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A B S T R A C T

We introduce a framework to use kernel approximates in the mini-batch setting with Stochastic Gradient Descent (SGD) as an alternative to Deep Learning. Based on Random Kitchen Sinks [1], we provide a C++ library for Large-scale ML. It contains a CPU optimized implementation of the algorithm in [2], that allows the computation of approximated kernel expansions in log-linear time. The algorithm requires to compute the product of matrices Walsh Hadamard. A cache friendly Fast Walsh Hadamard that achieves compelling speed and outperforms current state-of-the-art methods has been developed.

McKernel establishes the foundation of a new architecture of learning that allows to obtain large-scale non-linear classification combining lightning kernel expansions and a linear classifier. It travails in the mini-batch setting working analogously to Neural Networks. We show the validity of our method through extensive experiments on MNIST and FASHION MNIST [3].

We also propose a new architecture to reduce over-parametrization in Neural Networks. It introduces an operand for rapid computation in the framework of Deep Learning that leverages learned weights. The formalism is described in detail providing both an accurate elucidation of the mechanics and the theoretical implications. vii Z U S A M M E N FA S S U N G Wir führen ein Framework ein, um Kernel-Approximationen in der Mini-Batch-Einstellung mit Stochastic Gradient Descent (SGD) als Alternative zu Deep Learning zu verwenden. Basierend auf Random Kitchen Sinks [1] bieten wir eine C++ Bibliothek für ML in großem Maßstab. Es enthält eine CPU-optimierte Implementierung des Algorithmus in [2], mit der ungefähre Kernel-Erweiterungen in logarithmisch linearer Zeit berechnet werden können. Der Algorithmus erfordert die Berechnung des Produkts der Matrizen Walsh Hadamard. Es wurde ein cachefreundlicher Fast Walsh Hadamard entwickelt, der eine überzeugende Geschwindigkeit erreicht und die aktuellen Methoden auf dem neuesten Stand der Technik übertrifft.

McKernel legt die Grundlage für eine neue Lernarchitektur, die es ermöglicht, eine nichtlineare Klassifizierung in großem Maßstab zu erhalten, die Blitzkernerweiterungen und einen linearen Klassifizierer kombiniert. Es funktioniert in der Mini-Batch-Einstellung analog zu neuronalen Netzen. Wir zeigen die Gültigkeit unserer Methode durch umfangreiche Experimente mit MNIST und FASHION MNIST [3].

Wir schlagen auch eine neue Architektur vor, um die Überparametrisierung in neuronalen Netzen zu reduzieren. Es wird ein Operand für die schnelle Berechnung im Rahmen von Deep Learning eingeführt, der gelernte Gewichte nutzt. Der Formalismus wird ausführlich beschrieben und bietet sowohl eine genaue Aufklärung der Mechanik als auch der theoretischen Implikationen. 

1 M C K E R N E L 1.1 introduction
Kernel methods offer state-of-the-art estimation performance. They provide function classes that are flexible and easy to control in terms of regularization. However, the use of kernels in large-scale machine learning has been beset with difficulty. This is because using kernel expansions in large datasets is too expensive in terms of computation and storage. In order to solve this problem, [2] proposed an approximation algorithm based on Random Kitchen Sinks by [1], that speeds up the computation of a large range of kernel functions, allowing us to use them in big data. [4] describes the generalization of Random Features and potential effectiveness. Recent works on the topic build on it to propose state-of-the-art embeddings [5][START_REF] Moczulski | ACDC: a Structured Efficient Linear Layer[END_REF][START_REF] Hong | Binary Embedding for High-dimensional Visual Features[END_REF][START_REF] Kawaguchi | Deep Semi-random Features for Nonlinear Function Approximation[END_REF]. In this work, we go beyond former attempts [START_REF] Cho | Kernel Methods for Deep Learning[END_REF][START_REF] Wilson | Stochastic Variational Deep Kernel Learning[END_REF][START_REF] Al-Shedivat | Learning Scalable Deep Kernels with Recurrent Structure[END_REF] and propose a general framework in lieu of Deep Learning [START_REF] Curtó | a Library for Approximate Kernel Expansions in Log-linear Time[END_REF]. Our goal is to integrate current advances in Neural Networks but at the same time propose a well established theoretically sound background. [START_REF] Wigner | The Unreasonable Effectiveness of Mathematics in the Natural Sciences[END_REF] claims the unreasonable effectiveness of mathematics in the natural sciences. [14] in the same way, states the unreasonable effectiveness of mathematics in machine learning. Kernel methods originate in rigorous mathematical treatment of the problem, while at the same time are incredibly effective.
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At its heart, McKernel requires scalar multiplications, a permutation, access to trigonometric functions, and two Walsh Hadamard for implementation. The key computational bottleneck here is the Walsh Hadamard. We provide a fast, cache friendly SIMD (Single Instruction Multiple Data) oriented implementation that outperforms state-of-the-art codes such as Spiral [START_REF] Johnson | In Search of the Optimal WALSH-HADAMARD Transform[END_REF]. To allow for very compact distribution of models, we use hashing and a Pseudo-random Permutation for portability. In this way, for each feature dimension, we only need one floating point number.

In summary, our implementation serves as a drop-in generator of features for linear methods where attributes are generated on-the-fly [START_REF] Sharmanska | Learning to Rank Using Privileged Information[END_REF][START_REF] Chwialkowski | Fast Two-sample Testing with Analytic Representations of Probability Measures[END_REF][START_REF] Reddi | On the High-dimensional Power of a Linear-time Two Sample Test under Mean-shift Alternatives[END_REF][START_REF] Wang | Classifier Learning with Hidden Information[END_REF][START_REF] Li | Fast Algorithms for Linear and KERNEL SVM+[END_REF][START_REF] Wang | Large Margin Object Tracking with Circulant Feature Maps[END_REF], such as for regression, classification, or two-sample tests. This obviates the need for explicit kernel computations, particularly on large amounts of data. outline: Learning with Kernels is briefly introduced in Section 1.2. We begin then with a description of the feature construction McKernel in Section 1.3. Fast Walsh Hadamard is enunciated in Section 1.4. This is followed by a discussion of the computational issues for a SIMD implementation in Section 1.5. The concepts governing the API are described in Section 1.6. Large-scale Machine Learning by means of McKernel is discussed in Section 1.7. Concepts regarding TIKHONOV regulation are explained in Section 1.8. Experimental results can be found in Section 1.9. Section 1.10 gives a brief overall discussion.

learning with kernels

The problem of learning [START_REF] Cortes | Support-vector Networks[END_REF][START_REF] Cucker | On the Mathematical Foundations of Learning[END_REF][START_REF] Poggio | The Mathematics of Learning: Dealing with Data[END_REF][START_REF] Vapnik | A New Learning Paradigm: Learning Using Privileged Information[END_REF][START_REF] Vapnik | Learning Using Privileged Information: Similarity Control and Knowledge Transfer[END_REF] arises from the necessity to adapt a model f : X → Y to a given training set of data S n = (x c , y c ) n c=1 , with X ⊂ R n being closed and Y ⊂ R, having f good properties of generalization.

Let (x c , y c ) n c=1 be the data. Then, we pick a function k x (x ) = k(x, x ) symmetric, positive definite and continuous on X × X. And set f : X → Y such that

f (x) = n ∑ z=0 t z k x z (x), (1.1) 
where t = (t 1 , . . . , t n ) ∈ R n and

(nγI + K)t = y, (1.2) 
where matrix I is the identity, K is the matrix square positive definite with elements k c,r = k(x c , x r ) and γ > 0 in R.

It turns out this linear system of equations in n variables is well-posed as K is positive and (nγI + K) is strictly positive.

The intuition behind this algorithm, for instance given the Gaussian

k(x, x ) = exp - ||x -x || 2 2σ 2 , ( 1.3) 
is that we approximate the unknown function by a weighted superposition of Gaussians, each centered at location x c of one of the n examples. The weight t c of each Gaussian is chosen to minimize the error on the training set. The σ of the Gaussian, together with γ, controls the degree of smoothing, of noise tolerance and generalization.

[14] proposes a generalization of this framework by the use of invariants. Equation 1.2 becomes

(nγI + VK)t = Vy, (1.4) 
where V takes into account mutual positions of observed vectors and elements V(c, z) can be computed for high-dimensional problems as follows

V(c, z) = d ∑ k=1 t k -max(x k c , x k z ) , (1.5) 
with 0 ≤ x k ≤ t k . Matrix V is a symmetric non-negative matrix. The main idea is to take into account that the desired decision rule is related to the conditional probability function of the observations. We can write k as inner product between feature maps, as follows

k(x, x ) = φ(x), φ(x ) (1.6)
for some suitably chosen φ. Random Kitchen Sinks [1] approximate this mapping of features φ by a FOURIER expansion in the case of radial basis function (RBF), scilicet whenever k(x, x ) = κ(xx ). This is possible since the FOURIER transform diagonalizes the corresponding integral operator. This leads to

k(x, x ) = exp(i w, x ) exp(-i w, x )dρ(w) (1.7)
for some L 2 measurable function ρ(ω) ≥ 0 that is given by the FOURIER transform of κ. Random Kitchen Sinks exploit this by replacing the integral by sampling ω ∼ ρ(ω)/ ρ 1 . This allows for finite dimensional expansions but it is costly due to the large number of inner products required. [2] resolves this for rotationally invariant κ by providing a fast approximation of the matrix W := [ω 1 , . 

