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Introduction

Foundations of Mathematics

On which basis are mathematics founded? What is the common knowledge that is used to prove
a mathematical statement? Today, this question has many answers and this thesis is an approach
among many others to gather these different answers.

The historical answer was to use natural languages as the language of mathematics. The
problem with natural languages is that they are by essence ambiguous. A famous example
written in English is given by the sentence I saw a man on a hill with a telescope which has
several interpretations:

• There is a man on a hill, and I am seeing him with a telescope

• There is a man on a hill, who I am seeing, and he has a telescope

• There is a man on a hill which has also a telescope on it

• I am on a hill, I saw a man using a telescope

• There is a man on a hill, he is using a telescope and I am seeing him

So even if natural languages have been used for centuries to write mathematics, mathemati-
cians and philosophers were trying to find a better framework to express mathematics to avoid
any ambiguity and to be sure that proofs are valid. Such a framework is called a formal system.

The German philosopher Gottlob Frege is one of the first to provide a concrete solution with
Predicate Logic1 [Fre93]. Predicate Logic provides at the same time both a language to
express mathematical statements (also called propositions) and a system to prove these state-
ments. For example, one may write in Predicate Logic sentences such as: ∀x, x = x (the
reflexivity of equality) or ∀x, ∀y,∀z, (x = y) ⇒ (y = z) ⇒ x = z (transitivity of equality). In
this context, x is a variable but also a mathematical expression, = is called a predicate, it builds
a proposition from mathematical expressions, ⇒ is called a connective, it constructs a proposi-
tion from other propositions, and ∀ is called a quantifier, it binds a variable to a proposition.
However it cannot be used as it is to provide a foundation for mathematics because Predicate
Logic does not know about mathematical objects such as natural numbers or functions. Hence,
Predicate Logic needs a theory, a set of mathematical statements–called axioms–which are
considered to be true to prove theorems about mathematical objects.

1The current version of Predicate Logic is due to Ackerman & Hilbert but the ideas go back to Frege
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Mathematics should be written in a formal system. A language to write
and prove mathematical statements also called propositions. To be ef-
fectively used, Predicate Logic needs a theory, a set of mathematical
statements called axioms which are assumed to be true.

To sum up

Elementary Set Theory

A first proposition for a theory in Predicate Logic to express mathematical knowledge is
what is called today elementary set theory [Can74] [Hal17]. The main idea of this theory is that
any mathematical object can be constructed from one fundamental object: sets. This theory
describes what a set is and how new sets can be constructed. For example, the theory has an
axiom which postulates that there exists an empty set, a set which contains nothing ; it has
another axiom which postulates that if there are two sets a and b then there is a set which
contains a and b (axiom of pairing). However, the first formulation of this theory could build
exotic sets such as the set of all sets. A direct consequence of such construction is that this set
contains itself. This weirdness leads to a logical inconsistency (a paradox) meaning that every
proposition could be proven in this theory such as 2 + 2 = 5. Of course, a good foundation for
mathematics should avoid such logical inconsistency. This paradox has been discovered by the
logician Bertrand Russell [Irv95] which could be summed up as follow: I lie. If such a sentence
is allowed to be formed, which is the case in English, this leads to a paradox: If this sentence
is true, then it is also false and vice versa. This paradox created a schism in the foundations
of mathematics: On one side, people have been trying to fix the original theory by modifying
the axioms of elementary set theory ; this led to other theories such as ZF (set theory) [Jec13]
or NBG (theory of classes) [God25] [God28]. Predicate Logic with ZFC, an extension
of ZF with the axiom of choice is an answer to the foundation of mathematics used by most
mathematicians today. On the other side people were trying to change radically the set of axioms
to propose a new foundation for mathematics called type theory.

Set Theory is a theory expressed in Predicate Logic. Most of our
mathematical knowledge today is expressed in this theory.

To sum up

Type theory

A first description of type theory was made in a book called Principia Mathematica [WR27]
written by Bertrand Russell and Alfred North Whitehead which proposes to build mathematics
upon a new theory called type theory. The main idea behind type theory is that any term meaning
any mathematical expression (such as 2 + 2, 4, +, x 7→ x+ 2) has a type. For example, the type
of 2 + 2 and 4 is a natural number (denoted N). To relate a term and its type we generally use
a semi-colon as in 2 + 2 : N or 4 : N. + is an operation which expects two natural numbers and
returns a natural number. Its type is denoted N × N → N. The expression x 7→ x + 2 takes a
natural number x and returns the natural number x + 2. Its type is denoted N → N. Typing
rules act as semantic rules for English. In English, a sentence such as “I eat rain” is gramatically
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correct but conveys no meaning. In type theory, types rule out ill-formed mathematical terms
such as 2 + (x 7→ +2) = 4.

Type theory has many variants just like set theory, even if only one type theory was formu-
lated in Principia Mathematica. These theories have proliferated during the second half of the
twentieth century after the work of Alonzo Church on λ-calculus.

Type theory provides an alternative to Predicate Logic where every
mathematical expression have a type. Such type is used to avoid para-
doxes.

To sum up

λ-calculus
Type theory gained interest with the work of Alonzo Church on λ-calculus [Chu36]. λ-calculus
can be seen as an alternative for set theory where functions are the fundamental objects. The
name comes from the symbol λ which is used to introduce functions: Hence, instead of denoting
the function x 7→ x + x, in λ-calculus this function is denoted λx. x + x. Using functions as
a primitive element2 brings something very powerful which did not exist before in Predicate
Logic with set theory: computation. To emphasize this change of perspective, let us take an
example. In set theory, one may prove that 2 + 2 = 4 using Peano axioms [Pea89] and the
transitivity of equality:

2 + 2 = 3 + 1
3 + 1 = 4 + 0 4 + 0 = 4

3 + 1 = 4
2 + 2 = 4

In Alonzo Church λ-calculus, + can be defined as a computable function. Therefore 2 + 2
computes to 4. Hence, a proof of 2 + 2 = 4 in Alonzo Church theory is a direct consequence of
the reflexivity of equality:

4 = 4
2 + 2 = 4

A direct consequence of this is that proofs are much shorter.

λ-calculus is an alternative to set theory. The notion of computation is at
the heart of this theory.

To sum up

However, functions are not enough to build a foundation for mathematics because in Alonzo
Church’s λ-calculus, it is possible to write functions whose computation does not terminate. Such
functions are not suitable for mathematical foundations because they lead directly to logical
inconsistencies. This is why Alonzo Church proposed to add types on top of the λ-calculus.
With type theory, bad functions are considered ill-formed and are ruled out by the typing rules.

2in set theory, functions are just sets
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The combination of functions as primitive elements and type systems are the basis of many
type systems that exist today. The one formulated by Alonzo Church is called Simple Type
Theory [Chu40]. Besides functions in Simple Type Theory, there is one connective⇒ and one
quantifier ∀. Functions are introduced with the symbol λ which is also a binder. In Simple Type
Theory, axioms are often presented as derivation rules. A derivation rule relates judgments.
A judgment is built from a context (often denoted Γ) and a proposition as in Γ, P ` Q. An
example of derivation rule is given below

Γ, P ` Q
Γ ` P ⇒ Q

which means that if I can deduce the proposition Q assuming that the context Γ and the proposi-
tion P are true, then I can deduce in the context Γ the proposition P ⇒ Q is true. The judgment
(or judgments) above the line are called premises and the one below is called conclusion. By
chaining rules of this kind, we may construct proofs. A conclusion may be used as the premise
of another rule. This chaining of rules gives a tree and such proof is called a derivation tree. For
example, one may derive a proof of the proposition ∀P, P ⇒ P in Simple Type Theory as
follows:

P ` P
` P ⇒ P

` ∀P, P ⇒ P

Such derivation rules are also used to describe the typing rules of a system. In this case, a
derivation tree is also called a typing derivation.

λ-calculus can be formulated outside Predicate Logic using type the-
ory.

To sum up

Proposition-as-type principle
A central idea in type theory which appears years later after Church’s λ-calculus is that a type
can be used to express a proposition. Instead of having two sets of derivation rules, one for the
typing rules, and one for the proof system, there is only one for the typing rules. Hence a proof
becomes a term and in the case of the λ-calculus is also most of the time a function. Using this
principle, a proof of a theorem is valid if the type of the proof (the function) is the theorem itself.
This idea, which is often called Curry-Howard correspondence in honor to the mathematicians
Haskell Curry and William Howard [Cur34] [How80] has been very fruitful and extended in many
ways in computer science. However, to be effective, type systems which use this principle also
introduce a notion of computation inside the types. For example, in such system, 4 = 4 and
2 + 2 = 4 are types and (as explained before) the same type because 2 + 2 computes to 4. This
notion of computation for types leads to another equality ≡ which is called judgmental equality
or denotational equality. For example (2 + 2 = 4) ≡ (4 = 4).

This is why in type theory we have two kind of equalities:

• A propositional equality as in 2 + 2 = 4

• A judgmental (or computational) equality as in (2 + 2 = 4) ≡ (4 = 4)
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Actually, the equality (2 + 2 = 4) ≡ (4 = 4) comes from 2 + 2 ≡ 4. From the reflexivity of
propositional equality, we obtain that every time a ≡ b then a = b. The other implication is
generally not true. One reason is that the other implication changes the logic itself and therefore
can be seen as an axiom (or rule) for the theory. Type theories which have this axiom are
generally called extensional (in opposition to intentional type theory when the axiom is not
valid).

From this argument, we see that the status of what is qualified as an axiom changes a little
when it comes to computation in type theory using the proposition-as-type principle. We have
non-computable axioms as in set theory which does not change the computational equality ≡ and
computable axiom which enriches this equality. Moreover, because we use the proposition-as-type
principle, these axioms are given directly by the typing rules themselves.

The proposition-as-type principle introduces a parallel with programming languages where
programs also have a type. In that case, a program can be considered as proof that the type is
inhabited. This parallel is very strong in the case of functional programming languages which
are also based upon the λ-calculus. The main difference is that in the case of a programming
language, non-terminating functions are welcome.

In type theory, a type itself can represent a proposition. Hence, an inhab-
itant of a type is also a proof. This is the proposition-as-type principle.
Axioms of such type theory are given by the typing rules themselves.

To sum up

Versatility of type systems
Nowadays, we observe a large diversity of type systems which for most of them extends Church’s
λ-calculus. While set theory proves to be effective to formalize mathematics on paper, mechaniz-
ing mathematics on a computer is a completely different task. One reason is that many details
not necessary on paper prove to be essential to mechanize the proof on a computer. An example
comes from statements which are trivial for humans, but are not if they are formalized in one
of these systems. For example, a human can see trivially that a+ c+ cd+ da = (c+ a)(1 + d),
however for a computer this fact is not trivial since it involves several properties on operators +
and ×. Hence, to prove this fact formally, one needs to detail the computation:

(1) a+ c+ cd+ da Main Hypothesis
(2) a+ (c+ cd) + da Associativity of addition 1
(3) a+ (c(1 + d)) + da Distributivity of multiplication over addition 2
(4) a+ da+ c(1 + d) Commutativity of addition 3
(5) a+ ad+ c(1 + d) Commutativity of multiplication 4
(6) a(1 + d) + c(1 + d) Distributivity of multiplication over addition 5
(7) (a+ c)(1 + d) Distributivity of multiplication over addition 6

In some cases, deciding whether two mathematical expressions are propositionally equiva-
lent is decidable. However, the logician Kurt Gödel proved that this was not possible in gen-
eral [God92]. Another idea to avoid such painful details is to enrich the conversion ≡ so that
an equality as the one above becomes true by computation. Hence, if the user detects that two
expressions are equal by computation, it can let the computer find it out. But this is not always
possible, for example the commutativity is a property which is hard to turn into a computation
directly.
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Today, there is no consensus on the typing rules (the axioms of the theory) as well as the
conversion relation (computational axioms) and this is why we observe such a diversity of type
systems. A trade-off is made between having an expressive type system with a rich conversion
and having a type system where the type checking is decidable (by an algorithm) and fast.

During the last 50 years, many formal systems based on type theory and
λ-calculus emerged to propose new foundations for mathematics.

To sum up

Proof systems

Proof systems are software tools which allow humans to write mathematics on a computer. The
main task of a proof system is to check that a proof written by a human is correct. Many proof
systems today are based upon a type theory using the proposition-as-type principle. Hence,
checking whether a proof is valid is the same as checking that the proof (as a program) has the
expected type. As we saw in the previous section, formalizing a proof in a type system requires
many cumbersome details and this is why these systems implement in general a higher-level
language for the user to write proofs. Then, these proofs are compiled (or refined) to a judgment
in the type system that can be checked by the system. Such higher-level language has generally
two components:

• A vernacular that gives specific instructions to the proof system. In general the vernacular
is used to structure the different proofs as a library so that proofs can be reused in other
projects.

• A tactic language to write proofs without giving all the information needed. The missing
pieces of information are reconstructed automatically by the system

We observe also a large diversity of high-level languages. Today, each proof system comes
with its own high-level language. However, they generally all have a vernacular and a tactic
language. Some of these type systems that will be mentioned in this document are Agda [Nor09],
Coq [BGG+14], the Higher-Order Logic family [Har09, SN08, NPW02], Lean [dMKA+15],
Matita [ASCTZ07] and PVS [ORS92].

Formal systems have been implemented on a computer as proof systems.
A proof system can be effectively used by a human to formally prove
mathematical statements. However, such a proof is written in a high-
level language where pieces of information omitted by the user are recon-
structed by the proof system.

To sum up

Achievements of formal proofs and formal verification:
Formalizing a proof in a well-known proof system provides one of the highest confidence we have
today about the validity of a proof. During the last decades, proof systems have been used
effectively to formalize very complex mathematical proofs:
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• Hales theorem (formalized in HOL-Light) [Hal05]

• Four colors theorem (formalized in Coq) [Gon]

• Feit-Thompson theorem (formalized in Coq) using the math-component library [GAA+13]

The parallel of type systems with programming languages make proof systems based upon
type theory also suitable to prove complex pieces of software. In this area, there are also great
achievements:

• Sel4, a micro-kernel for an operating system (formalized in Isabelle/HOL) [KEH+09]

• The detect-and-avoid system for unmanned aircraft system developed by NASA (formalized
in PVS) [ORSVH95]

• Compcert, a C compiler certified (formalized in Coq) [Ler16]

• CakeML, a certified compiler for a functional programming language (formalized in HOL4)
[KMNO14]

• The correctness of the automatic Paris metro line 14 (formalized in B) [BBFM99]

These lists are not exhaustive. The reader may found a deeper inspection of the use of proof
assistants in [Geu09].

The people and the time involved to formalize all of theses projects was huge. The order of
magnitude is about several person-years. This is why such achievement is currently reserved for
the research community. However, a lot of research is devoted to make proof systems easier to
use.

Proving a theorem on a proof system is difficult and takes a huge amount
of time with respect to a proof on paper. Several achievements show that
such systems are scalable.

To sum up

Interoperability between proof systems

As for programming languages, each proof system comes with its own standard library. But
this also means that the same theorem may be proved many times, once for each proof system.
Because formalizing a theorem is difficult and may take several person-years, it is interesting
to look for solutions where a theorem could be shared between proof systems once it has been
proved once in one of them. However, sharing a proof from one proof system to another is a
complex task. It raises theoretical problems:

• Proof systems do not use the same logic (the same type system for example)

• A theorem in one logic may not be provable in another, or even inconsistent with another
proof system

• Vernacular and tactics are different from one proof system to another

But in addition, there are also practical issues:
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• The number of translations is quadratic: A translation for every pair of proof system

• How to write these translations? In which programming language?

• How to maintain these translations?

Therefore, addressing the problem of interoperability requires to find both, theoretical and
practical solutions.

The counterpart of having many formal systems is that the same theo-
rem is proved many times, once for for each proof system. Interoperability
aims at sharing theorems between proof systems.

To sum up

Logical Frameworks
Logical Frameworks are a particular kind of logical system (most of the time, type system) where
it is possible to embed other logical systems in it. Actually, Predicate Logic from Frege is
a logical framework because one may express other logical systems as theories. Several other
logical frameworks appeared during the twentieth century.

Logical Frameworks are systems into which other logical systems can be
expressed.

To sum up

Our interest behind logical frameworks is that they solve the quadratic number of translations
issue we mentioned at the previous section: If every system can be embedded into one logical
framework, the number of translations becomes linear. Such mechanism is already used in other
applications:

• LLVM [LA04] which is a low-level language that makes interoperable high-level program-
ming languages with different assembly languages

• Pandoc [Dom14] which makes text formats interoperable (LaTeX, Markdown, HTML, ...)
by using a common internal language

Logical Frameworks are good candidates to make proof systems interoper-
able.

To sum up

One logical framework of particular interest is LF [HHP93a] which is a very simple type
system with dependent types. Dependent types is a feature where a type may depend on the
value of an object: This is the case for the type of matrices which are indexed by their size:
(2, 2)-matrices. LF has been shown as an interesting logical framework from the theoretical
point of view. However, the computational equality in LF is not very expressive and embeddings
from other systems do not scale with real proofs.
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A solution to overcome this issue is to enhance LF with an abstract computational equality.
This new logical framework is called λΠ-calculus modulo theory. This way it becomes
easier to embed other systems in λΠ-calculus modulo theory that scale on real proofs. The
problem with using an arbitrary conversion is that checking that a proof is correct is not always
decidable. However, if this abstract conversion can be decided by a set of rewrite rules which
has good properties (termination and confluence) then this process becomes decidable.

λΠ-calculus modulo theory is a logical framework with an abstract
notion of computation which scales well on real proofs.

To sum up

Content of this Thesis

In this thesis, we tackle the problem of interoperability between proof systems. In particular, we
put our focus on the type systems underlying the proof systems and not the high-level languages.
We have decided to use a logical framework as our corner stone to make proofs interoperable.
As we will see, the choice of a logical framework is important since it will guide our translations
but also the tools we use. Our choice was to use λΠ-calculus modulo theory as our logical
framework for several reasons:

• This logical framework is very expressive and many systems can be embedded into it in a
scalable way [CD07, Ass15b, Cau16a]

• It has an implementation called Dedukti [ABC+16] where the abstract conversion can be
decided (using rewrite rules)

• We observe that in practice, an embedding into λΠ-calculus modulo theory with an
abstract conversion can also be decided with rewrite rules

• Embeddings have been used to embed effectively many proofs coming from different systems
such as: Matita [Ass15b], Higher-Order Logic [AB15],Focalize [Cau16a]

• The code behind Dedukti is short (about 3000 lines of OCaml code) and it makes it very
easy to adapt to our own needs

We have split this manuscript into two parts. A first part entitled Meta-theory of Cumu-
lative Types Systems and their embeddings to the λΠ-calculus modulo theory:
it presents theoretical results about interoperability between proof systems. In particular we
explain how Cumulative Type Systems (CTS) provide a good skeleton for interoperability be-
tween proof systems. A second part entitled Interoperability in Dedukti: A case-study
with Matita’s arithmetic library: it explains how we were able in practice to write a semi-
automatic translation from Matita to STT∀ (a constructive version of Higher-Order Logic)
in Dedukti and then, to export these proofs to different systems: Coq, Lean, Matita, PVS
and OpenTheory. To our knowledge, it is the first time that a library of proofs can be shared
by 6 different proof systems (including Dedukti).
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In this thesis, we explain how λΠ-calculus modulo theory provides a
theoretical and practical solution to make proof systems interoperable.

Our thesis

In page 20, we present a general picture representing the content of this thesis. In this picture
we have represented logics as ellipses. Here is the legend of this picture:

CTS related type systems

A CTS specification

– C and D are any CTS specification
– S is the CTS specification associated to STT∀
– M is the CTS specification associated to Matita

λΠ-calculus modulo theory or Dedukti type systems

Logics supporting common proof systems

STT∀’s logic

D[X] The logic X in Dedukti

M + I A subset of Matita with the CTS specification of Matita and inductive types

Encoding from one logic to another

Partial encoding (may not be sound)

WSn(Γ `C t : A) Judgments which have a well-structured derivation tree (Definition 3.1.2)

Meta-theory of Cumulative Types Systems and their embeddings to the
λΠ-calculus modulo theory

Each type system has several features and its own degree of complexity. However, we observe
that many of these type systems share a common part which is the λ-calculus even if the type
systems may differ for this part. We have found that CTS (which extends Pure Type Systems
with a subtyping relation) provide a good framework to study the differences between these type
systems. We also discovered that the understanding of interoperability between CTS was the key
to understand interoperability between proofs expressed in a type system using the proposition-
as-type principle. Because we use the logical framework λΠ-calculus modulo theory, it is
essential to understand the embedding of CTS into λΠ-calculus modulo theory. We also
introduce one particular CTS called STT∀. STT∀ extends λ-HOL with prenex polymorphism
(quantification over a type is allowed only at the head of a proposition or a type). Our interest for
STT∀ lies in the fact that the type system behind STT∀ is a subset of many other type systems.
Thus, it makes STT∀ a nice target for interoperability to export proofs to other systems.

The main results of this part are:

• A decidable procedure to decide whether a proof can be translated from one Cumulative
Type System to another.

• A sound embedding of Cumulative Type Systems into the λΠ-calculus modulo theory
logical framework.
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Chapter 1: This chapter introduces Cumulative Type Systems (CTS), a logical framework
which is behind many concrete proof systems today. The particularity of CTS as a logical
framework, is that its type system is actually a family of type systems parameterized with a
specification. CTS extends PTS with a cumulativity relation on sorts. In this chapter, we
discuss why CTS provide an interesting framework to study the various proof systems available
today since in general, the theories behind these systems can be reformulated as extensions of
some CTS.

Chapter 2 In this chapter, we investigate interoperability between CTS. In particular, we
extend the usual notion of interoperability (given as a sort-morphism) with new definitions for
equivalences between CTS specifications. These new definitions allow us to conclude that any
CTS is equivalent to a functional and injective CTS.

In a second part of this chapter, we investigate an incomplete procedure to decide whether a
judgment from one CTS can be embedded into another. This method relies on the generation of
a free CTS. The incompleteness comes from the fact that some pieces of information are missing
in a CTS judgment that needs to be reconstructed.

Chapter 3: This chapter introduces notion of well-structured derivation trees. The idea behind
this predicate is to attach a level to a derivation tree of a CTS which gives an induction principle
compatible with subject reduction. We show that this induction principle gives a simple proof
to solve difficult problems such as expansion postponement and the equivalence between an
implicit conversion and an explicit (or typed) conversion. While we were not able to prove that
any CTS derivation tree is well-structured, we have empirically verified that the derivation trees
we manipulated in the second part of this thesis are well-structured. We also investigate this
conjecture and give some insights behind the difficulty of this conjecture.

Chapter 4: This chapter introduces bi-directional CTS. In a bi-directional CTS, the typing
judgment is split in two: an inference judgment without cumulativity, and a checking judgment
with cumulativity. In this system, the cumulativity can only be used during an application or
at the end of a proof. We prove that for a large class of CTS called CTS in normal form, any
well-structured proof can be translated into a bi-directional CTS proof. Bi-directional CTS are
used in Chapter 6 to express the translation of CTS into λΠ-calculus modulo theory.

Chapter 5: This chapter introduces PTS modulo which enrich PTS with an abstract conver-
sion generated by equations. This system is a reformulation of the systems presented by Frédéric
Blanqui in [Bla01] where the judgmental equality is enriched incrementally. In particular, we
are interested in λΠ-calculus modulo theory which is the PTS modulo that corresponds
to LF, a minimalist type theory with dependent types. Cousineau & Dowek showed in [CD07]
that any PTS could be embedded in λΠ-calculus modulo theory and as such, any PTS
modulo. Hence, λΠ-calculus modulo theory is a logical framework which generalizes PTS.
However, type checking in λΠ-calculus modulo theory is not decidable.

Chapter 6: In this chapter, we investigate the embedding of CTS into λΠ-calculus modulo
theory. We define a translation function for all CTS in normal form which generalizes Ali
Assaf’s results [Ass15b]. In particular, we use a cast operator which generalizes the explicit
lift operator of Ali Assaf. This solves a conservativity issue we had identified in Ali Assaf’s
embedding and we conjecture that this new embedding is conservative. We prove the soundness
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of this encoding for any well-structured derivation tree as well as a shape-preserveness property
which proves that your encoding is not trivial.

Chapter 7: This chapter introduces STT∀, a constructive version of Simple Type Theory
with prenex polymorphism and type constructors. STT∀ will be used in the second part of this
thesis as the target logic to translate arithmetic proofs coming from Matita as discussed in
Chapter 12. The benefit of STT∀ is that proofs in this logic can be easily exported in many
other proof systems. Besides, we show that STT∀ is also a CTS. Seeing STT∀ as a CTS
allows to derive its embedding into λΠ-calculus modulo theory for free using results from
Chapter 6.

Interoperability in Dedukti: A case-study with Matita’s arithmetic library

The second part of this thesis is entitled Interoperability in Dedukti: A case-study with
Matita’s arithmetic library; it explains the tools we used to translate, effectively and in
a semi-automatic way arithmetic proofs originally written in the Matita proof system to four
other proof systems which are: Coq, Lean, PVS and OpenTheory. Our translation is actually
cut into smaller parts to deal with different features of the Matita’s type system. In the first
part, we have seen that the CTS framework was the main component, but because the type
system of Matita implements the Calculus of Inductive Constructions logic, we also
had to cope with inductive types and recursive functions.

While all of these translations could be written in a programming language such as OCaml,
we have decided to use a meta language for Dedukti called Dkmeta. We have made this choice
because we realized that proof translations were hard to understand, verbose and really hard to
maintain in a programming language. Indeed, every time there was a new version of Dedukti,
or every time there was a change in one of the encoding used, the translations were broken. Proof
translations in Dkmeta are more robust than in OCaml and easier to fix.

The main result of this part is:

• A semi-automatic procedure to translate proofs from one system to another. It was applied
on Fermat’s little theorem written in Matita and translated to four other different formal
systems: Coq, Lean, OpenTheory and PVS.

Chapter 8: This chapter presents Dedukti, an implementation of λΠ-calculus modulo
theory where the type checking is decidable. The equations are provided as rewrite rules. We
introduce the syntax of Dedukti that will be used for the remaining part of this thesis. We
show how the embeddings we defined in Chapter 6 and Chapter 7 can be formulated in Dedukti
via rewrite rules.

Chapter 9: This chapter introduces a tool we have developed for Dedukti. This tool uses
the rewrite rules of Dedukti as a meta language to manipulate proofs. Besides rewriting, this
language features a quote/unquote mechanism to enrich the expressivity of the language. The
quoting mechanism allows to overcome limitations of the rewrite engine of Dedukti but also
helps defining meta programs which rely on types. We argue, using several examples, that having
a meta language such as the one provided by Dkmeta is a powerful approach to write many
proof transformations in a simple way.
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Chapter 10: This chapter introduces another tool for Dedukti. Universo implements the
incomplete procedure presented in Chapter 2 to decide whether a judgment from one CTS can
be embedded into another. Because Universo relies on an SMT solver (currently Z3) it is
not clear whether this tool can scale with big libraries of proofs. However, we have successfully
applied Universo on the arithmetic library of Matita.

Chapter 11: This chapter presents a translation via Dedukti of the proof of Fermat’s little
theorem written in Matita (an implementation of the Calculus of Inductive Construc-
tions) to STT∀. We claim that this translation can be fully automatized even if at the time of
writing it is not completely done. This chapter introduces other tools developed for Dedukti:
Dkprune, which computes the set of minimal dependencies for a theorem and Dkpsuler which
allows the instantiation of definitions.

Chapter 12: This chapter explains how proofs written in STT∀ can be exported to different
concrete systems. In our case, we have successfully exported Fermat’s little theorem to Coq,
Lean, Matita, PVS and OpenTheory [Hur11]. We have built a website around these ex-
portations called Logipedia(www.logipedia.science), which provides a nice user interface to
make these translations available. This project could be the start of an encyclopedia that shares
formal proofs between various proof systems.

www.logipedia.science
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Miscellaneous remarks to read this manuscript

In the first part of this manuscript, you may encounter proofs which are written this way:

♦ C⇒var

Γ `C⇒ wf (x : A) ∈ Γ
Γ `C x⇒ A

C⇒var ↑
: t = x

(1) Γ `C x⇒ A Main hypothesis
(2) Γ `C⇒ wf Inversion on C⇒var

Γ `C⇒ wf (x : A) ∈ Γ
Γ `C x⇒ A

C⇒var ↑
1

(3) x : A ∈ Γ
(4) ΣC , JΓK `D wf Induction hypothesis 2
(5) x : JAK Γ ∈ JΓK Lemma 6.2.8 3
(6) ΣC , JΓK `D x : JAK Γ Rvar 4,5
(7) x = [x] Γ Definition of [·] ·
(8) ΣC , JΓK `D [x] Γ : JAK Γ Congruence of equality 6,7

O (9) ΣC , JΓK `D [t] Γ : JAK Γ Definition of t 8

This proof should be read as follow:

• ♦ means we are doing a proof by case analysis or by induction.

• The first parameter (as C⇒var

Γ `C⇒ wf (x : A) ∈ Γ
Γ `C x⇒ A

C⇒var ↑
) is the last rule of the derivation (if the case applies)

• The second parameter contains equalities specific to the case: t = x in the example above.
This means that the general statement of the theorem uses t and for the case C⇒var

Γ `C⇒ wf (x : A) ∈ Γ
Γ `C x⇒ A

C⇒var ↑
, we

know that t is the variable x.

• Each line of the proof is split into four columns: A number as an identifier of the line (local
to the proof), a proposition, a justification for this proposition, identifiers used to apply the
justification. For example to apply the derivation rule Rvar at line 6 we need to provide
two hypothesis. The first one is given by (4) and the second one by (5). If tooltips are
activated (see below), you may click on the name of the rule to see the derivation rule and
check that the lines referenced correspond to the premises.

• A line separate propositions which are obtained by different justifications

• A star indicates one objective to prove. Most of the time only the last line of the proof
contains a star but sometimes a several propositions need to be proved.

• When a proposition is obtained indirectly, or because some details are missing, we may
separate the proposition with two horizontal lines

The manuscript is readable on paper, but if you read this file as a PDF with Evince (or

adobe), you may use tooltips to help your reading:

Click me

C⇒var

Γ `C⇒ wf (x : A) ∈ Γ
Γ `C x⇒ A

C⇒var ↑

. If it works, you should see a tooltip
as the one below:

Because some PDF viewers do not handle well tooltips, it may be better to read the manuscript
without tooltips. To know whether tooltips are activated, look at the following message: tooltips
available 3.

In the proof above, all the tooltips are not available for technical limitations and are available
only for the real proof. In general a link which is not a reference number printed in blue has a
tooltip.
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Chapter 1

Cumulative Type Systems

Cumulative Type Systems (CTS) were originally introduced by Bruno Barras in his PhD The-
sis [Bar99a]. CTS extend Pure Type Systems [AGM92] with subtyping on sorts and co-domains
for dependent products. CTS are a family of type systems which is parameterized with a speci-
fication. A lot of concrete systems (Coq [BGG+14], Matita [ASCTZ07], Agda [Nor09], the HOL
family [Har09] [SN08] [NPW02], . . .) can be seen as extensions of CTS. Hence CTS provide a
common framework to study the properties for all of these systems and therefore a good basis to
make these systems interoperable. The interest for CTS does not only hold for proof systems,
but it can also be used for the theory behind functional programming languages, for example
Haskell [Tho11], OCaml [LDF+18] or Idris [BRA13].

This chapter starts with introducing basic elements of type theory. First, we define the syntax
of the lambda-calculus that we will use for all the systems involved in this thesis. Then we recall
some of the computational rules which are implemented in concrete systems. Namely, α, β, η, δ
and ζ relations. The computational rule ι which comes with inductive types will be introduced
in Chapter 8.

Next, we introduce CTS specifications and define some interesting class of CTS specifications.
Then, we finally introduce the type system of CTS. Before going on to the meta-properties of
CTS we give first some examples of specifications which, for most of them, capture features that
existed long before the definition of CTS. We explain in particular three features commonly
found in most CTS specifications implemented today: Dependent types, polymorphism and
higher-order types (or type constructors). We also give some examples of systems which are
non-terminating. One in particular, λ? will be relevant for Chapter 2.

Finally, we introduce some classical meta-theoretical properties of CTS. The main one being
subject reduction (or type preservation). We also make two remarks. The first one is about the
type checking of CTS in general. This will be one of our motivations for bi-directional CTS
introduced in Chapter 4. The second remark is about the definition of subtyping. In particular,
we show an equivalence with another definition for subtyping which removes the transitivity rule.
This definition will be used in the equivalence proof of Chapter 4 and the soundness proof of
Chapter 6.

1.1 Syntax

We introduce the syntax of CTS. The syntax is parameterized with a set of sorts S. For this
chapter, this set will be given by a CTS specification.

25
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Variables x ∈ V
Sorts s ∈ S
Terms t, u,M,N,A,B ∈ T ::= x | s |M N | λx :A.M | (x :A)→ B

Typing contexts Γ ∈ G ::= ∅ | Γ, x : A

Figure 1.1: PTS syntax

Definition 1.1.1 (Syntax of terms)
The syntax of terms is defined in Fig. 1.1. It is parameterized with a set S and a set V. We

make the usual assumption that V is an infinite set with a decidable equality.

• x is called a variable,

• s is called a sort (or universe),

• M N is called an application,

• λx :A.M is called an abstraction,

• (x :A)→ B is called a product,

Remark 1 In the literature, products are also written (x : A)B, ∀x : A, B or Π(x : A). B.

Remark 2 Application is right-associative and product is left-associative. Hence, (f a) b is
written f a b and (x :A)→ ((y :B)→ C) is written (x :A)→ (y :B)→ C.

Notation 1 We overload the notation Γ, x : A to also denote Γ,Γ′ the concatenation of Γ and
Γ′.

λx :A.M and (x :A)→ B are binders, which means that x is bound inM and in B. Express-
ing that a variable is bound is in general not easy to formalize (depending on the meta-language
used). Below, we introduce usual definitions to express this notion formally. In particular, we
need to refine the syntactic equality on terms to take into account that bound variables can
be renamed. This intuition will be detailed in Paragraph 1.2.2. To cope with this issue, proof
systems use most of the time the so-called De Bruijn indices [DB72], or Higher-Order Abstract
Syntax (HOAS) [LR18].

Definition 1.1.2 (Free variables)
The set of free variables function FV(·) : T → 2V is defined as usual [AGM92].

Example 1.1 In x (λx :A. x y), the first occurrence of x (from left to right) is free as well as
y. Hence, its set of free variables is {x, y}.

Notation 2 We define the notation A→ B as (x :A)→ B, where x 6∈ FV(B).

Definition 1.1.3 (Syntactic context)
A syntactic context denotes a term with a hole. More formally a syntactic context can be
describe by the following grammar
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Syntactic contexts
·
C ::= [·] | λx :

·
C.M | λx :A.

·
C | (x :

·
C)→ B

(x :A)→
·
C |

·
C N |M

·
C

Figure 1.2: PTS syntax

tRt′

t ↪→R t
′ ·

A ↪→R A
′

λx :A. t ↪→R λx :A′. t
·lλ

t ↪→R t
′

λx :A. t ↪→R λx :A. t′
·rλ

t ↪→R t
′

t u ↪→R t
′ u
·lapp

u ↪→R u
′

t u ↪→R t u
′ ·
r
app

A ↪→R A
′

(x :A)→ B ↪→R (x :A′)→ B
·lΠ

B ↪→R B
′

(x :A)→ B ↪→R (x :A)→ B′
·rΠ

Figure 1.3: Contextual rule for an abstract relation R

1.2 Rewriting

Terms can be equipped with a notion of computation. Computation in type theory is ex-
pressed with a relation that we call rewriting relation. The main one being the β rewriting
relation. It is well-known that this relation gives rise to a computational model which is Turing-
complete [Ros39] for pure lambda terms (without types). However, β is not the only com-
putational rule implemented in proof systems and many others exist. We survey here all the
computational rules that we will mention in this thesis except one: ι which comes with inductive
types which will be detailed in Section 8.4.

1.2.1 Rewriting relation
Definition 1.2.1 (Rewriting relation)
A rewriting relation is a relation over the set of terms T .

Definition 1.2.2 (Rewriting relation stable by context)
A rewriting relation R is stable by syntactic context if it is stable by the rules given in Figure 1.3.
Such a relation is generally denoted by ↪→R. A redex for a rewriting relation ↪→R is a term t
such that there exists u with tRu.

Remark 3 If t ↪→ t′, it is said that t reduces (or computes) to t′.

Notation 3 Given a rewriting relation ↪→, we denote:
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• its inverse relation by ←↩

• its transitive and reflexive closure by ↪→∗

Remark 4 A left to right rewriting (as in t ↪→ t′) is called a reduction (t reduces to t′) while a
right to left rewriting (as in t←↩ t′) is called an expansion (t expands to t′).

Definition 1.2.3 (Congruence generated by a rewriting relation)
The congruence generated by a relation R is the smallest relation which includes R and is stable
by transitivity, symmetry, reflexivity and syntactic context. For a rewriting relation ↪→R, the
congruence is denoted ≡R.

We redefine below some common properties related to rewriting relations.

Definition 1.2.4 (CR)

A rewriting relation ↪→ is said Church-Rosser (CR) (or confluent) if u←↩∗ t ↪→∗ v then there
exists w such that u ↪→∗ w ←↩∗ v.

Given a term t such that u←↩∗ t ↪→∗ v, (u, v) is called a critical pair1. A critical pair (u, v)
is said joinable if there exists w such that u ↪→∗ w ←↩∗ v.

Remark 5 Confluence can be reformulated as: All the critical pairs are joinable.

Definition 1.2.5 (NF)
A term t is in normal form (NF) with respect to a rewriting relation ↪→ if there is no t′ such
that t ↪→ t′.

Definition 1.2.6 (WN)
A rewriting relation ↪→ is said weakly normalizing (WN) if for all terms t, there exists u such
that t ↪→∗ u and NF(u).

Definition 1.2.7 (SN)
A rewriting relation ↪→ is said strongly normalizing (SN) if for all terms t, there is no infinite
sequence (tn)n∈N such that t0 = t and for all n, tn ↪→ tn+1.

Remark 6 As explained in [Len06], this definition tends to be classical. Indeed, if one wants to
prove that a rewriting relation is not SN

A rewriting relation ↪→ is said strongly normalizing (SN) if for all terms t, there is no infinite
sequence (tn)n∈N such that t0 = t and for all n, tn ↪→ tn+1.↑

, we would not obtain directly as a witness an infinite
sequence of tn. Instead we get the double negation that this sequence does exist. To solve this
issue, there is a way to capture that every term is SN

A rewriting relation ↪→ is said strongly normalizing (SN) if for all terms t, there is no infinite
sequence (tn)n∈N such that t0 = t and for all n, tn ↪→ tn+1.↑

with an inductive definition which roughly
defines the property of being SN

A rewriting relation ↪→ is said strongly normalizing (SN) if for all terms t, there is no infinite
sequence (tn)n∈N such that t0 = t and for all n, tn ↪→ tn+1.↑

first on the normal forms and then, if all the reducts of a term
t are SN

A rewriting relation ↪→ is said strongly normalizing (SN) if for all terms t, there is no infinite
sequence (tn)n∈N such that t0 = t and for all n, tn ↪→ tn+1.↑

, then t itself is SN

A rewriting relation ↪→ is said strongly normalizing (SN) if for all terms t, there is no infinite
sequence (tn)n∈N such that t0 = t and for all n, tn ↪→ tn+1.↑

. In this thesis, such difference is not that important since we won’t
study the normalization of CTS.

1This definition is slightly different from the one found in the litterature as in [BN99]. For this manuscript
this simpler definition is enough.
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1.2.2 α relation
In general, in mathematics, we consider the two following functions x 7→ x and y 7→ y as equal,
the name x or y being irrelevant. However, their equivalent in the syntax presented in Fig 1.1
represent these two functions as two different objects: λx. x and λy. y. The common way to
solve this problem2 is to define an equivalence relation and to reason modulo this equivalence
relation. Such equivalence is generally called α. Actually, defining this relation is not trivial and
has been done many times. Below, we introduce only our notations, all the definitions can be
found in [AGM92].

Notation 4 (Substitution) The function · {· ← ·} : T → V → T → T denotes the substitution
function on terms. This definition can be naturally extended to typing contexts.

Remark 7 Substitution needs that V to be infinite to be well-behaved because fresh names need
to be generated.

Example 1.2 We give some examples of a substitution applied to some terms:

• x {x← z} = z

• x {y ← z} = x (if x 6= y)

• (λx :A. x) {x← z} = λx :A {x← z}. x

• ((x :A)→ y) {y ← z} = (x :A {y ← z})→ z

Definition 1.2.8 (modulo-α)
We denote ≡α ⊆ T × T the α relation.

Theorem 1.2.1 The relation ≡α is a congruence.

Example 1.3 Some examples of terms (un)-equals modulo α:

• x 6≡αy (if x 6= y)

• λx :A. x≡αλy :A. y

• λx :A. (λx :B. x)≡αλz :A. (λy :B. y)

In the remainder of this thesis, we will always compare terms modulo this equivalence relation
and write = instead of ≡α.

1.2.3 β relation
β computes the result of a function applied to an argument as when the function x 7→ x2 is
applied to the natural number 2. This function computes (or reduces) to 4. In our syntax this
would be written

(
λx. x2) 2 ↪→β 4.

Definition 1.2.9 (↪→β)
The relation ↪→β is defined as the congruence generated by ((λx :A.M) N)βM {x← N}.

2if the meta-theory does not have a primitive notion of binders
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In general, a term may contain several β redexes. Confluence is an important property which
expresses that the order in which we apply the reductions does not really matter because given
two sequences of reductions, there is always a way to finish the sequences to get the same result
at the end.

Theorem 1.2.2 (Confluence of β) β is CR: If u ←↩∗β t ↪→∗β v then there exists w such that
u ↪→∗β w ←↩∗β v.

1.2.4 η relation
Definition 1.2.10 (↪→η)
The relation ↪→η is defined as the congruence generated by (λx :A.M x) η M where x 6∈ FV(M).

Definition 1.2.11 (↪→βη)
The relation ↪→βη is defined as the union of ↪→β and ↪→η.

Theorem 1.2.3 (↪→βη is not CR) [Geu93] The relation ↪→βη is not Church-Rosser.

Proof This counterexample is due to Nederpelt. We have the following critical pair:

λx :N. x←↩β λx :N. (λy :N→ N. y) x ↪→η λy :N→ N. y

It is not joinable since N is not convertible to N→ N.

Hence, to recover the Church-Rosser property, one needs to take into account the fact the
terms we are considering are well-typed [Geu93]. In Section 1.4, we define the typing system as
a ternary relation which defines a notion of well-typed terms. Geuvers proved that for well-typed
terms, the CR property holds for ↪→βη:

Theorem 1.2.4 (Confluence of βη for well-typed term) [Geu93] If Γ `C t : A and u←↩∗βη
t ↪→∗βη v then there exists w such that u ↪→∗βη w and v ↪→∗βη w.

Moreover, we will see in Section 1.7, that the behavior of η with subtyping can be quite
surprising.

1.2.5 δ relation
In practice, it is very useful to have the ability to give a name to a term, and as such, having a
mechanism for definitions. The classical way to handle such mechanism is to enhance the typing
context with a new construction for definitions.

Definition 1.2.12 (Typing context extension with global definitions)
We consider the syntax extension of CTS presented in Figure 1.4. The meaning of f : A = t
is that f is the name for the term t of type A. We prefer to have another set of names for
definitions F to avoid any ambiguity. We assume also that F is infinite.

Such mechanism leads to a rewriting relation (which depends on the typing context).

Definition 1.2.13 (δ relation)
Given a typing context Γ in the extended syntax, the δ rewriting relation (↪→δΓ) is defined as
the smallest relation that includes

f ↪→δΓ t

if there exists A such that f : A = t ∈ Γ and stable by typing context. In general, we omit the
typing context Γ in the notation and simply write ↪→δ.
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Constants f ∈ F
Terms t, u,M,N,A,B ∈ T ::= · · · | f

Typing contexts Γ ∈ G ::= ∅ | Γ, x : A | Γ, f : A = t

Figure 1.4: Syntax extension of CTS with definitions

Terms t, u,M,N,A,B ∈ T ::= · · · | let (x:A) := t inu

Figure 1.5: Syntax extension of CTS with local definitions

Definition 1.2.14 (Rewriting modulo β and δ)
The relation ↪→βδ is defined as the union of ↪→β and ↪→δ.

Theorem 1.2.5 (↪→βδ is CR) [Bar99a] The rewrite relation ↪→βδ is CR.

1.2.6 ζ relation
Having global definitions via the mechanism of δ rewriting is not enough in practice: while
proving a lemma, we may introduce intermediate assertions, in other words, a cut [Len06]. With
dependent types, a local cut cannot always be translated as a β redex. To give the ability to
introduce a local assertion we extend the language with a local definition mechanism.

Definition 1.2.15 (Typing context extension with local definitions)
We consider the syntax extension of CTS with local definitions presented in Figure 1.5. In
let (x:A) := t inu, the variable x is bound in u. Hence, one needs also to extend ≡α to take into
account this new binder.

Local definitions lead to the ζ rewriting relation:

Definition 1.2.16 (ζ relation)
The ζ rewriting relation is defined as the smallest relation which includes

let (x:A) := t inu ↪→ζ u {x← t}

and stable by typing context.

In practice, proof systems use a combination of these rewriting relations which enhance
the expressivity of the computation. For example, the Coq system [BGG+14] or the Matita
system [ASCTZ07] uses the βηδζ rewriting relations and is modulo α.

In the following, the type system is defined only with β and α. For the other relations, we
will not detail the extensions here. However, we will mention them in the second part of this
manuscript since we will deal with concrete systems such as Matita.

1.3 Cumulative Type Systems specification

The typing system of CTS is parameterized with a specification. Hence CTS are actually a
family of type systems and as such constitute a logical framework.
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Definition 1.3.1 (CTS specification)
A CTS specification is a quadruple C = (S,A,R, C) where:

• S is a set of constants called sorts,

• A ⊆ S × S is a relation called axioms,

• R ⊆ S × S × S is a relation called rules.

• C ⊆ S × S is a relation called cumulativity.

Notation 5 Given a CTS specification C = (S,A,R, C), we use the notation SC (resp. AC ,RC

and CC ) to refer to the set S (resp. A, R and C) of the specification C .

Notation 6 C∗C is the reflexive and transitive closure of CC .

Definition 1.3.2 (Top-sort (S>C ))
A sort s is called a top-sort if there is no s′ such that (s, s′) ∈ A. The set of top-sorts is written
S>C .

From now on, given a specification C , we identify the set of sort S of the syntax presented
in Fig. 1.1 with the set SC , hence the syntax also depends on the specification.

Definition 1.3.3 (PTS specification)
A PTS is a particular case of CTS where the cumulativity relation C is empty.

Definition 1.3.4 (Underlying PTS)
For every CTS C , there is an underlying PTS P which is defined as the same specification as

C except that CP = ∅.

Notation 7 We use the letter P to refer to a PTS specification and C to a CTS specification.

Definition 1.3.5 (Finite CTS specification)
A CTS specification C is said finite if SC is.

Definition 1.3.6 (Functional CTS)
A CTS specification is said functional if the relations A and R are functional.

Definition 1.3.7 (Injective CTS)
A CTS specification C is said injective if:

• For all sa, sb, sc, (sa, sb) ∈ AC ∧ (sc, sb) ∈ AC ⇒ sa = sc

• For all s, sa, sb, sb, (s, sa, sb) ∈ RC ∧ (s, sc, sb) ∈ RC ⇒ sa = sc

Definition 1.3.8 (Semi-Full CTS)
A CTS specification C is said semi-full if for all s1, if there exists s2, s3 such that (s1, s2, s3) ∈
RC then for all s2, there exists s3 such that (s1, s2, s3) ∈ RC .

Definition 1.3.9 (Full CTS)
A CTS specification C is said full if for all s1, s2, there exists s3 such that (s1, s2, s3) ∈ RC .
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(s, s′) ∈ A
s /SSC s

′
s /SSC s

′ s′ /SSC s
′′

s /SSC s
′′

s /SSC s
′ (s′, s′′) ∈ C
s /SSC s

′′

Figure 1.6: Ordered relation

Predicativity and impredicativity: Many specifications behind concrete systems (such as
The Calculus of Inductive Constructions) identify a particular sort which is inhabited
by propositions. For several reasons that we do not detail here3, these systems make this sort
impredicative. Informally, a sort is impredicative if we can build objects in this sort by quantifying
over a larger sort. However, the meaning of what is a larger sort is not really clear in general.
To define this notion properly, we define first a notion of ordered specification4.

Definition 1.3.10 (Ordered specification)
We define /SSC the smallest relation defined by the rules in Figure 1.6 (as in [Las12]). If this

smallest relation is a strict order, we say that the CTS specification is ordered.

Definition 1.3.11 (Impredicative sort)
If a specification C is ordered, then a sort s is said impredicative if there exists s′, s′′ such that

(s′, s′′, s) ∈ RC where s /SSC s′ or s /SSC s′′.

Definition 1.3.12 (Predicative CTS)
A CTS is said predicative if there is no impredicative sort.

It is important to mention though that in opposition to the definition of predicativity given
in [Las12], we allow an ordered specification CTS which is not well-founded. The lack of theorems
about predicativity does not help us to decide whether the ordered specification should be well-
founded.

Decidable specifications While meta-theory of CTS can be formulated for any specifica-
tion, in practice–especially to have decision procedures–we will restrict ourselves to decidable
specifications.

Definition 1.3.13 (decidable CTS specification)
A CTS specification is decidable if:

• the equality on S is decidable

• A,R, C are decidable relations (membership is decidable)

• Given s, knowing if there exists s′ such that (s, s′) ∈ AC is decidable

• Given s1, s2, knowing if there exists s such that (s1, s2, s) ∈ RC is decidable

3An interesting discussion about impredicativity: http://lists.seas.upenn.edu/pipermail/types-list/
2019/002150.html

4Our definition is more general than dependence relation introduced in [Las12]

http://lists.seas.upenn.edu/pipermail/types-list/2019/002150.html
http://lists.seas.upenn.edu/pipermail/types-list/2019/002150.html
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A≡βB
A�CB

�≡β
(s, s′) ∈ C∗C
s�C s

′ �C∗
C

B�CB
′

(x :A)→ B�C (x :A)→ B′
�Π

A�CB B�CC

A�CC
�trans

Figure 1.7: CTS subtyping relation

1.4 Typing

The typing relation of CTS is defined in two steps. First, we introduce the subtyping notion of
CTS as a judgment A�CB which extends β conversion with a subtyping relation generated by
C. Second, we define the typing system using two judgments: Γ `C t : A meaning that t is of
type A in the typing context Γ and Γ `C wf meaning that Γ is a well-formed typing context.

1.4.1 Subtyping

Definition 1.4.1
The subtyping relation induced by the cumulativity relation CC is given in Fig. 1.7. Subtyp-
ing is extended for products in a covariant way on codomains. The reasons why it is not also
contravariant on domains are mostly for semantics reasons as explained in [Las12].

Remark 8 We will show in Section 1.7.2 that the transitivity rule could be removed.

Meta-properties of subtyping

We state here some classical properties of subtyping in CTS.

Lemma 1.4.1 If A�C s then there exists s′ such that A≡βs′ and (s′, s) ∈ C∗C .

Proof By induction on A�C s.

Lemma 1.4.2 (Product injectivity) If A�C (x :C) → D then there exists C ′ and D′ such
that A≡β(x :C ′)→ D′, C ′≡βC and D′�CD.

Proof By induction on the derivation of A�C (x :C)→ D.

Remark 9 This lemma is also called product compatibility or injectivity of product.

Subtyping is well-behaved with respect to substitution:

Lemma 1.4.3 If A�CA
′ then A {x← t}�CA

′ {x← t}.

Proof By induction on the derivation of A�CA
′.
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∅ `C wf
C wf
∅

Γ `C A : s x 6∈ Γ
Γ, x : A `C wf

C wf
var

Γ `C wf (x : A) ∈ Γ
Γ `C x : A

Cvar

Γ `C wf (s1, s2) ∈ A
Γ `C s1 : s2

Csort

Γ `C A : s1 Γ, x : A `C B : s2 (s1, s2, s3) ∈ R
Γ `C (x :A)→ B : s3

CΠ

Γ, x : A `C M : B Γ `C (x :A)→ B : s
Γ `C λx :A.M : (x :A)→ B

Cλ

Γ `C M : (x :A)→ B Γ `C N : A
Γ `C M N : B {x← N}

Capp

Γ `C M : A Γ `C B : s A�CB

Γ `C M : B
C�

Γ `C M : A A�C s

Γ `C M : s
C s
�

Figure 1.8: Typing rules for CTS

1.4.2 Typing system

Definition 1.4.2 (Typing of CTS)
The typing system induced by a CTS specification C is defined in Fig. 1.8.

Remark 10 When Γ = ∅, we say that the typing context is closed. This terminology is extended
for judgments.

Remark 11 There are two typing rules for conversion (C�

Γ `C M : A Γ `C B : s A�CB

Γ `C M : B
C� ↑

, C s
�

Γ `C M : A A�C s

Γ `C M : s
C s
� ↑

) to take into account top-sorts
(s ∈ S>C ). Indeed, with subtyping it is possible to have A�C s and s ∈ S>C . Hence, we introduce
the typing rule C s

�

Γ `C M : A A�C s

Γ `C M : s
C s
� ↑

for this specific case.
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1.5 Programming with Pure Type Systems

PTS generalize many type systems that were already known before. In this section, we de-
scribe some of these systems and their related PTS specification. Names come from [AGM92].
Traditionally, sorts in PTS and CTS are denoted by ?,�,4, . . ..

Notation 8 We use the notation λS to denote the CTS typing system induced by the specifica-
tion S.

Notation 9 To each CTS specification, we can associate a graph. Nodes are the sorts, while
arrows have the following semantics:

• Plain green arrows represent the relation A. If (s1, s2) ∈ A then, it is picture as s1 s2

• Densely dotted red arrows represent the relation R. If (s1, s2, s3) ∈ R then, there are two

red arrows s1 s2
a

and s2 s3
a

where the label a is unique to each product and
is here to desambiguate. Most of the time products have the form (s1, s2, s2), hence only

one arrow between s1 and s2 will be represented without label such as s1 s2

• Dashed blue arrows represent the relation C. If (s1, s2) ∈ C it will be represented as

s1 s2 Since we will always consider the transitive closure, we will only rep-
resent arrows generating the relation C.

In the pictures below, we also do not represent all the arrows to make the graph clearer if some
of them can be derived in another way. For example, if (s1, s2) ∈ C and (s2, s2, s2) ∈ R, we
won’t represent the arrow (s2, s1, s2) ∈ R since cumulativity can always be used on the second
argument. Strictly speaking, this represents two different CTS, but we will see in Chapter 2
that the two specifications are in fact equivalent. In this manuscript, this happens only for the
specifications associated to the systems Coq, Lean and Matita.

Definition 1.5.1 (Simply Typed Lambda Calculus [Chu40])

(→) =


S = {?,�}
A = {(?,�)}
R = {(?, ?, ?)}

?

�

The first typed lambda-calculus invented is the Simply Typed Lambda Calculus (in
1940) and is equivalent to the CTS generated by the specification →. The main property of
Simply Typed Lambda Calculus is that ↪→β is SN

A rewriting relation ↪→ is said strongly normalizing (SN) if for all terms t, there is no infinite
sequence (tn)n∈N such that t0 = t and for all n, tn ↪→ tn+1.↑

. Its logical counterpart according to
the proposition-as-type principle is the minimal logic (propositions are built from implications
only). An example of derivable judgment in Simply Typed Lambda Calculus is given by
A : ?,B : ?, C : ? `→ λf :A→ B → C. λa :A. λb :B. f a b : C. Simply Typed Lambda
Calculus has two main limitations:

• It is not possible to form a dependent product (x :A) → B where x ∈ FV(B). Hence,
through proposition-as-type principle, there is no interpretation of the ∀ quantifier in Sim-
ply Typed Lambda Calculus.
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• It is not possible to define polymorphic functions. Hence, the identity function has to be
defined as many times as it is used with different types.

Definition 1.5.2 (System F [Gir72] [Rey74])

(2) =


S = {?,�}
A = {(?,�)}
R = {(?, ?, ?), (�, ?, ?)}

?

�

System F was invented independently by Girard and Reynolds in the 1970s, almost 30 years
after the invention of Simply Typed Lambda Calculus. System F solves the two issues
we raised for Simply Typed Lambda Calculus. First, this new quantification adds polymor-
phism allowing to express the polymorphic identity function. Indeed the following judgment is
derivable: `2 λA : ?. λa :A. a : (A : ?)→ A→ A. In this judgment, A represents a type because
a type in System F inhabits the sort ?. Secondly, it partially solves the first issue since its
logical counterpart is the second order intuitionistic logic. This system is used as a basis for the
programming language Haskell for example.

Definition 1.5.3 (System Fω [Gir72])

(ω) =


S = {?,�}
A = {(?,�)}
R = {(?, ?, ?), (�, ?, ?), (�,�,�)} ?

�

System Fω extends System F with higher-order types. A canonical example of higher-order
type from the programming point of view are polymorphic lists. A list takes a type A and
returns a new type: list A. Such construction requires to use the product (�,�,�) to derive
the judgment A : ? `ω list A : �.

Definition 1.5.4 (LF [HHP93b])

(P) =


S = {?,�}
A = {(?,�)}
R = {(?, ?, ?), (?,�,�)}

?

�

LF extends Simply Typed Lambda Calculus with dependent products (the rule (?,�,�)).
A canonical example of dependent product is given by vectors. A vector is a list indexed by its
size. The type of (non-polymorphic) lists of length n can be represented by the type vector n.
Indeed, one can check that the following judgment is derivable in LF: nat : ?, vect : nat→ ?, n :
nat `P vect n : �.
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Figure 1.9: The λ-cube.

Definition 1.5.5 (Calculus of Constructions [CH86])

(C) =


S = {?,�}
A = {(?,�)}
R = {(?, ?, ?), (?,�,�), (�, ?, ?), (�,�,�)} ?

�

Finally, we have the Calculus of Constructions which aims to gather all the features
we saw previously: Simple types, dependent types, polymorphism and higher-order types. The
CTS generated by this specification is quite expressive and was used as the basis for the Coq
system at the end of the 1980s.

From simple types one can combine dependent types, polymorphism and Higher-Order types
to generate 8 different specifications. These systems are often represented in the so-called λ-cube
(or Barendregt’s cube).

Definition 1.5.6 (λ-cube)
The lambda-cube represented in Fig. 1.9 is composed of eight specifications P such that SP =
{?,�}, AP = {(?,�)} and RP ⊆ {(?, ?, ?)} ∪ {(i, j, j) | i, j ∈ {?,�}}.

The specification we have seen so far are all member of the λ-cube

The lambda-cube represented in Fig. 1.9 is composed of eight specifications P such that SP =
{?,�}, AP = {(?,�)} and RP ⊆ {(?, ?, ?)} ∪ {(i, j, j) | i, j ∈ {?,�}}.↑

. In the following, we give
other famous example of PTS specifications which are not part of the lambda-cube.
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Definition 1.5.7 (λHOL [Geu93])

(HOL) =


S = {?,�,4}
A = {(?,�), (�,4)}
R = {(?, ?, ?), (�, ?, ?), (�,�,�)}

?

�

4

This specification is a PTS version of Church’s type theory [Chu40] called Simple Type
Theory which gave rise to the various type systems composing the HOL family today5 (HOL-
light, HOL4, Isabelle/HOL). In this logic, ? is the sort for propositions. The implication ⇒ is
encoded by the product (?, ?, ?), the forall quantifier ∀ is encoded by (�, ?, ?) and function’s type
→ is encoded by (�,�,�). One may notice that the difference between λHOL and System Fω
is only the axiom (�,4). This allows adding in a typing context type variables such as ι : �. ι
is generally used to represent natural numbers in Simple Type Theory. However, in a closed
typing context, λHOL and λω are the same since it is not possible to quantify on types that
inhabit the sort 4. Another difference between the HOL family systems and System Fω, is
that the former is classical while the latter is intuitionistic (excluded-middle cannot be derived).
In λHOL, classical logic can be added as axioms in the typing context Γ.

Non-terminating PTS:

Definition 1.5.8

(?) =


S = {?}
A = {(?, ?)}
R = {(?, ?, ?)}

?

This specification is probably the simplest one we can imagine for PTS, and actually every
term typable in some specification is also typable in this specification. Hence, it makes this PTS
inconsistent: Through the proposition-as-type principle, one can derive a proof of False generaly
represented by the proposition (∀A,A)

`? λA : ?.A : (A : ?)→ A

: This PTS will play a role when we talk about CTS specifications embedding in Chapter 2.
Adding polymorphism to λHOL gives rise to an inconsistent CTS as proved in [Coq86] [Hur95].
Polymorphism is generally added to λHOL by adding two products. This gives the system
System U .

Definition 1.5.9 (System U)

(U) =


S = {?,�,4}
A = {(?,�), (�,4)}
R = {(?, ?, ?), (�, ?, ?), (�,�,�), (4, ?, ?), (4,�,�)}

?

�

4

5These systems extend Church’s simple type theory with prenex polymorphism. This extension will be
discussed in Chapter. 7
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Hurkens realized in [Hur95] that one product was not necessary to have a non-terminating
specification. This new specification is called System U−.

Definition 1.5.10 (System U−)

(U−) =


S = {?,�,4}
A = {(?,�), (�,4)}
R = {(?, ?, ?), (�, ?, ?), (�,�,�), (4,�,�)}

?

�

4

This last specification is minimal in the sense that if any product or axiom is removed, then
the CTS terminates. A classical interpretation for this paradox is that it is not possible to have
impredicative universes one on top of the other. This is because in System U−, the sorts ? and
4 are impredicative.

1.5.1 Other examples of Cumulative Type Systems
So far, we have introduced systems which are PTS, that do not use the cumulativity relation
on sorts. One reason for that is that most of the specifications we have introduced so far use at
most three sorts. Seeing the Calculus of Constructions as a logic, ? is reserved as the sort
for propositions while � is the sort for datatypes. Hence, a datatype can only inhabit in one
sort, namely �. However, in practice, having only one sort for datatypes is not convenient, in
particular because it is not possible to quantify over all the datatypes. This can be seen using the
formalization of monoids in the Calculus of Constructions. A monoid is often represented
as a record of:

• A type A of the elements (often called carrier)

• An inhabitant e : A which is the neutral element

• An operator ◦ : A→ A→ A

• A proof that ∀x, x ◦ e = x

• A proof that ∀x, e ◦ x = x

• A proof that ∀x, ∀y,∀z, x ◦ (y ◦ z) = (x ◦ y) ◦ z

To simplify this example, we will omit the proofs and just stick to the computational part
of the monoid. To formalize a monoid, one could define a monoid in the Calculus of Con-
structions as6:

(z : ?)→ ((A :�)→ A→ (A→ A→ A)→ z)→ z (1.1)

This type is not valid in Calculus of Constructions, because quantifying over a type
as in (A :�) → . . . is not allowed in the Calculus of Constructions. Hence, it becomes
very difficult to have general statements on monoids since the collection of monoids cannot be
expressed is not a datatype. Instead, what is possible to do is to have general statements for
monoids with a specific carrier such as N. Indeed, the type

6We use a trick here to express the type of the monoid using the so-called impredicative encoding which is
similar to encoding a datatype with its elimination principle.
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(z : ?)→ (N→ (N→ N→ N)→ z)→ z

is valid in the Calculus of Constructions. A perfect solution would be to add polymorphism
to Calculus of Constructions for the sort �. However, the system System U shows that
adding polymorphism makes the specification inconsistant. Another idea would be to add the
axiom (�,�), but this makes also the logic inconsistent [MR86].

The solution adopted by many systems to solve this issue is to add a new sort 4 such that
� : 4. Then we add the corresponding products meaning {(4, ?, ?)}∪{(i,4,4) | i ∈ {?,�,4}}.
Using this new specification the type we have given in Equation 1.1 is now well-typed in 4. But
this solution raises another issue which is we cannot use this definition with a carrier living in
the sort 4 for the same reason as before. Hence, a natural extension to avoid this issue is to
have an infinite hierarchy which extends the specification with similar rules and axioms as for
4.

Having this infinite hierarchy of universes leads to another practical issue. What should
the type for the carrier of a monoid be? The sort for the carrier of a monoid is fixed, once
and for all. Hence, using our specification, we would need as many datatypes for monoid as
necessary (one where the carrier is �, another when the carrier is 4,...) meaning restate all the
theorems about monoids at every level. To overcome this issue, there are two different solutions
which require both to extend PTS. The first solution is called universe polymorphism [ST14].
The idea of universe polymorphism, is that given an infinite hierarchy of universes �i, universe
polymorphism allows you to quantify over the level i, as in (i :L) → �i → �i where L is the
type for levels. Universe polymorphism fixes the issue above by expressing the type for monoids
as:

(i :L)→ (z : ?)→ ((A :�i)→ A→ (A→ A→ A)→ z)→ z

The second solution is given with CTS by adding subtyping on sorts.

Notation 10 Sorts–which in this context will be called universes–are denoted 0, 1, 2, ....

Using cumulativity, the level for the datatype of our monoid should be the maximum needed.
By needed, we mean that since every proof is finite, one should use the highest level of the
datatype used as a carrier of a monoid. Hence, the type for a monoid with a carrier at level
0 and at level 100 would be the same thanks to subtyping. This gives another explanation
why most of the systems based upon the Calculus of Constructions implement an infinite
hierarchy of universes.

For the main systems which extend Calculus of Constructions: Agda, Coq, Lean,
Matita, only Agda and Coq7 implement universe polymorphism. The other systems as well
as Coq implement a CTS with an infinite and cumulative hierarchy of universes. This makes
Coq the only system to implement both universe polymorphism and cumulativity [ST14] at the
time being.

In the following, we aim to give a description of the CTS behind these systems. Since we are
going to have an infinite number of universes, we will represent them with numbers instead of
shapes.

Notation 11 For all n, we define N<n as {i ∈ N | i < n}. This notation is extended for ≤.

7Since version 8.5



42 CHAPTER 1. CUMULATIVE TYPE SYSTEMS

PTS of Agda: Since Agda has made the choice to have universe polymorphism and no
cumulativity, the CTS behind Agda is in fact a PTS.

Definition 1.5.11 (Agda)
For all n ∈ N, we define the class of PTS PA

n which have the following specification:

(PA
n ) =


S = {i | i ∈ N≤n}
A = {(i, i+ 1) | i ∈ N<n}
R = {(i, j, k) | k = max(i, j)}

0

1

2

...
c

b

a

f

e

d

Notation 12 We will use the notation C∞ when S = N.

The definition above introduces a family of PTS where PA
∞ is actually the one behind Agda.

Because of universe polymorphism, to keep the fact that every term has a type in Agda, a sort
ω is added to give a type to (i :L)→ i or any product which quantifies over a level.

If we compare Agda with the CTS specifications from the λ-cube

The lambda-cube represented in Fig. 1.9 is composed of eight specifications P such that SP =
{?,�}, AP = {(?,�)} and RP ⊆ {(?, ?, ?)} ∪ {(i, j, j) | i, j ∈ {?,�}}.↑

, we can say that Agda
has dependent types and higher-order types. However, they do not have the product associated
to polymorphism. Polymorphism can be replaced with universe polymorphism. Another feature
of Agda is that its specification is predicative.

Theorem 1.5.1 The CTS PA
∞ is predicative.

Proof One can check that this specification is ordered using the natural order on natural numbers.
Then we can prove that there is no product (s, s′, s′′) such that s /SSC s′′ or s′ /SSC s′′.

We define below an extension of Agda as a CTS by having an infinite and cumulative
hierarchy of universes.

Definition 1.5.12 (Predicative cumulative hierarchy)
For all n ∈ N, we define the class of CTS Cn which have the following specification:

(Cn) =


S = {i ∈ N | i ≤ n}
A = {(i, i+ 1) | i < n}
R = {(i, j, k) | k = max(i, j)}
C = {(i, j) | i ≤ j}

0

1

2

...

CTS of Lean: The CTS behind Lean is very close to the PTS behind Agda. They add
cumulativity on sorts and they make the sort 0 impredicative by adding polymorphism.

Definition 1.5.13 (Lean [dMKA+15])
For all n ∈ N, we define the class of CTS C L

n which have the following specification:
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(C L
n ) =


S = {i ∈ N≤n}
A = {(i, i+ 1) | i ∈ N<n}
R = {(i, j, k) | k = imax(i, j)}
C = {(i, j) | i ≤ j}

0

1

2

...

where imax(i, j)8 is defined as 0 if j = 0 and max(i, j) otherwise.

CTS of Coq: In Coq, they add another sort S, which is related to a feature of Coq called
Program Extraction [Let08]. This means that every datatype in S has a computational content
that can be extracted to a programming language such as OCaml. In Coq, 0 is used to represent
propositions. This gives the following CTS.

Definition 1.5.14 (Coq [BGG+14])
For all n ∈ N∗, we define the class of CTS CC

n which have the following specification:

(CC
n ) =


S = {i ∈ N≤n ∪ {S}}
A = {(i, i+ 1) | i ∈ N<n} ∪ {(S, 1)}
R = {(i, j, k) | k = imax(i, j)}
C = {(i, j) | i ≤ j} ∪ {(S, i) ∪ {0,S} | i ∈ N≤n}

0

1

2

...

S

The function imax is extended naturally on {i ∈ N≤n ∪ {S}} using S ≤ 1.

In Coq, the sort S is called Set and 0 is called Prop.

CTS of Matita: The CTS behind Matita is more complex. The idea behind this spec-
ification is to make no commitment about having an impredicative sort as in Coq or Lean.
Hence, they define two predicative hierarchies of universes. There exists two mappings from one
hierarchy to the other: A mapping such that all the universes are crushed into one (0P , which
gives C L

∞), giving hence an impredicative specification. Another which maps a universe to its
corresponding universe in the other hierarchy (giving the same specification as C∞), hence all
sorts are predicative. This notion of mapping will be formalized in Chapter 2 and are called
specification morphism.

Definition 1.5.15 (Matita)
For all n ∈ N, we define the class of CTS SCMn which have the following specification:

8for impredicative max
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(CM
n ) =


S = {(i, t) ∈ N× {P, T} | i ≤ n}
A = {(i, t), (i+ 1, t) | t ∈ {P, T}}
R = {(i, t′), (j, t), (k, t) | k = max(i, j)}
C = {(i, t), (j, t′) | i, j ∈ N, t, t′ ∈ {P, T}, t ≤ t′, i ≤ j}

0T

1T

2T

...

0P

1P

2P

...

where t ≤ t′ is defined as {(P, P ), (P, T ), (T, T )}.

1.6 Termination

In CTS, strongly normalization of ↪→β is not a syntactic property since there exists CTS that
do not terminate. However, it is not as obvious as in the pure lambda-calculus since there is
no type A such that the term λx :A. x x is typable in any CTS specification. This is a direct
consequence of Product injectivity

If A�C (x :C) → D then there exists C ′ and D′ such that A≡β(x :C ′) → D′, C ′≡βC and
D′�CD.

