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ABSTRACT

It is well known that rubber-like materials exhibit nonlinear viscoelastic behavior over a
wide range of strain and strain rates confronted in several engineering applications such
as civil engineering, automotive and aerospace industries. This is due to their capacity to
undergo high strain and strain rates without exceeding the elastic range of behavior. Fur-
ther, the time dependent properties of these materials, such as shear relaxation modulus
and creep compliance, are, in general, functions of the history of the strain or the stress.
Therefore, in a wide range of strain, a linear viscoelasticity theory is no longer applicable
for such material and new models are required to fully depict the behavior of rubber-like
materials for quasi-static and dynamic configurations of huge interest in engineering
applications. Despite the multitude of nonlinear viscoelastic models developed over the
years, there is a lack of models capable of depicting the nonlinear behavior of rubber-like
materials with ease of identification and implementation into commercial software.
In this work, a nonlinear viscoelastic model at finite strain is developed to describe
nonfactorizable behavior of isotropic incompressible rubber-like materials. The model is
developed within the framework of rational thermodynamics and internal state variable
approach such that the second law of thermodynamics in the form of Clausius-Duhem
inequality is satisfied. From experimental results on Bromobutyl (BIIR) a dependence
of the shear relaxation modulus upon strain has been observed and introduced in the
model via a strain dependent relaxation times which led to a reduced time similar to
the thermorheologically simple material’s formulation. Then, a systematic identification
procedure have been developed to identify the model’s parameters. A separation of the
instantaneous elastic and viscoelastic contributions to the stress was employed which led
to a separate identification of the characteristic functions of the model. This procedure
was applied to experimental data and generated data from the Pipkin-Rogers model and
a good capacity of the model to predict both static and dynamic behaviors of the material
was observed.
Thereafter, the nonlinear viscoelastic model was implemented into Abaqus software using
a Umat subroutine. To this end, the discrete form of the model was written and the tan-
gent stiffness was calculated (required for the Umat) using the objective rate derivatives
of Jaumann. The implementation was validated using homogeneous transformations
of simple shear and simple extension for monotonic, sinusoidal and relaxation strain
histories. The non vanishing components of the Cauchy stress tensor were calculated for
the strain history considered and compared to the numerical results of the model. Fi-
nally, a non homogeneous transformation was considered. Namely, the problem of simple
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torsion of a hollow viscoelastic cylinder for several strain histories. From the equilibrium
equations, the indeterminate pressure arising from the incompressibility was computed
and then the components of the Cauchy stress were calculated along the radius of the
cylinder. The analytic results showed a total agreement with the simulations performed
with the implemented model.
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INTRODUCTION

= T Industrial and scientific context
This thesis is a part of an international partnership between the laboratory of Applied

Mechanics and Engineering of École Nationale d’Ingénieurs de Tunis and the labora-

tory of Tribology and Dynamics of Systems of École Centrale de Lyon as academics and

ArianeGroup as an industrial counterpart. The aim of the thesis is the development

of a nonlinear viscoelastic model able to describe the nonlinear viscoelastic behavior

of rubber-like materials at finite strain and its implementation into finite elements

software. The original industrial need is the design of the elastomeric device to be used in

the inter-stage of the launcher which the role is to ensure the static and dynamic filtering

and attenuate the vibrations caused by the boosters and transmitted to the stages of the

launcher. However, thanks to the general framework in which the model was developed,

it will fit this feature as well as other features needed in several engineering applications.

Nowadays, elastomers are frequently used in industrial applications, in particular in

automotive, aeronautics, civil engineering applications and aerospace. The mechanical

properties of these materials make them a class a part of materials. Their properties are

used for several applications such as sealing, damping and isolation etc. In particular,

they have high ability of deformability up to some hundred % associated with a quasi-

reversible hyperelastic behavior. In addition, they have a dissipative properties shown

when subjected to dynamic loading along with several softening phenomena. In general,

these materials are subjected to severe mechanical and thermal loading in real world

application.

In industry, the design of complex geometrical structures made of materials exhibiting

nonlinear constitutive behavior, such as rubber-like materials, rely on the use of finite

elements method. The performance of such tool is directly affected by the capacity of the

model to depict the behavior of the used material. The possibility of accurately simulat-

ing the behavior of the material in the industrial application circumstances avoids the

need of experimentation and therefore reducing the cost of the design process of such

1



8 Introduction

structures.

Rubber-like materials have a very special behavior which could be described by the

combination of elastic solid behavior and viscous fluid behavior. In addition, due to

their peculiar micro-structure, theses materials are characterized by several nonlin-

ear phenomena involving their response to static and dynamic loading. Therefore, the

development of nonlinear viscoelastic models is crucial.

= T Research problematic and Objectives
The theory of viscoelasticity is crucial in describing materials, such as filled rubber,

which exhibit time dependent stress-strain behavior. Over the years, several models

have been developed to study the viscoelastic behavior of rubber-like materials from

purely mathematical developments to applied studies where ease of application is for

huge interest. In fact, the combination of the ease of identification of the model’s para-

meters as well as the possibility to implement it in finite elements software plays a

key role in the development of constitutive equations for these materials. Furthermore,

several experimental investigation corroborated that the time-dependent properties of

these materials such as relaxations function and creep compliance are in general strain

dependent functions. The separability assumption used in linear viscoelasticity theory,

which states that the effect of time and strain are separable and hence the time-dependent
properties are function of time only, does not hold.

A review of the literature revealed significantly more well-established studies dealing

with hyperelastic constitutive models, than those dealing with finite viscoelasticity. Fur-

thermore, the task of identification of the material’s parameters is well-studied and

integrated in finite elements software such as Abaqus for the static (hyperelastic) case

providing all the experimental techniques to identify the material constitutive parame-

ters. However, for nonlinear viscoelastic materials such feature is lacking especially when

dealing with nonlinear phenomena such as the dependence of the relaxation modulus

upon strain.

On the other hand, in order to investigate the response of the material with the non-

linearities described above subjected to real industrial loading, the model describing

this behavior should be implemented into finite elements software. Hence, all quantities

involved in the model have to be defined carefully and therefore the simplicity of the

model plays a key role in fulfilling this task.

Therefore, the objectives of this work are, on one hand: the development of a nonlinear vis-

coelastic model at finite strain taking into account the dependence of the time-dependent

properties upon strain corroborated by experimental results done within this project on

K K;9NAB8
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8

a Bromobutyl rubber-like material, on the other hand, the development of a systematic

identification procedure to identify all the model’s parameters using experimental data

and the implementation of the proposed model into one of the finite elements commercial

software.

= T Methodology
In order to fulfill the objectives of this thesis the following methodology has been followed:

◦ The three dimensional viscoelastic model at finite strain to describe nonseparable

behavior of rubber-like materials is developed within the framework of rational

thermodynamics and internal state variable approach such that the second law of

thermodynamics in the form of Clausius–Duhem inequality is satisfied. The model

represents a generalization of the Simo model implemented in Abaqus software.

Motivated by experimental results, the evolution law of the internal variables

is set to be nonlinear. This non linearity was introduced via a strain dependent

relaxation times which led to the use of the notion of reduced time via strain shift

function similar to the thermorheologically simple material’s behavior.

◦ The material’s parameters are identified separately. In fact, the hyperelastic con-

tribution to the total stress is identified from equilibrium data on simple extension

and pure shear. The relaxation function was postulated by a Prony series and

identified using relaxation experimental data in the linear range of the behavior

with a strain relaxation level below 10%. The reduced time function is identified

thanks to a minimization procedure over the error between the discrete stress of

the model and the experimental stress.

◦ The implementation of the model was performed with Abaqus software via a

subroutine Umat. To do so, first, the integration algorithm corresponding to the

discrete of the model was implemented using Matlab software and validated with

comparison with Abaqus software for one dimensional experiments of simple

extension and pure shear for several strain histories. Then, the subroutine Umat

was written: this requires the update formula for the stress using the objective

rate equation of Jaumann required in Abaqus software and the update formula

of the fourth order tangent stiffness tensor. The implementation of the model was

then validated by the solution of initial boundary value problems for homogeneous

transformations of simple shear and simple extension and non homogeneous one of

simple torsion of a hollow cylinder.
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8 Introduction

= T Thesis outline
This thesis is decomposed in five chapters organized as follows:

◦ The first chapter summarizes the most important physical phenomena related

to rubber-like materials and exposes the most known approaches and models

to deal with these phenomena in the development of hyperelastic potentials for

these materials. The last part of this chapter presents a literature survey for the

approach followed in the development of nonlinear viscoelastic models at finite

strain

◦ The second chapter presents the nonlinear viscoelastic model proposed within

this work. First, a modification to the rheological model of Maxwell is carried out

using experimental arguments. Then, an extension to the fully three dimensional

domain is performed such that the second law of thermodynamics in terms of the

Clausius-Duhem inequality is valid. For each case, constitutive equations of the

stress, free energy density and intrinsic dissipation are obtained.

◦ The third chapter presents the systematic identification procedure of the model’s

parameters to experimental data. This identification procedure was applied to data

generated from the Pipkin multi-integral model then applied to experimental data

for Bromobutyl (BIIR)

◦ The fourth chapter deals with the numerical implementation of the nonlinear

viscoelastic model developed in the previous chapters. First, the integration scheme

of the one dimensional model is recalled. Then, the implementation of the three

dimensional viscoelastic model into Abaqus software is performed using an implicit

integration scheme in a Umat subroutine.

◦ The last chapter presents the validation of the implementation of the nonlinear vis-

coelastic model presented in the previous chapter via the solution of homogeneous

and nonhomogeneous initial boundary problems numerically and analytically.
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T
He first chapter aims to analyse the behavior of rubber-like materials from a

phenomenological stand point. These materials are used in several engineer-

ing applications such as automotive, civil engineering and aerospace. These

materials are capable of undergoing large deformation and recover to their original state.

Due to their peculiar micro-structure composed by long chain molecules with presence of

carbon black, their behavior is strongly nonlinear. This chapter is subdivided in three

parts : the first part summarizes the most important physical phenomena related to

rubber-like materials, the second one presents the mechanical framework of nonlinear

elasticity and highlights the most known approaches and models to describe the hy-

perelastic behavior for these materials and the third part presents the framework of

nonlinear viscoelasticity leading to the most known approaches and modeling procedures

followed in the development of nonlinear viscoelastic models at finite strain and discusses

the assumptions and limitations of each approach.

1.1 Phenomenology of rubber

1.1.1 Generalities and micro-structure

The term rubber is actually misleading: it is used both to indicate the material, techni-

cally referred to as natural rubber, and the broad class of synthetic elastomers which

share with natural rubber some fundamental chemical properties. Indeed, the majority

of rubber used for industrial applications are synthetically produced and derived from

petroleum. These materials are characterized by their high deformability and dissipative

properties which makes them widely used in several damping applications in many fields

[29],[111],[97],[87]...
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1.1. Phenomenology of rubber 8

Rubber, or elastomer, has an internal structure which consists of flexible, long chain

molecules that intertwine with each other and continually change contour due to thermal

agitation. Elastomers are polymers with long chains [43]. The morphology of an elas-

tomer can be described in terms of convolution, curls and kinks. Convolutions represent

the long-range contour of an entire molecular chain, which forms entanglements (knots).

Curls are shorter range molecular contours that develop between entanglements and

crosslinks, and kinks are molecular bonds within a curl. Each molecular bond has rota-

tional freedom that allows the direction of the chain molecule to change at every bond.

Thus the entire molecular chain can twist, spiral and tangle with itself or with adjacent

chains. This basic morphology is shared among all the fifty thousand compounds used in

the market today and generically referred to by the term rubber. Despite this intricate

internal structure, the random orientation of the molecular chains results in a material

which is externally isotropic and homogeneous. Figure 1.1 illustrates the form of the

molecular network of an elastomer

Before using, the elastomer is subjected to physical and chemical treatments to

ameliorate its mechanical properties. One of these treatment is the vulcanization which

consists of the addition of sulfur-based curatives which create crosslinks among the

macromolecules chains through heating see [17].

Figure 1.1: Molecular network of elastomers [78]
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8 Chapter 1. Physical aspects and hyperelastic behavior of rubber-like materials

1.1.2 Quasi static response of rubber like materials

Figure 1.2: Stress strain curves for quasi-static loading [35]

Figure 1.3: Volume dilatation for a rubber specimen undergoing a uniaxial tensile
experiment[121]
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1.1. Phenomenology of rubber 8

The behavior of rubber-like materials can be described primarily as hyperelastic un-

der static loading where time-dependent effects are negligible [123]. The response of

rubber-like materials to quasi-static loading conditions of shear, compression/tension

and equibiaxial tension have been widely studied in the literature [33],[82],[118] and

[138] among others. It has been shown for all these experimental conditions that the

stress-strain curves are strongly nonlinear.

The stress-strain curve response of a carbon black filled elastomer are shown in figure

1.2 [35]. The material is subjected to uniaxial tension/compression, and pure shear condi-

tions. The constitutive nonlinearity of the material are evident, in fact as the breaking

point approaches, the stiffness of the material increases significantly and as a result

the slope of the stress strain curve rise. It is also noticed that the material have a non

symmetric behavior between tensile and compression loads.

From figure 1.2 one could extract the value of the shear modulus G and the Young

modulus E in the undeformed configuration. The ratio E
/

G is about 3 which means that

the Poisson’s ratio ν= 0.5. Therefore, the material is incompressible in the underformed

configuration.

Moreover, the incompressibility of rubber like materials have been studied in many

works [8], [91], [106], [114], [121]. The experiments by [121] reported in figure 1.3

show a limited volume change ∆V
/

V0
∼== 0.01 for a large stretch (λ = 4) confirms the

incompressibility constraint used in several constitutive equations.

1.1.3 Dissipative phenomena of rubber like materials

In addition to phenomena described in the previous section, elastomers have a fluid-like

or viscoelastic behavior when subjected to dynamic loading [44]. Two typical experiments

that prove the viscoelastic behavior of rubber like materials are : the relaxation exper-

iment for which a step-wise strain is applied to the specimen the stress response fall

from the peak value when the strain was applied to an asymptotic value as it is shown

in figure 4 from the experiment by [79] and the creep experiment when a sudden step

force is applied to the specimen the strain increases slowly from the instantaneous value

as shown in figure 1.5.
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8 Chapter 1. Physical aspects and hyperelastic behavior of rubber-like materials

Figure 1.4: Nominal stress versus time for a relaxation experiment [79]

Figure 1.5: Nominal strain versus time for a creep experiment [138]

These two phenomena are caused by the complex geometrical entanglements between

chains, which produce a local enhancement of the residual (Van der Walls) force. Under

prolonged loading, such “entanglement-cohesion” will slowly breakdown, giving rise to

the phenomena of stress-relaxation and creep presented above [138]. In the case of speed

loading these phenomena are limited and the response of the material is elastic. These

two phenomena emphasis the time dependent behavior of rubber like materials which
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1.1. Phenomenology of rubber 8

is still an active subject for research. Hence, the entire history of the strain must be

incorporated in the constitutive equations for these materials.

1.1.4 Dynamic response of rubber like materials

Figure 1.6: Storage modulus versus frequency [83]

From dissipative phenomena occurring for rubber like materials described in 1.1.3, it

is needful to investigate the dynamic response of these materials. This is achieved by

subjecting the material to a sinusoidal strain history of frequency ω of the form :

ε(t)= εa sin(wt), (1.1)

where εa is the dynamic amplitude. Under the dynamic loading the strain occur in the

material with a certain delay due to the viscous frictions inside the material, this delay

is observed for a harmonic deformation of equation (1.1) by a phase shift between the

displacement and the loading [9]. The harmonic deformation of equation (1.1) lead to

time-dependent stress of the form

σ=G∗εa, (1.2)

where G∗ is the complex modulus, its real part is denoted by G′ and referred to as the

storage modulus and its imaginary part is denoted by G′′ and referred to as the loss
modulus. These two moduli are dependent upon the dynamic amplitude especially for
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8 Chapter 1. Physical aspects and hyperelastic behavior of rubber-like materials

large value of εa. In figures 1.6 and 1.7 is reported the dependence of the storage and

loss moduli upon the frequency respectively using data from [83]. The storage modulus

has a nonzero value as w → 0 which corresponds to the equilibrium shear modulus since

t →∞ as w → 0.

Figure 1.7: Loss modulus versus frequency [83]

1.1.5 Thermal response of rubber like materials

Figure 1.8: Evolution of dynamic moduli with temperature [135]

For both quasi-static and dynamic loading, the behavior of rubber like materials is

strongly affected by temperature. The dynamic properties of the material exhibit big
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1.1. Phenomenology of rubber 8

changes with the temperature. In fact, at low temperatures the storage modulus is at its

maximum whereas the loss modulus is at its minimum. This range of temperature is

known as the glassy region. Increasing temperature from this region causes a brutal de-

crease of the storage modulus and an increase of the loss modulus in which it reaches its

maximum. This range of temperature is called the transition region. A further increase

in temperature, the material reach its rubbery plateau in which both dynamic moduli

are stable. This range is the perfect range for applications using rubber like materials.

This dependence of the dynamic moduli upon temperature is shown in figure 1.8.

On the other the hand the determination of the dynamic properties for wide range of

frequency is not possible experimentally. Therefore, an assumption has been made in

the modeling of rubber like materials which is the thermorehologically simple behavior.

Within this context, the time-dependent properties of the material such as relaxation

function, creep function and dynamic moduli when plotted versus the logarithm of time

or frequency at several temperatures can be superimposed to form a single curve [116]

and [146].

1.1.6 Other nonlinear phenomena

1.1.6.1 Mullins effect

Figure 1.9: Mullins effect [93]
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8 Chapter 1. Physical aspects and hyperelastic behavior of rubber-like materials

The Mullins effect is a strain induced softening phenomena. In fact the stress response

of the material to a cyclic loading decreases significantly at a given level of strain

during the unloading path compared to the stress reached in the loading path. This

phenomena is observed in the first five or six loading-unloading paths. It was firstly

discovered by [12] and then thoroughly studied by Mullins [100] and [101]. He suggested

some physical interpretations explaining this phenomena. The Mullins effect is more

pronounced for filled rubber than unfilled rubber.[15] and [16] explained this phenomena

by a damage mechanism in the polymeric chains of the material. [55], [50], [96], [108]

and [77] proposed several models to describe the Mullins effect. Figure 1.9 illustrates

the Mullins effect for a three cyclic loading-unloading paths.

1.1.6.2 Payne effect

Another softening phenomena which manifests the dependence of the stress upon the

entire history of deformation is the so-called Payne effect. Like the Mullins effect, this is a

softening phenomena but it concerns the behavior of carbon black-filled rubber subjected

to oscillatory displacement. Indeed, the dynamic part of the stress response presents a

rather strong nonlinear amplitude dependence, which is actually the Payne effect [20],

[73] and [112]. For a dynamic strain history, the storage and loss moduli are strongly

nonlinear of the dynamic amplitude εa as shown in figure 1.10. Several models have

been developed to explain the Payne effect. [20] made a classification to the Payne effect

models: (i) filler-structure models, (ii) matrix filler bonding and debonding models and

(iii) phenomenological or nonlinear network models. [112] suggested qualitatively that

the amplitude dependence of the storage and loss moduli were due to a filler network

in which the filler contacts depended on the strain amplitude. At lower amplitudes, he

argued that the filler contacts are largely intact and contribute to the high value of the

modulus. Conversely, at higher amplitudes the filler structure has broken down and does

not have time to reform. In another work [81] suggested an empirical model based on the

agglomeration/deagglomeration kinetics of filler aggregates, assuming a Van der Waals

type interaction between the particles. [89] proposed a phenomenological model within

the framework of continuum mechanics and nonlinear viscoelasticity. Experiments shown

in figure 1.10 [124] were performed using the Bromobutyl rubber BIIR.
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1.1. Phenomenology of rubber 8

(a) Shear storage modulus

(b) Shear loss modulus

Figure 1.10: Payne effects on dynamic moduli [124]
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8 Chapter 1. Physical aspects and hyperelastic behavior of rubber-like materials

1.2 Mechanical formulation in the high deformation

Consider an isotropic homogeneous elastic material which occupies the domain Ω0 in the

reference configuration or the unstressed one. Every material particle can be described

by the cartesin coordinates (X1, X2, X3) in the initial or the undeformed configuration

and (x1, x2, x3) in the current or deformed configuration which is illustrated in figure

1.11. The change of the mechanical state of the material particle moved from the initially

position X to the actual position x can be described mathematically using a mapping

function φ relating the reference and the current configuration as:

x =φ(X , t)= X +u(X , t). (1.3)

In the formulation of the continuum mechanics, it exists essentially two types of material

description: Lagrangian and Eulerian descriptions. The first description uses the initial

state of the material like a reference configuration and thus we can follow the material

particle in its trajectory. Although, the Eulerian description considers the trajectory of

the material particles passed by a chosen geometrical point in the space.

Figure 1.11: Transformation from undeformed to deformed configuration

1.2.1 The deformation gradient

In the continuum mechanics the deformation gradient plays an important role because

it is involved in the different mechanical quantities. The deformation gradient relates
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1.2. Mechanical formulation in the high deformation 8

the infinitesimal vector dx in the current configuration to the infinitesimal vector dX in

the undeformed configuration as the following:

dx = F dX . (1.4)

In that sense, F is also a two-point tensor, i.e. it relates quantities in two different

configurations. Now, tensor F can be defined as:

F = ∂x
∂X

, (1.5)

where ∂ denoted the gradient operator with respect to the initial coordinates.

1.2.2 Polar decomposition of the deformation gradient

An advantageous use of the deformation gradient is its polar decomposition, that is de-

composing the total deformation F into a tensor describing the rotation and another one

describing the stretch. The polar decomposition is discovered by Cauchy using geometri-

cal arguments. Mathematically, the polar decomposition, in the material configuration,

is expressed as:

F = R U , (1.6)

where R is the rotation tensor which is an orthogonal tensor, i.e. RRT = I. While U is

the material stretch tensor which is a symmetric tensor, i.e.

UT =U .

Equivalently, in the spatial configuration, the polar decomposition is expressed as:

F =V R, (1.7)

where V is the spatial stretch tensor that is also symmetric. It can be shown that both

tensors U and V share the same principal values. As both tensors are symmetric, the

spectral theorem can be applied. Thus, tensors V and U can be conveniently expressed

as:

U =
3∑

α=1
λαNα⊗Nα

V =
3∑

α=1
λαnα⊗nα,

(1.8)

where λα are the principal stretches, Nα are the material principal directions of U, nα
are the spatial principal directions of V , and n is the number of dimensions involved.
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8 Chapter 1. Physical aspects and hyperelastic behavior of rubber-like materials

1.2.3 Volume changes and isochoric/volumetric split

The deformation gradient is also used to obtain information about volume changes in

the body studied. It can be shown that the determinant of F gives the ratio between

differential volumes in the reference (dV ) and current configurations (dv). This can be

written as:

J = detF = dv
dV

, (1.9)

where J is the jacobian of the deformation gradient tensor. If J = 1, then no volumetric

deformations are involved. It is crucial, when dealing with incompressible or nearly

incompressible materials, to split the deformation into volumetric components and

isochoric or distortional components. The aim of this split is to ensure that the isochoric

component of the deformation, denoted by F̄, does not contribute to any volume changes,

that is:

detF̄ = 1. (1.10)

Such a condition is satisfied for the following form F̄ wich is defined as:

F̄ = J− 1
3 F, (1.11)

while the volumetric component Fv can be expressed as:

Fv = J
1
3 I. (1.12)

1.2.4 Strain

Several strain tensors are constructed from the deformation gradient tensor. Strain ten-

sors are further categorized as material or spatial strain tensors based on the description

they refer to. Some of the strain tensors in each category will be described in the following.

The right Cauchy-Green tensor is a material strain tensor that is expressed in terms of

the deformation gradient tensor. It is defined as:

C = F t F =U2, (1.13)

where the polar decomposition (1.6) is used. In view of the equation (1.8), this can be

equivalently expressed as:

C =
3∑

α=1
λ2
αNα⊗Nα. (1.14)
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1.2. Mechanical formulation in the high deformation 8

The strain tensor C is then used to define another material strain tensor, namely, the

Green-Lagrange strain tensor defined as:

E = 1
2

(C− I). (1.15)

Similarly, spatial strain tensors can be constructed. The left Cauchy-Green strain tensor

is given by:

B = F F t =V 2, (1.16)

where equation (1.7) is used to obtain the last equality. Using equation (1.9), B can hence

be expressed as:

B =
3∑

α=1
λ2
αnα⊗nα. (1.17)

Another measure of spatial strain tensors is the Almansi tensor, defined based on the

left Cauchy-Green tensor as:

A = 1
2

(I −B−1). (1.18)

1.2.5 Stress

Consider an infinitesimal area ∆a in the vicinity of a particle position x belonging to a

deformable body in its current configuration Ωt. If the resultant force acting on this area

is denoted by ∆ f , the corresponding traction force is:

t(n)= lim
∆a→0

∆ f
∆a

, (1.19)

where n is the outward normal to ∆a at point x. The traction force satisfies Newton’s

third law, that is:

t(−n)=−t(n) (1.20)

This traction force is then related to the normal vector via the Cauchy stress tensor σ as:

t =σ.n, (1.21)

where

σ=
3∑

i, j=1
σi j e i ⊗ e j, (1.22)

in cartesian coordinates with basis unit vectors e in the current configuration. The

Cauchy stress is a spatial tensor as it relates the current force vector to the deformed

area. Other stress tensors can be constructed from the previously described measure of

stress. Some of these stress tensors are provided in the following.
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8 Chapter 1. Physical aspects and hyperelastic behavior of rubber-like materials

1.2.5.1 The First Piola-Kirchhoff Stress

The first Piola-Kirchhoff stress tensor, similar to F, is a two-point tensor that can be

related to the Cauchy stress via the following relation:

π= Jσ F−t, (1.23)

with

π=
3∑

i, j=1
πi j e i ⊗E j, (1.24)

where (E i)i=1,2,3 are the basis unit vectors in the reference configuration in cartesian

coordinates. The first Piola-Kirchhoff stress, in that sense, relates the traction force in the

current configuration to the corresponding differential area in the reference configuration.

