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Introduction

The availability of large data sets and the increase in computational power have allowed to
successfully apply machine learning methods to a wide variety of problems. This effect is
most prominent in computer vision, where what used to be challenging problems are now
routinely solved using convolutional networks. The advent of these automated solutions
raises much interest for healthcare applications, and there is hope to provide:

• Automated diagnostic. Machine learning methods are trained to diagnose of a sub-
ject at the current time. The promise here is two-fold. First, a decrease in the number
of false positives for a given pathology would allow to spare stressful, potentially
invasive and expensive additional exams. Second, these methods, because virtually
unlimited in their complexity and in the information that they can capture from
observations, could allow to formulate diagnostics which usual approaches would
not have detected.

• Prognosis i.e. the prediction of some aspects of the future state of a subject. Tasks
of interest typically involve predicting a future diagnostic and the progression of
symptoms such as cognitive decline. Variations around this topic include drug effect
prediction and optimized treatment.

• Identification of underlying biological processes. The analysis of data sets of patients
having a given disease can lead to the discovery of patterns which are informative
about the nature of the disease e.g. the identification of genes involved in a disease,
a particular pattern in Magnetic Resonance Imaging (MRI) etc. An interesting sub-
class of such approaches tackles the identification of sub-types within known dis-
eases. Alzheimer’s disease for instance is known to be heterogeneous and could in
fact be a generic name for processes which vary in causes and effects.

In this PhD thesis, we tackle some of these problems in the case of neuro-degenerative
diseases. We are particularly interested in modeling disease progression and in predicting
the cognitive decline. Neuro-degenerative diseases are particularly challenging since their
progression typically span several years, and single-time snapshot observations of subjects
are much less informative than repeated observations [21]. We will therefore build methods
which are able to gather information from longitudinal data sets i.e. data sets containing
subjects which are repeatedly observed through time. The analysis of such data sets comes
with challenges. Previous research work (e.g. [86]) was dedicated to handling the varying
number of observations of each subject, managing their different time spacing and coping
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Introduction

with the absence of known notion of time alignment: some subjects declare the disease
earlier than others and some exhibit a faster progression than others. We will include
solutions to face these challenges in all of our work. But we focus on dealing with new
challenges which were often limiting for the approaches designed to create longitudinal
disease progression models:

• High-dimensionality of the data;

• Absence of a priori knowledge to model the progression of the observations. It is
possible to design models in a way that is consistent with the observed progressions
when a lot of knowledge is available about an observed feature – as it is the case
for cognitive scores or amyloid deposition in [88, 31]. However, in the more general
case of imaging data and/or when the goal is precisely to unveil mechanisms of the
disease process, such knowledge is not available. Therefore, we aim at learning the
patterns of progression that are relevant to a specific disease and modality.

Riemannian geometry is often used to model disease progression and medical imag-
ing data sets, for several reasons. First, it allows to handle data which obeys constraints
e.g. symmetric positive definite tensors [80]. The constraint is directly embodied in the
manifold which is considered. Second, it is in agreement with the so-called manifold hy-
pothesis, which assumes that the data, although high-dimensional in its raw description,
is in fact governed by a small number of intrinsic and hidden parameters with respect to
which it varies smoothly. Third, we inherit from a vast literature in shape analysis [106],
which often proposes to compare shapes by computing transformations between them and
heavily relies on Riemannian geometry tools. A particular instance of this is the Large
Deformation Diffeomorphic Metric Mapping (LDDMM) [74, 106], which provides a way
to parametrize diffeomorphisms which act on shapes. The analysis of the shapes boils
down to the comparison of diffeomorphisms which are ultimately described in a tangent
vector space.

The first two parts of this thesis propose numerical methods and models for the analysis
of manifold-valued data.

First, we propose a numerical scheme, the fanning scheme, for the computation of
parallel transport, which remains computationally efficient as long as the inverse of the
metric can be computed efficiently. The direct integration of the parallel transport equa-
tion by computation of the Christoffel symbols scales exponentially with the dimension.
The Schild’s and Pole’s ladder [45, 61] –which constitute the sole other alternatives– are
limited by the need to repeatedly compute Riemannian logarithms, an operation which is
often expensive and approximate. We prove the convergence of the fanning scheme under
simple conditions on the manifold. This computational block can be used in generative
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models on Riemannian manifolds. In spirit, the parallel transport allows to put into corre-
spondence progressions —materialized by a tangent vector— observed at different points.
It therefore constitutes a tool of choice for gathering information from multiple observed
progressions on the manifold. We will show how to use this in a simple setting to predict
the progression of sub-cortical structures with time in the course of Alzheimer’s disease.
This comes to complement existing methods for comparing trajectories on Riemannian
manifolds [108, 102, 32].

Second, putting momentarily aside longitudinal data sets, we propose a generalization
of Linear Discriminant Analysis [26] for manifold-valued data. In the spirit of principal
geodesic analysis [27], it enables to find a geodesic sub-manifold which best summarizes
the between-class differences with respect to the within-class differences. It is both a
dimensionality reduction method as well as a classification method. We illustrate it on
various shape data sets. Our claim is that this method is more intrinsic, in particular it
is in principle independent from the coordinate system used on the manifold, when most
other classification methods on manifolds heavily rely on coordinates and transformations
of the data.

Until that point, we developed methods which enabled statistical analysis of manifold-
valued data when the manifold is known a priori. This puts a strong limitation on the
applicability of these methods. First and foremost because such Riemannian manifolds
are not always available. Indeed, it is already hard in general to identify a differential
manifold which is close to the data – it is a blooming field of research in itself. It is
even harder to equip this manifold with a relevant Riemannian metric which is adapted
to the task at hand. Note that the performances of a generative model formulated on a
Riemannian manifold crucially depends on the manifold and on its metric.

Remark. One particular domain in which this is true is for the LDDMM framework.
This framework postulates that shapes are obtained by diffeomorphic transformation of
other shapes, where the considered diffeomorphisms belong to a fixed family of diffeo-
morphisms. There are of course some motivations for the construction of such families
of diffeomorphisms, such as the notion of energy which should be minimized to keep the
deformations as simple as possible. But we strongly believe that learning the kinds of
diffeomorphisms that allow to generate an observed set of data could free us from hand-
crafting these deformations and would specialize them to the task at hand. This led us to
contribute to the work of Alexandre Bône [8], which we do not detail in this thesis.

Therefore, we would like to learn an adapted Riemannian manifold for the data at
the same time as we learn a longitudinal model for disease progression. This involves the
task of learning a Riemannian metric, which has rarely been studied so far. In [4, 2] the
authors estimate a Riemannian metric so that an observed set of data maximizes the
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likelihood of a generative Bayesian model. But their approach makes strong assumptions
on the candidate Riemannian metrics, limiting its applicability. In [53], the authors show
how to use a transformation of the observation to pull-back a metric from a given space
back to the observation space. They then optimize the transformation so that the data
lies in regions of high volumes of the manifold equipped with this pull-back metric. To
better understand how the problem of Riemannian manifold estimation can be tackled,
we start by studying simple cases, both from a theoretical and experimental point of view.
Namely, we looked at Riemannian manifolds so that:

• a given distribution is –close to– a normal distribution on this manifold,

• a set of observed curves are –close to– geodesics on this manifold.

We start by studying the simple case of a Riemannian metric on R. In this setting, we
provide explicit formulae and conditions for the Riemannian metric solving these two
tasks. Then, we show how the first task is the one achieved by Generative Adversarial
Networks [33]. For the second task, we prove an existence theorem when the set of curves
obey mild assumptions. We then discuss uniqueness of the metrics which make these
curves geodesics. For the experimental part, we propose a parametric family of Riemannian
metrics on Rd and provide experimental results when optimizing cost functions associated
with the two tasks, where the optimization is achieved using the automatic differentiation
abilities of modern deep learning libraries.

From there we turn back to longitudinal disease progression and propose to construct
a Riemannian manifold where all observed trajectories are geodesics ’parallel’ to a com-
mon geodesic. The notion of parallel relies on parallel transport and is inspired from [88].
We resort there to the use of the fanning scheme for the experiments. This is a stronger
version of the second task formulated above. This method, suffers from a curse of di-
mensionality and is impractical for imaging data. We therefore improve the approach by
using a non-linear mapping from a low-dimensional latent space to the observation space.
We illustrate how the optimization of this mapping amounts to a Riemannian geometry
learning procedure. Experimental results in low-dimensional cases allow to recover previ-
ously seen results with the parametric metrics. Finally, a final extension of this model,
presented in the last chapter of the thesis, consists in a longitudinal auto-encoder, which
is able to handle any combination of modalities at any given visit in the data sets.

Organisation of the manuscript. In Part I, we present the numerical scheme for
parallel transport along geodesics. We prove its linear convergence and show examples on
synthetic and real data with the LDDMM framework. In Part 3, we present an exten-
sion of Linear Discriminant Analysis to manifold-valued data. This part deals with non-
longitudinal data and we propose the eager reader to skip it on their first read. Finally, in
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part III, we provide some results when learning a Riemannian manifold optimizing the cri-
teria specified above, as well as the longitudinal model for disease progression which does
perform Riemannian manifold learning. In the Appendix, we provide short introductions
to Riemannian geometry and to the LDDMM framework.
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Part I

Parallel transport: an efficient
numerical scheme and its

applications

1





This part consists of two chapters. First, we give an algorithm for computing the
parallel transport of a vector along a geodesic on a Riemannian manifold. We prove that
the algorithm converges as the inverse of the number of discretisation steps. This part
is a reproduction of the journal publication [65]. In the second part, we detail how to
implement this algorithm when working with diffeomorphisms parametrized by control
points and initial momenta –as introduced in details in Appendix 9– and propose several
applications for the prediction of the progression of sub-cortical structures during the
course of Alzheimer’s disease. This second part contains a combination of the conference
papers [62] and [11]. This work has been extended and included in a more comprehensive
framework in [7].
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Chapter 1

A numerical scheme and a proof of
convergence

1.1 Introduction

Riemannian geometry has been long contained within the field of pure mathematics and
theoretical physics. Nevertheless, there is an emerging trend to use the tools of Rieman-
nian geometry in statistical learning to define models for structured data. Such data may
be defined by invariance properties and therefore seen as points in quotient spaces as
for shapes, orthogonal frames, or linear subspaces. They may be defined also by smooth
inequalities, and therefore as points in open subsets of linear spaces, as for symmetric
positive definite matrices, diffeomorphisms or bounded measurements. Such data may be
considered therefore as points in a Riemannian manifolds and analysed by specific statis-
tical approaches [109, 55, 87, 58]. At the core of these approaches lies parallel transport,
an isometry between tangent spaces which allows the comparison of probability density
functions, coordinates or vectors that are defined in the tangent space at different points
on the manifold. The inference of such statistical models in practical situations requires
efficient numerical schemes to compute parallel transport on manifolds.

The parallel transport of a given tangent vector is defined as the solution of an or-
dinary differential equation ([70] page 52), written in terms of the Christoffel symbols.
The computation of the Christoffel symbols requires access to the metric coefficients and
their derivatives, making the equation integration using standard numerical schemes very
costly in situations where no closed-form formulas are available for the metric coefficients
or their derivatives.

An alternative is to use Schild’s ladder [45], or its faster version in the case of geodesics,
the pole ladder [61]. These schemes essentially require the computation of Riemannian ex-
ponentials and logarithms at each step. Usually, the computation of the exponential may
be done by integrating Hamiltonian equations and does not raise specific difficulties. By
contrast, the computation of the logarithm must often be done by solving an inverse prob-
lem with the use of an optimization scheme such as a gradient descent. Such optimization
schemes are approximate and sensitive to the initial conditions and to hyper-parameters,
which leads to additional numerical errors –most of the time uncontrolled– as well as an
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Part I, Chapter 1 – A numerical scheme and a proof of convergence

increased computional cost. When closed formulas exist for the Riemannian logarithm, or
in the case of Lie groups, where the logarithm can be approximated efficiently using the
Baker-Campbell-Hausdorff formula (see [59]), Schild’s ladder is an efficient alternative.
When this is not the case, it becomes hardly tractable. A more detailed analysis of the
convergence of Schild’s ladder method can be found in [85].

Another alternative is to use an equation showing that parallel transport along geodesics
may be locally approximated by a well-chosen Jacobi field, up to a second order error.
This idea has been suggested in [105] with further credits to [98], but without either a
formal definition nor a proof of its convergence. It relies solely on the computations of
Riemannian exponentials.

In this paper, we propose a numerical scheme built on this idea, which tries to limit
as much as possible the number of operations required to reach a given accuracy. We
will show how to use only the inverse of the metric and its derivatives when performing
the different steps of the scheme. This different set of requirements makes the scheme
attractive in a different set of situations than the integration of the ODE or the Schild’s
ladder. We will prove that this scheme converges at linear speed with the time-step,
and that this speed may not be improved without further assumptions on the manifold.
Furthermore, we propose an implementation which allows the simultaneous computation
of the geodesic and of the transport along this geodesic. Numerical experiments on the
2-sphere and on the manifold of 3-by-3 symmetric positive definite matrices will confirm
that the convergence of the scheme is of the same order as Schild’s ladder in practice.
Thus, they will show that this scheme offers a compelling alternative to compute parallel
transport with a control over the numerical errors and the computational cost.

1.2 Rationale

1.2.1 Notations and assumptions

In this paper, we assume that γ is a geodesic defined for all time t > 0 on a smooth
manifold M of finite dimension n ∈ N provided with a smooth Riemannian metric g.
We denote the Riemannian exponential Exp and ∇ the covariant derivative. For p ∈M,
TpM denotes the tangent space of M at p. For all s, t ≥ 0 and for all w ∈ Tγ(s)M, we
denote Ps,t(w) ∈ Tγ(t)M the parallel transport of w from γ(s) to γ(t). It is the unique
solution at time t of the differential equation ∇γ̇(u)Ps,u(w) = 0 for Ps,s(w) = w. We also
denote Jwγ(t)(h) the Jacobi field emerging from γ(t) in the direction w ∈ Tγ(t)M, that is

Jwγ(t)(h) = ∂

∂ε

∣∣∣∣∣
ε=0

Expγ(t)(h(γ̇(t) + εw)) ∈ Tγ(t+h)M

6



1.2. Rationale

for h ∈ R small enough. It verifies the Jacobi equation (see for instance [70] page 111-119)

∇2
γ̇J

w
γ(t)(h) +R(Jwγ(t)(h), γ̇(h))γ̇(h) = 0 (1.1)

where R is the curvature tensor. We denote ‖ · ‖g the Riemannian norm on the tangent
spaces defined from the metric g, and gp : TpM× TpM→ R the metric at any p ∈ M.
We use Einstein notations.

We fix Ω a compact subset ofM such that Ω contains a neighborhood of γ([0, 1]). We
also set w ∈ Tγ(0)γ and w(t) = P0,t(w). We suppose that there exists a coordinate system
on Ω and we denote Φ : Ω −→ U the corresponding diffeomorphism, where U is a subset
of Rn. This system of coordinates allows us to define a basis of the tangent space ofM
at any point of Ω, we denote ∂

∂xi

∣∣∣
p
the i-th element of the corresponding basis of TpM

for any p ∈ M. Note finally that, since the injectivity radius is a smooth function of the
position on the manifold (see [70]) and since it is everywhere positive on Ω, there exists
η > 0 such that for all p in Ω, the injectivity radius at p is larger than η.

The problem in this paper is to provide a way to compute an approximation of P0,1(w).
We suppose throughout the paper the existence of a single coordinate chart defined on

Ω. In this setting, we propose a numerical scheme which gives an error varying linearly with
the size of the integration step. Once this result is established, since in any case γ([0, 1])
can be covered by finitely many charts, it is possible to apply the proposed method to
parallel transport on each chart successively. The errors during this computation of the
parallel transport would add, but the convergence result remains valid.

1.2.2 The key identity

The numerical scheme that we propose arises from the following identity, which is men-
tioned in [105]. Figure 1.1 illustrates the principle.

Proposition 1. For all t > 0, and w ∈ Tγ(0)M we have

P0,t(w) =
Jwγ(0)(t)

t
+ O

(
t2
)
. (1.2)

Proof. Let X(t) = P0,t(w) be the vector field following the parallel transport equation:
Ẋ i + ΓiklX lγ̇k = 0 with X(0) = w, where (Γikl)i,j,k∈{1,...,n} are the Christoffel symbols
associated with the Levi-Civita connection for the metric g. In normal coordinates centered
at γ(0), the Christoffel symbols vanish at γ(0) and the equation gives: Ẋ i(0) = 0. A Taylor
expansion of X(t) near t = 0 in this local chart then reads

X i(t) = wi + O
(
t2
)
. (1.3)

By definition, the i-th normal coordinate of Expγ(0) (t(v0 + εw)) is t(vi0 + εwi). Therefore,
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Part I, Chapter 1 – A numerical scheme and a proof of convergence

Figure 1.1: The solid line
is the geodesic. The green
dotted line is formed by
the perturbed geodesics at
time t. The blue arrows
are the initial vector and
its approximated parallel
transport at time t.

the i-th coordinate of Jwγ(0)(t) = ∂
∂ε
|ε=0Expγ(0)(t(γ̇(0)+εw)) is twi. Plugging this into (1.3)

yields the desired result.

This control on the approximation of the transport by a Jacobi field suggests to divide
[0, 1] into N intervals [ k

N
, k+1
N

] of length h = 1
N

for k = 0, . . . , N − 1 and to approximate
the parallel transport of a vector w ∈ Tγ(0) from γ(0) to γ(1) by a sequence of vectors
wk ∈ Tγ( kN )M defined as 

w0 = w

wk+1 = NJwk
γ( kN )

( 1
N

)
.

(1.4)

With the control given in the Proposition 1, we can expect to get an error of order O
(

1
N2

)
at each step and hence a speed of convergence in O

(
1
N

)
overall. There are manifolds for

which the approximation of the parallel transport by a Jacobi field is exact e.g. Euclidean
space, but in the general case, one cannot expect to get a better convergence rate. Indeed,
we show in the next section that this scheme for the sphere S2 has a speed of convergence
exactly proportional to 1

N
.

1.2.3 Convergence rate on S2

In this section, we assume that one knows the geodesic path γ(t) and how to compute any
Jacobi fields without numerical errors, and show that the approximation due to Equation
(1.2) alone raises a numerical error of order O

(
1
N

)
.

Let p ∈ S2 and v ∈ TpS2 (p and v are seen as vectors in R3). The geodesics are the
great circles, which may be written as

γ(t) = Expp(tv) = cos(t|v|)p+ sin(t|v|) v
|v|
,

where | · | is the Euclidean norm on R3. Using spherical coordinates (θ, φ) on the sphere,
chosen so that the whole geodesic is in the coordinate chart, we get coordinates on the

8



1.3. The numerical scheme

tangent space at any point γ(t). In this spherical system of coordinates, it is straightfor-
ward to see that the parallel transport of w = p× v along γ(t) has constant coordinates,
where × denote the usual cross-product on R3.

We assume now that |v| = 1. Since w = p× v is orthogonal to v, we have ∂
∂ε

∣∣∣
ε=0
|v +

εw| = 0. Therefore,

Jwp (t) = ∂

∂ε
|ε=0

(
cos(t|v + εw|)p+ sin(t|v + εw|) v + εw

|v + εw|

)
= sin(t)w

which does not depend on p. We have Jwγ(t)(t) = sin(t)w. Consequently, the sequence
of vectors wk built by the iterative process described in equation (1.4) verifies wk+1 =
Nwk sin

(
1
N

)
for k = 0, . . . , N − 1, and wN = w0N sin

(
1
N

)N
. Now in the spherical co-

ordinates, P0,1(w0) = w0, so that the numerical error, measured in these coordinates, is
proportional to w0

(
1−

(
sin(1/N)

1/N

)N)
. We have

(
sin(1/N)

1/N

)N
= exp

(
N log

(
1− 1

6N2 + o
(
1/N2

)))
= 1− 1

6N + o
( 1
N

)

yielding
|wN − w0|
|w0|

∝ 1
6N + o

( 1
N

)
.

It shows a case where the bound 1
N

is reached.

1.3 The numerical scheme

1.3.1 The algorithm

In general, there are no closed form expressions for the geodesics and the Jacobi fields.
Hence, in most practical cases, these quantities also need to be computed using numerical
methods.

Computing geodesics In order to avoid the computation of the Christoffel symbols,
we propose to integrate the first-order Hamiltonian equations to compute geodesics. Let
x(t) = (x1(t), . . . , xd(t))T be the coordinates of γ(t) in a given local chart, and α(t) =
(α1(t), . . . , αd(t))T be the coordinates of the momentum gγ(t)(γ̇(t), ·) ∈ T ∗γ(t)M in the same
local chart. We have then (see [106])


ẋ(t) = K(x(t))α(t)

α̇(t) = −1
2∇x

(
α(t)TK(x(t))α(t)

) , (1.5)

9



Part I, Chapter 1 – A numerical scheme and a proof of convergence

where K(x(t)), a d-by-d matrix, is the inverse of the metric g expressed in the local chart.
Note that using (1.5) to integrate the geodesic equation will require us to convert initial
tangent vectors into initial momenta, as seen in the algorithm description below.

Computing Jwγ(t)(h) The Jacobi field may be approximated with a numerical differen-
tiation from the computation of a perturbed geodesic with initial position γ(t) and initial
velocity γ̇(t) + εw where ε is a small parameter

Jwγ(t)(h) '
Expγ(t)

(
h(γ̇(t) + εw)

)
− Expγ(t)

(
hγ̇(t)

)
ε

, (1.6)

where the Riemannian exponential may be computed by integration of the Hamiltonian
equations (1.5) over the time interval [t, t+ h] starting at point γ(t), as shown on Figure
1.2. We will also see that a choice for ε ensuring a O

(
1
N

)
order of convergence is ε = 1

N
.

The algorithm Let N ∈ N. We divide [0, 1] into N intervals [tk, tk+1] with tk = k
N

and
denote h = 1

N
the size of the integration step. We initialize γ0 = γ(0), γ̇0 = γ̇(0), w̃0 = w

and solve β̃0 = K−1(γ0)w̃0 and α̃0 = K−1(γ0)γ̇0. We propose to compute, at step k:

1. The new point γ̃k+1 and momentum α̃k+1 of the main geodesic, by performing one
step of length h of a second-order Runge-Kutta method on equation (1.5).

2. The perturbed geodesic starting at γ̃k with initial momentum α̃k+εβ̃k at time h, that
we denote γ̃εk+1, by performing one step of length h of a second-order Runge-Kutta
method on equation (1.5).

3. The estimated parallel transport

ŵk+1 = γ̃εk+1 − γ̃k+1

hε
. (1.7)

4. The corresponding momentum β̂k+1, by solving: K(γ̃k+1)β̂k+1 = ŵk+1.

At the end of the scheme, w̃N is the proposed approximation of P0,1(w). Figure 1.2
illustrates the principle. A complete pseudo-code is given in appendix 1.7.1. It is remark-
able that we can substitute the computation of the Jacobi field with only four calls to the
Hamiltonian equations (1.5) at each step, including the calls necessary to compute the
main geodesic. Note however that the step (4) of the algorithm requires to solve a linear
system of size n. Solving the linear system can be done with a complexity less than cubic
in the dimension (in O

(
n2.374

)
using the Coppersmith–Winograd algorithm).

1.3.2 Possible variations

There are a few possible variations of the presented algorithm.

10



1.3. The numerical scheme

Figure 1.2: One step of
the numerical scheme. The
dotted arrows represent
the steps of the Runge-
Kutta integrations for the
main geodesic γ and for
the perturbed geodesic
γε. The blue arrows are
the initial w(tk) and the
obtained approximated
transport using equation
(1.6), with h = tk+1 − tk.

1. The first variation is to use higher-order Runge-Kutta methods to integrate the
geodesic equations at step (1) and (2). We prove that a second-order integration of
the geodesic equation is enough to guarantee convergence and notice experimentally
the absence of convergence with a first order integration of the geodesic equation.
Experiments indicate a linear convergence with an improved constant using this
variation. Depending on the situation, the extra computations required at each step
may be counterbalanced by this increased precision.

2. The second variation uses a higher-order finite difference scheme by replacing step
(2) and step (3) the following way. At the k-th iteration, compute two perturbed
geodesics starting at γ̃k and with initial momentum α̃k + εβ̃k (resp. α̃k − εβ̃k) at
time h, that we denote γ̃+ε

k+1 (resp. γ̃−εk+1), by performing one step of length h of a
second-order Runge-Kutta method on equation (1.5). Then proceed to a second-
order differentiation to approximate the Jacobi field, and set:

ŵk+1 = γ̃+ε
k+1 − γ̃−εk+1

2hε . (1.8)

Empirically, this variation does not seem to bring any substantial improvement to
the scheme.

3. The final variation of the scheme consists in adding an extra renormalization step
at the end of each iteration:

(v) Renormalize the momentum and the corresponding vector using

β̃k+1 = akβ̂k+1 + bkα̃k+1

w̃k+1 = K(γ̃k+1)β̃k+1

where ak and bk are factors ensuring β̃>k+1K(γ̃k+1)β̃k+1 = β>0 K(γ0)β0 and

11



Part I, Chapter 1 – A numerical scheme and a proof of convergence

β̃>k+1K(γ̃k+1)α̃k+1 = β>0 K(γ0)α0. Indeed, the quantities β(t)>K(γ(t))β(t) and β(t)>K(γ(t))α(t)
are preserved along the parallel transport. This extra step is cheap even when the
dimension is large. Empirically, it leads to the same rate of convergence with a
smaller constant.

We will show that the proposed algorithm and the variations 1 and 2 ensure conver-
gence of the final estimate. We do not prove convergence with the variation 3, but this
additionnal step can be expected to improve the quality of the approximation at each
step, at least when the discretization is sufficiently thin, by enforcing the conversation of
quantities which should be conserved. Note that the best accuracy for a given compu-
tational cost is not necessarily obtained with the method in Section 1.3.1, but might be
attained with one of the proposed variations, as a bit more computations at each step
may be counter-balanced by a smaller constant in the convergence rate.

1.3.3 The convergence Theorem

We obtain the following convergence result, guaranteeing a linear decrease of the error
with the size of the step h.

Theorem 1. We suppose here the hypotheses stated in Section 1.2.1. Let N ∈ N be the
number of integration steps. Let w ∈ Tγ(0)M be the vector to be transported. We denote
the error

δk = ‖P0,tk(w)− w̃k‖2

where w̃k is the approximate value of the parallel transport of w along γ at time tk and
where the 2-norm is taken in the coordinates of the chart Φ on Ω. We denote ε the
parameter used in the step (2) and h = 1

N
the size of the step used for the Runge-Kutta

approximate solution of the geodesic equation.
If we take ε = h, then we have

δN = O
( 1
N

)
.

We will see in the proof and in the numerical experiments that choosing ε = h is
a recommended choice for the size of the step in the differentiation of the perturbed
geodesics. Further decreasing ε has no visible effect on the accuracy of the estimation and
choosing a larger ε lowers the quality of the approximation.

Note that our result controls the 2-norm of the error in the global system of coordi-
nates, but not directly the metric norm in the tangent space at γ(1). This is due to the
fact that γ(1) is not accessible, but only its approximation γ̃N computed by the Runge-
Kutta integration of the Hamiltonian equation. However, Theorem 1 implies that the
couple (γ̃N , w̃N) converges towards (γ(1), P0,1(w)) using the `2 distance onM×TM and
a coordinate system in a neighborhood of γ(1), which is equivalent to any distance on
M× TM on this neighborhood and hence is the right notion of convergence.

12



1.4. Proof of the convergence Theorem 1

We give the proof in the next Section. The proof of some technical lemmas used in
the proof are given in Section 1.8.

1.4 Proof of the convergence Theorem 1

We prove the convergence of the algorithm.

Proof. We will denote, as in the description of the algorithm in Section 1.3, γk = γ(tk),
γ̃k = γ̃(tk) its approximation in the algorithm. Let N be a number of discretization steps
and k ∈ {1, . . . , N}. We build an upper bound on the error δk+1 from δk. We have

δk+1 = ‖wk+1 − w̃k+1‖2

≤
∥∥∥∥∥wk+1 −

Jwkγk (h)
h

∥∥∥∥∥
2︸ ︷︷ ︸

(1)

+
∥∥∥∥∥Jwkγk (h)

h
−

Jw̃kγk (h)
h

∥∥∥∥∥
2︸ ︷︷ ︸

(2)

+
∥∥∥∥∥Jw̃kγk (h)

h
−

Jw̃kγ̃k (h)
h

∥∥∥∥∥
2︸ ︷︷ ︸

(3)

+
∥∥∥∥∥Jw̃kγ̃k (h)

h
−

J̃w̃kγ̃k (h)
h

∥∥∥∥∥
2︸ ︷︷ ︸

(4)

where

• γ̃k is the approximation of the geodesic coordinates at step k.

• wk = w(tk) is the exact parallel transport.

• w̃k is its approximation at step k

• J̃ is the approximation of the Jacobi field computed with finite difference: J̃w̃kγ̃k =
γ̃εk+1−γ̃k+1

ε
.