(1.4.2). We have already mentioned some CTS specifications
that do not have the SN

A rewriting relation ↪→ is said strongly normalizing (SN) if for all terms t, there is no infinite
sequence (tn)n∈N such that t0 = t and for all n, tn ↪→ tn+1.↑

property such as λU−.

Theorem 1.6.1 ([Hur95]) The CTS λU− is not SN

A rewriting relation ↪→ is said strongly normalizing (SN) if for all terms t, there is no infinite
sequence (tn)n∈N such that t0 = t and for all n, tn ↪→ tn+1.↑

.

This theorem also implies that λU is not SN

A rewriting relation ↪→ is said strongly normalizing (SN) if for all terms t, there is no infinite
sequence (tn)n∈N such that t0 = t and for all n, tn ↪→ tn+1.↑

while historically, λU was proved not SN

A rewriting relation ↪→ is said strongly normalizing (SN) if for all terms t, there is no infinite
sequence (tn)n∈N such that t0 = t and for all n, tn ↪→ tn+1.↑

before
λU− by Girard [Gir72]. Non terminating CTS are not suitable in practice because they make
the type checking undecidable and non suitable to define a consistent logic. Hurkens’ paradox
is often interpreted as being impossible to have two different impredicative sorts in the same
hierarchy of universes. The PTS λ? is also non-terminating [MR86]. Knowing that λU− is non-
terminating, there is an easy proof to see that λ? is also non-terminating. One can translate every
typable judgment expressed in the U− specification to a typable judgment in the ? specification:
This translation is the identity function except that all sorts are mapped to ?. Such translation
between CTS specification called sort morphisms will be properly in Chapter 2.

On the other hand, CTS from the λ-cube

The lambda-cube represented in Fig. 1.9 is composed of eight specifications P such that SP =
{?,�}, AP = {(?,�)} and RP ⊆ {(?, ?, ?)} ∪ {(i, j, j) | i, j ∈ {?,�}}.↑

are all terminating. This is implied by the termi-
nation of the Calculus of Constructions.

Theorem 1.6.2 ([GN91] [Geu94]) The Calculus of Constructions is SN

A rewriting relation ↪→ is said strongly normalizing (SN) if for all terms t, there is no infinite
sequence (tn)n∈N such that t0 = t and for all n, tn ↪→ tn+1.↑

.

Moreover, we should mention that there is a famous conjecture on PTS formulated by Baren-
dregt [AGM92] and Geuvers [Geu93] which could be extended for CTS:

Conjecture 1 (WN implies SN) If a PTS is WN, then it is also SN

A rewriting relation ↪→ is said strongly normalizing (SN) if for all terms t, there is no infinite
sequence (tn)n∈N such that t0 = t and for all n, tn ↪→ tn+1.↑

.

This conjecture has been solved for a large class of PTS specification in [BHS01a] but remains
open in the general case.

Looking at non-terminating CTS, the fact that we are not able to give a type to the follow-
ing term λx :A. x x makes wonder if it is possible to find a CTS specification with a fixpoint
combinator. This is also an open conjecture:

Conjecture 2 (Existence of fixpoint) Is there a CTS specification which is able to type a
fixpoint combinator? Meaning a well-typed term YF such that YF F ↪→∗β F (YF F ) whenever
YF F is well-typed.
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Γ `C s ws
wssort

Γ `C A : s
Γ `C A ws

wstype

Figure 1.10: Derivation rules of well-sorted types

The best we can do so far, is to derive loop combinators: A sequence of term YFn such that
YFn F ↪→β F

(
YFn+1 F

)
such that modulo a type erasure function | · |, |YFn | = |YFn+1 | for all

n [CH94].

1.7 Meta-theory of Cumulative Type Systems

This section states some meta-theoretical results about CTS. The main one being the subject
reduction property. All the proofs can be found in [Bar99a] or [Las12]. Often, we need to say
that a type A is well-sorted meaning that either A is a sort, or it has a sort. We encapsulate this
definition into a judgment.

Definition 1.7.1 (Well-sorted)
We introduce the judgment Γ `C A ws in Figure 1.10 expressing that A is well-sorted: Either A
is a sort or it has a type which is a sort.

Theorem 1.7.1 (Well-formed typing context) If Γ `C t : A then Γ `C wf .

Theorem 1.7.2 (Weakening) If Γ `C t : A and Γ,Γ′ `C wf then Γ,Γ′ `C t : A.

Theorem 1.7.3 (Inversion on variable) If Γ `C x : C then there exists A such that Γ `C wf ,
(x : A) ∈ Γ and A�CC.

Theorem 1.7.4 (Inversion on sort) If Γ `C s : C then there exists s′ such that Γ `C wf ,
(s, s′) ∈ AC and s′�CC.

Theorem 1.7.5 (Inversion on product) If Γ `C (x :A) → B : C then there exists s1, s2, s3
such that Γ `C A : s1, Γ, x : A `C B : s2, (s1, s2, s3) ∈ RC and s3�CC.

Theorem 1.7.6 (Inversion on abstraction) If Γ `C λx :A. t : C then there exists B and s
such that Γ, x : A `C t : B, Γ `C (x :A)→ B : s and (x :A)→ B�CC.

Theorem 1.7.7 (Inversion on application) If Γ `C t u : C then there exists A,B such that
Γ `C t : (x :A)→ B, Γ `C u : A, B {x← u}�CA and Γ `C B {x← u} ws.

Theorem 1.7.8 (Substitution lemma) If Γ, x : A,Γ′ `C t : B and Γ `C N : A then
Γ,Γ′ {x← N} `C t {x← N} : B {x← N}. If Γ, x : A,Γ′ `C wf and Γ `C N : A then
Γ,Γ′ {N ← A} `C wf

Theorem 1.7.9 (Well-sorted) If Γ `C t : A then Γ `C A ws.

Theorem 1.7.10 (Well-sorted subtyping) If Γ `C t : A, Γ `C B ws and A�CB then
Γ `C t : B
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Theorem 1.7.11 (Subject reduction) If Γ `C t : A and t ↪→β t
′ then Γ `C t′ : A.

Theorem 1.7.12 (Type uniqueness) If P is a functional PTS specification, Γ `P t : A and
Γ `P t : A′ then A≡βA′.

η reduction with subtyping

η reduction has a strange behavior with subtyping. In particular it breaks the subject reduction
property as witnessed in the following example (in the Agda specification): In a typing context
Γ = f : 2 → 2 one can derive the following judgment: Γ `C λx : 0. f x : 0 → 2. Even if
λx : 0. f x ↪→η f , it is not possible to derive Γ `C f : 0→ 2.

Such problem can be avoided (as done in the Coq system) by defining the η rewriting relation
as an expansion: If Γ `C M : (x :A) → B, then M ↪→η λx :A.M x and M is not a λ. This
relation terminates if M is well-typed. However, this raises a practical issue: In CTS, rewriting
is performed on untyped-term by computing a normal form. However, this definition of η needs
to take into account the type ofM to do an η-expansion. To solve this issue, the trick is to notice
that in practice, reduction is always performed on well-typed terms. Therefore if one needs to
check that M is convertible with λx :A.N x, then it is sufficient to η-expand M as λx :A.M x
since the convertibility test can assume that M and λx :A.N x have the same type.

Notice that having η expansion gives a form on contravariance. In the same typing context
as before where Γ = f : 2 → 2, you can derive Γ `C f : 2 → 2, but you can also derive
Γ `C λx : 0. f x : 0 → 2 because 0�C 2. So an η−expansion gives you a form of contravariant
subtyping on domain for products.

1.7.1 Decidability of type-checking
The problem of the decidability of type checking is that of the decidability of the set of (Γ, t, A)
such that Γ `C t : A is derivable. This is the fundamental problem behind any implemen-
tation of a type theory. In the case of CTS, one cannot expect that this property holds
for any specification C for two reasons: First, the specification itself might be undecidable.
For example, deciding whether (s, s′) ∈ AC is not decidable if AC is defined as {(n, i) |
The nth Turing machine halts on input i}. Secondly, the relation ↪→β might not terminate,
which generally implies that A�CB is also undecidable. For these two reasons, we target CTS
specifications which are decidable and normalizing for the decidability of type checking. How-
ever, even with these restrictions, it is not clear that the type checking of CTS is decidable. This
is because type checking rules are not syntax-directed. An informal definition of syntax-directed
rules taken from [Bar99b] is: A set of inference rules is said syntax-directed if using this set of
rules, there is at most one way to derive a type for a given expression in a given typing context,
and the type is unique. The rules which make CTS not syntax directed are Capp

Γ `C M : (x :A)→ B Γ `C N : A
Γ `C M N : B {x← N}

Capp ↑
, C�

Γ `C M : A Γ `C B : s A�CB

Γ `C M : B
C� ↑

and C s
�

Γ `C M : A A�C s

Γ `C M : s
C s
� ↑

.
For PTS, there are two main results about decidability of type checking. In [Jut93], it is shown
that if the set of sorts is finite, then the type checking is decidable. In [Bar99b], it is shown that
if the specification is functional and injective, then the type checking is also decidable. For CTS,
the only result published is about semi-full CTS [Bar99a]. However, results mentioned before
could probably be extended for CTS. All specifications behind concrete proof systems check one
of these properties, hence type checking is decidable for these specifications.

It may be relevant to explain why the decidability of type checking is not an easy problem.
Assuming assumptions we saw earlier, the difficulty about decidability of type checking in CTS
comes from the combinations of the rules Capp

Γ `C M : (x :A)→ B Γ `C N : A
Γ `C M N : B {x← N}

Capp ↑
and Cλ

Γ, x : A `C M : B Γ `C (x :A)→ B : s
Γ `C λx :A.M : (x :A)→ B

Cλ ↑
(this difficulty is already there for PTS).

In Capp

Γ `C M : (x :A)→ B Γ `C N : A
Γ `C M N : B {x← N}

Capp ↑
, since the rule is not syntax directed, one needs to infer a type for the left term of the

application. Hence, we need an inference algorithm which given a typing context Γ and a term
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A≡βB
A�tCB

�t≡β
(s, s′) ∈ C∗C
s�tC s′

�tC∗
C

B�tCB′

(x :A)→ B�tC (x :A)→ B′
�tΠ

Figure 1.11: CTS subtyping relation with transitivity

t returns a type A such that Γ `C t : A holds. One may see that defining such algorithm by
induction on t is not difficult except for the case t = λx :A. u, here is why. Given Γ and λx :A. u,
we want to infer a type C for λx :A. u. By induction on the term, we can infer a type B such
that Γ, x : A `C u : B is derivable. To conclude, we would like to prove that we can infer a sort
for (x :A) → B. However, we cannot use the induction hypothesis since neither (x :A) → B,
A or B are subterms of the original term. Allowing such recursion scheme from a term to its
type is complicated. A first direction towards having such recurrence principle was done by
Barthe [BHS01b] for a subclass of PTS. Also, to infer a sort to (x :A) → B we cannot simply
rely on the fact that we can derive that Γ `C B ws and Γ `C A ws. The reason is without
functionality, there might be several choices to give a sort s1 to A and s2 to B: Which one implies
that there exists s3 such that (s1, s2, s3) ∈ R? Other technical details are discussed in [Bar99b].
In Chapter 3 and Chapter 4, we will investigate two other directions, namely well-structured
derivation trees and bi-directional CTS, to solve that kind of issue which arises for many other
problems related to CTS. In particular, this problem also appears in a different way during the
soundness proof of our encoding of CTS into λΠ-calculus modulo theory.

1.7.2 Subtyping and transitivity
The transitivity rule for subtyping is an issue to implement a type checker. Indeed it is not
structural and therefore it is not clear when to use it. The way it is achieved in modern proof
assistants is to check first the convertibility and if they are not convertible reduce the types until
we found a sort or a product. If both types are sorts, subtyping is checked via the specification
directly. If both types are product we check the convertibility of domains and we apply recursively
on co-domains.. In this section we formalize this idea by defining another subtyping relation
without the transitivity rule presented in Fig 1.11. Accordingly, we define Γ `tC t : A and
Γ `tC wf the new type system which uses �tC for the subtyping relation. The point of this
section is to show that the two type systems defined by these relations are equivalent even
though the two subtyping relations are different.

It is clear that if Γ `tC t : A then Γ `C t : A and if Γ `tC wf then we have Γ `C wf .
But what about the opposite direction? In that case, the idea to simulate transitivity of the
cumulativity relation is to stack several applications of C�

Γ `C M : A Γ `C B : s A�CB

Γ `C M : B
C� ↑

or C s
�

Γ `C M : A A�C s

Γ `C M : s
C s
� ↑

. The difficulty comes from that
in Γ `tC t : A all the intermediate types needs to be well-typed which is not the case with the
subtyping rule .

To resolve this issue we introduce in Fig 1.12 an intermediate cumulativity relation �t−C where
the transitivity rule is admissible. From this cumulativity relation we will be able to derive that
every intermediate steps are typable.

First some technical lemmas that shows that �t−C is closed with conversion.

Lemma 1.7.13 If A�t−C B and B≡βC then A�t−C C

Proof By induction on A�t−C B. All the cases are trivial by transitivity of ≡β.
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A≡βB
A�t

−

C B
�t
−
≡β

A≡βs B≡βs′ (s, s′) ∈ C∗C
A�t

−

C B
�t
−
C∗

C

A≡β(x :A1)→ A2 B≡β(x :B1)→ B2 A1≡βB1 A2�t
−

C B2

A�t
−

C B
�t
−

Π

Figure 1.12: CTS subtyping relation where transitivity is admisslbe

Lemma 1.7.14 If B�t−C C and A≡βB then A�t−C C

Proof By induction on B�t−C C. All the cases are trivial by transitivity of ≡β.

Hence, we can simulate transitivity in �t−C .

Lemma 1.7.15 (Transitivity of �t−C ) If A�t−C B and B�t−C C then A�t−C C.

Proof To get the good induction hypothesis we need first, to generalize over B�t−C C and C, and
then by induction on A�t−C B. Finally, by an inversion on B�t−C C. Among the 9 cases possible,
they all can be closed easily except when the last rule is �t−Π

A≡β(x :A1)→ A2 B≡β(x :B1)→ B2 A1≡βB1 A2�t
−

C B2

A�t
−

C B
�t
−

Π
↑

in both cases. In that case we
emphasize that the induction hypothesis is the following one: If A2�t

−

C B2 then for all C such
that B2�tCC we have A2�t

−

C C.

♦ �t−Π

A≡β(x :A1)→ A2 B≡β(x :B1)→ B2 A1≡βB1 A2�t
−

C B2

A�t
−

C B
�t
−

Π
↑

,�t−Π

A≡β(x :A1)→ A2 B≡β(x :B1)→ B2 A1≡βB1 A2�t
−

C B2

A�t
−

C B
�t
−

Π
↑

:
(1) A�t

−
C B Main hypothesis

(2) B�t
−

C C

(3) A≡β(x :A1)→ A2 Inversion on �t−Π

A≡β(x :A1)→ A2 B≡β(x :B1)→ B2 A1≡βB1 A2�t
−

C B2

A�t
−

C B
�t
−

Π
↑

1
(4) B≡β(x :B1)→ B2

(5) A1≡βB1

(6) A2�t
−

C B2

(7) B≡β(x :B3)→ B4 Inversion on �t−Π

A≡β(x :A1)→ A2 B≡β(x :B1)→ B2 A1≡βB1 A2�t
−

C B2

A�t
−

C B
�t
−

Π
↑

2
(8) C≡β(x :C1)→ C2

(9) B3≡βC1

(10) B4�t
−

C C2

(11) B1≡βB3 Product injectivity
If A�C (x :C)→ D then there exists C′ and D′ such that A≡β(x :C′)→ D′, C′≡βC and D′�CD.

(1.4.2) 4,7
(12) B2≡βB4

(13) A1≡βC1 Transitivity of ≡β 5,11,9
(14) B2�t

−
C C2 Lemma

If B�t−C C and A≡βB then A�t−C C

(1.7.14) 6,12
(15) A2�t

−
C C2 Induction Hypothesis

If A�t−C B and B�t−C C then A�t−C C.
6,14

O (16) A�t
−

C B �t
−

Π

A≡β(x :A1)→ A2 B≡β(x :B1)→ B2 A1≡βB1 A2�t
−

C B2

A�t
−

C B
�t
−

Π
↑

3,8,13,15

Lemma 1.7.16 If A�CB then A�t−C B.

Proof By induction on A�CB.
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♦ �≡β

A≡βB
A�CB

�≡β ↑
:

Trivial by �t−≡β

A≡βB
A�t

−

C B
�t
−
≡β ↑

♦ �C∗
C

(s, s′) ∈ C∗C
s�C s

′ �C∗
C ↑

:

Trivial by �t−C∗
C

A≡βs B≡βs′ (s, s′) ∈ C∗C
A�t

−

C B
�t
−
C∗

C ↑

♦ �Π

B�CB
′

(x :A)→ B�C (x :A)→ B′
�Π ↑

:

Trivial by �t−Π

A≡β(x :A1)→ A2 B≡β(x :B1)→ B2 A1≡βB1 A2�t
−

C B2

A�t
−

C B
�t
−

Π
↑

using induction hypothesis.

♦ �trans

A�CB B�CC

A�CC
�trans ↑

:

By induction hypothesis using Lemma 1.7.15.

Using the relation �t−C we were able to remove the transitivity rule by inlining conversions.
We now need the following intermediate lemma:

Lemma 1.7.17 If A�t−C B then there exists A′ and B′ such that A′�tCB′ with A ↪→∗β A′ and
B ↪→∗β B′.

Proof By induction on A�t−C B.

♦ �t−≡β

A≡βB
A�t

−

C B
�t
−
≡β ↑

:

Trivial by �t≡β

A≡βB
A�tCB

�t≡β ↑
by taking A′ = A and B′ = B.

♦ �t−C∗
C

A≡βs B≡βs′ (s, s′) ∈ C∗C
A�t

−

C B
�t
−
C∗

C ↑
:

(1) A�t
−

C B Main hypothesis
(2) A≡βs Inversion on �t−C∗

C

A≡βs B≡βs′ (s, s′) ∈ C∗C
A�t

−
C B

�t
−
C∗

C ↑

1
(3) B≡βs′

(4) (s, s′) ∈ C∗C
(5) A ↪→∗β s Confluence of β

β is CR: If u←↩∗β t ↪→∗β v then there exists w such that u ↪→∗β w ←↩∗β v.↑
2

(6) B ↪→∗β s′ Confluence of β
β is CR: If u←↩∗β t ↪→∗β v then there exists w such that u ↪→∗β w ←↩∗β v.↑

3
(7) s�tCs′ �tC∗

C

(s, s′) ∈ C∗C
s�tCs′

�tC∗
C ↑

4
(8) Let A′ := s

(9) Let B′ := s′

O (10) A′�tCB′ Definition of A′ and B′ 7,8,9
O (11) A ↪→∗β A′ Definition of A′ 5,8
O (12) B ↪→∗β B′ Definition of B′ 6,9

♦ �t−Π

A≡β(x :A1)→ A2 B≡β(x :B1)→ B2 A1≡βB1 A2�t
−

C B2

A�t
−

C B
�t
−

Π
↑

:
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(1) A�t
−

C B Main hypothesis
(2) A≡β(x :A1)→ A2 Inversion on �t−Π

A≡β(x :A1)→ A2 B≡β(x :B1)→ B2 A1≡βB1 A2�t
−

C B2

A�t
−

C B
�t
−

Π
↑

1
(3) B≡β(x :B1)→ B2

(4) A1≡βB1

(5) A2�t
−

C B2

(6) D�tCE Induction Hypothesis
If A�t−C B then there exists A′ and B′ such that A′�tCB′ with A ↪→∗β A′ and B ↪→∗β B′.

5
(7) A2 ↪→∗β D
(8) B2 ↪→∗β E
(9) A1 ↪→∗β C ←↩β B1 Confluence of β

β is CR: If u←↩∗β t ↪→∗β v then there exists w such that u ↪→∗β w ←↩∗β v.↑
4

(10) (x :C)→ D�C (x :C)→ E �tΠ

B�tCB′

(x :A)→ B�tC (x :A)→ B′
�tΠ ↑

6
(11) Let A′ = (x :C)→ D

(12) Let B′ = (x :C)→ E

O (13) A′�tCB′ Definition of A′ and B′ 10,11,12
O (14) A ↪→∗β A′ Congruence of β 11,7,9
O (15) B ↪→∗β B′ Congruence of β 12,8, 9

Lemma 1.7.18 If Γ `tC t : A, Γ `C B ws and A�t−C B then Γ `tC t : B.

Proof

(1) Γ `C t : A Main hypothesis
(2) Γ `tC B ws
(3) A�t

−
C B

(4) A′�tCB′ Lemma
If A�t−C B then there exists A′ and B′ such that A′�tCB′ with A ↪→∗β A′ and B ↪→∗β B′.

(1.7.17) 3
(5) A ↪→∗β A′

(6) B ↪→∗β B′

(7) Γ `tC A ws Well-sorted
If Γ `C t : A then Γ `C A ws.↑

1
(8) Γ `tC A′ ws Subject reduction

If Γ `C t : A and t ↪→β t
′ then Γ `C t′ : A.↑

7,5
(9) Γ `tC B′ ws Subject reduction

If Γ `C t : A and t ↪→β t
′ then Γ `C t′ : A.↑

2,6
(10) A�CA

′ �t≡β

A≡βB
A�tCB

�t≡β ↑
5

(11) B′�CB �t≡β

A≡βB
A�tCB

�t≡β ↑
6

(12) Γ `tC t : A′ Well-sorted subtyping
If Γ `C t : A, Γ `C B ws and A�CB then Γ `C t : B↑

1,8,10
(13) Γ `tC t : B′ Well-sorted subtyping

If Γ `C t : A, Γ `C B ws and A�CB then Γ `C t : B↑
12,9,4

O (14) Γ `tC t : B Well-sorted subtyping
If Γ `C t : A, Γ `C B ws and A�CB then Γ `C t : B↑

13,2,11

We can now finally conclude:

Lemma 1.7.19 We have the following implications:

• Γ `C t : A then Γ `tC t : A

• Γ `C wf then Γ `tC wf

Proof By induction on the derivation of Γ `C t : A and Γ `C wf . The subtyping rules are
handled using Lemma 1.7.16 and Lemma 1.7.18.

Related work: It is interesting to note that for subtyping, Marc Lasson [Las12] used �t−C
while Ali Assaf [Ass15b] used �C . However Marc Lasson had a subtle difference where he did
not considered the transitivity of the cumulativity relation in the rule �C∗

C

(s, s′) ∈ C∗C
s�C s

′ �C∗
C ↑

. He showed that in
that case, the two definitions are different. This is not surprising and will be a consequence of
results developed in Section 2.2.2. In particular, this difference is subsumed by the notion of
weak equivalence between CTS that we develop in Chapter 2.
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This equivalence is actually a simpler case of semantics CTS which are developed in Chapter 3
(which extend semantics PTS introduced by Geuvers [Geu93]). In semantics CTS, every β steps
needs to be well-typed. However, by doing so, we do not know how to prove subject reduction
anymore on this new system because we lose the Product injectivity

If A�C (x :C) → D then there exists C ′ and D′ such that A≡β(x :C ′) → D′, C ′≡βC and
D′�CD.

(1.4.2) property. We will
developed a technique in Chapter 3 which aims to solve this difficult question.





Chapter 2

Embeddings of CTS specifications

Interoperability between proof assistants requires first to understand how proofs from one logic
can be translated into another. In Chapter 1, we have explained how CTS provide a theoretical
basis behind many concrete systems. Understanding how proofs can be translated from one of
these systems to another require first to understand how one can translate proofs from one CTS1

to another. In this chapter we will develop three different definitions of embedding. All these
equivalences will be used throughout the manuscript and this is why we have decided to present
these equivalences one by one from the strongest to the weakest.

A notion that existed first for PTS and can be extended for CTS is to define a morphism of
sorts which is compatible with A,R and C called specification morphism. However, this idea is
often too strong and cannot be used in practice for two reasons:

• In general, we are not interested in a total translation from a CTS to another, but only
a partial one that can be used effectively. For example, the CTS behind Matita allows
an arbitrary number of universes while the CTS behind the HOL family systems allows
only three universes. We will see in Chapter 11, that in practice, many proofs developed
in Matita, especially arithmetic proofs do not use all the expressivity of Matita’s type
system and as a consequence, these proofs can be translated to the HOL family systems,

• Given the position of a sort inside a judgment, we may translate this sort differently
(depending if it is seen as a sort, a type or a term for example) which is not possible with
a specification morphism.

Hence, we weaken the notion of specification morphism to have a more general definition of
enbedding called CTS embedding. Using this new definition of embedding, we can derive general
results about equivalences between CTS. In particular, we will show that:

• Any CTS is equivalent to a functional CTS (Definition 1.3.6)

• Any CTS is equivalent to an injective CTS (Definition 1.3.7)

We also introduce a weaker version of embedding called weak CTS embedding when a judg-
ment is translated to an equivalent judgment modulo a substitution. In particular, we will show
that:

• Any CTS is weakly-equivalent to a CTS with at most one top-sort
1Formally the translations are between CTS specifications

53
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• Any CTS is weakly-equivalent to a CTS without top-sorts

Weak CTS equivalence and CTS equivalence coincide for judgments with an closed typing
context. We think that these equivalences can be used in a broader perspective, for example to
decide the type checking of a large class of CTS.

In a second part of this chapter, we are looking for an effective procedure to know whether
a judgment can be translated from a CTS C into a CTS C ′. The notion of embedding we
use for this procedure is the second one: CTS embedding. The idea is to define a notion of
free CTS associated to a derivation of a judgment Γ `D t : A. Then, knowing if a judgment
can be embedded into C is the same as finding a specification morphism from this free CTS
to C . While in general, the process of finding such specification morphism is not decidable, we
will see that in practice, it is in fact decidable. We have remarked while writing this manuscript
that some of these ideas were already present in a workshop paper of Randy Pollack [Pol92]
while he was fixing a result about the type checking in PTS. Free CTS can also be seen as a
generalization of the cycle-detection algorithm implemented for Coq [GJCP19].

We conclude this chapter with a discussion about the completeness of our method. The main
issue is that our method depends on some derivation tree for a judgment. Hence, if our method
fails, it only means that the derivation tree built for this judgment cannot be embedded into the
CTS C . This does not allow us to conclude that the judgment itself cannot be embedded into
C . Getting completeness requires to build a so-called canonical tree. Roughly, the idea is the
free CTS of a canonical tree should be more general than the free CTS of any other derivation
trees. However, the existence of such canonical tree is left as a conjecture.

2.1 Equivalences between CTS

This section aims at giving tools to talk about interoperability between CTS specifications.
We will define three different notions of embeddings between CTS in this section, namely:
specification morphism Eσ (2.1.1), CTS embedding (E) (2.1.5) and weak CTS embedding (Ew)
(2.1.12). All these notions of embeddings can be ordered by inclusion as follows:

Eσ ⊂ E ⊂ Ew

All these notions of embeddings naturally define also a notion of equivalence. The property
we aim to have for these equivalences is the preservation of termination: If C is a terminating
CTS specification and is equivalent to another CTS specification D , then D is also a terminating
specification.

We take time to introduce these definitions one by one because we will mention all of them
in the remaining part of the manuscript. However, in practice we are mainly interested to the
sechond notion of embedding (E). It is the one for which we have implemented a decision
procedure which is explained in Section 2.3 and its implementation is the object of Chapter 10.

2.1.1 Specification morphisms
A first idea about interoperability between CTS would be the following: Given two CTS speci-
fications C and D as well as a derivable judgment Γ `C t : A, is it possible to derive Γ `D t : A?
The question does not make sense as, when SC 6= SD , the language of C and D are also different.
For this reason, we need to introduce a function between sorts σ : SC → SD . We can refine our
first idea using the function σ to rephrase the question to say that if Γ `C t : A is derivable, is
it possible to derive Γσ `D tσ : Aσ where σ is extended naturally on terms and typing contexts.
To build a derivation tree for this judgment, we expect σ to be compatible with AD , RD and
CD . This intuition is captured by the definition of specification morphism.
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Definition 2.1.1 (Specification morphism)
Let C and D be two CTS specifications. We say that σ : SC → SD is a specification morphism

if:

(s, s′) ∈ AC ⇒ (σ(s), σ(s′)) ∈ AD

(s, s′, s′′) ∈ RC ⇒ (σ(s), σ(s′), σ(s′′)) ∈ RD

(s, s′) ∈ CC ⇒ (σ(s), σ(s′)) ∈ CD

We will also denote C EσD the specification morphism σ : SC → SD . Specification morphism
is extended naturally on terms and typing contexts.

Theorem 2.1.1 (Morphism soundness) If σ : SC → SD is a specification morphism then if
Γ `C t : A is derivable, then so is Γσ `D tσ : Aσ.

Proof By induction on the derivation of Γ `C t : A.

We give in Example 2.1 and 2.2 two limitations of sort-morphism.

Example 2.1 We denote Dx and Dy the specifications given by the following graphs (graphs of
CTS are defined in Definition 9):

Dx: s1

s2

Dy: s1

s2

The only difference between Dx and Dy is the product (s1, s1, s1). However, using cumulativ-
ity, this product can be simulated in Dy. Assuming we have Γ `Dy

t : s1 and Γ `Dy
u : s1. Then

we can derive Γ `Dy
t→ u : s1 as follows:

Γ `Dy t : s1 (s1, s2) ∈ CDy
Γ `Dy t : s2 Γ `Dy u : s1

(s2, s1, s1) ∈ RDy

Γ `Dy t→ u : s1

Hence, even if there is no specification morphism from Dx to Dy, any derivable judgment in
Dx can also be derived in Dy.

Example 2.2 Obviously, there is no specification morphism between the Calculus of Con-
structions with 5 and 2 universes (C5 and C2 (Definition 1.5.12)), however the judgment
`C5
0 : 1 can be derived in C2.

For this last example, one could relax the definition of specification morphism so that σ is
only a partial function, however this is still not enough because of the first example. In general,
the position of a sort inside the judgment may change its translation. To make this idea more
precise, we give another example below. The specifications D1 and D2 will be reused throughout
this chapter.

Example 2.3 We denote D1 and D2 the specifications given by the following graphs
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D1:

s1

s2s2′

s3 s4

D2:

t1

t2 t3

t2′ t3′

One can check that the following judgment is derivable x : s2, y : s2 `D1
x→ y : s4. However,

there is no specification morphism which makes this judgment derivable in D2. This is simply
because s2 cannot be mapped to a sort so that the product x → y is well-typed. Indeed, using
specification morphisms, we cannot map the first occurrence of s2 to t2 and the second occurrence
to t3 to produce the judgment x : t2, y : t3 `D2

x → y : t3. Moreover, we can notice that there
is no specification morphism from D2 to D1. Still, we will see later that these two specifications
are equivalent using the notion of weak CTS equivalence (Definition 2.1.12).

All the examples above make it clear that specification morphism is most of the time too
restrictive to define an interesting equivalence relation between CTS specifications. We define a
weaker notion of equivalence in the next section called CTS embedding.

2.1.2 CTS embeddings
Our notion of CTS embedding generalizes specification morphisms. Because of the sorts, the
syntax between two CTS might be different. Hence, we are interested in having a notion of
equality between terms and judgment which does not depend on the sorts anymore. Our idea is
to use the ? specification (Definition 1.5.8) which has only one sort. Morever, this specification
has the the property that from any CTS specification, there is only one canonical specification
morphism to ?.

Theorem 2.1.2 For any CTS specification C , there is a canonical specification morphism to ?.

Proof Every sort is mapped to ?.

Definition 2.1.2 (Sort erasure)
We will use the notation t? to denote tσ where σ is the specification morphism defined in
Theorem 2.1.2. We say that t? is the sort-erasure of t. This notation is extended to typing
contexts, judgments and derivation trees.

Notation 13 We define the notation =? as: t =? t
′ := t? = t′?. This equality is extended

naturally to typing contexts, judgments and derivation trees.

Lemma 2.1.3 If t =? t
′ and t ↪→β t1, then there exists t1′ such that t1 ↪→β t1′ and t1 =? t1′ .

Proof Every β-redex in t is also a β-redex in t′.

Definition 2.1.3 (Judgment ?-embedding)
For any specification, we say that the judgment Γ `? t : A is (?,C )-embedded if there exist

Γ′, t′, A′ such that Γ′ `C t′ : A′ is derivable with Γ =? Γ′, t =? t
′ and A =? A

′.

Definition 2.1.4 (Judgment embedding)
For any CTS specification C and C ’, a judgment Γ `C t : A is (C ,C ′)-embedded if the judgment

Γ? `? t? : A? is (?,C ′)-embedded.
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Example 2.4 Using again the specifications D1 and D2 from Example 2.3, one can check that
the judgment x : s2, y : s2 `D1

x → y : s4 is (D1,D2)-embedded. Indeed, the judgment x : t2, y :
t3 `D2

x→ y : t3 is derivable and their sort-erasure is the same.

Definition 2.1.5 (CTS embedding & CTS equivalence)
For any two CTS specifications C and C ’, we say that C is CTS embedded into C ’ if any
derivable judgment Γ `C t : A is (C ,C ′)-embedded. Two CTS are said CTS equivalent if one
is CTS embedded into the other and vice versa.

Notation 14 We write C E C ′ to express that C is CTS embedded into C ’. We write C ∼ C ′

to express that the two specifications are CTS equivalent.

The Example 2.1 put in evidence that there are CTS specifications which are minimal in the
sense that any axiom (resp. rule) cannot be simulated from other axioms (resp. rules) using
cumulativity. This is specified in the definition below.

Definition 2.1.6 (Minimal specification [Ass15b])
Given a specification C , we define the minimal specification CM as follows:

• SCM = SC

• ACM = {(s1, s2) | ∀s2′ ∈ SC , s2 6= s2′ ∧ (s1, s2′) ∈ AC ⇒ (s2′ , s2) 6∈ C∗C }

• RCM = {(s1, s2, s3) | ∀s1′ , s2′ , s3′ , (s1, s2, s3) 6= (s1′ , s2′ , s3′) ∧ (s1′ , s2′ , s3′) ∈ RC ⇒
{(s1, s1′), (s2, s2′), (s3′ , s3)} 6⊆ C∗C }

• CCM = {(s1, s2) | ∀s2′ ∈ SC , s2 6= s2′ ∧ (s1, s2′) ∈ CC ⇒ (s2′ , s2) 6∈ C∗C }

Theorem 2.1.4 ([Ass15b]) For any specification C , we have (CM ∼C )

Proof This proof is a direct consequence of the definition of CTS judgment equivalence and the
definition of CM.

Remark 12 The notion of minimality defined above is related to cumulativity as shown in the
example below.

H : s1

s2

s3

The product (s3, s3, s3) cannot be used and as such the specification H is equivalent to the
Simply Typed Lambda Calculus. Defining a proper definition of minimality requires to know
whether a sort is inhabited (see in Section 2.1.4).

The notion of embedding we have defined is the one we will use in practice and it is the one
for which we will define a decidable procedure in Section 2.3. However, this equivalence does not
behave well with top-sorts and cumulativity.

Example 2.5 We denote Da and Db the specifications given by the following graphs:
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Da: s1

s2

Db: s1

s2

s3

Without the product (s1, s2, s2) it is not hard to see that the two specifications would be
equivalent using CTS embeddings. However, using this product, one can construct the judgment
X : s1, Y : s2 `Db

X → Y : s2 but it has no equivalent in Da using the notion of CTS embedding.
The reason is because the variable Y : s2 cannot be declared in Da because s2 is a top-sort and
hence s2 has no type (see Cvar

Γ `C wf (x : A) ∈ Γ
Γ `C x : A

Cvar ↑
).

A kind of equivalent judgment derivable in Da would be X : s1 `Da
X → s1 : s2. In this

new judgment, we have substituted s1 for the variable Y , an inhabitant of s2. It is equivalent in
a sense that we have replaced a variable of some type by a term of the same type. Indeed, any
variable of type s2 in Db can only appear in a typing context because there is no product which
start with s3, the type of s2.

The next notion of embedding we will define, aims at fixing the issue raised by the example
above with a weaker notion of embedding where we relax CTS equivalence modulo a substitution.
We highlight at the end of this part (see Section 7.4) that this problem of cumulativity and top-
sorts maybe actually a problem of the definition of CTS because top-sorts are not types because
a variable cannot inhabit a top-sort.

2.1.3 Weak CTS embeddings
The Example 2.5 shows an issue with CTS equivalence related to top-sorts. Extending a CTS
specification with an axiom (s1, s2) where s1 is a top-sort allows to declare variable of type s1
which was not possible before. If s1 was inhabited, meaning that there exist Γ and t such that
Γ `C t : s1, we can always replace any variable which inhabit s1 by t. Adding this axiom does
not allows to inhabit more types.

2.1.4 Inhabitation of top-sorts
Definition 2.1.7 (Inhabitation of a type)
A type A in a specification C is inhabited if there exist Γ and t such that Γ `C t : A. Otherwise,
we say that this type A is empty.

Conjecture 3 (Undecidability of top-sort inhabitation) Deciding whether a top-sort is in-
habited is undecidable.

From now on, we will use the excluded middle to decide whether a top-sort is inhabited.
However, in practice, this instance of the excluded middle can be removed safely because it is
easy to decide whether a top-sort is inhabited.

Theorem 2.1.5 A specification C is always equivalent to a specification C ′ where all the empty
top-sorts have been removed.

Proof Given the derivation tree π of the Γ `C t : A. By definition, A cannot be an empty
top-sort, hence we can conclude.
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Definition 2.1.8 (Canonical inhabitant)
For every inhabited top-sort s in a specification C , we can identify one canonical inhabitant.
We denote [s]C this canonical inhabitant. We denote [s]Cctx the typing context associated to this
canonical inhabitant, hence we have: [s]Cctx `C [s]C : s.

The substitution of a variable by the canonical inhabitant of a top-sort might increase the
typing context. This is why we have the following definitions.

Definition 2.1.9 (Substitution for canonical inhabitants)
We define [σ]C a substitution which maps variables to canonical inhabitants of top-sorts. We
define Γ[σ]C the typing context substitution by induction on [σ]C :

• Γ[·]C := Γ

• Γ[
{
X ← [s]C

}
;σ]C := [s]Cctx t Γ[σ]C

We use a disjoint union to avoid any shadowing of a variable.

2.1.5 Weak CTS equivalence

Definition 2.1.10 (Weak judgment ?-embedding)
For any specification C , we say that the judgment Γ `? t : A is (?,C )-weakly embedded if there
exist Γ′, t′, A′, [σ]C such that Γ′ `C t′ : A′ is derivable and Γ[σ]C =? Γ′, tσ =? t

′ and Aσ =? A
′

where [σ]C is a substitution from V to T .

Remark 13 If [σ]C is the empty substitution, the notion of weak judgment embedding coincides
with judgment embedding. In particular weak judgment embeddings and judgment embeddings
coincide when Γ is empty.

Remark 14 We use the notion of canonical inhabitant for a top-sort so that [σ]C can be defined
as a function. In the rest of this chapter, we will not insist on this point for sake of simplicity.

Definition 2.1.11 (Weak judgment embedding)
For any CTS specification C and C ’, a judgment Γ `C t : A is (C ,C ′)-weakly embedded if the
judgment Γ? `? t? : A? is (?,C ′)-weakly embedded.

Example 2.6 Taking back specifications D1 and D2 presented in Example 2.3, the judgment
X : s2 `D1

X → X : s4 is (D1,D2)-weakly embedded with the substitution [{X ← t1}]. Indeed,
the judgment `D2

t1 → t1 : t3 is derivable.

Definition 2.1.12 (Weak CTS embedding & Weak CTS equivalence)
For any two CTS specifications C and C ’, we say that C is weakly embedded into C ’ if

any derivable judgment Γ `C t : A is (C ,C ′)-weakly embedded. Two CTS are said weak CTS
equivalent if one is CTS embedded into the other and vice versa.

Notation 15 We denote C Ew C ′ if C is weakly CTS embedded into C ′. We denote C ∼w C ′

if C is weakly CTS equivalent to C ′.

Our main interest for weak CTS equivalence is the Theorem 2.2.20.



60 CHAPTER 2. EMBEDDINGS OF CTS SPECIFICATIONS

s1

s2s2′

s3 s4

Theorem 2.2.20

∼w

s1

s2

s3 s4

Theorem 2.2.9

∼ s1

s3 s4

Theorem 2.2.2

E t1

t2 t3

t2′ t3′

Figure 2.1: Proof that D1 Ew D2

2.2 Meta-theory of equivalences

In this section we prove several results about equivalences we have defined previously.

Definition 2.2.1 (Strict weak CTS embedding)
The strict version of Ew (resp. E) is defined as C Cw C ′ := C Ew C ′ ∧ ¬(C ′ Ew C ).

Theorem 2.2.1 Ew is a preorder.

Proof Clearly, Ew is reflexive. Transitivity is a direct consequence of the definition of judgment
embedding.

Lemma 2.2.2 If C Eσ C ′ then C E C ′. If C E C ′ then C Ew C ′.

Proof Direct consequence of the definition of Eσ, E and Ew.

Example 2.7 Using the theorems we will develop in the next part of this section, we are able
to prove that D1 Ew D2 as witnessed in Figure 2.1. The first equivalence says that one axiom is
not necessary. This is possible because giving a type to a top-sort which is inhabited and which
has no product associated with, does not increase the expressivity of the specification. As we
hinted previously, s1 can be substituted for any variable of type s2. The second embedding is a
particular case of functionalization of a specification. The second specification is the functional
representation of the third specification which are equivalent. Since the third specification is
included in the last one, we can deduce the existence of a specification morphism.

In Figure 2.2, we give a proof that D2 Ew D1 which uses the same ideas as previously.

A direct consequence of the definition of CTS embedding is the following theorem.

Theorem 2.2.3 (Preservation of termination) If C Ew C ′ and C ′ is a terminating CTS,
then so is C .

Proof Suppose that there exist a term t such that Γ `C t : A but t is not SN

A rewriting relation ↪→ is said strongly normalizing (SN) if for all terms t, there is no infinite
sequence (tn)n∈N such that t0 = t and for all n, tn ↪→ tn+1.↑

. Then, by
definition of weakly-embedding, we have that there exist [σ]C ′ ,Γ′, t′, A′ such that Γ′ `C ′ t

′ : A
and Γ[σ]C ′ =? Γ′, tσ =? t

′ and A[σ]C ′ =? A
′. But if t is not SN

A rewriting relation ↪→ is said strongly normalizing (SN) if for all terms t, there is no infinite
sequence (tn)n∈N such that t0 = t and for all n, tn ↪→ tn+1.↑

, neither is tσ. We conclude
with Lemma
If t =? t

′ and t ↪→β t1, then there exists t1′ such that t1 ↪→β t1′ and t1 =? t1′ .
(2.1.3).

Corollary 2.2.4 If C EC ′ and C ′ is a terminating specification, then so is C . If C Eσ C ′ and
C ′ is a terminating specification, then so is C .
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s

a a

Figure 2.3: Idea behind functionalization of CTS specification

Remark 15 For each notion of embedding Eσ, E or Ew, a category can be defined where:

• Objects are CTS specifications

• There is a morphism from C to C ′ if C Eσ C ′ (resp. E, Ew)

and where U is a terminal object and the CTS where S = ∅ is the initial object. We think that
there is a deeper connection with category theory but we have not explored this path yet.

2.2.1 Functionalization

Our notion of CTS equivalence (E) allows us to derive that any CTS specification is equivalent
to a functional CTS where the relations A and R are functions (Definition 1.3.6). The intuition
is that the non-functionality of the relations A and R can be transferred to the relation C. This
intuition is given in Figure 2.3: Every time we have (s1, s2) ∈ A and (s1, s3) ∈ A, we add a new
sort s2,3. Then we replace these two axioms by the axiom (s1, s2,3), and we add (s2,3, s3) and
(s2,3, s2) in C. A similar transformation can be done for R.

Formally, we define a function F· which maps a specification to a functional specification.
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Notation 16 We use the following notations:

As
+

C := {(s, s′) | ∀s′, (s, s′) ∈ AC }

R(s,s′)+

C := {(s, s′, s′′) | ∀s′′, (s, s′, s′′) ∈ RC }

SA⊥ := {⊥As | ∀s, |As
+

C | > 1}

SR⊥ := {⊥R(s,s′) | ∀s,∀s′, |R
(s,s′)+

C | > 1}

A⊥C := {(s,⊥As ) | ∀s, |As
+

C | > 1}

R⊥C := {(s, s′,⊥R(s,s′)) | ∀s,∀s′, |R
(s,s′)+

C | > 1}

C⊥
A

C := {(⊥As , s′) | ∀s, |As
+

C | > 1 ∧ (s, s′) ∈ As
+

C }

C⊥
R

C := {(⊥R(s,s′), s′′) | ∀s,∀s′, |R
(s,s′)+

C | > 1 ∧ (s, s′, s′′) ∈ R(s,s′)+

C }

Definition 2.2.2 (CTS functionalization)
We define FC as:

FC =



S = SC ∪ SA⊥ ∪ SR⊥

A =

AC \
⋃

|As+
C
|>1

AsC

 ∪ A⊥C
R =

RC \
⋃

|R(s,s′)+
C

|>1

Rs,s
′

C

 ∪R⊥C
C = CC ∪ C⊥

A

C ∪ C⊥
R

C

Proving the left embedding C EFC is easy. The reason is because in this case, we don’t need
to change the sorts, only the derivation trees change.

Lemma 2.2.5 If Γ `C t : A then Γ `FC
t : A.

Proof By induction on Γ `C t : A. We give a proof only for the interesting rules: Csort

Γ `C wf (s1, s2) ∈ A
Γ `C s1 : s2

Csort ↑
,CΠ

Γ `C A : s1 Γ, x : A `C B : s2 (s1, s2, s3) ∈ R
Γ `C (x :A)→ B : s3

CΠ ↑
.

♦ Csort

Γ `C wf (s1, s2) ∈ A
Γ `C s1 : s2

Csort ↑
: t = s,A = s′

By cases analysis on (s, s′) ∈ AFC .

� (s, s′) ∈ AFC :
We conclude with Csort

Γ `C wf (s1, s2) ∈ A
Γ `C s1 : s2

Csort ↑
.

� (s, s′) 6∈ AFC :
Then we have |As+C | > 1. Hence (s,⊥As ) ∈ AFC and (⊥As , s′) ∈ CFC . Hence we can
conclude with Csort

Γ `C wf (s1, s2) ∈ A
Γ `C s1 : s2

Csort ↑
and C s

�

Γ `C M : A A�C s

Γ `C M : s
C s
� ↑

.

♦ CΠ

Γ `C A : s1 Γ, x : A `C B : s2 (s1, s2, s3) ∈ R
Γ `C (x :A)→ B : s3

CΠ ↑
: t = (x :A)→ B,A = s

By case analysis on (s, s′, s′′) ∈ RFC . The proof is similar to the case Csort

Γ `C wf (s1, s2) ∈ A
Γ `C s1 : s2

Csort ↑
.

Lemma 2.2.6 The judgment Γ `C t : A is (C ,FC )− embeddable.
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Proof Direct consequence of Lemma 2.2.5.

For the right embedding FC E C , the proof is a bit more difficult because we added new
sorts in FC which, a priori, could be used to derive new judgments. However, because these
sorts are top-sorts, they can appear only on the right-hand side of a judgment. Hence, we can
prove that these sorts can always be replaced by one of its direct successors in the cumulativity
relation CFC .

Lemma 2.2.7 If Γ `FC
t : A then Γ `C t : A′ where A′ is either:

• s if A ∈ SA⊥ with (A, s) ∈ C⊥AC

• s if A ∈ SR⊥ with (A, s) ∈ C⊥RC

• A otherwise

Proof By induction on Γ `FC
t : A. The proof is similar to Lemma

If Γ `C t : A then Γ `FC
t : A.

(2.2.5), except for the rule
CΠ

Γ `C A : s1 Γ, x : A `C B : s2 (s1, s2, s3) ∈ R
Γ `C (x :A)→ B : s3

CΠ ↑
which is interesting.

♦ CΠ

Γ `C A : s1 Γ, x : A `C B : s2 (s1, s2, s3) ∈ R
Γ `C (x :A)→ B : s3

CΠ ↑
: t = (x :B)→ C,A = s′

Then Γ `C A : s1 and Γ, x : A `C B : s2 and (s1, s2, s
′) ∈ RFC . By definition of FC ,

s1, s2 6∈ SA⊥ ∪ SR⊥ . By case analysis on s′ ∈ SR⊥ .

� s′ ∈ SR⊥ :
For any s such that (s′, s) ∈ CFC , we have (s1, s2, s) ∈ RC . Hence we can conclude
with CΠ

Γ `C A : s1 Γ, x : A `C B : s2 (s1, s2, s3) ∈ R
Γ `C (x :A)→ B : s3

CΠ ↑
.

� s′ 6∈ SR⊥ :
Hence (s1, s2, s

′) ∈ RC . We can conclude with CΠ

Γ `C A : s1 Γ, x : A `C B : s2 (s1, s2, s3) ∈ R
Γ `C (x :A)→ B : s3

CΠ ↑
.

Lemma 2.2.8 The judgment Γ `FC
t : A is (FC ,C )− embeddable.

Proof Direct consequence of Lemma

If Γ `FC
t : A then Γ `C t : A′ where A′ is either:

• s if A ∈ SA⊥ with (A, s) ∈ C⊥AC

• s if A ∈ SR⊥ with (A, s) ∈ C⊥RC

• A otherwise

(2.2.7).

Theorem 2.2.9 C ∼ FC

Proof Consequence of Lemma
The judgment Γ `C t : A is (C ,FC )− embeddable.

(2.2.6) and Lemma
The judgment Γ `FC

t : A is (FC ,C )− embeddable.
(2.2.8).

Theorem 2.2.10 If C is decidable specification, so is FC .

Proof One can check that all the cases from decidable CTS specification

A CTS specification is decidable if:

• the equality on S is decidable

• A,R, C are decidable relations (membership is decidable)

• Given s, knowing if there exists s′ such that (s, s′) ∈ AC is decidable

• Given s1, s2, knowing if there exists s such that (s1, s2, s) ∈ RC is decidable

↑
are easily checked.

2.2.2 Injectivization

Injectivity for CTS is defined by Barthe in [Bar99b] where it requires that the relation R is
injective on the second argument. Here, we show that we can do a similar process to create for
every CTS specification, an equivalent one which is injective (for products, it is injective on the
second argument). The idea of this process is described in Fig. 2.4. The formal definition is
given below:
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s1

s2 s3 ⇒

s1

s2′ s3′

s2 s3

s1 s2

s3 s4

⇒ s1

s2

s2,3

s3

s4

Figure 2.4: Idea behind injectivization of CTS specification

Notation 17 We define the following notations

As
′−

C := {(s, s′) | ∀s, (s, s′) ∈ AC }

R(s,s′′)−
C := {(s, s′, s′′) | ∀s′, (s, s′, s′′) ∈ RC }

SA> := {>As | ∀s′, (s, s′) ∈ |As
′−

C | > 1}

SR> := {>R(s,s′′) | ∀s,∀s′′, |R
(s,s′′)−
C | > 1}

A>C := {(s,>As ) | ∀s,∀s′, (s, s′) ∈ As
′−

C ∧ |As
′−

C | > 1}

R>C := {(s,>R(s,s′′), s′′) | ∀s,∀s′′, |R
(s,s′′)−
C | > 1}

C>
A

C := {(>As , s′) | ∀s,∀s′, |As
′−

C | > 1 ∧ (s, s′) ∈ As
−

C }

C>
R

C := {(s′,>R(s,s′′)) | ∀s,∀s′,∀s′′, |R
(s,s′′)−
C | > 1 ∧ (s, s′, s′′) ∈ R(s,s′′)−

C }

Definition 2.2.3 (CTSinjectivization)
We define IC as:

IC =



S = SC ∪ SA> ∪ SR>

A =

AC \
⋃

|As′−
C
|>1

As
′−

C

 ∪ A>C
R =

RC \
⋃

|R(s,s′′)−
C

|>1

R(s,s′′)−
C

 ∪R>C
C = CC ∪ C>

A

C ∪ C>
R

C

Theorem 2.2.11 C ∼ IC

Proof The proof is similar to 2.2.9.
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Theorem 2.2.12 If C is decidable, so is IC .

Proof Routine check.

Theorem 2.2.13 If C is functional so is IC .

Proof Routine check.

Theorem 2.2.14 For every CTS specification C , there exist a CTS specification C ′ which is
functional and injective such that C ∼ C ′.

Proof C ′ = IFC .

Top-sorts and cumulativity

The purpose of this section is to address the case where a top-sort is a subtype of a sort which has
a type as in the left part of Fig. 2.5. When we defined functionalization and injectivization, that
happened every time we introduced a new sort. This situation raises an issue for bi-directional
CTS defined in Chapter 4. The idea of bi-directional CTS is to push back the use of cumulativity
only at the end of type checking or on the right-hand side of an application. However, this is
not possible with the situation above: One may need to use cumulativity before using an axiom.
Hence, the idea is to have the transformation presented in Fig. 2.5.

This transformation is not a CTS equivalence (E) because typing a top-sort allows to see
this top-sort as a type itself. Hence, we may introduce variables which have this top-sort as a
type which is not possible before (this problem is raised in Example 2.5). This is formalized in
the example below.

Example 2.8 In the specification HOL, one can derive the judgment X : � `HOL X → X : �.
Such judgment is not derivable in the specification ω because � is a top-sort in ω. However, for
every term t such that Γ `ω t : �, we can derive Γ `ω t→ t : �.

Theorem 2.2.15 Any CTS where all top-sorts are inhabited is weakly equivalent to a CTS
where all top-sorts are inhabited by a sort.

Proof Given a top-sort s which is not inhabited by a sort. We add a sort s′ and the axiom (s′, s).
We repeat this construction for all (possible infinite) top-sorts of the initial specification. We call
this new specification C ′. By definition, there is a sort-morphism from C to C ′ which is an
inclusion. Now, we prove that C ′ is weakly CTS embedded to C . Given a judgment Γ `C ′ t : A,
every time a sort s′ 6∈ SC appears, then there exists s in SC such that (s′, s) ∈ AC ′ . We replace
this sort by the canonical inhabitant of s (which exists since the top-sort is inhabited). We obtain
a new judgment which is well-typed in C .

Definition 2.2.4 (Top-sort regular CTS)
We say that a specification C is top-sort regular if all the top-sorts of C are inhabited by a sort.

Corollary 2.2.16 From Theorem 2.1.5 and Theorem 2.2.15, every CTS specification is weakly
CTS equivalent to a top-sort regular CTS.

The transformation induced by Fig. 2.5 can only imply a weak equivalence.
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s1

s2

s′1

⇒ s1

s2

s′1

s′2

Figure 2.5: Top-sort and cumulativity

Notation 18 We define the following notations

SS
>
C := {>s | ∀s, s ∈ S>C }

AS
>
C := {(s,>s) | ∀s, s ∈ S>C }

CS
>
C := {(>s, s′′) | ∀s,∀s′,∀s′′, s ∈ S>C , (s, s′) ∈ C, (s′, s′′) ∈ A}

Definition 2.2.5 (CTS with at most one top-sort)
We define TC as:

TC =


S = SC ∪ SS

>
C

A = AC ∪ AS
>
C

R = RC

C = CC ∪ CS
>
C

Lemma 2.2.17 C ETC

Proof Trivial since we have a direct inclusion from C to TC .

Lemma 2.2.18 If C is top-sort regular then TC Ew C

Proof Sketch of proof. Every time we have a variable x : s′ with s′ ∈ SS>C , there exists a
derivation `C t : s since C is top-sort regular. Hence, we can substitute t for this variable.

Theorem 2.2.19 If C is top-sort regular then TC ∼w C

Proof Direct consequence of Lemma 2.2.17 and 2.2.18.

One can reuse the results above for top-sorts without taking cumulativity into account. This
gives us the following result:

Theorem 2.2.20 For any top-sort regular CTS C , for any s′ ∈ S such that (s, s′) ∈ A, we can
define the specification C ′ with a new sort s′′ such that (s′, s′′) ∈ A. Then C ∼w C ′.

Proof One can reuse the proof of Lemma 2.2.18.

Corollary 2.2.21 Any top-sort regular CTS is weakly equivalent to a CTS with at most one
top-sort.
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Proof The construction adds a new sorts s∞ and axioms (s, s∞) whenever s ∈ S>C . The proof
is a consequence of Theorem 2.2.20.

Theorem 2.2.22 Any top-sort regular CTS is weakly equivalent to a CTS without top-sort.

Proof Sketch of proof. It is sufficient to iterate the construction presented in Theorem 2.2.21.

Remark 16 If we are interested only in judgments in a closed typing context, one can drop the
condition that the specification is top-sort regular and judgments are equivalent.

2.3 Deciding judgment embeddings

Interoperability between CTS specifications requires to decide whether a typing judgment can
be (C ,C ′)-embedded2. However, from our definition of (C ,C ′)-embedded, it is complicated
to know whether a judgment is embeddable without having a derivation of this judgment. In
this section, we assume the existence of a type checker, meaning a procedure that returns a
derivation of a judgment whenever such derivation exists. Our method relies on this derivation
tree to decide whether this tree can be (C ,C ′)-embedded. If the answer is positive, then we can
conclude that the judgment itself can be (C ,C ′)-embedded. However, if the answer is negative,
it might be because we have picked the wrong derivation tree. A discussion about choosing the
correct derivation tree is made in Section 2.4.

The main idea behind our method is to derive a free CTS specification from a derivation
tree. Then we show that deciding if a judgment is (C ,C ′)-embedded is the same as finding a
specification morphism from this free CTS to C ′. Our method needs to compute the normal
form of a term, for this reason we assume that the specification is SN

A rewriting relation ↪→ is said strongly normalizing (SN) if for all terms t, there is no infinite
sequence (tn)n∈N such that t0 = t and for all n, tn ↪→ tn+1.↑

. This restriction is not a
problem in practice since all the specifications implemented by concrete systems are SN

A rewriting relation ↪→ is said strongly normalizing (SN) if for all terms t, there is no infinite
sequence (tn)n∈N such that t0 = t and for all n, tn ↪→ tn+1.↑

.
The idea behind the free CTS of a derivation tree T is to replace every occurrence of a sort

by a fresh sort getting thus also a new judgment. The free CTS is the specification that makes
this new judgment derivable by completing the axioms, the rules and the cumulativity relation
with what is needed. Modulo the name of the sorts, this specification is unique. However, the
free CTS of a derivation tree is not easy to define. For example, assume we have a derivation
of f : ? → ?, x : ? `C f x : ?. Generating fresh variables first for the derivation of f leads to
the following judgment f : ?1 → ?2, x :?3 `C f : ?1 → ?2 and doing the same thing for x leads
to this other judgment f : ?4 → ?5, x :?6 `C x :?6. Because a priori ?3 6=?6, the term f x is not
well-typed anymore. To solve this issue, we have to generate an equivalence relation between
sorts and use it to quotient the sorts of the free CTS.

Definition 2.3.1 (Free equivalence relation for conversion)
Given two terms t and t′ such that t =? t

′, we define recursively an equivalence relation on sorts
denoted ≡t,t′ as follows:

≡s,s′ := (s, s′) ∪ (s′, s) ∪ (s, s) ∪ (s′, s′)
≡x,y := ∅

≡(x :A)→B,(y :A′)→B′ := ≡A,A′ ∪ ≡B,B′
≡λx :A. t,λy :A′. t′ := ≡A,A′ ∪ ≡t,t′

≡t u,t′ u′ := ≡t,t′ ∪ ≡u,u′

2We will not consider the weak version in this section



68 CHAPTER 2. EMBEDDINGS OF CTS SPECIFICATIONS

This definition is well-formed because =? is stable by sub-term and all the other cases are not
possible. This definition is extended in a natural way to typing contexts.

Lemma 2.3.1 If t =? t
′ then ≡t,t′ is an equivalence relation on sorts.

Proof By induction on t. All the cases are trivial.

Notation 19 If C is a CTS specification and ≡ is an equivalence relation on sorts, we denote
C /≡ the new CTS specification such that S(

C /≡
) := (SC )/≡ and equal otherwise.

We also need to generate equalities when A�CB. This is where we use our assumption that
C is SN

A rewriting relation ↪→ is said strongly normalizing (SN) if for all terms t, there is no infinite
sequence (tn)n∈N such that t0 = t and for all n, tn ↪→ tn+1.↑

. The fact that C is SN

A rewriting relation ↪→ is said strongly normalizing (SN) if for all terms t, there is no infinite
sequence (tn)n∈N such that t0 = t and for all n, tn ↪→ tn+1.↑

gives us a canonical way to compute these equalities by using
their normal form3.

Definition 2.3.2 (Free equivalence relation and free cumulativity relation for subtyping)

Let have A and B such that A�CB and we denote A ↓ and B ↓ their normal form. We
define ≡�C

A,B by induction on their normal form as follows:

≡�C

s,s′ := ∅ when A ↓= s and B ↓= s′

≡�C

(x :C)→D,(x :E)→F := ≡C,E ∪ ≡�C

D,F when A ↓= (x :C)→ D and B ↓= (x :E)→ F

≡�C

A,B := ≡A↓,B↓ otherwise

We define �CA,B by induction on the normal form of A and B:

�C s,s′ := (s, s′) when A ↓= s and B ↓= s′

�C (x :C)→D,(x :E)→F := �CD,F when A ↓= (x :C)→ D and B ↓= (x :E)→ F

�CA,B := ∅ otherwise

The function ≡�C

A,B intends to capture all the equalities necessary so that in the free CTS,
A′≡βB′ if A≡βB. However, when A�CB but A 6≡βB, then we want to equate every sorts except
the last ones. This is why we add these fresh sorts in the cumulativity relation in the free CTS.

Notation 20 If C and C ′ are two specifications and X is a set we use the following notations:

• C ∪ C ′ denotes their disjoint pairwise union

• C ∪S X denotes the specification C ′ which is equal to C except that SC ′ := SC ∪X

• C ∪A X is the same for A

• C ∪R X is the same for R

• C ∪C X is the same for C
3Maybe we could relax this hypothesis so that C is WN

A rewriting relation ↪→ is said weakly normalizing (WN) if for all terms t, there exists u such that t ↪→∗ u and
NF(u).↑

only
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• We denote the empty CTS by ∅.

Defining the free CTS requires also to remember how the judgment was changed by intro-
ducing fresh variables. This is why our definition of free CTS returns the new specification as
well as a new judgment which only makes sense in this specification.

Definition 2.3.3 (Free CTS)
Given a derivation tree T of a judgment Γ `C t : A or a judgment Γ `C wf , we define
recursively the free CTS denoted FT in Fig. 2.6. We denote Γ′ `FT

t′ : A′ the judgment
computed by this function in the new specification FT .

Remark 17 The way CTS are formulated with a judgment Γ `C wf implies that when x :
A ∈ Γ there might be many derivations that A is well-sorted. Hence, the free CTS will generate
many sorts for the type of A because of these verifications. It would not be the case if CTS were
formulated with a weakening rule instead. This problem arises in theory, but does not appear in
practice because type checkers are implemented in a way that it is checked only once that A is
well-sorted. In our examples below, we will simplify the free CTS to avoid these redundancies.

Remark 18 The rules C�

Γ `C M : A Γ `C B : s A�CB

Γ `C M : B
C� ↑

and C s
�

Γ `C M : A A�C s

Γ `C M : s
C s
� ↑

requires to compute the normal form of A and B. It is
possible because we assumed C was SN

A rewriting relation ↪→ is said strongly normalizing (SN) if for all terms t, there is no infinite
sequence (tn)n∈N such that t0 = t and for all n, tn ↪→ tn+1.↑

, however this does not scale up. We will come back to
this problem in Chapter 10 when we describe our implementation.

Remark 19 One may wonder why we insisted by picking the normal form in the definition of
free CTS for the rules C�

Γ `C M : A Γ `C B : s A�CB

Γ `C M : B
C� ↑

and C s
�

Γ `C M : A A�C s

Γ `C M : s
C s
� ↑

and not any term C such that A? ↪→∗β C ←↩∗β B?. There are
several reasons: First, it gives us a unique way to define the free CTS. Second, it avoid problems
where we could equate more things than necessary. For example if we pick A = (λx : ?2. y) ?1 and
B = (λx : ?3. y) ?4, we could have picked C = (λx : ?. y) ?. Hence, we need to add the equalities
?2 =?3 and ?1 =?4. While if we do a β-reduction first, we only need to add the equality ?2 =?3.
We think that the definition of free CTS could be extended for specifications which are not SN

A rewriting relation ↪→ is said strongly normalizing (SN) if for all terms t, there is no infinite
sequence (tn)n∈N such that t0 = t and for all n, tn ↪→ tn+1.↑

.
However, it is not clear how to choose the equalities that should be generated.

Lemma 2.3.2 Given a derivation tree T of Γ `C t : A, let Γ′ `FT
t′ : A′ its free CTS. Then

this judgment is indeed derivable and Γ =? Γ′, t =? t
′ and A =? A

′.

Proof By induction on T .

Theorem 2.3.3 A judgment Γ `C t : A is (C ,C ′)-embeddable if it is derivable with a derivation
tree T and if there is a specification morphism from FT to C ′.

Proof A direct consequence of Lemma

Given a derivation tree T of Γ `C t : A, let Γ′ `FT
t′ : A′ its free CTS. Then this judgment is

indeed derivable and Γ =? Γ′, t =? t
′ and A =? A

′.
(2.3.2).

In the example below, we show why using a free CTS is interesting to decide if a judgment
can be (C ,C ′)-embedded.
Example 2.9 We reuse the specifications D1 and D2 defined in Example 2.3. In D1, one can
derive the judgment x : s2, y : s2 `D1

x→ y : s4 in this way:

(s2, s′2) ∈ AD1

...
x : s2, y : s2 `D2

x : s2 (s2, s3) ∈ CD1

x : s2, y : s2 `D2
x : s3

(s2, s′2) ∈ AD1

...
x : s2, y : s2, � : s3 `D2

y : s2 (s2, s4) ∈ CD1

x : s2, y : s2, � : s3 `D2
y : s4 (s3, s4, s4) ∈ RD1

x : s2, y : s2 `D1
x→ y : s4
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s
∅ `C wf

C wf
∅

{
:= ∅ `∅ wf

u

wwwww
v

ΠA

Γ `C A : s
x 6∈ Γ

Γ, x : A `C wf
C wf
var

}

�����
~

:= Γ′, x : A′ `F wf

where Γ′ `F A′ :?i =
[
ΠA

] ΠΓ

Γ `C wf
(s1, s2) ∈ A

Γ `C s1 : s2
Csort

 := Γ′ `F?i :?k

where Γ′ `F ′ wf = JΠΓK
and F = F ′ ∪S {?i, ?k} ∪A {(?i, ?k)} ΠA

Γ `C A : s1

ΠB

Γ, x : A `C B : s2
(s1, s2, s3) ∈ R

Γ `C (x :A)→ B : s3
CΠ

 := Γ′ `F (x :A′)→ B′ :?k

where Γ′ `FA A
′ :?i =

[
ΠA

]
and Γ′′, x : A′′ `FB B

′ :?j =
[
ΠB

]
and F = (FA ∪ FB ∪S {?k} ∪R (?i, ?j , ?k))/(≡A′,A′′ ∪ ≡Γ′,Γ′′) ΠM

Γ, x : A `C M : B
Π(x :A)→B

Γ `C (x :A)→ B : s
Γ `C λx :A.M : (x :A)→ B

Cλ

 := Γ′ `F λx :A′. u′ : (x :A′)→ B′

where Γ′, x : A′ `FM u′ : B′ =
[
ΠM

]
and Γ′′ `FM (x :A′′)→ B′′ :?i =

[
Π(x :A)→B

]
and F = (FM ∪ F(x :A)→B)/(≡Γ′,Γ′′ ∪ ≡A′,A′′ ∪ ≡B′,B′′) ΠM

Γ `C M : (x :A)→ B

ΠN

Γ `C N : A
Γ `C M N : B {x← N}

Capp

 := Γ′ `F M ′ N ′ :?i

where M `FM Γ′ : (x :A′)→ B′ =
[
ΠM

]
and Γ′′ `FN N ′ : A′′ =

[
ΠN

]
and F = (FM ∪ FN )/(≡Γ′,Γ′′ ∪ ≡A,A′) ΠM

Γ `C M : A
ΠB

Γ `C B : s
A�CB

Γ `C M : B
C�

 := Γ′ `F M ′ : B′

where Γ′ `FM M ′ : A′ =
[
ΠM

]
and Γ′′ `FB B

′ :?i =
[
ΠB

]
and F = (FM ∪ FB ∪C �CA′,B′)/(≡Γ′,Γ′′ ∪ ≡�C

A′,B′) ΠM

Γ `C M : A
A�C s

Γ `C M : s
C s
�

 := Γ′ `F M ′ :?i

where Γ′ `FM M ′ : A′ =
[
ΠM

]
and F = FM∪S?i ∪C �CA′,?i

Figure 2.6: Free CTS
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One can check that the free CTS obtained from this derivation allows to derive the judgment
x :?1, y :?2 `FT x→ y :?3 where FT is defined as:

(FT ) =


S = {?1, ?1′ , ?2, ?2′ , ?3, ?4, ?5}
A = {(?1, ?1′), (?2, ?2′)}
R = {(?4, ?5, ?3)}
C = {(?1, ?4), (?2, ?5)} ?1?1′ ?2 ?2′

?4 ?5

?3

a

a

The following function is a specification morphism from FT to D2:

?1 → t2 ?2 → t3

?1′ → t2′ ?2′ → t3′

?3 → t3 ?4 → t2 ?5 → t3

Hence the judgment x : s2, y : s2 `D1
x→ y : s4 is (D1,D2)-embeddable.

To decide whether a judgment is (C ,C ′)-decidable is thus the same as deciding whether there
is a specification morphism from this free CTS to C ’.

Theorem 2.3.4 Assuming that C ′ is a decidable and finite specification then deciding whether
a derivation tree T can be (C ,C ′)-embedded is decidable.

Proof Since the free CTS is a finite specification, one can enumerate the functions from SFT

to C ’ and check whether this function is a specification morphism.

In practice, C ′ is not always finite as CC
∞, the CTS behind Coq. However, because these

specifications have some specific 4structure, the problem is also decidable: In the case of CC
∞,

the problem is equivalent to a linear integer arithmetic problem4. Moreover, enumerating the
functions is not scalable. In our implementation described in Chapter 10, we describe our im-
plementation which uses an SMT solver to overcome this issue.

So far, we have proposed a correct algorithm to check whether a judgment derivable in
a specification C can be derived in a specification C ′ via the notion of CTS embedding. This
method is better than finding a specification morphism as already argued in Example 2.2 and 2.3.
However, our method depends on the derivation tree built for this judgment. This might raise an
issue if the derivation tree is not general enough as shown below in Example 2.10. Because the
definition of a free CTS for a judgment Γ `C t : A depends on a derivation tree T , to guarantee
the completeness of our method, we need introduce in the next section canonical trees. The
existence of such canonical tree for a judgment is not obvious and at this time is still an open
problem. The section below discusses about the existence of such canonical tree and give some
ideas on how it could be built.

4One could also note that empirically, most of the proofs written in Coq at this time do not use many
universes, probably no more than 5 or most of the proofs ever written in Coq.
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2.4 Completeness

The method we proposed previously relies on one particular derivation tree. This is not satis-
factory for completeness, because we aim to decide whether a judgment is (C ,C ′)-embedded,
not one particular derivation tree of this judgment. The example below shows that for the same
judgment, our method returns two different results depending on the derivation chosen in the
first place.

