de tolérancement en phase série

Les tolérances sont généralement agrées entre les différents acteurs pendant la phase

de développement. La décision est basée sur un modèle de tolérance et sur des projec-

tions concernant les procédés d’assemblage, les capabilités, la criticité, les outillages

ou encore les retours d’expérience. Une fois en production, les mesures recueillies

sur les dimensions des différentes caractéristiques des assemblages sont alors censées

refléter les systèmes des tolérances agréées. Cependant, il arrive que ce ne soit pas le

cas et il s’agit de comprendre ce qu’il se passe. Pour cela et grâce à la disponibilité

des données de mesure, il devient possible de vérifier les hypothèses choisies pendant

la phase de développement.

Tout d’abord il est possible de revoir les modèles de tolérance et d’en vérifier les

paramètres. En effet, ce modèle de tolérance doit être cohérent avec les mesures de

dimension des contributeurs et la caractéristique d’exigence d’un assemblage.
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De plus, la dispersion observée sur une caractéristique de dimension peut facile-

ment être confrontée aux limites de tolérance précédemment définies. En cas de dif-

férence majeure entre hypothèse et réalité, il est alors possible de revoir le partage de

tolérance au sein d’un assemblage. En effet, un partage de tolérance est une façon de

traduire une exigence en une répartition d’incertitude sur les différents contributeurs

de l’assemblage. Si par exemple les mesures de la dimension d’un contributeur sont

moins dispersées, alors l’incertitude sur ce contributeur est moindre et pourrait prof-

iter à un autre contributeur plus incertain que prévu. Ce rééquilibrage de l’incertitude

est envisageable quand la connaissance de la réalité de l’assemblage est suffisante, tant

du côté des contributeurs (les entrées) que de l’exigence de l’assemblage (la sortie).

1.4 État de l’art

Dans cette section, un état de l’art général du tolérancement est proposé. Dans chaque

chapitre, une revue bibliographique plus précise orientée sur la problématique et les

méthodologies du chapitre est proposée.

1.4.1 Fondements du tolerancement

Les activités de tolérancement ont émergé dés l’essor de l’industrie au début du 20ème

siècle. En effet, la géométrie et les dimensions d’un élément sont rarement parfaites, et

la notion d’interchangeabilité des pièces dans un assemblage requiert des contraintes

sur ces variations par rapport au plan théorique. Ces considérations ont poussé les

ingénieurs à travailler sur les spécifications géométriques et dimensionnelles afin de

limiter les coûts d’assemblage.

Dés 1938, des travaux formalisent le domaine des méthodes géométriques pour

le dimensionnement et le tolérancement. En particulier, le livre de Parker [2] est

souvent considéré comme la référence de base sur le tolérancement, parue en 1956.

Les premières normes apparaissent pour uniformiser l’approche du tolérancement

géométrique. Le principe de Taylor est énoncé. Il est aujourd’hui appelé exigence

d’enveloppe et signifie que les dimensions maximales d’une pièce ne doivent pas être

supérieures aux limites de taille maximales (idem pour les dimensions minimales qui
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ne doivent pas être inférieures aux limites de taille minimales). La surface d’une car-

actéristique dimensionnelle isolée ne doit pas excéder l’enveloppe imaginaire de forme

idéale à la dimension au maximum de matière, un concept introduit par Chevrolet

([3]) et normé quelques années plus tard ([4]).

Le domaine du tolérancement est depuis en constante évolution. Dans [5], les

auteurs proposent un cadre général pour le tolérancement adapté aux nouveaux chal-

lenges du domaine. On y retrouve les nombreuses problématiques liées à la gestion

d’incertitudes depuis la phase design jusqu’au produit final. Celles-ci sont détaillées

et reliées aux travaux déjà existants, depuis les débuts du tolérancement jusqu’à 2018.

1.4.2 La place du tolérancement statistique

La chaîne de côte est l’outil principal du tolérancement. Il s’agit d’un ensemble de

maillons correspondant chacun à une caractéristique contribuant à l’assemblage. Pour

chacun, un certain intervalle de tolérance est associé et correspond à la variabilité di-

mensionnelle de la caractéristique par rapport à sa valeur nominale.

En ce qui concerne le tolérancement dimensionnel, l’essor des différentes indus-

tries à partir des années 50 a mené à différentes approches proposées par plusieurs

ingénieurs. En particulier, l’aspect statistique du tolérancement permet de traiter

plus efficacement et plus économiquement la gestion de tolérances dimensionnelles.

Les statistiques interviennent lorsqu’on suppose une densité de probabilité associée

à une caractéristique de dimension, tel qu’illustré dans la Figure 1.5 avec des lois

normales.

Figure 1.5: Modélisation d’un assemblage et lois de distribution
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Pour une chaîne de côte, l’analyse statistique de tolérance est une des probléma-

tiques les plus abordées dans les travaux industriels. Il s’agit de déterminer la variation

de sortie d’un assemblage en connaissant la variation des entrées. Historiquement, il

existe deux méthodes principales détaillées dans [6] : le pire cas et l’approche dite

statistique.

L’approche pire cas consiste à sommer les variabilités de chacun des maillons de la

chaîne de côte pour estimer l’intervalle de variabilité de la caractéristique de sortie de

l’assemblage. Cela garantit que les limites de l’intervalle associé à la caractéristique de

sortie ne seront jamais dépassées, à condition que les tolérances des caractéristiques

d’entrée que représentent les maillons soient respectées, ce qui n’est pas nécessairement

le cas dans l’industrie.

La racine carrée de la somme des carrés (RSS) donne un résultat statistique qui

repose sur l’hypothèse que les caractéristiques contribuant à l’assemblage sont pro-

duites suivant une distribution Gaussienne parfaite sur une plage de 6σ où σ représente

l’écart type de la caractéristique tolérancée. La caractéristique de sortie sera ainsi elle

aussi comprise dans un intervalle à 6σ. C’est souvent un résultat plus proche de la

réalité mais qui nécessite la validation de l’hypothèse Gaussienne pour être cohérent.

En phase de design, le niveau d’information disponible sur les distributions statis-

tiques des contributeurs peut être limité (il n’y a pas de phase de pré-série pour la

production des avions). Il s’avère alors risqué de prendre une forme de distribution

Gaussienne pour définir les tolérances.

Au delà de ces deux approches basiques, de nombreux travaux sur l’analyse statis-

tique des tolérances existent et reposent sur des simulations de Monte Carlo pour

différents types d’assemblages ([7, 8, 9, 10, 11, 12, 13, 14]).

Par extension, les travaux de cette thèse utilisent les statistique non seulement

pour l’analyse pure de tolérance (Chapitre 2), mais aussi à des fins plus spécifiques

dans les Chapitre 3, 4 et 5.

1.4.3 Normes

Avec la mondialisation des industries, un système de normes internationales relatives

à la modélisation du dessin technique et notamment au tolérancement a été mis en

place. Ces normes sont régulièrement mises à jour et internationalement reconnues.
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Il s’agit des normes ISO, acronyme de l’ International Organization for Standardiza-

tion. Dans le domaine, la norme ISO 14638:2015 est la norme GPS de base. Elle

conceptualise la spécification géométrique des produits (ISO GPS) et structure les

liens entre les normes ISO actuelles et futures pour répondre aux exigences du sys-

tème ISO GPS. Les principales normes sont à titre d’exemple les normes ISO 8015

([4]), ISO 5459 ([15]), ISO 1101 ([16]), ISO 14405 ([17]) ou encore ISO 17450 ([18]).

Il existe aussi un organisme de normalisation américain appelé ASME pour American

Society of Mechanical Engineers qui participe à l’élaboration des normes et publie

des documentations. Le standard ASME Y14.5-2009 [19] concerne le tolérancement.

Quelques nuances distinguent l’ISO et l’ASME, tel que des différences sur les symboles

utilisés ou l’utilisation du principe de l’enveloppe selon lequel les tolérances dimension-

nelles limitent également les caractéristiques géométriques si la cible est un élément

dimensionnel. En effet, l’ASME permet l’usage d’indication de tolérance dimension-

nelle pour une tolérance géométrique tandis que la norme ISO sépare strictement la

tolérance dimensionnelle et géométrique.

Une analyse récente sur les normes ISO et leur impact sur la digitalisation de la

production industrielle fortement liée à l’élaboration du jumeau virtuel d’un produit

est détaillé dans [20].

Le travail présenté ici n’aborde pas directement ces systèmes de normalisation

mais ceux-ci permettent la définition et l’harmonisation des notions, symboles et vo-

cabulaire utilisés.

1.4.4 Processus du tolérancement

Comme indiqué dans [21], le processus de tolérancement repose sur plusieurs aspects

principaux : la représentation de la tolérance, la spécification de la tolérance, la véri-

fication et l’analyse de la tolérance, et enfin la synthèse de la tolérance. La représen-

tation signifie l’adéquation entre les exigences fonctionnelles et la tolérance visée dans

la sortie d’un assemblage représentée par une chaîne de côte. Par exemple dans un

contexte aéronautique, la performance aérodynamique doit être assurée grâce à une

définition correcte de la tolérance de sortie pour l’étape d’assemblage final. La spéci-

fication donne des informations sur la manière de relier une tolérance de sortie avec

les contributeurs impliqués dans la chaîne de côte. Cet aspect est souvent appelé
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l’approche top down. Inversement, la vérification et l’analyse des tolérances concer-

nent la concordance entre les tolérances des pièces ou des processus et les exigences

fonctionnelles. Il s’agit d’une approche ascendante utilisant un modèle de tolérance.

Enfin, la synthèse concerne la boucle de correction effectuée grâce aux informations

supplémentaires rendues disponibles sur le produit. Dans [21], un modèle global basé

sur les normes ISO et des considérations mécaniques est décrit afin de proposer un

processus de tolérance complet et cohérent.

Dans l’entreprise Airbus, le processus du tolérancement s’articule tel que décrit

dans la Figure 1.6. Le travail de cette thèse adresse principalement l’étape de véri-

fication et d’analyse de tolérance pour le chapitre 2 et l’étape de synthèse pour les

chapitres 3, 4 et 5.

Figure 1.6: Airbus tolerancing process.

1.4.5 Outils pour le tolérancement

Il existe dans le commerce plusieurs outils pour le tolérancement. Dans [22], les au-

teurs font un point sur l’état actuel des modèles de représentation, de manipulation

et d’analyse des données de dimensionnement et de tolérancement des principaux sys-

tèmes de Tolérancement Assisté par Ordinateur (TAO en français, CAT en anglais
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pour Computer Aided Tolerancing), désormais disponibles dans le commerce. Il ex-

iste notamment CETOL 6 Sigma de Sigmetrix ([23]), CATIA 3D FTD de Dassault

Systèmes, VSA-GDT et VSA-3D de Engineering Animation Inc. ([24]), e-TolMate de

Tecnomatrix ([25]), CAT-3DCS ([26]) ou MECAmaster ([27]).

L’approche linéaire du modèle de tolérance requiert le calcul des coefficients d’influence.

Ce calcul de coefficients est notamment implémenté par MECAmaster ( pp 93-104

[28]). Ce dernier logiciel est un de ceux utilisés par l’équipe tolérancement Airbus.

Les résultats fournis par le logiciel sont ceux utilisés dans les modèles linéaires des

travaux présentés par la suite.

Les logiciels tels que e-TolMate de Tecnomatrix et CAT-3DCS de DCS s’affranchissent

du modèle de tolérance approximé linéairement. Leur fonctionnement repose sur des

simulations (de type méthodes Monte-Carlo). Le logiciel 3DCS est aussi utilisé par

les équipes Airbus, toujours dans l’optique d’estimer les coefficients d’influence dans

le cadre d’un modèle de tolérance linéaire.

1.4.6 Approche qualité et métrologie

Les domaines de la qualité et de la métrologie sont étroitement liés au tolérancement.

En effet la garantie du respect des tolérances spécifiées passe par la vérification des

données de mesures et des analyses de qualité. Symétriquement, le contrôle statistique

des processus ([29]) repose sur des indicateurs dépendant des limites de tolérance al-

louées aux caractéristiques mesurées.

Un exemple concret du lien entre le contrôle des processus et le tolérancement est

la signification d’un résultat de type RSS pour l’analyse d’une tolérance en termes

d’indicateurs bien connus en qualité : Cp et Cpk, définis dans le chapitre 4.3. Un

résultat de type RSS signifie qu’il faut atteindre un Cp égal à 1 et un Cpk égal à

1 pour tous les contributeurs afin de garantir des Cp et Cpk de 1 également pour

l’exigence finale. Ces indicateurs fréquemment utilisés en contrôle des processus et en

qualité sont détaillés dans [30].
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Cependant, et plus particulièrement dans l’industrie aéronautique où aucune pré-

série de contrôle n’est réalisée, les indicateurs couramment considérés pour surveiller

les capacités de processus ne sont pas disponibles pendant la phase de conception car

les mesures ne sont pas encore produites et la normalité des distributions ne peut pas

être vérifiée. C’est ce constat qui motive l’analyse décrite dans le chapitre 2.

1.5 Spécificités du tolérancement dans l’aéronautique

L’industrie aéronautique présente quelques spécificités dans l’approche du tolérance-

ment, distincte des autres industries telles que l’automobile ou encore l’électroménager.

1.5.1 Particularités des assemblages d’aérostructure

Par rapport à d’autres industries, les cadences de production Airbus sont faibles (Fig-

ure 1.7), de quelques centaines à quelques milliers d’avions à comparer aux millions de

véhicules produits par un constructeur automobile. Cela modifie la façon d’aborder

l’échantillonnage traditionnel pour le contrôle de la qualité, puisque peu d’observations

sont disponibles. Tous les individus sont donc systématiquement contrôlés par la

mesure. Même avec un jeu de données exhaustif, les mesures ne permettent pas for-

cément de refléter un taux de rebut souvent très bas. En effet, il est difficile de

constater sur les données de mesure un taux de 0.1% lorsque seulement 1000 pièces

sont produites est mesurées.

Figure 1.7: Livraisons et commandes Airbus par programme au 31
octobre 2020.

De plus, le nombre de pièces à assembler dans un avion est bien supérieur aux

nombres de pièces dans l’assemblage d’une voiture ou d’un appareil électroménager.
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Les assemblages d’aérostructure sont généralement de grandes dimensions, de

l’ordre de quelques mètres tandis que les déviations dimensionnelles considérées sont

souvent exprimées en millimètres. Une autre particularité des aérostructures réside

dans la façon de procéder pour un assemblage final. Chez Airbus, les différentes par-

ties de l’avion sont produites en Angleterre, en Espagne, en Allemagne ou en France

et sont assemblées dans une ligne d’assemblage finale comme celle de Toulouse. Cela

implique le transport de pièces et des systèmes industriels discontinus, engendrant

une variabilité supplémentaire. Enfin, une dernière spécificité sont les coûts souvent

élevés liés aux assemblages. Cela ne permet pas la production de pré-séries pour la

calibration des tolérances par l’analyse des mesures et des procédés. De même, les

éléments coûteux d’un assemblage sont généralement retravaillés si les dimensions ne

sont pas conformes. Dans certaines industries, il est acceptable d’écarter les pièces qui

ne répondent pas aux spécifications. Avec les aérostructures, une pièce hors tolérance

engendre généralement des coûts supplémentaires pour des réparations.

1.5.2 Contraintes industrielles

Les contraintes industrielles résident en premier lieu dans les outils de gestion des

tolérances. Pour un avion, de nombreuses tolérances sont enregistrées, réparties sur

plusieurs programmes, scénarios d’assemblage et niveaux d’assemblage. Les outils

pour le tolérancement et le traitement des données de mesure doivent être suffisam-

ment robustes, performants et rapides pour permettre une utilisation par tous les

acteurs impliqués dans la gestion des tolérances.

Les approches proposées doivent aussi être compatibles avec les processus indus-

triels appliqués dans l’entreprise. De même, il convient de respecter la culture indus-

trielle déjà en place dans les équipes.

1.5.3 Le concept de jumeau virtuel chez Airbus

Dans un contexte général, un jumeau virtuel (digital twin en anglais) est une représen-

tation numérique d’un objet, d’un processus ou d’un système, utilisée à diverses fins

([31, 32, 33, 34]). Dans le contexte de la structure aéronautique chez Airbus, il s’agit

d’une maquette numérique qui permet de représenter la géométrie de l’avion. Cette
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représentation hybride implique plusieurs composants à assembler, chacun avec leur

dimension et leur variabilité. La thèse récente ([35]) de J.L. Gregorio détaille précisé-

ment le concept de jumeau numérique dans le cadre de la maîtrise géométrique des

structures aérodynamiques lors de leur processus d’assemblage.

Dans les travaux de ce manuscrit, nous ne traitons pas directement la géométrie

des composants mais bien leur variabilité. Différentes approches sont présentées et

contribuent à représenter les tolérances, leur risque associé et leur partage au sein des

différents assemblages matérialisés dans le jumeau virtuel. Un tel jumeau numérique

requiert une actualisation fréquente au fur et à mesure de la disponibilité de nouvelles

informations. Dans le cadre des travaux de ce manuscrit, il s’agit de traiter les sys-

tèmes de tolérance en temps réels. Par exemple, les modèles de tolérance peuvent être

corrigés à chaque nouvelle donnée de mesure. De même, les risques de hors tolérances,

l’ajustement des paramètres de réglages ou le repartage de tolérance doivent pouvoir

être mis à jour régulièrement.

1.6 Aperçu de la thèse

Ce travail de thèse s’articule autour des différents points d’amélioration du proces-

sus de tolérancement dans un contexte industriel spécifique. Ce processus ainsi que

les contributions industrielles associées aux différents chapitres sont illustrés dans la

Figure 1.8.

Figure 1.8: Schéma des étapes du processus tolérancement Airbus
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Ce premier chapitre présente le contexte, les motivations, un état de l’art général

autour du sujet ainsi que la terminologie et la définition des notions pré-requises pour

la suite.

Le Chapitre 2 concerne la phase de développement et l’approche bottom up. En

connaissant les limites de tolérance des contributeurs, le but est de donner un intervalle

de tolérance sur la caractéristique d’exigence de niveau supérieur de l’assemblage

en assurant un certain taux de rebut. Pour cela, un modèle de tolérance linéaire

est considéré et les méthodes standards couramment utilisées sont présentées. Un

cadre statistique est proposé pour dérouler une méthode de type borne de Chernov

afin d’assurer un taux de rebut prédéfini lorsque la connaissance des contributeurs se

limite aux deux bornes de tolérance. Des applications théoriques et industrielles sont

détaillées.

Dans la suite d’un processus industriel standard, la disponibilité des mesures per-

met de corriger le modèle de tolérance initialement utilisé. C’est le sujet du Chapitre 3.

Différentes alternatives concernant le modèle de tolérance sont discutées et l’utilisation

du modèle linéaire est justifiée. Plusieurs méthodologies de correction du modèle sont

détaillées et appliquées sur des exemples.

Le Chapitre 4 concerne la gestion des risques liés aux tolérances pendant la pro-

duction du produit. Cela repose principalement sur des calculs de probabilités d’être

hors tolérance, elles-mêmes basées sur des estimations de densité des variables aléa-

toires associées aux caractéristiques d’un assemblage. Une limite de tolérance sur une

caractéristique implique nécessairement un risque figé de hors tolérance. La définition

de critère d’acceptation sur les tolérances permet d’assurer plus de flexibilité pour une

gestion par le risque lorsque des données de mesure sont disponibles. Des indicateurs

concernant l’information relative à la connaissance de l’incertitude amenée par des

données de mesure ainsi que des notions de risques industriellement pertinents sont

définis puis calculés sur des exemples.

L’intérêt de la disponibilité des mesures est aussi exploité dans le Chapitre 5

dans lequel la problématique du re-partage de tolérance est traitée. Un état de l’art

général des techniques d’optimisation au service du tolérancement est proposé. Une

méthodologie adaptée au processus Airbus et à ses contraintes industrielles est pro-

posée afin de répondre au besoin spécifique. Les critères de minimisation sont définis
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et justifiés, puis une méthode de résolution pour un problème d’optimisation mixte

et non linéaire est détaillée. Des exemples permettent l’illustration des techniques

proposées.

Le Chapitre 6 traite de l’implémentation des méthodes étudiées et de leurs inté-

grations dans les outils industriels. En particulier, un outil développé au cours d’un

travail collaboratif entre les équipes internes Airbus et ce travail de thèse est présenté.

Plusieurs cas d’études sont proposés pour illustrer les méthodologies de ce manuscrit.

Enfin, un dernier Chapitre 7 résume les travaux et aborde les perspectives.