• Jw̃kγ̃k (h) is the exact Jacobi field computed with the approximations w̃, γ̃ and ˜̇γ i.e.
the Jacobi field defined from the geodesic with initial position γ̃k, initial momentum
α̃k, with a perturbation w̃k.

We provide upper bounds for each of these terms. We start by assuming ‖wk‖2 ≤ 2‖w0‖2,
before showing it is verified for any k ≤ N when N is large enough. We could assume more
generally ‖wk‖2 ≤ C‖w0‖2 for any C > 1. The idea is to get a uniform control on the errors
at each step by assuming that ‖wk‖2 does not grow too much, and to show afterwards
that the control we get is tight enough to ensure, when the number of integration steps
is large, that we do have ‖wk‖2 ≤ 2‖w0‖2.

13



Part I, Chapter 1 – A numerical scheme and a proof of convergence

Term (1) This is the intrinsic error when using the Jacobi field. We show in Proposition
?? that for h small enough∥∥∥∥∥Ptk,tk+1(wk)−

Jwkγk (h)
h

∥∥∥∥∥
g(γ(tk+1))

≤ Ah2‖wk‖g = Ah2‖wk‖g.

Now, since g varies smoothly and by equivalence of the norms, there exists A′ > 0 such
that ∥∥∥∥∥Ptk,tk+1(wk)−

Jwkγ(k)(h)
h

∥∥∥∥∥
2
≤ A′h2‖wk‖2 ≤ 2A′h2‖w0‖2 (1.9)

Term (2) Lemma 1.8 show that for h small enough

∥∥∥∥∥Jwkγ(tk)(h)
h

−
Jw̃kγ(tk)(h)

h

∥∥∥∥∥
2
≤ (1 +Bh)δk. (1.10)

Term (3) This term measures the error linked to our approximate knowledge of the
geodesic γ. It is proved in Appendix 1.8 that there exists a constant C > 0 which does
not depend on k or h such that

∥∥∥∥∥Jw̃kγk (h)
h
−

J̃w̃kγk (h)
h

∥∥∥∥∥
2
≤ Ch2. (1.11)

Term (4) This is the difference between the analytical computation of J and its approx-
imation. It is proved in Appendix 1.8 and 1.8 that if we use a Runge-Kutta method of
order 2 to compute the geodesic points γεk+1 and γk+1 and a first-order differentiation to
compute the Jacobi field as described in the step (3) of the algorithm, or if we use two
perturbed geodesics γεk+1 and γ−εk+1 and a second-order differentiation method to compute
the Jacobi field as described in equation (1.8), there exists D ≥ 0 which does not depend
on k such that: ∥∥∥∥∥Jw̃kγ(tk) − J̃w̃kγ(tk)

h

∥∥∥∥∥
2
≤ D(h2 + εh). (1.12)

Note that this majoration is valid as long as w̃k is bounded by a constant which does not
depend on k or N , which we have assumed so far.

Gathering equations (1.9), (1.10), (1.11) and (1.12), there exists a constant F > 0
such that for all k such that ‖wi‖2 ≤ ‖w0‖2 for all i ≤ k:

δk+1 ≤ (1 +Bh)δk + F (h2 + hε). (1.13)

Combining those inequalities for k = 1, . . . , s where s ∈ {1, . . . , N} is such that ‖wk‖2 ≤
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1.4. Proof of the convergence Theorem 1

2‖w0‖2 for all k ≤ s, we obtain a geometric series whose sum yields

δs ≤
F (h2 + hε)

Bh
(1 +Bh)s+1. (1.14)

We now show that for a large enough number of integration steps N , this implies that
‖wk‖2 ≤ 2‖w0‖2 for all k ∈ {1, . . . , N}. We proceed by contradiction, assuming that there
exist arbitrary large N ∈ N for which there exists u(N) ≤ N – that we take minimal
– such that ‖wu(N)‖2 > 2‖w0‖2. For any such N ∈ N, since u(N) is minimal with that
property, we can still use equation (1.14) with s = u(N):

δu(N) ≤
F (h2 + hε)

Bh
(1 +Bh)u(N)+1. (1.15)

Now, h = 1
N

so that

δu(N) ≤
F (h+ ε)

B
(1 +Bh)u(N)+1 ≤ F (h+ ε)

B
(1 +Bh) 1

h
+1. (1.16)

But we have, on the other hand:

‖w0‖2 < |‖w̃u(N)‖2 − ‖w0‖2| ≤ ‖w̃u(N) − w0‖2 ≤
F (h+ ε)

B
(1 +Bh) 1

h
+1 (1.17)

Taking ε ≤ h, which we will keep as an assumption in the rest of the proof, the term on
the right goes to zero as h → 0 – i.e. as N → ∞ – which is a contradiction. So for N
large enough, we have ‖wk‖2 ≤ 2‖w0‖2 and equation (1.14) holds for all k ∈ {1, . . . , N}.
With s = N , equation (1.14) reads:

δN ≤
F (h2 + hε)

Bh
(1 +Bh)N+1.

We see that choosing ε = 1
N

yields an optimal rate of convergence: choosing a larger value
deteriorates the accuracy of the scheme while choosing a lower value still yields an error
in O

(
1
N

)
. Setting ε = 1

N
:

δN ≤
2F
BN

(
1 + B

N

)N+1
= 2F
BN

(
exp(B) + o

( 1
N

))
.

Eventually, there exists G > 0 such that, for N ∈ N large enough

δN ≤
G

N
.
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Part I, Chapter 1 – A numerical scheme and a proof of convergence

1.5 Numerical experiments

1.5.1 Setup

We implemented the numerical scheme on simple manifolds where the parallel transport
is known in closed form, allowing us to evaluate the numerical error 1. We present two
examples:

• S2: in spherical coordinates (θ, φ) the metric is g =
1 0

0 sin(θ)2

. We gave expres-

sions for geodesics and parallel transport in Section 1.2.3.

• The set of 3 × 3 symmetric positive-definite matrices SPD(3). The tangent space
at any points of this manifold is the set of symmetric matrices. In [55], the authors
endow this space with the affine-invariant metric: for Σ ∈ SPD(3), V,W ∈ Sym(3),
gΣ(V,W ) = tr(Σ−1V Σ−1W ). Through an explicit computation of the Christoffel
symbols, they derive explicit expressions for any geodesic Σ(t) starting at Σ0 ∈
SPD(3) with initial tangent vector X ∈ Sym(3): Σ(t) = Σ

1
2
0 exp(tX)Σ

1
2
0 where exp :

Sym(3) → SPD(3) is the matrix exponentiation. Deriving an expression for the
parallel transport can also be done using the explicit Christoffel symbols, see [88].
If Σ0 ∈ SPD(3) and X,W ∈ Sym(3), then

P0,t(W ) = exp
(
t

2XΣ−1
0

)
W exp

(
t

2Σ−1
0 X

)
.

The code for this numerical scheme can be written in a generic way and used for
any manifold by specifying the Hamiltonian equations and the inverse of the metric. For
experiments in large dimensions, we refer to [63].

Remark Note that even though the computation of the gradient of the inverse of the
metric with respect to the position, ∇xK, is required to integate the Hamiltonian equa-
tions (1.5), ∇xK can be computed from the gradient of the metric using the fact that any
smooth map M : R→ GLn(R) verifies dM−1

dt = −M−1 dM
dt M

−1. This is how we proceeded
for SPD(3): it spares some potential difficulties if one does not have access to analytical
expressions for the inverse of the metric. It is however a costful operation which requires
the computation of the full inverse of the metric at each step.

1.5.2 Results

Errors measured in the chosen system of coordinates confirm the linear behavior in both
cases, as shown on Figures 1.3 and 1.4.

1A modular Python version of the code is available here: https://gitlab.icm-institute.org/
maxime.louis/parallel-transport
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1.5. Numerical experiments

Figure 1.3: Relative errors for the 2-Sphere in different settings, as functions of the step
size, with initial point, velocity and initial w kept constant. The dotted lines are linear
regressions of the measurements. Runge-Kutta 2 (resp. 4) indicates that a Runge-Kutta
method or order 2 (resp. 4) is used for the integration of the geodesic equation.
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Part I, Chapter 1 – A numerical scheme and a proof of convergence

Figure 1.4: Relative errors for SPD(3) in different settings, as functions of the step size,
with initial point, velocity and initial w kept constant. The dotted lines are linear regres-
sions. Runge-Kutta 2 (resp. 4) indicate that a second-order (resp. fourth order) Runge-
Kutta integration has been used to integrate the geodesic equations at steps (1) and (2).
Without conservation indicates that step 3 has not been used.

We assessed the effect of a higher order for the Runge-Kutta scheme in the integration
of geodesics. Using a fourth order method increases the accuracy of the transport in
both cases, by a factor 2.3 in the single geodesic case. A fourth order method is twice
as expensive as a second order method in terms of number of calls to the Hamiltonian
equations, hence in this case it is the most efficient way to reach a given accuracy.

We also investigated the effect of using the variation 3 of the algorithm, which enforces
conservation of the transported vector norm and of its scalar product with the geodesic
velocity. Doing so yields an exact transport for the sphere because it is of dimension
2 and the conservation of two quantities is enough to ensure an exact transport –up
to the fact that the geodesic is computed approximately– so that the actually observed
error is the error in the integration of the geodesic equation. It yields a dramatically
improved transport of the same order of convergence for SPD(3) (see Figure 1.4). The
complexity of this operation is very low, and we recommend to always use it. It can be
expected however that the effect of the enforcement of these conservations will lower as
the dimension increases, since it only fixes two components of the transported vector.

We also confirmed numerically that without a second-order method to integrate the
geodesic equations at steps (1) and (2) of the algorithm, the scheme does not converge.
This is not in contradiction with Theorem 1 which supposes this integration is done with
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1.6. Conclusion

Figure 1.5: Relative error of Schild’s ladder scheme compared to the fanning scheme
(double geodesic, Runge-Kutta 2) proposed here, in the case of S2.

a second-order Runge Kutta method.
Finally, using two geodesics to compute a central-finite difference for the Jacobi field

is 1.5 times more expensive than using a single geodesic, in terms of number of calls to
the Hamiltonian equations, and it is therefore more efficient to compute two perturbed
geodesics in the case of the symmetric positive-definite matrices.

1.5.3 Comparison with Schild’s ladder

We compared the relative errors of the fanning scheme with Schild’s ladder. We imple-
mented Schild’s ladder on the sphere and compared the relative errors of both schemes
on a same geodesic and vector. We chose this vector to be orthogonal to the velocity,
since the transport with Schild’s ladder is exact if the transported vector is colinear to
the velocity. We use a closed form expression for the Riemannian logarithm in Schild’s
ladder, and closed form expressions for the geodesic. The results are given in Figure 1.5.

1.6 Conclusion

We proposed a new method, the fanning scheme, to compute parallel transport along a
geodesic on a Riemannian manifold using Jacobi fields. In contrast to Schild’s ladder, this
method does not require the computation of Riemannian logarithms, which may not be
given in closed form and potentially hard to approximate. We proved that the error of
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Part I, Chapter 1 – A numerical scheme and a proof of convergence

the scheme is of order O
(

1
N

)
where N is the number of discretization steps, and that it

cannot be improved in the general case, yielding the same convergence rate as Schild’s
ladder. We also showed that only four calls to the Hamiltonian equations are necessary at
each step to provide a satisfying approximation of the transport, two of them being used
to compute the main geodesic.

A limitation of this scheme is to only be applicable when parallel transporting along
geodesics, and this limitation seems to be unavoidable with the identity it relies on. Note
also that the Hamiltonian equations are expressed in the cotangent space whereas the
approximation of the transport computed at each step lies in the tangent space to the
manifold. Going back and forth from cotangent to tangent space at each iteration is costly
if the metric is not available in closed-form, as it requires the inversion of a system. In
very high dimensions this might limit the performances

1.7 Pseudo-code and proofs

1.7.1 Pseudo-code

We give a pseudo-code description of the numerical scheme. Here, G(p) denotes the metric
matrix at p for any p ∈M.
1: function ParallelTransport(x0, α0, w0, N)
2: function v(x, α)
3: return K(x)α
4: end function

5: function f(x, α)
6: return −1

2∇x

(
αTK(x)α

)
. in closed form or by finite differences

7: end function

. γ0 coordinates of γ(0)
. α0 coordinates of G(γ(0))γ̇(0) ∈ T ∗γ(0)M

. w0 coordinates of w ∈ Tγ(0)M
. β0 coordinates of G(γ(0))w0

. N number of time-steps
8: h = 1/N , ε = 1/N
9: for k = 0, . . . , (N − 1) do

. integration of the main geodesic
10: γk+ 1

2
= γk + h

2vk

11: αk+ 1
2

= αk + h
2 f(γk, αk)

12: γk+1 = γk + hv(γk+ 1
2
, αk+ 1

2
)
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13: αk+1 = αk + hf(γk+ 1
2
, αk+ 1

2
)
. perturbed geodesic equation in the direction wk

14: γε
k+ 1

2
= γk + h

2v(γk, αk + εβk)
15: αε

k+ 1
2

= αk + εβk + h
2 f(()γεk, αk + εβk

16: γεk+1 = γεk + hv(γε
k+ 1

2
, αεk + 1

2)
. Jacobi field by finite differences

17: ŵk+1 = γεk+1−γk+1
hε

18: β̂k+1 = g(γk+1)wk+1 . Use explicit g or solve K(γk+1)β̂k+1 = ŵk+1

. Conserve quantities
19: Solve for a, b:
20: β>0 K(γ0)β0 = (aβ̂k+1 + bαk+1)>K(γ̃k+1)(aβ̂k+1 + bαk+1),
21: α>0 K(γ0)α0 = (aβ̂k+1 + bαk+1)>K(γ̃k+1)(aβ̂k+1 + bαk+1, vk+1)

22: βk+1 = aβ̂k+1 + bαk+1 . parallel transport
23: wk+1 = K(γk+1)βk+1

24: end for
return γN , αN , wN

. γN approximation of γ(1)
. αN approximation of G(γ(1))γ̇(1)
. wN approximation of Pγ(0),γ(1)(w0)

25: end function

1.8 Proofs

A lemma to change coordinates

We recall that we suppose the geodesic contained within a compact subset Ω of the man-
ifoldM. We start with a result controlling the norms of change-of-coordinates matrices.
Let pinM and q = Expp(v) where ‖v‖g ≤ η

2 , where η > 0 is a lower bound on the injec-
tivity radius on Ω. We consider two bases of TqM: one defined from the global system
of coordinates, that we denote BΦ

q , and another made of the normal coordinates centered
at p, built from the coordinate on TpM obtained from the coordinate chart Φ, that we
denote BN

q . We can therefore define Λ(p, q) as the change-of-coordinates matrix between
BΦ
q and BN

q . The operator norms ||| · ||| of these matrices are bounded over Ω in the
following sense:

Lemma 1. There exists L ≥ 0 such that for all p ∈ K and for all q ∈ K such that
q = Expp(v) for some v ∈ TpM with ‖v‖g ≤ η

2 , we have

|||Λ(p, q)||| ≤ L
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Part I, Chapter 1 – A numerical scheme and a proof of convergence

and
|||Λ−1(p, q)||| ≤ L.

Proof. Any two norms on TqM are equivalent, and the norm bounds of the coordinate
change smoothly depend on p and q by smoothness of the metric. Hence the result.

This lemma allows us to translate any bound on the components of a tensor in the
global system of coordinates into a bound on the components of the same tensor in any
of the normal systems of coordinates centered at a point of the geodesic, and vice versa.

Transport and connection

We prove a result connecting successive covariant derivatives to parallel transport:

Proposition 2. Let V be a vector field onM. Let γ : [0, 1]→M be a geodesic. Then

∇k
γ̇V (γ(t)) = dk

dhk

∣∣∣∣∣
h=0

P−1
t,t+h(V (γ(t+ h)). (1.18)

Proof. Let Ei(0) be an orthonormal basis of Tγ(0)M. Using the parallel transport along
γ, we get orthonormal basis Ei(s) of Tγ(t)M for all t. For t ∈ [0, 1], denote (ai(t))i=1,...,n

the coordinates of V (γ(t)) in the basis (Ei(t))i=1,...,n. We have

dk
dhkP

−1
t,t+h(V (γ(t+ h)) = dk

dhkP
−1
t,t+h

( n∑
i=1

ai(t+ h)Ei(t+ h)
)

=
n∑
i=1

dkai(t+ h)
dhk Ei(t)

because P−1
t,t+hEi(t+ h) = Ei(t) does not depend on h. On the other hand

∇k
γ̇V (γ(t)) = ∇k

γ̇

n∑
i=1

ai(t)Ei(t) =
n∑
i=1
∇k
γ̇(ai(t))Ei(t) =

n∑
i=1

dkai(t+ h)
dhk Ei(t)

by definition of Ei(s).

A stronger version of Proposition 1

From there, we can prove a stronger version of Proposition 1. As before, η denotes a lower
bound on the injectivity radius ofM on Ω.

Proposition 3. There exists A ≥ 0 such that for all t ∈ [0, 1[, for all w ∈ Tγ(t)M and
for all h < η

‖γ̇(t)‖g we have

∥∥∥∥∥Pt,t+h(w)−
Jwγ(t)(h)
h

∥∥∥∥∥
g

≤ Ah2‖w‖g.
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Proof. Let t ∈ [0, 1[, w ∈ Tγ(t)M and h < η
‖γ̇(t)‖g i.e. such that Jwγ(t)(h) is well defined.

From Lemma 2, for any smooth vector field V onM,

∇k
γ̇(t)V (γ(t)) = dk

dhk

∣∣∣∣∣
h=0

P−1
t,t+h(V (γ(t+ h)). (1.19)

We will use this identity to obtain a development of V (γ(t+ h)) = Jwγ(t)(h) for small h.

We have Jwγ(t)(0) = 0, ∇γ̇J
w
γ(t)(0) = w, ∇2

γ̇J
w
γ(t)(0) = −R(Jwγ(t)(0), γ̇(0))γ̇(0) = 0 using

equation (1.1) and finally

‖∇3
γ̇J

w
γ(t)(h)‖g = ‖∇γ̇(R)(Jwγ(t)(h), γ̇(h))γ̇(h) +R(∇γ̇J

w
γ(t)(h), γ̇(h))γ̇(h)‖g

≤ ‖∇γ̇R‖∞‖γ̇(h)‖2
g‖Jwγ(t)(h)‖g + ‖R‖∞‖γ̇(h)‖2

g‖∇γ̇J
w
γ(t)(h)‖g,

(1.20)

where the ∞-norms, taken over the geodesic and the compact Ω, are finite because the
curvature and its derivatives are bounded. Note that we used ∇γ̇ γ̇ = 0 which holds since γ
is a geodesic. In normal coordinates centered at γ(t), we have Jwγ(t)(h)i = hwi. Therefore,
if we denote gij(γ(t + h)) the components of the metric in normal coordinates, we get
using Einstein notations

‖Jwγ(t)(h)‖2
g = h2gij(γ(t+ h))wiwj.

To obtain an upper bound for this term which does not depend on t, we note that the
coefficients of the metric in the global coordinate system are bounded on Ω. Using Lemma
1, we get a bound M ≥ 0 valid on all the systems of normal coordinates centered at a
point of the geodesic, so that

‖Jwγ(t)(h)‖g ≤ hM‖w‖2.

By equivalence of the norms as seen in Lemma (1), and because g varies smoothly, there
exists N ≥ 0 such that

‖Jwγ(t)(gh)‖g ≤ hMN‖w‖g (1.21)

where the dependence of the majoration on t has vanished, and the result stays valid for
all h < max ( η

‖γ̇(t)‖g , 1− t) and all w. Similarly, there exists C > 0 such that

‖∇γ̇J
w
γ(s)(h)‖ ≤ C‖w‖g, (1.22)

at any point and for any h < max ( η
‖γ̇(t)‖g , 1− t). Gathering equations (1.20), (1.21) and

(1.22), we get that there exists a constant A ≥ 0 which does not depend on t, h or w such
that ∥∥∥∇3

γ̇J
w
γ(s)(h)

∥∥∥
g
≤ A‖w‖g. (1.23)
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Part I, Chapter 1 – A numerical scheme and a proof of convergence

Now using equation (1.19) with V (γ(t+ h)) = Jwγ(t)(h) and a Taylor’s formula, we get

P−1
t,t+h(Jwγ(t)(h)) = hw + h3r(h,w)

where r is the remainder of the expansion, controlled in equation (1.23). We thus get
∥∥∥∥∥J

w
γ(t)(h)
h

− Pt,t+h(w)
∥∥∥∥∥
g

= ‖Pt,t+h(h3r(w, h))‖g.

Now, because the parallel transport is an isometry, we can use our control (1.23) on the
remainder to get ∥∥∥∥∥J

w
γ(t)(h)
h

− Pt,t+h(w)
∥∥∥∥∥
g

≤ A

6 h
2‖w‖g.

A Lemma to control error accumulation

At every step of the scheme, we compute a Jacobi field from an approximate value of
the transported vector. We need to control the error made with this computation from
an already approximate vector. We provide a control on the 2-norm of the corresponding
error, in the global system of coordinates.

Lemma 2. There exists B ≥ 0 such that for all t ∈ [0, 1[, for all w1, w2 ∈ Tγ(t)M and
for all h ≤ η

‖γ̇(t)‖g small enough, we have :

∥∥∥∥∥J
w1
γ(t)(h)− Jw2

γ(t)(h)
h

∥∥∥∥∥
2
≤ (1 +Bh)‖w1 − w2‖2. (1.24)

Proof. Let t ∈ [0, 1[ and h ≤ η
‖γ̇(t)‖g . We denote p = γ(t), q = γ(t + h). We use the

exponential map to get normal coordinates on a neighborhood V of p from the basis(
∂
∂xi

∣∣∣
p

)
i=1,...,n

of TpM. Let’s denote
(

∂
∂yi

∣∣∣
r

)
i=1,...,n

the basis obtained in the tangent space
at any point r of V from this system of normal coordinates centered at p. At any point r
in V , there are now two different bases of TrM:

(
∂
∂yi

∣∣∣
r

)
i=1,...,n

obtained from the normal

coordinates and
(

∂
∂xi

∣∣∣
r

)
i=1,...,n

obtained from the coordinate system Φ. Let w1, w2 ∈ TpM
and denote wij for i ∈ {1, . . . , n}, j ∈ {1, 2} the coordinates in the global system Φ. By
definition, the basis

(
∂
∂yi

∣∣∣
p

)
i=1,...,n

and the basis
(

∂
∂xi

∣∣∣
p

)
i=1,...,n

coincide, and in particular,

for j ∈ {1, 2}:

wj = (wj)i
∂

∂xi

∣∣∣∣∣
p

= (wj)i
∂

∂yi

∣∣∣∣∣
p

.
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If i ∈ {1, . . . , n}, j ∈ {1, 2}, the j-th coordinate of Jwiγ(t)(h) in the basis
(

∂
∂yi

∣∣∣
q

)
i=1,...,n

is

J
wj
γ(t)(h)i = ∂

∂ε

∣∣∣∣∣
ε=0

(Expp(h(v + εwj)))i = ∂

∂ε

∣∣∣∣∣
ε=0

(h(v + εwj))i = hwij.

Let Λ(γ(t+h), γ(t)) be the change-of-coordinate matrix of Tγ(t+h) from the basis
(

∂
∂yi

∣∣∣
q

)
i=1,...,n

to the basis
(

∂
∂xi

∣∣∣
q

)
i=1,...,n

. Λ varies smoothly with t and h, and is the identity when h = 0.
Hence, we can write an expansion

Λ(γ(t+ h), γ(t)) = Id+ hW (t) +O(h2).

The second order term depends on the second derivative of Λ with respect to h. Restricting
ourselves to a compact subset ofM, as in Lemma 1, we get a uniform bound on the norm
of this second derivative thus getting a control on the operator norm of Λ(γ(t+ h), γ(t)),
that we can write, for h small enough

|||Λ(γ(t+ h), γ(t))||| ≤ (1 +Bh)

where B is a positive constant which does not depend on h or t. Now we get
∥∥∥∥∥J

w1
γ(t)(h)− Jw2

γ(t)(h)
h

∥∥∥∥∥
2

= ‖Λ(γ(t+ h), γ(t))(w1 − w2)‖2 ≤ (1 +Bh) ‖w1 − w2‖2

which is the desired result.

Proof that we can compute the geodesic simultaneously with a second-order
method

We give here a control on the error made in the scheme when computing the main geodesic
approximately and simultaneously with the parallel transport. We assume that the main
geodesic is computed with a second-order method, and we need to control the subsequent
error on the Jacobi field. The computations are made in global coordinates, and the error
is measured by the 2-norm in these coordinates. Φ : Ω → U denotes the corresponding
diffeomorphism. We denote η > 0 a lower bound on the injectivity radius ofM on Ω and
ε > 0 the parameter used to compute the perturbed geodesics at step (2).

Proposition 4. There exists A > 0 such that for all t ∈ [0, 1[, for all h ∈ [0, 1 − t], for
all w ∈ Tγ(t)M: ∥∥∥∥∥Jw̃kγk (h)

h
−

Jw̃kγ̃k (h)
h

∥∥∥∥∥
2
≤ Ah2.
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Part I, Chapter 1 – A numerical scheme and a proof of convergence

Proof. Let t ∈ [0, 1[, h ∈ [0, 1− t], and w ∈ Tγ(t)M. The term rewrites

∥∥∥∥∥Jw̃kγk (h)
h
−

Jw̃kγ̃k (h)
h

∥∥∥∥∥
2

=
∥∥∥∥∥ ∂Expγk(hγ̇k + xw̃k)

∂x

∣∣∣∣∣
x=0
−
∂Expγ̃k(h˜̇γk + xw̃k)

∂x

∣∣∣∣∣
x=0

∥∥∥∥∥
2
. (1.25)

This is the difference between the derivatives of two solutions of the same differential
equation (1.5) with two different initial conditions. More precisely, we define Π : Φ(Ω)×
BRn(0, ‖γ̃k‖ + 2ε‖w̃k‖) × [0, η]) → Rn such that Π(p0, α0, h) are the coordinates of the
solutions of the Hamiltonian equation at time h with initial coordinates p0 and initial
momentum α0. Π is the flow, in coordinates, of the geodesic equation. We can now rewrite
equation (1.25)

∥∥∥∥∥Jw̃kγk (h)
h
−

Jw̃kγ̃k (h)
h

∥∥∥∥∥
2

=
∥∥∥∥∥ ∂Π(γk, γ̇k + εw̃k, h)

∂ε

∣∣∣∣∣
ε=0
− ∂Π(γ̃k, ˙̃γk + εw̃k, h)

∂ε

∣∣∣∣∣
ε=0

∥∥∥∥∥
2
.

By Cauchy-Lipschitz theorem and results on the regularity of the flow, Π is smooth.
Hence, its derivatives are bounded over its compact set of definition. Hence there exists a
constant A > 0 such that∥∥∥∥∥Jw̃kγk (h)

h
−

Jw̃kγ̃k (h)
h

∥∥∥∥∥
2
≤ A

(
‖γ̃ − γ‖2 +

∥∥∥ ˙̃γ − γ̇
∥∥∥

2

)

where we can once again assume A independent of t and h. In coordinates, we use a
second-order Runge-Kutta method to integrate the geodesic equation (1.5) so that the
cumulated error ‖γ̃ − γ‖2 +

∥∥∥ ˙̃γ − γ̇
∥∥∥

2
is of order h2. Hence, there exists a positive constant

B which does not depend on h, t or w such that
∥∥∥∥∥Jw̃kγk (h)

h
−

Jw̃kγ̃k (h)
h

∥∥∥∥∥
2
≤ Bh2.

Numerical approximation with a single perturbed geodesic

We prove a lemma which allows to control the error we make when we approximate
numerically the Jacobi field using steps (3) and (2) of the algorithm:

Lemma 3. For all L > 0, there exists A > 0 such that for all t ∈ [0, 1[, for all h ∈
[0, η
‖γ̇(t)‖g ] and for all w ∈ Tγ(t)M with ‖w‖2 < L – in the global system of coordinates –

we have ∥∥∥∥∥∥Jwγ(t)(h)− J̃wγ(t)(h)
h

∥∥∥∥∥∥
2

≤ A(h2 + εh)
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where J̃wγ(t)(h) is the numerical approximation of Jwγ(t)(h) computed with a single perturbed
geodesic and a first-order differentiation method.

Proof. Let L > 0. Let t ∈ [0, 1[, h ∈ [0, η
‖γ̇(t)‖g ] and w ∈ Tγ(t)M. We split the error term

into two parts

∥∥∥∥∥∥
Jwγ(t)(h)

h
−

J̃wγ(t)(h)
h

∥∥∥∥∥∥
2

≤

∥∥∥∥∥∥∥∥∥
Jwγ(t)(h)

h
−

Expγ(t)
(
h(γ̇(t) + εw)

)
− Expγ(t)

(
hγ̇(t)

)
εh︸ ︷︷ ︸

(1)

∥∥∥∥∥∥∥∥∥
2

+

∥∥∥∥∥∥∥∥∥
Expγ(t)

(
h(γ̇(t) + εw)

)
− Expγ(t)

(
hγ̇(t)

)
− ˜Expγ(t)

(
h(γ̇(t) + εw)

)
+ ˜Expγ(t)

(
hγ̇(t)

)
εh︸ ︷︷ ︸
(2)

∥∥∥∥∥∥∥∥∥
2

where Exp is the Riemannian exponential and ˜Exp is the numerical approximation of this
Riemannian exponential computed thanks to the Hamiltonian equations. When running
the scheme, these computations are done in the global system of coordinates.