= H n-1 H n-1 H n-1 -H n-1 .
It is fixed and matrix-vector products are carried out efficiently in O(n log n) time using the Fast Walsh Hadamard. We will discuss implementation details for a fast variant in Section 1.5.

permutation Π. We generate a random permutation using the FISHER-YATES shuffle. That is, given a list L = {1, . . . n} we generate permutations recursively as follows: pick a random element from L. Use this as the image of n and move n to the position where the element was removed. The algorithm runs in linear time and its coefficients can be stored in O(n) space. Moreover, to obtain a deterministic mapping, replace the generator of random numbers with calls to the function of hashing.

gaussian G. This is a matrix diagonal with entries i.i.d. Gaussian. We generate the random variates using the BOX-MULLER transform [START_REF] Box | A Note on the Generation of Random Normal Deviates[END_REF] while substituting the generator of random numbers by calls to the function of hashing to allow us to recompute the values at any time without the need to store random numbers.

calibration C. This is a random scaling operator whose behavior depends on the type of kernel chosen, such as the RBF MATÉRN Kernel, the RBF Kernel or any other radial spectral distribution [START_REF] Yang | Learning Fast Kernels[END_REF].

Ultimately, compute the feature pairs by assigning

[cos( Ẑx), sin( Ẑx)].

(1.9)

In particular, McKernel computes the features by using the real version of the complex feature map φ in [1]. SIMD vectorized instructions and cache locality are used to increase speed performance. These allow a speed improvement of 18x times for a 2 24 dimension input matrix. Applications of the WALSH HADAMARD transform range across several areas, including Machine Learning [START_REF] Lu | Faster Ridge Regression via the Subsampled Randomized HADAMARD Transform[END_REF][START_REF] Andoni | Practical and Optimal LSH for Angular Distance[END_REF] and Computer Vision [START_REF] Ben-Artzi | The Gray-code Filter Kernels[END_REF][START_REF] Ouyang | Fast Algorithm for WALSH HADAMARD Transform on Sliding Windows[END_REF].

A naïve implementation results in complexity O(n 2 ). A divide-andconquer approach for this task that runs in time O(n log n) can be derived as follows.

We define the matrix Hadamard H n H 0 = [1] (1.10)

H n = H n-1 H n-1 H n-1 -H n-1 , (1.11) 
with dimension 2 n × 2 n .

We want to compute the product of matrix vector

H n • c, being c = (c o , c 1 ) where |c 0 | = |c 1 | = |c| 2 , H n • c = H n-1 c 0 + H n-1 c 1 H n-1 c 0 -H n-1 c 1 .
(1.12)

Hence, we only need to compute recursively H n-1 c 0 and H n-1 c 1 to obtain H n • c via additions and subtractions. The running time is

T(n) = 2T(n/2) + O(n), (1.13) 
that gives

T(n) = O(n log n).
In McKernel we generalize this approach to compute the resulting matrix Hadamard from a hard-coded specific-size routine.

implementation of fast walsh hadamard

A key part of the library is an efficient implementation of Fast Walsh Hadamard. In particular, McKernel offers considerable improvement over Spiral, due to automatic code generation, the use of SIMD intrinsics (SSE2 using 128 bit registers) and loop unrolling. This decreases the memory overhead.

McKernel proceeds with vectorized sums and subtractions iteratively for the first n 2 z input vector positions (where n is the length of the input vector and z the iteration starting from 1), computing the intermediate operations of the COOLEY-TUKEY algorithm till a small routine Hadamard that fits in cache. Then the algorithm continues in the same way but starting from the smallest length and doubling on each iteration the input dimension until the whole Fast Walsh Hadamard is done in-place.

For instance, on an intel i5-4200 CPU @ 1.60GHz laptop the performance obtained can be observed in Figure 1.2. If you are making a submission to another conference at the same t which covers similar or overlapping material, you may need to refer to submission in order to explain the di↵erences, just as you would if you previously published related work. In such cases, include the anonymized par submission [?] as additional material and cite it as Our code outperforms Spiral consistently throughout the range of arguments, see Table 1.1. Furthermore, Spiral needs to precompute trees and by default can only perform the computation up to matrix size n = 2 20 . On the other hand, our implementation works for any given size since it computes the high-level partitioning dynamically.

api description

The API follows the design pattern in factory. acts as a means of instantiating the parameters according to pre-specified sets of parameters, e.g. a RBF Kernel or a RBF MATÉRN Kernel. The sochosen parameters are deterministic, given by the values of a function of hashing. The advantage of this approach is that there is no need to save the coefficients generated for McKernel when deploying the functions.

McKernel is integrated into a fully-fledged C++ DL framework that lets the user experiment, among other things, with dropout, convolutions, different activation functions, layer normalization, maxpooling, L1 and L2 regularization, gradient clipping, autoencoders, residual blocks, SGD optimization with momentum and dataset loading. That said, it also includes some classical algorithms for learning such as linear and logistic regression.

Customizing McKernel

For instance, to generate each C kk entry for RBF MATÉRN Kernel we draw t i.i.d. samples from the n-dimensional unit ball S n , add them and compute its Euclidean norm.

To draw efficiently samples from S n we use the algorithm provided below.

Let X = (X 1 , . . . , X n ) be a vector of i.i.d. random variables drawn from N(0, 1), and let ||X|| be the Euclidean norm of X, then Y = X 1 ||X|| , . . . , X n ||X|| is uniformly distributed over the n-sphere, where Y is the projection of X onto the surface of the n-dimensional sphere. To draw uniform random variables in the n-ball, we multiply Y by U 1/n where U ∼ U(0, 1). This can be proved as follows: Let Z = (Z 1 , . . . , Z n ) be a random vector uniformly distributed in the unit ball. Then, the radius R = ||Z|| satisfies P(R ≤ r) = r n . Now, by the inverse transform method we get R = U 1/n . Therefore to sample uniformly from the n-ball the following algorithm is used:

Z = rU 1/n X ||X|| . (1.14)

large-scale machine learning

We introduce McKernel as an alternative to Deep Learning, where we argue that current techniques of Neural Networks are surrogates to very large kernel expansions, where optimization is done in a huge parameter space where the majority of learned weights are trivial to the actual problem statement.

We present here the idea that current developments in very deep neural networks can be achieved while drastically reducing the number of parameters learned. We build on the work in [1] and [2] to expand its scope to mini-batch training with SGD Optimizer. Our concern is to demonstrate that we are able to get the same gains obtained in Deep Learning by the use of McKernel and a linear classifier but with a behemoth kernel expansion.

Current research in Neural Networks is over-optimizing parameters that are indeed not informative for the problem to solve. That is, we pioneer the notion that Deep Learning is learning the inner parameters of a very large kernel expansion and, in the end, is doing a brute-force search of the appropriate kernel k thats fits well the data.

Observe that McKernel generates pseudo-random numbers by the use of hashing which is key for large-scale data. It allows to obtain a deterministic behavior and at the same time to load the weights on both training and testing without the need to actually store the matrices. As a further matter, mckernel it is crucial for distributed computation.

Notice here that the fact that we can increase the number of kernel expansions building highly hierarchical networks, see Equations 2.14 and 1.9, gives the property of compositionality to McKernel. Namely, the theoretical guarantee to avoid the curse of dimensionality [START_REF] Poggio | Why and When Can Deep -but Not Shallow -Networks Avoid the Curse of Dimensionality: a Review[END_REF][START_REF] Mhaskar | When and Why Are Deep Networks Better than Shallow Ones?[END_REF].

We can behold that McKernel is corresponding to networks of the form

G(x) = N ∑ k=1 a k exp -|x -x k | 2 , x ∈ R d . (1.15)
In the following section we build on these ideas to propose some very simple examples to illustrate the essence of the problem and the solution proposed.

regularization tikhonov

Let H be the hypothesis space of functions, in the problem of Empirical Risk Minimization (ERM) we want to find f ∈ H that minimizes

1 n n ∑ c=1 ( f (x c ) -y c ) 2 .
(1. [START_REF] Sharmanska | Learning to Rank Using Privileged Information[END_REF] This problem is in general ill-posed, depending on the choice of H. Following Tikhonov [START_REF] Girosi | Regularization theory and neural networks architectures[END_REF][START_REF] Girosi | An equivalence between sparse approximation and Support Vector Machines[END_REF] we minimize instead over the hypothesis space H K , the regularized functional

1 n n ∑ c=1 ( f (x c ) -y c ) 2 + λ|| f || 2 K , (1.17) 
where || f || 2 K is the norm in H K -the REPRODUCING KERNEL HILBERT Space defined by the kernel K.

In general, under the TIKHONOV regularization scheme that follows, min

w∈R D Ê( f w ) + λ||w|| 2 , (1.18)
where ||w|| 2 is the regularizer and controls the stability of the solution and λ balances the error term and the regularizer. Different classes of methods are determined by the appropriate choice of loss function in Equation 1.18.

Here we consider

Ê( f w ) = 1 n n ∑ c=1 l(y c , f w (x c )) (1.19)
with loss function l defined as

l(y, f w (x)) = log(1 + exp(-y f w (x))), (1.20) 
videlicet Logistic Regression.

Considering the logistic loss is differentiable and that we are in a largescale setting a reasonable candidate to compute a minimizer is the Stochastic Gradient Descent (SGD),

w t+1 = w t -γ∆g c t (w t ), (1.21) 
where c t denotes a stochastic sequence of indices and γ is the learning rate.

In this line of argument, [START_REF] Liang | Deep Continuous Fusion for Multi-sensor 3D Object Detection[END_REF][START_REF] Kawaguchi | Elimination of All Bad Local Minima in Deep Learning[END_REF][START_REF] Sohl-Dickstein | Eliminating All Bad Local Minima from Loss Landscapes without Even Adding an Extra Unit[END_REF] state that local minimization is well posed in Deep Learning using SGD.

