
HAL Id: tel-03243900
https://hal.science/tel-03243900v1

Submitted on 31 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Grammatical Approach for Distributed Business
Process Management using Structured and

Cooperatively Edited Mobile Artifacts
Milliam Maxime Zekeng Ndadji

To cite this version:
Milliam Maxime Zekeng Ndadji. A Grammatical Approach for Distributed Business Process Man-
agement using Structured and Cooperatively Edited Mobile Artifacts. Software Engineering [cs.SE].
Université de Dschang (Cameroun), 2021. English. �NNT : �. �tel-03243900�

https://hal.science/tel-03243900v1
https://hal.archives-ouvertes.fr

REPUBLIC OF CAMEROON
PEACE - WORK - FATHERLAND

UNIVERSITY OF DSCHANG

POST GRADUATE SCHOOL

UNITE DE RECHERCHE EN INFORMATIQUE FONDAMENTALE, INGENIERIE ET APPLICATIONS (URIFIA)

Thesis defended in public under the title “a grammatical approach to peer-to-peer cooperative editing

on a service-oriented architecture” for the award of a

Doctorate/PhD degree in Computer Science

Option:

Speciality:

By

Registration Number: CM04-10SCI1755

Master in Computer Science

Under the co-direction of

This thesis was defended on 28 May 2021 in front of the examination panel consisting of

Names, Grade and Affiliation Role

TIEUDJO Daniel, Full Professor, University of Ngaoundéré President

NKENLIFACK Marcellin Julius A., Associate Professor, University of Dschang Examinator

DJOTIO NDIE Thomas, Associate Professor, University of Yaoundé I Examinator

KOUAMOU Georges-Edouard, Associate Professor, University of Yaoundé I Examinator

TAYOU DJAMEGNI Clémentin, Full Professor, University of Dschang Reporter

TCHOUPE TCHENDJI Maurice, Senior Lecturer, University of Dschang Reporter

Year 2021

REPUBLIQUE DU CAMEROUN
PAIX - TRAVAIL – PATRIE

UNIVERSITE DE DSCHANG

ÉCOLE DOCTORALE

DSCHANG SCHOOL OF SCIENCES AND TECHNOLOGY

Full Professor, University of Dschang

Senior Lecturer, University of Dschang

TOPIC :

DEDICATION

I dedicate this work to all those who one day, saw the efforts they had put into a
project (especially an intense love relationship) being wiped out without a logical

explanation and who took it upon themselves, to ride the waves unleashed by
these storms, came out ten times stronger and developed an incredible desire to

live rather than die. Like your daily efforts, this work is in large part the result of
the knowledge that suffering has brought to me and thus, it contributes to prove
Friedrich Nietzsche’s aphorism: "what doesn’t kill you, makes you stronger".

i

ACKNOWLEDGEMENTS

Along the paths I followed during this thesis, I have gained a unique experience
and, I hope, the necessary maturity to aspire to the title of Doctor/PhD. Throughout
these years of work, I have come to realise that producing a thesis is far from
being a solitary labour. In order to go through this tunnel, one must be under the
benevolent escort of the Almighty Lord and of souls of good faith. I have benefited
from a multiform accompaniment of many persons, both physical and moral. I
would like them to find in this section, the expression of my deep gratitude. I
therefore thank very warmly:

- The LORD our God, creator of heaven and earth: in addition to my days, he
offers me every day, the necessary grace and strength to continue to glorify him.
Glory be to you, Holy Father!

- Dr TCHOUPÉ TCHENDJI MAURICE, Senior Lecturer at the Department of
Mathematics and Computer Science of the Faculty of Science of the University of
Dschang: he took the time to mentor me throughout this work, inculcating in me
his sense of commitment and organisation. Sir, I reiterate that you are my model.

- Pr TAYOU DJAMEGNI CLÉMENTIN, Head of the Computer Engineering De-
partment of the Institute of Technology - Fotso Victor of Bandjoun: it was under
difficult conditions that he agreed to supervise this work and to reward us with his
legendary positivism. I’m more than honoured to be one of your students, Sir.

- All the imminent members of my pre-hearing and defence juries: they agreed
to objectively evaluate this work. Thank you for the chance you are giving me,
gentlemen.

- Dr PARIGOT DIDIER, Senior Researcher on Programming Languages at IN-
RIA: he accompanied me during this thesis by his reviews, his points of view, his

ii

ACKNOWLEDGEMENTS iii

recommendations and his know-how in terms of software programming. I learned
a lot from your multiple contributions, Sir.

- The INRIA/LIRIMA FUCHSIA Associate Research Team: they welcomed me
when I needed it most and gave me a chance to express myself. Working with you
guys is a lifelong dream.

- The lecturers at the University of Dschang: they contributed enormously to my
education. As education is priceless, I can only express my gratitude.

- My parents, NDADJI EMMANUEL and MAFFOZEMTSOP MARIE: they gave
me everything. I love you infinitely.

- My brothers, sisters, friends and colleagues (Nani, Chance, Alex, Arnold, Brice,
Ariège, Brel, Doris, Audrey, Fabrice, Rodrigue, Virginie, Emeric, Nestor, Preston,
Yann, Max, Ange, Lionel, etc.): I live only by you and for you (uh, for me too ;-)).

- My dear BANGUKET T. NINA: she proofread and corrected the typos in all my
English documents. Now I can write a correct sentence in English, thanks to you.

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

TABLE OF CONTENTS

Dedication . i
Acknowledgements . ii
Table of Contents . iv
Abstract . viii
List of Acronyms . ix
List of Tables . x
List of Figures . xi
List of Algorithms . xiv

General Introduction 1
The Emergence of Business Process Management 1
The Mitigated Use of Business Process Management 3
Our Global Vision . 5
The Challenge Addressed in this Thesis 6
A Synoptic View of our Methodology and Engineering 8
The Organisation of this Manuscript . 12

Chapter I � A State of the Art in Business Process Management: the
Artifact-Centric Modelling 14

I.1 - Introduction . 14
I.2 - Key Principles of Business Process Management 16

I.2.1 - Some Business Process Management Basic Concepts 16
I.2.1.1 - Some Definitions . 16
I.2.1.2 - An Introductive Example of Business Process 17
I.2.1.3 - Workflow Typology 19

I.2.2 - Business Process Management Lifecycle and Key Activities . . 22
I.2.2.1 - Business Process Management Lifecycle 22
I.2.2.2 - The "Model" Activity 23
I.2.2.3 - The "Enact" Activity 26

I.3 - Peer to Peer Business Process Management 29
I.3.1 - The Advent of the Multiagent and Service-Oriented Concepts . 30

iv

CONTENTS v

I.3.1.1 - The Multiagent Concept 30
I.3.1.2 - The Service-Oriented Architecture 32

I.3.2 - Some Existing Distributed WfMS 35
I.3.2.1 - Some Partially Distributed WfMS 36
I.3.2.2 - Some Fully Distributed WfMS 38

I.4 - Artifact-Centric Business Process Management 44
I.4.1 - Artifact-Centric BPM Basic Concepts 44

I.4.1.1 - The Aim of Artifact-Centric BPM 44
I.4.1.2 - How the Artifact-Centric Approach to BPM Works . . 45

I.4.2 - Some Existing Artifact-Centric BPM Frameworks 47
I.4.2.1 - Some Purely Artifact-Centric BPM Frameworks . . . 47
I.4.2.2 - A Guarded Attribute Grammars Based Framework to

Data-Centric Case Management 50
I.5 - Summary . 54

Chapter II � A Workflow for Structured Documents’ Cooperative Edit-
ing : Key Principles and Algorithms 56

II.1 - Introduction . 56
II.2 - Basic Concepts on Cooperative Editing Workflows 58

II.2.1 - Real-Time Cooperative Editing Workflows 58
II.2.2 - Asynchronous Cooperative Editing Workflows 59
II.2.3 - Badouel and Tchoupé’s Cooperative Editing Workflow 60

II.3 - Tree Automata for Extracting Consensus from Partial Replicas of a
Structured Document . 62

II.3.1 - Structured Cooperative Editing and Notion of Partial Replication 62
II.3.1.1 - Structured Document, Editing and Conformity 62
II.3.1.2 - Notions of View, Projection, Reverse Projection and

Merging . 67
II.3.2 - Reconciliation by Consensus 69

II.3.2.1 - Issue and Principle of the Solution of Reconciliation
by Consensus . 69

II.3.2.2 - Consensus Calculation 70
II.3.2.3 - Illustration . 77

II.4 - A Software Architecture for Centralised Management of Structured
Documents in a Cooperative Editing Workflow 83

II.4.1 - The Proposed Architecture 84
II.4.1.1 - Overall Operations 84

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

CONTENTS vi

II.4.1.2 - Server Architecture 84
II.4.1.3 - Client Architecture 86
II.4.1.4 - The Middleware . 86

II.4.2 - TinyCE v2 . 86
II.4.2.1 - Presentation of TinyCE v2 86
II.4.2.2 - Java-Haskell Cross-Fertilisation in TinyCE v2 87

II.5 - Summary . 89

Chapter III � A Choreography-like Workflow Design and Distributed
Execution Framework Based on Structured Mobile Artifacts’ Coop-
erative Editing 90

III.1 - Introduction . 90
III.2 - Overview of the Artifact-Centric Model Presented in this Thesis . . 92

III.2.1 - A Description of the Artifact-Centric Model Presented in this
Thesis . 92

III.2.2 - The Running Example: the Peer-Review Process 94
III.2.2.1 - Description of the Peer-Review Process 94
III.2.2.2 - Overview of the Peer-Review Process Artifact-Centric

Execution using the Model Presented in this Thesis 95
III.3 - Modelling Artifacts . 96

III.3.1 - Artifacts’ Structure . 96
III.3.2 - Target Artifacts and Grammatical Model of Workflow 97
III.3.3 - Artifact Type and Artifact Edition 99

III.3.3.1 - Modelling the Information Model of Processes with
GMWf . 99

III.3.3.2 - Artifact Type . 100
III.3.3.3 - Artifact Edition . 101

III.4 - Agent and choreography . 103
III.4.1 - Relations between Agent, Actor and Choreography 103
III.4.2 - Structure of an Agent . 103

III.4.2.1 - The Local Workflow Engine 103
III.4.2.2 - The Storage Device 104
III.4.2.3 - The Specialised Editor 104

III.4.3 - Concepts of Accreditation, Partial Replica of an Artifact and
Local GMWf . 105

III.4.3.1 - Concept of Accreditation 105
III.4.3.2 - Concept of Partial Replica of an Artifact 107

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

TABLE OF CONTENTS vii

III.4.3.3 - The Need of a Local GMWf 110
III.4.4 - The Artifact-Centric Choreography 114

III.4.4.1 - Initial Configuration of an Agent 114
III.4.4.2 - The Execution Choreography and Agent’s Behaviour 115
III.4.4.3 - The Protocols . 115

III.5 - Illustrating the Choreography on the Peer-Review Process 123
III.6 - Experimentation . 126

III.6.1 - P2PTinyWfMS: an Experimental Prototype System 127
III.6.2 - Executing our Running Example under P2PTinyWfMS . . . 129

III.7 - Related Works and Discussion . 130
III.8 - Summary . 132

General Conclusion 134
Recall of this Thesis’ Challenge and of our Methodological Choices . . . 134
A Critical Analysis of the Performed Work 136
Some Perspectives . 139

Bibliography 143

Appendix A � Implementation of Some Important Algorithms Presented
in this Thesis 155

Appendix B � List of Publications Issued from the Work Presented in this
Thesis 158

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

ABSTRACT

In this thesis, we focus on the proposal of distributed workflow systems dedicated
to the automation of administrative business processes. We propose an approach
to build such systems by relying on the concepts of multiagent systems, Peer to
Peer (P2P) architecture, Service-Oriented Architecture (SOA) and structured doc-
uments (artifacts) cooperative edition. Indeed, we develop mathematical tools that
allow any workflow systems designer, to express each administrative process in
the form of an attributed grammar whose symbols represent tasks to be executed,
productions specify a scheduling of these tasks, and instances (the derivation trees
that conform to it) represent the different execution scenarios leading to business
goal states. The obtained grammatical model is then introduced into a proposed
P2P system which is in charge of carrying out the completely decentralised execu-
tion of the underlying process’s instances. The said system orchestrates a process’s
instance execution as a choreography during which, various software agents driven
by human agents (actors), coordinate themselves through artifacts that they collec-
tively edit. The exchanged artifacts represent the system’s memory: they provide
information on already executed tasks, on those ready to be executed and on their
executors. The software agents are autonomous and identical: they execute the
same unique protocol each time they receive an artifact. This protocol allows them
to identify the tasks they must immediately execute, to execute them, to update
the artifact and to disseminate it if necessary, for the continuation of the execu-
tion. Moreover, actors potentially have only a partial perception of processes in
which they are involved. In practice, this means that certain tasks can be carried
out confidentially: this property makes it possible to offer automatic management
of administrative processes that is a little closer to their non-computerised manage-
ment.

Keywords: Administrative Workflows, Artifacts, Peer to Peer, Partial Replication,
Business Process Management.

viii

LIST OF ACRONYMS

AST Abstract Syntax Tree
BPM Business Process Management

BPMN Business Process Model and Notation
CDML Component Description Meta Language
CSCW Computer-Supported Cooperative Work

P2P Peer to Peer
DS(E)L Domain Specific (Embeded) Language

DTD Document Type Definition
GMAWfP a Grammatical Model of Administrative Workflow Pro-

cess
GMWf Grammatical Model of Workflow

LSAWfP a Language for the Specification of Administrative
Workflow Processes

(L)WfE (Local) Workflow Engine
P2PTinyWfMS a Peer-to-Peer Tiny Workflow Management System

SOA Service Oriented Architecture
SON Shared-Overlay Network

TinyCE a Tiny Cooperative Editor
WfM(S) Workflow Management (System)
WF-Net Workflow Net

(WS-)BPEL (Web Services) Business Process Execution Language
XML eXtensible Markup Language

YAWL Yet Another Workflow Language

ix

LIST OF TABLES

I - Exhaustive tasks list of a paper validation process in a scientific journal
and their respective performers. 19

II - The transition schemas for the view {A,B}. 79
III - The tree automaton associated to the replica tv1. 80
IV - The transition schemas for the view {A,C}. 80
V - The tree automaton associated to the replica tv2. 81
VI - The consensual tree automaton. 82

VII - Accreditations of the different agents taking part in the peer-review
process. 106

VIII - Local GMWf productions of all the agents involved in the peer-review
process. 114

x

LIST OF FIGURES

1 - A synoptic view of our methodology. 8

2 - Classification of workflows according to whether they are human-oriented
or system-oriented (source (Georgakopoulos, F. Hornick, and P. Sheth,
1995)). 20

3 - The three phases of BPM’s lifecycle (source (Van Der Aalst, 2013)). . . 23
4 - The four key activities of BPM (source (Van Der Aalst, 2013)). 24
5 - Four basic routing constructs (source (Van Der Aalst, 1998)). 25
6 - Orchestration diagrams of the peer-review process. 26
7 - Reference model of the Workflow Management Coalition (source (WfMC,

1995)). 28
8 - The basic Service-Oriented Architecture (source (Papazoglou, 2003)). . 33
9 - Overview of a P2P application development process with SON (source

(Lahcen and Parigot, 2012)). 35
10 - An ADEPT environment (source (Jennings, 1996)). 36
11 - The workflow execution process in EvE (source (Geppert and Tombros,

1998)). 38
12 - The METEOR2 architecture (source (Das, Kochut, Miller, Sheth, and

Worah, 1997)). 39
13 - A P2P workflow architecture (source (Fakas and Karakostas, 2004)). . 41
14 - A high-level view of SwinDeW’s architecture (source (Yan, Yang, and

Raikundalia, 2006)). 42
15 - Structure of a peer in SwinDeW (source (Yan et al., 2006)). 43
16 - Graphical representation of the proclet-based framework (source (Van

Der Aalst, Barthelmess, Ellis, and Wainer, 2001)). 48
17 - An example of interoperation using an artifact-centric hub (source

(Hull, Narendra, and Nigam, 2009)). 49
18 - Active workspace of a clinician (source (Badouel, Hélouët, Kouamou,

Morvan, and Fondze Jr, 2015)). 52
19 - Artifact edition in AWGAG (source (Badouel et al., 2015)). 53

xi

LIST OF FIGURES xii

20 - A BPMN orchestration diagram sketching a cooperative editing work-
flow of a structured document according to Badouel and Tchoupé. . . 61

21 - Example of an indexed tree. 63
22 - Example of a tree that contains buds. 64
23 - Example of projections made on a document and partial replicas obtained. 67
24 - Example of documents in conflict. 71
25 - Document resulting from the consensual merging of the documents in

figure 24. 72
26 - An edition with conflicts and corresponding consensus. 78
27 - Linearisation of a tree (tv1): the Dyck symbols ’(’ and ’)’ (resp. ’[’ and

’]’) have been associated with the grammatical symbol A (resp. B). . . 79
28 - Consensual trees generated from the automaton A(sc) 83
29 - A software architecture (three-tiers) for centralised management of

structured documents’ cooperative editing workflows. 85
30 - Some screenshots showing the creation process of a cooperative editing

workflow in TinyCE v2. 87
31 - Some screenshots of TinyCE v2 showing the authentication window of

a co-author (Auteur1) as well as those displaying the various local and
remote workflows in which he is implicated. 88

32 - An illustration of consensual merging in TinyCE v2. 88

33 - An overview of the artifact-centric BPM model presented in this chapter. 93
34 - An overview of the artifact-centric execution of the peer-review process

using the model presented in this chapter. 96
35 - Target artifacts of a peer-review process. 97
36 - An intentional representation of an annotated artifact containing buds. 101
37 - An example of artifact edition: the bud Cω is extended in a subtree. . . 102
38 - Simplified architecture of an agent. 104
39 - Example of projections made on an artifact and partial replicas obtained. 108
40 - Example of projection of a GMWf according to a given view. 112
41 - Activity of an agent in the system. 116
42 - Some scenarios to be managed during the expansion. 121
43 - Beginning of the peer-review process on the editor in chief’s site. . . . 124
44 - Continuation of the peer-review process execution on the associated

editor’s site; the latter receives the request formulated by the editor in
chief. 125

45 - Continuation of the peer-review process execution on the first referee’s
site: the request of the associated editor arrives at the first referee. . . . 126

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

LIST OF FIGURES xiii

46 - Continuation of the peer-review process execution: the associated editor
receives answers from referees, to requests that he has previously made. 127

47 - Continuation and end of the peer-review process execution: the editor
in chief receives a response containing referees’ contributions, from the
associated editor. 128

48 - P2pTinyWfMS on the editor in chief’s site: presentation of the GMWf
(the tasks and their relations, the actors and their accreditations). . . . 129

49 - P2pTinyWfMS on the associated editor’s site: receipt of editor in
chief’s request, execution of tasks, expansion-pruning, and diffusion. . 130

50 - P2pTinyWfMS on the editor in chief’s site: reception of the associated
editor’s response, execution of tasks, expansion-pruning and end of the
case. 130

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

LIST OF ALGORITHMS

1 - A Haskell type for automata with exit states. 73
2 - A Haskell function to check if two states of a given automaton are in

conflict. 74
3 - A Haskell function used to check if two given automata admit a consensus. 74
4 - Consensus Listing. 76
5 - Algorithm to project a given artifact according to a given view. 109
6 - Algorithm to project a given GMWf according to a given view. 111
7 - Merger protocol executed by an agent i. 117
8 - Replication protocol executed by an agent i. 117
9 - Execution protocol executed by an agent i. 118
10 - Expansion-Pruning protocol executed by an agent i. 119
11 - Algorithm to search a merging guide. 120
12 - Three-way merging algorithm. 120
13 - Diffusion protocol executed by an agent i. 123

xiv

GENERAL INTRODUCTION

CONTENTS
The Emergence of Business Process Management 1
The Mitigated Use of Business Process Management 3
Our Global Vision . 5
The Challenge Addressed in this Thesis 6
A Synoptic View of our Methodology and Engineering 8
The Organisation of this Manuscript . 12

The Emergence of Business Process Management

Business Process Management (BPM) has received considerable attention in
recent years due to its potential for significantly increasing productivity and sav-
ing costs. It is defined by Wil M. P. Van Der Aalst (2013) as "the discipline that
combines knowledge from information technology and knowledge from manage-
ment sciences and applies this to operational business processes". BPM aims to
improve business processes by focusing on their automation, their analysis, their
involvement in decision-making operations (management) and the organisation of
work. Hence, BPM is often accompanied by software to manage, control and sup-
port business processes: these software systems are called Workflow Management
Systems (WfMS) (Georgakopoulos et al., 1995; IMA, 2002).

The BPM discipline emerged in the 1980s in a more restrictive form known as
Workflow Management (WfM). Before WfM was developed, information systems
were built from scratch; it means that, all components of such systems had to be
programmed, including data storage and retrieval (Van Der Aalst, 1998). Software
vendors soon realised that many information systems had similar data management
requirements. This generic functionality was therefore outsourced to a data man-
agement system. Subsequently, the generic functionality related to user interaction

1

THE EMERGENCE OF BUSINESS PROCESS MANAGEMENT 2

(forms, buttons, graphics, etc.) was outsourced to user interfaces generators. The
trend to outsource recurring functionalities to generic tools has continued in differ-
ent areas. It is in this context that WfM has been introduced. Precisely, a WfMS
automatically manages the process-related aspects (Georgakopoulos et al., 1995;
Van Der Aalst, 2013) of information systems. The aim of WfM in the design of
information systems is to simplify as much as possible, the modelling and man-
agement of the business processes they automate: traditionally, this modelling and
management are reduced to the specification of processes using simple graphical
languages called workflow languages.

Across the years, WfM has evolved into BPM. While WfM focused primarily
on the automation of business processes, i.e. it was not fundamentally interested
in other issues such as the analysis, verification and maintenance of their specifi-
cations, BPM made it its foundation (Van Der Aalst, La Rosa, and Santoro, 2016).
With this evolution, many tools and techniques have been developed and have al-
lowed the BPM field to mature. Today, its relevance is recognised by practitioners
(users, managers, analysts, consultants and software developers) and academics.
The availability of many BPM systems (WfMS) and a series of BPM-related con-
ferences is proof of this (Van Der Aalst, 2013).

With the evolution of WfM and the development of new concepts related to
the implementation of collaborative software systems, namely Peer-to-Peer (P2P)
computing, multiagent paradigm and Service-Oriented Architecture (SOA), the
way of designing and implementing WfMS has also evolved. There has been
a shift from centralised systems implemented according to a reference architec-
tural model (WfMC, 1995), to fully distributed systems offering decentralised
workflow execution (Fakas and Karakostas, 2004; Meilin, Guangxin, Yong, and
Shangguang, 1998; Yan et al., 2006). New paradigms of specification and man-
agement of business processes have been developed too. Among these, we find
the document-centric (Badouel and Tchoupé Tchendji, 2008; Krishnan, Munaga,
and Karlapalem, 2001; Marchetti, Tesconi, and Minutoli, 2005), the email-based
(Burkhart, Werth, and Loos, 2012; Gazzé, La Polla, Marchetti, Tesconi, and Vi-
valdi, 2012), the database-based (Medina-Mora, Winograd, Flores, and Flores,
1993; Miao, Zhou, and Tao, 2011), the artifact-centric (Hull et al., 2009; Lohmann
and Wolf, 2010; Nigam and Caswell, 2003), the data-centric (Badouel et al., 2015;
Damaggio, Hull, and Vaculín, 2013) paradigms, etc. The artifact-centric paradigm
has been the subject of several studies over the last two decades (Assaf, 2016;
Assaf, Badr, and Amghar, 2017; Assaf, Badr, El Khoury, and Barbar, 2018; Boaz,
Limonad, and Gupta, 2013; Deutsch, Hull, and Vianu, 2014; Estanol, Queralt, San-

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

THE MITIGATED USE OF BUSINESS PROCESS MANAGEMENT 3

cho, and Teniente, 2012; Hull et al., 2009; Lohmann and Nyolt, 2011; Lohmann
and Wolf, 2010); it has been very successful because it has enabled the develop-
ment of much more flexible workflow languages, that treat process data as first-
class citizens, as opposed to the existing languages (BPMN - Business Process
Model and Notation (Model, 2011) -, YAWL - Yet Another Workflow Language
(Van Der Aalst, 1998; Van Der Aalst and Ter Hofstede, 2005) -, etc.), that were
only concerned with process tasks scheduling and assignment to actors. All these
concepts’ evolution and this involvement of many technologies in workflow sys-
tems’ engineering, has made the BPM field, one of the most attractive for software
vendors and software engineering researchers.

The Mitigated Use of Business Process Management

The BPM discipline has quickly established itself as an indispensable solution
to the process automation needs of large firms, which often involve production lines
(Van Der Aalst et al., 2016). Indeed, the workflows encountered in this context
are generally highly structured and their tasks are almost entirely automated (exe-
cuted by machines); this greatly "simplifies" their management by BPM. Another
field of application in which BPM tends to naturally impose itself, is that of sci-
ence. Indeed, the management (storage, distribution, computation, analysis, etc.)
of generally very voluminous scientific data, involves several human and material
resources that are often distributed across organisations (Bell, Hey, and Szalay,
2009). With the help of cloud computing, BPM in this context, serves to organ-
ise these resources for a more efficient management of scientific data (Juve et al.,
2013; Ludäscher et al., 2006). In these two application contexts, the systems’ com-
plexity due to the large amount of data to be managed and to the time-consuming
and intensive computations requiring computer support, as well as the multiplicity
and the distributivity of the involved resources, have somehow "imposed" the use
of BPM.

Although in its current state BPM could be applied very successfully in the
context of organisations with so-called administrative business processes (i.e. pro-
cesses whose tasks are often semi-automated and therefore require the expertise
of human agents - they are then more complex to automate using generic frame-
works) (Boukhedouma, 2015), there is less enthusiasm for it (Dumas, 2015; Van
Der Aalst et al., 2016); information systems using classical database management
concepts and tailored to the use cases involved, are often preferred. In some cases,
such information systems are inspired by some BPM concepts or they embed work-

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

THE MITIGATED USE OF BUSINESS PROCESS MANAGEMENT 4

flow engines to make limited use of them: this is the case of Enterprise Resource
Planning (ERP) systems such as SAP S/4HANA1 and Oracle Fusion Applications
(OFA)2 (Van Der Aalst, 2013; Van Der Aalst et al., 2016). Therefore, the appli-
cation of "pure" BPM is still limited to specific industries such as banking and
insurance. This mitigated use of BPM for the automation of quite common admin-
istrative processes can be explained by the following factors:

• Building process management systems is considerably more "tricky" than
building information systems using classical database management. In database-
based information systems, a specific number of processes whose behaviours
are known in advance are designed and automated, whereas in process man-
agement, systems are designed and implemented to offer a generic manage-
ment of an arbitrary set of processes with behavioural similarities. To quote
Wil M. P. Van Der Aalst (2013), "BPM is multifaceted, complex, and difficult
to demarcate"; it is therefore not accessible to everyone and requires from its
practitionners : great capacities of reasoning, logical abstraction, generalisa-
tion and architectural design (Georgakopoulos et al., 1995).

• Existing BPM solutions are too abstract and generic. As a result, compared
to traditional information systems, they are less suitable for certain appli-
cations such as the exclusive management of administrative processes, that
have a variety of specifications depending on organisations (Börger, 2012;
Van Der Aalst, 2013; Zur Muehlen and Recker, 2013).

• There is no real consensus on BPM implementation techniques and tools.
BPM is composed by a multitude of paradigms and tools. Even if an effort of
standardisation has been made in recent years, WfMS vendors seem to prefer
the development of multiple proprietary solutions (Van Der Aalst, 2013); in
our opinion, this has the effect of reducing BPM credibility.

Because they offer enormous benefits in terms of time saving, implementation
cost and system complexity management, we believe that there is a need to better
adapt workflow solutions for administrative processes’ management, which seem
to be the most frequently encountered (Dumas, Van Der Aalst, and Ter Hofstede,
2005; McCready, 1992; Van Der Aalst, 1998). Naturally, we are not the first to take
an interest in this issue; the authors of (Dumas, 2015) and (Van Der Aalst et al.,
2016) have established that the potential obstacle to the popularisation of workflow

1. Official website of SAP: https://www.sap.com/, visited the 19/03/2020.
2. Official website of Oracle ERP: https://www.oracle.com/applications/erp/, visited the

19/03/2020.

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

https://www.sap.com/
https://www.oracle.com/applications/erp/

OUR GLOBAL VISION 5

solutions, is the imbalance of research work on the different BPM aspects. Indeed,
they believe that research has focused too much on BPM specific artifacts (such as
process models) rather than on improving organisations’ business processes: this
does not meet the real use and needs of BPM practitioners. They therefore propose
to address now the issue of business process improvement, in order to give even
more reasons to organisations regarding the choice of BPM for their processes
management. This perspective is shared by a plurality of researchers; hence their
growing interest in the new field of process mining3 (Van Der Aalst, 2011).

Although the idea of improving business processes by analysing the data pro-
duced during their execution is interesting, we believe that it does not answer the
question that we are struggling with: how can we get information system users
(organisations and software vendors) to systematically opt for BPM technology to
automate their processes ? Indeed, data analysis is posterior to the users’ choice
of a technology to produce these data. Moreover, the question of improving busi-
ness processes seems really interesting for use cases where these processes are very
complex; it is not always the case for administrative processes.

Our Global Vision

Because the benefits of BPM are now widely recognised and unanimously ac-
cepted, we believe that it would be more interesting to tackle the problem of its
popularisation for administrative business processes automation, by improving its
technology as it stands at present. Therefore, it would be a matter of:

1. Making more accessible, the automation of administrative business processes
using BPM. We believe that if the implementation of workflow systems for
administrative business processes is simplified, then more and more software
vendors will choose it to produce organisations’ information systems.

2. Adapt BPM technology so that it is less abstract and evasive, so that it is
closer to that of classical information systems, and so that it can respond to
specific problems of organisations.

We believe that one way to achieve these goals, is to apply the domain-specific
software engineering (Bryant, Gray, and Mernik, 2010) to BPM and thus, to focus
on a kind of Domain-Specific BPM: that is the application of BPM techniques in

3. Process mining is one of the leading techniques conducting workflows’ event data automatic analysis,
for possible improvement of its corresponding workflow model (Van Der Aalst, 2013).

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

THE CHALLENGE ADDRESSED IN THIS THESIS 6

specific domains of activity, thus respecting the constraints imposed by them, and
offering a framework which best fits the needs of practitioners in these domains. In
this thesis therefore, we must use BPM exclusively for the automation of adminis-
trative business processes: it is not a matter of reinventing the wheel (even if some
new concepts are added) but rather of reproducing and adapting in the more con-
strained context of administrative business processes management, what is already
being done in BPM, while introducing new concepts and making judicious choices
to achieve the desired goals.

As far as we know, there are no other scientific studies that have focused exclu-
sively on the automation of administrative processes. On the other hand, there is
a growing effort among workflow solution providers to popularise administrative
BPM. Precisely, they increasingly offer to organisations, cloud-based and flexible
process management solutions such as Metatask4, Samepage5, Digital Business
Transformation Suite6, Favro7, etc. Let us mention that there are studies focused
on adapting BPM technologies to scientific data management exclusively (Domain-
specific BPM): these gave birth to the field of scientific workflows (Bell et al., 2009;
Juve et al., 2013; Ludäscher et al., 2006).

The Challenge Addressed in this Thesis

In this thesis, we are interested in the automation of administrative business
processes (exclusively) using BPM technology. The idea is to use the most up-
to-date paradigms already developed in the implementation of workflow systems,
to produce a new approach for the specification and execution of administrative
business processes. Nowadays, the most common paradigms and concepts used in
the implementation of workflow management approaches include:

• Artifact-centric paradigm: it is the most successful BPM paradigm of the
last two decades; it simplifies the specification of a business process, to the
instantiation of a data structure called artifact, whose state evolves into a
business goal state when executing process instances.

• Cooperative edition of documents: in the artifact-centric paradigm, an arti-
fact can be seen as a structured document containing the execution state of a

4. Official website of Metatask: https://metatask.io/, visited the 29/03/2020.
5. Official website of Samepage: https://www.samepage.io/, visited the 29/03/2020.
6. Official website of Digital Business Transformation Suite: https://www.interfacing.com/, visited

the 29/03/2020.
7. Official website of Favro: https://learn.favro.com/, visited the 29/03/2020.

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

https://metatask.io/
https://www.samepage.io/
https://www.interfacing.com/
https://learn.favro.com/

A SYNOPTIC VIEW OF OUR METHODOLOGY AND ENGINEERING 7

process instance at a given time. Because the evolution of the state contained
in it is the consequence of actions carried out by the different actors involved
in the considered instance’s execution, this execution can be assimilated to
the cooperative edition of structured documents.

• Peer to Peer computing: workflow systems increasingly rely on P2P architec-
tures; as opposed to centralised systems, they facilitate scalability and fault
tolerance (Fakas and Karakostas, 2004; Tlili, 2011; Yan et al., 2006).

• Multiagent paradigm: the multiagent paradigm was developed to facilitate
the creation of distributed systems, especially those based on P2P architec-
tures. It is also increasingly used in workflow systems, where process tasks
are now executed by agents that communicate through messages; these agents
have a high degree of autonomy to allow better decentralisation of process
management.

• Service-Oriented Architecture: in decentralised workflow management sys-
tems based on P2P architectures, the concept of SOA is generally used to
define communication protocols between agents and to increase their auton-
omy by implementing a loose coupling between them.

We combine these concepts to produce a workflow solution that best suits the
automation of administrative business processes. Because this project is much too
voluminous to be addressed in the context of a single PhD thesis, we will focus
herein, only on the fundamental aspects: administrative process modelling and
their distributed execution. One could summarise the main objective of this thesis
by saying that it focuses on:

The proposal of a new artifact-centric framework, facilitating the mod-
elling of administrative business processes and the completely decen-
tralised execution of the resulting workflows; this completely decen-
tralised execution being provided by a P2P system conceived as a set
of agents communicating asynchronously by service invocation so that,
the execution of a given workflow instance is technically assimilated to
the cooperative edition of (mobile) structured documents called arti-
facts.

This justifies the title of this thesis. We should however admit that, a title like "yet
another approach to facilitate administrative workflows design and distributed

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

A SYNOPTIC VIEW OF OUR METHODOLOGY AND ENGINEERING 8

execution using structured and cooperatively edited mobile artifacts" would cer-
tainly have better reflected the work done8.

A Synoptic View of our Methodology and Engineering

Figure 1 – A synoptic view of our methodology.

Figure 1 summarises the methodology and chronology we used to complete
this thesis work. We started by studying a plethora of concepts including, the key
concepts presented in chapter I. Then, we reinforced our knowledge on some other
concepts, especially those related to the implementation of distributed systems (see
fig. 1(1)). Having a better knowledge on BPM, especially on the artifact-centric
paradigm, we undertook the design of a new artifacts’ model; the search for such a
model led us to an extensive study of structured cooperative editing workflows. In
particular, we studied the structured documents asynchronous cooperative editing
model proposed by Badouel and Tchoupé (2008) so well that, we extended it with
three new contributions (see chapter II). Based on the document model manipulated

8. Although this is the title that best suits our work, academic constraints have "forced" us to keep the
one currently in use (A Grammatical Approach to Peer-to-Peer Cooperative Editing on a Service-Oriented
Architecture). Indeed, it is with this last one that we applied for a thesis in our doctoral school; at the time
when we were certain of the judicious title for our work, the legal texts governing the PhD thesis in our
institution, no longer allowed us to make changes to the title of our thesis.

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

A SYNOPTIC VIEW OF OUR METHODOLOGY AND ENGINEERING 9

by Badouel and Tchoupé, we derived an artifact model (an attributed grammar) that
can be used to specify administrative business processes. We then designed a P2P
system based on communicating agents using a service-oriented model, capable
of executing in a completely decentralised manner, administrative processes spec-
ified using the proposed artifact model. To demonstrate the concreteness of our
artifact-centric model, we finally implemented a fully functional prototype system
allowing to experiment the proposed models on various administrative processes
(see chapter III). As a result, we count at least six major contributions in this the-
sis:

1. An extension of the merge algorithm proposed by Badouel and Tchoupé for
the cooperative edition of a structured document, so that it can be applied
in the more general case where edition conflicts might appear. It should be
noted that this contribution was initiated in our Master’s work before being
fully matured during our first year of thesis. Some of the elements presented
here are therefore part of our Master’s dissertation;

2. A generic system architecture that can be used to produce workflow systems
for the cooperative editing of structured documents based on the Badouel and
Tchoupé extended model;

3. A workflow system prototype referred to as TinyCE v2 (a Tiny Cooperative
Editor version 2), coded in Java and Haskell following the proposed system
architecture and a novel cross-fertilisation protocol. It allowed us to test all
the proposed algorithms related to the merge of documents’ replicas;

4. Another tree-based model of "business artifact" for administrative processes
modelling, which makes it possible to better assimilate them to structured
documents edited cooperatively;

5. A choreography-oriented artifact-centric workflow execution model in which
geographically dispersed agents execute the same and unique update (editing
of artifact upon receipt) and diffusion (dissemination of updates) protocol;

6. A prototype of a distributed system referred to as P2PTinyWfMS (a Peer-to-
Peer Tiny Workflow Management System), allowing to fully experiment the
artifact-centric approach investigated in this thesis.

More concretely, in the asynchronous cooperative editing workflow as per-
ceived by Badouel and Tchoupé, each of the co-authors receives in the different

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

A SYNOPTIC VIEW OF OUR METHODOLOGY AND ENGINEERING 10

phases of the editing process, a copy of the edited document to insert his contribu-
tion. Since the collectively edited document is structured, it may in some cases, be
preferable for reasons of confidentiality for example, that a co-author has access
only to certain information; meaning that, he only has access to certain parts of the
document, belonging to certain given types (sorts9) of the document model. Thus,
the replica tVi

edited by co-author ci from the site i may be only a partial replica of
the (global10) document t, obtained via a projection operation, which conveniently
eliminates from the global document t, parts which are not accessible to the co-
author in question. Badouel and Tchoupé call view of a co-author, the set of sorts
that he can access.

When asynchronous local editions are done on partial replicas, it can be as-
sumed that each co-author has on his site a local document model guiding him in
his edition. This local model can help to ensure that for any update tma j

Vi
of a par-

tial replica tVi
(conform to the considered model), there is at least one document tc

conform to the global model so that tma j
Vi

is a partial replica of tc: for this purpose,
the local model should be coherent towards the global one11. Thus, because of the
edition’s asynchronism, the only inconsistencies that we can have when the syn-
chronisation time arrives are those from the concurrent edition of the same node12

(in the point of view of the global document) by several co-authors: the partial
replicas concerned are said to be in conflict. In its first contribution, this thesis
proposes an approach of detection and resolution of such conflicts by consensus,
using a tree automaton said of consensus, to represent all the documents that are
the consensus of competing editions realised on different partial replicas.

