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Chapter 1

Introduction

This manuscript presents the findings on what I consider to be the backbone of my
research activity: hierarchical representations for image analysis. Intuitively, hierar-
chical image representations come from the very natural idea that the appearance of
an image varies according to the distance at which we decide to observe it. From a
far distance, we will generally only observe large structures while, closer, we will see
that those large structures are themselves composed of finer parts.
I started to develop an interest for this research topic during my PhD thesis which
began in 2007 and which was about the automatic characterization of multiband
galaxy images. It was a strongly multi-disciplinary subject which led me to explore
two very different scientific fields: 1) Monte Carlo Markov chains sampling to
solve inverse problems and 2) connected filtering in the framework of mathematical
morphology to analyze images. The efficient implementation of such connected filters
requires the use of hierarchical image representations called component trees. After
the completion of my PhD thesis, I was recruited as a teacher-researcher in computer
science at ESIEE Paris and I integrated the A3SI1 team of the LIGM2. Several
members of this team already had a long experience with hierarchical representations
of images and since then, those representations have become the main theme of my
research activity.
The works presented in this manuscript are the results of many local, national and
international collaborations, often involving interns and PhD students. My PhD thesis
introduced me to develop team working skills in the context of research; the multi-
disciplinary nature of the project was materialized by two thesis directors and two
advisers. It allowed me to discover the challenge of animating and communicating in
a team of researchers with different scientific backgrounds. Since then, I am convinced
of the benefit of such collaborations for research: they contribute to the stimulation
of the research effort, favor new ideas, and, more importantly, when the domain of
competence of the team members are complementary, they support the emergence of
novel solutions that would have been impossible to find individually.
These forewords now allow me to give a more precise definition of what I called “my

1Algorithmes, architectures, analyse et synthèse d’images
2Laboratoire d’Informatique Gaspard-Monge
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research activity” at the very beginning of this introduction, by which I mean my
constant research effort carried out on selected subjects and in collaborations with
several colleagues. The aim of this manuscript is to present the most important results
obtained during this research activity. When writing such a document, a balance
must be struck between a high-level presentation of the results, which can at times be
ambiguous, and a precise mathematical formulation, that can sometimes hide major
ideas behind technical details. Here, I have chosen to keep the formalism as reduced
as possible to let the reader concentrate on the ideas and I hope that this will make
him or her want to read the article cited for a more in-depth presentation.
The main content of this manuscript is divided into three parts. The first two chapters
correspond essentially to theoretical, methodological and algorithmic developments
in two different paradigms for hierarchical image representations: 1) connected
operators and their associated component trees, and 2) image segmentation and
their associated hierarchies of segmentations. The third chapter gathers the major
applicative developments related to the two first chapters. While I believe that this
division into three parts is an important feature of this presentation, it remains
somewhat arbitrary given the many links existing between the two paradigms and
the fact that applicative and methodological developments are done in parallel and
feed each other. The main content of the three chapters is the following:

Connected operators. In this paradigm, an image is viewed as a collection of
connected components instead of a set of pixels: we can then decide to preserve
or remove each of these connected components. This abstraction level enables to
define a large variety of image analysis and processing methods and naturally leads
to hierarchical image presentations given by the partial ordering of the connected
components of the level sets of the image. In this context, our contributions are
organized around three themes:

1. We contributed to the development of the theory of hyperconnected operators
which is based on a generalization of set connections to lattice of functions.
We improved the axiomatic of hyperconnections and we showed how they can
be used to devise hyperconnected operators based on associated hierarchical
image representations.

2. We proposed a generic axiomatic framework for connections and their associated
operators. We showed how all the existing theories of connections can be
obtained by combining a small number of axioms on top of a very generic
theory called inf-structring functions.

3. We generalized the notion of connected operators to directed connected operators
which can benefit from the rich information given by asymmetric adjacency
relations. We studied how the directed connected components of the level sets
of an image organize themselves in a hierarchical structure generalizing the
hierarchies of connected components. We showed in particular how non local
and directed k-nearest neighbor graphs can be used to improve the performances
of classical connected filters in bio-medical image analysis.
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Hierarchies of segmentations. Those multi-scale image representations intu-
itively correspond to the decomposition of an image into its objects and the iterative
refinement of those objects into their sub-parts. Hierarchies of segmentations are
usually used as intermediate representations, offering a reduced search space, in
image segmentation or object detection methods. Our main contribution axis in this
context are:

1. We studied the theoretical constructive links existing between common hier-
archical segmentation methods used in mathematical morphology leading to
efficient algorithms for computing and for transforming those hierarchies.

2. We performed an in depth study of a particular class of hierarchies of segmen-
tations which corresponds to the solution of a well identified combinatorial
optimization problem: hierarchies of watersheds. In particular, we provided
constructive proofs and efficient algorithms for characterizing, for counting and
for transforming hierarchies of watersheds.

3. We proposed a generic method to optimize hierarchies of segmentations and
hierarchical clusterings according to arbitrary differentiable cost functions using
classical gradient descent methods. We showed how some existing NP-hard
hierarchical loss functions can be optimized on large datasets in our framework
and we proposed novel loss functions taking advantage of the flexibility of the
proposed approach.

Assessment and applications. In this chapter we present contributions related
to applications.

1. We proposed a novel method to perform a quantitative assessment of hierarchies
of segmentations based on object detection. This method was integrated in
a comprehensive evaluation framework which allowed us to identify a novel
attribute to compute hierarchies of watersheds with improved performances
compared to classical ones.

2. We developed methods to perform an automatic characterization of skin aging
in reflectance confocal microscopy images. We proposed image analysis methods
based on hierarchical representations to automatically extract aging features
from 3d skin images. We showed that these features significantly correlate with
features manually extracted by expert dermatologists.

3. We proposed several hierarchical methods to automatically analyze and filter
astronomical images. In particular, we developed methods to detect faint objects
in multiband astronomical images based on hierarchical Markovian models and
on statistical testing in hierarchical image representations.

4. We have developed an open source library HIGRA for hierarchical graph
analysis. This library combines a Python front-end with a C++ back-end and
is readily available on major platforms with a single command line. It provides
a seamless integration with the rich Python ecosystem for data-analysis and
machine learning.
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Chapter 2

Connected operators

Spatial relations are a fundamental component of most image processing methods.
They can be modeled explicitly, for example when an image is represented as a graph,
or implicitly, as in the sliding window paradigm used in convolution filters or with
structural morphological operators. The study of the various ways of understanding
how image pixels are spatially related has led to a large amount of works (see, for
example, the review from Braga-Neto and Goutsias [79])
In binary images, the definition of spatial relations between pixels immediately leads
to the notion of connected components, i.e., sets of pixels where any two pixels can
be joined by a sequence of mutually adjacent pixels. This process can be viewed as
a first attempt to perform perceptual grouping. This idea gave rise to the fruitful
family of connected operators [102, 225, 232], i.e., operators acting on connected
components instead of pixels [220,226].
Binary connected operators are extended to grey-scale images with the thresholding-
stacking approach [132,150,254]. Such grey-scale connected operators then have the
interesting property to never create or move contours: the only allowed operation
is to remove contours. The definition of grey-scale connected operators is deeply
linked to hierarchical representations of grey-scale images called component trees:
the min/max tree [133,224] and the tree of shapes [168] (see Figure 2.1). With these
hierarchical representations, the construction of a connected operator is generally
done in four steps: 1) compute a tree representing the hierarchical decomposition of
the image, 2) compute features on the nodes of the tree, 3) filter the tree according
to the node features, and 4) reconstruct the filtered tree to obtain a new image.
The operators obtained with this approach are usually referred as flat operators
because they operate independently on each level set, i.e., flat section, of the input.
Those operators became popular for image analysis with applications in medical
imaging [181,255,266], astronomical imaging [8, 37, 64,243,244], vision [152,265,267,
268], remote sensing [105,107,108,192,223] or document imaging [182]. This success
can be explained by several reasons. First, efficient algorithms exist for constructing
and processing these hierarchical representations [32, 84, 85, 123, 185, 224] and second,
the approach is rather intuitive: filters can be designed using rich features dedicated
to specific applications. Moreover, those filters benefit from theoretical properties and
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Figure 2.1: An image and its associated max tree, min tree, and tree of shapes. The
nodes of the max tree (respectively min tree) are the connected components of the
upper (respectively lower) level sets of the image. The nodes of the tree of shapes are
the saturated connected components (with their holes filled) of the upper and lower
level sets of the image. In all cases, the tree corresponds to the inclusion relation
between the nodes. A simple way to design a connected filter is to design a node
filtering strategy on such trees.

several classes of connected filters have been defined: flattenings, levellings, or level-
set filters [103, 104, 123, 162–164]. The extension of grey-scale connected operators to
multivariate images has also been proposed [54,83,87,124,178,179,245,253].
Our works on connected operators are focused on three axis which are developed in
the following sections.

1. In a first sequence of works, we explored the possibility to define grey-scale
connected operators without using thresholding-stacking. Actually, one issue
with the extension of binary connected operators to the grey-scale case through
thresholding-stacking is its sensitivity to leakage, i.e., broken contours, and link-
age, i.e., false contours. The proposed approach is based on the generalization
of connections, called hyperconnection, to more general spaces, in particular
to the space of functions. In other words, an hyperconnection enables to de-
compose a function into connected components which are themselves functions.
Our works in this direction led to theoretical developments around the theory
of hyperconnections which were proven useful in applications in astronomical
image processing and document image analysis.

2. The theoretical reflections initiated with our works on hyperconnections led
us to propose a general theory that enables to express all known theories of
connections and connected operators in a common framework. This work was
motivated by the fact that several competing extensions of binary connections
had been proposed and the links and differences among them, and among the
connected operators they were able to generate, were not well understood. The
proposed approach allowed us to identify a set of fundamental properties and
to establish bijections between existing connection axiomatics and subsets of
those properties.

3. Finally, we explored how directed information can enrich and improve the
family of connected operators. We proposed the notion of directed connected
components in the framework of directed graphs and we showed how it links
with the classical notion of strongly connected components. We studied how,
in the grey-scale case, the directed components of a directed graph organize
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themselves as a hierarchical representation that generalizes the classical hierar-
chical representation used to design connected filters. This new representation
is not a tree anymore but a directed acyclic graph and we studied how to
adapt classical methods and how to define new filtering strategies for this new
context. The usefulness of this new directed framework is demonstrated in
several applications in medical and biological image analysis.

2.1 Hyperconnected operators

The algebraic notion of connectivity was first defined by Serra [228] and enabled to
unify the different notions of connections in graphs and in topological spaces [92,191,
216, 217]. The original definition was given in the context of the power-set lattice
P (E), with E an arbitrary non empty set. A set connection is a family C included
in P (E) that satisfies three constraints:
C1 - it contains the empty set: ∅ ∈ C;
C2 - it contains every singleton of E: ∀a ∈ E, {a} ∈ C; and
C3 - it is conditionally closed under union: the union of a set of intersecting connected

elements must be connected: ∀A ⊆ C, ⋂A 6= ∅ ⇒ ⋃
A ∈ C.

The elements of such a family C are said to be connected. An interesting property of
C is that the union of the elements of C included in a subset A of E and containing
a point x of A is connected (i.e., ⋃ {C ∈ C |x ∈ C, C ⊆ A} ∈ C). This element is
called the connected component of A containing x. Then, the operator that associates
the connected component of A containing x to any subset A of E is an opening (it is
increasing, anti-extensive and idempotent) called the the connected opening marked
by x. The connected components of the subset A of E can be equivalently defined as
the maximal elements of the set of elements of C included in A. The set of connected
components of a subset A of E forms a partition of A: connected components of A
do not overlap and they cover A.
The definition of connections can be immediately extended to complete lattices [53,
76–78, 80, 81, 215, 229, 230]. Intuitively, the idea of this generalization is to define
connections where connected components are functions and thus to avoid using
thresholding and stacking in the definition of connected operators on general functions:
such operators are called non-flat connected operators.
Nevertheless, this direct extension of the theory of connections to any complete
lattices is hardly applicable in practice as the translation of the property C3 of
the set connections into the theory of complete lattices produces an overly strong
constraint. The relaxation of the property C3 to accommodate complete lattices has
led to the notion of hyperconnections [229] which have been the objects of various
theoretical and practical developments [13,36,38,79,173,189,195,258,259,261]. In
particular, it has been shown that the approach covers a large variety of morphological
operators and concepts including set connected operators (connections are just a
special case of the hyperconnections [229]), structural morphology [258] and fuzzy-
connectedness [189].
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We have contributed to the theory of hyperconnections and its applications in the
following works [6, 13, 36,38], our major contributions are described in the following
sections.

2.1.1 Accessible hyperconnections.

In [13, 36], we have identified a sub-class of hyperconnections ensuring that the
decompositions into hyperconnected components provide a consistent and intuitive
framework for designing hyperconnected filters. In fact, the hyperconnection theory
can behave counter-intuitively as it does not guarantee that removing an hypercon-
nected component from an image will actually change the image.
We proposed a new property that formalizes the following idea: the decomposition
of an image in its hyperconnected components must be necessary and sufficient to
describe the image. This property is fundamental for image processing as it implies
that the decomposition into hyperconnected components completely describes the
whole image (sufficient) and that none of its components is useless (necessary). These
requirements enforce the consistency of the hyperconnected filters as they ensure
that: 1) every deletion of image components will effectively modify the filtered image,
and 2) a deleted component can not re-appear in the filtered image. While sufficiency
is provided by axioms C1 and C2, we proposed several equivalent formulations of the
necessity condition that can be used to replace axiom C3. Such hyperconnections
were called accessible because they also ensure that any hyperconnected component
of an element can be obtained by a marked hyperconnected opening.

2.1.2 Hypercomponent tree.

In [13,38], we have developed a general framework to represent the decomposition
of an image into hyperconnected components as an hypercomponent tree which
corresponds to a generalization of the connected component tree. Such tree is indeed
an efficient and intuitive way to design hyperconnected attribute filters or to perform
detection tasks based on quantitative attributes: it allows us to reuse the existing
algorithms imagined for the connected component trees in this new context. The
major difficulty here is that the hyperconnected components of an element are
generally not ordered, and thus do not exhibit a tree structure.
We proposed to rely on the notion of z-zones [79] which decompose the umbra
of a function into equivalence classes where all points generating the same set
of hyperconnected components are said equivalent (see Figure 2.2). We showed
that the z-zones of a function can be partially ordered and we gave a sufficient
condition to ensure that their Hasse diagram is a tree. If an hyperconnection is
accessible (see paragraph above), there is a z-zone associated to each hyper-connected
component of an element: in other words, in an accessible hyperconnections, the
hyperconnected components of a function can be partially ordered through their
associated z-zones.
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f=

f

f

f

f

Figure 2.2: Decomposition of a function f with the hyperconnection of functions
with a unique maximum [79]. The function f has three hyperconnected components
γδ2 (f), γδ4 (f), and γδ5 (f). Left: the function f , five pulses δ1, . . . , δ5 representatives
of the five z-zones of f . The pulse δ1 (and its equivalence class) is associated to the
whole set of hyperconnected components of f and thus the marked hyperconnected
opening γδ1 (f) of f by δ1 is equal to f . Right: the marked hyperconnected openings
of f by δ2, . . . , δ5.

2.1.3 Hyperconnected filters.
We illustrated the capacity of the proposed hypercomponent tree on two applica-
tions [13, 38]. In both cases, the developed hyperconnected operators are based
on a fuzzy hyperconnection [189] which is composed of functions with at most one
maximum whose dynamics is greater than a given threshold. In other words, a fuzzy
hyperconnected function has a single significant maximum and possibly many small
local maxima. It is thus expected that the introduction of noise in an image will
not lead to the apparition of many new hyperconnected components, as it would be
the case with classical connections, but would rather be absorbed by the significant
hyperconnected components.
The first proposed application deals with multispectral astronomical image filtering.
A classical approach in astronomy for analyzing galaxy images is to fit a 2d brightness
profile on the image. The models used for brightness profiles account for the major
structures of the galaxy, such as the bulge or the stellar disc, but cannot describe
small features such as HII regions (star formation regions) which can have a significant
contribution to the total brightness of the galaxy and can thus bias the estimation.
Our goal was thus to filter such regions while preserving the rest of the image. Thanks
to the properties of the fuzzy hyperconnection and to the proposed hypercomponent
tree, a simple extension of the classical area filter to this case provides a good solution
to the problem, see Figure 2.3.
The second application deals with document image binarization. Binarization is
an important step in document analysis and it requires robust methods able to
manage degraded document images of different natures (handwritten, printed) with
various scales and varying contrasts. We proposed a novel method which is based on
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Figure 2.3: Removal of small features from a galaxy image with an area filtering.
The left image is an observation of the galaxy PGC35538 in five bands from near
ultra violet to near infrared (only three band are used in the color composition).
Then, the first row shows the result of the area filter using from left to right: the
hypercomponent tree (objects with an area less than 30 pixels are removed), the
max tree (30 pixels) , the max tree (10 pixels). The second row shows the difference
between the first row and the original image. This example shows that the proposed
approach is able to remove the bright localized structures inside the galaxy which are
difficult to model while providing a better preservation of the galaxy morphological
features and of the background.

background removal using the hypercomponent tree (see Figure 2.4). The background
identification is based on the evolution of the area of the hypercomponent tree nodes
compared to their grey level. The proposed method was submitted to the DIBCO
2010 contest (Document Image Binarization Contest) [206] and obtained the 4th
place among 16 participants.