Augmenting the number of kernel expansions, and thus the representational power of the model, gives a degree of over-parametrization. That is to say, we increase the size of the network to fit the training data. Given these constraints, BÉZOUT theorem argues the existence of a large number of degenerate global minimizers with zero empirical error, that are very likely to be found by SGD that will in addition select with higher probability the most robust zero-minimizer [START_REF] Poggio | Theory II: Landscape of the Empirical Risk in Deep Learning[END_REF].

empirical analysis and experiments

We generalize the use of McKernel in mini-batch with SGD Optimizer, Figure 1.1, drastically reducing the number of parameters that need to be learned to achieve comparable state-of-the-art results to Deep Learning.

What is more, current breakthroughs in Neural Networks can be easily derived from Equation 2.14. Say for instance, Batch Normalization [START_REF] Ioffe | Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift[END_REF] can be obtained from the normalizing factor. Or for example, the use of ensembles [START_REF] Lakshminarayanan | Simple and Scalable Predictive Uncertainty Estimation Using Deep Ensembles[END_REF] and multi-branch architectures [START_REF] Zhang | Deep Neural Networks with Multi-branch Architectures Are Less Non-convex[END_REF] to improve performance can be seen on Figure 1.1, as it follows from the increase on Kernel Expansions. Not only that, but increasing the number of Kernel Expansions has another great property; data augmentation [START_REF] Tran | A Bayesian Data Augmentation Approach for Learning Deep Models[END_REF][START_REF] Cubuk | AutoAugment: Learning Augmentation Strategies from Data[END_REF], which has recently seen a lot of interest. Its importance follows directly from the construction of McKernel, take the data, apply slightly (randomized) different functions to it to create new high-dimensional samples that will aid the process of learning. It also explains the need for backpropagation [START_REF] Lecun | Gradient-based Learning Applied to Document Recognition[END_REF]: certain types of data will work better for certain kernels, so it may be necessary to learn the appropriate Calibration C and G that fit well the data. Besides, learning B acts as mechanism of attention [START_REF] Bahdanau | Neural Machine Translation by Jointly Learning to Align and Translate[END_REF][START_REF] Luong | Effective Approaches to Attention-based Neural Machine Translation[END_REF][START_REF] Vaswani | Attention Is All You Need[END_REF]. Further, dropout [START_REF] Srivastava | Dropout: a Simple Way to Prevent Neural Networks from Overfitting[END_REF] follows directly from the use of the Subsampled Randomized Hadamard. Additionally, research on finding alternate activation functions [START_REF] Maas | Rectifier Nonlinearities Improve Neural Network Acoustic Models[END_REF][START_REF] He | Delving Deep into Rectifiers: Surpassing Human-level Performance on ImageNet Classification[END_REF][START_REF] Clevert | Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs)[END_REF][START_REF] Klambauer | Selfnormalizing Neural Networks[END_REF] can be deduced from looking for different mappings in Equation 1.9.

Note here that the number of parameters to be estimated is of the order of thousands, proportional to the number of classes (depending on the size of the input image and the number of kernel expansions),

C • (2 • [S] 2 • E + 1), (1.22) 
where C is the number of classes, [•] 2 is an operator that returns the next power of 2, S is the size of the input samples and E is the number of Kernel Expansions. A drastic reduction compared to Neural Networks, while achieving comparable performance. Training time is therefore severely reduced and SVM kernel like learning can be achieved at scale. If you are making a submission to another conference at the same time, which covers similar or overlapping material, you may need to refer to that submission in order to explain the di↵erences, just as you would if you had previously published related work. In such cases, include the anonymized parallel submission [?] as additional material and cite it as 1. Authors. "The frobnicatable foo filter", BMVC 2014 Submission ID 324, Supplied as additional material bmvc14.pdf.
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The same kind of intuition that applies to Neural Networks, where the deeper the network, the better the results, holds. But this time depending on the number of kernel expansions used.

FASHION MNIST [3] is similar in scope to MNIST but relatively more difficult. Instead of classifying digits, we focus now on the task of fashion. It consists on ten classes of clothing; T-shirt/top, Trouser, Pullover, Dress, Coat, Sandal, Shirt, Sneaker, Bag and Ankle boot. If you are making a submission to another conference at the same time, which covers similar or overlapping material, you may need to refer to that submission in order to explain the di↵erences, just as you would if you had previously published related work. In such cases, include the anonymized parallel submission [?] as additional material and cite it as 1. Authors. "The frobnicatable foo filter", BMVC 2014 Submission ID 324, Supplied as additional material bmvc14.pdf.
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discussion

In this manuscript we provide a new framework of learning and illustrate with two examples that achieves comparable state-of-the-art performance to Neural Networks, proposing a new way to understand Deep Learning, as a huge kernel expansion where optimization is only performed over the parameters that are actually relevant to the problem at-hand. At the same time, a new methodology to build highly compositional networks for Large-scale Machine Learning is introduced.

We account for both the theoretical underpinnings and the practical implications to establish the building blocks of a unifying theory of learning.

D R . O F C R O S S W I S E

introduction

Re-thinking how Deep Networks operate at large scale using current techniques is difficult. We build on the work in [START_REF] Curtó | a Library for Approximate Kernel Expansions in Log-linear Time[END_REF] to propose a fast variant [START_REF] Curtó | Doctor of Crosswise: Reducing Over-parametrization in Neural Networks[END_REF] named Dr. of Crosswise1 . Our approach does not lose the ability to generalize while reduces vastly the number of parameters and improves training and testing speed. Dr. of Crosswise substitutes common products matrix-vector in the architectures of Neural Networks by the use of simplified one-dimensional multiplication of tensors. Namely, it establishes a framework of learning where learned weight matrices are diagonal and optimized weights are considerably reduced. We introduce a new operation between vectors to allow for a fast computation.

The structure of learning using matrices diagonal follows directly from the construction McKernel in [START_REF] Curtó | a Library for Approximate Kernel Expansions in Log-linear Time[END_REF] based on [1,2,[START_REF] Rahimi | Weighted Sums of Random Kitchen Sinks: Replacing Minimization with Randomization in Learning[END_REF], which can be understood as a GAUSSIAN network [START_REF] Poggio | Why and When Can Deep -but Not Shallow -Networks Avoid the Curse of Dimensionality: a Review[END_REF][START_REF] Mhaskar | When and Why Are Deep Networks Better than Shallow Ones?[END_REF] of the form

G(x) = N ∑ k=1 a k exp -|x -x k | 2 , x ∈ R d . (2.1)
We extend this idea to a more general framework, unconstrained in the sense that we no longer consider a form Gaussian, Equation 2.1, but any possible non-linearity (for instance ReLU). That is to say, Deep Learning.

deep learning

Successes in Neural Networks range across all domains, from Natural Language Processing [START_REF] Mikolov | Distributed Representations of Words and Phrases and their Compositionality[END_REF][START_REF] Pennington | Global Vectors for Word Representation[END_REF][START_REF] Devlin | Pre-training of Deep Bidirectional Transformers for Language Understanding[END_REF] to Computer Vision [START_REF] Goodfellow | Generative Adversarial Networks[END_REF][START_REF] Long | Fully Convolutional Networks for Semantic Segmentation[END_REF][START_REF] Ren | Towards Real-time Object Detection with Region Proposal Networks[END_REF][START_REF] Simonyan | Very Deep Convolutional Networks For Large-scale Image Recognition[END_REF][START_REF] Girshick | IEEE International Conference on Computer Vision[END_REF][START_REF] Radford | Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks[END_REF][START_REF] Yu | Multi-scale Context Aggregation by Dilated Convolutions[END_REF][START_REF] Salimans | Improved Techniques for Training GANs[END_REF][START_REF] He | Deep Residual Learning for Image Recognition[END_REF][START_REF] He | IEEE International Conference on Computer Vision[END_REF][START_REF] Karras | Progressive Growing of GANs for Improved Quality, Stability, and Variation[END_REF][START_REF] Curtó | Highresolution Deep Convolutional Generative Adversarial Networks[END_REF], going through Automatic Structural Learning [START_REF] Cortes | Adaptive Structural Learning of Artificial Neural Networks[END_REF] or Data Augmentation [START_REF] Cubuk | AutoAugment: Learning Augmentation Strategies from Data[END_REF]. Techniques to improve aspects of current architectures have been widely explored [START_REF] Tremblay | Training Deep Networks with Synthetic Data: Bridging the Reality Gap by Domain Randomization[END_REF][START_REF] Acuna | Efficient Interactive Annotation of Segmentation Datasets with POLYGON-RNN++[END_REF][START_REF] Coleman | DAWNBench: an End-to-end Deep Learning Benchmark and Competition[END_REF]. Significant progress has also been made by combining Deep Learning for extraction of features with Reinforcement Learning [START_REF] Duan | Benchmarking Deep Reinforcement Learning for Continuous Control[END_REF][START_REF] Levine | End-to-end Training of Deep Visuomotor Policies[END_REF].

doctor of crosswise

The way to go on Deep Learning entangles the following formalism

y = max(Wx + b, 0) (2.2)
where matrix W and vector b are the weights and biases learned by assignment of credit [START_REF] Lecun | Gradient-based Learning Applied to Document Recognition[END_REF][START_REF] Bengio | Credit Assignment through Time: Alternatives to Backpropagation[END_REF], videlicet backpropagation.

Dr. of Crosswise substitutes products matrix-vector by

y = max( Ŵx + b, 0) (2.3)
where Ŵ is a matrix with form diagonal The operand defined by {•, •} c&z is similar to a HADAMARD product and does the following operation. Given vectors c and x it computes

Ŵ =        W 1 0 . . . 0 0 W 2 . . . . . . . . . . . . . . . 0 0 . . . 0 W n        . ( 2 
{c, x} c&z =        c 1 x 1 c 2 x 2 . . . c n x n        (2.6)
where c holds the non-zero elements of a matrix diagonal.