A structured document t is intentionally represented by a tree that possibly con-
tains buds13. Intuitively, synchronise or merge consensually the updates tma j

V1
, . . . , tma j

Vn

of n partial replicas of a document t, consists in finding a document tc conform to
the global model, integrating all the nodes of tma j

Vi
not in conflict and in which, all

the conflicting nodes are replaced by buds. Consensus documents are therefore the
largest prefixes without conflicts in merged documents. Technically, the process

9. A sort is a datum used to define the structuring rules (syntax) in a document model. Example: a non-
terminal symbol in a context free grammar, an ELEMENT in a Document Type Definition (DTD).
10. We designate by global document or simply document when there is no ambiguity, the document in-

cluding all parts.
11. Intuitively, a local model of document is coherent towards a global model if any partial document tVi

that is conform to it, is the partial replica of at least one (global) document tc conform to the global model.
12. Manipulated documents are structured, they can be intentionally represented by a tree. Intuitively, a

node is an identifiable part in the document (a section, a subsection, an image, a table, . . .): it is the instance
of a sort.
13. A bud is a leaf node of a tree indicating that an edition must be done at that level in the tree. Edit a bud

consists to replace it by a subtree using the productions of the grammar of the document.

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

A SYNOPTIC VIEW OF OUR METHODOLOGY AND ENGINEERING 11

for obtaining the documents forming part of the consensus is: (1) For each update
tma j
Vi

of a partial replica tVi
, we associate a tree automaton with exit states A (i) recog-

nising the trees (conform to the global model) for which tma j
Vi

is a projection. (2)
The consensual automaton A(sc) generating the consensus documents is obtained
by performing a synchronous product of the automata A (i) with a commutative and
associative operator noted ⊗ that we define. It is such that: A(sc) = ⊗A (i). (3) It
only remains to generate the set of trees (or those most representative) accepted by
the automaton A(sc), to obtain the consensus documents.

The concept of structured document as perceived by Badouel and Tchoupé can
be adapted to correspond to that of artifact in the sense of artifact-centric workflow
systems. In this sense, a structured document can be seen as an artifact (annotated
tree) that can be exchanged between the different agents (actors) involved in the
execution of a given particular business process case; during its life, it is edited
appropriately to make the system converge towards the achievement of one of the
considered process’s business goals. Its buds materialise the tasks to be executed
or which are being executed and, an attributed grammar called the Grammatical
Model of Workflow (GMWf) is used as artifact type. The sorts of a given GMWf
represent the process tasks and each of its productions represents a scheduling of
a subset of these tasks. When a task is executed on a given site, the correspond-
ing bud in the artifact is closed accordingly; then, one of the GMWf’s production
having the considered task as left hand side is choosen by the local stakeholder to
expand the bud into a subtree highlighting in the form of new buds, the new tasks
to be executed. To enrich the notion of access to different parts of artifacts, we add
to GMWf, organisational information called accreditations (similar to views) that
offer a simple mechanism for modelling the generally different perceptions that ac-
tors have on processes and their data. The couple (GMWf, accreditations) is then
the proposed model of "business artifact".

The execution of an administrative process’s instance modelled using the cou-
ple (GMWf, accreditations), is a choreography in which the agents are reactive au-
tonomous software components, communicating in peer-to-peer mode and driven
by human agents (actors) in charge of executing tasks. An agent’s reaction to the
reception of a message (an artifact) consists in the execution of a five-step protocol
clearly described in this thesis. This protocol allows it to: (1) merge the received
artifact with the one it hosts locally in order to consider all updates, (2) project the
artifact resulting from the merger in order to hide the parts to which the local actor
may not have access and highlight the tasks to be locally executed, (3) make the
local actor execute the revealed tasks and thus edit the potentially partial replica

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

THE ORGANISATION OF THIS MANUSCRIPT 12

of the artifact obtained after the projection, (4) integrate the new updates into the
artifact through an operation called expansion-pruning and finally, (5) diffuse the
updated artifact to other sites for further execution of the process if necessary. The
agents’ operational capabilities allow that, for the execution of a given process, an
artifact created by one of them (initially reduced to an open node), moves from
site to site to indicate tasks that are ready to be executed at the appropriate time
and to provide necessary data (created by other agents) for that execution; the mo-
bile artifact, cooperatively edited by agents, thus "grows" as it transits through the
distributed system so formed.

The Organisation of this Manuscript

The rest of this thesis manuscript consists of four chapters and two appendices
organised as follows:

Chapter I - A State of the Art in Business Process Management: the Artifact-
Centric Modelling: we present some basic concepts related to the field of BPM,
P2P, SOA, as well as the multiagent and artifact-centric paradigms. We also do a
survey of some P2P and artifact-centric workflow management systems.

Chapter II - A Workflow for Structured Documents’ Cooperative Editing
: Key Principles and Algorithms: after a brief presentation of Badouel and
Tchoupé’s asynchronous cooperative edition model, we present our algorithm for
reconciling partial replicas of a structured document as well as a generic architec-
ture of administrative workflow management systems.

Chapter III - A Choreography-like Workflow Design and Distributed Execu-
tion Framework Based on Structured Mobile Artifacts Cooperative Editing:
we propose a new choreography-like approach to address administrative workflow
design and their distributed execution. We also present a fully functional prototype
system built according to the proposed approach.

General Conclusion: we summarise our work and present some possible venues
for its further development.

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

THE ORGANISATION OF THIS MANUSCRIPT 13

Appendix A - Implementations of Some Important Algorithms Presented in
this Thesis: we present an implementation of all this thesis’ key algorithms in the
Haskell language.

Appendix B - List of Scientific Communications Issued from the Work Pre-
sented in this Thesis: we list the various scientific papers we produced during this
thesis.

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

I
CHAPTER

A STATE OF THE ART IN BUSINESS
PROCESS MANAGEMENT: THE

ARTIFACT-CENTRIC MODELLING

CONTENTS
I.1 - Introduction . 14
I.2 - Key Principles of Business Process Management 16
I.3 - Peer to Peer Business Process Management 29
I.4 - Artifact-Centric Business Process Management 44
I.5 - Summary . 54

I.1. Introduction

The work we are doing in this thesis falls within the domain of Computer-
Supported Cooperative Work (CSCW); it is a sub-domain of Software Engineer-
ing. Software engineering can be seen as a field of engineering that enables the de-
sign, the implementation and the maintenance of quality software systems (Barais,
2005). Research in the field of software engineering has led to the implementa-
tion of new design and even programming paradigms (e.g. object-oriented pro-
gramming (Meyer, 2000), component-based programming (Heineman and Coun-
cill, 2001), etc.), new methods and processes (Object Modeling Technique - OMT -
(Rumbaugh et al., 1991), Unified Modeling Language - UML - (Booch, Rumbaugh,
Jacobson, et al., 2000), etc.), new technologies (workflow, etc.), etc. The impor-
tance of software and the ever-increasing complexity of systems keep the field of
software engineering among the most important in computer science.

14

KEY PRINCIPLES OF BUSINESS PROCESS MANAGEMENT 15

Since the start of the 1980s, workflow technology knows an ever-growing suc-
cess near companies and researchers in the field of computer-aided production.
This success can be justified by the fact that, workflow enables firms to reduce
their production costs as well as to quickly and easily develop new products and
services: their competitiveness is therefore increased. Workflow technology of-
fers methods and tools (notations, management systems, etc.) for the specification,
optimisation, automation and monitoring of business processes (Georgakopoulos
et al., 1995; Van Der Aalst, 2015). Workflow technology tools are logically or-
chestrated within complex systems called Workflow Management Systems (WfMS)
(IMA, 2002; WfMC, 1995). The purpose of WfMS is not only to automate at best
workflows, but also to provide an appropriate framework for facilitating collabora-
tion between actors involved in the execution of a given business process.

The search for Workflow Management (WfM) / Business Process Management1

(BPM) techniques has been densely conducted over the past two decades and a
clear interest has been given to the artifact-centric paradigm (Nigam and Caswell,
2003) proposed by International Business Machines Corporation (IBM). This one,
revisited in several works (Assaf, 2016; Assaf et al., 2017, 2018; Boaz et al., 2013;
Deutsch et al., 2014; Estanol et al., 2012; Hull et al., 2009; Lohmann and Nyolt,
2011; Lohmann and Wolf, 2010), proposes a new approach to BPM by focusing
on both automated processes (tasks and their sequencing) and data manipulated
through the concept of "business artifact" (artifact-centric modelling).

In this chapter which serves as a state of the art, we present some key notions
related to BPM in general and to the artifact-centric paradigm in particular, in or-
der to make it easier to better apprehend the concepts handled in this manuscript.
In Section I.2, we define some basic concepts such as business process, work-
flow, workflow management, etc., then we present some workflow classification
approaches as well as an overview of their standardised automation using BPM.
In section I.3, we conduct a review of Peer to Peer (P2P) approaches to BPM. In
section I.4, we focus on the artifact-centric paradigm to BPM; we present the two
general approaches to its implementation (orchestration and choreography) as well
as some frameworks implementing it from the literature. Section I.5 is dedicated
to a summary of the explored concepts and a smooth transition to the next chapter.

1. BPM can be considered as an extension of classical Workflow Management (WfM) systems and ap-
proaches (Van Der Aalst, 2015).

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

SOME DEFINITIONS 16

I.2. Key Principles of Business Process Management

I.2.1. Some Business Process Management Basic Concepts

Research in the CSCW field focuses on the role of computers in collaborative
work (Schimdt and Bannon, 1992). These have given rise to numerous softwares
called CSCW systems or groupware. CSCW systems communicate through net-
works and provide functionalities facilitating exchanges, coordination, collabora-
tion and co-decision between the actors of a given collaborative work; they thus
defy the space and time constraints to which collaborative work is subjected. In-
deed, with the help of such systems, actors can either operate on the same site and
thus manipulate the same objects (centralised approach), or they can operate on
geographically distant sites (distributed approach); in this case, the objects they
manipulate are replicated on the different sites and synchronised at the appropri-
ate time (Grudin, 1994; Johansen, 1988; Penichet, Marin, Gallud, Lozano, and
Tesoriero, 2007). In the same vein, they can act at the same time (synchronous
approach) or at completely different times and sometimes independently of the
actions carried out by others (asynchronous approach) (Grudin, 1994; Johansen,
1988; Penichet et al., 2007). CSCW systems are often referred to as workflow
systems. However, it should be noted that workflow is an extension and a generali-
sation of CSCW to business processes’ automation.

I.2.1.1. Some Definitions

A business process can be informally defined as a set of tasks ordered fol-
lowing a specific pattern and whose execution produces a service or a particular
business goal (Georgakopoulos et al., 1995). When such a process is managed
electronically, it is called workflow. The purpose of workflow is to streamline,
coordinate and control business processes in an organised, distributed and comput-
erised environment. The peer-review validation of an article in a scientific journal
is a common example of business process. Descriptions of it can be found in
(Badouel, Hélouët, Kouamou, and Morvan, 2014; Rowland, 2002; Van Der Aalst
et al., 2001). As in most literature works, most of the time, we will use the terms
"business process" and "workflow" as synonyms in the rest of this manuscript.

The Workflow Management Coalition2 (WfMC) (WfMC, 1995) defines Work-
flow Management (WfM) as the modelling and computer management of all the

2. The growing reputation of workflow led to the creation, in 1993, of the Workflow Management Coali-
tion (WfMC) as the organisation responsible for developing standards in this field. Official website of the
WfMC: https://www.wfmc.org/.

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

https://www.wfmc.org/

AN INTRODUCTIVE EXAMPLE OF BUSINESS PROCESS 17

tasks and different actors involved in executing a business process. WfM is achieved
using Workflow Management Systems (WfMS): these are complex systems with
the aim of automating at best workflows by providing an appropriate framework
to facilitate collaboration between actors involved in business processes’ execution
(Dumas, La Rosa, Mendling, and Reijers, 2018; Georgakopoulos et al., 1995; Van
Der Aalst, 2013, 2015). WfMS are composed of logically orchestrated tools to
specificy, to optimise, to automate and to monitor business processes (Dumas et
al., 2018; WfMC, 1995). Technically, the management of a process according to
WfM is done in two phases (Divitini, Hanachi, and Sibertin-Blanc, 2001):

1. the process modelling phase: the process is studied and then specified us-
ing a language (usually graphical) called workflow language. The resulting
specification is called workflow model;

2. the process instantiation and execution phase: the workflow model is intro-
duced into a WfMS which then instantiates and orchestrates the execution of
the underlying process.

Since WfMS are pre-engineered standalone systems, WfM simplifies business pro-
cesses’ automation to their specifications in workflow languages.

WfM primarily focuses on business processes’ automation. It is not funda-
mentally concerned with other issues such as the analysis, the verification and the
management (maintenance) of workflow (models) unlike BPM, which made these
its foundation (Van Der Aalst et al., 2016). BPM is the discipline that combines
knowledge from information technology and knowledge from management sci-
ences and applies this to operational business processes (Van Der Aalst, 2013).
BPM can be seen as an extension of WfM as it primarily supports WfM and pro-
vide additional tools to improve business processes. For this, we have chosen to
use the expression BPM rather than WfM (which tends to disappear) in the context
of this work. It should be noted however that our contributions (chapter II and III)
could be perfectly presented as part of restricted WfM (we are not interested in the
management and improvement of workflow models).

I.2.1.2. An Introductive Example of Business Process

BPM is an important technology because it simplifies the automation of busi-
ness processes which are the foundation of how companies and organisations op-
erate. Business processes can be found everywhere. The examples are diverse and
include the following:

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

AN INTRODUCTIVE EXAMPLE OF BUSINESS PROCESS 18

• The design and development of a software by a team (especially when mem-
bers are geographically dispersed) (Imine, 2006);

• The simultaneous writing of a scientific paper or the documentation of a prod-
uct by several researchers (cooperative editing) (Imine, 2006);

• The follow-up of a medical file (Chaâbane, Bouzguenda, Bouaziz, and Gar-
gouri, 2007);

• The student registration process in a faculty;

• The withdrawal of a large sum of money from a bank teller;

• The procedure for taking holidays in a government institution;

• The procedure for claiming damages from an insurance company;

• The peer-review process (Badouel et al., 2014; Rowland, 2002; Van Der Aalst
et al., 2001).

The peer-review process presents all the characteristics of the type of processes
(administrative processes) studied in this manuscript. Then, we will use it as an il-
lustrative example along the whole manuscript (running example). Our description
of this process is inspired by those made in (Badouel et al., 2014; Rowland, 2002;
Van Der Aalst et al., 2001):

Example 1 The peer-review process (running example):
The process is triggered when the editor in chief receives a paper for validation
submitted by one of the authors who participated in its drafting.

• After receipt, the editor in chief performs a pre-validation after which, he can
accept or reject the submission for various reasons (subject of minor interest,
submission not within the journal scope, non-compliant format, etc.);

• If the submission is rejected, he writes a report then notifies the correspond-
ing author and the process ends; in the other case, he chooses an associated
editor and sends him the paper for the continuation of the validation;

• The associated editor prepares the manuscript, forms a referees committee
(two members in our case) and then triggers the peer-review evaluation pro-
cess;

• Each referee reads, seriously evaluates the paper and sends back a message
and a report to the associated editor;

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

WORKFLOW TYPOLOGY 19

• After receiving reports from all the referees, the associated editor takes a
decision and informs the editor in chief who sends the final decision to the
corresponding author.

From this description, it is easy to identify all the tasks to be executed, their
sequencing, actors involved and the tasks assigned to them. For this case, four
actors are involved: an editor in chief (EC) who is responsible for initiating the
process, an associated editor (AE) and two referees (R1 and R2). A summary of
tasks assignment is presented in table I. We have associated symbols with tasks so
that we can easily manipulate them in diagrams.

Table I – Exhaustive tasks list of a paper validation process in a scientific journal and their re-
spective performers.

Tasks Associated
Symbols Executors

Receipt, pre-validation of a submitted paper and
possible choice of an associated editor to lead
peer-review evaluation

A EC

Drafting of a pre-validation report informing on
the reasons for the immediate rejection of the pa-
per

B EC

Sending the final decision (acceptance or rejection
of the paper) to the author

D EC

Study, eventually formatting of the paper for the
examination by a committee

C AE

Constitution of the reading committee (selection
of referees) and triggering the peer-review evalua-
tion

E AE

Decision making (paper accepted or rejected)
from referees evaluations

F AE

Evaluation of the manuscript by the first (resp.
second) referee

G1 (resp. G2) R1 (resp. R2)

Drafting of the after evaluation report by the first
(resp. second) referee

H1 (resp. H2) R1 (resp. R2)

Writing the message according to evaluation by
the first (resp. second) referee

I1 (resp. I2) R1 (resp. R2)

I.2.1.3. Workflow Typology

The authors of (Georgakopoulos et al., 1995) conduct a very interesting study
on the classification of workflows in which, they report the lack of a commonly ac-
cepted approach to categorising workflows. There are therefore several approaches
to workflow classification in the literature.

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

WORKFLOW TYPOLOGY 20

The classification of workflows according to the nature and behaviour of auto-
mated processes is one of the most commonly found in the literature. According
to it, workflows are divided into three groups: production workflows, administra-
tive workflows and ad-hoc workflows (McCready, 1992; Van Der Aalst, 1998).
Production workflows are those that automate highly structured processes that un-
dergo very little (or no) change over time: all the scenarios are known in advance
and most of the tasks are carried out by systems. This is the case for processes in
industrial production lines. Administrative workflows apply to variable processes
for which all cases are known; that is, tasks are predictable and their sequenc-
ing rules are simple and clearly defined. In these, changes are more frequent than
with production workflows and human actors are more involved in the execution of
tasks. In particular, this type of workflow brings considerable added value to public
administration organisations whose business is focused on administrative routines
(Boukhedouma, 2015). Our running example, the peer-review process, is an ad-
ministrative process. In the work presented in this manuscript, we are interested in
this type of workflows. These are opposite of ad-hoc workflows, which automate
occasional processes for which it is not always possible to define the set of rules in
advance. Processes are therefore only partially specified and may undergo many
updates over time.

The workflows’ classification made in (Georgakopoulos et al., 1995) is orthog-
onal to the above-mentioned one (they can be used together); it is more concerned
with tasks’ automation degree. The authors classify workflows based on a measure-
ment system, represented by a continuum ranging from human-oriented workflows
to system-oriented workflows as shown in figure 2. The first type (human-oriented

Figure 2 – Classification of workflows according to whether they are human-oriented or system-
oriented (source (Georgakopoulos et al., 1995)).

workflows) includes workflows in which humans collaborate to perform tasks and
to coordinate themselves; in these, humans are responsible for ensuring the validity
and consistency of the exchanged data and of the workflow’s results. The second
type of workflows (system-oriented workflows) refers to those in which the use of
computer systems to perform tasks is unavoidable because, they involve complex

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

WORKFLOW TYPOLOGY 21

data and computationally-intensive operations. According to this classification sys-
tem, human-oriented workflows are the ones we are interested in.

In (Dumas et al., 2005), the authors refine the two above classification frame-
works. Concerning the refinement of the one that classifies workflows according
to the nature and behaviour of automated processes (McCready, 1992), their clas-
sification framework distinguishes unframed, ad hoc framed, loosely framed, and
tightly framed workflows. A workflow is said to be unframed if there is no explicit
workflow model associated with it; its execution is strongly conducted by its ac-
tors. When actors play a crucial role (no longer limited to the simple execution of
tasks, but also including the explicit choice of the control flow, the adjustment of
control and data flows, etc.) in the execution of a workflow, it is said to be user-
centric (Badouel et al., 2015). This is the case for workflows being automated by
groupware3. In the case of ad hoc framed workflows, workflow models are defined
a priori but, they frequently change. A workflow is said to be loosely framed when
it is defined by a workflow model describing the "right way of doing things", while
allowing its actual executions to deviate from this way; this is the preferred type
of workflow handled by Case Management Systems (Van Der Aalst, 2013) (see
sec. I.4.2.2). Finally, a tightly framed process is one which consistently follows a
defined process model.

Concerning the classification framework of (Georgakopoulos et al., 1995), au-
thors of (Dumas et al., 2005) refine it and consider three types of workflows:
Person-to-Person, Person-to-Application, and Application-to-Application workflows.
Person-to-Person workflows are those for whom all the tasks require human in-
tervention. Application-to-Application workflows are their opposite; in these, all
the tasks are executed by software systems. Person-to-Application workflows are
in the middle; they involve both human-oriented tasks and system-oriented tasks.
Pratically, most of workflows are of this category.

Nowadays, some scientific works require increasingly complex and data-intensive
simulations and analysis. Scientific data management is therefore a major chal-
lenge (Bell et al., 2009) with a high level of complexity. Workflow technologies
are increasingly used to manage this complexity (Juve et al., 2013). These are
responsible for scheduling computational tasks on distributed resources, manag-
ing dependencies between tasks and staging data sets in and out of runtime sites.
The resulting workflows are called scientific workflows and are usually based on a
middleware infrastructure (Grid or Cloud). Ideally, the scientist should be able to

3. Groupware systems are computer-based systems that support groups of people engaged in a common
task (or goal) and that provide an interface to a shared environment (Ellis, Gibbs, and Rein, 1991).

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

BUSINESS PROCESS MANAGEMENT LIFECYCLE 22

integrate almost any scientific data resource into such a workflow during analysis,
inspect and visualise the data on-the-fly as it is computed, make parameter changes
as needed and re-run only the affected components, and capture sufficient meta-
data in the final products so that, scientific workflow executions help to explain the
results and make them reproducible. Thus, a scientific workflow system becomes a
scientific problem-solving environment, adapted to an increasingly distributed and
service-oriented infrastructure (Grid or Cloud) (Ludäscher et al., 2006).

There are many other types of workflows in the literature. We can mention
on the fly, service-oriented workflows (Piccinelli, Finkelstein, and Williams, 2003;
Yongyi, Youjie, and Hui, 2009), structured workflows (Eder and Gruber, 2002;
Kiepuszewski, Ter Hofstede, and Bussler, 2000; Liu and Kumar, 2005), etc. We
do not present them here because they are not of great interest to the work we are
doing for this thesis. We invite the interested reader to take a look at the few works
mentioned above.

I.2.2. Business Process Management Lifecycle and Key Activities

A high-level view of the BPM discipline reveals that, its lifecycle consists of
three phases on which it is possible to iterate indefinitely: the (re)design, implemen-
t/configure, and run & adjust phases (Van Der Aalst, 2013) (see fig. 3). During its
lifecycle, four key activities namely model, enact, analyse, and manage (see fig. 4)
are carried out (Van Der Aalst, 2013). In this section, we examine what is done
during these different activities; we mainly focus on the "model" and the "enact"
activities: they are the only ones common to BPM and WfM and thus, they are of
relevant interest for the work presented in this manuscript.

I.2.2.1. Business Process Management Lifecycle

The automation of a given process using BPM starts with its modelling us-
ing one or more workflow languages (Dumas et al., 2018). This "model" activity
is initiated during the "(re)design" phase of the BPM lifecycle. The workflow
models obtained during this activity can be analysed (the "analyse" activity) ei-
ther by simulations or by using model checking4 algorithms (to verify models’
soundness): this type of analysis is said to be model-based. As shown in figure
3, the (re)design phase is followed by the "implement/configure" phase in which,
the workflow models obtained in the previous phase are converted, if necessary,
into executable workflow models and then, used to configure the process execution

4. Model checking is an automated technique that, given a finite-state model of a system and a formal
property, systematically checks whether this property holds for (a given state in) that model (Baier and
Katoen, 2008).

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

THE "MODEL" ACTIVITY 23

Figure 3 – The three phases of BPM’s lifecycle (source (Van Der Aalst, 2013)).

environment (the WfMS): this is where the "model" activity ends. After the "imple-
ment/configure" phase, comes the run & adjust phase. During this last phase, the
workflow is instantiated, executed and managed (adjusted) according to the scenar-
ios foreseen when modelling the underlying process and when designing the host
WfMS: these are the purposes of the "enact" and "manage" activities. Moreover,
when a workflow instance is running, produced and logged data can be analysed
(to discover possible bottlenecks, waste, and deviations) for possible improvement
of its corresponding workflow model: this other type of analysis/monitoring is said
to be data-based; during the last decade, process mining (Van Der Aalst, 2011)
has emerged as one of the leading techniques conducting data-based analysis. If
enough possible improvements to the workflow model are detected, the cycle can
restart to apply them.

I.2.2.2. The "Model" Activity

Basic concepts
Process modelling is a crucial activity in WfM/BPM. As mentioned above (sec.

I.2.2.1), it is done using dedicated languages called workflow languages. Several
workflow languages have already been developed. Among the most well-known
are the BPMN standard (Model, 2011) based on statecharts, the UML activity di-
agrams language (Booch et al., 2000), the WF-Net (Workflow Net) language (Van
Der Aalst, Jörg, and Oberweis, 2003) which uses a formalism derived from that
of Petri nets, the YAWL language (Van Der Aalst and Ter Hofstede, 2005) which
is an extension of WF-Net and so forth. Some of these languages (BPM, UML
activity diagrams) are informal (i.e. they do not have a well-defined semantics and

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

THE "MODEL" ACTIVITY 24

Figure 4 – The four key activities of BPM (source (Van Der Aalst, 2013)).

do not allow for analysis (Van Der Aalst, 2013; Zur Muehlen and Recker, 2013))
while others (WF-Net, YAWL) are based on powerful mathematical (formal) tools
(Petri nets). Nevertheless, they all allow to express in a diagram (called a worklow
model), the tasks that make up a given process and the control flow between them.
More precisely, workflow languages allow to describe the behaviour of processes
through the representation (among others) (Grigori, 2001) of :

• Tasks that make up the main part of the process;

• Information and resources relating to the various tasks;

• Sequences or dependencies between those tasks;

• Trigger and termination events for the tasks.

Tasks are the base of any workflow; a task is the smallest unit of hierarchical
decomposition of a process. A task represents any work that is performed within
a process. It consumes time, one or more resources, requires one or more input
objects and produces one or more output objects. You can find examples of tasks
in our running example (sec. I.2.1.2).

From a workflow point of view, the term resource refers to a system or a human
who can execute a task. It is also known as actor, participant, stakeholder, agent
or user depending on the context. Resources can be grouped according to various
characteristics, to form either a role or an organisational unit (Grigori, 2001). A
role is a group of resources with the same functional capabilities, while an organ-
isational unit is a set of resources (or class of resources) that belong to the same
structure (department, team, service, cell, etc.).

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

THE "MODEL" ACTIVITY 25

Routing patterns
To achieve its objectives, any workflow language must, for a given process, al-

low to express at least its tasks and their routing (control flow). The task control
flow is commonly referred to as the lifecycle (process) model of the process un-
der study (Divitini et al., 2001; Hull et al., 2009). There are a number of routing
patterns identified in the literature as basic ones: these are sequential, parallel, al-
ternative or conditional and iterative routings (see fig. 5) (Van Der Aalst, 1998).

Figure 5 – Four basic routing constructs (source (Van Der Aalst, 1998)).

• Sequential routing expresses the fact that tasks must be executed one after the
other (task A before tasks B and C in figure 5(a));

• Parallel routing is used to specify the potentially concurrent execution of cer-
tain tasks. Tasks B and C in figure 5(b) can be executed at the same time;
in this case, tasks A and D are considered as gateways: A is said to be an
AND-Split gateway while D is an AND-Join gateway;

• With alternative routing, one can model a decision: i.e. the choice to execute
one task rather than another at a given time. In figure 5(c), tasks B and C
cannot be both executed; for this case, A is called and OR-Split gateway and
D is an OR-Join gateway;

• In some cases, it is necessary to execute a task multiple times. In figure 5(d)
task B is executed one or more times.

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

THE "ENACT" ACTIVITY 26

The search for more advanced and expressive routing patterns has been the
subject of many studies (Börger, 2012; Van Der Aalst and Ter Hofstede, 2012).
The interested reader is invited to consult the few references mentioned above to
find out more.

When a given workflow language only allows to specify the routing of the pro-
cesses’ tasks, when it is not interested in modelling the consumed and produced
data during tasks execution, and when it only gives a secondary role to the pro-
cesses’ users, it is said to be process-centric. This is the case for all the previously
mentioned languages (BPMN, WF-Net, UML activity diagrams and YAWL). This
type of workflow language is often referred to as "traditional workflow language".

Examples of workflow models
Figure 6 shows the orchestration diagrams corresponding to the graphical de-

scription of the peer-review process (see its textual description in sec. I.2.1.2) using
the process-centric notations BPMN and WF-Net. The graphical notations equiva-
lent to sequential flow, {And, Or}-Splits and {And, Or}-Joins are well represented.
Each diagram resumes the main scenarios of this process.

Figure 6 – Orchestration diagrams of the peer-review process.

I.2.2.3. The "Enact" Activity

Overview
The "enact" activity takes as input, the workflow models (specifications) ob-

tained during the model activity. If these models are executable (i.e. they have
been coded in more technical languages taking into account implementation de-

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

THE "ENACT" ACTIVITY 27

tails) then they are directly introduced into a WfMS suitably installed at the dif-
ferent workflow execution sites; otherwise, they are first converted into executable
models then, they are introduced into the WfMS. There are several languages for
producing executable workflow models. These are usually proprietary and pro-
vided by WfMS designers. Of these languages, (Web Services) Business Process
Execution Language ((WS-)BPEL) is the standard5 and is well compatible with
BPMN (Leymann, 2010; Ouyang, Dumas, Ter Hofstede, and Van Der Aalst, 2006;
White, 2005).

Once the WfMS is properly configured using workflow models, it can create
workflow instances and properly orchestrate their execution. To do this, WfMS
must coordinate (according to workflow models) the execution of a set of tools and
applications offering various services. In the 1990s, the WfMC developed and pro-
posed an architectural reference model for the implementation of WfMS (WfMC,
1995) (see fig. 7). The latter structures and describes precisely, the expected func-
tionalities of a WfMS.

The reference model
The WfMC reference model is a centralised architectural model in which the

main component is called workflow enactment service. The workflow enactment
service is responsible for controlling the executions of workflow instances. It is
composed of several workflow engines. A given workflow engine handles some
parts of workflows and also manages some of their resources (Dumas et al., 2018;
Van Der Aalst, 2013). According to the reference model, WfMS must provide
tools to facilitate their configurations using workflow models: therein, these tools
are referred to as process definition tools. Process definition tools are connected
to the WfMS core (the workflow enactment service) via Interface 1. In order to
execute tasks, users use workflow client applications that communicate with the
WfMS via Interface 2. When necessary, a given workflow engine invokes other
applications via Interface 3. The administration and monitoring tools connected
via Interface 5, are used to monitor and control the workflows. Finally, the WfMS
can be connected to other WfMS using Interface 4. A considerable effort has been
made to standardise the five interfaces shown in figure 7. These efforts led to the
production of languages (exchange formats) such as Workflow Process Definition
Language (WPDL), XML6 Process Definition Language (XPDL) and BPEL.

5. BPEL is standardised by the OASIS consortium. OASIS website: https://www.oasis-open.org/.
BPEL Specification (PDF version): https://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0
-OS.pdf.
6. XML: eXtensible Markup Language.

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

https://www.oasis-open.org/
https://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf
https://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf

THE "ENACT" ACTIVITY 28

Figure 7 – Reference model of the Workflow Management Coalition (source (WfMC, 1995)).

The reference model has been very successful. Firstly, because to this day, it
perfectly orchestrates the different tools used for the design and execution of work-
flows. Secondly, because it has served as the basic model for a very large number
of WfMS in the industry. Examples include ActionWorkflow (Medina-Mora et
al., 1993), FlowMark (Leymann and Roller, 1994), Staffware (Brown, 2005), In-
Concert (Sarin, 1996), etc. Because the reference model is a centralised approach
(client-server architecture), it has the advantage of facilitating a good mastery of
the technologies used in the production of WfMS. Also, the implementation of
(generally lightweight) client applications and the overall maintenance of WfMS
(which is limited to the maintenance of the central server) are much simpler (Kan-
zow, 2004). However, systems based on a client-server architecture show some
limitations because of the centralisation of workflow management. Their main
weaknesses are: the (non) fault tolerance, the (difficult) scalability and the strong
dependency of the system vis a vis the central server, which stores data, controls
and thus, represents a possible point of congestion (Fakas and Karakostas, 2004;
Yan et al., 2006). Concretely (Yan et al., 2006),

1. The client-server architecture allows centralised coordination of workflows
with little use of the computing potential on the client side. Workflow sys-
tems based on such an architecture are very cumbersome. In application
areas where several workflow instances need to be executed in parallel, the

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

PEER TO PEER BUSINESS PROCESS MANAGEMENT 29

centralised server can be overloaded with heavy computations and intensive
communications when the system load increases, thus becoming a potential
bottleneck.

2. Client-server systems are vulnerable to server failures. The centralised server
is commonly viewed as a single point of congestion in the system. Its mal-
function can cause the entire system to shut down.

3. The limited scalability of the client-server architecture prevents the WfMS
based on it, from dealing with the ever-changing work environment. This also
raises difficulties in system configuration, as any changes to the system, such
as the admission of new actors, may require changes and updates to the cen-
tralised workflow server, which is very impractical and inefficient. Therefore,
these WfMS are particularly unsuitable for application areas where workflow
actors are required to join and leave frequently.

4. An important and crucial element of any workflow system is to allow actors to
maintain their autonomy and control. However, workflow actors in a client-
server-based WfMS are exclusively controlled by centralised servers. A se-
rious problem is that, a large number of actors working on the "lightweight
client side" may not be able to exercise their control, decision-making and
problem-solving capabilities.

Knowing that various actors involved in a given business process are very often
spread over remote sites, the reference model does not seem to be very suitable
for efficiently implementing cooperation among them, as would systems based on
a distributed architectural model be. In order to meet the shortcomings of the ref-
erence model, several works (Fakas and Karakostas, 2004; Imine, 2006; Kanzow,
2004; Lahcen and Parigot, 2012; Yan et al., 2006) have focused on the produc-
tion of distributed WfMS built on top of peer-to-peer (P2P) architectures. This
approach has also been successful since, systems such as ADEPT (Jennings, 1996)
and METEOR2 (Miller, Palaniswami, Sheth, Kochut, and Singh, 1998) have been
designed over years (Kanzow, 2004).

I.3. Peer to Peer Business Process Management

Knowing that workflows are naturally distributed, they can sometimes involve
resources from different organisations. Within each organisation, WfMS must

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

THE MULTIAGENT CONCEPT 30

therefore be built with a strong emphasis on (sometimes inter-organisational) co-
operation; this differs from the idea in which classical information systems have
often been built. However, even if WfMS must be interoperable to facilitate coop-
eration, they must also ensure the autonomy and the confidentiality of actors and
organisations involved in workflow execution; because, though organisations are
aware of the need and necessity to participate in cooperation, they wish to pro-
tect their expertise in order to ensure sufficient confidentiality on their local data
and local processes (Boukhedouma, 2015). The main challenge for WfMS design-
ers over the last two decades, has therefore been to build WfMS capable of both
ensuring the agility of organisations and fostering the interconnection of business
processes, while preserving their autonomy and the confidentiality of their local
processes and data.

The production of fully distributed WfMS proved to be an effective solution to
this challenge (Meilin et al., 1998). This has been made more feasible with the
advent of new concepts such as the Multiagent paradigm and the Service-Oriented
Architecture (SOA). In this section, we take a look at how the distributed workflow
management approach works, and some of the decentralised WfMS that have been
developed for this purpose

I.3.1. The Advent of the Multiagent and Service-Oriented Concepts

I.3.1.1. The Multiagent Concept

The agent and multiagents systems concepts emerged in the 1980s. These con-
cepts have generated lots of excitement in different research communities mainly
because, they form the basis of a new paradigm for designing and implementing
software systems that operates in distributed and open environments7, such as the
internet (Sycara, 1998). One of the best-known and most famous definitions of the
agent concept was formulated by Jacques Ferber (1997) and states that : an agent
is a physical or logical entity capable of acting upon itself and its environment,
which has a partial representation of that environment, which, in a multiagent sys-
tem, can communicate with other agents, and whose behaviour is the consequence
of its observations, knowledge and interactions with other agents.

7. "An open system is one in which the structure of the system itself is capable of dynamically changing. The
characteristics of such a system are that its components are not known in advance; can change over time;
and can consist of highly heterogeneous agents implemented by different people, at different times, with
different software tools and techniques. Perhaps the best-known example of a highly open software envi-
ronment is the internet. The internet can be viewed as a large, distributed information resource, with nodes
on the network designed and implemented by different organisations and individuals." (Katia P. Sycara,
(1998))

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

THE SERVICE-ORIENTED ARCHITECTURE 31

Multiagent systems have brought a new way to look at distributed systems and
have provided a path to more robust intelligent applications (DeLoach, Wood, and
Sparkman, 2001). The challenge of the multiagent concept is to build distributed
systems in which the nodes (agents), endowed with great autonomy, high reactiv-
ity and communicating using an asynchronous messaging system (they therefore
possess cooperation and deliberation/decision capabilities (Kanzow, 2004)), can
appear and disappear at any time without paralysing the system. A multiagent
system is characterised as follows (Sycara, 1998):

1. Each agent has incomplete information or capabilities for solving problems
and thus, has a limited viewpoint;

2. There is no system global control;

3. Data are decentralised;

4. Computation is asynchronous.

Such properties for a multiagent system provide it with several capabilities that
have mainly attracted researchers and professionals to the multiagent paradigm.
Among these capabilities we can distinguish the following (Sycara, 1998):

• The capability to solve problems that are too large and difficult to handle by a
centralised agent/server, because of resource limitations, or the sheer risk of
having one centralised entity that could be a performance bottleneck or could
fail at critical times;

• The capability to allow for the interconnection and interoperation of multiple
existing legacy systems;

• The capability to provide solutions to problems that can naturally be regarded
as a society of autonomous interacting components-agents;

• The capability to provide solutions that efficiently use information sources
that are spatially distributed;

• The capability to provide solutions in situations where expertise is distributed.

The above mentioned capabilities of multiagent systems are in line with the
desired capabilities of a distributed WfMS. This has motivated the growing use
of concepts developed for multiagent systems, in the production of such WfMS.
However, the vocabulary used by the designers of distributed WfMS is not always
identical to the multiagent jargon, and it is sometimes necessary to abstract the

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

THE SERVICE-ORIENTED ARCHITECTURE 32

proposed systems to exhibit the multiagent concepts involved in their design and
implementation.

I.3.1.2. The Service-Oriented Architecture

Basic concepts
Service-Oriented Architecture (SOA) has spread rapidly as a result of its grow-

ing success, and has been widely accepted as a supporting architecture for infor-
mation systems because of its pivotal concept of service (Boukhedouma, 2015).
Service is the essential concept of SOA and can be defined as "self-describing,
platform-agnostic computational elements that support rapid, low-cost composi-
tion of distributed applications. Services perform functions, which can be anything
from simple requests to complicated business processes. Services allow organi-
sations to expose their core competencies programmatically over a network using
standard languages and protocols, and be implemented via a self-describing inter-
face based on open standards" (Mike P. Papazoglou, (2003)). For MacKenzie et
al. (2006), the term service combines the following related ideas :

• The offer to perform work for another;

• The capability to perform work for another;

• The specification of the offered work.

From a purely technological point of view, a service is a software component
represented by two separate elements: its interface, which allows defining the ac-
cess modalities to the service (name of the service and the parameters of the pub-
lic operations defining the signatures of the operations) and its implementation
(Boukhedouma, 2015). Services are offered by service providers (see fig. 8); these
are organisations that procure the service implementations, supply their service in-
terfaces and provide related technical and business support (Papazoglou, 2003).
Service interfaces are available for their searching, their binding, and their invo-
cation by service consumers (see fig. 8) (MacKenzie et al., 2006). Clients of
services (service consumers) can be other solutions or applications within an en-
terprise or clients outside the enterprise. Service providers must therefore provide
a distributed computing infrastructure for both intra and cross-enterprise applica-
tion integration and collaboration. To satisfy these requirements, provided services
should be (Papazoglou, 2003):

• Technology neutral: they must be able to be invoked by clients coded with
various technologies having a few standards as a common denominator;

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

THE SERVICE-ORIENTED ARCHITECTURE 33

• Loosely coupled: they must not require neither knowledge nor internal struc-
tures or conventions (context) at the service consumer or service provider
side;

• Transparent from the point of view of their location: one should be able to
locate and invoke the services irrespective of their real location. To do so, the
use of a service registry where services interfaces and location information
are stored, is required (see fig. 8).

