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Introduction

A travers ce document, nous allons nous pencher sur la simulation du premier temps de
passage de diffusions dans un cadre unidimensionnel. En premier lieu, nous dédions les trois
premiers chapitres de ce document à la mise en place d’un algorithme permettant la sim-
ulation approchée du temps de sortie d’un intervalle pour certaines diffusions particulières.
La conception est essentiellement basée sur les travaux de Lerche [39] et de Daniels [13]. Il
nous est alors possible d’énoncer un certain nombre de résultats concernant l’efficacité de
l’algorithme introduit mais aussi de l’étendre à d’autres classes de diffusions. En second lieu,
nous nous intéressons à la simulation exacte du temps d’atteinte d’un niveau donné dans le
contexte particulier des diffusions à sauts, ce qui fait l’objet de notre quatrième et dernier
chapitre. Cette seconde partie de l’étude se base sur les travaux de Beskos, Papaspiliopoulos
et Roberts [3] ainsi que sur les récentes publications de Herrmann et Zucca [27].

Les temps de sortie apparaissant dans de nombreux domaines d’application, il semble
primordial de pouvoir simuler ces derniers. Dans le domaine de la fiabilité, les durées de
vie des composants peuvent être reliés à des premiers temps de passage ou des temps de
sortie. Des modèles simplifiés faisant intervenir les processus d’Ornstein-Uhlenbeck sont
alors généralement utilisés afin de modéliser ces durées de vie. En effet, ces processus,
vérifiant une propriété de retour vers la moyenne, sont les plus à même pour modéliser
des processus de dégradation. Le domaine de la finance nous propose lui aussi certaines
situations où la simulation des temps de sortie constitue un enjeu de taille. Par exemple,
l’étude des options à barrière nécessite de décrire avec précision des temps de sortie puisqu’il
est important d’estimer si la valeur du sous-jacent reste dans un certain intervalle. Pour le
modèle de Black-Scholes, la distribution du premier temps de sortie est connue. Cependant
dans des modèles plus compliqués, il est plus difficile d’obtenir de telles expressions et on se
restreint donc à utiliser des approximations numériques.

De nombreuses méthodes ont été introduites au fil des années afin de pouvoir approximer
ces temps de sortie. L’approche la plus courante utilise le schéma d’Euler-Maruyama fondé
sur une discrétisation du temps, le temps de sortie voulu étant alors approché par le temps de
sortie du schéma. Cette approximation est plutôt précise mais nous oblige à nous restreindre
à un intervalle de temps donné mais aussi à connaître la probabilité que la diffusion considérée
sorte de l’intervalle entre deux itérations du schéma.

Le premier chapitre de ce document se penchera sur les méthodes existantes pour la
simulation du premier temps de passage ou du temps de sortie dans le cas brownien. On
commencera par introduire quelques exemples, nous permettant d’utiliser la transformée de
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Laplace mais aussi de souligner l’importance de la formule de Girsanov dans le contexte de la
simulation. Dans le cas du mouvement brownien, l’expression de la fonction de répartition
du temps de sortie pour un intervalle donné est assez compliquée, ce qui ne facilite pas
sa simulation (pour plus de détails, voir [57]). Cependant il existe des domaines, appelés
sphéroïdes pour lesquels la loi du temps de sortie peut être entièrement déterminée. Ces
domaines sont définis par leurs frontières :

ψ±(t) = ±

√
t log

(
d2

t

)
, for t ∈ [0, d2], (0.0.1)

où le paramètre d > 0 correspond à la taille de la sphéroïde. Le premier temps où la
trajectoire du mouvement brownien (t,Wt) sort du domaine {(t, x) : |x| ≤ ψ+(t)}, que l’on
notera par la suite τ , est alors connue. Sa densité [39] peut s’écrire

p(t) =
1

d
√

2π

√
1

t
log

(
d2

t

)
, t ≥ 0. (0.0.2)

On peut alors facilement simuler le temps de sortie voulu en remarquant que τ et d2U2e−N
2

ont la même loi. Les variables aléatoires U et N sont indépendantes, U suivant une loi uni-
forme sur [0, 1] et N suivant une loi normale centrée réduite. Remarquons que les frontières
de la sphéroïde considérée peuvent être bornées de la manière suivante :

|ψ±(t)| ≤ d√
e
, ∀t ∈ [0, d2]. (0.0.3)

Dans le cadre de cette étude, considérons un mouvement brownien unidimensionnel (Wt, t ≥
0) ainsi qu’un intervalle I = [a, b] contenant la position de départ X0 = x. Notons par T le
premier temps de sortie défini par :

T = inf{t ≥ 0 : Wt /∈ [a, b]}.

Afin de simuler ce temps de sortie, nous allons construire une marche aléatoire (Tn, Xn)n≥0

sur R+×R qui constitue un squelette de la trajectoire : les points de la suite appartiennent
à la trajectoire du mouvement brownien. De plus, de par sa construction, cette marche
aléatoire converge vers l’instant et la position de sortie de l’intervalle (T , XT ). On introduit
alors une procédure afin de pouvoir arrêter l’algorithme dès que l’approximation semble
suffisamment précise. Cette remarque nous permet alors de construire l’algorithme voulu.
On considère pour commencer le temps et la position de départ (0, x) de la trajectoire
brownienne observée et on introduit le premier terme de la suite (T0, X0). De cette position,
il est possible de choisir le plus grand paramètre d telle que la sphéroïde construite à cet
endroit soit complètement contenue dans le domaine R+ × [a, b]. On peut alors, à l’aide
des remarques précédemment faites, générer le temps ainsi que la position de sortie de cette
sphéroïde que l’on notera (T1, X1). Grâce à la propriété d’invariance par translation du
mouvement brownien, nous pouvons dès lors itérer la procédure puisqu’il nous suffit de
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considérer (T1, X1) comme nouveau point de départ pour le mouvement brownien. On peut
alors considérer une nouvelle sphéroïde, contenue dans l’intervalle, liée à ce nouveau point et
générer le couple (T2, X2) correspondant au temps et à la position de sortie de cette seconde
sphéroïde. Sur ce principe, on peut itérer le procédé et construire au fur et à mesure une
marche aléatoire sur des sphéroïdes qu’on appellera algorithme du WOMS (Walk On Moving
Spheres). Cette suite aléatoire converge vers le temps et la position de sortie de l’intervalle
(T ,WT ). La suite construite est arrêtée dès lors que la position générée Xn est suffisamment
proche du bord de l’intervalle. L’idée de cet algorithme repose sur la définition de processus
sphériques ainsi que de la marche sur les sphères introduite par Müller [44] et utilisée ensuite
par Motoo [?] et Sabelfeld [55] [54]. Cet algorithme permet aussi de simuler le premier temps
de passage pour des processus de Bessel [14]. On prouve aussi que cet algorithme est efficace
et on le compare à d’autres algorithmes connus.

A travers un second chapitre, nous nous concentrons sur une famille particulière de
diffusions entretenant un lien fort avec le mouvement brownien : les processus d’Ornstein-
Uhlenbeck. Soient θ ∈ R+, σ ∈ R+, µ ∈ R, le processus d’Ornstein-Uhlenbeck (O.U.) de
paramètres θ, µ et σ partant de x0 est l’unique solution de l’équation différentielle stochas-
tique suivante :

dXt = −θ(Xt − µ)dt+ σdWt, t ≥ 0, (0.0.4)

où W est un mouvement brownien unidimensionnel. Ces processus, comme annoncé, sont
fortement liés au mouvement brownien de la manière suivante

Xt = X0e
−θt + µ(1− e−θt) +

σe−θt√
2θ

V
e2θt − 1

, (0.0.5)

où (Vt)t≥0 est un mouvement brownian standard.
L’idée est d’utiliser ce lien afin d’adapter l’algorithme précédemment introduit dans le

cadre du mouvement brownien, celui-ci intervenant principalement afin définir des sphéroïdes
adaptées au processus d’Ornstein-Uhlenbeck étudié. On énoncera alors un algorithme du
WOMS pour les processus d’Ornstein-Uhlenbeck et décrira l’erreur d’approximation commise
à cause de la procédure d’arrêt et montrera l’efficacité de ce nouvel algorithme. On décrira
de plus le nombre moyen de sphères nécessaires afin d’obtenir l’approximation recherchée.

Dans un troisième chapitre, nous nous attarderons sur les diffusions qui, comme les
processus d’Ornstein-Uhlenbeck, sont fortement liées au mouvement brownien en tant que
fonctions de ce dernier Xt = f(t,Wt). Cette famille particulière a été introduite par Potzel-
berger et Wang[58] comme étant les diffusions de classe L. Ces diffusion sont dédinies comme
étant la solution de l’équation différentielle stochastique suivante

dXt = (α(t)Xt + β(t))dt+ σ̃(t)dWt t ≥ 0, (0.0.6)

où les fonctions α, β et σ̃ sont Hölder continues, σ̃ est de plus positive et (Wt)t≥0 est
une mouvement brownien unidimensionnel. L’unique solution de l’équation précédente peut
s’écrire de la manière suivante

Xt = X0 e
−θ(t) + e−θ(t)

∫ t

0

eθ(s)β(s)ds+ e−θ(t)
∫ t

0

eθ(s)σ̃(s)dWs, t ≥ 0.
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Ce lien étroit permet alors à nouveau d’adapter l’algorithme écrit dans la cadre du mou-
vement brownien à la diffusion considérée. Comme pour le cas de l’Ornstein-Uhlenbeck,
cela impliquera une modification de la sphéroïde brownienne afin de convenir à la diffusion
étudiée. Cela permettra de nouveau d’obtenir une version simplifiée du problème de sortie.
L’algorithme du WOMS est présenté dans le cas des diffusions de classe L. On décrit l’erreur
d’approximation et analyse l’efficacité de ce nouvel algorithme. De plus le nombre moyen
de sphères nécessaires à l’obtention de l’approximation recherchée est décrit. On présentera
aussi un algorithme pour la famille des diffusions de classe G qui est fortement liée à la
famille classe L.

Enfin, dans un quatrième et dernier chapitre, nous nous intéressons cette fois-ci à la
simulation exacte du premier temps d’atteinte d’un niveau donné pour des diffusions à sauts.
La description précise du premier temps où une diffusions dépasse un niveau donné constitue
un enjeu de taille dans un certain nombre de domaines: dans le domaine de l’économie [33],
de la finance [35, 40], des files d’attente, de la théorie de la fiabilité [49], de la neuroscience
[11, 56] etc. Le premier temps de passage peut être utile à l’évaluation de la probabilité de
défaut en finance mathématique. Puisque ce temps d’arrêt permet en pratique de prendre
des décisions importantes, il apparaît crucial de pouvoir obtenir une expression explicite de
sa loi ou de construire des algorithmes afin de pouvoir simuler cette dernière. Une expression
explicite de la densité est source de nombreuses informations, mais prend trop souvent la
forme de séries peu exploitable dans la pratique. Nous proposons donc ici une approche
numérique, le but étant de générer le premier temps d’atteinte à l’aide d’un algorithme
efficace.

Dans de nombreuses applications, la modélisation du comportement d’une variable aléa-
toire au fil du temps revient à choisir une diffusion unidimensionnelle (Xt, t ≥ 0) adéquate
et un premier temps de passage au delà d’un niveau donné L, ce dernier étant défini de la
manière suivante

τL := inf{t ≥ 0 : Xt ≥ L}. (0.0.7)

On suppose dans ce cadre que la position de départ X0 = y0 < L est déterministe. Dans le
cas de trajectoires continues, les diffusions se définissent comme étant la solution d’une équa-
tion différentielle stochastique dirigée par un mouvement brownien. Au cours des années,
de nombreuses méthodes ont été mises en place afin de simuler le temps τL. Une possibil-
ité est d’utiliser des approximations numériques de la trajectoire et d’en déduire alors une
approximation du premier temps de passage, la plupart de ces études étant basées sur un
schéma d’Euler amélioré (pour plus d’informations, voir [8], [22], [23]). On peut aussi utiliser
les travaux de Beskos et Roberts, basés sur la transformation de Girsanov, et décrivant des
méthodes de simulation exacte. En effet, les lois des trajectoires browniennes et de leur
temps d’atteinte étant bien connues, la transformation de Girsanov permet de construire
un algorithme de rejet de la manière suivante : on génère une trajectoire du mouvement
brownien et on l’accepte ou la rejette à l’aide d’une probabilité dépendant de la trajectoire.
Beskos et Roberts [3, 4, 5] ont tout d’abord proposé une manière permettant de simuler la
trajectoire de la diffusion sur un intervalle de temps donné [0,T], puis Herrmann et Zucca
[27] ont adapté cet algorithme afin de pouvoir simuler τL de manière exacte, la sortie de cet
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algorithme possédant la même loi que τL sans qu’aucune erreur d’approximation ne soit com-
mise. Herrmann et Zucca proposent de plus des algorithmes se basant sur la transformation
de Girsanov pour la simulation du temps de sortie [29, 28].

Bien entendu, ces méthodes ne permettent pas de couvrir toutes les applications, certaines
ne pouvant pas être associées à des diffusions continues, il apparaît donc naturel de se
demander si une procédure de ce type peut être effectuée dans le cadre des diffusions à
sauts. Ces processus sont à la fois dirigés par un mouvement brownien et par une mesure de
Poisson, ce qui fait d’eux un cas particulier de processus de Lévy unidimensionnels. Dans
le domaine de la finance, l’évolution du cours de la Bourse peut être représentée par une
diffusion à sauts, ces derniers représentant les possibles évènements ayant un impact fort sur
le prix des actions [37].

Pour de telles diffusions, de nombreux résultats concernent la simulation de la trajectoire
du processus sur un intervalle de temps donné, cette simulation permettant d’obtenir le pre-
mier temps de passage par la même occasion, de la même manière que pour les diffusions
continues. En particulier, pour les diffusions dirigées par un processus de Wiener et une
mesure de Poisson, une méthode basique d’Euler peut être utilisée. Platen [50], Maghsoodi
[42, 41] et Gardon [19] ont introduit des schémas explicites de discrétisation temporelle basés
sur le développement d’Itô-Taylor afin d’obtenir des résultats intéressants concernant la vari-
ance. De nombreuses études permettent de comprendre comment adapter la grille temporelle
aux temps de sauts et d’ainsi réduire les erreurs d’approximation. D’autres approches ont
été faites afin de construire ces approximations, comme des schémas basés sur une méthode
d’Euler-Maruyama semi-implicite [31, 32] ou encore des méthodes de Runge-Kutta [9]. Le
but ici n’étant pas de faire un panorama complet de la littérature existante à propos de
l’analyse numérique, notre approche ne se basant pas sur une méthode d’approximation,
nous ferons simplement référence au livre de Platen [51] contenant toutes les références et
informations à ce sujet. Nous nous intéressons ici plutôt aux méthodes dites de simulation
exacte. Introduites par Beskos et Roberts, elles permettent de simuler un nombre fini de
points appartenant à la trajectoire d’une diffusion classique. Ces méthodes ont été adaptées
aux diffusions à sauts permettant notamment de simuler la position de la diffusion à un in-
stant donné, ou de simuler un squelette de la trajectoire de la diffusion à saut et d’approcher
ainsi les temps de sortie ou les temps de passage (voir [12], [24] et [52]). Ces méthodes
ont permis également de proposer des simulations exactes du temps de sortie d’un intervalle
pour une diffusion à sauts [20]. Ces dernières méthodes sont basées sur des sorties succes-
sives de petits domaines spatiaux, ces temps aléatoires sont générés par une méthode de rejet
faisant intervenir des méandres browniens. Nous proposons ici une approche différente qui
ne nécessite pas un découpage spatial et qui évite donc l’utilisation des méandres.

Notre étude se concentre donc sur la simulation exacte du premier temps de passage
τL défini par (0.0.14) où (Xt, t ≥ 0) est une diffusion à sauts. Ce quatrième chapitre se
décompose de la manière suivante : nous définissons dans un premier temps les diffusions
à sauts comme l’unique solution d’une equation différentielle stochastique, nous rappelerons
ensuite les méthodes de simulation exacte introduites dans le cadre des trajectoires continues
dans la Section 4.2 en proposant de nouvelles preuves des résultats annoncés. A travers
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la Section 4.3, nous nous concentrons sur le cadre des diffusions à sauts et proposons un
algorithme efficace permettant de générer le temps τL ∧ T où T > 0 est un temps fixé
au préalable. Cette situation particulière nous permet de considérer une large classe de
diffusion sans se soucier des problèmes de récurrence. Dans la Section 4.4, l’algorithme
précédent est modifié en se plaçant dans le cas particulier où τL < ∞, une situation qui
requiert d’ajouter bien entendu de nouvelles conditions sur les diffusions. Ces conditions
permettent la simulation de τL de manière directe. Les algorithmes que nous écrivons se
basent une fois encore sur la formule de Girsanov et sont reliés aux travaux de Beskos et
Roberts (voir [3]) interprétés sous un nouveau jour. Finalement, nous présentons diverses
applications numériques illustrant l’efficacité des algorithmes introduits.
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The aim of this report is to present algorithmic methods for the simulation of exit times
in the one-dimensional context. Two different approaches will be considered. First we will
focus on approximation methods based on Lerche’s [39] and Daniels’ works: the so-called
method of images. The method of images was introduced in 1969 by H.E. Daniels [13] as a
tool to construct nonlinear boundaries for which explicit calculations for the exit distribution
for the Brownian motion are possible. This crucial method permits to build an algorithm for
the approximation of the time needed by a stochastic process to exit from a given interval.
The statements related to the numerical approximation and some extension of the main
algorithm are presented in a first part of the manuscript containing three chapters. Secondly
time we consider the so-called exact simulation of the first time passage through a given level
for jump diffusions. This second part of the study is mainly based on the work produced
by Beskos, Roberts and Papaspiliopoulos on one hand [3] and on a recent paper written by
Herrmann and Zucca [27] on the other hand.

Simulating the first exit time for a diffusion from a given domain is primordial since
these times appear in many domains. In reliability analysis, for instance, first passage times
and exit times are directly related to lifetimes of engineering systems. In order to emphasize
explicit expressions of the lifetime distribution, it is quite usual to deal with simplified models
like Ornstein-Uhlenbeck processes. Indeed they satisfy the mean reverting property which
is essential for modeling degradation processes. In mathematical finance, studying barrier
options also requires to describe exit times since it is of prime interest to estimate if the
underlying stock price stays in a given interval. In the simple Black-Scholes model, the
distribution of the first exit time is well-known. In more complex models corresponding to
general diffusion processes, such an explicit expression is not available and requires the use
of numerical approximations.

Several methods have been introduced in order to approximate first exit times. The
classical and most common approximation method is the Euler–Maruyama scheme based
on a time discretization procedure. The exit time of the diffusion process is in that case
replaced by the exit time of the scheme. The approximation is quite precise but requires to
restrict the study on a given fixed time interval on one hand and to describe precisely the
probability for the diffusion to exit inbetween two consecutive nodes of the time grid on the
other hand.

The first chapter of this report represents an overlook on already existing methods in
order to determine and simulate Brownian exit time or first time passage. We introduce some
simple examples, using Laplace transform and making a first use of the Girsanov formula. For
the particular Brownian case, the distribution of the exit time from an interval has a quite
complicated expression which is difficult to use for simulation purposes (see, for instance
[57]) whereas the exit distribution from particular time-dependent domains, for instance the
spheroids also called heat balls, can be precisely determined. These time-dependent domains
are characterized by their boundaries:

ψ±(t) = ±

√
t log

(
d2

t

)
, for t ∈ [0, d2], (0.0.8)
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where the parameter d > 0 corresponds to the size of the spheroid. The first time the
Brownian motion path (t,Wt) exits from the domain {(t, x) : |x| ≤ ψ+(t)}, denoted by τ , is
well-known. Its probability density function [39] is given by

p(t) =
1

d
√

2π

√
1

t
log

(
d2

t

)
, t ≥ 0. (0.0.9)

It is therefore easy to generate such an exit time since τ and d2U2e−N
2are identically dis-

tributed. Here U and N are independent random variables, U is uniformly distributed on
[0, 1] and N is a standard Gaussian random variable. Let us notice that the boundaries of
the spheroids satisfy the following bound:

|ψ±(t)| ≤ d√
e
, ∀t ∈ [0, d2]. (0.0.10)

For the purpose of the study, we consider a one-dimensional Brownian motion (Wt, t ≥ 0).
Let us also fix some interval I = [a, b] which strictly contains the starting position W0 = x.
We denote by T the Brownian first exit time:

T = inf{t ≥ 0 : Wt /∈ [a, b]}.

Our approach consists in constructing a random walk (Tn, Xn)n≥0 on R+ × R which corre-
sponds to a skeleton of the Brownian paths. In other words, the sequence (Tn, Xn) belongs
to the graph of the trajectory. Moreover we construct the walk in such a way that (Tn, Xn)
converges as time elapses towards the exit time and location (T ,WT ). It suffices therefore
to introduce a stopping procedure in the algorithm to achieve the approximation scheme.
Of course, such an approach is interesting provided that (Tn, Xn) is easy to simulate numer-
ically. This remark permits to explain the general idea of the algorithm. First we consider
(T0, X0) the starting time and position of the Brownian paths, that is (0, x). Then we choose
the largest parameter d possible such that the spheroid starting in (T0, X0) is included in
the domain R+× [a, b]. We observe the first exit time of this spheroid and its corresponding
exit location, this couple is denoted by (T1, X1). Due to the translation invariance of the
Brownian motion, we can construct an iterative procedure, just considering (T1, X1) like a
starting time and position for the Brownian motion. So we consider a new spheroid in-
cluded in the interval and (T2, X2) shall correspond to the exit of this second spheroid and
so on. Step by step we construct a random walk on spheroids also called WOMS algorithm
(Walk On Moving Spheres) which converges towards the exit time and position (T ,WT ).
This sequence is stopped as soon as the position Xn is close enough to the boundary of the
considered interval. The idea of this algorithm lies in the definition of spherical processes
and the walk on spheres introduced by Müller [44] and used in the sequel by Motoo [43] and
Sabelfeld [55] [54]. It permits also in some more technical advanced way to simulate the first
passage time for Bessel processes [14]. We also provides proofs in order to show the efficiency
of the algorithm and compare it to classical algorithms.
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In the second chapter, we focus our attention on a particular family of diffusions which
is strongly related to the Brownian motion: the Ornstein-Uhlenbeck processes. Let θ ∈ R+,
σ ∈ R+, µ ∈ R. The Ornstein-Uhlenbeck process (O.U.) starting in x0 with parameters θ,
µ, and σ is the unique solution of the following stochastic differential equation (SDE):

dXt = −θ(Xt − µ)dt+ σdWt, t ≥ 0, (0.0.11)

where (Wt)t≥0 stands for a standard one-dimensional Brownian motion. This processes are
strongly linked to the standard Brownian motion in the following way

Xt = X0e
−θt + µ(1− e−θt) +

σe−θt√
2θ

V
e2θt − 1

, (0.0.12)

where (Vt)t≥0 is a standard Brownian motion.
The idea is to use the strong link established to adapt the Brownian algorithm in an

appropriate way. This link implies changes on the time-dependent domains for which the
exit problem can be expressed in a simpler way. We present the random walk algorithm
(WOMS) for the Ornstein-Uhlenbeck process, describe the approximation error depending
on the stopping procedure and emphasize the efficiency of the method. We describe the
mean number of generalized spheroids necessary to obtain the approximated exit time.

In a third chapter, we focus our attention on diffusions which are strongly related to
the Brownian motion: they can be expressed as functionals of the Brownian motion that is
Xt = f(t,Wt). The particular family of diffusions considered was already introduced in [58]
as the L-class diffusion. These diffusions are defined as a solution of

dXt = (α(t)Xt + β(t))dt+ σ̃(t)dWt t ≥ 0, (0.0.13)

where α, β and σ̃ are Hölder-continuous functions, σ̃ is furthermore positive and (Wt)t≥0 is
a one-dimensional Brownian motion. The unique solution of the previous equation can be
written as

Xt = X0 e
−θ(t) + e−θ(t)

∫ t

0

eθ(s)β(s)ds+ e−θ(t)
∫ t

0

eθ(s)σ̃(s)dWs, t ≥ 0.

This strong link permits once again to adapt the Brownian algorithm in an appropriate way.
As for Onstein-Uhlenbeck processes, it implies some changes on the time-dependent domains
for which the exit problem can be expressed in a simpler way. In this context, we present the
random walk algorithm (WOMS) for L-class diffusion processes, describe the approximation
error depending on the stopping procedure and emphasize the efficiency of the method. We
describe the mean number of generalized spheroids necessary to obtain the approximated
exit time. We also present the algorithm in the particular case of G-class diffusion processes
which are strongly related to the L-class diffusion processes previously introduced.

Finally in the fourth chapter, we focus our attention on the exact simulation of the first
passage time through a given level for jump diffusions. Describing precisely the first time
needed by diffusion process to overcomes a given threshold is a interesting challenge in several
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fields: economics [33], finance [35, 40], queueing, reliability theory [49], neuroscience [11, 56]
and many others. The first passage time can for instance be related to the evaluation of
risk of default in mathematical finance. Since this stopping time permits in practice to take
important decisions, it is crucial either to obtain an explicit expression of the corresponding
probability distribution either to point out efficient algorithms used for the random variable
generations. An explicit expression of the density, often based on series expansions, is a
source of valuable information but unfortunately it is available only for particular stochastic
models and cannot be used in wide classes of applications. We propose here a numerical
approach: the challenge is to generate the first passage times using efficient algorithms.

In many applications, modeling the behaviour of an experimental random value as time
elapses consists in choosing a suitable one-dimensional diffusion process (Xt, t ≥ 0) and the
associated first passage time through a given threshold L is then defined by

τL := inf{t ≥ 0 : Xt ≥ L}. (0.0.14)

We just assume here that the starting value X0 = y0 < L is deterministic. In the continuous
paths framework, the diffusion is represented by the solution of a stochastic differential
equation driven by a Brownian motion. Different approaches have been proposed in order
to generate τL. One way is to use numerical approximations of the paths and to deduce
the approximation of the passage time. Most of the studies are based on improvements
of the classical Euler scheme (see for instance [8], [22], [23]). Another way is to use the
exact simulation techniques introduced by Beskos and Roberts and based on the Girsanov
transformation. Indeed we know exactly the distribution of the Brownian paths and in the
way the exact distribution of their passage time. Using the Girsanov transformation permits
to build a rejection sampling procedure: one generates a Brownian path and accepts or
rejects it with a probability depending on the whole paths. Beskos and Roberts [3, 4, 5]
first proposed such an approach in order to simulate the diffusion trajectory on a given
time interval [0,T], Herrmann and Zucca [27] adapted the algorithm in order to generate
τL in an exact way: the outcome of the algorithm has the same distribution than τL, there
is no approximation error term. Let us also mention that Herrmann and Zucca proposed
algorithms based on the Girsanov transformation for the exit time generation [29, 28].

Of course all applications cannot be concerned by one-dimensional continuous diffusion
processes. A natural question that arises is to propose a new simulation approach in the
jump diffusion framework. These processes are driven by both a Brownian motion and a
Poisson random measure, they are indeed special cases of one-dimensional Lévy processes.
In finance, the stock exchange evolution can be represented by a diffusion with jumps. In
this particular case, the jumps represent possible events that can occur and produce strong
impacts on the asset prices [37].

For such particular stochastic processes, several available results concern the approxi-
mation of the diffusion trajectory on some given time interval. The simulation of the first
passage time is then obtained as a by-product, similarly to the already used procedure in
the continuous case. In particular, for diffusions which are driven by Wiener processes and
Poisson random measures, the basic idea of the Euler method can be adapted. Platen [50],
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Maghsoodi [42, 41] and Gardon [19] introduced explicit time-discretization schemes based
on the Itô-Taylor expansion in order to obtain interesting convergence results in the mean-
square sense. Several studies permit to understand how to adapt the time grid to the jump
times and reduce, by the way, the approximation error. Other kinds of stochastic convergence
have been analyzed for the numerical approximation. Let us also mention other challenging
research directions: introducing schemes based on semi-implicit Euler–Maruyama methods
in [31, 32] or Runge-Kutta methods as in [9] is of particular interest. Our purpose is not
to write an exhaustive overview of the literature on numerical analysis since our approach
for the generation of the first passage time is not based at all on an approximation proce-
dure. So we prefer to refer to the monograph [51], and the references therein, for additional
information on the approximation methods.

We focus our attention on the so-called exact simulation method. Introduced by Beskos
and Roberts in the classical diffusion context, it permits to generate a finite number of
points belonging to the diffusion trajectory. This method has then been adapted to the jump
diffusions. It is therefore possible to generate the value of the jump diffusion at a given time
or to generate a finite set of points belonging to the path and by that way to approximate the
first exit time from an interval (see [12], [24] et [52]). Such simulation method permits also
to generate exactly the first exit time from a given interval [20]). For these simulations, the
method consists in introducing a space splitting and the corresponding sequence of strip exit
times. In order to generate the basic stopping times, a rejection sampling involving Brownian
meanders is used. We propose here a different approach avoiding the space splitting and
consequently the generation of meanders.

The study presented here concerns the exact simulation of the first passage time τL
defined by (0.0.14) where (Xt, t ≥ 0) stands for a jump diffusion process. The material of
this last chapter is organized as follows: first we define the jump diffusion as the unique
solution of a stochastic differential equation, then we recall the exact simulation technique
introduced for continuous paths in Section 4.2, proposing new proofs. In Section 4.3, we
focus our attention to the jump diffusion framework and propose an efficient algorithm in
order to generate τL∧T where T > 0 is a fixed time. This particular situation permits to deal
with the stopped diffusion and consequently to consider a wide class of diffusions. In Section
4.4, we propose to reduce the study to the particular situation: τL < ∞. Of course such
context requires additional conditions on the process but permits also to simulate directly
τL in an exact way. All algorithms are based on the Girsanov transformation and are related
to the previous work of Beskos and Roberts (see for instance [3]) which is seen here from a
new perspective. The last section presents numerical illustrations.
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Chapter 1

Brownian exit and first passage times:
theoretical and algorithmic approaches

The aim of this first chapter is to present different results concerning particular stopping
times related to the one-dimensional Brownian motion. Since the Brownian motion plays a
crucial role in the study of diffusion processes, it is important to describe precisely its paths.
We shall focus our attention on the first passage time though a given threshold on one hand
and on the exit time of an interval on the other hand.
For numerical applications, we need to obtain explicit expressions of these stopping times
and also efficient methods for the generation of these random variable. We mainly present
in this chapter already known results which are essential for the following chapters.

1.1 Some results related to Brownian stopping times

1.1.1 Hitting time of a given level

First we focus our attention on the hitting time of a given level for the Brownian motion
and its relatives. Let us consider L > 0, and

τL = inf{t ≥ 0 | Bt > L}, (1.1.1)

where (Bt, t ≥ 0) stands for a standard one-dimensional Brownian motion.
In order to describe the distribution of this random variable, let us present its Laplace
transform which is commonly known. By seeking a random variable easy to generate with
the same Laplace transform, we are able to "generate" this hitting time.

Proposition 1.1.1. The random variable τL defined by (1.1.1) admits the following Laplace
transform:

E[e−λτL ] = e−
√

2λL, ∀λ > 0. (1.1.2)

The proof of this statement can for instance be found in [53] (Proposition II.3.7 p.67).
Since the Laplace transform characterize the probability distribution, we are going to use
this result to point out a simple generation method.

16



Proof. Let us denote by (Ft)t≥0 the natural filtration of (Bt, t ≥ 0). Using Girsanov’s
formula, the process (Mt)t≥0 defined by

Mt = eλBt−
1
2
λ2t, t ≥ 0,

is a (Ft)-martingale. The martingale (Mt∧τL)t≥0 is bounded, and the hitting time τL is almost
surely finite due to the recurrence of the Brownian motion. We apply the optional stopping
theorem and the dominated convergence theorem. We obtain

E[MτL ] = E[M0].

The definition of (Mt)t≥0 leads to

E[eλBτL−
1
2
λ2τL ] = 1, ∀λ ∈ R.

Since τL <∞, BτL = L, and therefore E[eλL−
1
2
λ2τL ] = 1 for all λ ∈ R which is equivalent to

E[e−
1
2
λ2τL ] = e−λL, ∀λ ∈ R.

Defining λ̃ by λ̃ = 1
2
λ2, we obtain the announced result

E[e−λ̃τL ] = e−
√

2λ̃L, ∀λ̃ ≥ 0.

Now, as previously explained, we shall find an easy way to generate a random variable
having such a distribution.

Proposition 1.1.2. Let us consider a Gaussian distributed random variable G ∼ N (0, 1).

Then τL and
L2

G2
are identically distributed.

Remark 1.1.3. The distribution of the Brownian first passage time belongs to the family of
inverse Gaussian distributions.

Proof. In order to prove this statement, we first determine the density of the considered
random variable. Let us denote by F the cumulative distribution function of L2

G2 and f its
density. Let x > 0 and L > 0, using the Gaussian distribution leads to

F (x) = P
(
L2

G2
6 x

)
= P

(
L2

x
6 G2

)
= 1− P

(
G2 <

L2

x

)
= 1− 2P

(
0 ≤ G <

L√
x

)
= 1− 2√

2π

∫ L√
x

0

e−
t2

2 dt.

Taking the derivative of F , we have:

f(x) =
L√
2πx3

e−
L2

2x 1{x > 0}.
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We now compute the Laplace transform f̃ of the function f ,

f̃(λ) = L

∫ ∞
0

e−λte−
L2

2t

√
2πt3

dt =
L√
2π

∫ ∞
0

e−(λt+L2

2t
)

t
3
2

dt, λ ≥ 0.

Using λt+ L2

2t
= ( L√

2t
+
√
λt)2 − L

√
2λ, we obtain

f̃(λ) = e
√

2λL L√
2π

∫ ∞
0

e
−( L√

2t
+
√
λt)2

t
3
2

dt =: e
√

2λL L√
2π
I(λ).

Using the change of variable u =
√
t leads to

I(λ) = 2

∫ ∞
0

e
−( L√

2u
+
√
λu)2

u2
du = 2e−2L

√
2λ

∫ ∞
0

e
−( L√

2u
−
√
λu)2

u2
du.

By successive integrations by substitution with v = 1
u
L
√
λ√

2
and ω = L

u
√

2
− u
√
λ, we obtain

I(λ) = 2e−2L
√

2λ

∫ ∞
0

√
2λ

L
e
−( L√

2v
−
√
λv)2

dv

= e−2L
√

2λ

∫ ∞
0

(√
2λ

L
+

1

u2

)
e
−( L√

2v
−
√
λv)2

dv

=

√
2

L
e−2L

√
2λ

∫ ∞
−∞

e−ω
2

dω =

√
2π

L
e−2L

√
2λ, λ ≥ 0.