Note that Equation 2.5 is equivalent to 2.3. In other words, the new operator c&z helps factorize products between matrix diagonal and vector in form vector-vector. All the notation is preserved but for a change in the definition of the product.

We can understand this new operation between vectors as a product component-wise that scales each component by a given factor, Figure 2.1.

Furthermore, the factors that need to be learned reduce from n × n to n for each given layer, a momentous reduction of learned parameters and time of computation. Considering the compositionality of the problem, where architectures are built as a stack of many of these formalisms, Equation 2.2, the improvements are considerably remarkable.

Extension to Higher-order

If we now consider the setting where we have multiple input data and the need to expand it to higher-dimensional spaces from layer to layer, as it is normally done in Deep Learning. We have to consider several facts. Given a matrix W of dimension M × N and input vector x of dimension N we will generate an output vector with size proportional to N. W will be substituted by a set of matrices diagonal whose cardinal will be the closest multiplicity of N to M, see Figure 2.2. In this way, we will need a product that operates element-wise between the elements of each matrix diagonal and the input vector. Considering a varying number of input vectors, this mathematical operation is very close to a KHATRI RAO product, which is the matching columnwise KRONECKER product [START_REF] Kolda | Tensor Decompositions and Applications[END_REF]. These products between matrices have useful properties:

(A ⊗ B)(C ⊗ D) = AC ⊗ BD (2.7) (A ⊗ B) † = A † ⊗ B † (2.8) A B C = (A B) C = A (B C) (2.9) 
(A B) T (A B) = A T A * B T B (2.10) (A B) † = ((A T A) * (B T B)) † (A B) T (2.11)
where denotes KHATRI RAO product, ⊗ specifies KRONECKER product and * means HADAMARD product. A † is the MOORE PENROSE pseudo-inverse of A.

Take special note on the fact that for example, to transform an input vector of size 4, to an output vector of size 8, in the standard formulation of Neural Networks we have to learn 32 weights. If we consider Dr. of Crosswise, the number of learned parameters to do exactly the same operation reduces to 8. More importantly, the number of multiplications and additions also drastically lowers.

rationale

We start with an exordium on Kernel Methods [14,[START_REF] Cortes | Support-vector Networks[END_REF]. Let X be a measure space with k : L 2 (X × X) → R. We name k a kernel if, and only if, there is some feature map φ : X → H into a separable HILBERT space H such that k(x, x ) = φ(x), φ(x ) H .

(2.12)

In other words, k is a kernel if, and only if, for some space H and map φ the following diagram commutes:

X × X H × H R. φ k •,• H
Random Kitchen Sinks [1] approximate this mapping of features φ by a FOURIER expansion in the case of RBF kernels k(x, x ) = exp (i w, x ) exp (-i w, x )dρ(w).

(2.13)

[2, 28] present a fast approximation of the matrix W. Recent works on the matter [5][START_REF] Moczulski | ACDC: a Structured Efficient Linear Layer[END_REF][START_REF] Hong | Binary Embedding for High-dimensional Visual Features[END_REF][START_REF] Wu | Learning a Probabilistic Latent Space of Object Shapes via 3D Generativeadversarial Modeling[END_REF] use this technique to extract meaningful features.

Dr. of Crosswise is motivated by the construction McKernel in [START_REF] Curtó | a Library for Approximate Kernel Expansions in Log-linear Time[END_REF], where Deep Learning and Kernel Methods are unified by extending the use of the approximation of W, Ẑ, to a SGD optimization setting

Ẑ := 1 σ √ n CHGΠHB. (2.14) 
Here C, G and B are matrices diagonal, Π is a random matrix of permutation and H is the Hadamard. Whenever the number of rows in W exceeds the dimensionality of the data, simply generate multiple instances of Ẑ, drawn i.i.d., until the required number of dimensions is obtained.

The key idea behind it is that the FOURIER transform diagonalizes the integral operator.

This can be best seen as follows. Considering the operator of convolution working on the complex exponential f (z) = exp(ikz)

g(z) = ( f * r)(z) = ∞ -∞ f (τ)r(z -τ)dτ.
(2.15)

Then

g(z) = λ f (z) (2.16)
where λ = R(k) and R is the FOURIER transform of r.

We build on these ideas to pioneer a framework of Deep Learning where the formalism used entangles matrices diagonal.

introduction

Developing a Generative Adversarial Network (GAN) [START_REF] Goodfellow | Generative Adversarial Networks[END_REF] able to produce good quality high-resolution samples from images has important applications [START_REF] Wu | Learning a Probabilistic Latent Space of Object Shapes via 3D Generativeadversarial Modeling[END_REF][START_REF] Yang | Highresolution Image Inpainting Using Multi-scale Neural Patch Synthesis[END_REF][START_REF] Zhu | Unpaired Image-to-Image Translation Using Cycle-consistent Adversarial Networks[END_REF][START_REF] Bousmalis | Unsupervised Pixel-level Domain Adaptation with Generative Adversarial Networks[END_REF][START_REF] Li | Triple Generative Adversarial Nets[END_REF][START_REF] Wang | Highresolution Image Synthesis and Semantic Manipulation with Conditional GANs[END_REF][START_REF] Wang | Video-to-video Synthesis[END_REF][START_REF] Portenier | FaceShop: Deep Sketch-based Face Image Editing[END_REF][START_REF] Lombardi | Deep Appearance Models for Face Rendering[END_REF][START_REF] Yu | Generative Image Inpainting with Contextual Attention[END_REF][START_REF] Sankaranarayanan | Learning from Synthetic Data: Addressing Domain Shift for Semantic Segmentation[END_REF][START_REF] Romero | Stochastic Multi-label Image-to-image Translation[END_REF][START_REF] Chen | Learning Semantic Segmentation from Synthetic Data: a Geometrically Guided Input-output Adaptation Approach[END_REF][START_REF] De Curtó | Cycle-consistent Generative Adversarial Networks for Neural Style Transfer Using Data from Chang[END_REF][START_REF] De Curtó | Vulcan Centaur: towards End-to-end Realtime Perception in Lunar Rovers[END_REF][START_REF] De Curtò | Vision and Learning in the Context of Exploratory Rovers[END_REF] including image inpainting, 3D data, domain translation, video synthesis, image edition, semantic segmentation and semi-supervised learning. In this paper, we focus on the task of face generation, as it gives GANs a huge space of learning attributes. In this context, we introduce the Dataset of Curtò & Zarzà [START_REF] Curtó | Highresolution Deep Convolutional Generative Adversarial Networks[END_REF], a well-balanced collection of images containing 14,248 human faces from different ethnical groups and rich in a wide range of learnable attributes, such as gender and age diversity, hair-style and pose variation or presence of smile, glasses, hats and fashion items. We also ensure the presence of changes in illumination and image resolution. We propose to use Curtò as de facto approach to empirically test the distribution learned by a GAN, as it offers a challenging problem to solve, while keeping the number of samples, and therefore training time, bounded. It can also be used as a drop-in substitute of MNIST for simple tasks of classification, say for instance using labels of ethnicity, gender, age, hair Despite improvements in GANs training stability [START_REF] Salimans | Improved Techniques for Training GANs[END_REF][START_REF] Mescheder | The Numerics of GANs[END_REF][START_REF] Mescheder | Which Training Methods for GANs Do Actually Converge? ICML[END_REF] and specifictask design during the last years, it is still challenging to train GANs to generate high-resolution images due to the disjunction in the high dimensional pixel space between supports of the real image and implied model distributions [START_REF] Arjovsky | Towards Principled Methods for Training Generative Adversarial Networks[END_REF][START_REF] Sønderby | Amortised MAP Inference for Image Super-resolution[END_REF].

Our goal is to be able to generate indistinguishable sample instances using face data to push the boundaries of GAN image generation that scale well to high-resolution images (such as 512×512) and where context information is maintained.

In this sense, Deep Learning has a tremendous appetite for data. The question that arises instantly is, what if we were able to generate additional realistic data to aid learning using the same techniques that are later used to train the system. The first step would then be to have an image generation tool able to sample from a very precise distribution (e. g. faces from celebrities) which instances resemble or highly correlate with real sample images of the underlying true distribution. Once achieved, what is desirable and comes next is that these generated image points not only fit well into the original distribution set of images but also add additional useful information such as redundancy, different poses or even generate highly-probable scenarios that would be possible to see in the original dataset but are actually not present.

Current research trends link Deep Learning and Kernel Methods to establish a unifying theory of learning [START_REF] Curtó | a Library for Approximate Kernel Expansions in Log-linear Time[END_REF][START_REF] Curtó | Doctor of Crosswise: Reducing Over-parametrization in Neural Networks[END_REF]. The next frontier in GANs would be to achieve learning at scale with very few examples. To achieve the former goal this work contributes in the following:

• Network that achieves compelling results and scales well to the highresolution setting where to the best of our knowledge the majority of other variants are unable to continue learning or fall into mode collapse.

• New dataset targeted for GAN training, Curtò, that introduces a wide space of learning attributes. It aims to provide a well-posed difficult task while keeping training time and resources tightly bounded to spearhead research in the area.

prior work

Generative Curtò introduces a difficult paradigm of learning, where different ethnical groups are present, with very varied fashion and hair styles. The fact that the photos are taken using non-professional cameras in a non-controlled environment, gives us multiple poses, illumination conditions and camera quality. 

approach

Generative Adversarial Networks (GANs) proposed by [START_REF] Goodfellow | Generative Adversarial Networks[END_REF] are based on two dueling networks, Figure 3. 

+E z∼p z [log(1 -D(G(z)))] , (3.2)
where x is a ground truth image sampled from the true distribution p data , and z is a noise vector sampled from p z (that is, uniform or normal distribution). G and D are parametric functions where G : p z → p data maps samples from noise distribution p z to data distribution p data .

