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Chapter 1 - Introduction

The inverse scattering problem of finding the optimal location multi-antennas systems has re-
ceived a growing interest in the fast few years as MIMO systems have demonstrated the poten-
tiality to significantly increase the channel capacity but many other applications using multiple
objects or multi-antenna systems such as radar applications, inverse scattering including micro-
wave imaging could be of interest concerning this study. 
In this thesis, we describe the development of a method based on an integral formulation of the
EM problem (SR3D code) for finding the solution of an inverse scattering problem, which is the
optimal location of 3D or 2D multiple metallic objects or multiantenna systems illuminated by
dipoles or planar waves from imposed constraints (e.g. radiation patterns). 
Many inverse scattering algorithms based on gradient methods are using forward and adjoint
problems for calculating the cost functional derivative. Here, in order to avoid finding a solution
for every adjoint problem and to develop a more general method, we are calculating directly the
derivative of the cost functional. In this way, we have directly access to the sensitivity of the
cost functional versus parameters we are interested in. 
We want to emphasize that the main core of this work is the development of an inverse scatter-
ing method based on an integral formulation of the EM problem, by calculating directly the de-
rivative of the cost functional. In this way, we obtain a high sensitivity as well as also the
coupling effect between structure elements is taken into account. First results have been
achieved using a gradient-based algorithm using the optimization procedure. But, the code
SR3D being modular it is possible to change the optimization algorithm without modifying the
main electromagnetic structure of the SR3D code.

C1.1 Inverse Problem Overview
We can divide optimization algorithms into two main classes: deterministic methods which, in
general terms, behaves predictably and stochastic methods that generate and use random varia-
bles.There are many methods for solving the inverse problem (i.e. geometry array synthesis),
using optimization algorithms as Genetic Algorithm (GA), Particle Swarm Optimization (PSO)
or Conjugate Gradient Method. Of course, every optimization method has some advantages and
weak points. Usually, a genetic algorithm needs a considerable number of computations and it-
erations before finding the convergence towardss the optimum; on the other hand, it is a global
optimization method, meaning that it is able to find the global optimum of the problem. Of
course, the conjugate gradient method needs less iterations and computations but they can have
local convergence, meaning that they can be trapped in a local minimum. This is why the con-
struction of the cost functional is of great importance.

     In the literature, we can find many publications about array geometry synthesis, (a similar
problem with respect to the MIMO antennas optimal location). For instance, a PSO method has
been used in order to synthesize of a linear array in [20], where no coupling between elements
is taken into account. 
      In computer science, PSO is a computational method that optimizes a problem by iteratively
trying to improve a candidate solution with regard to a given measure of quality. PSO optimizes
a problem by having a population of candidate solutions, for instance particles, and moving
these particles around in the search-space according to simple mathematical formulae over the
particle's position and velocity. Each particle's movement is influenced by its best known local
position and guided towards the best known positions in the search-space. This is expected to
move the swarm towards the best solutions. PSO is a metaheuristic method as it makes few or
no assumptions about the problem being optimized and can search over very large spaces of
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candidate solutions. However, metaheuristics such as PSO do not guarantee that an optimal so-
lution is ever found. As a matter of fact, PSO does not use the gradient of the problem being
optimized, which means PSO does not require that the optimization problem be differentiable
as is required by classic optimization methods such as gradient descent and quasi-newton meth-
ods. 

      A similar problem regarding the array antenna position synthesis is reported in [25], where
a Genetic Algorithm has been used; once again no coupling effect between elements is taken
into account. 
      In the computer science field of artificial intelligence, a genetic algorithm (GA) is a heuristic
search that mimics the process of natural evolution. This heuristic is routinely used to generate
useful solutions for optimization and search problems. Genetic algorithms belong to the larger
class of evolutionary algorithms (EA), which generate solutions to optimization problems using
techniques inspired by natural evolution, such as inheritance, mutation, selection, and crosso-
ver. In a genetic algorithm, a population of strings (called chromosomes or the genotype of the
genome), which encode candidate solutions (called individuals, creatures, or phenotypes) to an
optimization problem, is evolved towards better solutions. Traditionally, solutions are repre-
sented as binary strings of 0s and 1s, but other encodings are also possible. The evolution usu-
ally starts from a population of randomly generated individuals and happens in generations. In
each generation, the fitness of every individual in the population is evaluated, multiple individ-
uals are stochastically selected from the current population (based on their fitness), and modi-
fied (recombined and possibly randomly mutated) to form a new population. The new
population is then used in the next iteration of the algorithm. Commonly, the algorithm termi-
nates when either a maximum number of generations has been produced, or a satisfactory fitness
level has been reached for the population. If the algorithm has terminated due to a maximum
number of generations, a satisfactory solution may or may not have been reached.

      Another array antenna position synthesis methods are proposed in [37] and [38], where an
optimization conjugate method is used, the derivative of the cost functional calculating directly.
The optimization is based on the noise-corrupted scattered field data, but, the analysis still does
not involve the element coupling effect. 
      In numerical analysis, the conjugate gradient method is an algorithm generally used for the
numerical solution of particular systems of linear equations, for symmetric and positive-definite
matricies. The conjugate gradient method is an iterative method, so it can be applied to sparse
systems that are too large to be handled by direct methods such as the LU decomposition. Such
systems often arise when numerically solving partial differential equations. The conjugate gra-
dient method can also be used to solve unconstrained optimization problems such as energy
minimization. This method has a faster convergence than the stochastic ones but, on the other
hand, the gradient method requires the optimization problem to be differentiable.

      In this work, we have chosen to use a deterministic algorithm to define the optimization
framework. Usually, complex electromagnetic problems, using a high element mesh number,
require a considerable burden of computational time. Normally, this is not adequate for using a
genetic algorithm due to an huge number of iterations needed. So, even if this class of algorithm
may converge to the global minimum, we have the drawback of computation time for the for-
ward modeling. Deterministic algorithms have faster convergence towards the minimum but,
on the other hand, the global convergence is not guaranteed. Fortunately, there are some tech-
niques able to improve the convergence performance of deterministic algorithms. Adding a pri-
ori or extra information or fixing some contraints, using equalization for example, to the
optimization procedure or by modifying the cost functional using regularization for example,
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for an easier global convergence. In terms of contraints, we can, for instance, to fix the location
of some antennas or prohibited the superimposition of two objects. We can also add extra infor-
mation to the deterministic algorithm using a frequency hopping technique, where the optimi-
zation aim is performed with respect to several frequencies and defining the final cost functional
combining the results derived from each frequency of interest. These techniques are able to
modify the smothness of the cost functional in order to ease the global minimum investigation.
Improving the efficiency in global convergence for deterministic algorithm, leads to handle
complex electromagnetic optimization problems, with a good degree of accuracy, and spatial
resolution, related to the global convergence.

      The works reported in [20], [25], [30] and [38], consider only non-full-wave optimization.
Therefore, no electromagnetic coupling between the antenna elements has been taken into ac-
count, reducing the accuracy of the optimization results. In many applications, it is essential to
consider the coupling between objects, such as MIMO applications, because the spatial diver-
sity between the antennas [2] is a critical parameter of the system itself. But many problems re-
quire a full-wave method optimization solver, to retrieve the optimal location of objects or
antennas. For instance, Andùjar A. [3], involves the design of two ground plane boosters for
wireless handheld devices. The boosters need to be correctly located along the edges of the
ground plane of the device, to achieve the desired effect. As the coupling between boosters and
ground plane is considered, a full-wave method is needed to apply an optimization procedure
able to retrieve the optimal position of the boosters. 

      The main idea of this work is to define a full-wave optimization procedure able to retrieve
the optimal location of multiple objects or multi-antenna systems. We combine the benefits of
a full-wave optimization method and the accuracy of the analytical calculation of the gradient
of the cost functional. Therefore, we are able to solve antenna location optimization problems
as [38] and obtain a good accuracy with respect to the cost functional gradient. We have choosen
to use the SR3D software [13], [14], [23], that utilizes a MoM method with an integral formu-
lation of the electromagnetic problem; SR3D is a proprietary software of France Telecom de-
veloped since 80s by Orange Labs La Turbie.

C1.2 Developments Overview
In figure C1.1, we report a generic structure with three patch antennas over a ground plane. 

Figure C1.1: Three patch antennas over ground plane
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Our optimization method is suitable to retrieve the position of the patch antennas with respect
to a desired electromagnetic parameter. 
        The strong point of this work is represented by the direct calculation of the surface currents
gradient with respect to the geometry, for every object in the environment. 
      This allows us to use any optimization method we, since every electromagnetic parameter
depends on the surface currents and its derivative. For instance, if we want to obtain a desired
scattered field with respect to the location of the three antennas in figure C1.1 we can define the
scattered field gradient with respect to the geometry (using the derivative of the currents) in or-
der to compute the cost functional gradient and then to apply the optimization algorithm. 
      We can also use this method for optimizing the antennas impedence or minimizing the cou-
pling effect between the antennas, by changing the value of the cost functional and its gradient
without modifying the main structure of the SR3D code.

In the following, we will show how to implement the current derivative modules within the
SR3D software along with different of optimization test-cases.
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Chapter 2 - Electromagnetic Theory

C2.1 Short Overview
In the next paragraphs, the theory of the EM problem will be shown, starting from Maxwell
equations. The goal is to describe the reaction concept using a variational equation, and to use
it in a numerical form inside the SR3D software using the MoM method. A definition of direct
and inverse problem is given subsequently:

1. Direct Problem: when the applied sources, object shapes and their electromagnetic
properties are known, the result of their interaction has to be determinated;

2. Inverse Problem: when the interaction of the electromagnetic field is known in a
certain domain and some information are kept from it in order to describe the envi-
ronment and the objects defined inside of the analysis domain.

C2.2 General Definition
SR3D is based on the MoM (Method of Moments) to solve direct EM problems. In this short
summary, the basic theory of SR3D software is described. So the beginning is the introduction
of the symmetric Maxwell equations.
Consider a homogeneous, isotropic domain  of volume V and boundary . The electromag-
netic wave is described by , electric and magnetic fields, respectively, that verify Maxwell
equations with a time-dependance :

Figure C2.1 Domain 

Ω Γ
E H,

e jωt–

Ω

E jωB M–=∇×

with: 

ρe electric charge density ρm magnetic charge density

M magnetic current densityJ  electric current density

D  electric induction B magnetic induction

ω angular frequency

∇ B⋅ ρm=

H jωD– J+=∇×
∇ D⋅ ρe=

C2.1( )
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The magnetic and electric charge densities are defined as:

At last the definition of constitutive equations where  is the permittivity,  the relative per-
mettivity and  the permittivity of free space ( ) and  is the permeability, 
the relative permeability and  the permeability of free space ( ):

Also the boundary conditions are needed in order to obtain the uniqueness of Maxwell equations
solution, so we have:

Figure C2.2: Boundary between medium 1 and medium 2

∇ M jωρm 0=–⋅
∇ J⋅ jω– ρe 0=

C2.2( )

ε εr
ε0 8 854 12–×10 F m⁄, µ µr

µ0 4π 7–×10 H m⁄( )

D εE=

J σE=
B µH=

M σmH=

µ µ0µr=with: ε ε0εr,=

C2.3( )

n̂ H2 H1–( ) Js=×

n̂ E2 E1–( ) Ms–=×

n̂ D2 D1–( ) ρes=⋅

n̂ B2 B1–( )⋅ ρms=

C2.4( )
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In the case of a PEC boundary, we can write C2.4 as:

Let’s apply now the operator  on the two firstequations C2.1 obtain-
ing:

The electromagnetic field must satisfy the next two conditions, so-called radiation conditions
(C2.7) and finite energy conditions (inside ) (C2.8), respectively:

Let’s now consider the Green’s function or system impulse reponse  solution of
. Then the general solution is: 

n̂ H2⋅ 0=

n̂ H2 Js=×

n̂ E2 0=×

n̂ E2
ρes
ε2
-------=⋅

C2.5( )

∆( ) ∇∇ ( )⋅ ∇ ∇ ( )××–=

E∆ k2E j
ωε
------- ∇∇ J⋅ k2J+( )– ∇ M×+=∆+

with: 

H k2H j
ωµ
------- ∇∇ M⋅ k2M+( )– ∇ J×–=+∆

k2 ω2µε=

C2.6( )

Ω

n̂ ∇ E× jkE–×( )
r ∞→
lim o 1

r
--- 
 =

n̂ ∇ H× jkH–×( )
r ∞→
lim o 1

r
--- 
 =

C2.7( )

E 2 Ω ∞<d
Ω
∫

H 2 Ω ∞<d
Ω
∫

C2.8( )

G r r',( )
∆ k2+( )G r r',( ) δ r r',( )–=

R r r′– ℜ3∈=with:  

r′ observation point coordinates≡

C2.9( )

r measurement point coordinates≡

G R( ) ejkR
4πR( )

---------------=
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If the convolution product is applied on (C2.6) the impulse reponse of electromagnetic field in
 is obtained:

Let’s now focus on the Huygens’ equivalence principle. This principle says that is possible to
replace the real sources defined in the application domain  with superficial sources on a
closed surface, leaving the electromagnetic field unchanged.

Figure C2.3: Huygens’ principle applied on problem c)

Based on Huygens’ principle is possible to replace the case c) with a) or b). In these two last
cases closed interfaces are introducted and superficial currents are defined over them in order
to satisfy the Maxwell equations, defined for the original problem c). These superficial currents
are defined as follows:

Finally, we can replace the problem c) with problem a) or b) using the superficial currents while
maintaining the uniqueness of the solution. The theory showed with the Huygens’ principle al-
lows us to substitute the general inhomogeneous volumic problem with an ensemble of homo-
geneous and superficial problems.

R

E r( ) j
ωε
------- ∇∇ ⋅ k2+( ) J r'( ) G× r r',( )( ) ∇ M r'( ) G× r r',( )( )×–=

H r( ) j
ωµ
------- ∇∇ ⋅ k2+( ) M r'( ) G r r',( )⋅( ) ∇ J r'( ) G× r r',( ) )×+=

C2.10( )

Ω

Js n̂ Hs×=

ρms µn̂ Hs⋅=

ρes εn̂ Es⋅=

Ms n̂ Es×–=
C2.11( )
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C2.3 EFIE and MFIE Equations Definition
Let us define a general electromagnetic problem within inhomogeneous structure placed inside
the domain :

Figure C2.4: General inhomogeneous volumic problem

If we apply Huygens’ principle of the problem shown in Figure C2.4, we can describe this in-
homogeneous problem as an ensemble of diffraction problems with electromagnetic field gen-
erated by equivalent surface sources, radiating from discontinuity surfaces. These surfaces can
be decomposed into homogeneous subdomains and described using the Green’s theorem. 
The Green’s theorem allows us to obtain an integral representation of the diffracted field (EFIE/
MFIE) using the superficial current distributions  and  defined by Huygens’ principle.
Using EFIE and MFIE, we are able to describe, the dependance between superficial currents and
the incident field (SOURCES see Fig.4). 
The numerical solution of these equations is based on  the Rumsey reaction concept. From on
Figure C2.4 and applying the Huygens’ principle, the total field can be written as follows:

The sources in Figure C2.4 are replaced by surface currents as follows: 

Ω2

Js Ms

E r( ) Einc r( ) Edif r( )+=

with: 

H r( ) Hinc r( ) Hdif r( )+=
C2.12( )

E H f Jinc Minc,( )=,

Jinc Ja=

Minc Ma=
C2.13( )
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In that way, subdomains are coupled through the density currents defined on the discontinuity
interface. Moreover, the boundary conditions between  and  are given by the equation
(C2.14) and the boundary conditions between  and  are given by the equation (C2.15):

That also means we have surface currents on physical defined interfaces (es. PEC interface). 
We will integrate now the impulse reponse (C2.10) in the whole domain (volumic). Since we
have equivalent surface currents we can integrate over a closed surface domain . In (C2.16)
we have given the total electromagnetic field:

And the same is done for incident part of electromagnetic field in (C2.17):

Ω1 Ω2
Ω0 Ω2

n̂1 H1 n̂2 H2×+ J1 J2+ 0= =×

n̂1 E1 n̂2 E2×+ M1 M2+( )– 0= =×
C2.14( )

n̂0 H1 J1 J2+( ) J0= =×

n̂0 E1 M1 M2+( )– 0= =×
C2.15( )

Γ

E r( ) Einc r( ) jωµ G r r′,( )J r′( ) Γ

j
ωε
------- ∇r′G r r′,( )∇Γ J r′( ) Γ ∇ G r r′,( )M r′( ) Γd

Γ
∫°×–d⋅

Γ
∫°

+d
Γ
∫°+=

H r( ) Hinc r( ) jωε G r r′,( )M r′( ) Γ

j
ωµ
------- ∇r′G r r′,( )∇Γ M r′( ) Γ ∇ G r r′,( )J r′( ) Γd

Γ
∫°×–d⋅

Γ
∫°

+d
Γ
∫°+=

C2.16( )

Einc r( ) jωµ G r r′,( )Ja r′( ) Γ

j
ωε
------- ∇r′G r r′,( )∇Γ Ja r′( ) Γ ∇ G r r′,( )Ma r′( ) Γd

Γ
∫°×–d⋅

Γ
∫°

+d
Γ
∫°=

Hinc r( ) jωε G r r′,( )Ma r′( ) Γ

j
ωµ
------- ∇r′G r r′,( )∇Γ Ma r′( ) Γ ∇ G r r′,( )Ja r′( ) Γd

Γ
∫°×+d⋅

Γ
∫°

+d
Γ
∫°=

C2.17( )
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If we finally consider the equation (C2.18):

Applying equation (C2.18) on equations (C2.16) we obtain:

The equations (C2.19) are designed respectively as the Electric Field Integral Equation (EFIE)
and the Magnetic Field Integral Equation (MFIE). For EFIE, we consider a Perfect Electric
Conductor (PEC) boundary, instead for MFIE a Perfect Magnetic Conductor (PMC) one.