Example 2.10 The judgment A : ? `2 λx :A. x : A admits the following derivation tree Πbad:

Π
A : ? `2 λx :A. x : (λx : ?. x) A

...
A : ? `2 A : ? (λx : ?. x) A≡βA

A : ? `2 λx :A. x : A

where Π is

...
A : ? `2 λx :A. x : A

...
A : ? `2 (λx : ?. x) A : ? A≡β(λx : ?. x) A

A : ? `2 λx :A. x : (λx : ?. x) A

One can prove that there is no specification morphism from FΠbad to the Simply Typed
Lambda Calculus. The reason is that the derivation tree above uses polymorphism and this
will be reflected into the free CTS specification. At least, we can say that the free CTS contain
the rule (?i, ?j , ?k) ∈ RFΠbad

and the axiom (?j , ?i) ∈ AFΠbad
because of the expansion introduced

by Π. However, a specification morphism from FΠbad to the specification → needs to map every
product to (?, ?, ?) which implies to map the axiom ?j , ?i to (?, ?) which does not exist. However,
this same judgment also admits the following derivation tree Πgood:

...
A : ?, x : A `2 wf
A : ?, x : A `2 x : A

...
A : ? `2 A→ A : ?

A : ? `2 λx :A. x : A

and now, we can see that the free CTS Πgood is embeddable in the Simply Typed Lambda
Calculus.

Example 2.10 highlights that the choice of the derivation tree matters. However, the deriva-
tion tree we presented is pathological because it uses a β-expansion in an unnecessary way. So
the completeness of the method relies on finding the appropriate derivation tree that we call here
canonical derivation tree. Below, we explain a way to show the existence of such canonical tree
and how to derive it. Our approach is to use an order on derivation trees defined as follows:

Definition 2.4.1 (Preorder for derivation trees)
Let T and T ’ two derivations of the same judgment, we define T � T ′ as

T � T ′ := FT EFT ′

Theorem 2.4.1 � is a preorder.
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Proof Direct consequence of Theorem 2.2.1.

Example 2.11 Using the derivation trees in Example 2.10, we can deduce that Πgood is smaller
than Πbad because it is easy to find a specification morphism from FΠgood to FΠbad .

In general, we cannot expect � to be a total order. The reason for that is one can derive two
derivation trees Πl and Πr for a same judgment such that Πl uses dependent types and Πr uses
polymorphism for example (this could be done for Example 2.10). Hence, Πl could be derived
in the specification P and Πr in the specification 2 for example. But obviously, there is no
specification morphism between the two free CTS specifications generated by these derivation
trees. However, we can expect that if there is a derivation tree which uses polymorphism but
not dependent types and another which uses dependent types but not polymorphism, then there
is one which does not use polymorphism nor dependent types. This is our first conjecture:

Conjecture 4 (Existence of a minimum for derivation tree preorder) Given two deriva-
tion trees T and T ′ of the same judgment, there exist T ′′ such that T ′′ � T and T ′′ � T ′.

Definition 2.4.2 (Strict preorder for derivation tree)
The strict version T ≺ T ′ is defined as

T ≺ T ′ := CT C CT ′

Example 2.12 Going back to Example 2.10, we can check that Πgood ≺ Πbad because the free
CTS of Πgood cannot express polymorphism.

Once we have defined a strict order, the natural question that follows is whether this strict
order is well-founded. We cannot use the definition of C because the order on specifications is
not well-founded in general. An example of that is Matita’s specification (but it could be any
specification with an infinite number of sorts).

Theorem 2.4.2 C is not well-founded.

Proof In the specification CM
∞ , one can create new specifications CM

∞i
for i ∈ N where the sorts

{(n, P ) | n ≤ i} are removed as well as all its dependencies in A,R and C. We clearly have
CM
∞i+1

C CM
∞i

, hence C is not well-founded.

However, the argument that C is not well-founded cannot be applied for ≺ because all the
specifications related by ≺ are finite.

Conjecture 5 (Derivation tree preordering is well-founded) ≺ is well-founded.

Neither can the proof rely on the number of sorts since we can have T ≺ T ′ but the free
CTS of T have more sorts than the free CTS of T ′. Our argument in favor of this conjecture is
related to the size of the derivation tree. Among all the derivation trees for a judgment, there is a
smallest one. What makes the smallest derivation tree interesting is that adding Csort

Γ `C wf (s1, s2) ∈ A
Γ `C s1 : s2

Csort ↑
,CΠ

Γ `C A : s1 Γ, x : A `C B : s2 (s1, s2, s3) ∈ R
Γ `C (x :A)→ B : s3

CΠ ↑
never

gives you more freedom to define a specification morphisms, it always generates more constraints.
However, taking the minimal tree according to its size is not the best candidate for a canonical
tree because of the rules C�

Γ `C M : A Γ `C B : s A�CB

Γ `C M : B
C� ↑

and C s
�

Γ `C M : A A�C s

Γ `C M : s
C s
� ↑

. This is because using these rules in the derivation tree
gives you more freedom to define a specification morphism as shown in the example below.

Example 2.13 Let us define the CTS specifications D3 and D4 as follows:
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D3:

s1

s2 D4:

s1

s2

s3

We can derive the judgment `D3
s1 → s1 : s2 with this derivation tree5:

`D3
s1 : s2 `D3

s1 : s2
(s2, s2, s2) ∈ RD3

`D3
s1 → s1 : s2

which is clearly the minimal tree for this judgment. However, this tree is not (D3,D4)-embeddable
because the free specification generated for this tree has an empty cumulativity relation. However,
this other derivation tree is (D3,D4)-embeddable.

`D3
s1 : s2

s2�C s2

`D3
s1 : s2

� : s1 `D3
s1 : s2

s2�C s2

� : s1 `D3
s1 : s2

(s2, s2, s2) ∈ RD3

`D3
s1 → s1 : s2

The free CTS associated with this derivation tree is `FT ?1 → ?2 :?3 where FT is defined as:

(FT ) =


S = {?1, ?1′ , ?1+, ?2, ?2′ , ?2+, ?3}
A = {(?1, ?1′), (?2, ?2′)}
R = {(?1+, ?2+, ?3)}
C = {(?1′ , ?1+), (?2′ , ?2+)}

?1

?1′

?1+

?2

?2′

?2+

?3

a
a

and there is a specification morphism from FT to D4 as witnessed by the following function:

?1 → s1 ?1′ → s2 ?1+ → s3

?2 → s1 ?2′ → s2 ?2+ → s3

?3 → s3

Hence, we have shown that the minimal tree, is not a canonical tree.

The example above shows that finding such canonical tree is not that easy because this tree
may have unnecessary applications of the rules C�

Γ `C M : A Γ `C B : s A�CB

Γ `C M : B
C� ↑

or C s
�

Γ `C M : A A�C s

Γ `C M : s
C s
� ↑

.6 Assuming the two conjectures above,
one can prove the existence of such canonical tree.

5We simplified the rule CΠ

Γ `C A : s1 Γ, x : A `C B : s2 (s1, s2, s3) ∈ R
Γ `C (x : A)→ B : s3

CΠ ↑
for non-dependent types.

6Actually, it is not clear whether these subtyping rules should be part of the derivation tree or it should be part
of the definition of free CTS. In that case, the free CTS generated for the two derivation trees of Example 2.13
should be the same.
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Theorem 2.4.3 Given a judgment Γ `C t : A, there exists a minimal tree T , such that for all
derivation tree T ′ of the same judgment T � T ′.

Proof A direct consequence of the conjectures 4 and 5.

Following Example 2.13, the canonical tree should have subtyping rules whenever it is possible.
Given a derivation tree, it should be possible to add one subtyping rule (either C�

Γ `C M : A Γ `C B : s A�CB

Γ `C M : B
C� ↑

or C s
�

Γ `C M : A A�C s

Γ `C M : s
C s
� ↑

) between
two rules which are not already a subtyping rule and to do that every time it is possible.

Conjecture 6 (Existence of minimal derivation tree) A minimal derivation tree (accord-
ing to its size) where unnecessary subtyping rules are added whenever possible is a canonical tree,
meaning the smallest one for the order �.

In practice, all the type checkers are deterministic and given a judgment, compute one deriva-
tion tree which, from what we know seems minimal. While these algorithms do not introduce
trivial expansions as in Example 2.10, they also do not introduce these trivial cumulativity rules
as shown in Example 2.13 which are useful to find a specification morphism afterwards. In our
work (see Chapter 10), we overcome this issue using the conjecture above: Using explicit casts,
we add an identity cast wherever it could be useful, meaning applications for which the result
type is either a sort or a product ending with a sort.

2.5 Future work

Another equivalence for CTS specifications: Our notion of CTS equivalence in Defini-
tion 2.1.3 and weak CTS equivalence in Definition 2.1.10 could be weakened so that we use a
computational equality ≡β? instead of a syntactic fequality =?. The main advantage of this new
definition is that reducing a term by β-reduction is more flexible for interoperability. For example
the following judgment A : ? `P (λx :�. A) N→ ? : is derivable in P but cannot be embedded in
the → specification. However, we can apply a β-reduction and get the judgment A : ? `P A : ?
which is embeddable in →. This example suggests that taking the normal form of a term (if it
exists) is always better for interoperability. However, this does not scale in practice. Moreover,
during our experimentation, we observed that such generality was not useful. Finally, having
conversion breaks the method to decide whether a judgment is (C ,C ′)-embedded introduced in
Section 2.3. It is not clear whether our method could be improved in an efficient way to take
into account β-conversion.

Decidability of type checking for CTS: It would be interesting to see if this result could
be used with a former result from Barthe in [Bar99b] where he shows that the type checking
for any decidable, functional, injective and terminating PTS is decidable. Extending his result
requires to include cumulativity in his algorithm and it is not clear how this could be achieved.





Chapter 3

Well-structured derivation trees

Our encoding of CTS into the λΠ-calculus modulo theory presented in Chapter 6 is an
extension of Ali Assaf’s results [Ass15b]. Investigating his correction proof leads us to realize
that there was a subtle mistake which makes the proof erroneous. The only way we found to
fix his proof is related to a famous conjecture formulated on PTS which can be extended on
CTS: The equivalence between a presentation of CTS where the conversion is typed (semantics
CTS) and the usual presentation where conversion is untyped (syntactic CTS). This problem
was solved for PTS by Siles [Sil10] but remains a conjecture for CTS. Informally, this conjecture
expresses any conversion (using the rules C�

Γ `C M : A Γ `C B : s A�CB

Γ `C M : B
C� ↑

and C s
�

Γ `C M : A A�C s

Γ `C M : s
C s
� ↑

) which appears in a derivation tree can
be replaced by a derivation tree which contains all the intermediate steps used to derive that
two types A and B are convertible (as in Higher-Order Logic for example). This new derivation
ensures that any intermediate step is also well-typed. Such derivation tree can then be analyzed
through an induction proof which is used to derive models [Gog95b] [AC07]. The equivalence
between the two systems, semantics CTS and syntactic CTS is not clear at all because there is
a well-foundedness issue. As it will be explained in details in Section 3.3, a naive idea would be
to use subject reduction to derive this new derivation tree for explicit conversion. The problem
is that the proof of subject reduction creates new implicit conversions. Hence it is not clear that
this process of replacing each implicit conversion by an explicit one with subject reduction is well-
founded. The other way to prove this equivalence is to prove subject reduction first, directly on
semantics CTS. But this time, the issue comes from the fact that the Product injectivity

If A�C (x :C) → D then there exists C ′ and D′ such that A≡β(x :C ′) → D′, C ′≡βC and
D′�CD.

(1.4.2)
property cannot be proven easily (see Lemma 3.3.4).

In this chapter, we introduce a predicate over derivation trees called well-structured. The goal
of this predicate is to assert assumptions over the derivation tree so that the well-foundedness
issue disappears using a notion of levels which provides a decreasing argument. In particular,
our approach is purely syntactic and does not rely on the CTS specification. Another advantage
of this method is to provide modular proofs between two equivalent type systems.

Then, we explore two alternative typing systems which are related to CTS. The first one
removes the symmetry of ≡β by only allowing reductions. The second typing system is the
one we mentioned earlier which replaced the untyped conversion ≡β with a typed conversion,
in particular every β steps are typed. The first system is related to a famous conjecture called
Expansion Postponement and the second was a conjecture for PTS and has been solved by
Vincent Siles [Sil10] but remains a conjecture for CTS. In this chapter we prove that all these
typing system are equivalent for well-structured derivation trees.

Finally, in the last section of this chapter, we open a discussion about well-structured deriva-
tion trees. In particular, we conjecture that every derivation tree is well-structured. In particular,
we propose several typing systems which aim at providing criteria showing that some classes of

77
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derivation trees are well-structured.

3.1 Well-structured derivation trees

One of the main results in the meta-theory of CTS is Subject Reduction (1.7.11). It is proven
using an another lemma: the Substitution Lemma (1.7.8). However, in the case of our embedding
in Chapter 6 (and the Expansion Postponement conjecture, see Section 3.2), this dependency
exists in the other way around which introduces a cycle. This non-desired dependencies appear
in the proof of the substitution lemma for non structural rules, namely Cλ

Γ, x : A `C M : B Γ `C (x :A)→ B : s
Γ `C λx :A.M : (x :A)→ B

Cλ ↑
and C�

Γ `C M : A Γ `C B : s A�CB

Γ `C M : B
C� ↑

: In those
two rules, one of the premises ensures that the type is well-sorted. The reason for this new
dependency is that while proving the substitution lemma for t in Γ `C t : A, we also need to
have the subject reduction property for the type A when the rule is Cλ

Γ, x : A `C M : B Γ `C (x :A)→ B : s
Γ `C λx :A.M : (x :A)→ B

Cλ ↑
for example. To remove

this circularity, we introduce the notion of well-structured derivation trees below.
The purpose of well-structured derivation trees is to find a decreasing argument to the circu-

larity issue we have mentioned previously. The central idea is to have a level for derivation trees
which strictly decreases when we go from the derivation of a term to the derivation of its type
and is stable by β-reduction.

Definition 3.1.1 (Subtree, has-type, and β relations for derivation trees)
We define the three following relations on derivation trees:

• π C π′ if π is a subtree of π′

• π ≺ π′ if
π

Γ `C A : s
and

π′

Γ `C t : A

• π ↪→β π
′ if

π

Γ `C t : A
and

π′

Γ `C t′ : A
with t ↪→β t

′

The general idea behind well-structured derivation trees is to generate an induction princi-
ple which is compatible with subject reduction. The usual way to compute the β reduct of a
derivation tree is to use the subject reduction lemma as a computable function. However, subject
reduction may increase the size of the derivation tree and therefore is not compatible with the
usual induction principle on trees.

Our idea is to find a measure which strictly decreases when we go from a term to its type
(via the relation ≺) and which does not increase via subject reduction.

Given a CTS derivation tree, the relation ≺ can be turned into a computing function using
the Lemma 1.7.9 and so does for the relation ↪→β using the Subject Reduction Lemma 1.7.11.
However, it is not clear whether the proofs (seen as computable functions) we have are compatible
with the intuitions described above and this is why the definition of well-structured derivation
trees is parameterized by these two functions.

Definition 3.1.2 (Well-structured derivation tree)
A derivation tree π1 is said well-structured if there exists two functions HT , SR and a family

(Ln)n∈N such that:
∃n, π1 ∈ Ln (WSn)
∀i, Li ⊆ Li+1 (WS⊆)

∀i, π, π′, π′ C π ∧ π ∈ Li ⇒ π′ ∈ Li (WSC)
∀i, π, π′, π′ = HT (π) ∧ π′ ≺ π ∧ π ∈ Li+1 ⇒ π′ ∈ Li (WS≺)
∀i, π, π′, π′ = SR(π) ∧ π ↪→β π

′ ∧ π ∈ Li ⇒ π′ ∈ Li (WS↪→β
)
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Except stated otherwise, the functions HT and SR will be the usual ones. If a tree is well-
structured, it is denoted WS(π′). If π ∈ Li, then i is called a level and we said that π is
derivable at level i.

The first condition ensure that π1 is at some level n. The second condition ensures that
levels are cumulative. The third condition ensures that levels are closed by subtrees. The fourht
condition ensure that if I can derive Γ `C t : A at som level n+ 1 then I can derive Γ `C A ws
at level n. Finally the last condition ensure that if I can derive Γ `C t : A at level n, I can also
derive Γ `C t′ : A at level n where t ↪→β t

′.
A direct consequence of this definition is the following lemma.

Lemma 3.1.1 If WS(π) then: ∀π′ such that π′ C π then WS(π′).

As we will see in Section 3.4 the difficult part to show that a derivation tree is well-structured
comes mostly from the last condition WS↪→β

∀i, π, π′, π′ = SR(π) ∧ π ↪→β π
′ ∧ π ∈ Li ⇒ π′ ∈ Li↑

.

Example 3.1 Given a derivation tree of some judgment. If all the terms that appear in this
derivation never contain a β redex, then the derivation tree is well-structured. By induction on
the derivation tree, one may assign a level to all the subtrees, starting from 0 for the leaves.
This level allows us to reconstruct the family (Ln)n∈N easily. The condition WS↪→β

∀i, π, π′, π′ = SR(π) ∧ π ↪→β π
′ ∧ π ∈ Li ⇒ π′ ∈ Li↑

is true by
assumption.

Example 3.2 Any derivation tree which can be derived in the Simply Typed Lambda Cal-
culus PTS(→) is well-structured. One may stratify terms of the Simply Typed Lambda
Calculus as: sorts, types and terms. Any derivation tree of a sort is derivable at level 0, of a
type at level 1 and a term at level 2. Because in the Simply Typed Lambda Calculus a type
cannot contain any β redex, the level of a sort and a type of Simply Typed Lambda Calculus
is stable by β reduction automatically. We can therefore conclude that any term is stable by β
reduction at level 2. This proof is made formal in Theorem 3.4.3.

These examples quite informal shows that there exist derivation trees which are well-structured.
Can we found derivation trees which are not well-structured? We conjecture that such derivation
tree does not exists and is an open question discussed in Section 3.4.

While writing proofs, we prefer to manipulate anonymously derivation trees by writing a
derivable judgment than giving a name to the derivation tree. To reflect this with well-structured
derivation trees, we define below well-structured judgments.

Definition 3.1.3 (Well-structured judgments)
A judgment Γ `C t : A or Γ `C wf is well-structured if it is derivable by a well-structured
derivation tree.

Notation 21 A well-structured judgment will be denoted WS(Γ `C t : A) or WS(Γ `C wf).
A well-structured judgment at level n will be denoted WSn(Γ `C t : A) or WSn(Γ `C wf). This
notation is also extended naturally for Γ `C A ws and will be denoted WSn(Γ `C A ws).

Lemma 3.1.2 Any inversion lemma as stated in Section 1.7 preserves the well-structured prop-
erty.

Proof This is a direct consequence of the well-structured judgment definition and Lemma 3.1.1.

One interesting lemma that we will use in next section is the following one.

Lemma 3.1.3 If WSn+1(Γ `C t : A), WSn(Γ `C B : s) and A≡βB then WSn+1(Γ `C t : B).
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A ↪→∗β B
A�C rB

�r≡β
(s, s′) ∈ C∗C
s�C rs′

�rCC

A ↪→∗β A′ B�C rB′

(x :A)→ B�C r (x :A′)→ B′
�rΠ

Figure 3.1: CTS subtyping relation with reduction only

3.2 Expansion postponement

Expansion postponement is a conjecture which breaks the symmetry of the conversion in CTS.
It expresses that any derivable judgment can be derived in a type system where the conversion
steps are restricted to reductions steps except at the end of the derivation.

Definition 3.2.1 (Typing system without expansions)
We denote Γ `tC r t : A the type system where the conversion rules C�

Γ `C M : A Γ `C B : s A�CB

Γ `C M : B
C� ↑

and C s
�

Γ `C M : A A�C s

Γ `C M : s
C s
� ↑

are restricted to
reductions only. It is presented in Fig. 3.1 and Fig. 3.2

The Expansion Postponement conjecture is generally stated as follows:

Conjecture 7 (Expansion postponement) If Γ `C t : A then Γ `tC r t : A′ where A ↪→∗β A′.

The problem to prove this conjecture comes from the rule Cλ

Γ, x : A `C M : B Γ `C (x :A)→ B : s
Γ `C λx :A.M : (x :A)→ B

Cλ ↑
because the type B in the left

premise, occurs as a subject of the right premise (x :A)→ B. We put this problem in evidence
with the example below.

Example 3.3 In the specification P (LF), we define the typing context Γ as:

• N : ?

• V ect : N→ ?

• f : (x :N)→ V ect x

Assuming we have a derivation of Γ `C t : N → N and that t ↪→β t
′. Then one can derive

that Γ `C λx :N. f (t x) : (x :N) → V ect (t x). Using subject reduction, one can also prove
that we have Γ `C λx :N. f (t′ x) : (x :N) → V ect (t x). However, this derivation tree will
contain an expansion (if we follow the usual proof of subject reduction): We have Γ, x : N `C

f (t′ x) : V ect (t′ x) and we want to derive that Γ, x : N `C f (t′ x) : V ect (t x). Hence we
introduce an expansion using the rule C�

Γ `C M : A Γ `C B : s A�CB

Γ `C M : B
C� ↑

because t′ x ←↩∗β t x. Then we can conclude with the
rule Cλ

Γ, x : A `C M : B Γ `C (x :A)→ B : s
Γ `C λx :A.M : (x :A)→ B

Cλ ↑
. The expansion postponement conjecture says that the expansions we have introduced

with the rule C�

Γ `C M : A Γ `C B : s A�CB

Γ `C M : B
C� ↑

can be switched with the rule Cλ

Γ, x : A `C M : B Γ `C (x :A)→ B : s
Γ `C λx :A.M : (x :A)→ B

Cλ ↑
. To do so, we have to give a proof that

(x :N) → V ect (t′ x) is well-sorted using only reduction rules. Such proof generally relies on
subject reduction. Subject reduction for Γ `tC r t : A typing system is hard to prove without strong
hypothesis on the specification.

Well-structured derivation trees give a way to solve this problem by doing first an induction
on the level: If the derivation tree of Γ `C λx :N. f (t x) : (x :N)→ V ect (t x) is well-structured,
then there exist n such that Γ `C λx :N. f (t x) : (x :N)→ V ect (t x) is derivable at level n+ 1
and Γ `C t : N→ N is derivable at level n by WS≺

∀i, π, π′, π′ = HT (π) ∧ π′ ≺ π ∧ π ∈ Li+1 ⇒ π′ ∈ Li↑
. By the well-structured hypothesis WS↪→β

∀i, π, π′, π′ = SR(π) ∧ π ↪→β π
′ ∧ π ∈ Li ⇒ π′ ∈ Li↑

, we can derive that Γ `C t′ : N→ N is derivable at level n. Hence, we see that proving subject
reduction at level n solves the abstraction cases at level n+ 1.
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∅ `C wf
C wfr
∅

Γ `C A : s x 6∈ Γ
Γ, x : A `C wf

C wfr
var

Γ `C wf (x : A) ∈ Γ
Γ `C x : A

C r
var

Γ `C wf (s1, s2) ∈ A
Γ `C s1 : s2

C r
sort

Γ `C A : s1 Γ, x : A `C B : s2 (s1, s2, s3) ∈ R
Γ `C (x :A)→ B : s3

C r
Π

Γ, x : A `C M : B Γ `C (x :A)→ B : s
Γ `C λx :A.M : (x :A)→ B

C r
λ

Γ `C M : (x :A)→ B Γ `C N : A
Γ `C M N : B {x← N}

C r
app

Γ `C M : A Γ `C B : s A�C rB

Γ `C M : B
C r
�

Γ `C M : A A�C rs

Γ `C M : s
C sr

�

Figure 3.2: Typing rules for CTS using only reductions

The example above shows how the well-structured hypothesis can be used as an induction
scheme over typing derivations. This is detailed in the definition below.

Definition 3.2.2 (EP)
We define the expansion postponement property at level n (EPn) as:

• If WSn(Γ `C t : A) then we can derive Γ `tC r t : A′ where A ↪→∗β A′

• If WSn(Γ `C wf) then we can derive Γ `C r wf

We define EP as for all n, EPn.

Lemma 3.2.1 f Γ `tC r t : A then Γ `C t : A. If Γ `C r wf then Γ `C wf .

Proof By induction on the derivation. Trivial since C r
�

Γ `C M : A Γ `C B : s A�C rB

Γ `C M : B
C r
� ↑

and C sr

�

Γ `C M : A A�C rs

Γ `C M : s
C sr

� ↑
are restrictions of C�

Γ `C M : A Γ `C B : s A�CB

Γ `C M : B
C� ↑

and C s
�

Γ `C M : A A�C s

Γ `C M : s
C s
� ↑

.

Lemma 3.2.2 If A�CB then A�C rB′ where B ↪→∗β B′.
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Proof By induction on A�CB.

The lemma below is the induction step we have mentioned in Example 3.3.

Lemma 3.2.3 EPn ⇒ EPn+1.

Proof By induction on the typing derivation. All the inversions lemmas use implicitly Lemma
Any inversion lemma as stated in Section 1.7 preserves the well-structured property.

(3.1.2).
Moreover, the proof below does not handle the easy cases where Γ `C t : A and A ∈ S>C meaning
that A is a top-sort for readability. One can check that for the cases Capp

Γ `C M : (x :A)→ B Γ `C N : A
Γ `C M N : B {x← N}

Capp ↑
, C�

Γ `C M : A Γ `C B : s A�CB

Γ `C M : B
C� ↑

and C s
�

Γ `C M : A A�C s

Γ `C M : s
C s
� ↑

where this
assumption is made, the cases can be closed easily.

♦ C wf
∅

∅ `C wf
C wf
∅ ↑

:
Trivial.

♦ C wf
var

Γ `C A : s x 6∈ Γ
Γ, x : A `C wf

C wf
var ↑

: Γ = Γ′, x : A
(1) WSn+1(Γ′, x : A `C wf) Main Hypothesis
(2) WSn+1(Γ′ `C A : s) Inversion on C wf

var

Γ `C A : s x 6∈ Γ
Γ, x : A `C wf

C wf
var ↑

1
(3) Γ′ `tCr A : s Induction Hypothesis

– WSn+1(Γ `C t : A) implies Γ `tCr t : A′ where A ↪→∗β A′

– WSn+1(Γ `C wf) implies Γ `Cr wf

↑
2

O (4) Γ′, x : A `Cr wf C wfr
var

Γ `C A : s x 6∈ Γ
Γ, x : A `C wf

C wfr
var ↑

3

♦ Cvar

Γ `C wf (x : A) ∈ Γ
Γ `C x : A

Cvar ↑
: t = x

(1) WSn+1(Γ `C x : A) Main Hypothesis
(2) WSn+1(Γ `C wf) Inversion on Cvar

Γ `C wf (x : A) ∈ Γ
Γ `C x : A

Cvar ↑
1

(3) Γ `Cr wf Induction Hypothesis

– WSn+1(Γ `C t : A) implies Γ `tCr t : A′ where A ↪→∗β A′

– WSn+1(Γ `C wf) implies Γ `Cr wf

↑
2

O (4) Γ `tCr x : A C r
var

Γ `C wf (x : A) ∈ Γ
Γ `C x : A

C r
var ↑

3

♦ Csort

Γ `C wf (s1, s2) ∈ A
Γ `C s1 : s2

Csort ↑
: t = s,A = s′

(1) WSn+1(Γ `C s : s′) Main Hypothesis
(2) WSn+1(Γ `C wf) Inversion on Csort

Γ `C wf (s1, s2) ∈ A
Γ `C s1 : s2

Csort ↑
1

(3) Γ `Cr wf Induction Hypothesis

– WSn+1(Γ `C t : A) implies Γ `tCr t : A′ where A ↪→∗β A′

– WSn+1(Γ `C wf) implies Γ `Cr wf

↑
2

O (4) Γ `tCr s : s′ C r
sort

Γ `C wf (s1, s2) ∈ A
Γ `C s1 : s2

C r
sort ↑

3

♦ CΠ

Γ `C A : s1 Γ, x : A `C B : s2 (s1, s2, s3) ∈ R
Γ `C (x :A)→ B : s3

CΠ ↑
: t = (x :C)→ D,A = s

(1) WSn+1(Γ `C (x :C)→ D : s) Main Hypothesis
(2) WSn+1(Γ `C C : s1) Inversion on CΠ

Γ `C A : s1 Γ, x : A `C B : s2 (s1, s2, s3) ∈ R
Γ `C (x :A)→ B : s3

CΠ ↑
1

(3) WSn+1(Γ, x : C `C D : s2)
(4) (s1, s2, s) ∈ R
(5) Γ `tCr C : s1 Induction Hypothesis

– WSn+1(Γ `C t : A) implies Γ `tCr t : A′ where A ↪→∗β A′

– WSn+1(Γ `C wf) implies Γ `Cr wf

↑
2

(6) Γ, x : C `tCr D : s2 Induction Hypothesis

– WSn+1(Γ `C t : A) implies Γ `tCr t : A′ where A ↪→∗β A′

– WSn+1(Γ `C wf) implies Γ `Cr wf

↑
3

O (7) Γ `tCr (x :C)→ D : s C r
Π

Γ `C A : s1 Γ, x : A `C B : s2 (s1, s2, s3) ∈ R
Γ `C (x :A)→ B : s3

C r
Π ↑

5,6,4

♦ Cλ

Γ, x : A `C M : B Γ `C (x :A)→ B : s
Γ `C λx :A.M : (x :A)→ B

Cλ ↑
: t = λx :C. t1, A = (x :C)→ D

(1) WSn+1(Γ `C λx :C. t1 : (x :C)→ D) Main Hypothesis
(2) EPn

(3) WSn+1(Γ, x : C `C t1 : D) Inversion on Cλ

Γ, x : A `C M : B Γ `C (x :A)→ B : s
Γ `C λx :A.M : (x :A)→ B

Cλ ↑
1

(4) WSn(Γ `C (x :C)→ D : s)
(5) Γ, x : C `tCr t1 : D′ Induction Hypothesis

– WSn+1(Γ `C t : A) implies Γ `tCr t : A′ where A ↪→∗β A′

– WSn+1(Γ `C wf) implies Γ `Cr wf

↑
3

(6) D ↪→∗β D′

(7) (x :C)→ D ↪→∗β (x :C)→ D′ Congruence of β 6
(8) Γ `tCr (x :C)→ D′ : s EPn 2,4

O (9) Γ `tCr λx :C. t1 : (x :C)→ D C r
λ

Γ, x : A `C M : B Γ `C (x :A)→ B : s
Γ `C λx :A.M : (x :A)→ B

C r
λ ↑
5,8
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♦ Capp

Γ `C M : (x :A)→ B Γ `C N : A
Γ `C M N : B {x← N}

Capp ↑
: t = t1 t2, A = D {x← t2}

(1) WSn+1(Γ `C t1 t2 : C {x← t2}) Main Hypothesis
(2) EPn

(3) WSn+1(Γ `C t1 : (x :C)→ D) Inversion on Capp

Γ `C M : (x :A)→ B Γ `C N : A
Γ `C M N : B {x← N}

Capp ↑
1

(4) WSn+1(Γ `C t2 : C)
(5) Γ `tCr t1 : (x :C′)→ D′ Induction Hypothesis

– WSn+1(Γ `C t : A) implies Γ `tCr t : A′ where A ↪→∗β A′

– WSn+1(Γ `C wf) implies Γ `Cr wf

↑
3

(6) (x :C)→ D ↪→∗β (x :C′)→ D′

(7) C ↪→∗β C′ Product injectivity
If A�C (x :C)→ D then there exists C′ and D′ such that A≡β(x :C′)→ D′, C′≡βC and D′�CD.

(1.4.2) 6
(8) D ↪→∗β D′ 6
(9) Γ `tCr t2 : C′′ Induction Hypothesis

– WSn+1(Γ `C t : A) implies Γ `tCr t : A′ where A ↪→∗β A′

– WSn+1(Γ `C wf) implies Γ `Cr wf

↑
4

(10) C ↪→∗β C′′

(11) C′ ↪→∗β C′′′ ←↩∗β C′′ Confluence of β
β is CR: If u←↩∗β t ↪→∗β v then there exists w such that u ↪→∗β w ←↩∗β v.↑

7,10
(12) WSn(Γ `C C : s) WS≺

∀i, π, π′, π′ = HT (π) ∧ π′ ≺ π ∧ π ∈ Li+1 ⇒ π′ ∈ Li↑
4

(13) WSn(Γ `C C′′′ : s) WS↪→β

∀i, π, π′, π′ = SR(π) ∧ π ↪→β π
′ ∧ π ∈ Li ⇒ π′ ∈ Li↑
12,10,11

(14) Γ `tCr C′′′ : s EPn 2,13
(15) (x :C′)→ D ↪→∗β (x :C′′′)→ D Congruence of β 11
(16) WSn(Γ `C (x :C)→ D : s′) WS≺

∀i, π, π′, π′ = HT (π) ∧ π′ ≺ π ∧ π ∈ Li+1 ⇒ π′ ∈ Li↑
3

(17) WSn(Γ `C (x :C′′′)→ D′ : s′) WS↪→β

∀i, π, π′, π′ = SR(π) ∧ π ↪→β π
′ ∧ π ∈ Li ⇒ π′ ∈ Li↑
16,10,11

(18) Γ `tCr (x :C′′′)→ D : s′ EPn 2,17
(19) Γ `tCr t1 : (x :C′′′)→ D C�

Γ `C M : A Γ `C B : s A�CB

Γ `C M : B
C� ↑

5,17,15
(20) Γ `tCr t2 : C′′′ C�

Γ `C M : A Γ `C B : s A�CB

Γ `C M : B
C� ↑

9,14,11
O (21) Γ `tCr t1 t2 : C′′′ {x← t2} C r

app

Γ `C M : (x :A)→ B Γ `C N : A
Γ `C M N : B {x← N}

C r
app ↑

19,20

♦ C�

Γ `C M : A Γ `C B : s A�CB

Γ `C M : B
C� ↑

:
(1) WSn+1(Γ `C t : A) Main Hypothesis
(2) EPn

(3) Γ `C t : B Inversion on C�

Γ `C M : A Γ `C B : s A�CB

Γ `C M : B
C� ↑

1
(4) Γ `C B : s
(5) B�CA

(6) Γ `tCr t : B′ Induction Hypothesis

– WSn+1(Γ `C t : A) implies Γ `tCr t : A′ where A ↪→∗β A′

– WSn+1(Γ `C wf) implies Γ `Cr wf

↑
3

(7) B ↪→∗β B′

(8) WSn(Γ `C B′ : s) WS≺

∀i, π, π′, π′ = HT (π) ∧ π′ ≺ π ∧ π ∈ Li+1 ⇒ π′ ∈ Li↑
2,3,4

(9) Γ `tCr B′ : s EPn 2,8
(10) B′�CrA′ Lemma

If A�CB then A�CrB′ where B ↪→∗β B′.
(3.2.2) 7,5

O (11) Γ `tCr t : A′ C r
�

Γ `C M : A Γ `C B : s A�CrB

Γ `C M : B
C r
� ↑

6,9,10

♦ C s
�

Γ `C M : A A�C s

Γ `C M : s
C s
� ↑

: A = s

(1) WSn+1(Γ `C t : A) Main Hypothesis
(2) WSn+1(Γ `C t : B) Inversion on C s

�

Γ `C M : A A�Cs

Γ `C M : s
C s
� ↑

1
(3) B�Cs

(4) Γ `tCr t : B′ Induction Hypothesis

– WSn+1(Γ `C t : A) implies Γ `tCr t : A′ where A ↪→∗β A′

– WSn+1(Γ `C wf) implies Γ `Cr wf

↑
2

(5) B ↪→∗β B′

(6) WSn(Γ `C B : s) WS↪→β

∀i, π, π′, π′ = SR(π) ∧ π ↪→β π
′ ∧ π ∈ Li ⇒ π′ ∈ Li↑

2,5
(7) B′�Crs Lemma

If A�CB then A�CrB′ where B ↪→∗β B′.
(3.2.2) 5,3

O (8) Γ `tCr t : s C r
�

Γ `C M : A Γ `C B : s A�CrB

Γ `C M : B
C r
� ↑

4,7

Theorem 3.2.4 For all n, we have EPn. In particular we have WSn(Γ `C t : A) then Γ `tC r

t : A.
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Proof By induction on n.

♦ n is a minimal element:
Only the rules C wf

∅

∅ `C wf
C wf
∅ ↑

, C wf
var

Γ `C A : s x 6∈ Γ
Γ, x : A `C wf

C wf
var ↑

, Csort

Γ `C wf (s1, s2) ∈ A
Γ `C s1 : s2

Csort ↑
and C s

�

Γ `C M : A A�C s

Γ `C M : s
C s
� ↑

are possible. Otherwise it contradicts WS≺

∀i, π, π′, π′ = HT (π) ∧ π′ ≺ π ∧ π ∈ Li+1 ⇒ π′ ∈ Li↑
.

♦ Inductive case:
This is handled by Lemma 3.2.3.

In conclusion of this section, we have shown that any well-structured judgment satisfies also
the expansion postponement property. Therefore, it also proves that if our conjecture 9 that
any derivation-tree is well-structured is true, then we would solve the expansion postponement
conjecture. At this time, we were not able to derive any result about the opposition direction.
The problem is that the circularity we break using well-structured derivation trees can, a priori,
still apply for derivation trees that do not use expansions. Breaking this circularity would require
a deeper understanding of the meta-theory of this typing system, which we do not have at this
time (except for specific CTS specification classes of course).

3.3 Semantic CTS

In this section, we will have a look at the explicit conversion system for CTS, i.e. semantics
CTS. The idea is to define a new type system–semantic type system–such that the conversion
A�CB becomes a judgment Γ `eC A�CB : s which details how A is a subtype of B and which
gives a type to all the intermediate terms. Vincent Siles in [Sil10] proved the equivalence between
the two versions for PTS but this question remains open for CTS. We prove in this section that
for well-structured derivation trees the equivalence between the syntactic type system and the
semantic one.

Definition 3.3.1 (Typing system with explicit subtyping)
We define the typing judgments Γ `eC t : A, Γ `eC A�CB : s and Γ `eC A≡βB : s in Fig. 3.3,

Fig 3.4, and Fig 3.5. Since a top-sort might not have a type, we add in the syntax a special
sort s∞. Hence, for the judgment Γ `eC A�CB : s, we have s ∈ SC ∪ {s∞}. By inversion, if
Γ `eC t : A then we can ensure that A 6= s∞ since the sort used to type A�CB is never used
afterwards.

The judgment Γ `eC A≡βB : s is the same as defined by Vincent Siles in [Sil10]. We
can notice an asymmetry in some rules such as C

≡β
λ

Γ `eC A≡βA′ : s1 Γ, x : A `eC M : B (s1, s2, s3) ∈ RC Γ, x : A `eC M≡βM ′ : B
Γ `eC λx :A.M≡βλx :A′.M ′ : (x :A)→ B

C
≡β
λ ↑

or C
≡β
app

Γ `eC M≡βM ′ : (x :A)→ B Γ `eC N≡βN ′ : A
Γ `eC M N≡βM ′ N ′ : B {x← N}

C
≡β
app ↑

. This is not an issue and it is
discussed in [Sil10]. Adding s∞ introduces another asymmetry in the rule �etr

Γ `eC A�CB : s Γ `eC B�CC : s′

Γ `eC A�CC : s′
�etr ↑
: We want to

derive Γ `eC s1�C s2 : s∞, but if s2 is the subtype of another sort s3 which has a type s, we also
want to derive Γ `eC s1�C s3 : s. Roughly, Γ `eC A�CB : s is just an extension of Γ `eC t≡βu : A
with subtyping. As for expansion postponement, one direction is obvious:

Lemma 3.3.1 The following implications hold:

• If Γ `eC t : A then Γ `C t : A

• If Γ `eC wf then Γ `C wf

• If Γ `eC A�CB : s then A�CB

• If Γ `eC A≡βB : s then A≡βB, Γ `C A : s and Γ `C B : s

Proof By induction on the derivation.
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∅ `eC wf
C wf
∅

Γ `eC A : s x 6∈ Γ
Γ, x : A `eC wf

C wf
var

Γ `eC wf (x : A) ∈ Γ
Γ `eC x : A

Cvar

Γ `eC wf (s1, s2) ∈ A
Γ `eC s1 : s2

Csort

Γ `eC A : s1 Γ, x : A `eC B : s2 (s1, s2, s3) ∈ R
Γ `eC (x :A)→ B : s3

CΠ

Γ, x : A `eC M : B Γ `eC (x :A)→ B : s
Γ `eC λx :A.M : (x :A)→ B

Cλ

Γ `eC M : (x :A)→ B Γ `eC N : A
Γ `eC M N : B {x← N}

Capp

Γ `eC M : A Γ `eC B : s Γ `eC A�CB : s
Γ `eC M : B

C�

Γ `eC M : A Γ `eC A�C s : s∞
Γ `eC M : s

C s
�

Figure 3.3: Typing rules for annotated CTS

Theorem 3.3.2 (Vincent Siles [Sil10]) If CC = ∅ then

Γ `C t : A⇔ Γ `eC t : A

Γ `C wf ⇔ Γ `eC wf

The natural extension of this result to CTS gives the following conjecture.

Conjecture 8 (Equivalence between syntaxic and semantic CTS) We conjecture the fol-
lowing equivalences:

Γ `C t : A⇔ Γ `eC t : A
Γ `C wf ⇔ Γ `eC wf

The theorem 3.3.2 is not easy to derive as explained in [Sil10]. In short, the subject reduction
property for this system cannot be derived easily with a straight induction. The main reason
is that the base case needs a property called Product injectivity

If A�C (x :C) → D then there exists C ′ and D′ such that A≡β(x :C ′) → D′, C ′≡βC and
D′�CD.

(1.4.2). This case is detailed
below.
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Γ `eC A≡βB : s
Γ `eC A�CB : s

�e≡β
(s, s′) ∈ C∗C Γ `eC s′ : s′′

Γ `eC s�C s
′ : s′′

�eC∗
C

(s, s′) ∈ C∗C s′ ∈ S>C
Γ `eC s�C s

′ : s∞
�eC∗

C

>

Γ `eC A : s1 Γ `eC B�CB
′ : s2 (s1, s2, s3) ∈ RC

Γ `eC (x :A)→ B�C (x :A)→ B′ : s3
�eΠ

Γ `eC A�CB : s Γ `eC B�CC : s′

Γ `eC A�CC : s′
�etr

Figure 3.4: Explicit CTS subtyping relation

Lemma 3.3.3 (Subject reduction) If Γ `C t : A and t ↪→β t
′ then Γ `C t′ : A

Proof By induction on t ↪→β t
′

♦ ↪→β

(λx :A. t) u ↪→β t {x← u}
↪→β

↑
: t = (λx :B. t1) t2, t′ = t1 {x← t2}

(1) Γ `C (λx :B. t1) t2 : A Main Hypothesis
(2) Γ `C λx :B. t1 : (x :C)→ D Inversion on application

If Γ `C t u : C then there exists A,B such that Γ `C t : (x :A)→ B, Γ `C u : A, B {x← u}�CA
and Γ `C B {x← u} ws.↑

1
(3) Γ `C t2 : C
(4) D {x← t2} �CA
(5) Γ `C D {x← t2} ws
(6) Γ, x : B `C t1 : F Inversion on abstraction

If Γ `C λx :A. t : C then there exists B and s such that Γ, x : A `C t : B, Γ `C (x :A) → B : s
and (x :A)→ B�CC.↑

2
(7) Γ `C (x :B)→ F : s′

(8) (x :B)→ F �C (x :C)→ D

(9) B ≡βC Product injectivity
If A�C (x :C)→ D then there exists C′ and D′ such that A≡β(x :C′)→ D′, C′≡βC and D′�CD.

(1.4.2) 8
(10) F �CD
(11) Γ `C B : s1 Inversion on product

If Γ `C (x :A) → B : C then there exists s1, s2, s3 such that Γ `C A : s1, Γ, x : A `C B : s2,
(s1, s2, s3) ∈ RC and s3�CC.↑

7
(12) Γ `C t2 : B C�

Γ `C M : A Γ `C B : s A�CB

Γ `C M : B
C� ↑
3,11,9

(13) Γ `C (x :C)→ D ws Well-sorted
If Γ `C t : A then Γ `C A ws.↑

2
(14) Γ `C (x :C)→ D : s3 Inversion on wstype

Γ `C A : s
Γ `C A ws

wstype ↑
13

(15) Γ `C D : s4 Inversion on product

If Γ `C (x :A) → B : C then there exists s1, s2, s3 such that Γ `C A : s1, Γ, x : A `C B : s2,
(s1, s2, s3) ∈ RC and s3�CC.↑

14
(16) Γ `C t1 {x← t2} : F {x← t2} Substitution lemma

If Γ, x : A,Γ′ `C t : B and Γ `C N : A then Γ,Γ′ {x← N} `C t {x← N} : B {x← N}. If
Γ, x : A,Γ′ `C wf and Γ `C N : A then Γ,Γ′ {N ← A} `C wf↑

6,12
(17) F {x← t2} �CD {x← t2} Lemma

If A�CA
′ then A {x← t}�CA

′ {x← t}.
(1.4.3) 10

(18) Γ `C t1 {x← t2} : D {x← t2} Well-sorted subtyping
If Γ `C t : A, Γ `C B ws and A�CB then Γ `C t : B↑

16,5,17
(19) Γ `C A ws Well-sorted

If Γ `C t : A then Γ `C A ws.↑
1

O (20) Γ `C t1 {x← t2} : A Well-sorted subtyping
If Γ `C t : A, Γ `C B ws and A�CB then Γ `C t : B↑

18,19,4

♦ Other cases: Full proof can be found in [AGM92] (Chapter 5, Theorem 5.2.15).

All the other cases for subject reduction can be transposed quite easily with an explicit typed
conversion, so therefore it is really the injectivity of product which is blocking. And there is
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Γ `eC t≡βu : A Γ `eC A�CB : s
Γ `eC t≡βu : B

C≡β

Γ `eC M≡βM ′ : (x :A)→ B Γ `eC N≡βN ′ : A
Γ `eC M N≡βM ′ N ′ : B {x← N}

C
≡β
app

Γ `C wf (s, s′) ∈ AC

Γ `eC s≡βs : s′
C
≡β
sort

Γ `eC A≡βA′ : s1 Γ `eC B≡βB′ : s2 (s1, s2, s3) ∈ RC

Γ `eC (x :A)→ B≡β(x :A′)→ B′ : s3
C
≡β
Π

Γ `eC A≡βA′ : s1
Γ, x : A `eC M : B (s1, s2, s3) ∈ RC Γ, x : A `eC M≡βM ′ : B

Γ `eC λx :A.M≡βλx :A′.M ′ : (x :A)→ B
C
≡β
λ

Γ `eC M : A
Γ `eC M≡βM : A

C
≡β
refl

Γ `eC M≡βN : A
Γ `eC N≡βM : A

C
≡β
sym

Γ `eC M≡βN : A Γ `eC N≡βO : A
Γ `eC M≡βO : A

C
≡β
trans

Γ `eC A : s1
Γ, x : A `eC B : s2 Γ `eC N : A Γ, x : A `eC M : B (s1, s2, s3) ∈ RC

Γ `eC (λx :A.M) N≡βM {x← N} : B {x← N}
C
≡β
beta

Figure 3.5: Derivation rules of β
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a good reason which is the transposed version of the injectivity of product in the explicit type
system is false as proved below.

Lemma 3.3.4 Following example from [SH10], we can construct a PTS which shows that there
exist C , Γ, A, B, C, D, s such that

• Γ `C (x :A)→ B : s

• Γ `C (x :C)→ D : s

• (x :A)→ B≡β(x :C)→ D

But there is no sort s′ such that Γ `C A : s and Γ `C C : s.

Proof To falsify this statement, we use a non-functional PTS. The idea is to have two terms A
and C such that A ↪→β s ↪→∗β C but it is not possible to type A with the type of C and vice-versa.
Let us define the specification E as:

s

l r

l′: r′

a b

a b

Then let us define the following terms:

• A = (λx : l. s) s

• B = s

• C = (λx : r. s) s

• D = s

Then one can derive

• `eE A : l

• `eE C : r

• `eE A→ B : s

• `eE C → D : s

• `eE A→ B≡βC → D : s

But one cannot derive `eE A≡βC : l or `eE A≡βC : r because this would imply that `E A : r or
`E C : l using Lemma 3.3.1 which is not possible in E .
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This lemma gives a counter-example to the false statement: If Γ `eC (x :A)→ B≡β(x :C)→
D : s then there exists s1 and s2 such that Γ `eC A≡βC : s1 and Γ, x : A `eC B≡βD : s2.

This lemma also motivates the rule �etr

Γ `eC A�CB : s Γ `eC B�CC : s′

Γ `eC A�CC : s′
�etr ↑

. Indeed we see that we can have Γ `eC A≡βB : s
and Γ `eC B≡βC : s′ having neither s = s′ nor Γ `eC A≡βC : s′ and vice-versa. However,
following the discussion initiated in Section 1.7.2, in the case where every term are well-typed,
the transitivity rules �etr

Γ `eC A�CB : s Γ `eC B�CC : s′

Γ `eC A�CC : s′
�etr ↑

and C
≡β
trans

Γ `eC M≡βN : A Γ `eC N≡βO : A
Γ `eC M≡βO : A

C
≡β
trans ↑

are probably not necessary since they can be simulated with
several applications of C�

Γ `eC M : A Γ `eC B : s Γ `eC A�CB : s
Γ `eC M : B

C� ↑
and C s

�

Γ `eC M : A Γ `eC A�C s : s∞
Γ `eC M : s

C s
� ↑

since all intermediate types are proved well-sorted.
We cannot use subject reduction on the original system to derive this equivalence, because

subject reduction on the original system may introduce new untyped conversion. These new
conversions require to use again subject reduction, which may again introduce new untyped
conversion and so on.... which leads to a circular proof. Our idea, is to use well-structured
derivation trees to break this circularity. We show that in the circular argument mentioned
previously, the level of the derivation tree decreases strictly between two calls to the subjection
reduction lemma.

Definition 3.3.2 (EIE)
We define the equivalence between the explicit and implicit system at level n (EIEn) as:

• WSn(Γ `C t : A) if and only if Γ `eC t : A

• WSn(Γ `C wf) if and only if Γ `eC wf

• If WSn(Γ `C t : A) and t ↪→β t
′ then Γ `eC t≡βt′ : A

We define EIE as for all n ∈ N, EIEn.

Using well-structured derivation trees, the idea is to prove EIEn+1 using subject reduction
at level n. Similarly to what we have done in Section 1.7.2, we need first to introduce a lemma
about the subtyping.

Lemma 3.3.5 Assuming EIEn, if WSn(Γ `C A ws), WSn(Γ `C B ws) and A�CB then there
exists Γ `eC A�CB : s.

Proof Induction will fail because of the transitivity rule. This is why we will use the subtyping
relation �t−C which defines the same relation as �C (see Lemma 1.7.16). The proof is straight-
forward and similar to the proof of Lemma 1.7.18.

The key lemma to prove is therefore the following

Lemma 3.3.6 Assuming

• EIEn,

• ∀∆, u,B,WSn+1(∆ `C u : B)⇐⇒ ∆ `eC u : B

• ∀∆WSn+1(∆ `C wf)⇐⇒ ∆ `eC wf

• WSn+1(Γ `C t : A)

• t ↪→β t
′

then Γ `eC t≡βt′ : A.

Proof As explained previously, only the base case is different because of the injectivity of product.
Hence, we will only handle the base case here. All the other cases are straightforward.
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♦ ↪→β

(λx :A. t) u ↪→β t {x← u}
↪→β

↑
: t = (λx :B. t1) t2, t′ = t1 {x← t2}

The main trick is to construct derivation trees without changing the level so that we can
use injectivity of product in the CTS with untyped conversions.

(1) WSn+1(Γ `C (λx :B. t1) t2 : A) Main Hypothesis
(2) EIEn+1
(3) ∀∆, u, B,WSn+1(∆ `C u : B)⇐⇒ ∆ `eC u : B
(4) WSn+1(Γ `C λx :B. t1 : (x :C)→ D) Inversion on application

If Γ `C t u : C then there exists A,B such that Γ `C t : (x :A)→ B, Γ `C u : A, B {x← u}�CA
and Γ `C B {x← u} ws.↑

1
(5) WSn+1(Γ `C t2 : C)
(6) D {x← t2} �CA
(7) WSn(Γ `C D {x← t2} ws)
(8) WSn+1(Γ, x : B `C t1 : F ) Inversion on abstraction

If Γ `C λx :A. t : C then there exists B and s such that Γ, x : A `C t : B, Γ `C (x :A) → B : s
and (x :A)→ B�CC.↑

4
(9) WSn(Γ `C (x :B)→ F : s′)
(10) (x :B)→ F �C (x :C)→ D
(11) WSn(Γ `C (x :C)→ D : s)
(12) B≡βC Product injectivity

If A�C (x :C)→ D then there exists C′ and D′ such that A≡β(x :C′)→ D′, C′≡βC and D′�CD.
(1.4.2) 10

(13) F�CD

(14) WSn(Γ `C B : s1) Inversion on product

If Γ `C (x :A) → B : C then there exists s1, s2, s3 such that Γ `C A : s1, Γ, x : A `C B : s2,
(s1, s2, s3) ∈ RC and s3�CC.↑

9
(15) (s1, s2, s3) ∈ RC

(16) WSn(Γ, x : B `C D : s) Inversion on product

If Γ `C (x :A) → B : C then there exists s1, s2, s3 such that Γ `C A : s1, Γ, x : A `C B : s2,
(s1, s2, s3) ∈ RC and s3�CC.↑

11
(17) WSn+1(Γ, x : B `C t1 : D) Well-sorted subtyping

If Γ `C t : A, Γ `C B ws and A�CB then Γ `C t : B↑
8,16,13

(18) Γ, x : B `eC t1 : D Typing equivalence at n+ 1 3,17
(19) WSn+1(Γ `C t2 : B) Lemma

If WSn+1(Γ `C t : A), WSn(Γ `C B : s) and A≡βB then WSn+1(Γ `C t : B).
(3.1.3) 5,14,12

(20) Γ `eC t2 : B Typing equivalence at n+ 1 3,19
(21) Γ `eC B : s1 EIEn 2,14
(22) Γ, x : B `eC D : s2 EIEn 2,16
(23) Γ `eC (λx :B. t1) t2≡βt1 {x← t2} : D {x← t2} C

≡β
beta

Γ `eC A : s1 Γ, x : A `eC B : s2 Γ `eC N : A Γ, x : A `eC M : B (s1, s2, s3) ∈ RC

Γ `eC (λx :A.M) N≡βM {x← N} : B {x← N}
C
≡β
beta ↑

21,22,20,18,15
(24) Γ `C A ws Well-sorted

If Γ `C t : A then Γ `C A ws.↑
1

(25) Γ `eC D {x← t2}�CA : s Lemma

Assuming EIEn, if WSn(Γ `C A ws), WSn(Γ `C B ws) and A�CB then there exists Γ `eC
A�CB : s.

(3.3.5) 24,7,6
O (26) Γ `eC (λx :B. t1) t2≡βt1 {x← t2} : A C≡β

Γ `eC t≡βu : A Γ `eC A�CB : s
Γ `eC t≡βu : B

C≡β
↑

23,25

Other cases: The other cases follow by induction (see [Sil10]).

Using the lemma above, one may prove the following induction step:

Lemma 3.3.7 If EIEn then EIEn+1.

Proof First we prove the two equivalences

• WSn+1(Γ `C t : A)⇐⇒ Γ `eC t : A

• WSn+1(Γ `C wf)⇐⇒ Γ `eC wf

By induction on the typing derivation. Using the well-structured hypothesis, we need subject
reduction only at level n to handle the subtyping cases. Finally, we conclude the equivalence
proof using Lemma

Assuming

• EIEn,

• ∀∆, u,B,WSn+1(∆ `C u : B)⇐⇒ ∆ `eC u : B

• ∀∆WSn+1(∆ `C wf)⇐⇒ ∆ `eC wf

• WSn+1(Γ `C t : A)

• t ↪→β t
′

then Γ `eC t≡βt′ : A.
(3.3.6).

Theorem 3.3.8 For all n, we have if EIEn. In particular we have WSn(Γ `C t : A) then
Γ `eC t : A.

Proof By induction on n. The base cases are trivial (every type is a sort). The induction step
is handled by Lemma
If EIEn then EIEn+1.

(3.3.7).
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The same remark can be done that for expansion postponement: Conjecture 9 implies that
this equivalence is also true for all derivation trees and therefore for all specifications. However,
we have not result about the opposite direction yet. One interesting idea would be to analyse
a direct proof of subject reduction for semantic PTS using Siles [Sil10] results. At this time,
the only proof known using is indirect since it uses subject reduction of another typing system.
Such proof would give us insights on how a level of a derivation tree may grow through a
substitution. We will see below, we believe that the substitution lemma is the corner-stone
behind our conjecture about well-structure derivation trees.

3.4 About Well-Structured derivation trees

At this point, we know that if a tree is well-structured we can derive many properties about it.
We have explored two which are:

• Expansion postponement

• The equivalence of typed and untyped conversion

However, we gave so far only trivial examples of well-structured derivations trees. We con-
jecture that actually every derivation tree are well-structured.

Conjecture 9 (Well-structured derivation trees) For any CTS specification C , every deriv-
able derivation tree in C is well-structured.

However, the truthfulness of this conjecture has many implications. In particular it would
solves other conjectures considered as very difficult problems. Because the well-structured hy-
pothesis will be used in the upcoming development of this thesis, we wish to give insights on why
this property does not only apply on really simple proofs such as the one of the Simply Typed
Lambda Calculus and also why we believe that this conjecture is true. In particular we have
experimented these ideas on the arithmetic proofs we have used in the second part of this thesis
to show that these proofs are actually well-structured.

In the next sections we discuss some attempts to derive criteria to derive automatically well-
structured derivation trees.

3.4.1 Deriving well-structured derivation trees
Our goal is to annotate judgments with a level so that from any derivable judgment we can
automatically construct the family (Ln)n∈N as the union of subtrees derivable at level n. A
naive approach is given in Figure 3.6.

We emphasize that in this system (and the ones after), levels are a property of a derivation
tree and not simply a judgment annotation as shown in the example below.

Example 3.4 In the specification ?, the following derivation tree for the judgment ∅ `? (A : ?)→
A : ? is derivable at level 1.

`0
? ? : ?

`0
? ? : ?

A : ? `1
? A : ? (?, ?, ?) ∈ ?

∅ `1
? (A : ?)→ A : ?

Since there is no β redex one can check that all the conditions to be well-structured are
satisfied. However, this does not mean that all the derivation trees for the judgment ∅ `1

?
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∅ `nC wf
C wf
∅

Γ `nC A : s x 6∈ Γ
Γ, x : A `nC wf

C wf
var

Γ `nC wf (x : A) ∈ Γ
Γ `n+1

C x : A
Cvar

Γ `nC wf (s1, s2) ∈ A
Γ `nC s1 : s2

Csort

Γ `nC A : s1 Γ, x : A `nC B : s2 (s1, s2, s3) ∈ R
Γ `nC (x :A)→ B : s3

CΠ

Γ, x : A `n+1
C M : B Γ `nC (x :A)→ B : s

Γ `n+1
C λx :A.M : (x :A)→ B

Cλ

Γ `nC M : (x :A)→ B Γ `nC N : A
Γ `nC M N : B {x← N}

Capp

Γ `n+1
C M : A Γ `nC B : s A�CB

Γ `n+1
C M : B

C�

Γ `nC M : A A�C s

Γ `nC M : s
C s
�

Figure 3.6: Typing rules for CTS with (wrong) levels

(A : ?) → A : ? are derivable at level 1. For example, one can introduce an expansion ? ←↩β
(λx : ?. x) ?. In that case, this new derivation tree is derivable at level 3.

Remark 20 In this system, the level denotes the maximum length of a chain π0 ≺ π1 ≺ · · · ≺ πn.
Indeed, a well-typed sort is derivable at level 0, a type which is typable by a sort is derivable at
level 1, etc... This is why the type (λx : ?. x) ? is derivable at level 2. The type ? is derivable at
level 0 and thus, the type ?→ ? is derivable at level 1 which is the type of (λx : ?. x) ?. Also we
would like to draw the reader’s attention on the fact that this notion of level is independent from
the specification considered. Indeed, using Theorem 2.1.2, there is one canonical embedding from
every derivation tree to the specification ?. This canonical embedding preserves the shape of the
derivation tree. Therefore, proving the conjecture on ? is enough to show that the conjecture can
be derived for all specifications.

Using this system, it is easy to extract a family (Ln)n∈N and to verify that this family satifies
all the properties to be well-structured except WS↪→β

∀i, π, π′, π′ = SR(π) ∧ π ↪→β π
′ ∧ π ∈ Li ⇒ π′ ∈ Li↑

. This last property is harder to check
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because we need to ensure that it is true for every reduction which may happen anywhere in the
derivation tree. To do so, we need to prove a substitution lemma which shows that levels are
stable by substitution. However, in this system it is not true.

Example 3.5 One may derive Y : ?,X : Y `1
? X : Y and `2

? (λz : ?. ?) ? : ? but if we substitute
(λz : ?. ?) ? for Y we obtain the judgment X : (λz : ?. ?) ? `3

? X : (λz : ?. ?) ? which can only be
derived at level 3.

Hence if we denote A = (λz : ?. ?) ?, we have `2
? (λY : ?. λX :Y.X) A : A → A but `3

?

λX :A.X : A→ A.

The example above shows that levels are not stable by substitution! However, this does not
mean that this derivation tree is not well-structured: Only, we did not construct the appropriate
family (Ln)n∈N with the typing system above. Coming back to our example, we only need to
put the derivation tree `C (λY : ?. λX :Y.X) A : A → A at level 3 instead. This example also
shows that the level of a type can increase through a substitution which of course causes the
levels of all the subsequent derivation trees to increase.

If we assume for a moment that one never needs to apply a substitution in a type because all
types are closed terms for example, then it is easy to show that level are stable by substitution
and therefore, stable by β reduction.

Definition 3.4.1 (Silent substitution)
We say that a substitution σ = {x← N} is silent with respect to a derivation tree π if whenever

π′ C π, such that
π′

Γ `C t : A
, then x 6∈ FV(t).

Corollary 3.4.1 If a substitution σ is silent in a derivation tree π then it is also silent for all
derivations π′ such that π′ ≺ π.

Lemma 3.4.2 A silent substitution does not change the level of a derivation: If π is a derivation
of Γ, x : A,Γ′ `nC t : B, N `mC A : and σ = {x← N} is silent in π then Γ,Γ′σ `nC tσ : Bσ.

Definition 3.4.2 (Silent derivation tree)
A derivation tree π is silent if for all π′, π1 such that π′ ≺ π and π ↪→β π1, then the substitution
generated by the β reduction is silent in π′.

Theorem 3.4.3 A silent derivation tree is well-structured.

Proof Trivial by induction using lemma 3.4.2: A substitution applied to a type of the derivation
tree is always silent.

Corollary 3.4.4 Every derivation tree derivable in Simply Typed Lambda Calculus are
well-structured.

3.4.2 A variant of CTS
The type system presented in Fig 3.6 allows us to show that silent derivation trees are well-
structured. In this section, we explore a variant of this type system which allows us to show that
a larger class of derivation trees is well-structured. If we analyze our failure on Example 3.5, we
see that the way we compute levels is wrong for the application rule Capp

Γ `C M : (x :A)→ B Γ `C N : A
Γ `C M N : B {x← N}

Capp ↑
! Since types are not

stable by substitution, the level of B {x← N} may be higher than n! This is actually what this
example shows.
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A solution to overcome this issue is therefore to ensure that B {x← N} is well-sorted at some
level, by adding the well-sorted derivation of B {x← N} as a premise of the rule Capp

Γ `C M : (x :A)→ B Γ `C N : A
Γ `C M N : B {x← N}

Capp ↑
. We show

here why this premise can be safely added to the rule Capp

Γ `C M : (x :A)→ B Γ `C N : A
Γ `C M N : B {x← N}

Capp ↑
without changing the expressivity of

the system.

Definition 3.4.3 (Variant of CTS)
We define the typing judgment Γ `aC t : A identical to Γ `C t : A but the rule Capp

Γ `C M : (x :A)→ B Γ `C N : A
Γ `C M N : B {x← N}

Capp ↑
is replaced

by the one below:

Γ `aC M : (x :A)→ B Γ `aC N : A Γ `aC B {x← N} : s
Γ `aC M N : B {x← N}

C a
app

To prove that Γ `C t : A and Γ `aC t : A define the same typing relation, we first need to prove
the substitution lemma for this new type system. This requires other lemmas such as inversion
lemmas which remain true for this new system such as the inversion lemma on products:

Lemma 3.4.5 (Inversion Π) If Γ `C t : (x :A)→ B then Γ, x : A `aC B : s.

Proof Same proof as for usual CTS.

The proof of the substitution lemma remains the same for every case except the application
case which is handled below.

Lemma 3.4.6 (Substitution lemma) If Γ, x : A,Γ′ `aC t : B and Γ `aC N : A then Γ,Γ′ {x← N} `aC
t {x← N} : B {x← N}

Proof By induction on the derivation of Γ, x : A,Γ′ `aC t : B. All the cases are the same as
usual CTS except the application case:

♦ C a
app

Γ `aC M : (x :A)→ B Γ `aC N : A Γ `aC B {x← N} : s
Γ `aC M N : B {x← N}

C a
app ↑

: t = t1 t2, B = D {y ← t2} , σ = {x← N}

(1) Γ, x : A,Γ′ `aC t1 t2 : D {y ← t2} Main hypothesis
(2) Γ `aC N : A
(3) Γ, x : A,Γ′ `aC t1 : (y :C)→ D Inversion C a

app

Γ `aC M : (x :A)→ B Γ `aC N : A Γ `aC B {x← N} : s
Γ `aC M N : B {x← N}

C a
app ↑

1
(4) Γ, x : A,Γ′ `aC t2 : C
(5) Γ, x : A,Γ′ `aC D {y ← t2} : s
(6) Γ,Γ′σ `aC t1σ : ((y :C)→ D)σ Induction hypothesis 3
(7) Γ,Γ′σ `aC t2σ : Cσ Induction hypothesis 4
(8) Γ,Γ′σ `aC (D {y ← t2})σ : sσ Induction hypothesis 5
(9) Γ,Γ′σ `aC t1σ : (y :Cσ)→ Dσ Substitution 6
(10) Γ,Γ′σ `aC Dσ {y ← t2σ} : s Substitution 8
(11) Γ,Γ′σ `aC t1σ t2σ : Dσ {y ← t2σ} C a

app

Γ `aC M : (x :A)→ B Γ `aC N : A Γ `aC B {x← N} : s
Γ `aC M N : B {x← N}

C a
app ↑
8,9,10

(12) Γ,Γ′σ `aC (t1 t2)σ : (D {y ← t2})σ Substitution 11
O (13) Γ,Γ′σ `aC t {x← N} : B {x← N} Definition of t,B and σ 12

We can now conclude that the two type systems are equivalent.

Theorem 3.4.7 We have the following equivalences:

• Γ `C t : A⇔ Γ `aC t : A

• Γ `C wf ⇔ Γ `aC wf
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Proof The right to left implication is trivial. The left to right implication is proved by induction
on the derivation. All the cases are trivial except the application case.

♦ Capp

Γ `C M : (x :A)→ B Γ `C N : A
Γ `C M N : B {x← N}

Capp ↑
: t = t1 t2, A = C {x← t2}

(1) Γ `C t1 t2 : C {x← t2} Main hypothesis
(2) Γ `C t1 : (x :B)→ C Inversion on Capp

Γ `C M : (x :A)→ B Γ `C N : A
Γ `C M N : B {x← N}

Capp ↑
1

(3) Γ `C t2 : B
(4) Γ `aC t1 : (x :B)→ C Induction Hypothesis

If Γ, x : A,Γ′ `aC t : B and Γ `aC N : A then Γ,Γ′ {x← N} `aC t {x← N} : B {x← N}
2

(5) Γ `aC t2 : B Induction Hypothesis
If Γ, x : A,Γ′ `aC t : B and Γ `aC N : A then Γ,Γ′ {x← N} `aC t {x← N} : B {x← N}

3
(6) Γ, x : B `aC C : s Inversion Π

If Γ `C t : (x :A)→ B then Γ, x : A `aC B : s.
(3.4.5) 4

(7) Γ `aC C {x← t2} : s Substitution lemma
If Γ, x : A,Γ′ `aC t : B and Γ `aC N : A then Γ,Γ′ {x← N} `aC t {x← N} : B {x← N}

(3.4.6) 5,6
(8) Γ `aC t1 t2 : C {x← t2} C a

app

Γ `aC M : (x :A)→ B Γ `aC N : A Γ `aC B {x← N} : s
Γ `aC M N : B {x← N}

C a
app ↑

4,5,7
O (9) Γ `aC t : A Definition of t and A 8

One advantage of this system is that the following theorem can be proven without the sub-
stitution lemma.

Theorem 3.4.8 If Γ `aC t : A then Γ `aC A ws.

Proof By induction on Γ `aC t : A. All the cases are trivial.

3.4.3 The next level
In this section, we show how this variant of CTS can be useful to derive new well-structured
derivation trees. To do so, we replace the application rule Capp

Γ `nC M : (x :A)→ B Γ `nC N : A
Γ `nC M N : B {x← N}

Capp ↑
in Fig. 3.6 by the one below:

Γ `n+1
C M : (x :A)→ B Γ `n+1

C N : A Γ `nC B {x← N} : s
Γ `n+1

C M N : B {x← N}
Capp

Example 3.6 Going back to Example 3.5, one may show that the canonical derivation tree
proving the judgment (λY : ?. λX :Y.X) A `3

C A→ A : is derivable at level 3 in this new system.
It is not really hard to show that this level is stable by β reduction as argued before. Hence, this
new type system derives automatically the correct level allowing us to prove that this derivation
tree is well-structured.

However, this system does not allows us to prove that every derivation trees are well-
structured, here is a counterexample.

Example 3.7 There is a derivation of `3
? λA : ?. λx : (λy : ?. ?) A. ? : ? → ? → ?. Assuming

that there is a derivation of `1000
? N : ? then one can derive `1000

? (λA : ?. λx : (λy : ?. ?) A. ?) N :
? → ?. However, one cannot derive `1000

? λx : (λy : ?. ?) N. ? : ? → ?, it can only be derived at
level 1001 because (λy : ?. ?) N will be derivable at level 1000.

To characterize derivation trees that this new type system shows are well-structured, we first
need to understand why it fails on the example above. If we take our application rule C a

app

Γ `aC M : (x :A)→ B Γ `aC N : A Γ `aC B {x← N} : s
Γ `aC M N : B {x← N}

C a
app ↑

with
f : A→ B and a : A, and assume that the substitution lemma may increase the level of a type,
then in particular it can increase the level of a type A. However, because this is an elimination
rule, this type disappears in the conclusion. What we would like to show, is that through the
substitution lemma, we keep the property that if Γ `nC A ws then Γ `n+1

C t : A. Hence, the idea
would be to prove a stronger substitution lemma which is:
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Lemma 3.4.9 If Γ, x : A,Γ′ `nC t : B, Γ `mC N : A and Γ `oC B {x← N} ws then we have
Γ,Γ′ {x← N} `max(n,m,o+1)

C t {x← N} : B {x← N}.