1.7 Contributions

Le Chapitre 2 fait l’objet d’une publication ([36]) dans le journal The International

Journal of Advanced Manufacturing Technology, 111(11), 3571-3581, sous le titre

A Chernov bound for robust tolerance design and application. Une réfléxion plus

générale sur l’approche de bout en bout du tolérancement ([37]) a été présenté à la

16ème conférence sur le Computer Aided Tolerancing (CAT) en du 15 au 17 juin 2020.

Les méthodologies développées dans les Chapitres 2 et 4 font l’objet de demandes de

brevet, référencées respectivement sous les numéros de dépôt 1912668 et 2008847 à

l’Office des brevets français (INPI).
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Chapter 2

Design phase: Tolerance model and

allocation

This chapter is the subject of a publication ([1]) in the journal The International

Journal of Advanced Manufacturing Technology, 111(11), 3571-3581, under the title

A Chernov bound for robust tolerance design and application.

2.1 Introduction

Dimensions may have some deviation from the designed value without significant

impact on the quality and functional requirements of the final product. Tolerance in-

tervals are defined according to engineering knowledge and scientific analysis in order

to determine these acceptable variations. A deviation out of the determined tolerance

bounds is considered non-compliant and imply an action such as an investigation or

a modification in the process or the design. The perfect balance between functional

requirements and process capability has to be found so that the specified tolerance

interval is the most accurate possible. If the tolerance is too tight, the process might

not have the capability to manufacture it and either there will be many rejected items

or some costly improvement will be needed to produce compliant items. Otherwise,

a too wide tolerance will lead to non-conformity with functional requirements of the

final product and may lower the product performance. As there are often several steps

in a manufacturing process, the propagation of uncertainty has also to be taken into

account to specify the tolerance interval of following assembly steps.
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In this chapter, the focus is on the tolerances allocation during the design phase in

which tolerancing activity does not only aim at anticipating the margins of uncertainty

but also help in predicting their effects on the various assembly steps. These involve

different physical characteristics of parts, such as part length, hole position, pin, . . . ,

called features. All tolerancing issues and notations are detailed in the engineering

drawing and related documentation practices [2] and [3].

In our case, there are no available dimensions measurements because the focus is

on tolerance allocation in the design phase of a product prior production. Considering

one specific assembly stage, one of the main concern is to assess the variability of an

output feature of the assembly knowing the tolerance range of the input features. In

Figure 2.1 which is a simple example in two dimensions, input features are the lengths

of different parts and the output feature is the total length of interest in this assembly.

Figure 2.1: An assembly example: inputs and output features iden-
tification.

In the design phase, both inputs and output tolerance intervals are assumed to

be centered around the nominal dimension. To determine the variation around this

nominal dimension, there are two main methods detailed in [4]: Worst Case and

statistical approaches. These methods propose different ways to define an output

tolerance range based on inputs tolerances. Some other approaches based on sampling,

fuzzy arithmetic or analytical procedures are reviewed in [5].

Worst Case approach (see [6]) is to consider all assembly parts delivered at their

worst acceptable value (assembly output tolerance equals the sum of the input tol-

erances). Statistical approach, also called RSS approach (square Root of the Sum of



2.1. Introduction 27

Squares), gives a result assuming all input features are normally distributed (assembly

output tolerance equals the square root of the sum of squares of input features toler-

ances). Statistical result gives a much tighter tolerance range result than the worst

case approach, but it does not hedge against the case where input are not reasonably

close to their nominal value. To find a balance between this two approaches, Bender

[7] proposed to multiply the statistical result by an empiric coefficient of 1.5 to ob-

tain an inflated statistical result which is supposed to give a result tighter than the

worst case but more conservative than RSS. However, this technique does not apply

if number of assembly inputs is low as it gives a wider result than the worst case ap-

proach. Several other statistical methodologies have been studied to obtain the best

trade-off between worst case and statistical approaches. For instance, Skowronski and

Turner [8] proposed a method relying on Monte Carlo techniques. Choi et al. [9]

studied an approach based on Taguchi’s method requiring the definition a quadratic

loss function. The tolerance allocation problem is formulated as a minimization of

the sum of machining cost and quality loss. Manufacturing cost considerations for

tolerance allocation is beyond the scope of this chapter. Pillet et al. [10] proposed to

consider weighted inertial tolerancing. Inertial tolerancing works with mean square

deviation (inertia) of the output feature as limit instead of considering a tolerance

interval. Then, they applied a weighting system based on the number of assembly

inputs to obtain a reasonable tolerance result. An other approach has been studied

in [11] by taking an interest in the meaning of the conformity. Instead of limiting the

assembly output variability, they propose a formal definition of statistical conformity

that does not apply individually to a part but to a part population.

Note that tolerance intervals are highly related to the assemblies processes capa-

bilities. Even if suppliers process capability indicators should be monitored as detailed

in [12], the normality of features distributions can not always be verified.

One of the objective of the tolerancing is to assess the same confidence in a tol-

erance interval whatever the distribution of inputs are, as long as these inputs are

delivered within the claimed tolerance range. Indeed, suppliers of parts receive a

nominal value and two dimension limits. They are also required to follow a target
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distribution, however checking this compliance is difficult in practice. At the design

stage, it is impossible to characterize the features distributions from measurement

data. Uniform distribution is a better option to hedge against less favorable distribu-

tions of suppliers values.

Knowing lower and upper limits, the less informative distribution is the uniform

distribution. It means results obtained with this assumption still stands for alternative

distribution provided that distribution support is finite. If the support is not finite,

as is the case for Gaussian distribution, uniform assumption is still a good candidate

because this is a conservative approach.

A mathematical tool is proposed to define an accurate assembly output tolerance

range considering uniform input features and taking into account the stack chain

inputs structure. Indeed, result on output tolerance is highly dependant on how bal-

anced is a stack chain. A balanced stack chain means that all contributors have the

same impact on the output. Conversely, the predominance of one contributor in the

assembly leads to an unbalanced stack chain. The aim is to present an analytical

result that links stack chain inputs structure and output tolerance range. This kind

of outcomes could be obtained from Monte Carlo simulation but such a procedure

is not analytical and does not provide information on the link between inputs and

output tolerances.

The chapter is organized as follows: statistical framework is introduced in Sec-

tion 2.2, main results are presented in Section 2.3: First part is devoted to traditional

approach on deviations and following parts detail improvement on the upper bound

accuracy and balance term introduction. In Section 2.4, a simulation study is carried

out in order to represent and compare our results. Finally, an example on airframe

assembly with real inputs data is performed.
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2.2 Statistical framework

Consider a set of input features X1, . . . , Xn ∈ R and an output feature Y ∈ R. All

input features are assumed to be independent random variables for the reason that

assembly parts are supposed to be separately produced. The main interest here is in

the variability of the output Y and especially in a way to define a tolerance range for

this feature.

From an engineering perspective, input features

X1, . . . , Xn ∈ R shall correspond to the stack chain contributors of an assembly such

as parts dimensions, while the output feature Y relates to the top level requirement.

Each input feature is assumed to be centered around a nominal dimension and

has its own variability characterized by its tolerance range [−vi, vi], ∀i ∈ {1, . . . , n}

where v1, . . . , vn > 0 are the tolerance bounds. This variability reflects the uncertainty

linked to the process (temperature, control plan, ground motion, delivery types, . . . ).

In order to discuss about the feature Y , assembly step must be modeled to rep-

resent the link between inputs and output of the assembly. for isoconstrained mech-

anisms, a common approach in tolerancing is the linear coefficient model (see [13]).

If the variations are supposed to be small around the nominal dimension, the linear

approach is appropriate. More elaborated models than linear one could be considered,

such as studied in [14] where assembly geometry is taken into account. In this chapter,

the framework is to work with a linear model on centered tolerances.

Based on the knowledge of inputs tolerances and influence coefficients on the out-

put, output result is seen as a linear combination of all inputs weighted by known

influence coefficients (previously determined with a 3D CAD tool and only linked to

the assembly geometry). Let denote α1, . . . , αn the coefficients for a linear tolerance

model and input dimension features Z1, . . . , Zn, then

Y =

n∑
i=1

αiZi.
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For ease of notations, the weighted features denoted by α1Z1, . . . , αnZn are di-

rectly treated. These input features are denoted already multiplied by their respective

influence coefficients by X1, . . . , Xn. In this formalism,

Y =
n∑
i=1

Xi.

For a given confidence level ρ, the aim is to determine the associated tolerance

interval [−t, t] for the output feature Y , verifying

P(|Y | > t) 6 ρ.

The tolerance interval is determined based on the distribution of the output fea-

ture which depends on input features distributions.

A popular practice is to consider all features as Gaussian which leads to a Gaussian

output feature. By applying the commonly used 6σ methodology, the confidence level

is ρ = 0.0027. In Gaussian framework, the result is t = 3σY with σY the standard

deviation of the feature Y .

Within the Gaussian framework, the 6σ methodology gives the standard deviation

of each input feature: vi/3, ∀i ∈ 1, . . . , n. As input features are assumed independent,

the standard deviation of the output feature in the Gaussian case is 1
3

√∑n
i=1 v

2
i .

Again, the 6σ methodology leads to the interval [−TRSS , TRSS ] for the output feature

tolerance, where TRSS =
√∑n

i=1 v
2
i . This tolerance interval is commonly called the

statistical result or RSS (Root Sum of Squared) result by the tolerancing community.

However, as tolerance allocation is considered in the design phase, Gaussian assump-

tion can not be verified from measurement data on features. Only tolerances bounds

of input features v1, . . . , vn are available.

Input features are considered as uniform random variables, since it is the least

informative available distribution given our knowledge about inputs. The purpose is

to characterize the deviation of the sum of uniform independent random variables.
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Killmann and Von Collani [15] studied the distribution of the sum of uniform fea-

tures. Their idea was to explicitly calculate density of the sum but such a closed form

is numerically intractable and therefore not suited to our context.

Note that our objective is to focus on the quantile of the distribution of Y ensur-

ing a given probability ρ to be out of tolerance. This probability value is fixed in our

framework and the tolerancing problem uniformly according to ρ is not planned to be

addressed here. This is the point of view of the field of optimal transport as developed

in [16] but controlling distribution tails leads to poor results in practice for reasonable

values of ρ.

In the uniform case, input features standard deviations are now vi/
√

3,∀i ∈

1, . . . , n, and the standard deviation of the output feature is 1√
3

√∑n
i=1 v

2
i . In this

case, the 6σ methodology is applied with standard deviations of uniform distributions

and the output feature tolerance interval would be [−
√

3× TRSS ,
√

3× TRSS ].

The coefficient
√

3 is an accurate coverage factor on the statistical result if the

v1, . . . , vn are all equal but it does not address the case where they are unbalanced.

Yet, if one of the feature predominates over others, for a same confidence level the

output tolerance interval should be tighter, as shown in the Figure 2.2.

Figure 2.2: Output feature distribution for several balance ratio of
inputs.

The aim of our approach is to introduce a shape coefficient in order to correct

the RSS interval result assuming the input distributions are uniforms. This balance

indicator aims to determine how inputs contribution to the output variation is dis-

tributed. Indeed, this coefficient will depend on how unbalanced input features are. It
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also depends on the selected confidence level ρ. The value
√

3 for this shape coefficient

means that v1 = v2 = · · · = vn. The more input features are unbalanced, the lower

the form coefficient value is.

Next, the focus will be on the role of this coefficient and its impact on the proba-

bility ρ.

2.3 Main results

If Gaussian independent input features are considered with a tolerance interval [−vi, vi],

∀i ∈ {1, . . . , n}, the associated standard deviation from the 6σ methodology is vi/3,

∀i ∈ {1, . . . , n}. If the features are denoted Ni and Ni ∼ N (0, vi/3), then ∀i ∈

1, . . . , n, the standard Gaussian deviation inequality gives

P

(∣∣∣∣∣
n∑
i=1

Ni

∣∣∣∣∣ > t

)
6 2 exp

(
− t2

2
∑n

i=1

(
vi
3

)2
)

and then

P

∣∣∣∣∣
n∑
i=1

Ni

∣∣∣∣∣ > 1

3

√√√√2log

(
2

ρ

) n∑
i=1

v2
i

 6 ρ

that is equivalent to

P

(∣∣∣∣∣
n∑
i=1

Ni

∣∣∣∣∣ > lρ × TRSS

)
6 ρ

with

lρ =
1

3

√
2log

(
2

ρ

)
.

For fixed ρ and independent uniform input features Ui ∼ U([−vi, vi]), ∀i ∈ 1, . . . , n,

our aim is to determine f such that

P

(∣∣∣∣∣
n∑
i=1

Ui

∣∣∣∣∣ > f × lρ × TRSS

)
6 ρ. (2.1)

This f coefficient aims to correct the RSS value obtained in the 6σ Gaussian case,

together with the fixed value lρ which manages the confidence level ρ.
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2.3.1 Hoeffding approach for the deviation of a sum of bounded

random variables

Traditional approaches based on deviations are related to the Hoeffding inequality

which provides an upper bound on the probability that the sum of bounded indepen-

dent random variables deviates more than a certain amount.

As detailed in [17] and [18], this inequality applied to the sum of uniform inde-

pendent random variables Y =
∑n

i=1Xi gives a non asymptotic upper bound for the

probability of deviation. This result is summarized in the Proposition 1.

Proposition 1. Let v1, . . . , vn > 0, if X1, . . . , Xn are independent random variables

such that

∀i ∈ {1, . . . , n}, |Xi| 6 vi, a.s.

then,

∀t > 0,P

(∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣ > t

)
6 2 exp

(
− t2

2
∑n

i=1 v
2
i

)
.

Proof. See Section 2.6 in [18].

Setting t =

√
2 log

(
2
ρ

)∑n
i=1 v

2
i leads to

P

 n∑
i=1

Xi >

√√√√2 log

(
2

ρ

) n∑
i=1

v2
i

 6 ρ,

and with f = 3 in order to match the expression (2.1). Now, it becomes

P

(
n∑
i=1

Xi > 3× lρ × TRSS

)
6 ρ.

Hoeffding approach only takes into account the fact that random variables are

bounded. However, here the information that features are uniform random variables

is also available. This information will be used to find a tighter upper bound for the

deviation of a sum of uniform random variables. As a result, a lower value for the

coefficient f is obtained.
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2.3.2 Chernov approach to improve the bound for a sum of uniform

random variables

As it has just been mentioned, the Hoeffding approach is solely based on the support

of the distribution involved in the deviation inequality. To improve such an upper

bound, this distribution has to be considered more carefully. To this end, the well-

known Cramér-Chernov bounding method is available. Such an approach is based

on the following inequality derived from Markov’s inequality and valid for any real

random variable W and any real λ > 0,

∀t > 0, P (W − E[W ] > t) 6 e−λtE
[
eλ(W−E[W ])

]
.

Thus, the method consists in optimizing this upper bound with respect to λ > 0 in

order to exhibit a sharper deviation inequality.

The following proposition is stated and proved:

Proposition 2. Let v1, . . . , vn > 0, if X1, . . . , Xn are independent random variables

such that

∀i ∈ {1, . . . , n}, Xi ∼ U([−vi, vi]),

then,

∀t > 0,P

(∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣ > t

)
6 2 inf

λ>0
{exp (φ(λ, t))}

where the function φ is defined for any λ, t > 0 by

φ(λ, t) =

n∑
i=1

log

(
eλvi − e−λvi

2λvi

)
− λt. (2.2)

Proof. Let λ > 0, applying Markov inequality to the positive random variable exp (λ
∑n

i=1Xi)

gives the following upper bound on the probability that the sum of uniform indepen-

dent random variables deviates more than t > 0

P

(
n∑
i=1

Xi > t

)
6

E[eλ
∑n

i=1Xi ]

eλt
.
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Thus, using the symmetry of the uniform distribution, for any t > 0,

P

(∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣ > t

)
6 2 exp (φ(λ, t)) .

The upper bound is valid for any value of λ > 0 and the announced result follows

by taking the infimum according to λ.

The optimization of φ function with respect to λ is highly related to the input

features balance. Next, a way to characterize this dependency is detailed.

2.3.3 Dependency on the features balance

The aim of this section is to provide details on how to determine the value of λ which

is obtained from a function minimization in the upper bound previously presented.

A concept of balance between input features is introduced. This balance represents

the discrepancy between the uniform distributions parameters: if all uniform random

variables have the same parameters, it means a perfect balance between tolerance

bounds. Otherwise, one of the random variables within the sum may have a much

larger support set than others and it leads to imbalance between tolerance bounds.

The upper bound result from Proposition (2) is taken. The idea is to bound from

above this result by introducing a specific term that identifies the influence of the

balance within v1, . . . , vn.

The focus is on the sum of logarithms in the function φ given in (2.2) that can be

rewritten as

n∑
i=1

log

(
eλvi − e−λvi

2λvi

)
(2.3)

= λ

n∑
i=1

vi +

n∑
i=1

log

(
1− e−2λvi

2λvi

)
= n log

(
1− e−2λv̄

2λv̄

)
+ Sλ (2.4)

with Sλ defined as follows

Sλ =

n∑
i=1

(
log

(
1− e−2λvi

2λvi

)
− log

(
1− e−2λv̄

2λv̄

))
.
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The term Sλ quantifies the imbalance between uniform distributions parameters.

In the next two propositions, results are proposed about the upper bound on the

probability that the sum of uniform independent random variables deviates from its

expected value.

Proposition 3. Let v1, . . . , vn > 0 and the mean v̄ be defined as

v̄ =
1

n

n∑
i=1

vi.

If X1, . . . , Xn are independent random variables such that ∀i ∈ {1, . . . , n}, Xi ∼

U([−vi, vi]) then,

∀t > 0, P

(∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣ > t

)
6 2 exp (ψ(λ0, t)) .

where for any λ, t > 0

ψ(λ, t) = −λt+ λnv̄ + n log

(
1− e−2λv̄

2λv̄

)
+ λ

n∑
i=1

|vi − v̄|

and λ0 is such that
∂ψ(λ0, t)

∂λ
= 0

For a set of tolerance bounds v1, . . . , vn > 0 and a fixed probability ρ, t veri-

fies ψ(λ0, t) = ρ. The value of interest t is obtained by inversion with respect to t

of the function ψ. With this expression, the balance within v1, . . . , vn appears via∑n
i=1 |vi − v̄|. Indeed, this term is large for unbalanced values v1, . . . , vn and small

otherwise. Next, Propostion 3 is proven.

Proof. Let function h be defined as

∀x > 0, h(x) = log

(
1− e−x

x

)
.

This function is 1
2 -Lipschitz continuous. The proof is detailed below.
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Proof. The definition of Lipschitz continuity of a function f : R → R is recalled. Let

L > 0, if the function is such that

∀x, y ∈ R, |f(x)− f(y)| 6 L |x− y| .

Then, f is said to be Lipschitz continuous with constant L. In this appendix, the

previously claimed Lipschitz continuity of function h defined by

∀x > 0, h(x) = log

(
1− e−x

x

)

is proven with constant L = 1/2.

The first and second derivative functions of h are easily obtained as

∀x > 0, h′(x) =
e−x

1− e−x
− 1

x
,

h′′(x) =
1 + (1 + x2)e−x

x2(1− e−x)2
.

Since h′′(x) > 0 for any x > 0, then h′ is an non decreasing function. Moreover,

h′(x) tends to −1/2 when x → 0+ and to 0 when x → +∞. Thus, the conclusion

is that |h′(x)| 6 1
2 and finally that h is Lipschitz continuous with L = 1/2 by a

straightforward integration argument.

The Lipschitz property for the function h is verified, therefore

∀x, y > 0, |h(x)− h(y)| 6 1

2
|x− y| . (2.5)

This inequality is applied for x = 2λvi ∀i ∈ {1, . . . , n} and for y = 2λv̄ and sum

the terms to obtain

Sλ 6 λ

n∑
i=1

|vi − v̄| .

The announced result follows from this upper bound on Sλ in the equation (2.4).

In the previous proposition, the balance ratio of the vi was quantified through the

absolute values |vi− v̄|. It is natural to consider also the variance to this end and this

is the purpose of the next proposition.
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Proposition 4. Let v1, . . . , vn > 0, the mean v̄ and the variance σ2
v be defined as

v̄ =
1

n

n∑
i=1

vi and σ2
v =

1

n

n∑
i=1

(vi − v̄)2 .

