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A B S T R A C T

Generative Adversarial Networks (GANs) [1, 2] have had tremendous ap-
plications in Computer Vision. Yet, in the context of space science and
planetary exploration the door is open for major advances. We introduce
tools to handle planetary data from the mission Chang’E-4 and present
a framework for Neural Style Transfer using Cycle-consistency [3] from
rendered images.

We also introduce a new real-time pipeline for Simultaneous Localization
and Mapping (SLAM) and Visual Inertial Odometry (VIO) in the context of
planetary rovers. We leverage prior information of the location of the lander
to propose an object-level SLAM approach that optimizes pose and shape
of the lander together with camera trajectories of the rover. As a further
refinement step, we propose to use techniques of interpolation between
adjacent temporal samples; videlicet synthesizing non-existing images to
improve the overall accuracy of the system.

The experiments are conducted in the context of the Iris Lunar Rover, a
nano-rover that will be deployed in lunar terrain in 2021 as the flagship of
Carnegie Mellon, being the first unmanned rover of America to be on the
Moon.

vii





Z U S A M M E N FA S S U N G

Generative Adversarial Networks (GANs) [1, 2] hatten enorme Anwen-
dungen in Computer Vision. Im Kontext der Weltraumforschung und der
Erforschung der Planeten steht die Tür jedoch offen für große Fortschritte.
Wir stellen Werkzeuge für den Umgang mit Planetendaten aus der Mission
Chang’E-4 vor und präsentieren ein Framework für die Übertragung des
neuronalen Stils unter Verwendung der Zykluskonsistenz [3] aus gerender-
ten Bildern.

Wir führen auch eine neue Echtzeit-Pipeline für Simultaneous Localizati-
on and Mapping (SLAM) und Visual Inertial Odometry (VIO) im Kontext
von Planetenrovern ein. Wir nutzen vorherige Informationen über den
Standort des Landers, um einen SLAM-Ansatz auf Objektebene vorzuschla-
gen, der die Pose und Form des Landers zusammen mit den Kameratrajek-
torien des Rovers optimiert. Als weiteren Verfeinerungsschritt schlagen wir
vor, Interpolationstechniken zwischen benachbarten zeitlichen Abtastwer-
ten zu verwenden. videlicet synthetisiert nicht vorhandene Bilder, um die
Gesamtgenauigkeit des Systems zu verbessern.

Die Experimente werden im Rahmen des Iris Lunar Rover durchgeführt,
eines Nano-Rovers, der 2021 als Flaggschiff von Carnegie Mellon als erstem
unbemannten Rover Amerikas auf dem Mond im Mondgelände eingesetzt
wird.
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1
P L A N E TA RY R O V E R S

1.1 introduction

Generative Adversarial Network (GAN) [1] are able to produce good qual-
ity high-resolution samples from images, both in the unscontrained and
conditional setting [3–15]. Nonetheless, applications in the context of NASA
missions and space exploration are scarce.

Given the difficulty to handle planetary data we provide downloadable
files in PNG format from the missions Chang’E-3 and Chang’E-41. In
addition to a set of scripts to do the conversion given a different PDS4

Dataset. Example samples from the dataset can be seen in Figure 1.1. We
also provide the corresponding labels, where localization information is
present. We run extensive experiments to train a model able to be used
as a hyperrealistic feature of the current simulator used in the Iris Lunar
Rover [16].

Figure 1.1: Images from the Moon. Panoramic camera of the rover. Chang’E-4.

1.2 overall system

Following the design principles and the perception pipeline proposed
in [17] in the context of the NASA Mission Resource Prospector, we intend

1 Original PDS4 and PDS3 images and labels from missions to the Moon Chang’E can be
obtained at moon.bao.ac.cn.

1
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2 planetary rovers

to design a simulator with hyperrealistic characteristics of the Moon that
helps us deploy VIO/SLAM in a rover of the same characteristics. The
intention is also that helps us address object detection and segmentation in
this unmapped environment, where training data is very difficult and costly
to obtain. Although at the present time data from the Moon is scarce, there
are already some open datasets available in analogue environments such
as the POLAR Stereo Dataset [18] that includes stereo pairs and LiDAR
information or [19], that contains IMU, stereo pairs and odometry plus some
additional localization data, all obtained on Mount Etna. Our intention is
to provide downloadable files from the mission Chang’E-4 [20] that could
be easily used in CV and ML pipelines. We also provide scripts to handle
alternate PDS4 Datasets. The context where this tools are being used is our
specific sensor suite, that will be on-board the Iris Lunar Rover, a project
led by Carnegie Mellon that intends to put forward a four pound rover into
the surface of the Moon by 2021 and that will be America’s first rover to
explore the surface of the planet, consists on IMU, two high-fidelity cameras
and odometry sensors. Furthermore, it also has a UWB module [21–24]
on-board to localize the rover with respect to the lander.

1.3 approach , long-term goal and prior work

Generative image generation is a key problem in Computer Vision and
Computer Graphics. Variational Autoencoders (VAE) [11, 25] try to solve
the problem with an approach that builds on probabilistic graphical models.
Autoregressive models (for instance PixelRNN [26]) have also achieved
relative success generating synthetic images. In the past few years, Gen-
erative Adversarial Networks (GANs) [1, 2, 10, 27–30] have shown strong
performance in image generation. Some works on the topic pinpoint the
specific problem of scaling up to high-resolution samples [31], where con-
ditional image generation is also studied while some recent techniques
focus on stabilizing the training procedure [32–40]. Other promising novel
approaches include score matching with LANGEVIN sampling [41, 42] and
the use of sequence transformers for image generation [43].

The use of these techniques though have seen little or no applications in
space exploration and planetary research. We propose here a framework
that could be used to generate abundant data of the Moon, Mars and other
celestial bodies, so that learning algorithms could be trained on Earth and
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studied in simulation before being deployed in the real missions.

The proposed approach consists on using a technique of Neural Style
Transfer or Generative Image Generation, such as the criteria of cycle-
consistency, together with an augmentation of the given dataset (in our
case using data from the lunar missions Chang’E-3 and Chang’E-4, but
the same applies to Mars or other planets) using GANs in the setting of
unconstrained image generation.

1.4 cycle-consistent generative adversarial networks

Our focus here is on Cycle-consistent Generative Adversarial Networks [3],
where we work on unpaired image-to-image translation [44].

Image-to-image translation is a type of problem in Computer Vision
and Computer Graphics where the objective is to learn a correspondence
function between an input sample and an output sample, using a training
set of aligned or non-aligned image pairs.

More precisely, our goal is to learn a function

G : X → Y, (1.1)

in a way that the distribution of samples G(X) is as close as possible to the
distribution Y. To accomplish this we are going to use an adversarial loss.
Therefore, we couple it with the inverse correspondence

F : Y → X, (1.2)

and use a criteria of cycle-consistency to address the fact that the problem
is highly under constrained

F(G(X)) ≈ X and G(F(Y)) ≈ Y. (1.3)

When we talk about paired training data, we refer to the fact that the
training data consists of training examples {xc, yc}N

c=1, where the corre-
spondences between xc and yc are given. Instead, we say that we are using
unpaired training data, when the set consists of two training sets {xc}N

c=1
and {ya}N

a=1, where there is not a correspondence explicitly given between
which xc corresponds to which ya.