This lemma is obviously wrong because of Example 3.7. However, notice that if we transpose
this lemma for CTS by removing level annotations, this lemma is admissible in CTS and provable
trivially using the classical substitution lemma. What we can do instead is to fix the statement
of this lemma so that it becomes true.

Definition 3.4.4 (Whispering derivation tree)

A derivation tree
π

Γ `C t : B
is said whispering if for every rules Capp

Γ `C M : (x :A)→ B Γ `C N : A
Γ `C M N : B {x← N}

Capp ↑
, C�

Γ `C M : A Γ `C B : s A�CB

Γ `C M : B
C� ↑

and C s
�

Γ `C M : A A�C s

Γ `C M : s
C s
� ↑
we have the

following property:

• For every substitution σ and π′ ≺ π, then Γ `nC Bσ ws implies π′ derivable at level n

One may check that the derivation tree in Example 3.7 is not whispering.

Lemma 3.4.10 If Γ, x : A,Γ′ `nC t : B is a whispering derivation, Γ `mC N : A and Γ `oC
B {x← N} ws then we have Γ,Γ′ {x← N} `max(n,m,o+1)

C t {x← N} : B {x← N}.

Proof All the cases except Capp

Γ `C M : (x :A)→ B Γ `C N : A
Γ `C M N : B {x← N}

Capp ↑
, C�

Γ `C M : A Γ `C B : s A�CB

Γ `C M : B
C� ↑

and C s
�

Γ `C M : A A�C s

Γ `C M : s
C s
� ↑

are trivial. For these three rules, this is a a direct
consequence of the definition.

Theorem 3.4.11 Any whispering derivation is well-structured.

Proof We need to ensure that if π ↪→β π
′ and π is derivable at level n, then so is π′. This can

be done by induction on π ↪→β π
′. The base case is handled by Lemma 3.4.10.

This new way to compute the family (Ln)n∈N is really interesting in practice. Indeed, we were
able to check empirically that all the proofs we have manipulated in the second part of this thesis
were well-structured according to this definition of levels. This is done in an implementation
dklevels. This implementation simply takes a proof (in Dedukti), assign levels to this proof
according to the system above and checks whether levels are stable by β-reduction. It would be
easier to check whether a derivation tree is whispering but we did not find a decidable criterion
for that.1

3.4.4 Loud CTS
This section is exploratory but we think it is interesting to present this system because it may
give some deeper insights about levels and where the difficulties are to show that all derivation
trees are indeed well-structured.

If we look at again the Lemma 3.4.9, we can observe that this lemma cannot be proved by a
straight induction on the derivation tree. Indeed, for the application case Capp

Γ `C M : (x :A)→ B Γ `C N : A
Γ `C M N : B {x← N}

Capp ↑
, the hypothesis

for the type A is missing. This happens also for subtyping rules C�

Γ `C M : A Γ `C B : s A�CB

Γ `C M : B
C� ↑

and C s
�

Γ `C M : A A�C s

Γ `C M : s
C s
� ↑

. We propose here a
variant of CTS which remembers the intermediate types. In fact just remembering the type is
not enough and this is why we need to remember the whole judgment. The type system for this
new CTS is presented in Fig 3.7.

Here are the main three differences:
1An interesting path would be to check the inclusion of free variables (FV(A) ⊆ FV(B)) instead of substitu-

tions for the definition of whispering derivation tree.

https://git.lsv.fr/fthire/dklevels
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(s1, s2) ∈ A
∅;∅ `nC s1 : s2

Csort

Γ; Σ `nC A : s x 6∈ Γ ∪ Σ
Γ, x : A; Σ `n+1

C x : A
Cvar

Γ; Σ `nC t : A Γ; Σ `nC B : s x 6∈ Γ ∪ Σ
Γ, x : B; Σ ∪ [Γ; Σ `nC B : s] `nC t : A

Cweak

Γ; Σ `nC t : A ∆; Ξ `nC B : s
Γ; Σ ∪ [∆; Ξ `nC B : s] `nC t : A

Cweaksig

Γ; Σ `nC A : s1 Γ, x : A; Σ `nC B : s2 (s1, s2, s3) ∈ R
Γ; Σ `nC (x :A)→ B : s3

CΠ

Γ, x : A; Σ `n+1
C M : B Γ; Σ `nC (x :A)→ B : s

Γ; Σ ∪ [Γ; Σ `nC (x :A)→ B : s] `n+1
C λx :A.M : (x :A)→ B

Cλ

Γ; Σ `n+1
C M : (x :A)→ B Γ; Σ `n+1

C N : A Γ; Σ {x← N} `nC B {x← N} : s
Γ; Σ ∪ [Γ; Σ {x← N} `nC B {x← N} : s] `n+1

C M N : B {x← N}
Capp

Γ; Σ `n+1
C M : A Γ; Σ `nC B : s A�CB

Γ; Σ ∪ [Γ; Σ `nC B : s] `n+1
C M : B

C�

Figure 3.7: Typing rules for loud CTS

• We use only one judgment Γ; Σ `C t : A (and drop the well-formed judgment). We don’t
think this is mandatory, but it makes proofs easier.

• We use a weakening rule for typing contexts (Cweak

Γ; Σ `nC t : A Γ; Σ `nC B : s x 6∈ Γ ∪ Σ
Γ, x : B; Σ ∪ [Γ; Σ `nC B : s] `nC t : A

Cweak ↑
)

• We remember the type information lost in the rule Capp

Γ `C M : (x :A)→ B Γ `C N : A
Γ `C M N : B {x← N}

Capp ↑
, C�

Γ `C M : A Γ `C B : s A�CB

Γ `C M : B
C� ↑

and C s
�

Γ `C M : A A�C s

Γ `C M : s
C s
� ↑

by introducing a
typing context Σ in judgments

• Σ is a set of judgments.

We leave for futur work meta-theoretical proofs for this system. The central idea behind this
new system is to prove the following substitution lemma:

Conjecture 10 If

• Γ, x : A,Γ′; Σ `nC t : B

• Γ; Ξ `mC N : A

• Γ,Γ′ {x← N} ; Ξ `oC B {x← N} : s
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• Σ {x← N} ⊆ Ξ

Then
Γ,Γ′ {x← N} ; Ξ `max(n,m,o+1)

C t {x← N} : B {x← N}

From this substitution lemma, we want to prove the subject reduction lemma:

Conjecture 11 If Γ; Σ `nC t : A and t ↪→β t
′ then there Γ; Σ `nC t′ : A.

This lemma is a consequence of the substitution lemma as above.

Example 3.8 Going back to Example 3.7, We would like to express judgment

`3
? λA : ?. λx : (λy : ?. ?) A. ? : ?→ ?→ ?

in the new system. In this judgment, the application rule is used only once, and there is no
need to use subtyping. Hence the typing context can be reduced to one element. Let us denote
Σ = {A : ?; ∅ `1

C ?→ ? : ?}. We can derive ∅; Σ `3
? λA : ?. λx : (λy : ?. ?) A. ? : ?→ ?→ ?. Now

assume that we are able to derive a term ∅; Θ `1000
? N : ?. To be able to construct the application,

we need to provide a derivation of ∅; Σ {A← N} ∪ Θ `n? ? : ? for some n2. At that point, our
example suggests that n should be 1000, but this is not mandatory, it could be any number larger
than 1, it depends on how the term N is derived.

Gathering all this, we may derive in this new system (with the rule Capp

Γ; Σ `n+1
C M : (x :A)→ B Γ; Σ `n+1

C N : A Γ; Σ {x← N} `nC B {x← N} : s
Γ; Σ ∪ [Γ; Σ {x← N} `nC B {x← N} : s] `n+1

C M N : B {x← N}
Capp ↑

)

∅; Σ ∪Θ ∪ Ξ `max(3,max(1000,n+1))
? (λA : ?. λx : (λy : ?. ?) A. ?) N : ?→ ?

where Ξ is a singleton set containing the judgment

∅; Σ ∪Θ `max(2,n)
? ((λy : ?. ?) A)→ ? : ?

.
If we take n = 1000 we see that this system derives our original judgment at level 1001 which

is what we expected.
With the amount of information stored in the judgment, this system is indeed very loud!

In this last example We tried to hint at why we hope that this new system may derive
well-structured derivation trees for any CTS derivation trees. However, considering that the
substitution lemma is true, the question remains of whether the type system we have defined is
equivalent to the classical system. Clearly there is an embedding from this new type system to
the old one, but what about the opposite? We think this is also true because every judgment
added into Σ is already derivable. However, to be able to do the same trick as for Theorem 3.4.7
we need to prove another substitution lemma which forgets the third hypothesis, and hence
is similar to the classical substitution lemma. This other substitution lemma is weaker in the
sense that the level may increase through a substitution. This is not an issue since it is used to
construct the third premise in the application rule Capp

Γ; Σ `n+1
C M : (x :A)→ B Γ; Σ `n+1

C N : A Γ; Σ {x← N} `nC B {x← N} : s
Γ; Σ ∪ [Γ; Σ {x← N} `nC B {x← N} : s] `n+1

C M N : B {x← N}
Capp ↑

.

2The system should ensures that Θ {A← N} = Θ
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3.5 Future Work

About well-structured derivation trees We have shown that levels give a decreasing ar-
gument to solve some famous conjectures on CTS when the derivation tree is well-structured.
As argued in Section 3.4, we have good reasons to believe that all CTS derivation tree are
well-structured. It would be interesting to investigate more classes of CTS to show whether the
derivable judgments are well-structured, in particular for terminating CTS. An attempt to prove
expansion postponement for terminating systems has already been done in [Pol98] for example
but the proof was wrong because of a subtle mistake.

We are aware that the path we have developed here may be wrong. In particular it is not clear
whether the strong substitution lemma for loud CTS is true. Moreover, because this conjecture
has many consequences we would be more confident with a proof formalized in a proof assistant.
Also, it would be interesting to find a (fast) decidable criterion to check if a CTS derivation tree
is whispering. This way it would be easier to ensure whether a derivation tree is well-structured
without assuming our conjecture.

Well-structured derivation trees for the meta-theory of λΠ-calculus modulo the-
ory Our definition of well-structured derivation trees could be adapted to the meta-theory of
λΠ-calculus modulo theory. In particular we will mention well-structured derivation trees
in Chapter 8 because it could help to solve a famous circular argument between confluence,
termination and product injectivity.

Levels for ηβ confluence in CTS In [Geu92], Herman Geuvers gives a proof that the βη
reductions are confluent for a large class of PTS specification. It would be interesting to see
whether levels give another way to prove this famous result and see whether this could be
extended for CTS.





Chapter 4

Bi-directional CTS

The type system of CTS as presented in Chapter 1 is not syntax directed, in particular it is
not clear by looking at a judgment where subtyping is used. The purpose of bi-directional CTS
developed in this chapter is to make explicit the use of subtyping in a judgment. This idea
of bi-directional CTS is a reformulation of minimal CTS developed by Ali Assaf [Ass15b]. In
bi-directional CTS, the typing judgment Γ `C t : A is split in two judgments: An inference
judgment Γ `C t ⇒ A and a checking judgment Γ `C t ⇐ A. Only checking judgments are
allowed to use subtyping. In this system, subtyping is used only at the end of a proof or during
an application. However, in contrast to usual bi-directional type systems [PT00], the inference
judgment Γ `C t ⇒ A is not a function of Γ and t because we still have a conversion rule
in the typing system. We keep this conversion rule for simplicity. Traditionally, bi-directional
typing system were introduced to control conversion, but in this chapter we use them to control
subtyping. At the end of this chapter we conjecture that the type system could be refined to get
a syntax-directed type system.

Bi-directional CTS do not behave well for every specification. Indeed, for some of them, it
is not possible to restrain subtyping for applications (see Example 4.1). This is why we define a
class of CTS called normal CTS for which we prove in Theorem 4.3.9 an equivalence between
bi-directional CTS and CTS for well-structured derivation trees (introduced in Chapter 3). The
class of normal CTS is a large class of CTS which contains all the CTS specifications used for
concrete proof systems.

4.1 Presentation of bi-directional CTS

Embedding CTS into the λΠ-calculus modulo theory requires to use an explicit cast op-
erator because subtyping violates the type uniqueness property of the λΠ-calculus modulo
theory. This property which is also true for PTS (Theorem 1.7.12) expresses that if a term
is typable by two types, the these two types are convertible. This property is no longer true in
a CTS where a term t can inhabit a sort s and a sort s′ where s is a subtype of s′. Hence,
translating the CTS judgment Γ `C t : A to the λΠ-calculus modulo theory requires to
know when a cast is needed. However, this information only appears in the derivation tree and
not in the judgment directly. Hence, to express our translation to the λΠ-calculus modulo
theory, there are several solutions. Two of them are:

• Expressing the translation from CTS to the λΠ-calculus modulo theory as a function
from CTS derivation trees to judgments of the λΠ-calculus modulo theory.

• Introducing a new type system of CTS to reflect subtyping on the judgment itself

101
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The first solution has the advantage of keeping the same type system to express the translation
to the λΠ-calculus modulo theory. However, this complexifies the soundness proof. The
reason is that the image by the encoding function is a term and the proof requires that the image
of two derivation trees relate in a particular way in the λΠ-calculus modulo theory. This
way, we follow Ali Assaf’s work [Ass15b].

4.1.1 Typing system for bi-directional CTS
Definition 4.1.1 (Bi-directional typing of CTS)
The bi-directional type system of CTS is defined in Figure. 4.1. It introduces two new judgments:

• Γ `C t ⇒ A: It should be read as the type A is inferred from the term t in the typing
context Γ

• Γ `C t ⇐ A: It should be read as the type A is checked against the term t in the typing
context Γ

Subtyping is used only when a term t is checked against a type A. This idea comes from
bi-directional typing [PT00] and has been used by Assaf [Ass15b] to make a first translation
from CTS to the λΠ-calculus modulo theory. One difference to note with the literature
however, is that usually, the judgment Γ `C t⇒ A can be seen as function of Γ and t while here,
it is not the case because of the rules C⇒≡

Γ `C M ⇒ A Γ `C B ⇒ s A≡βB
Γ `C M ⇒ B

C⇒≡ ↑
and C⇒≡s

Γ `C M ⇒ A A≡βs
Γ `C M ⇒ s

C⇒≡s ↑
.

Remark 21 In Ali Assaf’s work, bi-directional was called minimal CTS which was related to
a semantic property of the specification. We prefer to use the bi-directional terminology because
we think that this system is closer to the syntax and the works initiated by Pierce [PT00].

The goal of this chapter is to prove the equivalence between these two systems: Γ `C t :
A ⇔ Γ `C t ⇐ A. The right-to-left implication is just an induction because the typing system
of bi-directional CTS refines the typing system of CTS. Hence, the difficult implication is the
other one.

A bug in subject reduction’s proof for bi-directional CTS: The substitution lemma
for bi-directional CTS cannot be proven easily. An example An example is the abstraction case
(C⇒λ

Γ, x : A `C M ⇒ B Γ `C (x :A)→ B ⇒ s

Γ `C λx :A.M ⇒ (x :A)→ B
C⇒λ ↑

). The goal is to prove the following statement:

• given that the judgments Γ `C N ⇐ A and Γ, x : A,Γ′ `C λx :B. t ⇒ (x :B) → C are
derivable. For readability, we denote σ = {x← N}.

• by induction hypothesis, we have Γ, x : A,Γ′, y : B `C t⇒ C ⇒ Γ,Γ′σ, y : Bσ `C tσ ⇐ Cσ

• by induction hypothesis, we have Γ, x : A,Γ′ `C (y :B)→ C ⇒ s⇒ Γ,Γ′σ `C (y :Bσ)→
Cσ ⇐ s

• we want to prove that Γ,Γ′ {x← N} `C λx :Bσ. tσ ⇐ (x :Bσ)→ Cσ is also derivable

From the first induction hypothesis we have Γ,Γ′σ, y : Bσ `C tσ ⇐ Cσ. By inversion on
the typing system, we can deduce that Γ,Γ′σ, y : Bσ `C tσ ⇒ C ′ with C ′�CCσ. From the
second induction hypothesis we have Γ,Γ′σ `C (x :Bσ) → Cσ ⇐ s. By inversion we also have
Γ,Γ′σ `C (x :Bσ)→ Cσ ⇐ D where D�C s.

Let us assume that C ′≡βCσ. To conclude this case, we want to prove that if Γ,Γ′σ `C

(x :Bσ) → Cσ ⇒ D then there exists s′ such that Γ,Γ′σ `C (x :Bσ) → C ′ ⇒ s′. To fix this
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∅ `C⇒ wf
C⇒wf
∅

Γ `C A⇒ s x 6∈ Γ
Γ, x : A `C⇒ wf

C⇒wf
var

Γ `C⇒ wf (x : A) ∈ Γ
Γ `C x⇒ A

C⇒var

Γ `C⇒ wf (s1, s2) ∈ A
Γ `C s1 ⇒ s2

C⇒sort

Γ `C A⇒ s1 Γ, x : A `C B ⇒ s2 (s1, s2, s3) ∈ R
Γ `C (x :A)→ B ⇒ s3

C⇒Π

Γ, x : A `C M ⇒ B Γ `C (x :A)→ B ⇒ s

Γ `C λx :A.M ⇒ (x :A)→ B
C⇒λ

Γ `C M ⇒ (x :A)→ B Γ `C N ⇐ A

Γ `C M N ⇒ B {x← N}
C⇒app

Γ `C M ⇒ A Γ `C B ⇒ s A≡βB
Γ `C M ⇒ B

C⇒≡

Γ `C M ⇒ A A≡βs
Γ `C M ⇒ s

C⇒≡s

Γ `C M ⇒ A Γ `C B ⇒ s A�CB

Γ `C M ⇐ B
C⇐�

Γ `C M ⇒ A A�C s

Γ `C M ⇐ s
C⇐�s

Figure 4.1: Typing rules for bi-directional CTS
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ta

tb

sa

=⇒ ta

tb

sa

sb

Figure 4.2: Axiom condition

problem we need to prove subject reduction for this bi-directional system. However, proving
subject reduction requires the substitution lemma which itself requires subject reduction and so
on...1 This is why in our proof, we will use well-structured derivation trees (Definition 3.1.2)2.

4.2 Normal CTS

In this section we introduce a class of CTS specification called normal CTS. The main reason to
introduce this class, is that for some specifications, subtyping cannot be pushed to applications.
Normal CTS restrains the specification with two conditions on the specification which are given
in Definition 4.2.1. We show with the example below the necessity of these two conditions.

Example 4.1 Given the specification G pictured by the following graph:

G :

s1

s1′

s2 s2′

ss3

In this specification, the judgment Y : s2 `G λx : s1. Y : s1 → s2′ is derivable. However, it
is not possible to derive the judgment Y : s2 `G λx : s1. Y ⇐ s1 → s2′ . The reason is because
in this specification, subtyping needs to be used on the sort s2 and cannot be postponed after the
abstraction.

To avoid such pathological issue, we need to identify a class of CTS specification for which
the equivalence is true. From the example above, we observe that a first restriction is to avoid
top-sorts which are subtype of other sorts which may have a type. Indeed, without this condition,
one needs to use subtyping to give a type to a top-sort which means that subtyping could not
be pushed until an application. In the example below, this is the case of s2. s2 is a subtype of
s2′ and s2′ has a type which is s. Hence our first condition to define this class is the following
one: For all sorts sa, ta, tb such that (sb, tb) ∈ C and (ta, tb) ∈ A then there exists sb such that
(sa, sb) ∈ A and (sb, tb) ∈ C∗C . This condition is pictured in Figure 4.2:

Example 4.2 Enriching the specification given in Example 4.1 we fulfill this new condition in
the following specification

1It appears that this bug is already present in Ali Assaf’s PhD thesis [Ass15b] in Lemma 8.4.13.
2Another way is to restrain the class of specification for which we prove the equivalence. As usual a good

candidate would be semi-full CTS (Definition 1.3.8) or full CTS (Definition 1.3.9).
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ta tb

tc

sa sb =⇒ ta tb

tc

sa sb

sc

Figure 4.3: Rule condition

G1:

s1

s1′

s2 s2′

ss3

However, we observe that this condition is not sufficient to derive the judgment Y : s2 `G1
λx : s1. Y ⇐ s1 → s2′ .

To push back the subtyping under the abstraction rule we need another condition. In G1, we
need one of the following products (s1′ , s3, s3) or (s1, s3, s) to derive this judgment. This leads
us to a second condition which is: For all sort sa, sb, ta, tb, tc, if (ta, tb, tc) ∈ RC , (sa, ta) ∈ C∗C ,
(sb, tb) ∈ C∗C then there exists sc such that (sa, sb, sc) ∈ RC and (sc, tc) ∈ C∗C . This condition is
summed up in Figure 4.3:

Example 4.3 Enriching our specification given in Example 4.1 to fulfill these two conditions
give the following specification

G2:

s1

s1′

s2 s2′

ss3

We observe that in this new specification, the judgment Y : s2 `G2
λx : s1. Y ⇐ s1 → s2′ is

derivable.

The two conditions we have expressed above are enough to derive an equivalence between
bi-directional CTS and CTS for well-structured derivation trees.

Definition 4.2.1 (CTS in normal form)
A CTS is said in normal form3 if it satisfies the following conditions:

∀(ta, tb) ∈ AC , (sa, ta) ∈ C∗C ,∃sb, (sa, sb) ∈ AC ∧ (sb, tb) ∈ C∗C (NFA)
∀(t1, t2, t3) ∈ RC , (sa, ta) ∈ C∗C , (sb, tb) ∈ C∗C ,∃sc, (sa, sb, sc) ∈ RC ∧ (sc, tc) ∈ C∗C (NFR)

This conditions are presented in Figure 4.2 and Figure 4.3.

We conjecture that any CTS is weakly CTS equivalent (Definition 2.1.12) to a CTS in
normal form, which should follow from the theorems in Chapter 2.

Conjecture 12 (Equivalence between CTS and CTS in normal form) Every CTS is equiv-
alent to a CTS in normal form.

3I think this is related to natural conditions we find in category theory.
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Sketch of proof:

1. One can show that for any CTS C , there is exists a CTS equivalent C ’ which satisfies
property NFR (using Theorem 2.1.4).

2. We use Corollary 2.2.16 to generate a weak-equivalent CTS specification which is top-sort
regular.

3. We use Theorem 2.2.20 to generate a CTS which satifies property NFA.

This last step may break property NFR. For this reason, we believe that by iterating steps 1, 2
and 3 should produce a fixpoint and generate a CTS specification which is in normal form and
weakly equivalent to the original specification.

4.3 Equivalence proof

Our proof relies on well-structured derivation trees. Hence, as we did in Chapter 3, we will prove
one direction of the equivalence by induction on the level.

Definition 4.3.1 (EBI)
We define the equivalence between CTS and bi-directional CTS at level n (EBIn) as:

• WSn(Γ `C t : A)then Γ `C t⇐ A

• WSn(Γ `C wf) then Γ `C⇒ wf

• Γ `C t⇐ A then Γ `C t : A

• Γ `C⇒ wf then Γ `C wf

We define EBI as for all n ∈ N, EBIn.

The last two statements can be proved with a structural induction.

Lemma 4.3.1 (Bi-directional typing soudness) The following judgments hold for every spec-
ification C :

• If Γ `C t⇒ A then Γ `C t : A

• If Γ `C t⇐ A then Γ `C t : A

• If Γ `C⇒ wf then Γ `C wf

Proof By induction on the typing derivation. All the cases are trivial since bi-directional type
system is a restriction of CTS type system.

The other implication is harder to prove. We restate here a bit of meta-theory for bi-
directional CTS.
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4.3.1 Some meta-theory for bi-directional CTS

Lemma 4.3.2 (check-to-infer) If Γ `C t⇐ C then ∃A such that Γ `C t⇒ A and A�CC.

Proof The last rule for the derivation of Γ `C t⇐ C is either C⇐�

Γ `C M ⇒ A Γ `C B ⇒ s A�CB

Γ `C M ⇐ B
C⇐� ↑

or C⇐�s

Γ `C M ⇒ A A�C s

Γ `C M ⇐ s
C⇐�s ↑

.

Lemma 4.3.3 (inversion sort) If Γ `C s⇒ s′ then

• Γ `C⇒ wf

• (s, s′) ∈ AC

Proof Same proof as for CTS.

Lemma 4.3.4 (Inversion prod) If Γ `C (x :A)→ B ⇒ F then

• Γ `C A⇒ s1

• Γ, x : A `C B ⇒ s2.

• F≡βs3

• (s1, s2, s3) ∈ RC

Proof Same proof as for CTS.

Lemma 4.3.5 (inversion sort check) If Γ `C A⇐ s′′, then there exists s′ such that

• Γ `C A⇒ s′

• (s′, s′′) ∈ C∗C

4.3.2 From CTS to bi-directional CTS

Using well-structured derivation trees allows us to use subject reduction at level n to prove the
equivalence at level n+ 1.

The lemma below is the key lemma to make the equivalence proof work. Notice our use of
well-structured derivation tree hypothesis because we need subject reduction for bi-directional
CTS.

Lemma 4.3.6 Assuming EBIn, for every CTS C in normal form, if WSn(Γ `C B : s) and
A�CB then there exists A′ such that Γ `C A′ ⇒ s′, A ↪→∗β A′ and s′�C s.

Proof The transitivity rule of �C is an issue here. This is why we will use �t−C instead which
defines the same subtyping relation (see Lemma 1.7.16). The fact that these two relations are
equivalent is implicitly used throughout the proof.

♦ �t−≡β

A≡βB
A�t

−

C B
�t
−
≡β ↑

:
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(1) WSn(Γ `C B : s) Main hypothesis
(2) A�t

−
C B

(3) EBIn
(4) A≡βB Inversion on �t≡β

A≡βB
A�tCB

�t≡β ↑
2

(5) A ↪→∗β C ←↩β B Confluence of β 4
(6) WSn(Γ `C C : s) Subject reduction

If Γ `C t : A and t ↪→β t
′ then Γ `C t′ : A.↑

1,5
(7) Γ `C C ⇐ s EBIn 3
(8) Γ `C C ⇒ s′ inversion sort check

If Γ `C A⇐ s′′, then there exists s′ such that
– Γ `C A⇒ s′

– (s′, s′′) ∈ C∗C
(4.3.5) 7

O (9) s′�t
−

C s

(10) Let A′ = C Definition of A′
O (11) A ↪→∗β A′ Definition of A′ 5
O (12) Γ `C A′ ⇒ s′ Definition of A′ 8

♦ �t−C∗
C

A≡βs B≡βs′ (s, s′) ∈ C∗C
A�t

−

C B
�t
−
C∗

C ↑
:

(1) WSn(Γ `C B : s) Main hypothesis
(2) A�t

−
C B

(3) EBIn
(4) C in normal form
(5) A≡βsA Inversion on �t−C∗

C

A≡βs B≡βs′ (s, s′) ∈ C∗C
A�t

−
C B

�t
−
C∗

C ↑

2
(6) B≡βsB
(7) sA�t

−
C sB

(8) B ↪→∗β sB By confluence of β 6
(9) WSn(Γ `C sB : s) Subject reduction

If Γ `C t : A and t ↪→β t
′ then Γ `C t′ : A.↑

1,8
(10) Γ `C sB ⇐ s EBIn 3,9
(11) Γ `C sB ⇒ sD inversion sort check

If Γ `C A⇐ s′′, then there exists s′ such that
– Γ `C A⇒ s′

– (s′, s′′) ∈ C∗C
(4.3.5) 10

(12) sD�t
−

C s

(13) (sB , sD) ∈ A inversion sort

If Γ `C s⇒ s′ then
– Γ `C⇒ wf
– (s, s′) ∈ AC

(4.3.3) 11
(14) A ↪→∗β sA By confluence of β 5
(15) Let A′ = sA Definition of A′
(16) Γ `C sA ⇒ s′ NFA

∀(ta, tb) ∈ AC , (sa, ta) ∈ C∗C , ∃sb, (sa, sb) ∈ AC ∧ (sb, tb) ∈ C∗C↑
4, 7,13

(17) s′�t
−

C sD

O (18) s′�t
−

C s Transitivity of �t−C

If A�t−C B and B�t−C C then A�t−C C.
(1.7.15) 17,12

O (19) Γ `C A′ ⇒ s′ Definition of A′ 16,15
O (20) A ↪→∗β A′ Definition of A′ 14, 15

♦ �t−Π

A≡β(x :A1)→ A2 B≡β(x :B1)→ B2 A1≡βB1 A2�t
−

C B2

A�t
−

C B
�t
−

Π
↑

:
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(1) WSn(Γ `C B : s) Main hypothesis
(2) A�t

−
C B

(3) EBIn
(4) C in normal form
(5) A≡β(x :A1)→ A2 Inversion on �t−Π

A≡β(x :A1)→ A2 B≡β(x :B1)→ B2 A1≡βB1 A2�t
−

C B2

A�t
−

C B
�t
−

Π
↑

2
(6) B≡β(x :B1)→ B2

(7) A1≡βB1

(8) A2�t
−

C B2

(9) B ↪→∗β (x :B3)→ B4 ←↩∗β (x :B1)→ B2 Confluence of β 6
(10) A ↪→∗β (x :A3)→ A4 ←↩∗β (x :A1)→ A2 Confluence of β 5
(11) B1≡βB3 Product injectivity

If A�C (x :C)→ D then there exists C′ and D′ such that A≡β(x :C′)→ D′, C′≡βC and D′�CD.
(1.4.2) 9

(12) B2≡βB4

(13) A1≡βA3 Product injectivity
If A�C (x :C)→ D then there exists C′ and D′ such that A≡β(x :C′)→ D′, C′≡βC and D′�CD.

(1.4.2) 10
(14) A2≡βA4

(15) WSn(Γ `C (x :B3)→ B4 : s) Subject reduction
If Γ `C t : A and t ↪→β t

′ then Γ `C t′ : A.↑
1,9

(16) Γ `C (x :B3)→ B4 ⇐ s EBIn 3, 15
(17) Γ `C (x :B3)→ B4 ⇒ s3 inversion sort

If Γ `C s⇒ s′ then
– Γ `C⇒ wf
– (s, s′) ∈ AC

(4.3.3) 16
(18) s3�t

−
C s

(19) A3 ↪→∗β C ←↩∗β B3 Confluence of β 7,13,11
(20) WSn(Γ `C (x :C)→ B4 : s3) Subject reduction

If Γ `C t : A and t ↪→β t
′ then Γ `C t′ : A.↑

1,9,19
(21) Γ `C (x :C)→ B4 ⇐ s3 EBIn 1,20
(22) Γ, x : C `C B4 ⇒ s2 Inversion prod

If Γ `C (x :A)→ B ⇒ F then
– Γ `C A⇒ s1

– Γ, x : A `C B ⇒ s2.
– F≡βs3

– (s1, s2, s3) ∈ RC

(4.3.4) 21
(23) Γ `C C ⇒ s1

(24) (s1, s2, s3) ∈ RC

(25) A2�t
−

C B4 Lemma
If A�t−C B and B≡βC then A�t−C C

(1.7.13) 8,12
(26) A4�t

−
C B4 Lemma

If B�t−C C and A≡βB then A�t−C C

(1.7.14) 25,14
(27) Γ, x : C `C A4′ ⇒ s2′ Induction Hypothesis

Assuming EBIn, for every CTS C in normal form, if WSn(Γ `C B : s) and A�CB then there
exists A′ such that Γ `C A′ ⇒ s′, A ↪→∗β A′ and s′�Cs.

22, 26
(28) s2′�t

−
C s2

(29) A4 ↪→β A4′

(30) Let A′ = (x :C)→ A4′

(31) (s1, s2′ , s
′) ∈ RC NFR

∀(t1, t2, t3) ∈ RC , (sa, ta) ∈ C∗C , (sb, tb) ∈ C∗C ,∃sc, (sa, sb, sc) ∈ RC ∧ (sc, tc) ∈ C∗C↑
4,24,28

(32) (s′, s3) ∈ C∗C
(33) Γ `C (x :C)→ A4′ ⇒ s′ C⇒Π

Γ `C A⇒ s1 Γ, x : A `C B ⇒ s2 (s1, s2, s3) ∈ R
Γ `C (x :A)→ B ⇒ s3

C⇒Π ↑
23,27,31

(34) s′�t
−

C s3 �t
−
C∗

C

A≡βs B≡βs′ (s, s′) ∈ C∗C
A�t

−
C B

�t
−
C∗

C ↑

32
O (35) Γ `C A′ ⇒ s′ Definition of A′ 30, 33
O (36) s′�t

−
C s Transitivity of �t−C

If A�t−C B and B�t−C C then A�t−C C.
(1.7.15) 34,18

O (37) A ↪→∗β A′ Congruence of β 30,10, 19, 29

Lemma 4.3.7 Assuming EBIn and C is in normal form:

• If WSn+1(Γ `C M : A) then Γ `C M ⇐ A.

• If WSn+1(Γ `C wf) then Γ `C⇒ wf

Proof By induction on the derivation. We handle here the product case and the abstraction case
which are two cases which use use Lemma 4.3.6 and therefore the fact that C is in normal form.
The proof for the other cases are straightforward.

♦ CΠ

Γ `C A : s1 Γ, x : A `C B : s2 (s1, s2, s3) ∈ R
Γ `C (x :A)→ B : s3

CΠ ↑
: t = (x :B)→ C,A = s
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(1) WSn(Γ `C (x :B)→ C : s) Main hypothesis
(2) Γ `C B : s1 Inversion on CΠ

Γ `C A : s1 Γ, x : A `C B : s2 (s1, s2, s3) ∈ R
Γ `C (x :A)→ B : s3

CΠ ↑
1

(3) Γ, x : B `C C : s2

(4) (s1, s2, s) ∈ R
(5) Γ `C B ⇐ s1 Induction Hypothesis

Assuming EBIn and C is in normal form:
– If WSn+1(Γ `C M : A) then Γ `C M ⇐ A.
– If WSn+1(Γ `C wf) then Γ `C⇒ wf

2
(6) Γ, x : B `C C ⇐ s2 Induction Hypothesis

Assuming EBIn and C is in normal form:
– If WSn+1(Γ `C M : A) then Γ `C M ⇐ A.
– If WSn+1(Γ `C wf) then Γ `C⇒ wf

3
(7) Γ `C B ⇒ D check-to-infer

If Γ `C t⇐ C then ∃A such that Γ `C t⇒ A and A�CC.
(4.3.2) 5

(8) D�Cs1

(9) Γ, x : B `C C ⇐ E check-to-infer
If Γ `C t⇐ C then ∃A such that Γ `C t⇒ A and A�CC.

(4.3.2) 6
(10) E�Cs2

(11) D≡βs1′ Lemma
If A�Cs then there exists s′ such that A≡βs′ and (s′, s) ∈ C∗C .

(1.4.1) 10
(12) s1′�Cs1

(13) E≡βs2′ Lemma
If A�Cs then there exists s′ such that A≡βs′ and (s′, s) ∈ C∗C .

(1.4.1) 8
(14) s2′�Cs2

(15) Γ `C B ⇒ s1′ C⇒≡s

Γ `C M ⇒ A A≡βs
Γ `C M ⇒ s

C⇒≡s ↑
7,11

(16) Γ, x : B `C C ⇒ s2′ C⇒≡s

Γ `C M ⇒ A A≡βs
Γ `C M ⇒ s

C⇒≡s ↑
9,13

(17) (s1′ , s2′ , s
′) ∈ R NFR

∀(t1, t2, t3) ∈ RC , (sa, ta) ∈ C∗C , (sb, tb) ∈ C∗C ,∃sc, (sa, sb, sc) ∈ RC ∧ (sc, tc) ∈ C∗C↑
4,12,14

(18) (s′, s) ∈ C
(19) Γ `C (x :B)→ C ⇒ s′ C⇒Π

Γ `C A⇒ s1 Γ, x : A `C B ⇒ s2 (s1, s2, s3) ∈ R
Γ `C (x :A)→ B ⇒ s3

C⇒Π ↑
15,16,17

(20) Γ `C (x :B)→ C ⇐ s C⇐�s

Γ `C M ⇒ A A�Cs

Γ `C M ⇐ s
C⇐�s ↑

19,18
O (21) Γ `C t⇐ A Definition of t and A 20

♦ Cλ

Γ, x : A `C M : B Γ `C (x :A)→ B : s
Γ `C λx :A.M : (x :A)→ B

Cλ ↑
: t = λx :B. u,A = (x :B)→ C

(1) WSn+1(Γ `C λx :B. u : (x :B)→ C) Main hypothesis
(2) C is in normal form
(3) EBIn
(4) WSn+1(Γ, x : B `C u : C) Inversion on Cλ

Γ, x : A `C M : B Γ `C (x :A)→ B : s
Γ `C λx :A.M : (x :A)→ B

Cλ ↑
1

(5) WSn(Γ `C (x :B)→ C : s)
(6) Γ, x : B `C u⇐ C Induction Hypothesis

Assuming EBIn and C is in normal form:
– If WSn+1(Γ `C M : A) then Γ `C M ⇐ A.
– If WSn+1(Γ `C wf) then Γ `C⇒ wf

4
(7) Γ `C (x :B)→ C ⇐ s Induction Hypothesis

Assuming EBIn and C is in normal form:
– If WSn+1(Γ `C M : A) then Γ `C M ⇐ A.
– If WSn+1(Γ `C wf) then Γ `C⇒ wf

5
(8) Γ `C (x :B)→ C ⇒ s′ inversion sort check

If Γ `C A⇐ s′′, then there exists s′ such that
– Γ `C A⇒ s′

– (s′, s′′) ∈ C∗C
(4.3.5) 7

(9) Γ, x : B `C u⇒ C′ check-to-infer
If Γ `C t⇐ C then ∃A such that Γ `C t⇒ A and A�CC.

(4.3.2) 6
(10) C′�CC

(11) WSn(Γ `C B : s1) Inversion on product

If Γ `C (x :A) → B : C then there exists s1, s2, s3 such that Γ `C A : s1, Γ, x : A `C B : s2,
(s1, s2, s3) ∈ RC and s3�CC.↑

5
(12) WSn(Γ, x : B `C C : s2)
(13) (s1, s2, s

′) ∈ R
(14) Γ, x : B `C C′′ ⇒ s2′ Lemma

Assuming EBIn, for every CTS C in normal form, if WSn(Γ `C B : s) and A�CB then there
exists A′ such that Γ `C A′ ⇒ s′, A ↪→∗β A′ and s′�Cs.

(4.3.6) 3,2,12,10
(15) s2′�Cs2

(16) C′ ↪→∗β C′′

(17) Γ `C B ⇐ s1 EBIn 5, 11
(18) Γ `C B ⇒ s1′ inversion sort check

If Γ `C A⇐ s′′, then there exists s′ such that
– Γ `C A⇒ s′

– (s′, s′′) ∈ C∗C
(4.3.5) 17

(19) s1′�Cs1

(20) (s1′ , s2′ , s3) ∈ R NFR
∀(t1, t2, t3) ∈ RC , (sa, ta) ∈ C∗C , (sb, tb) ∈ C∗C ,∃sc, (sa, sb, sc) ∈ RC ∧ (sc, tc) ∈ C∗C↑

2,13,19,15
(21) Γ `C (x :B)→ C′′ ⇒ s3 C⇒Π

Γ `C A⇒ s1 Γ, x : A `C B ⇒ s2 (s1, s2, s3) ∈ R
Γ `C (x :A)→ B ⇒ s3

C⇒Π ↑
18,14,20

(22) Γ, x : B `C u⇒ C′′ C⇐�

Γ `C M ⇒ A Γ `C B ⇒ s A�CB

Γ `C M ⇐ B
C⇐� ↑

9,14, 16
(23) Γ `C λx :B. u⇒ (x :B)→ C′′ C⇒λ

Γ, x : A `C M ⇒ B Γ `C (x :A)→ B ⇒ s

Γ `C λx :A.M ⇒ (x :A)→ B
C⇒λ ↑

22,21
(24) (x :B)→ C′′�C (x :B)→ C �rΠ

A ↪→∗β A′ B�CrB′

(x :A)→ B�Cr (x :A′)→ B′
�rΠ ↑

,�trans

A�CB B�CC

A�CC
�trans ↑

14,10
(25) Γ `C λx :B. u⇐ (x :B)→ C C⇐�

Γ `C M ⇒ A Γ `C B ⇒ s A�CB

Γ `C M ⇐ B
C⇐� ↑

23,8,24
O (26) Γ `C t⇐ A Definition of t and A 25
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Lemma 4.3.8 For all n, we have EBIn.

Proof By induction on n. The base cases are trivial. The induction step is handled by 4.3.7.

Theorem 4.3.9 (Equivalence between typing and bi-directional typing) For any CTS
in normal form, usual typing and bi-directional typing are equivalent:

Γ `C t : A⇔ Γ `C t⇐ A

Γ `C wf ⇔ Γ `C⇒ wf

Proof The right to left implication is proved in Bi-directional typing soudness

The following judgments hold for every specification C :

• If Γ `C t⇒ A then Γ `C t : A

• If Γ `C t⇐ A then Γ `C t : A

• If Γ `C⇒ wf then Γ `C wf

(4.3.1). The left
to right implication is proved in Lemma

For all n, we have EBIn.
(4.3.8).

4.4 Future Work

Larger class of CTS specification: Even if we clearly used our the two properties involved
in the definition of CTS in normal form, it is not clear whether this proof could be extended for
a larger class of CTS. We think however, that manipulating CTS in normal form is interesting
because of Lemma 4.3.6. This is why a possible answer to this question is given by Conjecture 12:
Showing that in general, given a CTS specification, there always exist an equivalent specification
which is in normal form.

The well-structured hypothesis It is not clear whether the well-structured hypothesis is
necessary. Another way to prove this equivalence would be to first prove subject reduction on
the bi-directional CTS. However, we realized that the substitution lemma fails for the same
reason: At some point we need to use subject reduction. It would be interesting to see whether
applying more restrictions on the specification such as having also a functional CTS and injective
CTS could work. Indeed, in [Bar99b], Gilles Barthe shows that the well-typed hypothesis of the
product for the abstraction rule Cλ

Γ, x : A `C M : B Γ `C (x :A)→ B : s
Γ `C λx :A.M : (x :A)→ B

Cλ ↑
can be weakened in the case of PTS. Would it be the same

for CTS?

Decidable type checking for CTS: As mentioned at the beginning of this chapter, the
system presented here is not syntax-directed because the judgment Γ `C t ⇒ A is not a func-
tion from Γ and t. It would be interesting to know whether the CTS class we have identified
(CTS in normal form) has decidable type checking. Put it in another way: Can we extend the
Equivalence between typing and bi-directional typing

For any CTS in normal form, usual typing and bi-directional typing are equivalent:

Γ `C t : A⇔ Γ `C t⇐ A

Γ `C wf ⇔ Γ `C⇒ wf

↑
with a syntax-directed by-directional type

checking where the judgment Γ `C t⇒ A a function of Γ and t. This is not obvious because such
system breaks the symmetry of the conversion as for the expansion postponement conjecture.





Chapter 5

λΠ-calculus modulo theory as a PTS
modulo

In this chapter, we introduce the λΠ-calculus modulo theory that we will use as a logical
framework. The λΠ-calculus modulo theory extends the logical framework LF [HHP93b]
where the notion of conversion is generalized into a congruence. This congruence is specified
by a series of equations (or judgmental equalities) explicitly carried in the typing context of
typing judgments. For interoperability, we have chosen λΠ-calculus modulo theory over
LF because customizing the conversion allows us to have embeddings which are shallow meaning
that the encodings are lighter and in practice easier to type check.

In this presentation, the custom conversion is decided by judgmental equalities which are
introduced in the typing context. As we will see, this type system is very expressive but at
some cost: Type checking is not always decidable in the λΠ-calculus modulo theory since
it depends on the decidability of the congruence.

In the literature, the type system of the λΠ-calculus modulo theory is often refined so
that instead of introducing judgmental equalities, rewrite rules are introduced instead. This trick
allows to recover decidability of type checking if the rewrite rules satisfy some properties. This
latter type system is implemented in the Dedukti tool that will be presented in Chapter 8.

In this work, we first describe our encodings into the λΠ-calculus modulo theory and
then describe how the judgmental equalities can be turned into rewrite rules for Dedukti.
Having this splitting has several advantages:

• The type system of the λΠ-calculus modulo theory as defined by Frédéric Blanqui
in [Bla01] is stable. Having a type system which is stable allows to have a clear meta-theory
of this type system,

• In constrast, the typing system of Dedukti evolves through time alongside its meta-theory.
This means that Dedukti as a logical framework evolves. However, it is not clear today
whether Dedukti will evolve into a single direction. The problem is that people are
sometimes looking into generalising the notion of rewriting in Dedukti. However, it is not
clear if all the features wanted by all the users are compatible with each other,

• Encodings into the λΠ-calculus modulo theory tend to be a little bit simpler and
avoid tedious details related to rewrite rules,

• Once we have an encoding into the λΠ-calculus modulo theory, it is often easier to
understand how it can be turned into an encoding for Dedukti.

113
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Sorts s ∈ S
Terms M,N,A,B ∈ T ::= x | s |M N | λx :A.M | (x :A)→ B

Contexts Γ,∆ ∈ G ::= ∅ | Γ, x : A | Γ, A≡∆B

Figure 5.1: PTS modulo syntax

In this chapter we present PTS modulo, an extension of PTS with a custom conversion.
Then we present the λΠ-calculus modulo theory the type system generated by the P
specification. Then we introduce shallow embeddings and explain why they are so important in
practice. Finally, we conclude with a discussion about the meta-properties we aim to have with
our encodings.

5.1 PTS modulo

5.1.1 Syntax
PTS modulo extend PTS by generelazing the conversion as congruence generated by equations.
We do not follow the same formalization as in [Bla01] where all the equations are part of the
specification. To be closer to Dedukti (the concrete system we use, presented in Chapter 8),
we prefer to add a new construction to the typing context which allows the addition of new
equations.

Definition 5.1.1 (Syntax of terms)
The syntax of terms is defined in Fig. 5.1. It extends PTS syntax with a new construction for
typing contexts: A≡∆B meaning that for any substitution σ : ∆ → T , Aσ is convertible to Bσ
if Aσ and Bσ share a common type.

5.1.2 Specification
Definition 5.1.2 (PTS modulo specification)
A PTS modulo specification is the same as a PTS specification (1.3.1).

5.1.3 Typing
Definition 5.1.3 (Typed substitution)
Given two typing contexts ∆ and Γ, a substitution σ : ∆ → Γ is defined as a function from
Dom(∆)→ T where for every x ∈ Dom(∆), there exists A such that Γ `D σ(x) : A.

Definition 5.1.4 (Typing of CTS)
The typing system induced by a PTS modulo specification R is defined in Fig. 5.3. In the rule ,
the notation C[A] means that C is a term with a hole filled with A.

Example 5.1 In the typing context Γ defined as:

• N : ?

• V ect : N→ ?

• + : N→ N→ N
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A≡βB
A≡βΓB

≡βΓ
β

(M≡∆N) ∈ Γ A = Mσ B = Nσ σ ∈ ∆→ Γ
A≡βΓB

≡βΓ
∆

A≡βΓB

B≡βΓA
≡βΓ

sym
A≡βΓB B≡βΓC

A≡βΓC
≡βΓ

trans
A≡βΓB

C[A]≡βΓC[B]
≡βΓ

[·]

A≡βΓB

Aσ≡βΓBσ
≡βΓ

σ

Figure 5.2: PTS modulo congruence relation

∅ `R wf
Rwf

∅

Γ `R A : s x 6∈ Γ
Γ, x : A `R wf

Rwf
var

Γ,∆ `R B : T Γ,∆ `R A : T
Γ, A≡∆B `R wf

Rwf
≡

Γ `R wf (x : A) ∈ Γ
Γ `R x : A

Rvar

Γ `R wf (s1, s2) ∈ A
Γ `R s1 : s2

Rsort

Γ `R A : s1 Γ, x : A `R B : s2 (s1, s2, s3) ∈ R
Γ `R (x :A)→ B : s3

RΠ

Γ, x : A `R M : B Γ `R (x :A)→ B : s
Γ `R λx :A.M : (x :A)→ B

Rλ

Γ `R M : (x :A)→ B Γ `R N : A
Γ `R M N : B {x← N}

Rapp

Γ `R M : A Γ `R B : s A≡βΓB

Γ `R M : B
R≡βΓ

Figure 5.3: Typing rules for PTS modulo
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• × : N→ N→ N

• 0 : N

• x+ x≡x:N 2× x

• y≡y:N y + 0

• z : N

• t : V ect z + (z + 0)

one may derive the judgment Γ `R t : V ect (2× z) using the rule R≡βΓ

Γ `R M : A Γ `R B : s A≡βΓB

Γ `R M : B
R≡βΓ ↑

. The conversion allows
the use of the judgmental equality y≡y:N y+0 with the substitution {y ← z} so that we can deduce
with the rule ≡βΓ

∆

(M≡∆N) ∈ Γ A = Mσ B = Nσ σ ∈ ∆→ Γ
A≡βΓB

≡βΓ
∆

↑
and ≡βΓ

σ

A≡βΓB

Aσ≡βΓBσ
≡βΓ

σ

↑
that z≡βΓz+ 0. With the rule ≡βΓ

sym

A≡βΓB

B≡βΓA
≡βΓ

sym

↑
we have z+ 0≡βΓz. Using

the rule ≡βΓ
[·]

A≡βΓB

C[A]≡βΓC[B]
≡βΓ

[·]

↑
, we can derive z + (z + 0)≡βΓz + z. Using the substitution {x← z} and the

judgmental equality x+ x≡x:N 2× x we can derive with the rule ≡βΓ
∆

(M≡∆N) ∈ Γ A = Mσ B = Nσ σ ∈ ∆→ Γ
A≡βΓB

≡βΓ
∆

↑
and ≡βΓ

σ

A≡βΓB

Aσ≡βΓBσ
≡βΓ

σ

↑
the judgmental

equality z+z≡βΓ2×z. Finally, we can conclude with the rule ≡βΓ
trans

A≡βΓB B≡βΓC

A≡βΓC
≡βΓ

trans

↑
that z+(z+0)≡βΓ2×z.

5.1.4 Meta-theory for PTS modulo
In PTS modulo, we lose the fact the product is injective which is a property of PTS (and CTS).
This property is essential to prove subject reduction. Hence, in PTS modulo, subject reduction
needs to be relativized according to this property. In this chapter, we present a generalization
of this property presented in Chapter 1 for CTS (Definition 1.4.2) because a term can reduce to
a product. The proof of the following results can be found in [Bla01].

Definition 5.1.5 (IP)
Injectivity of product, denoted IP (Γ), is defined as the following property: If

(x :B1)→ C1≡βΓA≡βΓ(x :B2)→ C2

then B1≡βΓB2 and C1≡βΓC2.

Definition 5.1.6 (SIP)
Strong injectivity of product, denoted SIPΓ, is defined as the following property: For all Γ′ such
that Γ′ ⊆ Γ, we have IP (Γ).

Lemma 5.1.1 (Weakening) If Γ,Γ′ `R wf and Γ `R t : A then Γ,Γ′ `R t : A.

Lemma 5.1.2 (Typing Context wf) If Γ `R t : A then Γ `R wf .

Lemma 5.1.3 (Well sorted) If Γ `R t : A then Γ `R A : s.

Lemma 5.1.4 (Substitution lemma) If Γ, x : A,Γ′ `R t : B and Γ `R N : A then Γ,Γ′ {x← N} `R

t {x← N} : B {x← N}.

Theorem 5.1.5 (Subject reduction for β) For all Γ such that SIP (Γ), if Γ `R t : A and
t ↪→β t

′ then Γ `R t′ : A.

Theorem 5.1.6 (Subject equivalence for Γ) For all Γ such that SIP (Γ), if Γ `R t : A and
t≡Γt

′ then Γ `R t′ : A.
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Remark 22 The type system presented in Fig. 5.3 is incremental in the sense that judgmental
equalities are added in the typing context one by one which requires to have the injectivity of
product every time a new judgmental equality is added to the typing context. This is not needed
in [Bla01] since all the equalities are a part of the specification.

We type equalities in a similar way, except that our system is more limited for some corner
cases. Our system does not allow rules which needs itself to be well-typed while in [Bla01] it is
possible.

5.1.5 λΠ-calculus modulo theory

In this section we define one particular specification of a PTS modulo which is the λΠ-calculus
modulo theory. The theory generated by this specification will be our framework for our
theoretical embeddings. Implementations have been done with Dedukti (see Chapter 8).

Definition 5.1.7 (λΠ-calculus modulo theory)
The λΠ-calculus modulo theory is defined as the PTS modulo generated by the specification
D defined below:

• A = {(?,�)}

• R = {(?,�,�), (?, ?, ?)}

Remark 23 The λΠ-calculus modulo theory extends λP with an custom convesion.

Our main interest for the λΠ-calculus modulo theory is that it can be used as a logical
framework meaning that it can be used to express other logical theories, in our case, other type
systems. Many logical frameworks already exist, the first one being probably predicate logic
(or First-Order Logic). A seminal paper about logical frameworks is [HHP93b] which presents
the PTS λP (also called LF) as a logical framework. This gave rise to Twelf, a tool based
upon LF. One main advtange of LF as a logical framework is that it is possible to use Higher-
Order abstract encoding (HOAS) for embeddings without having exotic functions. Higher-order
abstract encoding describe the fact that a binder such as λx. x can be encoded using the binder
of the logical framework. In the case of the λΠ-calculus modulo theory it means that a
binder will be encoded by a binder of the λΠ-calculus modulo theory. Exotic functions is
this idea that using HOAS, the meta (or target) system may express more well-typed functions
in the encoding than the source system. Exotic functions tend to break a property for encodings
calls conservativity which is detailed in Section 5.3.2.

5.2 Embeddings in λΠ-calculus modulo theory

In the λΠ-calculus modulo theory, we are interested in shallow embeddings.

Definition 5.2.1 (Shallow encoding)
We say that an encoding from one type system L to another type system L′ is shallow if:

• A judgment is translated as a judgment

• A binder is translated as a binder or as a constant applied to some arguments and finally
a binder

There are at least two advantages to use shallow embeddings:
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• when these encodings are implemented in a tool such as Dedukti which implements the
λΠ-calculus modulo theory for example, encodings can be computed and type check-
ing is scalable,

• import and export functions from and to the λΠ-calculus modulo theory are easier
to define.

These are probably the main advantages of the λΠ-calculus modulo theory as a logical
framework with respect to LF. Indeed, as shown in [CD07] all functional PTS have a shallow
embedding into the λΠ-calculus modulo theory.

Theorem 5.2.1 (Cousineau & Dowek [CD07]) For every functional PTS generated by the
specification P, there exists an embedding of P into D .

Through the remaining of this thesis, we will see several shallow embedding into the λΠ-
calculus modulo theory. The main one being the encoding of CTS which is detailed in
Chapter 6.

5.3 Meta-theory of embeddings

When we define an embedding into the λΠ-calculus modulo theory, we are interested in
two meta-properties:

• Soundness which expresses that for every judgment that is derivable in the original theory
its shallow encoding into the λΠ-calculus modulo theory is also derivable

• Conservativity which, roughly, expresses that the encodings cannot prove more judgments
than in the original theory.

5.3.1 Soundness

Definition 5.3.1 (Soundness)
An embedding J·K · of a logic L in the λΠ-calculus modulo theory is sound if for every
judgment Γ `L t : A its embedding JΓK `D JtK : JAK is derivable.

Soundness is a relatively easy property to prove because it is in general proved by induction on
the derivation tree. The main difficulty is to ensure that any computation of the original theory
is preserved through the encoding. However, we will see that in the case of CTS, the soundness
proof is not easy to define because of a well-foundedness problem mentioned in Chapter 3.

Breaking the soundness property implies that some well-typed terms in the original system
will not be type checkable in the λΠ-calculus modulo theory. This may happen in practice
for derivations in the source system that use features that are not present or reflected in the
target system. A concrete example is the proof irrelevance of Matita. This feature is not
translated into Dedukti, hence the encoding of Matita to Dedukti is not sound. However,
the arithmetic proofs that we translate from Matita to Dedukti do not use this feature. Thus,
we can show a soundness proof for a restricted version of the Matita system into Dedukti.
This was done by Ali Assaf in [Ass15b].
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5.3.2 Conservativity
While soundness is a safe property to have for an encoding, it says little about the encoding.
For example, in the typing context Γ = I : ?, one can define a sound encoding such that for any
Γ, t and A such that Γ `L t : A we have JtK Γ = I and JAK Γ = ?. This encoding is obviously
sound1. However, this encoding is not very satisfactory because a judgment Γ `L s : A → B
that is not derivable in the source system is embedded as a derivable judgment. Conservativity is
another property which says that any type of the logic L which is inhabited in the λΠ-calculus
modulo theory is also inhabited in the logic L.

Definition 5.3.2 (Conservativity)
An embedding J·K · of a logic L in the λΠ-calculus modulo theory is conservative if for
every derivable judgment JΓK `D t : JAK Γ, then there exists t′ such that Γ `L t′ : A is derivable
in the source system.

Conservativity discriminates trivial embeddings as the one above. For example our trivial
embedding above is not conservative if L is a consistent logic. In general, conservativity is a much
harder property to prove because it reasons on any proof term of the λΠ-calculus modulo
theory, even the ones which are not in the image of the embedding.

However, we think that conservativity is, in the typing context of interoperability often too
strong because we are often only interested in the shape of the type. What we mean here, is
that we want to ensure that a proof of 2 + 2 will be translated to something that looks like
2 + 2. However, if the embedding allows to prove more theorems, it is not a real issue from an
interoperability perspective. Especially in a typing context where translations are automated.
Hence, to ensure that we are not defining trivial encodings as above, there is a simpler step which
is to show that the shape of a type is preserved.

This means that given an embedding J·K · we can define an embedding J·K−1
· such that for

all type A, we have A≡β JJAK K−1. Such a function is generally necessary to prove the conser-
vativity [Ass15b]. However, it does not imply the conservativity of an encoding. Having such
an inverse function allows to prove that we do not lose any information about the type, and
therefore, about the mathematical statement proven.

A question we leave for futur work is whether this condition of preserving the shape is not
too strong from the point of view of interoperability. Most of the time, encodings we define in
Dedukti does not check exactly this property. Indeed, what we have in practice is a function
J·K−1
· such that JJAK K−1 = A′. And then, there exists a function f such that f(A′)≡βA. Such

property looks like the definition of adjunction in category theory.

1but not shallow!





Chapter 6

Embedding CTS in λΠ-calculus modulo
theory

The purpose of this chapter is to define an encoding of CTS into λΠ-calculus modulo theory.
This work extends Ali Assaf’s work in [Ass14] which provides an encoding of the underlying
CTS specification of Matita into λΠ-calculus modulo theory. Ali Assaf’s encoding has
two limitations. First, it is only provided for Matita’s specification. However, we would like
to extend its encoding for any CTS specification so that our results could apply as well for
Agda, Matita, Coq, Lean, etc... Second, his encoding eta-expands some terms, hence it
breaks conservativity as it is shown in Example 6.6. Our encoding generalizes Assaf’s work with
an explicit cast operator to express subtyping between types while in Assaf’s work, subtyping
could be expressed only on sorts. While this generalization remains sound, we hope that it could
be used to encode a more general definition of subtyping as it is implemented in Coq with
Cumulative Inductive Types [TS18] or universe polymorphism [ST14].

In the same way that the type system is parametrized by a specification in CTS, our encoding
is also parametrized by a λΠ-calculus modulo theory typing context. This λΠ-calculus
modulo theory typing context should implement the CTS signature fulfilling a specification
that we give in Definition 6.1.5. We will see in the second part of this thesis, that this specification
can be easily implemented in Dedukti for concrete proof systems. Our encoding of CTS relies
on the bi-directional type system for CTS. As such our encoding will be valid only for CTS
specification in normal form (Definition 4.2.1). But also, we are requiring that the CTS is
functional (Definition 1.3.6). These requirements are in general not too hard to satisfy since
the non-functionality of a CTS can be pushed out to the cumulativity relation (see 2.2.1).
Morever from this functional CTS, we can get a (weakly) equivalent CTS specification which is
in normal form. In practice, these conditions are already satisfied by the specifications behind
concrete systems such as the ones we have presented in Chapter 1.

Another feature of our encoding is a separation between a public and a private signature.
The public signature contains the symbols used by the encoding functions. The private signature
contains all the judgmental equalities necessary to prove the soundness of our encoding. The
idea behind this separation is that in practice, we may have different implementations of the
private signature but we want to keep one public signature to ease interoperability. We will
see in the second part of this manuscript, and especially the Chapter 10 that having a common
public signature makes easier interoperability between encoded proofs from Matita and Coq
for example.

In the second part of this chapter, we provide a detailed soundness proof of our encoding. We
present a detailed proof so that it is easy to check where and when every hypothesis are used.
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We prove the soundness of our encoding only for well-structured derivation trees (see 3.1.2).
Well-structured derivation trees allows the use of subject reduction for the types of terms for
which we are proving the substitution lemma (see Chapter 3).

While soundness is an important property, we are aware that it is not enough in general. In
particular because, as argued in Section 5.3, it does not forbid a trivial embedding which would
map any type to unit and any term to a witness of unit. To demonstrate that our encoding
is not trivial, we exhibit a reverse function on terms, whose composition with our embedding
gives the identity function for types only. This is weaker than conservativity, but it shows that
the shape of a type is preserved through the translation. We think that this kind of property is
sufficient in a typing context of interoperability as discussed in Section 5.3.2 and conjecture that
our encoding is conservative.

6.1 Description of the Embedding

Cousineau and Dowek define in [CD07] an encoding of functional PTS in λΠ-calculus modulo
theory. However, their conservativity proof relied on the termination of the term rewrite
system they used for the encoding which implies the termination of β in the original PTS (using
the soundness property). Their results is extended in [Ass15a], giving a new encoding with a
conservativity proof which does not rely on the termination of β in the original PTS. However,
extending this encoding for CTS is not easy since CTS break an important property of PTS:
Unicity of typing (Definition 1.7.12). In a CTS, a term may have several types. For example
in Coq specification (see Definition 1.5.14), we have 0 : 1 and 0 : 2 while 1 6≡β2. Since in λΠ-
calculus modulo theory, this property holds, it prevents our shallow embeddings to use
implicit conversion for subtyping. A solution to get around this problem is to have an explicit
cast operator for subtyping1. The problem with an explicit cast operator is that the encoding also
needs to specify new judgmental equalities (also called canonical equalities). These equalities
define the computational behavior of the cast operator. In Ali Assaf’s work however, the cast
operator was called lift operator since it could only be applied on sorts. We notice that it breaks
conservativity of his encoding since he had to eta-expanse terms to handle the rule as shown
in 6.6. Ali Assaf’s identified three canonical equalities for his lift operator. Our work of extending
his lift operator to a cast operator, requires using 8 more canonical equalities. We also follow Ali
Assaf’s work by using the bi-directional type system presented in Chapter 4 so that the encoding
function can be expressed as a function of judgments rather than a function of derivation trees.
This is closer to a concrete implementation.

An encoding in the λΠ-calculus modulo theory is specified by a translation function
and a signature (a λΠ-calculus modulo theory typing context) which will be used by the
encoding function. For this work, the signature of the encoding is called ΣC .

Definition 6.1.1 (Signature of CTS encoding to λΠ-calculus modulo theory)
The whole signature ΣC of the embedding is split in three:

• The public signature ΣPuC

• The specification signature ΣSpC

• The private signature ΣPrC

The specification signature is a parameter of our embedding, in the same way that C is
a parameter of a CTS. However, we have to make some assumptions on this signature (see
Definition 6.1.5).

1which extends the lift operator introduced by Ali Assaf in [Ass14]
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The public signature is the public interface of our encoding. All the symbols used by our
embedding functions are from the public signature. The private signature is the private part of
our encoding. Mainly, it defines judgmental equalities between symbols of the public signature.
It has to satisfy its specification given in Fig. 6.4.

We will simply write ≡ΣC for ≡βΣC (the λΠ-calculus modulo theory congruence gen-
erated by the typing context ΣC ).

Splitting the signature in three is interesting for the following reasons:

• This allows us to have some parametricity: We can switch the private part and the encoding
is still working (if the private part satisfies its specification).

• We can give a soundness proof which depends only on the specification of the signature
and not its concrete implementation.

• Only the public signature has to be fixed once and for all.

The last point is interesting because in practice, we often change the private signature for
scalability issues or for technical details related to concrete proof systems.

The encoding function is defined on bi-directional CTS judgments. However, we define first
partial encoding functions on terms and then show that these functions are total for well-typed
terms (Lemma 6.1.3).

Definition 6.1.2 (CTS encoding into the λΠ-calculus modulo theory)
We define the following judgments in Fig. 6.3:

• [t] Γ which translates a term t in a typing context Γ to a Dedukti term. This function is
used to translate the judgment Γ `C t⇒ A.

• [t]AΓ which translates a term t of type A in a typing context Γ to a cast term in Dedukti.
The term t is casted from its inferred type to the type A. This function is used to translate
the judgment Γ `C t⇐ A.

• JAK Γ which translates a term t in a typing context Γ to a Dedukti type. This function
corresponds to the translation of the judgment Γ `C⇒ A ws.

• JΓK which translates a typing context Γ to a Dedukti typing context.

which gives the following translation functions for judgments:

• Γ `C⇒ wf is encoded as ΣC , JΓK `D wf ,

• Γ `C t⇒ A is encoded as ΣC , JΓK `D [t] Γ : JAK Γ,

• Γ `C t⇐ A is encoded as ΣC , JΓK `D [t]AΓ : JAK Γ.

6.1.1 The Public Signature
We first give a description of the public signature since the other two parts rely on it as long as
the encoding functions.

Definition 6.1.3 (Public signature for CTS encoding)
The public signature is defined in Fig. 6.1
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S : ?

s∞ : S
U� : S → ?

T� � : (s :S)→ Us → ?

B : ?

ε : B→ ?

> : B
I : ε >

∀� � � : (s :S)→ (A : Us)→ (Ts A→ B)→ B

A(�, �) : S → S → B
R(�, �, �) : S → S → S → B
C(�, �) : S → S → B
� ��� � : (s s′ :S)→ Us → Us′ → B

u�,� � : (s s′ :S)→ ε A(s, s′)→ Us′

π�,�,� � � � : (s1 s2 s3 :S)→ ε R(s1, s2, s3)→
(a : Us1)→ (Ts1 a→ Us2)→ Us3

�
�↑
�
� � � : (s1 s2 :S)→ (a : Us1)→ (b : Us2)→

ε
(
a �s2s1 b

)
→ Ts1 a→ Ts2 b

Figure 6.1: Public signature

The first part of this signature is fairly standard. It declares a type S which will be the type
of the sorts. Hence, if a sort s ∈ SC then its representation in λΠ-calculus modulo theory
should be of type S. Representation of sorts will be discussed in Section 6.1.3. Then we declare
a special sort s∞ which is used to give a type to top-sorts. This breaks neither consistency
nor conservativity, it is just (meta) syntax to represent top-sorts2. We introduce a constant U
such that Us is the encoded version of CTS types living in sort s. Hence, if Γ `C A : s then
ΣC , JΓK `D [A] Γ : Us. Finally, we introduce a constant T such that Ts A is the encoded version
of CTS terms living in type A. Hence, if Γ `C t : A then ΣC , JΓK `D [A] Γ : Ts [A] Γ.

The second part of the signature is used for the cast operator. A cast from the sort s1
to s2 may be invalid in the original CTS. Allowing such cast in the λΠ-calculus modulo
theory would break the conservativity. A trick would be to define the return type of the cast
operator as max(s1, s2). However, this trick has two limitations: First, it makes the assumption
that the CTS specification can be totally ordered (Definition 1.3.10). Second, other tricks are

2We already used this trick to define an explicit subtyping relation in Definition 3.3.1
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needed such as the use of confined terms [ADJL16] which means any term which inhabits S is
convertible to a value. This hypothesis is not true when we consider extensions of CTS with
universe polymorphism or cumulative inductive types. This is why we keep the return type of
the cast operator as Us2 , but we require to have an irrelevant proof that (s1, s2) ∈ C∗C . As we
will see, the advantage for CTS is that this proof is trivial and can be achieved by computation.
Moreover, we believe that such an approach can be extended when subtyping is also extended
via universe polymorphism [ST14] or cumulative inductive type [TS18].

The symbol B is the type for meta propositions. ε represents the type for irrelevant proofs
for some proposition living in B. > is a proposition inhabited by only one witness which is I.
The intention here, is that the specification signature should ensure that if (s, s′) ∈ C∗C then
C(s, s′)≡ΣC>. Hence the translation function always generates I as a proof to check the validity
of a cast operation. This check will be done by a computation.

The third part introduces symbols related to the specification of a CTS. A(s, s′) encodes the
meta proposition (s, s′) ∈ AC , R(s1, s2, s3) encodes the meta proposition (s1, s2, s3) ∈ RC and
C(s, s′) encodes the meta proposition (s, s′) ∈ C∗C . Since subtyping is extended for products, we
also have a constant A �s′s B which encodes the meta proposition that A�CB.

Finally, the last part of the public signature is to encode the type constructors of a CTS.
Our constructor for universes us,s′ I takes a proof I that (s, s′) ∈ AC . This is not mandatory
since we are encoding functional CTS. However, it makes the computational behavior of our
encoding simpler and this is heavily used by our tool Universo presented in Chapter 10. In
the same way, we have a constructor for products πs1,s2,s3 I A (λx : Ts1 A.B) which encodes a
product (x :A) → B with (s1, s2, s3) ∈ RC . The last constructor is the explicit cast operator
s′

s ↑
B
A I t which encodes the subtyping rule: t is of type A and is seen of type B where A�CB.

Again, we use the witness I to ensure that A�CB.

6.1.2 Encoding functions

As mentioned before, we need to encode the subtyping rule in Dedukti explicitly. However,
since subtyping is implicit in CTS, to ensure the soundness of the translation, the latter cannot
be done directly on the judgment Γ `C t : A since there is no subtyping information. To solve
this issue, we follow Ali Assaf’s steps and translate bi-directional CTS. In bi-directional CTS,
the inference judgment Γ `C t⇒ A is encoded as usual and the checking judgment Γ `C t⇐ A is
encoded with a cast operator since by definition, the last rule of such judgment is a subtyping rule.
However, this assumes that the CTS specifications need to be in normal form (Definition 4.2.1).

Another way to solve these issues would be to define directly the translation functions on
derivation trees. However, we experienced that the proofs get really complicated and needed
to ensure that two derivations of the same judgment give rise to two λΠ-calculus modulo
theory terms which are convertible.

Before defining the translation functions, we define a predicate Γ `C A
?⇒ s which is similar

to the predicate Γ `C⇒ A ws but include the sort s∞. This way every type is well-sorted, even
top sorts. It is used to handle in the same way the translation of type A of sort s and a top-sort
s′ ∈ S>C .

Definition 6.1.4 (Well-sorted predicate)
We define the predicate Γ `C A

?⇒ s in Fig 6.2.

