Chapter 1 Introduction

This manuscript presents the findings on what I consider to be the backbone of my research activity: hierarchical representations for image analysis. Intuitively, hierarchical image representations come from the very natural idea that the appearance of an image varies according to the distance at which we decide to observe it. From a far distance, we will generally only observe large structures while, closer, we will see that those large structures are themselves composed of finer parts. I started to develop an interest for this research topic during my PhD thesis which began in 2007 and which was about the automatic characterization of multiband galaxy images. It was a strongly multi-disciplinary subject which led me to explore two very different scientific fields: 1) Monte Carlo Markov chains sampling to solve inverse problems and 2) connected filtering in the framework of mathematical morphology to analyze images. The efficient implementation of such connected filters requires the use of hierarchical image representations called component trees. After the completion of my PhD thesis, I was recruited as a teacher-researcher in computer science at ESIEE Paris and I integrated the A3SI1 team of the LIGM2 . Several members of this team already had a long experience with hierarchical representations of images and since then, those representations have become the main theme of my research activity.

The works presented in this manuscript are the results of many local, national and international collaborations, often involving interns and PhD students. My PhD thesis introduced me to develop team working skills in the context of research; the multidisciplinary nature of the project was materialized by two thesis directors and two advisers. It allowed me to discover the challenge of animating and communicating in a team of researchers with different scientific backgrounds. Since then, I am convinced of the benefit of such collaborations for research: they contribute to the stimulation of the research effort, favor new ideas, and, more importantly, when the domain of competence of the team members are complementary, they support the emergence of novel solutions that would have been impossible to find individually.

These forewords now allow me to give a more precise definition of what I called "my research activity" at the very beginning of this introduction, by which I mean my constant research effort carried out on selected subjects and in collaborations with several colleagues. The aim of this manuscript is to present the most important results obtained during this research activity. When writing such a document, a balance must be struck between a high-level presentation of the results, which can at times be ambiguous, and a precise mathematical formulation, that can sometimes hide major ideas behind technical details. Here, I have chosen to keep the formalism as reduced as possible to let the reader concentrate on the ideas and I hope that this will make him or her want to read the article cited for a more in-depth presentation.

The main content of this manuscript is divided into three parts. The first two chapters correspond essentially to theoretical, methodological and algorithmic developments in two different paradigms for hierarchical image representations: 1) connected operators and their associated component trees, and 2) image segmentation and their associated hierarchies of segmentations. The third chapter gathers the major applicative developments related to the two first chapters. While I believe that this division into three parts is an important feature of this presentation, it remains somewhat arbitrary given the many links existing between the two paradigms and the fact that applicative and methodological developments are done in parallel and feed each other. The main content of the three chapters is the following:

Connected operators. In this paradigm, an image is viewed as a collection of connected components instead of a set of pixels: we can then decide to preserve or remove each of these connected components. This abstraction level enables to define a large variety of image analysis and processing methods and naturally leads to hierarchical image presentations given by the partial ordering of the connected components of the level sets of the image. In this context, our contributions are organized around three themes:

1. We contributed to the development of the theory of hyperconnected operators which is based on a generalization of set connections to lattice of functions. We improved the axiomatic of hyperconnections and we showed how they can be used to devise hyperconnected operators based on associated hierarchical image representations.

2. We proposed a generic axiomatic framework for connections and their associated operators. We showed how all the existing theories of connections can be obtained by combining a small number of axioms on top of a very generic theory called inf-structring functions.

3. We generalized the notion of connected operators to directed connected operators which can benefit from the rich information given by asymmetric adjacency relations. We studied how the directed connected components of the level sets of an image organize themselves in a hierarchical structure generalizing the hierarchies of connected components. We showed in particular how non local and directed k-nearest neighbor graphs can be used to improve the performances of classical connected filters in bio-medical image analysis.

Hierarchies of segmentations.

Those multi-scale image representations intuitively correspond to the decomposition of an image into its objects and the iterative refinement of those objects into their sub-parts. Hierarchies of segmentations are usually used as intermediate representations, offering a reduced search space, in image segmentation or object detection methods. Our main contribution axis in this context are:

1. We studied the theoretical constructive links existing between common hierarchical segmentation methods used in mathematical morphology leading to efficient algorithms for computing and for transforming those hierarchies.

2. We performed an in depth study of a particular class of hierarchies of segmentations which corresponds to the solution of a well identified combinatorial optimization problem: hierarchies of watersheds. In particular, we provided constructive proofs and efficient algorithms for characterizing, for counting and for transforming hierarchies of watersheds.

3. We proposed a generic method to optimize hierarchies of segmentations and hierarchical clusterings according to arbitrary differentiable cost functions using classical gradient descent methods. We showed how some existing NP-hard hierarchical loss functions can be optimized on large datasets in our framework and we proposed novel loss functions taking advantage of the flexibility of the proposed approach.

Assessment and applications.

In this chapter we present contributions related to applications.

1. We proposed a novel method to perform a quantitative assessment of hierarchies of segmentations based on object detection. This method was integrated in a comprehensive evaluation framework which allowed us to identify a novel attribute to compute hierarchies of watersheds with improved performances compared to classical ones.

2. We developed methods to perform an automatic characterization of skin aging in reflectance confocal microscopy images. We proposed image analysis methods based on hierarchical representations to automatically extract aging features from 3d skin images. We showed that these features significantly correlate with features manually extracted by expert dermatologists.

3. We proposed several hierarchical methods to automatically analyze and filter astronomical images. In particular, we developed methods to detect faint objects in multiband astronomical images based on hierarchical Markovian models and on statistical testing in hierarchical image representations.

4. We have developed an open source library HIGRA for hierarchical graph analysis. This library combines a Python front-end with a C++ back-end and is readily available on major platforms with a single command line. It provides a seamless integration with the rich Python ecosystem for data-analysis and machine learning.

Chapter 2

Connected operators

Spatial relations are a fundamental component of most image processing methods. They can be modeled explicitly, for example when an image is represented as a graph, or implicitly, as in the sliding window paradigm used in convolution filters or with structural morphological operators. The study of the various ways of understanding how image pixels are spatially related has led to a large amount of works (see, for example, the review from Braga-Neto and Goutsias [START_REF] Braga-Neto | A theoretical tour of connectivity in image processing and analysis[END_REF])

In binary images, the definition of spatial relations between pixels immediately leads to the notion of connected components, i.e., sets of pixels where any two pixels can be joined by a sequence of mutually adjacent pixels. This process can be viewed as a first attempt to perform perceptual grouping. This idea gave rise to the fruitful family of connected operators [START_REF] Crespo | Morphological Connected Filters and Intra-region Smoothing for Image Segmentation[END_REF][START_REF] Salembier | Flat zones filtering, connected operators, and filters by reconstruction[END_REF][START_REF] Serra | Connected operators and pyramids[END_REF], i.e., operators acting on connected components instead of pixels [START_REF] Salembier | Connected operators based on tree pruning strategies[END_REF][START_REF] Salembier | Connected operators: A review of regionbased morphological image processing techniques[END_REF].

Binary connected operators are extended to grey-scale images with the thresholdingstacking approach [START_REF] Janowitz | A model for ordinal filtering of digital images[END_REF][START_REF] Maragos | Threshold superposition in morphological image analysis systems[END_REF][START_REF] Wendt | Stack filters[END_REF]. Such grey-scale connected operators then have the interesting property to never create or move contours: the only allowed operation is to remove contours. The definition of grey-scale connected operators is deeply linked to hierarchical representations of grey-scale images called component trees: the min/max tree [START_REF] Jones | Connected filtering and segmentation using component trees[END_REF][START_REF] Salembier | Anti-extensive connected operators for image and sequence processing[END_REF] and the tree of shapes [START_REF] Monasse | Scale-space from a level lines tree[END_REF] (see Figure 2.1). With these hierarchical representations, the construction of a connected operator is generally done in four steps: 1) compute a tree representing the hierarchical decomposition of the image, 2) compute features on the nodes of the tree, 3) filter the tree according to the node features, and 4) reconstruct the filtered tree to obtain a new image.

The operators obtained with this approach are usually referred as flat operators because they operate independently on each level set, i.e., flat section, of the input.

Those operators became popular for image analysis with applications in medical imaging [START_REF] Naegel | Segmentation using vectorattribute filters: methodology and application to dermatological imaging[END_REF][START_REF] Westenberg | Volumetric attribute filtering and interactive visualization using the max-tree representation[END_REF][START_REF] Xu | Connected filtering on tree-based shapespaces[END_REF], astronomical imaging [START_REF] Perret | Connected image processing with multivariate attributes: an unsupervised Markovian classification approach[END_REF][START_REF] Perret | Connected component trees for multivariate image processing applications in astronomy[END_REF][START_REF] Ch | Effective component tree computation with application to pattern recognition in astronomical imaging[END_REF][START_REF] Teeninga | Improved detection of faint extended astronomical objects through statistical attribute filtering[END_REF][START_REF] Teeninga | Statistical attribute filtering to detect faint extended astronomical sources[END_REF], vision [START_REF] Matas | Robust wide-baseline stereo from maximally stable extremal regions[END_REF][START_REF] Xu | Hierarchical segmentation using tree-based shape spaces[END_REF][START_REF] Xu | Hierarchical image simplification and segmentation based on mumford-shah-salient level line selection[END_REF][START_REF] Xu | Tree-Based Morse Regions: A Topological Approach to Local Feature Detection[END_REF], remote sensing [START_REF] Dalla Mura | Morphological attribute profiles for the analysis of very high resolution images[END_REF][START_REF] Dalla Mura | Extended profiles with morphological attribute filters for the analysis of hyperspectral data[END_REF][START_REF] Dalla Mura | Classification of hyperspectral images by using extended morphological attribute profiles and independent component analysis[END_REF][START_REF] Ouzounis | Differential area profiles: Decomposition properties and efficient computation[END_REF][START_REF] Salembier | Ship detection in sar images based on maxtree representation and graph signal processing[END_REF] or document imaging [START_REF] Naegel | A document binarization method based on connected operators[END_REF]. This success can be explained by several reasons. First, efficient algorithms exist for constructing and processing these hierarchical representations [START_REF] Najman | Playing with Kruskal: algorithms for morphological trees in edge-weighted graphs[END_REF][START_REF] Carlinet | A comparison of many max-tree computation algorithms[END_REF][START_REF] Carlinet | A comparative review of component tree computation algorithms[END_REF][START_REF] Géraud | A quasi-linear algorithm to compute the tree of shapes of n-D images[END_REF][START_REF] Najman | Building the component tree in quasi-linear time[END_REF][START_REF] Salembier | Anti-extensive connected operators for image and sequence processing[END_REF] and second, the approach is rather intuitive: filters can be designed using rich features dedicated to specific applications. Moreover, those filters benefit from theoretical properties and An image and its associated max tree, min tree, and tree of shapes. The nodes of the max tree (respectively min tree) are the connected components of the upper (respectively lower) level sets of the image. The nodes of the tree of shapes are the saturated connected components (with their holes filled) of the upper and lower level sets of the image. In all cases, the tree corresponds to the inclusion relation between the nodes. A simple way to design a connected filter is to design a node filtering strategy on such trees.

several classes of connected filters have been defined: flattenings, levellings, or levelset filters [START_REF] Crespo | The strong property of morphological connected alternated filters[END_REF][START_REF] Crespo | Locality and adjacency stability constraints for morphological connected operators[END_REF][START_REF] Géraud | A quasi-linear algorithm to compute the tree of shapes of n-D images[END_REF][START_REF] Meyer | From connected operators to levelings[END_REF][START_REF] Meyer | The levelings[END_REF][START_REF] Meyer | Morphological scale-space representation with levelings[END_REF]. The extension of grey-scale connected operators to multivariate images has also been proposed [START_REF] Angulo | Morphological coding of color images by vector connected filters[END_REF][START_REF] Carlinet | A Tree of shapes for multivariate images[END_REF][START_REF] Carlinet | Introducing multivariate connected openings and closings[END_REF][START_REF] Gimenez | An evaluation of area morphology scale-spaces for colour images[END_REF][START_REF] Naegel | Component-trees and multi-value images: A comparative study[END_REF][START_REF] Naegel | Towards connected filtering based on componentgraphs[END_REF][START_REF] Tushabe | Extending Attribute Filters to Color Processing and Multi-Media Applications[END_REF][START_REF] Weber | On connected operators in color image processing[END_REF].

Our works on connected operators are focused on three axis which are developed in the following sections.

1. In a first sequence of works, we explored the possibility to define grey-scale connected operators without using thresholding-stacking. Actually, one issue with the extension of binary connected operators to the grey-scale case through thresholding-stacking is its sensitivity to leakage, i.e., broken contours, and linkage, i.e., false contours. The proposed approach is based on the generalization of connections, called hyperconnection, to more general spaces, in particular to the space of functions. In other words, an hyperconnection enables to decompose a function into connected components which are themselves functions. Our works in this direction led to theoretical developments around the theory of hyperconnections which were proven useful in applications in astronomical image processing and document image analysis.

2. The theoretical reflections initiated with our works on hyperconnections led us to propose a general theory that enables to express all known theories of connections and connected operators in a common framework. This work was motivated by the fact that several competing extensions of binary connections had been proposed and the links and differences among them, and among the connected operators they were able to generate, were not well understood. The proposed approach allowed us to identify a set of fundamental properties and to establish bijections between existing connection axiomatics and subsets of those properties.

3. Finally, we explored how directed information can enrich and improve the family of connected operators. We proposed the notion of directed connected components in the framework of directed graphs and we showed how it links with the classical notion of strongly connected components. We studied how, in the grey-scale case, the directed components of a directed graph organize B. Perret themselves as a hierarchical representation that generalizes the classical hierarchical representation used to design connected filters. This new representation is not a tree anymore but a directed acyclic graph and we studied how to adapt classical methods and how to define new filtering strategies for this new context. The usefulness of this new directed framework is demonstrated in several applications in medical and biological image analysis.

Hyperconnected operators

The algebraic notion of connectivity was first defined by Serra [START_REF] Serra | Mathematical morphology for Boolean lattices[END_REF] and enabled to unify the different notions of connections in graphs and in topological spaces [START_REF] Chassery | Connectivity and consecutivity in digital pictures[END_REF][START_REF] Nogly | Digital topology on graphs[END_REF][START_REF] Rosenfeld | Connectivity in digital pictures[END_REF][START_REF] Rosenfeld | Adjacency in digital pictures[END_REF]. The original definition was given in the context of the power-set lattice P (E), with E an arbitrary non empty set. A set connection is a family C included in P (E) that satisfies three constraints:

C1 -it contains the empty set: ∅ ∈ C;

C2 -it contains every singleton of E: ∀a ∈ E, {a} ∈ C; and C3 -it is conditionally closed under union: the union of a set of intersecting connected elements must be connected:

∀A ⊆ C, A = ∅ ⇒ A ∈ C.
The elements of such a family C are said to be connected. An interesting property of C is that the union of the elements of C included in a subset A of E and containing a point

x of A is connected (i.e., {C ∈ C | x ∈ C, C ⊆ A} ∈ C
). This element is called the connected component of A containing x. Then, the operator that associates the connected component of A containing x to any subset A of E is an opening (it is increasing, anti-extensive and idempotent) called the the connected opening marked by x. The connected components of the subset A of E can be equivalently defined as the maximal elements of the set of elements of C included in A. The set of connected components of a subset A of E forms a partition of A: connected components of A do not overlap and they cover A.

The definition of connections can be immediately extended to complete lattices [53, 76-78, 80, 81, 215, 229, 230]. Intuitively, the idea of this generalization is to define connections where connected components are functions and thus to avoid using thresholding and stacking in the definition of connected operators on general functions: such operators are called non-flat connected operators.

Nevertheless, this direct extension of the theory of connections to any complete lattices is hardly applicable in practice as the translation of the property C3 of the set connections into the theory of complete lattices produces an overly strong constraint. The relaxation of the property C3 to accommodate complete lattices has led to the notion of hyperconnections [START_REF] Serra | Connectivity on complete lattices[END_REF] which have been the objects of various theoretical and practical developments [START_REF] Perret | Hyperconnections and Hierarchical Representations for Grayscale and Multiband Image Processing[END_REF][START_REF] Perret | Toward a new axiomatic for hyperconnections[END_REF][START_REF] Perret | From hyperconnections to hypercomponent tree: Application to document image binarization[END_REF][START_REF] Braga-Neto | A theoretical tour of connectivity in image processing and analysis[END_REF][START_REF] Moschini | Viscous-hyperconnected attribute filters: A first algorithm[END_REF][START_REF] Nempont | A new fuzzy connectivity measure for fuzzy sets[END_REF][START_REF] Ouzounis | Hyperconnected attribute filters based on k-flat zones[END_REF][START_REF] Wilkinson | An axiomatic approach to hyperconnectivity[END_REF][START_REF] Wilkinson | Hyperconnectivity, attribute-space connectivity and path openings: Theoretical relationships[END_REF][START_REF] Wilkinson | Hyperconnections and openings on complete lattices[END_REF]. In particular, it has been shown that the approach covers a large variety of morphological operators and concepts including set connected operators (connections are just a special case of the hyperconnections [START_REF] Serra | Connectivity on complete lattices[END_REF]), structural morphology [START_REF] Wilkinson | An axiomatic approach to hyperconnectivity[END_REF] and fuzzyconnectedness [START_REF] Nempont | A new fuzzy connectivity measure for fuzzy sets[END_REF].

We have contributed to the theory of hyperconnections and its applications in the following works [START_REF] Perret | Inf-structuring Functions: A Unifying Theory of Connections and Connected Operators[END_REF][START_REF] Perret | Hyperconnections and Hierarchical Representations for Grayscale and Multiband Image Processing[END_REF][START_REF] Perret | Toward a new axiomatic for hyperconnections[END_REF][START_REF] Perret | From hyperconnections to hypercomponent tree: Application to document image binarization[END_REF], our major contributions are described in the following sections.

Accessible hyperconnections.

In [START_REF] Perret | Hyperconnections and Hierarchical Representations for Grayscale and Multiband Image Processing[END_REF][START_REF] Perret | Toward a new axiomatic for hyperconnections[END_REF], we have identified a sub-class of hyperconnections ensuring that the decompositions into hyperconnected components provide a consistent and intuitive framework for designing hyperconnected filters. In fact, the hyperconnection theory can behave counter-intuitively as it does not guarantee that removing an hyperconnected component from an image will actually change the image.

We proposed a new property that formalizes the following idea: the decomposition of an image in its hyperconnected components must be necessary and sufficient to describe the image. This property is fundamental for image processing as it implies that the decomposition into hyperconnected components completely describes the whole image (sufficient) and that none of its components is useless (necessary). These requirements enforce the consistency of the hyperconnected filters as they ensure that: 1) every deletion of image components will effectively modify the filtered image, and 2) a deleted component can not re-appear in the filtered image. While sufficiency is provided by axioms C1 and C2, we proposed several equivalent formulations of the necessity condition that can be used to replace axiom C3. Such hyperconnections were called accessible because they also ensure that any hyperconnected component of an element can be obtained by a marked hyperconnected opening.

Hypercomponent tree.

In [START_REF] Perret | Hyperconnections and Hierarchical Representations for Grayscale and Multiband Image Processing[END_REF][START_REF] Perret | From hyperconnections to hypercomponent tree: Application to document image binarization[END_REF], we have developed a general framework to represent the decomposition of an image into hyperconnected components as an hypercomponent tree which corresponds to a generalization of the connected component tree. Such tree is indeed an efficient and intuitive way to design hyperconnected attribute filters or to perform detection tasks based on quantitative attributes: it allows us to reuse the existing algorithms imagined for the connected component trees in this new context. The major difficulty here is that the hyperconnected components of an element are generally not ordered, and thus do not exhibit a tree structure.

We proposed to rely on the notion of z-zones [START_REF] Braga-Neto | A theoretical tour of connectivity in image processing and analysis[END_REF] which decompose the umbra of a function into equivalence classes where all points generating the same set of hyperconnected components are said equivalent (see Figure 2.2). We showed that the z-zones of a function can be partially ordered and we gave a sufficient condition to ensure that their Hasse diagram is a tree. If an hyperconnection is accessible (see paragraph above), there is a z-zone associated to each hyper-connected component of an element: in other words, in an accessible hyperconnections, the hyperconnected components of a function can be partially ordered through their associated z-zones.

f = f f f f Figure 2.2:
Decomposition of a function f with the hyperconnection of functions with a unique maximum [START_REF] Braga-Neto | A theoretical tour of connectivity in image processing and analysis[END_REF]. The function f has three hyperconnected components γ δ 2 (f ), γ δ 4 (f ), and γ δ 5 (f ). Left: the function f , five pulses δ 1 , . . . , δ 5 representatives of the five z-zones of f . The pulse δ 1 (and its equivalence class) is associated to the whole set of hyperconnected components of f and thus the marked hyperconnected opening γ δ 1 (f ) of f by δ 1 is equal to f . Right: the marked hyperconnected openings of f by δ 2 , . . . , δ 5 .

