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A B S T R A C T

Generative Adversarial Networks (GANs) [START_REF] Goodfellow | Generative Adversarial Networks[END_REF]2] have had tremendous applications in Computer Vision. Yet, in the context of space science and planetary exploration the door is open for major advances. We introduce tools to handle planetary data from the mission Chang'E-4 and present a framework for Neural Style Transfer using Cycle-consistency [3] from rendered images.

We also introduce a new real-time pipeline for Simultaneous Localization and Mapping (SLAM) and Visual Inertial Odometry (VIO) in the context of planetary rovers. We leverage prior information of the location of the lander to propose an object-level SLAM approach that optimizes pose and shape of the lander together with camera trajectories of the rover. As a further refinement step, we propose to use techniques of interpolation between adjacent temporal samples; videlicet synthesizing non-existing images to improve the overall accuracy of the system.

The experiments are conducted in the context of the Iris Lunar Rover, a nano-rover that will be deployed in lunar terrain in 2021 as the flagship of Carnegie Mellon, being the first unmanned rover of America to be on the Moon. vii Z U S A M M E N FA S S U N G Generative Adversarial Networks (GANs) [START_REF] Goodfellow | Generative Adversarial Networks[END_REF]2] hatten enorme Anwendungen in Computer Vision. Im Kontext der Weltraumforschung und der Erforschung der Planeten steht die Tür jedoch offen für große Fortschritte. Wir stellen Werkzeuge für den Umgang mit Planetendaten aus der Mission Chang'E-4 vor und präsentieren ein Framework für die Übertragung des neuronalen Stils unter Verwendung der Zykluskonsistenz [3] aus gerenderten Bildern.

Wir führen auch eine neue Echtzeit-Pipeline für Simultaneous Localization and Mapping (SLAM) und Visual Inertial Odometry (VIO) im Kontext von Planetenrovern ein. Wir nutzen vorherige Informationen über den Standort des Landers, um einen SLAM-Ansatz auf Objektebene vorzuschlagen, der die Pose und Form des Landers zusammen mit den Kameratrajektorien des Rovers optimiert. Als weiteren Verfeinerungsschritt schlagen wir vor, Interpolationstechniken zwischen benachbarten zeitlichen Abtastwerten zu verwenden. videlicet synthetisiert nicht vorhandene Bilder, um die Gesamtgenauigkeit des Systems zu verbessern.

Die Experimente werden im Rahmen des Iris Lunar Rover durchgeführt, eines Nano-Rovers, der 2021 als Flaggschiff von Carnegie Mellon als erstem unbemannten Rover Amerikas auf dem Mond im Mondgelände eingesetzt wird. Segmentation of the Lander. Left: Image from CE4 [START_REF] De Curtó | Cycle-consistent Generative Adversarial Networks for Neural Style Transfer Using Data from Chang[END_REF]. In particular we are using color images from the panoramic camera of the rover of the mission to the Moon Chang'E-4. Middle: Generated mask given by model DilatedResnet-101 [START_REF] Zhao | Energy-based Generative Adversarial Networks[END_REF][START_REF] Zhou | Semantic Understanding of Scenes through the ADE20K Dataset[END_REF].

Right: Generated mask given by model UperNet-101 [START_REF] Lin | Feature Pyramid Networks for Object Detection[END_REF][START_REF] Xiao | Unified Perceptual Parsing for Scene Understanding[END_REF]. 10 Figure 3.1 HDCGAN Synthetic Images. A set of random samples. Our system generates high-resolution synthetic faces with an extremely high level of detail. HDC-GAN goes from random noise to realistic synthetic pictures that can even fool humans. 

1 P L A N E TA R Y R O V E R S

introduction

Generative Adversarial Network (GAN) [START_REF] Goodfellow | Generative Adversarial Networks[END_REF] are able to produce good quality high-resolution samples from images, both in the unscontrained and conditional setting [3][4][5][6][START_REF] Li | Triple Generative Adversarial Nets[END_REF][START_REF] Wang | Highresolution Image Synthesis and Semantic Manipulation with Conditional GANs[END_REF][START_REF] Wang | Video-to-video Synthesis[END_REF][START_REF] Portenier | FaceShop: Deep Sketch-based Face Image Editing[END_REF][START_REF] Lombardi | Deep Appearance Models for Face Rendering[END_REF][12][START_REF] Sankaranarayanan | Learning from Synthetic Data: Addressing Domain Shift for Semantic Segmentation[END_REF][START_REF] Romero | Stochastic Multi-label Image-to-image Translation[END_REF][START_REF] Chen | Learning Semantic Segmentation from Synthetic Data: a Geometrically Guided Input-output Adaptation Approach[END_REF]. Nonetheless, applications in the context of NASA missions and space exploration are scarce.

Given the difficulty to handle planetary data we provide downloadable files in PNG format from the missions Chang'E-3 and Chang'E-4 1 . In addition to a set of scripts to do the conversion given a different PDS4 Dataset. Example samples from the dataset can be seen in Figure 1.1. We also provide the corresponding labels, where localization information is present. We run extensive experiments to train a model able to be used as a hyperrealistic feature of the current simulator used in the Iris Lunar Rover [START_REF] De Curtó | Cycle-consistent Generative Adversarial Networks for Neural Style Transfer Using Data from Chang[END_REF]. 

overall system

Following the design principles and the perception pipeline proposed in [START_REF] Allan | Planetary Rover Simulation for Lunar Exploration Missions[END_REF] in the context of the NASA Mission Resource Prospector, we intend to design a simulator with hyperrealistic characteristics of the Moon that helps us deploy VIO/SLAM in a rover of the same characteristics. The intention is also that helps us address object detection and segmentation in this unmapped environment, where training data is very difficult and costly to obtain. Although at the present time data from the Moon is scarce, there are already some open datasets available in analogue environments such as the POLAR Stereo Dataset [START_REF] Wong | Polar Optical Lunar Analog Reconstruction) Stereo Dataset[END_REF] that includes stereo pairs and LiDAR information or [START_REF] Vayugundla | Datasets of Long Range Navigation Experiments in a Moon Analogue Environment on Mount Etna[END_REF], that contains IMU, stereo pairs and odometry plus some additional localization data, all obtained on Mount Etna. Our intention is to provide downloadable files from the mission Chang'E-4 [START_REF] Zhang | The Scientific Data and Its Archiving from Chang[END_REF] that could be easily used in CV and ML pipelines. We also provide scripts to handle alternate PDS4 Datasets. The context where this tools are being used is our specific sensor suite, that will be on-board the Iris Lunar Rover, a project led by Carnegie Mellon that intends to put forward a four pound rover into the surface of the Moon by 2021 and that will be America's first rover to explore the surface of the planet, consists on IMU, two high-fidelity cameras and odometry sensors. Furthermore, it also has a UWB module [START_REF] Ledergerber | A Robot Self-localization System using One-way Ultra-wideband Communication[END_REF][START_REF] Mueller | Fusing Ultra-wideband Range Measurements with Accelerometers and Rate Gyroscopes for Quadrocopter State Estimation[END_REF][START_REF] Alarifi | Ultra Wideband Indoor Positioning Technologies: Analysis and Recent Advances[END_REF][START_REF] Xu | Decentralized Visual-Inertial-UWB Fusion for Relative State Estimation of Aerial Swarm[END_REF] on-board to localize the rover with respect to the lander.