If X1, . . . , Xn are independent random variables such that ∀i ∈ {1, . . . , n}, Xi ∼

U([−vi, vi]) then,

∀t > 0, P

(∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣ > t

)
6 2 exp

(
ψ̃(λ0, t)

)
.

where for any λ, t > 0

ψ̃(λ, t) = −λt+ λnv̄ + n log

(
1− e−2λv̄

2λv̄

)
+
nλ2σ2

v

2

and λ0 is such that
∂ψ̃(λ0, t)

∂λ
= 0

As in Proposition 3, tolerance bounds v1, . . . , vn > 0 and a fixed probability ρ lead

to a value t obtained by inversion with respect to t of the function ψ̃. The proof of

Proposition 4 is as follows.

Proof. The Lipschitz continuity of h ensures the following inequality (see for example

Lemma 1.2.3 in [19] for a proof of this result):

∀x, y > 0, |h(x)− h(y)| 6 L

2
‖x− y‖2 .

This result applied to x = 2λvi ∀i ∈ {1, . . . , n} and for y = 2λv̄ gives

∀λ, v1, . . . , vn > 0, |h(2λvi)− h(2λv̄)| 6 λ2

2
‖vi − v̄‖2

and finally, since Sλ =
∑n

i=1 (h(2λvi)− h(2λv̄)),

Sλ 6
nλ2σ2

v

2
.

The announced result follows from this upper bound on Sλ in the equation (2.4).
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2.4 Applications

The first part of this section will describe how our upper bound behaves on different

stack chains obtained from simulations. The second part will focus on a practical

study on an industrial example of tolerance definition within an aircraft assembly.

2.4.1 Simulations

Tolerance design on an assembly example

First step is to simulate stack chains. Stack chains represented by featuresX1, X2, X3, X4, X5

are randomly generated with a number of inputs n = 5. Their tolerance intervals val-

ues v1, v2, v3, v4, v5 are also randomly generated between 1 and 5.

The aim is to assess on the output tolerance variability via tolerance intervals to

be defined, and accepting an out-of-tolerance rate ρ. A stack chain is generated with

tolerance inputs intervals bounds and traditional output results as following:

Table 2.1: Example of a stack chain characterization.

X1 X2 X3 X4 X5 RSS WC

v1 = 5 v2 = 4 v3 = 3 v4 = 2 v5 = 1 7.4 15

The first approach is based on Monte Carlo methods. N = 105 observations are

generated from n = 5 uniform distributions and are summed. The probability to

be out of a given tolerance interval can therefore be asymptotically estimated and

considered as a near theoretical result. The two following methods give an output

interval bound according to the two approaches proposed in this chapter. The provided

upper bound depends on the selected confidence level ρ. This level is the probability

for the output feature to be out of the designed output tolerance interval. The higher

the confidence level, the wider the tolerance interval is. Indeed, if more values to be out

of tolerance are allowed, the output tolerance interval should be broader. Figure 2.3

illustrates the results obtained from Monte Carlo draws and from the methods detailed

in this chapter.
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Among the three methods, Figure 2.3 shows that the Lipschitz and Quadratic

approaches give a looser upper bound than the Chernov method.

Figure 2.3: Example of the behavior of the probability to be out of
tolerance with respect to the value of the output tolerance bound for

the discussed approaches.

The benefits of the methods proposed in this chapter is that they do not require

Monte Carlo draws, nor asymptotic estimation of the probability to be out of tolerance.

Indeed, the provided bounds offer theoretical non asymptotic guarantees and eliminate

any risk of rare events that Monte Carlo methods would not generate. Moreover, for

large assemblies, the number of Monte Carlo draws needed to obtain a sufficiently

sharp result would grow with the number of input features in the assembly. The

discussed formula are closed and directly usable in practice and cheaper to compute

than Monte Carlo simulations.

Influence of the assembly geometry

In order to represent the balance within a stack chain, previous sections introduced

the following term

Sλ =

n∑
i=1

(
log

(
1− e−2λvi

2λvi

)
− log

(
1− e−2λv̄

2λv̄

))
.
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In particular, taking arbitrarily parameter λ = 1 leads to

S1 =

n∑
i=1

(
log

(
1− e−2vi

2vi

)
− log

(
1− e−2v̄

2v̄

))
.

This quantity can be used as an indicator of the balance of the stack chain. Indeed,

the more balanced the stack chain is, the lower the value is and vice versa.

As mentioned in the previous part, one of our main issue is to take into account the

traditional RSS result and the balance of the stack chain. This explains why hereafter

the choice is to display the coefficient f with respect to some balance indicator such

as S1 or other dispersal measures within input features.

First, in Figure 2.4, the results are showed for the coefficient f obtained from a

Monte Carlo simulation of uniform distributions with 2 × 105 drawn observations.

Next, the coefficient f is displayed according to the Chernov methodology as de-

tailed in Proposition 2. Finally, it shows that bounding by Lipschitz and Quadratic

approaches directly depend on some balance factor.

Figure 2.4: Link between the coefficient f and the balance factor S1

with parameter ρ = 0.05.

An almost linear behavior of the result with respect to the balance factor S1

is observed for the Monte Carlo approach and for the Chernov methodology. This

factor S1 seems to be a relevant indicator to characterize f coefficient. As expected
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and due to the upper bounds defined in these methods, both Lipschitz and Quadratic

approaches give results much more conservative. Still the Quadratic approach is more

accurate for small values of S1. This is explained by the fact that the result with

Quadratic approach in Proposition 4 takes into account the variance of input feature

bounds. For a small S1, input features are balanced and variance is a more regular

control quantity for the structure of the stack chain than the sum of absolute deviations

around the mean v̄ introduced in Proposition 3.

2.4.2 Case study

In this part, the focus is on industrial practices at Airbus. First, the example of an

assembly from an aircraft is taken and results from the methodology proposed in this

chapter are showed. Then, the common process of tolerance definition at Airbus is

detailed and explanation about how it is related to the approaches presented in the

chapter are provided. Finally, all stack chains are represented in a real aeronautical

product perimeter according to the balance factor.

An assembly example

The assembly in Figure 2.5 is related to a generic frame misalignment for an Airbus

aircraft.

Figure 2.5: Example of vertical frame misalignment with respect to
the last rigid point.

Table 2.2 gives the stack chain data of this requirement. Tolerance bounds value

have been modified.
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Name of the contributor Tolerance interval

Frame 1 ±1

Frame 2 ±0.5

Process tolerance ±0.25

Process tolerance ±0.23

Process tolerance ±0.2

Process tolerance ±0.2

Process tolerance ±0.15

Process tolerance ±0.13

Process tolerance ±0.1

Process tolerance ±0.09

Table 2.2: Stack chain: frame misalignment - last rigid point.

It involves 10 input features in the assembly and tolerance data are scaled and

unit free. Table 2.3 provides traditional tolerancing worst case and RSS results. The

application of the different methods proposed in this chapter gives the results depicted

in Figure 2.6.

Worst Case result RSS result

±2.85 ±1.23

Table 2.3: Result: frame misalignement - last rigid point.

Figure 2.6: Real case study of a bound value according to the con-
fidence level.
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Results for the real case study are very similar to simulated data conclusion.

Indeed, Lipschitz and Quadratic analytical approaches still do not give a sharp bound

result compared to the Monte Carlo and Chernov approaches. In practice, the more

accurate method in order to design an output tolerance should be the Chernov one.

Note that the values for the probability of Out Of Tolerance probability considered

are generally the lower percentages on the y-axis as the aim in practice is to limit the

scrap rate and in Airbus practices, the reference value is often 0.27%. This reference

value is displayed in the Figure 2.7 which focuses on the percentage below 1% for Out

Of Tolerance probability. The limits defined by RSS and WC methods applied to the

assembly example are also displayed.

Figure 2.7: Real case study of a bound value according to the con-
fidence level zoomed on relevant values for Airbus.

Industrial practices: Airbus

Among the methods used by Airbus to define a tolerance in the design phase, one of

them is an approximation of Monte Carlo simulation data under uniform assumption

for contributors distribution and a disproportion parameter. As for the Gaussian case,

quantile at 0.27% are observed on Monte Carlo simulations and a linear regression

with respect to the factor parameter is carried out to obtain the result. For a set of

tolerance bound v1, . . . , vn > 0 for an input features balance ratio D, this rule gives
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an output feature tolerance interval [−TAirbus, TAirbus] defined as:

TAirbus = β × (−0.56D + 1.04)× TRSS (2.6)

with TRSS as defined in previous parts,

∀v1, . . . , vn > 0, D =
maxi(vi)− v̄∑n

i=1 vi

and β > 0 a coefficient. In practice and without claim of universality, Airbus indus-

trial approach takes β = 1.6 as a relevant value for business and in order to ensure

continuity with former practices.

This D factor measures how far from the mean is the main contributor of the

stack chain and has the advantage of being understandable. This quantity is highly

correlated to the term S1 previously introduced as shown on the Figure 2.8:

Figure 2.8: Correlation between the term S1 and the balance factor
D.

With this definition, a high D still implies an unbalanced stack chain. Conversely,

a small value of B means a balanced between stack chain inputs. Figure 2.9 shows a

few examples of this factor with the respect to the stack chain structure.
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Figure 2.9: Stack chain structure and balance factor D.

In practice, 70% of the stack chains have a D value between 0.10 and 0.36. The

Figure 2.10 details the repartition of the coefficient value for Airbus stack chains.

Figure 2.10: Repartion of D values for Airbus assemblies.

In the industrial example of the frame misalignment. The probability to be out of

tolerance for the output feature is set at ρ = 0.0027, which corresponds to the accept-

able 0.27% out of the interval from the 6σ methodology. Table 2.4 summarizes the

tolerance interval obtained for the frame misalignment. Three results are displayed:

the Monte Carlo approach with 200000 drawn observations for each input feature,

the Chernov approach proposed in this chapter with ρ = 0.0027 and the industrial

practice presented in (2.6).
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Method
Monte Carlo

ρ = 0.27%

Chernov

ρ = 0.27%

Industrial

practice

Tolerance

interval
±3.56mm ±4.01mm ±3.53mm

Table 2.4: Tolerance interval results according to the different ap-
proaches.

For a level ρ = 0.27%, the result from the industrial rule is very close to the value

observed on Monte Carlo simulations. The Chernov method gives a more conservative

result but ensures a precise probability ρ to be out of the interval for the output feature.

Performance of the different approaches on industrial cases

Focusing on a real sample of aeronautical assemblies, all stack chains have been ana-

lyzed in order to obtain the value of the f coefficient times lρ for ρ = 0.27%, according

to the different methodologies. The Airbus rule that can be used for decision helping

is also displayed. This is an approximation for the selected confidence level.

Figure 2.11: Link between the term introduced and the balance
factor D.

The same trend that for simulated data is retrieved: Better result for Chernov

approach and linearity in D. For Monte Carlo simulations, a similar linear behaviour

is observed with respect to the balance factor D. The airbus rule seems to be a good

approximation for evaluate the coefficient f times lρ with a confidence level ρ = 0.27%.
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2.5 Conclusion

Robust approaches are proposed for tolerance definition in the design phase allow-

ing the management of confidence level. From known input tolerance intervals of an

assembly and for a selected confidence level, the output tolerance interval can be de-

termined. The result will be robust against poor or unknown industrial capabilities

because uniform distributions on tolerance intervals are assumed for input features.

The Chernov method is particularly accurate and gives an output tolerance in-

terval result close to the reality, tight enough to be industrially relevant, and ensures

also the selected probability as confidence level. A balance factor is also provided.

This factor is strongly related to how tight an interval should be according to the

disproportion of the stack chain. An almost linear behavior of the result is obtained

from the Chernov methodology with respect to this balance factor.

Future directions of this work would be to consider more adversarial distributions

for input features. For instance, bimodal distributions or truncated distributions

could be studied in order to hedge against industrial practices with the induced bias

of machine or thrust effect. Additionally, extension to this work in more general

nonlinear settings for the model output Y as a function of the input features could be

thought of. Indeed, if the model is nonlinear but the variance of each input component

is finite, [20] suggests that one could also control the model output as proposed in our

study.
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Chapter 3

Tolerance model re-adjustment

from in-service data

In this chapter, the use of linear tolerance model is discussed and approaches for model

enhancement are proposed. Data availability, model uncertainties and integration

effect are considered. Finally, implementations of proposed methodologies are detailed

in examples.

3.1 About linear tolerance model and alternatives

The tolerance model represents the link between the inputs of the assembly, the con-

tributors and the output (the top level requirement). An illustration of this notion

for a number p of contributors is illustrated in Figure 3.1.

Figure 3.1: General context: assembly tolerance model

The linear model is widely used due to its easiness. In the literature, several other

tolerancing models are available and each one has benefits and limitations. These

models often involve considerations of geometrical parameters that make the storage

and use of the tolerance model in the industrial context more complex than a linear

approach. The vectorial tolerance approach presented in [1] needs to determine the
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contact surfaces between the components during the assembly process and contact

parameters needs to be determined in order to discuss about the assembly output

tolerance. The Technologically and Topologically Related Surfaces (TTRS, [2]) also

relies on geometrical surfaces identifications and associations. The Small displacement

torsor method ([3]) is a basic concept used in several improved approaches. Under the

assumption of rigid body, rotations and translations vectors are considered to define a

torsor that will be used to solve a general problem fitting a geometrical surface model

to a set of points. The Tolerance-Map (T-Map) model is based on a hypothetical

Euclidean point-space hypothesis. All variations possibilities in size and shape of this

space are explored in order to define the variation range of features through a point

to point analysis. Details about this approach are available in [4] and [5]. The Direct

Linearization Method (DLM) detailed in [6] is a generalization of vectorial tolerancing

approaches. The approach is based on a first order Taylor expansion and kinematic

constraint equations. A comparison with Monte Carlo approach is discussed in [7].

More recently, the skin model and its discrete version skin model shape modelling

([8], [9]) have been considered. Such a model takes into account the physical inter-

face between a part and its environment in order to consider surfaces to which the

tolerances apply. A better approach to take into account surface defects and best

represent reality is brought by skin model. However, this is more complex and diffi-

cult to manipulate and to store such a type of model. It is also less suitable for the

propagation of the model in various industrial tools, which is why the linear model

has been chosen as the basis for tolerance studies.

In [10], the interest and the impact for tolerance analysis of the linearization of the

model to link features in contact with each other is studied. Linearization strategies

are detailed and discussed for non-linear equations from the behavior model con-

straints,taking into account geometrical considerations.

In addition to its interest for tolerance analysis approaches detailed in [10], the

linear model also presents advantages for the industrial use. First, this is an historical

choice in the early stages of tolerancing, suited for the one dimension approach. The
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linear model has been generalized to 3D assemblies as an easy to understand model,

facilitating communication between the different functions involved in tolerance man-

agement. It is also convenient for the use of the tolerance model in complex tools or

software because linear approach is a basic component. The model parameters are

easily logged into internal tools and allow tolerancing specialists to perform toleranc-

ing studies and give all information for decision on dimension tolerances whatever the

considered assembly. Moreover, the linear model presents an additive structure that

is relevant for the decomposition between observed and non observed contributors

in an assembly once tolerance models are in production and measurement data are

considered. Finally, the use of a linear model for tolerancing is also acceptable if the

small displacement hypothesis is valid as described in Section 3.2.

The linear approach for tolerance model is the one used in the sequel of this chap-

ter. Other models treating non linear effects might be more effective from a certain

perspective, but both industrial needs and management costs justify the consideration

of the linear approach. To overcome the limitations of a tolerance model, strategies

on different aspects where inconsistencies with reality are identified are considered.

Solutions are proposed in Section 3.3 to correct the model in order to improve fitting

to real data.

3.2 Linear approach framework - Initial tolerance model

3.2.1 Mathematical framework

Each assembly has an associated stack chain, composed of p contributors. These

contributors are represented by features handled as random variables and assumptions

on their distribution are made in order to define contributor’s tolerance. The random

variables associated to contributors are assumed to be independent. The assembly

output is the top level requirement feature. This is the random variable associated

to the dimension of interest that needs to be controlled in order to meet functional

requirements of the final product. Each contributor impacts the top level requirement

feature in its own way (Figure 3.2). A simple way to represent the relation between

assembly inputs and output is through a first order model.
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Assuming a linear link between contributors and top level requirement and thanks

to 3D simulation, it is possible to compute coefficients of each contributor within a

linear model. Let denote:

• α1, . . . , αp ∈ R, the influence coefficients,

• X1, . . . , Xp, representing contributors by real random variables,

• Y , the top level requirement as a real random variable.

Figure 3.2: Linear tolerance model

Thus, the linear model leads to the relation

Y =

p∑
j=1

αjXj . (3.1)

This linear approach is justified through the Taylor expansion of order one. The

relation function between assembly inputs and output is given by a smooth function

f . Let us denote the small displacement vector h ∈ Rp and the sequence of random

variables X = (X1, . . . , Xp).

The Taylor expansion of f applied to X has the form

∀h ∈ Rp, f(X + h) = f(X) +∇f(X)Th+ o (||h||)

The first order term is the linear term. The second and above order terms represent

the non linear effects not taken into account in a linear tolerance model and not

explained by the first order expansion. We can choose to neglect these terms with

respect to the first order linear term if we assume the small displacement hypothesis.

Note that in the case of the linear model, the gradient is ∇f(X) = (α1, . . . , αp).
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This approach is still valid in the case with random perturbations instead of a

fixed small displacement h. We can consider a random displacement H as a centered

random variable in Rp. The notation o (||h||) becomes represented by op(H),

f(X +H) = f(X) +∇f(X)TH + op(H)

where op(H) notation is detailed in [11], Section 2.2 (op(1) denoting a sequence that

converges to 0 in probability).

The term op(H) represents residual effects that are not considered in the linear

tolerance model. The linear coefficient are thus related to the derivatives values of the

function linking assembly inputs contributors to the output top level requirement.

Through this notation and under the assumption that variations are reasonable,

a linear representation is given by the first derivatives of the function f in order to

obtain the linear coefficients α1, . . . , αp from Equation (3.1).

At the scale of aerostructures, it is relevant to consider these geometric variations

as small displacements. Indeed, in the case of an aircraft, it is often a question of as-

sembly involving components with dimension order of a meter, whereas the tolerances

are generally expressed in millimeters.

3.2.2 Linear tolerance model on a simple assembly example

A simple example of a 2 dimensions assembly is displayed in Figure 3.3. The blue

arrow represents the contributor feature and the green arrow represents the top level

requirement feature, which is the total height of the assembly. We assume that the

large grey part and the black stem have perfect known dimensions. The contributor

is positioned according to d2 and d3 as described on the figure. Its nominal value is

d1.
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Figure 3.3: Simple assembly example

The deviation of the contributor nominal dimensions is represented by h in Figure

3.4. This variation in dimension leads to the formation of an angle θ represented in

yellow on the figure. The impact on the higher level requirement is represented by

the dimension ∆. This is the dimension that needs to be estimated.

Figure 3.4: Simple assembly example with a variation
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Within the framework of this simple assembly, it is possible to directly calculate

the dimension ∆ via the trigonometry formulas on the rotation of angle θ.

The first step is to calculate the angle θ.

θ = arctan

(
h

d2

)

Then, the dimension ∆ is expressed in terms of θ, d2 and d3.

∆ = (d2 + d3) sin (θ)

Finally, we can now express the deviation of the top level requirement ∆ according

to the deviation h of the contributor.

∆ = (d2 + d3) sin

(
arctan

(
h

d2

))
(3.2)

The trigonometry formulas allow to rewrite ∆ as

∆ = (d2 + d3)

 h
d2√(
h
d2

)2
+ 1

 .

The Taylor expansion to order 1 of this expression in the neighborhood of 0 gives

∆ = (d2 + d3)

(
h

d2

)
+O

(
h2
)

=

(
1 +

d3

d2

)
h+O

(
h2
)
. (3.3)

The graph in the Figure 3.5 shows the results for ∆ with the exact evaluation

of (3.2) and the linear approximation proposed in (3.3). The parameter for this

application are d2 = 30 and d3 = 70. As expected, the linear approximation is very

accurate for small values of h, which represents small variations in the dimension of

the contributor involved in this assembly. This examples shows that if the deviation

from the nominal value of the contributor is small enough, the linear tolerance model

is a relevant model for tolerance management.
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Figure 3.5: Exact ∆ evaluation and linear approximation

As previously discussed, in an aeronautical context, the variations are often in

millimeters while the size of an aerostructure is of the magnitude of tens of meters.

Note that if d2 and d3 are expressed in meters, it would mean to focus on values of h

below 0.01 on the Figure 3.5.

3.2.3 Data availability

Once a stack chain is used in production, some feedback measures become available.

Unfortunately, it is common that not all contributors lead to available observations.

Only a number m of contributors among the p contributors in the stack chain are

measured, with m ≤ p. We might also have observations for the top level requirement

of the stack chain feature Y .