Hyperconnected filters.

We illustrated the capacity of the proposed hypercomponent tree on two applications [START_REF] Perret | Hyperconnections and Hierarchical Representations for Grayscale and Multiband Image Processing[END_REF][START_REF] Perret | From hyperconnections to hypercomponent tree: Application to document image binarization[END_REF]. In both cases, the developed hyperconnected operators are based on a fuzzy hyperconnection [START_REF] Nempont | A new fuzzy connectivity measure for fuzzy sets[END_REF] which is composed of functions with at most one maximum whose dynamics is greater than a given threshold. In other words, a fuzzy hyperconnected function has a single significant maximum and possibly many small local maxima. It is thus expected that the introduction of noise in an image will not lead to the apparition of many new hyperconnected components, as it would be the case with classical connections, but would rather be absorbed by the significant hyperconnected components.

The first proposed application deals with multispectral astronomical image filtering. A classical approach in astronomy for analyzing galaxy images is to fit a 2d brightness profile on the image. The models used for brightness profiles account for the major structures of the galaxy, such as the bulge or the stellar disc, but cannot describe small features such as HII regions (star formation regions) which can have a significant contribution to the total brightness of the galaxy and can thus bias the estimation. Our goal was thus to filter such regions while preserving the rest of the image. Thanks to the properties of the fuzzy hyperconnection and to the proposed hypercomponent tree, a simple extension of the classical area filter to this case provides a good solution to the problem, see Figure 2.3.

The second application deals with document image binarization. Binarization is an important step in document analysis and it requires robust methods able to manage degraded document images of different natures (handwritten, printed) with various scales and varying contrasts. We proposed a novel method which is based on Then, the first row shows the result of the area filter using from left to right: the hypercomponent tree (objects with an area less than 30 pixels are removed), the max tree (30 pixels) , the max tree (10 pixels). The second row shows the difference between the first row and the original image. This example shows that the proposed approach is able to remove the bright localized structures inside the galaxy which are difficult to model while providing a better preservation of the galaxy morphological features and of the background.

background removal using the hypercomponent tree (see Figure 2.4). The background identification is based on the evolution of the area of the hypercomponent tree nodes compared to their grey level. The proposed method was submitted to the DIBCO 2010 contest (Document Image Binarization Contest) [START_REF] Pratikakis | H-dibco 2010 -handwritten document image binarization competition[END_REF] and obtained the 4th place among 16 participants.

A unifying framework for connections.

In Section 2.1 we have already mentioned the original theory of connections, the extension of connections to general lattices, and their generalization with hyperconnections. Another direction of research in this context is related to the definition of partial connections [START_REF] Ronse | Partial partitions, partial connections and connective segmentation[END_REF], obtained by dropping the condition C2 on the family of connected elements. As a consequence, with a partial connection, the decomposition of an element into its connected components may contain holes: it forms a partial partition. This approach has proven to be useful for the description of iterative processing based on connections, especially in the context of compound segmentation, a theoretical framework for defining and analyzing iterative segmentation methods [START_REF] Ouzounis | Partition-induced connections and operators for pattern analysis[END_REF][START_REF] Ronse | Idempotent block splitting on partial partitions, I: Isotone operators[END_REF][START_REF] Ronse | Idempotent block splitting on partial partitions, II: Non-isotone operators[END_REF][START_REF] Ronse | Orders on partial partitions and maximal partitioning of sets[END_REF][START_REF] Serra | Morphological segmentations of colour images[END_REF].

Another development in this context are attribute space connections [START_REF] Babai | A graph formalism for time and memory efficient morphological attribute-space connected filters[END_REF][START_REF] Wilkinson | Attribute-space connectivity and connected filters[END_REF][START_REF] Wilkinson | Hyperconnectivity, attribute-space connectivity and path openings: Theoretical relationships[END_REF] B. Perret which are defined on power-set lattices. Their principle is to first plunge the original space into a space of higher dimension, then compute the connected components in this new space, and finally, project them back into the original space. It has been proven that, in the binary case, attribute-space connections generalize hyperconnections [START_REF] Wilkinson | Attribute-space connectivity and connected filters[END_REF][START_REF] Wilkinson | Hyperconnectivity, attribute-space connectivity and path openings: Theoretical relationships[END_REF].

Some of the theory mentioned so far are more general than others or have overlaps, and the situation becomes even more complicated when one considers also the extension of connected filters obtained with thresholding-stacking. This situation is summarized in Figure 2.5.

We have proposed a novel theoretical framework encompassing all previously known connection theory in [START_REF] Perret | Inf-structuring Functions: A Unifying Theory of Connections and Connected Operators[END_REF][START_REF] Perret | Inf-structuring functions and self-dual marked flattenings in bi-heyting algebra[END_REF]. The major contributions of these works are described in the following sections. 

Inf-structuring functions

We proposed a general theory for connections [START_REF] Perret | Inf-structuring Functions: A Unifying Theory of Connections and Connected Operators[END_REF][START_REF] Perret | Inf-structuring functions and self-dual marked flattenings in bi-heyting algebra[END_REF], based on the new notion of inf-structuring functions, that encompasses all previously known approaches to connections in mathematical morphology. This theory does not only have the previous definitions as special cases but it is also able to directly generate all the connected filters, even those obtained with the stacking technique. Thus, the theory of inf-structuring functions allows us to express the different existing theories in a common framework, giving a better view on their similarities and differences, and easing the transcription of the results obtained in one theory into another one. Moreover, by giving a better view on what is already covered by existing theories we can more easily delimit the unknown lands, understand the hypothesis we have to give up in order to start exploring them and avoid redundant work.

The idea of the inf-structuring functions is to start from the least common denominator of all the theories of connections: they all rely on a process that enables to decompose an element of the space into sub-elements. For example, a connection decomposes each element into a partition: i.e., a set of disjoint sub-elements (that cover the element). An hyperconnection decomposes an element into a non-redundant cover: i.e., a set of non-comparable sub-elements that cover the element. A grey-scale connected operator relies on a hierarchy of sub-elements: i.e., a set of sub-elements such that any two sub-elements are either disjoint or comparable.

We call such a mapping that associates each element a of a lattice L with a set of elements s (a) of L, such that every element in s (a) is lower than or equal to a, an inf-structuring function [START_REF] Perret | Inf-structuring Functions: A Unifying Theory of Connections and Connected Operators[END_REF][START_REF] Perret | Inf-structuring functions and self-dual marked flattenings in bi-heyting algebra[END_REF] (see Figure 2.6).

a s(a) We identified seven properties [START_REF] Perret | Inf-structuring Functions: A Unifying Theory of Connections and Connected Operators[END_REF] characterizing inf-structuring functions. The first three relates to how an inf-structuring function decomposes an element into sub-elements. An inf-structuring function is said:

1. complete if the sub-elements are sufficient to recover the original element by supremum.

2. non-redundant if no sub-element covers another.

3. partitioning if there is no intersection between sub-elements.

The next three characterize how such sub-elements will themselves be decomposed. An inf-structuring function is said:

4. weakly stable if a sub-element is always a sub-element of itself.

5. stable if a sub-element is always the only sub-element of itself.

6. strongly stable if for any set of sub-elements S, the sub-elements of the supremum B. Perret of S are exactly S.

And finally, the last one characterizes how the decompositions of two comparable elements relate. An inf-structuring function is said:

7. increasing if for any two element a and b such that a is smaller than b, then the sub-elements of a form a refinement of the sub-element of b.

Marked reconstruction operator.

Then, we generalized the notion of marked connected opening to inf-structuring functions: this new operator [START_REF] Perret | Inf-structuring Functions: A Unifying Theory of Connections and Connected Operators[END_REF] provides a way to select sub-elements among the sub-elements of an element. In order to ensure that each sub-element of an element can be selected independently, we propose to consider the notion of local minima conditionally to the decomposition. This leads to the definition of the marked reconstruction operator β :

L × L → L: ∀a, m ∈ L, β(a, m) = min(↑(m) ∩ s (a)) (2.1)
where a is the processed element, m is the marker and ↑(m) is the set of elements that are greater than or equal to m in the lattice L. The reconstruction of a marked by m is thus the supremum of the minima of the family of the upper bounds of m in the family of sub-elements s (a) of a for the inf-structuring function s. An application of β is illustrated in We study how the marked reconstruction operator behaves with respect to the identified inf-structuring function properties. In particular we identified which of the seven fundamental properties on the inf-structuring function s implies that the associated marked reconstruction operator β is an opening (proposition 9 of [START_REF] Perret | Inf-structuring Functions: A Unifying Theory of Connections and Connected Operators[END_REF]).

Reverse axiomatic of connection theories.

We studied the links between the proposed theory of inf-structuring functions and the existing theories of connections by following the principle of reverse axiomatics: we identified the axioms which are necessary and sufficient to obtain certain properties. For each of the three major theories of connections -connections, hyperconnections and attributes space connections -and their variations, we identified bijections between inf-structuring functions satisfying a given set set of properties (among the 7 fundamental properties previously proposed) and the connections in the considered theory (theorems 13, 16, and 18 of [START_REF] Perret | Inf-structuring Functions: A Unifying Theory of Connections and Connected Operators[END_REF]). A key element in the construction of those bijections was to identify under which conditions an inf-structuring function is associated to a set of canonical elements which will correspond to the connected elements of a connection (proposition 8 of [START_REF] Perret | Inf-structuring Functions: A Unifying Theory of Connections and Connected Operators[END_REF]). Those equivalence relations are summarized in Table 2.1. It can be seen that for each of the 7 proposed property there is at least one connection theory where it is satisfied and another one where it is not: those properties are thus fundamental to characterize the differences and similarities between the different connection theories.

Complete Non-redundant Partitioning

Weakly stable Stable Strongly stable -increasing [START_REF] Wilkinson | Attribute-space connectivity and connected filters[END_REF] X Strong A-S connection [START_REF] Wilkinson | Hyperconnectivity, attribute-space connectivity and path openings: Theoretical relationships[END_REF] X d X Table 2.1: Summary of the equivalence relations between the different theories of connections and the properties of inf-structuring functions. Each line corresponds to one theory of connection. Each column is one of the fundamental properties of an inf-structuring function. For each line, the properties enabling to obtain the equivalence between the connection and the inf-structuring function are marked with an "X". The properties marked by a "d" can be deduced from those marked with an "X": they are necessary but not sufficient.

Partial connection [53] d X X d X Connection [229] X d X X d X Hyperconnection [229] X X X d X Accessible hyperconnection [13] X d d d X X A-S connection

Characterization of grey-scale connected operators.

We have also studied the case of grey-scale connected operators. We have established that only max-peak operators [START_REF] Ouzounis | Hyperconnected attribute filters based on k-flat zones[END_REF] can be defined directly as (hyper) connected operators. The two other type of grey-scale operators -peak operators [START_REF] Salembier | Flat zones filtering, connected operators, and filters by reconstruction[END_REF] and flat-zone operators [START_REF] Salembier | Flat zones filtering, connected operators, and filters by reconstruction[END_REF] -cannot be defined in terms of connections without using a thresholding/stacking step. Nevertheless, we have characterized two particular inf-structuring functions that are able to generate all the peak operators and flat-zone operators respectively. The properties satisfied by these inf-structuring functions are summarized in Table 2.2. It can be seen from this, that the introduction of the thresholding/stacking in the construction of these operators weakens the properties of the operators compared to the theory of connection they rely on (see 

Self-dual non-flat flattening.

Based on the proposed notion of inf-structuring function, we have defined a novel extension [START_REF] Perret | Inf-structuring functions and self-dual marked flattenings in bi-heyting algebra[END_REF] of a particular class of operators called flattenings [START_REF] Meyer | From connected operators to levelings[END_REF]. Flattenings, which are not to be confused with flat operators, are intuitively operators that reduce the dynamics of a function and that do not introduce new contours. A flattening is said self-dual if it processes an image and its opposite symmetrically: it is contravariant with contrast inversions.

The classical definition of the marked flattening [START_REF] Meyer | From connected operators to levelings[END_REF][START_REF] Serra | Connections for sets and functions[END_REF] is only feasible in sets due to the use of the complementation. We showed that the use of bi-Heyting algebra, i.e., pseudo-complemented lattices (see [START_REF] William | Intrinsic co-heyting boundaries and the leibniz rule in certain toposes[END_REF][START_REF] Reyes | Bi-heyting algebras, toposes and modalities[END_REF][START_REF] Stell | Relations in mathematical morphology with applications to graphs and rough sets[END_REF][START_REF] Stell | The algebraic structure of sets of regions[END_REF][START_REF] Vickers | Topology via Logic[END_REF] for details and uses in morphological morphology), removes this limitation and lets us generalize the flattenings in order to use inf-structuring functions in their definitions, i.e., to obtain flattenings based on non flat elements. The construction of the self-dual non-flat flattening operator combines inf-structuring function reconstructions and Heyting algebra operators. We showed that using adapted inf-structuring functions, either based on connections or on hyperconnections, enabled us to recover the original definition of flattenings. Then, we provided, as an example, a simple inf-structuring function whose derived self-dual operator better preserves contrast and does not introduce new pixel values (see Figure 2.8), thus showing the interest of going beyond the stacking/thresholding paradigm in practice.

Directed connected operators

The various connection theories and their related operators presented in the previous sections all assume symmetric spatial relation: if a pixel x is connected to a pixel y then y is also connected to x. However, several authors have noticed that relaxing this symmetry hypothesis can improve the result of popular image analysis methods such as the min-cuts [START_REF] Boykov | Graph cuts and efficient N-D image segmentation[END_REF], the random-walkers [START_REF] Singaraju | Interactive image segmentation via B. Perret minimization of quadratic energies on directed graphs[END_REF], or the shortest path forests [START_REF] Miranda | Oriented image foresting transform segmentation by seed competition[END_REF]. These works rely on different algorithms based on the directed graph framework, and generally showed an ability to take into account more information than their symmetric counterparts.

Following these successful attempts, we explored in [START_REF] Perret | Directed connected operators: Asymmetric hierarchies for image filtering and segmentation[END_REF] how directed information can enrich and improve the family of connected operators. Note that, while the proposed work is formulated in the framework of directed graph, it has since been proven that the proposed notions can be generalized in an algebraic framework extending the one of connections [START_REF] Ronse | Axiomatics for oriented connectivity[END_REF]. The major contributions of this work are described in the following sections.

Directed connected component.

In [START_REF] Perret | Directed connected operators: Asymmetric hierarchies for image filtering and segmentation[END_REF], we introduced the notion of directed connected component: given a vertex x of a directed graph, the directed connected component of basepoint x is the set of all vertices which can be reached with a directed path starting from x (see Figure 2.9). This notion generalizes the classical definition of connected components in undirected graphs: when the graph is symmetric, the directed connected component of basepoint x is equal to connected component containing x. However, in general, the set of directed components of a graph do not form a partition of the graph vertices as different directed connected components may have a non empty intersection.

We have proven that the set of directed connected components of a directed graph can be efficiently represented thanks to the classical notion of strongly connected components. Recall that, in a directed graph, a strongly connected component is a maximal set of vertices such that any vertex is reachable from every other vertex in the set. It is well known that this notion induces a directed acyclic graph whose vertex set is equal to the set of strongly connected components of the graph and its edges correspond to the adjacency relations among these strongly connected components. We have established a bijection between the directed components of a graph and its strongly connected components: given two vertices x and y belonging to a same strongly connected components, the directed connected components of basepoints x and y are the same. This bijection implies that the directed acyclic graph of strongly connected components effectively encodes the directed connected components of the underlying graph. 

Directed components hierarchy.

As we have seen, the notion of directed connected component generalizes the one of connected components. This allowed us to define the notion of directed component hierarchy which unifies and generalizes all the hierarchical image representations whose definitions are based on connected components [START_REF] Perret | Directed connected operators: Asymmetric hierarchies for image filtering and segmentation[END_REF]: the min/max tree of a vertex weighted graph, the min/max tree of an edge-weighted graph, and the quasi-flat zones hierarchy of an edge-weighted graph (see Section 3.1).

In order to encompass all these different structures, we proposed the notion of a stack of graphs, which is defined as a sequence of nested directed graphs. The directed component hierarchy of a given stack of graphs is then defined as the set of directed components of every graph in the stack. Stack of graphs can, for example, be induced by thresholding a vertex weighted graph or an edge weighted graph at all possible values. In such cases and if the base graph is an undirected graph, then the corresponding directed component hierarchy is indeed equivalent to the min or max tree of the original graph.

In the general case, when the graphs in the stack are asymmetric, the directed component hierarchy is no longer a tree: it is a directed acyclic graph with edges representing inter-scale relations (similarly to classical hierarchical tree based representations) but also edges representing the intra-scale relations between strongly connected components (see Figure 2.10). The directed component hierarchy is the key representation to perform directed connected filtering as presented in the following sections.

Algorithm for directed components hierarchy.

In [START_REF] Perret | Directed connected operators: Asymmetric hierarchies for image filtering and segmentation[END_REF] we proposed an efficient algorithm for building the directed component hierarchy of a stack of graphs. The algorithm has a O( .n) time complexity, where n is the size of the graph and where is the number of levels in the stack. This algorithm is thus well suited for stack of graphs obtained by thresholding graphs with a small number of different weights which is often the case in image analysis (e.g., with pixel values stored in a byte). Recent advances on incremental strongly connected components labeling [START_REF] Bender | A new approach to incremental cycle detection and related problems[END_REF] may enable us to provide other algorithms whose time complexity does not depend of the number of levels in the stack. 

Directed connected filtering.

To manage the various cases that may appear when filtering the directed component hierarchy, i.e., a directed acyclic graph, we introduced several strategies [START_REF] Perret | Directed connected operators: Asymmetric hierarchies for image filtering and segmentation[END_REF], called directed connected filters. These strategies are designed to ensure the consistency of the node selection process in terms of directed connected components. Thinking in terms of directed connected operators, one may desire to mark each directed connected component as selected or as discarded. However, in contrast to the case of connected operators, we may fall into situations such as the one depicted in Figure 2.9 (b), where two directed connected components overlap. This creates an ambiguous situation if one of them is selected while the other is not selected, hence discarded: one may choose to keep or remove the overlapping components (vertex labeled b in Figure 2.9(b)).

This situation actually generalizes a well known issue arising when one filters a tree with a non increasing Boolean criterion (a criterion that may say to remove a node but not its descendant). The classical solution to deal with a non increasing criterion on trees is to define a regularized criterion according to the min or the max filtering rule [START_REF] Salembier | Anti-extensive connected operators for image and sequence processing[END_REF] which corresponds to the smallest (respectively largest) increasing criterion above (respectively bellow) the base criterion.

With the directed acyclic graph representing the directed component hierarchy, the situation is more complex and it leads to four different regularization strategies resulting of the following choices: 1) do we favor selected or discarded components?, and 2) do we want a smaller or a larger filtering criterion? 

Image processing with directed connected filters.

We provided several illustrations [START_REF] Perret | Directed connected operators: Asymmetric hierarchies for image filtering and segmentation[END_REF] of the relevance and of the versatility of directed connected filtering for image processing where asymmetric information is taken into account in the form of a directed graph defined over the image pixels.

Eye fundus segmentation.

In the first application, the goal is to segment blood vessels in retinal images (see Figure 2.11) in order to help physicians diagnose and follow-up several pathologies of the eye fundus. The difficulty of retinal images lies in the separation of the faint and thin vessels from the background noise. These vessels appear as disconnected groups of pixels that can only be distinguished from the background by their long range spatial coherency. In order to solve this issue, we proposed to construct a non-local directed adjacency relation that allows us to reconnect those groups of pixels, retaining the possibility to reject spurious groups of pixels whose spatial arrangement does not resemble a vessel.