2.2 A unifying framework for connections.
In Section 2.1 we have already mentioned the original theory of connections, the
extension of connections to general lattices, and their generalization with hypercon-
nections. Another direction of research in this context is related to the definition of
partial connections [210], obtained by dropping the condition C2 on the family of
connected elements. As a consequence, with a partial connection, the decomposition
of an element into its connected components may contain holes: it forms a partial
partition. This approach has proven to be useful for the description of iterative
processing based on connections, especially in the context of compound segmen-
tation, a theoretical framework for defining and analyzing iterative segmentation
methods [194,211–213,231].
Another development in this context are attribute space connections [59,257,259]
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Figure 2.4: Background removal based on hypercomponent tree processing: original
document images (top) and corresponding results of the proposed background removal
method (bottom).

which are defined on power-set lattices. Their principle is to first plunge the original
space into a space of higher dimension, then compute the connected components in this
new space, and finally, project them back into the original space. It has been proven
that, in the binary case, attribute-space connections generalize hyperconnections [257,
259].
Some of the theory mentioned so far are more general than others or have overlaps,
and the situation becomes even more complicated when one considers also the
extension of connected filters obtained with thresholding-stacking. This situation is
summarized in Figure 2.5.
We have proposed a novel theoretical framework encompassing all previously known
connection theory in [6, 41]. The major contributions of these works are described in
the following sections.

Set connection

Lattice connection

Hyperconnection

Set connection
+

Stacking
Z-zone operators

Flat zone operators

Partial connection

Partial lattice 
connection

Figure 2.5: Synthetic view of the relations between the different notions of connections
and their related connected filters.

2.2.1 Inf-structuring functions
We proposed a general theory for connections [6, 41], based on the new notion
of inf-structuring functions, that encompasses all previously known approaches to
connections in mathematical morphology. This theory does not only have the previous
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definitions as special cases but it is also able to directly generate all the connected
filters, even those obtained with the stacking technique. Thus, the theory of inf-stru-
cturing functions allows us to express the different existing theories in a common
framework, giving a better view on their similarities and differences, and easing the
transcription of the results obtained in one theory into another one. Moreover, by
giving a better view on what is already covered by existing theories we can more
easily delimit the unknown lands, understand the hypothesis we have to give up in
order to start exploring them and avoid redundant work.
The idea of the inf-structuring functions is to start from the least common denominator
of all the theories of connections: they all rely on a process that enables to decompose
an element of the space into sub-elements. For example, a connection decomposes
each element into a partition: i.e., a set of disjoint sub-elements (that cover the
element). An hyperconnection decomposes an element into a non-redundant cover:
i.e., a set of non-comparable sub-elements that cover the element. A grey-scale
connected operator relies on a hierarchy of sub-elements: i.e., a set of sub-elements
such that any two sub-elements are either disjoint or comparable.
We call such a mapping that associates each element a of a lattice L with a set of
elements s (a) of L, such that every element in s (a) is lower than or equal to a, an
inf-structuring function [6, 41] (see Figure 2.6).

a s(a) 

Figure 2.6: Decomposition of a function a into a set of five lower functions s (a) by
the inf-structuring function s.

We identified seven properties [6] characterizing inf-structuring functions. The
first three relates to how an inf-structuring function decomposes an element into
sub-elements. An inf-structuring function is said:

1. complete if the sub-elements are sufficient to recover the original element by
supremum.

2. non-redundant if no sub-element covers another.
3. partitioning if there is no intersection between sub-elements.

The next three characterize how such sub-elements will themselves be decomposed.
An inf-structuring function is said:

4. weakly stable if a sub-element is always a sub-element of itself.
5. stable if a sub-element is always the only sub-element of itself.
6. strongly stable if for any set of sub-elements S, the sub-elements of the supremum
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of S are exactly S.
And finally, the last one characterizes how the decompositions of two comparable
elements relate. An inf-structuring function is said:

7. increasing if for any two element a and b such that a is smaller than b, then
the sub-elements of a form a refinement of the sub-element of b.

2.2.2 Marked reconstruction operator.
Then, we generalized the notion of marked connected opening to inf-structuring
functions: this new operator [6] provides a way to select sub-elements among the
sub-elements of an element. In order to ensure that each sub-element of an element
can be selected independently, we propose to consider the notion of local minima
conditionally to the decomposition. This leads to the definition of the marked
reconstruction operator β : L × L → L:

∀a,m ∈ L, β(a,m) =
∨

min(↑(m) ∩ s (a)) (2.1)

where a is the processed element, m is the marker and ↑(m) is the set of elements
that are greater than or equal to m in the lattice L. The reconstruction of a marked
by m is thus the supremum of the minima of the family of the upper bounds of m in
the family of sub-elements s (a) of a for the inf-structuring function s. An application
of β is illustrated in Figure 2.7.

a

m

β(a,m)

Figure 2.7: Application of the marked reconstruction operator β on the function a
decomposed into s (a) (see Figure 2.6) and marked by m. The result β(a,m) is equal
to the supremum of the dashed green and orange functions which are the smallest
sub-elements of a for s greater than m.

We study how the marked reconstruction operator behaves with respect to the
identified inf-structuring function properties. In particular we identified which of
the seven fundamental properties on the inf-structuring function s implies that the
associated marked reconstruction operator β is an opening (proposition 9 of [6]).

2.2.3 Reverse axiomatic of connection theories.
We studied the links between the proposed theory of inf-structuring functions and the
existing theories of connections by following the principle of reverse axiomatics: we
identified the axioms which are necessary and sufficient to obtain certain properties.
For each of the three major theories of connections – connections, hyperconnections
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and attributes space connections – and their variations, we identified bijections
between inf-structuring functions satisfying a given set set of properties (among the
7 fundamental properties previously proposed) and the connections in the considered
theory (theorems 13, 16, and 18 of [6]). A key element in the construction of
those bijections was to identify under which conditions an inf-structuring function
is associated to a set of canonical elements which will correspond to the connected
elements of a connection (proposition 8 of [6]). Those equivalence relations are
summarized in Table 2.1. It can be seen that for each of the 7 proposed property
there is at least one connection theory where it is satisfied and another one where
it is not: those properties are thus fundamental to characterize the differences and
similarities between the different connection theories.
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Partial connection [53] d X X d X
Connection [229] X d X X d X

Hyperconnection [229] X X X d X
Accessible hyperconnection [13] X d d d X X

A-S connection [257] X
Strong A-S connection [259] X d X

Table 2.1: Summary of the equivalence relations between the different theories of
connections and the properties of inf-structuring functions. Each line corresponds
to one theory of connection. Each column is one of the fundamental properties of
an inf-structuring function. For each line, the properties enabling to obtain the
equivalence between the connection and the inf-structuring function are marked with
an "X". The properties marked by a "d" can be deduced from those marked with an
"X": they are necessary but not sufficient.

2.2.4 Characterization of grey-scale connected operators.

We have also studied the case of grey-scale connected operators. We have established
that only max-peak operators [195] can be defined directly as (hyper) connected
operators. The two other type of grey-scale operators – peak operators [225] and
flat-zone operators [225] – cannot be defined in terms of connections without using
a thresholding/stacking step. Nevertheless, we have characterized two particular
inf-structuring functions that are able to generate all the peak operators and flat-zone
operators respectively. The properties satisfied by these inf-structuring functions
are summarized in Table 2.2. It can be seen from this, that the introduction of the
thresholding/stacking in the construction of these operators weakens the properties of
the operators compared to the theory of connection they rely on (see Table 2.1).
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Flat-zone operators X X
Peak operators X X X

Table 2.2: Properties satisfied by the inf-structuring functions that generate flat-zone
and peak operators.

2.2.5 Self-dual non-flat flattening.
Based on the proposed notion of inf-structuring function, we have defined a novel
extension [41] of a particular class of operators called flattenings [162]. Flattenings,
which are not to be confused with flat operators, are intuitively operators that
reduce the dynamics of a function and that do not introduce new contours. A
flattening is said self-dual if it processes an image and its opposite symmetrically: it
is contravariant with contrast inversions.
The classical definition of the marked flattening [162,230] is only feasible in sets due
to the use of the complementation. We showed that the use of bi-Heyting algebra,
i.e., pseudo-complemented lattices (see [142,209,238,239,247] for details and uses
in morphological morphology), removes this limitation and lets us generalize the
flattenings in order to use inf-structuring functions in their definitions, i.e., to obtain
flattenings based on non flat elements. The construction of the self-dual non-flat
flattening operator combines inf-structuring function reconstructions and Heyting
algebra operators. We showed that using adapted inf-structuring functions, either
based on connections or on hyperconnections, enabled us to recover the original
definition of flattenings. Then, we provided, as an example, a simple inf-structuring
function whose derived self-dual operator better preserves contrast and does not
introduce new pixel values (see Figure 2.8), thus showing the interest of going beyond
the stacking/thresholding paradigm in practice.

2.3 Directed connected operators
The various connection theories and their related operators presented in the previous
sections all assume symmetric spatial relation: if a pixel x is connected to a pixel y
then y is also connected to x. However, several authors have noticed that relaxing
this symmetry hypothesis can improve the result of popular image analysis methods
such as the min-cuts [75], the random-walkers [234], or the shortest path forests [165].
These works rely on different algorithms based on the directed graph framework,
and generally showed an ability to take into account more information than their
symmetric counterparts.
Following these successful attempts, we explored in [11] how directed information can
enrich and improve the family of connected operators. Note that, while the proposed

Page 19/106



B. Perret Hierarchical image analysis

Original image f Classical Flattening Non-flat flattening

Figure 2.8: Example of application of a self-dual non-flat flattening with inf-structu-
ring functions and bi-Heyting algebra: we can see that with the proposed non-flat
flattening the image is smoothed but the highly contrasted area are better preserved
compared to the classical flattening (Photo credit: J. Serra).

work is formulated in the framework of directed graph, it has since been proven that
the proposed notions can be generalized in an algebraic framework extending the
one of connections [214]. The major contributions of this work are described in the
following sections.

2.3.1 Directed connected component.

In [11], we introduced the notion of directed connected component: given a vertex x
of a directed graph, the directed connected component of basepoint x is the set
of all vertices which can be reached with a directed path starting from x (see
Figure 2.9). This notion generalizes the classical definition of connected components
in undirected graphs: when the graph is symmetric, the directed connected component
of basepoint x is equal to connected component containing x. However, in general,
the set of directed components of a graph do not form a partition of the graph vertices
as different directed connected components may have a non empty intersection.
We have proven that the set of directed connected components of a directed graph
can be efficiently represented thanks to the classical notion of strongly connected
components. Recall that, in a directed graph, a strongly connected component is a
maximal set of vertices such that any vertex is reachable from every other vertex
in the set. It is well known that this notion induces a directed acyclic graph whose
vertex set is equal to the set of strongly connected components of the graph and
its edges correspond to the adjacency relations among these strongly connected
components. We have established a bijection between the directed components of a
graph and its strongly connected components: given two vertices x and y belonging
to a same strongly connected components, the directed connected components of
basepoints x and y are the same. This bijection implies that the directed acyclic
graph of strongly connected components effectively encodes the directed connected
components of the underlying graph.

Page 20/106



Hierarchical image analysis B. Perret

a b

(a)

a
b

c

(b)

a
b

c

(c)

Figure 2.9: Some elementary directed graphs. The set of directed connected
components in (a) (resp. (b) and (c)) is {{a, b}, {b}} (resp. {{a, b}, {c, b}, {b}}
and {{a}, {b, a, c}, {c}}).

2.3.2 Directed components hierarchy.

As we have seen, the notion of directed connected component generalizes the one of
connected components. This allowed us to define the notion of directed component
hierarchy which unifies and generalizes all the hierarchical image representations
whose definitions are based on connected components [11]: the min/max tree of
a vertex weighted graph, the min/max tree of an edge-weighted graph, and the
quasi-flat zones hierarchy of an edge-weighted graph (see Section 3.1).
In order to encompass all these different structures, we proposed the notion of a
stack of graphs, which is defined as a sequence of nested directed graphs. The
directed component hierarchy of a given stack of graphs is then defined as the set of
directed components of every graph in the stack. Stack of graphs can, for example,
be induced by thresholding a vertex weighted graph or an edge weighted graph at all
possible values. In such cases and if the base graph is an undirected graph, then the
corresponding directed component hierarchy is indeed equivalent to the min or max
tree of the original graph.
In the general case, when the graphs in the stack are asymmetric, the directed
component hierarchy is no longer a tree: it is a directed acyclic graph with edges
representing inter-scale relations (similarly to classical hierarchical tree based rep-
resentations) but also edges representing the intra-scale relations between strongly
connected components (see Figure 2.10). The directed component hierarchy is the key
representation to perform directed connected filtering as presented in the following
sections.

2.3.3 Algorithm for directed components hierarchy.

In [11] we proposed an efficient algorithm for building the directed component
hierarchy of a stack of graphs. The algorithm has a O(`.n) time complexity, where n
is the size of the graph and where ` is the number of levels in the stack. This
algorithm is thus well suited for stack of graphs obtained by thresholding graphs
with a small number of different weights which is often the case in image analysis
(e.g., with pixel values stored in a byte). Recent advances on incremental strongly
connected components labeling [63] may enable us to provide other algorithms whose
time complexity does not depend of the number of levels in the stack.
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(a) (b) (c)

Figure 2.10: Construction of the directed component hierarchy. (a) The strongly
connected components associated to a stack of directed graphs generate a tree repre-
senting inter-scale relations. (b) The directed acyclic graphs of strongly connected
components at each level of the stack of directed graphs encode the directed connected
components and represent the intra-scale relations. (c) The directed component
hierarchy of the stack of directed graphs is the composition of (a) and (b): it encodes
the inter- and the intra-scale relations between the directed connected components
(red edges are redundant and can be deduced by transitivity).

2.3.4 Directed connected filtering.

To manage the various cases that may appear when filtering the directed component
hierarchy, i.e., a directed acyclic graph, we introduced several strategies [11], called
directed connected filters. These strategies are designed to ensure the consistency
of the node selection process in terms of directed connected components. Thinking
in terms of directed connected operators, one may desire to mark each directed
connected component as selected or as discarded. However, in contrast to the case of
connected operators, we may fall into situations such as the one depicted in Figure 2.9
(b), where two directed connected components overlap. This creates an ambiguous
situation if one of them is selected while the other is not selected, hence discarded:
one may choose to keep or remove the overlapping components (vertex labeled b in
Figure 2.9(b)).
This situation actually generalizes a well known issue arising when one filters a tree
with a non increasing Boolean criterion (a criterion that may say to remove a node
but not its descendant). The classical solution to deal with a non increasing criterion
on trees is to define a regularized criterion according to the min or the max filtering
rule [224] which corresponds to the smallest (respectively largest) increasing criterion
above (respectively bellow) the base criterion.
With the directed acyclic graph representing the directed component hierarchy, the
situation is more complex and it leads to four different regularization strategies
resulting of the following choices: 1) do we favor selected or discarded components?,
and 2) do we want a smaller or a larger filtering criterion?
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(a) Image 19 of DRIVE (b) Filter IHσRV
(c) Segmentation

Figure 2.11: Segmentation results on the DRIVE database. From left to right:
pre-processed image, filtering result, and evaluation of the segmentation (black pixels
are true positives, blues pixels are false positives and red pixels are false negatives).

2.3.5 Image processing with directed connected filters.
We provided several illustrations [11] of the relevance and of the versatility of directed
connected filtering for image processing where asymmetric information is taken into
account in the form of a directed graph defined over the image pixels.