SOA is an architectural style, a logical way of designing a software system to
provide services to either end-user applications or other services distributed in a
network through published and discoverable interfaces. Basically, SOA defines an
interaction between software agents as an exchange of messages between service
consumers (clients) and service providers (see fig. 8). In SOA, the exchange of

Figure 8 – The basic Service-Oriented Architecture (source (Papazoglou, 2003)).

messages between agents can be synchronous or asynchronous.
In the synchronous model, the service consumer invokes a service and expects

a result. The invoked service is then designed to immediately return a result and is
the only service involved. This model operates similarly to remote procedure call
technologies such as Remote Method Invocation (RMI) but with a much loosely
coupling between the service consumer and its provider.

In the asynchronous model (which is generally a particular form of publish/-
subscribe8), a given service consumer A expresses its desire to be aware of the
execution state of a given service b, published (provided) by a service provider B,
by subscribing to it. During this subscription, it provides information about one or

8. Publish/Subscribe is a communication paradigm well adapted to the loosely coupled nature of distributed
interaction in large-scale applications; with systems based on its interaction scheme, subscribers register
their interest in an event, or a pattern of events, and are subsequently asynchronously notified of events
generated by publishers (Eugster, Felber, Guerraoui, and Kermarrec, 2003).

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

THE SERVICE-ORIENTED ARCHITECTURE 34

more services (ai) that it also provides and that must be invoked when the execu-
tion state of b has changed. Several services are thus involved, and each agent is
generally both a service provider and a service consumer.

SOA has been designed to facilitate the implementation of distributed appli-
cations based on Peer-to-Peer architectures (nodes/agents communicate directly
without going through a central server) and in which, the skills of each agent are
exposed, discoverable and invocable by the others but, the technique and technol-
ogy used by each agent is confidential. This setting completes the concept of agents
to answer correctly to the challenges of distributed WfMS: hence the very increas-
ing use of the concept of service in workflow systems. Actually, some currents
of thought claim that SOA was designed to facilitate the automation of business
processes and thus, the design of distributed WfMS. This is the case of Hurwitz et
al. (2009) who define SOA as : "a software architecture for building applications
that implement business processes or services by using a set of loosely coupled
black-box components orchestrated to deliver a well-defined level of service".

Shared-data Overlay Network
As the use of SOA in P2P applications escalates, there is a proliferation of tools

to facilitate the design and implementation of these new applications (Kaur et al.,
2013). Shared-data Overlay Network (SON) (Lahcen and Parigot, 2012) is one
of those tools. SON is a middleware offering several Domain Specific Languages
(DSL) to facilitate the implementation of P2P systems whose components com-
municate in an asynchronous manner by services invocations. SON combines the
powerful concepts of Component-Based Software Engineering9, Service-Oriented
Computing and P2P Computing in its engineering.

By using SON middleware, the P2P application designer (software developer)
is able not only to specify applications in component-based service model, but also
to perform an effective code generation. In fact (see fig. 9), the software devel-
oper defines using a dedicated DSL called Component Description Meta Language
(CDML), for each component, a set of services (input, internal and output). Then,
he only implements the code of the components, i.e., the methods that implement
the defined services. Afterwards, a code generation tool, called Component Gen-
erator, generates a set of Java source files that implement the so-called container
of the component. These Java files are compiled together with the implementation

9. Component-Based Software Engineering is an emerging paradigm of software development whose goal
is, composing applications with plug & play software components on the frameworks; so, to realise software
reuse by changing both software architecture and software process (Aoyama, 1998).

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

THE SERVICE-ORIENTED ARCHITECTURE 35

code to generate a standalone and ready-to-use component. Thus, software de-
velopers are assisted and have greater ease in developing component and service-
based P2P applications. These facilities allow them to focus more on the busi-
ness logic and to defer to SON, the management of the runtime requirements (e.g.,
communication mechanisms, instantiation and connection of components, service
discovery, etc.). We use SON to implement prototypes of some of the models pre-

Figure 9 – Overview of a P2P application development process with SON (source (Lahcen and
Parigot, 2012)).

sented in this manuscript.

I.3.2. Some Existing Distributed WfMS

In this section, we briefly present some existing approaches to distributed work-
flow management. As mentioned in (Kanzow, 2004), these approaches have the
following characteristics :

• They are based on distributed entities that can communicate;

• These entities act autonomously, locally and thus, influence the further exe-
cution of the process (through their local actions, they choose the next actions
to be executed);

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

SOME PARTIALLY DISTRIBUTED WFMS 36

• Each entity has a confidential local state;

• Each entity has only a partial view of the system’s overall state at a given
time;

• Workflow execution results from the automated interaction between the dif-
ferent entities.

The approaches to distributed workflow management presented here, can be di-
vided into two categories :

1. The first category contains those in which, data and controls are partially
distributed and the WfMS is based on a client-server architecture;

2. The second one is concerned with those in which WfMS, data and controls
are fully distributed.

I.3.2.1. Some Partially Distributed WfMS

ADEPT (Advanced Decision Environment for Process Tasks) (Jennings, 1996)
The ADEPT project was designed to automate flexible workflows at British

Telecom10. Its main goal is to allocate resources to business processes using agents.
According to its logic, workflow tasks are executed by agents acting as cooperating
actors in a system supervised by one or more statically or dynamically assigned
servers.

Figure 10 – An ADEPT environment (source (Jennings, 1996)).

10. Nowadays British Telecom is renamed BT Group and remains the leader in the fixed telephony sector
(source Wikipedia - https://fr.wikipedia.org/wiki/BT_Group - visited the 07/03/2020).

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

https://fr.wikipedia.org/wiki/BT_Group

SOME PARTIALLY DISTRIBUTED WFMS 37

Each agent is capable of providing one or more services. Services can be atomic
(reduced to the execution of a single task) or composite (resulting from the com-
bination of several other services, using operators that define the execution con-
straints - parallel, sequential, etc. -). If an agent needs the services of another
agent, they must enter into an agreement called Service Level Agreement11. To
facilitate the negotiation of agreements between agents, ADEPT provides a negoti-
ation protocol and a service description language. Technically, the service descrip-
tion language allows agents to expose their services so that, they can be discovered
by other agents which can then initiate negotiations for the use of those services,
through the negotiation protocol.

Figure 10 shows the architecture of ADEPT on an example of a workflow in
which, four agents (marketing team, design team, sales team and legal department)
collaborate to achieve business goals. Other publications on the ADEPT project
may be useful for its understanding (Dadam, Reichert, and Kuhn, 2000; Reichert
and Dadam, 1998; Reichert, Rinderle, and Dadam, 2003).

EvE (an Event-driven Distributed Workflow Execution Engine) (Geppert and
Tombros, 1998)

According to the EvE approach, the distributed execution of workflows is done
by event communication between agents (called brokers) in charge of executing
tasks. These agents perform tasks and create events in response to the occurrence
of other events. EvE is based on a multi-server architecture in which, each server
manages an entire cluster (a local network). However, this multi-server architecture
is made transparent for the different agents thanks to adapters; they can communi-
cate independently of their respective domains. EvE provides amongst others the
following services:

• Agents managed by servers and distributed across the network, capable of
detecting events and executing tasks assigned to them; thereby, generating
new events that are notified to other agents thanks to an inter-server commu-
nication mechanism that has been set up;

• A data warehouse in which information about agents, runtime data and Event
- Condition - Action12 (ECA) event handling rules are stored. The informa-

11. A Service Level Agreement is a formal contract used to guarantee that consumers’ service quality
expectation can be achieved (Wu and Buyya, 2012).
12. ECA is a paradigm that specifies the desired behaviour for reactive systems (i.e. systems that maintain

ongoing interactions with their environments (Manna and Pnueli, 2012)). In such a system centered around
the ECA paradigm, when an event occurs, a condition is evaluated (by a querying mechanism) and the
system takes corresponding action (Almeida, Luntz, and Tilbury, 2005).

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

SOME FULLY DISTRIBUTED WFMS 38

tion stored in the warehouse can be updated dynamically without the need to
restart the system;

• Logging services for failure analysis and recovery. EvE supports exception
notification, alerts and has the ability to resume execution after temporary
disconnections;

Figure 11 – The workflow execution process in EvE (source (Geppert and Tombros, 1998)).

The execution of a workflow starts as soon as an event is generated by a broker.
The local EVE-server (its manager) then performs event detection and ECA-rule
execution. Within the execution of each rule, task assignment determines respon-
sible brokers, which are then notified and subsequently react as defined by their
ECA-rules. Particularly, brokers can generate new events, which again are handled
by EVE-servers, and so on transitively (see fig. 11).

I.3.2.2. Some Fully Distributed WfMS

METEOR2 (Managing End-To-End OpeRations 2) (Das et al., 1997; Miller et
al., 1998)

The METEOR2 project is a continuation of the METEOR (Krishnakumar and
Sheth, 1995) effort. It is intended to reliably support coordination of users and auto-
mated tasks in real-world multi-enterprise heterogeneous computing environments.
Key capabilities of the METEOR2 WfMS include a comprehensive toolkit for
building workflows and supporting high-level process modelling, detailed work-

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

SOME FULLY DISTRIBUTED WFMS 39

flow specification and automatic code generation for its workflow enactment sys-
tems.

Figure 12 – The METEOR2 architecture (source (Das et al., 1997)).

METEOR2 introduces concepts to represent each workflow as a set of tasks,
task managers, processing entities and interfaces, in order to execute them in a
completely distributed manner. Figure 12 shows the various modules in METEOR2

and their interaction. As can be seen in the picture, METEOR2 includes a workflow
designer that is used to create workflow models in a dedicated language. Once cre-
ated, workflow models are stored in a workflow model repository. METEOR2 also
includes a workflow code generator that can read a stored workflow model and gen-
erate a convenient specific distributed workflow application. The generated appli-
cation called the runtime system, consists of a set of communicating agents called
task managers and their associated tasks, web-based user interfaces, a distributed
recovery mechanism, a distributed scheduler and various monitoring components.
All these workflow component are Common Object Request Broker Architecture13

(CORBA) objects and thus, they possess communication capabilities.

13. CORBA is a standard middleware for distributed object systems. In its paradigm, a client application
wishing to perform an operation on a server object, sends a request. The request is received by an Object
Request Broker (ORB), responsible for all of the mechanisms required to find the object implementation

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

SOME FULLY DISTRIBUTED WFMS 40

The "Web Workflow Peer" Approach (Fakas and Karakostas, 2004)
The approach proposed by Fakas and Karakostas is based on the concepts of

Web Workflow Peer Directory (WWPD) and Web Workflow Peer (WWP). WWPD
is an active directory system that maintains a list of all peers (WWP) that are avail-
able to participate in web workflow processes. It allows peers to register with the
system and offer their services and resources to other peers. During the execu-
tion of workflow processes, the WWPD assists WWP to locate other WWP and
use their services and resources. In their setting, key functionalities and data are
distributed among WWP. The architecture is completely decentralised as no cen-
tral workflow engine is employed to coordinate the process execution. The WWP
encapsulates the necessary knowledge to perform the activities that are assigned
to it and also to delegate some of the process execution to other WWP. The only
centralised feature is the WWPD.

A WWP is a processing unit with an interface that is exposed on the Web and
which can be accessed using Internet protocols. Its interface describes different
types of processing capabilities, each corresponding to a workflow activity. When
combined, such activities form a workflow process. A WWP that initiates and ad-
ministers the process is called the Administrator Peer. Other WWP delegated to
carry out workflow activities are called the Participating Peers (see fig. 13). In
practice, all peers are capable of becoming administrators in different workflow
process instances. WWP use mobile documents called Workflow Process Descrip-
tion as communication medium. Segments of those documents move from site to
site and conveys structural information about the running workflow instance.

Workflow process administration is achieved by employing a notification mech-
anism. For instance, at the completion of an activity the WWP notifies the Ad-
ministrator Peer so that, an updated status of the process instance is maintained.
Similarly, upon expiration of an activity deadline, the Administrator Peer notifies
the WWP responsible for the expired activity. As far as we know, there is still no
real workflow system based on this promising architecture.

SwinDeW (Swinburne Decentralised Workflow) (Yan et al., 2006)
Combining workflow and P2P concepts, SwinDeW (Yan et al., 2006) has been

designed as a special P2P system, which provides workflow management support

for the request, to prepare the object implementation to receive the request, and to communicate the data
making up the request to the server object. A server object accessible by CORBA is referred to as a CORBA
object (Houlding, 2004).

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

SOME FULLY DISTRIBUTED WFMS 41

Figure 13 – A P2P workflow architecture (source (Fakas and Karakostas, 2004)).

in a truly decentralised way. SwinDeW adopts a flat, flexible and loosely coupled
structure with an intentional absence of both a centralised device for data stor-
age, and a centralised control engine for coordination. SwinDeW offers several
distributed protocols, especially for the definition, instantiation and execution of
processes.

The SwinDeW system is defined as four layers (see fig. 14). The top layer is
the application layer; it defines application-related functions to fulfil workflows.

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

SOME FULLY DISTRIBUTED WFMS 42

Figure 14 – A high-level view of SwinDeW’s architecture (source (Yan et al., 2006)).

Workflow Participant Software (WfPS) is an application that provides interfaces
to interact with a workflow participant and other WfPS, requesting services and
responding to requests. Core services of the workflow system are provided at
the service layer, which include the peer management service, the process defini-
tion service, the process enactment service, and the monitoring and administration
service. The data layer consists of distributed Data Repositories (DR) that store
workflow-related information. Finally, the monitoring and administration service
provides supervisory capabilities and status monitoring.

In SwinDeW, a peer is given by a WfPS and a set of DR (see fig. 15). Each peer
resides on a physical machine, enabling direct communication with other peers in
order to carry out the workflow. A peer is a self-managing entity that is associ-
ated with and operates on behalf of a workflow participant. From the functional
perspective, the WfPS of a peer consists of three software components :

1. A user component which serves as a "bridge" between the associated work-
flow participant and the workflow environment;

2. A task component that is in charge of the execution of tasks conducted by the
associated participant;

3. A flow component which helps to fit an individual task into the workflow. It
deals with data dependency and control dependency among tasks by handling
incoming and outgoing messages.

A peer (agent) consists also in a set of four DR : the peer repository, the resource
and tool repository, the task repository, and the process repository.

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

SOME FULLY DISTRIBUTED WFMS 43

1. A given peer repository stores an organisational model that represents organ-
isational entities and their relationships. This repository represents a user’s
view of the completely defined organisational model;

2. A resource and tool repository stores part of the resource model, which rep-
resents non human resources such as machines, external hardware, tools, etc.

3. A task repository stores a set of active task instances, which represent the
work allocated to the associated workflow participant in the context of pro-
cess instances;

4. A process repository stores a partial process definition distributed to the con-
sidered peer.

Figure 15 – Structure of a peer in SwinDeW (source (Yan et al., 2006)).

Workflow processes in SwinDeW are defined by a definition peer, which is
associated with an authorised participant such as a process engineer. The resulting
workflow models are stored in a distributed manner, in the process repositories of
various peers. To avoid the distribution of too large workflow models, SwinDeW
uses a "know what you should know" policy to partition these models and thus, to
configure each peer only with the partitions of the models that are of interest to it.

In SwinDeW, a workflow instance is executed under the management of the
workflow system. Once such an instance is created, a peer network is also con-
structed for carrying out this process instance. Various task instances are sched-
uled to enact at different sites, step by step. The execution of a task depends on
the satisfaction of two conditions : the information condition, which defines the

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

THE AIM OF ARTIFACT-CENTRIC BPM 44

start condition of a task from the data dependency perspective (a task can be exe-
cuted only after essential input data are available), and the control condition, which
indicates the start condition of a task from the control dependency perspective (a
task can be executed only after some relevant work has been logically completed).
Peers collaborate with one another through direct message exchange, to properly
schedule the execution of various task instances. There are two kinds of messages
flowing between peers: information messages and control messages, which are
structured in XML format. When a peer receives messages from its predecessor
peers directly, it evaluates the information and control conditions of the task in-
stance independently, starts working when both the conditions are satisfied, and
notifies its successor peers directly by delivering information messages and control
messages after the task instance is completed. The successor peers repeat the same
procedure until the completion of the whole process instance. This approach is
then fully distributed; moreover, it has an implementation.

I.4. Artifact-Centric Business Process Management

Emerged in the early 2000s, the artifact-centric paradigm of BPM is one of
those that has been much studied over the last two decades. This paradigm has been
pioneered by IBM (Nigam and Caswell, 2003) and revisited in several works such
as (Assaf, 2016; Assaf et al., 2017, 2018; Boaz et al., 2013; Deutsch et al., 2014;
Estanol et al., 2012; Hull et al., 2009; Lohmann and Nyolt, 2011; Lohmann and
Wolf, 2010); it proposes a new approach to BPM by focusing on both automated
processes (tasks and their sequencing) and data manipulated through the concept of
"business artifact" (artifact-centric modelling). In this section we present the key
concepts of the artifact-centric paradigm as well as some artifact-centric frame-
works from the literature.

I.4.1. Artifact-Centric BPM Basic Concepts

I.4.1.1. The Aim of Artifact-Centric BPM

In order to be able to better model workflows, process modelling should in-
clude a specification of the order in which tasks are executed (control flow), the
way data are processed (data flow), and how different branches in distributed and
inter-organisational business processes and services are invoked and coordinated
(message flow) (Lohmann and Nyolt, 2011). These three conceptual models of
workflows are also known as the process, the informational and the organisational

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

HOW THE ARTIFACT-CENTRIC APPROACH TO BPM WORKS 45

models (Divitini et al., 2001). Traditional approaches (BPMN, YAWL, BPEL, etc.)
to BPM are process-centric (they are also said to be imperative): they generally of-
fer two different views on business processes:

1. Collaboration diagrams (sometimes called interconnected models) that em-
phasise the local control flow of each participant of the process;

2. Choreography diagrams (interaction models) that describe the process from
the point of view of the messages that are exchanged among the participants.

Traditional approaches thus express workflow models by means of diagrams which
define how a workflow is supposed to operate, but give little importance (or none
at all) to the information produced as a consequence of the process execution: data
are treated as second-class citizens.

To precisely remedy this, researchers have developed the artifact-centric (Nigam
and Caswell, 2003) approach to the design and execution of business processes.
Artifact-centric models do not specify processes as a sequence of tasks to be exe-
cuted or messages to be exchanged (i.e. imperatively), but from the point of view
of the data objects (called business artifacts or simply artifacts) that are manipu-
lated throughout the course of the process (i.e. declaratively) (Lohmann and Nyolt,
2011). They rely on the assumption that any business needs to record details of
what it produces in terms of concrete information. Artifacts are proposed as a
means to record this information. They model key business-relevant entities which
are updated by a set of services (specified by pre and postconditions) that imple-
ment business process tasks. This approach has been successfully applied in prac-
tice and it provides a simple and robust structure for workflow modelling (Estanol
et al., 2012).

I.4.1.2. How the Artifact-Centric Approach to BPM Works

According to the artifact-centric paradigm, BPM takes place in two main phases
guided by the concept of artifact. In order to automate a given process, the designer
must first of all focus on artifact modelling; i.e. he must provide data structures
capable of storing and logically conveying the information produced during the
execution of workflows. Then, these artifacts models will be introduced into a
WfMS supporting artifact-centric execution of workflows for the enactment.

What is an artifact ?
(Nigam and Caswell, 2003) define an artifact as "a concrete, identifiable, self-

describing chunk of information that can be used by a business person to actually

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

HOW THE ARTIFACT-CENTRIC APPROACH TO BPM WORKS 46

run a business". Artifacts are business-relevant objects that are created, evolve,
and (typically) archived as they pass through the workflow (Hull et al., 2009); they
represent key conceptual objects of workflow that evolve as they move through an
enterprise. Artifacts are modelled through artifacts types (or models). An expected
characteristic of artifacts is that they should be self-describing: this requirement
allows a business person to be able to look at an artifact and determine if he or she
can work on it. Toward this end, an artifact type should include both:

1. an information model (or "data schema"), for holding information about the
artifact as it moves through the process, from creation to archival storage; and

2. a lifecycle model (or "lifecycle schema"), which describes how and when
tasks (activities or services) might be invoked on the artifacts as they move
through the process.

A prototypical example of an artifact type is the "air courier package delivery",
whose information model can hold data about a package including sender, receiver,
steps occurring in transport and billing activity; and whose lifecycle model would
specify the possible ways that the delivery service and billing might be carried out
(Hull et al., 2009; Hull, Su, and Vaculin, 2013).

Several approaches of modelling the lifecycle of artifacts have been studied in
the literature. The most commonly used approach is that in which, some form of
finite state machines (automata) (Hull et al., 2009) are used to specify lifecycles.
Other variants presenting the lifecycle of an artifact by a Petri net (Lohmann and
Wolf, 2010), logical formulae depicting legal successors of a state (Damaggio,
Deutsch, and Vianu, 2012) have also been proposed.

The artifact-centric execution
Artifact-centric models can be executed by artifact-centric WfMS. This new

type of WfMS put stress on how artifacts are created, updated and exchanged be-
tween various actors. In these, artifacts are considered as adaptive documents that
conveys all the information concerning a particular execution case of a given pro-
cess, from its inception in the system to its termination. In particular, this infor-
mation provides details on the case’s execution status as well as on its lifecycle
(a representation of the possible evolutions of this status). To do this, during the
execution of a given process, the actions carried out by each of the actors (agents)
have the effect of updating (editing) the artifacts involved in that execution. If
the process is cooperative, the artifact representing it will be updated by several

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

SOME PURELY ARTIFACT-CENTRIC BPM FRAMEWORKS 47

agents: it is said to be cooperatively edited and thus, the execution of a given busi-
ness process according to the artifact-centric approach, can be assimilated to the
cooperative editing of documents.

Two major trends in the artifact-centric modelling approach have been devel-
oped: orchestration and choreography (Hull et al., 2009).

1. Orchestration suggests the creation of centralised systems (usually called ar-
tifact hubs), coordinated by an orchestrator whose role is to facilitate inter-
action between actors while ensuring that business goals are met.

2. Choreography-oriented approaches get rid of the orchestrator, and model ac-
tors as autonomous agents coordinating with artifacts and communicating in
a P2P manner, to accomplish business goals. In these, each agent focuses on
achieving a local business goal and the achievement of the global business
goal is the result of aggregating results from different local business goals.

Compared to choreography, orchestration reduces the agents’ autonomy by making
the orchestrator the main controller of interactions. Also, the orchestrated approach
does not scale well. A limitation of the choreography-oriented approach is the lack
of a single synchronisation point from which, it is possible to know the process’s
(actual) global execution state. Despite this, we agree with (Lohmann and Wolf,
2010) that, this completely decentralised approach is the one that best fits the mod-
elling of the intrinsically distributed nature of business processes.

I.4.2. Some Existing Artifact-Centric BPM Frameworks

There are several frameworks in the literature, that implement artifact-centric
concepts. We briefly present some of them in this section. We begin by presenting
purely artifact-centric approaches; then we look at an even more flexible model,
recently developed as a data-centric solution for case management.

I.4.2.1. Some Purely Artifact-Centric BPM Frameworks

Proclets (Van Der Aalst et al., 2001)
The concept of proclets was introduced to specify business processes in which,

objects’ lifecycles can be modelled at different levels of granularity and cardinality.
A proclet can be seen as a lightweight workflow process equipped with a knowl-
edge base that contains information on previous interactions; it is thus equipped
with an explicit lifecycle or active documents (i.e., documents aware of tasks and
processes): in this setting then, a proclet is both an agent and an artifact. Proclets

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

SOME PURELY ARTIFACT-CENTRIC BPM FRAMEWORKS 48

can find each other using a naming service, and communicate with each other to
exchange messages through channels (see fig. 16).

Figure 16 – Graphical representation of the proclet-based framework (source (Van Der Aalst et
al., 2001)).

In the proclet-based framework, the lifecycle of proclet instance is described by
a proclet class used as artifact type. Like an ordinary workflow model, a proclet
class describes the order in which tasks can/need to be executed for individual
instances of the class. Proclet classes are specified using a graphical language
based on a sub-class of Petri nets so-called class of sound WF-nets.

Proclets are well-suited to deal with settings in which several instances of data
objects are involved. Proclets are considered to be distributed and autonomous
enough to decide how to interact with the other proclets: thus, the proclet-based
framework does not model proclets’ locations. Moreover, the execution model of
proclets is similar to choreography; the interoperation of proclets is not managed
or facilitated by a centralised hub.

Artifact hosting (Hull et al., 2009)
Hull et al. extend the artifact-centric model proposed by Nigam and Caswell

(2003), to provide an interoperation framework in which data (artifacts) are hosted
on central infrastructures named artifact-centric hubs. Data hosted in artifact-

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

SOME PURELY ARTIFACT-CENTRIC BPM FRAMEWORKS 49

centric hubs can be read and written by agents. This model is between chore-
ography and orchestration because, agents are all connected to the hub but are not
coordinated by a particular orchestrator. Unlike traditional orchestration schemes,
the hub enables the participating agent to be pro-active, and serves primarily as
a shared resource for coordinating activities. Participating agents can access in-
formation about the running artifact instances, can progress those instances along
their lifecycles, and can subscribe to events in order to be alerted about significant
steps in the progress of artifacts through their lifecycles. Security mechanisms are
proposed for controlling access to data hosted in the hub.

Figure 17 – An example of interoperation using an artifact-centric hub (source (Hull et al., 2009)).

Figure 17 illustrates an example of six groups of agents (potentially organisa-
tions) coordinating using artifacts that are managed in a centralised hub. These are
the agents related to the resources (Candidates, the Human Resources Organisa-
tion, the Hiring Organisations, the Evaluators, the Travel Provider and the Reim-
bursement) that carry out the employee hiring process in a given enterprise.

Artifact-centric choreographies (Lohmann and Wolf, 2010)
Lohmann and Wolf (2010) provide a more choreography-like framework for

artifact-centric interoperation. They abandon the fact of having a single artifact
hub (Hull et al., 2009) and they introduce the idea of having several agents which
operate on artifacts. Some of those artifacts are mobile (their location may change
over time); thus, the authors provide a systematic approach for modelling artifact
location and its impact on the accessibility of actions using a Petri net. Their model
was designed with the conviction that by making explicit who is accessing an ar-
tifact and where the artifact is located, one will be able to automatically generate
an interaction model that can serve as a contract between agents, and which make

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

A GUARDED ATTRIBUTE GRAMMARS BASED FRAMEWORK TO DATA-CENTRIC CASE

MANAGEMENT 50

sure that global goal states specified on artifacts are reached. They thus propose an
approach to automatically derive such an interaction model.

Declarative choreographies (Sun, Xu, and Su, 2012)
In (Sun et al., 2012), the authors are also interested in choreographies. More

precisely, they develop a language allowing to model (in a declarative manner)
the collaboration between several actors (the choreography) and a distributed al-
gorithm allowing the execution of the choreographies specified in their language.
Their choreography language has four distinct features :

1. Each type of actor is an artifact schema with a selected sub-part of its infor-
mation model visible to choreography specification.

2. Correlations between actor types and instances are explicitly specified, along
with cardinality constraints on correlated instances (e.g. each Order instance
may correlate with exactly one Payment instance and multiple Vendor in-
stances).

3. Messages can include data; data in both messages and artifacts can be used
in choreography constraints.

4. The language is declarative and uses logic rules based on a mix of first-
order logic and a set of binary temporal operators from DecSerFlow14 (Van
Der Aalst and Pesic, 2006).

In particular, Skolem15 notations are used to both reference correlated actor in-
stances and to manipulate dependencies among messages.

I.4.2.2. A Guarded Attribute Grammars Based Framework to
Data-Centric Case Management

What is case management ?
Highly important processes in organisations that have a tremendous impact on

the success and add the most value, involve a high degree of knowledge work: they
are driven by users’ decisions (user-centric) making it difficult to specify them

14. DecSerFlow: a Declarative Service Flow Language is a graphical, extendible language for expressing
process models in a declarative way; it captures what is the high-level process behaviour without expressing
how it is procedurally executed, hence giving a concise and easily interpretable feedback to the business
manager (Lamma, Riguzzi, Storari, Mello, and Montali, 2007).
15. Thoralf Albert Skolem (1887-1963) is a Norwegian mathematician and logician. He is particularly

known for his work in mathematical logic and set theory which now bears his name, such as the Löwenheim-
Skolem theorem or the notion of skolemisation (source, Wikipedia: https://en.wikipedia.org/wiki/
Thoralf_Skolem, visited the 02/04/2020).

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

https://en.wikipedia.org/wiki/Thoralf_Skolem
https://en.wikipedia.org/wiki/Thoralf_Skolem

A GUARDED ATTRIBUTE GRAMMARS BASED FRAMEWORK TO DATA-CENTRIC CASE

MANAGEMENT 51

into a set of activities with precedence relations at design-time (they are said to
be knowledge-intensive). Because knowledge-intensive processes are subject of
frequent exceptions, traditional BPM solutions are not able to support them suffi-
ciently (Hauder, Pigat, and Matthes, 2014). Adaptive Case Management (ACM) is
gaining interest among researchers and practitioners as an emerging paradigm to
master situations in which adaptions have to be made at run-time (unpredictable
situations) by so called knowledge workers. In contrast to traditional BPM, the
ACM paradigm is not dictating knowledge workers a predefined course of action,
but provides them with the required information at the right time (they are data-
centric) and authorises them to make decisions on their own (Hauder et al., 2014).

The notion of case in the ACM context, is closely related to the concept of
artifact. Both involve the notion of a conceptual entity that progresses through time,
according to some set of guidelines or lifecycle schema, and both taking advantage
of a growing set of data accumulated over the case instance lifecycle (Hull et al.,
2013). ACM can be seen as an extension of the artifact-centric paradigm in which,
the flexibility of workflow models (types of artifacts) is highly valued; therefore,
both users and data are treated as first-class citizens.

There is a growing research interest in the ACM paradigm and several mod-
els have already emerged. Guard-Stage-Milestone (GSM) (Damaggio et al., 2013;
Hull et al., 2011), a declarative model of the lifecycle of artifacts, was recently
introduced and has been adopted as a basis of Case Management Model and No-
tation (CMMN), the OMG standard for ACM. The GSM model defines Guards,
Stages and Milestones to control the enabling, enactment and completion of (pos-
sibly hierarchical) activities; it then allows for dynamic creation of subtasks (the
stages), and handles data attributes. However, interaction with users are modelled
as incoming messages from the environment, or as events from low-level (atomic)
stages. In this way, users do not explicitly contribute to the choice of a flow for a
process.

Recently, Badouel et al. (2014; 2015) have proposed a more user-centric and
data-driven ACM model (AWGAG) based on the concepts of Active Workspaces
(AW) and Guarded Attribute Grammars (GAG). We are particularly interested in
this model because, it incorporates concepts that we will manipulate throughout
this manuscript. These include the concepts of grammars as artifact types, struc-
tured documents (trees) as artifacts, artifact editing, etc.

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

A GUARDED ATTRIBUTE GRAMMARS BASED FRAMEWORK TO DATA-CENTRIC CASE

MANAGEMENT 52

AWGAG (Badouel et al., 2015)
The AWGAG model of collaborative systems is centered on the notion of user’s

workspace. It assume that the workspace of a user is given by a map. It is a tree
used to visualise and organise tasks in which, the user is involved together with
information used for their resolution. The workspace of a given user may, in fact,
consist of several maps where each map is associated with a particular service
offered by the user. In short, one can assume that a user offers a unique service so
that any workspace can be identified with its graphical representation as a map.

Figure 18 – Active workspace of a clinician (source (Badouel et al., 2015)).

As an example, figure 18 shows a map that represents the workspace of a clin-
ician acting in the context of a disease surveillance system. The service provided
by the clinician is identifying the symptoms of influenza in a patient, clinically ex-
amining the patient, eventually placing him under therapeutic care, declaring the
suspect cases to the disease surveillance center, and monitoring the patient based
on subsequent requests from the epidemiologist or the biologist.

Each call to this service, namely when a new patient comes to the clinician,
creates a new tree rooted at the central node of the map. This tree is an artifact
that represents a structured document for recording information about the patient
all along being taken over in the system. Initially, the artifact is reduced to a single
(open) node that bears information about the name, age and sex of the patient. An
open node, graphically identified by a question mark, represents a pending task that
requires the clinician’s attention. In this example the initial task of a given artifact
is to clinically examine the patient. This task is refined into three subtasks: clinical
assessment, initial care, and case declaration.

In the AWGAG model, a task is interpreted as a problem to be solved, that can
be completed by refining it into sub-tasks using business rules. A business rule is
modelled by a production P : s0→ s1 . . .sn expressing that task s0 can be reduced
to subtasks s1 to sn. For instance, the production

patient→ clinicalAssessment initialCare caseDeclaration

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

A GUARDED ATTRIBUTE GRAMMARS BASED FRAMEWORK TO DATA-CENTRIC CASE

MANAGEMENT 53

states that, a task of sort patient, the axiom of the grammar associated with the
service provided by the clinician, can be refined by three subtasks whose sorts
are respectively clinicalAssessment, initialCare, and caseDeclaration. If several
productions with the same left-hand side s0 exist, then the choice of a particular
production corresponds to a decision made by the user. In the example, the clin-
ician has to decide whether the case under investigation has to be declared to the
disease surveillance center or not. This decision can be reflected by the following
two productions:

suspectCase : caseDeclaration→ f ollowU p

benignCase : caseDeclaration→

If the case is reported as suspect, then the clinician will have to follow up the
case according to further requests of the biologist or the epidemiologist. On the
contrary (i.e. the clinician has described the case as benign), the case is closed
with no follow up actions.

AWGAG model considers artifacts as trees whose nodes are sorted and whose
productions are taken into a grammar (GAG). The lifecycle of an artifact is implic-
itly given by the set of productions of the underlying GAG:

1. The artifact initially associated with a case, is reduced to a single open node.

2. An open node X of sort s can be refined by choosing a production P : s→
s1 . . .sn that fits its sort. The open node X becomes a closed node under the
decision of applying production P to it. In doing so, task s associated with X
is replaced by n subtasks s1 to sn, and new open nodes X1 of sort s1 to Xn of
sort sn, are created accordingly: the artifact is said to be edited (see fig. 19).

3. The case reaches completion when its associated artifact is closed, i.e. it no
longer contains open nodes.

Figure 19 – Artifact edition in AWGAG (source (Badouel et al., 2015)).

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

SUMMARY 54

Additional information are attached to open nodes using attributes, to model the
interactions and data exchanged between the various tasks associated with them.
For that, each sort comes equipped with a set of inherited attributes and a set of syn-
thesised attributes where: inherited attributes represents input data, i.e. necessary
data for the associated task to be executed, while synthesised attributes represents
output data, i.e. data that are produced after the task being executed. This formal-
ism puts emphasis on a declarative (logical) decomposition of tasks to avoid over-
constrained schedules. Indeed, business rules do not prescribe any ordering on task
executions. Ordering of tasks depend on the exchanged data and are therefore de-
termined at runtime. In this way, the AWGAG model allows as much concurrency
as possible in the execution of the current pending tasks.

Furthermore, a given AWGAG model is flexible and can incrementally be de-
signed: one can initially let the designer manually develop large parts of the map,
and progressively improve the automation of the process by refining the classifica-
tion of the nodes, and introducing new business rules when recurrent patterns of
activities are detected. The AWGAG model presents great properties such as distri-
bution and soundness; these properties and more details are discussed in (Badouel
et al., 2015). Several implementations and extensions of the AWGAG model are
currently being carried out.

I.5. Summary

In this chapter, we have provided an overview of the basic concepts related to
BPM. To this end, we have provided clear and concise definitions of numerous no-
tions. We presented the concept of WfMS, how it works and the current challenges
in the production of such systems. Knowing that the main current challenges in the
production of WfMS are to provide them with the flexibility to better cope with the
distributed nature of the workflows they manage, and extend their expressiveness
so that they can address as first-class citizens, other perspectives of workflows such
as data and users, we presented new paradigms to BPM and a few approaches to
P2P BPM.

In addition, we focused on the artifact-centric paradigm for BPM and estab-
lished that, according to it, the execution of a given workflow can be seen as the
cooperative editing of one or more documents called artifacts. In these cases, it is
preferable that the manipulated documents are structured; they can be exchanged
between the different actors in the workflows’ execution (they are said to be mo-

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

SUMMARY 55

bile) to serve as a support to help their coordination, but also, indirectly, to be the
fruit of their cooperation: this is the research axis that we followed in this thesis.

To make our task easier, it would be a good idea to look at structured docu-
ments’ cooperative editing workflows: it is the subject of the next chapter. Since
Badouel and Tchoupé have theorised an asynchronous cooperative editing model
for structured documents of which, some of the concepts were brilliantly taken up
in the development of the AWGAG model, it is their editing model that will be the
main subject of our study.

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

II
CHAPTER

A WORKFLOW FOR STRUCTURED
DOCUMENTS’ COOPERATIVE EDITING
: KEY PRINCIPLES AND ALGORITHMS

CONTENTS
II.1 - Introduction . 56
II.2 - Basic Concepts on Cooperative Editing Workflows 58
II.3 - Tree Automata for Extracting Consensus from Partial Replicas of a

Structured Document . 62
II.4 - A Software Architecture for Centralised Management of Structured

Documents in a Cooperative Editing Workflow 83
II.5 - Summary . 89

II.1. Introduction

The purpose of this chapter is to introduce the main concepts related to asyn-
chronous cooperative editing of structured documents. In an asynchronous coop-
erative editing workflow, several authors located on geographically distant sites
coordinate to edit asynchronously the same structured document. In such editing
workflows (see fig. 20), the desynchronised editing phases in which each co-author
edits on his site, his copy of the document, alternate with the synchronisation-
redistribution phases in which, the different contributions (local replicas) are merged
(on a dedicated site) into a single document, which is then redistributed to the vari-
ous co-authors for the continuation of the edition. This pattern is repeated until the
document is completely edited.

56

BASIC CONCEPTS ON COOPERATIVE EDITING WORKFLOWS 57

Badouel and Tchoupé (2008) have theorised an asynchronous cooperative edit-
ing workflow in which, stakeholders (several subsystems - sites - distributed across
a network) work by editing and exchanging (partial) replicas of documents rep-
resenting their perceptions (views) at any given time. Therefore, each subsystem
(actor) has a partial view of the edited document at any given time, and the current
(global) document is given by the merging of different (partial) documents from the
various subsystems. In their model, collaborations between actors can be divided
into three sequential phases (see fig. 20):

• The distribution phase where global structured document (an artifact) is repli-
cated to each subsystem;

• The editing phase in which local processes of subsystems are executed, in-
ducing an update of the local replica of the global document;

• The synchronisation phase in which the various local documents updated are
merged into a global document.

