
HAL Id: tel-03214389
https://hal.science/tel-03214389

Submitted on 1 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Unsupervised Learning of Data Representations and
Cluster Structures: Applications to Large-scale Health

Monitoring of Turbofan Aircraft Engines
Florent Forest

To cite this version:
Florent Forest. Unsupervised Learning of Data Representations and Cluster Structures: Applica-
tions to Large-scale Health Monitoring of Turbofan Aircraft Engines. Machine Learning [stat.ML].
Université Sorbonne Paris Nord, 2021. English. �NNT : �. �tel-03214389�

https://hal.science/tel-03214389
https://hal.archives-ouvertes.fr

École Doctorale Galilée (ED 146)
Laboratoire d’Informatique de Paris Nord (LIPN — UMR CNRS 7030)

Équipe A3 : Apprentissage Artificiel & Applications

Thèse de doctorat de l’Université Sorbonne Paris Nord

présentée par
Florent Forest

en vue de l’obtention du titre de
Docteur en Informatique

Unsupervised Learning of Data Representations
and Cluster Structures: Applications to

Large-scale Health Monitoring of Turbofan
Aircraft Engines

Apprentissage non supervisé de représentations de données et structures de

partitionnement : applications à la surveillance à grande échelle de turbofans

Thèse soutenue le 22 mars 2021

Rapporteurs M. Christophe Biernacki — Professeur, INRIA/Université de Lille 1
M. Michel Verleysen — Professeur, UC Louvain

Examinateurs M. Étienne Côme — CR, IFSTTAR/Université Gustave Eiffel
M. Éric Gaussier — Professeur, Université Grenoble Alpes
M. Christophe Cérin — Professeur, Université Sorbonne Paris Nord

Invité M. Jérôme Lacaille — Expert émérite, Safran Aircraft Engines

Directeurs M. Mustapha Lebbah — MCF HDR, Université Sorbonne Paris Nord
Mme. Hanane Azzag — MCF HDR, Université Sorbonne Paris Nord

Florent Forest
Unsupervised Learning of Data Representations and Cluster Structures: Applications to Large-
scale Health Monitoring of Turbofan Aircraft Engines
Apprentissage non supervisé de représentations de données et structures de parti-
tionnement : applications à la surveillance à grande échelle de turbofans
Thèse de doctorat de l’Université Sorbonne Paris Nord, 22 mars 2021
Directeurs : M. Mustapha Lebbah, Mme. Hanane Azzag
Rapporteurs : M. Christophe Biernacki, M. Michel Verleysen
Examinateurs : M. Étienne Côme, M. Éric Gaussier, M. Christophe Cérin

Université Sorbonne Paris Nord
Équipe A3 : Apprentissage Artificiel & Applications
Laboratoire d’Informatique de Paris Nord (LIPN — UMR CNRS 7030)
École Doctorale Galilée (ED 146)
99 avenue Jean-Baptiste Clément
93430 Villetaneuse

Manuscript compiled on March 25, 2021.

Abstract

This thesis is interested in unsupervised statistical learning methods and their
applications to health monitoring of aircraft engines at an industrial scale. Our
first objective is to make health monitoring methodologies scale to massive data
sets and allow engineering team to flexibly deploy various use cases. Besides the
engineering aspects, we also try to address two fundamental theoretical challenges in
unsupervised learning. First, the links between cluster structure and representation.
And second, the very definition of structure, arising from the problem of model
selection in clustering.

Modern aircraft engines generate growing amounts of data during manufacturing,
tests and flights, that can be leveraged for health monitoring and predictive main-
tenance, in order to improve safety, availability and reduce costs. In this work, we
use sensor measurements collected on board of civil short and mid-range aircraft.
These data sets are temporal and highly multidimensional due to the large number
of sensors and sampling frequencies. Hence, applications need to scale to the large
volumes of data, driven by the growing number of daily operating engines.

Among all unsupervised learning approaches, clustering and self-organizing maps
(SOM) provide useful insights on the distribution of complex and high-dimensional
unlabeled data sets. To describe the internal state of an engine, expert indicators or
features need to be extracted from raw data, before applying clustering algorithms.
Our first contribution is to scale these methodologies using Big Data tools and
distributed computing, in order to process entire fleets. We propose a generic and
scalable pipeline enabling engineers to analyze flight data on a cluster. In addition,
we present an new application to monitoring of vibration signatures.

Another option is to automatically extract relevant features with deep neural net-
works, known as deep learning, which had a great impact in many areas of machine
learning. Recently, its ability to improve clustering has been investigated. A second
contribution of this thesis is a Deep Embedded SOM, a neural network-based model
performing joint representation learning with an autoencoder and self-organization
of the cluster prototypes.

iii

The third contribution of this thesis concerns model selection, which is perhaps the
most difficult problem in clustering. We adopt the framework of cluster stability
analysis, and propose a novel concept of within-cluster stability, leading to a criterion
called Stadion (stability difference criterion) able to effectively select the number of
clusters in a data set. We also apply Stadion to time series clustering validation by
leveraging invariant transformations of the data.

Keywords: unsupervised learning; clustering; self-organizing maps; deep learning;
time series; cluster stability analysis; big data processing; aircraft engines; health
monitoring of industrial assets.

Résumé

Cette thèse porte sur des méthodes d’apprentissage statistique non supervisées et
leurs applications à la surveillance de santé (health monitoring) des moteurs d’avion
à une échelle industrielle. Notre premier objectif est de faire passer les méthodolo-
gies de health monitoring à l’échelle de jeux de données massifs et de permettre aux
ingénieurs de déployer de manière agile divers cas d’utilisation. Outre les aspects
d’ingénierie, nous aborderons également deux défis théoriques fondamentaux en
apprentissage non supervisé. Premièrement, les liens entre structure de partition-
nement et représentation. Et deuxièmement, la définition même de la structure,
découlant du problème de sélection du modèle en partitionnement de données
(clustering).

Aujourd’hui, les moteurs d’avion génèrent des quantités croissantes de données au
cours de leur fabrication, des essais et des vols, pouvant être exploitées pour la
surveillance et la maintenance prédictive, afin d’améliorer la sécurité, la disponibilité
et de réduire les coûts. Dans ce travail, nous utiliserons des mesures de capteurs
embarqués à bord d’avions civils court et moyen courrier. Ces jeux de données sont
temporels et hautement multidimensionnels en raison du nombre de capteurs et
leur fréquences d’échantillonnage. Par conséquent, les applications doivent s’adapter
aux grands volumes de données qui ne cessent de croître avec la hausse du trafic
aérien.

Parmi les approches d’apprentissage non supervisées, le clustering et les cartes
auto-organisées (SOM) fournissent des informations utiles sur la distribution de
jeux de données non étiquetés complexes et en grande dimension. Pour décrire

iv

l’état interne d’un moteur, des indicateurs experts doivent être extraits des données
brutes, avant d’appliquer des algorithmes de clustering. Notre première contribution
est de faire passer à l’échelle ces méthodologies via les outils du Big Data et le
calcul distribué, afin de traiter des flottes entières. Nous proposons une chaîne
de traitement générique permettant aux ingénieurs d’analyser les données de vol
stockées sur un cluster. En outre, nous présentons une application à la surveillance
de signatures vibratoires.

Une autre option, appelée apprentissage profond, consiste à extraire automatique-
ment des caractéristiques pertinentes à l’aide de réseaux de neurones profonds.
Cette approcha a bouleversé de nombreux domaines de l’apprentissage automa-
tique ces dernières années. Récemment, sa capacité à améliorer le clustering a été
étudiée. Une deuxième contribution de cette thèse est un modèle SOM profond
(Deep Embedded SOM), basé sur des réseaux neurones combinant l’apprentissage
de représentations via un auto-encodeur et l’auto-organisation des prototypes.

La troisième contribution de cette thèse concerne la sélection de modèle, l’un des
problèmes les plus ardus en clustering. Nous adoptons le cadre de l’analyse de
stabilité, et proposons un nouveau concept de stabilité intra-cluster, conduisant à
un critère appelé Stadion (critère de différence de stabilité) capable de sélectionner
efficacement le nombre de clusters dans un jeu de données. Nous appliquerons
également Stadion à la validation du clustering de séries temporelles en tirant parti
des transformations invariantes des données.

Mots-clés : apprentissage non supervisé ; partitionnement ; cartes auto-organisatrices
; apprentissage profond ; séries temporelles ; analyse de stabilité ; traitement de don-
nées massives ; moteurs d’avion ; surveillance de santé de systèmes industriels.

v

Remerciements

Mes premiers remerciements chaleureux vont à mes directeurs de thèse, Mustapha
Lebbah et Hanane Azzag, ainsi qu’à Jérôme Lacaille, pour leur encadrement tout au
long de ces trois années. Mustapha et Hanane, vos conseils, votre optimisme, votre
disponibilité à toute heure, ont facilité la traversée de cette aventure. Jérôme, ton
encadrement scientifique au sein de Safran Aircraft Engines était indispensable, et
ton souhait de valoriser et faire rayonner nos travaux de recherche dans l’entreprise
a constitué un moteur essentiel.

Christophe Biernacki et Michel Verleysen m’ont fait l’honneur d’accepter de rapporter
ma thèse. Je ne saurais assez vous remercier pour vos retours plus qu’encourageants.
Un grand merci également à mes examinateurs, Éric Gaussier, Étienne Côme et
Christophe Cérin, pour les échanges enrichissants. Étienne, mes applications indus-
trielles se sont largement basées sur tes travaux. Malheureusement, le jury a dû se
tenir partiellement à distance cette année, mais j’espère sincèrement avoir l’occasion
de nous rencontrer lors d’événements scientifiques dans l’avenir.

Je remercie l’entreprise Safran Aircraft Engines pour avoir rendu possible ce projet.
Faire partie de Safran m’a permis de travailler sur des cas concrets et passionnants,
et de me développer autant techniquement qu’humainement. J’ai eu la chance d’être
intégré au Datalab, une équipe dynamique et pleine d’entrain, dans une ambiance
toujours très conviviale. Ce fut également un réel plaisir de collaborer avec les
ingénieurs des différents bureaux d’études et nos voisins du PHM.

Merci à tous mes collègues et amis, thésards ou non, au LIPN, en CIFRE à Safran
ou ailleurs, pour les moments de convivialité, d’entraide et de soutien, sources de
motivation, ainsi que de belles collaborations qui continueront à se développer. En
particulier, merci à la team C4E (Clustering4Ever) qui verra toujours les choses en
grand. Mes pensées vont évidemment à ma famille, sans qui je ne serais pas là, et
qui m’a entre autres encouragé à emprunter le chemin ardu de la thèse; et bien sûr,
à Marie-Cécile, présente à mes côtés jour après jour.

Je souhaiterais enfin mentionner les divers outils logiciels libres et/ou gratuits et
autres sites web donnant un accès libre à la connaissance, qui sont d’une grande
utilité pour tous les doctorants.

Cette thèse a été soutenue par l’ANRT via le contrat CIFRE n° 2017/1279.

vii

Contents

Abstract iii

Remerciements vii

Introduction 1
Context and motivations . 1

Challenges and objectives . 5

Overview . 7

Contributions . 9

Introduction 11
Contexte et motivations . 11

Défis et objectifs . 14

Plan de la thèse . 16

Notations 19

I. Clustering, self-organization and representation learning 21

1. Clustering and self-organization 23
1.1. Statistical learning: an overview . 23

1.2. Cluster analysis . 31

1.3. Self-organizing algorithms . 37

1.4. Conclusion . 50

2. Unsupervised representation learning for clustering 51
2.1. Unsupervised learning of representations 53

2.2. Learning representations for data clustering 63

2.3. Deep clustering methods . 65

2.4. Deep self-organized models . 71

2.5. Conclusion . 73

3. Deep Embedded SOM (DESOM) 75
3.1. Architecture . 75

ix

3.2. Loss function . 76

3.3. Training procedure . 78

3.4. Training parameters . 80

3.5. Comparison with other deep SOM models 81

3.6. Data sets . 81

3.7. Architecture and hyperparameter study 83

3.8. Initialization and pretraining . 89

3.9. Training parameters and learning dynamics 91

3.10.Prototype image sharpness . 96

3.11.Benchmark results . 98

3.12.Software implementations . 107

3.13.Conclusion . 107

II. Model selection in clustering 109

4. Model selection in clustering 111
4.1. Introduction . 111

4.2. External clustering validation . 113

4.3. Internal clustering validation . 117

4.4. Validation of self-organized models 125

4.5. Conclusion . 132

5. Selecting the number of clusters with a stability trade-off 133
5.1. Cluster stability analysis . 133

5.2. Definitions and limitations . 134

5.3. Between-cluster and within-cluster stability 136

5.4. Stadion: a novel stability-based validity index 138

5.5. Pseudo-code . 140

5.6. Complexity study . 140

5.7. Some experiments and examples . 142

5.8. Selecting K in K-means, GMM and Ward clustering 151

5.9. Hyperparameter study . 153

5.10.Software implementations . 162

5.11.Conclusion . 163

6. Validation of time series clustering with an invariance-guided criterion 165
6.1. Introduction . 165

6.2. Invariances and time series clustering 167

6.3. Invariance-guided stability by perturbing invariant latent factors . . . 171

x

6.4. Selecting the right distance with stability 173

6.5. Selecting the number of clusters . 174

6.6. Software implementations . 178

6.7. Conclusion . 178

III. Industrial applications and scalability 179

7. Scaling to Big Data with distributed computing 181
7.1. Introduction . 181

7.2. Hadoop and the Map-Reduce paradigm 186

7.3. Efficient analytics with Apache Spark 190

7.4. Distributed machine learning . 198

7.5. Conclusion . 200

8. Industrial applications 203
8.1. Aircraft engine health monitoring . 203

8.2. Aircraft engine data sets . 207

8.3. Scalable and generic processing of aircraft engine data 212

8.4. Engine state cartography using self-organized models 220

8.5. Application to vibration monitoring 223

8.6. Conclusion . 235

Conclusion and perspectives 237
Future work . 238

A. Appendix to chapter 3 — DESOM visualizations 241

B. Appendix to chapter 4 — SOMperf usage examples 243

C. Appendix to chapter 5 — Detailed benchmark results and experimental
settings 245
C.1. Results analysis . 245

C.2. Complete results on real-world and artificial data sets 247

C.3. Algorithm initialization . 248

C.4. Preprocessing . 248

C.5. List of data sets . 249

D. Appendix to chapter 7 — Hadoop cluster components 251
D.1. Architecture of a cluster . 251

D.2. Hadoop storage formats . 260

xi

E. Appendix to chapter 8 — Vibration profiles SOM maps 265

List of Figures 267

List of Tables 271

List of Algorithms and Program Code 273

Glossary 275

Bibliography 277

xii

Introduction

„The purpose of science is to find meaningful
simplicity in the midst of disorderly complexity.

— Herbert Simon
(Models of my Life, 1991)

The introduction of this thesis manuscript starts by introducing the different stake-
holders, the context and motivations behind this PhD project. The university lab-
oratory and company are presented, along with their structure, entities and main
products. Then, we briefly introduce turbofan aircraft engines and the principles of
health monitoring, as well the main theoretical and technological challenges arising
when scaling up the size and complexity of data sets. We will justify the adoption of
the unsupervised learning setting, to extract insights from high-dimensional data
sets. The second section provides an overview of the structure of the rest of the
manuscript. Finally, the third section lists the contributions of this thesis, in terms of
research publications (accepted and submitted papers), patents, and open-source
software contributions.

Context and motivations

The work presented in this thesis is the result of a collaboration between the
computer science lab LIPN (Laboratoire d’Informatique de Paris Nord)1, at Université
Sorbonne Paris Nord2, and the company Safran Aircraft Engines3 (SAFRAN group).

University Sorbonne Paris Nord (ex University Paris 13) is one of the thirteen
universities that were created after the reorganization of the old Sorbonne after
1968. The department of Computer Science of the University Sorbonne Paris Nord
(LIPN) has been created in 1985. It is affiliated both with the university and with the
CNRS. Its members conduct research in several areas: combinatorics, combinatorial

1https://lipn.univ-paris13.fr/
2https://www.univ-paris13.fr/
3https://www.safran-aircraft-engines.com/

1

https://lipn.univ-paris13.fr/
https://www.univ-paris13.fr/
https://www.safran-aircraft-engines.com/

Fig. 0.1.: CFM56-7B (left) and LEAP (right) engines. [Source]

optimization, algorithmics, logics, software engineering, natural languages, and
machine learning. The department is structured into the following five teams:

• Team A3: Machine learning.
• Team AOC: Combinatorial optimization.
• Team CALIN: Combinatorics.
• Team LoVe: Logic and verification.
• Team RCLN: Natural languages.

Safran Aircraft Engines (Safran A.E.), a company of the SAFRAN technology group,
designs, develops, produces and markets, alone or in partnership, engines for civil
and military aircraft, space launchers and satellites. Safran Aircraft Engines also
provides airlines, the army, aircraft operators and leasing firms with a complete
range of services for their aircraft engines. It covers the complete engine life cycle,
from service entry to dismantling. To keep the pace of competition and technological
progress, Safran Aircraft Engines must stay a competitive engine manufacturer
by providing new innovative engines that are more energy-efficient, lightweight,
producing less acoustic noise, emissions, etc.

In this PhD, we are interested in aircraft engines equipping short to mid-range civil
aircraft. These products belong to the CFM company4, a joint venture between the
French Safran A.E. and the American General Electric (GE). Figure 0.1 shows a
CFM56-7B engine (the most sold engine in the world), and the current generation
LEAP. In this work, we will analyze data from LEAP engines only. Table 0.1 contains
the fleet statistics for the LEAP engine, as of March 31, 2020. More than 1000
aircraft and 2400 engines are in operation, for a total of over 3.5 million cycles. A
cycle is the technical term used instead of flight to designate a full engine start and
stop.

4https://www.cfmaeroengines.com/

2 Chapter 0 Introduction

https://www.cfmaeroengines.com/engines/
https://www.cfmaeroengines.com/

Tab. 0.1.: LEAP engines fleet statistics (as of March 31, 2020). [Source]

Aircraft Engines Hours Cycles

LEAP-1A (A320neo) 666 1 488 6 158 695 2 967 414
LEAP-1B (737 MAX) 389 923 1 688 692 607 340

Total LEAP 1 055 2 411 7 847 387 3 574 754

Total CFM56 (for reference) 14 614 33 560 1 072 962 020 578 290 661

Fig. 0.2.: Simplified diagram of a turbofan engine with fan, low-pressure and high-pressure
compressors and turbines attached to their respective shafts.

Before going further into this introduction, a brief introduction must be provided
on how a turbofan engine produces thrust. First, incoming air is captured by the
engine inlet. Part of this air passes through the fan and continues on into the core
compressor and then the burner, where it is mixed with fuel and combustion occurs.
The hot exhaust passes through the core and fan turbines and then out the nozzle.
The rest of the incoming air passes through the fan and goes around the engine,
called bypassing. The air that goes through the fan has a velocity that is slightly
increased from free stream. So a turbofan gets some of its thrust from the core and
some of its thrust from the fan. The ratio of the air that bypasses to the air that goes
through the core is called the bypass ratio.

Although the basic principle of a jet engine is simple (Newton’s third law), the entire
system is of utmost complexity. An engine is made of several subsystems and a large
number of moving and non-moving parts, as can be seen on the 3D cross-section
of a CFM65-7B engine on Figure 0.1 (left). It is useful to have a simplified view of
the main engine components (see Figure 0.2). A turbofan engine is composed of

0.0 Context and motivations 3

https://www.cfmaeroengines.com/engines/fleet-statistics/

two main shafts, the low pressure (LP) shaft and high pressure (HP) shaft (as well
as a radial drive shaft (RDS), not represented here). The LP shaft is powered by
the LP turbine and drives the fan (engine inlet) and LP compressor. The HP shaft
is powered by the HP turbine (following the combustion chamber) and drives the
HP compressor. Lastly, the RDS is linked to the HP shaft and provides power to the
accessory gearbox.

Extremely high reliability is needed to reach the required level of safety for civil or
military flights. In general, the probability of failure must be smaller than 10−9 per
hour of flight, and aircraft are made to last typically up to 30 years or 100k cycles.
This is achieved by the manufacturer through robust design and manufacturing,
strict norms and certifications, extensive testing, and regular visual inspections and
maintenance during their operation in order to replace parts. In addition, engines
and aircraft are equipped with sensors collecting data during tests and flights.
Various methods have been devised to analyze these data. During production,
the standard methodology is Statistical Process Control (SPC). SPC consists in
monitoring the deviation between parameters and their target value, and displays
visual alerts to the operators if the deviation becomes too important.

More advanced techniques are developed in the general framework of Prognostics and
Health Monitoring (PHM). The general aim is to improve availability and operation
of engines [Blanchard et al., 2009, Bastard et al., 2016]. It consists in monitoring
the state of an engine or a fleet of engines by using operational data and past
events. The first objective is to avoid abnormal events as in-flight shutdowns,
aborted take-offs and delays and cancellation. The second objective is optimizing
maintenance operations to improve safety while reducing costs for manufacturers
and airline companies. It is at the core of a predictive maintenance strategy (also
called condition-based maintenance), which consists in adapting the maintenance
plan to the actual state of each individual engine, unlike traditional time-based
preventive maintenance, the state of each engine being the result of its actual
use during its lifetime. This allows a more efficient scheduling of preventive and
corrective actions (e.g. shop visits): time between actions can be increased if no
maintenance is necessary (thus reducing costs), and actions can be taken earlier
thanks to enhanced predictability of events (thus improving safety). Concretely,
engine health monitoring (EHM) combines historical data and physical models
to raise alerts, build models that evaluate wear of parts and their residual useful
life, probability of failure, etc. These models can be based on thresholds, statistical
models incorporating physical knowledge, or machine learning, i.e. statistical models
whose parameters are learned from data.

4 Chapter 0 Introduction

Safran A.E. monitors the condition of its engines either in a test cell environment or
by analyzing, post-flight, data collected during the flight. Data are collected using
multiple sensors placed on the test cell, the aircraft or the engine itself. In this work,
we tackle flight data analysis, on the ground.

At Safran A.E., the PHM department is responsible for developing algorithms to
monitor the state of engine sub-systems. In addition, several teams of domain
experts are specialized in each aspect of the engine (e.g., performance, vibration
dynamics, acoustics, etc.). Finally, the Datalab team provides skills and support in
statistics, data analysis, data and software engineering across various projects in the
company, always in cooperation with domain experts. The role of a data lab in a
company is to play a transverse role for all data-related projects and to break silos
between different business entities. During this PhD, I have been a member of the
Datalab team, and collaborated with other departments.

Challenges and objectives

Aircraft operation generate growing amounts of data that can be leveraged for
various applications, including health monitoring, predictive maintenance, and
services to airline companies. Health monitoring of industrial assets is a set of
techniques that aims at increasing machine availability and safety, while reducing
maintenance costs. Knowledge of a machine’s condition can be extracted from data.
Today’s highly instrumented aircraft produce huge amounts of data, as hundreds of
sensors measurements are recorded during whole flights at a high frequency. Data
sets collected at Safran A.E. from the LEAP engines are in the range of gigabytes
per flight, with thousands of engines operated every day. As a consequence, these
data require specific software tools to be stored and processed efficiently: we have
entered a Big Data era. Thus, a crucial objective of this PhD is to make possible the
scaling up of aircraft engine data analysis and health monitoring applications at
Safran A.E.

Map-Reduce has emerged as a paradigm enabling to process huge amounts of
potentially unstructured data while abstracting out to the application programmer
the precise details of where the different parts of the data are stored. According to
its inventors [Dean and Ghemawat, 2008], "this allows programmers without any
experience with parallel and distributed systems to easily utilize the resources of
a large distributed system". Today, the modern distributed computing frameworks
that have bloomed from the original Map-Reduce are far more powerful and flexible,

0.0 Challenges and objectives 5

such as the Apache Spark framework used in this PhD. Still, we found that their
relatively steep learning curve prevented domain experts to easily deploy their
methodologies at the scale of entire fleets. Solving this issue is the goal of the generic
analytics pipeline introduced in Chapter 8. Then, various use cases can be realized
in collaboration with domain experts. Then, insights need to be extracted from vast
amounts of unlabeled data, which are in addition high-dimensional. To this end,
unsupervised learning algorithm are used, to address clustering (partitioning into
groups without supervision), dimensionality reduction, and visualization, among
others. We focus on self-organizing maps (SOM) [Kohonen, 1982], which have the
advantage of producing interpretable results.

In this thesis, besides the engineering aspects, we are also interested in the theoretical
challenges and tried to address two very fundamental issues in unsupervised learning.
First, the links between structure and representation. And second, the very definition
of structure, arising from the problem of model selection in clustering.

Clustering in high-dimensional spaces is a difficult problem which is recurrent in
many domains, for example in image or signal analysis. The difficulty is due to the
fact that high-dimensional data usually live in different low-dimensional subspaces
hidden in the original space. In other words, structure depends on the representation.
We explore the combination of representation learning, i.e. automatically learning
useful features from data using neural networks, and develop a deep variant of the
SOM (DESOM). However, as complex as the algorithm may be, it is of no use if
its solutions cannot be evaluated properly, in an objective way, in order to selects
its parameters. This evaluation, called model selection, is a major challenge in
clustering, as there is no ground truth to evaluate against. The standard methods
have strong limitations. We try to improve on a set of methods called cluster stability
analysis, and propose a new criterion along with thorough experiments showing its
effectiveness.

In a way, we address scalability issues in several ways. On one hand, we overcome
large numbers of observations N using either distributed data-parallel processing,
or efficient (linear) learning rules such as stochastic gradient descent. On the other
hand, we tackle large numbers of variables P by dimensionality reduction and
representation learning.

6 Chapter 0 Introduction

Overview

This manuscript is organized into three parts:

I Clustering, self-organization and representation learning (chapters 1, 2
and 3).

II Model selection in clustering (chapters 4, 5 and 6).
III Industrial applications and scalability (chapters 7 and 8).

Chapter 1: Clustering and self-organization

The first chapter of this thesis provides an introduction to the field of unsupervised
machine learning. It presents the main algorithms for data clustering, as well as
dimensionality reduction and visualization based on a self-organization process,
such as Self-Organizing Maps (SOM).

Chapter 2: Unsupervised representation learning for clustering

In the second chapter, we dive into unsupervised learning methods based on
deep neural networks in order to learn semantic representations of complex, high-
dimensional data sets. A major family of models is autoencoders. Then, we present
a state-of-the-art of recent approaches combining representation learning and clus-
tering, called deep clustering methods.

Chapter 3: Deep Embedded SOM (DESOM)

The third chapter presents the first main contribution of this thesis to the field of deep
clustering. The Deep Embedded SOM (DESOM) is a neural network-based model
performing joint representation learning and self-organization of the cluster proto-
types. We present in details the model architecture, training procedure, and study
its performance and the influence of hyperparameters on several benchmarks.

Chapter 4: Model selection in clustering

Model selection is perhaps the most difficult problem in clustering, and is the subject
of chapter 4. It allows to evaluate the results of a clustering algorithm in order
to select its "best" parameters, such as the number of clusters. We introduce its
challenges, and a selection of external and internal validation indices. In addition,
we present specific indices to evaluate SOM models, that we implemented as an
open-source Python module.

Chapter 5: Selecting the number of clusters with a stability trade-off

The fifth chapter tackles model selection using cluster stability analysis. Stability
methods are based on the principle that a good clustering solution should be stable
to perturbations of the data distribution. These perturbations may arise by sampling

0.0 Overview 7

or injection of noise. Our contribution is a novel concept of within-cluster stability,
leading to a criterion called Stadion (stability difference criterion). Through exten-
sive experiments and benchmarks on 80 data sets, we show its ability to effectively
select the number of clusters compared with existing methods in literature.

Chapter 6: Validation of time series clustering with an invariance-guided crite-
rion

In chapter 6, we apply the Stadion criterion to the task of whole time series clus-
tering validation. Time series clustering is challenging in several ways (e.g. high
dimensions, correlation, invariances to transformations) and model selection is not
well studied. We propose to guide the perturbation process by leveraging invariant
transformations of the data, whenever these are know beforehand. We experi-
ment with shifting, scaling and warping transformations, and evaluate well-known
center-based time series clustering algorithms.

Chapter 7: Scaling to Big Data with distributed computing

Chapters 7 and 8 aim at solving the challenges of the ever-growing amounts of
data generated by aircraft operation. We first define the term Big Data and its
implications. Then, we provide a technical introduction to the software tools that
we use to process large flight data sets on a cluster, namely the Hadoop eco-system
and the Spark distributed computing framework. Finally, we show how clustering
algorithms can be distributed in the Map-Reduce paradigm to process data in parallel
on clusters of machines.

Chapter 8: Industrial applications

Lastly, chapter 8 concerns two contributions around industrial applications developed
at Safran A.E. with the objective of scaling methodologies for engine fleet health
monitoring. With this goal in mind, a generic pipeline for large-scale processing
of aircraft engine data has been developed, based on Spark and deployed on the
production cluster. More precisely, it allows domain engineers to massively extract
flight features, apply the SOM algorithm, save the models and visualize them through
a web application. Studies conducted on LEAP engine data are presented.

8 Chapter 0 Introduction

Contributions

Accepted papers

• Forest, F., Lacaille, J., Lebbah, M., & Azzag, H. (2018). A Generic and Scalable
Pipeline for Large-Scale Analytics of Continuous Aircraft Engine Data.
IEEE International Conference on Big Data.
https://doi.org/10.1109/BigData.2018.8622297

• Forest, F., Lebbah, M., Azzag, H., & Lacaille, J. (2019). Deep Embedded SOM:
Joint Representation Learning and Self-Organization.
European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning (ESANN).
https://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2019-30.pdf

• Forest, F., Lebbah, M., Azzag, H., & Lacaille, J. (2019). Deep Architectures
for Joint Clustering and Visualization with Self-Organizing Maps.
Workshop on Learning Data Representations for Clustering (LDRC), Pacific-Asia
Conference on Knowledge Discovery and Data Mining (PAKDD).
https://doi.org/10.1007/978-3-030-26142-9_10

• Forest, F., Lebbah, M., Azzag, H., & Lacaille, J. (2020). Carte SOM profonde :
Apprentissage joint de représentations et auto-organisation.
CAp: Conférence d’Apprentissage.
https://hal.archives-ouvertes.fr/hal-02859997

• Forest, F., Cochard, Q., Noyer, C., Cabut, A., Joncour, M., Lacaille, J., Lebbah,
M. & Azzag, H. (2020). Large-scale Vibration Monitoring of Aircraft Engines
from Operational Data using Self-organized Models.
Annual Conference of the PHM Society.
https://phmpapers.org/index.php/phmconf/article/view/1131

• Forest, F., Mourer, A., Lebbah, M., Azzag, H., & Lacaille, J. (2020). An
Invariance-guided Stability Criterion for Time Series Clustering Validation.
International Conference on Pattern Recognition (ICPR).

Submitted papers

• Forest, F., Lebbah, M., Azzag, H., & Lacaille, J. (2020). Deep Embedded Self-
Organizing Map for Joint Representation Learning and Topology-Preserving
Clustering.
Submitted to Neurocomputing (journal).

0.0 Contributions 9

https://doi.org/10.1109/BigData.2018.8622297
https://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2019-30.pdf
https://doi.org/10.1007/978-3-030-26142-9_10
https://hal.archives-ouvertes.fr/hal-02859997
https://phmpapers.org/index.php/phmconf/article/view/1131

• Mourer, A., Forest, F., Lebbah, M., Azzag, H., & Lacaille, J. (2020). Selecting
the Number of Clusters K with a Stability Trade-off: an Internal Validation
Criterion.
Submitted to AISTATS.
https://arxiv.org/abs/2006.08530

Patents
• Lacaille, J., Forest, F.. Système d’environnement informatique pour la surveil-

lance de moteurs d’aéronefs / Computer environment system for monitoring
aircraft engines.
Publication No.: FR3089501 (2020-06-12)
https://bases-brevets.inpi.fr/fr/document/FR3089501.html
https://patents.google.com/patent/FR3089501

Open-source software
• Spark ML SOM. Distributed self-organizing map implementation with a Spark

ML API (Scala). https://github.com/FlorentF9/sparkml-som
• DESOM. Keras implementation of the Deep Embedded SOM model (Python).

https://github.com/FlorentF9/DESOM
• SOMperf. A collection of performance metrics for self-organizing maps

(Python). https://github.com/FlorentF9/SOMperf
• DeepTemporalClustering. Keras implementation of the Deep Temporal Clus-

tering model (Python). https://github.com/FlorentF9/DeepTemporalClustering
• skstab. Clustering stability analysis in Python with a scikit-learn compatible

API (Python). https://github.com/FlorentF9/skstab

10 Chapter 0 Introduction

https://arxiv.org/abs/2006.08530
https://bases-brevets.inpi.fr/fr/document/FR3089501.html
https://patents.google.com/patent/FR3089501
https://github.com/FlorentF9/sparkml-som
https://github.com/FlorentF9/DESOM
https://github.com/FlorentF9/SOMperf
https://github.com/FlorentF9/DeepTemporalClustering
https://github.com/FlorentF9/skstab

Introduction

Cette introduction étendue en français reprend l’introduction précédente, avec un
résumé de chaque chapitre. Dans un premier temps, nous présentons les différents
acteurs, le contexte et enjeux autour de ce projet de thèse. Le laboratoire universi-
taire et l’entreprise, ainsi que leur structure, leurs entités et leurs principaux produits
sont présentés. Ensuite, nous décrivons brièvement le fonctionnement des moteurs
d’avion (turboréacteurs ou turbofans) et les principes de la surveillance de santé
(health monitoring), ainsi que les principaux défis théoriques et technologiques qui
se posent lors du passage à l’échelle en terme de taille et de complexité des jeux de
données. Nous justifierons l’adoption du cadre d’apprentissage non supervisé, afin
d’extraire des informations à partir de jeux de données en grande dimension. Ensuite,
des sections seront consacrées à résumer chacun des chapitres de ce manuscrit. Les
contributions de cette thèse, en termes de publications (articles acceptés et soumis),
de brevets, et de contributions de logiciels libres ont déjà été énumérées à la fin du
précédent chapitre.

Contexte et motivations

Le travail présenté dans ce mémoire de thèse est le fruit d’une collaboration entre
le Laboratoire d’Informatique de Paris Nord (LIPN) de l’Université Sorbonne Paris
Nord, et l’entreprise Safran Aircraft Engines (groupe SAFRAN).

L’Université Sorbonne Paris Nord (ex Paris 13) est l’une des universités qui ont
succédé à la Sorbonne après l’éclatement de l’Université de Paris en treize universités
autonomes en 1968. Le Laboratoire d’Informatique de Paris-Nord (LIPN), créé
en 1985, est associé au CNRS depuis janvier 1992 et a le statut d’unité mixte de
recherche (UMR 7030) depuis janvier 2001. La recherche effectuée au LIPN se
développe autour d’axes forts s’appuyant sur les compétences de ses membres, en
particulier en combinatoire, en optimisation combinatoire, en algorithmique, en
logique, en génie logiciel, en langage naturel, en apprentissage. Le laboratoire est
structuré en cinq équipes qui reflètent ces axes :

• A3 : Apprentissage Artificiel et Applications.

11

• AOC : Algorithmes et Optimisation Combinatoire.
• CALIN : Combinatoire, ALgorithmique et INteractions.
• LoVe : Logique et Vérification.
• RCLN : Représentation des Connaissances et Langage Naturel.

Safran Aircraft Engines (Safran A.E.), société du groupe SAFRAN, conçoit, développe,
produit, et commercialise, seul ou en coopération, des moteurs pour avions civils et
militaires, pour lanceurs spatiaux et pour satellites. Safran Aircraft Engine propose
également aux compagnies aériennes, aux forces armées et aux opérateurs d’avions
une gamme complète de services pour leurs moteurs aéronautiques, couvrant le
cycle de vie du moteur de son entrée en service à son démantèlement. Face à la
concurrence et à l’amélioration permanente des technologies, Safran Aircraft Engine
doit rester un motoriste compétitif en proposant des nouveaux moteurs innovants :
moins bruyants, plus économes en consommation de carburant, plus légers, etc.

Dans le cadre de cette thèse, nous nous intéressons aux moteurs d’avions équipant
des avions civils courts et moyens courriers. Ces produits sont conçus par la société
CFM, une joint-venture entre le français Safran A.E. et l’américain General Electric
(GE). La Figure 0.1 montre un moteur CFM56-7B (le moteur le plus vendu au
monde), et la génération actuelle, le LEAP. Dans ce travail, nous analyserons les
données des moteurs LEAP uniquement. La Table 0.1 contient les statistiques de la
flotte moteurs LEAP en opération au 31 mars 2020. Plus de 1000 avions et 2400
moteurs sont en service, pour un total de plus de 3,5 millions de cycles. Un cycle est
le terme technique utilisé à la place du mot vol pour désigner un démarrage et un
arrêt complet du moteur.

Avant de poursuivre cette introduction, il convient d’expliquer brièvement la manière
dont un turboréacteur à double flux produit de la poussée. Tout d’abord, l’air est
capté à l’entrée du moteur. Une partie de cet air, appelé flux primaire, passe par la
soufflante (le fan) et continue dans le compresseur du coeur, puis dans la chambre
de combustion, où il est mélangé au carburant et où la combustion se produit.
Les gaz d’échappement chauds traversent le coeur et les turbines de la soufflante,
puis sortent par la tuyère. Le reste de l’air entrant traverse le fan et contourne le
moteur, c’est ce qu’on appelle le flux secondaire. Celui-ci voit sa vitesse légèrement
augmentée. Ainsi, un turbofan tire une partie de sa poussée du coeur et une autre
partie de la soufflante. Le rapport entre le flux secondaire et le flux primaire est
appelé taux de dilution.

Bien que le principe de base d’un moteur à réaction soit simple (troisième loi de
Newton), l’ensemble du système est d’une extrême complexité. Un moteur est
constitué de plusieurs sous-systèmes et d’un grand nombre de pièces fixes et mobiles,

12 Chapter 0 Introduction

comme on peut le voir sur la coupe 3D d’un moteur CFM65-7B sur la Figure 0.1
(à gauche). Il est utile d’avoir une vue simplifiée des principaux composants du
moteur (voir Figure 0.2). Un turbofan est composé de deux arbres principaux, l’arbre
basse pression (LP) et l’arbre haute pression (HP) (ainsi qu’un arbre d’entraînement
radial (RDS), non représenté ici). L’arbre basse pression est alimenté par la turbine
basse pression et entraîne la soufflante (entrée du moteur) et le compresseur basse
pression. L’arbre HP est entraîné par la turbine HP (qui succède à la chambre de
combustion) et entraîne le compresseur HP. Enfin, le RDS est relié à l’arbre HP et
fournit la puissance au boîtier d’accessoires.

Une fiabilité extrêmement élevée est nécessaire pour atteindre le niveau de sécurité
requis pour les vols civils ou militaires. Généralement, le taux de défaillance doit être
inférieur à 10−9 par heure de vol, et les moteurs sont conçus pour durer de l’ordre
de 15 ans ou XXK cycles (avion : jusqu’à 30 ans ou 100k cycles). Le constructeur
assure cette performance grâce à une conception et une fabrication robustes, des
normes et des certifications strictes, des essais approfondis, ainsi que des inspections
visuelles et un entretien régulier pendant leur fonctionnement afin de remplacer les
pièces. En outre, les moteurs et les avions sont équipés de capteurs qui collectent
des données durant les essais et en vol. Diverses méthodes ont été conçues pour
analyser ces données. En cours de production, la méthodologie standard est le
contrôle statistique des procédés (SPC). Le SPC consiste à surveiller l’écart entre
les paramètres et leur valeur cible, et affiche des alertes visuelles aux opérateurs si
l’écart devient trop important.

Des techniques plus avancées sont développées dans le cadre du Prognostics and
Health Monitoring (PHM). L’objectif général est d’améliorer la disponibilité et
l’exploitation des moteurs [Blanchard et al., 2009, Bastard et al., 2016]. Il consiste à
surveiller l’état d’un moteur ou d’une flotte en utilisant les données opérationnelles
et un historique des événements. Le premier objectif est d’éviter les événements
anormaux tels que les arrêts en vol, les décollages interrompus, les retards et les
annulations. Le second objectif est d’optimiser les opérations de maintenance pour
améliorer la sécurité tout en réduisant les coûts pour les constructeurs et les com-
pagnies aériennes. Il est au cœur d’une stratégie de maintenance prédictive, qui
consiste à adapter le plan de maintenance à l’état réel de chaque moteur individuel,
contrairement à la maintenance préventive traditionnelle basée sur le temps, l’état
de chaque moteur étant le résultat de son utilisation réelle au cours de sa vie. Ceci
permet une programmation plus efficace des actions préventives et correctives (par
exemple les visites en atelier) : le temps entre les actions peut être augmenté si
aucune maintenance n’est nécessaire (ce qui réduit les coûts), et les actions peuvent
être entreprises plus tôt grâce à une meilleure prévisibilité des événements (ce qui

0.0 Contexte et motivations 13

améliore la sécurité). Concrètement, la surveillance de la santé des moteurs (engine
health monitoring, EHM) combine des données historiques et des modèles physiques
pour déclencher des alertes, construire des modèles qui évaluent l’usure des pièces
et leur durée de vie résiduelle, la probabilité de défaillance, etc. Ces modèles peu-
vent être basés sur des seuils, des modèles statistiques intégrant des connaissances
physiques ou l’apprentissage machine, c’est-à-dire des modèles statistiques dont les
paramètres sont appris à partir de données.

Safran A.E. surveille l’état de ses moteurs soit dans un environnement de banc
d’essai, soit en analysant après un vol, les données recueillies à l’aide de multiples
capteurs placés sur la cellule d’essai, l’avion ou le moteur lui-même. Dans ce travail,
nous abordons l’analyse au sol des données de vol.

Chez Safran A.E., le département PHM est chargé de développer des algorithmes
pour surveiller l’état des divers sous-systèmes du moteur. En outre, plusieurs équipes
d’experts sont spécialisées dans chaque aspect du moteur (par exemple, les perfor-
mances, la dynamique vibratoires, l’acoustique, etc.). Enfin, l’équipe du Datalab
possède des compétences en matière de statistiques, d’analyse de données ou de
génie logiciel et arrive en support pour de nombreux projets de l’entreprise, toujours
en coopération avec les bureaux d’étude. L’intérêt d’un "data lab" (laboratoire de
données) se justifie à partir du moment où une entreprise qui souhaite valoriser
ses données grâce aux techniques avancées de data science se retrouve face à des
problèmes de silotage de l’information dans ses différents départements. Au cours
de cette thèse, j’ai été membre de l’équipe du Datalab et ai collaboré avec d’autres
départements et bureaux d’études.

Défis et objectifs

L’exploitation des aéronefs génère des quantités croissantes de données qui peuvent
être exploitées pour diverses applications, notamment la health monitoring, la main-
tenance prédictive et les services aux compagnies aériennes. Le health monitoring
d’actifs industriels est un ensemble de techniques qui visent à accroître la disponi-
bilité et la sécurité des machines, tout en réduisant les coûts de maintenance. La
connaissance de l’état d’une machine peut être extraite des données. Les avions
actuels sont hautement instrumentés et produisent d’énormes quantités de données
: des centaines de mesures de capteurs sont enregistrées à une fréquence élevée
durant des vols entiers. Les jeux de données recueillis à Safran A.E. issus des mo-
teurs LEAP sont de l’ordre des gigaoctets par vol, avec des milliers de moteurs en

14 Chapter 0 Introduction

fonctionnement chaque jour. En conséquence, ces données nécessitent des outils
logiciels spécifiques pour être stockées et traitées efficacement : nous sommes entrés
dans l’ère du Big Data. Ainsi, un objectif crucial de cette thèse est de rendre possible
le passage à l’échelle des applications d’analyse de données des moteurs et de health
monitoring à Safran A.E.

Le paradigme Map-Reduce apparu ces dernière années permet de traiter d’énormes
quantités de données potentiellement non structurées, tout en cachant au program-
meur la complexité de la localité précise du stockage des différentes parties des
données. Selon ses pionniers [Dean and Ghemawat, 2008], "il permet aux pro-
grammeurs sans aucune expérience en systèmes parallèles et distribués d’utiliser
facilement les ressources d’un grand système distribué". Aujourd’hui, les frame-
works logiciels modernes de calcul distribué qui ont émergé à partir du Map-Reduce
originel sont plus puissants et flexibles, comme Apache Spark, utilisé au cours de
cette thèse. Néanmoins, nous avons constaté que leur courbe d’apprentissage rel-
ativement raide empêchait les experts du domaine de déployer facilement leurs
méthodologies à l’échelle de flottes entières. Résoudre ce problème est l’objectif du
pipeline générique d’analyse présenté au Chapitre 8. Ensuite, divers cas d’utilisation
peuvent être réalisés en collaboration avec les bureaux d’étude. Ensuite, il faut
extraire des informations d’une grande quantité de données non étiquetées, qui plus
est de grande dimension. À cette fin, des algorithmes d’apprentissage non supervisé
sont utilisés pour le clustering (partitionnement en groupes sans supervision), la
réduction de dimension et la visualisation, entre autres. Nous nous concentrons sur
les cartes auto-organisées (self-organizing maps, SOM) [Kohonen, 1982], qui ont
l’avantage de produire des résultats interprétables.

Dans cette thèse, outre les aspects d’ingénierie, nous avons également tenté d’aborder
deux défis théoriques fondamentaux en apprentissage non supervisé. Premièrement,
les liens entre structure et représentation. Et deuxièmement, la définition même de
la structure, découlant du problème de la sélection du modèle dans en clustering.

Le clustering dans des espaces de grande dimension est un problème difficile,
récurrent dans de nombreux domaines, par exemple l’analyse d’images ou de signaux.
La difficulté est due au fait que les données vivent généralement dans différents
sous-espaces de plus faible dimension cachés dans l’espace d’origine. En d’autres
termes, la structure dépend de la représentation. Nous explorons la combinaison
de l’apprentissage de représentations, c’est-à-dire l’apprentissage automatique de
caractéristiques utiles à partir de données en utilisant des réseaux de neurones, et
nous développons une variante profonde de l’algorithme SOM (DESOM). Cependant,
aussi complexe que soit l’algorithme, il demeure inutile si ses solutions ne peuvent

0.0 Défis et objectifs 15

être évaluées de manière objective afin de sélectionner ses paramètres, tels que
le nombre de clusters à découvrir. Cette évaluation, appelée sélection de modèle,
est un défi majeur en clustering, car il n’y a pas de vérité terrain par rapport à
laquelle évaluer une performance. Les méthodes classiques ont de fortes limitations.
Nous essayons d’améliorer un ensemble de méthodes appelé analyse de stabilité des
clusters, et proposons un nouveau critère ainsi que des expériences approfondies
montrant son efficacité.

D’une certaine manière, nous abordons les questions de passage à l’échelle de
plusieurs manières. D’une part, nous surmontons les grands nombres d’observations
N en utilisant soit un traitement distribué des données en parallèle, soit des règles
d’apprentissage efficaces (linéaires) telles que la descente de gradient stochastique.
D’autre part, nous surmontons de grands nombres de variables P par réduction de
la dimension et apprentissage de représentations.

Plan de la thèse

Ce manuscrit s’articule en trois parties :

I Clustering, auto-organisation et apprentissage de représentations (chapitres
1, 2 et 3).

II Sélection de modèle en clustering (chapitres 4, 5 et 6).
III Applications industrielles et passage à l’échelle (chapitres 7 et 8).

Les sections suivantes contiennent un résumé approfondi en français de chacun des
chapitres, rédigés en anglais, de cette thèse.

Chapitre 1 : Clustering et auto-organisation

Le premier chapitre de cette thèse (Chapitre 1) est une introduction au domaine de
l’apprentissage automatique non supervisé. Il présente les principaux algorithmes
de partitionnement de données (clustering), ainsi que les méthodes de réduction de
dimension et de visualisation basés sur un processus d’auto-organisation, tel que les
cartes auto-organisées (SOM).

Chapitre 2 : Apprentissage de représentations pour le clustering

Dans le second chapitre (Chapitre 2), nous nous plongeons dans les méthodes
d’apprentissage non supervisé basées sur les réseaux neuronaux profonds afin
d’apprendre des représentations sémantiques de jeux de données complexes et

16 Chapter 0 Introduction

de grande dimension. Une importante famille de modèles est celle des auto-
encodeurs. Ensuite, nous proposons un état de l’art des récentes approches com-
binant l’apprentissage de représentation et le clustering, appelées méthodes de
clustering profond (deep clustering).

Chapitre 3 : DESOM : Carte auto-organisée profonde

Le Chapitre 3 présente la première contribution principale de cette thèse dans
le domaine du clustering profond. Le Deep Embedded SOM (DESOM) est un
modèle basé sur un réseau de neurones permettant l’apprentissage conjoint de
représentations et l’auto-organisation des prototypes de clusters. Nous présentons
en détail l’architecture du modèle, la procédure d’apprentissage, et étudions ses
performances ainsi que l’influence des hyperparamètres sur plusieurs jeux de données
standards.

Chapitre 4 : Sélection de modèle en clustering

La sélection de modèle est peut-être le problème le plus ardu dans le domain
du clustering, et fait l’objet du Chapitre 4. Il s’agit d’évaluer les résultats d’un
algorithme de clustering afin de sélectionner ses "meilleurs" paramètres, tels que le
nombre de clusters. Nous en présentons les défis, ainsi qu’une sélection d’indices de
validation externes et internes. De plus, nous présentons des indices pour évaluer
spécifiquement les modèles SOM, que nous avons implémentés au sein d’un module
Python open-source.

Chapitre 5 : Sélection du nombre de clusters par analyse de stabilité

Le Chapitre 5 aborde la sélection des modèles à l’aide de l’analyse de stabilité des
clusters. Les méthodes de stabilité sont basées sur le principe qu’un bon clustering
se doit d’être stable sous l’effet de perturbations de la distribution des données. Ces
perturbations peuvent survenir par l’échantillonnage ou par injection de bruit dans
les données. Notre contribution est un nouveau concept de stabilité intra-groupe,
conduisant à un critère appelé Stadion (stability difference criterion). Par le biais
d’expériences et d’analyses approfondies sur 80 jeux de données, nous démontrons
sa capacité à sélectionner le nombre de clusters de manière compétitive par rapport
aux méthodes de la littérature.

Chapitre 6 : Validation du clustering de séries temporelles invariantes

Dans le Chapitre 6, nous appliquons le critère Stadion à la validation du clustering
de séries temporelles entières. Le partitionnement de séries temporelles est un défi
à plusieurs égards (par exemple, dimensions élevées, corrélation, invariances aux
transformations) et la sélection de modèle est relativement peu explorée dans ce
champ d’application. Nous proposons de guider le processus de perturbation en

0.0 Plan de la thèse 17

tirant parti des invariances des données, lorsque celles-ci sont connues à l’avance.
Nous expérimentons avec des transformations de décalage temporel, de mise à
l’échelle et de déformation temporelle (warping), et nous évaluons des algorithmes
classiques de clustering de séries temporelles basées sur les centroïdes.

Chapitre 7 : Passage à l’échelle du Big Data avec le calcul distribué

Les Chapitres 7 et 8 visent à résoudre les problèmes posés par les quantités toujours
croissantes de données générées par l’exploitation des aéronefs. Nous commençons
par définir le terme Big Data et ses implications. Ensuite, nous fournissons une
introduction technique aux outils logiciels que nous utiliserons pour traiter de grands
jeux de données de vols sur un cluster de machines, à savoir l’écosystème Hadoop
et le framework de calcul distribué Spark. Enfin, nous montrons comment les
algorithmes de clustering peuvent être distribués dans le paradigme Map-Reduce
pour traiter des données en parallèle sur des clusters de machines.

Chapitre 8 : Applications industrielles

Enfin, le Chapitre 8 concerne deux contributions autour d’applications industrielles
développées chez Safran A.E. ayant pour objectif de passer à l’échelle les méthodolo-
gies de health monitoring des flottes de moteurs d’avion. Dans ce but, un pipeline
générique pour le traitement à grande échelle des données moteur a été développé,
basé sur Spark et déployé sur le cluster de production. Plus précisément, il per-
met aux ingénieurs du domaine d’extraire massivement des indicateurs de vols,
d’appliquer l’algorithme SOM, de sauvegarder les modèles et de les visualiser par
le biais d’une application web. Les études menées sur les données du moteur LEAP
sont présentées.

18 Chapter 0 Introduction

Notations

X, Y , Z Random variables
P Dimension of data space
X Data space (generally X ⊂ RP)
L Dimension of latent space
Z Latent feature space (generally Z ⊂ RL)
N Number of training samples
xi = (x1

i , . . . ,xPi), 1 ≤ i ≤ N Data sample (xi ∈ X)
zi = (z1

i , . . . , zLi), 1 ≤ i ≤ N Latent data sample (zi ∈ Z)
P Data-generating distribution over X
A Learning algorithm
K Number of clusters
K? True number of clusters in a data set
mk, 1 ≤ k ≤ K Cluster center/prototype vector
T Temperature parameter in SOM algorithm
K SOM neighborhood kernel function
L Loss function
lr Learning rate
CK Clustering partition into K clusters
D Number of perturbed samples in stability estimation
s(·, ·) Similarity measure between two clusterings
ε-AP Additive perturbation with noise level ε
Ω Set of parameters for within-cluster stability estimation
N (µ,Σ) Normal distribution with mean µ and covariance Σ
I Identity matrix
|| · ||2 `2/Euclidean norm
d(·, ·) Distance or dissimilarity in data space
δ(·, ·) `1/Manhattan distance between units on a SOM
| · | Cardinality of a set
i.i.d. independently and identically distributed
w.r.t. with respect to
:= Definition of a variable or function

A glossary of frequently used acronyms is available on page 276.

19

Part I

Clustering, self-organization and
representation learning

Clustering and
self-organization

1

„If intelligence is a cake, the cherry on the cake is
reinforcement learning, the icing on the cake is
supervised learning, and the bulk of the cake is
unsupervised learning.

— Yann LeCun

1.1 Statistical learning: an overview

Statistical learning, or machine learning [Hastie et al., 2008, Shalev-Shwartz and Ben-
David, 2013], is a scientific area at the intersection of applied mathematics, statistics
and computer science. It is a subset of the larger field of artificial intelligence. Its
general goal is the ability to solve a task by learning from a set of data samples, called
a training data set. Differently from traditional computer programming, machine
learning automatically extracts meaningful patterns in data and achieves a task
without being explicitly programmed. Therefore, this task is also often called pattern
recognition. Today, it is already applied in a wide variety of domains ranging from
computer vision (images and video), natural language processing (text), audio and
speech processing, signal processing, robotics, healthcare, biology, manufacturing,
astronomy, economics, advertising, art, etc. Statistical learning has gained traction
in the current context of Big Data, that is a context of ever-increasing data volumes,
improved access to data and facilitated data collection. This buzzword will be
demystified in Chapter 7.

The next paragraphs provide an overview of the two main learning paradigms,
supervised and unsupervised learning. Other types of learning systems, such as
reinforcement learning, are outside the scope of this thesis.

23

1.1.1 Supervised learning

Supervised learning aims at predicting an outcome variable Y ∈ Y, given a set
of descriptive variables X ∈ X (generally X ⊂ RP), also called features, that are
assumed to have influence on the outcome Y . Supervised learning tasks are divided
into two types:

• Regression, when Y is a continuous variable, typically Y ⊂ R.
• Classification, when Y is a discrete or categorical variable, for example Y =
{0, 1} for binary classification.

In other words, we seek a function f : X −→ Y describing the relationship between
X and Y , called a hypothesis or predictor. However, X and Y are subject to uncer-
tainty because this unknown relationship may depend on variables other than X
and be subject to random noise. Thus, we adopt a probabilistic setting where (X,Y)
are random variables from a joint distribution P. The quality of a hypothesis is
measured by a so-called loss function or objective function L : (X × Y)× f −→ R+,
such that L((X,Y), f) is small if and only if f(X) is a good prediction of Y . The
goal is to find a hypothesis f? that minimizes the risk or generalization error, defined
as the expected loss incurred when using f to predict Y :

f? := argmin
f∈F(X ,Y)

R(f)

where R(f) := E(X,Y)∼P [L((X,Y), f)] (1.1)

where F(X ,Y) is the set of all possible hypotheses. Commonly used loss functions
are the square loss L((X,Y), f) = 1

2 (f(X)− Y)2 for regression, and the 0-1 loss for
classification L((X,Y), f) = 1f(X)6=Y . The optimal predictor minimizing the risk is
called the Bayes predictor, and in some cases it has an analytical form, for example
for the square loss:

R(f) = E(X,Y)
[
(f(X)− Y)2

]
= EXEY |X

[
(f(X)− Y)2 |X

]
= EXEY |X

[
f(X)2 − 2f(X)E [Y |X] + E[Y 2|X]

]
which is minimized pointwise by f?(x) = EP [Y |X = x]. Hence, supervised learning
expresses as the task of estimating the conditional probability distribution of Y given
X, P (Y |X), through a location estimate. For MSE, this location is the mean, but if
we use a `1 loss L((X,Y), f) = |f(X)− Y |, the estimate will be the median.

24 Chapter 1 Clustering and self-organization

However, in practice, we do not have access to the underlying distribution P , and the
optimal predictor needs to be approximated using a set of N training data samples,
denoted SN = {(x1, y1), . . . , (xN , yN)}. A learning algorithm, or learning rule, is
the process of choosing a sensible hypothesis given a training set. It is a function
A :

⋃
n≥1(X × Y)n −→ F(X ,Y). The most common learning rule is to select the

function that minimizes the average loss on the observed data. This rule is called
Empirical Risk Minimization (ERM):

f̂ := argmin
f∈F(X ,Y)

RN (f)

where RN (f) := 1
N

N∑
i=1
L((xi, yi), f) (1.2)

The empirical risk is also commonly called training error. The goal of a learning
system is to generalize well to unseen examples (i.e. achieve low risk). A low training
error is not a guarantee for low generalization error. Very often, a predictor performs
well on the training samples but fails to generalize (it is easy to build a predictor
that simply memorizes the training set), a phenomenon known as overfitting. A
solution is to limit the class of hypotheses to a set H, using prior knowledge (known
as inductive bias). This leads to the constrained formulation of ERM:

f̂H := argmin
f∈H

RN (f) (1.3)

where H is the hypothesis space, a subset of F(X ,Y), or the penalized formulation

f̂λ := argmin
f∈F(X ,Y)

RN (f) + λθ(f) (1.4)

where θ penalizes some functions that are not desirable (generally the most complex
or least regular ones). Let us decompose the risk of f̂ into two parts:

R(f̂H) = min
f∈H

R(f)︸ ︷︷ ︸
εapp

+R(f̂H)−min
f∈H

R(f)︸ ︷︷ ︸
εest

, (1.5)

where we define:

• εapp, the approximation error: the minimum risk achievable in the hypothesis
class H.

• εest, the estimation error: the difference between the actual empirical risk and
the approximation error. This quantity is always positive as training error is
only an estimate of the true risk. It becomes large in case of overfitting.

1.1 Statistical learning: an overview 25

Fig. 1.1.: Bias-complexity trade-off. [Hastie et al., 2008]

In order to minimize the total risk, both errors need to be minimized. On the one
hand, the hypothesis class H needs to be rich enough to contain good hypotheses
that achieve a low approximation error. The expressiveness of this hypothesis class
is also called the model’s complexity. But at the same time, a larger H increases
the chances of overfitting and thus, increases the estimation error. On the other
hand, a hypothesis class too small reduces the estimation error but might produce
a higher approximation error (conversely, this phenomenon is called underfitting).
This is a central trade-off in learning theory, called the bias-complexity trade-off (see
Figure 1.1).

Other learning rules are Structural Risk Minimization (SRM) and Minimum Descrip-
tion Length (MDL), which assign different weights to sets of hypotheses. Finally,
local averaging or learning by memorization is used in k-nearest neighbors (k-NN),
the simplest learning algorithm, but it suffers from high memory cost, requires
to scan the entire training set during inference and turns out ineffective in high
dimensions.

Well-known supervised algorithms include least squares and logistic regression,
support vector machines (SVM), classification and regression decision trees, and
neural networks.

1.1.2 Maximum likelihood estimation

Let us consider a distribution Pθ with parameter θ. Assuming that the data is
distributed according to Pθ, the likelihood of an observation X = x is Pθ(x) (where
this notation encapsulates both the probability of a discrete random variable and

26 Chapter 1 Clustering and self-organization

the probability density in the continuous case). Then, we can define the negative
log-likelihood loss, referred to as the log-loss:

L(x; θ) := − logPθ(x) (1.6)

Assuming a training set of independent and identically distributed (i.i.d.) samples
SN = {x1, . . . , xN}, we define the maximum likelihood estimator (MLE) of θ:

θMLE := argmax
θ

log
N∏
i=1
Pθ(xi) = argmax

θ

N∑
i=1

logPθ(xi)

= argmin
θ

N∑
i=1
L(θ, xi) (1.7)

The last formulation of the MLE is identical to the previously introduced ERM rule,
using the log-loss.

1.1.3 The curse of dimensionality

This famous term was first coined by Richard Bellman [Bellman, 1961] about the
exhaustive enumeration of product spaces. The curse of dimensionality also refers to
the fact that in the absence of simplifying assumptions, the number of data samples
required to estimate a function of several variables to a given accuracy (i.e. to get
a reasonably low-variance estimate) on a given domain grows exponentially with
the number of dimensions. This phenomenon has many unexpected manifestations,
such as the concentration of norms and distances, the hypervolumes of cubes or
spheres, tail distributions of Gaussians, etc. Consider uniformly distributed samples
inside a hypercube with unit length in dimension P . In order for a neighborhood
around some target point to cover a fraction r of the data samples, its expected
edge length (i.e. range of each variable) is r1/p. To cover a ratio r = 10% of the
volume, this range reaches 46% with P = 3, 80% with P = 10 and 98% when
P = 100 (see Figure 1.2 for an illustration). In other words, almost the entire
volume of a cube is concentrated near its surface (the same computation can be
done with a hypersphere). One of the consequences is that local averaging methods,
such as nearest neighbors, are no longer usable, because the neighborhood must
cover almost the entire space to average enough samples and obtain a low-variance
estimate. This fact is also often called the "empty space phenomenon". Because the
amount of available data is generally restricted to a limit number of observations, a
crucial consequence for statistical learning in high-dimensional spaces is the need
for either dimensionality reduction or strong prior knowledge, i.e. inductive bias.

1.1 Statistical learning: an overview 27

Fig. 1.2.: Curse of dimensionality illustrated by the volume covered by a neighborhood
inside a hypercube. As the dimension increases, the neighborhood must cover the
entire space. [Hastie et al., 2008]

1.1.4 Unsupervised learning

In many cases, labeled data are not readily available, because labeling the training
data is expensive, tedious, and intractable at a large scale. In addition, one is often
not interested in predicting a particular target variable, but rather in understanding
the data. Unsupervised learning provides a way to understand the hidden structure
of complex data sets. As opposed to supervised learning, the goal is not to predict
a target variable, and no labels are provided. It aims at inferring properties of the
full distribution P(X), which is more difficult than P(Y |X) in supervised learning,
because the dimension of X is usually much higher than Y , and we are interested in
properties richer than a location estimate. We will briefly introduce some common
techniques and unsupervised learning tasks, before diving more specifically into
clustering.

Some methods, called semi-supervised, are at the boundary of supervised and unsu-
pervised learning, as they leverage unlabeled data in presence of very few labeled
instances. This paradigm is very effective but has not be studied during this thesis.

Clustering

Clustering, also called cluster analysis, is a widely used unsupervised learning tech-
nique which aims at discovering meaningful groups in unlabeled data [Hastie et al.,
2008, Jain, 2010, Aggarwal and Reddy, 2013, Shalev-Shwartz and Ben-David, 2013].
In literature, it has been defined as "grouping or segmenting a collection of objects
into subsets or clusters, such that those within each cluster are more closely related

28 Chapter 1 Clustering and self-organization

to one another than objects assigned to different clusters" [Hastie et al., 2008].
Before the next section, which is dedicated to clustering, the main algorithmic tool
used throughout this thesis, we will first introduce other unsupervised learning
tasks.

Association rules

Association rules [Agrawal et al., 1995, Hastie et al., 2008] is an early technique
first applied to customer databases, i.e. a data set consisting in a typically binary
matrix of size N × P where N is the number of customers and P the number of
products, each element indicating whether a customer has purchased a product. Its
goal is to construct simple rules that describe regions of high density, in particular
prototype values X = (X1, . . . , XP) that appear frequently in the database. It tries
to describe P(X) by its modes, a task also called "mode finding".

Dimensionality reduction and representation learning

Dimensionality reduction (DR) consists in reducing the dimension, i.e. the number
of variables, of a data set in order to improve a downstream task. Reducing the
dimension has several benefits: first, it is a form of compression and reduces the
computational burden. Second, it improves the behavior of learning algorithms, by
finding useful variables and escaping the "curse of dimensionality". Finally, reducing
the dimension to only two or three enables direct visualization and interpretation.
DR techniques can be divided into techniques for feature extraction and feature
selection. Feature selection techniques find an appropriate subset of the original
variables to represent the data (see for example [Guyon and Elisseeff, 2003] for an
introduction). In contrast, feature extraction builds new variables carrying a large
part of the global information. The term representation learning, or feature learning,
coins the automatic extraction of meaningful features from high-dimensional data,
often by using non-linear transformations. In particular, it corresponds to DR when
the number of extracted features is lower than the original data dimension.

Dimensionality reduction is a problem of approximating data in high-dimensional
vector spaces [Gorban and Zinovyev, 2008]. There are varying degrees of "coarse-
ness" of these approximations. The most trivial is to collapse the entire data into a
single representative point, e.g. its mean. Then, data can be approximated more
finely using projections on "lines and planes" (and generally hyperplanes). These
methods are called linear dimensionality reduction, including: Principal Component

1.1 Statistical learning: an overview 29

Analysis (PCA) [Pearson, 1901, Shlens, 2014] (principal components provide a
sequence of best linear approximations of a data set), non-negative matrix factor-
ization (NMF), random projections, compressed sensing, multi-dimensional scaling
(MDS) [Kruskal, 1964], among others. Nevertheless, these methods suffer from the
limitation of linear models. Non-linear DR [Lee and Verleysen, 2007] is also called
manifold learning as it approximates data by a lower-dimensional manifold. Such
methods include Locally Linear Embedding (LLE), Isomap, Spectral Embedding,
Laplacian eigenmap, Kernel PCA, Sammon’s mapping, Stochastic Neighbor Embed-
ding (SNE) [Hinton and Roweis, 2002], the famous t-distributed SNE (t-SNE) [Van
Der Maaten and Hinton, 2008] and its variants [Van Der Maaten, 2009, Lee et al.,
2015], and Uniform Manifold Approximation (UMAP) [McInnes et al., 2018]. It also
includes topology-preserving maps such as Self-Organizing Maps (SOM) [Kohonen,
1982, Kohonen, 1990, Martinetz and Schulten, 1994], that are a main topic of this
thesis and will be introduced in details later.

The idea in SNE/t-SNE is to learn a low-dimensional embedding that preserves global
and local structures of the data. Let us note xi the inputs, and zi the embeddings.
The first step is to transform Euclidean distances into similarities in the input and
output spaces, interpreted as (symmetrized) conditional probabilities, producing
two distributions pij and qij . Then, the embeddings are optimized by minimizing
the Kullback-Leibler (KL) divergence between the two distributions using gradient
descent. In SNE, Gaussian distributions are used:

pij :=
pi|j + pj|i

2N where pi|j := exp
(
−||xi − xj ||22/2σ2

i

)∑
k 6=i exp

(
−||xi − xk||22/2σ2

i

)
qij := exp

(
−||zi − zj ||22

)∑
k 6=l exp

(
−||zk − zl||22

)
where the variances σ2

i are hyperparameters, selected by the user by tuning the
perplexity. The variance in embedding space is fixed to 1/

√
2. The loss function is

the KL-divergence between p and q:

LSNE := DKL(p||q) =
N∑
i=1

N∑
j=1

pij log pij
qij
.

In t-SNE, a Student’s t-distribution is used instead in the embedding space. Thanks
to heavier tails, it solves the so-called crowding problem with moderate similarities
between input points. It expresses as

qij := (1 + ||zi − zj)||2)−1∑
k 6=l(1 + ||zk − zl)||2)−1 .

30 Chapter 1 Clustering and self-organization

Quite differently, UMAP is based on algebraic topology, Riemannian geometry and
fuzzy sets. In broad terms, it starts by building a weighted k-NN graph. Then, it lays
out this graph in a low-dimensional space using a force-directed layout algorithm
(attractive and repulsive forces are applied iteratively at each edge or vertex).

Another important tool for non-linear DR is neural networks. Learning effective
representations using multi-layer neural networks is the goal of deep learning
[Bengio, 2009, Lecun et al., 2015], whether it is supervised or unsupervised. Neural
architectures for unsupervised representation learning, in particular autoencoders,
are the focus of Section 2.1 of the next Chapter 2. Finally, an emerging field
is topological data analysis (TDA) [Carlsson, 2009], combining techniques from
algebraic topology and data mining.

1.2 Cluster analysis

Cluster analysis [Hartigan, 1975, Diday and Simon, 1976, Hastie et al., 2008, Jain,
2010, Aggarwal and Reddy, 2013, Shalev-Shwartz and Ben-David, 2013] is one of
the most common tasks in unsupervised learning. It consists in finding meaningful
groups (also called clusters) of individuals in an unlabeled data set. For exploratory
data analysis, this allows to gain insight into the structure of a data set, and can also
be used for classification and vector quantization, where data points are encoded
using their cluster index. An object can be described by a set of features, or by its
relation to other objects, such as a distance or affinity matrix. We will mainly adopt
the first point of view.

1.2.1 How to define clustering?

Clustering is the task of grouping a set of objects in such a way that members of
the same cluster are more similar to one another than to members of other clusters.
Citing [Jain, 2010], "the goal of data clustering is to discover the natural grouping
of a set of patterns points, or objects". The notion of natural grouping is ambiguous;
therefore the author continues by saying that "the representation of the data is closely
tied with the purpose of the grouping. The representation must go hand in hand
with the end goal of the user". In more technical terms, it is defined in [Hastie et al.,
2008] as "grouping or segmenting a collection of objects into subsets or clusters,
such that those within each cluster are more closely related to one another than
objects assigned to different clusters", and similarly in [Ben-David, 2018] as the

1.2 Cluster analysis 31

"partitioning of data into groups (a.k.a. clusters) so that similar (or close w.r.t. the
underlying distance function) elements share the same cluster and the members
of each cluster are all similar (or, equivalently, dissimilar elements are separated
into different clusters)". However, this goal is contradictory because of the non-
transitivity of the notion of similarity: if A is similar to B, and B is similar to C, A is
not necessarily similar to C. Since clustering is an ill-posed problem, it cannot be
properly solved using this definition, and clustering algorithms often optimize only
one of its aspects. As a consequence, there is a huge variety of clustering algorithms,
each one optimizing different criteria and producing different results on a same data
set. Unlike in supervised learning (where a loss function is clearly defined), there is
no ground truth to evaluate results. The lack of a definition of an optimal clustering
makes it a fundamentally ill-defined task. The choice of the algorithm depends on
properties of the data and computational considerations, but more importantly it
depends on the targeted application, for instance the number, size and geometry of
the clusters we want to find, as well as the robustness of the solution, among others.
In other words, it depends on what we want to do next with the results. As stated in
[von Luxburg et al., 2012], "the difficulty with unsupervised clustering is that there
are a huge number of possibilities regarding what will be done with it and (as yet)
no abstraction akin to a loss function which distills the end-user intent".