Eye fundus segmentation. In the first application, the goal is to segment blood
vessels in retinal images (see Figure 2.11) in order to help physicians diagnose and
follow-up several pathologies of the eye fundus. The difficulty of retinal images lies
in the separation of the faint and thin vessels from the background noise. These
vessels appear as disconnected groups of pixels that can only be distinguished from
the background by their long range spatial coherency. In order to solve this issue,
we proposed to construct a non-local directed adjacency relation that allows us to
reconnect those groups of pixels, retaining the possibility to reject spurious groups of
pixels whose spatial arrangement does not resemble a vessel.
To do so, we proposed to model the image as a semi-local directed graph where
each pixel x is adjacent (1) to its four closest spatial neighbors as usually done
with the 4-adjacency symmetric relation and (2) to its k brightest neighbors in a
window centered on the pixel. This second set of edges is naturally asymmetric:
connections are mostly directed from dark to bright pixels (see Figure 2.12). Note
that such k-nearest neighbor graph is often used in applications (see, e.g., [118])
without considering its asymmetric aspect (the directed graph is symmetrized by
adding its transpose graph). The basic idea behind this construction is to allow
directed connected components to jump over noisy regions in the faint parts of the
blood vessels. In other words, in this directed graphs, blood vessels correspond to the
union of the elongated directed connected components rooted in the faint extremities
of the vessels. Following this observation, the segmentation mask is then obtained
by discarding all directed connected components which are either too small or not
elongated enough (see Figure 2.11).
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(a) (b)

Figure 2.12: Non-local adjacency relation for the directed connected component
filtering of blood vessels in retinal images. (a) Distal vessels of the 19th retinal image
of the DRIVE database [237]. (b) Adjacency relation shown on a critical threshold
of (a). Green links represent symmetric edges while red arrows are asymmetric
relations. Each strongly connected component is associated to a color printed in a
small circle inside each pixel.

We showed that the proposed method outperformed similar methods based on undi-
rected connected component filters and performed similarly to state-of-the-art meth-
ods based on supervised machine learning on the standard DRIVE dataset [237].

Neurite image segmentation. The second application that we proposed is the
filtering of neurite images (see Figure 2.13). In this example, we considered a sample
image of a neuron grown in vitro with its neurites (i.e., its axon and dendrites). The
objective is to derive measures of the neurite tree complexity, which are useful in
various toxicology assays, called neurite outgrowth assays [71].
To segment the neurites, we relied on a vesselness-like local object characteriza-
tion [120], which enables to classify regions into tubes, blobs and background. This
allowed us to construct an asymmetric adjacency relation where tubes can be linked
to blobs but not the other way around. However, each of the three classes is linked
to its own class, while background is linked to all classes. Then, we considered both
intensity and geometrical classification in order to filter the image. By imposing
asymmetric blob-to-vessel connection, we exploited the fact that the tube classi-
fication is under-segmented and we tried to complete the missing information by
searching the connections from the blob and the background classes with this more
robust tube class.

Myorcardium detection. Finally, the last application considers the integration of
an asymmetric a priori knowledge in a marker-based MRI myocardium segmentation
procedure. A classical approach to extract a two class object/background segmentation
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(a) (b)

Figure 2.13: (a) Neurite image and (b) Directed connected filtering.

from a hierarchical image representation and markers is to look for the largest
components of the hierarchy that have a non empty intersection with the object
marker but do not touch the background marker [222]. This procedure can be directly
applied to the directed component hierarchy.
Here, we used some a priori knowledge on the intensity distribution of some structures
present in the image to define a relevant edge weighted asymmetric graph to represent
the image. Actually, in such images, it is known that some extremal intensity pixels
are likely to not belong to the myocardium since, in general, they correspond to
blood and fat (very bright) or to lungs (very dark): the intuitive idea is then to
construct a graph that will ease the connections from the background to these pixels
and prevent the object marker to connect to quickly to these pixels. To do this, the
edges ending at such pixels are penalized by multiplying their cost by a constant
greater than one. Here, the graph is symmetric, but the weights of the edges (x, y)
and (y, x) are not equal if one of the vertices x or y is pre-classified as “probably
background” while the other is not. Figure 2.14 shows how this strategy can improve
the quality of a segmentation compared to the non-directed case (when the weights
of the two edges (x, y) and (y, x) are equal).
Moreover, we showed that this marker-based segmentation method defined with the
directed component hierarchy is indeed equivalent to the generalization of the image
foresting transform [116] to directed graphs presented in [165]. This equivalence
derives from the following characterization of the proposed segmentation method:
a pixel belongs to the segmented object if the directed min-max distance from this
pixel to the object marker is less than the directed min-max distance from this pixel
to the background marker.
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(a) Original (b) O: myocardium marker (c) B: background marker

(d) Symmetric result (e) S0: Over-segm. (f) Directed result

Figure 2.14: Marker based segmentation of the myocardium in MRI. (a) Original
image. (b) and (c) The object and background markers. (d) Segmentation result
obtained with a classical non directed marker based segmentation. (e) Set of pixels
that probably contains the myocardium based on a simple brightness prior or, in
other words, pixels outside this set are very likely to belong to the background. This
information is used to produce asymmetric edge weights. (f) Segmentation result
obtained with the asymmetric weights and computed with the directed component
hierarchy.
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Chapter 3

Hierarchies of segmentations

Image segmentation is the task of grouping the pixels of an image into multiple
segments. It is usually seen as an important problem in computer vision that is
made particularly difficult by its ill-posed nature. In low level vision for example,
one can define an image segment as a connected and homogeneous region of maximal
extension. However, in high level vision, a segment can be defined as a semantic
object relevant for a given application. In complex scenes, like natural images, it is
even possible that the decomposition into semantic objects is itself ambiguous: for
example, in a street scene, one could want to segment cars, houses, pedestrians and
so on, but one could also want to have a finer level of details where pedestrians are
decomposed into their body parts: a head, a trunk, arms, and so on. A natural idea
is then to perform a hierarchical segmentation of the image: i.e., to decompose the
image into objects and to iteratively refine those objects into parts.
Hierarchies of segmentations were first proposed in the 80’s [131,241]. They have since
appeared under various names: pyramids, hierarchy of partitions, partition trees,
scale-sets. In a hierarchy (of segmentations), an image is represented as a sequence
of fine to coarse partitions satisfying the strong causality principle [128, 139, 171]:
i.e., any partition is a refinement of the next one in the sequence. They have various
applications in image processing and in image analysis: image segmentation [11,58,128,
148,201,208,221,222,265], occlusion boundary detection [130], image simplification [11,
128,236], object detection [222], object proposal [201], visual saliency estimation [270].
In particular, they have gained a large popularity in [58] whose hierarchical approach
to the general problem of natural image segmentation outperformed state-of-the-
art approaches. Nowadays they are part of state-of-the-art pipelines for image
segmentation where they are used as a post-processing of convolutional neural
networks [121,148].
Hierarchical segmentations are usually represented as dendrograms, i.e., trees where
the (super)pixels are the leaves and each internal node represents the fusion of
its children. A hierarchical segmentation can also be represented as a saliency
map [100,184,188], i.e., a characteristic function on the edges of the underlying graph
used to model the image domain (see Figure 3.1). One can note that this saliency
map can indeed be seen as a restriction of the ultrametric distance associated to the

27



B. Perret Hierarchical image analysis

x1 x2 x3 x40

r1

r2

r3
altitude

n1

n2

n3 x1 x2

x3 x4

r1

r3

r2

r3

Dendrogram Saliency map

Figure 3.1: A hierarchy of segmentations represented by a dendrogram (left) and
by an equivalent saliency map on a given graph (right). The value of the saliency
map on an edge {xi, xj} is given by the altitude of the lowest common ancestor of xi
and xj in the dendrogram. For example the lowest common ancestor of x2 and x3
is n3 whose altitude is r3; the value of the saliency map on the edge {x2, x3} is thus
equal to r3.

hierarchy to the underlying graph [88, 144]; the two are equivalent if the graph is
complete. This duality between the combinatorial representation (the dendrogram)
and the functional representation (the saliency map) has been shown useful in image
analysis by several authors [55,56,117,137] and will be a key element of the theoretical
and algorithmic developments presented in this section. Moreover, saliency maps built
on typical 4-adjacency graph used in image analysis have the interesting property
of being themselves representable as images in the Khalimsky grid, also called 2d
cubical complex [135,136] (see Figure 3.2). Such representation of a saliency map is
sometimes called an ultrametric contour map [58].

Saliency map on a
4-adjacency graph

Equivalent representation
on the Khalimsky grid Visualization as an image

Figure 3.2: The saliency map of a hierarchy of segmentations of an image can be
visualized as an image in the Khalimsky grid (source [100]).

Our works on hierarchies of segmentations are focused on three axis which are
developed in the following sections.

1. In a first sequence of works, we studied the links existing between some standard
hierarchical representations used in image analysis. We showed that several well
know hierarchical representations are indeed closely related through constructive
relations. Then, we showed how these relations can be translated to efficient
algorithms and we proposed a generic framework for hierarchical segmentation
construction. This framework is based on an efficient algorithm to construct
a canonical hierarchical representation that can then be transformed into
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other hierarchical representations with linear time post-processings. Finally,
we showed how the proposed algorithmic framework can be used to develop
efficient filtering methods for hierarchies of segmentations.

2. In a second sequence of works, we focused our study on a particular type of
hierarchy of segmentations: the watershed hierarchies. These hierarchies satisfy
a scale-wise optimality criterion which enabled us to perform a deep theoretical
analysis of these representations. In particular, we addressed the following ques-
tions: 1) Can we find a constructive characterization of hierarchical watersheds
and thus a recognition algorithm? 2) Can we compute the probability of a
given watershed hierarchy and what are the least and most probable watershed
hierarchies? 3) Can we transform any hierarchy of segmentations into a similar
hierarchical watershed ? and 4) Is the set of watershed hierarchies closed by
combination ?

3. Finally, we proposed a general approach to hierarchical segmentation cost
function optimization with gradient descent. We formulated the optimization
problem as a minimization problem on the space of saliency maps. The
proposed reformulation led to an unconstrained optimization problem that can
be efficiently solved by generic gradient descent methods. The flexibility of our
framework allowed us to investigate several new cost functions, following the
classic paradigm of combining a data fidelity term with a regularization. While
we provide no theoretical guarantee to find the global optimum, the numerical
results obtained over a number of synthetic and real datasets demonstrate the
good performance of our approach compared to state-of-the-art algorithms.

3.1 Understanding and devising algorithms
The interest of the image processing community towards hierarchical image represen-
tations has led to various methods whose links and differences are not always well
understood. The mathematical morphology community has in particular focused on
the following types of hierarchical representations:

• Min trees, max trees, and trees of shapes [133, 167,186, 224]: those three hierar-
chical representations are based on the evolution of the connected components
of the level-sets of the pixel values (see Figure 2.1 in Section 2). In those repre-
sentations, each level of the hierarchy is indeed only a partial segmentation of
the pixel set. They are traditionally used to perform connected image filtering
and object detection, but they can also be used for general image segmentation,
either as contour detectors [265] or as feature extractors [105].

• Quasi-flat zones hierarchies [164, 183]: in these hierarchies, the regions of a
segmentation at the scale α are defined as the largest connected sets of pixels
such that, between any two pixels, there exists a path where the maximal
dissimilarity between adjacent pixels is lower or equal than α. When valid paths
are further constrained by new criteria, we obtain the family of constrained
connectivity hierarchies [236].

• Binary partition trees [222]: those hierarchies corresponds to the extension
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to sparse graphs of classical agglomerative clustering methods developed in
data analysis. Starting from the image segmentation composed of pixels or
super-pixels, the regions are iteratively merged in a greedy manner following
an application specific heuristic. A particular case of binary partition tree,
that we call binary partition tree by altitude ordering [24], is obtained when the
distance between regions is measured by the minimum dissimilarity between
those regions: this is a generalization of single linkage clustering [119,155,235]
to sparse graphs.

• Watershed hierarchies [67, 99, 161, 188]: those hierarchies are constructed by
considering the watershed segmentations of an image which is iteratively flooded
under the control of an attribute (see Section 3.2 for a more formal definition).
For example, the watershed segmentations of the area closings of size k of an
image for every positive integer k form the watershed hierarchy by area of the
image.

3.1.1 Constructive links between hierarchies.
In [24], we studied the links existing between several important hierarchical image
representations: min trees, quasi-flat zones hierarchies, binary partition trees by
altitude ordering and watershed hierarchies. This study was done in the framework of
edge-weighted graphs and we considered both the relation between those hierarchies
computed on the graph or on one of its minimum spanning tree. Moreover, all the
results presented in [24] are constructive and can be used to devise practical and
efficient algorithms to convert one hierarchical representation into another one when
a link was found. The major results are:

• the min tree of the edge-weighted graph and its quasi-flat zone hierarchy
are equivalent. This means in particular that the important efforts of the
community to develop efficient algorithms to construct min and max trees [64,
85,126,153,157,172,185,193,224,260,262] can be used to compute the quasi-flat
zone hierarchy;

• it is equivalent to compute the min tree of the edge-weighted graph and its
quasi-flat zone hierarchy on the whole graph or on one of its minimum spanning
trees. In other worlds, it is always possible to first reduce a graph to one of its
minimum spanning trees and then work on this representation which can lead
to further performance improvements and reduce memory usage;

• it is equivalent to compute the binary partition tree by altitude ordering on the
whole graph or on one of its minimum spanning trees. The potential benefits
are the same as above;

• if the weights of the graph are totally ordered then the binary partition tree by
altitude ordering and the quasi-flat zone hierarchy are equivalent. While this
condition is usually not fulfilled in practice, it is often useful to assume it at
the beginning to facilitate theoretical developments;

• if the weights of the graph are not totally ordered then the quasi-flat zone
hierarchy can be obtained by filtering the binary partition tree by altitude
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ordering. The quasi-flat zone hierarchy can be seen as a canonical version of the
binary partition tree by altitude ordering where all arbitrary ordering choices
have been removed;

• any watershed hierarchy induces an ordering of the edge weights such that the
binary partition tree for this altitude ordering is equal to the initial watershed
hierarchy. This provides a strategy, described below, to compute hierarchical
watersheds without computing explicitly each flooding and each watershed
segmentation.

3.1.2 Algorithms for some hierarchies of segmentations.
Following the constructive links between hierarchical representations found in [24],
we proposed simple and efficient algorithms to compute those representations in [32].
Those algorithms are based on the following observations: 1) a binary partition
tree by altitude ordering can be used to construct the quasi-flat zone hierarchy and
watershed hierarchies, and 2) a binary partition tree is completely determined by a
minimum spanning tree of the graph.
The solution proposed is thus to construct the binary partition tree with a variation
of Kruskal’s minimum spanning tree algorithm [140] (see Figure 3.3). This algorithm
has the same time complexity as Kruskal’s algorithm: assuming that the edges of
the graph are already sorted by edge weights, it has a quasi linear time complexity
O(nα(m)) where n and m are respectively the number of edges and vertices in the
graph and where α is the inverse of the Ackermann function [49,242].
Then, a simple post-processing, with a linear time complexity, is proposed to transform
this tree into the quasi-flat zone hierarchy.
The algorithm to compute a watershed hierarchy by a given attribute is more
involving. Its very principle is to use the binary partition tree of the graph to find a
new ordering of the edge weights of the associated minimum spanning tree such that
the binary partition tree of the reweighted graph is equal to the target watershed
hierarchy. In other words, we use the binary partition tree to compute the saliency
map [100] of the desired watershed hierarchy on the smallest possible graph: the
minimum spanning tree of the original graph.
The algorithm proceeds in 5 steps:

1. compute the binary partition tree of the graph;
2. compute the attribute of interest on the tree (for example, a classical attribute

is the area of the nodes to obtain a watershed by area);
3. compute the persistence values associated to this attribute: the persistence

value of a node corresponds to the filtering threshold at which this node ceases
to separate two distinct regions in the corresponding filtered image. This can
be done with a linear leaves-to-root traversal of the tree;

4. reweight the minimum spanning tree of the graph with the persistence values.
This can be done in linear time with a root-to-leaves traversal of the tree; and
finally
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Figure 3.3: The algorithm proposed in [32] to construct the binary partition tree of
an edge weighted graph is similar to Kruskal’s minimum spanning tree algorithm. It
constructs the minimum spanning tree starting by the smallest edges and maintains a
collection of trees with a union-find data-structure. Constructing the fusion hierarchy
associated to the minimum spanning tree requires to also keep track of the roots of
the partial trees when the forest grows.

5. compute the binary partition tree of this reweighted minimum spanning tree.
Assuming that the node attribute can be computed in linear time, the time complexity
of this algorithm is dominated by the time complexity of the construction of the
binary partition tree.

3.1.3 Simplification of hierarchies of segmentations.
In [9], we studied the problem of removing non-significant regions from a hierarchy of
segmentations, while still preserving the hierarchical segmentation structure. Indeed,
many algorithms for image segmentation or data clustering contain a step that
removes non-significant regions or clusters. One way to achieve such a hierarchical
simplification would be to extract all the possible segmentations from the hierarchy,
and for each one of them, remove the non-significant regions by merging these regions
with one of their neighbors. One issue with this approach is that those merging steps
have to be performed in a consistent way at all scales, so that the set of simplified
segmentations is still a hierarchy. Another important issue is that such a process
would be slow.
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To provide an efficient solution to this problem, we proposed to rely on the equivalence
between hierarchical segmentations and saliency maps. As shown in Figure 3.4, our
algorithm makes use of these different representations to efficiently achieve its goal: it
has a linearithmic time complexity O(n log(n)) with respect to the number of vertices
n in the underlying graph. The very idea of the algorithm is that, in the saliency
map domain, we can consistently merge two adjacent branches of the hierarchical
segmentation by simply setting the weight of a well chosen edge to zero; in other
words we force the ultrametric distance to be zero between the target regions.
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Figure 3.4: A flowchart of the proposed method for removing non-significant regions
in a hierarchy of segmentations. A given hierarchy H is first transformed into its
dual representation as a saliency map w = ΦG(H). The filtering is then performed in
the saliency map domain using information provided by H (e.g., sizes of the regions).
Finally, the filtered hierarchy H′ is defined as the quasi-flat zone hierarchy of the
filtered saliency map.