In this chapter, we are mainly interested in the model proposed by Badouel and
Tchoupé. However, we are not just doing a systematic review of literature of their
model. We subtly introduce three contributions which further validate their model,
and polish the path towards our goal of producing a completely decentralised model
for the automation of administrative workflows :

1. First of all, we extend the merge algorithm proposed by them so that, it can
be applied in the more general case where conflicts might appear. To this end,
we propose a consensus reconciliation algorithm that generates conflict-free
maximum prefixes of the documents resulting from the merging of several
conflicting replicates.

2. Second, we propose a generic system architecture that can be used to produce
workflow systems for the cooperative editing of structured documents based
on their model.

3. Finally, we propose a cooperative editing system prototype based on the pro-
posed architecture and coded by cross-fertilisation of Java and Haskell.

In the rest of this chapter, in section II.2, we will present some basic concepts
related to cooperative editing of documents, as well as some existing cooperative
editing systems. In section II.3, we will present the main concepts of Badouel
and Tchoupé’s model as well as the reconciliation algorithm that we propose. In

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

BASIC CONCEPTS ON COOPERATIVE EDITING WORKFLOWS 58

section II.4, will be presented, the generic architecture of workflow systems that
we propose, as well as a prototype system built according to it. We will conclude
this chapter in section II.5.

II.2. Basic Concepts on Cooperative Editing Workflows

Cooperative editing is a work of (hierarchically) organised groups, that operate
according to a schedule involving delays and a division of labor (coordination).
Like any CSCW, cooperative editing is subject to spatial and temporal constraints.
Thus, one distinguishes distributed or not, and synchronous or asynchronous co-
operative editing. When distributed, the various editing sites are geographically
dispersed and each of them has a local copy of the document to be edited; systems
that support such an edition should offer algorithms for data replication (Saito and
Shapiro, 2005) and for the fusion of updates. When asynchronous, various co-
authors get involved at different times to bring their different contributions.

A cooperative editing workflow goes generally, from the creation of the docu-
ment to edit, to the production of the final document through the alternation and
repetition of distribution, editing and synchronisation phases. The literature is full
of several cooperative editing workflows and of their management systems. We
present a few in this section.

II.2.1. Real-Time Cooperative Editing Workflows

In these generally centralised systems (Etherpad1 (Giannetti and Lord, 2015),
Google Docs2, Framapad3, Fidus Writer4 (Wilm and Frebel, 2014), etc.), the origi-
nal document is created by a co-author on the central server. The latter then invites
his colleagues to join him for the editing; they therefore connect to the editing
session usually identified by a URL (distribution phase, although the document is
generally not really duplicated). During an editing session (synchronous editing
phase), all connected co-authors work on a single copy of the document but in dif-
ferent contexts. When the integration is automatic, changes performed by one of
them are immediately (automatically) propagated to be incorporated into the ba-
sic document (synchronisation phase), and the latter is then redistributed to others.

1. Official website of Etherpad: http://www.etherpad.org/, visited the 04/04/2020.
2. Google Docs is accessible online at https://www.docs.google.com/, visited the 04/04/2020.
3. Get more information on Framapad at http://www.framasoft.org/, visited the 04/04/2020.
4. Official website of Fidus Writer: https://www.fiduswriter.org/, visited the 04/04/2020.

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

http://www.etherpad.org/
https://www.docs.google.com/
http://www.framasoft.org/
https://www.fiduswriter.org/

BASIC CONCEPTS ON COOPERATIVE EDITING WORKFLOWS 59

The changes are saved progressively and the server usually keeps multiple versions
of the document.

The majority of real-time editors use the model of operational transformations
(Oster, 2005; Tlili, 2011). Their architectures are therefore based on the one de-
fined by this model. Meaning that, they distinguish two main components: an
integration algorithm, responsible for the receipt, dissemination and execution of
operations and a set of processing functions that are responsible for "merging" up-
dates by serialising two concurrent operations.

II.2.2. Asynchronous Cooperative Editing Workflows

This edit mode is distinguished by real distribution phases in which, the doc-
ument to be edited is replicated on different sites, using appropriate algorithms
(Saito and Shapiro, 2005). A co-author may then contribute at any time, by editing
his local copy of the document. Here, we focus on a few asynchronous cooperative
editors operating in client-server mode.

Wikiwikiweb (Wikis)
Wikis (Cunningham, 1995) are a family of collaborative editors for editing web

pages from a browser. To edit a page on a Wiki, one must duplicate it and con-
tribute. After editing, he just have to save it and to publish a new version of that
page. In a competing editing case, it is the last published version which will be
visible. Even though it is still possible to access the previously published versions,
there is no guarantee that a new version of the page preserves intentions (incorpo-
rates aspects) of previous versions. For this aspect, a Wiki can be seen much more
as a web page version manager.

CVS (Concurrent Versions System)
Under CVS (Berliner et al., 1990), versions of a document are managed in a

space called repository, and each user has a personal workspace. To edit a docu-
ment, the user must create a replica in his workspace. He will amend this replica,
then will release a new version of the document in the repository. In case the doc-
ument is concurrently edited by several authors and at least one update has already
been published, the author wishing to publish a new update, will be forced to con-
sult and integrate all previous updates through dedicated tools, integrated in CVS.

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

BASIC CONCEPTS ON COOPERATIVE EDITING WORKFLOWS 60

SVN (Subversion)
SVN5 (Pilato, Collins-Sussman, and Fitzpatrick, 2008) was created to replace

CVS. Its main goal was to propose a better implementation of CVS. So as CVS,
SVN relies on an optimistic protocol of concurrent access management: the copy-
edit-merge paradigm. SVN provides many technical changes like a new commit
algorithm, the management of metadata versions, new user commands and many
others features.

Git
The main purpose of Git6 is the management of various files in a content tree

considered as a deposit (all files of a source code for example). To edit a deposit,
a given user connects to it and clones (forks). He obtains a copy of that deposit,
modifies it locally through a set of commands provided by Git. Then he offers
his contribution to primary maintainer which can validate it and thus, merges it
with the original deposit. During this operation, new versions of modified files are
created in the main repository. It is therefore possible under Git, to access any
revision of a given file.

II.2.3. Badouel and Tchoupé’s Cooperative Editing Workflow

Badouel and Tchoupé (2008) proposed a workflow for cooperative editing of
structured documents (those with regular structures defined by grammatical models
such as DTD, XML schema (Bray et al., 2000), etc.), based on the concept of
"view". The authors use context free grammars as documents models. A document
is thus, a derivation tree for a given grammar.

The lifecycle of a document in their workflow can be sketched as follows:
initially, the document to edit (t) is in a specific state (initial state); various co-
authors who are potentially located in distant geographical sites, get a copy of t
which they locally edit. For several reasons (confidentiality, security, efficiency,
etc. (Tchoupé Tchendji, Djeumen D., and Atemkeng T., 2017)), a given co-author
"i" does not necessarily have access to all the grammatical symbols that appear in
the tree (document); only a subset of them can be considered relevant for him: that
is his view (Vi). The locally edited document, is therefore a partial replica (denoted
tVi

) of the original document. This one is obtained by projection (π) of the original
document with regard to the view of the considered co-author (tVi

= πVi
(t)). The

5. Check more about SVN at http://www.subversion.apache.org/, visited the 04/04/2020.
6. Official website of Git: https://www.git-scm.com/, visited the 04/04/2020.

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

http://www.subversion.apache.org/
https://www.git-scm.com/

BASIC CONCEPTS ON COOPERATIVE EDITING WORKFLOWS 61

edition is asynchronous and local documents obtained are called updated partial
replicas denoted by tma j

Vi
.

Badouel and Tchoupé focus only on the positive edition: edited documents are
only increasing; thus, the co-authors cannot remove portions of the document when
a synchronisation has already been performed. To both ensure that property, and
be able to tell a co-author where he shall contribute, the documents being edited
are represented by trees with buds that indicate the only places where editions are
possible. Buds are typed; a bud of sort X is a leaf node labelled Xω: it can only be
edited (extended in a subtree) by using a X-production (production with X as left
hand side).

When a synchronisation point is reached, all contributions tma j
Vi

of different co-
authors are merged in a single global document t f . To ensure that the merging is
always possible (convergence), Badouel and Tchoupé assume that on each site, the
editions are controlled by a local grammar. These local grammars are obtained
from the global one, by projection along the corresponding views (Badouel and
Tchoupé Tchendji, 2008; Tchoupé Tchendji et al., 2017).

Figure 20 – A BPMN orchestration diagram sketching a cooperative editing workflow of a struc-
tured document according to Badouel and Tchoupé.

Figure 20 gives an overview, with a BPMN orchestration diagram, of the struc-
tured documents’ cooperative editing workflow according to Badouel and Tchoupé’s
proposal; at site 1, operations of (re)distribution and merging of the document in
accordance with a (global) model G, are realised; at sites 2 and 3, edition of partial

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

STRUCTURED DOCUMENT, EDITING AND CONFORMITY 62

replicas in accordance with (local) models G1 and G2, derived by projecting the
global documents model G, are done.

In summary, the workflow of Badouel and Tchoupé is different from the others
with its concept of "view" and by the fact that, it exclusively manipulates (partial)
structured documents.

II.3. Tree Automata for Extracting Consensus from Partial
Replicas of a Structured Document

In this section, we will better study Badouel and Tchoupé work on structured
editing. We will adopt and adapt the different mathematical tools they proposed,
to produce a more general algorithm for merging partial replicates, by taking into
account the cases where these would be in conflict.

II.3.1. Structured Cooperative Editing and Notion of Partial
Replication

II.3.1.1. Structured Document, Editing and Conformity

In the XML community, the document model is typically specified using a DTD
or a XML Schema (Bray et al., 2000). It is shown that these DTD are equivalent to
(regular) grammars with special characteristics called XML grammars (Berstel and
Boasson, 2000). The (context free) grammars are therefore a generalisation of the
DTD and, on the basis of the studies they have undergone, mainly as formal models
for the specification of programming languages, they provide an ideal framework
for the formal study of the transformations involved in XML technologies. That’s
why we use them in our work as tools for specifying the structure of documents.

We are only interested in the structure of the documents regardless of their con-
tents and the attributes they may contain. We will therefore represent the abstract
structure of a structured document by a tree, and its model by an abstract context
free grammar; a valid structured document will then be a derivation tree for this
grammar. A context free grammar defines the structure of its instances (the doc-
uments that are conform to it) by means of productions. A production, generally
denoted p : X0→ X1 . . .Xn, is comparable in this context, to a structuring rule which
shows how the symbol X0, located in the left part of the production, is divided into
a sequence of other symbols X1 . . .Xn, located on its right side. More formally,

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

STRUCTURED DOCUMENT, EDITING AND CONFORMITY 63

Definition 2 An abstract context free grammar is given by G = (S ,P ,A) com-
posed of a finite set S of grammatical symbols or sorts corresponding to the
different syntactic categories involved, a particular grammatical symbol A ∈ S
called axiom, and a finite set P ⊆ S × S ∗ of productions. A production P =(
XP(0),XP(1) · · ·XP(n)

)
is denoted P : XP(0)→XP(1) · · ·XP(n) and |P| denotes the length

of the right hand side of P. A production with the symbol X as left part is called a
X-production.

For certain treatments on trees (documents), it is necessary to designate pre-
cisely a particular node. Several indexing techniques exist, among them, the so-
called Dynamic Level Numbering (Böhme and Rahm, 2004) based on identifiers
with variable lengths, inspired by the Dewey decimal classification (see fig. 21).
According to this indexing system, a tree can be defined as follows:

Definition 3 A tree whose nodes are labelled in an alphabet S , is a partial map
t : N∗ → S , whose domain Dom(t) ⊆ N∗ is a prefix closed set such that, for all
u ∈ Dom(t), the set {i ∈ N | u · i ∈ Dom(t)} is a non-empty interval of integers
[1, · · · ,n]∩N (ε ∈ Dom(t) is the root label); the integer n is the arity of the node
whose address is u. t(u) is the value (label) of the node in t, whose address is
u. If t1, · · · , tn are trees and a ∈ S , we denote t = a[t1, . . . , tn], the tree t of domain
Dom(t) = {ε}∪{i ·u | 1≤ i≤ n , u ∈ Dom(ti)} with t(ε) = a, and t(i ·u) = ti(u).

Figure 21 – Example of an indexed tree.

Let t be a document and G = (S ,P ,A) a grammar. t is a derivation tree for
G if its root node is labelled by the axiom A of G, and if for all internal node n0

labelled by the sort X0, and whose sons n1, . . .nn, are respectively labelled by the

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

STRUCTURED DOCUMENT, EDITING AND CONFORMITY 64

sorts X1, . . . ,Xn, there is one production P ∈ P such that, P : X0 → X1 · · ·Xn and
|P| = n. It is also said in this case, that t belongs to the language generated by G
from the symbol A, and it is denoted t ∈L (G, A) or t ∴G.

There is a bijective correspondence between the set of derivation trees of one
grammar and all its Abstract Syntax Tree (AST). In an AST, nodes are labelled by
the names of the productions.

Definition 4 The set AST (G,X) of abstract syntax trees according to the grammar
G associated with grammatical symbol X, consists of trees in the form P[t1, . . . , tn]
where P is a production such that, X =XP(0), n= |P| and ti ∈AST (G,Xi), Xi =XP(i)

for all 1≤ i≤ n.

AST are used to show that a given tree, labelled with grammatical symbols, is an
instance of a given grammar.

A structured document being edited, is represented by a tree containing buds (or
open nodes) which indicate in a tree, the only places where editions (i.e updates)
are possible7. Buds are typed; a bud of sort X is a leaf node labelled by Xω (see
fig. 22): it can only be edited (i.e extended to a subtree) by using an X-production.
Thus, a structured document being edited and that have the grammar G= (S ,P ,A)
as model, is a derivation tree for the extended grammar GΩ = (S ∪Sω,P ∪SΩ,A),
obtained from G as follows: for all sort X , we not only add in the set S of sorts
a new sort Xω, but we also add a new ε-production XΩ : Xω → ε in the set P of
productions; so we have: Sω = {Xω, X ∈ S} and SΩ = {XΩ : Xω→ ε, Xω ∈ Sω}.

Figure 22 – Example of a tree that contains buds.

7. Note that, we are interested only in the positive edition based on a partial optimistic replication (Saito and
Shapiro, 2005) of edited documents. In fact, the edited documents are only increasing: there is no possible
erasure as soon as a synchronisation has been performed.

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

STRUCTURED DOCUMENT, EDITING AND CONFORMITY 65

When we look at the productions of a grammar, we can notice that each sort
is associated with a set of productions. From this point of view therefore, we can
consider a grammar as an application

gram : symb→ [(prod, [symb])]

which associates to each sort, a list of pairs formed by a production name and the
list of sorts in the right hand side of this production. Such an observation suggests
that a grammar can be interpreted as a (descending) tree automaton that can be
used for recognition or for the generation of its instances.

Definition 5 A (descending) tree automaton defined on Σ, is a quadruplet A =

(Σ,Q,R,q0) of a set Σ of symbols ; its elements are the nodes’ labels of the trees
to be generated (or recognised), a set Q of states, a particular state q0 ∈ Q called
initial state, and a finite set R⊆ Q×Σ×Q∗ of transitions.

• An element of R is denoted q→ (σ, [q1, · · · ,qn]) or in an equivalent way q σ→
(q1, . . . ,qn): intuitively, [q1, · · · ,qn] is the list of states accessible from q by
crossing a transition labelled σ.

• If q σ1→
(
q1

1, · · · ,q1
n1

)
, · · · ,q σk→

(
qk

1, · · · ,qk
nk

)
denotes the set of transitions asso-

ciated to the state q, we denote next q= [
(
σ1, [q1

1, · · · ,q1
n1
]
)
, · · · ,

(
σk, [qk

1, · · · ,qk
nk
]
)
],

the list that consists of pairs
(
σi, [qi

1, · · · ,qi
ni
]
)
. A transition of the form q→

(σ, []), is called final transition and a state possessing this transition is a
final state.

One can interpret a grammar G = (S ,P ,A) as a (descending) tree automaton
(Comon et al., 1997) A = (Σ,Q,R,q0) considering that:

(1) Σ = P is the type of labels of the nodes forming the tree to recognise;

(2) Q = S is the type of states and,

(3) q→ (σ, [q1, · · · ,qn]) is a transition of the automaton when the pair (σ, [q1, · · · ,qn])

appears in the list (gram q)8.

We note AG the tree automaton derived from G.
To obtain the set ASTA of AST generated by a tree automaton A from an initial

state q0, one must:

8. Reminder: gram is the application obtained by abstraction of G and have as type : gram : symb→
[(prod, [symb])].

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

NOTIONS OF VIEW, PROJECTION, REVERSE PROJECTION AND MERGING 66

(1) Create a root node r, associate the initial state q0 and add it to the set ASTA

initially empty;

(2) Remove from ASTA an AST t under construction, i.e. with at least one leaf
node node unlabelled. Let q be the state associated to node. For all tran-
sition q σ→ (q1, · · · ,qn) of A , add in ASTA the trees t ′ which are replicas of
t in which, the node node has been substituted by a node node′ labelled σ

and possessing n (unlabelled) sons, each associated to a (distinct) state qi of
[q1, · · · ,qn];

(3) Iterate step (2) until he obtains trees with all the leaf nodes labelled (they are
consequently associated to the final states of A): these are AST.

We note A |= t .q the fact that the tree automaton A accepts the tree t from the ini-
tial state q, and L (A ,q) (tree language) the set of trees generated by the automaton
A from the initial state q. Thus, (A |= t .q)⇔ (t ∈L (A ,q)).

As for automata on words, one can define a synchronous product on tree au-
tomata to obtain the automaton recognising the intersection, the union, etc., of
regular tree languages (Comon et al., 1997). We introduce below the definition of
the synchronous product of k tree automata whose adaptation will be used in the
next section for the derivation of the consensual automaton.

Definition 6 Synchronous product of k automata:
Let A1 =

(
Σ,Q(1),R(1),q(1)0

)
, . . . ,Ak =

(
Σ,Q(k),R(k),q(k)

0

)
be k tree automata. The

synchronous product of these k automata A1⊗ ·· · ⊗Ak denoted ⊗k
i=1A (i), is the

automaton A(sc) = (Σ,Q,R,q0) defined as follows:

(a) Its states are vectors of states : Q = Q(1)×·· ·×Q(k);

(b) Its initial state is the vector formed by the initial states of the different au-
tomata : q0 =

(
q(1)

0 , · · · ,q(k)
0

)
;

(c) Its transitions are given by :(
q(1), . . . ,q(k)

) a→
((

q(1)
1 , . . . ,q(k)

1

)
, . . . ,

(
q(1)n , . . . ,q(k)n

))
⇔(

q(i) a→
(

q(i)
1 , . . . ,q(i)n

)
∀i, 1≤ i≤ k

)

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

NOTIONS OF VIEW, PROJECTION, REVERSE PROJECTION AND MERGING 67

II.3.1.2. Notions of View, Projection, Reverse Projection and Merging

View, associated projection and merging
The derivation tree giving the (global) representation of a structured document

edited in a cooperative way, makes visible the set of grammatical symbols of the
grammar that participated in its construction. As we mentioned in section II.2.3
above, for reasons of confidentiality (accreditation degree), a co-author manipulat-
ing such a document will not necessarily have access to all of these grammatical
symbols; only a subset of them can be considered relevant for him: it is his view.
A view V is then a subset of grammatical symbols (V ⊆ S).

A partial replica of t according to the view V , is a partial copy of t obtained
by deleting in t, all the nodes labelled by symbols that are not in V . Figure 23
shows a document t (center) and two partial replicas tv1 (left) and tv2 (right) obtained
respectively by projections from the views V1 = {A,B} and V2 = {A,C}.

Figure 23 – Example of projections made on a document and partial replicas obtained.

Practically, a partial replica is obtained via a projection operation denoted π.
We therefore denote πV (t) = tV the fact that tV is a partial replica obtained by
projection of t according to the view V .

Note tVi
≤ tma j

Vi
the fact that, the document tma j

Vi
is an update of the document tVi

,

i.e. tma j
Vi

is obtained from tVi
by replacing some of its buds by trees. In an asyn-

chronous cooperative editing process, there are synchronisation points9 in which,
one tries to merge all contributions tma j

Vi
of the various co-authors to obtain a sin-

9. Recall that a synchronisation point can be defined statically or triggered by a co-author as soon as certain
properties are satisfied.

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

ISSUE AND PRINCIPLE OF THE SOLUTION OF RECONCILIATION BY CONSENSUS 68

gle comprehensive document t f
10. A merging algorithm that does not incorporate

conflict management and relies on a solution to the reverse projection problem was
given by Badouel and Tchoupé.

Partial replica and reverse projection (expansion)
The reverse projection (also called the expansion) of an updated partial replica

tma j
Vi

relatively to a given grammar G = (S ,P ,A), is the set T ma j
iS of documents

conform to G, that admit tma j
Vi

as partial replica according to Vi:

T ma j
iS =

{
tma j
iS ∴G | πVi

(
tma j
iS

)
= tma j

Vi

}
A solution to the problem of evaluating the expansion of a given partial replica

using tree automata, was proposed by Badouel and Tchoupé; in that solution, pro-
ductions of the grammar G are used, to bind to a view Vi ⊆ S a tree automa-
ton A (i) such as, the trees it recognises from an initial state built from tma j

Vi
, are

exactly those having this partial replica as projection according to the view Vi:
T ma j

iS = L
(

A (i), qtVi

)
. Practically, they have considered that a state q of the au-

tomaton A (i) is a pair (Tag X , ts) where X is a grammatical symbol, ts is a forest
(tree set), and Tag is a label that is either Open or Close, and indicates whether
the concerned state q can be used to generate a closed node or a bud. The states
of A (i) are typed: a state of the form (Tag X , ts) is of type X . We also have a
function named typeState which, when applied to a state, returns its type11. A tran-
sition from one state q, is of one of the forms (Close X , ts)→ (p, [q1, . . . ,qn]) or
(Open X , [])→ (Xω, []). A transition of the form (Close X , ts)→ (p, [q1, . . . ,qn])

is used to generate AST of type X (whose root is labelled by a X-production) ad-
mitting ”ts” as projection according to the view Vi if X does not belong to Vi, and
”x[ts]” otherwise. Similarly, a transition of the form (Open X , [])→ (Xω, []) is
used to generate a single AST reduced to a bud of type X .

The interested reader may consult (Badouel and Tchoupé Tchendji, 2008) for
a more detailed description of the process of associating a tree automaton with a
view and the section II.3.2.3 for an illustration.

10. It may happen that the edition must be continued after the merging (this is the case if there are still buds
in the merged document): one must redistribute to each of the n co-authors a (partial) replica tVi

of t f such
that tVi

= πVi
(t f) for the continuation of the editing process.

11. typeState :: state→ symb
. typeState (Open X , ts) = X
. typeState (Close X , ts) = X

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

ISSUE AND PRINCIPLE OF THE SOLUTION OF RECONCILIATION BY CONSENSUS 69

II.3.2. Reconciliation by Consensus

II.3.2.1. Issue and Principle of the Solution of Reconciliation by
Consensus

There are generally two distinct phases when synchronising replicas of a doc-
ument (Balasubramaniam and Pierce, 1998): the updates detection phase, which
consists of recognising the different replica nodes (locations) where updates have
been made since the last synchronisation, and the propagation phase, which con-
sists in combining the updates made on the various replicas to produce a new
synchronised state (document) for each replica. In an asynchronous cooperative
editing workflow of several partial replicas of a document, when you reach a syn-
chronisation point, you can end up with unmergeable replicas in their entirety as
they contain not compatible updates12: they must be reconciled. This can be done
by questioning (cancelling) some local editing actions in order to resolve conflicts
and result in a coherent global version said of consensus.

Studies on reconciling a document versions are based on heuristics (Mens,
2002) as there is no general solution to this problem. In our case, since all editing
actions are reversible13 and it is easy to locate conflicts when trying to merge the
partial replicas (see section II.3.2.2), we have a canonical method to eliminate con-
flicts: when merging, we replace any node of the global document whose replicas
are in conflict, by a bud. Thus, we prune at the nodes where a conflict appears,
replacing the corresponding subtree with a bud of the appropriate type, indicating
that this part of the document is not yet edited: the documents obtained are called
consensus. These are the maximum prefixes without conflicts of the fusion of the
documents resulting from the different expansions of the various updated partial
replicas. For example, in figure 26, the parts highlighted (blue backgrounds) in
trees (f) and (g) are in conflict; they are replaced in the consensus tree (h) by a bud
of type C (node labelled Cω).

The problem of the consensual merging of k updated partial replica whose
global model is given by a grammar G = (S ,P ,A) can therefore be stated as fol-
lows :
Problem of the consensual merging: given k views (Vi)1≤i≤k and k partial replicas
(tma j

Vi
)1≤i≤k, merge consensually the family (tma j

Vi
)1≤i≤k is to find the largest docu-

ments tma j
S conforming to G such that, for any document t conforming to G and

12. This is particularly the case if there is at least one node of the global document accessible by more than
one co-author and edited by at least two of them using different productions.
13. Reminder: the editing actions made on a partial replica may be cancelled as long as they do not have

been incorporated into the global document.

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

CONSENSUS CALCULATION 70

admitting tma j
Vi

as projection along the view Vi, tma j
S and t are eventually updates

each for other. i.e.: (
tma j
S ∈ ⊗k

i=1ti, ti ∈ T ma j
iS

)
⇔{

i) ∀i, 1≤ i≤ k, ∀t ∴G such that πVi
(t) = tma j

Vi
, tma j

S
∼= t.

ii) @t ′ ≤ tma j
S such that t ′ ∈ ⊗k

i=1ti, ti ∈ T ma j
iS

14

The solution that we propose to this problem stems from an instrumentation of
that proposed for the expansion (section II.3.1.2). Indeed, we use an associative
and commutative operator noted ⊗, to synchronise the tree automata A (i) con-
structed to carry out the various expansions, in order to generate the tree automa-
ton of consensual merging. Noting A(sc) this automaton, the documents of the
consensus are the trees of the language generated by the automaton A(sc) from an
initial state built from the vector made of the initial states of the automata (A (i)):
L (A(sc), (qtma j

Vi
)) = consensus{L (A (i), qtma j

Vi
)}. A(sc) is obtained by proceeding as

follows:

(1) For each view Vi, build the automaton A (i) which will carry out the ex-
pansion of the partial replica tma j

Vi
as previously indicated (sec. II.3.1.2):

L
(

A (i), qtma j
Vi

)
= T ma j

iS ;

(2) Using the operator ⊗, compute the automaton generating the consensus lan-
guage A(sc) =⊗k

i=1A (i).

II.3.2.2. Consensus Calculation

Before presenting the consensus calculation algorithm, let us specify using the
concepts introduced in section II.3.1.1, the notion of (two) documents in conflict.
Let t1, t2 :N∗→A be two trees (documents) with respectively Dom(t1) and Dom(t2)
their domains. We say that t1 and t2 admit a consensus, and we note t1 & t2, if their
roots are of the same type15, i.e. (t1 & t2)⇔ (typeNode(t1(ε)) = typeNode(t2(ε)))
16. It is then say that, t1 and t2 are in conflict, and it is noted t1 / t2, when they admit
a consensus but are not mergeable in their entirety. Intuitively, two documents t1

14. The binary relation ∼= when it exists between two trees t1 and t2 expresses the fact that they are possibly
updates each for other. This relationship is more explicitly explained in definition 7.
15. Trees we handle are AST and therefore, the nodes are labelled by productions names. Any node labelled
by an X-production is said of type X . Furthermore, there is a function typeNode such that typeNode(t(w))
returns the type of the node located at the address w in t.
16. It may then be noted that two documents (AST) admit no consensus if their roots are of different types.

However, for applications that interest us, namely structured editing, since the editions are done from the
root (which is always of the type of the axiom) to the leaves using productions, the documents we manipulate
always admit at least a consensus.

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

CONSENSUS CALCULATION 71

and t2 (not reduced to buds) are not fully mergeable (see fig. 24), if there exists an
address w ∈Dom(t1)∩Dom(t2) such that, if we note n1 (resp. n2) the node located
to address w in t1 (resp. in t2), then, n1 and n2 which are not buds, are of the same
type but have different labels. i.e.

(t1 / t2 with t1(ε) 6= Xω, t2(ε) 6= Xω)⇔
(t1 & t2)
and(
∃w ∈ Dom(t1)∪Dom(t2), t1(w) 6= t2(w) 6= Xω and
typeNode(t1(w)) = typeNode(t2(w))

)

Figure 24 – Example of documents in conflict.

Figure 24 shows two conflicting documents. In fact, at address 2.1 we have two
nodes of the same type ("C") but edited with different C-productions: production
C→C C in the first document, and production C→ A C in the second one.

Consensus among multiple (two) documents
Let t1, t2 :N∗→A be two trees (documents) in conflict with respectively Dom(t1)

and Dom(t2) their domains. The consensual tree tc : N∗→ A derived from t1 and
t2 (tc = t1⊗ t2) has as domain the union of domains of the two trees in which, we
subtract elements belonging to domains of subtrees derived from the conflicting
nodes. In fact, we prune at the nodes in conflict and they appear in the consensus
tree as a (unique) bud. So,

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

CONSENSUS CALCULATION 72

∀w ∈ Dom(tc),

tc(w) =

t1(w) if typeNode(t1(w)) = typeNode(t2(w)) and t1(w) = t2(w)
t1(w) if typeNode(t1(w)) = typeNode(t2(w)) and t2(w) = Xω

t2(w) if typeNode(t1(w)) = typeNode(t2(w)) and t1(w) = Xω

t1(w) if w /∈ Dom(t2) and ∃u, v ∈ N∗ tq w = u.v,
t2(u) = Xω and typeNode(t1(u)) = typeNode(t2(u))

t2(w) if w /∈ Dom(t1) and ∃u, v ∈ N∗ tq w = u.v,
t1(u) = Xω and typeNode(t1(u)) = typeNode(t2(u))

Xω if typeNode(t1(w)) = typeNode(t2(w)) and t1(w) 6= Xω

and t2(w) 6= Xω and t1(w) 6= t2(w)

Figure 25 presents the document resulting from the consensual merging of the
documents in figure 24. We have prune at the level of nodes 2.1 in both documents
which are in conflict.

Figure 25 – Document resulting from the consensual merging of the documents in figure 24.

When tc = t1⊗ t2, there may be nodes of t1 and those of t2 which are updates of
the nodes of tc: it is said in this case that t1 (resp. t2) and tc are updates each for
other.

Definition 7 Let t1, t2 two documents that are not in conflict. It will be said that
they are updates each for other and it is noted t1 ∼= t2, if there exists at least two
addresses w, w′ of their respective domains such that t1(w) (resp. t2(w′)) is a bud
and t2(w) (resp. t1(w′)) is not.

Construction of the consensus automaton
Consideration of documents with buds requires the readjustment of some mod-

els. For example, in the following, we will handle tree automata with exit states

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

CONSENSUS CALCULATION 73

instead of tree automata introduced in definition 5. Intuitively, a state q of an au-
tomaton is called an exit state if there is a unique transition q→ (Xω, []) associated
to it for generating a tree reduced to a bud of type X ∈ Σ: q is then of the form
(Open X, []).

Definition 8 A tree automata with exit states A is a quintuplet (Σ,Q,R,q0,exit)
where Σ,Q,R,q0 designate the same objects as those introduced in definition 5,
and exit is a predicate defined on the states (exit : Q→ Bool). Any state q of Q for
which exit q is True is an exit state.

A type for automata with exit states can be defined in Haskell (Davie, 1992) by
the listing of algorithm 1 in which, state and prod are type variables respectively
representing the type of the automaton states and the type of labels of the AST to
generate.

Algorithm 1 A Haskell type for automata with exit states.

1 data Automata prod state = Auto{
2 exit:: state -> Bool,
3 next :: state -> [(prod,[state])]
4 }

In section II.3.2.2 (consensus among multiple (two) documents) above, we said
that, when two nodes are in conflict, "they appear in the consensus tree as a
(unique) bud". From the point of view of automata synchronisation, the con-
cept of "nodes in conflict" is the counterpart of the concept of "states in con-
flict" (as we specify below), and the above extract is reflected in the automata
context by: "when two state are in conflict, they appear in the consensus automa-
ton in the form of a (single) exit state". Thus, if we consider two states of the
same type q1

0 and q2
0 (which are not exit states) of two automata auto1 and auto2

with associated transitions families respectively q1
0→ [(a1

1,qs1), . . . ,(a1
n1
,qsn1)] and

q2
0→ [(a2

1,qs′1), . . . ,(a
1
n2
,qs′n2

)], we say that the states q1
0 and q2

0 are in conflict (and
we note q1

0 / q2
0) if there is no transition starting from each of them and with the

same label, i.e.(
q1

0 / q2
0

)
⇔
(
@a3,

(
a3,qs

)
∈
{

next q1
o

}
,
(
a3,qs′

)
∈
{

next q2
o

}
, |qs|= |qs′|

)
This can be coded in Haskell by the function isInConflicts of algorithm 2.
If X is the type of two states q and q′ in conflict, they admit a single consensual

state qω = (OpenX , []) such as next qω = [(Xω, [])]. It is therefore obvious that two

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

CONSENSUS CALCULATION 74

Algorithm 2 A Haskell function to check if two states of a given automaton are in conflict.

1 isInConflicts state1@(tagsymb1, ts1) state2@(tagsymb2, ts2) =
2 null [a1 | (a1,states1) <- next auto1 state1,
3 (a2,states2) <- next auto2 state2,
4 a1==a2,
5 (length states1)==(length states2)]

given automata admit a consensual automaton when their initials states are of the
same type. The function defined in algorithm 3 performs this test.

Algorithm 3 A Haskell function used to check if two given automata admit a consensus.

1 haveConsensus q0 q0’ = (typeState q0) == (typeState q0’)

The operator⊗ used to calculate the synchronised consensual automaton A(sc)=

⊗k
i A (i) is a relaxation of the operator used for calculating the automata product pre-

sented in definition 6. A(sc) = (Σ, Q, R, q0, exit) is an automaton with exit states
and is constructed as follows:

• Its states are vectors of states : Q = Q(1)×·· ·×Q(k);

• its initial state is formed by the vector of initial states of different automata :
q0 =

(
q(1)0 , · · · ,q(k)0

)
;

• For the exit function, it is considered that when a given automaton A (j)

reaches an exit state17, it no longer contributes to the behaviour, but is not
opposed to the synchronisation of the other automata: it is said to be asleep
(see algorithm 4, lines 17, 19 and 24). So, a state q = (q1, · · · ,qk) is an exit
state if:

(a) all composite states qi are asleep (see algorithm 4, line 6) or

(b) there exist any two states qi and q j, i 6= j, components of q that are in
conflict (see algorithm 4, line 12)(
exit

(
q(1), . . . ,q(k)

))
⇔((

exit q(i),∀i ∈ {1 . . .k}
)

or
(
∃i, j, i 6= j, q(i) / q(j)

))
;

• Its transitions are given by:

17. The corresponding node in the reverse projection of the document is a bud and reflects the fact that, the
corresponding author did not edit it. In the case that this node is shared with another co-author who edited
it in its (partial) replica, it is the edition made by the latter that will be retained when merging.

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

CONSENSUS CALCULATION 75

(a) If exit q then q→ (Xω, []) is the unique transition of q; X is the type of
q.

(b) Else
(
q(1), . . . ,q(k)

) a→
((

q(1)
1 , . . . ,q(k)

1

)
, . . . ,

(
q(1)n , . . . ,q(k)n

))
⇔ + ∀i, 1≤

i≤ k

(b1) exit q(i) and
(

q(i)j = (Open X , []) ,∀ j, 1≤ j ≤ n
)

/* q(i) is asleep
*/, else

(b2) q(i) a→
(

q(i)
1 , . . . ,q(i)

n

)
.

(a) reflects the fact that, if a state q is an exit one, we associate a single transition
for generating a tree reduced to a bud of the type of q (see algorithm 4, line 12).
With (b1) we say that, if the component q(i) of q is an exit state, then for all com-
posite state

(
q(1)j , . . . ,q(k)j

)
, (1 ≤ j ≤ n) appearing in the right hand side of the

transition (b), the ith component should be asleep. Since it must not prevent other
non-asleep states to synchronise, it must be of the form (Open X , []) where X is
the type of the other states q(l)

j (yet to be synchronised) belonging to (q(1)
j , . . . ,q(k)

j)

(see function fwdSlpState defined in algorithm 4 line 24, and used in lines 17 and
19). Finally, with (b2) we stipulate that if q(i) a→

(
q(i)

1 , . . . ,q(i)
n

)
is a transition of the

automaton A i, then for all composite state
(

q(1)j , . . . ,q(k)j

)
, (1 ≤ j ≤ n) appearing

in the right part of the transition (b) above, the ith component is q(i)
j (see algorithm

4, lines 13 to 16).

Proposition 9 The tree automaton A = ⊗k
i=1A (i) recognises/generates from the

initial state q0 = (q01, . . . ,q0k), all the trees from the consensual merging of trees
recognised/generated by each automaton A (i) from the initial state q0i. Moreover,
these trees are the biggest prefixes without conflicts of merged trees.(

⊗k
i=1A (i) |= t .q0

)
⇔

{
i) ∀i, ∃ti A (i) |= ti .q0i and ti ∼= t
ii) ∀t ′ prefix of t, ¬

(
⊗k

i=1A (i) |= t ′ .q0
)

Proof. A tree t is recognised by the synchronised automaton ⊗k
i=1A (i) if and only

if, one can label each of its nodes by a state of the automaton in accordance with
what is specified by the transitions of the automaton. Moreover, all the leaf nodes
of t must be labelled by using final transitions; in our case, they are of the form
q→ (p, []). This means that, if a node whose initial label is a, is labelled by
the state q, and if it admits n successors respectively labelled by q1, . . . ,qn, then

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

CONSENSUS CALCULATION 76

Algorithm 4 Consensus Listing.

1 autoconsens::(Eq p, Eq x) =>(x -> p) -> Automata p (Tag x, [st1])
2 -> Automata p (Tag x, [st2])
3 -> Automata p ((Tag x, [st1]), (Tag x, [st2]))
4 autoconsens symb2prod auto1 auto2 = Auto exit_ next_ where
5 exit_ (state1, state2) = case haveConsensus state1 state2 of
6 True -> (exit auto1 state1) && (exit auto2 state2)
7 False -> True
8 next_ (state1, state2) = case haveConsensus state1 state2 of
9 False -> []

10 True -> case (exit auto1 state1, exit auto2 state2) of
11 (False, False) -> case (isInConflicts state1 state2) of
12 True -> [(symb2prod (typeState state1), [])]
13 False -> [(a1, zip states1 states2) |
14 (a1, states1) <- next auto1 state1,
15 (a2, states2) <- next auto2 state2,
16 a1 == a2, (length states1) == (length states2)]
17 (False, True) -> [(a, zip states1 (fwdSlpState states1)) |
18 (a, states1) <- next auto1 state1]
19 (True, False) -> [(a, zip (fwdSlpState states2) states2) |
20 (a, states2) <- next auto2 state2]
21 (True, True) -> [(a1, []) | (a1,[]) <- next auto1 state1,
22 (a2, []) <- next auto2 state2, a1 == a2]
23 where
24 fwdSlpState states = map (\state -> (Open (typeState state), [])) states

q a→ (q1, . . . ,qn) must be a transition of the automaton. As the automaton is deter-
ministic18, this labelling is unique (including the initial state attached to the root of
the tree). By focusing our attention both on the state q labelling a node, and its ith

component qi, on each of the branches of t,

(1) we cut as soon as we reach an exit state in relation to the automaton A (i) (i.e.
qi is an exit state), or,

(2) if q is an exit state (in this case we are handling a leaf) and qi is not an exit
state relatively to A (i) (in this case, qi was in conflict with at least one other
component q j of q), we replace that node with any subtree t ′i that can be
generated by A (i) from the state qi.