Although supervised learning is theoretically grounded by, for example, generaliza-
tion bounds, clustering still lacks such a solid theory. Convergence and properties and
generalization bounds for clustering are discussed in [Von Luxburg and Ben-David,
2005]. In particular, stability bounds have been derived for particular algorithms.
Clustering stability is the subject of Chapter 5. Several works tried to build a set of
axioms that should be satisfied by a good clustering algorithm [Kleinberg, 2003, Ack-
erman and Ben-David, 2009]. However, it has been shown that there exists no
clustering algorithm that satisfies three intuitive properties (scale invariance, rich-
ness and consistency), leading to a famous "impossibility theorem" [Kleinberg, 2003].
Other axiomatic attempts have produced less negative outcomes. See [von Luxburg
et al., 2012] or [Ben-David, 2018] for more details on the current deficiencies in
clustering research.

For model selection, e.g. choosing the number of clusters (the main subject of
Chapters 4 and 5), a large number of criteria exist to measure the quality of a
clustering, and which criteria one should use also depends on the application.

32 Chapter 1 Clustering and self-organization

1.2.2 Formal definition

Let X = {x1, . . . ,xN} be a data set consisting in N independent and identically
distributed (i.i.d.) samples, drawn from a data-generating distribution P on an
underlying space X . This space is equipped with a distance function d : X × X −→
R+, which is symmetric and satisfies d(x, x) = 0 ∀x ∈ X but not necessarily the
triangle inequality (or alternatively, a similarity function s : X × X −→ [0, 1]).
A clustering algorithm A takes as input the data set X and outputs a partition
CK = {C1, . . . , CK} of X into K ≥ 1 disjoint sets. Thus, a clustering can be
represented by a function X → {1, . . . ,K} assigning a label to every point of the
input data set. Some algorithms can be extended to construct a partition of the entire
underlying space. This partition is represented by an extension operator function
X → {1, . . . ,K} (e.g. for center-based algorithms, we compute the distance to the
nearest center).

We will see that some clusterings are not defined in terms of partitions but are
natively represented as hierarchies, i.e. a sequence of nested partitions called a
dendrogram. A partition is obtained by cutting the dendrogram at a level determined
by some criterion such as the number of clusters. We also distinguish hard clustering
, where clusters are non-overlapping, and soft or fuzzy clustering where a sample is
assigned to every cluster with some weight or probability.

As distance of similarities are crucial to every clustering algorithm, literature reviews
on cluster analysis typically include a lengthy list of definitions for distances between
objects (real-valued, binary or categorical vectors, matrices, functions, curves, strings,
continuous or discrete sequences, graphs, etc.). It will not be the case here, as most
of our applications will use Euclidean distance

dEUC(x,y) := ||x− y||2 =

√√√√ P∑
j=1

(xj − yj)2 (1.8)

excepted for an application to time series, to which a special chapter is dedicated
(Chapter 6). Hence, we refer for instance to [Deza and Deza, 2009] for an extensive
encyclopedia of distances.

1.2.3 Center-based methods

Center-based or centroid-based clustering algorithms are widely used class of clus-
tering algorithms, part of so-called prototype methods. Prototype methods aim at

1.2 Cluster analysis 33

Fig. 1.3.: Illustration of one iteration step of the K-means algorithm.

representing a data set by a set of K points {mk}1≤k≤K in feature space called
prototypes, which are typically not part of the training set. In center-based clustering,
each cluster is summarized by such a center or prototype, and a sample is assigned
to the cluster corresponding to the closest center w.r.t. the underlying distance.

K-means [Lloyd, 1982, MacQueen, 1967, Hartigan and Wong, 1979] is without a
doubt the most famous and used center-based clustering algorithm. As its name
suggests, it takes a parameter K corresponding to the number of clusters to find.
The goal is to minimize following objective, called within-cluster sum of squared
errors (WCSSE):

min
CK ,{mk}K1

K∑
k=1
|Ck|

∑
x∈Ck

||x−mk||22 (1.9)

This problem is proven to be actually NP-hard, and the terms K-means is mostly used
to designate iterative algorithms finding local minima of this objective in polynomial
time (Lloyd’s algorithm [Lloyd, 1982]). It starts by initializing K centers (using
random training samples or more advanced procedures to find a good initial solution
for faster convergence, such as K-means++ [Arthur and Vassilvitskii, 2007]), and
alternates between these two steps until convergence:

1. Assignment: each training sample is assigned to the closest center.

Ck ← {x | argmin
k′=1,...,K

||x−mk′ ||22 = k} (1.10)

2. Minimization: each center is updated to become the means of the created
clusters.

mk ←
1
|Ck|

∑
x∈Ck

x (1.11)

The runtime complexity is O(KNI) where I is the number of iterations. See
Figure 1.3 for an illustration. The standard K-means assumes squared Euclidean
distance and real-valued, continuous features, because of the mean computation
in the minimization step. It can be generalized to other types of variables by
replacing this step. K-modes and K-prototypes are adapted for binary and mixed-
type variables. When using arbitrary distances d, we can restrict the center to be

34 Chapter 1 Clustering and self-organization

part of the training samples and search explicitly for the median element mk =
argmin

c∈X

∑
x∈Ck d(x, c). This algorithm is called K-medoids or K-medians, and its

complexity is quadratic due to the median search (O(KN2I)).

Fuzzy C-means (FCM) [Dunn, 1973, Bezdek et al., 1988] is a soft version of K-
means, where each data point can be assigned to more than one cluster by in-
troducing a membership function, taking values between 0 and 1. Limitations of
K-means and its variants is the impossibility to separate non-convex clusters, highly
non-Gaussian clusters, and to cope high-dimensional data with redundant or noisy
features. In addition, the number of clusters K must be specified. Methods for
selecting this parameter are the focus of Chapter 4 and Chapter 5.

1.2.4 Hierarchical methods

In contrast to K-means, hierarchical clustering methods do not need to specify
a number of clusters, as they rather construct a binary tree of nested partitions,
where the root is the entire data set and the leaves are singleton clusters for each
sample. Each node corresponds to a cluster. The obtained sets of partitions are called
dendrogram (from the Greek dendron = tree, gram = drawing), see the illustration
on Figure 1.4. Suited for data sets that exhibit multiscale structure. Hierarchical
methods are divided into two types:

• Agglomerative (bottom-up): starting from individual points, the pair of clus-
ters with the lowest between-cluster dissimilarity is recursively merged.

• Divisive (top-down): starting from a single cluster, clusters are recursively split
to produce two new clusters with the highest between-cluster dissimilarity.

To merge two clusters C,C ′ in agglomerative clustering, several between-cluster
dissimilarities d(C,C ′) are possible, called linkage criteria. The five most used ones
are single linkage, complete linkage, average linkage, centroid linkage, and Ward
linkage [Ward, 1963]. The corresponding distances are defined in Table 4.2 in
Chapter 4. Hierarchical methods operate on distance matrices, thus they can be
used with any distance or dissimilarity measure d, and with data sets described
only through pairwise relations. The downside is that for data sets represented by
attributes, it requires N(N − 1)/2 distance computations.

1.2 Cluster analysis 35

Fig. 1.4.: Illustration of a dendrogram produced by hierarchical clustering (right) and the
corresponding cluster structure (left).

1.2.5 Spectral clustering

Spectral clustering [Von Luxburg, 2007] is a family of techniques based on the
eigen-decomposition of the graph Laplacian matrix of the data. This matrix is
constructed from a weighted or unweighted similarity graph, using for instance the
fully connected affinity graph using a Gaussian kernel, an ε-neighborhood graph or
a k-nearest neighbors graph. Spectral clustering proceeds by embedding data into
the eigenspace of the graph Laplacian matrix, derived from the pairwise similarities
between data points, and applying K-means on this representation to obtain the
clusters. Compared to K-means, it is more powerful and able to discover non-convex
clusters. However, the computation of the eigen-decomposition is costly for large
data sets, and the spectral embedding cannot be generalized to points outside the
training set in a straightforward way (out-of-sample extension).

1.2.6 Density-based methods

Density-based methods define clusters in terms of regions of high density, separated
by regions of low density. The main advantage is the ability to discover clusters
with arbitrary shapes. Its main representatives are DBSCAN (Density-Based Spatial
Clustering of Applications with Noise) [Ester et al., 1996] and OPTICS (Ordering
Points To Identify the Clustering Structure) [Ankerst et al., 1999]. DBSCAN estimates
the density by counting the number of points in a fixed-radius ρ neighborhood and
connects two points if they lie within this radius. A point is called a core points
if its ρ-neighborhood contains at least a minimum number of points (which is the
second hyperparameter of DBSCAN, after ρ). Then, points are part of a cluster
if they are in the ρ-neighborhood of a core point. Other points are considered as

36 Chapter 1 Clustering and self-organization

noise. A main drawback is that DBSCAN cannot handle different densities in a data
set (its parameters are global). OPTICS aims at solving this limitation. A general
disadvantage is that these methods are limited to continuous Euclidean space.

1.2.7 Subspace clustering

The goal of subspace clustering [Parsons et al., 2004, Deng et al., 2016, Attaoui
et al., 2020] is handling high-dimensional data by finding clusters within subspaces
instead of the entire data space. Indeed in many real-world tasks, clusters may exist
in different subspaces of the high-dimensional feature space. Subspace clustering
can be classified into hard subspace clustering (HSC) and soft subspace clustering
(SSC): the former determines the exact sub-spaces where the clusters are found,
while the latter assigns weights to each feature. HSC methods can be further
divided into bottom-up search methods (e.g. CLIQUE [Agrawal et al., 1998], MAFIA
[Goil et al., 1999], ENCLUS [Cheng et al., 1999], SUBCLU [Kailing and Kriegel,
2004]. . .) that start with 1-dimensional clusters iteratively combined into higher-
dimensional subspaces, and top-down methods (e.g. PROCLUS [Sembiring et al.,
2010], ORCLUS. . .). SSC is strongly related to feature weighting clustering, and
some representative methods are C-K-means [Modha and Spangler, 2002], W-K-
means [Huang et al., 2005], Fuzzy Weighted K-means (FWKM) [Jing et al., 2005],
or Fuzzy Subspace Clustering (FSC) [Gan et al., 2006], among many others. Finally,
projected clustering is a term designating a similar set of techniques, more specifically
combining a specific distance function and a standard clustering algorithm (e.g.
DBSCAN or K-medoids).

1.2.8 Model-based clustering

Model-based clustering [Bock, 1996, McLachlan and Peel, 2000] tries to fit the data
using probabilistic models. A popular approach is mixture modeling, using mixtures
of parametric base probability density functions to represent clusters. It relies on the
assumption that clustered data are drawn from one of several components, often
represented by unobserved latent variables. For instance, Gaussian mixture models
(GMM) is the probabilistic counterpart of K-means, where the data distribution is
modeled using K Gaussian component distributions. Clustering then becomes an
estimation task, often based on MLE and Expectation-Maximization (EM) procedures
[Dempster et al., 1977]. Note that the K-means procedure is closely related to the

1.2 Cluster analysis 37

EM algorithm for estimating a particular Gaussian mixture model. Besides mixture
modeling, topic models are another family of approaches.

1.2.9 Other clustering methods

Countless other algorithms exist and are omitted in this thesis: mean-shift, affinity
propagation [Frey and Dueck, 2007], non-parametric methods such as support
vector clustering, feature selection methods, grid-based clustering, swarm-based
methods, etc. An important field, graph clustering, is also beyond our scope.

1.3 Self-organizing algorithms

This section introduces some of the main self-organizing clustering algorithms:
Kohonen’s Self-Organizing Map (SOM) [Kohonen, 1982, Kohonen, 1990, Cottrell
et al., 2018], its probabilistic counterparts, as well as variants and extensions.
This family of algorithms aims at clustering and visualizing high-dimensional data
while preserving neighborhood properties, using a process called self-organization.
They are also called topographic map or topology-preserving algorithms, because
they preserve topographic properties between the input and output space, and
their output often takes the form of a two-dimensional map. Formally, a topology-
preserving algorithm is a transformation RP −→ RL, that preserves similarities, or
similarity orderings, of the points in the input space when they are mapped into
the output space [Martinetz and Schulten, 1994]. Self-organized models have been
used for almost 40 years across various application domains such as biology, geology,
healthcare, industry [Côme et al., 2011, Faure et al., 2017, Forest et al., 2020a]
and humanities [Massoni et al., 2009]. The tasks they try to solve range from
visualization, quantization to indexing and interactive image retrieval [Laaksonen
et al., 2001], etc.

1.3.1 Kohonen’s Self-Organizing Map

The Self-Organizing Map (SOM, sometimes written SOFM for Self-Organizing Fea-
ture Map), introduced by Finnish professor Teuvo Kohonen [Kohonen, 1982, Ko-
honen, 1990, Cottrell et al., 2018] is an unsupervised learning algorithm used
for simultaneous clustering and visualization of high-dimensional data sets. The
learning algorithm is a self-organization process, biologically inspired by the cortex

38 Chapter 1 Clustering and self-organization

brain cells. This kind of learning is called competitive learning, opposed to error-
correction learning used in feedforward neural networks. A map is a neural network
of interconnected nodes, also called cells, neurons or units, organized as a grid (an
undirected graph). The grid topology is most often two-dimensional and rectangular
for visualization purpose but can have any dimension or topology. To each cell is
associated a prototype vector belonging to the high-dimensional input space where
the data lives. During an iterative learning process, the prototypes are updated
to fit the training set; when a prototype is updated, the prototypes associated to
neighboring cells are also updated using a certain weight. The weights decrease
with the distance between cells on the grid. As a result, cells that are close on the
map are associated to prototype vectors that are close in the input space. This allows
the map to preserve the topology of the space. After convergence, the resulting map
allows to efficiently visualize the high-dimensional input space on a low-dimensional
map (e.g., the variations of different features or the distribution of data on the
map). Due to its simplicity and interpretable results, SOM is a popular clustering
and visualization tool.

The set of input data samples is denoted X = {xi}1≤i≤N ,xi ∈ RP . A SOM is
composed of K units, associated to the set of prototype vectors {mk}1≤k≤K . In the
standard SOM, the prototype vectors lie in the same space as the input data, i.e. RP .
A data point is projected on the map by finding its closest prototype vector according
to euclidean distance. The corresponding map unit is called the best-matching unit
(BMU). We introduce the notation bi for the BMU of xi:

bi := argmin
k

||xi −mk||22 (1.12)

The grid topology allows to define an inter-node distance δ(k, l), which is the
topographic distance between units k and l on the map, here the Manhattan distance
(the length of the shortest path on the map between the two units). We then define
the neighborhood function of the SOM and a temperature parameter T , controlling
the radius of the neighborhood around a unit. The function KT is a function taking
values between 0 and 1, with KT (0) = 1 and limd→±∞KT (d) = 0. Common choices
are a Gaussian or a rectangular window function centered around zero. This function
is used to weight the updates of the prototype vectors: the highest weight of 1 is
given to the central node, and the neighboring nodes receive a weight decreasing
with their distance to the central node. Nodes far away will not be updated. The
temperature parameter T defines the size of the neighborhood, i.e. the influence of a
node on its neighbors. During learning, this parameter is decreased as in simulated
annealing, so that all prototypes are moved on the first iterations, and only one
vector at a time towards the end of the training. Concretely, when the temperature

1.3 Self-organizing algorithms 39

Fig. 1.5.: Illustration of the SOM quantization principle.

approaches zero, the neighborhood function becomes a function that equals 1 at 0
and 0 everywhere else. See Figure 1.5 for an illustration of the SOM projection from
input space onto the map, and Figure 1.6 for examples of neighborhood functions.
In this work, we will use a Gaussian neighborhood function, expressed as follows:

KT (d) := e−
d2
T2

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0

0.0

0.2

0.4

0.6

0.8

1.0

T (
)

Gaussian neighborhood
T=5
T=1
T=0.1

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0

0.0

0.2

0.4

0.6

0.8

1.0

T (
)

Rectangular window neighborhood
T=5
T=1
T=0.1

Fig. 1.6.: Gaussian and rectangular neighborhood functions for different temperatures.

40 Chapter 1 Clustering and self-organization

The temperature T is decreased at each training iteration using a decay function.
A common choice is exponential decay, starting from an initial temperature Tmax
towards a final temperature Tmin, i.e. at iteration t:

T (t) := Tmax

(
Tmin
Tmax

)t/iterations

The learning algorithm is a two-step iterative process consisting in:

1. An assignment phase where data points are assigned to a prototype.
2. A minimization phase where the prototypes are updated by moving them

towards the data points.

The original SOM learning algorithm, also called stochastic or Kohonen algorithm,
takes each training sample xi individually and updates every prototype vector by
moving them closer to the point xi. The updates are weighted by the neighborhood
around the best-matching unit, so that neighboring units receive a large update and
very distant units are not updated at all. This expresses as the following update rule:

mk ←mk + αKT (δ(bi, k)) (xi −mk) (1.13)

where α is a learning rate that is decreased during training. The stochastic algorithm
is detailed in algorithm 1.1. A disadvantage of this algorithm is that it converges

Algorithm 1.1: Stochastic SOM algorithm.
Input: training set X; SOM map size; temperatures Tmax, Tmin; iterations
Output: SOM code vectors {mk}
Initialize SOM parameters {mk} ;
for t = 1, . . . , iterations do

T ← Tmax
(
Tmin
Tmax

)t/iterations
;

Load next training sample xi ;
Compute BMU bi ;
for k = 1, . . . ,K do

Update prototype mk (by Equation 1.13) ;

slowly, is sequential and cannot be parallelized. Therefore, another algorithm was
introduced: the batch SOM algorithm. It consists in minimizing following cost
function, called distortion:

LSOM({mk},X, b, T) := 1
N

N∑
i=1

K∑
k=1
KT (δ(bi, k)) ||xi −mk||22 (1.14)

1.3 Self-organizing algorithms 41

Distortion is not directly differentiable because of the BMU assignments b. However,
it can be empirically minimized using a dynamic clusters method [Diday and Simon,
1976] (similar to K-means) which alternates between two steps:

1. Assignment of best-matching units using Equation 1.12
2. Minimization of distortion by fixing assignments, using following update rule:

mk ←
∑K
l=1KT (δ(k, l))

∑N
i=1 1[bi=l]xi∑K

l=1KT (δ(k, l))
∑N
i=1 1[bi=l]

(1.15)

The batch algorithm pseudo-code is detailed in algorithm 1.2. The two-step training

Algorithm 1.2: Batch SOM algorithm.
Input: training set X; SOM map size; temperatures Tmax, Tmin; iterations
Output: SOM code vectors {mk}
Initialize SOM parameters {mk} ;
for t = 1, . . . , iterations do

T ← Tmax
(
Tmin
Tmax

)t/iterations
;

Compute all BMUs {bi}i=1...N ;
for k = 1, . . . ,K do

Update prototype mk (by Equation 1.15) ;

procedure alternates between minimizing the distortion loss with respect to the BMU
assignments (leaving the prototypes fixed) and minimizing the loss with respect
to the prototype vectors {mk} (with the assignments fixed). As we can see, the
training procedure is the same as for the K-means algorithm, where we alternately
update the cluster assignments and the centroids. Actually, SOM can be viewed
as a constrained K-means in which the prototypes are encouraged to lie in a two-
dimensional manifold, because of the constraint introduced by the neighborhood.
When the temperature parameter approaches zero at the end of training, SOM
becomes identical to K-means; this can be seen by taking the limit of the loss
function 1.14 at 0:

lim
T→0

∑
i

K∑
k=1
KT (δ(bi), k)) ||xi −mk||22 =

K∑
k=1

∑
i,bi=k

||xi −mk||22 (1.16)

The distortion becomes identical to the K-means loss (see Equation 1.9).

42 Chapter 1 Clustering and self-organization

Fig. 1.7.: U-matrix visualizations of the chainlink data set. [Ultsch, 1999, Ultsch, 2003b]

1.3.2 Data visualization using SOM

The main purpose of the SOM is to visualize large high-dimensional data sets by
visualizing the prototypes and other properties of the resulting map. There exist
multiple visualization techniques, and this section will present some of the most
used representations. An overview of several SOM-based visualization techniques is
presented in [Vesanto, 1999]. The map cells can represent various quantities using
color and shape variation. The most common visualization is the representation
of the value of one feature (one dimension) of the map prototypes. This allows to
visualize the variations of one feature across the input space, and identify different
areas. It is also common to represent the distribution of the data on the map by rep-
resenting the number of points assigned to each map unit (unit counts), by varying a
marker size or the cell color. The curvilinear representation [Demartines and Blayo,
1992] allows to represent the unfolding of the grid on a 2D plane. [Cottrell and De
Bodt, 1996] proposes a visualization combining distances to neighboring units and
unit counts. SOM training can also be visualized using adaptive coordinates and
cluster connection [Merkl and Rauber, 1997]. In [Kaski et al., 1998], a visualization
of variable contribution to the cluster structure is proposed. The double SOM [Su
and Chang, 2001, Ressom et al., 2003] and ViSOM allow to visualize the data set
as a 2D scatter plot, learned during training. Other visualization techniques are
based on distance or density matrices. The U-matrix [Ultsch, 1999] represents the
average distance between the prototypes of each map unit and their neighboring
units. Formally, for a given SOM unit k and its set of direct neighbors NN(k):

U(k) :=
∑

k′∈NN(k)
||mk −mk′ ||22.

An example U-matrix is shown on Figure 1.7. It displays the "landscape” of the
distance relationships in the input data space, where the "mountains" correspond to
cluster boundaries, and "valleys" to cluster centers. Another matrix representation
is the P-matrix [Ultsch, 2003a], which is based on density estimation (specifically,

1.3 Self-organizing algorithms 43

Pareto Density Estimation). The U*-matrix [Ultsch, 2003b] combines local distance
information from the U-matrix and local density information from the P-matrix,
using following scaling:

U ∗ (k) := U(k)
(

1 + P (k)− P̄
P̄ −max(P)

)
.

It is able to better exhibit the cluster structures than the other matrices. More
recently, the CONNvis [Taşdemir and Merényi, 2009] visualizes the data distribution
using a connectivity matrix based on a weighted Delaunay triangulation. Finally,
the prototype vectors can also be directly visualized after projection into 2 or 3
dimensions using classical DR techniques such as PCA or t-SNE.

1.3.3 Clustering of the SOM

The SOM clusters the data into a number of classes equal to the number of neurons
in the map. This number is usually too large and we want to obtain a sensible
number of classes for interpretation. Moreover, because of neighborhood relations,
neighboring map units reflect the properties of the same clusters. To remove this
overlap, a second clustering step is often used to group the SOM clusters into a
reduced number of "super-clusters". This process can be achieved by three ways:

• Manually or semi-supervised: an expert may directly look at the prototypes
and associate labels to them. This semi-supervised method then allows to
classify any new sample by assigning it the class of its best matching unit,
without having to label a large data set but only the prototypes. In the case
when the data set is labeled or even partially labeled, classification can be
performed by using the available labels after the SOM has been trained. For
instance, the majority vote consists in assigning to each prototype the class
that has the most training samples in its cluster.

• Visually: regions on the map can be detected by looking at visualization such
as the U/P/U*-matrices.

• Automated clustering of the SOM: an second clustering algorithm detects the
super-clusters automatically. Related works are presented in this paragraph.

To this end, hierarchical (SOM+HC) or K-means (SOM+KM) clustering of the
prototypes are commonly used [Ambroise et al., 2000]. In particular, [Vesanto and
Alhoniemi, 2000] showed that SOM is an efficient pre-processing step for clustering
large data sets: by clustering the prototypes found by SOM instead of directly clus-
tering the data, the computational load can be decreased considerably. The authors

44 Chapter 1 Clustering and self-organization

investigated agglomerative clustering (single, average and complete linkage) and a
partitive method (K-means). To select the number of clusters, the Davies-Bouldin
index is used (see Chapter 4 for its definition). The SOM neighborhood relation can
be used to constrain the possible merges in the construction of the dendrogram in
agglomerative clustering. For example in [Murtagh, 1995], a contiguity constraint
is added to merge only clusters corresponding to neighboring units on the map.
Another solution is to exclude so-called interpolating units (i.e. units only connecting
different regions of the manifold but corresponding to a very low data density) from
the subsequent analysis. [Petersohn, 1998] proposes a two-step approach where the
SOM is clustered using a second SOM, with a number of units equal to the number
of target classes (this number is selected with a quality criterion based on inner-class
homogeneity and heterogeneity between classes).

Many approaches to cluster the SOM are based on distances between prototypes
[Vellido et al., 1999], improved in [Vesanto and Sulkava, 2002] with a hierarchical
technique and pruning, and on the U/P/U*-matrices introduced previously. [Costa
and Netto, 1999] uses a postprocessing of the U-matrix inspired by image segmen-
tation techniques. In [Ultsch, 2003b], Ward clustering shows good results on the
U*-matrix, compared with the U/P-matrices. The U*C algorithm [Ultsch, 2005] is
based on the three matrices and finds automatically the number of super-clusters. It
consists in an immersion step (gradient descent or ascent on the U/P-matrices to find
distance/density modes) and an assignment step using watershed transformations on
the U*-matrix. The Simultaneous Two-Level SOM clustering (S2L-SOM) [Cabanes
and Bennani, 2007] simultaneously learns the SOM and neighborhood connections
that automatically determine the set of final clusters. It obtains better results that
SOM+HC or SOM+KM on several benchmark data sets. A variant, Density-based
Simultaneous Two-Level SOM (DS2L-SOM) [Cabanes and Bennani, 2010], adds a
refinement step based on density modes to determine a threshold matrix. [Azzag
and Lebbah, 2008] propose a new similarity measure, consisting in weighting the
Ward criterion with the topographic neighborhood on the map, to use with hier-
archical clustering as well as the AntTree (artificial ants) algorithm [Azzag et al.,
2003]. CONNvis [Taşdemir and Merényi, 2009] facilitates the extraction of clusters
by an automatic thresholding method. Hierarchical clustering of the CONN matrix is
proposed in [Taşdemir et al., 2011]. Finally, spectral clustering has also been used
[Taşdemir, 2011].

1.3 Self-organizing algorithms 45

1.3.4 Supervised SOM

Although it is mostly used in an unsupervised way, supervised methods to train the
SOM have also been devised (i.e. for supervised classification), by taking advantage
of a labeled data set. [Midenet and Grumbach, 1990, Idan and Chevalier, 1991]
introduce a supervised learning method where the input vector is composed of
the original features and the class information (e.g. a C-dimensional vector for
classification with C classes), concatenated together. This enables the learning
algorithm to learn prototypes that contain the class information, and a topology that
is aware of this information. For prediction, the class features of the input vector are
either replaced by an average value (calculated on the training set) or ignored when
searching for the closest prototype; the predicted class is then derived from the class
features of the best matching unit. Supervised SOM thus provides an alternative to
backpropagation neural networks. The authors apply this technique on the MNIST
handwritten digits recognition task.

1.3.5 Anomaly detection using SOM

The distance of unseen samples to the map can be used as an anomaly score [Harris,
1993]. Confidence intervals can be built globally or locally for each SOM cluster, as
in [Bellas et al., 2014].

1.3.6 Extensions and probabilistic topographic maps

There are countless extensions and variants of the SOM and different topology-
preserving mappings. They cannot be listed exhaustively here. In this paragraph,
we will mention extensions to different variable types, several variants of the SOM
and other self-organizing algorithms, and introduce probabilistic topographic maps
that constitute an important family of algorithms.

Natively, the SOM is only adapted to continuous data with the Euclidean distance.
Extensions to binary data have been developed, using for instance the Hamming
distance [Lebbah et al., 1999], and for mixed data [Lebbah and Chazottes, 2005].

PCASOM [López-Rubio et al., 2004] is a SOM performing PCA (each neuron is asso-
ciated with a local orthonormal basis), with the advantage of handling multimodal

46 Chapter 1 Clustering and self-organization

distributions. It follows Kohonen’s ASSOM (adaptive subspace SOM) algorithm [Ko-
honen, 1995]. Elastic graphs [Gorban and Zinovyev, 2008], in particular the elastic
map, is another approach to learn data manifolds based on an energy function.

SOM uses a fixed, predefined network architecture (often a rectangular grid),
whereas the choice of the map topology should depend on the input space for
best results. However, it is not straightforward to find the best topology (number
and arrangement of the map cells). [Dittenbach et al., 2000] proposed an archi-
tecture called the Growing Hierarchical SOM (GH-SOM) that builds a hierarchy of
layers composed of incrementally growing SOMs. At each step, a SOM is trained
in a traditional way. The map unit with the largest quantization error (deviation
between its prototype vector and its assigned input data vectors) is called the error
unit. A row or column of new cells is inserted between the error unit and its most
dissimilar neighbor, making the SOM grow to represent more detail for this unit.
Other approaches are Growing SOM (GSOM) and Dynamic SOM [Alahakoon et al.,
2000]. The Neural Gas (NG) or Growing Neural Gas (GNG) model [Martinetz and
Schulten, 1991, Fritzke, 1994, Fritzke, 1995] is an unsupervised learning model
similar to SOM, the main differences being that NG learns not only the prototypes
but also the connections between units (whereas SOM has a fixed topology) and
that it uses the ranking order and not distance to update the prototypes. Because it
organizes the prototypes in space and also creates or destroys unused connections
between map units, the NG is called a growing cell structure. The model is thus able
to automatically find a network structure.

Probabilistic topographic maps have the clear advantage of producing a probability
density, allowing to handle missing values or even building mixtures of SOMs in a
principled way. In addition, by changing the distribution is may handle any type
of data (continuous, categorical or mixed). Variants of SOM based on mixture
models and trained with EM algorithms are proposed in [Heskes, 2001, Verbeek
et al., 2005]. The PrSOM (Probabilistic SOM), introduced by [Anouar et al., 1998],
is a probabilistic topographic map model inspired by SOM and RBF (radial basis
function) networks. It can be regarded as a mixture of local mixtures of Gaussians.
These models have been applied and extended to binary data, e.g. BeSOM with
Bernoulli distribution [Lebbah et al., 2007], and sequences of non-i.i.d. data, e.g.
PrSOMS in [Jaziri et al., 2011, Lebbah et al., 2015].

The Generative Topographic Mapping (GTM) [Svensen et al., 1997, Bishop et al.,
1998] is a probabilistic topographic map model for simultaneous clustering and
visualization of high-dimensional data sets, but unlike Kohonen’s model which uses
a self-organization process, it performs a probability density estimation using an

1.3 Self-organizing algorithms 47

EM procedure. GTM uses a probability density model where we assume that the
data distribution, living in a P -dimensional space, is generated by variables from a
L-dimensional latent space with L < P , using the non-linear mapping

y(u; W) := Wφ(u)

where φ = {φj}, j = 1 . . .M is a set of M non-orthogonal basis functions and W is
a P ×M matrix of weight parameters. We know that this form can approximate any
continuous mapping, given sufficiently many basis functions (universal approxima-
tion theorem for neural networks with one hidden layer [Csáji, 2001]); this number
can grow exponentially with the dimension of u but as in most cases L = 2, it is not
a limitation. In the standard model, the basis functions are radially symmetric Gaus-
sians. Due to the smoothness of this transformation, points from the latent space
will be mapped onto a L-dimensional manifold in data space. However, the data
do not lie exactly on this manifold; thus, we define a posterior probability density
decreasing with the distance to the manifold. Concretely, the posterior probability
density consists in spherical Gaussian distributions centered on the transformed
point, with a common inverse variance β:

p(x|u,W, β) :=
(
β

2π

)P/2
exp

(
−β2 ||y(u; W)− x||2

)
.

The Gaussians can be regarded as noise distributions taking into account variance
away from the manifold. It is also possible to introduce a manifold-aligned noise
model, to take into account variance along the manifold directions, which can be
quite different depending on the data distribution [Bishop et al., 1998]. This variant
uses a more complex covariance matrix parameter instead of the isotropic inverse
variance parameter. In order to obtain a latent variable model similar in spirit to
the SOM, we introduce a regular grid of points {ui}, i = 1 . . .K in latent space and
define a prior distribution consisting in a superposition of delta distributions located
at the nodes of the grid:

p(u) := 1
K

K∑
k=1

δ(u− uk).

The mappings of the grid points define a set of prototype vectors mk in data space:

mk := y(ui; W).

48 Chapter 1 Clustering and self-organization

Fig. 1.8.: Illustration of the GTM mapping from latent to original space.

Finally, the probability density of the model is obtained by integrating over the latent
variable:

p(x|W, β) =
∫
p(x|u,W, β)p(u)du =

K∑
k=1

1
K

(
β

2π

)P/2
exp

(
−β2 ||mk − x||2

)
.

As a consequence, the GTM can be regarded as a constrained mixture of Gaussians
where the centers are constrained to lie within a L-dimensional manifold of data
space, as illustrated in Figure 1.8. As in SOM, the resulting grid can be visualized or
used for clustering, classification, anomaly detection or any other task. But unlike
SOM, the topographic properties of the GTM are not due to neighborhood constraints
on the grid nodes, but are a consequence of the smoothness of the mapping between
latent space and feature space.

The GTM presented here is for continuous data, but can be naturally extended to
discrete data. For binary data, we can introduce a Bernoulli distribution for each
binary component, where the means are given by the same kind of mapping but
adding a sigmoid function to obtain a probability. For categorical data with more
than two classes, a multinomial distribution can be used instead, with a softmax
activation. At least, if the data is a combination of continuous and discrete variables,
the conditional distribution can be written as a product of Gaussian and multinomial
distributions (assuming conditional independence of the observed variables given
the latent), as explained in [Bishop et al., 1998].

Principled extension to discrete and mixed data is just one of the advantages provided
by probabilistic maps compared to the SOM; other extensions include extensions for
handling missing data, adaptive regularization through Bayesian inference [Bishop
et al., 1998], hierarchical structures [Tino and Nabney, 2002], outlier detection
[Bullen et al., 2003], and others. Because GTM can be expressed only in terms of
dot products, it is also possible to use a kernel version of GTM [Olier et al., 2010].

1.3 Self-organizing algorithms 49

1.3.7 Software implementations

Open-source software for SOM are available in various languages: the SOM toolbox1

in Matlab [Alhoniemi et al., 1999], SOMbrero2 in R [Boelaert et al., 2014], SOMpy3

[Moosavi et al., 2014] or minisom4 in Python, and in Scala with distributed ver-
sions using Spark5 [Sarazin et al., 2014a, LIPN, 2018]. During this thesis, a new
distributed implementation of batch SOM in Scala and Spark was implemented,
Spark ML SOM6 [Forest, 2019]. Unlike other software packages, it adopts a Spark
ML and DataFrame API, making it more practical to use and integrate in modern
Spark projects.

1.4 Conclusion

This chapter provided an introduction to statistical learning, with a focus on unsuper-
vised learning, which is the learning setting adopted in this thesis to handle unlabeled
data sets. We defined cluster analysis and presented the main algorithms, in particu-
lar center-based, hierarchical, spectral, density-based, subspace and model-based
methods. Then, we tackled in depth a sub-family of clustering algorithms, namely
self-organizing algorithms. Its main representative is Kohonen’s Self-Organizing Map
(SOM). In all cases, we supposed that observations are described by a set of features
with an underlying cluster structure that can be discovered by the algorithms. This
is not the case for complex, high-dimensional data, where a relevant representation
needs to be extracted first. We have quickly introduced dimensionality reduction
and manifold learning methods, but intentionally left neural network approaches for
the coming chapter. The next chapter is dedicated to unsupervised neural networks
to learn useful high-level representations and improve clustering.

1https://github.com/ilarinieminen/SOM-Toolbox
2https://cran.r-project.org/package=SOMbrero
3https://github.com/sevamoo/SOMPY
4https://github.com/JustGlowing/minisom
5https://github.com/Clustering4Ever/Clustering4Ever
6https://github.com/FlorentF9/sparkmlsom

50 Chapter 1 Clustering and self-organization

https://github.com/ilarinieminen/SOM-Toolbox
https://cran.r-project.org/package=SOMbrero
https://github.com/sevamoo/SOMPY
https://github.com/JustGlowing/minisom
https://github.com/Clustering4Ever/Clustering4Ever
https://github.com/FlorentF9/sparkmlsom

Unsupervised representation
learning for clustering

2

„The key to artificial intelligence has always been
the representation.

— Jeff Hawkins

A recent family of algorithms able to effectively extract high-level representations
from complex, high-dimensional data are deep neural networks [LeCun et al.,
1998, Bengio, 2009, Bengio et al., 2013, Lecun et al., 2015]. Their ability to
learn useful hierarchical representations has been demonstrated extensively in
the context of supervised learning, in particular in the fields of computer vision,
natural language processing, speech recognition, among others. The type of data
where these methods are especially effective are raw signals with a large number of
dimensions with local correlation structures, such as spatial (images), sequential
(text, audio, speech, time series), spatio-temporal (videos), or functional in general.
A major motivation is that data show lots of variations but are actually living in a
(very) lower-dimensional manifold [Alain and Bengio, 2014]. According to [Bengio,
2012], "deep learning algorithms seek to exploit the unknown structure in the
input distribution in order to discover good representations, often at multiple levels,
with higher-level learned features defined in terms of lower-level features. The
objective is to make these higher-level representations more abstract, with their
individual features more invariant to most of the variations that are typically present
in the training distribution, while collectively preserving as much as possible of the
information in the input. Ideally, we would like these representations to disentangle
the unknown factors of variation that underlie the training distribution". This idea
of a "good representation" and disentanglement will be explicited later.

While a lot of effort has been concentrated on supervised learning, where the network
is trained to learn representations that are adapted for a specific supervised task (e.g.,
the layers of a convolutional network for image classification learn representations
that help the top layer to classify the data, by mapping the data to a feature
space where the target classes are easily separable), unsupervised deep learning
methods have also been developed. The general goal of unsupervised representation

51

learning is to learn features from unlabeled data [Bengio, 2012, Bengio et al.,
2013]. In general, the main motivation of unsupervised representation learning is
to capture most information contained in the data while reducing the dimension
or learning more robust representations, optimizing some unsupervised criterion.
These representations are then used to solve downstream tasks, such as classification,
regression, or clustering, leading to an infinite number of applications. The latter is
the focus of this chapter.

The following section will introduce neural network architectures for unsupervised
representation learning. One of the most famous is the autoencoder (AE), and we
will present several of its variants. Then, we will shortly introduce adversarial meth-
ods. Finally, self-supervised learning, or predictive learning, designates unsupervised
learning methods that learn representations by predicting a part of the input, given
the rest of the input data. It recently raised interest in the fields of computer vision
and natural language processing. It has not been used during this PhD but we think
it is an essential part of modern unsupervised representation learning.

In either approaches, the goal is to improve some downstream application-oriented
task. Thus, the representations need to be transferable and generalizable. One
of the most desirable property is disentanglement [Locatello et al., 2020], i.e. to
separate independent latent factors of variation. Other desiderata for a "good
representation" are sparsity or smoothness. Another property is that objects that
are semantically close, should be close in the latent feature space. This property is
strongly connected to clustering but also metric learning (this link will be discussed
later), and multitask learning (not further tackled, the reader can refer to [Caruana,
1997]). More specifically, we will investigate deep clustering approaches, where the
latter property is enforced by some form of regularization based on a clustering loss,
or a specific training strategy. In layman’s words, latent embeddings corresponding
to semantically similar elements are being "pushed together" to facilitate clustering
in latent space. The actual clustering may happen as part of the process, or be
performed as a subsequent step. Lastly, we consider deep self-organized models, a
combination of topology-preserving and deep clustering approaches, and introduce
related work necessary for the contribution of Chapter 3.

52 Chapter 2 Unsupervised representation learning for clustering

2.1 Unsupervised learning of representations

2.1.1 Autoencoders

Autoencoders, also sometimes called autoassociators, are neural networks trained to
learn to reconstruct their inputs, in order to extract useful intermediate representa-
tions in an unsupervised way while minimizing information loss during this process
[Hinton and Salakhutdinov, 2006, Bengio et al., 2007]. These representations or fea-
tures can then be used to improve downstream tasks such as clustering or supervised
learning, that benefit from dimensionality reduction and higher-level features. In
other words, it is trying to learn an approximation to the identity function: this may
seem trivial, but by placing various constraints on the network’s architecture and
activations, it will extract useful representations. In this section, we will introduce
different AE variants and how to train them. The idea of autoencoders has been used
for several decades, and can be seen as a non-linear equivalent to PCA. Unlike the
latter, they are able to learn complex transformations of the input data. In addition,
they can be trained using SGD, which has a linear complexity with the number of
samples, unlike most non-linear DR techniques.

Autoencoders learn to map the input space X to a latent feature space Z, and
then reconstruct the original data, trying to match the input as closely as possible.
The part of the network mapping the input to the latent internal representation is
called encoder and the part of the network responsible for reconstructing the input
is called the decoder. In a general setting, X and Z are respectively two random
variables, and the encoder is a stochastic, parametric mapping qφ(Z|X) from X to
Z, represented by a neural network with parameters φ.

A MDL training principle is derived in [Hinton and Zemel, 1993]. Here, we will
derive autoencoders through a slightly different approach called infomax principle.
Under this principle, a "good" representation maximizes the mutual information
between X and Z:

I(X;Z) = H(X)−H(X|Z)

= C(X) + E(X,Z)∼qφ
[log qφ(X|Z)]

As C(X) does not depend on Z, we only need to maximize the second term. We
can see that the expectation involves X|Z and not Z|X. By introducing the decoder

2.1 Unsupervised learning of representations 53

x z x~

encoder decoder

fϕ gθ

Fig. 2.1.: Deterministic autoencoder architecture.

pθ(X|Z), and using the fact that the Kullback-Leibler (KL) divergence DKL(q||p) is
always positive, we maximize the following lower bound:

max
φ,θ

E(X,Z)∼qφ
[log pθ(X|Z)] . (2.1)

Deterministic autoencoders

In a deterministic AE, the encoder can be represented by a function fφ : X −→ Z,
where φ are the parameters of a neural network. Similarly, the decoder is a function
gθ : Z −→ X . An AE architecture is represented on Figure 2.1. In this case, the
previous mappings become deterministic: Z = fφ(X) (i.e. qφ(Z|X) = δ(Z− fφ(X)))
and X̃ = gθ(fφ(X)). The objective in Eq (2.1) becomes

max
φ,θ

EX∼qφ
[log pθ(X|Z = fφ(X))] ,

and using an empirical mean estimate over a training set {x1, . . . , xN}, we obtain

max
φ,θ

N∑
i=1

log pθ(x(i)|z(i) = fφ(x(i)))

which is equivalent to

max
φ,θ

N∑
i=1

log p(x(i)|x̃(i) = gθ(fφ(x(i)))).

This last expression can be turned into a minimization of the negative sum of
individual log-losses L(x, x̃) := − log p(x|x̃).

54 Chapter 2 Unsupervised representation learning for clustering

In standard autoencoders, the reconstruction x̃ is meant to be the mean of a distri-
bution that may have generated x. In case of continuous variables (x ∈ RP), the
most common choice is a Gaussian distribution: X|X̃ = x̃ ∼ N (x̃, σ2I). This leads
to the mean squared error (MSE) loss:

LMSE(x, x̃) := ||x− x̃||22.

For binary variables or variables that can be expressed as a probability (x ∈ {0, 1}P

or x ∈ [0, 1]d), the common choice is a Bernoulli distribution: X|X̃ = x̃ ∼ B(x̃).
This leads to the binary cross-entropy loss:

LBCE(x, x̃) := −
P∑
j=1

[xj log x̃j + (1− xj) log(1− x̃j)]. (2.2)

Similarly, the categorical cross-entropy loss handles categorical variables. The
previous loss functions are called reconstruction error as they measure the discrepancy
between the input x and its reconstruction x̃.

Links with Principal Component Analysis

The ability of artificial neurons to learn principal components has been established
a long time ago. Consider a simple artificial neuron with input x ∈ RP , weights
w ∈ RP , with a linear output activation equal to y =

∑P
j=1 wjxj = wTx. Hebb’s

learning rule [Hebb, 1949] states that weights increase if input and output are
correlated, i.e.

∆w = αxy = αxxTw,

where α is a learning rate. See for example the perceptron [Rosenblatt, 1958] for
an illustration of this learning rule. A problem with Hebb’s rule is that weights
can "explode". A solution is to add a forgetting term, as in Oja’s learning rule [Oja,
1982]:

∆w = α(xy − y2w) = α(xxTw−wTxxTww).

We can show that this rule leads to learn principal components [Becker, 1991, Oja,
1992]. After convergence, we have

E [∆w] = 0 ⇐⇒ α(E
[
xxT

]
w−wTE

[
xxT

]
ww) = 0

⇐⇒ α(Cw−wTCww) = 0

⇐⇒ Cw = wTCww = λw

2.1 Unsupervised learning of representations 55

x z x~

,We be ,Wd bd

x z x~

= σ(W + b)h
(l)

h
(l−1)

Fig. 2.2.: Linear autoencoder (left) and deep autoencoder with activation functions (right).

where C = E
[
xxT

]
is the covariance matrix. Thus, w is an eigenvector of the

covariance matrix, i.e. a principal component.

Actually, a linear AE (where encoder and decoder are simply matrix products without
any non-linear activation function, shown on the left side of Figure 2.2) trained with
MSE reconstruction error is equivalent to PCA, without the orthogonality constraint.
The reconstruction is simply:

x̃ = Wd (Wex + be) + bd.

Ignoring the biases, the MSE loss becomes

LMSE =
N∑
i=1
||xi − x̃i||22 =

N∑
i=1
||xi −WdWexi||22 = ||X−XWdWe||2F .

The links between AEs and SVD or PCA are further studied in [Bourlard and Kamp,
1988] and [Plaut, 2018].

Regularized autoencoders

For now, nothing prevents the encoder to simply learn the identity function, although
the goal is to learn good representations of our data. For this reason, AEs are always
trained with some type of regularization to reduce the size of the hypothesis space
[Alain and Bengio, 2014].

The most basic form of regularization is to use a intermediate feature space with a
dimension lower than the input, forcing the model to learn an efficient code with
fewer parameters. An AE where the internal layer has a smaller number of units
than the input is called an under-complete AE and maps the input space to a lower-
dimensional feature space, thus achieving (non-linear) dimensionality reduction.

56 Chapter 2 Unsupervised representation learning for clustering

When the internal layer has more units than the input layer, an AE is called over-
complete. Over-complete AEs can potentially learn the identity function. To prevent
such a trivial solution, they must be trained not only to optimize a reconstruction
error, but with additional constraints on the structure of the latent space.

An example of structural constraint is sparsity: sparse autoencoders [Ng, 2011,
Makhzani and Frey, 2013, Arpit et al., 2016] also achieve data compression by
using a potentially larger number of units in the hidden representation layer, but
where only a small number units are active at the same time. Links between sparse
representations and the functioning of the visual cortex V1 is discussed in [Olshausen
and Fieldt, 1997]. Sparsity can be achieved by using, for instance, KL-divergence
[Ng, 2011] or `1 [Arpit et al., 2016] penalties. Penalizing the weights amplitude
is called weight decay and is a common form of regularization (`2 weight decay is
also possible). Quite differently, contractive autoencoders [Rifai et al., 2011] use the
squared Frobenius norm of the Jacobian matrix of the encoder as a penalty. In case
of a linear AE, it becomes equivalent to `2 weight decay.

Denoising autoencoders (DAEs) [Vincent et al., 2010] learn to reconstruct a corrupted
version of the input: if x is the input vector, denoising AEs try to minimize the loss
L(x, x̃′) where x′ is the result of a stochastic corruption process x −→ x′ such as
additive noise or random drop-out. By learning to remove the noise and recover the
original data by removing the noise (hence the denoising term), the network actually
learns robust representations and extracts useful features of the input distribution.
Concretely, a DAE is a two-layer network defined as

x′ = corrupt(x) h′ = corrupt(h)

h = a1(W1x′ + b1) y = a2(W2h′ + b2)

where a1, a2 are the activation functions, W1, b1 and W2, b2 are the weight and
bias of the encoder and decoder layers, and corrupt is the corruption process.

For a long time, supervised deep neural networks were often pretrained using so-
called unsupervised greedy layer-wise pretraining using stacked denoising autoencoders
(SDAE) [Hinton and Salakhutdinov, 2006, Bengio et al., 2007, Vincent et al., 2010,
Erhan et al., 2010], in order to initialize each layer with a good solution. It consists
in stacking several DAEs by using the output of each AE as the input of the next
AE. The SDAE is first pretrained using greedy layer-wise training. Then, all encoder
layers followed by all decoder layers are concatenated in reverse layer-wise training
order, forming the deep SDAE. Then, the SDAE is finetuned on reconstruction error.
Finally, the stacked encoder layers form the encoder part of the deep AE, and
the stacked decoder layers form the decoder part. However, the necessity of this

2.1 Unsupervised learning of representations 57

x
(0)

z
(0)

x
(1)

z
(1)

???

x
(0)

z
(0)

x
(1)

z
(1)

μ

σ

μ

σ

Fig. 2.3.: Visual illustration of the latent space structure for a vanilla autoencoder (left)
and a variational autoencoder with Gaussian prior (right).

pretraining is being doubted nowadays [Zhou et al., 2015]. Thanks to improvements
in network architecture (e.g. ReLU activations) and optimization techniques (e.g.
SGD with momentum [Sutskever et al., 2013, Kingma and Ba, 2015]), even very
deep networks can be trained from scratch with random initialization.

Variational autoencoders

The standard under-complete AE has still limitations. First, the latent space has
no structure and may not be continuous (i.e. two samples that are close in input
space are not necessarily close in latent space, and vice-versa). More importantly, it
may overfit, meaning that it would not generalize well to unseen data samples. In
theory, even a single continuous latent variable can memorize the entire training
set by using one real number per sample. Thirdly, we cannot explore nor sample
points from the latent space. This motivated the use of variational autoencoders
(VAE) [Kingma and Welling, 2014, Rezende et al., 2014, Kingma and Welling, 2019],
which are deep latent-variable probabilistic models. The VAE was originally inspired
from the Helmholtz Machine (Dayan et al., 1995), however its wake-sleep training
algorithm was inefficient. Instead of directly producing a latent code z, the VAE
outputs a probabilistic output, for instance a mean µ and a standard deviation σ.
See Figure 2.3 for a visual illustration.

In contrast to the deterministic AE, the decoder is now a generative model pθ(X,Z),
where the latent code Z is sampled from a prior distribution pθ(Z), and data samples
are generated with pθ(X|Z), called the likelihood. The probabilistic encoder qφ(Z|X)

58 Chapter 2 Unsupervised representation learning for clustering

x z x
~

(z|x)qϕ (x|z)pθ

recognition
model

generative
model

Fig. 2.4.: Variational autoencoder architecture (left) and graphical representation of the
generative model (right).

is called inference or recognition model. Its role is to approximate the posterior
pθ(Z|X), which is intractable. This process is called variational inference. The model
is represented on Figure 2.4.

The objective is to estimate the parameters θ and the variational parameters φ using
maximum likelihood estimation. The log-likelihood of an input x decomposes as
follows (where pθ(x) is a shortcut notation for pθ(X = x), and similarly for every
random variable):

log pθ(x) = Eqφ(z|x) [log pθ(x|z)]

= Eqφ(z|x)

[
log pθ(x, z)

pθ(z|x)

]
= Eqφ(z|x)

[
log pθ(x, z)

qφ(z|x)

]
︸ ︷︷ ︸

LELBO(x; θ,φ)

+Eqφ(z|x)

[
log qφ(z|x)

pθ(z|x)

]
︸ ︷︷ ︸
DKL(qφ(z|x)||pθ(z|x))

≥ LELBO(x; θ,φ)

The right-hand side term is the KL divergence between qφ(z|x) and pθ(z|x), corre-
sponding to the error made by approximating the true posterior. As it is always
positive, we obtain a lower bound on the marginal log-likelihood called the evidence
lower bound (ELBO). Note that the KL divergence also determines the tightness of
this bound. The VAE tries to maximize this lower bound, yielding the objective

max
φ,θ
LELBO(x; θ,φ)

2.1 Unsupervised learning of representations 59

x z x
~

(x, ϵ)fϕ (x|z)pθ

μ

σ
μ + σ ⋅ ϵ

deterministic
encoder

generative
model

Fig. 2.5.: Variational autoencoder with reparameterization trick for a Gaussian prior.

that can be rewritten as follows (decomposing pθ(x, z) = pθ(x|z)pθ(z)):

LELBO(x; θ,φ) := Eqφ(z|x) [log pθ(x|z)]−DKL (qφ(z|x)||pθ(z)) . (2.3)

The left-hand side term is a reconstruction error, as in the standard AE (see Eq 2.1).
The second term, a KL divergence between qφ(Z|X) and pθ(Z), acts as a regularizer
pushing the encoder distribution closer to the prior distribution. The typical choice
for the prior is a Gaussian with zero mean and unit variance. In the rest of this
section, we will derive only the fully Gaussian case where the posterior is also
Gaussian, i.e.:

• pθ(z) = N (z; 0, I)
• qφ(z|x) = N (z; µ,σ2I)

Note that a reason to choose p(z) ∼ N (0, I) as the prior is to obtain condition-
ally independent latent variables from the recognition model, corresponding to
disentangled factors of variation in the data.

The reparameterization trick is a technique allowing to sample while keeping oper-
ations differentiable to allow end-to-end optimization by backpropagation. Citing
[Kingma and Welling, 2019], "its learning algorithm is a mix of classical (amortized,
variational) expectation maximization but through the reparameterization trick
ends up backpropagating through the many layers of the deep neural networks
embedded inside of it.". The basic idea is to replace the stochastic qφ(z|x) with
a deterministic function fφ(x, ε), where the only stochastic part is introduced by
and independent variable ε. In the Gaussian case, we use the reparameterization
z = fφ(x, ε) = µ + σ · ε where ε ∼ N (0, I). See Figure 2.5 for an illustration.

Stochastic Gradient Variational Bayes (SGVB) [Kingma and Welling, 2014] is an
efficient estimation method in case of intractable marginal likelihood/posterior

60 Chapter 2 Unsupervised representation learning for clustering

and large data sets. It replaces the expectation with a one-sample Monte-Carlo
estimation, combined with SGD optimization. Finally, the ELBO for a given input x
becomes

LELBO(x; θ,φ) = log pθ(x|z) + 1
2
∑
j

(
1 + log(σj)2 − (µj)2 − (σj)2

)
.

The reconstruction term, as previously, in practice turns into the MSE for Gaussian
outputs.

The relative weight between the two terms of the VAE loss, reconstruction and
KL-divergence, is extremely important and rarely highlighted in basic tutorials. If
the reconstruction’s weight is too high, reconstruction quality will be good but the
latent space structure will be weak. Conversely, a KL weight too high will produce
good latent space structure but bad reconstruction quality (which is easier to spot).
[Bowman et al., 2016] uses a weight annealing of the KL term during training. In
the β-VAE [Higgins et al., 2017], a tunable β hyperparameter weights between both
terms. [Sønderby et al., 2016] observed that "batch normalization and deterministic
warm-up (gradually turning on the KL-term) are crucial for training variational
models with many stochastic layers."

The VAE introduced here has a single level of latent variable z, but more complex
models with multiple stochastic layers and latent variables z1, . . . , zL are possible,
see for instance the Ladder VAE [Sønderby et al., 2016]. Other methods using
multiple stochastic variables are Importance Weighted Autoencoders, Normalizing
Flows, Inverse Autoregressive Flows, Variational Gaussian Processes, or Auxiliary
Deep Generative Models, but are out of this scope. Finally, recent works propose to
improve the latent space structure and disentanglement (see for instance InfoVAE
[Zhao et al., 2017], β-TCVAE [Chen et al., 2018], FactorVAE [Kim and Mnih, 2018],
π-VAE [Mishra et al., 2020], etc.).

2.1.2 Adversarial methods

Adversarial learning methods have become increasingly popular, although such
methods were not used during this PhD, we will mention them briefly. We speak of
adversarial training when the optimization involves two components with competing
objectives, and the goal is to reach an equilibrium similar to a Nash equilibrium in
game theory. The most popular example is generative adversarial networks (GAN)
[Goodfellow et al., 2014], consisting in a generative model, the generator, and a
classifier, the discriminator. The training combines two objectives: on one hand,

2.1 Unsupervised learning of representations 61

the discriminator must detect if the output of the generator is real (i.e. part of the
training set) or fake (i.e. artificially generated by the generator); on the other hand
the generator must generate realistic samples to deceive the discriminator. This
paradigm has lead to impressive results in image generation. In a standard GAN,
the input of the generator is random noise; extensions are able to better control its
output, e.g. conditional GAN [Mirza and Osindero, 2014] and InfoGAN [Chen et al.,
2016]. Adversarial autoencoders (AAE) [Makhzani et al., 2014] are similar to VAE
but use adversarial training to match the posterior to the prior distribution. We will
see a few clustering methods based on this paradigm.

Both the VAE and GAN are part of the family of generative models: the VAE decoder
or the generator can be used to generate new data samples. In deterministic AEs, it
is possible (but not in a principled way) to adding noise, interpolate or extrapolate
in latent space [Devries and Taylor, 2017].

2.1.3 Self-supervised or predictive learning

In self-supervised learning, high-level representations are learned by predicting a
hidden part of the input, given the rest of the input data, called the context. Therefore,
it most often consists in generic pretext tasks or auxiliary tasks (as opposed to the
application-oriented downstream tasks) of context prediction. It takes its roots in
natural language processing, where context prediction has allowed to learn word
embeddings, i.e. dense, distributed vector representations of words or documents.
The principle of word2vec [Mikolov et al., 2013] is to consider each word surrounded
by a certain number of its preceding and following words (the context). Then, it
predicts either the word given its context (CBOW variant) or the context given
the target word (skip-gram variant). More recently, the same principle is being
used in transformer-based embedding networks such as BERT, GPT, etc. Then,
these embeddings facilitate downstream application tasks such as named entity
recognition, sentiment analysis, chatbots, etc. In computer vision, it has been
successfully applied to image classification and clustering, object detection, semantic
segmentation, photo restoration, image super-resolution, etc. Examples of auxiliary
tasks in computer vision include predicting the relative positioning of objects in
an image [Doersch et al., 2015], classifying image rotations [Gidaris et al., 2018],
colorizing images [Zhang et al., 2016], solving Jigsaw puzzles [Noroozi and Favaro,
2017] (see Figure 2.6), inferring the order of frames inside a video [Misra et al.,
2016], among others. Some approaches are also related to metric learning (i.e.
learning a similarity between objects) such as [Wang and Gupta, 2015] where
authors use successive frames of videos as a supervisory signal. Finally, in a different

62 Chapter 2 Unsupervised representation learning for clustering

Fig. 2.6.: Solving jigsaw puzzles can be used as a pretext task to learn image representations.
Patches are extracted from an image (a), shuffled (b), and the task is to retrieve
their relative positions (c). [Noroozi and Favaro, 2017]

field, [Jawed et al., 2020] uses time series forecasting as a pretext task for time
series classification with a CNN.

2.2 Learning representations for data clustering

The performance of clustering algorithms depends highly on the distribution of the
data, the similarity measures and how well the distribution can be separated. In the
previous chapter, we have seen various clustering algorithms, that can be broadly
divided into three categories:

• Algorithms operating on the raw features.
• Those operating on a subset of raw features. This includes subspace clustering.
• Those operating on a transformation of the original features.

For complex data, it is difficult to select similarity measures, and distance metrics
such as Euclidean become ineffective in high dimensions (curse of dimensionality).
High-dimensional data usually live in different low-dimensional subspaces hidden in
the original space, makes the first category ineffective. Whenever this subspace is
actually a subset of the original variables, the second category of methods proves
effective. However, often the original variables describing the data are not adapted
for direct clustering, and structure is hidden in transformations of these variables.
Transformations are required to map from the original space where the data reside to
a different, more clustering-friendly (a term coined by [Yang et al., 2017a]), feature
space. Often, we want this feature space to be flat and Euclidean, in order to use
standard clustering algorithms based on Euclidean distance. Ideally, we want the
clusters to be linearly separable in this space. For this reason, we are interested in the
last of these three categories. For example, K-means or GMM with distance metrics

2.2 Learning representations for data clustering 63

limited to the original data space are poorly adapted for clustering high-dimensional
data with a lot of variations. Some challenges of complex and high-dimensional data
clustering are exposed in the first paragraph. To solve them, an intuitive solution is
to first reduce the dimension as a preprocessing step (while minimizing information
loss) and then cluster the data in a low-dimensional space. This can be achieved by
using dimensionality reduction techniques introduced in Paragraph 1.1.4 of previous
chapter and Section 2.1. In this two-stage approach, one

1. Optimizes a pure information loss criterion between data points and their low-
dimensional representations (this generally takes the form of a reconstruction
loss between a data point and its reconstruction, e.g. mean squared error).

2. Optimizes a pure clustering criterion using some clustering algorithm (e.g.
K-means quantization error).

For instance, autoencoders can be used as a preprocessing tool to improve the
performance of standard clustering algorithms that struggle with complex and high-
dimensional data: the performance of K-means on various data sets is greatly
improved by first reducing the dimension with PCA or an AE (see Table 2.1). In
[McConville et al., 2021], an additional UMAP step is added after the AE output,
further improving the clustering. In contrast, approaches have been developed
to treat clustering and dimensionality reduction as a joint task. Some of these
techniques are presented in the second paragraph, where we will present "traditional"
methods not based on deep representation learning. However, none of them can
tackle complex non-linear transformations of the data. In the last paragraph of this
section, we will see how deep neural networks can learn complex mappings from
the data space to a latent space of higher-level features with a cluster structure.
In particular, we will see that it is possible to achieve simultaneous representation
learning and clustering. In other words, the similarities can be learned.

2.2.1 Joint dimensionality reduction and clustering

In this paragraph, we present methods that intrinsically handle high-dimensional,
in particular noisy, correlated, redundant variables. Most methods are based on
the ideas of feature selection, subspace clustering and parsimonious modeling. In
an early approach, reduced K-means (RKM) [De Soete and Carroll, 1994], the
solution is constrained to a lower-dimensional space. A related approach also using
matrix factorization is presented by [Yang et al., 2017a]. In a different line of work,
discriminative clustering with linear discriminant analysis (LDA) has been successfully
used to jointly find a discriminative feature space improving clustering performance

64 Chapter 2 Unsupervised representation learning for clustering

of K-means on high-dimensional data [De La Torre and Kanade, 2006, Ding and Li,
2007, Ye, 2007]. See [Wang et al., 2019] for a recent work and review on this topic.
Sparse subspace clustering [Elhamifar and Vidal, 2013] is adapted for data lying
in a union of low-dimensional subspaces, and uses spectral clustering. [Patel et al.,
2013] additionally embeds the data in a latent space. Joint feature selection and
clustering using LASSO regularization [Tibshirani, 1996] (sparse or group-sparse
[Yuan and Lin, 2006]) has been proposed. For example, sparse K-means [Witten
and Tibshirani, 2010] and group-sparse K-means [Sun et al., 2012, Chavent et al.,
2020] allows to simultaneously select the relevant variables for K-means clustering.
An EM-based algorithm HDDC [Bouveyron et al., 2007] has been developed for
Gaussian mixtures. Feature selection and subspace methods for the SOM algorithm
were introduced for instance in the 2S-SOM method [Kaly et al., 2004] and in
[Benabdeslem and Lebbah, 2007], and for the GNG in [Attaoui et al., 2020].

2.2.2 Links with metric learning

Learning representations for clustering is tightly connected to the field of metric
learning (sometimes called similarity learning), where the goal is to find automati-
cally an appropriate distance measure (or metric) between objects. Distance and
similarity measures are omnipresent in machine learning and in particular unsu-
pervised data exploration: nearest neighbors, clustering, dimensionality reduction,
visualization, kernel methods, ranking, etc., and fully determine the results and
success of these methods. Metric learning takes place either in a supervised learning
setting (using target labels), a weakly supervised setting (using for example only
must-link or cannot-link pairwise constraints), or in a semi-supervised setting (using
a few labeled data or side information and a larger sample of unlabeled data).
The learned metric may be linear or non-linear. A typical (linear) task is learning
a Mahalanobis-like distance dM (x,y) =

√
(x− y)TM(x− y) for some matrix M .

We will not directly use metric learning in this work and thus only refer to [Kulis,
2012, Bellet et al., 2015] for a review. Indeed, it requires a certain amount of
supervision, and this thesis is focused on unsupervised approaches. Other related
fields such as kernel learning or multiple kernel learning are out of the scope of this
thesis.

Metric learning may also be achieved by learning neural representations, often called
embeddings, using self-supervised approaches. In these methods, constraints are
replaced by positive and negative samples and differentiable loss functions such as
a triplet loss or a ranking loss. Examples are [Wang and Gupta, 2015] in computer
vision, where successive frames of a video are used to guide a ranking loss, or

2.2 Learning representations for data clustering 65

[Franceschi et al., 2019], where time series embeddings are learned by mining
subsequences from inside and outside the input, and a triplet loss.

Domain knowledge such as labels or constraints can be used to help find similarities,
an somewhat equivalently, new representations. However, as outlined in [Bengio
et al., 2013], learning with generic priors as the ones introduced in the first section
is also possible. The next section presents deep clustering methods, where these
generic priors are augmented with a prior of cluster structure.

2.3 Deep clustering methods

Recently, many propositions have been made concerning joint representation learn-
ing and clustering. So-called deep clustering approaches treat clustering and repre-
sentation learning as a joint task and focus on learning representations that are more
clustering-friendly (a term coined by [Yang et al., 2017b]). Instead of learning a
generic representation of the data (e.g. in the sense of a reconstruction criterion) and
then applying a clustering algorithm, it has been proposed to learn a representation
specifically for clustering tasks. The principle is to learn a latent feature space that
preserves a specific prior knowledge, in this case, cluster structure.

Surveys of clustering with deep learning are presented in [Aljalbout et al., 2018]
and [Min et al., 2018]. To our knowledge, the first works of this kind were proposed
in 2014 by authors of [Song et al., 2014] and [Huang et al., 2014]. The first work
[Song et al., 2014] proposes to jointly learn representations with an autoencoder
and clusters using K-means in latent space. The AE reconstruction loss is regularized
by the K-means loss, and the training procedure alternates between updating the
AE network and the cluster centers using K-means. The second approach, Deep
Embedding Network (DEN) [Huang et al., 2014], uses an autoencoder but does
not rely on a standard clustering algorithm. It combines a locality preserving loss
pushing neighboring points together in latent space, and a group sparsity constraint
on the hidden units with the number of groups corresponding to the number of
clusters. This idea of regularizing the latent space to push similar points together to
enhance cluster structure, is at the core of most approaches until today.

Deep clustering methods can be classified into two main families. First, feature-based
approaches, taking as input a N × P attribute matrix, and learning a non-linear
mapping to a feature space where linear clustering methods are used (most often
K-means or GMM). We thereafter present such approaches. Note that we keep
the previously introduced notations, where xi ∈ X are training samples, zi ∈ Z

66 Chapter 2 Unsupervised representation learning for clustering

Fig. 2.7.: Deep Embedded Clustering (DEC) architecture. [Xie et al., 2016]

are the latent embeddings, and {mk}K1 ∈ Z are the cluster prototypes lying in
latent space, where K is the number of clusters. Another early approach, Deep
Embedded Clustering (DEC) [Xie et al., 2016], starts by pretraining an autoencoder
using a reconstruction loss in a SDAE fashion. Then, it jointly finetunes the encoder
and learns soft cluster assignments by optimizing a Kullback-Leibler divergence
that minimizes intra-cluster variance, by pushing latent points together to form
clusters. More specifically, they define two distributions. First, q represents the soft
membership probabilities with a differentiable t-distribution similarity kernel ([Van
Der Maaten and Hinton, 2008]) between embeddings and cluster centers. Then, p is
a hardened version of q, strengthening the predictions by squashing low-confidence
predictions towards zero:

qik = (1 + ||zi −mk)||2)−1∑
k′(1 + ||zi −mk′)||2)−1 , pik = q2

ik/
∑
i qik∑

k′
(
q2
ik′/

∑
i qik′

) .
The clusters are optimized using the so-called soft hardening loss, pushing q towards
p by minimizing their KL-divergence:

LDEC(We, {mk}K1) = DKL(p||q) =
N∑
i=1

K∑
k=1

pik log pik
qik

.

The DEC architecture and training are summarized on Figure 2.7. However, the AE
reconstruction is no longer optimized during the clustering step, hurting the latent
space structure. Improved Deep Embedded Clustering (IDEC) [Guo et al., 2017a]

2.3 Deep clustering methods 67

improves on this approach by optimizing a MSE reconstruction loss jointly with the
KL-divergence, i.e.:

LIDEC(We,Wd, {mk}K1) = LR(We,Wd) + γLDEC(We, {mk}K1 , χ)

= 1
N

N∑
i=1
||x̃i − xi||22 + γDKL(p||q)

where γ is a hyperparameter trading off between the reconstruction and clustering
terms. The model is trained end-to-end with stochastic gradient descent (SGD).
The Deep Clustering Network (DCN) [Yang et al., 2017b] combines representation
learning with K-means clustering using SGD in an alternating training procedure, to
alternately update the AE weights, cluster assignments and centroid vectors, similarly
to [Song et al., 2014]. They introduce the term K-means-friendly space to describe
the regularizing effect of joint training that improves clustering performance. The
loss function of DCN over the entire training set is:

LDCN(We,Wd, {mk}K1 , χ) = LR(We,Wd) + γLKM(We, {mk}K1 , χ)

= 1
N

N∑
i=1
||x̃i − xi||2 + γ

1
N

N∑
i=1
||zi −mχ(i)||2

where χ(i) = argmin
k

||zi − mk||22 is a hard cluster assignment function. The

alternate training procedure is necessary because the assignment function χ is non-
differentiable. We will take an approach similar to DCN in the next chapter. Deep
K-means (DKM) [Fard et al., 2018] overcomes the non-differentiability of hard
cluster assignments by introducing a smoothed version of the K-means loss with
simulated annealing. Deep Continuous Clustering (DCC) [Shah and Koltun, 2018]
also tackles this issue by formulating a continuous clustering loss, optimized jointly
with an autoencoder, but in addition, the method needs no prior knowledge of the
number of clusters.

Deep Multi-Manifold Clustering (DMC) is tackled in [Chen et al., 2017] and proposes
a loss function combining a reconstruction loss, a clustering loss as well as a locality-
preserving loss to enforce that close inputs receive similar embeddings (smoothness).
In [Dahal, 2018], encoded inputs are mapped to a different embedding space
specifically for clustering. [Aytekin et al., 2018] demonstrated how `2 normalization
of the latent AE representations could greatly improve clustering performance
when applying K-means on the encoded samples. Without any joint training, they
obtained superior performance on MNIST and USPS, compared with DEC and IDEC.
They trained a dense AE end-to-end with reconstruction loss, but constrained the
embeddings to have unit norm, arguing that it would make the representations

68 Chapter 2 Unsupervised representation learning for clustering

cluster better in Euclidean space, because Euclidean distance between vectors would
depend only on their angle (cosine distance) and not their norms. Unlike most
approaches using a standard clustering algorithm in latent space, [Tian et al.,
2017] proposes to directly solve clustering using the alternating direction method
of multipliers method (a flavor of the augmented Lagrangian method) in a deep
learning framework. Joint learning of representations with a GMM is tackled in
[Wang and Jiang, 2018], where the separability between Gaussian components is
enhanced in the objective function.