4 planetary rovers

Formally, the GAN objective [1] involves finding a NASH equilibrium to
the following two-player game:

min
G

max
D

V(D, G) = Ex∼pdata [log D(x)] + (1.4)

+Ez∼pz [log(1− D(G(z)))] , (1.5)

where x is a ground truth image sampled from the true distribution pdata,
and z is a noise vector sampled from pz (that is, uniform or normal dis-
tribution). G and D are parametric functions where G : pz → pdata maps
samples from noise distribution pz to data distribution pdata.

1.5 neural style transfer

Neural Style Transfer [45–47] is based on the idea of synthesizing an original
image by combining the content of one image together with the style of
another sample. Here we will use cycle-consistent networks to attack this
specific problem, with the aim of using a more general method that could
help us solve concomitantly other tasks in the future. Moreover, the criteria
of cycle-consistency assumes there is a bijection between the two domains,
a constrain that could be often too restrictive, but that is very appropriate
in our particular problem at-hand.

1.6 unconstrained image generation

To tackle the problems that arise when training Cycle-consistent networks
with a dataset with few samples, i.e. mainly mode collapse and artifacts,
we propose to use Unconstrained Image Generation using GANs to enlarge
the original dataset with unseen examples, that is, as a way to generate
additional training samples that will help the learning procedure converge
to the desired solution. To achieve this we make use of the construction
developed in [40].

1.7 experiments

Extensive experiments using data from Chang’E-3 and Chang’E-4 have been
conducted, in particular we are using images from the panoramic camera
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Figure 1.3: Cycle-consistent gan. Left: image from Kaggle, rendered simulator
of the Moon. Right: style-Moon using our model. Trained at image
size 512.

of the rover and from the terrain camera of the lander. Some examples can
be seen in Figures 1.2 and 1.3, model trained at image size 256 and 512,
respectively. As a source domain we are using samples from a rendered
simulator of the Moon provided by Kaggle. The intention is to use the
model in our actual renderer environment of the mission.

Figure 1.2: Cycle-consistent gan. Left: images from Kaggle, rendered simulator
of the Moon. Right: style-Moon using our model. Trained at image
size 256.
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Figure 1.4: Iris Lunar Rover. Simulator used in the actual mission.

1.8 simulator

The context where this feature is being integrated is the actual simulator,
see Figure 1.4, of the Iris Lunar Rover, the rover of Carnegie Mellon that
will fly to the Moon onboard the Peregrine Lander of Astrobotic in 2021.
Data from the simulator will be of the utmost importance to train and
test localization algorithms such as SLAM/VIO [48, 49]. The ability to
have ample data to train will also amplify the capabilities of the modules
designed for segmentation [35, 50–52] and object detection [53–55]. As well
as to test the software design before the real mission.



2
V I O A N D S L A M I N L U N A R R O V E R S

2.1 introduction

Our aim is to present a novel pipeline to deploy state-of-the-art DL tech-
niques in planetary rovers. With the advent of a new wave of planetary
exploration missions, the need to call on generalizable perception and con-
trol systems that can operate autonomously in other worlds will become
ubiquitous in the coming years.

Figure 2.1: Left: real image from the Moon. Right: synthetic Moon.

2.2 overall system

Following the design principles and the perception pipeline proposed
in [17] in the context of the NASA Mission Resource Prospector, we put
forward an improved technique for Visual Odometry (VIO) that could be
exploited in a rover of the same characteristics. Although at the present
time data from the Moon is scarce, there are already some open datasets
available in analogue environments such as the POLAR Stereo Dataset [18]
that includes stereo pairs and LiDAR information or [19], that contains
IMU, stereo pairs and odometry plus some additional localization data, all
obtained on Mount Etna. Specifically for the task of semantic segmentation,
Kaggle provides images from a rendered environment of the Moon and
masks. More recently, as a benchmark for tasks of Computer Vision in
the context of space exploration, a dataset containing PNG images and
positioning information from the mission Chang’E-4 to the Moon has been
released [16], the data from CE4 consists on post-processed original files

7



8 vio and slam in lunar rovers

from the mission Chang’E1. Our specific sensor suite, that will be on-board
the Iris Lunar Rover [16, 56], a project led by Carnegie Mellon that will
deploy a four pound rover into the surface of the Moon by 2021 and that
will be the first unmanned rover of America to explore the surface of the
Moon, consists on IMU, two high-fidelity cameras and odometry sensors.
Furthermore, it also has a UWB module [21–24] on-board to localize the
rover with respect to the lander.

2.3 slam/vio

Simultaneous Localization and Mapping (SLAM) and Visual Inertial Odom-
etry (VIO) are defined as a function that transform raw data from the
sensors into a distribution over the states of the robot. SLAM and VIO [48,
49] have been for decades unparalleled problems in robot perception and
state estimation. Although typical dense SLAM systems are not differ-
entiable, new approaches to solve this problem propose gradient-based
learning over computational graphs to go all the way from 3D maps to 2D
pixels [57].

The first task to tackle in geometric computer vision, being SLAM [58–60],
Structure-from-Motion (SfM) [61–66], camera calibration or image match-
ing, is to extract interest points [67, 68] from still images. We can define
interest points as 2D specific locations in a given sample which can be
considered stable and repeatable along different ambient conditions and
viewpoints. The techniques used to traditionally attack this problem pertain
to Multiple View Geometry [69], a subfield of mathematics that sets forth
theorems and algorithms built on the assumption that those interest points
can indeed be reliably extracted and matched across overlapping frames.
Natheless, real-world computer vision operates on raw images that are far
from the idealized conditions assumed in the proposed theory. Blending
traditional modules with learning representations have lately been proven
to be incredibly effective [68, 70, 71] as a way to bridge the gap between
the conditions that we face in the real world and the assumptions made to
design the algorithms. Plentiful of approaches also explore unsupervised
learning of depth and ego-motion [72–74].

State-of-the-art approaches also deal with related problems such as SLAM
object-level, that is, a system capable of optimizing object poses and shapes

1 moon.bao.ac.cn.

http://moon.bao.ac.cn/
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together with camera trajectory [75–77]. Although a SLAM system capable
of incrementally mapping multi-object scenes seems not related to our
task, its importance is revealed when we understand the fact that in many
occasions the rover will localize itself with respect to the lander, which
location is known; therefore a SLAM solution capable of optimizing the
pose and shape of the lander along camera trajectory of the rover, would be
distinctly adequate. With respect to this, we have to bear in mind that the
principal technique that the rover will be using on-board to localize itself
will be the UWB module [24]; that will indeed use the lander as a way-
station for data communication. The reason for this is that critical weight
and power can be hugely saved using RF for communication and state
estimation. Thus, SLAM and VIO computation will be done on-ground.
Using the same philosophy, it seems natural also to rely on a technique that
will jointly optimize pose and shape of the lander together with camera
trajectories.