So, (
⊗k

i=1A (i) |= t .q0

)
⇒
(
∀i, ∃ti A (i) |= ti .q0i and ti ∼= t

)
18. Automata A(i) being deterministic (see proposition 3.3.3 of (Tchoupé Tchendji, 2009)), ⊗k

i=1A(i) is
deterministic as synchronous product of deterministic automata.

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

ILLUSTRATION 77

since a state of A is an exit one if and only if, each of its components is an exit
state (in the A i) or, if at least two of its components are in conflict.
Conversely, suppose A (i) |= ti . q0i, by definition of the synchronised consensual
automaton, we have ⊗k

i=1A (i) |=⊗k
i=1ti . (q01, . . . ,q0k). So overall,

L
(
⊗k

i=1A (i), q0

)
=
{
⊗k

i=1ti| A (i) |= ti .q0i

}
Suppose that t is recognised by ⊗k

i=1A (i); thus, there is a labelling of its nodes
with the states of ⊗k

i=1A (i), and as such the transitions used for the labelling of its
leaves are final. Let tp be a prefix of t. Let us show that tp is not recognised by
⊗k

i=1A (i) using the fact that, any labelling of tp has at least one leaf node labelled by
a state that is not associated to a final transition. The labels associated to the nodes
of tp are the same as those associated to the nodes of same addresses in t because,
tp is a prefix of t and ⊗k

i=1A (i) is deterministic. tp is obtained from t by pruning
some subtrees of t; so, naturally, it has a (non-zero) number of leaf nodes that can
be developed to obtain t. Let us choose such a node and call it n f . Suppose that it
is labelled p and was associated with a state q f = (q1, . . .qk) when labelling t. The
p-transition that allowed to recognise n f is not a final transition. Indeed, n f has in
t, |p| sons whose labels can be supposed to be the states q f1, . . . ,q f|p| . This means
that, according to the labelling process and considering the fact that ⊗k

i=1A (i) is
deterministic, the single transition used for the labelling of n f and of its |p| sons is
q f

p→
(
q f1, . . . ,q f|p|

)
which, is not a final transition. Therefore, tp is not recognised

by ⊗k
i=1A (i). 2

II.3.2.3. Illustration

Figure 26 is an illustration of an asynchronous cooperative editing process gen-
erating partial replicas (fig. 26(c) and fig. 26(e)) in conflict19 from the grammar
having as productions:

P1 : A→C B P3 : B→C A P5 : C→ A C
P2 : A→ ε P4 : B→ B B P6 : C→C C

P7 : C→ ε

Initially in the process, two partial replicas (fig. 26(b) and fig. 26(d)) are ob-
tained by projections of the global document (fig. 26(a)). After their update (fig.
26(c) and fig. 26(e)) a synchronisation point is reached and, by applying the ap-
proach described in section II.3.2.1, a consensus document is found (fig. 26(h)).

19. By realising expansions of each of the replicas, we respectively obtain among others, the documents
presented by figure 26(f) and figure 26(g) on which, one can easily observe a conflict highlighted by areas
having a blue background.

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

ILLUSTRATION 78

Figure 26 – An edition with conflicts and corresponding consensus.

More precisely, as detailed below, we associate the automata A (1) and A (2) respec-
tively to the updated partial replicas tv1 and tv2 (fig. 26(c) and fig. 26(e)), then
we build the automaton of consensus A(sc) = A (1)⊗A (2) by applying the approach
described in section II.3.2.2 (construction of the consensus automaton) and finally,
we generate the simplest documents of the consensus (fig. 28) among which is the
document in figure 26(h).

Linearisation of a structured document
To simplify the presentation, we represent in the following, trees by their lin-

earisation in the form of a Dyck word. To do this, we associate a (various) pair of
brackets to each grammatical symbol and the linearisation of a tree is obtained by
performing a Depth First Search (DFS) of the resulting tree (see fig. 27).

The transition schemas for the view {A,B}
A list of trees (forest) is represented by the concatenation of their linearisa-

tion. We use the opening parenthesis ’(’ and the closing one ’)’ to represent Dyck
symbols associated with the visible symbol A, and the opening bracket ’[’ and the
closing one ’]’ to represent those associated with the visible symbol B. Each tran-

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

ILLUSTRATION 79

Figure 27 – Linearisation of a tree (tv1): the Dyck symbols ’(’ and ’)’ (resp. ’[’ and ’]’) have been
associated with the grammatical symbol A (resp. B).

sition of the automata associated to partial replicas according to the view {A,B} is
conform to one of the transition schemas20 in table II. These schemas are obtained

Table II – The transition schemas for the view {A,B}.

〈A,w1〉 −→ (P1, [〈C,u〉,〈B,v〉]) if w1 = u[v]
〈A,w2〉 −→ (P2, []) if w2 = ε

〈B,w3〉 −→ (P3, [〈C,u〉,〈A,v〉]) if w3 = u(v)
〈B,w4〉 −→ (P4, [〈B,u〉,〈B,v〉]) if w4 = [u][v]
〈C,w5〉 −→ (P5, [〈A,u〉,〈C,v〉]) if w5 = (u)v
〈C,w6〉 −→ (P6, [〈C,u〉,〈C,v〉]) if w6 = uv 6= ε

〈C,w7〉 −→ (Cω, []) if w7 = ε

from the grammar productions (Badouel and Tchoupé Tchendji, 2008), and the
pairs 〈X ,wi〉 are states where X is a grammatical symbol and wi a forest encoded
in the Dyck language. The first schema for example, states that the AST generated
from the state 〈A,w1〉 are those obtained using the production P1 to create a tree of
the form P1[t1, t2]; t1 and t2 being generated respectively from the states 〈C,u〉 and
〈B,v〉 such that w1 = u[v]. The state 〈C,w7〉 with w7 = ε being an exit state, the
rule 〈C,w7〉 −→ (Cω, []) linked to the production P7 states that, the AST generated
from the state 〈C,w7〉 is reduced to a bud of type C (C is the symbol located at the
left hand side of P7).

Construction of the automaton A (1) associated to tv1
Having associated Dyck symbols ’(’ and ’)’ (resp. ’[’ and ’]’) to the grammati-

cal symbol A (resp. B), the linearisation of the partial replica tv1 (fig. 26(c)) gives

20. We do not represent the whole set of transition schemas in this example; only the useful subset for
reconciliation of closed documents is shown here because the documents to reconcile in this example are
all closed (has no buds). To consider buds, one should, for each visible sort X , associate a new pair of Dyck
symbols to the bud of type X then, derive the new schemas.

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

ILLUSTRATION 80

(([[()()][()]])[()]). As A is the axiom of the grammar, the initial state of the automa-
ton A (1) is q1

0 = 〈A,([[()()][()]])[()]〉. When considering only the states accessible
from q1

0 and by applying the previous schema of transition, we obtain the automa-
ton in table III, for the replica tv1 (fig. 26(c)). The state q1

4 = 〈C,ε〉 is the only exit

Table III – The tree automaton associated to the replica tv1.

q1
0 −→ (P1, [q1

1,q
1
2]) with q1

1 = 〈C,([[()()][()]])〉 and
q1

2 = 〈B,()〉
q1

1 −→ (P5, [q1
3,q

1
4]) with q1

3 = 〈A, [[()()][()]]〉 and q1
4 =

〈C,ε〉
q1

1 −→ (P6, [q1
4,q

1
1]) | (P6, [q1

1,q
1
4])

q1
2 −→ (P3, [q1

4,q
1
5]) with q1

5 = 〈A,ε〉
q1

3 −→ (P1, [q1
4,q

1
6]) with q1

6 = 〈B, [()()][()]〉
q1

4 −→ (Cω, [])

q1
5 −→ (P2, [])

q1
6 −→ (P4, [q1

7,q
1
2]) with q1

7 = 〈B,()()〉
q1

7 −→ (P3, [q1
8,q

1
5]) with q1

8 = 〈C,()〉
q1

8 −→ (P5, [q1
5,q

1
4])

q1
8 −→ (P6, [q1

8,q
1
4]) | (P6, [q1

4,q
1
8])

state of A (1). It is easy to verify that the document of figure 26(f) resulting from
the reverse projection of tv1, belongs to the language accepted by the automaton
A (1).

Construction of the automaton A (2) associated to tv2
As before, by associating to the grammatical symbol C (resp. A) the Dyck

symbols ’[’ and ’]’ (resp. ’(’ and ’)’), we obtain the transition schemas for the
automata associated to the partial replicas according to the view {A,C} (see table
IV).

Table IV – The transition schemas for the view {A,C}.

〈A,w1〉 −→ (P1, [〈C,u〉,〈B,v〉]) if w1 = [u]v
〈A,w2〉 −→ (P2, []) if w2 = ε

〈B,w3〉 −→ (P3, [〈C,u〉,〈A,v〉]) if w3 = [u](v)
〈B,w4〉 −→ (P4, [〈B,u〉,〈B,v〉]) if w4 = uv 6= ε

〈B,w5〉 −→ (Bω, []) if w5 = ε

〈C,w6〉 −→ (P5, [〈A,u〉,〈C,v〉]) if w6 = (u)[v]
〈C,w7〉 −→ (P6, [〈C,u〉,〈C,v〉]) if w7 = [u][v]
〈C,w8〉 −→ (P7, []) if w8 = ε

The linearisation of the partial replica tv2 (fig. 26(e)) is ([([][]()[]())[]][[][]]()).
The automaton A (2) associated to this replica has as initial state q2

0 = 〈A, [([][]()[]())[]][[][]]()〉

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

ILLUSTRATION 81

Table V – The tree automaton associated to the replica tv2.

q2
0 −→ (P1, [q2

1,q
2
2]) with q2

1 = 〈C,([][]()[]())[]〉 and
q2

2 = 〈B, [[][]]()〉
q2

1 −→ (P5, [q2
3,q

2
4]) with q2

3 = 〈A, [][]()[]()〉 and q2
4 =

〈C,ε〉
q2

2 −→ (P3, [q2
5,q

2
6]) with q2

5 = 〈C, [][]〉 and q2
6 = 〈A,ε〉

q2
3 −→ (P1, [q2

4,q
2
7]) with q2

7 = 〈B, []()[]()〉
q2

4 −→ (P7, [])

q2
5 −→ (P6, [q2

4,q
2
4])

q2
6 −→ (P2, [])

q2
7 −→ (P4, [q2

8,q
2
7]) | (P4, [q2

9,q
2
10]) |

(P4, [q2
11,q

2
11]) | (P4, [q2

12,q
2
13]) |

(P4, [q2
7,q

2
8])

with q2
8 = 〈B,ε〉, q2

9 = 〈B, []〉, q2
10 =

〈B,()[]()〉, q2
11 = 〈B, []()〉,

q2
12 = 〈B, []()[]〉 and q2

13 =
〈B,()〉

q2
8 −→ (Bω, [])

q2
9 −→ (P4, [q2

8,q
2
9]) | (P4, [q2

9,q
2
8])

q2
10 −→ (P4, [q2

8,q
2
10]) | (P4, [q2

13,q
2
11]) |

(P4, [q2
14,q

2
13]) | (P4, [q2

10,q
2
8])

with q2
14 = 〈B,()[]〉

q2
11 −→ (P3, [q2

4,q
2
6])

q2
12 −→ (P4, [q2

8,q
2
12]) | (P4, [q2

9,q
2
14]) |

(P4, [q2
11,q

2
9]) | (P4, [q2

12,q
2
8])

q2
13 −→ (P4, [q2

8,q
2
13]) | (P4, [q2

13,q
2
8])

q2
14 −→ (P4, [q2

8,q
2
14]) | (P4, [q2

13,q
2
9]) |

(P4, [q2
14,q

2
8])

and its transitions are the ones in table V. The state q2
8 = 〈B,ε〉 is the only exit state

of the automaton A (2).

Construction of the consensus automaton A(sc)

By application of synchronous product of several tree automata described in
section II.3.2.2 (construction of the consensus automaton) to the automata A (1) and
A (2), the consensual automaton A(sc) = A (1)⊗A (2) has q0 = (q1

0,q
2
0) as initial state.

A (1) has a transition from q1
0 to [q1

1,q
1
2] labelled P1. Similarly, A (2) has a transition

from q2
0 to [q2

1,q
2
2] labelled P1. So, we have in A(sc), a transition labelled P1 for

accessing states [q1 = (q1
1,q

2
1),q2 = (q1

2,q
2
2)] from the initial state q0 = (q1

0,q
2
0).

Following this principle, we construct the consensual automaton in table VI.
The states {q10,q11,q12,q15,q16,q17,q21,q22} are the exit states of the automa-

ton A(sc). They are states whose composite states are either in conflict (for example
q10 = (q1

2,q
2
7) et q1

2 / q2
7), or are all exit states (for example q22 = (q1

4,qs1)).
The use of the function that generates the simplest AST (with buds) of a tree

language from its automaton (Badouel and Tchoupé Tchendji, 2008) on A(sc), pro-

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

A SOFTWARE ARCHITECTURE FOR CENTRALISED MANAGEMENT OF STRUCTURED

DOCUMENTS IN A COOPERATIVE EDITING WORKFLOW 82

Table VI – The consensual tree automaton.

q0 = (q1
0,q

2
0)

q0 −→ (P1, [q1,q2]) with q1 = (q1
1,q

2
1) and

q2 = (q1
2,q

2
2)

q1 −→ (P5, [q3,q4]) with q3 = (q1
3,q

2
3) and

q4 = (q1
4,q

2
4)

q2 −→ (P3, [q5,q6]) with q5 = (q1
4,q

2
5) and

q6 = (q1
5,q

2
6)

q3 −→ (P1, [q4,q7]) with q7 = (q1
6,q

2
7)

q4 −→ (P7, [])

q5 −→ (P6, [q8,q8]) with q8 = (qs1,q2
4) and qs1 =

〈Open C, []〉
q6 −→ (P2, [])

q7 −→ (P4, [q9,q10]) | (P4, [q11,q12]) |
(P4, [q13,q14]) | (P4, [q15,q16]) |
(P4, [q17,q18])

with q9 = (q1
7,q

2
8), q10 = (q1

2,q
2
7),

q11 = (q1
7,q

2
9), q12 =

(q1
2,q

2
10), q13 = (q1

7,q
2
11),

q14 = (q1
2,q

2
11), q15 =

(q1
7,q

2
12), q16 = (q1

2,q
2
13),

q17 = (q1
7,q

2
7) and

q18 = (q1
2,q

2
8)

q8 −→ (P7, [])

q9 −→ (P3, [q19,q20]) with q19 = (q1
8,qs1) and q20 =

(q1
5,qs2), qs2 = 〈Open A, []〉

q13 −→ (P3, [q21,q6]) with q21 = (q1
8,q

2
4)

q14 −→ (P3, [q4,q6])

q18 −→ (P3, [q22,q20]) with q22 = (q1
4,qs1)

q19 −→ (P5, [q20,q22]) | (P6, [q19,q22]) |
(P6, [q22,q19])

q20 −→ (P2, [])
q10 −→ (Bω, [])
q11 −→ (Bω, [])
q12 −→ (Bω, [])
q15 −→ (Bω, [])
q16 −→ (Bω, [])
q17 −→ (Bω, [])
q21 −→ (Cω, [])
q22 −→ (Cω, [])

duces four AST whose derivation trees (the consensus) are shown in figure 28.

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

A SOFTWARE ARCHITECTURE FOR CENTRALISED MANAGEMENT OF STRUCTURED

DOCUMENTS IN A COOPERATIVE EDITING WORKFLOW 83

Figure 28 – Consensual trees generated from the automaton A(sc)

II.4. A Software Architecture for Centralised Management of
Structured Documents in a Cooperative Editing Workflow

In this section, we will focus on the implementation of a system that can support
cooperative editing as perceived by Badouel and Tchoupé. This effort is motivated
by the fact that:

1. This type of editing workflow applies to structured documents: this leads to
the fact that, one can locally perform validations in accordance with a local
model derived from the global one;

2. This type of editing workflow is particularly compatible with administrative
workflows: concepts of "view" and partial replica introduced by Badouel and
Tchoupé, make that the type of workflow they offer is particularly adapted for
the specification of many administrative processes. Consider, for example,
the process "tracking a medical record in a health center with the reception
and consultation services": the aforesaid record can be modelled as a struc-
tured document in which the members of the host service (reception) cannot
view and/or modify certain information contained therein; those information,
requesting the expertise of the consulting staff for example. Therefore, one
can associate views to each of these services. It is left only to specify the
medical record’s circuit and an editing workflow of the type described in the
previous section is obtained;

3. A generic architectural model describing precisely an approach for the im-
plementation of this type of workflow does not exist: the only prototype
(Tchoupé Tchendji, 2010) which was designed around the concepts handled

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

SERVER ARCHITECTURE 84

(view, partial replica, merging, etc.) for this type of workflow, was more of a
graphic tool (editor) for the experimentation of concepts and algorithms pre-
sented in (Badouel and Tchoupé Tchendji, 2008); workflow management is
not addressed in it: this tool cannot be used to specify an editing workflow,
it does not support routing or storage of artifacts, nothing is done concerning
monitoring, etc., yet these concerns are among the most important to be taken
care of by a workflow management infrastructure (IMA, 2002).

II.4.1. The Proposed Architecture

II.4.1.1. Overall Operations

The architecture that we propose is composed of three tiers: some clients, a
central server and several administration tools. We consider that, each participant
in a given workflow has a client. Initially, the workflow owner (comparable to a de-
posit owner in Git) connects to the server from his client. He creates his workflow
by specifying all necessary informations (the workflow name, the overall gram-
mar, different participants, their rights and their views, the basic document and the
workflow’s circuit), then triggers the process. Next, participants concerned by the
newly created workflow receive an alert message from the system, inviting them
to participate. Each participant must therefore connect himself to the server to ob-
tain a partial replica of the workflow model (encoded in a specification file written
in a dedicated DSL) and state (his local document model, a partial replica of the
initial document, etc.) according to his rights and his view on the given work-
flow. A given participant performs his duties and submits his local (partial) replica
to the central server which performs synchronisations as soon as possible and the
process continues (see fig. 20) until the end. For specific needs (authentication,
access to corporate data, etc.), clients and server may require the intervention of an
administration tool (database, paperwork and many others). These three tiers are
interconnected around a middleware as presented in figure 29.

II.4.1.2. Server Architecture

The server is responsible for the storage, restoration, execution and monitoring
of workflows. Its architecture is based on three basic elements as shown in figure
29(a) : its model, storage module and its runtime engine.

1. The model: it is the one orchestrating all the tasks supported by the server.
It consists of a workflow engine, a set of parsers and three communication

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

SERVER ARCHITECTURE 85

Figure 29 – A software architecture (three-tiers) for centralised management of structured docu-
ments’ cooperative editing workflows.

interfaces (the interface with the middleware, that with the storage module
and the one with the runtime engine).

2. The storage module: it is responsible for the storage of workflows. Like
CVS, it maintains a main repository for each workflow. The repository space
of a given workflow includes its specification file written in a DSL. There are
also (global) document versions showing the state of the workflow at given
times. These versions of the underlying documents, facilitate the control and
monitoring of workflows.

3. The runtime engine: it consists of implementations of projection, expansion
and consensual merging algorithms. These implementations are used by the
workflow engine in the realisation of these tasks. A runtime engine written
entirely in Haskell, was proposed in (Tchoupé Tchendji, 2010). However,
it is quite rigid and almost impossible to adapt to the architecture presented

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

PRESENTATION OF TINYCE V2 86

here. To this end, we present in section II.4.2.2, a more flexible version of
the latter.

II.4.1.3. Client Architecture

The client (figure 29(b)) is also based on three entities: a model, an editing en-
gine and a storage module. The model is responsible for organising and controlling
the execution of tasks and user commands. For each new local workflow, the model
generates an editing environment which is used by the editing engine to provide
conventional facilities of structured document editors (compliance check, syntax
highlighting, graphical editing of documents presentations, etc.). Each workflow
is locally represented by a specification file and by one structured document repre-
senting the current perception of the overall workflow from the current local site.
When reaching synchronisation phases, the local structured document is forwarded
to the server site, where it is merged with others, in one structured document rep-
resenting the current state of the overall workflow : it is therefore, a coordination
support between the workflow engines of the client and of the server.

II.4.1.4. The Middleware

The middleware is responsible for the interaction between different tiers of our
architecture. It must be designed so that, the coupling between these tiers is as
weak as possible. One can for this purpose, consider a SOA in which:

• Our clients are service clients;

• The server is a service provider for clients and a client of services offered by
the administration tools;

• The administration tools are service providers.

With such an architecture, we can guarantee the independence of each tier and thus,
an easier maintenance.

II.4.2. TinyCE v2

II.4.2.1. Presentation of TinyCE v2

Due to its technical nature and to the number of technologies it needs for its
instantiation, the architecture presented above has not yet been fully implemented.
However, many of its components have already been implemented and tested in a
test project called TinyCE v221 (a Tiny Cooperative Editor version 2).

21. TinyCE v2 is a more advanced version of TinyCE (Tchoupé Tchendji, 2010).

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

JAVA-HASKELL CROSS-FERTILISATION IN TINYCE V2 87

TinyCE v2 is an editor prototype providing graphic and cooperative editing of
the abstract structure of structured documents. It is used following a networked
client-server model. Its user interface offers to the user, facilities for the creation
of workflows (documents, grammars, actors and views (see fig. 30)), edition and
validation of partial replicas (see fig. 31). Moreover, this interface also offers the
functionality to experiment the concepts of projection, expansion and consensual
merging (see fig. 32). TinyCE v2 is designed using Java and Haskell languages.
It offers several implementations of our architecture concepts namely: parsers,
storage modules, server’s runtime engine, workflow engines and communication
interfaces.

Figure 30 – Some screenshots showing the creation process of a cooperative editing workflow in
TinyCE v2.

II.4.2.2. Java-Haskell Cross-Fertilisation in TinyCE v2

As in (Tchoupé Tchendji, 2010), the runtime engine of TinyCE v2 exploits the
possibility offered by Java, to run an "external program". Indeed, we designed an

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

JAVA-HASKELL CROSS-FERTILISATION IN TINYCE V2 88

Figure 31 – Some screenshots of TinyCE v2 showing the authentication window of a co-author
(Auteur1) as well as those displaying the various local and remote workflows in which
he is implicated.

Figure 32 – An illustration of consensual merging in TinyCE v2.

interface of TinyCE v2 (runtime interface) capable of launching a Haskell inter-
preter (GHCi - Glasgow Haskell Compiler interactive22 - in this case) and make
it execute various commands. When creating a workflow, TinyCE v2 generates

22. Official website of GHC: http://www.haskell.org/ghc/, visited the 04/04/2020.

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

http://www.haskell.org/ghc/

SUMMARY 89

a Haskell program file (.hs), containing data types and functions necessary to
achieve the operations of projection, expansion and consensual merging on the
structured document representing the state of that workflow. In this way, we con-
siderably reduce the use frequency of parsers presented in (Tchoupé Tchendji,
2010). The functions are more open to changes as they are contained in a text
file and not in a compiled program as in (Tchoupé Tchendji, 2010). In fact, the
main differences between our Java-Haskell cross-fertilisation approach and the one
of (Tchoupé Tchendji, 2010) are almost the same that drive the debates on inter-
preted and compiled languages; our approach is likened to interpreted languages
and that of (Tchoupé Tchendji, 2010), to compiled languages. So, even though
our approach can present security risks (that can be addressed using PKI (Public
Key Infrastructure) and standard encryption systems like AES (Advanced Encryp-
tion Standard), RSA (Rivest Shamir Adleman), etc.), it has the advantage of being
portable and easier to maintain.

II.5. Summary

This chapter was devoted to the study of asynchronous cooperative editing con-
cepts in general, and to the study of notions related to the model introduced by
Badouel and Tchoupé for structured documents cooperative editing (Badouel and
Tchoupé Tchendji, 2008). In order to be more efficient, we have chosen to study
these models with new contributions, including: an algorithm for reconciling po-
tentially conflicting partial replicas of a structured document, and a generic archi-
tecture for designing workflow systems that can be modelled as structured cooper-
ative editing systems in the sense of Badouel and Tchoupé. The correction of the
proposed algorithms has been demonstrated. Implementations of these have been
made, notably in TinyCE v2, the cooperative editor prototype implemented in Java
and Haskell according to the new architecture proposed in this chapter.

The aim of these studies was to familiarise us with some key mathematical
tools, in particular: grammars, views, projection/replication algorithms, fusion/rec-
onciliation algorithms, etc. These mathematical tools are proving to be effective
in the implementation of artifact-centric BPM models as demonstrated by Badouel
et al. with the AWGAG model (Badouel et al., 2014, 2015). For this purpose,
they will form the foundation of the new artifact-centric model for the completely
decentralised design and execution of administrative workflows (assimilated to the
asynchronous cooperative edition of mobile structured documents) on a SOA that
we propose in the next chapter.

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

III
CHAPTER

A CHOREOGRAPHY-LIKE WORKFLOW
DESIGN AND DISTRIBUTED

EXECUTION FRAMEWORK BASED ON
STRUCTURED MOBILE ARTIFACTS’

COOPERATIVE EDITING

CONTENTS
III.1 - Introduction . 90
III.2 - Overview of the Artifact-Centric Model Presented in this Thesis . . 92
III.3 - Modelling Artifacts . 96
III.4 - Agent and choreography . 103
III.5 - Illustrating the Choreography on the Peer-Review Process 123
III.6 - Experimentation . 126
III.7 - Related Works and Discussion . 130
III.8 - Summary . 132

III.1. Introduction

As outlined in chapter I, section I.4.1.2, the execution of a given business pro-
cess according to the artifact-centric approach can be assimilated to the cooperative
editing of documents. Indeed, in IBM’s work (Nigam and Caswell, 2003), an ar-
tifact (also called "adaptive document") is considered as a document that conveys
all the information concerning a particular case of execution of a given process,
from its inception into the system to its termination. In particular, this informa-
tion provides details on the execution status of the case as well as on its lifecycle

90

OVERVIEW OF THE ARTIFACT-CENTRIC MODEL PRESENTED IN THIS THESIS 91

(a representation of the possible evolutions of this status). To do this, during the
execution of a given process, the actions carried out by each of the stakeholders
(agents) have the effect of updating (editing) the artifacts involved in that execu-
tion. If the process is cooperative, the artifact representing it will be updated by
several agents: it is said to be cooperatively edited (cooperative editing).

In this chapter, we propose a new artifact-centric approach to BPM. In this one,
artifacts are seen as structured documents (annotated trees) that can be exchanged
between the different agents involved in the execution of a given business process
particular case (it is in this sense that they are said to be mobile); during their life,
they are edited appropriately to make the system converge towards the achieve-
ment of one of the considered process’s business goals. The approach presented
in this chapter is based on the asynchronous structured cooperative editing tech-
niques proposed in the work of Badouel et al. (Badouel and Tchoupé Tchendji,
2008; Tchoupé Tchendji, 2009; Tchoupé Tchendji et al., 2017) and extended in
chapter II (Tchoupé Tchendji and Zekeng Ndadji, 2016, 2017; Zekeng Ndadji and
Tchoupé Tchendji, 2018) of this manuscript.
The major contributions of this chapter are as follows:

1. The proposal of another tree-based model of "business artifact", which makes
it possible to better assimilate them to structured documents edited coopera-
tively;

2. The proposal of a choreography-oriented artifact-centric execution model in
which agents execute the same and unique update (editing of artifact upon
receipt) and diffusion (dissemination of updates) protocol;

3. The proposal of a prototype of a distributed system allowing to fully experi-
ment the approach investigated in this chapter.

In the rest of this chapter, in section III.2, we present an overview of the stud-
ied artifact-centric model and the distributed execution of the peer-review process
used as a running example in this manuscript. In section III.3, we introduce and
formally define the concepts of artifact and artifact-type (GMWf). We then present
in section III.4, the internal structure (architecture and features) of an agent, the
notion of accreditation as well as the new artifact-centric and completely decen-
tralised execution model of administrative processes that we propose. Illustrations
of section III.4’s algorithms are given in section III.5 in order to facilitate their un-
derstanding. In the same vein, a prototype system allowing to fully experiment the
approach investigated in this chapter is presented in section III.6. In section III.7,

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

OVERVIEW OF THE ARTIFACT-CENTRIC MODEL PRESENTED IN THIS THESIS 92

we discuss the obtained results as well as a positioning of these results in relation
to those in the literature. The section III.8 is devoted to the conclusion.

III.2. Overview of the Artifact-Centric Model Presented in this
Thesis

In this section, a brief description of the artifact-centric model studied in this
chapter is given. Furthermore, an overview of the distributed execution of the peer-
review process using this model is presented.

III.2.1. A Description of the Artifact-Centric Model Presented in
this Thesis

We outlined in this chapter’s introduction that the presented artifact-centric
model is based on the asynchronous structured cooperative editing techniques pro-
posed in the work of Badouel et al. As in these works, an artifact is represented
by a tree containing "open nodes" on some of its leaves, materialising the tasks to
be executed or being executed and, an attributed grammar called the Grammati-
cal Model of Workflow (GMWf) is used as artifact type. The symbols of a given
GMWf represent the process tasks and each of its productions represents a schedul-
ing of a subset of these tasks; intuitively, a production given by its left and right
hand sides, specifies how the task on the left hand side precedes (must be executed
before) those on the right hand side (see sec. III.3.1). When a task is executed on
a given site, the corresponding open node in the artifact is closed accordingly (it is
said to be closed) and the data produced during execution are filled in its attributes;
then, one of the GMWf’s production having the considered task as left hand side
is chosen by the local actor to expand the open node into a subtree highlighting in
the form of new open nodes, the new tasks to be executed: this is what editing an
artifact consists of.

We are especially interested on administrative processes and the approach we
propose for their automation is declined in two steps: derivation of different mod-
els (target artifacts and their model, accreditations, etc.) from a textual description
of the process and, implementation of a choreography between the agents commu-
nicating by asynchronous exchange of artifacts for its execution. More precisely,
from the observation that one can analyse the textual description of an admin-
istrative business process to exhibit all the possible execution scenarios leading
to its business goals, we propose to model each of these scenarios by an anno-
tated tree in which, each node corresponds to a task of the process assigned to

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

OVERVIEW OF THE ARTIFACT-CENTRIC MODEL PRESENTED IN THIS THESIS 93

Figure 33 – An overview of the artifact-centric BPM model presented in this chapter.

a given agent, and each hierarchical decomposition (a node and its sons) repre-
sents a scheduling of these tasks: these annotated trees are called target artifacts.
From these target artifacts, are derived a GMWf (artifact type) which contains
both the information model (modelled by its attributes) and the lifecycle model
(thanks to the set of its productions) which are two essential notions of the artifact-
centric modelling paradigm (Hull et al., 2013). Once the GMWf is obtained, we
propose to add organisational information called accreditations in this chapter;
they aim, as in (Badouel and Tchoupé Tchendji, 2008; Tchoupé Tchendji, 2009;
Tchoupé Tchendji et al., 2017; Tchoupé Tchendji and Zekeng Ndadji, 2016, 2017;
Zekeng Ndadji and Tchoupé Tchendji, 2018), is to enrich the notion of access to
different parts of artifacts, by offering a simple mechanism for modelling the gen-

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

OVERVIEW OF THE PEER-REVIEW PROCESS ARTIFACT-CENTRIC EXECUTION USING THE

MODEL PRESENTED IN THIS THESIS 94

erally different perceptions that actors have on processes and their data. With the
couple (GMWf, accreditations), each autonomous agent is configured (see fig. 33
(1)) and is ready to proceed to the decentralised execution of the studied process.

The actual execution is a choreography in which the agents are reactive au-
tonomous software components, communicating in P2P mode and are driven by
human agents (actors) in charge of executing tasks. An agent’s reaction to the re-
ception of a message (an artifact) consists in the execution of a five-step protocol
clearly described in this chapter (see sec. III.4.4.3). This protocol allows it to:
(1) merge the received artifact with the one it hosts locally in order to consider all
updates, (2) project the artifact resulting from the merger in order to hide the parts
to which the local actor may not have access and highlight the tasks to be locally
executed, (3) make the local actor execute the revealed tasks and thus edit the po-
tentially partial replica of the artifact obtained after the projection, (4) integrate the
new updates into the artifact through an operation called expansion-pruning and
finally, (5) diffuse the updated artifact to other sites for further execution of the
process if necessary. The agents’ operational capabilities allow that, for the execu-
tion of a given process, an artifact created by one of them (initially reduced to an
open node), moves from site to site to indicate tasks that are ready to be executed
at the appropriate time and to provide necessary data (created by other agents) for
that execution; the mobile artifact, cooperatively edited by agents, thus "grows" as
it transits through the distributed system so formed (see fig. 33 (2)).

III.2.2. The Running Example: the Peer-Review Process

III.2.2.1. Description of the Peer-Review Process

The peer-review process (Rowland, 2002) is a common example of administra-
tive business process. We presented a brief description of it inspired by those made
in (Badouel et al., 2014; Rowland, 2002; Van Der Aalst et al., 2001), in chapter I,
section I.2.1.2. Described in this way, we will use the peer-review process as an
illustrative example in this chapter.

Lets recall that from that description, we have identified all the tasks to be exe-
cuted, their sequencing, actors involved and the tasks assigned to them. Precisely,
four actors are involved: an editor in chief (EC) who is responsible for initiating
the process, an associated editor (AE) and two referees (R1 and R2). A summary
of tasks assignment was presented in table I (page 19), and orchestration diagrams
using BPMN and WF-Net were also presented in figure 6 (page 26).

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

MODELLING ARTIFACTS 95

III.2.2.2. Overview of the Peer-Review Process Artifact-Centric
Execution using the Model Presented in this Thesis

To run the peer-review process described above according to the artifact-centric
model presented in this chapter, four agents controlled by four actors (the editor in
chief, the associated editor and the two referees) will be deployed. Each of them
will be pre-configured using a global Grammatical Model of Workflow (GMWf)
and a set of accreditations. As we will see later, the global GMWf is used as
model of artifacts and formally describes all the process tasks to be executed as
well as their execution order (see fig. 6), and the accreditations set specifies the
permissions (reading, writing and execution) of each of the four actors relative
to these tasks. After the pre-configuration of agents, each of them will derive (by
projection (Tchoupé Tchendji et al., 2017)) a local GMWf which will locally guide
the execution of the tasks to guarantee the confidentiality of some workflow data
(contained in a mobile artifact) and the consistency of local updates with the global
GMWf.

The artifact-centric execution of a scientific paper validation workflow will be
triggered on the editor in chief’s site, by introducing (in this site) an artifact (an
annotated tree) reduced to its root node. Each node of the artifact represents a
task and encapsulates an attribute containing its execution status. Therefore at
a given time, the whole artifact contains information on already executed tasks
and on data produced during their execution; it also exhibits tasks that are ready
to be executed. The analysis of this artifact by the local agent will highlight the
expected contributions from the editor in chief. Guided by the local GMWf, he
(here tasks are executed by a human) will perform tasks resulting in the consistent
updating of the artifact’s local copy; meaning that new nodes will be added to the
artifact and some of its existing nodes will be updated: this is what we call editing
an artifact. Then, this (updated) copy will be immediately analysed by the local
agent to determine whether the currently managed process scenario is complete
(this is the case when the artifact local copy structure matches one of the target
artifacts: all causally dependent tasks have been executed) or not: in this case, all
sites on which execution must continue are determined and an execution request
is addressed to each of them (the artifact is sent to them). Figure 34 sketches an
overview of exchanges that can take place between the four agents of the peer-
review process when validating a scientific paper using the model presented in the
present chapter. The scenario presented there, corresponds to the one in which the
paper is pre-validated by the editor in chief and therefore, is analysed by a peer
review committee. Note that there may be situations where multiple copies of the

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

MODELLING ARTIFACTS 96

artifact are updated in parallel; this is notably the case when they are present on
site 3 (first referee) and 4 (second referee).

Figure 34 – An overview of the artifact-centric execution of the peer-review process using the
model presented in this chapter.

III.3. Modelling Artifacts

III.3.1. Artifacts’ Structure

Let’s consider an administrative process Pop to be automated. The set
{

S 1
op, . . . ,S k

op

}
of Pop execution scenarios is known in advance and so, Pop can be specified as
any oriented graph with tools like BPMN or as a petri net with tools like YAWL.
Moreover, each execution scenario of Pop can be modelled using an annotated
tree ti. Indeed, starting from the fact that a given scenario S i

op consists of a set
Tn = {X1, . . . ,Xn} of n (non-recursive) tasks to be executed in a specific order (in
parallel or in sequence), one can represent S i

op as a tree ti in which each node (la-
belled Xi) potentially corresponds to a task Xi of S i

op, and each hierarchical decom-
position (a node and its sons) corresponds to a scheduling: the task associated with
the parent node must be executed before those associated with the son nodes; the

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

MODELLING ARTIFACTS 97

latter must be executed according to an order - parallel or sequential - that can be
specified by particular annotations. Indeed, it is enough to have two annotations "#"
(is sequential to) and "‖" (is parallel to) to be applied to each hierarchical decom-
position. The annotation "#" (resp. "‖") reflects the fact that the tasks associated
with the son nodes of the decomposition must (resp. can) be executed in sequence
(resp. in parallel).

Considering the running example (the peer-review process), the two scenarios
that make it up can be modelled using the two annotated trees in figure 35. In par-
ticular, we can see that the tree art1 shows how the task "Receipt and pre-validation
of a submitted paper" assigned to the editor in chief (EC), and associated with the
symbol A (see table I, page 19), must be executed before tasks associated with the
symbols B and D, that are to be executed in sequence. This annotated tree repre-
sents the scenario where the paper received by the editor in chief, is immediately
rejected.

Figure 35 – Target artifacts of a peer-review process.

III.3.2. Target Artifacts and Grammatical Model of Workflow

In this chapter, we use the expression target artifact to designate the annotated
tree ti modelling a given scenario S i

op of a given administrative process Pop. From
the set of target artifacts of a given process, it is possible to derive an abstract
grammar1 that can be enriched to serve as a artifact type as defined in (Hull et al.,
2009): it is this grammar that we designate by the expression Grammatical Model
of Workflow (GMWf).

1. It is enough to consider the set of target artifacts as a regular tree language: there is therefore a (abstract)
grammar to generate them.