approach, long-term goal and prior work

Generative image generation is a key problem in Computer Vision and Computer Graphics. Variational Autoencoders (VAE) [START_REF] Lombardi | Deep Appearance Models for Face Rendering[END_REF][START_REF] Kingma | Auto-encoding Variational Bayes[END_REF] try to solve the problem with an approach that builds on probabilistic graphical models. Autoregressive models (for instance PixelRNN [START_REF] Van Den Oord | Pixel Recurrent Neural Networks[END_REF]) have also achieved relative success generating synthetic images. In the past few years, Generative Adversarial Networks (GANs) [START_REF] Goodfellow | Generative Adversarial Networks[END_REF]2,[START_REF] Portenier | FaceShop: Deep Sketch-based Face Image Editing[END_REF][START_REF] Odena | Conditional Image Synthesis with Auxiliary Classifier GANs[END_REF][START_REF] Antoniou | Data Augmentation Generative Adversarial Networks[END_REF][START_REF] Wang | Generative Image Modeling Using Style and Structure Adversarial Networks[END_REF][START_REF] Zhu | Generative Visual Manipulation on the Natural Image Manifold[END_REF] have shown strong performance in image generation. Some works on the topic pinpoint the specific problem of scaling up to high-resolution samples [START_REF] Zhang | StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks[END_REF], where conditional image generation is also studied while some recent techniques focus on stabilizing the training procedure [START_REF] Salimans | Improved Techniques for Training GANs[END_REF][START_REF] Mescheder | The Numerics of GANs[END_REF][START_REF] Mescheder | Which Training Methods for GANs Do Actually Converge? ICML[END_REF][START_REF] Chen | Photographic Image Synthesis with Cascaded Refinement Networks[END_REF][START_REF] Dosovitskiy | Generating Images with Perceptual Similarity Metrics Based on Deep Networks[END_REF][START_REF] Zhao | Energy-based Generative Adversarial Networks[END_REF][START_REF] Karras | Progressive Growing of GANs for Improved Quality, Stability, and Variation[END_REF][START_REF] Wei | Improving the Improved Training of WASSERSTEIN GANs: a Consistency Term and Its Dual Effect[END_REF][START_REF] Brock | Large Scale GAN Training for High Fidelity Natural Image Synthesis[END_REF]. Other promising novel approaches include score matching with LANGEVIN sampling [START_REF] Song | Generative Modeling by Estimating Gradients of the Data Distribution[END_REF][START_REF] Song | Improved Techniques for Training Score-based Generative Models[END_REF] and the use of sequence transformers for image generation [START_REF] Parmar | Image Transformer. ICML[END_REF].

The use of these techniques though have seen little or no applications in space exploration and planetary research. We propose here a framework that could be used to generate abundant data of the Moon, Mars and other celestial bodies, so that learning algorithms could be trained on Earth and studied in simulation before being deployed in the real missions.

The proposed approach consists on using a technique of Neural Style Transfer or Generative Image Generation, such as the criteria of cycleconsistency, together with an augmentation of the given dataset (in our case using data from the lunar missions Chang'E-3 and Chang'E-4, but the same applies to Mars or other planets) using GANs in the setting of unconstrained image generation.

cycle-consistent generative adversarial networks

Our focus here is on Cycle-consistent Generative Adversarial Networks [3], where we work on unpaired image-to-image translation [START_REF] Park | Contrastive Learning for Unpaired Image-to-Image Translation[END_REF].

Image-to-image translation is a type of problem in Computer Vision and Computer Graphics where the objective is to learn a correspondence function between an input sample and an output sample, using a training set of aligned or non-aligned image pairs. More precisely, our goal is to learn a function

G : X → Y, (1.1) 
in a way that the distribution of samples G(X) is as close as possible to the distribution Y. To accomplish this we are going to use an adversarial loss. Therefore, we couple it with the inverse correspondence

F : Y → X, (1.2) 
and use a criteria of cycle-consistency to address the fact that the problem is highly under constrained

F(G(X)) ≈ X and G(F(Y)) ≈ Y. (1.3)
When we talk about paired training data, we refer to the fact that the training data consists of training examples {x c , y c } N c=1 , where the correspondences between x c and y c are given. Instead, we say that we are using unpaired training data, when the set consists of two training sets {x c } N c=1 and {y a } N a=1 , where there is not a correspondence explicitly given between which x c corresponds to which y a .

Formally, the GAN objective [START_REF] Goodfellow | Generative Adversarial Networks[END_REF] involves finding a NASH equilibrium to the following two-player game:

min G max D V(D, G) = E x∼p data [log D(x)] + (1.4) +E z∼p z [log(1 -D(G(z)))] , (1.5) 
where x is a ground truth image sampled from the true distribution p data , and z is a noise vector sampled from p z (that is, uniform or normal distribution). G and D are parametric functions where G : p z → p data maps samples from noise distribution p z to data distribution p data .

neural style transfer

Neural Style Transfer [START_REF] Gatys | Image Style Transfer Using Convolutional Neural Networks[END_REF][START_REF] Gatys | Preserving Color in Neural Artistic Style Transfer[END_REF][START_REF] Ulyanov | Texture Networks: Feed-forward Synthesis of Textures and Stylized Images[END_REF] is based on the idea of synthesizing an original image by combining the content of one image together with the style of another sample. Here we will use cycle-consistent networks to attack this specific problem, with the aim of using a more general method that could help us solve concomitantly other tasks in the future. Moreover, the criteria of cycle-consistency assumes there is a bijection between the two domains, a constrain that could be often too restrictive, but that is very appropriate in our particular problem at-hand.

unconstrained image generation

To tackle the problems that arise when training Cycle-consistent networks with a dataset with few samples, i.e. mainly mode collapse and artifacts, we propose to use Unconstrained Image Generation using GANs to enlarge the original dataset with unseen examples, that is, as a way to generate additional training samples that will help the learning procedure converge to the desired solution. To achieve this we make use of the construction developed in [START_REF] Brock | Large Scale GAN Training for High Fidelity Natural Image Synthesis[END_REF].

experiments

Extensive experiments using data from Chang'E-3 and Chang'E-4 have been conducted, in particular we are using images from the panoramic camera 

simulator

The context where this feature is being integrated is the actual simulator, see Figure 1.4, of the Iris Lunar Rover, the rover of Carnegie Mellon that will fly to the Moon onboard the Peregrine Lander of Astrobotic in 2021. Data from the simulator will be of the utmost importance to train and test localization algorithms such as SLAM/VIO [START_REF] Schneider | Maplab: an Open Framework for Research in Visual-inertial Mapping and Localization[END_REF][START_REF] Usenko | Visual-inertial Mapping with Non-linear Factor Recovery[END_REF]. The ability to have ample data to train will also amplify the capabilities of the modules designed for segmentation [START_REF] Chen | Photographic Image Synthesis with Cascaded Refinement Networks[END_REF][START_REF] Badrinarayanan | SegNet: a Deep Convolutional Encoder-decoder Architecture for Image Segmentation[END_REF][START_REF] Chen | Rethinking Atrous Convolution for Semantic Image Segmentation[END_REF][START_REF] He | IEEE International Conference on Computer Vision[END_REF] and object detection [START_REF] Bolme | Visual Object Tracking Using Adaptive Correlation Filters[END_REF][START_REF] Girshick | IEEE International Conference on Computer Vision[END_REF][START_REF] Redmon | You Only Look Once: Unified, Real-time Object Detection[END_REF]. As well as to test the software design before the real mission.

introduction

Our aim is to present a novel pipeline to deploy state-of-the-art DL techniques in planetary rovers. With the advent of a new wave of planetary exploration missions, the need to call on generalizable perception and control systems that can operate autonomously in other worlds will become ubiquitous in the coming years. 

overall system

Following the design principles and the perception pipeline proposed in [START_REF] Allan | Planetary Rover Simulation for Lunar Exploration Missions[END_REF] in the context of the NASA Mission Resource Prospector, we put forward an improved technique for Visual Odometry (VIO) that could be exploited in a rover of the same characteristics. Although at the present time data from the Moon is scarce, there are already some open datasets available in analogue environments such as the POLAR Stereo Dataset [START_REF] Wong | Polar Optical Lunar Analog Reconstruction) Stereo Dataset[END_REF] that includes stereo pairs and LiDAR information or [START_REF] Vayugundla | Datasets of Long Range Navigation Experiments in a Moon Analogue Environment on Mount Etna[END_REF], that contains IMU, stereo pairs and odometry plus some additional localization data, all obtained on Mount Etna. Specifically for the task of semantic segmentation, Kaggle provides images from a rendered environment of the Moon and masks. More recently, as a benchmark for tasks of Computer Vision in the context of space exploration, a dataset containing PNG images and positioning information from the mission Chang'E-4 to the Moon has been released [START_REF] De Curtó | Cycle-consistent Generative Adversarial Networks for Neural Style Transfer Using Data from Chang[END_REF], the data from CE4 consists on post-processed original files from the mission Chang'E1 . Our specific sensor suite, that will be on-board the Iris Lunar Rover [START_REF] De Curtó | Cycle-consistent Generative Adversarial Networks for Neural Style Transfer Using Data from Chang[END_REF][START_REF] De Curtó | Vulcan Centaur: towards End-to-end Realtime Perception in Lunar Rovers[END_REF], a project led by Carnegie Mellon that will deploy a four pound rover into the surface of the Moon by 2021 and that will be the first unmanned rover of America to explore the surface of the Moon, consists on IMU, two high-fidelity cameras and odometry sensors. Furthermore, it also has a UWB module [START_REF] Ledergerber | A Robot Self-localization System using One-way Ultra-wideband Communication[END_REF][START_REF] Mueller | Fusing Ultra-wideband Range Measurements with Accelerometers and Rate Gyroscopes for Quadrocopter State Estimation[END_REF][START_REF] Alarifi | Ultra Wideband Indoor Positioning Technologies: Analysis and Recent Advances[END_REF][START_REF] Xu | Decentralized Visual-Inertial-UWB Fusion for Relative State Estimation of Aerial Swarm[END_REF] on-board to localize the rover with respect to the lander.

slam/vio

Simultaneous Localization and Mapping (SLAM) and Visual Inertial Odometry (VIO) are defined as a function that transform raw data from the sensors into a distribution over the states of the robot. SLAM and VIO [START_REF] Schneider | Maplab: an Open Framework for Research in Visual-inertial Mapping and Localization[END_REF][START_REF] Usenko | Visual-inertial Mapping with Non-linear Factor Recovery[END_REF] have been for decades unparalleled problems in robot perception and state estimation. Although typical dense SLAM systems are not differentiable, new approaches to solve this problem propose gradient-based learning over computational graphs to go all the way from 3D maps to 2D pixels [START_REF] Murthy | Dense SLAM Meets Automatic Differentiation[END_REF].

