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“Image Analysis Based on Tensor Representations”: On one hand, “image analysis” rep-

resents a wide area of applications. On another, “tensor representations” refers to a whole

mathematical field called Multi-linear Algebra (or Tensor Algebra). In an attempt to reduce

the gap between the two disciplines, I dedicate this general and short introduction to anyone

who is interested, hoping it serves as a smooth and easy way into the thesis.

1.1 Short Overview

In general, image analysis represents a wide area of applications such as Computer Vision,

Computational Imaging, Remote Sensing, Biomedical Engineering, etc. It concerns any ap-

plication that requires the study of images or image representations of the acquired data.

Like any form of signal processing, image processing relies on many mathematical foundations

such as statistics, algebra, topology, mathematical morphology, etc, which allows to explore

the features present in the data that come from the real world and make sense out of them.

Images can contain a lot of information that, intuitively speaking, may appear to lie visually

in a two-dimensional plane (e.g. horizontal and vertical spatial positioning of the pixels of

a scene). However, digitally, such information can be stored in different forms depending on

the type of image and application. For example, an image can be grayscale, color RGB (Red,

Green, Blue), hyperspectral, a set of X-rays, Synthetic-aperture radar (SAR), etc; and an

application can be object detection, scene classification, blind source separation, tomography,

seismic imaging, etc.

To give some examples, as illustrated in Figure 1.1, a grayscale image can be digitally

stored as a two-dimensional (2D) array, a color RGB image can be stored as a 3D array con-

1
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(a) Grayscale (b) RGB (c) Hyperspectral

Figure 1.1: Examples of image types using grayscale samples taken from the HSI of Pavia

University. (The colors are only for display purposes.)

sisting of three grayscale images for the three colors, and Hyperspectral Images (HSI) can be

stored as a 3D array consisting of hundreds of grayscale images spanning an almost contin-

uous range of frequencies. Moreover, images can be acquired over different time stamps or

any parametric diversities, allowing to extend their storage to probably higher-dimensional

arrays. Processing such data sets and extracting meaningful features from them require suit-

able representations with mathematical foundations, which can be found in statistics, inverse

problems, algebra, etc. For many applications, especially in classical approaches, we find that

such multi-dimensional data arrays are either (a) considered as a collection of 2D arrays that

would be processed independently, or (b) entirely reshaped as 2D arrays in order to fit with

matrix representations, allowing access to linear algebra and matrix decomposition techniques.

For example, as illustrated in Figure 1.2, a 3D HSI can be reshaped into a 2D array by re-

arranging the pixels in a lexicographic order (i.e. the grayscale image slices are vectorized),

which can be represented as a matrix where pixels are shown as rows of spectral information.

Then, pixels are seen as samples, and spectral bands as features, which can for instance be

exploited through statistical models.

However, we find that matrix modeling is insufficient in other, recent applications, and

more specifically, where high-order1 processing and decomposition of the data is recommended.

For instance, there can be cases where: (a) the spatial information between the two modes

of pixels is very important that rearranging the modes of pixels becomes a problem [53, 108],

and (b) the images are collected or represented with multiple diversities [102, 103, 56] where

the diversities may be defined by: (i) natural acquisition (such as multi-temporal or multi-

angular HSI data) [102], (ii) artificially extracted features (such as HSI with neighborhood

patches or Mathematical Morphology) [103, 56], (iii) a combination of them, etc. With such

data sets, especially those with multiple diversities, it is better to think of each diversity as a

subspace of its own. However, as mentioned earlier, classical attempts to process high-order

data using matrix representations include (a) merging the modes of pixels and diversities (as

1The number of ways of an array refers to the number of its indices, which is sometimes referred to as its

order or the number of its modes. For example, a HSI of dimensions I1 × I2 × J is said to have three ways

or modes, and is called a three-way array or a data set of order three. Data sets with order 3 or above are

described as multi-way, multi-modal, or high-order tensors.
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Figure 1.2: Reshaping a 3D array hyperspectral image (the set of 2D image slices on the left)

into a 2D array such that the pixels are rearranged into a lexicographic order (on the right).

Each row in the matrix representation is a spectral reflectance vector.

illustrated in Figure 1.3 for a HSI with a temporal diversity) or (b) processing each of the

diversities independently to fit for matrix techniques. The problem is that the former destroys

the natural ordering of the data and the algebraic subspace entity of each mode and diversity,

and the latter ignores the complex inter-modal relationships. In order to avoid these scenarios,

we need to rely on high-order, tensor representations.

Figure 1.3: Matricization of a fourth-order HSI tensor in time series (represented as a set of

third-order HSI blocks on the left) into a 2D array such that the pixels are rearranged into a

lexicographic order along the first mode, and the spectral and temporal features are reordered

along the second mode (on the right). Each row in the matrix representation is a vector of

mixed spectral and temporal properties.

Almost analogously to how matrices and their tools (e.g. operators, ranks, factorization,

etc) are defined in linear algebra, tensors and their tools extend those towards multi-linear

algebra. Tensors are high-order data structures that can be represented as multi-dimensional
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arrays of data. As such, a first-order tensor is just a vector, and a second-order tensor is a

matrix. Tensor analysis [29] of the data has been applied in a variety of applications ranging

from chemometrics to psychometrics, biomedical signal processing, neural networks, social

networks, etc [65, 25, 29]. Recently, tensor analysis is being integrated in image processing

applications, so their tools are used to solve many problems related to high-order image

analysis. In Chapter 1, we compile in some details the basics of tensors and some of their

applications for remote sensing images.

Now, what does this mean in terms of acquired image data? During the past couple of

years, the data that I worked with were strictly image arrays of order ≥ 3, meaning that

I have been dealing with not only the relationships between a pixel and its features, but

also those between the features themselves (e.g. between spectral and temporal features).

For instance, strictly speaking, image data arrays are formed of numbers. However, these

numbers are acquired from nature and everyday-activities based on physical and meaningful

stimulus coming from different sources (as mentioned earlier), so they have patterns waiting

to be extracted and made sense of. Here, we would like to describe the utility of tensors for

multi-modal image analysis in three general points:

• Due to the increasing availability of high-order and big image data [26], it is becoming

increasingly important to rely on tensor representations and observe these patterns in

their raw, high-order form with their inter-modal relationships. Mathematically speak-

ing, tensor algebra is able to jointly show the correspondences between the subspaces

that form a multi-modal image tensor through tensor decomposition.

• Tensor decomposition, in all its different forms and definitions, is the most important

tool to process tensor data for feature extraction. Since such tools are abstractly defined

in multi-linear algebra with available algorithms, it is important to explore their utility

in image analysis and extend their models to possible physical conditions. Since tensor

decomposition respects the ordering of each of the modes, it is more flexible to impose

diversity-dependent regularization terms and adapt to human intuition than the case of

matrix factorization.

• Moreover, since images are visual in nature, and since tensors are pretty abstract, ex-

pectations and interpretations of the results heavily depend on both. It is hard to talk

about one aspect without the other, and here lies the beauty of this harmony between

the two worlds, but also the difficulty to explain it shortly in words. For that, in Section

1.2, we show a simple example of decomposing a synthetic image tensor.

In other words, the goal is to jointly explore high-order relationships between the diversities

as tensor decomposition techniques can reveal interesting patterns with inter-modal and sub-

space relationships, which would be lost through matrix representations. Additionally, tensor

decomposition has an important advantage when it comes to the identifiability and unique-

ness of the solution, all of which we discuss in more details in Chapter 2. Now that a rather

broad link is developed between image analysis and tensor decomposition, and since time

does not allow to practically explore all the different areas, we briefly expand on the elements,

applications, and goals that were treated in the scope of this thesis.
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1.1.1 Tensor Decomposition of Multi-featured HSIs

In terms of image analysis, the focus is going to be on remote sensing images and applications.

In other words, the types of images of this thesis are going to be HSIs of landscapes obtained

by remote sensing platforms for Earth observation. It is good to note, though, that while the

focus is on remote sensing images, the issues and methods that are tackled apply also to HSIs

of any other field of research, like biomedical imaging for instance. Regarding HSIs, to begin

with, they are natural three-way blocks of data, which already allows access to tensor tools,

and such related works can be found in [61, 108, 79] where the HSIs are processed in their

three-dimensional array form using tensor decomposition. In this thesis however, we consider

HSIs rather from the perspective of each single pixel than the data set as a whole. As such,

each pixel in a HSI is a sample that represents a vector of spectral features.

At this stage, one might wonder: Doesn’t this way of looking at HSIs suggest that the three-

way data at hand can be simply rearranged as a matrix (as indicated in Figure 1.2)? And then

there would not be a need to further complicate things in the scope of a full thesis? Indeed,

that can be an option (regardless of its limitations; e.g., solution uniqueness). Nevertheless, as

described in earlier paragraphs, HSIs can also be represented with different types of features,

which we will sometimes coin as being “multi-feature”-ed, and which is exactly the type of data

that we target in our applications. As multi-featured data are becoming highly accessible, from

a signal processing point of view, it would be better to start widely relying on the more direct

and fitting tensor analysis, which this thesis is dedicated for.

Regarding the nature of additional features, in general, our main interest goes towards

those that are extracted from the HSI itself rather than the ones that are naturally acquired.

In fact, it is a standard practice in remote sensing, and in general any type of image processing

actually, to use or extract spatial features from images and consider them for image analysis,

which can be for instance to detect or discover certain spatial features or patterns (e.g., scene

classification [50], spectral unmixing [107], texture analysis [5]). After all, images themselves

are units of visual and spatial information that should be exploited. The approaches may

differ as to how these features are modeled or processed, but we focus here on representing

them within tensors. Specifically, we exploit the area of Mathematical Morphology (MM)

[85, 86, 73], which is a set of image-to-image transformations that extract spatial features

from images based on the size of spatial objects and their brightness levels, among others

(see Section 4.2 for some details on morphological operators and properties). Exploring such

features comes with potential advantages such as:

• Acquisition: Compared to natural multi-featured HSIs such as time-series, it requires us

to acquire only one instance of a HSI of the scene. (That is, of course, when we are not

primarily interested in any natural evolution of the physical materials of the scene.)

• Uniqueness: Compared to matrix factorization techniques, we can have a unique decom-

position of the data under mild conditions. Moreover, we are able to observe multiple

features at once for each extracted material, and not only spectral ones. In case of MM,

this also means that we extract or span a morphological subspace for the data.
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• Low-rank Approximation: Compared to analysing HSIs in their original third-order

form, rearranging the modes of pixels allows to focus on the pixel-features relationship

and significantly drops the rank of the data. We note that as pointed out in Chapter

5, even though the spatial structure is ignored when the pixels are rearranged, it is

still possible to impose predefined neighborhood-local spatial structures such as the case

of patches and MM [104, 58, 56, 57]. In other words, it can only suffice to use small

neighborhoods as additional spatial information instead of the spatial structure of the

whole image which would be very high-rank.

That said, many of the tensor interpretations given later for applications with MM are general

and can also apply to other types of additional features.

Among the many applications in the world of hyperspectral imaging, we explore those

that are related to compression, scene classification, and spectral unmixing. In each of these

applications, instead of the classical matrix-based approaches that disregard the multi-modal

properties, we use tensor modeling, which means that we also explore the theoretical, applica-

tive, and algorithmic aspects of tensor analysis. This includes:

• Abstract definition of tensors and their operators.

• Different decomposition techniques such as High-Order Singular Value Decomposition

(HOSVD) and Canonical Polyadic (CP) Decomposition.

• Conditions of uniqueness that are possibly encountered in image analysis problems.

• Imposing nonnegativity, sparsity, and simplex constraints.

• Algorithms that were used such as Alternating Least Squares (ALS) and Alternating

Optimization Alternating Direction Method of Multipliers (AO-ADMM).

With that, we are ready now to show a simple synthetic image example of how tensor decom-

position can work with multi-modal images.

1.2 Synthetic Image Tensor

Here, we present a simple example of decomposing a synthetic RGB image tensor where the

objects of the scene are fading or increasing in appearance (color). The point is to see an

example of how the image-based tensor data can be reflected through tensor decomposition.

Looking at Figure 1.4, we have images of size 36 × 100 containing three squares: red, green,

and blue, observed over 7 time stamps. The red square is fading over time, the green one is

constant, while the blue one increases in appearance. Moreover, this is an RGB image, so we

have 3 spectral bands representing the red, green, and blue wavelengths. This is a fourth-order

tensor of dimensions 36×100×3×7, but we reshape it into a third-order tensor of dimensions

3600× 3× 7 (Figure 1.5) for decomposition.
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from t = 1 to t = 7, which describes the fading of the red square, the second column remains

constant, which describes the stillness of the green square, while the third shows increasing

values, which describes the gradual appearance of the blue square.

The presented synthetic example shows how intuitive tensor decomposition can be with

multi-modal data, but it is a very simple and direct case. In fact, there is much more to

matrix and tensor decomposition in terms of techniques and conditions, adding to them that

real-life images contain more complicated features (we refer to [102] for an application of real

time-HSI tensors). That said, image analysis presents us with a couple of challenges when it

comes to tensor modeling, especially with real HSI tensors, and we briefly describe some of

those that were tackled during the thesis.

1.2.1 Thesis Challenges

To begin with, one goal of this thesis is to present the common literature between tensor

decomposition and image analysis. It is a challenge of itself to find a unified compilation for

the challenges and issues of tensor decomposition that arise in image analysis applications.

One would usually have to go through the numerous individual papers in the literature, many

of which deal purely with issues related to either one of the two disciplines, and few of which

deal with both. For that, Chapter 2 represents such compilation that goes in details with the

parts that are directly relevant to the works of this thesis (i.e., Chapters 3, 4, and 5) and

provides many references for those that are potentially useful in image analysis but are not

tackled in the scope of this thesis.

Furthermore, we find that there are algorithmic and application-oriented challenges in the

literature. In the pure algorithmic sense, we still find problems that require special modeling

and constraints. For example, as HSIs can be seen as very big data sets, and especially in the

presence of constraints, computing their CP decomposition can be demanding and requires

compression. An algorithm has already been proposed for fast computations of such cases

[27], but it poses some computational problems when it comes to constraints that rely on

hard-thresholding, for which we propose a greedy fix in Chapter 3 [60]. Moreover, another

algorithm has been proposed for flexible modeling of the constraints in CP decomposition

[53], which relies on breaking down the non-convex inverse problem into alternating convex

ADMM sub-problems. In Chapters 4 [56, 58, 57] and 5 we rely on AO-ADMM for multi-

feature hyperspectral scene classification and unmixing respectively, in which we respectively

propose to use compression (Section 4.3.1) and Abundance Sum-to-one Constraints (ASC)

(Section 5.3) through AO-ADMM.

On the application-side, as we tackle scene classification and spectral unmixing through

CP decomposition, we view the problems from the perspective of multi-linear algebra and

discuss some challenges related to the smooth transitioning from classical matrix approaches

to tensor ones, choosing a value for the tensor rank before applying decomposition (which is

also the number of extracted materials), expecting or physically interpreting the results of

the decomposition in a multi-linear sense, and properly explaining and presenting the ideas
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and contributions because usually, with tensor representations, a lot of fields and ideas are

inter-connected and move in parallel.

1.3 Manuscript Overview

This manuscript starts with an overview of matrix and tensor decomposition and some of their

applications in remote sensing image analysis. After that, we present the findings of this thesis.

Regarding the contributions, application-wise, the focus was on HSIs and nonnegative tensor

decomposition, with a highlight on the usefulness of building a third diversity of features using

MM.

That said, the rest of the manuscript is structured as follows. In Chapter 2, we start with

the mathematical aspects of matrix and tensor decomposition that are important for image

analysis. This includes definitions, basic operators, decomposition techniques, uniqueness con-

ditions, and algorithms. At the end, we talk about some applications of remote sensing image

analysis where tensor representations were involved. After the literature overview, in Chapter

3, we present our first contribution, which is rather algorithmic and concerns the computation

of nonnegative tensor decomposition, noting that nonnegativity is an important constraint for

image analysis. In Chapter 4, we present our second, third, and fourth contributions, which

concern hyperspectral image scene classification using Mathematical Morphology and tensor

CP decomposition. In Chapter 5, we present our fifth contribution, which concerns hyper-

spectral multi-feature unmixing using tensor CP decomposition, and can be seen as a natural

extension to Chapter 4. Following the challenge of reasoning on the choice of the tensor rank in

Chapter 5, we explore in a current work (i.e., it is currently under development) the low-rank

tensor representations of tensor data that are built from sequential filtering of the original

HSI such as the case of MM. Finally, we draw out some conclusions and talk about different

challenges and potential perspectives.

1.3.1 Scientific Contributions

So far, the published works of the PhD are divided into three conference papers [60, 56, 58],

which were presented by me in each of the conferences, and one journal paper [57]. The first

conference paper [60] deals with the algorithmic contribution and is presented in Chapter 3,

while the others and the journal [56, 58, 57] deal with HSI scene classification using MM and

CP decomposition and are presented in Chapter 4. That said, materials of Chapter 5 are

planned for further development and publishing in the future.

Beside the published works, during this PhD, we were hosted at Tokyo Institute of Tech-

nology - School of Computing, Japan, for a research collaboration on a project funded by JST

Presto [98]: “Estimation of crop vitality based on Tensor decomposition and data fusion of

multi-modal, multi-temporal leaf-scale aerial images”, under the direction of Prof. Kuniaki

Uto, where tensor decomposition of aerial images of crops is proposed in order to control the
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health of the crops under physical conditions such as sunlight and color of the leaves. During

this stay in Japan, we were partially involved in the problem statement, and we conducted

two field campaigns and acquired real-life RGB, multi-spectral and hyper-spectral images of

the rice fields of Tsuruoka, Japan, using Unmanned Aerial Vehicles (UAV)-mounted RGB,

multi-spectral and hyper-spectral cameras.

Moreover, we prepared a course2 on feature extraction with matrix and tensor techniques

for the doctoral school “Data Science for Geoscience (DS4G) 2020” by using notebooks3 pre-

pared with the tensor library of TensorLy (built in Python) [66].

2https://github.com/DataScience4Geoscience/Toulouse2020/tree/master/Courses/Feature%20Extraction
3https://github.com/DataScience4Geoscience/Toulouse2020/tree/master/Notebooks/Feature%20Extraction
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2.1 Introduction

One problem that I encountered while working on my thesis was managing the huge piling

of papers that I ended up marking as important references for the various issues and findings

in tensor algebra and image analysis, whether in theory or applications, that I needed to

regularly refer to for my work. In other words, while it is fortunate to be able to find tutorials

and answers to most of the problems that arise while working on tensor analysis of high-order

image data, these answers would be available but spread over numerous papers, and thus it

was a bit hard and time-consuming to keep track of them as well as refer to them on a regular

basis. Additionally, seeing as the tensor analysis of high-order image data has recently been

11
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rising in popularity that it has been given its own sections in some conferences (such as in

IGARSS 2019), it would be of great importance to have a summary of the latest corresponding

developments and concerns along with references and examples of image applications from the

literature. As such, this chapter serves as a structured compilation or documentation that deals

with the common problems of the two major disciplines, i.e., tensor decomposition and image

analysis. It represents a theoretical and applicative account of the different aspects that are

relevant to these elements and will be recalled often throughout the following chapters.

Starting with the theoretical part, in Section 2.2, we start with an abstract definition of

a tensor, of which a matrix is a special case, then we describe some mathematical operators

that sit at the core of decomposing and reconstructing tensors. After that, in Sections 2.3

and 2.4, we talk about matrix and tensor decomposition respectively. Here, we note that

since tensor decomposition is often seen as the multi-linear extension of matrix factorization,

and since passing by the matrix case can make the tensor one easier and more intuitive to

explain, we split between the two cases. In particular, in Section 2.3, we talk about some of the

most popular matrix factorization techniques and describe their properties, then, in Section

2.4, we move to tensor decomposition and present it in details, which includes the different

techniques that are relevant to image analysis, their properties, cost functions, constrained

versions, uniqueness conditions, and some algorithmic aspects. Finally, in Section 2.5, we go

through some of the applications in image analysis as examples of how matrix and tensor

decomposition is used in this context.

2.2 Definitions

Aside from their representations as multi-dimensional arrays, tensors are mathematical objects

defined in Algebra at the base of vector spaces and mathematical operators (see [29, 49, 68] for

detailed descriptions and definitions), which gives them a solid importance in data processing.

As such, this section serves as a brief mathematical description of tensors and some basic

operators.

First, we describe the outer product ⊗ of vectors and how it contributes to the formation

of a tensor subspace, i.e., through the outer product of multiple vector subspaces, which in

turns sets the mathematical and physical significance of tensor decomposition. Tensors are

originally defined independently of any system of coordinates. But once a coordinate system

is fixed, they are defined by a table of numbers containing their coordinates. We shall restrict

our approach to such a context, and treat tensors as mere tables of numbers. Second, we

describe some basic operators that are directly or indirectly used in tensor tools. Application-

wise, images are acquired and represented as collections of real numbers, so all of the following

algebraic definitions and operators are defined by default in the field of real numbers R.
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2.2.1 Outer Products and Tensors

The Outer Product of two vectors a ∈ R
I and b ∈ R

J results in a matrix T ∈ R
I×J as follows:

T = a⊗ b→ ti,j = aibj

∀ i ∈ {1, . . . , I} and ∀ j ∈ {1, . . . , J}. Moreover, the Outer Product of three vectors a ∈ R
I ,

b ∈ R
J and c ∈ R

K results in a third-order tensor T ∈ R
I×J×K as follows:

T = a⊗ b⊗ c→ ti,j,k = aibjck

∀ i ∈ {1, . . . , I}, ∀ j ∈ {1, . . . , J}, and ∀ k ∈ {1, . . . ,K}. A vector and a matrix can then be

seen as first-order and second-order tensors respectively.

More generally, the Outer Product of N vectors {h(1) ∈ R
I1 , . . . ,h(N) ∈ R

IN } results in

an N -th order tensor T ∈ R
I1×...×IN as follows:

T = h(1) ⊗ . . .⊗ h(N) → ti1,...,iN = h
(1)
i1

. . . h
(N)
iN

∀ id ∈ {1, . . . , Id} and ∀ d ∈ {1, . . . , N}.

In fact, a real tensor is an element of RI1⊗. . .⊗RIN (or RI1×...×IN for short). Consequently,

a nonzero tensor is expressed as the sum of outer products of nonzero vectors, and the minimal

number of summands for the following representation to be exact represents the rank of the

tensor:

T =

R
∑

r=1

h(1)
r ⊗ . . .⊗ h(N)

r (2.1)

where R would be the tensor rank and h
(d)
r ∈ R

Id , ∀ r ∈ {1, . . . , R} and ∀ d ∈ {1, . . . , N}.

Expression 2.1 sets the case of Canonical Polyadic (CP) decomposition [29], which we talk

about in more details in Section 2.4.2. Besides, in Section 2.4, we see other forms of tensor

decomposition, some of which are defined in the framework of linear subspace operators be-

tween tensors and matrices (see the contraction operator in expression (2.2) for instance), and

others of which are derived as special cases of CP decomposition.

2.2.2 Basic Operators

The Kronecker Product ⊠ of two matrices A ∈ R
I×L and B ∈ R

J×M results in a third matrix

of size IJ × LM as follows:

A⊠B =







a11B . . . a1LB
...

. . .
...

aI1B . . . aILB







Now, suppose that we have two matrices A and B, each partitioned into R sub-matrices

such that A = [A1, . . . ,AR] and B = [B1, . . . ,BR]. The Khatri-Rao Product ⊙ of A and B
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is their partition-wise Kronecker Product:

A⊙B =
[

A1 ⊠B1 . . . AR ⊠BR

]

Following suite, the column-wise Khatri-Rao Product ⊙c of two matrices A and B, having

the same number of columns (or in other words, partitioned column-wise into R columns), is

their column-wise Kronecker Product:

A⊙c B =
[

a1 ⊠ b1 . . . aR ⊠ bR
]

The contraction operator •d, defined for a certain mode d ∈ {1, . . . , N}, represents the

product between a tensor and a matrix along that mode. For example, suppose that we have

G ∈ R
L×M×N , A ∈ R

I×L and B ∈ R
J×M , the first- and second-mode contraction of G by A

and B respectively results in a tensor T ∈ R
I×J×N as follows:

T = G •
1
A •

2
B → tijn =

L
∑

l=1

M
∑

m=1

Glmn ailbjm (2.2)

The mode-unfolding (mode-matricization) of a tensor is reshaping it into a matrix by fixing

the index of one of the modes and changing the others. We denote by T (d) the d-th mode-

unfolding of tensor T . For instance, for a tensor T ∈ R
I×J×K , T (1) ∈ R

I×JK represents the

first mode-unfolding of T , where the first mode spans the rows of T (1). T (2) ∈ R
J×KI and

T (3) ∈ R
K×JI follow suite as the second and third mode-unfoldings respectively. Sometimes,

the targeted mode d of the unfolding is preferred to span the columns of the unfolded matrix

T (d), not the rows, which would be the transpose of the aforementioned notations.

2.3 Matrix Factorization

In the following, the data matrix is denoted by M ∈ R
I×J (I ≥ J), whose two modes

represent a subspace each. In general, matrix factorization comes in a lot of different forms,

which depends on the desired application [25], but we focus here on two very popular ones,

Singular Value Decomposition and Nonnegative Matrix Factorization [25]. The core of both

techniques is that M is decomposed into two main factor matrices, each directly describing

one of the subspaces of M and usually having the same number of columns, say A ∈ R
I×R and

B ∈ R
J×R, such that M = ABT. Sometimes, a diagonal (core) matrix Σ ∈ R

R×R absorbs

the normalization factor of the columns of A and B, such that M = AΣBT. Regarding

the other forms of matrix factorization, we note that they are rather constrained or special

cases of the form M = ABT that are application-driven, which are out of the scope of this

manuscript. However, since nonnegativity is a major constraint in image analysis, and since

there could be potential in these forms, we refer to Chapter 1 of the book [25] for a detailed

overview.
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As such, A is associated with the first mode of M , while B is associated with the second.

For instance, assuming that the rows of M represent pixels (as samples) and the columns rep-

resent spectral reflectance (as spectral features), then, physically speaking, A and B contain

patterns related to pixels and spectra respectively, but the quality of these patterns depends

on the type of the decomposition. Moreover, the columns of A can be reshaped into matrices

that can be shown as grayscale images with some highlighted spatial features.

2.3.1 Singular Value Decomposition and Principal Component Analysis

Singular Value Decomposition (SVD) and Principal Component Analysis (PCA) share the

same general expression with one slight difference. Given a matrix M ∈ R
I×J , SVD decom-

poses M as it is, while PCA centers the feature space at 0 (that is, the columns of M are

subtracted by their means) before applying SVD. In general, SVD is useful for denoising and

lossless data compression, and PCA is additionally useful for dimensionality reduction of the

feature space. In the following, we suppose that the feature space of M is centered.

SVD uniquely1 decomposes any matrix M ∈ R
I×J (where I > J) as follows:

M = UΣV T (2.3)

mij =
R
∑

r=1

uirσrrvjr (2.4)

where U ∈ R
I×I and V ∈ R

J×R are orthogonal matrices whose columns represent the left and

right singular vectors respectively, Σ ∈ R
I×R is a diagonal matrix whose diagonal entries are

called the singular values and are usually sorted in decreasing order, and generally speaking,

we have R ≤ min(I, J). In most of the cases, since Σ is diagonal and has extra zero-rows, it

is desirable to truncate the corresponding extra columns in U such that we have U ∈ R
I×R

and Σ ∈ R
R×R, as illustrated in Figure 2.1 such that I > J and R = J (i.e., M is full-rank).

Figure 2.1: Truncated SVD. Since Σ is diagonal, then its zero-rows and the corresponding

columns of U are truncated. Afterwards, we have U ∈ R
I×R, Σ ∈ R

R×R, and V ∈ R
J×R.

SVD is important for many reasons:

• It is unique and exact (it can be computed analytically), and applies to any matrix.

1Thanks to the orthogonality imposed on matrices U and V , the SVD is unique if singular values σrr are

distinct.
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• Since U and V are orthogonal, then each of their sets of columns represents the or-

thonormal basis of the first and second modes of M respectively, then, the columns of

UΣ are called the principal components (PC). For instance, if M is a matrix of pixels

and spectra, then U and V represent the optimal orthonormal subspaces of the pixels

and spectral features respectively. UΣ then shows the pixel row-vectors as re-expressed

(that is, the pixels’ new coordinates) in the new spectral feature subspace.

• The singular values of Σ represent the statistical weight or distribution (standard devia-

tion) of the columns of U and V in decreasing order. The first couple of columns are the

most weighted, meaning that the features are more distributed along these directions.

As such, the most important part of the data lies there. Conversely, the last columns

may correspond to negligible or zero weights, which corresponds to either noisy distri-

butions along their directions or rank-deficiency, and thus can be removed for denoising

or dimensionality reduction of the feature space:

– Figures 2.2 and 2.3 show an illustration and an example of a grayscale image matrix

being reconstructed using lower-rank representations (that is, with less singular

values and vectors), which is done by truncating the SVD matrices at R′ < R

components. Compared to the original image (Figure 2.3a), as R′ increases (Figures

2.3b-2.3e), we see that the reconstruction shows more details. One could say that

R′ = 80 is enough to visually maintain the details of the scene compared to the full

rank that is R = 130.

Figure 2.2: Reconstructing a matrix using lower-rank representations

(a) Original (b) R′ = 2 (c) R′ = 10 (d) R′ = 30 (e) R′ = 80

Figure 2.3: Reconstructing a 270× 130 grayscale image matrix (taken from the HSI of Pavia

University) using lower-rank representations



2.3. Matrix Factorization 17

– Figure 2.4 shows an illustration of dimensionality reduction using PCA of the HSI

of Pavia University, where the spectral feature space dimensionality is reduced from

103 to 4 based on the plot of the singular values of Σ. As such, the first four PCs

(columns) of UΣ are reshaped and shown in the figure.

Figure 2.4: Illustration of dimensionality reduction using PCA of the HSI of Pavia University.

The plot of Σ shows that SVD can be truncated at 4 principal components (PC). U (4) ∈ R
I×4

and Σ(4) ∈ R
4×4 denote the truncated versions of U and Σ at 4 PC.

• SVD reveals the rank of the matrix, or its intrinsic feature space dimensionality, which is

theoretically the number of non-zero singular values in Σ and practically the number of

those that do not correspond to noise. It is also theoretically defined as the least number

of terms, R, for expression (2.4) to be exact. For matrices, we have R ≤ min(I, J).