This implies that the traction force vector t in the deformed configuration can be mapped

back to into the traction force T in the reference configuration. That is:

T =π N, (1.25)

where N is unit outward normal vector to the particle point X (the initial position of x).

Remark: Traction force vector T defined in Equation 2.22 does not represent an ac-

tual traction force applied on point X , but it represents a co-linear vector to t in the

reference configuration.

1.2.5.2 The Second Piola-Kirchhoff Stress

The second Piola-Kirchhoff stress tensor is completely defined in terms of quantities in

the initial configuration. This tensor is expressed in terms of the Cauchy stress and the

first Piola-Kirchhoff stress as:

S = JF−1 σ F−t = F−1 π. (1.26)

1.2.5.3 The Kirchhoff Stress

Another stress tensor that may be important for some constitutive laws is the Kirchhoff

stress tensor that is expressed, in terms of the previously described stress tensors, as:

τ= Jσ=π F t = F S F t. (1.27)
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1.3. Hyperelasticity 8

1.3 Hyperelasticity

1.3.1 Deformation energy

In the general theory of the elasticity, a material can be elastic with one condition, if

the Cauchy stress tensor depends only on the state of the deformation which is char-

acterized by any mesure of the strain. Thus, any measure of the stress is independent

of the deformation path. The word of "hyperelasticty" can be divided essentially into

two word "Hyper" and "Elasticity". In this scope, the first word denotes the range of

large deformations and the second one is equivalent to the previous definition of the

elasticity behaviour. To describe the non-linearity of the hyperelastic behavior, we need

to postulate a form of energy potential, and by derivation of this potential the stress

tensor can be obtained. This energy is also called deformation energy density or strain

energy density and is often denoted as W or Ψ in the literature.

Now, consider A as a measure of the deformation state. The objectivity is one of the

most important conditions to be verified by the energy potential which can be expressed

mathematically as:

Ψ(QAQ t)=Ψ(A). (1.28)

where Q is an orthogonal tensor, i.e. Q Q t = I. I is the second-order-unit tensor.

In other words, the objectivity of the deformation energy is nothing but its independence

of any material reference. It’s mentioned in [124], that to respect the objectivity principle,

the strain energy density can be chosen as:

Ψ=Ψ(C). (1.29)

In the case of an isotropic material, Ψ can be expressed in function of the invariants of C
and B. But using that, Both of C and B have the same eigenvalues. So in consequence

they have the same invariants.

I1(C)= I1(B)

I2(C)= I2(B)

I3(C)= I3(B)

. (1.30)
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8 Chapter 1. Physical aspects and hyperelastic behavior of rubber-like materials

These invariants can be expressed in this way:

I1 = trace(C)=λ2
1 +λ2

2 +λ2
3

I2 = 1
2

(I2
1 − trace(C2))=λ2

1λ
2
2 +λ2

1λ
2
3 +λ2

2λ
2
3

I3 = det(C)= J2 =λ2
1λ

2
2λ

2
3

, (1.31)

where λ1, λ2, λ3 are the stretches in the principal direction of the two tensors C and B.

Now to find the expressions of the different stress tensors we have to remind the couples

of every strain measure and its ad-joint stress variable. We can present these couples in

this way:

-(σ, B)

-(τ, F)

-(S, E)

By the definition of the couple of the ad-joint variables we deduce:

σ= 1
J

B
∂Ψ

∂B
τ= ∂Ψ

∂F
S = ∂Ψ

∂E
. (1.32)

The derivative of the different invariants compared to the tensor C may be expressed as:

∂I1

∂C
= I

∂I2

∂C
= I1I −C

∂I3

∂C
= I3C−1. (1.33)

From equations (1.32) and (1.33), it is deduced that:

S = 2
∂Ψ

∂C
= 2

∑
i

∂Ψ

∂I i

∂I i

∂C
, S = 2[(

∂Ψ

∂I1
+ I1

∂Ψ

∂I2
)I − ∂Ψ

∂I2
C+ I3

∂Ψ

∂I3
C−1]. (1.34)

Having the equation (1.26) we can derive:

σ= 2
J

[(
∂Ψ

∂I1
+ I1

∂Ψ

∂I2
)B− ∂Ψ

∂I2
B2 + I3

∂Ψ

∂I3
I]

τ= 2[(
∂Ψ

∂I1
+ I1

∂Ψ

∂I2
)F − ∂Ψ

∂I2
B F + I3

∂Ψ

∂I3
F−t].

(1.35)

1.3.2 The incompressibility condition

Almost of the rubber-like materials are characterized by an incompressible behavior. In

fact, for this category of materials the compressibility module varies between 1000 and

2000MPa, while the magnitude of the shear modulus is about 1MPa. This difference

signifies that the rubber hardly changes in volume, even under high stress. Its behavior

is almost as incompressible. For most applications, modeling supposes a complete incom-

pressiblity. So the incompressibility assumption is a good approximation for the modeling
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1.3. Hyperelasticity 8

of rubbery materials. The incompressibility condition can be shown mathematically

through:

J = det(F)= 1. (1.36)

Returning to the definition of the parameter J we can deduce that in an incompress-

ible material, the volume is preserved and thus the transformation is isochoric. The

incompressibility condition in the strain-stress relation can be introduced directly by the

change of the formulation of the deformation energy which becomes:

Ψ̃=Ψ(I1, I2, I3 = 1)− p(J−1), (1.37)

where p denotes the Lagrange multiplier associated to the incompressibility condition.

So the stress-strain relation in the Lagrangian configuration can be expressed in this

way:

S = 2[(
∂Ψ

∂I1
+ I1

∂Ψ

∂I2
)I − ∂Ψ

∂I2
C]− pC−1. (1.38)

And in the eulerian configuration, it becomes:

σ= 2
J

[(
∂Ψ

∂I1
+ I1

∂Ψ

∂I2
)B− ∂Ψ

∂I2
B2]− pI. (1.39)

Using the relation (1.26) one can also deduce for the Kirchhoff stress:

τ= 2[(
∂Ψ

∂I1
+ I1

∂Ψ

∂I2
)F − ∂Ψ

∂I2
B F]− pF−T . (1.40)

Identifying the multiplier of Lagrange in the spheric part of the Cauchy stress tensor, p
can be analyzed like a measure of the unknown hydrostatic pressure.

1.3.3 Examples of strain energy densities

Many forms of deformation energy densities have been proposed in the literature. Some

are based on a statistical theory, others are purely phenomenological. in this part we

will focus only on the deformation energy densities compatible with an incompressible

material. There are several ways to classify the different energies of deformation. One

way for example, it is to separate those expressed in terms of invariants, and those

that are expressed in terms of the principal streches. In the first case the deformation

energy depends linearly on the parameters of the constitutive law, and it is expressed in

terms of the invariants I1 and I2. The coefficients of this type of laws behavior can be

easily identified. They generally allow a good smoothing of the experimental results to

a moderate level of deformation. For higher strain rate, will often increase the order of
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8 Chapter 1. Physical aspects and hyperelastic behavior of rubber-like materials

the polynomial form. However, the fact of working with a large number of coefficients

leads to numerical instabilities in the limits of the investigative deformation field range.

For the models that are expressed as a power law as the model of Ogden, coefficients

involved in non-linear form (exponent). These models usually have a good smoothing

with few parameters for higher levels of deformation. However their identification is

more difficult. We can find a more complete review of different energies deformation in

this PHD thesis [124].

1.3.3.1 Developement in function of the invariants

The generalized model of Rivlin [123] implemented in most of finite element codes, is

given by the following series expansion:

Ψ=
N∑

i+ j=1
ci j(I1 −3)i(I2 −3) j. (1.41)

This type of behavior law is generally the most used. The strain energy is developed in

order proportional to the desired deformation range (for N = 3, we have generally a good

correlation with experimental measurements). In practice, most of the polynomial used

laws correspond to a particular case of Rivlin development. For example, keeping only

the first term of the expansion, we get the Neo-Hookean law:

Ψ= c10(I1 −3), (1.42)

which was first developed from statistical theory considering that the rubber vulcanized is

a three-dimensional network of long molecular chains connected in some points. The Neo-

Hookean model provides a good correlation to the degree of deformation moderate (up to

50 % [124]), but is not suitable for the incorporation of large deformations. The second

special case of development corresponds to the phenomenological model of Mooney-Rivlin,

widely used in the rubber industry. We then take the first 2 terms of Rivlin development,

which allows writing:

Ψ= c10(I1 −3)+C01(I2 −3). (1.43)

This time, a good correlation is obtained with the experimental results to levels deforma-

tion of the order of 150% [124].
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1.3. Hyperelasticity 8

1.3.3.2 Development in function of the principal streches

Ogden in [107] has proposed a strain energy in function of the principal stretches, which

describes the change of these fields during the deformation.

Ψ=Ψ(λ1,λ2,λ3)=
N∑

k=1

µk

αk
(λαk

1 +λαk
2 +λαk

3 −3), (1.44)

where N is the chosen number of the terms in the series of the strain energy, while

µk denotes the shearing coefficients and αk are adimensional coefficients. Consider µ

the slope in the origin of the stress-strain graph during a shearing test. Then with

linearization we can obtain a relation between the Ogden shearing coefficient and µ:

µ=
N∑

k=1
αkµk, (1.45)

under the following condition:

αkµk > 0 ∀k ∈ {1, ..., N}. (1.46)

Using the Ogden model, it is possible to have good correlation with the experimental

results. One of the advantages of this model, that we can fit well the experimental

data even for a high level of deformation, giving the ability of having a more stable

identification than the models expressed in function of the invariants. In the case of

an incompressible transformation λ1λ2λ3 = 1. So Using the previous incompressibility

condition, and having N = 2, α1 = 1 and α2 = −2 we can identify the Mooney Rivlin

model where c10 = µ

2 and c01 =−µ

2 . With the same way, we can obtain the Neo-Hookean

model with c10 = µ

2 when N = 1 and α1 = 2. Another form of the strain energy density,

also depending on the principal stretches, was proposed by Valanis and Landel [144].

The function of the strain energy density can be expressed as the sum of 3 separable

functions, every one depending on only one principal stretch variable which is equivalent

to:

Ψ(λ1,λ2,λ3)=ψ1(λ1)+ψ2(λ2)+ψ3(λ3). (1.47)

This form of the strain energy implies the absence of the interaction between the principal

stretches variables. Using the strain energy density, we can express the stress tensors in

the principal directions in the different configurations:

σα =λα ∂Ψ
∂λα

Pα = ∂Ψ

∂λα
Sα = 1

λα

∂Ψ

∂λα
(1.48)
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8 Chapter 1. Physical aspects and hyperelastic behavior of rubber-like materials

1.4 Literature survey for nonlinear viscoelastic
models

It is well known that rubber-like materials exhibit nonlinear viscoelastic behavior over a

wide range of strain and strain rates confronted in several engineering applications such

as civil engineering, automotive and aerospace industries. This is due to their capacity

to undergo high strain and strain rates without exceeding the elastic range of behavior.

Further, the time dependent properties of these materials, such as shear relaxation

modulus and creep compliance, are, in general, functions of the history of the strain or

the stress [45].

The study of viscoelastic behavior of solid materials has a long history and several models

have been developed from purely mathematical approaches to applied studies where ease

of application is for huge interest. The first, ever, models dedicated to the modeling of

viscoelastic behavior have been established by Maxwell, Kelvin and Voigt who studied the

one dimensional responses of these materials which led to the establishing of rheological

models bearing their names which are still used to this day [92] (i.e. the Maxwell, Kelvin

and Voigt rheological models). These rheoligical models were used by [10] to formulate

the first three dimensional viscoelastic model for isotropic materials. This model is

restricted to the linear viscoelasticity. However, due to the constitutive nonlinearities

and the fact that these materials are able to undergo geometrical nonlinearities, in

a wide range of strain, a linear viscoelasticity theory is no longer applicable for such

material and new constitutive equations are required to fully depict the behavior of

rubber-like materials for quasi-static and dynamic configurations of huge interest in

engineering applications. In what follows, we present some of the most used modeling

strategies in the literature.

1.4.1 Internal variables formulation

This approach was firstly introduced by [27] which consists on the formulation of the

constitutive equation in terms of thermodynamic state variables : the internal energy is

expressed as a function of the strain (or stress) and a set of internal state variables [24],

[25], and [28]. These internal variables are related to their conjugate thermodynamic

forces, which are the derivative of the internal energy with respect to the internal

variables, via the evolution equations which could be linear or nonlinear.

One of the most known model following the internal state variable approach is the one
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1.4. Literature survey for nonlinear viscoelastic models 8

proposed by [131] which was the starting point for many contributions such as [51], [68],

[66], [148] and our model proposed in [136] and presented in chapter 2 among others.

The Simo’s approach was based on the split of the internal energy density following

a multiplicative decomposition of the deformation gradient tensor F into dilatational

and volume preserving parts. Despite that this model may lead to non-physical results

at finite strain [36], this model depict very well the behavior of rubber like materials

for several applications and different load configurations. For this model, the internal

energy is the sum of three different terms: a volumetric part depending on the jacobian

of the deformation gradient tensor J = det(F ), an isochoric part depending upon the

isochoric part of the deformation gradient tensor F̄ = J−1F and a part depending upon

the internal variable noted q in the original paper which represents the non-equilibrium

part of the stress. The evolution law of the internal variable q is postulated such that

the generalized force is proportional to the derivative of the internal energy with respect

to the isochoric strain. This assumption means that the behavior of the material is

considered purely elastic for bulk, but it is viscoelastic for the shear. This formulation led

to a single convolution integral representation of the constitutive equation of the stress.

Similar formulations to the one used by [131] is due to the contribution by [51] where the

internal variables were represented by a set of stress-like variables and the work by [68]

where the internal variables were represented by a strain-like variables. The advantage

of such formulation is the possibility to be used for modeling anisotropic behavior such

as the work [66] in which the internal variables where dependent upon fiber orientation.

The Simo’s model is implemented in most of finite elements commercial software.

1.4.2 Additive decomposition of the free energy density

This approach relies on the decomposition of the deformation gradient tensor F as the

sum of elastic deformation gradient tensor and an inelastic deformation gradient tensor.

This decomposition was first proposed by [128] and followed by [90], [56], [41], [74] and

[88] among many others.

Within this framework the deformation gradient tensor F is decomposed as follows:

F =FeFi. (1.49)

The inelastic part Fi characterizes an intermediate configuration between the reference

and the actual configurations. This inelastic part of the deformation gradient tensor could

be decomposed into several intermediate configurations. From (1.49) the free energy
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8 Chapter 1. Physical aspects and hyperelastic behavior of rubber-like materials

density is also split as follows

Ψ=Ψe(C)+Ψo(Ce), (1.50)

where C is the right Cauchy-Green strain tensor and Ce = Fe
tFe is the elastic right

Cauchy-Green strain tensor in the intermediate configuration. The free energy density

of (1.50) have been used in several works such as [56], [41] and [88] among many others.

[11] has proposed the following form for the free energy density

Ψ=Ψe(C)+Ψo(C,Ci), (1.51)

in which Ci =Fi
tFi is the inelastic left Cauchy-Green strain tensor, the viscous compo-

nent of the free energy density Ψo(C,Ci) is assumed to be proportional to the elastic

component Ψe(C). The stress response in terms of the second Piola-Kirchhoff stress

tensor S are obtained after applying the Coleman and Noll procedure [27] by verifying

the Clausius-Duhem inequality for all admissible processes and is decomposed as

S =Se +Si, (1.52)

where Se is the equilibrium stress whereas Si is the over stress. Using an internal

energy of the form of equation (1.50) these stresses are given by

Se = ∂Ψe

∂C
, Si = ∂Ψi

∂Ci
(1.53)

In order to reach the expression of the stress, in addition to equation (1.53) one need

to define the evolution law of the internal variable Fi or Fe. A common choice for the

flow rule is to apply a generalization of the one-dimensional linear Maxwell-model to

the three-dimensional and nonlinear domain. In this case the evolution equations are

assumed to be linear, and the overstress term arising from them is the generalization

of the extra-stress arising in Maxwell element [66] and [73].Within this context and

the framework of irreversible thermodynamics, [13] proposed a double decomposition of

the deformation gradient tensor F . First, the deformation gradient tensor is split into

volumetric and isochoric parts, then the latter is split into elastic and inelastic parts :

F = (J
1
3I)F̄ = (J

1
3I)F̄eF̄i, (1.54)

where F̄ is the incompressible deformation gradient tensor, F̄e is the elastic incompress-

ible deformation gradient tensor and F̄i is the inelastic deformation gradient tensor. This
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1.4. Literature survey for nonlinear viscoelastic models 8

decomposition implies that the inelastic processes are isochoric. The free energy density,

following (1.54), is decomposed as well into:

Ψ=Ψeq +Ψneq +Ψvol , (1.55)

where the subscript eq, neq and vol stand for the equilibrium, non-equilibrium and

volumetric parts of the free energy density respectively. The stress tensor is obtained

after satisfying the second law of thermodynamics in terms of the Clausius-Duhem

inequality and it is decomposed accordingly as

σ =σeq +σneq +σvol . (1.56)

For the evolution law of the internal variables, three different rheoligical models were

used [86]. The first model is the Zener model for which the evolution law takes the

followingg form:

˙̄Be =L ·B̄e +B̄e ·Lt − 2
3

(I :L)B̄e − 2
η
σneq ·B̄e, (1.57)

where B̄e = F̄e · F̄ t
e is the incompressible left Cauchy-Green strain tensor and it is

considered the internal variable, L is the velocity gradient tensor and η is the viscosity

coefficient. The second model is the Poynting–Thomson model for which the evolution

law reads
˙̄Be =L ·B̄e +B̄e ·Lt − 2

3
(I :L)B̄e − 2

η
σneq ·B̄e

+ 4
Jη
Ψneq,1

(
B̄− 1

3
(
B̄ : B̄−1)B̄e

)
+ 4

Jη
Ψneq,2

(
B̄e ·B̄−1 ·B̄e − 1

3
(
B̄−1 : B̄e

)
B̄e

) (1.58)

where Ψneq,1 and Ψneq,2 are the derivative of the non equilibrium parts of the free

energy density of equation (1.55) with respect to the first and second invariants of the

inelastic left Cauchy-Green strain tensor B̄i. The third model is the generalized Bingham

viscoplastic model.

[88] proposed nonlinear evolution equations based on strain, time and temperature. [11]

also used nonlinear evolution equations of rate type for the internal variables. These

are based on a particular linear relaxation form of the Maxwell model which leads to a

viscoelastic formulation that can be seen as a particular case of a large strain viscoplastic

model. A variational formulation of Bonet’s model has been developed in [40].
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8 Chapter 1. Physical aspects and hyperelastic behavior of rubber-like materials

1.4.3 Integral based formulation

The integral-based formulation is an extension to the finite strain domain of the simple

formulation of Boltzmann. Within this approach, the stress is decomposed into an

instantaneous elastic response typically modeled by an hyperelastic response for rubber-

like materials and an over-stress quantity which is expressed by a hereditary integral

containing all the history of the strain up to the actual time t. The first contribution to

this approach was the work by Green and Rivlin [52]. Inthis context, the internal energy

Ψ was developed accordingly in agreement with the fading memory property i.e., strains

which occurred in the distant past have less influence on the present value of Ψ than

those which occurred in the more recent past. This work have been followed by several

works who dealt with the definition of the internal energy accounting for deformation

histories [31], [39] and [49]. One of the most known models to this approach is the multi-

integral model proposed by Pipkin and Rogers [117] for which under incompressibility

assumption the second Piola-Kirchhoff stress reads

§ (t)=− pC−1 +
∫ t

0
r1

(
t− t′

)
Ė

(
t′
)

dt′+∫ t

0

∫ t

0
r2(t− t′, t− t′′)Ė

(
t′
)
Ė

(
t′′

)
dt′ dt′′+∫ t

0

∫ t

0

∫ t

0
r3

(
t− t′, t− t′′, t− t′′′

)
tr

[
Ė

(
t′
)
Ė

(
t′′

)]
Ė

(
t′′′

)
dt′dt′′dt′′′+∫ t

0

∫ t

0

∫ t

0
r4

(
t− t′, t− t′′, t− t′′′

)
Ė

(
t′
)
Ė

(
t′′

)
Ė

(
t′′′

)
dt′dt′′dt′′′,

(1.59)

rk (k = 1..4) are the relaxation kernels expressed by a decaying exponential functions

and Ė (t) is the time derivative of the Green-Lagrange deformation tensor. Equation

(1.59)will be used later in chapter 3 to generate data which will be used in the identi-

fication procedure presented therein. This work was followed by several contributions

such as the pseudo-linear model proposed by [57] in which a the stress is expressed as

Boltzmann integral over the history of a nonlinear measure of strain.

Thanks to their simplicity for engineering applications, several models using this ap-

proach have been thoroughly investigated [4], [58] and [23] among others. In the latter,

a comparative study have been made to investigate seven single-integral viscoelastic

models response using data in compression for a filled rubber for relaxation and load-

ing/unloading/creep cycles at different strain rates, namely the models due to [47], [48],

[54], [147], [63], [89] and [127]. These models could be written in the same form in terms
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1.4. Literature survey for nonlinear viscoelastic models 8

of the first Piola-Kirchhoff stress as

π (t)=π(e) +F (t)Λ (t)
∫ t

0

∂k (t− s)
∂ (t− s)

Ψ (t− s)ds

π(e) =φ1 (t)F (t)+φ2 (t)F (t)C (t) ,
(1.60)

where πe is the hyperelastic contribution to the stress and the functions φ1 and φ2

are functions of the first two invariants of the left Cauchy-Green strain tensor C. A

suitable choice for Λ, Ψ as well as the viscoelastic kernel k allows all the models under

consideration to be encompassed.

Another contributions in this context are the quasi-linear viscoelastic models which was

first proposed by [48] to describe the behavior of biological tissues. This model, which is

a special case of a more general Pipkin–Rogers constitutive model [117], predicts that at

any time a stress that is equal to the instantaneous elastic stress response decreased

by an amount depending on the past history, assuming that a Boltzmann superposition

principle holds. This work was followed by [99] and [98] where the linearized strain is

expressed in terms of a nonlinear measure of the stress.

1.4.4 Differential viscoelasticity

Finally, another approach to describe viscoelastic behavior of rubber-like materials is the

differential nonlinear viscoelasticity [7], [126] and [143]. Within this context, the stress

and strain tensors are related through differential equations. It is the generalization

to the three-dimensional nonlinear case of the linear rheological elementary models,

namely the Hook spring for which the stress is expressed by the following

σ=Gε, (1.61)

for the linear case and

σ=φe(ε), (1.62)

for the nonlinear case and the viscous dashpot for which the stress is expressed as

σ= ηε̇, (1.63)

for the linear case and

σ=φv(ε̇), (1.64)

for the nonlinear case. In general, the stress-strain differential relation arising from any

combination of these elementary models reads
M∑

m=0
am

∂mσ

∂tm =
N∑

n=0
bn
∂nε

∂tn , (1.65)
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8 Chapter 1. Physical aspects and hyperelastic behavior of rubber-like materials

where am and bm are functions of the rheological characteristics of the elementary

models associated. In the case when m = n, the stress-strain relation arising from (1.65)

is equivalent to the one obtained from the generalized Maxwell model. The generalization

of these rheological models to the three-dimensional domain is done by replacing the

one dimensional stress σ and strain ε by their three-dimensional counterparts σ and ε

respectively. The Rivlin-Ericksen model is a simplified form of relation (1.65) which does

not include time derivative of the stress

σ=
N∑

n=1
bn
∂nε

∂tn . (1.66)

In relation (1.66) σ is replaced by the Cauchy stress tensor σ and the derivative ∂nε
∂tn by

the nth Rivlin-Ericksen tensor An [34].Therefore the Cauchy stress tensor is given by

σ =
N∑

n=1
bnAn. (1.67)

In particular, the second order model obeys the equation

σ = ηA1 +b12A
2
1 +b21A2, (1.68)

where η, b12 and b21 are adjustable parameters. The model of equation (1.68) was

employed by [2], [3], [26] and [122] to study laminar flow of viscoelastic fluids.

Another model arising from (1.66) is the White-Metzner model for which ∂nε
∂tn is replaced

by the nth White-Metzner tensor Bn. The model reads

σ =
N∑

n=1
bnBn, (1.69)

which was used by [2], [76] and [145].