C2.4 Reaction Concept
We can now define the variational formulation using the Rumsey reaction concept. Given ,
an homogeneous domain with boundary surface , sources  and test sources 
defined tangent with respect to  and with boundary condition defined as (C2.11), then the re-
action of the sources on the test sources in  is defined in a bilinear form as follows:

where the electromagnetic field  is generated by surface currents  defined inside .
This concept is also true for the incident electromagnetic field  generated by the sur-
face currents  inside :

The bilinear forms (C2.20) and (C2.21) have symmetric property. So we can write due to the
reciprocity principle:

φ v v′,( )ψ v′( ) S ψ v′( ) ∇r′φ v v′,( ) S 1
2
--- n̂ ψ v′( )×+d×

Γ
∫°=d

Γ
∫°∇× C2.18( )

n̂ Einc r( ) n̂– j{× ωµ G r r′,( )J r′( ) Γ

j
ωε
------- ∇r′G r r′,( )∇Γ J r′( ) Γ M r′( )∇r′G r r′,( ) Γ 1

2
---– n̂ M r′( )× }d

Γ
∫°–d⋅

Γ
∫°

+d
Γ
∫°=×

n̂ Hinc r( ) n̂– j{× ωε G r r′,( )M r′( ) Γ

j
ωµ
------- ∇r′G r r′,( )∇Γ M r′( ) Γ J r′( ) ∇r′G r r′,( )× Γ 1

2
--- n̂ J r′( )× }+d

Γ
∫°+d⋅

Γ
∫°

+d
Γ
∫°=×

C2.19( )

Ω
Γ J M,( ) Jtest Mtest,( )

Γ
Ω

RΩ J M,{ } Jtest Mtest,{ },( ) E Jtest⋅ Mtest H⋅( )–( ) Γtestd
Γ
∫°= C2.20( )

E H,( ) J M,( ) Ω
Einc Hinc,( )

Ja Ma,( ) Ω

RΩ Ja Ma,{ } Jtest Mtest,{ },( ) Einc Jtest⋅ Mtest Hinc⋅( )–( ) Γtestd
Γ
∫°= C2.21( )

RΩ J M,{ } Jtest Mtest,{ },( ) RΩ Ja Ma,{ } Jtest Mtest,{ },( )= C2.22( )
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C2.5 Variational Equation
If we use the equations (C2.16) and equations shown in (C2.20) and (C2.21) and apply the
boundary conditions we obtain:

If we define ,  and  and develop equation (C2.20). After some math-
ematical tranformations, we obtain:

The terms ,  and  are defined as follows, (for sake of simplicity we will omit the argu-
ments of the functions):

Note that, in equation (C2.25), inside ,  terms, the basis functions  are defined using
an implicit form (i.e. through the generic basis ). That is owing to the fact that, as we can
see from equation (C2.24), the reaction term  depends on bases of the same kind while the
reaction term  depends on bases of different kinds. About the  term we can simply use the

  representation as we can easily understand from equation (C2.24). See Annex 2 for an
detailed definition of the  basis functions.

C2.6 Reduction of Rumsey’s Reaction Equations
A reduction of the Rumsey reaction equations has been performed. That reduction is important
since we need to perform a mesh derivative of equations (C2.25). A more simple representation
of these equation means an easier treatment of the relative mesh derivative definition. We re-
duce the complexity of the  terms of equation (C2.25); considering the triangles in a two-
dimensional reference coordinates rather than a three-dimensional one.

RΩ J M,{ } Jtest Mtest,{ },( ) RΩ– Ja Ma,{ } Jtest Mtest,{ },( ) 0= C2.23( )

E jωµ0e= M jωµ0p= J j=

S Einc Hinc jtest ptest, , ,( ) µR1 j jtest,( ) k2

µr
-----R1 p p

test,( )

R2 j ptest,( ) R2 p jtest,( )+

+ +=–
C2.24( )

R1 R2 S

R1 α αtest,( ) G( ) α αtest⋅( ) Γ Γtestdd 1
k2
----- G( ) ∇ α∇ αtest⋅ ⋅( ) Γ Γtestdd

Γ
∫°

Γtest
∫°–

Γ
∫°

Γtest
∫°=

S Einc Hinc jtest ptest, , ,( ) E( inc jtest⋅ ptest Hinc⋅– ) Γd
Γ
∫°=

R2 α btest,( ) ∇r′G( α× ) βtest⋅( ) Γ Γtestdd
Γ
∫°

Γtest
∫°=

where: α j=if then β p=

or if α p= then β j=

C2.25( )

R1 R2 j p,
a b,

R1
R2 S

j p,
j p,

∇ a⋅
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Figure C2.5: Generic orthonormal vector  related to triangle T

As vector  is an orthonormal vector basis (see Annex 2), we can write:

According to equation A2.1:

The equation (C2.25), according to the equation (C2.27), becomes:

u

u

u î ĵ+( )=

∇ u⋅
i∂

∂i
j∂

∂j+ 
  2= =

where:

C2.26( )

u a b,=

∇ α⋅ H ∇ u⋅( ) 2H= =

H 1
2Λ
------- Λ, structure surface= =

C2.27( )

R1 α αtest,( ) G( ) α αtest⋅( ) Γ Γtestdd 4HHtest

k2
------------------- G( ) Γ Γtestdd

Γ
∫°

Γtest
∫°–

Γ
∫°

Γtest
∫°=

R2 α βtest,( ) ∇r′G( α× ) βtest⋅( ) Γ Γtestdd
Γ
∫°

Γtest
∫°=

S Einc Hinc jtest ptest, , ,( ) E( inc jtest⋅ ptest Hinc⋅– ) Γd
Γtest
∫°=

C2.28( )
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C2.7 Subdomains Variational Equation Definition
If we apply the Huygens’ principle on the homogeneous domain , we can operate a subdivi-
sion  and obtain  subdomains bounded by  surfaces. Therefore, the equation (C2.23) be-
comes:
 

The equation (C2.24) becomes as well: 

Ω
Ωi Γi

RΩi
Ja Ma,{ }( Ji Mi,{ } )+ Ji

test Mi
test,{ }( ),[ ] 0=

i 1=

Nd

∑ C2.29( )

S Ei
inc Hi

inc ji
test pi

test, , ,( )

i 1=

Ni

∑–

µ

i 1=

Nd

∑ R1i ji ji
test,( ) k2

µr
-----R1i pi pi

test,( ) R2i ji pi
test,( ) R2i pi ji

test,( )+ + +

=

C2.30( )
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Chapter 3 - SR3D Structure
In this chapter, we first define the MoM linear system implemented inside the old version of
SR3D. Then, we show the new version of SR3D starting from the Rumsey reaction equation
found in Chapter 2. We introduce the main linear system expression and then give a detailed
description of every term of the linear system (reaction matrix and source vector).

C3.1 Old SR3D Structure
The old SR3D structure does not prove to be pratical to use for the derivation of the mesh owing
to the high complexity of the previous implemented expressions. For sake of the completeness,
the old SR3D  operator expressions are shown in equation (C3.1). We consider only
the coupling between triangles  related to the impedance matrix (no changes affect the
source vector of the MoM linear system) as reported in Figure (C3.1).

Figure C3.1: Single couple of triangles  from global mesh environment in old SR3D structure

where  is the summit  of the generic triangle :

and:

Finally,  together with the vector , with  as generic Cartesian point in the
tridimensional space, form a vector basis that identifies all the points inside the triangle surface.
Then, the old SR3D  operators are defined in the old basis as follows:

A D T F, , ,
TKTL

x

y

r

C1
L

C2
L

C3
L

C1
K

C2
K

C3
K

e1
K

e2
K

e1
L

e2
L

y-C 1
L

x-C 1
K

TKTL

Cs
T s T

Cs
T Ccs

T C1s
T C2s

T C3s
T, , ℜ3,∈= = c s, 1 2 3, ,=

x y, ℜ3∈r y x–( ),= r y x– ,=

e1
T e2

T, w C– 1
T w ℜ3∈

A D T F, , ,

Fcs
KL φ( ) Acs

KL φ( ) 4
k2
----- Dcs

KL φ( )–=

Dcs
KL φ( ) HKδ

c
3 δ

s
3 HL φ x y,( )

TL

∫° dydx
TK

∫°=

Acs
KL φ( ) φ x y,( ) Ht

K Θ
˜ K

x( )
c

t
Θ
˜ L

y( )
s
HLdydx

TL

∫°
TK

∫°=

Tcs
KL ψ( ) ψ x y,( ) Ht

K∆
˜

cs
KL

x y,( )HLdydx
TL

∫°
TK

∫°=
(C3.1)
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Let’s define all the functions inside the equations C3.1 starting from the Green’s function.

Then, we have the terms that depend on the vector basis shown previously and relative to a local
coordinate system: 

If we consider the Figure C3.2, we can finally define the matrix ; considering the generic
 Cartesian point and the generic triangle T.

Figure C3.2: triangle  main geometric variables.

In order to tranform the terms from the local to the global coordinate system, it is necessary to
perform the following operations:

The new SR3D version does not consider the local basis transformation to calculate the cou-
pling between  triangles coupling. This leads to an easier mathematical expressions of operators

. See the paragraph C3.2 to compare the differences between the old version and the

φ ejkr

r
--------,= ψ jkr 1–( )e

jkr

r3
--------=

where: k is the wavenumber of the plane wave

Θ
˜ K

x( ) e1
K e2

K x C– 1
K( ) ,= Θ

˜ L
y( ) e1

L e2
L y C– 1

L( )=

∆
˜

cs
KL

x y,( ) det cols Θ
˜ L

y( )( ) colc Θ
˜ K

x( )( ) y x–( ) 
 =

HT

w ℜ3∈

C1
T C2

T

C3
T

w

H

T

b

a

c

T

HT
1

2ΛT
----------

a– 0 b–
c– 0 0

1 1 1 
 
 
 
 

⋅=

a H C– 1
T,= b C2

T C– 1
T
,= c C3

T H–=

ΛT
b c

2
---------------=and

ΘK x( ) H
K
Θ
˜ K

x( ),= ΘL x( ) Θ
˜ L

x( ) HL=

∆cs
KL x y,( ) H

K
∆
˜

cs
KL

x y,( ) HL=

A D T F, , ,
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new one. We point out that the source vector has not been modified so it is not reported in this
paragraph.

C3.2 New SR3D Structure: General Description
The new SR3D representation is definitely more precise than the old one. Now we start the de-
scription from the general expression of the linear system of the MoM, showed as follows:

The reaction matrix  is related to the mesh elements,  is the vector of the unknown density
current fluxes (i.e. the basis function amplitudes, see Annex 2, equation (A2.3)) and  is the
vector of the sources. Let’s consider the electromagnetic problem shown in Figure (C3.3) where
both metallic and dielectric structures are present. 

Figure C3.3: Generic electromagnetic problem 

In this chapter, we want to focus the attention on one sub-linear system related to a single couple
of the mesh basic elements defined in the discretized-domain . We consider the same for the
reaction of the source over the structure but, only the reaction between the source and one tri-
angle will be taken into account. In the reaction case, these mesh elements are defined as trian-
gles as shown in Figure (C3.4) with the   triangles. This is possible since we can consider
the whole reaction as a sum of sub-reactions as reported in equation (C2.24). 

Figure C3.4: Interaction triangle-triangle (right) and triangle-source

Z Φ S= (C3.2)

Z Φ
S

Ω

TK TL
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Starting from this equation, we can give the Rumsey reaction form related to a single couple of
triangles  :

Where the  and the  terms are defined in equation (C3.4):

The equivalent sub-linear system relative to the equation C3.3 for the   triangles is defined
as:

In the following, we describe every term of the equation (C3.5), starting from the reaction ma-
trix  composed of a part of the  terms of equation (C3.3); then the source vector will be
taken into account.

C3.3 New SR3D Structure: Reaction Matrix
Let us describe the  matrix of equation (C3.5) representing the coupling effect between a
pair of the mesh elements (triangles defined in the discretized-domain  shown in Figure
C3.3). We consider a reaction matrix with two generic triangles (metallic or dielectric, inside

), so we obtain a  6x6  matrix as we can see from equation (C3.6).

TK TL

S Einc Hinc jK pK, , ,( )– µR1
KL jL jK,( ) k2

µr
-----R1

KL pL pK,( )

R2
KL jL pK,( ) R2

KL pL jK,( )+

+ +=
(C3.3)

R S

R1 αL αK,( ) G x y,( ) αL y( ) αK x( )⋅( ) y xdd
4HKHL

k2
------------------ G x y,( ) y xdd

TL

∫°
TK

∫°–
TL

∫°
TK

∫°=

R2 αL βK,( ) ∇yG x y,( )( αL y( )× ) βK x( )⋅( ) y xdd
TL

∫°
TK

∫°=

S Einc Hinc jK pK, , ,( ) E( inc jK⋅ pK Hinc⋅– ) xd
TK

∫°=

HT
1

2ΛT
----------,= ΛT triangle T surface,where:

(C3.4)

TK TL

ZKL ΦL SK= (C3.5)

ZKL R

ZKL

Ω

Ω ZKL

ZKL
2Cx2S

Zee
KL

CxS
Zem

KL
CxS

Zme
KL

CxS
Zmm

KL
CxS

= (C3.6)

where:

m magnetic reaction=
e electric reaction=

C S, 3=
C number of cartesian coordinates=
S number of triangle vertices =



Chapter 3 - SR3D Structure

22

We would like to support equation (C3.6) with the figure below since this is an important the-
oretical point. We also try to match the pure mathematical treatment to a real electromagnetic
problem. So in equation (C3.7), we represent the reaction matrix relative to a couple of triangles

  defined on the surface of a patch antenna (  is the whole reaction matrix given in equa-
tion (C3.2)).

The  matrix is composed of  rows and  columns, where  is the number of degrees of
freedom of the entire structure. As first step, we define the terms of the matrix  reported in
equation (C3.6). Let’s consider the triangles  , we define all the geometry variables (see
Figure (C3.4)).

Then, the terms of the matrix  are defined as follows:

TK TL Z

Z

... ... ... ...

... ZKL
6x6

... ...

... ... ... ...

... ... ... ... NxN

=

ZKL

(C3.7)

Z N N N
ZKL

TK TL

Cs
T Ccs

T
C1s

T C2s
T C3s

T, , ℜ3,∈= = c s, 1 2 3, ,=

r y x–( ),= r y x– ,= x y, TK TL ℜ3∈,∈

x x1 x2 x3, , ,= y y1 y2 y3, ,=

where: c is the Cartesian coordinate index and s is the vertex index number

(C3.8)

ZKL

Zee
KL

CxS
µ Ree

KL
CxS

Ise=

Zme
KL

CxS
Rme

KL
CxS

Ise=

Zmm
KL

CxS

k2

µ
----- Rmm

KL
CxS

Ism=

Zme
KL

CxS
Rme

KL
CxS

Ism=
(C3.9)
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Where  is the magnetic permeability of the materials,  the wavenumber of the electromag-
netic radiation and the  terms are the coupling terms (-1 or +1), related to the degrees of free-
dom, needed to represent the global reaction matrix. Finally we can find the  reaction terms
in equation (C3.3). The first and the last terms in equation (C3.9) are related to  term and the
others to  term. In other words, using this reference we, can explicit these terms as follows: 

The complete expression of these terms are given in equation (C3.4).
Let’s now define the new SR3D  operators (to compare with the old version in equation
(C3.1)) used inside the terms in equation (C3.3). They are defined as follows:

We can operate a further modification of these operators. Let’s define the extended form of the
basis  and  for the triangles   (see Annex 2) and the mixed product defined inside the

 operator:

µ k
I

R
R1

R2

Ree
KL Rmm

KL R1αα
KL same kind of current in the reaction, ee or mm↔,

Rem
KL Rme

KL R2αβ
KL different kind of current in the reaction, em or me↔,

(C3.10)

A D T, ,

T KL G( ) ∇yG x y,( )( αL y( )× ) βK x( )⋅( ) y xdd
TL

∫°
TK

∫°=

DKL G( ) HKHL G x y,( ) y xdd
TL

∫°
TK

∫°=

AKL G( ) G x y,( ) αL y( ) αK x( )⋅( ) y xdd
TL

∫°
TK

∫°=

where: G ejkr

r
--------,= r y x–=

(C3.11)

α β TK TL
T( )

ΘK x( ) αK βK HK C3x( ) HK C1x( ) HK C2x( )= = =

ΘL y( ) αL βL HL C3y( ) HL C1y( ) HL C2y( )= = =

∆KL x y,( ) ∇yG x y,( ) αL y( )× βK x( )⋅=

HK
1

2ΛK
----------,= ΛK surface triangle K,where:

HL
1

2ΛL
----------,= ΛL surface triangle L,

(C3.12)
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As we can see from equation (C3.12), we can define the  matrix through the product between
the  terms and a new matrix :

About the  term, we can write, according to equations (C3.8) and (C3.13):

Now we are ready to define a more convenient form for  operators. Their new forms
are given in equation (C3.15) (  and  are the matrix cell indices):

ΘT

H BT

ΘK x( ) HK C3x( ) C1x( ) C2x( ) HK BK x( )= =

ΘL y( ) HL C3y( ) C1y( ) C2y( ) HL BL y( )= =

where: BK x( ) C3x( ) C1x( ) C2x( )=

BL y( ) C3y( ) C1y( ) C2y( )=

(C3.13)

∆KL

with: φ r( ) G r( ) ejkr

r
--------,= = ψ r( ) ∂φ r( )

∂r
------------- jkr 1–( )e

jkr

r3
--------,= =

∇G r( ) ∇φ r( ) ψ r( ) r⋅= =

We obtain:

∆KL x y,( )
cs

ψ r( ) r⋅ HL BL y( )
s

× HK BK x( )
c

⋅

ψ r( ) HK BK x( )
c

HL BL y( )
s

×
 
 
 

r⋅ HKHLψ r( ) ΩKL x y,( )
cs

= =

= =

where:

ΩKL x y,( )
cs

det cols BL y( ) colc BK x( ) y x–
 
 
 

=

BT w( )
i

coli BT w( )=

(C3.14)

A D T, ,
c s

T
KL

ψ( ) cs
HKHL ψ x y,( ) ΩKL x y,( )

cs
y xdd

TL

∫°
TK

∫°=

DKL φ( ) cs
HKHL φ x y,( ) y xdd

TL

∫°
TK

∫°=

AKL φ( ) cs
HKHL φ x y,( ) BK x( )

c

t
BL y( )

s
y xdd

TL

∫°
TK

∫°=

(C3.15)

where: c s, 1 2 3, ,=
c Cartesian coordinates index=
s triangle vertex index=
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This represent a good result because the reaction expressions are defined now in a very clear
way. Then it would be easier to find out their derivatives with respect to both mesh and frequen-
cy variables. We want to emphasize an aspect about the frequency derivative: as we can notice
the frequency dependance concerns only the Green’s function kernels (i.e. , see equation
(C3.14)). That is convenient because in this case we only need to derivate the kernels with re-
spect to the frequency to obtain the derivatives. In order to do that, we need a further passage in
equation (C3.9) using the linearity of operators .