Figure 2.5 shows the plots of the singular values of two 6×4 synthetic matrices, one created

using Matlab’s randn function (plot (a)), while the other created such that the columns are

linearly dependent on two vectors (plot (b)). We can see that the singular values of plot (a)

are all non-zero and arranged in decreasing order, which means that the corresponding matrix

is full-rank (i.e., R = 4), while those of plot (b) have two zero singular values, which means

that the corresponding matrix has rank R = 2. We note that SVD allows negative entries in

its factors, which is not useful when the modeling of the problem requires nonnegativity of

the entries (such as the case of NMF in Section 2.3.2).

The elements of SVD can be observed in the diagonalizations of MMT and MTM . For

instance, the left singular vectors, i.e., U , are the eigenvectors of MMT = UΣ
2UT, and

the right singular vectors, i.e., V , are the eigenvectors of MTM = V Σ
2V T. Consequently,

the singular values, i.e., Σ, are the square roots of the eigenvalues of MMT and MTM .

In practice, SVD is computed numerically at the base of different algorithms to improve the

precision and complexity of the problem.

Finally, SVD has two major properties, orthogonality of the factor matrices and diagonality

of the core matrix, which can not generally coexist in tensor decomposition. Orthogonality

was extended to High-Order SVD [36] which we talk about in Section 2.4.1, and diagonality

was extended to Canonical Polyadic (CP) decomposition [29] which we talk about in Section

2.4.2.
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2.3.2.1 Solution Uniqueness

The identifiability of the extracted components, or in other words, the uniqueness of the

factor matrices, whether in matrix or tensor decomposition techniques, is a crucial point for

any application. To begin with, we start by describing the notion of essential uniqueness. If a

matrix is unique up to scaling and permutation of its columns, then it is said to be essentially

unique. For example, for a data matrix M of rank 2, one can write:

M = A1|2B
T

1|2 = a1 ⊗ b1 + a2 ⊗ b2 = a2 ⊗ b2 + a1 ⊗ b1 = A2|1B
T

2|1 (2.7)

where Ai|j = [ai,aj ] and Bi|j = [bi, bj ] (which also applies to tensors but for higher orders).

Here, if a1, a2, b1, and b2 are identifiable, then A and B are unique up to a permutation.

Now, we look at an individual outer product term. For any real nonzero α, we have:

a⊗ b = αα−1a⊗ b = (αa)⊗ (α−1b) = aScaled ⊗ bScaled (2.8)

Here, if a and b are identifiable, then A and B are unique up to a scaling of their columns.

These ambiguities may be reduced by normalizing the columns of the factor matrices and

reordering them in decreasing order of their norms.

As for NMF, essential uniqueness is not guaranteed because it suffers from a rotational

ambiguity of its factor matrices, which is described as follows. Referring to expression (2.5)

which is subjected to A and B being nonnegative, it is enough to assume any nonsingular

square matrix X, and M = ÃB̃
T

, such that we have Ã = AX and B̃
T

= X−1BT, where

Ã and B̃ are both nonnegative. However, if X is guaranteed to be reduced to a generalized

permutation matrix, which is a matrix that is formed of only one non-zero element in each

column and each row, the rotational ambiguity disappears since Ã and B̃ become only column-

wise permuted versions of A and B repsectively, and NMF is then essentially unique.

Usually, imposing constraints on the factor matrices can intrinsically have this consequence

on X being reduced to a generalized permutation matrix since imposing constraints (including

nonnegativity) helps by restricting the solutions to a few possibilities. In [78], it is shown that

the inverse (X−1) of a square nonnegative matrix (X) is nonnegative if and only if X is a

generalized permutation matrix, which consequently means that X−1 is also a generalized

permutation matrix and X−1 = DXT for some diagonal matrix D. Now, if A and B, which

are supposedly nonnegative, are imposed to be sufficiently sparse (which would intrinsically

be the case for Ã and B̃), then only a generalized permutation matrix X can satisfy the

nonnegative constraints in Ã and B̃, and NMF is then essentially unique [25].

Finally, on the topic of nonnegativity and sparsity constraints, and the uniqueness of an

under-determined linear system of equations (whose components are required to be nonnega-

tive), it is worth mentioning that [16] shows that if there exists a sufficiently sparse solution

for the problem, then this solution is necessarily unique. This point is particularly important

for our application in Chapter 5.
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2.4 Tensor Decomposition

With tensors [29], processing the data is no more restricted to only two diversities or subspaces,

or for instance to only sample-feature relationships (e.g., pixel-spectra). Here, it is possible to

jointly process all the diversities and subspaces without altering the data array or having to

deal with each diversity independently, and this is relevant to many current applications and

holds an important future potential where images are being acquired as big data and in multi-

modal fashions, some of which we talk about in Section 2.5. This includes data-compression,

denoising, BSS, and flexible modeling of the diversities. As such, tensor decomposition is

necessary one of the most intuitive and important tools to process multi-modal data.

In the following, the data tensor is denoted by T . For a tensor of order N and dimensions

I1 × · · · × IN , the factors of the decomposition can be indexed by the number of the tensor

modes, e.g., Hd ∀ d ∈ {1, . . . , N}, or by alphabetic order, e.g., {A,B,C, . . . }. In what is

related to image analysis thus far, we divide the tensor decomposition techniques into two

categories:

• Those that are decomposed into one core tensor and N factor matrices:

This category appears in different forms, but Tucker Decomposition is the most general,

such that a tensor breaks down into as many factor matrices as the number of its modes,

and a core tensor, allowing to uncover underlying information. First, each factor matrix

corresponds to one of the tensor modes and holds certain patterns depending on the

model and application. Second, the core tensor plays a very important role in governing

the interactions (i.e., the product) between the columns of the factor matrices.

There are two main special cases of Tucker Decomposition, (a) High-Order SVD, where

the factor matrices are orthogonal, and (b) CP decomposition, where the core tensor is

diagonal. Besides, we have Block Term Decomposition (BTD), where the core tensor is a

diagonal of block tensors. We describe each of these techniques in this section in details.

Figure 2.6 shows an illustration of the elements of a third-order Tucker Decomposition

using the contraction operator (refer to expression (2.9)).

• Those that are decomposed into a sequence of core tensors:

This category contains Tensor Train (TT) decomposition [76] and Tensor Ring (TR)

decomposition [114], which have been respectively used in image analysis for image

recognition [13] and Hyperspectral Image Compressive Sensing Reconstruction (HSI-

CSR) [18]. Since this category is only briefly described in this manuscript, we refer to

the aforementioned references for further details.

Briefly speaking, T is decomposed into N third-order core tensors, say {G1, . . . ,GN},

where Gd ∈ R
Rd×Id×Rd+1 corresponds to the d-th mode of T ∀ d ∈ {1, . . . , N} (for TR

decomposition, we have RN+1 = R1), and the set of {R1, . . . , RN+1} are called the TT-or

TR-ranks. Hence, each core tensor is itself a factor, and there are no factor matrices.
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Figure 2.6: Illustration of the elements of a third-order Tucker Decomposition.

2.4.1 Tucker Decomposition and High-Order SVD

The Tucker Decomposition of an Nth-order tensor T ∈ R
I1×...×IN , decomposed into a gener-

ally full core tensor G ∈ R
R1×...×RN and factor matrices {H1 ∈ R

I1×R1 , . . . ,HN ∈ R
IN×RN },

can be expressed using the contraction operator (2.9), which is also expressed element-wise

(2.10), as follows:

T = G •
1
H1 •

2
H2 . . . •

N
HN (2.9)

ti1...iN =

R1
∑

r1=1

· · ·

RN
∑

rN=1

(

gr1...rN h
(1)
i1r1

. . . h
(N)
iNrN

)

(2.10)

where h(d) represents a column of Hd, ∀ d ∈ {1, . . . , N}. In the following, we switch the tensor

order to N = 3, which follows analogously for higher orders. In many cases, Tucker Decom-

position can be computed by minimizing the error between the tensor and its approximation

(usually with additional constraints to fit a model):

argmin
H1,H2,H3,G

1

2
‖T − G •

1
H1 •

2
H2 •

3
H3‖

2
F (2.11)

In general, this decomposition is not identifiable (i.e. essentially unique), so problem

(2.11) is usually accompanied with constraints and particular modeling of the factors. In

many cases, “Tucker Decomposition” automatically implies that orthogonality is imposed on

the factor matrices since it is an important property to represent the subspaces of a tensor.

For that, High-Order SVD (HOSVD) [36] is one way to guarantee orthogonality, where each

factor matrix is the result of applying SVD on the corresponding mode-unfolding of the tensor

as follows. Let’s denote the d-mode unfolding (matricization) of the tensor by T (d), created

when the tensor is reshaped into a matrix of dimensions (
∏3

k=1|k 6=d Ik) × Id. The truncated
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SVD of each unfolding is computed such that:

T (d) = UdΣdH
T

d

∀d = {1, 2, 3}
(2.12)

where Hd ∈ R
Id×Rd designates the right singular matrix in the SVD, which is orthogonal.

This decomposition can reveal the ranks of the unfoldings, {R1, R2, R3}, a set which is also

referred to as the multi-linear rank. The set of right singular matrices are then taken as the

new bases, upon which T is projected to give the core tensor G:

G = T •
1
HT

1 •
2
HT

2 •
3
HT

3 (2.13)

Since this is SVD, we must have Rd ≤ Id ∀ d, so G is a projected or a compressed version of

T . It is worth noting that each scalar of G can be seen as the weight of interaction between

the vectors of the orthonormal bases of {H1,H2,H3} for reconstructing the data tensor T .

Hence HOSVD can be expressed as in (2.9), knowing that the factor matrices are orthogonal.

HOSVD is useful for dimensionality reduction of the modes (when Rd < Id), similarly to

the case of SVD, by taking out the columns of Hd that correspond to the lowest singular values.

Figure 2.7 shows an illustration of third-order HOSVD used for dimensionality reduction of the

second and third modes, where I(IR) represents the identity matrix with dimensions IR × IR,

and H2 and H3 represent the truncated versions of V and W at R2 and R3 PCs respectively.

HOSVD is also very useful for lossless compression of huge tensors as processing them can be

very demanding [27]. G is then seen as the compressed tensor and can be processed without

loss of information. This case is especially useful for large images where the number of pixels

can be huge compared to the other modes, for instance, I1 ≫ I2I3. In such cases, the rank

of T (1) is less than or equal to I2I3 (the minimum of its dimensions), i.e., R1 ≤ I2I3 ≤ I1.

Figure 2.7: Illustration of HOSVD used for the dimensionality reduction of the second and

third modes of a third-order tensor. R2 < I2 and R3 < I3.
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2.4.2 Canonical Polyadic Decomposition

CP decomposition [29] is characterized by having a diagonal core tensor, which we denote here

by Λ ∈ R
R×...×R. Assuming that the scalars of a core tensor represent the weight of interaction

between the columns of the factor matrices, then the diagonality of Λ implies that the columns

having different indices do not interact. Thanks to this property, CP decomposition is highly

used in the literature for BSS problems and feature extraction. Moreover, it can guarantee

uniqueness, which we discuss in Section 2.4.3.

An Nth-order decomposable tensor D ∈ R
I1×···×IN is a tensor that can be written as the

outer product of N vectors h(d) ∈ R
Id , ∀ d ∈ {1, . . . , N}:

D
def
= h(1) ⊗ . . .⊗ h(N) (2.14)

Now, we assume any tensor T ∈ R
I1×...×IN of order N and tensor rank R. The CP

decomposition of T can be written as a weighted sum of decomposable tensors Dr (supposing

that Dr are normalized by normalizing the {h
(1)
r , . . . ,h

(N)
r }), ∀ r ∈ {1, . . . , R} such that:

T =
R
∑

r=1

λr Dr =
R
∑

r=1

λr

(

h(1)
r ⊗ . . .⊗ h(N)

r

)

, (2.15)

where the tensor rank, usually denoted by R, is the least number of terms such that the

expression of CP decomposition (2.15) holds exact, which implies that a decomposable tensor

is rank-1 (R = 1). Referring to expression (2.14) and considering the set of decomposable

tensors {D1, . . . ,DR}, the set of vectors {h
(d)
1 , . . . ,h

(d)
R } for a fixed mode d ∈ {1, . . . , N} can

be rearranged as the columns of a matrix such that Hd =
[

h
(d)
1 , . . . ,h

(d)
R

]

∈ R
Id×R. Moreover,

the weights {λ1, . . . , λR} can be rearranged in a diagonal tensor Λ ∈ R
R×...×R. Following these

notations, CP decomposition can be expressed in Tucker form (2.9) where the core tensor is

diagonal.

Moreover, thanks to the diagonality of Λ, only the set of columns with a fixed index r ∈

{1, . . . , R} (i.e., {h
(1)
r , . . . ,h

(N)
r }) can interact as observed in the outer products of expression

(2.15). The columns of the factor matrices are sometimes called “components”, and a set

{h
(1)
r , . . . ,h

(N)
r }, which can be reconstructed as Dr, fully describes an extracted material. This

gives CP decomposition the property of separating the data into individual materials whose

qualitative patterns, related to some physical diversities, can be easily observed and associated

as column vectors. Figure 2.8 shows an illustration of the properties of CP decomposition for

a third-order tensor in Tucker form, and Figure 2.9 illustrates expression (2.15) in the form of

decomposable terms.

At this stage, it is important to stress that there is no scaling ambiguity in the CP decom-

position (2.15), contrary to what is sometimes claimed in the literature. Only the represen-

tation of tensors Dr (2.14) by N -uplets of vectors is subject to this indeterminacy. In fact,

by definition, tensors are precisely equivalence classes with respect to scaling [84, 68, 49, 29]:

the sets {h
(1)
r , . . . ,h

(N)
r } and {α1h

(1)
r , . . . , αNh

(N)
r } represent the same tensor provided that

α1 . . . αN = 1.
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Figure 2.8: Illustration of the elements of a third-order CP decomposition in Tucker form.

Figure 2.9: Illustration of a third-order CP decomposition as decomposable terms.

2.4.2.1 Tensor Rank

The rank R of the CP decomposition is of particular interest in applications since it is related

to the intrinsic subspace dimensionality of multilinear data. It is also related to the property

of uniqueness of CP decomposition which is of utmost importance since it eventually allows

physical interpretation of relationships among the modes of a tensor. Finding the exact value

of the tensor rank is NP-hard [51] and not as direct and analytic as that of the matrix rank, so

it is often approximated through trial-and-error and/or with a mix of SVD-based techniques

[25]. Contrary to the matrix rank which is upper bounded by the minimum of the matrix’s

dimensions, it is possible that the tensor rank exceeds the dimensions of the tensor. For

example, for an Nth-order tensor where I1 ≥ · · · ≥ IN , a general upper bound of the rank is

known to be R ≤
∏N

d=2 Id [11].
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Furthermore, it is important that the rank is relatively small (with respect to the dimen-

sions of the tensor) for the decomposition to be identifiable. A generic bound on the rank

would be to start from the inequality that the number of equations should be greater than

the number of unknowns, leading to:

R ≤

∏N
d=1 Id

∑N
d=1 Id −N + 1

, (2.16)

which is almost always satisfied since this bound is usually very large, especially when one of

the dimensions is the total number of pixels. The identifiability of CP decomposition and the

bounds on the rank are discussed in more details in Section 2.4.3.

2.4.2.2 Cost Function

Practically, finding the exact CP decomposition is a hard problem [51], so it is approximated

by minimizing the error between the tensor and its approximation. For a third-order tensor,

and using the Least Squares (LS) method, the goal is to minimize the cost function:

argmin
H1,H2,H3

1

2
‖T − IR •

1
H1 •

2
H2 •

3
H3‖

2
F (2.17)

where IR ∈ R
R×R×R is the diagonal tensor of ones, and the values of λr are absorbed in the

columns of the factor matrices, which in turns are normalized at the end. This cost function

is indeed not convex, similar to the case of NMF (2.6), which in fact is a special case of (2.17)

for N = 2 and where nonnegativity is imposed. As such, problem (2.17) is usually solved by

converting it into convex sub-problems in an alternating fashion, each of which is solved for

one factor matrix while fixing the others. Alternating Least Squares (ALS) is the most basic

algorithm to solve such problems, which we expand on in Section 2.4.5.1. More generally, in

Section 2.4.5, we talk about different algorithms for solving CP decomposition.

2.4.2.3 Nonnegativity

When the observation tensor T contains only real nonnegative entries, it is suitable to impose

decomposable tensors Dr to also be nonnegative. By doing this, we define a nonnegative rank,

R+ ≥ R. This is actually already true for matrices (tensors of order 2). In fact, Herbert E.

Robbins exhibited a simple example of a 5×5 matrix having rank 3 but nonnegative rank 4; see

[28, 29] for its expression. We refer to nonnegative CP decomposition as NCP decomposition.

Following expression (2.17), the cost function for computing NCP decomposition becomes:

argmin
H1,H2,H3

1

2
‖T − IR •

1
H1 •

2
H2 •

3
H3‖

2
F

s.t. H1 � 0,H2 � 0,H3 � 0

(2.18)

Solving this non-convex function follows the concept of ALS, which extends that of NMF (2.6).
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There are many applications where nonnegativity is relevant, as to provide better inter-

pretable results when dealing with variables related to physical quantities such as luminance

in images, spectra or chemical concentrations [25, 30]. There exist many algorithms aiming

at computing the CP decomposition of nonnegative tensors [25, 53]. However, due to mea-

surement noise or modeling errors, the tensor may not be nonnegative or may have a large

rank, hence requiring to be approximated. It turns out that, given any real tensor T of rank

R, it is fortunately always possible to find a best nonnegative approximation of T of given

nonnegative rank R+. This problem is indeed well-posed [69, 81] (which would not be the case

in R instead of R+). Moreover, imposing nonnegativity helps to limit the space of solutions,

improve convergence, and avoid the risk of having degenerate solutions [69, 25].

2.4.3 Solution Uniqueness of CP decomposition

Perhaps the most interesting aspect of CP decomposition is its uniqueness, which implies that

extracted components and features from multi-modal image data can be uniquely identified.

Considering how important this property is, many works have studied the uniqueness of CP

decomposition [67, 12, 22, 21, 37, 38, 89, 95, 69, 81, 94, 9] and its approximations [22, 69, 81,

80]. In the following, we talk about these findings and references that can be closely or remotely

related to applications in image analysis. This section is divided into three cases that are

related to solution uniqueness, unconstrained CP decomposition (Section 2.4.3.1), constrained

CP decomposition (the effect of imposing constraints, Section 2.4.3.2), and collinear columns in

the factor matrices (Section 2.4.3.3). Furthermore, the latter case leads to some special cases of

CP decomposition with particular patterns and derived uniqueness conditions [92, 35, 93, 14],

which we talk about afterwards (Section 2.4.4). To begin with, unlike matrix factorization,

CP decomposition can be unique under mild conditions and even without constraints.

2.4.3.1 Unconstrained CP decomposition

According to Kruskal [67], an unconstrained CP decomposition of a third-order tensor is said

to be essentially unique if the following sufficient condition is satisfied:

k1 + k2 + k3 ≥ 2R+ 2 (2.19)

where R represents the tensor rank, and kd represents the Kruskal rank of Hd. The Kruskal

rank of a matrix is defined as the maximum number of columns such that any combination

of said number of columns is linearly independent. The condition was later extended to Nth-

order tensors by Sidiropoulus and Bro [89]:

N
∑

d=1

kn ≥ 2R+N − 1, (2.20)

The proof of Kruskal’s condition [67] is known to be long and rather inaccessible, but a more

accessible proof can be found in [94].
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Regarding the difference between the matrix rank (R.) and the Kruskal rank (k.), we note

that assuming a matrix X ∈ R
I×J−1 (I > J−1) whose columns are linearly independent (i.e.,

RX = kX = J − 1), if a matrix Y ∈ R
I×J is formed by concatenating a column to X such

that said column is a linear combination of j columns of X, then we have kY = j following

the definition of the Kruskal rank, while RY can remain as J − 1. Collinear columns are then

a special case of this where j = 1. We give an example through the following pseudo-code:

Algorithm 1 Matrix rank and Kruskal rank (Krank) comparative example

Initialize X as a full-rank matrix; For example: X = rand(6,5);

Create Y by concatenating a column (in X) that is a linear combination of the 4th and

5th columns of X; For example: Y = cat(2, X, X(:,4) + X(:,5)/2);

Compute the rank and Kruskal rank of X and Y :

return rank(X)=5; rank(Y)=5; Krank(Y)=2;

Practical note: One problem with condition (2.20) would be that it depends on parameters

related to the factor matrices (i.e., the Kruskal ranks), which are supposedly unknown prior

to the decomposition, which can be a problem for practically satisfying the condition. While

there is no straight answer to this problem yet, we briefly discuss the following:

• In the least, the condition emphasizes the importance of having a relatively low tensor

rank R for the sake of identifiability of the components. After all, Kruskal’s sufficient

condition shows a much stronger upper bound on the tensor rank than that of (2.16).

• The Kruskal rank is known to be smaller than or equal to the matrix rank (kHd
≤

RHd
), which is lower than the minimum of the matrix dimensions, so it is more-or-less

possible to make a guess for the Kruskal ranks through the dimensions of the tensor.

Here, we note that a priori knowledge or modeling of the factor matrices can help. For

instance, we know that when the columns of a matrix Hd are linearly independent, we

have kHd
= RHd

, but when any column is a linear combination of some other columns

(including collinearity), we have kHd
< RHd

.

2.4.3.2 Constrained CP decomposition

While the aforementioned conditions concern the unconstrained CP decomposition, the con-

ditions may be relaxed or can be different when constraints are imposed [16, 93]. Moreover,

tensor decomposition can still adopt the advantages of imposing constraints in the case of ma-

trices. For instance, nonnegativity constraints are important for the physical interpretation in

almost any application of image analysis, and sparsity of the factors is physically significant for

many applications where the extracted features are assumed to be few per sample (such as the

case of spectral unmixing). In general, nonnegativity limits the space of solutions, improves

convergence, and removes the risk of having degenerate solutions [69, 25], and the sparseness

of the factor matrices can improve the uniqueness of a solution (see Section 2.3.2.1 for the

uniqueness of NMF) and can even guarantee its uniqueness in the presence of nonnegative

constraints [16, 25].
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Speaking of nonnegativity, we recall that imagery data are in the most cases nonnegative.

Fortunately, it is now shown that given a real nonnegative tensor T of nonnegative rank

R+ > r (i.e., for any given value r), finding the best nonnegative rank-r approximation T̂

such that:

argmin
T̂

‖T − T̂ ‖2F , (2.21)

is a well-posed problem. The solution exists, and it is almost always unique [69, 81].

2.4.3.3 Collinearity and Kruskal’s Condition

At this stage, it is important to talk about a special case of CP decomposition, where there

are collinear columns (or collinear loadings) in the factor matrices. This has a direct effect

both on the CP model and its uniqueness and can be observed through Kruskal’s condition

even though the latter is sufficient and not necessary for uniqueness. For instance, in some

applications of multi-modal image analysis (see Chapter 5), it can be expected in theory to

obtain two collinear columns in a factor matrix. In the following, we describe the direct

consequences of collinear loadings on the uniqueness of CP decomposition. First, we start

with the case of third-order tensors, then we talk about higher-order ones.

As it is noted in [94], a necessary condition for the uniqueness of unconstrained CP decom-

position of third-order tensors is that the factor matrices should not have collinear columns.

First, collinear columns in any of the factor matrices may cause a local rotational ambiguity

at the involved columns. Second, collinear columns correspond to a Kruskal rank of 1, which

violates Kruskal’s condition (2.19) for third-order tensors. These observations can be further

demonstrated as follows:

• Assuming that the factor matrices H1 and H2 are full-rank and two columns of H3 are

collinear, then k3 = 1. This reduces expression (2.19) to

k1 + k2 ≥ 2R+ 1,

which is impossible since the Kruskal ranks of the factor matrices are upper-bounded by

R (i.e., k1 + k2 ≤ 2R). This means that uniqueness is not guaranteed.

• Suppose that columns s and t (s 6= t) of H3 are collinear, then we can write the following

[94]:

Ds +Dt = h(1)
s ⊗ h(2)

s ⊗ h(3)
s + h

(1)
t ⊗ h

(2)
t ⊗ h

(3)
t

= αh(1)
s ⊗ h(2)

s ⊗ h
(3)
t + h

(1)
t ⊗ h

(2)
t ⊗ h

(3)
t

= (αh(1)
s ⊗ h(2)

s + h
(1)
t ⊗ h

(2)
t )⊗ h

(3)
t

= (H1s|tH
T

2s|t
)⊗ h

(3)
t

= (H1s|tXX−1HT

2s|t
)⊗ h

(3)
t

= (H̃1s|tH̃
T

2s|t
)⊗ h

(3)
t

(2.22)
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for any 2 × 2 nonsingular matrix X, where matrix H1s|t =
[

αh
(1)
s ,h

(1)
t

]

and H2s|t =
[

h
(2)
s ,h

(2)
t

]

. Then the CP decomposition is not essentially unique due to the local

rotational ambiguity at the columns s and t in the factor matrices.

Here, one can argue that using nonnegativity and sparsity constraints can relax the condi-

tions and reduce the effect of the local rotational ambiguity, similar to the discussion of the

uniqueness of NMF.

However, for tensors of order higher than 3, it is interesting that CP decomposition can still

be unique even with the existence of collinear columns in the factor matrices. For instance,

some conditions for fouth-order tensors were discussed in details in [14]. Here, we only make

some simple and intuitive demonstration of this observation, and we refer to [14] for the proofs

and details. Tensors of order higher than 4 follow analogously:

• Looking at (2.20), we have:

k1 + k2 + k3 + k4 ≥ 2R+ 3.

If H1, H2, and H3 are full and two columns of H4 are collinear, then k4 = 1. This

reduces the inequality to

k1 + k2 + k3 ≥ 2R+ 2,

which interestingly reduces to the case of third-order tensors (2.19).

• Suppose that columns s and t (s 6= t) of H4 are collinear, then we can write the following:

Ds +Dt = h(1)
s ⊗ h(2)

s ⊗ h(3)
s ⊗ ds + h

(1)
t ⊗ h

(2)
t ⊗ h

(3)
t ⊗ dt

= αh(1)
s ⊗ h(2)

s ⊗ h(3)
s ⊗ dt + h

(1)
t ⊗ h

(2)
t ⊗ h

(3)
t ⊗ dt

= (αh(1)
s ⊗ h(2)

s ⊗ h(3)
s + h

(1)
t ⊗ h

(2)
t ⊗ h

(3)
t )⊗ dt

(2.23)

which does not simply reduce to a local rotational ambiguity between the s-th and t-th

outer products unless, for instance, further collinearity exists inside the triplets in the

parentheses. Instead, it reduces to a local third-order CP decomposition, where there is

no rotation matrix X whose inverse X−1 can counteract the effect of the rotation.

Linear dependency and collinearity between the columns of the factor matrices in CPD is

an issue that has been investigated further in the literature due to their relevance for many

applications (not necessarily in image analysis) [35, 93, 92], where we find that other techniques

were derived such as: (a) Block Term Decomposition (BTD) into (Lr, Lr, 1)-terms (also known

as (Lr, Lr, 1)-decomposition), (b) PARAllel profiles with LINear Dependencies (PARALIND),

and (c) CONstrained FACtors (CONFAC). Each of them has its derived uniqueness conditions.

In the following, we talk in some details about (L,L, 1)-decomposition, but we only briefly

go through PARALIND and CONFAC since they are out of the scope of this manuscript in

terms of image analysis, but there might be some future potential.
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2.4.4 Derived Cases of CP decomposition

In this section, the description is done for third-order tensors denoted by T of dimensions

I ×J ×K, where the factor matrices are denoted by {A,B,C} representing the first, second,

and third modes respectively.

2.4.4.1 (Lr, Lr, 1)-decomposition

(Lr, Lr, 1)-terms is a special case of the more general form that is the BTD into (Lr,Mr, Nr)

terms. The general form of BTD refers to a tensor decomposition where the core tensor G,

in expression (2.9), is formed of R nonzero tensor blocks rearranged along the diagonal (see

Figure 2.10), each of dimensions Lr ×Mr × Nr ∀r ∈ {1, . . . , R}. Consequently, the factor

matrices A, B, and C are partitioned as follows:

A, B, and C have dimensions I × (
∑R

r=1 Lr), J × (
∑R

r=1 Mr), and K × (
∑R

r=1 Nr) respectively.

If Lr = L, Mr = M , and Nr = N ∀r ∈ {1, . . . , R}, then we have A ∈ R
I×RL, B ∈ R

J×RM , and

C ∈ R
K×RN . A, B, and C are then partitioned into R sub-matrices where each partition is denoted

by Ar ∈ R
I×Lr , Br ∈ R

J×Mr , and Cr ∈ R
K×Nr , and:

A = [A1, . . . ,AR] ; B = [B1, . . . ,BR] ; C = [C1, . . . ,CR]

BTD into (Lr,Mr, Nr) can be illustrated into two forms: (a) as one Tucker expression using

one core tensor that contains the blocks (Figure 2.10), and (b) as a sum of Tucker expressions

by viewing the block tensors as core tensors (Figure 2.11). In this sense, CP decomposition

can be seen as a special case of BTD where BTD simply decomposes into (1, 1, 1)-terms (i.e.,

the nonzero tensor blocks Gr reduce to scalars).

In particular, we focus here on the case of (Lr, Lr, 1)-decomposition for its special repre-

sentation and since it has a relationship with CP decomposition. In (Lr, Lr, 1)-decomposition,

each partition pair (Ar, Br) is a pair of sub-matrices having equal number of columns Lr,

while the corresponding partition cr is one column itself. Since C is partitioned into columns

(instead of sub-matrices), the block tensors Gr reduce to matrices of dimensions Lr × Lr. As

such, (Lr, Lr, 1)-decomposition can be expressed as follows:

T = G •
1
A •

2
B •

3
C =

R
∑

r=1

Gr •
1
Ar •

2
Br •

3
cr =

R
∑

r=1

(ArGrB
T

r )⊗ cr (2.24)

where if Gr is absorbed by either Ar or Br, the expression can be:

T =

R
∑

r=1

(ArB
T

r )⊗ cr =

R
∑

r=1

Er ⊗ cr (2.25)

where Er ∈ R
I×J has a matrix rank ≤ Lr. Expression (2.25) is illustrated in Figure 2.12.

At this stage, the correspondence in terms of collinearity between (Lr, Lr, 1)-decomposition

and CP decomposition can be seen as follows. If we suppose that C is recreated such that each
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Figure 2.10: Illustration of the elements of a third-order BTD in general Tucker form.