2.4 shape and pose of the lander

We assume here that we have a segmentation mask of the lander that in our
specific case is obtained by the use of semantic segmentation [35, 51, 52, 73,
78–84]. On some of these approaches, the segmentation process is guided
by the use of a prior object detector [54, 55, 85–88]. Specifically, we finetune
our model building on DilatedResnet-101 [37, 89] and UperNet-101 [90,
91] trained on ADE20K [73]. Some examples of the mask given by our
segmenter can be observed in Figure 2.2. To infer the shape and pose we
will leverage existing techniques [77] that given a depth image, full shape
and pose is determined. These techniques normally address multi-object
categories; where a previous classification step and object observation is
necessary, however our approach is somewhat simpler in the sense that the
only object under consideration will be the lander per se.

2.5 temporal interpolation between subsequent samples

In the absence of continuous data between adjacent temporal samples
given by the camera and to mitigate the effects that this will incur in the
algorithms used to localize the rover, we propose to adopt techniques from
video frame interpolation. Although signaling breakthroughs have been
achieved by the use of recent deep convolutional neural networks, the
quality of the resulting samples is often dubious due to object motion
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Figure 2.2: Segmentation of the Lander. Left: Image from CE4 [16]. In particular
we are using color images from the panoramic camera of the rover of
the mission to the Moon Chang’E-4. Middle: Generated mask given
by model DilatedResnet-101 [37, 89]. Right: Generated mask given by
model UperNet-101 [90, 91].

or occlusions. The main aim here is to synthesize non-existent frames in-
between original samples to improve accuracy in the proposed VIO/SLAM
approaches. Specifically for this purpose, we build on a recent depth-
aware flow projection layer that achieves compelling upshots to synthesize
intermediate sequences [92].



3
G E N E R AT I V E A D V E R S A R I A L N E T W O R K S

3.1 introduction

Developing a Generative Adversarial Network (GAN) [1] able to produce
good quality high-resolution samples from images has important applica-
tions [3–16, 56] including image inpainting, 3D data, domain translation,
video synthesis, image edition, semantic segmentation and semi-supervised
learning.

Figure 3.1: HDCGAN Synthetic Images. A set of random samples. Our system
generates high-resolution synthetic faces with an extremely high level
of detail. HDCGAN goes from random noise to realistic synthetic
pictures that can even fool humans. To demonstrate this effect, we
create the Dataset of Curtò & Zarzà, the first GAN augmented dataset
of faces.

In this paper, we focus on the task of face generation, as it gives GANs a
huge space of learning attributes. In this context, we introduce the Dataset
of Curtò & Zarzà [93], a well-balanced collection of images containing
14,248 human faces from different ethnical groups and rich in a wide range
of learnable attributes, such as gender and age diversity, hair-style and
pose variation or presence of smile, glasses, hats and fashion items. We
also ensure the presence of changes in illumination and image resolution.
We propose to use Curtò as de facto approach to empirically test the dis-
tribution learned by a GAN, as it offers a challenging problem to solve,
while keeping the number of samples, and therefore training time, bounded.
It can also be used as a drop-in substitute of MNIST for simple tasks of
classification, say for instance using labels of ethnicity, gender, age, hair

11



12 generative adversarial networks

East-Asian

South-Asian

African American

White

Figure 3.2: Samples of Curtò. A set of random instances for each class of ethnic-
ity: African American, White, East-asian and South-asian. See Table
3.1 for numerics.

style or smile. It ships with scripts in TensorFlow and Python that allow
benchmarks of classification. A set of random samples can be seen in Figure
3.2.

Despite improvements in GANs training stability [32–34] and specific-
task design during the last years, it is still challenging to train GANs to
generate high-resolution images due to the disjunction in the high dimen-
sional pixel space between supports of the real image and implied model
distributions [94, 95].

Our goal is to be able to generate indistinguishable sample instances
using face data to push the boundaries of GAN image generation that
scale well to high-resolution images (such as 512×512) and where context
information is maintained.

In this sense, Deep Learning has a tremendous appetite for data. The
question that arises instantly is, what if we were able to generate addi-
tional realistic data to aid learning using the same techniques that are later
used to train the system. The first step would then be to have an image
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generation tool able to sample from a very precise distribution (e. g. faces
from celebrities) which instances resemble or highly correlate with real
sample images of the underlying true distribution. Once achieved, what
is desirable and comes next is that these generated image points not only
fit well into the original distribution set of images but also add additional
useful information such as redundancy, different poses or even generate
highly-probable scenarios that would be possible to see in the original
dataset but are actually not present.

Current research trends link Deep Learning and Kernel Methods to
establish a unifying theory of learning [96–98]. The next frontier in GANs
would be to achieve learning at scale with very few examples. To achieve
the former goal this work contributes in the following:

• Network that achieves compelling results and scales well to the high-
resolution setting where to the best of our knowledge the majority
of other variants are unable to continue learning or fall into mode
collapse.

• New dataset targeted for GAN training, Curtò, that introduces a wide
space of learning attributes. It aims to provide a well-posed difficult
task while keeping training time and resources tightly bounded to
spearhead research in the area.

3.2 prior work

Generative image generation is a key problem in Computer Vision and
Computer Graphics. Remarkable advances have been made with the renais-
sance of Deep Learning. Variational Autoencoders (VAE) [11, 25] formulate
the problem with an approach that builds on probabilistic graphical models,
where the lower bound of data likelihood is maximized. Autoregressive
models (scilicet PIXELRNN [26]), based on modeling the conditional distri-
bution of the pixel space, have also presented relative success generating
synthetic images. Lately, Generative Adversarial Networks (GANs) [1, 2,
10, 27–30] have shown strong performance in image generation. However,
training instability makes it very hard to scale to high-resolution (256×256

or 512×512) samples. Some current works on the topic pinpoint this spe-
cific problem [31], where conditional image generation is also tackled while
other recent techniques [32, 35–40] try to stabilize training.
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3.3 dataset of curtò & zarzà

Curtò contains 14,248 faces balanced in terms of ethnicity: African Amer-
ican, East-asian, South-asian and White. Mirror images are included to
enhance pose variation and there is roughly 25% per image class. Attribute
information, see Table 3.1, is composed of thorough labels of gender, age,
ethnicity, hair color, hair style, eyes color, facial hair, glasses, visible fore-
head, hair covered and smile. There is also an extra set with 3,384 cropped
labeled images of faces, ethnicity white, no mirror samples included, see
Column 4 in Table 3.1 for statistics. We crawled Flickr to download images
of faces from several countries that contain different hair-style variations
and style attributes. These images were then processed to extract 49 facial
landmark points using [99]. We ensure using Mechanical Turk that the
detected faces are correct in terms of ethnicity and face detection. Cropped
faces are then extracted to generate multiple resolution sources. Mirror
augmentation is performed to further enhance pose variation.

Curtò introduces a difficult paradigm of learning, where different ethnical
groups are present, with very varied fashion and hair styles. The fact that
the photos are taken using non-professional cameras in a non-controlled
environment, gives us multiple poses, illumination conditions and camera
quality.