Other contributions to this approach is the extension to finite strain domain of the

so-called Maxwell rheological model composed by a spring in series with a dashpot,

the Kelvin-Voigt model composed by a spring parallel to a dashpot or the standard

viscoelastic solid model composed by two springs and a dashpot with two configuration

as it is shown in figure 1.12. Version A was extended to large deformation by [59] in

which the linear dashpot was replaced by a nonlinear one and linear spring with Young’s

modulus E2 was replaced by an hyperelastic spring where the strain energy density was

taken in the Langevin form. This model was used to describe the effect of strain rate of

the yield stress in cellulose derivatives and poly(vinyl chloride). Version B was extended

to finite strains by [14]. In that model, the linear spring with Youn’s modulus E1 was
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1.5. Conclusion 8

replaced by a hyperelastic spring and the Maxwell element in parallel was replaced

by a nonlinear Maxwell element of Leonov’s type. Numerical simulation demonstrates

that this model provides qualitative agreement with experimental data for polymeric

materials [34].

Figure 1.12: Two versions of the standard viscoelastic solid

Thus in the simplest case, the stress depends upon the current values of strain and

strain rate only. In this sense, it can account for the nonlinear short-term response

and the creep behavior, but it fails to reproduce the long-term material response (e.g.,

relaxation tests)

1.5 Conclusion

Within this chapter, we tried to present a review of the behavior of rubber-like materials

from a phenomenological point of view. In the first part, we recalled the most known

physical aspect related to these materials evolving high deformability and damping

properties corroborated with several experiments found in literature. In the second part,

we recalled the basis mechanics for the nonlinear elasticity framework needed in the

development of nonlinear viscoelasticity models. In the third part, we tried to classify the

different approaches and modeling procedures followed in the development of nonlinear

viscoelatic models for rubber-like. The common thing about all these approaches is
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8 Chapter 1. Physical aspects and hyperelastic behavior of rubber-like materials

that the constitutive equation of the stress is represented by a hereditary integral over

the history of the strain or equivalent quantities. In the next chapter, we present the

nonlinear viscoelastic model proposed within this work.
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in [131], [65] and [120] taking into account the dependence of the time dependent func-

tions upon the state of the strain.

In section 2.1, a one dimensional nonlinear viscoelastic model is developed using a

modified Maxwell rheological model. Section 2.2 is devoted to the extension of the model

to the three-dimensional domain under the assumption of linear kinematics. In section

2.3, this model is extended to the fully nonlinear formulation using a nonlinear set of

evolution equation of the internal state variables within the rational thermodynamic

framework. The shear relaxation modulus is set to be a function upon the invariants

of the right Cauchy-Green strain tensor via a strain shift function analogous to the

temperature shift function for the thermorheologically simple materials, this choice is

motivated experimentally following the experimental characterization of BIIR from [103].

The constitutive equation for the stress is then obtained by resolving the set of nonlinear

evolution equations.

2.1 Experimental and rheological motivations

In this section, we develop the rheological and experimental arguments leading to

the proposed finite strain viscoelastic model. To motivate the three dimensional model

developed below, we first highlight some experimental results leading to this model and

then we consider a suitable modification to the generalized Maxwell rheological model to

build the one dimensional nonlinear viscoelastic model.

2.1.1 Experimental motivation

A significant class of rubbers shows nonfactorizable behavior at low and average range

of strain. This phenomenon consists on the dependence of the shear relaxation modulus

upon strain level. Several works were dedicated to deal with this class of behavior

especially the series of papers by [134] and [104]. In a recent work [103], an experimental

characterization was carried out with three rubber-like materials: the natural rubber

(NR), the Bromobutyl (BIIR)and a mixture of these materials (NR-BIIR). Samples of

the three materials were subjected to monotonic experiments of simple extension and

pure shear with a relaxation of 10 minutes every 50% of strain in order to depict

the equilibrium behavior of the materials. Moreover, a dynamic characterization was

carried out in simple shear for a wide window of frequency at several temperatures and

predeformations in order to construct the master curve of the material. This material
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2.1. Experimental and rheological motivations 8

showed a dependence of the shear relaxation modulus upon strain. In figure 2.1 it is

plotted the logarithm of the shear relaxation modulus G(t) versus the logarithm of time

for two different level of strain 10% and 50% for BIIR material. The shear relaxation

modulus shows a dependence upon the strain level which leads according to [141] to a

shift in the time with a strain dependent function since the shear relaxation modulus at

any level could be obtained through a combination of a vertical and horizontal translation

from the reference curve at a strain level of 10%. Therefore, a one dimensional viscoelastic

model, taking in consideration these results, is developed in the next section through a

generalization of the Maxwell rheological model.

Log(t) 
1 2 3 4 5 6 7 8 9 10

L
og

(G
)

12.2

12.3

12.4

12.5

12.6

12.7

12.8

12.9

Modulus for ǫ=10%
Modulus for ǫ=50%

Figure 2.1: Dependence of the shear relaxation modulus upon strain for BIIR rubber

2.1.2 Rheological motivation

Before we develop the three-dimensional viscoelastic model, we shall investigate the

following formulation for a standard linear solid. In this model, which is a modification

to the rheological Maxwell model reported in figure 2.2, σ denotes the total stress, ε

denotes the total strain, G i and τi are the parameters of the Maxwell model. Unlike the

rheological model used in [129], the relaxation times τi are, due to the experimental result

outlined above, functions of the total strain ε . Furthermore, let αi be the deformation of
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8 Chapter 2. Proposed nonlinear viscoelastic model

the dashpot of each Maxwell branch and Q i =G iαi an internal variable stress measure

characterizing the model. The internal deformation variables variables αi, according to

the rheological model of figure 2.2, are governed by the following evolution equations.

Figure 2.2: Generalized Maxwell model

α̇i + 1
τi (ε)

αi = 1
τi (ε)

ε, αi| t=0 = 0. (2.1)

Which can be written in terms of the stress internal variables Q i as follow:

Q̇ i + 1
τi (ε)

Q i = 1
τi (ε)

G iε, Q i| t=0 = 0. (2.2)

The total stress σ derive directly from the rheological model as the difference between

the elastic instantaneous stress and the non-equilibrium stresses Q i.

σ=Goε−
∑

i
Q i, (2.3)

where Go = G∞+∑
i

G i is the instantaneous shear modulus. The time parameters of

the Maxwell model are set to be a strain dependent function; this idea follows from
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2.1. Experimental and rheological motivations 8

the description of thermorheologically simple materials’ behavior see [141] and [140],

for which all parameters are temperature dependent via a single variable function

called ‘temperature shift-function’. [95, 125] and [104] among others generalized this

notion to describe thermorheologically complex materials’ behavior where the shift

function depend upon temperature and stress or strain. Other contributions modeled

this phenomena by a strain-rate dependent relaxation times , see [21] and references

therein. In our work, since the study was carried out using relaxation data, the time

parameters take the following form.

τi (ε)= a (ε)τi, (2.4)

a(ε) is a positive strain function, following the dissipation inequality, called strain shift

function. Therefore, the law of evolution of the equation (2.1) became a linear differential

equation over the reduced time ξ

dαi

dξ
+ 1
τi
αi = 1

τi
ε with ξ (t)=

∫ t

0

dt′

a (ε)
, (2.5)

where ξ(t) is an increasing function of time. Considering the form of the time parameters

of equation (2.4), the integration of the differential equations in (2.5) lead to the following

expression of αi:

αi (t)= 1
τi

∫ t

0
exp

[−(
ξ−ξ′)/τi

]
ε
(
t′
)
dξ′, (2.6)

which can be integrated by parts to lead to

αi (t)= ε (t)−
∫ t

0
exp

[−(
ξ−ξ′)/τi

]
ε̇
(
t′
)
dξ′. (2.7)

Substituting of α by its expression into (2.3) with Q i =G iαi yield the expression of the

total stress σ as a Boltzmann convolution integral of the strain as follow :

σ (t)=
∫ ξ

0
G

(
ξ−ξ′) ε̇(

t′
)
dξ′, (2.8)

where G(t) is the shear relaxation modulus expressed by a Prony series as follows:

G (t)=G∞+∑
i

G i exp
(
− t
τi

)
=Go −

∑
i

G i

(
1−exp

(
− t
τi

))
. (2.9)

2.1.3 Thermodynamic considerations

Another way to motivate the evolution equations (2.1), is to consider the thermodynamic

arguments following from the modified Maxwell rheological model. Considering the set
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8 Chapter 2. Proposed nonlinear viscoelastic model

of variables governing the model, namely the total strain ε and the set of internal strains

αi, the total free energy density reads:

ψ (ε,α)= 1
2

G∞ε2 +∑
i

1
2

(ε−αi)2, (2.10)

where α is the vector of strain internal variables αi. The forces in the dashpots of the

Maxwell model are given by

σv
i =G i (ε−αi)= ηiα̇i, (2.11)

where ηi = τiG i are the viscosity coefficients characterizing the dashpots in the Maxwell

model which are functions of the total deformation ε following from the dependence of

the relaxation times τi upon ε due to equation (2.4). Equation (2.11) implies the evolution

law of equation (2.1) and thus the dissipation function D[ε,α,α̇] is given by

D[ε,α,α̇]=∑
i
σv

i α̇i =
∑

i
ηi(α̇i)2 ≥ 0. (2.12)

These thermodynamic quantities could be be expressed as a convolution integrals in

terms of the history of the deformation ε by substituting the internal variables αi by

their expressions in equations (2.10) and (2.12) to lead to the following

D[ε,α,
.
α]=− 1

a (ε)
1
2

∫ ξ

0

∫ ξ

0

∂G
(
2ξ−ξ′−ξ′′)
∂ξ

∂ε

∂t′
∂ε

∂t′′
dξ′dξ′′, (2.13)

for the dissipation function, and

ψ= 1
2

∫ ξ

0

∫ ξ

0
G

(
2ξ+ξ′+ξ′′) ε̇(

t′
)
ε̇
(
t′′

)
dξ′dξ′′, (2.14)

for the free energy density. Note that the positivity of the deformation shift function a(ε)

is a sufficient condition to the positivity of the dissipation function D[ε,α,α̇] in equation

(2.13).

2.2 Formulation restricted to linear kinematics

In this section, we extend the simple nonlinear models discussed in the preceding section

to three-dimensional physically nonlinear elasticity. This extension is patterned after

the model presented in section 2.1. First, we discuss the formulation of the general

three–dimensional constitutive model within the linear kinematics framework (i.e. small

strain domain). Next, we examine the thermodynamic aspects within the framework of

irreversible thermodynamics with internal state variables.
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2.2. Formulation restricted to linear kinematics 8

2.2.1 Formulation of the model

Viscoelastic constitutive equations arise when modeling the behavior of rubber-like

materials. The bulk response of these materials is elastic and much stiffer than the

deviatoric response. Further, for most engineering applications using these materials the

assumption of incompressibility holds with high degree of approximation. Considering

these assumptions, we introduce an additive split of the strain tensor into volumetric

and deviatoric parts as

ε= e+ 1
3
ΘI , (2.15)

where e is the deviatoric strain given by

e= ε− 1
3

tr[ε]I , (2.16)

and Θ is the deviatoric strain defined by

Θ= tr[ε]. (2.17)

Following the additive split of the strain of equation (2.15) the initial stored elastic

energy density is split as well

Ψ0(ε)= Ψ̄0(e)+U0(Θ). (2.18)

Both Ψ̄0(e) and U0(Θ) are positive functions of their arguments. The initial elastic stress

is given by

σo = ∂Ψ0(ε)
∂ε

, (2.19)

which can be expressed using equations (2.16) and (2.17) and the chain rule as follows:

σo =dev[
∂Ψ̄0(e)
∂e

]+U0′(Θ)I . (2.20)

Now, in accordance with the one dimensional model of 2.1 the total stress is given by

σ(t)=σo −∑
i
Qi (t), (2.21)

where Qi, i = 1..N is a set of over-stress internal variables with the evolution law,

motivated by the one dimensional model of 2.1, defined by

Q̇i + 1
τi (ε)

Qi = γi

τi (ε)
dev

[
∂Ψ̄0 (e)
∂e

]
. (2.22)
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8 Chapter 2. Proposed nonlinear viscoelastic model

Note that the set of relaxation times τi are dependent of the total strain ε as it was

postulated for the one dimensional model in equation (2.4)

τi (ε)= a (ε)τi, (2.23)

where a (ε) is the strain shift function. The solution of the set of linear differential

equations of (2.22) yields the convolution representation of the internal variables

Q(t)= γi

τi

∫ ξ

0
exp

[−(
t− t′

)/
τi

]
dev

[
∂Ψ̄0 (e)
∂e

]
dt′. (2.24)

In equation (2.24), ξ is the reduced time. Substituting of (2.24) into (2.21), integration by

parts and use of the fact that the internal variables vanish for t < 0 gives the constitutive

equation of the stress tensor as the convolution integral

σ (t)=
∫ ξ

0
g

(
ξ−ξ′) d

dt′

(
dev

[
∂Ψ̄0 (

e
(
t′
))

∂e

])
dt′+U0′ (Θ)I , (2.25)

where g(t) is the normalized relaxation function, in this case it is expressed by the

following

g(t)= γ∞+∑
i
γi exp

[−t
/
τi

]
. (2.26)

Note that in equation (2.25) U0′ (Θ)I→−pI for incompressible materials, where p is

the hydraustatic pressure [30]. This completes the development of the three-dimensional

viscoelastic model in small strain domain.

2.2.2 Thermodynamic considerations

Once again motivated by the rheological arguments of the previous section, now we

proceed to investigate the thermodynamic foundation of this model within the framework

of irreversible thermodynamic and the internal state variables. It should be noted,

however, that this development is carried out under isothermal conditions. Therefore,

attention is restricted to purely mechanical theory. Our starting point is the form of the

free energy function which is postulated by the following:

Ψ(Qi,ε)=Ψ0(ε)−∑
i
Qi ·e+Ξ

(∑
i
Qi

)
. (2.27)

Note that the function Ξ is a positive function of the set of internal variablesQi and may

be expressed by a Taylor series especially in the case of small strains. The second law
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2.3. Fully nonlinear viscoelastic model 8

of thermodynamics in terms of the Clausius-Duhem inequality for a purely mechanical

theory leads to the inequality

−Ψ̇(Qi,ε)+σ : ε̇≥ 0. (2.28)

This inequality is regarded as a constitutive restriction to be satisfied by all admissible

states defined ε,Qi and for all strain rates ε̇ for all admissible processes. From (2.28)

and using the chain rule it follows

Ψ̇=
(
∂Ψ0

∂ε
−∑

i
dev [Qi]

)
: ε̇−D [

ε,Qi,Q̇i
]
, (2.29)

where

D
[
ε,Qi,Q̇i

]=∑
i

[
e− ∂Ξ

∂Qi

]
:Q̇i (2.30)

is the dissipation function. Substitution of equations (2.29)and (2.30) in (2.28) yields the

following inequality (
σ− ∂Ψ0

∂ε
+∑

i
dev [Qi]

)
: ε̇+D [

ε,Qi,Q̇i
]≥ 0. (2.31)

Inequality (2.31) must hold for all rates ε̇,Q̇i, then standard arguments leads to

σ = ∂Ψ0

∂ε
−∑

i
dev [Qi]

D
[
ε,Qi,Q̇i

]=∑
i

[
e− ∂Ξ

∂Qi

]
:Q̇i.

(2.32)

The first relation of equation (2.32) is the generalization to the three-dimensional domain

of the stress expression for the rheological model of section 2.1 and the second one is the

three-dimensional counterpart of the dissipation of (2.12).

2.3 Fully nonlinear viscoelastic model

In this section, we extend the formulation outlined above to the fully nonlinear range.

Hence, the mechanical framework and the thermodynamic assumptions leading to the

model are outlined. It should be noted, however, that this model is derived through an

isothermal conditions.
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8 Chapter 2. Proposed nonlinear viscoelastic model

2.3.1 Mechanical framework and form of the Helmholtz free
energy density

Consider a viscoelastic material with reference placement Ω0 in the reference configu-

ration C0. It occupies at the time t the placement Ω in the deformed configuration Ct.

Let ϕ denote a macroscopic motion between the two configurations, which maps any

point X in the reference configuration C0 to the point x in the deformed configuration.

Let F (X , t) = ∂x/∂X be the deformation gradient tensor. Likewise, let J = det(F ) be

the jacobian of the deformation gradient tensor. From the deformation gradient F (X , t)
the deformation tensor of Green Lagrange E = 1

/
2(C−I), the right and left Cauchy-

Green strain tensors C =F tF and B =FF t are obtained, together with their principal

invariants.

I1 = trC, I2 = 1
2

[
(trC)2 − trC2] and I3 = det(C)= J2, (2.33)

which, otherwise, can be expressed in terms of principal stretches by

I1 =λ2
1 +λ2

2 +λ2
3, I2 =λ2

1λ
2
2 +λ2

2λ
2
3 +λ2

1λ
2
3 and I3 =λ2

1λ
2
2λ

2
3. (2.34)

The formulation in the nonlinear range is based on the decomposition of the gradient

F (X , t) into a volume-preserving and pure dilatational part as it is originally proposed

by [46] and used in several works such as [131] and [67] among others as follow:

F = F̄ det(F )1/3I where det
(
F̄

)= 1, (2.35)

F̄ is the volume-preserving gradient tensor. The Cauchy-Green strain tensor associated

and the Lagrangian strain tensor associated with the volume-preserving gradient are

expressed as

C̄ = F̄ tF̄ = J−2/3C, Ē = 1
2

(
C̄−I)

, (2.36)

I is the metric tensor in the reference configuration. Furthermore, several applications

of the chain rule lead to the following

∂Ē

∂E
= ∂C̄

∂C
= J−2/3

[
I − 1

3
C⊗C−1

]
, (2.37)

I is the fourth order unit tensor and the sign ⊗ designates the tensorial product. Hence,

we postulated an uncoupled free energy density as it is expressed in [131] by a Taylor

series in which terms higher than the second order are omitted. Moreover the behavior

in bulk is considered purely elastic.

Ψ (C,Q)=U0 (J)+Ψ̄0 (
C̄

)− 1
2
Q : C̄+ΨI (Q) , (2.38)
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2.3. Fully nonlinear viscoelastic model 8

Q is a second order overstress tensor internal variable akin to the second Piola-Kirchhoff

stress tensor S. The first two terms of the free energy density of equation (2.10) are

the dilatational and volume-preserving parts of the instantaneous elastic stored energy

density. The third and fourth terms are responsible for the time-dependent behavior

of the material. Note that ΨI (Q) is a convex function of the internal variable Q. This

decomposition of the free energy density leads to a decomposition in the stress into a

deviatoric (shear) and hydrostatic (bulk) parts.

2.3.2 Rate and constitutive equations

The rate equation of the internal variable Q is motivated by the rate equation (2.4) of

the rheological model in which the elastic stress is replaced by the deviatoric part of the

hyperelastic Second Piola-Kirchhoff stress tensor as it’s expressed in [131].

∂Q

∂ξ
+ 1
τ
Q = γ

τ
DEV

[
2
∂Ψ̄0 (

C̄
)

∂C̄

]
with ξ (t)=

∫ t

0

dt′

a
(
C̄

) , (2.39)

in which DEV (•) = (•)− 1
3 [C : (•)]C−1 denotes the deviator operator in the reference

configuration and γ ≤ 1 is the stiffness ratio. As in the previous section, a
(
C̄

)
is a

function of the invariants of the volume-preserving right Cauchy-Green strain tensor

C̄ and ξ is referred to as the reduced time and it is an increasing function of time. The

second law of thermodynamic is expressed in terms of the Clausius-Duhem inequality in

the reference configuration C0.

−Ψ̇+ 1
2
S : Ċ ≥ 0. (2.40)

Standard arguments [25] and [139] using inequality (2.12) lead to the expression of

intrinsic dissipation and the second Piola-Kirchhoff stress tensor.

− ∂Ψ (C,Q)
∂Q

: Q̇≥ 0 and S = 1
2
∂Ψ (C,Q)

∂C
. (2.41)

Let Π= JσF −t =FS be the first Piola-Kirchhoff stress tensor which is the quotient of

the actual force by the indeformed area, where σ is the Cauchy stress tensor and S is

the second Piola-Kirchhoff stress tensor. Considering relations (2.9), (2.11) and (2.13)

one could simply lead to the convolution representation of the second Piola-Kirchhoff

stress tensor.

S = J−2/3
∫ ξ

0
g

(
ξ−ξ′) ∂

∂ξ′
DEV

(
2
∂Ψ̄0 (

C̄
)

∂C̄

)
dξ′+ J pC−1, (2.42)
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8 Chapter 2. Proposed nonlinear viscoelastic model

p = ∂U0 (J)
/
∂J is the hydrostatic part of the stress, for an incompressible material,

p is an undetermined pressure to be obtained by the boundary conditions. g is the

normalized shear relaxation modulus and it is a decaying function of time [22], it is often

expressed by a power law function or a decaying exponential function. For computational

reasons it is more efficient to consider the Cauchy stress tensor rather than the second

Piola-Kirchhoff stress tensor. Application of an integration by parts to the expression of

the second piola-Kirchhoff stress tensor of relation (2.14) and considering the relative

distortional deformation gradient tensor

F̄t
(
t′
)= J−1/3∂ϕ

(
X , t′

)/
∂ϕ (X , t) the Cauchy stress tensor reads

σ =σd
o +dev

∫ ξ

0

∂g
(
ξ′

)
∂ξ′

(
F̄ −1
ξ

(
ξ−ξ′)σd

o
(
ξ−ξ′) F̄ −t

ξ

(
ξ−ξ′))dξ′+ pI , (2.43)

in which dev (•) = (•)− 1
3 [I : (•)]I denotes the deviator operator in the current configu-

ration. σd
o = dev (σo) is the deviatoric part of the instantaneous elastic Cauchy stress

tensor σo which may be written [139]

σo =β0I +β1B+β−1B
−1, (2.44)

where β j =β j (I1, I2, I3) are the elastic response functions. In terms of the instantaneous

elastic stored energy density they are given by

β0 (I1, I2, I3)= 2
J

[
I2Ψ

0
1 + I3Ψ

0
3

]
β1 (I1, I2, I3)= 2

JΨ
0
1

β−1 (I1, I2, I3)=−2JΨ0
2,

(2.45)

where

Ψ0 =U0(J)+Ψ̄0(C̄) and Ψ0
k =

∂Ψ0

∂Ik
, k = 1,2,3. (2.46)

The instantaneous stored elastic energy density has an alternative form in terms of the

principle stretches given by

Ψ̃o (λ1,λ2,λ3)=Ψo (I1, I2, I3) . (2.47)

From (2.35) and (2.36) the deviatoric part of the instantaneous elastic Cauchy stress is

expressed by

σd = 2
J

[
1
3

(
I2Ψ

0
2 − I1Ψ

0
1
)
I +Ψ0

1B− I3Ψ
0
2B

−1
]

, (2.48)

or using Ψ̃o
i and the principle stretches by

σd
oi =λiΨ̃

o
i −

1
3

3∑
j=1

λ jΨ̃
o
j , (2.49)
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2.3. Fully nonlinear viscoelastic model 8

where Ψ̃o
i refers to the derivative Ψ̃o with respect to λi. The first term of the right

hand side of (2.33) designates the instantaneous elastic response of the material, the

second one denotes the time dependent part of the material whereas the third one is the

hydrostatic pressure. For an incompressible material relation (2.33) holds with J = 1 and

F̄t
(
t′
)=Ft

(
t′
)= ∂ϕ

(
X , t′

)/
∂ϕ (X , t). Henceforth, the material is considered incompress-

ible.

2.3.3 Functional formulation and thermodynamic
considerations

The formulation described in the previous sections can be obtained in a similar way

as in 2.1 for the three dimensional behaviour. Our starting point is the form of the

instantaneous stored elastic energy density of equation (2.38) and the evolution law of

the internal variable of equation (2.39). The resolution of the differential equation in

(2.39) lead to the following convolution representation of the internal variable Q

Q(t)= γ

τ

∫ ξ

0
exp

[−(
ξ−ξ′)/τ]DEV

2
∂Ψ̄0

(
C

)
∂C

dξ′, (2.50)

From this expression of the internal variable one could lead to the functional formulation

of the model by substituting equation (2.50) in the expression of the instantaneous stored

elastic energy density of equation (2.38). Hence, (2.38) is expressed as

Ψ (C,Q)=U0 (J)+Ψ̄0
(
C

)
− γ

2τ

∫ ξ

0
exp

[−(
ξ−ξ′)/τ]DEV

(
2
∂Ψ0 (

C̄
)

∂C̄

)
dξ′ :C

+ 1
4µoτ

∫ ξ

0

∫ ξ

0
exp

[−(
2ξ−ξ′−ξ′′)/τ]DEV

(
2
∂Ψ0 (

C̄
)

∂C̄

)
DEV

(
2
∂Ψ0 (

C̄
)

∂C̄

)
dξ′dξ′′

(2.51)

these convolution representations of the instantaneous stored elastic energy density Ψ

and the internal variableQ are obtained using a Taylor expansion of the energy function

ΨI (Q) as follow

ΨI (Q)= 1
4µoγ

Q :Q, (2.52)
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8 Chapter 2. Proposed nonlinear viscoelastic model

where µo is the initial shear modulus. The Clausius-Duhem inequality of equation (2.40)

is rewritten in terms of the functional representation by the following:(
S−2

∂Ψ0

∂C
+Q

)
: Ċ−

γ

2τ2a
(
C̄

) (
C :

∫ ξ

0
exp

[−(
ξ−ξ′)/τ]DEV

(
2
∂Ψ̄0 (

C̄
)

∂C̄

)
dξ′

)
−

γ

2µo
(
τ2a

(
C̄

))2

∫ ξ

0

∫ ξ

0
exp

[−(
2ξ−ξ′−ξ′′)/τ]DEV

(
2
∂Ψ̄0 (

C̄
)

∂C̄

)
DEV

(
2
∂Ψ̄0 (

C̄
)

∂C̄

)
dξ′dξ′′ ≥ 0.