To do so, we proposed to model the image as a semi-local directed graph where each pixel x is adjacent (1) to its four closest spatial neighbors as usually done with the 4-adjacency symmetric relation and ( 2) to its k brightest neighbors in a window centered on the pixel. This second set of edges is naturally asymmetric: connections are mostly directed from dark to bright pixels (see Figure 2.12). Note that such k-nearest neighbor graph is often used in applications (see, e.g., [START_REF] Felzenszwalb | Efficient graph-based image segmentation[END_REF]) without considering its asymmetric aspect (the directed graph is symmetrized by adding its transpose graph). The basic idea behind this construction is to allow directed connected components to jump over noisy regions in the faint parts of the blood vessels. In other words, in this directed graphs, blood vessels correspond to the union of the elongated directed connected components rooted in the faint extremities of the vessels. Following this observation, the segmentation mask is then obtained by discarding all directed connected components which are either too small or not elongated enough (see Figure 2.11). We showed that the proposed method outperformed similar methods based on undirected connected component filters and performed similarly to state-of-the-art methods based on supervised machine learning on the standard DRIVE dataset [START_REF] Staal | Ridge-based vessel segmentation in color images of the retina[END_REF].

Neurite image segmentation.

The second application that we proposed is the filtering of neurite images (see Figure 2.13). In this example, we considered a sample image of a neuron grown in vitro with its neurites (i.e., its axon and dendrites). The objective is to derive measures of the neurite tree complexity, which are useful in various toxicology assays, called neurite outgrowth assays [START_REF] Bilsland | A rapid method for semiquantitative analysis of neurite outgrowth from chick DRG explants using image analysis[END_REF].

To segment the neurites, we relied on a vesselness-like local object characterization [START_REF] Frangi | Model-based quantitation of 3-D magnetic resonance angiographic images[END_REF], which enables to classify regions into tubes, blobs and background. This allowed us to construct an asymmetric adjacency relation where tubes can be linked to blobs but not the other way around. However, each of the three classes is linked to its own class, while background is linked to all classes. Then, we considered both intensity and geometrical classification in order to filter the image. By imposing asymmetric blob-to-vessel connection, we exploited the fact that the tube classification is under-segmented and we tried to complete the missing information by searching the connections from the blob and the background classes with this more robust tube class.

Myorcardium detection.

Finally, the last application considers the integration of an asymmetric a priori knowledge in a marker-based MRI myocardium segmentation procedure. A classical approach to extract a two class object/background segmentation from a hierarchical image representation and markers is to look for the largest components of the hierarchy that have a non empty intersection with the object marker but do not touch the background marker [START_REF] Salembier | Binary partition tree as an efficient representation for image processing, segmentation, and information retrieval[END_REF]. This procedure can be directly applied to the directed component hierarchy.

Here, we used some a priori knowledge on the intensity distribution of some structures present in the image to define a relevant edge weighted asymmetric graph to represent the image. Actually, in such images, it is known that some extremal intensity pixels are likely to not belong to the myocardium since, in general, they correspond to blood and fat (very bright) or to lungs (very dark): the intuitive idea is then to construct a graph that will ease the connections from the background to these pixels and prevent the object marker to connect to quickly to these pixels. To do this, the edges ending at such pixels are penalized by multiplying their cost by a constant greater than one. Here, the graph is symmetric, but the weights of the edges (x, y) and (y, x) are not equal if one of the vertices x or y is pre-classified as "probably background" while the other is not. Figure 2.14 shows how this strategy can improve the quality of a segmentation compared to the non-directed case (when the weights of the two edges (x, y) and (y, x) are equal).

Moreover, we showed that this marker-based segmentation method defined with the directed component hierarchy is indeed equivalent to the generalization of the image foresting transform [START_REF] Falcão | The image foresting transform: B. Perret Theory, algorithms, and applications[END_REF] to directed graphs presented in [START_REF] Miranda | Oriented image foresting transform segmentation by seed competition[END_REF]. This equivalence derives from the following characterization of the proposed segmentation method: a pixel belongs to the segmented object if the directed min-max distance from this pixel to the object marker is less than the directed min-max distance from this pixel to the background marker. 

Chapter 3

Hierarchies of segmentations

Image segmentation is the task of grouping the pixels of an image into multiple segments. It is usually seen as an important problem in computer vision that is made particularly difficult by its ill-posed nature. In low level vision for example, one can define an image segment as a connected and homogeneous region of maximal extension. However, in high level vision, a segment can be defined as a semantic object relevant for a given application. In complex scenes, like natural images, it is even possible that the decomposition into semantic objects is itself ambiguous: for example, in a street scene, one could want to segment cars, houses, pedestrians and so on, but one could also want to have a finer level of details where pedestrians are decomposed into their body parts: a head, a trunk, arms, and so on. A natural idea is then to perform a hierarchical segmentation of the image: i.e., to decompose the image into objects and to iteratively refine those objects into parts.

Hierarchies of segmentations were first proposed in the 80's [START_REF] Horowitz | Picture segmentation by a tree traversal algorithm[END_REF][START_REF] Tanimoto | A hierarchical data structure for picture processing[END_REF]. They have since appeared under various names: pyramids, hierarchy of partitions, partition trees, scale-sets. In a hierarchy (of segmentations), an image is represented as a sequence of fine to coarse partitions satisfying the strong causality principle [START_REF] Guigues | Scale-sets image analysis[END_REF][START_REF] Koenderink | The structure of images[END_REF][START_REF] Morel | Variational Methods in Image Segmentation[END_REF]: i.e., any partition is a refinement of the next one in the sequence. They have various applications in image processing and in image analysis: image segmentation [START_REF] Perret | Directed connected operators: Asymmetric hierarchies for image filtering and segmentation[END_REF][START_REF] Arbelaez | Contour detection and hierarchical image segmentation[END_REF][START_REF] Guigues | Scale-sets image analysis[END_REF][START_REF] Maninis | Convolutional oriented boundaries: From image segmentation to high-level tasks[END_REF][START_REF] Pont-Tuset | Multiscale combinatorial grouping for image segmentation and object proposal generation[END_REF][START_REF] Ren | Image segmentation by cascaded region agglomeration[END_REF][START_REF] Salembier | Optimum graph cuts for pruning binary partition trees of polarimetric sar images[END_REF][START_REF] Salembier | Binary partition tree as an efficient representation for image processing, segmentation, and information retrieval[END_REF][START_REF] Xu | Hierarchical segmentation using tree-based shape spaces[END_REF], occlusion boundary detection [START_REF] Hoiem | Recovering occlusion boundaries from an image[END_REF], image simplification [START_REF] Perret | Directed connected operators: Asymmetric hierarchies for image filtering and segmentation[END_REF][START_REF] Guigues | Scale-sets image analysis[END_REF][START_REF] Soille | Constrained connectivity for hierarchical image partitioning and simplification[END_REF], object detection [START_REF] Salembier | Binary partition tree as an efficient representation for image processing, segmentation, and information retrieval[END_REF], object proposal [START_REF] Pont-Tuset | Multiscale combinatorial grouping for image segmentation and object proposal generation[END_REF], visual saliency estimation [START_REF] Yan | Hierarchical saliency detection[END_REF].

In particular, they have gained a large popularity in [START_REF] Arbelaez | Contour detection and hierarchical image segmentation[END_REF] whose hierarchical approach to the general problem of natural image segmentation outperformed state-of-theart approaches. Nowadays they are part of state-of-the-art pipelines for image segmentation where they are used as a post-processing of convolutional neural networks [START_REF] Funke | Large scale image segmentation with structured loss based deep learning for connectome reconstruction[END_REF][START_REF] Maninis | Convolutional oriented boundaries: From image segmentation to high-level tasks[END_REF].

Hierarchical segmentations are usually represented as dendrograms, i.e., trees where the (super)pixels are the leaves and each internal node represents the fusion of its children. A hierarchical segmentation can also be represented as a saliency map [START_REF] Cousty | Hierarchical segmentations with graphs: quasi-flat zones, minimum spanning trees, and saliency maps[END_REF][START_REF] Najman | On the equivalence between hierarchical segmentations and ultrametric watersheds[END_REF][START_REF] Najman | Geodesic saliency of watershed contours and hierarchical segmentation[END_REF], i.e., a characteristic function on the edges of the underlying graph used to model the image domain (see Figure 3.1). One can note that this saliency map can indeed be seen as a restriction of the ultrametric distance associated to the
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Figure 3.1: A hierarchy of segmentations represented by a dendrogram (left) and by an equivalent saliency map on a given graph (right). The value of the saliency map on an edge {x i , x j } is given by the altitude of the lowest common ancestor of x i and x j in the dendrogram. For example the lowest common ancestor of x 2 and x 3 is n 3 whose altitude is r 3 ; the value of the saliency map on the edge {x 2 , x 3 } is thus equal to r 3 .

hierarchy to the underlying graph [START_REF] Carlsson | Characterization, stability and convergence of hierarchical clustering methods[END_REF][START_REF] Leclerc | Description combinatoire des ultramétriques[END_REF]; the two are equivalent if the graph is complete. This duality between the combinatorial representation (the dendrogram) and the functional representation (the saliency map) has been shown useful in image analysis by several authors [START_REF] Angulo | Hierarchical laplacian and its spectrum in ultrametric image processing[END_REF][START_REF] Angulo | Morphological semigroups and scalespaces on ultrametric spaces[END_REF][START_REF] Fehri | Characterizing images by the gromov-hausdorff distances between derived hierarchies[END_REF][START_REF] Kiran | Fusion of ground truths and hierarchies of segmentations[END_REF] and will be a key element of the theoretical and algorithmic developments presented in this section. Moreover, saliency maps built on typical 4-adjacency graph used in image analysis have the interesting property of being themselves representable as images in the Khalimsky grid, also called 2d cubical complex [START_REF] Khalimsky | Topological structures in computer science[END_REF][START_REF] Khalimsky | Computer graphics and connected topologies on finite ordered sets[END_REF] (see Figure 3.2). Such representation of a saliency map is sometimes called an ultrametric contour map [START_REF] Arbelaez | Contour detection and hierarchical image segmentation[END_REF].

Saliency map on a 4-adjacency graph

Equivalent representation on the Khalimsky grid Visualization as an image Our works on hierarchies of segmentations are focused on three axis which are developed in the following sections.

1. In a first sequence of works, we studied the links existing between some standard hierarchical representations used in image analysis. We showed that several well know hierarchical representations are indeed closely related through constructive relations. Then, we showed how these relations can be translated to efficient algorithms and we proposed a generic framework for hierarchical segmentation construction. This framework is based on an efficient algorithm to construct a canonical hierarchical representation that can then be transformed into other hierarchical representations with linear time post-processings. Finally, we showed how the proposed algorithmic framework can be used to develop efficient filtering methods for hierarchies of segmentations.

2. In a second sequence of works, we focused our study on a particular type of hierarchy of segmentations: the watershed hierarchies. These hierarchies satisfy a scale-wise optimality criterion which enabled us to perform a deep theoretical analysis of these representations. In particular, we addressed the following questions: 1) Can we find a constructive characterization of hierarchical watersheds and thus a recognition algorithm? 2) Can we compute the probability of a given watershed hierarchy and what are the least and most probable watershed hierarchies? 3) Can we transform any hierarchy of segmentations into a similar hierarchical watershed ? and 4) Is the set of watershed hierarchies closed by combination ?

3. Finally, we proposed a general approach to hierarchical segmentation cost function optimization with gradient descent. We formulated the optimization problem as a minimization problem on the space of saliency maps. The proposed reformulation led to an unconstrained optimization problem that can be efficiently solved by generic gradient descent methods. The flexibility of our framework allowed us to investigate several new cost functions, following the classic paradigm of combining a data fidelity term with a regularization. While we provide no theoretical guarantee to find the global optimum, the numerical results obtained over a number of synthetic and real datasets demonstrate the good performance of our approach compared to state-of-the-art algorithms.

Understanding and devising algorithms

The interest of the image processing community towards hierarchical image representations has led to various methods whose links and differences are not always well understood. The mathematical morphology community has in particular focused on the following types of hierarchical representations:

• Min trees, max trees, and trees of shapes [START_REF] Jones | Connected filtering and segmentation using component trees[END_REF][START_REF] Monasse | Fast computation of a contrast-invariant image representation[END_REF][START_REF] Najman | Discrete set-valued continuity and interpolation[END_REF][START_REF] Salembier | Anti-extensive connected operators for image and sequence processing[END_REF]: those three hierarchical representations are based on the evolution of the connected components of the level-sets of the pixel values (see Figure 2.1 in Section 2). In those representations, each level of the hierarchy is indeed only a partial segmentation of the pixel set. They are traditionally used to perform connected image filtering and object detection, but they can also be used for general image segmentation, either as contour detectors [START_REF] Xu | Hierarchical segmentation using tree-based shape spaces[END_REF] or as feature extractors [START_REF] Dalla Mura | Morphological attribute profiles for the analysis of very high resolution images[END_REF].

• Quasi-flat zones hierarchies [START_REF] Meyer | Morphological scale-space representation with levelings[END_REF][START_REF] Nagao | Region extraction and shape analysis in aerial photographs[END_REF]: in these hierarchies, the regions of a segmentation at the scale α are defined as the largest connected sets of pixels such that, between any two pixels, there exists a path where the maximal dissimilarity between adjacent pixels is lower or equal than α. When valid paths are further constrained by new criteria, we obtain the family of constrained connectivity hierarchies [START_REF] Soille | Constrained connectivity for hierarchical image partitioning and simplification[END_REF].

• Binary partition trees [START_REF] Salembier | Binary partition tree as an efficient representation for image processing, segmentation, and information retrieval[END_REF]: those hierarchies corresponds to the extension to sparse graphs of classical agglomerative clustering methods developed in data analysis. Starting from the image segmentation composed of pixels or super-pixels, the regions are iteratively merged in a greedy manner following an application specific heuristic. A particular case of binary partition tree, that we call binary partition tree by altitude ordering [START_REF] Cousty | Constructive links between some morphological hierarchies on edge-weighted graphs[END_REF], is obtained when the distance between regions is measured by the minimum dissimilarity between those regions: this is a generalization of single linkage clustering [START_REF] Florek | Sur la liaison et la division des points d'un ensemble fini[END_REF][START_REF] Mcquitty | Elementary linkage analysis for isolating orthogonal and oblique types and typal relevancies[END_REF][START_REF] Sneath | The application of computers to taxonomy[END_REF] to sparse graphs.

• Watershed hierarchies [START_REF] Beucher | Watershed, hierarchical segmentation and waterfall algorithm[END_REF][START_REF] Cousty | Incremental algorithm for hierarchical minimum spanning forests and saliency of watershed cuts[END_REF][START_REF] Meyer | The dynamics of minima and contours[END_REF][START_REF] Najman | Geodesic saliency of watershed contours and hierarchical segmentation[END_REF]: those hierarchies are constructed by considering the watershed segmentations of an image which is iteratively flooded under the control of an attribute (see Section 3.2 for a more formal definition). For example, the watershed segmentations of the area closings of size k of an image for every positive integer k form the watershed hierarchy by area of the image.

Constructive links between hierarchies.

In [START_REF] Cousty | Constructive links between some morphological hierarchies on edge-weighted graphs[END_REF], we studied the links existing between several important hierarchical image representations: min trees, quasi-flat zones hierarchies, binary partition trees by altitude ordering and watershed hierarchies. This study was done in the framework of edge-weighted graphs and we considered both the relation between those hierarchies computed on the graph or on one of its minimum spanning tree. Moreover, all the results presented in [START_REF] Cousty | Constructive links between some morphological hierarchies on edge-weighted graphs[END_REF] are constructive and can be used to devise practical and efficient algorithms to convert one hierarchical representation into another one when a link was found. The major results are:

• the min tree of the edge-weighted graph and its quasi-flat zone hierarchy are equivalent. This means in particular that the important efforts of the community to develop efficient algorithms to construct min and max trees [START_REF] Ch | Effective component tree computation with application to pattern recognition in astronomical imaging[END_REF][START_REF] Carlinet | A comparative review of component tree computation algorithms[END_REF][START_REF] Götz | Parallel computation of component trees on distributed memory machines[END_REF][START_REF] Matas | Parallel algorithm for concurrent computation of connected component tree[END_REF][START_REF] Menotti | 1d component tree in linear time and space and its application to gray-level image multithresholding[END_REF][START_REF] Moschini | A hybrid shared-memory parallel max-tree algorithm for extreme dynamic-range images[END_REF][START_REF] Najman | Building the component tree in quasi-linear time[END_REF][START_REF] Ouzounis | A parallel implementation of the dualinput Max-Tree algorithm for attribute filtering[END_REF][START_REF] Salembier | Anti-extensive connected operators for image and sequence processing[END_REF][START_REF] Wilkinson | A fast component-tree algorithm for high dynamic-range images and second generation connectivity[END_REF][START_REF] Wilkinson | Concurrent computation of attribute filters on shared memory parallel machines[END_REF] can be used to compute the quasi-flat zone hierarchy;

• it is equivalent to compute the min tree of the edge-weighted graph and its quasi-flat zone hierarchy on the whole graph or on one of its minimum spanning trees. In other worlds, it is always possible to first reduce a graph to one of its minimum spanning trees and then work on this representation which can lead to further performance improvements and reduce memory usage;

• it is equivalent to compute the binary partition tree by altitude ordering on the whole graph or on one of its minimum spanning trees. The potential benefits are the same as above;

• if the weights of the graph are totally ordered then the binary partition tree by altitude ordering and the quasi-flat zone hierarchy are equivalent. While this condition is usually not fulfilled in practice, it is often useful to assume it at the beginning to facilitate theoretical developments;

• if the weights of the graph are not totally ordered then the quasi-flat zone hierarchy can be obtained by filtering the binary partition tree by altitude ordering. The quasi-flat zone hierarchy can be seen as a canonical version of the binary partition tree by altitude ordering where all arbitrary ordering choices have been removed;

• any watershed hierarchy induces an ordering of the edge weights such that the binary partition tree for this altitude ordering is equal to the initial watershed hierarchy. This provides a strategy, described below, to compute hierarchical watersheds without computing explicitly each flooding and each watershed segmentation.

Algorithms for some hierarchies of segmentations.

Following the constructive links between hierarchical representations found in [START_REF] Cousty | Constructive links between some morphological hierarchies on edge-weighted graphs[END_REF], we proposed simple and efficient algorithms to compute those representations in [START_REF] Najman | Playing with Kruskal: algorithms for morphological trees in edge-weighted graphs[END_REF].

Those algorithms are based on the following observations: 1) a binary partition tree by altitude ordering can be used to construct the quasi-flat zone hierarchy and watershed hierarchies, and 2) a binary partition tree is completely determined by a minimum spanning tree of the graph.

The solution proposed is thus to construct the binary partition tree with a variation of Kruskal's minimum spanning tree algorithm [START_REF]On the shortest spanning subtree of a graph and the traveling salesman problem[END_REF] (see Figure 3.3). This algorithm has the same time complexity as Kruskal's algorithm: assuming that the edges of the graph are already sorted by edge weights, it has a quasi linear time complexity O(nα(m)) where n and m are respectively the number of edges and vertices in the graph and where α is the inverse of the Ackermann function [START_REF] Ackermann | Zum hilbertschen aufbau der reellen zahlen[END_REF][START_REF] Tarjan | Efficiency of a good but not linear set union algorithm[END_REF].

Then, a simple post-processing, with a linear time complexity, is proposed to transform this tree into the quasi-flat zone hierarchy.

The algorithm to compute a watershed hierarchy by a given attribute is more involving. Its very principle is to use the binary partition tree of the graph to find a new ordering of the edge weights of the associated minimum spanning tree such that the binary partition tree of the reweighted graph is equal to the target watershed hierarchy. In other words, we use the binary partition tree to compute the saliency map [START_REF] Cousty | Hierarchical segmentations with graphs: quasi-flat zones, minimum spanning trees, and saliency maps[END_REF] of the desired watershed hierarchy on the smallest possible graph: the minimum spanning tree of the original graph.

The algorithm proceeds in 5 steps:

1. compute the binary partition tree of the graph;

2. compute the attribute of interest on the tree (for example, a classical attribute is the area of the nodes to obtain a watershed by area);

3. compute the persistence values associated to this attribute: the persistence value of a node corresponds to the filtering threshold at which this node ceases to separate two distinct regions in the corresponding filtered image. This can be done with a linear leaves-to-root traversal of the tree;

4. reweight the minimum spanning tree of the graph with the persistence values. This can be done in linear time with a root-to-leaves traversal of the tree; and finally The algorithm proposed in [START_REF] Najman | Playing with Kruskal: algorithms for morphological trees in edge-weighted graphs[END_REF] to construct the binary partition tree of an edge weighted graph is similar to Kruskal's minimum spanning tree algorithm. It constructs the minimum spanning tree starting by the smallest edges and maintains a collection of trees with a union-find data-structure. Constructing the fusion hierarchy associated to the minimum spanning tree requires to also keep track of the roots of the partial trees when the forest grows.