Figure 2.11: Illustration of a third-order BTD as the sum of block Tucker Decompositions.

column vector cr is repeated Lr times, then (Lr, Lr, 1)-decomposition is equivalent to a CP

decomposition where the tensor rank is
∑R

r=1 Lr. Going backwards, in a CP decomposition of

a third-order tensor, if the columns of indices {s, t, u} of factor matrix C are collinear, those

of A and B can be grouped into partition sub-matrices As|t|u and Bs|t|u as follows:

Ds +Dt +Du = as ⊗ bs ⊗ cs + at ⊗ bt ⊗ ct + au ⊗ bu ⊗ cu

= as ⊗ bs ⊗ cs + λtat ⊗ bt ⊗ cs + λuau ⊗ bu ⊗ cs

= (as ⊗ bs + λtat ⊗ bt + λuau ⊗ bu)⊗ cs

= (As|t|uB
T

s|t|u)⊗ cs = (ArB
T

r )⊗ cr

(2.26)

which resembles one summand of (2.25). As|t|u = [as, λtat, λuau] and Bs|t|u = [bs, bt, bu].

Regarding computation, (Lr, Lr, 1)-decomposition shares the same cost function as that

of Tucker (2.11), however its computation is rather similar to CP decomposition in terms of

updates, which can also be computed using ALS as described in Section 2.4.5.1.
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Figure 2.12: Illustration of (Lr, Lr, 1)-decomposition.

In terms of physical significance, sometimes it is more convenient to extract a feature

vector (e.g., spectral reflectance), say cr, which corresponds to more than one pair of feature

columns in each of Ar and Br (e.g., the two pixel modes), so directly using the CP model

risks its identifiability due to collinearity. At this point, it is good to talk about the conditions

of essential uniqueness of (Lr, Lr, 1)-decomposition.

Several essential uniqueness conditions are discussed in [35], but they all boil down to

an extension of condition (2.27) for partitioned matrices. First, the k′-rank of a partitioned

matrix is defined as the maximum number of partitions such that the columns represented

by any combination of said number of partitions are linearly independent. Now, in a parallel

fashion to (2.19), a sufficient condition for (Lr, Lr, 1) uniqueness is:

k′A + k′B + kC ≥ 2R+ 2 (2.27)

A necessary condition however is that A and B should not have collinear columns. For

instance, the representation of (Lr, Lr, 1)-decomposition as a model that reduces collinearity

of CP decomposition already assumes that the columns of C are not collinear, so if C is full

rank (the columns are linearly independent) and K ≥ R, then kC = R. Now if two columns

of either A or B are collinear, whether within the same partition or not, the corresponding

k′ = 1, which violates condition (2.27). In fact, if the collinear columns, say in A, belong to

the same partition, the corresponding ones in B can be added into one. Otherwise, uniqueness

is not guaranteed, so imposing constraints like nonnegativity or sparsity can help depending

on the problem and its conditions.

2.4.4.2 PARALIND and CONFAC

We have seen that linear dependency and collinearity in the factor matrices are directly re-

lated to low k-rank and k′-rank values, hence potentially rendering the sufficient conditions

for uniqueness deficient. (Lr, Lr, 1)-decomposition can be a good alternative to CP decom-

position if collinearity is restricted to one matrix, but when more than two matrices are
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concerned by linear dependency or collinearity, (Lr, Lr, 1)-decomposition becomes restricting

as a model. For that, PARALIND and CONFAC were proposed as (a) constrained versions

of CP decomposition for linear dependency and collinearity respectively, and (b) more flexible

representations of these properties using the so-called constraint matrices [93]. In the follow-

ing, we only briefly describe the two techniques since this manuscript does not deal with them

in terms of image analysis, but we believe that they could be a good reference for future works

since they are related to special cases of CP decomposition, which is widely used in image

analysis. For further details and examples, we refer to [93].

The constraints are represented by the set of pre-specified and fixed constraint matrices

{Ψ,Φ,Ω}, such that instead of the set {A,B,C}, now we have {AΨ,BΦ,CΩ}, such that:

• A ∈ R
I×R1 and Ψ ∈ R

R1×R (R1 ≤ R)

• B ∈ R
J×R2 and Φ ∈ R

R2×R (R2 ≤ R)

• C ∈ R
K×R3 and Ω ∈ R

R3×R (R3 ≤ R)

Briefly speaking, the constraint matrices Ψ, Φ, and Ω contain the patterns of linear depen-

dency and collinearity in A, B, and C respectively. In this section, we are more interested in

collinearity, so we focus on the case of CONFAC, which is a special case of PARALIND but

where the columns of the constraint matrices are restricted to (repeated) unit vectors. For

example on A and Ψ without loss of generality:

Say: AΨ =









1 5 1

2 6 2

3 7 3

4 8 4









; Then: A =









1 5

2 6

3 7

4 8









and Ψ =

[

1 0 1

0 1 0

]

(2.28)

Regarding uniqueness conditions, the work of [93] differentiates between two concepts of

uniqueness from the perspective of one factor matrix (say A):

• Essential uniqueness: A is said to be essentially unique if it is unique up to column-wise

scaling and permutation.

• Partial uniqueness: A is said to be partially unique if it is unique up to partition-wise

scaling and permutation (that is, the way A is partitioned is unique) where each partition

is identified up to its linear span. In this sense, any form of BTD is partially unique for

all its factor matrices since, by definition, their partitioning is fixed by (Lr,Mr, Nr).

In general, a lot of necessary and sufficient conditions can be found in [93], most of which are

derived using the permutation lemma of Kruskal [67].

Moreover, it is important to note that uniqueness is discussed over the set of factor matrices

{A,B,C}, and not the constraint matrices, which means that a factor matrix is unique up to
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scaling and permutation over its own un-repeated columns while the set {Ψ,Φ,Ω} is fixed.

This means that, in example (2.28) for instance, if Ã is a permuted version of A (as in if the

columns are permuted), then the product ÃΨ is not necessarily equal to AΨ.

Regarding the computation of PARALIND and CONFAC, some approaches using ALS are

proposed in the literature, for which we refer to [34, 15]. Finally, we note that if the constraint

matrices {Ψ,Φ,Ω} are all identity matrices, then PARALIND and CONFAC are equivalent

to CP decomposition.

2.4.5 Computation of CP decomposition

There are many algorithms in the literature to compute CP decomposition. The most basic

and popular one is Alternating Least Squares (ALS), which converts the main cost function

into sub-problems solved for each factor matrix alone while considering that the others are

fixed. One iteration of ALS is complete when each factor matrix is updated once. These

sub-problems are indeed convex, and they are solved in an alternating fashion until conver-

gence or a stopping criterion is reached. ALS has a lot of extensions such as Nonnegative ALS

(NALS) for nonnegative constraints [25], Projected-Compressed ALS (ProCo ALS) [27] for

huge tensors (compression) and constraints that require hard threshoding such as nonnegativ-

ity (projection), and the recently proposed Alternating Optimization - Alternating Direction

Method of Multipliers (AO-ADMM) [53] which is efficient and more flexible with constraints.

In the following, we describe these algorithms for third-order tensors. Higher-order tensors

follow analogously.

2.4.5.1 Alternating Least Squares

In ALS, one iteration is done by solving the following sub-problems:



































H1 = argmin
H1

1

2
‖T (1) −W 1H

T

1 ‖
2
F

H2 = argmin
H2

1

2
‖T (2) −W 2H

T

2 ‖
2
F

H3 = argmin
H3

1

2
‖T (3) −W 3H

T

3 ‖
2
F

(2.29)

where T (d) represents the d-mode unfolding of T , and W d contains the column-wise Khatri-

Rao product of all the factor matrices excluding Hd (for example, for d = 1, T (1) has dimen-

sions I2I3× I1, and W 1 = H3⊙c H2 has dimensions I2I3×R). The factor matrices are then

updated as follows until convergence or a stopping criterion is met:















H1 ← (W 1
† · T (1))

T

H2 ← (W 2
† · T (2))

T

H3 ← (W 3
† · T (3))

T

(2.30)
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where † designates the Moore–Penrose pseudoinverse of a matrix.

In the case of (Lr, Lr, 1)-decomposition, the updates are very similar to those of CP decom-

position with a major difference in the computation of W d that accounts to the partitioning

of the factor matrices.











W 3 = [(B1 ⊙c A1)1L1 , . . . , (BR ⊙c AR)1LR
]

W 1 = C ⊙B

W 2 = C ⊙A

(2.31)

where 1LR
represents a vector of ones and dimension LR. W 3 is updated using the column-wise

Khatri-Rao product between partitions, while W 1 and W 2 are updated using the partition-

wise Khatri-Rao product. After that, {H1,H2,H3} can be updated following (2.30). As for

the core tensor G, its block tensors Gr ∈ R
Lr×Lr×1 are diagonal matrices whose entries absorb

the normalization factors of Ar, Br, and cr after the termination of the algorithm.

2.4.5.2 Nonnegative Alternating Least Squares

When constraints are imposed on the factor matrix, then (2.29) is to be modified as follows

(for d ∈ {1, 2, 3}):

Hd = argmin
Hd

1

2
‖T (d) −W dH

T

d ‖
2
F + r(Hd) (2.32)

where r(Hd) represents the constraints or regularization terms imposed on Hd.

In NCP decomposition (and NMF for N = 2), all quantities are nonnegative. For instance,

vector ar belongs to the nonnegative orthant R
I1
+ . In iterative algorithms such as ALS, this

constraint is ensured at each iteration by projecting a computed value onto the nonnegative

orthant. Accordingly, each factor matrix can be projected onto the nonnegative orthant right

after its calculation; this is the NALS algorithm [25, p.47]. The pseudo-code is given in

Algorithm 2 page 47, where we note that ΛHd
is an R × R diagonal matrix whose diagonal

entries are the normalization factors of the columns of Hd, and Λ is an Nth-order diagonal

tensor of dimensions R× · · · ×R whose entries are the diagonal of
∏N

d=1ΛHd
.

2.4.5.3 Projected-Compressed Alternating Least Squares

Sometimes, tensors can be large, thus computing CP decomposition through ALS in the

presence of constraints that require projection (such as nonnegativity) can be very demanding.

In this case, it would be better to compress the dimensions of the tensor first so that CP

decomposition becomes accessible. Consequently, the main updates of ALS (2.30) are done

using the compressed tensor G and factor matrices Hdc (the subscript c stands for compressed),

then the projection is done on the decompressed factor matrices Hd that represent the original

subspaces, and so on until convergence or a stopping criterion is met. The algorithm is then
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referred to as “Projected-Compressed ALS” (ProCo ALS) [27]. The rest of the section is

demonstrated for third-order tensors.

The compression is done through HOSVD as explained in Section 2.4.1:

T = G •
1
V 1 •

2
V 2 •

3
V 3 (2.33)

where {V 1,V 2,V 3} can be seen as the transitions between the decompressed and compressed

modes (or subspaces) of the tensors. After that, CP decomposition is carried out on G such

that:

G = Λ •
1
H1c •

2
H2c •

3
H3c (2.34)

Combining expressions (2.33) and (2.34), we can write:

T = Λ •
1
(V 1H1c) •

2
(V 2H2c) •

3
(V 3H3c)

= Λ •
1
H1 •

2
H2 •

3
H3

(2.35)

Algorithm 3 page 48 describes ProCo ALS in two steps, the pre-processing compression

using HOSVD, and the computation of CP decomposition in the presence of projection-based

constraints (nonnegativity).

2.4.5.4 Alternating Optimization - Alternating Direction Method of Multipliers

Alternating Optimization - Alternating Direction Method of Multipliers (AO-ADMM) was re-

cently introduced in [53] as a powerful algorithm to compute CP decomposition, and a flexible

one with constraints. Without constraints, AO-ADMM is equivalent to ALS by alternating

over the factor matrix sub-problems (from where the “AO” part comes). However, when con-

straints are imposed, each sub-problem is solved using an ADMM approach, which makes it

possible to accommodate multiple and different kinds of constraints separately for each factor

matrix, such as nonnegativity, l1-regularization (sparsity), simplex constraints, etc. In the

following, we describe the proposal and its algorithm where LS is the adopted loss criterion.

Starting with the sub-problem of a factor matrix Hd subjected to constraints r(Hd):

Hd = argmin
Hd

1

2
‖T (d) −W dH

T

d ‖
2
F + r(Hd) (2.36)

which can also be written as:

Hd = argmin
Hd

1

2
‖T (d) −W dH̃d‖

2
F + r(Hd)

s.t. H̃d = HT

d

(2.37)

Here, ADMM separates the sub-problem into two main perspectives: that of the main CP

decomposition update where H̃d is involved such that f(H̃d) =
1
2‖T (d)−W dH̃d‖

2
F , and that
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of the constraints represented by r(Hd) where Hd is involved. Accordingly, through ADMM,

expression (2.37) is separated into the following updates:































H̃d ← argmin
H̃d

f(H̃d) +
1

2
‖HT

d − H̃d +UT‖2F

Hd ← argmin
Hd

r(Hd) +
1

2
‖Hd − H̃

T

d +U‖2F

U ← U +Hd − H̃
T

d

(2.38)

where U is the dual variable that measures the closeness between H̃d and Hd at each iteration,

and ADMM iterates over the three updates until a stopping criterion is met depending on U

or the number of iterations. Since the update of H̃d has a constant expression independent

of the constraints, it becomes:

H̃d ← (W T

dW d + ρI)−1(W T

dT (d) + ρ(Hd +U)T) (2.39)

The pseudo-code of AO-ADMM is described in Algorithm 5 page 49 for one ADMM sub-

problem, and Algorithm 4 page 49 for the AO framework using the LS loss criterion.

In [75], the authors report two issues in AO-ADMM related to the algorithm requiring

matrix inversion, and its difficulty to deal with the overlapping of a simple regularization

function and a linear operator, for which the algorithm Alternating Optimization - Primal
Dual Splitting (AO-PDS) is proposed, which deals with the sub-problems using PDS

instead of ADMM. We refer to [75] for more details.

2.5 Applications in Image Analysis

This section represents an account of some applications in image analysis that involve matrix

and tensor representations, with a focus on the latter. The selected applications can be put into

different categories: (a) Hyperspectral Image Scene Classification, (b) Spectral Unmixing, (c)

Multispectral and Hyperspectral Data Fusion, (d) Hyperspectral Image Compressive Sensing

Reconstruction (HSI-CSR). In general, the selected applications deal with spectral-spatial

analysis of hyperspectral images, that is to say that the spatial information is incorporated

with the spectral information, of which two surveys can be found in [88, 107]. In the following

sections, we expand on the first three categories. As for HSI-CSR, we only refer here to the

two works using Tucker Decomposition [63] and TR decomposition [18].

Additionally, we note that CP decomposition has been considered in a real-life application

of monitoring the vitality of agriculture crops by extracting optical characteristics and spatial

structures of the leaves from images that are acquired by UAV-mounted cameras [98, 100,

101, 99]. In this application, we have been involved in the acquisition of images and partially

in the problem statement. Technically speaking, the goal is to study the inclination direction

of the leaves based on a physical relationship between the normal direction of the leaf surface,

the sunlight direction, and the spectral signature of the leaf (we refer to [100] for details on
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the physical relationship). Accordingly, the crops are considered healthy if the leaves stand

more vertical. Moreover, the images of the leaves are acquired over different time stamps,

thus we have multiple image tensors each with spectral and temporal modes, then CP or

(Lr, Lr, 1)-decomposition would be used to extract the inclination vector coordinates. In

fact, the different image tensors share some information like the direction of sunlight and the

spectral reflectance of the leaves (considering we have different photos of the same type of

crops), so we are facing a coupled CP or (Lr, Lr, 1)-decomposition problem [100, 109, 92].

At this stage, it is important to talk about some practical notes regarding the tensor

rank of image-tensors. Mainly, some applications tend to rearrange the modes of pixels in

lexicographic order. This procedure significantly drops the rank of the data set and allows

to have a low-rank decomposition especially for applications where the arrangement or posi-

tioning of pixels is not very important and the number of extracted components is preferably

low. To demonstrate why the rank drops, we give an example (see Figure 2.13) starting from

a grayscale image (i.e., an image matrix), then we consider a tensor formed from multiple

grayscale images as slices noting that the tensor rank of said tensor is lower bounded by the

highest matrix rank among its individual grayscale images.

(a) Matrix to vector (b) Tensor to matrix

Figure 2.13: Changes in the matrix and tensor ranks upon rearranging the modes of pixels.

First, a real-life grayscale image generally has a high rank due to the complicated spatial

details that appear in its representation as a matrix of real numbers, which can be seen in

the example given in Figure 2.3 of a 270 × 130 grayscale image. In this example, through

SVD, we see that reconstructing the image using a lower-rank representation requires around

R′ = 80 components (out of 130 in total) in order to maintain most of the details, which is

relatively very high. Then, if a third-order tensor is formed of multiple image slices including

such an image (e.g., a MSI or a HSI), the tensor rank must be higher than 80 since said tensor

at least contains the structures of the example image in addition to other structures found in

the other image slices. On the other hand, when the modes of pixels of a grayscale image are

rearranged, we obtain a vector representation, which is rank-1 (Figure 2.13a). Then, in the

case of a third-order MSI or HSI for instance, we obtain a matrix whose rank is lower than the

minimum of the two dimensions, which is essentially that of the spectral mode (Figure 2.13b).

Moreover, the spectral mode is often very correlated, so the rank of such a matrix would be

very low as can be seen in the example given in Figure 2.4, where the spectral feature space
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dropped from 103 to 4 using PCA. Figure 2.13 gives an example of the drop in the rank using

the dimensions of the HSI of Pavia University.

2.5.1 Image Classification

Hyperspectral imagery refers to the acquisition of images of a scene over a wide and almost

continuous spectrum, amounting to hundreds of spectral bands, to form at the end what is

called a hypercube [87]. Hyperspectral imagery is a tool employed in many fields of applica-

tions such as remote sensing, monitoring Earth resources, planetary observation, biomedical

imagery, non destructive testing, minearology, etc [3, 54, 1, 72, 77, 2, 45]. Due to its significance

of exploring the spectral properties of a spatial setting, hyperspectral imagery has become a

wide area of research with a lot of explored and potential usages, and image classification of

the scene is one of its most common.

At its core, image classification is the problem of assigning each pixel in the image a

semantic label, which at the end allows the identification of materials in the scene into recog-

nisable properties or classes, which can be shown distinctively in a classification map (Figure

2.14). This kind of procedure is called pixel-wise classification, a scenario where generally two

main variables are required: the pixels as samples to be classified, and the distinctive features

(e.g., spectral response or neighborhood information) as characteristics to be classified upon.

Moreover, the samples-to-features relationship can be described in a matrix form. Usually,

approaching image classification using matrix or tensor decomposition comes in the form of

dimensionality reduction (DR) of the feature space with PCA at the core of it.

2.5.1.1 Matrix-based and other techniques

Naturally a HSI acquires the spectral features of the scenes, mapping each pixel position,

represented by a couple of positive integers (x, y), to a vector of positive real values that

correspond to the material’s spectral response measured by the sensor, resulting in a structure

that is often represented as a data cube of third-order. When the pixels are rearranged in

lexicographic order as samples, the spectral mode can then represent the set of features,

making it a direct way to classify a HSI. However, due to the high spectral resolution of HSIs,

pixels are considered to be in a very high dimensional feature space, which calls for DR. One

conventional way to solve the problem of dimensionality is through PCA [55], then the matrix

with reduced feature space is passed to the classifier [83].

In fact, HSI acquisition may contain mixed pixels, presenting challenges in acquiring the

exact spectral features of the pixels and limiting the classification accuracy. As a result, the

classification map may look noisy. Moreover, thanks to the advancement in optical sensor

technology, spatial information surrounding the pixels is becoming more relevant especially

when it comes to identifying relatively small objects. For this reason, it has become an

important topic to incorporate spatial information extracted from the pixel’s neighborhood in

the classification, such that each pixel has features based on both spatial and spectral data
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[8, 43].

Classifying images based on spatial and spectral features is called spectral-spatial classifi-

cation. Many of such works rely on tools in the context of Mathematical Morphology (MM)

[85, 86, 73], which is one of the most popular ways to account to spatial information. Figure

2.14 shows an illustration of classical spatial-spectral classification using MM. Tools in MM

incorporate spatial information of the pixel’s neighborhood, obtained directly using successive

morphological transformations of an image, and stacks them as pixel-wise spatial features. Ex-

amples of popular spatial features based on MM are the Morphological Profiles (MP) [7, 6, 97]

and Attribute Profiles (AP) [31, 33, 4] depending on the type of morphological transforma-

tions that are carried out. For multivariate images (as in the case of HSIs), such profiles

are called Extended MP (EMP) and Extended AP (EAP), generally known to be computed

using one of two strategies; the conventional marginal strategy where the profiles of the single

grayscale image slices are computed separately then stacked in one way [6, 33], and the vec-

torial processing strategy where the extended profile is computed by processing the different

image slices simultaneously [4]. If multiple kinds of attributes are considered at once, the

structure is referred to as Extended Multi-Attribute Profiles (EMAP) [31]. It is worth noting

here that HSI classification techniques that are purely defined in MM may end up in a very

high-dimensional feature space caused by the stacking of spectral and spatial features along

the same way, so they are usually combined with DR techniques (such as PCA) in the form

of pre-processing and, in some cases, post-processing [71].

Figure 2.14: Flow chart of classical approaches for image classification incorporating mathe-

matical morphology

While not related to matrices, and in the context of spectral-spatial classification, some

works approach the problem of classification using Composite Kernel methods [17], by ex-

tracting spectral and spatial features and separately learning them through what would be

a spectral kernel and a spatial one. Other works include contextual extraction and label-

ing through Markov Random Fields [96]. Finally, many works have been developed based on

deep learning methods [20, 19], where principal spectral information and spatial neighborhood

patches around the pixels are distributed, processed, and learned over different deep neural

network architectures (e.g., Applying Encoder and Convolutional Neural Networks). Usually,

deep learning methods provide very high and significant performances.
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One issue regarding the mentioned methods is that, even though they prove to improve

significantly on HSI feature classification with respect to classification of only spectral features,

they either tend to treat the different kinds of features as one entity such as stacking spectral

and spatial features as one, or they provide separate treatment of the features but do not take

into account exploring the natural high-order properties and relationships among the modes

of the tensors that could be obtained. As mentioned earlier in this chapter, tensors can show

interesting relationships between the modes, including those among the features themselves,

and these relationships are lost otherwise.

2.5.1.2 Tensor Techniques

Tensor analysis has been increasing in popularity recently especially for applications that deal

with such multi-modal data [105, 102, 109], and it is still under development. By keeping the

features separated in different modes (into what we would call a higher-order arrangement of

the features compared to when they are stacked along the same mode), the ordering of the data

and the intrinsic connections are respected, which is dealt with through tensor decomposition.

The first work in terms of tensor modeling of HSIs for the sake of supervised classification

is [105], but especially recently, the application has been visited a few times [56, 58, 48, 57, 44].

In [105], a so-called Tensor-PCA (TPCA) is used as a tensor extension of PCA following the

concept of HOSVD. First, the tensor is built by adding a fourth-mode in the HSI using MM

through Additive Morphological Decomposition (AMD) (see Section 4.2.3.2), then the first

two modes of pixels are rearranged as one. Second, TPCA is used for post-processing DR of

each of the feature modes in a similar fashion to the rough description of HOSVD visualized in

figure 2.7. However, when it comes to the classification phase, it still boils down to rearranging

the data (i.e., the compressed tensor) into matrix form and merging the feature modes.

In order to avoid breaking the tensor structure at the classification phase, our works

[56, 58, 57] were proposed to approach the problem differently using CP decomposition. The

main difference is that CP decomposition directly provides a samples-to-features matrix ready

to be classified upon, which is the first factor matrix, regardless of how many feature diversities

the tensor has. Accordingly, each row of the matrix represents a pixel, and the columns

represent the new extracted features that are defined by the patterns found in the other factor

matrices. This work is a contribution which we present in further details in Chapter 4.

On another note, [48] approaches spatial-spectral classification by mixing many techniques

distributed on several stages, of which CP decomposition plays a role in extracting rank-1

spectral and spatial features. The study also includes MM, kernel learning of the extracted

features, and Support Vector Machines. This work produces significantly good results, but

the procedure can be long and complex, so we refer to [48] for full details.

Interestingly, some links are being developed recently between tensor representations and

machine learning [90, 66]. In the context of hyperspectral image analysis, the work of [70]

proposes a Rank-R Feedforward Neural Network model for hyperspectral data analysis whose

weights follow the property of rank-R CP decomposition. The advantages of this work are (a)
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learning the data in multi-modal format where the weights follow a Rank-R CP decomposition

property, and (b) the significant reduction in the model parameters for training thanks to this

property.

2.5.2 Spectral Unmixing

One of the important advantages of HSI acquisition is to understand the spectral composition

of the materials in the scene. In the process of acquisition, each pixel represents a spectral

reflectance vector that reflects the physical properties of that pixel area according to the

spectral range of the hyperspectral sensor. As such, some pixel areas cover one type of physical

material, thus referred to as “pure pixels”, while others may cover more than one material, thus

referred to as “mixed pixels”. Thanks to the availability of spectral dictionaries that define the

spectral signatures of some pure materials, it is possible to study the spectral composition of

each pixel in the scene in terms of pure materials. This application is called spectral unmixing

(SU), which normally refers to the BSS of HSI data into a set of endmebembers (spectral

signatures of pure materials) and fractional abundances (the proportions of endmembers in

each pixel) [10] based on the spectral features that are present in the image. Figure 2.15 shows

an example of a HSI with pure and mixed pixels and some elements of a SU of an urban scene.

There are many ways to approach SU problems [10], but here we focus on approaches

related to the Linear Mixing Model (LMM) with matrix and tensor decomposition involved.

Furthermore, many SU works tend to incorporate spatial information in them whether as

pre-processing, post-processing, or as part of the unmixing, and such a survey is found in

[107].

Figure 2.15: The elements of spectral unmixing. Endmembers and corresponding abundance

maps are extracted from a hyperspectral image.

2.5.2.1 Matrix Techniques

LMM is one of the most popular ways to model SU problems [64]. For a HSI matrix M

formed of I pixels (as rows) and J spectral bands (as columns), LMM assumes that each pixel
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row mi ∀ i ∈ {1, . . . , I} can be expressed as the linear combination of R endmembers br:

mi =

R
∑

r=1

airbr (2.40)

such that all the values are nonnegative and
∑R

r=1 air = 1 ∀ i ∈ {1, . . . , I}, where the values

of air stand for the fractional abundances of the endmembers. This model is rearranged into

a NMF problem in the form of M = ABT subjected to the mentioned constraints. Corre-

spondingly, SU can be carried out by finding the two nonnegative matrices A ∈ R
I×R, whose

rows represent the fractional abundances at each pixel, and B ∈ R
J×R, whose columns rep-

resent the extracted endmembers. Nonnegativity of the factors ensures a part-based additive

representation since fractional abundances and spectral signatures are nonnegative, and the

condition
∑R

r=1 air = 1 is called the Abundance Sum-to-one Constraint (ASC), which ensures

that the endmember composition sums to one for each pixel so that the pixels lie inside a

simplex formed by the endmembers.

In general, NMF-based approaches for LMM have some problems. For instance, solution

uniqueness is not guaranteed since the space of solutions may be large, and the fractional

abundances may not represent a good estimation of the mixtures. For that, many constrained

extensions of NMF were proposed in order to reduce the space of solutions such as [111,

82, 115, 110, 74]. Among the constrained extensions of NMF, sparsity constraints play a very

important role in SU [111, 82, 115]. Physically speaking, it is assumed that a pixel is a mixture

of only a few of the extracted endmembers, and sparsity controls the fractional abundances

to reflect this assumption. Moreover, sparsity promotes solution uniqueness in the presence

of nonnegative constraints. In [111, 82], some sparseness measures are proposed. In [115],

a structured sparse method is proposed by utilizing spatial information in a graph scheme,

where each pixel is represented as a node, and the similarity measure between adjacent pixels

depends on their spectral signatures.

Spectral unmixing has also been carried out in the framework of MSI and HSI data fusion

using Coupled NMF (CNMF) [113]. CNMF unmixes the data through alternating NMF

between the HSI (high spectral resolution) and MSI (high spatial resolution) in order to

extract the spectral signatures and the high-resolution abundance maps respectively, which

enhances the quality of the unmixed components.

In fact, while LMM is seen as a direct linear model for SU, it is considered practically

insufficient in cases where the HSI contain spectral variabilities in the form of illumination

conditions or nonlinear effects. For that, Extended LMM (ELMM) [39] was proposed by

introducing a pixel-dependent function f i : RJ → R
J , which maps each endmember br to

another spectral signature b
(i)
r that best reflects the targeted variabilities:

mi =

R
∑

r=1

airf i(br) =

R
∑

r=1

airb
(i)
r . (2.41)

Dealing with spectral variability in SU using ELMM is an active topic that has seen a lot of

progress [104, 42, 40, 41, 103], and we talk about it in more details in Chapter 5. Currently,
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the approaches can be put in three categories based on how the spectral variability function is

modeled [39]: (a) Spectral Bundles, (b) Computational Models, and (c) Parametric Models.

These models are usually incorporated in a constrained matrix and tensor decomposition

framework.

2.5.2.2 Tensor Approaches

However, recent SU works proposed to represent the HSI data as tensors, where NMF is

insufficient to model the problem. In general, these works can be put in two categories:

• Those where the HSI is unmixed in its third-order form (without rearranging the modes

of pixels) such as the work of super-resolution [61] and that of spatial smoothing [108].

In this category, information of spatial positioning are important, which is ignored when

the pixel modes are rearranged to fit a matrix-based model.

• Those where the HSI is essentially high-order even after rearranging the pixel modes,

i.e., where a pixel holds more than just the spectral diversity and where decomposing

the extra diversities is relevant, such as the work of HSI in time-series [102], that of

patch-HSI [103], and that of multi-feature unmixing [Chapter 5, unpublished yet]. In

this category, an important advantage is having a low-rank decomposition.

Starting with the first category, in [61], a SRI is unmixed through a coupled CP decom-

position that alternates beween a MSI and a HSI without rearranging the pixel modes (as

an extension of CNMF that does not ignore the spatial positioning of the pixels). This work

benefits from conserving the structure of the data and guaranteeing identifiability, but it has

some issues related to the tensor rank assumption (see Section 2.5.3).