The first task to tackle in geometric computer vision, being SLAM [START_REF] Newcombe | Dense Tracking and Mapping in Real-time[END_REF][START_REF] Engel | LSD-SLAM: Large-scale Direct Monocular SLAM[END_REF][START_REF] Engel | Direct Sparse Odometry[END_REF], Structure-from-Motion (SfM) [START_REF] Snavely | Photo Tourism: Exploring Photo Collections in 3D[END_REF][START_REF] Agarwal | Building Rome on a Day[END_REF][START_REF] Tateno | CNN-SLAM: Realtime Dense Monocular SLAM with Learned Depth Prediction[END_REF][START_REF] Bloesch | CODESLAM -Learning a Compact, Optimisable Representation for Dense Visual SLAM[END_REF][START_REF] Teed | DeepV2D: Video to Depth with Differentiable Structure from Motion[END_REF][START_REF] Graham | Structure from Motion via Robust Pairwise Matching under Depth Uncertainty[END_REF], camera calibration or image matching, is to extract interest points [START_REF] Ono | Net: Learning Local Features from Images[END_REF][START_REF] Detone | SuperPoint: Selfsupervised Interest Point Detection and Description[END_REF] from still images. We can define interest points as 2D specific locations in a given sample which can be considered stable and repeatable along different ambient conditions and viewpoints. The techniques used to traditionally attack this problem pertain to Multiple View Geometry [START_REF] Hartley | Multiple View Geometry in Computer Vision 2nd Edition[END_REF], a subfield of mathematics that sets forth theorems and algorithms built on the assumption that those interest points can indeed be reliably extracted and matched across overlapping frames. Natheless, real-world computer vision operates on raw images that are far from the idealized conditions assumed in the proposed theory. Blending traditional modules with learning representations have lately been proven to be incredibly effective [START_REF] Detone | SuperPoint: Selfsupervised Interest Point Detection and Description[END_REF][START_REF] Tang | Dense Bundle Adjustment Network[END_REF][START_REF] Yang | 3VO: Deep Depth, Deep Pose and Deep Uncertainty for Monocular Visual Odometry[END_REF] as a way to bridge the gap between the conditions that we face in the real world and the assumptions made to design the algorithms. Plentiful of approaches also explore unsupervised learning of depth and ego-motion [START_REF] Godard | Unsupervised Monocular Depth Estimation with Left-right Consistency[END_REF][START_REF] Zhou | Unsupervised Learning of Depth and Ego-motion from Video[END_REF][START_REF] Yin | Unsupervised Learning of Dense Depth, Optical Flow and Camera Pose[END_REF].

State-of-the-art approaches also deal with related problems such as SLAM object-level, that is, a system capable of optimizing object poses and shapes together with camera trajectory [START_REF] Sünderhauf | Meaningful Maps With Object-oriented Semantic Mapping[END_REF][START_REF] Mccormac | Fusion++: Volumetric Object-level SLAM[END_REF][START_REF] Sucar | Neural Object Descriptors for Multi-view Shape Reconstruction[END_REF]. Although a SLAM system capable of incrementally mapping multi-object scenes seems not related to our task, its importance is revealed when we understand the fact that in many occasions the rover will localize itself with respect to the lander, which location is known; therefore a SLAM solution capable of optimizing the pose and shape of the lander along camera trajectory of the rover, would be distinctly adequate. With respect to this, we have to bear in mind that the principal technique that the rover will be using on-board to localize itself will be the UWB module [START_REF] Xu | Decentralized Visual-Inertial-UWB Fusion for Relative State Estimation of Aerial Swarm[END_REF]; that will indeed use the lander as a waystation for data communication. The reason for this is that critical weight and power can be hugely saved using RF for communication and state estimation. Thus, SLAM and VIO computation will be done on-ground. Using the same philosophy, it seems natural also to rely on a technique that will jointly optimize pose and shape of the lander together with camera trajectories.

shape and pose of the lander

We assume here that we have a segmentation mask of the lander that in our specific case is obtained by the use of semantic segmentation [START_REF] Chen | Photographic Image Synthesis with Cascaded Refinement Networks[END_REF][START_REF] Chen | Rethinking Atrous Convolution for Semantic Image Segmentation[END_REF][START_REF] He | IEEE International Conference on Computer Vision[END_REF][START_REF] Zhou | Unsupervised Learning of Depth and Ego-motion from Video[END_REF][START_REF] Arbeláez | Contour Detection and Hierarchical Image Segmentation[END_REF][START_REF] Arbeláez | Multiscale Combinatorial Grouping[END_REF][START_REF] Hariharan | Hypercolumns for Object Segmentation and Fine-grained Localization[END_REF][START_REF] Mostajabi | Feedforward Semantic Segmentation with Zoom-out Features[END_REF][START_REF] Yu | Multi-scale Context Aggregation by Dilated Convolutions[END_REF][START_REF] Chen | Encoderdecoder with Atrous Separable Convolution for Semantic Image Segmentation[END_REF][START_REF] Chen | Instance Segmentation by Refining Object Detection with Semantic and Direction Features[END_REF]. On some of these approaches, the segmentation process is guided by the use of a prior object detector [START_REF] Girshick | IEEE International Conference on Computer Vision[END_REF][START_REF] Redmon | You Only Look Once: Unified, Real-time Object Detection[END_REF][START_REF] Ren | Towards Real-time Object Detection with Region Proposal Networks[END_REF][START_REF] Liu | Single Shot Multibox Detector[END_REF][START_REF] Redmon | Better, Faster, Stronger[END_REF][START_REF] Huang | Speed/Accuracy Trade-offs for Modern Convolutional Object Detectors[END_REF]. Specifically, we finetune our model building on DilatedResnet-101 [START_REF] Zhao | Energy-based Generative Adversarial Networks[END_REF][START_REF] Zhou | Semantic Understanding of Scenes through the ADE20K Dataset[END_REF] and UperNet-101 [START_REF] Lin | Feature Pyramid Networks for Object Detection[END_REF][START_REF] Xiao | Unified Perceptual Parsing for Scene Understanding[END_REF] trained on ADE20K [START_REF] Zhou | Unsupervised Learning of Depth and Ego-motion from Video[END_REF]. Some examples of the mask given by our segmenter can be observed in Figure 2.2. To infer the shape and pose we will leverage existing techniques [START_REF] Sucar | Neural Object Descriptors for Multi-view Shape Reconstruction[END_REF] that given a depth image, full shape and pose is determined. These techniques normally address multi-object categories; where a previous classification step and object observation is necessary, however our approach is somewhat simpler in the sense that the only object under consideration will be the lander per se.

temporal interpolation between subsequent samples

In the absence of continuous data between adjacent temporal samples given by the camera and to mitigate the effects that this will incur in the algorithms used to localize the rover, we propose to adopt techniques from video frame interpolation. Although signaling breakthroughs have been achieved by the use of recent deep convolutional neural networks, the quality of the resulting samples is often dubious due to object motion or occlusions. The main aim here is to synthesize non-existent frames inbetween original samples to improve accuracy in the proposed VIO/SLAM approaches. Specifically for this purpose, we build on a recent depthaware flow projection layer that achieves compelling upshots to synthesize intermediate sequences [START_REF] Bao | Depth-aware Video Frame Interpolation[END_REF].