5. compute the binary partition tree of this reweighted minimum spanning tree.

Assuming that the node attribute can be computed in linear time, the time complexity of this algorithm is dominated by the time complexity of the construction of the binary partition tree.

Simplification of hierarchies of segmentations.

In [START_REF] Perret | Removing non-significant regions in hierarchical clustering and segmentation[END_REF], we studied the problem of removing non-significant regions from a hierarchy of segmentations, while still preserving the hierarchical segmentation structure. Indeed, many algorithms for image segmentation or data clustering contain a step that removes non-significant regions or clusters. One way to achieve such a hierarchical simplification would be to extract all the possible segmentations from the hierarchy, and for each one of them, remove the non-significant regions by merging these regions with one of their neighbors. One issue with this approach is that those merging steps have to be performed in a consistent way at all scales, so that the set of simplified segmentations is still a hierarchy. Another important issue is that such a process would be slow.

To provide an efficient solution to this problem, we proposed to rely on the equivalence between hierarchical segmentations and saliency maps. As shown in Figure 3.4, our algorithm makes use of these different representations to efficiently achieve its goal: it has a linearithmic time complexity O(n log(n)) with respect to the number of vertices n in the underlying graph. The very idea of the algorithm is that, in the saliency map domain, we can consistently merge two adjacent branches of the hierarchical segmentation by simply setting the weight of a well chosen edge to zero; in other words we force the ultrametric distance to be zero between the target regions. A given hierarchy H is first transformed into its dual representation as a saliency map w = Φ G (H). The filtering is then performed in the saliency map domain using information provided by H (e.g., sizes of the regions). Finally, the filtered hierarchy H is defined as the quasi-flat zone hierarchy of the filtered saliency map.

We demonstrated how this method can be applied to improve the quality of hierarchical segmentations on general data and on images with qualitative (see Figures 3.5 and 3.6) and quantitative assessments [START_REF] Perret | Removing non-significant regions in hierarchical clustering and segmentation[END_REF].

Hierarchy of watersheds

The watershed is a geographical concept [START_REF] Jordan | Nouvelles observations sur les lignes de faıtes et de thalweg[END_REF][START_REF] Maxwell | L. on hills and dales: To the editors of the philosophical magazine and journal[END_REF] studying how flowing waters tends to partition a space along topological ridges. This idea has been transposed to image segmentation [START_REF] Beucher | Use of watersheds in contour detection[END_REF][START_REF] Digabel | Iterative algorithms[END_REF] where one considers the gradient of an image as a topological relief. Numerous authors have then proposed various definitions of watersheds and their associated algorithms for discrete image analysis [START_REF] Beucher | The morphological approach to segmentation: the watershed transformation[END_REF][START_REF] Bieniek | A connected component approach to the watershed segmentation[END_REF][START_REF] Michel | Topological gray-scale watershed transformation[END_REF][START_REF] Cousty | Watershed cuts: Minimum spanning forests and the drop of water principle[END_REF][START_REF] Falcão | The image foresting transform: B. Perret Theory, algorithms, and applications[END_REF][START_REF] Meijster | A disjoint set algorithm for the watershed transform[END_REF][START_REF] Meyer | Un algorithme optimal de ligne de partage des eaux[END_REF][START_REF] Meyer | Topographic distance and watershed lines[END_REF][START_REF] Najman | Watershed of a continuous function[END_REF][START_REF] Vincent | Watersheds in digital spaces: an efficient algorithm based on immersion simulations[END_REF]. It was also soon noted that watershed segmentations can naturally lead to hierarchies of segmentations [START_REF] Beucher | Watershed, hierarchical segmentation and waterfall algorithm[END_REF][START_REF] Cousty | Incremental algorithm for hierarchical minimum spanning forests and saliency of watershed cuts[END_REF][START_REF] Meyer | The dynamics of minima and contours[END_REF][START_REF] Najman | Geodesic saliency of watershed contours and hierarchical segmentation[END_REF].

In the following, we will focus on the definition of hierarchical watersheds given in [START_REF] Cousty | Incremental algorithm for hierarchical minimum spanning forests and saliency of watershed cuts[END_REF] which is based on the notion of watershed cuts defined on edge-weighted graphs [START_REF] Cousty | Watershed cuts: Minimum spanning forests and the drop of water principle[END_REF]. These hierarchical watersheds are of particular interest as they benefit from two fundamental properties: 1) they are the solution of a well defined optimization problem, and 2) they can be computed efficiently in linearithmic time O(n log(n)) (see Section 3.1). B. Perret hierarchical segmentations is the combinatorial nature of these representations. Most optimization formulations of hierarchical segmentations lead to NP-hard problems [START_REF] Ailon | Fitting tree metrics: Hierarchical clustering and phylogeny[END_REF][START_REF] Cohen-Addad | Hierarchical clustering beyond the worst-case[END_REF][START_REF] Cohen-Addad | Hierarchical clustering: Objective functions and algorithms[END_REF][START_REF] Dasgupta | A cost function for similarity-based hierarchical clustering[END_REF][START_REF] De Amorim | Feature relevance in ward's hierarchical clustering using the lp norm[END_REF][START_REF] Di Summa | Finding the closest ultrametric[END_REF][START_REF] Yarkony | Planar ultrametrics for image segmentation[END_REF] for which classical combinatorial approaches fail to provide scalable solutions. One consequence of this difficulty is that the largest and widely used family of hierarchical segmentation algorithms, agglomerative clustering methods, is heuristic.

Indeed, the major difficulty when dealing with optimization problem involving

Hierarchical watersheds provides a scale-wise optimality, i.e., each flat segmentation corresponding to each scale of the hierarchy is optimal for a specific criterion. Note that, it is not sufficient to have an optimality criterion with an implicit or explicit scale parameter to define a scale-wise optimal hierarchical segmentation: the optimality criterion must also satisfy a scale consistency constraint [START_REF] Guigues | Scale-sets image analysis[END_REF]. In particular, we have shown that classical graph-cut approaches such as min cuts [START_REF] Stoer | A simple min-cut algorithm[END_REF], average cuts [START_REF] Wang | Image segmentation with minimum mean cut[END_REF], or shortest path forests [START_REF] Cousty | Watershed cuts: Thinnings, shortest path forests, and topological watersheds[END_REF] do not satisfy this constraint [START_REF] Maia | Properties of combinations of hierarchical watersheds[END_REF]. Ont he contrary, the watershed cut [START_REF] Cousty | Watershed cuts: Minimum spanning forests and the drop of water principle[END_REF] is a non-trivial graph cut method satisfying the scale consistency constraint which leads to the notion of hierarchical watersheds [START_REF] Cousty | Incremental algorithm for hierarchical minimum spanning forests and saliency of watershed cuts[END_REF].

More formally, given an edge weighted graph G = (V, E, w), we denote by M = {M i } the set of minima of the map w for the topology of G. A watershed cut of G for a subset M of M is defined as the graph cut associated to the minimum spanning forest of G rooted in the minima in M [START_REF] Cousty | Watershed cuts: Minimum spanning forests and the drop of water principle[END_REF][START_REF] Meyer | Minimum spanning forests for morphological segmentation[END_REF]. In other words, we look for the spanning graph of smallest total weight such that each connected component of this spanning graph contains exactly one element of M .

If we provide M with a total order relation ≺: 

M 1 ≺ M 2 ≺ . . . ≺ M n ,
M 1 ≺ M 2 ≺ M 3 ≺ M 4 .
Note that the graph G is acyclic and that the edge weights are totally ordered: these hypothesis are used to ease the presentation but all the properties and algorithms presented in this section are valid in the general case.

Characterization of hierarchical watersheds

watershed of this graph. In other words, does there exist an ordering ≺ of the minima of G such that H is a hierarchical watershed of G for ≺ ? As observed in Section 3.1, there is a link between the binary partition trees (by altitude ordering) and hierarchical watersheds; in particular, the former can be used to compute the latter. Moreover, we know that, on one side, the binary partition tree is tightly linked to the minimum spanning tree problem and, on the other side, watershed hierarchies are defined as sequences of minimum spanning forests: the main strategy followed to answer to the given problem is then to study how the hierarchy H relates to the binary partition tree of G and its associated minimum spanning tree. 3

Y 7 1 H 2 Φ(H 2 ): Saliency map of H 2
Binary partition tree of G weighted by Φ(H 2 ) Figure 3.8: H 1 and H 2 are two hierarchies built on the graph G shown in Figure 3.7 and we want to determine if any of them is a hierarchical watershed of G. For both hierarchies, we compute its saliency map (middle column) and we report the saliency values on the binary partition tree by altitude ordering B of G (third column). We can see that H 1 is one-side increasing for B and thus H 1 is a hierarchical watershed of G. However, H 2 is not one-side increasing for B: the node Y 7 of B has the value 1, and the maximal value in its children sub-trees are respectively 2 and 3 which are both greater than 1. Thus, the region Z 5 of H 2 corresponding to this saliency value of 1 cannot exists in any hierarchical watershed of G and H 2 is not a hierarchical watershed of G.

The key element to solve this issue is to study how the values of the saliency map of H evolve in the binary partition tree B of G. To do this, we introduced the notion of one-side increasing map which states that a map f on the nodes of a binary tree T is one-side increasing if for any non leaf node n of T , f (n) dominates the values of f on at least one of the sub-tree rooted in a child of n. Then, the main property of [START_REF] Maia | Characterization of graphbased hierarchical watersheds: theory and algorithms[END_REF][START_REF] Maia | Recognizing hierarchical watersheds[END_REF] states that a hierarchy H is a watershed hierarchy of G if the the saliency map of H is one-side increasing on the binary partition tree B of G. Figure 3.8 presents a positive and a negative example of this property. Intuitively, if the one-side increasingness of the saliency map of H on the binary partition tree B is violated at the node n of B, then, the restriction of the minimum spanning tree of G to the corresponding region of H cannot be part of a minimum spanning forest at the scale of this region.

Building on this fundamental property, we obtained:

• a constructive characterization of hierarchical watersheds; and

• an algorithm with a linearithmic O(n log(n)) time complexity for determining if a given hierarchy H is a hierarchical watershed of the given edge weighted graph G.

Combinatorial analysis of hierarchical watersheds

In [START_REF] Maia | On the probabilities of hierarchical watersheds[END_REF] we addressed the problem of counting the hierarchical watersheds of a given edge weighted graph G. Indeed, as described above, a hierarchical watershed on G is obtained by choosing a particular ordering of the minima M of G. It is however possible that several orderings of M lead to the same hierarchical watershed. For example, the hierarchy H presented in Figure 3.7 is a hierarchical watershed of the edge weighted graph G for the two following orderings of the minima of G:

M 1 ≺ M 2 ≺ M 3 ≺ M 4 and M 2 ≺ M 1 ≺ M 3 ≺ M 4 .
The main contributions of [START_REF] Maia | On the probabilities of hierarchical watersheds[END_REF] are:

• a definition of the probability of a hierarchical watershed for a given edge weighted graph. It is defined as the probability to obtain this hierarchical watershed if we randomly choose a minima ordering according to a uniform distribution: it is thus equal to the number of mimina orderings leading to this hierarchical watershed divided by the total number of possible minima orderings;

• an algorithm to compute the probability of a given hierarchical watershed for a given edge weighted graph. This algorithm runs in linearithmic O(n log(n)) time;

• the minimal and maximal probability of any hierarchical watershed on a given edge weighted graph;

• constructive characterizations of the watershed hierarchies of minimal and maximal probability on a given edge weighted graph; and

• an algorithm to find a least/most probable hierarchical watershed on a given edge weighted graph. This algorithm runs in linearithmic O(n log(n)) time.

Watersheding operator

In [START_REF] Maia | Watersheding hierarchies[END_REF], we introduced the watersheding operator, which maps any hierarchy H defined on an edge weighted graph G to a hierarchical watershed H WS on G. The watersheding operator is idempotent and any hierarchical watershed is a fixed point of this operator: the set of fixed points of this operator is thus equal to the set of hierarchical watersheds of the graph. Intuitively, this operator is constructed by inverting the algorithm used for computing hierarchical watershed introduced in Section 3.1. Doing so, we are able to derive a saliency map and an ordering of the minima of G such that the corresponding hierarchical watershed is similar to the input hierarchy. We provide an algorithm to compute the watersheding operator in linearithmic O(n log(n)) complexity. However, the question of obtaining a formal characterization (non algorithmic) of this operator remains an open question.

We demonstrated the interest of the watersheding operator on two applications in image analysis:

• Refinement of coarse hierarchies. In [START_REF] Maninis | Convolutional oriented boundaries: From image segmentation to high-level tasks[END_REF], the authors propose a high-quality method (COB) to compute hierarchies based on a multiscale gradient learned with deep convolutional methods. While this learned gradient provides very high quality contours for large objects, it tends to ignore small regions which were not part of the ground-truth annotations. In Figure 3.9, we show how the watersheding operator can be used to reintroduced those small regions into such hierarchy.

• Regularization of hierarchies based on non-increasing attributes. In a hierarchical watershed, the order in which catchment basins are merged is usually based on an increasing attribute, such as the area or the volume. The constraint of increasingness is very strong and excludes numerous attributes such as geometric descriptors (e.g., compactness or circularity) or more generic significance measures (e.g., energy functionals or learned features). In Figure 3.10, we show how the watersheding operator can be used to find a watershed hierarchy corresponding to a regularized increasing attribute deduced from a non watersehd hierarchy constructed from a non-increasing attribute.

Combinations of hierarchical watersheds

In [START_REF] Maia | Properties of combinations of hierarchical watersheds[END_REF][START_REF] Maia | Characterization of graphbased hierarchical watersheds: theory and algorithms[END_REF][START_REF] Maia | Evaluation of combinations of watershed hierarchies[END_REF], we studied the combinations of watershed hierarchies from a practical and from a theoretical point of views. In particular, we explored under which conditions the combination of two watershed hierarchies produces a new watershed hierarchy.

Indeed, in [START_REF] Maia | Evaluation of combinations of watershed hierarchies[END_REF], we showed that by combining hierarchical watersheds in the combination framework proposed in [START_REF] Cousty | Hierarchical segmentations with graphs: quasi-flat zones, minimum spanning trees, and saliency maps[END_REF][START_REF] Cousty | Raising in watershed lattices[END_REF][START_REF] Kiran | Fusion of ground truths and hierarchies of segmentations[END_REF], one can significantly improve the quality of the resulting hierarchy. Figure 3.11 shows an example of hierarchy combination. In this framework, hierarchies are combined thanks to their representations as saliency maps. The combination is done in three steps: 1) compute the saliency maps of the two hierarchies, 2) combine the two saliency maps, and 3) compute the quasi-flat-zone hierarchy of the combined saliency map. The interest of this approach is that combining saliency maps, i.e., functions, is much simpler than combining dendrograms: classical operators such as the point-wise infimum, supremum or average can be used. For example, the results that we presented in [START_REF] Maia | Evaluation of combinations of watershed hierarchies[END_REF] showed that be combination by average of hierarchical watersheds by area and by dynamics nearly always improve the performances compared to the individual hierarchies on tasks related to image and object segmentation (see Section 4.1 for a presentation of the evaluation framework we designed for hierarchies of segmentations).

Our contributions in [START_REF] Maia | Properties of combinations of hierarchical watersheds[END_REF][START_REF] Maia | Characterization of graphbased hierarchical watersheds: theory and algorithms[END_REF] are threefold:

1. we introduced the notion of flattened hierarchical watersheds which generalizes the notion of hierarchical watersheds: while hierarchical watershed rely on a total ordering of the minima of the graph, flattened hierarchical watersheds are based on a pre-ordering of the set of minima. We provided a constructive characterization of flattened hierarchical watershed leading to a recognition algorithm running in linearithmic O(n log(n)) time;

2. we investigated which of the classical combination functions (infimum, supremum, and average) lead to hierarchical watersheds. We showed that the combination by infimum of any two watershed hierarchy is a flattened watershed hierarchy. In other words, this means that the combination of hierarchical watersheds by infimum can indeed be computed directly with a well chosen ordering of the minima, or said differently with a well chosen regional attribute; and

3. we proposed a sufficient condition for a combination of hierarchical watersheds to always result in a flattened hierarchical watershed.
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Gradient based hierarchical clustering

Devising algorithms for finding optimal hierarchical segmentation of an edge weighted graph for a given cost function is generally a difficult problem. In the previous Section 3.2, we have seen that hierarchical watersheds are scale wise optimal hierarchies of segmentations where each scale of the hierarchy optimizes a minimum spanning forest problem.

However, most hierarchical segmentation methods used in practice do not optimize an explicit cost function. For example, in the general context of hierarchical clustering, i.e., hierarchical segmentation applied to non image data, the most popular methods probably belong to the family of agglomerative heuristics. They follow a bottom-up approach, in which the vertices of the given edge weighted graph are sequentially merged through some specific strategy. But since the latter is specified procedurally, it is usually hard to understand the objective function being optimized. In this regard, several recent works [89, 94-96, 109, 218, 219] underlined the importance to formulate hierarchical clustering as an optimization problem with a well-defined cost function, so as to better understand how the hierarchies are built.

In this context, Dasgupta [START_REF] Dasgupta | A cost function for similarity-based hierarchical clustering[END_REF] introduced a cost function with interesting theoretical properties for evaluating a hierarchical clustering. He showed that optimizing this cost function is NP-Hard and he proposed a heuristic to approximate its optimal solution. The factor of this approximation was later improved by several works, based on a linear programming relaxation [START_REF] Roy | Hierarchical clustering via spreading metrics[END_REF][START_REF] Roy | Hierarchical clustering via spreading metrics[END_REF], a semi-definite programming relaxation [START_REF] Charikar | Approximate hierarchical clustering via sparsest cut and spreading metrics[END_REF], or a recursive φ-sparsest cut algorithm [START_REF] Cohen-Addad | Hierarchical clustering: Objective functions and algorithms[END_REF][START_REF] Cohen-Addad | Hierarchical clustering: Objective functions and algorithms[END_REF]. Along similar lines, it was shown that average linkage provides a good approximation of the optimal solution to Dasgupta's cost function [START_REF] Charikar | Hierarchical clustering better than average-linkage[END_REF][START_REF] Moseley | Approximation bounds for hierarchical clustering: B. Perret Average linkage, bisecting k-means, and local search[END_REF]. A differentiable relaxation inspired by Dasgupta cost function was also proposed [START_REF] Monath | Gradient-based hierarchical clustering[END_REF]. Moreover, a regularization for Dasgupta's cost function was formulated in the context of semi-supervised clustering [START_REF] Chatziafratis | Hierarchical clustering with structural constraints[END_REF][START_REF] Vikram | Interactive bayesian hierarchical clustering[END_REF], based on triplet constraints provided by the user.

More generally, the problem of finding the hierarchical clustering whose associated ultrametric/saliency map is close to the given edge weights was extensively studied through linear programming relaxations [START_REF] Ailon | Fitting tree metrics: Hierarchical clustering and phylogeny[END_REF] and integer linear programming [START_REF] Di Summa | Finding the closest ultrametric[END_REF]. A special case of interest arises when the graph is planar, which is a natural occurrence in image segmentation. By exploiting the planarity of the input graph, a tight linear programming relaxation can be derived from the minimum-weight multi-cut problem [START_REF] Yarkony | Planar ultrametrics for image segmentation[END_REF].

The optimization of hierarchical clustering has thus been the object of numerous works. The main technical barrier in this context comes from the fact that each hierarchical loss function requires a carefully crafted dedicated approximation algorithm. Moreover, despite increasing progress, combinatorial approximation algorithms often struggle to scale to large dataset.

A continuous optimization framework

In [START_REF] Chierchia | Ultrametric fitting by gradient descent[END_REF][START_REF] Chierchia | Ultrametric fitting by gradient descent[END_REF], we introduced a generic framework to optimize a hierarchical clustering with respect to a given cost function. In the proposed setting, the goal is to find the saliency map that best represents the given edge-weighted graph G = (V, E, w).

We proposed to express this task as a constrained optimization problem involving an appropriate cost function J : W → R defined on the (continuous) space of graph edge weights W, leading to the following formulation minimize u∈W J(u; w) s.t. u is a saliency map on G.