Industrial context

In the industrial context, there is a processing of measures in order to streamline mea-

surement data. The defined methodology is in line with international standards. The

main objective of the harmonization was and is to ensure consistent indicators used

throughout design, preparation, execution and quality control process with respect to

process performance. This implies validating the measurement data and then calculat-

ing process performance indicators or descriptive statistics. For instance, it is planned
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to verify the sample size, eliminate outliers, and perform multimodality and normality

test. For each observed characteristic, a fit test is done to find the most appropriate

distribution. Several distributions are considered and the associated parameters are

estimated. Traditionally, process are designed to follow normal distributions but the

fit test allows to verify or consider other common distributions. In the Airbus process,

distributions available for testing are: Normal, Uniform, Triangular, Cauchy, Expo-

nential, Lognormal, Gamma, Weibull, Minimum Extreme, Beta, Rayleigh and Folded

Normal. The steps for the Airbus process performance measurement detailed in the

internal document technical report [12] is summarized below. For a data set, carry

out the following steps:

1. Statistical Representative Population:

Decide on the number of observations required, depending on the type of analysis

desired.

2. Outliers identification:

With the common box-plot technique, identify all outliers from the data

3. Multimodality test:

Provide if the points in the data set are unimodal or multimodal. The implemen-

tation of this test relies on Gaussian Mixture Models (GMM) and the Bayesian

Information Criterion (BIC).

4. Normality test:

Provide if the points in the data set comply with a normal distribution, through

the Shapiro-Wilk test.

5. Goodness of fit:

Identify the best distribution to fit the data through the Maximum Likelihood

Estimation (MLE).

6. Descriptive statistics:

Provide figures for business use.

7. Process Performance:

Measure common performance indicators.
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This process ensures the consistency and harmony of the data collected by Airbus

teams in the various assembly plants. This processing on measurement data is a pre-

requisite for Airbus applications of the methodologies relying on measurement data

analysis detailed in the sequel.

Empirical density estimation: benefits and disadvantages

Assuming to be able to store more than the distribution parameters, we can esti-

mate observed features densities with kernel density estimators ([13]). In this case,

we store all measurement data. Such a solution makes it possible to treat any type

of distribution by freeing oneself from the parametric estimation of distributions with

parameters. This is particularly interesting when the measurements do not verify the

classical Gaussian hypothesis. For example, it is thus possible to take into account

bimodal distributions sometimes encountered when two tolerance limits are required.

In such a case, a normal distribution would tend to smooth out the information by

fitting a centered distribution with a large variance, whereas it is in fact a distribution

with two modes that represents a specific way of production.

The kernel estimation method is a way to fit a density on measurement data

without considering a parametric model such as the maximum likelihood estimation

(MLE) method or the method of moments. From an implementation point of view,

the method of moments presents an interest which is to allow a readjustment of the

estimated parameters of a distribution at each aggregation of measures in a data set.

This works with storage limited to the parameters of distributions from a collection,

but will not work with datasets classified as bimodal and which require the storage

of all observations. It is precisely in the latter case that kernel density estimation is

relevant.

The method of moments is a common way to estimate population parameters that

can be expressed as expectations under a given distribution. The theoretical moments

of the considered random variable are expressed as functions of the parameters to be

estimated and then set equal to the sample empirical moments. The solution of this

equation leads to the distribution parameters estimation. Most of the distributions
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used within an industrial context only needs the first and second order moments to

estimate the few parameters that characterize them. The implementation advantage

of this method is that empirical moments can be updated at each measurement. In this

way, the computing cost is lower. Indeed, calculation done with a new measurement

data only relates to the new observation and not all the sample population. Empirical

moments for a sample of n + 1 observations can be decomposed as a function of the

empirical moment for the sample of n and the n + 1-th observation. The following

example shows the result for first and second order empirical moments for the mean

and variance parameters.

For a sample with n observations associated to the random variable Xn, the em-

pirical first order moment is the computed mean denoted as Xn. When a new measure

is available, the empirical mean is Xn+1.

Xn+1 =
1

n+ 1

n+1∑
k=1

Xk

=
1

n+ 1

(
n∑
k=1

Xk +Xn+1

)

=
1

n+ 1

(
nXn +Xn+1

)
Xn+1 = Xn +

1

n+ 1

(
Xn+1 −Xn

)
A similar type of decomposition can be established for the second order empirical

moment. The empirical variance is denoted as S2
n.

S2
n+1 =

1

n+ 1

n+1∑
k=1

(
Xk −Xn+1

)2
=

1

n+ 1

n+1∑
k=1

((
Xk −Xn

)
+
(
Xn −Xn+1

))2
=

1

n+ 1

[
n+1∑
k=1

(
Xk −Xn

)2]− (Xn+1 −Xn

)2
=

1

n+ 1

[
n∑
k=1

(
Xk −Xn

)2]
+

1

n+ 1

(
Xn+1 −Xn

)2 − (Xn+1 −Xn

)2
S2
n+1 =

n

n+ 1
S2
n +

1

n+ 1

(
Xn+1 −Xn

)2 − 1

(n+ 1)2

(
Xn+1 −Xn

)2
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At the end, the empirical variance S2
n+1 is expressed as a function of the empirical

mean and variance of the sample with size n and the n+1-th observation, respectively

Xn, S2
n and Xn+1.

The main disadvantage of this method is that it will not be relevant if the dis-

tribution is not parametric. That is the interest of the empirical density estimation.

However, the empirical density estimation requires to store all observations since the

density is expressed for the contributor feature j as:

∀x ∈ R, f̂X̃E
j

(x) =
1

qb

q∑
i=1

K

(
x− xij
b

)

where K is a non-negative function such that
∫

RK(x)dx = 1 known as kernel and

b > 0 is a bandwidth parameter. For a Gaussian kernel, the function K is

∀x ∈ R, K(x) =
1√
2π
e−

1
2
x2 .

3.2.4 Measurement data and tolerance model link

In a general framework, the knowledge of the amount of information in the m mea-

sured contributors allows to re-adjust the tolerance model. Knowing the regression

coefficients and denoting X̃1, . . . , X̃m the measured contributors, we can introduce the

partial residuals e defined by:

Ỹ =
m∑
j=1

αjX̃j +

p∑
j=m+1

αjXj + e.

The two sum terms are respectively representative of measured and unmeasured

contributors. The goal is to retrieve as much information as possible about e, the

error introduced when measurement data is available.

3.3 Linear model correction

In the sequel of this chapter, we will consider the linear model to represent the rela-

tionship between inputs and output of an assembly. Such a model of tolerances system

involves several limitations. Indeed, the tolerance model does not perfectly reflects the
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reality encountered in plants and final assembly lines. The correction step proposed

in this part aims to tackle this issue through different outlooks for tolerance model

enhancement. This does not guarantee the explanation of the discrepancy between

reality and the theoretical model. The goal is simply to recalibrate the model thanks

to the available data in order to obtain a more adequate result, in the same way as in

[14].

3.3.1 Influence coefficient sign correction

We focus on the signs of the coefficients and not on their value because generally,

the availability of data in an industrial context does not allow this information to

be retrieved. Indeed, not all contributors are measured, excluding any multivariate

regression. Moreover, production rates can lead to the analysis of dataset with few

observations. Studying the coefficient signs gives a more robust result with respect to

these constraints.

Influence coefficient sign is a well known issue for centered tolerances manage-

ment. Indeed, sign errors might happen during 3D experiment, values registration,

or tolerance change discussion. For instance, a designer can imagine a feature in one

direction, and when an operator measures, he will take the measurement in the other

direction. This leads to a sign inversion. When tolerances are centered, influence

coefficient signs do not have a significant impact on the theoretical model. However,

when measurement data are included to the tolerance study, the sign of coefficients be-

comes crucial to perform relevant analysis on an individual or off-centered tolerances

population.

To face this issue, there is a need for a tool to automatically correct influence coeffi-

cient signs. This is made possible by the availability of measurement data. These data

allow to verify the concordance between what is observed and the model coefficient

sign.

Several methods were considered. The first one relies on correlation study, while

another is based on a regression approach for the binary variable of positive or negative

sign.
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Figure 3.6: Pearson correlation coefficients examples

Correlation analysis

The correlation analysis allows to quantify the link between a contributor and its

top level requirement. The correlation measures the dependency between two vari-

ables and we take the most common approach for correlation which is the Pearson

product-moment correlation coefficient. This dependency quantifier measures the lin-

ear correlation between two variables.

The definition of the Pearson correlation coefficient ρX,Y between two random

variables X and Y with expected values µX and µY and standard deviations σX and

σY is

ρX,Y = corr(X,Y ) =
cov(X,Y )

σXσY
=

E[(X − µX)(Y − µY )]

σXσY
(3.4)

The coefficient value is between -1 for a total negative correlation and 1 for a total

positive correlation, as illustrated in Figure 3.6. In our case, what is interesting in

this value is the sign. It allows to assess about the sign of the contributor influence

coefficient. If the correlation between a contributor and its top level requirement is

positive, then the associated influence coefficient should be positive, and conversely.

The correlation is used because covariance is scale dependant. With the cor-

relation, significance thresholds could be defined according to the importance of a

contributor in a stack chain. For instance in the Gaussian case with 6σ hypothesis,

the notion of threshold correlation is defined and can be considered to decide about

the significance of the correlation value. Let focus on the independent contributors

X1, . . . , Xp, with respectively the tolerance bounds ±v1, . . . ,±vp. The linear model

gives Y =
∑p

i=1Xi.
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The correlation definition for the j-th contributor gives

corr(Xj , Y ) =
cov(Xj , Y )

σXjσY
=

cov(Xj ,
∑p

i=1Xi)

σXjσY
=

cov(Xj , Xj)

σXjσY

=
var(Xj)

σXjσY
=

σ2
Xj

σXjσY
=
σXj

σY
=
vj/3

σY
.

We can express σY as a function of the RSS result denoted by TRSS .

σY =
√

var (Y ) =

√√√√ p∑
i=1

σ2
Xi

=

√√√√ p∑
i=1

(vj
3

)2

=
1

3

√√√√ p∑
i=1

v2
j =

TRSS
3

The threshold correlation for the j-th contributor in the Gaussian case under 6σ

hypothesis is therefore given by

corr(Xj , Y ) =
vj/3

TRSS/3
=

vj
TRSS

.

This correlation threshold help with- the limitation when a contributor has a weak

impact in the stack chain. The correlation between a weak contributor and its top

level requirement might not be significant. Indeed, if the impact of the contributor

is negligible, then the correlation which is supposed to assess about the linear link

between contributor and top level requirement will be close to zero. Note that from

an industrial perspective, a sign error for a contributor with a low importance in the

stack chain will not significantly disturb the output of the assembly and therefore does

not represent a real threat.

Regression on signs

Another approach for influence coefficient signs check is based on a regression accord-

ing to the binary variables of coefficient signs. We assume that all contributors have

available feedback measurement data.
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The linear model assumption gives

Y =

p∑
j=1

αjXj

where α1, . . . , αp are influence coefficients whose sign requires validation. We assume

absolute values of these coefficients (|α1| , . . . , |αp|) are known.

We define for any j ∈ {1, . . . , p} the corrected influence coefficients thanks to a

binary variable sj ∈ {−1, 1} such that the corrected linear coefficient in the tolerance

model is sj |αj |.

The top level requirement is now represented by the expression

Y =

p∑
j=1

sj |αj |Xj .

A linear regression on the binary variable s allows to obtain the sign of influence

coefficient consistent with measurement data. The linear least squares method gives

the optimal ŝ = (ŝ1, . . . , ŝp) ∈ {−1, 1}p values by minimizing the sum of squared

residuals where absolute values |α1| , . . . , |αp| are given. The associated optimization

problem is

(ŝ1, . . . , ŝp) = argmin
s∈{−1,1}p

n∑
k=1

yk − p∑
j=1

sj |αj |xkj

2

(3.5)

where (y1, . . . , yn) and (x1
j , . . . , x

n
j ) are n observations of Y and Xj for any j ∈

{1, . . . , p} respectively, and n is the number of observations.

To solve the optimization problem stated in (3.5), several solvers are available,

based on simulated annealing ([15]) or branch and bound techniques ([16]). An ex-

ample based on an exhaustive search with a simple application is detailed in 3.4.2.
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3.3.2 Offset consideration - Integration effect

In the case where we have partial measurement data (Figure 3.7), it is possible to have

a first information on the e error previously defined. This is an offset representative

of a systematic bias.

Figure 3.7: Measurement data availability on the linear tolerance
model

If we assume all non-measured features to be centered, we have an information

about the mean of e:

µe = µY −
m∑
j=1

αjµj

where µY is the mean of observations of the top level requirement Y and µj = 1
n

∑n
i=1 x̃

j
i

is the mean of the contributor X̃j .

This µe actually represents integration effects, for instance gravity effects that

happen during the assembly or shift errors due to unmeasured contributors. These

effects are not captured by the 3D model used to estimate regression coefficients as

they are using a rigid-body approach. This step is a way to loop back to the model

by knowing partial measurement data, and to identify systematic biases that can be

found in assemblies.
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3.4 Application on an example

3.4.1 Data

The simulated example in this section represents an assembly with three contributors,

and the stack chain associated is detailed in Table 3.1, including tolerance, influence,

feedback availability, measured mean and standard deviation information. These in-

formation needs to be corrected thanks to the methodology presented in this section.

Contributor Tol. interval Inf. Sign Feedback Mean St. Dev.

X1 ±3 α1 = 0.5 + Yes µ1 = 0.4 σ1 = 0.9

X2 ±2 α2 = 1 + No NA NA

X3 ±1 α3 = 1 + Yes µ3 = 0.3 σ3 = 0.4

Table 3.1: Top level requirements considered in this example

Data observations are simulated and noise is added in order to represent the un-

certainty met in reality. The top level requirement of this stack chain has a targeted

tolerance range ±X, and measurement data are available. The mean for this sim-

ulated example is µY = −0.4. In this example, there are n = 1000 observations

simulated using the correct information about the tolerance model parameters, that

need to be retrieved through the correction process. As stated in Table 3.1, only X1

and X3 are observed. Figure 3.8 represents the histograms of simulated observations

for these contributors. In this simulation, the aim is to mimic measurement and to

consider both deviation and measurement accuracy.

Figure 3.8: Histogram for observations of X1 and X3.
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For the top level requirement measurement simulation, data are generated through

the linear model and a Gaussian uncentered noise with a variance 0.5 is added to sim-

ulate external effects on an assembly (transport, tooling, . . . ) and to reflect the given

µY = −0.4. The simulated observations are summarized in an histogram displayed in

Figure 3.9.

Y =

p∑
j=1

si |αj |Xj + εY

where εY ∼ N (−0.3, 0.5).

Figure 3.9: Histogram for observations of Y .

3.4.2 Computation

Influence coefficient sign correction - Correlation analysis

Figure 3.10 represents the observations of Y with respect to X1 and X3. Pearson

correlations are given in Table 3.2 through a correlation matrix. The signs of this

coefficients provide the correct influence coefficient sign for the first and last contrib-

utor.

Cor. X1 X3 Y

X1 1 0.04 0.44

X3 0.04 1 -0.37

Y 0.44 -0.37 1

Table 3.2: Correlation matrix between observed random variables.
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Figure 3.10: Scatterplot of Y observations with respect to X1 and
X3.

Influence coefficient sign correction - Regression on signs

In this simple case, the minimization problem as stated in (3.5) is easy to solve.

Indeed, there are only two coefficients signs to correct, s1 and s3, and it is therefore

possible to quickly calculate for each combination of signs the value to be minimized,

min
(s1,s3)∈{−1,1}2

n∑
k=1

(
yk −

(
s1 |α1|xk1 + s3 |α3|xk3

))2

Table 3.3 gives the values of this quantity to be minimized for each sign combina-

tion.

s1 = −1 s3 = −1

s1 = 1 2205.75 1371.53

s3 = 1 2878.68 2613.70

Table 3.3: Results of exhaustive search for minimization.

The minimum value is reached when s1 = 1 and s3 = −1. The corrected sign

is positive for X1 and negative for X3, which is the same result than the correlation

analysis.
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Integration stack - Offset consideration

Thanks to the available data, the computation on means in order to detect an offset

to be considered as an integration stack gives

µe = µY −
m∑
j=1

αjµj

µe = −0.4− (0.5× 0.4 + (−1)× 0.3) = −0.3.

This offset µe can be integrated to the stack chain as a recurrent effect observed

on the output of the assembly.

3.4.3 Result

As a result of the model correction step, the stack chain is now as detailed in Table

3.4. The influence coefficient signs are corrected and an offset is considered.

Contributor Tol. interval Corrected influence Sign

X1 ±3 0.5 +

X2 ±2 1 +

X3 ±1 -1 -

Integration stack offset: µe = −0.3 1 +

Table 3.4: Top level requirements considered in this example

Figure 3.11 gives intermediate results after the signs correction and the offset

integration. The last blue histogram is the corrected histogram for Y observations,

to be compared with the histogram in Figure 3.9 which represents the simulated

reality. The distributions of error between this real Y observations and the estimation

from the model at each correction step are displayed in the grey histograms. This

error is the difference between real observations of Y and estimated one. For the

model with sign correction and offset consideration, the error for each observation k

is yk − (
∑p

i=1 ŝi|αi|xki + µe).

We can see that the distribution of errors between the actual data and the esti-

mation of the empirical model is rather dispersed. The first step of sign correction

allows to tighten it. The stage of the consideration of the offset allows to re-center it.
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Figure 3.11: Intermediate results on Y after each corrections step
and associated error distributions.

3.5 Conclusion

This chapter focused on the tolerance model to link the inputs to the output of an

assembly. It is a basic element in the different ways to improve the tolerance approach

discussed. There are, however, limitations to this approach to model correction. For

instance, one of the challenges is to decide how many observed contributors allow

to propose a consistent model correction. It would also be relevant to consider the

number of measures needed.

The choice of the simple linear model is motivated by industrial constraints. To

overcome the limitations of the model, various methods are considered and illustrated

on a simulated example. The two main axes of correction are the addition of an

integration stack and the validation of the linear influence coefficients. The goal is to

propose a tolerance model in accordance with the measurements observed in reality

in the plants where both production and assembly take place.
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Chapter 4

Out-of-tolerance risk management

in production

During the design phase of a product, tolerances on manufacturing assembly are

defined. When the product is in production, measurement data on manufacturing

processes become available. This allows to consider and calibrate new limits called

acceptance criteria on tolerances based on what is observed. We propose a smart

statistical approach to define such criteria using feedback measurement data to refine

the initial tolerance model. The method allows to compute the risk to be out of tol-

erance on top level requirements and to calibrate acceptance criteria in order to meet

these requirements reflecting the exact industrial need. A tool has been developed to

illustrate this approach on aerostructures use-cases.

4.1 Introduction

Standard guidelines lead to define tolerances with a certain percentage of risk to be

above requirement targets. The actual risk taken during definition can vary due to

negotiations: this risk can be greater or lower according to what the assembly respon-

sible agreed to accept. When all the tolerances are set and validated, the risk status is

frozen. Similarly to the management and verification method stated in [1], the aim is

also to offer a way to consider this risk to take industrial decisions. While the authors

of [1] focus on tool risk and mean shift, we propose to consider available measurement

data of assembly contributors and enhanced tolerance model.



78 Chapter 4. Out-of-tolerance risk management in production

Once tolerances specifications are in service, production gives feedback measure-

ments on some features. These measures give additional information on the tolerance

stack chain and especially on assumptions made during tolerance design phase.

A way to consider information made available in production is to provide accep-

tance criteria on tolerances. These acceptance criteria represent flexible values to be

considered as reasonable limits instead of the traditional tolerance value. The ad-

vantage of such indicators is to fit to the available data and thus be more accurate

according the observations. Unlike tolerances, acceptance criteria are valid only for a

limited period of time during which the production behaves in the same way. How-

ever, considering acceptance criteria implies to observe and assess about the feedback

data. It makes acceptance criteria less universal limits than what tolerance could be.

A process control must be set up to ensure the relevance of acceptance criteria.

In the approach proposed in this chapter, the notion of risk for an assembly has to

be precisely defined. Indeed, this is the basic component to quantify the conformity

of an assembly and such a measure must reflect what is important for the industrial

stakeholders. By focusing on a single assembly contributor on which acceptance cri-

teria should be defined, one should not only look at the risk of being out of tolerance

for the output of the assembly by a certain value for that contributor, but also at

the risk for that contributor to be measured at that same value. In the manner of

a probability/impact analysis often used in the general field of risk management, the

definition of acceptance criteria on the tolerances of an assembly contributor must be

based on two distinct notions of risk to be jointly considered.