Our main reason to introduce this new notation is the following lemma:

Lemma 6.1.1 If Γ `C⇒ wf then for all s ∈ S there exists s′ such that Γ `C s
?⇒ s′.
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s ∈ S>C
Γ `C s

?⇒ s∞

?⇒
top (s, s′) ∈ AC

Γ `C s
?⇒ s′

?⇒
ax Γ `C A⇒ s

Γ `C A
?⇒ s

?⇒
type

Figure 6.2: Variant rules for well-sorted types in bi-directional CTS

Proof By case analysis on s ∈ S>C .

Lemma 6.1.2 If Γ `C A ws then there exists s ∈ S ∪ s∞ such that Γ `C A
?⇒ s.

Proof By case analysis on Γ `C A ws.

The definition of our encoding functions over terms is partial because of the side-conditions.
However, it is complete for well-typed terms.

Lemma 6.1.3 (Well-defined embedding)

• If Γ `C t⇒ A then [t] Γ is well-defined

• If Γ `C t⇐ A then [t]AΓ is well-defined

• If Γ `C A
?⇒ s then JAK Γ is well-defined

• If Γ `C⇒ wf then JΓK is well-defined

Proof By inversion on the derivation.

Remark 24 In the soundness proof we will not explicitly mention the use of a translation func-
tion is well-defined. Also, we may refer to the typing judgment which means that implicitly we
have used Well-defined embedding

• If Γ `C t⇒ A then [t] Γ is well-defined

• If Γ `C t⇐ A then [t]AΓ is well-defined

• If Γ `C A
?⇒ s then JAK Γ is well-defined

• If Γ `C⇒ wf then JΓK is well-defined

(6.1.3) and the fact that encoded terms were well-defined.

Example 6.1 In the Simply Typed Lambda Calculus, one may derive the following judg-
ment: A : ? `→ λx :A. x⇒ A→ A. Its translation to the λΠ-calculus modulo theory gives
ΣSp→ , A : T�

(
u?,� I

)
`D λx : T? A. x : T? (π?,?,? I A (λx : T? A.A)).

Using only the public signature, this signature is ill-typed:

• We need R(?, ?, ?)≡ΣC> and A(?,�)≡ΣC>. This is the purpose of the specification sig-
nature.

• The type of the abstraction is not a product in the λΠ-calculus modulo theory. We
will see that the private signature makes the term T? (π?,?,? I A (λx : T? A.A)) convertible
with (x : T? A)→ T? A.

With some optimization, the judgment could be shorter: ΣSp→ , A : U? `D λx : T? A. x :
T? A → T? A. We will not consider such optimization here even if they are used in prac-
tice.
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[x] Γ = x

[s] Γ = us,s′ I

when Γ `C s
?⇒ s′

[M N ] Γ = [M ] Γ [N ]AΓ
when Γ `C M ⇒ (x :A)→ B

[λx :A.M ] Γ = λx : JAK Γ. [M ] Γ,x:A

[(x :A)→ B] Γ = πs1,s2,s3 I [A] Γ (λx : JAK Γ. [B] Γ,x:A)
when Γ `C A⇒ s1

Γ `C B ⇒ s2

(s1, s2, s3) ∈ R

[M ]BΓ = s2
s1↑

[B]Γ
[A]Γ I [M ] Γ

when Γ `C M ⇒ A

Γ `C A
?⇒ s1

Γ `C B
?⇒ s2

JAK Γ = Ts [A] Γ

when Γ `C A
?⇒ s

J∅K = ∅
JΓ, x : AK = JΓK ,x : JAK Γ

Figure 6.3: CTS translation functions

Example 6.2 In the specification C L (the Calculus of Constructions with an infinite
and cumulative hierarchy of universes, Definition 1.5.13), we may derive the judgment `CL

λx : 0. x⇐ 0→ 1. The translation of this judgment depends on the type A we infer for λx : 0. x.
If we assume that we have a proof `C c λx : 0. x⇒ 0→ 0 then we can translate this judgment as

ΣSp
CL `D

2
1 ↑

(
π1,2,2 I

(
u0,1 I

) (
λx : T1

(
u0,1 I

)
.u1,2 I

))
(
π1,1,1 I

(
u0,1 I

) (
λx : T1

(
u0,1 I

)
.u0,1 I

)) I
(
λx : T1

(
u0,1 I

)
. x
)

: T?

(
π?,?,? I

(
u0,1 I

) (
λx : T1

(
u0,1 I

)
.u1,2 I

))
.

This translation may be scary at first, but again using some optimizations we could generate this

shorter judgment instead: ΣSp
CL `D λx : U0.

2
1 ↑

(
u1,2 I

)
(

u0,1 I
) I x : U0 → U1. To get this judgment, we have

used a canonical equality which allows to permute a cast operator and an abstraction (see Section 6.1.4).
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In bi-directional type systems, one cannot use subtyping directly on a variable as it is done in the
judgment above but this is possible in CTS. Hence, these two judgments correspond to two different
derivation trees for the judgment `CL λx : 0. x : 0→ 1, one where subtyping is used on x and one where
it is used on λx : 0. x. The idea behind canonical equalities is therefore to make these two derivation trees
equal.

6.1.3 The specification signature
The specification signature is a parameter of our encoding. For one particular CTS specifi-
cation, we have one particular λΠ-calculus modulo theory signature ΣSpC . The set S is
part of the specification, hence this specification signature needs to specify how a sort should
be represented in λΠ-calculus modulo theory. Actually, every sort should be translated to
the λΠ-calculus modulo theory as their representation. We will not explicitly manipulate
this representation because this tends to obscure the notations and just assume that a sort s is
translated as s. In practice, it is not an issue to find such a representation because the set S is
countable. The definition below states the specification we assume in our soundness proof.

Definition 6.1.5 (Valid specification signature)
Given a specification C , we say that the signature ΣSpC is valid denoted ΣPuC |= ΣSpC if and only
if:

ΣPuC ,ΣSpC `D wf (wfΣSp
C
)

A(s, s′)≡ΣSp
C
> ⇐⇒ (s, s′) ∈ AC (AΣSp

C
)

A(s, s∞)≡ΣSp
C
> ⇐⇒ s ∈ S>C (As∞ΣSp

C
)

R(s, s′, s′′)≡ΣSp
C
> ⇐⇒ (s, s′, s′′) ∈ RC (RΣSp

C
)

C(s, s′)≡ΣSp
C
> ⇐⇒ (s, s′) ∈ C∗C (CΣSp

C
)

Moreover we assume that ΣSpC does not break the injectivity of product in λΠ-calculus mod-
ulo theory(see Definition 5.1.5). This is more a technical restriction than a real constraint.

In practice such specification can be satisfied easily (see Chapter 5 for concrete examples).

6.1.4 The Private Signature
The so-called private signature aims to contain all the judgmental equalities that should hold
so that we can prove the soundness theorems. In Dedukti, such equalities are implemented by
rewrite rules. The advantage of having a presentation with equalities instead of rewrite rules is
that it is easier to give a specification for the private signature (no need to orient the equalities).
The related private signature in Dedukti is presented in Section 8.3.

Definition 6.1.6 (Valid private signature)
A private signature is valid denoted ΣPuC |= ΣPrC if and only if:

• It does not break the injectivity of product (see Definition 5.1.5)

• It satifies all the equations presented in Fig. 6.4.

Remark 25 In this framework, since we have s∞, the symbol Us could be defined as Us :=
Ts′ us,s′ I when Γ `C s

?⇒ s′. However, it is still required to give a type to T.
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T� (us,� �)≡ΣC Us (T− s)

T� (πs1,s2,� � a b)≡ΣC (x : Ts1 a)→ Ts2 (b x) (T− π)

T� (��↑�s � t)≡ΣC Ts t (T− ↑)

X ��� X≡ΣC> (st− ≡ )

us,� � ��� us′,� �≡ΣCC(s, s′) (st− s)

(πs1,s2,� � A B) ���
(
π�,s2′ ,� � A B′

)
≡ΣC∀s1 A

(
λx : �. B x �s2′s2 B′ x

)
(st− π)(

�
�↑
�
us,� �

� A
)
�s
′
� B≡ΣCA �s

′

s B (st− ↑ − l)

A ��s
(
�
�↑
�
us′,� �

� B
)
≡ΣCA �s

′

s B (st− ↑ − r)

�
�↑aa � t≡ΣC t (↑ − id)

�
�↑cb �

(
�
�↑ba � t

)
≡ΣC

�
�↑ca � t (↑ − ↑)

�
�↑s
′
3
s3
� (πs1,s2,s3 � a b)≡ΣCπs′1,s′2,s′3

�
(
�
�↑s
′
1� � a

) (
λx.

�
�↑s
′
2� � (b x)

)
(π − ↑)

�
�↑

(π�,s3,�
� A C)

(πs1,s2,� � A B)
� (λx. b x)≡ΣCλx : Ts1 A.

(
s3
s2↑

(C x)
(B x)

� b x
)

(↑ − lam)

s3
s2↑

(C a)
(B a)

� (b a)≡ΣC

(
�
�↑

(π�,s3,�
� A C)

(π�,s2,�
� A B)

� b

)
a (↑ − app)

�
�↑

(
�
�↑

�

(us2,� �)
� B

)
A

� a≡ΣC

s2
s1↑

B
A
� a (↑↑)

s2
� ↑B(

�
�↑�(us1,� �)

� A

) � a≡ΣC

s2
s1↑

B
A
� a (↑↑)

Figure 6.4: Private signature specification
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The first three rules are called decoding rules. They give an interpretation for every type
constructor. One can check with the following examples that each of these equalities is needed
(except ↑ − id

�
�↑aa � t≡ΣC t↑
as discussed below). The CTS specification we use here is that of Lean

(Definition 1.5.13). It is just a cumulative hierarchy of universes where 0 is predicative.

Example 6.3 For each of the following CTS judgments, their encoding is well-typed λΠ-calculus
modulo theory by using the judgmental equality specified on their right.

`C 0⇒ 1 T− s
T� (us,� �)≡ΣC Us↑

`C λx : 0. 0⇒ (x : 0)→ 1 T− π
T� (πs1,s2,� � a b)≡ΣC (x : Ts1 a)→ Ts2 (b x)↑

f : (y : 1→ 0)→ y 0 `C f (λx : 1. x)⇒ (λx : 1. x) 0 T− ↑
T� (��↑�s � t)≡ΣC Ts t↑

The next five rules in Fig 6.4 of the private signature check that a type A is a subtype of
another type B. One can check that each of these rules are needed on the following examples:

Example 6.4 One can do the same exercise as in the previous example(s) for the following
judgments:

`C 0⇐ 1 st− ≡
X ��� X≡ΣC>↑

`C 0⇐ 2 st− s
us,� � ��� us′,� �≡ΣCC(s, s′)↑

`C λx : 0. 0⇐ 0→ 2 st− π
(πs1,s2,� � A B) ���

(
π�,s2′ ,� � A B′

)
≡ΣC∀s1 A

(
λx : �. B x �s2′s2 B′ x

)
↑

f : (y : 1→ 0)→ y 0 `C f (λx : 1. x)⇐ (λx : 1. x) 2 st− ↑ − l

(
�
�↑
�
us,� �

� A
)
�s′� B≡ΣCA �s

′

s B↑
, st− ↑ − r

A ��s
(
�
�↑
�
us′,� �

� B
)
≡ΣCA �s

′

s B↑

Finally, the last seven rules are called canonicity rules and allow to permute a cast operator
with the other type constructors. Except the identity cast ( ↑− id

�
�↑aa � t≡ΣC t↑
), one can check that all these

rules are needed on the following examples.

Example 6.5 Using the following typing context,

Γ = p : 2→ 2,
f : (c : 1)→ p c→ 0,
g : (a : 2)→ p (a→ a)

one can do the same exercise as in the previous example(s) for the following judgments.

Γ `C f (0→ 0) (g 0 0)⇒ 0 π − ↑

�
�↑s
′
3
s3
� (πs1,s2,s3 � a b)≡ΣCπs′1,s′2,s′3

�
(
�
�↑s
′
1� � a

) (
λx. ��↑s

′
2� � (b x)

)
↑

Γ `C f (0→ 0) (g ((λx : 1. x) 0) 0)⇒ 0 π − ↑

�
�↑s
′
3
s3
� (πs1,s2,s3 � a b)≡ΣCπs′1,s′2,s′3

�
(
�
�↑s
′
1� � a

) (
λx. ��↑s

′
2� � (b x)

)
↑

↑ − ↑

�
�↑cb �

(
�
�↑ba � t

)
≡ΣC

�
�↑ca � t↑

`C 0⇒ (λx : 3→ 3. x) (λz : 2. z) 1 ↑ − app

s3
s2↑

(C a)
(B a)

� (b a)≡ΣC

(
�
�↑

(π�,s3,�
� A C)

(π�,s2,�
� A B)

� b

)
a↑

`C 0⇒ (λx : 3→ 3. x 1) (λz : 2. z) ↑ − lam

�
�↑

(π�,s3,�
� A C)

(πs1,s2,� � A B)
� (λx. b x)≡ΣCλx : Ts1 A.

(
s3
s2↑

(C x)
(B x)

� b x
)
↑

`C 0⇒ (λx : 1→ 3. x) (λz : ((λy : 3. y) 1). 2) 1 ↑↑

s2
� ↑B(

�
�↑�(us1,� �)

� A

) � a≡ΣC
s2
s1↑

B
A
� a↑

`C 0⇒ (λx : ((λz : 4. z) 1→ 2). x) (λy : 1. 2) 1 ↑↑

�
�↑

(
�
�↑

�

(us2,� �)
� B

)
A

� a≡ΣC
s2
s1↑

B
A
� a↑

The canonicity equality ↑ − id
�
�↑aa � t≡ΣC t↑
is interesting, and we detail in Section 6.4 why it is not

present in the examples above.
Defining encodings function where a cast is added to every applications makes the translated

terms huge and too long to be type checked in practice. In particular, most of the time an identity
cast is introduced while it is unnecessary. In the following example N : 0, 0 : N `C (λx :N. x) 0⇒
N, we know that N is always a subtype of itself, so there is no need to add an identity cast
around 0. This leads to an optimization which is to remove identity casts during the translation.
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Then, we conjecture that this optimization requires using identity casts. We have also observed
that identity casts under this optimization are used extensively. Adding identity casts are also
helpful for interoperability, especially for our tool Universo presented in Chapter 10.

6.2 Soundness

This section aims at giving a soundness prove of our encoding. In particular, we aim at proving
the following results:

• If Γ `C t⇒ A then ΣC , JΓK `D [t] Γ : JAK Γ

• If Γ `C t⇐ A then ΣC , JΓK `D [t]AΓ : JAK Γ

• If Γ `C wf then ΣC , JΓK `D wf

As mentioned previously, we need however to use well-structured derivation trees in order to
prove that the encoding functions permute with substitutions.

This soundness proof will assume that the initial judgment has a well-structured derivation
tree (Definition 3.1.2). This hypothesis is needed because to prove that the encoding functions
permutes with substitutions, we need the preservation of computation the type of the term
being translated. Well-structured derivation trees precisely allow us to do that (see Chapter 3).
We think that we could also have used an explicitly typed subtyping relation as discussed in
Section 3.3.

However, we have not defined well-structured derivation trees if it is derived in the bi-
directional typing system.

Definition 6.2.1 (Well-structured derivation trees for bi-directional CTS)
Let us denote φ the computable function defined by the Embedding Theorem 4.3.8. Then we say
that a derivation tree π in bi-directional CTS is well-structured if it is the image by the function
φ of a well-structured derivation tree. In other words:

WS(π) := WS(π′) ∧ φ(π′) = π

We also define being well-structured at level n for bi-directional derivation trees as follow:

WSn(π) := WSn(π′) ∧ φ(π′) = π

These notations are extended naturally for judgments as we did for CTS. One may check
that, because of the equivalence theorem (Theorem 4.3.8), this definition is compatible with the
properties defined in Definition 3.1.2 for well-structured derivation trees.

Finally, for all the reasons we have explained above, the theorem we prove in this section is:

Theorem 6.2.1 Given a function specification C in normal form, a specification signature ΣSpC
and a private signature ΣPrC if we have

• No clash between the symbol names of the encoding and variable names

• A valid specification signature: ΣPuC |= ΣSpC (see Definition 6.1.5)

• A valid private signature: ΣPuC |= ΣPrC (see Definition 6.1.6)

then we have for all n,
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• If WSn(Γ `C t⇒ A) then ΣC , JΓK `D [t] Γ : JAK Γ

• If WSn(Γ `C t⇐ A) then ΣC , JΓK `D [t]AΓ : JAK Γ

• If WSn(Γ `C⇒ wf) then ΣC , JΓK `D wf

Throughout the proof we will not mention these hypothesis for every statement. Instead, we
will refer to them using the following assumptions:

Assumption 1 From now on, we make the following assumptions:

∀x ∈ V, x 6∈ ΣC (V ∩ ΣC = ∅)
ΣPuC |= ΣSpC (specif. sig. valid)
ΣPuC |= ΣPrC (private. sig. valid)

Lemma 6.2.2 If ΣC ,Γ `D wf then we have injectivity of product: IP (Γ) (5.1.5).

Proof A direct consequence of Assumption 1.

To maintain a readable proof, the trade-off we have chosen in this
manuscript is to have a detailed proof for the two key lemmas which are:

• preservation of computation 6.2.24

• preservation of typability 6.2.39

and for the other helper lemmas, we only sketch a proof.
In particular, we were careful in Lemma 6.2.39 to check that when the
conversion rule R≡βΓ

Γ `R M : A Γ `R B : s A≡βΓB

Γ `R M : B
R≡βΓ ↑

is used with an equation A≡ΣCB to ensure that B
is well-sorted. This detail is sometimes omitted and we realized this may
lead to erroneous proofs.

Warning

6.2.1 Extended meta-theory for bi-directional CTS
The soundness proof we present below uses some classic result of CTS for bi-directional CTS.
We reference here these results, whose proofs are a direct consequence of the meta-theory of
CTS presented in Chapter 1 and the equivalence theorem 4.3.9 between CTS and bi-directional
CTS presented in Chapter 4.

We extend the notion of a type being well-sorted for bi-directional CTS.

Definition 6.2.2 (Well-sorted)
We introduce the judgment Γ `C⇒ A ws in Figure 6.5 expressing that A is well-sorted: Either
A is a sort or it has a type which is a sort.

Lemma 6.2.3 (Well-sorted ⇒) If Γ `C t⇒ A then Γ `C⇒ A ws.

Lemma 6.2.4 (Well-sorted ⇐) If Γ `C t⇐ A then Γ `C⇒ A ws.
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Γ `C⇒ s ws
ws⇒-sort

Γ `C A⇒ s

Γ `C⇒ A ws
ws⇒-type

Figure 6.5: Derivation rules of well-sorted types for bi-directional CTS

Lemma 6.2.5 (Well-formed wf) If Γ `C t⇒ A then Γ `C⇒ wf .

Lemma 6.2.6 (Substitution lemma)

• If Γ, x : A,Γ′ `C t ⇒ B and Γ `C N ⇐ A, then Γ,Γ′ {x← N} `C t {x← N} ⇐
B {x← N}.

• If Γ, x : A,Γ′ `C⇒ wf and Γ `C N ⇐ A then Γ,Γ′ {N ← A} `C⇒ wf

Proof Corollary of Lemma 1.7.8 and Lemma 4.3.9.

6.2.2 A lighter notation for casts
The purpose of this section is to defined a lighter notation for the cast operator (see Notation 22).

Lemma 6.2.7 (Signature well-formed) The signature is well-formed: ΣC `D wf .

Proof By induction on the typing context. Everything is straightforward except the rule ↑−app

s3
s2↑

(C a)
(B a)

� (b a)≡ΣC

(
�
�↑

(π�,s3,�
� A C)

(π�,s2,�
� A B)

� b

)
a↑

because the arity of the cast operator is not the same on the left side as on the right side.

Lemma 6.2.8 If x : A ∈ Γ then x : JAK Γ ∈ JΓK.

Proof By induction on Γ.

Lemma 6.2.9 If A(s, s′)≡ΣC> then ΣC `D us,s′ I : Us′

Lemma 6.2.10 If ΣPuC |= ΣSpC , then for all s ∈ S, there exists s′ such that ΣC `D us,s′ I : Us′

Proof By case analysis on s ∈ S>C .

♦ s ∈ S>C :
(1) s ∈ S>C Main Hypothesis
(2) ΣPuC |= ΣSpC

(3) A(s, s∞)≡ΣC> A
s∞ΣSp

C

A(s, s∞)≡ΣSp
C

> ⇐⇒ s ∈ S>C↑

(6.1.5) 1,2
O (4) ΣC `D us,s∞ I : Us∞ Lemma
If A(s, s′)≡ΣC> then ΣC `D us,s′ I : Us′

(6.2.9) 3

♦ s 6∈ S>C :
(1) s 6∈ S>C Main Hypothesis
(2) ΣPuC |= ΣSpC

(3) ∃s′, (s, s′) ∈ A Not a top-sort 1,2
(4) A(s, s′)≡ΣC> AΣSp

C

A(s, s′)≡ΣSp
C

> ⇐⇒ (s, s′) ∈ AC↑

(6.1.5) 3
O (5) ΣC `D us,s′ I : Us′ Lemma
If A(s, s′)≡ΣC> then ΣC `D us,s′ I : Us′

(6.2.9) 4
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Notation 22 Assuming that Γ `D A : UsA and Γ `D B : UsB we define the following notation:

↑BA I t := sB
sA↑

B
A I t

when A and B are both sorts, we also write ↑s2s1 I t instead of ↑
us2,s′2

I
us1,s′1

I I t. This is well-defined
thanks to Lemma

If ΣPuC |= ΣSpC , then for all s ∈ S, there exists s′ such that ΣC `D us,s′ I : Us′

(6.2.10) and because C is functional.

6.2.3 Preservation of computation
Preservation of computation is the most tedious part. We show that if A≡βB then their encoding
is also convertible, namely JAK Γ≡ΣC JBK Γ. In particular, the key lemma will be to show that
the encoding functions permute with substitutions (Lemma 6.2.25). These lemmas are tedious
to prove but straightforward.

Lemma 6.2.11 If Γ `C t⇒ A and Γ,Γ′ `C wf then [t] Γ = [t] Γ,Γ′

Proof By induction on Γ′.

Lemma 6.2.12 If Γ `C t⇐ A and Γ,Γ′ `C wf then [t]AΓ = [t]AΓ,Γ′

Proof By induction on Γ′.

Lemma 6.2.13 If Γ `C A
?⇒ s and (s, s′) ∈ C∗C then Ts [A] Γ≡ΣC Ts′ [A] s′Γ .

Proof A consequence of the canonicity rule T− ↑
T� (��↑�s � t)≡ΣC Ts t↑
(6.1.6).

Lemma 6.2.14 If Γ `C (x :A)→ B ⇒ s then J(x :A)→ BK Γ≡ΣC (x : JAK Γ)→ JBK Γ,x:A.

Proof A consequence of the canonicity rule T− π
T� (πs1,s2,� � a b)≡ΣC (x : Ts1 a)→ Ts2 (b x)↑

(6.1.6).

Lemma 6.2.15 (id-cast) If ΣPuC |= ΣPrC , Γ `C t⇒ A then [t] Γ≡ΣC [t]AΓ .

Proof A consequence of the canonicity rule ↑ − id
�
�↑aa � t≡ΣC t↑
(6.1.6).

Lemma 6.2.16 (π-cast) If ΣPuC |= ΣPrC , Γ `C (x :A)→ B ⇐ s, Γ `C A⇒ s1 and Γ, x : A `C

B ⇒ s2 then [(x :A)→ B] sΓ≡ΣC (x : [A] s1Γ )→ [B] s2Γ,x:A.

Proof A consequence of the canonicity rule π − ↑

�
�↑s
′
3
s3
� (πs1,s2,s3 � a b)≡ΣCπs′1,s′2,s′3

�
(
�
�↑s
′
1� � a

) (
λx. ��↑s

′
2� � (b x)

)
↑

(6.1.6).

Lemma 6.2.17 (app-cast) If ΣPuC |= ΣPrC , Γ `C f a ⇐ D {x← a}, Γ `C f ⇒ (x :A) → B

and Γ `C a⇒ A then [f a]DΓ≡ΣC [f ] (x :A)→D
Γ [a]AΓ .

Proof A consequence of the canonicity rules ↑ − app

s3
s2↑

(C a)
(B a)

� (b a)≡ΣC

(
�
�↑

(π�,s3,�
� A C)

(π�,s2,�
� A B)

� b

)
a↑

, ↑↑

�
�↑

(
�
�↑

�

(us2,� �)
� B

)
A

� a≡ΣC
s2
s1↑

B
A
� a↑

and ↑↑

s2
� ↑B(

�
�↑�(us1,� �)

� A

) � a≡ΣC
s2
s1↑

B
A
� a↑

(6.1.6).

Lemma 6.2.18 (λ-cast) If [A] Γ [σ]≡ΣC [Aσ] sΓ then JAK Γ [σ]≡ΣC JAσK Γ.

Proof By definition of JAK Γ.

Lemma 6.2.19 If Γ `C⇒ wf then JsK Γ≡ΣC Us.

The definitions below are related to well-structured derivation trees. They are used to derive
an induction principle compatible with subject reduction as we did in the previous chapters.
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Definition 6.2.3 (SUBST)
We denote SUBSTn the following property:

• If WSn(Γ, x : A,Γ′ `C M ⇒ B) and Γ `C N ⇐ A, then

[M ] Γ,x:A,Γ′
{
x← [N ]AΓ

}
≡ΣC [M {x← N}]B{x←N}Γ,Γ′{x←N}

• If WSn(Γ, x : A,Γ′ `C M ⇐ B) and Γ `C N ⇐ A, then

[M ]BΓ,x:A,Γ′
{
x← [N ]AΓ

}
≡ΣC [M {x← N}]B{x←N}Γ,Γ′{x←N}

Because during the proof of Lemma 6.2.22 we need to use the preservation of computation,
we also use the following definition.

Definition 6.2.4 (CONV)
We denote CONV n as the following property: If WSn+1(Γ `C t

?⇒ A), Γ `C B
?⇒ s, A≡βB

then [t] Γ≡ΣC [t]BΓ .

Lemma 6.2.20 Assuming SUBSTn, if WSn(Γ `C t⇒ A) and t ↪→β t
′ then [t] Γ≡ΣC [t′]AΓ .

Proof By induction on t ↪→β t
′. The base case is handled by the SUBSTn hypothesis.

Lemma 6.2.21 Assuming SUBSTn, if WSn(Γ `C t⇒ A) and t ↪→∗β t′ then [t] Γ≡ΣC [t′]AΓ .

Proof By induction on the length of the reduction of t ↪→∗β t′ and the rule ↑ − ↑.

Lemma 6.2.22 We have SUBSTn implies CONV n.

Proof This proof is mainly a direct consequence of Lemma 6.2.21. However, we would like to
draw the attention on a crucial point to make this proof work. Assuming the last derivation rule
is C⇐�

Γ `C M ⇒ A Γ `C B ⇒ s A�CB

Γ `C M ⇐ B
C⇐� ↑

and that Γ `C t : A, we want to prove from [t] Γ, [B] Γs and A≡βB the fact that we have
[t] Γ≡ΣC [t]BΓ . The idea is therefore to add an identity cast ↑ − id

�
�↑aa � t≡ΣC t↑
.

The identity cast that we would like to add is ↑[B]Γ
[A]Γ I [t] Γ. But, there is a catch because we

cannot justify that [A] Γ≡ΣC [B] Γ! Indeed, what we can show using Lemma 6.2.21 is that there
exists s and s′ such that [A] Γ≡ΣC [C] sΓ and [B] Γ≡ΣC [C] s′Γ . But a priori [C] sΓ and [C] s′Γ are
different.

Our solution is first to add the identity cast ↑[C]sΓ
[A]Γ I [t] Γ, then using the rule ↑↑

s2
� ↑B(

�
�↑�(us1,� �)

� A

) � a≡ΣC
s2
s1↑

B
A
� a↑

we obtain

↑[C]Γ
[A]Γ I [t] Γ, then by transitivity using the rule ↑↑

s2
� ↑B(

�
�↑�(us1,� �)

� A

) � a≡ΣC
s2
s1↑

B
A
� a↑

again we obtain ↑[C]s
′

Γ
[A]Γ I [t] Γ and finally we

get ↑[B]Γ
[A]Γ I [t] Γ.

So indeed, we can justify that [t] Γ is convertible to ↑[B]Γ
[A]Γ I [t] Γ without having [A] Γ convertible

to [B] Γ! In Dedukti, because we use a confluent rewrite system, [A] Γ and [B] Γ will actually
be convertible but this is not guarantded by the private signature.

Lemma 6.2.23 We have SUBST 0

Proof The cases C⇒≡

Γ `C M ⇒ A Γ `C B ⇒ s A≡βB
Γ `C M ⇒ B

C⇒≡ ↑
and C⇒≡s

Γ `C M ⇒ A A≡βs
Γ `C M ⇒ s

C⇒≡s ↑
are not possible. The other cases are the same as in Lemma 6.2.24.

Lemma 6.2.24 We have SUBSTn implies SUBSTn+1.
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Proof By induction on Γ, x : A,Γ′ `C M ⇒ B. For clarity we will use the following notations:

• σ = {x← N}

• [σ] =
{
x← [N ]AΓ

}
♦ C⇒var

Γ `C⇒ wf (x : A) ∈ Γ
Γ `C x⇒ A

C⇒var ↑
: M = y

By case analysis on x = y

� x = y: B = A

(1) Γ, x : A,Γ′ `C x⇒ A Main hypothesis
(2) Γ `C N ⇐ A

(3) [x] Γ,x:A,Γ′ = x Definition of [·] ·
(4) [x] Γ,x:A,Γ′ [σ] = [N ]AΓ Substitution 3
(5) [x] Γ,x:A,Γ′ [σ] = [xσ]AΓ Substitution 4
(6) [x] Γ,x:A,Γ′ [σ] = [xσ]AσΓ Substitution (x 6∈ FV(A)) 5
(7) Γ, x : A,Γ′ `C⇒ wf Inversion on C⇒var

Γ `C⇒ wf (x : A) ∈ Γ
Γ `C x⇒ A

C⇒var ↑
1

(8) Γ,Γ′σ `C⇒ wf Substitution lemma

∗ If Γ, x : A,Γ′ `C t ⇒ B and Γ `C N ⇐ A, then Γ,Γ′ {x← N} `C t {x← N} ⇐
B {x← N}.

∗ If Γ, x : A,Γ′ `C⇒ wf and Γ `C N ⇐ A then Γ,Γ′ {N ← A} `C⇒ wf
(6.2.6) 7,2

(9) [xσ]AσΓ = [xσ]AσΓ,Γ′σ Lemma
If Γ `C t⇐ A and Γ,Γ′ `C wf then [t]AΓ = [t]AΓ,Γ′

(6.2.12) 2,8
(10) [x] Γ,x:A,Γ′ [σ] = [xσ]AσΓ,Γ′σ Transitivity of = 6,9
(11) [x] Γ,x:A,Γ′ [σ]≡ΣC [xσ]AσΓ,Γ′σ Reflexivity of ≡ 10

O (12) [M ] Γ,x:A,Γ′ [σ]≡ΣC [Mσ]BσΓ,Γ′σ Definition M,y,B 11

� x 6= y:
(1) Γ, x : A,Γ′ `C y ⇒ B Main hypothesis
(2) Γ `C N ⇐ A

(3) [y] Γ,x:A,Γ′ = y Definition of [·] ·
(4) [y] Γ,x:A,Γ′ [σ] = y Substitution 3
(5) [y] Γ,x:A,Γ′ [σ]≡ΣC y Reflexivity of ≡ΣC 4
(6) Γ, x : A,Γ′ `C⇒ wf Inversion on C⇒var

Γ `C⇒ wf (x : A) ∈ Γ
Γ `C x⇒ A

C⇒var ↑
1

(7) y ∈ (Γ, x : A,Γ′)
(8) y ∈ (Γ,Γ′) x 6= y 7
(9) Γ,Γ′σ `C⇒ wf Substitution lemma

∗ If Γ, x : A,Γ′ `C t ⇒ B and Γ `C N ⇐ A, then Γ,Γ′ {x← N} `C t {x← N} ⇐
B {x← N}.

∗ If Γ, x : A,Γ′ `C⇒ wf and Γ `C N ⇐ A then Γ,Γ′ {N ← A} `C⇒ wf
(6.2.6) 6,2

(10) y : Bσ ∈ (Γ,Γ′σ) Typing Context Substitution 8
(11) Γ,Γ′σ `C y ⇒ Bσ C⇒var

Γ `C⇒ wf (x : A) ∈ Γ
Γ `C x⇒ A

C⇒var ↑
9,10

(12) y = [y] Γ,Γ′σ Definition of [·] ·
(13) y≡ΣC [y] Γ,Γ′σ Reflexivity of ≡ΣC 12
(14) ΣPuC |= ΣPrC Assumption

From now on, we make the following assumptions:

∀x ∈ V, x 6∈ ΣC (V ∩ ΣC = ∅)

ΣPuC |= ΣSpC (specif. sig. valid)

ΣPuC |= ΣPrC (private. sig. valid)

↑
1

(15) [y] Γ,Γ′σ≡ΣC [y]BσΓ,Γ′σ id-cast
If ΣPuC |= ΣPrC , Γ `C t⇒ A then [t] Γ≡ΣC [t]AΓ .

(6.2.15) 14,11
(16) [y] Γ,x:A,Γ′ [σ]≡ΣC [y]BσΓ,Γ′σ Transitivity of ≡ΣC 5,13,15
(17) [y] Γ,x:A,Γ′ [σ]≡ΣC [yσ]BσΓ,Γ′σ Substitution 16

O (18) [M ] Γ,x:A,Γ′ [σ]≡ΣC [Mσ]BσΓ,Γ′σ Definition of M 17

♦ C⇒sort

Γ `C⇒ wf (s1, s2) ∈ A
Γ `C s1 ⇒ s2

C⇒sort ↑
: M = s,B = s′
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(1) Γ, x : A,Γ′ `C s⇒ s′ Main hypothesis
(2) Γ `C N ⇐ A

(3) [s] Γ,x:A,Γ′ = us,s′ I Definition of [·] · 1
(4) [s] Γ,x:A,Γ′ [σ] = us,s′ I Substitution 3
(5) Γ, x : A,Γ′ `C wf Inversion on C⇒sort

Γ `C⇒ wf (s1, s2) ∈ A
Γ `C s1 ⇒ s2

C⇒sort ↑
1

(6) (s, s′) ∈ AC

(7) Γ,Γ′σ `C⇒ wf Substitution lemma

– If Γ, x : A,Γ′ `C t ⇒ B and Γ `C N ⇐ A, then Γ,Γ′ {x← N} `C t {x← N} ⇐
B {x← N}.

– If Γ, x : A,Γ′ `C⇒ wf and Γ `C N ⇐ A then Γ,Γ′ {N ← A} `C⇒ wf

(6.2.6) 5,2
(8) Γ,Γ′σ `C s⇒ s′ C⇒sort

Γ `C⇒ wf (s1, s2) ∈ A
Γ `C s1 ⇒ s2

C⇒sort ↑
7,6

(9) us,s′ I = [s] Γ,Γ′σ Definition of [·] · 8
(10) ΣPuC |= ΣPrC Assumption

From now on, we make the following assumptions:

∀x ∈ V, x 6∈ ΣC (V ∩ ΣC = ∅)

ΣPuC |= ΣSpC (specif. sig. valid)

ΣPuC |= ΣPrC (private. sig. valid)

↑
1

(11) [s] Γ,Γ′σ = [s] s
′

Γ,Γ′σ id-cast
If ΣPuC |= ΣPrC , Γ `C t⇒ A then [t] Γ≡ΣC [t]AΓ .

(6.2.15) 10,8
(12) [s] Γ,x:A,Γ′ [σ] = [s] s

′

Γ,Γ′σ Transitivity of = 4,9,11
(13) [s] Γ,x:A,Γ′ [σ] = [sσ] s

′σ
Γ,Γ′σ Substitution 12

(14) [s] Γ,x:A,Γ′ [σ]≡ΣC [sσ] s
′σ

Γ,Γ′σ Reflexivity of ≡ΣC 12
O (15) [M ] Γ,x:A,Γ′ [σ]≡ΣC [Mσ]BσΓ,Γ′σ Definition of M,B 13

♦ C⇒Π

Γ `C A⇒ s1 Γ, x : A `C B ⇒ s2 (s1, s2, s3) ∈ R
Γ `C (x :A)→ B ⇒ s3

C⇒Π ↑
: M = (x :C)→ D,B = s

(1) WSn+1(Γ, x : A,Γ′ `C (y :C)→ D ⇒ s) Main hypothesis
(2) Γ `C N ⇐ A

(3) WSn+1(Γ, x : A,Γ′ `C C ⇒ s1) Inversion on C⇒Π

Γ `C A⇒ s1 Γ, x : A `C B ⇒ s2 (s1, s2, s3) ∈ R
Γ `C (x :A)→ B ⇒ s3

C⇒Π ↑
1

(4) WSn+1(Γ, x : A,Γ′, y : C `C D ⇒ s2)
(5) (s1, s2, s) ∈ RC

(6) ([C] Γ,x:A,Γ′) [σ]≡ΣC [Cσ] s1σΓ,Γ′σ Induction Hypothesis
We have SUBSTn implies SUBSTn+1.

3,2
(7) ([D] Γ,x:A,Γ′,y:C) [σ]≡ΣC [Dσ] s2σΓ,Γ′σ,y:Cσ Induction Hypothesis

We have SUBSTn implies SUBSTn+1.
4,2

(8) [(y :C)→ D] Γ,x:A,Γ′ = (y : [C] Γ,x:A,Γ′)→ [D] Γ,x:A,Γ′,y:C Definition of [·] · 3,4,5
(9) ([(y :C)→ D] Γ,x:A,Γ′) [σ] = (y : ([C] Γ,x:A,Γ′) [σ] )→ ([D] Γ,x:A,Γ′,y:C) [σ] Substitution 8
(10) ([(y :C)→ D] Γ,x:A,Γ′) [σ]≡ΣC (y : [Cσ] s1σΓ,Γ′σ)→ [Dσ] s2σΓ,Γ′σ,y:Cσ Congruence of ≡ΣC 9,6,7
(11) (y : [Cσ] s1Γ,Γ′σ)→ [Dσ] s2Γ,Γ′σ,y:Cσ≡ΣC [((y :C)→ D)σ] sΓ,Γ′σ π-cast

If ΣPuC |= ΣPrC , Γ `C (x :A) → B ⇐ s, Γ `C A ⇒ s1 and Γ, x : A `C B ⇒ s2 then
[(x :A)→ B] sΓ≡ΣC (x : [A] s1Γ )→ [B] s2Γ,x:A.

(6.2.16)
(12) ([(y :C)→ D] Γ,x:A,Γ′) [σ]≡ΣC [((y :C)→ D)σ] sΓ,Γ′σ Congruence of ≡ΣC 10,11
(13) ([(y :C)→ D] Γ,x:A,Γ′) [σ]≡ΣC [((y :C)→ D)σ] sσΓ,Γ′σ Substitution 12

O (14) [M ] Γ,x:A,Γ′ [σ]≡ΣC [Mσ]BσΓ,Γ′σ Definition of M,B, σ, [σ] 13

♦ C⇒λ

Γ, x : A `C M ⇒ B Γ `C (x :A)→ B ⇒ s

Γ `C λx :A.M ⇒ (x :A)→ B
C⇒λ ↑

: M = λy :C. u,B = (y :C)→ D,σ := {x← N} . [σ] :=
{
x← [N ]AΓ

}



138 CHAPTER 6. EMBEDDING CTS IN λΠ-CALCULUS MODULO THEORY

(1) WSn+1(Γ, x : A,Γ′ `C λy :C. u⇒ (y :C)→ D) Main hypothesis
(2) Γ `C N ⇐ A

(3) WSn+1(Γ, x : A,Γ′, y : C `C u⇒ D) Inversion on C⇒λ

Γ, x : A `C M ⇒ B Γ `C (x :A)→ B ⇒ s

Γ `C λx :A.M ⇒ (x :A)→ B
C⇒λ ↑

1
(4) WSn(Γ, x : A,Γ′ `C (y :C)→ D ⇒ s)
(5) ([u] Γ,x:A,Γ′,y:C) [σ]≡ΣC [uσ]DσΓ,Γ′σ,y:Cσ Induction Hypothesis

We have SUBSTn implies SUBSTn+1.
3,2

(6) ([(y :C)→ D] Γ,x:A,Γ′) [σ]≡ΣC [((y :C)→ D)σ] sσΓ,Γ′σ Induction Hypothesis
We have SUBSTn implies SUBSTn+1.

4,2
(7) [λy :C. u] Γ,x:A,Γ′ = λy : JCK Γ,x:A,Γ′ . [u] Γ,x:A,Γ′,y:C Definition of [·] · 1
(8) ([λy :C. u] Γ,x:A,Γ′) [σ] = λy : JCK Γ,x:A,Γ′ [σ] . [u] Γ,x:A,Γ′,y:C [σ] Substituion 7
(9) [((y :C)→ D)σ] sσΓ,Γ′σ≡ΣC (y : [Cσ] s1Γ,Γ′σ)→ [Dσ] s2Γ,Γ′σ,y:Cσ π-cast

If ΣPuC |= ΣPrC , Γ `C (x :A) → B ⇐ s, Γ `C A ⇒ s1 and Γ, x : A `C B ⇒ s2 then
[(x :A)→ B] sΓ≡ΣC (x : [A] s1Γ )→ [B] s2Γ,x:A.

(6.2.16)
(10) ([(y :C)→ D] Γ,x:A,Γ′) [σ]≡ΣC (y : [C] Γ,x:A,Γ′ [σ] )→ [D] Γ,x:A,Γ′,y:C [σ] Definition of [·] ·· 9
(11) (y : [C] Γ,x:A,Γ′ [σ] )→ [D] Γ,x:A,Γ′,y:C [σ]≡ΣC (y : [Cσ] s1Γ,Γ′σ)→ [Dσ] s2Γ,Γ′σ,y:Cσ Transitivity of ≡ΣC 10,6,9
(12) [C] Γ,x:A,Γ′ [σ]≡ΣC [Cσ] s1σΓ,Γ′σ Lemma

If ΣC ,Γ `D wf then we have injectivity of product: IP (Γ) (5.1.5).
(6.2.2) 11

(13) JCK Γ,x:A,Γ′ [σ]≡ΣC JCσK Γ,Γ′σ λ-cast
If [A] Γ [σ]≡ΣC [Aσ] sΓ then JAK Γ [σ]≡ΣC JAσK Γ.

(6.2.18) 12
(14) ([λy :C. u] Γ,x:A,Γ′) [σ]≡ΣC λy : JCσK Γ,Γ′σ. [uσ]DσΓ,Γ′σ Congruence of ≡ΣC 7,13,5
(15) Γ,Γ′σ, y : Cσ `C uσ ⇐ Dσ Substitution lemma

– If Γ, x : A,Γ′ `C t ⇒ B and Γ `C N ⇐ A, then Γ,Γ′ {x← N} `C t {x← N} ⇐
B {x← N}.

– If Γ, x : A,Γ′ `C⇒ wf and Γ `C N ⇐ A then Γ,Γ′ {N ← A} `C⇒ wf

(6.2.6) 3,2
(16) λy : JCσK Γ,Γ′σ. [uσ]DσΓ,Γ′σ≡ΣC [λy :Cσ. uσ]DσΓ,Γ′σ Definition of [·] ·· 15
(17) ([λy :C. u] Γ,x:A,Γ′) [σ]≡ΣC [λy :Cσ. uσ] (y :Cσ)→Dσ

Γ,Γ′σ Transitivity of ≡ΣC 14,16
(18) ([λy :C. u] Γ,x:A,Γ′) [σ]≡ΣC [(λy :C. u)σ] ((y :C)→D)σ

Γ,Γ′σ Substitution 17
O (19) [M ] Γ,x:A,Γ′ [σ]≡ΣC [Mσ]BσΓ,Γ′σ Definition of M,B 18

♦ C⇒app

Γ `C M ⇒ (x :A)→ B Γ `C N ⇐ A

Γ `C M N ⇒ B {x← N}
C⇒app ↑

: M = f a,B = D {y ← a} , σ := {x← N} , [σ] :=
{
x← [N ]AΓ

}
(1) WSn+1(Γ, x : A,Γ′ `C f a⇒ D {y ← a}) Main hypothesis
(2) Γ `C N ⇐ A

(3) WSn+1(Γ, x : A,Γ′ `C f ⇒ (y :C)→ D) Inversion on C⇒app

Γ `C M ⇒ (x :A)→ B Γ `C N ⇐ A

Γ `C M N ⇒ B {x← N}
C⇒app ↑

1
(4) WSn+1(Γ, x : A,Γ′ `C a⇐ C)
(5) [f ] Γ,x:A,Γ′ [σ]≡ΣC [fσ] ((y :C)→D)σ

Γ,Γ′σ Induction Hypothesis
We have SUBSTn implies SUBSTn+1.

3,2
(6) Γ, x : A,Γ′ `C a⇒ C′ check-to-infer

If Γ `C t⇐ C then ∃A such that Γ `C t⇒ A and A�CC.
(4.3.2) 4

(7) C′�CC

(8) [a]CΓ,x:A,Γ′ [σ]≡ΣC [aσ]CσΓ,Γ′σ Induction Hypothesis
We have SUBSTn implies SUBSTn+1.

4
(9) [f ] Γ,x:A,Γ′ [σ] [a] Γ,x:A,Γ′ [σ]≡ΣC [fσ] ((y :C)→D)σ

Γ,Γ′σ [aσ]CσΓ,Γ′σ Transitivity ≡ΣC

(10) [f a] Γ,x:A,Γ′ [σ] = [f ] Γ,x:A,Γ′ [σ] [a]CΓ,x:A,Γ′ [σ] Definition of [·] · 1
(11) [fσ] (y :Cσ)→Dσ

Γ,Γ′σ [aσ]CσΓ,Γ′σ≡ΣC [fσ aσ]DσΓ,Γ′σ app-cast

If ΣPuC |= ΣPrC , Γ `C f a ⇐ D {x← a}, Γ `C f ⇒ (x :A) → B and Γ `C a ⇒ A then
[f a]DΓ ≡ΣC [f ] (x :A)→D

Γ [a]AΓ .
(6.2.17) 1,3,6

(12) [fσ aσ]DσΓ,Γ′σ≡ΣC [(f a)σ]DσΓ,Γ′σ substitution
(13) [f a] Γ,x:A,Γ′ [σ]≡ΣC [(f a)σ]DσΓ,Γ′σ Transitivity of≡ΣC 10,9,11,12

O (14) [M ] Γ,x:A,Γ′
{
x← [N ]AΓ

}
≡ΣC [Mσ]BσΓ,Γ′σ

♦ C⇒≡

Γ `C M ⇒ A Γ `C B ⇒ s A≡βB
Γ `C M ⇒ B

C⇒≡ ↑
:

(1) WSn+1(Γ, x : A,Γ′ `C M ⇒ B) Main hypothesis
(2) Γ `C N ⇐ A

(3) SUBSTn
(4) WSn+1(Γ, x : A,Γ′ `C M ⇒ C) Inversion on C⇒≡

Γ `C M ⇒ A Γ `C B ⇒ s A≡βB
Γ `C M ⇒ B

C⇒≡ ↑

(5) WSn(Γ, x : A,Γ′ `C B ⇒ s)
(6) C≡βB
(7) [M ] Γ,x:A,Γ′≡ΣC [M ]CσΓ,Γ′σ Induction Hypothesis

We have SUBSTn implies SUBSTn+1.

(8) CONV n Lemma
We have SUBSTn implies CONV n.

(6.2.22) 3
(9) [M ]CσΓ,Γ′σ≡ΣC [M ]BσΓ,Γ′σ CONV n 8,1

O (10) [M ] Γ,x:A,Γ′≡ΣC [M ]BσΓ,Γ′σ id-cast
If ΣPuC |= ΣPrC , Γ `C t⇒ A then [t] Γ≡ΣC [t]AΓ .

(6.2.15) 9

♦ C⇒≡s

Γ `C M ⇒ A A≡βs
Γ `C M ⇒ s

C⇒≡s ↑
: B = s
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(1) WSn+1(Γ, x : A,Γ′ `C M ⇒ s) Main hypothesis
(2) Γ `C N ⇐ A

(3) SUBSTn
(4) WSn+1(Γ, x : A,Γ′ `C M ⇒ C) Inversion on C⇒≡

Γ `C M ⇒ A Γ `C B ⇒ s A≡βB
Γ `C M ⇒ B

C⇒≡ ↑

(5) C≡βs
(6) WSn(Γ, x : A,Γ′ `C C ws) Inversion on C⇒≡

Γ `C M ⇒ A Γ `C B ⇒ s A≡βB
Γ `C M ⇒ B

C⇒≡ ↑

(7) [M ] Γ,x:A,Γ′≡ΣC [M ]CσΓ,Γ′σ Induction Hypothesis
We have SUBSTn implies SUBSTn+1.

(8) CONV n Lemma
We have SUBSTn implies CONV n.

(6.2.22) 3
(9) [M ] Γ,x:A,Γ′≡ΣC [M ] sΓ,Γ′σ CONV n 8,1

O (10) [M ] Γ,x:A,Γ′≡ΣC [M ]BσΓ,Γ′σ Definition of B 9

♦ C⇐�

Γ `C M ⇒ A Γ `C B ⇒ s A�CB

Γ `C M ⇐ B
C⇐� ↑

:
Using the induction hypothesis, then it follows from the canonicity rule ↑ − ↑

�
�↑cb �

(
�
�↑ba � t

)
≡ΣC

�
�↑ca � t↑

.

♦ C⇐�s

Γ `C M ⇒ A A�C s

Γ `C M ⇐ s
C⇐�s ↑

:
Using the induction hypothesis, then it follows from the canonicity rule ↑ − ↑

�
�↑cb �

(
�
�↑ba � t

)
≡ΣC

�
�↑ca � t↑

Lemma 6.2.25 For all n, we have SUBSTn.

Proof By induction on n. The base case is handled with Lemma 6.2.23 and the inductive case
with Lemma 6.2.24.

Lemma 6.2.26 If WSn(Γ, x : A `C B ⇒ s) and Γ `C N ⇒ A then

JBK Γ,x:A
{
x← [N ]AΓ

}
≡ΣC JB {x← N}K Γ

.

Proof A consequence of the definition of J·K · and the substitution lemma 6.2.25.

Lemma 6.2.27 If WSn(Γ `C A⇒ s),WSn(Γ `C B ⇒ s′) and A≡βB then there exists C such
that A ↪→∗β C ←↩∗β B,[A] Γ≡ΣC [C] sΓ and [B] Γ≡ΣC [C] s′Γ

Proof A consequence of the substitution lemma 6.2.25 and Lemma 6.2.21.

Lemma 6.2.28 If WSn(Γ `C⇒ A ws),WSn(Γ `C⇒ B ws) and A≡βB then JAK Γ≡ΣC JBK Γ.

Proof A consequence of the definition or J·K ·, Lemma 6.2.27 and Lemma 6.2.13.

6.2.4 Subtyping preservation

Lemma 6.2.29 If WSn(Γ `C A
?⇒ s1),WSn(Γ `C B

?⇒ s2) and A�CB then [A] Γ �s2s1 [B] Γ≡ΣSp
C
>.

Proof By induction on A�t−C B. We recall that �C and �t−C define the same subtyping relation
(see Lemma 1.7.18).

For each case, we need to handle conversion with Lemma 6.2.28 (we recall that we use
Assumption 1). Since conversion may introduce casts, we remove them using the canonicity
rules st− ↑ − l

(
�
�↑
�
us,� �

� A
)
�s′� B≡ΣCA �s

′

s B↑
and st− ↑ − r

A ��s
(
�
�↑
�
us′,� �

� B
)
≡ΣCA �s

′

s B↑
.

♦ �r≡β

A ↪→∗β B
A�C rB

�r≡β ↑
:

Using the canonicity rule st− ≡
X ��� X≡ΣC>↑
.



140 CHAPTER 6. EMBEDDING CTS IN λΠ-CALCULUS MODULO THEORY

♦ �rCC

(s, s′) ∈ C∗C
s�C rs′

�rCC ↑
:

Using the canonicity rules st− s
us,� � ��� us′,� �≡ΣCC(s, s′)↑
.

♦ �rΠ

A ↪→∗β A′ B�C rB′

(x :A)→ B�C r (x :A′)→ B′
�rΠ ↑

:
Using the canonicity rule st− π

(πs1,s2,� � A B) ���
(
π�,s2′ ,� � A B′

)
≡ΣC∀s1 A

(
λx : �. B x �s2′s2 B′ x

)
↑

.

Typing preservation

At this stage, typing preservation could be proved by induction on the typing derivation. However
we state some intermediate lemmas here which are purely computational to simplify the proof.
All of them are straightforward.

Lemma 6.2.30 If ΣC ,Γ `D JAK Γ : w then w = ?.

Proof By definition of J·K ·.

Lemma 6.2.31 (J·K · : ?) If ΣC ,Γ `D t : JAK Γ then ΣC ,Γ `D JAK Γ : ?.

Proof By Lemma 5.1.3 and Lemma 6.2.30.

Lemma 6.2.32 (J·K · ↔ U) If ΣC , JΓK `D t : JsK Γ if and only if ΣC , JΓK `D t : Us

Proof A consequence of the canonicity rule T− s
T� (us,� �)≡ΣC Us↑
(Assumption 1).

Lemma 6.2.33 ([·] · → J·K ·) If Γ `C A ⇒ s and ΣC , JΓK `D [A] Γ : JsK Γ then ΣC , JΓK `D

JAK Γ : ?.

Proof A consequence of the definition of J·K ·.

Lemma 6.2.34 (u : U) If (s, s′) ∈ AC and ΣC ,Γ `D wf , then ΣC ,Γ `D us,s′ I : Us′ .

Proof A consequence of signature specification AΣSp
C

A(s, s′)≡ΣSp
C
> ⇐⇒ (s, s′) ∈ AC ↑

(Assumption 1).

Lemma 6.2.35 (JsK · : ?) If ΣC , JΓK `D wf then ΣC , JΓK `D JsK Γ : ?

Proof A consequence of the definition of J·K ·.

Lemma 6.2.36 (π : U) If (s1, s2, s) ∈ RC , ΣC ,Γ `D t : Us1 and ΣC ,Γ `D λx : Ts1 t. u :
Ts1 t→ Us2 then ΣC ,Γ `D πs1,s2,s I t (λx : Ts1 t. u) : Us.

Proof A consequence of signature specification RΣSp
C

R(s, s′, s′′)≡ΣSp
C
> ⇐⇒ (s, s′, s′′) ∈ RC ↑

(Assumption 1).

Lemma 6.2.37 (J·K · → J·K · : ?) If Γ `C (x :A) → B ⇒ s3, ΣC , JΓK `D J(x :A)→ BK Γ : ?
then ΣC , JΓK `D (x : JAK Γ)→ JBK Γ,x:A : ?.

Proof By definition of J·K · using Lemma 6.2.14.

Lemma 6.2.38 ([·] · → [·] ··) If ΣPuC |= ΣSpC , A `C s1
?⇒, B `C s2

?⇒, ΣC ,Γ `D [A] Γ : Us1 ,
ΣC ,Γ `D [B] Γ : Us2 , ΣC ,Γ `D t : Ts1 [A] Γ and A�CB then ΣC ,Γ `D

s2
s1↑

[B]Γ
[A]Γ I t : Ts2 [B] Γ.

Proof A consequence of Lemma 6.2.29 and the signature specification CΣSp
C

C(s, s′)≡ΣSp
C
> ⇐⇒ (s, s′) ∈ C∗C ↑

(Assumption 1).
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Definition 6.2.5 (WT)
We denote WTn the following property:

• If WSn(Γ `C t⇒ A) then ΣC , JΓK `D [t] Γ : JAK Γ

• If WSn(Γ `C t⇐ A) then ΣC , JΓK `D [t]AΓ : JAK Γ

• If WSn(Γ `C wf) then ΣC , JΓK `D wf

Lemma 6.2.39 (Soundness proof) Assuming WTn we have WTn+1.

Proof By induction on the typing derivation.

♦ C⇒wf
∅

∅ `C⇒ wf
C⇒wf
∅ ↑

: Γ = ∅
(1) J∅K = ∅ Definition of J·K
(2) ΣC `D wf Signature well-formed

The signature is well-formed: ΣC `D wf .
(6.2.7)

(3) ΣC ,∅ `D wf Concatenation of typing context 2
(4) ΣC , J∅K `D wf Congruence of equality 3,1

O (5) ΣC , JΓK `D wf Definition of Γ 4

♦ C⇒wf
var

Γ `C A⇒ s x 6∈ Γ
Γ, x : A `C⇒ wf

C⇒wf
var ↑

: Γ = Γ′, x : A
(1) WSn+1(Γ′, x : A `C⇒ wf) Main hypothesis
(2) WSn+1(Γ `C A⇒ s) Inversion on C⇒wf

var

Γ `C A⇒ s x 6∈ Γ
Γ, x : A `C⇒ wf

C⇒wf
var ↑

1
(3) x 6∈ Γ
(4) ΣC , JΓK `D [A] Γ : JsK Γ Induction Hypothesis

Assuming WTn we have WTn+1.
2

(5) x 6∈ ΣC V ∩ ΣC = ∅
∀x ∈ V, x 6∈ ΣC↑
(Assumption 1)

(6) x 6∈ JΓK Lemma
If x : A ∈ Γ then x : JAK Γ ∈ JΓK.

(6.2.8) 3
(7) x 6∈ ΣC , JΓK Definition of 6∈ 5,6
(8) ΣC , JΓK `D JAK Γ : ? [·] · → J·K ·

If Γ `C A⇒ s and ΣC , JΓK `D [A] Γ : JsK Γ then ΣC , JΓK `D JAK Γ : ?.
(6.2.33) 4

O (9) ΣC , JΓK , x : JAK Γ `D wf Rwf
var

Γ `R A : s x 6∈ Γ
Γ, x : A `R wf

Rwf
var ↑

8,7

♦ C⇒var

Γ `C⇒ wf (x : A) ∈ Γ
Γ `C x⇒ A

C⇒var ↑
: t = x

(1) WSn+1(Γ `C x⇒ A) Main hypothesis
(2) WSn(Γ `C⇒ wf) Inversion on C⇒var

Γ `C⇒ wf (x : A) ∈ Γ
Γ `C x⇒ A

C⇒var ↑
1

(3) x : A ∈ Γ
(4) ΣC , JΓK `D wf Induction Hypothesis

Assuming WTn we have WTn+1.
2

(5) x : JAK Γ ∈ JΓK Lemma
If x : A ∈ Γ then x : JAK Γ ∈ JΓK.

(6.2.8) 3
(6) ΣC , JΓK `D x : JAK Γ Rvar

Γ `R wf (x : A) ∈ Γ
Γ `R x : A

Rvar ↑
4,5

(7) x = [x] Γ Definition of [·] ·
(8) ΣC , JΓK `D [x] Γ : JAK Γ Congruence of equality 6,7

O (9) ΣC , JΓK `D [t] Γ : JAK Γ Definition of t 8

♦ C⇒sort

Γ `C⇒ wf (s1, s2) ∈ A
Γ `C s1 ⇒ s2

C⇒sort ↑
: t = s,A = s′

(1) WSn+1(Γ `C s⇒ s′) Main hypothesis
(2) WSn+1(Γ `C⇒ wf) Inversion on C⇒sort

Γ `C⇒ wf (s1, s2) ∈ A
Γ `C s1 ⇒ s2

C⇒sort ↑
1

(3) (s, s′)AC

(4) ΣC , JΓK `D wf Induction Hypothesis
Assuming WTn we have WTn+1.

2
(5) ΣPuC |= ΣSpC specif. sig. valid

ΣPuC |= ΣSpC ↑
(Assumption 1)

(6) ΣC , JΓK `D us,s′ I : Us′ u : U
If (s, s′) ∈ AC and ΣC ,Γ `D wf , then ΣC ,Γ `D us,s′ I : Us′ .

(6.2.34) 5,3, 4
(7) ΣC , JΓK `D us,s′ I : Js′K Γ J·K · ↔ U

If ΣC , JΓK `D t : JsK Γ if and only if ΣC , JΓK `D t : Us

(6.2.32) 6
(8) ΣC , JΓK `D [s] Γ : Js′K Γ Definition of [·] · 7

O (9) ΣC , JΓK `D [t] Γ : JAK Γ Definition of t, A 8
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♦ C⇒Π

Γ `C A⇒ s1 Γ, x : A `C B ⇒ s2 (s1, s2, s3) ∈ R
Γ `C (x :A)→ B ⇒ s3

C⇒Π ↑
: t = (x :B)→ C,A = s

(1) WSn+1(Γ `C (x :B)→ C ⇒ s) Main hypothesis
(2) WSn+1(Γ `C B ⇒ s1) Inversion on C⇒Π

Γ `C A⇒ s1 Γ, x : A `C B ⇒ s2 (s1, s2, s3) ∈ R
Γ `C (x :A)→ B ⇒ s3

C⇒Π ↑
1

(3) WSn+1(Γ, x : B `C C ⇒ s2)
(4) (s1, s2, s) ∈ RC

(5) ΣC , JΓK `D [B] Γ : Js1K Γ Induction Hypothesis
Assuming WTn we have WTn+1.

2
(6) ΣC , JΓK `D [B] Γ : Us1 J·K · ↔ U

If ΣC , JΓK `D t : JsK Γ if and only if ΣC , JΓK `D t : Us

(6.2.32) 5
(7) ΣC , JΓ, x : BK `D [C] Γ,x:B : Js2K Γ,x:B Induction Hypothesis

Assuming WTn we have WTn+1.
3

(8) ΣC , JΓK , x : JBK Γ `D [C] Γ,x:B : Js2K Γ,x:B Definition of J·K 7
(9) ΣC , JΓK , x : JBK Γ `D [C] Γ,x:B : Us2 J·K · ↔ U

If ΣC , JΓK `D t : JsK Γ if and only if ΣC , JΓK `D t : Us

(6.2.32) 8
(10) (?, ?, ?) ∈ D or (?,�,�) ∈ D Definition of D

(11) ΣC , JΓK `D λx : JBK Γ. [C] Γ,x:B : (x : JBK Γ)→ Us2 Rλ

Γ, x : A `R M : B Γ `R (x :A)→ B : s
Γ `R λx :A.M : (x :A)→ B

Rλ ↑
9, 10

(12) ΣC , JΓK `D λx : JBK Γ. [C] Γ,x:B : (x : Ts1 [B] Γ)→ Us2 Definition of J·K · 11
(13) ΣPuC |= ΣSpC specif. sig. valid

ΣPuC |= ΣSpC ↑
(Assumption 1)

(14) ΣC , JΓK `D πs1,s2,s I [B] Γ (λx : JBK Γ. [C] Γ,x:B) : Us π : U

If (s1, s2, s) ∈ RC , ΣC ,Γ `D t : Us1 and ΣC ,Γ `D λx : Ts1 t. u : Ts1 t → Us2 then ΣC ,Γ `D

πs1,s2,s I t (λx : Ts1 t. u) : Us.
(6.2.36) 13, 4, 6,12

(15) ΣC , JΓK `D [(x :B)→ C] Γ : Us Definition of [·] · 1,14
(16) ΣC , JΓK `D [(x :B)→ C] Γ : JsK Γ J·K · ↔ U

If ΣC , JΓK `D t : JsK Γ if and only if ΣC , JΓK `D t : Us

(6.2.32) 15
O (17) ΣC , JΓK `D [t] Γ : JAK Γ Definition of t, A 16

♦ C⇒λ

Γ, x : A `C M ⇒ B Γ `C (x :A)→ B ⇒ s

Γ `C λx :A.M ⇒ (x :A)→ B
C⇒λ ↑

: t = λx :B. u,A = (x :B)→ C

(1) WSn+1(Γ `C λx :B. u⇒ (x :B)→ C) Main hypothesis
(2) WSn+1(Γ, x : B `C u⇒ C) Inversion on C⇒λ

Γ, x : A `C M ⇒ B Γ `C (x :A)→ B ⇒ s

Γ `C λx :A.M ⇒ (x :A)→ B
C⇒λ ↑

1
(3) WSn(Γ `C (x :B)→ C ⇒ s)
(4) Γ `C B ⇒ s1 Inversion prod

If Γ `C (x :A)→ B ⇒ F then
– Γ `C A⇒ s1

– Γ, x : A `C B ⇒ s2.
– F≡βs3

– (s1, s2, s3) ∈ RC

(4.3.4) 3
(5) Γ, x : B `C C ⇒ s2

(6) (s1, s2, s) ∈ C

(7) ΣC , JΓ, x : BK `D [u] Γ,x:B : JCK Γ,x:B Induction Hypothesis
Assuming WTn we have WTn+1.

2
(8) ΣC , JΓK , x : JBK Γ `D [u] Γ,x:B : JCK Γ,x:B Definition of J·K 7
(9) ΣC , JΓK `D [(x :B)→ C] Γ : JsK Γ Induction Hypothesis

Assuming WTn we have WTn+1.
3

(10) ΣC , JΓK `D J(x :B)→ CK Γ : ? [·] · → J·K ·
If Γ `C A⇒ s and ΣC , JΓK `D [A] Γ : JsK Γ then ΣC , JΓK `D JAK Γ : ?.

(6.2.33) 9
(11) (?, ?, ?) ∈ D or (?,�,�) ∈ D Definition of D

(12) ΣC , JΓK , x : JBK Γ `D λx : JBK Γ. [u] Γ,x:B : (x : JBK Γ)→ JCK Γ,x:B Rλ

Γ, x : A `R M : B Γ `R (x :A)→ B : s
Γ `R λx :A.M : (x :A)→ B

Rλ ↑
8,11

(13) (x : Ts1 [B] Γ)→ Ts2 [C] Γ,x:B≡ΣC Ts (πs1,s2,s I [B] Γ (λx. [C] Γ,x:B)) T− π
T� (πs1,s2,� � a b)≡ΣC (x : Ts1 a)→ Ts2 (b x)↑

(6.4)
(14) (x : JBK Γ)→ JCK Γ,x:B≡ΣC J(x :B)→ CK Γ Definition of J·K ·, [·] · 13, 4,5,6,3
(15) ΣC , JΓK `D J(x :B)→ CK Γ : ? [·] · → J·K ·

If Γ `C A⇒ s and ΣC , JΓK `D [A] Γ : JsK Γ then ΣC , JΓK `D JAK Γ : ?.
(6.2.33) 3,9

(16) ΣC , JΓK `D λx : JBK Γ. [u] Γ,x:B : J(x :B)→ CK Γ C⇒≡

Γ `C M ⇒ A Γ `C B ⇒ s A≡βB
Γ `C M ⇒ B

C⇒≡ ↑
12,15,14

(17) ΣC , JΓK `D [λx :B. u] Γ : J(x :B)→ CK Γ Definition [·] · 16
O (18) ΣC , JΓK `D [t] Γ : JAK Γ Definition of t, A 17

♦ C⇒app

Γ `C M ⇒ (x :A)→ B Γ `C N ⇐ A

Γ `C M N ⇒ B {x← N}
C⇒app ↑

: t = f a,A = C {x← a}



6.2. SOUNDNESS 143

(1) WSn+1(Γ `C f a⇒ C {x← a}) Main hypothesis
(2) WTn
(3) WSn+1(Γ `C f ⇒ (x :B)→ C) Inversion on C⇒app

Γ `C M ⇒ (x :A)→ B Γ `C N ⇐ A

Γ `C M N ⇒ B {x← N}
C⇒app ↑

1
(4) WSn+1(Γ `C a⇐ B)
(5) Γ `C⇒ (x :B)→ C ws Well-sorted ⇒

If Γ `C t⇒ A then Γ `C⇒ A ws.
(6.2.3) 3

(6) WSn(Γ `C C {x← a} ⇒ sc) WS≺

∀i, π, π′, π′ = HT (π) ∧ π′ ≺ π ∧ π ∈ Li+1 ⇒ π′ ∈ Li↑
1

(7) Γ `C (x :B)→ C ⇒ s Inversion on ws⇒-type

Γ `C A⇒ s

Γ `C⇒ A ws
ws⇒-type

↑
5

(8) Γ `C B ⇒ s1 Inversion prod

If Γ `C (x :A)→ B ⇒ F then
– Γ `C A⇒ s1

– Γ, x : A `C B ⇒ s2.
– F≡βs3

– (s1, s2, s3) ∈ RC

(4.3.4) 3
(9) Γ, x : B `C C ⇒ s2

(10) (s1, s2, s)
(11) ΣC , JΓK `D [f ] Γ : J(x :B)→ CK Γ Induction Hypothesis

Assuming WTn we have WTn+1.
3

(12) (x : Ts1 [B] Γ)→ Ts2 [C] Γ,x:B≡ΣC Ts (πs1,s2,s I [B] Γ (λx. [C] Γ,x:B)) T− π
T� (πs1,s2,� � a b)≡ΣC (x : Ts1 a)→ Ts2 (b x)↑

(6.4)
(13) (x : JBK Γ)→ JCK Γ,x:B≡ΣC J(x :B)→ CK Γ Lemma

If Γ `C (x :A)→ B ⇒ s then J(x :A)→ BK Γ≡ΣC (x : JAK Γ)→ JBK Γ,x:A.
(6.2.14) 7

(14) ΣC , JΓK `D J(x :B)→ CK Γ : ? J·K · : ?
If ΣC ,Γ `D t : JAK Γ then ΣC ,Γ `D JAK Γ : ?.

(6.2.31) 7,17
(15) ΣC , JΓK `D (x : JBK Γ)→ JCK Γ,x:B : ? J·K · → J·K · : ?

If Γ `C (x :A) → B ⇒ s3, ΣC , JΓK `D J(x :A)→ BK Γ : ? then ΣC , JΓK `D (x : JAK Γ) →
JBK Γ,x:A : ?.

(6.2.37) 14
(16) ΣC , JΓK `D [f ] Γ : (x : JBK Γ)→ JCK Γ,x:B R≡βΓ

Γ `R M : A Γ `R B : s A≡βΓB

Γ `R M : B
R≡βΓ ↑

11,14,15
(17) ΣC , JΓK `D [a]BΓ : JBK Γ Induction Hypothesis

Assuming WTn we have WTn+1.
4

(18) ΣC , JΓK `D [f ] Γ [a]BΓ : JCK Γ
{
x← [a]BΓ

}
Rapp

Γ `R M : (x :A)→ B Γ `R N : A
Γ `R M N : B {x← N}

Rapp ↑
16,17

(19) ΣC , JΓK `D [f ] Γ [a]BΓ : Ts2 [C] Γ,x:B
{
x← [a]BΓ

}
Definition of J·K · 18

(20) Γ `C C {x← B} ⇐ s2 Substitution lemma

– If Γ, x : A,Γ′ `C t ⇒ B and Γ `C N ⇐ A, then Γ,Γ′ {x← N} `C t {x← N} ⇐
B {x← N}.