(3.1)

The saliency map constraint can be formulated as,

∀C ∈ Cycles(G), ∀e ∈ C, u(e) ≤ max e ∈C\{e} u(e ). (3.2) 
It is a nonconvex constraint and cannot be efficiently tackled with standard optimization algorithms. We circumvented this issue by replacing the constraint with an operation injected directly into the cost function. The idea is that the saliency map constraint can be enforced implicitly through the operation that computes the subdominant ultrametric, defined as the largest ultrametric below the given dissimilarity function (or equivalently as the saliency map of the quasi-flat zone hierarchy of the graph). One way to compute the subdominant ultrametric is through the min-max operator Φ G : W → W defined by Since the min-max operator is sub-differentiable, it can be seen as a specific max pooling layer, the above problem can be optimized by gradient descent as long as J is sub-differentiable.

Hierarchical cost functions and regularization terms

We proposed several cost functions [START_REF] Chierchia | Ultrametric fitting by gradient descent[END_REF][START_REF] Chierchia | Ultrametric fitting by gradient descent[END_REF] that can fit in the Problem (3.4). The generality of our framework allowed us to follow the classical approach of combining a data-fidelity term with a regularization term in order to obtain new cost functions. We investigated the following cost functions:

1. the closest-saliency map fidelity term, which expresses that the fitted saliency map should be close to the given dissimilarity graph. This is simply obtained by defining the cost function equal to the sum of the squared errors between the sought saliency map and the edge weights of the given graph;

2. the cluster-size regularization, which penalizes the presence of small clusters in the upper levels of the associated hierarchical clustering. This term is an adaptation of the very classical area filters found in image processing and relies on the idea presented in Section 3.1 for its generalization to hierarchical clustering. More precisely, this regularization penalizes frontiers of the saliency maps corresponding to the fusion of two unbalanced clusters, i.e., when a very small cluster merges with a very large one, the frontier between the two is pushed toward zero;

3. the triplet regularization for semi-supervised learning, which aims to minimize the intra-class distance and maximize the inter-class distance. In this case, we assume that we know some triplets of points such that two points are in the same cluster while the third one is in another cluster. In other words, for each triplet, we know that we should minimize the ultrametric distance between two of the points and maximize the distance to the third one;

4. the Dasgupta fidelity term, which is a continuous relaxation of Dasgupta's cost function expressing that the fitted ultrametric should associate large edge weights, i.e., important dissimilarities, to large clusters. To obtain a continuous relaxation of this term, we proposed a continuous relaxation of the size of a cluster in the hierarchy: in other words we proposed a cluster size measure which evolves continuously when the values of the saliency map associated to the hierarchical clustering change.

The use of those cost functions is demonstrated in Figure 3.12.

Efficient algorithms for hierarchical cost optimization

The proposed continuous optimization framework for hierarchical clustering optimization is backed up by specific algorithms [START_REF] Chierchia | Ultrametric fitting by gradient descent[END_REF][START_REF] Chierchia | Ultrametric fitting by gradient descent[END_REF] used to compute the various terms appearing in the cost functions introduced in the previous paragraph. All the proposed algorithms rely on the properties of binary partition trees by altitude ordering presented in Section 3.1.

The fundamental algorithm is the one that computes the subdominant ultrametric.

To obtain an efficient and automatically differentiable algorithm, we observed that the min-max distance between any two vertices x, y is given by the weight of the pass edge between x and y, i.e., the edge holding the maximal value on the min-max path from x to y. Moreover, there is a map σ that, for any two vertices x and y, associates the lowest common ancestor of x and y in the binary partition tree of (G, w) to the pass edge between x and y (see The binary partition tree by altitude ordering can be computed in time O(n log n) with a variant of Kruskal's minimum spanning tree algorithm [START_REF] Najman | Playing with Kruskal: algorithms for morphological trees in edge-weighted graphs[END_REF] (see Section 3.1). Then, a fast algorithm allows us to compute the lowest common ancestor of two nodes in constant time O(1), thanks to a linear time O(n) preprocessing of the tree [START_REF] Bender | The lca problem revisited[END_REF]. The subdominant ultrametric can thus be computed in time O(n log n).

Note that this algorithm can be interpreted as a special max pooling applied to the input tensor w, and can thus be automatically differentiated. Indeed, a sub-gradient of the min-max operator Φ at a given edge e xy is equal to 1 on the pass edge between x and y and 0 elsewhere.

Similar strategies were used do develop differentiable algorithms for the cluster size regularization and the semi-supervised triplet loss running in time O(n log n). The computation of the relaxed Dasgupta's cost is more demanding in the worst case; it runs in quadratic time. However when the hierarchy is balanced the computation cost goes down to O(n log n): this is a realistic expectation in real applications, especially given the fact that Dasgupta's cost tends to naturally produce well balanced hierarchies.

Validation of the continuous optimization framework

As Problem (3.4) is non-convex, there is no guarantee that a gradient descent method will find the global optimum. To assess the performance of the proposed framework [START_REF] Chierchia | Ultrametric fitting by gradient descent[END_REF][START_REF] Chierchia | Ultrametric fitting by gradient descent[END_REF], we used the algorithm proposed in [START_REF] Yarkony | Planar ultrametrics for image segmentation[END_REF], denoted by CUCP (Closest Ultrametric via Cutting Plane), as a baseline for the closest saliency map problem. Indeed, CUCP can provide an (almost) exact solution for planar graphs based on a reformulation of the closest ultrametric problem as a set of correlation clustering/multi-cuts [START_REF] Bansal | Correlation clustering[END_REF][START_REF] Demaine | Correlation clustering in general weighted graphs[END_REF] problems with additional hierarchical constraints. The results presented in Figure 3.14 show that the proposed approach is able to provide solutions close to the optimal ones (Figure 3.14 a)) using only a fraction of the time needed by the combinatorial algorithm (Figure 3.14 b)), and without any assumption on the input graph.

The computation time of some combinations of cost terms are presented in Figure 3.14 c). Closest and Closest+Size can handle graphs with millions of edges. Dasgupta relaxation is computationally more demanding, which decreases the limit to a few hundred thousands of edges.

Optimal hierarchical clustering on real data

We evaluated the proposed method on real datasets whose size ranges from 270 to 1500 samples [START_REF] Chierchia | Ultrametric fitting by gradient descent[END_REF][START_REF] Chierchia | Ultrametric fitting by gradient descent[END_REF]. For each dataset, we performed a hierarchical clustering on a k-nearest neighbour graph, and we thresholded the resulting saliency map at the prescribed number of clusters. The analysis is divided in two sets of comparisons: hierarchical clustering (unsupervised), and semi-supervised clustering.

Figure 3.15 a) compares the performance of three hierarchical clustering methods. The baseline is "Ward" agglomerative method [START_REF] Ward | Hierarchical grouping to optimize an objective function[END_REF], applied to the pairwise distance matrix of each dataset. The results show that the proposed approach is competitive with Ward method (one of the best agglomerative heuristics). On the datasets Digit1 and Heart, "Dasgupta" performs slightly worse than "Closest+Size": this is partly due to the fact that our relaxation of the Dasgupta cost function is sensible to data scaling.

Figure 3.15 b) compares the performance of two semi-supervised clustering methods, and an additional unsupervised method. The first baseline is "Spectral" clustering [START_REF] Ng | On spectral clustering: Analysis and an algorithm[END_REF][START_REF] Pothen | Partitioning sparse matrices with eigenvectors of graphs[END_REF][START_REF] Shi | Normalized cuts and image segmentation[END_REF]. The second baseline is "SVM " classifier [START_REF] Aizerman | Theoretical foundations of the potential function method in pattern recognition learning[END_REF][START_REF] Boser | A training algorithm for optimal margin classifiers[END_REF] trained on the fraction of labeled samples, and tested on the remaining unlabeled samples. The results show that the triplet regularization performs comparably to semi-supervised SVM, which in turn performs better than spectral clustering. of the graph (in grey) is canonically associated (green dashed arrows) to an edge of a minimum spanning tree of the graph (thick edges): this edge is the pass edge between the leaves of the two children of the node. The pass edge can be found efficiently in the binary partition tree using the lowest common ancestor operation and the canonical link between the nodes and the minimum spanning tree edges. For example, the lowest common ancestor of the vertices 3 and 5 linked by the edge e 35 is the node n 4 , which is canonically associated to the edge e 24 (σ(n 4 ) = e 24 ): e 24 is thus the pass edge between the vertices 3 and 5. [START_REF] Yarkony | Planar ultrametrics for image segmentation[END_REF] and the proposed gradient descent approach. For CUCP we tested different numbers of hierarchy levels (5, 10, 20 40). (b) Semi-supervised clustering Chapter 4

Assessment and applications

The contributions presented in the previous chapters are mainly theoretical, methodological, and algorithmic; and they are supported by illustrations, generally on image analysis. While we strongly believe that research must be grounded in strong theoretical foundations, we also think that theory alone is not enough and that the proposed methods must also prove their efficiency in practice. To this end, we have contributed to several application domains:

• Hierarchy assessment framework: Hierarchies are abstract and complex representations which are difficult to evaluate. While many works have focused on proposing novel definitions and algorithms to construct hierarchies, only a few works have addressed the issue of assessing those representations. In this context, we have proposed a novel evaluation metric and a comprehensive evaluation framework for hierarchies of segmentations.

• Applications in bio-medical imaging: In collaboration with an industrial partner, we have developed several applications related to the analysis of in-vivo imaging of the human skin using reflectance confocal microscopy. This project, which aimed at automatically characterizing skin aging, implied several issues in image analysis and machine learning; some of them were solved using hierarchical approaches.

• Applications in astronomical imaging: Astronomers and in particular cosmologists have moved toward a big data era since a few decades: the telescopes are producing a very large amount of data every night which need to be analyzed in order to better understand our Universe. In this context, we have worked on the automatic analysis of multiband optical astronomical images for detecting and characterizing astonomical objects.

• Open source software development: The development of high quality open source software to disseminate and support research has become an important issue in computer science and neighboring fields. The involvement of the community and private actors into large projects such as Numpy, Scikit-Learn, PyTorch and so on has revolutionized the way researchers work by significantly reducing the time needed to implement and to test complex ideas. In this context, we have developed a novel library which aims at bringing all the methods related to hierarchical graph analysis to the rich scientific Python ecosystem.

Assessment of hierarchies of segmentations

Hierarchies of segmentations are image representations that are used in a large variety of applications in image processing and analysis: image segmentation [START_REF] Perret | Directed connected operators: Asymmetric hierarchies for image filtering and segmentation[END_REF][START_REF] Arbelaez | Contour detection and hierarchical image segmentation[END_REF][START_REF] Guigues | Scale-sets image analysis[END_REF][START_REF] Pont-Tuset | Multiscale combinatorial grouping for image segmentation and object proposal generation[END_REF][START_REF] Ren | Image segmentation by cascaded region agglomeration[END_REF][START_REF] Salembier | Optimum graph cuts for pruning binary partition trees of polarimetric sar images[END_REF][START_REF] Salembier | Binary partition tree as an efficient representation for image processing, segmentation, and information retrieval[END_REF][START_REF] Xu | Hierarchical segmentation using tree-based shape spaces[END_REF][START_REF] Xu | Hierarchical image simplification and segmentation based on mumford-shah-salient level line selection[END_REF], occlusion boundary detection [START_REF] Hoiem | Recovering occlusion boundaries from an image[END_REF], image simplification [START_REF] Perret | Directed connected operators: Asymmetric hierarchies for image filtering and segmentation[END_REF][START_REF] Guigues | Scale-sets image analysis[END_REF][START_REF] Soille | Constrained connectivity for hierarchical image partitioning and simplification[END_REF], object detection [START_REF] Salembier | Binary partition tree as an efficient representation for image processing, segmentation, and information retrieval[END_REF], object proposal [START_REF] Pont-Tuset | Multiscale combinatorial grouping for image segmentation and object proposal generation[END_REF], visual saliency estimation [START_REF] Yan | Hierarchical saliency detection[END_REF].

While many hierarchical segmentation methods have been proposed, the question of how to evaluate those representations has only been scarcely studied. A major difficulty is the absence of ground-truth hierarchical segmentations and the difficulty to define such a ground-truth. As a consequence, the evaluation of hierarchical segmentation is currently driven by the specific application of image segmentation where there exist datasets of images with ground-truths such as BSDS 500 [START_REF] Arbelaez | Contour detection and hierarchical image segmentation[END_REF][START_REF] Martin | A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[END_REF] or Pascal Context [START_REF] Mottaghi | The role of context for object detection and semantic segmentation in the wild[END_REF]. The authors of [START_REF] Arbelaez | Contour detection and hierarchical image segmentation[END_REF] have proposed to compare each partition in the sequence of segmentations defining the hierarchy, i.e., the horizontal cuts of the hierarchy, to the ground-truth segmentation. This method leads to classical precisionrecall curves. However, the horizontal cuts considered in this framework are just a subset of all possible segmentations that can be constructed from a hierarchy. The authors of [START_REF] Pont-Tuset | Supervised assessment of segmentation hierarchies[END_REF][START_REF] Pont-Tuset | Upper-bound assessment of the spatial accuracy B. Perret of hierarchical region-based image representations[END_REF] thus proposed to look for the optimal cut, generally not horizontal, in a hierarchy with respect to a ground-truth segmentation: this assessment provides an upper-bound on the best segmentation that can be extracted from a hierarchy for a given quality measure.

In this context:

• we proposed a novel approach to evaluate hierarchies of segmentation based on object segmentation [START_REF] Perret | Evaluation of morphological hierarchies for supervised segmentation[END_REF]. Contrarily to existing evaluation methods, our proposition focuses on subsets of regions of the hierarchy which do not necessarily form a cut;

• we proposed a comprehensive evaluation framework for hierarchies of segmentation in the context of natural image analysis [START_REF] Perret | Evaluation of hierarchical watersheds[END_REF]. We showed how the different measures collected in this framework help to understand the qualities and defects of hierarchies of segmentations; and

• we utilized our framework to evaluate and optimize hierarchies of watersheds for image and video analysis [START_REF] Perret | Evaluation of hierarchical watersheds[END_REF][START_REF] Nhimi | Evaluation of morphological hierarchies for supervised video segmentation[END_REF][START_REF] Perret | Evaluation of morphological hierarchies for supervised segmentation[END_REF]. This notably allowed us to identify a novel attribute to compute hierarchies of watersheds that outperforms classical attributes.

Hierarchy assessment with object segmentation.

In [START_REF] Perret | Evaluation of morphological hierarchies for supervised segmentation[END_REF], we introduced a novel assessment strategy for hierarchies of segmentations based on the object segmentation problem for which several datasets with groundtruth labelizations exist: Grabcut [START_REF] Blake | Interactive image segmentation using an adaptive gmmrf model[END_REF], Weizmann [START_REF] Alpert | Image segmentation by probabilistic bottom-up aggregation and cue integration[END_REF], Pascal Voc [START_REF] Everingham | The PASCAL Visual Object Classes Challenge 2012[END_REF], and MS- COCO [START_REF] Lin | Microsoft coco: Common objects in context[END_REF]. The proposed method evaluates the easiness of finding in the hierarchy a set of regions that represents a semantic object : rather than searching if one can find a segmentation that resembles a human segmentation of the whole scene, we evaluate: 1) if a hierarchy contains a set of regions that matches a given object of the scene, and 2) how difficult it is to find it.

The evaluation relies on a marker based segmentation method proposed in [START_REF] Salembier | Binary partition tree as an efficient representation for image processing, segmentation, and information retrieval[END_REF] that constructs a two-classes segmentation from a hierarchy of segmentations and two markers: one for the background and one for the object of interest (see online demonstration at https://perso.esiee.fr/~perretb/ISeg/). Its principle is to identify the object as the union of the regions of the hierarchy that intersect the object marker but do not touch the background marker. Then, to perform an objective assessment of the different hierarchies, we proposed several automatic strategies to generate object and background markers from the ground truths. Each pair of object/background markers represent a different level of information given to the algorithm (see Figure 4.1). The quality of the binary segmentation obtained from the markers is then evaluated with the F-Measure.

A comprehensive evaluation framework

In [START_REF] Perret | Evaluation of hierarchical watersheds[END_REF], we proposed a coherent and comprehensive evaluation framework for hierarchies of segmentations in the context of natural image analysis. It is designed to capture the various aspects of those representations: 1) quality of regions and contours, 2) quality of produced segmentations with horizontal cuts and optimal cuts, and 3) easiness of finding a set of regions representing a semantic object. These measures are evaluated on two types of natural image datasets: 1) Pascal Context as an image segmentation dataset [START_REF] Mottaghi | The role of context for object detection and semantic segmentation in the wild[END_REF], and 2) MS-COCO [START_REF] Lin | Microsoft coco: Common objects in context[END_REF] and Pascal VOC'12 [START_REF] Everingham | The PASCAL Visual Object Classes Challenge 2012[END_REF] as object segmentation datasets.

The proposed frameworks relies on three categories of measures.

• Horizontal cuts: we measure precision-recall curves on both regions and bound- Compared to the ground truth, the first hierarchy manages to recover long contours in its coarse level but then fails to recover the other contours at a finer level: the optimal horizontal cut is the coarsest one and the hierarchy is said to under-segment the image. With the second hierarchy the inverse situation happens, the finest partition recovers all the contours of the ground truth but also contains extra-contours. However, the coarsest partition looses the true contours and preserves extra contours: the hierarchy is said to over-segment the image.

aries [START_REF] Arbelaez | Contour detection and hierarchical image segmentation[END_REF] (as prescribed by [START_REF] Pont-Tuset | Supervised evaluation of image segmentation and object proposal techniques[END_REF]). This measure provides global information about the quality of the hierarchy and the consistency of its scales (we say that a hierarchy is scale consistent if the regions of a horizontal cut of the hierarchy represent objects of a same semantic level).

• Non-horizontal cuts: we evaluate the quality of the best non-horizontal cuts [START_REF] Pont-Tuset | Supervised assessment of segmentation hierarchies[END_REF][START_REF] Pont-Tuset | Upper-bound assessment of the spatial accuracy B. Perret of hierarchical region-based image representations[END_REF] of the hierarchy with respect to their fragmentation level (ratio between the number of regions in the cut and the number of regions in the ground-truth). This allows us to quantify the upper-bound performances of the hierarchy and provides information about its tendency to under-or over-segment the image (see Figure 4.2).

• Group of regions: we evaluate the capacity of the hierarchy to retrieve a given semantic object with respect to different levels of a priori information [START_REF] Perret | Evaluation of morphological hierarchies for supervised segmentation[END_REF]. This allows to quantify if complex regions of interest can be represented by a small number of regions organized coherently in the hierarchy.

We believe that the proposed framework offers a rich assessment that accounts for the hierarchical nature of the representations and that is not limited to a single use case, which better suits to the wide application spectrum of hierarchies in computer vision and image analysis. The Figure 4.3 shows how the results produced by the evaluation framework can be presented to compare several hierarchical segmentation methods. for each method and each combination of markers, we see: 1) the median F-measure (central bar), 2) the first and third quartile (extremities of the box), and 3) the lowest datum still within 1.5 inter quartile range (difference between the third and first quartile) of the lower quartile, and the highest datum still within 1.5 inter quartile range of the upper quartile range (lower and upper extremities). The principal performance measures are summarized in the table: F-Measure of FB and FOP scores at the Optimal Dataset Scale ODS (precision-recall curves), Area Under the Curve of FOC for FB and BCE (fragmentation curves), and Object Detection Median score (ODM) on MS-COCO and Pascal VOC'12 datasets (supervised object detection). The last column of the table gives the mean score of each method.

Evaluation of hierarchical watersheds

In [START_REF] Perret | Evaluation of hierarchical watersheds[END_REF][START_REF] Nhimi | Evaluation of morphological hierarchies for supervised video segmentation[END_REF][START_REF] Perret | Evaluation of morphological hierarchies for supervised segmentation[END_REF] we have utilized our evaluation framework to assess and optimize the performances of morphological hierarchies of segmentations, namely the quasi-flat zone hierarchy and watershed hierarchies. The main results of this study are the followings.

1. Importance of the gradient measure. Those hierarchies are constructed on edgeweighted graphs, where edge-weights represent dissimilarity values between pixels. The most simple gradient measures use only colorimetric information: in this category, we tested an Euclidean distance in the RGB color space and an Euclidean distance in the Lab color space, which is supposed to be more compliant with human color perception [START_REF] Gonzalez | Digital Image Processing[END_REF]. Beyond simple colorimetric gradient, recent advances in machine learning have led to supervised contour detectors: in this category, we consider the Structured Edge Detector (SED) from [START_REF] Dollár | Fast edge detection using structured forests[END_REF]. We do not observe a clear improvement with Lab gradient compared to RBG gradient. However, there is almost always a large gain by switching from a local RGB or Lab gradient to the supervised semi-local gradient SED.