(2.53)

The first terms of the equation (2.53) lead to the expression of the second Piola-Kirchhoff

stress tensor S of equation (2.42). The second and third terms of the inequality represent

the functional form of the dissipation function D for which a sufficient condition to ensure

the admissibility of any process is to consider a positive deformation shift function a
(
C̄

)
.

2.4 Conclusion

In this chapter, we presented the nonlinear viscoelastic model at finite strain proposed

by [136] that incorporates a strain dependent relaxation times to describe nonsepara-

ble behavior of rubber-like materials. Before presenting the model, an experimental

and rheological arguments leading to the model were recalled and a one-dimensional

nonlinear viscoelastic model was developed. Then, this model was extended to the

three-dimensional domain under the assumption of small strain. Finally, the fully non-

linear viscoelastic model was presented. The model is based upon the internal state

variables approach and the framework of rational thermodynamics and experimental

arguments. The free energy density is decomposed into a volumetric and deviatoric parts.

Furthermore, thermodynamic restrictions are fulfilled via a sufficient condition on the

model’s parameters resulting from the application of the Clausius-Duhem inequality for

an arbitrary process. For each model presented here (the one-dimensional model, the

three-dimensional model under small strain assumption and the fully three-dimensional

nonlinear viscoelastic model) the constitutive equations for the stress and the dissipation

were exposed. In the next chapter we present a systematic identification procedure of

the proposed model to experimental data.

K K;9NAB8

Page 48 ; Ph.D thesis at ECL/LTDS U



C
H

A
P

T
E

R

3
IDENTIFICATION OF THE NONLINEAR VISCOELASTIC

MODEL

Contents
3.1 Model identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.1.1 Identification of the hyperelastic potential . . . . . . . . . . . . . 51

3.1.2 Identification of the viscoelastic kernel . . . . . . . . . . . . . . . 53

3.1.3 Identification of the reduced time function . . . . . . . . . . . . . 55

3.2 Identification of the model using data from the Pipkin isotropic model . 56

3.2.1 Pipkin isotropic model . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2.2 Identification results . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3 Application of the identification procedure to experimental data . . . . . 63

3.3.1 Hyperelastic potential . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.3.2 Viscoelastic kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.3.3 Reduced time function . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

T
His chapter presents the systematic identification procedure of the model’s

parameters to experimental data. The material’s parameters are identified

49



8 Chapter 3. Identification of the nonlinear viscoelastic model

separately. In fact, the hyperelastic contribution to the total stress is iden-

tified equilibrium data on simple extension and pure shear. The relaxation function

was postulated by a Prony series and identified using relaxation experimental data in

the linear range of the behavior with a strain relaxation level below 10%. The reduced

time function is identified thanks to a minimization procedure over the error between

the discrete stress of the model and the experimental stress. This identification proce-

dure was applied to data generated from the Pipkin multi-integral model [115] then

applied to experimental data for Bromobutyl (BIIR) from [103]. The capacity of the

model to reproduce the behavior of the material is then highlighted with comparison to

experiments.

3.1 Model identification

In this section, a systematic identification of the material parameters for an incom-

pressible nonfactorizable viscoelastic constitutive equation at finite strain is highlighted.

This procedure relies on the separate identification of hyperelastic potential, viscoelastic

kernel and the reduced time function. Considering the form of the constitutive equation

(2.43), each characteristic function identification reduces to the solution of a nonlinear op-

timization problem. The identification procedure is carried out considering homogenous

(in space) uniaxial transformations of simple extension and pure shear. For such trans-

formation, assuming incompressibility, in the material basis the deformation gradient

tensor may be specified as

F (t)= diag (λ1 (t) ,λ2 (t) ,λ3 (t)) . (3.1)

The condition of incompressibility J = 1 leads to the following expression of the deforma-

tion gradient tensor

F (t)= diag
(
λ (t) ,λ−1/2 (t) ,λ−1/2 (t)

)
, (3.2)

for simple extension and

F (t)= diag
(
λ (t) ,λ−1 (t) ,1

)
, (3.3)

for pure shear. In both cases only one component of the stress remains and the indeter-

minate hydrostatic pressure is eliminated

σ2 =σ3 = 0 and σ1 =σ1 −σ2. (3.4)

From (2.43) and (3.4) the expression of the stress in theses cases is given by

σ=σd
01 −σd

02 +
∫ ξ

0

∂g
(
ξ′

)
∂ξ′

(
λ2 (ξ)

λ2 (ξ−ξ′)σ
d
01 −

λ
(
ξ−ξ′)
λ (ξ)

σd
02

)
dξ′, (3.5)

K K;9NAB8

Page 50 ; Ph.D thesis at ECL/LTDS U



3.1. Model identification 8

for the simple extension and

σ=σd
01 −σd

02 +
∫ ξ

0

∂g
(
ξ′

)
∂ξ′

(
λ2 (ξ)

λ2 (ξ−ξ′)σ
d
01 −

λ2 (
ξ−ξ′)

λ2 (ξ)
σd

02

)
dξ′, (3.6)

for pure shear. The first two terms of relations (3.5) and (3.6) refer to the principle

components of the deviatoric instantaneous elastic part of the stress which can be

obtained from the equilibrium deviatoric elastic stress via:

σd
0i =

G0

G∞
σd
∞i, (3.7)

in which G0 and G∞ refer to the instantaneous and equilibrium shear relaxation modulus,

whereas the integral term depicts the dissipative or the time dependent part of the stress.

A general identification procedure could be applied separately to each component of the

stress. Hence, let

Λ= (Λ1,Λ2, ...,Λm)t be the vector of experimental input data and

Θ = (Θ1,Θ2, ...Θm,)t be the vector of corresponding experimental response. For each

component of the stress the response function is written F (Λ, p) : R×Rn → R in which

p = (p1, p2, ..., pn)t is a vector of material parameters. The objective function is defined

through the Least square norm as follow

SF (p) : ‖F (Λ, p)−Θ‖2
2 =

m∑
i=1

(F (Λi, p)−Θi)2. (3.8)

The identification procedure turns out into a minimization problem which reads as follow

min
p

SF (p) . (3.9)

3.1.1 Identification of the hyperelastic potential

The instantaneous elastic stored energy density Ψo is a function of, either, the invariants

of the right Cauchy-Green strain tensor or the principles stretches. The condition of

incompressibility reads

λ1λ2λ3 = 1 or I3 = J2 = 1 (3.10)

The general form of Mooney-Rivlin [123] instantaneous elastic stored energy density is

considered which reads for an incompressible hyperelastic material as follow

Ψo (I1, I2)=
∑
i, j

ci j(I1 −3)i(I2 −3) j (3.11)
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8 Chapter 3. Identification of the nonlinear viscoelastic model

ci j are the material parameters of the instantaneous stored elastic energy density which

usually should satisfy the stability conditions to ensure an admissible response of the

model for any process see [119]. Note that the instantaneous stored elastic energy density

Ψo vanishes in the reference configuration so that c00 = 0. The conditions of stability are

expressed as follow:
∂Ψo

∂I1
> 0 and

∂Ψo

∂I2
≥ 0. (3.12)

In the case of uniaxial experiment, the nominal stress which is the measured quantity,

actual force over reference area, and the principle stretch are related through the

instantaneous elastic stored energy density Ψo by the relation

Πo = ∂Ψo

∂λ
=∑

i, j
ci jφ (i, j,λ), (3.13)

where φ(i, j,λ) is a nonlinear function of i, j and λ, given by

φ (i, j,λ)= 2i
(
λ− 1

λ2

)(
λ2 + 2

λ
−3

)i−1 (
2λ+ 1

λ2 −3
) j
+

2 j
(
1− 1

λ3

)(
λ2 + 2

λ
−3

)i (
2λ+ 1

λ2 −3
) j−1

,
(3.14)

for the simple extension and

φ (i, j,λ)= 2(i+ j)
(
λ− 1

λ3

)(
λ2 + 1

λ2 −2
)i+ j−1

, (3.15)

for pure shear. An alternative useful representation of equation (3.13) with respect to

the identification procedure is used.

Let ct = (
c01, ..., c0 j, c10, ..., c1 j, ..., ci0, ..., ci j

)
be the vector of material parameters, Φ be a

matrix representation of the function φ (i, j,λ) and Πo the discrete vector of nominal

stress. Equation (3.13) became

Πo =Φ c, (3.16)

The identification of the material parameters ci j is performed using data for simple

extension and pure shear simultaneously. Therefore, a modification of the objective

function (3.8) is adopted see [109]. The new objective function reads as follow

min
c∈Ri× j

(∥∥Φse c− Π̃se∥∥2
2 +

∥∥Φps c− Π̃ps∥∥2
2

)
. (3.17)

The superscript se and ps refers to the simple extension and pure shear respectively. Π̃

denotes the recorded experimental nominal stress vector. A least square minimization

procedure is then employed under conditions (3.12) using Matlab software to reach the

numerical values of ci j. The results of this identification and its efficiency are discussed

in sections 3.2 and 3.3 of this work.
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3.1. Model identification 8

3.1.2 Identification of the viscoelastic kernel

The time dependent part of the stress is characterized by the shear relaxation function

G(ξ) which is a decaying positive function of the reduced time ξ . It is often expressed

by, either, a sum of decaying exponential functions called Prony series function or a

power law functions. This identification is performed using experimental results from

relaxation tests and dynamic tests in the linear range of behavior so that the reduced

time is equal to the real time ξ= t and the behavior of the material is described by the

single Boltzmann convolution integral:

σ (t)=
∫ t

0
G

(
t− t′

)
ε̇

(
t′
)

dt′, (3.18)

ε is the linearized strain tensor.

3.1.2.1 Identification from relaxation test

The relaxation test is performed in shear deformation. The strain is suddenly increased

to a value εo and kept constant

ε (t)= H (t)εo with H (t)=
{

0, t < 0

1, t > 0
. (3.19)

From equations (3.18) and (3.19) the shear relaxation modulus follows

G (t)= σ (t)
εo

. (3.20)

In this work we adopted the Prony series form of the shear relaxation modulus

G (t)=G∞+
N∑

i=1
G i exp

(
− t
τi

)
, (3.21)

G∞ denotes the long term shear relaxation modulus, G i (i = 1, .., N) are the coefficients

of the Prony series and τi (i = 1, .., N) are the relaxation time constants. Furthermore, in

order to avoid the ill-conditioning of the optimization problem the set of the relaxation

times τi are a-priori fixed as one time constant per decade in the logarithmic time scale

for the experimental time window see [142] and [80]. The optimization problem arising

from the identification of the N-terms Prony coefficients is

min
{G}∈RN

∥∥Γ {G}− Ĝ
∥∥2

2 , (3.22)
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8 Chapter 3. Identification of the nonlinear viscoelastic model

where Γ ∈ RM×N is the matrix representation of relation (3.21) with M experimental

points taking the following form

Γ=


1 exp

(−t1
/
τ1

)
... exp

(−t1
/
τN

)
1 exp

(−t2
/
τ1

)
... exp

(−t2
/
τN

)
... ... ... ...

1 exp
(−tM

/
τ1

)
... exp

(−tM
/
τN

)

 , (3.23)

t = (t1, ..., tM) are the discrete time instants and Ĝ = (
Ĝ1, ...,ĜM

)
are the corresponding

experimental values of the shear relaxation modulus using relation (3.20). A linear least

square algorithm is used to solve the optimization problem (3.22) using Matlab software.

3.1.2.2 Identification from dynamic tests

The dynamic tests are performed using a cylindrical shear sheet loaded by a sinusoidal

deformation without a predeformation and with small amplitude

ε (t)= εa exp(jωt) with εa << 1, (3.24)

ω is the circular frequency and j is the unit imaginary number. Hence, from equations

(3.18) and (3.24) the stress-strain relation follows

σ=G∗εa, (3.25)

G∗ is the complex dynamic shear modulus, its real and imaginary parts are denoted

G′ and G′′ are called storage and loss modulus respectively and may be obtained by a

Fourier transform of equation (3.21) and given by :

G′ =G∞+
N∑

i=1
G i

(τiω)2

1+(τiω)2

G′′ =
N∑

i=1
G i

τiω

1+(τiω)2

. (3.26)

As mentioned in the previous section, the relaxation times τi are a-priori fixed as one

time constant per decade in the logarithmic scale of time. Thereby, both storage and

loss modulus are linear with respect to the N-terms Prony coefficients. The arising

optimization problem from this identification procedure reads

min
{G}∈RN

(∥∥Γ′ {G}− Ĝ′−G∞
∥∥2

2 +
∥∥Γ′′ {G}− Ĝ′′∥∥2

2

)
, (3.27)

G∞ is directly identified from the storage modulus curve as ω→ 0. Ĝ′ and Ĝ′′ are the

experimental vectors of storage and loss modulus, as recorded by the DMA machine,
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3.1. Model identification 8

respectively. Γ′ and Γ′′ are two M by N matrices representing equation (3.26) and can be

expressed through the relaxation time constants and the discrete frequency vector by

Γ′ =


(τ1ω1)2

1+(τ1ω1)2
... (τNω1)2

1+(τNω1)2

... ... ...
(τ1ωM )2

1+(τ1ωM )2
... (τNωM )2

1+(τNωM )2

 ,Γ′′ =


τ1ω1

1+(τ1ω1)2
... τNω1

1+(τNω1)2

... ... ...
τ1ωM

1+(τ1ωM )2
... τNωM

1+(τNωM )2

 . (3.28)

The optimization problem (3.27) is an ill-posed problem [37]. Therefore, a Tikhonov

[102] regularization method was employed to solve this system. The results of this

identification using randomly perturbed simulated and real experimental data are

shown in sections 3.2 and 3.3 of this chapter.

3.1.3 Identification of the reduced time function

Once the hyperelastic potential and the viscoelastic kernel are identified, the problem of

determining the reduced time function can be addressed. This identification relies on the

discretization of the stress-strain relation (2.43) with respect to the time. let t = (t1, ..., tM)
be the discrete experimental time vector and ξ= (ξ1, ...,ξM) be the corresponding reduced

time vector, ∆t is the experimental time increment and ∆ξ is the reduced time increment.

The general form of this discretization formula for a nonlinear viscoelastic behavior

as it is described in [63] and [129] is reported in equation (3.29). The identification

of the reduced time vector ξ is performed thanks to a recursive dichotomy algorithm

applied to the error between the discretized stress (3.29) and the experimental stress

σ̃= (σ̃1, ..., σ̃M).

σ (tn+1)=σd
o (tn+1) −

N∑
i=1
σd

i (tn+1)+ pI

σd
i (tn)= g i

τi

∫ ξ

0
F̄ −1
ξ

(
ξ−ξ′) σd

o
(
ξ−ξ′) F̄ −t

ξ

(
ξ−ξ′)exp

(
− ξ

′

τi

)
dξ′

σd
i (tn+1)=αi g iσ

d
o (tn+1) +βi g iσ̂

d
o (tn) +γiσ̂

d
i (tn)

with

γi = exp
(
−∆ξ
τi

)
; αi = 1− τi

∆ξ

(
1−γi

)
; βi = τi

∆ξ

(
1−γi

)− γi

σ̂d
j (t)= F̄t (t+∆t)σd

j (t)F̄ t (t+∆t) ; j = 0,1, ...N.

(3.29)

Once the reduced time vector ξ is obtained the identification of the reduced time function

a(C) can be addressed since it is the inverse of the derivative of the reduced time with

respect to real time:
1
a
= dξ

dt
. (3.30)
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8 Chapter 3. Identification of the nonlinear viscoelastic model

The derivative in equation (3.30) is obtained numerically since the reduced time and the

real time are two discrete vectors. Hence, one leads to the numerical vector of function

a(C) : a = (a1, ...,aM). Furthermore, a sufficient condition on this function with respect

to the second principle of thermodynamics in terms of Clausius-Duhem inequality is to

adopt a positive function of the invariants of the right Cauchy-Green strain tensor.

a(C)= f (I1, I2)> 0. (3.31)

3.2 Identification of the model using data from the
Pipkin isotropic model

In this section, the capacity of the proposed model to depict the response of other

complicated viscoelastic models is presented. The main concern is to reformulate a

complicated model namely the isotropic viscoelastic model by Pipkin [115] in the form

of our simple model presented herein. To this end the identification procedure outlined

above is applied using data generated from the isotropic viscoelastic model proposed

by Pipkin [115] see equations (3.32) and (3.33). Data were generated from the stress-

strain relation in the case of simple extension and pure shear experiments. Several

strain histories were considered to provide a complete description of the behavior. The

hyperelastic potential was identified using data of simple extension and pure shear at

equilibrium, the relaxation function was obtained using a relaxation test performed in

simple extension and the reduced time was calculated using monotonic test in simple

extension for different strain rates. The identification procedure is validated by predicting

the behavior in pure shear monotonic tests for different strain rates.

3.2.1 Pipkin isotropic model

Pipkin [115] proposed a third order development of the tensorial response function Y for

an isotropic incompressible material. The principle of material indifference requires that

the Cauchy stress tensor takes the following form:

σ =RY Rt + pI , (3.32)

R is the rotation tensor obtained from the polar decomposition of the transformation

gradient tensor F and p is the indeterminate parameter due to incompressibility. The
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3.2. Identification of the model using data from the Pipkin isotropic model 8

third functional development of Y reads

Y (t)=
∫ t

0
r1

(
t− t′

)
Ė

(
t′
)

dt′+∫ t

0

∫ t

0
r2(t− t′, t− t′′)Ė

(
t′
)
Ė

(
t′′

)
dt′ dt′′+∫ t

0

∫ t

0

∫ t

0
r3

(
t− t′, t− t′′, t− t′′′

)
tr

[
Ė

(
t′
)
Ė

(
t′′

)]
Ė

(
t′′′

)
dt′dt′′dt′′′+∫ t

0

∫ t

0

∫ t

0
r4

(
t− t′, t− t′′, t− t′′′

)
Ė

(
t′
)
Ė

(
t′′

)
Ė

(
t′′′

)
dt′dt′′dt′′′,

(3.33)

rk (k = 1..4) are the relaxation kernels expressed by a decaying exponential functions

and Ė (t) is the time derivative of the Green-Lagrange deformation tensor. Expression of

r i according to [57] is reported in equation (3.34), the choice of r2 (t1, t2)= 0 is motivated

by thermodynamic arguments to ensure the positivity of the free energy density. Further

arguments could be found in [57] and references therein.
r1 (t)= a1 +b1 exp(c1 t)
r2 (t1, t2)= 0

r3 (t1, t2, t3)= a3 +b3 exp(c3 (t1 + t2 + t3))
r4 (t1, t2, t3)= b4 exp(c4 (t1 + t2 + t3)) .

(3.34)

A crucial choice of the parameters ak, bk and ck enables us to describe the behavior of

the material for any given strain history.

3.2.2 Identification results

3.2.2.1 Hyperelastic potential

The identification of the instantaneous elastic stored energy density requires data at

equilibrium in the case of simple extension and pure shear experiments. Hence, data

were generated by omitting the time-dependent part of the stress. Considering the

incompressibility of the behavior of equations (3.2) and (3.3) it is straightforward to

obtain from (3.33) the relations for the equilibrium stress

σ=
(
λ2 − 1

λ

)[
a1

2
+ a3

8

(
λ4 −2λ2 − 4

λ
+ 2
λ2 +3

)]
, (3.35)

in the case of simple extension and

σ=
(
λ2 − 1

λ2

)[
a1

2
+ a3

8

(
λ4 −2λ2 − 2

λ2 + 1
λ4 +2

)]
, (3.36)
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8 Chapter 3. Identification of the nonlinear viscoelastic model

for the simple shear. Results of the identification using the generalized Mooney-

Rivlin model in terms of the first Piola-Kirchhoff stress are reported in figure 3.1 for

simple extension and pure shear experiments. A second order generalized Mooney-Rivlin

potential, in relation (3.11), was satisfactory to describe the hyperelastic part of the

Pipkin model.
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(a) Equilibrium stress for simple extension

1 1.5 2 2.5 3 3.5 4
Principle stretch

0

2

4

6

8

10

12

14

PK
1(

M
Pa

)

Pipkin model
Mooney-Rivlin Model

(b) Equilibrium stress for pure shear

Figure 3.1: Equilibrium stresses versus principle stretch for the Pipkin model (diamond)
and the Mooney-Rivlin model (solid curve)
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3.2. Identification of the model using data from the Pipkin isotropic model 8

g i τi(s)
6.25 10−2 2.003
2.84 10−5 14.06
1.12 10−4 82.76

Table 3.1: Prony series parameters

3.2.2.2 Viscoelastic kernel

The identification of the Prony series requires shear relaxation data at low level of strain.

To this end, a Heaviside strain history of relation (3.19) is considered. Introduction of

this strain history into (3.32) and (3.33) yields the relaxation stress-strain relationship.

σ (t)= r1 (t)
2

(
λ2 − 1

λ2

)
+

r3 (3t)
8

(
λ2 − 1

λ2

)(
λ4 −2λ2 − 2

λ2 + 1
λ4 +2

)
+

r4 (3t)
8

(
λ2 − 1

λ2

)(
λ4 −3λ2 − 3

λ2 + 1
λ4 +4

)
.

(3.37)

In figure 3.2 are reported curves of the normalized shear relaxation modulus versus time

for four different levels of strain. It is well shown that the hypothesis of separability

doesn’t hold for the Pipkin model since the normalized shear relaxation modulus depends

upon strain level. But for small value of the strain the normalized shear relaxation mod-

ulus is independent of the strain level. Hence, the identification procedure is performed

using results of the 5% level of strain. Prony series parameters are reported in Table 3.1.
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Figure 3.2: Normalized shear relaxation modulus of Pipkin model versus time for four
different strain levels.

3.2.2.3 Reduced time function
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Figure 3.3: Simple extension Cauchy stress versus principle stretch for two different
strain rates α1 = 1.19 10−2s−1 and α2 = 6 10−3s−1

In this part, monotonic tests of simple extension and pure shear were generated from

the Pipkin model. Simple extension test was used in the identification of the reduced

time function whereas pure shear test was used in the validation of the results. For

computational convenience with respect to the multi-integral form involved in (3.33),
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3.2. Identification of the model using data from the Pipkin isotropic model 8

the principle stretch corresponding to a monotonic test was set to be an increasing

exponential function of time of the form:

λ (t)= exp(α t) , (3.38)
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(a) Reduced time ratio versus principle stretch
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(b) Reduced time function versus principle stretch

Figure 3.4: Reduced time function and reduced time ratio versus principle stretch for
two strain rates α1 = 1.19 10−2s−1 and α2 = 6 10−3s−1
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8 Chapter 3. Identification of the nonlinear viscoelastic model

where α is a positive constant that could be interpreted as a strain rate. Replacing the

principle stretch in (3.33) by its expression yields the expression of the Cauchy stress. For

each test, two different strain rates were considered α1 = 1.19 10−2s−1 and α2 = 6 10−3s−1.

Data for simple extension Cauchy stress versus principle stretch are plotted in figure 3.3.

Hence, the identification procedure highlighted above was applied to identify the reduced

time function. Results are reported in figure 3.4 by means of the reduced time ratio ξ (t)
/

t
and the reduced time function a(C) for the two considered strain rates. The reduced time

function is obtained numerically via a numerical derivation of the reduced time with

respect to time. It shows a significant dependence upon strain level which is consistent

with the results shown in Figure 3.2. Furthermore, this function is independent of the

strain rate which motivate the choice of the form of the reduced time function of equation

(3.31). The capacity of the nonlinear viscoelastic model developed herein is evaluated

by predicting the behavior of the Pipkin model using the parameters identified in this

section. In order to avoid a division by small value of the force when the principle stretch

is near to one, a modified relative error formula was used as proposed in [105]

err i =
∣∣σi −σi

P ∣∣
max

{
0.5,σiP

} , (3.39)
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Figure 3.5: Relative error of the predicted Cauchy stress of the Pipkin model for pure
shear experiment
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Figure 3.6: Pure shear Cauchy stress for the model (solid curve) and the Pipkin model
(diamond and square)

in which σi is the Cauchy stress computed using (2.43) and σi
P is the Pipkin Cauchy

stress computed using (3.32) and (3.33). This function is plotted versus the principle

stretch in figure 3.5 in the case of pure shear experiment. For the two strain rates

considered, the relative error remains under 2.5%. In figure 3.6 is plotted the Cauchy

stress versus principle stretch for the Pipkin model and the proposed model.