This risk monitoring step relies on the tolerance model previously discussed in

Chapter 3. The first step detailed in Section 3.3 is to re-adjust the tolerance model

taken into account for tolerance definition thanks to production feedback. Then, for

each stack chain, a standard computation on contributors distribution functions gives

the risk to be above top level requirement targets. The first part of this chapter focuses

on hypothesis assumed in this step and detail the estimation of the output top level

requirement feature distribution. Then, an indicator of the amount of information in



4.2. Output feature distribution 79

variability is proposed in order to better understand and identify differences between

as-design model and enhanced model through feedback measurement data. This also

contributes to the following part which is about different notions and definition of

risk and its use for out-of tolerance monitoring. Finally, the last part focuses on a

concrete example for application of the out-of-tolerance risk monitoring methodology

proposed here to illustrate its benefits.

4.2 Output feature distribution

When the product is in design stage, tolerances both on contributors and top level

requirement are set. The risk to be out of specification at the top level feature of

an assembly is therefore fixed in accordance with the contributors tolerances and the

selected value as top level target which should not be exceeded. During production

phase, distributions of the contributors features are essential to value the risk at the

assembly level. Knowing the stack chain of the assembly and eventually some con-

tributors feedback data, the risk to be out of tolerance at the top level requirement

can then be re-evaluated.

There are various ways to consider input distributions depending on the availabil-

ity of measurement data. If we do not have feedback, the conservative approach is to

assume a uniform distribution between the tolerance bounds as it is the less informa-

tive probability distribution. If we have feedback on the contributor, we can either

use fitted Gaussian or empirical distribution as discussed in Chapter 3. In each case

detailed in hereafter, the output feature distribution is obtained from the convolution

product of inputs distributions and we discuss the numerical implementation later on.

4.2.1 Estimated distribution

During the design stage within the Airbus tolerancing process, contributors features

are usually assumed to be uniform distributions, as detailed in Chapter 2. Therefore,

the targeted tolerance values on the top level feature Y are defined on an output

distribution which is a sum of p uniform features. We assumed the independence
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between contributors random variables and considering a linear model, the density of

this output distribution in the design phase is then given by the convolution product

fY = fα1XU1
∗ · · · ∗ fαpXUp

where ∀j ∈ 1, . . . , p, XUj ∼ U(−vj , vj) and vj > 0.

In the case where we have measurement data available for m measured features,

we can first assume normality. Such an assumption allows to store only the two pa-

rameters of the normal distribution µj and σj for any j ∈ {1, . . . ,m}. This might be

more convenient for the methodology implementation in internal tools.

Only the Gaussian case is discussed here for the development of associated for-

mulas, but the approach remains valid with any other type of known distribution

with parameters that can be estimated through the method of moments. This would

require to apply the step of fitting the distributions on the measures as detailed in

Chapter 3 and to store both the type of distribution and the associated parameters.

At this point, the convolution product on densities concerns the m measured fea-

tures considered as normal distribution, the p −m non measured features remaining

considered as uniform distributions and the model error ε whose distribution is esti-

mated through the model correction from measurement data. Now the density of the

top level feature can be re-evaluated as

fα1X̃N1
∗ · · · ∗ fαmX̃Nm

∗ fαm+1XUm+1
∗ · · · ∗ fαpXUp

∗ fε

which is equivalent to

fα1X̃N1 +···+αmX̃Nm
∗ fαm+1XUm+1

∗ · · · ∗ fαpXUp
∗ fε

where for any j ∈ {m+ 1, . . . , p}, each unmeasured contributor XUj ∼ U(−vj , vj) and

for any j ∈ {1, . . . ,m}, each measured contributor X̃Nj ∼ N (µj , σ
2
j ) thus the sum of

independent variables α1X̃
N
1 + · · ·+ αmX̃

N
m ∼ N (

∑m
j=1 µj ,

∑m
j=1 σ

2
j ).
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An alternative to parametric models is to consider empirical distributions of mea-

sured contributors as described in Section 3.2.3. If we convolute the kernel density

estimators with initial uniform distributions of non-observed features, we obtain the

following result as density estimation for the top level feature

f̂α1X̃E
1
∗ · · · ∗ f̂αmX̃E

m
∗ fαm+1XUm+1

∗ · · · ∗ fαpXUp
∗ fe.

Convolution product implementation

To perform the convolution products of inputs distributions and then obtain an es-

timation on the output distribution, there exists a numerical method based on the

approximation of Poisson summation formula detailed in Section 4.2.2. This is a con-

venient method for efficiency in tools implementation of the approach. Indeed, Monte

Carlo simulations could also be considered for output level requirement estimation

instead of a convolution product. However, calculation cost is far more expensive,

especially if we deal with rare events estimation, such as the probability to be out of

tolerance that we expect as low as possible.

Applications of Monte Carlo method in tolerance analysis are discussed in [2]. A

thought on the use of this method is proposed in [3], highlighting both advantages

and drawbacks of Monte Carlo approach and convolution product in applications.

For industrial needs and internal tools implementation, the approximation of Poisson

summation formula is used in order to perform the convolution products.

4.2.2 Approximation of Poisson summation formula

As mentioned in [4], [5] and used by Lebrun in [6], a continuous random variable which

is the sum of the values taken by the density of Y on an entire network is equal to

the sum of the values taken by its characteristic function on another wisely selected

network.

Let us focus on the framework given by normal distributions for measured con-

tributors and uniform distributions for others as described above. A similar approach

can be applied to other situations.
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Let Y be a continuous random variable with density fY and characteristic function

φY such as, for any u ∈ R,
∫

R |φY (u)| du <∞ where φY (u) = E
[
eiuY

]
.

For any r > 0 and y ∈ R, we have

∑
k∈Z

fY

(
y +

2kπ

r

)
=

r

2π

∑
l∈Z

φY (rl)e−irly

and when integrating this sum of density, we obtain, for any r > 0 and z, t ∈ R,

∑
k∈Z

{
FY

(
y +

2kπ

r

)
+ FY

(
y − t+

2kπ

r

)}
=
rt

2π
+

r

2π

∑
l∈Z

φY (rl)
e−irly − e−irl(y−t)

irl
.

Using Fourier decomposition, we obtain, for any r > 0 and z ∈ R,

fY (y) =
r

2π

∑
l∈Z

φY (rl) e−irly −
∑
k∈Z∗

fY

(
y +

2kπ

r

)
.

Such an approximation allows to consider all kind of distributions for contributors

and implement the convolution product to estimate the distribution of output feature

and to compute the risk associated to the top level requirement target.

This implementation of the convolution product is interesting in terms of comput-

ing time. Another way to proceed would be with Monte Carlo simulations, as detailed

above, and the number of simulations required would require much more computing

time. The complexity of the approach with the approximation of Poisson summation

formula is lower and therefore more interesting for the implementation in industrial

tools.

4.3 Amount of information

The global purpose of this section is to introduce indicators for an a priori considera-

tion of the relevance and performance of a risk analysis on a stack chain in the light

of available feedback.
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Several indicators already exist in the field of quality or statistical process control,

such as the well known Cp and Cpk ([7]). These common quality indicators can

be related to a contributor or a top level requirement and require tolerance limits

and measurement data. These indicators can be computed at different stages of the

manufacturing process. The Cp measures the dispersion with the standard deviation

σ computed on the measurement data set. This characterizes the capacity of the

process to fit between the upper limit vu and lower limit vl. The Cpk quantifies the

process shifting through the mean µ with respect to the limits vl and vu.

Cp =
vu − vl

6σ

Cpk =
min(µ− vl, vu − µ)

3σ

The aim of this section is to compare the as-designed variability and the measured

variability either for contributors or top level requirement. It means that different

hypothesis are made for contributors as detailed in the previous section and the dif-

ferent indicators presented in the sequel are built to quantify both variability and

comparison between design and measurement reality. Thanks to this comparison, the

relevance of acceptance criteria definition can be discussed.

4.3.1 Contributor individual indicator

In the design phase, we can quantify the amount of information about the feature

variability for each contributor as the variance defined for the uniform distribution.

Therefore, for all j ∈ {1, . . . , p}, we define the amount of information about the

contributor variability as
v2j
3 where vj is the tolerance bound of the contributor and

parameter of the associated uniform distribution.

For each observed contributor j, we propose to define the ratio Rj between the

designed variability and the measured variability as

Rj = 3
σ2
j

v2
j

(4.1)

where σ2
j is the variance of the j-th contributor.
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Such an indicator gives an information on the margin in terms of variability for

the contributor in this assembly. If Rj is equal to 1, it means there is no margin in

terms of variability for this contributor. The lower is Rj , the higher the variability

margin is. Note that, if the Rj value is above 1, it means that the observed variability

is worse than the designed one for the considered contributor.

4.3.2 Top level indicators

In a stack chain, each contributor represents a part of the information observed at the

output of the assembly on the top level feature that represents a final requirement on

a manufacturing step. This information is apportioned according to certain assump-

tions made during the design phase, and the availability of measurements therefore

allows the partitioning among the contributors of this information to be refined.

As contributors are assumed to be independent and Y =
∑p

j=1 αjXj , we can assess

about the global variability. In design phase, the global amount of information about

expected variability for the top level feature is given by

Iv =
1

3

p∑
j=1

v2
j . (4.2)

When feedback is available, the global amount of information about the re-valuated

variability for the top level feature is the sum of two terms depending on observed

and non-observed variability of the measured or not contributor features,

I ′v =

m∑
j=1

σ2
j +

p∑
j=m+1

v2
j

3
. (4.3)

4.3.3 Comparison indicators

There are many ways to represent the sharing of information between contributors

and to quantify the role each one plays in the assembly. A naive approach would

be to simply consider whether a contributor is observed or not. If all contributors

are measured, then it would be assumed that 100% of the assembly information is

accessible. Conversely, if no contributors are measured, then the information of the
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assembly and its partitioning remains unknown. When only part of the contributors

are measured, a naive indicator denoted by Rnaive could be a ratio between the number

of observed contributors and the total number of contributors in the assembly.

Rnaive =
m

p
. (4.4)

However, this approach does not allow to consider the relative importance of the

contributors compared to each other. Indeed, it is frequent that some contributors

of the stack chain are predominant while some have a very small impact on the out-

put characteristic of the assembly. One way to overcome this limitation is to reason

in terms of contributor variance. This allows a precise look at the partitioning of in-

formation between contributors, with or without the availability of measurement data.

We can define an indicator R which gives the global variability margin for the

assembly as the ratio between the top level feature designed and re-valuated variability

R =

∑m
j=1 σ

2
j +

∑p
j=m+1

v2j
3∑p

j=1

v2j
3

=
I ′v
Iv
. (4.5)

Before performing acceptance criteria, this last global indicator R gives the mar-

gin in terms of variability available for an assembly. If the ratio is above 1, it means

acceptance criteria definition might not be very relevant for a tight targeted out-of-

tolerance rate since measures performed on this assembly are already more dispersed

than expected. Conversely, if the indicator value is below 1, it means acceptance

criteria are practicable and profitable for one or several stack chain contributors. The

lower the indicator, the more significant acceptance criteria will be.

From an industrial perspective, a similar indicator is relevant. This is the ratio be-

tween the variability explained only by the measured contributors and the re-valuated

global variability for the top level requirement. We then define Q as

Q =

∑m
j=1 σ

2
j∑m

j=1 σ
2
j +

∑p
j=m+1

v2j
3

= 1− Iv
I ′v
. (4.6)
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Type Name Definition Parameters

Quality / SPC Cp
vu−vl

6σ

vu upper limit
vl lower limit
σ st. dev.

Cpk
min(µ−vl,vu−µ)

3σ

vu upper limit
vl lower limit
µ mean
σ st. dev.

Contributor individual indicator Rj 3
σ2
j

v2j

vj
σj

Top level indicator Iv
1
3

∑p
j=1 v

2
j

vj
p

I ′v
∑m

j=1 σ
2
j +

∑p
j=m+1

v2j
3

vj
σj
m
p

Comparison indicator
Rnaive

m
p

m
p

R
∑m

j=1 σ
2
j +

∑p
j=m+1

v2j
3∑p

j=1

v2
j
3

vj
σj
m
p

Q
∑m

j=1 σ
2
j∑m

j=1 σ
2
j +

∑p
j=m+1

v2
j
3

vj
σj
m
p

Table 4.1: Indicators about amount of information in variability
summary

This indicator Q belongs to [0, 1]. A value equal to 0 means that Iv = I ′v. In such a

case, no contributor is measured and m = 0. Only non-observed contributors explain

the assembly variability. Conversely, a value of 1 means that m = p so the second

term of the denominator nullifies itself. All contributors are observed and explain the

assembly variability.

4.3.4 Indicators summary

The Table 4.1 summarizes all indicators detailed in this section, and Table 4.2 presents

their use and the level to which the indicator applies, either at contributor level

X1, . . . , Xp or at the top level requirement Y .
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Type Name Level Use

Quality
SPC

Cp Y , Xj

Measure capabilities process (dispersion)
Evaluate compliance between requirement
(tolerance limits) and process (measurement data).

Cpk Y , Xj

Measure capabilities process (off center)
Evaluate compliance between requirement
(tolerance limits) and process (measurement data).

Contributor
individual
indicator

Rj Xj

Appreciate the difference between the as-designed
variability (through uniform assumption) and the
reality (normal distribution fitted on measurement data).

Top level
indicator

Iv Y
Evaluate the global amount of information
about expected variability at the top level
requirement level during design phase.

I ′v Y
Evaluate the global amount of information
about re-valuated variability at the top level
requirement level considering measurement data.

Comparison
indicator

Rnaive Y
Evaluate the proportion of information brought by
the availability of measurement data. This does not take
into account the relative importance of the contributors.

R Y
Evaluate the proportion of information about the global
variability brought by the availability of measurement.

Q Y
Evaluate the proportion of global variability
explained thanks to measurement data.

Table 4.2: Indicators about amount of information in variability use

4.4 Risk evaluation

Generally speaking, the risk for an assembly is defined as the out of tolerance per-

centage for the top level requirement of a stack chain. If the target value for the

top level requirement is Ty, the risk is P (Y > Ty). A common practice for tolerance

design is to target a 0.27% out-of-tolerance rate for the top level requirement. This

number comes from the Gaussian assumption for contributors and the widely used 6σ

rule which leads to this rate value for the output top level requirement. During the

serial phase, conformity definition and decision rules related to the out-of-tolerance

rate depends on several parameters. More details are available in [8].

Tolerances defined on input features and assumptions about their distributions

have a significant impact on the risk. Indeed, the distribution of the top level feature Y

is completely dependent on the contributor features hypothesis as detailed in previous

parts. The top level distribution can be estimated through the tolerance model and

distribution hypothesis stated as following:
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• (U): Uniform distribution assumption for all contributors

• (N): Normal distribution assumption for measured contributors and normal

assumption for non-observed features

• (E): Empirically estimated distribution for measured contributors and normal

assumption for non-observed features

A subtlety is introduced here by the observation of a feature to be added to the

definition of risk. When an observation for a contributor is available, it means we

know the value of one of the input features. If the focus is on the k-th observed

feature, the measured value is xk. The risk knowing the value of one of the input

features and considering normal distributions for measured contributors is:

PN (Y > Ty | X̃k = xk).

The distribution of X̃k can be estimated whether with Gaussian density or kernel

density estimation as detailed in the previous part. In the Gaussian case for feedback,

the risk to be out of tolerance for Y and to have a value equal to xk for the k-th

feature at the same time is

PN (Y > Ty | X̃k = xk)fX̃k
(xk).

In the case of kernel density estimations, the risk is

PE(Y > Ty | X̃k = xk)f̂X̃k
(xk).

In this context, the so-called acceptance criteria would be for example ±xk. It

is relevant to look at the risk that the contributor Xk is beyond these acceptance

criteria. We can then jointly consider the risk of being out of tolerance at the output

of the assembly. Finally, in the normal case and for symmetric acceptance criteria,

the weighted risk to be considered industrially is

∫
|t|>xk

PN (Y > Ty | X̃k = t)fX̃k
(t)dt.
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Industrial use

In an industrial context, the process for using this notion of risk is as follows:

• Choose a contributor Xk in the stack chain on which to define acceptance cri-

teria.

• Focus on a hypothetical measure xk for this contributor.

• Check the probability τ to be out of tolerance at the top level. This depends

on Y distribution, and thus on the way to fit distribution on other stack chain

contributors measurement data. In the Gaussian framework, it means consider-

ing the probability PN (Y > Ty | X̃k = xk). For empirical density estimations,

it means considering the probability PE(Y > Ty | X̃k = xk).

• Consider the distribution of the contributor Xk if measurement data are avail-

able. It allows to look at the probability to encounter a value xk, represented

by fX̃k
(xk). In the Gaussian framework, the risk to be out of tolerance for Y

and to have a value equal to xk is PN (Y > Ty | X̃k = xk)f̂X̃k
(xk). Same kind

of result applies for the empirical framework.

• Decide whether the value xk for the contributor Xk is acceptable, knowing the

risk τ and eventually the probability that the contributor exceeds this value xk.

The Airbus process is detailed in the dedicated section 4.5 about a simulated

industrial example.

4.5 Example of a simulated industrial case

The following application example focuses on one contributor involved in three differ-

ent assemblies. This example is similar to what one might encounter in an industrial

context. We assume a reasonable quality in processes, allowing to work with normal

distributions for assembly features if measurement data are available. Let us focus on

the contributor 1, which is linked to three different stack chain.
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4.5.1 Data

The contributors may or may not have feedback measurement, as well as the other

contributors of the stack chains. This information and the targeted tolerance interval

for the top level requirements are summarized in Table 4.3. Details for contributors

and eventual feedback data are available in Table 4.4.

Top level requirement Targeted tol. interval Feedback

Top level req. 1 ±4.5mm Yes

Top level req. 2 ±4.2mm Yes

Top level req. 3 ±4.0mm Yes

Table 4.3: Top level requirements considered in this example

Top level req. Contributor Initial tolerance Influence Mean Standard dev.

Top level req. 1

Contributor 1 ±2mm -1 1.46 0.97

Contributor 2 ±2mm +1 -0.29 1.42

Contributor 3 ±0.5mm +1 0.09 0.11

Contributor 4 ±0.4mm -1 / /

Contributor 5 ±0.4mm -1 / /

Top level req. 2

Contributor 1 ±2mm -1 1.46 0.97

Contributor 6 ±1mm +1 -0.09 0.51

Contributor 3 ±0.5mm +1 0.09 0.11

Contributor 4 ±0.4mm -1 / /

Contributor 5 ±0.4mm -1 / /

Top level req. 3

Contributor 1 ±2mm -1 1.46 0.97

Contributor 7 ±1mm +1 / /

Contributor 3 ±0.5mm +1 0.09 0.11

Contributor 4 ±0.4mm -1 / /

Contributor 5 ±0.4mm -1 / /

Table 4.4: Stack chain information considered in this example
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4.5.2 Indicator - Amount of information in variability

In this example with three different stack chains, we can compute the amount of

information in variability ratio R presented in (4.5). This allows to characterize the

global margin for the stack chain assembly in terms of variability and the performance

potential of acceptance criteria methodology.

Stack chains Ratio results R

Top level req. 1 1.07

Top level req. 2 0.71

Top level req. 3 0.75

Table 4.5: Indication about the amount of information in variability
for stack chains - global ratio results.

The first stack chain has a ratio above 1, meaning that feedback observation shows

that the variability within this stack chain is higher than expected. Indeed, the con-

tributor 2 has a very large variance. If we focus on this top level ratio, we can define

the individual ratios Rj between the designed variability and the measured variability

for each contributor with feedback of the stack chain as stated in (4.1).

Stack chains Ratio results Rj

Contributor 1 0.71

Contributor 2 1.51

Contributor 3 0.15

Table 4.6: Indication about the individual amount of information in
variability for contributors - individual ratio results.

Table 4.6 shows that within the first stack chain, this is mainly the second contrib-

utor which presents a higher variability than expected. Contributor 2 is responsible

for the global ratio above one for this stack chain, while other contributors with feed-

back have lower variablities than expected.

The two other stack chains in Table 4.5 have a lower ratio below one, meaning

that variability is less than expected and acceptance criteria might perform well.
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The top level requirement 3 has a slightly higher ratio result than the top level re-

quirement 2 because even if stack chains are very similar, there are only two out of five

contributors observed while there are three measured for the top level requirement 2.