Finally we have
f̃(λ) = e−

√
2λ, λ ≥ 0.

As stated, both random variables τL and
L2

G2
admit the same Laplace transform, and therefore

are identically distributed.

The previous proof also enlightens the following result:

Corollary 1.1.4. The random variable τL has the following density function f :

f(x) =
L√
2πx3

e−
L2

2x 1{x>0} (1.1.3)

1.1.2 One dimensional Brownian exit time from an interval

In this section, we consider the exit time from a given interval [a, b] for the standard Brownian
motion, with a < 0 < b. Let us define

τ[a,b] = inf{t ≥ 0 | Bt /∈ [a, b]}. (1.1.4)

As in the previous section, we determine the Laplace transform of this exit time. The only
difference here is that we do not know precisely the position of the considered Brownian
motion at time τ[a,b], but we determine the probabilities of the events {τ[a,b] = τa} and
{τ[a,b] = τb} where τa = inf{t ≥ 0 | Bt = a} and τb = inf{t ≥ 0 | Bt = b}.
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Exit probabilities

Proposition 1.1.5. The probabilities associated with the exit location of the Brownian mo-
tion satisfy:

P(τa 6 τb) =
b

b− a
and P(τb 6 τa) =

−a
b− a

.

Proof. We apply the optional stopping theorem to the stopped martingale (Bt∧τ[a,b] , t ≥ 0),

E[Bt∧τ[a,b] ] = 0, t ≥ 0.

Letting t tends to infinity, the dominated convergence leads to E[Bτ[a,b] ] = 0 which is equiv-
alent to

aP(τa 6 τb) + bP(τb 6 τa) = 0.

Moreover, due to the recurrence property of the Brownian motion paths, we observe

P(τa 6 τb) + P(τb 6 τa) = 1.

Finally, solving the previous system of equations gives the announced result.

Laplace transform of the exit time

Let us present the distribution of the first exit time.

Proposition 1.1.6. The Laplace transform of τ[a,b] is given by

E[e−λτ[a,b] ] =
cosh(

√
2λ b+a

2
)

cosh(
√

2λ b−a
2

)
, ∀λ > 0.

Proof. Let us define α := b+a
2

and consider the exponential martingale constructed according
to the Girsanov’s formula

Mt = e−λt(e
√

2λ(Bt−α) + e−
√

2λ(Bt−α)) = 2e−λt cosh(
√

2λ(Bt − α)) t ≥ 0.

On one hand, the optional stopping theorem leads to

E[Mτ[a,b] ] = E[M0] = 2 cosh(−α
√

2λ) = 2 cosh

(√
2λ

b+ a

2

)
and on the other hand

E[Mτ[a,b] ] = 2E
[
e−λτ[a,b] cosh

(√
2λ(Bτ[a,b] − α)

)]
.

If Bτ[a,b] = a then

Bτ[a,b] − α = −(b− a)

2
else Bτ[a,b] − α =

(b− a)

2
.
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In any case,

cosh(
√

2λ(Bτ[a,b] − α)) = cosh

(√
2λ

b− a
2

)
(1.1.5)

and therefore
E[Mτ[a,b] ] = cosh

(√
2λ

b− a
2

)
E[e−λτ[a,b] ]. (1.1.6)

Finally

E[e−λτ[a,b] ] =
cosh(

√
2λ b+a

2
)

cosh(
√

2λ b−a
2

)
, λ ≥ 0. (1.1.7)

Unfortunately, the inversion of this Laplace transform is not so easy as in the previous
section. It seems then hard to generate, in a simple way, a random variable having the same
distribution as the studied exit time.

Reflection principle

Let us recall a crucial property of the Brownian paths: the reflection principle. This principle
is of prime interest in order to study the Brownian exit time from an interval. In fact, it
permits to obtain a representation of its cumulative distribution function as a series.

Theorem 1.1.7. Let us consider (Bt)t≥0 a one-dimensional Brownian motion and b ∈ R+.
Let τb the hitting time of the level b. We define the process (Xt)t≥0 by

Xt =

{
Bt if t 6 τb
2b−Bt else.

Then (Xt)t≥0 is also a one-dimensional Brownian motion.

This statement can be explained in this way: using the symmetry property, once the
Brownian motion reaches the level a, it has the same probability to pursue below the level
a than to pursue above the level (see Figure 1.1). We are going to use this statement as

Figure 1.1: Illustration of the Brownian reflection principle
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follows: let us suppose that the Brownian motion reaches the level b before the level a, then
the reflection principle states that, starting from the hitting point, the time needed to reach
the level a is the same than the time needed to reach the level 2b− a. In particular,

Corollary 1.1.8. Let us suppose that τb < τa, then τ2b−a and τa have the same conditional
distribution given τb < τa.

Cumulative distribution function of the exit time

In this section, we point out a precise expression of the exit time distribution for the Brownian
motion (Bt, t ≥ 0). This expression of the cumulative distribution is written as a series
expansion. Even if there exist simulation methods based on convergent series, the series
presented here is not so handy to manipulate. Once again we consider a < 0 < b and a
standard Brownian motion (Bt, t ≥ 0). We denote here

τa,b = inf{t ≥ 0 |Bt > b or Bt < a}

Theorem 1.1.9. The c.d.f. of τa,b is given by

P(τa,b < T ) = 2
∞∑
k=0

(−1)k
(

2− Φ

(
ak√
T

)
− Φ

(
bk√
T

))
, ∀T > 0 (1.1.8)

where the sequences (ak)k>1 and (bk)k>1 are defined by

a0 = a, b0 = b
and ak = |a|+ k(|a|+ b), bk = b+ k(|a|+ b).

The function Φ represents the cumulative distribution of a standard Gaussian variable.

Proof. We proceed here in several steps. Let us start with the c.d.f of the first passage time
through the level b (resp. a) denoted by τb (resp τa).

P(τb < T ) = P
(

sup
t6T

Bt > b
)

= P(|BT | > b) = 2

(
1− Φ

(
b√
T

))
, ∀T > 0. (1.1.9)

Similarly P(τa < T ) = Φ
(
|a|√
T

)
, for any T > 0. Now we study τa,b by splitting the following

probability P(τa,b < T ) into different terms

P(τa,b < T ) = P(τa < T ) + P(τb < T )− P(τa < T, τb < T ) (1.1.10)

Since the two first terms are already known, we focus our attention on the last one. It can
be splitted as follow:

P(τa < T, τb < T ) = P(τa < τb < T ) + P(τb < τa < T ). (1.1.11)
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Let us note that the reflection principle leads to

P(τa < τb < T ) = P(τ2a−b < T )− P(τb < τa, τ2a−b < T ).

Then, using one again the reflection principle previously stated, we obtain

P(τa < τb < T ) = P(τ2a−b < T )− P(τb < τa, τ3b−2a < T ).

Let us now consider α′ < α < 0 < β < β′. The symmetry argument induced by the reflection
principle permits to prove that:

P(τβ < τα, τβ′ < T ) = P(τβ′ < T )− P(τβ > τα, τβ′ < T )

= P(τβ′ < T )− P(τβ > τα, τ2α−β′ < T ).

Similarly, P(τα < τβ, τα′ < T ) = P(τα′ < T ) − P(τβ < τα, τ2β−α′ < T ). These identities will
be applied successively with different choices for α, α′, β and β′. We obtain

P(τa < τb < T ) = P(τ2a−b < T )− P(τ3b−2a < T ) + P(τa < τb, τ4a−3b < T )

= P(τ2a−b < T )− P(τ3b−2a < T ) + P(τ4a−3b < T )− P(τb < τa, τ4a−3b < T ).

The symmetry of the Brownian motion leads to

P(τa < τb < T ) = P(τb−2a < T )− P(τ3b−2a < T ) + P(τ3b−4a < T )− P(τb < τa, τ4a−3b < T ).

Using similar arguments, we obtain

P(τb < τa < T ) = P(τ2b−a < T )− P(τ2b−3a < T ) + P(τ4b−3a < T )− P(τb < τa, τ4b−3a < T ).

We then iterate these computations. Combining (1.1.9) and (1.1.11)

P(τa,b < T ) = 2
n∑
k=0

(−1)k
(

2− Φ

(
ak√
T

)
− Φ

(
bk√
T

))
+Rn(T ), n ≥ 1.

with ak = −a+k(b−a) and bk = b+k(b−a). The reminder Rn(T ) is given by (−1)n+1(P(τa <
τb, τan < T ) + P(τb < τa, τ−bn < T )). We remark that (ak)k>0 and (bk)k>0 are strictly
increasing, and we deduce as k tends to infinity that both

(
Φ
(
ak√
T

))
k>0

and
(

Φ
(
bk√
T

))
k>0

are also strictly increasing and tend to 1.
The following upper-bound holds:

|Rn(T )| 6 P(τan < T ) + P(τ−bn < T ), ∀n ≥ 1.

Since both probabilities appearing in the r.h.s converge to 0 when n tends to infinity, Rn(T )
tends to 0. Hence, the c.d.f of τa,b can be expressed using the convergent series:

P(τa,b < T ) = 2
∞∑
k=0

(−1)k
(

2− Φ

(
ak√
T

)
− Φ

(
bk√
T

))
, ∀T > 0.
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1.1.3 Hitting of an affine frontier

In section 1, we consider the distribution of the Brownian first passage time through a given
threshold. We obtain a particular inverse Gaussian distribution. This result can be extended
to the hitting time of other curves. In this section, we consider the hitting of a linear frontier.
A simple use of the Girsanov’s formula permits to point out its distribution. Let us introduce
the mapping x 7→ a+ bx with a > 0 and the associated stopping time

T = inf{t > 0 |Bt = a+ bt} (1.1.12)

where (Bt, t ≥ 0) is a standard Brownian motion.

Proposition 1.1.10. Let T the first passage time defined by (1.1.12). Then the probability
density function of T is given by

p(t) =
a√
2πt3

exp

(
−ab− b2 t

2
− a2

2t

)
, t ≥ 0.

Proof. The idea here is to use Girsanov’s theorem to transform the considered random vari-
able into the hitting of a fixed level for a drifted Brownian motion. Similarly to the Brownian
motion case, we are able to precisely describe the hitting time of a given level for the drifted
Brownian motion. Let us consider a Brownian motion (Bt, t ≥ 0) defined on the probability
space (Ω,A,P) with the natural filtration (Ft)t≥0. Our aim is to compute the cumulative
distribution P(T 6 t0) for some t0 > 0 and to differentiate with respect to t0. Let us define
the probability measure Q on Ft0 by

dQ
dP

= Mt0 := exp

(
−bBt0 − b2 t0

2

)
.

Girsanov’s formula states that, under the probabilityQ, the process B̃ defined by B̃t = Bt+bt
is a Brownian motion. Let us consider the event A = {sup

s6t0
Bs > a}. Let us notice that

A = {Ta 6 t0} leading to A ∈ FTa∧t0 where Ta is the first passage time through the level a.
Hence,

P(T 6 t0) = P(∃t 6 t0 : Bt = a+ bt) = P(∃t 6 t0 : Bt − bt = a)

= P(sup
s6t0

(Bs − bs) > a) = Q(sup
s6t0

(B̃s − bs) > a) = Q(sup
s6t0

Bs > a) = Q(A).

Let us note that MTa = exp(−ab− b2 Ta
2

) a.s. and recall that

P(Ta ∈ ds) =
a√

2πs3
e−

a2

2s ds.

Using the optional stopping theorem, we deduce the announced cumulative distribution
function:

P(T 6 t0) = Q(A) = EP[Mt01A] = EP[MTa∧t01Ta6t0 ] = EP[MTa1Ta6t0 ]

=

∫ t0

0

a√
2πt3

exp

(
−ab− b2 s

2
− a2

2s

)
ds,

and deduce the density of T .

23



1.2 Method of images
Let us detail a method introduced by Daniels [13] and explained in a interesting paper by
Lerche [39]: the so-called method of images. This method is of prime interest since most
of the algorithms presented through the next chapter are directly related to this method.
It permits, for instance, to obtain the exit time from specific domains for particular pro-
cesses. In the Brownian motion case, we are able by that way to determine the exit time
from spheroids, specific domains which shall be described further. This exit time and the
symmetry property of Brownian motion paths are fundamental ingredients in the building
of the WOMS algorithm. The text of this section corresponds to a reminder of the original
work of Lerche.

1.2.1 Construction of the method

The aim of the method of images is to find particular curved boundaries whose Brownian
hitting time is explicit. Each particular curve is directly linked to a positive measure. Let
us introduce the framework. We consider a positive measure F defined on the Borel set
B(R+). If F is a probability measure then we observe some kind of competition between
the standard Brownian motion with density p and a second Brownian motion with initial
measure F and density pF . We can split the set R × R+ containing the paths into differ-
ent subsets depending on the comparison between the densities of both Brownian motion
{(x, t) s.t. p(x, t) ≥ pF (x, t)} and {(x, t) s.t. p(x, t) < pF (x, t)}. If we denote by ψ the
boundary of these subsets, then the method of images permits to describe the probability
density function of the first Brownian hitting time of this boundary ψ depending on F . To
pursue the study, let us suppose that F is σ-finite and satisfies:∫ ∞

0

φ(εθ)F (dθ) <∞, ∀ε > 0, (1.2.1)

where φ is the standard density φ(x) =
1√
2π
e−

x2

2 and Φ(t) =

∫ t

−∞
φ(s)ds. For any a > 0,

we introduce
h(x, t) :=

1√
t
φ

(
x√
t

)
− a−1

∫ ∞
0

1√
t
φ

(
x− θ√

t

)
F (dθ). (1.2.2)

Using integral derivation rules, we can prove that the function h is a solution of the diffusion

equation ∂th =
1

2
∂2
xh on the set R× R+.

From now on, we define x(t) = ψ(t) as the unique solution of the implicit equation

h(x, t) = 0. (1.2.3)

Dividing the equation (1.2.3) by
1√
t
φ

(
x√
t

)
permits to emphasize an equivalent equation:

f

(
x

t
,
1

t

)
= a with f(y, s) =

∫ ∞
0

eθy−
1
2
θ2sF (dθ) (1.2.4)

24



This second equation admits a unique solution, and so do (1.2.3). Moreover we have

f

(
x

t
,
1

t

)
=

∫ ∞
0

eθ
x
t
− 1

2
θ2 1

tF (dθ) = e
x2

2t

∫ ∞
0

e−
(θ−x)2

2t F (dθ)

= e
x2

2t

∫ ∞
0

e
−( θ√

2t
)2
Fx(dθ) := e

x2

2t Ct(x), (1.2.5)

where Fx(A) = F (x + A) for any set A ∈ B(R+). After this rough description of the
functions h(x, t), f(x, t) and ψ(t), we aim to explain their role in the study of the hitting
times. In this paragraph, we presented a discussion about the existence and uniqueness of
the equation (1.2.4), where F is a measure defined on B(R+). In the sequel, we shall explain
how the function h(x, t) is related to the distribution of the Brownian hitting time of ψ.
Let us mention now that the study can be developed also for positive measures on B(R).
In that case, (1.2.4) can admit two different solutions. One example is of prime interest.
Considering F a measure proportional to the Lebesgue measure, the solutions ψ− and ψ+

of equation (1.2.4) can be explicitly computed since F is translation invariant: Fx = F ,
∀x ∈ R. A modified version of equation (1.2.5) leads to f

(
x
t
, 1
t

)
= κ
√
t e

x2

2t where κ is a
positive constant. The equation (1.2.4) has therefore two evident solutions:

ψ±(t) = ±

√
t ln

(
a2

κ2t

)
. (1.2.6)

All the statements pointed out in the forthcoming paragraphs concern positive measures F
defined on B(R+) associated with a unique function ψ. Of course, they can be easily modified
to the situation of the Lebesgue measure on B(R).

1.2.2 Study of the absorption time

We recall that (Bt)t≥0 stands for a standard Brownian motion.

Definition 1.2.1. Let a > 0. We call "absorption time" of (Bt)t≥0, denoted by T , the
random variable defined by

T = inf{t > 0 | h(Bt, t) = 0} = inf

{
t > 0

∣∣∣∣f (Bt

t
,
1

t

)
= a

}
.

The distribution of this random variable can be easily described. Before introducing
the main result concerning the distribution of T , let us present a specific condition on the
boundary function t 7→ ψt. We assume that ψ is monotone non decreasing in a neighborhood
of the time origin and is integrable:∫

0+

ψ(t)

t
3
2

e−
ψ(t)2

4t dt < +∞. (1.2.7)

This condition ensures that (0, 0) is a regular point, that means: P(T > 0) = 1 (see for
instance Theorem 3.1 in Doob [16], or Petrowsky [48]).
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Theorem 1.2.2. Let C be the set defined by C = {(x, t) ∈ R × R+ | x ≤ ψ(t)} with ψ a
boundary satisfying (1.2.7). On this particular set:

P(T > t,Bt ∈ dx) = h(x, t)dx, (1.2.8)

where h is defined by (1.2.2) and the conditional probability of T given Bt = x satisfies

P(T ≤ t | Bt = x) = 1− h(x, t)
1√
t
φ( x√

t
)

= a−1f

(
x

t
,
1

t

)
. (1.2.9)

Corollary 1.2.3. Integrating (1.2.9), we obtain an expression of the cumulative distribution
function of T :

P(T ≤ t) = 1− Φ

(
ψ(t)√
t

)
+ a−1

∫ ∞
0

Φ

(
ψ(t)− θ√

t

)
F (dθ), ∀t ≥ 0. (1.2.10)

Let us notice that (1.2.9) can be obtained from (1.2.8) using Bayes’ formula.
As already mentioned in the previous section, these results can be adapted to the case of
a positive measure F proportional to the Lebesgue measure on B(R). In that case, both
boundaries given by (1.2.6) and denoted by ψ+ and ψ− satisfy the integrability condition
necessary for the following stopping time

T = inf{t ≥ 0|Bt /∈ [ψ−(t), ψ+(t)]}

to be almost surely strictly positive. Then the modified statement of Theorem 1.2.2 becomes:

P(T > t,Bt ∈ dx) =
1√
t
φ

(
x√
t

)
− a−1

∫
R

1√
t
φ

(
x− θ√

t

)
F (dθ),

for all (x, t) s.t. ψ−(t) ≤ x ≤ ψ+(t). To prove Theorem 1.2.2, we need several properties
concerning the function ψ.

Lemma 1.2.4. The function ψ, solution of (1.2.4), is infinitely often continuously differen-
tiable, t 7→ ψ(t)

t
is decreasing and ψ is concave.

Proof. We apply the implicit function theorem to f since

f

(
ψ(t)

t
,
1

t

)
= a. (1.2.11)

The first statement is a consequence of f ∈ C∞. Moreover (1.2.11) easily leads to the second
point. Defining

η(s) =
ψ(t)

t
with s =

1

t
,

we observe that η satisfies the condition:

a =

∫ ∞
0

eθη(s)− 1
2
θ2sF (dθ)
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and is continuous on (0,+∞) as a ratio of two continuous functions. Let α, β ∈ R. In order
to prove that η is concave, we aim to describe η(ρα + (1 − ρ)b) with ρ ∈]0, 1[. Applying
Hölder’s inequality, we obtain∫ ∞

0

eθ(ρη(α)+(1−ρ)η(β))− 1
2
θ2(ρα+(1−ρ)β)F (dθ) =

∫ ∞
0

eρ(θη(α)− 1
2
θ2α)e(1−ρ)(θη(β)− 1

2
θ2β)F (dθ)

≤
(∫ ∞

0

eθη(α)− 1
2
θ2αF (dθ)

)ρ(∫ ∞
0

eθη(β)− 1
2
θ2βF (dθ))

)1−ρ

= aρa1−ρ = a =

∫ ∞
0

eθη(ρα+(1−ρ)β)− θ
2

(ρα+(1−ρ)β)F (dθ).

We deduce that η is concave

η (ρα + (1− ρ)β) 6 ρη(α) + (1− ρ)η(β), ∀ρ ∈]0, 1[, ∀(α, β) ∈ R2.

The regularity of the function η is deduced from the regularity of ψ. Using the concavity of
η we obtain ψ′′(t) = η′′(t−1)

t3
< 0, for all t > 0.

Lemma 1.2.5. Let us define θ∗ by θ∗ = inf{y ≥ 0 | F [0, y] > 0} > 0. Then

lim
t→0

ψ(t) =
θ∗

2
.

Proof. Let us prove by contradiction that

lim inf
t→0

ψ(t) >
θ∗

2
. (1.2.12)

For that, let us suppose that there exists 0 < ε < 1 such that lim inf
t→0

ψ(t) 6 (θ∗−ε)
2

. We
consider a sequence (ti)i∈N satisfying lim

i→∞
ti = 0 and lim

i→∞
ψ(ti) = lim inf

t→∞
ψ(t). Using the

identity

−1

2
θ2 1

ti
= −1

2
θ2(

1

ti
− ε)− 1

2
θ2ε and the lower bound θ∗ ≤ θ for any θ ∈ supp(F ),

we obtain

0 < a =

∫ ∞
θ∗

exp

(
θ
ψ(ti)

ti
− 1

2

θ2

ti

)
F (dθ)

6
∫ ∞
θ∗

exp

(
1

2
θ

(θ∗ − ε)
ti

− 1

2
θθ∗(t−1

i − ε)
)

exp
(
− ε

2
θ2
)
F (dθ)

6
∫ ∞
θ∗

exp

(
−εθ

2
(t−1
i − θ∗)

)
exp

(
−εθ

2

2

)
F (dθ), ∀i ∈ N.

Applying the dominated convergence theorem, the right hand side of the previous inequality
converges to 0 as i tends to infinity. This result leads to a contradiction, and therefore
implies (1.2.12). By similar computations, we also prove that lim sup

t→0
ψ(t) 6 θ∗

2
and, by the

way, the announced statement.
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The last lemma which plays an important role in the proof of Theorem 1.2.2 is the
following convergence result:

Lemma 1.2.6. Let (ψn)n>1 be a sequence of positive functions, converging uniformly on the
set [0, t] to a limit function ψ. Let us suppose that ψ is a concave differentiable function
either monotone non decreasing in a neighborhood of 0 and satisfying (1.2.7) either verifying
ψ(0) > 0. We assume moreover that ψn > ψ on [0, t] and for all n ≥ 1. Let us introduce
Px,t(f) = P(Bu > f(u) for some 0 6 u < t | Bt = x). Then, for all couple (x, t) s.t.
x 6 ψ(t), we have

lim
n→∞

Px,t(ψn) = Px,t(ψ).

Proof. Let us define Tn = inf{u > 0 | Bu > ψn(u)} and T = inf{u > 0 | Bu > ψ(u)}. Due to
the integrability property (1.2.7), we get P(T > 0) = 1 and therefore, for any α > 0, there
exists δ > 0 such that

P(T < δ) + P(t− δ 6 T < t) < α.

Let us consider ε > 0 small enough such that

2ε(ε+ ψ(δ) + (t− δ)ψ′(δ)− x)

(t− δ)
6 α. (1.2.13)

There exists n0 ∈ N such that for all n > n0, the uniform convergence implies

sup
06v6t

(ψn(v)− ψ(v)) < ε.

By construction of the sequence (ψn)n∈N, the frontier defined by ψ is reached by the Brownian
motion before ψn; leading to {0 < Tn < t} ⊆ {0 < T < t}. We deduce

0 ≤ P := P(0 < T < t | Bt = x)− P(0 < Tn < t | Bt = x)

= P(0 < T < t, Tn > t | Bt = x) =

∫ t

0

P(Tn > t | Bu = ψ(u), Bt = x)P(T ∈ du).

Using Bu = ψ(u) on the event {T = u} and (1.2.13),

0 ≤ P 6 α +

∫ t−δ

δ

ρε(x, u, t)P(T ∈ du) (1.2.14)

with ρε(x, u, t) := P
(

sup
s∈[u,t]

Bs ≤ ψ(s) + ε
∣∣∣Bu = ψ(u), Bt = x

)
. Using the Markov property

of the Brownian motion and the concavity of the boundary ψ, we obtain

ρε(x, u, t) ≤ P
(

sup
s∈[0,t−u]

Bs ≤ ψ(s) + ε+ sψ′(u)
∣∣∣B0 = ψ(u), Bt−u = x

)
.
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The explicit expression of the first passage time density of a Brownian bridge through a
given straight line, implies

ρε(x, u, t) 6 1− exp

(
−2ε(ε+ ψ(u) + (t− u)ψ′(u)− x)

(t− u)

)
, ∀u ∈ [δ, t− δ].

Finally (1.2.14) and (1.2.13) permit to obtain the following bounds

0 ≤ P 6 α +
2ε(ε+ ψ(δ) + (t− δ)ψ′(δ)− x)

(t− δ)
6 2α.

We have now emphasized all preliminary results needed in order to prove Theorem 1.2.2.

Proof of Theorem 1.2.2. The function h satisfies:

∂th =
1

2
∂2
xh, h(ψ(t), t) = 0, ∀t > 0 (1.2.15)

and
h(•, 0) = δ0 on the set (−∞, ψ(0+)].

We split the study into two different cases:

First case: θ∗ = inf{y ≥ 0 | F [0, y] > 0} > 0. In this particular case, the previous lemmas
state that ψ(0+) > 0 and ψ is infinitely differentiable. With these properties, Friedman’s
uniqueness theorem (see, for instance [18]) permits to characterize the function h.
Let us consider

P(T > t,Bt ∈ dx) = p(x, t)dx,

where p(x, t) represents the distribution function at the point (x, t) for the Brownian motion
still not absorbed at the frontier ψ at time t. The conditional density p is also a solution on
C of the equation (1.2.15). The uniqueness result permits to state that h = p on the set C.
Second case: θ∗ = 0. Let α > 0, we define

hα(x, t) =
1√
t
φ

(
x√
t

)
− a−1

∫ ∞
α

1√
t
φ

(
x− θ√

t

)
F (dθ)

and denote by ψα(t) the solution of hα(ψα(t), t) = 0 and Tα the corresponding stopping time.
We introduce pα(x, t)dx = P(Tα > t,Bt ∈ dx). The parameter θ∗ associated to the restricted
measure F∣∣∣[α,+∞)

is equal to α as soon as α is small enough. We can therefore apply the first

case and we obtain hα(x, t) = pα(x, t) and note that∫ ∞
α

1√
t
φ

(
x− θ√

t

)
F (dθ)↗

∫ ∞
0

1√
t
φ

(
x− θ√

t

)
F (dθ) as α→ 0.
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We deduce that hα(x, t) is decreasing and converges to h(x, t) when α goes to 0.
By definition of the boundaries ψ(t) and ψα(t), we obtain that ψα(t) decreases towards ψ(t)
when α goes to 0.
Since hα(x, t) = pα(x, t) we obtain h(x, t) = lim

α→0
pα(x, t). It suffices therefore to prove that

lim
α→0

pα(x, t)dx = P(T > t,Wt ∈ dx)

which is equivalent, by Bayes’ formula, to

lim
α→0

P(Tα > t | Wt = x) = P(T > t | Wt = x). (1.2.16)

To prove this last equality, we use the result of Lemma 1.2.6 applied to the particular family
of functions (ψα)α>0, which converge on the set [0, t] to ψ. Lemma 1.2.4 states that the limit
function ψ is concave. If we admit that ψ satisfies the conditions for T to be almost surely
positive (1.2.7), then a direct application of Lemma 1.2.6 permits to get (1.2.16).

Let us denote by p the density function of the random variable T . The work of Lerche
[39] permits to find an explicit expression of this particular function.

Lemma 1.2.7. The density of T , denoted by p satisfies the following equation

p(t) = −1

2
∂xh(x, t)

∣∣∣∣
x=ψ(t)

, ∀t ∈ supp(p).

Proof. Theorem 1.2.2 permits to obtain the following expression of the tail distribution

P(T > t) =

∫ ψ(t)

−∞
h(y, t)dy, ∀t > 0. (1.2.17)

By definition, the previous equation leads to:

−p(t) =
d

dt
P(T > t) =

∫ ψ(t)

−∞
∂th(y, t)dy + ψ′(t)h(ψ(t), t), ∀t > 0.

Since ψ is the boundary, h(ψ(t), t) = 0, and therefore

−2 p(t) =

∫ ψ(t)

−∞
∂2
yh(y, t)dy = ∂xh(x, t)

∣∣∣
x=ψ(t)

.

This statement gives a first expression of the density, but is not really handy to manip-
ulate. Fortunately, it permits to obtain another expression of the distribution function.

Theorem 1.2.8. The density p of the stopping time T can be written as follows:

p(t) =
1

2 t
3
2

φ

(
ψ(t)√
t

) ∫ ∞
−∞

θ φ

(
θ − ψ(t)√

t

)
F (dθ)∫∞

−∞ φ
(
θ−ψ(t)√

t

)
F (dθ)

, ∀t > 0. (1.2.18)
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Proof. Using Lemma 1.2.7 and the definition of h, we obtain

p(t) = −1

2
∂xh(x, t)

∣∣∣∣
x=ψ(t)

=
ψ(t)

2 t
3
2

φ

(
ψ(t)√
t

)
− a−1

∫ ∞
0

ψ(t)− θ
2 t

3
2

φ

(
ψ(t)− θ√

t

)
F (dθ)

=
1

2 t
3
2

φ

(
ψ(t)√
t

)ψ(t)− a−1

∫ ∞
0

(ψ(t)− θ)φ
(
ψ(t)−θ√

t

)
φ
(
ψ(t)√
t

) F (dθ)


=

1

2 t
3
2

φ

(
ψ(t)√
t

)ψ(t)−

∫∞
0

(ψ(t)− θ)φ
(
ψ(t)−θ√

t

)
F (dθ)∫∞

0
φ
(
ψ(t)−θ√

t

)
F (dθ)

 .
We also used h(ψ(t), t) = 0 to state that

1√
t
φ

(
ψ(t)√
t

)
= a−1

∫ ∞
0

1√
t
φ

(
ψ(t)− θ√

t

)
F (dθ), ∀t > 0.

1.2.3 Crucial examples

In this section, we list some applications of the method of images depending on the selected
measure F . Some usual examples correspond to classical measures like the Dirac measure
or some linear combinations of Dirac measures. Here we shall just present one example
based on the Dirac measure and one other example with bilateral frontiers and based on the
Lebesgue measure, which is of prime interest in this thesis.

Example 1.2.1. Consider the Dirac measure F defined by F (dθ) = δα(dθ). Then

h(x, t) =
1√
t
φ

(
x√
t

)
− a−1 1√

t
φ

(
x− 2α√

t

)
.

Solving h(x, t) = 0 leads to ψ(t) = α + bt with b = log(a)
2α

. Using Theorem 1.2.2, we have the
conditional distribution

P(T 6 t | Wt = x) = exp

(
−2α

t
(α + bt+ x)

)
when x 6 ψ(t),

the cumulative distribution function of T :

P(T 6 t) = 1− Φ

(
bt+ α√

t

)
+ e−2αbΦ

(
bt− α√

t

)
, ∀ > 0,
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and the corresponding density function

p(t) =
α

t
3
2

φ

(
ψ(t)√
t

)
, ∀t > 0

which corresponds in fact to the Bachelier Lévy formula.

This first example corresponds to an important study in the litterature. That is why we
have chosen to mention it. It will not play any role in the next chapters. The second example
plays a crucial role for the forthcoming chapters: it represents in fact the basic component
for the so-called WOMS algorithm.

Example 1.2.2. Let us consider the measure F (dθ) = dθ√
2π

on B(R).
Then the solution of the heat equation becomes:

h(x, t) =
1√
t
φ

(
x√
t

)
− a−1

√
2π
, (1.2.19)

with the boundaries:

ψ±(t) =

√
t log

(
a2

t

)
for all 0 < t 6 a2.

We obtain the following conditional ditribution:

P(T 6 t | Bt = x) =

[
a√
t
φ

(
x√
t

)]−1

for any (x, t) satisfying | x |6 ψ+(t), t < a2.

1.3 Walking On Moving Spheres (WOMS) algorithm
In this section, we detail a method permitting the approximation of the Brownian exit time
from an a given interval.
The idea is actually simple and mostly relies on the work of developed by Motoo [43]. The
author introduced the of walk on spheres method in order to describe where the Brownian
paths exit from a domain in Rn, with n ≥ 2. This random walk was then adapted to take
also into account the time variable. The aim was actually to obtain both the exit time and
the exit location from a given domain by the multi-dimensional Brownian motion. This
modification permits to build an approximation procedure. Deaconu, Herrmann and Maire
[15] emphasized the method which was also applied to the first passage time of the Bessel
process in Deaconu, Herrmann [14]. Here we recall the method and we present the state-
ments in the one-dimensional Brownian case. Moreover we write some new proofs describing
the efficiency of the method which are based on the potential theory.
In general it is hard to exactly know the law of the exit time from a given domain. But
there exist specific time-dependent domains, which are called spheroids, and for which we
know precisely the law of the exit time. These spheroids are essential components of the
method. In fact, instead of seeking the precise Brownian exit time from a given domain, we
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shall consider the largest spheroid fully contained in that domain and centered at the start-
ing point of the Brownian trajectory. We are able to determine the exit time and the exit
position from this first spheroid. This first exit location is in fact a point of the Brownian
path. Using the strong Markov property of the stochastic process, it is possible at consider
this point as a new starting point of a Brownian motion. We iterate therefore the procedure
by choosing a new spheroid included in the domain and centered at that point and so on.
Since the spheroids are constrained to belong to the domain, the probability, at each step of
the procedure to generate the point of contact between the spheroid and the domain is equal
to zero. That’s why we need to introduce a stopping rule: we stop the iteration as soon as
an exit location of a spheroid is in a small ε-neighbourhood of the domain boundary.
In this chapter we detail this method, also called Walk On Moving Spheres (WOMS) algo-
rithm, in the particular one-dimensional Brownian case.

1.3.1 Preliminaries

We already stated in Section 1.1.2 some results about the exit time density for a Brownian
motion leaving an interval. As already said, the simulation method associated with this
particular density expressed using a series expansion was actually not so efficient due to the
use of a rejection sampling. The construction of a sequence of spheroids permits to avoid
this lack of efficiency.
First we need to determine the spheroid which is the basic component of the algorithm.
Using the method of images (see Section 1.2), we consider the positive measure F (dθ) = dθ√

2π

on B(R) and a constant d > 0. Using Theorem 1.2.2, we construct the particular solution of
the heat equation

h(x, t) =
1√
t
φ

(
x√
t

)
+

d−1

√
2π
,

associated with the two boundaries

ψ±(t) = ±

√
t log

(
d2

t

)
for 0 < t 6 d2. (1.3.1)

The conditional distribution of the exit time T = inf{t > 0 | |Bt| > ψ+(t)} is given by

P(T 6 t | Bt = x) =
1√
2π

a√
t
φ

(
x√
t

)−1

for (x, t) satisfying | x |6 ψ+(t) and t < d2.