Table 3.1: Attribute Information. Descending order of class instances by number
of samples, Column 3.

Attribute Class # Samples # Extra

Age Early Adulthood 3606 966

Middle Aged 2954 875

Teenager 2202 178

Adult 1806 565

Kid 1706 85

Senior 1102 402

Retirement 436 218

Baby 232 14

Ethnicity African American 4348 0

White 3442 3384
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East Asian 3244 0

South Asian 3214 0

Eyes Color Brown 9116 2119

Other 4136 875

Blue 580 262

Green 416 128

Facial Hair No 12592 2821

Light Mustache 466 156

Light Goatee 444 96

Light Beard 258 142

Thick Goatee 168 39

Thick Beard 166 68

Thick Mustache 154 62

Gender Male 7554 1998

Female 6694 1386

Glasses No 12576 2756

Eyeglasses 1464 539

Sunglasses 208 89

Hair Color Black 8402 964

Brown 3038 1241

Other 1554 253

Blonde 616 543

White 590 347

Red 48 36

Hair Covered No 12292 3060

Turban 1206 76

Cap 722 237

Helmet 28 11

Hair Style Short Straight 5038 1642

Long Straight 2858 857

Short Curly 2524 287

Other 2016 249
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Bald 1298 187

Long Curly 514 162

Smile Yes 8428 2118

No 5820 1266

Visible Forehead Yes 11890 3033

No 2358 351

3.4 approach

Generative Adversarial Networks (GANs) proposed by [1] are based on
two dueling networks, Figure 3.3; Generator G and Discriminator D. In
essence, the process of learning consists of a two-player game where D tries
to distinguish between the prediction of G and the ground truth, while
at the same time G tries to fool D by producing fake instance samples as
closer to the real ones as possible. The solution to a game is called NASH
equilibrium.

z G

D

Noise Generator

HDCGAN Synthetic Image

Discriminator

Real Image

Real or Fake?

Disposable after training

Figure 3.3: Generative Adversarial Networks. A two-player game between the
Generator G and the Discriminator D. The dotted line denotes ele-
ments that will not be further used after the game stops, namely, end
of training.

The min-max game entails the following objective function

min
G

max
D

V(D, G) = Ex∼pdata [log D(x)] + (3.1)

+Ez∼pz [log(1− D(G(z)))] , (3.2)
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where x is a ground truth image sampled from the true distribution pdata,
and z is a noise vector sampled from pz (that is, uniform or normal dis-
tribution). G and D are parametric functions where G : pz → pdata maps
samples from noise distribution pz to data distribution pdata.

The goal of the Discriminator is to minimize

L(D) = −1
2

Ex∼pdata [log D(x)]− (3.3)

− 1
2

Ez∼pz [log(1− D(G(z)))] . (3.4)

If we differentiate it w.r.t D(x) and set the derivative equal to zero, we
can obtain the optimal strategy

D(x) =
pdata(x)

pz(x) + pdata(x)
. (3.5)

Which can be understood intuitively as follows. Accept an input, evaluate
its probability under the distribution of the data, pdata, and then evaluate
its probability under the generator’s distribution of the data, pz. Under the
condition in D of enough capacity, it can achieve its optimum. Note the
discriminator does not have access to the distribution of the data but it is
learned through training. The same applies for the generator’s distribution
of the data. Under the condition in G of enough capacity, then it will set
pz = pdata. This results in D(x) = 1

2 , that is actually the NASH equilibrium.
In this situation, the generator is a perfect generative model, sampling from
p(x).

As an extension to this framework, DCGAN [2] proposes an architectural
topology based on Convolutional Neural Networks (CNNs) to stabilize
training and re-use state-of-the-art networks from tasks of classification.
This direction has recently received lots of attention due to its compelling re-
sults in supervised and unsupervised learning. We build on this to propose
a novel DCGAN architecture to address the problem of high-resolution
image generation. We name this approach HDCGAN.
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3.4.1 HDCGAN

Despite the undoubtable success, GANs are still arduous to train, particu-
larly when we use big images (e. g. 512×512). It is very common to see D
beating G in the process of learning, or the reverse, ending in unrecogniz-
able imagery, also known as mode collapse. Only when stable learning is
achieved, the GAN structure is able to succeed in getting better and better
results with time.

This issue is what drives us to carefully derive a simple yet powerful
structure that leverages common problems and gets a stable and steady
training mechanism.

Self-normalizing Neural Networks (SNNs) were introduced in [100]. We
consider a neural network with activation function f , connected to the next
layer by a weight matrix W, and whose inputs are the activations from the
preceding layer x, y = f (Wx).

We can define a mapping g that maps mean and variance from one layer
to mean and variance of the following layer(

µ

ν

)
7−→

(
µ̃

ν̃

)
:
(

µ̃

ν̃

)
= g

(
µ

ν

)
. (3.6)

Common normalization tactics such as batch normalization ensure a
mapping g that keeps (µ, ν) and (µ̃, ν̃) close to a desired value, normally (0,
1).

SNNs go beyond this assumption and require the existence of a mapping
g : Ω 7−→ Ω that for each activation y maps mean and variance from one
layer to the next layer and at the same time have a stable and attracting
fixed point depending on (ω, τ) in Ω. Moreover, the mean and variance
remain in the domain Ω and when iteratively applying the mapping g, each
point within Ω converges to this fixed point. Therefore, SNNs keep activa-
tions normalized when propagating them through the layers of the network.

Here (ω, τ) are defined as follows. For n units with activation xc, 1 ≤ c ≤
n in the lower layer, we set n times the mean of the weight vector w ∈ Rn

as ω := ∑n
c=1 wc and n times the second moment as τ := ∑n

c=1 w2
c .
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Scaled Exponential Linear Units (SELU) [100] is introduced as the choice
of activation function in Feed-forward Neural Networks (FNNs) to construct
a mapping g with properties that lead to SNNs.

selu(x) = λ

{
x if x > 0

α expx −α if x ≤ 0.
(3.7)

Empirical observation leads us to say that the use of SELU greatly im-
proves the convergence speed on the DCGAN structure, however, after
some iterations mode collapse and gradient explosion completely destroy
training when using high-resolution images. We conclude that although
SELU gives theoretical guarantees as the optimal activation function in
FNNs, numerical errors in the GPU computation degrade its performance
in the overall min-max game of DCGAN. To alleviate this problem, we
propose to use SELU and BatchNorm [101] together. The motivation is
that when numerical errors move (µ̃, ν̃) away from the attracting point that
depends on (ω, τ) ∈ Ω, BatchNorm will ensure it is close to a desired value
and therefore maintain the convergence rate.

Experiments show that this technique stabilizes training and allows us to
use fewer GPU resources, having steady diminishing errors in G and D. It
also accelerates convergence speed by a great factor, as can be seen after
some few epochs of training on CelebA in Figure 3.8.