3.3 Application of the identification procedure to
experimental data

In this section, the identification procedure outlined in section 3.1 is used to identify

the parameters of the proposed model using experimental data for a bromobutyl (BIIR)

rubber material. Experimental data used here are those from [103], in which a complete

experimental characterization was performed to obtain the response of the material for

several strain history configuration and several temperatures. In what follows, results of

the identification of the model’s parameters are highlighted and discussed.
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8 Chapter 3. Identification of the nonlinear viscoelastic model

3.3.1 Hyperelastic potential
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(b) Equilibrium stress for pure shear

Figure 3.7: Equilibrium stresses versus principle stretch: Experimental (diamond) and
the identified Mooney-Rivlin model (solid curve)
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3.3. Application of the identification procedure to experimental data 8

g i τi(s)
4.46 10−3 14.79
3.77 10−2 125.71
5.69 10−2 460.7
5.84 10−2 1761.6
8.76 10−2 9598.5

Table 3.2: Prony series parameters for BIIR rubber

The identification of the instantaneous elastic stored energy density coefficients of

relation (3.17) is performed under stability conditions of the relation (3.12) using Matlab

software. A second order Mooney-Rivlin potential was able to describe the hyperelastic

behavior of the material for simple extension and pure shear experiments. In figure 3.7

are plotted experimental and identified Piola-Kirchhoff stresses versus principle stretch

at equilibrium for simple extension and pure shear. The relative error of the relation

(3.39) was calculated for both experiments, its average value is 0,5 % for simple extension

and 2,3 % for pure shear which are very satisfactory considering the non-linearity of the

material.

3.3.2 Viscoelastic kernel

The identification of the viscoelastic kernel, as it is described in section 3.1, is performed

using two different experimental data: shear relaxation experiment in the linear range of

the behavior and dynamic tests for low level of dynamic amplitude and without pre-strain.

In what follows, results of this identification procedure are discussed.

3.3.2.1 From shear relaxation experiment

The shear relaxation experiment is performed in simple shear deformation at a strain

level of 10 %. it is considered, however, in the linear range of the behavior since the

material is highly deformable. From figure 2.1 data for shear relaxation experiment

at 10 % are extracted and used in the identification of the Prony series parameters.

These parameters are reported in table 3.2. The average relative error between the

experimental and the identified viscoelastic kernel is in the order of 0.1 %. The identified

and the experimental normalized shear relaxation modulus are plotted versus time in

figure 3.8.
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Figure 3.8: Normalized shear relaxation modulus of BIIR rubber versus time.

3.3.2.2 From dynamic experiments

The dynamic experiments are performed in simple shear deformation with a small

dynamic amplitude and without a pre-strain of the form of equation (3.24). It is recalled

that the problem of the identification of the viscoelastic parameters from dynamic data

(3.27) is an ill-posed problem. Hence, a regularization procedure of Tikhonov is used.

In what follows, this method is recalled and applied to theoretical dynamic data using

parameters from [110] and then applied to dynamic data for BIIR material from [103].

◦ Tikhonov regularization method:

The linear system arising from the identification of the Prony series parameters

from dynamic data is an ill-posed problem [37]. From the original system of equa-

tion (3.27) the following system arise:

Ax = b, (3.40)

in which A is the global matrix of the system to be calculated from (3.28), b is the

vector of experimental storage modulus and loss modulus vectors Ĝ′ and Ĝ′′ and x
is the vector of the Prony series parameters G i, (i = 1..N). Tikhonov regularization
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3.3. Application of the identification procedure to experimental data 8

method replaces system (3.40) by:

(
At A+µI

)
x = Atb, (3.41)

in which µ> 0 is the regularization parameter and I is the identity matrix. The

regularization parameter is determined via an L-curve technique using Matlab

software. It is well established that the solution of system (3.41) noted xµ gives the

minimum residual for the minimization problem arising from system (3.40) which

means:

∀x ∈ RN∥∥A xµ−b
∥∥2 É ‖A x−b‖2, such that ‖x‖2 É ∥∥xµ

∥∥2.
(3.42)

The proof of (3.42) and further development of the convergence of the regularized

Tikhonov problem are well studied in [18].

◦ Application of the Tikhonov method to simulated dynamic data:

The Tikhonov regularization procedure described above was applied to a simulated

dynamic data generated using Prony series parameters from [110] and relations

in (3.26). Moreover, in order to test the ability of the method to deal with noisy

experimental data, the second member of system (3.41) was perturbed randomly

as follow:

b̃ = (1±ε)b, (3.43)

in which ε takes three different values: 10%, 15% and 20%. The Prony series

parameters from [110] are reported in table 3.3 with an equilibrium modulus

G∞ = 2.24 106 Pa. The results of this identification are reported in figure 3.9

in terms of the dynamic moduli versus frequency for the perturbed and original

simulated data. The mean relative error for the three perturbed data remains

under 10% and hence this procedure shows a huge capacity to predict the dynamic

response functions despite the perturbation of the second member of the system

(3.42).
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Figure 3.9: Storage and loss moduli versus frequency for simulated and perturbed data

◦ Application of the Tikhonov method to experimental dynamic data from [103]
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3.3. Application of the identification procedure to experimental data 8

G i(Pa) τi(s)
1.94 108 2 10−2

2.83 108 2 10−1

5.54 108 2 100

6.02 108 2 101

3.88 108 2 102

1.56 108 2 103

4.1 107 2 104

1.38 107 2 105

3.68 106 2 106

7.9 105 2 107

9.6 105 2 108

Table 3.3: Prony series parameters from [110]

G i(Pa) τi(s)
3.13 108 7.1 10−8

2.61 107 1 10−6

9.86 106 1.4 10−5

1.94 106 1.98 10−4

9.42 105 2.8 10−3

3.03 105 3.92 10−2

1.4 105 5.52 10−1

8.53 104 7.77 100

8.45 104 1.09 102

7.72 104 1.53 103

7.71 104 2.16 104

2.06 104 3.05 105

Table 3.4: Prony series parameters from experimental dynamic data

The dynamic experiment are represented by the storage and loss moduli G′

and G′′ as functions of the frequency for the experimental frequency window

of [10−5, 107 Hz]. The tikhonov regularization is applied and a regularization

parameter µ is obtained for a 12 parameters Prony series reported in table 3.4. The

mean relative error is about 20%.
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Figure 3.10: Storage and loss moduli versus frequency for dynamic experimental data
for different values of the regularization parameter µ
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3.3. Application of the identification procedure to experimental data 8

3.3.3 Reduced time function

The reduced time is identified using the discretization formula (3.29) and monotonic

experiments of simple extension for two strain rates: 100% s−1 and 200% s−1. Cauchy

stress versus principle stretch are plotted in figure 3.11. Results of the identification

are reported in figure 3.12 in terms of the reduced time coefficient which is a nonlinear

function of time for the strain rates considered. The pure shear experiment was predicted

using the reduced time, the predicted and experimental data for this experiment are

plotted in figure 3.13 against the principle stretch. From this result the relative error

of the Cauchy stress is calculated using relation (3.39), its mean value remains under

2.5%. Hence, the proposed model is suitable to describe the material’s behavior at low

and moderate strains.
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Figure 3.11: Cauchy stress versus principle stretch for simple extension experiment
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Figure 3.12: Reduced time coefficient for two strain rates 100% s−1 and 200% s−1
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3.4. Conclusion 8

3.4 Conclusion

Within this chapter, the identification of several functions involved in the model pre-

sented in the second chapter of this Thesis was addressed. Each function’s identification

procedure turns out to the resolution of a linear or nonlinear system. Moreover, a regu-

larization procedure of Tikhonov was applied in the resolution of the ill-posed problem

arising from the identification of the viscoelastic kernel from dynamic data.

This identification procedure was applied to a generated data from a multi-integral

viscoelastic model and a static and dynamic experimental characterization of a BIIR

rubber. The results of the identification has shown a huge capacity of the model to

describe the multi-integral viscoelastic model in the time domain of the behavior within

and outside the range of strain rates considered in deriving the model. The results from

the experimental characterization has shown a huge capacity to depict the behavior of

the material in the time domain for the equilibrium and instantaneous responses.

Our main object was to develop a constitutive equation compatible with the second law

of thermodynamics and suitable with the Finite-elements theory. The implementation of

the model within Abaqus software is the goal of the next chapter.
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I
N general, the response of a viscoelastic material depends on the excitation

history. For an integral based formulation viscoelasticity, the entire excita-

tion history must be stored in order to evaluate the response numerically.

Therefore, the memory storage increases in time. The storage problem can be avoided

by representing the kernel function as a Prony series. Thanks to the semigroup prop-

erty of the exponential function, the use of Prony series in the kernel function leads

to an efficient recursive relation [129]. The incremental representation of the kernel

function is combined with an incremental form of the excitation history which describes

75



8 Chapter 4. Numerical implementation and integration scheme

the evolution of the excitation history inside the time increment. Several form have

been proposed in the literature, which goes from constant proposed by [150], piecewise

constant proposed by [61], linear suggested by [137] to exponential form proposed by [1].

These forms have been successfully used in the implementation of the Schapery model by

[6], [60] and [53] among others, for the Duvaut-Lions viscoplasticity model in [130] and

in finite strain viscoelasticity by [68]. For further details about the integration schemes

in viscoelasticity, the reader is directed to the work of [132] and [42].

On the other hand, in addition to the integration scheme of the kernel function, one needs

to derive the discrete form of the constitutive equation based on the decomposition of the

deformation gradient tensor into volumetric and isochoric parts. To this end, following

the formulation of the model, the Cauchy stress tensor is decomposed into an instanta-

neous hyperelastic and viscoelastic over-stress parts. The discrete representation of each

part of the stress tensor is calculated separately.

The aim of this chapter is to presents the numerical implementation of the nonlinear

viscoelastic model developed in the previous chapters. First, the integration scheme of

the one dimensional viscoelastic model is recalled. In fact, the integration scheme for

the one dimensional viscoelastic model was implemented using Matlab software and

validated through the comparison with numerical simulations performed with Abaqus

software for simple extension with several strain histories. Then, the implementation

of the three dimensional viscoelastic model into Abaqus software is performed using

an implicit integration scheme in a Umat subroutine. To this end, the discrete form of

the nonlinear viscoelatic model was performed following [63] using the objective rate

derivative of Jaumann. Finally the fourth order tangent stiffness needed in the coding of

the subroutine Umat is calculated accordingly.

4.1 Integration scheme for one dimensional
viscoelastic model

In this section, we present the integration scheme of the Simo [131] model implemented

in Abaqus software. The constitutive equation for a one dimensional experiment will be

implemented in a Matlab code then compared to the numerical simulation performed

with Abaqus software. Our starting point is the one dimensional model presented in 2.2

by the constitutive equation of the stress which reads in the absence of the reduced time
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4.1. Integration scheme for one dimensional viscoelastic model 8

ξ i.e. ξ(t)= t as follow

σ (t)=
∫ t

0
G

(
t− t′

)
ε̇
(
t′
)
dt′. (4.1)

4.1.1 Integration scheme

The integration scheme of the constitutive equation of the stress is performed in a discrete

manner. Hence, let [0, t], t > 0 be the time interval of interest. It will be decomposed into

sub-intervals as follows:

[0, t]=
⋃
n

[tn, tn+1], tn+1 = tn +∆tn. (4.2)

Without loss of generality, the time intervals ∆tn are assumed to be equals. Since the

model considered is a deformation driven model, the total deformation ε applied in the

time interval [0, t] is also subdivided into equal deformation increments ∆ε following

(4.2). Hence, the convolution integral in (2.8) does not need to be totally evaluated and it

is split into an integral over [0, tn] and an integral over the last time increment [tn, tn+1]

through the following recursive update formula

σ (tn+1)=G∞ε (tn+1)+
∑

i

[
G i exp

(
−∆t
τi

)∫ tn

0
exp

(
− tn − t′

τi

)
ε̇
(
t′
)
dt′+G iτi

(
1−exp

(
−∆t
τi

))
∆ε

∆t

]
=G∞ε (tn+1)+

∑
i

[hi (tn+1)+G i pi∆ε],

with pi = τi

∆t

(
1−exp

(
−∆t
τi

))
,

(4.3)

where hi are the algorithmic stresses expressed by :

hi (t)=G i

∫ t

0
exp

(
− t− t′

τi

)
ε̇
(
t′
)
dt′. (4.4)

The whole procedure is summarized in the following algorithm: Note that the update

Algorithm 1 Recursive update procedure
1: Database σ(tn),hi(tn), i = 1..N at time tn
2: Give the strain increment ∆ε
3: Calculate the elastic stress σe(tn+1)=G∞ε(tn+1)
4: Update the algorithmic stresses hi(tn+1)= exp

(
−∆t
τi

)
hi (tn)+G i exp

(
− ∆t

2τi

)
∆ε

5: Compute the total stress using (4.3)

formula of the algorithmic stresses hi expressed in the previous algorithm is not unique

and alternative formulas could be found in [129]. With equations (4.3) and (4.4) and the

update procedure described above, we have all the quantities needed for the implemen-

tation of the one dimensional viscoelastic model which will be performed with Matlab

software.
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8 Chapter 4. Numerical implementation and integration scheme

4.1.2 Validation of the integration scheme

The validation of the integration scheme described in the previous section is performed

using three strain histories, for each case the total stress σ obtained from the discrete

scheme of equation (4.3) is compared to the stress obtained from the Abaqus simulation.

The Abaqus model consists of a single brick element undergoing simple extension strain.

The three strain histories considered here are defined by the following

ε (t)= ε̇ot, (4.5)

for monotonic strain history, where ε̇o is a positive constant denoting the strain rate and

ε (t)=
{

0 for t < 0

εo for t ≥ 0
, (4.6)

for the relaxation strain history, where εo is the relaxation level and

ε (t)= εA sin(wt) , (4.7)

for a sinusoidal strain history in which εA is the amplitude of the strain and w is its

frequency. Note that the form of the strain history of equation (4.6) can not be applied

neither experimentally nor numerically, hence a very fast ramp is applied to shift the

strain from 0 to εo. The results of the comparison between the discrete stress of equation

(4.3) and the one obtained from the Abaqus simulation are reported in figures 4.1, 4.2

and 4.3 in terms of the total stress versus time for monotonic, relaxation and sinusoidal

strain histories respectively. The material parameters used in this calculus are those

from [110]. From these results, it is concluded that the recurrence update formula of (4.3)

gives the same result as the viscoelastic model implemented in Abaqus software. This

result establish a big step to the implementation of the three dimensional viscoelastic

model since it has the same integration scheme as the Simo’s model [131] implemented

in Abaqus software. The implementation of the nonlinear viscoelastic model presented

in 2 will be presented in the next section of this chapter.

4.2 Implementation of the nonlinear viscoelastic
model

In this section we address the implementation of the nonlinear viscoelastic model pre-

sented in chapter 2. To this end, we start by recalling the formulation of initial boundary
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Figure 4.1: Stress versus time for a monotonic strain history

problems for a nonlinear viscoelastic solid. Then, we present the discrete form of the

constitutive equations of the model as well as the approximation of the tangent modulus

needed in the Umat subroutine.

4.2.1 Finite element method for nonlinear viscoelastic solids

Consider a continuum viscoelastic body occupying the reference placement Ω0 in the

reference configuration C0. It occupies at the time t the placement Ω in the deformed

configuration Ct. Let ϕ(X , t) denote a macroscopic motion between the two configurations,

which maps any point X in the reference configuration C0 to the point x in the deformed

configuration characterized by its displacement vector field noted u pointing from the

reference configuration to the current configuration. The typical use of the finite element

method is to resolve initial boundary value problem. In the absence of body forces, the

momentum equation is expressed, in the current configuration, as :

div (σ)= ρü, (4.8)

where ρ is density and div is the divergence operator with respect to the current

configuration. In the following we consider boundary and initial conditions for the motion
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Figure 4.2: Stress versus time for relaxation strain history

x =ϕ(X , t) required to satisfy the momentum equation (4.8). we assume afterwards that

the boundary surface ∂Ω of the continuum occupying Ω is decomposed into disjoint parts

so that

∂Ω= ∂uΩ∪∂FΩ with ∂uΩ∪∂FΩ =;. (4.9)

Figure 4.4 illustrates the decomposition of the boundary surface ∂Ω at the time t. There

are two classes of boundary conditions, namely the Dirichlet boundary conditions,
which corresponds to the definition of a displacement field u= ū(x, t) in the displacement

boundary surface ∂uΩ, and the Nuemann boundary conditions, which are identified

with σ.n = F (x, t) in the force boundary surface ∂FΩ. The second order differential

equations of (4.9) require additional data to be resolved in the form of initial conditions.

The displacement field u and the velocity field u̇ at the initial time t = 0 are specified as

u (x, t)=u0 (X ) |t=0 , u̇ (x, t)= u̇0 (X ) |t=0 (4.10)

In order to achieve the compatibility of the boundary conditions, the initial conditions of

equation (4.10) are also applied to the prescribed displacement field in the displacement

boundary surface ∂Ω. Hence, the problem now is to find a motion that satisfies equation

(4.8) with the prescribed initial and boundary conditions of equations (4.9) and (4.10).
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Figure 4.3: Stress versus time for a sinusoidal strain history

Figure 4.4: Initial boundary value problem considered
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This leads to the formulation in the strong form of the initial boundary value problem:

find a displacement field u such that

div (σ)= ρü,

u= ū on ∂uΩ,

σ.n=F on ∂FΩ,

u (x, t)=u0 (X ) |t=0 ,

u̇ (x, t)= u̇0 (X ) |t=0,

(4.11)

where n is the unit exterior normal vector to the force boundary surface ∂FΩ. The

analytic solution of the nonlinear system of the initial boundary value problem of

equation (4.11) is only possible for some special cases. Therefore, solutions are often

obtained using the finite element method which is based on the variational formulation

of (4.11). The variational formulation of the initial boundary value problem reads∫
Ω

div (σ)δudΩ−
∫
Ω
ρü.δudΩ= 0, (4.12)

where δu is a virtual displacement field which has to verify the initial and boundary

conditions. In practice, this virtual displacement field is set to be the displacement field u

since verifies all the required conditions for the virtual displacement field δu. Application

of the Divergence formula to the first integral in (4.12) yields the following form of the

variational formulation of the initial boundary value problem,∫
Ω
σ : grad (δu)dΩ−

∫
Ω
ρü.δudΩ−

∫
∂FΩ

F .δud∂FΩ= 0. (4.13)

The variational formulation of equation (4.13) is also known as the weak formulation of

the initial boundary value problem (4.11). The domain Ω will be subdivided into several

elements Ωe, the displacement field for any point M of the element Ωe is denoted by ue

and given by

ue(M)=NUe, (4.14)

in which N are the shape function of the element Ωe and Ue is its nodal displacement

vector. The internal force vector associated with the element Ωe, f int
e according to [129]

is given by

f int
e (t)=

∫
Ωe

B t
eσ (t)dV

=
∫
2

[
B t

eσ (t)
]◦φe j (ξ)dξ

∼=
nGauss∑

l=1
B t

e (xl)σl (t)Wl jl ,

(4.15)
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4.2. Implementation of the nonlinear viscoelastic model 8

where φe : 2 → Ωe is the standard isoprametric map with Jacobian determinant

j = det[Dφe], Be is the discrete strain-displacement operator and Wl are the quadrature

weights corresponding to the quadrature point xl . In (4.15) the subscript l denotes

evaluation at the quadrature point xl ∈ Ωe with l = 1,2, · · · ,nGauss. This notation is

standard; see [75] and [149] for further development. From (4.15) it is concluded that the

evaluation of the internal force vector f int
e (t) requires knowledge of the stress history

at the quadrature point σl(t) for the time interval considered assuming knowledge

of the strain at any given time in the time interval considered. Therefore, a discrete

representation of the convolution representation of the stress of equation (2.43) is

required to complete the resolution of the initial boundary value problem of equation

(4.11). Since our model is not existing in any finite element software, it should be

implemented into a finite element software (e.g. Abaqus) via a user defined subroutine.

The implementation procedure of the model will be presented in the remaining of this

chapter.

4.2.2 Discrete representation of the constitutive equations

In this section, the implementation of the nonlinear viscoelastic model at finite strain

into Abaqus software is presented via a user defined Umat subroutine. First, the discrete

representation of the model is presented in terms of the expression of the update formula

of the Cauchy stress (4.11). Then, the fourth order tangent stiffness tensor needed in the

writing of the Umat is calculated using the Jaumann objective derivative. Finally, the

use of the user defined Umat subroutine is explained.

4.2.2.1 Discrete stress-strain relationship

To investigate the performance of the proposed model in [136] and presented in chapter

2 of this thesis for boundary value problems, it is needful to implement the constitutive

equations into a finite element software e.g. Abaqus through a user-defined umat sub-

routine, which requires an update formulas for the Cauchy stress σ and the tangent

modulus C. Before we start with the formulation of the discrete form of the constitutive

equation of the model, it is necessary to point out that this implementation procedure

is done with a compressible viscoelastic model even thought the model proposed in this

thesis is an incompressible viscoelastic model. In fact, Abaqus software gives the possi-

bility to do so in the writing of the user defined Umat subroutine. According to [62], to

avoid the penalty formulation due to the incompressibility [64], it is sufficient to consider
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8 Chapter 4. Numerical implementation and integration scheme

a bulk modulus about 104 −106 times the shear modulus and use hybrid elements in

the mesh module of Abaqus see [63] for further details. First, for numerical reasons

[129] with respect to the implementation procedure, it is more convenient to consider

the constitutive equation of the stress of equation (2.43) in terms of the Kirchhoff stress

tensor τ = Jσ namely

τ = τ d
o +dev

∫ ξ

0

∂g
(
ξ′

)
∂ξ′

(
F̄ −1

t
(
t− t′

)
τ d

o
(
t− t′

)
F̄ −t

t
(
t− t′

))
dξ′+ J pI . (4.16)

To present the discrete representation of the constitutive model of equations (2.43),

different functions of the model need to be defined. We start with the definition of the

reduced time function a(C). Motivated by the form proposed in [113] to describe the

behavior of ligaments, a more general form for the reduced time function is postulated

as follows:

a (C)= exp(c1 (I1 −3)+ c2 (I2 −3)) , (4.17)

where c1 and c2 are material parameters. Also, as it is explained in the formulation of the

model, the instantaneous stored elastic energy density Ψ is decomposed into volumetric

and isochoric parts

Ψ=Ψiso (
B̄

)+Ψvol (J) , (4.18)

The superscript •iso and •vol denote the isochoric and volumetric parts of the instanta-

neous stored elastic energy density respectively. F̄t
(
t′
)= J−1/3∂ϕ

(
X , t′

)/
∂ϕ (X , t) is the

relative distortional deformation gradient tensor for the mapping function ϕ (X , t), g
is the normalized shear relaxation modulus and it is expressed by a sum of decaying

exponential functions of time as

g (t)= g∞+∑
r

gr exp
(
− t
τr

)
, (4.19)

gr and τr are the coefficients of the Prony series and relaxation times respectively, g∞ is

the equilibrium normalized shear modulus. p = ∂Ψiso (J)
/
∂J is the hydrostatic part of

the stress which could be determined in the case of incompressibile behavior through

boundary conditions. In equation (4.16), τ d
o is the deviatoric part of the instantaneous

elastic Kirchhoff tensor which is expressed from the instantaneous stored elastic energy

density Ψ by

τo = 2B
∂Ψ (B)
∂B

. (4.20)
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4.2. Implementation of the nonlinear viscoelastic model 8

Using equation (4.20), the instantaneous elastic Kirchhoff stress τo is decomposed as

well into isochoric and volumetric parts

τo = τ h
o (J)+τ d

o
(
B̄

)
, (4.21a)

τ h
o (J)= 2JB

∂Ψvol (J)
∂B

, (4.21b)

τ d
o

(
B̄

)= 2B
∂Ψiso (

B̄
)

∂B
. (4.21c)

From equation (4.21b) with ∂J
/
∂B = 0.5JB−1 it follows

τ h
o (J)= J

∂Ψiso (J)
∂J

I , (4.22)

and from equation (4.21c) and

∂B̄

∂B
= J−2/3

(
I− 1

3
B⊗B−1

)
, (4.23)

in which I denotes the fourth order identity tensor defined by

Ii jkl =
1
2

(δikδ jl +δilδ jk), (4.24)

and ⊗ designates the tensorial product operator, it follows

τ d
o

(
B̄

)=P : τ̄ . (4.25)

P is the fourth order projection tensor and τ̄ is an algorithmic Kirchhoff stress tensor

derived from Ψiso(B̄) with respect to B̄. With all needed quantities been defined, we

shall now address the discretization of the constitutive equation of the Kirchhoff stress

tensor of equation (4.16) and the reduced time of equation (4.17). Let [0, t] be the time

interval of interest, this interval is subdivided into n increments as follows

[0, t]=
⋃
n

[tn, tn+1], tn+1 = tn +∆tn. (4.26)

The reduced time increment ∆ξn is related to the real time increment ∆tn defined in

equation (4.26) and may be expressed as follows

∆ξn = ∆tn

a(C)
. (4.27)

Since the implementation is performed in Abaqus software, the discrete form of equation

(4.16) is obtained in the same way as in [63] taking into account that all quantities are
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8 Chapter 4. Numerical implementation and integration scheme

known at tn and all strain quantities are known at tn+1. This discrete form reads

τ (tn+1)= τ d
o (tn+1) −

r∑
i=1
τ d

i (tn+1)+τ h
o (tn+1)

τ d
i (tn)= g i

τi

∫ ξ

0
F̄ −1

t
(
t− t′

)
τ d

o
(
t− t′

)
F̄ −t

t
(
t− t′

)
exp

(
− ξ

′

τi

)
dξ′

τ d
i (tn+1)=αi g iτ

d
o (tn+1) +βi g iτ̂

d
o (tn) +γiτ̂

d
i (tn)

with

γi = exp
(
−∆ξn

τi

)
; αi = 1− τi

∆ξn

(
1−γi

)
; βi = τi

∆ξn

(
1−γi

)− γi

τ̂ d
j (t)= F̄t (t+∆tn)τ d

j (t)F̄t
t (t+∆tn) ; j = 0,1, ...r.