– If Γ, x : A,Γ′ `C⇒ wf and Γ `C N ⇐ A then Γ,Γ′ {N ← A} `C⇒ wf

(6.2.6) 8,9
(21) Γ `C C {x← B} ⇒ s2′ check-to-infer

If Γ `C t⇐ C then ∃A such that Γ `C t⇒ A and A�CC.
(4.3.2) 20

(22) s2′�Cs2

(23) [C] Γ,x:B
{
x← [a]BΓ

}
≡ΣC [C {x← a}]BΓ Lemma

For all n, we have SUBSTn.
(6.2.25) 9,4, 21

(24) Ts2 [C] Γ,x:B
{
x← [a]BΓ

}
≡ΣC Ts2 [C {x← a}]BΓ Congruence of ≡ΣC 23

(25) Ts2 [C {x← a}]BΓ≡ΣC Ts2′ [C {x← a}] Γ T− ↑
T� (��↑�s � t)≡ΣC Ts t↑
(6.4) 24,21

(26) Ts2 [C] Γ,x:B
{
x← [a]BΓ

}
≡ΣC Ts2′ [C {x← a}] Γ Transivity of ≡ΣC 24,25

(27) ΣC , JΓK `D Ts2′ [C {x← a}] Γ : JscK Γ WTn 2,6
(28) ΣC , JΓK `D Ts2′ JC {x← a}K Γ : ? [·] · → J·K ·

If Γ `C A⇒ s and ΣC , JΓK `D [A] Γ : JsK Γ then ΣC , JΓK `D JAK Γ : ?.
(6.2.33) 27

(29) ΣC , JΓK `D [f ] Γ [a]BΓ : Ts2 [C {x← a}] Γ R≡βΓ

Γ `R M : A Γ `R B : s A≡βΓB

Γ `R M : B
R≡βΓ ↑

19,29,28
(30) ΣC , JΓK `D [f ] Γ [a]BΓ : JC {x← a}K Γ Definition of J·K · 7,29
(31) [f a] Γ = [f ] Γ [a]BΓ Definition of [·] · 3,4
(32) ΣC , JΓK `D [f a] Γ : JC {x← a}K Γ Congruence of = 31,30

O (33) ΣC , JΓK `D [t] Γ : JAK Γ Definition of t, A 32

♦ C⇒≡

Γ `C M ⇒ A Γ `C B ⇒ s A≡βB
Γ `C M ⇒ B

C⇒≡ ↑
:

(1) WSn+1(Γ `C t⇒ A) Main hypothesis
(2) WSn+1(Γ `C t⇒ B) Inversion in C⇒≡

Γ `C M ⇒ A Γ `C B ⇒ s A≡βB
Γ `C M ⇒ B

C⇒≡ ↑
1

(3) WSn(Γ `C A⇒ s)
(4) B≡βA
(5) ΣC , JΓK `D [t] Γ : JBK Γ Induction Hypothesis

Assuming WTn we have WTn+1.
2

(6) ΣC , JΓK `D [A] Γ : JsK Γ Induction Hypothesis
Assuming WTn we have WTn+1.

3
(7) Γ `C⇒ B ws Well-sorted ⇒

If Γ `C t⇒ A then Γ `C⇒ A ws.
(6.2.3) 2

(8) Γ `C⇒ A ws Well-sorted ⇒
If Γ `C t⇒ A then Γ `C⇒ A ws.

(6.2.3) 1
(9) JBK Γ≡ΣC JAK Γ Lemma

If WSn(Γ `C⇒ A ws),WSn(Γ `C⇒ B ws) and A≡βB then JAK Γ≡ΣC JBK Γ.
(6.2.28) 7,8,4

(10) ΣC , JΓK `D JAK Γ : ? [·] · → J·K ·
If Γ `C A⇒ s and ΣC , JΓK `D [A] Γ : JsK Γ then ΣC , JΓK `D JAK Γ : ?.

(6.2.33) 3,6
O (11) ΣC , JΓK `D [t] Γ : JAK Γ R≡βΓ

Γ `R M : A Γ `R B : s A≡βΓB

Γ `R M : B
R≡βΓ ↑

5,10,9

♦ C⇒≡s

Γ `C M ⇒ A A≡βs
Γ `C M ⇒ s

C⇒≡s ↑
:
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(1) WSn+1(Γ `C t⇒ s) Main hypothesis
(2) WSn(Γ `C t⇒ B) Inversion on C⇒≡s

Γ `C M ⇒ A A≡βs
Γ `C M ⇒ s

C⇒≡s ↑
1

(3) B≡βs
(4) Γ `C⇒ B ws Well-sorted ⇒

If Γ `C t⇒ A then Γ `C⇒ A ws.
(6.2.3) 2

(5) Γ `C⇒ s ws Well-sorted ⇒
If Γ `C t⇒ A then Γ `C⇒ A ws.

(6.2.3) 1
(6) ΣC , JΓK `D [t] Γ : JBK Γ Induction Hypothesis

Assuming WTn we have WTn+1.
2

(7) JBK Γ≡ΣC JsK Γ Lemma
If WSn(Γ `C⇒ A ws),WSn(Γ `C⇒ B ws) and A≡βB then JAK Γ≡ΣC JBK Γ.

(6.2.28) 4,5,3
(8) ΣC , JΓK `D wf Typing Context wf

If Γ `R t : A then Γ `R wf .
(5.1.2) 6

(9) ΣC , JΓK `D JsK Γ : ? JsK · : ?
If ΣC , JΓK `D wf then ΣC , JΓK `D JsK Γ : ?

(6.2.35) 8
O (10) ΣC , JΓK `D [t] Γ : JsK Γ R≡βΓ

Γ `R M : A Γ `R B : s A≡βΓB

Γ `R M : B
R≡βΓ ↑

6,9,7

♦ C⇐�

Γ `C M ⇒ A Γ `C B ⇒ s A�CB

Γ `C M ⇐ B
C⇐� ↑

:
(1) WSn+1(Γ `C t⇐ A) Main hypothesis
(2) WSn+1(Γ `C t⇒ B) Inversion on C⇐�

Γ `C M ⇒ A Γ `C B ⇒ s A�CB

Γ `C M ⇐ B
C⇐� ↑

1
(3) WSn(Γ `C A⇒ s)
(4) B�CA

(5) ΣC , JΓK `D [t] Γ : JBK Γ Induction Hypothesis
Assuming WTn we have WTn+1.

2
(6) ΣC , JΓK `D [A] Γ : JsK Γ Induction Hypothesis

Assuming WTn we have WTn+1.
3

(7) ΣC , JΓK `D JBK Γ : ? J·K · : ?
If ΣC ,Γ `D t : JAK Γ then ΣC ,Γ `D JAK Γ : ?.

(6.2.31) 5
(8) ΣC , JΓK `D

s2
s1↑

[A]Γ
[B]Γ

I [t] Γ : Ts [A] Γ [·] · → [·] ··

If ΣPuC |= ΣSpC , A `C s1
?⇒, B `C s2

?⇒, ΣC ,Γ `D [A] Γ : Us1 , ΣC ,Γ `D [B] Γ : Us2 ,
ΣC ,Γ `D t : Ts1 [A] Γ and A�CB then ΣC ,Γ `D

s2
s1↑

[B]Γ
[A]Γ

I t : Ts2 [B] Γ.
(6.2.38) 6,7,4

O (9) ΣC , JΓK `D [t]AΓ : JAK Γ definition of J·K · and [·] ·· 8

♦ C⇐�s

Γ `C M ⇒ A A�C s

Γ `C M ⇐ s
C⇐�s ↑

: A = s

(1) WSn+1(Γ `C t⇐ s) Main hypothesis
(2) WSn+1(Γ `C t⇒ B) Inversion on C⇐�

Γ `C M ⇒ A Γ `C B ⇒ s A�CB

Γ `C M ⇐ B
C⇐� ↑

1
(3) B�Cs

(4) ΣC , JΓK `D [t] Γ : JBK Γ Induction Hypothesis
Assuming WTn we have WTn+1.

2
(5) ΣC , JΓK `D wf Typing Context wf

If Γ `R t : A then Γ `R wf .
(5.1.2) 4

(6) ΣC , JΓK `D JsK Γ : ? JsK · : ?
If ΣC , JΓK `D wf then ΣC , JΓK `D JsK Γ : ?

(6.2.35) 5
(7) ΣC , JΓK `D JBK Γ : ? J·K · : ?

If ΣC ,Γ `D t : JAK Γ then ΣC ,Γ `D JAK Γ : ?.
(6.2.31) 4

(8) ΣC , JΓK `D
s2
s1↑

[s]Γ
[A]Γ

I [t] Γ : Ts′ [s] Γ [·] · → [·] ··

If ΣPuC |= ΣSpC , A `C s1
?⇒, B `C s2

?⇒, ΣC ,Γ `D [A] Γ : Us1 , ΣC ,Γ `D [B] Γ : Us2 ,
ΣC ,Γ `D t : Ts1 [A] Γ and A�CB then ΣC ,Γ `D

s2
s1↑

[B]Γ
[A]Γ

I t : Ts2 [B] Γ.
(6.2.38) 6,7,3

(9) ΣC , JΓK `D [t] sΓ : JsK Γ Definition of [·] ·· and J·K · 8
O (10) ΣC , JΓK `D [t] sΓ : JAK Γ Definition of A 9

Lemma 6.2.40 We have WT 0.

Proof By inversion, there is no application at level 0. All the other cases can be handled the
same way as in Lemma 6.2.39.

Theorem 6.2.41 (Soundness of CTS encoding into the λΠ-calculus modulo theory)
Given a function specification C in normal form, a specification signature ΣSpC and a private sig-
nature ΣPrC if we have

• No clash between the symbol names of the encoding and variable names (Assumption 1)

• A valid specification signature: ΣPuC |= ΣSpC (see Definition 6.1.5)

• A valid private signature: ΣPuC |= ΣPrC (see Definition 6.1.6)

then we have for all n,
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• If WSn(Γ `C t⇒ A) then ΣC , JΓK `D [t] Γ : JAK Γ

• If WSn(Γ `C t⇐ A) then ΣC , JΓK `D [t]AΓ : JAK Γ

• If WSn(Γ `C⇒ wf) then ΣC , JΓK `D wf

Proof By induction on n. The base case from Lemma 6.2.40 and the inductive case from
Lemma 6.2.39.

Using the equivalence between CTS and bi-directional CTS (see Theorem 4.3.9), one may
deduce the soundness of the encoding for CTS:

Corollary 6.2.42 Given a function specification C in normal form, a specification signature
ΣSpC and a private signature ΣPrC if we have

• No clash between the symbol names of the encoding and variable names (Assumption 1)

• A valid specification signature: ΣPuC |= ΣSpC (see Definition 6.1.5)

• A valid private signature: ΣPuC |= ΣPrC (see Definition 6.1.6)

then we have for all n,

• If WSn(Γ `C t : A) then ΣC , JΓK `D [t]AΓ : JAK Γ

• If WSn(Γ `C wf) then ΣC , JΓK `D wf

where [t]AΓ (resp. JΓK) is the same encoding function pre-composed by the computable function
extracted from Theorem 4.3.9 (the proof is constructive) that translate Γ `C t : A to Γ `C t⇐ A
(resp. Γ `C wf to Γ `C⇒ wf).

6.3 Conservativity

We conjecture that this encoding is also conservative (see Definition 5.3.2).

Conjecture 13 (Conservativity of the encoding of CTS into the λΠ-calculus modulo theory)
If ΣC , JΓK `D P : JAK Γ then there exists t such that Γ `C t⇐ A.

Conservativity is hard to prove because we need to reason on any term P . Maybe it would
be possible to adapt the conservativity proof of Ali Assaf’s for PTS [Ass15b]. As mentioned in
Section 5.3.2, we are instead interested in to define a (partial) inverse function from the image of
the encoding to the original CTS to prove that our encoding preserve the shape of a CTS term.
However, from this inverse function we cannot prove the conservativity because conservativity
needs to reason on all the terms, even the one which are not in the image of the translation.
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Definition 6.3.1 (Inverse translation for CTS encoding)
We define the three partial inverse functions |·|, |·|↑ and ‖·‖ by induction as follows

|us,� �| := s

|πs1,s2,� � | := λα : s1. λβ :α→ s2. (x :α)→ β x

|x| := x

|λx :A.M | := λx : ‖A‖. |M |
|M N | := |M | |N |↑

|��↑
�
� � A|↑ := |A|
|A|↑ := |A|

‖Us‖ := s

‖T� A‖ := |A|↑

‖(x :A)→ B‖ := (x : ‖A‖)→ ‖B‖
‖λx :A.M‖ := λx : ‖A‖. ‖B‖
‖M N‖ := ‖M‖ |N |↑

A well known issue is that the inverse translation for the code of a product generates unnec-
essary β redexes: The η reduction of a term such as πs1,s2,s3 I may be a valid term in the CTS
encoding even if it is not in the image of the translation.

The functions defined above are actually right-inverse of the encoding functions modulo β
conversion.

Lemma 6.3.1 For every functional CTS specification in normal form,

• If Γ `C t⇒ A then |[t] Γ| ≡βt.

• If Γ `C t⇐ A then
∣∣[t]AΓ ∣∣↑≡βt.

• If Γ `C⇒ A ws then ‖JAK Γ‖≡βA.

Proof By a mutual induction on the term t and A for the last one.

These inverse functions ensure that our encoding functions are not trivial, but do not ensure
that the encoding is conservative. Below we show why using a lift operator which acts on sorts
only (as proposed by Ali Assaf [Ass15b]) is not conservative.

Example 6.6 The lift operator can be applied only on sorts and not types. Hence, to simulate
subtyping over products, we sometimes need to eta-expand some terms. Going back the specifi-
cation of Lean(Definition 1.5.13) and given the following typing context Γ:

• P : 0→ 0

• eq : (0→ 3)→ (0→ 3)→ 0

• refl : (x : 0→ 3)→ eq x x
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Then we can derive the judgment Γ `C⇒ eq P (λx : 0. P x) ws. However, it is easy to see that
there is no term t such that Γ `C t ⇐ eq P (λx : 0. P x). Indeed, the specification is consistent
and terminating, therefore this type should be inhabited by term in normal form, and the only
possibility for that is to use the constant refl. But since P and λx : 0. P x are not convertible
this is not possible. However, if we encode this judgment the lift operator, we need to eta-expand
the variable P to lift the type 0→ 0 to 0→ 2. Therefore, the translated type becomes the same
as if we had translated the type eq (λx : 0. P x) (λx : 0. P x) which is inhabited by the translation
of refl (λx : 0. P x). Hence conservativity if broken since there is a type in the original system
which is not inhabited but its translation is inhabited.

6.4 Future Work

Encoding functions over a derivation tree: We have preferred in this work to have en-
coding functions on judgments instead of derivation trees. However, expressing these functions
on derivation trees would avoid using bi-directional CTS. Since the equivalence between CTS
and bi-directional CTS is only for CTS specification in normal form, it might be interesting to
see whether the encoding expressed on derivation trees allows the embedding of a larger class of
CTS specifications.

Reformulating the proof with an explicit conversion: Instead of using the well-structured
hypothesis, it might be interesting to have a proof using an explicitly typed conversion. This way,
the proof relies on a weaker property than well-structured derivation trees since we have showed
in Section 3.3 that well-structured derivation trees implies the equivalence between untyped and
typed conversion.

Identity casts: While the identity cast is used in the soundness proof, we conjecture that we
could prove the soundness of our encoding without it. We used the identity cast in the proof
of lemma 6.2.25 which shows the encoding functions permute with substitutions. However, we
think that this lemma could be weakened so that there is no need for the identity cast rule ↑− id

�
�↑aa � t≡ΣC t↑

(6.4). To do so, we propose to weaken the substitution lemma as follows:

If Γ, x : A,Γ′ `C t⇐ B and Γ `C N ⇐ A then

[M ]BΓ,x:A,Γ′
{
x← [N ]AΓ

}
≡ΣC [M {x← N}]B{x←N}Γ,Γ′{x←N}

To be used, this require to change the translation function J·K · by the following one instead:

JAK Γ = Ts [A] sΓ
when Γ `C A

?⇒ s

Another advantage is that identity casts are the only reason that we needed the well-
structured derivation tree hypothesis (see 6.2.22). Hence by removing the identity cast canonicity
rule, there might be a chance that the well-structured hypothesis is not required anymore.

However, identity casts are useful in practice as argued in Section 6.1.4. Moreover, we ob-
served empirically that when identity casts are mixed with inductive types (presented in Chap-
ter 8), identity casts become mandatory otherwise type checking fails. However, we have no
theoretical justification for this since we did not investigate thoroughly the encoding of inductive
types into the λΠ-calculus modulo theory nor Dedukti.
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Remove the well-structured hypothesis in the typing preservation proof: The only
reason why we need to do an induction over the level while showing the preservation of typing was
because in the application case C⇒app

Γ `C M ⇒ (x :A)→ B Γ `C N ⇐ A

Γ `C M N ⇒ B {x← N}
C⇒app ↑

we were lacking the hypothesis that that Γ `C B {x← a} ⇒
s. We have shown in Section 3.4.2 that this hypothesis can be safely added as a premise of the
application rule for CTS Capp

Γ `C M : (x :A)→ B Γ `C N : A
Γ `C M N : B {x← N}

Capp ↑
without changing the expressivity of the typing system. By

equivalence, this premise also could be added for the rule C⇒app

Γ `C M ⇒ (x :A)→ B Γ `C N ⇐ A

Γ `C M N ⇒ B {x← N}
C⇒app ↑

. Hence, combining this remark
with the remark about the identity cast above, it may be possible to prove the embedding without
the well-structured hypothesis.

Toward a formalization of the proof In this chapter, we have tried to present a readable
proofs which had the disadvantage to leave out some details. To be really confident about the
proof, it would be interesting to formalize these proofs in a proof assistant. We also realized that
while translating judgments helps to get readable proofs, it adds a lot of complexity to fillin all
the tiny details because the price of this was to use partial functions.

Moreover, this translation shows that the cast operator as a computational content. Ali
Assaf already showed the computational content for the lift operator [Ass14] for the calculus
of construction. Probably, in a similar way, we could define a CTS with an explicit cast. We
conjecture that the 8 canonical equalities (Definition 6.4) used for this translation would be
needed to prove the equivalence between a CTS with an explicit cast with CTS using an implicit
subtyping. This type system may be useful per se, but it also interesting since it would give a
nice way to express our translation functions to the λΠ-calculus modulo theory on terms.
This way we would have total functions which are easier to deal with a proof assistant.



Chapter 7

STT∀: A Constructive Version of
Higher-Order Logic

This chapter presents the STT∀ logic, an extension of Simple Type Theory [Far08] with prenex
polymorphism and type operators. This logic is powerful enough to express arithmetic theorems
easily, but weak enough so that it is easy to export theorems from this logic to several other sys-
tems, making this logic suitable for interoperability. STT∀ has been implemented in the logical
framework λΠ-calculus modulo theory and its implementation in Dedukti is presented in
Chapter 8. We illustrate its adequacy for exporting theorems in Chapter 12 by showing how
proofs in STT∀ can be exported to Coq, Matita, Lean, PVS and OpenTheory, the latter
being used to target proof systems based on HOL (Higher-Order Logic).

The restriction of STT∀ to prenex polymorphism is a consequence of the logical inconsistency
of the system U− (Definition 1.5.10) [Hur95]. This remark will be detailed in Section 7.2, where
we show that STT∀ can be embedded into a CTS. This embedding also gives us a proof of its
consistency for free, because there is a sort-morphism from the CTS specification of STT∀ to a
consistent CTS. However, the CTS encoding is a little bit heavy to use in practice. We will see
a light implementation of the embedding of STT∀ into Dedukti in Chapter 8.

7.1 Definition of STT∀

STT∀ is an intutionistic version of Simple Type Theory [Far08] with prenex polymorphism
and type operators. In this work, we formulate Simple Type Theory (also known as Church’s
Type Theory) as the PTS λHOL (as described in Chapter 1) with a type variable ι : � to
represent the type of natural numbers. One drawback of Simple Type Theory is its lack
of polymorphism which makes this system inefficient to use in practice. For example, without
polymorphism, there is one equality symbol for each needed type. This leads to proving the
reflexivity of equality for each equality symbol, while it is the same proof for every type. Jean-
Yves Girard [Gir72] [Coq86] proved that adding full polymorphism1 (such as System F ) to
Simple Type Theory makes this system logically inconsistent. This paradox has also been
formulated on PTS and simplified by Hurkens [Hur95] which gave the PTS specification U−.

It is known that, in order to avoid such inconsistency, the polymorphism could be restricted
to prenex polymorphism. Prenex polymorphism extends Simple Type Theory in a consistent
way because every polymorphic type can be mademonomorphic by instantiation and duplication.

1Coquand’s paper [Coq86] also shows that omitting types annotations for polymorphic types would make the
logic inconsistent.
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Types A,B ∈ T ::= X | prop | A→ B | p A1 . . . An
PolyTypes T ∈ T ::= A |

A

X. T
Terms t, u ∈ T ::= x | λx :T. t | λX. t | t u | t A |

t⇒ u | ∀x :A. t | AX. t
Contexts Γ ∈ G ::= ∅ | Γ, x : A | Γ, X | Γ, (p, n)
Hypothesis Ξ ∈ G ::= ∅ | Ξ, t

Figure 7.1: STT∀ syntax

This means that any derivation using prenex polymorphism can be translated back to Simple
Type Theory.

But prenex polymorphism is not enough to express type operators such as list. A type
operator is constructed using a name and an arity. For example, list is a type operator of arity
1 because it takes one type as parameter.

These are the two main features of STT∀ over Simple Type Theory. The STT∀ syntax
is presented in Fig. 7.1. The types for propositions prop and functions →, could be declared as
type operators, of arity 0 and 2 respectively. Since they have a particular meaning for the typing
judgment, we add them explicitly to the syntax. Also, STT∀ allows the declaration and the
definition of constants. Declaring constants is great for interoperability because the user in the
target system is free to use the definition he wants. However, it also means that this operator
comes with properties (or axioms) that needs to be proven by the user. The typing system and
the proof system are presented in Fig. 7.2 and Fig. 7.3. Finally, we point out that, in STT∀,
two terms are considered equal if they are convertible up to β and δ (unfolding of constants).

In the next section, we explore the logic STT∀ from the point of view of CTS. This will give
an easy proof of its consistency and also allows us to understand possible extensions of STT∀.

7.2 STT∀ and CTS

In this section, we explore how STT∀ can be seen as a CTS. Since STT∀ extends Simple
Type Theory with prenex polymorphism, its associated CTS is an extension of λHOL as
defined by Geuvers [Geu93]. Thanks to the cumulativity relation, it is possible to express prenex
polymorphism. This is pictured in the definition of the CTS STT∀−.

Definition 7.2.1 (STT∀−)

(STT∀−) =


S = {?,�,4,♦}
A = {(?,�), (�,4)}
R = {(?, ?, ?), (�,�,�), (�, ?, ?), (4,♦,♦), (4, ?, ?)}
C = {�,♦} ?

�4

♦

With respect to λHOL, we introduce a new sort ♦ which is not the type of �, instead � is
a subtype of ♦. The idea behind this design is to see the sort � as the sort for monomorphic
types while ♦ is the sort for polymorphic types. The cumulativity relation between � and ♦
represents that any monomorphic type is also a polymorphic type. From STT∀−, there exist
two interesting sort-morphisms:
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∅ `S wf
S wf

∅
Γ `S wf X 6∈ Γ

Γ, X `S wf
S wf
tvar

Γ `S wf p /∈ Γ
Γ, (p, n) `S wf

S wf
tyop

Γ `S wf x /∈ Γ Γ `S A : type
Γ, x : A `S wf

S wf
var

Γ `S wf
Γ `S prop : type

S type
prop

Γ `S wf X ∈ Γ
Γ `S X : type

S type
tvar

Γ `S A : type Γ `S B : type
Γ `S A→ B : type

S type
→

Γ `S Ai : type (p, n) ∈ Γ
Γ `S p A1 . . . An : type

S type
tyop

Γ, X `S T : type X 6∈ Γ
Γ `S

A

X. T : type
S typeA

Γ `S wf (x,A) ∈ Γ
Γ, x : A `S x : A

Svar

Γ, x : A `S t : B
Γ `S λx :A. t : A→ B

Sλ

Γ `S t : A→ B Γ `S u : A
Γ `S t u : B

Sapp

Γ `S t : prop Γ `S u : prop
Γ `S t⇒ u : prop

S⇒

Γ, x : A `S t : prop
Γ `S ∀x :A. t : prop

S∀

Γ, X `S t : prop
Γ `S

A

X. t : prop
S A

Γ, X `S t : T
Γ `S λX. t : A

X. T
SλT

Γ `S t : A

X. T Γ `S A : type
Γ `S t A : T {X ← A}

SappT

Figure 7.2: STT∀ Typing System
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Γ `S t : prop
Γ; Ξ, t `S t

Svar

Γ; Ξ `S t t≡βu
Γ; Ξ `S u

S≡β

Γ; Ξ, t `S u

Γ; Ξ `S t⇒ u
S⇒I

Γ; Ξ `S t⇒ u Γ; Ξ `S t

Γ; Ξ `S u
S⇒E

Γ, x : A; Ξ x 6∈ Γ
Γ; Ξ `S ∀x :A. t

S∀I
Γ; Ξ `S ∀x :A. t Γ `S u : A

Γ; Ξ `S t {x← u}
S∀E

Γ, X; Ξ `S t X 6∈ Γ
Γ; Ξ `S

A

X. t
S A

I

Γ; Ξ `S

A

X. t Γ, A `S wf
Γ; Ξ `S t {X ← A}

S A

E

Figure 7.3: STT∀ Proof System

• The first one is a sort-morphism from STT∀− to C3 as proved in Theorem 7.2.1 which
implies that STT∀− is logically consistent (β terminates): If the type false, (x : ?)→ x is
inhabited, it is inhabited by a term in normal form using β. But it is easy to see that such
term does not exists.

• The second one is a sort-morphism from STT∀− to U− where the sorts ♦ and � are merged
which emphasizes that polymorphism of STT∀− is weaker than full polymorphism.

However, the CTS STT∀− is not a faithful representation of STT∀ because it cannot rep-
resent a type operator. Indeed, a type operator such as list should have the type (in the CTS)
�→ � which is not possible in STT∀−. This requires to add a new product (a new rule in the
specification). One way would be to add the rule (4,4,4).

Definition 7.2.2 (STT∀+)

(STT∀+) =



S = {?,�,4,♦}
A = {(?,�), (�,4)}
R = {(?, ?, ?), (�,�,�), (�, ?, ?), (4,♦,♦)

, (4, ?, ?), (4,4,4)}
C = {�,♦}

?

�4

♦

This new specification is called STT∀+ because this rule is more expressive than what can
be achieved in STT∀. This is because STT∀+ allows to use type variables parameterized by
other type variables. For example, one can write in STT∀+ the judgment

`STT∀+ (M : (�→ �))→ (A :�)→ M A→ M A : ♦

which is not possible in STT∀. Indeed, the type of a type variable X is STT∀ can only be �.
This is the same as saying that the sort 4 has only one inhabitant which is �.
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However, the rule added in STT∀+ provides new inhabitants for the sorts 4 which do not
exist in STT∀−. Hence, to provide a faithful representation of STT∀ as a CTS, we add a new
sort ◦ and the product (4,4, ◦) instead.

Definition 7.2.3 (STT∀)

(STT∀) =



S = {?,�,4,♦, ◦}
A = {(?,�), (�,4)}
R = {(?, ?, ?), (�,�,�), (�, ?, ?), (�,♦,♦)

, (♦, ?, ?), (4, ◦, ◦)}
C = {(�,♦), (4, ◦)}

?

�4

♦

◦

The logical consistency of STT∀−, STT∀+, and STT∀ is hence ensured since there is a
sort-morphism from these specifications to the CTS of Coq which is terminating [Wer94].

Theorem 7.2.1 (Consistency of STT∀) The CTS specifications STT∀−, STT∀+and STT∀
are logically consistent.

Proof There is a sort-morphism from these specifications to C4 (as defined in Definition 1.5.12):

• ? is mapped to 0

• � is mapped to 1

• 4, ♦ and ◦ are mapped to 2

We can conclude with Theorem 2.2.2 and Theorem 2.2.3.

7.2.1 From STT∀ to CTS
One can prove that the first representation of STT∀ can be embedded into a CTS. This
translation is given in Fig. 7.4. Notice that this translation goes from a judgment to a judgment.

Lemma 7.2.2

• If Γ `S wf then [Γ] `STT∀ wf

• If Γ `S A : type then [Γ] `STT∀ [A] : �

• If Γ `S t : A then [Γ] `STT∀ [t] : [A]

• If Γ `S t : T then [Γ] `STT∀ [t] : [T ]

• If Γ; Ξ `S t then there exists p such that [Γ] , [Ξ] `STT∀ p : [t] and [Γ] `STT∀ [t] : ?

Proof A straight induction on the derivation tree.

We conjecture that actually these two representations are equivalent. This conjecture will be
explored in Section 9.3.1 on the Dedukti side using the tool Dkmeta presented in Chapter 9.
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[X] = X

[prop] = ?

[A→ B] = [A]→ [B]

[p A1 . . . An] = p [A1] . . . [An]

[A] = [A]

[ AX. T ] = (X :�)→ [T ]

[x] = x

[λx :T. t] = λx : [T ]. [t]

[λX. t] = λX. [t]

[t u] = [t] [u]

[t u] = [t] [A]

[t⇒ u] = [t]⇒ [u]

[∀x :A. t] = (x : [A])→ [t]

[ AX. t] = (x :�)→ [t]

[∅] = ∅

[Γ, x : A] = x : [A] , [Γ]

[Γ, X] = X : �, [Γ]

[Γ, (p, n)] = p : �→ · · · → �︸ ︷︷ ︸
n times

→ �, [Γ]

Figure 7.4: A translation of STT∀ to CTS
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7.3 Translation into λΠ-calculus modulo theory

Given the embedding from STT∀ to its CTS representation, the translation in λΠ-calculus
modulo theory can be done using the embedding of CTS in Dedukti as seen in Chapter 6
since the CTS is functional and in normal form. This allows us to derive automatically the
correction of this translation. However, the original formalization of STT∀ in Dedukti was
not done from a formulation of STT∀ as a CTS but rather from the original formulation of it,
as presented in the beginning of this chapter. This original formalization will be detailed for
Dedukti in Chapter 8.

7.4 Future work

Equivalence between STT∀ and its CTS representation: We have shown that the first
formulation could be encoded as a CTS. However, we conjecture that any derivation tree in
the CTS representation could be translated as a derivation tree in STT∀. This should not be
difficult; however, it requires a little bit of work because, as for implicit subtyping, it is not clear
from the CTS judgment which product needs to be used: one needs to look at the derivation
tree. However, this inverse translation can be expressed easily in Dedukti as a translation
from judgment to judgment since the encoding of CTS into the λΠ-calculus modulo theory
makes these pieces of information explicit.

Changing the definition of CTS We started from a definition of CTS already studied in
the litterature [Bar99a, Las12, Ass15b] but our results suggest that the current definition could
be changed. Our reason to be conservative over this definition was to have the opportunity to
study interoperability between CTS not only from one specification to another but also from
one type system to another. But we see that being conservative requires to introduce some
technicality. We suggest that the CTS definition could be changed, in particular we propose
here two modifications:

• By restraining the specification to be in normal form (Definition 4.2.1)

• By adding the following typing rule:

Γ `C wf s ∈ S>C
Γ `C s : s∞

where s∞ is a specific sort not in SC .

We have shown in Chapter 2 several theorems which explain that by doing so, we are defining
a type system quite similar to the classic definition as defined in Chapter 1. The chapters 4
and 6 suggest that all CTS should be in normal form. Notice that all the specifications we have
described which are behind the type system of concrete proof systems are already in normal form.
This kind of incongruity is already present in the definition of PTS. Afterall, non-functional PTS
are only functional CTS. This is reflected in the litterature where many papers only considered
functional PTS.

The definition of semantic CTS (Definition 3.3.1) and our embedding to the λΠ-calculus
modulo theory(Definition 6.1.2) suggests that this special sort s∞ already exists somehow
and is just implicit in the current definition of CTS. Moreover, this would recover a symmetry
between top-sorts with respect to the subtyping rules: Only one subtyping rule would be needed.
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Also, this notion of weak equivalence (Definition 2.1.12) defined in Chapter 2 is needed because
with the current definition, typing context cannot contain variables typed by a top-sort.

Hence, is the current definition of CTS too general? If so...

What should be the “true” definition of CTS?



Part II

Interoperability in Dedukti: A
case-study with Matita’s arithmetic

library
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Chapter 8

Dedukti: An implementation of
λΠ-calculus modulo theory

In Chapter 5, we have defined PTS modulo which enhance PTS with a custom conversion
generated from arbitrary equations on terms. We have defined λΠ-calculus modulo theory
as the extension of LF for PTS modulo. From Cousineau & Dowek [CD07], we know that every
PTS (and by definition all the PTS modulo) can be embedded into the λΠ-calculus modulo
theory. The main result of Chapter 6 also proves that every CTS can be embedded into
λΠ-calculus modulo theory in a sound way. However, the type checking of λΠ-calculus
modulo theory is undecidable [Bla01] because of the conversion.

One way to recover decidability of type checking is to orient the equations as a convergent
term rewrite system [BN99]. This is the idea behind Dedukti which is an implementation
of λΠ-calculus modulo theory where equations are implemented as a convergent rewrite
system. However, having rewrite rules instead of equations raises two issues:

• What are the limits of the rewrite system to keep the type checking decidable

• How to ensure that subject reduction is still valid

For the first problem, there are three limits:

• The matching problem needs to be decidable

• Checking that a rewrite rule is well-typed needs to be decidable

• The term rewrite system is terminating

For the second problem, this comes back to proving the injectivity of products. This can be
solved if we manage to prove the confluence of the term rewrite system [ABC+16].

Ronan Saillard shows in [Sai15] that it is possible to have an implementation of λΠ-calculus
modulo theory with Higher-Order rewrite rules (restricted to the pattern fragment as defined
by Dale Miller [Uni91]) so that the matching problem is decidable but also the type checking of
rewrite rules. However, it is left to the user to check whether the rewrite system is convergent,
ensure the injectivity of products, and, if the rewrite system is meant to capture an equational
theory, to check that it does so. This implementation is called Dedukti.

We will see that having an implementation that allows non-convergent rewrite systems is
convenient as it is shown in Chapter 9 to define meta rewrite systems.

159
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It has been shown that many encodings in λΠ-calculus modulo theory can be im-
plemented also as a term rewriting system: Matita [Ass15b], HOL-Light [Ass15b] or Focal-
ize [Cau16a]. These results showed that Dedukti can be effectively used as an independent
type-checker, for instance to validate proofs generated by these systems.

8.1 Dedukti

The system Dedukti implements the algorithms described in Ronan Saillard’s Thesis [Sai15].
Dedukti enhances LF with rewrite rules and as such also implements the λΠ-calculus mod-
ulo theory calculus as defined in Chapter 5. To make the type checking of a theory encoded
in λΠ-calculus modulo theory decidable in Dedukti, the term rewriting system should
be convergent. However, it is undecidable in practice to check these conditions and the design
of Dedukti does not enforce these conditions to be true. In particular, this means that the
specification of Dedukti when the term rewriting system is not confluent or terminating is not
properly well-defined (subject-reduction may not hold anymore). In practice, the system can
loop, or return an error while the term is actually well-typed (if the system is not confluent for
example). To overcome this issue, it is possible using Dedukti to call an external termination
or confluence checker. The version 2.7 of Dedukti is compatible with the TPDB format [MNS19]
which is used by many confluence checkers such as CSIHO [NFM17] or ACPH [ACP16]. For
termination, there exists currently only one external termination checker compatible with De-
dukti: SCT [BGH19]. In practice, these tools work well for simple encodings in Dedukti. But
for concrete encodings such as the one of CTS, it is unlikely that a termination or confluence
checker could be used to check these properties automatically. A reason for that is that if the
encoding of a logic is conservative (Definition 5.3.2), then the confluence and termination of the
term rewriting system induced by the encoding implies the consistency of that logic. In partic-
ular, automatically checking the termination of the term rewriting system encoding Calculus
of Constructions would imply the normalization of that same calculus.

The freedom offered by Dedukti by checking neither confluence nor termination is actually
a real benefit since it allows experimentations really easily. Moreover, the tool Dkmeta which
will be presented in Chapter 9 uses this liberty to its own advantage for defining a meta rewrite
system. However, one should be careful because subject reduction could be lost easily.

In practice, when a logic is encoded in Dedukti using a specific term rewrite system, checking
that the system is convergent and does not break the injectivity of products is not enough to
guarantee that Dedukti can check the proofs coming from that logic. There are two reasons for
that:

• First, the mechanism of definition in Dedukti is implemented using rewrite rules. Hence,
a proof should be a total function. This check is not done (yet?) in Dedukti because it
requires making a distinction between symbols used to define a logic and symbols which
are actually theorems inside this logic.

• Secondly, our shallow embedding does not encode (yet?) some requirements related to
inductive types for example as the positivity criterion for inductive types (see Section 8.4.2).

The next section is devoted to the current implementation of Dedukti (version 2.7). We do
not prove any meta-theory property in this section and refer the reader to Saillard’s Thesis [Sai15].
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8.1.1 Syntax of Dedukti

We briefly present the concrete syntax of Dedukti that we will use in the remaining part of this
manuscript. One may find the full syntax at https://github.com/Deducteam/dedukti/blob/
master/syntax.bnf.

To declare a type Nat of sort ? we write

1 Nat : Type.

where Type is a keyword for ?. We can also add constant symbols such as 0 and S:

1 0 : Nat.
2 S : Nat -> Nat.

We use -> to denote products as in A→ B. The same arrow is used for dependent products.
By default these symbols are static (in opposition to definable symbols). In Dedukti, it is not
allowed to add a rewrite rule on static symbols (the static symbol appears at the the head of the
pattern). This way, a static symbol is automatically injective and this information can be used
by Dedukti’s type checker for rewrite rules. To declare a definable symbol, we need to use the
keyword def as in:

1 def plus : Nat -> Nat -> Nat.

Such a function can be defined with rewrite rules as shown below:

1 [x] plus 0 x --> x.
2 [x,y] plus (S x) y --> S (plus x y).

We use --> for rewrite rules as in ↪→β . In square brackets, we put the local variables of the
rewrite rules (the ones in the local typing context ∆ in λΠ-calculus modulo theory). In
Dedukti, a definition can be given via a rewrite rule as

1 def 1 : Nat.
2 [] 1 --> S 0.

But Dedukti uses a syntactic sugar for this:

1 def 1 : Nat := S 0.

The very same mechanism is used to prove a theorem:

1 def thm : type := proof.

Finally, we have lambdas and applications:

1 A : Type.
2 g : A -> A.
3 def f : A -> A := x : A => g x.

Notice this time we use the arrow => for the λ-abstraction.

https://github.com/Deducteam/dedukti/blob/master/syntax.bnf
https://github.com/Deducteam/dedukti/blob/master/syntax.bnf
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Higher-order rewrite rules

The left-hand side of a rewrite rule in Dedukti is a pattern in the sense of Miller et al [Uni91]. A
pattern is a subset of terms for which the matching problem is decidable. In Dedukti, patterns
can also be nonlinear. An informal description of a patterm is given below.

Definition 8.1.1 (Pattern in Dedukti)
A pattern in Dedukti is roughly defined by the following principles.

1. Always start by a definable symbol.

2. May contain local variables (in square brackets).

3. A local variable may have several occurences on the left-hand side.

4. A local variable can be applied to bound variables (bounded by a λ-abstraction in a pattern).
Such local variable is said High-Order local variable.

5. Each higher-order local variable can be applied only to bound variables pairwise distinct

Moreover, patterns may contain brackets. We postpone the semantics of brackets and nonlin-
ear rewrite rule below.

Remark 26 Dedukti allows wildcards in a pattern. This is just syntactic sugar for a local
variable which is not used on the right-hand side of a rewrite rule.

A toy example using patterns which higher-order logcal variable is the derivative of functions.
For example:

1 Nat : Type.
2 0 : Nat.
3 S : Nat -> Nat.
4

5 def 1 : Nat := S 0.
6 def 2 : Nat := S 1.
7

8 def plus : Nat -> Nat -> Nat.
9 [x] plus 0 x --> x.

10 [x,y] plus (S x) y --> S (plus x y).
11

12 def derivative : (Nat -> Nat) -> Nat -> Nat.
13 [] derivative (x => x) --> x : Nat => 1
14 [F] derivative (x => F) --> x : Nat => 0
15 [F,G] derivative (x => plus (F x) (G x)) -->
16 x => plus (derivative (z : Nat => F z) x) (derivative (z : Nat => F z)

x).↪→

17

18 #CHECK (derivative (x : Nat => plus x x)) == (x : Nat => 2).

In this example, we define a function derivative which aims to compute the derivative of
functions of type Nat -> Nat. For example the normal form computed by thos rules for the
function derivative (x => plus x x) is x => S (S 0) which is what we expected. Notice
that if a higher-order local variable is not applied to a bound variable, then this bound variable
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cannot appear in the substituted term for this variable. This means that in derivative (x
=> F), the variable F does not depend on x. If one had written derivative (x => F x) this
means that the variable x may or may not appear in F. We will see more uses of this feature in
Chapter 9.

Remark 27 Some restrictions are implemented in Dedukti about this pattern fragment. One
is that in Dedukti, a pattern always starts with a symbol. Hence, a λ-abstraction itself is not
a Dedukti pattern but is a pattern defined by Miller in [Uni91]. Other restrictions are used to
circumvent the fact that Dedukti is not modulo βη which we will not detail here [Sai15].

As we have seen in the example above with the command #CHECK, Dedukti defines a set
of commands which are used mainly for debug usage. We will not detail these commands here
and refer the reader to the official documentation instead: https://github.com/Deducteam/
Dedukti.

Non-linear rewrite rules and brackets

Miller’s patterns have been extended with two other features: brackets and non-linear rewrite
rules. These two features enable a restricted version of conditional rewriting.

Brackets are an old feature which are now–for most of the use cases we know–outdated either
by the algorithm to type check rewrite rules which is described below or by non-linear rewrite
rules. A rewrite rule may contain an arbitrary term between brackets as a term which is not a
Miller pattern as: [F,G] s (x => F G). The semantics is the following: A bracket is replaced
by a fresh variable X and a constraint X = f (x => b) is added. Every time Dedukti tries to
apply a rewrite rule, then it checks whether the constraint introduced by the bracket is satisfied.
If it does, it goes on, otherwise the type checking fails with an error message. The purpose of a
bracket is to help the type checker to type check a rewrite rule, and is used as an assertion: Any
term which matches this rewrite rule has to satisfy this constraint since this constraint has been
used for the type checking.

Non-linear rewrite rules allow a variable to appear several times in a pattern. In that case,
the semantics is the following: Each non-linear variable is replaced by a fresh variable with
the constraint that the terms which match these variables are convertible. For example if one
declares the rule [x] f x x --> 0., then the term f (2 + 2) 4 reduces to 0.

8.1.2 Type checking and Subject reduction in Dedukti

One may notice that, since a rewrite rule is not symmetric, the type checking of a rewrite rule
does not need to be symmetric anymore. This means that the rule Rwf

≡

Γ,∆ `R B : T Γ,∆ `R A : T
Γ, A≡∆B `R wf

Rwf
≡ ↑

does not check that the
left-hand side of a rule and the right-hand side of the rules have the same type. Instead we only
need to check that whenever the left-hand side is well-typed, the right-hand side is well-typed.
This definition is particularly useful when we are faced with dependent types. The rule presented
in Fig. 8.1 is well-typed in Dedukti, but it would not if we used the rule Rwf

≡

Γ,∆ `R B : T Γ,∆ `R A : T
Γ, A≡∆B `R wf

Rwf
≡ ↑

. Indeed, the
left-hand side is ill-typed because n and m are not equal. However, when the left-hand side is
well-typed, we have m = n, hence, the type of v is vect m which is equal to vect n. Hence, both
sides of the rewrite rule have the same type. The type checking of a rewrite rule then becomes:

Γ,∆ `R Bσ : T implies Γ,∆ `R Aσ : T σ ∈ ∆→ T
Γ, A ↪→∆ B `R wf

Rwf
↪→

https://github.com/Deducteam/Dedukti
https://github.com/Deducteam/Dedukti
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1 nat : Type.
2

3 0 : nat.
4

5 S : nat -> nat.
6

7 vect : nat -> Type.
8

9 nil : vect 0.
10

11 A : Type.
12

13 cons : n:nat -> A -> vect n -> vect (S n).
14

15 def tail : n:nat -> vect (S n) -> vect n.
16

17 [n,m,a,v] tail n (cons m a v) --> v.

Figure 8.1: Type checking rewrite rule

Dedukti implements an heuristic to find such substitution [Sai15]1. In particular this heuris-
tic uses the fact that a symbol is static and so injective. Saillard proved the following statement
for subject reduction:

Theorem 8.1.1 (Saillard) If Dedukti satisfies the injectivity of product, then subject reduc-
tion holds.

As argued at the beginning of this chapter, checking the injectivity of product requires in
general to have confluence for which we can use an external prover. However, there is a catch
here. Usual theorems for confluence rely on termination. Hence, before proving confluence, one
should first prove termination. But usual techniques to prove termination require proving subject
reduction. But proving subject reduction needs the injectivity of product which requires proving
confluence etc...

There are two known possible solutions to solve this issue: First, proving confluence, ter-
mination and subject reduction at the same time or proving confluence first without assuming
termination.

What is used in practice is the second solution, however it requires complex techniques because
one cannot use Newman’s lemma anymore [FJ19].

8.1.3 Rewrite strategy

Having a decidable type checking is not enough in practice to recheck theorems coming from other
systems such as Matita or Coq. The reason is that to check that two terms are convertible,
checking the syntactic equality modulo α of their normal form requires too much time. Hence,
one needs to implement a strategy which is fast in practice. Such strategy requires to compute
the Weak-head Normal Form of a term [AGM92]. This is what is also done in other proof

1Actually, some efforts are made to weaken this rule when a substitution does not exist a priori.



8.1. DEDUKTI 165

1 A:Type.
2

3 a:A.
4 def b:A.
5 def f:A->A.
6

7 [] b --> a.
8 [] f b --> a.
9

10 #EVAL[WHNF] (f b). (; f b ;)

Figure 8.2: WHNF in Dedukti

assistants such as Coq or Matita. However, in Dedukti, since we have arbitrary user-defined
rewrite rules the notion of Weak-Head Normal Form is a bit different from usual.

Definition 8.1.2 (Dedukti WHNF)
A term t is in WHNF if there exists a finite sequence (ti)iNm such that:

• t0 = t

• tm is in SNF

• ti ↪→βΓ ti+1 such that the reduction does not appear at the head of ti

The reason for this definition is to take into account non confluent rewrite systems.

Example 8.1 In the example of Fig. 8.2 we have a non confluent rewrite system. Without the
first rewrite rule, the WHNF of f b would obviously be a. However, because of this first rewrite
rule, the system is not confluent. The definition of WHNF says that f b, f a and a are all in
WHNF. In Dedukti, the first is chosen though. If instead, we add a rule f a --> a then f b
would not be a WHNF anymore.

To compute the WHNF in an efficient way, Dedukti implements a rewrite engine that is
closed from the one implemented in Matita and described in [ARCT09]. Some changes are
done to take into account the other features of Dedukti: Higher-Order rewrite rules, non-linear
rewrite rules and brackets. Currently, there is no documentation of the rewrite engine excepts
the code itself.

Decision Trees

Another optimization implemented in Dedukti are decision trees. Decision trees were proposed
by Luc Maranget [Mar08] to compile OCaml pattern matching. His algorithm has been imple-
mented for Dedukti by Ronan Saillard and refined by Gabriel Hondet [Hon19]. A decision tree
is a data-structure that implements a heuristic to choose a rule to use when the reduction engine
encounters a definable symbol. Such symbol may have several rules and decision trees are better
in general than trying to match the first rule, if it fails then try the second rules etc... The
disadvantage of decision trees is that they tend to complexify the code of the rewrite engine and
make it less easy to extend.
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type red_cfg = {

select : (Rule.rule_name -> bool) option;
nb_steps : int option; (* [Some 0] for no evaluation, [None] for no bound *)
target : red_target;
strat : red_strategy;
beta : bool;
logger : position -> Rule.rule_name -> term Lazy.t -> term Lazy.t -> unit

}
(** Configuration for reduction.

[select] = [Some f] restrains rules according to the given filter on names.
[select] = [None] is the default behaviour (all rules allowed).
[nb_steps] = [Some n] Allows only [n] reduction steps.
[nb_steps] = [None] is the default behaviour.
[target] is the normal form to compute.
[strat] is the reduction strategy.
[beta] flag enables/disables beta reductions.
[logger] is the function to call upon applying a reduction rule.

*)

Figure 8.3: Description of the red_cfg type

8.1.4 Extensions to the rewrite engine

In our work for interoperability, we needed to have some control over the rewrite engine strategy
of Dedukti. For example, we needed to control the number of steps the rewrite engine could
do, which rules were allowed and sometimes also the convertibility test. For these reasons, we
have made a few changes to the rewrite engine of Dedukti which we mention below:

A rule has a name: For Dkmeta (see Chapter 9) we wanted to control which rewrite rules
could be used and the ones that are not. This was hard, because in Dkmeta, the rewrite rules
that are used to type check a file, and which ones could not are different and Dedukti was not
able to make such difference. Our solution to overcome this issue was to add a name to a rewrite
rule. Then, the rewrite engine takes a predicate over these names to know whether a rule can
be used or not.

Having names for rewrite rules has another interest for debugging. It is easier to debug a
Dedukti program if we know which rules have been used. As it might be cumbersome to give a
name to every rewrite rule, names are optional in the user syntax, and a default one is generated
in that indicates the line and the file where the rewrite rule has been defined.

The rewrite strategy: Exporting proofs to OpenTheory (see Chapter 12) requires having
a trace of the computation done by Dedukti. To compute this trace, we needed to control the
strategy so that Dedukti computes step by step. This is actually a tricky task to implement
because to compute the WHNF, we sometimes need to compute under the head of a term (to
check whether a constraint due to brackets or non-linear variables is satisfied). Therefore, the
rewrite engine has now two functions to compute the WHNF: One which is used in practice to
type check a Dedukti term using the default strategy, and one which we use for our purpose
where we can parameterize the rewrite engine with the strategy we want. In OCaml, the structure
which parameterizes the rewrite engine is given below in Fig. 8.3:
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Changing the convertibility test: To implement the algorithm presented in Chapter 2, we
needed to instrument the convertibility test of Dedukti. However, this requires maintaining a
fork of Dedukti which is not convenient at all in practice. Instead, we have decided that the
type checker should be an OCaml functor over a rewrite engine. This will be handy in Chapter 10
where we present the tool Universo. Universo needs to patch the default convertibility test of
Dedukti to compute the free CTS (Definition 2.3.3). The OCaml interface of the functorized
rewrite engine of Dedukti is defined in Figure. 8.4.

This interface as a default implementation used by the default type checker of Dedukti.
The rewrite engine interface is split into two interfaces: One to reduce a term, and one to check
whether two terms are convertible. In practice, the implementation of one module depends on
the other and we have used recursive modules to implement this interface. The benefit of this
interface, is that we can change the convertibility test without having to re-implement a function
to compute the WHNF or the SNF of a term.

Private symbols: Private symbols2 have been introduced to simulate proof irrelevance in
Dedukti without having to modify its rewrite engine. A simple idea to simulate proof irrelevance
is to rewrite all the proofs to a canonical proof. Such canonical proof could be given by a symbol
which gives a proof to any proposition. However, this symbol makes the logic inconsistent because
it gives a proof of False. Private symbols is a feature which allows to declare a symbol private
which limits its scope. In Dedukti, a private symbol can be used only in the module (a file) in
which it is declared. For all the other modules, this symbol cannot be written directly. However,
it may appear through reductions. Hence, one could make the symbol which gives a canonical
proof as private. In this way, we can ensure that outside the logic, such symbol cannot be used
to write a proof of false. To ensure that any proof rewrites to this canonical proof, one needs
to change the encoding function to ensure that any proof starts with a specific symbol. This is
shown in example Fig. 8.5: In this encoding, any irrelevant proof is assumed to be encoded with
the symbol make_proof.

Private symbols are used in the new encoding for CTS in Dedukti presented in Section 8.3.

8.2 Embedding of STT∀ in Dedukti

We present here an embedding of STT∀ into Dedukti. We already proposed an embedding
of STT∀ into λΠ-calculus modulo theory using the CTS embedding. Here, we present in
Figure. 8.6 a simpler embedding for STT∀ in Dedukti.

Because we saw in Chapter 7 that STT∀ is also a CTS, we will see in Chapter 9 how we can
go from this encoding to the CTS embedding in Dedukti and vice versa.

Lemma 8.2.1 The rewrite system of STT∀ is terminating and confluent.

Proof To prove the termination, the system is right-linear and in every rule, one of the symbol
arrow, forallK, forallP, impl or forall disappears. The system is left-linear and orthogonal,
hence it is confluent.

Theorem 8.2.2 The rewrite system of STT∀ and β reduction is confluent.

Proof The confluence is a direct consequence of 8.2.1 because the system has no critical pair
with β and is left-linear [vOvR94].

2A new nomenclature tends to call these symbols protected.
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type constr =
| Linearity
| Bracket

type convertibility_test = Signature.t -> term -> term -> bool

module type S = sig
val are_convertible : convertibility_test
(** [are_convertible sg t1 t2] checks whether [t1] and [t2] are convertible

or not in the signature [sg]. *)

val constraint_convertibility : constr -> Rule.rule_name ->
convertibility_test↪→

(** [constraint_convertibility cstr r sg [t1] [t2] checks wehther the [cstr]
of the rule [r]↪→

is satisfiable. Because constraints are checked once a term has matched
the pattern,↪→

satisfying a constraint comes back to check that two terms are
convertible *)↪→

val conversion_step : Signature.t -> term * term -> (term * term) list ->
(term * term) list↪→

(** [conversion_step sg (l,r) lst] returns a list [lst'] containing
new convertibility obligations.
Raise [NotConvertible] if the two terms are not convertible. *)

val reduction : red_cfg -> Signature.t -> term -> term
(** [reduction cfg sg te] reduces the term [te] following the configuration

[cfg]↪→

and using the signature [sg]. *)

val whnf : Signature.t -> term -> term
(** [whnf sg t] returns the Weak Head Normal Form of [t]. *)

val snf : Signature.t -> term -> term
(** [sng sg t] returns the Strong Normal Form of [t].

This may loop whenever [t] is not strongly normalizing. *)
end

Figure 8.4: A simplified version of the rewrite engine interface for Dedukti

1 Prop : Type.
2 proof : Prop -> Type.
3 private hilbert : A : Prop -> proof A.
4 def make_proof : A : Prop -> proof A -> proof A.
5 [A,prf] make_proof A prf --> hilbert A.

Figure 8.5: Example of proof irrelevance in Dedukti with private symbols
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1 type : Type.
2 def eta : type -> Type.
3

4 ptype : Type.
5 def etap : ptype -> Type.
6 p : type -> ptype.
7

8 [] eta --> t => etap (p t).
9

10 bool : type.
11 def eps : eta bool -> Type.
12

13 arrow : type -> type -> type.
14 forallK : (type -> ptype) -> ptype.
15

16 [l,r] etap (p (arrow l r)) --> eta l -> eta r.
17 [f] etap (forallK f) --> x : type -> etap (f x).
18

19 forall : t:type -> (eta t -> eta bool) -> eta bool.
20 impl : eta bool -> eta bool -> eta bool.
21 forallP : (type -> eta bool) -> eta bool.
22

23 [t,f] eps (forall t f) --> x:eta t -> eps (f x).
24 [l,r] eps (impl l r) --> eps l -> eps r.
25 [f] eps (forallP f) --> x:type -> eps (f x).

Figure 8.6: STT∀ in Dedukti

Conjecture 14 (STT∀ is terminating) The rewrite system of STT∀ and β is terminating

We think that this could be proved using results from [DHK01] which proves that the encoding
of Simple Type Theory in Dedukti is terminating.

8.3 Embedding of CTS in Dedukti

The embedding of CTS defined in λΠ-calculus modulo theory has been implemented in
Dedukti. This extends Ali Assaf’s works [Ass15b] since we have a generic encoding of CTS
into Dedukti while Ali Assaf defined only an encoding for Matita in Dedukti. Moreover,
his encoding had also a conservativity issue (see Example 6.6) which is fixed in our encoding
into λΠ-calculus modulo theory. We give here an implementation of the public and private
signature as proposed in Chapter 6 in the syntax of Dedukti. The main point here is the
implementation of the private signature of the λΠ-calculus modulo theory encoding as
rewrite rules in Dedukti. We use here the notion of private symbols introduced in Section 8.1.4.
The system is presented in Figure. 8.7.

However, we have neither proven the confluence nor the termination of this system yet. The
reason is that we have few confluence results about term rewrite systems which are Higher-Order
and also non-linear. In fact, there is a general result that any Higher-Order and non-linear
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1 Sort : Type.
2 Univ : s : Sort -> Type.
3 def Term : s : Sort -> a : Univ s -> Type.
4

5 bool : Type.
6 eps : bool -> Type.
7 true : bool.
8

9 def Axiom : Sort -> Sort -> bool.
10 def Rule : Sort -> Sort -> Sort -> bool.
11 def Cumul : Sort -> Sort -> bool.
12 def SubType : s : Sort -> s' : Sort -> Univ s -> Univ s' -> bool.
13

14 sinf : Sort.
15

16 def univ : s : Sort -> s' : Sort -> eps (Axiom s s') -> Univ s'.
17 def prod : s1 : Sort -> s2 : Sort -> s3 : Sort -> eps (Rule s1 s2 s3) ->
18 a : Univ s1 -> b : (Term s1 a -> Univ s2) -> Univ s3.
19 def cast : s : Sort -> s' : Sort -> a : Univ s -> b : Univ s' ->
20 eps (SubType s s' a b) -> Term s a -> Term s' b.
21

22 univ' (s : Sort) (s' : Sort) : Univ s'.
23 def prod' : s1 : Sort -> s2 : Sort -> s3 : Sort ->
24 a : Univ s1 -> b : (Term s1 a -> Univ s2) -> Univ s3.
25 def cast' : s : Sort -> s' : Sort -> a : Univ s -> b : Univ s' ->
26 Term s a -> Term s' b.
27

28 [s,s',p] univ s s' p --> univ' s s'.
29 [s1, s2,s3,p] prod s1 s2 s3 p --> prod' s1 s2 s3.
30 [s1,s2,a,b,t] cast s1 s2 a b _ t --> cast' s1 s2 a b t.
31

32 [s] Term _ (univ' s _) --> Univ s.
33 [s1,s2,a,b] Term _ (prod' s1 s2 _ a b) --> x : Term s1 a -> Term s2 (b x).
34 [s,a] Term _ (cast' _ _ (univ' s _) _ a) --> Term s a.
35

36 def forall : s : Sort -> a : Univ s -> (Term s a -> bool) -> bool.
37 [] forall _ _ (x => true) --> true.
38 I : eps true.
39

40 [s1, s2] SubType _ _ (univ' s1 _) (univ' s2 _ ) --> Cumul s1 s2
41 [s1,s2,s2',a,b,b'] SubType _ _ (prod' s1 s2 _ a b) (prod' _ s2' _ a b') -->
42 forall s1 a (x => SubType s2 s2' (b x) (b' x)).
43 [a] SubType _ _ a a --> true.
44

45 [A,t] cast' _ _ A A t --> t.
46 [s, s', a, c, t] cast' _ s' _ c (cast' s _ a _ t) --> cast' s s' a c t.
47 [s1,s2,A,B,a] cast' _ s2 (cast' _ _ (univ' s1 _) _ A) B a --> cast' s1 s2 A B a.
48 [s1,s2,A,B,a] cast' s1 _ A (cast' _ _ (univ' s2 _) _ B) a --> cast' s1 s2 A B a.
49 [s1,s2,s3,s4,a,b]
50 cast' _ _ (univ' _ _) (univ' s4 _) (prod' s1 s2 s3 a b) --> prod' s1 s2 s4 a b.
51 [s1,s2,s3, a, b]
52 prod' _ s2 s3 (cast' _ _ (univ' s1 _) (univ' _ _) a) b --> prod' s1 s2 s3 a b.
53 [s1, s2, s3, a, b]
54 prod' s1 _ s3 a (x => cast' _ _ (univ' s2 _) (univ' _ _) (b x)) -->
55 prod' s1 s2 s3 a (x => b x).
56 [s1,s2,s3,A,B,C,b]
57 cast' _ _ (prod' s1 s2 _ A B) (prod' s1 s3 _ A C) (x => b x) -->
58 x : Term s1 A => cast' s2 s3 (B x) (C x) (b x).
59 [s1,s2,s3,A,B,C,b,a]
60 cast' _ _ (prod' s1 s2 _ A B) (prod' s1 s3 _ A C) b a -->
61 cast' s2 s3 (B a) (C a) (b a).

Figure 8.7: Dedukti’s encoding of CTS
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system is not confluent [KdV89]. But we do not need to prove the confluence of the whole
rewrite system, but only for terms which are in the image of the encoding.

Example 8.2 Going back to example 6.2, first we need to provide the specification signature the
Calculus of Constructions with three universes3:

1 (; Sorts ;)
2

3 star : cts.Sort.
4 box : cts.Sort.
5 triangle : cts.Sort.
6

7 (; Axioms ;)
8

9 [] cts.Axiom star box --> cts.true.
10 [] cts.Axiom box triangle --> cts.true.
11

12 (; Rules ;)
13

14 [] cts.Rule star star star --> cts.true.
15 [] cts.Rule star box box --> cts.true.
16 [] cts.Rule star triangle triangle --> cts.true.
17 [] cts.Rule box star star --> cts.true.
18 [] cts.Rule box box box --> cts.true.
19 [] cts.Rule box triangle triangle --> cts.true.
20 [] cts.Rule triangle star star --> cts.true.
21 [] cts.Rule triangle box box --> cts.true.
22 [] cts.Rule triangle triangle triangle --> cts.true.

Then we can apply the translation given in Chapter 6 on the judgment `CL λx : 0. x⇐ 0→ 1
which gives the following and well-typed Dedukti term:

1 def id :
2 cts.Term
3 triangle
4 (cts.prod
5 box
6 triangle
7 triangle
8 cts.I
9 (cts.univ star box cts.I)

10 (__:(cts.Term box (cts.univ star box cts.I)) => cts.univ box triangle
cts.I))↪→

11 :=
12 cts.cast
13 box
14 triangle
15 (cts.prod
16 box

3We could to for an infinite number of universes but it is not necessary here.
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17 box
18 box
19 cts.I
20 (cts.univ star box cts.I)
21 (__:(cts.Term box (cts.univ star box cts.I)) => cts.univ star box

cts.I))↪→

22 (cts.prod
23 box
24 triangle
25 triangle
26 cts.I
27 (cts.univ star box cts.I)
28 (__:(cts.Term box (cts.univ star box cts.I)) => cts.univ box triangle

cts.I))↪→

29 cts.I
30 (x:(cts.Term box (cts.univ star box cts.I)) => x).

This term is rather huge but we will see in Chapter 9 (Example 9.1) how it can be made
shorter using meta-rewriting. Actually the normal form of this term is already pretty short:

1 def id :
2 (cts.Univ star) -> cts.Univ box
3 :=
4 x:(cts.Univ star) => cts.cast' box triangle (cts.univ' star box) (cts.univ'

box triangle) x.↪→

8.4 Embedding inductive types in Dedukti

The effective translation from arithmetic proofs written in Matita to STT∀ which is presented
in Chapter 11 takes into account how inductive types from Matita are encoded in Dedukti.
In this section, we give a high-level description of inductive types on a classical example which
are natural numbers and how they can be embedded into the λΠ-calculus modulo theory.
For a detailed presentation of inductive types we refer to [Har16] [MLS84].

One motivation for the introduction of inductive types in the Calculus of Inductive Con-
structions is that the induction principle for the usual encoding of natural numbers (Church’s
encoding) in the Calculus of Constructions is not derivable. This can be proved by looking
at the normal form of its proof [Str92]. Inductive types provide a new construction to type theory
to derive an induction principle for natural numbers but also for many other data structures such
as the Boolean, the polymorphic lists etc...

Another direction which has been followed by the type theory behind Cedille [FS18] is to
enrich the Calculus of Constructions with more primitive constructions which allows to
derive the induction principle for a large class of inductive types.

8.4.1 Inductive types

The formalization of inductive types as it is done in [PM96] is very complex with plenty of de-
tails. Their full formalization is not necessary to understand their embedding into Dedukti and
especially to understand the problems they will raise during the translation in STT∀ presented
in Chapter 11. This is why we limit ourselves to a high-level description of inductive types using



8.4. EMBEDDING INDUCTIVE TYPES IN DEDUKTI 173

simple examples on natural numbers, together with their encoding in λΠ-calculus modulo
theory. The generalization of this embedding can be found in [BB12].

The Calculus of Inductive Constructions enriches the Calculus of Construc-
tions with three constructions:

• The so-called inductive types

• A match operator to deconstruct an inductive type

• A fixpoint operator to enable generic recursion

To make the Calculus of Inductive Constructions a sound calculus, we restrain in-
ductive types with a guard condition (see [PM96]) and a syntactic criterion is added to check
the termination of a fixpoint (see [PM96]).

In a concrete system such as Coq, the recursive function plus can be defined this way:

Inductive nat : Type :=
| O : nat
| S : nat -> nat.

Definition plus : nat -> nat -> nat :=
fix add n {struct n} :=
match n with
| O => fun m => m
| S n => fun m => S (add n m)
end.

We do not present the typing rules associated to these constructions which are quite obvious
on this example or can be found in [PM96]. However, we want to insist on the computational
behavior of these new constructions which makes the terms plus (S (S O)) (S (S O)) and
S (S (S (S O))) convertible. This conversion generated by inductive types and recursive func-
tions is called ι.

For the fixpoint in Calculus of Inductive Constructions, since the calculus needs to
be sound, it needs to ensure strong normalization. This prevents the addition of the usual rule
on fixpoints which is non terminating. To overcome this issue, a restriction is added that the
recursive argument of f should start with a constructor. In this particular case, the two rules
needed are:

fix add O body ↪→ι body {add← fix add}

and
fix add (S n) body ↪→ι body {add← fix add}

Hence the definition of a fix point cannot be unfolded if the recursive argument is a variable
for example.

Finally, for the match construction, similar rules are added and behave as expected:

match 0 with | 0 => f | S n => g n ↪→ι f

and
match (S n) with | 0 => f | S n => g n ↪→ι g n

To sum up, the declaration of a new inductive type with n constructors enriches the ι con-
version with:
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• n rules to unfold a fixpoint

• n rules to unfold a match

8.4.2 Inductive types in Dedukti
In this work, we follow the translation presented by Ali Assaf in [Ass15b] which we also present
here since we will mention this encoding in Chapter 11. We use again our example of natural
numbers presented in the previous section to explain the embedding of inductive types in De-
dukti. We also use Calculus of Constructions as our ambient logic in Dedukti using the
CTS embedding.

The declaration nat : Type is translated in Dedukti as it would be done for a declaration
in the Calculus of Constructions:

1 nat : cts.Term cts.sinf (cts.univ cts.box cts.sinf cts.I).

Then we add two declarations for the constructors:

1 O : cts.Term cts.box nat.
2 S : cts.Term cts.box (cts.prod cts.box cts.box cts.box cts.I nat (_ => nat)).

Ali Assaf’s encoding does not use a generic symbol match but instead adds a symbol match
for every inductive type. This is not a real restriction because every time we use a match we know
on which inductive type it is used. The type for match over natural numbers can be expressed
in Dedukti as follows:

1 def match :
2 s : cts.Sort ->
3 P : (cts.Term cts.box nat -> cts.Univ s) ->
4 case_O : cts.Term s (P O) ->
5 case_S : (n:(cts.Term cts.box nat) -> cts.Term s (P (S n))) ->
6 z : cts.Term cts.box nat ->
7 cts.Term s (P z).

Two remarks:

• The type is universe polymorphic meaning that it quantifies over a sort. Hence this encod-
ing is outside the encoding of CTS as presented in Chapter 6.

• Since s is a sort variable, one cannot encode the products using the cts.prod constructor.
Indeed, the product (?, s, s) is not a valid product in this encoding.

Expressing a type of Calculus of Constructions this way in Dedukti may lead to
mistaken types. For example, applying the match symbol to the sort cts.box gives the following
type in Dedukti

1 P : (cts.Term cts.box nat -> cts.Univ cts.box) ->
2 case_O : cts.Term cts.box (P O) ->
3 case_S : (n:(cts.Term cts.box nat) -> cts.Term cts.box (P (S n))) ->
4 z : cts.Term cts.box nat ->
5 cts.Term cts.box (P z).
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Figure 8.8: Extended version of Calculus of Constructions that supports strong induction

While this type is perfectly valid in Dedukti, it is not a valid type in the Calculus of
Constructions! Indeed, the type of P requires that the sort cts.box has itself a type with a
product towards this type. The fact that match can be applied to cts.box is actually known as
the strong elimination and has been studied by Benjamin Werner in [Wer94] where Calculus
of Constructions is enhanced with one universe and the corresponding products as pictured
in 8.8.

Remark 28 To avoid this universe polymorphic sort, it could be possible to duplicate the symbol
match, one for every universe it is applied to. However, this may be problematic for interoper-
ability. This remark will be detailed in Section 11.3.

To each match symbol we associate a rule for each constructor. For the type nat the rules
are the following ones:

1 [ s, P, case_O, case_S] match_nat s P case_O case_S O --> case_O.
2

3 [ s, P, case_O, case_S, n] match_nat s P case_O case_S (S n) --> case_S n.

Finally, the fixpoint operator is not translated as a fixpoint operator in Dedukti. Fixpoint
operators as in Coq have a restriction that the reduction should be triggered only if the recursive
argument starts with a constructor. Such restriction is not easy to encode in Dedukti. Hence,
a fixpoint operator is always translated as a top-level recursive function. This is not completely
satisfactory because two anonymous fixpoints could be convertible in Matita but are not in
Dedukti since we gave a proper and different name to these fixpoints. But also, since there are
translated as top-level functions, this requires closing the fixpoint by the current local typing
context of Matita (λ-lifting) which again may break the conversion. In practice, these problems
do not arise for the arithmetic library of Matita.

The idea implemented to translate Matita into Dedukti is to associate to each inductive
type a filtering function which will trigger a computation only if the argument starts by a
constructor. Hence, to each inductive type, a filtering function is added. Its type is really similar
to the one of the match symbol:

1 def filter_nat :
2 s : cts.Sort ->
3 P : (z:(cts.Term cts.box nat) -> cts.Univ s) ->
4 return : (z:(cts.Term cts.box nat) -> cts.Term s (P z)) ->
5 z : (cts.Term cts.box nat) ->
6 cts.Term s (P z).

which makes this constant also universe polymorphic. The third argument is the body of the
function itself.

Then the plus function is translated as follows:
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1 def plus :
2 cts.Term cts.box
3 (cts.prod cts.box cts.box cts.box cts.I
4 nat
5 (__ : cts.Term cts.box nat =>
6 cts.prod cts.box cts.box cts.box cts.I
7 nat
8 (__1 : cts.Term cts.box nat =>
9 nat))).