Generator

CONVOLUTION 4x4 stride 1

BatchNorm

SELU

CONVOLUTION 4x4 stride 2

BatchNorm

...
CONVOLUTION 4x4 stride 2

BatchNorm

SELU

down-sampling 
blocks

CONVOLUTION 4x4 stride 2

TANH

CONVOLUTION 4x4 stride 2

SELU

Discriminator

CONVOLUTION 4x4 stride 2

BatchNorm

CONVOLUTION 4x4 stride 2

BatchNorm

SELU

up-sampling 
blocks

CONVOLUTION 4x4 stride 1

SIGMOID

...
SELU SELU

Figure 3.4: HDCGAN Architecture. Generator and Discriminator.
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As SELU + BatchNorm (BS) layers keep mean and variance close to
(0, 1) we get an unbiased estimator of pdata with contractive finite vari-
ance. These are very desirable properties from the point of view of an
estimator as we are iteratively looking for a MVU (Minimum Variance
Unbiased) criterion and thus solving MSE (Minimum Square Error) among
unbiased estimators. Hence, if the MVU estimator exists and the network
has enough capacity to actually find the solution, given a sufficiently large
sample size by the Central Limit Theorem, we can attain NASH equilibrium.

HDCGAN Architecture is described in Figure 3.4. It differs from tradi-
tional DCGAN in the use of BS layers instead of ReLUs.

We observe that when having difficulty in training DCGAN, it is always
better to use a fixed learning rate and instead increase the batch size. This is
because having more diversity in training, gives a steady diminishing loss
and better generalization. To aid learning, noise following a Normal N(0, 1)
is added to both the inputs of D and G. We see that this helps overcome
mode saturation and collapse whereas it does not change the distribution
of the original data.

We empirically show that the use of BS induces SNNs properties in
the GAN structure, and thus makes learning highly robust, even in the
stark presence of noise and perturbations. This behavior can be observed
when the zero-sum game problem stabilizes and errors in D and G jointly
diminish, Figure 3.9. Comparison to traditional DCGAN, WASSERSTEIN
GAN [102] and WGAN-GP [103] is not possible, as to date, the majority
of former methods, such as [104], cannot generate recognizable results in
image size 512×512, 24GB GPU memory setting.

Thus, HDCGAN pushes up state-of-the-art results beating all former
DCGAN-based architectures and shows that, under the right circumstances,
BS can solve the min-max game efficiently.

3.4.2 Glasses

We introduce here a key technique behind the success of HDCGAN. Once
we have a good convergence mechanism for large input samples, that is
a concatenation of BS layers, we observe that we can arbitrarily improve
the final results of the GAN structure by the use of a Magnifying Glass
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approach. Assuming our input length is N × M, we can enlarge it by a
constant factor, ζ1N × ζ2M, which we call telescope, and then feed it into
the network, maintaining the size of the convolutional filters untouched.
This simple procedure works similar to how contact lenses correct or assist
defective eyesight on humans and empowers the GAN structure to appreci-
ate the inner properties of samples.

Note that as the input gets bigger so does the neural network. That is,
the number of layers is implicitly set by the image size, see up-sampling
and down-sampling blocks in Figure 3.4. For example, for an input size of
32 we have 4 layers while for an input size of 256 we have 7 layers.

ζ

128 × 128

512 × 512

Figure 3.5: Glasses on a set of samples from CelebA. HDCGAN introduces the
use of a Magnifying Glass approach, enlarging the input size by a
telescope ζ.

We can empirically observe that BS layers together with Glasses induce
high capacity into the GAN structure so that a NASH equilibrium can be
reached. That is to say, the generator draws samples from pdata, which is
the distribution of the data, and the discriminator is not able to distinguish
between them, D(x) = 1

2∀x.

3.5 empirical analysis

We build on DCGAN and extend the framework to train with high-resolution
images using Pytorch. Our experiments are conducted using a fixed learn-
ing rate of 0.0002 and ADAM solver [105] with batch size 32 and 512×512

samples with the number of filters of G and D equal to 64.

In order to test generalization capability, we train HDCGAN in the newly
introduced Curtò, CelebA and CelebA-hq.
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Technical Specifications: 2×NVIDIA Titan X, Intel Core i7-5820k@3.30GHz.

3.5.1 Curtò

The results after 150 epochs are shown in Figure 3.6. We can see that
HDCGAN captures the underlying features that represent faces and not
only memorizes training examples. We retrieve nearest neighbors to the
generated images in Figure 3.7 to illustrate this effect.

Figure 3.6: HDCGAN Example Results. Dataset of Curtò & Zarzà. 150 epochs
of training. Image size 512×512.

HDCGAN Synthetic Images

Nearest Neighbors

from Graphicsfrom Curtó & Zarza
<latexit sha1_base64="FR3z6sQ41ZPocMYG/z3TV3s0siw=">AAACC3icbVDJSgNBEO1xjXGLevTSGFxOYSYKehS8eIxgVMyEUNPp0cZehu4aMQ65e/FXvHhQxKs/4M2/sRNzcHtQ8Hiviqp6SSaFwzD8CMbGJyanpksz5dm5+YXFytLyiTO5ZbzJjDT2LAHHpdC8iQIlP8ssB5VIfppcHQz802tunTD6GHsZbyu40CIVDNBLncpajPwGtbEKZJFao+hBbjHeNDTeoOdgb6HfqVTDWjgE/UuiEamSERqdynvcNSxXXCOT4FwrCjNsF2BRMMn75Th3PAN2BRe85akGxV27GP7Sp+te6dLUWF8a6VD9PlGAcq6nEt+pAC/db28g/ue1ckz32oXQWY5cs69FaS4pGjoIhnaF5QxlzxNgVvhbKbsECwx9fGUfQvT75b/kpF6Ltmv1o53qfjiKo0RWyRrZIhHZJfvkkDRIkzByRx7IE3kO7oPH4CV4/WodC0YzK+QHgrdPth+awQ==</latexit>

Figure 3.7: Nearest Neighbors. Dataset of Curtò & Zarzà. Generated samples
in the first row and their five nearest neighbors in training (rows 2-6).
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3.5.2 CelebA

CelebA is a large-scale dataset with 202,599 celebrity faces. It mainly con-
tains frontal portraits and is particularly biased towards groups of ethnicity
white. The fact that it presents very controlled illumination settings and
good photo resolution, makes it a considerably easier problem than Curtò.
The results after 19 epochs of training are shown in Figure 3.8.

Figure 3.8: HDCGAN Example Results. CelebA. 19 epochs of training. Image
size 512×512. The network learns swiftly a clear pattern of the face.

In Figure 3.9 we can observe that BS stabilizes the zero-sum game, where
errors in D and G concomitantly diminish. To show the validity of our
method, we enclose Figure 3.10, presenting a large number of samples for
epoch 39. We also attach a zoomed-in example to appreciate the quality and
size of the generated samples, Figure 3.11. Failure cases can be observed in
Figure 3.12.
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Figure 3.9: HDCGAN on CelebA. Error in Discriminator (top) and Error in
Generator (bottom). 19 epochs of training.