The goal of the Discriminator is to minimize

L (D) = - 1 2 E x∼p data [log D(x)] - (3.3) - 1 2 E z∼p z [log(1 -D(G(z)))] . (3.4)
If we differentiate it w.r.t D(x) and set the derivative equal to zero, we can obtain the optimal strategy

D(x) = p data (x) p z (x) + p data (x) . ( 3.5) 
Which can be understood intuitively as follows. Accept an input, evaluate its probability under the distribution of the data, p data , and then evaluate its probability under the generator's distribution of the data, p z . Under the condition in D of enough capacity, it can achieve its optimum. Note the discriminator does not have access to the distribution of the data but it is learned through training. The same applies for the generator's distribution of the data. Under the condition in G of enough capacity, then it will set p z = p data . This results in D(x) = 1 2 , that is actually the NASH equilibrium. In this situation, the generator is a perfect generative model, sampling from p(x).

As an extension to this framework, DCGAN [START_REF] Radford | Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks[END_REF] proposes an architectural topology based on Convolutional Neural Networks (CNNs) to stabilize training and re-use state-of-the-art networks from tasks of classification. This direction has recently received lots of attention due to its compelling results in supervised and unsupervised learning. We build on this to propose a novel DCGAN architecture to address the problem of high-resolution image generation. We name this approach HDCGAN.

HDCGAN

Despite the undoubtable success, GANs are still arduous to train, particularly when we use big images (e. g. 512×512). It is very common to see D beating G in the process of learning, or the reverse, ending in unrecognizable imagery, also known as mode collapse. Only when stable learning is achieved, the GAN structure is able to succeed in getting better and better results with time.

This issue is what drives us to carefully derive a simple yet powerful structure that leverages common problems and gets a stable and steady training mechanism.

Self-normalizing Neural Networks (SNNs) were introduced in [START_REF] Klambauer | Selfnormalizing Neural Networks[END_REF]. We consider a neural network with activation function f , connected to the next layer by a weight matrix W, and whose inputs are the activations from the preceding layer x, y = f (Wx).

We can define a mapping g that maps mean and variance from one layer to mean and variance of the following layer

µ ν -→ μ ν : μ ν = g µ ν . (3.6)
Common normalization tactics such as batch normalization ensure a mapping g that keeps (µ, ν) and ( μ, ν) close to a desired value, normally (0, 1).

SNNs go beyond this assumption and require the existence of a mapping g : Ω -→ Ω that for each activation y maps mean and variance from one layer to the next layer and at the same time have a stable and attracting fixed point depending on (ω, τ) in Ω. Moreover, the mean and variance remain in the domain Ω and when iteratively applying the mapping g, each point within Ω converges to this fixed point. Therefore, SNNs keep activations normalized when propagating them through the layers of the network.

Here (ω, τ) are defined as follows. For n units with activation x c , 1 ≤ c ≤ n in the lower layer, we set n times the mean of the weight vector w ∈ R n as ω := ∑ n c=1 w c and n times the second moment as τ := ∑ n c=1 w 2 c .

Scaled Exponential Linear Units (SELU) [START_REF] Klambauer | Selfnormalizing Neural Networks[END_REF] is introduced as the choice of activation function in Feed-forward Neural Networks (FNNs) to construct a mapping g with properties that lead to SNNs.

selu(x) = λ x if x > 0 α exp x -α if x ≤ 0. (3.7)
Empirical observation leads us to say that the use of SELU greatly improves the convergence speed on the DCGAN structure, however, after some iterations mode collapse and gradient explosion completely destroy training when using high-resolution images. We conclude that although SELU gives theoretical guarantees as the optimal activation function in FNNs, numerical errors in the GPU computation degrade its performance in the overall min-max game of DCGAN. To alleviate this problem, we propose to use SELU and BatchNorm [START_REF] Ioffe | Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift[END_REF] together. The motivation is that when numerical errors move ( μ, ν) away from the attracting point that depends on (ω, τ) ∈ Ω, BatchNorm will ensure it is close to a desired value and therefore maintain the convergence rate. As SELU + BatchNorm (BS) layers keep mean and variance close to (0, 1) we get an unbiased estimator of p data with contractive finite variance. These are very desirable properties from the point of view of an estimator as we are iteratively looking for a MVU (Minimum Variance Unbiased) criterion and thus solving MSE (Minimum Square Error) among unbiased estimators. Hence, if the MVU estimator exists and the network has enough capacity to actually find the solution, given a sufficiently large sample size by the Central Limit Theorem, we can attain NASH equilibrium.

HDCGAN Architecture is described in Figure 3.4. It differs from traditional DCGAN in the use of BS layers instead of ReLUs.

We observe that when having difficulty in training DCGAN, it is always better to use a fixed learning rate and instead increase the batch size. This is because having more diversity in training, gives a steady diminishing loss and better generalization. To aid learning, noise following a Normal N(0, 1) is added to both the inputs of D and G. We see that this helps overcome mode saturation and collapse whereas it does not change the distribution of the original data.

We empirically show that the use of BS induces SNNs properties in the GAN structure, and thus makes learning highly robust, even in the stark presence of noise and perturbations. This behavior can be observed when the zero-sum game problem stabilizes and errors in D and G jointly diminish, Figure 3.9. Comparison to traditional DCGAN, WASSERSTEIN GAN [114] and WGAN-GP [115] is not possible, as to date, the majority of former methods, such as [116], cannot generate recognizable results in image size 512×512, 24GB GPU memory setting. Thus, HDCGAN pushes up state-of-the-art results beating all former DCGAN-based architectures and shows that, under the right circumstances, BS can solve the min-max game efficiently.

Glasses

We introduce here a key technique behind the success of HDCGAN. Once we have a good convergence mechanism for large input samples, that is a concatenation of BS layers, we observe that we can arbitrarily improve the final results of the GAN structure by the use of a Magnifying Glass approach. Assuming our input length is N × M, we can enlarge it by a constant factor, ζ 1 N × ζ 2 M, which we call telescope, and then feed it into the network, maintaining the size of the convolutional filters untouched. This simple procedure works similar to how contact lenses correct or assist defective eyesight on humans and empowers the GAN structure to appreciate the inner properties of samples.

Note that as the input gets bigger so does the neural network. That is, the number of layers is implicitly set by the image size, see up-sampling and down-sampling blocks in Figure 3 We can empirically observe that BS layers together with Glasses induce high capacity into the GAN structure so that a NASH equilibrium can be reached. That is to say, the generator draws samples from p data , which is the distribution of the data, and the discriminator is not able to distinguish between them, D(x) = 1 2 ∀x.

empirical analysis

We build on DCGAN and extend the framework to train with high-resolution images using Pytorch. Our experiments are conducted using a fixed learning rate of 0.0002 and ADAM solver [117] with batch size 32 and 512×512 samples with the number of filters of G and D equal to 64.

In order to test generalization capability, we train HDCGAN in the newly introduced Curtò, CelebA and CelebA-hq. Technical Specifications: 2 × NVIDIA Titan X, Intel Core i7-5820k@3.30GHz.

Curtò

The results after 150 epochs are shown in Figure 3.6. We can see that HDCGAN captures the underlying features that represent faces and not only memorizes training examples. We retrieve nearest neighbors to the generated images in Figure 3.7 to illustrate this effect. In Figure 3.9 we can observe that BS stabilizes the zero-sum game, where errors in D and G concomitantly diminish. To show the validity of our method, we enclose Figure 3.10, presenting a large number of samples for epoch 39. We also attach a zoomed-in example to appreciate the quality and size of the generated samples, Figure 3.11. Failure cases can be observed in Figure 3.12. Besides, to illustrate how fundamental our approach is, we enlarge Curtò with 4,239 unlabeled synthetic images generated by HDCGAN on CelebA, a random set can be seen in Figure 3.13. To exemplify that the model is generating new bona fide instances instead of memorizing samples from the training set, we retrieve nearest neighbors to the generated images in Figure 3.16. 
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assessing the discriminability and quality of generated samples

We build on previous image similarity metrics to qualitatively evaluate generated samples of generative models. The most effective of these is multi-scale structural similarity (MS-SSIM) [102]. We make comparison at resized image size 128×128 on CelebA. MS-SSIM results are averaged from 10,000 pairs of generated samples. Table 3 We monitor MS-SSIM scores across several epochs averaging from 10,000 pairs of generated images to see the temporal performance, Figure 3.17. HDCGAN improves the quality of the samples while increases the diversity of the generated distribution. An analysis of the frobnicatable foo filter. In this paper we present a performance analysis of the paper of Smith [1], and show it to be inferior to all previously known methods. Why the previous paper was accepted without this analysis is beyond me.

[1] Smith, L. and Jones, C. "The frobnicatable foo filter, a fundamental contribution to human knowledge". Nature 381 [START_REF] Curtó | a Library for Approximate Kernel Expansions in Log-linear Time[END_REF], 1-213. If you are making a submission to another conference at the same time, which covers similar or overlapping material, you may need to refer to that submission in order to explain the di↵erences, just as you would if you had previously published related work. In such cases, include the anonymized parallel submission [?] as additional material and cite it as 1. Authors. "The frobnicatable foo filter", BMVC 2014 Submission ID 324, Supplied as additional material bmvc14.pdf.