Deep clustering methods have also been applied to image clustering in particular,
leveraging convolutional neural network (CNN) architectures, see for instance DCEC
[Guo et al., 2017b] (identical to IDEC but with a CNN) and DEPICT [Dizaji et al.,
2017]). Clustering Convolutional Neural Network (CCNN) [Hsu et al., 2017] uses
pseudo-labels extracted from k-NN and a feature drift compensation. [Kilinc and
Uysal, 2018] learns K-means-friendly representations by using self-supervision
through data augmentation (image rotations) and an Auto-Clustering Output Layer
[Kilinc and Uysal, 2017] with Graph-based Activity Regularization (GAR).

Some other approaches adopt a K-parallel architecture, with K distinct autoen-
coders for each cluster [Zhang et al., 2017a, Chazan et al., 2019, Opochinsky et al.,
2020]. This way, a different latent space is learned for each cluster, instead of K
centroids lying in the same feature space. A data point is assigned to the network
with the lowest reconstruction error.

Recent approaches perform latent space clustering using generative models such
as VAE (VaDE [Jiang et al., 2017], GMVAE [Dilokthanakul et al., 2017]) or GAN
(WaMiC [Harchaoui et al., 2019], ClusterGAN [Mukherjee et al., 2019], Clustered
generator model [Zhu et al., 2019]) with a GMM prior in latent space, achieving
state-of-the-art results. For instance in the Variational Deep Embedding (VaDE)
[Jiang et al., 2017], a generative process is defined where a cluster is selected
from a GMM, an embedding z sampled from this cluster and decoded into an
observable x. The model is trained using the VAE ELBO (Equation 2.3). Differently,
IMSAT [Hu et al., 2017] learns discrete representations by maximizing information
between inputs and cluster assignments, and uses a data augmentation technique
called self-augmented training. Dual-AAE [Ge et al., 2019] and ADEC [Zhou and
Zhou, 2019] are methods based on adversarial autoencoders. Finally, while most
approaches rely on (soft) K-means or GMM as the clustering component, the
framework has been extended to non-parametric maximum margin clustering [Chen,
2015], density-based clustering [Lin et al., 2018], and mean-shift clustering [Madaan
and Maiti, 2019]. The second family of deep clustering methods are similarity-based

2.3 Deep clustering methods 69

approaches, taking as input a N × N affinity matrix. Sometimes the affinity is
learned. Although these methods are flexible in terms of similarity measure, they
often require to build an affinity graph of the data set at each step, incurring a high
computational cost. Joint Unsupervised LEarning (JULE) [Yang et al., 2016] is based
on agglomerative clustering. Its training alternates between steps of agglomerative
clustering (merging clusters), and a optimization step where network parameters
are updated to minimize the clustering loss.

Deep learning methods for spectral clustering have also been proposed. In Spectral-
Net [Shaham et al., 2018], a neural network trained with SGD learns to map data
to the eigenspace of their associated Laplacian matrix, and allows out-of-sample
extension. The affinity function is learned by means of metric learning with a
Siamese network. Other approaches are Deep Spectral Clustering (DSC) [Yang et al.,
2019] and the recent Spectral clustering via ensemble deep autoencoder (SC-EDAE)
[Affeldt et al., 2020]. In [Yang et al., 2019], a dual AE is used to learn noise-robust
representations, a spectral embedding and also uses mutual information maximiza-
tion. The Dissimilarity Mixture Autoencoder (DMAE) [Lara and González, 2020] is a
hybrid approach, generalizing GMM to different dissimilarity functions. To conclude,
recent advances in deep clustering include graph clustering [Tian et al., 2014, Bo
and Wang, 2020] and robustness to adversarial attacks [Yang et al., 2020].

Table 2.1 summarizes the ability of clustering methods to recover the ground-
truth classes, in terms of unsupervised clustering accuracy (defined in Section 4.2,
Chapter 4), ranging from K-means to the latest deep clustering advances. The
data sets are described later in Table 3.3. As a whole, deep clustering is already
a huge research field (the related works are impossible to list exhaustively; this
state-of-the-art is only an overview). However, it is still in its infancy and many issues
are unsolved or handled empirically. For instance, to solve the issue arising from
optimizing conflicting loss functions in deep clustering (representation VS cluster
structure), such as feature drift, [Mrabah et al., 2020] introduced the Dynamic AE
(DynAE) that gradually moves from optimizing the reconstruction to the clustering.

2.4 Deep self-organized models

This PhD is particularly interested in self-organized clustering models. Thus, we
propose to extend the ideas of deep clustering to the SOM algorithm. The next
chapter will introduce the Deep Embedded SOM (DESOM), one the main contribu-
tions of this thesis, but we first provide a review of the state of the art and similar

70 Chapter 2 Unsupervised representation learning for clustering

Tab. 2.1.: Unsupervised clustering accuracy (%) obtained by traditional and deep clustering
methods on benchmark data sets (average, on test set when available).

Method MNIST Fashion-MNIST USPS Reuters-10k
K 10 10 10 4

K-means 53.3 54.9 66.0 58.9
GMM [Harchaoui et al., 2019] 53.7 - - 54.7
Spectral (N-cuts) 66.0 50.8 64.9 -

AE + K-means 80.1 48.9 68.0 53.8
AE + GMM [Harchaoui et al., 2019] 82.6 - - 70.1

GMVAE [Dilokthanakul et al., 2017] 82.3 - - -
DCN [Yang et al., 2017b] 83.0 - - 80.0
DKM [Fard et al., 2018] 84.0 - 75.7 58.3
DEC [Guo et al., 2017a] 86.6 51.8 74.1 73.7
IDEC [Guo et al., 2017a] 88.1 52.9 76.1 75.6
VaDE [Jiang et al., 2017] 94.5 - 56.6 79.8
N2D [McConville et al., 2021] 94.8 67.2 95.8 -
ClusterGAN [Mukherjee et al., 2019] 95.0 63.0 - -
JULE [Yang et al., 2016] 96.1 56.3 95.0 -
DEPICT [Dizaji et al., 2017] 96.3 39.2 89.9 -
WaMiC [Harchaoui et al., 2019] 97.3 - - 79.8
Dual AE [Yang et al., 2019] 98.0 66.2 86.9 -
GAR [Kilinc and Uysal, 2018] 98.3 - 96.5 -
IMSAT [Hu et al., 2017] 98.4 - 71.0

2.4 Deep self-organized models 71

approaches. SOM has been initially used with Euclidean distance, but any similarity
function may be used, as in the relational SOM [Olteanu et al., 2013]. This requires
an adequate similarity measure. We have already mentioned feature selection and
subspace-based self-organized models in a previous paragraph [Benabdeslem and
Lebbah, 2007, Kaly et al., 2004, Attaoui et al., 2020]. Here, we will not consider
these kinds of approaches, and use the Euclidean distance, but in the intermediate
feature space of neural networks.

Although less attention has been given to self-organizing map models than pure
clustering, this attention raised in 2018 and 2019, with several works on this subject.
Early on, layered SOM architectures had been proposed. The DSOM (Deep Self-
Organizing Map) [Liu et al., 2015] is a multilayer SOM-based architecture for
image recognition, similar in spirit to CNNs, and trained via the supervised learning
method described previously. Each layer is composed of a self-organizing layer and a
sampling layer, and a last layer, composed of a single SOM, for classification. The
self-organizing layers consist in self-organizing maps sliding over the input image,
each map focusing on a different part of the input. The sampling layer is composed of
the winning units of each map of the self-organizing layer, resulting in a rectangular
map that can serve as an input for the next layer. Finally, the classification SOM at
the top of the network takes the whole last sampling layer as input. Compared to
the supervised SOM baseline from [Idan and Chevalier, 1991], DSOM performs 7%
better on the MNIST data set, but remains well under the accuracy obtained with
convolutional networks.

In [Elend and Kramer, 2019], authors have shown evidence that using higher-
level features extracted by convolutional layers of pretrained networks improves
SOM quality, as measured by several external label-oriented indices but also visual
quality. However, we think these results are somewhat biased because the features
are extracted from a network that was pretrained in a supervised manner on the
same data set. Thus, the top layers were trained to learn a feature space where
the classes are well-separated. Of course, this will help the subsequent SOM to
separate the classes and improve the label-oriented results. Maybe the performance
improvements would have been lower using features from a network that was
pretrained on another generic data set, e.g. ImageNet. Therefore, although the
idea is to use a generic pretrained network for feature extraction in order to have
a completely unsupervised process, the experiments in the paper differ from this
intent.

Other works are based on unsupervised neural networks, namely autoencoders.
An early approach, deep neural maps [Pesteie et al., 2018], combines a DAE, the

72 Chapter 2 Unsupervised representation learning for clustering

soft clustering loss from DEC and a SOM. Their procedure alternates between (1)
assigning and updating cluster centers using the SOM stochastic algorithm (2)
optimize the representations, regularized by the KL-divergence clustering term. They
compared this approach with other DR and visualization tools, however they did
not quantitatively assess the clustering or self-organization performance. [Ferles
et al., 2018] proposes the denoising autoencoder self-organizing map (DASOM) and
several variants in an extensive study on the combination of a non-linear DAE with
SOM. Another series of work performing joint representation learning with a SOM
is the SOM-VAE model, introduced in [Fortuin et al., 2019]. Their model is based on
the VQ-VAE (Vector Quantization Variational Autoencoder) model which enables to
train VAEs with a discrete latent space [van den Oord et al., 2017]. The principle of
the VQ-VAE is to learn a finite set of embeddings {ek}K1 using vector quantization
(VQ). Latent codes ze are discretized by assigning them to their nearest embedding
zq. [Fortuin et al., 2019] have added a topology constraint on the discrete latent
space by modifying the loss function of VQ-VAE. The loss of SOM-VAE is composed
of three terms: the ELBO reconstruction loss LR is the discrete case (equivalent to a
deterministic AE, without the (here constant) KL part), the vector quantization loss
LVQ and the SOM loss LSOM. The latter only considers the direct neighbors on the
map and the neighborhood is fixed. For an individual input x the proposed loss is

LSOM-VAE(x) = LR(x) + αLVQ(x) + βLSOM(x)

= ||x− x̃q||22 + ||x− x̃e||22 + α||ze − zq||22 + β
∑

e∈N(zq)
||e− sg[ze]||22

where x̃e and x̃q are respectively the reconstructions of ze and zq, N(·) is the set of
direct neighbors on the map and sg[·] is the stop-gradient operator. Later, the Deep
Probabilistic SOM (DPSOM) [Manduchi et al., 2020], a very recent unpublished
work improved on the SOM-VAE, achieving state-of-the-art clustering results and
proposing an interpretable application in the healthcare domain. It combines
elements from SOM-VAE and from DEC, and uses soft cluster assignments. Their
loss function combines the ELBO (this time without discrete quantization) LELBO

(see Equation 2.3), a KL-divergence clustering loss (the same as DEC) LDEC and a
soft SOM loss LS-SOM with fixed neighborhood:

LDPSOM = γLELBO + LDEC + βLS-SOM

= γLELBO +
N∑
i=1

K∑
k=1

pik log pik
qik
− β

N∑
i=1

K∑
k=1

qik
∑

k′∈N(k)
log qik′

where the distributions p and q are defined using Student’s t-distribution kernel as
in DEC, and N(k) is the set of neighbors of unit k.

2.4 Deep self-organized models 73

2.5 Conclusion

This chapter tackled representation learning without supervision with neural net-
works. One major family of approaches, explored in this thesis, are autoencoders.
We introduced them in depth, with their regularizations and more sophisticated vari-
ants such as VAEs. We also mentioned other representation learning methods that
were not applied during this PhD, namely adversarial and self-supervised learning
with pretext tasks. Then, we have seen how these representations can be biased
specifically towards a clustering objective, in order to learn a clustering-friendly
feature space. So-called deep clustering methods optimize jointly an information
preservation and a clustering loss. Furthermore, self-organized models can be
enhanced in the same manner. Very recently, a few works have performed deep
clustering with the SOM. We have presented a state-of-the-art of this new research
area, before introducing our own contribution, subject of the next chapter.

74 Chapter 2 Unsupervised representation learning for clustering

Deep Embedded SOM
(DESOM)

3

This chapter is based on the contributions:

• Forest, F., Lebbah, M., Azzag, H., & Lacaille, J. (2019). Deep Embedded SOM:
Joint Representation Learning and Self-Organization. European Symposium on
Artificial Neural Networks, Computational Intelligence and Machine Learning
(ESANN).

• Forest, F., Lebbah, M., Azzag, H., & Lacaille, J. (2019). Deep Architectures for
Joint Clustering and Visualization with Self-Organizing Maps. Workshop on
Learning Data Representations for Clustering (LDRC), Pacific-Asia Conference on
Knowledge Discovery and Data Mining (PAKDD).

• Forest, F., Lebbah, M., Azzag, H., & Lacaille, J. (2020). Carte SOM profonde :
Apprentissage joint de représentations et auto-organisation. CAp: Conférence
d’Apprentissage.

One of the main contributions of this thesis is the Deep Embedded SOM (DESOM)
model, introduced in [Forest et al., 2019b, Forest et al., 2019a, Forest et al., 2020c].
We propose an approach where self-organization of the prototypes and representa-
tion learning through a deterministic autoencoder are performed jointly by stochastic
gradient descent (SGD).

The DESOM model has already been applied in literature shortly after its publication,
to analyze energy consumption of buildings for smart energy management [Ullah
et al., 2020]. It was used in [Medeiros et al., 2020] and extended to jointly learn
feature relevance weights. Finally, it has been applied to seismic facies data in [Liu
et al., 2020]. DESOM outperformed the other two-stage DR + SOM methods (such
as AE+SOM), and authors introduced a variant called SDESOM (Sparse DESOM)
with a sparsity constraint on the latent space, which improved feature extraction
and clustering performance.

75

in
pu
t

L

z

x

encoder

We

decoder

Wd

re
co
ns
tr
uc
tio
n

x
~

LR

γLSOM
SOM layer

mk

∂LR

∂Wd

γ
∂LSOM

∂mkγ
∂LSOM

∂We

∂LR

∂We

Fig. 3.1.: DESOM architecture and gradients paths. The input x is projected into latent
space by the encoder We, where the SOM prototypes mk are learned via the
SOM loss LSOM. Latent samples z are reconstructed using the decoder Wd via
the reconstruction loss LR.

3.1 Architecture

The architecture is illustrated in Figure 3.1. The encoder and decoder networks
are generic and can be fully-connected, convolutional or even recurrent. Experi-
ment have been conducted with a fully-connected (DESOM) and a convolutional
(ConvDESOM) version.

The architecture is composed of three neural network modules: an encoder, a
decoder and a SOM layer. The encoder projects the inputs onto a latent, intermediate
space. The SOM is trained in this latent space and receives encoded inputs. The
decoder reconstructs the latent code back into original space, trying to match the
input as closely as possible.

3.2 Loss function

The encoder and decoder parameter weights are respectively noted We and Wd.
The encoding function is denoted by fWe and the decoding function by gWd . Thus,
zi = fWe(xi) ∈ RL is the embedded version of xi in the intermediate latent space,
and x̃i = gWd(fWe(xi)) ∈ RP is its reconstruction by the decoder. Our goal is to
jointly optimize the autoencoder network weights and the SOM prototype vectors.

76 Chapter 3 Deep Embedded SOM (DESOM)

For this task, we define a hybrid loss function composed of two terms, that can be
written as

L(We,Wd, {mk}K1) = LR(We,Wd) + γLSOM(We, {mk}K1). (3.1)

The first term LR is the autoencoder reconstruction loss. We use a MSE loss, which
corresponds to reconstructing the mean of a Gaussian output distribution:

LR = 1
N

N∑
i=1
LiR = 1

N

N∑
i=1
||x̃i − xi||22.

The second term is the self-organizing map loss, denoted LSOM. It depends on the
set of parameters {mk}1≤k≤K and on the best-matching units, denoted bi, assigning
a latent data point to its closest prototype according to Euclidean distance, i.e.

bi = argmin
k

||zi −mk||22.

The expression of the self-organizing map loss is

LSOM = 1
N

N∑
i=1
LiSOM = 1

N

N∑
i=1

K∑
k=1
KT (δ(bi, k)) ||zi −mk||22.

The gamma γ coefficient is a hyperparameter that trades off between minimizing
the AE reconstruction error and the SOM error. Therefore, the SOM loss acts as a
SOM-guided regularizer. The SOM loss can be decomposed into two terms, the first
one being the squared distance between the best matching unit and the latent point,
and the second one corresponding to the topographic relationship with neighboring
units:

LSOM = 1
N

N∑
i=1

K∑
k=1
KT (δ(bi, k)) ||zi −mk||22

= 1
N

N∑
i=1

KT (δ(bi, bi)) ||zi −mbi ||
2 +

∑
k 6=bi
KT (δ(bi, k)) ||zi −mk||22

= 1
N

N∑
i=1
||zi −mbi ||

2
2 + 1

N

N∑
i=1

∑
k 6=bi
KT (δ(bi, k)) ||zi −mk||22.

For large values of T , the second term is prevalent and leads to topographic organi-
zation. When the temperature approaches zero, the first term prevails and the SOM

3.2 Loss function 77

loss becomes identical to a K-means loss, where the centroids correspond to the
map prototypes:

lim
T→0
LSOM = 1

N

N∑
i=1
||zi −mbi ||

2
2 = LK-means.

Thus, when temperature is close to zero, the hybrid loss function (Equation 3.1)
can be written as follows:

lim
T→0
L = LR + γLK-means.

Hence, our model becomes identical to the DCN model [Yang et al., 2017b] or the
DKM model [Fard et al., 2018] (at the end of their hyperparameter annealing).

3.3 Training procedure

We use a joint training procedure, optimizing both the network parameters and the
prototypes by backpropagation and stochastic gradient descent. The assignments
to the best-matching units are fixed between each optimization step, as it is non-
differentiable. Thus, the weighting terms wi,k := KT (δ(bi, k)) become simple
coefficients for each input and prototype, constant w.r.t. the network parameters and
the prototypes. The gradients of the loss function w.r.t. AE weights and prototypes
are easy to derive if we consider assignments to be fixed at each step:

∂L
∂We

= ∂LR

∂We
+ γ

∂LSOM

∂We
∂L
∂Wd

= ∂LR

∂Wd
∂L
∂mk

= γ
∂LSOM

∂mk
.

The gradients for a single data point xi are

∂LiR
∂We

= 2(gWd(fWe(xi))− xi)
∂gWd(fWe(xi))

∂We
∂LiR
∂Wd

= 2(gWd(fWe(xi))− xi)
∂gWd(fWe(xi))

∂Wd

∂LiSOM
∂We

= 2
K∑
k=1

wi,k(fWe(xi)−mk)
∂fWe(xi)
∂We

∂LiSOM
∂mk

= 2wi,k(mk − fWe(xi)).

78 Chapter 3 Deep Embedded SOM (DESOM)

The paths of the gradients of the loss function are illustrated on Figure 3.1. We opti-
mize Equation 3.1 using minibatch SGD, with a learning rate lr (in our experiments
Adam is used instead, but the equations are derived for vanilla SGD). Given a batch
B of nb samples, the encoder’s weights are updated by

We ←We −
lr
nb

∑
i∈B

(
∂LiR
∂We

+ γ
∂LiSOM
∂We

)
, (3.2)

the decoder’s weights are updated by

Wd ←Wd −
lr
nb

∑
i∈B

∂LiR
∂Wd

, (3.3)

and finally, the map prototypes are updated by the following update rule:

mk ←mk −
lr
nb

∑
i∈B

γ
∂LiSOM
∂mk

. (3.4)

By expanding the prototypes update rule in Equation 3.4, we obtain an expression
somewhat in between of the stochastic SOM and the batch SOM algorithms presented
in the previous section (see Equations 1.13 and 1.15), that we can call minibatch
stochastic SOM:

mk ←mk + 2γ lr
nb

∑
i∈B
KT (δ(bi, k)) (zi −mk). (3.5)

As in batch SOM, we alternate between BMU assignments and minimization, but
minimization happens via a gradient descent step as in stochastic SOM. Thus, we
think optimizing SOM with our procedure is a sound choice.

The main novelty of our model is a new custom layer called SOM layer. Its parameters
are the set of SOM code vectors in latent space, i.e. a K × L matrix where K is the
number of prototypes (e.g. 64 for an 8× 8 map) and L is the dimensionality of the
latent space. The outputs of this layer are defined as the pairwise squared Euclidean
distances between the input batch and the prototypes: this allows to express the
SOM loss as a simple weighted sum, using the neighborhood weight terms wi,k.

First, the autoencoder is initialized either randomly using the Glorot uniform ini-
tializer, or by pretraining, and SOM parameters are initialized either at random
with an encoded data sample, or by a standard SOM (this choice is studied in the
experiments). At each iteration, the temperature is updated using exponential decay.
Then, we perform inference on the current batch to obtain the pairwise distances
between latent samples and SOM prototypes, in order to compute the weights wi,k

3.3 Training procedure 79

using the neighborhood function. Finally, we perform a training step to update all
parameters. In addition, we collect losses and performance metrics at a fixed interval
on the training and test sets, using the library SOMperf1 [Forest, 2020, Forest et al.,
2020b]. The training procedure of DESOM is detailed in Algorithm 3.1, omitting the

Algorithm 3.1: DESOM training procedure.
Input: training set X; AE architecture; SOM map size; temperatures Tmax, Tmin;

iterations; batchSize
Output: AE weights We, Wd; SOM code vectors {mk}
Initialize AE weights We, Wd (random or pretrain) ;
Initialize SOM parameters {mk} (random data sample or pretrain) ;
for t = 1, . . . , iterations do

T ← Tmax
(
Tmin
Tmax

)t/iterations
;

Load next training batch B ;
Encode current batch ;
Compute assignments and weights wi,k on batch ;
Train DESOM on batch by taking a SGD step (by Equations 3.2, 3.3 and 3.4) ;

test set for sake of brevity. We have also tried updating the self-organizing map not
at every training iteration, but only every update_interval iterations, introducing
an additional hyperparameter. This follows remarks from [Guo et al., 2017a] and
[Ma et al., 2019] and should help better training the encoder. To achieve this, we
set all gradients coming from the SOM loss to zero between each update interval.
The impact of this update interval will be mentioned in the next section.

3.4 Training parameters

Across all experiments, we use the Adam optimizer with lr = 0.001, β1 = 0.9,
β2 = 0.999. The Tmin parameter defines the final neighborhood radius at the
end of training. It has a direct impact on the trade-off between quantization and
topographic error: by choosing a Tmin smaller than 1, the prototype vectors will be
finetuned locally and improve quantization, however, it may harm the topology of
the map. This choice depends on the priority of the practitioner. In our experiments,
we set Tmin to 0.1, in order to obtain good quantization and clustering, and we
observed no visual degradation of the map. This will be further discussed. Tmax is
always set equal to the map size, in order to organize all units in the early stage of

1https://github.com/FlorentF9/SOMperf

80 Chapter 3 Deep Embedded SOM (DESOM)

https://github.com/FlorentF9/SOMperf

training. All other parameters such as map size, latent space dimension, gamma γ,
pretraining, initialization and batch sizes are studied in the experiments.

As there is a large number of parameters, we recapitulate them in Table 3.1. The
last column indicates whether the value of the parameter is modified and studied in
the experiments section; otherwise, it is fixed to the value indicated in the default
value column.

Tab. 3.1.: DESOM training parameters.

Parameter Notation Default value Studied in experiments

Gamma γ 10−3 !

Latent code dimension L 10 !

Map size - 8× 8 !

Initial temperature Tmax 8.0 !

Final temperature Tmin 0.1 !

Batch size nb 256 !

Learning rate lr 0.001 %

First moment decay β1 0.9 %

Second moment decay β2 0.999 %

3.5 Comparison with other deep SOM models

There are many differences between DESOM and SOM-VAE. First, SOM-VAE utilizes
a discrete latent space to represent the SOM prototypes, whereas in DESOM, the
SOM is learned in a continuous latent space. Secondly, they use a fixed window
neighborhood to update the map prototypes, whereas we use a Gaussian neigh-
borhood with exponential radius decay. Finally, the DESOM model presented in
this work is based on a deterministic AE and not a VAE. Table 3.2 summarizes the
properties of the different deep SOM models in terms of latent space, AE architecture,
loss function and training.

3.6 Data sets

We experiment, evaluate and compare models on four different classification bench-
mark data sets, three image data sets and one text data set:

3.5 Comparison with other deep SOM models 81

Tab. 3.2.: Comparison of the properties of deep SOM models.

Model Latent AE Rec. loss SOM loss Joint Pretraining

ConvSOM [Elend and Kramer, 2019] continuous AE MSE SOM % !

DASOM [Ferles et al., 2018] continuous DAE MSE SOM ! !

DESOM [Forest et al., 2019b] continuous AE MSE SOM ! %

Deep neural maps [Pesteie et al., 2018] continuous AE MSE KL+SOM ! !

SOM-VAE [Fortuin et al., 2019] discrete VQ-VAE ELBO VQ+SOM ! !

DPSOM [Manduchi et al., 2020] continuous VAE ELBO KL+SOM ! !

• MNIST [LeCun et al., 1998]: the MNIST data set consists in 70000 grayscale
images of handwritten digits, of size 28-by-28 pixels. We used the data set avail-
able in the Keras library, divided the pixel intensities by 255 to obtain floating-
point values between 0 and 1, and flattened the images to 784-dimensional
vectors (except for the convolutional architecture).

• Fashion-MNIST [Xiao et al., 2017]: the Fashion-MNIST data set was designed
as a drop-in replacement for the original MNIST data set, but with images of
clothing instead of digits, and provides a more challenging classification task.
The data set is also available in Keras and we applied the same preprocessing.

• USPS: this data set also consists in images of grayscale handwritten digits,
and contains 9298 16-by-16 pixel digits. We downloaded it from the Kaggle
website and did not perform any preprocessing.

• Reuters-10k [Lewis et al., 2004]: the Reuters-10k data set is built from the
RCV1-v2 corpus, that contains 804,414 English news stories labeled with a
category tree, with a total of 103 topics. Reuters-10k is created by restricting
the documents to 4 root categories (corporate/industrial, government/social,
markets and economics), excluding documents with multiple labels, then
sampling a subset of 10000 examples and computing TF-IDF features on the
2000 most frequently occurring words. We downloaded the raw RCV1-v2
topics and tokens and used the same code as in [Guo et al., 2017a] to build
the data set.

The properties of each data set are described in Table 3.3. In particular, we use
the default train/test splits. These data sets were selected because they all have a
high dimensionality (256 to 2000) and can benefit greatly from the representation
learning through a deep neural network. Using Euclidean distance directly on a
high-dimensional space, as is done in traditional SOM, is known to be problematic,
as explained in Chapter 1. Image data sets also have the advantage of being
easily visualized on a self-organizing map. Finally, these data sets were used in

82 Chapter 3 Deep Embedded SOM (DESOM)

Tab. 3.3.: Data set statistics of MNIST, Fashion-MNIST, USPS and Reuters-10k.

Data set Description Total Train Test Classes Dimension

MNIST images (digits) 70000 60000 10000 10 784
Fashion-MNIST images (clothing) 70000 60000 10000 10 784
USPS images (digits) 9298 7291 2007 10 256
Reuters-10k text (tf-idf) 10000 7769 2231 4 2000

many previous works on deep learning-based clustering models, allowing direct
comparisons.

3.7 Architecture and hyperparameter study

The DESOM model is governed by hyperparameters that are coupled in the training
process. A thorough exploration of architecture and training hyperparameters and
their influence on performance metrics is the goal of the experiments detailed in
the next paragraph. We study the influence of five fundamental parameters: the
gamma γ hyperparameter, the latent code dimension, the map size, and the nature
of the autoencoder (fully-connected or convolutional). All other parameters that
are either related to initialization or to training dynamics are fixed to reasonable
values and will be studied later. The subsequent paragraph discusses initialization
strategies for the AE and SOM weights. In the third paragraph, we study the
learning dynamics of DESOM, in particular the evolution of learning curves and the
interaction between its two components (AE and SOM), with different parameters.
Then, the next paragraph studies the visual quality of prototypes for image data sets.
The performance metrics used here are all introduced in Chapter 4. All experiments
are run 10 times to obtain meaningful means and standard deviations, displayed on
the graphs. We use the standard train/test split (see Table 3.3) and always report
results on the test set (unless specified otherwise).

3.7.1 Gamma γ hyperparameter study

This parameter defines the relative weight of reconstruction and SOM in the loss
function. We evaluate external clustering metrics on four data sets for different
values of γ, ranging from 10−4 to 10 (see Table 3.4). Our goal is not to cross-
validate and find the best value according to some external quality metric, as we

3.7 Architecture and hyperparameter study 83

Tab. 3.4.: Comparison of purity and NMI with different values of DESOM hyperparameter
γ. Best performance in bold underlined. Bold values correspond to results with
no statistically significant difference to the best (p-value > 0.05 after pairwise
t-test).

MNIST Fashion-MNIST
γ Pur NMI Pur NMI

10−4 .929 ± .004 .652 ± .003 .759 ± .006 .543 ± .004
10−3 .934 ± .004 .658 ± .004 .751 ± .009 .541 ± .004
10−2 .911 ± .006 .639 ± .006 .737 ± .007 .529 ± .005
0.1 .876 ± .008 .609 ± .006 .721 ± .005 .520 ± .004
0.5 .836 ± .033 .584 ± .016 .718 ± .009 .517 ± .006
1.0 .810 ± .025 .566 ± .019 .715 ± .012 .517 ± .007
10.0 .114 ± .000 .006 ± .003 .678 ± .008 .484 ± .007

USPS Reuters-10k
γ Pur NMI Pur NMI

10−4 .837 ± .014 .573 ± .009 .795 ± .019 .352 ± .012
10−3 .857 ± .011 .592 ± .010 .808 ± .017 .364 ± .011
10−2 .839 ± .013 .583 ± .008 .801 ± .017 .352 ± .014
0.1 .815 ± .014 .566 ± .007 .809 ± .014 .365 ± .016
0.5 .806 ± .018 .561 ± .012 .819 ± .020 .371 ± .012
1.0 .806 ± .013 .559 ± .006 .804 ± .030 .354 ± .027
10.0 .760 ± .029 .523 ± .021 .466 ± .101 .062 ± .078

are in an unsupervised setting, but to find a reasonable order of magnitude across
multiple data sets. The hyperparameter γ trades off between preserving information
(obtaining good reconstructions) and SOM clustering. As the SOM loss takes larger
values than the reconstruction loss, γ must be set smaller than one. A good value is
γ = 10−3 across all data sets; it represents the optimum for MNIST, USPS, and is
within the variance interval for Fashion-MNIST and Reuters-10k (for the latter data
set, variance of our AE is very high). Higher values of γ lead to degenerate solutions
for the encoder and decoder, which translates into low scores across all data sets,
and the AE being unable to produce any reconstructions. This is due to the fact that
the model tries hard to optimize the SOM loss, which is much easier to optimize
than the reconstruction loss as we observed during our experiments, thus neglecting
code quality.

Figure 3.2 represents SOM quantization and topographic error as a function of γ
(for MNIST). Quantization error exhibits the trade-off between the reconstruction
and SOM clustering: it decreases with γ, as high γ values result in the SOM being
more finetuned. As a drawback, this finetuning also increases topographic error, as
can been seen on the rightmost graph. Behavior is similar for other data sets.

84 Chapter 3 Deep Embedded SOM (DESOM)

0.0001 0.001 0.01 0.1 0.5 1.0
Gamma

5.5

5.6

5.7

5.8

5.9

Qu
an

tiz
at

io
n

er
ro

r

MNIST

0.0001 0.001 0.01 0.1 0.5 1.0
Gamma

0.55

0.60

0.65

0.70

0.75

To
po

gr
ap

hi
c

er
ro

r

MNIST

0.0001 0.001 0.01 0.1 0.5 1.0
Gamma

4.600

4.625

4.650

4.675

4.700

4.725

4.750

4.775

Qu
an

tiz
at

io
n

er
ro

r

Fashion-MNIST

0.0001 0.001 0.01 0.1 0.5 1.0
Gamma

0.50

0.55

0.60

0.65

0.70

To
po

gr
ap

hi
c

er
ro

r

Fashion-MNIST

0.0001 0.001 0.01 0.5 1.0
Gamma

3.80

3.85

3.90

3.95

4.00

4.05

4.10

Qu
an

tiz
at

io
n

er
ro

r

USPS

0.0001 0.001 0.01 0.5 1.0
Gamma

0.525

0.550

0.575

0.600

0.625

0.650

0.675

To
po

gr
ap

hi
c

er
ro

r

USPS

Fig. 3.2.: Quantization and topographic error as a function of DESOM hyperparameter γ
on MNIST, Fashion-MNIST and USPS.

As a conclusion, DESOM is not very sensitive to γ as long as it stays in the right
order of magnitude, and we select γ = 10−3 for the rest of the paper, in accordance
with the unsupervised setting (even if better results could be obtained by choosing
an adapted value for each data set).

3.7.2 Latent code dimension study

Authors in [Manduchi et al., 2020] have found that DEC performed better with
a lower-dimensional AE latent space (L = 10), while their VAE performed better
with a higher code dimension (L = 100). Let us assume that the size of the SOM

3.7 Architecture and hyperparameter study 85

has been fixed by the user. The dimensionality of the latent space where this SOM
will be learned is expected to be a determining parameter. Concretely, we expect
following behavior: on one hand, a latent space too small will result in a loss of
information and a lower performance as measured by external indices (label-based).
However the SOM may fit the latent code space very well and produce high latent
quality metrics (e.g. latent quantization error). On the other hand, with a large
latent space, the AE will not use all latent variables to extract useful features and
likely overfit the training set, and in addition, the low-dimensional SOM will have
difficulties to fit this high-dimensional space (translating into low latent quality
metrics). A straightforward experiment consists in comparing performance metrics
with different latent space dimensions, leaving all other parameters unchanged.

Tab. 3.5.: Comparison of purity and NMI with different latent code dimensions L in DESOM.
Best performance in bold underlined. Bold values correspond to results with
no statistically significant difference to the best (p-value > 0.05 after pairwise
t-test).

MNIST Fashion-MNIST
L Pur NMI Pur NMI

2 .768 ± .012 .552 ± .011 .688 ± .023 .499 ± .010
5 .901 ± .010 .628 ± .007 .736 ± .011 .530 ± .005
10 .931 ± .007 .654 ± .006 .756 ± .008 .542 ± .003
20 .925 ± .006 .647 ± .006 .752 ± .008 .542 ± .003
50 .921 ± .006 .641 ± .005 .747 ± .009 .541 ± .004
100 .921 ± .004 .643 ± .004 .747 ± .006 .541 ± .003

USPS Reuters-10k
L Pur NMI Pur NMI

2 .800 ± .013 .563 ± .007 .840 ± .010 .375 ± .012
5 .843 ± .004 .583 ± .006 .808 ± .016 .360 ± .012
10 .855 ± .010 .591 ± .008 .800 ± .024 .358 ± .017
20 .828 ± .010 .571 ± .007 .794 ± .028 .353 ± .022
50 .817 ± .012 .562 ± .011 .789 ± .030 .346 ± .017
100 .806 ± .021 .558 ± .012 .787 ± .019 .344 ± .015

These intuitions are confirmed by Table 3.5, showing that a latent space dimension
too low or too high both hurt the model’s performance. An optimal value exists: it is
L = 10 for MNIST, Fashion-MNIST and USPS, but not for Reuters-10k, suggesting
that the optimal value depends on the intrinsic dimensionality of the latent factors
of variation in the data distribution. Latent quantization error, represented as a
function of L on Figure 3.3, naturally varies like

√
L. When not mentioned, we use

a latent dimension equal to 10, even if better results could be obtained by tuning
the dimension for each data set (to remain in an unsupervised setting).

86 Chapter 3 Deep Embedded SOM (DESOM)

2 5 10 20 50 100
Latent dim

0.05

0.10

0.15

0.20

0.25

La
te

nt
 Q

ua
nt

iza
tio

n
Er

ro
r

MNIST

2 5 10 20 50 100
Latent dim

0.05

0.10

0.15

0.20

0.25

La
te

nt
 Q

ua
nt

iza
tio

n
Er

ro
r

Fashion-MNIST

2 5 10 20 50 100
Latent dim

0.10

0.15

0.20

0.25

0.30

0.35

La
te

nt
 Q

ua
nt

iza
tio

n
Er

ro
r

USPS

2 5 10 20 50 100
Latent dim

0.3

0.4

0.5

0.6

0.7

La
te

nt
 Q

ua
nt

iza
tio

n
Er

ro
r

Reuters10k

Fig. 3.3.: Latent quantization error as a function of latent space dimension.

3.7 Architecture and hyperparameter study 87

5 8 10 20
Map size

4.2

4.4

4.6

4.8

5.0

5.2

Qu
an

tiz
at

io
n

er
ro

r

Fashion-MNIST

5 8 10 20
Map size

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

To
po

gr
ap

hi
c

er
ro

r

Fashion-MNIST

5 8 10 20
Map size

14.0

14.5

15.0

15.5

16.0

16.5

17.0

17.5

Co
m

bi
ne

d
er

ro
r

Fashion-MNIST

Fig. 3.4.: Quantization, topographic and combined errors as a function of the map size
(5×5, 8×8, 10×10 and 20×20) for Fashion-MNIST. Quantization improves with
map size while topographic error increases. Combined error acts as a trade-off
and indicates 8× 8 as a good compromise.

3.7.3 Map size study

This paragraph studies the influence of the SOM map size (number of neurons)
on the results. The shape is kept square, with equal width and height, varying
between 5 and 20 units. Metrics behave as expected, i.e. clustering purity naturally
increases with map size, as there are more clusters, but NMI decreases. Quantization
error improves while topographic error increases; combined error shows a minimum
around size 8× 8 on MNIST and Fashion-MNIST, which corresponds to the size we
use throughout the paper, to compare with previous works (see Figure 3.4). On
USPS and Reuters-10k, the underlying manifold seems to require fewer units. SOM
entropy and class scatter index (the number of label groups formed on the map),
vary proportionally to the number of units.

3.7.4 Convolutional architecture study

The fact that CNN-based deep clustering models tend to outperform similar ap-
proaches using dense AEs can be seen in [Aljalbout et al., 2018]. We compare the
standard DESOM with a [500, 500, 2000, 10] fully-connected encoder with a convolu-
tional version, ConvDESOM [Forest et al., 2019a]. The ConvDESOM AE architecture
is similar to the one used in [Manduchi et al., 2020]: 4 convolutional layers with
[32, 64, 128, 256] filters of size 3× 3, and 2× 2 max pooling after each convolution.
We use no batch normalization and activations are basic ReLUs. We also apply it to
MNIST and Fashion-MNIST data sets.

From the comparison in Table 3.6, the convolutional architecture is superior in
terms of clustering purity and NMI, but slightly hurts quantization and topographic
errors. On most other metrics we compared, ConvDESOM is equivalent to DESOM.
As a conclusion, a convolutional AE performs better on images, but makes little

88 Chapter 3 Deep Embedded SOM (DESOM)

Tab. 3.6.: Comparison between DESOM and ConvDESOM in terms of purity, NMI, quanti-
zation and topographic errors, for MNIST and Fashion-MNIST.

MNIST
Method Pur NMI QE TE

DESOM .934 ± .004 .658 ± .004 5.843 ± 0.016 0.605 ± 0.039
ConvDESOM .948 ± .004 .673 ± .005 5.980 ± 0.038 0.610 ± 0.034

Fashion-MNIST
Method Pur NMI QE TE

DESOM .751 ± .009 .541 ± .004 4.756 ± 0.009 0.537 ± 0.029
ConvDESOM .758 ± .004 .546 ± .002 4.777 ± 0.017 0.538 ± 0.045

difference on toy data sets, as the fully-connected version is able to learn sufficient
representations, but we believe that for larger, more complex and high-dimensional
data, ConvDESOM or other architectures should produce superior results.

3.8 Initialization and pretraining

We now study the influence of initialization and pretraining. Usually, we seek a good
initial solution for the model parameters and avoid local minima. In our model, two
components must be initialized: AE and SOM.

3.8.1 AE pretraining

Pretraining the autoencoder consists in training it with only the reconstruction
loss before performing the joint task. There are several ways to pretrain an AE:
traditional end-to-end training, SDAE [Vincent et al., 2010] (also called layer-wise
pretraining), RBM pretraining [Hinton and Salakhutdinov, 2006] etc. End-to-end
training can be problematic because it could learn the identity function (but not
an issue in case of undercomplete AEs), is less robust and prone to overfitting.
Pretraining is used in most deep clustering approaches, either layer-wise [Xie et al.,
2016, Yang et al., 2017b, Jiang et al., 2017], RBM [Song et al., 2014] or end-to-end
[Fard et al., 2018], and improves results. We compared the two following strategies
for DESOM:

• No pretraining.

3.8 Initialization and pretraining 89

• Pretraining the AE in a simple end-to-end fashion for 100 epochs using MSE
reconstruction loss.

3.8.2 SOM initialization

The SOM weights are initialized using one of the following strategies:

• Random initialization: SOM weights are initialized with a random sample of
encoded samples (taken without replacement).

• SOM initialization: a standard SOM is trained for 10 epochs on the encoded
data set (we used the minisom package).

Other more sophisticated initialization schemes do exist (using for instance principal
components), but we limit ourselves to these two simple strategies.

3.8.3 Initial temperature

In the case when the AE is pretrained and SOM is initialized, we may not want
to disturb the map topology and only finetune the prototypes and representations.
Thus, we might try to use a very small initial temperature (e.g. Tmax = 0.1). We try
following initial temperatures:

• Tmax = 0.1 (local finetuning)
• Tmax = 8.0 (self-organization across the entire map size)

To summarize, this results in 8 combinations of possible initializations. Some results
are displayed in Figure 3.5. As for all other experiments, we performed 10 runs
for meaningful means and standard deviations. The first observation is that SOM
initialization has no effect at all on the final results in terms of clustering (purity and
NMI) or SOM quality (quantization and topographic errors). Second, AE pretraining
deteriorates the model’s performance. The only improvement is the NMI when
Tmax = 0.1, but a small initial temperature naturally leads to a higher topographic
error, as the prototypes are locally finetuned and global topology is not preserved
well. It suggests that the best solution is found when reconstruction and SOM loss
are optimized jointly from the beginning. The lowest topographic error is achieved
by random AE and SOM initialization with Tmax = 8.0, which is the setting we use
throughout all other experiments.

To conclude, initialization and pretraining do not lead to performance improvements;
in our benchmarks, none will be used. This allows to cut training time drastically,

90 Chapter 3 Deep Embedded SOM (DESOM)

Random SOM
No pre-training

0.0

0.2

0.4

0.6

0.8

Pu
rit

y

Random SOM
Pre-training

Tmax = 8.0
Tmax = 0.1

MNIST

Random SOM
No pre-training

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

NM
I

Random SOM
Pre-training

Tmax = 8.0
Tmax = 0.1

MNIST

Random SOM
No pre-training

0

1

2

3

4

5

6

7

Qu
an

tiz
at

io
n

er
ro

r

Random SOM
Pre-training

Tmax = 8.0
Tmax = 0.1

MNIST

Random SOM
No pre-training

0.0

0.2

0.4

0.6

0.8

1.0

To
po

gr
ap

hi
c

er
ro

r

Random SOM
Pre-training

Tmax = 8.0
Tmax = 0.1

MNIST

Fig. 3.5.: Performance metrics (purity, NMI, quantization and topographic errors) with
different combinations of pretraining (with or without) and initialization (random
or SOM).

as AE pretraining time has the same order of magnitude DESOM full joint training
(about the half, see Table 3.12).

3.9 Training parameters and learning dynamics

3.9.1 Learning curves

Learning curves representing the evolution of losses and metrics during training
on the training and test set (see Figure 3.6) show that our model converges, and
does not overfit. To preserve space, curves are only included for the MNIST data set,
and for γ = 10−3, unless specified. An interesting behavior is that of topographic
error, which first rapidly decreases, but then increases back until convergence (when
temperature T reaches Tmin). It shows the trade-off between self-organization and
the autoencoder’s reconstruction quality (very low at the beginning).

3.9.2 Latent space evolution

We visualize the evolution of latent space during training using the UMAP dimen-
sionality reduction [McInnes et al., 2018]. We choose this method instead of the
widely-used t-SNE, because it runs orders of magnitude faster (the MNIST test set

3.9 Training parameters and learning dynamics 91

0 2000 4000 6000 8000 10000
iteration

0.00

0.02

0.04

0.06

0.08

0.10

Lo
ss

Train
Test

0 2000 4000 6000 8000 10000
iteration

0.0

0.2

0.4

0.6

0.8

1.0

Pu
rit

y

Train
Test

0 2000 4000 6000 8000 10000
iteration

0.0

0.2

0.4

0.6

0.8

1.0

NM
I

NMI
Train
Test

0 2000 4000 6000 8000 10000
iteration

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

Qu
an

tiz
at

io
n

Er
ro

r

Train
Test

0 2000 4000 6000 8000 10000
iteration

0.0

0.2

0.4

0.6

0.8

1.0

To
po

gr
ap

hi
c

Er
ro

r

Train
Test

Fig. 3.6.: Learning curves of DESOM for loss, purity, NMI, quantization and topographic
error for MNIST.

with 10000 points is projected in a few seconds only, compared with several minutes
for t-SNE), and it is also able to effectively visualize the local and global structures
of the data distribution.

Figure 3.7 displays the MNIST test set and DESOM map after 0, 10, 20 and 40
epochs. Points are colored according to their target class (digit). We clearly see that
the DESOM objective (with SOM regularization) pushes points together to form
clusters, and that map prototypes are self-organized in latent space. Note that we
cannot interpret the SOM grid topology because of the UMAP projection, but we can
still note that "similar" digits have strong connections: 4 and 9, 1 and 7, etc.

The visualizations on Figure 3.8 show the joint representation learning and self-
organization: epoch after epoch, the reconstruction quality of the prototypes im-
proves (upper part of the figure), and well-organized regions are emerging on the
map, with samples of the same class gathering in the same units (bottom part).

3.9.3 SOM update interval

When using hybrid loss functions composed of terms with different optimization
dynamics, it is common to update each term at different intervals. To prevent one
term to prevail too much on the other, it may be optimized less frequently than the
other. In our case, the SOM term is optimized faster, thus we tried to update it only
every 10 or 100 SGD steps, while the reconstruction loss is updated at every step.
However, no impact was observed.

92 Chapter 3 Deep Embedded SOM (DESOM)

0
1
2
3
4
5
6
7
8
9

Fig. 3.7.: UMAP visualization of latent space after 0, 10, 20 and 40 training epochs.

Fig. 3.8.: (Top) decoded prototypes (bottom) samples projected on U-matrix and colored
by class after 0, 10, 20 and 40 training epochs.

3.9 Training parameters and learning dynamics 93

3.9.4 Gamma γ hyperparameter

The hyperparameter γ controls the relative weight of reconstruction and SOM in the
optimization of the DESOM loss function. Its influence on training can be visualized
on Figure 3.9, representing L (total loss), LR and LSOM learning curves for different
values of gamma. We see that the SOM loss has a higher amplitude, hence using
γ < 1.

0 2000 4000 6000 8000 10000
iteration

0.0

0.2

0.4

0.6

0.8

1.0

Lo
ss

 = 0.0001
L
Lr
Lsom

0 2000 4000 6000 8000 10000
iteration

0.0

0.2

0.4

0.6

0.8

1.0

Lo
ss

 = 0.001
L
Lr
Lsom

0 2000 4000 6000 8000 10000
iteration

0.0

0.2

0.4

0.6

0.8

1.0

Lo
ss

 = 0.01
L
Lr
Lsom

0 2000 4000 6000 8000 10000
iteration

0.0

0.2

0.4

0.6

0.8

1.0

Lo
ss

 = 0.1
L
Lr
Lsom

Fig. 3.9.: Evolution of DESOM losses for different values of hyperparameter γ.

If its value is too high, LSOM is optimized too quickly, leaving a higher reconstruction
loss. The comparison of both loss terms on Figure 3.10 makes clear the trade-off
on γ, leading to different final values for each term. As we have seen previously,
γ = 10−3 is an optimal value across data sets in terms of clustering quality, as we
can see on Figure 3.11 which presents the learning curves of purity and NMI for
different values of γ.

94 Chapter 3 Deep Embedded SOM (DESOM)

0 2000 4000 6000 8000 10000
iteration

0.00

0.02

0.04

0.06

0.08

0.10

Re
co

ns
tru

ct
io

n
lo

ss

R

 = 0.0001
 = 0.001
 = 0.01
 = 0.1
 = 1.0

0 2000 4000 6000 8000 10000
iteration

0.0

0.5

1.0

1.5

2.0

2.5

SO
M

 lo
ss

SO

M

 = 0.0001
 = 0.001
 = 0.01
 = 0.1
 = 1.0

Fig. 3.10.: Evolution of reconstruction and SOM losses for different values of hyperparame-
ter γ, which trades off between optimizing each of them.

0 2000 4000 6000 8000 10000
iteration

0.0

0.2

0.4

0.6

0.8

1.0

Pu
rit

y

 = 0.0001
 = 0.001
 = 0.01
 = 0.1
 = 1.0

0 2000 4000 6000 8000 10000
iteration

0.0

0.2

0.4

0.6

0.8

1.0

NM
I

 = 0.0001
 = 0.001
 = 0.01
 = 0.1
 = 1.0

Fig. 3.11.: Evolution of DESOM clustering quality (purity and NMI) for different values of
hyperparameter γ. Small values lead to better clustering, but at cost of topology.

3.9.5 Batch size

Training a SOM using minibatch stochastic gradient descent (here with the Adam
optimizer) is unusual as it corresponds neither to the original stochastic Kohonen
algorithm nor the batch version. However, it produces good results, even better
than the standard SOM training (this was found in [Fortuin et al., 2019] and [Forest
et al., 2019b]). Let us denote nb the batch size, i.e. the number of samples in each
minibatch. The Kohonen algorithm would correspond to nb = 1, and the batch
algorithm to nb = N with N the total number of training samples.

Throughout our experiments, we use nb = 256, as it is a common practice in deep
learning to use the largest possible batch size in order to exploit GPU parallelization
and accelerate training (the limit being graphics memory). In this experiment, we
studied the impact of batch size on DESOM training, and made nb vary in powers

3.9 Training parameters and learning dynamics 95

of two from 16 to 256. To be comparable, we adapted the number of iterations to
keep the overall number of epochs constant (i.e. 10000 iterations for nb = 256,
20000 for nb = 128, etc.). Final external clustering metrics on the test set are
presented in Figure 3.12, and are clearly in favor of using the largest possible batch
size. On the other hand, SOM quality metrics such as quantization, topographic

16 32 64 128 256
Batch size

0.87

0.88

0.89

0.90

0.91

0.92

0.93

0.94

Pu
rit

y

16 32 64 128 256
Batch size

0.60

0.61

0.62

0.63

0.64

0.65

0.66

NM
I

Fig. 3.12.: Purity and NMI for different batch sizes in DESOM optimization. Larger batch
sizes improve clustering results overall.

and combined errors are not sensitive to the batch size (see Figure 3.13). A large

16 32 64 128 256
Batch size

5.78

5.80

5.82

5.84

5.86

5.88

Qu
an

tiz
at

io
n

Er
ro

r

16 32 64 128 256
Batch size

0.54

0.56

0.58

0.60

0.62

0.64

0.66

0.68

To
po

gr
ap

hi
c

Er
ro

r

16 32 64 128 256
Batch size

20.5

21.0

21.5

22.0

22.5

23.0

Co
m

bi
ne

d
Er

ro
r

Fig. 3.13.: Quantization, topographic and combined errors for different batch sizes in
DESOM. Medium values (64 or 128) seem preferable, but difference is negligible.

batch size is preferable as it improves both the solution and training speed due to
parallelization.

3.10 Prototype image sharpness

As explained in the previous section, in case of image data sets, it is important
for visualization that the SOM prototypes are realistic and not suffering from the
blurring caused by averaging. It is clear that K-means and standard SOM will
produce a certain amount of blur, because they compute a (weighted) average of
the input images. Thus, the visualization will be of poor quality, even if quantization

96 Chapter 3 Deep Embedded SOM (DESOM)

Fig. 3.14.: Examples of (reconstructed) prototype images for SOM, AE+SOM, DESOM and
ConvDESOM (from left to right). With standard SOM, images are blurry due to
averaging in original space. The best visual quality is obtained by ConvDESOM.

error is low (because QE is only an average Euclidean distance). DESOM also
computes a weighted average, but in the latent space of autoencoders. Our intuition
is that the reconstructed prototype images won’t suffer as much from this issue,
because autoencoders learn a flattened latent space where linear operations (addition,
interpolation, etc.) are meaningful (for example, [Devries and Taylor, 2017] use
linear interpolation and extrapolation for data augmentation and produce realistic
outputs). In Figure 3.14 we represented an example of a prototype image of a 5 digit
from the MNIST data set, obtained by four different models. First, a standard SOM
applied on the raw pixels; then, a SOM applied on the encoded data set, using a
standard AE (AE+SOM); thirdly, the DESOM model; and finally, ConvDESOM. This
basic visual inspection confirms that the prototypes learned by the deep models have
better quality and are less blurred than the standard SOM, and with no surprise, the
best visual quality is obtained with the convolutional variant ConvDESOM.

As we want the prototype images to be realistic and as sharp as the original images,
we need to quantify this "blurriness" or, equivalently, the "sharpness" of prototype
images compared with the original samples. We have chosen a very simplistic way
to compute the sharpness of an image, which is the average norm of pixel gradients,
measured in two dimensions. The sharpness of a SOM is defined as the average
sharpness of its prototypes. This sharpness measure can then be compared with the
average sharpness of images in the original data set. We introduce the prototype
sharpness ratio (PSR), defined as follows:

PSR({m̃k}K1 ,X) := average prototype sharpness
average dataset sharpness

=
1
K

∑K
k=1 ||∇2Dm̃k||22

1
N

∑N
i=1 ||∇2Dxi||22

A score lower than 1 means that the prototypes are in average blurrier than the
original images; on the contrary, if it is larger than 1, they are less blurry (i.e. more
crisp or noisy) than the originals. The closer the PSR is to 1, the better the score. PSR
scores on benchmark image data sets for SOM, DESOM, ConvDESOM and variants
are presented in Table 3.10, Section 3.11. On MNIST, SOM obtains a PSR of 0.720,
while DESOM and ConvDESOM obtain respectively 1.030 and 1.045.

3.10 Prototype image sharpness 97

3.11 Benchmark results

This section is dedicated to evaluation and comparison of various clustering and
SOM-based methods in a large benchmark, in terms of clustering, visualization and
classification performance. As previously, all experiments are run 10 times to obtain
meaningful means and standard deviations, and use the standard train/test split
(see Table 3.3), always reporting results on the test set (unless specified otherwise).
On the four benchmark data sets, we evaluate different aspects and tasks. First,
we assess clustering quality with respect to external labels, using purity and NMI.
Then, we measure clustering and self-organization through SOM’s quality indices
in original and latent space. More qualitatively, we also assess the visual quality of
the obtained maps, using the reconstructed prototypes. Lastly, we compare different
methods on a classification task, where the goal is to discriminate classes when the
number of clusters equals the number of target classes, using unsupervised clustering
accuracy.

3.11.1 Compared methods

The benchmarks compare following SOM-based methods:

• SOM: our implementation of a SOM in Keras (equivalent to DESOM with
identity encoder and decoder) and trained by SGD.

• AE+SOM: two-stage approach, where SOM is learned on the encoded data
set using a pretrained AE, resulting in the DESOM model without joint opti-
mization of the AE and SOM.

• DESOM-AE+SOM: same approach, but using the AE from a pretrained DE-
SOM model, to study the impact of the SOM-guided regularization.

• DESOM: Deep Embedded SOM with joint representation learning and self-
organization.

The maps are always 8 × 8-sized, excepted in the classification task, where we
also compare a one-dimensional #classes × 1 map. The AE has always the same
architecture as in previous experiments, i.e. [500, 500, 2000, 10] fully-connected sym-
metric, except in ConvDESOM. We also include K-means (from scikit-learn module),
AE+K-means and DESOM-AE+K-means, with 64 prototypes, as a baseline, even if
it cannot be directly compared because it lacks self-organization.

When using SOM, practitioners often need interpretable high-level regions on the
map, that discriminate between different classes or behaviors of the studied phe-

98 Chapter 3 Deep Embedded SOM (DESOM)

nomenon. A common technique is to apply a subsequent clustering on the obtained
prototypes, in order to reduce the number of clusters [Vesanto, 1999]. They will
often use a hierarchical clustering (HC) algorithm, as in [Ambroise et al., 2000, Faure
et al., 2017]. Thus, we evaluate the class discrimination power of the previously
listed models, but without removing the topology constraint between the prototypes.
In order to do so, the number of clusters must be reduced to the number of target
classes. We compare three different methods:

• Perform K-means clustering on the map prototypes with K = #classes.
• Perform Ward clustering (HC) on the map prototypes with #classes clusters.
• Directly train a one-dimensional, wire-shaped map of size #classes× 1.

On this task, we measure purity, NMI and unsupervised clustering accuracy, the
unsupervised counterpart of supervised classification accuracy.

Results are put in perspective with baseline state-of-the-art SOM-based models
(SOM-VAE, DPSOM) and deep clustering models (K-means, DEC, IDEC , DCN, DKM
and VaDE) introduced in Chapter 2, keeping in mind that these are pure clustering
models and do not produce a self-organized map. Values are taken directly from
the papers (references in the results Table 3.7 and 3.11), and were in some cases
reported for the entire data set, and not only the hold-out test set.

3.11.2 Clustering benchmark

Results of the clustering benchmark are displayed in Table 3.7. The first statement
that is not surprising but clearly confirmed here, is that reducing dimensionality
with neural networks improves clustering quality, also in the case of SOM. If we
compare SOM vs. AE+SOM, every time there is a considerable performance gain.

Overall, AE+SOM (two-stage training) and DESOM (joint training) have similar
performance across the first three data sets, with an advantage for AE+SOM. How-
ever, DESOM outperforms AE+SOM by a fair margin (approx. +3% in purity and
+10% in NMI) on Reuters-10k, where the AE alone struggles to find good represen-
tations for the high-dimensional text data (the AE even decreases performance for
K-means). Thus, the joint training of DESOM does not bring consistent quantitative
benefits in terms of purity or NMI, as seen in deep clustering approaches, but it is
at least close to the two-stage approach and much faster to train (no pretraining).
Using the AE of DESOM in a two-stage approach yields similar or lower scores than
joint training with DESOM. On Reuters-10k, we see that DESOM-AE has learned a
better code than the standard AE.

3.11 Benchmark results 99

Tab. 3.7.: Clustering performance of K-means and SOM-based models according to purity
and NMI. Best performance among SOM-based models in bold underlined. Bold
values correspond to results with no statistically significant difference to the best
(p-value > 0.05 after pairwise t-test).

MNIST Fashion-MNIST
Method Pur NMI Pur NMI

K-means (k = 64) .845 ± .011 .581 ± .006 .718 ± .006 .514 ± .002
AE+K-means .946 ± .004 .672 ± .005 .764 ± .005 .548 ± .003
DESOM-AE+K-means .932 ± .005 .656 ± .006 .754 ± .008 .542 ± .003

SOM (8 × 8) .832 ± .010 .576 ± .005 .712 ± .002 .513 ± .002
AE+SOM .935 ± .005 .666 ± .005 .758 ± .007 .542 ± .005
DESOM-AE+SOM .933 ± .005 .655 ± .005 .756 ± .007 .543 ± .003
DESOM (8 × 8) .934 ± .004 .658 ± .004 .751 ± .009 .541 ± .004

SOM-VAE (8 × 8) .868 ± .003 .595 ± .002 .739 ± .002 .520 ± .002
DPSOM (8 × 8) .964 ± .001 .705 ± .001 .764 ± .003 .571 ± .001

USPS Reuters-10k
Method Pur NMI Pur NMI

K-means (k = 64) .858 ± .007 .598 ± .004 .895 ± .007 .439 ± .007
AE+K-means .874 ± .007 .611 ± .006 .856 ± .016 .392 ± .014
DESOM-AE+K-means .858 ± .010 .592 ± .009 .798 ± .028 .360 ± .018

SOM (8 × 8) .848 ± .009 .595 ± .007 .554 ± .046 .225 ± .063
AE+SOM .849 ± .015 .611 ± .010 .782 ± .020 .323 ± .018
DESOM-AE+SOM .852 ± .007 .589 ± .007 .799 ± .021 .355 ± .017
DESOM (8 × 8) .857 ± .011 .592 ± .010 .808 ± .017 .364 ± .011

100 Chapter 3 Deep Embedded SOM (DESOM)

As noted by [Fortuin et al., 2019], the SOM trained by SGD with Adam achieves
much higher clustering quality than standard SOM implementations, and benefits
from GPU acceleration. Thus we did not include another SOM implementation in
this work.

Comparing with other SOM-based models, DESOM consistently outperforms SOM-
VAE on MNIST and Fashion-MNIST according to purity and NMI, but is second to
the very recent DPSOM model, achieving state-of-the-art results on both data sets.
However, it is difficult to compare with these models, because they use a VAE, and
the authors do not measure other metrics than purity and NMI (e.g. topographic
organization). Tables 3.8 and 3.9 present quantization, topographic and combined

Tab. 3.8.: Comparison between SOM and DESOM using internal quality indices in original
space. Best performance in bold underlined. Bold values correspond to results
with no statistically significant difference to the best (p-value > 0.05 after
pairwise t-test).

MNIST
Method QE TE CE TP

SOM (8× 8) 5.345 ± 0.004 0.518 ± 0.037 15.78 ± 0.662 -0.073 ± 0.004
DESOM (8× 8) 5.848 ± 0.016 0.597 ± 0.033 21.74 ± 0.643 -0.104 ± 0.004

Fashion-MNIST
Method QE TE CE TP

SOM (8× 8) 4.537 ± 0.008 0.477 ± 0.037 12.40 ± 0.654 -0.026 ± 0.007
DESOM (8× 8) 4.755 ± 0.007 0.536 ± 0.035 15.22 ± 0.941 -0.046 ± 0.005

USPS
Method QE TE CE TP

SOM (8× 8) 3.693 ± 0.005 0.474 ± 0.025 10.35 ± 0.378 -0.055 ± 0.007
DESOM (8× 8) 4.025 ± 0.018 0.556 ± 0.041 14.62 ± 0.649 -0.082 ± 0.005

Reuters-10k
Method QE TE CE TP

SOM (8× 8) 42.70 ± 0.108 0.595 ± 0.311 102.4 ± 21.26 -0.206 ± 0.015
DESOM (8× 8) 41.81 ± 0.102 0.754 ± 0.072 113.8 ± 7.927 -0.147 ± 0.005

errors as well as topographic product in original and latent space for all data sets.
In original space, comparison between SOM and DESOM shows that generally
DESOM obtain inferior quantization and topology (excepted on Reuters-10k). Joint
representation learning implies a trade-off on SOM training: deep representations
enable learning meaningful clusters with respect to latent factors (e.g. classes), but
has an impact on the self-organization of SOM. The same metrics can be defined in
latent space, to compare the AE+SOM, DESOM-AE+SOM and DESOM approaches.
Here, results clearly point towards the advantage of the regularized, SOM-friendly

3.11 Benchmark results 101

Tab. 3.9.: Comparison between SOM, AE+SOM and DESOM using internal quality indices
in latent space. Best performance in bold underlined. Bold values correspond
to results with no statistically significant difference to the best (p-value > 0.05
after pairwise t-test).

MNIST
Method Q̂E T̂E ĈE T̂P

AE+SOM (8× 8) 1.231 ± 0.029 0.510 ± 0.047 4.429 ± 0.287 -0.066 ± 0.002
DESOM-AE+SOM (8× 8) 0.205 ± 0.008 0.514 ± 0.031 0.713 ± 0.017 -0.055 ± 0.003
DESOM (8× 8) 0.205 ± 0.008 0.534 ± 0.026 0.727 ± 0.058 -0.057 ± 0.005

Fashion-MNIST
Method Q̂E T̂E ĈE T̂P

AE+SOM (8× 8) 0.960 ± 0.026 0.532 ± 0.022 3.973 ± 0.250 -0.059 ± 0.007
DESOM-AE+SOM (8× 8) 0.166 ± 0.003 0.572 ± 0.037 0.664 ± 0.041 -0.044 ± 0.003
DESOM (8× 8) 0.167 ± 0.003 0.556 ± 0.035 0.661 ± 0.036 -0.045 ± 0.005

USPS
Method Q̂E T̂E ĈE T̂P

AE+SOM (8× 8) 3.926 ± 0.151 0.689 ± 0.104 19.88 ± 2.737 -0.098 ± 0.007
DESOM-AE+SOM (8× 8) 0.278 ± 0.009 0.554 ± 0.033 1.174 ± 0.085 -0.065 ± 0.005
DESOM (8× 8) 0.280 ± 0.007 0.563 ± 0.031 1.184 ± 0.037 -0.069 ± 0.003

Reuters-10k
Method Q̂E T̂E ĈE T̂P

AE+SOM (8× 8) 30.00 ± 0.867 0.934 ± 0.017 270.7 ± 13.72 -0.146 ± 0.010
DESOM-AE+SOM (8× 8) 0.527 ± 0.017 0.710 ± 0.035 3.391 ± 0.401 -0.071 ± 0.007
DESOM (8× 8) 0.524 ± 0.015 0.696 ± 0.065 3.102 ± 0.289 -0.069 ± 0.004

102 Chapter 3 Deep Embedded SOM (DESOM)

Fig. 3.15.: Prototypes (decoded) visualized on SOM, DESOM and ConvDESOM maps for
MNIST.

latent space, because quantization and topology are by far superior with DESOM’s
autoencoder than with the non-regularized AE. Latent quantization, topographic and
combined errors are similar for DESOM-AE+SOM and DESOM, but much higher for
AE+SOM. Latent topographic products are closer to zero for every data set, meaning
that the map is less stretched or distorted in DESOM’s latent space.

3.11.3 Visualization

In this paragraph, we visualize and compare maps of image data sets obtained by
SOM, DESOM and ConvDESOM. For image data sets, we can directly visualize the
prototypes or reconstructed prototypes using the decoder. Maps for MNIST and
Fashion-MNIST are shown on Figures 3.15 and 3.16. We clearly see the regions
corresponding to different classes and smooth transitions between them. The
advantage of fitting the map in latent space instead of the original high-dimensional
space is visible when comparing the prototypes learned by SOM and DESOM. With
SOM, they are very blurred (caused by averaging of data vectors in original space),
compared with the decoded prototypes of DESOM. A few SOM prototypes are not
realistic samples; however the topographic organization looks smoother with SOM
(this was quantified in previous paragraphs). Visually, the best map is obtained with
ConvDESOM, as the reconstruction quality is higher. In order to assess quantitatively
the visual quality of prototypes, we measure the PSR for each model (see Table 3.10).
A value close to 1 indicates sharpness close to the original samples, whereas a lower
value points towards blurriness. SOM prototypes are blurry and obtain a low PSR,
around 0.7. Models equipped with an AE obtain scores close to 1 and statistically
equivalent, with an advantage for DESOM. Visualizations of larger maps are available
in Appendix A.

3.11 Benchmark results 103

Fig. 3.16.: Prototypes (decoded) visualized on SOM, DESOM and ConvDESOM maps for
Fashion-MNIST.

Tab. 3.10.: Prototype sharpness ratio of SOM, AE+SOM and DESOM variants on image
data sets. Closest to 1 is best. Best performance in bold underlined. Bold
values correspond to results with no statistically significant difference to the
best (p-value > 0.05 after pairwise t-test).

Method MNIST Fashion-MNIST USPS

SOM (8× 8) 0.720 ± 0.005 0.703 ± 0.005 0.769 ± 0.005
AE+SOM (8× 8) 1.083 ± 0.012 0.834 ± 0.011 0.777 ± 0.016
DESOM-AE+SOM (8× 8) 1.034 ± 0.011 0.825 ± 0.010 1.041 ± 0.021
DESOM (8× 8) 1.030 ± 0.005 0.832 ± 0.013 1.027 ± 0.020
ConvDESOM (8× 8) 1.045 ± 0.027 0.829 ± 0.009 -

104 Chapter 3 Deep Embedded SOM (DESOM)

3.11.4 Classification benchmark

The classification task consists in discriminating classes when the number of clusters
equals the number of target classes. The number of clusters is reduced by applying a
subsequent K-means or hierarchical clustering on top of the 8× 8 map prototypes.
Purity, NMI and unsupervised clustering accuracy results are displayed in Table 3.11.
The HC approach, often used by practitioners, is more efficient than the K-means
approach in most cases.

On MNIST and Fashion-MNIST, the DESOM+HC approach consistently outperforms
every other method on all three metrics. It obtains 81% accuracy on MNIST, which
challenges deep clustering methods without self-organization constraints, such as
DEC. The AE+SOM+HC method is also very competitive. On Fashion-MNIST, the
DESOM-based methods are clearly superior. Generally, reducing dimensionality with
an AE greatly improves results, but USPS is an exception with SOM+HC performing
better than AE+SOM+HC. We assume this is due to the relatively low dimension
of this data set (256). However, DESOM+HC still achieves the best unsupervised
clustering accuracy, which is the most important metric for this task. Lastly, on
Reuters-10k the DESOM-based approaches again produce the best classification
results. This time, DESOM+K-means performs best, but DESOM+HC is statistically
equivalent.

These results demonstrate that DESOM’s self-organizing map prior has enabled
to learn a SOM-friendly representation that improves classification accuracy when
classifying the map prototypes with HC or K-means. DESOM performs best on all
four data sets is terms of purity, NMI and accuracy, the only exception being NMI on
USPS.

The one-dimensional DESOM achieves decent results and even the best on Reuters-
10k, showing that the very high-dimensional TF-IDF features benefit from joint
learning. It even outperforms K-means, which has no topology constraint. However,
such a map provides much less information on the data distribution and topology
than a larger two-dimensional map.

3.11.5 Training time

We report training times of the compared methods for MNIST in Table 3.12. All
models were trained on a Nvidia RTX 2080 GPU card in our lab, with a batch size
of 256. Autoencoder end-to-end pretraining for 100 epochs lasts 2 minutes. The
training time of SOM (our SGD-based Keras implementation) is also 2 minutes for

3.11 Benchmark results 105

Tab.3.11.:
C

lassification
perform

ance
w

hen
num

ber
of

clusters
equals

num
ber

of
classes.

B
est

perform
ance

am
ong

SO
M

-based
m

odels
in

bold
underlined.

Bold
values

correspond
to

results
w

ith
no

statistically
significantdifference

to
the

best(p-value
>

0.05
after

pairw
ise

t-test).