introduction

Developing a Generative Adversarial Network (GAN) [START_REF] Goodfellow | Generative Adversarial Networks[END_REF] able to produce good quality high-resolution samples from images has important applications [3][4][5][6][START_REF] Li | Triple Generative Adversarial Nets[END_REF][START_REF] Wang | Highresolution Image Synthesis and Semantic Manipulation with Conditional GANs[END_REF][START_REF] Wang | Video-to-video Synthesis[END_REF][START_REF] Portenier | FaceShop: Deep Sketch-based Face Image Editing[END_REF][START_REF] Lombardi | Deep Appearance Models for Face Rendering[END_REF][12][START_REF] Sankaranarayanan | Learning from Synthetic Data: Addressing Domain Shift for Semantic Segmentation[END_REF][START_REF] Romero | Stochastic Multi-label Image-to-image Translation[END_REF][START_REF] Chen | Learning Semantic Segmentation from Synthetic Data: a Geometrically Guided Input-output Adaptation Approach[END_REF][START_REF] De Curtó | Cycle-consistent Generative Adversarial Networks for Neural Style Transfer Using Data from Chang[END_REF][START_REF] De Curtó | Vulcan Centaur: towards End-to-end Realtime Perception in Lunar Rovers[END_REF] including image inpainting, 3D data, domain translation, video synthesis, image edition, semantic segmentation and semi-supervised learning. In this paper, we focus on the task of face generation, as it gives GANs a huge space of learning attributes. In this context, we introduce the Dataset of Curtò & Zarzà [START_REF] Curtó | Highresolution Deep Convolutional Generative Adversarial Networks[END_REF], a well-balanced collection of images containing 14,248 human faces from different ethnical groups and rich in a wide range of learnable attributes, such as gender and age diversity, hair-style and pose variation or presence of smile, glasses, hats and fashion items. We also ensure the presence of changes in illumination and image resolution. We propose to use Curtò as de facto approach to empirically test the distribution learned by a GAN, as it offers a challenging problem to solve, while keeping the number of samples, and therefore training time, bounded. It can also be used as a drop-in substitute of MNIST for simple tasks of classification, say for instance using labels of ethnicity, gender, age, hair Despite improvements in GANs training stability [START_REF] Salimans | Improved Techniques for Training GANs[END_REF][START_REF] Mescheder | The Numerics of GANs[END_REF][START_REF] Mescheder | Which Training Methods for GANs Do Actually Converge? ICML[END_REF] and specifictask design during the last years, it is still challenging to train GANs to generate high-resolution images due to the disjunction in the high dimensional pixel space between supports of the real image and implied model distributions [START_REF] Arjovsky | Towards Principled Methods for Training Generative Adversarial Networks[END_REF][START_REF] Sønderby | Amortised MAP Inference for Image Super-resolution[END_REF].

Our goal is to be able to generate indistinguishable sample instances using face data to push the boundaries of GAN image generation that scale well to high-resolution images (such as 512×512) and where context information is maintained.

In this sense, Deep Learning has a tremendous appetite for data. The question that arises instantly is, what if we were able to generate additional realistic data to aid learning using the same techniques that are later used to train the system. The first step would then be to have an image generation tool able to sample from a very precise distribution (e. g. faces from celebrities) which instances resemble or highly correlate with real sample images of the underlying true distribution. Once achieved, what is desirable and comes next is that these generated image points not only fit well into the original distribution set of images but also add additional useful information such as redundancy, different poses or even generate highly-probable scenarios that would be possible to see in the original dataset but are actually not present.

Current research trends link Deep Learning and Kernel Methods to establish a unifying theory of learning [START_REF] Curtó | a Library for Approximate Kernel Expansions in Log-linear Time[END_REF][START_REF] Curtó | Doctor of Crosswise: Reducing Over-parametrization in Neural Networks[END_REF][START_REF] De Zarzà | A Unifying Theory of Learning: DL Meets Kernel Methods PhD thesis[END_REF]. The next frontier in GANs would be to achieve learning at scale with very few examples. To achieve the former goal this work contributes in the following:

• Network that achieves compelling results and scales well to the highresolution setting where to the best of our knowledge the majority of other variants are unable to continue learning or fall into mode collapse.

• New dataset targeted for GAN training, Curtò, that introduces a wide space of learning attributes. It aims to provide a well-posed difficult task while keeping training time and resources tightly bounded to spearhead research in the area.

prior work

Generative image generation is a key problem in Computer Vision and Computer Graphics. Remarkable advances have been made with the renaissance of Deep Learning. Variational Autoencoders (VAE) [START_REF] Lombardi | Deep Appearance Models for Face Rendering[END_REF][START_REF] Kingma | Auto-encoding Variational Bayes[END_REF] formulate the problem with an approach that builds on probabilistic graphical models, where the lower bound of data likelihood is maximized. Autoregressive models (scilicet PIXELRNN [START_REF] Van Den Oord | Pixel Recurrent Neural Networks[END_REF]), based on modeling the conditional distribution of the pixel space, have also presented relative success generating synthetic images. Lately, Generative Adversarial Networks (GANs) [START_REF] Goodfellow | Generative Adversarial Networks[END_REF]2,[START_REF] Portenier | FaceShop: Deep Sketch-based Face Image Editing[END_REF][START_REF] Odena | Conditional Image Synthesis with Auxiliary Classifier GANs[END_REF][START_REF] Antoniou | Data Augmentation Generative Adversarial Networks[END_REF][START_REF] Wang | Generative Image Modeling Using Style and Structure Adversarial Networks[END_REF][START_REF] Zhu | Generative Visual Manipulation on the Natural Image Manifold[END_REF] have shown strong performance in image generation. However, training instability makes it very hard to scale to high-resolution (256×256 or 512×512) samples. Some current works on the topic pinpoint this specific problem [START_REF] Zhang | StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks[END_REF], where conditional image generation is also tackled while other recent techniques [START_REF] Salimans | Improved Techniques for Training GANs[END_REF][START_REF] Chen | Photographic Image Synthesis with Cascaded Refinement Networks[END_REF][START_REF] Dosovitskiy | Generating Images with Perceptual Similarity Metrics Based on Deep Networks[END_REF][START_REF] Zhao | Energy-based Generative Adversarial Networks[END_REF][START_REF] Karras | Progressive Growing of GANs for Improved Quality, Stability, and Variation[END_REF][START_REF] Wei | Improving the Improved Training of WASSERSTEIN GANs: a Consistency Term and Its Dual Effect[END_REF][START_REF] Brock | Large Scale GAN Training for High Fidelity Natural Image Synthesis[END_REF] try to stabilize training.

dataset of curtò & zarzà

Curtò contains 14,248 faces balanced in terms of ethnicity: African American, East-asian, South-asian and White. Mirror images are included to enhance pose variation and there is roughly 25% per image class. Attribute information, see Table 3.1, is composed of thorough labels of gender, age, ethnicity, hair color, hair style, eyes color, facial hair, glasses, visible forehead, hair covered and smile. There is also an extra set with 3,384 cropped labeled images of faces, ethnicity white, no mirror samples included, see Column 4 in Table 3.1 for statistics. We crawled Flickr to download images of faces from several countries that contain different hair-style variations and style attributes. These images were then processed to extract 49 facial landmark points using [START_REF] Xiong | Supervised Descent Method and its Application to Face Alignment[END_REF]. We ensure using Mechanical Turk that the detected faces are correct in terms of ethnicity and face detection. Cropped faces are then extracted to generate multiple resolution sources. Mirror augmentation is performed to further enhance pose variation.

Curtò introduces a difficult paradigm of learning, where different ethnical groups are present, with very varied fashion and hair styles. The fact that the photos are taken using non-professional cameras in a non-controlled environment, gives us multiple poses, illumination conditions and camera quality. 

approach

Generative Adversarial Networks (GANs) proposed by [START_REF] Goodfellow | Generative Adversarial Networks[END_REF] are based on two dueling networks, Figure 3. 

+E z∼p z [log(1 -D(G(z)))] , (3.2) 
where x is a ground truth image sampled from the true distribution p data , and z is a noise vector sampled from p z (that is, uniform or normal distribution). G and D are parametric functions where G : p z → p data maps samples from noise distribution p z to data distribution p data .

The goal of the Discriminator is to minimize

L (D) = - 1 2 E x∼p data [log D(x)] - (3.3) - 1 2 E z∼p z [log(1 -D(G(z)))] . (3.4) 
If we differentiate it w.r.t D(x) and set the derivative equal to zero, we can obtain the optimal strategy

D(x) = p data (x) p z (x) + p data (x) . ( 3.5) 
Which can be understood intuitively as follows. Accept an input, evaluate its probability under the distribution of the data, p data , and then evaluate its probability under the generator's distribution of the data, p z . Under the condition in D of enough capacity, it can achieve its optimum. Note the discriminator does not have access to the distribution of the data but it is learned through training. The same applies for the generator's distribution of the data. Under the condition in G of enough capacity, then it will set p z = p data . This results in D(x) = 1 2 , that is actually the NASH equilibrium. In this situation, the generator is a perfect generative model, sampling from p(x).