Finally, you may feel you need to tell the reader that more details can be found elsewhere, and refer them to a technical report. For conference submissions, the paper must stand on its own, and not require the reviewer to go to a techreport for further details. Thus, you may say in the body of the paper In [118] they propose to evaluate GANs using the FRÉCHET Inception Distance, which assesses the similarity between two distributions by the difference of two Gaussians. We make comparison at resized image size 64×64 on CelebA. Results are computed from 10,000 512×512 generated samples from epochs 36 to 52, resized at image size 64×64 yielding a value of 8.44, Table 3 Further, we present a bias-free dataset of faces containing well-balanced ethnical groups, Curtò & Zarzà, that poses a very difficult challenge and is rich on learning attributes to sample from. Moreover, we enhance Curtò with 4,239 unlabeled synthetic images generated by HDCGAN, being therefore the first GAN augmented dataset of faces. Detection and Segmentation of Objects are two popular problems in Computer Vision and Machine Learning, historically treated as separated tasks. We consider these strongly related vision tasks as a unique one: detecting each object in an image and assigning to each pixel a binary label inside the corresponding bounding box.

C&Z Segmentation addresses the problem with a surprising different technique that deviates from the current norm of using proposal object candidates [121]. In semantic segmentation the need for rich information models that entangle some kind of notion from the different parts that constitute an object is exacerbated. To alleviate this issue we build on the use of the hierarchical model in [122] and explore the rich space of information of the Ultrametric Contour Map (UCM) in order to find the best possible semantic segmentation of the given object. For this task, we exploit bounding boxes to facilitate the search. Hence, we simply hash the patches enclosed by the bounding boxes and retrieve closest nearest neighbors to the given objects, obtaining superior segmentations. Using this simple but effective technique we get the segmentation mask which is then refined using Hierarchical Section Pruning.

We start from a detector of bounding boxes and refine the object support, as in Hypercolumns [123]. We propose here a train-free similarity hashing alternative to their approach.

We present a simple yet effective module that leverages the need for a training step and can provide segmentations after any given detector. Our approach is to use a state-of-the-art region-based CNN detector [START_REF] Ren | Towards Real-time Object Detection with Region Proposal Networks[END_REF] as prior step to guide the process of segmentation.

Outline: We begin next with a high-level description of the proposed method and develop further the idea to propose Hierarchical Section Hashing and Hierarchical Section Pruning in Section 5 and Section 4.3. Prior work follows in Section 4.2. We conclude with the evaluation metrics in Section 4.4 and a brief discussion in Section 4.5.

We start with a primer. C&Z Segmentation consists on the following main blocks:

• Detection of Objects using Bounding Boxes. We use a convolutional neural network [START_REF] Ren | Towards Real-time Object Detection with Region Proposal Networks[END_REF] to detect all the objects in an image and generate the corresponding bounding boxes. We consider a detected object in an image as each output candidate thresholded by the class level score (benchmarks specifications in Section 4.4).

• Hierarchy. The image is presented as a tree of hierarchical regions based on the UCM [122].

• Similarity Hashing. We develop Hierarchical Section Hashing based on the LSH technique of [124].

• Refinement of Regions. The segmentations are refined by the use of Hierarchical Section Pruning.

• Evaluation. We evaluate the results on the PASCAL VOC 2012 Segmentation dataset [125] using the JACCARD index metric, which measures the average best overlap achieved by a segmentation mask for a ground truth object.

This work is inspired on how humans segment images: they first localize the objects they want to segment, they carefully inspect the object on the image by the use of their visual system and finally they choose the region that belongs to the body of that particular object. We believe that although the problem of detection has to be solved by the use of deep learning based on convolutional neural networks, in the same way that current breakthroughs have been attained in Generative Adversarial Networks (GAN) [START_REF] Goodfellow | Generative Adversarial Networks[END_REF][START_REF] Radford | Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks[END_REF][START_REF] Salimans | Improved Techniques for Training GANs[END_REF][START_REF] Karras | Progressive Growing of GANs for Improved Quality, Stability, and Variation[END_REF][START_REF] Curtó | Highresolution Deep Convolutional Generative Adversarial Networks[END_REF][START_REF] De Curtò | Vision and Learning in the Context of Exploratory Rovers[END_REF], the problem of segmenting those objects is of a different nature and can be best understood by the use of hashing. Furthermore, current research trends link concepts of Deep Learning to Kernel Methods, proposing a unifying theory of learning in [START_REF] Curtó | a Library for Approximate Kernel Expansions in Log-linear Time[END_REF][START_REF] Curtó | Doctor of Crosswise: Reducing Over-parametrization in Neural Networks[END_REF].

Our main contributions are presented as follows:

• Novel approach to solve the task of segmentation by similarity hashing exploiting the detection of objects using bounding boxes.

• Use of hierarchical structures which are rich on semantic meaning instead of other current state-of-the-art techniques such as generation of proposal object candidates.

• No need of training data for the task of segmentation under the framework of detection using bounding boxes, that is train-free accurate segmentations.

• State-of-the-art results.

To our knowledge, we are the first to provide a segmentation based on hashing. This approach leverages the need to optimize over a highdimensional space.

Despite the success of region proposal methods in detection, they have in turn arisen as the main computational bottleneck of these approaches. Yet unlike the latter, hierarchical structures derived from the UCM are in comparison inexpensive to compute and store. While we continue to use a very fast region-based convolutional neural network (R-CNN) to solve the task of detection, we propose to solve the problem of segmentation by exploring efficiently the space generated by a hierarchical image.

prior work

Recent works [START_REF] He | IEEE International Conference on Computer Vision[END_REF]126] present Object Detection and Segmentation as a single problem. The task requires to detect and segment every instance of a category in the image. Our work is however more closely related to the approach in Hypercolumns [123], where they go from bounding boxes to segmented masks. Our course of action is related in the sense that we propose an alternative that does not require a training step and can be used as an off-the-shelf high-quality segmenter.

For semantic segmentation [START_REF] Yu | Multi-scale Context Aggregation by Dilated Convolutions[END_REF]107,121,122,[127][128][129], there has been several approaches where they guide the process of segmentation by the use of a prior detector [START_REF] Ren | Towards Real-time Object Detection with Region Proposal Networks[END_REF][START_REF] Girshick | IEEE International Conference on Computer Vision[END_REF][130][131][132][133]. Recently, this strategy has also presented state-of-the-art results in person detection and pose estimation [134]. Alternate procedures count on a human-on-the-loop [START_REF] Acuna | Efficient Interactive Annotation of Segmentation Datasets with POLYGON-RNN++[END_REF]. Ongoing research on the matter uses Neural Architecture Search [135-140] to design efficient architectures of neural networks for dense image prediction [141]. With the advent of present-day autonomous vehicles, the need to generate segmentations directly from the point cloud given by LIDAR [142-144], as well as detect 3D objects [START_REF] Liang | Deep Continuous Fusion for Multi-sensor 3D Object Detection[END_REF][145][146][147][148][149][150], is also recently attracting lots of research efforts. Our segmenter starts rather than from raw pixels, [151] and [152], or bounding box proposals as in [153] and [126], from a set of hierarchical regions given by the UCM structure. Other techniques rely on superpixels e. g. [154]. This is a distinct tactic that works directly on a different representation.

segmentation c&z

We delve into the details of the C&Z Segmentation construction, Figure 4.2. 

Hierarchical Image

We consider the representation of a hierarchical image described in [121].

Considering a segmentation of an image into regions that partition its domain S = {S c } c . A segmentation hierarchy is a family of partitions {S * , S 1 , . . . , S L } such that: (1) S * is the finest set of superpixels, (2) S L is the complete domain, and (3) regions from coarse levels are unions of regions from fine levels.

Hierarchical Section Hashing

In this paper we introduce a novel segmentation algorithm that exploits bounding boxes to automatically select the best hierarchical region that segments the image. We introduce Hierarchical Section Hashing (HSH) which is in turn based on Locality-Sensitive Hashing (LSH). This algorithm helps us surpass the problem of computational complexity of the k-nearest neighbor rule and allows us to do a fast approximate neighbor search in the hierarchical structure of [122].

HSH can be summarized as follows:

• Detect bounding boxes on an image using a state-of-the-art convolutional neural network [START_REF] Ren | Towards Real-time Object Detection with Region Proposal Networks[END_REF].

• Construct a hierarchical image by using the UCM and convey the result as a hierarchical region tree.

• Each hierarchical region is indexed by a number of tables of hashing using LSH and then constructing a HSH map.

• Each bounding box is hashed into the HSH map to retrieve the approximate nearest neighbor in sublinear time.

C&Z Segmentation has two main steps: first 'train' the HSH map with all the hierarchical regions of the image. Then 'test' the HSH map with all the detected bounding boxes to retrieve the approximate nearest neighbors that segment each of the objects in the image. The novelty of this approach is that it provides the best hierarchical region provided by the UCM structure that segments the object image. C&Z exploits the detection of objects using bounding boxes because it relies on the correct detection of the object detector.

Hierarchical Section Pruning

The final piece is to refine the segmentations given by the HSH map by using what we call Hierarchical Section Pruning (HSP).

HSP procedure can be summarized as follows:

• Once a segmentation mask has been selected for all the objects in the given image, and their bounding boxes recomputed, the bounding box overlap ratio for all box pair combinations, according to the intersection over union criterium, is performed.

• Those masks that present overlap with other object masks on the same image are hierarchically unselected. We always proceed to unselect the low-level hierarchical regions, which by construction enclose a smaller region area and thus a single segmented object, from the high-level hierarchical region, which encloses more than one object and a bigger image area.

• Finally, isolated pixels on the mask are erased to preserve a single connected segmentation.

HSP is based on the fact that each segmentation mask represents a node on the hierarchical region tree constructed from the UCM. Therefore, hierarchical sections containing more than one object represent higher level nodes on the hierarchy. When HSP is applied, low-level hierarchical regions are unselected from the high-level hierarchical sections and therefore replaced by mid-low level sections on the same region tree structure that represents a single object or a smaller area of the image.