2. Importance of the post-processing. In Section 3.1, we present a hierarchy filtering method [START_REF] Perret | Removing non-significant regions in hierarchical clustering and segmentation[END_REF] that can be used to post-process the candidate hierarchies. We observe that such filter is crucial for quasi-flat zone hierarchies and watersheds by dynamics which generally suffer from having a lot of very small regions close to the top of the hierarchy.

3.

Best attribute for hierarchical watersheds. Hierarchies of watersheds are constructed by filtering the gradient according to an attribute such as the dynamics, the area, or the volume. In this study, we identified a novel attribute, the number of parent nodes, that consistently outperforms traditional attributes.

According to the mean score, the best tested attributes are (from best to worse): number of parent nodes, volume, area, and dynamics.

4.

Comparison to state-of-art methods. The properties of the best morphological hierarchies are discussed and compared to state-of-the-art approaches proposed in the computer vision field. As reference methods, we include Multiscale Combinatorial Grouping hierarchies [START_REF] Pont-Tuset | Multiscale combinatorial grouping for image segmentation and object proposal generation[END_REF] (MCG), Convolutional Oriented Boundaries hierarchies [START_REF] Maninis | Convolutional oriented boundaries: From image segmentation to high-level tasks[END_REF] (COB), and Least Effort Segmentation [START_REF] Zhao | Segmenting natural images with the least effort as humans[END_REF] (LEP) in our assessment. The best method, by a large margin, is COB which is the only one that uses a deep learning based contour detector. Hierarchical watersheds are then slightly worse in terms of mean score compared to MCG and LEP but are competitive for measures based on non-horizontal cuts (see Figure 4.3).

Computation time.

Regarding execution times, the watershed approach is at least an order of magnitude faster than other methods with a mean execution time of 90 ms on images of size 481 × 321 pixels for the hierarchical watershed methods against 800 ms for COB (with a GPU), 2 s for LEP, and 24 s for MCG.

In conclusion, we see that, used in conjunction with a state-of-the art contour detector, watershed hierarchies are competitive with complex state-of-the-art methods for hierarchy construction based on the same gradient information, but they are much faster to compute.

Automatic characterization of skin aging in reflectance confocal microscopy

The characterization of skin conditions is a major challenge for skin aging understanding and cosmetic research. Skin aging is defined by a set of alterations of its various components over the years. Those alterations are governed by intrinsic and extrinsic parameters such as genetic and environmental factors. The two major layers of the skin, the epidermis and the dermis, are both significantly affected by skin aging (see Figure 4.4 a)).

In a collaboration with Clarins Laboratories we investigated how skin aging can be automatically characterized with reflectance confocal microscopy. Indeed, reflectance confocal microscopy opens a window into the skin to see the epidermis and the dermis non-invasively up to a depth of 200 µm. The representation of the cells in a layer with a thickness less than 5.0 µm can be achieved with keratin, melanin and dermal fibers working as natural contrast agents [START_REF] Wu | Autofluorescence spectroscopy of epithelial tissues[END_REF]. The images obtained non-invasively have a resolution of 0.5 to 1.0 µm in the lateral axis, i.e., close to that of histology [START_REF] Pawley | Handbook of biological confocal microscopy[END_REF][START_REF] Vierkötter | The SCINEXA: a novel, validated score to simultaneously assess and differentiate between intrinsic and extrinsic skin ageing[END_REF] (see Figure 4.4 b)). Several descriptors related to skin aging have been highlighted from confocal images [START_REF] Longo | Proposal for an in vivo histopathologic scoring system for skin aging by means of confocal microscopy[END_REF][START_REF] Wurm | In vivo assessment of chronological ageing and photoageing in forearm skin using reflectance confocal microscopy[END_REF]: thickness of the epidermis, epidermal state characterized by a regular or irregular honeycomb pattern, shape of the dermal-epidermal junction, and pigmentation and alteration of the collagen fibers in the dermis. These descriptors have been correlated with histological aging [START_REF] Vierkötter | The SCINEXA: a novel, validated score to simultaneously assess and differentiate between intrinsic and extrinsic skin ageing[END_REF] and a semi-quantitative score of aging has been established, requiring visual assessment of the images by experienced dermatologists [START_REF] Longo | Proposal for an in vivo histopathologic scoring system for skin aging by means of confocal microscopy[END_REF].

We studied how this visual assessment can be automatized in the following works:

1. epidermal state characterization [START_REF] Robic | Classification of the dermal-epidermal junction using in-vivo confocal microscopy[END_REF] with a hierarchical segmentation of the cells and the supervised classification of the cells as regular or irregular;

2. dermal-epidermal junction detection [START_REF] Robic | Three-dimensional conditional random field for the dermal-epidermal junction segmentation[END_REF][START_REF] Robic | Classification of the dermal-epidermal junction using in-vivo confocal microscopy[END_REF] with 3D conditional random fields incorporating a biological a priori;

3. dermal-epidermal junction characterization [START_REF] Robic | Self-dual pattern spectra for characterising the dermal-epidermal junction in 3D reflectance confocal microscopy imaging[END_REF] with hierarchical pattern spectra; and 4. collagen fiber characterization [START_REF] Robic | Automated characterization of skin aging using in vivo confocal microscopy[END_REF] with supervised texture classification.

Those developments were validated in a clinical study involving 160 subjects where we demonstrated that the features automatically extracted by the proposed methods show good correlation with the expert evaluator. To our knowledge, these are the first results comparing a computer-based approach to dermatologists' annotations for the assessment of skin aging using in vivo confocal microscopy.

The two following sections give a more detailed presentation of two of those works which rely on hierarchical image analysis: the epidermal state characterization and the dermal-epidermal junction characterization.

Epidermal cells segmentation for skin aging

The epidermis is the outer layer of the skin which serves as a physical and chemical barrier against the environment. Cells start from the lower layer of the epidermis and migrate upward to the outer layers. The cells mature throughout this process: they become larger and ultimately end up as a compact anucleated natural moisture barrier. The cell desquamation on the skin surface is compensated by the renewal of the epidermis, a process undertaken by the keratinocytes. The epidermal keratinocytes appear as outlined cells, which form a honeycomb-like pattern (see Figure 4.5). With skin aging, the keratinocytes show increased variability in size and shape.

We utilized a hierarchical watershed by area to obtain a hierarchical segmentation of the image. The final cell segmentation (see Figure 4.6) was extracted from the hierarchy using a priori knowledge on the minimal and maximal cell sizes, which was correlated with histological data. After the segmentation of the keratinocytes, each cell is classified by a random forest classifier as regular or irregular based on its shape and neighborhood. Finally, we proposed two global image descriptors based on the amount and size of cells classified as regulars.

Our results showed significant differences between young and old populations, most significantly on the volar arm. We also observed that the honeycomb pattern irregularity is increased by 22% in sun-exposed area among young subjects, which indicates that irregular honeycomb pattern due to sun exposition can potentially be quantified using our method.

Dermal-epidermal junction characterization

The dermal-epidermal junction is a 2D surface separating the epidermis from the dermis which undergoes multiple changes under pathological or aging conditions. Its peaks and troughs, called dermal papillae, are due to projections of the dermis into Second row: automatically segmented dermal-epidermal junction surfaces from a young (a) and an aged (b) subject using our method [START_REF] Robic | Three-dimensional conditional random field for the dermal-epidermal junction segmentation[END_REF][START_REF] Robic | Classification of the dermal-epidermal junction using in-vivo confocal microscopy[END_REF].

the epidermis. With skin aging, the appearance of this junction flattens, which has important consequences such as lower epidermal adhesion (see Figure 4.7).

In [START_REF] Robic | Three-dimensional conditional random field for the dermal-epidermal junction segmentation[END_REF][START_REF] Robic | Classification of the dermal-epidermal junction using in-vivo confocal microscopy[END_REF], we proposed a method to obtain reliable segmentation of the dermalepidermal junction in reflectance confocal microscopy images. Moreover, this method guarantees that the segmented region of the 3D stack of images is indeed a 2D topological surface defined on a regular grid, i.e., an elevation/topographic map: it can thus be characterized with classical morphological tools such as granulometries and pattern spectra [START_REF] Maragos | Pattern spectrum and multiscale shape representation[END_REF]. The principle of these tools is to iteratively apply a sequence of increasing filters and to measure the evolution of the filtered image. They have been extended to attribute connected filters [START_REF] Dalla Mura | Morphological attribute profiles for the analysis of very high resolution images[END_REF][START_REF] Urbach | Connected shapesize pattern spectra for rotation and scale-invariant classification of gray-scale images[END_REF] (see Section 2) to obtain efficient and powerful multi-scale features using tree based representations of the images.

In [START_REF] Robic | Self-dual pattern spectra for characterising the dermal-epidermal junction in 3D reflectance confocal microscopy imaging[END_REF], we provided a method for automatically characterizing a dermal-epidermal junction surface in order to estimate the aging process. The proposed method relies on the extension [START_REF] Dalla Mura | Self-dual attribute profiles for the analysis of remote sensing images[END_REF][START_REF] Luo | Robust autodual morphological profiles for the classification of high-resolution satellite images[END_REF] of pattern spectra to the self-dual image representation called the tree of shapes [START_REF] Monasse | Fast computation of a contrast-invariant image representation[END_REF]. In order to adapt the method to our problem, we generalized the subtractive filtering rule [START_REF] Urbach | Connected shapesize pattern spectra for rotation and scale-invariant classification of gray-scale images[END_REF] to handle non increasing attributes with the tree of shapes and we defined a novel measure in order to characterize the filtered surfaces. The method was assessed on a specifically constituted dataset and we showed that the proposed surface feature significantly correlates with both chronological aging and photo-aging (see Figure 4.8).

Astronomical image analysis

Since a few decades, astronomy and in particular cosmology, relies on the production of large automated survey of the skies. The idea behind this approach is that the observation of a very large number of objects is necessary to obtain reliable statics, especially on galactic populations and their characteristics. Those statistics are then compared to the predictions made by theoretical cosmological models in order to validate, discard or refine them. The analysis of such surveys is thus an important step toward the understanding of how the Universe evolves and the physics governing this evolution. One of the key feature of an astronomical survey is its depth, i.e., its ability to detect objects with a low surface brightness which usually correspond to far objects. Indeed, as the speed of light in the void is fixed and finite, the further an object is, the older it is: observing those far objects thus offers us a direct view of the past of the Universe.

For example, in the Sloan Digital Sky Survey [START_REF] York | [END_REF], a dedicated 2.5 m wide-angle optical telescope was used during 10 years to scan 35% of the full sky in five optical bands (spectroscopic acquisitions were also made): it covers about 1 billion objects. The depth of the Sloan Digital Sky Survey allows us to see the furthest objects as they were 7 billion years ago, i.e., roughly at half the age of the Universe.

One important step in astronomical image analysis is source detection where the goal is to detect all the bright astronomical objects that shine on a dark background (see Figure 4.9(a)). Despite the apparent simplicity of the problem, the difficulty here relies mainly on the large variations in scale (from few pixels to thousands of pixels) and in brightness (from less than 0 dB to dozen of dB) of the various sources. This leads mainly to two difficult cases: the extraction of very faint sources drown in the background noise and the separation of overlapping sources. One can also note the presence of artifacts that should not be detected as sources, like the diffraction spikes around the bright stars that are caused by the support of the secondary mirror of the telescope.

In this context, we contributed to the following works which are described in the next sections:

• faint astronomical sources detection [START_REF] Perret | Connected image processing with multivariate attributes: an unsupervised Markovian classification approach[END_REF][START_REF] Vollmer | Simultaneous multiband detection of Low Surface Brightness galaxies with Markovian modelling[END_REF][START_REF] Louys | LSB Galaxies Detection Using Markovian Segmentation on Astronomical Images[END_REF] with multi-scale Markovian models;

• multiband astronomical image segmentation [START_REF] Nguyen | CGO: Multiband astronomical source detection with component-graphs[END_REF][START_REF] Nguyen | CGO: Multiband astronomical source detection with component-graphs[END_REF] with component-graphs (generalization of max trees to multiband images); and

• object detection in multiband galaxy images with max trees [START_REF] Perret | Hierarchical multispectral galaxy decomposition using a MCMC algorithm with multiple temperature simulated annealing[END_REF][START_REF] Perret | Multispectral galaxy characterization with a hierarchy of model and connected component trees[END_REF][START_REF] Perret | Connected component trees for multivariate image processing applications in astronomy[END_REF].

Astronomical source detection with hierarchical Markovian models

In [START_REF] Perret | Connected image processing with multivariate attributes: an unsupervised Markovian classification approach[END_REF][START_REF] Vollmer | Simultaneous multiband detection of Low Surface Brightness galaxies with Markovian modelling[END_REF][START_REF] Louys | LSB Galaxies Detection Using Markovian Segmentation on Astronomical Images[END_REF] we proposed to use hierarchical Markovian models to segment faint sources in multiband astronomical images. Hierarchical Markovian models were introduced in [START_REF] Bouman | A multiscale random field model for bayesian image segmentation[END_REF]. Similarly to hidden Markov chains, and contrarily to traditional hidden Markov random fields [START_REF] Geman | Stochastic relaxation, gibbs distributions, and the bayesian restoration of images[END_REF][START_REF] Whittaker | Graphical models in applied multivariate statistics[END_REF] used in image analysis, in hierarchical Markovian models, it is possible to perform an exact inference based on the maximum of Posterior Marginal criterion with a 2-pass algorithm [START_REF] Bouman | A multiscale random field model for bayesian image segmentation[END_REF][START_REF] Salzenstein | Fuzzy markov random fields versus chains for multispectral image segmentation[END_REF]. Those hierarchical models have Whereas the information contained in the observations is propagated upward within the quad-tree, the labels are propagated downward according to Markovian transmission probabilities (a ij ), i.e., a label at a given level of the quad-tree only depends on its parent.

been applied to quad trees [START_REF] Laferté | Discrete markov image modeling and inference on the quadtree[END_REF][START_REF] Provost | Hierarchical markovian segmentation of multispectral images for the reconstruction of water depth maps[END_REF] (see Figure 4.10) or similar structures [START_REF] Le Cam | Detection of transient signals in lung sounds: Local approach using a markovian tree with frequency selectivity[END_REF].

Both approaches, on chains [START_REF] Pieczynski | Pairwise markov chains[END_REF][START_REF] Pieczynski | Triplet markov chains and image segmentation[END_REF] and quad-trees [START_REF] Monfrini | Image and signal restoration using pairwise markov trees[END_REF], have also been refined through pairewise or triplet models.

In [START_REF] Vollmer | Simultaneous multiband detection of Low Surface Brightness galaxies with Markovian modelling[END_REF][START_REF] Louys | LSB Galaxies Detection Using Markovian Segmentation on Astronomical Images[END_REF], we proposed to use a hierarchical Markovian model on a quad-tree to segment sources in astronomical images. In order to obtain a completely unsupervised segmentation method, we modeled the data likelihoods (the distribution of pixel values inside a given class) with multivariate Gaussians and we relied on an Expectation-Maximization algorithm to iteratively estimate the model parameters (data likelihoods and class transition probabilities) and the corresponding maximum of posterior marginal.

To evaluate the performances of the proposed method we applied it to simulated data and we showed that we were able to detect galaxies down to a signal-to-noise ratio of 1.5 (peak signal to noise ratio). The method was also applied and validated on a real image dataset and compared to the reference method SExtractor [START_REF] Bertin | SExtractor: Software for source extraction[END_REF] showing that we were able to extract more faint objects while keeping a lower false detection rate.

In [START_REF] Perret | Connected image processing with multivariate attributes: an unsupervised Markovian classification approach[END_REF] we extended the hierarchical Markovian model to general trees and applied it to max tree image representations. Replacing the quad tree by a max tree offers several benefits:

• morphological trees are naturally adapted to each image, removing the presence of the block artifacts of the quad tree [START_REF] Provost | Hierarchical markovian segmentation of multispectral images for the reconstruction of water depth maps[END_REF];

• they offer the possibility to integrate various node attributes as multivariate observations. More specifically, all the shape descriptors that have no meaning in a quad tree are now usable; and

• observations are naturally present at every level of the tree, whereas we usually only have data at the leaf level in a quad tree in practice.

Figure 4.11 illustrates how the use of the max tree improves the result compared to the quad tree in astronomical source detection. One can note that this model was also applied to the problem of blood vessel segmentation in eye fundus images where we managed to obtain state-of-art results (best method on one dataset, and second best on the other) without using any supervision [START_REF] Perret | Connected image processing with multivariate attributes: an unsupervised Markovian classification approach[END_REF].

Astronomical source detection with mutivariate component graphs

In [START_REF] Nguyen | CGO: Multiband astronomical source detection with component-graphs[END_REF][START_REF] Nguyen | CGO: Multiband astronomical source detection with component-graphs[END_REF], we developed a new method to perform source detection in multiband astronomical images using component graphs, a natural extension of the max tree to multiband images.

In the framework of mathematical morphology, component trees and component graphs are classical structures for image modeling and analysis. The component trees (min trees, max trees [START_REF] Jones | Connected filtering and segmentation using component trees[END_REF][START_REF] Salembier | Anti-extensive connected operators for image and sequence processing[END_REF], trees of shapes [START_REF] Monasse | Fast computation of a contrast-invariant image representation[END_REF]) benefit from fast, efficient construction and varied filtering algorithms. However, they are limited to single-band image processing. Extension to multi-band image processing usually requires a total vectorial order that is application-dependent [START_REF] Perret | Connected component trees for multivariate image processing applications in astronomy[END_REF][START_REF] Naegel | Component-trees and multi-value images: A comparative study[END_REF]. On the other hand, the component graph [START_REF] Naegel | Towards connected filtering based on componentgraphs[END_REF][START_REF] Naegel | Colour image filtering with component-graphs[END_REF] is designed to handle multiband images by relying only on a partial ordering of the pixel values at the cost of a higher complexity [START_REF] Passat | Component-graph construction[END_REF]: the component graph is not longer a tree but a directed acyclic graph.

In [START_REF] Wilkinson | Sourcerer: A robust, multi-scale source extraction tool suitable for faint anddiffuse objects[END_REF][START_REF] Teeninga | Improved detection of faint extended astronomical objects through statistical attribute filtering[END_REF], the authors proposed a novel source detection method for single band astronomical images relying on statistical testing: significant components of the max tree are separated from noise thanks to hypothesis testing and the significant components are then clustered into objects by attribute connected filtering. The motivation to extend this method to the component graph is twofold: 1) the multiband information will naturally increase the amount of information available for statistical testing (for a given object size, fainter objects can be detected), and 2) the multiband information can help to deblend overlapping objects.

While the transposition of the statistical testing method to the component-graph is mostly straightforward, the clustering of significant nodes in the component-graph is much more challenging (see Figure 4.12). To do so, we proposed two complementary filtering strategies, each addressing a particular situation:

• duplicated object detection: in a component graph, a same object can be represented by several nodes, those nodes can be organized hierarchically (as in a max tree) but might also be incomparable (they are then in different branches of the component-graph). To detect such configurations we relied on the fact that astronomical objects usually have a well identified center and we considered that components sharing the same center indeed represent the same B. Perret The max tree is built on the first band of the simulation while the component-graph accounts for its two bands. The color map encodes the level of significance of the nodes: the darker a node is, the more its content differs from noise. In the max tree, we can easily identify a long branch of very significant nodes corresponding to the single source present in the image. In the component-graph, the situation is much more complicated with a thick column of nodes corresponding to the astronomical source.

object;

• partial object detection: in a component graph, the overlapping of two different objects can appear as a significant component separated from the two initial objects. To detect this configuration, each significant component is eliminated if it has a spatial neighbor already identified as an object.

The proposed method was validated on a simulated 3-band astronomical image datasets and showed superior performances in terms of precision-recall compared to the single band approach (see Figure 4.13).