4.5.3 Risk computation

As the tolerance we are interested in is involved in three top level requirements, we

will perform three acceptance criteria analysis in order to evaluate the risk for this

tolerance in each of the three stack chains. Once computations are done, the most

restrictive risk has to be taken into account.

As stated in Section 4.2.1, we treat differently the feature with feedback measure-

ment data and those without. If the contributor is not measured, then we assume

a uniform distribution between the tolerance bounds. This is the case for the con-

tributors 4, 5 and 7. Therefore, they are assumed to follow uniform distributions

U(−0.4, 0.4), U(−0.4, 0.4) and U(−1, 1) respectively. Otherwise, if the contributor

is measured and have observations available, a normal distribution can be fitted on

observed data. In a first approach, we chose to assume the normality of measured

contributors features, as industrial processes are supposed to meet requirements linked

to indicators ensuring normality.In this example, the contributors 2, 3 and 6 follow

normal distributions N (−0.29, 1.42), N (−0.09, 0.51) and N (−0.09, 0.11) respectively.

Let us focus on the first top level requirement 1 to start the computation:

• First step is to compute the risk according the value v ∈ R of the contributor

1 we are interested in. To this end, we have to perform a convolution product.

As we are focusing on a given value v of Contributor 1, we do not need its

distribution in this first step as it is only an offset to consider in the linear

tolerance model.

• We now consider all possible values in a range between -5mm and 5mm for this

contributor. We perform the convolution product of the contributors distribu-

tions that are involved in the stack chain of the top level requirement 1. This

convolution product associated to the each hypothetical value selected for con-

tributor 1 gives the estimation of the top level requirement 1 feature distribution

based on feedback available.
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• This distribution can now be used to estimate the risk to be out of tolerance

knowing the each possible values for Contributor 1. A way to represent the result

from this approach is to plot the risk value depending on the value considered

for Contributor 1, in a range between -5mm and 5mm in this example.

This methodology is applied to Contributor 1 in a same way for the two other stack

chains of top level requirement 2 and top level requirement 3. Only the convolution

product of the contributors distributions that are involved in the stack chain differs

since the stack chain are different for each top level requirement. The results are

presented in the plot presented in Figure 4.1. Each curve represents the risk associated

to a top level requirement.

4.5.4 Results

The results of this analysis is presented in Figure 4.1. The X-axis represents the

value that Contributor 1 could take. The associated curve gives the risk to be out

of tolerance if Contributor 1 has the value considered on the X-axis, also called the

impact risk. There are 3 different curves representing the 3 top level requirement in

which Contributor 1 is involved. The Y-axis stands for the risk to be out of tolerance

at a top level requirement level in percentage. The dotted line is the density of the

distribution fitted on Contributor 1 measurement data. It helps the user to quantify

the probability for Contributor 1 to have a specific value (from the X-axis).

The final acceptance criteria can be monitored both with the risk associated to the

curves displayed in Figure 4.1 and the value of the density of the distribution for the

considered contributor. Indeed, a high out of tolerance risk for a value is acceptable

if the probability to encounter this value is very low. The guidelines for threshold

percentage values rely on the engineering judgment of users.

4.5.5 Airbus process for the definition of acceptance criteria

Let us take an arbitrary value of 10% as the threshold for an acceptable out-of-

tolerance rate at requirement level. This limits the probability PN (|Y | > Ty | X̃1 =

x1). This value depends on the considered assembly and should be decided accordingly

by industrial stakeholders. This first threshold stands for the the impact risk.
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Figure 4.1: Example of results for acceptance criteria analysis

In our example, we can see that the top level requirement 1 gives the most re-

strictive result. Indeed, it is indeed this requirement that presents the highest risk,

since its curve is globally above the other two. This is a logical result since the top

level requirement 1 contains Contributor 2, whose measurements are more dispersed

than expected. This is therefore an assembly for which the risk is higher because one

contributor is already quite bad within the stack chain.

For a threshold of 10%, we can see on the graph that the associated acceptance

criteria values for Contributor 1 would be −2.86 for the negative limit and 2.43 for

the positive limit. Initial designed tolerances were ±2, acceptance criteria for a 10%

risk are extended to −2.8|2.2 and we have

PN (|Y | > Ty | X̃1 = −2.86) = PN (|Y | > Ty | X̃1 = 2.43) = 10%.

It is also necessary to verify the probability of encountering such values for Con-

tributor 1. A second threshold should be defined to limit the global risk taking into

account both the impact risk and the probability to exceed a certain value.
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Let us take an arbitrary value 3% for this second threshold to limit

∫
|t|>x1

PN (|Y | > Ty | X̃1 = t) fX̃1
(t)dt.

The plot associated to this quantity is displayed on the Figure 4.2. This is the

orange curve, which represents the weighted risk. This is the impact risk of out of

tolerance rate at requirement level weighted by the probability to encounter a value

that exceeds of such a criteria. The scale of this orange curve has been modified in

order to visualize this quantity and does not have unit. We can see that only the

positive side presents a certain risk. The weighted risk is the area under the orange

curve beyond the positive criteria, 2.43. Indeed, the negative acceptance criteria is in

the negative tail of the Gaussian density and weighted risk value is very close to 0.

Figure 4.2: Advanced results for acceptance criteria analysis

In the example, the weighted risk value is the sum of the two following terms,

∫
t<−2.86

PN (|Y | > Ty | X̃1 = t) fX̃1
(t)dt = 0

and ∫
t>2.43

PN (|Y | > Ty | X̃1 = t) fX̃1
(t)dt = 0.0242.
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The sum gives a weighted risk of 2.42% therefore these criteria are valid for the

considered threshold of 3%.

4.6 Example of bimodal distributions fitted on data

This example focuses on the case of an assembly with one contributor with an asso-

ciated feature classified as bimodal. We consider a simple simulated assembly with

three contributors associated to random variables X1, X2 and X3. These contributors

all have a linear influence coefficient of 1, so the random variable associated to the

top level requirement of the assembly is Y = X1 + X2 + X3. If the contributors are

measured, it allows the estimation of the random variable distributions. If the con-

tributors are not measured, the assumption of uniform distribution is made for the

associated random variables.

The distribution fitted on measurement data of the contributor X1 through kernel

density estimation presents two modes. The contributor X2 does not have available

measurement data. The acceptance criteria to be defined in this example concern an-

other contributor X3 in the assembly. Table 4.7 details the stack chains contributors

of this example.

Contributors Tolerance Measurement data information

X1 ±1 measured and bimodal or normal distribution

X2 ±1 non measured, uniform distribution assumption

X3 ±2 measured and acceptance criteria to be defined

Table 4.7: Stack chain contributors for a bimodal example

The histogram of observations on the contributor X1 is displayed in Figure 4.3.

The blue line represents the empirical density of the distribution fitted on the simu-

lated data with Gaussian kernel. The bandwidth parameter is automatically adjusted

and its value is 0.2. The red line is the density of a normal distribution with param-

eters mean and standard deviation computed on X1 observations.
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Figure 4.3: Example of a empirical compared to normal distribution
for X1

The estimation of the top level requirement distribution is possible through a con-

volution product of X1 and X2. X3 is assumed to value zero for this illustration. The

convolution product is between a bimodal and then a normal distribution for X1 and

a uniform distribution for X2.

The Open TURNS package ([9]) is used for implementation. The densities in Fig-

ure 4.4 are respectively associated to the top level requirement density computed with

the empirical density and the normal density fitted on X1 measurement data. Note

that the X-axis have different orders of magnitude.

Figure 4.4: Top level requirement densities (empirical and normal
case considered for the contributor X1)
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The plot representing risk to be out of tolerance according the values possible for

the contributor X3 is displayed in Figure 4.5. The risk computation is performed by

the analysis of the convolution of the empirical or normal density of X1, the uniform

distribution of X2 and the possible value selected for X3 represented in the X-axis.

The blue line is associated to the empirical density estimation of X1 and the red line

is the risk computed with the normal distribution fitted on X1 measurement data. In

the sequel, let us focus on the blue line as the risk curve for X3 values and used for

decision on acceptance criteria.

Figure 4.5: Result for the risk in the example - comparison between
empirical and normal distribution for X1

At this stage, we have not yet discussed the distribution of the contributor on

which acceptance criteria are to be defined. It is the consideration of this distribution

that allows us to analyze the probability that the risk presented in Figure 4.5 will

occur. Here too, bimodality brings a subtlety. The histogram in Figure 4.6 represents

simulated data for the third contributor on which critera need to be defined. As the

distribution of the contributor X3 has all its load at the extremities (see the green

line in Figure 4.6), the probability of encountering a values around −2 or 1.3 and thus

a high risk at the top level requirement is much higher than for the normal distribution.
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Conversely, if the distribution fitted for X3 is a centered normal as the yellow line

in Figure 4.6, the load is concentrated on the center where risk is lower for top level

requirement. This may lead to a wrong decision. Indeed, one could consider that a

value of −2 for X3 is unlikely to happen according the normal distribution, while the

probability to encounter this value is higher according to the measurement data.

Figure 4.6: Risk result and consideration of X3 distribution

Conclusion

To conclude, this chapter deals with the management of out-of-tolerance risk, in par-

ticular during the production phase. Based on a tolerance model and distribution

hypotheses, the proposed approach can be adapted to any assembly, whatever the

level in the aircraft structure. The approximation of the Poisson summation formula

and its implementation in common programming tools allow the convolution product

of the assumed laws of the contributors to estimate the output characteristic of the

assembly. The interest of the approach is quantifiable by an indicator about the vari-

ability of a stack chain, defined according to the different feedback on the contributors.

The benefits of the method are related to the costs of non-conformities, which

can be avoided thanks to the proposed approach. A global management tool has

been developed to make it easier for users responsible for maintaining tolerances,

particularly in the various Airbus plants. This tool will be detailed in Chapter 6.
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Chapter 5

Smart tolerance redefinition

5.1 Context and state of the art

Mathematical optimization techniques have been considered for tolerance allocation,

verification and variation management during product life cycle. A vast literature

considers the ways to use optimization for tolerance management and tackle different

specific problems. A recent and very complete map of the current state of the art

about optimization techniques for tolerance related issues is detailed in [1], reviewing

close to 300 papers. The aim of this first section is to introduce elementary tools to

summarize the background of optimization for tolerancing.

A mathematical optimization problem consists in finding the best candidate avail-

able in a set S of allowed values to minimize or maximize an objective function f ,

also called cost. Optimization problems may be modeled in this general framework

min
x∈S

f(x). (5.1)

In order to determine the optimal set of tolerances through the minimization of an

objective function, a large part of researches about tolerance cost optimization take

into account manufacturing cost. This type of cost is related to a part production

([2, 3, 4, 5, 6, 7, 8]). These manufacturing costs might be non-linear, for instance if

they are related to density functions when considering default probabilities.

Another cost widely studied is the quality cost, often associated in the objective

function to a quality loss function ([9, 10, 11, 7, 12, 13, 14, 15]). This quality loss

function reflects the quality appreciation of customers on a dimension within (or not)
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a specified tolerance range. If a dimension is outside the tolerance bounds, satisfac-

tion decrease drastically while a perfect dimension leads to the customer satisfaction.

The Taguchi’s method is a common approach ([16, 17]) but the function can also be

defined by any arbitrary polynomial function with fixed degree. In between tolerance

range, loss function provides a model for the appreciation on product quality, which is

represented by the loss, as displayed in Figure 5.1 in the common approach of Taguchi.

Generally, this is a quadratic curve given considering the square of the difference be-

tween the actual product dimension and the specified one, weighted by a coefficient

as parameter (quadratic loss function). If it is a product population studied instead

of only one individual, then variances and average quantities should be considered.

More details are available in [18].

Figure 5.1: Quality loss function plot with arbitrary parameters.

Beyond different costs considerations, functional requirements might be consid-

ered through constraints into the optimization problem ([2, 3, 5, 6]). Such constraints

are taken into account in the set S which only allows values satisfying the functional

requirements. The different alternatives for assembly techniques, machines or pro-

cesses could also be considered in the objective function of the optimization problem

([19, 5, 20, 21, 22, 23, 15]).
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This leads to discrete optimization problem, where the set of allowed values S in 5.1

is a discrete set. A common and widely used tool to solve such an optimization problem

is the class of genetic (or meta-heuristic or heuristic search) algorithms available both

for constrained and unconstrained optimization problems. A review of the use of

such algorithms in optimization is available in [24]. Genetic algorithms are used for

tolerancing in [20, 25, 26, 23, 27, 8]. An other tool to solve such problem is exhaustive

research method ([3, 28]) but such an approach is commonly unfeasible in practice.

Several other tolerancing problems can be considered in optimization problem and

associated cost. In [22] and [29], the approaches take into account the interrelation

of stack chains in the objective function associated to the optimization problem. In

design phase, the verification cost (measurement tools, conformity assessment, . . . )

are considered in [30] in order to define best tolerances considering inspection cost.

Another parameter which is the product degradation and time value of money is taken

into account in [11] for the the minimization. Planning and event sequence for an as-

sembly is considered in [31] and [32]. Assembly technique for a joint is considered in

[33]. In [34] the notion of assembly step is taken into account by the system, mean-

ing where the tolerance is logged in the production process. In [35], time variant

deviation such as deformation, thermal expansion or parts mobility are specifically

addressed in an optimization algorithm based on particle swarm. Finally, recycling

cost is also a candidate for optimization variables as considered in [36]. More gener-

ally, [37] proposes the minimization both of economic and ecological costs, illustrated

on automotive industry and materiel choice.

Our work is driven by industrial needs in tolerancing encountered at Airbus and

has to suit available data flow. The approach considers cost related to non-quality

and process to change a tolerance value. The proposed approach is a step that comes

well beyond the development and tolerance allocation phase. The hypothesis is that

a tolerance sharing is already in place and we consider a re-sharing. We focus on

the goal to reduce money spent when non conformities occur without spending too

much for tolerances change in drawings. This approach should be implemented in the

internal tools on all stack chains with available measurement at all assembly levels for

all programs. It needs to provide proper results in a reasonable amount of time.
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5.2 Motivations

We propose to refine the tolerancing approach by identifying assemblies with capabil-

ity disparities between contributors. Indeed, if a contributor is better produced than

expected when tolerance has been designed, another contributor can benefit from this

positive margin to enlarge its tolerances. Review a tolerance sharing within the stack

is an easy way to reduce cost related to poor capabilities without changing assembly

process or tooling

Several criteria have to be taken into account in order to identify the best oppor-

tunities for tolerance sharing. For instance, the number of drawings impacted by an

assembly contributor or a top level requirement gives an information on how difficult

it would be to initiate a change of design. The number of non conformity logged for

a tolerance feature also gives an information on how valuable would be the change of

design. Moreover, capabilities indicators such as Cp and Cpk (see [38]) can be used

if feedback is available in order to consider the feasibility of a tolerance optimization.

Once opportunities for tolerance sharing are identified as detailed in Section 5.3,

an optimization approach helps to find the best re-sharing solution. Criteria for the

optimization objective function needs to be defined upstream and a relevant choice

about costs to be minimized is discussed in Section 5.4. Then, the choice of a method-

ology and the implementation of optimization solver through different approaches are

detailed in Section 5.5. Finally, a concrete application of the proposed methodology

is presented in Section 5.6.

5.3 Tolerance re-sharing opportunities identification

A first crucial step amounts to clarify what is a good tolerance sharing. Indeed, this

approach allows to harmonize and align objectives between different functions before

considering new tolerance sharing within stack chains. This step also helps to define

a concrete use case that appears to be relevant for demonstration of the added value

in an industrial context.
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Several factors are considered in the Airbus industrial context and allow to define a

global indicator that can be used to discuss a tolerance sharing and assess its relevance.

Among these various factors, we identified fields of criteria:

• Model accuracy - This refers to factors related to the accuracy of the tolerance

model and eventually to the enhancement of this model.

• Quality performance - This includes indicators within the scope of quality

control on measurement data.

• Cost of implementation - This concerns the cost represented by procedures

to be implemented in order to modify a tolerance sharing.

Through these fields, performance of each criteria can be managed and support

decision process. The table 5.1 summarizes factors identified as relevant to assess a

tolerance sharing within a stack chain.

Cluster Criteria

Model accuracy

Identified bias during model correction

and feedback quality

Ratio Q from Chapter 4, Equation (4.6)

Percentage of measured contributors in the stack chain

Measures availability on output feature of the assembly

Quality performance

Cp and Cpk of assembly contributors

Cp and Cpk of output feature of the assembly

Out of tolerance (scrap rate) at contributors level

Out of tolerance (scrap rate) at top requirement level

Cost of implementation
Number of drawings impacted by the stack chain

Number of contributors in the assembly stack chain

Table 5.1: Examples of criteria for tolerance re-sharing opportunities

Industrial stakeholders can define a score based on criteria displayed in Table 5.1

in order to measure the quality of a tolerance sharing. The aggregation of the various

factors can be managed through a mean after normalization of the different variables.

A weighting system could complete this score evaluation according to industrial rea-

sons because some criteria are more significant than others.
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The following section describes the modeling of the optimization problem consid-

ered in our work.

5.4 Problem statement

In a first approach, let us focus on an assembly with p contributors, represented by

random variables X1, . . . , Xp. We might have feedback measurement data on these

contributors (or not). For each contributor, the definition of tolerance will induce

costs of out of tolerance if the support of their associated distribution exceeds the

tolerance interval. The tighter the contributor tolerance, the more expensive is the

price. If measurement data are available for a contributor, these out of tolerance costs

represent a reflection of the capacity to produce complying with the tolerance required.

If a contributor is observed, we are able to assess the out of tolerance rate that

we expect for this contributor according to its tolerance bounds. This is a criteria

that will be taken into account in the stack chain optimization. A perfect stack chain

should ensure the consistency between the tolerance bounds defined for contributors

and the tolerated interval for the top level requirement. Tolerance model used by

tolerancing specialists allows to have a prediction of the top level requirement distri-

bution when we have observations for contributor input features. Again, whatever

the target bound value for this top level feature, we assume to be able to assess about

the non conformity rate at the top level assembly output. The article [39] gives some

methods to estimate such a scrap in order to perform tolerance sharing optimization.

In production phase, a change of tolerance design involves costs related to this

modification. However, no matter how different is the new design from the old stack

chain, the cost remains the same. The criteria which is relevant is a constant cost if

a contributor tolerance interval is modified within a stack chain.

The problem to be solved is similar to multi-criteria optimization. Indeed, it

involves three objective functions that are to be minimized and the result is set of

solutions that define the best tradeoff between competing objectives. The different



5.4. Problem statement 109

approaches and algorithms to be considered for this type of problem are detailed in

[40]. We have chosen the so-called Weighted Sum Method which consists in scalarize

a set of objectives into a single objective by adding each objective pre-multiplied by

a user supplied weight. The following section describes in detail the modeling of the

optimization problem considered in our work.

5.4.1 Variables and parameters definition

The quantities to be considered in our optimization approach in a stack chain are:

• Parameters: the targeted tolerance range for the assembly requirement, the

contributors initial tolerances and their observed variability range according to

feedback measurement data.

We denote by vy the tolerance bound targeted for the top level requirement of the

stack chain. Hereafter, we consider p contributors in a stack chain representing

an assembly. The contributors initial tolerances are treated as parameters in

the optimization problem and denoted by v = (v1, ..., vp) ∈ Rp.

• Variables: the proposed tolerances for each contributor and the fact to modify

or not the initial as-designed tolerance of each contributor.

Let us define (x, t) = ((x1, . . . , xp), (t1, . . . , tp)) ∈ Rp × {0, 1}p already stated.

The variables (x1, . . . , xp) are the proposed tolerance bounds for contributors and

(t1, . . . , tp) are binary indicators to assess about the change or not of contributors

tolerance bounds. The binary indicator is equal to 1 if the initial tolerance is changed

for the contributor, and 0 otherwise.

5.4.2 Objective function

Let us introduce c1 : Rp×{0, 1}p −→ R, c2 : Rp×{0, 1}p −→ R and c3 : Rp×{0, 1}p −→

R the cost functions associated to non-quality for contributors, non-quality for top level

feature and a contributor tolerance change respectively.
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Figure 5.2: Stack chain example with 3 contributors.

The non-quality is expressed as the standardized sum of the probabilities to be

out of designed tolerance interval for each contributor,

c1(x, t) =
1

p

p∑
i=1

[tiP (|Xi| > xi) + (1− ti)P (|Xi| > vi)] ,

whereX1, . . . , Xp are the random features associated to each contributor. Their distri-

butions can be estimated through the measurement analysis and density estimation.

For the i-th contributor, the tolerance limit taken into account is either xi if the

tolerance is modified, or the initial tolerance vi otherwise.