We demonstrated how this method can be applied to improve the quality of hierar-
chical segmentations on general data and on images with qualitative (see Figures 3.5
and 3.6) and quantitative assessments [9].

3.2 Hierarchy of watersheds
The watershed is a geographical concept [134,154] studying how flowing waters tends
to partition a space along topological ridges. This idea has been transposed to image
segmentation [66, 113] where one considers the gradient of an image as a topological
relief. Numerous authors have then proposed various definitions of watersheds and
their associated algorithms for discrete image analysis [68,69,82,97,116,156,158,160,
187,250]. It was also soon noted that watershed segmentations can naturally lead to
hierarchies of segmentations [67,99,161,188].
In the following, we will focus on the definition of hierarchical watersheds given in [99]
which is based on the notion of watershed cuts defined on edge-weighted graphs [97].
These hierarchical watersheds are of particular interest as they benefit from two
fundamental properties: 1) they are the solution of a well defined optimization
problem, and 2) they can be computed efficiently in linearithmic time O(n log(n))
(see Section 3.1).
Indeed, the major difficulty when dealing with optimization problem involving
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Graph QFZ QFZ clustering Simplified QFZ Simplified QFZ
clustering

Figure 3.5: Removal of non-significant nodes on the quasi-flat zone (QFZ) hierarchies
of two point clouds (first and second lines). For each graph, we show from left to
right: the graph with the three ground-truth clusterings of the graph vertices (red,
green, and blue), the dendrogram of the quasi-flat zone hierarchy, the clustering into
3 classes for this dendrogram, the dendrogram of the simplification of the quasi-flat
zone hierarchy based on cluster size, and the clustering into 3 classes for this simplified
dendrogram. Note that the colors used to represent clusterings are arbitrary and do
not represent an explicit correspondence between two different clusterings.

Input image QFZ hierarchy Simplified QFZ
hierarchy

WS-Area
hierarchy

Simplified
WS-Area
hierarchy

Figure 3.6: Removal of non-significant nodes of the quasi-flat zone (QFZ) hierarchies
and of the watershed hierarchies by area (WS-Area) on 4 images of the BSDS 500
dataset [58]. For each image, we show from left to right: the input image, the saliency
map of the quasi-flat zone hiearchy, the saliency map of the simplified quasi-flat zone
hierarchy based on the region area, the saliency map of the watershed hierarchy by
area, and the saliency map of the simplified watershed hierarchy by area based on
the frontier strength.
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hierarchical segmentations is the combinatorial nature of these representations. Most
optimization formulations of hierarchical segmentations lead to NP-hard problems [50,
94,96,109,110,112,271] for which classical combinatorial approaches fail to provide
scalable solutions. One consequence of this difficulty is that the largest and widely
used family of hierarchical segmentation algorithms, agglomerative clustering methods,
is heuristic.
Hierarchical watersheds provides a scale-wise optimality, i.e., each flat segmentation
corresponding to each scale of the hierarchy is optimal for a specific criterion. Note
that, it is not sufficient to have an optimality criterion with an implicit or explicit scale
parameter to define a scale-wise optimal hierarchical segmentation: the optimality
criterion must also satisfy a scale consistency constraint [128]. In particular, we have
shown that classical graph-cut approaches such as min cuts [240], average cuts [251],
or shortest path forests [98] do not satisfy this constraint [4]. Ont he contrary, the
watershed cut [97] is a non-trivial graph cut method satisfying the scale consistency
constraint which leads to the notion of hierarchical watersheds [99].
More formally, given an edge weighted graph G = (V,E,w), we denote byM = {Mi}
the set of minima of the map w for the topology of G. A watershed cut of G for a
subsetM′ ofM is defined as the graph cut associated to the minimum spanning
forest of G rooted in the minima inM′ [97, 159]. In other words, we look for the
spanning graph of smallest total weight such that each connected component of this
spanning graph contains exactly one element ofM′.
If we provideM with a total order relation ≺: M1 ≺ M2 ≺ . . . ≺ Mn, then, there
exists a sequence of cuts (C1, C2, . . . , Cn) such that Ci is a watershed cut for the set
of minima {Mi, . . . ,Mn} and such that the sequence of segmentations associated to
these cuts forms a hierarchy of segmentations (see Figure 3.7). Such hierarchy is
called a watershed hierarchy for the ordering ≺ [99]. In other words, a hierarchical
watershed optimizes a minimum forest problem at each scale of the hierarchy.

M1 M2 M3 M4
a

b

c

d

e

f

g

h

1 2 3 4

5 7 6

M1 M2 M3 M4

X5

X6

X7

G = (V,E,w) H

Figure 3.7: A weighted graph G = (V,E,w) with four minima delimited by the
dashed rectangles, and the hierarchical watershed H of G for the minima ordering
M1 ≺M2 ≺M3 ≺M4. Note that the graph G is acyclic and that the edge weights
are totally ordered: these hypothesis are used to ease the presentation but all the
properties and algorithms presented in this section are valid in the general case.

3.2.1 Characterization of hierarchical watersheds
In [5, 29], we studied the following problem: given an edge weighted graph G =
(V,E,w) and a hierarchy of segmentations H, determine if H is a hierarchical
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watershed of this graph. In other words, does there exist an ordering ≺ of the
minima of G such that H is a hierarchical watershed of G for ≺ ? As observed in
Section 3.1, there is a link between the binary partition trees (by altitude ordering)
and hierarchical watersheds; in particular, the former can be used to compute the
latter. Moreover, we know that, on one side, the binary partition tree is tightly linked
to the minimum spanning tree problem and, on the other side, watershed hierarchies
are defined as sequences of minimum spanning forests: the main strategy followed
to answer to the given problem is then to study how the hierarchy H relates to the
binary partition tree of G and its associated minimum spanning tree.
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Figure 3.8: H1 and H2 are two hierarchies built on the graph G shown in Figure 3.7
and we want to determine if any of them is a hierarchical watershed of G. For both
hierarchies, we compute its saliency map (middle column) and we report the saliency
values on the binary partition tree by altitude ordering B of G (third column). We
can see that H1 is one-side increasing for B and thus H1 is a hierarchical watershed
of G. However, H2 is not one-side increasing for B: the node Y7 of B has the value 1,
and the maximal value in its children sub-trees are respectively 2 and 3 which are
both greater than 1. Thus, the region Z5 of H2 corresponding to this saliency value
of 1 cannot exists in any hierarchical watershed of G and H2 is not a hierarchical
watershed of G.

The key element to solve this issue is to study how the values of the saliency map of
H evolve in the binary partition tree B of G. To do this, we introduced the notion of
one-side increasing map which states that a map f on the nodes of a binary tree T is
one-side increasing if for any non leaf node n of T , f(n) dominates the values of f on
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at least one of the sub-tree rooted in a child of n. Then, the main property of [5, 29]
states that a hierarchy H is a watershed hierarchy of G if the the saliency map of H is
one-side increasing on the binary partition tree B of G. Figure 3.8 presents a positive
and a negative example of this property. Intuitively, if the one-side increasingness of
the saliency map of H on the binary partition tree B is violated at the node n of B,
then, the restriction of the minimum spanning tree of G to the corresponding region
of H cannot be part of a minimum spanning forest at the scale of this region.
Building on this fundamental property, we obtained:

• a constructive characterization of hierarchical watersheds; and
• an algorithm with a linearithmic O(n log(n)) time complexity for determining

if a given hierarchy H is a hierarchical watershed of the given edge weighted
graph G.

3.2.2 Combinatorial analysis of hierarchical watersheds
In [28] we addressed the problem of counting the hierarchical watersheds of a given
edge weighted graph G. Indeed, as described above, a hierarchical watershed on G
is obtained by choosing a particular ordering of the minimaM of G. It is however
possible that several orderings ofM lead to the same hierarchical watershed. For
example, the hierarchy H presented in Figure 3.7 is a hierarchical watershed of
the edge weighted graph G for the two following orderings of the minima of G:
M1 ≺M2 ≺M3 ≺M4 and M2 ≺M1 ≺M3 ≺M4.
The main contributions of [28] are:

• a definition of the probability of a hierarchical watershed for a given edge
weighted graph. It is defined as the probability to obtain this hierarchical
watershed if we randomly choose a minima ordering according to a uniform
distribution: it is thus equal to the number of mimina orderings leading to
this hierarchical watershed divided by the total number of possible minima
orderings;

• an algorithm to compute the probability of a given hierarchical watershed for
a given edge weighted graph. This algorithm runs in linearithmic O(n log(n))
time;

• the minimal and maximal probability of any hierarchical watershed on a given
edge weighted graph;

• constructive characterizations of the watershed hierarchies of minimal and
maximal probability on a given edge weighted graph; and

• an algorithm to find a least/most probable hierarchical watershed on a given
edge weighted graph. This algorithm runs in linearithmic O(n log(n)) time.

3.2.3 Watersheding operator
In [31], we introduced the watersheding operator, which maps any hierarchy H
defined on an edge weighted graph G to a hierarchical watershed HWS on G. The
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watersheding operator is idempotent and any hierarchical watershed is a fixed point
of this operator: the set of fixed points of this operator is thus equal to the set of
hierarchical watersheds of the graph. Intuitively, this operator is constructed by
inverting the algorithm used for computing hierarchical watershed introduced in
Section 3.1. Doing so, we are able to derive a saliency map and an ordering of the
minima of G such that the corresponding hierarchical watershed is similar to the
input hierarchy. We provide an algorithm to compute the watersheding operator in
linearithmic O(n log(n)) complexity. However, the question of obtaining a formal
characterization (non algorithmic) of this operator remains an open question.
We demonstrated the interest of the watersheding operator on two applications in
image analysis:

• Refinement of coarse hierarchies. In [148], the authors propose a high-quality
method (COB) to compute hierarchies based on a multiscale gradient learned
with deep convolutional methods. While this learned gradient provides very
high quality contours for large objects, it tends to ignore small regions which
were not part of the ground-truth annotations. In Figure 3.9, we show how the
watersheding operator can be used to reintroduced those small regions into
such hierarchy.

• Regularization of hierarchies based on non-increasing attributes. In a hierarchi-
cal watershed, the order in which catchment basins are merged is usually based
on an increasing attribute, such as the area or the volume. The constraint of
increasingness is very strong and excludes numerous attributes such as geomet-
ric descriptors (e.g., compactness or circularity) or more generic significance
measures (e.g., energy functionals or learned features). In Figure 3.10, we show
how the watersheding operator can be used to find a watershed hierarchy cor-
responding to a regularized increasing attribute deduced from a non watersehd
hierarchy constructed from a non-increasing attribute.

3.2.4 Combinations of hierarchical watersheds
In [4,5,27], we studied the combinations of watershed hierarchies from a practical
and from a theoretical point of views. In particular, we explored under which
conditions the combination of two watershed hierarchies produces a new watershed
hierarchy.
Indeed, in [27], we showed that by combining hierarchical watersheds in the combina-
tion framework proposed in [100,101,137], one can significantly improve the quality
of the resulting hierarchy. Figure 3.11 shows an example of hierarchy combination. In
this framework, hierarchies are combined thanks to their representations as saliency
maps. The combination is done in three steps: 1) compute the saliency maps of the
two hierarchies, 2) combine the two saliency maps, and 3) compute the quasi-flat-zone
hierarchy of the combined saliency map. The interest of this approach is that com-
bining saliency maps, i.e., functions, is much simpler than combining dendrograms:
classical operators such as the point-wise infimum, supremum or average can be used.
For example, the results that we presented in [27] showed that be combination by
average of hierarchical watersheds by area and by dynamics nearly always improve the
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Figure 3.9: First line from left to right: original image I and the gradient G of I
computed using the structured edge detector introduced in [114]. Second line from
left to right: the saliency map of the COB hierarchy [148] (Hcob) of I and three
segmentations of Hcob with 50, 100 and 200 regions, respectively. We can see that we
must go very deep in the COB hierarchy to obtain the internal parts of the person
which means that we also get a lot of noise (small non relevant regions). Third line
from left to right: the watersheding Hws of Hcob and three segmentations of Hws with
50, 100 and 200 regions, respectively. We observe that significant internal regions of
the person are closer to the top of the hierarchy.
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Figure 3.10: First line from left to right: original image I and the gradient G
of I computed using the edge detector introduced in [114]. Second line from left
to right: the saliency map of the circularity based hierarchy Hcc, which is not a
hierarchical watershed of G, and three partitions of Hcc with 10, 35 and 60 regions,
respectively. As expected this hierarchy exhibits mainly circular regions. Third line:
the watersheding Hws of Hcc and three partitions of Hws with 10, 35 and 60 regions,
respectively. This hierarchy combines the information from the gradient and from
the circularity based hierarchy: the main regions visible in the gradient and the
circular regions are both close to the top of the hierarchy.

performances compared to the individual hierarchies on tasks related to image and
object segmentation (see Section 4.1 for a presentation of the evaluation framework
we designed for hierarchies of segmentations).
Our contributions in [4, 5] are threefold:

1. we introduced the notion of flattened hierarchical watersheds which generalizes
the notion of hierarchical watersheds: while hierarchical watershed rely on a
total ordering of the minima of the graph, flattened hierarchical watersheds
are based on a pre-ordering of the set of minima. We provided a constructive
characterization of flattened hierarchical watershed leading to a recognition
algorithm running in linearithmic O(n log(n)) time;

2. we investigated which of the classical combination functions (infimum, supre-
mum, and average) lead to hierarchical watersheds. We showed that the
combination by infimum of any two watershed hierarchy is a flattened water-
shed hierarchy. In other words, this means that the combination of hierarchical
watersheds by infimum can indeed be computed directly with a well chosen
ordering of the minima, or said differently with a well chosen regional attribute;
and

3. we proposed a sufficient condition for a combination of hierarchical watersheds
to always result in a flattened hierarchical watershed.

Page 40/106



Hierarchical image analysis B. Perret

Original image

Area attribute Dynamics attribute Combination
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Figure 3.11: Hierarchical watersheds based on area and dynamics and their combi-
nation by average. We can observe that, in the watershed hierarchy by area, the
main objects of the scene appear close to the top of the hierarchy but large and
mostly flat regions such as the sea are over-segmented. On the contrary, in the
watershed hierarchy by dynamics the large regions are under-segmented and mainly
small regions are close to the top of the hierarchy. By combining the two hierarchies
we obtain a better compromise where important objects are close to the top of the
hierarchy and the over-segmentation of large regions has been reduced.

3.3 Gradient based hierarchical clustering
Devising algorithms for finding optimal hierarchical segmentation of an edge weighted
graph for a given cost function is generally a difficult problem. In the previous Sec-
tion 3.2, we have seen that hierarchical watersheds are scale wise optimal hierarchies
of segmentations where each scale of the hierarchy optimizes a minimum spanning
forest problem.
However, most hierarchical segmentation methods used in practice do not optimize an
explicit cost function. For example, in the general context of hierarchical clustering,
i.e., hierarchical segmentation applied to non image data, the most popular methods
probably belong to the family of agglomerative heuristics. They follow a bottom-up
approach, in which the vertices of the given edge weighted graph are sequentially
merged through some specific strategy. But since the latter is specified procedurally,
it is usually hard to understand the objective function being optimized. In this
regard, several recent works [89,94–96,109,218,219] underlined the importance to
formulate hierarchical clustering as an optimization problem with a well-defined cost
function, so as to better understand how the hierarchies are built.
In this context, Dasgupta [109] introduced a cost function with interesting theoretical
properties for evaluating a hierarchical clustering. He showed that optimizing this
cost function is NP-Hard and he proposed a heuristic to approximate its optimal
solution. The factor of this approximation was later improved by several works,
based on a linear programming relaxation [218,219], a semi-definite programming
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relaxation [89], or a recursive φ-sparsest cut algorithm [95,96]. Along similar lines, it
was shown that average linkage provides a good approximation of the optimal solution
to Dasgupta’s cost function [90,174]. A differentiable relaxation inspired by Dasgupta
cost function was also proposed [169]. Moreover, a regularization for Dasgupta’s cost
function was formulated in the context of semi-supervised clustering [93,249], based
on triplet constraints provided by the user.
More generally, the problem of finding the hierarchical clustering whose associated
ultrametric/saliency map is close to the given edge weights was extensively studied
through linear programming relaxations [50] and integer linear programming [112]. A
special case of interest arises when the graph is planar, which is a natural occurrence
in image segmentation. By exploiting the planarity of the input graph, a tight
linear programming relaxation can be derived from the minimum-weight multi-cut
problem [271].
The optimization of hierarchical clustering has thus been the object of numerous
works. The main technical barrier in this context comes from the fact that each hier-
archical loss function requires a carefully crafted dedicated approximation algorithm.
Moreover, despite increasing progress, combinatorial approximation algorithms often
struggle to scale to large dataset.