We can notice from equation (C3.16) that we obtain a total of four different Green’s function
kernels without changing anything in the  operators definition. These new four kernels
are defined, according to the equations (C3.8),  as follows:

Finally, we have the following discrete expressions for the  terms:

C3.4 New SR3D Structure: Source Vector
The source vector of the linear system takes into account the sources defined inside the analysis
domain. We define for the moment the source reaction with one generic triangle (metallic or
dielectric). We obtain a 6  vector size as we can see from equation (C3.19). We consider an
electric dipole as source for the scattering problems. 

C3.4.1 Source Vector Dipole: we consider the reaction between a source dipole in freespace and
a single triangle of the mesh since this is true for every triangle of the discretized structure. So
let’s describe the vector  that is the source vector of equation (C3.5) representing the cou-
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=
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 
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(C3.16)
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pling effect between a source dipole  and a triangle  of the mesh (triangle defined in the
discretized-domain  shown in Figure C3.3). 

We would support the equation (C3.19) with the figure below since this is an important theoret-
ical point. In equation (C3.20) we represent the source vector reaction over a triangles  de-
fined on the surface of a patch antenna (  is the whole source vector in equation (C3.2)). We
assume that the dipole never lies on the triangle surface.

The  vector is composed of  columns which is the number of degrees of freedom of the en-
tire structure. So we define the terms of the vector  given in equation (C3.19). Let’s consider
the triangle  and the dipole , we define all the geometry variables (see Figure C3.4).

DK TK
Ω

SK
2Cx1

SK
Cx1

SK
Cx1

= (C3.19)

where:

m magnetic reaction=
e electric reaction=

C 3=
C number of cartesian coordinates=
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... N

=
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(C3.20)
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where: c is the Cartesian coordinate index and s is the vertex index number
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Then the terms of the vector , relative to an electric dipole source, in according to the equa-
tions (C3.13), (C3.14) and (C3.21), are defined as follows:

According to equation (C3.13), we can reduce the term  in a similar way as already done for
the term  in equation (C3.14):

According to equations (C3.14) and (C3.23), we obtain the reduced form for the source vector
terms:

C3.5 New SR3D Structure: Reaction Matrix Discretization
Since now we have treated the theoretical issue from an analytical point of view. We want now
to show the discretized form for the  operators and  terms. The discretization is
based on the seven-points Gauss discretization method (see Annex 1).
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Remembering that we defined the normalized Gauss method weights  for a generic discreti-
zation point defined inside the triangle :

See Annex 2 to find out the  normalization term definition. Then the discrete form of a ge-
neric Green’s function kernel   is:

We can apply this discretization to every kernel reported in equation (C3.17). Then, the discrete
form of the triangles   with a seven-point Gauss method representation is shown in Figure
C3.5, according to equation (C3.25).

Figure C3.5: Discrete  coupling terms using a 7-point Gauss discretization method

According to the equation (C3.15), and Figure C3.5, the discrete form of the  operators 
is:
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As we can see, we can propose a reducted form as follows

Finally, we present the discrete form for the  terms:

The presented Rumsey reaction discrete form will be used to calculate the relative derivative
expressions with respect to both geometry mesh and frequency. In the following, we will show
two different kinds for the numerical implementation of the expressions of equation (C3.29),
that will allow to us to treat the singularity issue inside the Green’s function kernels and to op-
timize the computation speed as well.

C3.6 New SR3D Structure: Sources Vector Discretization
As we did for the reaction matrix, we want now to show the discretized form for the  vector.
The discretization is also based on the seven-points Gauss discretization method (see Annex 1).
We consider an electric dipole as source for the scattering problems. 

C3.6.1 Source Vector Dipole Implementation: we can apply the Gauss discretization method to
all the terms reported in equation (C3.24), according to equation (C3.25). Then, the dipole 
and the triangle  discrete form with a seven-point Gauss method representation is shown in
Figure C3.6.

Figure C3.6: Discrete  coupling terms using a 7-point Gauss discretization method

TKL g3( )
cs

1
4
--- αkαlg3

l
∑

k
∑ xk yl,( ) ΩKL xk yl,( )

cs
=

DKL g2( )
cs

1
4
--- αkαlg2

l
∑

k
∑ xk yl,( )=

AKL g1( )
cs

1
4
--- αkαlg1 xk yl,( )

l
∑

k
∑ BK xk( )

c

t
BL yl( )

s
=

(C3.28)

ZKL
xx

ZKL
ee cs

µ AKL φ( )
cs

DKL Γ( )
cs

+
 
 
 

Isecs
=

ZKL
em cs TKL ψ( )

cs
Isecs

=

ZKL
mm cs

1
µ
--- AKL χ( )

cs
4 DKL φ( )

cs
–

 
 
 

Ismcs
=

ZKL
me cs TKL ψ( )

cs
Ismcs

=
(C3.29)

S

DK
TK

TKDK



Chapter 3 - SR3D Structure

30

According to equations (C3.14), (C3.21), (C3.23) and Figure C3.6, we obtain the reduced form
for the source vector terms:

And we propose the following reduced form
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Chapter 4 - SR3D Implementation
In Chapter 3, we gave the expressions of the MoM linear system, detailing the reaction between
a single couple of triangles for the reaction matrix and the reaction between a triangle of the
mesh and a source point with respect to the source vector or second member of the linear system
(see the equations (C3.7) and (C3.20) for the relative references). In Chapter 4, we show how
to numerically implement these discrete equations. The numerical code has been developed en-
tirely in Fortran 77 language.

We have developed two numerical techniques for computing the expressions given in equation
(C3.29) and (C3.31). Each technique has some advantages with respect to the relative position
of every single couple of triangles   in the 3D space. The first technique is based on the
Full-Numerical (FN) technique of the reaction integrals meaning that every mesh integral is cal-
culated using the gaussian quadrature method. The second technique is based on the Semi-Nu-
merical (SN) method where one of the two reaction integrals is calculated analytically and the
second one computed using the gaussian quadrature method. In the continuation, a preliminary
description of these two techniques, is reported:

Full Numerical Technique: this technique is used when the triangles of the
couple   are electrically far from each other; is called FAR configuration.
The FN technique cannot be applied when the triangles are electrically too close
owing to the fact that it will produce a decrease of the computational speed of the
integral computation or, in the worse case, when they are superimposed and a
singularity inside the Green’s function kernels (see equation (C3.17)) appears
making even impossible the use of this technique. 

The FN implementation is also used for the computation of the source vector,
since no singularity appears as the source may be defined on a side of the trian-
gles for a voltage source or never on the structure surface in case of an electrical
dipole. 

Semi Numerical Technique: as already said in the FN technique summary, the
SN implementation has been developed in order to be able to treat both electrical
CLOSE configurations, increasing the speed of the integral computation, and
SINGULAR configurations, when the couple of triangles are superimposed (i.e.

 and , see equation C3.5 for the references). In this
development the SN technique can be only applied for coplanar couple of trian-
gles.

The SN technique is convenient as it is faster than the FN implementation for
CLOSE configuration; that’s because as the distance between two triangles de-
creases the number of discretizaton Gauss points increases in order to maintain
the same accuracy of results for FN technique. It is clear that when the number
of Gauss points starts to be considerable, the computational speed will decrease
critically; that’s why in that case we prefer to use, the SN implementation. 

On the other hand, the SN technique is strictly needed if the triangles are su-
perimposed. In the SUPERIMPOSED case, the SN implementation operates on
the Green’s function factorization in order to separate the singular part from the
regular one. The singular part is treated with a special analytic reduction method
whereas the regular part is treated using the Taylor expansion. No SN implemen-
tation is used for the computation of the source vector, since no singularity is ap-
pearing.  

TK TL

TK TL

TK TL≡ r xl xk–( ) 0= =
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Let’s define all the relative positions that may occur for the numerical computation of the reac-
tion matrix in Figure C4.1 and of  the source vector in Figure C4.2. We fix a threshold value,
called , in order to choose which technique to be used between FN and SN. We use this thresh-
old with respect to the barycenters  of the triangles (see figures below).

Figure C4.1: Definition of the relative distance for triangles  for the reaction matrix computation

Figure C4.2: Definition of the relative distance for triangle  and a source point for the source vector computation

We must emphasize that only coplanar structures can be studied for the moment owing to the
implementation of the SN technique. We will explain and clarify this issue in the following.

C4.1 Full-Numerical Technique
In Chapter 3, we gave the theoretical expression of both the reaction matrix and source vector.
Now we want to describe the numerical implementation of the equations (C3.28), (C3.29) and
(C3.31) for the Full-Numerical technique.

D
b

FAR case:

if  r D FN technique⇒>
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SUPERIMPOSED case:

if  r D SN technique⇒<
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FAR case only:
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C4.1.1 Reaction Matrix: the goal is to compute the reaction terms of equation (C3.29) for a sin-
gle couple of triangles using the Full-Numerical technique. According to Figure (C3.5), equa-
tions (C3.8), (C3.15) and equations (C3.27) and (C3.28) (reported in equation (C4.1)), we will
describe the terms forming the  operators. This technique is easy to apply as all the
terms appearing in equation (C4.1) are defined, we only need to perform a double summation
for each operator.

Let’s start from the  Gauss weights (see Annex 1), they appear inside the integrals
as follows (where  are the number of gaussian quadrature points):

We have the  Green’s function kernels  in equation (C4.3):

The  matrices are defined in equation (C4.4) as:
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Finally, we have the mixed product defined by the term  reported in equation (C4.5):

Once these terms are calculated, we are able to find the FN reaction terms given in equation
(C3.29).

C4.1.2 Dipole Source Vector: let’s show now how to implement the source vector reported in
equation (C3.31) for the Full-Numerical technique. According to Figure C3.6, equations
(C3.21), (C3.24) and referring to equations (C3.30) and (C3.31) (reported in equation (C4.6)),
we will describe the  term. This technique is easy to apply as all the terms appearing in equa-
tion (C4.6) are defined, we only need to perform a single summation for each operator.

Let’s start from the  Gauss method weights (see Annex 1), they appear inside the integrals
as follows  (where  are the generic gaussian quadrature points number):

Then we have the Green function kernels in equation (C4.8):
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The  matrices are defined in equation (C4.9) as:

The expressions of the dipole moment  and the transversal dipole moment  are:

Finally, we have the mixed product defined by the term  reported in equation (C4.11):

Once these terms are calculated, we are able to find the FN reaction terms given in equation
(C3.31).

C4.2 Semi-Numerical Technique
We want now to describe the numerical implementation of the equations (C3.28), (C3.29) and
(C3.31) for the Semi-Numerical technique.
We also assume to study planar structures only, so this reduce, for the moment, the field of ap-
plication of SR3D but notably simplifies the configuration. Under this hypothesis and according
to equation (C2.28), we can say that when we consider the reaction between two planar struc-
tures, defined on the  plane, we have:
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This leads to obtain a zero value for  term in equation (C2.28) and consequently a zero value
for  operator reported in equation (C3.28). This hypothesis simplifies the model but only pla-
nar structures can be treated.

C4.2.1 Reaction Matrix: the goal is to compute the reaction terms of equation (C3.29) for a sin-
gle couple of triangles using the Semi-Numerical technique. According to Figure C3.5, equa-
tions (C3.8), (C3.15) and referring to equations (C3.27) and (C3.28) (also reported in equation
(C4.13) under the assumption of equation (C4.12)), we describe the terms for the  opera-
tors.  

We recall that the main goal of the Semi-Numerical technique is to eliminate the singularity of
the Green’s function kernels for the superimposed triangle case (see Figure C4.1).
As a result, the equation (C4.13) needs a quite complex mathematical treatment, reported in An-
nex 3. In this chapter, we only report the main theory with the final expressions for all the terms
which are defined inside the reduced  operators.
As said, when triangles  and  are superimposed, a singularity occurs for the Green’s func-
tion kernels because  (see equation (C3.17)). Due to that, we
desire to separate the singular part from the regular part inside the  classical Green’s function
(see equation (C3.27)). We can use the  function only, owing to the fact that  does not appear
in the SN technique (we do not consider the constant that appears inside the kernels in equation
(C4.19)). 

The form for the  term is easy to find from equation (C3.17) and the  is described in Annex
3.  According to equation (C4.14), we can define the generic form of  operators:
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The final expressions for the equation (C4.15) are reported in the following. More precisely, the
equation (C4.16) contains the  operators for the SN technique in case of singularity
( ) while the equation (C4.17) contains the  operators for the regular SN
technique ( ). All the calculations are reported in Annex 3.

The  Gauss method weights (see Annex 1) appear inside the integrals as follows
(where  are the numbers of the generic gaussian quadrature points):
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Then, we have the Green’s function kernels in equation (C4.19):

The  matrices are defined in equation (C4.20) as:

We report the  and the  functions, defined through the  and the  functions, using the
semi analytical expression in Annex 3. The  and the  functions are the triangle surface nor-
malized  and  functions.

Finally,   and  functions are defined as follows:

Once these terms are calculated, we are able to find the SN reaction terms reported in equation
(C3.29), with the null term .
The detailed calculations are reported in Annex 3.

C4.2.2 Dipole Source Vector: no Semi-Numerical technique is needed for a dipole source type
owing to the fact that the dipole never lies over a mesh triangle. So, the Full-Numerical tech-
nique for this kind of source is sufficient.
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Chapter 5 - SR3D Derivative with Respect to the Mesh
In this chapter, we show the derivative with respect to the structure mesh of the equations de-
fined in Chapter 3 for the new SR3D version. In particular, we express the derivative of the re-
action matrix and the source vector of the MoM linear system terms with respect to the mesh.
These derivative terms are used to calculate the currents vector derivative with respect to the
mesh.

C5.1 SR3D Mesh Derivative: General Description
The MoM linear system expression defined in equation C3.2, is reported again hereafter:

Given a triangle-discretized generic  surface, we can identify every vertex of the triangles as
the ensemble of  points. We can define the reaction matrix derivative with respect to the

 variables, where  is the number of the points defining the structure.

We have similary for the source vector:

More precisely, every point has two indices  and  refering, respectively, to the cartesian co-
ordinate and to the global vertex number. 
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We want, for example, to find the mesh derivative gradient of the whole reaction matrix with
respect to the  cartesian direction (i.e ) for all the mesh points (i.e ). Then,
it is needed to calculate  derivatives with respect to the derivative variables

,  and . In order to find the final mesh gradient in the  direction, we
only need to sum all the  derivative matrix terms for the reaction (using the derivative oper-
ator linearity):

We can apply that also to the source vector:

As seen in Chapter 3, we prefer to analyse the equivalent sub-linear system relative to the equa-
tion (C5.1) for the single couple of triangles  and .

The derivatives of the reaction matrix and the source vector terms, for equation (C5.6), will be
shown in the next section.