Figure 3.10: HDCGAN Example Results. CelebA. 39 epochs of training. Image
size 512×512. The network generates distinctly accurate and assorted
faces, including exhaustive details.
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Figure 3.11: HDCGAN Example Result. CelebA. 39 epochs of training. Image
size 512×512. 27% of full-scale image.

Figure 3.12: HDCGAN Example Results. CelebA. 39 epochs of training. Image
size 512×512. Failure cases. The number of failure cases declines
over time, and when present, they are of more meticulous nature.

Besides, to illustrate how fundamental our approach is, we enlarge Curtò
with 4,239 unlabeled synthetic images generated by HDCGAN on CelebA,
a random set can be seen in Figure 3.13.
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Figure 3.13: HDCGAN Synthetic Images. A set of random samples.

3.5.3 CelebA-hq

CelebA-hq in introduced in [38], a set of 30.000 high-definition images to
improve training on CelebA. A set of samples generated by HDCGAN on
CelebA-hq can be seen in Figures 3.1, 3.14 and 3.15.

Figure 3.14: HDCGAN Example Results. CelebA-hq. 229 epochs of training.
Image size 512×512. The network generates superior faces, with
great attention to detail and quality.
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Figure 3.15: HDCGAN Example Result. CelebA-hq. 229 epochs of training. Im-
age size 512×512. 27% of full-scale image.

To exemplify that the model is generating new bona fide instances instead
of memorizing samples from the training set, we retrieve nearest neighbors
to the generated images in Figure 3.16.

HDCGAN Synthetic Images

Nearest Neighbors

from CelebA-hq

Figure 3.16: Nearest Neighbors. CelebA-hq. Generated samples in the first row
and their five nearest neighbors in training (rows 2-6).
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3.6 assessing the discriminability and quality of generated

samples

We build on previous image similarity metrics to qualitatively evaluate
generated samples of generative models. The most effective of these is
multi-scale structural similarity (MS-SSIM) [27]. We make comparison at
resized image size 128×128 on CelebA. MS-SSIM results are averaged from
10,000 pairs of generated samples. Table 3.2 shows HDCGAN significantly
improves state-of-the-art results.

MS-SSIM

Gulrajani et al. [103] 0.2854

Karras et al. [38] 0.2838

HDCGAN 0.1978

Table 3.2: Multi-scale structural similarity (MS-SSIM) results on CelebA at resized
image size 128×128. Lower is better.

We monitor MS-SSIM scores across several epochs averaging from 10,000

pairs of generated images to see the temporal performance, Figure 3.17.
HDCGAN improves the quality of the samples while increases the diversity
of the generated distribution.
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Figure 3.17: MS-SSIM Scores on CelebA across several epochs. Results are
averaged from 10,000 pairs of generated images from epoch 19

to 74. Comparison is made at resized image size 128×128. Affine
interpolation is shown in red.
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In [106] they propose to evaluate GANs using the FRÉCHET Inception
Distance, which assesses the similarity between two distributions by the
difference of two Gaussians. We make comparison at resized image size
64×64 on CelebA. Results are computed from 10,000 512×512 generated
samples from epochs 36 to 52, resized at image size 64×64 yielding a value
of 8.44, Table 3.3, clearly outperforming current reported scores in DCGAN
architectures [107].

Fréchet

Karras et al. [38] 16.3

Wu et al. [107] 16.0

HDCGAN 8.44

Table 3.3: FRÉCHET Inception Distance on CelebA at resized image size 64×64.
Lower is better.

3.7 discussion

In this chapter, we propose High-resolution Deep Convolutional Generative
Adversarial Networks (HDCGAN) by stacking SELU + BatchNorm (BS) lay-
ers. The proposed method generates high-resolution images (e. g. 512×512)
in circumstances where the majority of former methods fail. It exhibits a
steady and smooth mechanism of training. It also introduces Glasses, the
notion that enlarging the input image by a telescope ζ while keeping all
convolutional filters unchanged, can arbitrarily improve the final generated
results. HDCGAN is the current state-of-the-art in synthetic image gen-
eration on CelebA (MS-SSIM 0.1978 and FRÉCHET Inception Distance 8.44).

Further, we present a bias-free dataset of faces containing well-balanced
ethnical groups, Curtò & Zarzà, that poses a very difficult challenge and is
rich on learning attributes to sample from. Moreover, we enhance Curtò with
4,239 unlabeled synthetic images generated by HDCGAN, being therefore
the first GAN augmented dataset of faces.





4
A N E F F I C I E N T S E G M E N TAT I O N T E C H N I Q U E

4.1 introduction

Detection and Segmentation are key components in any toolbox of Com-
puter Vision. In this paper we present a technique of hashing to segment
an object given its bounding box and therefore attain simultaneously both
Detection and Segmentation. At its heart lies a novel way to retrieve and
generate a high-quality segmentation, which is crucial for a wide variety
of CV applications. Simply put, we use a state-of-the-art convolutional
network to detect the objects, but hashing on top of a high-quality hierarchy
of regions to generate the segmentations [108].

Ground Truth

C&Z Segmentation
<latexit sha1_base64="6Wsm3Wsy9MNmZDMIzLoDGMVABP8=">AAACB3icbVDLSgNBEJz1GeMr6lGQwaB4CrsxoMdALh4jmgcmIcxOOsmQ2dllplcMS25e/BUvHhTx6i9482+cPA6aWNBQVHXPdJcfSWHQdb+dpeWV1bX11EZ6c2t7Zzezt181Yaw5VHgoQ133mQEpFFRQoIR6pIEFvoSaPyiN/do9aCNCdYvDCFoB6ynRFZyhldqZoybCA6pQB0wmpebpHb2BXgAKJ/6oncm6OXcCuki8GcmSGcrtzFezE/J4/AKXzJiG50bYSphGwSWM0s3YQMT4gPWgYaliAZhWMrljRE+s0qHdUNtSSCfq74mEBcYMA992Bgz7Zt4bi/95jRi7l61EqChGUHz6UTeWFEM6DoV2hAaOcmgJ41rYXSnvM8042ujSNgRv/uRFUs3nvPNc/rqQLRZmcaTIITkmZ8QjF6RIrkiZVAgnj+SZvJI358l5cd6dj2nrkjObOSB/4Hz+AGnEmZw=</latexit>

Figure 4.1: Top Detections. Top: VOC 2012 Ground Truth. Bottom: C&Z Segmen-
tation.

Detection and Segmentation of Objects are two popular problems in Com-
puter Vision and Machine Learning, historically treated as separated tasks.
We consider these strongly related vision tasks as a unique one: detecting
each object in an image and assigning to each pixel a binary label inside
the corresponding bounding box.

C&Z Segmentation addresses the problem with a surprising different
technique that deviates from the current norm of using proposal object can-
didates [79]. In semantic segmentation the need for rich information models
that entangle some kind of notion from the different parts that constitute
an object is exacerbated. To alleviate this issue we build on the use of the
hierarchical model in [78] and explore the rich space of information of the
Ultrametric Contour Map (UCM) in order to find the best possible semantic

31
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segmentation of the given object. For this task, we exploit bounding boxes
to facilitate the search. Hence, we simply hash the patches enclosed by the
bounding boxes and retrieve closest nearest neighbors to the given objects,
obtaining superior segmentations. Using this simple but effective technique
we get the segmentation mask which is then refined using Hierarchical
Section Pruning.