As an extension to this framework, DCGAN [2] proposes an architectural topology based on Convolutional Neural Networks (CNNs) to stabilize training and re-use state-of-the-art networks from tasks of classification. This direction has recently received lots of attention due to its compelling results in supervised and unsupervised learning. We build on this to propose a novel DCGAN architecture to address the problem of high-resolution image generation. We name this approach HDCGAN.

HDCGAN

Despite the undoubtable success, GANs are still arduous to train, particularly when we use big images (e. g. 512×512). It is very common to see D beating G in the process of learning, or the reverse, ending in unrecognizable imagery, also known as mode collapse. Only when stable learning is achieved, the GAN structure is able to succeed in getting better and better results with time.

This issue is what drives us to carefully derive a simple yet powerful structure that leverages common problems and gets a stable and steady training mechanism.

Self-normalizing Neural Networks (SNNs) were introduced in [100]. We consider a neural network with activation function f , connected to the next layer by a weight matrix W, and whose inputs are the activations from the preceding layer x, y = f (Wx).

We can define a mapping g that maps mean and variance from one layer to mean and variance of the following layer

µ ν -→ μ ν : μ ν = g µ ν . ( 3.6) 
Common normalization tactics such as batch normalization ensure a mapping g that keeps (µ, ν) and ( μ, ν) close to a desired value, normally (0, 1).

SNNs go beyond this assumption and require the existence of a mapping g : Ω -→ Ω that for each activation y maps mean and variance from one layer to the next layer and at the same time have a stable and attracting fixed point depending on (ω, τ) in Ω. Moreover, the mean and variance remain in the domain Ω and when iteratively applying the mapping g, each point within Ω converges to this fixed point. Therefore, SNNs keep activations normalized when propagating them through the layers of the network.

Here (ω, τ) are defined as follows. For n units with activation x c , 1 ≤ c ≤ n in the lower layer, we set n times the mean of the weight vector w ∈ R n as ω := ∑ n c=1 w c and n times the second moment as τ := ∑ n c=1 w 2 c .

Scaled Exponential Linear Units (SELU) [100] is introduced as the choice of activation function in Feed-forward Neural Networks (FNNs) to construct a mapping g with properties that lead to SNNs.

selu(x) = λ x if x > 0 α exp x -α if x ≤ 0. (3.7)
Empirical observation leads us to say that the use of SELU greatly improves the convergence speed on the DCGAN structure, however, after some iterations mode collapse and gradient explosion completely destroy training when using high-resolution images. We conclude that although SELU gives theoretical guarantees as the optimal activation function in FNNs, numerical errors in the GPU computation degrade its performance in the overall min-max game of DCGAN. To alleviate this problem, we propose to use SELU and BatchNorm [101] together. The motivation is that when numerical errors move ( μ, ν) away from the attracting point that depends on (ω, τ) ∈ Ω, BatchNorm will ensure it is close to a desired value and therefore maintain the convergence rate. As SELU + BatchNorm (BS) layers keep mean and variance close to (0, 1) we get an unbiased estimator of p data with contractive finite variance. These are very desirable properties from the point of view of an estimator as we are iteratively looking for a MVU (Minimum Variance Unbiased) criterion and thus solving MSE (Minimum Square Error) among unbiased estimators. Hence, if the MVU estimator exists and the network has enough capacity to actually find the solution, given a sufficiently large sample size by the Central Limit Theorem, we can attain NASH equilibrium.

HDCGAN Architecture is described in Figure 3.4. It differs from traditional DCGAN in the use of BS layers instead of ReLUs.

We observe that when having difficulty in training DCGAN, it is always better to use a fixed learning rate and instead increase the batch size. This is because having more diversity in training, gives a steady diminishing loss and better generalization. To aid learning, noise following a Normal N(0, 1) is added to both the inputs of D and G. We see that this helps overcome mode saturation and collapse whereas it does not change the distribution of the original data.

We empirically show that the use of BS induces SNNs properties in the GAN structure, and thus makes learning highly robust, even in the stark presence of noise and perturbations. This behavior can be observed when the zero-sum game problem stabilizes and errors in D and G jointly diminish, Figure 3.9. Comparison to traditional DCGAN, WASSERSTEIN GAN [102] and WGAN-GP [103] is not possible, as to date, the majority of former methods, such as [104], cannot generate recognizable results in image size 512×512, 24GB GPU memory setting. Thus, HDCGAN pushes up state-of-the-art results beating all former DCGAN-based architectures and shows that, under the right circumstances, BS can solve the min-max game efficiently.

Glasses

We introduce here a key technique behind the success of HDCGAN. Once we have a good convergence mechanism for large input samples, that is a concatenation of BS layers, we observe that we can arbitrarily improve the final results of the GAN structure by the use of a Magnifying Glass approach. Assuming our input length is N × M, we can enlarge it by a constant factor, ζ 1 N × ζ 2 M, which we call telescope, and then feed it into the network, maintaining the size of the convolutional filters untouched. This simple procedure works similar to how contact lenses correct or assist defective eyesight on humans and empowers the GAN structure to appreciate the inner properties of samples.

Note that as the input gets bigger so does the neural network. That is, the number of layers is implicitly set by the image size, see up-sampling and down-sampling blocks in Figure 3 We can empirically observe that BS layers together with Glasses induce high capacity into the GAN structure so that a NASH equilibrium can be reached. That is to say, the generator draws samples from p data , which is the distribution of the data, and the discriminator is not able to distinguish between them, D(x) = 1 2 ∀x.

empirical analysis

We build on DCGAN and extend the framework to train with high-resolution images using Pytorch. Our experiments are conducted using a fixed learning rate of 0.0002 and ADAM solver [105] with batch size 32 and 512×512 samples with the number of filters of G and D equal to 64.

In order to test generalization capability, we train HDCGAN in the newly introduced Curtò, CelebA and CelebA-hq. Technical Specifications: 2 × NVIDIA Titan X, Intel Core i7-5820k@3.30GHz.

Curtò

The results after 150 epochs are shown in Figure 3.6. We can see that HDCGAN captures the underlying features that represent faces and not only memorizes training examples. We retrieve nearest neighbors to the generated images in Figure 3.7 to illustrate this effect. In Figure 3.9 we can observe that BS stabilizes the zero-sum game, where errors in D and G concomitantly diminish. To show the validity of our method, we enclose Figure 3.10, presenting a large number of samples for epoch 39. We also attach a zoomed-in example to appreciate the quality and size of the generated samples, Figure 3.11. Failure cases can be observed in Figure 3.12. Besides, to illustrate how fundamental our approach is, we enlarge Curtò with 4,239 unlabeled synthetic images generated by HDCGAN on CelebA, a random set can be seen in Figure 3.13. To exemplify that the model is generating new bona fide instances instead of memorizing samples from the training set, we retrieve nearest neighbors to the generated images in Figure 3.16.
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HDCGAN Synthetic Images

Nearest Neighbors from CelebA-hq 

assessing the discriminability and quality of generated samples

We build on previous image similarity metrics to qualitatively evaluate generated samples of generative models. The most effective of these is multi-scale structural similarity (MS-SSIM) [START_REF] Odena | Conditional Image Synthesis with Auxiliary Classifier GANs[END_REF]. We make comparison at resized image size 128×128 on CelebA. MS-SSIM results are averaged from 10,000 pairs of generated samples. Table 3 We monitor MS-SSIM scores across several epochs averaging from 10,000 pairs of generated images to see the temporal performance, Figure 3.17. HDCGAN improves the quality of the samples while increases the diversity of the generated distribution. An analysis of the frobnicatable foo filter. In this paper we present a performance analysis of the paper of Smith [START_REF] Goodfellow | Generative Adversarial Networks[END_REF], and show it to be inferior to all previously known methods. Why the previous paper was accepted without this analysis is beyond me.

[1] Smith, L. and Jones, C. "The frobnicatable foo filter, a fundamental contribution to human knowledge". Nature 381(12), 1-213. If you are making a submission to another conference at the same time, which covers similar or overlapping material, you may need to refer to that submission in order to explain the di↵erences, just as you would if you had previously published related work. In such cases, include the anonymized parallel submission [?] as additional material and cite it as 1. Authors. "The frobnicatable foo filter", BMVC 2014 Submission ID 324, Supplied as additional material bmvc14.pdf.