Object detection in multiband galaxy images

In [START_REF] Perret | Hierarchical multispectral galaxy decomposition using a MCMC algorithm with multiple temperature simulated annealing[END_REF][START_REF] Perret | Multispectral galaxy characterization with a hierarchy of model and connected component trees[END_REF][START_REF] Perret | Connected component trees for multivariate image processing applications in astronomy[END_REF], we developed a method to detect specific structures in multiband astronomical images of galaxies using the max tree. This method was part of a larger project about automatic galaxy image characterization. Indeed, galaxies are complex objects and their shapes are mainly the results of their various gravitational interactions (collision and fusion between galaxies). Galaxies are usually classified according to the Hubble scheme which comprises two main classes: elliptic galaxies and spiral galaxies. Elliptic galaxies are essentially structureless spheroids but spiral galaxies are much more complex; their internal structure comprises several components such as an inner bulge, a flat outer disc, a varying number of spiral arms, and so on. A possible way to characterize these spiral galaxies is through their decomposition into their internal structures. To do so, direct parametric models of these components were proposed and the decomposition of the galaxy is obtained by solving the inverse problem of fitting the parametric model to the observation. However, the complexity of parametric models is limited and they often struggle to accurately account for all the fine aspects of real observations which can induce a large bias in the parameter estimation.

To solve this issue we proposed to use a connected filter in order to detect and mask the brightest parts of the galaxies, called H II regions, that can not be accurately described by the models. H II regions correspond to ionized hydrogen clouds which are produced by supernova, i.e., the explosive death of short-lived massive stars. Such stars appear mostly along the spiral arms of the galaxy where hydrogen clouds tend to collapse into new stars. We have identified 3 features to characterize H II regions:

• energy: the surface brightness of the region is significantly larger than the noise energy;

• size: for physical reasons, the size of these regions is limited, they cannot be neither too small nor too large; and

• colour: H II regions are significantly brighter in short wavelengths, they are blueish.

In order to represent the astronomical multiband images with a max tree, we proposed a total vectorial order of the pixel values motivated by physical considerations. This order is based on the combination of several techniques [START_REF] Aptoula | A comparative study on multivariate mathematical morphology[END_REF]: a reduced order defined as a normalized truncated energy function, a quantified and normalized order and finally, a lexicographic order. Formally, let v, v ∈ R n be two pixel values, we define the pre-order ≤ Ap by:

v ≤ Ap v ⇔ E n (v) , v 1 kσ 1 , . . . , v n kσ n ≤ L E n (v ) , v 1 kσ 1 , . . . , v n kσ n (4.1)
where ≤ L is the lexicographic order, σ 1 , . . . , σ n are the standard deviation of the noise in the respective bands, k is a confidence factor (k = 3), • is the floor function. Moreover, the bands are sorted by the size of the point spread function (blurry bands at last). E n (v) is the normalized energy defined as: E n (v) = v 1 kσ 1 , . . . , vn kσn . To obtain a total order, we extend ≤ Ap with a lexicographic order applied to the initial spectral bands.

Based on this particular vectorial ordering and the features of H II regions, we designed [START_REF] Perret | Multispectral galaxy characterization with a hierarchy of model and connected component trees[END_REF][START_REF] Perret | Connected component trees for multivariate image processing applications in astronomy[END_REF] a custom multiband connected filter to detect these regions (see Figure 4.14). We showed [START_REF] Perret | Hierarchical multispectral galaxy decomposition using a MCMC algorithm with multiple temperature simulated annealing[END_REF][START_REF] Perret | Multispectral galaxy characterization with a hierarchy of model and connected component trees[END_REF] that the introduction of this detector to dynamically mask the H II regions detected along the spiral arms of a galaxy enables to significantly improve the quality of the estimation of the model parameters (see Figure 4.15).

Open source library for hierarchical graph analysis: Higra

Software and in particular open-source software plays a key-role in nowadays science.

It is a prominent ingredient of successful dissemination of research. It does not only allow users, students and researchers to easily use and further develop the proposed method but also greatly contributes to the reproducibility of research.

In this context, we contributed by developing an open-source library called Higra [START_REF] Perret | Higra: Hierarchical graph analysis[END_REF]: Hierarchical Graph Analysis1 . Higra is a Python library with a C++ back-end for efficient sparse graph analysis with a special focus on hierarchical methods. It aims at providing standard and state-of-the-art algorithms for hierarchical graph analysis capable of handling large amount of data (up to dozen of millions of vertices on a classical desktop computer). It is a generic toolbox for hierarchical graph representation construction, processing and assessment: it is thus not focused toward a particular application or domain and its fundamental functions can be used in a variety of situations.

Higra provides a Python API (Application Programming Interface) to ease its usage and to benefit from the synergies created by the large amount of scientific libraries available in the Python ecosystem. It is available through the official Python package repository PyPi which makes it usable from any Python environment, on Linux, MacOS, or Windows, with a single command line. This API is thought to be usable by students and expert researchers willing to quickly develop new applications, experiment new methods, or develop proofs of concepts. Vectorized operations on hierarchical representations enable writing various algorithms working on hierarchical representations efficiently in Python. It is also thought for seamless integration with classical Python data analysis pipelines such as Numpy, Scikit-Learn and modern optimization framework such as PyTorch and TensorFlow. The Python interface is backed-up by a C++ module where core algorithms are implemented to ensure high performances. The C++ module is also usable as a standalone library since it does not have any dependency to the Python runtime.

Higra tries to follow the best practice of software engineering:

• it is thoroughly tested (unit test coverage of 99%);

• its application programming interface is well documented2 . This documentation is complemented by a set of Jupyter Notebooks showing how to use the library and serving as online demonstrations3 (see 

Main functions

Higra contains a large amount of classical and recent algorithms for the construction, the manipulation, and the analysis of hierarchical graph representations:

• efficient methods and data structures to handle the dual representations of hierarchical clustering: trees [START_REF] Carlsson | Characterization, stability and convergence of hierarchical clustering methods[END_REF] (dendrograms) and saliency B. Perret maps [START_REF] Cousty | Hierarchical segmentations with graphs: quasi-flat zones, minimum spanning trees, and saliency maps[END_REF] (ultrametric distances);

• hierarchical clustering: quasi-flat-zone hierarchies [START_REF] Meyer | Morphological scale-space representation with levelings[END_REF], watershed hierarchies [START_REF] Cousty | Incremental algorithm for hierarchical minimum spanning forests and saliency of watershed cuts[END_REF][START_REF] Meyer | The dynamics of minima and contours[END_REF], agglomerative clustering [START_REF] Murtagh | Algorithms for hierarchical clustering: an overview[END_REF] (single-linkage [START_REF] Najman | Playing with Kruskal: algorithms for morphological trees in edge-weighted graphs[END_REF][START_REF] Gower | Minimum spanning trees and single linkage cluster analysis[END_REF], averagelinkage, complete-linkage, exponential-linkage [START_REF] Yadav | Supervised hierarchical clustering with exponential linkage[END_REF], Ward [START_REF] Ward | Hierarchical grouping to optimize an objective function[END_REF], or userprovided linkage rule), constrained connectivity hierarchies [START_REF] Soille | Constrained connectivity for hierarchical image partitioning and simplification[END_REF];

• component trees: min and max trees [START_REF] Jones | Connected filtering and segmentation using component trees[END_REF][START_REF] Salembier | Anti-extensive connected operators for image and sequence processing[END_REF];

• manipulate and explore hierarchies: simplification [START_REF] Perret | Removing non-significant regions in hierarchical clustering and segmentation[END_REF][START_REF] Barcelos | Exploring hierarchy simplification for non-significant region removal[END_REF], accumulators, cluster extraction, various attributes [START_REF] Zhang | Review of shape representation and description techniques[END_REF] (size, volume, dynamics, perimeter, compactness, moments, etc.), horizontal and non-horizontal cuts, alignment of hierarchies [START_REF] Pont-Tuset | Multiscale combinatorial grouping for image segmentation and object proposal generation[END_REF];

• optimization on hierarchies: optimal cuts, energy hierarchies [START_REF] Guigues | Scale-sets image analysis[END_REF][START_REF] Kiran | Global-local optimizations by hierarchical cuts and climbing energies[END_REF];

• algorithms on graphs: accumulators, vertices and clusters dissimilarities, region adjacency graphs, minimum spanning trees and forests, (seeded) watershed cuts [START_REF] Cousty | Watershed cuts: Minimum spanning forests and the drop of water principle[END_REF];

• assessment: supervised assessment of graph clusterings and hierarchical clusterings [START_REF] Perret | Evaluation of hierarchical watersheds[END_REF][START_REF] Charpentier | Tree sampling divergence: An informationtheoretic metric for hierarchical graph clustering[END_REF][START_REF] Heller | Bayesian hierarchical clustering[END_REF];

• image toolbox: special methods for grid graphs, tree of shapes [START_REF] Géraud | A quasi-linear algorithm to compute the tree of shapes of n-D images[END_REF], multivariate tree of shapes [START_REF] Carlinet | A Tree of shapes for multivariate images[END_REF][START_REF] Carlinet | Mtos: A tree of shapes for multivariate images[END_REF], multi-scale combinatorial grouping [START_REF] Maninis | Convolutional oriented boundaries: From image segmentation to high-level tasks[END_REF], optimization of Mumford-Shah energy [START_REF] Mumford | Optimal approximations by piecewise smooth functions and associated variational problems[END_REF].

Example in image filtering

The example in Figure 4.17 demonstrates the use of hierarchical clustering for image filtering. The strategy followed here is to first construct a watershed hierarchy by area [START_REF] Cousty | Incremental algorithm for hierarchical minimum spanning forests and saliency of watershed cuts[END_REF][START_REF] Meyer | The dynamics of minima and contours[END_REF] of the gradient of the image represented as an edge-weighted graph. Then, a flat clustering containing k clusters is extracted from the hierarchical representation. Finally, the color of each pixel contained in a cluster is defined as the mean color, in the original image, of the pixels inside the cluster.

A 4-adjacency edge weighted graph is built from the gradient of an image on lines 5 and 6. Then a watershed hierarchy by area of the graph is constructed on line 9. The saliency map of the hierarchy, which weights each edge of the graph by the ultrametric distance between its extremities, is computed for illustrative purpose on line 10 and is plotted in the 2D Khalimsky grid. Then, the mean image colour inside each region of the hierarchy is computed on line 16 Chapter 5

Conclusion and future research directions 5.1 Conclusion

This manuscript summarized our main research contributions in the area of hierarchical image representations and related analysis methods. These contributions cover the whole range of scientific developments, from theory to applications:

• the theoretical works on the axiomatic of connections led to the proposal of novel connected operators that proved useful in astronomical and document image analysis (Sections 2.1 and 2.2);

• we generalized the theory of set connections to directed graphs, proposed efficient algorithms for this new case and showed its potential on medical imaging (Section 2.3);

• our theoretical analysis of the common hierarchies of segmentations used in mathematical morphology allowed us to better understand how those representations relate to each others and to propose novel and efficient algorithms for constructing and for manipulating them (Sections 3.1 and 3.2);

• those theoretical links and these efficient algorithms also allowed us to propose a novel approach to optimize hierarchical segmentations in a very versatile framework based on gradient descent method (Section 3.3);

• we proposed a novel supervised framework to assess hierarchies of segmentations in the context of natural image analysis which allowed us to better understand the strengths and weaknesses of different hierarchical segmentation methods and to optimize the hyper-parameters of the considered methods (Section 4.1);

• we developed specific solutions based on connected operators and hierarchies of segmentations to solve several practical problems in collaborative projects with the cosmetic industries on automatic skin aging characterization (Section 4.2) and with cosmologists on automatic astronomical image analysis (Section 4.3); and finally,

• we implemented most of the proposed methods concerning hierarchical graph analysis into a novel open source Python library making our developments easily accessible to anyone (Section 4.4).

While most of our research works fit well into the topic of this manuscript, we also developed other research projects which are not presented here but which surely contributed to our views on research. Those works are related to:

• The hit-or-miss transform: a non-linear operator based on mathematical morphology, used to detect objects in images. The hit-or-miss operator relies on two structuring elements, one that must fit inside the object and one that must fit outside, to detect potential matches. We contributed to improve the robustness against noise of this operator [START_REF] Perret | A Robust Hit-or-Miss Transform for Template Matching in Very Noisy Astronomical Images[END_REF][START_REF] Perret | Astronomical Object Detection with a Robust Hit-or-Miss Transform[END_REF] and to propose novel definitions for color image analysis [START_REF] Macfarlane | Robust object detection in colour images using a multivariate percentage occupancy hit-or-miss transform[END_REF][START_REF] Macfarlane | A colour hit-or-miss transform based on a rank ordered distance measure[END_REF].

• Monte Carlo optimization for non convex problems: we developed a direct model for complex multiband observations of galaxies and proposed a method based on Monte Carlo methods and simulated annealing to inverse the model on real images [START_REF] Perret | Hierarchical multispectral galaxy decomposition using a MCMC algorithm with multiple temperature simulated annealing[END_REF][START_REF] Ch | Panoramic Integral-Field Spectrograph: Ultraspectral Data to Understand the History of the Universe[END_REF][START_REF] Perret | Galaxy Decomposition in Multispectral Images Using Markov Chain Monte Carlo Algorithms[END_REF].

• Conditional random fields for 3d image segmentation: we proposed a biologically motivated conditional random field model to automatically segment the dermis and the epidermis in confocal reflectance microscopy images of the skin [START_REF] Robic | Three-dimensional conditional random field for the dermal-epidermal junction segmentation[END_REF][START_REF] Robic | Classification of the dermal-epidermal junction using in-vivo confocal microscopy[END_REF].

Research project

While this manuscript does not follow a chronological order, some general tendencies in the evolution of the research projects we want to promote may be foreseeable. First concerning the field of applications, while image analysis has been at the heart of our research activity, most of the developed methods work on graphs and could thus be applied to other data. Second, machine learning approaches have led to tremendous progress in various research fields; those methods are efficient but struggle to provide guaranties on their results and we believe that combining the expertize we have on hierarchical representations with such learning methods can lead to powerful structured learning methods. This is the fundamental idea of our midterm research objective which is to propose methods for the supervised learning of hierarchical representations of graphs. This project, called ULTRA-LEARN, was submitted in 2020 to the young researcher (JCJC) call of the French national research agency and was granted a four year funding.

This research project will leverage on the preliminary results obtained in [START_REF] Chierchia | Ultrametric fitting by gradient descent[END_REF][START_REF] Chierchia | Ultrametric fitting by gradient descent[END_REF] where we proposed a generic way to perform gradient descent based optimization of hierarchical loss functions (see Section 3.3).

The method that we want to develop will be:

• Generic The developed methods will work on weighted graphs, also known as weighted networks in the literature, i.e., models where the dataset samples are represented by nodes linked by edges and where nodes and edges can be weighted by scalar or vectorial values. Such structure is highly generic, enabling B. Perret to model a wide variety of problems arising in various applications fields.

• Modular The methods will rely on classical continuous optimization algorithms. Their integration in modern continuous optimization framework will be straightforward. This will ensure that the proposed methods will simultaneously benefit from and enrich the ecosystem developed around those approaches.

• Scalable The method will be scalable with respect to the number of nodes in the graph and to the dimension of the weights (features). Our goal is to support at least in the order of dozen of millions of nodes and weights with up to thousands of dimensions.

• Supervised Supervised methods in machine learning have benefited from spectacular progress in recent years. The developed method will be able to learn how to construct hierarchical clustering from examples. We will handle the completely supervised case, where examples are themselves hierarchical clusterings and the semi-supervised case, where the examples are only partial information on the hierarchical clustering.

These ideas can be formalized as follows: in the completely supervised case, we are given a set of graphs {G i = (V i , E i )} i∈ [1,K) with vertex weights v i : V i → R N and edges weights e i : E i → R M , with associated ground-truth hierarchical clustering y i . The goal is then to devise a method for learning the parameters θ of a hierarchical clustering method m θ such that m θ (G i , v i , e i ) is close to y i . In other words, we will optimize the parameters m θ in order to minimize the loss between the predicted hierarchical clusterings and the expected ones. This case typically corresponds to the hierarchical image segmentation problem, where one have thousands or millions of images, represented as vertex valued graphs, and the goal is then to obtain a hierarchical segmentation of each image.

In the semi-supervised case, we are given a single graph G = (V, E) with vertex weights v : V → R N and edges weights e : E → R M , and some annotations on a subset of the vertices of V . The goal is then to find a hierarchical clustering that best fit the input graph and the partial annotations we have. Those partial annotations will typically be a partial (hierarchical) clustering of some vertices of the graph. This will also lead to optimization problems where one seeks to maximize simultaneously the intrinsic quality of the hierarchical clustering and its accordance with the annotations. This project involves different aspects which can be organized in three work-packages (see Figure 5.1).

Ultrametric network:

The objective of the first work package is to devise the models that will produce a hierarchical clustering of the input data and whose parameters will be optimized in an end-to-end manner. This work package is divided into two tasks:

1. Definition of ultrametric layers: The objective of this task is to propose and study ultrametric layers, i.e., operators associating to any edge weighted graph an ultrametric which is differentiable with respect to the edge weights of the input graph. In other words, it is a hierarchical clustering algorithm through which we can back-propagate a gradient on the edge weights of the graph.

There have been many hierarchical clustering algorithms proposed over the years and we will first study their applicability as ultrametric layers. One of the main selection criterion is their differentiability as none of the algorithms were created with this feature in mind.

Dissimilarity learning for ultrametric layers:

The objective of this task is to propose and study networks designed to produce graph embeddings into metric spaces adapted for hierarchical clustering. More precisely, given a weighted graph, the objective of this work package is to propose network architectures that will produce a new edge weighted graph with the same set of nodes and whose edges are weighted by dissimilarities. Indeed, one of the key element in the success of modern machine learning methods is their ability to automatically learn rich features from raw data using deep networks. In the context of this project we are especially interested in networks designed to perform metric learning, i.e., networks that can estimate the dissimilarity between elements. However, there are nowadays two significantly separated approaches to perform deep learning on graph. The first one, that has popularized deep learning, is based on convolutional layers operating on regular grid graphs (classically adjacency graphs of pixels in image analysis): the natural spatial embedding of the nodes in the Euclidean plane then play a key role in the architecture of the network. The second one acts on arbitrary graphs: the nodes of the graph do not have any natural embedding in the Euclidean space and everything has to be learned from the features. We will address these two cases to propose learnable embeddings that can be used in the context of hierarchical learning.

Ultrametric network optimization:

This work package aims at studying the definition of dissimilarity measures on the space of ultrametrics and at developing efficient algorithms to train ultrametric network according to these measures. This work package is divided into two tasks:

1. Ultrametric loss: The objective of this task is to develop loss functions for hierarchical clusterings, i.e., differentiable dissimilarity measures between two hierarchical clusterings. The design of efficient and meaningful loss functions is one of the key elements in machine learning. While the primary goal of a loss function is to measure the difference between a prediction and a ground-truth, a good loss function must also satisfy several properties: efficient computation, good gradient propagation, robustness to ground-truth and model noise. There exists currently no standard way for measuring the distance between two hierarchical clusterings. There has been a large amount of works on tree edit distances [START_REF] Ph | A survey on tree edit distance and related problems[END_REF] or Gromov-Wassertstein distances [START_REF] Carlsson | Characterization, stability and convergence of hierarchical clustering methods[END_REF], however, these methods are combinatorial and they have a very large time complexity. We will address two main cases: 1) graphs benefiting from a natural node embedding in the Euclidean space such as pixels graphs, and 2) general graphs.

Scalable optimization for ultrametric networks:

The objective of this task is to propose scalable algorithms to optimize ultrametric network, i.e., the composition of the dissimilarity estimation network and of the ultrametric layer. The scalability of the training process of neural networks depends on two key ingredients: 1) the fast evaluation of the forward and backward paths of the network; and 2) the possibility to perform a training step without considering all data at once. The fast evaluation of traditional neural network has been made possible by specialized hardware relying on massive parallelism such as Graphical Processing Unit (GPU) or Tensor Processing Unit (TPU). On the contrary, the second ingredient is given by a specific algorithmic solution: the mini-batch approach in stochastic gradient descent. We will study these two aspects in the context of the project.

Applications: This work package aims at grounding the developments of the two previous work packages with real applications. It is divided into three tasks:

1. Supervised hierarchical image segmentation: The objective of this task is to develop, to train and to assess an end-to-end hierarchical segmentation method for natural image analysis. Hierarchical clustering is a classical method in image analysis that is traditionally used to structure and reduce the size of the search space in image segmentation and object detection. Hierarchical clustering is part of state-of-the-art pipelines for image segmentation [START_REF] Funke | Large scale image segmentation with structured loss based deep learning for connectome reconstruction[END_REF][START_REF] Maninis | Convolutional oriented boundaries: From image segmentation to high-level tasks[END_REF], but they are currently used as a post-processing step rather than trained end-to-end. However, the rich contextual information provided by objects-andparts approaches are known to improve the precision, the robustness, and the interpretability of vision models [START_REF] Modolo | Learning semantic part-based models from google images[END_REF]: we thus believe that training deep vision models to predict a whole hierarchy of segmentations could lead to significant improvement. In this task, we will develop an end-to-end method for learning an image hierarchical segmentation method.