C5.2 SR3D Derivative of the Reaction Matrix with Respect to the Mesh
We can derive the reaction matrix from the sub-linear system reported in equation (C5.6) rep-
resented as a 6x6 size matrix. As seen in Chapter 3 (in equation (C3.6)), it is defined as follows: 

We assume the triangle  to be the reference triangle for the derivative calculation. Moreover,
if the sub-linear system is taken into account, then a new derivative variable is considered in-
stead of  . This new variable is defined as , where the  represents the dependancy on
the triangle . The derivative for equation (C5.7) is still represented by a 6x6 matrix.
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If we use this new reference variable, we can derive the simple derivatives with respect to one
vertex along one cartesian direction. For example, if we want the gradient with respect to 
vertex  along the  direction for a metallic structure, we only need to compute:

Let see Figure (C5.1),  for a visual description of the problem:

Figure C5.1:  gradient calcul for the sub-linear system 

Otherwise, when we need the gradient along  direction, we have to calculate three derivatives
and sum the three terms:
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Let see Figure (C5.2) for a visual description of the problem:

Figure C5.2: Gradient along  direction for the sub-linear system 

The gradient of the SR3D reaction matrix  for a metallic structure is obtained through the reac-
tion matrix derivative with respect to every summit and every direction related to the reference
triangle. The gradient is reported in equation (C5.11).

Let’s now analyse the reaction matrix derivative term by term with respect to a single couple of
triangles. We recall the  terms from the Rumsey reaction in equation (C3.4), so the  de-
rivative terms are defined as follows:
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In Chapter 3, we have found the  terms expressions; our task is here to find out the 
derivative form with respect to the geometry of the structure, using the new SR3D  op-
erators found in equation (C3.18). So, equation (C5.12) becomes:

The SR3D  operator derivatives with respect to the geometry are finally shown in equa-
tion (C5.15). In the following, we will change the derivative symbol with respect to the generic
triangle  as follows:

We recall that the operator expressions are given in equation (C3.15) and functions  have
been defined in (C3.17). Let’s now write the derivative of the above-mentioned terms using the
new notation (  and  are the matrix cell indices):
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The derivatives of the kernels  are defined as follows:

C5.3 SR3D Derivative of the Source Vector with Respect to the Mesh
The derivative of the second member of the linear system with respect to the mesh takes into
account the sources defined inside the domain. As usual, we only consider for the moment the
source reaction with one generic triangle (metallic or dielectric) , so we obtain a 6  vector
size as we can see from equation (C5.14). We consider an electric dipole as source for the scat-
tering problem.

C5.3.1 Derivative of Dipole Source: for a dipole-type source, we consider the reaction between
the source itself and a single triangle of the mesh since this is valable for every triangle of the
discretized structure. Here, we recall the equation (C3.5), in equation (C5.17), representing the
coupling effects between a source dipole  and a triangle  of the mesh. As the dipole
source depends on the geometry, then the derivative respect to the geometry is non zero. 

We assume the triangle  to be the reference triangle for the derivative calculation. Moreover,
if the sub-linear system is taken into account, then a new derivative variable is considered in-
stead of . This new variable is defined as , where the  represents the dependancy
from the triangle . The derivative of the source from equation (C5.17) is still defined by a 6
vector size.
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As for the reaction matrix derivative, we can derive simple derivatives with respect to one ver-
tex along one cartesian direction. For example, if we want the gradient with respect to  ver-
tex  along the  direction for a metallic structure, we only need to calculate:

Let see Figure C5.3 for a visual description of the problem:

Figure C5.3:    gradient calculation for the sub-linear system 

Figure C5.4: Gradient along  direction calculation for the sub-linear system 

Otherwise, if we need the mesh gradient along  direction we must calculate three derivatives
and sum them:
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Let see Figure C5.4 for a visual description of the problem.
The gradient of the source vector for a metallic structure is obtained through the source vector
derivative with respect to every summit along every direction related to the reference triangle.
The gradient is reported in equation C5.21.

According to equation (C5.14) and equations (C3.22), (C3.24), we can define the source vector
derivative with respect to the geometry:
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C5.4 SR3D Derivative of the Discretized Reaction Matrix with Respect to the Mesh
Up to now, we have treated the theoretical issue from an analytic point of view. We want now
to show the discretized forms for the  operators and  terms with respect to the ge-
ometry. As for the classic SR3D code, the discretization is based on a seven-point Gauss discre-
tization method (Annex 1). We recall that the Gauss weights  for a generic discretization
point are defined in equation (C3.25), the Green’s function discrete form in equation (C3.26)
and a discretized couple of triangles is reported in Figure C3.5.
So, according to equation (C3.28), the derivative of the discrete form with respect to the geom-
etry of the  operators is given in equation (C5.23):

Finally, the discrete forms for the  derivative terms are given by:
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C5.5 SR3D Derivative of the Discretized Source Vector with Respect to the Mesh
As for the reaction matrix, we want now to derive the discretized derivative form with respect
to the geometry for the  vector. Once again the discretization is based on a seven-point Gauss
method (Annex 1). We consider an electric dipole as source for the scattering problem. 

C5.5.1 Implementation of the Derivative of the Dipole Source Vector: we can apply the Gauss
method discretization to all the terms reported in equation C5.22, according to equations
(C3.25) and (C3.26). The dipole  and the triangle  discrete form with a seven-point Gauss
method representation in reported in Figure C3.6. 
So, in equation (C5.25) the derivative of the discrete form for the dipole source vector with re-
spect to the geometry is given by:
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Chapter 6 - SR3D Mesh Derivative Implementation
In Chapter 5, we have explained how to define the derivative with respect to geometry of the
MoM linear system equations, detailing the reaction between a single couple of triangles for the
reaction matrix and the reaction between a triangle of the mesh and a point source with respect
to the source vector (or second member of the linear system). See equations C5.7 and C5.14 as
equation references. In this chapter, we want to show how to numerically implement these dis-
crete equations. The numerical code has been developed entirely in Fortran 77 language.

We have also developed two numerical techniques in order to calculate the expressions given
in equation C3.29 and C3.31, as done for the normal SR3D reaction in Chapter 3. For the first
one, we have the Full-Numerical (FN) technique of the reaction integrals using the Gauss dis-
cretization method. The second technique is based on the Semi-Numerical (SN) method where
one of the two reaction integrals is calculated analytically and, for the second one, we use the
Gauss discretization method. In the following, a preliminary description of these two tech-
niques, is reported:

Full-Numerical Technique: this technique is used when the triangles of the
couple   are electrically far from each other. It is called FAR configuration.
The FN technique cannot be applied when the triangles are too close due to the
fact that it will produce an increase of computational burden for the integral com-
putation or, in a worse case, when the two triangles are superimposed, a singu-
larity inside the Green’s function kernels (see equation C3.17) will appear
making even impossible the use of the technique. 

The FN implementation is also used for the computation of the source vector,
since no singularity appears as the source may be defined on a side of the trian-
gles for a voltage source or outside the structure surface in case of an electrical
dipole. 

Semi-Numerical Technique: the SN implementation has been developed in or-
der to be able to treat both electrical CLOSE configurations, for accelerating the
computation of the integrals, and SINGULAR configurations, when the couple
of triangles is superimposed (i.e.  and , see equation
C3.5 for  reference). In this development, the SN technique can be only applied
to coplanar couple of triangles.

The SN technique is convenient since it is faster than the FN implementation
for CLOSE configuration; that’s because as the distance between two triangles
decreases, the number of discretizaton Gauss points raises in order to maintain
the same accuracy for FN technique. It is clear that if the Gauss points number
starts to be large, so the computational speed will decrease critically; that’s why
in that case, we prefer to use the SN implementation. 

On the other hand, the SN technique is strictly needed when the triangles are
superimposed. In the SUPERIMPOSED case, the SN implementation operates
on the Green’s function kernels factorization in order to separate the singular part
from the regular one. The singular part is treated with a special analytic reduction
method whereas for the regular part a Taylor expansion is used. No SN imple-
mentation is used for the computation of the source vector, since no singularity
is present.  

TK TL

TK TL≡ r xl xk–( ) 0= =
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The derivative with respect to the geometry of the  reaction terms is more complicated
than the normal reaction one. Nothing changes about the electrical distances, where the FN and
SN technique are still used. For the derivative geometry reaction, we must also take care about
the number and the order of the triangles  common vertices. In fact, if the 
triangles have a common vertex then the derivative of  and the derivative of

 with respect to the common vertices must be taken both into account. As for the nor-
mal reaction, we fix a threshold, called , in order to choose which technique to be used be-
tween the FN and the SN ones. We use this threshold with respect to the barycenters  of
triangles (see Figures below).
We consider the triangle common vertices configuration we are interested in applying the SN
techniquethe for the electrical CLOSE and SUPERIMPOSED cases. We can find these cases in
Figure C6.1 in which the two common vertices reaction (Red), the single common vertex (Or-
ange) and the three common vertices (Green) are shown. 
 

Figure C6.1: Definition of the relative distance for triangles  for the reaction matrix derivative calculation

Figure C6.2: Definition of the relative distance for triangle  and a source point for the source vector calculation

TK TL,

TK TL, TK and TL
TK over TL

TL over TK
D

b

FAR case:

if  r D FN technique⇒>

CLOSE case:

if  r D SN technique⇒<

SUPERIMPOSED case:

if  r D SN technique⇒<

TKTL

FAR case only:

if  r D FN technique⇒<

TK
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We must point out for the derivative of the common vertex case that a special solution has to be
taken into account. Let’s consider the next examples, where the reference for the derivative tri-
angle is still :

Figure C6.3: Common vertex case in a generic 3 dimentional space

According to equation C3.8, if we consider the left case, in the Figure above, and we desire to
calculate the reaction derivative with respect to  and , along every direction, the normal
SN derivative case can be used, since there are not  common vertices with respect to .
Instead, if we desire the reaction derivative with respect to , i.e. along  direction, both the
reaction derivatives with respect to  and  must be taken into account for this vertex. This
means that the total reaction derivative for the vertex  will be the sum of the derivatives of
the reaction with respect to  and  both. If we consider a metallic structure, then the matrix
reaction derivative will be:

What has been said is valid for each common vertex case. It doesn’t matter the number of com-
mon vertices are defined for a couple of triangles .

C6.1 Full-Numerical Technique
In Chapter 5, we gave the expressions of both the derivative with respect to the geometry for the
reaction matrix and source vector. Now we want to describe the numerical implementation of
equations C5.23, C5.24 and C5.25 for the Full-Numerical technique.

C6.1.1 Reaction Matrix Derivative: we want now describe the derivative reaction terms of
equation C5.24 between a single couple of triangles using the Full-Numerical technique. Ac-
cording to Figure C3.5, equations C3.8, C5.15 and referring to equations C5.23 and C5.24 (also
reported in equation C6.2), we will describe the derivative of the terms forming the 
operators. This technique is quite linear to apply as all the terms appearing in equation C6.2 are
defined and we only need to perform a double summation for each operator. 
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Where the derivatives of the kernels  are defined as follows:

According to equations from C4.2 to C4.5, the derivative terms in expressions C6.2 and C6.3
will be explained in the following. For more details see Annex 4. 
As everything depends on the Gauss points, in expression C6.4, we will give first the derivative
with respect to the geometry for a generic Gauss point  defined in a generic triangle  geom-
etry (see Annex 1).
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According to equation C3.13, we give now the expression of   matrix derivative with respect
to the triangle  geometry:

Then, according to equation C3.14, we now give the expression of   determinant derivative
with respect to the triangle  geometry:

According to equations C3.8 and C3.14, we give the Green’s function kernel derivatives with
respect to the triangle  geometry. First, in equation C6.7, we will give the expressions of the
Green’s function kernel derivatives with respect to the direction  of the Gauss point  defined
on triangle . For the sake of semplicity, we use the variables  and .
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Finally, we will show the Green’s function kernel derivatives with respect to the triangle  ge-
ometry in equation C6.8.

C6.1.2 Source Vector Derivative: let’s show now how to implement the source vector derivative
with respect to the geometry reported in equation C5.25 for the Full-Numerical technique. Ac-
cording to Figure C3.6 and equations from C4.2 to C4.11 and referring to equation C5.25 (here
reported in equation C6.9) we will describe the  term derivative. This technique is quite linear
to apply as once all the terms appearing in equation C6.9 are defined, we only need to perform
a single summation for each operator. For more details, see Annex 4. 
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Where the derivatives of the kernels  are defined as follows:

The  matrix derivatives are defined in equation C6.11 as:

The expression of the dipole moment  does not depend on the geometry; instead, according
to equation C3.22, the transversal dipolar moment  derivative is defined as:

Finally, we have the mixed product defined by the term  derivative reported in equation
C6.13:

C6.9( )
DK

uv
Sm

K mD yD,( )
 
 
 

c

µ
2
---– DL

uv ψ DK
uv xk{ } yD,( )

c 
 
 

ϒK xk yD,( )
c

ψ xk yD,( ) DK
uv ϒK DK

uv xk{ } yD,( )
c 

 
 

+












k
∑=

gi

DK
uv φ DK

uv xk{ } yD,( )
c 

 
  φ xk yD,( )∂

xk[ ]c∂
------------------------- DL

uv xk[ ]c{ }=

DK
uv ψ DK

uv xk{ } yD,( )
c 

 
  ψ xk yD,( )∂

xk[ ]c∂
-------------------------- DL

uv xk[ ]c{ }=
C6.10( )

BK

DK
uv BK

DK
uv xk{ }( ){ }

cs
DK

uv xk{ }
cs

DK
uv xk{ }

cs
DK

uv xk{ }
cs

DK
uv CK{ }

c3 DK
uv CK{ }

c1 DK
uv CK{ }

c2

–=

C6.11( )

mD

mt
D

DK
uv mt

D r( ){ }
1
r2
---- DK

uv mD r⋅
 
 
  r mD r⋅+ DK

uv r
 
 
 

+

r2 DK
uv

1
r2
----

 
 
  mD r⋅ r⋅

⋅⋅–=

C6.12( )

where: r xk yD–( )=

ϒK

DK
uv

ϒK DK
uv

xk{ } yD,( ){ }
c

det

DK
uv

BK DK
uv

xk{ }( ){ }
1c

0 DK
uv

xk{ }
1

BK xk( )
2s mD

2
xk yD– 
 

2

BK xk( )
3s mD

3
xk yD– 
 

3 
 
 
 
 
 
 
 
 
 
 
 
 

+= C6.13( )



Chapter 6 - Mesh Derivative SR3D Structure Implementation

59

Once these terms are calculated, we are able to find the FN reaction terms derivative reported
in equation C3.31.

C6.2 Semi-Numerical Technique
In Chapter 5, we gave the expressions of both the derivative with respect to the geometry for the
reaction matrix and source vector. Now, we want to describe the numerical implementation of
equations C5.23, C5.24 and C5.25 for the Semi-Numerical technique.
We also assume to work with planar structures only, so even if  reduces the field of application
of SR3D it notably simplifies the optimization procedure. Under this hypothesis and according
to equation C2.28, we can say that if we consider the reaction between two planar structures,
defined on the  plane, then:

This lead to obtain a zero value of the  term in equation C2.28 and consequently a zero value
for  operator reported in equation C3.28. As said this hypothesis simplifies the model but only
planar structures can be treated.

C6.2.1 Reaction Matrix Derivative: the goal is to calculate the reaction terms of equation C5.24
between a single couple of triangles using the Semi-Numerical technique. According to Figure
C3.5, equations C3.8, C5.15 and referring to equations C5.23 and C5.24, under the hypothesis
of equation C6.14), we will describe the terms forming the  operator derivatives. As the
equations defined in the following need a quite complex mathematical treatment, it has been re-
ported in Annex 4; in this chapter we only report the main theory with the final expressions of
all the terms which are defined inside the reduced  operators. As we treat the SN technique,
we take into account only coplanar  reaction as we are under the hypothesis defined in
equation  C6.14 for   operators.
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Figure C6.4: Common vertices derivative variables

There is a substantial difference between the SN reaction technique and the SN derivative reac-
tion one. The difference lies inside the derivation variable . In fact, here we must discrimi-
nate the SN regular case , from the SN regular case with common vertices  and from the
SN singular case  as shown in Figure C6.4. 

Figure C6.5: All the SN technique cases with respect to the derivation vertex

a) CLOSE case:
no common vertices

b) CLOSE case:
one (or two) common vertices

c) SUPERIMPOSED case:
three common vertices

regular case - no singularity in the Green′s kernels
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  singular case - singularity in the Green′s kernel
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That means for each configuration defined in Figure C6.4, different derivative expressions will
be given. Let’s define every possible case that can occours using the SN technique in Figure
C6.5.
Let’s give now the derivative expressions for the  operators with respect to the Figures
C6.4 and examples of Figure C6.5. As many variables depend on both the triangles , we
will specify also the derivative of the variables arguments.

a) Regular case with no common vertices, . According to equations from C4.16 to
C4.22 and Annex 4, we show the  operator derivatives with respect to the geometry. 

b) Regular case with common vertices, . According to equations from C4.16 to C4.22
and Annex 4, we show the  operator derivatives with respect to the geometry. We want
now to solve the most complicate case for the SN technique. We have almost the same expres-
sion than the regular case with no common vertices. In fact, due to the dependancy of the deriv-
ative on the common vertex , we must change the expression of the  operator
derivative expressions. So, if we define the vertices , where  are
the vertex index number for  respectively. We obtain:
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c) Singular case with all common vertices, . According to equations from C4.16 to
C4.22 and Annex 4, we show the  operator derivatives with respect to the geometry. If we
define the vertices , where  are the vertex index number for

 respectively. We obtain:
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Chapter 7 - Optimization
The optimization algorithm is defined in order to find the optimal position of a certain number
of metallic objects inside the domain , illuminated by a certain number of electric dipoles. In
Figure C7.1, we report a scenario with  objects,  electric dipoles and  measurement
points. The optimization variables are the positions of the objects and the cost functional is
based on the scattered electric field data.
The optimization algorithm will be able to find the optimal position of these objects, inside ,
translating them in order to find out the desired scattered electric field in a certain number of
measurement points.