M
N

IST
Fashion-M

N
IST

M
ethod

Pur
N

M
I

A
cc

Pur
N

M
I

A
cc

K
-m

eans
(k

=
#

classes)
.591

±
.026

.501
±

.020
.533

±
.038

.583
±

.018
.513

±
.012

.549
±

.040
A

E+
K

-m
eans

.820
±

.019
.754

±
.013

.801
±

.027
.544

±
.010

.524
±

.012
.489

±
.017

D
ESO

M
-A

E+
K

-m
eans

.770
±

.025
.701

±
.018

.744
±

.045
.625

±
.014

.590
±

.009
.586

±
.014

D
EC

[G
uo

et
al.,2017a]

-
.837

.866
-

-
-

ID
EC

[G
uo

et
al.,2017a]

-
.867

.881
-

-
-

D
C

N
[Yang

et
al.,2017b]

-
.810

.830
-

-
-

D
K

M
[Fard

et
al.,2018]

-
.796

±
.009

.840
±

.022
-

-
-

VaD
E

[Jiang
et

al.,2017]
-

-
.945

-
-

-

SO
M

(8
×

8)+
K

M
.559

±
.053

.485
±

.041
.510

±
.071

.538
±

.023
.499

±
.024

.498
±

.035
SO

M
(8

×
8)+

H
C

.641
±

.030
.612

±
.027

.598
±

.035
.550

±
.032

.536
±

.022
.491

±
.041

A
E+

SO
M

+
K

M
.773

±
.051

.728
±

.032
.728

±
.073

.485
±

.041
.461

±
.032

.439
±

.048
A

E+
SO

M
+

H
C

.822
±

.024
.788

±
.030

.791
±

.026
.528

±
.029

.550
±

.026
.480

±
.032

D
ESO

M
-A

E+
SO

M
+

K
M

.743
±

.049
.690

±
.033

.720
±

.057
.588

±
.024

.583
±

.012
.535

±
.033

D
ESO

M
-A

E+
SO

M
+

H
C

.747
±

.041
.681

±
.036

.721
±

.056
.598

±
.042

.586
±

.036
.553

±
.047

D
ESO

M
(8

×
8)+

K
M

.751
±

.048
.696

±
.036

.717
±

.065
.587

±
.044

.582
±

.025
.536

±
.053

D
ESO

M
(8

×
8)+

H
C

.824
±

.024
.793

±
.025

.810
±

.032
.613

±
.035

.604
±

.019
.571

±
.036

D
ESO

M
(#

classes×
1)

.790
±

.017
.720

±
.020

.779
±

.033
.563

±
.019

.553
±

.011
.546

±
.025

U
SPS

R
euters-10k

M
ethod

Pur
N

M
I

A
cc

Pur
N

M
I

A
cc

K
-m

eans
(k

=
#

classes)
.703

±
.026

.585
±

.019
.660

±
.032

.647
±

.082
.373

±
.085

.589
±

.096
A

E+
K

-m
eans

.720
±

.033
.604

±
.026

.680
±

.063
.589

±
.044

.235
±

.046
.538

±
.041

D
ESO

M
-A

E+
K

-m
eans

.698
±

.027
.575

±
.024

.648
±

.032
.615

±
.067

.257
±

.062
.533

±
.069

D
EC

[G
uo

et
al.,2017a]

-
.753

.741
-

.498
.737

ID
EC

[G
uo

et
al.,2017a]

-
.785

.761
-

.498
.756

D
C

N
[Yang

et
al.,2017b]

-
-

-
-

.760
.800

D
K

M
[Fard

et
al.,2018]

-
.776

±
.011

.757
±

.013
-

.331
±

.049
.583

±
.038

VaD
E

[Jiang
et

al.,2017]
-

-
-

-
-

.798

SO
M

(8
×

8)+
K

M
.659

±
.029

.571
±

.016
.629

±
.043

.443
±

.070
.107

±
.099

.434
±

.072
SO

M
(8

×
8)+

H
C

.711
±

.019
.650

±
.014

.666
±

.024
.444

±
.028

.105
±

.041
.439

±
.030

A
E+

SO
M

+
K

M
.615

±
.027

.540
±

.027
.585

±
.049

.456
±

.058
.115

±
.067

.415
±

.042
A

E+
SO

M
+

H
C

.673
±

.056
.591

±
.043

.649
±

.070
.469

±
.057

.128
±

.058
.441

±
.071

D
ESO

M
-A

E+
SO

M
+

K
M

.639
±

.063
.545

±
.048

.621
±

.067
.571

±
.050

.206
±

.050
.478

±
.061

D
ESO

M
-A

E+
SO

M
+

H
C

.631
±

.041
.540

±
.035

.610
±

.040
.536

±
.063

.197
±

.061
.467

±
.065

D
ESO

M
(8

×
8)+

K
M

.636
±

.043
.543

±
.032

.611
±

.058
.573

±
.059

.210
±

.063
.510

±
.073

D
ESO

M
(8

×
8)+

H
C

.710
±

.023
.633

±
.017

.698
±

.030
.521

±
.079

.186
±

.095
.486

±
.094

D
ESO

M
(#

classes×
1)

.683
±

.035
.556

±
.033

.649
±

.038
.661

±
.039

.322
±

.041
.596

±
.045

106 Chapter 3 Deep Embedded SOM (DESOM)

Tab. 3.12.: Training times of AE, SOM and DESOM on the MNIST data set (60 000 samples,
batch size 256).

Model Average training time

AE pretraining (100 epochs) 2 minutes
SOM (10 000 iterations) 2 minutes
AE+SOM (10 000 iterations) 4 minutes
DESOM (10 000 iterations) 4 minutes

10000 iterations, giving a total training time of about 4 minutes for the two-stage
AE+SOM approach. This is identical to DESOM, which trains in 4 minutes. If AE
pretraining was necessary for DESOM, training time would jump to a total of 6
minutes, a +50% increase. Overall, these SGD-based, GPU-accelerated methods
are orders of magnitudes faster than standard SOM implementations that cannot
handle data sets of this size in a reasonable time. Finally, we think that these
low training times make SOM and DESOM very effective tools for surveying large,
high-dimensional data sets.

3.12 Software implementations

The DESOM model was implemented using Python and the Keras deep learning
framework, and is available as an open-source project2.

3.13 Conclusion

DESOM is an unsupervised learning algorithm that jointly trains an autoencoder
and the code vectors of a self-organizing map in a continuous latent space in order
to survey, cluster and visualize large, high-dimensional data sets. It is one of
the first members of what we could call the deep SOM family, along with several
other recent concurrent works. Joint optimization allows to integrate dimensionality
reduction to SOM learning, and to seek a SOM-friendly latent space that improves the
performance of SOM. The model is governed by several hyperparameters impacting
training and performance, in particular the trade-off between clustering and self-
organization. This chapter presented experiments and visualizations in order to

2https://github.com/FlorentF9/DESOM

3.12 Software implementations 107

https://github.com/FlorentF9/DESOM

understand these effects. In our experiments, we found that reducing dimension
with an AE vastly improves SOM clustering with respect to latent factors of variation.
We also found that the learned latent space does not in general improve quantitative
clustering quality compared with the representations produced by a pure AE model;
however, DESOM results are on par with the two-stage approaches (AE+SOM),
while requiring no pretraining at all and thus cutting down training time, which
is an important criterion when quickly exploring large data sets. Training time is
only a few minutes on medium-sized benchmark data sets. On a classification task
where the goal is to discriminate between target classes, after post-clustering the
SOM code vectors, DESOM consistently outperforms comparable models.

This chapter concludes the first part of this thesis. Until now, we have always
assumed that we knew in advance the number of clusters to discover, denoted K.
However, this is not the case in real life. Every parameter of a clustering needs to
be selected in order to maximize the quality of the resulting solution. This process,
called model selection, is far from being trivial in unsupervised learning, and is the
topic of Part II.

108 Chapter 3 Deep Embedded SOM (DESOM)

Part II

Model selection in clustering

Model selection in clustering 4
„Le modèle doit suivre les données et non l’inverse.

— Jean-Paul Benzécri
1973„All models are wrong [, but some are useful].

— George Box
1976

4.1 Introduction

In general, validating clustering solutions means evaluating results of cluster analysis
in a quantitative and objective fashion [Roth et al., 2002]. This allows to perform
model selection, in order to select the "right" number of clusters in a data set, or
to tune any hyperparameter of an algorithm. Model selection is a major challenge
in non-parametric clustering. There is no universally admitted way to evaluate
clustering results for the obvious reason that there is no ground truth against which
results could be tested, as in supervised learning. The difficulty to find a universal
evaluation criterion is a direct consequence of the fundamentally ill-defined objective
of clustering. In supervised learning, generalization performance can be evaluated
using a hold-out set or cross-validation. This is impossible in clustering due to the
lack of a proper loss function. For instance, the objective minimized in K-means
cannot be used to trade off the quality of the clustering against the number of
clusters, since it is a decreasing function of the latter: a high number of cluster will
always yield a lower value of this objective.

To evaluate the results of a clustering algorithm, one can use so-called clustering
validity indices (CVIs) [Milligan and Cooper, 1986, Arbelaitz et al., 2013]. In
this work, we consider a clustering as being a partition of the input data set or
underlying space. We will not work, for instance, on hierarchies of nested partitions
(dendrograms), as done in [Carlsson and Mémoli, 2010]. Evaluation a partition can
be based on two types of criteria:

111

• External criteria: a clustering solution is matched to a priori information, i.e.
external information that is not contained in the data set such as ground-truth
labels.

• Internal criteria: the quality measure is exclusively based on features inherent
to the data set itself.

In a sense, external criteria are more objective than internal criteria because they
incorporate no prior on the geometry of the clusters; instead, they evaluate how well
the clustering was able to recover the ground-truth classes (an external classification
task). However, ground-truth labels are generally unavailable in unsupervised data
exploration, making internal criteria the only possible choice. Internal criteria can
roughly be subdivided into two families of methods:

• Methods which assess the fit between the data and an expected structure. This
is straightforward for model-based clustering, where the likelihood allows to
build principled criteria. In model-free clustering, those methods rely on a
combination of between-cluster and within-cluster distances [Dunn, 1974, Cal-
iński and Harabasz, 1974, Davies and Bouldin, 1979, Rousseeuw, 1987, Ray
and Turi, 1999, Desgraupes, 2013]. Between-cluster distance measures how
distinct clusters are dissimilar or far apart, while within-cluster distance mea-
sures how elements belonging to the same cluster are similar, or the coherence
of the cluster. Unfortunately, this incorporates a prior on the geometry of
clusters.

• Methods which focus on the robustness of the solution, or the agreement of
different cluster structures obtained on the same data. One approach is called
cluster stability analysis [Von Luxburg, 2009], and is studied in this thesis.
It relies on the principle that a good clustering solution should be a stable
structure on the data distribution. Other methods compare the model with
a null data set from a unimodal distribution without cluster structure (e.g.
[Tibshirani et al., 2001]). Finally, combining an ensemble of several clusterings
is the goal of consensus methods [Strehl and Ghosh, 2003].

The first section introduces external criteria, and the second the internal ones.
Finally, the last section is about validating self-organized models.

112 Chapter 4 Model selection in clustering

4.2 External clustering validation

We note X = {xi}, i = 1 . . . N a data set and CK = {Ck}, k = 1 . . .K a partition
composed of K clusters. Let |Ck| be the cardinality of cluster Ck. In order to define
the external clustering criteria, we assume that labels are associated to each data
point of X, and compute a similarity between CK and the labels. Equivalently, we can
define a similarity between any two partitions CK and C′K′ , where the partition does
not have to be ground-truth labels. This section provides formulae for every measure
used in this work to compute a similarity (or distance) between two partitions.
These can be broadly divided into two families: pair counting-based measures (e.g.
Rand index) and information theoretic measures (e.g. mutual information).

4.2.1 Pair-counting-based measures

An important class of criteria for comparing clusterings is based on counting pairs of
samples on which two clusterings agree or disagree.

Contingency matrix

The measures for comparing two clusterings CK and C′K′ can be obtained from the
contingency matrix. A contingency matrix reports the intersection cardinality for
every pair of cluster assignments. It provides sufficient statistics for all clustering
metrics where the samples are i.i.d. and one does not need to account for some
instances not being clustered. It is a K ×K ′ matrix, whose kk′-th element nkk′ is
the number of points belonging to cluster Ck in clustering CK and to cluster C ′k′ in
clustering C′K′ , i.e. nkk′ = |Ck ∩ C ′k′ |:

CK
C′
K′ C ′1 C ′2 . . . C ′K′ Sums

C1 n11 n12 . . . n1K′ a1

C2 n21 n22 . . . n2K′ a2
...

...
...

. . .
...

...
CK nK1 nK2 . . . nKK′ aK

Sums b1 b2 . . . bs

Any pair of samples falls into one of four cases:

1. N11 the number of pairs that are in the same cluster under both CK and C′K′

2. N00 the number of pairs in different clusters under both CK and C′K′

4.2 External clustering validation 113

3. N10 the number of pairs in the same cluster under CK but not under C′K′

4. N01 the number of pairs in the same cluster under CK but not under C′K′

Rand index (RI)

The Rand index [Rand, 1971] is defined as

RI = N00 +N11
N00 +N11 +N01 +N10

= N00 +N11(N
2
) .

The Rand index is a value between 0 and 1, a value of 0 indicating that the clusterings
do not agree on any pair of points, and a value of 1 indicating an agreement for
every pair of points.

Adjusted Rand index (ARI)

The Adjusted Rand index is a version of the RI that is corrected by the expected
index value. It was introduced in two different variants in [Morey and Agresti, 1984]
and [Hubert and Arabie, 1985]. In this work, we use the first version of [Hubert
and Arabie, 1985] that expresses as follows:

Adjusted Index︷ ︸︸ ︷
ARI :=

Index︷ ︸︸ ︷∑
ij

(
nij
2

)
−

Expected Index︷ ︸︸ ︷
[
∑
i

(
ai
2

)∑
j

(
bj
2

)
]/
(
n

2

)
1
2[
∑
i

(
ai
2

)
+
∑
j

(
bj
2

)
]

︸ ︷︷ ︸
Max Index

− [
∑
i

(
ai
2

)∑
j

(
bj
2

)
]/
(
n

2

)
︸ ︷︷ ︸

Expected Index

or using different notations

ARI = 2(N00N11 −N01N10)
(N00 +N01)(N01 +N11)− (N00 +N10)(N10 +N11) .

It can yield negative values if the index is lower than the expected value.

Fowlkes-Mallows

The Fowlkes and Mallows index [Fowlkes and Mallows, 1983] is defined as

FM := N11√
(N11 +N10)(N00 +N01)

.

114 Chapter 4 Model selection in clustering

Jaccard

JACC := N11
N01 +N10 +N11

.

Purity

To compute the purity of a clustering, each cluster is assigned to the class which is
most frequent in the cluster, and then the accuracy of this assignment is measured by
counting the number of correctly assigned points and dividing by the total number
of points. Formally:

Pur(CK , C′K′) := 1
N

K∑
k=1

max
k′=1...K′

|Ck ∩ C ′k′ |.

High purity is easy to achieve when the number of data points per cluster is small; in
particular, purity is equal to 1 if all points get their own cluster. Thus, purity cannot
be used to trade off the validity of the clustering against the number of clusters.

Unsupervised clustering accuracy

Accuracy in supervised classification corresponds to the number of samples assigned
to the correct class divided by the size of the data set. It can also be used in
clustering (i.e. unsupervised classification) as an external quality measure if labels
are available and if the number of clusters is equal to the number of classes (or
to compare partitions where K = K ′). It consists in the accuracy of the resulting
classification using the best one-to-one mapping between clusters and class labels.
Denoting this mapping by π, the expression of unsupervised clustering accuracy is

Acc(CK , C′K) := 1
N

max
π

K∑
k=1
|Ck ∩ C ′π(k)|.

The best mapping can be found using the Hungarian assignment algorithm, also
known as the Kuhn-Munkres algorithm [Kuhn, 1955, Munkres, 1957].

4.2 External clustering validation 115

4.2.2 Information theoretic measures

Information theoretic measures are based on information theory. They calculate how
much information knowing one partition gives on the other. See for instance [Vinh
et al., 2010] for a survey.

Mutual Information and variants

We define I(CK , C′K′) the mutual information between the clusterings CK , C′K′ to be
equal to the mutual information between the associated random variables:

I(CK , C′K′) :=
∑
k

∑
k′

P (Ck∩C ′k′) log P (Ck ∩ C ′k′)
P (Ck)P (C ′k′)

=
∑
k

∑
k′

|Ck ∩ C ′k′ |
N

log N |Ck ∩ C
′
k′ |

|Ck||C ′k′ |
.

Mutual information measures the information that CK and C′K′ share: it tells how
much knowing one of these clusterings reduces our uncertainty about the other. Let
us call H(CK) the entropy of partition CK :

H(CK) = −
∑
k

P (Ck) logP (Ck) = −
∑
k

|Ck|
N

log |Ck|
N

.

Entropy is always positive. It takes value 0 only when there is no uncertainty, namely
when there is a single cluster. We can now define the different variants of the
Normalized Mutual Information (NMI):

NMI1(CK , C′K′) := I(CK , C′K′)
max

(
H(CK),H(C′K′)

) NMI2(CK , C′K′) := I(CK , C′K′)
min

(
H(CK),H(C′K′)

)
NMI3(CK , C′K′) := I(CK , C′K′)√

H(CK)H(C′K′)
NMI4(CK , C′K′) := 2I(CK , C′K′)

H(CK) + H(C′K′)

NMI5(CK , C′K′) := I(CK , C′K′)
H(CK , C′K′)

.

Finally, the adjusted mutual information (AMI) is defined as

AMI(CK , C′K′) := I(CK , C′K′)− E[I(CK , C′K′)]
max

(
H(CK),H(C′K′)

)
− E[I(CK , C′K′)]

where E[I(CK , C′K′)] is the expected mutual information between two clusterings
CK , C′K′ as defined in [Vinh et al., 2010].

116 Chapter 4 Model selection in clustering

Variation of Information

The variation of information (VI) is defined as

VI(CK , C′K′) := H(CK , C′K′)− I(CK , C′K′),

and its normalized version (NVI) as

NVI(CK , C′K′) := 1− I(CK , C′K′)
H(CK , C′K′)

.

Unlike all previously introduced measures, the VI/NVI measure dissimilarity instead
of similarity.

Information Distance

The expression of Information Distance (ID) is:

ID(CK , C′K′) := max(H(CK),H(C′K′))− I(CK , C′K′).

The normalized variant, NID, is both a distance and a normalized measure:

NID(CK , C′K′) := 1− I(CK , C′K′)
max(H(CK),H(C′K′))

.

4.3 Internal clustering validation

In the first paragraph, we define the within- and between-cluster distances, which
are the building blocks of clustering validity criteria and algorithms.

4.3.1 Cluster distances

Let d(·, ·) be the distance function between two elements (generally the squared
Euclidean distance). The centroid ck of cluster Ck is the arithmetic mean of the
vectors in Ck: ck := 1

|Ck|
∑

x∈Ck x. Within-cluster and between-cluster distances
are defined respectively in Tables 4.1 and 4.2. Each metric has different properties
and sensitiveness to noise and outliers. As we said, in clustering we seek a small
within-cluster distance and a large between-cluster distance. We will first discuss

4.3 Internal clustering validation 117

some properties of the within-cluster distances, and then between-cluster distances.

Tab. 4.1.: Within-cluster distances.

Diameter SM (C) = maxx,x′∈Ck d(x,x′)
Average distance SA(C) = 1

|C|(|C|−1)
∑
i 6=i′,xi,xi′∈C d(xi,xi′)

Centroid distance SC(C) = 1
|C|
∑

x∈C d(x, ck)
Nearest neighbor distance SNN (C) = 1

|C|
∑
i,xi∈C mini′ 6=i,xi′∈C d(xi,xi′)

Tab. 4.2.: Between-cluster distances.

Single linkage DS(Ck, Cl) = min(x,x′)∈Ck×Cl d(x,x′)
Complete linkage DM (Ck, Cl) = max(x,x′)∈Ck×Cl d(x,x′)
Average linkage DA(Ck, Cl) = 1

|Ck||Cl|
∑

(x,x′)∈Ck×Cl d(x,x′)
Centroid linkage DC(Ck, Cl) = d(ck, cl)
Ward linkage DW (Ck1 ∪ Ck2, Cl)

=
√
α1DW (Ck1, Cl)2 + α2DW (Ck2, Cl)2 − βDW (Ck1, Ck2)2

where α1 = |Ck1|+|Cl|
|Ck1|+|Ck2|+|Cl| , α2 = |Ck2|+|Cl|

|Ck1|+[Ck2|+|Cl| , β = |Ck1|+|Ck2|
|Ck1|+[Ck2|+|Cl|

and DW ({xi}, {xj}) = ||xi − xj ||2 (Euclidean distance)

The diameter is the maximum distance between two points of a cluster. Average
within-cluster distance is the average pairwise distance between elements. Centroid
distance, the average distance between elements of a cluster and its centroid. These
distances will be low when the cluster is compact. Nearest neighbor distance only
takes into account the distance between neighboring points; as a consequence, in
order to have a low SNN , the cluster must have no "holes", but not necessarily be
compact. To take a concrete example, for a ring-shaped cluster (and generally for
clusters where points are concentrated along a connected manifold), the average
and centroid distances will typically be large but the nearest neighbor distance will
be small. Among between-cluster distances, which express how two clusters Ck
and Cl are dissimilar, an important notion is sensitiveness to noise. A metric is
sensitive to noise if small perturbations, e.g. adding new points to the data set,
can change its value by a great amount. Average linkage is the average pairwise
distance between points belonging to the two clusters, so its value is high when their
elements are all far from each other in average. As it is an average, it is not sensitive
to local perturbations. Centroid linkage is simply the distance between the two
centroids, so is it much faster to compute and is also insensitive to noise. However, it

118 Chapter 4 Model selection in clustering

Fig. 4.1.: Single, complete and average linkage cluster distances.

ignores the cluster geometries. Single linkage is the distance between the two closest
points belonging to a different cluster. Maximizing this distance guarantees that
the clusters are well-separated (no points belonging to different clusters are close).
This distance is very noise-sensitive, because adding a single point can completely
change it. Similarly, complete linkage is the maximum pairwise distance between
points of the two clusters. A low value means that points of both clusters are all
relatively close together. However, it is very sensitive to outliers, because an outlier
far from a cluster will result in a very high distance. These distances are used in
agglomerative hierarchical clustering algorithms to merge clusters with minimal
between-cluster distances in a bottom-up approach. Single, complete and average
linkages are illustrated on Figure 4.1.

4.3.2 Distance-based internal criteria

Calinski-Harabasz index

The Calinski-Harabasz index [Caliński and Harabasz, 1974] is the ratio of the
between-cluster dispersion of the data set, with the average cluster cohesion, mea-
sured via the centroid distance:

CH(CK) := N −K
K − 1

∑K
k=1 |Ck|d(ck, c̄)∑K
k=1 |Ck|SC(Ck)

.

where c̄ := 1
N

∑
x∈X x is the global centroid of the data set. A good clustering in the

sense of Calinski-Harabasz must maximize the value of this index.

Davies-Bouldin index

The Davies-Bouldin index [Davies and Bouldin, 1979] measures the validity of
a clustering by computing the average maximum ratio between cluster cohesion

4.3 Internal clustering validation 119

(generally using centroid distance) and separation (using centroid linkage) for each
cluster:

DB(CK) := 1
K

K∑
k=1

max
l 6=k

SC(Ck) + SC(Cl)
DC(Ck, Cl)

.

A low value of the index indicates a better clustering quality, i.e. the elements of all
clusters are close to their centroids and the centroids are well separated. Thus, it
assumes that the data density is a decreasing function of distance to centroid, as in
spherical or ellipsoidal clusters. For instance, a ring-shaped cluster is not adapted to
Davies-Bouldin and will yield a high value of this index.

Dunn index

The Dunn index [Dunn, 1974] corresponds to the ratio between the minimal
between-cluster distance (generally using single linkage) and the maximal within-
cluster distance (generally using the diameter). Its expression is:

Dunn(CK) := mink 6=lDS(Ck, Cl)
maxk SD(Ck)

.

It privileges compact (small value of the denominator) and well-separated (large
value of the numerator) clusters. Unlike Davies-Bouldin, it must be maximized.

Ray-Turi index

The Ray-Turi index [Ray and Turi, 1999] is also a ratio index, between the average
centroid distance and the minimum distance between the centroids of two distinct
clusters:

RT(CK) :=
∑K
k=1 SC(Ck)

mink 6=l d(ck, cl)
.

Naturally, it needs to be minimized: a small numerator ensures compact clusters,
and a large denominator enforces separation of clusters.

Silhouette index

The silhouette value [Rousseeuw, 1987] of an object is a measure of how similar
this object is to its own cluster (cohesion) compared to other clusters (separation).
For any data point x, let a be the average distance of x with all other points within

120 Chapter 4 Model selection in clustering

the same cluster, and b be the lowest average distance of x to all points in any other
cluster, of which it is not a member. The silhouette of x is defined as:

Sil(x) := b− a
max{a, b} .

We have −1 < Sil(x) < 1. Silhouette is close to 1 when the point is very similar to
its own cluster compared to other clusters. The silhouette coefficient of a cluster Ck
is the average silhouette of the data points within the cluster:

Sil(Ck) := 1
|Ck|

∑
x∈Ck

Sil(x).

Finally, the silhouette of a clustering CK can be defined as

Sil(CK) := 1
K

K∑
k=1

Sil(Ck).

The maximum value of the index is used to determine the optimal clustering.

Wemmert-Gancarski index

The Wemmert-Gancarski index [Desgraupes, 2013] is built using for each input xi
the ratio between the distance to its own centroid ck and the distance to the nearest
centroid of a different cluster:

Ri := d(xi, ck)
minl 6=k d(xi, cl)

.

Then, the ratios are combined for each cluster by taking either 0 or their complement
to 1:

Jk := max{0, 1− 1
|Ck|

∑
i,xi∈Ck

Ri}.

Finally, the Wemmert-Gancarski index is the average of these values:

WG(CK) := 1
N

K∑
k=1
|Ck|Jk.

A value close to 1 indicates the best partition. It is one of the best-performing indices
compared in the next chapter.

4.3 Internal clustering validation 121

Xie-Beni index

The Xie-Beni index [Xie and Beni, 1991] is defined as the ratio between the average
centroid distance, and the minimum single linkage distance between two clusters:

CH(CK) := 1
N

∑K
k=1 |Ck|SC(Ck)

mink 6=lDS(Ck, Cl)
.

Its value is to be minimized.

This list has included all indices used throughout this thesis, but is of course no
exhaustive (see for instance [Arbelaitz et al., 2013, Desgraupes, 2013] for extensive
reviews). Additionally, it has been shown in [Kaczynska et al., 2020] that many
traditional CVIs can yield improved results by using a different decision rule, such as
the maximum increment (or decrement) instead of the minimum (respectively the
maximum) value. In particular, authors demonstrate that such alternate decision
rules are more robust across different degrees of cluster separation (as measured
by the method introduced in [Qiu and Joe, 2006]). In a similar spirit, the slope
statistic [Fujita et al., 2014] is based on Silhouette and works better in presence of a
dominant cluster.

4.3.3 Validation of model-based clustering

In model-based clustering, several criteria based on the likelihood are used. The
most common may be the BIC (Bayesian Information Criterion) [Schwartz, 1978].
The BIC score penalizes the likelihood of the model by its complexity. Given a model
with parameter θ, with a complexity (or size) C, the BIC is defined as

BIC(X; θ) := C logN − 2 logL(X; θ)

where L is the likelihood of observing the data set X under this model. Other widely
used criteria are the AIC (Akaike Information Criterion) [Akaike, 1973] and the
Integrated Completed Likelihood (ICL) [Biernacki et al., 2000]. A study on several
criteria for Gaussian mixtures is available in [Hu and Xu, 2003]. Another strategy is
to avoid fixing the number of clusters by using Bayesian non-parametric approaches
[Ferguson, 1973], such as the Dirichlet Process, which introduce a non-parametric
prior for the number of clusters.

122 Chapter 4 Model selection in clustering

4.3.4 Other internal criteria

Many criteria are not based explicitly on the geometry of clusters, but on some
type of statistical robustness. For instance, the gap statistic [Tibshirani et al., 2001]
measures the strength of the clustering obtained on the data relative to the clustering
obtained on data from a null distribution that does not contain any cluster structure.
It is used to find the number of clusters K. It is calculated by generating D data sets
following a null reference distribution (e.g. uniform noise), producing the partitions
{CdK}D1 . Then, the sums of within-cluster distances W (CK) :=

∑K
k=1

1
2|Ck|SA(Ck)

(where the d is generally the squared Euclidean distance) are being computed. The
gap statistic expresses as

Gap(CK) := 1
D

D∑
d=1

logW (CdK)− logW (CK).

The optimal number of clusters is chosen via finding the smallest K such that

Gap(CK) ≥ Gap(CK+1)− sK+1

where sK := σK
√

1 + 1/D and σK is the biased standard deviation estimate of the
logW (CdK). Other methods are CLEST [Dudoit and Fridlyand, 2002] the prediction
strength [Tibshirani and Walther, 2005]. These methods are different but related to
the stability of a clustering, which is the central concept of the next chapter.

Another family of methods to determine the number of clusters automatically are iter-
ative refinement methods. This family of methods consists in an iterative procedure,
wrapping around a standard algorithm (often K-means):

1. Start from a solution with few clusters (e.g. K = 2).
2. Evaluate the model to determine if K should be increased. Evaluation may

take the form of an internal criterion, or a statistical test of unimodality.
3. Increase K repeatedly as long clusters can be split.

Representatives of these methods are X-means [Pelleg and Moore, 2000] (based
on the BIC criterion), G-means [Hamerly and Elkan, 2004] (using a statistical test
of Gaussianity, testing if each cluster comes from a Gaussian distribution), and PG-
means [Feng and Hamerly, 2007]. Drawbacks of these methods is the assumptions
behind statistical test (Gaussianity, spherical clusters, etc.), and the weakness of
tests in high dimensions, requiring to use univariate projections (e.g. projection on
each coordinate or on the direction of highest variance). The dip-means algorithm
[Kalogeratos and Likas, 2012] makes no assumption of Gaussian clusters and works

4.3 Internal clustering validation 123

with pairwise distance matrices. It is based on the dip test [Hartigan and Hartigan,
1985]. Skinny-dip [Maurus and Plant, 2016] improves on this method in presence of
noisy distributions. [Hess and Duivesteijn, 2019] tests for unimodality by deriving
a concentration inequality, and propose a SpecialK algorithm for selecting K in
spectral clustering.

4.4 Validation of self-organized models

This section is about performance metrics for the evaluation of topographic map
algorithms, in particular SOM [Forest et al., 2020b]. In every application, practi-
tioners need to know whether they can trust the resulting mapping, and perform
model selection to select algorithm parameters (e.g. the map size, learning rate and
number of iterations). Concretely, two questions need to be answered:

• Do the SOM code vectors approximate well the data distribution?
• Does the mapping preserve neighborhood relationships between the map and

the original data space?

Quantitative evaluation of SOM is a subset of clustering validation, which is typically
achieved using validity indices. While these also apply to SOM, they ignore the
topology of the map, only answering the first question. The second question brings in
the additional challenge of assessing their topology. The problem of assessing SOM
performance has already been tackled quite thoroughly in literature, giving birth
to a family of quality indices incorporating neighborhood constraints, qualified as
topographic indices [Kiviluoto, 1996, Polzlbauer, 2004]. Concerning the related but
more general topic of evaluating quality in DR, see for instance [Lee and Verleysen,
2009].

While open-source software for SOM are available in various languages (see Sec-
tion 1.3 in Chapter 1), implementations for quality indices are almost impossible to
find. This is the issue we aim to solve in this work: after a survey of existing SOM
performance metrics, we implemented them in Python, one of the most popular lan-
guages for data mining today, and provide them as an open-source library, SOMperf1

[Forest, 2020].

An overview of all metrics implemented in SOMperf is depicted in Figure 4.2. These
can be categorized into two families:

1https://github.com/FlorentF9/SOMperf

124 Chapter 4 Model selection in clustering

https://github.com/FlorentF9/SOMperf

1. Clustering metrics. Any clustering quality measure that relies solely on the
prototype vectors and not on their topological organization. This encompasses
all quality indices used in clustering literature.

2. Topographic metrics. Under this term, we coin quality measures that, on
the contrary, assess the topological organization of the model. Some indices
also evaluate the clustering quality, but we call it topographic as soon as it
incorporates the map topology. In particular, they must detect neighborhood
violations such as foldings.

On another level, we can classify them into two well-known families, depending on
the use of ground-truth labels:

1. Internal indices, using only intrinsic properties of the model and the data.
2. External indices, relying on external ground-truth class labels to evaluate

results.

For instance, quantization error falls into the clustering metric category (as it
measures how SOM cluster centers fit the data distribution, without using any
topology information) and is an internal index (not depending on external labels).
On the other side, the Class Scatter Index is a topographic metric and an external
index, as it measures how ground-truth class labels are organized into groups of
neighboring map units. We emphasize that all clustering indices introduced before
this section also apply to self-organized models, thus we will only present new and
specific indices.

4.4.1 Internal validation

Quantization error

Quantization error is the average error made by projecting data on the SOM, as
measured by euclidean distance, i.e. the mean euclidean distance between a data
sample and its best-matching unit:

QE({mk},X) := 1
N

N∑
i=1
||xi −mbi ||2.

Topographic error

Topographic error [Kiviluoto, 1996] assesses the self-organization of a SOM model.
It is calculated as the fraction of samples whose best and second-best matching

4.4 Validation of self-organized models 125

SOM quality indices

External Internal

Clustering metrics

Purity

Clustering accuracy
(a.k.a. MMD)

RI, ARI, FM, NMI,
AMI, ID, VI...

Topographic metrics

Class scatter index

Clustering metrics

Quantization error

Davies-Bouldin, Silhouette,
Wemmert-Gancarski...

Topographic metrics

Topographic error

Combined error

Distortion

Neighborhood preservation
Trustworthiness

Topographic product

Implemented in SOMperf

Available in common libraries

Topographic function

C measure

Fig. 4.2.: SOM performance metrics can be classified into external (label-based) or internal
indices, and based on whether they evaluate topology (topographic metrics) or
not (clustering metrics).

126 Chapter 4 Model selection in clustering

units are not neighbors on the map. In other words, this error quantifies the
smoothness of projections on the self-organized map. Using the notation bki for the
k-th best-matching units of xi, we define the topographic error:

TE({mk},X) := 1
N

N∑
i=1

1δ(b1
i ,b

2
i)>1.

Combined error

Combined error [Kaski and Lagus, 1996] is an error measure that combines and
extends quantification and topographic errors. Its computation is more complex
than the previous indices. For a given data sample xi, we first compute its two best
matching units b1

i and b2
i . Then, we compute a sum of euclidean distances from xi to

the second BMU’s prototype vector mb2
i
, starting with the distance from xi to mb1

i
,

and thereafter following a shortest path until mb2
i
, going only through neighboring

units on the map. Let p be a path on the map of length P ≥ 1, from p(0) = b1
i to

p(L) = b2
i , such that p(k) and p(k + 1) must be neighbors for k = 0 . . . P − 1. The

distance along the shortest path on the map is computed as:

CEi := ||xi −mb1
i
||22 + min

p

P−1∑
k=0
||mp(k+1) −mp(k)||22.

Finally, combined error (CE) is the average of this distance over the input samples:

CE({mk},X) := 1
N

N∑
i=1

CEi.

Neighborhood preservation and trustworthiness

The neighborhood preservation and trustworthiness [Venna and Kaski, 2001] mea-
sure how the projection preserves neighborhoods in the input (respectively output)
space by ranking the k-nearest neighbors (k-NN) of each sample before and after
projection. For a given k, each sample contributes negatively by the difference
between its rank and k. See Figure 4.3 for an illustration. An important issue with
implementing neighborhood preservation and trustworthiness is handling ties in
the projected k-NN. As the SOM projections are discrete, all samples projected onto
the same map unit will have a distance equal to 0. In the continuous input space,
exact ties are very unlikely but still possible. Four methods to tackle this problem
are exposed in [Polzlbauer, 2004]. We adopt a weighted averaging approach as

4.4 Validation of self-organized models 127

original

k-NN

SOM

k-NN

Trustworthiness + (rank − k)

Neighborhood preservation + (rank − k)

ok

Fig. 4.3.: Illustration of neighborhood preservation and trustworthiness measures.

it is reasonable and deterministic. We include all ties in the set of k-NN, possibly
producing more than k neighbors (in particular in the discrete projected space). To
stay in the [0, 1] range, every error term is weighted by:

• For trustworthiness: the ratio between the number of elements in the original
k-NN (most often, exactly k), and the number of elements in the projected
k-NN (most often, larger than k).

• For neighborhood preservation: the inverse of this ratio.

Topographic product

The topographic product (TP) [Bauer et al., 1992] measures the preservation of
neighborhood relations between input space and the map. It depends only on the
prototype vectors and map topology, and is able to indicate whether the dimension of
the map is appropriate to fit the data set, or if it introduced neighborhood violations,
induced by foldings of the map. We note d the euclidean distance in input space, and
δ the topographic distance on the map. The computation of TP starts by defining
two ratios between the distance of a prototype j to its k-th nearest neighbor on the
map |Ck|δ(j), and to its k-th nearest neighbor in input space |Ck|d(j):

Q1(j, k) :=
d
(
mj ,m|Ck|δ(j)

)
d
(
mj ,m|Ck|d(j)

) , Q2(j, k) =
δ
(
j, |Ck|δ(j)

)
δ (j, |Ck|d(j))

.

Naturally, we always have Q1 ≥ 1 and Q2 ≤ 1. The ratios are combined into a
product in order to obtain a symmetric measure and mitigate local magnification
factors:

P3(j, k) :=
[
k∏
l=1

Q1(j, l)Q2(j, l)
] 1

2k

.

128 Chapter 4 Model selection in clustering

Finally, TP is obtained by taking the logarithm and averaging over all map units and
neighborhood orders:

TP({mk}) := 1
K(K − 1)

K∑
j=1

K−1∑
k=1

logP3(j, k). (4.1)

TP < 0 indicates the map dimension is too low to correctly represent the data set;
TP = 0 means the dimension is adequate; and TP > 0 indicates a dimension too
high and neighborhood violations. However, as the TP only uses the map prototypes,
it is unable to distinguish between foldings of a non-linear data manifold, and
foldings due to neighborhood violations. As a consequence, it is limited to linear
data manifolds.

Topographic function

The topographic function (TF) [Villmann et al., 1994] intends to overcome the
limitation of the topographic product, by distinguishing between natural foldings of
a non-linear data manifold and incorrect foldings due to neighborhood violations.
The main difference is that is uses not only the prototype vectors, but the receptive
fields of each unit c, defined as Rc = {x ∈ X | argmin

k
||x −mk||22 = c}. For each

unit c and integer k ∈ {1, . . . ,K}, the number of units having adjacent receptive
fields and a distance to c on the map larger than k, is computed:

fc(k) := |{c′ ∈ {1, . . . ,K} | Rc ∩Rc′ 6= ∅ ∧ δ(c, c′) > k}|.

The topographic function is defined by summing over all map units:

TF(k) :=
K∑
c=1

fc(k). (4.2)

A normalization is necessary to compare maps of different sizes, replacing k by
k/δmax (the maximum distance on the map) and dividing by K(K − 3p) where p is
the number of dimensions of the SOM (generally p = 2). In practice, the receptive
fields can be easily estimated without computing the full Voronoi tessellation, by
building a connectivity matrix connecting each pair of units that are the BMU and
second-BMU of a given data point.

4.4 Validation of self-organized models 129

Kruskal-Shepard error

Kruskal-Shepard error, introduced for multi-dimensional scaling [Kruskal, 1964],
measures the preservation of pairwise distances between two different spaces, and
was used for the SOM in [Elend and Kramer, 2019]. It is computed by the squared
Frobenius norm between the pairwise distance matrix of the data set, and the
distance matrix between units on the SOM. Both distance matrices are scaled to the
[0, 1] range. We consider the normalized error, by dividing it by N(N − 1):

KSE({mk},X) := 1
N(N − 1) ||D

X −DSOM||2F

where DX
ij := ||xi − xj ||22

max
i′,j′
||xi′ − xj′ ||22

and DSOM
ij := δ(bi, bj)

max
k,l

δ(k, l) .

C measure

The C measure [Goodhill and Sejnowski, 1996] measures neighborhood preservation
between two spaces similarly to the Kruskal-Shepard error, but using the element-
wise products between pairwise distances in the input and output space:

C({mk},X) :=
N∑
i=1

∑
j<i

d(xi − xj) δ(bi, bj).

This quantity must be maximized, meaning that both distances must take large
values at the same time, or in other words, if two points are far apart in the input
space, they must also be far apart in the output space.

4.4.2 External validation

Class scatter index

The class scatter index (CSI), introduced in [Elend and Kramer, 2019], is an external
SOM quality index that measures the scattering of ground-truth class labels on the
map. It is based on the idea that on a good map, classes should be distributed into
few distinct groups of neighboring units, and not scattered all over the map. This is
important for interpretation, because it allows to associate map areas with particular
classes. In practice, it computes the number of groups of neurons on the map, where
for a given class, a group is defined as a set of neighboring neurons that have at

130 Chapter 4 Model selection in clustering

least one sample belonging to that class assigned to them. Finally, CSI is the average
number of groups over all classes.

4.4.3 Software implementations

We have gathered and implemented all these metrics into a Python module, SOMperf2

[Forest, 2020, Forest et al., 2020b]. It depends on the libraries numpy, scipy, pandas
and scikit-learn. SOMperf is divided into following sub-modules:

• metrics: performance metric functions.

– external: external indices.
– internal: internal indices.

• utils: utility functions.

– neighborhood: neighborhood kernel functions (Gaussian, window, etc.).
Only used in distortion for now.

– topology: distance functions on grid topologies (rectangular, hexagonal,
etc.).

Usage examples and experiments are deferred to Appendix B.

4.5 Conclusion

The first chapter of this part on model selection in clustering reviewed the standard
methods used in literature. These can be divided into external criteria, comparing
a clustering with a ground-truth partition, and internal criteria, relying only on
the data itself. The latter are the only choice when labels are unavailable. In the
last section, we reviewed various performance metrics for SOM and introduced
the SOMperf Python module, enabling practitioners to easily evaluate their models.
Most internal CVIs optimize a certain combination of between-cluster distances (i.e.
cluster separation) and within-cluster distances (i.e. cluster coherence) However,
this makes strong geometrical assumptions, such as compact or spherical clusters, on
the solution. Other approaches exist, but none is fully convincing. This why many
practitioners still use heuristic qualitative tricks such as looking at the elbow curve.
In the next chapter, we explore an elegant set of methods called stability analysis,
based on the statistical robustness of the solution, and propose a novel principle and
effective criterion for selecting the number of clusters in an unlabeled data set.

2https://github.com/FlorentF9/SOMperf

4.5 Conclusion 131

https://github.com/FlorentF9/SOMperf

Selecting the number of
clusters with a stability
trade-off

5

This chapter is based on the contribution:

• Mourer, A., Forest, F., Lebbah, M., Azzag, H., & Lacaille, J. (2020). Selecting
the Number of Clusters K with a Stability Trade-off: an Internal Validation
Criterion. https://arxiv.org/abs/2006.08530

A second line of work of this thesis is to tackle model selection in clustering, in
particular selecting the number of clusters K. We have chosen to follow an elegant
and promising approach, yet not very successful in practice: cluster stability analysis.
In this chapter, we introduce a novel stability-based method, called Stadion (stability
difference criterion) [Mourer et al., 2020].

5.1 Cluster stability analysis

The previously introduced criteria incorporate strong assumptions on the geometry
of clusters (e.g. compact, spherical clusters) or on the underlying distribution, which
are specific to the algorithm or to an application. Hence, there is a need for a
general, model-agnostic evaluation method. Clustering stability has emerged as a
principle stating that "to be meaningful, a clustering must be both good and the
only good clustering of the data, up to small perturbations. Such a clustering is
called stable. Data that contains a stable clustering is said to be clusterable" [Meilǎ,
2018]. Hence, a clustering algorithm should discover stable structures in the data.
In statistical learning terms, if data sets are repeatedly sampled from the same
underlying distribution, an algorithm should find similar partitions. As we do not
have access to the data-generating distribution in model-free clustering, perturbed
data sets are obtained either by sampling or injecting noise into the original data.

Stability analysis for clustering validation is a long-established technique. It can be
traced back as far as 1973 [Strauss et al., 1973], took off with influential works [Ben-

133

https://arxiv.org/abs/2006.08530

Hur et al., 2002, Lange et al., 2004] and from there has drawn increasing attention
culminating with [Ben-David et al., 2006, Ben-David et al., 2007, Ben-David and
Von Luxburg, 2008] and [Von Luxburg, 2009]. Albeit significant theoretical efforts,
few empirical studies have been conducted. Each study focuses on specific aspects of
clustering stability. For example, [Levine and Domany, 2001, Dudoit and Fridlyand,
2002, Ben-Hur et al., 2002, Lange et al., 2004] investigated perturbation by random
subsampling of the original data set without replacement. Stability in a model-based
framework was studied in [Kerr and Churchill, 2001]. Perturbation by random
projections [Smolkin and Ghosh, 2003] and random noise [Fridlyand and Dudoit,
2001, Möller and Radke, 2006] were also considered.

5.2 Definitions and limitations

Clustering stability is analyzed in a standard statistical learning setting. A data
set X = {x1, . . . ,xN} consists in N independent and identically distributed (i.i.d.)
samples, drawn from a data-generating distribution P on an underlying space X .
Formally, a clustering algorithm A takes as input the data set X, some parameter
K ≥ 1, and outputs a clustering CK = {C1, . . . , CK} of X into K disjoint sets. Thus,
a clustering can be represented by a function X→ {1, . . . ,K} assigning a label to
every point of the input data set. Some algorithms can be extended to construct a
partition of the entire underlying space. This partition is represented by an extension
operator function X → {1, . . . ,K} (e.g. for center-based algorithms, we compute
the distance to the nearest center).

Let X and X′ be two different data sets consisting in N independent and identically
distributed (i.i.d.) samples, drawn from the same distribution P. A clustering
algorithm A takes as input the data set X, some parameter K ≥ 1, and outputs
a clustering CK = {C1, . . . , CK} of X into K disjoint sets. Note CK and C′K their
respective clusterings. Let s be a similarity measure such that s(CK , C′K) measures
the agreement between the two clusterings. Possible choices for this measure
are detailed below. Then, for a given sample size N , the stability of a clustering
algorithm A is defined as the expected similarity between two clusterings CK , C′K
on different data sets X and X′, sampled from the same distribution P,

Stab(A,K) := EX,X′∼PN
[
s(CK , C′K)

]
. (5.1)

The expectation is taken with respect to the i.i.d. sampling of the sets from P. This
quantity is unavailable in practice, as we have a finite number of samples, so it needs

134 Chapter 5 Selecting the number of clusters with a stability trade-off

to be estimated empirically. Various methods have been devised to estimate stability
using perturbed versions of X.

The first methods used in literature are based on resampling the original data set,
with or without replacement (splitting in half [Strauss et al., 1973], subsampling
[Ben-Hur et al., 2002], cross-validation [Wang, 2010], bootstrapping [Falasconi
et al., 2010, Fang and Wang, 2012], jackknife [Yeung et al., 2001]. . .). Another
method consists in adding random noise either to the original data points [Möller
and Radke, 2006] or to their pairwise distances (additive or multiplicative) [Bilu and
Linial, 2012, Awasthi et al., 2012, Dutta et al., 2017, Balcan and Liang, 2016, Balcan
et al., 2020]. For high-dimensional data, other alternatives are random projections
or randomly adding or deleting variables [Strauss et al., 1973]. Once the perturbed
data sets are generated, there are several ways to compare the resulting clusterings.
With noise-based methods, it is possible to compare the clustering of the original
data set (reference clustering) with the clusterings obtained on perturbed data sets,
or to compare only clusterings obtained on the latter. With sampling-based methods,
we can compare overlapping subsamples on data points where both clusterings are
defined [Falasconi et al., 2010], or compare clusterings of disjoint subsamples (using
for instance an extension operator or a supervised classifier to transfer labels from
one sample to another [Lange et al., 2004]). Finally, to compute a similarity score
between two partitions, common choices are the ARI [Falasconi et al., 2010, Zhao
et al., 2011], FM, Jaccard [Ben-Hur et al., 2002], NMI, Minimum Matching Distance
[Lange et al., 2004], or VI.

Before discussing in details the mechanisms of stability, we introduce a trivial
example to illustrate its main issue: it cannot detect in general whenever K is
too small. Consider the example presented in Figure 5.1 with three clusters, two
of them closer to each other than to the third one. On any sample from such a
distribution, as soon as we have a reasonable amount of data, K-means with K = 2
always constructs the solution separating the left cluster from the two right clusters.
Consequently, it is stable despite K = 2 being the wrong number of clusters. This
situation was pointed out in [Ben-David et al., 2006].

Discussion
Stability is determined by the number of data points changing clusters. In the case
of algorithms that minimize an objective function (e.g. center-based or spectral
clustering), two different sources of instability have been identified [Von Luxburg,
2009]. First, jittering is caused by data points changing side at cluster boundaries
after perturbation. Therefore, strong jitter is produced when a cluster boundary
cuts through high-density regions. Second, jumping refers to the algorithm ending

5.2 Definitions and limitations 135

(a) K = 2 (stable) (b) K = 3 (stable)
(c) K = 4 (unstable, jitter-

ing)

Fig. 5.1.: Example data set with three clusters. The labels correspond to the K-means
clustering result for K = 2, 3 and 4. K-means is stable even if the number of
clusters is too small.

up in different local minima. The most important cause of jumping is initialization
(see Figure 5.6 for an example). Another cause is the existence of several global
minima of the objective function on the underlying distribution. This happens only if
there are perfect symmetries in the distribution (see Figure 5.5), which is extremely
unlikely for real-world data sets.

However, practitioners mainly use algorithms with consistent initialization strategies.
For instance with K-means, we keep the best trial over a large number of runs
and use the K-means++ seeding heuristic [Arthur and Vassilvitskii, 2007]. This
initialization tends to make K-means deterministic and its effectiveness has been
proven in practice. Thus, it is different from the initialization proposed in [Von
Luxburg, 2009, Bubeck et al., 2012] which allows jumping to occur whenever
K > K?, where K? is the true number of clusters. Throughout this work, we
consider a setting with large enough sample size, without perfect symmetries and
with effective initialization. Thus, we do not consider jumping as the main source of
instability even when K > K?, and rather believe that jittering plays a major role.
It captures useful information about a clustering, i.e. densities at boundaries, and
also seems fundamental and related to supervised learning. As a consequence, we
need a perturbation process that produces jittering. Unfortunately, as soon as N is
reasonably large, resampling methods become trivially stable whenever there is a
single global minimum [Ben-David et al., 2006, Von Luxburg, 2009]. See Figure 5.7
for an example where sampling methods fail. We summarize important results in
the diagram Figure 5.2.

To conclude, for K-means in our setting, the perturbation process causes jittering
and more rarely jumping (in experiments, we seldom observed jumping when K is
too large), enabling stability to indicate whenever K is too large. On the other hand,
stability cannot in general detect when K is too small. Despite a lack of theoretical

136 Chapter 5 Selecting the number of clusters with a stability trade-off

References:
[1] Ben-David and von Luxburg (2006)
[2] Ben-David and von Luxburg (2008)
[3] von Luxburg (2010)

No

Yes

SYM

No

Yes

INIT

Independently of
INIT and PERT

Sampling

Noise
PERT

Independently of
PERT

∀K

Jumping due to
global minima

Unstable (b)

Stable (a)

Justified by or related to:
(a) Theorem 10 (Stability theorem) [1]
 Lemma 1 (Stability and global optima of the objective function) [3]
(b) Theorem 15 (Instability from symmetry) [1]
 Lemma 1 (Stability and global optima of the objective function) [3]
(c) Theorem 4 (High instability implies cut in high density region) [2]
 Conclusion 3 (Instable clusterings) [3]
(d) Conjecture 4 (Stable clusterings) [3]
 Conclusion 5 (Stability of idealized K-means detects whether K is too large) [3]
(e) Conjecture 8 (Stability of the actual K-means algorithm) [3]

K

Stable (d)

Unstable (c, d)JitteringK > K
⋆

K = K
⋆

Notations:
SYM: Symmetries in the data distribution
INIT: Effective initialization scheme
PERT: Perturbation process

Our
setting

K

Stable or Unstable (e)

Unstable (e)K > K
⋆

K ≤ K
⋆

Jumping due to
initialization

Stable or Unstable (d)K < K
⋆

Fig. 5.2.: Diagram explaining the various sources of instability in different settings for
K-means with large sample size, assuming K � N and the underlying distri-
bution has K? well-separated clusters that can be represented by K-means. We
consider no symmetries, effective initialization and noise-based perturbation, thus
instability (due to jittering) arises when K is too large, and sometimes when K is
too small whenever cluster boundaries are in high-density regions.

guarantees, concepts should apply to other algorithms. In order to overcome this
limitation of stability, we introduce a novel concept of within-cluster stability.

5.3 Between-cluster and within-cluster stability

A clustering algorithm applied with the same parameters to perturbed versions of
a data set should find the same structure and obtain similar results. The stability
principle described by Equation 5.1 relies on between-cluster boundaries and we
thus call it between-cluster stability. Therefore, it cannot detect structure within
clusters. In Figure 5.1, K = 2 is stable, whereas one cluster contains two sub-clusters.
This sub-structure cannot be detected by between-cluster stability alone. Obviously,
this implies that stability is unable to decide whether a data set is clusterable or not
(i.e. when K? = 1), which is a severe limitation. For this very reason, we introduce
a second principle of within-cluster stability: clusters should not be composed of
several sub-clusters. This implies the absence of stable structures inside any cluster.
In other words, any partition of a cluster should be unstable. The combination of
these two principles leads to a new definition of a clustering:

5.3 Between-cluster and within-cluster stability 137

Definition 1. Clustering: A clustering is a partitioning of data into groups (a.k.a.
clusters) so that the partition is stable, and within each cluster, there exists no stable
partition.

Then, a clustering should have a high between-cluster stability and a low within-
cluster stability. Despite their apparent simplicity, implementing these principles is a
difficult task. As seen in the last section, between-cluster stability can be estimated in
many different ways, however not all are effective. On the other hand, within-cluster
stability is a challenging quantity to define and estimate. We propose a method to
estimate both quantities, and then we detail and discuss our choices.

5.4 Stadion: a novel stability-based validity index

Let {X1, . . . ,XD} be D perturbed versions of the data set obtained by adding
random noise to the original data set X. Between-cluster stability of algorithm
A with parameter K estimates the expectation in Equation 5.1 by the empirical
mean of the similarities s between the reference clustering CK = A(X,K) and the
clusterings of the perturbed data sets,

StabB(A,X, CK ,K) := 1
D

D∑
d=1

s (CK ,A(Xd,K)) . (5.2)

Since s is a similarity measure, this quantity needs to be maximized, and conversely
with a dissimilarity measure. In order to define within-cluster stability, we need to
assess the presence of stable structures inside each cluster. To this aim, we propose
to cluster again the data within each cluster of CK . Formally, let Ω ⊂ N∗ be a set
of numbers of clusters. The k-th cluster in the reference clustering is noted Ck, its
number of elements Nk, and Q(k)

K′ = A(Ck,K ′) denotes a partition of Ck into K ′

clusters. Within-cluster stability of algorithm A is defined as

StabW(A,X, CK ,K,Ω) :=
K∑
k=1

(1
|Ω|

∑
K′∈Ω

StabB(A, Ck,Q
(k)
K′ ,K

′)
)
× Nk

N
. (5.3)

As a good clustering is unstable within each cluster, this quantity needs to be
minimized. Hence, we propose to build a new validity index combining between-
cluster and within-cluster stability. A natural choice is the difference between both

138 Chapter 5 Selecting the number of clusters with a stability trade-off

quantities. We call this index Stadion, standing for stability difference criterion and
for the sake of brevity, A, K and X are omitted in the notations:

Stadion(CK ,Ω) := StabB(CK)− StabW(CK ,Ω). (5.4)

Since we use an effective initialization scheme, the same partition CK is used in both
terms of Equation 5.4. Thus, Stadion evaluates the stability of an algorithm w.r.t. a
reference partition.

How to perturb data? In our realistic setting (see Figure 5.2), neither jumping nor
jittering will occur if the data are perturbed under sampling processes, as soon as
there is enough data. We show on a simple example that sampling-based methods
such as [Ben-Hur et al., 2002, Lange et al., 2004] cannot work in the general case.
Therefore, only noise-based perturbation is considered here. Among them, we adopt
the ε-Additive Perturbation (ε-AP) with Gaussian or uniform noise for this work,
assuming variables are scaled to zero mean and unit variance. The number of
perturbed samples D can be kept very low and still gives reliable estimates. An
analysis has also been conducted on the influence of D and showed that even very
small numbers (D = 1) lead to great performance.

How to choose ε? A central trade-off has to be taken into account when perturbing
the data set. If ε-AP is too strong, we might alter the very structure of the data.
If on the contrary ε-AP is too small, the clustering algorithm will always obtain
identical results, inevitably leading to stability. Although setting this value is not
crucial according to [Möller and Radke, 2006], compared with choosing a subsample
size, we still believe it is somewhat arbitrary and in a way implicitly defines what
a clustering is. As in Example 5.9, if ε is too large, the two closest clusters will be
merged under our stability principle. Hence, in a way, ε-AP defines a threshold
distance below which two data points are similar and should belong to the same
cluster. We propose to circumvent this issue by not choosing a single value for the
level of noise ε, but a grid of possible values. By gradually increasing ε from 0 to
a value εmax, we obtain what we call a stability path, i.e. the evolution of stability
as a function of ε. This method has one crucial advantage: it allows to compare
partitions for different values of ε without the necessity of choosing one. However,
it comes with two drawbacks: setting both the fineness and the maximum value of
the grid. In our experiments, the fineness does not play a major role in the results. A
straightforward method to fix a maximum value εmax beyond which comparisons
are not meaningful anymore is as follows. The perturbation corresponding to εmax

is meant to destroy the cluster structure of the original data. This corresponds to
the value where the data are no longer clusterable, i.e. K = 1 becomes the best

5.4 Stadion: a novel stability-based validity index 139

solution w.r.t. Stadion. A first guess at εmax =
√
P (where P is the data dimension)

works well in practice. We found that visualizing the stability paths (see Figure 5.3)
is appealing and greatly helps interpreting the structures found by an algorithm,
hence improving the usefulness of results.

Which data to compare? A strong ε-AP can alter the data, but it can also destroy
structure and close-by clusters can merge faster than others. Therefore, pairwise
comparison between perturbed data sets may become unreliable, and we consider
only comparison between the original and perturbed data sets. As stated in Equa-
tion 5.2, we compute similarities between the reference and perturbed partitions.

How to compare partitions? The similarity measure s chosen to compare two
partitions is the ARI. A total of 16 different similarity and distance measures (such
as the NMI or FM) are compared in a following section, and ARI achieved the best
results. Its value is in [0, 1], thus the Stadion has a value in the [−1, 1] range, with 1
corresponding to the best clustering and −1 to the worst.

How to aggregate the Stadion path? To compute a scalar validity index for model
selection, the Stadion path must be aggregated on the noise strength ε from 0 to εmax

(when the solution for K = 1 has the highest Stadion among all other solutions).
Two aggregation strategies, the maximum (Stadion-max) and the mean (Stadion-
mean), are evaluated in our experiments. A a consequence of this aggregation step,
the criterion adapts to different degrees of cluster separation in the data set.

The within-cluster stability is governed by parameter Ω, which detects stable struc-
tures inside clusters of CK . As these are unknown, averaging several different values
in Ω gives a better estimate. In absence of sub-clusters, all partitions will be un-
stable because cluster boundaries will be placed in high-density regions. For the
opposite reason, in presence of sub-clusters, at least some partitions will result in
higher stability, thus increasing the within-cluster stability. The analysis of influence
conducted in a following section shows that Ω has low impact on Stadion results
and can be set easily.

An important assumption behind our implementation of within-cluster stability is
that, for non-clusterable structures (w.r.t. an algorithm), the algorithm must place
cluster boundaries in high-density regions to produce instability through jittering.
This encompasses a wide range of algorithms such as center-based, spectral or Ward
linkage clustering which, for the sake of saving cost, would cut through dense clouds
of points. If this requirement is not fulfilled, it is unclear whether this method will
work. For instance, single linkage cannot be evaluated this way, since it may build
two-cluster partitions of size 1 and N − 1, where the boundary lies at the frontier

140 Chapter 5 Selecting the number of clusters with a stability trade-off

of the cluster. Finally, the motivation for using the same algorithm to cluster again
each cluster is that an algorithm should evaluate itself. For instance, one could use a
clustering algorithm to estimate within-cluster stability different from the one used
to compute stability between clusters, or one could train a supervised classifier on
the clusters labels and then assess its stability [Dudoit and Fridlyand, 2002, Lange
et al., 2004, Tibshirani and Walther, 2005]. However, it is not obvious what kind of
bias would be introduced with this approach.

5.5 Pseudo-code

Algorithm 5.1: Between-cluster stability procedure.
Input: algorithm A; data set X; reference clustering CK ; parameter K;

perturbations D; similarity measure s; noise amplitude ε
Output: between-cluster stability StabB(A,X, CK ,K, ε)
bstab← 0 ;
for d = 1 . . . D do

Generate random noise ε ∼ U(−ε,+ε) or N (0, εI) ;
Xd ← X + ε ;
bstab← bstab + s (CK ,A(Xd,K)) ;

Return bstab/D ;

Algorithm 5.2: Within-cluster stability procedure.
Input: algorithm A; data set X; set of parameters Ω; reference clustering CK ;

perturbations D; similarity measure s; noise amplitude ε
Output: within-cluster stability StabW(A,X, CK ,K,Ω, ε)
wstab← 0 ;
N ← |X| ;
for k = 1 . . .K do

Ck ← k-th cluster of X in reference clustering CK ;
Nk ← |Ck| ;
bstab← 0 ;
for K ′ in Ω do
Q(k)
K′ ← A(Ck,K ′) ;

bstab← bstab + StabB(A, Ck,Q
(k)
K′ ,K ′) ;

bstab← bstab/|Ω| ;
wstab← wstab + bstab× Nk

N ;

Return wstab ;

5.5 Pseudo-code 141

Algorithm 5.3: Complete procedure for selecting the number of clusters K̂ using
Stadion paths, with max (Stadion-max) or mean (Stadion-max) aggregation.
Input: algorithm A; data set X; maximum number of clusters Kmax; perturbations

D; similarity measure s; grid of noise amplitudes {εi}1≤i≤M with ε1 = 0 and
εM = εmax

Output: selected number of clusters K̂
for K = 1 . . .Kmax do
CK ← A(X,K) ;
for i = 1 . . .M do

bstabi ← StabB(A,X, CK ,K, εi) ;
wstabi ← StabW(A,X, CK ,K,Ω, εi) ;
stadioni ← bstabi −wstabi ;

K̂ ← argmaxK maxi stadion or argmaxK meani stadion ;
Return K̂ ;

5.6 Complexity study

Let A(K,N) be the time complexity of the algorithm with parameter K and a data
set of size N , assuming the data dimension is fixed. In addition, let S(K,N) be the
complexity of the similarity measure s, D the number of perturbations and M the
length of the stability path.

Between-cluster stability The complexity for a given parameter K (assuming the
complexity of perturbation is negligible) is O ((A(K,N) + S(K,N))DM).

Within-cluster stability For a given parameter K and a set of parameters Ω =
{2, . . . ,K ′}, the amount of operations is

∑K
k=1

∑K′
k′=2(A(k′, Nk) + S(k′, Nk))DM ,

which can be bounded by O (KK ′(A(K ′, N) + S(K ′, N))DM). In the case of K-
means, we have A(K,N) = O(KNTI), where T is the number of iterations until
convergence of the algorithm, and I the number of runs. Then, ARI is linear:
S(K,N) = O(N). Overall, we obtain a complexity for Stadion with K-means and
ARI equal to O(KK ′2NTIDM).

The influence studies showed that Ω can be set to a small range, e.g. {2, . . . , 5}
or {2, . . . , 10}, and that D can be kept very low. Thus, complexity in K ′ and D is
manageable. Thus, complexity of Stadion is mainly driven by O(KNTIM). The
extended version avoids running the algorithm again for each perturbationD, getting
rid of the T and I factors. For K-means, we only have to find the closest centers,
which is O(KN). Thus, we have an overall complexity of O(KK ′2NDM).

142 Chapter 5 Selecting the number of clusters with a stability trade-off

In regard, internal indices relying on between-cluster and within-cluster distances
have a complexity of O(N2) or O(KN) with centroid distance. Thus, the cost of
having to run the algorithm several times may be smaller than a quadratic index, if
N is large and the algorithm is linear.

5.7 Some experiments and examples

5.7.1 A simple example with stability paths

We begin this section by illustrating our method with K-means and uniform ε-AP
on the example data set discussed previously (see Figure 5.1). Figure 5.3 displays
between-cluster stability, within-cluster stability and Stadion as a function of the
noise strength ε. For reasonable amounts of noise, the solutions K = 1, K = 2 and
K = 3 are all perfectly stable, showing the insufficiency of between-cluster stability
alone to indicate whenever K is too small. The solutions for K ≥ 4 cut through the
clusters and are thus unstable due to jittering. However, the solutions for K = 1 and
K = 2 both have high within-cluster stability, caused by the presence of sub-clusters,
which is not the case for K ≥ 3. By computing a difference, our criterion Stadion
combines this information and is able to indicate the correct number of clusters
(K = 3) by selecting the Stadion path with the highest maximum or mean value.
Through its formulation, Stadion is acting as a stability trade-off. The stability paths
also give additional insights about the data structure. For example, we can read
from the between-cluster stability path how the clusters successively merge together
as ε increases. Finally, the last graph (called stability trade-off plot) represents
Stadion-mean for different values of the parameter K.

5.7.2 Finding K = 1: the case of non-clusterable data

Is a data set clusterable? Between-cluster stability is unable to answer this question,
as the solution with a single cluster (K = 1) is trivially stable. Some stability
methods are not even defined for K = 1 because of normalization [Lange et al.,
2004]. Moreover, many internal indices use between-cluster distance and are
not defined for a single cluster neither. We verified empirically that our criterion
consistently outputs K = 1 in the case when the algorithm does not find any cluster
structure. Table 5.1 contains results for non-clusterable artificial data sets. Stadion

5.7 Some experiments and examples 143

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Be
tw

ee
n-

clu
st

er
 st

ab
ilit

y
(S

ta
b B

)

K = 1
K = 2
K = 3
K = 4
K = 5
K = 6

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
0.0

0.2

0.4

0.6

0.8

1.0

W
ith

in
-c

lu
st

er
 st

ab
ilit

y
(S

ta
b W

)

K = 1
K = 2
K = 3
K = 4
K = 5
K = 6

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
0.0

0.2

0.4

0.6

0.8

1.0

St
ad

io
n

K = 3 max

K = 1
K = 2
K = 3
K = 4
K = 5
K = 6

1 2 3 4 5 6
K

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0 StabB-mean
StabW-mean
Stadion-mean

Fig. 5.3.: Between-cluster stability paths (top left), within-cluster stability paths (top right),
Stadion paths (bottom left) and stability trade-off curve (bottom right) for K-
means on the data set Figure 5.1, for K ∈ {1 . . . 6}. ε is the amplitude of
the uniform noise perturbation. The best solution K = 3 is selected either by
taking the maximum or by averaging Stadion over ε until εmax. The trade-off
plot represents the averaged Stadion, between- and within-cluster stability as a
function of K.

144 Chapter 5 Selecting the number of clusters with a stability trade-off

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
0.0

0.2

0.4

0.6

0.8

St
ad

io
n

K = 1K = 1
K = 2
K = 3
K = 4
K = 5
K = 6

1 2 3 4 5 6
K

0.2

0.4

0.6

0.8

1.0 StabB-mean
StabW-mean
Stadion-mean

Fig. 5.4.: Stadion path (left) and stability trade-off plot (right) on the golfball data set
with K-means. K = 1 is clearly the best solution found by Stadion-max/mean
(uniform noise, Ω = {2, . . . , 10}).

outputs K = 1 in all cases. An example of Stadion paths and trade-off curve for the
golfball data set is provided on Figure 5.4 (results are similar for other data sets).

Tab. 5.1.: Number of clusters found by Stadion on non-clusterable artificial data sets.

Data set N P K selected by Stadion

Uniform cube (2d) 1000 2 1
Uniform cube (10d) 1000 10 1

Gaussian (2d) 1000 2 1
Gaussian (10d) 1000 10 1

Golfball [Ultsch, 2005] −1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

x

GolfBall, n = 4002, dimension = 3, classes = 1, main problem: no cluster at all

y

z

4002 3 1

5.7.3 Examples of jumping between local minima

As explained in Section 5.2, two sources of instability are jumping and jittering.
We have already stated that our method leverages jittering of cluster boundaries
in high-density regions due to perturbation. Jumping, on the other hand, happens
when the algorithm finds very different solutions on different samples; in case of
objective-minimizing algorithms, it ends up in different local minima. Two main
effects lead to jumping: first, symmetries in the data distribution, and second,

5.7 Some experiments and examples 145

initialization. Finally, subtle geometrical properties of the distribution might also
cause jumping [Von Luxburg, 2009]. An example of jumping of K-means due to

Fig. 5.5.: Example of K-means jumping between three global minima for K = 2 on a
symmetric distribution with three Gaussians, despite effective initialization (K-
means++ and best of 10 runs). Under slight perturbation (here uniform ε-AP,
but resampling gives identical results), the algorithm jumps between grouping
two random clusters together.

symmetries is shown on Figure 5.5: clearly, there are several global minima, and
even if the algorithm is deterministic, slight perturbations of the distribution (noise
or sampling) make the algorithm jump between solutions. The second cause of
jumping is due to initialization. As illustrated by Figure 5.6 for K-means, if a single
random initialization is used, depending on the initial position of centers, four
different configurations occur randomly, even without any perturbation of the data.
We place ourselves in a realistic setting without perfect symmetries and an effective

(a) (b) (c)

Fig. 5.6.: Example of K-means jumping between three local minima for K = 4, when a
single random initialization is used. Depending on the initial centers configuration,
the algorithm jumps between splitting a random cluster in two (a, b, c).

algorithm initialization strategy, thus jumping is not the main source of instability.

146 Chapter 5 Selecting the number of clusters with a stability trade-off

5.7.4 Failure of sampling-based stability methods

In this section, we will see on a trivial example why stability methods based on
sampling are not reliable to detect the presence of structure in the data. Four
methods are compared:

1. Stadion based on ε-Additive Perturbation.
2. Stadion based on bootstrapping.
3. The model explorer algorithm [Ben-Hur et al., 2002] based on subsampling.
4. The model order selection method [Lange et al., 2004] based on splitting data

in two halves and transferring labels from one half onto the other using a
supervised nearest-neighbor classifier.