(4.28)

In equation (4.28) r is the number of Prony series coefficients.

4.2.2.2 Tangent stiffness

In this section we specify the formula for the tangent modulus C required in the imple-

mentation of the model. To this end, it is essential to derive the stress rate quantities

that are objective. First, we start with the so-called Oldroyd stress rate (see [94]) of the

elastic part of the model and get,

Lvτo = τ̇o −Lτo −τoL
t = 4B

∂2Ψ (B)
∂B2 B :D :=Ce :D, (4.29)

in which L is the velocity gradient tensor, D = 0.5(L+Lt) is the rate of deformation

tensor and Ce is the elastic tangent modulus. This tangent modulus is decomposed into

isochoric and volumetric parts as well

Ce =Ce
vol(J)+Ce

iso(B̄). (4.30)

Using equations (4.21b) and (4.21c) the isochoric and volumetric parts of the elastic

tangent modulus follow

Ce
vol(J)= 4B

∂2Ψvol (J)
∂B2 B = (

∂2Ψvol (J)
∂J2 + J

∂Ψvol (J)
∂J

)I ⊗I −2J
∂Ψvol (J)

∂J
I, (4.31)

for the volumetric part and

Ce
iso(B̄)= 4B

∂2Ψiso (
B̄

)
∂B2 B = 2

3
tr (τ̄ )P− 2

3

(
τ d

o ⊗I +I ⊗τ d
o

)
+P : C̄ :P, (4.32)

for the isochoric part. In equation (4.32), tr(•) denotes the trace operator and C̄ is an

algorithmic tangent modulus following from τ̄ and has the following expression:

C̄= 4B̄
∂2Ψiso (

B̄
)

∂B̄2
B̄. (4.33)
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4.2. Implementation of the nonlinear viscoelastic model 8

The viscoelastic isochoric and volumetric moduli, according to [63], could be easily

obtained from the elastic moduli through the following relations :

Cv =Cv
vol(J)+Cv

iso(B̄), (4.34a)

Cv
vol(J)=Ce

vol(J), (4.34b)

Cv
iso(B̄)=

(
1−

r∑
i=1

αi g i

)
Ce

iso(B̄), (4.34c)

equation (4.34b) follows from the fact that the behavior is considered purely elastic in

bulk. αi are the functions deriving from the discrete form of the stress of equation (4.28)

and g i are the coefficients of the Prony series. Note that the viscoelastic tangent modulus

Cv was derived using Oldroyd objective derivative of equation (4.29) . Hence, to obtain

the Jaumann derivative used in Abaqus software we used the following transformation

(see [133])

CJ
abcd =Cv

abcd +
1
2

(δacτbd +τacδbd +δadτbc +τadδbc) , (4.35)

the superscript •J refers to Jaumann and δ denotes the Kronecker symbol referring to

the second order identity tensor I. Finally, the tangent modulus to be implemented in

the umat subroutine reads

CAbaqus = 1
J
CJ . (4.36)

Equations (4.28) and (4.36) with σ = 1
Jτ describe the implementation of the nonlinear

viscoelastic model for a compressible material. In order to investigate incompressible

material’s behavior using this model, it is sufficient to consider a bulk modulus about

104to 106 times the shear modulus with hybrid element, see [62] for details. In this case,

p in equations (4.16) became an indeterminate pressure to be obtained from boundary

conditions. Henceforth, the behavior is considered incompressible.

4.2.2.3 Flowchart of the Umat subroutine

In figure 4.5, the interaction of the subroutine UMAT with the Abaqus package is

illustrated for the Newton-Raphson iterative procedure during a single time increment

[62]. The subroutine Umat calculates the components of Cauchy stress and material

Jacobian for each Gauss integration point. These quantities are subsequently used by

Abaqus to form up the element stiffness matrix. Finally, the global stiffness matrix is

assembled by Abaqus using the element stiffness matrices. The user subroutines used

in other FE packages to define custom constitutive equations are integrated with the

remainder of the program in a similar way and play the same role. These two quantities
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8 Chapter 4. Numerical implementation and integration scheme

Figure 4.5: Flowchart for the interaction of Abaqus and Umat

are defined in the subroutine Umat by STRESS which is a 6×1 vector for the Cauchy

stress σ and DDSDDE which is a 6×6 matrix for the tangent stiffness modulus C.

The algorithm of the subroutine Umat is presented by the following algorithm. The

subroutine Umat is coded in Fortran 90 and reported in Appendix A

4.3 Conclusions

In this chapter, we presented the implementation of a nonlinear viscoelastic model at

finite strain previously proposed in [136] into Abaqus software via a user-defined umat

subroutine. The model incorporates a strain dependent relaxation times and based upon

the internal state variables approach and the framework of rational thermodynamics

and experimental arguments. The decomposition of the deformation gradient tensor into

volume-preserving and volumetric parts led to a decomposition in the stress response.

The implementation of the model was carried out in two steps. First, the discrete form of

the instantaneous stress was calculated from the instantaneous stored elastic energy

density. Then, the viscoelastic stress was computed from the instantaneous response

following the discretization scheme of Abaqus software. The tangent stiffness necessary

for the implementation was computed accordingly using the objective rate derivative of

Jaumann.

In the next chapter we present the validation of the implementation procedure outlined

in this chapter through the solution of boundary value problems for homogeneous and

non homogeneous transformations.
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Algorithm 2 Algorithm of the subroutine Umat
1: Calculate Finger tensorB
B =FF t

2: Calculate the Jacobian
J = det[B]0.5 = det[F ]

3: Calculate the deviatoric part ofB
B̄ = J

−2
3 B

4: Calculate tr[B̄]
5: Calculate τ̄
τ̄ = 2B̄ ∂Ψ

(
B̄

)
∂B̄

6: Establish unit tensor δi j and fourth order projection tensor
Pi jkl = 1

2
(
δikδ jl +δilδ jk

)− 1
3δi jδkl

7: Compute tr[τ̄ ]
8: Calculate isochric contribution τ d

o
τ d

o i j = τ̄i j − 1
3 τ̄kkδi j

9: Calculate volumetric contribution τ h
o

τ h
o (J)= 2JB ∂Ψvol (J)

∂B
10: Calculate C̄

C̄= 4B̄ ∂2Ψiso(
B̄

)
∂B̄2 B̄

11: Calculate isochoric contribution Ce
iso

Ce
iso(B̄)= 4B ∂2Ψiso(

B̄
)

∂B2 B = 2
3 tr (τ̄ )P− 2

3

(
τ d

o ⊗I +I ⊗τ d
o

)
+P : C̄ :P

12: Calculate volumetric contribution Ce
vol

Ce
vol (J)= 4B ∂2Ψvol (J)

∂B2 B = ( ∂
2Ψvol (J)
∂J2 + J ∂Ψvol (J)

∂J )I ⊗I −2J ∂Ψvol (J)
∂J I

13: Compose elastic tangent stiffness modulus Ce

Ce =Ce
vol (J)+Ce

iso(B̄)
14: Calculate Cv

iso

Cv
iso(B̄)=

(
1−

r∑
i=1

αi g i

)
Ce

iso(B̄)

15: Compose the viscoelastic tangent stiffness modulus Cv

Cv =Cv
vol (J)+Cv

iso(B̄)
16: Calculate the Jaumann stiffness modulus CJ and the total stiffness modulus CAbaqus

CJ
abcd =Cv

abcd + 1
2

(
δacτbd +τacδbd +δadτbc +τadδbc

)
and CAbaqus = 1

JC
J

17: Calculate the total Kirchhoff stress τ from (4.28)
18: Calculate the Cauchy stress from the Kirchhoff stress σ = 1

J τ
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T
His chapter presents the validation of the implementation of the nonlinear

viscoelastic model presented in the previous chapter via the solution of

homogeneous and nonhomogeneous initial boundary problems numerically

and analytically.

In the literature, several works have been dedicated to the resolution of boundary value

problems for nonlinear elastic solids such as the series of papers by Horgan and Sac-

comandi for simple torsion in [70], pure axial shear in [69], pure azimuthal shear in

[71] and helical shear in [72]. For nonlinear viscoelastic materials this subject has been
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homogeneous transformations

addressed in many works as well, namely the work of Lee and Wineman for the response

of elastomeric bushings in [85] and [84] and the response of viscoelastic cylinder to

simple torsion due to [5] and [22].

On the other hand, from a numerical stand point, the definition of the boundary con-

ditions leading to the studied transformation presents a real challenge [32] because

an equivalence between the boundary conditions prescribed and the resulting transfor-

mation should be ensured. In fact, for a displacement driven study, such as the work

presented in this chapter and having the purpose of comparison between analytic and

numerical solutions, one needs to carefully define the boundary conditions prescribed in

order to obtain the desired transformation.

This chapter is subdivided to three parts. First, the parameters of the instantaneous

stored elastic energy density, the relaxation function and the reduced time function

involved in the model are specified. Then the validation of the implemented model is

addressed via the solution of two boundary value problems for homogeneous transforma-

tions which are the simple extension and the simple shear. The equilibrium equations

arising from these two transformations allows us to eliminate the indeterminate hy-

draustatic pressure p accounting for incompressibility. Finally, the problem of simple

torsion of hollow cylinder was addressed. Thanks to the axisymmetry of the problem, all

the stress components were functions of the radius r only.

5.1 Specification of the parameters of the model

The validation of the implementation procedure presented in the previous chapter is

presented in this chapter via the comparison between analytic results and numerical

results using the implemented model. To this end, we specify every characteristic function

and parameter used in the model. We start by the instantaneous stored elastic energy

density which is expressed following the decomposition of the deformation gradient tensor

into isochoric and deviatoric parts of equation (2.35) by a Mooney-Rivlin development

[123] as
Ψ (B)=c10

(
Ī1 −3

)+ c20
(
Ī1 −3

)2 + c11
(
Ī1 −3

)(
Ī2 −3

)
+ c01

(
Ī2 −3

)+ c02
(
Ī2 −3

)2 + 1
D1

(J−1)2 .
(5.1)

In which Ī1 and Ī2 are the first two invariants of the deviatoric Finger tensor B̄ and

ci j, i, j = 0..2 and D1 are material parameters of the Mooney-Rivlin instantaneous elastic

stored energy density. Numerical value of these parameters of equation as well as those
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5.1. Specification of the parameters of the model 8

of the reduced time function of equation (4.17) are reported in table 5.1. The viscoelastic

parameters of the Prony series expansion of equation (4.19) are reported in table 5.2.

The initial bulk modulus is given by

k0 = 2
D1

= 2.105 MPa, (5.2)

and the initial shear modulus is given by

µ0 = 2(c10 + c01)= 0,656 M pa. (5.3)

From equations (5.2) and (5.3), it is clear that the initial bulk modulus is large enough

according to [62] (about 104 to 106 times the initial shear modulus) to consider the

behavior incompressible and hence the ¯(•) notation for strain tensors and their invariants

will be omitted in the reminder of this chapter. Therefore, the Kirchhoff and Cauchy

stress tensors are equal.

Parameters Value (M pa)
c10 3.15 10−1

c20 1.3 10−2

c11 2.11 10−2

c01 3.01 10−2

c02 −1.81 10−2

c1 1.62 10−1

c2 5.9 10−3

1
D1

1 105

Table 5.1: Model’s parameters

g i τi(s)
0.09 1
0.08 10
0.07 100

Table 5.2: Prony series parameters

As a result of the incompressibility of the material considered, the numerical simu-

lations for the boundary value problems will use hybrid type of element. The material

parameters defined in this section will be used in the reminder of this chapter for the

solution of homogeneous and non homogeneous boundary value problems.
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homogeneous transformations

5.2 Homogeneous transformations

In this section, we validate the implementation of the model using parameters of section

5.1 by solving boundary value problems of simple extension and simple shear.

5.2.1 Simple extension

Z

Y

X

  RP−1X

Y

Z

(a) Boundary conditions applied to the cube

Step: Step−1
Increment   1000: Step Time =    1000.

Deformed Var: U   Deformation Scale Factor: +1.000e+00

ODB: monotone0_002.odb    Abaqus/Standard 6.14−1    Tue Jul 11 16:35:57 GMT+02:00 2017

X

Y

Z

(b) Cube undergoing simple extension deformation

Figure 5.1: Boundary conditions and deformed form of the cube undergoing simple
extension deformation
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5.2. Homogeneous transformations 8

Consider a viscoelastic body undergoing simple extension deformation for which each

material point M is referred by its positions X and x(t) in the reference and deformed

configurations respectively. Since the transformation is homogeneous, it is sufficient

to consider a one cubic element in the simulation with Abaqus software instead of the

whole simple extension sample. The boundary conditions applied to the cube guarantees

that the transformation is homogeneous and that the Poisson’s effect is accepted. The

boundary conditions and the deformed form of the cube are reported in figure 5.1. This

transformation is defined by

x1 (t)=λ1 (t) X1, x2 (t)=λ2 (t) X2 and x3 (t)=λ2 (t) X3, (5.4)

where λ1 and λ2 are the principle stretches. From the constraint of incompressibility

J = 1, it follows that λ2 = λ1
−1/2. Setting λ1 = λ, the expression of the deformation

gradient tensor F and the left Cauchy-Green strain tensor B using equation (5.4) read

F (t)=diag
(
λ (t) ,λ−1/2 (t) ,λ−1/2 (t)

)
and

B(t)= diag
(
λ2 (t) ,λ−1 (t) ,λ−1 (t)

)
,

(5.5)

their invariants are

I1 =λ2 + 2
λ

, I2 = 2λ+ 1
λ2 and I3 = 1. (5.6)

Note that the only nonzero stress component, assuming free stress lateral surfaces, is

σ11(t)=σ(t) and σi j = 0 (i 6= 0 and j 6= 0). (5.7)

From equations (4.25), (5.1), (5.6) and (5.7) the nonzero components of the deviatoric

part of the instantaneous elastic Cauchy stress tensor are obtained

σd
11 = 2

[
1
3

((
2λ+ 1

λ2

)
Ψ2 −

(
λ2 + 2

λ

)
Ψ1

)
+Ψ1λ

2 −Ψ2

λ2

]
and

σd
22 =σd

33 = 2
[

1
3

((
2λ+ 1

λ2

)
Ψ2 −

(
λ2 + 2

λ

)
Ψ1

)
+Ψ1

λ
−Ψ2λ

]
,

(5.8)

where Ψ1 and Ψ2 denote the derivative of the instantaneous stored elastic energy

density Ψ with respect to I1 and I2 respectively. Using equation (5.6) these derivative

are expressed by

Ψ1 = c10 +2c20

(
λ2 + 2

λ
−3

)
+ c11

(
2λ+ 1

λ2 −3
)

and

Ψ2 = c01 +2c02

(
2λ+ 1

λ2 −3
)
+ c11

(
λ2 + 2

λ
−3

)
.

(5.9)
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Hence, the nonzero Cauchy stress of equation (5.7), using equation (4.16) and (5.8) after

eliminating the undetermined pressure p using the second equality of equation (5.7),

reads

σ(t)=σd
11(t)−σd

22(t)−
3∑

i=1

g i

τi

∫ ξ

0

λ2 (
t− t′

)
λ2 (t)

σd
11

(
t− t′

)
exp

(
− ξ

′

τi

)
dξ′

+
3∑

i=1

g i

τi

∫ ξ

0

λ (t)
λ (t− t′)

σd
22

(
t− t′

)
exp

(
− ξ

′

τi

)
dξ′,

(5.10)

using equation (4.28) one leads to the discrete form of the Cauchy stress σ(t) in the

case of simple extension transformation. With the discrete form of the reduced time of

equation (4.27), the discrete form of (5.10) reads

σ(tn+1)=σd
11(tn+1)−σd

22(tn+1)+
3∑

i=1

(
σi

22 (tn+1)−σi
11 (tn+1)

)
,

σi
22 (0)=σi

11 (0)= 0 ; i = 1..3,

σi
11 (tn+1)= λ2 (tn+1)

λ2 (tn)

(
βi g iσ

d
11 (tn)+γiσ

i
11 (tn)

)
+αi g iσ

d
11 (tn+1) ; i = 1..3,

σi
22 (tn+1)= λ (tn)

λ (tn+1)

(
βi g iσ

d
22 (tn)+γiσ

i
22 (tn)

)
+αi g iσ

d
22 (tn+1) ; i = 1..3,

(5.11)

where σi
11 and σi

22 are the components of the viscoelastic contribution to the deviatoric

part of the Cauchy stress tensor representing the convolution integral in equation (4.16).

Equation (5.11) will be used in the comparison to the response of the implemented model

for different stretch histories λ(t). First, we consider a ramp stretch history defined by

λ(t)= 1+ λ̇ t ; t ≥ 0, (5.12)

where λ̇ is the stretch rate and it is a positive constant. Combining equation (5.11) with

the expression of λ in equation (5.12) one leads to the expression of the stress σ(t). In

figure 5.2 is reported the comparison between the implemented model and the analytic

results in terms of the Cauchy stress σ(t) and its relative error for the stretch rates of

0.2s−1, 0.02s−1 and 0.002s−1.

Then, a relaxation stretch history is considered for which the stretch is defined by a

Heaviside function as

λ(t)=
{

1 for t < 0

λo for t > 0
, (5.13)

where λo is the stretch level of the relaxation process. It should be noted, however, that

the stretch history of equation (5.13) is impossible to define. Hence a very brief rise
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5.2. Homogeneous transformations 8

time (about 10−3s) to the relaxation level λo is employed. Substitution of λ of equation

(5.13) in the stress expression of equation (5.11) leads to σ(t) in the case of a relaxation

process. The analytic result of this stretch history is reported in 5.3 in comparison to

the implemented model via the Cauchy stress and its relative error for three values of

stretch levels λ= 3, λ= 2.5 and λ= 2.

Finally, a dynamic imposed stretch history is considered for which λ is defined by the

following expression

λ(t)= 1+ Ao sinωt ; t ≥ 0, (5.14)

where ω is the circular frequency and Ao is the dynamic amplitude of the stretch.

Substituting of λ(t) of equation (5.14) in equation (5.11) leads to the expression of the

stress σ(t) for a sinusoidal stretch history. Figure 5.4 shows the result of the comparison

between the implemented model and the analytic result in the case of a sinusoidal stretch

history for three different circular frequency ω= 6.28 Hz, ω= 3.14 Hz and ω= 0.628 Hz.

From figures 5.2, 5.3 and 5.4 it is concluded that the implementation of the viscoelastic

model into Abaqus software is validated since the relative error of the Cauchy stress for

the stretch histories considered remain less than 0.7%.
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(a) Cauchy stress versus stretch λ for several stretch rates: analytic results (symbol) implemented
model (solid curve)
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(b) Relative error of Cauchy stress versus stretch λ for several stretch rates

Figure 5.2: Comparison of analytic results with the implemented model in simple exten-
sion for a ramp stretch history
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(a) Cauchy stress time for several stretch levels: analytic results (symbol) implemented model
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(b) Relative error of Cauchy stress versus time for several stretch levels

Figure 5.3: Comparison of analytic results with the implemented model in simple exten-
sion for a relaxation (Heaviside) stretch history
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(a) Cauchy stress versus time for several circular frequency ω: analytic results (symbol) imple-
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Figure 5.4: Comparison of analytic results with the implemented model in simple exten-
sion for a sinusoidal stretch history
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5.2.2 Simple shear
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(a) Boundary conditions applied to the cube

Step: Step−1
Increment   1000: Step Time =    100.0

Deformed Var: U   Deformation Scale Factor: +1.000e+00

ODB: shear0_7.odb    Abaqus/Standard 6.14−1    Sun Jul 16 22:27:38 GMT+02:00 2017

X

Y

Z

(b) Cube undergoing simple shear deformation

Figure 5.5: Boundary conditions and deformed form of the cube undergoing simple shear
deformation
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In this section, we investigate the response of the implemented model and analytic results

for the homogeneous transformation of simple shear. The model for this transformation

is also a single element cube fixed in the bottom face and undergoing a simple shear

motion in the top face as it is reported in figure. This transformation is defined by

x1 (t)= X1 +k (t) X2, x2 (t)= X2 and x3 (t)= X3, (5.15)

where k(t) is the shearing strain. From equation (5.15) the deformation gradient tensor

and the left Cauchy-Green strain tensor are obtained

F =


1 k (t) 0

0 1 0

0 0 1

 , B =


k2 (t)+1 k (t) 0

k (t) 1 0

0 0 1

 , (5.16)

their invariants are

I1 = I2 = k2(t)+3 and I3 = 1. (5.17)

From equations (4.16), (5.1), (5.16) and (5.17) the nonzero components of the deviatoric

part of the elastic instantaneous Cauchy stress tensor are obtained

σd
11 = 2

[1
3

(
k2 +3

)
(Ψ2 −Ψ1)+Ψ1

(
k2 +1

)−Ψ2
]

σd
22 = 2

[1
3

(
k2 +3

)
(Ψ2 −Ψ1)+Ψ1 −Ψ2

(
k2 +1

)]
σd

33 = 2
3

(
k2 +2

)
(Ψ2 −Ψ1)

σd
12 =σd

21 = 2k (Ψ2 +Ψ1)
where

Ψ1 = c10 + (2c20 + c11)k2

Ψ2 = c01 + (2c02 + c11)k2

. (5.18)
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5.2. Homogeneous transformations 8

Therefore, the nonzero components of the Cauchy stress are obtained from (4.16)

σ11(t)=σd
11(t)+ p (t)−

3∑
i=1

g i

τi

∫ ξ

0
σd

11
(
t− t′

)
exp

(
− ξ

′

τi

)
dξ′

−
3∑

i=1

g i

τi

∫ ξ

0
2

(
k (t)−k

(
t− t′

))
σd

12
(
t− t′

)
exp

(
− ξ

′

τi

)
dξ′

−
3∑

i=1

g i

τi

∫ ξ

0

(
k (t)−k

(
t− t′

))2
σd

22
(
t− t′

)
exp

(
− ξ

′

τi

)
dξ′

σ22(t)=σd
22 (t)+ p (t)−

3∑
i=1

g i

τi

∫ ξ

0
σd

22
(
t− t′

)
exp

(
− ξ

′

τi

)
dξ′

σ33(t)=σd
33 (t)+ p (t)−

3∑
i=1

g i

τi

∫ ξ

0
σd

33
(
t− t′

)
exp

(
− ξ

′

τi

)
dξ′

σ12(t)=σ21(t)=σd
12 (t)−

3∑
i=1

g i

τi

∫ ξ

0
σd

12
(
t− t′

)
exp

(
− ξ

′

τi

)
dξ′

−
3∑

i=1

g i

τi

∫ ξ

0

(
k (t)−k

(
t− t′

))
σd

22
(
t− t′

)
exp

(
− ξ

′

τi

)
dξ′

. (5.19)

Our main interest in this work is the shearing stress σ12 which will be used in the

comparison to the implemented model. The discrete form of this stress reads

σ12(tn+1)=σd
12 (tn+1)−

3∑
i=1

(
σi

12 (tn+1)−σi
22 (tn+1)

)
σi

12 (0)=σi
22 (0)= 0

σi
12 (tn+1)=

(
βi g iσ

d
12 (tn)+γiσ

i
12 (tn)

)
+αi g iσ

d
12 (tn+1) ; i = 1..3

σi
22 (tn+1)= (k (tn)−k (tn+1))

(
βi g iσ

d
22 (tn)+γiσ

i
22 (tn)

)
+

αi g iσ
d
22 (tn+1) ; i = 1..3

, (5.20)

where σi
12 and σi

22 are the components of the viscoelastic contribution to the deviatoric

part of the Cauchy stress tensor representing the convolution integral in equation

(4.16). As in the previous section, equation (5.20) will be used in the comparison to the

implemented model. Let us consider a monotonic shearing strain of the form

k(t)= k̇t (5.21)

where k̇ is the rate of the shearing strain and it is a positive constant. In figure 5.6

is reported the comparison between the analytic response of equation (5.20) and the

implemented model in terms of the shearing Cauchy stress σ12(t) and its relative error
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homogeneous transformations

for the strain rates of 0.1s−1, 0.01s−1 and 0.001s−1.

The second shearing strain history considered here is the relaxation shearing strain

history for which the shearing strain takes the following form :

k(t)=
{

0 for t < 0

ko for t > 0
, (5.22)

where ko is the level of the relaxation shearing strain. In figure 5.7 is reported the result

of the comparison between the analytic calculation from equations (5.20) and (5.22) and

the implemented model for a relaxation shearing strain of k = 1, k = 0.8 and k = 0.6. Note

that the difference observed in figure 5.7a is due to the difference in the rise time of

the shearing strain which is null for the analytic calculation and can not vanish for the

implemented model and is about 10−3s.