Term (1) Let i ∈ {1, . . . , n} and let F i : (x, t, w) 7→ Exp[hγ̇(t) + xw]i. We have

Jwγ(t)(h)
h

i

− Exp[h(γ̇(t) + εw)]i − Exp[hγ̇(t)]i

εh

= 1
h

∂F i(εh, t, w)
∂ε

∣∣∣∣∣
ε=0
− F i(εh, t, w)− F i(0, t, w)

εh

= ∂F i(x, t, w)
∂x

∣∣∣∣∣
x=0
− F i(εh, t, w)− F i(0, t, w)

εh
.

This is the error when performing a first-order differentiation on x 7→ F i(x, t, w) at 0. This
error is of order εh and will depend smoothly on t and w. Since t ∈ [0, 1] and imposing
‖w‖2 < L, there exists B which does not depend on t or w such that

∣∣∣∣∣∣J
w
γ(t)(h)
h

i

− Exp[hγ̇(t) + εhw]i − Exp[hγ̇(t)]
εh

i
∣∣∣∣∣∣ ≤ Bεh

so that there exists C > 0 such that for all t, for all h and for all w with ‖w‖2 ≤ L

∥∥∥∥∥Jwγ(t)(h)
h

− Exp[hγ̇(t) + εhw]− Exp[hγ̇(t)]
εh

∥∥∥∥∥
2
≤ Cεh.

Term (2) We rewrite the Hamiltonian equation ẋ(t) = F1(x(t), α(t)) and α̇(t) =
F2(x(t), α(t)). We denote xε, αε the solution of this equation (in the global system of coor-
dinates) with initial conditions xε(0) = x0 = γ(t) and αε(0) = αε0 = K(x0)−1(γ̇(t) + εw).
We denote x̃ε the result after one step of length h of the integration of the same equation
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Part I, Chapter 1 – A numerical scheme and a proof of convergence

using a second-order Runge-Kutta method with parameter δ ∈]0, 1]. The term (2) rewrites

1
εh
‖(xε(h)− x0(h))− (x̃ε − x̃0)‖2.

First, we develop xε in the neighborhood of 0:

xε(h) = x0 + hẋ0 + h2

2 ẍ0 +
∫ h

0

(h− t)2

2
...
xε(t)dt. (1.26)

We have for the last term∥∥∥∥∥
∫ h

0

(h− t)2

2
...
xε(t)dt−

∫ h

0

(h− t)2

2
...
x0(t)dt

∥∥∥∥∥
2

=
∥∥∥∥∥
∫ h

0

∫ +ε

0

(h− t)2

2 ∂ε
...
xε(u, t)dudt

∥∥∥∥∥
2
,

xε being the solution of a smooth ordinary differential equation with smoothly varying
initial conditions, it is smooth in time and with respect to ε. Hence, when the initial
conditions are within a compact, ∂ε

...
xε is bounded, hence there exists D > 0 such that∥∥∥∥∥

∫ h

0

(h− t)2

2
...
xε(t)dt−

∫ h

0

(h− t)2

2
...
x0(t)dt

∥∥∥∥∥
2
≤ Dh3ε.

After computations of the first and second order terms, we get

xε(h) =x0 + h(γ̇(0) + εw) +
h2

2

(
(∇xK)(x0)[K(x0)αε0]αε0 +K(x0)F2(x0, α

ε
0)
)

+ O
(
h3|ε|

)
.

(1.27)

Now we focus on the approximation x̃ε. One step of a second-order Runge Kutta method
with parameter δ gives:

x̃ε = x0 + h
[(

1− 1
2δ
)
F1(x0, α

ε
0) + 1

2δF1
(
x0 + δhF1(x0, α

ε
0), αε0 + δhF2(x0, α

ε
0)
)]

= x0 + h
[(

1− 1
2δ
)
K(x0)αε0 + 1

2δK
(
x0 + δhK(x0)αε0

)(
αε0 + δhF2(x0, α

ε
0)
)]

We use a Taylor expansion for K:

K
(
x0+δhK(x0)αε0

)
= K(x0) + δh(∇xK)(x0)[K(x0)αε0]+

(δh)2

2 (∇xK)2[K(x0)αε0, K(x0)αε0] + O
(
h3
)
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Injecting this into the previous expression for xε, we get after development

x̃ε = x0 + hK(x0)(αε0)

+ h2

2
[
K(x0)F2(x0, α

ε
0) + (∇xK)(x0)[K(x0)αε0]αε0

]
+ h3δ

4
[
(∇xK)(x0)[αε0]F2(x0, α

ε
0) + (∇xK)2[K(x0)αε0, K(x0)αε0]αε0

]
+ O

(
h4
)
.

The third order terms of x̃ε − x0 is then proportionnal to

(∇xK)(x0)[αε0]F2(x0, α
ε
0)− (∇xK)(x0)α0

0F2(x0, α
0
0)

+ (∇xK)2[K(x0)αε0, K(x0)αε0]αε0 − (∇xK)2[K(x0)α0
0, K(x0)α0

0]α0
0.

Both these terms are the differences of smooth functions at points whose distance is of
order ε‖w‖2. Because those functions are smooth, and we are only interested in these
majorations for points in Ω and tangent vectors in a compact ball in the tangent space,
this third order term is bounded by Eh3ε‖w‖2 where E is a positive constant which does
not depend on the position on the geodesic. Finally, the zeroth, first and second-order
terms of xε and x̃ε cancel each other, so that there exists D ≥ 0 such that

‖(xε(h)− x0(h))− (x̃ε(h)− x̃0(h))‖2 ≤ (h3ε+ Eh3ε)

which concludes.

Numerical approximation with two perturbed geodesics

We suppose here that the computation to get the Jacobi field is done using two perturbed
geodesics, and a second-order differentiation as described in equation (1.8).

Lemma 4. For all L > 0, there exists A > 0 such that for all t ∈ [0, 1[, for all h ∈ [0, 1−t]
and for all w ∈ Tγ(t)M with ‖w‖2 < L –in the global system of coordinates – we have

∥∥∥∥∥∥Jwγ(t)(h)− J̃wγ(t)(h)
h

∥∥∥∥∥∥
2

≤ A(h2 + εh),

where J̃wγ(t)(h) is the numerical approximation of Jwγ(t)(h) computed with two perturbed
geodesics and a central finite differentiation method. We consider that this approximation
is computed in the global system of coordinates.

The proof is similar to the one above.
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Chapter 2

Application to shape analysis [62, 10]

2.1 Introduction

The primary pathological developments of a neuro-degenerative disease such as Alzheimer’s
are believed to spring long before the first symptoms of cognitive decline. Subtle gradual
structural alterations of the brain arise and develop along the disease course, in particu-
lar in the hippocampi regions, whose volumes are classical bio-markers in clinical trials.
Among other factors, those transformations ultimately result in the decline of cognitive
functions, which can be assessed through standardized tests. Being able to track and pre-
dict future structural changes in the brain is therefore key to estimate the individual stage
of disease progression, to select patients and provide endpoints in clinical trials.

To this end, we propose here to predict the future shape of brain structures segmented
from MRIs. We propose a methodology based on three building blocks : extrapolate from
the past progression of a subject ; transfer the progression of a reference subject observed
over a longer time period to new subjects ; and refine this transfer with information about
the relative disease dynamics extracted from cognitive evaluations. Instead of limiting
ourselves to specific features such as volumes, we propose to see each observation of a
patient at a given time-point as a segmented surface mesh in a shape space.

In computational anatomy, shape spaces can be defined via the action of a group of
diffeomorphisms [5, 97, 99]. In this framework, one may estimate a flow of diffeomorphisms
such that a shape continuously deformed by this flow best fits repeated observations of
the same subject over time, thus leading to a subject-specific spatio-temporal trajectory
of shape changes [57, 81]. If the flow is geodesic in the sense of a shortest path in the group
of diffeomorphisms, this problem is called geodesic regression [25, 57, 81, 28] and may be
thought of as the extension to Riemannian manifolds of the linear regression concept. It
is tempting then to use such regression to infer the future evolution of the shape given
several past observations. To the best of our knowledge, the predictive power of such a
method has not yet been extensively assessed. We will demonstrate that satisfying results
can only be obtained when large numbers of data points over extensive periods of time are
available, and that poor ones should be expected in the more interesting use-case scenario
of a couple of observations.

In such situations, an appealing workaround would be to transfer previously acquired
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knowledge from another patient observed over a longer period of time. This idea requires
the definition of a spatio-temporal matching method to transport the trajectory of shape
changes into a different subject space. Several techniques have been proposed to regis-
ter image time series of different subjects [73, 100]. They often require time series to
have the same number of images, or to have correspondences between images across time
series, and are therefore unfit for prognosis purposes. Parallel transport in groups of dif-
feomorphisms has been recently introduced to infer deformation of follow-up images from
baseline matching [90, 60]. Such paradigms have been used mostly to transport spatio-
temporal trajectories to the same anatomical space for hypothesis testing [83, 35]. Two
main methodologies have emerged: either by parallel-transporting the time series along
the baseline matching as in [28], or by parallel-transporting the baseline matching along
the time series as in [87]. We evaluate both in this paper, according to their predictive
power.

To compute this parallel transport operation, we use the fanning scheme described in
the previous chapter, which we re-detail for the LDDMM diffeomorphisms. On the way,
we use the proposed applications to control the behaviour of the numerical scheme in a
very high dimensional setting.

Section 2.2 gives the theoretical background and the detailed steps of the algorithm, in
the LDDMM context. Section 2.3 describes how parallel transport can be used to perform
future shape prediction. Section 2.4 Section 2.5 concludes.

2.2 Parallel transport in the context of shape analy-
sis

In this chapter, we work on a manifold of diffeomorphisms which is a particular instance
of the LDDMM framework. Appendix 9 gives more details both about the theoretical and
the computational aspects of this construction.

2.2.1 The chosen family of diffeomorphisms

The LDDMM-derived construction proposed in [22] provides an effective way to build a
family of diffeomorphims acting on the d-dimensional ambient space Rd. Time-varying vec-
tor fields vt(.) are generated by convolution of a Gaussian kernel k(x, y) = exp

[
−‖x−y‖

2

2σ2

]
over ncp time-varying control points c(t) = [ci(t)]i, weighted by ncp associated momenta
α(t) = [αi(t)]i, i.e. vt(.) = ∑ncp

i=1 k (. , ci(t))αi(t). The set of such vector fields forms a
Reproducible Kernel Hilbert Space (RKHS).

Those vector fields are then integrated along ∂tφt(.) = vt[φ(.)] from φ0 = Id into a flow
of diffeomorphisms. In [74], the authors showed that the kernel-induced distance between
φ0 and φ1 –which can be seen as the deformation kinetic energy– is minimal i.e. the
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obtained flow is geodesic when the control points and momenta satisfy the Hamiltonian
equations :

ċ(t) = Kc(t)α(t), α̇(t) = −1
2 ∇c(t)

{
α(t)T Kc(t) α(t)

}
, (2.1)

where Kc(t) is the kernel matrix. A diffeomorphism is therefore fully parametrized by its
initial control points c and momenta α. We denote it Φc,α.

Those Hamiltonian equations can be integrated with a Runge-Kutta scheme without
computing the Christoffel symbols, thus avoiding the associated curse of dimensionality.
The obtained diffeomorphisms then act on shapes embedded in Rd, such as images or
meshes, and we denote ? this action: it is direct application point by point for meshes,
and composition by φ−1

1 for images.

We now define Gc =
{

Φc,α|c ∈ Rnd, ci 6= cj ∀i 6= j, α ∈ Rnd
}
. Gc is the whole family of

diffeomorphisms that we are considering in our experiments. Each diffeomorphism Φc,α of
Gc corresponds to a point and a co-tangent vector on the landmark manifold defined in
the Appendix 9.3. This opens the way to parallel transporting Φc,α along Φc,α′ by parallel
transporting the co-tangent vector α along the geodesic γ with initial position c and initial
momentum α′. At the end of the transport, we obtain a new diffeomorphism Φc̃,α̃ that
can act on the newly observed shape. This is the heuristic we use to transport observed
progressions onto new subjects.

2.2.2 Parallel transport on Gc

We are now ready to describe the fanning scheme in this particular context. This transport
formally occurs on the landmark manifold.

Figure 2.1: Step of the parallel transport of the vector w (blue arrow) along the geodesic γ
(solid black curve). Jwγ is computed by central finite difference with the perturbed geodesics
γε and γ−ε, integrated with a second-order Runge-Kutta scheme (dotted black arrows). A
fan of geodesics is formed.
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Algorithm in this diffeomorphism case.

Divide [0, 1] into N intervals of length h = 1
N

where N ∈ N. We note ωk the momenta of
the transported diffeomorphism, ck the control points and αk the momenta of the geodesic
γ at time k

N
. Iteratively :

(i) Compute the main geodesic control points ck+1 and momenta αk+1, using a Runge-
Kutta 2 method.

(ii) Compute the control points c±hk+1 of the perturbed geodesics γ±h with initial momenta
and control points (αk ± hωk, ck), using a Runge-Kutta 2 method.

(iii) Approximate the Jacobi field Jk+1 by central finite difference :

Jk+1 = c+h
k+1 − c−hk+1

2h . (2.2)

(iv) Compute the transported momenta ω̃k+1 according to equation (1.2) :

Kck+1ω̃k+1 = Jk+1

h
. (2.3)

(v) Correct this value with ωk+1 = βk+1ω̃k+1 + δk+1αk+1, where βk+1 and δk+1 are nor-
malization factors ensuring the conservation of ‖ω‖Vc = ωTkKckωk and of 〈αk, ωk〉ck =
αTkKckωk.

A step of the scheme is illustrated in Figure 2.1. The Jacobi field is computed with
only four calls to the Hamiltonian equations. This operation scales quadratically with
the dimension of the manifold, which makes this algorithm practical in high dimension,
unlike Christoffel-symbol-based solutions. Step ((iv)) –solving a linear system of size ncp–
is the most expensive one, but remained within reasonable computational time in the
investigated examples which features up to n = 3000 control points in dimension d = 3.

In the previous sections, we proved the convergence of this scheme, and showed that
the error increases linearly with the size of the step used. The convergence is guaranteed
as long as the step ((ii)) is performed with a method of order at least two. A first or-
der method in step ((iii)) is also theoretically sufficient to guarantee convergence. Those
variations will be studied in Subsection 2.4.2.
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2.3. Method for future shape prediction

2.3 Method for future shape prediction

In this section, we explain the different predictive models that are used to tackle the task
of shape progression prediction.

Let (yj)j=1,...,ni be a time series of segmented surface meshes for a given subject
i ∈ {1, ..., N}, obtained at the ages (tj)j=1,...,ni . Under the action of the flow of diffeomor-
phisms, an initial template shape T is continuously deformed and describes a trajectory in
the shape space, which we denote t 7→ γ(c0,α0)(T, t) = Φc(t),α(t) ? T . We endow the surface
meshes with a varifold norm ‖·‖ which allows to measure a data attachment term between
meshes without point correspondence [22].

Geodesic regression

In the spirit of linear regression, one can perform geodesic regression in the shape space
by estimating the "intercept" T and the "slope" (c, α) such that γ(c,α)(T, ·) minimizes the
loss:

inf
c,α,T

ni∑
j=1
‖γ(c,α)(T, tj)− yj‖2 +R(c, α) (2.4)

where R is a regularization term which penalizes the kinetic energy of the deformation.
We estimate a solution of equation (2.4) with a Nesterov gradient descent as implemented
in the software Deformetrica (www.deformetrica.org), where the gradient with respect
to the control points, the momenta and the template is computed with a backward in-
tegration of the data attachment term along the geodesic [23]. In practice, we will fix
the initial points to a regularly spaced set within a box containing the observations. This
allows a to avoid one computation of inverse convolution for the parallel transport, needed
when transporting a deformation along another one with different initial control points.

Once an optimum is found, we obtain a description of the progression of the brain
structures which lies in the tangent space at the identity of the group of diffeomorphisms.
It is natural to attempt to extrapolate from the obtained geodesic to obtain a prediction
of the progression of the structures.

Two methods to transport spatio-temporal trajectories of shapes

As it will be demonstrated in Subsection 2.4.3, geodesic regression extrapolation produces
an accurate prediction only if data over a long time span is available for the subject. This
is not compatible with the goal of early prognosis.

As proposed in [60, 105], given a reference geodesic, we use the Riemannian parallel
transport to generate a new trajectory. We first perform a baseline matching between
the reference subject and the new subject, which can be described as a vector in the
tangent space of the group of diffeomorphisms. Two paradigms are available to obtain a
parallel trajectory. [90] advises to transport the reference regression along the geodesic
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(A1) Geodesic parallelization. Blue arrow:
baseline matching. Red arrows: transported
regression. Black dotted line : exponentia-
tion of the transported regression.

(A2) Reparametrized geodesic paralleliza-
tion. Matching time and exp-parallel trajec-
tory are reparametrized.

(B1) Exp-parallelization. Red arrow:
geodesic regression. Blue arrows: trans-
ported baseline matching. Black dotted
line : exp-parallelization of the reference
geodesic for the given subject.

(B2) Reparametrized exp-parallelization.
Matching time and exp-parallel trajectory
are reparametrized.

which defines the matching between base and new observation and then shoot. In the
shape space, this generates a geodesic starting at the baseline shape ; for this reason, we
call this solution geodesic parallelization, and is illustrated in Figure (A1). On the other
hand, [87] advocates to transport the matching vector along the reference geodesic and
then build a trajectory with this transported vector from every point of the reference
geodesic, as described on Figure (B1). We will call this procedure exp-parallelization.

To implement these parallel shifting methods, we use the algorithm described in Sub-
section 2.2.2.

Cognitive scores dynamics

The protocol described in the previous section has two main drawbacks. First, the choice
of the matching time in the reference trajectory is arbitrary : the baseline is purely a
convenience choice and ideally the matching should be performed at similar stages of
the disease. Second, it does not take into account the pace of progression of the subject.
In [87], the authors propose a statistical model allowing to learn, in an unsupervised
manner, dynamical parameters of the subjects from ADAS-cog test results, a standardized
cognitive test designed for disease progression tracking. More specifically, they suppose
that each patient follows a parallel to a mean trajectory, with a time reparametrization :

ψ(t) = eη(t− t0 − τ) + t0 (2.5)
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which maps the subject time to a normalized time frame, where η, τ ∈ R. A high (resp.
low) τ hence corresponds to a fast (resp. slow) progression of the scores, when a negative
(resp. positive) τ corresponds to an early decay (resp. late decay) of those scores. In the
data set introduced below, the acceleration factors (eηi)i range from 0.15 to 6.01 and the
time-shifts (τi)i from −20.6 to 22.8 years, thus showing a tremendous variability in the
individual dynamics of the disease, which must be taken into account.

With these dynamic parameters, the shape evolution can be adjusted by reparametriz-
ing the parallel trajectory with the same formula (2.5), as illustrated on Figures (A2) and
(B2).

2.4 Results

In this section, we describe the data used, we provide an analysis of the behaviour of the
scheme in this high-dimensional setting and we discuss the results obtained for each of
the three proposed prediction methods.

2.4.1 Data, pre-processing, parameters and performance metric

MRIs are extracted from the ADNI database, where only MCI converters (subjects who
ultimately convert to Alzheimer’s disease) with 7 visits or more are kept, for a total of
(N = 74) subjects and 634 visits. Subjects are observed for a period of time ranging from
4 to 9 years (5.9 on average), with 12 visits at most. The 634 MRIs are segmented using
the FreeSurfer software. The extracted brain masks are then affinely registered towards
the Colin 27 Average Brain using the FSL software. The estimated transformations are
finally applied to the pairs of caudates, hippocampi and putamina subcortical structures.

All diffeomorphic operations i.e. matching, geodesic regression estimation, shooting,
exp-parallelization and geodesic parallelization are performed thanks to the Deformetrica
software previously mentioned. A varifold distance with Gaussian kernel width of 3 mm for
each structure and a deformation kernel width of 5 mm are chosen. The time discretization
resolution is set to 2 months.

The chosen performance metric between two sets of meshes is the Dice coefficient, that
is the sum of the volumes of the intersections of the corresponding meshes, divided by
the total sum of the volumes. We only measure the volume of the intersection between
corresponding structures. The Dice coefficient is comprised between 0 and 1 : it equals 1
for a perfect match, and 0 for disjoint structures.
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Figure 2.1: Empirical relative error of the parallel transport in a high-dimensional setting.
In blue the proposed algorithm, in green the WEC variant, in red the RK4 variant.

2.4.2 Estimating the error associated to a single parallel trans-
port

To study the error in this high-dimensional setting, we compute the parallel transport for
a varying number of discretization steps N , thus obtaining increasingly accurate estima-
tions. We then compute the empirical relative errors, taking the most accurate computa-
tion as reference.

Arbitrary reference and target subjects being chosen, Figure 2.1 gives the results for
the proposed algorithm and three variations : without enforcing the conservations at step
((v)) [WEC], using a Runge-Kutta of order 4 at step ((ii)) [RK4], and using a single
perturbed geodesic to compute J at step ((iii)) [SPG]. We recover a linear behavior with
the length of the step 1

N
in all cases. The SPG variant converges much slower, and is

excluded from the following considerations.
For the other algorithms, the empirical relative error remains below 5% with 15 steps or

more, and below 1% with 25 steps or more. The slopes of the asymptotic linear behaviors,
estimated with the last 10 experimental measurements, range from 0.10 for the RK4
method to 0.13 for the WEC one. Finally, an iteration takes respectively -on a single
CPU- 4.26, 4.24 and 8.64 seconds for the proposed algorithm, the WEC variant and the
RK4 one. Therefore the initially detailed algorithm in Section 2.2 seems to achieve the
best trade-off between accuracy and speed in the considered experimental setting.
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2.4.3 Geodesic regression extrapolation

The acceleration factor expη in equation (2.5) encodes the rate of progression of each
patient. Multiplying this coefficient with the actual observation window gives a notion of
the absolute observation window length, in the disease time referential. Only the 22 first
subjects according to this measure have been considered for this section : they are indeed
expected to feature large structural alterations, making the geodesic regression procedure
more accurate. The geodesic regression predictive performance is compared to a naive one
consisting in leaving the last observed brain structures in the learning data set unchanged.

Table 2.1 presents the results obtained for varying learning data set and extrapolation
extents. We perform a Mann-Whitney test with the null hypothesis that the observed
Dice coefficients distributions obtained with the [reg] and [naive] procedure are the same.
It allows us to obtain statistical significance levels to compare the 2 methods. The ex-
trapolated meshes are satisfying only in the case where all but one data points are used
to perform the geodesic regression, achieving a high Dice index and outperforming the
naive one, by a small margin though and failing to reach the significance level (p=0.25).
When the window of observation becomes narrower, the prediction accuracy decreases
and becomes worse than the naive one. Indeed, the lack of robustness of the – although
standard – segmentation pipeline imposes a high noise level, which seems to translate into
a too low signal-to-noise ratio after extrapolation from only a few observations.

Figure 2.2 displays an extrapolated geodesic regression for a specific subject, with a
large learning period of 72 months, and a prediction at 108 months from the baseline
(Dice performance of 0.74 versus 0.65 with the naive approach).
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Figure 2.2: Extrapolated geodesic regression for the subject s0671. The right hippocampus,
the caudate and the putamen brain structures are representated in each sub-figure. The
three first rows present the interpolated brain structures, corresponding to ages 61.2,
64.2 and 67.2 (years). The last row presents the extrapolation result at age 70.2. On the
right column are added the target brain structures (red wireframes), segmented from the
original images.

40



2.4. Results

L
ea
rn
in
g

pe
ri
od

(m
on

th
s)

P
re
di
ct
ed

fo
llo

w
-u
p
vi
si
t

M
et
ho

d
M
12

M
24

M
36

M
48

M
72

M
96

N
=

22
N

=
21

N
=

19
N

=
18

N
=

16
N

=
5

6
[re

g]
.8

78
.8

88
.8

00
.8

50

} ∗ ∗ ∗
.7

37
.8

03

} ∗ ∗ ∗
.6

24
.7

08

} ∗ ∗
.5

09
.6

26

} ∗ ∗
.4

83
.6

02
[n
ai
ve
]

12
[re

g]
-

.8
39

.8
75

} ∗ ∗
.7

69
.8

32

} ∗ ∗ ∗ ∗
.6

58
.7

35

} ∗ ∗
.5

23
.6

44

} ∗ ∗
.4

65
.6

08

} ∗
[n
ai
ve
]

-

18
[re

g]
-

.8
85

.8
90

.8
23

.8
51

} ∗
.7

38
.7

64
.6

11
.6

61
.5

79
.6

27
[n
ai
ve
]

-

24
[re

g]
-

-
.8

64
.8

69
.7

78
.7

79
.6

81
.6

89
.6
57

.6
53

[n
ai
ve
]

-
-

m
ax

-1
[re

g]
.8

07
.7

97
Pr

ed
ic

tio
n

at
th

e
m

os
t

re
m

ot
e

po
ss

ib
le

tim
e

∼
60

m
on

th
s

[n
ai
ve
]

po
in

t
(∼

76
m

on
th

s)
fo

r
al

ls
ub

je
ct

s
(N

=
22

).

Ta
bl
e
2.
1:

Av
er
ag
ed

D
ic
e
pe

rfo
rm

an
ce

m
ea
su
re
s
be

tw
ee
n

pr
ed
ic
tio

ns
an

d
ob

se
rv
at
io
ns

fo
r
va
ry
in
g
ex
te
nt
s
of

le
ar
ni
ng

da
ta

se
ts

an
d

ex
tr
ap

ol
at
io
n.

T
he

[re
g]

ta
g
in
di
ca
te
s
th
e
re
gr
es
sio

n-
ba

se
d
pr
ed
ic
tio

n,
an

d
[n
ai
ve
]t
he

na
iv
e
on

e.
Ea

ch
ro
w

co
rr
es
po

nd
s
to

an
in
cr
ea
sin

gl
y

la
rg
e
le
ar
ni
ng

da
ta

se
t,
pa

tie
nt
sb

ei
ng

ob
se
rv
ed

fo
rw

id
en
in
g
pe

rio
ds

of
tim

e.
Ea

ch
co
lu
m
n
co
rr
es
po

nd
st

o
an

in
cr
ea
sin

gl
y
re
m
ot
e
pr
ed
ic
te
d

vi
sit

fro
m

ba
se
lin

e.
Si
gn

ifi
ca
nc
e
le
ve
ls

[.0
5,

.0
1,

.0
01
,.
00
01
]f
or

th
e
M
an

n-
W

hi
tn
ey

te
st
.

41



Part I, Chapter 2 – Application to shape analysis [62, 10]

2.4.4 Non reparametrized transport

Among the 22 subjects whose regression-based predictive power has been evaluated in
the previous section, the two which performed best are chosen as references for the rest
of this paper. Their progressions are transported onto the 73 other subjects with the two
different parallel shifting methods.

In more details, for each pair of reference and target subjects, the baseline target shape
is first registered to the reference baseline. The reference geodesic regression is then either
geodesically or exp-parallelized. Prediction performance is finally assessed : the Dice index
between the prediction and the actual observation, for the two modes of transport, are
computed and compared to the Dice index between the baseline meshes and the actual
observation – the only available information in the absence of a predictive paradigm.

The upper part of Table 2.2 presents the results. In most cases, the obtained meshes by
the proposed protocol are of lesser quality than the reference ones, according to the Dice
performance metric. The two methods of transport are essentially similarly predictive,
although geodesic parallelization slightly outperforms the exp-parallelization for the M12
prediction.
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2.4. Results

Figure 2.3: Exp-parallelization of the reference subject s0906 (first column) towards the
subject s1080 (second column), giving predictions for ages 81.6, 82.6, 83.6, 84.6 and 85.6
(years). On the third column are added the target brain structures (red wireframes),
segmented from the original images.
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2.4.5 Refining with cognitive dynamical parameters

The two reference progressions are transported through geodesic and exp-parallelization
onto all remaining subjects. After time-reparametrization, the obtained parallel trajecto-
ries then deliver predictions for the brain structures. 280 parallel trajectories are obtained,
delivering predictions for the brain structures.

Figure 2.4 displays a reference geodesic and an exp-parallelized curve. The predicted
progression graphically matches the datapoints, and it can be noticed that the final pre-
diction at age 85.6 (Dice 0.73) outperforms the corresponding one on Figure 2.3, obtained
without time-reparametrization (Dice 0.69).