In [108], smoothness is imposed on the spatial modes of the image, which would be very

difficult to do if the pixel modes are rearranged. We also note that this work uses (Lr, Lr, 1)-

decomposition for SU, which means that the high-rankness of the tensor can be absorbed in

the partitions Ar and Br, while R remains relatively low.

As for the second category, in [102], tensor-based SU using CP decomposition is first

introduced, where the goal is to extract the spectral signatures and their abundances from

HSI in time series. The tensor is then formed of three modes: pixels, spectral bands, and

time stamps. In addition to the low-rankness, having time features guarantees uniqueness in

addition to observing temporal patterns of the extracted materials.

In [103], a new mode is built by stacking relatively small neighborhood patches at the

level of each pixel in an attempt to impose a neighborhood-based spatial regularization on the

abundances while maintaining a low-rank CP decomposition. Moreover, the model resembles

a regulated version of ELMM (RegELMM) that we describe in more details in Chapter 5.

In Chapter 5, we propose a general study and define a common framework for multi-feature

hyperspectral unmixing using CP decomposition that extends the works of [102, 103, 56, 58, 57]
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and emphasizes on the importance of considering artificially constructed diversities, such as

MM, in the process of unmixing. At its core, we focus on the relationship of RegELMM

that is described in [103] and develop over its properties using physical, graphical, and visual

analysis and comparisons, and we are interested in exploring additional diversities obtained

through sequential filtering of the HSI. In particular, this allows to have a relatively low-rank

decomposition that is unique as explained for the second category, deals with the problem of

spectral variability by considering objects that contain pixels connected by similar spectral and

morphological properties (smoothing the variabilities between close spectral-spatial structures

in the data) instead of patches that can contain pixels of different materials, and jointly

extracts materials along with their spectral-morphological multi-feature patterns. Moreover,

when we are not interested in the natural evolution of the materials (such as time-series), it

can be enough to acquire one HSI of the scene to have a unique CP decomposition.

2.5.3 MSI and HSI Super-Resolution Data Fusion

In general, multispectral imaging sensors have high spatial resolution and low spectral one,

while hyperspectral imaging sensors have low spatial resolution and high spectral one. Hyper-

spectral super-resolution aims at finding a super-resolution image (SRI) through a data fusion

between a MSI and a HSI in order to improve the spatial resolution of HSI. A comparative

review of some state-of-the-art methods can be found in [112]. As presented in [112], many

methods have been proposed to solve this problem in the framework of matrix factorization

such as the work of CNMF [113] that is briefly described in Section 2.5.2.1. Moreover, the

same problem has been approached recently using CP decomposition and Tucker [61, 79].

In general, it is assumed that the MSI is a spectrally degraded version of the SRI, while the

HSI is a spatially degraded one, by means of a set of matrices that are seen as the degradation

factors. In the following we describe the case of CNMF, then we talk about that of CP

decomposition and Tucker.

2.5.3.1 Matrix Case

We denote the matricized versions of the third-order MSI, HSI, and SRI by M , H, and S

respectively, where their first modes represent the pixels and the second ones represent the

spectral bands. We also assume that the matrices are decomposed through NMF such that

M = AMBT

M , H = AHBT

H , and S = AMBT

H , where AM and AH represent the fractional

abundances, and BM and BH represent the spectral signatures. Regarding the degradation

factors, we assume a degradation matrix (spatial-wise) X such that H = XS, and another

one (spectral-wise) Y such that M = SY T. Figure 2.16 shows an illustration of the elements

of this approach.
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Figure 2.16: The elements of data fusion between a MSI (M) and a HSI (H) in order to

obtain a SRI (S). The figure is inspired by the one used in [113].

2.5.3.2 Tensor Case

Recently, two works were proposed using tensor decomposition in order to take advantage of

the natural third-order structure of the data for more accurate results [61, 79]. The main

difference between works that are based on matrix factorization and those that are based on

tensor decomposition is that in the latter, we have three degradation factors, one for each of

the modes.

The work of [61] proposes to solve the problem using CP decomposition. In addition to

processing the images in their natural third-order forms, CP decomposition guarantees the

identifiability of the SRI. However, this work assumes that the SRI admits a low-rank CP

decomposition, which can be a risky assumption because such tensors naturally have very

high tensor ranks.

In order to deal with the problem of low-rankness assumption, a Tucker HOSVD-based

approach is proposed [79], which assumes that the tensor has a low multi-linear rank, especially

from the perspective of the spectral-mode unfolding (i.e., SVD(T (3)); for a tensor T whose

third mode represents the spectra). Even though the Tucker model is not generally identifiable,

the SRI is proved to be identifiable for a range of multi-linear ranks.

2.6 Concluding Remarks

Through this chapter, we provided descriptions and references in the literature for matrix

and tensor decomposition techniques that are relevant to image analysis, for anyone who is

interested in the subject, especially that it has potential to grow. We started with some
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basic definitions, described the different matrix and tensor decompositions and their proper-

ties (ranks, uniqueness, algorithms), then gave an account on different applications of image

analysis where tensor decomposition was involved.

In the following chapters, we talk about the contributions of this thesis. The first one is

rather algorithmic (Chapter 3), while the others are more application-oriented. Moreover, the

focus is going to shift rather to CP decomposition and hyperspectral imagery as the former

was the main tool that was used in the contributions and the latter was the main subject of

interest in the applications.

Algorithm 2 Nonnegative Alternating Least Squares (NALS)

Require: T , initialize H
(0)
2 , initialize H

(0)
3

t = 0;

while Stopping criterion is not met, do
t← t+ 1

Update the factor matrices:

H
(t)
1 ← T (1)

[

(H
(t−1)
3 ⊙H

(t−1)
2 )T

]†
;

H
(t)
1 ← max(0,H

(t)
1 )

H
(t)
2 ← T (2)

[

(H
(t−1)
3 ⊙H

(t)
1 )T

]†
;

H
(t)
2 ← max(0,H

(t)
2 )

H
(t)
3 ← T (3)

[

(H
(t)
2 ⊙H

(t)
1 )T

]†
;

H
(t)
3 ← max(0,H

(t)
3 )

Let H
(t)
3 absorb the column-normalization factors of H

(t)
1 and H

(t)
2 :

H
(t)
1 ←H

(t)
1 Λ

−1
H1

;

H
(t)
2 ←H

(t)
2 Λ

−1
H2

;

H
(t)
3 ←H

(t)
3 ΛH1ΛH2 ;

end while
Normalize the columns of H

(t)
3 : H

(t)
3 ←H

(t)
3 Λ

−1
H3

Reshape the product ΛH1ΛH2ΛH3 into a third-order diagonal tensor Λ

return H
(t)
1 , H

(t)
2 , H

(t)
3 , Λ
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Algorithm 3 ProCo ALS

Require: T , dimc, initialize H
(0)
2 , initialize H

(0)
3

Step 1 - Compress T :

for d ∈ {1, 2, 3} do
Compute V d from the SVD of the d-mode unfolding of T such that T (d) = UdΣdV d;

V d ← Take out the last dimc(d) columns of V d;

end for
G = T •1 V

T

1 •2 V
T

2 •3 V
T

3 ;

H
(0)
2c
← V T

2H
(0)
2 ;

H
(0)
3c
← V T

3H
(0)
3 ;

—

Step 2 - Compute CP decomposition with constraints:

repeat
for d ∈ {1, 2, 3} do
W d = ⊙j 6=dHjc ;

Hdc ← G(d)

(

W T

d

)†
; (Factor update)

Hd ← V dHdc ; (Decompression)

Hd ← max(0,Hd); (Projection)

Hdc ← V T

dHd; (Compression)

end for
Let H3c absorb the column-normalization factors of H1c and H2c :

H1c ←H1cΛ
−1
H1c

;

H2c ←H2cΛ
−1
H2c

;

H3c ←H3cΛH1c
ΛH2c

;

until A stopping criterion is met.

Normalize the columns of H3c : H3c ←H3cΛ
−1
H3c

Reshape the product ΛH1c
ΛH2c

ΛH3c
into a third-order diagonal tensor Λ

return Λ, H1 = V 1H1c , H2 = V 2H2c , H3 = V 3H3c



2.6. Concluding Remarks 49

Algorithm 4 Alternating Optimization (Least Squares loss)

Require: T , H1,H2,H3, U1,U2,U3

Initialize {H1,H2,H3};

Initialize {U1,U2,U3} to zero matrices;

for d ∈ {1, 2, 3} do
Store the d-mode unfolding T (d);

end for
repeat

for d ∈ {1, 2, 3} do
W d = ⊙j 6=dHj ;

Update Hd and Ud using Algorithm 5;

end for
Update µ if necessary; (refer to [53] for the update of µ)

until A termination criterion is reached (number of iterations)

Normalize the columns of the factor matrices and store the weights in Λ;

return Λ, H1, H2, H3

Algorithm 5 ADMM of a fixed mode d

Require: T , W , H, U , R, µ, ǫ, imax

G = W TW ;

ρ = trace(G)/R;

Calculate L from Cholesky decomposition such that: G+ (ρ+ µ)Ik = LLT;

F = W TT ;

Hf = H;

repeat
H̃ ← (LT)−1L−1(F + ρ(H +U)T + µHf

T); (See [53] for µ and Hf )

H ← argminH r(H) + 1
2‖H − H̃

T

+U‖2F ;

U ← U +H − H̃
T

;

Update r and s; (refer to [53] for the updates of r and s)

until (r < ǫ and (s is undefined or s < ǫ)) or (imax > 0 and i ≥ imax)

return H and U
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3.1 Introduction

Tensor decompositions are still in the process of study and development. In this chapter, we

talk about an algorithmic contribution of this thesis [60], in which we point out a problem

existing in nonnegative tensor decompositions, stemming from the representation of decom-

posable tensors by outer products of vectors, and propose approaches to solve it. In fact, a

scaling indeterminacy appears whereas it is not inherent in the decomposition, and the choice

of scaling factors has an impact during the execution of iterative algorithms and should not

be overlooked. Computer experiments support the interest in the greedy algorithm proposed,

in the case of the CP decomposition.

Here, we refer to the introduction of tensors in Section 2.4. In particular, we shall focus

our attention on the CP decomposition of third-order tensors and the ALS algorithm, which

have been described in Sections 2.4.2 and 2.4.5. As for the rest of this chapter, Section 3.2

states our motivation. Section 3.3 shows the proposed approach. In Section 3.4, we show a

toy example of the problem and how it can be solved with the proposed approach. After that,

we discuss the computer results in Section 3.5. Finally, we draw some concluding remarks.
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3.2 Motivation

Nonnegativity. As explained in Section 2.4.2.3, when the observation tensor T contains

only real nonnegative entries, it is suitable to impose decomposable tensors Dr to also be

nonnegative, which is important for applications in image analysis. By doing this, we denote

the nonnegative rank by R+, which may be larger than R. It is thus necessary for the rest of

the chapter to denote the nonnegative CP decomposition of a nonnegative tensor as:

T =
R+
∑

r=1

λr ar ⊗ br ⊗ cr, (3.1)

where air ∈ R
+, bjr ∈ R

+ and ckr ∈ R
+, ∀(i, j, k, r). It is also important to recall that,

given any real tensor T of rank R, it is fortunately always possible to find a best nonnegative

approximation of T of given nonnegative rank R+ [69, 81].

Projection onto the nonnegative orthant: In the NCP decomposition (3.1), all quan-

tities are nonnegative. In iterative algorithms such as NALS [25] and ProCo ALS [27], this

constraint is ensured at each iteration by projecting a computed value onto the nonnega-

tive orthant (as explained in Sections 2.4.5.2 and 2.4.5.3). This is where the problem of

projection-induced erroneous computations shows up. In fact, projecting Dr or its building

vectors {ar, br, cr} do not yield the same result. Since this observation is already true for

matrices, a simple example will be most convincing.

Example. Take a matrix H below, of rank 1. Now its projection H+ = max(0,H) has

rank 2. So it is preferred to project its supporting vectors {a, b} instead. The obtained

vectors are {a+, b+} and yield a matrix of nonnegative rank equal to 1:

H =

(

4 −2

−2 1

)

=

(

2

−1

)

⊗

(

2

−1

)

= a⊗ b,

H+ =

(

4 0

0 1

)

, whereas a+ ⊗ b+ =

(

4 0

0 0

)

.

The problem is that vectors {a, b} are not uniquely defined. We could have taken

{−a,−b} without changing H. Should we do that, we obtain instead:

H =

(

4 −2

−2 1

)

=

(

−2

1

)

⊗

(

−2

1

)

= a⊗ b,

H+ =

(

4 0

0 1

)

, whereas a+ ⊗ b+ =

(

0 0

0 1

)

.

We see that the projected matrix of nonnegative rank 1 is not the same. This issue comes

from the fact that no care has been taken of the scaling indeterminacies (which reduce to

sign indeterminacies thanks to the use of factors λr) inherent in the representation of a

rank-1 tensor by a triplet of vectors.
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NALS. Among the procedures that resort to projection, hard thresholding is the procedure

in which it is the easiest to illustrate the occurring of the problem. One simple algorithm that

has been widely used to compute NCP decomposition is the NALS algorithm [25, p.47], which

is explained in Section 2.4.5.2. NALS minimizes the following cost function Φ with respect to

the nonnegative factor matrices A, B, and C in an alternating fasion:

Φ =
∑

ijk

(tijk −
R
∑

r=1

λr air bjr ckr)
2. (3.2)

where each factor matrix can be projected onto the nonnegative orthant right after its update

at each iteration. The pseudo-code is given in Algorithm 2 page 47.

3.3 Proposed Approach

We illustrate the problem with hard thresholding (cf. Section 3.4), but our solution could

also reveal useful in soft thresholding as well. The problem is worse when all entries in a

column vector are set to zero; this prevents its normalization (as it would lead to a division

by zero) or imposes an erroneous reduction of the rank (due to the arbitrary removal of the

null columns). The solution we describe overcomes these two difficulties most of the time, up

to negligible extraneous computation load. We propose to implement this in a procedure to

be executed before projection. The concept goes as follows. Because of normalization, the

scaling indeterminacy in ar ⊗ br ⊗ cr reduces merely to signs. In fact, in every decomposable

tensor Dr, we have two variables, ǫ, η ∈ {−1,+1}, which are to be used as sign flippers for the

columns ar, br and cr that are together involved in an outer product term, without changing

the result of the outer product given by:

Dr = ar ⊗ br ⊗ cr = (ǫ η ar)⊗ (ǫ br)⊗ (η cr) = a′
r ⊗ b′r ⊗ c′r

∀(ǫ, η) ∈ {−1,+1}.
(3.3)

Expression (3.3) covers all 4 combinations of sign flipping of vectors, without affecting the

result of the original outer product. Now denote by a′
r = ǫ η ar, b

′
r = ǫ br, and c′r = η cr, and:











a−
r = max(0,−ar), a+

r = max(0,ar)

b−r = max(0,−br), b+r = max(0, br)

c−r = max(0,−cr), c+r = max(0, cr)

(3.4)

In particular, a+
r − a−

r = ar.

Given a triplet of vectors, {a, b, c}, there are 4 possibilities to construct a nonnegative

decomposable tensor D[ℓ] ∀ ℓ ∈ {1, 2, 3, 4} by just flipping their signs (the values of ǫ and η)

without changing the result of the outer product a⊗ b⊗ c and by setting negative values to

zero in {a′, b′, c′} (refer to Table 3.1).
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(ǫ,η) (+1,+1) (−1,−1) (+1,−1) (−1,+1)

ℓ 1 2 3 4

D[ℓ] D[1] = D[2] = D[3] = D[4] =

a+ ⊗ b+ ⊗ c+ a+ ⊗ b− ⊗ c− a− ⊗ b+ ⊗ c− a− ⊗ b− ⊗ c+

Table 3.1: The 4 possibilities created by sign flipping. For the sake of convenience, a+ here

stands for vector (a[ℓ])+ = max(0,a[ℓ]), and a− stands for vector (a[ℓ])− = max(0,−a[ℓ])

which applies similarly for b+, b−, c+ and c−.

We are interested to know which combination would yield the minimal number of resets.

Ultimately, we are concerned about (a) avoiding to set a whole vector to zero, which would

lead to decrease the rank. This goal can mean “set as few entries to zero as possible”. And

we also aim at (b) minimizing the distance between the original tensor and its nonnegative

approximation.

We explored several criteria. The first is to minimize the cost function:

Φ0(ℓ) = ‖T −
∑

r

D[ℓ]
r ‖

2
F (3.5)

This criterion is very costly to optimize, due to the large number of combinations. In fact, for

every r, there are four possibilities to assign (ǫ, η), and this assignment can be different for

each r. This would result in 4R possibilities to explore. This is why we propose two greedy

algorithms searching for the optimal solution D
[ℓ]
r independently for every r. One possibility

is to minimize with respect to ℓ the following product for every r independently, and for

the L2 norm:

Φ1(ℓ, r) = ‖Dr −D[ℓ]
r ‖

2
F . (3.6)

Let us express this criterion for ℓ = 1, without loss of generality. For any fixed r, we have:

Φ1(1, r) = ‖Dr‖
2
F + ‖D[1]

r ‖
2
F − 2

∑

ijk

aira
+
irbjrb

+
jrckrc

+
kr. (3.7)

The last term can be rewritten as 2 (aT
r a

+
r )(b

T

r b
+
r )(c

T
r c

+
r ). Next, it is also equal to

2 ‖a+
r ‖

2
F ‖b

+
r ‖

2
F ‖c

+
r ‖

2
F , since a+

r and a−
r are orthogonal and ar = a+

r − a−
r . This suggests

another criterion to minimize w.r.t. ℓ:

Φ2(ℓ, r) = ‖a
−
r ‖

2
F · ‖b

−
r ‖

2
F · ‖c

−
r ‖

2
F (3.8)

Criteria Φ1 and Φ2 are easy to optimize with respect to (ǫ, η), i.e with respect to ℓ, and need

negligible extraneous computation load. Algorithm 6 describes the pseudo-code of minimizing

Φ1, and Algorithm 7 describes the modification in NALS (Modified NALS), which can be

compared to NALS in Algorithm 2 page 47.
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Algorithm 6 Minimization of Φ1 w.r.t. to ǫ and η for fixed r

Require: ar, br, cr (all real-valued)

initialize ǫ(ℓ) and η(ℓ) for each possible D[ℓ]; (according to Table 3.1)

normalize: a← ar

‖ar‖
; b← br

‖br‖
; c← cr

‖cr‖
;

compute D = a⊗ b⊗ c;

ℓ = 0;

while ℓ ≤ 4, do
ℓ = ℓ+ 1;

compute D[ℓ] based on Table 3.1;

Φ1(ℓ)← ‖D −D[ℓ]‖2F ;

end while
Find ℓo = argminℓΦ1(ℓ);

ar ← ǫ(ℓo) η(ℓo)ar; br ← ǫ(ℓo) br; cr ← η(ℓo) cr;

return ar, br, cr;

3.4 Toy Example

In the following, we show a toy example of a third-order rank-2 tensor CP decomposition where

the problem occurs (Section 3.4.1), and how the proposed approach deals with it (Section

3.4.2). Consider the following factor matrices from which the simulated data tensor is formed,

i.e. T = (A,B,C) ·Λ:

A =





0.8025 0.1914

0.0089 0.9106

0.5966 0.3662



 , B =

[

0.0088 0.7495

1 0.6620

]

, C =















0 0

0 1

0 0

0.7071 0

0.7071 0















.

This case guarantees uniqueness, so decomposing T using rank R = 2 should give back the

same matrices. When computing the CP Decomposition with Algorithm 2, after one update

of A, one of its columns becomes negative, and hence that column gets discarded at the end

as being “Undefined”, and the rank of the approximation is decreased by 1 even though, prior

to that, the rank would be exact. Note that, for the sake of conciseness, during the loop of

updates, only the columns of A and B are normalized and their norms are absorbed in the

columns of C; after the loop ends, C is normalized and its column norms (containing those

of A and B) form the values of Λ (see Algorithm 2).

3.4.1 Standard NALS

A :





0.2311 −0.0464

0.1891 −0.0627

0.2178 −0.0498



→





0.2311 0

0.1891 0

0.2178 0



→





0.6252 Undefined

0.5118 Undefined

0.5893 Undefined



→





0.6252

0.5118

0.5893
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Algorithm 7 Modified NALS

Require: T , initialize B(0), initialize C(0)

t = 0;

while Stopping criterion is not met, do
t← t+ 1

A(t) ← T (1)

[

(C(t−1) ⊙B(t−1))T
]†

;

B(t) ← T (2)

[

(C(t−1) ⊙A(t))T
]†

;

C(t) ← T (3)

[

(B(t) ⊙A(t))T
]†

;

r = 0;

while r < R do
Update ar, br, and cr using Algorithm 6;

r ← r + 1;

end while
A(t) ← max(0,A(t)); B(t) ← max(0,B(t)); C(t) ← max(0,C(t));

Let C(t) absorb the column-normalization factors of A(t) and B(t):

A(t) ← A(t)
Λ

−1
A ; B(t) ← B(t)

Λ
−1
B ; C(t) ← C(t)

ΛAΛB;

end while
Normalize the columns of C(t): C(t) ← C(t)

Λ
−1
C

return A(t), B(t), C(t), Λ

B :

[

0.2962 0

1.0561 0

]

→

[

0.2962 0

1.0561 0

]

→

[

0.2701 Undefined

0.9628 Undefined

]

→

[

0.2701

0.9628

]

C :















0 0

0.4978 0

0 0

1.3779 0

1.3779 0















→















0 0

0.4978 0

0 0

1.3779 0

1.3779 0















→















0 0

0.2018 0

0 0

0.5585 0

0.5585 0















→















0

0.2018

0

0.5585

0.5585















At the end the output of Standard NALS results in the following approximated matrices

with a high RMSE:

A =





0.8004

0.0249

0.5990



 ;B =

[

0.0165

0.9999

]

;C =















0

0.0835

0

0.7046

0.7046
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3.4.2 Modified NALS

A :





0.2311 −0.0464

0.1891 −0.0627

0.2178 −0.0498



→





0.2311 0.0464

0.1891 0.0627

0.2178 0.0498



→





0.6252 0.5015

0.5118 0.6772

0.5893 0.5384





B :

[

0.3420 0.4425

1.1203 0.6211

]

→

[

0.3420 0.4425

1.1203 0.6211

]

→

[

0.2919 0.5802

0.9564 0.8145

]

C :















0 0

−0.4978 −7.6392

0 0

2.9691 11.1635

2.9691 11.1635















→















0 0

0 7.6392

0 0

2.9691 0

2.9691 0















→















0 0

0 0.5392

0 0

1.2853 0

1.2853 0















At the end the output of Modified NALS results in the following approximated matrices

with zero error:

A =





0.8025 0.1914

0.0089 0.9106

0.5966 0.3662



 ;B =

[

0.0088 0.7495

1 0.6620

]

;C =















0 0

0 1

0 0

0.7071 0

0.7071 0















3.5 Computer Results

Here, we demonstrate the performance of the proposed algorithm. First, 500 realizations of

10 × 5 nonnegative matrices {A,B,C} are drawn. The rank of the tensor that is tested

is hence R = 5. Entries of factor matrices are the absolute value of i.i.d (independent and

identically distributed) drawn from a standard Gaussian distribution. On each realization,

both standard NALS and a modified version based on the minimization of Φ1 are run.

As can be seen in Figure 3.1a, 107 realizations out of 500 are unsuccessful using standard

NALS, that is, 107 realizations generate at least one fully negative column in a factor matrix

which is then zeroed due to hard thresholding. This eventually leads to a decrease of the rank

down to 4 or less and hence to a large reconstruction error in Φ0 (close to 10−1). Among

those 107 pathological cases, our simple function described by Algorithm 6 could cope with 92

of them (Figure 3.1b) without a significant increase in complexity. However, 15 realizations

remain unsolved because they correspond to either one of two particular cases: (a) either one

column, say aro , is fully negative, and the two others, namely bro and cro are fully positive,

or (b) all the three columns are fully negative.

In order to cope with the latter particular cases, a straightforward improvement was

brought in Algorithm 7 page 56, by drawing a fresh column vector (also as the absolute
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(a) Standard NALS

(b) Modified NALS

(c) Modified NALS with column re-initialization

Figure 3.1: Histograms of the error, in log10 scale, obtained after 500 iterations. Top: Standard

NALS. Middle: Modified NALS with cost function Φ1. Bottom: NALS Modified with cost

function Φ1 and with column re-initialization.

value of i.i.d drawn from a standard Gaussian distribution) to replace null vectors when gen-

erated in either one of the two unsolved pathological cases, before normalizing the columns.

Figure 3.1c shows that all the 15 remaining cases were solved and the rank was preserved.

Finally, the progress of the reconstruction error per iteration in log10 scale for each of

the three cases can be seen in Figure 3.2. Here, we can see that the plots of Standard and

Modified NALS (in blue and red), where some columns in the factor matrices got discarded
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In fact, the problem appeared in the first place while applying NCP decomposition on tensors

containing image data. In the following two chapters, we talk about two contributions that

are directly involved in applications of image analysis.
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Abstract

In Section 2.5.1, an overview of spectral-spatial scene classification was given with

the use of Mathematical Morphology. In this chapter, this topic is explored through

tensor representations and Canonical Polyadic (CP) decomposition. For instance,

a HSI is a third-order data block, and building new spatial diversities may increase

this order. In many cases, since pixel-wise classification requires a matrix of pixels

and features, HSI data are reshaped as matrices which causes high dimensionality

and ignores the multi-modal structure of the features. This chapter deals with HSI

classification by modeling the data as tensors of high order. More precisely, multi-

modal hyperspectral data is built and dealt with using tensor CP decomposition.
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Morphology and Tensor Decomposition

Experiments on real HSI show the effectiveness of the CP decomposition as a

candidate for classification thanks to its properties of representing the pixel data

in a matrix compact form with a low dimensional feature space while maintaining

the multi-modality of the data.

4.1 Introduction

In Section 2.5, we gave some background on HSI scene classification and talked about some

of the works that involve matrix and tensor factorization. Among these works, we mentioned

those of [56, 58, 57], which are contributions of this thesis to HSI scene classification based on

MM and tensor decomposition. In this chapter, we expand on the details of these contributions

and show the experiments and results. The rest of this section recalls some elements from

Section 2.5 and serves as an introduction of the following sections.

Image classification is the problem of assigning each pixel in the image a semantic label (or

a “class”), which at the end allows the identification of materials in the scene into recognisable

properties. The idea behind this problem is that pixels are identified through a set of features.

A direct and natural example of this scenario is hyperspectral imaging. For instance, a HSI

acquires the spectral features of the scenes, mapping each pixel to a vector of positive real

values representing the spectral response measured by the sensor, which is referred to as the

spectral reflectance of the corresponding material in the scene. This kind of framework presents

pixels as samples, and spectral information as features. For that, HSI scene classification has

become an interesting area of application for its potential and usefulness.

In the literature, we find that features are not restricted to spectral information. Many

works attempted to explore the spatial information of the scene since neighborhood infor-

mation can improve the classification accuracy of pixels [8, 43]. As explained in Section

2.5, a considerable part of research was done in exploring the representation of this pixels-to-

feature(s) relationship and processing the features, which included Composite Kernel methods,

Markov Random Fields, Deep Learning methods, Dimensionality Reduction (DR), etc. One

of the ways to represent pixels and features is through matrices, where each row represents a

sample pixel, which is often used in DR techniques and has proved to be efficient.

In fact, the pixel-to-feature representation as a matrix is the core of this work, which we

attempt to obtain directly using tensor decomposition as well as in a DR framework, but first,

and in order to avoid a lot of repetition, it is important to recall that here we incorporate

spatial information through MM as briefly described in Section 2.5, using EMP, AMD, and

EMAP, with a difference from classical matrix approaches that the feature modes are kept

separated, such that the data are treated naturally through tensor analysis.

In fact, tensor modeling of HSI for the sake of classification has previously been visited [105,

56, 58]. In [105], TPCA is used in a similar fashion to HOSVD (and Figure 2.7) in order to

obtain a tensor with reduced feature spaces. However, when it comes to the classification

phase, the method still boils down to rearranging the data into matrix form and merging the
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feature modes. In order to avoid breaking the tensor structure at the classification phase, one

way is to approach the whole problem differently through CP decomposition (CPD) [29].

The main difference is that CPD directly provides a samples-to-features matrix that would

be ready to pass to the classifier. This matrix is the first factor matrix in the CPD which is

associated with the mode of pixels regardless of how many feature modes the tensor has (for

instance, some experiments here are carried out with tensors having three feature modes).

Accordingly, each row of said matrix represents a pixel, and the columns represent the new

extracted features that can be qualitatively defined by the patterns found in the other factor

matrices. Moreover, the choice of the rank in the approximation, which is also the number of

extracted features in CPD, is more flexible in CPD than HOSVD, which also acts as a direct

DR technique since the choice of the rank is relatively low. Through CPD, our goal is to

directly obtain a matrix of samples and features through one tensor decomposition that:

• Intuitively accounts to the high-order relationships.

• Provides the matrix with a relatively low-dimensional feature space. This can be seen

as DR where a high-order pixel representation reduces to a row of coefficients.

• Conserves the information found in the tensor given a value of the rank.

This goal was explored with preliminary results that can be found in the conference con-

tributions ISMM 2019 [56] and IGARSS 2019 [58], and the following is an extension of those

two. [56] and [58] include preliminary results using AMD and EMAP as morphological settings

applied on one dataset. The current version includes more detailed analysis, better modeled

results, more morphological settings, an additional dataset, and further discussions regarding

the possible use of unconstrained CPD.

First, we start by creating high-order tensors from HSI using spatial transformations de-

rived from MM, then we jointly handle the different variety of features by means of nonnegative

CPD (NCPD). For example, in terms of spatial transformations, one might want to create

multiple modes, each based on a certain morphological concept, which results in a block of

data that is at least of order four: i.e., two for spatial dimensions (image rows and columns),

one for spectral features, and another one for morphological transformations. Normally, the

first two modes are rearranged in lexicographic order, which leads to a tensor of order three

at least, where each pixel represents at least a matrix of features. For instance, if the tensor

is of order four or higher, one pixel starts to represent a tensor of features. This cannot be

directly fed to the classifier, and here comes the significance of CPD. This is partly illustrated

in the first two steps of the flowchart of Figure 4.1, where T is the Morphological HSI Tensor

that is to be decomposed using CPD.