Finally, you may feel you need to tell the reader that more details can be found elsewhere, and refer them to a technical report. For conference submissions, the paper must stand on its own, and not require the reviewer to go to a techreport for further details. Thus, you may say in the body of the paper In [106] they propose to evaluate GANs using the FRÉCHET Inception Distance, which assesses the similarity between two distributions by the difference of two Gaussians. We make comparison at resized image size 64×64 on CelebA. Results are computed from 10,000 512×512 generated samples from epochs 36 to 52, resized at image size 64×64 yielding a value of 8.44, Table 3 

discussion

In this chapter, we propose High-resolution Deep Convolutional Generative Adversarial Networks (HDCGAN) by stacking SELU + BatchNorm (BS) layers. The proposed method generates high-resolution images (e. g. 512×512) in circumstances where the majority of former methods fail. It exhibits a steady and smooth mechanism of training. It also introduces Glasses, the notion that enlarging the input image by a telescope ζ while keeping all convolutional filters unchanged, can arbitrarily improve the final generated results. HDCGAN is the current state-of-the-art in synthetic image generation on CelebA (MS-SSIM 0.1978 and FRÉCHET Inception Distance 8.44).

Further, we present a bias-free dataset of faces containing well-balanced ethnical groups, Curtò & Zarzà, that poses a very difficult challenge and is rich on learning attributes to sample from. Moreover, we enhance Curtò with 4,239 unlabeled synthetic images generated by HDCGAN, being therefore the first GAN augmented dataset of faces.

A N E F F I C I E N T S E G M E N TAT I O N T E C H N I Q U E

introduction

Detection and Segmentation are key components in any toolbox of Computer Vision. In this paper we present a technique of hashing to segment an object given its bounding box and therefore attain simultaneously both Detection and Segmentation. At its heart lies a novel way to retrieve and generate a high-quality segmentation, which is crucial for a wide variety of CV applications. Simply put, we use a state-of-the-art convolutional network to detect the objects, but hashing on top of a high-quality hierarchy of regions to generate the segmentations [108]. Detection and Segmentation of Objects are two popular problems in Computer Vision and Machine Learning, historically treated as separated tasks. We consider these strongly related vision tasks as a unique one: detecting each object in an image and assigning to each pixel a binary label inside the corresponding bounding box.

C&Z Segmentation addresses the problem with a surprising different technique that deviates from the current norm of using proposal object candidates [START_REF] Arbeláez | Multiscale Combinatorial Grouping[END_REF]. In semantic segmentation the need for rich information models that entangle some kind of notion from the different parts that constitute an object is exacerbated. To alleviate this issue we build on the use of the hierarchical model in [START_REF] Arbeláez | Contour Detection and Hierarchical Image Segmentation[END_REF] and explore the rich space of information of the Ultrametric Contour Map (UCM) in order to find the best possible semantic segmentation of the given object. For this task, we exploit bounding boxes to facilitate the search. Hence, we simply hash the patches enclosed by the bounding boxes and retrieve closest nearest neighbors to the given objects, obtaining superior segmentations. Using this simple but effective technique we get the segmentation mask which is then refined using Hierarchical Section Pruning.

We start from a detector of bounding boxes and refine the object support, as in Hypercolumns [START_REF] Hariharan | Hypercolumns for Object Segmentation and Fine-grained Localization[END_REF]. We propose here a train-free similarity hashing alternative to their approach.

We present a simple yet effective module that leverages the need for a training step and can provide segmentations after any given detector. Our approach is to use a state-of-the-art region-based CNN detector [START_REF] Ren | Towards Real-time Object Detection with Region Proposal Networks[END_REF] as prior step to guide the process of segmentation.

Outline: We begin next with a high-level description of the proposed method and develop further the idea to propose Hierarchical Section Hashing and Hierarchical Section Pruning in Section 4.1 and Section 4.3. Prior work follows in Section 4.2. We conclude with the evaluation metrics in Section 4.4 and a brief discussion in Section 4.5.

We start with a primer. C&Z Segmentation consists on the following main blocks:

• Detection of Objects using Bounding Boxes. We use a convolutional neural network [START_REF] Ren | Towards Real-time Object Detection with Region Proposal Networks[END_REF] to detect all the objects in an image and generate the corresponding bounding boxes. We consider a detected object in an image as each output candidate thresholded by the class level score (benchmarks specifications in Section 4.4).

• Hierarchy. The image is presented as a tree of hierarchical regions based on the UCM [START_REF] Arbeláez | Contour Detection and Hierarchical Image Segmentation[END_REF].

• Similarity Hashing. We develop Hierarchical Section Hashing based on the LSH technique of [109].

• Refinement of Regions. The segmentations are refined by the use of Hierarchical Section Pruning.

• Evaluation. We evaluate the results on the PASCAL VOC 2012 Segmentation dataset [110] using the JACCARD index metric, which measures the average best overlap achieved by a segmentation mask for a ground truth object.

This work is inspired on how humans segment images: they first localize the objects they want to segment, they carefully inspect the object on the image by the use of their visual system and finally they choose the region that belongs to the body of that particular object. We believe that although the problem of detection has to be solved by the use of deep learning based on convolutional neural networks, in the same way that current breakthroughs have been attained in Generative Adversarial Networks (GAN) [START_REF] Goodfellow | Generative Adversarial Networks[END_REF]2,[START_REF] Salimans | Improved Techniques for Training GANs[END_REF][START_REF] Karras | Progressive Growing of GANs for Improved Quality, Stability, and Variation[END_REF][START_REF] Curtó | Highresolution Deep Convolutional Generative Adversarial Networks[END_REF], the problem of segmenting those objects is of a different nature and can be best understood by the use of hashing. Furthermore, current research trends link concepts of Deep Learning to Kernel Methods, proposing a unifying theory of learning in [START_REF] Curtó | a Library for Approximate Kernel Expansions in Log-linear Time[END_REF][START_REF] Curtó | Doctor of Crosswise: Reducing Over-parametrization in Neural Networks[END_REF][START_REF] De Zarzà | A Unifying Theory of Learning: DL Meets Kernel Methods PhD thesis[END_REF].

Our main contributions are presented as follows:

• Novel approach to solve the task of segmentation by similarity hashing exploiting the detection of objects using bounding boxes.

• Use of hierarchical structures which are rich on semantic meaning instead of other current state-of-the-art techniques such as generation of proposal object candidates.

• No need of training data for the task of segmentation under the framework of detection using bounding boxes, that is train-free accurate segmentations.

• State-of-the-art results.

To our knowledge, we are the first to provide a segmentation based on hashing. This approach leverages the need to optimize over a highdimensional space.

Despite the success of region proposal methods in detection, they have in turn arisen as the main computational bottleneck of these approaches. Yet unlike the latter, hierarchical structures derived from the UCM are in comparison inexpensive to compute and store. While we continue to use a very fast region-based convolutional neural network (R-CNN) to solve the task of detection, we propose to solve the problem of segmentation by exploring efficiently the space generated by a hierarchical image.

prior work

Recent works [START_REF] He | IEEE International Conference on Computer Vision[END_REF]111] present Object Detection and Segmentation as a single problem. The task requires to detect and segment every instance of a category in the image. Our work is however more closely related to the approach in Hypercolumns [START_REF] Hariharan | Hypercolumns for Object Segmentation and Fine-grained Localization[END_REF], where they go from bounding boxes to segmented masks. Our course of action is related in the sense that we propose an alternative that does not require a training step and can be used as an off-the-shelf high-quality segmenter.