(1.3.2)
We focus our attention on the expression of the probability density of T .

Proposition 1.3.1. The probability density p of the exit time T from the domain defined by
±ψ+ is given by

p(t) =
1

d
√

2π

√
log(d

2

t
)

√
t

, 0 < t ≤ d2. (1.3.3)

33



Proof. We first determine the c.d.f. of the considered exit time. Using differentiation prop-
erties and (1.3.2), we deduce the announced density:

P(T 6 t) =

∫
|x|6ψ+(t)

P(T 6 t|Bt = x)P(Bt ∈ dx) + 2

∫ −ψ+(t)

−∞
P(Bt ∈ dx)

=
2

d
√

2π
ψ+(t) +

2√
2π

∫ −ψ+(t)

t

−∞
e
−x2
2 dx, ∀t > 0.

The derivative of the last expression equals

p(t) =
1

d
√

2π

√
log(d

2

t
)

√
t

, ∀t > 0. (1.3.4)

Another ingredient needed is explicit values of the domain extremas.

Proposition 1.3.2. The maximum of the function ψ+ is equal to
d√
e
with t =

d2

e
.

Finally let us point out an easy way to generate a random variable which has the same
distribution than T .
Proposition 1.3.3. Let us introduce two independent random variables U and N : U is
uniformly distributed on the interval [0, d] and N is a standard Gaussian variable. Then T
and U2e−N

2 are identically distributed.
The proofs of these two statements are straightforward. Now we have all basic compo-

nents needed in order to approximate the Brownian exit time from a given interval.

WOMS algorithm (Walk On Moving Spheres)

Let a < 0 < b the two boundaries of the interval under study and let us introduce some
small parameter ε > 0. The next algorithm generates an approximation of the exit time of
the interval [a, b] for the Brownian motion.

ALGORITHM (WOMS)a,b,ε

Initialization: Set Z = 0, ã = a and b̃ = b.
While 0 6 b̃− ε and 0 > ã+ ε

Step 1. Put c = min(|ã|, |b̃|)
Step 2. Generate the Brownian exit time τ from the spheroid

defined by (1.3.1) with coefficient d = c
√
e.

Step 3. Generate X the exit position at time τ from the spheroid.
Step 4. Z ← Z + τ

ã← ã−X,
b̃← b̃−X,

Outcome: The random variable Z.
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Figure 1.2: Spheroids produced with one run of Algorithm (WOMS)a,b,ε

The outcome Z of algorithm (WOMS)a,b,ε is an approximated value of the Brownian exit
time T . Some questions arise:

• Is this algorithm efficient? How many steps should one observe before the algorithm
stops?

• What is the rate of convergence of Algorithm (WOMS)a,b,ε?

1.3.2 Study of the WOMS algorithm efficiency

In order to treat the first question, we need to introduce a theorem related to the potential
theory in probability theory. Additional explanations concerning this theorem and its link
with the optional stopping theorem can be found in Section 1.4.

Potential theory

In this section, let us consider a Markov chain (Xn)n≥0 defined on a space state I which is
divided into two parts D and ∂D, ∂D being called the frontier of the space state.

Theorem 1.3.4. Let c and f two positive functions defined on D, respectively on ∂D. We
define

φ(i) = Ei

[∑
n<TX

c(Xn) + f(XTX )1T<∞

]
, ∀i ∈ I

where TX = inf{n ≥ 0|Xn ∈ ∂D} represent the hitting time of ∂D for the Markov chain.
Then, defining the operator P by Pxf = Ex[f(X1)] = E[f(X1)|X0 = x], we observe that

i) The potential function φ satisfies{
φ = Pφ+ c on D

φ = f on ∂D
(1.3.5)
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ii) If the function ζ satisfies {
ζ > Pζ + c on D

ζ > f on ∂D
(1.3.6)

and if we have ζ(i) > 0 for all i ∈ I then ζ(i) > φ(i) for all i ∈ I.

Description of the number of steps

Since Algorithm (WOMS)a,b,ε is constructed as a Markov chain, we aim to apply the potential
theory in order to describe the number of steps. Let us mention that the particular choice
f ≡ 0 and c ≡ 1 in the second point of Theorem 1.3.4 permits to obtain such information:
the average number of steps E[TX ] is then upper bounded.
Hence, we introduce a function U ε satisfying

U ε > PU ε + 1 on ]a+ ε, b− ε[ and U ε > 0 on [a+ ε, b− ε]. (1.3.7)

In order to find such a solution to the inequalities, we first describe the operator P :

Pxf =
1

2

∫ c2x

0

(f(x+ ψ+(t) + f(x− ψ+(t))p(t)dt,

where cx =
√
emin(x − a, b − x) and the probability density p is defined in (1.3.4) with

d = cx.
Let us now point out the efficiency of the algorithm.

Theorem 1.3.5. 1) The function Uε defined by

Uε(x) = C log

(
(x− a)(b− x)

ε(b− a− ε)

)
, ∀x ∈]a, b[,

satisfies Uε(a+ ε) = Uε(b− ε) = 0 and Uε(x) > 0 for all x ∈ [a+ ε, b− ε].
Moreover, there exists C > 0 such that

PxUε 6 Uε(x)− 1 ∀x ∈]a+ ε, b− ε[.

2) Let Nε be the number of iterations observed in Algorithm (WOMS)a,b,ε before it stops.
Then

E[Nε] 6 C| log(ε)|, ∀ε > 0.

Proof. Let us prove that the function Uε satisfies all conditions.
By definition we have Uε(a + ε) = Uε(b − ε) = 0. Moreover the dominating coefficient in
the polynomial function is negative, which implies that Uε is non negative on the interval
]a+ ε, b− ε[.
For the last property, we just study the successive derivatives of the function Uε:

U ′ε(x) =
C

x− a
− C

b− x
, ∀x ∈]a, b[,

36



and, for any n > 2,

U (n)
ε (x) = −C(n− 1)!

(
(−1)n

(x− a)n
+

1

(b− x)n

)
, ∀x ∈]a, b[.

Using Taylor’s expansion leads to

Uε(x+ h) 6 Uε(x) + hU ′ε(x) +
h2

2
sup
|y−x|≤h

U ′′ε (y). (1.3.8)

We shall apply this inequality to the particular values h = ψ+(t) and h = −ψ+(t). For any
t ∈ supp(ψ+), Proposition 1.3.2 implies that

|ψ+(t)| ≤ cx√
e

= min(x− a, b− x).

We deduce that

sup
|y−x|≤ψ+(t)

U ′′ε (y) ≤ −C inf
|y−x|≤cx/

√
e

{
1

(y − a)2
+

1

(b− y)2

}
≤ −Ce

4c2
x

.

Hence

PxUε =
1

2

∫ c2x

0

(Uε(x+ ψ+(t) + Uε(x− ψ+(t))p(t)dt

6
1

2

∫ c2x

0

(
2Uε(x) + ψ+(t)U ′ε(x)− ψ+(t)U ′ε(x) + ψ2

+(t) sup
|y−x|≤ψ+(t)

U ′′ε (y)
)
p(t)dt

6 Uε(x)− Ce

8c2
x

∫ c2x

0

ψ2
+(t)p(t)dt, ∀x ∈]a+ ε, b− ε[.

Moreover ∫ c2x

0

ψ2
+(t)p(t)dt =

∫ c2x

0

1

cx
√

2π
t log

(
c2
x

t

)√
log( c

2
x

t
)

t
dt,

and setting u = t
c2x

implies

∫ c2x

0

ψ2
+(t)p(t)dt =

c2
x√
2π

∫ 1

0

u log

(
1

u

) √log( 1
u
)

√
u

du =: 2c2
xΓ.

Finally PxUε ≤ Uε(x)− CeΓ
4

and it suffices therefore to choose C = 4/(eΓ) in order to obtain
the inequality of Theorem 1.3.5. The second result announced in the statement of Theorem
1.3.5 concerns the number of iterations Nε in Algorithm (WOMS)a,b,ε. We note that, by the
definition of φ, we have Ex[Nε] = φ(x). Moreover using the second part ii) of Theorem 1.3.4
applied to Uε, we obtain: Ex[Nε] = φ(x) ≤ Uε(x).

Let us mention that Binder and Braverman [6] obtained similar upper-bounds for the
Walk on Spheres algorithm: the average number of iterations depends on a logarithmic way
on the stopping parameter ε > 0. Their proof is based on the martingale theory with the
use of some Riesz potential.
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Figure 1.3: Average number of steps (in logarithmic scale) versus the stopping parameter ε.

Bounds for the Exit-Time distribution

We focus now our attention on bounds for the difference between the first exit time T and
its approximation Z obtained by Algorithm (WOMS)a,b,ε. We aim to understand how this
error depends on the stopping procedure of the algorithm.

Theorem 1.3.6. Let ε > 0. We denote by Z the outcome of Algorithm (WOMS)a,b,ε with
cumulative distribution function Fε and we denote by T the Brownian exit time from the
interval [a, b] with F , its cumulative distribution function.
Then, for all α > 0 small enough, we have(

1− 2ε√
2απ

)
Fε(t− α) 6 F (t) 6 Fε(t), ∀t > 0.

Proof. Algorithm (WOMS)a,b,ε is in fact based on a stopped random walk on spheroids.
All values of this random walk correspond to exit locations of the Brownian motion from
spheroids included in R+ × [a, b]. In other words, each value of the random walk belongs
to the path of a Brownian motion. When the algorithm stops, the location is ε-close to the
boundary. We deduce then that

Tε ≤
s.t.
Z ≤

s.t.
T

where Tε is the Brownian exit time from the interval [a + ε, b − ε]. Let us just explain the
notation: two random variables A and B satisfy A ≤

s.t.
B iff P(A ≤ t) ≥ P(B ≤ t), ∀t ∈ R.

So we immediatly deduce that F̃ε(t) := P(Tε ≤ t) ≥ Fε(t) ≥ F (t) for all t ∈ R. Moreover

1− F (t) = P(T > t) = P(T > t, Tε 6 t− α) + P(T > t, Tε > t− α)

6 P(T > t, Tε 6 t− α) + P(Tε > t− α)

6 P(T > t, Tε 6 t− α) + 1− F̃ε(t− α).

We focus our attention on the first probability of the right hand side. Using the Markovian
property, we obtain

P(T > t, Tε 6 t− α) = P(T > t|Tε 6 t− α)P(Tε 6 t− α)

6 P(Tε 6 t− α) sup
y∈{a+ε,b−ε}

Py(T > α).
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Using paths properties of the Brownian motion (see for instance Proposition 2.8.1 in [36]),
we get for y ∈ [a+ ε, b− ε],

Py(T > α) = P0

(
sup

06t6α
Bt < ε

)
= P(|Bα| < ε) 6

2ε√
2απ

.

We deduce that:

F (t) ≥ F̃ε(t− α)

(
1− 2ε√

2απ

)
≥ Fε(t− α)

(
1− 2ε√

2απ

)
.

1.3.3 Comparison with other numerical methods

Finally we want to compare the WOMS algorithm to other algorithms in order to compare
their efficiency. We first compare with the classical Euler scheme and secondly with a
modification of the Walk On Spheres algorithm.

Comparison with the classical Euler scheme

Let h > 0 the step size of the Euler scheme. We consider the following algorithm:

EULER SCHEME (E)h

Initialization Let us put X = 0, T = 0.
While a < X < b

Step 1. X ← X +N where N ∼ N (0, h)

Step 2. T ← T + h

Outcome: The random variable T .

The main result concerning the Euler scheme is that the outcome of the algorithm is an
approximation of the Brownian exit time from the interval [a, b]. The Euler scheme presented
here is actually simple and rather precise. Of course it does not take into account the
opportunity for the Brownian motion to hit the boundaries inbetween two time steps and
to return in the domain at the next time step. In the next chapter, we shall use a more
sophisticated Euler algorithm which takes into account the probability of the Brownian
paths to hit the boundaries inbetween two time steps. Here, since we do not use these
probabilities, we only generate an upper bound of the studied exit time. But for h small
enough the approximation is rather appropriate.

The aim is to to compare in details these two generation methods which are so different.
We want just to point out that the Euler scheme is certainly appropriate to describe precisely
the whole paths of the Brownian motion but if one just needs to obtain an exit time, then
the energy spent to generate the paths inside the interval seems to be wasted. The WOMS
algorithm focuses only on the exit problem. In order to illustrate this feature, we propose a
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ε 5.0× 10−1 10−1 5.0× 10−2 10−2

WOMS 10,65 11,44 12,14 12,21
Euler 56,51 1202,85 4802,092 124971,91

Table 1.1: Comparison of the averaged number of steps

rough comparison: we compare the average number of iterations of the Euler Scheme (E)ε
with the number of iterations of Algorithm (WOMS)a,b,ε (See Table 1.1, the averages concern
samples of size 1 000). We easily remark that the WOMS algorithm is faster than the Euler
scheme.

Comparison with a modified WOMS algorithm

In Algorithm (WOMS)a,b,ε, the aim is to build a random walk on spheroids whose size is
the largest possible contained in R× [a, b]. Of course, this means that we need at each step
to compute the distance between the value of the random walk and the boundaries. It is
not so time consuming: we aim to modify the algorithm in a comparison purpose. So we
introduce a walk on spheroids whose size does not depend on the distance to the boundary
but remains fixed and of order ε. A realization of one path is represented in Figure 1.4.

ALGORITHM (WOMS)a,b,ε modified

Initialization Let T = 0, ã = a and b̃ = b.
While 0 6 b̃− ε and 0 > ã+ ε

Step 1. Generate the Brownian exit time τ from the spheroid with coefficient
ε
√
e.

Step 2. Generate X the exit position at time τ .
Step 3. T ← T + τ

ã← ã−X,
b̃← b̃−X,

Outcome: The random variable T representing an approximated exit time.
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Figure 1.4: Representation of the sequence of spheroids generated by the modifiedWOMS algorithm
for one generation of the exit time.

We are able to compare the efficiency of these two algorithms. Table 1.2 presents a
numerical comparison between the mean number of steps observed in Algorithm (WOMS)a,b,ε
and in the modified algorithm for different values of ε (each average concerns a sample of
size 1 000).

ε 5.0× 10−1 10−1 5.0× 10−2 10−2

WOMS 10,65 11,44 12,14 12,21
Modified algorithm 80,7 9067 2054,38 153656

Table 1.2: Averaged number of steps in Algorithm (WOMS)a,b,ε and its modification

Since both the WOMS and its modification are based on the same theoretical arguments,
the proofs concerning the bounds for the exit time distribution are similar. This implies that
the error observed are of the same order. The only difference is the consumption time of
the algorithms: the WOMS which uses at each iteration the largest spheroid included in the
interval [a, b] appears to be more efficient.

1.4 Discussion of the link between potential theory and
martingales.

In this section, we present a particular link between the potential theory and the optional
stopping theorem. These arguments permit to understand Theorem 1.3.4 which is a crucial
tool for the description of the algorithm efficiency.
The aim here is to relate the solution of a particular equation to a martingale. Then we shall
apply the optional stopping theorem to this martingale in order to obtain essential informa-
tion on the initial equation. Moreover we extend this result to a suitable supermartingale
and obtain by that way a potential theory comparison theorem.
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Reminder of the problem

The potential theory is often applied in the framework of continuous stochastic processes.
For the anlysis of stochastic algorithm, we consider discrete problems and use therfore discret
time Markov chains.
We recall the main result we uses in Section 1.3.2 (this result can also be found in Norris p
139 [45]). Let us consider a Markov chain (Xn)n≥0 defined on a space state I divided into
two disjoint domains D and ∂D, ∂D being called the frontier.

Theorem 1.4.1. Let us consider c and f two positive functions defined on D, respectively
on ∂D. We define TX = inf{n ≥ 0|Xn ∈ ∂D} the first hitting time of ∂D for the Markov
chain

φ(i) = Ei

[∑
n<TX

c(Xn) + f(XTX )1T<∞

]
, ∀i ∈ I (1.4.1)

Then, defining the operator P by Pxf = Ex[f(X1)] = E[f(X1)|X0 = x], we obtain:

i) The potential function φ satisfies{
φ = Pφ+ c on D,

φ = f on ∂D.
(1.4.2)

ii) If the function ζ satisfies {
ζ > Pζ + c on D,

ζ > f on ∂D,
(1.4.3)

and if we have ζ(i) > 0 for all i ∈ I, then ζ(i) > φ(i) for all i ∈ I.

This theorem permits to obtain the average number of steps needed by the Markov chain
to reach the frontier, or at least an upper bound of this random number. To that end it
suffices to to consider c ≡ 1 and f ≡ 0.
In the sequel, TX denotes the hitting time of the considered frontier. We assume that TX
is an almost surely finite stopping time associate to the filtration of the considered Markov
chain (Fn)n≥0.

The equality case

Let us consider U a solution of the system{
U = PU + 1 on D,

U = 0 on ∂D.
(1.4.4)

We suppose that U is continuous on I and bounded. Then we can first observe that the
sequence (Yn)n≥0 defined by Yn = U(Xn) is not a martingale: it suffices to note that for
Xn ∈ D, we have
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E[Yn+1|Fn] = E[U(Xn+1)|Fn] = E[U(Xn)|Fn]− 1

= U(Xn)− 1 = Yn − 1 a.s.

However, it is still possible to define a martingale using the function U .

Lemma 1.4.2. The sequence (Zn∧TX )n≥0 defined by Zn∧TX = U(Xn∧TX ) + n ∧ TX is a mar-
tingale under the assumption that (Zn∧TX )n≥0 is integrable.

Proof. The sequence (Zn∧TX )n≥0 is obviously (Fn)n≥0-measurable. Moreover, on the event
{Xn∧TX ∈ D}, we have

E[Z(n+1)∧TX |Fn] = E[U(X(n+1)∧TX )|Fn] + ((n+ 1) ∧ TX)

= E[U(Xn)|Fn]− 1 + (n+ 1) = U(Xn) + n = Zn = Zn∧TX a.s.

On the complementary event {Xn∧TX ∈ ∂D}, we also obtain:

E[Z(n+1)∧TX |Fn] = E[U(X(n+1)∧TX )|Fn] + ((n+ 1) ∧ TX) = TX = Zn∧TX a.s.

Let us now apply the optional stopping theorem to the martingale (Zn∧TX )n≥0.We obtain

E[U(X0)] = E[Z0] = E[Zn∧TX ] = E[U(Xn∧TX )] + E[n ∧ TX ], ∀n ≥ 0.

Consequently
E[n ∧ TX ] = −E[U(Xn∧TX )] + E[U(X0)], ∀n ≥ 0.

Letting n tend to infinity leads to

E[TX ] = −E[U(XTX )] + E[U(X0)]. (1.4.5)

Indeed, due to the assumptions that TX < +∞ a.s and U continuous and bounded on I,
XTX∧n →

n→+∞
XTX and U(XTX∧n) →

n→+∞
U(XTX ). Using the dominated convergence theorem,

we obtain
lim

n→+∞
E[U(Xn∧TX )] = E[U(XTX )].

The sequence (n ∧ TX)n≥0 is increasing and almost surely converges to the finite limit TX .
Using monotone convergence theorem, we have lim

n→+∞
E[n ∧ TX ] = E[TX ]. Combining these

two results leads to the statement (1.4.5). Such a result permits, when the starting and the
exit points are known, to obtain the average time needed by the Markov chain in order to
reach the frontier.

43



The inequality case

We now consider the function V satisfying the system of inequalities:{
V > PV + 1 on D,

V > 0 on ∂D.

We recall that TX is the hitting time of the frontier for the Markov chain (Xn)n≥0. We define
Yn∧TX = V (Xn∧TX )+n ∧ TX , ∀n ≥ 0. Under suitable conditions, we deduce that the sequence
(Yn∧TX )n≥0 is a supermartingale. In a similar way as above, we use the optional stopping
theorem to the stopped supermartingale (Yn∧TX )n≥0 and obtain the following upperbound:

E[TX ] 6 E[V (X0)]− E[V (XTX )].

Generalization

Now let us take any functions f and c. We focus our attention on the function φ defined by
(1.4.2) and introduce the sequence (Mn)n≥0 as follows:

Mn =
n−1∑
k=0

c(Xk)1k<TX + f(XT )1TX<n + φ(Xn)1n6TX , ∀n ≥ 0.

If we assume that (Mn)n≥0 is a sequence of integrable random variables, then (Mn)n≥0 is a
martingale. Indeed (Mn)n≥0 is (Fn)-adapted and satisfies

E[Mn+1|Fn] = E

[
n∑
k=0

c(Xk)1k<TX + f(XTX )1TX<n+1 + φ(Xn+1)1n+16TX

∣∣∣∣∣Fn
]

=
n−1∑
k=0

c(Xk)1k<TX + c(Xn)1n<TX + f(XTX )1TX<n + f(Xn)1TX=n + Pφ(Xn)1TX>n

=
n−1∑
k=0

c(Xk)1k<TX + +f(XTX )1TX<n + (Pφ+ c)(Xn)1TX>n + f(Xn)1TX=n

= Mn a.s.

Applying the optional stopping theorem to the considered martingale, we obtain

E[M0] = E[φ(X0)] = φ(x) = E

[∑
k<TX

c(Xk) + f(XTX )1{TX<∞}

]
.

That means that we identify the solution of the system (1.4.2) with φ defined in (1.4.1)
Once again, from this equality case, we can deduce an extended result concerning the system
of inequalities. It suffices to start with ζ a solution of (1.4.3) and to construct in a similar way,
as just described, a supermartingale. It then permits to find out interesting upper-bounds
of the average exit time for the Markov chain.
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Chapter 2

WOMS algorithm extended to
Ornstein-Uhlenbeck processes

In this chapter, we focus on the WOMS extension to some other diffusions. We take here
the particular case of Ornstein-Uhlenbeck processes. We use the term extension instead of
adaptation because the new algorithm we produce will strongly rely on Brownian motion
case. In fact, we are able to enlighten a strong relation between the Ornstein-Uhlenbeck
processes and the Brownian motion. In this context, we are able to determine some gener-
alized spheroids adapted to the Ornstein-Uhlenbeck processes. Given these spheroids, it is
possible to state a new algorithm generating the exit time from an interval [a, b] for Ornstein-
Uhlenbeck processes. The strong relation observed also permit the description of the error
and emphasize the efficiency of the algorithm.

The results presented in this chapter are subject to a publication in Discrete and Continuous
Dynamical Systems. Series B. A Journal Bridging Mathematics and Sciences [26]

2.1 The Ornstein-Uhlenbeck processes
Let us first recall the definition of the Ornstein-Uhlenbeck process and present different
essential properties which permit to link this diffusion to a standard Brownian motion.
Let θ ∈ R+, σ ∈ R+, µ ∈ R. The Ornstein-Uhlenbeck process (O.U.) starting in x0 with
parameters θ, µ, and σ is the unique solution of the following stochastic differential equation
(SDE):

dXt = −θ(Xt − µ)dt+ σdWt, t ≥ 0, (2.1.1)

whereW stands for a standard one-dimensional Brownian motion. Existence and uniqueness
for equation (2.1.1) can be easily deduced from a general statement concerning SDE, see for
instance Revuz, Yor, Chap. IX [53]. Let us just recall this result.

Proposition 2.1.1. Consider the following stochastic differential equation

dXt = b(t,Xt)dt+ σ(t,Xt)dWt, t ≥ 0. (2.1.2)
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If there exists a Borel function ρ :]0,+∞[→]0,+∞[ satisfying
∫ +∞

0
dx
ρ(x)

= +∞ and such that

|σ(s, x)− σ(s, y)|2 6 ρ(|x− y|), ∀x, y ∈]0,+∞[, ∀t ∈ R+.

and if, for each compact set H and each t > 0, there exists a constant Kt > 0 such that

|b(s, x)− b(s, y)| 6 Kt|x− y|, ∀x, y ∈ H, s 6 t

then pathwise uniqueness holds for equation (2.1.2).

Since obviously the drift and diffusion coefficients of the O.U. process satisfy the hy-
potheses of Proposition 2.1.1, pathwise uniqueness holds for (2.1.1). Let us now present an
explicit expression of this solution. The Ornstein-Uhlenbeck process can be written as a
stochastic integral with respect to the Brownian motion:

Xt = X0e
−θt + µ(1− e−θt) + σe−θt

∫ t

0

eθsdWs, t > 0. (2.1.3)

Levy’s theorem permits to replace the stochastic integral by a time-changed Brownian mo-
tion. We obtain therefore another expression for the process which is more handy to manip-
ulate.
Since θ > 0, there exists a standard Brownian motion (Vt)t≥0 such that

Xt = X0e
−θt + µ(1− e−θt) +

σe−θt√
2θ

V
e2θt − 1

. (2.1.4)

This simplified expression is a crucial tool for the construction of the algorithm in the exit
problem framework as it clearly appears in the forthcoming statements.

Remark 2.1.2. In following computations, we put µ = 0. This restriction is only motivated
by notational simplification and the study can easily be extended to the general case.

Let us now describe how such a strong relation between the Brownian motion and the
Ornstein-Uhlenbeck process permits to emphasize a time-dependent domain of R whose exit
time can be easily and exactly simulated.

2.2 Exit time of generalized spheroids
Let us consider the spheroids defined by the boundaries ψ±(t) in (1.3.1). We recall that the
Brownian exit problem of a such a spheroid is completely explicit, so that the simulation
of the exit time τ is rather simple. Due to the symmetry property of the spheroid, the
conditional probability distribution of the exit location Wτ given τ is equal to 1

2
δψ+(τ) +

1
2
δψ−(τ). For the Ornstein-Uhlenbeck process, we can obtain some similar information due

to the strong relation with the Brownian motion.
Let us introduce two new boundaries defined by:

ψ±OU(t, x) = e−θt
(

σ√
2θ
ψ±(e2θt − 1) + x

)
,
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where θ and σ correspond to the parameters of the O.U-process (Xt)t≥0 in (2.1.1). We call
generalized spheroid the domain defined by these boundaries.
We introduce the exit time τOU = inf{t > 0 : Xt /∈ [ψ−OU(t, x), ψ+

OU(t, x)]}.

Proposition 2.2.1. Let τ = inf{t > 0 : Vt /∈ [ψ−(t), ψ+(t)]} the first time the Brownian
motion (Vt)t≥0 defined in (2.1.4) exits from the spheroid. Then the exit time τOU satisfies:

τOU =
log(τ + 1)

2θ
a.s. (2.2.1)

Proof. Using both the definition of τOU and the expression ofXt with respect to the Brownian
motion Vt, we obtain

τOU = inf
{
t > 0 : Xt /∈ [ψ−OU(t, x), ψ+

OU(t, x)]
}

= inf

{
t > 0 : xe−θt +

σ√
2θ
e−θtVe2θt−1 /∈ [ψ−OU(t, x), ψ+

OU(t, x)]

}
= inf

{
t > 0 :

σ√
2θ
e−θtVe2θt−1 /∈ [ψ−OU(t, x)− xe−θt, ψ+

OU(t, x)− xe−θt]
}

= inf

{
log(u+ 1)

2θ
> 0 : Vu /∈ [ψ−(u), ψ+(u)]

}
=

log(τ + 1)

2θ
.

This statement is a crucial tool for simulation purposes. It permits first to simulate a
Brownian exit time from a spheroid, then to use Proposition 2.2.1 to obtain the O.U. exit
time from the generalized spheroid. Let us notice that the shape of the generalized spheroid
depends on the O.U. starting position. Therefore, if we define a WOMS, the shape of the
spheroids will change at each step of the algorithm. In the Brownian motion context, the
spheroids are symmetric and their extremas can be computed easily. This important advan-
tage permits to compute easily the maximal size of the spheroids included in the interval
[a, b] and is not fulfilled in the O.U. case. It is therefore an harder work to determine the
optimal size of the generalized spheroid. This can be achieved by finding an upper-bound for
the upper boundary and a lower-bound for the lower boundary. As a consequence, we deter-
mine a parameter characterizing the generalized spheroid which guaranties that it remains
fully contained in the interval [a, b]. Since the bounds are quite rough, the boundaries of the
generalized spheroid are unfortunately not tangent to the interval bounds. The algorithm
shall be therefore a little slowed down.

Proposition 2.2.2. Let γ > 0, and x ∈ [a, b] the starting point of the spheroid, that is
ψ±OU(0, x) = x. Let us set aγ,x = a+ γ(x− a) and bγ,x = b− γ(b− x). We define

d =


√

2θemin

(
(bγ,x−x)

σ
, 2(x−aγ,x)√

σ2+4θe x(x−aγ,x)+σ

)
if x > 0

√
2θemin

(
(x−aγ,x)

σ
, 2(bγ,x−x)√

σ2−4θe x(bγ,x−x)+σ

)
if x 6 0

(2.2.2)
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For such a choice of parameter, the generalized spheroid is fully contained in the interval
[aγ,x, bγ,x].

In the following statements we denote by dx the parameter associated to the spheroid
with initial point x.

Proof. Let us first consider the case: x > 0. Combining the upper bound of the function ψ+

presented in Proposition 1.3.2 and the definition of ψOU, we obtain

− σd√
2θe

+
x√

1 + d2
6 ψ−OU(t, x) 6 ψ+

OU(t, x) 6
σd√
2θe

+ x. (2.2.3)

We keep the upper bound found previously and focus on the lower bound:

ψ−OU(t, x) > − σd√
2θe

+
x√

1 + d2
> − σd√

2θe
+ x(1− d2

2
). (2.2.4)

The determination of a convenient choice for the parameter d > 0 requires to find the positive
solution of the equation P (d) = 0 where

P (d) = x
d2

2
+

σ√
2θe

d+ (aγ,x − x).

Consequently we obtain

dl =
1

x

√
σ2

2θe
+ 2x(x− aγ,x)−

σ

x
√

2θe
.

The identification with the upper bound gives us

du = (bγ,x − x)

√
2θe

σ
. (2.2.5)

Hence setting d = min(du, dl) permits the generalized spheroid to belong to the interval
[aγ,x, bγ,x].

The case x < 0 uses similar arguments since we observe a symmetry with respect to the
origin between the generalized spheroid starting in x and the one starting in −x. We use
the results previously computed for |x| and [−bγ,x,−aγ,x] which leads to the statement. The
case x = 0 is simple to handle with, since the previous boundaries (2.2.3) become

− σd√
2θe

6 ψ−OU(t, 0) 6 ψ+
OU(t, 0) 6

σd√
2θe

.

It suffices to set d =

√
2θe

σ
min(|aγ,0|, bγ,0), which corresponds to the limit case as x tends to

0 in both results previously established.
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2.3 WOMS for the Ornstein-Uhlenbeck processes
Let us now present the approximation procedure of the Ornstein-Uhlenbeck exit time from
a given interval [a, b]. This algorithm is based on a walk on generalized spheroids (WOMS)
described in the previous section.

ALGORITHM (O.U. WOMS)

Initialization: Let: X0 = x0, Tε = 0
From step n to step n+ 1:
While Xn 6 b− ε and Xn > a+ ε do

• Generate the Brownian exit time from the spheroid with parameter dXn
defined in (2.2.2). We denote this stopping time by τn+1.
• We set τOUn+1 = log(τn+1+1)

2θ
.

• Generate a Bernoulli distributed r.v. B ∼ B(1
2
), if B = 1 then

set Xn+1 = ψ−OU(τOUn+1, Xn) otherwise set Xn+1 = ψ+
OU(τOUn+1, Xn).

• Tε ← Tε + τOUn+1.
Outcome: Tε the approximated O.U.-exit time from the interval [a, b].

Figure 2.1: A sample of the algorithm for the O.U. exit time with parameters θ = 0.1 and σ = 1.
We observe the walk on spheres associated with the diffusion process starting at x = 5 and moving
in the interval [2, 7]. The algorithm corresponding to ε = 0, 5 is represented by the plain style
spheroids whereas the case ε = 10−3 corresponds to the whole sequence of spheroids. In both cases
we set γ = 10−6 .
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Figure 2.2: Histogram of the outcome variable for the O.U. with parameters θ = 0.1 and
σ = 1 when the stopped diffusion process starts at 5 and involves in the interval [2,7] with
ε = 10−3 and γ = 10−6.

The CPU efficiency of such an algorithm shall be compared to the efficiency of classical
approaches in the exit time approximation framework. Let us consider a particular situation:
the exit time from the interval [3, 5] for the Ornstein-Uhlenbeck process starting in 4 with
θ = 5 and σ = 7. We use an improved Euler method based on the correction by means
of the sharp large deviations estimate of the exit probability. Such a method takes into
account the probability for the diffusion path to exit inbetween two neighboring gridpoints
(see the procedure described in [1]). The simulation of 100 000 samples with the step size
10−4 requires 64,7 seconds for this improved Euler method whereas the WOMS algorithm
presented in this paper requires about 2,19 seconds for the corresponding choice ε = 10−2

(here γ = 10−6).
Even if the study presented here concerns the exit time of some given interval [a, b]

denoted by τ[a,b], let us just mention the possible link with first passage times (FPT). Intu-
itively for negative a with large value |a|, the exit time of the interval can be approximated
by the first passage time of the level b denoted by τb i.e. lim|a|→∞ P(τ[a,b] = τb) = 1. Several
approaches permit to describe quite precisely the probability distribution of the Ornstein-
Uhlenbeck FPT. In Figure 2.3, we illustrate that the distributions of both the exit time
(histogram) and the first passage time (p.d.f.) present a thight fit. The histogram corre-
sponds to the exit time obtained for an OU process starting in −3 with coefficients θ = 1
and σ = 1 and observed on the interval with bounds a = −10 and b = −1. The curve
corresponds to a numerical approximation of the first passage time density presented by
Buonocore, Nobile and Ricciardi in [10]. An other approximation procedure for the FPT
simulation is proposed by Herrmann and Zucca in [27]: it consists in simulating exactly
the PFT of a slightly modified diffusion process. This modified diffusion has the following
property: its drift term is bounded and coincides with the Ornstein-Uhlenbeck drift on the
interval [a, b] with |a| large. Numerical comparisons permit to observe that the simulation of
the exit time with the WOMS algorithm is highly more efficent than the method proposed
in [27]: the simulation of a sample of size 100 000 takes a total of 3,7 seconds of CPU time
with the first method and 197,2 seconds with the second one. Here the OU-process starts in
−3 with coefficients θ = 1 and σ = 1 and is observed on the interval [−10,−1].
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Figure 2.3: Histogram of the approximated first exit time of the interval [a, b] using the WOMS
algorithm and approximated p.d.f. of the first passage time through the level b (curve). Here
X0 = −3, θ = 1, σ = 1 and [a, b] = [−10,−1].