CPD decomposes a tensor into several factor matrices, each of which represents one di-

versity of the tensor. This is to say that CPD directly produces a matrix that represents the

pixels, which we choose to pass to the classifier without the need to matricize the tensor by

rearranging its feature modes. This is partly illustrated in the last two steps of the flowchart of

Figure 4.1, where H1 is said factor matrix. CPD also enjoys some properties like uniqueness
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Figure 4.1: A flowchart of spectral-spatial classification using MM and CPD.

under mild conditions and flexibility with constraints such as nonnegativity. Experiments are

conducted on two real HSI datasets. For each dataset, some experiments are done on third-

order tensors, having one spectral mode and another spatial one, and other experiments are

done on fourth-order tensors, having one spectral mode and two spatial ones. For third-order

tensors, we have two kinds of experiments, the first one is based on EMP, and the second one

is based on an AMD that is inspired by [105]. For fourth-order tensors, the experiments are

based on an EMAP [31] formed using four different kinds of attribute transformations. We

note that in [31], an EMAP was built when multiple EAP of the same HSI are concatenated

along the same mode for classification, instead, we stack them as a new mode in the tensor.

The experiments show promising results in improving the classification accuracy compared to

other methods in the literature. Moreover, a discussion is added in the case of unconstrained

CPD.

From here on, this chapter is organized as follows. Section 4.2 starts with a background

on MM for image processing, then talks in Section 4.2.3 about the higher-order arrangement

of MM transformations as tensors. In Section 4.3 we recall some aspects of CPD then talk

about the contributions of this work. In Section 4.4 we present the experiments and discuss

the results. Finally, we give some conclusion remarks in Section 4.5.

4.2 Background on Mathematical Morphology

In this section, we start by introducing the basic concepts and notions of MM as the set of

transformations in image processing; we recall some definitions and properties of morphological

and attribute filters that are used in this project, then we explain briefly the concept of

morphological and attribute profiles. After that, we move on to talk about the case examples

for building high-order multi-modal data; the EMP-based example and the ones inspired by

the AMD and the EMAP methods.
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4.2.1 Basics of Mathematical Morphology

In image processing, morphological operators are image-to-image neighborhood-based trans-

formations. Let’s assume that Ψ is a morphological transformation, then Ψ maps an image to

another where the output value of a pixel is dependent on the values of its neighboring pixels.

For a given 2D image I, we define some properties of image-based transformations:

• Idempotence: Ψ(Ψ(I)) = Ψ(I)

• Extensivity: Ψ(I) � I

• Anti-extensivity: Ψ(I) � I

where the inequalities are understood entry-wise.

Such transformations are important in image processing for instance to extract features of

interest in the image based on spatial characteristics. Depending on the desired spatial char-

acteristics, we focus on two families of filters defined in the framework of MM, “morphological

filters” [91] and “attribute filters” [32].

4.2.1.1 Morphological Filters Based on Structuring Elements

This family of operators is mostly used for geometrical features of the image. Such operators

depend on two parameters: (1) the type of transformation and (2) the size and shape of the

neighborhood, with the latter being the major key point, known as the Structuring Element

(SE), which is a mask predefined shape and size (in pixels) that is meant to interact with the

image and govern the interaction of pixels with their neighborhood. Suppose two SE of sizes

SE2 ⊆ SE1, we say that the operator Ψ follows the absorption law if ΨSE1(ΨSE2) = ΨSE1 .

For example, Erosion (ǫSE) and Dilation (δSE) are two basic morphological operators; Ero-

sion shrinks regions with values that are greater than those of their surrounding pixels by

means of the SE while Dilation dilates them. Another two types of such operators are Open-

ing (γSE) and Closing (φSE), Opening is the Dilation of the Erosion of an image I by means

of the same SE while Closing goes in reverse. As a result, we can say that Opening removes

white spaces that are smaller than the SE while Closing fills dark spaces that are smaller

than the SE. In many cases, we are interested in conserving the details of objects that are

larger than the SE (objects which remain unfiltered). This leads us to the family of operators

by reconstruction, where an image transformation is repeated until idempotence is reached

under the constraint of a mask (M) that is the original image itself (M = I), we denote such

transformations by Ψ∞
SE
(M , I) [106]. Opening by Reconstruction γ∞

SE
(M , I) and Closing by

Reconstruction φ∞
SE
(M , I) are examples of that.

We note that Opening by reconstruction and Closing by reconstruction follow the absorp-

tion law, and they are widely used for Morphological Profiles (MP), which is to be described

in section 4.2.2.
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4.2.1.2 Attribute Filters

Attribute filters (attribute thinning and thickening) were introduced as a new technique to

extract distinctive types of spatial features, called attributes, while addressing some limitations

of filters based on SE [31]. Such filters can be geometric (analogous to morphological Opening

and Closing), or based on characteristics of the data distribution. The concept of attribute

filtering is not based on SE, but totally on connected regions of the image sharing similar

attribute characteristics and rearranged as component trees. In other terms, attribute filtering

is defined by a criterion that evaluates the desired attribute according to a specified threshold.

Any property that applies to image regions can be considered as an attribute, examples of

that are the area of the regions, the moment of inertia, the standard deviation, etc.

Attribute thinning and thickening can be used for building Attribute Profiles (AP), which

is to be described in section 4.2.2.

4.2.2 Morphological and Attribute Profiles

Before we dive into the definition of such profiles, we note that attribute thinnings and thick-

enings are analogous to morphological openings and closings by reconstruction respectively.

In terms of properties, thinning and opening by reconstruction are anti-extensive, while thick-

ening and closing by reconstruction are extensive, but, conversely to opening and closing,

thinning and thickening are not increasing transformations [31, 33]. As such, we proceed

to explain the concept of profiles considering the case of MP noting that the transition to

explaining the case of AP is obvious.

For a set of extensive and anti-extensive dual operators, respectively {Ψ̄i,Ψi}i=1...m, where

m denotes the number of SEs (sometimes denoted by λ for AP), the MP of a grayscale image

I can be defined as:

MP(I) := {Ψm(I), . . . ,Ψ1(I), I, Ψ̄1(I), . . . , Ψ̄m(I)}, (4.1)

Figure 4.2 shows an example of a MP of a grayscale image sample. More precisely, to create

a MP, these morphological transformations of the same image are stacked and rearranged along

the third mode in increasing order of extensivity, that is, the elements of MP(I) are ordered

such that MP(I)j ≺ MP(I)j+1 where MP(I)j refers to the j-th element of MP(I), with the

original image stored at the middle. For multivariate images such as HSI, the concept is

extended but the same idea still holds. In this case, where we focus on the marginal strategy,

the profiles of each grayscale image (whether the image is a principal component or the original

band itself) are concatenated along the third mode forming what is referred to in the literature

as an “extended profile”, which is then given as an input to the classifier. In the case of MP,

extended profiles are referred to as EMP [6]. Figure 4.3 shows an illustration of conventionally

creating an EMP of a multivariate image using Opening and Closing by reconstruction.

Additionally, we note that creating morphological diversity for multivariate images is not

limited to extended profiles. Works in the literature extended this concept to other possible
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Figure 4.2: A MP using closings and openings by reconstruction of a grayscale sample from

the HSI of Pavia University

rearrangements and derivations such as the Differential Morphological Profile (DMP) [7],

which is created by stacking images obtained from the differences between the successive

transformations and thus can be seen as the derivative of MP. Another example is AMD,

which we will talk about in more detail in the next subsection.

In the case of AP, extended profiles are referred to as EAP, and, as mentioned at the begin-

ning of this subsection, creating an EAP is analogous to that of an EMP, but using successive

values of the attribute parameter. Furthermore, the work on EAP for image classification was

extended to EMAP, which is to be discussed in the next subsection.

Figure 4.3: An illustration showing one way of creating an EMP of a multivariate image. On

the left, it shows sample Morphological Profiles (MP) of some spectral bands, numbered by the

index of the spectral band, of a cropped portion of the HSI of Pavia University. On the right,

it shows the stacking of the MPs along the third mode to form the Extended Morphological

Profile (EMP). The transformations were carried out using three different SE; disks with sizes

[1,6,11].

4.2.3 High-Order Tensors Using MM

Having talked about the various ways to build spatial features using MM for image classifica-

tion, we mention three examples that we adopt in our experiments; the first one is the EMP

method which is direct and simple, the second one is a method inspired by AMD because it

provides significant features and it has been previously used as a tensor model for multi-modal



68
Chapter 4. Hyperspectral Image Classification Based on Mathematical

Morphology and Tensor Decomposition

feature space reduction, and the third one is inspired by EMAP as a way to create more than

one spatial diversity, all of which are explained in the following.

4.2.3.1 Fourth-Order Tensor Using EMP

As mentioned earlier, the conventional way to build the EMP of a HSI is by stacking the

MP of the single spectral bands along the spectral mode, forming a third-order block of data.

This process considers single morphological transformations (Ψ(I)) only as a mapping from

a 2D image to another. Instead, we choose to consider the transformation of a HSI (Ψ(I))

as another third-order cube of data, i.e. as a mapping from a 3D image to another, under

the same assumption that the transformation of a HSI is equivalent to applying the same

transformation on its bands one by one. As a result, the EMP of a HSI can be seen as

a higher-order MP arrangement, or in other words, a fourth-order analogy to the MP of a

grayscale image, by stacking the third-order transformations of the HSI as follows:

MP(I) := {Ψm(I), . . . ,Ψ1(I),I, Ψ̄1(I), . . . , Ψ̄m(I)}, (4.2)

The structure in (4.2) brings the same values as those found in the conventional EMP, except

that the former is rearranged to separate spatial features from spectral ones. The result is a

fourth-order block of data of size I1 × I2 × J ×K, where I1 × I2 is the number of pixels, J is

the number of spectral bands, and K is the number of morphological transformations. Figure

4.4a shows an illustration of a fourth-order tensor built through EMP.

4.2.3.2 Fourth-Order Tensor Using AMD

An AMD is formed by decomposing an image in an additive manner such that the morpho-

logical transformations sum up to give back the image itself. What is stacked in this case is

not directly the original image and its transformations, but the components of the additive

decomposition that are composed of one “structure component” and the “residuals”. Following

the same notation of {Ψ̄i,Ψi}i=1...m from Section 4.2.2, we give the formulas of the consecutive

residual components as defined in [105]:

R+
i = Ψ̄i(Ψ̄i−1(I))− Ψ̄i−1(Ψ̄i−2(I)) ≥ 0 (4.3)

R−
i = Ψi−1(Ψi−2(I))−Ψi(Ψi−1(I)) ≥ 0 (4.4)

where the inequalities are understood entry-wise. The AMD of an image I can then be written

as:

I =
Ψ̄m(Ψ̄m−1(I)) + Ψm(Ψm−1(I))

2
+

m
∑

i=1

R−
i −R+

i

2

= S +
m
∑

i=1

Ri,

(4.5)

where the term S is considered to be the structure component because it contains the un-

filtered components in the decomposition, and the terms {Ri}i=1...m are called the residuals
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with L being the number of attributes taken into consideration.

4.3 Contributions

After obtaining the data set as a result of morphological transformations, we now deal with it

as a tensor of high-order. In fact, each pixel now is composed of at least a matrix of features

which is indeed complex. CPD is a powerful tool to break the complexity of tensors into

data forms (matrices) that are easy and intuitive to deal with without the need to alter the

structure of the tensor. In other words, we show that decomposing the high-order image data

using CPD provides a direct and simple way to represent the pixels in matrix form that is to

be classified.

In this section, we start by recalling what is relevant to this work in terms of tensor

decomposition. CPD is used to decompose the tensor, but the latter can be huge and its de-

composition can be computationally demanding, so we first tend to compress it using HOSVD.

After that, we talk about our contributions. We first dive into the algorithmic part and our

implementation of this work, then we talk about the importance of using tensor decomposition

when multiple types of features are involved.

In Section 4.2.3, we saw how tensor Y can be of fourth and fifth order. As discussed in

Section 2.5, since a 2D (grayscale) image usually has a high rank, then tensors built upon this

image should be of higher rank. For that, the pixels are rearranged in lexicographic order,

which reduces the rank and works better for classification since the latter requires one mode

of pixels (as samples). The data tensor is then denoted by T , with a first mode of dimension

I = I1 × I2. A fourth-order data tensor with rearranged pixels is illustrated in Figure 4.5.

Figure 4.5: An illustration of fourth-order tensor using EMAP after merging the first two

modes of pixels

Because of the huge dimensions of our data especially that of the first mode (the high

number of pixels), directly applying CPD is exhaustive. One way to do so is through lossless

compression, i.e. by compressing the data to the minimal dimensions such that all information

is conserved. For example, for a fourth-order tensor of size I × J ×K ×L, the dimensionality
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of the mode of pixels can be very big compared to the product of those of the other modes (i.e.

I ≫ JKL). Thanks to HOSVD, such tensor can be compressed to a size of (JKL)×J×K×L

supposing that R+ ≤ JKL. The compressed tensor is denored by G.

HOSVD is explained in details in Section 2.4.1 having the following expression:

T = G •
1
V 1 •

2
V 2 •

3
V 3 •

4
V 4, (4.6)

where {V 1,V 2,V 3,V 4} are orthogonal matrices that can be obtained using SVD of the tensor

mode-unfoldings. We note that if there is no need to compress a mode d, then V d can be set

to the identity matrix. The goal is to obtain the compressed tensor G and use CPD such that:

G = Λ •
1
H1c •

2
H2c •

3
H3c •

4
H4c , (4.7)

where Λ is a diagonal core tensor and {H1c ,H2c ,H3c ,H4c} are the compressed factor ma-

trices. Then, the CPD of T is expressed as:

T = Λ •
1
(V 1H1c) •

2
(V 2H2c) •

3
(V 3H3c) •

4
(V 4H4c)

= Λ •
1
H1 •

2
H2 •

3
H3 •

4
H4

(4.8)

Algorithm 8 shows our implementation to compress any tensor using HOSVD; we note

that wayc is a vector containing the modes that are desired to be compressed, and dimc is

a vector of the desired compressed dimensions (i.e. in case there is a desire to truncate the

singular vectors of V d).

Algorithm 8 COMPRESS

Require: T , wayc, dimc

for d ∈ wayc do
Unfold T into T (d) such that the mode d takes the second way of the matrix;

Compute the right singular matrix from the SVD of T (d), denoted by V d;

Truncate the columns of V d by dimc(d);

end for
for d /∈ wayc do
V d = Idimc(d); (Identity matrix)

end for
G = T •1 V

T

1 •2 . . . •N V T

N ;

return G and V 1, . . . ,V N

Computing CPD of a compressed tensor when nonnegative constraints are involved can

be tricky to implement, and the issue has been addressed in [27]. Recently, AO-ADMM was

introduced in [53] as a powerful algorithm to compute CPD and a flexible one with constraints,

which we addressed in Section 2.4.5.4. This being said, in the first part of this section, we

talk about our implementation of these constraints in Compressed AO-ADMM. In the second

part, we dive into our specific application and talk about the advantages of combining spectral

and spatial features using tensor decomposition in the framework of classification.
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4.3.1 Compressed AO-ADMM

In our case, we are mainly interested in compressing the first mode, and the compressed tensor

G is the one that is used for decomposition with CPD. However, G can contain negative entries,

while T is nonnegative and its factor matrices are constrained to be so. As such, only H1

is compressed, so assuming that H1 = V 1H1c � 0 (where H1c is the compressed version of

H1), the optimization problem (for Nth-order) can be reformulated such that:

argmin
H1c ,...,HN

1

2
‖G − (H1c , . . . ,HN ).Λ‖2

s.t. V 1H1c � 0,H2 � 0, . . . ,HN � 0

(4.9)

In order to cope with the constraints of compression and nonnegativity at once, we present

a solution that is inspired by [27], with AO-ADMM being the adopted algorithm for its

efficiency and flexibility with constraints [53]. Using ADMM, it is possible to solve the sub-

problem of each factor matrix with the corresponding constraints and alternate accordingly.

Hence, solving (4.9) boils down to the following updates, defined for d = {2, . . . , N}:

H̃1c ← (W TW + ρI)−1(W TG(1) + ρ(U +H1c)
T)

H1c ← V T

1 max(0,V 1(H̃
T

1c −U))

U ← U +H1c − H̃
T

1c











(4.10)

H̃d ← (W TW + ρI)−1(W TG(d) + ρ(U +Hd)
T)

Hd ← max(0, H̃
T

d −U)

U ← U +Hd − H̃
T

d











(4.11)

We show through Algorithms 9, 10, and 11 how we implement the AO-ADMM method.

In Algorithm 10, T is a matrix updated by T (d), W is the Khatri-Rao product defined in

Algorithm 9, k is the input rank of the decomposition, µ is a regularization paramter for which

we refer to [53] for its updates, ǫ is the tolerance for r and s which we refer to [53] for their

updates, constraint is a string defining the type of proximity update, imax is the number of

inner ADMM iterations (0 if no limit), and V d is the compression matrix. For Section 4.3.1.1,

we note that the dimensions of T (d) are
∏

j 6=d Ij × Id, those of W are
∏

j 6=d Ij ×R, and those

of H̃d, H
T

d and UT are R× Id.

4.3.1.1 Computational complexity

Concerning the computational complexity of AO-ADMM for CPD, we refer to paper [53] for

the detailed explanations. Here, we compare the case of compressed AO-ADMM to that of

TPCA. Let us consider a third-order tensor T ∈ R
I1×I2×I3 of rank R, and we consider the

complexity as per ADMM iterations (Algorithm 10). Also, it is important to note that the

matrices W and T are independent from the inner-ADMM updates, so they can be used only
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once to compute the Cholesky decomposition and the product W TT , whose values can be

cached before the H̃ update allowing to save a lot of repetitive computations. Now, we split

the cases into four:

1. Unconstrained CPD: In this case, the complexity of the algorithm is dominated only by

the updates of H̃. Hence, the complexity is O(IdR
2).

2. Nonnegative CPD: Nonnegative constraints on the factor matrices require only element-

wise projection, i.e. a complexity of O(IdR), which is negligible compared to O(IdR
2).

Hence, the same complexity of unconstrained CPD still dominates.

3. Unconstrained CPD of the compressed tensor (compression along the mode of pixels):

This case requires one step after the whole AO-ADMM framework to decompress the

first factor matrix back into H1, which is the final product before the classification

phase. However, the ADMM updates by themselves remain unchanged with a gain on

the complexity O(I1R
2) since I1 here is compressed to a much lower value, i.e. I2I3.

The complexity of the ADMM updates generally remains dominated by O(I2I3R
2) per

iteration, and that of the decompression step is O(I1I2I3R).

4. Nonnegative CPD of the compressed tensor (compression along the mode of pixels):

This case affects only the ADMM updates of the first factor matrix, specifically at the

level of H1c in equation (4.10) due to the decompression and compression steps. The

complexity increases by O(I1I2I3R) per iteration for the first factor matrix H1c , but

remains unchanged for the others (i.e. O(IdR
2), d = 2, 3).

In the case of TPCA, a PCA is carried out for every matrix Y(d) that corresponds to a fea-

ture mode in order to finally perform the tensor product that would reduce the dimensionality

of the feature modes separately. This means that for the same third-order tensor considered

earlier, two PCA steps are carried out. Each PCA holds as much complexity to it as that

of an SVD, that is O(mn2) for a matrix of dimensions m × n where m ≥ n. Considering in

this case that the PCA is carried out for the second and third matrix-unfoldings, i.e. Y(2) and

Y(3), then the complexities are O(I1I2I3I2) and O(I1I2I3I3) respectively. After that, in order

to obtain the tensor with reduced feature dimensions, say G ∈ R
I1×R2×R3 , through tensor

product, the complexity is as much as O(I1R2R3I2I3).

For the sake of comparison, this means that for each additional feature mode of dimension

IN in the tensor, the complexity of the CPD in the first three cases will only add by O(INR2)

(one additional matrix update). In the fourth case, the complexity of the decompression and

compression step increases to O(I1 . . . INR) (multiplies once by the new dimension). In the

case of TPCA, it increases by O(I1 . . . INId) for every d = {1, . . . , N}, with an additional load

at the tensor product phase, i.e. O(I1R2 . . . RNI2 . . . IN ). In general, R is much smaller than,

or at most comparable to,
∏N

d=2Rd. Finally, the computational complexity is better in the

case of CPD for most cases, but the choice of the parameters can affect this conclusion.
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Algorithm 9 The Alternating Optimization part of solving (4.9), it alternates between the

ADMMs of the factor matrices

Require: T , H1, . . . ,HN , U1, . . . ,UN

H1, . . . ,HN are initialized; U1, . . . ,UN are initialized to zero matrices;

for d = 1, . . . , N do
Store the different unfoldings T (d);

end for
repeat

for d = 1, . . . , N do
W = ⊙j 6=dHj ;

update Hd and Ud using Algorithm 10; (a single ADMM, i.e. (4.10) and (4.11))

end for
update µ if necessary; (refer to [53] for the update of the regularization parameter µ)

until some termination criterion is reached (number of iterations)

Normalize the columns of the factor matrices and store the weights in Λ;

return H1, . . . ,HN , Λ

4.3.2 Spectral and Spatial Features Using CP Decomposition

Now, in our particular case of HSI tensors, and based on what was discussed in section 4.2,

we recall that the first mode spans the pixels, the second mode spans the spectral bands, the

third mode spans morphological transformations, and the possible fourth mode spans different

kinds of morphological concepts. For simplicity, we keep the following explanation short to

third-order tensors, higher-order tensors then follow analogously.

We show an illustration of some relationships between a third-order tensor and the com-

ponents of its CPD in Figure 4.6. Here, we expect that H1 represents the mode of pixels,

H2 represents that of spectral bands, and H3 represents the corresponding morphological

diversity. Accordingly, each row in H1 (say at index p as pointed in the figure) describes the

synthesis or composition of a high-order pixel of T having the same index in the first mode

(i.e. by fixing the index of the first mode at p such as the horizontal green slab in the figure),

which is reflected element-wise as follows:

tp,i2,i3 =

R+
∑

r=1

h
(1)
p,r · h

(2)
i2,r
· h

(3)
i3,r
· λr

∀ i2 ∈ {1, . . . , I2}, ∀ i3 ∈ {1, . . . , I3}

(4.12)

Additionally, the coefficients found in one row in H1 (across the columns) are related to their

counterpart-columns in H2 and H3, both of which represent feature information (Figure 4.6

highlights in orange similarly indexed columns from each of the factor matrices along with the

corresponding coefficient in Λ). In other words, these coefficients in H1 describe the spectral

and morphological information that spread out in H2 and H3 respectively. Consequently,

H1 can be seen as a matrix of samples and features where spectral and spatial features are

factorized.
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Algorithm 10 ADMM update of Hd and Ud, i.e., (4.10) and (4.11) given a mode d

Require: T , W , H, U , k, µ, ǫ, constraint, imax, V

H and U are already initialized;

G = W TW ;

ρ = trace(G)/k;

Calculate L from Cholesky decomposition such that

G+ (ρ+ µ)Ik = LLT;

F = W TT ;

Hf = H;

repeat
H̃ ← (LT)−1L−1(F + ρ(H +U)T + µHf

T); (See [53] for µ and Hf )

H ← proximity(constraint,H̃
T

,U ,V ); (refer to Algorithm 11)

U ← U +H − H̃
T

;

Update r and s; (refer to [53] for the updates of r and s)

until (r < ǫ and (s is undefined or s < ǫ)) or (imax > 0 and i ≥ imax)

return H and U

Algorithm 11 Proximity Update of H in ADMM

Require: constraint, Ht, U , V

switch (constraint)

case Nonnegativity:
H ←Ht −U ;

H ← max(0,H);

case Compression and Nonnegativity:
Hu ← V (Ht −U);

H ← V Tmax(0,Hu);

end switch
return H

Thanks to the nonnegative constraints in the decomposition, the columns of the factor

matrices can hold physical interpretation. For instance, the columns of H2 can be seen as

spectral signatures, and those of H1, when folded (reshaped into matrices), can be seen as

corresponding grayscale images. This can also be useful for Hyperspectral Unmixing, which

is discussed in Chapter 5 because it is out of the scope of this chapter.

Briefly speaking, CP decomposition directly provides a simple and low dimensional repre-

sentation of the data. First, the complexity of the tensor is reduced to simple matrices, each

linked to one of its modes, with an intuitive approach to account to the high-order relation-

ships in the data and sometimes with barely any loss of information. Second, the high-order

feature aspect of the pixels in T boils down to row vectors of R+ elements in H1. Third,

there are often redundancies in the tensor, which makes R+ relatively small and corresponds

to the low dimensionality of the feature space. Finally, since classification is our main con-

cern, our target is to classify the matrix representing the pixel mode, H1. We think of the

rows as samples and the columns as features in the classification. For that, we conduct some
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Figure 4.6: An illustration of some relationships between the tensor and its CPD. “Pixel p”

refers to a pixel at index p. h
(1)
r , h

(2)
r , and h

(3)
r , are the r-th columns of matrices H1, H2,

and H3 respectively. λr is the r-th diagonal element of Λ.

experiments that are to be shown in the following section.

4.4 Experiments and Results

In this section, we talk about the experiments conducted in this work. First, we give a

description of the data sets that we use. Then we present the experimental set-ups and their

corresponding results for further discussion. In order to demonstrate our method, we use two

real HSI datasets as shown in section 4.4.1.

In the results sections, we demonstrate the results on the Pavia University HSI first, then

we show those of the Data Fusion Contest HSI (DFC). For each HSI, we show three different

kinds of morphological applications, where the pixels are vectorized afterwards:

• EMP: Based on morphological operators. The decomposed tensor is third-order. The

spatial way is the stacking of the transformations as they are.

• NAMD: Based on morphological operators. The decomposed tensor is third-order. The

spatial way is a form of a successive differential stacking of the transformations.

• EMAP: Based on attribute operators. The decomposed tensor is fourth-order. One

spatial way corresponds to attribute indexing (the kind of attribute), and the other one

is the stacking of the transformations as they are.

With EMP and NAMD, our approach is only compared to that of TPCA as the tensor-

based state of the art technique in order to focus on an analysis regarding some parameters

mentioned below, while with EMAP, our approach is compared to that of PCA and NMF of

the original image, classical EMAP of all the features concatenated along one mode, PCA of

classical EMAP, and TPCA and CPD of tensor-based EMAP. In each of the CPD experiment,
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among 20 random initializations of the factor matrices, the result with the minimum root mean

squared error (RMSE) is chosen.

Moreover, we make some remarks on different aspects of the used decomposition. As a

start, we notice that there are two main variables that can influence the decomposed data;

the number of AO-ADMM iterations and the rank of the decomposition, which are usually

provided as inputs to the CPD. For instance, the higher the number of iterations or the value

of the rank is, the less the reconstruction error, so we expect the decomposed data to better

represent the original tensor up to overfitting. Another aspect would be the constraints. Since

we use nonnegativity constraints on the original factor matrices while carrying the CPD on the

compressed versions, the decomposition can take a lot of time compared to its unconstrained

counterpart, so we show some experiments using unconstrained CPD and give some remarks.

On a side note, NCPD is also useful for high-order Hyperspectral Unmixing, which shows

how it is possible to identify the patterns of the feature factor matrices corresponding to the

columns of the pixel factor matrix, and this point is discussed in Chapter 5.

4.4.1 Description of Data Sets

4.4.1.1 Pavia University

The first HSI, known as Pavia University, was taken over the University of Pavia and acquired

by the ROSIS sensor. The image has a spatial size of 610 × 340 pixels with a geometric

resolution of 1.3 meters, and consists of 103 spectral bands. The groundtruth image is included

besides the data set and it consists of nine classes: trees, asphalt, bitumen, gravel, metal sheets,

shadows, self-blocking bricks, meadows, and bare soil. Additionally, 40002 pixels are available

as test set, and 3921 pixels are available as training set. Figure 4.7 shows the HSI in false

colors (by choosing the bands 58, 34, and 17 as Red, Green and Blue components) as well as

the training set and ground-truth pixels.

4.4.1.2 Data Fusion Contest (DFC) image for IEEE GRSS 2013

The second HSI was acquired over the University of Houston campus and the neighboring

urban area by the ITRES-CASI 1500 sensor. The image has a spatial size of 349×1905 pixels

with a geometric resolution of 2.5m, and consists of 144 spectral bands. The groundtruth

image is included in the data set and it consists of 15 classes: grass healthy, grass stressed,

grass synthetic, tree, soil, water, residential, commercial, road, highway, railway, parking lot

1, parking lot 2, tennis court, and running track. Additionally, 12197 pixels are available as

test set, and 2832 pixels are available as training set. Figure 4.8 shows the HSI in false colors

(by choosing the bands 65, 40, and 22) as well as the training set and ground-truth pixels.
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4.4.1.3 Some Remarks Regarding the Experimental Parameters

In the following, to avoid repetition, we describe some common parameters used in the mor-

phological methods.

Concerning the choice of the parameters of the morphological and attribute transforma-

tions, they where chosen such that enough distinctive variations or features can be observed

in the profiles along the third mode (in order to reduce redundat spatial features).

As for the CPD, in some of the following experiments, we would like to see the effect of

the number of iterations and the choice of the rank on the results. The number of iterations

is generally set to 50, which is chosen by looking at the plot of the reconstruction error of

(4.9) with respect to the number of iterations. However, some experiments in Sections 4.4.2

were carried out to compare between the cases of 30 and 50 iterations (starting with the same

initial conditions). As for the value of the rank, first, we note that it sets the value of the

reduced dimension of the feature space. Second, we compare the results between different

values where we start with a value that is very close to the number of predefined classes in

the groundtruth image (say, 10 or 15), then we test higher values up to overfitting. Note that

the expression CPD(i,R) refers to a CPD carried out with i iterations and rank R.

TPCA is one of the methods that we compare our results to. In this regard, the number of

principal components of the modes are decided based partly on the elbow rule of the graphs of

the singular values obtained from the SVD of the corresponding mode-unfolding of the tensor,

and partly according to how much the reduced mode dimensions can explain the original data.

Note that the expression TPCA(pc3,pc4) refers to a TPCA where the dimensions of the spectral

and morphological modes are reduced to pc3 and pc4 PCs respectively before vectorizing the

pixels, and TPCA(pc3,pc4,pc5) follows suite (i.e., in the case of EMAP).

In the classification phase, Support Vector Machine (SVM) with a Gaussian kernel was

used. The hyper-parameters of SVM were optimized using 5-fold cross-validation as mentioned

in the guide of [52]. The training and testing sets that are available with the two data-sets

were used to train and test the classifier.