HSH and HSP Visual Examples can be seen in Figure 4.4. C&Z Segmentation relies on the prior detection and therefore availability of bounding boxes for all the objects in a given image. The latter can be very useful as C&Z can be understood as a simple and effective technique to provide high-quality segmentations of still images after any available detector of bounding boxes. Likewise, you get train-free off-the-shelf accurate segmentations for any given method that detects bounding boxes.
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Locality Sensitive Hashing

Our goal is to retrieve the k-nearest neighbors of a given hierarchical vector, which we call image code. In this setup we are limited by the curse of dimensionality and therefore using an exact search is inefficient. Our approach uses a technique of approximate nearest neighbors: Locality Sensitive Hashing (LSH).

A LSH function maps x → h(x) such that the similarity between (x, y) is preserved as d(h(x), h(y)) D(x, y) -1 ≤ (4.1) which is not possible for all D(x, y) but available for instance for euclidean metrics.

We build on the LSH work of [START_REF] Andoni | Practical and Optimal LSH for Angular Distance[END_REF]124,[155][156][157][158]. LSH is a randomized hashing scheme, investigated with the primary goal of -R neighbor search. Its main constitutional block is a family of locality sensitive functions. We can define that a family H of functions h : X → {0, 1} is (p 1 , p 2 , r, R)sensitive if, for any x, y ∈ X ,

Pr h∼U[H] (h(x) = h(y) | ||x -y|| ≤ r) ≥ p 1 , (4.2 
)

Pr h∼U[H] (h(x) = h(y) | ||x -y|| ≥ R) ≤ p 2 , (4.3) 
where these probabilities are chosen from a random choice of h ∈ H.

Algorithm 1 gives a simple description of the LSH algorithm for the given case when the distance of interest is L 1 , which is the one in use in C&Z Segmentation. The family H in this case contains axis-parallel stumps, which means the value of h ∈ H is generated by taking a simple dimension d ∈ {1, . . . , dim(X )} and thresholding it with some T:

h LSH = 1 if x d ≤ T, 0 otherwise. ( 4 

.4)

A LSH function g : X → {0, 1} k is formed by independently k functions h 1 , . . . , h k ∈ H.

That is, we can understand that an example in our hierarchical partition S c ∈ S provides a k-bit key g(S c ) = [h 1 (S c ), . . . , h k (S c )]. (4.5) This process is repeated l times and produces l independently constructed functions of hashing g 1 , . . . , g l . The available reference ('training') data S are indexed by each one of the l functions of hashing, producing l tables of hashing, namely each of the S c hierarchical partitions generated by all the corresponding parents of the hierarchical tree.

Algorithm 1 LSH Algorithm [156]

Given: Dataset X = [x 1 , x N ], x c ∈ R dim(X) . Given: Number of bits k, number of tables l. Output: A set of Randomly (uniformly) draw d ∈ {1, . . . , dim(X )}.

4:

Randomly (uniformly) draw min{x (d) } ≤ v ≤ max{x (d) }.

5:

Let h z c be the function X → {0, 1} defined by

h z c (x) = 1 if x (d) ≤ v, 0 otherwise. 6: 
The z-th LSH function is g z = [h z 1 , . . . , h z k ].

Once the LSH data structure has been built it can be used to perform a very efficient search for approximate neighbors in the following way. When a query S 0 arrives, we compute its key for each table of hashing z, and record the examples C = {S l 1 , . . . , S l n l } resulting from the lookup with that key. In other words, we find the 'training' examples that fell in the same bucket of the l-th table of hashing to which S 0 would fall. These l lookup operations produce a set of candidate matches, C = ∪ l z=1 C z . If this set is empty, the algorithm reports it and stops. Otherwise, the distances between candidate matches and S 0 are explicitly evaluated, and the examples that match the search criteria, which means that are closer to S 0 than (1 + )R, are returned.

evaluation and results

We extensively evaluate C&Z Segmentation on VOC 2012 validation set. Top detections from our algorithm can be seen in Figure 5.1.

JACCARD Index Metric

In Table 4.1 we show the results of the JACCARD Index Metric. This measure represents the average best overlap achieved by a candidate for a ground truth object.

C&Z Segmentation with Jaccard at instance level 45.24% and Jaccard at class level 43.05%. Recall at overlap 0.5 is 43.36%.

discussion

In this paper we introduce C&Z Segmentation, an algorithm to segment objects based on hashing that exploits the detection using bounding boxes. We show C&Z achieves compelling results and generates off-the-shelf accurate segmentations. 

time-traveling

As stated in reference [160], the existence of closed timelike lines makes theoretically possible in these worlds to travel into the past, or otherwise influence the past. Our contribution lies in the interpretation of these solutions.

We claim that these CTC solutions are indeed the ones that govern space time for humans and animated objects in general. What this means is that our actions in the future, can actually affect our past actions. In some sense, all our human existence is based on these interactions between present and past. Not only these solutions are not pathological, but instead describe our day-to-day.
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 11 Figure 1.1: Diagram of McKernel. We visually describe softmax(W x + b) wherex = mckernel(x). The original image is padded in form of long vector to the nearest power of 2, mapping Ẑ is applied in-place. Calibration C defines the choice of Kernel. The tensor is expanded by the number of Kernel Expansions E building a network with high compositionality. Finally, use real feature map φ, Equation 1.9. SGD Optimizer finds appropriate weights W and bias b. Compute Ẑ on-the-fly keeping same seed both for training and testing.
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 13 Kernel methods work by defining a kernel function k(x, x ) on a domain X.
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 12 Figure 1.2: Comparison of Fast Walsh Hadamard. McKernel (red) outperforms Spiral (blue) across the range of arguments.
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Figures 1 . 3

 13 Figures 1.3 and 1.4 show RBF MATÉRN, softmax(W x + b) where x = mckernel(x), performance compared to logistic regression, softmax(Wx + b), in full-batch and mini-batch on MNIST, respectively. A fixed seed is used to obtain deterministic reproducible behavior. In full-batch, the number of samples for train and test is rounded to the nearest power of 2 due to algorithm constraint.

Figure 1 . 5 :

 15 Figure 1.5: FASHION MNIST Mini-Batch Classification. Logistic Regression (LR) (blue) and RBF MATÉRN (red) with increasing number of Kernel Expansions. 60000 samples of training data and 10000 samples of testing data are used in learning. RBF MATÉRN hyper-parameters, σ = 1.0, t = 40. Seed 1398239763, learning rate γ = 0.001 and batch size 10. LR learning rate 0.01. Number of epochs 20.
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 15 Figure 1.5 shows RBF MATÉRN performance compared to logistic regression in mini-batch. Comparable state-of-the-art performance to Deep Learning is achieved. The model presents a similar behavior to the one seen in MNIST dataset. McKernel performs analogously to modern techniques in Neural Networks in this highly non-linear problem of estimation.
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 21 Figure 2.1: Dr. of Crosswise. Visual description of c&z.
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 4 We can now factorize Equation2.3 by the use of a new operand between vectors {•, •} c&z y = max({c, x} c&z + b, 0) (2.5) where z is a vector that holds the diagonal of Ŵ, c = [W 1 . . . W N ].
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 22 Figure 2.2: Dr. of Crosswise. Visual description of c&z.
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 31 Figure 3.1: HDCGAN Synthetic Images. A set of random samples. Our system generates high-resolution synthetic faces with an extremely high level of detail. HDCGAN goes from random noise to realistic synthetic pictures that can even fool humans. To demonstrate this effect, we create the Dataset of Curtò & Zarzà, the first GAN augmented dataset of faces.
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 32 Figure 3.2: Samples of Curtò. A set of random instances for each class of ethnic-ity: African American, White, East-asian and South-asian. See Table3.1 for numerics.
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 3 Generator G and Discriminator D. In essence, the process of learning consists of a two-player game where D tries to distinguish between the prediction of G and the ground truth, while at the same time G tries to fool D by producing fake instance samples as closer to the real ones as possible. The solution to a game is called NASH equilibrium.
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 33 Figure 3.3: Generative Adversarial Networks. A two-player game between the Generator G and the Discriminator D. The dotted line denotes elements that will not be further used after the game stops, namely, end of training.
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 34 Figure 3.4: HDCGAN Architecture. Generator and Discriminator.
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 4 For example, for an input size of 32 we have 4 layers while for an input size of 256 we have 7 layers.
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 35 Figure 3.5: Glasses on a set of samples from CelebA. HDCGAN introduces the use of a Magnifying Glass approach, enlarging the input size by a telescope ζ.
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 36 Figure 3.6: HDCGAN Example Results. Dataset of Curtò & Zarzà. 150 epochs of training. Image size 512×512.

Figure 3 . 7 :

 37 Figure 3.7: Nearest Neighbors. Dataset of Curtò & Zarzà. Generated samples in the first row and their five nearest neighbors in training (rows 2-6).
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 52 CelebACelebA is a large-scale dataset with 202,599 celebrity faces. It mainly contains frontal portraits and is particularly biased towards groups of ethnicity white. The fact that it presents very controlled illumination settings and good photo resolution, makes it a considerably easier problem than Curtò. The results after 19 epochs of training are shown in Figure3.8.
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 38 Figure 3.8: HDCGAN Example Results. CelebA. 19 epochs of training. Image size 512×512. The network learns swiftly a clear pattern of the face.
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 39 Figure 3.9: HDCGAN on CelebA. Error in Discriminator (top) and Error in Generator (bottom). 19 epochs of training.
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 310 Figure 3.10: HDCGAN Example Results. CelebA. 39 epochs of training. Image size 512×512. The network generates distinctly accurate and assorted faces, including exhaustive details.