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

MODELLING ARTIFACTS 98

Let’s consider the set {t1, . . . , tk} of target artifacts modelling the k execution
scenarios of a given process Pop of n tasks (Tn = {X1, . . . ,Xn}). Each ti is a deriva-
tion tree for an abstract grammar (a GMWf) G = (S ,P ,A) whose set of symbols
is S = Tn (all process tasks) and each production p ∈ P reflects a hierarchical
decomposition contained in at least one of the target artifacts. Each production
is therefore exclusively of one of the following two forms: p : X0 → X1 # . . . # Xn

or p : X0 → X1 ‖ . . . ‖ Xn. The first form p : X0 → X1 # . . . # Xn (resp. the second
form p : X0 → X1 ‖ . . . ‖ Xn) means that task X0 must be executed before tasks
{X1, . . . ,Xn}, and these must be (resp. these can be) executed in sequence (resp. in
parallel). A GMWf can therefore be formally defined as follows:

Definition 10 A Grammatical Model of Workflow (GMWf) is defined by G =

(S ,P ,A) where:

• S is a finite set of grammatical symbols or sorts corresponding to various
tasks to be executed in the studied business process;

• A ⊆ S is a finite set of particular symbols called axioms, representing tasks
that can start an execution scenario (roots of target artifacts), and

• P ⊆ S ×S ∗ is a finite set of productions decorated by the annotations "#" (is
sequential to) and "‖" (is parallel to): they are precedence rules. A produc-
tion P =

(
XP(0),XP(1), · · · ,XP(|P|)

)
is either of the form P : X0→ X1 # . . . # X|P|,

or of the form P : X0 → X1 ‖ . . . ‖ X|P| and |P| designates the length of P’s
right-hand side. A production with the symbol X as left-hand side is called a
X-production.

Let’s illustrate the notion of GMWf by considering the one generated from an
analysis of the target artifacts obtained in the case of the peer-review process (see
fig. 35). The derived GMWf is G = (S ,P ,A) in which, the set S of grammati-
cal symbols is S = {A,B,C,D,E,F,G1,G2,H1,H2, I1, I2} (see table I); the only
initial task (axiom) is A (then A = {A}) and the set P of productions is:

P1 : A→ B #D P2 : A→C #D P3 : C→ E #F P4 : E→ G1 ‖ G2
P5 : G1→ H1 # I1 P6 : G2→ H2 # I2 P7 : B→ ε P8 : D→ ε

P9 : F → ε P10 : H1→ ε P11 : I1→ ε P12 : H2→ ε

P13 : I2→ ε

For some administrative business processes, there may be special cases where it
is not possible to strictly schedule the tasks of a scenario using the two (only) forms
of productions selected for GMWf. For example, this is the case for the scenario of

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

MODELLING THE INFORMATION MODEL OF PROCESSES WITH GMWF 99

a four-task process with tasks A,B,C and D, where the task A precedes all others,
the tasks B and C can be executed in parallel and precede D. In these cases, the
introduction of a certain number of new symbols known as (re)structuring symbols
(not associated with tasks) can make it possible to produce a correct scheduling that
respects the form imposed on productions. For the previous example, the introduc-
tion of a new symbol S allows us to obtain the following productions: p1 : A→ S #D,
p2 : S→ B ‖C, p3 : B→ ε, p4 : C→ ε and p5 : D→ ε, which properly model the
required scheduling. To deal with such cases, the previously given GMWf defini-
tion (definition 10) is slightly adapted by integrating the (re)structuring symbols;
the resulting definition is as follows:

Definition 11 A Grammatical Model of Workflow (GMWf) is defined by G =

(S ,P ,A) wherein, P and A refer to the same purpose as in definition 10, S =

T ∪TStruc is a finite set of grammatical symbols or sorts in which, those of T corre-
spond to tasks of the studied business process, while those of TStruc are (re)structuring
symbols.

III.3.3. Artifact Type and Artifact Edition

As formalised in definition 11, a GMWf perfectly models the tasks and con-
trol flow of administrative processes (lifecycle model). To remain faithful to the
artifact-centric philosophy, the GMWf definition must be adjusted to be able to use
it as an artifact type. In particular, it is necessary to equip it with tools allowing
to represent the information model (the data) of processes as well as the dynamic
(evolutionary) character of artifacts.

III.3.3.1. Modelling the Information Model of Processes with GMWf

The structure of the consumed and produced data by business processes differs
from one process to another. It is therefore not easy to model them using a general
type, although several techniques to do so have emerged in recent years (Badouel
et al., 2014). For the work presented in this chapter, tackling the data structure of
automated processes has no proven interest because, it does not bring any added
value to the proposed model: a representation of these data using a set of variables
is largely sufficient.

To represent the potential consumed and produced data by the tasks of a pro-
cess modelled using GMWf, we use the notion of attribute embedded in the nodes
associated with tasks. To take them into account, we adjust for the last time, the
definition of GMWf. We thus attach to each symbol, an attribute named status,
allowing to store all the data of the associated task; its precise type is left to the

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

ARTIFACT TYPE 100

discretion of the process designer. However, for the purposes of this work, we will
consider it a string. The new definition of GMWf is thus the following one:

Definition 12 A Grammatical Model of Workflow (GMWf) is defined by G =

(S ,P ,A) wherein, S , P and A refer to the same purpose as in definition 11. Each
grammatical symbol X ∈ S is associated with an attribute named status of type
string, that can be updated when task X is executed; X.status provides access (read
and write) to its content.

A GMWf is therefore ultimately an attributed grammar whose instances rep-
resent the different execution scenarios of the underlying business process. In
artifact-centric models, the artifact used as a communication medium between
agents executing the tasks, must represent at each moment, the execution state
of the underlying process. As defined up to now, GMWf models do not satisfy
this second concern: they cannot therefore be used as artifact types. We will now
equip them with tools to allow them to endow their instances (the artifacts) with
the ability to report about the execution state of the process they represent.

III.3.3.2. Artifact Type

For each task, it is important to know whether or not it has already been exe-
cuted; if not, it is also important to know whether or not it is ready to be executed.
Recall also that, we model the execution of processes as the desynchronised co-
operative editing of mobile artifacts (which are exchanged by agents). This im-
plies that the artifact-centric model of this chapter considers that, an artifact is a
structured document that is initially empty, and which is completed as it circulates
between the agents. Contrary to the models in the literature, at each moment, the
artifact thus contains only a (potentially empty) part of the lifecycle model of the
process. This is why we have chosen not to represent it as a (tree) state machine
but rather as an annotated tree that is incrementally built in accordance with an
attributed grammar.

Concretely, an artifact is an annotated tree that potentially contains buds (this
is the equivalent of the notion of structured document being edited as presented
in chapter II). A bud or open node is a typed leaf node indicating in an artifact, a
place where an edition is possible; i.e. a node associated with a task that has not
yet been executed. A bud can be unlocked (unlocked bud) or locked (locked bud)
depending on whether the task associated with it is ready to be executed2 or not.

2. A task is ready to be executed if all the tasks that precede it according to the precedence constraint
set have already been executed and the agent that currently holds the mobile artifact, have the necessary
accreditation to trigger its execution.

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

ARTIFACT EDITION 101

More formally, a bud of type X ∈ S is a leaf node labelled either by Xω or by Xω

depending on its state (locked or unlocked). An artifact containing no buds is said
to be closed. Such an artifact, symbolises the end of tasks execution with respect to
the agent hosting the artifact. An example of an artifact related to the peer-review
process and containing buds is shown in figure 36. In this one, we can see that the
tasks associated with symbols A and C have already been executed. Task E is ready
to be executed while tasks F and D are not ready to be executed yet.

Figure 36 – An intentional representation of an annotated artifact containing buds.

From the thus given definition of (mobile) artifact, it is clear that an artifact
is updated only at the level of its leaves and therefore, it only "grows" (positive
editing). Knowing moreover that, the correct and complete execution of a given
administrative process corresponds to the execution of one of its scenarios, we
deduce that: for a process Pop whose GMWf is G = (S ,P ,A), a given mobile
artifact, is a prefix to one of its target artifacts. Thus, the type (model) of this artifact
is a grammar GΩ = (S ∪ Sω,P ∪ SΩ,A ∪Aω) obtained by extending G (for bud
recognition and recognition of all possible prefixes of target artifacts) as follows:

1. For all sort X , add in the set S of sorts, two new sorts Xω and Xω;

2. For all new sort Xω added to S , add in the set P of productions two new ε-
productions XΩ : Xω→ ε and X

Ω
: Xω→ ε; we then have: Sω = {Xω, Xω, X ∈

S}, Aω = {Xω, Xω, X ∈A} and SΩ = {XΩ : Xω→ ε, X
Ω

: Xω→ ε, Xω and Xω ∈
Sω}.

III.3.3.3. Artifact Edition

If we still consider a running process Pop whose GMWf is G= (S ,P ,A), then,
the editing of an artifact t circulating between agents consists of developing one or
more of its buds into a subtree while updating their status attributes. Concretely,
for a bud Xω of the said artifact one can:

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

AGENT AND CHOREOGRAPHY 102

1. Execute the task associated with X ;

2. Choose an X-production P ∈ P to be used for the development of Xω;

3. If P is of the form P : X → X1 ‖ X2 ‖ . . . ‖ X|P| (resp. P : X → X1 # X2 #
. . . # X|P|) then, create |P| buds X1ω,X2ω, . . . ,X|P|ω (resp. X1ω,X2ω, . . . ,X|P|ω)
respectively of type X1,X2, . . . ,X|P|, and replace in the artifact, the considered
bud Xω by the parallel (resp. sequential) subtree X [X1ω,X2ω, . . . ,X|P|ω]3 (resp.
X [X1ω,X2ω, . . . ,X|P|ω]);

4. Update the execution status of the task associated with X : X .status = ”bla bla . . .”.
Updating t results in an artifact tma j and we note t ≤ tma j.

Although it is obvious, it seems important to clarify that the editing of an artifact
is only a consequence of process tasks’ execution by actors located on agents. We
can therefore imagine this scenario for the peer-review process (see fig. 37): the
associated editor who received a request from the editor in chief to peer-review a
given article, has executed task C (i.e. he has appraised the paper and formatted it
to prepare the peer-review). Through a dedicated tool (a specialised editor), he has
been invited to submit a report on the execution of the said task (via the filling of a
form for example). The submission of that report, in which he may have provided
a copy of the formatted paper as well as comments for referees, will cause (in
background) the update of the artifact. The retrieved data will thus be stored in
the status attribute of task C and the bud Cω will be extended into a subtree as
described above (the only production available for this purpose is P3 : C→ E # F).

Figure 37 – An example of artifact edition: the bud Cω is extended in a subtree.

3. The tree coded by X [X1ω,X2ω, . . . ,X|P|ω] is the one whose root is labelled X and has as sons, |P| nodes
labelled by X1ω,X2ω, . . . ,X|P|ω respectively.

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

THE LOCAL WORKFLOW ENGINE 103

III.4. Agent and choreography

Now that we have formally defined the structure and the editing model of ar-
tifacts, let’s focus on the structure of agents that oversee the execution of tasks
and update the artifact accordingly, as well as on the artifact-centric choreography
implemented between them.

III.4.1. Relations between Agent, Actor and Choreography

We borrowed the term agent from (Lohmann and Wolf, 2010). In the case of
our study, an agent (which we also call a peer) is a software component, installed
at a given site, piloted by a human agent called actor (the tasks of the processes
we handle are executed by humans) and capable of interacting with other agents
by service invocation (message exchange). An agent is completely autonomous:
i.e. it encapsulates all the data and functions necessary for the execution of the
tasks assigned to it, or precisely, tasks assigned to the actor piloting it. The agent
is reactive: it reacts in the same way to each message it receives by executing a
well-defined protocol that goes from the analysis of the received message (artifact)
to the possible transmission of other messages. As announced in the introduction,
each message contains a collectively edited mobile artifact. For the execution of
a given process, the choreography is therefore a result of the messages (artifact
replicas) exchanges between the agents involved and of the reaction of the latter to
the reception of messages.

III.4.2. Structure of an Agent

An agent is built to be able to fully manage the lifecycle (creation, storage, edi-
tion/execution) of a given business process’ artifacts. Thus, an agent is made up of
three major software components: a local workflow engine (LWfE), a specialised
graphical editor and a storage device (see fig. 38).

III.4.2.1. The Local Workflow Engine

The local workflow engine (LWfE) is the main component of an agent. It re-
ceives messages from other agents and reacts by executing a well defined protocol
(see sec. III.4.4.3). It communicates with the other agent’s engines via its com-
munication interface that exposes four services : two input services or provided
services (returnTo and forwardTo) connected to two corresponding output services
or required services (returnTo and forwardTo) so that:

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

THE SPECIALISED EDITOR 104

Figure 38 – Simplified architecture of an agent.

• The invocation by an agent j of the service forwardTo offered by an agent
i, causes on i, the execution of its corresponding input service forwardTo.
This service makes it possible to send a request from agent j to agent i. The
request contains the replica of the mobile artifact located on agent j. This
artifact must contain buds to be completed (executed) by actor Ai (the human
agent piloting agent i).

• The invocation by an agent i of the service returnTo offered by an agent j,
causes the execution on j, of its corresponding input service returnTo. This
service allows agent i to return the response to a request previously received
from agent j. As the request, the response contains the replica of the mobile
artifact located on agent i.

III.4.2.2. The Storage Device

A database (DB) of documents (a JSON4 DB for example) is used by the LWfE
to store an agent’s configuration and data (especially artifacts) that it handles.

III.4.2.3. The Specialised Editor

Each agent provides a specialised editor (preferably WYSIWYG5) that allows
its actor (the pilot) to execute tasks. More precisely, the specialised editor allows
the actor to view the tasks that are assigned to him, those ready to be executed, and
when he has executed a task, it gives him the means to record an execution report.
Any (editing) action carried out by the local actor via the specialised editor, causes

4. JavaScript Object Notation, http://www.json.org, https://www.mongodb.com, visited the
04/04/2020.
5. What You See Is What You Get.

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

http://www.json.org
https://www.mongodb.com

CONCEPT OF ACCREDITATION 105

the consistent update (as presented in section III.3.3.3) of the mobile artifact local
replica.

The specialised editor is particularly important as it guarantees controlled ac-
cess to the artifact. Indeed, as announced in the introduction and following the
steps of (Hull et al., 2009), for reasons of confidentiality/security, actors do not
necessarily have the right to access all information relating to the execution of a
process in which they are involved. It is therefore important to provide a mecha-
nism for regulating access to this information (stored in the artifact). In our case,
we define this mechanism under the name accreditation and we include it in the
configuration of an agent in the same way as the GMWf of the studied process.

III.4.3. Concepts of Accreditation, Partial Replica of an Artifact
and Local GMWf

III.4.3.1. Concept of Accreditation

Let’s consider a process Pop and its GMWf G= (S ,P ,A). The accreditation of
an agent provides information on the rights (permissions) its actor has on each sort
(task) of G. To simplify, the nomenclature of rights manipulated here is inspired
by the one used in Unix-like operating systems. Three types of accreditation are
then defined: accreditation in reading (r), in writing (w) and in execution (x).

1. Accreditation in reading (r): when an agent is accredited in reading on a sort
X , its actor has the right to know if the associated task is executed. Moreover,
he can access its execution status. We call an agent’s (actor’s) view the set of
sorts on which it (he) is accredited in reading.

2. Accreditation in writing (w): when an agent is accredited in writing on a sort
X , its actor can execute the associated task. Note that a task can be executed
only by exactly one actor: for a given sort, a single agent is accredited in
writing; this is an important point of the model which guarantees the absence
of execution conflicts. Since the dedicated editors for "updating artifacts" are
of type WYSIWYG (see sec. III.4.2.3), any agent accredited in writing on a
symbol must therefore be accredited in reading on it.

3. Accreditation in execution (x): an agent accredited in execution on a sort X
is authorised to ask the agent which is accredited in writing on it, to execute

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

CONCEPT OF ACCREDITATION 106

it. Note that this request can be made without the agent being accredited in
reading6 on the considered sort.

More formally, an accreditation is defined as follows:

Definition 13 An accreditation AAi defined on the set S of grammatical symbols
for an agent i piloted by an actor Ai, is a triplet AAi =

(
AAi(r),AAi(w),AAi(x)

)
such

that, AAi(r) ⊆ S also called view of i (or view of Ai), is the set of symbols on which i
is accredited in reading, AAi(w)⊆AAi(r) is the set of symbols on which i is accredited
in writing and AAi(x) ⊆ S is the set of symbols on which i is accredited in execution.

The accreditations of various agents must be produced by the workflow de-
signer just after modelling the scenarios in the form of target artifacts. From the
task assignment for the peer-review process in the running example (see table I), it
follows that the accreditation in writing of the editor in chief is AEC(w) = {A,B,D},
that of the associated editor is AAE(w) = {C,E,F} and that of the first (resp. the
second) referee is AR1(w) = {G1,H1, I1} (resp. AR2(w) = {G2,H2, I2}). Even more,
since the editor in chief can only perform the task D if the task C is already executed
(see artifacts art1 and art2, fig. 35), in order for the editor in chief to be able to ask
the associated editor to perform this task, it (the agent) must be accredited in execu-
tion on it; so we have AEC(x) = {C}. Moreover, in order to be able to access all the
information on the peer-review evaluation of a paper (task C) and to summarise the
right decision to send to the author, the editor in chief must be able to consult the re-
ports (tasks I1 and I2) and the messages (tasks H1 and H2) of the different referees,
as well as the final decision taken by the associated editor (task F). These tasks,
added to AEC(w)

7 constitute the set AEC(r) = VEC = {A,B,C,D,H1,H2, I1, I2,F}
of tasks on which, it is accredited in reading. By doing so for each of other agents,
we deduce the accreditations represented in table VII.

Table VII – Accreditations of the different agents taking part in the peer-review process.

Agent Accreditation
Editor in Chief (EC) AEC = ({A,B,C,D,H1,H2, I1, I2,F},{A,B,D},{C})
Associated Editor
(AE)

AAE = ({A,C,E,F,H1,H2, I1, I2},{C,E,F},{G1,G2})

First referee (R1) AR1 = ({C,G1,H1, I1},{G1,H1, I1}, /0)
Second referee (R2) AR2 = ({C,G2,H2, I2},{G2,H2, I2}, /0)

6. In fact, as we will see later (sec. III.4.4.3 (the diffusion protocol, page 122)), it is an automatic task (of
the agent) that sends the execution request and not the actor.
7. Recall that in our case, we use WYSIWYG tools and therefore, one can only execute what he see.

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

CONCEPT OF PARTIAL REPLICA OF AN ARTIFACT 107

In summary, what is the workflow model ?
To summarise, we state that in the artifact-centric model presented in this chap-

ter, an administrative process Pop is completely specified using a triplet W f =

(G,LPk ,LAk) called a Grammatical Model of Administrative Workflow Process
(GMAWfP) and composed of: a GMWf, a list of actors (agents) and a list of their
accreditations. The GMWf is used to describe all the tasks of the studied process
and their scheduling, while the list of accreditations provides information on the
role played by each actor involved in the process execution. A GMAWfP can then
be formally defined as follows:

Definition 14 A Grammatical Model of Administrative Workflow Process (GMAWfP)
W f for a given business process, is a triplet W f = (G,LPk ,LAk) wherein G is the
studied process (global) GMWf, LPk is the set of k agents taking part in its execution
and LAk represents the set of these agents’ accreditations.

III.4.3.2. Concept of Partial Replica of an Artifact

To effectively ensure that actors only have access to information of proven in-
terest to them, each agent let them access only to a potentially partial replica tVi

of the mobile artifact t. The t’s partial replicas are obtained by projections ac-
cording to the views of each actor. A partial replica tVi

of t according to the view
VAi = AAi(r), is a partial copy of t obtained by means of the so-called projection
operator denoted π as presented below.

Technically, the projection tVi
of an artifact t according to the view Vi = AAi(r)

is obtained by deleting in t all nodes whose types do not belong to Vi. In our case,
the main challenges in this operation are:

(1) nodes of tVi
must preserve the previously existing execution order between

them in t,

(2) tVi
must be build by using exclusively the only two forms of production re-

tained for GMWf and

(3) tVi
must be unique in order to ensure the continuation of process execution

(see sec. III.4.4.3).

The projection operation is noted π. Inspired by the one proposed in (Badouel
and Tchoupé Tchendji, 2008), it projects an artifact by preserving the hierarchy
(father-son relationship) between nodes of the artifact (it thus meets challenge (1));
but in addition, it inserts into the projected artifact when necessary, new additional
(re)structuring symbols (accessible in reading and writing by the agent for whom

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

CONCEPT OF PARTIAL REPLICA OF AN ARTIFACT 108

the projection is made). This enables it to meet challenge (2). The details of
how to accomplish the challenge (3) are outlined immediately after the algorithm
(algorithm 5) is presented.

Figure 39 – Example of projections made on an artifact and partial replicas obtained.

Figure 39 illustrates the projection of an artifact of the peer-review process
relatively to the R1 (first referee) and EC (Editor in Chief) agent views. Note the
presence in tVEC

of new (re)structuring symbols (in gray). These last ones make it
possible to avoid introducing in tVEC

, the production p : C→ H1 # I1 ‖ H2 # I2 # F
whose form does not correspond to the two forms of production retained for the
GMWf writing8.

The algorithm
Let’s consider an artifact t and note by n = X [t1, . . . , tm] a node of t labelled with

the symbol X and having m sub-artifacts t1, . . . , tm. Note also by pn, the production
of the GMWf that was used to extend node n; the type of pn is either sequential (i.e.
pn : X → X1 # . . . #Xm where X1, . . . ,Xm are the roots of the sub-artifacts t1, . . . , tm) or
parallel (pn : X→ X1 ‖ . . . ‖ Xm). Concretely, to project t according to a given view
V (i.e to find projst = πV (t)), the recursive processing presented in algorithm 5, is
applied to the root node n = X [t1, . . . , tm] of t.

8. Note that this production specifies in its right-hand side that we must have parallel and sequential treat-
ments. Inserting S1, S2 and S3 allows to rewrite p in four productions p1 : C→ S1 # F , p2 : S1→ S2 ‖ S3,
p3 : S2→ H1 # I1 and p4 : S3→ H2 # I2.

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

CONCEPT OF PARTIAL REPLICA OF AN ARTIFACT 109

Algorithm 5 Algorithm to project a given artifact according to a given view.

• If symbol X is visible (X ∈ V) then :
1. n is kept in the artifact;
2. For each sub-artifact ti of n, having node ni = Xi [ti1 , . . . , tik] as root (of which pni is the
production that was used to extend it), the following processing is applied :

a. The projection of ti according to V is done. We obtain the list projsti = πV (ti) ={
tiV1

, . . . , tiVl

}
;

b. If the type of pni is the same as the type of pn or the projection of ti has produced no more
than one artifact (|projsti | ≤ 1), we just replace ti by artifacts tiV1

, . . . , tiVl
of the list projsti ;

Otherwise, a new (re)structuring symbol Si is introduced and we replace the sub-artifact ti
with a new artifact new_ti whose root node is nti = Si

[
tiV1

, . . . , tiVl

]
;

3. If the list of new sub-artifacts of n contains only one element t1 having n1 = S1

[
t1V1

, . . . , t1Vl

]
(with S1 a newly created (re)structuring symbol) as root node, we replace in this one, t1 by the
sub-artifacts t1V1

, . . . , t1Vl
of n1. This removes a non-important (re)structuring symbol S1.

• Else, n is deleted and the result of the projection (projst) is the union of the projections of
each of its sub-artifacts: projst = πV (t) =

⋃m
i=1 πV (ti)

Note that the algorithm described here can return several artifacts (a forest). To
avoid that it produces a forest in some cases and thus meet challenge (3), we make
the following assumption:

GMAWfP manipulated in this work are such that all agents are accred-
ited in reading on the GMWf axioms (axioms’ visibility assumption).

The designer must therefore ensure that all agents are accredited in reading on all
GMWf axioms. To do this, after modelling a process Pop and obtaining its GMWf
G= (S ,P ,A), it is sufficient (if necessary) to create a new axiom AG on which, all
actors will be accredited in reading, and to associate it with new unit productions9

pa : AG → Xa where, Xa ∈ A is a symbol labelling the root of a target artifact.
Moreover, the designer of the GMWf must statically choose the agent responsible
for initiating the process. This agent will therefore be the only one to possess an
accreditation in writing on the new axiom AG.

Proposition 15 For all GMAWfP W f = (G,LPk ,LAk) verifying the axioms’ visibil-
ity assumption, the projection of an artifact t which is conform to its GMWf (t ∴G)
according to a given view V , results in a single artifact tV = πV (t) (stability prop-
erty of π).

9. A production of a context free grammar is a unit production if it is on the form A→ B, where A and B
are non-terminal symbols.

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

THE NEED OF A LOCAL GMWF 110

Proof. Let’s show that πV (t) produces a single tree tV which is an artifact. Note
that the only case in which the projection of an artifact t according to a view V pro-
duces a forest, is when the root node of t is associated with an invisible symbol X
(X /∈V). Knowing that t ∴G and that W f validates the axioms’ visibility assump-
tion, it is deduced that the root node of t is labelled by one of the axioms AG of G
and that AG ∈ V (hence the uniqueness of the produced tree). Since the projection
operation preserves the form of productions, it is concluded that tV = πV (t) is an
artifact. 2

A Haskell implementation of this projection algorithm is introduced in ap-
pendix A of this manuscript. Another implementation in Java has also been pro-
posed and integrated into the prototype that we will present in section III.6 of this
chapter.

III.4.3.3. The Need of a Local GMWf

Since the artifact copy manipulated at a specific site is a potentially partial
replica of the mobile (global) artifact, and since its editing depends on the agent’s
perception (view) of the process, it becomes crucial to provide each agent with a
local GMWf. The latter will serve in addition to preserve the possible confiden-
tiality of certain tasks and data, to guide the local actions of updating the artifact
in order to ensure the convergence of the system to a coherent business goal state.
The local GMWf of an agent can be derived by projecting the global GMWf G
according to the view Vi of its pilot (GMWf projection). This projection is carried
out using Π operator and the GMWf obtained is noted GVi

= ΠVi
(G).

A naive algorithm for non-recursive GMWf projection
The goal of this algorithm is to derive by projection of a given GMWf G =

(S ,P ,A) according to a view V , a local GMWf GV = (SV ,PV ,AV) (we note
GV = ΠV (G)). The proposed algorithm is algorithm 6.

Figure 40 illustrates the research of a local model GVEC
such as GVEC

=ΠVEC
(G)

with VEC =AEC(r) = {A,B,C,D,H1,H2, I1, I2,F}. Target artifacts generated from
G (fig. 40(b)) are projected to obtain two local target artifacts for the view VEC

(fig. 40(c)). From the local target artifacts thus obtained, the searched GMWf is
produced (fig. 40(d)).

The GMWf projection algorithm presented here only works for GMWf that do
not allow recursive symbols10. We therefore assume that:

10. It is only in this context that all the target artifacts can be enumerated.

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

THE NEED OF A LOCAL GMWF 111

Algorithm 6 Algorithm to project a given GMWf according to a given view.

1. First of all, it is necessary to generate all the target artifacts denoted by G (see note (1)
below); we thus obtain a set artsG = {t1, . . . , tn};
2. Then, each of the target artifacts must be projected according to V . We thus obtain a set
artsGV =

{
tV1

, . . . , tVm

}
(with m ≤ n because there may be duplicates; in this case, only one

copy is kept) of artifacts partial replicas;
3. Then, collect the different (re)structuring symbols appearing in artifacts of artsGV , making
sure to remove duplicates (see note (2) below) and to consequently update the artifacts and
the set artsGV . We thus obtain a set SVStruc

of symbols and a final set artsGV =
{

tV1
, . . . , tVl

}
(with l ≤m) of artifacts. These are exactly the only ones that must be conform to the searched
GMWf GV . So we call them, local target artifacts for the view V ;
4. At this stage, it is time to collect all the productions that made it possible to build each of
the local target artifacts for the view V . We obtain a set PV of distinct productions.
The searched local GMWf GV = (SV ,PV ,AV) is such as:
a. its set of symbols is SV = V ∪SVStruc

;
b. its set of productions is PV ;
c. its axioms are in AV = A

Note (1): To generate all the target artifacts denoted by a GMWf G= (S ,P ,A), one just has
to use the set of productions to generate the set of artifacts having one of the axiom AG ∈ A
as root. In fact, for each axiom AG, it should be considered that every AG-production P =
(AG,X1 · · ·Xn) induces artifacts {t1, . . . , tm} such as: the root node of each ti is labelled AG
and has as its sons, a set of artifacts {ti1 , . . . , tin}, part of the Cartesian product of the sets of
artifacts generated when considering each symbol X1, · · · ,Xn as root node.
Note (2): In this case, two (re)structuring symbols are identical if for all their appearances in
nodes of the different artifacts of artsGV , they induce the same local scheduling.

For the execution model presented in this chapter, the manipulated GMAWfP
are those whose GMWf do not contain recursive symbols (non-recursive
GMWf assumption).

Therefore, it is no longer possible to express iterative routing between process tasks
(in the general case); except in cases where the maximum number of iterations is
known in advance. This algorithm has some interesting properties and the inter-
ested reader will find an introduction to its Haskell implementation in appendix
A.

Proposition 16 For all GMAWfP W f = (G,LPk ,LAk) verifying the axioms’ visi-
bility and the non-recursivity of GMWf assumptions, the projection of its GMWf
G = (S ,P ,A) according to a given view V , is a GMWf GV = ΠV (G) for a
GMAWfP W fV verifying the assumptions of axiom visibility and non-recursivity
of GMWf (stability property of Π).

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

THE NEED OF A LOCAL GMWF 112

Figure 40 – Example of projection of a GMWf according to a given view.

Proof. Let’s show that GV = ΠV (G) is a GMWf for a new GMAWfP W fV =(
GV ,LPk ,LAVk

)
that verifies the assumptions of axioms’ visibility and non-recursivity

of GMWf. As W f = (G,LPk ,LAk) validates the non-recursivity of GMWf assump-
tion, the set of target artifacts (artsG = {t1, . . . , tn}) that it denotes is finite and can
therefore be fully enumerated. Knowing further that W f validates the axioms’ visi-
bility assumption, it is deduced that the set artsGV =

{
tV1

= πV (t1) , . . . , tVn
= πV (tn)

}
is finite and the root node of each artifact tVi

is associated with an axiom AG ∈ A
(see proposition 15). GV being built from the set artsGV , its axioms AV = A
are visible to all actors and its productions are only of the two forms retained for
GMWf. In addition, each new (re)structuring symbol (S ∈ SVStruc

)) is created and
used only once to replace a symbol that is not visible and not recursive (by as-
sumption) when projecting artifacts of artsG. The new symbols are therefore not
recursive. By replacing in LAk the view V by V ∪ SVStruc

, one obtains a new set

LAVk
of accreditations for a new GMAWfP W fV =

(
GV ,LPk ,LAVk

)
verifying the

assumptions of axioms’ visibility and non-recursivity of GMWf. 2

Proposition 17 For all GMAWfP W f = (G,LPk ,LAk) verifying the axioms’ visibil-
ity and the non-recursivity of GMWf assumptions, the projection of an artifact t
which is conform to the GMWf G according to a given view V , is an artifact which
is conform to the projection of G according to V (∀t, t ∴G⇒ πV (t) ∴ ΠV (G)).

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

THE NEED OF A LOCAL GMWF 113

Proof. Knowing that the considered GMAWfP W f = (G,LPk ,LAk) verifies the
axioms’ visibility and the non-recursivity of GMWf assumptions, it is deduced
that the set of its target artifacts artsG (those who helped to build its GMWf
G) is finite and any artifact that is conform to its GMWf G is a target artifact
(∀t, t ∴G⇔ t ∈ artsG). Therefore, considering a given artifact t such that t is
conform to G (t ∴ G), one knows that it is a target artifact (t ∈ artsG) and its pro-
jection according to a given view V produces a single artifact tV = πV (t) (see
"stability property of π", proposition 15) such as t and tV have the same root (one
of the axioms AG ∈ A of G). Since t is a target artifact, its projection tV (through
the renaming of some potential (re)structuring symbols) is part of the set artsGV

of artifacts that have generated GV = ΠV (G) by applying the projection principle
described in the algorithm 6. Therefore, the productions involved in the construc-
tion of tV are all included in the set of productions of the GMWf GV = ΠV (G).
As the set of axioms of GV is AV = A , it is deduced that AG ∈ AV and concluded
that tV ∴GV . 2

Proposition 18 Consider a GMAWfP W f = (G,LPk ,LAk) verifying the axioms’
visibility and the non-recursivity assumptions. For all artifact tV which is con-
form to ΠV (G), it exists at least one artifact t which is conform to G such that
tV = πV (t) (∀tV , tV ∴ ΠV (G)⇒∃t, t ∴G and tV = πV (t)).

Proof. With proposition 16 ("stability property of Π") it has been shown that
the projection GV = ΠV (G) according to the view V of a GMWf G verifying
the axioms’ visibility and the non-recursivity assumptions, is a GMWf verifying
the same assumptions. On this basis and using similar reasoning to that used
to prove the proposition 17, it’s been determined that an artifact tV that is con-
form to GV , is one of its target artifacts (local target artifact for the view V): i.e,
tV ∈ artsGV . Referring to the projection process which made it possible to obtain
GV , it is determined that the set artsGV is exclusively made up of the projections
of the set artsG = {t1, . . . , tn} of G’s target artifacts. tV is therefore the projec-
tion of at least one target artifact ti ∈ artsG of G (tV = πV (ti)). Knowing that
∀t, t ∴ G⇔ t ∈ artsG (see proof of proposition 17), it is deduced that ti ∴ G and
the proof of this proposition is made. 2

By applying the GMWf projection algorithm presented above to the running
example, one obtain the productions listed in table VIII for the different agents
respectively. Let us note that this algorithm simply project each target artifact
according to the view of the considered agent, then gather the productions in the
obtained partial replicas while removing the duplicates. In the illustrated case here,

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

THE EXECUTION CHOREOGRAPHY AND AGENT’S BEHAVIOUR 114

we have considered an update of the GMWf of the peer-review process so that it
validates the axioms’ visibility assumption (see sec. III.4.3.2).

Table VIII – Local GMWf productions of all the agents involved in the peer-review process.

Agent Productions of local GMWf

Editor in Chief (EC)

P1 : AG→ A P2 : A→ B #D P3 : A→C #D
P4 : C→ S1 #F P5 : S1→ S2 ‖ S3 P6 : S2→ H1 # I1
P7 : S3→ H2 # I2 P8 : B→ ε P9 : D→ ε

P10 : F → ε P11 : H1→ ε P12 : I1→ ε

P13 : H2→ ε P14 : I2→ ε

Associated Editor
(AE)

P1 : AG→ A P2 : A→C P3 : C→ E #F
P4 : E→ S1 ‖ S2 P5 : S1→ H1 # I1 P6 : S2→ H2 # I2
P7 : H1→ ε P8 : I1→ ε P9 : H2→ ε

P10 : I2→ ε P11 : F → ε P12 : AG→ ε

First referee (R1)
P1 : AG→C P2 : C→ G1 P3 : G1→ H1 # I1
P4 : H1→ ε P5 : I1→ ε P6 : AG→ ε

Second referee (R2)
P1 : AG→C P2 : C→ G2 P3 : G2→ H2 # I2
P4 : H2→ ε P5 : I2→ ε P6 : AG→ ε

III.4.4. The Artifact-Centric Choreography

In this section, we are interested in the actual execution of a process Pop whose
GMWf is G= (S ,P ,A).

III.4.4.1. Initial Configuration of an Agent

Each agent i taking part in the choreography, has a single identifier (its ID).
For a proper execution, it manages a local copy of the process’ global GMWf G,
accreditations of various agents involved and its local GMWf Gi. In addition, it
handles a list RETi of agents who have made requests and whose answers are yet to
be sent, as well as two queues: REQi which stores requests waiting to be executed,
and ANSi which temporally stores answers received from agents to which requests
were previously made. A local copy ti of the mobile artifact and its (potentially
partial) replica tVi

are also handled by agent i.

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

THE PROTOCOLS 115

III.4.4.2. The Execution Choreography and Agent’s Behaviour

The execution of an instance of the process is triggered when an artifact t is
introduced into the system (on the appropriate agent); this artifact is in fact an
unlocked bud of the type of one axiom AG ∈ A (initial task) of the (global) GMWf
G.

An artifact that arrives on a given agent is either a request or a response to a
request; depending on the case, it is inserted in the appropriate queue (REQi or
ANSi). As soon as possible11, the artifact is removed from the queue, merged with
the local copy (if it exists) and is then completed as needed. Completing an artifact
consists of executing in a coherent way, the various tasks it imposes, i.e. those on
which the current agent is accredited in writing.

At the end of the completion on an artifact, if its configuration shows that it must
be completed by other agents (this is the case if the artifact contains buds created by
the current agent and whose agent accredited in writing, are remote), replicas of the
artifact are sent to the said agents by invoking the service forwardTo. Otherwise,
the artifact is complete (it contains no more buds), or semi-complete (it contains
buds that had been created by other agents and on which, the current agent is not
accredited in writing); in which case, a replica is returned to the agent from which
the artifact was previously received by invoking the service returnTo.

The execution of the process ends when all the tasks constituting a scenario of
the process have been executed. In this case, the artifact that is cooperatively edited
is complete (closed) on the agent where the process was triggered.

III.4.4.3. The Protocols

The activity that takes place on an agent in relation to the handling of a given
artifact, breaks down into five sub-activities (see fig. 41); each of them is managed
by a dedicated protocol. These activities are the following:

• creation (initialisation of a new case) or receipt-merger of a replica.

• replication: it consists in the extraction (from the local replica) of the partial
replica that the local agent has to complete (manage its execution).

• execution: it consists in the extension by the local actor (via the specialised
editor) of the buds for which he is accredited in writing.

• expansion-pruning: it consists in the reconstruction by expansion of the local
(global) replica from the updated local partial replica.

11. For instance at the end of the local replica completion or after a given time interval.

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

THE PROTOCOLS 116

• diffusion: it corresponds to the return of the response to a request, or to the
sending of requests.

Figure 41 – Activity of an agent in the system.

The management protocols for these different activities are described in the
following paragraphs.

The Receipt-Merger Protocol
An artifact is received either when a new case is initialised or after a request or

a response is delivered. In all cases, a merge using an adaptation of the algorithm
in (Badouel and Tchoupé Tchendji, 2008) is performed. The goal in this step is to
update the local copy ti of the global artifact from those received (the (tma j

j)1≤ j 6=i≤k

contained in queues REQi and ANSi). For that purpose (see algorithm 7), we merge
ti with each artifact tma j

j from the requests queue (algorithm 7, lines 2 to 6) and
from the responses queue (algorithm 7, lines 7 to 10) until they are empty. At each
merge, ti is updated (algorithm 7, lines 3 and 8). For each received request, the
identity of the sender is kept in the list RETi (algorithm 7, line 5) to be able to
return a response at the end of the request processing. Note that during the merge,
some previously locked buds can be unlocked: this is the case if all the tasks that
precede them have been executed.

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

THE PROTOCOLS 117

Algorithm 7 Merger protocol executed by an agent i.
1: procedure MERGER

2: for req : REQi do . While there is a request

3: ti← merge(ti, req.artifact) . We merge the artifact of the request with ti
4: delete req from REQi

5: enqueue(req.sender, RETi) . And we add the request sender in RETi queue

6: end for
7: for ans : ANSi do
8: ti← merge(ti, ans.artifact) . We merge the artifact of the answer with ti
9: delete ans from ANSi

10: end for
11: end procedure

The Replication Protocol
Replication is done just after the merge. The objective here is to update the

local partial replica tVi
from the local (global) artifact ti. To do this (see algorithm

8), the local workflow engine proceeds as follows:

• It realises the expansion12 of the partial replica tVi
to obtain a global artifact

tma j
i which integrates all the updates made during the previous execution (al-

gorithm 8, line 2). This operation is necessary, since at the end of the previous
expansion, there may have been a pruning (see the expansion-pruning pro-
tocol, page 118) which removed from the global artifact local copy ti, some
updates contained in tVi

;

• Then, it merges ti and tma j
i in one artifact ti f (algorithm 8, line 3);

• Finally, it realises the projection of ti f relatively to the view Vi to obtain the
new version of tVi

= πVi
(ti f) (algorithm 8, line 4).