Figure C7.1: General geometry problem

The flow chart in Figure C7.2 resumes the whole optimization method. We want to show the
main parts of the optimization procedure; for sake of simplicity, we want to point the attention
on three parts: direct problem solution (Chapter 4), inverse problem solution (Chapter 6) and
cost functional definition (Annex 5). Once these problems are solved, we can use any optimi-
zation algorithm, requiring the calculation of the gradient of the cost functional.

Figure C7.2: Optimization method flow chart
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In Figure C7.2, we define the surface electric currents as , the electric scattered field as  and
the cost functional of the critere as ; the terms ,  and  are, respectively, the derivative
with respect to the geometry.

C7.1 Optimization Terms Calculation
In this paragraph, we will describe how to solve the direct and the inverse problem and how to
compute the cost functional. As already seen in Chapter 4 and Chapter 6, the direct and the in-
verse problems are solved using a numerical method based on a time harmonic integral formu-
lation. The unknowns are the electromagnetic density of currents on the boundary surfaces of
the sub-domains of the structure, The numerical model is based on a surface discretization, us-
ing triangular finite elements.

C7.1.1 Direct Problem: we are considering mixed metallic and dielectric planar antennas illu-
minated by a certain number of plane waves or dipoles and using a time-harmonic Combined
Field Integral Equation (CFIE) integral formulation  for the 3D or 2D radiating structures.

 and  design the electric and magnetic density surface currents on  (surface of the scat-
terers or planar antennas). The numerical solution is based on a moment method or equivalently
a variational integral formulation (Rumsey reaction concept or reciprocity principle). The un-
knowns electric and magnetic fluxes,  and , of   and  surface density currents are
solution of the linear system of equation (C7.2) (see Chapter 3).

Once the unknown fluxes have been calulated, we are able to find out their derivative with re-
spect to the geometry. In order to do that, we need to define the linear system derivative:
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Then, we need to solve this new linear system passing through equation (C7.4):

Finally, we have the expression of the derivative with respect to the geometry of the linear sys-
tem of equation (C7.2). The expression of the terms of equation (C7.5) are defined in Chapter 5.

If now, we multiply the fluxes and its derivatives with respect to the geometry, with the vector
basis as reported in equation (A2.5), we find out the surface currents and its derivatives. 

C7.1.2 Inverse Problem and Cost Functional: the inverse scattering problem consists in retreiv-
ing the position of planar antennas when they are illuminated successively by a certain number

 of plane waves or dipoles and when the radiation far-field or near-field patterns are measured
in a certain region of the domain. The computed scattered electric field  is calculated us-
ing the results of the direct problem and it is reported in of equation (C7.7):

Then, we can also calculating the derivative of the computed scattered electric field with respect
to the mesh. The expression of the terms of equations (C7.7) and  (C7.8) are defined in Annex 5.

Given the measured or synthetic desired scattered electric field , then the cost functional
 is given by:
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(C7.6)

j m are the vector basis of the method of moment,where: 
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The gradient of the cost functional F with respect to the vertices of the different triangular cells
of the mesh is given by:

C7.2 Optimization Routine 
The flow chart of the optimization routine is reported in Figure C7.2. We want to give below a
short resume of the entire procedure.

1.  We start defining the synthetic or measured scattered field data related to the
desired geometry. We call this data .

2.  We solve the direct problem obtaining the surface density currents  and its

derivatives with respect to the mesh .

3.  We solve the inverse problem obtaining the computed scattered field  and

its derivatives with respect to the mesh . Then we can compute the cost

functional  and its derivatives with respect to the mesh . The goal of the opti-

mization is to reach the minimum of the cost functional ; in order to do that we
must satisfy the condition reported in equation (C7.11).

4.  If the condition in equation (C7.11) is not satisfied we must pass through the opti-
mization algorithm and find a new geometry and then do again the loop.

5.  Otherwise the optimization routine will stop, giving the final geometry.
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Chapter 8 - Code Validation
We have described all the optimization procedure, explaining in details the numerical method
used to solve the direct and the inverse problem. We have also introduced the SR3D in which
this method has been implemented. As seen in Chapter 3 and Chapter 4, the SR3D main core
has been revised and validated with respect to the old version. Since the old version is stable,
we did not show any validation results for it. 
We want to concentrate the attention to the validation of the new part, i.e. the derivative calcu-
lation with respect to the geometry of the reaction matrix and the source vector and the gradient
of the cost functional.

C8.1 Validation of the Derivative of the Linear System Elements 
In Chapter 4, we have found the expressions of the reaction matrix and the source vector con-
cerning the MoM linear system. We have found in Chapter 7 the expression of the surface den-
sity currents (see equation (C7.2) and equation (A2.5)). The derivative of the the surface density
currents with respect to the geometry has been explained in Chapter 7 (see equation (C7.5) and
equation (A2.5)), using the results obtained from Chapter 6. In order to validate the surface den-
sity currents with respect to the geometry, we define a test-case with a two-patches structure
with one electric dipole placed between them, (Figure C8.1).

Figure C8.1: Surface density currents derivative validation case-test

The electric dipole is placed between the plates with the electric center placed at the point
m. The dipole moment is defined as  and the

working frequency is 1 GHz ( m). The two identical parallel thin metallic plates have
the dimensions of 0.3m ( ) of length along the y-axis and 0.6m ( ) toward the x-axis and they
are at a distance of  0.3m ( ) along the z-axis. 
After the mesh generation, we obtain 228 triangles with a total of 312 degrees of freedom (con-
sidering that we have some triangles with common sides). We recall that the degrees of freedom
represent the number of the current fluxes flowing through the sides of the triangles (see Figure
A2.3). As we want to perform the derivative of the upper patch with respect to the lower one

x y z, ,( ) 0.15, 0.075, 0.15( )= dx dy dz, ,( ) 1 1 1, ,( )=
λ 0.3=

λ 2λ
λ
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and vice-versa, we consider a double number of degrees of freedom, i.e. 624. Once the structure
has been defined, we computed the derivative of the surface density currents derivative with re-
spect to the mesh and we have compared them using a sixth-order forward finite-difference de-
rivative method. Of course, the terms used to compute the finite-difference derivative have been
obtained by the SR3D code.
In Figure C8.2, we show the relative error percentage between the analytic and the numerical
derivatives considering the shift of the plates along the x,y and z direction. The samples from 0
to 312 are relative to the derivative of the lower plate with respect to the fixed upper plate and
the sample from 313 to 624 are relative to the derivative of the upper plate with respect to the
fixed lower plate.

Figure C8.2: Percentage relative error for the surface density currents derivative

As we can see, the average error is quite small considering that we should increase the finite-
difference method order to obtain a better convergence to the analytic values. Finally, we ob-
tain:

Once derivative of the surface density current has been validated, we can also assert that the re-
action matrix and the source vector derivative have been validated. 

Direction Maximum Relative Error [%] Average Relative Error [%]

x 1.685 0.075

y 2.301 0.076

z 6.100 0.331
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C8.2 Cost Functional Gradient Derivative Validation
Since an optimization algorithm is involved in our code, then a cost functional has to be defined,
as seen in Chapter 7 (see equation (C7.9)). Moreover, in order to understand the evolution of
the optimization process, we have also defined the cost functional derivative with respect to the
geometry (see equation (C7.10)).
We have to validate this gradient using a second-order forward finite-difference derivative
method. In order to do that, we have chosen a trivial structure composed by three square metallic
plates defined on the same x-y plane as shown in Figure C8.3.

Figure C8.3: Cost functional derivative validation case-test

We have three electric dipoles placed around the structure at the following coordinate points:
dipole 1 at m, dipole 2 at m and di-
pole 3 at m. The dipole moment is the same for all the dipoles and
is defined as  while the working frequency is 3 GHz ( m). So each
square thin plate has the side dimension of 0.025m ( ).  The plate 1 is placed in the center
of the coordinate system, then the plate 2 is at  from the plate 1 along the x-axis in the negative
direction while the plate 3 is at  from the plate 1 along the y-axis in the positive direction.
We shifted the plate 1 along x and y directions with respect to a certain number of positions in
order to find a map of the cost functional gradient and of its derivative with respect to the ge-
ometry (see Figure C8.4 and Figure C8.5). Normally, this technique is used to understand the
behaviour of the functions and to set a convenient strategy for the optimization process; in this
case, we are just interested in retrieving the shape of the cost functional and the cost functional
derivative. We created a grid of values shifting only the plate 1 toward the x positive direction
and the y negative direction with a step of 0.001 m, retrieving 30 samples for each axis (900
samples total).

1

2

3

x1 y1 z1, ,( ) 0.125, -70, 70( )= x2 y2 z2, ,( ) 0.125, 70, 70( )=
x3 y3 z3, ,( ) 0, 0.625, -100( )=
dx dy dz, ,( ) 1 1 1, ,( )= λ 0.1=

λ 4⁄
λ

λ
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Figure C8.4: Map of the cost functional for plate 1 shift

Figure C8.5: Map of the cost functional derivative for plate 1 shift
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Then we have calculated the numerical derivative with respect to the plate 1 shifted along the x
axis while the y shift remains fixed and the same for the plate 1 shifted toward the y direction
while the x shift remains fixed. The results are reported, respectively, in Figure C8.6 and Figure
C8.7.

Figure C8.6: cost functional gradient validation along x direction for plate 1 shifting

Figure C8.7: Cost functional gradient validation along y direction for plate 1 shifting
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Finally, the percentage relative error between the numerical and the analtyic gradient data is re-
ported in the table:

C8.3 First Example: Optimization Pattern Over the Criterion Map
For the first optimization example, we chose the structure previously used and reported in Fig-
ure C8.3. We use the same basic example configuration. In order to able to apply the optimiza-
tion algorithm one initial guess must be defined. We chose to shift the first metallic plate of 0.02
m  along the x axis in the positive direction and of 0.02 m  along the y axis in the
positive direction. If we consider the Figure C8.8, in red we have the geometry initial guess, in
blue the final geometry and in green the desired geometry. 
The optimization algorithm is able to optimize the location of a certain number of metallic ob-
jects using a cost function gradient, that is defined through the scattered field variable. So, we
can define the desired geometry by simply calculating the synthetic scattered field data related
to the desired configuration and use it inside the optimization procedure.
.

Figure C8.8: Initial guess, desired and final geometry

As constraints, we fix the plate 2 and 3 in their initial positions in order to have only one degree
of freedom inside the optimization problem, represented by the position of the plate 1. Under
this assumption we have obtained the follow results: in Figure C8.9 we have a representation of
the criterion evolution map (the same as Figure C8.4) with all the optimization step points.

Direction Maximum Relative Error [%] Average Relative Error [%]

x 0.892 0.510

y 0.740 0.536

λ 5⁄( ) λ 5⁄( )

1

2

3
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Figure C8.9: 2D Criterion map with optimization step points (9)

Finally we present the criterion convergence diagram in Figure C8.10. As we can see the con-
vergence is obtained after 9 iterations with an excellent final value.

Figure C8.10: Criterion convergence

The start criterion value is of 363.9732 and the final criterion value is obtained after 9 iterations
and its value is 3.7698 for a criterion improvement of about 98.96%.
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C8.4 Second Example: Scattered Field Evolution
In the previous example, we have shown the behaviour of the optimization algorithm over the
criterion map of Figure C8.4. In this second example we consider the same structure in terms of
location of the metallic plates and location of the dipole sources, but this time we are interested
in observing the scattered field evolution, during the optimization processus. We rise the meas-
urement points number we choosing to equally distribute 361 measurement points over a  sphere
of 1mt diameter.
In Figures C8.11, C8.12 and C8.13, we show the normalized radiation pattern of the structure
respectively for the desired structure, the initial guess structure and the final structure.

Figure C8.11: Normalized radiation pattern for the desired structure

Figure C8.12: Normalized radiation pattern for the initial structure

Figure C8.13: Normalized radiation pattern for the final structure
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In Figure C8.14 and C8.15 we report, respectively, the cuts at  and at , where
we can see the differences between the initial diagram and the final one.

Figure C8.14: Radiation diagrams cut at  (red initial, blue final, green desired)

Figure C8.15: Radiation diagrams cut at  (red initial, blue final, green desired)

Finally, we report the criterion convergence in Figure C8.16; this time the convergence is ob-
tained after 3 optimization steps and also the final criterion value is lower with respect to the
previous example. That is owing to the fact that an higher number of measurement points have
been used, giving more information on the scattered field to the optimization algorithm. 

π 0°= π 90°=

π 0°=

π 90°=
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Figure C8.16: Criterion convergence

The start criterion value is of 242.2680 and the final criterion value is obtained after 3 iterations
and its value is 0.07841 for a criterion improvement of about 99.96%.

C8.5 Conclusion and Further Steps
This chapter demonstrates the robustness of the optimization environment where SR3D code
and the optimization algorithm implemented in. Paragraph C8.1 and C8.2 validate the surface
density current gradient with respect to the geometry and of the criterion gradient with respect
to the geometry. Then, in the paragraphs C8.3 and C8.4 we show a simple application with dif-
ferent conditions, for the new-developed optimization tool with excellent results.
We want to apply this method to more complicate structures as, for example, a ground plane
with a couple of small element located above it. We can alsp apply to the optimization of the
location of the elements in  linear and planar array [20]. Another interesting example should be
retrieving the optimal location of some coupling element with respect to a ground plane in order
to obtain a certain desired scattered field [3].
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Chapter 9 - Numerical Experiments
In Chapter 9, we present some numerical experiments for different antenna configurations. In
these examples, we consider only planar and metallic structures and we want to retrieve the op-
timal location of certain elements with respect to a aimed synthetic scattered field. The objects
inside the domain are illuminated by a certain number of electric dipoles  
The working frequency is 3GHz . The scattered field is computed over a 19x19 -
point measurement set, defined over the surface of a sphere, of 10m-radius.
We consider only a spatial contraint on the position of a certain number of elements in the do-
main or by requiring the displacement direction. The contents of the presented graphical results
are as follows:

- Original structure geometry

- Initial vs final structure geometry

- Radiation pattern of the original structure geometry (3D, xy plane, xz plane, yz plane)

- Radiation pattern of the initial structure geometry (3D, xy plane, xz plane, yz plane)

- Radiation pattern of the final structure geometry (3D, xy plane, xz plane, yz plane)

- Radiation pattern of the original vs final vs initial geometry cross-section 

- Radiation pattern of the original vs final vs initial geometry cross-section 

- Convergence of the cost functional

We defined 8 examples in order to test the robustness and accuracy of the optimization proce-
dure, trying, at the same time, to point out the generality of the method. Hereafter is shown a
table reporting the list of the different numericalexamples:

Example Structure Description Ground 
Plane

Number of 
Sources

Measurement 
Points

1 Planar Array I No 1 19x19 (361)

2 Planar Array II No 1 19x19 (361)

3 Linear Array I No 6 19x19 (361)

4 Parasitic Elements I Yes 6 19x19 (361)

5 Parasitic Elements II Yes 2 19x19 (361)

6 Parasitic Elements III Yes 2 19x19 (361)

7 Passive Antennas I Yes 2 19x19 (361)

8 Passive Antennas II Yes 2 19x19 (361)

λ0 0.1m=( )

φ 0 π,[ ]=

π 2⁄ 3π 4⁄( ),[ ]
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C9.1 Planar Array I
In this first numerical example, we want to retrieve the geometry for a basic 9-element planar
array in a classic broadside configuration. Each patch element is defined with a  side. In
Figure C9.1 the original geometry is shown.

Figure C9.1: Original geometry

The positions of the elements of the original structure is reported in the table as follows:

For the incident field, we use one electric dipole defined in the Cartesian coordinates 

The dipole is placed far enough, in order to obtain about the same density currents over all the
patches of the planar array. This example is aimed to show how to optimize the radiation pattern
of the planar array, starting with an initial configuration in which secondary lobes are present.
The optimization procedure is able find an optimal geometry configuration to eliminate the un-

Element x [m] y [m] z [m]

1 0.01000 0.01000 0.00000

2 0.07500 0.01000 0.00000

3 0.14000 0.01000 0.00000

4 0.01000 0.07500 0.00000

5 (FIXED) 0.07500 0.07500 0.00000

6 0.14000 0.07500 0.00000

7 0.00000 0.14000 0.00000

8 0.07500 0.14000 0.00000

9 0.14000 0.14000 0.00000

Dipole N# Dipole Moment x [m] y [m] z [m]

1 (0,1,0) 0.08750 0.08750 10.0000

λ 4⁄

x y z, ,( )
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desired lobes. The radiation pattern for the original structure configuration is shown in Figure
C9.2.

Figure C9.2: Radiation pattern of the original geometry
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In order to define an initial guess, the patches have been moved away as shown in Figure C9.3,
the initial structure is represented in red color while, the final structure geometry is represented
in blue. The center element of the array, at the Cartesian origin, is remained fixed during the
optimization procedure.