Now we consider a sinusoidal shearing strain history of the form

k(t)= kA sin(wt), (5.23)

where kA is the amplitude of the shearing strain and w is its circular frequency. The

results are reported in figure 5.8 in terms of the shearing Cauchy stress σ12(t) and its

relative error for three different circular frequencies of ω= 0.628 Hz, ω= 3.14 Hz and

ω= 6.28 Hz. The aim of this section was to further validate the implementation of the

model into Abaqus software with another homogeneous transformation of simple shear.

It is seen from the relative error of figures 5.6, 5.7 and 5.8 that the response of the

implemented model is identical to the analytic calculation since its value for the three

shearing strain histories considered remain under 1%.

The aim of this section was to validate the implementation of the nonlinear viscoelastic

model presented in chapter 2 for an incompressible isotropic material via homogeneous

transformations of simple extension and simple shear. The next section deals with

solution of a non homogeneous boundary value problem of simple torsion of a hollow

cylinder.
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(b) Relative error of Cauchy stress versus shearing strain k for several stretch rates

Figure 5.6: Comparison of analytic results with the implemented model in simple shear
for a ramp strain history
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(a) Shearing Cauchy stress versus time for several shearing strain levels: analytic results
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(b) Relative error of shearing Cauchy stress versus time for several shearing strain levels

Figure 5.7: Comparison of analytic results with the implemented model in simple shear
for a relaxation (Heaviside) shearing strain history
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Figure 5.8: Comparison of analytic results with the implemented model in simple shear
for a sinusoidal shearing strain history
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5.3 Nonhomogeneous transformation: Simple
torsion of hollow cylinder
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(a) Boundary conditions applied to the cylinder

Step: Step−1
Increment   1000: Step Time =    100.0

Deformed Var: U   Deformation Scale Factor: +1.000e+00

ODB: monotone1.odb    Abaqus/Standard 6.14−1    Tue Jul 18 18:31:59 GMT+02:00 2017

X
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(b) Cylinder undergoing simple torsion

Figure 5.9: Boundary conditions and deformed form of the cylinder undergoing simple
torsion deformation
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In the previous subsections 5.2.1 and 5.2.2, it has been shown the validation of the

implemented model through homogeneous transformations of simple extension and

simple shear for several strain histories. In this section, we shall investigate a non-

homogeneous transformation of simple torsion of a hollow cylinder. Although, it has been

shown in [19] and [38] among others that this problem has a universal solution for elastic

and viscoelastic solids. The cylinder has an inner radius of Ri = 9.85 mm and an outer

radius of Ro = 18.2 mm and a length of L = 60 mm. In cylindrical coordinates, simple

torsion of a hollow cylinder is described by r = R, θ =Θ+ψZ and z = Z, where (r,θ, z)

are the cylindrical coordinates of a point in the deformed configuration, (R,Θ, Z) are the

cylindrical coordinates of a point in the reference configuration and ψ is the angle of

twist per unit length. The finite element model for the simulation of this transformation

is presented in figure 5.9 for the deformed and undeformed states. The bottom face of

the cylinder is fixed to the referential and an angle of twist is applied to the its top face.

The element type for the model is set to be an 8 node linear hybrid brick C3D8H. From

this transformation the deformation gradient tensor and the left Cauchy-Green strain

tensor read in the orthonormal cylindrical base

F =


1 0 0

0 1 ψr
0 0 1

 , B =


1 0 0

0 1+ (
ψr

)2
ψr

0 ψr 1

 , (5.24)

their invariants are

I1 = I2 = (ψr)2 +3, I3 = 1. (5.25)

From equations (4.16), (5.1), (5.24) and (5.25) the nonzero components of the deviatoric

part of the instantaneous elastic Cauchy stress tensor are obtained

σd
rr =

[
(ψr)2+1

3 (Ψ2 −Ψ1)+Ψ1 −Ψ2

]
σd
θθ

=
[

(ψr)2+1
3 (Ψ2 −Ψ1)+

((
ψr

)2 +1
)
Ψ1 −Ψ2

]
σd

zz =
[

(ψr)2+1
3 (Ψ2 −Ψ1)+Ψ1 −

((
ψr

)2 +1
)
Ψ2

]
σd
θz =σd

zθ = 2ψr (Ψ1 +Ψ2)
where

Ψ1 = c10 + (2c20 + c11)
(
ψr

)2

Ψ2 = c01 + (2c02 + c11)
(
ψr

)2

. (5.26)

The nonzero Cauchy stress components following from the Constitutive equation (4.16)
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in the case of simple torsion of a hollow cylinder are

σrr (t)=σd
rr(t)+ p−

3∑
i=1

g i

τi

∫ ξ

0
σd

rr
(
t− t′

)
exp

(
− ξ

′

τi

)
dξ′−

3∑
i=1

g i

3τi

∫ ξ

0
rσd

zz
(
t− t′

)(
ψ (t)−ψ(

t− t′
))2 exp

(
− ξ

′

τi

)
dξ′+

3∑
i=1

2g i

3τi

∫ ξ

0
rσd

zθ
(
t− t′

)(
ψ (t)−ψ(

t− t′
))

exp
(
− ξ

′

τi

)
dξ′

σθθ (t)=σd
θθ(t)+ p−

3∑
i=1

g i

τi

∫ ξ

0
σd
θθ

(
t− t′

)
exp

(
− ξ

′

τi

)
dξ′+

3∑
i=1

2g i

3τi

∫ ξ

0
rσd

zz
(
t− t′

)(
ψ (t)−ψ(

t− t′
))2 exp

(
− ξ

′

τi

)
dξ′−

3∑
i=1

4g i

3τi

∫ ξ

0
rσd

zθ
(
t− t′

)(
ψ (t)−ψ(

t− t′
))

exp
(
− ξ

′

τi

)
dξ′

σzz (t)=σd
zz(t)+ p−

3∑
i=1

g i

τi

∫ ξ

0
σd

zz
(
t− t′

)
exp

(
− ξ

′

τi

)
dξ′−

3∑
i=1

g i

3τi

∫ ξ

0
rσd

zz
(
t− t′

)(
ψ (t)−ψ(

t− t′
))2 exp

(
− ξ

′

τi

)
dξ′+

3∑
i=1

2g i

3τi

∫ ξ

0
rσd

zθ
(
t− t′

)(
ψ (t)−ψ(

t− t′
))

exp
(
− ξ

′

τi

)
dξ′

σzθ (t)=σd
zθ(t)−

3∑
i=1

g i

τi

∫ ξ

0
σd

zθ
(
t− t′

)
exp

(
− ξ

′

τi

)
dξ′−

3∑
i=1

2g i

3τi

∫ ξ

0
rσd

zθ
(
t− t′

)(
ψ (t)−ψ(

t− t′
))

exp
(
− ξ

′

τi

)
dξ′

. (5.27)

The hydrostatic pressure p in equation (5.27) is the most difficult variable to determine.

It is determined from the equilibrium equations

∂σrr

∂r
+ σrr −σθθ

r
= 0 (5.28a)

∂σzz

∂z
= 0 (5.28b)

∂σzz

∂z
= 0. (5.28c)

All stresses are function of r only, from equations (5.28b) and (5.28c) it follows that p is a

function of r only

p = p(r). (5.29)
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5.3. Nonhomogeneous transformation: Simple torsion of hollow cylinder 8

The hydraustatic pressure is then determined from the first equilibrium equation (5.28a)

through

σrr =
∫ Ro

Ri

σθθ−σrr

r
dr. (5.30)

Replacing σrr and σθθ by their expressions from (5.27) in equation (5.30) yield the

expression of the hydraustatic pressure p. The integral in equation (5.30) is evaluated

numerically through a discretization over the radius r using the discrete form of σrr

and σθθ following from equation (4.28). In what follows, a comparison between the

numerical simulation of the simple torsion and the analytic results of equation (5.27)

will be performed using different histories of the angle of twist ψ. In Abaqus, the cylinder

will be built-in from the bottom base and the angle of twist will be applied to the top

base of the cylinder. First, we consider a monotonic angle of twist of the form

ψ(t)= ψ̇t (5.31)

where ψ̇ is the rate of the angle of twist. The result of the comparison between the

response of the implemented model and equation (5.27) are reported in figure 5.10 in

terms of the Von Mises stress for several value of the radius r for a value of the rate of

the angle of twist of 1.5 10−2 rad s−1.

For a relaxation process the angle of twist reads

ψ (t)=
{

0 for t < 0

ψo for t > 0
, (5.32)

where ψo = 1.5 rad is the level of the relaxation angle of twist. The components of the

Cauchy stress tensor are calculated using equations (5.27) and (5.32). The results are

reported in figure 5.11 in terms of the relaxed Von Mises stress for different radii and its

distribution along the cylinder.
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(a) Von Mises stress versus time for several radii: analytic results (symbol) implemented model
(solid curve)

(b) Von Mises stress distribution in the cylinder

Figure 5.10: Comparison of analytic results with the implemented model in simple
torsion of hollow cylinder for a ramp angle of twist
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(a) Von Mises stress versus time for several radii: analytic results (symbol) implemented model
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(b) Von Mises stress distribution in the cylinder

Figure 5.11: Comparison of analytic results with the implemented model in simple
torsion of hollow cylinder for a relaxed angle of twist
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5.4 Conclusions

In this chapter, the implementation procedure explained in chapter 4 was validated

through the resolution of several boundary value problems analytically. First, we consid-

ered two homogeneous transformations of simple extension and simple shear which led

to a total validation of the implemented model. Then, a non-homogeneous transformation

was investigated, namely the torsion of a hollow cylinder. The resolution of the equilib-

rium equations led to the computation of the nonzero stresses for this transformation. A

good agreement between the response of the implemented model and analytic results was

found for the different strain and strain rates configurations considered. The simulation

of real component with complex industrial application such as elastomeric bushings and

tires compound is the goal of future work.
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CONCLUSION & OUTLOOKS

This thesis addresses three types of difficulty encountered when dealing with nonlinear

materials models

◦ On the one hand, a behavioral difficulty concerning the choice of the modeling

approach to follow in order to build the model capable of predicting experimental

results

◦ On the other hand, a numerical difficulty with respect to the identification of the

model’s parameters from experimental data arising essentially from the nonlin-

earity of the model and consequently the minimization problems and from the

exactitude of experiments.

◦ Finally, another numerical difficulty with respect to the implementation of the

model into finite element software which needs a special expertise in this area.

In that sense, A three-dimensional viscoelastic model at finite strain that incorporate a

strain dependent relaxation times has been proposed to describe nonfactorizable behavior

of rubber-like materials. The model is based upon the internal state variables approach

and the framework of rational thermodynamics and experimental arguments. Following

the decomposition of the deformation gradient tensor, the free energy density was decom-

posed into a volumetric and deviatoric parts. Motivating by experimental results which

show that the relaxation function for the studied material is a function of the strain

level, a nonlinear evolution equation for the internal variables,originally postulated from

the generalized Maxwell rheological model, was postulated which incorporates a strain

dependent relaxation times. This formulation led to the use of the strain dependent

reduced time which is analogous to the so-called thermorheoligically simple behavior.

Therefore, the resulting model is a generalization of the nonlinear viscoelastic model

of Simo implemented in Abaqus software. Furthermore, thermodynamic restrictions

are fulfilled via a sufficient condition on the model’s parameters resulting from the

application of the Clausius-Duhem inequality for an arbitrary process. In fact we found
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out that the positivity of the reduced time shift function ensures the positivity of the

intrinsic dissipation, thereby, the satisfaction of the second law of thermodynamics.

In second place, we made interest to the identification of different parameters involved

in the model to experimental data. In fact, a systematic identification of the material

parameters for an incompressible nonseparable viscoelastic behavior at finite strain was

developed. This procedure relies on the separate identification of hyperelastic potential,

viscoelastic kernel and the reduced time function. Considering the form of the consti-

tutive equation of the stress, each characteristic function identification reduces to the

solution of a nonlinear optimization problem. The identification of the hyperelastic free

energy density was performed using equilibrium experimental data of simple extension

and pure shear such that the constraint of stability of the behavior is guaranteed. This

constraint is imposed in order to avoid material’s parameters leading to non physical

responses. Depending on the linearity or nonlinearity of the free energy density with

respect to its arguments, the arising minimization problem is linear or nonlinear con-

strained system respectively. The relaxation function was expressed in terms of a Prony

series, its identification is assured using relaxation experiments at low levels of strain

typically below 10%. Another way to identify this function is by using dynamic data.

From the expression of the dynamic moduli, the Prony series coefficient were identified

thanks to a Tikhonov regularization procedure. Finally, the reduced time function was

identified numerically thanks to a minimization procedure over the error of the discrete

and experimental stresses. At every experimental time the corresponding reduced time

is obtained from the minimization of this error and the strain shift function was then

obtained numerically. The results of this identification were shown in the third chapter

of this thesis and good capacity of the model to depict the behavior of the material was

concluded. This identification was also applied to generated data from the multi-integral

model of Pipkin and similar results were found.

The second numerical difficulty addressed in this thesis was the implementation of

the proposed model into Abaqus software via a user-defined Umat subroutine. To this

end, the discrete form of the constitutive equations is computed using the discretization

formula used in Abaqus software. First, the instantaneous contribution to the stress

is computed by the derivation of the instantaneous stored elastic energy density with

respect to the invariants of the Cauchy-Green strain tensors. Then, the total Cauchy

stress tensor was computed by introducing the viscoelastic properties following the

discretization scheme. Accordingly, the tangent stiffness was calculated from the instan-

taneous and viscoelastic responses using the objective rate derivative of Jaumann. The
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validation of the implemented model was performed through the comparison between

analytic solutions of homogeneous boundary value problems of simple extension and sim-

ple shear and non-homogeneous one of simple torsion of a hollow cylinder to simulations

using the implemented model. Following the formulation of the model, the resolution of

the boundary value problems was done with the instantaneous elastic stress, then the

total viscoelastic stress is computed according to the constitutive equations. The results

reported in the last chapter of this thesis show a total agreement between the analytic

and numerical results.

Since the experimental results have shown the relaxation dependency to the level of

deformation, it is of huge interest to characterize this link by analytical form which allow

a better understanding of such behavior nonlinearity. Furthermore, since the model

developed in this work used traditional measure of strain, it is very important to consider

logarithmic measure of strain and develop the constitutive equations in this framework

and perform the identification of the model’s parameters. Also, a very interesting work is

to perform the identification of the model’s parameters via a minimization procedure over

the error between theoretical and experimental energy function like it was performed in

[57], which enables us to compare the results obtained from the two identification proce-

dures. Finally, with respect to the implementation of the model one can add the discrete

form of the energy function and the dissipation potential in the Umat subroutine since

these two quantities are very important especially for viscoelastic materials. Moreover,

thanks to the implementation of the model into Abaqus software, one can investigate the

response of real elastomeric compounds subjected to real world loading such as bushings,

tires and suspension compounds.
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In this appendix we present the code of the Umat subroutine for the nonlinear viscoelastic

model proposed within this work.
subroutine umat( stress , statev , ddsdde , sse , spd , scd ,

1 rpl , ddsddt , drplde , drpldt ,
2 stran , dstran , time , dtime , temp , dtemp , predef , dpred ,cmname,
3 ndi , nshr , ntens , nstatv , props , nprops , coords , drot , pnewdt ,
4 celent , dfgrd0 , dfgrd1 , noel , npt , layer , kspt , kstep , kinc )

c
include ’ aba_param . inc ’

c
character *80 cmname
dimension stress ( ntens ) , statev ( nstatv ) ,

1 ddsdde ( ntens , ntens ) , ddsddt ( ntens ) , drplde ( ntens ) ,
2 stran ( ntens ) , dstran ( ntens ) , time ( 2 ) , predef ( 1 ) , dpred ( 1 ) ,
3 props ( nprops ) , coords ( 3 ) , drot (3 ,3 ) , dfgrd0 (3 ,3 ) , dfgrd1 (3 ,3 )

double prec is ion : : ib0 (3 ,3 ) , ib1 (3 ,3 ) , bbar0 (3 ,3 ) , bbar1 (3 ,3 )
double prec is ion : : btau0 (3 ,3 ) , bbarcarre0 (3 ,3 ) , fbar0 (3 ,3 ) , fbar1 (3 ,3 ) , tauiso0 (3 ,3 )
double prec is ion : : tauisovis2 (3 ,3 ,3 ) , tauiso1 (3 ,3 ) , tauvol0 (3 ,3 ) , tauvol1 (3 ,3 )
double prec is ion : : tauisovis1 (3 ,3 ,3 ) , delta (3 ,3 ) , tau (3 ,3 ) , cb (3 ,3 ,3 ,3 ) , A_t (3 ,3 ,3 )
double prec is ion : : i i p (3 ,3 ,3 ,3 ) , cbar1 (3 ,3 ,3 ,3 ) , c isoh (3 ,3 ,3 ,3 ) , cvolh (3 ,3 ,3 ,3 )
double prec is ion : : i c (3 ,3 ,3 ,3 ) , btau1 (3 ,3 ) ,gama( 3 ) , a l fa ( 3 ) , beta ( 3 ) , term ( 3 )
double prec is ion : : invfbar (3 ,3 ) , deltafbar (3 ,3 ) , tau i so t i ld0 (3 ,3 ) ! , a (3 ,3 ,3 )
double prec is ion : : b (3 ,3 ,3 ) , bb (3 ,3 ,3 ) , tauvisd (3 ,3 ,3 ) , traced ( 3 ) , tauiso (3 ,3 )
double prec is ion : : tauvol (3 ,3 ) , cbar (3 ,3 ,3 ,3 ) , cisovh (3 ,3 ,3 ,3 ) ! , tauvolvis2 (3 ,3 ,3 )
double prec is ion : : cvolvh (3 ,3 ,3 ,3 ) , bbarcarre1 (3 ,3 ) , cbar11 (3 ,3 ,3 ,3 ) , cbar22 (3 ,3 ,3 ,3 )

double prec is ion : : invfb1 (3 ,3 ) , tau i so t i ld1 (3 ,3 ) , fb1 (3 ,3 ) , tau1 (3 ,3 ) , fb0 (3 ,3 )
double precis ion , save : : a (3 ,3 ,3 ) , tauvolvis2 (3 ,3 ,3 ) , tauvolvis1 (3 ,3 ,3 )

integer : : i , j , k , l , s , t , u , v , i i
parameter ( zero =0.0d0 , one=1.0d0 , two=2.0d0 , three =3.0d0 )
parameter ( four =4.0d0 , nine =9.0d0 , mone=−1.0d0 , eight =8.0d0 ,
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1 newton=10 , t o l e r =1.d−8)
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! props of the model
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

c10=props ( 1 )
c01=props ( 2 )
c02=props ( 3 )
c20=props ( 4 )
c11=props ( 5 )
g1=props ( 6 )
g2=props ( 7 )
g3=props ( 8 )
t1=props ( 9 )
t2=props (10)
t3=props (11)
d1=props (12)

c1=props (13)
c2=props (14)

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! rotate deformation gradient tensor
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

do i =1 ,3
fb0 ( i , i )=dexp ( stran ( i )+dstran ( i ) )
enddo
fb0 (1 ,2 )=stran ( 4 ) +dstran ( 4 )
fb0 (1 ,3 )=stran ( 5 ) +dstran ( 5 )
fb0 (2 ,3 )=stran ( 6 ) +dstran ( 6 )
do i =1 ,3
do j =1 ,3
fb0 ( j , i )=fb0 ( i , j )
enddo
enddo
fb1=matmul ( drot , fb0 )

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! f inger tensor at the begining of the step
! f i l l ib0 ( i , j )
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

do i =1 ,3
do j =1 ,3
ib0 ( i , j )=zero
do k=1 ,3

! i f ( ( dfgrd0 ( i , k ) . gt . 1 .d−8) . and . ( ( dfgrd0 ( j , k ) . gt . 1 .d−8) ) ) then
ib0 ( i , j )=ib0 ( i , j )+dfgrd0 ( i , k ) *dfgrd0 ( j , k )

! endif
enddo
enddo

enddo
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! jacobian aj0=dte [ b0]^−.5
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

aj0=dfgrd0 (1 , 1) *dfgrd0 (2 , 2) *dfgrd0 (3 , 3)+
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1 dfgrd0 (2 , 1) *dfgrd0 (3 , 2) *dfgrd0 (1 , 3)+
2 dfgrd0 (3 , 1) *dfgrd0 (1 , 2) *dfgrd0 (2 , 3)−
3 dfgrd0 (3 , 1) *dfgrd0 (2 , 2) *dfgrd0 (1 , 3)−
4 dfgrd0 (1 , 1) *dfgrd0 (3 ,2 ) *dfgrd0 (2 , 3)−
5 dfgrd0 (2 , 1) *dfgrd0 (1 , 2) *dfgrd0 (3 , 3)

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! bbar0
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

do i =1 ,3
do j =1 ,3
bbar0 ( i , j )=zero
bbar0 ( i , j )=ib0 ( i , j ) / ( aj0 **( two / three ) )
enddo

enddo
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! fbar0
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

do i =1 ,3
do j =1 ,3
fbar0 ( i , j )=zero

! i f ( dfgrd0 ( i , j ) . gt . 1 .d−8) then
fbar0 ( i , j )=dfgrd0 ( i , j ) / ( aj0 **( one / three ) )

! endif
enddo

enddo
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! ca l cu l o f the inverse of fbar0 : invfbar
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

! ca l cu late the inverse of the matrix
invfbar (1 ,1 ) =( fbar0 (2 ,2 ) * fbar0 (3 ,3 )−

1 fbar0 (2 ,3 ) * fbar0 (3 ,2 ) )
invfbar (2 ,1 ) = mone*( fbar0 (2 ,1 ) * fbar0 (3 ,3 )−

1 fbar0 (2 ,3 ) * fbar0 (3 ,1 ) )
invfbar (3 ,1 ) = ( fbar0 (2 ,1 ) * fbar0 (3 ,2 )−

1 fbar0 (2 ,2 ) * fbar0 (3 ,1 ) )
invfbar (1 ,2 ) = mone*( fbar0 (1 ,2 ) * fbar0 (3 ,3 )−

1 fbar0 (1 ,3 ) * fbar0 (3 ,2 ) )
invfbar (2 ,2 ) =( fbar0 (1 ,1 ) * fbar0 (3 ,3 )−

1 fbar0 (1 ,3 ) * fbar0 (3 ,1 ) )
invfbar (3 ,2 ) = mone*( fbar0 (1 ,1 ) * fbar0 (3 ,2 )−

1 fbar0 (1 ,2 ) * fbar0 (3 ,1 ) )
invfbar (1 ,3 ) =( fbar0 (1 ,2 ) * fbar0 (2 ,3 )−

1 fbar0 (1 ,3 ) * fbar0 (2 ,2 ) )
invfbar (2 ,3 ) = mone*( fbar0 (1 ,1 ) * fbar0 (2 ,3 )−

1 fbar0 (1 ,3 ) * fbar0 (2 ,1 ) )
invfbar (3 ,3 ) =( fbar0 (1 ,1 ) * fbar0 (2 ,2 )−

1 fbar0 (1 ,2 ) * fbar0 (2 ,1 ) )
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! bbarcarre0
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

8CAM:<J J

T Tayeb Adel ; Page 121



8 Appendix A. Appendix A

do i =1 ,3
do j =1 ,3
bbarcarre0 ( i , j )=zero
do k=1 ,3
bbarcarre0 ( i , j )=bbarcarre0 ( i , j )+bbar0 ( i , k ) *bbar0 (k , j )
enddo
enddo

enddo
trb0=bbarcarre0 (1 ,1 )+bbarcarre0 (2 ,2 )+bbarcarre0 (3 ,3 )

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! invariants bi10 and bi20 at the begining of the step
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

bi10=zero
do i =1 ,3
bi10=bi10+bbar0 ( i , i )
enddo
bi20=zero
bi20 =(one / two ) * ( bi10*bi10−trb0 )

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! second order ident i ty tensor
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

do i =1 ,3
do j =1 ,3

delta ( i , j )=zero
enddo

enddo
do i =1 ,3
delta ( i , i )=one
enddo

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! tensor btau0
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

do i =1 ,3
do j =1 ,3
btau0 ( i , j )=zero
btau0 ( i , j )=two*c10*bbar0 ( i , j )+

1 two*c01 *( bi10*bbar0 ( i , j )−bbarcarre0 ( i , j ) )+
2 four *c20 *( bi10−three ) *bbar0 ( i , j )+
3 four *c02 *( bi20−three ) * ( bi10*bbar0 ( i , j )−bbarcarre0 ( i , j ) )+
4 two*c11 *( bi20−three ) *bbar0 ( i , j )+
5 two*c11 *( bi10−three ) * ( bi10*bbar0 ( i , j )−bbarcarre0 ( i , j ) )

enddo
enddo

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! tauiso0 : hyperelast ic deviator o f k i r r c c ho f f s tress the
! begining of the step
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

tracebtau0=btau0 (1 ,1 ) + btau0 (2 ,2 ) + btau0 (3 ,3 )
tauiso0 (1 ,1 )=btau0 (1 ,1 ) − ( one / three ) * tracebtau0
tauiso0 (2 ,2 )=btau0 (2 ,2 ) − ( one / three ) * tracebtau0
tauiso0 (3 ,3 )=btau0 (3 ,3 ) − ( one / three ) * tracebtau0
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tauiso0 (1 ,2 )=btau0 (1 ,2 )
tauiso0 (1 ,3 )=btau0 (1 ,3 )
tauiso0 (2 ,3 )=btau0 (2 ,3 )
tauiso0 (2 ,1 )=btau0 (2 ,1 )
tauiso0 (3 ,1 )=btau0 (3 ,1 )
tauiso0 (3 ,2 )=btau0 (3 ,2 )