10

11 def plus_body :
12 cts.Term cts.box
13 (cts.prod cts.box cts.box cts.box cts.I
14 nat
15 (__ : cts.Term cts.box nat =>
16 cts.prod cts.box cts.box cts.box cts.I
17 nat
18 (__1 : cts.Term cts.box nat =>
19 nat))).
20

21 [n]
22 plus n
23 -->
24 filter_nat box
25 (x:(cts.Term cts.box nat) =>
26 cts.prod cts.box cts.box cts.box cts.I nat
27 (_:(cts.Term cts.box nat) => nat))
28 plus_body
29 n
30

31 [n] plus_body n -->
32 m : cts.Term (cts.type cts.z) nat =>
33 match_nat (cts.type cts.z)
34 (__1 : cts.Term (cts.type cts.z) nat =>
35 nat)
36 m
37 (p : cts.Term (cts.type cts.z) nat =>
38 S (plus p m))
39 n.

The filter function will delay the computation of plus until a value is given. Since we want
to avoid a non-terminating system, the symbol plus cannot appear on the right-hand side of the
rule and applied to a variable. The trick is to use an intermediate function plus_body which will
be called after the filter function. The corresponding rewrite rule of the filter function will
now trigger one step of computation. The rewrite rule that indeed performs the computation is
given by the one on plus_body and this later calls recursively.

In this way, we can ensure that the rewrite rule on plus_body can be applied only if its
argument starts by a constructor.

Finally, some remarks concerning this encoding proposed by Ali Assaf:
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• For each inductive type, we need to introduce a match symbol specific to this inductive
type. The reason is that the arguments given to a match symbol depend on the definition
of the inductive type.

• The match symbol introduces a little bit of universe polymorphism. This is expected since
if we gave a type to match in Calculus of Inductive Constructions, it would be
itself universe polymorphic.

• The encoding does not have a general fixpoint as in Calculus of Inductive Construc-
tions. Instead, there is a generic process to encode each recursive function and therefore
the translation does not preserve fully the conversion.

• To avoid non-termination, this generic process introduces a filter function to ensure that
any recursive call is done only if the argument starts with a constructor. This has also the
disadvantage that for any recursive function, we need to have two symbols in Dedukti:
to separate the recursive call and its implementation.

8.5 Future Work

Levels to solve the confluence/termination/subject reduction issue: The meta-theory
of Dedukti has an issue related to the triptych: confluence/termination/subject reduction. A
priori there is a circularity which is usually broken by proving first confluence without assuming
termination. Well-structured derivation trees introduced in Chapter 3 give a new induction
principle for CTS using levels. We think levels could be also used in PTS modulo and especially
in Dedukti. In Dedukti, we think that we could add a requirement to the well-structured
definition which is that for any well-typed rewrite rule l ↪→∆ r then for any σ such that Γ,∆ `D

lσ : A is derivable at level n, then Γ,∆ `D rσ : A is also derivable at level n. This condition
is similar to the one we have made for β reduction (see Definition 3.1.2). We think this idea
could break the circularity mentioned previously. Indeed, now we can prove subject reduction
by induction on the level first. Proving subject reduction at level n + 1 requires to have the
injectivity of product at level n, hence we need confluence at level n. Proving confluence at level
n needs termination at level n. Finally proving termination at level n needs subject reduction at
level n. Thus the circularity is broken as we did for the equivalence between typed and untyped
conversion in Theorem 3.3.8.

Instrumenting the conversion: While we observe that most of the time, type checking a
proof is really fast in Dedukti, it happens for some proofs that Dedukti is way slower than
the original type checker. One case of this is a lemma in the Matita’s arithmetic library called
le_fact_10 which is a proof that 10! ≤ 28 × 5!× 5!. The proof of this theorem takes less than a
second to be type checked in Matita and more than 10 minutes to be type checked in Dedukti.
The reason is that the proof term elaborated by Matita is a proof of 10! ≤ (28 + 0) × 5! × 5!
which is not syntactically the same. In Dedukti, the rewrite engine will compute the weak
normal form of the right-hand side of this expression which is the unary representation of the
number 3686400. In Matita the rewrite engine first reduces 28 + 0) to 28 and then realizes that
the two expressions are the same.

This example may seem extreme, but actually also happens in the Coq’s standard library
and probably it will happen for bigger libraries such as math-comp. This is a problem for several
reasons:

• It makes time-consuming to type check a whole library in Dedukti if this happens many
times,
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• Such a theorem makes interoperability harder because for interoperability a theorem may
need to be type checked many times,

• Once exported, such a theorem may take a long time to be type checked in the target
system.

Changing the heuristic of the convertibility test of Dedukti will work once but may fail in
other cases since the optimal strategy is not computable in an efficient way. One may consider
that the strategy of the original is part of the logic (for example if the original system is weakly
normalizing) and hence, as a logical framework, the λΠ-calculus modulo theory should
provide a way to instrument this rewrite strategy. This would mean enhancing the calculus with
an (optional) trace which would guide the conversion in the λΠ-calculus modulo theory. It
is not clear what this trace would be because it needs to have good properties with substitution
but also even if it is optional, the trace should not lead to an explosion of the size of the term.

The encoding of inductive types: The current encoding for inductive types is not very
pleasant for the following reasons:

• Preservation of conversion is lost during the translation because the fixpoint operator is
not translated as an anonymous operator but instead as a top-level operator with a name.

• The match operator is translated as a universe polymorphic constant which is outside the
CTS encoding we have presented. Because of this, the match operator can be applied to a
sort s in a way that the type of match s is outside the specification provided by the user.

• The guard criterion for inductive types and the fixpoint termination criterion are not
translated.

• A filtering function is added for each inductive type to ensure that the rules are terminating.
This function has no antecedent in the original theory and tends to obfuscate the proofs.
They may also raise an issue for interoperability (see Chapter 11).

Calculus of Inductive Constructions introduces inductive types with a match and
fixpoint operators, but this is not the only way to encode inductive types. One may use primitive
eliminators a la System T , use the W-types [MLS84] [MP00], or use the gentle art of levita-
tion [CDMM10] or even the constructors introduced in Cedille [FS18]. However, we think that
changing the way inductive types are encoded into Dedukti will not bring a better solution
because, first, it requires to encode the match and fixpoints constructions to the new encoding,
this encoding may not be suitable to be exported and, second, it makes the translation of the
original logic harder to understand and to maintain. In particular, it is not clear if the encoding
presented in the litterature still aplly since, if we take the Coq system for example, it is not
clear whether the translations proposed in [Gim94] to go from match and fixpoints to primitive
eliminators are still working since many criteria involving the guard conditions changed.

A first idea to fix the problem we have raised is to have a real anonymous fixpoint operator.
This idea has been explored by Gaspard Férey for the translation of Coq into Dedukti and gives
promising results4. While the termination criterion is not encoded, there is only one fixpoint
operator which also takes into account extensions of inductive types with parameters and mutual
inductive types. This encoding also removes the filtering function. The disadvantage is that all
the complexity is hidden in Dedukti and if there is a type checking error involving inductive
types, the error message is generally not intelligible even for a Dedukti expert.

4https://github.com/Deducteam/CoqInE

https://github.com/Deducteam/CoqInE


Chapter 9

Rewriting as a Programming Language

Going from one logic to another requires designing algorithms that can be applied to proofs. In
practice, these algorithms need to be implemented in some programming language. Choosing
a good programming language allows to write the transformations in a clean and efficient way.
Moreover, since the application for these algorithms is interoperability, we aim to express our
program in a modular way with respect to the logic. We realize that a programming language
such as OCaml is not that good for writing these transformations:

• It features a first-order representation for binders which is not convenient in practice1.

• These algorithms are easier to write if we can match directly on Dedukti terms instead
of their abstract syntactic representation.

• Modularity with respect to the logic is not convenient with a language such as OCaml
because a small change to the logic often implies a recompilation of the OCaml program2

In general, we have realized that if a translation between proofs using something specific
to some logic (as public symbols which only exist in the encoding of CTS for example),
then it is better to have a parameterized translation. In particular the specific part to the
logic is easier to be written outside of OCaml so that the translation is indeed parametric
and also easier to use.

Cauderlier already proposed that the rewriting engine of Dedukti itself could be used as a
programming language: First, to write a partial proof transformation which tries to transform
a classical proof into a constructive one [Cau16b], and second, to define a tactic language for
Dedukti [Cau18]. His notion of tactics relies on introducing definable symbols which stand for
meta-variables (a hole for a proof term). His framework declares several tactics as a (partially)
defined symbol in Dedukti. Then, a user can try to instantiate a meta-variable by a proof term
by rewriting this variable to a tactic. The interaction comes from the user which asks for the
normal form of a meta-veriable to Dedukti and copy/paste the result into the original file.

In this chapter, we follow this direction and see that rewriting as a programming language
can be used in an efficient way also to write proof transformations for interoperability. Using
rewriting in that purpose is what we call meta rewriting which gives rise to the tool we present
in this chapter: Dkmeta. Dkmeta is a small tool built around Dedukti’s kernel that offers
a way to use Dedukti’s rewrite engine to rewrite Dedukti’s terms using Dedukti itself. We
show that the rewriting of Dedukti is expressive enough to write many proof transformations.

1The OCaml bindlib [LR18] library tries to fill that gap however.
2We are not considering the OCaml byte code machine which still introduce a compilation step.
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The Dkmeta tool also introduces a quote/unquote mechanism which provides an efficient way to
have syntactic pattern matching without having to modify Dedukti’s kernel. We believe that
Dkmeta with a programming language such as OCaml provides a nice combination to write
proof transformations in a concise and modular way which does not require too many efforts for
maintainability.

This chapter is organized as follows: In Section 9.1, we present Dkmeta, its syntax, and how
it can be used from the command line. In Section 9.2, we explain the quote/unquote mechanism
that we introduce in Dkmeta. In Section 9.3, we present the applications of Dkmeta. In
Section 9.4 we present the changes we have introduced to the kernel of Dedukti so that Dkmeta
does not depend on the implementation of the kernel. In Section 9.5, we present related works
which involve meta programming. Finally, we present in Section 9.6 possible extensions to this
Dkmeta tool.

9.1 Dkmeta

Dkmeta is implemented in OCaml as a tool which uses Dedukti as a library. It provides a
user-interface with the command line and also an OCaml package that can be used as an OCaml
library by other programs. The input of Dkmeta is first, a Dkmeta program–as a set of
Dedukti rewrite rules–and secondly a set of files on which this program is applied. The output
of Dkmeta is a set of files where every term has been normalized with respect to the Dkmeta
program. The normalization procedure uses a call-by-value strategy and computes the strong
normal form if it exists. Currently there is no check if the Dkmeta program is terminating
or confluent (and in general, the latter property is false). Optionally, one can check that the
rewrite rules are well-typed in the sense of Dedukti. If no meta rules are provided, Dkmeta
just normalizes the files given by the user to the rules declared in thos files.

When doing meta-rewriting it is interesting to match against an atomic construction of De-
dukti such as a product or an application of Dedukti. But this is not possible because a
product cannot appear inside a pattern (see Definition 8.1.1) or an application involving two lo-
cal variables. Or even in some cases we want to have access to the type of a term. To circumvent
these limitations, Dkmeta offers a quote/unquote mechanism. Hence the user can match against
a quoted product for example. Currently, three quoting functions are provided by Dkmeta(see
Section 9.2). In Section 9.6, we discuss how these quoting/unquoting functions could be provided
directly by the user and not hard-coded in Dkmeta.

Example 9.1 Going back to our example 6.2, we have shown that the CTS encoding of the
judgment `CL λx : 0. x⇐ 0→ 1 was big. One could instead uses its normal form, but it gives a
term outside the public signature for CTS encoding which is not convenient for interoperability.
Dkmeta can be used as a trade-off to have readable terms without getting out the the public
signature.

Let us say that a user whishes to use the following shortcuts instead:

1 def U0 := cts.Univ star.
2

3 def U1 := cts.Univ box.
4

5 def u0 := cts.univ star box cts.I.
6

7 def u1 := cts.univ box triangle cts.I.
8

9 def pi00 := cts.prod box box box cts.I u0 (__ => u0).
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10

11 def pi01 := cts.prod box triangle triangle cts.I u0 (__ => u1).
12

13 def castpi00pi01 := cts.cast box triangle pi00 pi01 cts.I.

To do so, it needs to give meta rewrite rules which in this case are just the definitions above
but reversed.

1 (; meta rewrite rules ;)
2 [] cts.Univ star --> U0.
3 [] cts.Univ box --> U1.
4 [] cts.univ star box cts.I --> u0.
5 [] cts.univ box triangle cts.I --> u1.
6 [] cts.prod box box box cts.I u0 (__ => u0) --> pi00.
7 [] cts.prod box triangle triangle cts.I u0 (__ => u0) --> pi01.
8 [] cts.cast box triangle pi00 pi01 cts.I --> castpi00pi01.

Dkmeta will normalize the big term (fully written in Example 6.2) and produces the following
short term instead.

1 def id : cts.Term triangle pi01 := castpi00pi01 (x : U0 => x).

The example above is a bit artificial, in particular because these definitions could be directly
implemented by the tool procuding Dedukti code through the CTS encoding. But after one
proof transformation, all these definitions disappear since we are interested only in proof terms
using the CTS public signature. Hence, Dkmeta can be used to apply these definitions between
proof transformations.

Notice that if the user had used the following definition

1 def tpi01 := U0 -> U1.

then inversing this definition does not give a valid rewrite rule in Dedukti:

1 [] U0 -> U1 --> tpi01.

Because a product cannot appear inside a pattern. In Dkmeta we solve this problem using
a quote and unquote mechanism.

9.2 Quoting and unquoting

Quote and unquote functions were added in Dkmeta for two purposes: To allow the user to
write a Dedukti product ((x :A) → B) as a pattern and also to introduce syntactic pattern
matching (matching is not computed modulo β). These are not the only usage for a quote and
unquote mechanism and they can be used for other purposes. Dkmeta introduces a quoting
mechanism as it is done in languages such as Lisp [Ste90] which in our case avoids modifying the
kernel of Dedukti. In Fig. 9.1 we represent how Dkmeta works with a quoting mechanism.
In this picture, R contains the meta rewrite rules. Some examples in Section 9.3 explained
how the quoting mechanism can be used in practice. However, using a quoting mechanism may
introduce a cost in computing time that is not always wanted. For this reason, we have declared
three quoting functions, each one being more general than the previous one but also longer to
compute. The three quoting functions that we have implemented are: prod which allows to
rewrite a product and the Dedukti sort Type. The second encoding lf introduces syntactic
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Figure 9.1: Dkmeta with a quoting and unquoting mechanism

pattern matching for every constructor of the language. Finally, the third encoding ltyped adds
typing information on applications. The quoting functions of prod and lf do not require to
have a type checker and hence, using this quoting function, Dkmeta is still fast to compute.
However, for the last quoting function ltyped, we need to use the type checker of Dedukti.
Hence it takes much more time for Dkmeta to compute the quotation of a term. We will use
the following example (a version of Leibniz equality in STT∀) to show the result of the quoting
function.

1 def leibniz : A : type -> eta A -> eta A -> eta bool :=
2 A : type =>
3 x : eta A =>
4 y : eta A =>
5 forall (arrow A bool) (P : (eta A -> eta bool) => impl (P x) (P y)).

For each of the quoting function below we give in details only the quote function on terms.
The corresponding unquote function should be obvious. Moreover, we do not specify the quote
function on patterns. One can check that the quote function is compatible with patterns (a
pattern seen as a term is translated as pattern). In the definitions below, black symbols represent
symbols introduced and specific to the quoting function.

9.2.1 Quotation for products
The purpose of this quote function is that the image of a product (x :A) → B by the quote
function becomes a pattern. Therefore, a product can be rewritten using a meta rewrite rule.
The quote function for product is named JtK p (or prod) and defined as follows:

JcstK p := cst
JxK p := x

J?K p := ty
Jf aK p := JfK p JaK p

Jλx :A. tK p := λx : JAK p. JtK p

J(x :A)→ BK p := prod JAK p (λx. JBK p)
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Here is the result of this quote function applied to the definition of Leibniz equality.

1 def leibniz :
2 prod.prod
3 type
4 (A:type => prod.prod (eta A) (__:(eta A) => prod.prod (eta A) (__:(eta A)

=> eta bool)))↪→

5 :=
6 A:type =>
7 x:(eta A) =>
8 y:(eta A) =>
9 forall (arrow A bool) (P:(prod.prod (eta A) (__:(eta A) => eta bool)) => impl

(P x) (P y)).↪→

A practical use of this quote function is presented in Section 9.3.2.

9.2.2 Quotation for syntactic pattern matching
This quote function aims to be used to get a syntactic pattern matching (to match against a
Dedukti application for example). This pattern matching is of course not done modulo β. In
this quote function, each constructor is prefixed with a symbol. This quote function is described
below. Notice that the quoting for the product is similar to the one of the previous quote
function.

JcstK l := sym cst
JxK l := db x
J?K l := ty

Jf aK l := app JfK l JaK l

Jλx :A. tK l := lam λx : JAK l. JtK l

J(x :A)→ BK l := prod JAK l λx. JBK l

The result of this quote function applied to the definition of Leibniz equality is displayed
below:

1 def leibniz :
2 lf.prod
3 (lf.sym type)
4 (A =>
5 lf.prod
6 (lf.app (lf.sym eta) (lf.var A))
7 (__ => lf.prod (lf.app (lf.sym eta) (lf.var A)) (__ => lf.app (lf.sym

eta) (lf.sym bool))))↪→

8 :=
9 lf.lam

10 (A:(lf.sym type) =>
11 lf.lam
12 (x:(lf.app (lf.sym eta) (lf.var A)) =>
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13 lf.lam
14 (y:(lf.app (lf.sym eta) (lf.var A)) =>
15 lf.app
16 (lf.app (lf.sym forall) (lf.app (lf.app (lf.sym arrow) (lf.var A))

(lf.sym bool)))↪→

17 (lf.lam
18 (P:(lf.prod
19 (lf.app (lf.sym eta) (lf.var A))
20 (__ => lf.app (lf.sym eta) (lf.sym bool))) =>
21 lf.app
22 (lf.app (lf.sym impl) (lf.app (lf.var P) (lf.var x)))
23 (lf.app (lf.var P) (lf.var y))))))).

Even if this quote function does not require any type checking, the fact that it produces a
bigger term makes Dkmeta longer to normalize a term. A use of this quote function is presented
in Section 9.3.4.

9.2.3 Quotation with a type annotation for applications
This quote function is almost the same as the previous quote function except that for an ap-
plication f a, the quote function also adds the type of f. We do not use the same quotation
function for the type inferred because it is not needed in practice. Indeed, we only need to encode
the product and this is why we apply the quotation function for products on the type inferred.
This quote function takes as input a term and a typed context and is presented below. For the
λ-abstraction case and the application case, we have a side condition because the type inferred
by Dedukti may not be a product. In practice we just compute the WHNF of the type which
is always a product if the term is well-typed.

JcstK aΓ := sym cst
JxK aΓ := db x
J?K aΓ := ty

Jf aK aΓ := app J(x :A)→ BK p JfK aΓ JaK aΓ where Γ `D f : (x :A)→ B

Jλx :A. tK aΓ := lam J(x :A)→ BK p
(
λx : JAK aΓ. JtK

a
Γ,x:A

)
where Γ `D λx :A. t : (x :A)→ B

J(x :A)→ BK aΓ := prod JAK aΓ λx. JBK aΓ,x:A

If we apply this quote function on our Leibniz example, we see that the size of the term
explodes.

1 def leibniz :
2 ltyped.prod
3 (A:(ltyped.sym leibniz.type) =>
4 ltyped.prod
5 (__:(ltyped.app
6 (prod.prod leibniz.type (__:leibniz.type => prod.ty))
7 (ltyped.sym leibniz.eta)
8 (ltyped.var A)) =>
9 ltyped.prod
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10 (__0:(ltyped.app
11 (prod.prod leibniz.type (__0:leibniz.type => prod.ty))
12 (ltyped.sym leibniz.eta)
13 (ltyped.var A)) =>
14 ltyped.app
15 (prod.prod leibniz.type (__1:leibniz.type => prod.ty))
16 (ltyped.sym leibniz.eta)
17 (ltyped.sym leibniz.bool))))
18 :=
19 ltyped.lam
20 (prod.prod
21 (leibniz.eta A)
22 (x:(leibniz.eta A) =>
23 prod.prod (leibniz.eta A) (y:(leibniz.eta A) => leibniz.eta

leibniz.bool)))↪→

24 (A:(ltyped.sym leibniz.type) =>
25 ltyped.lam
26 (prod.prod (leibniz.eta A) (y:(leibniz.eta A) => leibniz.eta

leibniz.bool))↪→

27 (x:(ltyped.app
28 (prod.prod leibniz.type (__:leibniz.type => prod.ty))
29 (ltyped.sym leibniz.eta)
30 (ltyped.var A)) =>
31 ltyped.lam
32 (leibniz.eta leibniz.bool)
33 (y:(ltyped.app
34 (prod.prod leibniz.type (__:leibniz.type => prod.ty))
35 (ltyped.sym leibniz.eta)
36 (ltyped.var A)) =>
37 ltyped.app
38 (prod.prod
39 (prod.prod
40 (leibniz.eta (leibniz.arrow A leibniz.bool))
41 (__:(leibniz.eta (leibniz.arrow A leibniz.bool)) =>

leibniz.eta leibniz.bool))↪→

42 (__:(prod.prod
43 (leibniz.eta (leibniz.arrow A leibniz.bool))
44 (__:(leibniz.eta (leibniz.arrow A leibniz.bool)) =>
45 leibniz.eta leibniz.bool)) =>
46 leibniz.eta leibniz.bool))
47 (ltyped.app
48 (prod.prod
49 leibniz.type
50 (A0:leibniz.type =>
51 prod.prod
52 (prod.prod
53 (leibniz.eta A0)
54 (__:(leibniz.eta A0) => leibniz.eta leibniz.bool))
55 (__:(prod.prod
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56 (leibniz.eta A0)
57 (__:(leibniz.eta A0) => leibniz.eta leibniz.bool))

=>↪→

58 leibniz.eta leibniz.bool)))
59 (ltyped.sym leibniz.forall)
60 (ltyped.app
61 (prod.prod leibniz.type (__:leibniz.type => leibniz.type))
62 (ltyped.app
63 (prod.prod
64 leibniz.type
65 (__:leibniz.type =>
66 prod.prod leibniz.type (__0:leibniz.type =>

leibniz.type)))↪→

67 (ltyped.sym leibniz.arrow)
68 (ltyped.var A))
69 (ltyped.sym leibniz.bool)))
70 (ltyped.lam
71 (leibniz.eta leibniz.bool)
72 (P:(ltyped.prod
73 (__:(ltyped.app
74 (prod.prod leibniz.type (__:leibniz.type =>

prod.ty))↪→

75 (ltyped.sym leibniz.eta)
76 (ltyped.var A)) =>
77 ltyped.app
78 (prod.prod leibniz.type (__0:leibniz.type => prod.ty))
79 (ltyped.sym leibniz.eta)
80 (ltyped.sym leibniz.bool))) =>
81 ltyped.app
82 (prod.prod
83 (leibniz.eta leibniz.bool)
84 (__:(leibniz.eta leibniz.bool) => leibniz.eta

leibniz.bool))↪→

85 (ltyped.app
86 (prod.prod
87 (leibniz.eta leibniz.bool)
88 (__:(leibniz.eta leibniz.bool) =>
89 prod.prod
90 (leibniz.eta leibniz.bool)
91 (__0:(leibniz.eta leibniz.bool) => leibniz.eta

leibniz.bool)))↪→

92 (ltyped.sym leibniz.impl)
93 (ltyped.app
94 (prod.prod
95 (leibniz.eta A)
96 (__:(leibniz.eta A) => leibniz.eta leibniz.bool))
97 (ltyped.var P)
98 (ltyped.var x)))
99 (ltyped.app
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100 (prod.prod
101 (leibniz.eta A)
102 (__:(leibniz.eta A) => leibniz.eta leibniz.bool))
103 (ltyped.var P)
104 (ltyped.var y))))))).

An application of this encoding is detailed in Section 11.5.

9.3 Applications of Dkmeta

We now explore in details how Dkmeta can be used in the context of interoperability. We review
here three different applications. The next chapters detail more applications of Dkmeta.

9.3.1 STT∀ as a CTS and vice versa
The signature of STT∀ in Dedukti presented in Chapter 8 does not use the CTS signatature.
However, we have shown in Chapter 7 that STT∀ could be seen as a CTS. Using the CTS
specification of STT∀, one may translate the Dedukti STT∀ signature to the corresponding
Dedukti CTS signature. This translation can be computed directly in Dkmeta as shown
below.

1 [] sttfa.type --> cts.Term cts.triangle (cts.univ cts.box cts.triangle cts.I).
2

3 [] sttfa.ptype --> cts.Term cts.sinf (cts.univ cts.diamond cts.sinf cts.I).
4

5 [] sttfa.bool --> cts.univ cts.star cts.box cts.I.
6

7 [A] sttfa.p A --> cts.cast cts.triangle cts.sinf
8 (cts.univ cts.box cts.triangle cts.I) (cts.univ cts.diamond cts.sinf cts.I)

cts.I A.↪→

9

10 [A] sttfa.etap A --> cts.Term cts.diamond A.
11

12 [A] sttfa.eps A --> cts.Term cts.star A.
13

14 [A,B] sttfa.arrow A B --> cts.prod cts.box cts.box cts.box cts.I A (x => B).
15

16 [A,B] sttfa.impl A B --> cts.prod cts.star cts.star cts.star cts.I A (x => B).
17

18 [A,B] sttfa.forall A (x => B x) --> cts.prod cts.box cts.star cts.star cts.I A
(x => B x).↪→

19

20 [B] sttfa.forallP (x => B x) -->
21 cts.prod cts.triangle cts.star cts.star cts.I (cts.univ cts.box

cts.triangle cts.I) (x => B x).↪→

22

23 [B] sttfa.forallK (x => B x) -->
24 cts.prod cts.triangle cts.diamond cts.diamond cts.I (cts.univ cts.box

cts.triangle cts.I) (x => B x).↪→
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To keep the translation simple we do not translate types operators but we could using
the quote function for products. This is because the type of a type operator such as list
is sttfa.type -> sttfa.type in Dedukti using the STT∀ signature.

The reverse translation from the CTS signature to the signature of STT∀ could also be
written in Dkmeta. The idea is to take all the rewrite rules above and just reverse them. For
example

1 [] sttfa.type --> cts.Term cts.triangle (cts.univ cts.box cts.triangle cts.I).

becomes

1 [] cts.Term cts.triangle (cts.univ cts.box cts.triangle cts.I) --> sttfa.type.

It is easy to see that the first translation defines a total function over the STT∀ signature in
Dedukti. It is also true for the reverse translation but this is not obvious. This property relies
on the property that in the CTS specification of STT∀ (Definition 7.2.3) the sort 4 has only
one inhabitant which is �.

9.3.2 Rewrite Products to compute canonical forms
Another application of Dkmeta is the computation of canonical forms with the quote function
for products. Coming back to our leibniz example, the type of leibniz we have written is
A : type -> eta A -> eta A -> eta bool. However, we could also have used the following
alternatives:

• A : type -> eta A -> eta (arrow A bool)

• A : type -> eta (arrow A (arrow A bool))

• etap (A => p (arrow A (arrow A bool)))

which are all convertible in Dedukti. However, the last one seems better for at least two
reasons:

• It does not contain any product, hence it is in the image of the translation as defined by the
CTS translation in Definition 6.1.2 and the Dkmeta translation presented in Section 9.3.1.
It is the same as saying that the term uses only symbols defined in the STT∀ signature.

• Looking at the head of the term, we know whether it is a type (it starts with eta) or a
proposition (it starts with eps)

This is why we call the last representation the canonical representation. However, this repre-
sentation is not always well-defined. For example in the encoding of a non-functional CTS, some
types have several canonical representations: If (s1, s2, s3) ∈ R and (s1, s2, s4) ∈ R then the
term (x : Ts1 A)→ Ts2 B has two canonical representations: Either Ts3 (πs1,s2,s3 I A (λx.B))
or Ts4 (πs1,s2,s4 I A (λx.B)).

Computing the canonical representation of a term requires to invert the rules which define
the symbols eta or eps in STT∀ and the symbol T in the CTS encoding. We can notice that all
these rules that define these symbols are invertible in STT∀ and this is true also for functional
CTS.

We give an example in STT∀ below. We recall below the rewrite rules which interpret the
function symbols arrow and forallK.
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1 [a,b] etap (p (arrow a b) --> eta a -> eta b.
2 [f] etap (forallK f) --> x: type -> etap (f x).

Their inverse could be something like

1 [a,b] eta a -> eta b --> etap (p (arrow a b)).
2 [x,f] x:type -> eta (f x) --> etap (forallK f).

Since a product is not a pattern, we use the quoting function for products instead. When a
quote function is used, the user needs to write meta rewrite rules on quoted terms. Because each
Dedukti product is quoted using the symbol prod.prod, this gives the following rewrite rules.

1 [a,b] prod.prod (eta a) (x => eta b) --> etap (p (arrow a b)).
2 [a,b] prod.prod (type) (x => eta (f x)) --> etap (forallK (x => f x)).

Then, we can apply this technique on the Leibniz equality which produces as a result

1 def leibniz : etap (forallK (A => arrow A (arrow A bool))) :=
2 A : type =>
3 x : eta A =>
4 y : eta A =>
5 forall (arrow A bool) (P : (eta (arrow A bool)) => impl (P x) (P y)).

In the case of the encoding of CTS, the inversion requires a function rule to compute a new
sorts s3 from s1 and s2. For example inverting the rewrite rule

1 [s1, s2, a, b] Term _ (prod s1 s2 _ a b) --> x : Term s1 a -> Term s2 (b x).

could be done as follow

1 [s1, s2, a, b] prod.prod (Term s1 a) (x => Term s2 (b x)) --> Term (rule s1 s2)
(prod s1 s2 (rule s1 s2) I a (x => b x)).↪→

It is also left to the user to define the function rule.
Hence Dkmeta provides a concise way to compute the canonical form of a term. The meta

rewrite system only needs to be defined once given the signature of some logic in Dedukti. In
this example, we use the full expressivity of Miller’s pattern fragment since the pattern of the
last rule contains x => Term s2 (b x). One could do the same thing in OCaml but it is tedious
to write and of course the resulting program would be much longer.

9.3.3 Implicit arguments in Dedukti with Dkmeta
Implicit arguments are arguments needed for type checking but that does not need to be provided
by the user and could be inferred from the context. If we use again our definition of Leibniz
equality in Dedukti, we could omit the first argument of the symbol forall (in this example
we use the wild-card _ as a placeholder for a meta-variable that should be instantiated):

1 def leibniz : A : type -> eta A -> eta A -> eta bool :=
2 A =>
3 x =>
4 y =>
5 forall _ (P => impl (P x) (P y)).
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The type for the first three λ-abstractions can be easily inferred from the type of the leibniz
constant. Moreover, Dedukti’s kernel can also infer the type of the λ-abstraction for the variable
P by type checking the right hand side. However, even if Dedukti had a representation for
meta-variables, instantiating this meta-variable is hard. Let us denote this meta-variable as ?1.
The Dedukti’s type checker processes the term P => impl (P x) (P y) to infer a type for
the abstraction in the context where impl:eta bool -> eta bool -> eta bool, x:eta A and
y:eta A. In particular, the type inferred for P is eta nat -> eta bool. Now, the unification
problem that Dedukti needs to solve to instantiate the meta-variable eta ?1 is: eta ?1 ?=
eta nat -> eta bool. This problem is hard because Dedukti needs to guess that ?1 is arrow
nat bool. This could be solved by computing the canonical representation of a type using the
technique we presented above. Indeed, the canonical representation of eta nat -> eta bool is
eta (arrow nat bool). Now, the problem becomes solvable if we assume that eta is injective
which is true in the STT∀ encoding.

The main advantage of this technique is that it does not need to change Dedukti’s kernel.
Moreover, the unification algorithm that would be implemented is predictable and very simple
in this case.

This example could be pushed a bit further. Dkmeta can be used also so that the user does
not need to enter the wildcards for implicit parameters manually. Hence, to imitate the behavior
of Coq for example, one could declare two symbols @forall and forall. The first one, has
no implicit parameters, while the second one would have one implicit parameter. To make the
connection between the two symbols, one could use the following meta rewrite rule

1 [P] forall P --> @forall _ P.

This usage of Dkmeta would be really similar to a preprocessor.

9.3.4 Compute Traces
Knowing that two terms are convertible, it might be interesting to have a trace which explains
how these two terms are convertible. Such traces have several applications. This thesis explores
two of them:

1. Going from Calculus of Inductive Constructions to STT∀ requires to remove the
rewrite rules that are introduced to encode recursors and fixpoints. Each application of a
rewrite rule requires to compute the context where this rewrite rule has been used. This
information can be recovered from the trace.

2. Exporting our proof from STT∀ to OpenTheory requires to compute a trace for every δ
and β rule that has been used.

But there exist other applications, in particular, for debugging. It is always possible to
instrument the rewrite engine of Dedukti to compute such traces. However, this tends to
slow down the rewrite engine even if this information is not needed. Moreover, instrumenting
the rewrite engine to compute this context is not always an easy task since it requires a deep
understanding of the rewrite engine. This instrumenation could be broken easily if the rewrite
engine is modified (for example by introducing more sharing in terms). Since performance is not a
primary criterion when a trace needs to be computed, we think that such functionality should be
instrumented outside the kernel. In our case, we present an implementation with Dkmeta. This
also has the advantage that we do not need to manipulate the context and the implementation
details such as De Bruijn indices explicitly. For this application, the quote function for products
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is not sufficient because we need to match against a syntactic application for example which is
not possible in Dedukti since matching is done modulo β. This is why we use the lf encoding
instead.

A trace explaining why two terms A and B are convertible can be defined informally as a list
of steps. A step is composed of four pieces of information:

• The name of the rule,

• The syntactic context where it is applied,

• The substitution,

• The side (left or right).

The substitution could be recovered from the context and the name of the rule but it is
in general preferable to have this information directly. The computation of a trace requires
that Dedukti can compute only one rewrite step at a time. In this example, we will focus
on recovering the context as a higher-order function. Getting the syntactic context to get a
full trace is the most difficult part since all other information can be easily recovered using the
context. In this example, we assume that we have two terms A and A′ which are convertible up
to one computation step modulo a rewriting system Γ ∪ β. We want to compute their common
context. To recover the context, we define two meta functions get_context and get_context'3.
get_context is applied to two terms A and A′ and call get_context' with the variable h which
is the hole. get_context' is defined only for products, application and abstractions. We also
use a non-linear rule to get rid of the common part easily.

1 [h,t,t'] get_context t t' --> lf.lam (h => get_context' h t t').
2

3 [h,t]
4 get_context' h t t
5 --> t.
6

7 [h,f,f']
8 get_context' h (lf.lam (x => f x)) (lf.lam (x => f' x))
9 --> lf.lam (x => get_context' h (f x) (f' x)).

10

11 [h,f,f',a,a']
12 get_context' h (lf.prod A (x => B x)) (lf.prod A' (x => B' x))
13 --> lf.prod (get_context' h A A') (get_context' h B B').
14

15 [h,f,f',a,a']
16 get_context' h (lf.app f a) (lf.app f' a')
17 --> lf.app (get_context' h f f') (get_context' h a a').

After normalization, as we assume that the two initial terms A and A′ differ only by one
reduction step, there remains only one instance of a function get_context' h t t'. This in-
stantiation can be removed thanks to one rewrite rule:

1 [h,t,t'] get_context' h t t' --> h.

Hence, this computation is a two-stage process. This could be achieved only in one stage but
it requires more rules if we want a confluent system.

3Since we have an untyped rewrite system, we could use only one function symbol
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9.4 Implementation of Dkmeta

Initially, Dkmeta was implemented as a fork of Dedukti meaning that it could be considered
as another implementation of Dedukti. Its only feature was to automatize the normalization
of terms according to a set of rewrite rules. However, in terms of software engineering, this is
not convenient at all because each modification done on Dedukti needed to be merged into the
Dkmeta fork. Therefore, we were interested in having a tool around the kernel of Dedukti.
To do so, we have made minor modifications to the kernel of Deduktiso that Dkmeta could
be extracted as an external library for Dedukti.

9.4.1 Kernel modifications to Dedukti
We have chosen to parameterize the reduction engine with a new type called type red_cfg.
This type is implemented as follows:

type red_cfg = {
select : (Rule.rule_name -> bool) option;
target : red_target;
beta : bool;
(* ... *)

}

The first field allows the specification a set of rules that the reduction engine can use. Notice
that the type Rule.rule_name is a way to identify a rule in a unique way. Often, the user does
not want to write the name of the rules and Dedukti has to invent a new name. If all the rules
are allowed (default case), by default this parameter is set to None. The second field needs to
be set to Snf by Dkmeta, since Dkmeta always computes the strong normal form. Finally, the
third parameter allows the user to deactivate β reductions. This configuration can be passed to
the reduction engine via a function called reduction which is implemented in the module Env :

val unsafe_reduction : t -> ?red:(Reduction.red_cfg) -> term -> term
(** [unsafe_reduction env red te] reduces [te] according to the reduction

configuration [red].↪→

It is unsafe in the sense that [te] is not type checked first. *)

Another modification which was introduced by Dkmeta to the kernel is a flag called fail_ c
on_symbol_not_found. This flag deactivates the default behavior of Dedukti of raising an
error when a symbol is not found in the signature. This is not mandatory, but it really eases the
use of Dkmeta. This flag allows the signature to consider all the symbols which are not present
in the signature as static symbols, hence without definition.

9.4.2 Dkmeta, a library for Dedukti
We review the essential parts in the implementation of Dkmeta. The library defines a type cfg
which is defined as:

type cfg = {
mutable meta_rules : RNS.t option;
(** Contains all the meta_rules. *)
beta : bool;
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(** If off, no beta reduction is allowed *)
encoding : (module Encoding) option;
(** Set an encoding before normalization *)
env : Env.t
(** Current environement *)

}

The first parameter meta_rules contains the set of meta rewrite rules that will be used to
modify the terms. The second parameter allows the deactivation of β reductions. The third
parameter allows the specification of a quoting mechanism (as an OCaml first-class module),
this is detailed in Section 9.2. The last parameter is a Dedukti environment, it is used to
interact nicely with Dedukti kernel. A default configuration is defined as follows:

(** Initliaze a configuration with the following parameters:
[meta_rules] = None
[beta] = true
[encoding] = None
[env] = empty_signature (in particular the name is the empty string) *)

val default_config : cfg

The library offers mainly two functions:

val meta_of_rules: Rule.untyped_rule list -> cfg -> cfg
(** [meta_of_rules rs cfg] adds the meta_rules [rs] in the configuration [cfg] *)

val mk_term : cfg -> ?env:Env.t -> Term.term -> Term.term
(** [mk_term cfg ?env term] normalize a term according to the configuration [cfg] *)

The first function is called to instantiate a Dkmeta configuration on all the meta rewrite
rules given by the user. The second method is the method which does the actual process by
calling the rewrite engine of Dedukti on the term to normalize. This method translates a
Dkmeta configuration into a Dedukti’s rewrite engine configuration.

9.5 Dkmeta vs other meta-languages

Dkmeta can be considered as a meta language for Dedukti. Many projects around typing
systems have also developed their own meta language. We review here some of these projects.

9.5.1 λprolog

λprolog [FGH+88] is a programming language which could be used as a meta-language. This is
already done in the Coq-Elpi project [Tas19] which introduces λprolog as a meta-language for
Coq. The main advantage of λprolog with respect to Dkmeta is the backtracking mechanism
which is built into λprolog. In Dkmeta, backtracking could be simulated but this is not
convenient to write and also error-prone4. On the other hand, the main advantage of Dkmeta is
to allow rewrite rules which are not well-typed and also non-linear rewrite rules which give more
flexibility to the user. As of today, we did not find any use of backtracking in Dedukti. But

4Writing a non-terminating program is really easy in Dkmeta, especially when one implements a backtracking
algorithm.



194 CHAPTER 9. REWRITING AS A PROGRAMMING LANGUAGE

this might change in the future (for example if one wants to implement a refiner5 for Dedukti).
In that case, it is not clear whether backtracking should be added into Dkmeta or if one should
change the meta language to use λprolog instead (or a version of λprolog for Dedukti).

9.5.2 Beluga

Beluga [Pie10] extends LF with a meta language which looks like a first-order language where
the terms are contextual LF objects. Contextual LF objects means that an LF term is repre-
sented with its context. Such meta language can be used to write meta functions over LF terms
as it is done in Dedukti. However, the purpose of this meta layer is not to compute with meta
functions but rather to prove that these meta functions are correct. This could be used to certify
that the proof transformation process is correct. For example, in Beluga it is possible to prove
that the transformation of a term (encoded in LF) represented using Higher-Order Abstract
Syntax to an term (also encoded in LF) represented with De Bruijn indices is correct. However,
this function is hard to write because the system needs to be convinced that the function is
well-defined. Hence, it is harder to write meta functions since the typing system in this case
is limiting. Extensions to facilitate the writing of meta functions have been proposed such as
Cocon [PTA+19] which makes the meta layer more expressive.

9.5.3 Meta-Coq

Meta-Coq [ABC+18] (former Template-Coq) is another project around Coq which aims to be
a first step to certify Coq in Coq. In Coq, inductive types allow the representation of the
abstract representation of Coq terms. Hence the Meta-Coq project provides this inductive
type as well as two functions which code and decode Coq terms towards/from this inductive
type. Hence Meta-Coq implements also a quoting mechanism similar to Dkmeta. However
their purpose as for Beluga is different since they are interested in the certification of a type
checker for Coq which could be written in Meta-Coq as a meta function.

9.6 Future work

Dkmeta could be improved in many ways.

9.6.1 Define new quoting and unquoting functions with Dkmeta
We saw three quoting/unquoting functions in Dkmeta. However, these quoting functions are
currently hard-coded in OCaml. Thus, adding an quoting function is painful and requires to
recompile Dkmeta. We believe that there is a generic way to declare a new quoting function in
Dkmeta. The idea is that there is a more general quoting function which could be informally
defined as an encoding of Dedukti in Dedukti. We will not define the encoding function JΓK gΓ
here, but the target signature would be

1 type : Type.
2

3 def eta : type -> Type.
4

5 ty : type.
5A tool which translate user’s syntax to kernel’s syntax. A typical task for a refiner is the elaboration of

implicit parameters.
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6

7 [] eta ty --> type.
8

9 prod : A : type -> (eta A -> type) -> type.
10

11 var : A : type -> eta A -> eta A.
12

13 lam : A : type -> B : (eta A -> type) -> (a:eta A -> eta (B a)) -> eta (prod A
B).↪→

14

15 def app : A : type -> B : (eta A -> type) -> eta (prod A B) -> a:eta A -> eta
(B a).↪→

All the other quoting function can be defined as meta rewrite rules from this encoding. For
example the quoting function for products can be defined with the following meta system.

1 [A] eta A --> A.
2

3 [x] var A x --> x.
4

5 [A,B,f] lam A B f --> f.
6

7 [A,B,f,a] app A B f a --> f a.

Hence JtK p could be defined in a term of JΓK gΓ and the meta rewrite system presented above.
Doing this naively could introduce an unnecessary cost at run time because JtK p does not

need Dedukti’s type checker while JΓK gΓ needs to call Dedukti’s type checker. However, by
looking at the meta rewrite system, Dkmeta knows statically if the encoding defined by the user
needs a type checker or no. It is sufficient to look at whether one of the parameters which need
to be inferred by Dedukti appears on the right-hand side. If it does, then the encoding needs
the type checker, otherwise, Dkmeta can introduce a fake term instead of the real type since it
will be thrown away.

9.6.2 Termination and confluence
Dkmeta offers almost no guarantee about the meta rewrite system provided by the user. Because
there exist tools to check confluence [NFM17] and termination [BGH19], it could be interesting
to use these tools to check whether the rewrite system provided by the user is confluent and
terminating. This could help fixing obvious flaws in the user’s rewrite systems.

9.6.3 Extending the language of Dkmeta
Currently, the normalization process can be used only on Dedukti terms. However, the De-
dukti language also features top level commands to declare parameters, rewrite rules, definitions
or commands. In the current version of Dkmeta, these objects are not first-class and the user
cannot manipulate them. Hence, it would be interesting to enhance the language of Dkmeta
to see these objects as first-class citizens. This could be a first-step to implement a refiner
in Dkmeta for example where the instantiation and the use of meta-variables would be done
directly in Dkmeta and not in OCaml.





Chapter 10

Universo

In Section 2.3, we have described an incomplete algorithm about interoperability between CTS.
The problem that this algorithm solves is: Given a derivable judgment Γ `C t : A and a CTS
C ′ to decide whether this judgment can be derivable in C ′ via a judgment embedding (Defini-
tion 2.1.4). In this chapter, we provide an implementation–called Universo–of this algorithm
in Dedukti using the CTS encoding described in Chapter 8. This algorithm can be seen as
a generalization of Coq’s algorithm to check that the floating universes constraints are consis-
tent [Typ05]. The algorithm we have implemented can be summed up as follows:

1. Elaborate the judgment to replace every sort by a fresh variable,

2. Generate the free CTS (as defined in Section 2.3) by invoking Dedukti as a type checker
for CTS,

3. Find a sort-morphism from this free CTS to C ′ using an SMT solver,

4. If a solution has been found, replace the fresh sorts generated at step 1 by their image
through the sort-morphism found at step 3.

Roughly, the free CTS is a specification associated to a derivation tree which makes this
derivation tree type checkable whe every sort are replaced with a fresh variable.

Coq’s algorithm implements a particular case where the CTS specification C ’ is fixed and
is the one of Coq, namely CC

s∞ (Definition 1.5.14). Their algorithm cannot be extended easily
for any CTS mainly because it relies on algebraic universes [Typ05].

However, many technical details arise when going from an algorithm to a concrete implemen-
tation. One detail we think is important is: How the same tool can be used for proofs encoded
in two different logics? Our solution relies on the notion of public and private signatures we have
presented in Chapter 6. The idea, is that two proofs comming from two different proof systems
(e.g. Matita and Coq) have to use for CTS symbols the same public signature. However,
Universo is free to chose the private signature to use. Since the private signature contains in
practice reduction rules, this means that Universo needs to control the reduction. This will be
detailed in Section 8.3. Also, we have designed Universo so that each of the 4 steps mentionned
previously can be computed separately and parameterized via a configuration file. But not only,
even the solver used for the third step could be reimplemented: Either by calling another SMT
solver or by using an ad-hoc algorithm (as for Coq). We think that having this design is impor-
tant, since in practice, we may face scalability issues for large libraries. The parameterization of
Universo for the arithmetic library of Matita will be detailed in Chapter 11.
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This Chapter is organized as follows: In Section 10.1 we give a high-level description of
Universo and how it works. In Section 10.2 we present how Universo can be parameterized
by the user. In Section 10.3 we give implementation details of Universo. In particular we will
show how it is built around Dedukti’s kernel. In Section 10.4, we explore several potential
extensions of Universo.

10.1 Universo in a nutshell

Universo is a tool for Dedukti that implements the algorithm described in Chapter 2 which
addresses the following problem: Given a derivable judgment Γ `C t : A in a CTS C , is it possible
to embed this judgment in C ′ in a way that Γ′ `C ′ t

′ : A′ is derivable, where Γ =? Γ′,t =? t
′

and A =? A
′. The equality =? equates two terms (and is extended to contexts) if they are equal

modulo the sorts (Definition 13). In Section 2.3, we have described an algorithm deciding this
problem, and Universo is an implementation of this algorithm. In particular:

• Universo uses Dedukti as a type checker. Hence Universo uses the embedding of
CTS into λΠ-calculus modulo theory we saw in Chapter 6 and its implementation
for Dedukti presented in 8.3. The main issue while working through this encoding is the
generation of the free CTS. In Section 10.3, we explain how the generation of a free CTS
is done in Universo.

• In practice, the system being encoded often has other features such as inductive types.
Universo needs to be compatible with these features. The fact that Dedukti is a very
weak language makes this task easy. The main issue is about rewrite rules, this is detailed
in Section 10.3.4.

• Proofs are not presented as typing judgments but as files, hence the environment such as
the namespace system of Dedukti needs to be taken into account in practice.

• In the λΠ-calculus modulo theory (and therefore in Dedukti) subtyping is explicit.
Because Universo cannot remove or add any subtyping proofs (yet?), Universo assumes
the proofs has been generated with identity casts, even if they are identity casts. As
discussed in 2.4, adding these identity casts does not break the soundness of Universo
but help to get completeness.

A typical use of Universo is as follows: The user has a proof in some file A.dk written in
a logic L where the underlying CTS is C and wants to translate this proof in a logic L′ which
differs from L only by the underlying CTS which is C ′. Also, we consider that the logics L
L′ are described in only one Dedukti file which we call here cts.dk for both L and L′. The
target specification C ′ is given to Universo via a configuration file described in Section 10.2.
It is the responsability of the user, that the target specification written in this configuration file
is the same as the underlying CTS of the logic L′. A typical invocation of Universo with the
command line is

universo -o out --theory logic.dk --config config.dk A.dk

If Universo succeeds, this command generates a file out/A.dk. If the target specification
given by the user is compatible with the one in logic2.dk, then the file generated by Universo
is well-typed. In practice, a library is split among several files in several directories, this is also
supported by Universo see 10.2. However, Universo does not handle dependencies between
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1 def example : cts.Univ cts.s2 :=
2 cts.prod cts.s2 cts.s2 cts.s2 cts.I
3 (cts.cast
4 cts.sinf
5 cts.sinf
6 (cts.univ cts.s2 cts.sinf cts.I)
7 (cts.univ cts.s2 cts.sinf cts.I)
8 cts.I
9 (cts.univ cts.s1 cts.s2 cts.I))

10 (__ =>
11 cts.cast
12 cts.sinf
13 cts.sinf
14 (cts.univ cts.s2 cts.sinf cts.I)
15 (cts.univ cts.s2 cts.sinf cts.I)
16 cts.I
17 (cts.univ cts.s1 cts.s2 cts.I)).

Figure 10.1: A proof in Dedukti of the judgment `D3
s1 → s1 : s2 using the CTS encoding

modules. Instead, we use a usual combination between an external tool–dkdep1, an external
tool to compute the appropriate dependencies between modules in Dedukti–and a Makefile
(similarly to ocamldep).

To understand how each part articulates with one another, we will use a running example
which is the same as that in Example 2.13. The original judgment`D3

s1 → s1 : s2 in Dedukti2
is presented in Fig. 10.1.

Each following subsection gives a description of the files taken as input and the ones generated
on this running example.

10.1.1 Elaboration step
• Input: input/A.dk

• Output: output/A.dk, output/A_elab.dk

Elaboration goes through the input file and replace all the sorts by a fresh variable. Sorts that
need to be elaborated are given by the configuration file (see 10.2) as rewrite rules. The elabo-
ration is divided into two smaller steps: First, terms are normalized with the rules given in the
configuration files with Dkmeta. This step generates constants Universo.var. Then, the elabo-
ration goes through the term and replace each occurence of Universo.var by a fresh variable such
as A_elab.?1. Finally, each fresh variable variable is declared in a new file: output/A_elab.dk
shown in Fig. 10.2.

The file output/A.dk is the same as input/A.dk where every sort is replaced with a fresh sort
variable as shown in Fig. 10.2. Hence a new explicit dependency via the command #REQUIRE3

has been introduced to the file output/A_elab.dk. This is to facilitate the separation between
1dkdep is part of the Dedukti tool suite.
2Actually we translate the judgment `D3

s1 → s1 ⇒ s2.
3The command REQUIRE makes a dependency in Dedukti explicit but it is not mandatory.
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(; output/A_elab.dk ;)

(; example ;)
def ?0 : cts.Sort.
def ?1 : cts.Sort.
def ?2 : cts.Sort.
def ?3 : cts.Sort.
def ?4 : cts.Sort.
def ?5 : cts.Sort.
def ?6 : cts.Sort.
def ?7 : cts.Sort.
def ?8 : cts.Sort.
def ?9 : cts.Sort.
def ?10 : cts.Sort.
def ?11 : cts.Sort.

(; output/A.dk ;)

#REQUIRE A_elab.
#REQUIRE A_sol.

def example :
cts.Univ A_elab.?0
:=
cts.prod

A_elab.?1
A_elab.?2
A_elab.?3
cts.I
(cts.cast

cts.sinf
cts.sinf
(cts.univ A_elab.?4 cts.sinf cts.I)
(cts.univ A_elab.?5 cts.sinf cts.I)
cts.I
(cts.univ A_elab.?6 A_elab.?7 cts.I))

(__ =>
cts.cast

cts.sinf
cts.sinf
(cts.univ A_elab.?8 cts.sinf cts.I)
(cts.univ A_elab.?9 cts.sinf cts.I)
cts.I
(cts.univ A_elab.?10 A_elab.?11 cts.I)).

Figure 10.2: Output of Universo after the elaboration step

steps so that the other steps can be run indepently without executing again the elaboration
which rarely changes.4

10.1.2 Type checking step

• Input: output/A.dk output/A_elab.dk

• Output: output/A_cstr.dk

Because the file output/A.dk is ill-typed, Universo instruments Dedukti’s type checker
to generate the free CTS (Definition 2.3.3). This instrumentation is roughly a hook in the con-
vertibility test which is triggered everytime the rewrite engine of Dedukti sees a sort variable
(generated by Universo). This instrumentation is detailed in Section 10.3. For example, every-
time the type checker sees a CTS product, a constraint is added. We see in Fig. 10.3 that the
term cts.prod A_elab.?1 A_elab.?2 A_elab.?3 cts.I has triggered the generation of the

4Another explicit require command has been introduced to the file output/A_sol.dk. This file is currently
empty and will be filled during the last step. This dependency is here to facilitate the integration with a Makefile.
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1 #REQUIRE A.
2

3 (; output/A_cstr.dk ;)
4

5 (; example ;)
6 [] cts.Rule A_elab.?1 A_elab.?2 A_elab.?3 --> cts.true.
7 [] cts.Axiom A_elab.?4 cts.sinf --> cts.true.
8 [] cts.Axiom A_elab.?5 cts.sinf --> cts.true.
9 [] cts.Cumul A_elab.?4 A_elab.?5 --> cts.true.

10 [] cts.Axiom A_elab.?6 A_elab.?7 --> cts.true.
11 [] A_elab.?7 --> A_elab.?4.
12 [] A_elab.?5 --> A_elab.?1.
13 [] cts.Axiom A_elab.?8 cts.sinf --> cts.true.
14 [] cts.Axiom A_elab.?9 cts.sinf --> cts.true.
15 [] cts.Cumul A_elab.?8 A_elab.?9 --> cts.true.
16 [] cts.Axiom A_elab.?10 A_elab.?11 --> cts.true.
17 [] A_elab.?11 --> A_elab.?8.
18 [] A_elab.?9 --> A_elab.?2.
19 [] A_elab.?3 --> A_elab.?0.

Figure 10.3: Output of Universo after the type checking step

constraint [] cts.Rule A_elab.?1 A_elab.?2 A_elab.?3 --> cts.true.. We encode con-
straints in Dedukti as rewrite rules. This is an interesting feature of Universo because these
constraints can be easily parsed by Dedukti or Dkmeta. But not only, for equality constraints
these constraints can be used to make the type checking faster!

10.1.3 Solving Step

• Input: output/A_cstr.dk

• Output: output/A_sol.dk

The constraints generated in the file output/A_cstr.dk can be given to a solver. In the
case of Universo we have used the SMT solver Z3. For this example, Z3 found a solution and
Universo uses this solution to generate the file output/A_sol.dk shown in Fig. 10.4. Again,
we use rewrite rules to write this solution, so that they can be processed with Dkmeta later.

At the end of this step, the file output/A.dk can be type checked in the target specification.

10.1.4 Reconstruction

• Input: output/A.dk output/A_sol.dk

• Output: output_reconstruction/A.dk

This step is not mandatory to hav typ checkabe files but it makes Universo easier to
use with other tools as presented in Chapter 11. This step generates a file where every sort
variable introduced by Universo has been replaced with the solution found in the previous
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1 #REQUIRE A_elab.
2

3 (; output/A_sol.dk ;)
4

5 [] A_elab.?0 --> cts.s3.
6 [] A_elab.?1 --> cts.s3.
7 [] A_elab.?2 --> cts.s3.
8 [] A_elab.?3 --> cts.s3.
9 [] A_elab.?4 --> cts.s2.

10 [] A_elab.?5 --> cts.s3.
11 [] A_elab.?6 --> cts.s1.
12 [] A_elab.?7 --> cts.s2.
13 [] A_elab.?8 --> cts.s2.
14 [] A_elab.?9 --> cts.s3.
15 [] A_elab.?10 --> cts.s1.
16 [] A_elab.?11 --> cts.s2.

Figure 10.4: Output of Universo after the solving step

1 def ex : cts.Univ cts.s3 :=
2 cts.prod
3 cts.s3
4 cts.s3
5 cts.s3
6 cts.I
7 (cts.cast
8 cts.sinf
9 cts.sinf

10 (cts.univ cts.s2 cts.sinf cts.I)
11 (cts.univ cts.s3 cts.sinf cts.I)
12 cts.I
13 (cts.univ cts.s1 cts.s2 cts.I))
14 (__ =>
15 cts.cast
16 cts.sinf
17 cts.sinf
18 (cts.univ cts.s2 cts.sinf cts.I)
19 (cts.univ cts.s3 cts.sinf cts.I)
20 cts.I
21 (cts.univ cts.s1 cts.s2 cts.I)).

Figure 10.5: Output of Universo after the reconstruction step
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step. In particular, this step removes the intermediate generated files A_elab.dk, A_cstr.dk
and A_sol.dk. The final result is pictured in Fig. 10.5.

We see that the solution generated is the same as the one presented in Example 2.13.

10.2 Parameterization of Universo

Universo needs to be configured because it is intended to be used with many logics and many
CTS specification for different purposes, but also for scalability. Besides the options given
to Universo via the command-line, one needs to parameterize Universo with an external
configuration file. We refer the reader to the documentation of Universo to an exhaustive
presentation of Universo’s command line options and parameterization. Below, we explain
how the parameterization solves some common problems.

The syntax of CTS differs from the sorts. This is an issue for Universo because it needs to
handle sorts for any CTS in the same way. Because in practice all the sorts are countable, Uni-
verso uses an internal representation for sorts isomorphic to natural numbers. These constants
are uzero and usucc. We use the constant enum to go from natural numbers to sorts. Notice
that these constants are purely syntactic for Universo. The user will give a semantics to these
constants in the configuration file.

In Universo, the configuration file is actually a Dedukti file. Dedukti’s syntax offers a
simple way to write a configuration file to parse and at the same time may contain valid rewrite
rules that can be used by Dkmeta. The configuration file of Universo is split into different
unordered sections. A section is introduced with a definable declaration of type Type in Dedukti
syntax.

In particular, Universo recognizes 4 sections:

• elaboration: Configure the elaboration step

• constraints: Add additional constraints to Universo

• solver: Configure the solver used by Universo

• output: Configure the output of Universo

Elaboration: This section contains rewrite rules which will be used as meta rewrite rules (with
Dkmeta) to replace every sort by a fresh variable. For example one can write:

1 [] cts.star --> cts.var.

Everytime a term matches the left pattern it will be replaced with the constant cts.var.
Then, Universo automatically replaces this variable by a fresh variable. The user can also
map a sort to the internal representation of Universo sorts (internal representation of sorts is
detailed in the output paragraph).

1 [] cts.star --> cts.enum cts.uzero.

This feature is interesting because most of the time a sort such as ? in many CTS specification
never needs to be changed because it reprensents a proposition and is at the bottom of the
universe hierarchy. Notice that this optimization means that Universo can do more than
generating the free CTS. A side-effect of using Dkmeta is that this section can contain arbitrary
meta rewrite rules. This interesting feature can be used to preprocess files. In particular, it may
speed up the solving step if the precomputation reduces the number of constraints that will be
generated during type checking.
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Constraints: This section allows the addition of constraints by the user. The reason is that
in practice, Universo the specification morphism is not unique from the free CTS to the target
specifcation. For example, in Chapter 11, we explain that by default, Universo maps the natural
numbers defined in the Matita’s arithmetic library as a proposition ? and not as a datatype �.
In general, people prefer to use natural numbers as a datatype. To prevent Universo to sort
natural numbers as proposition, the user can add additional constraints such as:

1 [] matita_arithmetics_nat.nat --> cts.Cumul (cts.enum (cts.usucc cts.uzero))
cts.var.↪→

which says that the sort for natural numbers should be greater than the sort assigned to
cts.enum (cts.usucc cts.uzero). In general, the sort cts.enum cts.uzero is used for propo-
sition (?).

Solver: This section contains several options to parameterize the solver. Currently the only
solver implemented for Universo is Z3. In Universo, Z3 can be used with two different logics
which are:

• QF_UF (Quantifier Free Uninterpreted Function symbols): An extension of propositional
logic with equality and non interpreted functions symbols

• LIA (Linear integer arithmetic): Every variable is interpreted as an integer. Linear means
that there is no multiplication.

The semantics to the constants uzero and usucc depends on the logic. In the case of LIA,
uzero denotes 0 and usucc denotes the successor operator. In the case of QF_UF, these are just
symbols for which their interpretation is given by the user. In both cases, the user needs to
provide an interpretation.

Configuring Universo with the LIA logic: This section only needs to be specified if the
user uses Z3 with the LIA logic. In this section, the user has to define three symbols: axiom a
b, rule a b c and cumul a b. The definition is given via the Dedukti syntax for rewrite rules.
The right-hand side of the rewrite rule should be a term over the following algebra (a symbol
and its arity):true (0), false (0), zero (0), succ (1), eq (2), max (2), imax (2), le (2), ite (3).
We will only detail the interpretation associated to imax, for the other symbols, the name should
be self-explanatory or can be found in [BST10]. imax encodes an impredicative max, it could be
defined with the other symbols as:

1 [a,b] imax a b --> ite (b zero) zero (max a b).

We have imax in the algebra because in practice it is often used. A set of valid rewrite rules
for this section could be for example:

1 [a,b] axiom a b --> eq (succ a) b.
2 [a,b,c] rule a b c --> eq (imax a b) c.
3 [a,b] cumul a b --> le a b.

The specification encoded by these rules is an impredicative hierarchy of universes as defined
by the CTS of Lean in Definition 1.5.13. Notice that while the LIA is well-suited for CTS
behind Lean, Matita or Coq, it is not that convenient pas the CTS specification of STT∀ for
example. While ? and � can be associated to the numbers 0 and 1 it is not clear what number
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should be associated to the sorts 4 and ♦ for example. But also, it requires more complex
interpretations for symbols axiom or rule. For this reason, when the specification uses a finite
number of sorts, it may be better to use the QF_UF logic.

Configuring Universo with the QF_UF logic: As for LIA, this section only needs to be
specified if the user uses Z3 with the QF_UF logic. In this section, the user needs to give
an exhaustive interpretation for A, R, and CC. Hence, QF_UF can be used only for finite
specifications. This is not a real restriction since a proof uses only a finite number of universes.
However, this requires guessing the maximum number of universes used by those proofs. In
practice, this number is rather low and rarely exceeds 5.

The user only needs to specify an interpretation when the relation is true. An example of
specification for this section could be:

1 [] cts.Axiom star box --> cts.true.
2

3 [] cts.Rule star star star --> cts.true.
4 [] cts.Rule star box box --> cts.true.
5 [] cts.Rule box star star --> cts.true.
6 [] cts.Rule box box box --> cts.true.
7

8 [a] cts.Cumul a a --> cts.true.

which encoded the specification of Calculus of Constructions. Notice that cts.Cumul
is not reflexive by default.

Output: This section is used by Universo to map its own representation of universes to the
ones of the target specification. This is achieved using meta rewrite rules.

1 [] cts.enum cts.uzero --> star.
2 [] cts.enum (cts.usucc cts.uzero) --> box.

This section is used by the LIA logic to interpret the solution of the solver: A variable mapped
to the number 0 by the solver will be interpreted by star using the rules above. When using
the QF_UF logic, the solver map a variable to cts.enum cts.uzero or cts.enum (cts.usucc
cts.uzero) directly. Hence the rules of this section are just composed with the output of the
solver.

10.3 Implementation of Universo

In this section we explain several design choices that have been made for Universo. For scala-
bility, Universo uses many tricks related to the rewrite engine of Dedukti. We hope that this
section may enlighten a person aiming to further work on Universo.

Once the terms have been elaborated, they are not well-typed in the source logic. The
purpose of the type checking step is to generate constraints so that the terms are well-typed under
these constraints. These constraints represent the free CTS of the derivation tree computed by
Dedukti as presented in Section 2.3. We insist that these constraints–a priori–do not depend
only of the proof, but also on the type checker. It is not clear whether if we change the type
checker, the constraints generated encodes the same free CTS (or a free CTS equivalent). This
is why our method is not complete. In particular, considering performance we do not compute
the SNF of a term but only its WHNF(Definition 8.1.2).
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We may observe that this procedure is really similar to what is done in Coq with float-
ing universes. Except that the algebra of constraints for Coq is fixed and hence, an ad-hoc
algorithm [Typ05] could be implemented for this specification.

Since the elaborated term is ill-typed, invoking Dedukti’s type checker on it fails. To
overcome this issue, Universo implements a hook over the convertibility test of Dedukti. In
OCaml, this is done via a functor mechanism that is presented in Section 8.1.4. The purpose
of this hook is to catch cases that involve the fresh sorts elaborated at the previous step. As
a consequence, this step depends crucially on the private encoding of CTS because Universo
needs to know the shape of a term in WHNF in the CTS encoding. The private signatured used
for Universo is the one presented in Section 8.3.

The hook of Universo comes before the convertibility test of Dedukti. It takes two terms in
WHNF and returns a boolean: true meaning that these two terms are convertible for Universo.
This means that as a side effect a constraint has been generated. false meaning that Universo
does not know whether these two terms are convertible and the usual convertibility test of
Dedukti takes over.

The hook of Universo implements eight cases that can be divided by two because of sym-
metry. Given two terms l and r in WHNF, checks the following cases:

• If l = ?i and r = ?j then we add the constraint ?i = ?j

• If l = Rule ?i ?j ?k and r = true then we add the constraint Rule ?i ?j ?k = true

• If l = Axiom ?i ?j and r = true then we add the constraint Axiom ?i ?j = true

• If l = Cumul ?i ?j and r = true then we add the constraint Cumul ?i ?j = true

The first constraint generates the equivalence relation for the free CTS. The other constraints
encode the specification of the free CTS.

As an optimization, the first constraint is also added as a rewrite rule in Universo. This
optimization speeds up the type checking when proofs are getting big. Adding this rewrite rule
should be done with care: Indeed, a wrong orientation of the constraint as a rewrite rule may
introduce a non-terminating rewrite system. We avoid this by implementing a total order on
the sorts elaborated by Universo. This order corresponds to the underlying order of natural
numbers. Hence ?5 > ?2. An equality is always oriented from the larger universe to the smaller
one. We have made this choice because empirically, fewer constraints are added on smaller
universes. Hence, this heuristic makes the computation of the WHNF of a universe faster.

10.3.1 Identity casts and non-linearity

The non-linear rule coming from identity casts is a big issue. In practice, identity casts allows
a faster type checking and seems necessary5 with the current encoding of inductive types in the
λΠ-calculus modulo theory. This means that without the canonicity rule (in the private
signature)

1 [A,t] cast' _ _ A A t -> t.

the type checking of a term may fail. An example of this the following one (using the CTS
encoding in Dedukti)6:

5We recall that in Section 6.4 we already discussed about the necessity of identity casts.
6We have applied some reduction rules to make the example easily readable.
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1 def u := cts.univ star box cts.I.
2 def v := cts.univ star box cts.I.
3 def cast := cts.cast box box u v cts.I.
4

5 A : cts.Univ star.
6

7 f : cts.Term star (cast A).
8

9 eq : A : cts.Univ star ->
10 cts.Term star A ->
11 cts.Term star A ->
12 cts.Univ star.
13

14 #INFER (eq A f f). (; cts.Univ str ;)

The term eq A f f thanks to the identity cast is well-typed. If we use Universo7 on this
example, we will obtain the following term

1 def u := cts.univ ?1 ?2 cts.I.
2 def v := cts.univ ?3 ?4
3 def cast := cts.cast ?5 ?6 u v cts.I.
4

5 A : cts.Univ ?7.
6

7 f : cts.Term ?8 (cast A).
8

9 eq : A : cts.Univ ?9 ->
10 cts.Term ?10 A ->
11 cts.Term ?11 A ->
12 cts.Univ ?12.
13

14 #INFER (eq A f f). (; Ill-typed without constraints ;)

To type check the term eq A f f, Dedukti’s type checker checks that cast A is convertible
to A. To do so, Dedukti’s type checker computes the WHNF of cast A. The rewrite engine first
unfolds the definition of cast to get the term cts.cast ?3 ?4 u0 u0 cts.I A. At this stage,
since cts.cast is a definable symbol, to compute the WHNF, Dedukti’s type checker tries to
see whether there is a rule which matches against this term. One such rule is the identity cast
rule. But to know whether this rule matches, it needs to know whether the sort variable ?1 (resp.
?2) is convertible to the sort variables ?3 (resp. ?4). To do so, it calls the convertibility test
(hooked by Universo). In that case, the hook of Universo says yes and add two constraints.
Therefore, Dedukti’s type checker can apply the identity cast rule and says that the term is
well-typed.

But there is a catch here. It means that whenever Dedukti’s type checker tries to apply an
identity cast, it succeeds and this is not desired!

For example, if we change the example by the one below

1 def U0 := cts.Univ star.
2 def U1 := cts.Univ box.

7The type checking phase we are discussing here is independent from the target specification.
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3 def u0 := cts.univ star box cts.I.
4 def u1 := cts.univ box triangle cts.I.
5

6 B : U0.
7 g : U1 -> U0.
8 x : cts.Term star (g u0).
9 y : cts.Term star (g (cts.cast box triangle u0 u1 cts.I B)).

10 z : cts.Term box ((x : cts.Term star (g (cts.cast box triangle u0 u1 cts.I B))
=> u0) y).↪→

After the elaboration step, we get

1 def U0 := cts.Univ ?1.
2 def U1 := cts.Univ ?2.
3 def u0 := cts.univ ?3 ?4 cts.I.
4 def u1 := cts.univ ?5 ?6 cts.I.
5

6 B : U0.
7 g : U1 -> U0.
8 x : cts.Term ?7 (g u0).
9 y : cts.Term ?8 (g (cts.cast ?9 ?10 u0 u1 cts.I B)).

10 z : cts.Term ?11 ((x : cts.Term ?12 (g (cts.cast ?13 ?14 u0 u1 cts.I B)) => u0)
y).↪→

After checking the type of the variable y, Universo has generated at least the following
constraints

1 [] cts.Axiom ?3 ?4 --> cts.true.
2 [] ?5 --> ?4.

During the type checking of the application in the type of the variable z, Dedukti’s type checker
checks whether the type of the variable y is convertible with cts.Term ?12 (g (cts.cast ?13
?14 u0 u1 cts.I B)). This comes back to checking the convertibility between cts.cast ?9
?10 u0 u1 cts.I B and cts.cast ?13 ?14 u0 u1 cts.I B. At this stage, Dedukti’s tries to
compute the WHNF of these terms and will tries to use the identity cast rule. If it succeeds, it
will generate the constraint

1 [] ?4 --> ?3.