Figure C9.3: Initial vs final geometry

The positions of the elements of the initial and the final structures are reported in the table as
follows:

Initial Structure Final Structure

Element x [m] y [m] z [m] x [m] y [m] z [m]

1 0.00000 0.00000 0.00000 0.01005 0.00996 0.00000

2 0.07500 0.00000 0.00000 0.07507 0.01000 0.00000

3 0.15000 0.00000 0.00000 0.14006 0.01003 0.00000

4 0.00000 0.07500 0.00000 0.01000 0.07493 0.00000

5  (FIXED) 0.07500 0.07500 0.00000 0.07500 0.07500 0.00000

6 0.15000 0.07500 0.00000 0.13998 0.07507 0.00000

7 0.00000 0.15000 0.00000 0.009949 0.13998 0.00000

8 0.07500 0.15000 0.00000 0.074930 0.13999 0.00000

9 0.15000 0.15000 0.00000 0.139963 0.14004 0.00000
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The radiation pattern of the initial structure is reported in Figure C9.4, while the radiation pat-
tern for the final structure is reported in Figure C9.5.

Figure C9.4: Radiation pattern of the initial geometry
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Figure C9.5: Radiation pattern of the final geometry
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In Figure C9.6, we show the cross-sections of the radiation pattern with respect to main axes.

Figure C9.6: Radiation pattern cross-sections

Finally, we show the convergence of the cost functional (criterion), in Figure C9.7.

Figure C9.7: Normalized convergence of the cost functional

The convergence of the criterion is reached after 11 iterations, starting from an absolute value
of  decreasing till a value of . The reconstruction of the planar array has been
achieved with a good agreement, considering a structure with 9 optimization variables and 126
degrees of freedom.

8.9x10 3– 1.03x10 8–
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C9.2 Planar Array II
For this second exemple, the geometry is the same basic 9-element planar array as in the para-
graph 1, but, the electric dipole is shifted along the x-axis in order to illuminate the patch with
an angle of incidence of . The side of the patch element is . In Figure C9.2 the original
geometry is shown.

Figure C9.8: Original geometry

The positions of the objects of the original structure is reported in the table as follows:

For the incident field, we use one electric dipole defined in the Cartesian coordinates  

The dipole is placed far enough, in order to obtain about the same density currents over all the
patches of the planar array. This exemple is aimed to show how to optimize the radiation patern
of the planar array, with a configuration for which a strong secondary lobe is present. The opti-

Element x [m] y [m] z [m]

1 0.01000 0.01000 0.00000

2 0.07500 0.01000 0.00000

3 0.14000 0.01000 0.00000

4 0.01000 0.07500 0.00000

5 (FIXED) 0.07500 0.07500 0.00000

6 0.14000 0.07500 0.00000

7 0.00000 0.14000 0.00000

8 0.07500 0.14000 0.00000

9 0.14000 0.14000 0.00000

Dipole N# Dipole Moment x [m] y [m] z [m]

1 (0,1,0) 1.74988 0.08750 10.0000

10° λ 4⁄

x y z, ,( )
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mization procedure will find an optimal geometry configuration in order to eliminate the unde-
sired secondary lobe. The radiation pattern for the original structure is represented in Figure
C9.9.

Figure C9.9: Radiation pattern of the original geometry 
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In order to define an initial guess, the patches have been moved away outwards as shown in Fig-
ure C9.10, the initial guess structure is represented in red color while, and the final structure ge-
ometry is represented in blue. The center element of the array, at the origin of the cartesian
coordinates, is remained fixed during the optimization procedure.

Figure C9.10: Initial vs final geometry

The positions of the elements of the initial and the final structures are reported in the table as
follows:

Initial Structure Final Structure

Element x [m] y [m] z [m] x [m] y [m] z [m]

1 0.00000 0.00000 0.00000 0.01151 0.00518 0.00000

2 0.07500 0.00000 0.00000 0.07411 0.00583 0.00000

3 0.15000 0.00000 0.00000 0.14094 0.00546 0.00000

4 0.00000 0.07500 0.00000 0.01233 0.07491 0.00000

5 (FIXED) 0.07500 0.07500 0.00000 0.07500 0.07500 0.00000

6 0.15000 0.07500 0.00000 0.13991 0.07512 0.00000

7 0.00000 0.15000 0.00000 0.01116 0.14499 0.00000

8 0.07500 0.15000 0.00000 0.07378 0.14423 0.00000

9 0.15000 0.15000 0.00000 0.14065 0.14448 0.00000
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The radiation pattern for the initial structure is reported in Figure C9.11, while the radiation pat-
tern for the final structure is reported in Figure C9.12.

Figure C9.11: Radiation pattern of the initial geometry
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Figure C9.12: Radiation pattern of the final geometry
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In Figure C9.13, we show the cross-sections of the radiation pattern with respect to main axes.

Figure C9.13: Radiation pattern cross-section

Finally, we show the convergence of the cost functional (criterion), in Figure C9.14.

Figure C9.14: Normalized criterion convergence

The convergence of the criterion is reached after 3 iterations, starting from an absolute value of
 decreasing till a value of . The reconstruction of the planar array has been

achieved with a lower agreement than the previous example, but the result it is still quite good,
considering a structure with 9 optimization variables and 126 degrees of freedom. We observe
from Figure C9.10, and from the final criterion value, that the global convergence has not been
reached. Anyway, the discrepancy from the original radiation pattern and the final one is not so
large as we can see from Figure C9.13. 

1.1x10 2– 5.5x10 4–
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C9.3 Linear Array I
A linear array has been studied in this example. The array is composed of 5 cross-shaped ele-
ments with  arm-length and placed along the z axis. In Figure C9.15, the original geometry
is shown.

Figure C9.15: Original geometry

The positions of the elements of the original structure is reported in the table as follows:

For the incident field, we use 3 electric dipoles defined in the Cartesian coordinates 

Element x [m] y [m] z [m]

1 0.00000 0.00000 0.00000

2 0.00000 0.00000 0.05000

3 (FIXED) 0.00000 0.00000 0.10000

4 0.00000 0.00000 0.15000

5 0.00000 0.00000 0.20000

Dipole N# Dipole Moment x [m] y [m] z [m]

1 (1,1,0) 0.02500 0.02500 -0.50000

2 (1,1,0) 0.00000 0.05000 -0.50000

3 (1,1,0) 0.05000 0.00000 -0.50000

λ 2⁄

x y z, ,( )
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The radiation pattern for the original structure is shown in Figure C9.16.

Figure C9.16: Radiation pattern of the original geometry
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In order to define an initial guess, some cross-shaped elements have been moved inside the 
plane as shown in Figure C9.17, the initial guess structure is represented in red color while, the
final structure geometry is represented in blue. The center element of the array is remained
fixed, during the optimization procedure.

Figure C9.17: Initial vs final geometry

The positions of the elements of the initial and the final structures are reported in the table as
follows:

Initial Structure Final Structure

Element x [m] y [m] z [m] x [m] y [m] z [m]

1 0.01900 0.01200 0.00000 0.00001 -0.00002 0.00000

2 -0.02300 0.01600 0.05000 -0.00002 0.00005 0.05000

3 (FIXED) 0.00000 0.00000 0.00000 0.00000 0.00000 0.10000

4 -0.02400 -0.00800 0.15000 -0.00003 0.00001 0.15000

5 0.00700 -0.01300 0.20000 0.00001 -0.00003 0.20000

xy
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The radiation pattern for the initial structure is shown in Figure C9.18, while the radiation pat-
tern for the final structure is shown in Figure C9.19.

Figure C9.18: Radiation pattern of the initial geometry
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Figure C9.19: Radiation pattern of the final geometry
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In Figure C9.20, we show the cross-sections of the radiation pattern with respect to main axes.

Figure C9.20: Radiation pattern cross-sections

Finally, we show the convergence of the cost functional (criterion), in Figure C9.21.

Figure C9.21: Normalized criterion convergence

The convergence of the criterion is reached after 7 iterations, starting from an absolute value of
305 decreasing till a value of 0.0035. The reconstruction of the linear array has been achieved
with an excellent agreement, considering a structure with 5 optimization variables and 340 de-
grees of freedom.
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C9.4 Parasitic Elements I
We want now, to investigate how to find the optimal positions of 4 cubes considered as parasitic
elements with  side length, around a ground plane of x  length in x and y, respectively.
In Figure C9.22, the original geometry is shown.

Figure C9.22: Original geometry

The position of the elements of the original structure is reported in the table as follows:

For the incident field , we use 5 electric dipoles defined in the Cartesian coordinates 

Element x [m] y [m] z [m]

1 (FIXED GND) 0.00000 0.00000 0.00000

2 0.00000 -0.01500 0.00000

3 0.09000 -0.01500 0.00000

4 -0.01500 0.00000 0.00000

5 -0.01500 0.19000 0.00000

Dipole N# Dipole Moment x [m] y [m] z [m]

1 (1,1,0) 0.05000 0.10000 0.50000

2 (1,0,0) 0.07500 0.10000 0.50000

3 (1,0,0) 0.02500 0.10000 0.50000

4 (0,1,0) 0.05000 0.12500 0.50000

5 (0,1,0) 0.02500 0.07500 0.50000

λ 10⁄ λ 2λ

x y z, ,( )



Chapter 9 - Numerical Experiments

100

The radiation pattern for the original structure is shown in Figure C9.23.

Figure C9.23: Radiation pattern of the original geometry
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In order to define an initial guess, the cubes have been moved along the sides of the ground
plane as shown in Figure C9.24. The initial guess structure is represented in red color while, the
final structure geometry is represented in blue. In this example we choose to remain fixed only
the position of the ground plane.

Figure C9.24: Initial vs final geometry

The positions of the objects of the initial and the final structures are reported in the table as fol-
lows:

Initial Structure Final Structure

Element x [m] y [m] z [m] x [m] y [m] z [m]

1 (FIXED GND) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

2 -0.02100 -0.01500 0.00000 0.00000 -0.01500 0.00000

3 0.05900 -0.01500 0.00000 0.08954 -0.01500 0.00000

4 -0.01500 0.02700 0.00000 -0.01500 0.00026 0.00000

5 -0.01500 0.16700 0.00000 -0.01500 0.19087 0.00000
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The radiation pattern for the initial structure is shown in Figure C9.25, while the radiation pat-
tern for the final structure is shown in Figure C9.26.

Figure C9.25: Radiation pattern of the initial geometry
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Figure C9.26: Radiation pattern of the final geometry
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In Figure C9.27, we show the cross-sections of the radiation pattern with respect to main axes.

Figure C9.27: Radiation pattern cuts

Finally, we show the convergence of the cost functional (criterion), in Figure C9.28.

Figure C9.28: Normalized criterion convergence

The convergence of the criterion is reached after 7 iterations, starting from an absolute value of
304 decreasing till a value of 0.2015. The reconstruction of the linear array has been achieved
with an excellent agreement, considering a structure with 5 optimization variables and 340 de-
grees of freedom.
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C9.5 Parasitic Elements II
We want to observe the behavior of the optimization algorithm when a parasitic element is
present in the domain. The original structure is composed of a patch over a ground plane. The
ground plane dimensions are x , while the patch dimensions are x . The distance
between the ground plane and the patch is  . In Figure C9.29 the original geometry is
shown.

Figure C9.29: Original geometry

The position of the patch of the original structure is given in the table as follows:

For the incident field, we use 1 electric dipole defined in the Cartesian coordinates 

Element x [m] y [m] z [m]

1 (FIXED) 0.00000 0.00000 0.00000

Dipole N# Dipole Moment x [m] y [m] z [m]

1 (1,1,0) 0.05000 0.12500 0.50000

λ λ λ 4⁄ λ 4⁄
λ 8⁄

x y z, ,( )
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The radiation pattern of the original structure is shown in Figure C9.30.

Figure C9.30: Radiation pattern of the original geometry
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In order to define an initial guess, we are considering two identical objects, composed of a patch
over a ground plane with a patch over it, in the domain, where the object 2 is the parasitic one,
as shown in Figure C9.31. The initial guess structure is represented in red color, while, the final
structure geometry, is represented in blue. In this example, we choose to remain fixed only the
object 1 (reference antenna). The object 2, in the final geometry, has moved away too far, to be
represented in this Figure (see red arrow).

Figure C9.31: Initial vs final geometry

The positions of the objects of the initial and the final structures are reported in the table as fol-
lows:

Initial Structure Final Structure

Element x [m] y [m] z [m] x [m] y [m] z [m]

1 (FIXED GND) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

2 0.05000 0.16300 0.00000 -60000.0 -40000.0 0.00000

Final Reference Obj (1)

 Initial Reference Obj 1( )
≡

Initial Parasitic Obj (2)

Final Parasitic Obj (2)
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The radiation pattern for the initial structure is reported in Figure C9.32, while he radiation pat-
tern for the final structure is reported in Figure C9.33.

Figure C9.32: Radiation pattern of the initial geometry
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Figure C9.33: Radiation pattern of the final geometry
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In Figure C9.34, we show the cross-sections of the radiation pattern with respect to main axes.

Figure C9.34: Radiation pattern cross-sections

Finally, we show the convergence of the cost functional (criterion), in Figure C9.35.

Figure C9.35: Normalized criterion convergence

The convergence of the criterion is reached after only 2 iterations, starting from an absolute val-
ue of 472 decreasing till a value of . As we do not impose any spatial contraints, i.e.,
we do not put any limits for the shifting area in the  plane, therefore the algorithm has moved
immediatly away the parasitic object as far as possible. As a result we assert then, that the algo-
rithm is able to quickly recognize the disturbing object and handle it in the right way.

3.4x10 12–

xy
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C9.6 Parasitic Elements III
In this numerical example, we want to add to the domain small parasitic objects. In that way we
would like to test the optimization algorithm behavior with respect to low coupled elements. We
consider a patch with dimensions x  over a ground plane with dimensions x . The
distance between the ground plane and the patch is . The parasitic elements are small  
length dipoles. In Figure C9.36, the original geometry is shown.

Figure C9.36: original geometry

The position of the object of the original structure is reported in the table as follows:

For the incident field, we use 1 electric dipole defined in the Cartesian coordinates  

Element x [m] y [m] z [m]

1 (FIXED) 0.00000 0.00000 0.00000

Dipole N# Dipole Moment x [m] y [m] z [m]

1 (1,1,0) 0.05000 0.12500 0.50000

λ 4⁄ λ 4⁄ λ λ
λ 8⁄ λ 4⁄

x y z, ,( )
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The radiation pattern of the original structure is shown in Figure C9.37.

Figure C9.37:  Radiation pattern of the original geometry
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In order to define an initial guess, we place 4 small  dipoles as shown in Figure C9.38. The
initial guess structure is represented in red color while, the final structure geometry is represent-
ed in blue. In this example, we choose to remain fixed only the ground plane with the patch (ref-
erence object 1). The 4 dipoles (objects 2 to 5) have been moved away too far, in the final
geometry, to be representeted in the Figure C9.38 (see red arrows).

Figure C9.38: Initial vs final geometry

The positions of the objects of the initial and the final structures are reported in the table as fol-
lows:

Initial Structure Final Structure

Element x [m] y [m] z [m] x [m] y [m] z [m]

1 (FIXED) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

2 0.03000 0.03750 0.00000 -7703.00 -23254.0 0.00000

3 0.06750 0.03750 0.00000 -1187.00 15189.0 0.00000

4 0.03750 0.03000 0.00000 -13460.0 -5145.00 0.00000

5 0.03750 0.06750 0.00000 26617.0 -13495.0 0.00000

λ 4⁄

Final Reference Obj (1)

 Initial Reference Obj 1( )
≡

Final Parasitic Obj (2)
Final Parasitic Obj (3)

Final Parasitic Obj (4)

Final Parasitic Obj (5)
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The radiation pattern of the initial structure is shown in Figure C9.39, while he radiation pattern
of the final structure is shown in Figure C9.40.

Figure C9.39:  Radiation pattern of the initial geometry
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Figure C9.40:  Radiation pattern of the final geometry



Chapter 9 - Numerical Experiments

116

In Figure C9.41, we show the cross-sections of the radiation pattern with respect to main axes.

Figure C9.41: Radiation pattern cuts

Finally, we show the convergence of the cost functional (criterion), in Figure C9.42.

Figure C9.42: Normalized criterion convergence

The convergence of the criterion is reached after only 3 iterations, starting from an absolute val-
ue of 3.47 decreasing till a value of 3.38E-11. As we do not impose any spatial contraints, i.e.,
we do not put limits for the shifting area in the  plane, therefore the algorithm has moved im-
mediatly away the parasitic objects as far as possible. We have the same behavior as in the pre-
vuious example, but, this time, the coupling between the objects was very weak, involving that
the algorithm has a deep sensivity. We can see the weak coupling when compearing the Figures
C9.39, C9.40 and C9.41, where we easily observe that the radiation pattern shape is almost the
same for the three configurations.

xy
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C9.7 Passive Antennas I
In this example, we want to reconstruct the original configuration of the objects composed of
two patches located above their respective ground planes. Each ground plane has dimensions of

x  and the patch above it has dimensions of x . The original distance between the
two objects is shown in Figure C9.43.

Figure C9.43: Original geometry

The positions of the objects of the original structure is reported in the table as follows:

For the incident field, we use 1 electric dipole defined in the Cartesian coordinates 

Element x [m] y [m] z [m]

1 (FIXED) 0.00000 0.00000 0.00000

2 0.00000 0.15000 0.00000

Dipole N# Dipole Moment x [m] y [m] z [m]

1 (1,1,0) 0.05000 0.10000 0.50000

λ λ λ 4⁄ λ 4⁄

x y z, ,( )
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The radiation pattern of the original structure is shown in Figure C9.44.