3.3.1 A continuous optimization framework
In [3, 23], we introduced a generic framework to optimize a hierarchical clustering
with respect to a given cost function. In the proposed setting, the goal is to find
the saliency map that best represents the given edge-weighted graph G = (V,E,w).
We proposed to express this task as a constrained optimization problem involving
an appropriate cost function J : W → R defined on the (continuous) space of graph
edge weights W , leading to the following formulation

minimize
u∈W

J(u;w) s.t. u is a saliency map on G. (3.1)

The saliency map constraint can be formulated as,
∀C ∈ Cycles(G),∀e ∈ C, u(e) ≤ max

e′∈C\{e}
u(e′). (3.2)

It is a nonconvex constraint and cannot be efficiently tackled with standard opti-
mization algorithms. We circumvented this issue by replacing the constraint with
an operation injected directly into the cost function. The idea is that the saliency
map constraint can be enforced implicitly through the operation that computes
the subdominant ultrametric, defined as the largest ultrametric below the given
dissimilarity function (or equivalently as the saliency map of the quasi-flat zone
hierarchy of the graph). One way to compute the subdominant ultrametric is through
the min-max operator ΦG : W →W defined by

(∀w̃ ∈ W ,∀exy ∈ E) ΦG(w̃)(exy) = min
P∈Pxy

max
e′∈P

w̃(e′), (3.3)

where Pxy denotes the set of all paths between the vertices x and y of G. Then,
Problem (3.1) can be rewritten as the non-constrained optimization problem

minimize
w̃∈W

J
(
ΦG(w̃); w

)
. (3.4)
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Since the min-max operator is sub-differentiable, it can be seen as a specific max
pooling layer, the above problem can be optimized by gradient descent as long as J
is sub-differentiable.

3.3.2 Hierarchical cost functions and regularization terms
We proposed several cost functions [3, 23] that can fit in the Problem (3.4). The
generality of our framework allowed us to follow the classical approach of combining
a data-fidelity term with a regularization term in order to obtain new cost functions.
We investigated the following cost functions:

1. the closest-saliency map fidelity term, which expresses that the fitted saliency
map should be close to the given dissimilarity graph. This is simply obtained
by defining the cost function equal to the sum of the squared errors between
the sought saliency map and the edge weights of the given graph;

2. the cluster-size regularization, which penalizes the presence of small clusters
in the upper levels of the associated hierarchical clustering. This term is an
adaptation of the very classical area filters found in image processing and
relies on the idea presented in Section 3.1 for its generalization to hierarchical
clustering. More precisely, this regularization penalizes frontiers of the saliency
maps corresponding to the fusion of two unbalanced clusters, i.e., when a very
small cluster merges with a very large one, the frontier between the two is
pushed toward zero;

3. the triplet regularization for semi-supervised learning, which aims to minimize
the intra-class distance and maximize the inter-class distance. In this case, we
assume that we know some triplets of points such that two points are in the
same cluster while the third one is in another cluster. In other words, for each
triplet, we know that we should minimize the ultrametric distance between two
of the points and maximize the distance to the third one;

4. the Dasgupta fidelity term, which is a continuous relaxation of Dasgupta’s
cost function expressing that the fitted ultrametric should associate large edge
weights, i.e., important dissimilarities, to large clusters. To obtain a continuous
relaxation of this term, we proposed a continuous relaxation of the size of a
cluster in the hierarchy: in other words we proposed a cluster size measure
which evolves continuously when the values of the saliency map associated to
the hierarchical clustering change.

The use of those cost functions is demonstrated in Figure 3.12.

3.3.3 Efficient algorithms for hierarchical cost optimization
The proposed continuous optimization framework for hierarchical clustering opti-
mization is backed up by specific algorithms [3, 23] used to compute the various
terms appearing in the cost functions introduced in the previous paragraph. All
the proposed algorithms rely on the properties of binary partition trees by altitude
ordering presented in Section 3.1.
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The fundamental algorithm is the one that computes the subdominant ultrametric.
To obtain an efficient and automatically differentiable algorithm, we observed that
the min-max distance between any two vertices x, y is given by the weight of the
pass edge between x and y, i.e., the edge holding the maximal value on the min-max
path from x to y. Moreover, there is a map σ that, for any two vertices x and y,
associates the lowest common ancestor of x and y in the binary partition tree of
(G, w̃) to the pass edge between x and y (see Figure 3.3.3). The definition of the
subdominant ultrametric (Equation (3.3)) can thus be rewritten

(∀w̃ ∈ W ,∀exy ∈ E) ΦG(w̃)(exy) = w̃(σ(lcaBPT(w̃)(x, y))). (3.5)

The binary partition tree by altitude ordering can be computed in time O(n log n)
with a variant of Kruskal’s minimum spanning tree algorithm [32] (see Section 3.1).
Then, a fast algorithm allows us to compute the lowest common ancestor of two
nodes in constant time O(1), thanks to a linear time O(n) preprocessing of the
tree [62]. The subdominant ultrametric can thus be computed in time O(n log n).
Note that this algorithm can be interpreted as a special max pooling applied to the
input tensor w̃, and can thus be automatically differentiated. Indeed, a sub-gradient
of the min-max operator Φ at a given edge exy is equal to 1 on the pass edge between
x and y and 0 elsewhere.
Similar strategies were used do develop differentiable algorithms for the cluster size
regularization and the semi-supervised triplet loss running in time O(n log n). The
computation of the relaxed Dasgupta’s cost is more demanding in the worst case; it
runs in quadratic time. However when the hierarchy is balanced the computation
cost goes down to O(n log n): this is a realistic expectation in real applications,
especially given the fact that Dasgupta’s cost tends to naturally produce well balanced
hierarchies.

3.3.4 Validation of the continuous optimization framework
As Problem (3.4) is non-convex, there is no guarantee that a gradient descent
method will find the global optimum. To assess the performance of the proposed
framework [3, 23], we used the algorithm proposed in [271], denoted by CUCP
(Closest Ultrametric via Cutting Plane), as a baseline for the closest saliency map
problem. Indeed, CUCP can provide an (almost) exact solution for planar graphs
based on a reformulation of the closest ultrametric problem as a set of correlation
clustering/multi-cuts [61,111] problems with additional hierarchical constraints. The
results presented in Figure 3.14 show that the proposed approach is able to provide
solutions close to the optimal ones (Figure 3.14 a)) using only a fraction of the time
needed by the combinatorial algorithm (Figure 3.14 b)), and without any assumption
on the input graph.
The computation time of some combinations of cost terms are presented in Figure 3.14
c). Closest and Closest+Size can handle graphs with millions of edges. Dasgupta
relaxation is computationally more demanding, which decreases the limit to a few
hundred thousands of edges.
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3.3.5 Optimal hierarchical clustering on real data
We evaluated the proposed method on real datasets whose size ranges from 270 to
1500 samples [3, 23]. For each dataset, we performed a hierarchical clustering on a
k-nearest neighbour graph, and we thresholded the resulting saliency map at the
prescribed number of clusters. The analysis is divided in two sets of comparisons:
hierarchical clustering (unsupervised), and semi-supervised clustering.
Figure 3.15 a) compares the performance of three hierarchical clustering methods.
The baseline is "Ward" agglomerative method [252], applied to the pairwise distance
matrix of each dataset. The results show that the proposed approach is competitive
with Ward method (one of the best agglomerative heuristics). On the datasets Digit1
and Heart, "Dasgupta" performs slightly worse than "Closest+Size": this is partly
due to the fact that our relaxation of the Dasgupta cost function is sensible to data
scaling.
Figure 3.15 b) compares the performance of two semi-supervised clustering methods,
and an additional unsupervised method. The first baseline is "Spectral" clustering [190,
205,233]. The second baseline is "SVM " classifier [51,73] trained on the fraction of
labeled samples, and tested on the remaining unlabeled samples. The results show
that the triplet regularization performs comparably to semi-supervised SVM, which
in turn performs better than spectral clustering.
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Graph Ground-truth labels

a) Closest b) Closest+Size c) Closest+Triplet d) Dasgupta

Figure 3.12: Illustrative examples of hierarchical clustering optimization with gradient
descent. Top row: Input graph and ground truth labeling of the graph vertices. The
edge weights are equal to the Euclidean distance between the vertices. Middle row:
Hierarchical clusterings fitted to the input graph; only the top-30 non-leaf nodes are
shown in the dendrograms (all the others are contracted into leaves). Bottom row:
Assignments obtained by thresholding the hierarchical clustering at three clusters.
We can see in a) that fitting the sole closest fidelity term leads to an incorrect
clustering where very small clusters are present close to the top of the hierarchy.
In b), we see that the addition of the cluster size regularization term solves this issue.
Then, figure c) demonstrates that the semi-supervision brought by known labeled
data (vertices marked by squares) is another possible solution. Finally, figure d)
shows that the proposed relaxation of the Dasgupta’s cost also manages to recover
the correct clustering.
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Figure 3.13: Each node of the binary partition tree by altitude ordering (in blue)
of the graph (in grey) is canonically associated (green dashed arrows) to an edge
of a minimum spanning tree of the graph (thick edges): this edge is the pass edge
between the leaves of the two children of the node. The pass edge can be found
efficiently in the binary partition tree using the lowest common ancestor operation
and the canonical link between the nodes and the minimum spanning tree edges. For
example, the lowest common ancestor of the vertices 3 and 5 linked by the edge e35
is the node n4, which is canonically associated to the edge e24 (σ(n4) = e24): e24 is
thus the pass edge between the vertices 3 and 5.

(a) Mean square error (b) Computation time (c) Time per iteration

Figure 3.14: Validation and computation time of the proposed continuous optimiza-
tion framework for hierarchical clustering. Figures (a) and (b): comparison between
the CUCP algorithm [271] and the proposed gradient descent approach. For CUCP
we tested different numbers of hierarchy levels (5, 10, 20 40). Figure (a) shows the
final mean square error (normalized against CUCP 40) with respect to the number
of edges in the tested graph. Figure (b) shows the run-time with respect to the
number of edges in the tested graph (CUCP was capped at 200 seconds per instance).
Figure (c) shows the computation time of the tested cost functions with respect to
the number of edges in the graph.
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Figure 3.15: Performance of the continuous optimization framework for hierarchical
clustering on real datasets.
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Chapter 4

Assessment and applications

The contributions presented in the previous chapters are mainly theoretical, method-
ological, and algorithmic; and they are supported by illustrations, generally on
image analysis. While we strongly believe that research must be grounded in strong
theoretical foundations, we also think that theory alone is not enough and that the
proposed methods must also prove their efficiency in practice. To this end, we have
contributed to several application domains:

• Hierarchy assessment framework: Hierarchies are abstract and complex rep-
resentations which are difficult to evaluate. While many works have focused
on proposing novel definitions and algorithms to construct hierarchies, only
a few works have addressed the issue of assessing those representations. In
this context, we have proposed a novel evaluation metric and a comprehensive
evaluation framework for hierarchies of segmentations.

• Applications in bio-medical imaging: In collaboration with an industrial partner,
we have developed several applications related to the analysis of in-vivo imaging
of the human skin using reflectance confocal microscopy. This project, which
aimed at automatically characterizing skin aging, implied several issues in image
analysis and machine learning; some of them were solved using hierarchical
approaches.

• Applications in astronomical imaging: Astronomers and in particular cosmolo-
gists have moved toward a big data era since a few decades: the telescopes are
producing a very large amount of data every night which need to be analyzed
in order to better understand our Universe. In this context, we have worked on
the automatic analysis of multiband optical astronomical images for detecting
and characterizing astonomical objects.

• Open source software development: The development of high quality open
source software to disseminate and support research has become an important
issue in computer science and neighboring fields. The involvement of the
community and private actors into large projects such as Numpy, Scikit-Learn,
PyTorch and so on has revolutionized the way researchers work by significantly
reducing the time needed to implement and to test complex ideas. In this
context, we have developed a novel library which aims at bringing all the
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methods related to hierarchical graph analysis to the rich scientific Python
ecosystem.

4.1 Assessment of hierarchies of segmentations
Hierarchies of segmentations are image representations that are used in a large
variety of applications in image processing and analysis: image segmentation [11,
58,128,201,208,221,222,265,267], occlusion boundary detection [130], image simpli-
fication [11, 128, 236], object detection [222], object proposal [201], visual saliency
estimation [270].
While many hierarchical segmentation methods have been proposed, the question
of how to evaluate those representations has only been scarcely studied. A major
difficulty is the absence of ground-truth hierarchical segmentations and the difficulty
to define such a ground-truth. As a consequence, the evaluation of hierarchical
segmentation is currently driven by the specific application of image segmentation
where there exist datasets of images with ground-truths such as BSDS 500 [58,151] or
Pascal Context [175]. The authors of [58] have proposed to compare each partition in
the sequence of segmentations defining the hierarchy, i.e., the horizontal cuts of the
hierarchy, to the ground-truth segmentation. This method leads to classical precision-
recall curves. However, the horizontal cuts considered in this framework are just a
subset of all possible segmentations that can be constructed from a hierarchy. The
authors of [202,203] thus proposed to look for the optimal cut, generally not horizontal,
in a hierarchy with respect to a ground-truth segmentation: this assessment provides
an upper-bound on the best segmentation that can be extracted from a hierarchy for
a given quality measure.
In this context:

• we proposed a novel approach to evaluate hierarchies of segmentation based on
object segmentation [35]. Contrarily to existing evaluation methods, our propo-
sition focuses on subsets of regions of the hierarchy which do not necessarily
form a cut;

• we proposed a comprehensive evaluation framework for hierarchies of segmenta-
tion in the context of natural image analysis [10]. We showed how the different
measures collected in this framework help to understand the qualities and
defects of hierarchies of segmentations; and

• we utilized our framework to evaluate and optimize hierarchies of watersheds
for image and video analysis [10,33,35]. This notably allowed us to identify a
novel attribute to compute hierarchies of watersheds that outperforms classical
attributes.

4.1.1 Hierarchy assessment with object segmentation.
In [35], we introduced a novel assessment strategy for hierarchies of segmentations
based on the object segmentation problem for which several datasets with ground-
truth labelizations exist: Grabcut [72], Weizmann [52], Pascal Voc [115], and MS-
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(a) Erosion-Erosion (b) Skeleton-Frame (c) Skeleton-Skeleton

Figure 4.1: Example of markers generated automatically from a ground-truth seg-
mentation. In each figure, the background and object markers are respectively
depicted in red and blue. On the first figure, both markers are obtained by eroding
the ground-truth. In the second figure, the foreground marker is a skeleton of the
ground-truth while the background marker is only the frame of the image. In the
last figure, both markers are skeletons.

COCO [145]. The proposed method evaluates the easiness of finding in the hierarchy
a set of regions that represents a semantic object : rather than searching if one can
find a segmentation that resembles a human segmentation of the whole scene, we
evaluate: 1) if a hierarchy contains a set of regions that matches a given object of
the scene, and 2) how difficult it is to find it.
The evaluation relies on a marker based segmentation method proposed in [222]
that constructs a two-classes segmentation from a hierarchy of segmentations and
two markers: one for the background and one for the object of interest (see online
demonstration at https://perso.esiee.fr/~perretb/ISeg/). Its principle is to
identify the object as the union of the regions of the hierarchy that intersect the object
marker but do not touch the background marker. Then, to perform an objective
assessment of the different hierarchies, we proposed several automatic strategies
to generate object and background markers from the ground truths. Each pair of
object/background markers represent a different level of information given to the
algorithm (see Figure 4.1). The quality of the binary segmentation obtained from
the markers is then evaluated with the F-Measure.

4.1.2 A comprehensive evaluation framework
In [10], we proposed a coherent and comprehensive evaluation framework for hier-
archies of segmentations in the context of natural image analysis. It is designed
to capture the various aspects of those representations: 1) quality of regions and
contours, 2) quality of produced segmentations with horizontal cuts and optimal cuts,
and 3) easiness of finding a set of regions representing a semantic object. These mea-
sures are evaluated on two types of natural image datasets: 1) Pascal Context as an
image segmentation dataset [175], and 2) MS-COCO [145] and Pascal VOC’12 [115]
as object segmentation datasets.
The proposed frameworks relies on three categories of measures.