Quantitative results are presented in the lower part of Table 2.2. At the exception
of the M12 prediction, both protocols outperform the naive one. The M36, M48, M72
and M96 predictions are the most impressive ones, with p-values always lesser than 1%.
This shows that the pace of cognitive score evolution is well correlated with the pace of
structural brain changes, and therefore allows an enhanced prediction of follow-up shapes.

No conclusion can be drawn concerning the two parallel shifting methodologies, a single
weak significance result being obtained only for the M12 prediction where the geodesic
parallelization method slightly outperforms the exp-parallelization one with a Dice score
of 0.888 versus 0.882.

2.5 Conclusion

We detailed how to use the fanning scheme in the shape analysis context, using the
LDDMM framework. Our analysis unveiled the operational qualities and computational
efficiency of the scheme in high dimensions, with a empirical relative error below 1% for
25 steps only.

We then conducted a quantitative study of geodesic regression extrapolation, exhibit-
ing its limited predictive abilities and subsequently proposed a method to transport a
spatio-temporal trajectory onto a different subject space with cognitive decline-derived
time reparametrization, and demonstrated its potential for prognosis. The results show
how crucial the dynamics are in disease modeling, and how cross-modality data can be
exploited to improve a learning algorithm. The two main paradigms that have emerged
for the transport of parallel trajectories were shown to perform equally well in this predic-
tion task. Nonetheless, the exp-parallelization offers a methodological advantage in that
the generated trajectories do not depend on a particular choice of point on the reference
geodesic, in contrast with the trajectories obtained by geodesic parallelization. It takes full
advantage of the isometric property of the parallel transport, and eases the combination
with time-warp functions based on the individual disease dynamics. In [7], the authors
leverage this invariance to learn a distribution of trajectories which are all parallel to
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Figure 2.4: Time-reparametrized exp-parallelization of the reference subject s0906 (first
column) towards the subject s1080 (second column), giving predictions for ages 81.6, 82.6,
83.6, 84.6 and 85.6 (years). On the third column are added the target brain structures
(red wireframes), segmented from the original images.
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a common reference geodesic, thus providing a comprehensive framework extending the
preliminary approach developed here.
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Geodesic Discriminant Analysis for
manifold-valued data
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Chapter 3

Geodesic Discriminant Analysis for
manifold-valued data

This part is a reproduction of [64].

3.1 Introduction

Large quantities of high-dimensional structured data are now routinely acquired such as
various types of images, videos or 2D and 3D shape data. The raw description of this kind
of data does not in general reflect its intrinsic structure: it hides the generally low number
of degrees of freedom that produced the observations, it is often very high-dimensional and
the use of usual distances on raw data is not appropriate. To obtain a better description of
the data, a standard approach is to construct or learn a low-dimensional manifold which
best approximates a set of observations under a predefined criterion. If an invariance
property is expected in the data, such as an invariance by rotation and scaling, it is
possible to project the set of observations in the corresponding quotient space [44] or
at least to build a quotiented description of the data to more classic machine learning
methods as it is commonly done in scattering [69] and convolutional networks. Otherwise,
the manifold structure can be learned from the data itself as it is proposed in manifold
learning approaches, which project the data onto Rn for some small n ∈ N while trying
to preserve some local or global structure observed in the high-dimensional data (see
[67, 96]).

All of these approaches produce a large amount of manifold-valued data for which it
is necessary to adapt usual linear machine learning approaches. The Linear Discriminant
Analysis (LDA) method is a popular classification algorithm assuming a linear structure
in the data. It can be formulated in two different ways. First, as a dimension reduction
problem which seeks to maximize the between-class variance with respect to the within-
class variance. Second, LDA can be formulated as a classification problem supposing each
class is distributed as a Gaussian random variable with common covariance matrix. In this
paper, we propose generalizations of those two formulations of LDA to manifold-valued
data. So far, most classifications of manifold-valued data was done after having projected
the data onto a common tangent space (see [23, 54]), or using a coordinate chart on the
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manifold. Both of these approaches only see a simplified version of the geometry of the
manifold. The proposed generalizations of LDA address this by taking into account the
intrinsic geometry of the data to perform dimension reduction and classification.

The first generalization, derived in Section 3.2, that we call geometric Geodesic Dis-
criminant Analysis (geometric GDA), is obtained by rewriting the Fisher Discriminant Ra-
tio (FDR) –which measures the ratio between the between-class variance and the within-
class variance– using geodesic distances on the manifold. We propose to build a geodesic
subspace on the manifold on which this criterion is maximized.

Because the optimization of the criterion formulated for the geometric GDA is not
always tractable, we proceed with a second generalization of LDA. Derived in Section
3.3, it extends the restricted Gaussian Classifier formulation of LDA. To extend this
formulation to manifolds, we model the classes distributions as Riemannian exponentials
of Gaussian distributions defined on a tangent space at a specific common point. We
then propose to optimize the point on which this construction is centered at and to use
convenient descriptions of the between-class covariance and the within-class covariance,
basing our work on [82]. We call this method probabilistic GDA. We will show how to
make this approach computationally efficient for a wide variety of manifolds.

It has been shown in [36] that, in the linear case, this approach is equivalent to the
reduced rank LDA: it produces the same dimension reduction and classification rule. In
the nonlinear case, probabilistic GDA and geometric GDA will not be equivalent.

A particular case of manifold structure can be obtained under the action of a group
of diffeomorphisms on a set of shapes. Our formulation of the Large Deformation Diffeo-
morphic Metric Mapping (LDDMM) provides a way to parametrize a finite-dimensional
manifold of diffeomorphisms. This family of diffeomorphisms then allows the comparison
of shapes on which they act. We introduce this framework in Section 3.4. In Section 3.5
we provide results of the algorithm on 2D shapes extracted from the kimia-216 dataset
as well as on 3D Brain structures segmented from the ADNI dataset. The probabilistic
GDA is however generic and efficient enough to be applicable to a much broader family
of manifolds.

Among related work, Exact Principal Geodesic Analysis (Exact PGA), initially for-
mulated in [27], proposes to minimize the unexplained variance -measured using geodesic
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distances- after projection of the data onto a geodesic subspace. Several variations have
been proposed, among which Bayesian PGA [110] or Horizontal Component Analysis [91].
Our work differs from these methods since we propose a supervised learning algorithm
which optimizes class separation, not explained variance, to increase classification perfor-
mances.

We summarize our contributions:

1. We propose geometric GDA, a generalization of the reduced rank definition of LDA
to manifold-valued data.

2. We propose probabilistic GDA, a generalization of the restricted Gaussian classifier
definition of LDA to manifold-valued data.

3. We illustrate the geometric GDA method on S2 with synthetic data and the prob-
abilistic GDA model on the kimia-216 dataset and on a dataset of hippocampi
extracted from magnetic resonance images (MRI).

3.2 Geometric Geodesic Discriminant Analysis

In this section, we introduce geometric GDA, a generalization of LDA to manifold-valued
data using Fisher’s approach to LDA [26]. In this paper, we consider a set of labelled
observations (yi)i=1,...,N ∈M from C > 0 different classes, whereM is a smooth Rieman-
nian manifold that we assume geodesically complete. For p, q ∈ M, we note d(p, q) the
geodesic distance between p and q, and s ∈ N the dimension of the manifold.

If the manifold is a vector space, reduced rank LDA [26] consists in projecting the
observations onto a linear subspace on which the between-class variance is maximized
with respect to the within-class variance. Fisher proposed to find unit vectors a via max-
imization of the Fisher Discriminant Ratio (FDR):

0 < a>Ba

a>Wa
(3.1)

where > denotes transposition, B is the between-class covariance matrix –the covariance
matrix of the class centroids– and W is the within-class covariance matrix. To provide an
expression generalizable to manifolds, we rewrite this FDR:

1
C − 1

C∑
c=1

(a>µ− a>µc)2

1
N − C

C∑
c=1

∑
i∈Ic

(a>µc − a>xi)2
(3.2)

where µ is the mean of the observations, for each c ∈ {1, ..., C}, µc is the empirical mean of
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the class c and Ic is the set of indices of the observations of the class c. For any observation
x, a>x may be interpreted as the projection of the observation onto the space spanned by
a.

If the manifold is non flat, instead of constructing a linear subspace, we will build a
geodesic subspace on the manifold, as proposed for PGA in [27]. For any m ∈M, for any
subspace V ⊂ TmM, we define the geodesic subspace ExpmV = {Expm(v)|v ∈ V } where
Expm : TmM→M is the Riemannian exponential at m. We define a projection operator
on a subspace S of M by πS(x) = argminy∈Sd(x, y)2 when it is correctly defined. This
projection, defined by minimization, might be ill-defined unless we restrict ourselves to a
neighborhood of m. Assuming it is well-defined, equation (3.2) can now be generalized to
manifolds by using geodesic distances measured after projection on S:

1
C − 1

C∑
c=1

d(πExpm(V )(µ), πExpm(V )(µc))2

1
N − C

C∑
c=1

∑
i∈Ic

d(πExpm(V )(µc), πExpm(V )(xi))2
. (3.3)

where µ (resp. µc) are the Fréchet means [43] of the observations (resp. of the observa-
tions of class c). Reduced rank LDA on the manifold becomes the problem of maximizing
this with respect to m ∈ M and V linear subspace of TmM. V can be constructed in a
forward fashion by a basis {v1, ..., vk} where k is a chosen number of component. Note
that an alternative generalization could propose to recompute the Fréchet means after the
projection, which yields a criterion different than equation (3.3) since the Fréchet mean
of the projection is in general not the projection of the Fréchet mean. This alternative
generalization of equation (3.1) would be more expensive to compute, since the computa-
tion of the different Fréchet means of the projections would be required at every step of
the optimization procedure.

3.2.1 Inference

In practice, it is hard to find a robust procedure which optimizes both m and V at the
same time. We propose a greedy procedure: we first optimize jointly m and a first geodesic
component v1 ∈ TmM, and then add new components vk one at a time. In the linear case,
this procedure yields the exact same optimum. A theoretical discussion about the validity
of this procedure in the nonlinear case will be part of further work.

Note that if closed-form expressions are available for Riemannian logarithms and ex-
ponentials, the proposed geometric GDA can be computed efficiently. This is the case for
Kendall shape space, the sphere or the manifold of symmetric positive-definite matrices
with affine-invariant metric for instance. We will provide results in the case of the sphere
S2 in Section 3.5.1.
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Note also that the optimization problem (3.3) might be ill-defined if some degeneration
is observed in the data, for instance if all the data points lie on a single geodesic, as in the
linear case when the between-class covariance matrix does not have full rank. The study
of the conditions for this estimation procedure to be well-defined will not be conducted
in this chapter.

3.2.2 Dimension reduction and classification

After estimation ofm and V , one can project the observations onto V by taking the coordi-
nates of πExpm(V )(y) for each observation y. This gives a low-dimensional representation of
the data, on a space in which classes differences are most pronounced. This representation
has the same range of applications as dimension reduction with linear LDA.

Classification can then be done in one of two ways. First, directly in the low-dimensional
space Expm(V ) by comparison of test observations geodesic distances to the different
classes centroids on Expm(V ), in a fashion very similar to the classic LDA. Second, it can
be done after projection of the data onto V ⊂ TmM using any usual classifier, whose
performances will in general be improved if the FDR (3.3) has been correctly optimized.

Unfortunately, when no closed-form expressions are available for Riemannian loga-
rithms or exponentials, geometric GDA is intractable. To remedy this, we propose a
generalization of the alternative formulation of LDA.

3.3 Probabilistic Geodesic Discriminant Analysis

In the linear case, the restricted Gaussian classifier formulation of LDA assumes each
class is distributed along a normal distribution, with common covariance Σ. In this linear
setting, the probability of an observation y, if it is of class c, is:

y|c = c ∼ N (y|µc,Σ). (3.4)

In [36], the authors show that maximimizing the likelihood of this model with a rank
constraint on the means µc (rank(µc)c=1,...,C < K) is equivalent to projecting the obser-
vations onto the K first discriminant components found by maximization of the Fisher
Discriminant Ratio (3.1), even when the within-class covariance matrix Σ is unknown.

There is no natural way to generalize equation (3.4) to manifold-valued data. In partic-
ular, it is hard to make sense of the homoscedasticity hypothesis in LDA since it involves
comparing covariance matrices defined at different tangent spaces on the manifold. One
possible generalization of equation (3.4) is to consider:

y|c = c ∼ Expm(dc + α) (3.5)
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where m is a point on the manifold and α ∼ N (0,Σ) is a normal distribution on the
tangent space TmM. If the manifold is flat, this model is equivalent to (3.4), and the rank
constraint can in theory be enforced on the vectors dc ∈ TmM. The homoscedasticity is
replaced with the assumption that, as seen from the tangent space to m, the logarithms
of the observations of the different classes are distributed along normal distributions
with the same covariance matrix Σ. This approach is still hardly tractable in practice.
First, learning the model will require estimating the full within-class covariance matrix
Σ. Second, the rank constraint is difficult to implement in practice. We therefore extend
the model defined in [82], which is similar to LDA, to:

yi|c ∼ N (Expm(Fαc +Gβi), σ) (3.6)

where:

• N is a normal isotropic distribution onM with density p(y, µ, σ) = 1
D(µ,σ)e

− 1
2σ d

2(y,µ),
as defined in [27]. It can also be taken to be a normal distribution on a larger space
of observations, to ease computations, as used in the applications below,

• F is a s times C − 1 matrix which can be seen as the between-class covariance
matrix,

• G is a s times NG matrix where NG ∈ N is the selected number of intra-class
components to estimate: it can be seen as the principal components of the within-
class variations, as seen from TmM,

• For each class c, αc in RC−1 contains the coordinates of the class c in the C − 1-
dimensional space represented in F ,

• βi in RNG is a hidden variable which contains the coordinates of the i-th observation
within its class, in the NG-dimensional space represented in G.

We put normal priors on α and β, and an automatic relevance determination prior on
G as in [68]:

P (G; γ) =
NG∏
i=1

(
γi
2π

) s
2

exp
(
−γi2 ‖Gi‖2

2

)
(3.7)

where (γi)i=1,...,NG is a set of parameters which are estimated during the learning procedure
and (Gi)i=1,...,NG are the columns of G. This prior allows the automatic selection of a
relevant number of dimensions in the within-class covariance structure. An alternative
would be to use methods similar to [18, 79] which iteratively add dimensions to the
optimized subspace.

Compared to the tangent LDA, which consists in performing an LDA after having
projected the observations onto the tangent space to the Fréchet mean, the proposed
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method updates the within and between-class components with a constant feedback from
the real geometry of the data. Besides, we allow the joint optimization of the point m and
do not constrain it to be the Fréchet mean of the data, which may not be optimal in the
perspective of class separation (in [39] the authors show it is not optimal in the case of
exact PGA).

3.3.1 Inference

As in [110], the mode of the posterior distribution of the variables α and the optimal
values of the parameters can be obtained as a maximum a posteriori using a gradient
descent. In more details, we maximize P (yj|θ, β)P (θ)P (β) with respect to the parameters
θ = (F,G, α,m, σ, γ) and β. The computation of the gradient requires the differentiation
of a function of a geodesic endpoint with respect to its initial conditions. It can be done
by backward integration using the method described in [93].

This approach is tractable in a wide variety of situations:

• Even if there is no closed-form expression for Riemannian exponential, geodesics
can still be computed through integration of the Hamiltonian system of equations,
using only the inverse of the metric and its gradient, as shown in [20]. In that case,
automatic differentiation is a competitive way to compute the gradients, as shown
in [50].

• The normal distribution in equation (3.6) can be replaced with a normal distribution
on a larger space which contains the observations e.g.a pixel-wise normal distribution
for images, or a noise in R3 for S2. This saves the computation of the normalization
constant of the Riemannian normal distribution and of geodesic distances. Since
this distribution is used only to measure residuals, we believe it has a limited effect
on the model.

• The estimation procedure can be parallelized among the different subjects, rendering
it efficient even with large data sets.

3.3.2 Dimension reduction and classification

After estimation of the parameters of the model, it is possible to project an observation
y onto the geodesic subspace defined by F by optimization of:

δ 7→ d(Expm(Fδ), y)2 (3.8)

with respect to δ ∈ RNc−1, which indicates the position of the observation y in the
geodesic subspace Expm(F ). Doing so yields a low-dimensional description of each data
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point. Classification can be performed after dimension reduction of the dataset. We will
show results of this classification procedure in Section 3.5.

Classification can also be done using the probabilistic GDA model, by maximizing
the likelihood of an observation with respect to the classes. For each unobserved y, using
Bayes rule:

p(c = ck|y) =
∫
p(y|c = ck, βk = β)p(β)p(c = ck)dβ. (3.9)

The integral over the hidden variable β corresponds to looking at the observation J

through all its possible representations as an object of class ck, where the representa-
tions have been learned through the matrix G. This integral is expensive to compute or
approximate in most cases and we decide to settle for the mode:

p(c = ck|y) ∝ p(y|c = ck, β
∗)p(c = ck) (3.10)

where β∗ = argmaxβp(y|c = ck, β), which can be estimated via gradient descent.
The ability to compute the integral (3.9) would allow to evaluate the new observation

as an element in the space quotiented by the different representations of the elements of
the class ck. Additionally, as described in [82], it would also allow to do one-shot learning
i.e. being able to decide if a new observation is in the set of known classes or if it is more
likely to belong to a yet unobserved class.

3.4 Probabilistic GDA for shape analysis.

The Probabilistic GDA introduced above can be applied in a variety of situations, we
will focus on examples of applications in the case of shapes modelled using the LDDMM
framework [75, 107]. We first introduce this framework, before rewriting the model (3.6)
in this particular case.

3.4.1 Embedding shapes and images on a manifold

The LDDMM framework provides a way to compare shapes via the action of diffeomor-
phisms of the ambient space. Such diffeomorphisms are obtained by integration of the
flow of a square integrable time-varying vector field. The parametrization of the diffeo-
morphisms then amounts to the parametrization of time-varying vector fields. In our
approach, we use as in [23] a sparse description of vector fields:

X(x) =
p∑
i=1

k(x, qi)pi (3.11)

where p ∈ N is fixed, (qi)i=1,...,p is a set of control points, (pi)i=1,...,p is a set of momenta and
k is a Gaussian kernel of fixed width ρ. The space of such vector fields is a Reproducible
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Kernel Hilbert Space (RKHS) K with

〈X,X ′〉K =
p∑

i,j=1
k(qi, q′j)p>i p′j. (3.12)

Given an initial vector field X of this form, one can show [23] that there is a unique time-
varying vector field X(t, ·) such that X(0, ·) = X which minimizes

∫ 1
0 ‖X(t, ·)‖2

K . We call
this the geodesic flow of the initial vector field. Considering only such geodesics, we get a
parametrization of diffeomorphisms solely determined by the initial set of control points
and momenta. Strictly speaking, the obtained set of diffeomophisms is not a Riemannian
manifold. But when the set of initial control points c is fixed, we dispose of a mapping
which enables us to describe each diffeomorphism by a tangent vector to the landmark
manifold at c. We simply adapt the previously described GDA to this manifold and map
back the results onto the diffeomorphism space. We denote Φq,p · M the action of the
diffeomorphism Φq,p parametrized by the initial control points and momenta q, p on the
shape M . If M is a mesh embedded in Rn, then Φq,p acts on the points of the meshes
directly. IfM is an image, Φq,p ·M = M ◦Φ−1

q,p whereM is seen as an element of L2(Rn;R)
for some integer n.

3.4.2 A generative model

Let us assume that we have a collection of shapes (yk)i=1,...,N where N ∈ N. We note n
the dimension of the ambient space and p the number of control points. As described in
equation (3.6), we assume that each shape yk was generated with probability:

1
(2π)Λ

2 σΛ
exp

(
− 1

2σ2‖Φq,Fαck+Gβk ·M − yk‖2
Λ

)
(3.13)

where:

• Λ ∈ N is the dimension of the observations e.g. number of voxels for the images,
number of faces for varifolds. We embed those observed shapes in a Λ-dimensional
space on which we define a norm ‖ · ‖Λ (L2 for images, varifold norm for meshes as
in [34]),

• M is a template shape,

• Φq,Fαck+Gβk is the diffeomorphism obtained with the initial momenta pk = Fαck +
Gβk and control points q.

Note that we replaced the normal distribution on the manifold by a normal distribution
on the set of shapes, that can be defined for images, varifolds or currents as shown in
[34]. There are two reasons for this. First, the orbit of M under the action of the group of
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diffeomorphisms does not in general contain the observations, the idea being to describe
shape variability with strong smoothing constraints on the shape structures. Second, even
if we could use geodesic distances on the manifold of diffeomorphisms, the computation
of this geodesic distance would be too expensive in general to make the inference of the
model tractable.

For the inference, we estimate the mode of the logarithm of the posterior distribution,
which writes, using Bayes rules and assuming that F,G, α and β are independent:

l(θ) = log(P (F,G, α, β|yk; γ, I, σ)) = −Λ log(σ)

− 1
2σ2‖Φq,Fαck+Gβk ·M − yk‖2

Λ −
1
2‖β‖

2
2

NG∑
i=1

Λpn
2 log( γi2π )−

NG∑
i=1

γi
2 ‖Gi‖2

2 −
1
2‖α‖

2
2

(3.14)

Derivating (3.14) yields the closed-form updates for σ and γ:

γi = Λpn
‖Gi‖2

2
. (3.15)

σ2 =
∑N
k=1 ‖(ΦFαck+Gβk) ·M − yk‖2

Λ
ΛN (3.16)

The computation of the gradients with respect to the momenta p, the control points q
and the template M can be done by backward integration of system of adjoint equations
as detailed in [23, 110, 93] and propagated to α, β, F and G using the chain rule. The
optimized functional is once again not convex in general. Algorithm 1 gives a pseudo-code
for the estimation procedure. A complete code of the model is made available 1.

Algorithm 1 Probabilistic GDA inference on shapes
F,G, α, β,M, q ← Initialization from Tangent LDA
γ, σ ← (3.15)(3.16): for initialization.
while no convergence do

Compute l(θ)
Compute ∇M l(θ), ∇pl(θ), ∇ql(θ).
Propagate to ∇F l(θ), ∇Gl(θ), ∇αl(θ), ∇βl(θ)
Update (F,G, α, β,M, q) by line search.
γ, σ ← (3.15)(3.16): closed-form update.

return F,G, α, β,M, q, σ, γ

1A code for the model is available at www.deformetrica.org
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Figure 3.1: The points are labelled data. The black geodesic is the first component of the
PGA method. The blue geodesic is obtained by geometric GDA with m set to the Fréchet
mean. The green geodesic is obtained by geometric GDA with optimization of m.

3.5 Applications and Results

3.5.1 Geometric GDA on S2

We performed the optimization of the criterion given in equation (3.3) in the case of the
sphere S2 with the metric induced from R3, on a synthetic set of points of two classes. Note
that, whether we optimize the position of the point m on which the geodesic subspace
is built or not, the optimization problem is in general not convex. We therefore perform
multiple gradient descents with randomly chosen initial conditions, and select the final
estimated values which give the optimum of the Fisher Discriminant Ratio. We compare
three methods: an LDA performed in the tangent space to the Fréchet mean, a geometric
GDA performed with a geodesic subspace set to the Fréchet mean (GDA) and a geometric
GDA performed with the joint estimation of the geodesic subspace and of the point on
which it is built (full GDA).

Figure 3.1 shows the estimated geodesics in the different cases of GDA, as well as
the result of an exact PGA built by optimization of the explained variance on a geodesic
subspace at the Fréchet mean. In each case, we measure the FDR after projection onto the
first component found after optimization. Note that the FDR measured after projection
assuming a linear structure differs from the FDR defined in equation (3.3). Indeed, the
projection of the classes centroids is in general different from the class centroids of the
projections, unlike in the linear case. We provide the values of the FDRs measured after
projection and the FDRs measured in equation (3.3) in Table 3.1.

The geometric GDA outperforms an LDA performed in the tangent space to the

61



Part II, Chapter 3 – Geodesic Discriminant Analysis for manifold-valued data

Method Tangent LDA GDA full GDA
FDR of projection 495 514 647
FDR equation (3.3) x 505 636

Table 3.1: Fisher Discriminant Ratios. Higher FDRs indicate a better class separation.

Figure 3.2: Class separation for each number of selected components, on the kimia-216
dataset.

Fréchet mean in terms of class separation, indicating that we may obtain better classifica-
tion results in some situations. In addition, as mentioned in Section 3.2, the optimization
of m in equation (3.3) allows a significant improvement.

3.5.2 Kimia-216

We used the setting described in Section 3.4 on shapes from the kimia-216 dataset. The
kimia-216 dataset consists of 18 classes each containing 12 observations. We extracted
the contour of the shapes on the images and modelled them as varifolds with a Gaussian
kernel of width set at 13 (expressed in pixels of the original images). The number of points
of the obtained shapes is not controlled and vary between 300 and 800. For each class, we
randomly selected 9 observations that we rigidly aligned one to another. We proceeded
to the estimation of the model described in equation (3.6), simultaneously estimating the
matrices F and G, the vectors α for each class, the mode of β for each observation, as
well as the template shape I and the set of control points. We set the kernel width ρ of
the diffeomorphisms to 10 (in terms of pixels of the original images).

After estimation of the parameters of the model, we projected each training observa-
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tion using the method described in Section 3.3.2. To measure the quality of the projection,
we compute, in the low-dimensional space, the between-class covariance matrix B and the
within class-covariance matrix W and compute the eigenvalues of W−1B. Those eigen-
values measure the separation of the classes, and are equivalent to the FDR in the linear
case. We compute those eigenvalues for the probabilistic GDA, the tangent LDA and the
bayesian PGA with 17 components. Note that the Bayesian PGA is a special case of the
model 3.6 when there is a single class. The results are provided in Figure 3.2. The proba-
bilistic GDA outperforms both the tangent LDA and the Bayesian PGA in the separation
it provides after projection of the data.

Then, we provide a plot of the two first components of each observations found us-
ing the probabilistic GDA, for visualization purposes, to be compared with the same
components for tangent LDA and bayesian PGA, on Figure 3.3.

Finally, we investigated classification performances on the kimia-216 database, using
the classification procedure described in Section 3.3.2. In details, for each test observation
and each candidate class k, we evaluated the mode of the integral (3.10) by rigidly aligning
the test observation to an element of the class k and performing a gradient descent on β
with α set to αk, the position of the class k in the space spanned by F . We take the class
which gives the smallest residual after the descent. A 3-fold result of this classification
procedure gives an average accuracy of 89%. Note that such low classification results
compared to usual benchmarks [54] can be expected since this dataset is not well adapted
to deformable models: the differences between the shapes occur both on small and large
scales.

3.5.3 Brain structures in the course of Alzheimer’s disease

From MRI images in the ADNI dataset, we segmented hippocampi from 125 normal
controls and MCIc subjects (subjects who have or will convert to Alzheimer’s disease)
using Freesurfer [17]. We then ran the probabilistic GDA model four times on randomly
extracted training set and test set in the data. Each run provided an estimation of a single
discriminant geodesic component. Figure 3.4 shows an example of discriminant geodesic
component.

After estimation on the training set, we projected both testing and training set onto
the first geodesic component by optimization of (3.8). We then trained a logistic regression
classifier on the projected, 1-dimensional, data. This is common practice after LDA di-
mension reduction, to learn the appropriate threshold for the classification and to correct
for the strict homoscedasticity hypothesis of the model.

The AUC and accuracy scores are available in Table 3.2 and compared to a classi-
fication based on the hippocampi volumes on the exact same folds, as well as to other
reference methods performing cross-sectional hippocampus-based classification of normal
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Figure 3.3: First two components of probabilistic GDA (top), tangent LDA (middle),
Bayesian PGA (bottom), (arbitrary units).
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Figure 3.4: Three observations on the first geodesic discriminant component estimated
from the ADNI dataset. From left to right, we follow the geodesic from normal controls
to MCIc subjects. The middle observation is the estimated M template, colored with the
initial velocity field norm.

AUC (std) Accuracy (std)
Tangent LDA 0.77 (0.06) 0.76 (0.07)

Probabilistic GDA 0.78 (0.07) 0.77 (0.08)
Volumes 0.68 (0.003) 0.56 (0.003)

Chupin et al. [13] x 0.71
Cuignet et al. [16] x 0.73

Table 3.2: AUC and accuracy scores at MCIc vs normal controls classification using only
the hippocampus. Colors indicate shape labels.

controls versus MCIc subjects. Our method provides state-of-the-art accuracy and AUC
results. Note that the problem of classifying MCIc versus normal controls is in general
much better solved using whole T1 MRIs, which could be future work using the same
proposed probabilistic GDA applied to full 3D images.

Our method in this case could be compared with [42] in which the authors do an
analysis of hippocampi differences between Alzheimer’s and normal controls modelling the
shapes using the elastic shape framework [42]. However, their analysis of the differences is
done after having performed a PCA on the tangent space to the Fréchet mean, and their
approach requires a parametrization of the surfaces.
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Part II, Chapter 3 – Geodesic Discriminant Analysis for manifold-valued data

3.6 Conclusion

We propose generalizations of the different formulations of LDA. The geometric GDA
constructs a geodesic subspace which maximizes the FDR as seen in this curved space,
but is hard to compute in general. The probabilistic GDA, generalization of the Gaussian
classifier formulation of LDA, is much more efficient to compute. We illustrated the meth-
ods with dimension reduction and classification tasks, with an example on a set of 3D
shapes segmented from subjects with Alzheimer’s disease where we reach state-of-the-art
classification results.