Let us now describe the WOMS algorithm for the Ornstein-Uhlenbeck process and espe-
cially emphasize its efficiency through theoretical results. We study how the strong relation
between our process and the Brownian motion affects the statements obtained in the Brown-
ian motion case. Let us just recall that the efficiency of the walk on spheres in the particular
Brownian case is quite strong: the averaged number of steps is of the order | log(ε)| (see for
instance [6], for an overview of the convergence rate). In the Ornstein-Uhlenbeck case, we
reach a similar efficiency result.

Average number of steps

Theorem 2.3.1. Let Nε be the random number of steps observed in the algorithm. Then
there exist a constant δ > 0 and ε0 > 0 such that

E[Nε] 6 δ| log(ε)|, ∀ε 6 ε0. (2.3.1)

Figure 2.4: Simulation of the O.U. exit time from the interval [2, 7]. The starting position is X0 = 5
and the parameters are given by θ = 0.1, σ = 1 and γ = 10−6. Histogram of the number of steps
observed for ε = 10−3 (left) and average number of steps versus ε (right, in logarithmic scale).

The statement is similar to the Brownian motion case, and the proofs are based on similar
arguments. To prove this statement, we introduce a result coming from the potential theory
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and using Markov chains.
Let us consider a Markov chain (Xn)n∈N defined on a state space I decomposed into two
distinct subsets K and ∂K, ∂K being the so-called frontier. Let us define N = inf{n ∈
N, Xn ∈ ∂K} the hitting time of ∂K. We assume that N is a.s. finite, then the following
statement holds:

Proposition 2.3.2. If there exists a function U s.t. the sequence (U(Xn∧N))n∈N is non
negative and if the sequence (U(Xn∧N) + n ∧N)n∈N represents a super-martingale adapted
to the natural filtration of the considered Markov chain (Xn), then

Ex[N ] 6 U(x), ∀x ∈ K.

The proof of this classical upper-bound is left to the reader, it is essentially based on the
optimal stopping theorem and on the monotone convergence theorem (see, for instance,[45],
p139).

Proof of Theorem 2.3.1. Step 1. Let us first introduce a function u which plays an impor-
tant role in the construction of a super-martingale linked to the random walk.
We consider the following differential equation:

σ2

2
u′′ − θxu′ = −1

(x− a)2(x− b)2
, for x ∈]a, b[. (2.3.2)

This second order differential equation can be solved in a classical way. Let us first solve the
related homogeneous equation: we obtain

u′(x) = C(x)e
θ
σ2
x2 .

The method of variation of parameters leads to

C(x) = − 2

σ2

∫ x

0

e−
θ
σ2
s2

(s− a)2(s− b)2
ds.

Integrating u′ one more time implies an explicit expression of one particular solution (2.3.2).

u(x) = − 2

σ2

∫ x

0

e
θ
σ2
u2
∫ u

0

e−
θ
σ2
s2

(s− a)2(s− b)2
dsdu, for x ∈]a, b[. (2.3.3)

Step 2. We consider now the sequence (Tn, Xn)n∈N of cumulative exit times, i.e.

Tn =
n∑
k=1

τOU
k (2.3.4)

and exit location given by the WOMS algorithm for the Ornstein-Uhlenbeck process.
Let us introduce Zn = u(Xn)+cn where c is a positive constant (which shall be determined

in the following calculus) and u is the function detailed in Step 1 of the proof. We shall
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prove that this process is a super-martingale with respect to the filtration (FTn)n∈N induced
by (Ft), the natural filtration of the Brownian motion (Vt)t>0 enlightened in (2.1.4).
By Itô’s formula we obtain

E[Zn+1 − Zn|FTn ] = E[Mn+1 −Mn|FTn ]

+ E
[∫ Tn+1

Tn

σ2

2
u”(Xs)− θXsu

′(Xs)ds

∣∣∣∣FTn]+ c

= E
[∫ Tn+1

Tn

−1

D[a,b](Xs)2
ds

∣∣∣∣FTn]+ c. (2.3.5)

where (Mn)n∈N =
(∫ Tn

0
σu′(Xs)dWs

)
n∈N

is a martingale and D[a,b](x) = (x − a)(b − x) for
x ∈ [a, b]. Remark now that

Ξ(Xn) := E
[∫ Tn+1

Tn

−1

D[a,b](Xs)2
ds

∣∣∣∣FTn] = E

[∫ τOU
n+1

0

−1

D[a,b](X̃s)2
ds

∣∣∣∣∣FTn
]

(2.3.6)

where X̃s := XTn+s has the same distribution as the Ornstein-Uhlenbeck starting in Xn. We
now upper bound this term: we consider in a first time that Xn is positive. By Proposition
2.2.2 we are then allowed to compute the corresponding coefficient dXn which we denote by
dn > 0 for notation simplicity. Let us fix some parameter ∆ ∈]0, 1[.
First case: dn 6 ∆, that is satisfied either if

0 < (bγ −Xn)

√
2θe

σ
6 ∆ (2.3.7)

or
0 <

2(Xn − aγ)√
σ2

2θe
+ 2Xn(Xn − aγ) + σ√

2θe

6 ∆ (2.3.8)

with bγ = bγ,Xn and aγ = aγ,Xn .
We first consider that Xn is close enough to bγ. Using (2.2.3), we have for any t ∈
Supp (ψ±OU) =

[
0, log(1+d2n)

2θ

]
:

b− ψOU− (t,Xn) 6 b− Xn√
1 + d2

n

+
σdn√
2θe

6 b−Xn

(
1− d2

n

2

)
+

σdn√
2θe

.
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Since dn ≤ ∆ < 1, we have d2
n ≤ dn. Moreover Xn ≤ bγ so that

b− ψOU− (t,Xn) 6 b−Xn

(
1− dn

2

)
+

σdn√
2θe

= b−Xn + dn

(
Xn

2
+

σ√
2θe

)
6 (b−Xn)

(
b
√

2θe

2σ
+ 2

)
=: (b−Xn)β.

The last upper-bound uses the definition of dn presented in Proposition 2.2.2 Hence we have

D[a,b](X̃s) 6 β(b− a)(b−Xn).

We then write, using the fact that τOU
n+1 is independent of FTn ,

Ξ(Xn) 6 E

[∫ τOU
n+1

0

−1

β2(b− a)2(b−Xn)2
ds

∣∣∣∣∣FTn
]

=
−1

β2(b− a)2(b−Xn)2
E[τOU

n+1]

=
−1

2θβ2(b− a)2(b−Xn)2
E[log(1 + τn)],

where τn denotes the exit time for Brownian motion from the spheroid of parameter dn. If τ
denotes the Brownian exit time of the generalized spheroid of normalized size (d = 1), then
the scaling property of Brownian motion implies that τn and d2

nτ are identically distributed.
Hence, noticing that τ 6 1 and recalling that d2

n 6 1, we obtain

Ξ(Xn) 6
−1

2θβ2(b− a)2(b−Xn)2
E[log(1 + d2

nτ)]

6
−d2

n

4θβ2(b− a)2(b−Xn)2
E[τ ].

In the considered case, we know that

dn = (b−Xn)

√
2θe

σ
(2.3.9)

which implies
Ξ(Xn) 6

−e
2σ2β2(b− a)2

E[τ̃1]. (2.3.10)
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In the other case (Xn close to a) the arguments already used just above lead to a similar
upper-bound. We observe for any t ∈

[
0, log(1+d2n)

2θ

]
:

ψOU+ (t,Xn)− a 6 Xn +
σdn√
2θe
− a

6 (Xn − a)

(
1 +

2σ√
σ2 + 4θeXn(Xn − a) + σ

)
6 2(Xn − a).

This upper bound leads to the same result as (2.3.10) just replacing β by another positive
constant β̃. Combining both inequalities, for dn smaller than ∆, we get

Ξ(Xn) 6
−1

σ2 max(β̃, β)2
E[τ ]. (2.3.11)

Second case: dn > ∆
In this case, we use the upper-bound:

D[a,b](X̃s) 6 (b− a)2. (2.3.12)

We deduce

Ξ(Xn) 6 E

[∫ τOU
n+1

0

−1

(b− a)4
ds

∣∣∣∣∣FTn
]

6
−1

2θ(b− a)4
E[log(1 + ∆2τ̃1)] 6

−∆2

4θ(b− a)4
E[τ ]. (2.3.13)

Both inequalities (2.3.11) and (2.3.13) suggest the existence of a constant c̃ > 0 such that
Ξ(Xn) 6 −c̃.
Finally, using the symmetry property of the considered spheroid, the case x negative is
treated similarly, leading to a positive constant c such that

Ξ(Xn) ≤ E
[∫ Tn+1

Tn

−1

D[a,b](Xs)2
ds

∣∣∣∣FTn] 6 −c, for all n > 0. (2.3.14)

In conclusion, the stochastic process Zn = u(Xn) + cn is a super-martingale due to the
combination of (2.3.5) and (2.3.14).
Step 3. In order to apply the optimal stopping theorem described in Proposition 2.6., we
need on one hand that (U(Xn)+cn)n>0 is a super-martingale but also on the other hand that
(U(Xn))n>0 is a non negative sequence. For the first property we could choose U = u+ κ, u
being the function introduced in (2.3.3) and κ a constant. For the second property we need
to have a non negative sequence, so we have to choose in a suitable way the constant κ. Let
us note that the function u satisfies u(0) = 0 and is a concave function. So in order to obtain
a positive function on the interval [aγ,x, bγ,x] it suffices to choose κ ≥ −min(u(bγ,x), u(aγ,x)).
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Consequently we need to study the behavior of u at the frontiers of [aγ,x, bγ,x] that is for
x = b− ε and x = a+ ε. Putting bγ := bγ,b−ε, we obtain

u(bγ) = − 2

σ2

∫ bγ

0

e
θ
σ2
u2
∫ u

0

e−
θ
σ2
s2

(s− a)2(s− b)2
ds du

= − 2

σ2

∫ bγ

0

e−
θ
σ2
s2

(s− a)2(s− b)2

∫ bγ

s

e
θ
σ2
u2du ds.

Using Taylor’s expansion and taking appropriate lower-bounds lead to

0 ≥ u(bγ) +
2

σ2

∫ bγ

0

bγ − s
(s− a)2(s− b)2

ds ≥ −2θb

σ4
e
θb2

σ2

∫ bγ

0

(bγ − s)2

(s− a)2(s− b)2
ds.

Moreover
1

(s− a)2(s− b)2
=

c1

(s− a)
+

c2

(s− a)2
+

c3

(b− s)
+

c4

(b− s)2
, (2.3.15)

where ci, i ∈ {1, 2, 3, 4} are positive constants and c2 = c4 =
1

(b− a)2
.

u(bγ) +
2

σ2

∫ bγ

0

(bγ − s)
(s− a)2(s− b)2

ds = u(bγ) +
2

σ2
(c1I0,1,1 + c2I0,2,1 + c3I1,0,1 + c4I2,0,1)

≥ −2θb

σ4
e
θb2

σ2 I2,2,2,

where Ii,j,k =

∫ bγ

0

(bγ − s)k

(b− s)i(s− a)j
ds. We can notice that

I2,0,1 = − log(γε) + log(b)− 1 +
γε

b
(2.3.16)

and there exists a constant δ0 > 0 such that

c1I0,1,1 + c2I0,2,1 + c3I1,0,1 = δ0 +O(ε ln ε) as ε tends to 0. (2.3.17)

Let us bound the last integral, using once again the partial fraction decomposition

I2,2,2 = c4I0,1,2 + c5I0,2,2 + c6I1,0,2 + c7I2,0,2.

As in the previous computations, it is possible to take an equivalent as ε tends to zero, that
is there exists δ1 > 0 such that

2θb

σ4
e
θb2

σ2 (c4I0,1,2 + c5I0,2,2 + c6I1,0,2 + c7I2,0,2) = δ1 +O(ε ln ε). (2.3.18)

Combining (2.3.16), (2.3.17) and (2.3.18), and taking an equivalent when ε tends to 0 leads
to state that there exists δ > 0 such that

u(bγ,b−ε) ≥ D log(γε)− δ +O(ε ln ε), where D =
2

σ2(b− a)2
. (2.3.19)
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A similar computation on u(aγ,a+ε) gives us some δ′ > 0. Setting κ = −D log(γε) + δ̂

with δ̂ > max(δ, δ′) and U(x) = u(x) + κ permits to obtain the positivity of the sequence
(U(Xn))n≥1, for ε small enough.
Step 4. The statement of the theorem is a direct consequence of the optimal stopping
theorem Proposition 2.3.2. If Nε is almost surely finite, then

E[Nε] 6
1

c
E[U(X0)] 6

D

c
| log(ε)|, for ε small enough. (2.3.20)

In order to finish the proof, it remains to justify that Nε is almost surely finite. Since
bγ,x − x ≥ (1 − γ)ε and x − aγ,x ≥ (1 − γ)ε for any x ∈ [a + ε, b − ε], we deduce that
there exists a strictly positive lower-bound dε such that dXn ≥ dε for any n. Introducing
(sn) a sequence of independent and identically distributed random variables corresponding
to Brownian exits of a unit spheroid, we deduce that Tn is stochastically lower-bounded by

Sn :=
1

2θ

n∑
k=1

log(1 + dεsk).

Moreover Sn tends to infinity almost surely as n→∞. By Lemma 2.3.3 and by construction,
Tn is stochastically inbetween Sn and T (an almost surely finite random variable) for any
n ≤ Nε. The stopping rule Nε is therefore almost surely finite.

Lemma 2.3.3. The sequence of cumulative times (Tn)n>1 appearing in the algorithm and de-
fined by (2.3.4) are stochastically smaller than T the first exit time of the Ornstein-Uhlenbeck
process.

Proof. We need to emphasize the link between the Markov chain induced by the algorithm,
denoted ((Tn, Xn))n∈N with (T0, X0) = (0, 0), and a path of the Ornstein-Uhlenbeck process.
At the starting point of the Ornstein-Uhlenbeck trajectory, we introduce a spheroid of max-
imum size contained in the interval [a, b] × R+. The intersection of this spheroid and the
path corresponds to the point (t1, z1). Then this construction leads us to state that (t1, z1)
has the same distribution as (T1, X1). Hence, from (t1, z1) we can construct a maximum size
spheroid and consider the intersection (t2, z2) between the trajectory after t1 and this second
spheroid. Once again we get from the construction that (t2, z2) and (T2, X2) are identically
distributed. We can therefore step by step build a sequence ((tn, zn))n∈N of intersections
between the considered trajectory and the spheroids. We obtain that the skeleton of the tra-
jectory (tn, zn)n∈N and the sequence (Tn, Xn)n∈N are identically distributed. By construction,
we also note that tn 6 T for all n ∈ N, which implies the announced result.

Bounds for the Exit-Time distribution

Let us now precise the rate of convergence for the algorithm based on the random walk. We
should describe how far the outcome of the algorithm and the diffusion exit time are. We
recall that the outcome depends on the parameter ε.
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Theorem 2.3.4. We consider 0 < γ < 2 and δ = εγ. We denote by F the cumulative
distribution function of the exit time from the interval [a, b] and Fε the distribution function
of the algorithm outcome. Then for any ρ > 1, there exists ε0 > 0 such that(

1− ρ
√
θ(ε+ max(|a|, |b|)(eθδ − 1))

σ
√

(e2θδ − 1)π

)
Fε(t− δ) 6 F (t) 6 Fε(t), (2.3.21)

for all t ∈ R and ε ≤ ε0.

In other words, the precision of the approximation pointed out in Theorem 2.3.4 is char-
acterized by the following error bound:

Ξ(ε ; θ, σ, a, b, γ) :=

√
θ(ε+ max(|a|, |b|)(eθδ − 1))

σ
√

(e2θδ − 1)π
, with δ = εγ.

Figure 5 presents the dependence of this bound with respect to ε and θ, all other parameters
being fixed.

Figure 2.5: Error bound Ξ versus ε for different values of θ with σ = 1, a = −1, b = 1, γ = 1.

Such a statement is directly related to properties of the Ornstein-Uhlenbeck process and
its strong link with the Brownian motion.

Proof. As in Lemma 2.3.3, we build step by step a sequence ((tn, zn))n∈N of intersections
between the path of the Ornstein-Uhlenbeck process and the spheroids in such a way that
the sequences ((tn, zn))n≥0 and ((Tn, Xn))n≥0 are identically distributed.
If we introduce Nε the stopping time appearing in the stopping procedure of the algorithm
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and Ñε = inf{n ∈ N, zn /∈ [a+ ε, b− ε]}, the identity in law of those random variables yields.
By construction, tn 6 T for all n ∈ N, where T stands for the diffusion first exit time from
the interval [a, b]. This inequality remains true when tn is replaced by the random stopping
time tÑε .
Hence

1− F (t) = P(T > t)

= P(T > t, tÑε 6 t− δ) + P(T > t, tÑε > t− δ)
6 P(T > t, tÑε 6 t− δ) + P(tÑε > t− δ)
6 P(T > t, tÑε 6 t− δ) + 1− Fε(t− δ). (2.3.22)

We focus on the first term of this upper bound. Using the strong Markov property, we obtain

P(T > t, tÑε 6 t− δ) 6 Fε(t− δ) sup
y∈[a,a+ε]∪[b−ε,b]

Py(T > δ). (2.3.23)

For any y ∈ [a, a+ ε] ∪ [b− ε, b] we write

Py(T > δ) = Py(Ta > δ, Ta < Tb) + Py(Tb > δ, Tb < Ta).

We first consider the case y ∈ [b− ε, b], the previous inequality becomes

Py(T > δ) 6 Py(Ta < Tb) + Py(Tb > δ). (2.3.24)

In order to handle with the first term in the right hand side, we introduce s the scale function
of the O.-U.-process:

s(x) = e
θ
σ2
a2
∫ x

a

e
θ
σ2
u2du, x ∈ [a, b]. (2.3.25)

It has been shown in Karatzas, 5.5 [36] that

Py(Ta < Tb) =
s(b)− s(y)

s(b)− s(a)
=

∫ b
y
e
θ
σ2
u2du∫ b

a
e
θ
σ2
u2du

. (2.3.26)

Since y ∈ [b− ε, b] and since the integrated function is non negative and increasing we obtain

Py(Ta < Tb) 6
∫ b
b−ε e

θ
σ2
u2du∫ b

a
e
θ
σ2
u2du

6
ε e

θ
σ2
b2∫ b

a
e
θ
σ2
u2du

=: ε Ca,b. (2.3.27)

We now focus on the second term in the r.h.s. of (2.3.24): Py(Tb > δ) 6 Pb−ε(Tb > δ) for all
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y ∈ [b− ε, b]. We denote by X̃ the Ornstein-Uhlenbeck process starting in b− ε. We obtain

{Tb > δ} =

{
sup
u∈[0,δ]

X̃u < b

}
=
{
∀u ∈ [0, δ], X̃u < b

}
=

{
(b− ε)e−θu +

σ√
2θ
e−θuVe2θu−1 < b,∀u ∈ [0, δ]

}
=

{
Vs <

√
2θ

σ
(b
√
s+ 1− (b− ε)),∀s ∈ [0, e2θδ − 1]

}

=

{
Vs <

√
2θ

σ
(b(
√
s+ 1− 1) + ε)),∀s ∈ [0, e2θδ − 1]

}

⊂

{
Vs <

√
2θ

σ
(ε+ max(0, b)(eθδ − 1)), ∀s ∈ [0, e2θδ − 1]

}
.

Let us assume that b > 0. In this case, the following asymptotic property holds:

Pb−ε(Tb > δ) = P0

(
sup

s∈[0,e2θδ−1]

Vt <

√
2θ

σ
(ε+ b(eθδ − 1))

)

= P0

(
2|Ve2θδ−1| <

√
2θ

σ
(ε+ b(eθδ − 1))

)
6

√
θ(ε+ b(eθδ − 1))

σ
√

(e2θδ − 1)π
.

Using the particular form of δ = εγ, we obtain
√
θ(ε+ b(eθδ − 1))

σ
√

(e2θδ − 1)π
∼ 1

σ
√

2π
(ε1−

γ
2 + bθε

γ
2 ) as ε→ 0.

A similar bound can be obtained for b negative and also for y ∈ [a, a+ ε].
Finally combining this result with (2.3.22), (2.3.23) and (2.3.27) leads to the announced
statement.

Remark 2.3.5. Let us note that all the results presented so far, that is the efficiency of the
algorithm and the convergence rate, concern the family of Ornstein-Uhlenbeck processes with
parameter µ = 0 in (2.1). It is straightforward to extend the statements to the general case: it
suffices to replace the interval [a, b] by a time-dependent interval [a−µ(1−e−θt), b−µ(1−e−θt)].
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Chapter 3

WOMS algorithm for L-class diffusions

The results presented in this chapter are subject to a publication in Computers & Mathematics
with Applications. An International Journal [25]

3.1 The algorithm
TheWalk on Spheroids already introduced for the Ornstein-Uhlenbeck process in [26] permits
to approximate the exit time in an efficient way. We aim to extend such numerical procedure
to a wider class of stochastic processes. We focus our attention to the family of L-class
diffusions (linear-type diffusions) which generalizes the Ornstein-Uhlenbeck processes. For
such diffusions, all the coefficients are time-dependent. Moreover they are based on a strong
relation with a one-dimensional Brownian motion.

3.1.1 L-class diffusions

This particular family of diffusions was already introduced in [58].

Definition 3.1.1 (L-class diffusions). We call L-class diffusion any solution of

dXt = (α(t)Xt + β(t))dt+ σ̃(t)dWt t ≥ 0 and X0 = x0, (3.1.1)

where α, β and σ̃ are Hölder-continuous functions, σ̃ is furthermore positive and (Wt)t≥0 is
a one-dimensional Brownian motion.

Since α, β and σ̃ are measurable functions, the linear structure of the differential equation
(3.1.1) implies both the existence and the uniqueness of a strong solution. Moreover the
stochastic process does not explode a.s. if the initial data X0 is square-integrable (see,
for instance, Theorem 5.2.1 in [46]). Here the starting position is always deterministic,
consequently the explosion phenomenon is never observed a.s.. It is possible to solve (3.1.1)
in a classical way (see, for instance, Section 5.6 about linear equations in [36]). Let us
introduce

θ(t) := −
∫ t

0

α(s)ds. (3.1.2)
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Lemma 3.1.2. The unique solution of (3.1.1) is given by

Xt = X0 e
−θ(t) + e−θ(t)

∫ t

0

eθ(s)β(s)ds+ e−θ(t)
∫ t

0

eθ(s)σ̃(s)dWs, t ≥ 0.

Proof. Let us consider g(t, x) = xeθ(t). The statement is therefore an easy consequence of
Itô’s formula:

d(g(t,Xt)) = −α(t)Xte
θ(t)dt+ eθ(t)dXt

= −α(t)Xte
θ(t)dt+ eθ(t)(α(t)Xt + β(t))dt+ eθ(t)σ̃(t)dWt

= eθ(t)β(t)dt+ eθ(t)σ̃(t)dWt, t ≥ 0.

This expression is actually not handy for the construction of the algorithm. Moreover,
for simulation purposes, it suffices to deal with a stochastic process which has the same path
distribution than the strong solution X, that means to consider weak solutions of (3.1.1).
For these reasons, we would like, as for Ornstein-Uhlenbeck processes in [26], to transform
the martingale part of the diffusion into a time-changed Brownian motion. However, we
cannot apply such a transformation in the L-class framework, that is why we shall proceed
in a quite different way.
To that end, let us suppose thatX, solution of (3.1.1), can be expressed using a time-changed
Brownian motion:

Xt = fL(t, x0 +Wρ(t)), ∀t ≥ 0, (3.1.3)

with ρ(0) = 0, ρ′(t) > 0, for all t > 0 and fL(0, x) = x for any x ∈ R.

Lemma 3.1.3. Let θ the function defined in (3.1.2). Then the unique weak solution of
(3.1.1) is the process (Xt, t ≥ 0) defined in (3.1.3) with

fL(t, x) =
σ̃(t)√
ρ′(t)

x+ c(t), c(t) = e−θ(t)
∫ t

0

β(s)eθ(s)ds

and ρ(t) =

∫ t

0

σ̃(s)2e2θ(s)ds. (3.1.4)

Proof. Let us first introduce the process (Mt)t∈R+ defined by

Mt :=

∫ t

0

√
ρ′(s)dWs (3.1.5)

where Wt is the Brownian motion introduced in (3.1.1). We notice that this process is
a martingale with respect to the Brownian filtration and 〈M〉t =

∫ t
0
ρ′(s)ds = ρ(t). We

introduce the process X̂t := fL(t, x0 +Mt). Using Itô’s formula we get

dX̂t =
∂fL
∂t

(t,Mt)dt+
1

2
ρ′(t)

∂2fL
∂x2

(t,Mt)dt+
∂fL
∂x

(t,Mt)
√
ρ′(t)dWt.
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Computing all functions appearing in the previous equality, the stochastic process X̂t is
solution of (3.1.1). Using Dambis & Dunbins-Schwarz Martingale representation theorem
(see Theorem V.1.6 p.170 [53]), there exists a Brownian motion Bt such that

Mt = B〈M〉t , ∀t ≥ 0. (3.1.6)

We deduce that Mt ∼ WρL(t) and therefore (X̂t)t≥0 ∼ (Xt)t≥0 with
Xt = fL(t, x0 +Wρ(t)).

Remark 3.1.4. Let us just fix the parameter γ appearing in the expression of (Xt, t ≥ 0)
for notation simplicity: γ = 1.

Remark 3.1.5. If the starting time associated to the study of the L-class diffusion is not
the origin but another time t0, then we also obtain an expression similar to (3.1.3). Let Yt
be the unique weak solution of{

dYt=(α(t+ t0)Yt + β(t+ t0))dt+ σ̃(t+ t0)dWt, t ≥ 0
Y0 =Xt0 .

Then
Yt = fL(t+ t0, Xt0e

−
∫ t0
0 α(s)ds +Wρ(t+t0)−ρ(t0))− e

∫ t+t0
t0

α(s)dsc(t0). (3.1.7)

3.1.2 Spheroids associated to a L-class diffusion process

Introducing the exit time of the spheroid.

We determine a specific spheroid for the diffusion by using the link with the time-changed
Brownian motion. The boundaries of the spheroid associated to the diffusion starting at
time t0 in x0 are denoted by ψL±(t; t0, x0) and the corresponding exit time is

τ t0L = inf{t > 0 : Y L
t /∈ [ψL−(t; t0, x0), ψL+(t; t0, x0)]}.

Proposition 3.1.6. Let us consider the spheroid starting in (t0, Xt0) with boundaries defined
by

ψL±(t; t0, Xt0) = e−θ(t+t0) ψ±(ρ(t+ t0)− ρ(t0)) + c(t+ t0)

+ (Xt0 − c(t0))e
∫ t+t0
t0

α(s)ds

for all t ≥ 0, then the associated exit time satisfies

τ t0L
d
= ρ−1

L (τ + ρL(t0))− t0 (3.1.8)

where τ = inf{u > 0 : Wu /∈ [ψ−(t), ψ+(t)]}, ψ± being defined in (1.3.1).
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Proof. By definition,

τ t0L = inf{t > 0 : Yt /∈ [ψL−(t; t0, Xt0), ψ
L
+(t; t0, Xt0)]}

= inf
{
t > 0 : e−θ(t+t0) Wρ(t+t0)−ρ(t0) + c(t+ t0) + (Xt0 − c(t0))e

∫ t+t0
t0

α(s)ds

/∈ [ψL−(t; t0, Xt0), ψ
L
+(t; t0, Xt0)]

}
.

Using ψL± introduced in the statement, we obtain the following expression for τ t0L :

inf
{
t > 0 : Wρ(t+t0)−ρ(t0) /∈ [ψ−(ρ(t+ t0)− ρ(t0)), ψ+(ρ(t+ t0)− ρ(t0))]

}
= inf{ρ−1(u+ ρ(t0))− t0 > 0 : Wu /∈ [ψ−(u), ψ+(u)]}
= ρ−1

L (τ + ρL(t0))− t0,

where τ = inf{u > 0 : Wu /∈ [ψ−(u), ψ+(u)]}.

Size determination of the spheroids

To define a WOMS algorithm for the L-class diffusions, we need to determine a suitable size
for the spheroids in order to stay fully contained in the considered interval. Such size can
be chosen by describing both the minimum and the maximum of the spheroid boundaries.
The size of the Brownian spheroid introduced in (1.3.1) depends on a scaling parameter
d > 0, the support of the associated boundaries ψ± being therefore equal to [0, d2]. Since
the generalized spheroids used for L-class diffusion are directly linked to the Brownian ones,
the parameter d also changes their size and the boundaries ψL± are defined on the support
[0, ρ−1(d2 + ρ(t0))− t0]. Let us now precise this parameter d.

Proposition 3.1.7. Let m > 0 and 0 < γ < 1. For any (x0, t0) ∈ [a, b] × R+ we define a
parameter d = d(x0, t0) such that the spheroid associated to the L-class diffusion starting in
(t0, x0) is totally included in [aγ,x0 , bγ,x0 ]. Here aγ,x0 and bγ,x0 stands for aγ,x = a+ γ(x− a)
and bγ,x = b− γ(b− x). This parameter is given by

d =


min(1,κ+)

∆m
(bγ,x0 − x0) if b− x0 6 x0 − a

min(1,κ−)
∆m

(x0 − aγ,x0) if x0 − a 6 b− x0

(3.1.9)

where

∆m = e−θ(t0)e
∫ t0+m
t0

|α(s)|ds

(
1√
e

+

√∫ t0+m

t0

|β(s) + x0 α(s)|2
σ̃(s)2

ds

)
, (3.1.10)

and κ± are defined by the following equations:

κ+(bγ,x0 − x0) = ∆m

√
ρ(t0 +m)− ρ(t0)

and
κ−(x0 − aγ,x0) = ∆m

√
ρ(t0 +m)− ρ(t0).
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Remark 3.1.8. • The previous statement consists in finding d such that
d 6 1

∆m
(bγ,x0 − x0),

d 6 1
∆m

(x0 − aγ,x0),
d2 6 ρ(t0 +m)− ρ(t0).

The last condition in particular leads to t 6 m since ρ is a strictly increasing function.

• It is possible to let m depend on the couple (t0, x0) which should permit to obtain bigger
spheroids which are still included in the interval. Nevertheless for numerical purposes,
such a procedure slows down drastically the algorithm we are going to present.

• The choice of the constant m is important, since it either slows down or speeds up the
algorithm.

• It is also possible to replace x0 by max(|a|, |b|) in the definition of ∆m which therefore
becomes independent of the starting position x0. Nevertheless such a replacement slows
down the algorithm.

Proof of Proposition 3.1.7. Let us first point out an upper bound for ψL+ starting in (t0, x0).
We first require that d2 6 ρ(t0 + m) − ρ(t0). Let us define RL

+(t) := ψL+(t; t0, x0) − x0. By
definition

RL
+(t) = e−θ(t0+t)

(
ψ+(ρ(t+ t0)− ρ(t0)) +

∫ t0+t

t0

β(s)e−
∫ s
0 α(u)duds

)
+ x0

(
e
∫ t+t0
t0

α(u)du − 1
)
.

Recalling Proposition 1.3.2, we obtain

RL
+(t) ≤ e−θ(t0+t)

(
d√
e

+

∫ t0+t

t0

β(s)eθ(s)ds

)
+ x0 e

−θ(t0+t)
(
eθ(t0) − eθ(t+t0)

)
RL

+(t) 6 e−θ(t0+t)

(
d√
e

+

∫ t0+t

t0

β(s)e−
∫ s
0 α(u)duds

)
+ x0 e

−θ(t0+t)

(∫ t+t0

t0

α(s)e−
∫ s
0 α(u)du

)
6 e−θ(t0)+

∫ t0+t
t0

|α(s)|ds
(
d√
e

+

∫ t0+t

t0

|β(s) + x0 α(s)|
σ̃(s)

σ̃(s)e−
∫ s
0 α(u)duds

)
,

since σ̃ is a positive function. Using Cauchy-Schwarz’s inequality, we obtain the following
upper-bound for SL+(t) := eθ(t0)e−

∫ t0+t
t0

|α(s)|dsRL
+(t):

SL+(t) ≤ d√
e

+

(∫ t0+t

t0

|β(s) + x0 α(s)|2

σ̃(s)2
ds

∫ t0+t

t0

σ̃(s)2e−2
∫ s
0 α(u)duds

)1/2

=
d√
e

+

(∫ t0+t

t0

|β(s) + x0 α(s)|2

σ̃(s)2
ds

)1/2

(ρ(t+ t0)− ρ(t0))1/2 .
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Using ρ(t0 + t)− ρ(t0) 6 d2 and t 6 m, leads to

RL
+(t) 6 de−θ(t0)+

∫ t0+m
t0

|α(s)|ds

(
1√
e

+

√∫ t0+m

t0

|β(s) + x0 α(s)|2
σ̃(s)2

ds

)
= d∆m.

Under the condition d∆m + x0 6 bγ,x0 , we observe that the spheroid belongs to the interval
d∆m + x0 6 bγ,x0 . Therefore we shall choose

d 6
1

∆m

(bγ,x0 − x0). (3.1.11)

Let us now deal similarly with a lower-bound of ψL−. We define

RL
−(t) := ψL−(t; t0, x0)− x0.

Hence

RL
−(t) = e−θ(t0+t)

(
ψ−(ρ(t+ t0)− ρ(t0)) +

∫ t0+t

t0

β(s)e−
∫ s
0 α(u)duds

)
+ x0

(
e
∫ t+t0
t0

α(u)du − 1
)

> e−θ(t0+t)

(
− d√

e
+

∫ t0+t

t0

(β(s) + x0 α(s)) e−
∫ s
0 α(u)duds

)
> e−θ(t0+t)

(
− d√

e
−
∫ t0+t

t0

|β(s) + x0 α(s)|e−
∫ s
0 α(u)duds

)
> −e−θ(t0)e

∫ t0+m
t0

|α(s)|ds
(
d√
e

+

∫ t0+t

t0

|β(s) + x0 α(s)|e−
∫ s
0 α(u)duds

)
.

Using then the same arguments as for the upper bound, we obtain

ψL−(t; t0, x0) > −∆md+ x0.

The condition −∆md+ x0 > aγ,x0 is equivalent to

d 6
1

∆m

(x0 − aγ,x0). (3.1.12)

Combining (3.1.11), (3.1.12) and d2 6 ρ(t0 +m)−ρ(t0), we deduce the announced statement.