• Horizontal cuts: we measure precision-recall curves on both regions and bound-
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Ground-truth

Hierarchy 1 Hierarchy 2

Figure 4.2: Illustration of under- and over-segmentation for hierarchies. Hierarchies 1
and 2 are both composed of 2 levels. Compared to the ground truth, the first
hierarchy manages to recover long contours in its coarse level but then fails to recover
the other contours at a finer level: the optimal horizontal cut is the coarsest one and
the hierarchy is said to under-segment the image. With the second hierarchy the
inverse situation happens, the finest partition recovers all the contours of the ground
truth but also contains extra-contours. However, the coarsest partition looses the
true contours and preserves extra contours: the hierarchy is said to over-segment the
image.

aries [58] (as prescribed by [204]). This measure provides global information
about the quality of the hierarchy and the consistency of its scales (we say that
a hierarchy is scale consistent if the regions of a horizontal cut of the hierarchy
represent objects of a same semantic level).

• Non-horizontal cuts: we evaluate the quality of the best non-horizontal cuts [202,
203] of the hierarchy with respect to their fragmentation level (ratio between
the number of regions in the cut and the number of regions in the ground-truth).
This allows us to quantify the upper-bound performances of the hierarchy and
provides information about its tendency to under- or over-segment the image
(see Figure 4.2).

• Group of regions: we evaluate the capacity of the hierarchy to retrieve a given
semantic object with respect to different levels of a priori information [35]. This
allows to quantify if complex regions of interest can be represented by a small
number of regions organized coherently in the hierarchy.

We believe that the proposed framework offers a rich assessment that accounts for
the hierarchical nature of the representations and that is not limited to a single use
case, which better suits to the wide application spectrum of hierarchies in computer
vision and image analysis. The Figure 4.3 shows how the results produced by the
evaluation framework can be presented to compare several hierarchical segmentation
methods.
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ODS FOC ODM Mean scoreFB FOP FB BCE COCO VOC
COB 0.749 0.499 0.705 0.722 0.681 0.919 0.713

UCM-MCG 0.562 0.342 0.556 0.610 0.615 0.864 0.592
LEP 0.579 0.390 0.378 0.626 0.632 0.881 0.581

WS-Parents 0.528 0.279 0.549 0.592 0.594 0.847 0.565
Random 0.117 0.085 0.005 0.358 0.312 0.535 0.235

Figure 4.3: Example of comparison between the watershed hierarchy by number
of parent nodes and other state-of-the-art methods (a random hierarchy is used
as a baseline). Precision-recall (PR) curves for boundaries (FB) and regions
(FOP) based measures on Pascal Context (first column): each curve represents
the variation of precision and recall for the different partitions of the hierarchy.
Fragmentation–Optimal Cut score curves (FOC) for boundaries (FB) and
regions (BCE) based measures on Pascal Context (second column): each plain
curve represent the upper-bound score achievable for a given fragmentation value.
The corresponding dashed curves represent the score obtained by horizontal cuts.
Supervised object detection on MS-COCO and Pascal VOC’12 (last column):
for each method and each combination of markers, we see: 1) the median F-measure
(central bar), 2) the first and third quartile (extremities of the box), and 3) the lowest
datum still within 1.5 inter quartile range (difference between the third and first
quartile) of the lower quartile, and the highest datum still within 1.5 inter quartile
range of the upper quartile range (lower and upper extremities). The principal
performance measures are summarized in the table: F-Measure of FB and FOP
scores at the Optimal Dataset Scale ODS (precision-recall curves), Area Under
the Curve of FOC for FB and BCE (fragmentation curves), and Object Detection
Median score (ODM) on MS-COCO and Pascal VOC’12 datasets (supervised object
detection). The last column of the table gives the mean score of each method.
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4.1.3 Evaluation of hierarchical watersheds

In [10,33,35] we have utilized our evaluation framework to assess and optimize the
performances of morphological hierarchies of segmentations, namely the quasi-flat
zone hierarchy and watershed hierarchies. The main results of this study are the
followings.

1. Importance of the gradient measure. Those hierarchies are constructed on edge-
weighted graphs, where edge-weights represent dissimilarity values between
pixels. The most simple gradient measures use only colorimetric information:
in this category, we tested an Euclidean distance in the RGB color space and
an Euclidean distance in the Lab color space, which is supposed to be more
compliant with human color perception [125]. Beyond simple colorimetric
gradient, recent advances in machine learning have led to supervised contour
detectors: in this category, we consider the Structured Edge Detector (SED)
from [114]. We do not observe a clear improvement with Lab gradient compared
to RBG gradient. However, there is almost always a large gain by switching
from a local RGB or Lab gradient to the supervised semi-local gradient SED.

2. Importance of the post-processing. In Section 3.1, we present a hierarchy filtering
method [9] that can be used to post-process the candidate hierarchies. We
observe that such filter is crucial for quasi-flat zone hierarchies and watersheds
by dynamics which generally suffer from having a lot of very small regions close
to the top of the hierarchy.

3. Best attribute for hierarchical watersheds. Hierarchies of watersheds are con-
structed by filtering the gradient according to an attribute such as the dynamics,
the area, or the volume. In this study, we identified a novel attribute, the
number of parent nodes, that consistently outperforms traditional attributes.
According to the mean score, the best tested attributes are (from best to worse):
number of parent nodes, volume, area, and dynamics.

4. Comparison to state-of-art methods. The properties of the best morphological
hierarchies are discussed and compared to state-of-the-art approaches proposed
in the computer vision field. As reference methods, we include Multiscale
Combinatorial Grouping hierarchies [201] (MCG), Convolutional Oriented
Boundaries hierarchies [148] (COB), and Least Effort Segmentation [274] (LEP)
in our assessment. The best method, by a large margin, is COB which is
the only one that uses a deep learning based contour detector. Hierarchical
watersheds are then slightly worse in terms of mean score compared to MCG
and LEP but are competitive for measures based on non-horizontal cuts (see
Figure 4.3).

5. Computation time. Regarding execution times, the watershed approach is at
least an order of magnitude faster than other methods with a mean execution
time of 90ms on images of size 481× 321 pixels for the hierarchical watershed
methods against 800ms for COB (with a GPU), 2 s for LEP, and 24 s for MCG.

In conclusion, we see that, used in conjunction with a state-of-the art contour detector,
watershed hierarchies are competitive with complex state-of-the-art methods for
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(a) Skin layers. (b) RCM stack.

Figure 4.4: a) Schematic view of the skin layers organization. b) A stack of reflectance
confocale microscopy images provides a non-invasive observation of the skin up to
the dermis with a lateral resolution sufficient to see individual cells.

hierarchy construction based on the same gradient information, but they are much
faster to compute.

4.2 Automatic characterization of skin aging in
reflectance confocal microscopy

The characterization of skin conditions is a major challenge for skin aging under-
standing and cosmetic research. Skin aging is defined by a set of alterations of its
various components over the years. Those alterations are governed by intrinsic and
extrinsic parameters such as genetic and environmental factors. The two major layers
of the skin, the epidermis and the dermis, are both significantly affected by skin
aging (see Figure 4.4 a)).
In a collaboration with Clarins Laboratories we investigated how skin aging can be
automatically characterized with reflectance confocal microscopy. Indeed, reflectance
confocal microscopy opens a window into the skin to see the epidermis and the
dermis non-invasively up to a depth of 200µm. The representation of the cells in
a layer with a thickness less than 5.0µm can be achieved with keratin, melanin
and dermal fibers working as natural contrast agents [263]. The images obtained
non-invasively have a resolution of 0.5 to 1.0µm in the lateral axis, i.e., close to that
of histology [197,248] (see Figure 4.4 b)). Several descriptors related to skin aging
have been highlighted from confocal images [146, 264]: thickness of the epidermis,
epidermal state characterized by a regular or irregular honeycomb pattern, shape of
the dermal-epidermal junction, and pigmentation and alteration of the collagen fibers
in the dermis. These descriptors have been correlated with histological aging [248] and
a semi-quantitative score of aging has been established, requiring visual assessment
of the images by experienced dermatologists [146].
We studied how this visual assessment can be automatized in the following works:
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1. epidermal state characterization [43] with a hierarchical segmentation of the
cells and the supervised classification of the cells as regular or irregular;

2. dermal-epidermal junction detection [16, 43] with 3D conditional random fields
incorporating a biological a priori;

3. dermal-epidermal junction characterization [44] with hierarchical pattern spec-
tra; and

4. collagen fiber characterization [48] with supervised texture classification.
Those developments were validated in a clinical study involving 160 subjects where
we demonstrated that the features automatically extracted by the proposed methods
show good correlation with the expert evaluator. To our knowledge, these are the
first results comparing a computer-based approach to dermatologists’ annotations
for the assessment of skin aging using in vivo confocal microscopy.
The two following sections give a more detailed presentation of two of those works
which rely on hierarchical image analysis: the epidermal state characterization and
the dermal-epidermal junction characterization.

4.2.1 Epidermal cells segmentation for skin aging
The epidermis is the outer layer of the skin which serves as a physical and chemical
barrier against the environment. Cells start from the lower layer of the epidermis and
migrate upward to the outer layers. The cells mature throughout this process: they
become larger and ultimately end up as a compact anucleated natural moisture barrier.
The cell desquamation on the skin surface is compensated by the renewal of the
epidermis, a process undertaken by the keratinocytes. The epidermal keratinocytes
appear as outlined cells, which form a honeycomb-like pattern (see Figure 4.5). With
skin aging, the keratinocytes show increased variability in size and shape.
We utilized a hierarchical watershed by area to obtain a hierarchical segmentation
of the image. The final cell segmentation (see Figure 4.6) was extracted from the
hierarchy using a priori knowledge on the minimal and maximal cell sizes, which
was correlated with histological data. After the segmentation of the keratinocytes,
each cell is classified by a random forest classifier as regular or irregular based on its
shape and neighborhood. Finally, we proposed two global image descriptors based
on the amount and size of cells classified as regulars.
Our results showed significant differences between young and old populations, most
significantly on the volar arm. We also observed that the honeycomb pattern
irregularity is increased by 22% in sun-exposed area among young subjects, which
indicates that irregular honeycomb pattern due to sun exposition can potentially be
quantified using our method.

4.2.2 Dermal-epidermal junction characterization
The dermal-epidermal junction is a 2D surface separating the epidermis from the
dermis which undergoes multiple changes under pathological or aging conditions. Its
peaks and troughs, called dermal papillae, are due to projections of the dermis into
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(a) Young epidermis (b) Aged epidermis

Figure 4.5: Epidermal honeycomb pattern of a young (a) and an older subject
(b). One can notice that the images are affected by several defects: noise, blur,
non-homogeneous intensity, and artifacts like pores and hairs.

(a) Epidermis image (b) Cell segmentation (c) Regular cells

Figure 4.6: Illustration of the epidermal cell classification into regular or irregular
class. A segmentation of the individual cells is first computed. Each cell is then
classified based on geometric features and its spatial neighborhood.
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Young subject Older subject

(a) Young subject (b) Aged subject

Figure 4.7: Dermal-epidermal junction aging. First row: en-face sections of 2
relectance confocal microscopy stacks coming respectively from a young (a) and an
aged (b) subject. The dermal-epidermal junction corresponds to the brighter rings.
Second row: automatically segmented dermal-epidermal junction surfaces from a
young (a) and an aged (b) subject using our method [16,43].

the epidermis. With skin aging, the appearance of this junction flattens, which has
important consequences such as lower epidermal adhesion (see Figure 4.7).
In [16, 43], we proposed a method to obtain reliable segmentation of the dermal-
epidermal junction in reflectance confocal microscopy images. Moreover, this method
guarantees that the segmented region of the 3D stack of images is indeed a 2D
topological surface defined on a regular grid, i.e., an elevation/topographic map: it
can thus be characterized with classical morphological tools such as granulometries
and pattern spectra [149]. The principle of these tools is to iteratively apply a
sequence of increasing filters and to measure the evolution of the filtered image. They
have been extended to attribute connected filters [105,246] (see Section 2) to obtain
efficient and powerful multi-scale features using tree based representations of the
images.
In [44], we provided a method for automatically characterizing a dermal-epidermal
junction surface in order to estimate the aging process. The proposed method relies
on the extension [106,147] of pattern spectra to the self-dual image representation
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Figure 4.8: Area under the curve of the pattern spectra of the dermal-epidermal
junctions. The box-plot shows the distributions of the area under the curve of the
pattern spectra for each location and age group. We see that there is a significant (**)
difference between the two age groups on the cheek (chronological aging). There
is also a significant difference (***) between the volar arm (photo-protected) and
the dorsal forearm (photo-exposed) in both aged groups showing the effect of photo-
aging. (Statistics significance are defined as follow: **: 0.001 < P-values ≤ 0.01, ***:
P-values ≤ 0.001.)

called the tree of shapes [167]. In order to adapt the method to our problem, we
generalized the subtractive filtering rule [246] to handle non increasing attributes
with the tree of shapes and we defined a novel measure in order to characterize
the filtered surfaces. The method was assessed on a specifically constituted dataset
and we showed that the proposed surface feature significantly correlates with both
chronological aging and photo-aging (see Figure 4.8).

4.3 Astronomical image analysis
Since a few decades, astronomy and in particular cosmology, relies on the production
of large automated survey of the skies. The idea behind this approach is that the
observation of a very large number of objects is necessary to obtain reliable statics,
especially on galactic populations and their characteristics. Those statistics are then
compared to the predictions made by theoretical cosmological models in order to
validate, discard or refine them. The analysis of such surveys is thus an important
step toward the understanding of how the Universe evolves and the physics governing
this evolution. One of the key feature of an astronomical survey is its depth, i.e., its
ability to detect objects with a low surface brightness which usually correspond to
far objects. Indeed, as the speed of light in the void is fixed and finite, the further
an object is, the older it is: observing those far objects thus offers us a direct view of
the past of the Universe.
For example, in the Sloan Digital Sky Survey [272], a dedicated 2.5 m wide-angle
optical telescope was used during 10 years to scan 35% of the full sky in five optical
bands (spectroscopic acquisitions were also made): it covers about 1 billion objects.
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(a) Astronomical image (b) Astronomical objects

Figure 4.9: a) Astronomical image from the Sloan Digital Sky Survey (size: 2048×1489
pixels, 32 bits per pixels): the contrast has been inverted and adjusted manually to
emphasize faint sources. b) Multilevel segmentation map.

The depth of the Sloan Digital Sky Survey allows us to see the furthest objects as
they were 7 billion years ago, i.e., roughly at half the age of the Universe.
One important step in astronomical image analysis is source detection where the
goal is to detect all the bright astronomical objects that shine on a dark background
(see Figure 4.9(a)). Despite the apparent simplicity of the problem, the difficulty
here relies mainly on the large variations in scale (from few pixels to thousands of
pixels) and in brightness (from less than 0 dB to dozen of dB) of the various sources.
This leads mainly to two difficult cases: the extraction of very faint sources drown in
the background noise and the separation of overlapping sources. One can also note
the presence of artifacts that should not be detected as sources, like the diffraction
spikes around the bright stars that are caused by the support of the secondary mirror
of the telescope.
In this context, we contributed to the following works which are described in the
next sections:

• faint astronomical sources detection [8, 17, 25] with multi-scale Markovian
models;

• multiband astronomical image segmentation [2, 46] with component-graphs
(generalization of max trees to multiband images); and

• object detection in multiband galaxy images with max trees [14,21,37].

4.3.1 Astronomical source detection with hierarchical Marko-
vian models

In [8,17,25] we proposed to use hierarchical Markovian models to segment faint sources
in multiband astronomical images. Hierarchical Markovian models were introduced
in [74]. Similarly to hidden Markov chains, and contrarily to traditional hidden
Markov random fields [122,256] used in image analysis, in hierarchical Markovian
models, it is possible to perform an exact inference based on the maximum of Posterior
Marginal criterion with a 2-pass algorithm [74,227]. Those hierarchical models have
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Figure 4.10: Dependency graph of a hierarchical Markovian model corresponding
to a quad tree structure. Filled black circles represent labels (X) and white circles
represent observations (Y). At the bottom of the quad-tree the observation at each
leaf node of the tree is the mutivariate pixel value at the corresponding position.
Whereas the information contained in the observations is propagated upward within
the quad-tree, the labels are propagated downward according to Markovian transmis-
sion probabilities (aij), i.e., a label at a given level of the quad-tree only depends on
its parent.

been applied to quad trees [141, 207] (see Figure 4.10) or similar structures [143].
Both approaches, on chains [199,200] and quad-trees [170], have also been refined
through pairewise or triplet models.
In [17, 25], we proposed to use a hierarchical Markovian model on a quad-tree to
segment sources in astronomical images. In order to obtain a completely unsuper-
vised segmentation method, we modeled the data likelihoods (the distribution of
pixel values inside a given class) with multivariate Gaussians and we relied on an
Expectation–Maximization algorithm to iteratively estimate the model parameters
(data likelihoods and class transition probabilities) and the corresponding maximum
of posterior marginal.
To evaluate the performances of the proposed method we applied it to simulated data
and we showed that we were able to detect galaxies down to a signal-to-noise ratio
of 1.5 (peak signal to noise ratio). The method was also applied and validated on a
real image dataset and compared to the reference method SExtractor [65] showing
that we were able to extract more faint objects while keeping a lower false detection
rate.
In [8] we extended the hierarchical Markovian model to general trees and applied
it to max tree image representations. Replacing the quad tree by a max tree offers
several benefits:

• morphological trees are naturally adapted to each image, removing the presence
of the block artifacts of the quad tree [207];
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• they offer the possibility to integrate various node attributes as multivariate
observations. More specifically, all the shape descriptors that have no meaning
in a quad tree are now usable; and

• observations are naturally present at every level of the tree, whereas we usually
only have data at the leaf level in a quad tree in practice.