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! tauvol0 : hyperelast ic volumetric kirchhof f s tress at the
! begining of the step
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

p =( ( two* aj0 ) * ( aj0−one ) ) / d1
do i =1 ,3

do j =1 ,3
tauvol0 ( i , j )=zero
tauvol0 ( i , j )=p* delta ( i , j )
enddo

enddo

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! f inger tensor at the end of the step
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! set ib1 ( i , j ) to zero
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

do i =1 ,3
do j =1 ,3
ib1 ( i , j )=zero
enddo

enddo
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! f i l l ib1 ( i , j )
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

do i =1 ,3
do j =1 ,3
ib1 ( i , j )=zero
do k=1 ,3

! i f ( ( dfgrd1 ( i , k ) . gt . 1 .d−8) . and . ( ( dfgrd1 ( j , k ) . gt . 1 .d−8) ) ) then
ib1 ( i , j )=ib1 ( i , j )+dfgrd1 ( i , k ) *dfgrd1 ( j , k )

! endif
enddo
enddo

enddo
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! jacobian aj1=dte [ b1]^−.5 , at the end of the time increment
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

aj1=dfgrd1 (1 , 1) *dfgrd1 (2 , 2) *dfgrd1 (3 , 3)+
1 dfgrd1 (2 , 1) *dfgrd1 (3 , 2) *dfgrd1 (1 , 3)+
2 dfgrd1 (3 , 1) *dfgrd1 (1 , 2) *dfgrd1 (2 , 3)−
3 dfgrd1 (3 , 1) *dfgrd1 (2 , 2) *dfgrd1 (1 , 3)−
4 dfgrd1 (1 , 1) *dfgrd1 (3 , 2) *dfgrd1 (2 , 3)−
5 dfgrd1 (2 , 1) *dfgrd1 (1 , 2) *dfgrd1 (3 , 3)

aj11=fb1 (1 , 1) * fb1 (2 , 2) * fb1 (3 , 3)+
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1 fb1 (2 , 1) * fb1 (3 , 2) * fb1 (1 , 3)+
2 fb1 (3 , 1) * fb1 (1 , 2) * fb1 (2 , 3)−
3 fb1 (3 , 1) * fb1 (2 , 2) * fb1 (1 , 3)−
4 fb1 (1 , 1) * fb1 (3 , 2) * fb1 (2 , 3)−
5 fb1 (2 , 1) * fb1 (1 , 2) * fb1 (3 , 3)

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! bbar1 : at the end of the increment
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

do i =1 ,3
do j =1 ,3
bbar1 ( i , j )=zero
bbar1 ( i , j )=ib1 ( i , j ) / ( aj1 **( two / three ) )
enddo

enddo
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! fbar1 : at the end of the increment
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

do i =1 ,3
do j =1 ,3
fbar1 ( i , j )=zero

! i f ( dfgrd1 ( i , j ) . gt . 1 .d−8) then
fbar1 ( i , j )=dfgrd1 ( i , j ) / ( aj1 **( one / three ) )

! endif
enddo

enddo
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! ca l cu l o f the inverse of fbar1 : invfb1
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

invfb1 (1 ,1 ) =( fbar1 (2 ,2 ) * fbar1 (3 ,3 )−
1 fbar1 (2 ,3 ) * fbar1 (3 ,2 ) )

invfb1 (2 ,1 ) = mone*( fbar1 (2 ,1 ) * fbar1 (3 ,3 )−
1 fbar1 (2 ,3 ) * fbar1 (3 ,1 ) )

invfb1 (3 ,1 ) = ( fbar1 (2 ,1 ) * fbar1 (3 ,2 )−
1 fbar1 (2 ,2 ) * fbar1 (3 ,1 ) )

invfb1 (1 ,2 ) = mone*( fbar1 (1 ,2 ) * fbar1 (3 ,3 )−
1 fbar1 (1 ,3 ) * fbar1 (3 ,2 ) )

invfb1 (2 ,2 ) =( fbar1 (1 ,1 ) * fbar1 (3 ,3 )−
1 fbar1 (1 ,3 ) * fbar1 (3 ,1 ) )

invfb1 (3 ,2 ) = mone*( fbar1 (1 ,1 ) * fbar1 (3 ,2 )−
1 fbar1 (1 ,2 ) * fbar1 (3 ,1 ) )

invfb1 (1 ,3 ) =( fbar1 (1 ,2 ) * fbar1 (2 ,3 )−
1 fbar1 (1 ,3 ) * fbar1 (2 ,2 ) )

invfb1 (2 ,3 ) = mone*( fbar1 (1 ,1 ) * fbar1 (2 ,3 )−
1 fbar1 (1 ,3 ) * fbar1 (2 ,1 ) )

invfb1 (3 ,3 ) =( fbar1 (1 ,1 ) * fbar1 (2 ,2 )−
1 fbar1 (1 ,2 ) * fbar1 (2 ,1 ) )

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! ca l cu l o f the tensor deltafbar=fbar1 * fbar0^−1
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

do i =1 ,3
do j =1 ,3
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deltafbar ( i , j )=zero
do k=1 ,3
deltafbar ( i , j )=deltafbar ( i , j )+fbar1 ( i , k ) * invfbar (k , j )
enddo

enddo
enddo

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! bbarcarre1 : b^2 at the end of the increment
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

do i =1 ,3
do j =1 ,3
bbarcarre1 ( i , j )=zero
do k=1 ,3
bbarcarre1 ( i , j )=bbarcarre1 ( i , j )+bbar1 ( i , k ) *bbar1 (k , j )
enddo
enddo
enddo
trb1=bbarcarre1 (1 ,1 )+bbarcarre1 (2 ,2 )+bbarcarre1 (3 ,3 )

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! invariants bi11 and bi21 at the end of the increment
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

bi11=zero
do i =1 ,3
bi11=bi11+bbar1 ( i , i )
enddo
bi21=zero
bi21 =(one / two ) * ( bi11*bi11−trb1 )

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! tensor btau1 at the end of the increment
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

do i =1 ,3
do j =1 ,3
btau1 ( i , j )=zero
btau1 ( i , j )=two*c10*bbar1 ( i , j )+

1 two*c01 *( bi11*bbar1 ( i , j ) − bbarcarre1 ( i , j ) )+
2 four *c20 *( bi11−three ) *bbar1 ( i , j )+
3 four *c02 *( bi21−three ) * ( bi11*bbar1 ( i , j ) − bbarcarre1 ( i , j ) )+
4 two*c11 *( bi21−three ) *bbar1 ( i , j )+
5 two*c11 *( bi11−three ) * ( bi11*bbar1 ( i , j ) − bbarcarre1 ( i , j ) )

enddo
enddo

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! tauiso1 : dev iator i c hyperelast ic kirchhof f s tress at the
! end of the increment
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

tracebtau1=btau1 (1 ,1 ) + btau1 (2 ,2 ) + btau1 (3 ,3 )
tauiso1 (1 ,1 )=btau1 (1 ,1 ) − ( one / three ) * tracebtau1
tauiso1 (2 ,2 )=btau1 (2 ,2 ) − ( one / three ) * tracebtau1
tauiso1 (3 ,3 )=btau1 (3 ,3 ) − ( one / three ) * tracebtau1
tauiso1 (1 ,2 )=btau1 (1 ,2 )
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tauiso1 (1 ,3 )=btau1 (1 ,3 )
tauiso1 (2 ,3 )=btau1 (2 ,3 )
tauiso1 (2 ,1 )=btau1 (2 ,1 )
tauiso1 (3 ,1 )=btau1 (3 ,1 )
tauiso1 (3 ,2 )=btau1 (3 ,2 )

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! tauvol1 : volumetric hyperelast ic kirchhof f s tress at the
! end of the encrement
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

p1 =( ( two* aj1 ) * ( aj1−one ) ) / d1
do i =1 ,3

do j =1 ,3
tauvol1 ( i , j )=zero
tauvol1 ( i , j )=p1* delta ( i , j )
enddo

enddo
i f ( ( kinc . l e . 1 ) . and . ( kstep . eq . 1 ) ) then

!
! th is i s the f i r s t increment , o f the f i r s t step .
! Give i n i t i a l condit ions .
!
do i =1 ,3

A_t ( i , : , : ) = zero
enddo
!

e lse
!
! th is i s not the f i r s t increment , read old values
!
do i =1 ,3

i i = ( i −1)*6
A_t ( i , 1 , 1 ) = statev (1+ i i )
A_t ( i , 2 , 2 ) = statev (2+ i i )
A_t ( i , 3 , 3 ) = statev (3+ i i )
A_t ( i , 2 , 3 ) = statev (4+ i i )
A_t ( i , 3 , 2 ) = A_t ( i , 2 , 3 )
A_t ( i , 1 , 3 ) = statev (5+ i i )
A_t ( i , 3 , 1 ) = A_t ( i , 1 , 3 )
A_t ( i , 1 , 2 ) = statev (6+ i i )
A_t ( i , 2 , 1 ) = A_t ( i , 1 , 2 )

enddo
!

endif
! pnewdt=two / three ! dexp (mone*c01 *( bi11−three ) )
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! ca l cu l o f v i s c o e l a s t i c functions : alfa , beta and gama
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

dt1=dexp (mone*c1 *( bi11−three )−c2 *( bi21−three ) ) *dtime
do i =1 ,3
gama( i )=dexp (mone*( dt1 / props (8+ i ) ) )
enddo
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do i =1 ,3
term ( i )=props (8+ i ) / dt1
a l fa ( i )=one−term ( i )+term ( i ) *gama( i )
enddo
do i =1 ,3
beta ( i )=term ( i )−term ( i ) *gama( i )−gama( i )
enddo

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! ca l cu l o f tau i so t i ld0=deltafbar * tauiso0 * deltafbar^t
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

do i =1 ,3
do j =1 ,3
tau i so t i ld0 ( i , j )=zero
enddo

enddo

tau iso t i ld0=matmul (matmul ( invfbar , tauiso0 ) , transpose ( invfbar ) )
tau i so t i ld1=matmul (matmul ( invfb1 , tauiso1 ) , transpose ( invfb1 ) )

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! ca l cu l o f v i s c o e l a s t i c s tresses tauisovis1 and tauvolvis1
! a ( i , j , k ) , b ( i , j , k ) : variables de passage
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

do k=1 ,3
tauisovis2 (k , : , : ) =( beta (k ) *props (k+5)* tau i so t i ld0 )+

1 ( a l fa (k ) *props (k+5)* tau i so t i ld1 )+gama(k ) *A_t (k , : , : )

enddo
do i =1 ,3

i i = ( i −1)*6
statev (1+ i i ) = tauisovis2 ( i , 1 , 1 )
statev (2+ i i ) = tauisovis2 ( i , 2 , 2 )
statev (3+ i i ) = tauisovis2 ( i , 3 , 3 )
statev (4+ i i ) = tauisovis2 ( i , 2 , 3 )
statev (5+ i i ) = tauisovis2 ( i , 1 , 3 )
statev (6+ i i ) = tauisovis2 ( i , 1 , 2 )

enddo
do k=1 ,3

tauisovis1 (k , : , : ) =matmul (matmul ( fbar1 , tauisovis2 (k , : , : ) ) , transpose ( fbar1 ) )
enddo

do k=1 ,3
do i =1 ,3
do j =1 ,3
tauvolvis1 (k , i , j )=zero

tauvolvis1 (k , i , j )=a l fa (k ) *props (k+5)* tauvol1 ( i , j )

b (k , i , j )=tauvolvis1 (k , i , j )
enddo

8CAM:<J J

T Tayeb Adel ; Page 127



8 Appendix A. Appendix A

enddo
enddo

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! ca l cu l o f the deviator o f tauisovis1 : tauvisd ,
! traced=trace ( tauisovis1 )
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

traced ( 1 ) =tauisovis1 (1 ,1 ,1 )+tauisovis1 (1 ,2 ,2 )+tauisovis1 (1 ,3 ,3 )
tauvisd (1 ,1 ,1 )=tauisovis1 (1 ,1 ,1 ) − ( one / three ) * traced ( 1 )
tauvisd (1 ,2 ,2 )=tauisovis1 (1 ,2 ,2 ) − ( one / three ) * traced ( 1 )
tauvisd (1 ,3 ,3 )=tauisovis1 (1 ,3 ,3 ) − ( one / three ) * traced ( 1 )
tauvisd (1 ,1 ,2 )=tauisovis1 (1 ,1 ,2 )
tauvisd (1 ,1 ,3 )=tauisovis1 (1 ,1 ,3 )
tauvisd (1 ,2 ,3 )=tauisovis1 (1 ,2 ,3 )
tauvisd (1 ,2 ,1 )=tauisovis1 (1 ,2 ,1 )
tauvisd (1 ,3 ,1 )=tauisovis1 (1 ,3 ,1 )
tauvisd (1 ,3 ,2 )=tauisovis1 (1 ,3 ,2 )
traced ( 2 ) =tauisovis1 (2 ,1 ,1 )+tauisovis1 (2 ,2 ,2 )+tauisovis1 (2 ,3 ,3 )
tauvisd (2 ,1 ,1 )=tauisovis1 (2 ,1 ,1 ) − ( one / three ) * traced ( 2 )
tauvisd (2 ,2 ,2 )=tauisovis1 (2 ,2 ,2 ) − ( one / three ) * traced ( 2 )
tauvisd (2 ,3 ,3 )=tauisovis1 (2 ,3 ,3 ) − ( one / three ) * traced ( 2 )
tauvisd (2 ,1 ,2 )=tauisovis1 (2 ,1 ,2 )
tauvisd (2 ,1 ,3 )=tauisovis1 (2 ,1 ,3 )
tauvisd (2 ,2 ,3 )=tauisovis1 (2 ,2 ,3 )
tauvisd (2 ,2 ,1 )=tauisovis1 (2 ,2 ,1 )
tauvisd (2 ,3 ,1 )=tauisovis1 (2 ,3 ,1 )
tauvisd (2 ,3 ,2 )=tauisovis1 (2 ,3 ,2 )
traced ( 3 ) =tauisovis1 (3 ,1 ,1 )+tauisovis1 (3 ,2 ,2 )+tauisovis1 (3 ,3 ,3 )
tauvisd (3 ,1 ,1 )=tauisovis1 (3 ,1 ,1 ) − ( one / three ) * traced ( 3 )
tauvisd (3 ,2 ,2 )=tauisovis1 (3 ,2 ,2 ) − ( one / three ) * traced ( 3 )
tauvisd (3 ,3 ,3 )=tauisovis1 (3 ,3 ,3 ) − ( one / three ) * traced ( 3 )
tauvisd (3 ,1 ,2 )=tauisovis1 (3 ,1 ,2 )
tauvisd (3 ,1 ,3 )=tauisovis1 (3 ,1 ,3 )
tauvisd (3 ,2 ,3 )=tauisovis1 (3 ,2 ,3 )
tauvisd (3 ,2 ,1 )=tauisovis1 (3 ,2 ,1 )
tauvisd (3 ,3 ,1 )=tauisovis1 (3 ,3 ,1 )
tauvisd (3 ,3 ,2 )=tauisovis1 (3 ,3 ,2 )

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! ca l cu l o f the deviator o f the hyper−v i s c o e l a s t i c kirchhof f
! s tress : tauiso ( i , j )
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

do i =1 ,3
do j =1 ,3
tauiso ( i , j )=zero

tauiso ( i , j )=tauiso1 ( i , j )−tauvisd (1 , i , j )−tauvisd (2 , i , j )−
1 tauvisd (3 , i , j )

enddo
enddo

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! ca l cu l o f the volumetric part o f hyper−v i s c o e l a s t i c kirchhof f
! s tress : tauvol ( i , j )
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!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
do i =1 ,3

do j =1 ,3
tauvol ( i , j )=zero

tauvol ( i , j )=tauvol1 ( i , j ) !− tauvolvis1 (1 , i , j )
−tauvolvis1 (2 , i , j )−tauvolvis1 (3 , i , j )

enddo
enddo

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! ca l cu l o f the t o t a l kirchhof f hyper−v i s c o e l a s t i c s tress
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

do i =1 ,3
do j =1 ,3
tau ( i , j )=zero
tau ( i , j )=tauiso ( i , j ) + tauvol ( i , j )
enddo

enddo
tau1=matmul (matmul ( transpose ( drot ) , tau ) , drot )

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! return stress ( i ) and statev
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

do i =1 ,3
stress ( i )=tau ( i , i ) / aj1
enddo
stress ( 4 ) =tau (1 ,2 ) / aj1
stress ( 5 ) =tau (1 ,3 ) / aj1
stress ( 6 ) =tau (2 ,3 ) / aj1

statev (19)=dexp (mone*c1 *( bi11−three )−c2 *( bi21−three ) )

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! fourth order pro jec t i on tensor
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

do i =1 ,3
do j =1 ,3

do k=1 ,3
do l =1 ,3
i i p ( i , j , k , l )=zero
i i p ( i , j , k , l )=mone*( one / three ) * delta ( i , j ) * delta (k , l )+

1 ( one / two ) * ( delta ( i , k ) * delta ( j , l )+delta ( i , l ) * delta ( j , k ) )
enddo

enddo
enddo

enddo
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! ca l cu l o f the algorithmic tangent modulus cbar1
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

do i =1 ,3
do j =1 ,3
do k=1 ,3
do l =1 ,3
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cbar1 ( i , j , k , l )=zero
do s=1 ,3
cbar1 ( i , j , k , l )=four *bbar1 ( i , j ) *bbar1 (k , l )−

1 two *( bbar1 ( i , k ) *bbar1 ( j , l )+bbar1 ( i , s ) *bbar1 ( s , l ) * delta ( j , k ) )
enddo
enddo
enddo
enddo
enddo

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! ca l cu l o f the algorithmic tangent modulus cbar
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

do i =1 ,3
do j =1 ,3
do k=1 ,3
do l =1 ,3
cbar11 ( i , j , k , l )=zero
cbar22 ( i , j , k , l )=zero
cbar11 ( i , j , k , l )=c01*cbar1 ( i , j , k , l )+

1 two*c02 *( bi21−three ) *cbar1 ( i , j , k , l )+
2 c11 *( bi11−three ) *cbar1 ( i , j , k , l )+
3 8.0d0*c20*bbar1 ( i , j ) *bbar1 (k , l )+
4 8.0d0*c11*bi11*bbar1 ( i , j ) *bbar1 (k , l )

do s=1 ,3
do t =1 ,3
cbar22 ( i , j , k , l )=mone* four *c11*bbar1 ( i , s ) *bbar1 ( s , j ) *bbar1 (k , l )−

1 four *c11*bbar1 ( i , j ) *bbar1 (k , s ) *bbar1 ( s , l )+
2 8.0d0*c02*bi11*bi11*bbar1 ( i , j ) *bbar1 (k , l )−
3 8.0d0*c02*bi11*bbar1 ( i , j ) *bbar1 (k , s ) *bbar1 ( s , l )−
4 8.0d0*c02*bi11*bbar1 ( i , s ) *bbar1 ( s , j ) *bbar1 (k , l )+
5 8.0d0*c02*bbar1 ( i , s ) *bbar1 ( s , j ) *bbar1 (k , t ) *bbar1 ( t , l )

enddo
enddo
enddo
enddo
enddo
enddo
do i =1 ,3
do j =1 ,3
do k=1 ,3
do l =1 ,3
cbar ( i , j , k , l )=zero
cbar ( i , j , k , l )=cbar11 ( i , j , k , l )+cbar22 ( i , j , k , l )
enddo
enddo
enddo
enddo

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! ca l cu l o f the dev iator i c hyperelast ic tangent modulus cisoh
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

do i =1 ,3
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do j =1 ,3
do k=1 ,3
do l =1 ,3
cisoh ( i , j , k , l )=zero
do s=1 ,3
do t =1 ,3
do u=1 ,3
do v=1 ,3
cisoh ( i , j , k , l ) =( two / three ) * tracebtau1 * i i p ( i , j , k , l )−

1 ( two / three ) * ( tauiso1 ( i , j ) * delta (k , l )+
2 delta ( i , j ) * tauiso1 (k , l ) )+
3 i i p ( i , j , s , t ) * cbar ( s , t , u , v ) * i i p (u , v , k , l )

enddo
enddo
enddo
enddo
enddo
enddo
enddo
enddo

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! ca l cu l o f the volumetric hyperelast ic tangent modulus cvolh
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

cs=two* aj1 * aj1 / d1
do i =1 ,3

do j =1 ,3
do k=1 ,3

do l =1 ,3
cvolh ( i , j , k , l )=zero
cvolh ( i , j , k , l ) =(p1+cs ) * delta ( i , j ) * delta (k , l )

1 −p1 *( delta ( i , k ) * delta ( j , l )+delta ( i , l ) * delta ( j , k ) )
enddo

enddo
enddo

enddo
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! ca l cu l o f the dev iator i c hyperv iscoe last i c tangent modulus cisovh
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

const1=zero
const2=zero

const1=al fa ( 1 ) *g1+al fa ( 2 ) *g2+al fa ( 3 ) *g3
const2=al fa ( 1 ) *g1+al fa ( 2 ) *g2+al fa ( 3 ) *g3

do i =1 ,3
do j =1 ,3
do k=1 ,3
do l =1 ,3

cb ( i , j , k , l )=zero
cb ( i , j , k , l )=delta ( i , k ) *tau ( j , l )+delta ( j , l ) *tau ( i , k )+
delta ( i , l ) *tau ( j , k )+delta ( j , k ) *tau ( i , l )
enddo
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enddo
enddo
enddo

do i =1 ,3
do j =1 ,3
do k=1 ,3
do l =1 ,3
cisovh ( i , j , k , l )=zero
cisovh ( i , j , k , l ) =(one−const1 ) * cisoh ( i , j , k , l ) ! + ( one / ( aj1 *two ) ) *cb ( i , j , k , l )
enddo
enddo
enddo
enddo

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! ca l cu l o f the volumetric hyperv iscoe last i c tangent modulus cvolvh
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

do i =1 ,3
do j =1 ,3
do k=1 ,3
do l =1 ,3
cvolvh ( i , j , k , l )=zero
cvolvh ( i , j , k , l )=cvolh ( i , j , k , l )
enddo
enddo
enddo
enddo

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! t o t a l tangent modulus i c
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

do i =1 ,3
do j =1 ,3
do k=1 ,3
do l =1 ,3
i c ( i , j , k , l )=zero
i c ( i , j , k , l )=cvolvh ( i , j , k , l ) / aj1+ cisovh ( i , j , k , l ) / aj1 +(one / ( aj1 *two ) ) *cb ( i , j , k , l )
enddo
enddo
enddo
enddo

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! return ddsdde ( i , j )= i c ( i , j , k , l )
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

do i =1 ,6
do j =1 ,6
ddsdde ( i , j )=zero
enddo
enddo
ddsdde (1 ,1 )= i c (1 ,1 ,1 ,1 )
ddsdde (1 ,2 )= i c (1 ,1 ,2 ,2 )
ddsdde (1 ,3 )= i c (1 ,1 ,3 ,3 )
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ddsdde (1 ,4 )= i c (1 ,1 ,1 ,2 )
ddsdde (1 ,5 )= i c (1 ,1 ,1 ,3 )
ddsdde (1 ,6 )= i c (1 ,1 ,2 ,3 )
ddsdde (2 ,2 )= i c (2 ,2 ,2 ,2 )
ddsdde (2 ,3 )= i c (2 ,2 ,3 ,3 )
ddsdde (2 ,4 )= i c (2 ,2 ,1 ,2 )
ddsdde (2 ,5 )= i c (2 ,2 ,1 ,3 )
ddsdde (2 ,6 )= i c (2 ,2 ,2 ,3 )
ddsdde (3 ,3 )= i c (3 ,3 ,3 ,3 )
ddsdde (3 ,4 )= i c (3 ,3 ,1 ,2 )
ddsdde (3 ,5 )= i c (3 ,3 ,1 ,3 )
ddsdde (3 ,6 )= i c (3 ,3 ,2 ,3 )
ddsdde (4 ,4 )= i c (1 ,2 ,1 ,2 )
ddsdde (4 ,5 )= i c (1 ,2 ,1 ,3 )
ddsdde (4 ,6 )= i c (1 ,2 ,2 ,3 )
ddsdde (5 ,5 )= i c (1 ,3 ,1 ,3 )
ddsdde (5 ,6 )= i c (1 ,3 ,2 ,3 )
ddsdde (6 ,6 )= i c (2 ,3 ,2 ,3 )
do i =1 ,6
do j =1 ,6
ddsdde ( j , i )=ddsdde ( i , j )
enddo
enddo

print * , s tress ( 1 )
return
end
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