We demonstrate that only the first method is successful on a simple example consist-
ing in a mixture of two correlated Gaussians, represented on Figure 5.7. Data are
scaled to zero mean and unit variance as for every other data set. K-means is used
to cluster the data. As illustrated on the plot, K-means with K = 2 separates almost
perfectly the two Gaussians. All other solutions split the two Gaussians into several
sub-clusters of equal sizes, with cluster boundaries lying in the regions of highest
density, as can be seen from the example for K = 4 (where the boundaries are in the
middle of the Gaussians). Thus, in addition to being the best solution, K = 2 is the
only acceptable one. However, sampling-based methods fail in assessing its stability,
since they estimate K = 4 as the most stable solution. This result can be explained
because the data set is not symmetric and for each K there is one global minimum
so no jumping occurs, even with a poor initialization scheme. Thus the only possible
source of instability stems from jittering. As expected in theory, our experiments
showed here that the different sampling processes did not succeed in creating jitter-
ing. Conversely, ε-AP has indeed produced jittering, where a small amount of noise
produced very different partitions. In details, the model order selection method
[Lange et al., 2004] selects K = 4, followed by K = 6. The model explorer [Ben-Hur
et al., 2002] finds K = 6 as the best solution, followed by K = 4. These results
are consistent across initialization schemes (random, K-means++, best of several
runs). Hence, random initialization will not help creating instability by jumping.
Furthermore, our stability criterion Stadion was able to find K = 2 among the set of
tested values {1, . . . , 6} (here with uniform noise and Ω = {2, . . . , 6}). This is not
only due to adding the within-cluster stability. As evidence, we replaced ε-AP by a
bootstrap perturbation: Stadion with bootstrapping also fails, selecting K = 1 as the
best solution followed by K = 4, and this for all initialization schemes.

5.7 Some experiments and examples 147

(a) (b) K = 2 (c) K = 4

Fig. 5.7.: Example data set of two correlated Gaussians, scaled to zero mean and unit
variance. With the K-means algorithm, all sampling-based methods select K = 4
or K = 6, whereas with ε-Additive Perturbation, K = 2 is the only stable solution.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Be
tw

ee
n-

clu
st

er
 st

ab
ilit

y
(S

ta
b B

)

K = 1
K = 2
K = 3
K = 4
K = 5
K = 6

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.2

0.4

0.6

0.8

1.0

W
ith

in
-c

lu
st

er
 st

ab
ilit

y
(S

ta
b W

)

K = 1
K = 2
K = 3
K = 4
K = 5
K = 6

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

St
ad

io
n

K = 2

K = 1
K = 2
K = 3
K = 4
K = 5
K = 6

Fig. 5.8.: Between-cluster stability, within-cluster stability and Stadion paths (uniform noise,
Ω = {2, . . . , 6}) on the example of two correlated Gaussians where all sampling-
based methods fail to select K = 2. Stadion clearly finds K = 2 by taking the
max or mean of the path curve.

148 Chapter 5 Selecting the number of clusters with a stability trade-off

5.7.5 Example of Stadion behavior with K-means

This example illustrates the behavior of our stability criterion Stadion and how to
interpret the stability paths, using the data set 2d-4c shown in Figure 5.9. It consists
in four clusters with different variance and size, where two clusters are closer to
each other while the other clusters are at a greater distance. At first glance, this
example looks trivial, but the majority of internal indices fail. For instance, the
Dunn and Silhouette indices both select K = 3. The stability paths are presented

Fig. 5.9.: Example data set 2d-4c consists in four clusters of different variance and size.

in Figure 5.10, where we observe that Stadion is able to detect the structure of the
data and selects K = 4. The only difference between the solutions with K = 4 and
K = 5 is that the largest cluster (in green) is split, thus leading to a much lower
between-cluster stability but the same within-cluster stability. Solutions K = 2 and
K = 3 group clusters together without any splitting. Therefore, those solutions have
a high between-cluster stability and also a high within-cluster stability. Altogether,
on the Stadion path (Figure 5.10), the path corresponding to K = 4 is similar to
K = 5 whereas K = 2 and K = 3 have an equivalent behavior. This is due to the
structure of the data, and especially because the two rightmost clusters are close
to each other. The moment when the path of solution K = 3 becomes the best
solution is the moment when these two clusters merge because of a high ε-AP, and
this is also the moment where K = 1 prevails. Finally, Stadion paths (with stability
and instability paths) give useful additional information on a clustering and on
the structure of the data. When K > K?, the paths are similar to the path of K?

but with a smaller scale, as they have the same within-cluster stability but lower
between-cluster stability. On the other hand, when K < K?, the paths are shifted
towards the right, and may become superior for larger ε values.

5.7 Some experiments and examples 149

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Be
tw

ee
n-

clu
st

er
 st

ab
ilit

y
(S

ta
b B

)

K = 1
K = 2
K = 3
K = 4
K = 5
K = 6

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
0.0

0.2

0.4

0.6

0.8

1.0

W
ith

in
-c

lu
st

er
 st

ab
ilit

y
(S

ta
b W

)

K = 1
K = 2
K = 3
K = 4
K = 5
K = 6

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
0.0

0.2

0.4

0.6

0.8

St
ad

io
n

K = 4 K = 1
K = 2
K = 3
K = 4
K = 5
K = 6

Fig. 5.10.: Between-cluster stability, within-cluster stability and Stadion paths (uniform
noise, Ω = {2, . . . , 6}) on the 2d-4c data set. Stadion selects K = 4, followed by
K = 3.

5.7.6 Whenever K? is not the best partition

Sometimes, the best solution is not the partition obtained with the true number of
clusters K?, because the algorithm is unable to recover the ground-truth partition.
This is the case for the 4clusters_corner data set, depicted on Figure 5.11. While
obviously the best solution is to separate the four clusters, it is not achievable by
K-means: with K? = 4, it will cut through the large cluster instead of separating
the two small green clusters, for the sake of saving the cost induced by the variance
and the size of this cluster. Among the proposed solutions, the highest ARI (w.r.t.
the ground-truth partition) is obtained with K = 3 (ARI = 0.92), followed by K = 2
(0.74), K = 5 (0.65) and lastly K? = 4 (0.58). All internal indices, excepted the

(a) K = 2 (ARI =
0.74)

Most internal
indices

(b) K = 3 (ARI =
0.92)

Stadion

(c) K? = 4 (ARI =
0.58)

[Ben-Hur et al.,
2002, Lange
et al., 2004]

(d) K = 5 (ARI =
0.65)

Fig. 5.11.: Partitions found by K-means on the 4clusters_corner data set for K ∈ {2, . . . , 5}.

Gap, select K = 2. Stability methods based on sampling ([Ben-Hur et al., 2002],
[Lange et al., 2004]) selected the ground-truth K? = 4, earning them a "win",
although it is the worst partition among the four. We explain it by the fact that these
methods are not leveraging jittering inside the large cluster. Finally, the Stadion
always selects the solution K = 3 having the highest ARI. Moreover, the criterion
outputs solutions in the same order than ARI. This examples clearly exhibits the

150 Chapter 5 Selecting the number of clusters with a stability trade-off

stability trade-off occurring in Stadion: it tries to preserve a high between-cluster
stability while keeping within-cluster stability as low as possible (see Table 5.2).
Stadion paths on Figure 5.12 also show how the three smaller clusters merge as the
noise level increases.

Tab. 5.2.: Stability trade-off leveraged by Sta-
dion on the 4clusters_corner data
set.

K ARI StabB StabW Stadion

1 0.00 ++ - - 0 %

2 0.74 ++ - + %

3 0.92 ++ + +++!
4 0.58 - - + - %
5 0.65 - - ++ 0 %

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.0

0.2

0.4

0.6

0.8

1.0

St
ad

io
n

K = 3

max

K = 1
K = 2
K = 3
K = 4
K = 5
K = 6

Fig. 5.12.: Stadion paths on the 4clus-
ters_corner data set. K = 3 is
selected although K? = 4.

5.7.7 Example of K approaching N

This paragraph introduces the behavior of Stadion when the numbers of clusters K
evaluated become as large as the number of samples N . Even if this is beyond the
common setting in clustering, the criterion is still valid. Figure 5.13 displays the
stability trade-off for K-means on an example with three Gaussians, using ARI as
the similarity metric. As K approaches N :

• Between-cluster stability decreases towards 0, except for K = N where it
jumps back to 1, because all partitions with one sample per cluster are perfectly
similar to ARI.

• Within-cluster stability increases towards 1, as clusters with few samples
become trivially stable.

• Stadion still indicates the correct solution K = 3, while decreasing towards
−1, only jumping back to 0 when K = N .

Note that the borderline case K = N depends on the similarity used, for instance
with Fowlkes-Mallows the between-cluster stability does not jump back to 1, staying
at 0. In addition, with the extended version, the perturbed partition will not have
one sample per cluster, thus it will also stay at 0. Nevertheless, for all similarity
measures, Stadion’s behavior is consistent and valid even for large values of K.

5.7 Some experiments and examples 151

0 10 20 30 40 50
K

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

StabB-mean
StabW-mean
Stadion-mean

Fig. 5.13.: Stability trade-off plot for K-means on three Gaussians with N = 50 for K ∈
{1, . . . , 50} (uniform noise, Ω = {2, . . . , 10}). Stadion is still valid when the
tested K becomes large.

5.8 Selecting K in K-means, GMM and Ward clustering

In this benchmark experiment, three algorithms are considered: K-means [Mac-
Queen, 1967], Gaussian Mixture Models (GMM) [Banfield and Raftery, 1993] and
Ward hierarchical clustering [Ward, 1963]. For K-means, two versions of Stadion
are evaluated: the first one using the stability computation described in section
4 (referred to as the standard version), and the second one using the extension
operator (referred to as the extended version). As seen in section 2, an extension
operator extends a clustering to new data points. K-means extends naturally by
computing the euclidean distance to centers. Hence, instead of re-running K-means
for each perturbation of the data, we directly predict the cluster assignments of
perturbed data points. This approximation is sensible since we consider jittering
as the main source of instability, and spares computation time (see complexity
study). GMM allows a similar extension, by assigning points to the cluster with
the highest posterior probability. It is the only version we consider here due to the
high computational cost of GMM which makes the standard version prohibitive.
Albeit first experiments looked promising, the same limitation was encountered for
spectral clustering [Von Luxburg, 2007], but unfortunately it has no straightforward
extension operator.

We evaluate clustering validation methods on a large collection of 73 artificial
benchmark data sets, most of them extensively used in literature. Data sets were
selected so that the algorithms can achieve good partitions w.r.t. the true clusters. We
also ensured different difficulty levels for model selection, obtained by varying the
numbers of clusters, sizes, variances, shapes and the presence of noise and close-by
or overlapping clusters. In addition, we present results on 7 real data sets, labeled
into K? ground-truth classes. It was surprising to discover how difficult it is to find

152 Chapter 5 Selecting the number of clusters with a stability trade-off

real-world data that are clusterable into K? clusters without preprocessing. First,
the original features seldom have a cluster structure. Second, it may happen that the
labels do not represent a natural partitioning of the data, unlike for artificial data
sets. Thus, is was necessary to preprocess most real data sets. For instance, Crabs
was preprocessed by a PCA [Pearson, 1901] keeping only components two and three,
as described in [Bouveyron and Brunet-Saumard, 2014]. High-dimensional data
sets such as images (MNIST, USPS) were reduced beforehand, using an autoencoder
network in order to extract clusterable features, followed by UMAP [McInnes et al.,
2018] to obtain a two-dimensional representation, as introduced in [McConville
et al., 2021]. This way, we ensure the labels truly represent clusters. Identical
preprocessing settings were used across every method and data set, without any
further tuning. An exhaustive description of the experimental setting, including data
sets and preprocessing steps, is provided in Appendix C.

Table 5.3 summarizes results for all three algorithms. We compare Stadion to the
partitions obtained with the true number of clusters K?, best-performing internal
clustering indices (see [Desgraupes, 2013, Hämäläinen et al., 2017] for reviews),
Gap statistic [Tibshirani et al., 2001] (K-means only), BIC (GMM only) and stability
methods [Ben-Hur et al., 2002, Lange et al., 2004]. To ensure a fair comparison, all
internal indices were computed on the same partition, that was also the reference
partition in Stadion. We report the number of data sets where each method found
K?, which we refer to as the number of wins. However, only checking whether K?

is selected is not always related to the goodness of the partition w.r.t. the ground-
truth. Results strongly depend on the performance of algorithms, which do not
necessarily succeed in finding a good partition into K? clusters. Thus, a more ade-
quate performance measure is the similarity between the selected partition and the
ground-truth. As a performance measure, the ARI is a standard choice [Romano and
Bailey, 2016] when clusters are mostly balanced. Let us note YK? = {Y1, . . . , YK?}
the ground-truth partition. The performance of each validation method is assessed
by computing ARI(YK? , CK̂), where K̂ is the estimated number of clusters. In order
to compare methods on multiple data sets, we compute the average ranks in terms
of ARI, denoted RARI. Since data sets have different difficulties, their results are not
comparable. Thus, average ARI or numbers of wins are meaningless [Demšar, 2006].
Nonetheless, wins are reported for reference. The benchmark uses uniform ε-AP,
D = 10, Ω = {2, . . . , 10}, s = ARI and evaluates solutions for K ∈ {1, . . . ,Kmax}
where Kmax is K? + 20 rounded down to the nearest tenth. Stadion-max achieves
the best results overall. On K-means, it is even ranked higher than K? in terms
of ARI. The second-best performing index is Wemmert-Gancarski. It was shown in
[Balcan and Liang, 2016] that agglomerative clustering is not robust to noise, which

5.8 Selecting K in K-means, GMM and Ward clustering 153

Tab. 5.3.: Benchmark results on 80 artificial and real data sets for K-means, Ward and
GMM. Average rank of the ARI with the ground-truth classes (RARI) and number
of times K? was selected (wins).

Artificial data sets Real data sets
K-means Ward GMM K-means Ward GMM

Method RARI wins RARI wins RARI wins RARI wins RARI wins RARI wins

K? 6.47 73 4.77 73 5.05 73 4.50 7 3.36 7 3.93 7

Stadion-max 6.02 50 5.25 54 - - 4.93 5 5.86 4 - -
Stadion-mean 6.12 51 5.80 49 - - 6.57 4 7.64 3 - -
Stadion-max (extended) 6.13 56 - - 5.59 56 6.29 3 - - 4.43 5
Stadion-mean (extended) 6.42 48 - - 6.79 43 6.29 3 - - 5.50 3
BIC - - - - 6.45 48 - - - - 7.29 2
Wemmert-Gancarski 6.62 53 5.40 54 5.77 52 6.00 5 5.36 4 5.79 4
Silhouette 7.51 46 6.47 45 7.01 45 7.21 4 5.86 4 6.50 4
[Lange et al., 2004] 7.93 45 6.53 51 6.99 48 8.64 3 5.86 4 7.14 3
Davies-Bouldin 8.11 40 6.45 41 7.29 34 8.29 4 7.29 3 8.57 3
Ray-Turi 8.19 37 6.97 40 7.68 33 8.29 4 6.29 3 7.36 4
Calinski-Harabasz 8.71 41 7.14 39 7.43 37 12.21 1 8.86 1 5.79 3
Dunn 10.11 26 7.77 33 7.92 34 10.57 1 7.79 2 9.07 2
Xie-Beni 10.27 22 7.61 34 8.19 28 11.50 1 7.57 2 9.93 2
Gap statistic 10.38 26 - - - - 10.57 2 - - - -
[Ben-Hur et al., 2002] 10.99 20 7.86 31 8.85 28 8.14 1 7.93 2 9.71 2

explains inferior Stadion results with Ward. Moreover, results are slightly biased
in favor of the indices that are only valid for K ≥ 2, unlike Stadion that will select
K = 1 on non-clusterable distributions, as shown in Table 5.1. Full result tables and
statistical tests are provided in Appendix C along with a more thorough analysis. In
particular, the ranking is unchanged by using other external performance measures
such as AMI or NMI instead of the ARI. Beyond selecting K, Stadion may also be
used to select the kernel parameter in spectral clustering, the radius in density-based
clustering or select between different algorithms.

5.9 Hyperparameter study

The stability difference criterion (Stadion) introduced in this work is governed by
several hyperparameters:

• D: the number of perturbed samples used in the stability computations.
• noise: the type of noise for ε-AP. We experimented with uniform and Gaussian

noise.
• Ω: the set of parameters K ′ used in within-cluster stability computation.

154 Chapter 5 Selecting the number of clusters with a stability trade-off

• s: the similarity measure used in stability computation is a special hyperpa-
rameter, and is treated specifically in the last paragraph of this section.

The goal of this section is to study their importance and impact on the performance
of Stadion for clustering model selection, using the three studied algorithms (K-
means, Ward linkage and GMM). Only the extended versions of Stadion for K-means
and GMM are included, for the sake of saving computational cost.

5.9.1 Importance study with fANOVA

Ideally, practitioners would like to know how hyperparameters affect performance
in general, not just in the context of a single fixed instantiation of the remaining
hyperparameters, but across all their instantiations. The fANOVA (functional ANaly-
sis Of VAriance) framework for assessing hyperparameter importance introduced
in [Hutter et al., 2014] is based on efficient marginalization over dimensions using
regression trees. The importance of each hyperparameter is obtained by training
a Random Forest model of 100 regression trees to predict the performance of Sta-
dion in terms of ARI given the set of hyperparameters. Then, the variance of the
performance due to a given hyperparameter is decomposed by marginalizing out the
effects of all other parameters. It also allows to assess interaction effects. Hence, the
fANOVA framework provides insights on the overall importance of hyperparameters
and their interactions.

The maximum amount of noise εmax and the fineness of the grid are not included
in the study, because it is data-dependent and one can easily check if values are
appropriate by looking at the paths. We study the following discrete hyperparameter
space:

• D ∈ {1, . . . , 10}
• noise is uniform or Gaussian
• Ω ∈ {2, 3, 5, 10, {2, . . . , 5}, {2, . . . , 10}, {10, . . . , 20}, {2, . . . 20}}
• s = ARI

Before going any further, we would like to add a clarification on the causes of
jumping. In section 5.2, we stated that the two causes of jumping are symmetries in
the data and initialization. Indeed, they are the only ones possible in our setting.
But one aspect has not been addressed, whenever K becomes large w.r.t. N . In this
case, the effective initialization strategy no longer prevents jumping. Furthermore, if
the size of clusters is very small, then small perturbations can drastically change the
solution, unlike when K << N with N sufficiently large. The latter can undeniably

5.9 Hyperparameter study 155

K-means Ward GMM
0.0

0.2

0.4

0.6

0.8

1.0

Im
po

rta
nc

e

(D, noise)
noise
D
(noise,)
(D, noise,)
(D,)

K-means Ward GMM
0.0

0.2

0.4

0.6

0.8

1.0

Im
po

rta
nc

e

(D, noise)
noise
D
(noise,)
(D, noise,)
(D,)

Fig. 5.14.: Box plots of the fANOVA importance of parameters and their interactions for
Stadion-max (left) and mean (right) across 73 artificial data sets, for three
algorithms.

cause jumping. That brings us to the conclusion that Stadion should not be used, with
this formulation, for applications with large K w.r.t N , for instance deduplication
[Kushagra et al., 2018], and that further investigations are needed in this context.

Figure 5.14 shows the contributions of hyperparameters and their interactions to
the variance of ARI performance, across 73 artificial data sets. Ω is by far the most
important parameter, and this for two reasons.

First, the size of the data N needed to obtain good estimations is relative to the
number of clusters K. More precisely, in our setting we only consider K << N .
Whenever K is large w.r.t. N , jumping due to "large K" can occur, which sometimes
happens in within-cluster stability, where small clusters might be split into up to
20 sub-clusters. This implies that even in presence of sub-clusters, high values of
K ′ in Ω will create instability and thus lead to low within-cluster stability. More
precisely, if K ≥ K?, then in general Ω will not affect within-cluster stability because
it is already low. But whenever K ≤ K?, within-stability is more impacted by large
values of K ′ in Ω, and within-stability paths for these specific values of K shift down,
leading to higher Stadion paths. Second, ARI has decreasing performance for large
numbers of small clusters [Romano and Bailey, 2016].

The second most important parameter is the interaction (D, Ω), for the same
reason: large numbers of clusters make estimating the within-cluster stability more
difficult, and thus a higher number of perturbations D is needed to obtain a good
approximation.

156 Chapter 5 Selecting the number of clusters with a stability trade-off

5.9.2 Influence of D

The D hyperparameter defines the number of perturbed samples used in the sta-
bility computation in Equations 5.2 and 5.3. In our benchmark, we used D = 10.
Surprisingly, a number of samples as low as D = 1 already gives a good estimate
of the expectation and the performance only slightly increases with larger values
of D. We perform an experiment by making D vary from 1 to 10, keeping other
hyperparameters fixed (uniform noise, Ω = {2, . . . , 10}), for the three algorithms
and both Stadion path aggregation strategies (max and mean), and measure perfor-
mance in terms of ARI over 73 artificial benchmark data sets. Results on Figure 5.15
show that low D values have a higher variance and slightly lower performance. To

K-means Ward GMM

0.0

0.2

0.4

0.6

0.8

1.0

AR
I 1

2
3
4
5
6
7
8
9
10

K-means Ward GMM

0.0

0.2

0.4

0.6

0.8

1.0

AR
I 1

2
3
4
5
6
7
8
9
10

Fig. 5.15.: Box-plot of the ARI of partitions selected by Stadion-max (left) and mean (right)
across 73 data sets, for three algorithms and different values of D, the number
of samples in the stability computation.

quantify further the influence of this parameter, we followed the recommendation
in [Demšar, 2006] and used the Friedman test for comparisons on multiple data
sets, in order to test against the null hypothesis H0 stating that all parameters have
equivalent performance. After rejecting H0, we performed the pairwise post-hoc
analysis recommended by [Benavoli et al., 2016] where the average rank comparison
(e.g. Nemenyi test) is replaced by a Wilcoxon signed-rank test at α = 5% with a
Holm-Bonferroni correction procedure to control the family-wise error rate (FWER)
[Holm, 1979, García and Herrera, 2008]. To visualize post-hoc test results, we
use the critical difference (CD) diagram [Demšar, 2006], where a thick horizontal
line shows groups (cliques) of classifiers that are not significantly different in terms
of performance. In all but one case, the Friedman test could not reject the null
hypothesis. Only for the GMM algorithm and max aggregation, the null hypothesis
was rejected, leading to the critical difference diagrams on Figure 5.16. The number
of samples D has a negligible impact on the performance of our method. We assume
it is due to the fact that in our setting, instability is caused by jittering at cluster
boundaries, which does not vary much from one perturbation to another with rea-

5.9 Hyperparameter study 157

12345678910

D=2
D=3
D=4
D=1
D=6 D=8

D=5
D=7
D=10
D=9

12345678910

D=1
D=2
D=3
D=6
D=9 D=7

D=4
D=8
D=5
D=10

Fig. 5.16.: Critical difference diagrams after Wilcoxon-Holms test (α = 5%) on GMM
performance, for Stadion-max with uniform (left) and Gaussian (right) noise, for
different values of D, the number of perturbations in the stability computation.

sonable amounts of data. On the contrary, sampling-based stability methods that rely
on jumping require a much higher number of samples (for instance, [Ben-Hur et al.,
2002] use 100 samples and [Lange et al., 2004] use 20 samples). As a conclusion,
we recommend using D ≥ 5, but if computation time is costly, D = 1 can be used
safely to cut down complexity.

5.9.3 Influence of noise type

We experiment with two types of ε-additive noise perturbation: uniform noise and
Gaussian noise. As previously, we report the distributions of performance in terms of
ARI across 73 artificial data sets for both noise types on Figure 5.17 (withD = 10 and
Ω = {2, . . . , 10}). To assess the difference between both noise types, we perform the

K-means Ward GMM

0.0

0.2

0.4

0.6

0.8

1.0

AR
I

Uniform
Gaussian

K-means Ward GMM

0.0

0.2

0.4

0.6

0.8

1.0

AR
I

Uniform
Gaussian

Fig. 5.17.: Box plots of the ARI of partitions selected by Stadion-max (left) and mean (right)
across 73 artificial data sets, for three algorithms, using uniform or Gaussian
noise perturbation.

Wilcoxon signed-rank test on the performance results (at confidence level α = 5%).
For every algorithm and Stadion path aggregation, the test did not reject the null
hypothesis. Thus, either uniform or Gaussian noise can be used.

158 Chapter 5 Selecting the number of clusters with a stability trade-off

5.9.4 Influence of Ω

The Ω hyperparameter is a set defining the numbers of clusters used to cluster
again each cluster of the original partition. We perform an experiment by varying
Ω, keeping other hyperparameters fixed (uniform noise, D = 10), for both Stadion
path aggregation strategies (max and mean), and measure performance in terms of
ARI over 73 artificial benchmark data sets. Results in Figure 5.18 demonstrate that

K-means Ward GMM

0.0

0.2

0.4

0.6

0.8

1.0

AR
I

2
3
5
10
2:5
2:10
10:20
2:20

K-means Ward GMM

0.0

0.2

0.4

0.6

0.8

1.0

AR
I

2
3
5
10
2:5
2:10
10:20
2:20

Fig. 5.18.: Box plots of ARI of partitions selected by Stadion-max (left) and mean (right)
across 73 artificial data sets, for three algorithms and different sets Ω (numbers
of clusters used in within-cluster stability).

Ω does not have, in most cases, a big impact on the performance of Stadion. This
does not contradict the results of the fANOVA. Indeed, Ω has the largest variance
contribution to the performance, but this variance remains small, and overall Stadion
is robust for reasonable choices of the parameter, such as {2, . . . , 5} or {2, . . . , 10}.
Ward linkage is the most influenced by the choice of Ω. We guess the main reason is
that agglomerative clustering algorithms are not robust to noise [Balcan and Liang,
2016]. Critical difference diagrams after Wilcoxon-Holms test on performance are
given in Figures (5.19, 5.20, 5.21). None of them showed significant differences,
indicating that there is not enough data to conclude. However, small values in Ω
seem to perform better, which confirms the previous claim that large values of K ′

in Ωnegatively impact performance. In particular, the range {2, . . . , 10} used in our
benchmark performs well across all algorithms.

5.9.5 Similarity measure analysis

An extensive study was conducted to compare similarity measures (or distances)
between partitions, noted s in the stability computations (Equations 5.2, 5.3). Note
that all definitions and formulae are available in Section 4.2 of Chapter 4. The first

5.9 Hyperparameter study 159

12345678

10
10:20

3
2:20 2

2:10
5
2:5

(a) Stadion-max / uniform noise

12345678

2
3

10:20
5 2:5

10
2:20
2:10

(b) Stadion-max / Gaussian noise

Could not reject H0.

(c) Stadion-mean / uniform noise

12345678

10:20
10

2:20
2 2:10

5
3
2:5

(d) Stadion-mean / Gaussian noise

Fig. 5.19.: Critical difference diagrams after Wilcoxon-Holms test on K-means performance,
for different values of Ω, the set of parameters used in within-cluster stability
computation.

12345678

10:20
10

5
2:20 2:10

3
2
2:5

(a) Stadion-max / uniform noise

Could not reject H0.

(b) Stadion-max / Gaussian noise

12345678

10:20
10

2:20
5 2:10

3
2:5
2

(c) Stadion-mean / uniform noise

12345678

10
10:20

2:20
5 2:10

2:5
2
3

(d) Stadion-mean / Gaussian noise

Fig. 5.20.: Critical difference diagrams after Wilcoxon-Holms test on Ward performance,
for different values of Ω, the set of parameters K used in within-cluster stability
computation.

12345678

2
3

2:5
10:20 5

10
2:20
2:10

(a) Stadion-max / uniform noise

12345678

2
3
5

10 2:5
2:10
10:20
2:20

(b) Stadion-max / Gaussian noise

Fig. 5.21.: Critical difference diagrams after Wilcoxon-Holms test on GMM performance,
for different values of Ω, the set of parameters K used in within-cluster stability
computation. With Stadion-mean, the Friedman test could not reject H0.

160 Chapter 5 Selecting the number of clusters with a stability trade-off

five are count-based measures and were compared in a study [Milligan and Cooper,
1986]:

• RI: Rand Index [Rand, 1971]
• ARI1: Hubert and Arabie’s Adjusted Rand Index [Hubert and Arabie, 1985]
• ARI2: Morey and Agresti’s Adjusted Rand Index [Morey and Agresti, 1984]
• FM: Fowlkes and Mallows index [Fowlkes and Mallows, 1983]
• JACC: Jaccard index

Throughout the paper, ARI was referring to ARI1 and the two terms are now used
interchangeably. Following information theoretic measures [Vinh et al., 2010] are
also compared in this work:

• MI: Mutual Information
• AMI: Adjusted Mutual Information
• VI: Variation of Information
• NVI: Normalized Variation of Information
• ID: Information Distance
• NID: Normalized Information Distance
• NMI1: Normalized Mutual Information, with max normalization
• NMI2: Normalized Mutual Information, with min normalization
• NMI3: Normalized Mutual Information, with geometric mean normalization
• NMI4: Normalized Mutual Information, with arithmetic mean normalization
• NMI5: Normalized Mutual Information, with joint entropy normalization

Table 5.4 compares measures by counting the number of data sets where Stadion
selected the true number of clusters. Our results confirm that adjusted measures are
generally preferable [Vinh et al., 2010]. However, for particular applications, for
instance large numbers of clusters or small number of observations, other measures
might be better suited. On average, the best-performing measure is ARI1, but the
average number of wins is not sufficient to conclude. In order to asses which
measures are significantly different, we perform a statistical test. However, we
cannot use a signed-rank test as previously, because we can no longer use the ARI
score as an external performance measure. Our experiments have shown that the
choice of the performance metric introduces a bias, favoring different similarity or
distance measures used inside Stadion. For instance, using ARI as the performance
measure has lead to higher performance for s = ARI and equivalently for the
other measures. Thus, the only way to compare a partition with the ground-truth
is whether it has found the correct number of clusters K? or not. Under this
limitation, the only test at our disposal is the sign test, which compares the number
of successes/losses/ties for each pair of methods, where success indicates if a method

5.9 Hyperparameter study 161

Tab. 5.4.: Comparison of similarity measures s used in Stadion computation. Number of
correct numbers of clusters for each algorithm and aggregation (with uniform
noise, D = 10 and Ω = {2, . . . , 10}).

Stadion-max Stadion-mean
measure K-means Ward GMM K-means Ward GMM average wins

ARI1 56 54 56 48 49 43 51.0
ARI2 56 54 56 48 49 43 51.0
AMI 54 52 55 48 49 45 50.5
NID 54 52 55 48 49 45 50.5
NMI1 54 52 55 48 49 45 50.5
NMI4 54 51 55 48 49 46 50.5
NMI3 54 51 56 48 46 38 48.8
NMI2 53 52 55 50 47 34 48.5
NMI5 53 48 56 43 50 41 48.5
NVI 53 47 56 42 50 41 48.2
FM 47 56 51 48 41 45 48.0
JACC 45 55 50 38 44 45 46.2
ID 32 55 39 47 35 47 42.5
VI 35 56 34 47 34 45 41.3
RI 23 21 46 43 35 31 33.2
MI 8 11 18 17 15 13 13.7

selected K? and not the other. The sign test uses a binomial test, assuming that
if two methods are equivalent, they should each succeed on approximately half of
the data sets. The results of the sign test is represented on Figure 5.22. As before,
we control the FWER at α = 5% using the Holm-Bonferroni procedure for multiple
comparisons.

The matrix of p-values exhibits a block structure with on one hand, the majority of
measures that perform well with Stadion, and on the other hand, the MI and RI,
which perform poorly (because they scale with K). In addition, ARI are significantly
superior to JACC, ID and VI. However, due to the high number of ties, the low
power of the sign test and insufficiency of data, we cannot reach any further
conclusions. This structure remains across all three tested algorithms and Stadion
path aggregations. As a conclusion, we recommend using ARI1 with the Stadion
criterion, but several similarity measures between partitions are well-suited to
measure stability.

162 Chapter 5 Selecting the number of clusters with a stability trade-off

ARI1 ARI2 FM AMI NMI1 NMI2 NMI3 NMI4 NMI5 NID NVI JACC ID VI MI RI

ARI1

ARI2

FM

AMI

NMI1

NMI2

NMI3

NMI4

NMI5

NID

NVI

JACC

ID

VI

MI

RI

1.0 0.02 0.07 0.07 0.04 0.04 0.04 0.04 0.07 0.04 0.0 0.0 0.0 0.0 0.0

1.0 0.02 0.07 0.07 0.04 0.04 0.04 0.04 0.07 0.04 0.0 0.0 0.0 0.0 0.0

0.02 0.02 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.03 0.0 0.0 0.0 0.0

0.07 0.07 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.17 0.03 0.05 0.0 0.0

0.07 0.07 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.17 0.03 0.05 0.0 0.0

0.04 0.04 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.21 0.04 0.06 0.0 0.0

0.04 0.04 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.24 0.04 0.08 0.0 0.0

0.04 0.04 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.24 0.04 0.08 0.0 0.0

0.04 0.04 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.21 0.04 0.08 0.0 0.0

0.07 0.07 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.17 0.03 0.05 0.0 0.0

0.04 0.04 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.21 0.04 0.08 0.0 0.0

0.0 0.0 0.03 0.17 0.17 0.21 0.24 0.24 0.21 0.17 0.21 0.22 0.45 0.0 0.0

0.0 0.0 0.0 0.03 0.03 0.04 0.04 0.04 0.04 0.03 0.04 0.22 1.0 0.0 0.0

0.0 0.0 0.0 0.05 0.05 0.06 0.08 0.08 0.08 0.05 0.08 0.45 1.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

p-value
0 rejected
0 not rejected

Fig. 5.22.: Matrix of p-values after a pairwise sign test comparing different similarity mea-
sures and distances between clusterings used in Stadion, here with K-means
(uniform noise, D = 10 and Ω = {2, . . . , 10}). The null hypothesis H0, that two
measures are equivalent, is tested at α = 5% confidence, using Holm-Bonferroni
correction to control the FWER.

5.10 Software implementations

We developed the skstab1 [Forest and Mourer, 2020] for cluster stability analysis
in Python with a scikit-learn compatible API. The class hierarchy of skstab is
represented on Figure 5.23.

Fig. 5.23.: Class hierarchy of the skstab package.

1https://github.com/FlorentF9/skstab

5.10 Software implementations 163

https://github.com/FlorentF9/skstab

5.11 Conclusion

Stability is a universal tool to assess the quality of solutions obtained by supervised
and unsupervised learning algorithms. In this chapter, we introduce the concept of
cluster stability and related works, with their limitations. One major drawback is
that when there is a single global minimum to the algorithm’s objective, solutions
with K too small are always stable. Our main contribution is a newly introduced
concept of within-cluster stability, and Stadion (stability difference criterion), a
novel clustering validation criterion acting as a trade-off between the traditional
between-cluster stability. This principle emerged from the fact that jittering of cluster
boundaries is crucial to measure densities at boundaries and assess the stability of a
solution, in a realistic setting we have described. We also advocate for using additive
noise perturbation instead of re-sampling. Furthermore, our method to control the
amount of perturbation provides an interpretable visualization tool called stability
paths.

We evaluated Stadion and many methods of literature for three standard algorithms
against a benchmark of 73 artificial and 7 real-world data sets (the largest benchmark
ever conducted in stability analysis)). Performance is superior or on par with internal
clustering indices that were designed with specific cluster geometries in mind (e.g.
specifically for center-based algorithms), while relying on more general assumptions.
This comes at a computational cost, requiring to run the algorithm many times.
Nevertheless, an extensive hyperparameter study has shown that it can be drastically
reduced, the impact of down-sizing the hyperparameters being negligible. Still,
there remains some limitations, left for future work (see the final conclusion of the
thesis). In the next chapter, we will apply this work to time series clustering.

164 Chapter 5 Selecting the number of clusters with a stability trade-off

Validation of time series
clustering with an
invariance-guided criterion

6

This chapter is based on the contribution:

• Forest, F., Mourer, A., Lebbah, M., Azzag, H., & Lacaille, J. (2020). An
Invariance-guided Stability Criterion for Time Series Clustering Validation.
International Conference on Pattern Recognition (ICPR).

Following the criterion introduced in [Mourer et al., 2020], we now address the
specific problem of model selection in time series clustering [Forest et al., 2021].

Time series clustering has been mostly studied under the angle of finding efficient
algorithms and distance metrics adapted to the specific nature of time series data.
Much less attention has been devoted to the general problem of model selection.
We propose to apply stability analysis (subject of the last chapter) to time series
by leveraging prior knowledge on the nature and invariances of the data. These
invariances determine the perturbation process used to assess stability. Based on
the previously introduced Stadion criterion combining between-cluster and within-
cluster stability, we propose an invariance-guided method for model selection,
applicable to a wide range of clustering algorithms. Experiments conducted on
artificial and benchmark data sets demonstrate the ability of our criterion to discover
structure and select the correct number of clusters, whenever data invariances are
known beforehand.

6.1 Introduction

Time series are a type of data naturally organized as sequences with a temporal
dimension, such as values collected by sensors. Large volumes of unlabeled data are
ubiquitous across various domains such as healthcare, industry, biology, astronomy,
economy, the Internet of things (IoT) and many others. Clustering, a widely used
technique to gain insights from such data, consists in finding groups of elements

165

called clusters such that elements sharing the same cluster are similar, and elements
belonging to different clusters are dissimilar. Time series clustering (TSC) [Warren
Liao, 2005, Aghabozorgi et al., 2015] is a challenging task due to the temporal
nature of the data, which implies high dimensionality [Verleysen and François, 2005],
temporal feature correlation, invariance to transformations, and different lengths.
Model selection for TSC in particular is not well studied in literature [Aghabozorgi
et al., 2015]. For instance, methods to select the number of clusters are rarely
provided, although selecting the best or natural number of clusters is known to
be one of the crucial problems in cluster analysis [Ng and Han, 1994, Ben-David
et al., 2006, Von Luxburg, 2009]. When external labels are unavailable, model
selection is done using internal clustering validity indices [Arbelaitz et al., 2013].
Most indices are based on between-cluster and within-cluster distances, and could
be used with any distance other than Euclidean (e.g. Silhouette with Manhattan
distance [Ng and Han, 1994]), but their application to time series has not been well
studied [Warren Liao, 2005]. These indices are generally used on extracted features,
not raw time series (e.g. Davies-Bouldin in [Neel, 2005]). Heuristic methods with
cross-correlation dissimilarity have been developed in [Baragona, 2001]. For TSC
based on autoregressive models, distances between ARMA/ARIMA models have been
devised [Maharaj, 2000, Piccolo, 1990]. In case of model-based clustering, such
as mixture models, the AIC, BIC and ICL criteria have been widely used [Biernacki
et al., 2000, Bouveyron et al., 2015, Goffinet et al., 2020b, Goffinet et al., 2020a].
Still, the validation of time series clustering is unsolved in general.

Clustering stability [Ben-David et al., 2006, Von Luxburg, 2009] has emerged as a
natural and model-agnostic principle: an algorithm should find stable structures
in the data. "To be meaningful, a clustering must be both good and the only good
clustering of the data, up to small perturbations. Such a clustering is called stable.
Data that contains a stable clustering is said to be clusterable" [Meilǎ, 2018]. In
statistical learning terms, if data sets are sampled from the same underlying distribu-
tion, an algorithm should find similar partitions. The data-generating distribution is
unavailable in model-free clustering, thus perturbed data sets are obtained either by
resampling or injecting noise into the original data. Limitations of this principle, in
particular its ability to select the number of clusters, have been studied in [Mourer
et al., 2020]. It has been shown that a novel criterion called Stadion (stability
difference criterion) is able to successfully discover structure and select the number
of clusters when using additive noise perturbation. We base ourselves onto this
work and extend it to time series which have their own specificities. It is known
that temporal data are resilient to particular perturbations, which depend on the
application and the physical nature of the observed phenomena. Thus, we leverage

166 Chapter 6 Validation of time series clustering with an invariance-guided
criterion

prior knowledge on the invariances of the data in order to assess stability of a
clustering.

Invariant perturbations are already used for data augmentation, to improve the
generalization capability of supervised classifiers. Suitable perturbations for various
applications can be found in this literature, for example for time series [Pan et al.,
2020, Fu et al., 2020] or images [Fawzi et al., 2016, Shorten and Khoshgoftaar,
2019]. Transformation-invariant clustering algorithms have also been developed
[Frey and Jojic, 2000, Monnier et al., 2020]. In particular, warping-invariant time
series embeddings are learned in [Mathew and Sahely, 2019]. To our knowledge,
the first application of stability analysis to time series clustering comes from the
financial field [Marti et al., 2016]. In their work, authors study the price of financial
derivatives, namely credit default swaps. They compare the stability of weighted
linkage clustering with different dissimilarities (Euclidean distance, Pearson and
Spearman correlations, and a combination of correlation and Hellinger distance
between distributions). In order to assess stability, they devise a specialized pertur-
bation framework for financial time series. This idea of leveraging prior knowledge
on the nature and properties of the data is also what we would like to develop
in this work. However, the approach remains focused on their business field and
is application-specific. In addition, no quantitative stability scores are computed,
and results are interpreted by visualizing the partitions. Finally, it does not tackle
the problem of selecting the number of clusters. A second recent work [Klassen
et al., 2020] uses stability to evaluate fuzzy over-time clustering to detect correlated
subsequences in multivariate time series. This approach is interested in time-point
clustering (i.e. clustering individual time points of several series) and in particular
the evolution of cluster structure over time. Differently, our work focuses on whole
time series clustering. Moreover, they compute stability scores based on a resampling
approach [Roth et al., 2002], whereas we adopt the framework of [Mourer et al.,
2020], using perturbation by noise.

6.2 Invariances and time series clustering

Clustering algorithms are always based on a notion of distance between elements
of the data set. Distances between time series are only meaningful if they satisfy
certain invariances: in other words, some sequences should be considered similar
even if their raw feature values are different. It is not possible to choose an adequate
distance measure without knowing what invariances are desirable for the specific
task. For the same data set, several clustering solutions are possible, depending on

6.2 Invariances and time series clustering 167

these invariances. Hence, the problem of multiple clusterings is amplified [Färber
et al., 2010]. Example of invariances are:

• Scale or offset invariance. In many cases, we want two series to be considered
similar if they differ by an affine transformation (for example, if a value was
measured in different physical units, like Celsius and Fahrenheit degrees).

• Shift invariance. If a same phenomenon is observed at different time points
in two series, they should be considered identical.

• Warping invariance. This invariance is necessary if the phenomenon may
have different speeds or delays, which is ubiquitous in motion and biological
signals. Series can be aligned and matched using Dynamic Time Warping
(DTW) [Sakoe and Chiba, 1978].

• Uniform temporal scaling invariance. Unlike local scaling in warping, global
scaling is necessary to match behaviors at different speeds or frequencies,
yielding series with different lengths. A solution is to stretch series by a
constant factor.

• Occlusion invariance. Parts of the input being unobserved should not change
cluster membership.

• Complexity or noise invariance. [Batista et al., 2011] have shown that time
series can have different complexities, and that complex series tend to be closer
to simpler series than to other complex series under Euclidean distance.

Euclidean distance, used in most traditional clustering algorithms that operate on
tabular data (i.e. flat vectors of features), does not satisfy any of these invariances.
Thus, a variety of dissimilarity measures between time series has been devised
[Giusti and Batista, 2013].

Time series clustering methods can be broadly divided into three categories [Aghabo-
zorgi et al., 2015]. Whole time series clustering considers each series as an individual
object. Subsequence clustering consists in clustering subsequences of a single time
series, for example a measurement over a long period of time or real-time, streaming
data. Time point clustering clusters the individual time observations, and is similar to
segmentation. In this work, we only experiment with whole time series clustering.

On another level, clustering algorithms can be either based on raw time series,
feature-based, or model-based [Warren Liao, 2005]. Raw time series clustering
algorithms define a distance between raw values in the time domain. Agglomerative
clustering with single, complete or average linkage, and K-medoids (also called
PAM for Partitioning Around Medoids) [Kaufman and Rousseeuw, 1990, Ng and
Han, 1994] can be used with any distance between time series. Other widely used
methods require the computation of an average in the sense of specific distance,

168 Chapter 6 Validation of time series clustering with an invariance-guided
criterion

such as K-DBA [Petitjean et al., 2011], K-SC [Yang and Leskovec, 2011] and K-
shape [Paparrizos and Gravano, 2015]. Another approach uses shapelets, which
are short salient subsequences that discriminate between classes. First proposed in
supervised learning, unsupervised shapelets are also used for clustering [Zakaria
et al., 2012, Zhang et al., 2018].

Feature-based approaches consist in removing the temporal dimension by extracting
higher-level features and projecting the data into a space where euclidean distance
and generic algorithms (e.g. K-means, agglomerative clustering, SVMs, decision
trees) can be used. For instance, statistical features can be extracted, such as mean,
variance, minimum and maximum values, number of peaks, etc. Then, a time series
can be projected into the frequency domain using a Fourier transform, extracting
spectral features. Wavelets are another option. Another approach is to discretize
the values taken by the series and aggregate the sequence into a bag-of-features,
removing the temporal dimension, called piecewise aggregate approximation [Patel
et al., 2003, Lin et al., 2007]. Many successful methods in classification and
clustering are based on combining bags of multiple time- and frequency-domain
features [Schäfer, 2015, Schäfer and Leser, 2016]. Finally, this includes deep learning
approaches where a neural network learns representations from the raw time series
values [Madiraju et al., 2018, Ma et al., 2019, Fortuin et al., 2019, Manduchi et al.,
2020].

Another kind of approach learns the temporal behavior through autoregressive
models, such as ARMA or recurrent neural networks, and cluster the resulting model
parameters [Maharaj, 2000, Piccolo, 1990]. Finally, model-based clustering esti-
mates cluster membership probabilities using probabilistic models such as functional
mixture models [Chamroukhi and Nguyen, 2018].

6.2 Invariances and time series clustering 169

In this work, we will experiment with two widely used algorithms: K-medoids and
K-shape. K-medoids is a center-based algorithm, but differently from K-means,
instead of computing the mean (centroid) of each cluster, the center is the element
minimizing the sum of the distances to every other element (and is called the
medoid). It can be used with any dissimilarity measure. Here, we will use Euclidean
(EUC), Correlation (COR) and Dynamic Time Warping (DTW) [Sakoe and Chiba,
1978] distances, defined between two same-length series x = (x1, . . . , xT) and
y = (y1, . . . , yT) as

EUC(x,y) = ||x− y||2 =

√√√√ T∑
t=1

(xt − yt)2

COR(x,y) = 1− NCC0(x,y) = 1−
∑T
t=1(xt − x̄t)(yt − ȳt)
||x− x̄||2||y− ȳ||2

DTW(x,y) = min
W

√√√√ P∑
i=1
Wi

where the warping path W = {w1, . . . , wP } with P ≥ T is obtained using a dynamic
programming approach on the pairwise distance matrix between the two series,
based on following recurrence: d(i, j) = EUC(i, j) + min{d(i − 1, j − 1), d(i −
1, j), d(i, j − 1)}. It is common to constrain the warping path to a band around the
diagonal, e.g. the Sakoe-Chiba band [Sakoe and Chiba, 1978]. The invariances of
K-medoids depend on the distance used: no invariance with EUC, scale invariance
with COR and warping invariance with DTW. K-shape is a center-based algorithm
using the shape-based distance (SBD), based on normalized cross-correlation:

SBD(x,y) = 1−max
w

NCCw(x,y)

where w ∈ [−T, T] is the shifting of x. K-shape is thus invariant to scaling and
shifting, and is meant to be computationally efficient in its computation of averages.
Invariances of each algorithm are summarized in Table 6.1.

Tab. 6.1.: Invariances of clustering algorithms to scaling, shifting and warping.

Method/Invariance Scale Shift Warping

K-medoids + EUC % % %

K-medoids + COR ! % %

K-medoids + DTW % ! !

K-shape ! ! %

170 Chapter 6 Validation of time series clustering with an invariance-guided
criterion

6.3 Invariance-guided stability by perturbing invariant latent
factors

Stability methods based on resampling are data-independent and therefore directly
applicable to time series. However, it has been shown in a realistic setting that these
methods cannot work in the general case [Mourer et al., 2020]. On the contrary,
noise-based perturbations such as uniform or Gaussian ε-Additive Perturbation pro-
duce instability through jittering of cluster boundaries. The underlying assumption is
that a clustering should be resilient to low levels of noise (no points change clusters),
unless a boundary lies in a high-density region, where a large number of points
change clusters. While adding uniform or Gaussian noise to every dimension is
meaningful for tabular vectors of normalized features where Euclidean distance is
used, it is irrelevant for raw time series. Algorithms for clustering raw time series use
different distance metrics, thus there is no reason that random noise would or would
not make points change clusters, depending on the cluster boundaries. The notion
of cluster boundary itself becomes unclear when using different distances, as it is no
longer a simple hyperplane. Clusters of time series are not clusters in the sense of
euclidean distance and are resilient to different types of perturbation. For example,
if time series are invariant to shifting, clusters should be resilient to perturbation by
random shifting. As another example, if a set of time series is clustered under DTW
distance with Sakoe-Chiba band w, clusters should be resilient to perturbation by
warping, with a warping level not exceeding w. Most importantly, these invariances
are determined by the physical nature of the observed phenomenon and not by the
data set itself. The practitioner needs to know in advance which transformations are
invariant and which are not. Only then, a suited distance and algorithm can be used
and evaluated for model selection.

The computation of stability needs to be adapted to the case of time series, and
the perturbation process depends on the invariances of the data (shifting, scaling,
offsetting, uniform or local warping, noise, etc). Let us illustrate this discussion
with a simple artificial example, displayed on Figure 6.1. A data set consists in
one-dimensional time series with "bumps" at two different time locations and with
two different scales on the y-axis. The data are generated by only two underlying
latent factors: location (z1) and scale (z2). Had we access to the variables underlying
the time series data-generating process, the task would be traditional clustering in
a two-dimensional Euclidean vector space: the latent data distribution is simply 4
Gaussians. At a first glance, the model selection task can now seem straightforward:
take any clustering algorithm based on Euclidean distance (e.g. k-means or Ward

6.3 Invariance-guided stability by perturbing invariant latent factors 171

Location

S
ca
le

z1

z2

1

2

3

4

shifting

scaling

Fig. 6.1.: Artificial time series data set consisting in one-dimensional bumps at two different
locations and scales. The data distribution is represented in the (location, scale)
latent factor space. Invariance to perturbation by random shifting (red) or scaling
(green) determines the cluster structure, leading to 4 different solutions with 1, 2
or 4 clusters.

linkage), with ε-AP, and the Stadion criterion surely outputs the solution with K = 4.
However, it is clearly false, because the true solution depends on the invariances
of the original time series. The perturbation used in latent space must also take
into account these invariances. Shift (or scale) invariance implies the variable z1

(respectively z2) should be ignored in the perturbation. There is a duality between
perturbations in original time series space and in latent factor space, represented on
Figure 6.1. The true cluster structure consists in:

• Shift and scale invariance: solution (1) with K = 1
• Shift invariance only: solution (2) with K = 2
• Scale invariance only: solution (3) with K = 2
• No invariance: solution (4) with K = 4 clusters

In the next paragraphs, we will focus on two model selection tasks, using the stability
principle introduced in the previous section. First, we show that stability indicates
whether a distance is adapted to the data invariances, and second, we select the
number of clusters K using the Stadion internal validity index.

172 Chapter 6 Validation of time series clustering with an invariance-guided
criterion

6.4 Selecting the right distance with stability

Between-cluster stability can be used to select a distance or algorithm with appropri-
ate invariances. An algorithm should obtain a high between-cluster stability when
perturbing the data under invariant transformations. Concretely, we consider the toy
data set shown in Figure 6.1, and the widely used K-medoids algorithm, where the
number of clusters is fixed to K = 2. For effective initialization, required by [Mourer
et al., 2020], we use K-medoids++ initialization and take the best result over 10
runs. In the first experiment, we assume the data is scale-invariant. Thus, we use
perturbation by randomly scaling the whole time series by a factor drawn uniformly
in the [1/(1 + ε), 1 + ε] interval. The value ε controls the perturbation level, similarly
to the noise level in [Mourer et al., 2020]. Then, we evaluate between-cluster
stability for three distances: Euclidean, correlation and DTW. Figure 6.2 displays the
resulting stability paths, and unsurprisingly, correlation distance (K-medoids+COR)
is the most stable. The second experiment assumes shift-invariance of the data.
The whole time series are shifted temporally by a fraction of the time series length,
drawn uniformly in [0, ε]. The perturbation level ε now represents the maximum
shift length. The between-cluster stability paths now indicate that K-medoids+DTW
is the most stable algorithm. This toy task is rather a sanity check, because one

0.0 0.2 0.4 0.6 0.8 1.0

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Be
tw

ee
n-

clu
st

er
 st

ab
ilit

y
(S

ta
b B

)

Perturbation by random scaling

distance = EUC
distance = DTW
distance = COR

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0.0

0.2

0.4

0.6

0.8

1.0

Be
tw

ee
n-

clu
st

er
 st

ab
ilit

y
(S

ta
b B

)

Perturbation by random shifting

distance = EUC
distance = DTW
distance = COR

Fig. 6.2.: Between-cluster stability paths under perturbation by random scaling (top) and
shifting (bottom) for the K-medoids algorithm, with euclidean (EUC), correlation
(COR) and dynamic time warping (DTW) distances. COR is resilient to scaling
and DTW is more resilient to shifting. ε controls the level of perturbation.

generally knows in advance which invariances an algorithm satisfies, but we can
imagine more complex algorithms where invariances are not clearly determined.

6.4 Selecting the right distance with stability 173

6.5 Selecting the number of clusters

The second model selection task is the selection of the number of clusters K. First,
we consider an artificial data set consisting in one, two or three bumps located
around three different time locations in the series, displayed on Figure 6.3. The
desired invariance is warping invariance. Thus, the true number of clusters is K = 3,
corresponding to the number of bumps. We evaluate the K-medoids algorithm with

warping

Cluster 1 Cluster 2 Cluster 3

Number of bumps

Lo
ca

tio
ns

Fig. 6.3.: Artificial time series data set consisting in one, two or three bumps at different
locations, represented in the (number of bumps, locations) latent factor space.
Under the assumption of warping invariance, the true number of clusters is 3,
corresponding to the number of bumps.

DTW distance using the Stadion criterion and warping perturbation, for K = 1 . . . 9.
Warping level is controlled by two parameters: first, α controls the maximum fraction
of the series that will be warped, and ε controls the warping level, drawn uniformly
in [1/(1 + ε), 1 + ε]. We fix α = ε = 0.2. The hyperparameters of Stadion are set to
D = 10 and Ω = {2 . . . 5} without need for any tuning (see [Mourer et al., 2020]
for discussions on hyperparameters). Stadion scores and standard deviations over
D = 10 perturbations are shown on Figure 6.4. Clearly, our method has selected the
desired solution K = 3. This means that the most natural structure is three clusters,
with respect to the considered algorithm and invariance. Whenever the algorithm
is not able to find any structure resilient to the perturbation, our method outputs
K = 1, i.e. the data is not clusterable. This happens if we use Euclidean distance
instead of DTW, as shown in Figure 6.5. Interestingly, the second-best solution
is K = 7, as there are 7 different configurations for the locations of the bumps.

Experiments were then conducted on univariate data sets from the UCR/UEA
archive [Bagnall et al., 2018] (although our stability framework also applies in the
multivariate case). We present results for the CBF and Trace data sets, with two
algorithms: K-medoids+DTW and K-shape [Paparrizos and Gravano, 2015]. For
each algorithm we keep the best out of 10 runs. In order to speed up computations,
we use only a subsample of 50 time series with balanced ground-truth class labels.

174 Chapter 6 Validation of time series clustering with an invariance-guided
criterion

1 2 3 4 5 6 7 8 9
K

0.2

0.0

0.2

0.4

0.6

St
ad

io
n

Warp invariance (K-medoids/DTW)

Fig. 6.4.: Stadion criterion with perturbation by random warping (here with α = ε = 0.2
and D = 10) for the K-medoids algorithm with DTW distance, for K = 1 . . . 9.
The correct solution K = 3 is selected.

1 2 3 4 5 6 7 8 9
K

0.2

0.0

0.2

0.4

0.6

0.8

St
ad

io
n

Warp invariance (K-medoids/EUC)

Fig. 6.5.: Stadion criterion with perturbation by random warping for K-medoids with
Euclidean distance, for K = 1 . . . 9. Our method outputs K = 1, meaning that the
data is not clusterable w.r.t. the considered algorithm and invariance.

6.5 Selecting the number of clusters 175

First, we evaluate K-medoids+DTW on CBF (see Figure 6.6). We choose to perturb
the data by random shifting and adding uniform noise, as CBF consists in three
different noisy shapes at different locations. As previously, the shifting level is
controlled by ε, varied from 0 to 0.3 to obtain the Stadion paths on Figure 6.7. The
uniform noise is fixed and drawn in [−0.3, 0.3]. Choosing the right perturbation
seems to be a difficult task and to require profound knowledge of the data set;
however, it is not strictly necessary. On CBF, warping invariance could also be
correctly used, but shifting is sufficient to discover the right structure. Results are
presented on Figure 6.7: our method successfully selects the solution K = 3 (by
taking the highest maximum or average Stadion value over the path until εmax, as
explained in [Mourer et al., 2020]). It also corresponds to the partition with the
best ARI (ARI = 0.93). A second experiment on the Trace data set with K-shape

0 20 40 60 80 100 120

2

1

0

1

2

3

Cluster 1

0 20 40 60 80 100 120

2

1

0

1

2

3

Cluster 2

0 20 40 60 80 100 120

2

1

0

1

2
Cluster 3

Fig. 6.6.: Partitions obtained on the CBF data set by K-medoids+DTW for K = 3. The best
solution w.r.t. the ARI is K = 3 (ARI = 0.93).

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0.0

0.1

0.2

0.3

0.4

St
ad

io
n

CBF - Random shifting + uniform noise (K-medoids/DTW)
K = 1
K = 2
K = 3
K = 4
K = 5
K = 6

1 2 3 4 5 6
K

0.00

0.05

0.10

0.15

0.20

0.25

St
ad

io
n

CBF - Random shifting + uniform noise (K-medoids/DTW)

Fig. 6.7.: Stadion criterion for K-medoids+DTW on CBF under shifting and uniform noise
perturbation, evaluated for K = 1 . . . 6. (Top) Stadion paths as a function
of shifting level ε. The solution is selected by the highest maximum or average
Stadion value. (Bottom) Stadion scores taken at ε = 0.15 with standard deviations
over D = 10 perturbations.

presents a case where the algorithm cannot recover the ground-truth partition (see
Figure 6.8). We choose a warping-based perturbation, with α = ε and εmax = 0.5,
and evaluate parameters K = 1 . . . 5 (K > 5 produces clusters with too few points).

176 Chapter 6 Validation of time series clustering with an invariance-guided
criterion

0 50 100 150 200 250
2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

Cluster 1

0 50 100 150 200 250

2.0

1.5

1.0

0.5

0.0

0.5

1.0
Cluster 2

0 50 100 150 200 250

2

1

0

1

2

3

4
Cluster 3

0 50 100 150 200 250

1.5

1.0

0.5

0.0

0.5

1.0

Cluster 1

0 50 100 150 200 250

2.0

1.5

1.0

0.5

0.0

0.5

1.0
Cluster 2

0 50 100 150 200 250
2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

Cluster 3

0 50 100 150 200 250

2

1

0

1

2

3

4
Cluster 4

Fig. 6.8.: Partitions obtained on the Trace data set by K-shape for K = 3 (top) and K = 4
(bottom). The algorithm is unable to recover the ground-truth partition into 4
clusters. The best solution w.r.t. the ARI is K = 3 (ARI = 0.80), followed by
K = 4 (ARI = 0.75).

As can been seen on the results Figure 6.9, Stadion selects the solution with K = 3,
although the ground-truth partitions has 4 clusters. However, two of the clusters
cannot be distinguished by K-shape, thus K = 3 is objectively the best solution (as
measured by ARI with ground-truth labels). As a conclusion, our method evaluates
the quality of a given partition with respect to a given algorithm and a given set of
invariances, and yields sensible and interpretable results.

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.2

0.4

0.6

0.8

St
ad

io
n

Trace - Random warping (K-shape)
K = 1
K = 2
K = 3
K = 4
K = 5
K = 6

1 2 3 4 5
K

0.0

0.2

0.4

0.6

0.8

St
ad

io
n

Trace - Random warping (K-shape)

Fig. 6.9.: Stadion criterion for K-shape on Trace under warping perturbation, evaluated
for K = 1 . . . 5. (Top) Stadion paths as a function of warping level ε. (Bot-
tom) Stadion scores taken at ε = 0.25 with standard deviations over D = 10
perturbations.

6.5 Selecting the number of clusters 177

6.6 Software implementations

We used the algorithm implementations of the tslearn library1 [Tavenard, 2017]
for K-shape, and sklearn-extra2 for K-medoids. The CBF and Trace data sets
were taken from the UCR/UEA archive [Bagnall et al., 2018]. The stability anal-
ysis procedures, including perturbation function, are part of the skstab3 module
developed during this PhD.

6.7 Conclusion

In this chapter, we introduced an invariance-guided criterion for model selection in
time series clustering. The method is based on the principle that a good clustering is
stable under particular perturbations. We use prior knowledge on the invariances of
time series data to compute stability scores, based on the recent Stadion criterion.
Encouraging results were obtained on several toy and benchmark data sets, using
well-known center-based time series clustering algorithms. The criterion was able to
correctly determine the number of clusters given a set of invariances, and benefits
from the interpretable visualization of stability paths. An important drawback is its
high computational cost, as it requires to run the algorithm multiple times for each
evaluated parameter, and time series algorithms generally have a high complexity.

This chapter concludes the theoretical parts around unsupervised learning. The
coming two chapters will dive into the technical challenges of scalability, in order
to process huge data sets in an industrial context, and solve business use cases.
We begin with a chapter on distributed storage and computing across clusters of
machines. This set of tools will allow to scale the previously introduced algorithms
to very large numbers of samples.

1https://github.com/tslearn-team/tslearn
2https://github.com/scikit-learn-contrib/scikit-learn-extra
3https://github.com/FlorentF9/skstab

178 Chapter 6 Validation of time series clustering with an invariance-guided
criterion

https://github.com/tslearn-team/tslearn
https://github.com/scikit-learn-contrib/scikit-learn-extra
https://github.com/FlorentF9/skstab

Part III

Industrial applications and
scalability

Scaling to Big Data with
distributed computing

7

„. . . there are situation where the computer makes
feasible what would have been wholly unfeasible.

— John Tukey
(The Future of Data Analysis, 1962)

7.1 Introduction

Humanity generates two and a half quintillion bytes (or two and a half exabytes,
or 2.5× 1018 bytes), every single day in 2016, according to IBM1. And this amount
is increasing exponentially: 90% of the data in the world has been generated
within the last two years. This deluge of data, at the heart of the activities of
tech industry companies, is also transforming more traditional industries, and the
aerospace industry in particular. Big Data analytics is mentioned as a top three
corporate priority in all industry sectors, and is the top one priority for 61% of
companies in the aviation industry, more than in any other industry, tells a 2014
Accenture/General Electric survey2 (see Figure 7.1). The term Big Data was reported
formally for the first time in 2000 [Diebold, 2000], where the author stated that:

Big data refers to the explosion in the quantity (and sometimes, quality)
of available and potentially relevant data, largely the result of recent and
unprecedented advancements in data recording and storage technology.
In this new and exciting world, sample sizes are no longer fruitfully
measured in “number of observations,” but rather in, say, megabytes.
Even data accruing at the rate of several gigabytes per day are not
uncommon.

1https://www.ibm.com/blogs/watson/2016/07/10-industries-using-big-data-win-big/
2https://www.forbes.com/sites/louiscolumbus/2014/10/19/84-of-enterprises-see-big-

data-analytics-changing-their-industries-competitive-landscapes-in-the-next-
year/

181

https://www.ibm.com/blogs/watson/2016/07/10-industries-using-big-data-win-big/
https://www.forbes.com/sites/louiscolumbus/2014/10/19/84-of-enterprises-see-big-data-analytics-changing-their-industries-competitive-landscapes-in-the-next-year/
https://www.forbes.com/sites/louiscolumbus/2014/10/19/84-of-enterprises-see-big-data-analytics-changing-their-industries-competitive-landscapes-in-the-next-year/
https://www.forbes.com/sites/louiscolumbus/2014/10/19/84-of-enterprises-see-big-data-analytics-changing-their-industries-competitive-landscapes-in-the-next-year/

Fig. 7.1.: Big Data analytics: a top priority in industry.

As explained in this quotation, the Big Data phenomenon is the result of trends,
which are the exponentially increasing number of data sources (sensors, connected
devices, software, the Internet, Internet of Things (IoT), etc.), inexpensive storage,
and the availability of tools to process the data. In addition, more and more people
are involved in the process of generating, processing and consuming the data: this
phenomenon is known as the democratization of data [Akerkar, 2014]. A common
definition of Big Data uses the three V’s [Laney, 2001]:

• Volume: large data sets and storage that range from gigabytes to petabytes or
exabytes.

• Velocity: data are generated, collected and processed at a high speed. The
data flow is massive, real-time and continuous.

• Variety: data can take various forms, structured or unstructured (sensor mea-
surements, images, video, text, audio, speech, human- or machine-generated. . .).

Often, these properties are expanded to four V’s, five V’s3 or even more, by adding:

• Value: useful insights and value contained in the data, that can be used to
inform decision-making.

• Veracity: data integrity is a challenge. Data may contain errors, biases and
noise and must be cleaned before processing.

3https://www.ibm.com/blogs/watson-health/the-5-vs-of-big-data/

182 Chapter 7 Scaling to Big Data with distributed computing

https://www.ibm.com/blogs/watson-health/the-5-vs-of-big-data/

• Validity: data must be correct and accurate for the intended use.
• Variability: data are captured at different times, places and by different people.

The interpretation of data depends on the context.
• Volatility: volatility refers to how long data are relevant for an analysis and

how long they should be stored.

Data are considered as Big Data if they pose a combination of the challenges
expressed by these V’s. There are dozens of definitions of Big Data, and they vary
by sector and industry, but an objective definition was phrased in [TechAmerica
Foundation, 2012]:

Big data is a term that describes large volumes of high-velocity, complex,
and variable data that require advanced techniques and technologies to
enable the capture, storage, distribution, management, and analysis of
the information.

At the same time, the world of science has changed with the emergence of a
fourth scientific paradigm: data-intensive science [Bell et al., 2009]. The first two
scientific paradigms are several hundred years old and are empirical science and
theoretical science. More recently, science has been using scientific simulations
to describe complex phenomena that cannot be captured by only the two first
paradigms, giving birth to the computational science paradigm. Today, experiments
and simulations generate large data sets that need to be analyzed, using what is
called data-intensive science. Some of the first fields confronted with data-intensive
science were astronomy (telescopes) and fundamental physics (particles).

7.1.1 The V’s of aircraft engine data

The aim of this section is to explain why data from the aviation sector, and in
particular data collected on civil aircraft engines, can be qualified as Big Data, by
deriving some of their relevant V’s. The focus is put on an important application of
engine data analysis: health monitoring. Engine health monitoring (EHM) broadly
consists in monitoring the state of an engine or a fleet of engines by using engine data
and past events, in order to improve engine operation and availability [Blanchard
et al., 2009]. The first objective is to avoid abnormal events as in-flight shutdowns
(IFSD), aborted take-offs (ATO) and delays and cancellation (D&C). A second
objective is optimizing maintenance operations to improve safety while reducing
costs for aircraft and engine manufacturers and airline companies. In this thesis,
we will mostly adopt the point of view of the engine manufacturer. EHM requires

7.1 Introduction 183

calculating health indicators and running algorithms on data sets that are becoming
larger and larger.

Volume

Today’s highly instrumented aircraft produce huge amounts of data that range from
gigabytes to terabytes per flight. An average flight generates between 500 and 1000
gigabytes [IBM Global Business Services, 2015]. The number of sensors installed on
new aircraft models is exploding. Airbus 380-1000 aircraft are equipped with 10000
sensors on each wing and generate several terabytes of data per day [Marr, 2015].
The data concerning aircraft engines is also growing, as the number of sensors
keeps growing. Several hundreds of variables are measured on an engine, and on
more recent models, the sensor measures are recorded on the whole flight at high
frequency. For example, continuous data of more than 500 variables are recorded on
LEAP engines at Safran Aircraft Engines, and the sampling frequency can reach up
to 60 Hz. Data relative to vibrations study have a particularly high frequency. Taking
into account that flights can last for several hours and that thousands of engines are
operating every day, it represents a considerable volume.

Velocity

Velocity is the speed at which data is produced and needs to be processed. One kind
of data often used by airlines and even by the public is real-time aircraft route data
including aircraft type and tail number, airline, geographical location, speed, altitude
and route destination. In the USA, this kind of data is made available through the
Aircraft Situation Display to Industry (ASDI) service4, a data stream service of the
US Department of Transportation. Today, the data sources are connected by a central
platform part of the SWIM program5 (System-Wide Information Management) and
the data encompasses weather information and airport status. These data arrive
in real-time from the thousands of aircraft in circulation. Most often, aircraft data
recorded during flights are only retrieved occasionally (every batch of flights) for
ad-hoc analysis, and do not have the property of high velocity. But in the future,
more and more data will be streamed in-flight for real-time analysis, so velocity will
become a challenge for companies and manufacturers.

4https://en.wikipedia.org/wiki/Aircraft_Situation_Display_to_Industry
5https://www.faa.gov/air_traffic/technology/swim/

184 Chapter 7 Scaling to Big Data with distributed computing

https://en.wikipedia.org/wiki/Aircraft_Situation_Display_to_Industry
https://www.faa.gov/air_traffic/technology/swim/

Variety

Aviation data variety is immense. Most of the data is structured, but there are also
cases of unstructured data. An example of unstructured data is text data coming
from maintenance log reports. Recently, aircraft manufacturers have been starting
to develop systems to automatically process log reports (written in English) using
natural language processing techniques. However, the immense majority of the
data is structured and consists in physical quantities: geographical position, speed,
altitude, temperature, pressure, cockpit commands, aircraft configuration, etc. On
an engine, examples of variables are the rotation speeds of the engine fan and core,
temperatures and pressures at different parts of the engine, fuel flow, oil pressure,
etc. When these quantities are measured at a sequence of time steps during a flight,
we speak of time series data.

Veracity

Veracity of the data can be a challenge at several moments of the analysis. At
data generation, errors can be introduced by sensor failures. Data extraction steps
happening between the recording of the data and its use for analysis also have
risks (e.g. decoding, ingestion, etc.). Then, sensor data is always noisy and the
noise should be removed before further utilization, without loosing information.
Additionally, when working with time series data, re-sampling and interpolation
can also create artifacts and corrupt the data. Thus, data veracity must be verified
throughout the process, in particular if the results are used for decision-making.

Volatility

Volatility really depends on the use case. However, as aircraft and their engines
remain in operation for decades, their data should be preserved for a very extended
period of time. Even years later, historical data may be needed for an analysis.