4.4.2 Experiments with Pavia University

4.4.2.1 EMP

First, we start by showing the results of the EMP method. In this part, we use Opening and

Closing by reconstruction as the operators (Φ̄ = γ∞
SE
,Φ = φ∞

SE
). In the following, we fix the

parameters of the transformations to m = 6 disk-shaped structuring elements of different sizes,

in pixels: {1, 6, 11, 16, 21, 26}. This means that the fourth mode of the tensor is of dimension

K = 13 with the arrangement shown in (4.2). The first two modes are then merged to give

tensor T ∈ R
207400×103×13.
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Before applying CP decomposition, since the data is huge, we attempt to pre-process the

tensor by compressing its pixel mode as explained in Section 4.3. After the compression step,

we obtain a tensor G ∈ R
1339×103×13 (i.e., the dimension of the first mode is reduced to 103 ∗

13 = 1339), which becomes the input to be directly decomposed through CP decomposition.

Now, we compute the CP decomposition with nonnegativity constraints as mentioned in

the previous sections. We also use different values of the rank in order to see the variations

in the results such that R = {10, 20, 30, 40}. The factor matrices are initialized randomly as

the absolute value of the i.i.d standard Gaussian distribution, and only the first factor matrix

is compressed afterwards.

For TPCA (applied before vectorizing the pixels), four to six principal components were

chosen for the third-mode tensor unfolding explaining the data by 98.97%, 99.28%, and 99.47%

respectively, and four to six components were chosen for the fourth-mode tensor unfolding

explaining the data by 98.95%, 99.37%, and 99.57% respectively. As a result, this maps to

nine different classification results noting that the total number of features is the product of

the number of the principal components chosen from the latter two modes.

Discussion. In Table 4.1, we show some tests with their reconstruction errors. Indeed,

we notice that the more iterations or the higher the rank, the less the reconstruction error,

and generally, the better the classification accuracy. Increasing the number of iterations allows

AO-ADMM to converge further, but at some point there will be only slight changes. Increasing

the rank allows for more degrees of freedom for the data to be spread in the decomposition,

but first we need the rank to be relatively small, second we notice that eventually there will

be some kind of a limit for how much the reconstruction error and the classification accuracy

can improve, and third if the rank is high then noisy structures may start to appear in the

decomposition.

Method No. of Features (R) Rec. Error % OA % AA %

EMP + TPCA(5,5) 25 - 93.20 91.16

EMP + CPD(30,10) 10 6.19 91.82 91.18

EMP + CPD(50,10) 10 6.16 93.25 91.58

EMP + CPD(30,20) 20 4.20 93.24 92.33

EMP + CPD(50,20) 20 4.06 93.99 92.36

EMP + CPD(30,30) 30 3.18 94.34 93.54

EMP + CPD(50,30) 30 3.05 95.63 95.41

EMP + CPD(30,40) 40 2.68 97.73 97.71

EMP + CPD(50,40) 40 2.59 97.68 97.71

Table 4.1: Pavia University. Some records of Overall Accuracy (OA) and Average Accuracy

(AA), with Reconstruction Error (Rec. Error) in case of CPD, for the EMP set-up. The

features column indicates the size of the feature space in the classification. The best value

given by TPCA is shown. The CPD cases are grouped by the same value of the rank. The

cases when CPD does better are underlined.
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In addition to the influence of the number of iterations and the rank, NCPD was able to

bring better accuracy results starting at only 10 features compared to 25 features for TPCA.

Figures 4.10a-4.10e show some classification maps for the EMP setup, with an indication on

the methods used and their parameters.

4.4.2.2 NAMD

Now we show some of the results using the NAMD method. Similarly to EMP, Opening and

Closing were chosen as the morphological operators with the same type of the structuring

element and same size values. At the end we obtain a tensor T ∈ R
207400×103×13, which is

then compressed into G ∈ R
1339×103×13.

We use the same parameters of the NCPD as those in the EMP setup. For TPCA, three to

five principal components were chosen for the third-mode tensor unfolding explaining the data

by 99.67%, 99.75%, and 99.82% respectively, and four to six components were chosen for the

fourth-mode tensor unfolding explaining the data by 97.72%, 98.65%, and 99.47% respectively.

Discussion. We show some of the results in Table 4.2. We notice the same pattern

of reconstruction error and classification accuracy results as those found in Table 4.1 for

increasing number of iterations and values of the rank though the reconstruction errors are

higher in Table 4.2. NCPD was able to bring better accuracy results starting at 30 features

compared to 30 features for TPCA. Figures 4.10f-4.10j show some classification maps for the

NAMD setup, with an indication on the methods used and their parameters.

Method No. of Features (R) Rec. Error % OA % AA %

NAMD + TPCA(5,6) 30 - 92.23 90.94

NAMD + CPD(30,10) 10 18.02 87.21 88.46

NAMD + CPD(50,10) 10 17.98 87.77 88.28

NAMD + CPD(30,20) 20 11.21 91.35 88.78

NAMD + CPD(50,20) 20 11.10 92.16 89.77

NAMD + CPD(30,30) 30 8.76 94.52 91.77

NAMD + CPD(50,30) 30 8.71 94.59 91.72

NAMD + CPD(30,40) 40 7.24 96.96 96.44

NAMD + CPD(50,40) 40 7.23 96.91 96.49

Table 4.2: Pavia University. Some records of Overall Accuracy (OA) and Average Accuracy

(AA), with Reconstruction Error (Rec. Error) in case of CPD, for the NAMD set-up. The

features column indicates the size of the feature space in the classification. The best value

given by TPCA is shown. The CPD cases are grouped by the same value of the rank. The

cases when CPD does better are underlined.
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4.4.2.3 EMAP

In this setting, we start by showing the four types of attributes and their corresponding

threshold values that we used. Some attribute thresholds depend on the size of objects in the

image, and others depend on the range of values in the pixels, so they were chosen based on

observed changes between transformations:

• Area of the regions; λa = {100, 500, 1000, 5000}.

• Diagonal of the bounding box; λd = {10, 25, 50, 100}.

• Standard deviation; λs = {20, 30, 40, 50}.

• Moment of inertia; λi = {0.2, 0.3, 0.4, 0.5}.

First, we refer to [31] for the definitions of the attributes. For each attribute, we fix four

different thresholds, corresponding to eight thinnings and thickenings, which means that the

fourth mode is of dimension K = 9 (including the original image). After we consider the

different attributes together in one data block, the fifth mode becomes of dimension L = 4.

After merging the first two modes, we obtain a tensor T ∈ R
207400×103×9×4.

We notice that, practically, compressing or decomposing T can be computationally very

demanding, so we tend to reduce the spectral dimension in the original HSI, I. In order to do

that and conserve both the nonnegativity and the information in I, we use Nonnegative Matrix

Factorization (NMF) computed through AO-ADMM on its first matrix unfolding, call it I,

where one mode represents pixels arranged in lexicographic order, and the other represents

spectral bands. NMF decomposes I into two other matrices with nonnegative entries, e.g.

I = WHT, where W represents pixel information, and the number of columns in W and H

is defined by the rank of the NMF, call it RNMF , which is usually relatively small. W is then

chosen and rearranged into a data cube, W , with reduced spectral dimension, to be used in

order to form T . Suppose that we note by RNMF as the size of the reduced spectra, then in

the case of Pavia HSI, T is of dimensions 207400×RNMF ×9×4. Now, following what we do

with EMP and NAMD, T is decomposed using compressed NCPD. The steps are visualized

in a flowchart as seen in Figure 4.9.

In a similar manner, in the case of TPCA, PCA of I was computed as means of reducing

the dimension of the spectral mode before forming the EMAP on the principal components.

After that, T is formed. The PCA and EMAP part was done in [31].

For NMF, we choose a value 40 of the rank which corresponds to a reconstruction error

of 0.65% compared to the original HSI. For PCA, we choose four principal components which

explains the data by 99.16%. For CPD, we choose one value of the rank, which is R = 40. For

TPCA, four principal components were chosen for the third-mode tensor unfolding explaining

the HSI by 100%, four components were chosen for the fourth-mode unfolding explaining the

data by 99.28%, and three components were chosen for the fifth-mode unfolding explaining

the data by 99.98%.
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Figure 4.9: A flowchart of the EMAP procedure which includes a preprocessing step to reduce

the number of spectral bands.

Discussion. Table 4.3 shows some results related to EMAP. It is important to note that in

some cases, the data was rescaled to fit the threshold values of the attribute profiles such that

we see enough distinctive features between the images of the attribute profiles. With a lower

number of 40 features compared to 48 for TPCA, NCPD showed better accuracy results. This

shows that the method can still bring good results when going from an order-4 tensor to a

matrix using NCPD. Figures 4.10k and 4.10m show some corresponding classification maps.

Method No. of Features (R) Rec. Error % OA % AA %

PCA(4) 4 - 68.30 80.28

NMF(40) 40 0.65 77.01 87.65

EMAP 144 - 91.59 92.92

EMAP + PCA(15) 15 - 94.46 94.12

EMAP + TPCA(4,4,3) 48 - 95.44 94.86

EMAP + CPD(50,40) 40 2.03 97.06 98.60

Table 4.3: Pavia University. Some records of Overall Accuracy (OA) and Average Accuracy

(AA), with Reconstruction Error (Rec. Error) in case of CPD, for the EMAP set-up. The

features column indicates the size of the feature space in the classification. The best value

given by TPCA is shown. The cases when CPD does better are underlined.

Finally, Table 4.4 shows per-class results of Overall Accuracy and Average Accuracy of

selected examples from Tables 4.1, 4.2 and 4.3 in a side-to-side comparison including the three

morphological set-ups (EMP, AMD, and EMAP) and two decomposition methods (TPCA and

CPD). From TPCA to CPD, we notice that the accuracy of some classes improved or worsened

only slightly, while others such as Gravel, Bare Soil and Shadows improved significantly.
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Method EMP % NAMD % EMAP %

TPCA(5,5) CPD(50,40) TPCA(5,6) CPD(50,40) TPCA(4,4,3) CPD(50,40)

Asphalt 94.21 98.00 96.58 98.63 94.59 98.36

Meadow 94.77 97.11 93.05 97.47 97.60 94.88

Gravel 58.4 94.32 59.55 89.58 77.85 98.84

Tree 99.17 98.14 99.17 98.83 98.04 97.35

Metal Sheet 99.46 99.55 99.73 99.64 99.28 99.46

Bare Soil 89.78 99.71 84.44 92.34 88.01 99.80

Bitumen 99.08 99.28 99.49 99.59 99.79 99.69

Brick 98.84 98.42 98.15 98.12 99.22 99.25

Shadow 86.79 94.84 88.30 94.21 99.37 99.74

OA 93.20 97.68 92.23 96.91 95.44 97.06

AA 91.16 97.71 90.94 96.49 94.86 98.6

Table 4.4: Pavia University. Some per-class accuracy records including those of Overall and

Average Accuracies for the EMP, NAMD, and EMAP set-ups.

4.4.3 Experiments with DFC Image

4.4.3.1 EMP

In the case of the DFC image, the set-up and the parameters are almost the same as those of

Pavia University. Only the differences are mentioned in the following.

The structuring elements are disk-shaped of different sizes, in pixels: {2, 7, 12, 17, 22, 27}.

This also means that the fourth mode of the tensor is of dimension K = 13 with the

arrangement shown in (4.2). After merging the first two modes, we obtain the tensor

T ∈ R664845×144×13. After that we obtain the compressed tensor G ∈ R1872×144×13.

As for the NCPD, we set the values of the rank to R = {15, 20, 30, 40}. The factor matrices

and the parameters of the CPD are initialized similarly to the case in Pavia University. For

TPCA, three to five principal components were chosen for the third-mode tensor unfolding

explaining the data by 99.60%, 99.72%, and 99.81% respectively, and four to six components

were chosen for the fourth-mode tensor unfolding explaining the data by 99.28%, 99.52%, and

99.69% respectively.

Discussion. In Table 4.5, we show some of the results with their reconstruction errors. In

this case, we only show the changes in the rank of the CPD, where we notice that as the value

of the rank goes higher, the reconstruction error improves, while the classification accuracy

doesn’t follow the same pattern as before even though it exceeds the values given by TPCA

in all cases. The best two overall accuracy values obtained by TPCA are shown in the table

in order to keep it consistent with Table 4.6. Additionally, CPD could bring better accuracy

results starting at 15 features compared to 30 features for TPCA. Figures 4.11b, 4.11d, 4.11f,

4.11h, and 4.11j show the corresponding classification maps.
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(a) EMP +

TPCA(5,5)

(b) EMP +

CPD(50,10)

(c) EMP +

CPD(50,20)

(d) EMP +

CPD(50,30)

(e) EMP +

CPD(50,40)

(f) NAMD +

TPCA(5,6)

(g) NAMD +

CPD(50,10)

(h) NAMD +

CPD(50,20)

(i) NAMD +

CPD(50,30)

(j) NAMD +

CPD(50,40)

(k) EMAP +

TPCA(4,4,3)

(l) Pavia University

Ground-Truth

(m) EMAP +

CPD(50,40)

(n) Classes Map

Figure 4.10: Classification maps for Pavia University HSI.
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Method No. of Features (R) Rec. Error % OA % AA %

EMP + TPCA(4,5) 20 - 83.20 85.64

EMP + TPCA(5,6) 30 - 83.38 85.93

EMP + CPD(50,15) 15 4.40 84.97 87.04

EMP + CPD(50,20) 20 3.35 84.78 86.87

EMP + CPD(50,30) 30 2.35 84.70 86.80

EMP + CPD(50,40) 40 2.01 84.79 86.97

Table 4.5: DFC. Some records of Overall Accuracy (OA) and Average Accuracy (AA), with

Reconstruction Error (Rec. Error) in case of CPD, for the EMP set-up. The features column

indicates the size of the feature space in the classification. The best two values given by TPCA

are shown. The cases when CPD does better are underlined.

4.4.3.2 NAMD

In the case of NAMD, for TPCA, three to five principal components were chosen for the

third-mode tensor unfolding explaining the data by 99.76%, 99.83%, and 99.87% respectively,

and four to six components were chosen for the fourth-mode tensor unfolding explaining the

data by 95.86%, 98.04%, and 99.21% respectively.

Discussion. In Table 4.6, we show some of the results. In this case, we notice that as the

value of the rank goes higher, both the reconstruction error and the classification accuracy

improve. Since the best classification accuracy given by TPCA showed a better classification

than the ones given by CPD, we included the second best as well. In this case, the classification

accuracy results given by CPD are around the range of those given by TPCA. Figures 4.11c,

4.11e, 4.11g, 4.11i, and 4.11k show the corresponding classification maps.

Method No. of Features (R) Rec. Error % OA % AA %

NAMD + TPCA(5,6) 30 - 83.76 86.10

NAMD + TPCA(3,6) 18 - 84.55 86.83

NAMD + CPD(50,15) 15 15.05 80.79 83.65

NAMD + CPD(50,20) 20 10.77 81.16 83.93

NAMD + CPD(50,30) 30 7.68 82.46 85.16

NAMD + CPD(50,40) 40 5.94 84.07 86.49

Table 4.6: DFC. Some records of Overall Accuracy (OA) and Average Accuracy (AA), with

Reconstruction Error (Rec. Error) in case of CPD, for the NAMD set-up. The features column

indicates the size of the feature space in the classification. The best two values given by TPCA

are shown. The cases when CPD does better are underlined.
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4.4.3.3 EMAP

Here, we used the same four types of attributes, where the choice of the threshold values was

also based on observed changes between transformations:

• Area of the region; λa = {300, 2000, 6000, 9000}

• Diagonal of the bounding box; λd = {20, 45, 75, 150}

• Standard deviation; λs = {20, 30, 40, 50}

• Moment of inertia; λi = {0.2, 0.3, 0.4, 0.5}

Consequently, we obtain a tensor T ∈ R
664845×144×9×4.

Following the same steps taken in the EMAP part of Pavia’s HSI, and considering the

larger block of data in the case of DFC, NMF is performed with a rank of 40, chosen with

a reconstruction error of 0.48%. As for the PCA part of the original image, five principal

components were chosen, explaining the original HSI with 99.87%.

As for the CPD, we choose a rank of 40. For TPCA, three principal components were

chosen for the third-mode tensor unfolding explaining the HSI by 99.15%, six components were

chosen for the fourth-mode unfolding explaining the data by 99.68%, and three components

were chosen for the fifth-mode unfolding explaining the data by 99.97%.

Table 4.7 shows some of the results. CPD showed a better classification accuracy with

40 features compared to 54 features in the case of TPCA. Figures 4.11l and 4.11m show the

corresponding classification maps.

Method No. of Features (R) Rec. Error % OA % AA %

PCA(5) 5 - 74.12 77.22

NMF(40) 40 0.48 78.83 81.82

EMAP 180 - 83.39 85.78

EMAP + PCA(15) 15 - 82.28 84.96

EMAP + TPCA(3,6,3) 54 - 81.32 84.30

EMAP + CPD(50,40) 40 1.95 83.19 85.76

Table 4.7: DFC. Some records of Overall Accuracy (OA) and Average Accuracy (AA), with

Reconstruction Error (Rec. Error) in case of CPD, for the EMAP set-up. The features column

indicates the size of the feature space in the classification. The best value given by TPCA is

shown. The cases when CPD does better are underlined.

Finally, Table 4.8 shows per-class results of Overall Accuracy and Average Accuracy of

selected examples from Tables 4.5, 4.6 and 4.7 in a side-to-side comparison including the three

morphological set-ups (EMP, AMD, and EMAP) and two decomposition methods (TPCA and

CPD). From TPCA to CPD, we notice again that the accuracy of some classes improved or
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worsened only slightly. As for significant differences, we notice that some classes are signifi-

cantly better identified using TPCA than using CPD, but in general it is rather better in the

case of CPD. For instance, class Commercial is better identified in the case of NAMD using

TPCA than using CPD, while it is better in the cases of EMP and EMAP using CPD than

using TPCA.

Method EMP % NAMD % EMAP %

TPCA(5,6) CPD(50,15) TPCA(3,6) CPD(50,40) TPCA(3,6,3) CPD(50,40)

Grass

Healthy

81.86 79.58 80.43 79.58 82.24 81.76

Grass

Stressed

82.80 84.02 85.05 98.21 82.70 84.30

Grass

Synthetic

100 99.60 100 100 100 100

Tree 84.28 90.81 79.45 96.11 87.87 79.92

Soil 98.95 98.67 100 99.52 97.44 99.14

Water 95.10 95.10 95.10 95.10 95.10 95.10

Residential 88.71 79.47 90.67 95.33 78.26 80.69

Commercial 71.03 83.09 70.65 43.96 41.40 75.21

Road 81.01 85.08 82.62 84.79 85.64 75.16

Highway 68.33 68.43 68.24 68.53 68.05 67.56

Railway 82.35 83.87 82.54 84.81 83.20 85.76

Parking Lot

1

73.87 79.73 87.22 69.83 82.99 81.94

Parking Lot

2

80.70 78.59 80.70 82.45 79.64 80.35

Tennis

Court

100 100 100 100 100 100

Running

Track

100 99.57 99.78 99.15 100 99.57

OA 83.38 84.97 84.55 84.07 81.32 83.19

AA 85.93 87.04 86.83 86.49 84.30 85.76

Table 4.8: DFC. Some per-class accuracy records including those of Overall and Average

Accuracies for the EMP and NAMD set-ups.

4.4.4 Unconstrained CPD

The emphasis in this work was on NCPD, which is more intuitive when it comes to physical

interpretation of the data, and has an additional potential advantage for semi-supervised

classification thanks to its contribution to unsupervised classification (e.g., Chapter 5 and

[102]), for which we leave some remarks in Section 4.5. However, we think that classifying the

data is still possible without the nonnegativity constraints. The advantage in this case is that

the decomposition without constraints is faster than that with constraints.

Considering that CPD without constraints is another way of rewriting the data in a tensor

decomposition format, it was worth showing some of the results even though they might

have no physical interpretation. In this case, the original tensor is still compressed and the

compressed version becomes the input to AO-ADMM. Since there are no constraints on the
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First, we show, for each of the setups, the overall accuracy and reconstruction error results

of 20 realizations in the box plots of figures 4.12 and 4.14 representing the HSI of Pavia

University and DFC respectively, followed by the tables 4.13 and 4.15 respectively that show

specific values of overall accuracy from the box plots; the lower adjacent, median and upper

adjacent of the boxes, and the overall accuracy corresponding to the minimal reconstruction

error among the 20 realizations. We notice in most of the cases a general increase in the overall

accuracy and a likewise decrease in the reconstruction error as the rank increases, and in most

of the cases the results are comparable to, or higher than, those found in tables 4.1, 4.2, 4.5

and 4.6 especially with higher values of the rank. The only exception to the latter is in the

AMD setup of the DFC image where the values of the overall accuracy fluctuate a bit, which

could be caused by a bad modeling of the classifier since cross-validation doesn’t always find

the most optimized solution for the hyper-parameters of SVM, but by looking at Table 4.15,

we notice that the range of the values is still comparable to a state-of-the-art method such as

TPCA.

4.5 Concluding Remarks

In this paper, CPD was proposed as a dimensionality reduction technique in the framework

of supervised spectral-spatial classification of hyperspectral data with spatial information be-

ing added using Mathematical Morphology as an application. In general, CPD provides an

intuitive approach to deal with such multi-modal feature data where the results in the decom-

position can be used for pixel-wise classification in a low dimensional feature space without

loss of information. The focus here was on NCPD (with big data compression), which fur-

ther provides a better understanding of the results that are distributed over the decomposed

factors, and where each factor describes one of the modes of the tensor in an interpretable

way. Experiments on two datasets and three different morphological settings were carried out

to explore the classification aspect of the proposed technique, compared to results obtained

through TPCA as a base algorithm in the framework of tensor modeling. The effect of some

parameters such as the number of iterations, the rank of the decomposition, the reconstruction

error, and the use of constraints was explored. The classification results were promising to

say that the data found in the first factor matrix of the CPD can be seen as pixel data and

hence classified.

This kind of application allows to go further. For instance, one way would be to explore the

potential unmixing aspect of using NCPD of hyperspectral data based on multi-modal feature

study (spectral and spatial features for instance) in the framework of unsupervised classifica-

tion or blind separation. This would better highlight (a) both the use of CPD compared to

other decomposition methods that have been used, and (b) that of nonnegativity constraints.

This application is explored in details in Chapter 5 including a study on “Extended Linear

Mixing Model” for hyperspectral unmixing problems in the case of tensors. Finally, we note

that there are some challenges for using the compressed NCPD. First, it may suffer from

long-time execution due to per-iteration compression and decompression steps. Second, due

to the iterative nature of its approximation, it may fall into local minima.
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(a) EMP: overall accuracy with respect to dif-

ferent values of the rank

(b) EMP: reconstruction error of the CPD with

respect to different values of the rank

(c) AMD: overall accuracy with respect to dif-

ferent values of the rank

(d) AMD: reconstruction error of the CPD with

respect to different values of the rank

Figure 4.12: Pavia University. Box plots of overall accuracy (left) and reconstruction error

(right) with respect to the rank of the CPD. Figures 4.12a-4.12b correspond to EMP and

figures 4.12c-4.12d correspond to AMD. Each box represents 20 decompositions, each carried

with a different initialization along with the corresponding value of the rank. Remarkable

values of overall accuracy are shown in Table 4.13.

EMP R = 10 R = 20 R = 30 R = 40

Lower Adjacent 77.42 88.06 88.61 91.82

Median 85.34 91.38 92.62 93.43

Upper Adjacent 90.96 94.13 94.83 94.98

Minimal Rec. Error 85.25 94.13 92.60 94.42

AMD R = 10 R = 20 R = 30 R = 40

Lower Adjacent 82.03 88.16 88.59 92.43

Median 84.76 90.70 91.51 93.31

Upper Adjacent 91.56 94.07 94.78 95.28

Minimal Rec. Error 91.56 89.47 93.96 95.28

Figure 4.13: Pavia University. Values of overall accuracy taken from the boxes of Figure 4.12.
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(a) EMP: overall accuracy with respect to dif-

ferent values of the rank

(b) EMP: reconstruction error of the CPD with

respect to different values of the rank

(c) AMD: overall accuracy with respect to dif-

ferent values of the rank

(d) AMD: reconstruction error of the CPD with

respect to different values of the rank

Figure 4.14: DFC. Box plots of overall accuracy (left) and reconstruction error (right) with

respect to the rank of the CPD. Figures 4.14a-4.14b correspond to EMP and figures 4.14c-

4.14d correspond to AMD. Each box represents 20 decompositions, each carried with a different

initialization along with the corresponding value of the rank. Remarkable values of overall

accuracy are shown in Table 4.15.

EMP R = 15 R = 20 R = 30 R = 40

Lower Adjacent 81.99 81.67 83.80 84.16

Median 82.77 83.88 84.30 84.75

Upper Adjacent 84.31 85.09 84.94 85.26

Minimal Rec. Error 85.49 83.95 84.16 84.16

AMD R = 15 R = 20 R = 30 R = 40

Lower Adjacent 82.30 82.11 80.33 80.46

Median 83.18 83.84 83.52 83.14

Upper Adjacent 84.78 85.13 85.46 85.44

Minimal Rec. Error 83.47 83.57 82.69 82.97

Figure 4.15: DFC. Values of overall accuracy taken from the boxes of Figure 4.14.
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Abstract

Following Section 2.5.2 and Chapter 4, in this chapter, hyperspectral unmixing is

explored using Canonical Polyadic (CP) decomposition based on a multi-feature

study taking into account not only the spectral diversity, but also an additional

physically distinctive feature diversity extracted from the image. By representing

them as tensors spanning modes of pixels, spectral features, and third-diversity fea-

tures, matrix models become insufficient. Moreover, CP decomposition is also de-

fined in the context of Extended Linear Mixing Model (ELMM), which accounts for

spectral variabilities present in the data. This work involves a deeper mathemati-

cal, physical, and graphical interpretation of ELMM for tensors and demonstrates

its advantages by incorporating Mathematical Morphology similarly to Chapter

4. The findings are quantitatively and qualitatively evaluated through synthetic

and real hyperspectral data and assessed from two perspectives: the quality of

extracted materials compared to related state-of-the-art, and the interpretation of

how spectral variability is modeled compared to patch-tensor unmixing.
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5.1 Introduction

In Chapter 4, we talked about an application of supervised classification using CP decomposi-

tion (CPD) and mentioned that CPD can be used in an application of blind source separation

(BSS). In this chapter, we talk about Hyperspectral Unmixing (HU) [10], which is a case of

BSS for hyperspectral images. In Section 2.5, we gave some background on HU and talked

about some of the works that involve matrix and tensor factorization. Among these works,

we mentioned a contribution of this thesis that explores and generalizes the application of

multi-feature unmixing and its importance in terms of tensor decomposition and ELMM with

mathematical and physical interpretations. In this chapter, we dive into the details and show

the experiments and results. The rest of this section recalls and continues from Section 2.5.2

and serves as an introduction to the following sections.

An important property of HSIs is that they contain pure and mixed pixels (see Figure 5.1).

Depending on the spatial resolution of the hyperspectral sensor, a pure pixel is one that

covers an area of the scene made of one type of material and reflects its spectral signature,

while a mixed pixel is one that covers an area containing multiple types of materials (whose

appearance may be homogeneous or heterogeneous) and reflects a mixed spectral signature.

HU [10] refers to the process of unmixing (separating) the HSI data into its fundamental

spectral composition, i.e., with respect to the spectral signatures of pure materials, also called

endmembers, which allows to understand and classify the different components of a scene.

Here, we are interested in HU as a tensor-based model in general terms (i.e., not restricted

to MM) where HSIs are represented with additional diversities. To begin with, and without loss

of generality, it is evident that having additional information gives more context on any type

of data and their distinctive features and behaviors, thus improving the blind identification

of the latent fundamental materials. As mentioned in Section 2.5.2.1, the majority of the HU

literature assumes that a HSI is represented as a matrix in order to fit for NMF techniques,

which could become insufficient for future applications of high-order data processing especially

in the presence of additional diversities. One way to overcome these limitations is through

tensor analysis, with advantages for HU:

• Unique solutions under mild conditions, thus requiring less dependence on a priori

Figure 5.1: Mixed and pure pixels of a HSI
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knowledge.

• Joint and intuitive multi-modal processing, which allows to naturally incorporate mul-

tiple modes of additional information within the process of unmixing in order to simul-

taneously extract materials with said multi-feature properties.

Another advantage that is explored as part of this work is that it is possible to achieve a

unique unmixing of HSIs using features extracted from the data itself, as well as improving

the identification of the materials, which is the case of Mathematical Morphology (MM) [57]

as shown in Chapter 4.

Motivated by the importance of high-order data and the potential of tensor-based HU in

jointly exploring multiple features (including the spectral ones), in this work, we propose a

general methodological study of hyperspectral multi-linear unmixing, which, at its base, joins

and extends the following points in the literature: (a) Blind feature extraction from high-

order data (inspired from [102]), (b) Dealing with spectral variability in HU through tensor

modeling (inspired from [103]), and (c) Exploiting the multi-modal relationships as much as

possible, with an emphasis on the role of additional diversities that are built using physically

meaningful transformations of the original HSI, with an example of MM, which has been

previously successfully implemented in HSI scene classification [56, 58, 57]. That said, before

expanding on the context of this study, we summarize its contributions as follows:

• Inspired by [103], we focus and expand on the relationship (5.4) between tensor CPD

and the ELMM model in more general terms by showing that it provides a common

theoretical ground for the aforementioned topics and generalizes the way HU is inter-

preted for high-order multi-feature data, i.e., regardless of the nature of the third-mode

diversity. For that, we also provide graphical and visual representations of the problem.

• We take advantage of this generalization to show the importance of unmixing high-order

HSIs that jointly incorporate multiple features of physically meaningful properties, one

of which is extracted from the original HSI. For example, in the case of MM, materials

are blindly identified based on spectral and spatial/morphological properties (e.g. size

and brightness of objects) instead of only the spectral ones.

• We explain in full details the connection between CPD and the problem of spectral

variability for HU. This is complementary to [103], where the connection was briefly

described and focused on the case of building a third-order HSI tensor from neighborhood

patches. In this regard, the significance is two-fold, abstract and applicative:

– Abstractly speaking, this allows to easily draw the connection between the functions

(or parameters) that construct the third-mode diversity (not restricted to patches)

and the expected quality and quantity of the extracted materials (including how

the spectral variability functions are influenced and defined).

– In terms of application, the choice of MM can be better to deal with spectral

variability than that of patches because MM promotes that pixels are selectively

connected to their neighbors based on shared spatial properties, which gives the
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data awareness of pixels connected as spatial objects of the same material, while

patches promote indifferent stacking of pixels within a spatial patch where the

pixels can correspond to different materials. Briefly speaking, in the case of MM,

CPD smooths out the spectral variabilities within similar materials.