Figure C9.44: Radiation pattern of the original geometry
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The initial guess structure is represented in red color while, the final structure geometry is rep-
resented in blue. In this example, we choose to remain fixed the reference object 1, as shown in
Figure C9.45. 

Figure C9.45: Initial vs final geometry

The positions of the objects of the initial and the final structures are reported in the table as fol-
lows:

Initial Structure Final Structure

Element x [m] y [m] z [m] x [m] y [m] z [m]

1 (FIXED) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

2 0.05000 0.1630 0.00000 0.00037 0.14989 0.00000

Final Reference Obj (1)

 Initial Reference Obj 1( )
≡
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The radiation pattern of the initial structure is shown in Figure C9.46, while he radiation pattern
of the final structure is shown in Figure C9.47.

Figure C9.46: Radiation pattern of the initial geometry
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Figure C9.47: Radiation pattern of the final geometry
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In Figure C9.48, we show the cross-sections of the radiation pattern with respect to main axes.

Figure C9.48: Radiation pattern cuts

As a result, we show the convergence of the cost functional (criterion), in Figure C9.49.

Figure C9.49: Normalized criterion convergence

The convergence of the criterion is reached after 5 iterations, starting from an absolute value of
267 decreasing till a value of 0.021. The reconstruction of the object position has been achieved
with an excellent agreement, considering a structure with 2 optimization variables and 416 de-
grees of freedom.
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C9.8 Passive Antennas II
In this last example, we want to find the optimal position of two cross-shaped patches with 
arm-length, deployed above a ground plane. The ground plane has dimensions of x . The
original distance between the two objects is shown in Figure C9.50.

Figure C9.50: Original geometry

The positions of the objects of the original structure is reported in the table as follows:

For the incident field, we use one electric dipole defined in the Cartesian coordinates 

Element x [m] y [m] z [m]

1 (GND FIXED) 0.00000 0.00000 0.00000

2 0.02500 0.02500 0.02500

3 0.02500 0.12500 0.02500

Dipole N# Dipole Moment x [m] y [m] z [m]

1 (1,1,0) 0.00000 0.00000 0.25000

λ 2⁄
2λ λ

x y z, ,( )
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The radiation pattern of the original structure is shown in Figure C9.51.

Figure C9.51: Radiation pattern of the original geometry
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The initial guess structure is represented in red color while, the final structure geometry is rep-
resented in blue as shown in Figure C9.52. In this example, we choose to remain fixed only the
ground plane 

Figure C9.52: Initial vs final geometry

The positions of the objects of the initial and the final structures are reported in the table as fol-
lows:

Initial Structure Final Structure

Element x [m] y [m] z [m] x [m] y [m] z [m]

1 (GND FIXED) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

2 0.00700 0.01100 0.02500 0.02461 0.02488 0.02500

3 0.03200 0.13400 0.02500 0.02522 0.12536 0.02500
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The radiation pattern of the initial structure is shown in Figure C9.53, while the radiation pattern
of the final structure is shown in Figure C9.54.

Figure C9.53:  Radiation pattern of the initial geometry



Chapter 9 - Numerical Experiments

127

Figure C9.54:  Radiation pattern of the final geometry
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In Figure C9.55, we show the cross-sections of the radiation pattern with respect to main axes.

Figure C9.55: Radiation pattern cuts

Finally, we show the convergence of the cost functional (criterion), in Figure C9.56.

Figure C9.56: Normalized criterion convergence

The convergence of the criterion is reached after 5 iterations, starting from an absolute value of
867 decreasing till a value of 0.031. The reconstruction of the patches position has been
achieved with an excellent agreement, considering a structure with 3 optimization variables and
520 degrees of freedom.
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During this work, an inverse scattering method based on an integral formulation of the
EM problem (SR3D code) has been developed. The aim was to find the optimal location of 3D
or 2D multiple metallic objects or multiantenna systems from imposed constraints (e.g. radia-
tion patterns). 
As the results have shown, an efficient and accurate optimization procedure has successfully de-
veloped. The framework can be applied to a large number of electromagnetic problems due to
the general character of the method.

      The optimization is based on a gradient method algorithm which uses a cost functional that
depends directly on the surface density currents, defined all over the electromagnetic structure.
The innovation of this method consists in the calculation of the analytic derivative of the surface
density currents, using the full-wave method. In that way, we obtain a high sensitivity with re-
gard to the parameters we are interested in and considering that coupling effects between struc-
tures are taken into account. 

It is of great interest to investigate more carefully how the derivation of the surface density
currents with respect to the mesh has been calculated. When we talked about derivation with
respect to the mesh, we defined for derivative variables, all the points of the mesh of the whole
analyzed structure. Therefore, when we want to calculate the derivative of the surface density
currents with respect to the mesh, we can choose which nodes are involved inside the computa-
tion. In other words, the numerical code developed during this work, is able to compute the var-
iation of the surface density currents with respect to a desired set of mesh points. This is
particularly interesting when, for exemple, we want to optimize the shape of an object, because
we are able to compute the variation of the currents with respect to the mesh points that define
the object contour. Moreover, we can choose not only the mesh points but also their direction
in which we desire to compute the derivative, in the 3-dimensional space, obtaining the gradient
of the stucture with respect to all the points of the mesh. As the derivative is a linear operator,
we can apply a linear combination of the results to define a custom direction of variation of the
mesh points. In other words, we can compute the derivative of the surface density currents in
the 3-dimentional space and as a consequence to be able to optimize the shape or the position
of a set of metallic structures, using a full-wave method. 

During this work, we have developed only an element position optimization, by comput-
ing the derivative of the surface density currents in the three main direction in a 3-dimentional
Cartesian space. The conception of an element shape optimization will be carry out in future
developments.

Numerical results, based on the element position optimization, have been achieved using
a gradient-based algorithm within the optimization procedure. As we can observe from the nu-
merical experiments, excellent results have been attained from scattered field data, thanks to the
high sensitivity of the method. At present, the framework allows the user to remain fixed the
position of a certain number of desired objects as imposed constraints.
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      The method combined with the SR3D code is modular, that is to say, it is possible, for future
developments, to easily add contraints with respect to the cost functional, without modifying the
main structure of the code. 
A further step would be the implementation of the shape optimization of the elements, taking
fully advantage of all the potentiality of the numerical modules developed during this work. It
would also be possible to perform a multi-frequency study, by bcombining the cost functionals
related to different frequency values. 

     Finally, a module able to compute the analytic derivation of the surface density currents, with
respect to the frequency (first and second order), has been also developed and validated. So, fur-
ther development could be aimed to combine the shape or position optimization with a frequen-
cy optimization obtaining a multi-parameter optimization framework.
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Annex 1 - Numerical Discretization Method
In order to compute the integral reaction expressions defined using the Rumsey’s reaction the-
ory, we have chosen a N-point Gauss method in order to discretize the mesh triangle surfaces.
The reference discretization number is chosen as seven Gauss points for each triangle. But this
number may vary with respect to the relative distance between two triangles.

Given a triangle  in the  domain, it is defined by its three summits , and the 3 coordinates
are expressed through the variable :

In the following, the  dependancy of the summits will be omitted, for sake of simplicity. So,
it is also possible to describe the same triangle by a single summit and two vectors:

The barycenter is defined as:

We propose an approximate integration method on the triangle defining a linear form in the
space of  order derivable functions over ;  is the value of the numerical integral using
Gaussian quadrature:

as, if  is a polynomial with a degree less or equal then , we have:
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So, if  we have  and then:

In order to define the algorithm used to place the integration points ( ), we create the
canonical triangle using the original triangle and two orthonormal vectors:

This triangle is isomorphic with respect to unit triangle in :  . The summits of
this triangle and the barycenter, are associated respectively to complex numbers as follows: 

The Gauss quadrature points for the reference triangle are defined in complex coordinates (i.e.
) as follows: 
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It is possible, in a very simple way, to develop an approximated integration method on a  unit
square starting from the method previously shown:

Figure A1.1: Symmetric reference square

The  triangle is the image of  through the centre  and the square is just the union of the
two triangles. We have:

The integration points of the approximate method on the unit reference square are defined as:

We can write:

And the approximate integral on the unit square is defined as:
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We consider now a new unit triangle  divided into a  sub-triangles partition obtained from
the unit triangle  or from the symmetric triangle , using a  homothetic transformation
followed by a translation. In order to avoid two different kinds of sub-triangles, we will group
some of them together as squares and leave the border of sub-triangles as they are, as shown
below:

The partition of unit triangle includes:

The position of the elements of the partition is defined through the  points:

We define now the tranformation of a unit square into the elements  of the partition: 

If we apply this tranformation for the integration points of the approximate method on the unit
square, we obtain:
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In order to simplify the algorithm, we must index the  family as follows:

So:

and since we has

we can finally write:

Let us define the composite method for unit triangle that is defined by a  element dimension
partition, on which we apply a  point approximate method. So we have:
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Now we define the linear transformation that allows us to move from the triangle 
to the triangle :

We define the transformation using the  generic unknowns:

so:

Similarly, we have:

The triangle  points are the images of triangle  points obtained by the linear transformation
defined through the matrix product:

The points of the seven-point integration Gauss method, applied over every triangle are triangle
summits linear functions. If the image of a triangle  obtained by an linear tranformation  is
a triangle , then the integration points of triangle , are the images obtained by the tranfor-
mation , of integration points of triangle :
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since:

So, we have

We recall (see 2.2.1) that the integration points are defined by relation of the kind:

in other words:

So
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We have the same kind of relationships for any case:
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We have also:

That yelds:

So the integration point images are the integration points of the image triangle. We can also ex-
tend this result to the points of the composite method and obtain a very important result indeed.
The images, defined by the linear application  that transforms the unit triangle  into the
triangle , of the composite method points defined for , give to us the  points of a composite
method defined for the triangle . In this way, we can build a composite method for a triangle
of the space using the following suite:
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Xs' Φ Xs( )= Xs' C1' a1s u1'⋅ a2s u2'⋅+ +=

Φ Xs( ) ω Cs'⋅ 1 ω–( ) 1
3
--- C1' C2' C3'+ +( )⋅ ⋅+=

Φ T0
T T0

T

ℑT
nm
f( ) Λ T( ) βj f wj( )⋅

j 1=

N

∑⋅=

with:  N mn2=

βη p q j, ,( )
1
n2
----- αj⋅=

ζj ζ1j i ζ2j⋅+=( ) T0∈ wj Φ ζj( )=( ) T∈→ wj

u11 u12

u21 u22

u31 u32

ζ1j

ζ2j 
 
 

C11

C21

C31 
 
 
 
 

+=

with:  uc1 Cc2 Cc1–=

uc2 Cc3 Cc1–=



Annex 2 - Basis Functions

140

Annex 2 - Basis Functions
As seen in Chapter 3, the old SR3D basis functions definition are not the best choice. In fact it
is possible to simplify the basis definition reducing the complexity of the terms 
reported in Annex 1, as follows.

Figure A2.1: Geometry references of triangle 

We want to calculate the fluxes of the basis vectors  through the edges 1, 2, 3, of the triangle
T itself, as reported in figure A2.1. We need to perform this operation in order to find the nor-
malization coefficients of the vector basis. These coefficients are called fluxes and represented
by the symbol .

Figure A2.2:  line integrals

For each vertex, we can write: 

We find out that all the three edge fluxes are equal to . Given  a generic vectorial base,
its normalization is written as follows:
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The normalization coefficient is equal to  for each component of the vector basis. Since
 we have a three-vector basis to represent the triangle T. So we can define a vector basis

through the  vectors:

Finally, the orthonormal vector basis  is defined as follows, using the  fluxes found in equa-
tion A2.1:

Let us assume to analyze a mixed metallic and dielectric structure; in this case, we must define
six degrees of freedom for each triangle of the structure mesh. In other words, we have an elec-
tric and a magnetic current flowing through each side of a triangle; each current is defined by
the linear combination of the weights  of equation (A2.3) and the orthonormal vector basis

 defined in equation A2.4. In case of a metallic structure, we have only three degrees of free-
dom since magnetic currents are not defined over metallic surfaces.

Figure A2.3: Degrees of freedom for a dielectric triangle of the mesh

In the full case (i.e. metal and dielectric structures) both electric and magnetic currents are need-
ed, respectively  and ,  with  and  the orthonormal base components:
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Annex 3 - Semi-Numerical Technique 
In Chapter 4, we described the main theory relative to the SN Technique. Hereafter we give the
complete description of the calculations. In particular, we describe separately the  opera-
tors of equation  (C4.13) (shown in equation (A3.1)) in order to understand how to obtain their
final expressions given in equations (C4.16) and (C4.17).

We also recall that both  operators have been splitted into a singular and a regular part
according to equation (C4.14) (shown in equation (A3.2)):

First, we show how to separate the singular part from the regular part from the Green’s function
kernels. The division into two different parts leads to the definition of two  operators parts
as we will show in the following.

A3.1 Green’s Function Kernels for SN Technique
We can split the kernels in two parts as follows:

We recall the Green’s function definition:
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The singular part  of the Green’s function is given by the limit when : 

For the regular part , we make use of Taylor expansion series: 

We can write:

We obtain the final expression of the Green’s function :

A3.2 Operator  for Semi-Numerical Technique
Let’s now consider the operator  relative to a generic couple of triangles  in the splitted
representation of equation (A3.9):
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Using the results of equation (A3.8), we obtain:

Then, we define function :

If we put this last equation inside equation (A3.12), we obtain:

We modify now the  form as follows, obtaining this new form:

According to equation (A3.15), we can now define one new matrix and two new functions:
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If we use now equation (A3.16) inside equation (A3.15), we find:

And finally, we obtain the forms for the singular and the regular parts of operator :

Then, we can calculate the operator  with respect to the correct Green’s function kernels re-
ported in equation (A3.4) for . This can be done owing to the linearity of the operator . 

A3.3 Operator  for Semi-Numerical Technique
The operator  relative to a generic couple of triangles  is much easier to analyse and it
is represented in the splitted form in equation (A3.20):

We can also write:

According to equation (A3.8), we obtsin the final form for the singular and the regular parts of
the operator :
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Then, we can calculate the operator  with respect to the correct Green’s function kernels re-
ported in equation (A3.4) for . This can be done owing to the linearity of the operator . 

A3.5  and  Functions
The  and  functions, appearing in equation (A3.16) and , are defined according to Figure
(A3.1). Note that the point , so it could be also contained inside . On the other hand,
this treatment is done in order to eliminate the possible singularity, so we don’t care where the

 point is placed.

Figure A3.1: function  and  references

We also define three common functions in equation (A3.24):

A3.5.1  Function Definition: it is defined in equation (A3.25) in its complete form.
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We recall that we only treat the triangles  in the coplanar case. This means that the solid
angle   or the  has a zero value and so we obtain:

A3.5.2  Function Definition: it is defined in equation A3.27.

Once again, the solid angle  or the  has a zero value, so we obtain:

A3.6 Numerical Implementation Issues for SN Technique
As said, it is possible to apply the SN technique even when the singularity does not occur, thanks
to the generality of the method. In this case, a numerical implementation issue will appear. We
have this case only inside a specific configuration with two distinct triangles, when the Gauss
point  is located on the line traced by the generic couple of the vertex points  of
the triangle   (see Figure A3.2 ).

Figure A3.2: Special point-configuration case in the SN technique
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In this special configuration, we need to replace the logarithmic approximation of the function
 of equation (A3.24):

with the following function: 
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Annex 4 - Derivative Calculations
In Annex 4, we describe all the calculations needed to obtain the expressions reported in Chap-
ter 6. First, we give the expressions for the the Full-Numerical and the Semi-Numerical tech-
nique. We recall that the derivative variables are the triangle verticies of the mesh  (see
equations C3.6, C3.8, C3.25, C3.26, C5.14).

Figure A4.1: Generic couple of  mesh triangles reaction

Figure A4.2: Generic mesh triangle - dipole reaction

A4.1. FN Technique Derivative Calculations: Derivative of the Reaction Matrix
The derivative is expressed with respect to the reference triangle .

A4.1.1. Basis Functions : let’s start from the expression of equation C6.5. The basis function
expression is reported in equation A4.1. 

In equation A4.2, we have the following derivative form. 
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A4.1.2. Gauss Points : the derivative versus Gauss points is reported in equation C6.4. In order
use the global reference, an homothetic transformation has been performed (see figure A4.3).
We define the complex coordinates  as: 

and  is defined as:

Figure A4.3: Global real reference from the complex one linear tranformation 

Then, we apply a basis transformation:

where  are the unknowns. We can demonstrate, that the  terms are defined as reported in
equation A4.6:

Since that we can also define  in a different way:
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In other words, we obtain:

Of course, for different Gauss points  we have different values of complex coordinates . Fi-
nally, we can obtain the final form for a Gauss point  (with respect to the cartesian coordinate

), here shown in equation A4.9:

The derivative of equation A4.9 is defined in equation A4.10 and also reported in equation C6.4.
The  is the Dirac function, so if i , otherwise, its value is zero.

A4.1.3. Determinant : the determinant  derivative is defined in equation C6.6. First of all,
we recall the determinant  expression from equation C4.5:

We want to rewrite the determinant  for a single couple of  Gauss points, obtaining:
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The reference triangle, for the derivative, is . Moreover, it is possible to rewrite the determi-
nant derivative considering that some terms are constant with respect to , afterwards, their
derivative is equal to zero.

We can also write the equation A4.13 using the basis function definitions reported in equation
A4.1. In that way, we obtain the results shown in equation C6.6.