This cost relates to the out of tolerance rate of all the contributors. The purpose

of the term 1
p is to normalize this cost, which is then homogeneous to a probabil-

ity whatever the number of contributors in the stack chain. This implies that each

contributor has the same importance in the optimization of its non quality. A re-

fined approach could be envisaged, so that the most important contributors in the

chain are preponderant. For this, one could for example replace the standardization

term 1
p by a set of differentiated terms for each contributor

{
x1∑p
i=1 xi

, . . . ,
xp∑p
i=1 xi

}
or{

x21∑p
i=1 x

2
i
, . . . ,

x2p∑p
i=1 x

2
i

}
.
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The probability for the top level feature to be out of its targeted interval is highly

dependent of tolerance bounds applied to contributors via the linear tolerance model.

c2(x, t) = P (|Y (x, t)| > vy) ,

where vy is the target interval for top level feature Y (x, t) which distribution depends

now on the pair (x, t). Distributions densities can be estimated based on available

information about assembly contributors. In the particular hypothesis of a Gaussian

framework with independent features, Y (x, t) ∼ N
(

0,
√∑p

i=1 (αi (tixi + (1− ti)vi))2

)
.

Otherwise, any distributions could be considered using different estimation methods

as presented in Chapter 4.

The cost of change is represented as a unit cost,

c3(x, t) =

p∑
i=1

ti.

The optimization problem can then be formulated as the following non-linear

mixed integer programming (MINLP)

min
(x,t)∈Rp×{0,1}p

{λ1c1(x, t) + λ2c2(x, t) + λ3c3(x, t)}

where λ1, λ2, λ3 > 0 are setting parameters to be defined according to engineering

judgment. From an industrial point of view, these coefficients make it possible to

adjust the relative importance of the costs in relation to each other. Often, one can

consider a close order of magnitude for λ1 and λ2 because both represent a proba-

bility. The λ3 represents a threshold from which it is beneficial to change the tolerance.

If λ1 = λ2 = 0, it means only the third cost is considered in the optimization

problem. The proposed solution will be to not change any tolerance since any change

would increase the third cost, the only one considered with this setting.

If λ1 = λ3 = 0, only the second cost is active, meaning that the solution is to reduce as

much as possible the tolerance intervals of the contributors in order to reduce the rate

of out-of-tolerance of the output to 0%. All the tolerances can be changed without

any restriction since the third cost is inactive.
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Conversely, if λ2 = λ3 = 0, the solution is to increase the contributors tolerance

ranges so that the sum of out-of-tolerance rates of inputs is minimized. The rate of

out-of-tolerance at the output will be very high since its cost will not be taken into

account.

5.5 Methodology

This section presents different methods to solve the optimization problem previously

stated.

5.5.1 Non-linear solver for continuous variables

In a first approach, we checked the validity of costs selected for the objective function

by simplifying the non-linear mixed integer problem in order to quickly solve it as a

continuous non-convex problem through Newton or Quasi-Newton’s methods. As our

optimization problem involves a discrete variable, the first step was to modify these

binary indicators and cost function.

Relaxation of the problem

The previously presented optimization problem involves the variables (t1, . . . , tp) ∈

{0, 1}p. In order to use common solvers, we relaxed these binary indicators to contin-

uous variables
(
t′1, . . . , t

′
p

)
∈ [0, 1]p.

As we still want these variables to represent a tolerance change, the cost function

of change c3(x, t) =
∑p

i=1 ti has been changed for a continuous function c′3 : Rp ×

[0, 1]p −→ R

c3(x, t′) =

p∑
i=1

t′i.

We now need to control the values of
(
t′1, . . . , t

′
p

)
between 0 and 1 through an

approximation function to represent how expensive is a tolerance change.

An arbitrary choice for any i ∈ 1, . . . , p,

t′i = 1− exp

(
− (xi − vi)2

ω

)
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where ω is a running parameter related to the relaxation accuracy. This function is

zero if initial tolerance is unchanged, and quickly grows to one if initial tolerance is

changed. The main difference with the previously defined discrete function is that a

slight modification of the initial tolerance is now allowed without increasing the cost

of change. This inaccuracy adjusted by the ω parameter is acceptable from industrial

perspective if we deal with large roundings for tolerance management. Figure 5.3

shows the value t′k of an example contributor with initial tolerance value vk = 1.

Several values for ω parameter are displayed:ω = 10−3, ω = 10−4, ω = 10−5 and

ω = 10−6 from smooth to more constrained.

Figure 5.3: Illustrations of accuraccy ajusted by ω = 10−3, ω =
10−4, ω = 10−5 and ω = 10−6 for t′k with an example vk = 1.

Vector t′ is entirely dependent on variables x and parameter v so we could drop it

in the problem formulation. Finally, the relaxation form of the optimization problem

is given

min
x∈Rp

{λ1c1(x) + λ2c2(x) + λ3c3(x)}

where λ1, λ2, λ3 > 0 are setting parameters to be defined according to engineering

judgment about importance of each cost. This expression is a minimization of a scalar

function without constraints. Many options to solve it are available and we consider

the Sequential Least Squares Programming (SLSQP) based on Newton’s method, the

derivative free Nelder-Mead algorithm (simplex) and the Limited memory-BFGS-B

algorithm of the quasi-Newton’s family.
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Starting point specificity and limitations

The selected algorithm will converge to local minima and do not ensure the global

optimal solution is reached. With the problem simplification and the introduction of

the continuous cost of change, the objective function will become ’bumpy’ and many

local minima are generated in the space of solutions. The solution obtained is often

unsatisfactory. These approaches are also highly dependent on the starting point,

which leads to distinct local minima. To address these shortcomings, we implemented

a multi-start strategy to test various starting point in order to increase the chance to

reach a good local solution. We propose an experimental design based on combinations

between initial tolerance value and observed tolerance bound for each contributor.

This observed tolerance bound can be estimated as 99.73% quantile of the contributor

feature distribution, as it is commonly assumed with the 6σ rule in the Gaussian

framework. This strategy allows to cover a large part of the solution space. Among

all the solutions given by the different starting points, taking the minimum gives a

solution which is the better option to the optimization problem.

The limitations of this approach are the number of optimization to be performed

in order to increase the chance to reach a good local optimal solution. Indeed, our

experimental design for a multi-start strategy leads to run 2p optimization loops and

required a significant amount of time to reach the solution.

5.5.2 Greedy algorithm

A greedy algorithm is an iterative algorithm to approximately solve an optimization

problem. It follows a defined heuristic to find the locally optimal solution at each stage.

It might not lead to a global optimum. In some cases, a well-defined heuristic can

provide a good approximation of the global solution. The advantage of this approach

is that it runs and give a solution in a reasonable amount of time.

Problem solving and heuristics specificity

We remind the MINLP problem that needs to be solved

min
(x,t)∈Rp×{0,1}p

{λ1c1(x, t) + λ2c2(x, t) + λ3c3(x, t)}
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where λ1, λ2, λ3 > 0 are setting parameters to be defined according to engineering

judgment about importance of each cost.

In the implementation of a greedy algorithm in our context, the iteration relies

on the number of tolerance changed within the stack chain. Indeed, we consider dif-

ferently the binary variables to assess about a tolerance change, as the algorithm is

divided in several stages. Each stage represents several objective function evaluations

and the one giving the best option is selected to go to the next step. In such a tree

structure, there are as many stages as there are contributors in the stack chain.

The initial step consists in allowing the change of all the p contributors tolerances.

Then, next stages allows to change only p − 1 tolerances, and so on. At each step,

the objective function is computed for each combination of tolerance change among

the number of contributors allowed to change. The cost c3 depends on the step of the

greedy algorithm and therefore the number of tolerance modifications. While there is

a result lower than the previous evaluation of the objective function, the tree traversal

continues. It means that the decrease in the cost c3 compensates for the increase in

costs c1 + c2.

The decision on which contributor tolerance should be modified is driven by result

obtained at each stage for objective function. At each step, the contributor tolerance

which becomes fixed is the one with the lowest evaluation of the objective function

and that is the greedy aspect of the algorithm. From a step to the next one, the cost

of change (represented by c3) is reduced as a tolerance contributor is fixed at each

stage. The global cost might increase or decrease depending on other costs c1 and c2

related to inputs and output features quality (scrap rate). This is a trade off between

costs c1 and c2 on one side and c3 on the other side.
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Algorithm 1: Greedy algorithm for tolerance resharing optimization

Maximum number of iteration: p ;

Initialization of iteration: i = 0;

Initialization of available changes of tolerances: all tolerances ;

Initialization for continuous solver: feedback tolerance ranges;

Result: Optimized set of the stack chain tolerances

while objective function for i lower than for i− 1 AND i is lower than p do

List every combination of tolerance changes p− i tolerance changes;

forall possible combination in this iteration i do

Quicksort of the objective function evaluations;

Stock the contributor index to be fixed for the next iteration;

end

Evaluate objective function ;

Obtain the associated solution: optimized set of the tolerances;

Define the index for the tolerance to be frozen;

Next iteration: i = i+ 1 ;

end

In Figure 5.4, we give an example of the tree structure with a stack chain involving

three contributors. The red dots means that the contributor is not allowed to change

its tolerance while a green dots means the change is possible. In this example, Step 1

consists of three evaluations for the different combination red/green. The lowest value

for the objective function is obtained with the first combination: green, green, red.

This implies this value is also lower than the reference evaluation of Step 0. Then in

Step 2, two values for the objective function are evaluated. Again, if the lowest value

of these two evaluations is lower than Step 1 evaluation, the tree traversal continues

and it comes to Step 3. In this simple case, it means that the best solution according

our greedy algorithm is to not change anything in the stack chain tolerances. In more

complex cases, we expect that the descent stops before reaching the tolerance sharing

status quo.
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Figure 5.4: Outline of the greedy algorithm on a simple example.

Special case of global optimality for a greedy algorithm

A greedy algorithm does not guarantee an optimal global solution. In some cases this

approach allows to reach a global optimum, but this is not the general case. Several

well-known optimization problems illustrate the failure of a greedy algorithm to find

a global optimal solution. For instance, this might be the case for some problems of

change making (even if usually a greedy algorithm gives a global solution to this class

of problem). The goal is to minimize the number of coins when making change. A

greedy approach consists in systematically choosing the coin of higher value that is

not higher than the remaining quantity to be returned ([41]). Let’s take the example

of a coin return of 6 with the denominations of the coins were 1, 3 and 4. The greedy

algorithm will give the solution 4,1,1 for the change. However, a better solution to

the problem is to render two coins of 3, and this is the global optimal solution. In the

majority of cases, it is difficult to show that a greedy algorithm allows to obtain an

optimal global solution. The point is to show, if a choice that seems the best at the

moment is made, we should never reconsider an earlier choice. This is expressed by
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two properties that need to be verified to ensure that a greedy algorithm achieves an

optimal global solution.

• Property of the first greedy choice - There is always an optimal solution

which contains a first greedy choice.

• Optimal sub-structure property - Every optimal solution contains an opti-

mal substructure. The substructure represents the resulting sub-problem when

a choice on the problem is made.

In the specific case of tolerance sharing, these two properties are not trivial to

demonstrate. The greedy algorithm as described above is based on the evaluation

of contributor combinations to be modified in the stack chain. Therefore, the same

solution may appear in several branches of the tree structure of the algorithm.

Initially, the cost of change is maximum as all contributors are allowed to change.

The following step will freeze the tolerance which is the least beneficial when modified.

And so on at each step until the benefit on the cost of change related to the freezing

of a tolerance does not outweigh the gain in terms of the other two costs. From the

stack chains studied, it seems that the sequence of operations to freeze tolerances

at each stage does not matter. Intuitively, this means that the best solution can be

reached by following different branches. In the industrial context and in all the cases

studied, the greedy algorithm led to appropriate optimal solutions and these results

are satisfactory.

5.5.3 Branch and Bound

Tailored for integer programming problems, branch and bound principle is based on

state space search process. Solutions set are divided into subsets treated as branches,

and forming a tree. A solution is searched thanks to the tree exploration, relying on

successive estimation of the lower and upper bounds of branches of the search space.

Background

The branch and bound principle was first presented in [42] for discrete linear pro-

gramming. Later on, binary problems have been discussed by [19] and [43]. In the
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following years, many works related to branch and bound techniques have been pub-

lished, either for discrete, mixed, linear and non-linear optimization problem.

Branch and bound algorithm aims to find optimal solutions of various optimization

problems, especially in discrete and combinatorial optimization. The principle of this

general algorithm consists in a systematic enumeration of all candidate solutions in

the space state. The candidates are then linked and clustered through a tree structure.

This is the first step of the algorithm, called branching step. The second step is to drop

large cluster of poor candidates (i.e. branches), in order to isolate the global optimal

solution. In general, this is possible by using upper and lower estimated bounds of

the objective function through relaxation of discrete variables. The confrontation

of these evaluations for different branches allows to drop some of the tree branches

where solution candidates are not enough competitive. This is the bounding step of

the branch and bound technique. The details of the algorithm are available in [44]

and [45].

Problem solving

Let us remind the initial MINLP problem that refers to optimization problems with

continuous and discrete variables and nonlinear functions as objective functions:

min
(x,t)∈Rp×{0,1}p

{λ1c1(x, t) + λ2c2(x, t) + λ3c3(x, t)}

where λ1, λ2, λ3 > 0 are setting parameters already stated.

To ensure that changing a tolerance impact the associated cost, the following

constraint between x and t value is implemented, for any i ∈ {1, . . . , p},

(1− t)× (xi − vi) = 0.

We also implement an advanced constraints system in order to properly manage

and differentiate the increase or decrease for a contributor’s tolerance. To this end,

we decompose the binary variables ti into t+i and t−i in order to discriminate between
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an increase and a decrease of tolerance for each contributor respectively. It may be

useful for user to distinguish increase and decrease because it may lead to different

costs, production systems or business constraints.

As a tolerance can only remain identical, increase or decrease its initial value,

constraints system ensures this consistency. Obviously, a tolerance can not increase

and decrease at the same time. The only possible configurations related to the binary

variables for the i-th contributor is

• t+i = 0 and t−i = 0, if the initial tolerance is not modified (xi = vi).

• t+i = 1 and t−i = 0, if the proposed tolerance is greater than the initial (xi > vi).

• t+i = 0 and t−i = 1, if the proposed tolerance is lower than the initial (xi < vi).

The constraints modelling is, for any i ∈ {1, . . . , p},



t+i × t
−
i = 0 because either t+i = 1 or t−i = 1,

t+i
(
1− t−i

)
× (xi − vi) ≥ 0 to manage xi ≥ vi,

t−i
(
1− t+i

)
× (xi − vi) ≤ 0 to manage xi ≤ vi,(

1− t+i
) (

1− t+i
)
× (xi − vi) = 0 to manage t+i = t−i = 0.

(5.2)

This constraints system ensures the relevance of the solution for a tolerance sharing.

Implementation

The optimization problem is formalized through a script using AMPL language (A

Mathematical Programming Language). AMPL supports different solvers, either open

source or commercial software. For instance, available solvers are CBC ([46]), CPLEX

([47]), FortMP ([48]), Gurobi ([49]), MINOS ([50]), IPOPT ([51]), SNOPT ([52]), KNI-

TRO ([53]) or LGO ([54]).

For our experimental study, the branch and bound approach has been implemented

through the Knitro solver ([53]). This solver particularly addresses large scale nonlin-

ear mathematical optimization problems. It allows to solve MINLP through Nonlinear
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Branch and Bound, Mixed-Integer Sequential Quadratic Programming (MISQP) and

Quesada Grossman algorithm. The method used is the hybrid Quesada-Grossman

(HQG) method based on the algorithm described in [55].

The objective function involves non linear functions which require specific library.

Indeed, costs related to input and output non quality are based on distribution func-

tions and survival functions. To this end, we manipulate functions defined in GSL,

the GNU Scientific Library, a collection of numerical routines for scientific computing

written in C.

5.6 Application

Let us introduce examples to illustrate methodologies presented in this chapter. The

first part of this section presents a simple assembly in order to visualize the optimiza-

tion structure problem. The second part focuses a more complex assembly closer from

a real industrial case and associated results and comments.

5.6.1 A simple example

The first example involves only two contributors in order to illustrate the optimization

problem through 3D plots.

Assembly description and data

The first example involves only two contributors in order to illustrate the optimization

problem. Table 5.2 summarizes information about this assembly, involving initial

tolerance value, feedback measurement and target for the top level requirement. For

the sake of readability, influence coefficients in the linear model are all assumed to be

equal to 1.

Initial tolerance value Observed tolerance interval

Contributor 1 (X1) ±1 ±3

Contributor 2 (X2) ±2 ±0.5

Top level requirement (Y ) ±2.3

Table 5.2: Simple example - Stack chain information
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Objective function visualization and result

The first cost about inputs quality is given by

c1(x1, x2, t1, t2) =
1

2
(t1P (|X1| > x1) + (1− t1)P (|X1| > v1)

+t2P (|X2| > x2) + (1− t2)P (|X2| > v2))

(5.3)

where x1, x2 ∈ R, t1, t2 ∈ {0, 1} and finally v1 = 1 and v2 = 2 as stated in Table 5.2.

The second cost about inputs quality is

c2(x1, x2, t1, t2) = P (|Y (x1, x2, t1, t2)| > vy) (5.4)

where x1, x2 ∈ R, t1, t2 ∈ {0, 1} and vy = 2.3 as stated in Table 5.2.

The third and last cost about inputs quality is defined as

c3(x1, x2, t1, t2) = 1{x1 6=v1} + 1{x2 6=v2} = t1 + t2. (5.5)

The total cost is the sum of these 3 functions, weighted by parameters λ1, λ2, λ3

associated to each cost. Here, we arbitrary consider λ1 = 20, λ2 = 20 and λ3 = 20 for

illustration purpose. Note that first cost is the standardized sum of two probabilities,

second cost is one probability expression while third cost is unitary. We place ourselves

in the context of the continuous relaxation of the third cost to represent the objective

function. With Gaussian hypothesis on contributors and top level requirement distri-

butions and using c′3(x, t′) = t′1 + t′2 as detailed in 5.5.1, we can visualize the total cost

function in Figure 5.5. Distributions are supposed to be centered normal distributions

with parameters obtained for the 6σ rule: X1 ∼ N (0, v1/3), X2 ∼ N (0, v2/3) and

Y ∼ N (0,
√
x2

1 + x2
2/3). From the plot, we see that the cost function is not convex.
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Figure 5.5: Total cost function according to costs of Contributor 1
and Contributor 2 when c3 is replaced by c′3.

While the surface seems smooth enough, we clearly distinguish the impact of the

third cost c′3 approximated to be continuous which draw two furrows around initial

values of the two stacks. When dimension increases, such local minima increase as

well. The strategy to alternate starting points between initial and observed tolerance

value helps to reach the global minimum of the problem.
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According to our hypotheses, the best solution of the optimization problem is

x1 = 2.45 and x2 = 0.49. This global minimum is obtained with the Nelder-Mead

method when initialization is the set of observed tolerance ranges. The starting point

at the initial tolerance values leads to the local minimum x1 = 1 and x2 = 2. The

greedy algorithm and the branch and bound lead to the same result for this simple

example. The next part addresses a more complex assembly and optimization problem

to be discussed, considering different ways to solve.

5.6.2 A more advanced example

Assembly description and data

Table 5.3 summarizes the information about the stack chain considered in this exam-

ple. There are p = 5 contributors, each with an influence equal to 1 (α1 = α2 = α3 =

α4 = α5 = 1). The tolerance limitation for top level requirement in this stack chain is

equal to a range ±11.5, which is the result provided by the ASCR approach detailed

in Chapter 2.

Initial tolerance value Observed tolerance interval

Contributor 1 (X1) ±1 ±1.1

Contributor 2 (X2) ±2 ±2.8

Contributor 3 (X3) ±3 ±2

Contributor 4 (X4) ±4 ±4.4

Contributor 5 (X5) ±5 ±4.9

Top level requirement (Y ) ±11.5 NA

Table 5.3: A more advanced example - Stack chain information

Results, comments and discussion

The three approaches respectively described in Sections 5.5.1, 5.5.2 and 5.5.3 are

applied. The calibration coefficient selected for this example are λ1 = 10, λ2 = 1 and

λ3 = 0.01.

The non-linear solver for continuous variables (Sequential Least Squares Program-

ming) is used to solve the relaxed optimization problem, with a constant ω = 0.001.

The computation time is long enough as 25 = 32 optimization loops are required by
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the experiment design for this approach as explained in 5.5.1. The greedy algorithm

required three steps since two tolerances are changed. The branch and bound ap-

proach is implemented through AMPL language and KNITRO solver.