Applications to data sets of different types would allow to best show the applicability
of the method. Future work also includes improving the estimation procedure for the
probabilistic model, to take full advantage of the hidden variable β, using for instance use
a stochastic version of the EM algorithm [19]. In addition, several theoretical discussions
could be conducted: to see when the π operation is well-defined, to study the consistency
of the estimation and the identifiability of the model or to formulate criteria to identify
and handle degenerate cases.
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Riemannnian geometry learning
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Introduction

So far, we built methods to work with manifold-valued data: to quickly compute the
parallel transport on a given manifold or to perform the equivalent of Linear Discriminant
Analysis on curved spaces. Doing so, we kept postulating that the Riemannian geometry
on which we worked was given and fixed in advance. This is a very clear limitation of
these methods. First, even when it is possible to coin a Riemannian manifold in the
observation space, this geometry may be ill conceived and not suited for the particular
task at stake. For instance, authors of [3, 89] equip sub-manifolds of the observation
spaces with the metric induced from the `2 metric on the observations: we argue that
this is an ad hoc choice which has no particular reason to be particularly relevant. The
choice of Riemannian metric in particular is extremely important since most statistical
methods on Riemannian manifolds rely heavily on the metric tensor –through distances,
the volume form or geodesics– and therefore their performances depend on this tensor.
This discussion is echoed in the LDDMM community, where the traditional hand-crafted
way to generate diffeomorphisms from a well-chosen RKHS space is replaced by a data-
driven diffeomorphic construction (see [8] for instance). Second, for complex spaces, such
as images, it is difficult to come up with a relevant Riemannian manifold.

In [49], the authors propose to use a trained variational autoencoder to pull-back the
induced metric on the parametrized surface by the decoder back to the latent space.
Similar approaches are developed in [3]. We discuss the difference with our approach in
Section 4.3.1.

In this part, we therefore tackle the issue of estimating a manifold and a Riemannian
metric at the same time as we train a model to achieve a given statistical task. In Chapter
III, we detail the motivation and propose a list of criteria that could be used to learn
a Riemannian geometry. In the rest of the manuscript, we then propose to find when
and how these criteria can be used to learn a Riemannian manifold. We provide basic
existence results, estimation methods, and considerations regarding the uniqueness of the
Riemannian manifolds which best optimize the given criteria. Each of the results will be
further motivated by experiments.

In Chapter 4, we discuss when and how it is possible to estimate a Riemannian metric
so that a given distribution is a Riemannian normal distribution on the obtained Rie-
mannian manifold. In Chapter 5, we discuss when and how it is possible to estimate a
Riemannian metric on Rd so that a given family of curves are geodesics.

Finally, we come back to the modelling of longitudinal disease progression and pro-
pose a way to learn a manifold so as to refine and extend the field of application of a
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model such as the one proposed in [86]. We first propose in Section 5.6 a somehow pedes-
trian approach for estimating a Riemannian metric along with the longitudinal model
parameters. This approach, although mathematically principled, has a complexity which
scales exponentially with the dimension of the observation space. We therefore relax the
modelling in Chapter 6 and propose an alternative approach for Riemannian geometry
learning which is much more efficient in high dimensions. This approach relies on deep
neural networks. We show how the two approaches provide similar results when run on
the same data. Finally, we extend the longitudinal model obtained to handle multimodal
observations, even when there are missing modalities at some of the subject’s visits.

In this Chapter, we start by giving formal definitions for Riemannian normal distri-
butions in Section III. This allows us to formulate a list of criteria that can be used to
constrain a Riemannian geometry learning problem. We motivate and list these criteria
in Section III.

Riemannian normal distributions

In this Section, (M, g) is a d-dimensional Riemannian manifold. A random point X on
M is anM-valued random variable. Note that if π : U → Rd is a coordinate chart with
U an open subset of M, then the Y = π(X) is a random vector. We can now define
probability densities for random points onM.

Definition 1. A random point X on M has a probability density function p : M → R
if, for all measurable sets A onM, we have:

P (x ∈ A) =
∫
A
p(y)dM(y)

and
1 = P (M) =

∫
M
p(y)dM(y).

which means that X has a density for the measure dM(y).

Remark. If X has a probability density function p : M → R, then Y = π(X) is
a random vector with probability density ρ(π(x)) = p(x)

√
|g(π(x))|, where | · | is the

determinant and g is the metric (see equation (8.6) in Appendix 8 for details). We will
often work in coordinates in the Chapters which follow, heavily relying on this remark.
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To guarantee the good definition of random points, mean and co-
variance of random variables on a manifold, it is necessary to make
regularity assumptions on the manifold. In [78], the authors assume
that (M, g) is geodesically complete. By the Hopf-Rinow Theo-
rem, this guarantees that the Riemannian logarithm is always well-
defined and that the manifold, seen as a metric space, is complete.
Note that in general, geodesic completeness is a required hypothesis
when building statistical models on a manifold, since these models
often need the existence of a length-minimizing geodesic connecting
any two points.

Geodesic completeness

Definition 2 (Normal distribution). Let µ ∈ M and Γ be a bilinear form on TµM.
The normal distribution with mean µ and concentration matrix Γ on the manifold has
probability density:

pµ,Γ(x) = k exp
(
− logµ(x)>Γ logµ(x)

)
(3.17)

where
k =

(∫
M

exp
(
− logµ(x)>Γ logµ(x)

)
dM(x)

)−1
(3.18)

is the appropriate normalization constant.

As noted above, if we have a coordinate chart Φ : M → Rd on the manifold in a
neighborhood of µ, then the density of the random variable Y = Φ(X) expressed in this
coordinate chart reads:

pµ,Γ(y) = k exp
(
− logµ(Φ−1(y))>Γ logµ(Φ−1(y))

)√
|g(y)|

where all computations are done in coordinates and k can be re-expressed as:

k =
(∫

Rd
exp

(
− logµ(Φ−1(y))>Γ logµ(Φ−1(y))

)√
|g(y)|dy1 . . . dyk

)−1
(3.19)

where all computations are done in coordinates.

In [111], the authors use a more restricted definition of Gaussian distributions on
manifolds, by only considering concentration forms of the form Γ = τg at µ with τ > 0.
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Motivations and criteria for Riemannian geometry learn-
ing

We now put the focus on learning Riemannian manifolds that are adapted to a certain
statistical task. We list here a few of the constraints that can be expressed on a Riemannian
manifold:

(C1) An observed data set is distributed approximately along a normal distribution on
(M, g) as defined in Section III. We will show that this task is, under some condi-
tions, the one performed by Generative Adversarial Networks for instance. We give
theoretical and practical considerations for this criterion in Chapter 4.

(C2) The observed classes in the data are well separated using the Riemannian distance.
In particular, we could optimize a criterion similar to the one in LDA (see e.g. [101])
to obtain a Riemannian metric inducing large distances on elements of different
classes. This is what inspired works such as [101]. It could also be seen as an extension
of the work detailed in Part 3 where we would not only learn a submanifold so that
the classes are well separated, but the metric on this manifold too.

(C3) An observed set of curves are geodesics on (M, g). We give in Chapter 5 some
theoretical results about the existence of a metric so that a given set of curves
are geodesics, detailed results for the toy exampleM = R as well as experimental
results.

(C4) Any combination of the above: a notion of distances between observations, a list of
curves which we want to be geodesics and/or a distribution that should be matched.

The question now is, for each case, whether it is possible to optimize a manifold and a
Riemannian metric on this manifold so that the obtained geometry satisfies the criterion.
In which case is there a unique Riemannian metric fulfilling the criterion ? In other cases,
how constrained is a Riemannian metric which satisfies one of the criteria ?

Note that criterion (C1) could alternatively be formulated using distributions which
are not normal but uniform or Cauchy. We use this example as a baseline case to study
in a simple environment how much it constraints a Riemannian manifold.

Note that this list of criteria is not exhaustive. In particular, we could imagine formu-
lating a cost which depends on the curvature of the manifold, on its volume form, on the
parallel transport etc. We do consider however that this list is general enough to provide
interesting insights into the feasibility and applicability of Riemannian manifold learning
in general.

Remark. In practice, if we were to optimize any of the given criteria, we would need
a cost function to optimize, or alternatively a procedure ensuring we reach optimality of
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these criteria in some sense. For criterion (C1), this could be achieved by measuring a
distance –e.g. `2, KL or Wasserstein– between the target distribution f and the normal
distribution on the manifold. For criterion (C3), this could be achieved by computing the
integrals of the `2 distances between geodesics onM and the target curves. From there,
one can imagine being able to build a cost function which is a adapted to a combination
of these criteria, and we will give such examples later.
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Chapter 4

Riemannian metrics so as to be
normally distributed

In this Chapter, we study the criterion (C1), that is to know when it is possible to
estimate a Riemannian manifold such that a given density becomes the density of a
normal distribution on the manifold.

To start, note that the criterion (C1) is not sufficient to fully characterize a Riemannian
metric when the dimension of the manifold is larger than 1, as shown in [37] for instance.
Informally, fixing this criterion only fixes –relative– distances to the mean as measured
along geodesics connecting points to the mean. Consequently, any ’radial’ transformations
does not modify the density of the distribution.

We start with detailed results for the toy exampleM = R, where analytical compu-
tations are possible. Then, we expose a simpler version of the criterion where we look at
manifolds which are diffeomorphic to Rd for d ∈ N and equip them with the push-forward
of the Euclidean metric η on Rd. We show that formulated this way, the criterion (C1)
corresponds to the task accomplished by a Generative Adversarial Network (GAN) [33].

4.1 The toy example M = R

Here we consider the case M = R. We find all the random variables with probability
density on R for which there exists a metric g such that its density is the density of a
normal distribution on (R, g). We show uniqueness of such metrics –up to a multiplicative
constant– and exhibit analytical formulae to compute them.

We will use the following Lemma:

Lemma 5. Let u : R→ R be a smooth function. Then we have:

√
π

2 erf
(
u(x)√

2

)′
= u′(x) exp

(
−1

2u
2(x)

)
(4.1)

where erf : R 7→]− 1, 1[ is the error function. We also have:

(erf−1(x))′ =
√
π

2 exp
(
erf−1(x)2

)
. (4.2)
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Part III, Chapter 4 – Riemannian metrics so as to be normally distributed

We now give necessary conditions for a function f to be the density of a normal
distribution on (R, g) for some metric g:

Proposition 5. Let f be the density function of a Riemannian normal distribution with
mean µ and concentration matrix γ > 0 in the canonical chart on (R, g). We assume that
(R, g) is geodesically complete. Then:

i. f(x) > 0 for all x ∈ R.

ii.
∫∞
−∞ f(t)dt = 1,

iii. limx→±∞
∫ x
µ

f(t)
f(µ)dt = ±

√
π
2γ . (In particular, µ is the median of the distribution.)

Proof. We have, for all x ∈ R:

f(x) = k exp
(
−γ2 (logµ x)2

)√
g(x)

where k−1 =
∫∞
−∞ exp

(
−γ

2 (logµ x)2
)√

g(x)dx. So f(x) > 0 for all x which shows i. Then:

∫ ∞
−∞

f(x)dx =
∫ ∞
−∞

k exp
(
−γ2 (logµ x)2

)√
g(x)dx = k

k
= 1

which shows ii. For x ∈ R, we have f(µ) = k
√
g(µ) and:

f(t)
f(µ) =

√√√√ g(t)
g(µ) exp

(
−γ2 (logµ x)2

)
= 1
√
γ

√√√√γ g(t)
g(µ) exp

−1
2

∫ t

µ

√√√√γ g(s)
g(µ)ds

2 .

We now use (4.1) with u(t) =
∫ t
µ

√
γ g(s)
g(µ)ds to get:

f(t)
f(µ) =

√
π

2γ erf
 1√

2

∫ t

µ

√√√√γ g(s)
g(µ)ds

′ .
Now integrating from µ to x, we get:

∫ x

µ

f(t)
f(µ)dt =

√
π

2γ erf
√γ

2

∫ x

µ

√√√√ g(t)
g(µ)dt

− 0.

Now, since (R, g) is geodesically complete, then the integral on the right-hand side goes
to ±∞ as x→ ±∞. This implies:

lim
x→±∞

∫ x

µ

f(t)
f(µ)dt = ±

√
π

2γ

which shows iii.
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4.1. The toy exampleM = R

We now prove that these conditions are sufficient.

Theorem 2. Let f : R→ R be a smooth positive function. We assume:

i. f(x) > 0 for all x ∈ R.

ii.
∫∞
−∞ f(t)dt = 1,

Then there exists a smooth Riemannian metric g on R, µ ∈ R and a concentration matrix
γ such that:

• (R, g) is geodesically complete.

• f is the density of a normal distribution with mean µ and concentration matrix γ
on (R, g).

This metric is unique up to a global rescaling (g 7→ αg with α > 0).

Proof. Existence Let α ∈ R, µ ∈ R+ be such that: limx→±∞
∫ x
µ

f(t)
f(µ)dt = ±

√
π
2γ (possible

using the hypothesis i). We can then define for all x ∈ R:

g(x) =
 2√

π

f(x)
f(µ)(erf−1)′

√2γ
π

∫ x

µ

f(t)
f(µ)dt

2

(4.3)

where µ ∈ R. g is smooth by composition and positive using i: g is a Riemannian metric
onM. We also have

√
g(µ) = 2√

π
(erf−1)′(0) = 1. Then:

∫ x

µ

√
g(t)dt =

√
2
γ

erf−1

√2γ
π

∫ x

µ

f(t)
f(µ)dt

− erf−1(0)
 =

√
2
γ
erf−1

√2γ
π

∫ x

µ

f(t)
f(µ)dt


which implies √

2γ
π

∫ x

µ

f(t)
f(µ)dt = erf

√γ
2

∫ x

µ

√√√√ g(t)
g(µ)dt


We now use (4.1) to get:

f(t)
f(µ) =

√√√√ g(t)
g(µ) exp

−γ2
∫ t

µ

√√√√ g(s)
g(µ)ds

2 = γ√
g(µ)

exp

−1
2

∫ t

µ

√√√√ g(s)
g(µ)ds

2√g(t)

so that finally:

f(t) = f(µ)
g(µ) exp

−γ2
∫ t

µ

√√√√ g(s)
g(µ)ds

2√g(t).
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Part III, Chapter 4 – Riemannian metrics so as to be normally distributed

We now set k = f(µ)√
g(µ)

. Since f verifies ii, we have k−1 =
∫
R

exp

−γ2
∫ t

µ

√√√√ g(s)
g(µ)ds

2√g(t)dt.

Finally, (R, g) is geodesically complete thanks to ii and Proposition 15. This shows exis-
tence.

Uniqueness Let g be a Riemannian metric on R and let µ ∈ R and γ > 0 such that
f is the density of a normal distribution on (R, g) with mean µ and concentration matrix
γ. First, using ii, we obtain that γ and µ are as defined above. Then: f(µ) = k

√
g(µ) and

by definition, we have:

f(x)
f(µ) = 1

√
γ

√√√√γ g(x)
g(µ) exp

−1
2

∫ x

µ

√√√√γ g(t)
g(µ)dt

2 .
We use (4.1) again to get:

f(x)
f(µ) =

√
π

2γ

erf
√γ

2

∫ x

µ

√√√√ g(t)
g(µ)dt

′

so that ∫ x

µ

f(t)
f(µ)dt =

√
π

2γ erf
√γ

2

∫ x

µ

√√√√ g(t)
g(µ)dt


and √

γ

2

∫ x

µ

√√√√ g(t)
g(µ)dt

 = erf−1

√2γ
π

∫ x

µ

f(t)
f(µ)dt


which implies √

g(x) =
√
g(µ) 2√

π

f(x)
f(µ)(erf−1)′

√2γ
π

∫ x

µ

f(t)
f(µ)dt

 .
Hence g is proportional to the one found in equation (4.3). Therefore, any metric which is
so that f is a normal distribution on (R, g) is proportional to the metric defined in (4.3).
This show uniqueness up to a global rescaling.

To summarize, given a smooth positive function f which integrates to 1, there exists a
unique –up to a global rescaling– geodesically complete Riemannian metric on R, unique
γ > 0 and µ ∈ R such that f is the density of a normal distribution on (R, g) with mean
µ and concentration matrix γ. µ is the median of the distribution, while γ can be easily
identified as 2πf(µ)2. Note that in the previous Theorem, we showed a solution with
g(µ) = 1. It is always possible to set γ = 1 instead and use the metric with g(µ) = γ. Up
to this re-parametrization, this metric is unique.
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4.2. Experiments

Diffeomorphic formulation

We now look into how the case whereM is the image of R by a diffeomorphism. It can
then be equipped with the push-forward of the Euclidean metric on R. Does it allow to
recover any form of densities as above ?

Let Φ : R → R be a diffeomorphism. We consider the push-forward of a Riemannian
metric η by Φ i.e. the pull-back of η by Φ−1. We have:

Φ∗(η)(p) =
(
Φ−1

)∗
(η)(p) =

(
Φ−1′

)2
(p)η(Φ−1(p)). (4.4)

We show in Appendix 8.6 that any metric g on R such that (R, g) is geodesically
complete can be written as the pull-back of the Euclidean metric by a well-chosen diffeo-
morphism of R. Using Theorem 2, this implies that for any smooth positive function f , f
can be seen as the image of a normal Euclidean density on R by a diffeomorphism of R.
Therefore, to estimate a metric which optimizes criterion (C1), it is equivalent to estimate
a diffeomorphism of R which optimizes this criterion. Besides, looking at equation (4.3)
where g is defined as the squared of a derivative, there is a straightforward correspondence
between the diffeomorphism and the metric. A diffeomorphism Φ such that Ψ∗(η) is the
optimum of criterion (C1) in this case is given as:

Φ−1(x) =
√

2
γ
erf−1

(√
2γ
µ

∫ x
µ f(t)dt
f(µ)

)
. (4.5)

Note that we have Φ−1(µ) = 0.

4.2 Experiments

In this section, we set target densities f on R which obey the hypothesis of Theorem 2.
We then compute, for each of these target densities

• The Riemannian metric on R which is such that f is the density of a normal distri-
bution on (R, g).

• The diffeomorphism Ψ which is such that f is the density of a normal distribution
on (R,Ψ∗(η)) where η is the Euclidean metric on R.

The computation of the Riemannian metric g is done using equation (4.3).1 In practice,
the computations are fine as long as the cumulative distribution function corresponding
to f is accessible in closed-form. Indeed, if it is accessible, a simple binary search allows to
find the median µ of the distribution in an efficient manner, and the integral in equation

1Code for these experiments: https://gitlab.com/maxime.louis.x2012/one_dimensional_
distributions.
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Part III, Chapter 4 – Riemannian metrics so as to be normally distributed

(4.3) can be efficiently computed. If this cumulative distribution function is unavailable,
then integrals of the form

∫ x
µ f(t)dt needs to be approximated numerically. In preliminary

experiments, this proved to be too unstable for correct estimations. The estimation of the
diffeomorphism is done using equation (4.5) and is as difficult to compute as the metric.
Note that we set a metric equal to 1 for all these experiments.

Figure 4.1 shows the results on 4 different target densities. In each case, we display
the computed metric g, the corresponding density of the normal distribution on (R, g)
and the diffeomorphism Ψ which is such that Ψ∗(η) = g. When the target distribution
is a normal distribution, we recover the Euclidean metric. Note also that there is no
issue in writing a bi-modal or multimodal distribution as a normal distribution for some
Riemannian metric.

Note also that there is a competition effect between the local measure
√
g(t) and the

logarithms. Namely, a large local measure allocates high probabilities to a given area, but
a large area between the mean and a given point tends to diminish this probability, since
it increases the geodesic distance.

This is particularly clear for the bi-modal case, where the increase in logarithm is
compensated by a very large increase in metric around the modes.
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4.2. Experiments
Diffeomorphisms
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Part III, Chapter 4 – Riemannian metrics so as to be normally distributed

Estimation from samples

Suppose we are given samples (xi)i=1,...,N , with N ∈ N, from a distribution with density
f . We approach f using a kernel methods [29]:

f̂(x) = 1
Nh

∑
i=1,...,N

K
(
x− xi
h

)
(4.6)

where K is a radial positive kernel and h is a chosen width. We choose a simple approach
with the heuristic h = 1.06 ∗ σ̂N− 1

5 (see [29]) and using a Gaussian kernel K(x) =
1√
2π exp

(
−1

2x
2
)
. We get a closed form expression for the cumulative distribution function:

C(x) = 1
Nh

∑
i=1,...,N

∫ x

−∞
K
(
t− xi
h

)
dt (4.7)

= 1
Nh
√

2π
∑

i=1,...,N

∫ x

−∞
exp

(
−1

2

(
t− xi
h

)2)
dt (4.8)

= 1
N
√
π

∑
i=1,...,N

∫ x−xi
h
√

2

−∞
exp

(
−u2

)
du (4.9)

= 1
2 + 1

2N

N∑
i=1

erf
(
x− xi√

2h

)
(4.10)

which allows us to compute efficiently the estimated metric ĝ and γ̂ as detailed above.
The median µ̂ of the density f̂ can be approximated efficiently by binary search. This
allows the estimation from a sample collection, when the density is not available. Note
that the task accomplished here is, as noted above, similar to the task accomplished by
GANs.

Figure 4.2 shows an example of metric estimation done this way, on the hippocampus
volumes from the ADNI database (previously normalized to zero-mean and unit variance).

4.3 Shedding light on Generative Adversarial Net-
works

Let d,D ∈ N with d ≤ S. Let Ψ : Rd → RD be a smooth diffeomorphism on its image.
We now look into the density of a normal distribution on M := Ψ(Rd) equipped with
the metric g := Ψ∗(η). Let µ = Ψ(zµ) ∈ Ψ(Rd) and Γ be a bilinear form on TµM.
Let x = Ψ(zx) ∈ Ψ(Rd). (M, g) is geodesically complete. The density of the normal
distribution with mean µ and concentration Γ is :

pµ,Γ(x) = k exp
(
− logµ(x)>Γ logµ(x)

)
.
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4.3. Shedding light on Generative Adversarial Networks

Figure 4.2: Estimation of a Riemannian metric from samples, using a kernel density esti-
mation (4.7).

83



Part III, Chapter 4 – Riemannian metrics so as to be normally distributed

We have logµ(x) = Ψ∗(zx − zµ) so that:

pµ,Γ(x) = k exp
(
−Ψ∗(zx − zµ)>ΓΨ∗(zx − zµ)

)
.

In particular, if Γ = g, then:

pµ,Γ(x) = k exp
(
−‖zx − zµ‖2

)
.

In coordinates, this can be rewritten as:

pµ,Γ(z) = k exp
(
−‖z − zµ‖2|

)√
|g(z)|. (4.11)

Now, we have
√
|g(z)| = 1 in the coordinate chart defined by Ψ−1 by definition.

Therefore we obtain:
pµ,Γ(z) = k exp

(
−‖z − zµ‖2

)
. (4.12)

This means that, as one could expect, a normal distribution with mean µ and concentra-
tion matrix g on a manifold which is defined as the image of Rd by a diffeomorphism has
for the density the image of the density of the usual normal distribution on Rd with mean
Ψ−1(µ) and unit covariance.

This does shed some light on the task undertaken by Generative Adversarial Networks
[33], where the generator attempts to map a normal distribution (or a uniform distribu-
tion) onto an observed distribution of data. Our interpretation here, provided that this
generator is injective, is that this task is a Riemannian geometry learning task, where
the Riemannian metric is learned so that a normal distribution on it is close to the data
distribution. The optimization of the criterion (C1) in this case is done by minimizing an
estimation of the Kullback-Leibler divergence between the normal on the manifold and
the data [33] or by minimizing an estimation of the Wasserstein distance between these
distributions [1].
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In [33], the authors propose a setup to generate realistic data from
a sample of data in Y . If the data is distributed along the density
πdata, they offer to optimize a network g : Rd 7→ Y –the generator–
such that the image of samples from a fixed simple distribution
in Rd –typically a uniform or a Gaussian– are likely elements of
the distribution πdata. To do so, they use an extra network –the
discriminator– which is trained to distinguish between real samples
from the data and fake samples generated by the generator. Both
the generator and the discriminator are trained simultaneously in
a competitive fashion.

Generative adversarial networks

Note that the injectivity condition that we enforce on the generative network to obtain
this interpretation can in principle be enforced using neural networks such as the ones
described in [41].

4.3.1 Push-forward versus pull-back metric

A Generative Adversarial Network is an example of deep generative model Ψ, which maps
a low-dimensional latent space Z to a larger observation space Y . The analysis of such
generative models under the scope of differential geometry is a blooming domain. In [89] for
instance, the authors find simple conditions so Ψ(Z) is locally a submanifold of Y when ψ
is a deep neural network. Then, they show how to pull-back an observation space metric
–such as the `2 distance on images– back to the latent space Z, and how Riemannian
exponentials, logarithms and parallel transport can be computed on the latent space with
this geometry. In [3, 37, 103], the authors follow this procedure to derive further procedures
allowed by this modelling, such as clustering.

While this procedure of pulling-back an ambient metric from the observation space
back to the latent space has the advantage of removing some of the arbitrariness from the
generative model latent space structure, as discussed in [37], we argue here that the choice
of metric in the observation space is ad hoc. In most cases, this metric will be chosen to be
the Euclidean distance, which may very well be inadapted to capture differences of interest
between images. At best, it can be a handcrafted metric containing some knowledge about
the nature of the observations. On the other hand, as shown above, when considering Z
equipped with the Euclidean metric, the obtained structure of the observations placed in Z
is not completely arbitrary, since they must follow a normal distribution. Pushing-forward
this metric into the observation space then yields a Riemannian manifold which is also
not completely arbitrary: the observations are normally distributed – which corresponds
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to a minimal level of prior knowledge used– and radial distances to the mean are relevant.
Of course, in every other direction, the obtained distances are arbitrary. In any case, one
can imagine that by imposing a much stronger structure on the latent space, such as with
criteria (C3) or (C4), one can get a Riemannian metric on Ψ(Y) which is best adapted to
a targeted statistical task.

This is what we propose in the following Chapters. In Chapter 5, we show results
and experiments when learning a metric so that a set of observed curves are geodesics.
In Chapter 5 and 6, we propose experiments to learn a Riemannian geometry which is
adapted to model disease progression. In these approaches, we place stronger constraints
on the set of metrics which optimize the criteria.
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Chapter 5

Riemannian metrics for geodesicity

In this Chapter, we provide results around criterion (C3), which aims at finding a metric so
that a given set of curves are all geodesics. For simplicity, we will work in most cases with
a fixed manifold, and we study when there exists a Riemannian metric on this manifold
so that a given set of curves are geodesics for this metric.

The main problems associated with this criterion are:

• When does there exist a Riemannian manifold such that a set of curves are all
geodesics on this manifold ?

• When is such a Riemannian manifold unique ?

We start by a definition:

Definition 3. Let M be a Riemannian manifold and let g be Riemannian metric on
M. We say that g is geodesically rigid if all other metrics g̃ which have the same un-
parametrized geodesics as g are proportional to g.

So that the second question becomes: what metrics are geodesically rigid ?
We start by dealing with the toy example M = R in Section 5.1. We exhibit all

curves which are geodesics for a given metric and provide explicit formulae to compute
the corresponding metric.

We then reproduce in Section 5.2 a result found in [71] showing that a Riemannian
metric is almost always geodesically rigid. This indicates that criterion (C3) is sufficiently
strong to fully constrain a Riemannian metric –at least when all geodesics are considered
– in the sense that all optimal metrics for this criterion are almost always proportional.

In Section 5.3 we prove a simple general existence result for injective or cyclic smooth
curves on a smooth manifold: this is the main result of this Chapter. This acts as comple-
mentary motivation, indicating that in a variety of situations there exists metrics which
are optimal for criterion (C3).

Finally, Section 5.5 shows some experimental results using a parametric family of
metrics on Rd introduced in Section 5.4.
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5.1 The toy example M = R

In this section, we discuss the existence and the uniqueness of a metric g for which a
smooth curve γ : R→ R is a geodesic on (M, g).

We start with a result about uniqueness.

Proposition 6. Let g1, g2 :M→ R+∗ be two smooth positive functions such that (R, g1)
and (R, g2) are geodesically complete. We set p ∈M and define:

Fi(u) =
∫ u

p

√
gi(t)dt, i = 1, 2

As shown in the Lemma 15 in the Appendix, since (M, g1) and (M, g2) are geodesically
complete, then F1 and F2 are diffeomorphism of R.

If there exists a, b ∈ R with a 6= 0 such that for all t ∈ R F−1
1 (t) = F−1

2 (at+ b) then g1

and g2 are proportional. Equivalently, if (R, g1) and (R, g2) share a non-trivial geodesic,
then g1 and g2 are proportional. This means that all metrics on R are geodesically rigid.