Figure 4.11 illustrates how the use of the max tree improves the result compared to
the quad tree in astronomical source detection. One can note that this model was
also applied to the problem of blood vessel segmentation in eye fundus images where
we managed to obtain state-of-art results (best method on one dataset, and second
best on the other) without using any supervision [8].

4.3.2 Astronomical source detection with mutivariate com-
ponent graphs

In [2, 46], we developed a new method to perform source detection in multiband
astronomical images using component graphs, a natural extension of the max tree to
multiband images.
In the framework of mathematical morphology, component trees and component
graphs are classical structures for image modeling and analysis. The component
trees (min trees, max trees [133,224], trees of shapes [167]) benefit from fast, efficient
construction and varied filtering algorithms. However, they are limited to single-band
image processing. Extension to multi-band image processing usually requires a
total vectorial order that is application-dependent [37,178]. On the other hand, the
component graph [179,180] is designed to handle multiband images by relying only
on a partial ordering of the pixel values at the cost of a higher complexity [196]: the
component graph is not longer a tree but a directed acyclic graph.
In [45,243], the authors proposed a novel source detection method for single band
astronomical images relying on statistical testing: significant components of the
max tree are separated from noise thanks to hypothesis testing and the significant
components are then clustered into objects by attribute connected filtering. The
motivation to extend this method to the component graph is twofold: 1) the multiband
information will naturally increase the amount of information available for statistical
testing (for a given object size, fainter objects can be detected), and 2) the multiband
information can help to deblend overlapping objects.
While the transposition of the statistical testing method to the component-graph is
mostly straightforward, the clustering of significant nodes in the component-graph is
much more challenging (see Figure 4.12). To do so, we proposed two complementary
filtering strategies, each addressing a particular situation:

• duplicated object detection: in a component graph, a same object can be
represented by several nodes, those nodes can be organized hierarchically (as
in a max tree) but might also be incomparable (they are then in different
branches of the component-graph). To detect such configurations we relied on
the fact that astronomical objects usually have a well identified center and we
considered that components sharing the same center indeed represent the same
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(a) Detected sources

(b) Markovian segmentation on a max-tree

(c) Markovian segmentation on a quad-tree

Figure 4.11: Comparison of the proposed astronomical source detection algorithms
with the reference method. (a) Close up view of Figure 4.9(a). Red crosses: sources
detected by a hierarchical Markovian model on a max tree, green triangles: sources
detected by a hierarchical Markovian model on a quad tree, and blue circles: sources
detected by the reference method SExtractor [65]. (b) and (c): Segmentations map
obtained respectively with a max tree quad tree Markovian classification. We can
observe that the max tree approach better fits the faint details of the image: it is
able to detect more sources.
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(a) 2-band image (b) Max-tree (c) Component-graph

Figure 4.12: Comparison between the max tree and the component graph of a
simulated astronomical image containing a single faint source. The max tree is built
on the first band of the simulation while the component-graph accounts for its two
bands. The color map encodes the level of significance of the nodes: the darker a
node is, the more its content differs from noise. In the max tree, we can easily identify
a long branch of very significant nodes corresponding to the single source present in
the image. In the component-graph, the situation is much more complicated with a
thick column of nodes corresponding to the astronomical source.

object;
• partial object detection: in a component graph, the overlapping of two different

objects can appear as a significant component separated from the two initial
objects. To detect this configuration, each significant component is eliminated
if it has a spatial neighbor already identified as an object.

The proposed method was validated on a simulated 3-band astronomical image
datasets and showed superior performances in terms of precision-recall compared to
the single band approach (see Figure 4.13).

4.3.3 Object detection in multiband galaxy images
In [14, 21, 37], we developed a method to detect specific structures in multiband
astronomical images of galaxies using the max tree. This method was part of a
larger project about automatic galaxy image characterization. Indeed, galaxies are
complex objects and their shapes are mainly the results of their various gravitational
interactions (collision and fusion between galaxies). Galaxies are usually classified
according to the Hubble scheme which comprises two main classes: elliptic galaxies
and spiral galaxies. Elliptic galaxies are essentially structureless spheroids but
spiral galaxies are much more complex; their internal structure comprises several
components such as an inner bulge, a flat outer disc, a varying number of spiral
arms, and so on. A possible way to characterize these spiral galaxies is through their
decomposition into their internal structures. To do so, direct parametric models of
these components were proposed and the decomposition of the galaxy is obtained
by solving the inverse problem of fitting the parametric model to the observation.
However, the complexity of parametric models is limited and they often struggle to
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Figure 4.13: Precision-recall curves of source detection in simulated 3-band astro-
nomical images. The proposed multiband detection method based on the component
graph (CGO) is compared to the reference single band method based on a max tree
(MTObject).

accurately account for all the fine aspects of real observations which can induce a
large bias in the parameter estimation.
To solve this issue we proposed to use a connected filter in order to detect and mask
the brightest parts of the galaxies, called H II regions, that can not be accurately
described by the models. H II regions correspond to ionized hydrogen clouds which
are produced by supernova, i.e., the explosive death of short-lived massive stars.
Such stars appear mostly along the spiral arms of the galaxy where hydrogen clouds
tend to collapse into new stars. We have identified 3 features to characterize H II
regions:

• energy: the surface brightness of the region is significantly larger than the noise
energy;

• size: for physical reasons, the size of these regions is limited, they cannot be
neither too small nor too large; and

• colour : H II regions are significantly brighter in short wavelengths, they are
blueish.

In order to represent the astronomical multiband images with a max tree, we proposed
a total vectorial order of the pixel values motivated by physical considerations. This
order is based on the combination of several techniques [57]: a reduced order defined
as a normalized truncated energy function, a quantified and normalized order and
finally, a lexicographic order. Formally, let v, v′ ∈ Rn be two pixel values, we define
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Figure 4.14: H II regions detection in two 5-bands astronomical images of spiral
galaxies. As expected, the detected regions are mostly located along the spiral arms
of the galaxies.

the pre-order ≤Ap by:
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where ≤L is the lexicographic order, σ1, . . . , σn are the standard deviation of the
noise in the respective bands, k is a confidence factor (k = 3), b·c is the floor function.
Moreover, the bands are sorted by the size of the point spread function (blurry bands
at last). En (v) is the normalized energy defined as: En (v) =

∥∥∥ v1
kσ1
, . . . , vn

kσn

∥∥∥. To
obtain a total order, we extend ≤Ap with a lexicographic order applied to the initial
spectral bands.
Based on this particular vectorial ordering and the features of H II regions, we
designed [21, 37] a custom multiband connected filter to detect these regions (see
Figure 4.14). We showed [14,21] that the introduction of this detector to dynamically
mask the H II regions detected along the spiral arms of a galaxy enables to significantly
improve the quality of the estimation of the model parameters (see Figure 4.15).

4.4 Open source library for hierarchical graph anal-
ysis: Higra

Software and in particular open-source software plays a key-role in nowadays science.
It is a prominent ingredient of successful dissemination of research. It does not only
allow users, students and researchers to easily use and further develop the proposed
method but also greatly contributes to the reproducibility of research.
In this context, we contributed by developing an open-source library called Higra [7]:
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Figure 4.15: From left to right: shape of the estimated spiral arms on the galaxy
PGC 35538 with and without adaptive masking of detected H II regions. Red and
green regions correspond to the H II regions detected by the proposed mutiband
connected filter. With adaptive masking, green regions are masked while red regions
which are too far from the currently estimated spiral arms (gray area) are not masked.
The adaptive masking of H II regions attracts the spiral arms towards those regions
and helps to get a better estimate of their parameters.

Hierarchical Graph Analysis1. Higra is a Python library with a C++ back-end
for efficient sparse graph analysis with a special focus on hierarchical methods. It
aims at providing standard and state-of-the-art algorithms for hierarchical graph
analysis capable of handling large amount of data (up to dozen of millions of vertices
on a classical desktop computer). It is a generic toolbox for hierarchical graph
representation construction, processing and assessment: it is thus not focused toward
a particular application or domain and its fundamental functions can be used in a
variety of situations.
Higra provides a Python API (Application Programming Interface) to ease its usage
and to benefit from the synergies created by the large amount of scientific libraries
available in the Python ecosystem. It is available through the official Python package
repository PyPi which makes it usable from any Python environment, on Linux,
MacOS, or Windows, with a single command line. This API is thought to be usable
by students and expert researchers willing to quickly develop new applications,
experiment new methods, or develop proofs of concepts. Vectorized operations on
hierarchical representations enable writing various algorithms working on hierarchical
representations efficiently in Python. It is also thought for seamless integration with
classical Python data analysis pipelines such as Numpy, Scikit-Learn and modern
optimization framework such as PyTorch and TensorFlow. The Python interface is
backed-up by a C++ module where core algorithms are implemented to ensure high
performances. The C++ module is also usable as a standalone library since it does
not have any dependency to the Python runtime.

1https://github.com/higra/Higra
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Higra tries to follow the best practice of software engineering:
• it is thoroughly tested (unit test coverage of 99%);
• its application programming interface is well documented2. This documentation

is complemented by a set of Jupyter Notebooks showing how to use the library
and serving as online demonstrations3 (see Figure 4.16); and

• it’s development is driven by a continuous integration pipeline (each code modi-
fication is automatically tested on all supported platforms before being merged
into the main repository) and a continuous delivery pipeline (pushing a new
tag to the repository automatically compiles and releases a new version of the
library on all supported platforms, the online documentation is automatically
updated).

Figure 4.16: Screen-shot of the online documentation of the Higra library showing
the list of currently available Python demonstration notebooks. All the notebooks
can be executed online in Jupyter like environments such as Google Colab.

4.4.1 Main functions
Higra contains a large amount of classical and recent algorithms for the construction,
the manipulation, and the analysis of hierarchical graph representations:

• efficient methods and data structures to handle the dual represen-
tations of hierarchical clustering: trees [88] (dendrograms) and saliency

2https://higra.readthedocs.io
3https://higra.readthedocs.io/en/stable/notebooks.html
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maps [100] (ultrametric distances);
• hierarchical clustering: quasi-flat-zone hierarchies [164], watershed hierar-

chies [99,161], agglomerative clustering [177] (single-linkage [32,127], average-
linkage, complete-linkage, exponential-linkage [269], Ward [252], or user-
provided linkage rule), constrained connectivity hierarchies [236];

• component trees: min and max trees [133,224];
• manipulate and explore hierarchies: simplification [9, 22], accumulators,

cluster extraction, various attributes [273] (size, volume, dynamics, perimeter,
compactness, moments, etc.), horizontal and non-horizontal cuts, alignment of
hierarchies [201];

• optimization on hierarchies: optimal cuts, energy hierarchies [128,138];
• algorithms on graphs: accumulators, vertices and clusters dissimilarities, re-

gion adjacency graphs, minimum spanning trees and forests, (seeded) watershed
cuts [97];

• assessment: supervised assessment of graph clusterings and hierarchical clus-
terings [10, 91,129];

• image toolbox: special methods for grid graphs, tree of shapes [123], multivari-
ate tree of shapes [83,86], multi-scale combinatorial grouping [148], optimization
of Mumford-Shah energy [176].

4.4.2 Example in image filtering
The example in Figure 4.17 demonstrates the use of hierarchical clustering for image
filtering. The strategy followed here is to first construct a watershed hierarchy
by area [99, 161] of the gradient of the image represented as an edge-weighted
graph. Then, a flat clustering containing k clusters is extracted from the hierarchical
representation. Finally, the color of each pixel contained in a cluster is defined as
the mean color, in the original image, of the pixels inside the cluster.
A 4-adjacency edge weighted graph is built from the gradient of an image on lines
5 and 6. Then a watershed hierarchy by area of the graph is constructed on line
9. The saliency map of the hierarchy, which weights each edge of the graph by the
ultrametric distance between its extremities, is computed for illustrative purpose
on line 10 and is plotted in the 2D Khalimsky grid. Then, the mean image colour
inside each region of the hierarchy is computed on line 16. The object of the
class HorizontalCutExplorer, instantiated on line 19, eases the construction of
horizontal-cuts (flat clustering) of the given hierarchy. It is used to extract several cuts
containing different number of regions (line 19) and the images corresponding to these
cuts are reconstructed using the mean image color of their regions (line 20).

Page 69/106



B. Perret Hierarchical image analysis

1 image = imread("101087.jpg") / 255
2 gradient = imread("101087_SED.png") / 255
3

4 # Edge weighted 4-adjacency graph
5 graph = get_4_adjacency_graph(gradient.shape[:2])
6 edge_weights = weight_graph(graph, gradient, WeightFunction.mean)
7

8 # Watershed hierarchy by area and its saliency map
9 tree, altitudes = watershed_hierarchy_by_area(graph, edge_weights)

10 sm = saliency(tree, altitudes)
11 imshow(image); imshow(1 - gradient)
12 imshow(1 - graph_4_adjacency_2_khalimsky(graph, sm) ** 0.5)
13

14 # Get horizontal cuts containing different number of regions
15 # and colorize them with the mean pixel values inside each region
16 mean_color = attribute_mean_weights(tree, image)
17 cut_helper = HorizontalCutExplorer(tree, altitudes)
18 for c in [25, 50, 100]:
19 cut = cut_helper.horizontal_cut_from_num_regions(c)
20 simplified = cut.reconstruct_leaf_data(tree, mean_color)
21 imshow(simplified)

Figure 4.17: Example of image filtering with the proposed library Higra: image
simplification with a watershed hierarchy. From left to right: original image, gradient,
saliency map of the watershed hierarchy by area of the gradient, simplified image
reconstructed from the hierarchy with respectively 25, 50, and 100 regions.
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Chapter 5

Conclusion and future research
directions

5.1 Conclusion

This manuscript summarized our main research contributions in the area of hierarchi-
cal image representations and related analysis methods. These contributions cover
the whole range of scientific developments, from theory to applications:

• the theoretical works on the axiomatic of connections led to the proposal of
novel connected operators that proved useful in astronomical and document
image analysis (Sections 2.1 and 2.2);

• we generalized the theory of set connections to directed graphs, proposed
efficient algorithms for this new case and showed its potential on medical
imaging (Section 2.3);

• our theoretical analysis of the common hierarchies of segmentations used in
mathematical morphology allowed us to better understand how those represen-
tations relate to each others and to propose novel and efficient algorithms for
constructing and for manipulating them (Sections 3.1 and 3.2);

• those theoretical links and these efficient algorithms also allowed us to propose
a novel approach to optimize hierarchical segmentations in a very versatile
framework based on gradient descent method (Section 3.3);

• we proposed a novel supervised framework to assess hierarchies of segmentations
in the context of natural image analysis which allowed us to better understand
the strengths and weaknesses of different hierarchical segmentation methods
and to optimize the hyper-parameters of the considered methods (Section 4.1);

• we developed specific solutions based on connected operators and hierarchies of
segmentations to solve several practical problems in collaborative projects with
the cosmetic industries on automatic skin aging characterization (Section 4.2)
and with cosmologists on automatic astronomical image analysis (Section 4.3);
and finally,
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• we implemented most of the proposed methods concerning hierarchical graph
analysis into a novel open source Python library making our developments
easily accessible to anyone (Section 4.4).

While most of our research works fit well into the topic of this manuscript, we also
developed other research projects which are not presented here but which surely
contributed to our views on research. Those works are related to:

• The hit-or-miss transform: a non-linear operator based on mathematical mor-
phology, used to detect objects in images. The hit-or-miss operator relies on
two structuring elements, one that must fit inside the object and one that
must fit outside, to detect potential matches. We contributed to improve the
robustness against noise of this operator [12,39] and to propose novel definitions
for color image analysis [1, 26].

• Monte Carlo optimization for non convex problems: we developed a direct
model for complex multiband observations of galaxies and proposed a method
based on Monte Carlo methods and simulated annealing to inverse the model
on real images [14,19,40].

• Conditional random fields for 3d image segmentation: we proposed a biologically
motivated conditional random field model to automatically segment the dermis
and the epidermis in confocal reflectance microscopy images of the skin [16,43].