Figure 3 . 11 :

 311 Figure 3.11: HDCGAN Example Result. CelebA. 39 epochs of training. Image size 512×512. 27% of full-scale image.
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 312 Figure 3.12: HDCGAN Example Results. CelebA. 39 epochs of training. Image size 512×512. Failure cases. The number of failure cases declines over time, and when present, they are of more meticulous nature.
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 313 Figure 3.13: HDCGAN Synthetic Images. A set of random samples.
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 53 CelebA-hq CelebA-hq in introduced in [70], a set of 30.000 high-definition images to improve training on CelebA. A set of samples generated by HDCGAN on CelebA-hq can be seen in Figures 3.1

  , 3.14 and 3.15.
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 3 Figure 3.14: HDCGAN Example Results. CelebA-hq. 229 epochs of training.Image size 512×512. The network generates superior faces, with great attention to detail and quality.
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 315 Figure 3.15: HDCGAN Example Result. CelebA-hq. 229 epochs of training. Image size 512×512. 27% of full-scale image.
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 316 Figure 3.16: Nearest Neighbors. CelebA-hq. Generated samples in the first row and their five nearest neighbors in training (rows 2-6).
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 317 Figure 3.17: MS-SSIM Scores on CelebA across several epochs. Results are averaged from 10,000 pairs of generated images from epoch 19 to 74. Comparison is made at resized image size 128×128. Affine interpolation is shown in red.
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Figure 4 . 1 :

 41 Figure 4.1: Top Detections. Top: VOC 2012 Ground Truth. Bottom: C&Z Segmentation.
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 43 Figure 4.3: VGG-16 Architecture. VGG-16 model consists on an arrangement of convolutions, layers fully connected and softmax.
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 44 Figure 4.4: Left: HSH Visual Example. Right: HSP Visual Example.
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  A N O T E O N C L O S E D T I M E L I K E C U R V E S introductionOur aim is to present a novel interpretation [159] of Closed Timelike Curves as solutions of the EINSTEIN field equation.
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 51 Figure 5.1: Space-time curvature.

  We visually describe softmax(W x + b) where x = mckernel(x). The original image is padded in form of long vector to the nearest power of 2, mapping Ẑ is applied in-place. Calibration C defines the choice of Kernel. The tensor is expanded by the number of Kernel Expansions E building a network with high compositionality. Finally, use real feature map φ, Equation 1.9. SGD Optimizer finds appropriate weights W and bias b. Our system generates high-resolution synthetic faces with an extremely high level of detail. HDC-GAN goes from random noise to realistic synthetic pictures that can even fool humans. To demonstrate this effect, we create the Dataset of Curtò & Zarzà, the first GAN augmented dataset of faces.
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	hadamard H. This matrix is iteratively composed of H n	
	This is best seen for the RBF kernel, Equation 1.3. Since FOURIER trans-
	forms of Gaussians are Gaussians, albeit with inverse covariance, it follows
	2 ω 2 and that W contains random variables inde-that ρ(ω) ∝ exp -σ 2 pendent and identically distributed (i.i.d.) Gaussian. It is this matrix that
	McKernel approximates via					
	Ẑ :=	σ	1 √	n	CHGΠHB.	(1.8)
	Here C, G and B are diagonal matrices, Π is a random permutation matrix
	and H is the Hadamard. Whenever the number of rows in W exceeds the
	dimensionality of the data, we can simply generate multiple instances of Ẑ,
	drawn i.i.d., until the required number of dimensions is obtained.	
	binary B. This is a matrix with entries B kk ∈ {±1}, drawn from the uniform distribution. To avoid memory footprint, we simply use Mur-
	murhash as function of hashing and extract bits from h(k, x) with
	x ∈ {0, . . . N}.					
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 11 That is, while the object McKernel is fairly generic in terms of computation, we have a factory that Numeric Comparison of Fast Walsh Hadamard.

	mckernel		
	|H n |	McKernel t(ms) Spiral t(ms)
	1024	0	0.03
	2048	0.03	0.07
	4096	0.1	0.17
	8192	0.07	0.2
	16384	0.2	0.47
	32768	0.2	0.9
	65536	0.7	1.67
	131072	1.3	3.5
	262144	3.6	7.67
	524288	7.86	15.97
	1048576 15.97	35.7

  This system is new because it handles the following cases: A, B. Previous systems [Zeus et al. 1968] didn't handle case B properly. Ours handles it by including a foo term in the bar integral. ...
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	Figure 1.4: MNIST Mini-Batch Classification. Logistic Regression (LR) (blue)
		and RBF MATÉRN (red) with increasing number of Kernel Expan-

RBF MATÉRN hyper-parameters, σ = 1.0, t = 40. Seed 1398239763, learning rate γ = 0.001 and batch size 10. LR learning rate 0.01. Number of epochs 20. SGD Optimizer finds W and b in softmax W[φ( Ẑ x)] + b , (1.23) where φ = (sin(•), cos(•)), x = [x] 2 . Namely, it minimizes the loss l in Equation 1.20. sions. 60000 samples of training data and 10000 samples of testing data are used in learning. RBF MATÉRN hyper-parameters, σ = 1.0, t = 40. Seed 1398239763, learning rate γ = 0.001 and batch size 10. LR learning rate 0.01. Number of epochs 20.

  Curtò contains 14,248 faces balanced in terms of ethnicity: African American, East-Asian, South-Asian and White. Mirror images are included to enhance pose variation and there is roughly 25% per image class. Attribute information, see Table3.1, is composed of thorough labels of gender, age, ethnicity, hair color, hair style, eyes color, facial hair, glasses, visible forehead, hair covered and smile. There is also an extra set with 3,384 cropped labeled images of faces, ethnicity white, no mirror samples included, see Column 4 in Table3.1 for statistics. We crawled Flickr to download images of faces from several countries that contain different hair-style variations and style attributes. These images were then processed to extract 49 facial landmark points using[112]. We ensure using Mechanical Turk that the detected faces are correct in terms of ethnicity and face detection. Cropped faces are then extracted to generate multiple resolution sources. Mirror augmentation is performed to further enhance pose variation.

	image generation is a key problem in Computer Vision and
	Computer Graphics. Remarkable advances have been made with the renais-
	sance of Deep Learning. Variational Autoencoders (VAE) [88, 100] formulate
	the problem with an approach that builds on probabilistic graphical models,
	where the lower bound of data likelihood is maximized. Autoregressive
	models (scilicet PIXELRNN [101]), based on modeling the conditional dis-
	tribution of the pixel space, have also presented relative success generating
	synthetic images. Lately, Generative Adversarial Networks (GANs) [60, 65,
	87, 102-105] have shown strong performance in image generation. However,

training instability makes it very hard to scale to high-resolution (256×256 or 512×512) samples. Some current works on the topic pinpoint this specific problem

[106]

, where conditional image generation is also tackled while other recent techniques

[START_REF] Salimans | Improved Techniques for Training GANs[END_REF][START_REF] Karras | Progressive Growing of GANs for Improved Quality, Stability, and Variation[END_REF][107][108][109][110][111] 

try to stabilize training.

3.3 dataset of curtò & zarzà

Table 3 . 1 :

 31 Dataset of Curtò & Zarzà. Attribute Information. Descending order of class instances by number of samples, Column 3.

	Attribute	Class	# Samples # Extra
	Age	Early Adulthood 3606	966
		Middle Aged	2954	875
		Teenager	2202	178
		Adult	1806	565
		Kid	1706	85
		Senior	1102	402
		Retirement	436	218
		Baby	232	14
	Ethnicity	African American 4348	0
		White	3442	3384

Table 3 . 2 :

 32 Multi-scale structural similarity (MS-SSIM) results on CelebA at resized image size 128×128. Lower is better.

		.2 shows HDCGAN significantly
	improves state-of-the-art results.	
		MS-SSIM
	Gulrajani et al. [115] 0.2854
	Karras et al. [70]	0.2838
	HDCGAN	0.1978

Table 3 . 3 :

 33 FRÉCHET Inception Distance on CelebA at resized image size 64×64.

	Lower is better.
	3.7 discussion
	In this chapter, we propose High-resolution Deep Convolutional Generative
	Adversarial Networks (HDCGAN) by stacking SELU + BatchNorm (BS) lay-
	ers. The proposed method generates high-resolution images (e. g. 512×512)
	in circumstances where the majority of former methods fail. It exhibits a
	steady and smooth mechanism of training. It also introduces Glasses, the
	notion that enlarging the input image by a telescope ζ while keeping all
	convolutional filters unchanged, can arbitrarily improve the final generated
	results. HDCGAN is the current state-of-the-art in synthetic image gen-
	eration on CelebA (MS-SSIM 0.1978 and FRÉCHET Inception Distance 8.44).

  Table Dog Horse MBike Person Plant Sheep Sofa Train TV Global C&Z Segmentation (Instance Level) 45.4 27.5 55.9 44.2 42.0 43.2 41.3 66.3 31.4 57.2 42.3 63.3 43.8 43.6 40.9 40.6 57.2 51.2 48.0 54.1 45.2 C&Z Segmentation (Class Level) 33.3 18.5 48.1 37.5 40.7 45.1 39.4 59.9 23.3 51.0 43.3 60.4 39.8 43.1 34.6 37.2 51.0 47.0 53.6 54.2 43.1

Table 4 . 1 :

 41 VOC 2012 Validation Set. Per-class and global JACCARD Index Metric at instance level.

	Hierarchical Section Hashing	Hierarchical Section Pruning

Code is available at https://www.github.com/curto2/dr_of_crosswise/
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C&Z Segmentation
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Detection of Objects Using Bounding Boxes

We begin by using the R-CNN object detector proposed by [START_REF] Ren | Towards Real-time Object Detection with Region Proposal Networks[END_REF], which is in turn based on [START_REF] Girshick | IEEE International Conference on Computer Vision[END_REF]