Algorithm 8 Replication protocol executed by an agent i.
1: procedure REPLICATION

2: tma j
i ← expand(tVi

, ti, Vi, G)

3: ti f ← merge(ti, tma j
i)

4: tVi
← projection(ti f , Vi, Gi)

5: end procedure

12. It is important to note that the expansion algorithm used here only returns one artifact (see the expansion-
pruning protocol, page 118), unlike the one presented in (Badouel and Tchoupé Tchendji, 2008) which
generates a potentially infinite family of artifacts represented by a tree automaton. This uniqueness is
guaranteed by the fact that the expansion of tVi

into tma j
i is done using a three-way approach (three-way

merge (Mens, 2002)). In fact, the expansion is carried out based on the grammatical model G and on the
view Vi, but also on the prefix ti of (the local global artifact replica) tma j

i .

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

THE PROTOCOLS 118

The Execution Protocol
This protocol (algorithm 9) is executed after the production of the local partial

replica tVi
by an agent i. It is executed by the local actor through the specialised

editor, in order to extend the (unlocked) buds of tVi
on which, he is accredited in

writing.
The execution of the artifact’s local replica by the agent i, must be done "as

far as possible" by respecting the scheduling (sequential or parallel) of the tasks.
Indeed, during the extension of a bud, if there is unlocking or creation of new
unlocked buds on which the current agent is accredited in writing, its actor must
extend/execute them; this is the purpose of the while loop in algorithm 9. In addi-
tion, the extension of buds whose type S corresponds to a (re)structuring symbol,
is automatically done by the local workflow engine when the local GMWf has only
one S-production.

Algorithm 9 Execution protocol executed by an agent i.
1: procedure EXECUTION

2: while not isEmpty(buds← nextLocalUnlockedBuds(tVi
, AAi(w))) do . While there are tasks

that can be concurrently executed by the actor Ai of agent i in the partial replica tVi

3: bud← prompt(”Choose a task to execute”, buds) . Actor Ai chooses the task (bud) to

execute

4: prods← localExecutionPossibilities(bud.type) . The specialized editor (agent) generates

and activates the set of execution possibilities according to the current (local) configuration

5: choice← prompt(”Choose an execution possibility”, prods) . Actor Ai executes the

selected task and provide feedback through the specialized editor

6: tVi
← updateArtifact(choice, tVi

) . Then tVi
is updated accordingly

7: end while
8: end procedure

The Expansion-Pruning Protocol
After completion of the partial replica tVi

, the updates must be propagated to
the local (global) replica ti of the artifact. This makes it possible to highlight (if
they exist) the tasks for which requests must be made, or to determine if answers
to requests can be returned. Algorithm 10 allows addressing this concern. For that,
the expansion of the local updated partial replica tVi

is made (algorithm 10, line
2) to obtain the global artifact tma j

i which integrates all the contributions made by
actor Ai during the previous local execution phase.

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

THE PROTOCOLS 119

Note that the artifact tma j
i may have so called upstairs buds13 (these are the in-

ternal nodes of tma j
i that do not belong to Vi = AAi(r), and which are not in ti - see

fig. 44). To prevent and manage this situation, a pruning of tma j
i is performed (algo-

rithm 10, line 3) to ensure compliance with task-related precedence constraints of
executions. To do this, for every path of tma j

i starting from the root, we prune at the
level of the first (upstairs) bud encountered; it must appear unlocked if all the tasks
that precede it have already been executed. The artifact obtained after this phase is
the new version of ti, and represents the current state of the process execution from
the point of view of agent i.

Algorithm 10 Expansion-Pruning protocol executed by an agent i.
1: procedure EXPANSION-PRUNING

2: tma j
i ← expand(tVi

, ti, Vi, G)

3: ti← pruning(tma j
i , ti)

4: end procedure

A three-way merging expansion algorithm: consider an (global) artifact under
execution t, and tV = πV (t) its partial replica on the site of an actor Ai whose view
is V . Consider the partial replica tma j

V ≥ tV obtained by developing some unlocked
buds of tV as a result of Ai’s contribution. The expansion problem consists in
finding an (global) artifact under execution t f , which integrates nodes of t and tV .
To solve this problem made difficult by the fact that t and tV are conform to two
different models (G and GV = ΠV (G)), we perform a three-way merge (Mens,
2002). We merge the artifacts t and tV using a (global) target artifact tg such that:

(a) t is a prefix of tg (t ≤ tg)

(b) tma j
V is a prefix of the partial replica of tg according to V

(
tma j
V ≤ πV (tg)

)
The proposed algorithm proceeds in two steps.

Step 1 - Search for the merging guide tg: the search of a merging guide is done by
the algorithm 11.

Step 2 - Merging t, tma j
V and tg: we want to find an artifact t f that includes all the

contributions already made during the workflow execution. The structure of the

13. Intuitively, a node nXω̄
associated with the task X is an upstair bud if, X (not already executed) precedes

at least one task Y made visible (and naturally not already executed) on the site of an agent i, i not having
any accreditation in reading on X .

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

THE PROTOCOLS 120

Algorithm 11 Algorithm to search a merging guide.

1. First of all, we have to generate the set artsG = {t1, . . . , tn} of target artifacts denoted by G;
2. Then, we must filter this set to retain only the artifacts ti admitting t as a prefix (criterion
(a)) and whose projections according to V (tiV j

) admit tma j
V as a prefix (criterion (b)). It is

said that an artifact ta (whose root node is na = Xa[ta1 , . . . , tal]) is a prefix of a given artifact tb
(whose root node is nb = Xb[tb1 , . . . , tbm]) if and only if the root nodes na and nb are of the same
types (i.e Xa = Xb) and:

a. The node na is a bud or,
b. The nodes na and nb have the same number of sub-artifacts (i.e l = m), the same type of

scheduling for the sub-artifacts and each sub-artifact tai of na is a prefix of the sub-artifact tbi

of nb.
We obtain the set guides = {tg1 , . . . , tgk} of artifacts that can guide the merging;
3. Finally, we randomly select an element tg from the set guides.

searched artifact t f is the same as that of tg: hence the interest to use tg as a guide.
The merging is carried out by the algorithm 12.

Algorithm 12 Three-way merging algorithm.

A prefixed depth path of the three artifacts (t, tma j
V and tg) is made simultaneously until there

is no longer a node to visit in tg. Let nti (resp. ntma j
V j

and ntgk
) be the node located at the address

wi (resp. w j and wk) of t (resp. tma j
V and tg) and currently being visited. If nodes nti , ntma j

V j

and

ntgk
are such that (processing):

1. ntma j
V j

is associated with a (re)structuring symbol (fig. 42(d)) then: we take a step forward in

the depth path of tma j
V and we resume processing;

2. nti , ntma j
V j

and ntgk
exist and are all associated with the same symbol X (fig. 42(a) and 42(b))

then: we insert ntma j
V j

(it is the most up-to-date node) into t f at the address wk; if ntma j
V j

is a bud

then we prune (delete sub-artifacts) tg at the address wk; we take a step forward in the depth
path of the three artifacts and we resume processing.
3. nti , ntma j

V j

and ntgk
exist and are respectively associated with symbols Xi, X j and Xk such that

Xk 6= Xi and Xk 6= X j (fig. 42(e)) then: we add ntgk
in t f at address wk. This is an upstair bud;

we take a step forward in the depth path of tg and we resume processing.
4. nti (resp. ntma j

V j

) and ntgk
exist and are associated with the same symbol X (fig. 42(c) and

42(f)) then: we insert nti (resp. ntma j
V j

) into t f at the address wk; if nti (resp. ntma j
V j

) is a bud, we

prune tg at the address wk; we take a step forward in the depth path of the artifacts t (resp. tma j
V)

and tg, then we resume processing.

As for the other key algorithms, a Haskell implementation of this expansion-
pruning algorithm is introduced in appendix A.

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

THE PROTOCOLS 121

Figure 42 – Some scenarios to be managed during the expansion.

Proposition 19 For any update tma j
V in accordance with a GMWf GV =ΠV (G), of

a partial replica tV = πV (t) obtained by projecting (according to the view V) an
artifact t being executed in accordance with the GMWf G of a GMAWfP verifying
the axioms’ visibility and the non-recursivity assumptions, there is at least one
target artifact (the three-way merge guide) tg ∈ artsG of G such as:

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

THE PROTOCOLS 122

(a) t is a prefix of tg (t ≤ tg)

(b) tma j
V is a prefix of the partial replica of tg according to V

(
tma j
V ≤ πV (tg)

)
Proof. Thanks to the proposals 16, 17 and the artifact editing model used here (see
sec. III.3.3.3) it is established that since the artifact t being executed in accordance
with G is a prefix of a non-empty set of G’s target artifacts arts

′

G =
{

t
′

1, . . . , t
′

n

}
(∀1≤ i≤ n, t ≤ t

′

i), its projection tV according to the view V is a prefix of a non-
empty set arts

′

GV
=
{

t
′

V1
, . . . , t

′

Vm

}
of GV = ΠV (G)’s local target artifacts for the

said view (∀1 ≤ j ≤ m, tV ≤ t
′

V j
): elements of arts

′

G are potential merging guides
candidates that all verify the property (a). In addition, using the propositions 16
and 18, it is established that each element of arts

′

GV
is the projection of at least

one element of arts
′

G according to the view V (1). Given that tma j
V is obtained by

developing buds of tV in accordance with GV , it is inferred that tma j
V is a prefix of a

non-empty subset artsma j
GV
⊆ arts

′

GV
of local target artifacts for the view V (2). With

the proposition 18 once again, it is determined that for each artifact t
′

V j
∈ artsma j

GV
,

there is at least one artifact tg j that is conform to G such as t
′

V j
= πV

(
tg j

)
: this new

set artsma j
G = {tg1, . . . , tgk} is made up of potential merging guides candidates that

all verify the property (b). Results (1) and (2) show that artsma j
G and arts

′

G are not
disjoint. As a consequence, the set guides = artsma j

G ∩ arts
′

G of potential merging
guides that all verify both property (a) and (b) is not empty. 2

Corollary 20 For an artifact t being executed in accordance with a GMWf G of
a GMAWfP verifying the axioms’ visibility and the non-recursivity assumptions,
and an update tma j

V ≥ tV of its partial replica tV = πV (t) according to the view
V , the expansion of tma j

V contains at least one artifact and the expansion-pruning
algorithm presented here returns one and only one artifact.

This result (corollary 20) derives from the proof of the proposition 19 (there
is always at least one artifact in the expansion of tma j

V under the conditions of
corollary 20) and from the fact that in the last instruction of the algorithm ??, an
artifact is randomly selected an returned from a non-empty set of potential guides
(only one of the expansion artifacts is used in the three-way merging).

The Diffusion Protocol
After expansion-pruning, the local workflow engine must examine whether re-

quests need to be sent to other agents (this is the case if ti still have unlocked buds

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

ILLUSTRATING THE CHOREOGRAPHY ON THE PEER-REVIEW PROCESS 123

created on its site14, on which the current agent is not accredited in writing) or, if
responses are to be returned (this is the case if ti is complete or semi-complete).

To build the list of requests to diffuse, the local workflow engine scans the
artifact ti produced by expansion-pruning and builds the list of required agents
(those to receive a request) from buds15 (algorithm 13, lines 2 to 7). If the required
agents list is not empty (the artifact is not complete), it sends a request to each
agent in the list (algorithm 13, lines 8 to 12). Otherwise, if there are agents who
have previously made requests, it sends responses instead (algorithm 13, lines 13
to 18).

Algorithm 13 Diffusion protocol executed by an agent i.
1: procedure DIFFUSION

2: for bud : unlockedBuds(ti) and bud have been created by i do
3: if bud.type ∈ AAi(x) then
4: agent← executorOf (bud.type)
5: enqueue(agent,requiredAgents)
6: end if
7: end for
8: if not isEmpty(requiredAgents) then
9: req← new Request(i, ti)

10: for agent : requiredAgents do
11: invoqueService(” f orwardTo”, req, agent)
12: end for
13: else if not isEmpty(RETi) then
14: ans← new Answer(i, ti)
15: for agent : RETi do
16: invoqueService(”returnTo”, ans, agent)
17: delete agent f rom RETi

18: end for
19: else
20: alert(”T he process execution is terminated.”)
21: end if
22: end procedure

III.5. Illustrating the Choreography on the Peer-Review
Process

The execution of an instance of our running example begins when under the
editor in chief’s action (via the GUI of the specialised editor), an unlocked bud of

14. An agent only requests the execution of a bud if it was created on its site.
15. Normally (due to assumptions of our model) at this stage, for each unlocked bud of ti, agent i is accred-
ited in execution on the associated task. Any other situation would be a design flaw.

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

ILLUSTRATING THE CHOREOGRAPHY ON THE PEER-REVIEW PROCESS 124

type AG is created on his site. Figure 43 which must be read following the direction
of the arrows it contains, summarises the state16 of the agent EC (editor in chief
site) before and after the event creating the artifact; it also illustrates the running of
the five-step protocol on the agent EC.

Figure 43 – Beginning of the peer-review process on the editor in chief’s site.

As soon as a bud of type AG is created, the local workflow engine extends it
using the unique AG-production (P1 : AG→ A) of the local GMWf. This results in
the creation of a bud of type A that the editor in chief must extend via the specialised
editor by choosing an A-production. For this scenario, it is assumed that he chooses
the production P3 : A→C #D. The task (A) executed by the latter is shown in green
colour on figure 43. The newly created tasks (C and D) appear in the form of locked
buds (the locked buds are shown in red colour) because the editor in chief is not
accredited in writing on C and, since D is linked to C by a sequential scheduling
constraint, it can only be executed when all tasks (C, E, F , G1, G2, H1, H2, I1, I2)
preceding it will have been executed. After expansion-pruning, the only required
agent is the associated editor (responsible for executing task C): a request is sent
to it by invoking the service forwardTo.

The event that triggers the workflow execution on the site of associated editor
(fig. 44) is the receipt of the request sent by the editor in chief. In the artifact
sent by the latter, there are buds (Cω and Dω). After merging, the bud Cω is un-
locked (the unlocked buds are shown in blue). It indicates the only place where the
contribution of the associated editor is expected. During the execution phase, the

16. The state of an agent i at a given moment is given by the values of variables REQi, ANSi, RETi and the
replicas ti and tVi

.

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

ILLUSTRATING THE CHOREOGRAPHY ON THE PEER-REVIEW PROCESS 125

Figure 44 – Continuation of the peer-review process execution on the associated editor’s site; the
latter receives the request formulated by the editor in chief.

local artifact partial replica is updated by the associated editor via the productions
P3 : C→ E # F , P4 : E → S1 ‖ S2, P5 : S1→ H1 # I1 and P6 : S2→ H2 # I2 of his
local GMWf. At the end of this phase, buds of types H1,H2, I1 and I2 appear
locked not only because they are constrained by a sequential scheduling (case of
I1 and I2), but especially because of the presence of upstairs buds (the upstairs
buds are represented in orange colour). Indeed, tasks G1 and G2 made visible after
the expansion are upstairs buds because they must be executed before the tasks of
type H1 and H2. So, there is pruning at G1 and G2 before sending (in parallel) the
artifact to both referees.

Figure 45 illustrates how the protocol takes place on the site of one of the ref-
erees (the first referee). After the contribution of the latter, no new bud is created:
no request is formulated. It is rather a response corresponding to the request previ-
ously received from the associated editor which is returned by invoking the service
returnTo.

The execution protocol is unrolled again on the site of the associated editor
following events related to the reception of responses from the two referees (fig.

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

EXPERIMENTATION 126

Figure 45 – Continuation of the peer-review process execution on the first referee’s site: the re-
quest of the associated editor arrives at the first referee.

46). We choose to treat these responses simultaneously; but we could do otherwise
and obtain the same result. At merge, since the subtree rooted in E is closed,
the bud Fω is unlocked and the associated editor extends it through production
P11 : F → ε. Having no request to make, the answer to the request previously
received from the editor in chief is returned.

The editor in chief receives the response from associated editor and once again
runs the execution protocol (fig. 47). After its contribution (on the node D), the
artifact obtained after expansion-pruning is closed and the execution of the process
ends successfully.

III.6. Experimentation

In this section, we present and experiment P2PTinyWfMS (a Peer-to-Peer Tiny
Workflow Management System), an experimental prototype system implemented
according to the approach proposed in this chapter.

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

EXPERIMENTATION 127

Figure 46 – Continuation of the peer-review process execution: the associated editor receives
answers from referees, to requests that he has previously made.

III.6.1. P2PTinyWfMS: an Experimental Prototype System

P2PTinyWfMS is a tool developed in Java under Eclipse17 and dedicated to
the distributed execution of administrative workflows specified using GMWf. In
accordance with the agent’s architecture of this chapter (see fig. 41), P2PTinyWfMS
has a front-end for displaying and graphically editing artifacts manipulated during
the execution of a business process (see fig. 48 and 49), as well as a communication
module built from SON18.

Let’s recall that SON (Shared-data Overlay Network) (Lahcen and Parigot,
2012) is a middleware offering several DSL to facilitate the implementation of
P2P systems whose components communicate by service invocations. Compo-
nent Description Meta Language (CDML) is the DSL provided by SON to spec-
ify among other things the services required and provided by each peers; from a
CDML specification, SON generates Java code for allowing peers to communi-
cate. The following listing shows the contents of the CDML file used in the case of

17. Official website of Eclipse: https://www.eclipse.org, visited the 04/04/2020.
18. SON is available under Eclipse from a family of SmartTools plugins.

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

https://www.eclipse.org

EXPERIMENTATION 128

Figure 47 – Continuation and end of the peer-review process execution: the editor in chief re-
ceives a response containing referees’ contributions, from the associated editor.

P2PTinyWfMS to specify the four services that its instances expose; they are: two
input services (inForwardTo - lines 6 to 9 -, and inReturnTo - lines 10 to 13 -) and
two output services (outForwardTo - lines 14 to 17 - and outReturnTo - lines 18 to
21 -). These services take as argument an artifact corresponding to either a request
or a response.

CDML file: specification of required and provided services of P2PTinyWfMS
1 <?xml version="1.0" encoding="ISO-8859-1"?>
2 <component name="p2pTinyWfMS" type="p2pTinyWfMS" extends="inria.communicationprotocol"
3 ns="p2pTinyWfMS">
4 <containerclass name="P2pTinyWfMSContainer"/>
5 <facadeclass name="P2pTinyWfMSFacade" userclassname="P2pTinyWfMS"/>
6 <input name="forwardTo" method="inForwardTo">
7 <attribute name="request"
8 javatype="smartworkflow.dwfms.lifa.miu.util.p2pworkflow.PeerToPeerWorkflowRequest"/>
9 </input>

10 <input name="returnTo" method="inReturnTo">
11 <attribute name="response"
12 javatype="smartworkflow.dwfms.lifa.miu.util.p2pworkflow.PeerToPeerWorkflowResponse"/>
13 </input>
14 <output name="forwardTo" method="outForwardTo">
15 <attribute name="request"
16 javatype="smartworkflow.dwfms.lifa.miu.util.p2pworkflow.PeerToPeerWorkflowRequest"/>
17 </output>
18 <output name="returnTo" method="outReturnTo">
19 <attribute name="response"

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

RELATED WORKS AND DISCUSSION 129

20 javatype="smartworkflow.dwfms.lifa.miu.util.p2pworkflow.PeerToPeerWorkflowResponse"/>
21 </output>
22 </component>

III.6.2. Executing our Running Example under P2PTinyWfMS

SON offers a DSL (the ".world" files) for the description of the deployment of a
distributed system whose components have been specified by a CDML file. In or-
der to execute our running example, we deployed four instances of P2PTinyWfMS
identified by EC, AE, R1 and R2 respectively. As explained in section III.5, each
instance is initially equipped with the global GMWf as well as accreditations of
various agents from which it derives its local GMWf by projection.

Figures 48, 49 and 50 are screen shots with some highlights of the workflow’s
distributed execution. We have the tab "Workflow overview" presenting at the be-
ginning of the execution, various tasks, agents, target artifacts etc., on the editor in
chief’s site (fig. 48). We also have the tabs "Workflow execution" of the sites of
the associated editor (fig. 49) and of the editor in chief (fig. 50) that present the
artifacts resulting from their execution after receiving a request from the editor in
chief (resp. after receiving a response from the associated editor).

Figure 48 – P2pTinyWfMS on the editor in chief’s site: presentation of the GMWf (the tasks and
their relations, the actors and their accreditations).

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

RELATED WORKS AND DISCUSSION 130

Figure 49 – P2pTinyWfMS on the associated editor’s site: receipt of editor in chief’s request,
execution of tasks, expansion-pruning, and diffusion.

Figure 50 – P2pTinyWfMS on the editor in chief’s site: reception of the associated editor’s re-
sponse, execution of tasks, expansion-pruning and end of the case.

III.7. Related Works and Discussion

In this section we briefly discuss the similarities and differences of the model
presented in this chapter, comparing it with some related work presented earlier
(Chapter I). We will mention a few related studies and discuss directly; a more

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

RELATED WORKS AND DISCUSSION 131

formal comparative study using qualitative and quantitative metrics should be the
subject of future work.

Hull et al. (2009) provide an interoperation framework in which, data are hosted
on central infrastructures named artifact-centric hubs. As in the work presented in
this chapter, they propose mechanisms (including user views) for controlling access
to these data. Compared to choreography-like approach as the one presented in
this chapter, their settings has the advantage of providing a conceptual rendezvous
point to exchange status information. The same purpose can be replicated in this
chapter’s approach by introducing a new type of agent called "monitor", which
will serve as a rendezvous point; the behaviour of the agents will therefore have
to be slightly adapted to take into account the monitor and to preserve as much as
possible the autonomy of agents.

Lohmann and Wolf (2010) abandon the concept of having a single artifact hub
(Hull et al., 2009) and they introduce the idea of having several agents which op-
erate on artifacts. Some of those artifacts are mobile; thus, the authors provide a
systematic approach for modelling artifact location and its impact on the accessi-
bility of actions using a Petri net. Even though we also manipulate mobile artifacts,
we do not model artifact location; rather, our agents are equipped with capabilities
that allow them to manipulate the artifacts appropriately (taking into account their
location). Moreover, our approach considers that artifacts can not be remotely ac-
cessed, this increases the autonomy of agents.

The process design approach presented in this chapter, has some conceptual
similarities with the concept of proclets proposed by Wil M. P. van der Aalst et al.
(2001; 2009): they both split the process when designing it. In the model presented
in this chapter, the process is split into execution scenarios and its specification
consists in the diagramming of each of them. Proclets (Van Der Aalst et al., 2001,
2009) uses the concept of proclet-class to model different levels of granularity and
cardinality of processes. Additionally, proclets act like agents and are autonomous
enough to decide how to interact with each other.

The model presented in this chapter uses an attributed grammar as its math-
ematical foundation. This is also the case of the AWGAG model by Badouel et
al. (2014; 2015). However, their model puts stress on modelling process data and
users as first class citizens and it is designed for Adaptive Case Management.

To summarise, the proposed approach in this chapter allows the modelling and
decentralized execution of administrative processes using autonomous agents. In
it, process management is very simply done in two steps. The designer only needs
to focus on modelling the artifacts in the form of task trees and the rest is easily

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

SUMMARY 132

deduced. Moreover, we propose a simple but powerful mechanism for securing
data based on the notion of accreditation; this mechanism is perfectly composed
with that of artifacts. The main strengths of our model are therefore :

• The simplicity of its syntax (process specification language), which more-
over (well helped by the accreditation model), is suitable for administrative
processes;

• The simplicity of its execution model; the latter is very close to the blockchain’s
execution model (Hull, 2017; Mendling et al., 2018). On condition of a for-
mal study, the latter could possess the same qualities (fault tolerance, dis-
tributivity, security, peer autonomy, etc.) that emanate from the blockchain;

• Its formal character, which makes it verifiable using appropriate mathemati-
cal tools;

• The conformity of its execution model with the agent paradigm and service
technology.

In view of all these benefits, we can say that the objectives set for this thesis have
indeed been achieved. However, the proposed model is perfectible. For example,
it can be modified to permit agents to respond incrementally to incoming requests
as soon as any prefix of the extension of a bud is produced. This makes it possible
to avoid the situation observed on figure 46 where the associated editor is informed
of the evolution of the subtree resulting from C only when this one is closed. All
the criticisms we can make of the proposed model in particular, and of this the-
sis in general, have been introduced in the general conclusion (page 134) of this
manuscript.

III.8. Summary

In this chapter, we have proposed a new approach to facilitate workflow design
and their execution in a distributed environment. The approach relies on the coop-
erative editing of a mobile artifact by several agents. The design of artifacts and
their type (artifact type), the architecture and management protocols (choreogra-
phy) of agents have been presented and discussed. Likewise, an illustration and
an experimentation of the whole approach on a real example of an administrative
business process (the peer-review process) were presented.

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

GENERAL CONCLUSION 133

The proposed approach has many advantages, which we have outlined. In par-
ticular, it covers all aspects of process automation using BPM technology. In ad-
dition to the formal and demonstrative presentations, we have conducted a prelim-
inary discussion of the presented approach in relation to existing work, and finally
concluded that we have achieved the objective of this thesis.

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

GENERAL CONCLUSION

CONTENTS
Recall of this Thesis’ Challenge and of our Methodological Choices . . . 134
A Critical Analysis of the Performed Work 136
Some Perspectives . 139

We hereby summarise the work reported and presented in this document. To
this, we associate a critical analysis of our models and methodological choices.
Finally, we present some research avenues that can be explored following the work
in this thesis manuscript.

Recall of this Thesis’ Challenge and of our Methodological
Choices

In this thesis, we focused on the automation of business processes using the
technological framework offered by the BPM domain. We have contributed to the
ambition of making more accessible, administrative business processes automa-
tion through this technology. We were guided by the aim of increasing its success
in business sectors using administrative processes as it has been in other sectors
such as science, banking and insurance, which are governed by much more pro-
grammable processes. We thought that a first step towards achieving this great
ambition was to rely on the current (most up-to-date) BPM paradigms and tools,
to design and implement a new BPM framework that would be tailor-made for the
management of administrative business processes. Having identified the artifact-
centric BPM, structured cooperative edition, P2P computing, multiagent system
and SOA concepts as being the hot topics in the implementation of BPM, we set
the following goal for this thesis:

134

A CRITICAL ANALYSIS OF THE PERFORMED WORK 135

The proposal of a new artifact-centric framework, facilitating the mod-
elling of administrative business processes and the completely decen-
tralised execution of the resulting workflows; this completely decen-
tralised execution being provided by a P2P system conceived as a set
of agents communicating asynchronously by service invocation so that,
the execution of a given workflow instance is technically assimilated to
the cooperative edition of (mobile) structured documents called arti-
facts.

To achieve this goal, we have chosen to base our work on the structured doc-
ument cooperative editing model developed by Badouel and Tchoupé a decade
earlier. They proposed an approach based on grammatical models, to manage the
lifecycle of a document collegially edited by actors on geographically distant sites.
In their model, each actor has a potentially partial view (obtained by projection) of
the edited document. The latter is used as an interface between the different actors
of the system. When an actor receives a document he must know from its content,
what he can do and/or what he has to do about it. The information contained in a
document can only grow over its lifetime in the system. Since the system is dis-
tributed and under the assumption that several actors can contribute concurrently,
it is possible that at any given time there may be several potentially partial replicas
of the document in the system. Therefore, it was necessary not only to address
the problems related to the coherence of views in order to ensure the feasibility
of synchronisation/merge, and to ensure the system’s convergence towards a co-
herent end-state, but also to provide algorithms for the merging of partial replicas.
Badouel and Tchoupé did this brilliantly, making their work a solid foundation for
modelling workflow systems.

We adapted Badouel and Tchoupé’s document model to define an artifact model.
Like them, we have therefore chosen to use grammars as our basic mathematical
instrument. In the same vein, we made the choice to model workflow systems in
which actors have potentially only a partial perception of the processes they exe-
cute. We believe that this configuration is relevant to many administrative business
processes. For example, in a peer-review process, a reviewer does not necessarily
need to know if another reviewer has been contacted for the expertise of the article
entrusted to him; and even if so, he should not necessarily know if the latter has
already returned his report, etc. Similarly, when organising a journey for a Head
of State, not all actors (secret services, civil office, doctor, presidential guard, etc.)
have access to the same information which may include for example, tasks to be
executed, their dates and states of execution, etc.

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

A CRITICAL ANALYSIS OF THE PERFORMED WORK 136

A Critical Analysis of the Performed Work

Chronologically, we started by better understanding Badouel and Tchoupé’s
model in order to extend it so that it takes into account, conflicts detection and
resolution. We then embarked on the construction of a workflow system based
on this model by first proposing a generic architecture of such systems and an
experimental system prototype based on it. We finished by proposing an artifact-
centric framework for the completely decentralised management of administrative
business processes. The results we can claim are the following:

An algorithm for reconciling partial replicas of a structured document: we
gave a solution to the conflicts that arose when merging partial replicas of a struc-
tured document by developing reconciliation and control techniques adapted to the
modelling of Badouel and Tchoupé. To address this problem, we have expressed it
as that of the consensual merging of k updated partial replica (tma j

Vi
)1≤i≤k (accord-

ing to k views (Vi)1≤i≤k) whose global model is given by a grammar G= (S ,P ,A),
which consists in: finding the largest documents tma j

S conforming to G such that, for
any document t conforming to G and admitting tma j

Vi
as projection along the view

Vi, tma j
S and t are eventually updates each for other. The solution we have proposed

is as follows: (1) We associate a tree automaton with exit states A (i) for each up-
date tma j

Vi
of a partial replica tVi

; this automaton recognises the trees (conform to

the global model) for which tma j
Vi

is a projection. (2) We perform a synchronous
product of the automata A (i) with a commutative and associative operator noted ⊗
that we define to obtain the consensual automaton A(sc) generating the consensus
documents: A(sc) = ⊗A (i). (3) We obtain the consensus documents by generating
the set of trees accepted by the automaton A(sc).

A software architecture for the implementation of workflow systems: we pro-
posed a generic architecture that could facilitate the implementation of workflow
systems as modelled by Badouel and Tchoupé. The proposed architecture is com-
posed of three tiers: clients, a central server and administration tools. These three
tiers are interconnected around a middleware that facilitates service-oriented inter-
facing between them.

TinyCE v2: based on the proposed system architecture, we have built a work-
flow system prototype referred to as TinyCE v2. The latter was coded in Java and
Haskell following a cross-fertilisation protocol that we presented in this manuscript,

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

A CRITICAL ANALYSIS OF THE PERFORMED WORK 137

and it allowed us to test all the proposed algorithms related to the reconciliation of
documents’ partial replicas.

A grammar-based language for the artifact-centric modelling of administra-
tive processes: we proposed a new tool (a language) that allows to specify any
administrative business process using a triplet W f = (G,LPk ,LAk) composed of:
a grammatical model (GMWf) G, a list of actors LPk and a list of accreditations
LAk . The GMWf is an attributed grammar used to describe all the tasks (by means
of its symbols or sorts) of the studied process and the precedence of execution
between them (by means of its productions); it is used as artifact type. The list
of accreditations provides information on the role played by each actor involved
in the process execution; it is through accreditations that one is able to model the
potentially partial perceptions that different actors have on the processes and their
data.

A distributed workflow system and a fully decentralised execution model of
administrative business processes: we proposed a multiagent-like distributed sys-
tem in which autonomous software agents, based on a same and unique architecture
presented in this manuscript, can exchange artifacts to communicate through ser-
vice invocations, so as to orchestrate the fully decentralised execution of a given
administrative business process instance modelled using the proposed grammar-
based language. Each time a given agent receives an artifact, it executes a unique
five-step protocol allowing it to identify tasks that are ready to be executed on
its site, to allow their execution by the local actor and to diffuse if necessary, the
updated artifact. To ensure the successful completion of this execution model on
a given process case, the initial configuration of agents must be such as to guar-
antee the coherence of their respective accreditations (views). We have therefore
proposed projection algorithms to derive agent-specific models that allow them to
control their actions in order to ensure the system’s convergence towards a busi-
ness goal state. We have also investigated some mathematical properties of these
algorithms.

P2PTinyWfMS: we have finally produced a prototype of a distributed system pro-
viding an artifact-centric management of administrative workflows according to
our models. In this one, we have implemented all our algorithms in Java language
and we have tested them on some process examples with convincing results.

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

A CRITICAL ANALYSIS OF THE PERFORMED WORK 138

The work we have done and presented in this manuscript is not perfect: neither
in the applied methodology, nor in its presentation, and even less in its scientific
contributions. The first criticisms that we can make of it are the following:

The diversity of our algorithms’ presentation formats: we didn’t just use pseudo
code to present our algorithms. Sometimes we used code (Haskell and Java) and
other times we wrote them as an arbitrary and ordered set of instructions written in
natural language; in these cases we have neglected the more frequently used and
more precise mathematical notations. This methodological choice of presentation
can indeed be confusing for the reader. We justify it, however, by our desire to
be precise, concise and as simple to understand as possible. We have written each
of our algorithms in all the formats used in this manuscript before selecting for
each of them, the format that seemed to us the clearest and simplest to present and
understand.

Conflict management: we have chosen to use a single conflict resolution strategy:
that of rejecting conflicting contributions and asking for new ones from contrib-
utors. This seems to us rather restrictive but it was a necessary (not necessarily
wise) choice for a complete automation of the process of merging partial repli-
cas of a structured document. However, in practice, it would be more appropriate
to propose, following the example of Git, several conflict management strategies
using a participant as an actor (coordinator) of this resolution.

Insistence on manipulating user views: although we have already justified the
choice to take user views into consideration in our models by explaining their con-
tribution to both security and accuracy, it is no less true that they do not always have
a positive impact on our work. They have made it a little more complex and have
led us to make slightly restrictive assumptions such as the non-recursive GWMf
assumption that guarantees their projection. We could make the use of these views
more flexible by restricting it to only censorship and not to the complete deletion
of sensitive data; this would certainly allow us to overcome some assumptions.

The weak study of our execution model’s properties: apart from the isolated
study of the properties of a few of its algorithms, we did not study some proper-
ties of our decentralised workflow execution model as it is usual in similar BPM
studies. We probably pay the consequences of our not completely formal and un-
common (but specific to artifact-centric models, it is one of their often mentioned

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

SOME PERSPECTIVES 139

limits) presentation that mixes the artifact modelling with its execution. A clear
separation of these two aspects would certainly allow us to better study them in an
isolated and more conventional way.

Still as theoretical as ever: obviously, we have the ambition to produce concrete
systems that can be used in production environments. We are still a long way from
that. For the two types of systems studied in this thesis, we have only produced
prototypes that allow us to provide experimental proof of concepts. Theoretical
studies on the Badouel and Tchoupé model being already quite advanced, it would
be time to start implementing these concrete environments.

Some Perspectives

The perspectives presented here are classified into categories according to their
priority, to better guide the reader wishing to continue the work. The categories
includes :

• Short-term: to indicate that the perspective is almost unavoidable and its re-
sults will be a real plus to the overall vision we have; it is therefore necessary
to work on it as soon as possible;

• Mid-term: to indicate that the perspective’s results will be pratical and usable
but not a necessity;

• Long-term: to indicate that the perspective is optional and its theoretical
results would only help give credibility to our work.

Here are now some interesting avenues for the continuation of our work that come
to mind:

A Language for the Specification of Administrative Workflow based on At-
tributed Grammars (LSAWfP) (priority: short-term): it is obvious that process
modelling is a crucial phase of BPM (Dumas et al., 2018). Despite the many ef-
forts made in producing process modelling tools, existing tools (languages) are
not commonly accepted. They are mainly criticised for their inability to specify
both the tasks making up the processes and their scheduling (their lifecycle mod-
els), the data they manipulate (their information models) and their organisational
models. Process modelling in these languages often results in a single task graph;
such a graph can quickly become difficult to read and maintain. Moreover, these

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

SOME PERSPECTIVES 140

languages are often too general (they have a very high expressiveness); this makes
their application to specific types of processes complex: especially for administra-
tive processes. One can generalise the artifact specification model presented in this
thesis, in order to provide a new language for administrative processes modelling
that allows designers to specify the lifecycle, information and organisational mod-
els of such processes using a mathematical tool based on a variant of attributed
grammars. Therefore, the approach imposed by the new language will certainly
require the designer to subdivide his process into scenarios, then to model each
scenario individually using a simple task graph (an annotated tree) from which a
grammatical model will be further derived. At each moment then, the designer will
manipulate only a scenario of the studied process: this seems more intuitive and
modular because it will allow to produce task graphs that will be more refined and
therefore, more readable and easier to maintain.

A Scenario-Oriented Scheme for Administrative Business Processes Modelling
(priority: mid-term): in the BPM community, researchers and professionals in the
field have little interest in the "how" to model business processes to the benefit of
the "with what" to model them. As a result, there is a plethora of workflow mod-
elling languages but very few methods (Dumas et al., 2018). The question on the
method to be used to successfully model a given process is however crucial when
we know that BPM reduces the automation of the said process to its specification in
a particular workflow language: a well carried-out specification produces a quality
workflow system. Because the modelling language that can be extracted from the
work of this thesis seems to be adapted to a process modelling philosophy centered
on the notion of scenario, it would be interesting to propose a method that would
accompany it. This one would present the steps to be followed to succeed in its
scenario-oriented modelling of administrative workflow systems.

Verification of workflows specified using our models (priority: short-term):
one of the BPM activities is the formal analysis/verification of the specifications
produced using a given workflow language. Proposing and/or adapting a verifi-
cation method for workflows designed using our models seems to be an interest-
ing avenue of research especially since several similar works have done the same
(Badouel et al., 2015; Van Der Aalst, 1997, 2000). To this end, it will certainly
be necessary to deeply study our models in order to highlight their mathematical
properties. These properties will then make it possible to identify and present the

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

SOME PERSPECTIVES 141

criteria that must be verified by a specification in order to be qualified as correct
(sound).

A tool to help in the specification of administrative processes with a scenario-
oriented approach (priority: short-term): since the models we have proposed
are new, it would be wise to propose a tool to assist in their use in practice. In addi-
tion to being a guide, such a tool should simplify the creation of process models and
possibly validate them according to pre-established correction criteria. Moreover,
it will be able to provide several DSL for saving the specifications as well as sev-
eral modules for exporting them in more conventional notations (BPMN, YAWL,
etc.).

A framework to generate administrative business processes’ specific decen-
tralised execution simulators (priority: mid-term): as implemented, the WfMS
prototype P2PTinyWfMS can be used as a foundation for the production of a tool
that generates simulators of the completely decentralised execution of administra-
tive processes specified using our models. The new framework can be based on the
models found in (Tchembé, Tchoupé Tchendji, and Matene Kakeu, 2019); then,
it will be implemented to generate a simulation environment tailored to a given
administrative process. Still in a generative logic, another approach would be to
use the recent concepts of model-driven engineering to produce a simulator based
on integrated development environments such as Eclipse: one could for example
use a GEMOC approach (Bousse et al., 2016; Combemale, Barais, and Wortmann,
2017).