For semantic segmentation [START_REF] Chen | Photographic Image Synthesis with Cascaded Refinement Networks[END_REF][START_REF] Chen | Rethinking Atrous Convolution for Semantic Image Segmentation[END_REF][START_REF] Arbeláez | Contour Detection and Hierarchical Image Segmentation[END_REF][START_REF] Arbeláez | Multiscale Combinatorial Grouping[END_REF][START_REF] Yu | Multi-scale Context Aggregation by Dilated Convolutions[END_REF][START_REF] Chen | Encoderdecoder with Atrous Separable Convolution for Semantic Image Segmentation[END_REF][START_REF] Chen | Instance Segmentation by Refining Object Detection with Semantic and Direction Features[END_REF], there has been several approaches where they guide the process of segmentation by the use of a prior detector [START_REF] Girshick | IEEE International Conference on Computer Vision[END_REF][START_REF] Redmon | You Only Look Once: Unified, Real-time Object Detection[END_REF][START_REF] Ren | Towards Real-time Object Detection with Region Proposal Networks[END_REF][START_REF] Liu | Single Shot Multibox Detector[END_REF][START_REF] Redmon | Better, Faster, Stronger[END_REF][START_REF] Huang | Speed/Accuracy Trade-offs for Modern Convolutional Object Detectors[END_REF]. Recently, this strategy has also presented state-of-the-art results in person detection and pose estimation [112]. Alternate procedures count on a human-on-the-loop [113]. Ongoing research on the matter uses Neural Architecture Search [START_REF] Zhang | The Scientific Data and Its Archiving from Chang[END_REF][114][115][116][117][118] to design efficient architectures of neural networks for dense image prediction [119]. With the advent of present-day autonomous vehicles, the need to generate segmentations directly from the point cloud given by LIDAR [120-122], as well as detect 3D objects [START_REF] Zhou | Semantic Understanding of Scenes through the ADE20K Dataset[END_REF][123][124][125][126][127][128], is also recently attracting lots of research efforts. Our segmenter starts rather than from raw pixels, [129] and [130], or bounding box proposals as in [131] and [111], from a set of hierarchical regions given by the UCM structure. Other techniques rely on superpixels e. g. [START_REF] Mostajabi | Feedforward Semantic Segmentation with Zoom-out Features[END_REF]. This is a distinct tactic that works directly on a different representation.

segmentation c&z

We delve into the details of the C&Z Segmentation construction, 
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Detection of Objects Using Bounding Boxes

We begin by using the R-CNN object detector proposed by [START_REF] Ren | Towards Real-time Object Detection with Region Proposal Networks[END_REF], which is in turn based on [START_REF] Girshick | IEEE International Conference on Computer Vision[END_REF]. It introduces a Region Proposal Network (RPN) for the task of generating detection proposals and then solves the task of detection by the use of a FAST R-CNN detector. 

Hierarchical Image

We consider the representation of a hierarchical image described in [START_REF] Arbeláez | Multiscale Combinatorial Grouping[END_REF].

Considering a segmentation of an image into regions that partition its domain S = {S c } c . A segmentation hierarchy is a family of partitions {S * , S 1 , . . . , S L } such that: (1) S * is the finest set of superpixels, (2) S L is the complete domain, and (3) regions from coarse levels are unions of regions from fine levels.

Hierarchical Section Hashing

In this paper we introduce a novel segmentation algorithm that exploits bounding boxes to automatically select the best hierarchical region that segments the image. We introduce Hierarchical Section Hashing (HSH) which is in turn based on Locality-Sensitive Hashing (LSH). This algorithm helps us surpass the problem of computational complexity of the k-nearest neighbor rule and allows us to do a fast approximate neighbor search in the hierarchical structure of [START_REF] Arbeláez | Contour Detection and Hierarchical Image Segmentation[END_REF].

HSH can be summarized as follows:

• Detect bounding boxes on an image using a state-of-the-art convolutional neural network [START_REF] Ren | Towards Real-time Object Detection with Region Proposal Networks[END_REF].

• Construct a hierarchical image by using the UCM and convey the result as a hierarchical region tree.

• Each hierarchical region is indexed by a number of tables of hashing using LSH and then constructing a HSH map.

• Each bounding box is hashed into the HSH map to retrieve the approximate nearest neighbor in sublinear time.

C&Z Segmentation has two main steps: first 'train' the HSH map with all the hierarchical regions of the image. Then 'test' the HSH map with all the detected bounding boxes to retrieve the approximate nearest neighbors that segment each of the objects in the image. The novelty of this approach is that it provides the best hierarchical region provided by the UCM structure that segments the object image. C&Z exploits the detection of objects using bounding boxes because it relies on the correct detection of the object detector.

Hierarchical Section Pruning

The final piece is to refine the segmentations given by the HSH map by using what we call Hierarchical Section Pruning (HSP).

HSP procedure can be summarized as follows:

• Once a segmentation mask has been selected for all the objects in the given image, and their bounding boxes recomputed, the bounding box overlap ratio for all box pair combinations, according to the intersection over union criterium, is performed.

• Those masks that present overlap with other object masks on the same image are hierarchically unselected. We always proceed to unselect the low-level hierarchical regions, which by construction enclose a smaller region area and thus a single segmented object, from the high-level hierarchical region, which encloses more than one object and a bigger image area.

• Finally, isolated pixels on the mask are erased to preserve a single connected segmentation.

HSP is based on the fact that each segmentation mask represents a node on the hierarchical region tree constructed from the UCM. Therefore, hierarchical sections containing more than one object represent higher level nodes on the hierarchy. When HSP is applied, low-level hierarchical regions are unselected from the high-level hierarchical sections and therefore replaced by mid-low level sections on the same region tree structure that represents a single object or a smaller area of the image.

HSH and HSP Visual Examples can be seen in Figure 4.4. C&Z Segmentation relies on the prior detection and therefore availability of bounding boxes for all the objects in a given image. The latter can be very useful as C&Z can be understood as a simple and effective technique to provide high-quality segmentations of still images after any available detector of bounding boxes. Likewise, you get train-free off-the-shelf accurate segmentations for any given method that detects bounding boxes.

Aeroplane Bicycle Bird Boat Bottle Bus Car Cat Chair Cow

Locality Sensitive Hashing

Our goal is to retrieve the k-nearest neighbors of a given hierarchical vector, which we call image code. In this setup we are limited by the curse of dimensionality and therefore using an exact search is inefficient. Our approach uses a technique of approximate nearest neighbors: Locality Sensitive Hashing (LSH).

A LSH function maps x → h(x) such that the similarity between (x, y) is preserved as d(h(x), h(y)) D(x, y) -1 ≤ (4.1) which is not possible for all D(x, y) but available for instance for euclidean metrics.

We build on the LSH work of [109,[133][134][135][136][137]. LSH is a randomized hashing scheme, investigated with the primary goal of -R neighbor search. Its main constitutional block is a family of locality sensitive functions. We can define that a family H of functions h : X → {0, 1} is (p 1 , p 2 , r, R)-sensitive if, for any x, y ∈ X ,

Pr h∼U[H] (h(x) = h(y) | ||x -y|| ≤ r) ≥ p 1 , (4.2 
)

Pr h∼U[H] (h(x) = h(y) | ||x -y|| ≥ R) ≤ p 2 , (4.3) 
where these probabilities are chosen from a random choice of h ∈ H.

Algorithm 1 gives a simple description of the LSH algorithm for the given case when the distance of interest is L 1 , which is the one in use in C&Z Segmentation. The family H in this case contains axis-parallel stumps, which means the value of h ∈ H is generated by taking a simple dimension d ∈ {1, . . . , dim(X )} and thresholding it with some T:

h LSH = 1 if x d ≤ T, 0 otherwise. ( 4 

.4)

A LSH function g : X → {0, 1} k is formed by independently k functions h 1 , . . . , h k ∈ H.

That is, we can understand that an example in our hierarchical partition S c ∈ S provides a k-bit key g(S c ) = [h 1 (S c ), . . . , h k (S c )]. (4.5) This process is repeated l times and produces l independently constructed functions of hashing g 1 , . . . , g l . The available reference ('training') data S are indexed by each one of the l functions of hashing, producing l tables of hashing, namely each of the S c hierarchical partitions generated by all the corresponding parents of the hierarchical tree.

Algorithm 1 LSH Algorithm [134]

Given: Dataset X = [x 1 , x N ], x c ∈ R dim(X) . Given: Number of bits k, number of tables l. Output: A set of Randomly (uniformly) draw d ∈ {1, . . . , dim(X )}.

4:

Randomly (uniformly) draw min{x (d) } ≤ v ≤ max{x (d) }.

5:

Let h z c be the function X → {0, 1} defined by

h z c (x) = 1 if x (d) ≤ v, 0 otherwise. 6: 
The z-th LSH function is g z = [h z 1 , . . . , h z k ].

Once the LSH data structure has been built it can be used to perform a very efficient search for approximate neighbors in the following way. When a query S 0 arrives, we compute its key for each table of hashing z, and record the examples C = {S l 1 , . . . , S l n l } resulting from the lookup with that key. In other words, we find the 'training' examples that fell in the same bucket of the l-th table of hashing to which S 0 would fall. These l lookup operations produce a set of candidate matches, C = ∪ l z=1 C z . If this set is empty, the algorithm reports it and stops. Otherwise, the distances between candidate matches and S 0 are explicitly evaluated, and the examples that match the search criteria, which means that are closer to S 0 than (1 + )R, are returned.

evaluation and results

We extensively evaluate C&Z Segmentation on VOC 2012 validation set. Top detections from our algorithm can be seen in Figure 4.1.

JACCARD Index Metric

In Table 4.1 we show the results of the JACCARD Index Metric. This measure represents the average best overlap achieved by a candidate for a ground truth object.