The result is represented in the graphs below. The three approaches lead to a very

similar result. The green bar represents the resulting optimal range, while the blue

bar corresponds to the tolerances initially defined and the orange bar to the dispersion

intervals observed on the measurement data.

Figure 5.6: Result: identical for the three approaches

This tolerance resharing is relevant from an industrial point of view, since only

the tolerances far from of their feedback are modified. the tolerance on Contributor

2 is extended while the tolerance on Contributor 3 is reduced. This new balance

is economically interesting since it reduces the out of tolerances probability for the

contributors while maintaining a reasonable risk on the output top level requirement.

Moreover, only two tolerances are modified. The ASCR value for the new resharing

is ±11.4 (against ±11.5 for the initial tolerance sharing). The difference between the

three approaches is the number of calls to a continuous solver in the resolution.

The approach with a nonlinear solver solves a relaxed problem 32 times using

Sequential Least Squares Programming (SLSQP). The greedy algorithm requires 15
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resolutions by a continuous solver (SLSQP) in the different steps. According to Kni-

tro’s output, the branch and bound approach processes only one node and two sub-

problems, which correspond to two calls to a continuous solver. The disadvantage of

Knitro is the implementation complexity in internal tools, that is why in Chapter 6

the greedy algorithm is used.

5.7 A variant of the optimization approach for adjust-

ments (rigging)

It is common for a stack chain to be made up of so-called rigging contributors that

are adjustment links. These rigging contributors are a source of variation in the

stack chain if they are not specifically set to a certain value. These contributors are

adjustable and the value to be assigned to them has to be defined in order to minimize

the non-quality at the output of the assembly. The same rigging can be involved in

several assemblies and therefore several stack chains, as illustrated in Figure 5.7 where

the rigging contributor X1 is involved in three top level requirements.

Figure 5.7: Rigging contributors interrelations between stack chains

In order to find the optimal value for this rigging, it is therefore necessary to glob-

ally evaluate the impact on the top level requirements of this adjustment contributor

in each stack chain.

Thus, to find the optimal value of a rigging, the criterion to be minimized is similar

to the cost c2 which relates to the non-quality at the output of the assembly. However,

it is now necessary to consider the interconnection of several stack chains in which the

same rigging contributor can be involved.
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Note that we are no longer working on tolerance intervals but on a value to be

assigned to a contributor with an allocated tolerance range.

The non-quality of the assembly output is now computed from the distribution

estimated for the random variable associated to the top level requirement. This dis-

tribution is obtained from the convolution product of the densities associated to the

contributors. As already detailed in previous parts, the measured contributors have

a fitted distribution on observations and the non-measured contributors are assumed

to be uniform.

The novelty here is to consider a new type of contributor that is rigging. A rigging

contributor take a precise value and might have some specific bounds. Usually, these

bounds are the tolerance limits of the rigging contributor since these often represent

physical setting limits. We denote the rigging contributors in a stack as xrig.

To formalize the approach, the function to be minimized is written as

K∑
k=1

P (|Yk(xrig)| > vy)

where Y1, . . . , YK are the feature associated to stack chains in which rigging contribu-

tors are involved. These distributions are estimated from measured and non-measured

contributors as previously detailed, but in addition rigging contributors (one or more)

need to be considered. This the newly introduced variable of the criterion function to

be minimized, denoted xrig.

The optimal rigging are the solution of the following minimization problem:

min
xrig∈Rr

K∑
k=1

P (|Yk(xrig)| > vy) .

This methodology for rigging optimization in interrelated stack chains is implemented

within an internal tool detailed in Chapter 6. Note that if we try to limit the number

of rigging operation to perform, the problem becomes similar to the one stated in 5.4

and same solving techniques than in 5.5 could be applied.
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Chapter 6

Industrial tools

This chapter presents the industrial implementations of the work proposed in this

manuscript. All the methodologies presented in the previous chapters aims to con-

tribute to the business needs. This implementation presents the associated tools to

enable users to use the methodologies in practice. As a reminder, the schema 6.1

illustrates the different issues addressed in the tolerancing process and the associated

chapters. The tool suite for tolerance management proposed for implementation of

proposed methodologies is displayed in the purple frame.

Figure 6.1: Tolerancing process mapping for implementation

6.1 Tolerance management at Airbus

In addition to a database system, it is important for Airbus to have a suite of tools to

work on tolerance management. The DIVA platform detailed in the following section

allows to study tolerances and to confront theory with reality thanks to the analysis

of measurement data.
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6.1.1 Tool for storing tolerance information

For several years, a tool and a database have been used at Airbus to capitalize on the

stack chains of assemblies at all levels for all programs. Tolerance models are assumed

to be linear and a 3D simulation software is directly connected to allow the calculation

of linear influence coefficients.

This tool and database is the main working tool for tolerance analysts. During the

development of a new assembly, the database is completed with the tolerance model,

the tolerance limits associated with each contributor and information on the top level

requirement. When it comes to the revision of a stack chain, the tool gathers the

necessary elements for the tolerance study. All these elements are also the input data

for the methodologies presented in the various chapters.

6.1.2 DIVA platform and objectives

DIVA (Data Integrator for Variation Analysis) is a complementary platform to the

tolerance management tool, enabling the processing of feedback data made available

during measurement campaigns.This allows tolerance analysts to improve their toler-

ance studies.

The platform brings together different applications developed for specific purposes.

Among them, the works presented in this thesis related to the processing of measure-

ment data are implemented. In particular, the tolerance model is corrected upstream

as a prerequisite (as detailed in Chapter 3). The improved tolerance model is then

used in the interface to manage acceptance criteria based on the industrial risk con-

sideration (Chapter 4) and in the tolerance optimization module (Chapter 5).

6.2 Specific functionalities implemented in DIVA

This section focuses on the DIVA functionalities which are based on the previously in-

troduced methodologies. The data and information on the screenshots are deliberately

blurred for confidentiality reasons.
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6.2.1 Data selection

A first module allows to select a contributor or a top level requirement to be studied.

Several filters on industrial classifications allow to refine the study perimeter.

Figure 6.2: Tolerance study perimeter selection

After selecting a contributor or a top level requirement, the tool displays the dif-

ferent links with requirements or contributors involved in the same stack chain, and

associated variability percentages.

Figure 6.3: Example: Top levels requirement of a selected contribu-
tor

Then, measurement data histogram and several information about the considered

characteristics are displayed. This example is for a top level requirement that will be

also considered in the next section.
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Figure 6.4: Example: Measurement data information in DIVA

In the top left corner of this window with the histogram, we can see the buttons

allowing to access the correlation analysis of the different measurement points of a

characteristic between them as well as their descriptive statistics.

6.2.2 Model correction

The model correction is a prerequisite, and the model improvement loop is run before

the risk analysis for the acceptance criteria, the calculation of the distribution at the

top level requirement and the optimization algorithms.

Top level requirement distribution - open loop

For this module, the analysis applies to a top level requirement. This allows the user

to see improvements in the tolerance model, detailed in 3.4. The plot represents the

density estimate of the top level requirement feature of the stack chain. The solid line

is the result as expected during the design phase with the initial tolerance model.
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At this stage, the measurement data are not taken into account. The stack chain

contributors features are assumed to follow uniform distributions between tolerance

limits (as in Chapter 2). It is an open loop approach.

Figure 6.5: Output feature distribution density - open loop

By clicking on the button , the user accesses the details of the stack chain. In

the next section, this information is updated, so the details display the corrected sign

of the influence coefficients and the offset as described in Chapter 4.

Top level requirement distribution - closed loop

In a second step, the closed loop analysis takes into account the distributions for con-

tributors coming from measurement data and the corrected tolerance model. In solid

line, the density is the one estimated in this case. The corrected tolerance model is

now able to explain the variability observed in Figure 6.4.

Figure 6.6: Output feature distribution density - closed loop



140 Chapter 6. Industrial tools

Top level requirement distribution - predict mode

Finally, the tool allows the user to switch to predict mode. The principle is to select a

specific serial number (MSN) of an aircraft and to look specifically at the prediction

on the top level requirement using the corrected model.

Available data from suppliers are retrieved from the database and replace the

tolerances of the measured contributors. This has the effect of tightening the estimated

distribution on the top level requirement since the measured contributors values no

longer have any variability in the stack chain.

Figure 6.7: Output feature distribution density - predict mode for a
MSN

An extension of this predict approach allows to consider an entire area of the

aircraft, and to predict the distributions for several characteristics. This feature called

Enhanced Virtual Assembly uses once again the corrected tolerance model.

6.2.3 Tolerance re-sharing optimization

The optimization for tolerance sharing is implemented in the same interface as Figures

6.5 and 6.7. There is also an interface to select the parameters λ1, λ2, λ3 and a button

in the top right corner to launch the optimization. As output, the new tolerance values

of the stack chain are displayed.
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A challenge in the implementation for industrial use is to consider that some

contributors in the stack chain should not be modified, for example when feedback is

not available. The optimization problem must therefore be restricted to a user-defined

set of contributors.

6.2.4 Rigging optimization

The topic of choosing values for rigging contributors described by the optimization

problem in the section 5.7 is also implemented in DIVA. The simple example on a

top level requirement presented on the screenshots allows to see the application of the

methodology on a simulated case close to a possible industrial case. In Figure 6.8,

selected contributors for the study and their information are displayed. The example

involves several contributors and two different physical parts in the assembly.

The focus is on one serial number (MSN) on which measurement data are available.

The measured contributors thus have their measured value assigned and others con-

tributor are either represented by uniform or normal random variables (for instance,

if measurement data are available but not on the considered MSN).

Figure 6.8: Rigging optimization example: contributors information

Figure 6.9 shows information about requirements associated to the contributors

previously selected. In this case there are two top level requirements. The first

one has a target of ±4.2, and a out of tolerance risk of 9.08% risk. The prediction

columns gives the predicted value of the top level requirement for the serial number

(MSN) previously selected. It takes into account the measurement data for observed

contributors. There are two rigging contributors, both with a negative coefficient

influence equal to 1.
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Figure 6.9: Example for a rigging optimization: top level require-
ment information

Figure 6.10 shows the distribution estimation of the first top level requirement,

with the higher risk. The solid line is the one to be considered, this is the estimation

based on feedback data, including the measures for the selected MSN. We can see

that the negative side of the distribution is out of the tolerance target of the top level

requirement, which corresponds to the 9.08% risk.

Figure 6.10: Distribution of the first top level requirement before
optimization

After clicking on the optimization button, the result is displayed as in Figure 6.11.

Both contributors have an assigned value at the maximum of their negative interval.

Indeed, their influence coefficient is negative and it is indeed negative values that will

reduce the out of tolerance risk for the top level requirement.

The rigging values change the prediction, which is shifted by −1 × −0.5 + −1 ×

−0.3 = 0.8. The top level requirement distribution taking into account these rigging

values is displayed in Figure 6.12.
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Figure 6.11: Result of the rigging optimization

We can see on Figure 6.10 that the distribution is offset and the out of tolerance

probability is lower than in Figure 6.10. From 9.08%, the risk to be considered is now

0.66%.

Figure 6.12: Distribution of the first top level requirement after
optimization

6.2.5 Risk based acceptance criteria definition

In this part, the focus is on a contributor in a stack chain. For the definition of ac-

ceptance criteria, we have to consider a contributor involved in at least one assembly.

Indeed, the risk is defined for a top level requirement. The availability of measure-

ment data is not mandatory. However, the tolerance relaxation by acceptance criteria

will be more favorable if the measurement data of the contributors involved with the

considered one are available and better than expected. In practice, measurement data

may be required by the business before considering acceptance criteria.



144 Chapter 6. Industrial tools

The interface implements exactly the methodology presented in Chapter 4. The

visualization tool allows the selection of a set of risk levels in percentage or values

in millimeters as acceptance criteria on the tolerances of the considered contributor.

These criteria are either absolute or relative to the contributor’s initial tolerance.

For the study of acceptance criteria of a contributor, several requirements may be

involved. These are filled in the table and represented by curves of different colors.

The values in percentage or in millimeters are displayed on the graph to facilitate the

decision for the acceptance criteria. The plotted risk is the probability to be out of

tolerance at the top level requirement if the contributor to which criteria are defined

has the value of the x-axis. More details about this type of plot are available in the

application section of Chapter 4.

Figure 6.13: DIVA interface for risk based acceptance criteria

The table in Figure 6.13 gathers all the results, either the values in millimeters

that correspond to the selected risk percentage or the risk percentage values associated

with the values of the criteria selected by the user.
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There is also a percentage value, called weighted impact which represents the risk

weighted by the density of the contributors on which the acceptance criteria are to

be defined. This is the probability consideration in the common impact/probability

concept in risk management.

The tool allows to decide what is the appropriate level of risk and to apply the

acceptance criteria. The decision is valid for a limited period of time because it is

based on measurement data that may evolve. This tool automatically generates a

report with all the information that justifies the decision.
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Chapter 7

Conclusion and Perspectives

7.1 Conclusion

Tolerancing plays a major role in the manufacture of a product. It is an aspect that

must be taken into account both during the development phase and during produc-

tion. In the case of aeronautical structures, several challenges related to tolerancing

have to be dealt with.

The work proposed in this manuscript is about the improvement of the statistical

approach within an industrial context. The aim is to manage tolerances as well as

possible in order to ensure the safety and quality of the product at all times, while

ensuring performance and limiting the various costs involved. In a company such as

Airbus, tolerancing involves various design offices and factories. Industrial processes,

existing tools and software or the measurement availability and data flow are con-

straints to be taken into account to ensure that the proposed improvement will be

implemented and bring benefit to the aerostructures production.

The first chapter established the general context of tolerancing and the specificities

related to the statistical approach as well as to the particular case of aerostructure tol-

erancing. By going through the life cycle of a tolerance system, several improvements

of the statistical tolerancing approach are proposed.
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Figure 7.1: Tolerancing process mapping

First of all, tolerance analysis is discussed in Chapter 2. It is a question of defining

the output variability of an assembly when the tolerance intervals of the contributors

of an assembly are assumed to be known. The proposed statistical method is based

on Chernov-type bounding of a sum of uniform distributions. This approach allows

to define a variability limit on the output tolerance in a robust way. The interest of

such a method lies in the ability to select and guarantee a precise scrap rate at the

output of an assembly. The link between this method and the existing Airbus process

is highlighted providing elements to further validate its use in industrial application.

The chapters 3, 4 and 5 focused on the evolution of a tolerance system when it

is in production and when partial measurement data are available. A discussion of

the tolerance model and its enhancement is provided in Chapter 3. An approach

to improving the linear tolerance model is detailed, taking into account industrial

constraints. The detailed process allows the improvement of tolerance processing in

the serial phase and thus a better efficiency of tolerance studies when measurement

data are available.

Chapter 4 presented a smart methodology for dynamic tolerance risk management

through acceptance criteria. A formulation of the industrial risk is detailed and used

as a decision aid. This approach requires new measurement data to allow the im-

provement of the tolerance model initially designed in the development phase. The

knowledge of these data allows an evaluation of the industrial risk in real time on a

process observed in factories.
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Chapter 5 dealt with the sharing of variability in an assembly and its optimization.

Indeed, a sharing is agreed in the design phase, but once again the measurement

data allow to review and improve. A modeling of industrial costs allows the use of

optimization techniques. The contribution of such an approach is to minimize non

quality by limiting the cost of reviewing a tolerance sharing.

To apply methodologies based on measurement data, Chapter 6 presented the

industrial tool used at Airbus. It is a platform that brings together several function-

alities, and in particular model correction, risk acceptance criteria management and

optimization of stack chain sharing. This implementation allows the techniques devel-

oped in this thesis to work with thousands of tolerances and measurements processed

by the internal tool DIVA. In the area of tolerances, this industrial tool contributes

to the development of the virtual twin. Tolerance management is enabled in a dedi-

cated interface and this allows the continuous improvement of the tolerancing process.

The contributions of this thesis allowed to include new ways of working in the

industrial process thanks to statistics-based methods. Industrial constraints such

as the availability of measurements, the implementation of tools, or the historical

culture of the technical teams were taken into account to build realistic solutions.

These solutions have been implemented and are deployed or ready to be deployed

for the actors working on tolerance challenges and current applications have already

demonstrated added value for Airbus.

Associated publications and patents

Chapter 2 is published in the journal The International Journal of Advanced Manu-

facturing Technology, 111(11), 3571-3581, under the title A Chernov bound for robust

tolerance design and application. A more general discussion on the end-to-end ap-

proach to tolerance entitled A statistical approach for tolerancing from design stage

to measurements analysis was presented at the 16th conference on Computer Aided

Tolerancing. (CAT) in June 15-17, 2020. The methodologies developed in Chapters

2 and 4 are the subject of patent applications, referenced respectively under deposit

numbers 1912668 and 2008847 at the French Patent Office (INPI).
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7.2 Perspectives

In the continuation of this thesis work, several axes can be considered both in the

industrial context and the academic background.

7.2.1 Tolerance model improvement

From an industrial point of view, the perspectives revolve around the refinement of

methods to meet industrial needs even better. For example, this could involve adding

to the tolerance model the consideration of variabilities induced by measurable exter-

nal factors. Indeed, environmental factors such as humidity, temperature or pressure

can have an influence on the dimensions. Currently, these factors are included in

the overall dimensional uncertainty and are therefore not analyzed one by one. If

measurement data for these effects were available, it would then be possible to assess

and model their impact. Such a problem seems to be suited to machine learning

techniques. On the one hand, this would allow the identification of external effects

affecting the dimensions and their variabilities. On the other hand, these external

effects could be quantified and then included in tolerance model as additional infor-

mation. In output of an assembly, it would then be possible to evaluate more precisely

the distribution of a top level requirement. Such an approach requires data on these

detailed external effects that are temporally related to the dimensional measurement

data. It is a challenge to record these data on a large scale, in different plants, and to

record them together with the measurement data.

Concerning the correction of the linear tolerance model, methodologies about the

correction of the linear coefficient signs are discussed in Chapter 3. It would be

interesting to go further, to find and check the value of each coefficient. The limita-

tion often encountered is that not all the contributors of an assembly are necessarily

measured. This, together with the number of measurements points available for a

measured contributors, induce an open question about the convergence of the inte-

gration stack calculation. A standard multivariate linear regression is therefore not

applicable. However, a regression in a Bayesian framework could solve this problem by
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using a priori on the unmeasured contributors coming for instance from the distribu-

tion used in the tolerance model. Beyond the correction of the sign, this would allow,

thanks to a Bayesian regression, to find the values of the influence coefficients for the

linear model together with an associated credibility interval that would support the

decision to update the model.

7.2.2 Resharing optimization challenges

Optimization for tolerance resharing could also be improved in different ways. First of

all, the proof of the global optimality of the greedy algorithm has yet to be established.

This is true for the cases analyzed so far, but formal proof is being studied.

Moreover, it is important for industrial needs to calibrate the parameters values

of the optimization of the multi-objectives cost function. These parameters represent

the relative importance of the different costs. For business needs, it is necessary to

make sense of these values. A detailed study of the optimization results on Airbus

stack chains is planned in order to calibrate these parameters as well as possible.

Finally, additional costs could be considered to refine the approach. Indeed, the

optimization problem presented in Chapter 5 is based on three costs defined in accor-

dance with Airbus business needs. Other costs related to, for example, over-quality or

the price of the parts of an assembly could be taken into account in addition to those

already considered in the optimization problem. To fit easily into the optimization

problem already in place, the costs should be dependent on the initial tolerances and

measurement data available. This is indeed the case for over-quality, but the con-

sideration of external costs such as price requires a link function with the tolerances.

Several works are already available as seen in the state of the art of Chapter 5 and

could be combined with the approach presented.

7.2.3 Multi-level assemblies

The inter-relation aspect of tolerances could also be taken into account, either in the

risk assessment or in the tolerance sharing. Indeed, a tolerance is often involved in

several assemblies and present at different assembly levels. This means that a top

level requirement can become a contributor to the next assembly step (Figure 7.2).
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In the framework presented in the chapters of this manuscript, this means that

the estimated distribution of a top level requirement can become the assumed dis-

tribution for a contributor. In this case, the contributor’s measurement data should

be considered together with the distribution estimated at the previous level. If the

tolerance model is close enough to reality, it is hoped that these two distributions

are similar. As such an estimated distribution is used in the risk calculation and in

the costs for the optimization of the tolerance distribution, it would allow to man-

age a same dimension feature and its tolerance in the different assembly levels. This

leads to academic challenges in the field of optimization, in particular about graph

optimization.

Figure 7.2: Multi-level assemblies models