3.1.3 WOMS algorithm for L-class diffusions

Let us present now the random walk on spheroids which permits to approximate the L-class
diffusion exit time.
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Algorithmm (L-class WOMS)
Step 1. Initiate Z = x0 and Tε = 0

Step 2. While Z 6 b− ε and Z > a+ ε

Step 2.1 Simulate a couple of independent random variables (τL,B) where τL denotes the
exit time for the diffusion from the spheroid defined by ψL± with coefficient d = d(Tε, Z)
defined in (3.1.9) and B is Bernoulli distributed B(1

2
). The r.v. B indicates if the

diffusion hits the lower boundary. Due to symmetry properties, its average equals 1/2.
Step 2.2 If B = 1 then set Z ← ψL−(τL; Tε, Z)

otherwise set Z ← ψL+(τL; Tε, Z).
Step 2.3 Tε ← Tε + τL.
Outcome: Tε the approximated exit time from the interval [a, b] for the diffusion (Xt, t ≥
0).

As usual let us describe the efficiency of the algorithm. This algorithm is particularly
efficient since its averaged number of steps is of the order | log(ε)| and since its outcome
Tε converges towards the value of the exit time as ε tends to 0. We present these two
results in details in the following subsections. Even if the statement of these results look
like similar to those presented in the Ornstein-Uhlenbeck context (see [26]), the situations
are clearly different since here the coefficients - and therefore the size of the spheroids - are
time-dependent.
Since the L-class diffusions are non homogeneous, the sequence (Zn)n of successive exit
positions, appearing in the algorithm, does not define a Markov chain. We need therefore
to consider both the successive times and positions (Tn, Xn) in order to deal with a Markov
chain. Here Tn stands for the cumulative time:

Tn =
n∑
k=1

τLk , n ≥ 1. (3.1.13)

3.2 Properties of the algorithm

3.2.1 Average number of steps

In order to describe precisely the average number of steps in Algorithmm, we introduce
two crucial additional hypotheses.

Assumption 3.2.1. There exist q′ ∈ [0, 1[ and q ∈ [0, 1], Cσ̃,β > 0 and σ > 0 such that

|α(t)| = O((ln t)q
′
), for large values of t, (3.2.1)

and
σ 6 σ̃(t) 6 Cσ̃,β t

q/4, |β(t)| 6 Cσ̃,β t
q/4, for t large enough. (3.2.2)
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Assumption 3.2.2. There exists χm > 0 such that, for any t large enough,

inf
s∈[t,t+m]

σ̃(s) > χm sup
s∈[t,t+m]

σ̃(s). (3.2.3)

Theorem 3.2.1. Let us assume that Assumptions 3.2.1 and 3.2.2 are satisfied for a partic-
ular parameter m > 0. Then for any parameter q̃ > q, there exists a constant Cq̃ > 0 such
that Nε, the number of steps observed in Algorithmm has the following upper-bound:

E[N1−q̃
ε ] 6 Cq̃| log(ε)|,

for any ε > 0 small enough.

In particular, for a L-class diffusion with bounded coefficients, we can prove that E[Nε] 6
C0| log(ε)|, for ε small enough.

Let us notice that Algorithmm can be modified in order to approximate the stopping
time T ∧ Tmax where Tmax is a fixed time horizon. It suffices in such a situation to observe
the path skeleton (Tn, Xn)n≥0 up to the exit from the domain [0, Tmax] × [a + ε, b − ε]. The
proof of Theorem 3.2.1 can be adapted to this modified algorithm: there exists a constant
C > 0 such that the average number of spheroids satisfies

E[Nε] 6 C| log(ε)|,

for any ε > 0 small enough. Since this result only concerns the diffusion process on the
restricted time interval [0, Tmax], we don’t need any particular assumption on the large time
behaviour of the coefficients α, β and σ̃. Assumption 3.2.1 and 3.2.2 are therefore not
necessary for the modified algorithm.

We postpone the proof of Theorem 3.2.1 and present several preliminary results. First
we shall focus our attention on a comparison result between the L-class diffusion and a
particular autonomous diffusion. Secondly we describe particular solutions of PDEs related
to the diffusion generator. Finally we prove Theorem 3.2.1 using the martingale theory.

A comparison result for SDEs

We introduce two different results: the first one permits to skip the diffusion coefficient in
(3.1.1) and the second one permits to replace the time-dependent drift term by a constant
drift.

Proposition 3.2.2. Let (Xt, t ≥ 0) the solution of the SDE (3.1.1). We define the strictly
increasing function γ by ∫ γ(t)

0

σ̃2(s)ds = t, t ≥ 0.

Then Yt := Xγ(t) satisfies the following SDE

dYt =
( α(γ(t))

σ̃2(γ(t))
Yt +

β(γ(t))

σ̃2(γ(t))

)
dt+ dBt, t ≥ 0, (3.2.4)

where (Bt)t≥0 is a one-dimensional Brownian motion.
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Proof. Using the definition of Yt, we get

Yt = Xγ(t) = x+

∫ γ(t)

0

(
α(s)Xs + β(s)

)
ds+

∫ γ(t)

0

σ̃(s)dWs

= x+

∫ t

0

(
α(γ(s))Xγ(s) + β(γ(s))

)
γ′(s) ds+Bt

= x+

∫ t

0

(
α(γ(s))Ys + β(γ(s))

)
γ′(s) ds+Bt

where Bt =
∫ γ(t)

0
σ̃(s)dWs is a standard Brownian motion.

We obtain the following comparison result, its proof can be found in [34] (Chapter VI).

Proposition 3.2.3. Let T > 0 and let us define

µT := inf
x∈[a,b], t≤γ−1(T )

{ α(γ(t))

σ̃2(γ(t))
x+

β(γ(t))

σ̃2(γ(t))

}
.

Let (ZT
t )t≥0 the Brownian motion with drift satisfying

ZT
t = x+ µT t+Bt, t ≥ 0. (3.2.5)

Then (Yt) the solution of (3.2.4) with initial condition x satisfies

(ZT
t ≤ Yt a.s., ∀t ≤ γ−1(T )) and (ZT

γ(t) ≤ Xt a.s. ∀t ≤ T ).

Remark 3.2.4. Choosing rather the particular value

µT := sup
x∈[a,b], t≤γ−1(T )

{ α(γ(t))

σ̃2(γ(t))
x+

β(γ(t))

σ̃2(γ(t))

}
,

leads to (ZT
t ≥ Yt a.s. for all t 6 γ−1(T )).

An Initial-Boundary Value problem

We consider a value problem which is directly linked to the L-class diffusions: let F :
(R+, [a, b])→ R be the solution of

∂F

∂t
+ (α(t)x+ β(t))

∂F

∂x
+

1

2
σ̃(t)2∂

2F

∂x2
= 0 (3.2.6)

with initial and boundary conditions F (0, x) = x, F (t, a) = a, F (t, b) = b.
It is well-known (see, for instance, [2], Chap.II) that F admits a probabilistic represen-

tation. Indeed

F (t, x) = Ex[Xt∧T ], ∀t ≥ 0, ∀x ∈ [a, b], (3.2.7)
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where (Xt, t ≥ 0) satisfies (3.1.1) and T stands for the first exit time from the interval
[a, b]. Let us just note that we don’t need at that moment to assume or verify that the exit
time T is almost surely finite. Obviously t ∧ T is finite and this fact permits to properly
define the probabilistic representation (3.2.7). However it would be a nonsense to propose a
numerical approximation of an infinite stopping time. Hence, for the sake of completeness,
we emphasize the importance of both Assumption 3.2.1 and 3.2.2 which imply the finiteness
of T as a by-product of Theorem 3.2.1 and Theorem 3.2.10 (see Remark 3.2.11).
Let us now list some useful properties of the function F . Since the functions α, β and σ̃ in
(3.1.1) are Hölder-continuous, we deduce that F , ∂F

∂t
, ∂F
∂x

and ∂2F
∂x2

are also Hölder-continuous
(see, for instance, Theorem 9 of Chapter 3 in [18]). A combination of classical arguments
permits to prove the following statements.

Lemma 3.2.5. The function x 7→ F (t, x) defined in (3.2.7) is increasing on the set [a, b].

Proof. It suffices to compare two paths X and X ′, having different starting points x and
x′ with x > x′ and satisfying the same SDE. By coupling properties, we obtain that for all
s > 0, Xs > X ′s and if there exists s0 such that Xs0 = X ′s0 then Xs = X ′s for all s > s0.
Several cases can occur concerning the values of Xt∧τab and X ′t∧τab . Either both exit times
occur after the fixed time t, either both exit times occur before t, either only one of them
occurs before t. Different situations are illustrated in Figure 3.1. Observing carefully all
possible scenarios, it is straightforward to observe Xt∧τab ≥ X ′t∧τab in any case.

b

a

x

t

x
′

b

a

t

x

x
′

b

a

x
′

x

t t

b

a

x
′

x

Figure 3.1: Possible scenarios occurring when observing the two different paths driven by the same
noise.
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Proposition 3.2.6. The function x 7→ F (t, x) defined in (3.2.7) is continuous on the interval
[a, b].

Proof. We consider two strong solutions (Xx
t )t≥0 and (X̃x+h

t )t≥0 satisfying (3.1.1) with dif-
ferent starting point spaced by h > 0. The exit time of the diffusion Xx (respectively X̃x+h)
should be denoted by τab (resp. τ̃ab) but for notational simplicity, we skip the index ab. Let
T be a fixed time, using the definition of F , we have

0 6 F (T, x+ h)− F (T, x)

= E[X̃x+h
T∧τ̃ − X̃

x+h
T∧τ∧τ̃ + X̃x+h

T∧τ∧τ̃ −X
x
T∧τ +Xx

T∧τ∧τ̃ −Xx
T∧τ∧τ̃ ]

= E[χT∧τ∧τ̃ ] + E[(X̃x+h
T∧τ̃ − X̃

x+h
T∧τ )1{τ̃>τ} − (Xx

T∧τ −Xx
T∧τ̃ )1{τ̃6τ}],

where χT∧τ∧τ̃ := X̃x+h
T∧τ∧τ̃ − Xx

T∧τ∧τ̃ = he
∫ T∧τ∧τ̃
0 α(u)du 6 he

∫ T
0 α(u)du for all T ≥ 0. Let δ > 0.

We can split each term as follows

E[(X̃x+h
T∧τ̃ − X̃

x+h
T∧τ )1{τ̃>τ}] 6 E[(X̃x+h

T∧τ̃ − X̃
x+h
T∧τ )1{τ̃>τ, X̃x+h

T∧τ̃−X̃
x+h
T∧τ>δ}

]

+ δP(τ̃ > τ, 0 6 X̃x+h
T∧τ̃ − X̃

x+h
T∧τ 6 δ)

6 (b− a)P(τ̃ > τ, X̃x+h
T∧τ̃ − X̃

x+h
T∧τ > δ) + δ

6 (b− a)P(τ̃ > τ, T > τ, X̃x+h
T∧τ̃ − X̃

x+h
τ > δ) + δ.

Similarly we obtain for the second term:

E[(Xx
T∧τ̃ −Xx

T∧τ )1τ̃6τ ] 6 E[(Xx
t∧τ̃ab −X

x
t∧τab)1τ̃ab6τab,Xx

t∧τ̃ab
−Xx

t∧τab
>δ

+ (Xx
t∧τ̃ab −X

x
t∧τab)1τ̃ab6τab,06Xx

t∧τ̃ab
−Xx

t∧τab
6δ]

6 (b− a)P(τ̃ab 6 τab, X
x
t∧τ̃ab −X

x
t∧τab > δ)

+ δP(τ̃ab 6 τab, 0 6 Xx
t∧τ̃ab −X

x
t∧τab 6 δ)

6 (b− a)P(τ̃ab 6 τab, X
x
t∧τ̃ab −X

x
t∧τab > δ) + δ

6 (b− a)P(τ̃ 6 τ, T > τ̃ , Xx
τ̃ −Xx

t∧τ > δ) + δ.

Both probabilities appearing in the previous upper-bound can be treated in a similar way.
We develop the arguments just for one of them: P(τ̃ > τ, t > τ, X̃x+h

t∧τ̃ − X̃x+h
τ > δ). Let us

introduce the shift process ξt = X̃x+h
τ+t . If τ is known (let us say that it is equal to φ) then,

due to the Markov property of the diffusion, (ξt)t>0 satisfies the following SDE:

dξt = (α(t+ φ)ξt + β(t+ φ)) dt+ σ̃(t+ φ)dBt, (3.2.8)

where (Bt)t≥0 is a standard Brownian motion and ξ0 = X̃x+h
τ . Since X̃x+h and Xx are two

strong solutions and since h > 0, we have X̃x+h
t ≥ Xx

t for any t ≥ 0. In particular, the event
τ ≤ τ̃ implies that Xx

τ = a. Therefore on the event τ ≤ τ̃ ,

ξ0 ≤ a+ h exp

∫ φ

0

|α(u)| du =: a+ hΘ(φ).
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By applying the comparison result described in Proposition 3.2.3 (just replacing α by α(·+φ),
β by β(·+φ) and σ̃ by σ̃(·+φ)) we obtain that ξγ(t) ≥ ZT

t defined in (3.2.5) for all t ≤ γ−1(T ).
Of course ZT and ξ have the same initial condition. If we denote by Tl the first passage time
through the level l, then

P(τ̃ > τ, T > τ, X̃x+h
T∧τ̃ − X̃

x+h
τ > δ) 6 Pa+hΘ(T )(Ta+δ+hΘ(T )(Z

T ) 6 Ta(ZT )), (3.2.9)

since Θ(φ) ≤ Θ(T ).
Let us now let δ depend on h, namely δ =

√
h. Using the scale function of a drifted Brownian

motion, we obtain in the small h limit:

Pa+hΘ(T )

(
Ta+δ+hΘ(T )(Z

T ) 6 Ta(ZT )
)

=
e−2µT (a+hΘ(T )) − e−2µT a

e−2µT (a+δ) − e−2µT a

∼ −hΘ(T )
2µT e

−2µT a

e−2µT (a+δ) − e−2µT a
∼ −hΘ(T )

2µT e
−2µT a

√
h

= −2
√
hΘ(T )µT e

−2µT a.

Finally we observe that F (T, x+h) converges towards F (T, x) as h tends to 0+. By symmetry
we obtain also the result for h→ 0−.

The constant c is chosen in such a way that V is non negative on the interval [a+γε, b−γε].
We define then H by H = V ◦F . Using the fact that F is solution of (3.2.6), we obtain that
H is solution of the following partial differential equation :

∂H

∂t
+ (α(t)x+ β(t))

∂H

∂x
+

1

2
σ̃(t)2∂

2H

∂x2
=

1

2
σ̃(t)2V ′′(F (t, x))

(
∂F

∂x
(t, x)

)2

. (3.2.10)

We aim to upper bound the right hand side of this equation. Since V ′′ is a non positive
function, we need to lower bound

(
∂F
∂x

(t, x)
)2.

Remark that R defined by :

R(t, x) = exp

(
−
∫ t

0

α(s)ds

)
∂F

∂x
(t, x) (3.2.11)

is also a solution of (3.2.6).

Proposition 3.2.7. There exists κ > 0 such that for all (t, x) ∈ R+ × [a, b], ∂F
∂x

(t, x) > κ.

Proof. First let us recall that F has a probabilistic representation given by (3.2.7). We
shall use this representation in order to lower bound the space derivative. We consider two
different cases: small times, that is t ≤ 2, or large times t > 2.
First case: t > 2.
We denote by τx the first time the process Xx starting at x exits from the interval ]a, b[ and
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by τx− (respectively τx+) the first exit time from ]a, bh[ (resp. from the first exit time from
]ah, b[) with

bh := b− he
∫ 1
0 |α(s)| ds and ah := a+ he

∫ 1
0 |α(s)| ds. (3.2.12)

We also introduce (Y ±t ) the solutions of the shifted SDEs:

dY −t = (α(t+ τx−)Yt + β(t+ τx−)) dt+ σ̃(t+ τx−)dWt+τx−
, (3.2.13)

with the initial condition Y −0 = a+ he−
∫ 1
0 |α(s)| ds and

dY +
t = (α(t+ τx+h

+ )Yt + β(t+ τx+h
+ )) dt+ σ̃(t+ τx+h

+ )dWt+τx+h+
, (3.2.14)

with the initial condition Y +
0 = b − he−

∫ 1
0 |α(s)| ds. We associate the stopping times T (Y ±),

the exit time from ]a, b[ and Ta(Y ±) (resp. Tb(Y ±)) the first passage times through levels a
and b to these diffusions.

In order to minimize the derivative of F , we need to lower bound the following expecta-
tion, for h > 0:

F (t, x+ h)− F (t, x) = E[Xx+h
τx+h∧t −X

x
τx∧t].

Let us observe particular scenarios which permit the difference between the diffusions to be
equal to the maximal value b− a. To that end, we introduce two events:

Eab := {τx− ≤ 1, Xx
τx−

= a, T (Y −) ≤ 1, Y −T (Y −) = b},

Eba := {τx+h
+ ≤ 1, Xx+h

τx+h+

= b, T (Y +) ≤ 1, Y +
T (Y +) = a}.

By Lemma 3.4.4 and Lemma 3.4.5 (presented at the end of the chapter) Eab ∩ Eba = ∅ and
Eab ∪ Eba ⊂ {Xx+h

τx+h∧t −X
x
τx∧t = b− a} for all t ≥ 2. Hence

F (t, x+ h)− F (t, x) ≥ (b− a)(P(Eab) + P(Eba)). (3.2.15)

Let us first deal with P(Eab). Conditionally to τx− = φ, the strong Markov property of the
diffusion process implies that Y −t has the same distribution as the solution of the SDE :

dξt = (α(t+ φ)ξt + β(t+ φ)) dt+ σ̃(t+ φ)dBt, ξ0 = Y −0 , (3.2.16)

where (Bt) is a standard Brownian motion. Since φ ≤ 1 and T (Y −) ≤ 1 on the event Eab,
we need to describe the paths of the initial diffusions Xx and Xx+h on a time interval of
length at most equal to 2. We can easily adapt the comparison result of Proposition 3.2.6
to obtain that ξt ≥ ZT

γ(t) for all t ≤ 1 and T = 2 (ZT
t being defined in the statement of

Proposition 3.2.3). Let us notice that γ here depends on φ. We deduce that

P
(
T (Y −) ≤ 1, Y −T (Y −)

)
= b
∣∣∣τx− = φ

)
= P

(
Tb(Y −) ≤ 1, Y −T (Y −) = b

∣∣∣τx− = φ
)

= P
(
Tb(Z) ≤ γ−1(1), ZT (Z) = b

∣∣∣τx− = φ
)

≥ P
(
Tb(L) ≤ γ−1

φ (1), LT (L) = b
∣∣∣τx− = φ

)
≥ P

(
Tb(Z) ≤ σ2, ZT (Z) = b

∣∣∣τx− = φ
)
, (3.2.17)
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where σ is the uniform lower bound of σ̃(t). Indeed

γ−1(1) =

∫ 1

0

σ̃2(s+ φ) ds ≥ σ2.

We observe that the lower bound in (3.2.17) does not depend on φ. Consequently

P(Eab) = E
[
1{τx−≤1,Xx

τx−
=a}P

(
T (Y −) ≤ 1, Y −T (Y −) = b

∣∣∣τx−)]
≥ P

(
τx− ≤ 1, Xx

τx−
= a
)
P
(
Tb(Z) ≤ σ2, ZT (Z) = b

)
.

Let us assume now that x ∈]a, a+b
2

] and h ≤ h0. By comparison, the trajectory of Xx always
stays below that of X(a+b)/2. Setting rh = (b− a)/(bh − a) we get

P
(
τx− ≤ 1, Xx

τx−
= a
)

= P
(
T (rhX

x + a(1− rh)) ≤ 1, Xx
τx−

= a
)

= P
(
Ta(rhXx + a(1− rh)) ≤ 1, Xx

τx−
= a
)

= P
(
Ta(Xx) ≤ 1, Ta(Xx) < Tb(rhXx + a(1− rh))

)
≥ P

(
Ta(X(a+b)/2) ≤ 1, Ta(X(a+b)/2) < Tb(rhX(a+b)/2 + a(1− rh))

)
≥ P

(
Ta(X(a+b)/2) ≤ 1, Ta(X(a+b)/2) < Tb(rh0X(a+b)/2 + a(1− rh0))

)
=: κ1

where κ1 is a positive constant independent of both h and x. Hence

P(Eab) ≥ κ11]a,a+b
2

](x)Ψ(h), with Ψ(h) := P
(
Tb(Z) ≤ σ2, ZT (Z) = b

)
. (3.2.18)

It suffices to lower bound the function Ψ using scale functions and an independent exponen-
tial random variable which permits to relate the computation of Ψ to a particular Laplace
transform whose expression is explicit (see, [7] p309).
Let E be an exponentially distributed random variable with parameter λ and let hα =

he−
∫ 1
0 |α(u)|du. Then Ψ(h) can be lower-bounded by the difference of Ψ1(h) and Ψ2(h):

Ψ(h) := Pa+hα

(
Tb(Z) ≤ σ2, ZT (Z) = b

)
> Pa+hα

(
T (Z) ≤ E , T (Z) = Tb(Z)

)
− Pa+hα

(
T (Z) = Tb(Z), T (Z) 6 σ2, E > σ2

)
= Ψ1(h)−Ψ2(h).
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The first term of the r.h.s Ψ1(h) is evaluated as follows

Ψ1(h) = Pa+hα

(
Tb(Z) ≤ E , T (Z) = Tb(Z)

)
= Pa+hα

(
e−λT > U, T (L) = Tb(L)

)
= Ea+hα

[
e−λT 1{T (Z)=Tb(Z)}

]
= eµ(b−a−hα) sinh(hα

√
2λ+ µ2)

sinh((b− a)
√

2λ+ µ2)

∼ eµ(b−a) hα
√

2λ+ µ2

sinh((b− a)
√

2λ+ µ2)

∼ eµ(b−a) he
−

∫ 1
0 |α(u)|du

√
2λ+ µ2

sinh((b− a)
√

2λ+ µ2)
, as h tends to 0.

The second term Ψ2(h) has to be upper bounded:

Ψ2(h) = Pa+hα

(
T (Z) = Tb(Z), T (Z) 6 σ2, E > σ2

)
= Pa+hα

(
T (Z) = Tb(Z), T (Z) 6 σ2,

)
P
(
E > σ2

)
6 Pa+hα

(
T (Z) = Tb(Z)

)
e−λσ

2

.

Using the scale function of the drifted Brownian motion, we obtain

Pa+hα

(
T (Z) = Tb(Z)

)
= e−

∫ 1
0 |α(u)|du e

−2µ(a+hα) − e−2µa

e−2µb − e−2µa

∼ −he−
∫ 1
0 |α(u)|du 2µe−2µa

e−2µb − e−2µa
as h tends to 0.

If the parameter of the exponentially distributed r.v. becomes large then it is easy to
prove that Ψ2(h) becomes negligible with respect to Ψ1(h). Consequently we can choose a
particular value of λ which leads to 2Ψ2(h) ≤ Ψ1(h) and therefore permits to bound Ψ(h)
by below.
Combining (3.2.18) and the description of Ψ(h), we manage to bound P(Eab) by below for
x ≤ (a + b)/2. In the case where the starting point of the diffusion is in the lower part of
the interval, we bound P(Eba) by below with the value 0 which implies the existence of a
strictly positive lower bound of P(Eab) + P(Eba). In the other case (i.e. the starting point is
in the upper part of the interval), we bound P(Eab) by below with the value 0 and deal with
P(Eba) in a similar way as previously described. In any case, the inequality (3.2.15) leads to
the existence of κ > 0 such that

∂F

∂x
(t, x) > κ, ∀(t, x) ∈ [2,∞[×[a, b].

Second case: t 6 2.
First we consider the derivative at the boundary of the interval [a, b]. Let us note that
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F (t, a) = a. Hence ∂F
∂x

(t, a) = limh→0+
1
h

(Ea+h[Xt∧τab ] − a). Since we need a lower bound,
we shall use a comparison result concerning the L-class diffusions. Proposition 3.14 leads
to ZT

γ(t) ≤ Xt for all t ≤ T . We set here T = 2 and µT is defined in the statement of the
proposition. If µT ≥ 0 then we replace it by a strictly negative value and therefore the
comparison result remains true. So we assume for the sequel that µT < 0. We deduce that

Ea+h[Xt∧τab ]− a ≥ Ex[ZT
γ(t)∧τab ], (3.2.19)

where τab stands either for the exit time of X either for the exit time of Z. Let us now
consider the convex function f(x) = e−2µT x. It is well known that Then MT

t := f(ZT
t ) is

a martingale. The function f is a convex one : if µT < 0 (if µT > 0 we just take the drift
equal to 0) then

x− a ≥ (b− a)

f(b)− f(a)
(f(x)− f(a)),∀x ∈]a, b[.

As f is the scale function of the drifted Brownian motion, f(ZT
t ) is a martingale and the

optimal stopping theorem leads to

Ex[ZT
γ(t)∧τab − a] ≥ (b− a)

f(b)− f(a)
Ex
[
e
−2µTZ

T
γ(t)∧τab − e−2µT a

]
=

(b− a)

f(b)− f(a)

(
e−2µT x − e−2µT a

)
.

In particular, for x = a+ h,

Ea+h[Z
T
t∧τab − a] ≥ (b− a)e2µT (b−a)(e−2µT h − 1)

∼ −2µTh(b− a)e2µT (b−a), as h tends to 0.

We obtained the existence of a constant ηaT > 0 such that ∂F
∂x

(t, a) > ηaT , for any t 6 2.
By similar arguments, we can obtain ∂F

∂x
(t, b) > ηbT , for all t 6 2. Since ∂F

∂x
(t, x) satisfies a

second order parabolic PDE with regular coefficients, we can apply the maximum principle
(see, for instance, [17] or [18]). Consequently the minimum of the derivative on the domain
[0, 2] × [a, b] is reached at the boundary. Let us observe what happens on each side of this
rectangle. For x = a we have just proven that there exists a minimum which is strictly
positive so is it for x = b. For t = 0 the derivative is equal to 1 and for t = 2 the first
part of the proof ensures the derivative to be minimized. To sum up, the derivative is lower
bounded by a strictly positive constant on the whole rectangle [0, 2]× [a, b].

Proposition 3.2.8. There exists two constants κa > 0 and κb > 0 such that

F (t, x)− a 6 κa(x− a) and b− F (t, x) 6 κb(b− x), (3.2.20)

for all (t, x) ∈ R+ × [a, b].
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Proof. Let us recall the probabilistic representation: F (t, x) = E[Xx
t∧T ].

We set T = γ(1) and consider (ZT
t ) the diffusion introduced in Remark 3.2.4 with initial

condition ZT
0 = Xx

0 = x. We construct a new continuous diffusion process (Zt) which is
equal to (ZT

t ) on the time interval [0, 1] and which satisfies the following SDE otherwise:

dZt =
( α(γ(t))

σ̃2(γ(t))
Zt +

β(γ(t))

σ̃2(γ(t))

)
dt+ dWt, t > 1.

Extending the comparison result of Remark 3.2.4, we know that Zt ≥ Xγ(t) for all t ≥ 0.
Hence

F (t, x)− a ≤ Ex[Zγ−1(t)∧T (Z) − a].

We split the study into two different cases :

• First case: γ−1(t) ≤ 1. The function f(x) = e−2µT x plays an important role since f(Zt)
is a martingale for t ≤ γ(1). Using twice the Lagrange mean theorem combined with
the optional stopping theorem implies

F (t, x)− a ≤ η1Ex
[
e−2µTZ

T
t∧T − e−2µT a

]
= η1

(
e−2µT x − e−2µT a

)
≤ κa(x− a),

where κa =
(

supx∈[a,b] f
′(x)
)(

infx∈[a,b] f
′(x)
)−1

.

• Second case: γ−1(t) > 1. We decompose F as follows

F (t, x)− a ≤ Ex[(Zγ−1(t)∧T (Z) − a)1{T (Z)>1}]

+ Ex[(Zγ−1(t)∧T (Z) − a)1{T (Z)≤1}]

≤ (b− a)Px(T (ZT ) > 1) + Ex[(ZT
1∧T (ZT ) − a)1{T (ZT )≤1}]

≤ (b− a)Ex[T (Zµ)] + Ex[Zµ
1∧T (Zµ)]− a.

The expression Ex[ZT
1∧T (ZT )]− a can be bounded using similar arguments (Lagrange’s

mean and optional stopping theorems) as those presented in the first part of the proof.
Moreover, let us note that the function g(x) := Ex[T (ZT )] is solution ([2], page 45,
Theorem 1.2) of

1

2
g′′ + µTg

′ = −1 for x ∈]a, b[ and g(a) = g(b) = 0.

We recall that T = γ(1) and µT is defined in Remark 3.2.4. The explicit solution of
this equation is given by

g(x) =
(b− a)(e−2µT a − e−2µT x)

µT (e−2µT a − e−2µT b)
− (x− a)

µT
.

Applying once again Lagrange’s mean theorem, we obtain the existence of a constant
Cg > 0 such that g(x) 6 Cg(x − a) for all x ∈ [a, b]. Using similar arguments (just
replacing Remark 3.2.4 by Proposition 3.2.3), we also prove that b−F (t, x) 6 κb(b−x).
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Proof of Theorem 3.2.1.

We already presented all the necessary ingredients in order to prove the statement of Theorem
3.2.1 which concerns the average number of steps.

Proof. Our choice for the bound of the average number of steps is based on the martingale
theory. We recall that F is defined by (3.2.7) and introduce another important function H
defined by H = V ◦ F with

V (x) = log

(
(x− a)(b− x)

γε(b− a− γε)

)
. (3.2.21)

Let us note that V is non negative on the whole interval [a + γε, b − γε]. Since F is a the
solution of (3.2.6), the function H just introduced satisfies the following partial differential
equation:

∂H

∂t
+ (α(t)x+ β(t))

∂H

∂x
+

1

2
σ̃(t)2∂

2H

∂x2
=

1

2
σ̃(t)2V ′′(F (t, x))

(
∂F

∂x
(t, x)

)2

. (3.2.22)

Let us also recall that (Tn, Xn) defined in (3.1.13) is the sequence of successive exit times
and exit positions issued from Algorithmm.
We focus our attention on the sequence Zn = H(Xn)+G(n) with G(0) = 0. HereG stands for
a positive function, we are going to precise this function in the sequel. This stochastic process
is a super-martingale with respect to the Brownian filtration (FTn)n∈N. Using Itô’s formula
and the partial differential equation satisfied by H, we obtain for Dn := E[Zn+1 − Zn|FTn ],

Dn = E
[∫ Tn+1

Tn

∂H

∂t
(s,Xs) + (α(s)Xs + β(s))

∂H

∂x
(s,Xs)

+
1

2
σ̃(s)2∂

2H

∂x2
(s,Xs)ds

∣∣∣∣FTn]
+ E[Mn+1 −Mn|FTn ] + (G(n+ 1)−G(n))

= E

[∫ Tn+1

Tn

1

2
σ̃(s)2V ′′(F (s,Xs))

(
∂F

∂x
(s,Xs)

)2

ds

∣∣∣∣∣FTn
]

+ (G(n+ 1)−G(n)),

where (Mn)n∈N =
(∫ Tn

0
σ̃(s)∂H

∂x
(s,Xs)dWs

)
n∈N

is a martingale. Using Lemma 3.2.7, Propo-
sition 3.2.8 and the lower bound σ of σ̃ we obtain

Dn ≤ −
1

2
σ2κ2(I(a) + I(b)) +G(n+ 1)−G(n), (3.2.23)

where I(x) = E
[∫ Tn+1

Tn
1

κ2x(Xs−x)2
ds
∣∣∣FTn].
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We aim to bound by below the previous integral by considering the shape of the nth spheroid:

ψL+(t)− aγ,Xn 6 dn∆m +Xn − aγ,Xn
6 min(1, κ−)(Xn − aγ,Xn) +Xn − aγ,Xn
≤ 2(Xn − a). (3.2.24)

This bound implies

I(a) > E
[∫ Tn+1

Tn

ds

4κ2
a(Xn − a)2

∣∣∣∣FTn] = E
[

Tn+1 − Tn
4κ2

a(Xn − a)2

∣∣∣∣FTn]
= E

[
ρ−1
L (ρL(Tn) + τn+1)

4κ2
a(Xn − a)2

∣∣∣∣FTn]
where τn+1 is the Brownian exit time from the spheroid of parameter size dn.

I(a) ≥ E
[

τn+1

4κ2
arn(Xn − a)2

∣∣∣∣FTn]
where rn is the maximum of the derivative ρ′ on the time interval [Tn, Tn+m] which contains
[Tn, ρ

−1
L (ρL(Tn) + τn+1)]. We note that τn+1 ∼ d2

nτ where τ denotes the Brownian exit time
from the Brownian spheroid of parameter 1. Hence

I(a) ≥ d2
n

4κ2
arn(Xn − a)2

E[τ ].

Similarly to (3.2.24) we have bγ,Xn−ψL−(t) ≤ 2(b−Xn) and the same arguments just presented
lead to

I(b) = E
[∫ Tn+1

Tn

ds

κ2
b(b−Xs)2

∣∣∣∣FTn] > d2
n

4κ2
brn(b−Xn)2

E[τ ].

Setting κab = max(κa, κb), we obtain

Dn 6 − d2
n

rnκ2
ab

E[τ ]

(
1

(b−Xn)2
+

1

(Xn − a)2

)
+G(n+ 1)−G(n).

Let us first consider the case: Xn − a 6 b −Xn (the other case can be studied in a similar
way, it suffices to replace Xn − aγ,Xn by bγ,Xn −Xn). Then dn = min(1,κ−)

∆m
(Xn − aγ,Xn) and

Dn 6 −2
d2
n

rnκ2
ab

E[τ ]
1

(Xn − a)2
+G(n+ 1)−G(n)

6 −min(1, κ−)2

rn∆2
mκ

2
ab

E[τ ] +G(n+ 1)−G(n).

We finally find G by seeking a lower bound of min(1,κ−)2

rn∆2
m

. We consider two different cases:
First case: κ− ≥ 1. We introduce αn, βn and σ̃n the maximum of |α| respectively |β| and σ̃
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on the time interval [0, nm]. The definition of ∆m given by (3.1.10) and the definition of ρ
by (3.1.4) lead to

∆2
mrn 6 e4

∫ Tn+m
Tn

|α(s)| dsσ̃2
n

 1√
e

+

√∫ Tn+m

Tn

|β(s)|2
σ̃(s)2

ds

2

6 e4mαnσ̃2
n

(
1√
e

+
√
m
βn
σ

)2

.