Proof. Let a, b ∈ R with a 6= 0 such that F−1
1 (t) = F−1

2 (at+ b). Note that we have, for all
u ∈ R, F ′1(u) =

√
g2(u) and (F−1

1 )′(u) = 1
F ′1(F−1

1 (u)) . Let t ∈ R, we have F1(F−1
2 (at+b)) = t.

Deriving this identity yields:

1 =
d
(
F−1

2 (at+ b)
)

dt

√
g1(F−1

2 (at+ b))

= a

F ′2(F−1
2 (at+ b))

√
g1(F−1

2 (at+ b))

= a√
g2(F−1

2 (at+ b))

√
g1(F−1

2 (at+ b)).

F−1
2 is onto R which implies that for all t ∈M we have a2g1 = g2.
Now let us assume that (R, g1), (R, g2) share a non-trivial geodesic γ : R→ R. Using

Lemma 6, there exists a1, b1, a2, b2 ∈ R such that for all t ∈ R γ(t) = F−1
1 (a1t + b1) =

F−1
2 (a2t+ b2) with a1 6= 0 and a2 6= 0 since γ is non-trivial. This means that for u ∈ R we

have F−1
1 (u) = F−1

2

(
a2
a1
u+ b2 − b1

a2
a1

)
which implies that g1 and g2 are proportional.

Now, we prove a sufficient condition for the existence of a metric such that γ is a
geodesic on (R, g).

Proposition 7. Let γ : R → R be a smooth strictly monotonic function such that
γ(t) −−−−→

t→±∞
±∞. Then there exists a metric g such that (R, g) is geodesically complete

and such that γ is a geodesic on (R, g).

Proof. We define g : R 7→ R by g(t) = 1
γ′2(γ−1(t)) . This is well-defined since γ′(t) > 0 for

all t ∈ R. g is positive and smooth so that it is a Riemannian metric on R.
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We now show that (R, g) is geodesically complete. We define F (t) =
∫ t
0

√
g(u)du. By

Proposition 15, it is enough to show that limt→±∞ F (t) = ±∞. We have F (γ(t))′ =
γ′(t)F ′(γ(t)) = γ′(t)

√
1

γ′2(t) = sign(γ′(t)) = sign(γ′(0)), so that we have F (γ(t)) =
sign(γ′(0))t. Therefore, we have limt→±∞ F (t) = ±∞.

We now show that γ is a geodesic on (R, g). We have F (γ(t)) = sign(γ′(0))t. Besides,
F is a diffeomorphism of R and we have γ(t) = F−1(sign(γ′(0)t). Using Lemma 6 this
shows that γ is a geodesic on (R, g).

Finally, we show that this condition is necessary.

Proposition 8. Let g be a metric on R such that (R, g) is geodesically complete. Then
any geodesic γ is monotonic and is such that limt→±∞ γ(t) = ±∞.

Proof. Monotony comes from Lemma 6. The second property comes from Lemma 6 com-
bined with Proposition 15.

Therefore, a single geodesic on R equipped with a geodesically complete Riemannian
metric contains enough information to identify this metric. This solves the problem of
identifying a metric for criterion (C3) whenM = R. Note that the proof is constructive:
given a curve which satisfies the shown conditions, it is possible to compute exactly a
Riemannian metric which makes it a geodesic. This Riemannian metric is unique up to a
rescaling constant.

5.2 Geodesically rigid metrics

In this section, we reproduce a result from [71]. In the paper, the authors discuss whether
it is possible to reconstruct a metric given its non-parametrized geodesics. Their goal is to
know whether from telescope observations of free falling objects one can reconstruct the
space-time metric. Free falling objects follow unparametrized geodesics for the space-time
metric, and it is possible to follow the trajectory of very distant objects for instance using
Super Nova explosions occurring in distant galaxies. We have a very different motivation:
the identification of a Riemannian geometry of interest for a targeted statistical task.

Here, the paper gives a more interesting result in the perspective of identifiability of
metric learning machine learning. The main result is the following:

Theorem 3 (Matveev 2012). Let n ≥ 4. A generic Riemannian metric on Rn is geodesi-
cally rigid i.e. the space of geodesically rigid Riemannian metrics is open and dense for
the C2-topology in the space of Riemannian metrics.

We reproduce a sketch of the proof here for n = 4, it can be adapted to larger
dimensions. The proof consists in three steps:

• Construction of a geodesically rigid metric g defined in a neighborhood of x0 ∈M.
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Part III, Chapter 5 – Riemannian metrics for geodesicity

• Proof that any metric g̃ is arbitrarily close to a geodesically rigid metric gt, done by
adding εg to g (openness).

• Proof that all metrics close enough to gt are geodesically rigid (density).

Proof. First, the authors construct a geodesically rigid metric g on Rn. They pick x0 ∈ R4,
and choose a metric g which is the identity at x0 and such that its curvature tensor Rijkl

at x0 is explicitly given by:

Rijkl = hikhjl − hilhjk +HikHjl −HilHjk

where h = diag (1, 2,−1, 0) and H = diag (0, 0, 1, 1). The existence of such a metric is
known in the literature.

Now the key ingredient is to use the fact that g satisfy the equation:

nga(iW j) = gabW
(i
ab[lδ

j)
k] (5.1)

which comes by definition of the projective Weyl tensor W (see e.g. equation (19) in[71]).
Now, every metric which is geodesically equivalent to g has the same Weyl tensor as g.
Hence, any metric g which is geodesically equivalent to g is a solution of the equation
(5.1) at x0. One can show, using the prescribed forms of g –and hence W– at x0 that this
system is exactly of rank 9 and has 10 unknowns –the components of g at x0. Therefore,
all solutions to this system are proportional to g(x0). Now, the system of equations (5.1)
is of rank 9 in a neighborhood of x0, since it is the biggest dimension of a non-zero minor
determinant of g. Therefore, in a neighborhood of x0, g is proportional to g. Hence, g and g
are conformally equivalent. A final Theorem by Weyl proves that conformally equivalent
4-dimensional metrics are proportional. Using the exact same arguments as before, we
then get that g is geodesically rigid.

Let g̃ be an arbitrary metric in a neighborhood of x0. Let ε > 0. The authors consider
gt = (1 − t)g̃ + tg. The system (5.1) is of rank 9 for gt for t sufficiently close to 1, as
shown above. Since the coefficients of the system are algebraic expressions in t and in the
coefficients of g and g̃, then the system is of rank 9 for almost all t ∈ [0, 1]. We select t
which is such that the rank of the system (5.1) for gt is 9 and such that gt is at distance
less than ε from g̃ for the C2-topology1. Then gt is geodesically rigid.

Finally, as shown above, there exists ε′ > 0 such that any metric which is ε′-close to
gt is geodesically rigid. Hence a generic metric is geodesically rigid.

The proof can be adapted in higher dimensions.
This result is an excellent motivation for tasks which rely on the criterion (C3). Indeed,

this means that the set of geodesics of a given metric is enough to identify this metric (up
1It is important to consider this topology since the system of equations (5.1) has coefficients which

are functions of the first and second derivatives of the metric.
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to a global rescaling). This could be an ingredient in demonstrating the identifiability of
some statistical models which offer to use this criterion.

5.3 A more general existence result

We prove the following Theorem establishing a simple condition for a set of curves on a
manifoldM to be geodesics for a certain metric.

Theorem 4. LetM be a smooth manifold and (γi)i∈{1,...,n} be a family of smooth regular
injective curves on M which do not intersect. There exists a Riemannian metric g such
that γi is a geodesic on (M, g) for all i ∈ {1, . . . , n}.

The proof first construct a tubular neighborhood of each geodesic. Then, each tubu-
lar neighborhood is mapped onto a normal bundle on the segment [0, 1], which can be
equipped with a metric such that its 0-section is a geodesic. Finally, we stitch the obtained
metrics for each geodesic using a partition of unity.

Proof. Open neighborhood of the curves. Let i ∈ {1, . . . , n}. Since γi is injective and
regular, γi([0, 1]) is a submanifold of M. By the tubular neighborhood Theorem, there
exists a vector bundle Ei on γi([0, 1]) and a diffeomorphism Φi from a neighborhood Ui
of the 0-section in Ei to a neighborhood Vi of γi([0, 1]) in M such that Φi ◦ 0Ei = ιi

where ιi is the embedding of γi([0, 1]) inM. Without loss of generality, we can suppose
γj([0, 1]) ∩ Ui = ∅ for all j 6= i.

Riemannian metric on the neighborhoods. To do so, we use the fact that Ei is diffeo-
morphic to the normal bundle on the segment [0, 1] ∈ R which is trivial and which we
denote N . Let Ψi : Ei → N be such a diffeomorphism. Now N can be equipped with a
Riemannian metric hi such that [0, 1] is a geodesic. Using Ψi and Φi, we can push-forward
the metric hi to get a metric gi on U which is so that γi is a geodesic on (Ui, gi).

Stitching the metrics with a partition of unity. For each i ∈ {1, . . . , n}, pick an open
subset Vi such that Vi ⊂ Vi ⊂ Ui and which contains γi([0, 1]), and set O = M\ (∪iVi).
O is open so that C = {O,U1, . . . , Un} is an open cover of M. O can be equipped with
a metric gO (there always exists a Riemannian metric on a smooth manifold). Finally,
we use a partition of the unity ρO, ρ1, . . . , ρn on C and set g = ρOgO + ∑

i ρigi. g is a
Riemannian metric onM as a positive combination of Riemannian metrics. Each γi is a
geodesic on (M, g) by construction.

This result can be easily extended to include smooth curves γ : [0, 1]→M which are
injective on [0, 1[, verify γ(0) = γ(1) and γ′(0) = γ′(1) by considering tubular neighbor-
hoods which are this time diffeomorphic to the normal bundle on the circle. It can also
easily be extended to the case when there is an infinite number of non-intersecting curves.

This result indicates that there are metrics which are optimal for criterion (C3) in a
wide variety of situations.
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5.4 A parametric family of Riemannian metrics on
Rd

For the experiments which follow, we explain here how to build a parametric Riemannian
metric on Rd with d ∈ N.

5.4.1 Cholesky decomposition

We first recall the Cholesky decomposition of positive definite matrices.

Proposition 9. Let n ∈ N. Let Σ ∈ Mn(R) be a positive definite matrix. Then there
exists U ∈ Mn(R) upper triangular such that Σ = U>U . There exists a unique such U
with positive diagonal coefficients. Conversely, for any U upper triangular with positive
diagonal coefficients, U>U is a positive-definite matrix.

Thus, finding a parametrization for positive definite matrices amounts to having upper
triangular matrices with positive diagonal coefficients. This turns out to be advantageous
from a computational perspective, since any gradient-based can be used by computation
of the gradient with respect to the upper triangular matrices parameters directly. This
allows to keep positive definite matrices throughout the estimation.

5.4.2 Building a Riemannian metric

Let d, s ∈ N and ρ > 0. Using Proposition 9, the parametrization of a Riemannian metric
on Rd can be done using upper triangular matrices with positive diagonal coefficients. To
make this parametrization space-dependent, we fix a set of points (xi)i=1,...,s in Rd, and
let (Ui)i=1,...,s be a set of upper triangular matrices with positive diagonal coefficients. For
any q ∈ Rd, we define:

g−1
U (q) =

s∑
i=1

U>i Ui exp(−‖xi − q‖
2

ρ2 ) + ID (5.2)

g−1
U is everywhere positive definite –even if the Ui − s all have zero diagonal coefficients.
Note that far from the xi-s, gU converges to the identity. Besides, note that g−1 remains
positive definite if the Ui’s all have non-negative diagonal entries. This is an important
fact, which indicates that when estimating the Ui in an optimization procedure, it will be
easy to maintain a well-defined metric on the whole space Rd.

We choose to parametrize the inverse of the metric and not the metric itself to allow an
easier integration of the geodesic Hamiltonian equations and an easier use of the Fanning
scheme developed in Part I.
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Hamiltonian equations. We can compute explicitly the Hamiltonian and the Hamil-
tonian equations corresponding to this inverse metric, at q, p ∈ Rd:

H(p, q) = p>g−1
U (q)p = 1

2

(∑
i=1

p>U>i Uip exp(−‖xi − q‖
2

ρ2 ) + p>p

)

so that:
∂H(p, q)

∂p
=

s∑
i=1

U>i Uip exp(−‖xi − q‖
2

ρ2 ) + p

and

∂H(p, q)
∂q

= 1
2

s∑
i=1

p>U>i Uip
∂ exp(−‖xi−q‖

2

ρ2 )
∂q

= 1
2

s∑
i=1

p>U>i Uip
∂
(
−‖xi−q‖

2

ρ2

)
∂q

exp(−‖xi − q‖
2

ρ2 )

= − 1
ρ2

s∑
i=1

p>U>i Uip (qk − xik) exp(−‖xi − q‖
2

ρ2 ).

Using these formulae, it is possible to integrate the Hamiltonian equations (1.5) and
compute geodesics for any given initial condition. An implementation of this Riemannian
metric allowing geodesic computation, parallel transport and automatic differentiation
on any cost function with respect to the metric parameters is available here: https:
//gitlab.com/maxime.louis.x2012/parametric_riemannian_metric.

Figure 5.1 shows one-dimensional geodesics obtained using this procedure, as well as
the corresponding inverse metrics, which in this case are simply positive functions. In
this example, the interpolation points are regularly spaced between 0 and 1, so that the
inverse metric goes to 1 as x goes to ±∞. Therefore, when a geodesic starts to go lower
than 0 or higher than 1, its progression gets close to a linear progression. When d = 1,
we have the following:

Proposition 10. Let (xi)i=1,...,s, (Ui)i=1,...,s > 0 and let gU be the corresponding Rieman-
nian metric on R. Then (R, gU) is a geodesically complete Riemannian manifold.

Proof. The result comes from Proposition 15. In our case, first x 7→
∫ x
0

√
g(t)dt is well-

defined and smooth on R and it is clear that
∫ x

0

√
g(t)dt −−−−→

x→−∞
−∞ and

∫ x
0

√
g(t)dt −−−−→

x→+∞
+∞.

This guarantees that (R, gU) is geodesically complete. The result actually holds for
any d ∈ N:

Proposition 11. Let d ∈ N, let (xi)i=1,...,s in Rd and let (Ui)i=1,...,s ∈ Md(R) be a set
of upper triangular matrices with non-negative diagonal coefficients. Then (M,Rd) is
geodesically complete.
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Figure 5.1: Geodesics with same initial conditions but varying metrics.

Proof. Towards a contradiction, let γ :]a, b[→ M be a geodesic which is non-extendible
geodesic at b. The proof consists in two steps.

γ is bounded: Let t0 ∈]a, b[. We have, for any t in ]a, b[:

‖γ̇(t)‖2
2 ≤ ‖γ̇(t)‖2

2 +
s∑
i=1

γ̇(t)>U>i Uiγ̇(t) exp
(
−‖xi − γ(t)‖2

ρ2

)
= ‖γ̇(t)‖2

gU
= ‖γ̇(t0)‖2

gU

Therefore, we have ‖γ(t) − γ(t0)‖2 ≤ ‖γ̇(t0)‖gU (t − t0) for all t ∈]a, b[ so that γ remains
within a compact subset K of Rd.

γ can be extended: We now consider a sequence (tn) ∈]a, b[ such that tn n→∞−−−→ b. The
set I = {(tn, γ̇(tn))|tn ∈]a, b[} is compact. Besides, for any N ∈ N, there exists ε > 0
such that the geodesic can be extended to ]tN − ε, tN + ε[ by Cauchy-Lipschitz Theorem.
Therefore, there exists a uniform ε > 0 such that for all N ∈ N, the geodesic can be
extended around tN to ]tN − ε, tN + ε[. This implies that γ can be extended to ]a, b+ ε

2[
at least, which is a contradiction.

Figure 5.2 illustrates the same procedure done in two dimensions, for varying param-
eters ρ. The figure shows both geodesics on R2 and the corresponding metrics, where at
each point, the symmetric positive-definite matrix which is the metric is represented by an
ellipse. Lower values of ρ allow for more irregular metrics. Figure 5.3 shows geodesics when
the Riemannian metric is diagonal with linearly increasing eigenvalues in the x-direction.

These explicit formulae allow efficient computations of geodesics on the Riemannian
manifold (M,RD). The obtained geodesic points can then be differentiated with respect
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5.4. A parametric family of Riemannian metrics on Rd

Figure 5.2: Examples of metrics and geodesics corresponding to the metric described in
Section 5.4, for ρ = 0.05, 0.1, 0.3, 0.5, from left to right, top to bottom. Geodesics tend to
follow shortest directions which mean they tend to be ’orthogonal’ to the observed ellipses.
Lower values of ρ allow for more irregular metrics. The geodesics are affinely parametrized,
and proper time is shown using the dotted representation of the trajectories.
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Figure 5.3: Geodesics, all starting form the center point and going outwards with isotropic
initial conditions. The Riemannian metric prescribed here is with an eigenvalue in the y
direction which increases linearly with x. When going in the x-direction, the cost of
a displacement in the y direction becomes larger, so that geodesics are bent in the x
direction.
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to the metric coefficients (Ui)i using automatic differentiation. This will prove to be a
memory intensive operation, since the graph of computation gets large: the gradient has
to be back-propagated through each integration step of the geodesic equation for instance.
The Fanning scheme can be used on this metric in an efficient way since the inverse
metric and its spatial derivatives are available in closed-form. All together, this allows for
a functional implementation of a parametric Riemannian metric.

We will show in the next section examples of use of this parametrization to optimize
a cost function inspired from criterion (C3).

5.5 Experiments

To illustrate the results of this Chapter, we conducted a series of experiments using the
parametric family of metrics defined in Section 5.4. We evaluated the ability to recover a
given parametric metric from its geodesics.

So let d ∈ N, (xi)i=1,...,s in Rd, and let (U t
i )i=1,...,s be upper triangular matrices. We

denote gU the corresponding metric as defined in equation (5.2). We compute geodesics
γj : [0, 1] → Rd for j ∈ {1, . . . , n} with n ∈ N from this metric, with initial positions
scattered within ]0, 1[d and initial velocities regularly spanning the possible directions in
Rd. Our goal from there is to recover the parameters U from the geodesics γj. To do so
we minimize the cost function by gradient descent:

c(Vi) =
n∑
j=1

∫ 1

t=0
‖γj(t)− ExpVγ(0) (γ̇j(0)t) ‖2

2dt (5.3)

where V is a set of upper triangular matrices and ExpV denotes the Riemannian expo-
nential on (M, gV ). This cost function correspond to a measurement of the `2 distance
between affinely parametrized geodesics from the metrics, gU and gV . The hope is that
when a large number of geodesics are used in the cost function, then V will converge
towards U during the estimation. In practice of course, we resort to a discretized version
of this cost:

c(Vi) =
n∑
j=1

1
nd

nd∑
k=0
‖γj(

k

nd
)− ExpVγ(0)

(
γ̇j(0) k

nd

)
‖2

2 (5.4)

where nd ∈ N is the chosen number of discretization steps.
In all the cases we ran, the cost function does decrease steadily towards 0. But not in

all cases does the recovered metric converges to the fixed target metric. It is difficult in
general to draw conclusion regarding the number of geodesics to be used, or how to best
place them to optimize the recovered metric. However, there is a notable improvement of
the estimated metrics as n increases. Figure 5.4 shows an example of a run in R2, where
1000 geodesics are used for the estimation.
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Figure 5.4: Estimation of a Riemannian metric so as to make a family of curves geodesic.
Top left: target metric gU (ellipses black lines) and initial random metric gV (purple
ellipses). Top right: target metric gU (ellipses black lines) and estimated metric gV after
1000 iterations of gradient descent on V (purple ellipses). Bottom left: geodesic recon-
struction error (5.3) and tensor error (integral of the affine-invariant distance between the
two metrics over [0, 1]2) during the estimation. Bottom right: the geodesics used for the
estimation.
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5.6 Parametric Riemannian metric learning for lon-
gitudinal disease modelling

In this section, we use a stronger criterion than criterion (C3). Instead of asking for the
geodesicity of a family of trajectories, we ask that these trajectories have a particular
distribution on the manifold. Namely, we ask that they all be parallel trajectories to a
common geodesic on the manifold. This can be seen as an extension of [86] where we
allow the Riemannian metric to change so that exp-paralleled trajectories to a common
reference geodesic do correspond best to observed patterns of progressions. It addresses
one of the fundamental limitations of [86] and in general of methods optimizing linear
mixed-effect models on manifolds: the need of prior knowledge about the geometry of the
data and of its patterns of progression.

We are given a longitudinal data set (tij, yij)i=1,...,N,j=1,...,ni where the tij ∈ R are
observation times and yij are observations. For i ∈ {1, . . . , N}, (yij)j=1,...,ni is the set of
observations of the subject. We adapt a similar approach to [86] but we aim at estimating
the Riemannian metric jointly with the other model parameters.

5.6.1 Original modelling

In [86], the authors assume that observations (yij) lie on a Riemannian manifold (M, g).
They then suppose that each subject follows a trajectory which is defined by exp-paralle-
lization of a geodesic γ i.e.:

yi(t) = Expγ(ϕi(t))

(
Πγ(t0),γ(ϕi(t))(wi)

)
(5.5)

where:

• t0 is a reference time.

• wi is an element of Tγ(t0)M.

• Πγ(s)γ(s′) denotes the parallel transport along γ from γ(s) to γ(s′).

• Exp is the Riemannian exponential.

• Φi(t) is the re-parametrized time for the individual: Φi(t) = eηi(t− τi + t0), allowing
varying paces of progression and ages of onset for different subjects.

• γ is a reference geodesic given by γ(t0) = p0 and γ′(t0) = v0.

This shares similarities with the work already presented in Part I. As mentioned above,
the parallel transport operation can be computed in an efficient way using the Fanning
scheme.
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The authors then formulate a mixed-effect model, where the random parameters are
(ηi, τi, wi)i and the fixed effects are (v0, t0, p0). Particular care is taken to model the prior
for each variable correctly, we refer to the original paper for these details, which are not
of relevance in this Chapter.

5.6.2 Proposed extension

We propose here to include the Riemannian metric g in the parameters using the paramet-
ric metrics described in equation (5.2). Doing so is straightforward, at least in principle,
using the parametric metrics defined in Section 5.4, and it simply leads to an additional
parameter Ui to be estimated. The rest of the modelling is unchanged and our aim is still
to proceed with a Maximum A Posteriori estimation of the parameters.

The model formulated this way does not belong to the exponential family, and we
resort to a modification of the original MCMC-SAEM [19] algorithm used in [88]. Note
that an alternative for the estimation would be to optimize the ELBO bound exhibited
in [47].

The inference consists in finding the Maximum A Posteriori (MAP) of a directed prob-
abilistic model with latent variables u. The E step requires the computation of integrals
of the form

∫
u log (p(y|u, θ)) p(u, θk)du which are intractable in our case, so we resort the

the Stochastic Approximation EM (SAEM) [19] which alternates:

• Simulation. For each observation yi, generate ui, a realization of the hidden variable
under the posterior density p(u|yi, θk).

• Approximation. Update Qk(θ) = Qk−1(θ) + γk(
∑
i p(yi|ui, θ)−Qk−1(θ))

• Maximization. Set θk+1 = argmaxθQ(θ).

where during L burn-in iterations γk = 1 and then for all k > L, 0 ≤ γk ≤ 1, ∑∞i=1 γk =
∞ and ∑∞

i=1 γ
2
k < ∞. Once again, this procedure is intractable in our case, since the

maximization step cannot be computed at a reasonable cost. We therefore replace the
Approximation step by simply setting Q(θ) = ∑

i p(yi|ui, θ), which can be optimized by
stochastic gradient descent. This amounts to keeping only the burn-in phase of the SAEM
(γk = 1) which is, as we noted empirically, the most important phase with respect to space
exploration of the individual variables ui.

Simulation-Expectation To perform the Simulation step, we use the symmetric
Hasting-Metropolis sampler [72], a Markov Chain Monte Carlo method. We run 25 iter-
ations of the Markov Chain for each simulation, to limit samples correlation.

Maximization The maximization can be performed by stochastic gradient descent
on Q with respect to all the parameters which do not have a closed-form update, and by
closed-form update for the noise variance. We run ten epochs of gradient descent at each
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Figure 5.5: Average scenario of disease progression with the learned metric gU . x axis is
standardized time, y axis is normalized cognitive score.

maximization, using Adam [46]. This gradient descent step is reasonnably fast thanks to
the multi-threaded and gpu possibilities offered by PyTorch.

5.6.3 Results

We provide here the results of the estimation of this model on the same data as in [86]:
the cognitive scores measurements on MCIc subjects from the ADNI database. The goal
here is to show that without prior knowledge on the patterns of progression of the score,
our proposed longitudinal model still recovers a relevant scenario of progression which for
instance respects the known ordering of the symptoms onset.

The average scenario –the geodesic t 7→ Expp0(tγ̇(v0))– is shown on Figure 5.5. This
scenario is to be compared with Figure 2 in [86] which we reproduce on Figure 5.6. First,
we recover the same ordering of the symptoms onset, which were already known in the
literature. Second, we do recover patterns of progression which are similar to the ones
postulated in [86]. However, our formulation offers much more flexibility for the mean
scenario. For instance, our obtained scenario allows for intersections between the curves
for each score, which is forbidden in [86].

The drawback of this method is that it requires repeated computations of Riemannian
exponentials: directly and through the use of the Fanning scheme. As the dimension of the
observation space Rd increases, the number of points xi required to build a large family
of parametric metrics in Rd increases exponentially, and so does the complexity of the
integration of the Hamiltonian equations. In the next Chapter, we propose an alternative
method, relying on deep learning techniques, to perform this Riemannian metric learning
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Figure 5.6: Average scenario of disease progression with fixed metric, reproduction from
[86].

task in high-dimensional spaces.
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Chapter 6

Disease modelling using deep neural
networks [66]

This chapter is a reproduction of [66].

6.1 Introduction

The analysis of the longitudinal aspects of a disease is key to understand its progres-
sion as well as to design prognosis and early diagnostic tools. Indeed, the time dynamic
of a disease is more informative than static observations of the symptoms, especially for
neuro-degenerative diseases whose progression span years with early subtle changes. More
specifically, we tackle in this paper the issue of disease modelling: we aim at building a
time continuous reference of disease progression and at providing a low-dimensional rep-
resentation of each subject encoding the subject’s position with respect to this reference.
This task must be achieved using longitudinal datasets, which contain repeated obser-
vations of clinical measurements or medical images of subjects over time. In particular,
we aim at being able to achieve this longitudinal modelling even when dealing with very
high-dimensional data.

The framework of Riemannian geometry is well suited for the analysis of longitudinal
trajectories. It allows for principled approaches which respect the nature of the data -
e.g. explicit constraints- and can embody some a priori knowledge. When a Riemannian
manifold of interest is identified for a given type of data, it is possible to formulate
generative models of progression on this manifold directly. In [86, 48, 7], the authors
propose a mixed-effect model which assumes that each subject follows a trajectory which
is parallel to a reference geodesic on a Riemannian manifold. In [90], a similar approach
is constructed with a hierarchical model of geodesic progressions. All these approaches
make use of a predefined Riemannian geometry on the space of observations.

A main limitation of these approaches is therefore the need to know this Riemannian
manifold. It may be possible to coin a relevant Riemannian manifold in low-dimensional
cases and with expert knowledge, but it is nearly impossible in the more general case of
high-dimensional data or when multiple modalities are present. Designing a Riemannian
metric is in particular very challenging, as the space of Riemannian metrics on a manifold
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is vastly large and complex. A first possibility, popular in the literature, is to equip a
submanifold of the observation space with the metric induced from a metric on the whole
space of observations –e.g. `2 on images. However, we argue here that this choice of larger
metric is arbitrary and has no reason to be of particular relevance for the analysis at
hand. Another possibility is to consider the space of observations as a product of simple
manifolds, each equipped with a Riemannian metric. This is only possible in particular
cases, and even so, the product structure constrains the shapes of the geodesics which
need to be geodesics on each coordinate. Other constructions of Riemannian metrics exist
in special cases, but there is no simple general procedure. Hence, there is a need for
data-driven metric estimation.

There are a few Riemannian metric learning approaches do exist in the litterature. In
[38], the authors propose to learn a Riemannian metric which is defined by interpolation
of a finite set of tensors, and they optimize the tensors so as to separate a set of data
according to known labels. This procedure is intractable as the dimension of the data
increases. In [2] and in [92], the authors estimate a Riemannian metric so that an observed
set of data maximizes the likelihood of a generative model. Their approaches use simple
forms for the metric. Finally, in [53], the authors show how to use transformation of the
observation space to pull-back a metric from a given space back to the observation space,
and give a density criterion for the obtained metric and the data.