We start from a detector of bounding boxes and refine the object support,
as in Hypercolumns [80]. We propose here a train-free similarity hashing
alternative to their approach.

We present a simple yet effective module that leverages the need for a
training step and can provide segmentations after any given detector. Our
approach is to use a state-of-the-art region-based CNN detector [85] as prior
step to guide the process of segmentation.

Outline: We begin next with a high-level description of the proposed
method and develop further the idea to propose Hierarchical Section Hash-
ing and Hierarchical Section Pruning in Section 4.1 and Section 4.3. Prior
work follows in Section 4.2. We conclude with the evaluation metrics in
Section 4.4 and a brief discussion in Section 4.5.

We start with a primer. C&Z Segmentation consists on the following
main blocks:

• Detection of Objects using Bounding Boxes. We use a convolutional
neural network [85] to detect all the objects in an image and generate
the corresponding bounding boxes. We consider a detected object
in an image as each output candidate thresholded by the class level
score (benchmarks specifications in Section 4.4).

• Hierarchy. The image is presented as a tree of hierarchical regions
based on the UCM [78].

• Similarity Hashing. We develop Hierarchical Section Hashing based
on the LSH technique of [109].
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• Refinement of Regions. The segmentations are refined by the use of
Hierarchical Section Pruning.

• Evaluation. We evaluate the results on the PASCAL VOC 2012 Seg-
mentation dataset [110] using the JACCARD index metric, which
measures the average best overlap achieved by a segmentation mask
for a ground truth object.

This work is inspired on how humans segment images: they first localize
the objects they want to segment, they carefully inspect the object on the im-
age by the use of their visual system and finally they choose the region that
belongs to the body of that particular object. We believe that although the
problem of detection has to be solved by the use of deep learning based on
convolutional neural networks, in the same way that current breakthroughs
have been attained in Generative Adversarial Networks (GAN) [1, 2, 32, 38,
93], the problem of segmenting those objects is of a different nature and can
be best understood by the use of hashing. Furthermore, current research
trends link concepts of Deep Learning to Kernel Methods, proposing a
unifying theory of learning in [96–98].

Our main contributions are presented as follows:

• Novel approach to solve the task of segmentation by similarity hash-
ing exploiting the detection of objects using bounding boxes.

• Use of hierarchical structures which are rich on semantic meaning
instead of other current state-of-the-art techniques such as generation
of proposal object candidates.

• No need of training data for the task of segmentation under the frame-
work of detection using bounding boxes, that is train-free accurate
segmentations.

• State-of-the-art results.

To our knowledge, we are the first to provide a segmentation based
on hashing. This approach leverages the need to optimize over a high-
dimensional space.
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Despite the success of region proposal methods in detection, they have
in turn arisen as the main computational bottleneck of these approaches.
Yet unlike the latter, hierarchical structures derived from the UCM are in
comparison inexpensive to compute and store. While we continue to use
a very fast region-based convolutional neural network (R-CNN) to solve
the task of detection, we propose to solve the problem of segmentation by
exploring efficiently the space generated by a hierarchical image.

4.2 prior work

Recent works [52, 111] present Object Detection and Segmentation as a
single problem. The task requires to detect and segment every instance
of a category in the image. Our work is however more closely related to
the approach in Hypercolumns [80], where they go from bounding boxes
to segmented masks. Our course of action is related in the sense that we
propose an alternative that does not require a training step and can be used
as an off-the-shelf high-quality segmenter.

For semantic segmentation [35, 51, 78, 79, 82–84], there has been several
approaches where they guide the process of segmentation by the use of
a prior detector [54, 55, 85–88]. Recently, this strategy has also presented
state-of-the-art results in person detection and pose estimation [112]. Al-
ternate procedures count on a human-on-the-loop [113]. Ongoing research
on the matter uses Neural Architecture Search [20, 114–118] to design ef-
ficient architectures of neural networks for dense image prediction [119].
With the advent of present-day autonomous vehicles, the need to generate
segmentations directly from the point cloud given by LIDAR [120–122], as
well as detect 3D objects [89, 123–128], is also recently attracting lots of
research efforts. Our segmenter starts rather than from raw pixels, [129]
and [130], or bounding box proposals as in [131] and [111], from a set of
hierarchical regions given by the UCM structure. Other techniques rely
on superpixels e. g. [81]. This is a distinct tactic that works directly on a
different representation.

4.3 segmentation c&z

We delve into the details of the C&Z Segmentation construction, Figure 4.2.
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Figure 4.2: C&Z Segmentation. We construct a hierarchical image based on the
UCM and ’train’ the HSH map by hashing each region of the parent
partition nodes. To retrieve a segmentation mask, we ’test’ the HSH
map by doing a lookup of the detected area enclosed by the bounding
box, videlicet a fast search of approximate nearest neighbors on the
hierarchical structure, and finally refine the result through HSP.

4.3.1 Detection of Objects Using Bounding Boxes

We begin by using the R-CNN object detector proposed by [85], which is in
turn based on [54]. It introduces a Region Proposal Network (RPN) for the
task of generating detection proposals and then solves the task of detection
by the use of a FAST R-CNN detector. They train a CNN on ImageNet
Classification and fine-tune the network on the VOC detection set. For
our experiments, we use the network trained on VOC 2007 and 2012, and
evaluate the results on the VOC 2012 evaluation set. We use the very deep
VGG-16 model [132], Figure 4.3.
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Figure 4.3: VGG-16 Architecture. VGG-16 model consists on an arrangement of
convolutions, layers fully connected and softmax.
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4.3.2 Hierarchical Image

We consider the representation of a hierarchical image described in [79].
Considering a segmentation of an image into regions that partition its
domain S = {Sc}c. A segmentation hierarchy is a family of partitions
{S∗, S1, . . . , SL} such that: (1) S∗ is the finest set of superpixels, (2) SL is the
complete domain, and (3) regions from coarse levels are unions of regions
from fine levels.

4.3.3 Hierarchical Section Hashing

In this paper we introduce a novel segmentation algorithm that exploits
bounding boxes to automatically select the best hierarchical region that
segments the image. We introduce Hierarchical Section Hashing (HSH)
which is in turn based on Locality-Sensitive Hashing (LSH). This algorithm
helps us surpass the problem of computational complexity of the k-nearest
neighbor rule and allows us to do a fast approximate neighbor search in
the hierarchical structure of [78].

HSH can be summarized as follows:

• Detect bounding boxes on an image using a state-of-the-art convolu-
tional neural network [85].

• Construct a hierarchical image by using the UCM and convey the
result as a hierarchical region tree.

• Each hierarchical region is indexed by a number of tables of hashing
using LSH and then constructing a HSH map.

• Each bounding box is hashed into the HSH map to retrieve the
approximate nearest neighbor in sublinear time.