For the other case: κ− < 1

min(1, κ−)2

rn∆2
m

>
ρ(Tn +m)− ρ(Tn)

rn(b− a)2
=

∫ m
0
ρ′(Tn + s)ds

rn(b− a)2
.

Using the definitions of ρ, rn and the continuity of σ̃, there exists t0 ∈ [Tn, Tn +m] such that
rn = ρ′(t0) and therefore

ρ′(Tn + s)

rn
=
σ̃2(Tn + s)

σ̃2(t0)
e
−2

∫ Tn+s
t0

α(u) du ≥ σ̃2(Tn + s)

σ̃2(t0)
e−2|Tn+s−t0|αn

≥ σ̃2(Tn + s)

σ̃2(t0)
e−2mαn .

Since σ̃ satisfies Assumption 3.2.2, we obtain the following lower bound by integrating with
respect to the variable s,

min(1, κ−)2

rn∆2
m

≥ mχm
(b− a)2

e−2mαn .

Denoting ζn+1 the minimum of the two quantities previously computed, we define recursively
the sequence G(n) by

G(n+ 1)−G(n) = ζn+1, ∀n > 0, and G(0) = 0.

The sum of these increments leads to

n−1∑
i=0

G(i+ 1)−G(i) =
n∑
i=1

ζi = G(n)−G(0) = G(n).

For any parameter q̃ > q, Assumption 3.2.1 implies the existence of a constant C̃ > 0
independent of ε such that

G(n) >
1

C̃

n∑
k=1

1

kq̃
>

1

C̃(1− q̃)
(n1−q̃ − 1), ∀n ≥ 1. (3.2.25)
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Moreover the particular choice of the function G permits to obtain Dn ≤ 0 for all n. Conse-
quently Zn = H(n,Xn) + G(n) is a super-martingale. A generalization of Proposition 1.3.4
permits to obtain the upper bound

E[G(Nε)] ≤ H(0, x0) = V ◦ F (0, x0) = V (x0). (3.2.26)

Combining (3.2.25), (3.2.26) and the definition of the function V in (3.2.21) leads to

E[N1−q̃
ε ] 6 C̃(1− q̃) log

(
(x0 − a)(b− x0)

γε(b− a− γε)

)
+ 1.

This bound corresponds to the announced result. In order to conclude the proof, we just
need to precise that Nε is a.s. finite, see Lemma 3.2.9. Such a condition is required to apply
the generalization of Proposition 3.4.3.

Lemma 3.2.9. The stopping procedure Nε of Algorithmm is a.s. finite. Moreover the
outcome of the algorithm Tε is stochastically upper bounded by T , the diffusion first exit
time.

Proof. Step 1. We emphasize a link between a sample of a L-class diffusion process and the
Markov chain generated by the algorithm, denoted ((Tn, Xn))n∈N with (T0, X0) = (0, 0).
Let us consider a sample of a L-class diffusion. At the starting point of this path, we create
a spheroid of maximal size which belongs to the set [a, b]× R+. The first intersection point
of this spheroid and the path gives us a first point (t1, z1). This construction implies that
(t1, z1) and (T1, X1) are identically distributed. Then considering (t1, z1) as a new starting
point we construct a spheroid of maximal size and denote by (t2, z2) the first intersection
point between this new spheroid and the diffusion path starting in (t1, z1). Once again we get
by construction that (t2, z2) and (T2, X2) are identically distributed. We build step by step
a sequence ((tn, zn))n∈N of intersections between the considered sample and the spheroids in
such a way that the sequences ((tn, zn))n≥0 and ((Tn, Xn))n≥0 are identically distributed.
If we introduce Nε the stopping time appearing in the stopping procedure of the algorithm
and Ñε = inf{n ∈ N, zn /∈ [a+ ε, b− ε]}, the identity in law of those random variables holds.
By construction, tn 6 T for all n ∈ N, where T stands for the diffusion first exit time from
the interval [a, b]. This inequality remains true when tn is replaced by the random stopping
time tÑε .
Since tÑε and tNε are identically distributed, we deduce that the outcome of Algorithmm

is stochastically smaller than T .
Step 2. We prove now that Nε is a.s. finite. Using (3.1.13) and (3.1.8) we obtain

Tn = ρ−1
L (d2

1τ1 + d2
2τ2 + . . .+ d2

nτn),

where (τk)k>1 is a sequence of independent Brownian exit times from the unit spheroid and
dk represents the size of the spheroid (3.1.9) starting in (Tk, Xk) and included in [a, b]. Let
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t0 > 0. Then

P(Tn 6 t0) = P(d2
1τ1 + d2

2τ2 + . . .+ d2
nτn 6 ρ−1

L (t0))

6 P
(
τ1 + τ2 + . . .+ τn 6

ρ−1
L (t0)

d(t0)

)
,

where d(t0) is defined by
d(t0) = inf

x∈[a+ε,b−ε], t6t0
d(x, t) > 0.

Since
n∑
k+1

τk tends to +∞ a.s.,

lim
n→+∞

P(Tn 6 t0) = P(T∞ 6 t0) = 0, ∀t0 > 0.

We deduce that limn→+∞ Tn = +∞ a.s. Combining this limiting result to the first step of

the proof, that is Tn
(d)

6 T , implies: Nε < +∞ a.s.

3.2.2 Bounds for the exit time distribution

The second important result in the study of the algorithm is the description of the conver-
gence. It is of prime interest to known how close the outcome of the algorithm and the exit
time of the L-class diffusion are. The convergence result is essentially based on the strong
relation between the Brownian motion and the L-class diffusion.

Theorem 3.2.10. Let us denote by αt (respectively βt) the maximal value of the function
|α| (resp. |β|) on the interval [0, t]. We also introduce F the cumulative distribution function
of the L-class diffusion exit time from the interval [a, b] and Fε the distribution function of
the algorithm outcome. Then, for any t ≥ 0 and any ρ > 1 there exists ε0 > 0 such that(

1− ρ
√
ε

1 + βt
σ

)
Fε(t− ε) 6 F (t) 6 Fε(t), ∀ε ≤ ε0, (3.2.27)

the constant σ being defined in (3.2.2). Moreover this convergence is uniform on each compact
subset of the time axis.

Remark 3.2.11. The combination of both Theorem 3.2.1 and Theorem 3.2.10 points the
finiteness of the diffusion exit time out. The first statement ensures that Algorithmm

requires a finite number of iterations almost surely (the average number being finite). The
second result explains how close the exit time of the diffusion and the algorithm outcome
are. In particular, as an immediate consequence of (3.2.27), limt→∞ F (t) = 1. Of course,
such a crucial property is strongly related to the fact that the diffusion generator is uniformly
parabolic, see the condition (3.2.2).
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Proof. As in Lemma 3.2.9, we build step by step a sequence ((tn, zn))n∈N of intersections
between the path of the L-class diffusion process and the spheroids in such a way that the
sequences ((tn, zn))n≥0 and ((Tn, Xn))n≥0 are identically distributed.
If we introduce Nε the stopping time appearing in the stopping procedure of the algorithm
and Ñε = inf{n ∈ N, zn /∈ [a+ ε, b− ε]}, the identity in law of those random variables holds.
By construction, tn 6 T for all n ∈ N, where T stands for the diffusion first exit time from
the interval [a, b]. This inequality remains true when tn is replaced by the random stopping
time tÑε . Hence

1− F (t) = P(T > t) = P(T > t, tÑε 6 t− δ) + P(T > t, tÑε > t− δ)
6 P(T > t, tÑε 6 t− δ) + 1− Fε(t− δ), ∀t ≥ 0. (3.2.28)

We focus our attention on the first term of the r.h.s. Using the strong Markov property, we
obtain

P(T > t, tÑε 6 t− δ) 6 Fε(t− δ) sup
(y,s)∈([a,a+ε]∪[b−ε,b])×[0,t−δ]

P(y,τ)(T > δ). (3.2.29)

Let us consider the case y ∈ [b− ε, b] (the study of the other case y ∈ [a, a+ ε] is left to the
reader since it suffices by symmetry to use exactly the same arguments). We first note that,
for any y ∈ [b− ε, b],

P(y,s)(T > δ) ≤ P(y,s)(Tb > δ) ≤ P(b−ε,s)(Tb > δ),

where Tb stands for the first passage time through the level b. Let us introduce several
notations: we denote the translated function αs(t) := α(s+ t) (similar definitions for σ̃s, βs
and ρs are defined by using the translated functions in (3.1.4)). The diffusion process on
the time interval [s, s+ δ] can be expressed using these translated functions. The condition
Tb > δ is equivalent to sup0≤r≤δXs+r < b and becomes, for all r ≤ δ,

b− ε+ e2
∫ r
0 αs(u) duWρs(r) + e

∫ r
0 αs(u) du

∫ r

0

βs(u)e−
∫ u
0 αs(w) dw du < b. (3.2.30)

Since s ∈ [0, t− δ] and r ≤ δ, we obtain the following bound:

ρs(δ) ≥ σ2 1− e−2αtδ

2αt
.

The inequality (3.2.30) implies

1√
ρs(δ)

sup
0≤r≤δ

Wρs(r) ≤
e2αtδ

√
1− e−2αtδ

√
2αt
σ

(ε+ βtδ) ≤ e3αtδ
ε+ βtδ

σ
√
δ
.

The Désiré André reflexion principle for the Brownian motion implies that the l.h.s of the
previous inequality has the same distribution than the absolute value of a standard gaussian
random variable: |G|. Hence, for any y ∈ [b− ε, b] and for any s ≤ t− δ:

P(Tb > δ) ≤ P
(
|G| ≤ e3αtδ

ε+ βtδ

σ
√
δ

)
≤
√

2

π
e3αtδ

ε+ βtδ

σ
√
δ
. (3.2.31)

It suffices to choose δ = ε in the previous inequality and to combine with (3.2.28) in order
to prove the statement of the theorem.
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3.3 WOMS algorithm for G-class diffusions
In this section we present an application of the results obtained so far to another family of
diffusion processes: the growth processes (G-class). We shall just point out the existence of
a strong link between linear and growth diffusions.

Definition 3.3.1. (G-class diffusions) We call G-class diffusion any solution of

dXt = (α(t)Xt + β(t)Xt log(Xt))dt+ σ̃(t)dWt, X0 = x0, (3.3.1)

where α and β are real continuous functions and σ̃ is a continuous non-negative function.

We first notice that this kind of process is non negative due to the logarithm function.
As for the L-class diffusions case, it is possible to emphasize an explicit expression of the
solution of (3.3.1). Here, the desired form is:

Xt = x0 G(t,Wγ(t)), ∀t > 0. (3.3.2)

The function G is described in the following statement.

Proposition 3.3.2. The solution of the SDE (3.3.1) is given by (3.3.2) with

G(t, x) = C(t)e
σ̃(t)√
γ′(t)

x

with C(t) = exp

(
e
∫ t
0 β(s)ds

∫ t

0

(
α(s)− 1

2
σ̃(s)2

)
e−

∫ s
0 β(u)duds

)
and γ(t) =

∫ t

0

σ̃(s)2e−2
∫ s
0 β(u)duds.

This statement is an immediate consequence of the link built between the linear and the
growth diffusions:

Proposition 3.3.3. If X is solution of{
dXt=(α(t)Xt + β(t))dt+ σ(t)dWt

X0 =x0

then Yt = eXt is solution of{
dYt=(α̃(t)Yt + β̃(t)Yt log(Yt))dt+ σ̃(t)YtdWt

Y0 =y0
(3.3.3)

with α̃(t) = β(t) + 1
2
σ(t)2, β̃(t) = α(t), σ̃(t) = σ(t) and y0 = ex0.

Hence, we manage to create a link between a solution of a L-class diffusion equation with
α, β, σ and a solution of a G-class diffusion equation with α̃, β̃, σ̃.
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Proof. To prove this statement, we apply Itô’s formula

Yt = eXt = eX0 +

∫ t

0

eXsdXs +
1

2

∫ t

0

eXsd〈X,X〉s

Hence, using the particular form of Xt we obtain

Yt = Y0 +

∫ t

0

Ys(α(s)Xs + β(s))ds+

∫ t

0

σ(s)dBs +
1

2

∫ t

0

Ysσ(s)2ds

= Y0 +

∫ t

0

Ys(α(s) log(Ys) + β(s))ds+

∫ t

0

σ(s)dBs +
1

2

∫ t

0

Ysσ(s)2ds

= Y0 +

∫ t

0

(Ys(β(s) +
1

2
σ(s)2) + Ys log(Ys)α(s))ds+

∫ t

0

Ysσ(s)dBs

= Y0 +

∫ t

0

(Ysα̃(s) + Ys log(Ys)β̃(s))dt+

∫ t

0

Ysσ̃(s)dBs.

Finally we obtain {
dYt=(α̃(t)Yt + β̃(t)Yt log(Yt))dt+ σ̃(t)YtdBt

Y0 =y0

.

We consider the exit time from the interval [a, b], a, b ∈ R+
∗ for a G class-diffusion. The

previous link established permits to focus our attention on the exit time from the interval
[log(a), log(b)] for L-class diffusion processes with modified coefficients.

We present now an adaptation of the WOMS algorithm which permits to approximate
the exit time for G-class diffusions. In such a context we aim to describe the procedure, the
averaged number of steps and the convergence rate.
The procedure. Let us consider (Xt)t≥0 the unique solution of the stochastic differential
equation (3.3.1). In order to approximate the first diffusion exit time T of the interval [a, b]
we introduce the linear diffusion (Yt) solution of (3.3.3). Since the exit time of the growth
process (Xt) from the interval [a, b] and the exit time of the linear diffusion (Yt) from the
interval [log(a), log(b)] are identically distributed, we use Algorithmm with a parameter
ε small enough, with boundaries log(a) and log(b). As a immediate consequence, Theorem
3.2.1 points out the logarithmic upper-bound of the average number of steps and Theorem
3.2.10 emphasizes the convergence rate of the algorithm outcome.

3.4 Numerical application
In order to illustrate the efficiency of Algorithmm, we present numerical results associated
to two particular linear diffusions.
Example 1 (periodic functions). Let us consider (Xt)t≥0 the solution of (3.1.1) with

α(t) =
cos(t)

2 + sin(t)
, β(t) = cos(t), σ̃(t) = 2 + sin(t).
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Let us just notice that α satisfies α(t) = σ̃′(t)
σ̃(t)

, such a property simplifies the link between
the diffusion process and a standard one-dimensional Brownian motion. In particular, we
obtain a simple expression of the time change appearing in (3.1.3): ρ(t) = 4t. Indeed (3.1.4)
implies

ρ(t) =

∫ t

0

(2 + sin(s))2e−2
∫ s
0

cos(u)
2+sin(u)

duds

=

∫ t

0

(2 + sin(s))2e−2(log(2+sin(s))−log(2))ds = 4t.

Using Proposition 3.1.6, we are able to determine the frontiers of the typical spheroid used
in Algorithmm.

Proposition 3.4.1. If we denote by ψL±(t; t0, Xt0) the spheroid starting in (t0, Xt0), we obtain

ψL±(t; t0, Xt0) :=
2 + sin(t+ t0)

2

(
ψ±(4t) + 2 log

(2 + sin(t+ t0)

2 + sin(t0)

))
+
(2 + sin(t+ t0)

2 + sin(t0)

)
Xt0 . (3.4.1)

and the exit time τ t0 = inf{t > 0 : Xt /∈ [ψL−(t; t0, Xt0), ψ
L
+(t; t0, Xt0)]} satisfies

τ t0
d
=

1

4
τ (3.4.2)

where τ = inf{t > 0 : Wt /∈ [ψ−(t), ψ+(t)]}.

The random walk on spheroids is therefore built using the typical boundaries (3.4.1). At
each step of the algorithm, we need to use a scale parameter d in order to shrink or enlarge
the spheroid size in such a way that the domains always stay in the interval [a, b]. The
general statement concerning the scale parameter (3.1.9) can be improved for this particular
example.

Let m > 0 and 0 < γ < 1. We recall that aγ,x0 and bγ,x0 are defined by aγ,x = a+γ(x−a)
and bγ,x = b− γ(b− x). We choose the scale parameter d in such a way that it satisfies

d =

{
min(1,κ+)

∆m
(bγ,x0 − x0) if b− x0 6 x0 − a

min(1,κ−)
∆m

(x0 − aγ,x0) if x0 − a 6 b− x0

with
∆m =

3

2

(
1√
e

+ (1 + max(|a|, |b|))
√
m

)
and κ± are defined by the following equations:

κ+(bγ,x0 − x0) = 2∆m

√
m and κ−(x0 − aγ,x0) = 2∆m

√
m.

86



We just note that this particular value ∆m is an easy upper-bound of the parameter empha-
sized in (3.1.10). We just adapted the choice of the parameters to the particular diffusion
studied in this section. Even if the procedure is close to the method presented in Proposition
3.1.7, we notice that such a particular choice of ∆m permits to point out a specific value m
such that both min(1, κ−) and min(1, κ+) are equal to 1. This value corresponds to

m =


√

1
e

+ 4
3
(b− a)(1 + max(|a|, |b|)− 1√

e

2(1 + max(|a|, |b|))

2

.

Using Algorithmm as in Section 3.1.3 permits to approximate the first diffusion exit
time from the interval [a, b], see Figure 3.2 and Figure 3.3.

Figure 3.2: A sample of Algorithmm for the diffusion process starting at x = 4 in the interval
[3, 5] with ε = 10−2 and γ = 10−4 .

Figure 3.3: Histogram of the outcome variable for the diffusion (3.4) with X0 = 1, [a, b] = [−1, 2],
ε = 10−2 and γ = 10−4 (left). Average number of steps in Algorithmm for the exit time of [−1, 2]
(right, in logarithmic scale).
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The CPU efficiency of such an algorithm shall be compared to the efficiency of classical
approaches in the exit time approximation framework. We focus on an improved Euler
method based on the correction by means of the sharp large deviations estimate of the
exit probability (see the procedure described in [1]). We observe the linear diffusion with
periodic coefficients starting in X0 = 1 until it exits from the interval [−1, 2]. The generation
of 100 000 samples of this exit time requires 659 seconds for the improved Euler method (with
the step size 10−4) whereas the corresponding generation using the WOMS algorithm requires
about 39 seconds for the corresponding choice ε = 10−4 (here γ = 10−4).

Example 2 (polynomial decrease). Let us introduce a diffusion with a polynomial
decrease of the mean reversion. We consider (3.1.1) with

α(t) =
1

2

1

1 + t
, β(t) = 0, σ̃(t) = σ0.

Both the time-change function appearing in (3.1.3) and the typical spheroid frontiers can
be explicitly computed. We obtain: ρ(t) = σ2

0 log(1 + t) and the following result due to
Proposition 3.1.6.

Proposition 3.4.2. If we denote by ψL±(t; t0, Xt0) the spheroid starting in (t0, Xt0), we have

ψL±(t; t0, Xt0) :=
√

1 + t0 + t ψ±(σ2
0(log(1 + t0 + t)− log(1 + t0)))

+

√
1 + t0 + t√

1 + t0
Xt0 . (3.4.3)

and the exit time τ t0 = inf{t > 0 : Xt /∈ [ψL−(t; t0, Xt0), ψ
L
+(t; t0, Xt0)]} satisfies

τ t0
d
= ρ−1(τ)(t0 + 1) (3.4.4)

where τ = inf{t > 0 : Wt /∈ [ψ−(t), ψ+(t)]} and ρ−1(t) = exp
(

t
σ2
0

)
− 1.

These particular boundaries (3.4.3) are the basic components of the algorithm. Of course
we need to adjust at each step the size of the spheroid in order to stay in the interval under
consideration. The scale parameter d is defined in (3.1.9) and depends on a fixed arbitrary
parameterm > 0. In Example 1, the parameterm was optimized in order to reduce the CPU
time. Here it is not an easy task to choose a suitable value of m. The algorithm converges
in Example 2 whatever the value of m (see Assumption 3.2.2), that is why we set m = 1
for the numerical illustration. The generation of 10 000 samples using the improved Euler
method requires 568 seconds (with steps of size 10−4) while it takes only 16 seconds with
Algorithmm (with the corresponding choice ε = 10−4, γ = 10−4 and m = 1).
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Figure 3.4: Histogram of the outcome variable for the diffusion (3.4) with X0 = 4, [a, b] = [3, 5],
m = 1, σ = 2, ε = 10−4 and γ = 10−4 (left). Average number of steps in Algorithmm for the exit
time of [3, 5] with m = 1 and σ0 = 2 (right, in logarithmic scale).

A. Potential theory and Markov chains
We recall a result coming from the potential theory and using Markov chains. It is a reminder
of Section 1.4.
Let us consider a Markov chain (Xn)n∈N defined on a state space I decomposed into two
distinct subsets K and ∂K, ∂K being the so-called frontier. Let us define N = inf{n ∈
N, Xn ∈ ∂K} the hitting time of ∂K. We assume that N is a.s. finite, then the following
statement holds:

Proposition 3.4.3. Let G be a positive increasing function. If there exists a function U
such that the sequence (H(n ∧ N,Xn∧N))n∈N is non negative and if the sequence (H(n ∧
N,Xn∧N) + G(n ∧N))n∈N represents a super-martingale adapted to the natural filtration of
the considered Markov chain (Xn), then

Ex[G(N)] 6 H(0, x), ∀x ∈ K.

The proof of this classical upper-bound is left to the reader, it is essentially based on the
optimal stopping theorem and on the monotone convergence theorem (see, for instance, [45],
p139).

B. Path decomposition
We prove in this section the two lemmas used in the proof of Proposition 3.2.7. Let us just
recall several notations. The process Xx corresponds to the linear diffusion (3.1) with the
starting value x; τx (resp. τx− and τx+) corresponds to the first exit time of the interval ]a, b[
(resp. ]a, bh[ and ]ah, b[), with ah and bh defined in (3.2.12).

We also recall that (Y ±t ) stand for the solutions of the shifted SDEs (3.2.8) and (3.2.9).
Their exit time of the interval ]a, b[ is denoted T (Y ±) and the first passage times through
the level a is denoted by Ta(Y ±).
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Lemma 3.4.4. Let Eab and Eba the two events defined by

Eab := {τx− ≤ 1, Xx
τx−

= a, T (Y −) ≤ 1, Y −T (Y −) = b},

Eba := {τx+h
+ ≤ 1, Xx+h

τx+h+

= b, T (Y +) ≤ 1, Y +
T (Y +) = a}.

Then Eab ∩ Eba = ∅.

Proof. On the event Eab we know that τx− 6 1 and consequently Xx
s ∈ [a, bh[⊂ [a, b[ (for all

s < τx−. In particular we observe that τx− = τx. Moreover

Xx+h
s = Xx

s + he
∫ s
0 α(u)du, ∀s ≥ 0.

Hence
Xx+h
s ∈ [a+ he

∫ s
0 α(u)du, bh + he

∫ s
0 α(u)du[, ∀s ≥ 0.

Since bh + he
∫ s
0 α(u)du = b− h(e

∫ 1
0 |α(u)|du − e

∫ s
0 α(u)du) < b for s ≤ 1, we obtain

Xx+h
s ∈ [a+ he

∫ s
0 α(u)du, b[⊂]a, b[, ∀s ≤ 1.

In conclusion Eab ⊂ {τx < τx+h}.
Using similar arguments, we obtain Eba ⊂ {τx+h < τx}.
The easy observation {τx < τx+h} ∩ {τx+h < τx} = ∅ implies the announced statement.

Lemma 3.4.5. Eab ∪ Eba ⊂
⋂
t≥2{X

x+h
τx+h∧t −X

x
τx∧t = b− a}.

Proof. Let us prove that Eab ⊂ {Xx+h
τx+h∧t−X

x
τx∧t = b−a}, the other inclusion can be obtained

in a similar way.On the event Eab we obviously observe that Xx
τx∧t = a. By construction, we

have Xx+h
τx−

> Y −0 , and using the continuity of the paths with respect to the initial condition,
we obtain Xx+h

τx−+s > Y −s , ∀s ≥ 0. the property Y −T (Y −) = b, implies Xx+h
τx−+T (Y −) > Y −T (Y −) = b.

Consequently τx+h ≤ T (Y −) + τx− ≤ 2 and therefore, under the hypothesis t > 2 we have
Eab ⊂ {Xx+h

τx+h∧t −X
x
τx∧t = b− a}.
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Chapter 4

Exact simulation of the first time passage
through a given level for jump diffusions

4.1 Jump diffusions: definition and model reduction

4.1.1 Jump diffusions

Usually and historically, diffusions with jumps are introduced in the following way: we
consider a probability space (Ω,F ,P) and a mark space (E , B(E)) where E ⊂ R \ {0}. This
mark space can be interpreted as the space of jumps amplitudes. On this state space we
define a F -adapted Poisson measure on E × [0, T ] for a given T denoted by pφ(dv×dt) whose
intensity measure is given by φ(dv)dt, φ being a non negative σ-finite measure. We denote
by λ = φ(E). This measure permits to generate a sequence of random points (Ti, ξi)1≤i≤PT
where (Pt)t≥0 is the stochastic process counting the number of jumps until time t. This
sequence represents each jump time and the amplitude of the corresponding jump.

A jump diffusion X with jump rate j is defined as follows:

dXt = µ(t,Xt−) dt+ σ(t,Xt−) dBt +

∫
E
j(t,Xt−, v)pφ(dv × dt), t ≥ 0, (4.1.1)

with the initial position X0 = y0. Here (Bt, t ≥ 0) stands for a one-dimensional Brownian
motion. For the present study, this representation is actually not so handy. We prefer the
following representation. We start the construction with the jump rate (jump function)
j : R+ × R × E → R. No specific assumption concerning the jump rate is required at
the moment. Let us denote by Ti the i-th jump time. We mention that the time spent
between two consecutive jumps is exponentially distributed, therefore Ti =

∑i
k=1 Ek with

Ek exponentially distributed random variables with average 1/λ. The initial position of the
diffusion is given by Y0 = y0. Between two jumps, the stochastic process satisfies a stochastic
differential equation:

dYt = µ(t, Yt) dt+ σ(t, Yt) dBt, for Ti < t < Ti+1, i ∈ N, (4.1.2)
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and the jumps modify the trajectories as follows:

YTi = YTi− + j(Ti, YTi−, ξi), ∀i ∈ N. (4.1.3)

As already defined, (ξi)i≥1 stands for a sequence of independent random variables with
distribution function φ/λ. This sequence has to be independent of the Brownian motion
(Bt)t≥0. It is quite obvious to observe that (Xt)t≥0 solution of (4.1.1) has the same path
distribution than (Yt)t≥0 defined by (4.1.2)–(4.1.3). The aim of our study is to simulate
the first passage time of some given level L for this jump diffusion. For our discussion we
shall assume that y0 < L (it is straightforward to deduce the general case). Therefore the
second representation plays a crucial role: it suffices to simulate exactly the trajectory of
a SDE solution inbetween two successive jumps. The simulation of the first passage time
should be based on the following intuitive procedure: on one hand we simulate exactly the
trajectory of the stochastic process satisfying the SDE without jump and keep in mind its
first passage time through the level L denoted by τL. On the other independent hand, we
simulate the first exponentially distributed jump time T1. If τL ≤ T1, then τL corresponds
to the first passage time of the jump diffusion. In the other case, we simulate the position
of the diffusion after the first jump using

YT1 = YT1− + j(T1, YT1−, ξ1).

We distinguish two likely different cases: if YT1 ≥ L then τL = T1 otherwise we know that
τL > T1. The strong Markov property of the jump diffusion permits to start a new jump
diffusion with the initial position YT1 < L and initial time T1. So we repeat the procedure
just presented, inbetween T1 and T2, and so on... An important tool for the simulation is
therefore the exact generation of continuous diffusion paths. In [27], the authors propose an
efficient method based on both a rejection sampling and the Girsanov transformation.

4.1.2 Model reduction and Lamperti’s transformation

Our aim is to deal with the general framework pointed out in the previous section. How-
ever we shall emphasize an interesting technique which permits to transform the considered
stochastic differential equation into a simplified equation. Indeed Lamperti’s transformation
permits to change the equation in such a way that the diffusion coefficient becomes constant.
This method is commonly used for classical continuous diffusions and we just recall the cru-
cial idea before presenting the extension to jump diffusions (usually the method is presented
in the time-homogeneous context, we choose to present here diffusions with time dependent
coefficients). We consider the following SDE:

dXt = µ(t,Xt)dt+ σ(t,Xt)dBt, t ≥ 0, (4.1.4)

with the initial condition X0 = x0. The aim of Lamperti’s transformation is to find a
particular diffusion process (Zt)t≥0 defined as a functional of both t and Xt, that is Zt =
ν(t,Xt), such that Zt satisfies

dZt = α(t, Zt)dt+ dBt, t ≥ 0. (4.1.5)
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Of course the function α has to be defined using ν. Applying Itô’s lemma to the process Zt
leads to

dZt =
∂ν

∂t
(t,Xt) dt+

∂ν

∂x
(t,Xt)

(
µ(t,Xt)dt+ σ(t,Xt)dBt

)
+

1

2

∂2ν

∂x2
(t,Xt) d〈Xt, Xt〉

=

(
∂ν

∂t
(t,Xt) +

∂ν

∂x
(t,Xt)µ(t,Xt) +

1

2

∂2ν

∂x2
(t,Xt)σ(t,Xt)

2

)
dt+

∂ν

∂x
(t,Xt)σ(t,Xt) dBt.

From this equality, we deduce the importance to find ν such that ∂ν
∂x

= 1
σ
. We obtain the

following statement:

Proposition 4.1.1. Let us assume that σ is a C0,1(R+ × R,R)-continuous function. Let
ξ ∈ R. If σ(t, x) > 0 for any (t, x) ∈ R+ × R, then the process defined by

Zt = ν(t,Xt) =

∫ Xt

ξ

1

σ(t, x)
dx

satisfies the following SDE:

dZt =

(
∂ν

∂t
(t, ν−1(t, Zt)) +

µ(t, ν−1(t, Zt))

σ(t, ν−1(t, Zt))
− 1

2

∂σ

∂x
(t, ν−1(t, Zt))

)
dt+ dBt, t ≥ 0, (4.1.6)

with initial value Z0 = ν(0, x0). Here ν−1 : R+ × R → R is the unique function verifying
ν−1(t, ν(t, x)) = x for any (t, x) ∈ R+ × R.

Proof. As previously stated, the particular choice of the function ν permits to observe that

∂ν

∂x
(t,Xt) =

1

σ(t,Xt)
,

leading to

∂2ν

∂x2
(t,Xt) = −

∂σ
∂x

(t,Xt)

σ(t,Xt)2
and

∂ν

∂t
(t,Xt) = −

∫ Xt

ξ

∂σ
∂t

(t, x)

σ(t, x)2
dx.

The announced result (4.1.6) is therefore an immediate consequence of Itô’s lemma.

Let us just note that the general statement can be simplified in the particular homoge-
neous case. If neither the diffusion coefficient nor the drift term depend directly on the time
variable, that is σ(t, x) ≡ σ(x) and µ(t, x) ≡ µ(x), then the transformation becomes

Zt = ν(Xt) =

∫ Xt

ξ

1

σ(u)
du, (4.1.7)

where ξ is a fixed value belonging to the state space. It is often convenient to choose ξ as
the starting position of the diffusion, the new process (Zt)t≥0 starts then at the origin. An
other interesting choice may be ξ = L, the fixed level under observation in the description of
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the first passage time. The FP problem then consists in considering the first time the new
diffusion process (Zt)t≥0 goes through the level 0. The transformed diffusion is solution of
the SDE dYt = α(Xt)dt+ dBt, where

α(x) =
µ ◦ ν−1(x)

σ ◦ ν−1(x)
− 1

2
σ′ ◦ ν−1(x), ∀x ∈ R. (4.1.8)

Let us now consider jump diffusions. The same Lamperti transformation can be applied.
Let us consider Zt := ν(t,Xt) defined in (4.1.1), we observe that ν transforms the diffusion
equation between two successive jumps (4.1.2) into

dZt = α(t, Zt) dt+ dBt, for Ti < t < Ti+1, i ∈ N. (4.1.9)

Of course the jump times are not changed at all by the function ν: we still work with the
sequence (Ti)i≥1 whereas the jump amplitudes undergo modifications. Hence the transport
property permits to modify (4.1.3) into

ZTi = ZTi− + ̂(t, ZTi−, ξ), i ∈ N, (4.1.10)

where
̂(t, z, v) := ν(t, ν−1(t, z) + j(t, ν−1(t, z), v))− ν(t, ν−1(t, z)).

Indeed it suffices to note that

ZTi − ZTi− = ν(Ti, XTi− + j(Ti, XTi−, ξi))− ν(Ti, XTi−) and Xt = ν−1(t, Zt).

To conclude, the Lamperti transformation permits to change the jump diffusion (4.1.2)–
(4.1.3) into the jump diffusion (4.1.9)–(4.1.10). In the following we shall assume that the
diffusion coefficient is constant: σ ≡ 1, that corresponds to a model reduction procedure.

4.2 Simulation of the first passage time for a stopped
continuous diffusion

Let us fix some time parameter T > 0. In this section, we shall focus our attention on the
exact simulation of the continuous diffusion paths on the interval [0,T]. Generating a random
object in an exact way consists in generating an object using a stochastic algorithm such that
both objects have the same distribution. Roberts and Beskos [3] already proposed an efficient
algorithm in order to exactly simulate a continuous diffusion path on the interval under
consideration: [0,T]. Of course we are not able to generate the whole paths numerically, the
exact simulation consists therefore in simulating a sequence of random points belonging to
the trajectory of the diffusion.

Herrmann and Zucca [27] proposed an adaptation of the algorithm introduced by Roberts
and Beskos in order to exactly generate τL, the first passage time through the level L for a
continuous diffusion. In order to deal with jump diffusions (next section), we need also to
simulate exactly the couple (τL ∧ T, YτL∧T) where (Yt)t≥0 stands for a continuous diffusion.
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4.2.1 Diffusion without any jump: the exact simulation method

Let us first consider continuous diffusion processes and propose a numerical approach for the
generation of their paths. As already seen in Section 4.1.2, we can restrict the study to the
reduced model, the generalization being obtained by the Lamperti transformation. That’s
why we consider, on a given probability space (Ω,F ,P), the following SDE on the fixed time
interval [0,T]:

dYt = α(t, Yt) dt+ dBt, Y0 = y0, (4.2.1)

where (Bt)t≥0 is a standard one-dimensional Brownian motion. The direct generation of a
diffusion path is quite a hard task, that’s why we need to point out the link between the
diffusion and the standard Brownian motion using the famous Girsanov formula. The goal
of this formula is to find a probability space in which the considered diffusion is a Brownian
motion. Then we generate a Brownian motion path and do an acceptance/rejection algorithm
using the weight enlightened by the Girsanov formula.