TL
CL

(A4.13)

DL
uv

ΩKL xk DL
uv

yl{ },( )
 
 
 

cs

det 

DL
uv

yl{ }
1 DL

uv
CL{ } p

– 0 DL
uv yl{ }

1

yl 2 CL
p

– xk 2 CK
q

– yl xk–( )
2

yl 3 CL
p

– xk 3 CK
q

– yl xk–( )
3 

 
 
 
 
 
 
 
 
 

+=

det

yl 1 CL
p

– xk 1 CK
q

– yl xk–( )
1

DL
uv

yl{ }
3 DL

uv
CL{ } p

– 0 DL
uv yl{ }

2

yl 3 CL
p

– xk 3 CK
q

– yl xk–( )
3 

 
 
 
 
 
 
 
 
 

+

det

yl 1 CL
p

– xk 1 CK
q

– yl xk–( )
1

yl 2 CL
p

– xk 2 CK
q

– yl xk–( )
2

DL
uv

yl{ }
3 DL

uv
CL{ } p

– 0 DL
uv yl{ }

3 
 
 
 
 
 
 
 
 
 

(A4.14)

DL
uv

ΩKL xk DL
uv

yl{ },( )
 
 
 

cs

det

DL
uv

BL DL
uv

yl{ }( )
 
 
 

1s

0 DL
uv

yl{ }
1

BL
yl{ } 2s

BK
xk{ } 2s

yl xk–( )
2

BL
yl{ } 3s

BK
xk{ } 3s

yl xk–( )
3 

 
 
 
 
 
 
 
 
 
 
 

+=

det

BL yl{ }
1s

BK xk{ }
1s

yl xk–( )
1

DL
uv BL DL

uv yl{ }( )
 
 
 

2s

0 DL
uv yl{ }

2

BL yl{ }
3s

BK xk{ }
3s

yl xk–( )
3 

 
 
 
 
 
 
 
 
 
 
 

+

det

BL
yl{ } 1s

BK
xk{ } 1s

yl xk–( )
1

BL
yl{ } 2s

BK
xk{ } 2s

yl xk–( )
2

DL
uv

BL DL
uv

yl{ }( )
 
 
 

3s

0 DL
uv

yl{ }
3

 
 
 
 
 
 
 
 
 
 
 
 
 



Annex 4 - Derivative Calculs

153

A4.1.4. Green’s Function Kernel: according to figure A4.1 and equation A4.15, we now show
the Green’s kernel derivative calculations, in order to obtain equation C6.8.
 

We can define the Green’s kernel function derivatives as:

We define the Green’s kernel function derivatives with respect to  as:

The derivative of  with respect to a Gauss point is defined as:

So, if we combine the results of equations A4.17 and A4.18, we obtain the Green’s function ker-
nel derivatives with respect to variable :
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A4.2. FN Technique Derivative Calculations: Derivatives of the Source Vector
The derivative is done with respect to the reference triangle .

A4.2.1. Basis Functions : the equation C6.11 is the same as the equation C6.5. The derivative
calculations are the same as in equations A4.1 and A4.2. 

A4.2.2. Gauss Points : the derivative of the Gauss points is the same as in equations A4.3 to
A4.10. 

A4.2.3. Determinant : the determinant  derivative is defined in equation C6.13. First of all,
we recall the determinant  expression from equation C4.11. We want to rewrite the determi-
nant  for the  Gauss points, obtaining:

The reference triangle, for the derivative, is . Moreover, it is possible to rewrite the determi-
nant derivative considering that some terms are constant with respect to , hence, their deriv-
ative is equal to zero.
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We can also write the equation A4.21 using the basis function definitions as reported in A4.1.
In that way, we obtain the results shown in equation C6.13.

A4.2.4. Transversal Moment : it is defined in equation C4.10, here reported in equation
A4.23; instead its derivative is defined in equation C6.12
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Since the dipole moment  term does not depend on the geometry of the strucure, its deriva-
tive is zero. Therefore, we give the other derivative terms starting from the first scalar product:

then we have:

And finally:

Combining the results in equations A4.24, A4.25 and A4.26, we obtain the derivative in equa-
tion  C6.12.

A4.3. SN Technique Derivative Calculations: Derivatives with Respect to the Triangle
Dimension
The derivative is done with respect to the reference triangle , for the SN regular case, other-
wise, the reference triangle is .

A4.3.1. Geometry parameters in local reference: in order to compute the reaction matrix deriv-
atives using the semi-numerical technique, the geometrical dimensions of a triangle of the mesh
have been used, and their derivatives with respect to the geometry as well. As we need to com-
pute three times all of these parameters, we have shifted the order of the vertices; to do that a
local reference has been defined in figure A4.4 (in this way a single Fortran routine will be used
to compute all the parameters needed).
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Figure A4.4: Mesh triangle geometry variables in the local reference

The local summits  are defined as follows, according to figure A4.4:

We first define the term :
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We will now give the derivatives with respect to the geometry of the expressions, reported in
A4.29 to A4.33. As we are in the local reference, the derivative variable will be a  vertex
point, as shown in equation A4.34.

Then, we have:

Finally, the derivative of the triangle surface is:
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If we want to transform all the derivatives in equations, from A4.35 to A4.37, from the local to
the global reference, we must use the linear transformation reported in equation A4.28, in order
to obtain:

Then, in figure A4.5, we show the global reference parameters.

Figure A4.5: Mesh triangle geometry variables in the global reference

A4.3.2.  and  for regular SN case: we define now the derivative of the terms reported in
expressions C6.15 and C6.16. We recall that we are treating the regular case for the SN tech-
nique, i.e., in this case we have  with . 

Figure A4.6: Mesh triangle geometry variables for  and  terms in global reference
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First of all, according to figure A4.5 and A4.6, we define the  and  terms.

We also give in equation A4.40 all the terms which appear in equation A4.39, recalling that we
have already treated the terms  and  in equations A4.33 and A4.36: 

According to equations from A4.35 to A4.37 and C5.14, we can define the derivatives with re-
spect to the geometry of expressions, in A4.41
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L
xk c Cs

L–
c 

 
 

c 1=

3

∑=

Cs
Lxk xk c Cs

L
c

–
 
 
 

c 1=

3

∑ ,=

ûs
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We can now define the derivatives of the terms in A4.39:
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L C s 1+( )
L xk( )( )DL

uv v̂s
L{ }+

 
 
 

+

– v̂s
LDL

uv Vb1
L xk( ){ } Cs

Lxk ûs
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Finally, we give the expressions for the terms  and  and their derivatives:

A4.3.3.  and  for singular SN case: we define now the derivative of the terms reported in
expression C6.17. We recall that are treating the singular case for the SN technique, i.e., in this
case we have . 

Figure A4.7: mesh triangle geometry variables for  and  terms in global reference
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We also give in equation A4.46 all the terms which appear in equation A4.39, recalling that we
have already treated the terms  and , in equations A4.33 and A4.36: 

According to equations from A4.35 to A4.37 and C5.14, we can define the derivatives with re-
spect to the geometry (expressions in A4.47).
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K
xk c Cs

K–
c 

 
 

c 1=

3

∑=

Cs
Kxk xk c Cs

K
c

–
 
 
 

c 1=

3

∑ ,=

ûs
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K Cs
Kxk( )

 
 
 

xk c
Cs

K

c
–

 
 

DK
uv ûs
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We can now define the derivatives of the terms, in A4.45:

Finally, we give the expressions for the terms  and  and their derivatives:
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A4.3.4.  Green’s function: in C4.51 (see  A3.4 also), we give the expression of the  func-
tion. 

Then, according to equation C4.14, the derivative of  function, i.e., using the Taylor’s ex-
pansion, with respect to the geometry, is defined as follows:
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Annex 5 - Scattered Field Derivative with Respect to the Mesh
In order to solve the inverse problem, we need to compute the scattered field from the currents
found when solving the direct problem. We want show now the scattered field form and its de-
rivative with respect to the mesh. First, we define:

The scattered field  defined in the  point is the sum of the fields generated by each ob-
ject , in the domain.

So we obtain:

And we put:

To obtain the scattered field at the  point, we have:
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where:

ϕτν y( ) is the basis function related to the edge ν of an element of triangle τ
Id τ ν,( ) is the number of degrees of freedom ν of an element of triangle Tτ

A5.3( )
e Ω J x, ,( ) αt Id τ ν,( ) ϕτν y( )G x y,( ) yd

Γn

∫ +

αr Id τ ν,( ) ∇Γ ϕτν y( )⋅  ∇xG x y,( ) yd∫
3

∑

ν 1=

3

∑

















τ t Tt Γ∈( ){ }∈
∑=

A5.4( )e Ω J x, ,( ) e Tτ J x, ,( )
τ t Tt Γ∈( ){ }∈

∑=

x

A5.5( )E x( ) e Tτ J x, ,( )
τ t Tt Γ∈( ){ }∈

∑
n 1=

NΩ

∑=



Annex 5 - Scattered Field Derivative with Respect to the Mesh

167

Considering the equation (A5.2), the electric field derivative with respect to the position  of
each object is:

gn
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--------------------------------------------------
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n p≠

+
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Annex 6 - SR3D Frequency Derivatives
In parallel to the geometry derivative of SR3D integral formulation, another module has been
developed and validated but not still integrated within the core of the optimization procedure.
Anyway, in this annex we want to report the expressions of the derivatives (first and second or-
der) with respect to the frequency of the  reaction matrix (see equation C3.11 to recall their
definitions). This module can be used with the cost functional definition (see Chapter 7) in order
to optimize the electromagnetic structure within a certain bandwidth.

A6.1 First Order Derivative of the Discrete Reaction Matrix with Respect to the Fre-
quency 
Let’s start from the first order derivative with respect to the frequency. We calculate the deriv-
atives according to the equations from C3.8 to C3.18.

A6.1.1 - First Order Frequency Derivative for Regular Case: in this case, it is sufficient to cal-
culate the  terms replacing the Green’s function kernels functions with its derivatives with
respect to . These derivatives are reported in equation A6.1:

We obtain the derivative of  terms with respect to the frequency, using the  operator
form of equation C3.8 and just replacing the new Green’s function kernels functions reported
in A6.1.

A6.1.2 - First Order Frequency Derivative for Singular Case: at present, we have the problem
to eliminate the singularity in the  operators. We assume to work with planar structures
only. So this reduce, for the moment, the field of application of SR3D but notably simplifies the
optimization procedure. Under this assumption and according to equation C2.28, we can say
that if we consider the reaction between two planar structures, defined on the  plane, then:
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This leads to obtain a zero value for the  term in equation C2.28 and consequently to a zero
value for  operator reported in equation C3.28. 

If we define the  function, we obtain:

We obtain:
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A6.2 Second Order Derivative of the Discrete Reaction Matrix with Respect to the Fre-
quency
Let’s start from the first order derivative with respect to the frequency. We calulate the deriva-
tive according to the equations from C3.8 to C3.18.

A6.2.1 - Second Order Frequency Derivative for Regular Case: in this case, it is sufficient to
calculate the  terms replacing the Green’s function kernels functions with its derivatives
with respect to . These derivatives are reported in equation A6.7:

We obtain the derivatives of  terms with respect to the frequency, using the  oper-
ator form of equation C3.8 and just replacing the new Green’s function kernels functions report-
ed in A6.7

A6.2.2 - Second Order Frequency Derivative for Singular Case: at present we have the problem
to eliminate the singularity in the  operators. We assume to work with planar structures
only. So this reduce, for the moment, the field of application of SR3D but notably simplifies the
optimization procedure. Under this assumption and according to equation C2.28, we can say
that if we consider the reaction between two planar structures, defined on the  plane, then:

This leads to obtain a zero value for the  term in equation C2.28 and consequently to a zero
value for  operator reported in equation C3.28. As said this assumption simplifies the model
but only planar structures can be treated. Let’s see the other two terms (integral version): 
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If we define the function , we obtain:
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Abstract - Résumé  - Riassunto

ABSTRACT

The aim of the present work is the development of an optimization method for electromagnetic
structures (objects and planar antennas) under constraints (scattered field, radiation patterm, S
parameters, ...). 

A gradient-based optimization technique is applied to a rigorous mixed-integral formulation of
the electromagnetic field (Combined Field Integral Equationor CFIE) coupling the electric and
magnetic field formulations over the surface (external boundary) of the objects analyzed. The
scattered or the radiation problem is led to the solution of a linear system. The optimization
problem under constraints is defined through the minimization of a non linear functional (cost
functional) measuring the deviation between the measured data (scattered field, radiation dia-
gram, S parameters, ...) and the data obtained with the rigorous integral formulation defined in
numerical form. 

In order to apply an optimization technique based on a descent gradient algorithm, the calcula-
tion of the cost functional derivatives is needed. This calculation is performed in an analytical
way with respect to every magnitude (incident field, scattered field, surface currents,...) that  af-
fects the cost functional. This calculation gives to the present study a very general orientation
concerning the analysis of any type of antenna configuration.

The applications of interest concern the planar antennas systems (multi-antenna systems) illu-
minated by one or several incident waves or feeded by one or more ways with regard to  the
antennas location optimization framework within the multi-antenna arrays or within the MIMO
multi-receiver antennas.

Keywords:

      - Optimization method
      - Rigorous mixed-integral formulation
      - Method of moments
      - Analytic derivative with respect to the geometry
      - Derivative of surface currents 
      - Optimization of antennas location 
      - Planar antennas, MIMO antennas 
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RESUME

Ce travail a pour but d’étudier une méthode d’optimisation de structures (objets et antennes pla-
naires) sous contraintes (champ diffracté, diagramme de rayonnement, ROS, ...). 

La méthode utilisée est basée sur l'utilisation d'une technique de type gradient appliquée à une
formulation intégrale mixte rigoureuse du champ électromagnétique (Combined Field Integral
Equation ou CFIE) couplant les formulations du champ électrique et magnétique sur la surface
(frontière extérieure) des objets étudiés. Le problème de diffraction ou de rayonnement est ra-
mené à la résolution d'un système linéaire. Le problème d'optimisation sous contraintes conduit
à la minimisation d'une fonctionnelle non linéaire (fonctionnelle coût) mesurant l'écart entre les
données mesurées (champ diffracté, diagramme de rayonnement, ROS, ...) et les données issues
de la formulation intégrale rigoureuse mise sous forme numérique. 

Afin d'utiliser une technique d'optimisation basée sur un algorithme de descente du type gradi-
ent, il est nécessaire de calculer la dérivée de la fonctionnelle coût. Ce calcul est effectué ana-
lytiquement sur toutes les grandeurs (champ incident, champ diffracté, courants surfaciques, ...)
intervenant dans la fonctionnelle coût. Ce qui confère à cette étude un caractère très général
pour l'étude de systèmes antennaires quelconques.

Les applications étudiées concernent les systèmes antennaires planaires (systèmes multi-an-
tennes) qu'ils soient illuminés par une ou plusieurs ondes incidentes ou excités sur une ou plu-
sieurs voies dans le cadre d'optimisation de la localisation d'antennes au sein de réseaux multi-
capteurs ou dans le cadre MIMO d'antennes multi-récepteurs.

Mots clés:

      - Méthode d’optimisation
      - Formulation intégrale mixte rigoureuse
      - Méthode des moments
      - Dérivée analytique par rapport à la géometrie
      - Dérivée des courants surfaciques
      - Optimization de position d'antennes 
      - Antennes planaires, antennes MIMO 
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RIASSUNTO

Il presente lavoro ha come obiettivo lo studio di un metodo di ottimizzazione di strutture
(oggetti ed antenne planari) sottoposto a vincoli (campo diffratto, diagramma di radiazione,
ROS, ...).

Il metodo utilizzato è basato sull'utilizzazione di una tecnica di tipo gradiante applicata a una
formulazione integrale mista rigorosa del campo elettromagnetico (Combined Field Integral
Equation CFIE) che accoppia le formulazioni del campo elettrico e del campo magnetico sulla
superficie (frontiera esterna) degli oggetti studiati. problema della diffrazione o della radiazione
è riportato alla risoluzione di un sistema lineare. Il problema dell'ottimizzazione sotto vincoli
conduce alla minimizzazione di un funzionale non lineare (funzionale di costo) che misura lo
scarto  tra i dati misurati (campo scatterato, diagramma di radiazione, ROS, ...) e i dati ricavati
dalla formulazione integrale rigorosa messa su forma numerica. 

Al fine di utilizzare una tecnica d'ottimizzazione basata su un algoritmo di discesa a gradiente,
è necessario il calcolo della derivata del funzionale di costo. Questo calcolo è eseguito in modo
analitico su tutte le grandezze (campo incidente, campo diffratto, correnti superficiali,...) che
intervengono nel funzionale di costo, ciò conferisce al presente studio un carattere molto
generale per lo studio di sistemi di antenna qualsiasi. 

Le applicazioni studiate riguardano i sistemi di antenne planari (sistemi multi-antenna) che sono
illuminati da una o più onde incidenti o eccitati su una o più vie rispetto al quadro
dell'ottimizzazione della localizzazione d'antenna in seno alle reti multi-captori o rispetto al
quadro MIMO d'antenne multi-ricettori.

Parole chiave:

      - Metodo di ottimizzazione
      - Formulazione integrale mista rigorosa
      - Metodo dei momenti
      - Derivata analitica rispetto alla geometria
      - Derivata delle correnti superficiali
      - Ottimizzazione della posizione d'antenna 
      - Antenne planari, antenne MIMO 