• We propose a way to incorporate Abundance Sum-to-one Constraints (ASC) in the

computation of third-order CPD using the algorithm AO-ADMM.

At this stage, it is important to note that multi-linear unmixing can be slightly different from

classical spectral unmixing due to the involvement of additional information and the nature

of the results where, in general, multiple patterns are being observed and could influence the

result. For instance, compared to classical spectral unmixing, an additional diversity may

lead to a more specific separation of the materials of the scene thanks to incorporating more

information on the data. In the following, we expand on the related works and our proposal.

5.1.1 Motivation and Related Works

A direct approach to HU is the classical linear modeling of the problem, which is known as

the Linear Mixing Model (LMM) and can be directly posed as a NMF problem [10]. Figure

5.2 shows an illustration of the LMM problem through NMF: For a HSI matrix M ∈ R
I×J

containing I pixels (as rows) and J spectral bands (as columns), LMM assumes that each

pixel row mi ∀ i ∈ {1, . . . , I} can be expressed as the linear combination of R endmembers br:

mi =

R
∑

r=1

airbr (5.1)

such that all the values are nonnegative and that
∑R

r=1 air = 1 ∀ i ∈ {1, . . . , I}, where the

values of air stand for the fractional abundances of the endmembers (the proportions of end-

members in each pixel). The latter constraint is called the Abundance Sum-to-one Constraint

(ASC). This model is reformulated as M = ABT, subjected to nonnegativity and ASC.

Consequently, HU can be carried out by finding the two nonnegative matrices A ∈ R
I×R,

whose rows represent the fractional abundances at each pixel, and B ∈ R
J×R, whose columns

represent the estimated endmembers [10]. Nonnegativity of the factors ensures a part-based

additive representation since fractional abundances and spectral signatures are nonnegative,

and ASC ensures that the endmember composition sums to one for each pixel so that the pixels

lie inside a convex hull formed by the endmembers. Sometimes, sparsity is imposed assuming

that a pixel area represents a combination of only few endmembers, which also reduces the

problem of solution uniqueness in NMF [25, 111].

While LMM is seen as a direct linear model for HU, it is not enough to model real-life HSIs

due to the presence of spectral variabilities represented by nonlinear effects or illumination

conditions. One way to account to said effects is through Extended LMM (ELMM) [39],

which in general assumes additional degrees of freedom that account to the existing spectral

variabilities at the pixel level by introducing a pixel-dependent variability function f i : R
J →
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Figure 5.2: Classical matrix-based HU using NMF (i.e., Linear Mixing Model)

R
J , which maps each endmember br to a new spectral signature b

(i)
r that best reflects the

targeted variabilities:

mi =
R
∑

r=1

airf i(br) =
R
∑

r=1

airb
(i)
r . (5.2)

Dealing with spectral variability in HU using ELMM is an active topic that has seen a lot of

progress recently [104, 42, 40, 41, 103, 59]. Currently, the approaches can be put into three

categories depending on how f i is modeled [39]: (a) Spectral Bundles [104], (b) Computational

Models, and (c) Parametric Models including physical ones (e.g. Hapke model) [40] and

Constrained Least Squares (CLS) [104]. These models are usually incorporated in non-linearly

constrained NMF situations, but lately, a relationship was made between tensor CPD and

ELMM [103], i.e., expression (5.4), which becomes the core of our proposal by focusing on its

theoretical aspect and potential in generalizing multi-linear unmixing.

CPD and ELMM. Figure 5.3 shows an illustration of CPD of a third-order tensor with

spectral and spatial features. For a third-order tensor T ∈ R
I×J×K of rank R, CPD aims at

finding the three factor matrices A ∈ R
I×R, B ∈ R

J×R, and C ∈ R
K×R, such that:

T = Λ •
1
A •

2
B •

3
C ↔ T =

R
∑

r=1

ar ⊗ br ⊗ cr ↔ ti,j,k =

R
∑

r=1

ai,r bj,r ck,r (5.3)

where Λ ∈ R
R×R×R is a diagonal tensor of ones, and R is the number of extracted materials.

Here, CPD is a very suitable tool to separate third-order hyperspectral data having spectral

and spatial feature modes into three factor matrices: A for fractional abundances, B for

spectral features, and C for spatial ones (Figure 5.3). Now, as shown in [103], assuming that

T :,:,k ∀ k ∈ {1, . . . ,K} represents the k-th frontal slice of T , one can also write:

T :,:,k = ADiag{ck,:}B
T = AΨ(k)B

T = Af̃k(B)T (5.4)

⇐⇒ ti,:,k =
R
∑

r=1

air (brckr) =
R
∑

r=1

airfk(br) (5.5)

These two expressions resemble (5.2), but the major difference is that ELMM becomes depen-

dent on full frontal slices instead of independent pixels, and this is where the interpretation of
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Figure 5.3: An illustration of third-order tensor CPD where T is the data tensor. One pixel

of T represents a matrix of features (horizontal green slab) and associates to a row in A at

the same i-th index. Similarly, one slice of T (frontal yellow slab) represents a transformation

of the HSI and associates to a row in C at the same k-th index.

multi-feature HU is generalized. Looking at (5.4), the frontal slices, which may represent trans-

formations of the original HSI [57] or temporal evolution of a scene [102], i.e. T :,:,k = hk(M),

have a direct influence on the spectral variability function and the way spectral variability is

modeled, i.e. fk or Ψ(k), which is simply reflected as scaling factors in each row of C, i.e.

ck,:. As a result, each frontal slice is inherently factorized into a set of R scaled endmembers

where the endmembers themselves (the columns of B) are free of the frontal slices. For in-

stance, the endmembers of T :,:k are the set of vectors {ckrbr} ∀ r ∈ {1, . . . , R}, which also

means that R controls the number of extracted materials including the scaling factors, and

the latter represents the evolution of materials across the third mode for each frontal slice on

the endmembers. Intuitively, one can say that the effects of the transformations applied on

an image, or the natural evolution of a scene, on the fundamental materials can be linearly

visible through a tensor decomposition.

This version of ELMM, referred to as Regularized ELMM (RegELMM), was used in [103]

in order to impose a spatial regularization on the fractional abundances within a patch of

neighborhood pixels, rearranged as a tensor representation as shown in Figure 5.4, which,

through a low-rank CPD, smooths the variabilities of the spectral signatures of the pixels

that belong to the same patch. A main advantage of considering patch-HSI tensors is that,

compared to NMF where the spatial information is completely ignored, it would be possible

through a tensor representation to incorporate neighborhood information that smooths out

the spectral variabilities and maintain a low-rank decomposition.

Here, we note that while the concept of patches is efficient, it still ignores the physical

spatial properties of connected pixels, that is, the spectral variability is equally regulated

between pixels of a patch that may contain different types of materials, i.e., possessing different

spectral properties. For that, as an application, one way to consider such physical properties

is through Mathematical Morphology (MM), which has been successfully implemented in HSI
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Figure 5.4: Building a HSI tensor from neighborhood patches [103].

scene classification [56, 58, 57], where additional morphological features were incorporated as

a new diversity based on different size and brightness levels of the objects of the scene which

improved the classification accuracy of the materials. Compared to neighborhood patches,

morphological features promote dealing with spectral variability within groups of pixels sharing

similar spatial properties. Here, we emphasize on the role of additional diversities that are built

using spatial transformations of the original HSI that add physical significance on the objects

of the image. As such, building a tensor from neighborhood patches does not contribute new

physical input to the data, while building one from morphological transformations induces

knowledge of the size of objects and their brightness level in the process of unmixing, which

means that the number of extracted features can increase in the case of MM as the process

becomes more specific.

Low-rankness assumption of patch-HSI tensors. The claim that patch-HSI tensors do not

add new information to the data set appears when we look at the frontal slices individually.

If we suppose by definition that each pixel is followed by its neighboring ones along the third

mode as shown in Figure 5.4, then the frontal slices are only spatially-shifted versions of M ,

where T (1) = M (we refer to Figures 5.15 and 5.23 for examples of frontal slices of real patch-

HSI tensors). Since the patches are relatively very small in size compared to the dimensions

of real images, then the difference between the frontal slices is negligible. Recalling the direct

relationship between T (k) and f (k) (5.4), we can deduce that the set of spectral variability

functions ∀ k ∈ {1, . . . ,K} reflects the same information. As such, one can assume that the

approximation rank of a tensor built from patches is almost the same as that of M (i.e. the

same amount of underlying information).

In this sense, one expects that the approximation rank of a tensor built using MM can

be higher than that of M since we have more context on the data related to their sizes and

brightness levels. However, one can also choose the rank to be as much as that of M . We

observe that the former case promotes having a more distinctive separation of the materials

with spectral and morphological patterns, while the latter promotes spectral smoothing of
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variabilities based on a spatial-morphological regularization of the abundances.

5.1.2 Proposal Overview

In this work, we set a general framework for multi-feature HU as high-order data are becoming

more accessible nowadays. Under this framework, we have a HSI tensor with a third diversity

of physically distinctive features. Knowing that the second diversity represents the spectral

one, decomposing such tensors using CPD provides abundance maps (i.e. columns of A) with

double-feature tags based on the patterns found in the columns of B and C. As such, in terms

of spectral variability, C can be viewed as a matrix of scaling factors in its rows describing the

relevance of the endmembers to the frontal slices, and in terms of unmixing, it can be viewed

as third-mode physical patterns in its columns describing each of the materials.

In practice, we choose to build the tensor through MM, where we utilize the so-called Ex-

tended Morphological Profile (EMP) [6, 4] in order to build the tensor, after which we perform

the joint spectral-morphological unmixing step using Nonnegative CPD (NCPD) and enjoy its

properties of uniqueness and low-rankness. In Section 5.2, we further discuss the relationship

between CPD and ELMM in a new light through graphical and visual representations, and we

compare between patch-HSI and MM-HSI tensors as examples in this regard. Finally, we carry

out a series of experiments on synthetic and real HSI data using NMF, patch-HSI NCPD, and

MM-HSI NCPD. Through these experiments, we observe the differences between the tech-

niques themselves, give some remarks regarding the influence of constraints, and highlight the

manifestation of ELMM in the results. In order to carry out NCPD, we use the algorithm

“Alternating Optimization - Alternating Direction Method of Multipliers” (AO-ADMM) [53],

and propose a way to implement ASC in AO-ADMM for third-order tensors.

The rest of the chapter is organized as follows. In section 5.2, we talk about CPD and

ELMM. In section 5.3, we immediately talk about ASC and AO-ADMM for CPD knowing that

CPD has been fully introduced in earlier chapters. In section 5.4, we present the experiments

carried out on a synthetic HSI and two real HSI data sets. Finally, we draw some conclusions

in section 5.5.

5.2 Extended Linear Mixing Model

In this section, we elaborate on the relationship between NCPD and ELMM. First, we start

with a brief account on matrix-based ELMM with graphical and visual representations. After

that, we elaborate on the tensor-based RegELMM and compare its functionality to that of

the matrix-based model. Finally, we consider two examples of RegELMM where the third

modalities are patches and MM, which showcases some of how ELMM manifests with HSI

tensors and how MM differs from patches in terms of physical significance. We note that no

additional modalities are considered in ELMM. Moreover, RegELMM is an equivalent model

to NCPD; it is not restricted to a specific additional modality, but we the term is used to refer





102
Chapter 5. Hyperspectral Multi-feature Unmixing Through Tensor

Decomposition

two sample pixels {ms,mt} in figure 5.5b. Moreover, CLS can also be written as:

M = (A⊡Ψ)BT (5.7)

mi = aiΨ(i)B
T (5.8)

where Ψ ∈ R
I×R is the matrix that stores the scaling factors, Ψ(i) is the diagonal matrix

formed from the i-th row of Ψ, and ⊡ is the Hadamard product. Accordingly, the two

representations can be visualized as shown in figure 5.6. These mathematical, graphical, and

visual representations will be the key to showcase the RegELMM model, noting that here we

have only one data matrix M (compared to several frontal slices in the tensor case) and the

focus is at the pixel level (compared to the level of whole frontal slices in the tensor case).

Figure 5.6: Visualization of equations (5.7) (top, using Hadamard product) and (5.8) (bottom,

using matrix product). Ψ(i) is the diagonal matrix formed from the i-th row of Ψ. The color

code of the bottom part follows that of figure 5.5b.

5.2.2 Contribution: Tensor-based ELMM

Here, we talk about RegELMM in general terms (regardless of the application) comparing it

to classical ELMM, then we talk about the cases of patches and MM as two of its examples.



5.2. Extended Linear Mixing Model 103

In [103], CPD was defined as an equivalent model to a regularized version of ELMM

(RegELMM) with an application on patch-HSI tensors. First, the definition stems from the

CPD representation shown in equation (5.4) for one frontal slice and equation (5.5) for one

pixel of the frontal slice. This indicates that each row of C is supposed to represent the

scaling factors at the level of its corresponding frontal slice. Accordingly, the expressions are

visualized as shown in figure 5.7. Moreover [103], RegELMM imposes a spatial regularization

Figure 5.7: Visualization of equation (5.4) following the color scheme of figure 5.3. Ψ(k) is the

diagonal matrix formed from ck,:. The color code follows that of figure 5.8a.

on the abundances which can be seen through the cost function of NCPD, which would look

like a coupled matrix decomposition (with respect to the frontal slices) having A as common

factor and B subjected to scaling variabilities. Now, we point out the following:

• In RegELMM, there are as many variability functions (and convex hulls) as the frontal

slices of the tensor, which is significantly lower than the number of pixels (K ≪ I).

• In RegELMM, one row of R scaling factors in C corresponds to a full frontal slice and is

shared by all the pixel rows of A, while in classical ELMM, each row of scaling factors

in Ψ corresponds to one pixel of M and interacts with only one row of A. This clearly

appears when we compare between the expressions (5.8) and (5.4) and figures 5.6 and

5.7.

• In a graphical representation, and supposing that ASC is imposed, RegELMM suggests

that each convex hull contains I pixels as roughly illustrated in figure 5.8a for three
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spectral signatures {b1, b2, b3} and two frontal slices, where we can also see that the

relative coordinates of the pixels inside each convex hull are the same since each row of

C interacts with all the elements of A.

• As the frontal slices have physical tags related to how the third diversity is defined, the

scaling factors of C reflect the corresponding changes that are present across the third

mode on the extracted abundance and spectral components.

Regarding the last point, in other words, the groups of pixels or the features of the scene that

are highlighted or targeted by each acquisition (e.g. time) or transformation (e.g. patches,

MM) are reflected by the scaling factors in C. For example, if we suppose that T (k) is a

transformation of M that highlights areas with relatively low brightness, ck,: is expected

to model the corresponding variabilities with relatively low scaling factors, which is roughly

illustrated in figures 5.8b and 5.8c in the cases of patches and MM respectively with four

column-components {b1/c1, . . . , b4/c4} and two frontal slices. In the following, we talk about

these two examples.

5.2.2.1 Patches

As described earlier, the frontal slices of patch-HSI tensors are essentially shifted versions of

the original HSI, with T (1) representing the 0-shift. Regarding the spatial regularization aspect

of RegELMM, when R of NCPD is as low as the value used for NMF, this type of shifting

imposes a patch-local smoothing on the abundances. Intuitively speaking, compared to NMF,

it looks as if the pixel’s matrix-representation in NCPD is aware of its local neighborhood.

The size of the patches are relatively very small with a radius of 1 to 3 pixels. Considering

the frontal slices separately, 1- or 2-pixel shifts are almost negligible for big real HSI, so the

highlighted information contained across the frontal slices is almost the same. Looking at

figure 5.7, we expect that the set of Ψ(k) are almost similar given that the rank of such a

tensor is very low. Correspondingly, in a graphical representation, we expect the convex hulls

to almost coincide.

Now, if the value of R increases, the additional abundance maps are expected to represent

spatially shifted versions of the fundamental materials since the third-diversity is based on

“shifting” information, which does not provide any new distinctive characteristics to the objects

of the scene. This point is roughly illustrated in figure 5.8b where we have three materials:

Vegetation, Metal Sheets, and Streets, but NCPD is carried out with R = 4. Here, we see

that the convex hull of T (1) gives a high scaling factor at b1 and a low one at b4, while that

of T (2) gives the opposite but with almost the same quantity, but both convex hulls give the

same scaling factors at b2 and b3. This is due to the fact that the materials are present with

almost the same quantity in both frontal slices.

Finally, patch-HSI tensors are good candidates to impose local smoothing in HU appli-

cations, but they cannot be used for multi-feature unmixing. As such, C is just a matrix of

scaling factors with a low row-rank representation.
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(a) RegELMM (General)

(b) RegELMM (Patches) (c) RegELMM (MM)

Figure 5.8: Graphical representations of (a) general RegELMM in the case of three spectral

signatures and two sample frontal slices, and (b) patch-RegELMM and (c) MM-RegELMM in

the case of four spectral signatures (two of which have different third-diversity patterns) and

two sample frontal slices. The relative coordinates of the pixels in the convex hulls (i.e. A)

must be the same.

5.2.2.2 Mathematical Morphology

Forming a MM-HSI tensor is explained in details in Section 4.2. In general, the frontal slices are

created from successive morphological filtering of the original HSI, with each slice associated

with a physical tag in terms of brightness and scale parameters, so, in addition to the spectral

features, each pixel shows distinctive spatial ones. From a spatial regularization point of view,

it can be seen as a smoothing within a group of shared (predefined) morphological parameters,

which gives the pixels awareness of their surrounding brightness and scale characteristics. In

the experiments of this chapter, we adopt the tensor-based EMP representation of Chapter 4
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where the two modes of pixels are rearranged as one. Then we have a third-order tensor of

dimensions I × J ×K.

Looking at figure 5.7, since each image transformation in MM is seen as a characteristic of

brightness and scale, we expect that the set of Ψ(k) reflect the changes of brightness and scale

levels of the extracted materials per frontal slice. Moreover, if the value of R increases, NCPD

is expected to show abundances with different morphological properties as well as the spectral

ones. This point is roughly illustrated in figure 5.8c. Here, we see that the convex hull of

T (1) gives high scaling factors at b1, b2, and b3, which correspond to small scales (supposedly

highlighted by T (1)), and a low scaling factor at b4, which corresponds to large scales. On the

other hand, T (2) shows the opposite since it supposedly highlights large features.

As such, in the case where the transformations hold physical significance, so does

RegELMM, which jointly benefits from a spatial regularization and a multi-feature unmixing

with modeled variabilities. Consequently, C holds a two-way significance: (a) scaling factors

in the rows, and (b) morphological patterns in the columns.

Finally, we note that one has to be careful when deciding the number of transformations

(i.e. the value K) and their parameters, which should be enough for the tensor to have

meaningful features. For instance, a very small value of K may lead to poor spatial diversity,

and a very high value of K may lead to spatial redundancy and rank issues.

5.3 Abundance Sum-to-one Constraints in CPD

In this section, we consider that the elements of NCPD including AO-ADMM and the discus-

sions on uniqueness have already been introduced in the earlier chapters, especially in Chapter

2. As such, we suffice by talking about how we implement ASC constraints in AO-ADMM for

third-order tensors.

For the modeling and computation, in order to model the CPD problem as close as possible

to LMM, we adopt the ASC constraints. The key point is to extend the concept from NMF

to NCPD. In the following, items 1 through 4 explain the initialization of T ∈ R
I×J×K and

B ∈ R
J×R, and item 5 denotes their updates after each AO-ADMM iteration (i.e. after the

three ADMM sub-problem updates):

1. ASC means that:
∑R

r=1 air = 1 ∀ i ∈ {1, . . . , I}.

2. Knowing that ti,j,k =
∑R

r=1 airbjrckr, and assuming that λrrr = 1 ∀ r, in order to arrive

at
∑R

r=1 air = 1, we start by introducing a vertical column in T such that ti,J+1,K = δ

∀ i ∈ {1, . . . , I} (where δ > 0).

3. Correspondingly, we introduce a row vector in B such that bJ+1,r = δc−1
K,r ∀ r ∈

{1, . . . , R}. Again, knowing that ti,j,k =
∑R

r=1 airbjrckr, this verifies that ti,J+1,K =
∑R

r=1 airδc
−1
K,rcKr = δ.
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4. However, the row vector bJ+1,: in B also corresponds to a whole slice in T , i.e.,

T :,J+1,:. Then ∀ k ∈ {1, . . . ,K − 1}, T should be updated following ti,J+1,k =

δ
∑R

r=1 air(ckr/cK,r).

5. Finally, we introduce the per-iteration updates of T and B, denoted by T̃ and B̃, which

are applied after each AO-ADMM iteration:

T̃ =

[

T (k) | δ
[

∑R
r=1 air(ckr/cK,r)

]

∀ i∈{1,...,I}

]

∀ k∈{1,...,K}

,

meaning that each frontal slice in T has an additional column that is updated following

δ
∑R

r=1 air(ckr/cK,r) ∀ i ∈ {1, . . . , I}.

B̃ =





B

δ
[

c−1
K,r

]

∀ r∈{1,...,R}



 , δ > 0

meaning that B has an additional row that should be updated following δ
[

c−1
K,r

]

∀ r ∈

{1, . . . , R}. The updates of T̃ and B̃ theoretically ensure that the next AO-ADMM

iteration takes into account that
∑R

r=1 air = 1 ∀ i ∈ {1, . . . , I}.

5.4 Experiments and Results

In this section, we talk about the experiments that were carried out and discuss the results.

First, we start with a description of the HSI datasets that were used. Then, we show some

differences between NMF and NCPD over a synthetic HSI example. After that, we present

and discuss the results of each of the real HSI separately. For each real HSI, the results are

presented under two main categories:

• A comparison of HU between NMF and NCPD, which focuses on the multi-feature

unmixing aspect by showing qualitative and quantitative comparisons of the extracted

features as well as the use of constraints.

• A analysis of ELMM, which focuses on the spatial regularization and spectral variability

aspects by showing a comparative analysis between patch- and MM-HSI NCPD done on

real data based on Section 5.2.

In each experiment, among 20 random initializations of the factor matrices, the result with

the minimum root mean squared error (RMSE) is chosen. The estimated spectral signatures

of B are identified based on their minimum spectral angular distance (SAD), in degrees, with

respect to the reference spectra of the HSI:

SAD(~e,~b) = arccos

(

~e · ~b

‖~e‖ × ‖~b‖

)

(5.9)
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The maps and plots that are presented here as the results of the experiments represent the

columns of the factor matrices. In all of the following, the term NMF refers to Sparse-NMF

(i.e. sparse over A), while NCPD refers to CPD with only nonnegativity imposed.

Finally, we note that quantitative validation for abundance maps is usually not evident,

so we rather present a qualitative comparison in this case. In a future submission of this

work, particularly with the urban dataset where ground-truth fractional abundance maps are

provided, we plan a quantitative comparison on the estimated fractions noting, however, that

it is still not clear how to quantitatively compare the abundance maps between matrix-based

ground-truth and tensor-based results since the latter are usually more specific in terms of

unmixing the components (as shown later in this section).

5.4.1 Description of Data Sets

5.4.1.1 Synthetic HSI

The synthetic HSI (figure 5.9a in false colors) has dimensions 128 × 128 and contains six

objects that vary in size (figure 5.9d). Three spectral signatures, {Street, Vegetation, Metal

Sheets}, were taken from the HSI of Pavia University (by averaging their reference pixels)

and downsampled to 26 bands (figure 5.9b). Each object was assigned a mixture of the three

signatures (figure 5.9c) such that every two signatures are close-looking. Then, the rank of

the matricized HSI is 3. As for the MM-HSI tensor, morphological filtering was done using

Openings by reconstruction with successive sizes of the SE, and the corresponding frontal

slices are shown in figure 5.9e in grayscale. Then, the rank of the tensor is 6.

5.4.1.2 Pavia University

This HSI was acquired by the ROSIS sensor over the University of Pavia in Italy. Its spatial

dimensions are 610 × 340 with a geometric resolution of 1.3 meters, and it consists of 103

spectral bands. The groundtruth (GT) image is included in the data set and it consists

of nine classes (figure 5.10b). We use the pixels of the GT classes to extract a spectral

reference of the nine classes (as endmembers) by averaging their spectral responses for each

class. Figures 5.10a, 5.10b, and 5.10c show the HSI in false colors along with its spatial GT

and extracted spectral reference respectively. In figure 5.10c, some classes have very similar

spectral signatures (e.g. Asphalt, Gravel, Bitumen, and Bricks). Such classes are sometimes

confused when the extracted signatures are compared to the reference, so they are treated as

one especially that unmixing is blind.



5.4. Experiments and Results 109

(a) False colors

(b) Endmembers (c) Spectra

(d) The different objects of the image

(e) Morphological filtering of the image

Figure 5.9: The different elements of the synthetic HSI tensor

(a) Pavia. False colors (b) Pavia. Spatial GT (c) Pavia

Figure 5.10: Pavia HSI in false colors and its spatial groundtruth (GT)
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5.4.1.3 Urban

This HSI was acquired over an urban area at Copperas Cove, US by the HYDICE sensor.

Its spatial dimensions are 307 × 307 pixels with a geometric resolution of 2 meters, and it

consists of 162 spectral bands. The GT image is included in the data set and it consists of

four endmembers used as a spectral reference (figure 5.11b). Figures 5.11a, 5.11b, and 5.11c

show the HSI in false colors along with its abundance GT and spectral reference respectively.

(a) Urban. False colors

(b) Urban. Abundance GT (c) Urban

Figure 5.11: Urban HSI in false colors and its abundance GT. Spectral references of Pavia

and Urban HSI

5.4.2 Results - Synthetic Data

Here, we compare the results of unmixing a synthetic HSI between NMF and NCPD as simple

examples on the previous discussions. We note that (a) the ideal ranks of NMF and NCPD

are R = 3 and R = 6 respectively, (b) the GT tensor is built such that Kruskal’s condition
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(2.19) is verified, and (c) in the case of NCPD, figures 5.9d and 5.9c are seen as the abundance

and spectral GT of the tensor respectively.

Looking at figure 5.12, we see that NMF unmixes the data based only on spectral features,

while looking at figure 5.13, we see that NCPD does it based jointly on spectral and spatial

features. Moreover, we notice through figures 5.12b and 5.12c that NMF does not reach its GT

(figure 5.12a) without constraints, while we see through figures 5.13a and 5.13b that NCPD

perfectly recovers the GT components in A and B respectively.

(a) GT components (b) NMF (no ASC) (c) NMF (ASC)

Figure 5.12: The GT and NMF results of the matricized synthetic HSI

As for C, the morphological patterns shown in figure 5.13c reflect how each object was

filtered across the frontal slices as shown in figure 5.9e. In general, the quantity of the objects’

existence in each of the slices is the same, which is reflected by plots that are horizontal across

the morpho-indices where the objects remain unfiltered, and drop to 0 where the objects

are filtered out. For example, A1 represents Object 6 (the circle), which remains unfiltered

across all the slices, which is reflected by a constant plot of C1. On the other hand, A4 is

filtered out after the third frontal slice, which is reflected by a drop of C4 to 0 after the third

morpho-index.

Now, we give some notes regarding the SAD values obtained by NCPD and the identifica-

tion of the components. Objects 2, 3 and 6 are assigned pure elements, which is respectively

reflected by 0 SAD values in the columns {B3, B6, B1}. On the other hand, Objects 1, 4 and
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5 are assigned mixtures with a majority of 80% Street, 70% Vegetation and 60% Metal Sheets

respectively, and since the unmixing respectively separated them in the individual columns

{B5, B2, B4}, their endmember fractional abundances are not identified, but their major

compositions are. Hence, unlike NMF, NCPD does not necessarily observe fractional sum-to-

one abundances from a pure spectral perspective. The interpretation of the decomposition

and the identification of components become different and sometimes more specific depending

on the third-mode diversity.

Finally, this was indeed a simple and easy example in order to build an intuition for more

complicated structures, which is the case for real HSI that we present next.

(a) Components of A

(b) Components of B (c) Components of C

Figure 5.13: NCPD results (without constraints) of the synthetic MM-HSI tensor
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5.4.3 Results - Pavia University

In this section, we present the experiments carried out on the HSI of Pavia using NMF and

NCPD. We start by explaining and comparing the results of NMF and NCPD. After that,

we focus on the RegELMM analysis and properties by comparing the cases of patch-HSI and

MM-HSI tensors. The MM-HSI tensor is built using EMP with Openings and Closings by

reconstruction as explained in Section 5.2.2.2. The structuring elements are disks with the

successive radii (in pixels): {2, 7, 12, 17}, which corresponds to K = 9 frontal slices shown

in figure 5.14 in false colors from Closings to Openings by reconstruction. The patch-HSI

tensor is built using 3× 3 patches, which corresponds to K = 9 frontal slices shown in figure

5.15. In both cases, after reordering the pixels in lexicographic order, the data tensor has the

dimensions 207400 × 103 × 9. As for the rank, we find that R = 4 and R = 8 are the best

values for NMF and NCPD respectively.

Figure 5.14: False colors of the transformations that form the EMP of the MM-HSI tensor

of Pavia. The differences across the slices are clearly noticeable. This supports the physical

significance of MM for unmixing in RegELMM (i.e., if we project these slices on figure 5.7,

we can tell how the variability function through Ψ(k) will be affected by the morphological

characteristics).

Figure 5.15: False colors of the slices that form the 3 × 3 patch-HSI tensor of Pavia. The

shifts across the slices are not noticeable, so they look visually the same. This is why patches

have no physical significance for unmixing in RegELMM (i.e., if we project these slices on

figure 5.7, we can tell how the variability function through Ψ(k) represents almost the same

information for each slice).

5.4.3.1 NMF Results

Figure 5.16 shows the abundance maps and the spectral signatures obtained in A and B

respectively. Above each abundance map, we see the class that was assigned to it based on

the minimum SAD value that is shown as well.
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First, we look at the first three components, Trees, Bare Soil, and Metal Sheets. Their

spectral signatures that appear in figure 5.16b look very similar to those of the reference except

for that of Bare Soil (B2), which is slightly different, and the corresponding SAD values are

relatively low. Looking at the abundance maps, we see that A1 focuses on some tree and

vegetation areas, A2 focuses on some soil and bricks areas, and A3 focuses on metal sheets

areas. However, we notice that other areas of the scene do not or barely appear (asphalt

road, brick parking lots, other soil areas, etc) due to the insufficiency of LMM to model

their variabilities, which manifests fully in the Shadow component. Regarding the latter, the

spectral signature looks slightly similar to the reference, but the shadows in the map are barely

visible due to their relatively very low brightness.