The Girsanov transformation: consequences for simulation purposes

First we recall the statement of the Girsanov transformation and the associated Novikov
condition (for a reference about Girsanov’s transformation, see for instance [46]).

Assumption 4.2.1 (Novikov’s condition). We say that Novikov’s condition is satisfied if

EP

[
exp

(
1

2

∫ T

0

α2(s, y0 +Bs) ds

)]
<∞. (4.2.2)

Let us note that this particular condition is satisfied if the growth of the drift term α is
at most linear (see Corollary 5.16 p.200 in [36]): there exists a constant CT > 0 such that

|α(t, x)| ≤ CT(1 + |x|), ∀(t, x) ∈ [0,T]× R.

Then the following transformation holds.

Theorem 4.2.1. Assume that α satisfies Novikov’s condition. Let us define the martingale
(Mt)t≥0 by

Mt = exp

(∫ t

0

α(s, y0 +Bs) dBs −
1

2

∫ t

0

α2(s, y0 +Bs)ds

)
, t ≤ T, (4.2.3)

and the measure Q on (Ω,FT):
dQ = MT dP. (4.2.4)

Then under Q, the stochastic process
(
Bt−

∫ t
0
α(s, Bs) ds

)
0≤t≤T

is a one dimensional standard

Brownian motion. In other words, (y0 + Bt)0≤t≤T under Q has the same distribution than
(Yt)0≤t≤T under P.
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The Radon-Nikodym derivative pointed out in the previous statement is going to corre-
spond to the weight necessary for the use of an acceptance/rejection sampling. We use the
Girsanov formula as follows: let us consider (Yt)t≥0, the solution of the SDE (4.2.1), and f
any measurable functional depending on the paths of Y observed on the time interval [0,T],
then

EP[f(Y·)] = EQ[f(y0 +B·)] = EP[f(y0 +B·) ·MT]

= EP

[
f(y0 +B·) exp

(∫ T

0

α(s, y0 +Bs)dBs −
1

2

∫ T

0

α2(s, y0 +Bs)ds

)]
,

where (Bt)t≥0 is a standard Brownian motion under the probability measure P. We introduce
two different functions which shall also play a crucial role in the numerical algorithm. Let
us define

β(t, x) :=

∫ x

y0

α(t, y) dy and γ(t, x) =
∂β

∂t
(t, x) +

1

2

(∂α
∂x

(t, x) + α2(t, x)
)
. (4.2.5)

Using Itô’s formula applied to the process (β(t, y0 +Bt))t≥0, we obtain

EP[f(Y·)] = EP[f(y0 +B·) · M̂T] with M̂T := eβ(T,y0+BT)−
∫ T
0 γ(t,y0+Bs) ds. (4.2.6)

General hypotheses for continuous diffusion processes

We recall that, through all our study, the diffusion (4.2.1) starts in y0 satisfying y0 < L. Let
us present now different hypotheses concerning the drift coefficient α in (4.2.1). They permit
to describe a typical framework for the introduction of efficient algorithms. The aim is not
at this stage to precisely emphasize the most general situation which permits the use of the
exact simulation technique, several studies were already introduced in order to successively
extend these conditions (see Beskos, Papaspiliopoulos and Roberts [3]...). The aim is rather
to focus our attention on a convenient context where the crucial arguments used in the study
of the continuous diffusions can easily be translated to jump diffusions. First of all, we need
a classical regularity property in order to use Itô’s formula.

Assumption 4.2.2. The drift coefficient α is a C1,1(R+ × R)-continuous function.

Of course the regularity property of α immediately implies that β and γ defined by (4.2.5) are
well-defined and continuous functions. According to the simulation goals, we need additional
conditions like the boundedness of β or of γ. If the aim is to generate YT we need the following

Assumption 4.2.3. The function γ defined in (4.2.5) is non negative and satisfies: there
exists a constant κ s.t.

0 ≤ γ(t, x) ≤ κ, ∀(t, x) ∈ [0,T]× R. (4.2.7)
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Assumption 4.2.4. The function β defined in (4.2.5) is upper bounded at time T: there
exists a constant β+ > 0 s.t.

β(T, x) ≤ β+, ∀x ∈ R. (4.2.8)

The assumption concerning β can be weaken in particular situations when we just need an
integration property.

Assumption 4.2.5. The function ΓT : R→ R defined by

ΓT(x) := exp
{
β(T, y0 + x)− x2

2T

}
, x ∈ R,

with β introduced in (4.2.5) is integrable: ΓT ∈ L1(R).

Assumption 4.2.3, 4.2.4 and 4.2.5 essentially concern the simulation of YT, T being a fixed
time value. If we are rather interested in the first passage time through the level L, we shall
focus our attention on the space subset ]−∞, L].

Assumption 4.2.6. The function γ defined in (4.2.5) is non negative and satisfies: there
exists a constant κ s.t.

0 ≤ γ(t, x) ≤ κ, (t, x) ∈ R+×]−∞, L]. (4.2.9)

Assumption 4.2.7. The function β defined in (4.2.5) is upper bounded: there exists a
constant β+ > 0 s.t.

β(t, x) ≤ β+, ∀(t, x) ∈ R+×]−∞, L]. (4.2.10)

Let us note that all these assumptions take new shapes as soon as the drift coefficient α in
equation (4.2.1) is time homogeneous. Most of the results presented in previous studies ([3],
[27]) concern this restrictive context but the generalization is a quite simple task.

The approach developed by Beskos and Roberts

Beskos and Roberts proposed in [3] a simulation approach for the exact generation of diffusion
paths on some given interval [0,T]. Their study is based on the Girsanov transformation
on one hand and on an acceptance/rejection sampling on the other hand. The procedure
therefore consists in the introduction of a Poisson process independent of the diffusion (4.2.1)
and whose realization shall permit to obtain the required weight appearing in the rejection
method (4.2.6). Their approach is not so easy to adapt to a jump diffusion since they do
not use at all the Markov property of the diffusion process. That is why we propose an
alternative presentation of their result (and the corresponding proof) and laid by that way
the foundations of the study in the general jump diffusion context. For a clear and succinct
presentation of the issue, we prefer just to introduce the exact simulation of YT where (Yt)t≥0

corresponds to the solution of (4.2.1).
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Exact simulation of YT – Algorithm (BR)1
T

1. Let (Gn)n≥1 be independent random variables with Gaussian distribution N (0, 1)

2. Let (En)n≥1 be independent exponentially distributed r.v. with average 1/κ.

3. Let (Un)n≥1 be independent uniformly distributed random variables on [0, 1].

The sequences (Gn)n≥1, (En)n≥1 and (Un)n≥1 are assumed to be independent.

Initialization: n = 0.
Step 1. Set Z = y0, T = 0.

Step 2. While T < T do:

• set n← n+ 1

• Z ← Z +
√

min(T + En,T)− T Gn and T ← min(T + En,T)

• If (T < T and κUn < γ(T , Z)) then go to Step 1.

• If (T = T and Uneβ+ > eβ(T,Z)) then go to Step 1.

Outcome: the random variable Z.

Proposition 4.2.2. Under the assumptions 4.2.2, 4.2.3 and 4.2.4. both the outcome Z of
Algorithm (BR)1

T and YT, the value at time T of the diffusion process (4.2.1), have the same
distribution.

Remark 4.2.3. An adaptation of Algorithm (BR)1
T should permit to obtain more than just

the random variable Z which has the same distribution than YT. Indeed denoting by n1 the
value of n throughout the last visit of Step number one, n2 the value of the increment variable
when the algorithm stops, Zn (respectively Tn) the successive values of Z (resp. T ), we obtain
that {

(0, y0), (Tn1+1, Zn1+1), . . . , (Tn2−1, Zn2−1), (T, Zn2)
}

is a set of points which has the same distribution than points belonging to the diffusion
trajectory.

Proof. Let us denote by N the number of necessary repetitions of the step number one
and let ψ a non negative measurable function. Since the algorithm is based on an accep-
tance/rejection sampling, we get

E[ψ(Z)] =
E[ψ(Z)1{N=1}]

P(N = 1)
=
ν(ψ)

ν(1)
where ν(ψ) := E[ψ(Z)1{N=1}].
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We use now the notations (Tn)n≥0 and (Zn)n≥0 introduced in Remark 4.2.3 and define the
event An := {Tn−1 < T ≤ Tn−1 + En = Tn}, for any n ≥ 1, which describes the number of
random intervals necessary to cover [0,T]. We observe that

ν(ψ) =
∑
n≥1

E
[
ψ(Zn)1{κU1>γ(T1,Z1), ..., κ Un−1>γ(Tn−1,Zn−1)}1{Un≤eβ(T,Zn)−β+}1An

]
.

Taking the integral with respect to the independent uniform variates (Un)n≥1 leads to

ν(ψ) =
∑
n≥1

κ1−nE
[
ψ(Zn)(κ− γ(T1, Z1)) . . . (κ− γ(Tn−1, Zn−1))eβ(T,Zn)−β+1An

]
.

We note that (T1, . . . , Tn−1), given An, has the same distribution than (V (1), . . . , V (n−1)) an
ordered (n − 1)-tuple of uniform random variables (V1, . . . , Vn−1) on [0,T]. Moreover the
probability of the event An is linked to the Poisson distribution of parameter κT. Finally
(Z1, . . . Zn) is a Gaussian vector and has the same distribution than

(y0 +BV (1) , . . . , y0 +BV (n−1) , y0 +BT)

with (Bt)t≥0 a standard Brownian motion independent of the (n − 1)-tuple (V1, . . . , Vn−1),
since the Brownian motion has Gaussian independent increments. Hence

ν(ψ) =
∑
n≥1

E
[
ψ(Zn)(κ− γ(T1, Z1)) . . . (κ− γ(Tn−1, Zn−1))eβ(T,Zn)−β+

∣∣∣An] Tn−1

(n− 1)!
e−κT

=
∑
n≥1

E
[
ψ(y0 +BT)

n−1∏
j=1

(κ− γ(V (j), y0 +BV (j))eβ(T,y0+BT)−β+
] Tn−1

(n− 1)!
e−κT

=
∑
n≥1

E
[
ψ(y0 +BT)

n−1∏
j=1

(κ− γ(Vj, y0 +BVj))e
β(T,y0+BT)−β+

] Tn−1

(n− 1)!
e−κT.

Taking the expectation with respect to the uniformly distributed variates Vj, we have

ν(ψ) =
∑
n≥1

E
[
ψ(y0 +BT)

(
κ− 1

T

∫ T

0

γ(s, y0 +Bs) ds
)n−1

eβ(T,y0+BT)−β+
] Tn−1

(n− 1)!
e−κT

= E
[
ψ(y0 +BT) exp

{
β(T, y0 +BT)− β+ −

∫ T

0

γ(s, y0 +Bs) ds
}]

= E[ψ(y0 +BT) · M̂T] e−β+ ,

where (M̂t)t≥0 is the martingale defined in (4.2.6). The martingale property leads to ν(1) =

E[M̂0]e−β+ = e−β+ . The Girsanov transformation permits to conclude the proof:

E[ψ(Z)] =
ν(ψ)

ν(1)
= E[ψ(y0 +BT) · M̂T] = E[ψ(YT)].
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Under Assumptions 4.2.2, 4.2.3 and 4.2.4, the algorithm pointed out in Proposition 4.2.2
has a convenient and intuitive expression. However the boundedness of the function β(T, ·)
is rather a restrictive assumption and it is important to propose an alternative approach.
To that end, Beskos and Roberts proposed an integrability condition for the function ΓT,
written here in Assumption 4.2.5. Since ΓT is a non negative function, the integrability
condition summarized in the identity ΓT(R) :=

∫
R ΓT(x) dx < ∞ ensures that ΓT(·)/ΓT(R)

is a probability distribution function. This crucial property permits to present the following
algorithm. Let us just mention that we use the following notation x+ = min(x, 0).

Exact simulation of YT – Algorithm (BR)2
T

1. Let (Rn)n≥1 be independent random variables with density ΓT(·)/ΓT(R).

2. Let (Gn)n≥1 be independent random variables with Gaussian distribution N (0, 1)

3. Let (En)n≥1 be independent exponentially distributed r.v. with average 1/κ.

4. Let (Un)n≥1 be independent uniformly distributed random variables on [0, 1].

The sequences (Rn)n≥1, (Gn)n≥1, (En)n≥1 and (Un)n≥1 are assumed to be independent.

Initialization: k = 0, n = 0.
Step 1. Set k ← k + 1 then Z = y0, W = y0 +Rk and T = 0.

Step 2. While T < T do:

• set n← n+ 1

• Z ← Z +
En

T− T
W +

√
En(T− T − En)+

T− T
Gn and T ← min(T + En,T)

• If (T < T and κUn < γ(T , Z)) then go to Step 1.

Outcome: the random variable W .

The procedure proposed in this second algorithm is mainly different from the first one.
Indeed the crucial idea of Algorithm (BR)1

T is to simulate a Brownian motion on the interval
[0,T] and to accept or reject the trajectory using the weight probability issued from the
Girsanov transformation. The acceptance depends strongly on the whole path of the process
and leads to the outcome y0 +BT, the endpoint of the Brownian path. In Algorithm (BR)2

T
the approach is different: we consider a random variable W with the proposal distribution
ΓT(·)/ΓT(R) translated by y0. This variate shall be accepted or rejected using a weight
probability based on the whole path of a Brownian bridge starting in y0 and ending at time
T with the value W . The main difference is therefore to replace the Brownian motion by
the Brownian bridge. We obtain the following statement.
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Proposition 4.2.4. Under the assumptions 4.2.2, 4.2.3 and 4.2.5. both the outcome W of
Algorithm (BR)2

T and YT, the value at time T of the diffusion process (4.2.1), have the same
distribution.

Sketch of proof. The proof of Proposition 4.2.4 is quite similar to the proof of Proposition
4.2.2. We shall therefore not go into all details. Let ψ a non negative measurable function.
Since the algorithm is based on a rejection sampling, we get as usual

E[ψ(W )] =
E[ψ(W )1{N=1}]

P(N = 1)
=
ν(ψ)

ν(1)
where ν(ψ) := E[ψ(W )1{N=1}],

and N stands for the number of visits of the steps number one before the algorithm stops.
Using similar notations and arguments as those developed in the previous proof, we observe
that

ν(ψ) =
∑
n≥1

κ1−nE
[
ψ(W )(κ− γ(T1, Z1)) . . . (κ− γ(Tn−1, Zn−1))1An

]
.

Given both An and the value W , the (n− 1)-tuple (T1, . . . , Tn−1) has the same distribution
than (V (1), . . . , V (n−1)) an ordered (n−1)-tuple of uniform random variables on [0,T]. More-
over the probability of the event An is linked to the Poisson distribution of parameter κT.
Finally (Z1, . . . Zn−1) is a Gaussian vector and has the same distribution than

(bV (1) , . . . , bV (n−1))

with (bt)0≤t≤T a Brownian bridge independent of the (n−1)-tuple (V1, . . . , Vn−1). The Brow-
nian bridge starts for t = 0 with the value y0 and ends with the value W at time T. Hence

ν(ψ) =
∑
n≥1

E
[
ψ(W )

n−1∏
j=1

(κ− γ(Vj, bVj))
] Tn−1

(n− 1)!
e−κT

= E
[
ψ(W ) exp

{
−
∫ T

0

γ(s, bs) ds
}]

= E
[
ψ(W )E

[
exp

{
−
∫ T

0

γ(s, y0 +Bs) ds
}∣∣∣y0 +BT = W

]]
,

where (Bt)t≥0 is a standard Brownian motion. Using the explicit distribution of the variable
W , we obtain

ν(ψ) =
1

ΓT(R)

∫
R
ψ(y0 + x)E

[
exp

{
−
∫ T

0

γ(s, y0 +Bs) ds
}∣∣∣BT = x

]
× exp

{
β(T, y0 + x)− x2

2T

}
dx

=

√
2πT

ΓT(R)
E
[
ψ(y0 +BT) exp

{
β(T, y0 +BT)−

∫ T

0

γ(s, y0 +Bs) ds
}]

=

√
2πT

ΓT(R)
E[ψ(y0 +BT) · M̂T],
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where (Mt)t≥0 is the Girsanov martingale defined in (4.2.6). We deduce that

E[ψ(W )] =
ν(ψ)

ν(1)
= E[ψ(y0 +BT) · M̂T] = E[ψ(YT)],

this equality is satisfied for any non negative function ψ and therefore corresponds to the
announced statement.

The algorithm introduced by Herrmann and Zucca

The procedure of the exact simulation was adapted by Herrmann and Zucca [27] in order to
generate the first passage time of continuous diffusion processes. We focus now our attention
on the first time passage of the diffusion Y , starting in y0, through the level L. This algorithm
is also based on the Girsanov formula on one hand, and on the other hand, it requires the
construction of a skeleton of a 3-dimensional Bessel process.

We first recall that in the particular case of the Brownian motion, the first passage time
through the level L denoted by τL satisfies τL ∼ (L− y0)2/G2 where G ∼ N (0, 1). The main
idea is therefore to first generate a Brownian passage time and secondly to accept or reject
this variate proposal using the Girsanov weight. The construction of this algorithm looks
very much like the algorithms presented by Beskos and Roberts. The main difference is to
replace the Brownian paths (or Brownian bridge paths) appearing in the rejection sampling
by Bessel paths. The explanation of such a modification is related to the observation: once
the Brownian first passage time τL is generated, the Brownian motion constrained to stay
under the level L on [0, τL] can be related to a 3-dimensional Bessel process. The algorithm
proposal is the following.

Exact simulation of τL for continuous diffusions – Algorithm (HZ)

1. Let (Gn)n≥1 be independent standard 3-dimensional Gaussian vectors.

2. Let (en)n≥0 be independent exponentially distributed r.v. with average 1/κ.

3. Let (Vn)n≥1 be independent uniformly distributed r.v. on [0, 1].

4. Let (gn)n≥1 be independent standard Gaussian r.variables.

The sequences (Gn)n≥1, (en)n≥0, (Vn)n≥1 and (gn)n≥1 are assumed to be independent.

Initialization: k = 0, n = 0.
Step 1. k ← k + 1, δ = (0, 0, 0), W = 0, Tk ← (L− y0)2/g2

k, E0 = 0 and E1 = en.

Step 2. While E1 ≤ Tk do:

• set n← n+ 1
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• δ ← Tk − E1

Tk − E0

δ +

√
(Tk − E1)(Tk − E0)

Tk − E0

Gn

• If κVn ≤ γ(E1, L− ‖ E1(L− y0)(1, 0, 0)/Tk + δ ‖) then W ← 1 else W ← 0

• E0 ← E1 and E1 ← E1 + en

Step 3. If W = 0 then Y ← Tk otherwise go to Step 1.
Outcome: the random variable Y .

Proposition 4.2.5 (Herrmann-Zucca, 2019). Let us assume that τL < ∞ almost surely
where τL stands for the first passage time of the diffusion (4.2.1) through the level L. Under
the assumptions 4.2.2 and 4.2.6, both the outcome Y of Algorithm (HZ) and τL have the
same distribution.

The detailed proof of Proposition 4.2.5 is presented in [27]. We do not present here the
sketch of the proof since most of the arguments are quite similar to those pointed out in the
proofs of Proposition 4.2.2 and 4.2.4. Nevertheless we would like to say that Herrmann and
Zucca didn’t study a time-dependent drift term as appearing in equation (4.2.1), they focus
their attention on the homogeneous case. The statement of Proposition 4.2.5 is therefore an
adaptation of their result to the non-homogeneous case: here the function γ depends both
on the time and space variables.

Remark 4.2.6. The algorithm (HZ) can be adapted to the particular case of a continuous
diffusion process starting at time T0 > 0 with the value y. In this case, (Yt)t≥T0 is solution
of the following stochastic equation:

dYt = α(t, Yt) dt+ dBt, ∀t ≥ T0 and YT0 = y < L.

Moreover the definition of the first passage time is slightly modified τL becomes the first time
after T0 such that the diffusion hits the level L. The modification of the algorithm consists
in replacing y0 by y, γ(·, ·) by γ(T0 + ·, ·) and adding T0 to Y. We then denote (HZ)y,LT0

the
corresponding algorithm.

4.2.2 Stopped continuous diffusion

In the previous section, several procedures of exact simulation have been presented:

• simulation of YT: the value of the diffusion (4.2.1) at a fixed time T.

• simulation of the first passage time through the level L for the diffusion, denoted τL.

On one hand we are able to generate the position, on the other hand the exit time. In
order to complete the description, we introduce a suitable combination of the time and the
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position which shall play an essential role in the sequel. We propose to build an algorithm
which permits to obtain the exact simulation of the random couple (τL ∧T, YτL∧T), linked to
the stopped diffusion. Here (Yt)t≥0 still stands for a continuous diffusion.

Let us first introduce a preliminary result concerning a particular diffusion process, the
standard Brownian motion (Bt)t≥0. Our aim is to generate a random variable which has the
same conditional distribution than BT given τL > T, where T is fixed and τL is the Brownian
first passage time (we shall assume that L > 0, the other case can be obtained by symmetry
arguments). We build the following algorithm.

Conditional Brownian motion given τL > T – Algorithm (CBM)LT

1. Let (Gn)n≥1 a sequence of independent standard gaussian random variables

2. Let (Un)n≥1 a sequence of indep. uniformly distributed random variables on [0, 1].

The sequences (Gn)n≥1 and (Un)n≥1 are assumed to be independent.

Initialization: n = 1, Y = 0.
While

√
TGn > L or − T

2L
ln(Un) > L−

√
TGn do n← n+ 1.

Set Y ←
√
TGn.

Outcome: The random variable Y .

Proposition 4.2.7. Let (Bt)t≥0 be a standard Brownian motion. Then both the outcome Y
of Algorithm (CBM)LT and BT given τL > T have the same distribution.

Proof. The result is based on the classical acceptance/rejection sampling. Let us first de-
scribe the conditional distribution of BT given τL > T (see for instance Lerche [39])

u(T, x) dx := P(τL > T, BT ∈ dx) =

(
1√
T
φ

(
x√
T

)
− 1√

T
φ

(
x− 2L√

T

))
dx,

where φ denotes the distribution function of a standard Gaussian variate. We introduce Φ
the corresponding cumulative distribution. Then the previous expression leads to

fT(x) dx := P(BT ∈ dx|τL > T) =
1√
T
φ(x/

√
T)− φ((x− 2L)/

√
T)

Φ(L/
√
T)− Φ(−L/

√
T)

dx. (4.2.11)

We remark that the following upper-bound is satisfied

fT(x) ≤ c
φ(x/

√
T)√

TΦ(L/
√
T)

1]−∞,L](x) =: c gT(x) with c =
Φ(L/

√
T)

Φ(L/
√
T)− Φ(−L/

√
T)
.

It is obvious that gT(·) corresponds to a distribution function: a centered Gaussian dis-
tribution of variance T conditioned to stay under the value L. In the acceptance/rejection
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Figure 4.1: Trajectories of the conditioned diffusion

procedure, we shall choose gT as the proposal distribution. So we generate a random variable
Z with distribution gT, this variate is then accepted if c UgT(Z) ≤ fT(Z) where U stands for
a uniformly distributed random variable, independent of Z. The condition just mentioned
is equivalent to

U ≤ 1− exp

(
2L

T
(Z − L)

)
.

If G stands for a standard Gaussian r.v., then it is obvious to relate the previous condition
to √

TG ≤ L or − T
2L

ln(1− U) ≥ L−
√
TG,

the acceptance condition appearing in Algorithm (CBM)LT.

First we proposed in Proposition 4.2.7 the generation of the conditional Brownian mo-
tion. As already pointed out in the previous section, we can relate distributions concerning
the Brownian paths to the diffusion ones using the classical Girsanov transformation. An
interesting application of this transformation is therefore to simulate a diffusion value at a
fixed time T given τL > T. In order to get a general statement, we consider a diffusion
process starting at time T0 < T with the value YT0 = y. It is therefore the unique strong
solution of the equation:

dYt = α(t, Yt) dt+ dBt, ∀t ≥ T0, and YT0 = y < L, (4.2.12)

where (Bt)t≥0 is a standard one-dimensional Brownian motion. The corresponding algorithm
is the following (see the illustration in Figure 4.1).

Conditioned diffusion YT given τL > T – Algorithm (CD)y,LT0,T

1. Let (Un)n≥1 be independent uniformly distributed random variables on [0, κ].

2. Let (En)n≥1 be independent exponentially distributed r.v. with average 1/κ.
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The sequences (Un)n≥1 and (En)n≥1 are assumed to be independent.

Initialization: n = 1.
Step 1. Set Y = y, T = T0 and generate Z ∼ (CBM)L−YEn

.

Step 2. While T + En < T and Un > γ(T + En,Y + Z) do

• T ← T + En

• n← n+ 1

• Y ← Y + Z

• Generate Z ← (CBM)L−YEn
.

Step 3. If T +En > T then generate Z ∼ (CBM)L−YT−T , set Y ← Y+Z and V ∼ U([0, 1])
independent of all other variates otherwise set n← n+ 1 and go to Step 1.
Step 4. If V · exp(β+) > exp(β(T,Y)) then set n← n+ 1 and go to Step 1.
Outcome: The random variable Y .

Proposition 4.2.8. Let us consider (Yt)t≥T0 the diffusion defined by (4.2.12) and τL the
associated first passage time through the level L:

τL := inf{t ≥ T0 : Yt ≥ L}. (4.2.13)

Under assumptions 4.2.2, 4.2.6 et 4.2.7, both the outcome Y of Algorithm (CD)y,LT0,T and YT
given τL > T have the same distribution.

Proof. The algorithm (CD)y,LT0,T is clearly based on a rejection sampling. The proof uses
therefore similar arguments than those pointed out in Proposition 4.2.2 and Proposition
4.2.4. Let us denote by Yn (respectively Tn and Zn) the successive values of Y (resp. T
and Z). We also introduce a sequence of times (En)n≥1 defined by En+1 = En + En+1 with
E0 = T0. We finally introduce N the number of Step 1 used before the algorithm stops. Since
the algorithm is a acceptance/rejection sampling, we have for any non negative measurable
function ψ:

E[ψ(Y)] =
E[ψ(Y)1{N=1}]

P(N = 1)
=
ν(ψ)

ν(1)
where ν(ψ) := E[ψ(Y)1{N=1}].

In the following computations, we denote by An the particular event: {En ≤ T < En+1} and
Pn shall correspond to the event:

Pn := {U1 > γ(E1,Y1 + Z1), . . . , Un > γ(En,Yn + Zn)}, for n ≥ 1 and P0 = Ω.

We therefore obtain that

ν(ψ) =
∑
n≥0

E
[
ψ(Yn+2)1Pn1{V ·exp(β+)<exp(β(T,Yn+2))}1An

]
.
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Integrating with respect to all uniformly distributed random variables (Un) and with respect
to V leads to

ν(ψ) =
∑
n≥0

1

κn
E
[
ψ(Yn+2)

n∏
k=1

(κ− γ(Ek,Yk + Zk)) exp(β(T,Yn+2)− β+)1An

]
We note that (E1−T0, . . . , En−T0), given An, has the same distribution than (V (1), . . . , V (n))
an ordered n-tuple of uniform random variables (V1, . . . , Vn) on [0,T − T0]. Moreover the
probability of the event An is linked to the Poisson distribution of parameter κ(T − T0).
Finally on the event An, (Y1,Y2, . . .Yn+2) has the same distribution than

(y, y +BV (1) , . . . , y +BV (n) , y +BT−T0) given τBL−y := inf{t ≥ 0 : Bt ≥ L− y} > T− T0

with (Bt)t≥0 a standard Brownian motion independent of the n-tuple (V1, . . . , Vn). Hence

ν(ψ) =
∑
n≥0

1

κn
E
[
ψ(y +BT−T0)

n∏
k=1

(
κ− γ(T0 + V (k), y +BV (k))

)
× exp(β(T, y +BT−T0)− β+)

∣∣∣τBL−y > T− T0

]κn(T− T0)n

n!
e−κ(T−T0)

=
∑
n≥0

E
[
ψ(y +BT−T0)

n∏
k=1

(
κ− γ(T0 + Vk, y +BVk)

)
× exp(β(T, y +BT−T0)− β+)

∣∣∣τBL−y > T− T0

](T− T0)n

n!
e−κ(T−T0).

Taking the expectation with respect to the uniformly distributed variates Vk leads to

ν(ψ) =
∑
n≥0

E
[
ψ(y +BT−T0)

(
κ− 1

T− T0

∫ T−T0

0

γ(T0 + s, y +Bs) ds
)n

× exp(β(T, y +BT−T0)− β+)
∣∣∣τBL−y > T− T0

](T− T0)n

n!
e−κ(T−T0)

= E
[
ψ(y +BT−T0) exp

(
−
∫ T−T0

0

γ(T0 + s, y +Bs) ds
)

× exp(β(T, y +BT−T0)− β+)
∣∣∣τBL−y > T− T0

]
.

Since (y + Bt)t≥0 given τBL−y > T − T0 has the same distribution than (Bt)t≥T0 given both
BT0 = y and τBL ◦ θT0 > T, where θ stands for the translation operator, we obtain

ν(ψ) = E
[
ψ(BT) exp

(
−
∫ T

T0

γ(s, Bs) ds+ β(T, BT)− β+

)∣∣∣BT0 = y, τBL ◦ θT0 > T
]
.

Let us now modify the expression under review. We introduce

ν̂(ψ) := E
[
ψ(BT)1{Bt<L, ∀t∈[T0,T]} exp

(
−
∫ T

T0

γ(s, Bs) ds+ β(T, BT)− β(T0, y)
)∣∣∣BT0 = y

]
.
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Figure 4.2: Two typical trajectories of the continuous diffusion.

It is obvious that
E[ψ(Y)] =

ν(ψ)

ν(1)
=
ν̂(ψ)

ν̂(1)
. (4.2.14)

Moreover since (Mt)t≥0 defined by

Mt := exp
(
−
∫ T0+t

T0

γ(s, Bs) ds+ β(T0 + t, BT0+t)− β(T0, y)
)
,

is the exponential martingale appearing in the Girsanov transformation, we obtain by the
change of measure procedure:

ν̂(ψ) = E
[
ψ(YT)1{Yt<L, ∀t∈[T0,T]}

]
,

where (Yt)t≥T0 stands for the diffusion (4.2.12). The ratio defined by (4.2.14) then permits
to conclude the proof

E[ψ(Y)] = E[ψ(YT)|τL > T],

the stopping time τL being introduce in the statement (4.2.13).

Finally we are able to produce an algorithm which generates exactly the distribution
of the couple (τL ∧ T, YτL∧T) where (Yt)t≥T0 stands for the continuous diffusion defined in
(4.2.12) and τL, the first passage time defined in (4.2.13) (see the illustration in Figure 4.2).

Stopped diffusion: (τL ∧ T, YτL∧T) – Algorithm (SD)y,LT0,T

Step 1. Generate T ∼ (HZ)y,LT0
(defined in Remark 4.2.6).

Step 2. If T < T then set Y ← L otherwise generate Y ∼ (CD)y,LT0,T and set T ← T.
Outcome: The random couple (T ,Y).
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Proposition 4.2.9. Let us consider (Yt)t≥T0 the diffusion defined by (4.2.12) and τL the
associated first passage time (4.2.13). Under assumptions 4.2.2, 4.2.6 et 4.2.7, both the
outcome (T ,Y) of Algorithm (SD)y,LT0,T and (τL ∧ T, YτL∧T) have the same distribution.

Proof. The proof is straightforward. Either τL is smaller than T which corresponds to τL ∧
T = τL and YτL∧T = L or τL is larger than T and therefore the distribution of YτL∧T is the
conditional distribution of YT given τL > T.

4.3 Simulation of the first passage time for stopped jump
diffusions

The aim of this section is to generate the first passage time of a jump diffusion. Let us just
recall that the jump diffusion characterized by the stochastic differential equation between the
jump times (4.1.2) and the jump height described in (4.1.3). In Section 4.1.2, we discussed
the possibility to reduce the considered model. Consequently we shall first consider the
following reduced model. Let us introduce (Tn)n≥1 the sequence of jump times. We mention
that the time spent between two consecutive jumps is exponentially distributed, therefore
Tn =

∑n
k=1Ek with (Ek)k≥1 a sequence of independent exponentially distributed random

variables with average 1/λ. The initial position of the diffusion is given by Y0 = y0 and the
jump diffusion under consideration moreover satisfies

dYt = α(t, Yt) dt+ dBt, for Tn < t < Tn+1, n ∈ N, (4.3.1)

the jumps modify the trajectories as follows:

YTn = YTn− + j(Tn, YTn−, ξn), ∀n ∈ N, (4.3.2)

where j : R+ × R × E → R denotes the jump function and (ξn)n≥1 stands for a sequence
of independent random variables with distribution function φ/λ (also independent of the
Brownian motion (Bt)t≥0 and of the sequence (Tn)n≥0). Let us associate to the stochastic
process defined by (4.3.1)–(4.3.2) the first passage time throught the level L (with L > y0):

τL := inf{t ≥ 0 : Yt ≥ L}. (4.3.3)

Since the jump times and the behaviour of the diffusion process inbetween the jump times
are independent, we can use the approach developped in the continuous diffusion case in order
to simulate jump diffusions. The crucial argument is that (t, Yt)t≥0 is a Markovian stochastic
process. Consequently the diffusion paths can be constructed in a piecewise Markovian way.
Let us present the algorithm for the generation of the stopped first passage time τL∧T where
T stands for a fixed time.
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Stopped Jump diffusion (τL ∧ T) – Algorithm (SJD)y,LT

1. Let (En)n≥1 be independent exponentially distributed r.v. with average 1/λ.

2. Let (ξn)n≥1 be independent r.v. with distribution function φ/λ.

The sequences (En)n≥1 and (ξn)n≥1 are assumed to be independent.
Initialization. n = 0, Ts = 0 (starting time), Tf = 0 (final time), Y = y, Z = y.
Step 1. While (Tf < T and Y < L and Z < L) do

• n← n+ 1

• Ts ← Tf

• Tf ← Tf + En

• Generate (S,Z) ∼ (SD)Y,LTs,Tf

• Y ← Z + j(Tf ,Z, ξn)

Step 2.

• If S > T then set S ← T

• If S ≤ T and Z < L then S ← Tf

Outcome: The random variable S.

Theorem 4.3.1. Let us consider (Yt)t≥0 the jump diffusion defined by (4.3.1)–(4.3.2) and
τL the associated first passage time (4.3.3). Under assumptions 4.2.2, 4.2.6 et 4.2.7, both
the outcome S of Algorithm (SJD)y0,LT and τL ∧ T have the same distribution.