Supervised hierarchical data classification:

The objective of this task is to propose and train a classifier on data following an ontology/hierarchy of classes.

In data classification, one usually tries to predict a single class for each sample. However, in many cases, it is possible to have an ontology of classes, i.e., a hierarchy of classes. For example many real world classification tasks in computer vision involves the WordNet database which can be seen as a lexical ontology. In such ontology, the cat and the dog classes are indeed subclasses of the mammal class and a cat is closer to a dog than a bird. Classifiers are then trained to predict classes at a given level of the class hierarchy that depends of the target application. In this task, we will explore how to develop a classifier that can take advantage of this known class ontology.

Semi-supervised hierarchical data clustering:

The objective of this task is to develop a hierarchical clustering method that can take advantage of a hierarchical prior on some of the elements of the dataset. Clustering is often an ambiguous task and several authors have suggested that a limited amount of supervision can lead to a large improvement in results [START_REF] Bair | Semi-supervised clustering methods[END_REF][START_REF] Peikari | A cluster-then-label semi-supervised learning approach for pathology image classification[END_REF]. In such semi-supervised clustering, the algorithm is given a set of data with a few annotated samples which are sometimes called seeds or markers. Usually, these annotations conveys only flat clustering information: given two annotated samples we can say if they are in the same cluster or not. In real applications these seeds or markers are usually given interactively by an expert who can refine the result of the algorithm by providing new information. We will study how such semi-supervision can help to devise better hierarchical clustering algorithm. 
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 21 Figure2.1: An image and its associated max tree, min tree, and tree of shapes. The nodes of the max tree (respectively min tree) are the connected components of the upper (respectively lower) level sets of the image. The nodes of the tree of shapes are the saturated connected components (with their holes filled) of the upper and lower level sets of the image. In all cases, the tree corresponds to the inclusion relation between the nodes. A simple way to design a connected filter is to design a node filtering strategy on such trees.
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 23 Figure 2.3: Removal of small features from a galaxy image with an area filtering. The left image is an observation of the galaxy PGC35538 in five bands from near ultra violet to near infrared (only three band are used in the color composition).Then, the first row shows the result of the area filter using from left to right: the hypercomponent tree (objects with an area less than 30 pixels are removed), the max tree (30 pixels) , the max tree (10 pixels). The second row shows the difference between the first row and the original image. This example shows that the proposed approach is able to remove the bright localized structures inside the galaxy which are difficult to model while providing a better preservation of the galaxy morphological features and of the background.

Figure 2 . 4 :

 24 Figure 2.4: Background removal based on hypercomponent tree processing: original document images (top) and corresponding results of the proposed background removal method (bottom).
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 25 Figure 2.5: Synthetic view of the relations between the different notions of connections and their related connected filters.
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 26 Figure 2.6: Decomposition of a function a into a set of five lower functions s (a) by the inf-structuring function s.
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 27 Figure 2.7: Application of the marked reconstruction operator β on the function a decomposed into s (a) (see Figure 2.6) and marked by m. The result β(a, m) is equal to the supremum of the dashed green and orange functions which are the smallest sub-elements of a for s greater than m.
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 28 Figure 2.8: Example of application of a self-dual non-flat flattening with inf-structuring functions and bi-Heyting algebra: we can see that with the proposed non-flat flattening the image is smoothed but the highly contrasted area are better preserved compared to the classical flattening (Photo credit: J. Serra).
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 29 Figure 2.9: Some elementary directed graphs. The set of directed connected components in (a) (resp. (b) and (c)) is {{a, b}, {b}} (resp. {{a, b}, {c, b}, {b}} and {{a}, {b, a, c}, {c}}).
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 210 Figure 2.10: Construction of the directed component hierarchy. (a) The strongly connected components associated to a stack of directed graphs generate a tree representing inter-scale relations. (b) The directed acyclic graphs of strongly connected components at each level of the stack of directed graphs encode the directed connected components and represent the intra-scale relations. (c) The directed component hierarchy of the stack of directed graphs is the composition of (a) and (b): it encodes the inter-and the intra-scale relations between the directed connected components (red edges are redundant and can be deduced by transitivity).
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 211 Figure 2.11: Segmentation results on the DRIVE database. From left to right: pre-processed image, filtering result, and evaluation of the segmentation (black pixels are true positives, blues pixels are false positives and red pixels are false negatives).
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 212 Figure 2.12: Non-local adjacency relation for the directed connected component filtering of blood vessels in retinal images. (a) Distal vessels of the 19th retinal image of the DRIVE database [237]. (b) Adjacency relation shown on a critical threshold of (a). Green links represent symmetric edges while red arrows are asymmetric relations. Each strongly connected component is associated to a color printed in a small circle inside each pixel.
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 2 Figure 2.13: (a) Neurite image and (b) Directed connected filtering.
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 214 Figure 2.14: Marker based segmentation of the myocardium in MRI. (a) Original image. (b) and (c) The object and background markers. (d) Segmentation result obtained with a classical non directed marker based segmentation. (e) Set of pixels that probably contains the myocardium based on a simple brightness prior or, in other words, pixels outside this set are very likely to belong to the background. This information is used to produce asymmetric edge weights. (f) Segmentation result obtained with the asymmetric weights and computed with the directed component hierarchy.
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 32 Figure 3.2: The saliency map of a hierarchy of segmentations of an image can be visualized as an image in the Khalimsky grid (source [100]).
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 33 Figure 3.3: The algorithm proposed in[START_REF] Najman | Playing with Kruskal: algorithms for morphological trees in edge-weighted graphs[END_REF] to construct the binary partition tree of an edge weighted graph is similar to Kruskal's minimum spanning tree algorithm. It constructs the minimum spanning tree starting by the smallest edges and maintains a collection of trees with a union-find data-structure. Constructing the fusion hierarchy associated to the minimum spanning tree requires to also keep track of the roots of the partial trees when the forest grows.

Figure 3 .

 3 Figure 3.4: A flowchart of the proposed method for removing non-significant regions in a hierarchy of segmentations. A given hierarchy H is first transformed into its dual representation as a saliency map w = Φ G (H). The filtering is then performed in the saliency map domain using information provided by H (e.g., sizes of the regions). Finally, the filtered hierarchy H is defined as the quasi-flat zone hierarchy of the filtered saliency map.
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 3536 Figure 3.5: Removal of non-significant nodes on the quasi-flat zone (QFZ) hierarchies of two point clouds (first and second lines). For each graph, we show from left to right: the graph with the three ground-truth clusterings of the graph vertices (red, green, and blue), the dendrogram of the quasi-flat zone hierarchy, the clustering into 3 classes for this dendrogram, the dendrogram of the simplification of the quasi-flat zone hierarchy based on cluster size, and the clustering into 3 classes for this simplified dendrogram. Note that the colors used to represent clusterings are arbitrary and do not represent an explicit correspondence between two different clusterings.
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 37 Figure 3.7: A weighted graph G = (V, E, w) with four minima delimited by the dashed rectangles, and the hierarchical watershed H of G for the minima orderingM 1 ≺ M 2 ≺ M 3 ≺ M 4 .Note that the graph G is acyclic and that the edge weights are totally ordered: these hypothesis are used to ease the presentation but all the properties and algorithms presented in this section are valid in the general case.
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 39 Figure 3.9: First line from left to right: original image I and the gradient G of I computed using the structured edge detector introduced in[START_REF] Dollár | Fast edge detection using structured forests[END_REF]. Second line from left to right: the saliency map of the COB hierarchy[START_REF] Maninis | Convolutional oriented boundaries: From image segmentation to high-level tasks[END_REF] (H cob ) of I and three segmentations of H cob with 50, 100 and 200 regions, respectively. We can see that we must go very deep in the COB hierarchy to obtain the internal parts of the person which means that we also get a lot of noise (small non relevant regions). Third line from left to right: the watersheding H ws of H cob and three segmentations of H ws with 50, 100 and 200 regions, respectively. We observe that significant internal regions of the person are closer to the top of the hierarchy.
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 310 Figure 3.10: First line from left to right: original image I and the gradient G of I computed using the edge detector introduced in [114]. Second line from left to right: the saliency map of the circularity based hierarchy H cc , which is not a hierarchical watershed of G, and three partitions of H cc with 10, 35 and 60 regions, respectively. As expected this hierarchy exhibits mainly circular regions. Third line: the watersheding H ws of H cc and three partitions of H ws with 10, 35 and 60 regions, respectively. This hierarchy combines the information from the gradient and from the circularity based hierarchy: the main regions visible in the gradient and the circular regions are both close to the top of the hierarchy.
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 311 Figure3.11: Hierarchical watersheds based on area and dynamics and their combination by average. We can observe that, in the watershed hierarchy by area, the main objects of the scene appear close to the top of the hierarchy but large and mostly flat regions such as the sea are over-segmented. On the contrary, in the watershed hierarchy by dynamics the large regions are under-segmented and mainly small regions are close to the top of the hierarchy. By combining the two hierarchies we obtain a better compromise where important objects are close to the top of the hierarchy and the over-segmentation of large regions has been reduced.

(

  ∀ w ∈ W, ∀e xy ∈ E) Φ G ( w)(e xy ) = min P xy denotes the set of all paths between the vertices x and y of G. Then, Problem (3.1) can be rewritten as the non-constrained optimization problem minimize w∈W J Φ G ( w); w . (3.4)
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 333 . The definition of the subdominant ultrametric (Equation (3.3)) can thus be rewritten (∀ w ∈ W, ∀e xy ∈ E) Φ G ( w)(e xy ) = w(σ(lca BPT( w) (x, y))). (3.5)
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 312 Figure 3.12: Illustrative examples of hierarchical clustering optimization with gradient descent. Top row: Input graph and ground truth labeling of the graph vertices. The edge weights are equal to the Euclidean distance between the vertices. Middle row: Hierarchical clusterings fitted to the input graph; only the top-30 non-leaf nodes are shown in the dendrograms (all the others are contracted into leaves). Bottom row: Assignments obtained by thresholding the hierarchical clustering at three clusters. We can see in a) that fitting the sole closest fidelity term leads to an incorrect clustering where very small clusters are present close to the top of the hierarchy. In b), we see that the addition of the cluster size regularization term solves this issue. Then, figure c) demonstrates that the semi-supervision brought by known labeled data (vertices marked by squares) is another possible solution. Finally, figure d) shows that the proposed relaxation of the Dasgupta's cost also manages to recover the correct clustering.
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 313 Figure 3.13: Each node of the binary partition tree by altitude ordering (in blue) of the graph (in grey) is canonically associated (green dashed arrows) to an edge of a minimum spanning tree of the graph (thick edges): this edge is the pass edge between the leaves of the two children of the node. The pass edge can be found efficiently in the binary partition tree using the lowest common ancestor operation and the canonical link between the nodes and the minimum spanning tree edges. For example, the lowest common ancestor of the vertices 3 and 5 linked by the edge e 35 is the node n 4 , which is canonically associated to the edge e 24 (σ(n 4 ) = e 24 ): e 24 is thus the pass edge between the vertices 3 and 5.
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 314 Figure 3.14: Validation and computation time of the proposed continuous optimization framework for hierarchical clustering. Figures (a) and (b): comparison between the CUCP algorithm[START_REF] Yarkony | Planar ultrametrics for image segmentation[END_REF] and the proposed gradient descent approach. For CUCP we tested different numbers of hierarchy levels(5, 10, 20 40). Figure (a) shows the final mean square error (normalized against CUCP 40) with respect to the number of edges in the tested graph. Figure (b) shows the run-time with respect to the number of edges in the tested graph (CUCP was capped at 200 seconds per instance).Figure (c) shows the computation time of the tested cost functions with respect to the number of edges in the graph.
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 315 Figure 3.15: Performance of the continuous optimization framework for hierarchical clustering on real datasets.
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 41 Figure 4.1: Example of markers generated automatically from a ground-truth segmentation. In each figure, the background and object markers are respectively depicted in red and blue. On the first figure, both markers are obtained by eroding the ground-truth. In the second figure, the foreground marker is a skeleton of the ground-truth while the background marker is only the frame of the image. In the last figure, both markers are skeletons.
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 42 Figure 4.2: Illustration of under-and over-segmentation for hierarchies. Hierarchies 1 and 2 are both composed of 2 levels. Compared to the ground truth, the first hierarchy manages to recover long contours in its coarse level but then fails to recover the other contours at a finer level: the optimal horizontal cut is the coarsest one and the hierarchy is said to under-segment the image. With the second hierarchy the inverse situation happens, the finest partition recovers all the contours of the ground truth but also contains extra-contours. However, the coarsest partition looses the true contours and preserves extra contours: the hierarchy is said to over-segment the image.

Figure 4 . 3 :

 43 Figure 4.3: Example of comparison between the watershed hierarchy by number of parent nodes and other state-of-the-art methods (a random hierarchy is used as a baseline). Precision-recall (PR) curves for boundaries (FB) and regions (FOP) based measures on Pascal Context (first column): each curve represents the variation of precision and recall for the different partitions of the hierarchy. Fragmentation-Optimal Cut score curves (FOC) for boundaries (FB) and regions (BCE) based measures on Pascal Context (second column): each plain curve represent the upper-bound score achievable for a given fragmentation value. The corresponding dashed curves represent the score obtained by horizontal cuts. Supervised object detection on MS-COCO and Pascal VOC'12 (last column):for each method and each combination of markers, we see: 1) the median F-measure (central bar), 2) the first and third quartile (extremities of the box), and 3) the lowest datum still within 1.5 inter quartile range (difference between the third and first quartile) of the lower quartile, and the highest datum still within 1.5 inter quartile range of the upper quartile range (lower and upper extremities). The principal performance measures are summarized in the table: F-Measure of FB and FOP scores at the Optimal Dataset Scale ODS (precision-recall curves), Area Under the Curve of FOC for FB and BCE (fragmentation curves), and Object Detection Median score (ODM) on MS-COCO and Pascal VOC'12 datasets (supervised object detection). The last column of the table gives the mean score of each method.
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 4 Figure 4.4: a) Schematic view of the skin layers organization. b) A stack of reflectance confocale microscopy images provides a non-invasive observation of the skin up to the dermis with a lateral resolution sufficient to see individual cells.

  (a) Young epidermis (b) Aged epidermis
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 45 Figure 4.5: Epidermal honeycomb pattern of a young (a) and an older subject (b). One can notice that the images are affected by several defects: noise, blur, non-homogeneous intensity, and artifacts like pores and hairs.
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 46 Figure 4.6: Illustration of the epidermal cell classification into regular or irregular class. A segmentation of the individual cells is first computed. Each cell is then classified based on geometric features and its spatial neighborhood.
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 47 Figure 4.7: Dermal-epidermal junction aging. First row: en-face sections of 2 relectance confocal microscopy stacks coming respectively from a young (a) and an aged (b) subject. The dermal-epidermal junction corresponds to the brighter rings.Second row: automatically segmented dermal-epidermal junction surfaces from a young (a) and an aged (b) subject using our method[START_REF] Robic | Three-dimensional conditional random field for the dermal-epidermal junction segmentation[END_REF][START_REF] Robic | Classification of the dermal-epidermal junction using in-vivo confocal microscopy[END_REF].
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 48 Figure 4.8: Area under the curve of the pattern spectra of the dermal-epidermal junctions. The box-plot shows the distributions of the area under the curve of the pattern spectra for each location and age group. We see that there is a significant (**) difference between the two age groups on the cheek (chronological aging). There is also a significant difference (***) between the volar arm (photo-protected) and the dorsal forearm (photo-exposed) in both aged groups showing the effect of photoaging. (Statistics significance are defined as follow: **: 0.001 < P-values ≤ 0.01, ***: P-values ≤ 0.001.)
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 4 Figure 4.9: a) Astronomical image from the Sloan Digital Sky Survey (size: 2048×1489 pixels, 32 bits per pixels): the contrast has been inverted and adjusted manually to emphasize faint sources. b) Multilevel segmentation map.
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 410 Figure 4.10: Dependency graph of a hierarchical Markovian model corresponding to a quad tree structure. Filled black circles represent labels (X) and white circles represent observations (Y). At the bottom of the quad-tree the observation at each leaf node of the tree is the mutivariate pixel value at the corresponding position.Whereas the information contained in the observations is propagated upward within the quad-tree, the labels are propagated downward according to Markovian transmission probabilities (a ij ), i.e., a label at a given level of the quad-tree only depends on its parent.

  Markovian segmentation on a max-tree (c) Markovian segmentation on a quad-tree
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 411 Figure 4.11: Comparison of the proposed astronomical source detection algorithms with the reference method. (a) Close up view of Figure 4.9(a). Red crosses: sources detected by a hierarchical Markovian model on a max tree, green triangles: sources detected by a hierarchical Markovian model on a quad tree, and blue circles: sources detected by the reference method SExtractor [65]. (b) and (c):Segmentations map obtained respectively with a max tree quad tree Markovian classification. We can observe that the max tree approach better fits the faint details of the image: it is able to detect more sources.
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 412 Figure 4.12: Comparison between the max tree and the component graph of a simulated astronomical image containing a single faint source. The max tree is built on the first band of the simulation while the component-graph accounts for its two bands. The color map encodes the level of significance of the nodes: the darker a node is, the more its content differs from noise. In the max tree, we can easily identify a long branch of very significant nodes corresponding to the single source present in the image. In the component-graph, the situation is much more complicated with a thick column of nodes corresponding to the astronomical source.
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 4 Figure 4.13: Precision-recall curves of source detection in simulated 3-band astronomical images. The proposed multiband detection method based on the component graph (CGO) is compared to the reference single band method based on a max tree (MTObject).
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 4 Figure 4.14: H II regions detection in two 5-bands astronomical images of spiral galaxies. As expected, the detected regions are mostly located along the spiral arms of the galaxies.
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 415 Figure 4.15: From left to right: shape of the estimated spiral arms on the galaxy PGC 35538 with and without adaptive masking of detected H II regions. Red and green regions correspond to the H II regions detected by the proposed mutiband connected filter. With adaptive masking, green regions are masked while red regions which are too far from the currently estimated spiral arms (gray area) are not masked. The adaptive masking of H II regions attracts the spiral arms towards those regions and helps to get a better estimate of their parameters.
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 4 [START_REF] Robic | Three-dimensional conditional random field for the dermal-epidermal junction segmentation[END_REF]); and • it's development is driven by a continuous integration pipeline (each code modification is automatically tested on all supported platforms before being merged into the main repository) and a continuous delivery pipeline (pushing a new tag to the repository automatically compiles and releases a new version of the library on all supported platforms, the online documentation is automatically updated).
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 416 Figure 4.16: Screen-shot of the online documentation of the Higra library showing the list of currently available Python demonstration notebooks. All the notebooks can be executed online in Jupyter like environments such as Google Colab.
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 417 Figure 4.17: Example of image filtering with the proposed library Higra: image simplification with a watershed hierarchy. From left to right: original image, gradient, saliency map of the watershed hierarchy by area of the gradient, simplified image reconstructed from the hierarchy with respectively 25, 50, and 100 regions.
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 51 Figure 5.1: Organization of our future research project on supervised hierarchical clustering.

A. 3

 3 Imagery, International Symposium on Biomedical Imaging, International Conference on Pattern Recognition and Artificial Intelligence • Member of the program comity of ISMM 2017 (International Symposium on Mathematical Morphology). • Member of the organizing comity of ISMM 2019 (International Symposium on Mathematical Morphology) • Guest editor for a special issue in the Journal of Mathematical Morphology-Theory and Applications following ISMM 2019. Teaching Overview The following chart shows my annual hourly distribution since my recruitment at ESIEE Paris in 2011. The unit of measurement is the HETP (Heure Équivalent Travaux Pratique) which is equivalent to 2/3 of a HETD (Heure Équivalent Travaux Dirigé) used in French Universities. A full time annual service is composed of 500 HETP. Teacher-researchers have a 200 HETP discharge for their research activities, the remaining 300 HETP are dedicated to teaching, student tutoring, student project supervision, and administrative tasks related to pedagogical activities.
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