(a) Components of A

(b) Components of B

Figure 5.16: Pavia. NMF results (with ASC) of the matricized HSI for R = 4

5.4.3.2 NCPD Results

Under different constraints, figures 5.17 and 5.18 show the abundance maps, spectral signa-

tures, and morphological patterns obtained in A, B, and C respectively. Regarding the figures

and plots, we note that matrix and tensor decomposition models suffer from an unavoidable
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scaling ambiguity of the components such that ∀αr ∈ R
∗:

T =

R
∑

r=1

(αrα
−1
r )ar ⊗ br ⊗ cr =

R
∑

r=1

ar ⊗ (αrbr)⊗ (α−1
r cr)

which means that the columns of the matrices may not be scaled correctly, and more specif-

ically, that the scaling factors of C may not represent the true ones. As such, we choose to

show the normalized versions of the columns of B for a better visual comparison with respect

to the spectral reference, but we show those of C without modification.

First, we start with figures 5.17 and 5.18, both of which represent NCPD with ASC,

but the former does not impose sparsity while the latter does. Between the two figures, the

components look almost the same. In the following, we look into each of the factor matrices

separately (from the perspective of figure 5.17). Seeing as the components of the figures are

not sorted in the same order, we make the following correspondences from the perspective of

A, which makes it easier to associate the differences:

Figure 5.17 A1 A2 A3 A4 A5 A6 A7 A8

Figure 5.18 A3 A1 A2 A5 A4 A6 A7 A8

NCPD Abundance Maps: In general, we notice through figure 5.17a that the decomposition

is done based jointly on spectral and morphological properties with fairly good results. The

components can be put into three groups: (a) {A1,A2,A6}, (b) {A3,A5,A7,A8}, and (c)

{A4}.

A1, A2, and A6 were identified as Trees. A1 highlights big vegetation areas like meadow,

A2 highlights small vegetation areas like trees, and A6 highlights vegetation with low illumi-

nation like shadows and some bare soil and meadow areas. Here, we note that the reference

spectra of Trees and Meadow look similar, and that that of Bare Soil comes between them

and the group of Bitumen-like spectra. As such, we notice that areas of bare soil can appear

in the abundance maps that belong to both groups of vegetation and bitumen.

A3, A5, A7, and A8 were identified as Gravel and Bitumen. A3 focuses on small-to-

medium bare soil and gravel areas and roads, A5 highlights big connected areas of artificially

constructed objects such as roads (asphalt), building roofs (bitumen, bricks and gravel), and

parking lots (bricks), A7 highlights some relatively dark parking lots and building shadows,

and A8 shows tiny bright dots which represent vehicles. As mentioned earlier, the reference

spectra of Bitumen, Gravel, Asphalt Road, and Bricks look similar.

A4 was identified as Metal Sheets. This component looks similar to the one obtained by

NMF, but with better highlighting of the components.

Now, compared to the Trees component obtained using NMF, we have three components,

each of which represents vegetation-related features of certain scale and brightness properties

and highlights them better, especially the shadows, which can be attributed to the RegELMM

property.
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(a) Components of A

(b) Components of B (c) Components of C

Figure 5.17: Pavia. NCPD results (with ASC) of the MM-HSI tensor for R = 8

Compared to the Bitumen component obtained from NMF, we have four components of

differently highlighted spatial features that were not observed in the case of NMF like asphalt

roads and shadows.

NCPD Spectral Components: Here, we are interested in the quality of the spectral sig-
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(a) Components of A

(b) Components of B (c) Components of C

Figure 5.18: Pavia. NCPD results (with Sparsity and ASC) of the MM-HSI tensor for R = 8

natures and their SAD values. In general, the plots of figures 5.17b and 5.18b reflect the

features that appear in their corresponding abundance maps. Compared to the SAD values

obtained using NMF, those obtained using NCPD are lower or comparable. The components

are grouped similarly to those of A:
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• B1, B2, and B6 are detected as vegetation with low minimal SAD values. While they

look almost collinear, their corresponding components in A and C explain the results

well, which applies to the other components.

• B3, B5, B7, and B8 were detected as Bitumen and Gravel. B5, B7 and B8 are very

close to the reference spectra. This is not the case for B3, which is similar to Bare Soil

obtained using NMF. The SAD values are slightly improved when sparsity is imposed.

• B5 shows the Metal Sheets pattern.

NCPD Morphological Components: Here, we are interested in the significance of the pat-

terns and their relevance to the original HSI image. First, looking at the graphs of figure 5.17c

and 5.17c, we observe four main patterns that can be associated to the chosen morphological

parameters:

• C6 and C7 correspond to dark features like shadows, i.e. objects that have low bright-

ness or illumination. These two curves have higher values when k (the morpho-index)

corresponds to Closings by reconstruction, then continue decreasing towards Openings

by reconstructions.

• C2, C3, and C4 correspond to small features. These curves have higher values when k

corresponds to Openings and Closings by reconstruction with small SE.

• C1 and C4 correspond to big features. These curves have higher values when k corre-

sponds to Openings by reconstruction with big SE.

• C8 corresponds to the tiny vehicles. The curve is very high when k corresponds to the

Closing by reconstruction with the smallest SE, and to the original image.

Now, knowing that the index k = 5 corresponds to the fifth row of C, which is responsible

for reconstructing the original HSI slice inside the tensor, it is interesting to see how the scaling

factors are reflected in the original HSI, so we note the following by looking at figure 5.17c

where k = 5:

• C6 and C7 have low values (dark shadowy features).

• C2, C3, C4, and C8 have high values (relatively bright features including those of

vehicles).

• C1 has a slightly low value (dark asphalt roads, building roofs, parking lots, bare soil

areas and meadow).

These relationships show the dual significance of C (columns and rows) and how NCPD is able

to highlight some features while at the same time reconstruct the original image. They are

also associated to RegELMM, which we talk about next and compare the results to patch-HSI

tensors.
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5.4.3.3 ELMM Analysis, Comparison Between Patches and MM tensors

Here, we are interested in the properties of RegELMM, which can be showcased through the

comparison between the cases of patches, where the model has no physical significance, and

that of MM, where the model contains scale and brightness characteristics. We have two

tensors based on patches and MM, and we decompose them using NCPD with ASC. Since

patch-HSI tensors are expected to be decomposed using the rank of NMF, we compare the

results for both tensors when R = 4. This demonstrates the spatial regularization aspect of

MM when the rank is low. Additionally, in order to demonstrate how patch-NCPD shows

“duplicated” components as the rank increases, we we compare the results for both tensors

when R = 8. We compile the discussion into three stages: (a) figure 5.19 which represents the

patch-HSI NCPD where R = 4, (b) figure 5.20 which represents the MM-HSI NCPD where

R = 4, and (c) figure 5.21 which represents the patch-HSI NCPD where R = 8.

(a) Components of A

(b) Components of B (c) Components of C

Figure 5.19: Pavia. NCPD results of the Patch-HSI tensor for R = 4

Looking at figure 5.19, we start with the abundance maps. A1 and A4 represent Trees

and Metal Sheets and can be compared to those obtained by NMF in figure 5.16. As for A2

and A3, they represent Gravel and can be associated to the Bare Soil component obtained by
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(a) Components of A

(b) Components of B (c) Components of C

Figure 5.20: Pavia. NCPD results of the MM-HSI tensor for R = 4

NMF. Indeed, A2 and A3 look the same, but in fact, one of them is a slightly shifted version

of the other. Regarding the spectral components, they reflect their corresponding abundance

maps with significantly very low SAD values. Considering the similarity between A2 and

A3, we notice that B2 and B3 almost coincide. Finally, the most interesting part is perhaps

the plot of C. Initially, one might expect the curves to be straight since, quantitatively, the

collective variability is supposed to be the same for patches. However, while it shows that

C1 and C4 are almost straight, it is not the case for C2 and C3 separately, but collectively

it is. For example, we see that where one of them is high, the other is low. In part, this

observation means that C2 represents the shifts between k = 1 and k = 5, and C3 represents

those between k = 6 and k = 9. In another part, the two components fluctuate in a way that

reflects the constant variability (i.e. to maintain the quantitative balance) across the frontal

slices.

Looking at figure 5.20, we see that A2 and A3 represent Trees and Metal Sheets and can be

compared to those obtained by NMF. As for A1 and A4, they have more interesting features

that clearly reflect the “morphological awareness” of the spatial regularization property of

RegELMM: A1 highlights additional areas like asphalt roads and bare soil with respect to the
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(a) Components of A

(b) Components of B (c) Components of C

Figure 5.21: Pavia. NCPD results of the Patch-HSI tensor for R = 8

cases of patches and NMF, and A4 clearly shows the shadow areas, which is not the case for

patches and NMF. The corresponding spectral and morphological patterns can be explained

as was done in section 5.4.3.2. Moreover, the SAD values are significantly very low.

Looking at figure 5.21, the same comments as those of R = 4 can be made but with more

duplicated maps. The sets of duplicates are {A1,A3,A4} and {A2,A5,A6,A7}.



122
Chapter 5. Hyperspectral Multi-feature Unmixing Through Tensor

Decomposition

5.4.4 Results - Urban

In this section, we present the experiments carried out on the Urban HSI using NMF and

NCPD. We go through the same order as the case of Pavia. In general, we notice that the

observations are the same as Pavia’s, so in order to avoid repetition, we briefly go over the

results. The MM-HSI tensor is built using the same technique but with SE of successive radii

(in pixels): {1, 4, 7, 10}, which corresponds to K = 9 frontal slices shown in figure 5.22. The

patch-HSI tensor is built using 3×3 patches, which corresponds to K = 9 frontal slices shown

in figure 5.23. Consequently, both data tensors have the dimensions 94249× 162× 9. As for

the ranks, we also choose the values R = 4 and R = 8 for NMF and NCPD respectively.

Figure 5.22: False colors of the transformations that form the EMP of the MM-HSI tensor

of Urban. The differences across the slices are clearly noticeable. This supports the physical

significance of MM for unmixing in RegELMM (i.e., if we project these slices on figure 5.7,

we can tell how the variability function, through Ψ(k), will be affected by the morphological

characteristics).

Figure 5.23: False colors of the slices that form the 3 × 3 patch-HSI tensor of Pavia. The

shifts across the slices are not noticeable, so they look visually the same. This is why patches

have no physical significance for unmixing in RegELMM (i.e., if we project these slices on

figure 5.7, we can tell how the variability function through Ψ(k) represents almost the same

information for each slice).

5.4.4.1 NMF Results

Figure 5.24 shows the abundance maps and spectral signatures of A and B respectively.

We obtain four components with relatively low SAD values and good abundance similarity

with respect to the reference. We just note that some dark areas like asphalt roads are not

highlighted.

5.4.4.2 NCPD Results

Figure 5.25 shows the components of A, B, and C. To begin with, we note that the reference

spectra of Tree and Grass are close. In the following, we group the discussion from the per-

spective of figure 5.25a. Regarding figures 5.25b and 5.25c, the comments on the spectral and

morphological patterns are the same as those made for Pavia, but briefly speaking, the SAD
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(a) Components of A

(b) Components of B

Figure 5.24: Urban. NMF results (with ASC) of the matricized HSI for R = 4

values are either lower or comparable to those of NMF, and the plots reflect the qualitative

features that appear in their corresponding abundance maps.

A1, A2, A4, and A6 were identified as Tree and Grass. A1 highlights grass areas and

fields which looks similar to the Grass component of NMF. A2 and A4 respectively highlight

small and big tree areas and together they correspond to the Tree component of NMF. A6

highlights dark vegetation areas like shadows (we can see that through C6 as well).

A3, A5, and A8 are identified as Asphalt Road. A8 seems to correspond to shadow features

(judging from C8), but it is not certain, so we skip it. A3 highlights small road areas such as

dirt and disconnected narrow streets, while A5 highlights large road areas like the main road

and the connected pathways. Here, the asphalt roads are better highlighted, but we notice

that the big roof is also highlighted (in A5), which appears in the case of NMF but not in the

abundance reference.

A7 is identified as Roof and highlights both small and large building roofs.

5.4.4.3 ELMM Analysis, Comparison Between Patches and MM tensors

Having the same interests and setup as the case of Pavia, we just note that here we present

the results only for R = 4 to avoid repetition. That said, figures 5.26 and 5.27 represent
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(a) Components of A

(b) Components of B (c) Components of C

Figure 5.25: Urban. NCPD results (with ASC) of the MM-HSI tensor for R = 8

patch-HSI and MM-HSI NCPD respectively. For both figures, we notice a significant drop in

the SAD values of Roof compared to NMF, and that the big roof feature appears only faintly

in another component.

Looking at figure 5.26, first, we notice that the abundance map for Grass is missing and

that the asphalt road is not highlighted well. A1 and A4 represent Tree and Roof respectively,

and A2 and A3 represent Asphalt Road and are “duplicates”, which reflects in the signatures of

B2 and B3. Moreover, we can see the constant variability (i.e. quantitative balance) patterns

in the plot of C that was observed in the case of Pavia.

On the other hand, looking at figure 5.27, A1 highlights the roads and partially some grass

areas, A2 highlights trees and partially some grass areas, and A3 highlights the roofs. As for

A4, it highlights shadows of buildings and trees that fall on grass areas, which is also observed

in C4.
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(a) Components of A

(b) Components of B (c) Components of C

Figure 5.26: Urban. NCPD results of the Patch-HSI tensor for R = 4

5.5 Conclusion

In this chapter, we performed high-order spectral-spatial unmixing through tensor CP de-

composition, which has a definition in the framework of ELMM, with MM as an example to

extract successive spatial features of the pixels like scale and brightness. It is an application

where multiple fields meet.

We explored the quality of unmixed components and compared them to those of NMF and

patch-tensor NCPD. In general, unmixing using NMF and patch-NCPD was based only on

spectral features, while that of MM-NCPD was based jointly on spectral and morphological

ones.

Moreover, we explored the properties of RegELMM where the third-mode diversity of the

tensor has physical significance, and compared them to the cases of NMF and patches. In

general, MM-NCPD was able to highlight certain parts of the scene better than the other

cases, and this aspect was demonstrated for different values of the rank. Briefly speaking, it

is possible to benefit from (a) a multi-feature unmixing of the data thanks to tensor analysis,

(b) a general framework for CPD defined in ELMM to model spectral variability based on

the type of third-mode diversity, and (c) a spatial regularization that is aware of the physical

spatial features especially when the imposed rank is low.
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(a) Components of A

(b) Components of B (c) Components of C

Figure 5.27: Urban. NCPD results of the MM-HSI tensor for R = 4

However, there are some challenges here. First, compared to NMF, observing the fractional

sum-to-one abundances of the reference spectra is not straightforward as the interpretation

of the unmixed components is not restricted to spectral features. For that, we note that it

can become easier when the columns of B are thought of as double-tagged according to the

information provided by their corresponding columns in C, so, as a simple example, instead

of two Vegetation components, we have one Vegetation/Small and another Vegetation/Large

as illustrated in figure 5.8c. Second, having an artificial third-mode diversity such as MM

requires setting the parameters of the transformations, which would be easier if one has prior

knowledge regarding the physical properties of the scene. For that, we gave a remark by the

end of Section 5.2.

Finally, the assumption of the tensor rank being low is another challenge to be dealt with.

As mentioned in Chapter 2, the estimation of the rank is a hard problem, but in a current

work that is still ongoing, we will discuss the case of a HSI tensor that is built from sequential

filtering of the HSI with an example on MM and patches. For instance, the original HSI

and its transformations may contain a lot of correlated information along the third mode,

almost analogous to how the column vectors of the spectral mode of a single HSI can be very

correlated. As such, if the transformations add new intrinsic information, such as the case

of MM, the rank of the data may indeed increase compared to that of the original HSI, but

only slightly. In a current work, we plan to reason on this assumption through some existing

bounds on the tensor rank as well as by looking at the subspaces obtained through SVD.
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6.1 Summary

In this manuscript, we started with a general informal introduction to the different topics and

areas that surround the title of this thesis. This introduction hopefully serves as a smooth

way to invite interested researchers and individuals into the analysis of images based on ten-

sor representations. Briefly speaking, the goal is to explore the theoretical and applicative

involvement of multi-linear algebra in the data mining of multi-modal images. This allows to

define a multi-linear framework for high-order image processing for the future as high-order

data are becoming ubiquitous lately, and in case where they are not, this framework may

encourage the high-order acquisition and representations of such data. Within the scope of

this thesis, a particular emphasis was made on (1) Hyperspectral Images (HSIs), among other

types of images, for their importance in defining materials through the natural acquisition

of their spectral features, and (2) constructing tensors with additional diversities based on

artificial extraction of spatial features in the data, specifically through Mathematical Mor-

phology (MM), for their advantages of having low-rank tensor decomposition (under certain

circumstances) with unique approximations of the extracted materials.

In general terms, while working on and exploring the different applications of multi-modal

image processing (e.g., compression, scene classification, and spectral unmixing), we encoun-

tered some challenges related to tensor decomposition and tried to deal with them. In the

following, we recall and recount these challenges and give remarks on how they were addressed

and treated. After that, we talk about some possible perspectives and open questions.
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6.1.1 Challenges and Perspectives

After the general introduction, in Chapter 2, we provided a literature review in an attempt

to compile the different tensor decomposition techniques, definitions, uniqueness conditions,

algorithms, and their applications in remote sensing images in a proper format hoping that it

equips the readers with enough references and resources in order to form a solid idea of the

different existing challenges and advance from there. In particular, the selected applications in

Section 2.5 put some of the effectiveness of tensor techniques for image analysis into perspective

when compared to other approaches.

However, some tensor techniques and their corresponding applications in image analysis

were not highlighted, even though they are related to image analysis, since they are not

directly related to the contributions of this thesis and in order to keep the manuscript self-

contained and focused as much as possible. For instance, Tensor Train (TT) decomposition

[76] and Tensor Ring (TR) decomposition [114] (a special case of TT decomposition) were only

briefly mentioned in Section 2.4 along with some of their applications in image analysis such

as the use of TT decomposition for image recognition [13] and that of TR decomposition for

hyperspectral image compressive sensing reconstruction [18]. Moreover, tensor decomposition

is used in some works of Satellite Aperture Radar (SAR) image data such as in Multipass

SAR Interferometry [62], but since the thesis did not practically deal with SAR applications,

the latter was not mentioned. As such, we plan in the future to integrate the aforementioned

works and expand on some others, all into a self-contained tutorial contribution in order to

highlight the effectiveness of tensor representations for image processing community. After the

literature review, we went through the works that were carried out during the thesis, which

presented us with a set of challenges that we needed to deal with.

In Chapter 3, we were working with the algorithm ProCo ALS which is an algorithm

proposed for the fast computation of CP decomposition of big data tensors under hard-

thresholding constraints such as nonnegativity. We noticed that in the case of nonnegative

constraints, which is important in image processing, a problem was recurring when completely

negative columns were projected into the nonnegative quadrant as zero-columns, which in turn

become undefined and discarded after normalizing the columns. For that, we proposed a so-

lution by separating the outer products that form the decomposable tensors into negative and

nonnegative counterparts while preserving the result of the outer product itself, and proposed

a greedy practical solution for it as the original solution becomes exhaustive when the rank

increases. By doing so, we showed that rank-1 tensors can also be seen as individual entities

as well as a collection of vectors in an outer product.

Automatic estimation of the tensor rank. Here, we note that finding the exact tensor rank

is still a problem in the literature, and in many cases, it boils down to trial and error. As such,

sometimes the tensor rank can be overestimated. In the application of Chapter 3, and while

looking at Figure 3.2, as part of the perspectives and open challenges, one could investigate

a trade-off between allowing some “bad” columns to be discarded while observing that the

plot of the reconstruction error still decreases healthily, which means that the overestimated

rank automatically decreases while we know that there is still enough degrees of freedom to
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ideally decompose the data. For instance, in ideal tensor data which do not contain noise,

if the plot of the error converges at some high value (compared to zero) like the case of the

blue and red plots of the same figure, it means that the current rank (or in other words, the

number of columns in the factor matrices) is insufficient to fully represent the data in the CP

decomposition.

Presence of noise. In the presence of noise, the estimation of the rank becomes trickier.

In such cases, one could use a combination of HOSVD and the potentially proposed method

in order to first remove the noisy components and then try to automatically estimate it with

a reasonable error plot.

In Chapter 4, we dealt with supervised HSI scene classification using MM, where mor-

phological spatial features are extracted in order to enhance the quality of the classification.

Compared to classical approaches where the spectral and spatial feature modes are either

treated separately or merged into one, we showed how Nonnegative CP decomposition of ten-

sors built with spectral and morphological features can be used as a direct tool that jointly

provides a matrix of pixels and features that can be passed to a classifier. In this work,

we carried out experiments on real HSIs with tensors of orders 3 and 4 and showed how the

spectral-spatial multi-feature relationships can still be intuitively represented, interpreted, and

classified as features obtained through a relatively low-rank CP decomposition compared to

state-of-the-art methods. At this stage, we adopted AO-ADMM for its efficiency and flexibil-

ity with constraints, but the challenge was to add compression for the sake of big image data

due to the huge number of pixels in real HSIs, for which we proposed a way to compute CP

decomposition using AO-ADMM algorithm with nonnegativity and compression constraints

in a similar way to ProCo ALS.

Low-rank assumption. An open question in this work is to reason on the low-rank assump-

tion of the constructed tensors since the value of the rank basically defines the dimension of

the feature space, i.e., the number of columns of the factor matrix. In other words, are we sure

that a HSI tensor constructed by sequential morphological filtering is low-rank as we claim it

to be? If yes, how do we know that? In this work specifically, we avoided getting into the

algebraic reasoning and only referred to the tensor rank being low by relatively keeping it

less than the dimensions of the feature spaces of the state-of-the-art approaches, which were

analytically possible to obtain (through SVD and HOSVD). In scene classification, the rank

is eventually perceived as the reduced dimensionality value of the feature space that is finally

processed by the classifier, where values such as 30 and 40 can be seen as “low” compared to

data with thousands of features (for instance, in the case of Pavia University HSI, we have

103 ∗ 13 = 1339 total spectral and morphological features). In the following, we give some

notes on where this can be a problem especially for solution uniqueness.

Solution Uniqueness. In practice, one could simply pass any input value of the rank to

the CP decomposition and still obtain extracted materials that somehow look interpretable.

For example, we carried out experiments with different values of the rank varying from 10

to 40 and still obtained generally increasing values of classification accuracy, noting that this

increase becomes almost saturated as we go higher. As long as the number of extracted

features (the rank) is not over-estimated, the higher it is, the better it becomes for supervised
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classification since the data will be trained anyways. However, it is one thing to pass a value

and assume that it is low from the application’s point of view, and another thing to reason on

the assumption itself algebraically then determine a value accordingly. For instance, while the

classification accuracy gave better values in general with tensor ranks such as 30 and 40, we

might be risking the solution uniqueness since the number of columns in some factor matrices

becomes much greater than the number of rows (for Pavia HSI, the third factor matrix has

dimensions 13 × 30 or 13 × 40). Since the application of scene classification is important, it

could add a sense of stability when uniqueness is guaranteed. One direct way to do so is to

impose sparsity with nonnegativity as explained in Chapter 2.

A hard way is to approximate the tensor rank algebraically as much as possible, which is a

potential open question and one that is essential not only to blind separation or unsupervised

classification, but also to other applications where tensors are involved. We reason on this

point, in a work that is currently in development, through the bounds of the tensor rank and

by comparing the low-dimensional sample and feature subspaces of the different slices that

form the tensor, in which a third way is obtained as a transformation of the two-way data.

The findings on the rank and properties of the transformations used would be relevant also to

other types of data, not only hyperspectral images.

Mastering the choice of parameters. Another practical problem when it comes to scene

classification and MM is the choice of the parameters of the classifier itself and the morpho-

logical operators. This primarily depends on the structures present in the data, but it is

also indirectly related to tensor decomposition since the parameters are remotely related to

the quantity of intrinsic information (rank and uniqueness) and the quality or interpretation

of the results (extracted materials and properties). It could be a possibility to find a clear

connection between the parameters beforehand.

Multi-feature Unmixing (blind unmixing and unsupervised classification). A natural ex-

tension of the application of supervised scene classification is that of blind unmixing and

unsupervised classification of the data. In this regard, after showing that CP decomposition

and MM are good candidates to enhance the classification accuracy of materials in a super-

vised framework, we would like to see their effectiveness in the case of blind extraction of

materials and features, which better showcases the strength of CP decomposition. For that,

we worked on Chapter 5.

In Chapter 5, we generalized the problem of multi-feature hyperspectral unmixing by

exploring the different aspects of the relationship between CP decomposition and ELMM.

There, we emphasized through Mathematical Morphology on the importance of having a

third-mode that represents physically meaningful features, which allows to extract materials

with spectral and morphological patterns and deals with spectral variability within clusters of

pixels that spatially belong to the same objects. Moreover, we faced a challenge to incorporate

Abundance Sum-to-one Constraints (ASC) in AO-ADMM for the CP decomposition of third-

order tensors, for which we proposed a practical implementation and an interpretation of what

it means to have the abundances sum to one in a multi-feature fashion as shown through the

Figures of the simplexes of RegELMM. Here, we also talked about how the number of frontal

slices K and the rank R influence the result of unmixing. We note that the choice of the
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rank in unmixing is more critical than that of supervised classification since we usually do

not or barely have any prior information, and thus we care that we extract a small number of

components and identify them.

Other types of filters. In the perspectives, one could try other filters as additional diversities

or spatial regularization depending on the application (Gaussian filtering, wavelet analysis,

etc) and the interpretation of their features, and thus explore their properties in terms of

tensor decomposition like the case with time-series, patches, and MM.

6.1.2 Other Potential Works

This area of research has more potential to grow. In the following, we give different suggestions

on what areas can be investigated between tensor decomposition and image analysis from

combined methodological and applicative points of view.

For instance, with the advancement and huge popularity and domination of machine and

deep learning techniques almost everywhere especially recently with image processing and

some familiar applications that were mentioned here, one way could be by investigating the

involvement or representations of tensor techniques through such methods. There are already

some very recent works and resources that deal with this area that can be exploited such as:

• Tensor decomposition for signal processing and machine learning [90].

• Information Geometry, where it would be possible to manipulate manifolds and sub-

spaces extracted from tensor data, which would extends to subspace-based learning and

clustering for example [47, 46].

• Tensor Networks, where different tensor decomposition techniques along with their pa-

rameters are translated into networks of nodes and networks. Some examples on images

for dimensionality reduction can be found in the books [23, 24].

• Some works in Feedforward Neural Network (FNN) such as the classification of HSIs

through tensor-based learning models by training the data through the building blocks

of the CP decomposition (that is, the vectors of the outer products) [70].

• Tensor libraries intended to grow for machine learning such as TensorLy, which is built

in Python [66]. In fact, we prepared a course on feature extraction with matrix and

tensor techniques for the doctoral school “Data Science for Geoscience 2020” by using

notebooks prepared with the library of TensorLy.

Another way can be through exploring other tensor decomposition techniques such as BTD,

PARALIND, CONFAC, Tensor Trains, among others. It is mentioned that BTD is important

when it comes to absorbing the high rankness of the spatial structure of original 3-way HSIs,

which for instance may work better than CP decomposition in the work of FNN for HSI

classification [70] by lowering the number of trained components. The main methodological
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and practical challenge of BTD may be to determine the size of the partitioning of the factor

matrices beforehand, which could be listed as potential perspectives. Up to our knowledge,

there are probably no applications of PARALIND and CONFAC for image analysis, but in

general, their models are potentially important when the priority is to extract patterns from

the data where it is also desired to completely avoid collinearity of the columns in the factor

matrices. Their main challenge is that the set of constrained matrices can be hard to fix or

estimate beforehand.
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Résumé — Nous considérons une image dans laquelle chaque pixel n est défini par un

vecteur y(n) de dimension m, contenant m observations d’une quantité variable. Cette

variable est mesurée séquentiellement et pourrait être le spectre de la lumière (par exemple,

les images hyperspectrales), le temps (c’est-à-dire une vidéo), différents angles d’acquisition,

etc. Par exemple, une image RVB est composée de trois (c’est-à-dire m = 3) des canaux

adjacents dans le domaine spectral s’étendant approximativement à des longueurs d’onde

rouges à bleues. Il est souvent significatif d’exprimer ce vecteur comme une combinaison

linéaire de la forme compacte comme: Y = XA où Y , X et A sont de dimension m × n,

m× p et p× n. Il est clair qu’avec cette écriture, la position exacte des pixels n’est pas prise

en compte, ni l’ordre des valeurs mesurées. Même la taille de l’image n’est pas explicite; Si

l’image est n1 × n2, seul le produit n = n1n2 apparaît effectivement. Plus important encore,

si les pixels et les variables mesurées sont permutés, les rangées de X et les colonnes de A

sont permutées en conséquence. L’un des objectifs de ce sujet de recherche est de corriger

ces indéterminations, car les permutations sont pertinentes (c’est-à-dire que la position des

pixels et l’ordre séquentiel des valeurs sont des caractéristiques significatives). Au moins deux

tentatives peuvent être trouvées dans la littérature. Cette idée a commencé à être étudiée

dans le cadre d’un stage au cours de l’été 2017 à GIPSA-Lab.

Mots clés : Décomposition de tenseurs, Factorisation matricielle, Images hyperspec-

trales, Télédétection, Morphologie mathématique, Données multimodales, Algèbre tensorielle,

Algèbre multilinéaire.

Abstract — We consider an image in which every pixel n is defined by a vector y(n) of

dimension m, containing m observations of a varying quantity. This variable is measured

sequentially and could be the spectrum of light (e.g., hyperspectral images), time (i.e., a

video), different angles of acquisition etc. For example, a RGB image is composed of three

(i.e., m = 3) channels adjacent in the spectral domain ranging from approximately red

to blue wavelengths. It is often meaningful to express this vector as a linear combination

of the compact form as: Y = XA where Y , X and A are of dimension m × n, m × p

and p × n. It is clear that with this writing, the exact position of pixels is not taken into

account, nor is the order of the measured values. Even the size of the image is not explicit;

if the image is n1 × n2, only the product n = n1n2 indeed appears. More importantly, if

pixels and measured variables are permuted, rows of X and columns of A are permuted

accordingly. One of the goals of this research topic is to fix these indeterminacies, because

permutations are relevant (i.e., the position of pixels and sequential order of values are

meaningful features). At least two attempts can be found in the literature. This idea has

started to be investigated in the framework of an internship during Summer 2017 at Gipsa-Lab.
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