Proof. The proof is based on the Markov property of the process (t, Yt)t≥0. We start an
iterated procedure. First we set Ts = 0 (starting time) and generate a random variable
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Figure 4.3: Three typical paths representing different scenarios

which represents the first jumping time T1. This r.v. is denoted Tf = E1 in the algorithm
(final time). Two situations can therefore be considered.

1. First case: Tf > T (this means that Step 1 is only used once). Conditionally to the
event "the first jumping time is larger than T", the diffusion behaves like a continuous
diffusion process on the interval [0,T] that we shall denote (Ŷt). Hence Yt = Ŷt for any
t < Tf . Indeed the jumping times are independent of the Brownian motion driving
the diffusive part of the stochastic process. Consequently the results developed in the
previous section can be applied. The algorithm (SD)y0,LTs,Tf permits to obtain the random
couple (τ̂L ∧ Tf , Ŷτ̂L∧Tf ) where τ̂L stands for the first passage time of the continuous
diffusion (Ŷt) after time Ts. The random couple is denoted by (S,Z) in Algorithm
(SJD)y,LT . We observe then one of the following situation:

• τ̂L ∧ Tf > T which is equivalent to the condition S > T. In such a situation we
deduce easily that τ̂L ∧ T = T = τL ∧ T, since Tf > T, and therefore it suffices to
set S = T in the algorithm in order to obtain the distribution identity announced
in the statement of Theorem 4.3.1.

• τ̂L ∧ Tf ≤ T corresponding to (S ≤ T and Z ≥ L). Then obviously we get
τL ∧ T = τL = τL ∧ Tf = τ̂L ∧ Tf which is identically distributed as S.

2. Second case: Tf ≤ T. Here also the diffusion (Yt) corresponds to a continuous diffusion
(Ŷt) on the time interval [Ts, τ̂L ∧ Tf [. So the previous section permits to generate
(τ̂L ∧ Tf , Ŷτ̂L∧Tf ), denoted by (S,Z). Of course S ≤ T. We distinguish three different
situations:

• Z ≥ L: this means that S = τ̂L ∧ Tf = τ̂L = τL = τL ∧ T which corresponds to
the statement of Theorem 4.3.1.

• Z < L and Z + j(Tf ,Z, ξ1) ≥ L which implies that the diffusion doesn’t cross
the level L before the first jump whereas the first jump permits to observe this
first passage. In other words, the first passage time corresponds to the first jump.
Hence τL = Tf (this situation occurs in the algorithm in the second step as both
S ≤ T and Z < L).
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• Z < L and Z + j(Tj,Z, ξ1) < L. In such a situation, the jump diffusion does not
reach any value larger than L on the interval [Ts, Tf ] = [0, E1]. Indeed Z < L
implies that τ̂L∧Tf = Tf , the only possibility to overcome the level L on the time
interval [Ts, Tf ] being to observe a suitable jump at time Tf . Unfortunately such
an event cannot happen since Z+j(Tj,Z, ξ1) < L. In conclusion the first passage
time is strictly larger than the first jump time. In order to generate the FPT, we
propose therefore to start again using the Markov property: we should observe a
jump diffusion starting at time Tf (becoming the starting time Ts) with the value
Z + j(Tj,Z, ξ1) < L. In that situation, the algorithm permits to repeat Step 1
with new initial values.

Since τL∧T is finite a.s. only a finite number of repetition of Step 1 is observed, the iterative
procedure which is directly associated to the Markov property of the jump diffusion permits
then to conclude and to obtain the announced statement.

Theorem 4.3.1 concerns the generation of the finite stopping time τL ∧ T associated to
the reduced model (4.3.1)–(4.3.2) (we recall that T is a fixed time). Using the Lamperti
transformation presented in Section 4.1.2, it is possible to generalize the study. Let us
assume that, between two consecutive jumps, the stochastic process satisfies a stochastic
differential equation:

dYt = µ(t, Yt) dt+ σ(t, Yt) dBt, for Ti < t < Ti+1, i ∈ N, (4.3.4)

and the jumps modify the trajectories as follows:

YTi = YTi− + j(Ti, YTi−, ξi), ∀i ∈ N, (4.3.5)

where j stands for the jump function. A generation of the stopping time τL∧T associated to
the jump diffusion (4.3.4)–(4.3.5) is then available. Proposition 4.1.1 emphasizes the efficient
way to generate τL ∧ T. Let us define

ν(t, x) =

∫ x

L

1

σ(t, y)
dy

and let us consider its inverse ν−1 : R+ × R → R which represents the unique function
verifying ν−1(t, ν(t, x)) = x for any (t, x) ∈ R+ × R. We define Zt = ν(t, Yt). As already
mentionned in Section 4.1.1, (Zt)t≥0 is a jump diffusion satifying Z0 = ν(0, y0) and the
reduced model (4.3.1)–(4.3.2) where the function α corresponds to

α(t, x) :=
∂ν

∂t
(t, ν−1(t, x)) +

µ(t, ν−1(t, x))

σ(t, ν−1(t, x))
− 1

2

∂σ

∂x
(t, ν−1(t, x)) (4.3.6)

and the jump function j(t, z, v) is replaced by

̂(t, z, v) := ν(t, ν−1(t, z) + j(t, ν−1(t, z), v))− ν(t, ν−1(t, z)). (4.3.7)
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Let us finally note that x = L represents the unique solution of the equation ν(t, x) = 0
since the diffusion coefficient is strictly positive. Therefore the following identity holds:

τL := inf{t ≥ 0 : Yt ≥ L} = inf{t ≥ 0 : Zt ≥ 0}. (4.3.8)

In conclusion we easily obtain the following statement.

Proposition 4.3.2. Let T be a fixed time. The random variable S ∼ (SJD)
ν(0,y0),0
T which is

the outcome of the algorithm – using the drift term α defined in (4.3.6) and the jump function
described in (4.3.7) – has the same distribution than τL ∧ T the stopping time associated to
the jump diffusion (4.3.4)–(4.3.5).

4.4 Simulation of a.s. finite first passage times for jump
diffusions

4.4.1 Modification of the algorithm

In the previous section, we focus our attention on the exact generation of stopped first
passage times for jump diffusions, denoted by τL ∧ T where T stands for a fixed time. The
main advantage of considering stopped processes is to deal with bounded random variables.
The algorithms presented so far therefore stop almost surely since they require only a finite
number of iterations.

The aim of this section is to present particular situations where the stopped diffusion can
be replaced by the diffusion itself. They obviously correspond to almost surely finite first
passage times: τL <∞. The algorithm (SJD)y,lT can then easily be modified just by setting
T =∞: we obtain the following algorithm (JD)y,l.

Jump diffusion τL – Algorithm (JD)y,L

1. Let (En)n≥1 be independent exponentially distributed r.v. with average 1/λ.

2. Let (ξn)n≥1 be independent r.v. with distribution function φ/λ.

The sequences (En)n≥1 and (ξn)n≥1 are assumed to be independent.
Initialization. n = 0, Ts = 0 (starting time), Tf = 0 (final time), Y = y, Z = y.
While Y < L and Z < L do

• n← n+ 1

• Ts ← Tf

• Tf ← Tf + En
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• Generate (S,Z) ∼ (SD)Y,LTs,Tf

• Y ← Z + j(Tf ,Z, ξn)

Outcome: The random variable S.

The following result is an immediate modification of the statement of Theorem 4.3.1.

Corollary 4.4.1. Let us consider (Yt)t≥0 the jump diffusion defined by (4.3.1)–(4.3.2) and τL
the associated first passage time (4.3.3). Under assumptions 4.2.2, 4.2.6 et 4.2.7 and assum-
ing τL < ∞, both the outcome S of Algorithm (JD)y0,L and τL have the same distribution.

As described in the previous section, the Lamperti transformation permits to generalize
the generation of first passage times for jump diffusion processes defined by (4.3.4)–(4.3.5).

4.4.2 Particular models with τL <∞ a.s.

The condition τL < ∞ permits to obtain a simplified algorithm for the first passage time
generation as described in Section 4.4.1. However it is not so easy in general to determine
if such a condition is satisfied. Let us focus our attention on particular assumptions related
to the diffusion characteristics (diffusion coefficient, drift term, jump measure) which lead
to the required event τL < ∞. This part of the chapter is not new, its aim is just to point
out that the condition τL <∞ can sometimes be satsified.

First we shall consider a toy model: a Brownian motion with constant drift term com-
bined with a constant rate Poisson process. The first passage time of this model has been
studied by Kou and Wang [38] with applications to mathematical finance. Secondly we shall
present usual tools for studying the transience or recurrence of stochastic processes. The
proofs are often based on Lyapunov functions and Wee proposed an interesting study of
d-dimensional jump diffusions [59]. We shall just present the arguments which permit to
point out conditions for the first passage time to be a.s. finite.

A toy model: Brownian motion with Poisson jumps (Kou-Wang)

Kou and Wang consider a particular diffusion satisfying (4.3.4)–(4.3.5), the following double
exponential jump process:

Yt = σBt + µt+
Nt∑
i=1

ξi, t ≥ 0, Y0 = 0, (4.4.1)

where (Nt, t ≥ 0) corresponds the Poisson counting process of parameter λ associated to the
random time sequence (Ti)i≥1 and (ξi)i≥1 are i.i.d random variables, independent of (Nt, t ≥
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0). The probability distribution function of ξi, denoted by fξ, is the double exponential one
(with parameters η1 and η2):

fξ(x) = pη1e
−η1x1{x≥0} + qη2e

η2x1{x<0}, with p+ q = 1. (4.4.2)

In this particular situation, it is possible to compute quite easily the infinitesimal generator
of the diffusion: for any twice continuously differentiable function u, we have

Lu(y) =
1

2
σ2u′′(y) + µu′(y) + λ

∫
R
{u(y + x)− u(y)}fξ(x) dx, ∀y ∈ R. (4.4.3)

Some information concerning the first passage time can be obtained using this generator.
Kou and Wang emphasized for instance the joint distribution of the first passage time τL
(for L > 0) and the position YτL (useful for the computation of the overshoot YτL −L). The
results are deeply based on the fact that the expression of the generator is simple enough for
pointing out explicit solutions of different boundary value problems.

First let us consider the Laplace transform of τL that is E[e−ρτL ] for any ρ > 0 (see
Theorem 3.1 in [38]). There exist two positive roots β1,ρ and β2,ρ satisfying

ρ = G(β) with G(y) := yµ+
1

2
y2σ2 + λ

( pη1

η1 − y
+

qη2

η2 + y
− 1
)
.

We define two constants:

A(ρ) =
η1 − β1,ρ

η1

β2,ρ

β2,ρ − β1,ρ

and B(ρ) =
β2,ρ − η1

η1

β1,ρ

β2,ρ − β1,ρ

and introduce the following continuous function uρ:

uρ(y) = 1{y≥L} +
(
A(ρ) e−β1,ρ(L−y) +B(ρ) e−β2,ρ(L−y)

)
1{y<L}. (4.4.4)

It is straightforward that the particular choice of the constants leads uρ to satisfy the equation

−ρuρ(y) + Luρ(y) = 0 for all y < L.

Using some regularization technique (replacing the continuous function uρ by a sequence of
C2-continuous functions u(n)

ρ ) and the martingale theory, Kou and Wang proved that

uρ(0) = E[e−ρτLuρ(YτL)1{τL<∞}] = E[e−ρτL ],

since uρ(y) = 1 for any y ≥ L. In order to describe the probability that τL is finite, it suffices
to consider limρ→0 uρ(0). Kou and Wang studied carefully the behaviour of all parameters
depending on ρ as ρ→ 0 and deduced the following result.

Proposition 4.4.2 (Kou & Wang, 2003). The first passage time τL of the diffusion (4.4.1)
satisfies

P(τL <∞) = 1 iff u := µ+ λ
( p
η1

− q

η2

)
≥ 0,

where u stands for the overall drift of the jump diffusion process.
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Let us just note that the condition u seems quite intuitive and can be related to the
asymptotic behaviour of the diffusion paths. Indeed let us consider the sequence Zn :=
YTn − YTn−1 for n ≥ 2 and Z1 = YT1 . We observe that (Zn)n≥1 is a sequence of i.i.d random
variables with a finite second moment. Therefore the law of large numbers implies

1

n
YTn =

1

n

n∑
i=1

Zi → E[Z1] a.s. when n→∞.

Since E[Z1] = u/λ, the condition u > 0 obviously leads to the almost sure event τL < ∞.
For the particular case u = 0, an argument based on the functional central limit theorem
(Donsker’s theorem) permits also to reach the same conclusion. These arguments are linked
to the following facts:

• the process has independent increments

• the increments Yt − Ys and Yt−s − Y0 are identically distributed.

This restrictive model permits to handle with a first example of jump diffusion with alsmost
surely finite first passage time τL.

Jump diffusions with time-homogeneous coefficients (Wee)

Let us now consider a larger family of models: the jump diffusion processes studied by Wee
[59]. The results have been pointed out in the general d-dimensional case, nevertheless we
shall present in this section the restrictive one-dimensional case which corresponds to the
first passage time context. Let us just recall the main objective: we aim to find particular
conditions which insure that τL <∞ almost surely.

Let us recall the definition of the jump diffusion (4.1.1) in situations where the coefficient
are time-homogeneous:

dXt = µ(Xt−) dt+ σ(Xt−) dBt +

∫
E
j(Xt−, v)pφ(dv × dt), t ≥ 0, X0 = y0. (4.4.5)

Here pφ(dv × dt) stands for the Poisson measure of intensity φ(dv)dt. Let us introduce the
compensated Poisson measure

p̂φ(dv × dt) := pφ(dv × dt)− φ(dv)dt.

Equation (4.4.5) can easily be rewritten using p̂φ instead of pφ just by changing the drift
term of the diffusion process µ(·) by

µ̂(x) = µ(x) +

∫
E
j(x, v)φ(dv), ∀x ∈ R.

Let us recall that (Xt, t ≥ 0) has the same distribution than (Yt, t ≥ 0) defined by (4.3.4)–
(4.3.5) with time-homogeneous coefficients. So we shall focus our attention to the first
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passage time problem for the diffusion (Xt, t ≥ 0). In the particular case E = R, we obtain
the jump diffusion introduced by Wee:

Xt = y0 +

∫ t

0

µ̂(Xs−) ds+

∫ t

0

σ(Xs−)dBs +

∫ t

0

∫
R
j(Xs−, v)p̂φ(dv × ds), t ≥ 0. (4.4.6)

We shall denote by Py0 the probability distribution of such a solution. In order to state the
result concerning the first passage time that is Py0(τL <∞) = 1 for y0 < L (the symmetric
case can be handled with similar arguments), we need to introduce several assumptions. We
assume in particular that the coefficients are regular and the diffusion nondegenerate.

Assumption 4.4.3. Let us suppose that there exists a constant K > 0 such that

|µ̂(x)− µ̂(y)|2 + |σ(x)− σ(y)|2 +

∫
R
|j(x, v)− j(y, v)|2φ(dv) ≤ K|x− y|2 (4.4.7)

and
|µ̂(x)|2 + |σ(x)|2 +

∫
R
|j(x, v)|2φ(dv) ≤ K(1 + |x|2). (4.4.8)

Moreover there exists σ0 > 0 such that σ(x) ≥ σ0 for all x ∈ R.

Under Assumption 4.4.3, it is well known that (4.4.6) admits a unique strong solution
which is right-continuous with left-hand limits, see for instance Theorem 9.1 in [34] for
homogeneous coefficients and Theorem 1.19 in [47] in the general non homogeneous case. In
order to state the main result of this section, we need to first prove that the jump diffusion
exits from any bounded interval almost surely.

Lemma 4.4.4. For any positive R, let us define the following stopping time associated to
the diffusion (4.4.6):

ζR = inf{t ≥ 0 : Xt /∈]−R,R[}. (4.4.9)

Under Assumption 4.4.3, for any R > 0 there exists ρR > 0 such that

sup
y0∈[−R,R]

Ey0 [exp(ρR ζR)] <∞. (4.4.10)

We just recall the proof proposed by Wee.

Proof. Let us consider R > 0, choose a > 3R and set K = a2n where n is a positive integer
that shall be determined later on. We consider ψ ∈ C2

c (R) such that

ψ(z) =

{
K − z2n for |z| ≤ a,
0 for |z| ≥ a+ 1.

Let us set ψ̂(z) = ψ(z− 2R) and Ψ(t, z) = eρtψ̂(z) for some ρ > 0 which shall once again be
selected later. Using Itô’s formula to the diffusion process (4.4.6), we have

Ey0 [Ψ(t ∧ ζR, Xt∧ζR)] = ψ̂(x) + Ey0
[∫ t∧ζR

0

(
ρeρsψ̂(Xs) + eρsLψ̂(Xs)

)
ds

]
, (4.4.11)
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where

Lf(y) =
σ2(y)

2
f ′′(y) + µ̂(y)f ′(y) +

∫
R

(
f(y + j(y, v))− f(y)− f ′(y)j(y, v)

)
φ(dv). (4.4.12)

Let us define Ia = {v ∈ R : |y + j(y, v)− 2R| > a}. Therefore, for any |y| ≤ R,

Lψ̂(y) ≤ −2n(y − 2R)2n−2
[
(y − 2R)µ̂(y) + (2n− 1)

σ2(y)

2
−(y − 2R)

∫
Ia

j(y, v)φ(dv)
]
.

The triangle inequality leads to Ia ⊂ Ja := {v ∈ R : |j(y, v)| > a− 3R}. Let us then remark
that for |y| ≤ R,∫

Ia

|j(y, v)|φ(dv) ≤
∫
Ja

|j(y, v)|φ(dv) ≤ (a− 3R)

∫
Ja

|j(y, v)|
a− 3R

φ(dv)

≤ (a− 3R)

∫
Ja

(
|j(y, v)|
a− 3R

)2

φ(dv) ≤ K(1 + y2)

a− 3R
≤ K(1 +R2)

a− 3R
.

Hence, for n large enough, there exists α > 0 such that Lφ̂(y) ≤ −α, for |y| ≤ R. Then for
ρ > 0 small enough, we get β := α− ρK > 0. Hence equation (4.4.11) becomes

Ey0 [Ψ(t ∧ ζR, Xt∧ζR)] ≤ K + Ey0
[ ∫ t∧ζR

0

(ρK − α)eρs ds
]

= K − β Ey0
[ ∫ t∧ζR

0

eρs ds
]
.

Finally, since Ey0 [Ψ(t ∧ ζR, Xt∧ζR)] ≥ 0, we obtain

Ey0 [eρ t∧ζR ] ≤ ρ

β
K + 1,

which leads to the announced result as t tends to infinity.

Let us introduce two assumptions which are crucial in order to obtain almost sure finite
times τL when the initial value y0 satisfies y0 < L.

Assumption 4.4.5. There exists r > 0 such that:

• the following bound holds

sup
y≤−r

∫
R

(
ln

(
|y + j(y + L+ r, v)|

|y|

))2

φ(dv) =: κL,r <∞. (4.4.13)

• there exist ε > 0 and η > 0 satisfying

yµ̂(y + L+ r) +

∫
R

(
y2 ln

(
|y + j(y + L+ r, v)|

|y|

)
− yj(y + L+ r, v)

)
φ(dv)

<
(1− ε)

2
σ2(y + L+ r)− ηy2,

(4.4.14)

for all y ≤ −r.
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The first part of Assumption 4.4.5 requires that the jumps are not too large. The second
part corresponds to a kind of competition between the drift, the diffusion coefficient and the
jump measure. A careful reading of the proof of Theorem 1 in [59] permits to adapt the
statement to the situation just introduced above.

Theorem 4.4.6. Let Assumption 4.4.3 and Assumption 4.4.5 be satisfied, then Py0(τL <
∞) = 1 for any y0 ≤ L, where τL is the first passage time through the level L for the
diffusion (4.4.6).

Proof. Let us first just mention that the particular case y0 = L is obvious. So let us assume
for the sequel that y0 < L. Let us consider the constant r > 0 appearing in Assumption 4.4.5
and introduce a parameter δ such that 0 < δ < ε(r)/2, the value of δ shall be determined
later. We also introduce the first entrance time

ζL,r = inf{t ≥ 0 : Xt ∈]L,L+ 2r[}. (4.4.15)

Since the paths of the diffusion are not continuous, the first passage time τL = inf{t ≥ 0 :
Xt ≥ L} does not always correspond to the first time the diffusion reaches the level L. That
is why we need to give in some sense more thickness to the level L: we replace it by the strip
]L,L+ 2r[. Let us prove now that ζL,r is almost surely finite which implies τL <∞.

We also introduce a non positive and non increasing symmetric function F ∈ C2(R)
such that F (y) = −|y|2δ for any |y| > α where α = re−1/δ. Let us define f by f(y) =
F (|y− (L+ r)|) and Iy,α := {v ∈ R : |y+ j(y, v)− (L+ r)| > α}. Then, for |y− (L+ r)| > r,
we obtain

Lf(y) = 2δ|y − (L+ r)|2δ
[ 1− 2δ

2 |y − (L+ r)|2
σ2(y)− y − (L+ r)

|y − (L+ r)|2
µ̂(y)

+

∫
Icy,α

(
f(y + j(y, v))

2δ|y − (L+ r)|2δ
+

1

2δ
+

y − (L+ r)

|y − (L+ r)|2
j(y, v)

)
φ(dv)

− 1

2δ

∫
Iy,α

(( |y + j(y, v)− (L+ r)|
|y − (L+ r)|

)2δ

− 1− 2δ
y − (L+ r)

|y − (L+ r)|2
j(y, v)

)
φ(dv)

]
Here L is the infinitesimal generator defined in (4.4.12). Then, using the second condition
(4.4.14) in Assumption 4.4.5, we obtain

Lf(y) ≥ 2δ|y − (L+ r)|2δ
[ (ε− 2δ)σ2(y)

2|y − (L+ r)|2
+ η +

∫
Icy,α

ln

(
|y + j(y, v)− (L+ r)|
|y − (L+ r)|

)
φ(dv)

− 1

2δ

∫
Iy,α

(( |y + j(y, v)− (L+ r)|
|y − (L+ r)|

)2δ

− 1− 2δ ln

(
|y + j(y, v)− (L+ r)|
|y − (L+ r)|

))
φ(dv)

]
.

Let M > 1. The set Iy,α can be spitted into two parts Iy,α = JM1 ∪ JM2 where{
JM1 = {v ∈ R : |y + j(y, v)− (L+ r)| > M |y − (L+ r)|}
JM2 = {v ∈ R : α < |y + j(y, v)− (L+ r)| ≤M |y − (L+ r)|}.
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Combining the previous decomposition with the following bound

(lnu)2 ≥ 1− 1 + lnu

u
, ∀u > 0,

permits to write:

A :=
1

2δ

∫
Iy,α

((
|y + j(y, v)− (L+ r)|
|y − (L+ r)|

)2δ

− 1− 2δ ln

(
|y + j(y, v)− (L+ r)|
|y − (L+ r)|

))
φ(dv)

≤ δ

∫
JM1

(
|y + j(y, v)− (L+ r)|
|y − (L+ r)|

)2δ (
ln

(
|y + j(y, v)− (L+ r)|
|y − (L+ r)|

))2

φ(dv)

+ δM2δ

∫
JM2

(
ln

(
|y + j(y, v)− (L+ r)|
|y − (L+ r)|

))2

φ(dv). (4.4.16)

Assumption 4.4.5 leads to

A ≤ δ

∫
JM1

|y + j(y, v)− (L+ r)|2

|y − (L+ r)|2
φ(dv) + δM2δκL+r. (4.4.17)

On the set JM1 we have

|y + j(y, v)− (L+ r)| ≤ |y − (L+ r)|+ |j(y, v)− j(L+ r, v)|+ |j(L+ r, v)|

≤ 1

M
|y + j(y, v)− (L+ r)|+ |j(y, v)− j(L+ r, v)|+ |j(L+ r, v)|.

Consequently

|y + j(y, v)− (L+ r)| ≤ M

M − 1

(
|j(y, v)− j(L+ r, v)|+ |j(L+ r, v)|

)
.

Hence, on the considered set∫
JM1

|y + j(y, v)− (L+ r)|2

|y − (L+ r)|2
φ(dv)

≤ M2

(M − 1)2

2

|y − (L+ r)|2
[ ∫

R
|j(y, v)− j(L+ r, v)|2φ(dv) +

∫
R
|j(L+ r, v)|2φ(dv)

]
.

Using Assumption 4.4.3, we obtain∫
JM1

|y + j(y, v)− (L+ r)|2

|y − (L+ r)|2
φ(dv) ≤ 2KM2

(M − 1)2

(
1 +

1 + |L+ r|2

|y − (L+ r)|2

)
≤ 2KM2

r2(M − 1)2
(1 + |L+ r|2 + r2). (4.4.18)
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We deduce that (4.4.17) becomes

A ≤ 2δKM2

r2(M − 1)2
(1 + |L+ r|2 + r2) + δM2δκL+r.

Finally, there exists some finite constant CL,r > 0 such that

Lf(y) ≥ 2δ|y − (L+ r)|2δ
[

(ε− 2δ)σ2(y)

2|y − (L+ r)|2
+ η − δ CL,r

]
.

Choosing δ small enough leads to Lf(y) ≥ 0 for any y ≤ L. Under these conditions, the
selected function f is a Lyapunov function. This leads to

f(y0) ≤ Ey0 [f(XζL,r)1ζL,r<ζR ] + Ey0 [f(XζR)1ζR<ζL,r ],

where ζR, respectively ζL,r, is defined by (4.4.9), resp. (4.4.15). Since f is a non positive
function and since

Ey0 [f(XζR)1ζR<ζL,r ] ≤ F (R− |L| − r)Py0(ζR < ζL,r) ≤ −(R− |L| − r)2δPy0(ζR < ζL,r),

for R large enough, the previous equation becomes

f(y0) ≤ −(R− |L| − r)2δ Py0(ζR < ζL,r).

Letting R tend to infinity in the previous inequality implies that limR→∞ Py0(ζR < ζL,r) = 0.
Let us suppose that E = {ζL,r = ∞} is an event with positive probability P(E) > 0. Then
there exists R0 > 0 large enough such that

Py0(ζR0 =∞) ≥ Py0(E ∩ {ζR0 ≥ ζL,r}) > 0.

This inequality contradicts the statement of Lemma 4.4.4. We deduce therefore by a reductio
ad absurdum argument that Py0(ζL,r <∞) = 1.

In this section we emphasize a particular situation which insures that τL < ∞ almost
surely. It concerns a time-homogeneous jump diffusion process since the essential tools used
in the proof of Theorem 4.4.6 are based on the generator and on an explicit Lyapunov
function. Nevertheless the use of suitable comparison results should permit to point out
examples with almost surely finite first passage times associated to non-homogeneous jump
diffusions.

4.5 Numerical illustrations
In this last section, we present several examples of jump diffusion processes and propose
simulation experiments which illustrate the algorithms introduced in Section 4.3 and Sec-
tion 4.4.1. Let us just recall that the diffusion (Yt, t ≥ 0) satisfies (4.1.2)-(4.1.3) with a
determinsistic starting value Y0 = y0. In all examples and without loss of generality, we shall
focus our attention to the case y0 < L where L stands for the level the diffusion process
should overcome (τL denotes the first passage time).
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Example of a stopped jump diffusion.

We consider the time-homogeneous jump diffusion (4.1.2)-(4.1.3) with coefficients µ(t, y) =
2 + sin(y) and σ(t, y) = 1. In other words the diffusion starting in y0 satisfies the following
SDE inbetween the jump times:

dYt = (2 + sin(Yt)) dt+ dBt, for Ti < t < Ti+1, i ∈ N, (4.5.1)

and the jumps satisfy
YTi = YTi− + j(Ti, YTi−, ξi), i ∈ N.

Let us just recall that Ti =
∑i

k=1Ek with Ek exponentially distributed random variables
with average 1/λ. We set λ = 1 in the whole section. Moreover (ξi)i≥1 is a sequence of i.i.d
variates with density φ which will be precised later on. We fix T > 0 and we aim to generate
τL∧T using Algorithm (SJD)y,LT (see Theorem 4.3.1) and therefore we need to verify that the
assumptions 4.2.2, 4.2.6 and 4.2.7 hold. The first assumption concerns the obvious regularity
of α(t, y) = µ(t, y). The second and third assumptions consist in pointing out bounds for
both functions γ(t, y) and β(t, y) defined by (4.2.5). Here we observe that

β(t, y) =

∫ y

0

(2 + sin(x)) dx = 2y + 1− cos(y) ≤ 2L+ 2 =: β+, ∀y ≤ L.

and

0 ≤ γ(t, y) =
(2 + sin(y))2 + (2 + sin(y))′

2
=

(2 + sin(y))2 + cos(y)

2
≤ 5 =: κ, ∀y ≤ L.

Let us also describe the jump function: we choose j(t, y, z) = −z sin(y). The histograms
emphasizing the distribution of the first passage time τL ∧ T are represented in Figure 4.4.
Let us note that the exact generation is quite time-consuming: the sample associated to the
left figure requires about CPU 377 sec while the right one requires about CPU 150 sec.

Example of a jump diffusion which satisfies τL <∞.

Let us conclude the numerical illustrations with a jump diffusion starting in y0 < L and
satisfying τL < ∞. We introduce to that end a stochastic process which satisfies on one
hand assumptions 4.4.3 and 4.4.5 insuring the finiteness of τL (see Theorem 4.4.6) and on the
other hand assumptions 4.2.2, 4.2.6 et 4.2.7. All these assumptions permit to use Algorithm
(JD)y0,L for the generation of the stopping time τL and apply thereby the statement of
Corollary 4.4.1. We consider (Yt)t≥0 the solution of (4.5.1) between to consecutive jump
times. The jumps are associated to a time-homogeneous function j(y, v) = (L + 1 − y)v as
follows:

YTi = YTi− + j(YTi−, ξi), i ∈ N.

This particular jump function drives the stochastic process towards the threshold L. Let
us just recall that Ti =

∑i
k=1 Ek with Ek exponentially distributed random variables with
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Figure 4.4: Histograms of the stopping time τL ∧ T for the jump diffusion (4.5.1) with j(t, y, z) =
−z sin(y). Here y0 = −1, L = 1, T = 3, λ = 1 and the size of the sample equals 100 000. The noise
used for the jump generation corresponds to φ(t) = e−t1{t≥0} (left) or φ(t) = 2 1[−1/4,1/4](t) (right).

average 1. Moreover (ξi)i≥1 is a sequence of independent uniformly distributed variates with
density φ(v) = 1[0,1](v). This model satisfies the announced assumptions quite easily. Let
us just point out the arguments used for Assumption 4.4.5. First we observe that, for any
r > 1, v ∈]0, 1[ and y ≤ −r,

ln(1− v) ≤ ln

(
|y + j(y + L+ r, v)|

|y|

)
= ln

(
|y(1− v) + (1− r)v|

|y|

)
≤ ln(1− v

r
). (4.5.2)

This inequality leads to the condition (4.4.13) since∫
R

(
ln

(
|y + j(y + L+ r, v)|

|y|

))2

φ(dv) ≤
∫ 1

0

(ln(1− v))2 dv <∞.

Finally for the condition (4.4.14), we note on one hand that yα(y+L+r) ≤ 0 for any y ≤ −r
and introduce on the other hand the constant

η := −
∫ 1

0

ln
(

1− v

r

)
dv.

Then the definition of η and (4.5.2) imply∫
R
y2 ln

(
|y + j(y + L+ r, v)|

|y|

)
φ(dv) =

∫
R
y2 ln

(
|y(1− v) + (1− r)v|

|y|

)
φ(dv) ≤ −ηy2.

All the conditions presented in Assumption 4.4.5 are therefore satisfied. In conclusion,
the first passage time τL is almost surely finite. We use Algorithm (JD)y0,L in order to
generate a sample of this stopping time: the histogram in Figure 4.5 describes the probability
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distribution of the random variables. The generation of a sample of size 100 000 requires
a processing time of about CPU 90 sec for the case y0 = −1 and CPU 1 000 sec for the
case y0 = −3 (here we used the C++ programming language). This large processing time
is strongly related to the nature of the algorithm which is based on an acceptance/rejection
procedure.
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Figure 4.5: Histograms of the stopping time τL for the jump diffusion (4.5.1) with j(t, y, z) =
(L + 1 − y)z. Here L = 1, the size of the sample equals 100 000 and y0 = −1or y0 = −3 (right).
The noise used for the jump generation corresponds to φ(t) = 1[0,1](t).
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Titre : Premier temps de passage pour une diffusion 

Mots clés : Temps d’atteinte, diffusions, simulation 

Résumé : Dans ce mémoire de thèse, nous nous 
penchons sur la simulation du premier temps de 
passage pour des diffusions unidimensionnelles. 
Dans le premier chapitre, nous présentons les 
méthodes utilisées jusqu'ici afin de simuler de 
telles variables aléatoires. L'algorithme WOMS 
est particulièrement mis en lumière, un 
algorithme qui permet de générer une 
approximation du temps nécessaire au 
mouvement brownien unidimensionnel pour 
sortir d'un intervalle donné. 

Dans un second et troisième chapitre, nous 
expliquons par quel moyen cet algorithme peut 
être modifié pour s'adapter aux diffusions 
entretenant un lien fort avec le mouvement 
brownien. C'est le cas des processus d'Ornstein-
Uhlenbeck. Mais nous élargissons notre champ 
de vision à de plus grandes classes de diffusions 
: les diffusions de classe L. 
Enfin dans le quatrième et dernier chapitre, 
nous nous intéressons aux problèmes de 
simulation exacte du premier temps de passage 
au dessus d'un niveau donné. Cette étude 
concerne des diffusions à sauts et repose en 
grande partie sur la transformation de Girsanov. 

 

 

Title : First passage time for diffusions 

Keywords : First passage time, diffusions, simulation 

Abstract : In this thesis, we focus our attention 
on the generation of the first exit time or the 
first passage time for diffusions in a one-
dimensional context. 
In the first chapter, we present already well-
known methods in order to generate such 
random variables. We particularly introduce 
the WOMS algorithm. This algorithm permits 
the generation of an approximation of the time 
needed by the Brownian motion in order to exit 
from a given interval. 
 

 

In the second and third chapters, we explain 
how to extend the previous algorithm in order 
to deal with diffusions strongly linked to the 
one-dimensional Brownian motion. We first 
consider the Ornstein-Uhlenbeck process, and 
then we consider a wide class of diffusions 
called the L-class diffusions. 
In the fourth and last chapter, we study the 
generation of the first passage time through a 
given level for jump diffusions. This part of the 
study is based on the so-called exact 
simulation methods and also on the famous 
Girsanov's formula. 
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