Extension of our decentralised execution model for recursive GMWf and mon-
itoring support (priority: short-term): we already mentioned this in the discus-
sion section of chapter III. It would be interesting to introduce into our multiagent
system, new types of agents to monitor the execution of processes. In addition,
we could also make the use of views more flexible by modifying their impact on
projection operations. For example, we could redefine the artifact projection oper-
ation so that it no longer erases nodes but censors them; that is, it replaces them
with symbols that help in the specification of control flows (restructuring symbols
for instance) carrying no information on the process. This will preserve the possi-
bility of offering only a potentially partial view of the processes and their data to
actors while allowing the use of recursive symbols in GMWf.

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

SOME PERSPECTIVES 142

Concrete implementation of WfMS supporting our models (priority: short-
term): eventually, it will also be necessary to propose implementations of the
WfMS presented here. Naturally, the implemented system will have to cover all
phases and activities of the BPM lifecycle while focusing on the automation of
administrative business processes. A study of recent BPM systems to ensure inter-
operability and an openness of the implemented system on the cloud will certainly
be interesting avenues to explore.

Study of each proposed formal tool’s properties in order to identify more pre-
cisely the class of workflows to which they apply (priority: long-term): another,
more theoretical, line of research would be to formally analyse the proposed BPM
approach to characterise the class of workflows to which it can actually be applied.
We assumed that we were only interested in administrative workflows; however,
the proposed models are quite general and could well be applied to other classes
of workflows. The study carried out in this perspective should therefore determine
these classes and the conditions under which the proposed model automates them.

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

BIBLIOGRAPHY

Almeida, E. T., Luntz, J. E., and Tilbury, D. M. (2005). Modular finite state
machines implemented as event-condition-action systems. IFAC Proceedings Vol-
umes, 38(1), 373–378.

Aoyama, M. (1998). New age of software development: How component-based
software engineering changes the way of software development. In 1998 interna-
tional workshop on cbse (pp. 1–5).

Assaf, M. A. (2016). Towards an integration system for artifact-centric processes.
In Proceedings of the 2016 on sigmod’16 phd symposium (pp. 2–6).

Assaf, M. A., Badr, Y., and Amghar, Y. (2017). A continuous query language for
stream-based artifacts. In International conference on database and expert systems
applications (pp. 80–89).

Assaf, M. A., Badr, Y., El Khoury, H., and Barbar, K. (2018). Generating database
schemas from business artifact models. I.J. Information Technology and Computer
Science, 2, 10–17. doi: 10.5815/ijitcs.2018.02.02

Badouel, E., Hélouët, L., Kouamou, G.-E., and Morvan, C. (2014). A Gram-
matical Approach to Data-centric Case Management in a Distributed Collaborative
Environment. CoRR, abs/1405.3223. Retrieved from http://arxiv.org/abs/

1405.3223

Badouel, E., Hélouët, L., Kouamou, G.-E., Morvan, C., and Fondze Jr, N. R.
(2015). Active workspaces: distributed collaborative systems based on guarded
attribute grammars. ACM SIGAPP Applied Computing Review, 15(3), 6–34.

Badouel, E., and Tchoupé Tchendji, M. (2008). Merging Hierarchically-Structured
Documents in Workflow Systems. Electronic Notes in Theoretical Computer Sci-
ence, 203(5), 3–24.

Baier, C., and Katoen, J.-P. (2008). Principles of model checking. MIT press.

143

http://arxiv.org/abs/1405.3223
http://arxiv.org/abs/1405.3223

BIBLIOGRAPHY 144

Balasubramaniam, S., and Pierce, B. C. (1998). What is a file synchronizer? In
Proceedings of the 4th annual acm/ieee international conference on mobile com-
puting and networking (pp. 98–108).

Barais, O. (2005). Construire et maîtriser l’évolution d’une architecture logi-
cielle à base de composants (PhD Thesis, Lille 1). Retrieved from http://

www.theses.fr/2005LIL10072 (Thèse de doctorat dirigée par Duchien, Lau-
rence Informatique Lille 1 2005)

Bell, G., Hey, T., and Szalay, A. (2009). Beyond the data deluge. Science,
323(5919), 1297–1298.

Berliner, B., et al. (1990). Cvs ii: Parallelizing software development. In Proceed-
ings of the usenix winter 1990 technical conference (Vol. 341, p. 352).

Berstel, J., and Boasson, L. (2000). Xml grammars. In International symposium
on mathematical foundations of computer science (pp. 182–191).

Boaz, D., Limonad, L., and Gupta, M. (2013). Bizartifact: Artifact-centric busi-
ness process management, june 2013. Retrieved from https://sourceforge

.net/projects/bizartifact/,accessed12December2019

Böhme, T., and Rahm, E. (2004). Supporting efficient streaming and insertion of
xml data in rdbms. In Diweb (pp. 70–81).

Booch, G., Rumbaugh, J., Jacobson, I., et al. (2000). Le guide de l’utilisateur uml
(Vol. 3). Eyrolles.

Börger, E. (2012). Approaches to modeling business processes: a critical analysis
of bpmn, workflow patterns and yawl. Software & Systems Modeling, 11(3), 305–
318.

Boukhedouma, S. (2015). Adaptation et restructuration de modèles de proces-
sus worflow dans un contexte inter-organisationnel (PhD Thesis). Université de
Nantes.

Bousse, E., Degueule, T., Vojtisek, D., Mayerhofer, T., Deantoni, J., and Combe-
male, B. (2016). Execution framework of the gemoc studio (tool demo). In Pro-
ceedings of the 2016 acm sigplan international conference on software language
engineering (pp. 84–89).

Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E., Yergeau, F., et al. (2000).
Extensible markup language (xml) 1.0. W3C recommendation October.

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

http://www.theses.fr/2005LIL10072
http://www.theses.fr/2005LIL10072
https://sourceforge.net/projects/bizartifact/,accessed12December2019
https://sourceforge.net/projects/bizartifact/,accessed12December2019

BIBLIOGRAPHY 145

Brown, C. (2005). Workflow Management in Staffware. In Process-aware infor-
mation systems: Bridging people and software through process technology. Wiley.

Bryant, B. R., Gray, J., and Mernik, M. (2010). Domain-specific software engi-
neering. In Proceedings of the fse/sdp workshop on future of software engineering
research (pp. 65–68).

Burkhart, T., Werth, D., and Loos, P. (2012). Context-sensitive business process
support based on emails. In Proceedings of the 21st international conference on
world wide web (pp. 851–856).

Chaâbane, M. A., Bouzguenda, L., Bouaziz, R., and Gargouri, F. (2007). Spéci-
fication des Processus Workflows Évolutifs Versionnés. Schedae, prépublication,
2(11), 21–29.

Combemale, B., Barais, O., and Wortmann, A. (2017). Language engineering with
the gemoc studio. In 2017 ieee international conference on software architecture
workshops (icsaw) (pp. 189–191).

Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Tison, S., and
Tommasi, M. (1997). Tree automata techniques and applications. http://www.
grappa. univ-lille3. fr/tata.

Cunningham, W. (1995). Wikiwikiweb history. Retrieved from http://c2.com/

cgi/wiki?WikiHistory

Dadam, P., Reichert, M., and Kuhn, K. (2000). Clinical workflows - the killer
application for process-oriented information systems? In Bis 2000 (pp. 36–59).
Springer.

Damaggio, E., Deutsch, A., and Vianu, V. (2012). Artifact systems with data
dependencies and arithmetic. ACM Transactions on Database Systems (TODS),
37(3), 1–36.

Damaggio, E., Hull, R., and Vaculín, R. (2013). On the equivalence of incremental
and fixpoint semantics for business artifacts with guard–stage–milestone lifecycles.
Information Systems, 38(4), 561–584.

Das, S., Kochut, K., Miller, J. A., Sheth, A. P., and Worah, D. (1997). Orbwork: A
reliable distributed corba-based workflow enactment system for meteor2. Univer-
sity of Georgia.

Davie, A. J. (1992). Introduction to functional programming systems using haskell

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

http://c2.com/cgi/wiki?WikiHistory
http://c2.com/cgi/wiki?WikiHistory

BIBLIOGRAPHY 146

(Vol. 27). Cambridge University Press.

DeLoach, S. A., Wood, M. F., and Sparkman, C. H. (2001). Multiagent systems
engineering. International Journal of Software Engineering and Knowledge Engi-
neering, 11(03), 231–258.

Deutsch, A., Hull, R., and Vianu, V. (2014). Automatic verification of database-
centric systems. ACM SIGMOD Record, 43(3), 5–17.

Divitini, M., Hanachi, C., and Sibertin-Blanc, C. (2001). Inter-organizational
workflows for enterprise coordination. In Coordination of internet agents (pp.
369–398). Springer.

Dumas, M. (2015). From models to data and back: the journey of the bpm disci-
pline and the tangled road to bpm 2020. In Proceedings of the 13th international
conference on business process management. Springer.

Dumas, M., La Rosa, M., Mendling, J., and Reijers, H. A. (2018). Fundamentals
of business process management, second edition. Springer.

Dumas, M., Van Der Aalst, W. M. P., and Ter Hofstede, A. H. M. (2005). Process-
aware information systems: bridging people and software through process tech-
nology. John Wiley & Sons.

Eder, J., and Gruber, W. (2002). A meta model for structured workflows supporting
workflow transformations. In East european conference on advances in databases
and information systems (pp. 326–339).

Ellis, C. A., Gibbs, S. J., and Rein, G. (1991). Groupware: some issues and
experiences. Communications of the ACM, 34(1), 39–58.

Estanol, M., Queralt, A., Sancho, M. R., and Teniente, E. (2012). Artifact-centric
business process models in uml. In International conference on business process
management (pp. 292–303).

Eugster, P. T., Felber, P. A., Guerraoui, R., and Kermarrec, A.-M. (2003). The
many faces of publish/subscribe. ACM computing surveys (CSUR), 35(2), 114–
131.

Fakas, J. G., and Karakostas, B. (2004). A Peer to Peer (P2P) Architecture for Dy-
namic Workflow Management. Information & Software Technology, 46(6), 423–
431.

Ferber, J. (1997). Les systèmes multi-agents: vers une intelligence collective.

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

BIBLIOGRAPHY 147

InterEditions.

Gazzé, D., La Polla, M. N., Marchetti, A., Tesconi, M., and Vivaldi, A. (2012).
Workmail: collaborative document workflow management by email. In Interna-
tional conference on cooperative design, visualization and engineering (pp. 14–
23).

Georgakopoulos, D., F. Hornick, M., and P. Sheth, A. (1995). An Overview of
Workflow Management: from Process Modeling to Workflow Automation Infras-
tructure. Distributed and Parallel Databases, 3(2), 119–153.

Geppert, A., and Tombros, D. (1998). Event-Based Distributed Workflow Execu-
tion with EVE. In Middleware’98 (pp. 427–442).

Giannetti, J., and Lord, M. (2015). Une plateforme web pour soutenir la réécriture
collaborative: Etherpad. Formation et profession, 23(1), 71–73.

Grigori, D. (2001). Eléments de flexibilité des systèmes de workflow pour la défini-
tion et l’exécution de procédés coopératifs (PhD Thesis). Université Henri Poincaré
- Nancy 1.

Grudin, J. (1994). Computer-supported cooperative work: History and focus.
Computer, 27(5), 19–26.

Hauder, M., Pigat, S., and Matthes, F. (2014). Research challenges in adaptive
case management: a literature review. In 2014 ieee 18th international enterprise
distributed object computing conference workshops and demonstrations (pp. 98–
107).

Heineman, G. T., and Councill, W. T. (2001). Component-based software engi-
neering: Putting the pieces together. Ivica Crnkovic, George T. Heineman.

Houlding, D. I. (2004, May). System and method for delivering web services
using common object request broker architecture. Google Patents. (US Patent
6,735,771)

Hull, R. (2017). Blockchain: Distributed event-based processing in a data-centric
world. In Proceedings of the 11th acm international conference on distributed and
event-based systems (pp. 2–4).

Hull, R., Damaggio, E., De Masellis, R., Fournier, F., Gupta, M., Heath III, F. T.,
. . . others (2011). Business artifacts with guard-stage-milestone lifecycles: man-
aging artifact interactions with conditions and events. In Proceedings of the 5th

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

BIBLIOGRAPHY 148

acm international conference on distributed event-based system (pp. 51–62).

Hull, R., Narendra, N. C., and Nigam, A. (2009). Facilitating workflow inter-
operation using artifact-centric hubs. In Service-oriented computing (pp. 1–18).
Springer.

Hull, R., Su, J., and Vaculin, R. (2013). Data management perspectives on business
process management: tutorial overview. In Proceedings of the 2013 acm sigmod
international conference on management of data (pp. 943–948).

Hurwitz, J. S., Bloor, R., Kaufman, M., and Halper, F. (2009). Service oriented
architecture (soa) for dummies. John Wiley & Sons.

IMA, I. o. M. A. (2002). Implementing Automated Workflow Management. Institute
of Management Accountants.

Imine, A. (2006). Conception Formelle d’Algorithmes de Réplication Optimiste
vers l’Edition Collaborative dans les Réseaux Pair-à-Pair (PhD Thesis). Université
Henri Poincaré - Nancy 1.

Jennings, N. R. (1996). Using Intelligent Agents to Manage Business Processes. In
Intelligent agents and their applications, ieee colloquium on (digest no: 1996/101)
(pp. 5–1).

Johansen, R. (1988). Groupware: Computer support for business teams. The Free
Press.

Juve, G., Chervenak, A. L., Deelman, E., Bharathi, S., Mehta, G., and Vahi, K.
(2013). Characterizing and Profiling Scientific Workflows. Future Generation
Comp. Syst., 29(3), 682–692.

Kanzow, S. (2004). Approche pour l’Ordonnancement Distribué de Workflows
dans le Contexte d’Entreprises Virtuelles: une Méthodologie basée Multi-Agents
pour la Planification et l’Éxécution de Processus Distribués (PhD Thesis). Uni-
versité Paris XII - Val de Marne.

Kaur, N., McLeod, C. S., Jain, A., Harrison, R., Ahmad, B., Colombo, A. W.,
and Delsing, J. (2013). Design and simulation of a soa-based system of systems
for automation in the residential sector. In 2013 ieee international conference on
industrial technology (icit) (pp. 1976–1981).

Kiepuszewski, B., Ter Hofstede, A. H. M., and Bussler, C. J. (2000). On structured
workflow modelling. In International conference on advanced information systems

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

BIBLIOGRAPHY 149

engineering (pp. 431–445).

Krishnakumar, N., and Sheth, A. (1995). Managing heterogeneous multi-system
tasks to support enterprise-wide operations. Distributed and Parallel Databases,
3(2), 155–186.

Krishnan, R., Munaga, L., and Karlapalem, K. (2001). Xdoc-wfms: A framework
for document centric workflow management system. In International conference
on conceptual modeling (pp. 348–362).

Lahcen, A. A., and Parigot, D. (2012). A Lightweight Middleware for Developing
P2P Applications with Component and Service-Based Principles. In 15th IEEE
international conference on computational science and engineering, CSE 2012,
paphos, cyprus, december 5-7, 2012 (pp. 9–16).

Lamma, E., Riguzzi, F., Storari, S., Mello, P., and Montali, M. (2007). Learning
decserflow models from labeled traces. Oregon State University.

Leymann, F. (2010). Bpel vs. bpmn 2.0: Should you care? In International
workshop on business process modeling notation (pp. 8–13).

Leymann, F., and Roller, D. (1994). Business Process Management with Flow-
mark. In Spring COMPCON 94, digest of papers, san francisco, california, usa,
february 28 - march 4, 1994 (pp. 230–234).

Liu, R., and Kumar, A. (2005). An analysis and taxonomy of unstructured work-
flows. In International conference on business process management (pp. 268–
284).

Lohmann, N., and Nyolt, M. (2011). Artifact-centric modeling using bpmn. In
International conference on service-oriented computing (pp. 54–65).

Lohmann, N., and Wolf, K. (2010). Artifact-centric choreographies. In Interna-
tional conference on service-oriented computing (pp. 32–46).

Ludäscher, B., Altintas, I., Berkley, C., Higgins, D., Jaeger, E., Jones, M., . . . Zhao,
Y. (2006). Scientific workflow management and the kepler system. Concurrency
and Computation: Practice and Experience, 18(10), 1039–1065.

MacKenzie, C. M., Laskey, K., McCabe, F., Brown, P. F., Metz, R., and Hamil-
ton, B. A. (2006). Reference model for service oriented architecture 1.0. OASIS
standard, 12(S 18).

Manna, Z., and Pnueli, A. (2012). Temporal verification of reactive systems: safety.

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

BIBLIOGRAPHY 150

Springer Science & Business Media.

Marchetti, A., Tesconi, M., and Minutoli, S. (2005). Xflow: An xml-based
document-centric workflow. In International conference on web information sys-
tems engineering (pp. 290–303).

McCready, S. (1992). There is more than one Kind of Workflow Software. Com-
puterworld, 2.

Medina-Mora, R., Winograd, T., Flores, R., and Flores, F. (1993). The Action
Workflow Approach to Workflow Management Technology. The Information So-
ciety, 9(4), 391–404.

Meilin, S., Guangxin, Y., Yong, X., and Shangguang, W. (1998, October). Work-
flow management systems: a survey. In Icct’98. 1998 international conference on
communication technology. proceedings (ieee cat. no. 98ex243) (Vol. 2, pp. 6–12).

Mendling, J., Weber, I., Van Der Aalst, W. M. P., Brocke, J. v., Cabanillas, C.,
Daniel, F., . . . Zhu, L. (2018). Blockchains for business process management -
challenges and opportunities. ACM Trans. Management Inf. Syst., 9(1), 4:1–4:16.

Mens, T. (2002). A State-of-the-Art Survey on Software Merging. Journal of IEEE
Transactions on Software Engineering, 28(5), 449–462.

Meyer, B. (2000). Conception et programmation orientées objet. Eyrolles.

Miao, Y., Zhou, J., and Tao, L. (2011). Realization of key technologies for enter-
prise collaboration office automation system based on workflow. Computer Tech-
nology and Development, 21(3), 90–93.

Miller, J. A., Palaniswami, D., Sheth, A. P., Kochut, K., and Singh, H. (1998).
WebWork: METEOR2’s Web-Based Workflow Management System. J. Intell. Inf.
Syst., 10(2), 185–215.

Model, B. P. (2011). Notation (BPMN) version 2.0. OMG Specification, Object
Management Group, 22–31.

Nigam, A., and Caswell, N. S. (2003). Business artifacts: An approach to opera-
tional specification. IBM Systems Journal, 42(3), 428–445.

Oster, G. (2005). Réplication optimiste et cohérence des données dans les environ-
nements collaboratifs répartis (PhD Thesis). Université Henri Poincaré - Nancy
I.

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

BIBLIOGRAPHY 151

Ouyang, C., Dumas, M., Ter Hofstede, A. H. M., and Van Der Aalst, W. M. P.
(2006). From bpmn process models to bpel web services. In 2006 ieee interna-
tional conference on web services (icws’06) (pp. 285–292).

Papazoglou, M. P. (2003). Service-oriented computing: Concepts, characteris-
tics and directions. In Proceedings of the fourth international conference on web
information systems engineering, 2003. wise 2003. (pp. 3–12).

Penichet, V. M. R., Marin, I., Gallud, J. A., Lozano, M. D., and Tesoriero, R.
(2007). A classification method for cscw systems. Electronic Notes in Theoretical
Computer Science, 168, 237–247.

Piccinelli, G., Finkelstein, A., and Williams, S. L. (2003). Service-oriented work-
flow: The dysco framework. In null (p. 291).

Pilato, C. M., Collins-Sussman, B., and Fitzpatrick, B. W. (2008). Version control
with subversion: next generation open source version control. O’Reilly Media,
Inc.

Reichert, M., and Dadam, P. (1998). Adept flex - supporting dynamic changes
of workflows without losing control. Journal of Intelligent Information Systems,
10(2), 93–129.

Reichert, M., Rinderle, S., and Dadam, P. (2003). Adept workflow management
system. In International conference on business process management (pp. 370–
379).

Rowland, F. (2002). The Peer-Review Process. Learned Publishing, 15(4), 247–
258.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Lorensen, W. E., et al. (1991).
Object-oriented modeling and design (Vol. 199). Prentice-hall Englewood Cliffs,
NJ.

Saito, Y., and Shapiro, M. (2005). Optimistic replication. ACM Computing Surveys
(CSUR), 37(1), 42–81.

Sarin, S. K. (1996). Workflow and Data Management in InConcert. In Proceedings
of the twelfth international conference on data engineering, february 26 - march 1,
1996, new orleans, louisiana, USA (pp. 497–499).

Schimdt, K., and Bannon, L. (1992). Taking cscw seriously: Supporting articula-
tion work. Computer Supported Cooperative Work (CSCW), 1(1).

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

BIBLIOGRAPHY 152

Sun, Y., Xu, W., and Su, J. (2012). Declarative choreographies for artifacts. In
International conference on service-oriented computing (pp. 420–434).

Sycara, K. P. (1998). Multiagent systems. AI magazine, 19(2), 79–79.

Tchembé, M. X., Tchoupé Tchendji, M., and Matene Kakeu, A. L. (2019, Decem-
ber). An ad-hoc social network generation approach. In CRI’2019 - Conférence de
Recherche en Informatique. Yaoundé, Cameroon.

Tchoupé Tchendji, M. (2009). Une Approche Grammaticale pour la Fusion des
Réplicats Partiels d’un Document Structuré: Application à l’Édition Coopérative
Asynchrone (PhD Thesis). Université de Rennes I (France), Université de Yaoundé
I (Cameroun).

Tchoupé Tchendji, M. (2010). Fertilisation croisée d’un langage fonctionnel
et d’un langage objet: application à la mise en oeuvre d’un prototype d’éditeur
coopératif asynchrone. In Cari 2010 proceedings (Vol. 1, pp. 541–549).

Tchoupé Tchendji, M., Djeumen D., R., and Atemkeng T., M. (2017). A Stable
and Consistent Document Model Suitable for Asynchronous Cooperative Edition.
Journal of Computer and Communications, 5(08), 69.

Tchoupé Tchendji, M., and Zekeng Ndadji, M. M. (2016). Réconciliation par
consensus des mises à jour des répliques partielles d’un document structuré. In
Cari 2016 proceedings (Vol. 1, pp. 84–96).

Tchoupé Tchendji, M., and Zekeng Ndadji, M. M. (2017). Tree Automata for
Extracting Consensus from Partial Replicas of a Structured Document. Journal of
Software Engineering and Applications, 10(05), 432–456.

Tlili, M. (2011). Infrastructure p2p pour la réplication et la réconciliation des
données (PhD Thesis). Université de Nantes.

Van Der Aalst, W. M. P. (1997). Verification of workflow nets. In International
conference on application and theory of petri nets (pp. 407–426).

Van Der Aalst, W. M. P. (1998). The Application of Petri Nets to Workflow
Management. Journal of Circuits, Systems, and Computers, 8(01), 21–66.

Van Der Aalst, W. M. P. (2000). Workflow verification: Finding control-flow errors
using petri-net-based techniques. In Business process management (pp. 161–183).
Springer.

Van Der Aalst, W. M. P. (2011). Process mining: discovery, conformance and

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

BIBLIOGRAPHY 153

enhancement of business processes. Springer.

Van Der Aalst, W. M. P. (2013). Business process management: a comprehensive
survey. ISRN Software Engineering, 2013.

Van Der Aalst, W. M. P. (2015). Business process management as the "killer ap"
for petri nets. Software & Systems Modeling, 14(2), 685–691.

Van Der Aalst, W. M. P., Barthelmess, P., Ellis, C. A., and Wainer, J. (2001). Pro-
clets: A framework for lightweight interacting workflow processes. International
Journal of Cooperative Information Systems, 10(04), 443–481.

Van Der Aalst, W. M. P., Jörg, D., and Oberweis, A. (2003). Business process
management: Models, techniques, and empirical studies. Springer.

Van Der Aalst, W. M. P., La Rosa, M., and Santoro, F. M. (2016). Business pro-
cess management: Don’t forget to improve the process ! Business & Information
Systems Engineering, 58(1), 1–6.

Van Der Aalst, W. M. P., Mans, R., and Russell, N. C. (2009). Workflow support
using proclets: Divide, interact, and conquer. IEEE Data Eng. Bull., 32(3), 16–22.

Van Der Aalst, W. M. P., and Pesic, M. (2006). Decserflow: Towards a truly
declarative service flow language. In International workshop on web services and
formal methods (pp. 1–23).

Van Der Aalst, W. M. P., and Ter Hofstede, A. H. M. (2005). Yawl: yet another
workflow language. Information systems, 30(4), 245–275.

Van Der Aalst, W. M. P., and Ter Hofstede, A. H. M. (2012). Workflow patterns
put into context. Software & Systems Modeling, 11(3), 319–323.

WfMC. (1995). Wfmc Standards: the Workflow Reference Model, Version 1.1.
http://www.aiim.org/wfmc/mainframe.htm. Retrieved from http://www.aiim

.org/wfmc/mainframe.htm

White, S. (2005). Using bpmn to model a bpel process. BPTrends, 3(3), 1–18.

Wilm, J., and Frebel, D. (2014). Real-world challenges to collaborative text cre-
ation. In Proceedings of the 2nd international workshop on (document) changes:
modeling, detection, storage and visualization (pp. 1–4).

Wu, L., and Buyya, R. (2012). Service level agreement (sla) in utility comput-
ing systems. In Performance and dependability in service computing: Concepts,

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

http://www.aiim.org/wfmc/mainframe.htm
http://www.aiim.org/wfmc/mainframe.htm

SOME PERSPECTIVES 154

techniques and research directions (pp. 1–25). IGI Global.

Yan, J., Yang, Y., and Raikundalia, G. K. (2006). SwinDeW-a P2P-Based Decen-
tralized Workflow Management System. IEEE Trans. Systems, Man, and Cyber-
netics, Part A, 36(5), 922–935.

Yongyi, Z., Youjie, F., and Hui, L. (2009). Research on service-oriented workflow
management system architecture. In 2009 ninth international conference on hybrid
intelligent systems (Vol. 2, pp. 369–372).

Zekeng Ndadji, M. M., and Tchoupé Tchendji, M. (2018). A Software Architecture
for Centralized Management of Structured Documents in a Cooperative Editing
Workflow. In Innovation and interdisciplinary solutions for underserved areas
(pp. 279–291). Springer.

Zur Muehlen, M., and Recker, J. (2013). How much language is enough? the-
oretical and practical use of the business process modeling notation. In Seminal
contributions to information systems engineering (pp. 429–443). Springer.

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

A
APPENDIX

IMPLEMENTATION OF SOME
IMPORTANT ALGORITHMS

PRESENTED IN THIS THESIS

We had thought to present in this appendix, a Haskell implementation of the pro-
jection algorithms proposed in chapter III of this thesis. However, these are far
too voluminous and their presentation here will not be very readable. We have
therefore decided to present only the main data types here. We have hosted the rest
of the produced Haskell code on the public Git repository accessible via this link:
https://github.com/MegaMaxim10/my-thesis-projection-algorithms.

Haskell Type for Tags

Let’s start by defining the tags for the node types (sequential or parallel). More
clearly, in a given artifact, a node A is tagged with Seq (resp. Par) when its sub-
artifacts are executed in sequence (resp. potentially in parallel), i.e. the production
used for its extension is a sequential (resp. parallel) one. A node with at most one
sub-artifact is always tagged with Seq.

1 data ProductionTag x = Seq x | Par x deriving (Eq, Show)

The untagProduction function below clears a given symbol of its tag (Seq or
Par):

1 untagProduction:: ProductionTag x -> x
2 untagProduction (Seq x) = x
3 untagProduction (Par x) = x

155

https://github.com/MegaMaxim10/my-thesis-projection-algorithms

HASKELL TYPE FOR ARTIFACTS 156

Definition of tags (closed, locked, unlocked or upstair) for
symbols

In an artifact: a closed node is tagged Closed, an unlocked bud is tagged
Unlocked, a locked bud is tagged Locked and an upstair bud is tagged Upstair

(only found after expansion).

1 data NodeTag x = Closed x | Locked x | Unlocked x | Upstair x deriving (Eq, Show)

The untagNode function below clears a given symbol of its tag (Closed, Unlocked,
Locked or Upstair):

1 untagNode:: NodeTag x -> x
2 untagNode (Closed x) = x
3 untagNode (Locked x) = x
4 untagNode (Unlocked x) = x
5 untagNode (Upstair x) = x

Definition of tags for symbol types (structuring or standard)

The symbols of a given artifact t are either those of the grammatical model
G denoting t, or (re)structuring symbols introduced to preserve some important
properties of our model (mainly, the form of productions used in GMWf): in this
case, the symbols of G are said to be standard and are tagged with Standard while
the (re)structuring symbols are tagged with Structural.

1 data SymbolTag x = Structural x | Standard x deriving (Eq, Show)

As the previous "untag" functions, the untagSymbol function below clears a given
symbol of its tag (Structural or Standard):

1 untagSymbol:: SymbolTag x -> x
2 untagSymbol (Structural x) = x
3 untagSymbol (Standard x) = x

Haskell Type for Artifacts

Recursively, we consider that an artifact is given by its root node (nodeLabel)
and the list of its sub-artifacts (sonsList) tagged either by Seq (to indicate that

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

HASKELL TYPE FOR GMWF 157

they are executed in sequence) or by Par (to indicate that they are potentially exe-
cuted in parallel). We do not consider empty artifacts. The corresponding Haskell
type is as follows:

1 data Artifact a = Node {
2 nodeLabel:: a,
3 sonsList:: ProductionTag [Artifact a]
4 } deriving Eq

Here is an example of artifact encoded in this type. It corresponds to the target
artifact art1 in the figure 35:

1 art1 = Node (Closed "Ag") (
2 Seq [
3 Node (Closed "A") (
4 Seq [
5 Node (Closed "B") (Seq []),
6 Node (Closed "D") (Seq [])
7])
8])

Haskell Type for GMWf

Let’s start by presenting a type for productions: a production is given by its left
hand side (lhs) consisting of one symbol and by its right hand side (rhs) consisting
of several symbols.

1 data Production symb = Prod {lhs:: symb, rhs:: [symb]} deriving Eq

Finally, a GMWf is given by the set of symbols and the set of productions
constituting it. The productions are tagged either by Seq or by Par:

1 data GMWf a = GMWf {
2 symbols:: [a],
3 productions:: [ProductionTag (Production a)]
4 } deriving (Eq, Show)

These are the main data types that we have defined and which are manipulated
by the different projection functions that are available in our Git repository1. They
are included with some test cases that one will be able to immediately experiment.

1. Our Git repository: https://github.com/MegaMaxim10/my-thesis-projection-algorithms

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

https://github.com/MegaMaxim10/my-thesis-projection-algorithms

B
APPENDIX

LIST OF PUBLICATIONS ISSUED FROM
THE WORK PRESENTED IN THIS

THESIS

Journal Papers

Published

1. Milliam Maxime Zekeng Ndadji, Maurice Tchoupé Tchendji, Clémentin Tayou
Djamegni and Didier Parigot. "A new Domain-Specific Language and Method-
ology based on Scenarios, Grammars and Views, for Administrative Pro-
cesses Modelling." ParadigmPlus, Volume 1, Number 3, 2020, 1-22.

2. Maurice Tchoupé Tchendji and Milliam Maxime Zekeng Ndadji. "Tree Au-
tomata for Extracting Consensus from Partial Replicas of a Structured Docu-
ment." Journal of Software Engineering and Applications 10.05 (2017): 432-
456.

Under Review

1. Maurice Tchoupé Tchendji, Milliam Maxime Zekeng Ndadji and Didier Parigot.
"A Grammatical Approach for Administrative Workflow Design and their
Distributed Execution using Structured and Cooperatively Edited Mobile Ar-
tifacts." Software and Systems Modeling, Springer (submitted).

2. Milliam Maxime Zekeng Ndadji, Maurice Tchoupé Tchendji, Clémentin Tayou
Djamegni and Didier Parigot. "A Projection-Stable Grammatical Model for
the Distributed Execution of Administrative Processes with Emphasis on Ac-
tors’ Views." Journal of King Saud University - Computer and Information
Sciences, Elsevier (submitted).

158

THE PROTOCOLS 159

Communications in Conferences

Published

1. Milliam Maxime Zekeng Ndadji, Maurice Tchoupé Tchendji, Clémentin Tayou
Djamegni and Didier Parigot. "A Grammatical Model for the Specification of
Administrative Workflow using Scenario as Modelling Unit." H. Florez and S.
Misra (eds) Applied Informatics. ICAI 2020. Communications in Computer
and Information Science, vol 1277, Springer, Cham, 2020. pages 131-145.

2. Milliam Maxime Zekeng Ndadji, Maurice Tchoupé Tchendji, Clémentin Tayou
Djamegni and Didier Parigot. "A Language for the Specification of Adminis-
trative Workflow Processes with Emphasis on Actors’ Views." Gervasi O. et
al. (eds) Computational Science and Its Applications - ICCSA 2020. ICCSA
2020. Lecture Notes in Computer Science, vol 12254, Springer, Cham, 2020.
pages 231-245.

3. Milliam Maxime Zekeng Ndadji, Maurice Tchoupé Tchendji and Didier Parigot.
"A Projection-Stable Grammatical Model to Specify Workflows for their P2P
and Artifact-Centric Execution." CRI’2019 - Conférence de Recherche en
Informatique. Dec 2019, Yaoundé, Cameroon. (hal-02375958).

4. Milliam Maxime Zekeng Ndadji and Maurice Tchoupé Tchendji. "A Soft-
ware Architecture for Centralized Management of Structured Documents in
a Cooperative Editing Workflow." Innovation and Interdisciplinary Solutions
for Underserved Areas. Lecture Notes of the Institute for Computer Sci-
ences, Social Informatics and Telecommunications Engineering (LNICST),
Springer, Cham, 2018. pages 279-291.

5. Maurice Tchoupé Tchendji and Milliam Maxime Zekeng Ndadji. "Réconcil-
iation par consensus des mises à jour des répliques partielles d’un document
structuré." CARI 2016 Proceedings, volume 1, 2016. pages 84-96.

PHD THESIS IN COMPUTER SCIENCE , UNIVERSITY OF DSCHANG URIFIA

	 Dedication
	 Acknowledgements
	 Table of Contents
	 Abstract
	 List of Acronyms
	 List of Tables
	 List of Figures
	 List of Algorithms
	 General Introduction
	 The Emergence of Business Process Management
	 The Mitigated Use of Business Process Management
	 Our Global Vision
	 The Challenge Addressed in this Thesis
	 A Synoptic View of our Methodology and Engineering
	 The Organisation of this Manuscript

	I A State of the Art in Business Process Management: the Artifact-Centric Modelling
	I.1 Introduction
	I.2 Key Principles of Business Process Management
	I.2.1 Some Business Process Management Basic Concepts
	I.2.1.1 Some Definitions
	I.2.1.2 An Introductive Example of Business Process
	I.2.1.3 Workflow Typology

	I.2.2 Business Process Management Lifecycle and Key Activities
	I.2.2.1 Business Process Management Lifecycle
	I.2.2.2 The "Model" Activity
	I.2.2.3 The "Enact" Activity

	I.3 Peer to Peer Business Process Management
	I.3.1 The Advent of the Multiagent and Service-Oriented Concepts
	I.3.1.1 The Multiagent Concept
	I.3.1.2 The Service-Oriented Architecture

	I.3.2 Some Existing Distributed WfMS
	I.3.2.1 Some Partially Distributed WfMS
	I.3.2.2 Some Fully Distributed WfMS

	I.4 Artifact-Centric Business Process Management
	I.4.1 Artifact-Centric BPM Basic Concepts
	I.4.1.1 The Aim of Artifact-Centric BPM
	I.4.1.2 How the Artifact-Centric Approach to BPM Works

	I.4.2 Some Existing Artifact-Centric BPM Frameworks
	I.4.2.1 Some Purely Artifact-Centric BPM Frameworks
	I.4.2.2 A Guarded Attribute Grammars Based Framework to Data-Centric Case Management

	I.5 Summary

	II A Workflow for Structured Documents' Cooperative Editing : Key Principles and Algorithms
	II.1 Introduction
	II.2 Basic Concepts on Cooperative Editing Workflows
	II.2.1 Real-Time Cooperative Editing Workflows
	II.2.2 Asynchronous Cooperative Editing Workflows
	II.2.3 Badouel and Tchoupé's Cooperative Editing Workflow

	II.3 Tree Automata for Extracting Consensus from Partial Replicas of a Structured Document
	II.3.1 Structured Cooperative Editing and Notion of Partial Replication
	II.3.1.1 Structured Document, Editing and Conformity
	II.3.1.2 Notions of View, Projection, Reverse Projection and Merging

	II.3.2 Reconciliation by Consensus
	II.3.2.1 Issue and Principle of the Solution of Reconciliation by Consensus
	II.3.2.2 Consensus Calculation
	II.3.2.3 Illustration

	II.4 A Software Architecture for Centralised Management of Structured Documents in a Cooperative Editing Workflow
	II.4.1 The Proposed Architecture
	II.4.1.1 Overall Operations
	II.4.1.2 Server Architecture
	II.4.1.3 Client Architecture
	II.4.1.4 The Middleware

	II.4.2 TinyCE v2
	II.4.2.1 Presentation of TinyCE v2
	II.4.2.2 Java-Haskell Cross-Fertilisation in TinyCE v2

	II.5 Summary

	III A Choreography-like Workflow Design and Distributed Execution Framework Based on Structured Mobile Artifacts' Cooperative Editing
	III.1 Introduction
	III.2 Overview of the Artifact-Centric Model Presented in this Thesis
	III.2.1 A Description of the Artifact-Centric Model Presented in this Thesis
	III.2.2 The Running Example: the Peer-Review Process
	III.2.2.1 Description of the Peer-Review Process
	III.2.2.2 Overview of the Peer-Review Process Artifact-Centric Execution using the Model Presented in this Thesis

	III.3 Modelling Artifacts
	III.3.1 Artifacts' Structure
	III.3.2 Target Artifacts and Grammatical Model of Workflow
	III.3.3 Artifact Type and Artifact Edition
	III.3.3.1 Modelling the Information Model of Processes with GMWf
	III.3.3.2 Artifact Type
	III.3.3.3 Artifact Edition

	III.4 Agent and choreography
	III.4.1 Relations between Agent, Actor and Choreography
	III.4.2 Structure of an Agent
	III.4.2.1 The Local Workflow Engine
	III.4.2.2 The Storage Device
	III.4.2.3 The Specialised Editor

	III.4.3 Concepts of Accreditation, Partial Replica of an Artifact and Local GMWf
	III.4.3.1 Concept of Accreditation
	III.4.3.2 Concept of Partial Replica of an Artifact
	III.4.3.3 The Need of a Local GMWf

	III.4.4 The Artifact-Centric Choreography
	III.4.4.1 Initial Configuration of an Agent
	III.4.4.2 The Execution Choreography and Agent's Behaviour
	III.4.4.3 The Protocols

	III.5 Illustrating the Choreography on the Peer-Review Process
	III.6 Experimentation
	III.6.1 P2PTinyWfMS: an Experimental Prototype System
	III.6.2 Executing our Running Example under P2PTinyWfMS

	III.7 Related Works and Discussion
	III.8 Summary

	 General Conclusion
	 Recall of this Thesis' Challenge and of our Methodological Choices
	 A Critical Analysis of the Performed Work
	 Some Perspectives

	 Bibliography
	A Implementation of Some Important Algorithms Presented in this Thesis
	B List of Publications Issued from the Work Presented in this Thesis