Value

Most of the data generated by aircraft remains untapped, but today this fact is
changing rapidly, as aviation actors realize the value contained in these data. For
engine manufacturers, analyzing engine data enables to detect potential failures
before they happen and raise alerts. If necessary, these alerts are sent to customers

7.1 Introduction 185

(aircraft operators) as a Customer Notification Report (CNR). For example, GE’s
predictive system generated 350000 alerts resulting in 9000 CNRs on their fleet
in 2015 [Broderick, 2016]. An automatic data-driven CNR generation application
has also been developed at Safran A.E. Beside health monitoring applications by
manufacturers, companies are also developing data-driven products and services. For
example, Airbus developed its Skywise platform, providing subscribing airlines with
predictive analytics [Airbus, 2018]. The Safran group has developed the Cassiopée
product [Safran, 2018]. Airline companies are already using Big Data analysis for
various applications, including airline route optimization ([Diebold, 2000], [Kasturi
et al., 2016]). Data analytics systems could also be used to provide pilots and crew
with insights and predictive information while in flight. However, this poses human
factors-related questions as, how to display this information on cockpit displays, and
how it should be interpreted [Oh, 2017].

7.2 Hadoop and the Map-Reduce paradigm

This section will introduce a widely used paradigm for Big Data processing, Map-
Reduce, which originated in the needs of large Internet companies to process the huge
amounts of data they generate every day. The popular open-source Hadoop platform
implements various components for handling huge data volumes. Mastering these
technologies can enable to process efficiently the data generated by aircraft engines
and develop data-driven applications such as engine health monitoring.

7.2.1 Map-Reduce

At the Internet era, petabytes of information are being generated by billions of users
and can no longer be stored on single machines and processed in traditional ways.
In response to the need for analyzing and processing these data faster, companies
developed solutions to process data spread across clusters of machines. In particular,
the web giant Google was at the forefront of Big Data processing and built upon
a simple but efficient and cost-effective paradigm called Map-Reduce [Dean and
Ghemawat, 2008] that allowed to process data in parallel on a cluster. The idea
was that many jobs could be written as two operations: a map operation, and a
reduce operation. The terms map and reduce come from the functional programming
vocabulary, and are functions applicable on iterable data structures. To further
explain how the Map-Reduce paradigm works, we first need to define some basic
vocabulary:

186 Chapter 7 Scaling to Big Data with distributed computing

• A cluster is a set of similar computers (called nodes) on the same local network
(if the nodes are geographically distributed and have heterogeneous hardware,
it is called a grid instead).

• In a cluster, we generally distinguish worker nodes, responsible for carrying out
computations, and one master node, responsible for supervision, scheduling,
sending tasks to the workers, allocating resources, etc.

The data are stored in a distributed filesystem or database. One of the first distributed
filesystem is the GoogleFS (GFS). Before going into more details, the main idea
is that large files are cut into chunks (64MB in GFS), replicated for redundancy,
and distributed across the nodes of the cluster. The metadata, which contain the
locations of the blocks composing each file, are managed by the filesystem’s master
node.

The key concept of Big Data processing that Map-Reduce is taking advantage of is
data locality: bringing the processing to the data, rather than retrieving the data to
a machine where the computations take place. In Big Data, a golden rule is to avoid
transferring data between machines as much as possible, due to network latency.
Moving data between nodes is called shuffling. The key feature of this framework
is to abstract out to the application programmer the precise details of where the
different parts of the data are stored: "the run-time system takes care of the details
of partitioning the input data, scheduling the program’s execution across a set of
machines, handling machine failures, and managing the required inter-machine
communication. This allows programmers without any experience with parallel
and distributed systems to easily utilize the resources of a large distributed system”
[Dean and Ghemawat, 2008].

The map function takes a key-value pair and returns an intermediate list of key-value
pairs. The reduce function takes this list and merges all values having the same
intermediate key. A Map-Reduce program is roughly composed of three steps:

1. Map step: the map worker nodes apply the map function to their local data
(in parallel) and write the intermediate key-value pairs to disk.

2. Shuffle step: data are redistributed across the worker nodes so that the
intermediate data belonging to the same key are located on the same reduce
worker nodes.

3. Reduce step: the reduce workers recursively apply the reduce function per
key (in parallel) and write the output on a reduce partition on disk.

See Figure 7.2 for an illustration of these three steps. Consider the common example
of word counting, where the goal is to count the number of occurrences of words in

7.2 Hadoop and the Map-Reduce paradigm 187

Fig. 7.2.: Illustration of the Map-Reduce paradigm.

a large set of documents (possibly billions). The key idea is that the word counts for
subsets of the documents can be computed independently in parallel on different
machines, and be combined to obtain the final result. In this example, the map
operation splits the document into words, and for each word, emits a key-value
pair with the word as the key and 1 as the value corresponding to the word count.
Then, the reduce operation iterates through the key-value pairs (associated with the
same key), sums the values corresponding to the partial word counts, and return
a key-value pair with the word as the key and the sum of the partial counts as the
value

1 function map(String input_key , String input_value):
2 // input_key : document name
3 // input_value : document contents
4 for each word w in input_value :
5 EmitIntermediate (w, 1)
6
7 function reduce (String output_key , Iterator intermediate_values):
8 // output_key : a word
9 // output_values : a list of counts

10 int result = 0
11 for each v in intermediate_values :
12 result += v
13 Emit(result)

Listing 7.1: Word count Map-Reduce pseudo-code.

See 7.1 for the pseudo-code of this example. Google’s original MapReduce software
was implemented in C++, and benchmarked on tasks like distributed sort and
distributed grep (searching for character patterns in text data). In 2007, 1PB of data

188 Chapter 7 Scaling to Big Data with distributed computing

was sorted in 12 hours; in 2011, this time was reduced to 33 minutes6. Since then,
performance is continually improving.

The first usage of Map-Reduce was analyzing web logs, but it can be used for
other computational tasks, especially those involving linearly computable statistical
functions over the elements of the data set [Aggarwal and Reddy, 2013], which is
the case of many data mining steps and machine learning algorithms, as we will see
later.

7.2.2 The Hadoop platform

Hadoop7 is an open-source platform for scalable distributed processing of large
data sets, inspired from MapReduce, GoogleFS and BigTable (Google’s distributed
database management system), and supported by the Apache Software Foundation
since 2009. It was invented by Doug Cutting, former software engineer at large
Internet companies, now working at Cloudera and chairman of the Apache Software
Foundation board of directors since 2010. The Hadoop platform is composed of
many software components and tools, with at its core, HDFS (the Hadoop Distributed
File System), Hadoop MapReduce (Hadoop’s implementation of Map-Reduce), and,
since Hadoop version 2, the YARN (Yet Another Resource Negotiator) scheduling
and resource management system. Other important components are HBase (a
column-oriented distributed database inspired from BigTable), ZooKeeper, Pig and
Hive (a data warehousing software enabling to perform SQL-like requests on HDFS).
Most Hadoop components were developed in Java and as a consequence, the whole
ecosystem heavily relies on the JVM (Java Virtual Machine). The main drivers of
Hadoop are the following:

1. Scalability: the goal is to be able to process huge volumes of data (ter-
abytes/petabytes), structured or unstructured and collected from various
sources.

2. Distributed processing: data-parallel processing.
3. Fault tolerance: the system must be tolerant to task failures and losing cluster

nodes, using block replication.
4. Cost-effectiveness: running on clusters of commodity hardware, i.e. using a

large number of already-available, low-performance and low-cost hardware,
instead of fewer high-performance, high-cost computing components.

6https://cloud.google.com/blog/big-data/2016/02/history-of-massive-scale-sorting-
experiments-at-google

7https://hadoop.apache.org/

7.2 Hadoop and the Map-Reduce paradigm 189

https://cloud.google.com/blog/big-data/2016/02/history-of-massive-scale-sorting-experiments-at-google
https://cloud.google.com/blog/big-data/2016/02/history-of-massive-scale-sorting-experiments-at-google
https://hadoop.apache.org/

For more information about the nuts and bolts of the main Hadoop components and
how tasks are orchestrated on a cluster, refer to Appendix D. The Spark framework
used throughout this PhD relies on these components, and is introduced right now.

7.3 Efficient analytics with Apache Spark

Apache Spark8 [Apache Spark, 2014] is an open-source distributed general-purpose
processing engine able to perform high-performance, in-memory and resilient com-
putations on both batch and streaming data. The project started at Berkeley’s
AMPLab, a lab focused on Big Data analytics, by Matei Zaharia. In 2013, the creators
founded the Databricks company, a company helping clients with cloud-based data
processing with Spark, developing a web-based platform for using Spark, providing
online courses and organizing the Spark Summit conferences. The project is now
part of the Apache Software Foundation. Spark is probably the most used large-scale
data processing framework and can be used for various tasks. Other projects of
data-parallel computation engines are Apache Tez9, Apache Flink10, Apache Apex11,
Apache Storm12, the Microsoft Dryad project13, the Python Dask library14, Apache
Drill, Cloudera Impala, Apache Crunch, Cascading (and its Scala version Scalding),
Google Cloud Dataflow with Apache Beam15. . . See for instance [Inoubli et al., 2018]
and references therein for surveys on Big Data processing frameworks.

7.3.1 Apache Spark

The Apache Spark framework improves on some of the limitations of Hadoop and
MapReduce. Indeed, Hadoop is not adapted for iterative tasks like, for example,
machine learning, as it is only using disk for reading and writing results of operations.
Disk access is slow and a bottleneck for such applications. On the contrary, Spark
is capable of in-memory computations, meaning that it can perform computations
by storing data in RAM. Furthermore, it provides an interactive interface called the
Spark shell, allowing to manipulate large data sets interactively for ad-hoc, interactive

8https://spark.apache.org/
9http://tez.apache.org/

10https://flink.apache.org/
11http://apex.apache.org/
12https://storm.apache.org/
13https://en.wikipedia.org/wiki/Dryad_(programming)
14http://dask.pydata.org/
15https://beam.apache.org/

190 Chapter 7 Scaling to Big Data with distributed computing

https://spark.apache.org/
http://tez.apache.org/
https://flink.apache.org/
http://apex.apache.org/
https://storm.apache.org/
https://en.wikipedia.org/wiki/Dryad_(programming)
http://dask.pydata.org/
https://beam.apache.org/

Fig. 7.3.: Apache Spark: a unified analytics stack. In this thesis, we use Spark SQL and
MLlib in addition to the core functionalities.

analysis, as data scientists are used to for smaller data sets. The Spark framework is
a stack of components composed of the Spark Core, Spark SQL (allowing to perform
SQL queries on Spark data sets), Spark Streaming (for processing streaming data),
MLlib (Spark’s machine learning library) and GraphX (graph processing library).
The stack is represented on figure 7.3. The framework is written in Scala, a modern
JVM language presented in more details in the following paragraphs. It provides
APIs to write applications in Java, Scala, Python or R. Spark runs on a cluster and
can connect to 4 different cluster managers:

• Standalone, the simple cluster manager included with Spark.
• YARN, the resource manager of Hadoop v2.
• Mesos, another cluster manager.
• Kubernetes, experimental, since Spark 2.3.

The standalone cluster manager, included with Spark, has limited scheduling capa-
bilities but has the enormous advantage that it can be run in local mode, i.e. without
access to a cluster. This enables to run and test Spark jobs locally before running
them on a cluster. In addition, it can run on cloud clusters like Amazon EC2. Finally,
Spark is compatible with most of the data sources used on Hadoop (HDFS, Hive,
HBase, Cassandra, etc.).

7.3.2 Functional programming

The functional programming paradigm in Big Data

Big data processing is tightly linked with the functional programming paradigm.
The abstraction of functions is essential in programming in general: instead of

7.3 Efficient analytics with Apache Spark 191

writing the same code dozens or even thousands of times, it can be written once and
reused as needed, thus reducing the amount of code, reducing the risk of bugs and
mistakes, and speeding up the development process. In functional programming,
we use functions that are close to the concept of mathematical functions, called
pure functions, that have the property of having no side effects, meaning that they
cannot modify other variables, and that every time it is called with the same input,
the output remains the same (as with a mathematical function). In distributed
data processing, we want tasks to run in parallel on different machines without
knowing in which order and how many times the tasks will be executed (Spark is
able to re-run failed tasks for fault tolerance), so the functions used are close to pure
functions.

Spark uses the same kind of operators as in functional programming, such as map
(to apply a function on a collection of elements), fold (to iterate through a list),
reduce (to combine elements recursively using an associative operator), etc. The
functional programming concept of higher-order functions (i.e. functions that take
another function as argument or return a function) is omnipresent in distributed
programming. As we will see, Scala is particularly oriented towards the functional
programming style.

Programming languages for writing Spark applications

The four languages for writing Spark applications are Scala, Java, Python and R. We
will quickly present the pros and cons of each of the languages.

Data analytics is often an iterative, interactive process where data scientists and other
engineers need to query and analyze the data without writing complete applications
and with near real-time responses. This requirement is a major deal breaker for
choosing the programming language. Java does not support REPL (Read-Evaluate-
Print-Loop), whereas both Scala and Python offer such functionality.

Scala is a modern, multi-purpose programming language combining functional and
object-oriented programming. It runs on the JVM (Java Virtual Machine), and is
thus fully compatible with Java libraries. It is a typed language (unlike Python
which is non-typed), but far more concise than Java, and with a type inference
system. Like Java, it is compiled to bytecode that is interpreted by the JVM (once
more, unlike Python that is interpreted). It offers powerful object-oriented features
(classes, traits, class composition with mixins, etc.), and is particularly suited for
functional programming (high-order functions, currying, etc.) and also has a pattern
matching feature. It has a handy data structure called case class for classes that

192 Chapter 7 Scaling to Big Data with distributed computing

only contain typed data fields and no methods. We will see that case classes can
be useful for pattern matching and working with typed Spark data sets (note that
Python 3.7, released in summer 2018, introduces a similar concept called data
class). Furthermore, Scala is particularly adapted for concurrent and distributed
applications by using the actor model16, as well as asynchronous programming.
The most used implementation of the actor model for JVM languages (Java and
Scala) is the Akka framework17. Apache Spark itself is written mostly in Scala and
based on the actor model for distributed processing. At the beginning, Spark was
based on Akka, but this dependency was removed later by rewriting the needed
functionalities from scratch. Scala applications are usually built using sbt (Scala
Build Tool) or Maven. Here are the main advantages of using Scala for writing Spark
applications:

• Coding style. Scala’s functional and object-oriented programming style results
in elegant code, as it is the native language of Spark.

• Performance. As a JVM language, it runs faster than interpreted Python code.
• Safety. Strong typing and compilation avoid runtime errors.
• Dependency management. Dependencies are added in the sbt or Maven

build file and automatically downloaded if needed.
• Deployment. A Scala Spark application can be packaged into a single JAR file

(including its dependencies).
• Compatibility with Java libraries.

Depending on the developer’s background, it also comes with some hurdles:

• Steep learning curve. Scala comes with a lot of new concepts that can take
time to be mastered.

• Fewer libraries are available compared to Python, as the community is con-
siderably smaller. In particular, data analysis, machine learning and data
visualization libraries are less rich and mature. However, the tendency is
changing as more and more open-source Scala libraries are being developed
and more and more companies are using it in industry.

Python is without a doubt the most used language among data scientists and can
also be used to write Spark applications, thanks to the PySpark wrapper. We will
not provide more details about the Python language as it is already well-known,
but some pros and cons of using Python for developing Spark projects. Notable
advantages are:

16https://en.wikipedia.org/wiki/Actor_model
17https://akka.io/

7.3 Efficient analytics with Apache Spark 193

https://en.wikipedia.org/wiki/Actor_model
https://akka.io/

Fig. 7.4.: Benchmark of an aggregation task in Spark with RDD and DataFrame APIs in
different languages.

• Easy to learn, versatile and powerful. Most data scientists and engineers
master the Python language, and it can be used for a large variety of applica-
tions.

• Thousands of powerful libraries exist in Python for almost all kinds of use
cases. Linear algebra, statistics, machine learning and data analysis libraries
(e.g. numpy, scipy, pandas, scikit-learn, etc.) are particularly rich and
efficient (relying on fast vectorized underlying C and C++ implementations).

Disadvantages are:

• Performance. PySpark is a wrapper around Spark, and Python is intrinsically
slower than compiled languages.

• Safety. Runtime errors can easily happen as there is no type-checking.
• Deployment is not as easy as with Scala. Files and dependencies must be

packaged in a .zip or .egg archive and may require virtual environments.

However, when working with a lot of cores, performance is not a major driving
factor in choosing the programming language for Spark, as the global performance
of the application will depend more on data-parallel processing than on pure lan-
guage performance. Moreover, Spark SQL’s DataFrame API for structured data sets
performs special optimizations with the Catalyst optimizer that generate a physical
execution plan in form of JVM bytecode, so there will be no performance difference
between using Scala or PySpark (benchmark on Figure 7.4). The conclusion is that
each developer can use the language they prefer, depending on the background and

194 Chapter 7 Scaling to Big Data with distributed computing

Fig. 7.5.: Overview of the Spark architecture. The SparkContext lives on the driver and
talks to the cluster manager (e.g. YARN) to coordinate tasks executed on different
nodes, called executors.

the context of the team. Data processing workflows can be composed of several
components written in different languages.

7.3.3 Anatomy of a Spark job

As we explained in the paragraph on YARN, the resource manager negotiates re-
sources to start containers on the worker nodes. In the case of a Spark application,
the container processes are called executors and correspond to JVM instances that
carry on computations and store data. As a consequence, there can be several
executors running on a single node.

A Spark application is coordinated by the SparkContext that is located in the driver
program and sends the application code (JAR or Python files) and tasks to the
executors. On YARN, an application can be submitted in client mode (i.e. the driver
runs on the client) or in cluster mode (i.e. the driver runs on a cluster node) using
the –deploy-mode argument of spark-submit. This architecture is illustrated on
Figure 7.5. Spark has a number of properties to configure application properties,
execution behavior, scheduling, runtime environment, shuffle behavior, memory
management, compression and serialization, networking, security and Spark UI
settings. Additional properties exist to configure the different cluster managers
and the components Spark SQL, Spark Streaming, GraphX and SparkR. On top of
this, there are environment variables, logging configuration, and the configuration
of Hadoop components (Hive). Inevitably, configuration is a huge part of the

7.3 Efficient analytics with Apache Spark 195

work in successfully running Spark jobs. Some essential performance tunings are
explained thereafter. The entire list of available properties is available in the Spark
documentation18.

7.3.4 The RDD API

Apache Spark’s fundamental data abstraction is the RDD (Resilient Distributed data
set). As contained in its name, a RDD is a data collection that is replicated on several
nodes for fault-tolerance (resilient) and can be processed in parallel (distributed).
A RDD can be created either by parallelizing an existing collection in the driver
program (e.g. a Python list or Scala Seq), or by referring to an external data source
(e.g. a local file, HDFS, a database, etc.). Spark divides the data into partitions which
can be processed in parallel on several nodes. The number of partitions (called the
parallelism) can be determined automatically by Spark (equal to 2 to 4 times the
number of cores in the cluster), or manually specified by the user.

Listing 7.2 and 7.3 present an example where we create a RDD from a list of integers
from 1 to 100, and calculate the sum of squares by first applying a square function
using the map method, and then summing the intermediate results by passing the
summation function to the reduce method. As we can see in this example, we will
make a heavy use of anonymous functions.

1 val rdd = sc. parallelize (1 to 100)
2 val squares = rdd.map(x => x*x)
3 val result = squares . reduce ((a,b) => a+b)

Listing 7.2: Calculating a sum of squares on a RDD (Scala).

1 rdd = sc. parallelize (range (1 ,101))
2 squares = rdd.map(lambda x: x*x)
3 result = squares . reduce (lambda a,b: a+b)

Listing 7.3: Calculating a sum of squares on a RDD (Python).

In this example, Spark will divide the numbers from 1 to 100 in several partitions and
apply the map and reduce functions in parallel. It is important to note that the map
function itself returns a new RDD: this is called a transformation. The reduce method
combines the elements of the squares RDD and produces the final result (an "int" vari-
able): this is called an action. The essential idea behind this is that Spark creates a
Directed Acyclic Graph (DAG) of transformations and actions, and only performs the
needed computations when an action is called. In this case, Spark does actually not

18https://spark.apache.org/docs/latest/configuration.html

196 Chapter 7 Scaling to Big Data with distributed computing

https://spark.apache.org/docs/latest/configuration.html

perform any operations until the reduce function is called. This is called lazy evalua-
tion. Eventually, we could made the code more concise by combining both operations
and writing result = rdd.map(lambda x: x*x).reduce(lambda a,b: a+b).

A very common type of RDD is the pair RDD, where each element is a key-value pair.
Pair RDDs, for example, have a reduceByKey method that reduces values having the
same key. An example that we already mentioned is the word count example, where
we count the number of occurrences of each word in a document. In this case, the
text data is read from a file and the elements of the RDD are strings corresponding
to the lines in the file. The Spark code for this example is presented in 7.4. Here
again, Spark only reads the text file and performs the RDD transformations when
the reduceByKey method is called.

1 rdd = sc. textFile (" document .txt")
2 # collect () is a RDD action that retrieves
3 # the data in the resulting RDD
4 result = rdd. flatMap (lambda s: s.split ())\
5 .map(lambda w: (w ,1))\
6 . reduceByKey (lambda a,b: a+b). collect ()

Listing 7.4: Word count Spark example on a text file.

7.3.5 Spark SQL and the DataFrame/Dataset API

Spark SQL is the module for structured data processing. Processing structured
data is different from processing unstructured data, because Spark can leverage the
structure of the data to perform optimizations. Spark SQL also allows to execute
SQL queries on data sets, and from version 2.0.0, there is a built-in support for Hive
that allows to read an create tables, perform HiveQL queries and use Hive UDFs,
even without a Hive installation.

To represent structured data sets, Spark provides the DataFrame/Dataset API. Unlike
RDDs which are collections containing any type of unstructured data (e.g. text),
these abstractions represent the data in the same way as relational tables. In recent
Spark versions, the API varies slightly between Python and Scala. In Python, the
only data type is the DataFrame. It is a data set organized into named columns, and
is very similar to the dataframes used by the pandas data analysis library. Under
the hood, a Spark DataFrame is implemented as a RDD of Row objects. A Row is a
structured type composed of named fields defining the schema of the table. In Scala,
structured data is now represented using the Dataset class, which is a collection
of typed elements, defined by a Scala case class. DataFrames can also be used,

7.3 Efficient analytics with Apache Spark 197

in fact they are only an alias for a data set of Row objects (thus less general and
flexible than typed data sets).

Structured data can be manipulated using the same functional transformations and
actions than RDDs (map, filter, etc.), but in addition, it is possible to perform all
kinds of operations specific to relational tables, for example aggregations (count,
sum, min, max, average. . .), grouping, ordering, UDFs (user-defined functions),
UDAFs (user-defined aggregation functions), etc. Operations can be performed using
Spark data set/DataFrame methods or directly expressed as SQL queries. Finally,
Spark supports a variety of data sources for structured data, for instance text files in
CSV or JSON format, optimized data formats like Parquet or ORC, as well as JDBC
database connectivity. Results stored in a data set/DataFrame can eventually be
saved to disk as a persistent table (e.g. in a file or in Hive), with the possibility of
using partitioning and/or bucketing. Note that partitioning when writing a table to
disk is a completely different concept that Spark’s partitioning.

An essential point is that this APIs should be always preferred to the RDD API,
because Spark SQL’s optimization engine (called Catalyst) will lead to better per-
formance in most cases. The optimization engine is capable of building a physical
execution plan from the queries, and we mentioned in the previous paragraph that
it allowed the same high performance in Python than in Scala. In example 7.5, we
create a DataFrame from an existing Hive table using a SQL query, group the data
set on a column and perform a count aggregation.

1 # df and result both are DataFrames
2 df = spark.sql(" select * from my_table ")
3 result = df. groupBy (" column "). count ()

Listing 7.5: Spark SQL count aggregation example on a table.

7.4 Distributed machine learning

In contrast to traditional single machine (or local) clustering, parallel and distributed
algorithms use multiple machines to speed up the computation and increase the
scalability. A somewhat old survey is available is available in [Aggarwal and Reddy,
2013]. Many existing clustering algorithms can be generalized to the Map-Reduce
framework. Nevertheless, not every algorithm can be adapted efficiently. Map-
Reduce is particularly effective for data-parallel linear computations, i.e. linear
computations that can run independently in parallel on parts of the data. According

198 Chapter 7 Scaling to Big Data with distributed computing

Fig. 7.6.: The general framework of most parallel and distributed clustering algorithms.
[Aggarwal and Reddy, 2013]

to [Aggarwal and Reddy, 2013], most parallel and distributed clustering algorithms
follow the general framework depicted in Figure 7.6:

1. Partition: data are partitioned and distributed over machines.
2. Local clustering: each machine performs local clustering on its partition of

the data.
3. Global clustering: the cluster information from the previous step is aggre-

gated globally to produce global clusters.
4. Refinement of local clusters: optionally, the global clusters are sent back to

each machine to refine the local clusters.

K-means clustering can be easily distributed in Map-Reduce [Zhao et al., 2009].
First, data is partitioned across the nodes (step 1). This is already the case when
using a distributed storage. The map operation assigns each data point to its cluster
by computing the nearest centroid (step 2), assuming centroids are available on
each node (e.g. using broadcast variables in Spark). The reduce operation groups
the elements by cluster membership and aggregates them by computing the mean
(step 3). Finally, as in standard K-means, we iterate between steps 2 and 3 until
convergence (refinement step 4). This algorithm obtains exactly the same solution
as the standard K-means. A distributed density-based clustering in [Januzaj et al.,
2004] partitions the data, finds a small number of local representatives in step 2,
merges the obtained representatives and clusters them using standard DBSCAN in
step 3. A more recent Map-Reduce DBSCAN is MR-DBSCAN [He et al., 2011b].
Other algorithms, such as subspace, graph clustering or co-clustering, have also been

7.4 Distributed machine learning 199

adapted to Map-Reduce (see [Aggarwal and Reddy, 2013], 11.4). An important
challenge in distributed ML is to balance the load between the parallel workers. For
more references on distributed ML and clustering in particular, refer to the theses
[Sarazin, 2018, Beck, 2019].

7.4.1 Distributed SOM

The batch SOM algorithm (see Algorithm 1.2) can be easily distributed, as it ex-
presses as an alternating procedure similar to K-means, that can be expressed as
Map-Reduce. It was implemented and presented in previous work [Sarazin et al.,
2014a, Sarazin et al., 2014b]. More precisely:

1. The data set is partitioned and the SOM prototype vectors are broadcasted,
exactly as in K-means.

2. The map operation computes the BMU assignments bi of each input xi and
computes the neighborhood-weighted coefficients necessary to perform the
update operation in Equation 1.15: KT (δ(k, bi))xi for the numerator and
KT (δ(k, bi)) for the denominator.

3. Then, the reduce operation combines the intermediate results to compute the
numerator and the denominator and finally update the prototypes.

4. In the refinement step, the previous steps are repeated using the updated
prototypes until convergence.

7.4.2 Software implementations

Spark MLlib19 is the official library for distributed machine learning on Spark. Many
traditional classification and regression algorithms, as well as K-means clustering,
and various preprocessing functions, are implemented. However, not all algorithms
are available and unsupervised learning features are particularly limited. The com-
munity provides open-source implementations, such as the C4E (Clustering4Ever)
initiative [LIPN, 2018] started at LIPN, gathering local and distributed implementa-
tions of clustering algorithms in Scala/Spark.

Implementations of the distributed batch SOM were already available, but not using
the modern Spark ML API (Dataset/DataFrame). To better integrate with the rest of
the code, the Spark ML SOM20 [Forest, 2019] was developed during this PhD.

19http://spark.apache.org/docs/latest/ml-guide.html
20https://github.com/FlorentF9/sparkml-som

200 Chapter 7 Scaling to Big Data with distributed computing

http://spark.apache.org/docs/latest/ml-guide.html
https://github.com/FlorentF9/sparkml-som

7.5 Conclusion

This chapter provided a general overview of Big Data processing beyond the buz-
zword, diving into the software tools that will be used in the industrial applications
presented in the next chapter, in particular the Hadoop eco-system, Hive and the
Spark framework. In addition, we introduced the Map-Reduce paradigm and how
it allows to implement distributed machine learning algorithms. Hadoop, Spark
and the distributed Spark ML SOM will be used in the engine fleet monitoring
applications presented in the next chapter.

7.5 Conclusion 201

Industrial applications 8
This chapter is based on the contributions and patent:

• Forest, F., Lacaille, J., Lebbah, M., & Azzag, H. (2018). A Generic and Scalable
Pipeline for Large-Scale Analytics of Continuous Aircraft Engine Data. IEEE
International Conference on Big Data.

• Forest, F., Cochard, Q., Noyer, C., Cabut, A., Joncour, M., Lacaille, J., Lebbah,
M. & Azzag, H. (2020). Large-scale Vibration Monitoring of Aircraft Engines
from Operational Data using Self-organized Models. Annual Conference of the
PHM Society.

• Lacaille, J., Forest, F.. Système d’environnement informatique pour la surveil-
lance de moteurs d’aéronefs / Computer environment system for monitoring
aircraft engines. Patent No. FR3089501 (2020-06-12)

8.1 Aircraft engine health monitoring

Nowadays, aviation industry and aircraft operation generate growing amounts
of data that can be leveraged for various applications [Oh, 2017, Akerkar, 2014,
Akpinar and Karabacak, 2017]. For engine manufacturers, an important one is
engine health monitoring (EHM), part of the general field of Prognostics & Health
Monitoring (PHM). The general aim is to improve availability and operation of
engines [Blanchard et al., 2009, Bastard et al., 2016]. It consists in monitoring
the state of an engine or a fleet of engines by using operational data and past
events. The first objective is to avoid abnormal events as in-flight shutdowns,
aborted take-offs and delays and cancellation. The second objective is optimizing
maintenance operations to improve safety while reducing costs for manufacturers
and airline companies. Maintenance is a crucial part of the engine life cycle (see
Figure 8.1). Various costs are incurred by the possession of an engine throughout its
life, represented on Figure 8.2, mainly linked to maintenance operations.

Maintenance operations often consists in preventively exchanging engine parts,
after visual inspection by an operator, before serious wear or damage occurs. It
also includes water-washing. Such maintenance is called preventive, as opposed to

203

Fig. 8.1.: Life cycle of an aircraft engine from production to retirement. [Coupard et al.,
2018]

Fig. 8.2.: Sources of costs for aircraft engine operators. [Coupard et al., 2018]

204 Chapter 8 Industrial applications

corrective maintenance, if an event as already occurred. In this case, maintenance
is unexpected and thus very costly for the engine operator, because the engine
will remain grounded. If maintenance happens at a fixed schedule, we speak of
time-based, or equivalently, scheduled or predetermined) maintenance. Today, the
standard scheduled maintenance plans are being enhanced by so-called predictive or
condition-based maintenance. Figure 8.3 shows an overview of different maintenance
types. Condition monitoring (CM) of industrial assets is a set of techniques that

Fig. 8.3.: Overview of the different maintenance types.

aims at increasing machine availability and safety, while reducing maintenance costs
(and thus the ownership cost). It is at the core of a predictive maintenance (PM)
strategy (also called condition-based maintenance). Implementing a condition-based
maintenance program requires in-depth knowledge of the machine’s condition. This
knowledge can be extracted from data, hence the term data-driven maintenance.
Data-driven maintenance enables to detect faults and prevent failures before they
happen, extending the life span of systems and reducing costs. PM for aircraft engines
consists in adapting the maintenance plan to the actual state of each individual
engine, unlike traditional time-based preventive maintenance, the state of each
engine being the result of its actual use during its lifetime. This allows a more
efficient scheduling of preventive and corrective actions (e.g. shop visits): time
between actions can be increased if no maintenance is necessary (thus reducing
costs), and actions can be taken earlier thanks to enhanced predictability of events
(thus improving safety).

Concretely, CM combines historical data and physical models to raise alerts, build
models that evaluate wear of parts and their residual useful life, probability of failure,
etc. To build these models, the input data must provide information on the wear or
an aspect of the engine state. Specific variables or features are generally selected
by engine experts. For instance, the exhaust gas temperature (EGT) indicates
engine wear. Then, these models can be based on thresholds, statistical models
incorporating physical knowledge, or machine learning, i.e. statistical models whose

8.1 Aircraft engine health monitoring 205

parameters are learned from historical data. In the following works, we tackle
monitoring and raising alerts. Diagnosis and prognosis are then done by relevant
experts.

From the operations point of view, data analytics are already used for fuel consump-
tion and route optimization [Kasturi et al., 2016]. Aircraft manufacturers provide
customized data-driven services to airlines [Airbus, 2018]. Engine manufacturers
also provide such services, allowing client airlines to manage their operational data
and use data analysis in the objective of improving safety, maintenance and reducing
fuel consumption [Safran, 2018]. With the growth of air traffic, the volumes of
data to be processed are growing exponentially and can no longer be handled in
traditional ways: as an example, recent aircraft are equipped with tens of thousands
of sensors and generate several terabytes of data per day [Marr, 2015].

EHM applications at Safran Aircraft Engines follow the OSA-CBM (Open Systems
Architecture for Condition-based Maintenance) standard, described in [Bastard et al.,
2016]. It is composed of several layers, represented on Figure 8.4, and aims at
improving the clarity and modularity of applications, and enabling exchange within
the company. The two use cases implemented during this thesis can be decomposed

Fig. 8.4.: OSA-CBM architecture and examples of each step. [Bastard et al., 2016]

following this standard, as we will see later.

Applications of data mining and machine learning to PHM is a very active and
promising research field. The methodology presented in [Cottrell et al., 2009, Côme
et al., 2010, Côme et al., 2011] uses self-organizing maps to monitor the state
of a fleet of engines based on expert indicators. We have chosen to develop this

206 Chapter 8 Industrial applications

methodology during this thesis. Features may also be learned from raw data. The
application of deep learning architectures to PHM is discussed in [Zhao et al., 2019,
Fink et al., 2020]. Several works applied deep neural networks to fault diagnosis,
prognostics or anomaly detection from raw sensor data [Lv et al., 2016, Jing et al.,
2017, Zhang et al., 2017b, Yan and Yu, 2019, Lee et al., 2020]. Even the recent deep
clustering approaches (see Section 2.3 in Chapter 2) have already been applied in
the PHM field [Qu et al., 2019].

8.2 Aircraft engine data sets

On an aircraft, data are collected during flights using flight recorders. The Quick
Access Recorder1 (QAR), for example, records over 2000 flight parameters at a
maximum frequency of 1Hz, and its data is easily accessed by airlines or manufac-
turers using memory cards, USB or cellular network. It samples data at a higher rate
compared to the Flight Data Recorder (FDR, also known as the "black box"), and its
data is analyzed to improve safety and operational quality.

Another type of data is snapshot reports, which correspond to sets of parameters
recorded on a short time interval (between 3 and 30 seconds) at key flight phases
(e.g. during take-off, climb of cruise), aggregated and sent back to the ground near
real-time using ACARS (Aircraft Communication Addressing and Reporting System)
communication system.

Flight data are often combined with context or environmental data such as weather
information, e.g. METAR (METeorological Aerodrome Report) or TAF (Terminal
Aerodrome Forecast).

8.2.1 LEAP CEOD

Continuous Engine Operational Data (CEOD) are composed of several hundreds of
parameters recorded during entire flights on recent aircraft. Safran A.E. receives the
CEOD data sets for the LEAP engine family. Due to the large number of parameters
recorded at high frequencies, these data contain much more information compared
to lighter types of aircraft data sets, for instance snapshot reports. This leads to
large volumes that can no longer be processed in traditional ways. For now, due to
bandwidth limitations, continuous data are offloaded post-flight. In future, these

1https://en.wikipedia.org/wiki/Quick_access_recorder

8.2 Aircraft engine data sets 207

https://en.wikipedia.org/wiki/Quick_access_recorder

data may be streamed in real-time, allowing for live predictive analytics. We quickly
present the current acquisition process of CEOD:

1. Airline operators manually download raw data from aircraft flight recorder.
Depending on the time since last download, raw CEOD may contain the
concatenated recordings of several flights, as the flight recorder writes into
memory in a sequential manner.

2. Raw data are decoded into a structured file format using a proprietary software.
3. Files are cut into distinct flights by detecting flight start and end based on

sensor values, and ingested into a Safran A.E. Hadoop cluster. As we have
large volumes of structured data, it is stored on HDFS using the Hive data
warehouse in ORC format.

Concretely, each flight (identified by its flight_id) consists in a set of flight pa-
rameters (param) measured at given timestamps (time). The data used in our
experiments concern a fleet of engines of the same type, identified by their engine
serial numbers (ESN/esn). As a consequence, CEOD are a set of univariate time
series. Because the flight recorders dynamically adapt their sampling frequency, time
series can have very different frequencies, and they can vary throughout the flight.
See Table 8.1 for the Hive table schema specification. In this format, observations

Tab. 8.1.: CEOD Hive table schema.

Column name Type

esn string
flight_id string
param string
time timestamp
value float

are stored row-wise, i.e. one row per flight, per parameter and per time step at
which a value was recorded for this parameter. The main advantages of this format
to represent CEOD time series are:

• The format is fixed and robust to evolutions in the data: in particular, parame-
ter names are expected to change (e.g. with new versions of engines or flight
recorders).

• It handles variable frequencies: some parameters have a high frequency,
whereas others only have few measurements throughout the flight.

The summary of data set properties in Table 8.8 illustrates the fact that we already
are in a high volume context. The volumes are expected to grow enormously in the

208 Chapter 8 Industrial applications

coming years. Health monitoring must provide insights on the incoming data quickly
(and in a not so distant future, in real-time), thus we also have a high velocity.
Altogether, the processing of CEOD for health monitoring requires the use of "Big
Data" methods and tools.

8.2.2 Time series data representations

There are at least two ways to represent time series data in a relational table. We
call observation the tuple consisting in a timestamp, a key identifying the variable
(here, the key is composite and is composed of esn, flight_id and param), and the
value of the variable. Given a single point in time, we call instant the values of all
observed variables at this timestamp (if the variables are not measured at the same
timestamps, there may be no value for some of the parameters). This defines two
ways of representing a set of univariate time series in a table:

• The observations table representation has one column containing the times-
tamps, one column for the key (or several columns if there are several keys)
and a column for the values. Each row contains the observation of a variable
at each timestamp. The timestamps are not necessarily ordered. An exam-
ple of an observations table is represented on Table 8.2, with only one key
corresponding to the variable name for simplicity.

• The instants table representation has one column containing the timestamps
and one column per variable. Each row contains an instant, i.e. the values of
the variables at a given timestamp. The values of some variables may not exist
for every timestamp. See Table 8.3 for the corresponding example. Actually,
there are often several keys (e.g. group keys and the variable key), so there
will be additional columns for the group keys.

Tab. 8.2.: Observations table of time series data.

Timestamp Key Value
2018-06-12 16:33:42 TEMP 1337.0
2018-06-12 16:33:44 TEMP 1342.5
2018-06-12 16:33:43 ALTITUDE 10057.0
2018-06-12 16:33:42 SPEED 145.0
2018-06-12 16:33:43 SPEED 147.5
2018-06-12 16:33:44 SPEED 151.0

Each representations has its pros and cons and are more or less practical depending
on applications. The advantages of the observations are:

8.2 Aircraft engine data sets 209

Tab. 8.3.: Instants table of time series data.

Timestamp TEMP ALTITUDE SPEED
2018-06-12 16:33:42 1337.0 NA 145.0
2018-06-12 16:33:43 NA 10057.0 147.5
2018-06-12 16:33:44 1342.5 NA 151.0

• Fixed schema. The columns remain the same regardless of the number of
keys and observations. This makes it easy to append new observations at the
end of the table without rewriting the whole table. This is adapted for data
storage formats that do not allow schema evolution.

• No need for preprocessing or resampling. Metrics can be stored in the table
without further preprocessing (e.g. missing value imputation, resampling, time
index alignment etc.).

However, notable disadvantages are:

• Redundancy and inefficient storage. The number of rows in an observations
table is equal to the product of the number of keys times the number of times-
tamps per key, resulting in a very large number of rows. For aircraft data, the
key typically consists in a flight ID and the name of the recorded parameter, and
there are typically thousands of flights, hundreds of parameters and thousands
or even hundreds of thousands of values recorded for a parameter per flight.
The resulting number of rows is #flights × #parameters × #samples ∼
103 × 102 × 105 ∼ 1010, representing many billion rows. In addition, the keys
are unnecessarily repeated in each row. On the whole, this results in bulky
storage volumes (mitigated by compression), and data warehousing systems
will have to scan a large number of rows to retrieve values for a specific key or
range of dates.

• Unpractical for many operations. In many cases we need to perform op-
erations that require grouping the data by key or by timestamp, which is
cumbersome and also computationally expensive because they require scan-
ning the whole table. For example, to compute an aggregation (e.g. sum or an
average) of a variable, we need to first filter the corresponding rows (using
a WHERE clause in SQL). These operations would be much easier if the keys
were stored column-wise. In particular, in machine learning, it is traditionally
expected to have a column for each feature as in the instants representation,
so we must first go through a preprocessing step before applying a machine
learning algorithm. Turning observations into instants requires pivoting the
table and is an expensive operation. Finally, if variables have unequal sampling
frequencies, subsequent operations will have to deal with resampling.

210 Chapter 8 Industrial applications

The instants schema solves the main disadvantages of the observations schema but
has also its limitations.

• More efficient storage. The instants representation has as many columns
as variables (#parameters ∼ 102) but far fewer rows. Taking the same as-
sumptions as previously, the order of magnitude of the number of rows is
#flights×#samples ∼ 103 × 105 ∼ 108, less than one billion rows. Further-
more, storage is saved because the group keys are repeated on fewer rows and
the variable names are not repeated on any row.

• Practical for column operations and machine learning. Variables can be
selected conveniently.

This schema is also more difficult to obtain and to manage due to following disad-
vantages:

• Variable schema. The table schema is not fixed, as it depends on the variables.
This can become difficult to manage when we do not know in advance what
these variables will be. It is more difficult to add a new variable to an existing
table.

• Missing values. If the sampling frequencies of the variables are very different,
the resulting table will be sparse. Variables sampled at a low frequency will
have mostly missing values. As a consequence, if there is an important disparity
in the frequencies, the instants representation will actually store a lot more
values than the observations and be less efficient in terms of storage! In our
previous estimations, we supposed that the numbers of samples had the same
order of magnitude, which may not be the case.

• Downsampling and interpolation may be necessary to limit the number of
rows and for missing value imputation.

Lastly, alternative representations can be used to mitigate the disadvantages of the
two aforementioned representations. We can propose a series-observations repre-
sentation where an observation is not the value of a variable at a given timestamp,
but the whole sequence of values of this variable along with the sequence of the
timestamps (see Table 8.4). The fields thus contain vectors of values (array type
in Hive). This representation has a fixed schema and the row dimension is rid
of the temporal dimension, reducing it drastically. This representation is useful
when variables have very different numbers of samples and frequencies (if their is a
single frequency, the time indices would be unnecessarily repeated). Using the same
orders of magnitude as before, the number of rows is reduced to approximately
#flights × #parameters ∼ 103 × 102 ∼ 105. However, akin to the observations
representation, it does not allow for easy column operations on variables. Moreover,

8.2 Aircraft engine data sets 211

the table fields contain complex types (arrays) and may contain very long sequences,
which is not optimal for data storage and performance (compression and serializa-
tion in particular). Each representation is best suited for different usages. For our

Tab. 8.4.: Series-Observations table of time series data.

Key Timestamps Values
TEMP [2018-06-12 16:33:42, 2018-06-12 16:33:44] [1337.0, 1342.5]

ALTITUDE [2018-06-12 16:33:43] [10057.0]
SPEED [2018-06-12 16:33:42, . . . , 2018-06-12 16:33:44] [145.0, 147.5, 151.0]

use cases, we will transform the original CEOD representation (observations) into
the series-observations format.

8.3 Scalable and generic processing of aircraft engine data

8.3.1 Introduction

Choosing the adequate Big Data infrastructure and software tools for storage, analy-
sis and visualization is a major challenge for actors in the web industry but also in
more traditional ones such as as aerospace [Murugan et al., 2014, Li et al., 2017].
The Hadoop platform was chosen by a large number of companies, but its utilization
is not straightforward for non-trained engineers. In aerospace, the domain knowl-
edge is held by engineers who often have sufficient programming skills to implement
algorithms in some programming language (e.g. Python) and run them on a small
to moderately large, local, data set (e.g. a CSV file), but are not acquainted with Big
Data tools and programming frameworks that are needed to efficiently query and
process large, distributed data sets stored on a cluster.

Our objective is to design and implement a generic and scalable processing pipeline
to power health monitoring applications based on operational aircraft engine data.
The goal is to present a completely operational pipeline based on open-source
software tools from the Hadoop ecosystem and ready to use in an industrial setting.
Our main contributions are:

• Processing and analyzing real, large-scale, industrial data sets coming from
thousands of operating aircraft engines.

• Combining recent programming techniques, open-source technologies and a
Big Data infrastructure, which is not yet common in traditional industries such
as aerospace and engine manufacturing in particular.

212 Chapter 8 Industrial applications

CEOD
ingestion Preprocessing * Feature Extraction

 & Normalization * Flight
Features

Learning
 Algorithms *

(SOM)
Models

Visualization
Application

Domain
Knowledge

Predefined
Spark

Functions

Custom
Algorithms

insights

* Flexible
Configuration

Fig. 8.5.: Diagram representing the analytics pipeline.

• Focusing on genericity and allowing domain engineers (who are not software
engineers nor data scientists) to deploy their domain-specific computations
and algorithms in an agile way.

• Demonstrating how scalable unsupervised learning algorithms can be inte-
grated and used for visualization in engine health monitoring applications.

Data analysis and machine learning have already been used extensively for health
monitoring applications across all industries. However, these approaches do not
address the issue of large-scale processing of large volumes of data. In recent years,
much effort has been put into designing and building Big Data architectures by
aerospace industry actors. [Murugan et al., 2014] present a Big Data architecture for
storing and analyzing operational and repair data at Honeywell. Their operational
data come from multiple sources and supports, for example snapshot and summary
data from the ACMS (Aircraft Condition Monitoring System). This typically includes
parameters as speed, position, altitude and exhaust temperature at specific flight
phases. Repair data consists in shop visit reports. They use a Hadoop cluster
and store data in HDFS. For analytics, they use R along with packages to interact
with Hadoop, and also provide analytics as a service through either an R Shiny
web application, or an OpenCPU RESTful service for interacting directly with R.
Unlike their approach, we will use the Spark framework for distributed computing.
Reference [Ayhan et al., 2013] from Boeing use a Big Data architecture to analyze
near real-time ASDI (Aircraft Situation Display to Industry) data. These data are a
feed of XML messages, which have to be translated into a relational database. Their
infrastructure relies on IBM software for message brokering, database management
(DB2), processing and business intelligence. They present their use case and some
optimizations for near real-time processing. Their data is quite different from our
continuous operational data, and we use a Hadoop ecosystem.

8.3 Scalable and generic processing of aircraft engine data 213

8.3.2 Analytics pipeline

This section details the components of our processing pipeline. An overview of the
different steps is represented as a diagram in Figure 8.5.

Technological stack

Data is stored on a Hadoop cluster using Hive. For computations, we use the Apache
Spark distributed processing engine [Apache Spark, 2014]. In particular, we use
Spark SQL and the Dataset/Dataframe API. The Spark jobs are written either in Scala
or in Python (using the PySpark wrapper). For linear algebra, numerical analysis and
machine learning, we used Spark ML, as well as Python and Scala libraries (numpy,
scipy, pandas, scikit-learn, breeze, smile). Finally, for visualization, we developed
web applications using HTML/JavaScript and the D3.js library or the Plotly/Dash
framework, as well as a minimalistic Python server with Flask to interact with Hive
via the JDBC connector.

CEOD preprocessing

The computations carried on during the feature extraction step will need to process
the whole time series of a flight parameter, so it is not necessary to have one row
per time step in our Spark Dataframe: the smallest entity to be processed in parallel
is a parameter during an entire flight. Thus, we aggregate the CEOD on the time
dimension into vectors of timestamps and values, using Spark SQL’s collect_list
aggregation. This drastically reduces the number of rows (from approximately 200
billion to 5 million rows) and accelerates subsequent processing. It only needs to be
executed once on new incoming data. See Fig. 3 for the resulting schema.

Feature extraction

The first step in EHM is to select and compute a set of features that represent the
health state of an engine or engine sub-system (for example fuel, oil or control
system) at a given flight. Such features can be as simple as the value of a parameter
at a specific instant of the flight (e.g. the EGT) but they may be more complex
features that were engineered by domain experts. Computing these features is an
essential step of our processing pipeline, as they will be the input for the subsequent

214 Chapter 8 Industrial applications

algorithms and define what aspects of the engine health will be monitored. The
main requirements of the feature extraction step are:

1. Scalability. Features are extracted in a distributed data-parallel way, allowing
to process a huge number of flights and engines in parallel.

2. Genericity. It is possible to use generic functions and already existing algo-
rithms to compute features.

3. Ease-of-use. Engineers should be able to implement and use their own feature
extraction algorithms without any knowledge of Hadoop cluster architecture
and distributed computing with Spark.

Requirements 2 and 3 come from the observation that scaling and deploying algo-
rithms created by domain experts to production is not straightforward. Since every
engineer cannot be trained to these technologies (which is not their core profession
and would require months if not years of experience), it is necessary to go through a
long and costly industrial deployment step, often requiring to rewrite the algorithm
from scratch using different programming techniques. Here, we take an alternative
path: users only have to write their core algorithm as a generic function using a
compatible programming language (in our case, Python or Scala), plug it into the
pipeline, and it will be executed in parallel by the Spark engine, transparently for the
user. The user’s custom function has to follow a standard input and output schema.
The user also specifies what entities are processed in parallel: for example, one
might want to run a function on all flights in parallel in order to compute features
for each flight. The same can be done on different levels (e.g. all flights for a given
engine, a sliding window of flights, etc.), defining the parallelism. This allows an
agile work flow where engineers can quickly deploy their computations. Our feature
extraction API supports three types of functions:

1. Native Spark code, for users familiar with Spark and seeking optimal per-
formance. Some commonly used feature extraction functions are already
implemented and ready to use. For instance, for simple operations like aggre-
gations, it is not efficient to write a dedicated custom function.

2. Custom functions, written in local (i.e. non-distributed) Python or Scala code,
allowing to flexibly define any kind of algorithm. Common numerical, data
analysis and machine learning libraries can be used. Parallelism is achieved by
using Spark’s group by and map or apply operators.

3. Python modules. Legacy algorithms are already packaged as Python modules,
so an API allows to import them and act as an interface to use them the same
way as custom functions.

8.3 Scalable and generic processing of aircraft engine data 215

Predefined features
(using Scala & Breeze)

Scala Code

Python Code
(simple function or

pandas UDF)

API

Transparent use of
Spark APIs

Flight #001
Flight #002
Flight #003
Flight #004

...

...

Flight #442
Flight #443

...

Features #001
Features #002
Features #003
Features #004

...

...

Features #442
Features #443

...

Fig. 8.6.: Diagram representing the data-parallel engine feature extraction step.

As Spark practitioners know, these custom functions are considered as black boxes
and not optimized by Spark’s execution engine, but it is the only solution allowing
to express any processing logic (which may rely on external libraries) and without
knowledge of distributed programming. However, when a custom algorithm is in
its final version and ought to be used regularly in an industrial workflow, it can be
rewritten in native code and optimized. Custom functions are applied by grouping
on some key or sliding window, and using a map-like operation. Note that we use
the most efficient Spark API and associated group/map methods whenever possible:
Dataset API for Scala functions, DataFrame API with pandas vectorized UDFs or
RDD API for Python functions. Figure 8.6 illustrates our generic feature extraction
API for the flight-parallel case. Features are stored using a format almost identical to

Tab. 8.5.: Flight features table schema.

Column name Type

esn string
flight_id string
feature string
time timestamp
value float
computed_on timestamp
user string

the CEOD, only renaming the param column to feature and adding two columns for
metadata: computed_on, a timestamp indicating when the feature was computed,
and author, indicating the user (see Table 8.5). This additional information is
useful to manage different versions of the features computed by different users.
The time column is kept even if we no longer store time series, because engineers
find it useful to associate a timestamp to the feature (e.g. for a maximum value,
we also keep the timestamp at which the maximum was reached during the flight).

216 Chapter 8 Industrial applications

As already mentioned, this fixed-schema, row-wise format is practical due to its
robustness and flexibility, allowing to easily append new features to an existing table.
As a consequence, it allows to calculate features in several passes, by executing the
feature extraction step on the output of the previous pass: this enables, for example,
to compute more complex features from more basic ones (hence the loopback at the
feature extraction step in Figure 8.5).

Final indicator computation

While the previously used row-wise format is flexible and robust, it is not adapted to
analysis and fitting machine learning models, where the norm is to represent features
as a matrix with the columns containing the features and the rows containing the
individuals. Thus, we select the final features and apply a pivot operation on the ta-
ble, producing the desired output format (see Table 8.6). Additional post-processing

Tab. 8.6.: Flight indicators table schema.

Column name Type

esn string
flight_id string
indicator1 float
.
indicatorP float

operation may be applied on the selected flight features, such as aggregations
(e.g. smoothing with a moving average), or more complex transformations (e.g.
normalization w.r.t. context variables).

Predefined indicators,
aggregations, filtering,

outlier removal, ML
algorithms

(using native Spark)

Spark Code

Future work: Scala,
Python (pandas UDF)

API

Indicators #001
Indicators #002
Indicators #003
Indicators #004

...

...

Indicators #442
Indicators #443

...

Features #001
Features #002
Features #003
Features #004

...

...

Features #442
Features #443

...

Fig. 8.7.: Diagram representing the final indicator computation step.

8.3 Scalable and generic processing of aircraft engine data 217

Learning algorithms

The next step of our pipeline is visualizing the previously calculated features. As
the number of features describing an engine (or any other system) is usually larger
than two, this requires a dimensionality reduction step, using unsupervised learning
algorithms. In particular, we focus on self-organizing models that achieve simultane-
ous clustering and visualization of high-dimensional data sets. In order to test our
analytics pipeline on the SOM-EHM use case, SOM is the first model we integrated.
We used a Spark implementation of the SOM algorithm [Forest, 2019], part of the
C4E project [LIPN, 2018]. Here again, genericity is a strong requirement, thus we
also integrated the K-means algorithm, to demonstrate that any centroid-based
clustering model could be plugged into the pipeline. For example, SOM could be re-
placed by a GMM or another self-organizing clustering model, as long as it is scalable
w.r.t. the size of the data, to meet our scalability requirement. Supervised algorithms
could also be used, but their output will not be adapted to the visualization tool
presented in the next paragraph.

Model serialization

The resulting models are serialized to simple JSON objects containing metadata
(including the name of the Hive table containing the training set and the projection
of each flight) and the prototype vectors along with their cardinalities (number of
training points belonging to each cluster). They are then saved into a MongoDB
database on a local server.

Visualization interface

The last step of our analytics pipeline is a web interface developed specifically for
displaying the results of centroid-based clustering algorithms such as K-means and
SOM. The application is developed in HTML/JavaScript using the D3.js library. It can
be easily accessed via a browser, which is adapted for widespread use in a company.
Its main functionalities are:

• Providing a summary of the cluster centroids (also called prototype vectors):
feature values, cardinalities, basic statistical properties of each cluster.

• Visualizing the self-organizing map, by displaying the previous quantities on
the topology-preserving grid, as well as engine trajectories.

218 Chapter 8 Industrial applications

Fig. 8.8.: Screenshot of the visualization web application.

Fig. 8.9.: Architecture of the visualization application. The application server retrieves
models from a metadata database, and queries Hive using JDBC.

• Projecting and visualizing a sample of the training set along with the model
prototypes on a scatter plot, density plot or a Voronoï tessellation using PCA
or t-SNE to reduce the dimensions to 2D.

The user interface takes as input the model output at the previous step. Along with
the application, a Python server interacts with Hive through JDBC. When the users
visualize the training data using PCA or t-SNE, the application calls the server that
in turn queries a data sample from the training set. The name of this table is part
of the model metadata. The whole architecture is summarized in Figure 8.9 and a
screenshot is provided in Figure 8.8.

This analytics pipeline can be used by two target classes of users:

1. Creators: engineers who will adapt and create their own processing. They
select the data (fleets, engines, flights, variables) and features relevant to them
(i.e. relevant to the part of the engine they want to study), implement and
deploy their own algorithms if needed, execute the processing and collect the

8.3 Scalable and generic processing of aircraft engine data 219

resulting features for their own utilization. They may also select and tune the
learning algorithm, and visualize the results to obtain insights. In a nutshell,
they may intervene at any step of the pipeline, so genericity is crucial.

2. Consumers: users who will not modify the pipeline, but rather consume al-
ready computed results for a specific health monitoring task, and interpret
them to inform decision-making. They use the visualization application to
observe results that are calculated automatically by a “frozen” version of the
pipeline, where the features and algorithm are fixed and tuned for a specific
use case. When new data from recent flights are ingested, the pipeline must
run automatically in order to show up-to-date results, using for example a
workflow manager to schedule the jobs. For these users, it is crucial that the
web application is always available, shows relevant and up-to-date results and
that the user interface is adapted to their use case. Specific versions of the
visualization application might be needed to satisfy all needs.

The following sections will present concrete use cases realized using the analytics
pipeline.

8.4 Engine state cartography using self-organized models

First, we reproduce the approach presented in [Cottrell et al., 2009, Côme et al.,
2010, Côme et al., 2011, Lacaille and Côme, 2011] using the Kohonen SOM algo-
rithm to visualize the state of a fleet of CFM56 aircraft engines based on performance
indicators. In [Côme et al., 2011], a snapshot data set is used, containing 20 vari-
ables (15 context variables and 5 engine variables) measured on a fleet of 91 engines
during approximately one year. Their methodology, summarized on Figure 8.10,
consists in four modules:

1. Environmental condition normalization
2. Changes detection and smoothing
3. Self-Organizing Map learning
4. Search module based on edit distance to find similar engine trajectories

A trajectory is the name given to the sequence of SOM units corresponding to
successive flights of an engine. The first two steps are normalization w.r.t. the
context variables, smoothing and removal of abrupt changes and slow trends. Then,
the residuals of the engine variables are used to fit a SOM model. It is shown that
such a model is useful to monitor the state of an engine, its evolution flight after
flight (trajectory), and detect potential faults and deterioration of engine parts.

220 Chapter 8 Industrial applications

Fig. 8.10.: Engine state cartography methodology on performance indicators. [Côme et al.,
2011]

We aim at reproducing this methodology with our analytics pipeline, with some
major differences. First, the previous approach processed a small snapshot data set
using Matlab, while our data is large-scale and stored on a cluster, and is processed
using distributed software. Second, their variables are scalar values for each flight
(snapshot data), whereas we process both snapshot reports and CEOD, which are
time series and require preprocessing and feature extraction. Finally, we focus on
genericity, customization and ease-of-use, in order to solve not just this use case
but a wide range of applications. Note that we have not implemented the change
detection algorithms and the search module during this PhD.

8.4.1 Context and environment normalization

The input flight parameters are selected in the preprocessing step and summarized
in Table 8.7. We consider the values at take-off: these are directly available in the
take-off snapshot reports, but for CEOD, we extract them in the feature extraction
step.

Tab. 8.7.: Flight parameters at take-off describing engine performance state.

Parameter name Description Type

temp Ambient air temperature Context
N1 Fan speed Context
N2 Core speed Engine
fuelflow Fuel flow Engine
EGT Exhaust gas temperature Engine

In order to compare flights together, it is necessary to remove the effects of the
context and environment of the flight. For example, is has no sense to compare
engine state variables if the aircraft has been operated on different routes, in different

8.4 Engine state cartography using self-organized models 221

regions with all different ambient air temperatures, altitudes, speeds, utilizations of
the engine, etc. Thus, the features are divided into two categories:

• Engine state variables, representing an aspect of the engine (here the per-
formance state), which will be the inputs of the clustering and visualization
algorithms.

• Context or environment variables, representing the operating conditions of the
engine.

A simple approach to normalization is using a regression model and calculating the
residuals of the state variables w.r.t. the context variables, taken at a specific flight
phase. For instance, the LASSO regression [Tibshirani et al., 2001] method is used
in [Cottrell et al., 2009, Côme et al., 2010]. This removes linear dependencies. The
model can be expressed as follows, in its simplest form:

yji = µj + βTj xi

for each engine state variable yj and each flight i, where µ are the intercepts and
β are the regression coefficients for each state variable w.r.t. the context variables
xi. In practice, additional terms must be taken into account, as for instance the
engine effect representing individual variations between different engines. Context
normalization, as well as smoothing, happens during the final indicator computation
step. To fit the LASSO model, we used the Spark MLlib library. The residuals of the
linear model are then used as normalized variables, and will be the input features of
the clustering and visualization models in the next step of the pipeline. Figure 8.11
shows that the linear model has effectively removed the strong linear correlations
between context and engine variables. Another normalization approach is taken in
[Lacaille et al., 2014], using an online version of the mixture of probabilistic PCA
(MPPCA), necessary in absence of stabilized phases (test bench experiments data).

8.5 Application to vibration monitoring

Vibration analysis is an important component of condition monitoring of rotating
industrial equipment [Randall, 2004, Randall, 2011]. Vibration analysis provides
knowledge on the condition of this equipment by enabling to look inside a rotating
machine. Its applications include the detection of unbalance, misalignment, or
flutter, due for instance to gears, rollings or bearings damage or even cracks or

222 Chapter 8 Industrial applications

Fig. 8.11.: Pearson correlation between context and engine parameters. (Left) Raw engine
parameters. (Right) Normalized parameters.

loose parts. Aircraft engines in particular are complex rotating machines where
vibrations put engine parts under dynamic structural stress. In this work, we are
interested in LEAP turbofan engines used in civil aircraft. We present a methodology
for vibration monitoring of a fleet of civil aircraft engines using historical flight data
and unsupervised learning algorithms. Every step, from ingestion to visualization, is
made scalable through distributed processing on a cluster using the Spark framework,
thanks to the already introduced generic analytics pipeline. Such global and large-
scale approaches are yet uncommon in aerospace industry.

Our main contribution apart from the pipeline, is to extract, classify and visualize
vibration signatures using interpretable self-organized clustering algorithms, yielding
a visual cartography of vibration profiles. The resulting models can be used by
domain experts for monitoring, anomaly detection, giving early warnings and other
insights. As an example, we show it can be used to detect anomalies, compute
anomaly scores, or find similar engines (which is useful to identify at-risk engines in
a post-finding situation after an event has occurred). Our method has already been
tested on real flight data from operating aircraft, and is intended to be part of the
ground component of an EHM system [Bastard et al., 2016].

8.5.1 Related work

In this section, we will first provide a brief review of vibration analysis techniques
and how they are applied to aircraft engines. Then, we present applications of
unsupervised learning algorithms, and in particular self-organized maps for clus-
tering and visualization of high-dimensional data. For a more thorough review of
vibration analysis in the time and frequency domain, please refer to [Yang et al.,
2003, Randall, 2011] and the various references provided in the thesis [Abdel-Sayed,
2016].

8.5 Application to vibration monitoring 223

Vibration analysis on aircraft engines

A description of the turbofan engine is provided in the Introduction, see Figure 0.2
for a simplified diagram. Sensors are disposed to measure the rotation speed of
each shaft (also called regime) and vibration amplitude. Vibration amplitude can
be expressed in three different ways: displacement (unit: mm SI or mils), velocity
(unit: mm/s SI or ips) or acceleration (unit: m/s2 SI or g). In order to measure it on
a machine, two possibilities exist. First, directly measuring displacement of moving
parts, using eddy current (also known as Foucault’s current) proximity sensors. This
solutions is used for testing (e.g. tip-timing), but is unpractical in operating engines.
Instead, the second solution is to measure the acceleration of non-moving parts (e.g.
bearing or casing) using accelerometers (which are much easier to install on smaller
parts), and integrate to obtain speed or displacement. In the following section, we
will describe the acquisition process and properties of the sensor data that will be
used in this work.

As part of aircraft engine health monitoring (EHM) [Bastard et al., 2016], vibration
analysis tackles following issues: rotor unbalance (fan, compressors or turbines),
rotor/stator contact [Peng et al., 2005], or defects due to wear affecting blades
[Kharyton, 2009, Hazan et al., 2010], bearings [Orsagh et al., 2003] or gears [Wang
et al., 2001].

Frequency analysis Vibrations signals are usually processed not in the time-domain,
but in the frequency or time-frequency domain. When signals are stationary, i.e.
when the engine rotation speed is constant, the Fourier transform is traditionally used
to analyze the spectrum [Randall, 2011]. When rotation speed is varying, during an
acceleration or deceleration, analysis takes place in the time-frequency domain and
makes use of spectrograms. The works presented in [Hazan et al., 2010, Lacaille,
2013, Abdel-Sayed et al., 2015] tackle the problem of pattern recognition in high-
frequency, high-bandwidth vibration data measured on aircraft engines on a test
bench, as part of the production process. These data contain the complete spectral
information on the engine and allow to prevent faults in new engines coming out
of the production plant. Due to the high frequency of the measurements (51 kHz),
the vibration data are represented as spectrograms. Traditionally, experts perform
a visual analysis of the spectrograms to detect anomalous patterns. The goal is to
automate this process using algorithms and numerical methods. In [Lacaille, 2013],
spectrogram patches are queried against a database of reference patterns, using
dimensionality reduction through non-negative matrix factorization (NMF). [Abdel-
Sayed et al., 2015] propose an automatic anomaly detection procedure also based

224 Chapter 8 Industrial applications

on NMF. This line of work differs vastly from our contribution, firstly because we are
interested in a fleet of operating engines, and not a test bench. The nature of our
data is also different, as we have medium-frequency time-domain signals, already
aggregated by the flight recorder, but measured during entire flights. Moreover, we
are not interested in early detection of faults in young engines just coming out of
the plant, but in the evolution of vibration signatures of operating engines, flight
after flight.

Time-domain analysis In this work, we are not interested in the frequency infor-
mation contained in the spectrum of the signal, but we will directly manipulate
vibration amplitude signals already aggregated by the electronic flight recorder into
medium-frequency time-domain signals. Amplitude is measured either by displace-
ment, velocity or acceleration. Instead, we are interested in the vibratory response
of specific parts of the engine as a function of regime, called a vibration signature
[Randall, 2004]. In rotor dynamics, a vibration signature can describe intrinsic
properties of parts. It is generally measured during an acceleration (monotonic
increase of the regime) or a deceleration of the engine (monotonic decrease of the
regime). Vibration signatures can then be represented as Campbell diagrams as a
function of time or equivalently as a function of regime.

Unsupervised learning for engine data analysis

As more and more data are collected on modern aircraft, data-driven approaches and
machine learning have become useful tools for condition monitoring. Supervised
learning allows to build predictive models when target values or labels are available.
Unsupervised learning, on the other hand, can be used for data exploration, anomaly
detection, monitoring, etc. We have seen previously that dimensionality reduction
allows to compress and extract information from high-dimensional data [Abdel-
Sayed et al., 2015]. Another major tool is clustering, also known as unsupervised
classification. Clustering is a family of unsupervised learning techniques that try
to discover groups of similar elements in a data set, providing information on the
structure of the underlying data distribution. The approach used in [Hazan et al.,
2010] uses clustering to detect signatures of orders in spectrograms. In this work,
we focus on a family of clustering algorithms called self-organizing maps (SOM).
SOM algorithms enforce neighborhood constraints on the cluster centers and have
the advantage of producing smooth, interpretable visualizations. High-dimensional
data are clustered and projected onto a low-dimensional manifold (usually two-
dimensional) with a grid topology, called a map. Each unit of the map corresponds

8.5 Application to vibration monitoring 225

to a prototype vector in the original high-dimensional space, and new data points are
projected on the map by finding the closest prototype vector w.r.t. euclidean distance.
Originally introduced by Kohonen [Kohonen, 1982], there are many variants of SOM
working with relational data defined by a distance matrix [Olteanu et al., 2013] or
using unsupervised neural networks for joint representation learning [Forest et al.,
2019b, Fortuin et al., 2019].

Self-organizing maps were already used for anomaly detection from the vibration
spectrum of industrial systems [Harris, 1993] and from aircraft engine performance
data [Bellas et al., 2014]. Aircraft engine fleet monitoring with SOM is tackled in
[Cottrell et al., 2009, Côme et al., 2010, Côme et al., 2011, Forest et al., 2018]. These
works focus on the performance health state of the engine and not the vibration
aspects. In [Faure et al., 2017], SOM are used to classify transient flight phases.

8.5.2 Data description

This sensor data used in this work are CEOD. We begin by describing the sensors
and parameters, and present the studied vibration signatures.

Sensors and acquisition

Two types of signals are necessary to compute vibration signatures: rotation speed
(or regime), and vibration amplitude. On the regime side, two variables are consid-
ered:

• N1: rotation speed of the LP shaft.
• N2: rotation speed of the HP shaft.

Rotations speeds are recorded by two phonic wheels at an initial frequency of
51 kHz, before being down-sampled on-board to 66 Hz. On the vibration side,
vibration peak amplitudes (displacement, speed or acceleration) are measured by
two accelerometers. One of the sensors (ACC1) is located near #1 bearing, placed
on the static frame as close as possible to the LP shaft, whereas the second (ACC2)
is located at the turbine rear frame. Vibration is also sampled at 51 kHz and then
aggregated to a lower frequency of 4 Hz. Through filtering, we obtain vibrations
corresponding to N1 and N2 regimes, producing a total of four vibration variables:

• LP-ACC1 and LP-ACC2: vibration amplitude at N1 speed (in terms of displace-
ment in milsda).

226 Chapter 8 Industrial applications

• HP-ACC1 and HP-ACC2: vibration amplitude at N2 speed (in terms of speed in
ipspk).

A cross-section schema of the engine with sensor positions is displayed in Figure 8.12.
The signals are measured during entire flights, from engine start to engine stop.

Bearing #1

N2 sensor

N1 sensor

ACC1 sensor

Turbine rear frame

ACC2 sensor

Fig. 8.12.: Engine cross-section with positions of the rotation (N1, N2) and vibration (ACC1,
ACC2) sensors.

Figure 8.13 (left) shows an example of N1, LP-ACC1 and LP-ACC2 signals. The N1
rotation speed is directly controlled by the pilot pushing on the thrust lever, and
corresponds to the engine thrust. It is expressed as a percentage of maximum thrust
(this maximum depends on many factors and flight conditions). During a normal
passenger flight, the N1 signal can be broadly divided into different phases: first, a
strong acceleration during take-off and ascent, then a long stabilized phase during
cruise, and finally a decrease during descent, with short peaks corresponding to
maneuvers before landing. The LP-ACC1 signal follows N1 during the first part of
the flight, increasing during acceleration, with a small mode at around 90% regime.
However, the strongest vibrations are observed during deceleration, with several
peaks showing an important mode at around 40% regime. The LP-ACC2 signal
is interesting because it exhibits a very strong mode at low regimes. Signals N2,
HP-ACC1 and HP-ACC2 for the same flight are displayed on Figure 8.13 (right). The
behavior of N2 is similar to N1, with an acceleration until it reaches a plateau just
over 100% regime, where vibration is higher, before entering the stabilized cruise
regime. Both signals contain a very sharp and high peak at low regime.

The properties of the data analyzed in this work are described in Table 8.8.