C&Z Segmentation with Jaccard at instance level 45.24% and Jaccard at class level 43.05%. Recall at overlap 0.5 is 43.36%.

discussion

In this paper we introduce C&Z Segmentation, an algorithm to segment objects based on hashing that exploits the detection using bounding boxes. We show C&Z achieves compelling results and generates off-the-shelf accurate segmentations.
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 11 Figure 1.1: Images from the Moon. Panoramic camera of the rover. Chang'E-4.
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 13 Figure 1.3: Cycle-consistent gan. Left: image from Kaggle, rendered simulator of the Moon. Right: style-Moon using our model. Trained at image size 512.
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 12 Figure 1.2: Cycle-consistent gan. Left: images from Kaggle, rendered simulator of the Moon. Right: style-Moon using our model. Trained at image size 256.
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 14 Figure 1.4: Iris Lunar Rover. Simulator used in the actual mission.
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 21 Figure 2.1: Left: real image from the Moon. Right: synthetic Moon.
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 22 Figure 2.2: Segmentation of the Lander. Left: Image from CE4[START_REF] De Curtó | Cycle-consistent Generative Adversarial Networks for Neural Style Transfer Using Data from Chang[END_REF]. In particular we are using color images from the panoramic camera of the rover of the mission to the Moon Chang'E-4. Middle: Generated mask given by model DilatedResnet-101[START_REF] Zhao | Energy-based Generative Adversarial Networks[END_REF][START_REF] Zhou | Semantic Understanding of Scenes through the ADE20K Dataset[END_REF]. Right: Generated mask given by model UperNet-101[START_REF] Lin | Feature Pyramid Networks for Object Detection[END_REF][START_REF] Xiao | Unified Perceptual Parsing for Scene Understanding[END_REF].
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 31 Figure 3.1: HDCGAN Synthetic Images. A set of random samples. Our system generates high-resolution synthetic faces with an extremely high level of detail. HDCGAN goes from random noise to realistic synthetic pictures that can even fool humans. To demonstrate this effect, we create the Dataset of Curtò & Zarzà, the first GAN augmented dataset of faces.
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 32 Figure 3.2: Samples of Curtò. A set of random instances for each class of ethnic-ity: African American, White, East-asian and South-asian. See Table3.1 for numerics.
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 3 Generator G and Discriminator D. In essence, the process of learning consists of a two-player game where D tries to distinguish between the prediction of G and the ground truth, while at the same time G tries to fool D by producing fake instance samples as closer to the real ones as possible. The solution to a game is called NASH equilibrium.
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 33 Figure 3.3: Generative Adversarial Networks. A two-player game between the Generator G and the Discriminator D. The dotted line denotes elements that will not be further used after the game stops, namely, end of training.
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 34 Figure 3.4: HDCGAN Architecture. Generator and Discriminator.
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 4 For example, for an input size of 32 we have 4 layers while for an input size of 256 we have 7 layers.
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 35 Figure 3.5: Glasses on a of samples from CelebA. HDCGAN introduces the use of a Magnifying Glass approach, enlarging the input size by a telescope ζ.
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 36 Figure 3.6: HDCGAN Example Results. Dataset of Curtò & Zarzà. 150 epochs of training. Image size 512×512.
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 37 Figure 3.7: Nearest Neighbors. Dataset of Curtò & Zarzà. Generated samples in the first row and their five nearest neighbors in training (rows 2-6).
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 52 CelebACelebA is a large-scale dataset with 202,599 celebrity faces. It mainly contains frontal portraits and is particularly biased towards groups of ethnicity white. The fact that it presents very controlled illumination settings and good photo resolution, makes it a considerably easier problem than Curtò. The results after 19 epochs of training are shown in Figure3.8.
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 38 Figure 3.8: HDCGAN Example Results. CelebA. 19 epochs of training. Image size 512×512. The network learns swiftly a clear pattern of the face.
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 310 Figure 3.10: HDCGAN Example Results. CelebA. 39 epochs of training. Image size 512×512. The network generates distinctly accurate and assorted faces, including exhaustive details.
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 311 Figure 3.11: HDCGAN Example Result. CelebA. 39 epochs of training. Image size 512×512. 27% of full-scale image.
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 3 Figure 3.12: HDCGAN Example Results. CelebA. 39 epochs of training. Image size 512×512. Failure cases. The number of failure cases declines over time, and when present, they are of more meticulous nature.

Figure 3 . 13 :

 313 Figure 3.13: HDCGAN Synthetic Images. A set of random samples.
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 53 CelebA-hqCelebA-hq in introduced in[START_REF] Karras | Progressive Growing of GANs for Improved Quality, Stability, and Variation[END_REF], a set of 30.000 high-definition images to improve training on CelebA. A set of samples generated by HDCGAN on CelebA-hq can be seen in Figures 3.1

  , 3.14 and 3.15.
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 314 Figure 3.14: HDCGAN Example Results. CelebA-hq. 229 epochs of training.Image size 512×512. The network generates superior faces, with great attention to detail and quality.
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 315 Figure 3.15: HDCGAN Example Result. CelebA-hq. 229 epochs of training. Image size 512×512. 27% of full-scale image.

Figure 3 . 16 :

 316 Figure 3.16: Nearest Neighbors. CelebA-hq. Generated samples in the first row and their five nearest neighbors in training (rows 2-6).
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 317 Figure 3.17: MS-SSIM Scores on CelebA across several epochs. Results are averaged from 10,000 pairs of generated images from epoch 19 to 74. Comparison is made at resized image size 128×128. Affine interpolation is shown in red.
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 41 Figure 4.1: Top Detections. Top: VOC 2012 Ground Truth. Bottom: C&Z Segmentation.
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 44 Figure 4.4: Left: HSH Visual Example. Right: HSP Visual Example.
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 12 for z = 1, . . . , l do for c = 1, . . . , k do 3:

  To demonstrate this effect, we create the Dataset of Curtò & Zarzà, the first GAN augmented dataset of faces.
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 31 Attribute Information. Descending order of class instances by number of samples, Column 3.

	Attribute	Class	# Samples # Extra
	Age	Early Adulthood 3606	966
		Middle Aged	2954	875
		Teenager	2202	178
		Adult	1806	565
		Kid	1706	85
		Senior	1102	402
		Retirement	436	218
		Baby	232	14
	Ethnicity	African American 4348	0
		White	3442	3384

Table 3 .

 3 

		.2 shows HDCGAN significantly
	improves state-of-the-art results.	
		MS-SSIM
	Gulrajani et al. [103] 0.2854
	Karras et al. [38]	0.2838
	HDCGAN	0.1978

2: Multi-scale structural similarity (MS-SSIM) results on CelebA at resized image size 128×128. Lower is better.

  .3, clearly outperforming current reported scores in DCGAN architectures [107].

		Fréchet
	Karras et al. [38] 16.3
	Wu et al. [107]	16.0
	HDCGAN	8.44

Table 3 .

 3 

3: FRÉCHET Inception Distance on CelebA at resized image size 64×64. Lower is better.

  e x i t > Figure 4.2: C&Z Segmentation. We construct a hierarchical image based on the UCM and 'train' the HSH map by hashing each region of the parent partition nodes. To retrieve a segmentation mask, we 'test' the HSH map by doing a lookup of the detected area enclosed by the bounding box, videlicet a fast search of approximate nearest neighbors on the hierarchical structure, and finally refine the result through HSP.

  They train a CNN on ImageNet Classification and fine-tune the network on the VOC detection set. For our experiments, we use the network trained on VOC 2007 and 2012, and evaluate the results on the VOC 2012 evaluation set. We use the very deep VGG-16 model [132], Figure 4.3.
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K Figure 4.3: VGG-16 Architecture. VGG-16 model consists on an arrangement of convolutions, layers fully connected and softmax.

  Table Dog Horse MBike Person Plant Sheep Sofa Train TV Global C&Z Segmentation (Instance Level) 45.4 27.5 55.9 44.2 42.0 43.2 41.3 66.3 31.4 57.2 42.3 63.3 43.8 43.6 40.9 40.6 57.2 51.2 48.0 54.1 45.2 C&Z Segmentation (Class Level) 33.3 18.5 48.1 37.5 40.7 45.1 39.4 59.9 23.3 51.0 43.3 60.4 39.8 43.1 34.6 37.2 51.0 47.0 53.6 54.2 43.1

Table 4 . 1 :

 41 VOC 2012 Validation Set. Per-class and global JACCARD Index Metric at instance level.
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Original PDS4 and PDS3 images and labels from missions to the Moon Chang'E can be obtained at moon.bao.ac.cn.1

moon.bao.ac.cn.
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