We propose in this chapter a new approach to learn a smooth manifold and a Rie-
mannian metric which are adapted to the modelling of disease progression. We describe
each subject as following a straight line trajectory parallel to a reference trajectory in a
low-dimensional latent space Z, which is mapped onto a submanifold of the observation
space using a deep neural network Ψ, as seen in [89]. Using the mapping Ψ, the straight
line trajectories are mapped onto geodesics of the manifold Ψ(Z) equipped with the push-
forward of the Euclidean metric on Z. After inference, the neural network parametrizes a
manifold which is close to the set of observations and a Riemannian metric on this man-
ifold which is such that subjects follow geodesics on the obtained Riemannian manifold,
which are all parallel to a common reference geodesic in the sense of [86]. This construc-
tion is based on Theorem 4 in Chapter 5 giving mild conditions under which there exists
a Riemannian metric such that a family of curves are geodesics. Additionally, this partic-
ular construction of a Riemannian geometry allows very fast computations of Riemannian
operations, since all of them can be done in closed form in Z.

Section 6.2 describes the Riemannian structure considered, the model as well as the
inference procedure. Section 6.3 shows the results on various features extracted from the
ADNI data base [40] and illustrates the advantages of the method compared to the use
of predefined simple Riemannian geometries.
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6.2 Propagation model and deep generative models

6.2.1 Push-forward of a Riemannian metric

We explain here how to parametrize a family of Riemannian manifolds. We use deep
neural networks, which we view as non-linear mappings, since they have the advantage of
being flexible and computationally efficient.

Let Ψw : Rd → RD be a neural network function with weights w, where d,D ∈ N with
d < D. It is shown in [89] that if the transfer functions of the neural network are smooth
monotonic and the weight matrices of each layer are of full rank, then Ψ is differentiable
and its differential is of full rank d everywhere. Consequently, Ψ(Rd) = Mw is locally
a d-dimensional smooth submanifold of the space RD. It is only locally a submanifold:
Mw could have self intersections since Ψw is in general not one-to-one. Note that using
architectures as in [41] would ensure by construction the injectivity of Ψw.

A Riemannian metric on a smooth manifold is a smoothly varying inner product on
the manifold tangent space. Let g be a metric on Rd. The push-forward of g on Mw is
defined by, for any smooth vector fields X, Y on Ψw(Rd):

Ψ∗w(g)(X, Y ) := g((Ψw)∗(X), (Ψw)∗(Y ))

where (Ψw)∗(X) and (Ψw)∗(Y ) are the pull-back ofX and Y on Rd defined by (Ψw)∗(X)(f) =
X(f ◦Ψ−1

w ) for any smooth function f : Rd → R, and where Ψ−1
w is a local inverse of Ψw,

which exists by the local inversion theorem.
By definition, Ψw is an isometry mapping a geodesic in (Rd, g) onto a geodesic in

(Mw,Ψ∗w(g)). Note that the function Ψw parametrizes both a submanifold Mw of the
space of observations and a metric Ψ∗w(g) on this submanifold. In particular, there may
be weights w1, w2 for which the manifolds Mw1 ,Mw2 are the same, but the metrics
Ψ∗w1(g),Ψ∗w2(g) are different.

In what follows, we denote gw = Ψ∗w(g) the push-forward of the Euclidean metric g.
Since (Rd, g) is flat, so is (Mw, gw). This neither means thatMw is flat for the induced
metric from the Euclidean metric on RD nor that the obtained manifold is Euclidean (ruled
surfaces like hyperbolic paraboloid are flat still non Euclidean). A study of the variety of
Riemannian manifolds obtained under this form would allow to better understand how
vast or limiting this construction is.

6.2.2 Model for longitudinal progression

We denote here (yij, tij)j=1,...,ni the observations and ages of the subject i, for i ∈ {1, . . . , N}
where N ∈ N is the number of subjects and ni ∈ N is the number of observation of the
i-th subject. The observations lie in a D-dimensional space Y . We model each individual
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as following a straight trajectory in Z = Rd with d ∈ N:

li(t) = eηi(t− τi)~e1 +
d∑
j=2

bji~ej (6.1)

where (~e1, . . . , ~ed) is the canonical basis of Rd.
With this writing, on average, the subjects follow a trajectory in the latent space given

by the direction ~e1. To account for inter-subject differences in patterns of progression,
each subject follows a parallel to this direction in the direction ∑d

j=2 b
j
i~ej. Finally, we

re-parametrize the velocity of the subjects in the ~e1 direction using ηi which encodes for
the pace of progression and τi which is a time shift. This writing is so that li(τi) is in
Span(e2, . . . , ed), the set of all possible states at the time τi. Hence, after inference, all the
subjects progression should be aligned with similar values at t = τi. We denote, for each
subject i, ϕi = (ηi, τi, b2

i , . . . , b
d
i ) ∈ Rd+1. ϕi is a low-dimensional vector which encodes the

progression of the subject.
As shown above, we map Z to Y using a deep neural network Ψw. The subject recon-

structed trajectories t 7→ yi(t) = Ψw (li(t)) are geodesics in the submanifold (Mw, gw).
The geodesics are parallel in the sense of [86] and [90]. Note that the apparently con-
strained form of latent space trajectories (6.1) is not restrictive: the family of functions
parametrized by the neural network Ψw allows to curve and move the image of the latent
trajectories in the observation space, and for example to align the direction ~e1 with any
direction in Y .

6.2.3 Encoding the latent variables

To predict the variables ϕ for a given subject, we use a recurrent neural-network (RNN),
which is to be thought as an encoder network. As noted in [15, 30], the use of a recurrent
network allows to work with sequences which have variable lengths. This is a significant
advantage given the heterogeneity of the number of visits in medical longitudinals studies.
In practice, the observations of the subject are not regularly spaced in time. To allow the
network to adapt to this, we provide the ages of the visit at each update of the RNN.

We use an Elman network, which has a hidden state h ∈ RH with H ∈ N, initialized to
h0 = 0 and updated along the sequence according to hk = ρh(Whyik+Uhhk−1 +bh) and the
final value predicted by the network after a sequence of length f ∈ N is ϕ = Wϕρϕ(hf )+bz
where ρϕ and ρh are activation functions andWh, Uh,Wϕ, bh, bϕ are the weights and biases
of the network. We denote θ = (Wh, Uh,Wϕ, bϕ) the parameters of the encoder.

When working with scalar data, we use this architecture directly. When working with
images, we first use a convolutional neural network to extract relevant features from the
images which are then fed to the RNN. In this case, both the convolutional network and
the recurrent network are trained jointly by backpropagation. Figure 6.1 summarizes the
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Figure 6.1: The observed sequences are encoded into latent trajectories, which are then
decoded into geodesics on a submanifold of the observation space.

whole procedure.

6.2.4 Regularization

To impose some structure in the latent space Z, we impose a regularization on the indi-
vidual variables ϕi = (ηi, τi, b2

i , . . . , b
d
i ). The regularization cost used is:

r(η, τ, b2, . . . , bd) = (η − η)2

σ2
η

+ (τ − τ)2

σ2
τ

+
d∑
j=2

(bj)2 (6.2)

This regularization requires the individual variables η and τ to be close to mean values τ , η.
The parameters η, τ are estimated during the inference. ση > 0 is fixed but the estimation
of η allows to adjust the typical variation of η with respect to the mean pace η, while
the neural network Ψw adjusts accordingly the actual velocity in the observation space
in the ~e1 direction. στ is set to the empirical standard deviation of the time distribution
(tij)ij, meaning that we expect the delays between subjects to be of the same order as the
standard deviation of the visit ages.

6.2.5 Cost function and inference

Overall, we optimize the cost function:

c(θ, w, η, τ) =
∑
i

∑
j

‖yi(tij)− yij‖2
2

σ2 +
∑
i

r(ϕi) (6.3)

where σ > 0 is a parameter controlling the trade-off reconstruction/regularity.
The first term contains the requirements that the geometry (Mw, gw) be adapted to

the observed progressions since it requires geodesics yi(t) to be good reconstructions of
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Figure 6.2: Each row repre-
sents a synthetic subject.

the individual trajectories. As shown in the Appendix, there exists solutions to problems
of this kind: under mild conditions there exists a metric on a Riemannian manifold that
the subjects’ progressions are geodesics. But this is only a partial constraint: there is a
whole class of metrics which have geodesics in common (see [71] for the analysis of metrics
which have a given family of trajectories as geodesics).

We infer the parameters of the model by stochastic gradient descent using the Adam
optimizer [46]. After each batch of subjects B, we balance regularity and reconstruction
by imposing a closed-form update on σ:

σ2 = 1
NBD

∑
i∈B

Ni∑
j=1
‖Ψw (li(tij))− yij‖2

2 (6.4)

where NB = ∑
i∈B Ni is the total number of observations in the batch b. This automatic

update of the trade-off criterion σ is inspired from Bayesian generative models which
estimate the variance of the residual noise, as in e.g. [86, 111].

6.3 Experimental results

The neural network architectures and the source code for these experiments is available at
https://gitlab.com/maxime.louis.x2012/unsupervised_geometric_longitudinal, tag
IPMI 2019. For all experiments, the ages of the subjects are first normalized to have zero
mean and unit variance. This allows the positions in the latent space to remain close to
0. We set ση = 0.5 and initialize η to 0.

6.3.1 On a synthetic set of images

To validate the proposed methodology, we first perform a set of experiments on a synthetic
data set. We generate 64× 64 gray level images of a white cross on a black background.
Each cross is described by the arms length and angles. We prescribe a mean scenario of
progression for the arm lengths and sample the arm angles for each subject from a zero-
centered normal distribution. Figure 6.2 shows subjects generated using this procedure.
Note that with this setting, an image varies smoothly with respect to the arms lengths

108

https://gitlab.com/maxime.louis.x2012/unsupervised_geometric_longitudinal


6.3. Experimental results

0. 0.02 0.05 0.1
Standard deviation of added noise

0.

0.02

0.05

0.1

M
ea

n 
sq

ua
re

d 
er

ro
r

Train
Test
Denoised train
Denoised test

Figure 6.3: Reconstruction error on train
and test sets and on denoised train and test
sets, unseen during training.

and angles and hence the whole set of generated images is a smooth manifold.
We generate 10 training sets of 150 subjects and 10 test sets of 50 subjects. The

number of observation of each subject is randomly sampled from a Poisson distribution
with mean 5. The times at which the subject are observed are equally spaced within a
randomly selected time window. We add different level of white noise on the images. We
then run the inference on the 10 training sets for each level of noise. We set the dimension
of the latent space Z to 3 for all the experiments.

For each run, we estimate the reconstruction error on both training set and test set,
as well as the reconstruction error to the de-noised images, which were not seen during
training. Results are shown on Figure 6.3. The model generalizes well to unseen data
and successfully denoises the images, with a reconstruction error on the denoised images
which does not vary with the scale of the added white noise. This means that the generated
manifold of images is close to the manifold on which the original images lie. Besides, as
shown on Figure 6.4, the scenario of progression along the ~e1 direction is well captured,
while orthogonal directions ~e2, ~e3 allow to change the arm positions. Finally, we compare
the individual variables (b2

i , b
3
i ) to the known arms angles which were used to generate

the images. Figure 6.5 shows the results: the latent space is structured in a way that is
faithful to the original arm angles.

6.3.2 On cognitive scores

We use the cognitive scores grading the subjects memory, praxis, language and concen-
tration from the ADNI database as in [86]. Each score is renormalized to vary between 0
and 1, with large values indicating poor performances for the task. Overall, the data
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Figure 6.4: First row is t 7→ Ψθ(~e1t). Following rows are
t 7→ Ψθ(~e1t+ ~ei) for i ∈ {2, 3}. These parallel directions
of progression show the same arm length reduction with
different arm positions.

Figure 6.5: Individual
variables b1

i and b2
i col-

ored by left (top) and
right (bottom) arm an-
gle.

set consists of 223 subjects observed 6 times on average over 2.9 years. We perform
a 10-fold estimation of the model. The measured mean squared reconstruction error is
0.079± 1.1e− 3 on the train sets, while it is of 0.085± 1.5e− 3 for the test sets. Both are
close to the uncertainty in the estimation of these cognitive scores [95]. This illustrates
the ability of the model to generalize to unseen observations. First, this indicates thatMw

is a submanifold which is close to all the observations. Second, it indicates how relevant
the learned Riemannian metric is, since unobserved subject trajectories are very close to
geodesics on the Riemannian manifold.

Figure 6.6 shows obtained average trajectories t 7→ Ψw(eηe1(t− τ)) for a 10-fold esti-
mation of the model on the data set, with Z dimension set to 2. All of these trajectories
are brought back to a common time reference frame using the estimated τ and η. All
average trajectories are very similar, underlining the stability of the proposed method.
Note that despite the small average observation time of the subjects, the method pro-
posed here allows to robustly obtain a mean scenario of progression over 30 years. Hence,
despite all the flexibility that is provided through the different neural networks and the
individual parameters, the model still exhibits a low variance. Besides, the obtained aver-
age trajectory here should be compared to 5.5 obtained using the parametric metric 5.4.
The proximity of the results is encouraging for the approach developed here.

We compare the results to the mean trajectory estimated by the model [86], which
is shown in Figure 6.8. Both cases recover the expected order of onset of the different
cognitive symptoms in the disease progression. Note that with our model the progression of
the concentration score is much faster than the progression of the memory score, although
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it starts later: this type of behaviour is not allowed with the model described in [86] where
the family of possible trajectories is much narrower. Indeed, because it is difficult to craft
a relevant Riemannian metric for the data at hand, the authors modelled the data as
lying on a product Riemannian manifold. In this case, a geodesic on the product manifold
is a product of geodesics of each manifold. This strongly restricts the type of dynamics
spanned by the model and hence gives it a high bias.

The use of the product manifold also has an impact on the parallel variations around
the mean scenario: they can only delay and slow/accelerate one of the component with
respect to another, as shown on Figure 6.8. Figure 6.7 illustrates the parallel variations
Ψ(αe0(t− τ) + ~e1) one can observe with the proposed model. The variation is less trivial
since complex interactions between each features are possible. In particular, the concen-
tration score varies more in the early stages of the disease than in the late stages.

The individual variables ϕ. To show that the individual variables ϕi did capture
information regarding the disease progression, we compare the distribution of the τi be-
tween subjects who have at least one APOE4 allele of the APOE gene -an allele known to
be a implicated in Alzheimer’s disease- and subjects which have no APOE4 allele of this
gene. We perform a Mann-Whitney test on the distributions to see if they differ. For all
folds, a p-value lower than 5% is obtained. For all folds, carriers have a larger τ meaning
that they have an earlier disease onset than non-carriers. This is in accordance with [6].
Similarly, women have on average an earlier disease onset for all folds, in accordance with
[52].

A closer look at the geometry

We look at the obtained Riemannian geometry by computing the latent position best
mapped onto each of the observation by Ψw. We then plot the obtained latent positions
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Figure 6.6: Learned main
progression of the cogni-
tive scores, for the 10-fold
estimation.
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Figure 6.7: Mean geodesic
of progression and parallel
variations t 7→ Ψ(eηe0(t −
τ) + λ~e1) for varying λ.
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Figure 6.9: Top (resp. Bottom) latent
positions (resp. Isomap embedding) of
the observations colored by memory and
concentration score.

to look at the structure of the learned Riemannian manifold. We compare the obtained
structure with a visualisation of the structure induced by the `2 on the space of observa-
tions produced by Isomap [96]. Isomap is a manifold learning technique which attempts to
reconstruct in low dimensions the geodesic distances computed from a set of observations.
The results are shown in Figure 6.9. The geometry obtained after inference is clearly much
more suited for disease progression modelling. Indeed, the ~e1 direction does correspond
to typical increases in the different scores. The induced metric is not as adapted. This
highlights the relevance of the learned geometry for disease modelling.

6.3.3 On anatomical MRIs

We propose here an estimation of the model on 3D MRIs preprocessed from the ADNI
database, to check the behaviour of the proposed method in high dimension. We select
subjects which ultimately convert to Alzheimer’s disease. We obtain 325 subjects and
a total of 1996 MRIs which we affinely align to the Colin-27 template and resample
to 64x64x64. We run a 5-fold estimation of the model with dimZ = 10, using a GPU
backend. We obtain a train mean squared error of 0.002± 1e− 5 and a test mean squared
error of 0.0024± 3e− 5. Figure 6.10 shows one of the learned mean trajectory.

Once the model is estimated, we compare the distributions of the pace of progressions
ηi between the individuals who have at least one APOE4 allele of the APOE gene and the
individuals who have no APOE4 allele. For all 5 folds, the distributions of the paces of
progression significantly differ, with p-values lower than 5% and in each case, the APOE4
carriers have a greater pace of progression, in accordance with [6]. The same analysis
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Figure 6.10: t 7→ Ψθ(e0t) on the MRI dataset. The growth of the ventricles, caracteristic
of aging and Alzheimer’s disease is clearly visible.

between the individuals who have two APOE4 allele versus the individuals which have at
maximum one APOE4 allele shows a significative difference for all folds for the τ variable:
the APOE4 carriers have an earlier disease onset, as shown in [52]. This analysis further
shows the value of the individual variables ϕi learned for each subject.

6.4 Conclusion

We presented a way to perform Riemannian geometry learning in the context of longitu-
dinal trajectory analysis. We showed that we could build a local Riemannian submanifold
of the space of observations which is so that each subject follows a geodesic parallel to a
main geodesic of progression on this manifold. We illustrated how the encoding of each
subject into these trajectories is informative of the disease progression. The latent space
Z built in this process is a low-dimensional description of the disease progression. There
are several possible continuations of this work. First, there is the possibility to conduct
the same analysis on multiple modalities of data simultaneously. Then, after estimation,
the latent space Z could be useful to perform classification and prediction tasks.
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Chapter 7

Longitudinal auto-encoder for
multimodal disease progression

modeling [14]

This chapter is a reproduction of [14]. It is an extension of the previous chapter to mul-
tivariate data. We drop the Riemannian interpretation in this case.

7.1 Introduction

The longitudinal pattern of progression of a disease contains more information than a
static observation. Leveraging this information is a key problem in machine learning for
healthcare, complicated by to the nature of clinical data sets. These data sets may con-
tain very heterogeneous observations from various modalities of subjects at multiple time
points, such as clinical scores, imaging and biological samples. They include missing val-
ues, often by design: not all modalities are observed at each visit. Besides, the number of
observations and their time spacing vary between subjects. For these reasons, the analysis
of multiple modalities and their time dynamic at once is a challenging task.

Linear mixed effect model estimated via EM and their extension to the non-linear case
[51, 56] were developed for the analysis of uni-modal longitudinal data. More recently, re-
current auto-encoder [84, 94] offer a way to encode trajectories into a low-dimensional
embedding, allowing to perform unsupervised clustering of the trajectories [24]. Rieman-
nian geometry based approaches such as [86, 66] offer ways to learn sub-manifolds of the
observation space with a system of coordinate adapted to the progression of the modality
observed in the data.

On the other hand, various unsupervised methods exist to fuse information from mul-
tiple modalities but from a single time snapshot. In [12, 77], the authors propose to learn a
common embedding for multiple modalities auto-encoding, merging the information from
all modalities and allowing the generation of missing modalities. In [76], unsupervised fea-
tures are learned from heterogeneous health data as a dimensionality reduction method
before machine learning tasks.

In [104], combining time and multi-modal approaches, the authors propose a setting for
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multi-modal time-series embedding. But their design does not handle missing modalities,
common in clinical data sets. Besides, the fusion of the information from the different
modalities is done at each time step and not on the progression pattern globally, thus
decreasing the importance of the dynamics of each modality in the encoding.

To address these limitations, we propose a new setting for longitudinal multi-modal
encoding. We extend to the multi-modal case the approach of [66]. Each modality is
first separately encoded using a recurrent neural network. A fusion network is then used
to merge the obtained representations into a unique representation, which describes the
multi-modal trajectory of the subject as a time-parametrized linear trajectory in a latent
space Z. Then, this trajectory is decoded using a different neural network for each modal-
ity, which generates continuously varying trajectories of data changes. This setting allows
to handle multiple modalities even when not all of them are observed at each visit and
it can handle any number of visits and any time spacing between the visits. Finally, ex-
trapolation in the latent space allows for prediction of the future of each modality and we
show on a synthetic data set and on the ADNI database using cognitive scores and MRI
jointly that the predictive power is enhanced by the fusion of each modality embeddings.

In section 7.2 we explain the proposed model, in section 7.3 we present experimental
results highlighting the stability of the method on synthetic and real data sets and we
show how the information from one modality that contributes to the encoding allows to
refine prediction of the future of another modality.

7.2 Methods

We use a longitudinal data set which contains repeated observations of subjects, where
the observations at each time point contain a various combination of modalities among
M ∈ N modalities. For any subject i ∈ {1, . . . , N} where N ∈ N and for any modality
m ∈ {1, . . . ,M}, we have a sequence (ymij , tmij )j=1,...,nmi of observations ymij of observed at
times tmij .

7.2.1 Decoding : Non linear mixed effect model

We set d ∈ N and consider a d-dimensional latent space Z = Rd and its canonical
basis (~ei)i=1,...,d. Then, in the spirit of random slopes and intercepts models, we consider
trajectories in Z of the form l(t) = eη(t − τ)~e1 + ∑d

i=2 λ
i~ei where η, τ, , λ2, . . . , λd ∈ R

are random variables. These trajectories progress in the ~e1 direction and are translated
in any direction orthogonal to ~e1, so that the λs play the role of random intercepts. η
controls the pace of progression while τ allows for a time shift between the trajectories.
We consider that the i-th subject follows a trajectory of this form with parameters ϕi =(
ηi, τi, λ

2
i , . . . , λ

d
i

)
.
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For each considered modality m, we consider a nonlinear mapping Ψwm which maps
Z on a subspace of the m-th modality observation space. This transports the mixed-
effect model formulated in Z into the corresponding observation spaces. Note that the
apparent rigidity of the family of trajectories considered in Z is not restrictive provided
the mappings Ψwm are flexible enough. In practice, the Ψwm are neural networks, de-
convolutional for images and fully connected for scalars. The right half of Figure 7.1
illustrates the procedure. Overall, this setting can be viewed as a non-linear mixed-effect
model where the random effects are the ϕi’s and the fixed effects are the parameters of
the mappings Ψwm .
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7.2.2 Encoding

Individual parameters ϕi are estimated via the use of an encoder network. More precisely,
each modality is first processed by a dedicated Recurrent Neural Network (RNN), to get
modality-wise representations. To correct for the varying spacings between the observa-
tions, we provide to the RNN the visit times, previously normalized to zero-mean and
unit variance.

We then concatenate the obtained representations, and use a fully-connected network
to merge the representations. The given architecture alllows fast inference for new subjects,
and is trainable end to end. Besides, the fusion operation is learned so as to produce a
single vector which contains the most information about the reconstruction of the whole
sequences of all the modalities. The left part of Figure 7.1 illustrates the procedure.

7.2.3 Regularization, cost function and optimization

To enforce some structure in the latent space and in the family of trajectories obtained,
we set the following regularization on the individual variable Φi: r(η, τ, (λi)i=2,...,d) =
η2 + τ 2 + ∑d

j=2(λj)2. This regularization models the η variable to be distributed along a
zero-centered normal distribution, which allows the pace of progression to vary typically
between 0.2 and 5. times the mean velocity. The τ variable is regularized the same way.
This regularization is not arbitrary: during each run, the observation times tmij are rescaled
to zero-mean unit variance, and thus τ can handle delays between subjects of order the
standard deviation of the observation ages.

Overall, the optimized cost function for one subject is the regularization cost added
to the `2 reconstruction cost summed over all modalities:

C ((wm)m, η, τ, (λi)i) = r (η, τ, (λi)i) +
∑
m

1
σ2
m

nmi∑
j=1
‖ymij −Ψwm(li(tmij ))‖2

2 (7.1)

where the (σm)m are trade-off parameters between each modality and the regularization.
We set an automatic update rule for these parameters after each batch by setting them
to the empirical quadratic errors in reconstruction for the modality over the batch. The
estimation is achieved by stochastic gradient descent with the Adam optimizer [46] and
a batch size of 32 subjects. The Decoders are either fully connected or de-convolution
networks depending on the kind of modality considered, with standard architectures. The
encoders are either Elman networks or Elman networks working on features extracted
using a convolution network in the case of images. All networks are trained end to end
using back-propagation and the PyTorch library. A complete code to reproduce these
experiments will be released upon publication of the paper.
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Figure 7.2: Left: average trajectories for the 10 folds, with increasing partitioning of the
input features. Right: average trajectories for the 10 folds, with increasing pruning of the
praxis+concentration modality.

7.3 Experimental results

7.3.1 Cognitive scores: proof of concept

As in [86], we apply our model on repeated measurement of 4 normalized cognitive scores
extracted from the ADNI cohort, respectively associated with memory, language, praxis
and concentration. We include the 248 MCI-converter subjects, followed for an average
of 3 years, over 6 visits. We conduct 2 experiments in order to assess the robustness of
the method, and report estimated average trajectories in Figure 7.2, as well as individual
reconstruction errors in Table.7.1, computed from a patient-wise 10-fold cross validation.

First, we apply our model on an increasing partitioning of input feature. We consider 3
cases: selecting all scores at once as one modality, selecting separately memory+language
and praxis+concentration as two modalities, and selecting each one separately. We note
the overall good stability of the average model over multiple multi-modal architectures,
with stability decreasing in the 4-modalities scenario, arguing for a concatenation of the
consistent features.

In our second experiment, we assess the robustness of the model with the number
of visits per subjects. To this end we consider the 2-modalities scenario, and perform a
pruning of the data set, removing an increasing number of visits of the second modality,
i.e. praxis+concentration per subjects. Data sets are obtained from pruning frequencies
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of respectively 10%, 20% and 40%. Here we also observe an overall good stability of the
average trajectory over pruning frequency.
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Figure 7.3: Left: average trajectory and reconstruction examples for the scalar data. Right:
average trajectory and some reconstructions for the image data. Top rows are real data,
bottom rows are reconstructions.

7.3.2 A synthetic data set

To test the proposed setup in realistic conditions, we generate a synthetic multi-modal
data set comprising 300 subjects observed 7 times on average. The first modality is a 2D
image of a cross, with varying arm lengths and angles while the second modality consists
of two scores with a sigmoid-like growth. We set a time reparametrization function s with
parameters a1, a2 defined by: sa,b(t) = t + asign(t)t2 + bt3. To generate an individual, we
sample two sets of parameters (ak, bk)k=1,2. These serve to reparametrize a scenario of
score increase: the k-th score for the subject at time t is given by σ ◦ sak,bk where σ is the
sigmoid function. Then, the arms lengths L1, L2 for the images of the subject at time t
are given by L1 = σ ◦ s(a2−a1)+εa1,(b2−b1)+εb1 , L2 = σ ◦ s(a2+a1)+εa2,(b2+b1)+εb2 where the ε are
samples from a zero-mean normal distribution and constant with time. Finally, the arm
angles are sampled along a normal distribution but are not informative of the synthetic
disease process. This design is so that the images contain, in an intricate way, information
about the progression of the scores materialized through the a1, a2, b1, b2 variables. The
two modalities are different noisy facets of a common underlying process.

We perform a patient-wise 10-fold estimation of the model this data set. Figure 7.3
shows the obtained average trajectory for the first fold, as well as the reconstructions of
some subjects images and scores observations. We evaluate and average for all folds the
test and train reconstruction errors. For the cross, the test error is 2.0 10−8±8. 10−9 while
the train error is 1.7 10−8 ± 3.9 10−9. For the scores, the test error is 7. 10−3 ± 3. 10−3

while the train error is 7. 10−3 ± 3. 10−3. This shows that the model generalizes well to
unseen data.
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We use the trained model to predict the future scores on the test data. We do so by
decoding the extrapolation of the latent trajectory encoded by the model. We repeat this
experiment by gradually removing the last observations of the image modality, to look at
the impact of this modality on the predictive power of the model. Figure 7.4 shows the
experimental setup and the results. As the time span of the observed images shrinks, the
prediction deteriorates: when more image data is available, the score prediction is more
accurate. This shows the ability of the model to find a relevant common representation
for the progressions of the different modalities.

7.3.3 Application to Alzheimer’s disease future image predic-
tion

On the 248 patients of section 7.3.1, we apply the same model on the 217 that have at
least 1 MRI observation, leading to a total of 1199 cognitive scores measurements and
1441 MRIs. We work on both the MRI images and the cognitive scores. The MRI images
are rigidly aligned and sub-sampled to 643 resolution. Note that the subjects do not have
both the MRI and the cognitive scores measurements at each visit.

Figure 7.5 shows one of the estimated average trajectory for the MRI modality.
We evaluate and average for all folds the test and train reconstruction errors on both
modalities. For the MRI, the test error is 2.5 10−3 ± 6. 10−5 while the train error is
2.4 10−3± 2. 10−5. For the scores, the test error is 2.2 10−2± 3. 10−3 while the train error
is 1.7 10−3 ± 6. 10−4. This shows that the model generalizes well to unseen data.