8.5 Application to vibration monitoring 227

0 20 40 60 80 100
Time (minutes)

N1
 (%

)

0 20 40 60 80 100
Time (minutes)

N2
 (%

)

0 20 40 60 80 100
Time (minutes)

LP
-A

CC
1

(m
ils

da
)

0 20 40 60 80 100
Time (minutes)

HP
-A

CC
1

(ip
sp

k)

0 20 40 60 80 100
Time (minutes)

LP
-A

CC
2

(m
ils

da
)

0 20 40 60 80 100
Time (minutes)

HP
-A

CC
2

(ip
sp

k)

Fig. 8.13.: (Left) example of rotation speed N1 and vibration amplitude signals LP-ACC1
and LP-ACC2 during a flight. (Right) Example of rotation speed N2 and vibration
amplitude signals HP-ACC1 and HP-ACC2 during a flight.

Tab. 8.8.: Data properties for the vibration monitoring use case.

Property Approximate value

Number of engines 1000
Number of flights 1 million
Number of parameters 6
Frequency of parameters 4 Hz or 66 Hz
Total HDFS storage volume 1 TB

228 Chapter 8 Industrial applications

Vibration signatures

In order to represent the vibratory response of the engine, the raw time series are
transformed into signatures that represent vibration as a function of regime. Thus, a
signature can directly relate a given regime to a vibratory mode. The location and
intensity of these modes are crucial to understand what happens inside the engine.
Here are the four signatures studied in this work:

1. LP-ACC1 vs N1.
2. LP-ACC2 vs N1.
3. HP-ACC1 vs N2.
4. HP-ACC2 vs N2.

By observing these signatures, experts are able, for example, to detect unbalance at
a specific location of the engine. As we define signatures in terms of entire flights,
we are not in the standard setting of a monotonic acceleration or deceleration. Thus,
a given regime is reached several times during a flight, and may correspond to
different vibration amplitudes, producing a point cloud, as shown for signature 4
on Figure 8.14. To extract the modes and general shape, we cut the x-axis into
bins of 5% regime, and aggregate values by taking the quantile at 75% (not the
maximum because it is sensitive to outliers). It is clear that manual monitoring of

N2 (%)

HP
-A

CC
2

(ip
sp

k)

Signature

Fig. 8.14.: Vibration signature 4 (HP-ACC2 vs N2) on an example flight. Each point is a
measurement during the flight (after re-sampling).

these signatures is impossible, because of their variability and the huge number
of flights. The next sections present how we process data and use self-organized
clustering models for efficient fleet CM.

8.5 Application to vibration monitoring 229

8.5.3 Vibration signature extraction

For the large-scale computation of vibration signatures on a fleet of civil aircraft en-
gines, we use the generic Big Data processing pipeline already introduced previously
[Forest et al., 2018]. This pipeline has been designed to analyze operational flight
data (here CEOD) on a Hadoop cluster and is based on the Apache Spark. It allows to
deploy custom functions containing the engineers’ business logic without knowledge
of distributed programming. The first step in the pipeline is basic preprocessing
and selection queries against the flight database. The second step is generic feature
extraction, using predefined or user-provided functions to compute flight features.
This is where domain knowledge is incorporated. Signature computation happens at
this step. Signatures are computed by a custom function taking the parameters of

Signature computation
function API

Transparent use of
Spark APIs

Flight #001

Flight #002

Flight #003

Flight #004

...

...

Flight #442

Flight #443

...

Fig. 8.15.: Data-parallel signature extraction on a collection of flights.

a single flight as input, and outputs the resulting signature. The code is written in
Python with standard numerical and data analysis libraries. This function has five
parameters: the names of both input signals (x- and y-axis), the period and range
of the x-axis (e.g. the regime range), and the type of operation used to aggregate
points in each bin of the x-axis (e.g. average, max, quantiles, etc.). Parameters
are set in the configuration file, allowing to extract various signatures using the
same generic code. The feature extraction module applies this function on flights in
parallel across the cluster, as illustrated in Figure 8.15.

In this work, we use a period of 5% regime bins in the [25%, 100%] range, thus
each signature can be viewed as a 15-dimensional vector, or a one-dimensional curve
of length 15.

230 Chapter 8 Industrial applications

8.5.4 Clustering and visualization with self-organized models

Self-Organizing Maps

The algorithm takes as input the set of vibration signatures S = {si}1≤i≤N , si ∈ RD,
with D = 15, and outputs a square map composed of K = 8 × 8 units. Each unit
is associated to a prototype signature {mk}1≤k≤K ∈ RD. A new flight is projected
onto the map by finding its closest prototype signature w.r.t. Euclidean distance. We
call the corresponding map unit best-matching signature (BMS):

BMS := argmin
k
||si −mk||22

Before feeding into SOM, the data set is z-normalized to zero mean and unit variance
to give each point of the signature an equal weight in euclidean distances. The
resulting map for signature 4 (HP-ACC2 vs N2) is displayed Figure 8.16 and will be
investigated further in the next paragraph. We use the distributed Spark ML SOM

Fig. 8.16.: SOM map of signature 4 (HP-ACC2 vs N2). Each cell represents a vibration
signature prototype. The background colors are higher-level profiles obtained
by Ward hierarchical clustering (here with 8 clusters).

implementation of batch SOM [Forest, 2019]. This allows to leverage the production
cluster to train SOM models on huge data sets of several million flights.

8.5 Application to vibration monitoring 231

Analysis and methodology

One year of historical flight data for 1000 engines, representing approximately 1
million flights and 1 TB of raw signal data, has been processed. After training a SOM
for each signature, the resulting models are saved.

Vibration signatures exhibit several modes at particular regimes, visible on the
visualizations provided in Figure 8.16 and appendix Figure E.1. The variability in
locations and amplitudes of the modes translates into smooth transitions on the
map. Experts in engine dynamics are able to identify these modes and link them, for
example, to unbalance at a specific part of the engine. Moreover, certain vibratory
behaviors are normal, such as vibrations of the whole aircraft structure, or temporary
unbalance due to thermal conditions. On the other side, certain behaviors are due
to wear and must be monitored closely.

In order to classify map cells into higher-level vibration profiles, we perform hierar-
chical clustering (HC) on the prototype signatures. This classification is materialized
by the cell’s background color. These profiles may correspond to very well-balanced
engines (see the very low-amplitude signatures on Figure 8.16 and appendix), rotor
unbalance at fan, compressor or turbine, but also issues not related to the engine at
all (e.g. flat signals, such as the bottom-left cell on Figure 8.16, are due to a sensor
switched off or some issue during data decoding or ingestion). As a result from this
analysis, each map region has been interpreted and labeled by experts.

For EHM of operating aircraft, new flights are projected onto their best-matching
signature (BMS). The (euclidean) distance between a flight and its BMS is a proxy
for an anomaly score: a large distance means that a flight is dissimilar to previously
observed behaviors, thus it needs to be investigated carefully. Flights that are
projected onto abnormal regions of the map raise alerts and can be immediately
investigated by engineers. The sequence of projections of a single engine, flight after
flight, is called a trajectory. Because a signature describes intrinsic properties of an
engine, it should not change drastically from one flight to another. Thus, a trajectory
should stay within the same region or higher-level profile. A sudden jump, or a
progressive trend towards a different region, can be a warning for abnormal wear.
However, changes in vibration profiles may also be due to maintenance operations
or a folding of the SOM map [Kiviluoto, 1996]. An engine trajectory is represented
on Figure 8.17. The BMS of a flight is marked by a black circle, where the radius
is proportional to the number of flights where the engine stayed on the same cell.
The lower part of Figure 8.17 represents the sequence of higher-level profiles found
by HC. Clearly, the vast majority of flights have similar vibration profiles. Out of

232 Chapter 8 Industrial applications

12 40

2 4

8 50 50 28

4 52 60 54

24 68 52

20 70

32 54

3 683657651615521Flight 187 455

184 2 266 2 64 2 92 2 34 2 4 2 24

Fig. 8.17.: Trajectory of a single engine on the SOM of signature 4, for a total of 684 flights.
Circles correspond to flight projections. The first and last flights are marked by
red and blue stars. The radius of a circle is proportional to the number of flights
the engine stayed on the same vibration profile (this number is also printed
within each cell). Sudden jumps between non-neighboring cells (marked by
arrows) indicate abrupt changes in vibration profiles, which may correspond to
operational events or a SOM folding. This engine mostly stays within the orange
region, as shown by the sequence of transitions between higher-level profiles
(bottom diagram).

684 flights, only 16 fall outside the orange area, and most transitions occur within
the higher-level profiles. For sake of readability, only transitions between non-
neighboring cells were represented by arrows on the map. The fact that a signature
is an individual property of engines is supported by a heatmap visualization of
BMS counts, i.e. by representing the number of flights projected on each cell for
different engines (Figure 8.18). Finally, in a post-finding situation, after an event
has occurred, we can find similar engines that share the same vibration patterns or
have similar temporal evolutions (e.g. with an edit distance on trajectories [Côme
et al., 2011]). However, a map is only a snapshot of past flights. Periodically,
models must be re-trained with up-to-date flight data, to account for new trends
and the aging of the fleet. The complete methodology, summarized visually on
Figure 8.19, can be analyzed under the OSA-CBM framework for EHM (described in

8.5 Application to vibration monitoring 233

0

10

20

30

40

50

60

70

Fl
ig

ht
s

Fig. 8.18.: Heatmaps of projection counts on SOM map of vibration signature 4, for three
different engines. Each individual engine has its vibration signatures concen-
trated in a single region, because a signature is an intrinsic property of engines.

[Bastard et al., 2016]): (1) signature computation corresponds to Data Acquisition
& Manipulation; (2) State Detection assigns flights to vibration profiles as well as
distances to the map; (3) Health Assessment consists in the classification of the
profiles and anomaly detection; (4) analysis, prediction and search of similar engine
trajectories is part of Prognostics Assessment and finally (5) Advisory Generation
encompasses visualization and alerts generation.

Select historical data
Extract vibration

signatures

Train a SOM model
for each signature

Assign flights to
vibration profiles

Classify & analyze
vibration profiles

Analyze & predict
engine trajectories

Visualize results
& generate alerts DA & DM

SD

HA

PA

AG

Fig. 8.19.: Vibration monitoring methodology under the OSA-CBM standard. Colors rep-
resent the steps of the OSA-CBM standard: Data Acquisition & Manipulation
(DA), State Detection (SD), Health Assessment (HA), Prognostics Assessment
(PA), and Advisory Generation (AG).

234 Chapter 8 Industrial applications

8.6 Conclusion

This chapter has begun by introducing health monitoring of aircraft engines, and the
various data sets collected from the flight recorder and processed on ground. We
have to deal with multivariate, high-frequency, time series data, posing a problem of
format to be processed efficiently.

The first contribution in this chapter was to design and build an end-to-end pipeline
for large-scale analytics of continuous operational aircraft engine data collected on
aircraft engines, and stored on a Hadoop cluster. Using this pipeline, we implemented
a minimal but fully operational version of a health monitoring application. Each
step of the processing scales to large data sets thanks to Map-Reduce data-parallel
processing using the Apache Spark framework. Moreover, each step is kept generic
and customizable in order to adapt to a wide range of use cases. The pipeline
integrates an unsupervised learning algorithm (in the present use case, a self-
organizing map) and a visualization web application to analyze the results. We also
enable domain engineers with no Big Data skills to deploy their algorithms at scale,
using a simple API for custom functions.

The second contribution presents a methodology for large-scale vibration monitoring
on thousands of operating civil aircraft engines, also based on the SOM algorithm
and a database of LEAP flight recorder data. First, vibration signatures are extracted
using the previous pipeline. These signatures are then classified and visualized using
SOM, yielding a cartography of vibration profiles. As part of a CM strategy, these
profiles are useful for experts who can quickly gain insights about the vibratory state
of a fleet, and detect unbalance or other abnormal behaviors.

8.6 Conclusion 235

Conclusion and perspectives

Throughout this PhD thesis, we have tackled important problems in the field of
unsupervised machine learning. First, the problem of representation in clustering.
We have explored deep clustering approaches, using neural networks to learn high-
level representations to improve clustering. As we are particularly interested in
topographic map algorithms for their interpretable neighborhood preservation and
visualization capabilities, we proposed a Deep Embedded Self-Organizing Map
(DESOM) algorithm to jointly learn representations through an autoencoder and
the SOM prototype vectors in latent space. Secondly, we addressed the problem
of model selection in clustering, which is challenging because of the ill-posed
objective of clustering and the lack of ground-truth labels. We adopted the clustering
stability principle, due to its elegant formulation and assumptions in contrast with
many clustering validation methods. We proposed a novel principle of within-
cluster stability and the Stadion criterion, along with a concrete implementation,
showing competitive results on a very large benchmark study we have conducted.
An extension to time series clustering was proposed, based on data invariances.

Meanwhile, we have not put aside the challenge of solving real-world industry
problems. Modern aircraft generate growing amounts of sensor data that can be
leveraged for health monitoring and predictive maintenance, in order to improve
safety, availability and reduce costs for the engine manufacturer and/or airline
operators. These massive data sets are processed efficiently using Big Data tools,
such as distributed storage and processing. We adopted the Apache Spark framework.
To this end, it was necessary to develop specific tools to scale health monitoring
applications. We developed a flexible processing pipeline to extract expert indicators
from raw flight data and use algorithms to cluster and visualize results. This allowed
to reproduce the engine fleet cartography methodology, based on the SOM algorithm,
that we also implemented in Spark ML. In particular, we applied it to vibration
monitoring of the LEAP engine and obtained encouraging results in collaboration
with Safran A.E. engineering teams.

Here is a brief summary of our contributions:

1. Proposing to jointly learn representations and the SOM prototype vectors in
the DESOM model (3 publications and 1 journal under submission).

237

2. Proposing a novel principle and method to evaluate clustering algorithms
using cluster stability analysis, with an extension to time series (1 publication
and 1 under submission).

3. Developing algorithmic and software tools enabling large-scale health moni-
toring methodologies on flight recorder data stored on a cluster. Conducting
an industrial application to vibration monitoring in collaboration with Safran
A.E. engineering teams (2 publications and 1 patent).

4. Developing several open-source software including DESOM, SOM performance
evaluation, stability analysis, and a distributed Spark ML SOM implementation.

Future work

The various paths followed throughout this thesis open up perspectives for future
work. First, not every aspect has been tackled in the work on DESOM. We conducted
experiments using a fully-connected or convolutional AE network, but an extension
to sequences with a recurrent AE is possible. In addition, the model could be
extended to the variational or adversarial frameworks (VAE or GAN), which could
improve the quality of learned representations and provide us with a generative
model. We also did not try different SOM neighborhood functions and radius
decays, assuming that they are only related to the SOM learning and should not
fundamentally change the properties of DESOM. However, this cannot be excluded
due to the interaction between SOM loss and reconstruction loss. These perspectives
are left as future work.

Future developments for SOMperf include the computation of per-unit metrics, a
SOM visualization module, as well as distance functions between self-organized
models. In addition, other more recent SOM quality metrics could be implemented,
such as the map embedding accuracy [Hamel, 2016].

Concerning our work on cluster stability analysis, many improvements work di-
rections must be considered. An important concern is to speed up the Stadion
computation. We believe that measuring the data density at cluster boundaries is
sufficient to assess stability, therefore it could be estimated only by computing the dis-
tances of data points to the boundaries when these are known (e.g. in center-based
methods). Then, our implementation of within-cluster stability is not functional for
all classes of algorithms, for instance density-based clustering, although we already
obtained promising results for DBSCAN. Furthermore, our work is empirical and
still lacks theoretical guarantees, that could be established in future works.

238 Chapter 8 Conclusion and perspectives

In our application to time series clustering, there is a need for efficient algorithms or
algorithms with an extension operator, able to assign new points without re-training.
Future work will focus on reducing the computational burden, and exploring more
complex time series data sets. Insights on data perturbations can be gained from
the vast literature on invariant transformations and data augmentation. Finally, we
are convinced that interesting links could be made between clustering stability and
adversarial attacks [Fawaz et al., 2019].

On the industrial applications side, a next step is to automate the processing pipeline
using workflow management software, for instance Oozie, Airflow or Azkaban, that
allow to author workflows that schedule jobs sequentially, in parallel or based on
conditions and triggers (e.g. availability of new data). Another important future
development is data and model versioning. As the database is constantly growing
with incoming flights, it is essential to keep track of what data was used to fit a model.
Thus, the application should handle multiple models and compare them in order to
analyze their evolution. Generally, efficient data and model versioning capability
should be integrated into the pipeline. Then, in collaboration with teams of domain
experts, we would like to extend the engine fleet cartography methodology to other
engine families, different use cases, and for other engine aspects and subsystems
(for instance the oil system, valves, etc.). Vibration signatures from the radial drive
shaft (RDS) were not tackled in out work but their behavior is of great interest.

Based on the engine fleet cartography, we would like to develop a new application
called Weekly Report. The principle would be to automatically monitor engine
trajectories and generate reports and alerts describing abnormal trends or behaviors.
Interpretable clustering and visualization for decision-making is crucial in aerospace
industry but also in other fields such as healthcare. In healthcare, probabilistic
models have been used to make temporal predictions on the state of a patient using
disease trajectories with Gaussian processes [Schulam and Arora, 2016], sometimes
in combination with recurrent neural networks [Lim and van der Schaar, 2018].
[Fortuin et al., 2019] apply their SOM-VAE model to time series from the intensive
care unit. These ideas are considered for our use case in future work, in order to
model and predict the future trajectory of an engine. In particular, the remaining
number of flights before reaching a risky state (for example a state where an event
has occurred in the past) could be estimated, a kind of remaining useful life. Lastly,
instead of computing a one-dimensional curve from the point cloud (shown in
Figure 8.14), we could extract multidimensional vectors from the distribution (in
particular, the standard deviation or envelope). This might require to use deeper
SOM architectures for dimensionality reduction.

8.0 Future work 239

Appendix to chapter 3 —
DESOM visualizations

A

Fig. A.1.: 20-by-20 DESOM maps of MNIST and Fashion-MNIST data sets.

241

Appendix to chapter 4 —
SOMperf usage examples

B
In the SOMperf module, metric functions usually take as arguments a matrix con-
taining the SOM code vectors, the data matrix and/or the distance matrix, to avoid
recomputing all pairwise distances. In addition, they need a distance function on
the map. A code example for computing topographic error with a rectangular map
topology is given below:

from somperf.metrics import topographic_error
from somperf.utils import rectangular_topology_dist
map_size = (10, 10)
dist_fun = rectangular_topology_dist(map_size)
x = ... # data matrix
som = ... # SOM code vectors matrix
te = topographic_error(dist_fun, som, x)

Figure B.1 shows three SOM maps trained on a square uniform distribution, with
three different levels of topographic organization. Topographic, combined and
Kruskal-Shepard error increase as the map becomes more disordered, and the C
measure decreases.

Figure B.2 reproduces the experiments described in [Villmann et al., 1994]: the
topographic function vanishes when its argument k approaches the length of a
1-dimensional map. On Figure B.3, we reproduced the example from [Kaski and
Lagus, 1996], with three different solutions of a 1-dimensional SOM trained on a 2D
rectangular stripe. Solution (1) approximates well the data (low quantization error),
but is too complex and less smooth (high topographic error), whereas solution
(3) has a bias (high QE) but is a simple straight line (low TE). Only combined
error is able to indicate the best compromise, i.e. solution (2). A large number of
additional experiments are available online as a notebook1, including examples from
the original papers.

1https://github.com/FlorentF9/SOMperf/blob/master/tests/SOMperf-Tests.ipynb

243

https://github.com/FlorentF9/SOMperf/blob/master/tests/SOMperf-Tests.ipynb

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3
0.0

0.2

0.4

0.6

0.8

1.0
Topographic Error

1 2 3
0.0

0.5

1.0

1.5

2.0

2.5

3.0
Combined Error

1 2 3
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07
Kruskal-Shepard Error

1 2 3
0.0

0.2

0.4

0.6

0.8

1.0 1e7 C Measure

Fig. B.1.: SOM maps representing a uniform distribution with three different levels of
topographic organization. Topographic, combined and Kruskal-Shepard errors
and C measure behave as expected as a function of organization.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200 250 300
k

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

k = 144

Topographic Function

Fig. B.2.: Reproduction of the example in [Villmann et al., 1994]. The topographic function
vanishes when k approaches the length of the 1D map.

1
2
3

1 2 3
0.00

0.02

0.04

0.06

0.08

Quantization errors

1 2 3
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Topographic errors

1 2 3
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175
Combined errors

Fig. B.3.: Reproduction of the example in [Kaski and Lagus, 1996] with a stripe distribution
and 1D SOM maps with three different configurations. Among quantization error,
topographic error and combined error, only the latter is able to indicate the best
solution, i.e. the straight line.

244 Appendix B Appendix to chapter 4 — SOMperf usage examples

Appendix to chapter 5 —
Detailed benchmark results
and experimental settings

C

C.1 Results analysis

A large benchmark on 73 artificial and 7 real data sets compares the solutions
selected by Stadion with the true number of clusters K?, a selection of internal
indices including the Gap statistic for K-means, the BIC for GMM and two previous
stability methods. As summarized in Table 5.3, Stadion achieves the best results
overall, and other internal indices such as Wemmert-Gancarski and Silhouette also
perform well. In particular, with GMM, it outperforms the BIC on both the artificial
and real benchmark, although BIC is a standard choice and a strong baseline in
model-based clustering. Note that Stadion and BIC were evaluated for K ≥ 1, while
all other methods used K ≥ 2. This slightly favors the latter methods, because
many data sets have K? = 2, thus on data sets where the algorithm fails to recover
structure, Stadion will select K = 1 while most indices output K = 2 as a default.
In order to assess the statistical significance of those results and determine which
methods really are different, we adopt the same methodology as previously and
carry out a Friedman test followed by Wilcoxon-Holms post-hoc analysis on the ARI
performances of each method, across our benchmark of 73 artificial data sets and
for the three algorithms considered in this work.

123456789101112131415

Ben-Hur
Gap

XB
Dunn

CH
RT
DB

Lange
Sil
WG
ARI K*
Stadion-mean (ext)
Stadion-max (ext)
Stadion-mean
Stadion-max

Fig. C.1.: Critical difference diagram after Wilcoxon-Holms test on ARI performance across
73 artificial data sets comparing several clustering validation methods for the
K-means algorithm.

245

123456789101112

Ben-Hur
Dunn

XB
CH
RT

Lange Sil
DB
Stadion-mean
WG
Stadion-max
ARI K*

Fig. C.2.: Critical difference diagram after Wilcoxon-Holms test on ARI performance across
73 artificial data sets comparing several clustering validation methods for the
Ward algorithm.

12345678910111213

Ben-Hur
XB

Dunn
RT
CH
DB
Sil

Lange
Stadion-mean (ext)
BIC
WG
Stadion-max (ext)
ARI K*

Fig. C.3.: Critical difference diagram after Wilcoxon-Holms test on ARI performance across
73 artificial data sets comparing several clustering validation methods for the
GMM algorithm.

As shown on the CD diagrams in Figures (C.1, C.2, C.3), Stadion seems to outperform
other indices. However, the signed-rank Wilcoxon-Holms test on ARI performance
did not assess significant difference between the group of best-performing methods.
The main reason is that ARI performance is evaluated on partitions that are fixed for
any given K. In contrast to supervised learning (using accuracy), here the methods
are often attributed the same ARI scores, since they often find the same number of
clusters. In other words, methods mostly succeed and fail on the same data sets.
This implies a large number of ties in terms of ARI score. Under these conditions, the
experimental data is not sufficient to reach any conclusion regarding the statistical
superiority of our method.

That said, some conclusions can still be drawn. Stadion (mean/max, extended or
standard) performs significantly better than Ben-Hur, Gap, Xie-Beni, Dunn, Calinski-
Harabasz, Ray-Turi and Davies-Bouldin indices for the K-means algorithm. Similarly
for GMM, Stadion-max performs significantly better than the same groups of indices.
Finally for Ward, Stadion-max performs significantly better than Ben-Hur, Xie-Beni,
Dunn, Calinski-Harabasz and Ray-Turi. Overall, Stadion-mean had slightly inferior
performance than Stadion-max, but this was not significant.

Note that performance is evaluated using the external index ARI (w.r.t. the ground-
truth partition), while Stadion also uses s = ARI as its similarity measure to estimate
stability. It would be reasonable to expect this situation to introduce some kind of
bias. However, results are not biased in favor of Stadion, as shown by Tables (C.1,

246 Appendix C Appendix to chapter 5 — Detailed benchmark results and ex-
perimental settings

Tab. C.1.: Performance rankings of clustering validation methods, evaluated with 16 ex-
ternal indices w.r.t. the ground-truth partitions, over 73 data sets for K-means.
Rankings are mostly unchanged.

Stadion Stadion
ARIK? max mean max (ext) mean (ext) WG Sil Lange DB RT CH Dunn XB Gap Ben-Hur

RI 6.43 6.15 6.26 5.97 6.35 6.66 7.71 8.51 8.09 8.36 8.40 9.82 9.95 10.36 10.99
ARI1 6.47 6.02 6.12 6.13 6.42 6.62 7.51 7.93 8.12 8.19 8.71 10.11 10.27 10.38 10.99
ARI2 6.47 6.02 6.12 6.13 6.42 6.62 7.51 7.93 8.12 8.19 8.71 10.11 10.27 10.38 10.99
FM 6.42 5.96 6.32 6.02 6.42 6.54 7.42 8.21 8.06 8.12 8.73 10.10 10.27 10.23 11.18
JACC 6.39 5.96 6.36 6.03 6.45 6.62 7.34 8.16 7.98 8.16 8.77 10.14 10.32 10.23 11.09

AMI 6.03 6.11 6.07 6.10 6.54 6.62 7.47 8.18 7.73 8.49 8.52 10.41 10.58 10.19 10.95
MI 7.68 7.62 7.55 6.94 6.84 8.23 9.09 9.90 8.27 8.60 6.34 7.66 6.80 9.86 8.61
NID 6.03 6.11 6.07 6.10 6.54 6.62 7.47 8.18 7.73 8.49 8.52 10.41 10.58 10.19 10.95
ID 5.88 6.07 6.04 6.20 6.68 6.60 7.25 7.93 7.80 8.58 8.84 10.52 10.70 10.07 10.86
NVI 6.32 6.29 6.25 6.03 6.35 6.58 7.51 8.32 7.91 8.27 8.42 10.18 10.34 10.32 10.91

VI 6.29 6.04 6.22 6.24 6.57 6.51 7.07 7.85 7.87 8.33 8.90 10.38 10.64 10.00 11.08
NMI1 6.03 6.11 6.07 6.10 6.54 6.62 7.47 8.18 7.73 8.49 8.52 10.41 10.58 10.19 10.95
NMI2 9.50 8.26 8.49 7.86 7.60 8.59 8.64 8.38 8.51 7.90 7.21 6.42 5.89 8.93 7.82
NMI3 6.42 6.38 6.21 6.08 6.23 6.57 7.59 8.44 7.90 8.30 8.34 10.04 10.21 10.47 10.84
NMI4 6.32 6.29 6.25 6.03 6.35 6.58 7.51 8.32 7.91 8.27 8.42 10.18 10.34 10.32 10.91

NMI5 6.32 6.29 6.25 6.03 6.35 6.58 7.51 8.32 7.91 8.27 8.42 10.18 10.34 10.32 10.91

Tab. C.2.: Performance rankings of clustering validation methods, evaluated with 16 ex-
ternal indices w.r.t. the ground-truth partitions, over 73 data sets for Ward.
Rankings are mostly unchanged.

ARIK? Stadion-max Stadion-mean WG Sil Lange DB RT CH Dunn XB Ben-Hur

RI 4.92 5.42 5.93 5.60 6.58 6.49 6.60 7.10 6.87 7.53 7.34 7.63
ARI1 4.77 5.25 5.80 5.40 6.47 6.53 6.45 6.97 7.14 7.77 7.61 7.86
ARI2 4.77 5.25 5.80 5.40 6.47 6.53 6.45 6.97 7.14 7.77 7.61 7.86
FM 4.89 5.15 5.74 5.47 6.41 6.25 6.57 7.12 7.24 7.89 7.68 7.59
JACC 4.84 5.15 5.73 5.52 6.40 6.18 6.49 7.15 7.29 7.95 7.73 7.58

AMI 4.42 5.45 5.95 5.66 6.40 6.13 6.46 7.12 7.24 7.89 7.69 7.59
MI 5.88 6.44 6.39 6.40 7.44 7.45 6.47 6.61 5.21 6.38 5.62 7.73
NID 4.42 5.45 5.95 5.66 6.40 6.13 6.46 7.12 7.24 7.89 7.69 7.59
ID 4.40 5.36 5.85 5.61 6.36 6.02 6.54 7.13 7.35 7.98 7.78 7.63
NVI 4.95 5.45 5.92 5.51 6.48 6.25 6.45 6.99 7.09 7.74 7.54 7.64

VI 4.78 5.30 5.70 5.62 6.19 6.09 6.42 7.15 7.38 8.03 7.83 7.52
NMI1 4.42 5.45 5.95 5.66 6.40 6.13 6.46 7.12 7.24 7.89 7.69 7.59
NMI2 7.85 7.50 7.30 6.68 6.34 6.77 6.48 5.92 6.21 5.21 5.23 6.51
NMI3 4.96 5.44 5.95 5.53 6.51 6.27 6.46 7.01 7.05 7.68 7.50 7.64
NMI4 4.95 5.45 5.92 5.51 6.48 6.25 6.45 6.99 7.09 7.74 7.54 7.64

NMI5 4.95 5.45 5.92 5.51 6.48 6.25 6.45 6.99 7.09 7.74 7.54 7.64

C.2, C.3). Indeed, the ranking almost never changed while using different external
indices to evaluate performance of Stadion, and keeping s = ARI.

C.2 Complete results on real-world and artificial data sets

Due to the large number of tables, we do not include them in this manuscript. Please
refer to the paper’s appendix [Mourer et al., 2020].

C.2 Complete results on real-world and artificial data sets 247

Tab. C.3.: Performance rankings of clustering validation methods, evaluated with 16 ex-
ternal indices w.r.t. the ground-truth partitions, over 73 data sets for GMM.
Rankings are mostly unchanged.

ARIK? Stadion-max Stadion-mean BIC WG Sil Lange DB RT CH Dunn XB Ben-Hur

RI 5.04 5.55 6.59 6.73 5.82 7.13 7.35 7.40 7.77 7.18 7.72 7.75 8.98
ARI1 5.05 5.59 6.79 6.45 5.77 7.01 6.99 7.29 7.68 7.43 7.92 8.19 8.85
ARI2 5.05 5.59 6.79 6.45 5.77 7.01 6.99 7.29 7.68 7.43 7.92 8.19 8.85
FM 5.15 5.62 6.85 6.84 5.64 6.87 6.92 7.18 7.47 7.29 7.90 8.10 9.17
JACC 5.15 5.62 6.85 6.84 5.64 6.87 6.92 7.18 7.47 7.31 7.90 8.09 9.17

AMI 4.89 5.50 6.78 6.53 5.75 6.86 7.21 7.48 7.68 7.40 7.82 8.14 8.95
MI 6.25 6.34 6.42 7.08 7.11 8.03 8.41 6.64 7.45 5.94 6.95 6.52 7.88
NID 4.89 5.50 6.67 6.37 5.75 6.86 7.21 7.62 7.82 7.40 7.82 8.28 8.82
ID 4.88 5.57 6.77 6.52 5.64 6.73 7.06 7.63 7.70 7.39 7.82 8.36 8.94
NVI 5.12 5.58 6.70 6.51 5.72 6.76 7.16 7.34 7.82 7.38 7.86 8.24 8.82

VI 5.29 5.68 6.92 6.64 5.54 6.62 6.94 7.15 7.60 7.42 7.87 8.31 9.02
NMI1 4.89 5.50 6.78 6.53 5.75 6.86 7.21 7.48 7.68 7.40 7.82 8.14 8.95
NMI2 7.86 7.14 6.88 8.08 7.23 6.65 7.76 6.47 6.95 6.87 5.58 5.77 7.76
NMI3 5.12 5.58 6.92 6.78 5.72 6.76 7.13 7.14 7.66 7.32 7.80 8.05 9.02
NMI4 5.12 5.58 6.81 6.67 5.72 6.76 7.16 7.21 7.68 7.38 7.86 8.10 8.95

NMI5 5.12 5.58 6.81 6.67 5.72 6.76 7.16 7.21 7.68 7.38 7.86 8.10 8.95

C.3 Algorithm initialization
• K-means: in both Stadion versions (standard and extended), effective initial-

ization is achieved using K-means++ [Arthur and Vassilvitskii, 2007] and
keeping the best of 35 runs (w.r.t. the cost function).

• Ward linkage: agglomerative clustering is deterministic, no initialization strat-
egy is needed.

• Gaussian Mixture Model: Two initializations were considered. The first one
uses K-means to initialize the EM algorithm. The second one uses the ap-
proach discussed in [Scrucca and Raftery, 2015]. The main idea is to project
the data through a suitable transformation which enhances separation of clus-
ters. Among the investigated transformations, the scaled SVD transformation
performed best in their experiments and so we used it. Then it applies model-
based agglomerative hierarchical clustering at the initialization step. Once the
hierarchy is obtained, the EM algorithm is run on the original data. However,
there was no noticeable difference between the two initializations.

C.4 Preprocessing

Every data set was scaled to zero mean and unit variance on each dimension, which
is essential for the algorithms to work but also for the additive noise perturbation.
For the real data sets, additional preprocessing was necessary to ensure class labels
truly represent the cluster structure.

248 Appendix C Appendix to chapter 5 — Detailed benchmark results and ex-
perimental settings

Crabs The Crabs data set was decomposed using a PCA and keeping the principal
components two and three, as described in [Bouveyron and Brunet-Saumard, 2014].
The standard scaling was applied both before and after the PCA.

Old Faithful & Iris No preprocessing apart from scaling.

MFDS, MNIST, USPS On these high-dimensional data sets (respectively 649, 784
and 256 dimensions), we extracted a two-dimensional representation following a
two-step process, as introduced in [McConville et al., 2021]. First, a fully-connected
symmetric autoencoder with [500, 2000, 2000, 10] units is trained to compress data
into a 10-dimensional latent feature space. Then, the UMAP [McInnes et al., 2018]
dimensionality reduction algorithm is applied on the latent features to obtain 2D
representations. Finally, standard scaling is applied.

Wine This data set was reduced to two dimensions with UMAP, and then scaled.
All UMAP-reduced data sets displayed in Figure C.4.

C.5 List of data sets

A complete list of the 80 artificial and real data sets used in this paper is provided
in the paper’s appendix [Mourer et al., 2020], indicating the number of samples,
dimension, ground-truth number of clusters and references. It is not included here
to avoid lengthening this manuscript. Some data sets are original and have been
created for this work, in order to provide more challenging model selection tasks. All
data set are available in the companion repository of this paper, skstab1, to ensure
reproducibility.

1https://github.com/FlorentF9/skstab

C.5 List of data sets 249

https://github.com/FlorentF9/skstab

1.5 1.0 0.5 0.0 0.5 1.0 1.5

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

(a) MFDS_UMAP

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

(b) MNIST_UMAP

1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

(c) USPS_UMAP

1.5 1.0 0.5 0.0 0.5 1.0 1.5

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

(d) wine_UMAP

Fig. C.4.: Data sets MFDS, MNIST, USPS and wine after UMAP dimensionality reduction.

250 Appendix C Appendix to chapter 5 — Detailed benchmark results and ex-
perimental settings

Appendix to chapter 7 —
Hadoop cluster components

D

D.1 Architecture of a cluster

D.1.1 HDFS

The Hadoop Distributed File System (HDFS) is at the heart of the Hadoop platform
and is designed around the four aforementioned design considerations. HDFS is a
virtual filesystem built on top of native Linux filesystems such as ext3 or ext4. It is
virtual in the sense that it appears as a single entity, but in reality, the underlying
data is spread across many different locations, disks and native filesystems. As in
GFS, HDFS ingests large files by cutting them into fixed-sized blocks and distributes
the blocks on the cluster, to enable data-parallel processing. HDFS is designed for
large files taking several blocks, and not for many small files. The default block
size is 128MB but is configurable. For example, a 300MB file will be split into 3
blocks of size 128MB, 128MB and 44MB respectively. For comparison, block sizes
on Linux filesystems (ext3, ext4) and Windows filesystems (NTFS, FAT) are much
smaller: 4KB. For fault-tolerance, blocks are replicated on different nodes of the
cluster. This replication also increases the chances of data co-locality, reducing
shuffle reads and writes. By default, each block is replicated 3 times. HDFS was
originally developed to support only batch computation and was designed as a Write
Once, Read Many (WORM) filesystem. This means that data blocks are immutable:
they cannot be modified, and need to be re-written entirely. This property guarantees
that the data cannot be modified during processing. Another property of HDFS
is being schema-less. It means that no index or metadata are stored when data is
written to HDFS, unlike with relational databases. Thus, it is not optimized for fast
data retrieval, and the philosophy is always to take the computations to the data.
Furthermore, it is tailored for large volumes of unstructured data (like text, images,
video, etc.). However, many (if not most) of the use cases for aircraft data analytics
involve structured data (with a more or less flexible schema). We will see that other
tools are adapted for manipulating structured data and retrieving it faster using
partitioning.

251

Fig. D.1.: HDFS architecture.

HDFS is composed of one NameNode and DataNodes. The NameNode is the process
running on the master node whose most important function is managing the filesys-
tem metadata catalog. The filesystem metadata resides in-memory and contains
the directories, file attributes (such as user and group access control lists) and the
locations of the blocks composing all the files in the filesystem. It is the only link
between the virtual files and their physical block representation. The metadata is
also journalized on disk. Before Hadoop v2, the NameNode was a single point of
failure, because in case of a NameNode crash, the whole cluster would be unavail-
able. Since Hadoop v2, it is possible to achieve high availability by setting up one
NameNode in Active state (receiving client operations) and another NameNode in
Standby state (slave), and running JournalNode daemons on several nodes of the
cluster to log modifications and use the Quorum Journal Manager to share the logs
between the Active and Standby NameNodes1. The data are stored and managed
on the DataNodes. Each node runs a DataNode process, and hosts the HDFS data
blocks on their local filesystem. DataNodes are also responsible for replication,
checking block integrity (computing checksums regularly) and sending reports to
the NameNode in order to maintain the filesystem metadata catalog. The HDFS
architecture is illustrated in Figure D.1.

1https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/
HDFSHighAvailabilityWithQJM.html

252 Appendix D Appendix to chapter 7 — Hadoop cluster components

https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HDFSHighAvailabilityWithQJM.html
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HDFSHighAvailabilityWithQJM.html

D.1.2 YARN

The first generation Hadoop v1 only supported MapReduce v1 as a data process-
ing framework. The MapReduce v1 scheduling was built to schedule MapReduce
workloads and optimize data locality, but could not schedule other types of jobs
like iterative computations, real-time or graph processing, or SQL queries. It was
not adapted for applications other than MapReduce like Spark, Tez, Impala, etc.
Hadoop v2 introduced a new cluster manager called YARN (Yet Another Resource
Negotiator), able to schedule a wide variety of jobs. YARN is composed of three
main components:

• ResourceManager
• ApplicationMaster
• NodeManagers

The ResourceManager is the YARN master node that arbitrates the available resources
of the cluster. It is aware of the cluster’s topology (nodes, racks) and allocates
containers by given them a certain amount of CPU cores and memory on a worker
node. It is only responsible for scheduling and not monitoring of the tasks. The
NodeManagers are processes that receive instructions from the ResourceManager,
manage the resources on each node and send reports to the ResourceManager.
Finally, the ApplicationMaster is the main container of an application, running on
one of the NodeManagers. The ApplicationMaster is responsible for negotiating
resources with the ResourceManager and monitoring the application. It is important
to note that several applications, submitted by different users, can run on YARN at
the same time; in this case, there will be one ApplicationMaster per application. The
scheduling policy determines how the resources are shared between applications.
For example, with the FIFO (First-In, First-Out) strategy, every job in the queue
waits for the completion of the previous job before starting; with the FAIR policy,
the resources are shared and the jobs run concurrently, allowing short jobs to finish
before long jobs, even if they were submitted later. Here are the steps required to
run an application on YARN:

1. The client first submits the application to the YARN ResourceManager.
2. The ResourceManager designates an ApplicationMaster on a NodeManager.
3. The ApplicationMaster negotiates resources for containers on the NodeMan-

agers.

See Figure D.2 for an illustration of the YARN architecture.

D.1 Architecture of a cluster 253

Fig. D.2.: YARN architecture.

D.1.3 Hive

Apache Hive [Apache Hive, 2010] is Hadoop’s data warehousing system. Hive allows
to read, write and manage large data sets on HDFS. As we will see, it is somewhat
similar to a relational database management system. Its main functionality is
querying data sets using the HiveQL language, which is very close to SQL. HiveQL
allows to translate SQL queries into Map-Reduce jobs. Thus, Hive is an essential
tool for managing structured, relational data sets on a cluster. Hive is composed of
several components, presented thereafter.

D.1.4 Hive components

First, Hive is composed of a metastore, where it stores the metadata, i.e. information
on the tables, schema, user permissions, and location of the files in HDFS. The meta-
store is simply a SQL database. By default, it uses Derby2, a lightweight open-source
Java RDBMS (Relational DataBase Management System). The derby metastore
allows only one connection at a time, which quickly becomes a constraint when
several driver programs need access to the metastore (a second user trying to access
the metastore results in an error "Failed to start database ‘metastore_db’").
The derby metastore is also called the embedded metastore, as it runs in the same JVM
as the Hive driver. The solution is to use a standalone, fully-fledged SQL database
that allows concurrent connections, like MySQL, PostgreSQL or Oracle (in fact, any

2https://db.apache.org/derby/

254 Appendix D Appendix to chapter 7 — Hadoop cluster components

https://db.apache.org/derby/

Fig. D.3.: Hive metastore architectures.

SQL database with JDBC connectivity). The metastore can be run in two ways:
local or remote. The difference of a remote metastore is that a dedicated service
handles the metastore and queries the metastore database. Details are illustrated
in Figure D.3. Hive uses a Thrift API which allows to query the metastore using
JDBC (Java DataBase Connectivity) or ODBC (Open DataBase Connectivity). Apache
Thrift3 is a RPC (Remote Procedure Call) framework, originally developed at Face-
book and an Apache open-source project, that allows to create client/server services
that connect applications in various languages and platforms using interfaces. As
we already mentioned, Hive is designed towards distributed processing of large
structured data sets. The metadata are stored in the metastore, and the underlying
data are stored in files in HDFS (which is inherently schema-less). Supported file
formats are TextFile, SequenceFile, RCFile, ORC Files, Parquet, Avro, and custom
formats4. It is also possible to store data in non-native table formats and connect
to data stores (HBase, Druid and Accumulo). The choice of the data format is of
utmost importance and directly affects query performance, compression, and the

3https://thrift.apache.org/, https://en.wikipedia.org/wiki/Apache_Thrift
4https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL#

LanguageManualDDL-StorageFormats

D.1 Architecture of a cluster 255

https://thrift.apache.org/
https://en.wikipedia.org/wiki/Apache_Thrift
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL#LanguageManualDDL-StorageFormats
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL#LanguageManualDDL-StorageFormats

Tab. D.1.: Hive data types.

Data type Description

TinyInt
SmallInt
Int/Integer
BigInt

Float
Double
Decimal/Numeric

Boolean True or False
Binary Byte Array

String
Char Fixed length string
Varchar Variable length string

Complex types Timestamp, Date, Interval, Array, Map, Struct, Union, . . .

flexibility of schema evolution. Because it is such a crucial issue, this discussion is
postponed to the next section, which concentrates on the storage of aircraft engine
data.

The next component of Hive is the SerDe interface (Serialization and Deserializa-
tion). SerDe is the link between table data formats (in the metastore) and HDFS
file formats. This library is used for IO (In/Out) between tables and HDFS, allowing
to read and write the Hive data formats (listed in Table D.1), as well as custom
data formats (needs to implement a custom SerDe interface). The most power-
ful component is the HiveQL engine, which allows to transform SQL-like queries
(expressed in HiveQL language, similar to SQL) into MapReduce jobs. As a conse-
quence, data analysts, business analysts and engineers familiar with SQL can query
and manipulate Hive data without needing to write MapReduce jobs themselves.
HiveQL automatically parses, plans and optimizes the queries, and executes them
on MapReduce. Finally, Hive can be extended with User-Defined Functions (UDF)
and User-Defined Aggregate Functions (UDAF), as well as with custom MapReduce
code. An overview of the Hive components is shown on Figure D.4.

D.1.5 Tables and partitioning

Hive data are stored in tables. This paragraph will explain how these tables are
organized hierarchically, presents the two types of tables, and explains the concept

256 Appendix D Appendix to chapter 7 — Hadoop cluster components

Fig. D.4.: Hive components architecture.

of partitioning that can be used to control the way data are read from and written to
HDFS and optimize performance.

At the highest hierarchical level, a table is part of database, also called a namespace
(because two tables cannot have identical names inside a database). In the filesystem,
databases correspond to directories, and tables are stored in subdirectories. In HDFS,
all Hive databases are located in /user/hive/warehouse/. There exists a default
database that does not correspond to any directory. The syntax to access a table
inside a database in HiveQL is database.table. Hive tables can be of two different
kinds: managed or external. As its name suggests, managed tables are completely
"managed" by Hive, i.e. Hive controls the data of the table and stores it inside
directories as explained previously. If one drops a managed table, its data are
deleted from disk. Managed tables are used in cases when only Hive uses the data
and should completely manage its life cycle. Managed tables are also called internal
tables, opposed to external tables. External tables, on the contrary, are used when
the data is already used by another program and is stored in a custom location. Only
their metadata are managed by Hive, not the underlying data. Dropping an external
table does not delete the data in the table (only the metadata about the table). In
order to create an external table, one must specify the location where the data can
be read.

A common query on a table is to select a subset of the data set by filtering on the val-
ues of a column (using a WHERE clause). Without using partitioning, the entire table
needs to be scanned. Partitioning allows to cut a table into chunks (called partitions)
and to only read the necessary partitions. Suppose that a table "engine_table" in
a database "engine_db" contains measurements concerning three different aircraft
engines. A column "engine_id" contains the engine identification numbers 1, 2 and

D.1 Architecture of a cluster 257

3. Partitioning this table on the basis of the values of the "engine_id" column results
in three partitions:

/user/hive/warehouse/engine_db/engine_table/engine_id=1/<file>
/user/hive/warehouse/engine_db/engine_table/engine_id=2/<file>
/user/hive/warehouse/engine_db/engine_table/engine_id=3/<file>

This is achieved by adding PARTITIONED BY(engine_id INT) to the Hive query. If a user
queries the data for a specific engine, only the corresponding partition will be read,
and performance will benefit from it greatly.

Hive partitioning is hierarchical, meaning that it is possible to partition hierarchically
on the combination of values of several columns. For example, suppose that our table
has columns year, month and day for the date of the measurement. The obtained
partitions are:

/.../engine_db/engine_table/engine_id=1/year=2018/month=1/day=1/<file>
/.../engine_db/engine_table/engine_id=1/year=2018/month=1/day=2/<file>
...
/.../engine_db/engine_table/engine_id=2/year=2018/month=1/day=1/<file>
...
/.../engine_db/engine_table/engine_id=3/year=2018/month=1/day=1/<file>
...

This kind of temporal partitioning is very useful to retrieve the data of a specific range
of dates. For example, the query SELECT * FROM engine_db.engine_table WHERE engine_id=2

and year=2018 and month=1 will only scan the partitions in the corresponding subdirec-
tories. The Hive syntax for creating a table with this partitioning is PARTITIONED BY(

engine_id INT, year INT, month TINYINT, day TINYINT). Note that the order of the
columns determines the hierarchy of partitions, and highly depends on the data
and use cases. More generally, choosing the partitioning is crucial, as it can make
vary the performance of queries by up to several orders of magnitude. There is no
universally best partitioning, but there are key principles:

• The partition sizes should not be too large, because on each query the whole
table will need to be scanned.

• There should not be too many small partitions, as the overhead of MapReduce
will take over the benefits of partitioning, scanning the directories will be slow
and the metadata will take a lot of space in the metastore.

258 Appendix D Appendix to chapter 7 — Hadoop cluster components

In other words, the optimal partitioning should give a reasonable number of par-
titions with a reasonable size. The meaning of "reasonable" depends on the con-
figuration of the cluster and benchmarks can help to find the right trade-off. As
a rule-of-the-thumb, a good order of magnitude for the partition size is the HDFS
block size (128MB by default). The number of partitions is determined by the
cardinality of the column used for partitioning. If we often need to retrieve all
measurements for a given engine, the current partitioning is a reasonable choice.
If the per-day partitioning is too finegrained (i.e. results in very small partitions),
it can be removed to only partition on the engine, year and month, or only on the
engine. Hive leaves a choice between two types of partitioning:

• Static partitioning: the user provides explicitly the list of partitions to write
the data into.

• Dynamic partitioning: the user provides a column and Hive creates as many
partitions as unique values in the column provided.

The previous example assumed dynamic partitioning.

D.1.6 Bucketing

Another way to cut the data into smaller chunks is bucketing. A bucket is equivalent
to a partition. Bucketing enables to create a fixed number of data chunks with
roughly equal sizes. The user provides the number of buckets and a column, and the
buckets are defined by applying a hashing function on the provided column, using
the formula bucketID = hash(column)modNbuckets (akin to Spark’s HashPartitioner,
presented in the next section 7.3). This feature is useful when partition sizes vary a
lot (e.g. some very large partitions and some very small partitions), or if no column
is well suited for partitioning.

D.1.7 Views

Hive also allows to create views, a traditional concept in RDBMS, but with some
particularities. Hive views are logical copies of tables. They can be used to create
"simplified" version of tables, for example to reduce the number of columns, and
simplifying the subsequent queries. Note that the view’s schema is frozen at its
creation, thus, changing the schema of the underlying table or dropping it will not
affect the view (subsequent queries on this view may then fail).

D.1 Architecture of a cluster 259

D.2 Hadoop storage formats

This section aims at presenting the different data formats that can be used to store
files in HDFS. First, a good format for data warehousing in Hadoop must be splittable,
because HDFS files are split into blocks. A file is splittable if we can start reading
it at any line in the file; this excludes formats like XML or JSON documents (JSON
records, where each line is a JSON object, are splittable). Then, data storage formats
can be compared on several criteria:

• Read performances (with a difference between partial reads and full reads)
• Write performances
• Compression
• Schema flexibility

Each of these properties directly depends on the way the data is organized by the
format and how it is compressed (compression will be the focus of the last paragraph
of this section). The choice of the data format is driven by the use case:

1. What tools and engines will process the data?
2. What are the performance requirements?
3. Is storage volume an issue?
4. Will the schema evolve?

Choosing a storage format is making a trade-off between the four aforementioned
criteria. The choice may also depend on the environment (Hadoop distributions may
support or recommend different formats).

If storage volume is an issue (question 3), the files can be compressed using a
compression library. Compression algorithms use patterns int the data to encode
files efficiently. Several libraries may be used in Hadoop, such as ZLIB, Snappy, LZO,
LZ4 or ZSTD. For this, the file format must support block compression, meaning that
the blocks can be independently compressed. If it is not the case, the compressed
file will be non-splittable. Depending on the format and the compression library
and settings, a lot of storage space can be saved using compression, but of course
this comes at the cost of read and write performances, as data will need to be
decompressed and compressed each time (question 2).

Examples of file formats are plain text files or CSV files, JSON records, Sequence
files, and more advanced formats such as Avro, RCFile, ORC and Parquet.

260 Appendix D Appendix to chapter 7 — Hadoop cluster components

Fig. D.5.: RCFile data layout in a HDFS block.

D.2.1 RCFile

RCFile (Record Columnar File) [He et al., 2011a] was the standard binary format for
storing structured tabular data in Hive. RCFile’s data layout combines advantages
of row-store and column-store: first, the file is partitioned horizontally, creating
row groups of a specific size (the default row group size is 4MB); then, within each
row group, the data is partitioned vertically and stored by column. This layout is
illustrated in figure D.5. Row-store formats are efficient for reading entire rows,
because the values belonging to the same row are stored adjacently on disk. Column-
store formats are more efficient for reading a subset of columns since this time, the
data belonging to the same column are stored adjacently. RCFile combines

As a row-store, RCFile guarantees that data belonging to the same row is located
on the same node; as a column-store, it can leverage column-compression, as the
data of a column within a row group is stored adjacently. To go into more detail, is
composed of:

1. A file header, containing the magic bytes, a byte for the format version num-
ber, a Boolean for indicating if compression is used, the compression codec,
SequenceFile metadata and a sync marker denoting the end of the header.

2. Each row group is composed of:

a) A sync marker.
b) A row group metadata header.
c) The data record which is a key-value pair, where the key contains metrics

(record length, key length, number of rows, length of all columns. . .) and
the value contains the values of the row-group organized column-wise.

D.2 Hadoop storage formats 261

D.2.2 ORC

ORC (Optimized Row Columnar file) is the successor of RCFile as the standard Hive
format for storing tabular data, and offers several improvements over its predecessor
(see specification of ORC v15). First, ORC uses the type information of the table
to improve compression thanks to type-specific compression techniques, resulting
in smaller files compared to RCFile (in RCFile where values as stored as key-value
pairs, each column is simply treated as a binary blob). On top of this, the generic
compression libraries zlib and Snappy can be applied. ORC is also optimized for
reading only a subset of columns, includes index data with the minimum and
maximum value of each column every 10000 rows, and is able to skip sets of rows
using Hive filters. An ORC file is composed of:

1. Row groups called stripes, with a default size of 250MB to enable efficient
reads from HDFS. Each stripe is itself composed of:

a) Index data containing column-level metrics (minimum and maximum
values) and an index with the row positions within each column for
row-skipping, by default every 10000 rows.

b) Row data.
c) A stripe footer.

2. A file footer that contains the list of stripes, number of rows per stripe, column
types, and file-level column metrics (count, minimum, maximum and sum).

3. A postscript indicating the file format version, type of compression used and
footer length.

This structure is illustrated in Figure D.6. An ORC file is read backwards by first
parsing the postscript (that contains the footer length) and then decompressing and
parsing the footer. ORC metadata are stored using Protocol Buffers, a serialization
format that allows to add or remove fields (schema evolution).

D.2.3 Parquet

Parquet6 is a columnar storage format for the Hadoop ecosystem compatible with
almost all processing engines. It is similar to RCFile on various aspects: the data
is partitioned horizontally into row groups containing column chunks whose data
are stored contiguously for sequential reading. Parquet recommend large row group
sizes of 512MB to 1GB, with optimally one row group per HDFS block. Additionally,

5https://orc.apache.org/specification/ORCv1/
6https://parquet.apache.org/

262 Appendix D Appendix to chapter 7 — Hadoop cluster components

https://orc.apache.org/specification/ORCv1/
https://parquet.apache.org/

Fig. D.6.: Structure of ORC file format.

column chunks are divided up into pages, the smallest and indivisible units of a
Parquet file (recommended size: 8KB). A footer contains the file metadata (version
of the format, schema) and the metadata of each column (type, encoding codec,
position (offset) of the first page, column size, etc.). Parquet metadata are stored
using the Thrift serialization system (but it is also possible to use Avro or Protocol
Buffers). The structure of a Parquet file is illustrated on Figure D.7. Parquet is
designed for handling nested data structures (i.e. columns with several levels) and
uses the record shredding and assembly algorithm from Google’s Dremel system
[Melnik et al., 2010]. It supports efficient compression schemes that can be specified
on column-level.

D.2 Hadoop storage formats 263

Fig. D.7.: Structure of Parquet file format.

264 Appendix D Appendix to chapter 7 — Hadoop cluster components

Appendix to chapter 8 —
Vibration profiles SOM maps

E

(a) Signature 1 (LP-ACC1 vs N1). (b) Signature 2 (LP-ACC2 vs N1).

(c) Signature 3 (HP-ACC1 vs N2). (d) Signature 4 (HP-ACC2 vs N2).

Fig. E.1.: SOM maps of signature 1, 2, 3 and 4. Each cell represents a vibration signature
prototype. The background colors are higher-level profiles obtained by Ward
hierarchical clustering (here with respectively 5, 5, 6 and 8 clusters).

265

List of Figures

0.1. CFM56-7B and LEAP engines. 2
0.2. Simplified diagram of a turbofan engine. 3

1.1. Bias-complexity trade-off. 26
1.2. Curse of dimensionality illustrated by the volume covered by a neigh-

borhood inside a hypercube. 28
1.3. Illustration of one iteration step of the K-means algorithm. 34
1.4. Illustration of a dendrogram produced by hierarchical clustering. 35
1.5. Illustration of the SOM quantization principle. 40
1.6. Gaussian and rectangular neighborhood functions for different tempera-

tures. 40
1.7. U-matrix visualizations of the chainlink data set. 43
1.8. Illustration of the GTM mapping from latent to original space. 49

2.1. Deterministic autoencoder architecture. 54
2.2. Linear and deep autoencoders with activation functions. 56
2.3. Visual illustration of the latent space structure for a vanilla autoencoder

and variational autoencoder with Gaussian prior. 58
2.4. Variational autoencoder architecture and graphical representation of the

generative model. 59
2.5. Variational autoencoder with reparameterization trick for a Gaussian prior. 60
2.6. Solving jigsaw puzzles as a pretext task to learn image representations. . 62
2.7. Deep Embedded Clustering (DEC) architecture. 67

3.1. DESOM architecture and gradients paths. 76
3.2. Quantization and topographic error as a function of DESOM hyperpa-

rameter γ on MNIST, Fashion-MNIST and USPS. 85
3.3. Latent quantization error as a function of latent space dimension. 87
3.4. Quantization, topographic and combined errors of DESOM as a function

of the map size on Fashion-MNIST. 88
3.5. Performance metrics of DESOM with different combinations of pretrain-

ing and initialization. 90
3.6. Learning curves of DESOM for loss, purity, NMI, quantization and topo-

graphic error for MNIST. 91

267

3.7. UMAP visualization of DESOM latent space during training. 92
3.8. Decoded prototypes and U-matrix of DESOM during training. 93
3.9. Evolution of DESOM losses for different values of hyperparameter γ. . . 94
3.10. Evolution of reconstruction and SOM losses for different values of hy-

perparameter γ. 95
3.11. Evolution of DESOM clustering quality for different values of hyperpa-

rameter γ. 95
3.12. Purity and NMI for different batch sizes in DESOM optimization. 96
3.13. Quantization, topographic and combined errors for different batch sizes

in DESOM. 96
3.14. Examples of (reconstructed) prototype images for SOM, AE+SOM,

DESOM and ConvDESOM. 97
3.15. Prototypes visualized on SOM, DESOM and ConvDESOM for MNIST. . 103
3.16. Prototypes visualized on SOM, DESOM and ConvDESOM for Fashion-

MNIST. 104

4.1. Single, complete and average linkage cluster distances. 119
4.2. Classification of self-organized maps performance metrics. 127
4.3. Illustration of neighborhood preservation and trustworthiness measures. 129

5.1. Example data set with three clusters. 135
5.2. Diagram explaining the sources of instability for K-means. 137
5.3. Stability and Stadion paths for K-means on the example data set. 143
5.4. Stadion path and stability trade-off on the golfball data set with K-means.144
5.5. Example of K-means jumping between three global minima. 145
5.6. Example of K-means jumping between three local minima. 145
5.7. Example of two correlated Gaussians where sampling methods fail. . . . 147
5.8. Stability and Stadion paths on the two correlated Gaussians example. . 147
5.9. Example data set 2d-4c. 148
5.10. Stability and Stadion paths on the 2d-4c data set. 149
5.11. Partitions found by K-means on the 4clusters_corner data set. 149
5.12. Stadion paths on the 4clusters_corner data set. 150
5.13. Stability trade-off plot for K-means for K becoming as large as N 151
5.14. fANOVA importance of Stadion parameters and their interactions. . . . 154
5.15. ARI of partitions selected by Stadion for different values of D. 156
5.16. Critical difference diagrams for the influence of D. 157
5.17. ARI of partitions selected by Stadion using uniform or Gaussian noise. . 157
5.18. ARI of partitions selected by Stadion for different parameters Ω. 158
5.19. Critical difference diagrams for the influence of Ω (K-means). 159
5.20. Critical difference diagrams for the influence of Ω (Ward). 159

268 List of Figures

5.21. Critical difference diagrams for the influence of Ω (GMM). 159

5.22. Sign test p-values after comparing similarity measures used in Stadion. 162

5.23. Class hierarchy of the skstab package. 162

6.1. Artificial time series data set consisting in bumps at different locations
and scales. Invariances determine the cluster structure. 172

6.2. Stability paths under random scaling and shifting perturbations. 173

6.3. Artificial time series data set consisting in one, two or three bumps at
different locations. 174

6.4. Stadion with perturbation by random warping and DTW distance. . . . 175

6.5. Stadion with perturbation by random warping and Euclidean distance. . 175

6.6. Partitions obtained on the CBF data set by K-medoids+DTW. 176

6.7. Stadion for K-medoids+DTW on CBF under shifting and uniform noise
perturbation. 176

6.8. Partitions obtained on the Trace data set by K-shape. 177

6.9. Stadion for K-shape on Trace under warping perturbation. 177

7.1. Big Data analytics: a top priority in industry. 182

7.2. Illustration of the Map-Reduce paradigm. 188

7.3. Apache Spark: a unified analytics stack. 191

7.4. Benchmark of an aggregation task in Spark with RDD and DataFrame
APIs in different languages. 194

7.5. Overview of the Spark architecture. 195

7.6. The general framework of most parallel and distributed clustering algo-
rithms. 199

8.1. Life cycle of an aircraft engine from production to retirement. 204

8.2. Sources of costs for aircraft engine operators. 204

8.3. Overview of the different maintenance types. 205

8.4. OSA-CBM architecture and examples of each step. 206

8.5. Diagram representing the analytics pipeline. 213

8.6. Diagram representing the data-parallel engine feature extraction step. . 216

8.7. Diagram representing the final indicator computation step. 217

8.8. Screenshot of the visualization web application. 219

8.9. Architecture of the visualization application. 219

8.10. Engine state cartography methodology on performance indicators. . . . 221

8.11. Pearson correlation between context and engine parameters. 222

8.12. Engine cross-section with positions of the rotation (N1, N2) and vibra-
tion (ACC1, ACC2) sensors. 227

List of Figures 269

8.13. Example of rotation speeds and vibration amplitude signals during a
flight. 228

8.14. Vibration signature HP-ACC2 vs N2 on an example flight. 229
8.15. Data-parallel signature extraction on a collection of flights. 230
8.16. SOM map of signature 4 (HP-ACC2 vs N2). 231
8.17. Trajectory of a single engine on the SOM of vibration signature 4. . . . 233
8.18. Heatmaps of projection counts on SOM map of vibration signature 4. . 234
8.19. Vibration monitoring methodology under OSA-CBM standard. 234

A.1. 20-by-20 DESOM maps of MNIST and Fashion-MNIST data sets. 241

B.1. SOMs of a uniform distribution with three levels of topographic organi-
zation. 244

B.2. Reproduction of the topographic function example. 244
B.3. Reproduction of the combined error example. 244

C.1. Critical difference diagram comparing clustering validation methods
(K-means). 245

C.2. Critical difference diagram comparing clustering validation methods
(Ward). 246

C.3. Critical difference diagram comparing clustering validation methods
(GMM). 246

C.4. Data sets MFDS, MNIST, USPS and wine after UMAP dimensionality
reduction. 250

D.1. HDFS architecture. 252
D.2. YARN architecture. 254
D.3. Hive metastore architectures. 255
D.4. Hive components architecture. 257
D.5. RCFile data layout in a HDFS block. 261
D.6. Structure of ORC file format. 263
D.7. Structure of Parquet file format. 264

E.1. SOM maps of signature 1, 2, 3 and 4 (LP-ACC1 vs N1, LP-ACC2 vs N1,
HP-ACC1 vs N2, HP-ACC2 vs N2). 265

270 List of Figures

List of Tables

0.1. LEAP engines fleet statistics (as of March 31, 2020). 3

2.1. Unsupervised clustering accuracy obtained by traditional and deep clus-
tering methods on benchmark data sets. 70

3.1. DESOM training parameters. 81
3.2. Comparison of the properties of deep SOM models. 82
3.3. Data set statistics of MNIST, Fashion-MNIST, USPS and Reuters-10k. . . 83
3.4. Comparison of purity and NMI with different values of DESOM hyperpa-

rameter γ. 84
3.5. Comparison of purity and NMI with different latent code dimensions in

DESOM. 87
3.6. Comparison between DESOM and ConvDESOM in terms of purity, NMI,

quantization and topographic errors, for MNIST and Fashion-MNIST. . . 89
3.7. Clustering performance of K-means and SOM-based models according

to purity and NMI. 100
3.8. Comparison between SOM and DESOM using internal quality indices in

original space. 101
3.9. Comparison between SOM, AE+SOM and DESOM using internal quality

indices in latent space. 102
3.10. Prototype sharpness ratio of SOM, AE+SOM and DESOM variants on

image data sets. 104
3.11. Classification performance of pure clustering and SOM-based models

when number of clusters equals number of classes. 106
3.12. Training times of AE, SOM and DESOM on the MNIST data set. 107

4.1. Within-cluster distances. 118
4.2. Between-cluster distances. 118

5.1. Number of clusters found by Stadion on non-clusterable artificial data sets.144
5.2. Stability trade-off leveraged by Stadion on the 4clusters_corner data set. 150
5.3. Benchmark results for selecting K on 80 data sets. 153
5.4. Comparison of similarity measures used in Stadion. 161

6.1. Invariances of clustering algorithms to scaling, shifting and warping. . . 170

271

8.1. CEOD Hive table schema. 208
8.2. Observations table of time series data. 209
8.3. Instants table of time series data. 210
8.4. Series-Observations table of time series data. 212
8.5. Flight features table schema. 216
8.6. Flight indicators table schema. 217
8.7. Flight parameters at take-off describing engine performance state. . . . 221
8.8. Data properties for the vibration monitoring use case. 227

C.1. Performance rankings of clustering validation methods evaluated with
16 external indices (K-means). 247

C.2. Performance rankings of clustering validation methods evaluated with
16 external indices (Ward). 247

C.3. Performance rankings of clustering validation methods evaluated with
16 external indices (GMM). 248

D.1. Hive data types. 256

272 List of Tables

List of Algorithms and
Program Code

1.1. Stochastic SOM algorithm. 41
1.2. Batch SOM algorithm. 42

3.1. DESOM training procedure. 80

5.1. Between-cluster stability procedure. 141
5.2. Within-cluster stability procedure. 141
5.3. Complete procedure for selecting the number of clusters K̂ using Stadion

paths, with max (Stadion-max) or mean (Stadion-max) aggregation. . . . 141

7.1. Word count Map-Reduce pseudo-code. 188
7.2. Calculating a sum of squares on a RDD (Scala). 196
7.3. Calculating a sum of squares on a RDD (Python). 196
7.4. Word count Spark example on a text file. 197
7.5. Spark SQL count aggregation example on a table. 198

273

275

Glossary
ACARS Aircraft Communication Addressing and Reporting System
AE Autoencoder
API Application Programming Interface
ARI Adjusted Rand Index
BIC Bayesian Information Criterion
BMU Best-Matching Unit
CBM Condition-Based Maintenance
CEOD Continuous Engine Operational Data
CM Condition Monitoring
CNN Convolutional Neural Network
CPU Central Processing Unit
CVI Clustering Validity Index
DAG Directed Acyclic Graph
(R)DBMS (Relational) DataBase Management System
DESOM Deep Embedded SOM
DR Dimensionality Reduction
EHM Engine Health Monitoring
EM Expectation-Maximization
GMM Gaussian Mixture Model
GPU Graphical Processing Unit
HC Hierarchical Clustering
HDFS Hadoop Distributed FileSystem
JVM Java Virtual Machine
KL-divergence Kullback-Leibler divergence
k-NN k-Nearest Neighbors
ML Machine Learning
MLE Maximum Likelihood Estimation
MSE Mean Squared Error
NMI Normalized Mutual Information
PCA Principal Component Analysis
PHM Prognostics & Health Monitoring
QE/TE/CE Quantization/Topographic/Combined Error
RDD Resilient Distributed Dataset
RNN Recurrent Neural Network
Safran A.E. Safran Aircraft Engines
SDAE Stacked Denoising Autoencoder
SGD Stochastic Gradient Descent
SOM Self-Organizing Map
SQL Structured Query Language
UDF User-Defined Function
UMAP Uniform Manifold Approximation and Projection
VAE Variational Autoencoder
YARN Yet Another Resource Negotiator

276 Appendix E Glossary

Bibliography

[Abdel-Sayed, 2016] Abdel-Sayed, M. (2016). Étude de représentations pour la
détection d’anomalies - Application aux données vibratoires des moteurs d’avions.
PhD thesis, Université Paris-Saclay.

[Abdel-Sayed et al., 2015] Abdel-Sayed, M., Duclos, D., Faÿ, G., Lacaille, J., and
Mougeot, M. (2015). NMF-based decomposition for anomaly detection applied
to vibration analysis. In International Conference on Condition Monitoring and
Machinery Failure Prevention Technologies, pages 73–81.

[Ackerman and Ben-David, 2009] Ackerman, M. and Ben-David, S. (2009). Mea-
sures of clustering quality: A working set of axioms for clustering. In NIPS.

[Affeldt et al., 2020] Affeldt, S., Labiod, L., and Nadif, M. (2020). Spectral cluster-
ing via ensemble deep autoencoder learning (SC-EDAE). Pattern Recognition.

[Aggarwal and Reddy, 2013] Aggarwal, C. C. and Reddy, C. K. (2013). Data Clus-
tering: Algorithms and Applications.

[Aghabozorgi et al., 2015] Aghabozorgi, S., Seyed Shirkhorshidi, A., and Ying Wah,
T. (2015). Time-series clustering - A decade review. Information Systems, 53:16–
38. http://dx.doi.org/10.1016/j.is.2015.04.007.

[Agrawal et al., 1998] Agrawal, R., Gehrke, J., Gunopulos, D., and Raghavan, P.
(1998). Automatic Subspace Clustering Mining. ACM SIGMOD, pages 94–105.

[Agrawal et al., 1995] Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., and
Verkamo, a. I. (1995). Fast discovery of association rules. Advances in knowledge
discovery and data mining.

[Airbus, 2018] Airbus (2018). Airbus’ open aviation data platform Skywise
continues to gain market traction. http://www.airbus.com/newsroom/press-
releases/en/2018/02/airbus--open-aviation-data-platform-skywise-
continues-to-gain-ma.html.

[Akaike, 1973] Akaike, H. (1973). Information Theory and an Extension of the
Maximum Likelihood Principle. In International Symposium on Information
Theory.

277

http://dx.doi.org/10.1016/j.is.2015.04.007
http://www.airbus.com/newsroom/press-releases/en/2018/02/airbus--open-aviation-data-platform-skywise-continues-to-gain-ma.html
http://www.airbus.com/newsroom/press-releases/en/2018/02/airbus--open-aviation-data-platform-skywise-continues-to-gain-ma.html
http://www.airbus.com/newsroom/press-releases/en/2018/02/airbus--open-aviation-data-platform-skywise-continues-to-gain-ma.html

[Akerkar, 2014] Akerkar, R. (2014). Analytics on big aviation data: Turning
data into insights. International Journal of Computer Science and Applications,
11(3):116–127.

[Akpinar and Karabacak, 2017] Akpinar, M. T. and Karabacak, M. E. (2017). Data
mining applications in civil aviation sector: State-of-art review. CEUR Workshop
Proceedings, 1852:18–25.