C&Z Segmentation has two main steps: first ’train’ the HSH map with all
the hierarchical regions of the image. Then ’test’ the HSH map with all the
detected bounding boxes to retrieve the approximate nearest neighbors that
segment each of the objects in the image. The novelty of this approach is
that it provides the best hierarchical region provided by the UCM structure
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that segments the object image. C&Z exploits the detection of objects using
bounding boxes because it relies on the correct detection of the object
detector.

4.3.4 Hierarchical Section Pruning

The final piece is to refine the segmentations given by the HSH map by
using what we call Hierarchical Section Pruning (HSP).

HSP procedure can be summarized as follows:

• Once a segmentation mask has been selected for all the objects in the
given image, and their bounding boxes recomputed, the bounding
box overlap ratio for all box pair combinations, according to the inter-
section over union criterium, is performed.

• Those masks that present overlap with other object masks on the same
image are hierarchically unselected. We always proceed to unselect
the low-level hierarchical regions, which by construction enclose a
smaller region area and thus a single segmented object, from the
high-level hierarchical region, which encloses more than one object
and a bigger image area.

• Finally, isolated pixels on the mask are erased to preserve a single
connected segmentation.

HSP is based on the fact that each segmentation mask represents a node
on the hierarchical region tree constructed from the UCM. Therefore, hierar-
chical sections containing more than one object represent higher level nodes
on the hierarchy. When HSP is applied, low-level hierarchical regions are
unselected from the high-level hierarchical sections and therefore replaced
by mid-low level sections on the same region tree structure that represents
a single object or a smaller area of the image.

HSH and HSP Visual Examples can be seen in Figure 4.4.
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Aeroplane Bicycle Bird Boat Bottle Bus Car Cat Chair Cow Table Dog Horse MBike Person Plant Sheep Sofa Train TV Global

C&Z Segmentation (Instance Level) 45.4 27.5 55.9 44.2 42.0 43.2 41.3 66.3 31.4 57.2 42.3 63.3 43.8 43.6 40.9 40.6 57.2 51.2 48.0 54.1 45.2

C&Z Segmentation (Class Level) 33.3 18.5 48.1 37.5 40.7 45.1 39.4 59.9 23.3 51.0 43.3 60.4 39.8 43.1 34.6 37.2 51.0 47.0 53.6 54.2 43.1

Table 4.1: VOC 2012 Validation Set. Per-class and global JACCARD Index Met-
ric at instance level.

Hierarchical Section Hashing Hierarchical Section Pruning

Figure 4.4: Left: HSH Visual Example. Right: HSP Visual Example.

C&Z Segmentation relies on the prior detection and therefore availability
of bounding boxes for all the objects in a given image. The latter can be
very useful as C&Z can be understood as a simple and effective technique
to provide high-quality segmentations of still images after any available de-
tector of bounding boxes. Likewise, you get train-free off-the-shelf accurate
segmentations for any given method that detects bounding boxes.

4.3.5 Locality Sensitive Hashing

Our goal is to retrieve the k-nearest neighbors of a given hierarchical vector,
which we call image code. In this setup we are limited by the curse of dimen-
sionality and therefore using an exact search is inefficient. Our approach
uses a technique of approximate nearest neighbors: Locality Sensitive Hash-
ing (LSH).

A LSH function maps x → h(x) such that the similarity between (x, y) is
preserved as ∣∣∣∣d(h(x), h(y))

D(x, y)
− 1
∣∣∣∣ ≤ ε (4.1)
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which is not possible for all D(x, y) but available for instance for euclidean
metrics.

We build on the LSH work of [109, 133–137]. LSH is a randomized hashing
scheme, investigated with the primary goal of ε− R neighbor search. Its
main constitutional block is a family of locality sensitive functions. We can
define that a family H of functions h : X → {0, 1} is (p1, p2, r, R)-sensitive
if, for any x, y ∈ X ,

Prh∼U[H](h(x) = h(y) | ||x− y|| ≤ r) ≥ p1, (4.2)

Prh∼U[H](h(x) = h(y) | ||x− y|| ≥ R) ≤ p2, (4.3)

where these probabilities are chosen from a random choice of h ∈ H.

Algorithm 1 gives a simple description of the LSH algorithm for the
given case when the distance of interest is L1, which is the one in use in
C&Z Segmentation. The family H in this case contains axis-parallel stumps,
which means the value of h ∈ H is generated by taking a simple dimension
d ∈ {1, . . . , dim(X )} and thresholding it with some T:

hLSH =

{
1 if xd ≤ T,

0 otherwise.
(4.4)

A LSH function g : X → {0, 1}k is formed by independently k functions
h1, . . . , hk ∈ H.

That is, we can understand that an example in our hierarchical partition
Sc ∈ S provides a k-bit key

g(Sc) = [h1(Sc), . . . , hk(Sc)]. (4.5)

This process is repeated l times and produces l independently constructed
functions of hashing g1, . . . , gl . The available reference (’training’) data S
are indexed by each one of the l functions of hashing, producing l tables of
hashing, namely each of the Sc hierarchical partitions generated by all the
corresponding parents of the hierarchical tree.
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Algorithm 1 LSH Algorithm [134]

Given: Dataset X = [x1, xN ], xc ∈ Rdim(X).
Given: Number of bits k, number of tables l.
Output: A set of

1: for z = 1, . . . , l do
2: for c = 1, . . . , k do
3: Randomly (uniformly) draw

d ∈ {1, . . . , dim(X )}.

4: Randomly (uniformly) draw

min{x(d)} ≤ v ≤ max{x(d)}.

5: Let hz
c be the function X → {0, 1} defined by

hz
c(x) =

{
1 if x(d) ≤ v,

0 otherwise.

6: The z-th LSH function is gz = [hz
1, . . . , hz

k].

Once the LSH data structure has been built it can be used to perform a
very efficient search for approximate neighbors in the following way. When
a query S0 arrives, we compute its key for each table of hashing z, and
record the examples C = {Sl

1, . . . , Sl
nl
} resulting from the lookup with that

key. In other words, we find the ’training’ examples that fell in the same
bucket of the l-th table of hashing to which S0 would fall. These l lookup
operations produce a set of candidate matches, C = ∪l

z=1Cz. If this set is
empty, the algorithm reports it and stops. Otherwise, the distances between
candidate matches and S0 are explicitly evaluated, and the examples that
match the search criteria, which means that are closer to S0 than (1 + ε)R,
are returned.

4.4 evaluation and results

We extensively evaluate C&Z Segmentation on VOC 2012 validation set.
Top detections from our algorithm can be seen in Figure 4.1.
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4.4.1 JACCARD Index Metric

In Table 4.1 we show the results of the JACCARD Index Metric. This mea-
sure represents the average best overlap achieved by a candidate for a
ground truth object.

C&Z Segmentation with Jaccard at instance level 45.24% and Jaccard at
class level 43.05%. Recall at overlap 0.5 is 43.36%.

4.5 discussion

In this paper we introduce C&Z Segmentation, an algorithm to segment
objects based on hashing that exploits the detection using bounding boxes.
We show C&Z achieves compelling results and generates off-the-shelf
accurate segmentations.
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