We then perform the same prediction task as in the previous section: we attempt to
predict the future MRI from past data, using a variable amount of score data in the past.
Figure 7.5 shows the prediction errors for different time horizon. Once again, the errors

Image

Score

0123

UnseenSeen

Test

Duration	to	last	score	observation

Prediction	Error

Figure 7.4: Left: description of the prediction setup. Right: the MRI prediction errors.
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Prediction	ErrorAverage	Trajectory

Figure 7.5: Left: average trajectory. Right: prediction error, in the same setup as in Section
7.3.2

increase as we feed the model with less cognitive scores measurements. This shows that
the model captures information contained in the cognitive scores progression to refine the
MRI prediction.

7.4 Conclusion and perspectives

We extended on a deep auto-encoder architecture with a mixed effect latent space to pro-
pose a practical framework for modeling multi-modal longitudinal data, trainable end-to-
end. This allows for analysis of heterogeneous longitudinal data sets, deriving a model-wise
average trajectory, as well as condensed patient representations. We study its robustness
toward modalities partitioning and data set pruning and illustrate its utility in both syn-
thetic and real scenarios. In the future we plan to model the progression of more modalities
at once.
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In this PhD, we proposed new tools for the analysis of manifold-valued data: a nu-
merical scheme to compute the parallel transport along geodesics and a generalization of
Linear Discriminant Analysis to manifold-valued data. Then, we tackled the problem of
learning a manifold and a Riemannian metric on this manifold so as to optimize a given
criterion. We first studied, theoretically and experimentally, simple criteria constraining
Riemannian geometries. Building from this, we proposed a new way to embed longitudinal
trajectories into a low-dimensional Riemannian sub-manifold of the observation space.

There are several paths to continue this work. First, there remains a lot of unknowns
in Riemannian metric learning. Our results for the metrics which are optimal for some
criteria are only partial, and it is in general difficult to measure exactly what can actually
be learned without ambiguity, and where there remains a sort of gauge freedom on the
optimal metrics. Besides, the final proposed model for longitudinal modeling relies on
neural networks whose behavior is hard to constrain. In particular, it is difficult to enforce
injectivity of such generative networks in practice and this is a threat to the principled
Riemannian geometric framework that we use. In addition, the Riemannian manifolds
that are learned with the model described in Chapter 6 are flat. It would be interesting
to understand exactly how limiting that is.

Second, in the first part, we relied heavily on the LDDMM framework to model the
observed shapes and images. The classical construction of families of diffeomorphisms
using this framework is manual: the dynamics of the shapes is hand-prescribed by the
user, and in general the family of diffeomorphisms considered remain high-dimensional.
There is a need there to adapt this framework to the data, and for instance to learn
a parametric family of diffeomorphisms best adapted to the data. This can be seen as a
particular instance of Riemannian metric and manifold learning for shape analysis through
diffeomorphisms. First steps in this direction have been undertaken in [8].

Finally, the longitudinal model developed in Chapter 6 could be further studied and
applied to new data sets. In particular, we would need to look further into its ability to
predict the progression of incoming subjects. Similarly, we would like to extend this model
to the case when the observed population is heterogeneous in disease status, to get closer
to real-world applications.
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Chapter 8

Riemannian geometry

We recall the notions of Riemannian geometry that are needed to follow the discussions
in this thesis. [70] is a reference for this content.

8.1 Manifold, tangent vector, metric.

Definition 4. A Ck-differentiable manifold is a setM which is Haussdorf, second-countable,
and such that there exists n ∈ N∗ and a set of (Uα,Φα)α where (Uα)α is an open cover of
M and for all α, Φα : Uα → Φ(Uα) ⊂ Rn is a homeomorphism. We also assume that for
all α, β, Φα ◦ Φ−1

β is of class Ck.

In what follows, M is a smooth-differentiable manifold of dimension n ∈ N∗. The
definition of continuity and differentiability of functions defined on a manifold and of
manifold-valued functions f is treated by looking at functions of the form f ◦ Φα or
Φα ◦ f .

Definition 5. Let f :M→ R. We say that f is of class Cl with l ∈ N if for all α, f ◦Φ−1
α

is of class Cl.

We use a similar definition for differentiable curves γ : R→M.

Definition 6. Let p ∈ M. A tangent vector X at p is an equivalence class of differen-
tiable curves γ with γ(0) = p defined by γ1 = γ2 iff d

dtf(γ1(t))|0 = d
dtf(γ2(t))|0 for all

differentiable f defined in a neighborhood of p. The set of tangent vector to p, denoted
TpM is a n-dimensional vector space. The set of smooth vector fields of M is the set of
smoothly varying tangent vector i.e. a smooth section of the tangent bundle of M. If X
is a smooth vector field onM, then we define:

X(f) = d
dtf(γ(t))|0 (8.1)

which does not depend on the choice of γ in the equivalence class.

LetM be a differential manifold of dimension k. Let Φ,Φ′ be two coordinates charts
on an open subset U ofM. We denote Φ(x) = (x1, . . . , xn) and Φ′(x) = (x′1, . . . , x′n) for
x ∈ U . Let p ∈ U . Let now f : U → R be a smooth function. We define F : Φ(U) ⊂ Rk 7→
R by F (x) = f ◦ Φ−1(x). We use Einstein notations.
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Vector coordinates. We define, for i ∈ {1, . . . , k},
(

∂
∂xi

)
p
∈ TpM by:

(
∂

∂xi

)
p

(f) =
(
∂F

∂xi

)
Φ

(p)

The family
((

∂
∂xi

)
p

)
i=1,...,k

is a basis of TpM. So any X ∈ TpM can be written uniquely

X = X i
(

∂
∂xi

)
p
where the X i are the coordinates of X in the coordinate chart Φ.

Vectors change of coordinates. We have:

∂

∂xi p
(f) = ∂f ◦ Φ−1

∂xi
(Φ(p)) = ∂(f ◦ Φ′−1 ◦ Φ′ ◦ Φ−1)

∂xi
(Φ(p))

We now let F ′ = f ◦ Φ−1, which is a function of the coordinates x′. Now using the chain
rule:

∂

∂xi p
(f) = ∂(F ′ ◦ Φ′ ◦ Φ−1)

∂xi
(Φ(p)) =

(
∂x′j

∂xi

)
Φ(p)

(
∂F ′(x′)
∂x′j

)
Φ′(p)

.

So that: (
∂

∂xi

)
p

=
(
∂x′j

∂xi

)
Φ(p)

(
∂

∂x′j

)
p

. (8.2)

This is the formula for changing vector coordinate charts. If X = X i
(

∂
∂xi

)
p
∈ TpM, we

have:
X = X i

(
∂

∂xi

)
p

= X i

(
∂x′j

∂xi

)
Φ(p)

(
∂

∂x′j

)
p

.

so that X ′j(p) = X i(p)
(
∂x′j

∂xi

)
Φ(p)

: the coordinates of X in Φ multiplied by the Jacobian
of the coordinate transformation.

Covectors. For i ∈ {1, . . . , k}, we define the linear form (dxi)p by:

(dxi)p

( ∂

∂xj

)
p

 = δij

for j ∈ {1, . . . , k}. The family (dxi)i=1,...,k is a basis of TpM∗. Any linear form η on TpM
has coordinates in this basis and we denote η = ηi(dxi)p.

Covectors change of coordinates. As before, one can show:

(dxi)p =
(
∂xi

∂x′j

)
Φ′(p)

(dx′j)p, (8.3)
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So that if η = ηi(dxi)p = η′i(dx′i)p, then:

η′i =
(
∂xj

∂x′i

)
Φ′(p)

ηj

Definition 7. Let M be smooth manifolds. Let f be a smooth function on M and X a
smooth vector field onM. Let h ∈ C(M,R). Then we define:

(fX)(h)(p) = f(p)X(h)(p) (8.4)

Definition 8. A metric onM is a smooth section g of the tangent bundle of symmetric
bilinear forms onM. If g is everywhere positive definite, we say thatM is a Riemannian
manifold on which g is a Riemannian metric.

8.2 Integral on the manifold

Integral of k-forms on the manifold. We can define the integral on k-forms (i.e.
multi-linear alternated ofM. We suppose that dx1 ∧ . . . ∧ dxk to be positively oriented
1. Let T be a k-form on U , we denote X = fdx1 ∧ . . . dxk and define:

∫
U
X =

∫
Φ(U)

f(x)dx1 . . . dxk (8.5)

This definition of the integral is chart invariant We write the k-form T in two
different coordinate charts x′ and x defined by Φ′ and Φ:

T = f ′(x1, . . . , xk)dx1 ∧ . . . ∧ dxk = f(x′1, . . . , xk)dx′1 ∧ . . . ∧ dx′k

We assume that Φ′ and Φ have the same orientation. Then, since f and f ′ are related by:

f ′(x′1, . . . , x′k) = det
(
∂x′i

∂xj

)
(x′1, . . . , x′k)f(Φ ◦ Φ−1′(x1, . . . , xk))

we have:
∫

Φ(U)
f(x)dx1 . . . dxk =

∫
Φ′(U)

f(Φ ◦ Φ′−1(x′1, . . . , x′k)) det
(
∂xi′

∂xj

)
(x′1, . . . , x′k)dx′1 . . . dx′k

=
∫

Φ′(U)
f(x)dx′1 . . . dx′k

where the first equality is obtained by standard multivariate change of coordinates.
1A manifold is orientable if it has a non vanishing smooth k-form. A choice of such a k-form defines

the orientation. A chart is positively oriented if dx1 ∧ . . . ∧ dxk is a positive function times the fixed
non-vanishing k-form.
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Integral of functions on the manifold. We now assume thatM is equipped with a
smooth metric g. The volume form onM is the k-form defined in any positively oriented
system of coordinates Φ by:

η =
√
|g|dx1 ∧ . . . ∧ dxk. (8.6)

It is the volume of an infinitesimal element on the tangent space of M and hence a
measure dM(x) =

√
|g(x)|dx on the manifold. t f : U →M, we define:

∫
U
f =

∫
U
fη =

∫
Φ(U)

f(Φ−1(x))
√
|g(x)|dx1 . . . dxk (8.7)

where g(x) is the matrix of the metric in coordinates. This is chart invariant.

8.3 Affine connection

Definition 9. An affine connection onM is a bilinear map ∇ : C∞(M,TM)×C∞(M,TM)→
C∞(M,TM) such that:

• ∇fX = f∇X for all f ∈ C∞(M,R).

• ∇X(fY ) = X(f)Y + f∇XY

The affine connection can be applied to any tensor using Leibniz rule. For instance, if
g is a a (0, 2)-smooth tensor like the metric:

(∇Xg)(Y, Z) = ∇X(g(Y, Z)) + g(∇X(Y ), Z) + g(Y,∇XZ) (8.8)

We define, for any connection ∇, in a coordinate chart, the Christoffel symbols2:

∇iej := ∇eiej = Γkijek. (8.9)

Definition 10. A connection ∇ is torsion-free if ∇a∇bf = ∇b∇af = 0 for any function
f . This is equivalent to Γµνλ = Γµλν for all λ, µ, ν.

Proposition 12 (Coordinates of push-forward). LetM and N be two smooth manifolds
of dimension m and n respectively. Let Φ :M 7→ N be a smooth map. We denote xµ (resp.

yα) coordinates on M and N . We view y as functions of x by Φ. Let X = Xµ ∂

∂xµ

∣∣∣∣∣
p

∈

TpM. Then, Φ∗(X) ∈ TΦ(p)M has coordinates:

Φ∗(X) = Xµ

(
∂yα

∂xµ

)
p

∂

∂yα

∣∣∣∣∣
Φ(p)

. (8.10)

2Strictly speaking, the Christoffel symbols are the coefficients of the Levi-Civita connection, but they
can be defined for any affine connection.
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Proof. For any smooth f : N 7→ R, we have:

Φ∗(X)(f) = Xµ ∂

∂xµ

∣∣∣∣∣
p

(f ◦ Φ)

= Xµ

(
∂yα

∂xµ

)
p

∂

∂yα

∣∣∣∣∣
Φ(p)

(f).

For vector fields, this rewrites:

Φ∗(X)αΦ(p) = Xµ
p

(
∂yα

∂xµ

)
p

(8.11)

Similarly, for any one-form η ∈ T ∗Φ(p)N , one gets:

(Φ∗(η)µ)p =
(
∂yα

∂xµ

)
p

(ηα)Φ(p). (8.12)

Theorem 5. Let M be a smooth manifold, and let g be a metric on M. Then, there
exists a unique affine connection ∇ such that:

• ∇g = 0.

• ∇XY −∇YX = [X, Y ] for all smooth vector fields X and Y .

This is called the Levi-Civita connection. Its coefficients are given by:

Γik` = 1
2g

im

(
∂gmk
∂x`

+ ∂gm`
∂xk

− ∂gk`
∂xm

)
= 1

2g
im(gmk,` + gm`,k − gk`,m), (8.13)

8.4 Immersions

Let M, N be smooth manifolds. Ψ : N → M is a Ck-immersion if it is of class Ck and
if for all p ∈ N , dΨ(p) has full-rank. In that case, we say that Ψ(N ) is an immersed
submanifold ofM.

Definition 11. Let Ψ : N →M be a smooth function. Let X be a smooth vector field on
N . We can define the push-forward of Ψ ∗X onM by:

Ψ ∗ (X)(f) = X(f ◦Ψ) (8.14)

Let now g be a metric onM. We define the pull-back of g on N by:

Ψ∗(g)(X, Y ) = g(Ψ∗(X),Ψ∗(Y )) (8.15)
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for any smooth vector fields X, Y on N . Note that for any p ∈M, Ψ∗ : TpM→ TΨ(p)N
is a linear map.

Note that if Ψ is a local diffeomorphism, then Φ∗ is a one-to-one linear map from
corresponding tangent spaces. We can then build the push-forward of a vector field using
the local inverse Ψ−1. We will denote Ψ∗ = Ψ−1

∗ .

Proposition 13. Let Ψ : N →M be a Ck-immersion. Let p ∈ N . Since dΨ(p) has full-
rank, Ψ is locally invertible i.e. there exists a neighborhood U of p in N , a neighborhood
V of Ψ(p) in Ψ(N) and Ψ−1 : V → U of class Ck such that Ψ ◦ Ψ−1 = IdN on V and
Ψ−1 ◦ Ψ = IdM on U . This local inverse can be used to define the pull-back of a vector
field or the push-forward of a metric, locally.

We note here that if Ψ is not injective, then there might be several pull-back/push-
forward of tensors on M or on N. We discuss this issue when considering push-forward
metrics.

Proposition 14. Let Ψ : N →M be a smooth function. Let X, Y ∈ C(N, TN) and f ∈
C(N ,R). Let p ∈ N . Then using Proposition 13, Ψ is locally invertible in a neighborhood
of p. Then, in a neighborhood of Ψ(p):

Ψ∗(fX) = (f ◦Ψ−1)Ψ∗(X) (8.16)

Proof. Let h ∈ C(M,R) and q in a neighborhood of p in N . We have:

Ψ∗(fX)(h)(Ψ(p)) = (fX)(h ◦Ψ)(p) = f(p)X(h ◦Ψ)(p) = ((f ◦Ψ−1)Ψ∗(X)(h))(Ψ(p))
(8.17)

Hence the result.

An immersed submanifold is in general not a submanifold, but we have the following
result, which is a consequence of Proposition 13:

Theorem 6. Let Ψ : N → M be a Ck-immersion and let p ∈ N. Then there exists an
open subset U of p in N such that Ψ(U) is a Ck submanifold ofM.

This means that an immersed submanifold is locally a submanifold.

Theorem 7. Let M, N be smooth manifolds. Let Ψ : N → M be a Ck-immersion. Let
p ∈ N and U, V,Ψ−1 as in Proposition 13. Let g be a metric on N . Let ∇ be the Levi-
Civita connection of g on N . We define, for smooth vector fields on V , ∇ : C∞(M,TM)×
C∞(M,TM)→ C∞(M,TM) by

∇′XY = Ψ∗(∇Ψ∗(X)Ψ∗(Y )) (8.18)

Then ∇′ is the Levi-Civita connection onM for the metric Ψ∗(g).
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Proof. We first prove that ∇′ is a connection on V which is a submanifold of M. Let
f : V → R be a smooth function and X and Y be smooth vector fields on V . We have:

∇′fXY = Ψ∗
(
∇Ψ∗(fX)Ψ∗(Y )

)
= Ψ∗

(
∇(f◦Ψ)Ψ∗(X)Ψ∗(Y )

)
= Ψ∗

(
(f ◦Ψ)∇Ψ∗(X)Ψ∗(Y )

)
= fΨ∗

(
∇Ψ∗(X)Ψ∗(Y )

)
= f∇′XY.

We also have:

∇′X(fY ) = Ψ∗
(
∇Ψ∗(X)Ψ∗(fY )

)
= Ψ∗

(
∇Ψ∗(X)(f ◦Ψ)Ψ∗(Y )

)
= Ψ∗ (Ψ∗(X)(f ◦Ψ)Y ) + Ψ∗

(
(f ◦Ψ)∇Ψ∗(X)Ψ∗(Y )

)
= [Ψ∗(X)(f ◦Ψ) ◦Ψ−1]Ψ∗(Y ) + fΨ∗

(
∇Ψ∗(X)Ψ∗(Y )

)
= Ψ∗(X)(f ◦Ψ)Ψ∗(Y ) + fΨ∗

(
∇Ψ∗(X)Ψ∗(Y )

)
= X(f)Y + f∇′XY

Hence, ∇′ is an affine connection on V . We now show that this is the Levi-Civita connec-
tion for the push-forward metric Ψ∗(g) on V. Let X, Y, Z be smooth vector fields on N .
Then:

∇′X(Ψ∗(g)(Y, Z)) = Ψ∗
(
∇Ψ∗(X)Ψ∗(Ψ∗(g)(Y, Z))

)
= Ψ∗

(
∇Ψ∗(X)g(Ψ∗(Y ),Ψ∗(Z))

)
= Ψ∗

(
g(∇Ψ∗(X)Ψ∗(Y ),Ψ∗(Z)) + g(Ψ∗(Y ),∇Ψ∗(X)(Ψ∗(Z)))

)
= Ψ∗(g)(∇′XY, Z) + Ψ∗(g)(Y,∇′XZ)

which shows that ∇′(Ψ∗(g)) = 0. Finally, ∇′ is torsion free since:

∇′XY −∇′YX = Ψ∗(∇Ψ∗(X)Ψ∗(Y ) +∇Ψ∗(Y )Ψ∗(X))

= Ψ∗([Ψ∗(X),Ψ∗(Y )])

= [X, Y ].

So ∇′ is the Levi-Civita connection for the induced metric.

This proves that the images of geodesics by Ψ are geodesics, and that the images of
parallel curves by Ψ are parallel curves. Indeed, let γ be a geodesic on N. We have:

∇′ ˙Ψ(γ(t))
˙Ψ(γ(t)) = ∇γ̇ γ̇ = 0

The reasonings are similar for the parallel transport: the parallel transport of a vector on
V is the push-forward of the parallel transport of the pull-back of the vector along the
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pulled-back trajectory on N .

8.5 Geodesically complete manifolds

Definition 12. Let (M, g) be a Riemannian manifold. We say that (M, g) is geodesically
complete if the domain of definition of all geodesic can be extended to R.

A geodesically complete manifold does not have boundary or singular point that can
be reached in finite time. A fundamental result is Hopf-Rinow theorem:

Theorem 8. Let (M, g) be a connected Riemannian manifold. Then the following state-
ments are equivalent:

I. The closed and bounded subsets of M are compact.

II. M is a complete metric space for the distance:

d(x, y) = infγ

∫ 1

0
gγ(t) (γ̇(t), γ̇(t)) dt

where the infimum is taken of all smooth curves γ : [0, 1]→M such that γ(0) = x

and γ(1) = y.

III. M is geodesically complete; that is, for every p ∈M, the exponential map is defined
on the entire tangent space TpM.

This theorem also implies that for any two points there exists a length minimizing
geodesic between these two points. It connects the domain of definition of geodesics with
the properties of the metric space itself.

8.6 Geodesics, Riemannian logarithms and geodesic
completeness when M = R

We show some analytical results whenM = R. We work in this subsection in coordinates
in the canonical chart of R. In this setting, the metric is a smooth positive function
g : R→ R.

Lemma 6. Let g be a Riemannian metric on R. Then the geodesics of (R, g) are the
functions t 7→ F−1(at + b) for a, b ∈ R where F : M → F (M) is defined by x 7→∫ x

0

√
g(t)dt.
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Proof. There is a single Christoffel symbol which is Γ(x) = 1
2
g′(x)
g(x) for x ∈M (see equation

(8.13) in Appendix 8). The geodesic equation is

γ̈(t) + 1
2
g′(γ(t))
g(γ(t)) (γ̇(t))2 = 0.

Hence γ is a geodesic if and only if there exists a ∈ R such that

γ̇(t)
√
g ◦ γ(t) = a

for all t where γ is defined. We rewrite this (F ◦ γ)′(t) = a where F is defined on R by
F (x) =

∫ x
0

√
g(t)dt. Hence, γ is of the form γ(t) = F−1(at+ b). Conversely, the functions

of the form F−1(at+ b) are geodesics on (R, g).

Lemma 7 (Riemannian logarithm). Let g be a Riemannian metric on R, that we assume
geodesically complete. Let x, y ∈ M. By the Hopf-Rinow theorem (see Appendix 8.5),
since M is geodesically complete, there exists at least one length minimizing geodesic
connecting x to y. Let γ be such a geodesic with γ(0) = x, γ(1) = y that we assume
affinely parametrized. Then, expressed in the canonical coordinate chart on R, we have:

logx y =
∫ y
x

√
g(t)dt√
g(x)

.

Proof. We set F (p) =
∫ p
x

√
g(t)dt. Using Lemma 6, there exists a, b ∈ R such that γ(t) =

F−1(at + b). a and b satisfy F−1(b) = x and F−1(a + b) = y. This yields b = F (x) = 0
and a =

∫ y
x

√
g(t)dt. We now have:

γ′(0) = logx y = a(F−1)′(b) =
∫ y
x

√
g(t)dt√
g(x)

.

We now find a necessary and sufficient condition for (R, g) to be a geodesically complete
manifold. In the caseM = R, the interval of definition of any geodesic can be extended
to R if and only if the geodesic does not reach ±∞ in finite time. This is materialized in
the following Proposition.

Proposition 15. Let g be a Riemannian metric on R. We define F : R→ R by F (x) =∫ x
0

√
g(t)dt. (R, g) is geodesically complete if and only if:

lim
x→+∞

F (x) = +∞

lim
x→+∞

F (x) = −∞.

Proof. First, suppose that (R, g) is geodesically complete. Since F is monotonic, let us
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assume for instance, towards a contradiction, that lim
x→+∞

F (x) = M > 0. Then F is a
diffeomorphism from R onto ]a,M [ where a ∈ [−∞,M [. Then F−1 is defined on ]a,M [.
Let x ∈]a,M [, and consider the geodesic γ(t) = F−1(t). γ is not defined for all time since
it reaches +∞ in finite time. This is a contradiction.

Conversely, let us assume that lim
x→+∞

F (x) = +∞ and lim
x→+∞

F (x) = −∞. Let γ be
a geodesic on (R, g). Then there exists a, b ∈ R such that γ(t) = F−1(at + b). Since
lim

x→+∞
F (x) = +∞ and lim

x→+∞
F (x) = −∞ and F is smooth and monotonic, it is a diffeo-

morphism of R and its inverse is defined on R. Hence γ is defined for all time andM is
geodesically complete.

Finally, we prove that every metric g on R such that (R, g) is geodesically complete
can be obtained by pulling-back the Euclidean metric via a diffeomorphism of R:

Proposition 16. Let g be a smooth Riemannian metric on R such that R is geodesically
complete. Then, there exists Φ : R 7→ R diffeomorphism such that g is the pull-back of the
Euclidean metric by Φ.

Proof. We define, for t ∈ R:
Φ(t) =

∫ t

0

√
g(u)du

Φ is well-defined for all t ∈ R using Proposition 15, it is smooth since g is smooth. Now,
using (4.4), we notice that Φ∗(η)(p) = (Φ′)2 (p) = g(p). Finally, by the global inversion
theorem Φ is a diffeomorphism of R.
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Chapter 9

Large Deformation Diffeomorphic
Metric Mapping (LDDMM)

The Large Deformation Diffeomorphic Metric Mapping (LDDMM) framework was built
upon the idea that the comparison of shapes (images, meshes etc.) is best done by the
analysis of transformations between these shapes. Such transformations should not create
holes, and should not be allowed to fold the space, so they must be smooth bijections of
the space in which the shapes are embedded. The LDDMM framework offers a principled
way to generate such deformations.

We give a short introduction of this framework here. For mathematical details, please
refer to [106].

9.1 Flow of diffeomorphisms

Let d ∈ R – which is to be thought 2 or 3– the dimension of the ambient space. The
construction of diffeomorphisms is based on the integration of the flow of a time-varying
velocity field. One of the main result:

Theorem 9. Let v be a time-varying velocity field on an open bounded subset Ω of Rd

such that:

• v(t) is continuously differentiable for all t ∈ [0, 1].

• v(t) and Dv(t) vanish on ∂Ω and at infinity for all t ∈ [0, 1].

• v is absolutely integrable for the norm ‖ · ‖1,∞ (the sum of the supremum norms of
the partial derivatives of v of order 1 or less).

Then its flow Φv
st –its integration from s to t for s, t ∈ [0, 1] – is a diffeomorphism of Ω.

9.2 Admissible vector space

Following the previous result, to obtain a large collection of diffeomorphisms, one needs
a large collection of velocity fields satisfying the assumption of the previous Theorem.
Hence the definition:
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Definition 13. A Banach space V ⊂ C1
0(Ω,Rd) is admissible if it is canonically embedded

in C1
0(Ω,Rd) that is if there exists C ≥ 0 such that for all v ∈ V :

‖v‖V ≥ V ‖v‖1,∞

If V is an admissible vector space, we denote χ1
V (Ω) the set of absolutely integrable

time-dependent vector fields (v(t, t ∈ [0, 1]).
We are now ready for the second main result:

Theorem 10. Let V be admissible. Let GV = {Φv
01|v ∈ χ1

V (Ω)}. Then GV is a group for
the composition of functions.

Hence, the definition of an admissible vector space is enough to generate a group of
diffeomorphisms. Now the algorithmic aspects of this construction come into play. A way
to proceed now is to look at Reproducing Kernel Hilbert Spaces (RKHS).

9.3 The landmark manifold

The definition of the family of diffeomorphisms that we use in practice is a bit different
from this generic LDDMM framework. We fix a manifold of landmark (points) and map
this manifold onto a diffeomorphism space, using the integration of time-varying velocity
fields as an intermediate step. Details about this construction can be found in [23]. We
start with a definition

Definition 14. Let d ∈ N, let n ∈ N. We define:

M = {(x1, . . . , xn)|xi ∈ Rd ∀i ∈ {1, . . . , n}, xi 6= xj ∀i, j ∈ {1, . . . , n}} (9.1)

M is a smooth manifold. Now it is possible to equipM with a Riemannian metric:

Definition 15. K : Rdn × Rdn → R is a positive definite symmetric kernel if for all
c ∈M and all α ∈ TcM∗ we have:

∑
i

∑
j

K(ci, cj)α>i α ≥ 0

Proposition 17. Let α, β ∈ Rdn be co-tangent vectors to c ∈ M. Let K be a smooth
positive definite symmetric kernel. Then:

Kc(α, β) =
∑
i

∑
j

α>i K(ci, cj)βj (9.2)

is a Riemannian co-metric onM. We denote g the associated metric.
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Proof. g is smoothly varying and defines an inner product on TcM∗ for all c ∈M.

We now connect this construction to the notion of admissible spaces for diffeomorphic
flow.

Proposition 18. Let Ω be an open bounded subset of R. Let us consider the space of all
possible vector fields that can be generated when the control points c lie in Ω:

V = {x→ v(x) =
n∑
i=1

K(ci, x)αi|x1, . . . , xn ∈ Ω, α1, . . . αn ∈ Rd}

We equip V with the scalar product: < (c, α), (d, β) >V = ∑
i

∑
j α
>
i K(ci, dj)βj and denote

‖ · ‖V the corresponding norm. Then V is an admissible space of vector fields.

As mentioned above, this space is a RKHS and in the algorithmic aspects underlying
this construction, we benefit from the use of the kernel.

Definition 16. Let c ∈ M and α ∈ TcM. We denote Φc,α
t the diffeomorphism obtained

by integration of the time-varying velocity field:

v(t) = K(c(t), c(t))α(t) (9.3)

here c(t), α(t) is the geodesic γ and its momenta at time t with initial position c and
momenta α.

The operation Π : (c, α) 7→ Φc,α
1 maps control points and vectors to diffeomorphisms.

When we work with shapes and Riemannian geometry, we actually perform all compu-
tations on the landmark manifold (geodesics, parallel transport etc) and map back the
results to the diffeomorphism space after hand. Strictly speaking, we do not perform the
transport on a manifold of diffeomorphisms, but on the manifold of landmarks.

For details regarding the implementation of this LDDMM instance, we refer the reader
to [9]. A major improvement in the implementations came from the use of the PyTorch
library which enables both automatic differentiation and efficient GPU usage.
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