This constraint is problematic since it means that the CTS behind Coq (limited to three uni-
verses) is not a solution8. To avoid this problem, the identity cast rule is removed from the
private signature by Universo, and the hook it implements applies manually identity casts only
when it is necessary. Meaning that the rule is applied manually only when the convertibility
test of Dedukti’s type checker checks if a cast-term is convertible with a non-cast term. We
are not very pleased with this solution but it works. Morever, this trick is necessary to make
Universo’s work in practice.

8Notice that this constraint shows that the derivation tree built by Dedukti is important for completeness.
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10.3.2 Modularity with Universo
For each file, the type checking step of Universo produces a Dedukti file which contains the
generated constraints as rewrite rules. One advantage of this, is that these constraints can be
reused for the type checking of other modules.

While we observe that the type checking with Universo is not much longer than the original
file, we observed that importing dependencies took a lot of time which was due to the construction
of the decision tree (Section 8.1.3). Indeed, the old behavior was to construct the decision tree
every time a new rule was added on a symbol. With Universo, many rules are added one by
one, and the fact that the decision tree is built for every rule leads to a squared complexity with
respect to the number of rules. We solve this issue by making the computation of decision trees
lazy: The decision tree is computed only when it is needed, meaning when the rewrite engine
needs to compute the WHNF of a symbol. In practice, this slightly slows down the type checking
but it is reasonable way.

10.3.3 Solving constraints
Once all the files have been type checked, Universo calls the solver with all the constraints
that have been generated. So far, we only support the Z3 SMT solver with two different logics:
QF_UF and LIA. For this step, we also have implemented an optimization which is to pre-
process Z3’s input with union-find. We observe that in many cases, this may decrease Z3’s
solving time.

This step is the bottleneck to make Universo scales. We cannot bound the time it takes to
an SMT solver to solve these constraints. We observe that in practice the time seems to increase
linearly with the size of the proofs. We have no information about proofs that are larger than
those we have processed (at the time of writing Matita’s arithmetic library and part of Coq
standard library), but we suspect that some work remains to be done to make Universo further
scalable.

10.3.4 Compatibility of Universo
In practice, we have manipulated proofs encoded from a logic which is not only a CTS but has
other features such as inductive types or recursive functions. The encoding of these features
in Dedukti also use rewrite rules. As mentioned in Section 10.3, the behavior of Universo
highly depends on the WHNF of a term. Empirically, we observe that the encoding of these
features in Dedukti does not have an impact on Universo. This is because these rewrite rules
added to encode inductive types or recursive functions (see Section 8.4) are universe polymorphic.
Meaning that in a pattern, there is never a concrete universe (such as ? or �).

10.4 Future Work

Partially solve the constraints: In practice, we observe that for some universes, we do not
need to type check the whole library to find the final solution. If we take the equality symbol
for example, this symbol is one of the first symbols defined in a library. Once it is used with
the highest possible datatypes in the universe hierarchy, the sort may be fixed once and for all.
Fixing such a sort may ease the solver to find a solution. For the moment, the only way to do this
is manually by adding more and more constraints to the constraint section of the configuration
file of Universo. However, it would be interesting to have a mechanism for producing partially
specified solution when given a part of the library. By splitting the library into parts and process
them separately, we suspect that this may decrease the solving time a lot.
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Non-linear rules: The solution we have proposed for the non-linear rules described in Sec-
tion 10.3 requires a really good understanding of the encoding. We also realize that in practice
the rules ordering matters because of non-linear rule may have an impact on the type checking
time. It would be interesting to investigate this and see whether Dedukti could offer a better
API to handle this problem in an easy way.

Instrument the SMT solver: We have made little effort to instrument the SMT solver.
Two SMT-solving features may speed up the solving timee: First, most SMT-solvers have an
incremental solving mode which could be used to submit and solve the constraints after each
proof in the library rahter than at the end. Another feature to guide the SMT solver are tactics.
Z3 proposes a set of tactics but also to implement our own tactics to guide the SMT solver. It
would be interesting to see whether tactics may decrease the solving time.



Chapter 11

The Matita Arithmetic Library into
STT∀

In this chapter, we show our main practical result using tools we have presented in the previous
chapters Dkmeta in Chapter 9, and Universo in Chapter 10. Our result is a semi-automatic
translation from proofs expressed in the encoding of Matita in Dedukti to the encoding of
STT∀ in Dedukti. Since the logic behind Matita is more expressive than Higher-Order
Logic, we are interested into theorems that can also be expressed in Higher-Order Logic.
This is why in this work, we have only translated part of the Matita arithmetic library into
Higher-Order Logic where the last theorem proved is Fermat’s Little Theorem. This proof
needs about 300 lemmas which makes this example large enough to require automatation. The
full translation is split into three steps:

1. We translate Matita’s proof into Dedukti. For this, we have used the CTS encoding
we have shown in Section 8.3. The effective tool which goes from Matita to Dedukti is
called Krajono1 and has been originally designed by Ali Assaf [Ass15b] and extended for
this work to take the new encoding of CTS into acccount.

2. We make several translations to go from the Matita’s logic encoded in Dedukti to the
encoding of STT∀ in Dedukti presented in Section 8.2. This cannot be achieved with
Universo only because the logic of Matita contains inductive types and recursive func-
tions.

3. From the encoding of STT∀ into Dedukti we can export these proofs into several systems
such as Coq, Lean, PVS or OpenTheory, a language which is interoperable with the
different systems of the Higher-Order Logic family. This exportation will be explored
in Chapter 12.

The purpose of this chapter is to explain the second step of this process and explore the
technical details which arise in practice. The implementation of this process is really similar to
a compiler with several compilation steps. Here, we have a main proof transformation procedure
achieved by Universo and then several small steps to remove features that are in Matita
but not in STT∀. In our case, these features are dependent types, inductive types with their
destructor (match) and the fixpoint operator. These last two features add a layer of complexity
because the encoding we have presented in Section 8.4 introduces many rewrite rules as well as
a bit of universe polymorphism. This chapter describes how this translation process has been

1https://github.com/Deducteam/Krajono
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implemented even though the end of this translation is not completely automatized yet at the
time of writing.

This chapter is organized as follows: In Section 11.1, we give an overview of Fermat’s little
theorem proof as it is implemented in the arithmetic library of Matita. In Section 11.2, we prune
the arithmetic library to keep only what is necessary to prove Fermat’s little theorem using the
tool Dkprune. In Section 11.3, we explain how we used Universo to embed the proof into
an extension of STT∀ which is enriched with dependent types. In Section 11.4, we use another
tool called Dkpsuler to remove the polymorphic constants match. In Section 11.5, we remove
the dependent types that come from inductive types with Dkmeta. Finally, in Section 11.6, we
remove the rewrite rules which come from inductive types and recursive functions.

11.1 Fermat’s little theorem and its proof in Matita

In this section, we present a proof of Fermat’s little theorem. First, as an informal proof which
is easy to understand and then, we give a brief description of Matita’s arithmetic library that
was used to implement this proof in Matita.

11.1.1 Small analysis of the proof of Fermat’s little theorem
Fermat’s little theorem has two equivalent statements. The one we will prove is formalized below.

Theorem 11.1.1 (Fermat’s little theorem) For all prime number p and natural number a,
if p does not divde a, then ap−1 ≡ 1 mod p.

Proof Considering the following equality:

(p− 1)!× ap−1 =
p−1∏
i=0

i× a (11.1)

Because p is prime and does not divde a then

(
p−1∏
i=0

i× a) ≡ (
p−1∏
i=0

i) mod p (11.2)

Hence we can conclude

(p− 1)!× ap−1 ≡
p−1∏
i=0

i× a mod p by 11.1

(p− 1)!× ap−1 ≡
p−1∏
i=0

i mod p by 11.2

(p− 1)!× ap−1 ≡ (p− 1)! mod p

(p− 1)!×
(
ap−1 − 1

)
≡ 0 mod p

ap−1 − 1 ≡ 0 mod p by Euclid’s lemma
ap−1 ≡ 1 mod p
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11.1.2 Description of Matita’s arithmetic library to prove Fermat’s little
theorem

The arithmetic library of Matita was imported from Coq’s arithmetic library and is split into
three directories:

• basics (17 files) which contains common definitions which are shared with other libraries
such as Leibniz equality (as an inductive type), usual connectives, boolean type...

• arithmetics (26 files) which contains the main arithmetic definitions of the library.

• arithmetics/chebyshev (6) files) which contains results about Chebyshev polynomials
and have a proof of Bertrand’s theorem.

For Fermat’s little theorem (named congruent_exp_pred_SO in the library), only the first two
directories are used. Even if all these files are not used to prove Fermat’s little theorem, we import
all these files into Dedukti. We prefer to do it this way and prune the unecessary theorems
in Dedukti because pruning the unecessary theorems is already related to our interoperability
task.

The informal proof presented above requires the notion of product, factorial, congruence and
permutation (to prove 11.2). Since the library has not been designed around this theorem, the
definition of product is an instantiation of a more general definition called bigops which aims
to define operators such as

∑
or
∏
.

The proof of Fermat’s little theorem as it is in Matita’s arithmetic library cannot be exported
directly in Higher-Order Logic for the following three reasons:

1. bigops definition is polymorphic but not in the prenex polymorphism fragment. The first
argument is a natural number.

2. A second problem comes from the encoding of inductive types which are encoded with
a constant match. However, this constant in Dedukti needs to be made universe poly-
morphic (as explained in Section 8.4.2). We could remove the universe polymorphism by
instantiation and then use Universo. However, we realized that it is better to use Uni-
verso first, and do this instantiation later. The reason is that universe polymorphism gives
more flexibility to Universo. Removing universe polymorphism introduced by the match
is equivalent to making more sorts in the free CTS (Definition 2.3.3) equal and therefore
this reduces the search space of Universo. This problem is similar to the completeness
issue of Universo we already mentioned in Section 2.4.

3. A third problem is also related to the encoding of inductive types where the induc-
tion principle comes naturally with dependent types which, in the case of Fermat’s lit-
tle theorem, are never used. For example, one needs dependent types to type check
N : 1 `C λx :N.N : (x :N) → 1, but because x is not used, we could have the follow-
ing judgment instead N : 1 `C N : 1.

In this chapter, we will not tackle the first problem and will assume that the original definition
of bigops is in fact in STT∀. The reason why the definition is not in STT∀ is simply because
the quantification over a type is not prenex. Since the first arguments do not depend on this
type, the definition can be made prenex polymorphic by moving this type argument to the front.
We will discuss in 11.7 how this permutation could be handled directly in Dedukti.

The second issue is tackled in Section 11.4 and the third issue in Section 11.5.
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1 #GDT matita_arithmetics_fermat_little_theorem.congruent_exp_pred_SO.

Figure 11.1: Configuration file for Dkprune

11.2 Step 1: Pruning the library with Dkprune

Pruning the library is done with a tool called Dkprune2. This tool has been implemented as
a tool for Dedukti in OCaml. It has around 200 lines of code. It takes a configuration file
as input and a directory containing a Dedukti library. A configuration file for Dkprune is
a Dedukti file which can declare a sequence of identifiers (the identifier is prefixed by #GDT)
or module name (prefixed by #REQUIRE) of Dedukti. Dkprune prints in an output directory
the (down) transitive closure of the dependencies for all the names present in the configuration
file. For this translation, we are only interested in keeping the dependencies for Fermat’s little
theorem, hence the configuration file of Dkprune is only one line which is presented in Fig. 11.1.
Since the namespace mechanism of Dedukti is not very expressive, the file system hierarchy is
not respected and the name of the folders of Matita are added to the name of the file where
the theorem is declared.

Dkprune prints in the output directory specified by the user a set of non-empty files which
contains only what is necessary to prove Fermat’s little theorem.

11.3 Step 2: Using Universo to go to STT∀

The usage of Universo for the purpose of targetting STT∀ raised two problems we mentioned
previously:

• The first issue is that which mentioned in Section 2.4 about completeness. Since some casts
are missing, some rules need to be added to the specification.

• The second issue is about the encoding of inductive types with the constant match which
is universe polymorphic.

Inductive types with Universo The destruction of an inductive type in Dedukti is done
via a constant match specific to this inductive type. This constant is used both to construct a
new statement (as a proposition in Calculus of Inductive Constructions) or to construct
a new type. In the case of the inductive type N, the type of this constant is the following:

(s :S)→ (P :N→ s)→ P 0→ ((x :N)→ P (n+ 1))→ (z :N)→ P z

There is a quantification on a sort s because the constant match is universe polymorphic
(see Section 8.4). In the library, this constant is used both with a sort ? for proposition and �
for types. However, in this last case, this leads to the use of a dependent type. In STT∀, the
induction principle can be stated as it is, but one cannot define new objects with this definition
because it requires to use a dependent type which does not exist in STT∀. Eliminating universe
polymorphism (a.k.a eliminating the quantification over a sort) introduces a duplication for this
constant. However, it is better to run Universo before this duplication as discussed previously
in Section 11.1.1.

2https://github.com/Deducteam/Dedukti/blob/master/commands/dkprune.ml

https://github.com/Deducteam/Dedukti/blob/master/commands/dkprune.ml
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?

�4

♦

a

a

Figure 11.2: CTS graph used with Universo to translate Matita’s arithmetic library

Since the type of the constant match is not in the CTS encoding, this use of a dependent
type is not seen by Universo because the type is already in a reduced form. Hence there is
no need to add a dependent type in the configuration file even if implicitly there are dependent
types in the library.

The specification In Fig 11.2, we present the difference between the STT∀ specification and
the one we use in practice. There are mainly two differences: The first one is the addition of a
rule

1 [] cic.Rule cic.box cic.box cic.diamond --> cic.true

which is derivable in STT∀ because (�,♦) ∈ CSTT∀ and (�,�,�) ∈ RSTT∀. In practice, since
we have explicit casts it makes a difference to allow the former rule. The second difference is
that because all the type operators are of arity 0 we don’t need the rule for type operators and
so the sort ◦ is not needed too.

Finally, if we had a real encoding of inductive types in Dedukti, one would need to add
dependent types with the rule (?, ?,�) but for reasons explained previously we do not need to
add this rule in the specification.

The configuration file for Universo is given in Fig 11.3.

11.4 Step 3: Removing universe polymorphism of inductive types

This step removes the universe polymorphism introduced by the constants match and filter
used to encode inductive types. An invariant of the specification we have given to Universo is
that these universe polymorphic constants can be applied only to the sorts ? and � (or cic.star
and cic.box). This instantion is done via another tool: Dkpsuler. Dkpsuler aims to be a
more general tool that duplicates symbols. The idea behind this tool is to duplicate a symbol
whenever it matches some pattern. Everytime a symbol matches a pattern, this pattern is
replaced by a new symbol provided by the user. The user may provide the patterns and the
symbols simply using a rewrite rule.

11.4.1 Dkpsuler

As for the tools we presented so far, Dkpsuler takes a configuration file in parameter which
contains rewrite rules of the form

1 [] f a --> g.

which means that every time the symbol f is applied to the symbol a, it will be replaced by
the new symbol g. Dkpsuler creates the symbol g as a Dedukti declaration or a definition
depending whether f is itself a declaration or a definition. The type of g is the same as f a.
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1 def elaboration : Type.
2 (; [] cic.prop --> cic.var. ;)
3 [] cic.prop --> cic.enum cic.uzero.
4 [s] cic.type s --> cic.var.
5 [s] cic.succ s --> cic.var.
6

7 def output : Type.
8 [] cic.enum cic.uzero --> cic.star.
9 [] cic.enum (cic.usucc cic.uzero) --> cic.box.

10 [] cic.enum (cic.usucc (cic.usucc cic.uzero)) -->
cic.triangle.↪→

11 [] cic.enum (cic.usucc (cic.usucc (cic.usucc cic.uzero))) --> cic.diamond.
12

13 def constraints : Type.
14 [] matita_arithmetics_nat.nat --> cic.Cumul (cic.enum (cic.usucc

cic.uzero)) cic.var.↪→

15 [] matita_basics_bool.bool --> cic.Cumul (cic.enum (cic.usucc
cic.uzero)) cic.var.↪→

16 [] matita_basics_lists_list.list --> cic.Cumul (cic.enum (cic.usucc
cic.uzero)) cic.var.↪→

17

18 def solver : Type.
19 [] solver --> z3.
20 [] logic --> qfuf.
21 [] opt --> uf.
22 [] minimum --> 4.
23 [] maximum --> 4.
24 [] print --> true.
25

26

27 def qfuf_specification : Type.
28

29 [] cic.Axiom cic.box cic.triangle --> cic.true.
30 [] cic.Axiom cic.star cic.box --> cic.true.
31 [] cic.Axiom cic.diamond cic.sinf --> cic.true.
32 [] cic.Axiom cic.triangle cic.sinf --> cic.true.
33 [] cic.Rule cic.star cic.star cic.star --> cic.true.
34 [] cic.Rule cic.box cic.box cic.box --> cic.true.
35 [] cic.Rule cic.box cic.star cic.star --> cic.true.
36 [] cic.Rule cic.triangle cic.star cic.star --> cic.true.
37 [] cic.Rule cic.triangle cic.diamond cic.diamond --> cic.true.
38 [] cic.Rule cic.box cic.box cic.diamond --> cic.true.
39 [] cic.Cumul cic.box cic.diamond --> cic.true.
40 [a] cic.Cumul a a --> cic.true.
41

42 def end : Type.

Figure 11.3: Configuration file for Universo to go to STT∀ with dependent types
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files=$*
regex="def match_(.*) :" # regexp to get inductive names
theory="cic"
for f in $files
do

md=${f##*/}
md=${md%.*}
while read line; do

if [[ $line =~ $regex ]]
then

ind=${BASH_REMATCH[1]}
echo "[] ${md}.match_$ind $theory.star --> ${md}.match_${ind}_star."
echo "[] ${md}.match_$ind $theory.box --> ${md}.match_${ind}_box."
echo "[] ${md}.filter_$ind $theory.star --> ${md}.filter_${ind}_star."
echo "[] ${md}.filter_$ind $theory.box --> ${md}.filter_${ind}_box."

fi
done < $f

done

Figure 11.4: Generation of a configuration file for Dkpsuler

11.4.2 Generation of a configuration file for Dkpsuler
To apply Dkpsuler with our proofs, we need to provide a configuration file. In our case, we need
to instantiate all the universe polymorphic constants introduced by the embedding of inductive
types. In particular, for every inductive types in the library we need to instantiate the match and
filter constants. We have decided to generate such file via a bash script presented in Fig. 11.4.

This script relies of course on the encoding of inductive types made by the tool Krajono as
described in Section 8.4. We post-process the output of Dkpsuler with Dkmeta and Dkprune.
Dkmeta is used on the fresh constants generated by Dkpsuler to compute their canonical type
(see Section 9.3.2), this way we observe the use of dependent types. Dkprune is used to remove
constants which are never used (if a match is not applied to some specific constant)3.

11.5 Step 4: Dependent Types

Since the encoding of universe polymorphism is too shallow, meaning that products of the original
system are directly encoded as a Dedukti product and not via the constant prod (as mentioned
in 8.4.2), the previous step has made a use of dependent types explicit which Universo missed.

Fortunately, these dependent types are never used in practice and could be removed. The
idea is the following one: Every time we have a product (x :A)→ B which uses the rule (?,�,�)
we can check that x is never free in B. Hence this product can be replaced by B. Since these
products come from the encoding of inductive types in Dedukti, we can check that an inhabitant
of a dependent type is either a variable or an abstraction λx :A. t. If it is a variable, then we can
simply change its type, if it is an abstraction, one needs to check that x is not free in t. Finally,
some applications may become ill-typed such as f a when the type of f was a dependent type.
In that case, we just remove the argument a.

3The use of Dkprunecould be avoided if we were smarter to generate the configuration file.
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1 (; products ;)
2 [A,B,C] ltyped.app _
3 (ltyped.app _
4 (ltyped.app _
5 (ltyped.app _
6 (ltyped.app _
7 (ltyped.app _ (ltyped.sym cts.prod) (ltyped.sym cts.prop))
8 (ltyped.sym

cts.type))↪→

9 (ltyped.sym cts.type))
10 (ltyped.sym cts.I))
11 A)
12 (cts.lam C (x => B)) --> B.
13

14 (; application ;)
15 [A,B,f,a] ltyped.app (cts.Term cts.type (cts.prod cts.prop cts.type cts.type

cts.I A (x => B))) f a --> f.↪→

16

17 (; abstraction ;)
18 [A,B,t] ltyped.lam (cts.Term cts.type (cts.prod cts.prop cts.type cts.type

cts.I A (x => B))) (x => t) --> t.↪→

Figure 11.5: Removing dependent types when the dependency is never used

Such computation can be done directly in Dkmeta via the Light-typed quoting function
presented in Section 9.2.3. The Dkmeta file is presented in 11.5. All the symbols starting with
ltyped are related to the quoting mechanism of Dkmeta.

The pattern of the first rule is the encoded version of cts.prod cts.prop cts.type cts.type
cts.I A (x => B). We can apply this meta file on the whole library and remove all the depen-
dent types that were introduced from the previous step.

11.6 Step 5: Axiomatize Inductive Types and Recursive Functions

The last step to translate the proofs into STT∀ is to remove the rewrite rules which have been
introduced by the encoding of inductive types and recursive functions. This step is on paper
only. The result of this process has beem done manually for the Matita’s arithmetic library.
This step is currently being implemented so that it can be automated.

At this step, the proofs are expressed in the CTS of STT∀ but still use rewrite rules coming
from the encoding of inductive types (see Section 8.4.2) in Dedukti.

In the CTS of STT∀, there is no rewrite rules that rewrites a type of STT∀. Such a rewrite
rule could not be written in the CTS of STT∀ because the head symbol of the pattern could
not be well-typed in STT∀. Moreover, we know that all the rewrite rules introduced to destruct
an inductive type (with the match constructor) and which return a proposition are never used.
The reason is that such a rewrite rule maps a proof to a proof but a proof cannot appear inside
a term of STT∀.

Hence, we can conclude that:
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• Rewrite rules from recursive functions and inductive types are only used to type check a
proof in the CTS of STT∀.

• All the rewrite rules where the left and right hand-sides are typed by a proposition in the
CTS of STT∀ are never used.

If the first case, we replace the rewrite rule by an equality and replace any rewrite step by
an elimination of equality. In the second case, we can simply remove this rewrite rule.

This informal argument enables us to say that any rewrite rules can be either axiomatized
or removed, thus we can conclude that this step is actually always a total function. We will not
detail the implementation but what we can say is that removing a rewrite and replace rewrite
steps by an elimination of an equality is really similar to computing a trace. Our plan is to use
Dkmeta as discussed in Section 9.3.4.

11.7 Future Work

Obviously, it would be interesting to finish the automatation of this whole process, especially the
last step. But this work could be extended in several other ways and we give some ideas below.

Creating a graph of translations: We would like to reuse the different steps we have pre-
sented here in a more general way to translate a proof expressed in one logic in Dedukti into
another. For this we need to have a generic way to combine the transformations we have pre-
sented in this chapter. An abstract vision of these transformations is a graph where a translation
is represented as an arrow and a logic by a node. In practice, this is not so simple because we
need to take into account that a development can be split into directories with dozen of files.
Currently, these transformations are hard to parameterize and the combination of these trans-
formations is done using the language make which is not that convenient. For example, this
requires writing a Makefile manually but also the piece of code that combines these transfor-
mations. The fact that most of these translations need to be parameterized by a configuration
file implies that the graph is actually a multigraph. The question is how the user could generate
these translations and parameterize them. As it is done today, it is assumed that the user is a
Dedukti expert, but as we will see in Chapter 12, it would be interesting to give a way to a
non-expert to program his own translations.

Scaling these translations: A question is whether this automatation process can scale to
bigger libraries such as AFP or mathematical component. We see mainly two bottle necks:

• Universo delegates its constraint problem to Z3. While we see that Z3 with Universo
takes less than 1 second to solve the constraints, we may wonder what will happen for
larger and larger libraries. Fortunately, the size of the problem grows linearly with respect
to the size of the library, however it is not clear that it goes the same way for the solving
time. If the solving time takes too much time, probably it would be reasonable to split
the problem in several parts. For example, the equality is the first constant defined in the
library. This equality takes a type as parameter. The sort of this type is elaborated as a
variable in Universo. If one analyses the problem generated by Universo for the Fermat
little theorem, this sort appears everywhere.

• The last step that has not been automated yet would not scale up as it is described today.
If type checking takes n seconds, it would require at least n×r steps where r is the number
of rewrite rules to be removed. One could be smarter by not removing rules one by one but
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all of them at once. This is doable when we remove rewrite rules coming from inductive
types and recursive functions because there are no critical pairs. Hence, everytime there is
an error in type checking, it is easy to know which axiom should be used.

• Through the translations, a same theorem is type checked many times. It might be inter-
esting to see whether this could be avoided. For example, when a translation is only local
to a theorem and does not depend on the whole library like with Universo

The bigops issue: The automatation of the translation of Fermat’s little theorem from Matita
to STT∀ required first to change a definition in Matita’s library so that the type of bigop can
be encoded into STT∀. However, this is not reasonable in general because it requires manually
changing the theorem before any translations. Instead, one may try to invent a transformation
which changes the type of bigop so that it can be encoded into STT∀. In this case, it requires
permuting some arguments. However, this is tricky because bigop is a recursive function and
permuting arguments which are current encoding functions is not easy because of the filter
functions.

Pruning on the fly: One disadvantage of our procedure is that we need to know in advance
which part of the library can be translated into STT∀. It would be interesting to have a
fully automated translation where theorems that cannot be translated into STT∀ are removed
automatically. One difficulty lies with Universo. Universo is not able to say which theorems
can be translated into one specification. Actually, the question is even harder because of the
following case. Given the proof of three theorems A, B and C such that the proofs of B and C
depend on A. We could have that the proofs of A and B can be encoded into STT∀ as well as
A and C. But the proofs of A and B and C cannot be encoded together in STT∀.



Chapter 12

Logipedia: An Encyclopedia of Proofs

In this chapter, we discuss a concrete application that is a direct consequence of the translation
we have presented in Chapter 11. This translation enabled us to express part of the arithmetic
library of Matita into STT∀. STT∀ is a subset of the logic implemented by many systems
today. Hence, STT∀ proofs can be easily translated in many systems. In this chapter, we
show how we have exported STT∀ proofs to five different systems: Coq, Lean, Matita, PVS
and OpenTheory. We choose OpenTheory because the system appears to be interopera-
ble with many systems of the Higher-Order Logic family such as: HOL-Light, HOL4,
Isabelle/HOL. Since there exists a specification morphism (Definition 2.1.1) from the under-
lying CTS of STT∀ to the underlying CTS of Coq, Matita and Lean, the translation is
direct. For PVS, the difficulty comes from the fact that this system does not have proof terms
but tactics because PVS has been designed to interact with a human. The downside of this for
us is that the tactics of PVS have a sophisticated behavior, making the translation dfficult to
define. Finally, for OpenTheory the translation is not as easy as we may think because this
system does not have any conversion. Hence, every computation step needs to be elaborated as
an equality step. Moreover, as OpenTheory does not have proof terms, it has its own sharing
mechanism which is a problem in practice.

We made these translations available to any user of one of these systems with a website
interface called Logipedia1. The main feature of Logipedia is to export a proof in a source
system into a correct proof in the target system. Moreover, the website delivers theorems which
are readable and could have been written in the target system directly. However, the proofs
exported are not ready to be used because through the translations in Dedukti, the structure of
the proof in the library was lost and many axioms were added. What we call structure is all the
features offered by the proof system at the user level that the kernel (the typing system) does not
see (implicit parameters, notations, coercions, ...). Logipedia exports the proof of Fermat’s little
theorem, with about 40 parameters and 80 axioms. The fact that our translation creates many
axioms is double-edged sword. It is an advantage because it allows abstracting the representation
of datatypes. For example exporting the proofs from STT∀ to Matita allows unplugging the
unary representation of natural numbers and to plug a binary representation instead. However,
at the moment, this requires the user to align the concepts of the library they have imported
with the one in the target system. This may be a tiresome work. Another disadvantage is that
the proofs we export are hardly maintainable because they are not idiomatic: Proof terms are
exported for Coq, Lean and Matita. Generated tactic scripts is exported for PVS, and in
OpenTheory, it is inherent to the system that proof script are not readable. More generally,

1www.logipedia.science
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Figure 12.1: Sort-morphism from STT∀ to C3

Theorem congruent_exp_pred_SO :
forall p a : nat, prime p -> Not (divides p a) ->
congruent (exp a (pred p)) (S O) p.

theorem congruent_exp_pred_SO :
forall (p:nat.nat) , forall (a:nat.nat) , primes.prime p ->
connectives.Not (primes.divides p a) ->
(cong.congruent (exp.exp a (nat.pred_ p)) (nat.S nat.O) p.

theorem congruent_exp_pred_SO :
\forall (p:nat). \forall (a:nat).
prime p -> Not (divides p a) -> congruent (exp a (pred p)) (S O) p.

Figure 12.2: Coq, Lean and Matita output

our exportation does not genuinely use the high-level language of these systems offered to the
user. At the end of this chapter, we discuss some ideas to overcome these problems.

12.1 From STT∀ to Coq, Lean and Matita

Taking the representation of STT∀ as a CTS, one can give a translation of STT∀ to the CTS
C3 (1.5.12) as a sort-morphism as presented in Figure 12.1.

Since the CTS C3 is a subset of the CTS implemented by Coq, Lean, and Matita the
translation to these systems is easy because a sort-morphism can always be applied on a proof
term directly without need to type check it. With the encoding of STT∀ in Dedukti we have a
direct representation of the proof term, we translate this proof term just as a string which, later,
can be parsed by the target system. In Figure 12.2, we give the result of our translation applied
to Fermat’s little theorem into Coq, Lean and Matita.

Remark 29 Apart from the syntax, the translation to Coq, Lean and Matita is the same
except for one thing: In Lean, a parameter which returns a proposition needs to be prefixed by
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a keyword noncomputable

12.2 From STT∀ to PVS

The logic of PVS [ORS92] can be seen as a conservative extension of the PTS λHOL with
predicate subtyping [Gil18] using a sequent calculus [GTL89]. Fortunately, since the version 7
of PVS, the system has the prenex polymorphism feature. Hence, the logic of STT∀ is strictly
included into that of PVS.

The difficulty to export PVS proofs comes from the fact that the PVS system has been
designed to interact with a human and not with a computer. In particular, the system has no
proof term. Hence, the only way to use PVS is with tactics. However, even if the logic of PVS
extends that of STT∀, there are no PVS tactics that strictly simulate the deduction rules of
STT∀. PVS tactics tend to simplify the goal whenever it is possible. For example, a goal such
as A ∧ > will be automatically simplified to A. Hence, translating STT∀ proofs in PVS by
translating the deduction rules of STT∀ by a set of tactics often generates an erroneous PVS
script.

Example 12.1 As an example, assuming we have a proof π1 in STT∀ of Γ `S A→ B∧> and
a proof π2 of Γ `S A. Then we can apply the rule S⇒E

Γ; Ξ `S t⇒ u Γ; Ξ `S t

Γ; Ξ `S u
S⇒E ↑

to deduce Γ `S B ∧ >. Because PVS
uses sequent calculus, the S⇒E

Γ; Ξ `S t⇒ u Γ; Ξ `S t

Γ; Ξ `S u
S⇒E ↑

is translated with a cut rule as follows:

|π1|
∆ `P A→ B ∧ >

w-right∆ `P A→ B ∧ >, B ∧ >

|π2|
∆ `P A

w-right∆ `P A,B ∧ > axiom∆, B ∧ > `P B ∧ >
⇒-left∆, A→ B ∧ > `P B ∧ >

cut∆ `P B ∧ >

However, after the cut, PVS will automatically simplify the goal B ∧ > into B on the right
premise. Therefore, we will not be able to apply the ⇒-left rule as expected. An idea is to
introduce a cut on A. Hence we replace the right derivation tree above by the following one:

|π2|
∆ `P A

w-left∆, A→ B ∧ > `P A
w-right∆, A→ B ∧ > `P A,B ∧ >

⇒-left,axiom∆, A→ B ∧ >, A `P B ∧ >
cut∆, A→ B ∧ > `P B ∧ >

However, we may see that introducing so many cuts (each time we use an elimination rule) is
cumbersome and as such has a large impact on the type checking time as witnessed in Table 12.1.

12.3 From STT∀ to OpenTheory

The logic behind OpenTheory is similar to the one of STT∀ except for the three following
differences:

• It uses only one connective: Equality.
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t `O t
Oassume

Γ `O t = u

Γ `O λx. t = λx. u
OabsThm

Γ `O t1 = t2 Γ `O u1 = u2

Γ ∪∆ `O t1 t2 = u1 u2
OappThm

t1, . . . , tn `O u
Oaxiom

`O λx. t u = t {x← u}
Obeta

Γ `O t ∆ `O u

(Γ− u) ∪ (∆− t) `O t = u
OdeductAntiSym

Γ `O t ∆ `O t = u

Γ ∪∆ `O u
OeqMp

Γ `O t ∆ `O u

(Γ− u) ∪∆ `O t
OproveHyp

`O t = t
Orefl

Γ `O t

Γσ `O tσ
Osubst

Γ `O t = u

Γ `O u = t
Osym

Γ `O t1 = t2 Γ `O t2 = t3

Γ `O t1 = t3
Otrans

Figure 12.3: OpenTheory Typing system

• The logic is classical (it is based on the Q0 logic [And86]).

• There is no conversion in OpenTheory. β is axiomatized as long as the mechanism for
global definitions (δ rewriting).

The logic of OpenTheory is presented in Figure 12.3.
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12.3.1 Connectives of STT∀ into OpenTheory
We solve the first two points and the last point independently. For the first two points, one
needs to find a sound encoding of the connectives of STT∀ in OpenTheory. STT∀ has three
connectives: The implication ⇒, the forall quantifier ∀ and the typed forall quantifier A. It is
known that implication and forall can be both encoded into Q0. For the last quantifier, this is
also possible because in OpenTheory, Ais not a connective since the quantification over type
variables is implicit. The encoding is given below:

> := (=) = (=)
t ∧ u := λf. f t u = λf. f > >
t⇒ u := t ∧ u = t

∀x :A. u := λx :A. u = λx :A.>

A

A. u := u

Notice that we have decided not to inline the definition of the connectives ∧ and > for clarity.
This encoding is sound because every elimination and introduction rules on these connectives are
derivable in OpenTheory. We sketch the proofs here, all the details can be found in [Thi18].

♦ Introduction of ∧:
(1) Γ `O t Main Hypothesis
(2) Γ `O u

(3) Γ `O t = > OeqMp

Γ `O t ∆ `O t = u

Γ ∪∆ `O u
OeqMp ↑

1
(4) Γ `O u = > OeqMp

Γ `O t ∆ `O t = u

Γ ∪∆ `O u
OeqMp ↑

2
(5) Γ `O f = f Orefl

`O t = t
Orefl ↑

(6) Γ `O f t u = f > > OappThm

Γ `O t1 = t2 Γ `O u1 = u2

Γ ∪∆ `O t1 t2 = u1 u2
OappThm ↑

5,3,4
(7) Γ `O λf. f t u = λf. f > > OabsThm

Γ `O t = u

Γ `O λx. t = λx. u
OabsThm ↑

6
O (8) Γ `O t ∧ u Definition of ∧ 7

♦ Elimination of ∧:
Without loss of generality, we prove only the first projection.

(1) Γ `O t ∧ u Main Hypothesis
(2) Γ `O (λf. f t u) (λx. λy. x) = (λf. f > >) (λx. λy. x) OappThm

Γ `O t1 = t2 Γ `O u1 = u2

Γ ∪∆ `O t1 t2 = u1 u2
OappThm ↑
1

(3) Γ `O t = > Obeta

`O λx. t u = t {x← u}
Obeta ↑

, Otrans

Γ `O t1 = t2 Γ `O t2 = t3

Γ `O t1 = t3
Otrans ↑

2
O (4) Γ `O t OeqMp

Γ `O t ∆ `O t = u

Γ ∪∆ `O u
OeqMp ↑

3

♦ Introduction of ⇒ (S⇒I

Γ; Ξ, t `S u

Γ; Ξ `S t⇒ u
S⇒I ↑

):
(1) Γ, t `O u Main hypothesis
(2) Γ, t ∧ u `O t Elimination of ∧
(3) Γ, t `O t ∧ u Introduction ∧ 1
(4) Γ `O t ∧ u = t OdeductAntiSym

Γ `O t ∆ `O u

(Γ− u) ∪ (∆− t) `O t = u
OdeductAntiSym ↑

2,3
O (5) Γ `O t⇒ u Definition of ⇒ 4

♦ Elimination of ⇒ (S⇒E

Γ; Ξ `S t⇒ u Γ; Ξ `S t

Γ; Ξ `S u
S⇒E ↑

):
(1) Γ `O t⇒ u Main hypothesis
(2) Γ `O t

(3) Γ `O t ∧ u = t Definition of ⇒ 1
(4) Γ `O t ∧ u OeqMp

Γ `O t ∆ `O t = u

Γ ∪∆ `O u
OeqMp ↑

2,3
O (5) Γ `O u Elimination of ∧ 4
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♦ Introduction of ∀ (S∀I

Γ, x : A; Ξ x 6∈ Γ
Γ; Ξ `S ∀x :A. t

S∀I ↑
):

(1) Γ `O t Main hypothesis
(2) Γ `O t = > OdeductAntiSym

Γ `O t ∆ `O u

(Γ− u) ∪ (∆− t) `O t = u
OdeductAntiSym ↑

1
(3) Γ `O λx. t = λx. top OabsThm

Γ `O t = u

Γ `O λx. t = λx. u
OabsThm ↑

2
O (4) Γ `O ∀x. t Definition of ∀ 3

♦ Elimination of ∀ (S∀E

Γ; Ξ `S ∀x :A. t Γ `S u : A
Γ; Ξ `S t {x← u}

S∀E ↑
):

(1) Γ `O ∀x. t Main hypothesis
(2) Γ `O u

(3) Γ `O λx. t = λx. top Definition of ∀ 1
(4) Γ `O (λx. t) u = (λx. top) u OappThm

Γ `O t1 = t2 Γ `O u1 = u2

Γ ∪∆ `O t1 t2 = u1 u2
OappThm ↑

3
(5) Γ `O t {x← u} = > Obeta

`O λx. t u = t {x← u}
Obeta ↑

, Otrans

Γ `O t1 = t2 Γ `O t2 = t3

Γ `O t1 = t3
Otrans ↑

4
O (6) Γ `O t {x← u} OeqMp

Γ `O t ∆ `O t = u

Γ ∪∆ `O u
OeqMp ↑

5

12.3.2 Removing β and δ steps
Removing β and δ rewriting steps is a problem similar to the problem of equivalence between
typed conversion and implicit conversion discussed in Chapter 3. However in this case, the
problem is easier because there are no dependent types. Hence, the circularity we mentioned
in Section 3.3 does not exist anymore. However, this is not a direct consequence of Vincent
Siles’ results [Sil10] because STT∀ is not a PTS but a CTS. In STT∀, the subtyping is
only used to go from a monophormic type to a polymorphic type, but a β reduction or a δ
reduction never changes the status of a type, hence a cast is never introduced through a reduction
(but a cast may be duplicated). This means that in the case of STT∀, the subject reduction
property can be proven without introducing new conversions or new subtyping rules. Therefore,
it becomes straightforward to see that the untyped conversion is equivalent to a typed conversion
by induction. Details of this proof are given in [Thi18].

12.4 Concept alignment

Concept alignment is the problem of exporting proofs using concepts already defined in the target
system or in its standard library.

If we look at the statement of Fermat’s little theorem exported in Coq it looks like this:

Definition congruent_exp_pred_SO : forall (p:nat.nat), forall (a:nat.nat),
(primes.prime p) -> (connectives.Not (primes.divides p a)) ->
cong.congruent (exp.exp a (nat.pred p)) (nat.S nat.O) p := ...

↪→

↪→

The constants prime, congruent and pred come with a definition while the constants exp,
Not, O and S are axiomatized and should be defined by the user. This is because our export
function does not see that nat.nat is an inductive type and that exp is a recursive function
defined by two axioms. Hence, to use that theorem, the user needs to link these constants
with the library it intends to use (for Coq, it might be the standard library of Coq, or the
mathematical component library). For the arithmetic library we have exported, one has to
define about 40 constants and prove about 80 axioms. We have made this instantiation with
Coq standard library and it took us approximatively one hour. All the axioms can be proved
via the reflexivity of the equality, except two which require an eta-expansion. Since the concepts
used to prove Fermat’s little theorem are fairly standard, it was easy to find their counterpart in
the standard library of Coq. For example, the definition of exp has to satisfy the two following
axioms:
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Axiom sym_eq_exp_body_0 : forall n : nat, (S O) = (exp n O).
Axiom sym_eq_exp_body_S : forall n m : nat, (times (exp n m) n) = (exp n (S m)).

The definition of exp in the standard library of Coq is the following

Fixpoint exp (n m : nat) : Datatypes.nat :=
match m with
| O => S O
| S m => n * exp n m
end

It is relatively easy to check that this recursive function satisfies the two axioms above and
are even theorems in the standard library of Coq.

For larger libraries, the problem of alignment is an issue because this work needs to be made
every time a user downloads the proof and there is currently no way to parameterize the export
function to make this link automatic. We will come back to this issue in Section 12.7 where we
propose some solutions to overcome this problem.

12.5 Logipedia: An Online Encyclopedia

Logipedia (www.logipedia.science) is a front-end to the transformations we have presented
in this work, in particular Chapter 11 and this one. Using their browser, the user can search for
a theorem and download a proof of a theorem into one of the following systems: Coq, Lean,
Matita, OpenTheory and PVS. Besides making these proofs available on a website, we have
used the web structure to represent the theorems and their dependencies contained in the proof
of Fermat’s little theorem. For each theorem, a web page contains the following information
which will be detailed in the rest of this section:

• Its statement using an ad-hoc pretty printer.

• Its taxonomy.

• The theory in which this theorem is expressed.

• The main dependencies of a theorem.

Taxonomy: The taxonomy is an information related to an entry in Logipedia. The arithmetic
library we have exported does not contain only theorems, but also definitions and axioms. The
field taxonomy defines the kinds that an element may have. In STT∀, the taxonomy defines 5
kinds of elements:

• A type operator (such as nat,list,bool).

• A parameter (such as plus).

• A definition (such as 2 which is defined as the successor of 1).

• An axiom (such as ∀x, 0 + x = x).

• A theorem (such as Little Fermat’s theorem).

Of course, every logic defines its own taxonomy. In Calculus of Inductive Construc-
tions, there might be another taxonomy to take into account inductive types, recursive functions
and more...

www.logipedia.science
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Theory: A theory is the context Γ in which the theorem is proven. This context tends to be
big in STT∀ because types and recursive functions are axiomatized. In the context of STT∀ it
is defined below.

Definition 12.5.1
Given a symbol A, its theory denoted by Th(A) in Logipedia is computed by the formula below:

Th(A) :=
{
{D | ∀B,B ∈ Dep(A) ∧D ∈ Th(B)} ∪ {B} if B or A are a parameter or an axiom
{D | ∀B,B ∈ Dep(A) ∧D ∈ Th(B)} otherwise

where Dep(A) is the set of direct dependencies of A.

The theory of an entry is defined recursively. However, we make a distinction on the kind of
A. Indeed, if A is itself a parameter or an axiom, we need to take into account all the definitions
(or even axioms for theories with dependent types) that may appear in their type. Hence, a
theory may contain an axiom or a definition.

Main dependencies: A theorem may have many direct dependencies. However, for the web-
site, we wanted to avoid printing all the dependencies. For example Fermat’s little theorem uses
the commutativity of addition. However, it is not relevant to print the commutativity of addi-
tion as a dependency here. This suggests defining a notion of main dependencies which roughly
are dependencies that are not in the transitive closure of the other dependencies. It is formally
defined below:

Definition 12.5.2
Given an entry A, its main dependencies denoted by Md(A) in Logipedia are computed by the
formula below:

Md(A) := {B | B ∈ Dep(A) ∧ ∀C ∈Md(A), C 6= B ⇒ B 6∈ Dep∗(C)}

where Dep∗(A) is the set of dependencies of A closed by transitivity and reflexivity.

However, this definition is not recursive and may not scale (computing the transitive closure
of dependencies for every entry takes a lot of time). Instead, one may approximate this definition
by looking at a bounded depth.

12.6 The website

The website itself has been written with the classical triptych languages: HTML/CSS, Javscript
and PHP. Moreover, the current version of the website uses a database to store Logipedia entries
and their dependencies. The database technology used is MongoDB but it could have been SQL.
The reason behind the choice of MongoDB comes from a previous version of the website where
proofs (as lambda-terms) were also stored in SQL and it seemed that MongoDB was better for
that.

12.6.1 Storage of proofs
When the user clicks on the download button of a theorem, definition etc... They can download
an archive which contains a proof of the theorem. The choice has been made that this archive
contains only the necessary dependencies. These files can be generated in two ways:



12.7. FUTURE WORK 229

Dedukti[STT∀] Higher-Order Logic Coq Matita Lean PVS
size (mb) 1.5 41 0.6 0.6 0.6 9

translation time (s) - 18 3 3 3 3
checking time (s) 0.1 13 6 2 1 ∼300

Table 12.1: Exportation time for Fermat’s little theorem in STT∀

• When the user clicks on the download button, which triggers a function that generates
these files.

• Or all the files that the user wants to download can be computed in advance.

A previous version of the website used the first method, however this requires storing proofs
on the database which, in SQL, is a bad idea as discussed above. Moreover, generating these
files can take a long time.

This is why we have chosen to generate all these files in advance for Fermat’s little theorem.
The time it takes to generate these files (from an STT∀ proof term encoded in Dedukti) is
summed up in Table 12.1.

12.7 Future Work

Logipedia is a new project and can be extended in many ways. Here are some of them.

Exporting toHOL-Light: Our main interest behind having an export function to OpenThe-
ory is that OpenTheory is interoperable with several systems of the HOL family: HOL-Light,
Isabelle/HOL, HOL4 and Proof Power

Generalizing the Logipedia website from STT∀ to many theories: The first version
of Logipedia was hard-coded with the STT∀ logic. However, this is not suitable in the long
term because we would like to export proofs from any logic whenever it is possible. For example,
STT∀ does not handle dependent types. Unplugging STT∀ is a work which has started already
and the main difficulty is the web exportation. To maintain a proper web exportation we need
two things:

• A pretty printer to print a readable theorem,

• Defining a taxonomy for the logic used by the proofs.

The pretty-printer allows the user to understand the statement of the theorem without know-
ing the syntax of Dedukti for example. The taxonomy allows classifying entries: Parameter,
inductive types, constructors, theorems, ... . In STT∀, nat is a type operator, 0 is a constant,
prime is definable and plus_n_0 is a theorem. This taxonomy may differ depending on the logic.
In Calculus of Inductive Constructions for example, nat is an inductive type, and 0 is
one of its constructors.

Of course, we would like to have a parametric website as well as a parametric translator to
JSON files where neither the pretty printer nor the taxonomy is hard-coded. An idea would be
to use meta rewriting with Dkmeta for example to define the taxonomy. In the case of STT∀
the taxonomy can be defined using two pieces of information: Is the current symbol defined?
Does its type start by the constant eps or etap. In that case, in STT∀ the taxonomy would be:
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1 [] taxonomy.get is_def (sttfa.eps _) --> taxonomy.theorem.
2 [] taxonomy.get is_static (sttfa.eps _) --> taxonomy.axiom.
3 [] taxonomy.get is_def (sttfa.eta _) --> taxonomy.definition.
4 [] taxonomy.get is_static (sttfa.eta _) --> taxonomy.constant.
5 [] taxonomy.get is_static (prod.prod _) --> taxonomy.type_operator.

The advantage of using Dkmeta here, is that is it easier to define a taxonomy via rewrite
rules than forking the current Logipedia project and implementing the taxonomy. Moreover,
the advantage is that the taxonomy can be changed easily without having to recompile the
Logipedia project. It would be interesting to see whether this methodology can be extended to
other logics than STT∀.

Uploading proofs to Logipedia Another question is how proofs could and should be added
to Logipedia. Let us take an example. A user wishes to upload its Coq library on Logipedia.
Fortunately, these proofs could also be expressed in STT∀. How and what/who should translate
these proofs in STT∀? How can we handle new versions of the library? Should these proofs
be considered as new proofs? This is also related to the question below about when two proofs
should be considered equal.

An intermediate solution could be to tag with meta-data, indicating where it comes from and
whether this proof has already been translated from another logic. But probably in the long
term, this may require a version control system such as Git.

Equality between proofs There might be many proofs of the same theorem in Logipedia:

• A famous example is the Pythagorean theorem which has at least 112 proofs [Pow95].

• The same proof could be expressed in several logics. For example one may prove the
Pythagorean theorem in ZFC, but since the proof does not use the axiom of choice then
it could also be proved in ZF . Should these proofs be treated as two different proofs?

• Fermat’s little theorem has two proofs in Logipedia: The one expressed in Matita and
the one expressed in STT∀. Should both proofs be stored on Logipedia?

However, while in the first case it may seem interesting to have all these proofs in Logipedia,
for the last two cases it is not clear because it seems that they are actually the same proof. And
hence, this raises the question: When should two proofs in Logipedia be considered the same?

Considering that two proofs are equal if they are syntactically equal is not a reasonable
definition. Indeed, it would mean that taking a proof and unfolding only one definition (a δ
reduction) would lead to another proof.

Another idea is to consider that two proofs are equal when their normal form is the same.
But this definition is restrictive:

• Computing the normal form is often too expensive,

• A proof could be expressed in a logic but its normal form could be expressed in a weaker
logic.

This second point means that a proof using dependent types but no polymorphism and a
proof using polymorphism but no dependent types could be considered as equal because their
normal form is the same. But are they?

On the other hand, since a proof of STT∀ is always a proof in Coq, it seems redundant that
Logipedia stores this proof twice.
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In order to overcome this issue we could order logics according to the notion of logic extension
(L1 ⊆ L2 when all the proofs of L1 are also a proof in L2), regardless of whether the extensions
are conservative. Using this order, Logipedia should record a proof in a logic L only if it
does not record a proof of the same statement in a logic L′ ⊆ L. The notion behind cannot be
expressed remains to be defined but roughly we could say that there is not sort-morphism from
the free CTS generated by the proof term from Dedukti to the CTS behind L′ for example.

Finally, another idea would be to use only δ reduction to compare two proofs and not β
reductions. The reason is that β reductions may remove polymorphism from a proof or dependent
types and hence, this may imply that the reduced proof could be expressed in a weaker logic.
This is never the case with δ reductions.

Concept alignment Concept alignment (as mentioned in Section 12.4) is a big issue to make
proofs in Logipedia usable. While we have shown that alignment was an issue concerning
recursive functions and inductive types, there are other pieces of information which are not
imported in Dedukti and therefore are missing in the exporation of Logipedia. For example:

• Notations,

• High-Level structures (type classes, functors),

• Implicit parameters.

Having an automatic translation which recovers these pieces of information seems really hard.
We think that these pieces of information should be first imported via another translation while
currently they are lost. This other translation could produce a new file using a new standard, a
structure file2. Then, around the proofs transformations we should have another transformation
to maintain these structures files. For example, when a definition is pruned with Dkprune, its
informations related into the structure file should be pruned too; with Universo it seems that
the structure file remained unchanged...

Such structure file could be used by the export function of Logipedia. The main advantage
to keep these pieces of information in another file is that the user of Logipedia can choose
the structure file he wants. In opposition to Dedukti files containing proofs, this file could be
generated manually, could be partial, and could contain alignements. Once this file has been
written, it can be reused by other people exporting proofs with Logipedia.

2This structure file may not use Dedukti’s syntax.
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Chapter 13

Conclusion

In this thesis, we have shown how interoperability between concrete systems at the type system
level (in opposition to the user syntax level) could be achieved via the logical framework λΠ-
calculus modulo theory. Interoperability was discussed both from a theoretic point of view
and from a practical one.

In Part I, we showed that the logic behind many proof assistants that exist today could be
seen as a Cumulative Type System with some extensions (such as inductive types, recursive
functions or universe polymorphism). We showed how interoperability could be formulated for
Cumulative Type Systems and gave an incomplete procedure that decides whether a proof from
one Cumulative Type System could be encoded into another (Section 2.3). Then, we defined
well-structured derivation trees (Definition 3.1.2). For well-structured derivation trees, we can
derive an induction principle compatible with β reduction. We showed that this idea may lead
to a new way to attack difficult conjectures such as expansion postponement (Theorem 3.2.4)
or the equivalence between syntactic CTS using an untyped conversion with semantic CTS us-
ing a typed conversion (Theorem 3.3.8). We checked that the derivation trees we used in the
second part of this work were well-structured. We also conjecture that any derivation trees are
well-structured (Conjecture 9). Afterwards, we defined bi-directional CTS (Definition 4.1.1).
Bi-directional CTS split the typing judgment of CTS into an inference judgment (without sub-
typing) and a checking judgment (with subtyping). We defined the class of CTS in normal
form (Definition 4.2.1) for which there is an equivalence between bi-directional CTS and usual
CTS(Theorem 4.3.9) if the derivation tree is well-structured. We showed that bi-directional CTS
could be embedded into λΠ-calculus modulo theory (Definition 6.1.2). The soundness proof
(Theorem 6.2.41) requires that the derivation tree is well-structured in the first place. Finally,
we presented STT∀ (Section 7.1) as a new logic and we showed that it could be formulated as
a CTS (Theorem 7.2.1).

In Part II, we described Dedukti, an implementation of λΠ-calculus modulo theory.
We also proposed several tools to translate proofs inside the Dedukti framework. First of all,
we proposed higher-order rewriting as a programming language to write proof transformations.
This was implemented in a tool called Dkmeta. Dkmeta has other features such as a quot-
ing/unquoting mechanism to circumvent limitations of Dedukti. We also described Universo,
a Dedukti tool which implements an incomplete procedure which decides whether a CTS proof
in Dedukti can be embedded into another CTS. This tool also works for logics that extends
CTS with universe polymorphism, inductive types and recursive functions. Afterwards, we pro-
posed a semi-automatic procedure to translate proofs from Matita to STT∀. We showed that
this procedure is effective for arithmetic proofs, in particular a proof of Fermat’s little theorem.
Finally, we showed that proofs in STT∀ could be exported to different systems, namely: Coq,
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Matita, Lean, OpenTheory and PVS. This led to a website, Logipedia where a user can
download a proof that can be checked in one of these systems.

13.1 Future Work

This work could be extended in many ways:

• In chapter 2, we provided an incomplete procedure to decide whether a proof (as a judg-
ment) expressed in the CTS C could be translated in the CTS D . To recover completeness,
we would need to solve conjecture 4 and conjecture 5 which imply the existence of a canoni-
cal derivation tree. The first conjecture states the existence of a partial order on derivation
trees that forms a join-semilattice. The second conjecture states that this order is well-
founded. We also left as an open problem whether the equivalences we showed could be
used to adapt Barthe results [Bar99b] on the decidability of injective PTS and decides the
type checking of a large class of CTS.

• In chapter 3, we defined well-structured derivation trees , a predicate over derivation trees
which attach a level to a derivation tree and consequently to a judgment. Roughly, a
derivation tree is well-structured if the ordering generated by the has type relation ≺
(Definition 3.1.1) is well-founded and compatible with β. We showed in this chapter, that
any well-structured derivation tree also satisfies the expansion postponement conjecture
and could be translated to a CTS with a typed conversion. We also provided an empirical
evidence that many proofs used in practice are well-structured. We conjecture that any
derivation tree is actually well-structured. If this conjecture is true, it would provide a
new induction scheme for derivation trees. Intuitively, levels memorize the complexity of
the terms and types which appear in a deriation tree. If a judgment has a well-structured
derivation tree, then in particular it admits a minimal level. In that case, it would be
interesting to investigate the meaning of this minimal level.

• In Chapter 4, we introduced bi-directional CTS which refine the typing judgment of CTS
with two new judgments: An inference judgment and a checking judgment. In this type
system, subtyping can be used only during an application or at the end of a derivation.
We defined a large class of CTS (namely normal CTS) for which there is an equivalence
between bi-directional CTS and CTS as presented in Chapter 2. We conjectured that any
CTS specification is weakly equivalent to a CTS in normal form. This conjecture could
perhaps be solved using results we introduced in Chapter 4. Also, it would be interesting
to understand whether this equivalence is true for a larger class of CTS.

• In Chapter 5, we introduced PTS modulo as an extension of PTS with an abstract conver-
sion. This system is a reformulation of the one introduced by Frédéric Blanqui in [Bla01].
In our system, equations are added one by one into the context, this presentation is closer to
concrete implementations such as Dedukti. Then, we introduced λΠ-calculus modulo
theory as an instance of a PTS modulo which corresponds to LF. Then, we introduced
shallow encodings (Definition 5.2.1) which translate a judgment into a judgment. Using
Cousineau & Dowek results [CD07], PTS can be encoded in a shallow way to λΠ-calculus
modulo theory. However, the meta-theory of λΠ-calculus modulo theory relies on
the injectivity of product which in general is hard to prove for concrete encodings. It
would be interesting to investigate whether the notion of well-structured derivation trees
introduced in Chapter 3 could help proving this property.
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• In Chapter 6, we gave a parametric (with respect to the specification) encoding of CTS
into λΠ-calculus modulo theory. Then, we gave a soundness proof for this encoding
assuming that the input derivation trees are well-structured. We conjectured that this proof
could also be reformulated to use the equivalence between semantic CTS and syntactic CTS
instead. We also conjectured the completeness of this encoding and it would be interesting
to see whether Ali Assaf’s completeness proof for PTS could be extended to this encoding.
Finally, the encoding functions are partial functions over the judgments of bi-directional
CTS. One could express this translation function over CTS derivation trees directly.
This way, we would avoid one indirection with bi-directional CTS and obtain a direct
translation into λΠ-calculus modulo theory. However, this adds some complexity in
the soundness proof because it requires manipulating function over derivation trees.

• In Chapter 7, we formalized STT∀, an extented version of Simple Type Theory with
prenex polymorphism and type constructors. This logic aims to be a constructive version
of Higher-Order Logic. We showed that this logic could also be expressed as a CTS
and also as an extension of the λHOL PTS. Therefore, one can use results of Chapter 6 to
embed this logic into λΠ-calculus modulo theory. The CTS view of STT∀ enables
us to see possible extensions of polymorphism in STT∀ by allowing polymorphism of rank
n and higher-order type variables. We showed that the first presentation of STT∀ can be
represented as a CTS specification. We proved the soundness of this encoding and left as
a conjecture its completeness. We argued in Chapter 9 that the completeness is true but a
paper proof is missing. Moreover, it would be interesting to show whether the extensions
we introduced of STT∀ using the CTS presentations are conservative.

• In Chapter 8, we presented Dedukti as an implementation of λΠ-calculus modulo
theory.

• In Chapter 9, we presented a tool for Dedukti called Dkmeta. Dkmeta is built around
the kernel of Dedukti and uses its rewrite engine extensively. We also extended Dkmeta
with a quote/unquote mechanism to get around limitations of the rewrite engine of De-
dukti. This allows rewriting a syntactic application for example. Dkmeta has many
applications but we saw in Chapter 11 that it has some limitations. Here are three possible
extensions of the tool:

– Extend Dkmeta so that we can also rewrite top-levels commands of Dedukti.
– The quote/unquote mechanism of Dkmeta is currently hard-coded in Dkmeta. It

would be interesting to have a feature that enables the user, in Dkmeta, to define its
own quote/unquote mechanism.

– Dkmeta is a meta language for Dedukti. As such, we think it could be used also as
a refiner (a tool which fills holes left by the user). For example it would be interesting
to implement meta-variables for Dedukti using Dkmeta.

• In Chapter 10, we introduced Universo, another tool for Dedukti that aims at trans-
lating proofs from one CTS to another. This tool implements the procedure introduced
in Chapter 2 and can be seen as an extension of Coq algorithm to check consistency with
floating universes. In Chapter 10, we already discussed several ways to enhance the tool,
but the main challenge that may be raised by big libraries is scalability. We observe today
that the main roadblock of Universo is the time it takes for an SMT solver to solve the
constraints. However, there are several ways to handle this problem:
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– Even if in general, universes are not modular, in practice, as proofs are split into
libraries, we think that there are ways to manage the scalability by giving smaller
problems to the SMT solver.

– The Z3 solver has been used by F* to verify large programs. Hence, this proves that
Z3 may scale to large problems. It would be interesting to investigate whether the
solver could be tuned specifically to our CTS problems.

– Universo can use Dkmeta to pre-process and post-process the entries. It would be
interesting to see whether there are smart ways to pre-process the entries to reduce
solving time.

• In Chapter 11, we presented a semi-automatic translation from the embedding of Matita
to the embedding of STT∀ in Dedukti. This semi-automatic translation requires several
passes with tools such as Dkprune, Dkmeta and Universo. While there are arguments
on paper to show the that these tools can be reused for other translations and encodings,
the tools we presented only have been tested mostly on the encoding of Matita except for
two cases:

– Some experiments have been made using Universo with proofs coming from Coq.
– Dkmeta was used to translate proofs coming from the embedding of Higher-Order

Logic [AB15] to the embedding of STT∀.

Currently, the translation presented in this chapter can only be parameterized by someone
who knows Dedukti well and the various embeddings involved in the translation. It would
be interesting to see whether a nice user interface could be provided to parameterize these
translations. For example via the Logipedia project.

• In Chapter 12, we presented Logipedia, an online encyclopedia of proofs that could be
shared between several proof systems. One feature is that exported proofs are not obfus-
cated by the encodings we used through Dedukti. However, the proofs we exported are
not ready to use as a library because we lost the structure of the library. For example, we
do not provide any concept alignement:

– In Dedukti, inductive types and recursive functions are axiomatized. For example,
natural numbers come with a type declaration, two declarations for the constructors,
and one axiom for the inductive principle. Moreover each recursive function such as
plus is defined with two axioms (one for each constructor). However, once the proofs
are exported, it is relatively easy to align these concepts with thos of the system.

– Structural information such as implicit arguments, notations are lost through the
translations and therefore are not exported.

As we mentioned in the introduction, these problems arise because we only translate in
Dedukti proofs intelligible by the type system supporting the proof systems. Hence the
proofs we encode in Dedukti are not the ones written by the user. This is why the
exported proofs look rather different than those that a user could write manually. One
way to recover these pieces of structural information would be to record them as meta-
data, and have a second translation on top of the existing one, translating the meta-data
in the source system into meta-data in the target system. Hence, the exportation would
know whether a Dedukti declaration should be interpreted as an inductive type or not
for example. Moreover, we believe that these meta-data could be written manually for the
exportation only with Logipedia.
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13.2 Future of interoperability

In computer science, and especially in software engineering, standards are the rule: In pro-
gramming language (C++ standards [ISO18], Javascript [ECM11]), in networks (RFCs [EF14],
TCP/IP [Fei00]), or in operating systems (POSIX [Ins93]) to name a few. It is impressive that
these standards are interoperable:

• Two different machines with two completely different systems may exchange data through
a network as internet.

• A program written in C may communicate with a programming written in OCaml. Either
via the file system or directly at compile time to produce only one binary executable. And
this is true for many if not all programming languages.

• One may translate a document written in markdown into a LaTeX document or an HTML
webpage via Pandoc [Dom14].

The world of formal proofs appears as an exception to this empirical fact. At the time of writ-
ing, almost no standard exist (except the code of the software) and interoperability between these
systems has the reputation to be an impossible problem. One example is the QED manifesto
project which started in 1993 and stopped in 1996 without tangible results.

In the last 20 years, many formal systems saw the light and we can observe empirically
that the libraries built on top of these systems were very similar. In this work, we gave an
explanation to this emprical fact: The logic used to build these libraries are similar. In this
thesis we pointed out that the CTS framework is a good basis to study these proofs. But not
only, the CTS framework also has the advantage of highlighting the differences between formal
systems. The fact that we were able to partially automatize the translation of Fermat’s little
theorem and exporting this proof towards 5 different formal proof assistants shed a new light on
interoperability at the proof level.

This experiment is a first step before conducting the interoperability at a larger scale to tackle
big libraries of formal proofs such as the Mathematical Component library [MT17], The Mizar
library [Rud92] or the Archive of Formal Proofs [LL10].

In the world of formal proofs, interoperability at proof level is already a big challenge but is
not the only one. In particular, the proofs we exported contain too many details for a human
and needs to be aligned with the concepts in the target system. In practice, libraries of formal
proofs are built using a high-level language which is different from the type system used by
the logic. Depending on the formal prover, these high-level languages differ completely. In
Hol-light [Har09], this meta language is OCaml. But in Coq [BGG+14], they combine both a
vernacular and a tactic language. In Agda [Nor09], this high-level language is provided via a
vernacular and the interaction with the text editor. These high-level languages are essential to
give some structure to the library but also to omit pieces of informations that can be reconstructed
by the formal system. To have a real and practical interoperability between formal systems, this
challenge is the last big piece missing in the puzzle of interoperability between proof systems.

The best way to predict the future is to implement it.

David Heinemeier Hansson
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logipedia, 227
loop combinator, 45

minimal specification, 57
modulo-α, 29
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Nomenclature

N<n Natural numbers strictly smaller than n

N≤n Natural numbers smaller than n

≡Γ,Γ′ Extension of ≡t,t′ for typing contexts

≡t,t′ Equivalence relation on sorts when t =? t
′

≡�C

t,t′ Free equivalence relation on sorts when t�C t
′

Γ =? Γ′ Equality of typing contexts modulo the sorts

Γ,Γ′ Concatenation of typing context

Γ `eC A≡βB : s Explicit conversion judgment in semantic CTS

�C t,t′ Free cumulativity relation on sorts when t�C t
′

Γ `eC A�CB : s Explicit subtyping judgment in semantic CTS

Γ `eC t : A typing judgment for semantic CTS

FV(t) the set of free variables in t

EIEn Equivalence between CTS and semantic CTS for well-structured derivation trees at level
n

EPn Expansion postponement for well-structured derivation trees at level n

π C π′ π is a subtree of π′

Π =? Π′ Equality of derivation trees modulo the sorts

C /≡ Quotient of a CTS specification

C ∼w C ′ Weak CTS equivalence

C Ew C ′ Weak CTS embedding

Cn CTS specification for

CC
n CTS specification for Coq

C L
n CTS specification for Lean
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CM
n CTS specification for Matita

Cn CTS associated to one predicative cumulative hierarchy of universes

σ : C → D Specification morphism

/SSC Ordered relation for ordered specification

C PTS specification for Calculus of Constructions

HOL PTS specification for λHOL

P PTS specification for LF

2 PTS specification for System F

ω PTS specification for System Fω

? PTS specification for the PTS with a unique sort

→ PTS specification for Simply Typed Lambda Calculus

U PTS specification for System U

U− PTS specification for System U−

PA
n PTS specification for Agda

0, 1, 2 Universes in Cn

t? sort-erasure of t

t =? t
′ Equality of terms modulo the sorts

AC The set of axioms A induced by the specification C

s1 s2 Representation of (s1, s2) ∈ AC

s1 s2 Representation of (s1, s2) ∈ CC

s1 s2 Representation of (s1, s2, s2) ∈ RC

s1 s2 s3
a a

Representation of (s1, s2, s3) ∈ RC

C∗C Transitive closure of the cumulativity relation

S>C Set of top sorts (sorts without type).

T Set of terms

∼ CTS equivalence

E CTS embedding

V Set of variables
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CC The cumulative set C induced by the specification C

↑BA I t A notation for s2s1↑
B
A I t

↑s2s1 I t A notation for s
′
2
s′1
↑

us2,s′2
I

us1,s′1
I I t

Γ `C t⇐ A Check typing judgment for CTS under specification C

Γ `C A
?⇒ s A is well-sorted and has sort s or s∞ if A ∈ S>C

Γ `C t⇒ A Infer typing judgment for CTS under specification C

Γ `aC t : A Same typing system than Γ `C t : A with a slight change for the application case

Γ `tC r t : A Restriction of CTS with reductions

Γ `C t : A Typing judgment for CTS under specification C

Γ `aC wf Same typing system than Γ `C wf with a slight change for the application case

Γ `R t : A Typing judgment for PTS modulo under specification R

≡α the relation modulo α

≡ Transitive, symmetric, reflexive closure stable by syntactic context of a rewriting relation

↪→β the relation β-rewrites

↪→βδ the relation βδ-rewrites

↪→βη the relation βη-rewrites

↪→η the relation η-rewrites

↪→∗ Transitive closure of a rewriting relation

↪→ A rewriting relation

↪→ Rewriting relation

←↩ Inverse of a rewriting relation

Γ {x← t} typing context substitution

t {x← u} the variable x in t is substituted by u

CM minimal specification of C

λS CTS induced by the specification S

WS(Γ `C t : A) A well-structured judgment

RC The set of rules R induced by the specification C

C CTS specification

P PTS modulo specification
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P PTS specification

SC The set of sorts S induced by the specification C

A→ B Non-dependent product from A to B

JΓK Encode a CTS typing context Γ in Dedukti

[t] Γ Encode a CTS term t in a typing context Γ in Dedukti

[t]AΓ Encode a CTS term t in a typing context Γ seen of type A in Dedukti

JAK Γ Encode a CTS term A in a typing context Γ as a Dedukti type



Titre :Intéropérabilité entre systèmes de preuves avec le cadre logique Dedukti
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Résumé : Les systèmes de preuves sont des ou-
tils utilisés pour formaliser et prouver des théorèmes.
Ces outils sont considérés comme le moyen le plus
sûr pour montrer l’absemce de bogues dans les logi-
ciels. Cependant, l’utilisation de ces outils demandent
un grand niveau d’expertise ce qui les rend difficile
à utiliser. L’intéraction avec un système de preuves
demande de prouver et formaliser de nombreux
concepts mathématiques. Ce travail particulièrement
chronophage requiert la mobilisation d’une force de

travail conséquente (par exemple le théorème des
quatre couleurs ou le théorème de Hales-Kepler).
La diversité des systèmes de preuves induit que
ces théorèmes (comme le petit théorème de Fer-
mat) sont prouvés de nombreuses fois. Dans cette
thèse, nous étudions tant sur le plan théorique que
sur le plan pratique différentes façon de traduire semi-
automatiquement des théorèmes prouvés depuis un
système de preuve vers un autre.

Title : Interoperability between proof systems using the logical framework Dedukti
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Abstract : Proof systems are tools used to formally
prove theorems, and in particular that software is
bug-free. Proof systems provide the highest degree
of confidence to prove the absence of bugs in soft-
ware. However, using such tools require a high le-
vel of expertise which makes them difficult to use.
The interaction with a proof system requires the user
to prove and formalize many mathematical concepts.
Such work is time-consuming and may require a signi-

ficant amount of manpower (e.g. four-color theorem or
the Hales-Kepler theorem). The diversity of proof sys-
tems has the negative consequence that these theo-
rems (e.g. The little Fermat’s theorem) are formalized
many times. This thesis investigates, both on the theo-
retical and the practical side, ways to translate (semi-
)automatically theorems proved in one proof system
to another.
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