5.2 Research project
While this manuscript does not follow a chronological order, some general tendencies
in the evolution of the research projects we want to promote may be foreseeable. First
concerning the field of applications, while image analysis has been at the heart of our
research activity, most of the developed methods work on graphs and could thus be
applied to other data. Second, machine learning approaches have led to tremendous
progress in various research fields; those methods are efficient but struggle to provide
guaranties on their results and we believe that combining the expertize we have
on hierarchical representations with such learning methods can lead to powerful
structured learning methods. This is the fundamental idea of our midterm research
objective which is to propose methods for the supervised learning of hierarchical
representations of graphs. This project, called ULTRA-LEARN, was submitted in
2020 to the young researcher (JCJC) call of the French national research agency and
was granted a four year funding.
This research project will leverage on the preliminary results obtained in [3, 23]
where we proposed a generic way to perform gradient descent based optimization of
hierarchical loss functions (see Section 3.3).
The method that we want to develop will be:

• Generic The developed methods will work on weighted graphs, also known
as weighted networks in the literature, i.e., models where the dataset samples
are represented by nodes linked by edges and where nodes and edges can be
weighted by scalar or vectorial values. Such structure is highly generic, enabling
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to model a wide variety of problems arising in various applications fields.
• Modular The methods will rely on classical continuous optimization algo-

rithms. Their integration in modern continuous optimization framework will be
straightforward. This will ensure that the proposed methods will simultaneously
benefit from and enrich the ecosystem developed around those approaches.

• Scalable The method will be scalable with respect to the number of nodes
in the graph and to the dimension of the weights (features). Our goal is to
support at least in the order of dozen of millions of nodes and weights with up
to thousands of dimensions.

• Supervised Supervised methods in machine learning have benefited from
spectacular progress in recent years. The developed method will be able to
learn how to construct hierarchical clustering from examples. We will handle
the completely supervised case, where examples are themselves hierarchical
clusterings and the semi-supervised case, where the examples are only partial
information on the hierarchical clustering.

These ideas can be formalized as follows: in the completely supervised case, we are
given a set of graphs {Gi = (Vi, Ei)}i∈[1,K) with vertex weights vi : Vi 7→ RN and
edges weights ei : Ei 7→ RM , with associated ground-truth hierarchical clustering yi.
The goal is then to devise a method for learning the parameters θ of a hierarchical
clustering method mθ such that mθ(Gi, vi, ei) is close to yi. In other words, we will
optimize the parameters mθ in order to minimize the loss between the predicted
hierarchical clusterings and the expected ones. This case typically corresponds to
the hierarchical image segmentation problem, where one have thousands or millions
of images, represented as vertex valued graphs, and the goal is then to obtain a
hierarchical segmentation of each image.
In the semi-supervised case, we are given a single graph G = (V,E) with vertex
weights v : V 7→ RN and edges weights e : E 7→ RM , and some annotations on
a subset of the vertices of V . The goal is then to find a hierarchical clustering
that best fit the input graph and the partial annotations we have. Those partial
annotations will typically be a partial (hierarchical) clustering of some vertices of
the graph. This will also lead to optimization problems where one seeks to maximize
simultaneously the intrinsic quality of the hierarchical clustering and its accordance
with the annotations.
This project involves different aspects which can be organized in three work-packages
(see Figure 5.1).

Ultrametric network: The objective of the first work package is to devise the
models that will produce a hierarchical clustering of the input data and whose
parameters will be optimized in an end-to-end manner. This work package is divided
into two tasks:

1. Definition of ultrametric layers: The objective of this task is to propose and
study ultrametric layers, i.e., operators associating to any edge weighted graph
an ultrametric which is differentiable with respect to the edge weights of the
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Figure 5.1: Organization of our future research project on supervised hierarchical
clustering.

input graph. In other words, it is a hierarchical clustering algorithm through
which we can back-propagate a gradient on the edge weights of the graph.
There have been many hierarchical clustering algorithms proposed over the
years and we will first study their applicability as ultrametric layers. One of
the main selection criterion is their differentiability as none of the algorithms
were created with this feature in mind.

2. Dissimilarity learning for ultrametric layers: The objective of this task is to
propose and study networks designed to produce graph embeddings into metric
spaces adapted for hierarchical clustering. More precisely, given a weighted
graph, the objective of this work package is to propose network architectures
that will produce a new edge weighted graph with the same set of nodes and
whose edges are weighted by dissimilarities. Indeed, one of the key element in
the success of modern machine learning methods is their ability to automatically
learn rich features from raw data using deep networks. In the context of this
project we are especially interested in networks designed to perform metric
learning, i.e., networks that can estimate the dissimilarity between elements.
However, there are nowadays two significantly separated approaches to perform
deep learning on graph. The first one, that has popularized deep learning,
is based on convolutional layers operating on regular grid graphs (classically
adjacency graphs of pixels in image analysis): the natural spatial embedding of
the nodes in the Euclidean plane then play a key role in the architecture of the
network. The second one acts on arbitrary graphs: the nodes of the graph do
not have any natural embedding in the Euclidean space and everything has
to be learned from the features. We will address these two cases to propose
learnable embeddings that can be used in the context of hierarchical learning.
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Ultrametric network optimization: This work package aims at studying the
definition of dissimilarity measures on the space of ultrametrics and at developing
efficient algorithms to train ultrametric network according to these measures. This
work package is divided into two tasks:

1. Ultrametric loss: The objective of this task is to develop loss functions for
hierarchical clusterings, i.e., differentiable dissimilarity measures between two
hierarchical clusterings. The design of efficient and meaningful loss functions is
one of the key elements in machine learning. While the primary goal of a loss
function is to measure the difference between a prediction and a ground-truth,
a good loss function must also satisfy several properties: efficient computation,
good gradient propagation, robustness to ground-truth and model noise. There
exists currently no standard way for measuring the distance between two
hierarchical clusterings. There has been a large amount of works on tree edit
distances [70] or Gromov-Wassertstein distances [88], however, these methods
are combinatorial and they have a very large time complexity. We will address
two main cases: 1) graphs benefiting from a natural node embedding in the
Euclidean space such as pixels graphs, and 2) general graphs.

2. Scalable optimization for ultrametric networks: The objective of this task
is to propose scalable algorithms to optimize ultrametric network, i.e., the
composition of the dissimilarity estimation network and of the ultrametric layer.
The scalability of the training process of neural networks depends on two key
ingredients: 1) the fast evaluation of the forward and backward paths of the
network; and 2) the possibility to perform a training step without considering
all data at once. The fast evaluation of traditional neural network has been
made possible by specialized hardware relying on massive parallelism such as
Graphical Processing Unit (GPU) or Tensor Processing Unit (TPU). On the
contrary, the second ingredient is given by a specific algorithmic solution: the
mini-batch approach in stochastic gradient descent. We will study these two
aspects in the context of the project.

Applications: This work package aims at grounding the developments of the two
previous work packages with real applications. It is divided into three tasks:

1. Supervised hierarchical image segmentation: The objective of this task is to
develop, to train and to assess an end-to-end hierarchical segmentation method
for natural image analysis. Hierarchical clustering is a classical method in
image analysis that is traditionally used to structure and reduce the size of
the search space in image segmentation and object detection. Hierarchical
clustering is part of state-of-the-art pipelines for image segmentation [121,148],
but they are currently used as a post-processing step rather than trained
end-to-end. However, the rich contextual information provided by objects-and-
parts approaches are known to improve the precision, the robustness, and the
interpretability of vision models [166]: we thus believe that training deep vision
models to predict a whole hierarchy of segmentations could lead to significant
improvement. In this task, we will develop an end-to-end method for learning
an image hierarchical segmentation method.
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2. Supervised hierarchical data classification: The objective of this task is to
propose and train a classifier on data following an ontology/hierarchy of classes.
In data classification, one usually tries to predict a single class for each sample.
However, in many cases, it is possible to have an ontology of classes, i.e.,
a hierarchy of classes. For example many real world classification tasks in
computer vision involves the WordNet database which can be seen as a lexical
ontology. In such ontology, the cat and the dog classes are indeed subclasses of
the mammal class and a cat is closer to a dog than a bird. Classifiers are then
trained to predict classes at a given level of the class hierarchy that depends of
the target application. In this task, we will explore how to develop a classifier
that can take advantage of this known class ontology.

3. Semi-supervised hierarchical data clustering: The objective of this task is
to develop a hierarchical clustering method that can take advantage of a
hierarchical prior on some of the elements of the dataset. Clustering is often
an ambiguous task and several authors have suggested that a limited amount
of supervision can lead to a large improvement in results [60, 198]. In such
semi-supervised clustering, the algorithm is given a set of data with a few
annotated samples which are sometimes called seeds or markers. Usually, these
annotations conveys only flat clustering information: given two annotated
samples we can say if they are in the same cluster or not. In real applications
these seeds or markers are usually given interactively by an expert who can
refine the result of the algorithm by providing new information. We will study
how such semi-supervision can help to devise better hierarchical clustering
algorithm.
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A.2 Research

Overview
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Ongoing PhD thesis 2
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Gabriel Barbosa da Fonseca 2019-present
Subject: Supervised segmentation for image and video segmentation
Advisers: with J. Cousty, R. Negrel, and Silvio J.F. Guimarães
Founding: CAPES/COFECUB project HIMMD

Thanh Nguyen Xuan 2018-present
Subject: Faint object detections in multiband astronomical images
Advisers: with G. Chierchia, L. Najman, and H. Talbot
Founding: European ITN H2020 SUNDIAL

Deise Santana Maia 2016-2019
Subject: A study of hierarchical watersheds on graphs with applications

to image segmentation
Advisers: with J. Cousty and L. Najman
Founding: Labex Bézout and ESIEE Paris

Julie Robic 2015-2018
Subject: Automated quantification of the skin aging process using in-

vivo confocal microscopy
Advisers: with M. Couprie, A. Nkengne, and H. Talbot
Founding: CIFRE with Clarins Laboratories
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Advisers: with V. Nozick and M. Pic (Surys - Hologram Industries)
Origin: Université Paris Est, Master Sciences de l’image
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ysis
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Origin: ESIEE Paris
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Jean Carlo Rivera Ura 2014
Subject: Supervised assessment of hierarchical image segmentation
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Origin: ESIEE Paris

Projects and contracts
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media Data
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Consortium: Pontifical Catholic University of Minas Gerais (PUC Minas,

Brazil), Laboratoire d’Informatique Gaspard Monge (LIGM),
Universidade Federal de Minas Gerais (UFMG, Brazil), Uni-
versity of Campinas (UNICAMP, Brazil), Grenoble Institute
of Technology (Grenoble INP), Institut de recherche en infor-
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H2020 ITN SUNDIAL (Grant 721463) 2017-2021
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Position: Member
Consortium: University of Groningen, Univeristy of Oulu, University of

Birmingham, University of Ghent, ESIEE Paris, Instituto
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Industrial contract with Clarins Laboratories 2015-2018
Subject: Automatic characterization of skin aging in confocal mi-

croscopy
Position: Coordinator
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CAPES/COFECUB (Grant 933/19) 2008-2014
Subject: Hierarchical Graph-based Image and Video Segmentation
Position: Member
Consortium: Universidade Federal de Minas Gerais (UFMG, Brazil), Uni-

versity of Campinas (UNICAMP, Brazil), ENSEA, ESIEE
Paris, Université Paris 6

ANR DAHLIA (08-BLAN-0253-01) 2008-2012
Subject: Dedicated Algorithms for HyperspectraL Imaging in Astron-

omy
Position: Member
Consortium: Observatoire de la Cote d’Azur (OCA), Laboratoire

d’Astrophysique de Toulouse (LATT), Laboratoire des Sci-
ences de l’Image, de l’Informatique et de la Télédétection
(LSIIT), Centre de Recherche Astrophysique de Lyon (CRAL)

Website: https://dahlia.oca.eu/

Software and data produced
• Development of the Python/C++ library for hierarchical graph analysis

HIGRA https://github.com/higra/Higra

• Development of a Python optimization toolbox for hierarchical cluster-
ing https://github.com/PerretB/ultrametric-fitting

• Development of a Python library to design and compute directed connected
filters https://perso.esiee.fr/~perretb/dc-hierarchy.html

• Development of an online demonstrator for marker based hierarchical seg-
mentation https://perso.esiee.fr/~perretb/ISeg/

• Development of a c++ assessment framework for hierarchies of segmen-
tations and the associated ground-truth dataset https://perso.esiee.fr/
~perretb/supeval.html

Editorial work and scientific animation
• Reviewer for various journals and conferences: IEEE Transactions on Im-

age Processing, Pattern Recognition, Journal of Mathematical Imaging and
Vision, Pattern Recognition Letters, Journal of Signal Processing: Image Com-
munication, Journal of Fuzzy Sets and Systems, Journal of Mathematical
Morphology-Theory and Applications, Journal of Optics & Laser Technology,
Journal of Computers & Electrical Engineering, Journal of Applied Mathemat-
ical Modelling, Journal of Applied Mathematics and Computation, Journal of
Computer Methods and Programs in Biomedicine, International Symposium
on Mathematical Morphology, International Conference on Discrete Geome-
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try for Computer Imagery, International Symposium on Biomedical Imaging,
International Conference on Pattern Recognition and Artificial Intelligence

• Member of the program comity of ISMM 2017 (International Symposium on
Mathematical Morphology).

• Member of the organizing comity of ISMM 2019 (International Symposium on
Mathematical Morphology)

• Guest editor for a special issue in the Journal of Mathematical Morphology-
Theory and Applications following ISMM 2019.

A.3 Teaching

Overview
The following chart shows my annual hourly distribution since my recruitment at
ESIEE Paris in 2011. The unit of measurement is the HETP (Heure Équivalent
Travaux Pratique) which is equivalent to 2/3 of a HETD (Heure Équivalent Travaux
Dirigé) used in French Universities. A full time annual service is composed of
500HETP. Teacher-researchers have a 200HETP discharge for their research activities,
the remaining 300HETP are dedicated to teaching, student tutoring, student project
supervision, and administrative tasks related to pedagogical activities.

2011 2012 2013 2014 2015 2016 2017 2018 2019

Student project supervision 24 60 27 35 53 0 0 0 76

Appren�ceship tutoring 92 126 115 92 68 68 68 0 32

Teaching 192 262 220 220 225 243 301 0 316

Administra�ve responsability 50 50 75 75 75 100 75 0 0

Research 200 200 200 200 200 200 200 500 200
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Principal responsibilities
2011-2018 Coordinator of a 3-year engineering degree in apprenticeship

in computer science specialized in computer vision and virtual reality,
ESIEE Paris.

• definition of educational programs;
• animation of the teaching team;
• promotion of the degree in undergraduate schools;
• selection of candidate students;
• relations with enterprises; and
• management of a 60k€ yearly funding (fitting out of premises

and purchasing of equipment).

Main courses
Image processing and analysis since 2013

Abstract: 1) sensors, sampling and quantization, 2) intensity transfor-
mation and histograms, 3) adjacency, connected components,
and geometric transformations, 4) linear spatial filters, 5)
non-linear spatial filters, 6) introduction to research

Volume: 30 hours
Public: 4th year
Position: Course creator and teacher
Webpage: https://perso.esiee.fr/~perretb/I5FM/TAI/

Object oriented programming since 2012
Abstract: 1) Introduction to C], 2) Classes and objects, 3) Inheritance, 4)

Project development: reproduction of the game Space Invaders
Volume: 30 hours
Public: 3rd year
Position: Course creator and teacher
Webpage: https://perso.esiee.fr/~perretb/I3FM/POO1/

Linear algebra and 3D programming since 2012
Abstract: Development from scratch of a simple wire-frame 3D engine 1)

vectors , 2) linear applications and matrices, 3) composition
of linear applications and matrix product, 4) homogeneous
coordinates, geometric transformations, and projections.

Volume: 12 hours
Public: 3rd year
Position: Course creator and teacher
Webpage: https://perso.esiee.fr/~perretb/a3pal/
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Mathematical morphology since 2015
Abstract: Connected filters and connected image filtering. 1) binary and

grey-scale opening and closing by reconstruction, 2) binary and
grey-scale opening and closing connected filters, 3) component
trees, 4) attribute connected filters

Volume: 6 hours (total course volume: 30 hours)
Public: 5th year
Position: Course co-creator and teacher
Webpage: https://perso.esiee.fr/~perretb/MM/

Optimization since 2019
Abstract: 1) Array programming, 2) zero order optimization, 3) gradient

descent optimization, 4) neural networks, 5) hyper-parameter
optimization, 6) optimization problem modeling and solving

Volume: 30 hours
Public: 5th year
Position: Teacher

Introduction to artificial intelligence in games since 2019
Abstract: 1) Monte Carlo AI, illustration on the game Tron, 2) Min-

Max algorithms, illustration on the game Tic-Tac-Toe, 3)
Shortest-path algorithms, illustration on the game Pac Man,
4) exploratory project: alpha-beta algorithm, Q-learning, rein-
forcement learning.

Volume: 40 hours
Public: 2th year
Position: Teacher
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