[Alahakoon et al., 2000] Alahakoon, D., Halgamuge, S. K., and Srinivasan, B.
(2000). Dynamic Self-Organizing Maps with Controlled Growth for Knowledge
Discovery. IEEE Transactions on Neural Networks, 11(3):601–614.

[Alain and Bengio, 2014] Alain, G. and Bengio, Y. (2014). What Regularized Auto-
Encoders Learn from the Data-Generating Distribution. Journal of Machine
Learning Research, 15:3743–3773.

[Alhoniemi et al., 1999] Alhoniemi, E., Himberg, J., Parviainen, J., and Vesanto, J.
(1999). SOM Toolbox. https://github.com/ilarinieminen/SOM-Toolbox.

[Aljalbout et al., 2018] Aljalbout, E., Golkov, V., Siddiqui, Y., and Cremers, D.
(2018). Clustering with Deep Learning: Taxonomy and New Methods. http:
//arxiv.org/abs/1801.07648.

[Ambroise et al., 2000] Ambroise, C., Sèze, G., Badran, F., and Thiria, S. (2000).
Hierarchical clustering of self-organizing maps for cloud classification. Neurocom-
puting, 30(1-4):47–52.

[Ankerst et al., 1999] Ankerst, M., Breunig, M. M., Kriegel, H.-p., and Sander, J.
(1999). OPTICS: Ordering Points To Identify the Clustering Structure. In ACM
SIGMOD.

[Anouar et al., 1998] Anouar, F., Badran, F., and Thiria, S. (1998). Probabilistic
self-organizing map and radial basis function networks. Neurocomputing, 20(1-
3):83–96.

[Apache Hive, 2010] Apache Hive (2010). Hive Project. http://hive.apache.
org/.

[Apache Spark, 2014] Apache Spark (2014). Spark Project. https://spark.
apache.org/.

[Arbelaitz et al., 2013] Arbelaitz, O., Gurrutxaga, I., Muguerza, J., Pérez, J. M., and
Perona, I. (2013). An extensive comparative study of cluster validity indices.
Pattern Recognition, 46(1):243–256.

278 Bibliography

https://github.com/ilarinieminen/SOM-Toolbox
http://arxiv.org/abs/1801.07648
http://arxiv.org/abs/1801.07648
http://hive.apache.org/
http://hive.apache.org/
https://spark.apache.org/
https://spark.apache.org/

[Arpit et al., 2016] Arpit, D., Zhou, Y., Ngo, H. Q., and Govindaraju, V. (2016). Why
regularized auto-encoders learn sparse representation? International Conference
on Machine Learning (ICML), 1:211–223.

[Arthur and Vassilvitskii, 2007] Arthur, D. and Vassilvitskii, S. (2007). k-means++:
The Advantages of Careful Seeding. In ACM-SIAM Symposium on Discrete Algo-
rithms, pages 1027–1035.

[Attaoui et al., 2020] Attaoui, M. O., Azzag, H., Lebbah, M., and Keskes, N. (2020).
Subspace data stream clustering with global and local weighting models. Neural
Computing and Applications, 0123456789. https://doi.org/10.1007/s00521-
020-05184-z.

[Awasthi et al., 2012] Awasthi, P., Blum, A., and Sheffet, O. (2012). Center-based
clustering under perturbation stability. Information Processing Letters, 112(1-
2):49–54.

[Ayhan et al., 2013] Ayhan, S., Pesce, J., Comitz, P., Sweet, D., Bliesner, S., and
Gerberick, G. (2013). Predictive analytics with aviation big data. In Integrated
Communications, Navigation and Surveillance Conference (ICNS).

[Aytekin et al., 2018] Aytekin, C., Ni, X., Cricri, F., and Aksu, E. (2018). Clustering
and Unsupervised Anomaly Detection with l2 Normalized Deep Auto-Encoder
Representations. In International Joint Conference on Neural Networks (IJCNN).

[Azzag and Lebbah, 2008] Azzag, H. and Lebbah, M. (2008). Clustering of Self-
Organizing Map. In European Symposium on Artificial Neural Networks, Computa-
tional Intelligence and Machine Learning (ESANN).

[Azzag et al., 2003] Azzag, H., Monmarche, N., Slimane, M., Venturini, G., and
Guinot, C. (2003). AntTree: A new model for clustering with artificial ants. In
Congress on Evolutionary Computation (CEC).

[Bagnall et al., 2018] Bagnall, A., Dau, H. A., Lines, J., Flynn, M., Large, J., Bostrom,
A., Southam, P., and Keogh, E. (2018). The UEA multivariate time series classifi-
cation archive, 2018. http://arxiv.org/abs/1811.00075.

[Balcan et al., 2020] Balcan, M.-F., Haghtalab, N., and White, C. (2020). k-center
Clustering under Perturbation Resilience. ACM Transactions on Algorithms, 16(2).

[Balcan and Liang, 2016] Balcan, M.-F. and Liang, Y. (2016). Clustering under
perturbation resilience. SIAM Journal on Computing, 45(1):102–155.

Bibliography 279

https://doi.org/10.1007/s00521-020-05184-z
https://doi.org/10.1007/s00521-020-05184-z
http://arxiv.org/abs/1811.00075

[Banfield and Raftery, 1993] Banfield, J. D. and Raftery, A. E. (1993). Model-based
Gaussian and non-Gaussian clustering. Biometrics, 49(3):803–821.

[Baragona, 2001] Baragona, R. (2001). A simulation study on clustering time series
with metaheuristic methods. Quaderni di Statistica, 3.

[Bastard et al., 2016] Bastard, G., Lacaille, J., Coupard, J., and Stouky, Y. (2016).
Engine Health Management in Safran Aircraft Engines. In Annual Conference of
the PHM Society.

[Batista et al., 2011] Batista, G. E., Wang, X., and Keogh, E. (2011). A Complexity-
Invariant Distance Measure for Time Series. In SIAM International Conference
on Data Mining (SDM), pages 699–710. http://epubs.siam.org/doi/abs/10.
1137/1.9781611972818.60.

[Bauer et al., 1992] Bauer, H.-U., Pawelzik, K., and Geisel, T. (1992). A Topographic
Product for the Optimization of Self-Organizing Feature Maps. NIPS, 4:1141–
1147.

[Beck, 2019] Beck, G. (2019). Scalable Clustering Applying Local Accretions (Accré-
tions Locales appliquées au Clustering Scalable et Distribué). PhD thesis, Université
Paris 13.

[Becker, 1991] Becker, S. (1991). Unsupervised Learning Procedures for Neural
Networks. The International Journal of Neural Systems, 1:17–33.

[Bell et al., 2009] Bell, G., Hey, T., and Szalay, A. (2009). Beyond the Data Deluge.
Science, 323(5919):1297–1298. http://www.cloudinnovation.com.au/Bell_
Hey_Szalay_Science_March_2009.pdf.

[Bellas et al., 2014] Bellas, A., Bouveyron, C., Cottrell, M., and Lacaille, J. (2014).
Anomaly Detection Based on Confidence Intervals Using SOM with an Application
to Health Monitoring. International Workshop on Self-Organizing Maps and
Learning Vector Quantization, Clustering and Data Visualization (WSOM), pages
145–155.

[Bellet et al., 2015] Bellet, A., Habrard, A., and Sebban, M. (2015). Metric Learning.
Morgan & Claypool. http://www.cs.cmu.edu/\simliuy/distlearn.htm.

[Bellman, 1961] Bellman, R. E. (1961). Adaptive control processes: a guided tour.
Princeton university press.

280 Bibliography

http://epubs.siam.org/doi/abs/10.1137/1.9781611972818.60
http://epubs.siam.org/doi/abs/10.1137/1.9781611972818.60
http://www.cloudinnovation.com.au/Bell_Hey _Szalay_Science_March_2009.pdf
http://www.cloudinnovation.com.au/Bell_Hey _Szalay_Science_March_2009.pdf
http://www.cs.cmu.edu/$\sim $liuy/distlearn.htm

[Ben-David, 2018] Ben-David, S. (2018). Clustering - What both theoreticians and
practitioners are doing wrong. AAAI Conference on Artificial Intelligence, pages
7962–7964.

[Ben-David et al., 2007] Ben-David, S., Pal, D., and Simon, H. U. (2007). Stability
of k-Means Clustering. In Conference on Learning Theory (COLT), pages 20–34.

[Ben-David and Von Luxburg, 2008] Ben-David, S. and Von Luxburg, U. (2008).
Relating clustering stability to properties of cluster boundaries. Conference on
Learning Theory (COLT), pages 379–390.

[Ben-David et al., 2006] Ben-David, S., Von Luxburg, U., and Pál, D. (2006). A sober
look at clustering stability. Lecture Notes in Computer Science, 4005(2002):5–19.

[Ben-Hur et al., 2002] Ben-Hur, A., Elisseeff, A., and Guyon, I. (2002). A stability
based method for discovering structure in clustered data. Pacific Symposium on
Biocomputing. Pacific Symposium on Biocomputing, 17:6–17.

[Benabdeslem and Lebbah, 2007] Benabdeslem, K. and Lebbah, M. (2007). Feature
selection for self-organizing map. In International Conference on Information
Technology Interfaces (ITI), pages 45–58.

[Benavoli et al., 2016] Benavoli, A., Corani, G., and Mangili, F. (2016). Should we
really use post-hoc tests based on mean-ranks? Journal of Machine Learning
Research, 17.

[Bengio, 2009] Bengio, Y. (2009). Learning deep architectures for AI. Foundations
and Trends in Machine Learning, 2(1).

[Bengio, 2012] Bengio, Y. (2012). Deep Learning of Representations for Unsu-
pervised and Transfer Learning. JMLR: Workshop and Conference Proceedings,
27:17–37.

[Bengio et al., 2013] Bengio, Y., Courville, A., and Vincent, P. (2013). Represen-
tation learning: A review and new perspectives. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 35(8):1798–1828.

[Bengio et al., 2007] Bengio, Y., Lamblin, P., Popovici, D., and Larochelle, H. (2007).
Greedy layer-wise training of deep networks. NIPS.

[Bezdek et al., 1988] Bezdek, J. C., Ehrlich, R., and Full, W. (1988). A general-
isation of the Fuzzy c-Means clustering algorithm. Computers & Geosciences,
10(2):1783–1784.

Bibliography 281

[Biernacki et al., 2000] Biernacki, C., Celeux, G., and Govaert, G. (2000). Assessing
a Mixture Model for Clustering with Integrated Completed likelihood. IEEE
Transactions on Pattern Analysis and Machine Learning, 22(7):1899–1906.

[Bilu and Linial, 2012] Bilu, Y. and Linial, N. (2012). Are stable instances easy?
Combinatorics Probability and Computing, 21(5):643–660.

[Bishop et al., 1998] Bishop, C. M., Svensen, M., and Williams, C. K. I. (1998).
Developments of the generative topographic mapping. Neurocomputing, 21(1-
3):203–224.

[Blanchard et al., 2009] Blanchard, S., Cottrell, M., and Lacaille, J. (2009). Health
monitoring des moteurs d’avions. In Les entretients de Toulouse.

[Bo and Wang, 2020] Bo, D. and Wang, X. (2020). Structural Deep Clustering
Network. In International World Wide Web Conference (WWW).

[Bock, 1996] Bock, H. H. (1996). Probabilistic models in cluster analysis. Computa-
tional Statistics and Data Analysis, 23(1):5–28.

[Boelaert et al., 2014] Boelaert, J., Bendhaiba, L., Olteanu, M., and Villa-Vialaneix,
N. (2014). SOMbrero: An R Package for Numeric and Non-numeric Self-
Organizing Maps. In International Workshop on Self-Organizing Maps and Learning
Vector Quantization, Clustering and Data Visualization (WSOM), pages 219–228.
https://github.com/tuxette/SOMbrero.

[Bourlard and Kamp, 1988] Bourlard, H. and Kamp, Y. (1988). Auto-association by
multilayer perceptrons and singular value decomposition. Biological Cybernetics,
59(4-5):291–294.

[Bouveyron and Brunet-Saumard, 2014] Bouveyron, C. and Brunet-Saumard, C.
(2014). Model-based clustering of high-dimensional data: A review. Computa-
tional Statistics and Data Analysis, 71:52–78. http://dx.doi.org/10.1016/j.
csda.2012.12.008.

[Bouveyron et al., 2015] Bouveyron, C., Côme, E., and Jacques, J. (2015). The
discriminative functional mixture model for a comparative analysis of bike sharing
systems. Annals of Applied Statistics, 9(4):1726–1760.

[Bouveyron et al., 2007] Bouveyron, C., Girard, S., and Schmid, C. (2007). High-
dimensional data clustering. Computational Statistics and Data Analysis,
52(1):502–519.

282 Bibliography

https://github.com/tuxette/SOMbrero
http://dx.doi.org/10.1016/j.csda.2012.12.008
http://dx.doi.org/10.1016/j.csda.2012.12.008

[Bowman et al., 2016] Bowman, S. R., Vilnis, L., Vinyals, O., Dai, A. M., Jozefowicz,
R., and Bengio, S. (2016). Generating sentences from a continuous space. SIGNLL
Conference on Computational Natural Language Learning (CoNLL), pages 10–21.

[Broderick, 2016] Broderick, S. (2016). GE Ramping Up Results-Driven Big Data An-
alytics. http://www.mro-network.com/maintenance-repair-overhaul/ge-
ramping-results-driven-big-data-analytics.

[Bubeck et al., 2012] Bubeck, S., Meilǎ, M., and Luxburg, U. V. (2012). How the
initialization affects the stability of the k-means algorithm. ESAIM - Probability
and Statistics, 16:436–452.

[Bullen et al., 2003] Bullen, R. J., Cornford, D., and Nabney, I. (2003). Outlier
detection in scatterometer data: Neural network approaches. Neural Networks,
16(3-4):419–426.

[Cabanes and Bennani, 2007] Cabanes, G. and Bennani, Y. (2007). A simultaneous
two-level clustering algorithm for automatic model selection. In International
Conference on Machine Learning and Applications (ICMLA), pages 316–321.

[Cabanes and Bennani, 2010] Cabanes, G. and Bennani, Y. (2010). Learning the
number of clusters in SOM. In Self-Organizing Maps, pages 15–29. IntechOpen.

[Caliński and Harabasz, 1974] Caliński, T. and Harabasz, J. (1974). A dendrite
method for cluster analysis. Communications in Statistics, 3(1). https://www.
tandfonline.com/doi/abs/10.1080/03610927408827101.

[Carlsson, 2009] Carlsson, G. (2009). Topology and data. Bulletin of the American
Mathematical Society, 46(2):255–308.

[Carlsson and Mémoli, 2010] Carlsson, G. and Mémoli, F. (2010). Characterization,
stability and convergence of hierarchical clustering methods. Journal of Machine
Learning Research, 11:1425–1470.

[Caruana, 1997] Caruana, R. (1997). Multitask Learning. Machine Learning, 28:41–
75.

[Chamroukhi and Nguyen, 2018] Chamroukhi, F. and Nguyen, H. D. (2018).
Model-Based Clustering and Classification of Functional Data. http://arxiv.
org/abs/1803.00276.

Bibliography 283

http://www.mro-network.com/maintenance-repair-overhaul/ge-ramping-results-driven-big-data-analytics
http://www.mro-network.com/maintenance-repair-overhaul/ge-ramping-results-driven-big-data-analytics
https://www.tandfonline.com/doi/abs/10.1080/03610927408827101
https://www.tandfonline.com/doi/abs/10.1080/03610927408827101
http://arxiv.org/abs/1803.00276
http://arxiv.org/abs/1803.00276

[Chavent et al., 2020] Chavent, M., Lacaille, J., Mourer, A., and Olteanu, M. (2020).
Sparse k -means for mixed data via group-sparse clustering. In European Sym-
posium on Artificial Neural Networks, Computational Intelligence and Machine
Learning (ESANN).

[Chazan et al., 2019] Chazan, S. E., Gannot, S., and Goldberger, J. (2019). Deep
Clustering based on a Mixture of Autoencoders. In International Workshop on
Machine Learning for Signal Processing.

[Chen et al., 2017] Chen, D., Lv, J., and Yi, Z. (2017). Unsupervised Multi-Manifold
Clustering by Learning Deep Representation. In AAAI Conference on Artificial
Intelligence, pages 385–391.

[Chen, 2015] Chen, G. (2015). Deep Learning with Nonparametric Clustering.

[Chen et al., 2018] Chen, T. Q., Li, X., Grosse, R., and Duvenaud, D. (2018). Isolat-
ing sources of disentanglement in variational autoencoders. In NeurIPS.

[Chen et al., 2016] Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever,
I., and Abbeel, P. (2016). InfoGAN: Interpretable Representation Learning by
Information Maximizing Generative Adversarial Nets. http://arxiv.org/abs/
1606.03657.

[Cheng et al., 1999] Cheng, C.-H., Fu, A. W., and Zhang, Y. (1999). Entropy-based
subspace clustering for mining numerical data. In KDD, pages 84–93.

[Côme et al., 2010] Côme, E., Cottrell, M., Verleysen, M., and Lacaille, J. (2010).
Aircraft engine health monitoring using Self-Organizing Maps. In Industrial
Conference on Data Mining.

[Côme et al., 2011] Côme, E., Cottrell, M., Verleysen, M., and Lacaille, J. (2011).
Aircraft engine fleet monitoring using Self-Organizing Maps and Edit Distance. In
International Workshop on Self-Organizing Maps and Learning Vector Quantization,
Clustering and Data Visualization (WSOM), pages 298–307.

[Costa and Netto, 1999] Costa, J. A. F. and Netto, M. L. d. A. (1999). Estimating the
Number of Clusters in Multivariate Data by Self-Organizing Maps. International
Journal of Neural Systems, 9(3):195–202.

[Cottrell and De Bodt, 1996] Cottrell, M. and De Bodt, E. (1996). A Kohonen map
representation to avoid misleading interpretations. In European Symposium
on Artificial Neural Networks, Computational Intelligence and Machine Learning
(ESANN), pages 103–110.

284 Bibliography

http://arxiv.org/abs/1606.03657
http://arxiv.org/abs/1606.03657

[Cottrell et al., 2009] Cottrell, M., Gaubert, P., Eloy, C., François, D., Hallaux, G.,
Lacaille, J., and Verleysen, M. (2009). Fault prediction in aircraft engines using
Self-Organizing Maps. In International Workshop on Self-Organizing Maps and
Learning Vector Quantization, Clustering and Data Visualization (WSOM).

[Cottrell et al., 2018] Cottrell, M., Olteanu, A., Rossi, F., and Villa-vialaneix, N.
(2018). Self-Organizing Maps, theory and applications. Revista de Investigacion
Operacional, 39(1).

[Coupard et al., 2018] Coupard, J., Garnier, A., and Lacaille, J. (2018). Aircraft
engines possession costs reduction with structural health monitoring. In European
Workshop on Structural Health Monitoring (EWSHM).

[Csáji, 2001] Csáji, B. (2001). Approximation with artificial neural networks. Msc.
thesis, Eötvös Loránd University.

[Dahal, 2018] Dahal, P. (2018). Learning Embedding Space for Clustering From
Deep Representations. In IEEE International Conference on Big Data.

[Davies and Bouldin, 1979] Davies, D. L. and Bouldin, D. W. (1979). A Cluster Sep-
aration Measure. IEEE Transactions on Pattern Analysis and Machine Intelligence,
PAMI-1(2):224–227.

[De La Torre and Kanade, 2006] De La Torre, F. and Kanade, T. (2006). Discrimi-
native cluster analysis. In International Conference on Machine Learning (ICML).

[De Soete and Carroll, 1994] De Soete, G. and Carroll, J. D. (1994). K-means
clustering in a low-dimensional Euclidean space. New Approaches in Classification
and Data Analysis, pages 212–219.

[Dean and Ghemawat, 2008] Dean, J. and Ghemawat, S. (2008). MapReduce:
Simplified Data Processing on Large Clusters. In OSDI.

[Demartines and Blayo, 1992] Demartines, P. and Blayo, F. (1992). Kohonen Self-
Organizing Maps: Is the Normalization Necessary ? Complex Systems, 6:105–123.

[Dempster et al., 1977] Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977).
Maximum Likelihood from Incomplete Data via the EM Algorithm. Journal of the
Royal Statistical Society Series B, 39(1).

[Demšar, 2006] Demšar, J. (2006). Statistical comparisons of classifiers over multi-
ple data sets. Journal of Machine Learning Research, 7.

Bibliography 285

[Deng et al., 2016] Deng, Z., Choi, K. S., Jiang, Y., Wang, J., and Wang, S. (2016).
A survey on soft subspace clustering. Information Sciences, 348:84–106. http:
//dx.doi.org/10.1016/j.ins.2016.01.101.

[Desgraupes, 2013] Desgraupes, B. (2013). ClusterCrit: Clustering Indices. cran.r-
project.org/web/packages/clusterCrit.

[Devries and Taylor, 2017] Devries, T. and Taylor, G. W. (2017). Dataset Augmen-
tation in Feature Space. In ICLR Workshop.

[Deza and Deza, 2009] Deza, M. M. and Deza, E. (2009). Encyclopedia of distances.
Springer Berlin Heidelberg.

[Diday and Simon, 1976] Diday, E. and Simon, J. C. (1976). Clustering Analysis,
pages 47–94. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-
642-96303-2_3.

[Diebold, 2000] Diebold, F. X. (2000). ’Big data’ dynamic factor models for macroe-
conomic measuring and forecasting. Advances in Economics and Econometrics,
Eighth World Congress of the Econometric Society, pages 115–122.

[Dilokthanakul et al., 2017] Dilokthanakul, N., Mediano, P. A. M., Garnelo, M., Lee,
M. C. H., Salimbeni, H., Arulkumaran, K., and Shanahan, M. (2017). Deep
Unsupervised Clustering with Gaussian Mixture Variational Autoencoders.

[Ding and Li, 2007] Ding, C. and Li, T. (2007). Adaptive dimension reduction using
discriminant analysis and K-means clustering. In International Conference on
Machine Learning (ICML).

[Dittenbach et al., 2000] Dittenbach, M., Merkl, D., and Rauber, A. (2000). The
growing hierarchical self-organizing map. In International Joint Conference on
Neural Networks (IJCNN), pages 15–19.

[Dizaji et al., 2017] Dizaji, K. G., Herandi, A., Deng, C., Cai, W., and Huang, H.
(2017). Deep Clustering via Joint Convolutional Autoencoder Embedding and
Relative Entropy Minimization. In ICCV, pages 5747–5756.

[Doersch et al., 2015] Doersch, C., Gupta, A., and Efros, A. A. (2015). Unsupervised
visual representation learning by context prediction. In ICCV, pages 1422–1430.

[Dudoit and Fridlyand, 2002] Dudoit, S. and Fridlyand, J. (2002). A prediction-
based resampling method for estimating the number of clusters in a dataset.
Genome biology, 3(7).

286 Bibliography

http://dx.doi.org/10.1016/j.ins.2016.01.101
http://dx.doi.org/10.1016/j.ins.2016.01.101
cran.r-project.org/web/packages/clusterCrit
cran.r-project.org/web/packages/clusterCrit
https://doi.org/10.1007/978-3-642-96303-2_3
https://doi.org/10.1007/978-3-642-96303-2_3

[Dunn, 1973] Dunn, J. C. (1973). A fuzzy relative of the ISODATA process and
its use in detecting compact well-separated clusters. Journal of Cybernetics,
3(3):32–57.

[Dunn, 1974] Dunn, J. C. (1974). Well-Separated Clusters and Optimal Fuzzy
Partitions. Journal of Cybernetics, 1(4):95–104.

[Dutta et al., 2017] Dutta, A., Vijayaraghavan, A., and Wang, A. (2017). Clustering
stable instances of euclidean k-means. In NIPS, pages 6501–6510.

[Elend and Kramer, 2019] Elend, L. and Kramer, O. (2019). Self-Organizing Maps
with Convolutional Layers. In International Workshop on Self-Organizing Maps
and Learning Vector Quantization, Clustering and Data Visualization (WSOM).

[Elhamifar and Vidal, 2013] Elhamifar, E. and Vidal, R. (2013). Sparse subspace
clustering: Algorithm, theory, and applications. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 35(11):2765–2781.

[Erhan et al., 2010] Erhan, D., Courville, A., and Vincent, P. (2010). Why Does
Unsupervised Pre-training Help Deep Learning ? Journal of Machine Learning
Research, 11:625–660.

[Ester et al., 1996] Ester, M., Kriegel, H.-P., Sander, J., and Xu, X. (1996). A Density-
Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise.
In KDD.

[Falasconi et al., 2010] Falasconi, M., Gutierrez, A., Pardo, M., Sberveglieri, G., and
Marco, S. (2010). A stability based validity method for fuzzy clustering. Pattern
Recognition, 43(4):1292–1305. http://dx.doi.org/10.1016/j.patcog.2009.
10.001.

[Fang and Wang, 2012] Fang, Y. and Wang, J. (2012). Selection of the number of
clusters via the bootstrap method. Computational Statistics and Data Analysis,
56(3):468–477. http://dx.doi.org/10.1016/j.csda.2011.09.003.

[Färber et al., 2010] Färber, I., Günnemann, S., Kriegel, H.-P., Kröger, P., Müller, E.,
Schubert, E., Seidl, T., and Zimek, A. (2010). On Using Class-Labels in Evaluation
of Clusterings. KDD International Workshop on Discovering, Summarizing and
Using Multiple Clusterings (MultiClust), page 9.

[Fard et al., 2018] Fard, M. M., Thonet, T., and Gaussier, E. (2018). Deep k-Means:
Jointly Clustering with k-Means and Learning Representations. http://arxiv.
org/abs/1806.10069.

Bibliography 287

http://dx.doi.org/10.1016/j.patcog.2009.10.001
http://dx.doi.org/10.1016/j.patcog.2009.10.001
http://dx.doi.org/10.1016/j.csda.2011.09.003
http://arxiv.org/abs/1806.10069
http://arxiv.org/abs/1806.10069

[Faure et al., 2017] Faure, C., Olteanu, M., Bardet, J.-M., and Lacaille, J. (2017).
Using self-organizing maps for clustering and labelling aircraft engine data
phases. In International Workshop on Self-Organizing Maps and Learning Vector
Quantization, Clustering and Data Visualization (WSOM).

[Fawaz et al., 2019] Fawaz, H. I., Forestier, G., Weber, J., Idoumghar, L., and Muller,
P. A. (2019). Adversarial Attacks on Deep Neural Networks for Time Series
Classification. In International Joint Conference on Neural Networks (IJCNN).

[Fawzi et al., 2016] Fawzi, A., Samulowitz, H., Turaga, D., and Frossard, P. (2016).
Adaptive data augmentation for image classification. International Conference on
Image Processing (ICIP).

[Feng and Hamerly, 2007] Feng, Y. and Hamerly, G. (2007). PG-means: Learning
the number of clusters in data. NIPS, pages 393–400.

[Ferguson, 1973] Ferguson, T. S. (1973). A Bayesian analysis of some nonparamet-
ric problems. The Annals of statistics, 1(2):209–230.

[Ferles et al., 2018] Ferles, C., Papanikolaou, Y., and Naidoo, K. J. (2018). Denois-
ing Autoencoder Self-Organizing Map (DASOM). Neural Networks, 105:112–131.
https://doi.org/10.1016/j.neunet.2018.04.016.

[Fink et al., 2020] Fink, O., Wang, Q., Svensén, M., Dersin, P., Lee, W. J., and
Ducoffe, M. (2020). Potential, challenges and future directions for deep learn-
ing in prognostics and health management applications. Engineering Applica-
tions of Artificial Intelligence, 92(April):103678. https://doi.org/10.1016/j.
engappai.2020.103678.

[Forest, 2019] Forest, F. (2019). Spark ML SOM: Spark ML implementation of SOM
algorithm. https://github.com/FlorentF9/sparkml-som.

[Forest, 2020] Forest, F. (2020). SOMperf: Self-organizing maps performance
metrics and quality indices. https://github.com/FlorentF9/SOMperf.

[Forest et al., 2020a] Forest, F., Cochard, Q., Noyer, C., Cabut, A., Joncour, M.,
Lacaille, J., Lebbah, M., and Azzag, H. (2020a). Large-scale Vibration Monitoring
of Aircraft Engines from Operational Data using Self-organized Models. In Annual
Conference of the PHM Society.

[Forest et al., 2018] Forest, F., Lacaille, J., Lebbah, M., and Azzag, H. (2018). A
Generic and Scalable Pipeline for Large-Scale Analytics of Continuous Aircraft
Engine Data. In IEEE International Conference on Big Data.

288 Bibliography

https://doi.org/10.1016/j.neunet.2018.04.016
https://doi.org/10.1016/j.engappai.2020.103678
https://doi.org/10.1016/j.engappai.2020.103678
https://github.com/FlorentF9/sparkml-som
https://github.com/FlorentF9/SOMperf

[Forest et al., 2019a] Forest, F., Lebbah, M., Azzag, H., and Lacaille, J. (2019a).
Deep Architectures for Joint Clustering and Visualization with Self-Organizing
Maps. In PAKDD Workshop on Learning Data Representations for Clustering (LDRC).

[Forest et al., 2019b] Forest, F., Lebbah, M., Azzag, H., and Lacaille, J. (2019b).
Deep Embedded SOM: Joint Representation Learning and Self-Organization. In
European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning (ESANN).

[Forest et al., 2020b] Forest, F., Lebbah, M., Azzag, H., and Lacaille, J. (2020b).
A Survey and Implementation of Performance Metrics for Self-Organized Maps.
https://arxiv.org/abs/2011.05847.

[Forest et al., 2020c] Forest, F., Lebbah, M., Azzag, H., and Lacaille, J. (2020c).
Carte SOM profonde : Apprentissage joint de représentations et auto-organisation.
In CAp: Conférence d’Apprentissage. https://hal.archives-ouvertes.fr/hal-
02859997.

[Forest and Mourer, 2020] Forest, F. and Mourer, A. (2020). skstab: Clustering
stability analysis in Python with a scikit-learn compatible API. https://github.
com/FlorentF9/skstab.

[Forest et al., 2021] Forest, F., Mourer, A., Lebbah, M., Azzag, H., and Lacaille,
J. (2021). An Invariance-guided Stability Criterion for Time Series Clustering
Validation. In International Conference on Pattern Recognition (ICPR).

[Fortuin et al., 2019] Fortuin, V., Hüser, M., Locatello, F., Strathmann, H., and
Rätsch, G. (2019). SOM-VAE: Interpretable Discrete Representation Learning on
Time Series. In International Conference on Learning Representations (ICLR).

[Fowlkes and Mallows, 1983] Fowlkes, E. B. and Mallows, C. L. (1983). A method
for comparing two hierarchical clusterings. Journal of the American Statistical
Association, 78(383):553–569.

[Franceschi et al., 2019] Franceschi, J.-Y., Dieuleveut, A., and Jaggi, M. (2019).
Unsupervised Scalable Representation Learning for Multivariate Time Series. In
NeurIPS. http://arxiv.org/abs/1901.10738.

[Frey and Dueck, 2007] Frey, B. J. and Dueck, D. (2007). Clustering by passing
messages between data points. Science, 315(5814):972–976.

[Frey and Jojic, 2000] Frey, B. J. and Jojic, N. (2000). Transformation-Invariant
Clustering and Dimensionality Reduction Using EM. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 25(1).

Bibliography 289

https://arxiv.org/abs/2011.05847
https://hal.archives-ouvertes.fr/hal-02859997
https://hal.archives-ouvertes.fr/hal-02859997
https://github.com/FlorentF9/skstab
https://github.com/FlorentF9/skstab
http://arxiv.org/abs/1901.10738

[Fridlyand and Dudoit, 2001] Fridlyand, J. and Dudoit, S. (2001). Applications
of resampling methods to estimate the number of clusters and to improve the
accuracy of a clustering method.

[Fritzke, 1994] Fritzke, B. (1994). Growing cell structures-A self-organizing net-
work for unsupervised and supervised learning. Neural Networks, 7(9):1441–
1460.

[Fritzke, 1995] Fritzke, B. (1995). A Growing Neural Gas Learns Topologies. In
NIPS, volume 7, pages 625–632.

[Fu et al., 2020] Fu, B., Kirchbuchner, F., and Kuijper, A. (2020). Data Augmenta-
tion for Time Series : Traditional vs Generative Models on Capacitive Proximity
Time Series. In ACM International Conference on PErvasive Technologies Related to
Assistive Environment (PETRA), pages 107–116.

[Fujita et al., 2014] Fujita, A., Takahashi, D. Y., and Patriota, A. G. (2014). A non-
parametric method to estimate the number of clusters. Computational Statistics
and Data Analysis, 73:27–39. http://dx.doi.org/10.1016/j.csda.2013.11.
012.

[Gan et al., 2006] Gan, G., Wu, J., and Yang, Z. (2006). A Fuzzy Subspace Al-
gorithm for Clustering High Dimensional Data. Advanced Data Mining and
Applications, pages 271–278.

[García and Herrera, 2008] García, S. and Herrera, F. (2008). An extension on
"statistical comparisons of classifiers over multiple data sets" for all pairwise
comparisons. Journal of Machine Learning Research, 9:2677–2694.

[Ge et al., 2019] Ge, P., Ren, C.-x., Dai, D.-q., Feng, J., and Yan, S. (2019). Dual
Adversarial Autoencoders for Clustering. IEEE Transactions on Neural Networks
and Learning Systems.

[Gidaris et al., 2018] Gidaris, S., Singh, P., and Komodakis, N. (2018). Unsuper-
vised representation learning by predicting image rotations. In ICLR.

[Giusti and Batista, 2013] Giusti, R. and Batista, G. E. (2013). An empirical compar-
ison of dissimilarity measures for time series classification. In Brazilian Conference
on Intelligent Systems (BRACIS), pages 82–88.

[Goffinet et al., 2020a] Goffinet, É., Lebbah, M., Azzag, H., and Giraldi, L. (2020a).
Autonomous Driving Validation With Model-Based Dictionary Clustering. In
ECML-PKDD.

290 Bibliography

http://dx.doi.org/10.1016/j.csda.2013.11.012
http://dx.doi.org/10.1016/j.csda.2013.11.012

[Goffinet et al., 2020b] Goffinet, É., Lebbah, M., Azzag, H., and Giraldi, L. (2020b).
Clustering de séries temporelles par construction de dictionnaire. In EGC, pages
181–192.

[Goil et al., 1999] Goil, S., Nagesh, H., and Choudhary, A. (1999). MAFIA: Efficient
and scalable subspace clustering for very large data sets. citeseer.ist.psu.
edu/goil99mafia.html.

[Goodfellow et al., 2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y. (2014). Generative
Adversarial Nets. In NIPS.

[Goodhill and Sejnowski, 1996] Goodhill, G. J. and Sejnowski, T. J. (1996). Quan-
tifying neighbourhood preservation in topographic mappings. In Joint Symposium
on Neural Computation, pages 61–82.

[Gorban and Zinovyev, 2008] Gorban, A. N. and Zinovyev, A. Y. (2008). Principal
Graphs and Manifolds.

[Guo et al., 2017a] Guo, X., Gao, L., Liu, X., and Yin, J. (2017a). Improved deep
embedded clustering with local structure preservation. In International Joint
Conference on Artificial Intelligence (IJCAI), pages 1753–1759.

[Guo et al., 2017b] Guo, X., Liu, X., Zhu, E., and Yin, J. (2017b). Deep Clustering
with Convolutional Autoencoders. In ICONIP.

[Guyon and Elisseeff, 2003] Guyon, I. and Elisseeff, A. (2003). An Introduction
to Variable and Feature Selection. Journal of Machine Learning Research, pages
1157–1182.

[Hämäläinen et al., 2017] Hämäläinen, J., Jauhiainen, S., and Kärkkäinen, T.
(2017). Comparison of internal clustering validation indices for prototype-based
clustering. Algorithms, 10(3).

[Hamel, 2016] Hamel, L. (2016). SOM quality measures: An efficient statistical
approach. Advances in Intelligent Systems and Computing, 428:49–59.

[Hamerly and Elkan, 2004] Hamerly, G. and Elkan, C. (2004). Learning the K in
K-means. NIPS.

[Harchaoui et al., 2019] Harchaoui, W., Mattei, P.-A., Alamansa, A., and Bouveyron,
C. (2019). Wasserstein Adversarial Mixture for Deep Generative Modeling and
Clustering. In AISTATS.

Bibliography 291

citeseer.ist.psu.edu/goil99mafia.html
citeseer.ist.psu.edu/goil99mafia.html

[Harris, 1993] Harris, T. (1993). A Kohonen S.O.M. based, machine health moni-
toring system which enables diagnosis of faults not seen in the training set. In
International Joint Conference on Neural Networks (IJCNN), pages 947–950.

[Hartigan, 1975] Hartigan, J. A. (1975). Clustering Algorithms. John Wiley & Sons.

[Hartigan and Hartigan, 1985] Hartigan, J. A. and Hartigan, P. M. (1985). The dip
test of unimodality. Annals of Statistics, 13(1):70–84.

[Hartigan and Wong, 1979] Hartigan, J. A. and Wong, M. A. (1979). Algorithm AS
146: A K-Means Clustering Algorithm. Journal of the Royal Statistical Society
Series C, 28(1):100–108.

[Hastie et al., 2008] Hastie, T., Tibshirani, R., and Friedman, J. (2008). The Ele-
ments of Statistical Learning. Springer.

[Hazan et al., 2010] Hazan, A., Verleysen, M., Cottrell, M., and Lacaille, J. (2010).
Trajectory Clustering for Vibration Detection in Aircraft Engines. In Industrial
Conference on Data Mining.

[He et al., 2011a] He, Y., Lee, R., Huai, Y., Shao, Z., Jain, N., Zhang, X., and
Xu, Z. (2011a). RCFile: A fast and space-efficient data placement structure
in MapReduce-based warehouse systems. In International Conference on Data
Engineering, pages 1199–1208.

[He et al., 2011b] He, Y., Tan, H., Luo, W., Mao, H., Ma, D., Feng, S., and Fan, J.
(2011b). MR-DBSCAN : An Efficient Parallel Density-based Clustering Algorithm
using MapReduce. In IEEE International Conference on Parallel and Distributed
Systems.

[Hebb, 1949] Hebb, D. O. (1949). The organization of behavior: A neuropsychological
theory. Wiley.

[Heskes, 2001] Heskes, T. (2001). Self-Organizing Maps , Vector Quantization ,
and Mixture Modeling. IEEE Transactions on Neural Networks, 12(6):1299–1305.

[Hess and Duivesteijn, 2019] Hess, S. and Duivesteijn, W. (2019). K Is the Magic
Number — Inferring the Number of Clusters Through Nonparametric Concentra-
tion Inequalities. In EMCL-PKDD.

[Higgins et al., 2017] Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X.,
Botvinick, M., Mohamed, S., and Lerchner, A. (2017). beta-VAE: Learning Basic
Visual Concepts with a Constrained Variational Framework. In International
Conference on Learning Representations (ICLR).

292 Bibliography

[Hinton and Roweis, 2002] Hinton, G. and Roweis, S. (2002). Stochastic Neighbor
Embedding. In NIPS.

[Hinton and Salakhutdinov, 2006] Hinton, G. E. and Salakhutdinov, R. (2006). Re-
ducing the Dimensionality of Data with Neural Networks. Science, 313(July):504–
507.

[Hinton and Zemel, 1993] Hinton, G. E. and Zemel, R. S. (1993). Autoencoders,
Minimum Description Length and Helmholtz Free Energy. In NIPS.

[Holm, 1979] Holm, S. (1979). A Simple Sequentially Rejective Multiple Test
Procedure. Scandinavian Journal of Statistics, 6(2):65–70.

[Hsu et al., 2017] Hsu, C.-c., Lin, C.-w., and Member, S. (2017). CNN-Based Joint
Clustering and Representation Learning with Feature Drift Compensation for
Large - Scale Image Data. IEEE Transactions on Multimedia.

[Hu et al., 2017] Hu, W., Miyato, T., Tokui, S., Matsumoto, E., and Sugiyama,
M. (2017). Learning discrete representations via information maximizing self-
augmented training. In International Conference on Machine Learning (ICML),
volume 4, pages 2467–2481.

[Hu and Xu, 2003] Hu, X. and Xu, L. (2003). A Comparative Study of Several
Cluster Number Selection Criteria. In IDEAL.

[Huang et al., 2005] Huang, J. Z., Ng, M. K., Rong, H., and Li, Z. (2005). Auto-
mated variable weighting in k-means type clustering. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 27(5):657–668.

[Huang et al., 2014] Huang, P., Huang, Y., Wang, W., and Wang, L. (2014). Deep
embedding network for clustering. International Conference on Pattern Recognition
(ICPR), pages 1532–1537.

[Hubert and Arabie, 1985] Hubert, L. and Arabie, P. (1985). Comparing partitions.
Journal of Classification, 2(1):193–218.

[Hutter et al., 2014] Hutter, F., Hoos, H., and Leyton-Brown, K. (2014). An efficient
approach for assessing hyperparameter importance. International Conference on
Machine Learning (ICML), 2:1130–1144.

[IBM Global Business Services, 2015] IBM Global Business Services (2015).
Commercial Aviation and Aerospace: Big Data Analytics for Advantage,
Differentiation and Dollars. Technical report. https://fr.slideshare.net/

Bibliography 293

https://fr.slideshare.net/SedaESKILER/commercial-aviation-and-aerospace-big-data-analytics-for-advantage-differentiation-and-dollars
https://fr.slideshare.net/SedaESKILER/commercial-aviation-and-aerospace-big-data-analytics-for-advantage-differentiation-and-dollars

SedaESKILER/commercial-aviation-and-aerospace-big-data-analytics-
for-advantage-differentiation-and-dollars.

[Idan and Chevalier, 1991] Idan, Y. and Chevalier, R. C. (1991). Handwritten Digits
Recognition by a Supervised Kohonen - Like Learning Algorithm. Neural Networks,
pages 15–17.

[Inoubli et al., 2018] Inoubli, W., Aridhi, S., Mezni, H., Maddouri, M., and Mephu
Nguifo, E. (2018). An experimental survey on big data frameworks. Future
Generation Computer Systems, 86:546–564.

[Jain, 2010] Jain, A. K. (2010). Data clustering: 50 years beyond K-means. Pattern
Recognition Letters, 31(8):651–666. http://dx.doi.org/10.1016/j.patrec.
2009.09.011.

[Januzaj et al., 2004] Januzaj, E., Kriegel, H.-P., and Pfeifle, M. (2004). DBDC :
Density Based Distributed Clustering. In International Conference on Extending
Database Technology (EDBT).

[Jawed et al., 2020] Jawed, S., Grabocka, J., and Schmidt-Thieme, L. (2020). Self-
supervised Learning for Semi-supervised Time Series Classification. In PAKDD,
pages 499–511.

[Jaziri et al., 2011] Jaziri, R., Lebbah, M., Rogovschi, N., and Bennani, Y. (2011).
Probabilistic self-organizing maps for multivariate sequences. In International
Joint Conference on Neural Networks (IJCNN), pages 851–858.

[Jiang et al., 2017] Jiang, Z., Zheng, Y., Tan, H., Tang, B., and Zhou, H. (2017).
Variational Deep Embedding : An Unsupervised and Generative Approach to
Clustering. In International Joint Conference on Artificial Intelligence (IJCAI), pages
1965–1972.

[Jing et al., 2005] Jing, L., Ng, M. K., Xu, J., and Huang, J. Z. (2005). Subspace
Clustering of Text Documents with Feature Weighting K -Means Algorithm. In
PAKDD, pages 802–812.

[Jing et al., 2017] Jing, L., Zhao, M., Li, P., and Xu, X. (2017). A convolutional neu-
ral network based feature learning and fault diagnosis method for the condition
monitoring of gearbox. Measurement: Journal of the International Measurement
Confederation, 111(July). http://dx.doi.org/10.1016/j.measurement.2017.
07.017.

294 Bibliography

https://fr.slideshare.net/SedaESKILER/commercial-aviation-and-aerospace-big-data-analytics-for-advantage-differentiation-and-dollars
https://fr.slideshare.net/SedaESKILER/commercial-aviation-and-aerospace-big-data-analytics-for-advantage-differentiation-and-dollars
https://fr.slideshare.net/SedaESKILER/commercial-aviation-and-aerospace-big-data-analytics-for-advantage-differentiation-and-dollars
http://dx.doi.org/10.1016/j.patrec.2009.09.011
http://dx.doi.org/10.1016/j.patrec.2009.09.011
http://dx.doi.org/10.1016/j.measurement.2017.07.017
http://dx.doi.org/10.1016/j.measurement.2017.07.017

[Kaczynska et al., 2020] Kaczynska, S., Marion, R., and von Sachs, R. (2020). Com-
parison of Cluster Validity Indices and Decision Rules for Different Degrees of
Cluster Separation. In European Symposium on Artificial Neural Networks, Compu-
tational Intelligence and Machine Learning (ESANN).

[Kailing and Kriegel, 2004] Kailing, K. and Kriegel, H.-p. (2004). Density-
Connected Subspace Clustering for High-Dimensional Data. In SIAM International
Conference on Data Mining (SDM), pages 246–256.

[Kalogeratos and Likas, 2012] Kalogeratos, A. and Likas, A. (2012). Dip-means:
An incremental clustering method for estimating the number of clusters. NIPS,
3:2393–2401.

[Kaly et al., 2004] Kaly, F., Niang, N., Ouattara, M., Niang, A., Thiria, S., Marti-
corena, B., and Janicot, S. (2004). Two step soft subspace SOM : une méthode
de classification multi-bloc avec sélection de variables.

[Kaski and Lagus, 1996] Kaski, S. and Lagus, K. (1996). Comparing Self-Organizing
Maps. In International Conference on Artificial Neural Networks (ICANN).

[Kaski et al., 1998] Kaski, S., Nikkilä, J., and Kohonen, T. (1998). Methods for
Interpreting a Self-Organized Map in Data Analysis. In European Symposium
on Artificial Neural Networks, Computational Intelligence and Machine Learning
(ESANN), pages 185–190.

[Kasturi et al., 2016] Kasturi, E., Prasanna Devi, S., Vinu Kiran, S., and Manivannan,
S. (2016). Airline Route Profitability Analysis and Optimization Using BIG DATA
Analytics on Aviation Data Sets under Heuristic Techniques. Procedia Computer
Science, 87:86–92. http://dx.doi.org/10.1016/j.procs.2016.05.131.

[Kaufman and Rousseeuw, 1990] Kaufman, L. and Rousseeuw, P. J. (1990). Finding
Groups in Data: An Introduction to Cluster Analysis. John Wiley & Sons.

[Kerr and Churchill, 2001] Kerr, M. K. and Churchill, G. A. (2001). Experimental
design for gene expression microarrays. Biostatistics, 2(2):183–201.

[Kharyton, 2009] Kharyton, V. (2009). Faults Detection In Blades Of An Aviation
Engine In Operation. PhD thesis, École Centrale Lyon.

[Kilinc and Uysal, 2017] Kilinc, O. and Uysal, I. (2017). Auto-clustering Output
Layer : Automatic Learning of Latent Annotations in Neural Networks.

Bibliography 295

http://dx.doi.org/10.1016/j.procs.2016.05.131

[Kilinc and Uysal, 2018] Kilinc, O. and Uysal, I. (2018). Learning latent repre-
sentations in neural networks for clustering through pseudo supervision and
graph-based activity regularization. In International Conference on Learning
Representations (ICLR).

[Kim and Mnih, 2018] Kim, H. and Mnih, A. (2018). Disentangling by factorising.
In International Conference on Machine Learning (ICML).

[Kingma and Ba, 2015] Kingma, D. P. and Ba, J. L. (2015). Adam: A Method For
Stochastic Optimization. In International Conference on Learning Representations
(ICLR). http://arxiv.org/abs/1412.6980.

[Kingma and Welling, 2014] Kingma, D. P. and Welling, M. (2014). Auto-encoding
variational bayes. In International Conference on Learning Representations (ICLR).

[Kingma and Welling, 2019] Kingma, D. P. and Welling, M. (2019). An Introduction
to Variational Autoencoders. Foundations and Trends in Machine Learning.

[Kiviluoto, 1996] Kiviluoto, K. (1996). Topology preservation in self-organizing
maps. In IEEE International Conference on Neural Networks (ICNN), volume 1,
pages 294–299.

[Klassen et al., 2020] Klassen, G., Tatusch, M., Himmelspach, L., and Conrad, S.
(2020). Fuzzy Clustering Stability Evaluation of Time Series. In Information
Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU).
http://dx.doi.org/10.1007/978-3-030-50146-4_50.

[Kleinberg, 2003] Kleinberg, J. (2003). An impossibility theorem for clustering.
Advances in Neural Information Processing Systems.

[Kohonen, 1982] Kohonen, T. (1982). Self-organized formation of topologically
correct feature maps. Biological Cybernetics, 43(1):59–69.

[Kohonen, 1990] Kohonen, T. (1990). The Self-Organizing Map. In Proceedings of
the IEEE, volume 78, pages 1464–1480.

[Kohonen, 1995] Kohonen, T. (1995). The Adaptive-Subspace SOM (ASSOM) and
its Use for the Implementation of Invariant Feature Detection. In ICANN.

[Kruskal, 1964] Kruskal, J. B. (1964). Multidimensional scaling by optimizing
goodness of fit to a nonmetric hypothesis. Psychometrika, 29(1).

[Kuhn, 1955] Kuhn, H. W. (1955). The Hungarian Method for the assignment
problem. Naval Research Logistics Quarterly.

296 Bibliography

http://arxiv.org/abs/1412.6980
http://dx.doi.org/10.1007/978-3-030-50146-4_50

[Kulis, 2012] Kulis, B. (2012). Metric learning: A survey. Foundations and Trends
in Machine Learning, 5(4):287–364.

[Kushagra et al., 2018] Kushagra, S., Ben-David, S., and Ilyas, I. (2018). Semi-
supervised clustering for de-duplication. http://arxiv.org/abs/1810.04361.

[Laaksonen et al., 2001] Laaksonen, J., Koskela, M., Laakso, S., and Oja, E. (2001).
Self-organising maps as a relevance feedback technique in content-based image
retrieval. Pattern Analysis and Applications, 4(2-3):140–152.

[Lacaille, 2013] Lacaille, J. (2013). Searching similar vibration patterns on turbofan
engines. In International Conference on Condition Monitoring and Machinery
Failure Prevention Technologies, pages 338–349.

[Lacaille et al., 2014] Lacaille, J., Bellas, A., and Bou (2014). Online normalization
algorithm for engine turbofan monitoring. In Annual Conference of the PHM
Society, pages 415–422.

[Lacaille and Côme, 2011] Lacaille, J. and Côme, E. (2011). Visual mining and
statistics for a turbofan engine fleet. In IEEE Aerospace Conference.

[Laney, 2001] Laney, D. (2001). 3D Data Management: Controlling Data Volume,
Velocity, and Variety. Application Delivery Strategies, 949(February 2001):4.

[Lange et al., 2004] Lange, T., Roth, V., Braun, M. L., and Buhmann, J. M.
(2004). Stability-based validation of clustering solutions. Neural Computation,
16(6):1299–1323.

[Lara and González, 2020] Lara, J. S. and González, F. A. (2020). Dissimilarity
Mixture Autoencoder for Deep Clustering.

[Lebbah et al., 1999] Lebbah, M., Badran, F., and Thiria, S. (1999). Topological
Map for Binary Data. In European Symposium on Artificial Neural Networks,
Computational Intelligence and Machine Learning (ESANN).

[Lebbah and Chazottes, 2005] Lebbah, M. and Chazottes, A. (2005). Mixed Topo-
logical Map. In European Symposium on Artificial Neural Networks, Computational
Intelligence and Machine Learning (ESANN).

[Lebbah et al., 2015] Lebbah, M., Jaziri, R., Bennani, Y., and Chenot, J.-H.
(2015). Probabilistic Self-Organizing Map for Clustering and Visualizing
non-i.i.d Data. International Journal of Computational Intelligence and Ap-
plications, 14(02):1550007. http://www.worldscientific.com/doi/abs/10.
1142/S1469026815500078.

Bibliography 297

http://arxiv.org/abs/1810.04361
http://www.worldscientific.com/doi/abs/10.1142/S1469026815500078
http://www.worldscientific.com/doi/abs/10.1142/S1469026815500078

[Lebbah et al., 2007] Lebbah, M., Rogovschi, N., and Bennani, Y. (2007). BeSOM:
Bernoulli on self-organizing map. In IEEE International Conference on Neural
Networks, pages 631–636.

[Lecun et al., 2015] Lecun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning.
Nature, 521(7553):436–444.

[LeCun et al., 1998] LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998).
Gradient-based Learning Applied to Document Recognition. In Proceedings of the
IEEE.

[Lee et al., 2015] Lee, J. A., Peluffo-ordóñez, D. H., and Verleysen, M. (2015). Multi-
scale similarities in stochastic neighbour embedding : Reducing dimensionality
while preserving both local and global structure. Neurocomputing, 169:246–261.
http://dx.doi.org/10.1016/j.neucom.2014.12.095.

[Lee and Verleysen, 2007] Lee, J. A. and Verleysen, M. (2007). Nonlinear Dimen-
sionality Reduction. Springer.

[Lee and Verleysen, 2009] Lee, J. A. and Verleysen, M. (2009). Quality assessment
of dimensionality reduction : Rank-based criteria. Neurocomputing, 72:1431–
1443.

[Lee et al., 2020] Lee, N., Azarian, M. H., and Pecht, M. (2020). An Explainable
Deep Learning-based Prognostic Model for Rotating Machinery.

[Levine and Domany, 2001] Levine, E. and Domany, E. (2001). Resampling method
for unsupervised estimation of cluster validity. Neural Computation, 13(11):2573–
2593.

[Lewis et al., 2004] Lewis, D. D., Yang, Y., Rose, T. G., and Li, F. (2004). RCV1:
A New Benchmark Collection for Text Categorization Research. Journal of Ma-
chine Learning Research, 5:361–397. http://dl.acm.org/citation.cfm?id=
1005332.1005345.

[Li et al., 2017] Li, S., Yang, Y., Yang, L., Su, H., Zhang, G., and Wang, J. (2017).
Civil Aircraft Big Data Platform. International Conference on Semantic Computing
(ICSC), pages 328–333. http://ieeexplore.ieee.org/document/7889557/.

[Lim and van der Schaar, 2018] Lim, B. and van der Schaar, M. (2018). Disease-
Atlas: Navigating Disease Trajectories with Deep Learning. http://arxiv.org/
abs/1803.10254.

298 Bibliography

http://dx.doi.org/10.1016/j.neucom.2014.12.095
http://dl.acm.org/citation.cfm?id=1005332.1005345
http://dl.acm.org/citation.cfm?id=1005332.1005345
http://ieeexplore.ieee.org/document/7889557/
http://arxiv.org/abs/1803.10254
http://arxiv.org/abs/1803.10254

[Lin et al., 2007] Lin, J., Keogh, E., Wei, L., and Lonardi, S. (2007). Experiencing
SAX: a Novel Symbolic Representation of Time Series. Cs.Gmu.Edu, 15:107–144.

[Lin et al., 2018] Lin, W.-a., Carlos, J.-c. C., and Rama, D. C. (2018). Deep Density
Clustering of Unconstrained Faces. In CVPR.

[LIPN, 2018] LIPN, U. S. P. N. (2018). C4E Project. https://github.com/
Clustering4Ever/Clustering4Ever.

[Liu et al., 2015] Liu, N., Wang, J., and Gong, Y. (2015). Deep Self-Organizing Map
for visual classification. In International Joint Conference on Neural Networks
(IJCNN).

[Liu et al., 2020] Liu, Z., Cao, J., Chen, S., Lu, Y., and Tan, F. (2020). Visualization
Analysis of Seismic Facies Based on Deep Embedded SOM. IEEE Geoscience and
Remote Sensing Letters.

[Lloyd, 1982] Lloyd, S. P. (1982). Least Squares Quantization in PCM. IEEE Trans-
actions on Information Theory, 28(2):129–137.

[Locatello et al., 2020] Locatello, F., Bauer, S., Lucic, M., Rätsch, G., Gelly, S.,
Schölkopf, B., and Bachem, O. (2020). A sober look at the unsupervised learning
of disentangled representations and their evaluation. Journal of Machine Learning
Research, 21.

[López-Rubio et al., 2004] López-Rubio, E., Muñoz-Pérez, J., and Gómez-Ruiz, J. A.
(2004). A principal components analysis self-organizing map. Neural Networks,
17(2):261–270.

[Lv et al., 2016] Lv, F., Wen, C., Bao, Z., and Liu, M. (2016). Fault diagnosis based
on deep learning. In American Control Conference, pages 6851–6856.

[Ma et al., 2019] Ma, Q., Zheng, J., Li, S., and Cottrell, G. W. (2019). Learning
Representations for Time Series Clustering. In NeurIPS.

[MacQueen, 1967] MacQueen, J. (1967). Some methods for classification and anal-
ysis of multivariate observations. Berkeley symposium on mathematical statistics
and probability, 1(14):281–297.

[Madaan and Maiti, 2019] Madaan, P. and Maiti, A. (2019). Deep Mean Shift Clus-
tering. PhD thesis, Indraprastha Institute of Information Technology.

[Madiraju et al., 2018] Madiraju, N. S., Sadat, S. M., Fisher, D., and Karimabadi, H.
(2018). Deep Temporal Clustering: Fully Unsupervised Learning of Time-Domain
Features. http://arxiv.org/abs/1802.01059.

Bibliography 299

https://github.com/Clustering4Ever/Clustering4Ever
https://github.com/Clustering4Ever/Clustering4Ever
http://arxiv.org/abs/1802.01059

[Maharaj, 2000] Maharaj, E. A. (2000). Clusters of time series. Journal of Classifi-
cation, 17(2):297–314.

[Makhzani and Frey, 2013] Makhzani, A. and Frey, B. (2013). k-Sparse Autoen-
coders. In ICLR. http://arxiv.org/abs/1312.5663.

[Makhzani et al., 2014] Makhzani, A., Frey, B., and Goodfellow, I. (2014). Adver-
sarial Autoencoders.

[Manduchi et al., 2020] Manduchi, L., Hüser, M., Rätsch, G., and Fortuin, V. (2020).
DPSOM: Deep Probabilistic Clustering with Self-Organizing Maps. http://arxiv.
org/abs/1910.01590.

[Marr, 2015] Marr, B. (2015). That’s Data Science: Airbus Puts 10,000 Sensors in
Every Single Wing! https://www.datasciencecentral.com/profiles/blogs/
that-s-data-science-airbus-puts-10-000-sensors-in-every-single.

[Marti et al., 2016] Marti, G., Very, P., Donnat, P., and Nielsen, F. (2016). A proposal
of a methodological framework with experimental guidelines to investigate
clustering stability on financial time series. In International Conference on Machine
Learning and Applications (ICMLA), pages 32–37.

[Martinetz and Schulten, 1991] Martinetz, T. and Schulten, K. (1991). A
"Neural-Gas" Network Learns Topologies. http://web.cs.swarthmore.edu/
\simmeeden/DevelopmentalRobotics/fritzke95.pdf.

[Martinetz and Schulten, 1994] Martinetz, T. and Schulten, K. (1994). Topology
representing networks. Neural Networks, 7(3):507–522.

[Massoni et al., 2009] Massoni, S., Olteanu, M., and Rousset, P. (2009). Career-
path analysis using optimal matching and self-organizing maps. International
Workshop on Self-Organizing Maps and Learning Vector Quantization, Clustering
and Data Visualization (WSOM).

[Mathew and Sahely, 2019] Mathew, A. and Sahely, D. P. (2019). Warping Resilient
Time Series Embeddings. In ICML Time Series Workshop.

[Maurus and Plant, 2016] Maurus, S. and Plant, C. (2016). Skinny-dip: Clustering
in a Sea of Noise. In KDD.

[McConville et al., 2021] McConville, R., Santos-Rodriguez, R., Piechocki, R. J.,
and Craddock, I. (2021). N2D: (Not Too) Deep Clustering via Clustering the
Local Manifold of an Autoencoded Embedding. In International Conference on
Pattern Recognition (ICPR). http://arxiv.org/abs/1908.05968.

300 Bibliography

http://arxiv.org/abs/1312.5663
http://arxiv.org/abs/1910.01590
http://arxiv.org/abs/1910.01590
https://www.datasciencecentral.com/profiles/blogs/that-s-data-science-airbus-puts-10-000-sensors-in-every-single
https://www.datasciencecentral.com/profiles/blogs/that-s-data-science-airbus-puts-10-000-sensors-in-every-single
http://web.cs.swarthmore.edu/$\sim $meeden/DevelopmentalRobotics/fritzke95.pdf
http://web.cs.swarthmore.edu/$\sim $meeden/DevelopmentalRobotics/fritzke95.pdf
http://arxiv.org/abs/1908.05968

[McInnes et al., 2018] McInnes, L., Healy, J., and Melville, J. (2018). UMAP:
Uniform Manifold Approximation and Projection for Dimension Reduction.
http://arxiv.org/abs/1802.03426.

[McLachlan and Peel, 2000] McLachlan, G. and Peel, D. (2000). Finite Mixture
Models. http://doi.wiley.com/10.1002/0471721182.

[Medeiros et al., 2020] Medeiros, H. R., Braga, P. H. M., and Bassani, H. F. (2020).
Deep Clustering Self-Organizing Maps with Relevance Learning. In ICML LatinX
in AI Research Workshop.

[Meilǎ, 2018] Meilǎ, M. (2018). How to tell when a clustering is (approximately)
correct using convex relaxations. In NeurIPS, pages 7407–7418.

[Melnik et al., 2010] Melnik, S., Gubarev, A., Long, J. J., Romer, G., Shivakumar, S.,
Tolton, M., and Vassilakis, T. (2010). Dremel: Interactive Analysis of Web-Scale
Datasets. In VLDB, pages 330–339.

[Merkl and Rauber, 1997] Merkl, D. and Rauber, A. (1997). Alternative Ways for
Cluster Visualization in Self-Organizing Maps. In International Workshop on
Self-Organizing Maps and Learning Vector Quantization, Clustering and Data Visu-
alization (WSOM), pages 106–111.

[Midenet and Grumbach, 1990] Midenet, S. and Grumbach, A. (1990). Supervised
Learning Based on Kohonen’s Self-Organising Feature Maps. In International
Neural Network Conference, pages 773–776, Dordrecht. Springer Netherlands.
https://doi.org/10.1007/978-94-009-0643-3_72.

[Mikolov et al., 2013] Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013).
Efficient estimation of word representations in vector space. In International
Conference on Learning Representations (ICLR) Workshop.

[Milligan and Cooper, 1986] Milligan, G. W. and Cooper, M. C. (1986). A Study of
the Comparability of External Criteria for Hierarchical Cluster Analysis. Multi-
variate Behavioral Research, 21(4):441–458.

[Min et al., 2018] Min, E., Guo, X., Liu, Q., Zhang, G., Cui, J., and Long, J. (2018).
A Survey of Clustering With Deep Learning : From the Perspective of Network
Architecture. IEEE Access, 6:39501–39514.

[Mirza and Osindero, 2014] Mirza, M. and Osindero, S. (2014). Conditional Gen-
erative Adversarial Nets. http://arxiv.org/abs/1411.1784.

Bibliography 301

http://arxiv.org/abs/1802.03426
http://doi.wiley.com/10.1002/0471721182
https://doi.org/10.1007/978-94-009-0643-3_72
http://arxiv.org/abs/1411.1784

[Mishra et al., 2020] Mishra, S., Flaxman, S., and Bhatt, S. (2020). πVAE: Encoding
stochastic process priors with variational autoencoders.

[Misra et al., 2016] Misra, I., Lawrence Zitnick, C., and Hebert, M. (2016). Shuffle
and learn: Unsupervised learning using temporal order verification. In ECCV,
pages 527–544.

[Modha and Spangler, 2002] Modha, D. S. and Spangler, W. S. (2002). Feature
Weighting in k-Means Clustering. Machine Learning, 47.

[Möller and Radke, 2006] Möller, U. and Radke, D. (2006). A cluster validity ap-
proach based on nearest-neighbor resampling. International Conference on Pattern
Recognition (ICPR), pages 892–895.

[Monnier et al., 2020] Monnier, T., Groueix, T., and Aubry, M. (2020). Deep
Transformation-Invariant Clustering. http://arxiv.org/abs/2006.11132.

[Moosavi et al., 2014] Moosavi, V., Packmann, S., and Vallés, I. (2014). SOMPY: A
Python Library for Self Organizing Map (SOM). https://github.com/sevamoo/
SOMPY.

[Morey and Agresti, 1984] Morey, L. C. and Agresti, A. (1984). The Measurement
of Classification Agreement: An Adjustment of the Rand Statistic for Chance
Agreement. Educational and Psychological Measurement, 44:33–37.

[Mourer et al., 2020] Mourer, A., Forest, F., Lebbah, M., Azzag, H., and Lacaille, J.
(2020). Selecting the Number of Clusters K with a Stability Trade-off: an Internal
Validation Criterion. https://arxiv.org/abs/2006.08530.

[Mrabah et al., 2020] Mrabah, N., Khan, N. M., Ksantini, R., and Lachiri, Z. (2020).
Deep clustering with a Dynamic Autoencoder: From reconstruction towards
centroids construction. Neural Networks, 130:206–228. https://doi.org/10.
1016/j.neunet.2020.07.005.

[Mukherjee et al., 2019] Mukherjee, S., Asnani, H., Lin, E., and Kannan, S. (2019).
ClusterGAN: Latent Space Clustering in Generative Adversarial Networks. AAAI
Conference on Artificial Intelligence, 33:4610–4617. https://aaai.org/ojs/
index.php/AAAI/article/view/4385.

[Munkres, 1957] Munkres, J. (1957). Algorithms for the Assignment and Trans-
portation Problems. Journal of the Society for Industrial and Applied Mathematics,
5(1):32–38.

302 Bibliography

http://arxiv.org/abs/2006.11132
https://github.com/sevamoo/SOMPY
https://github.com/sevamoo/SOMPY
https://arxiv.org/abs/2006.08530
https://doi.org/10.1016/j.neunet.2020.07.005
https://doi.org/10.1016/j.neunet.2020.07.005
https://aaai.org/ojs/index.php/AAAI/article/view/4385
https://aaai.org/ojs/index.php/AAAI/article/view/4385

[Murtagh, 1995] Murtagh, F. (1995). Interpreting the Kohonen self-organizing
feature map using contiguity-constrained clustering. Pattern Recognition Letters,
16(4):399–408.

[Murugan et al., 2014] Murugan, A., Mylaraswamy, D., Xu, B., and Dietrich, P.
(2014). Big Data Infrastructure for Aviation Data Analytics. IEEE International
Conference on Cloud Computing in Emerging Markets (CCEM).

[Neel, 2005] Neel, J. (2005). Cluster analysis methods for speech recognition. PhD
thesis, KTH.

[Ng, 2011] Ng, A. (2011). Sparse autoencoder. Technical report, Stanford Univer-
sity. https://web.stanford.edu/class/cs294a/sparseAutoencoder.pdf.

[Ng and Han, 1994] Ng, R. T. and Han, J. (1994). Efficient and Effective Clustering
Data Mining Methods for Spatial Data Mining. In VLDB, pages 144–155.

[Noroozi and Favaro, 2017] Noroozi, M. and Favaro, P. (2017). Unsupervised learn-
ing of visual representations by solving jigsaw puzzles.

[Oh, 2017] Oh, C.-G. (2017). Application of Big Data Systems To Aviation and
Aerospace Fields ; Pertinent Human Factors Considerati In International
Symposium on Aviation Psychology.

[Oja, 1982] Oja, E. (1982). A Simplified Neuron Model as a Principal Component
Analyzer. Journal of Mathematical Biology, 15(3):267–273.

[Oja, 1992] Oja, E. (1992). Principal Components, Minor Components, and Linear
Neural Networks. https://users.ics.aalto.fi/oja/Oja92.pdf.

[Olier et al., 2010] Olier, I., Vellido, A., and Giraldo, J. (2010). Kernel generative
topographic mapping. In European Symposium on Artificial Neural Networks,
Computational Intelligence and Machine Learning (ESANN), pages 481–486.

[Olshausen and Fieldt, 1997] Olshausen, B. A. and Fieldt, D. J. (1997). Sparse
Coding with an Overcomplete Basis Set: A Strategy Employed by V1 ? Vision Res,
37(23):3311–3325.

[Olteanu et al., 2013] Olteanu, M., Villa-Vialaneix, N., and Cottrell, M. (2013). On-
line relational SOM for dissimilarity data. Advances in Intelligent Systems and
Computing, 198:13–22.

[Opochinsky et al., 2020] Opochinsky, Y., Chazan, S. E., Gannot, S., and Goldberger,
J. (2020). K-Autoencoders Deep Clustering. In ICASSP.

Bibliography 303

https://web.stanford.edu/class/cs294a/sparseAutoencoder.pdf
https://users.ics.aalto.fi/oja/Oja92.pdf

[Orsagh et al., 2003] Orsagh, R. F., Sheldon, J., and Klenke, C. J. (2003). Prognos-
tics/diagnostics for Gas Turbine Engine Bearings. In ASME Turbo Expo.

[Pan et al., 2020] Pan, Q., Li, X., and Fang, L. (2020). Data Augmentation for Deep
Learning-Based ECG Analysis. Feature Engineering and Computational Intelligence
in ECG Monitoring.

[Paparrizos and Gravano, 2015] Paparrizos, J. and Gravano, L. (2015). k-Shape:
Efficient and Accurate Clustering of Time Series. ACM SIGMOD, pages 1855–1870.
http://dl.acm.org/citation.cfm?id=2723372.2737793.

[Parsons et al., 2004] Parsons, L., Haque, E., and Liu, H. (2004). Subspace cluster-
ing of high dimensional data. SIGKDD Explorations, 6(1):517–521.

[Patel et al., 2003] Patel, P., Keogh, E., Lin, J., and Lonardi, S. (2003). Mining
motifs in massive time series databases.

[Patel et al., 2013] Patel, V. M., Nguyen, H. V., and Vidal, R. (2013). Latent space
sparse subspace clustering. ICCV, pages 225–232.

[Pearson, 1901] Pearson, K. (1901). On lines and planes of closest fit to systems of
points in space. The London, Edinburgh, and Dublin Philosophical Magazine and
Journal of Science, 2(11):559–572.

[Pelleg and Moore, 2000] Pelleg, D. and Moore, A. (2000). X-means: Extending
K-means with Efficient Estimation of the Number of Clusters. In International
Conference on Machine Learning (ICML).

[Peng et al., 2005] Peng, Z. K., Chu, F. L., and Tse, P. W. (2005). Detection of
the rubbing-caused impacts for rotor-stator fault diagnosis using reassigned
scalogram. Mechanical Systems and Signal Processing, 19(2):391–409.

[Pesteie et al., 2018] Pesteie, M., Abolmaesumi, P., and Rohling, R. (2018). Deep
Neural Maps. In ICML workshop. http://arxiv.org/abs/1810.07291.

[Petersohn, 1998] Petersohn, H. (1998). Assessment of cluster analysis and Self-
Organizing Maps. International Journal of Uncertainty, Fuzziness and Knowledge-
Based Systems, 6(2):139–149.

[Petitjean et al., 2011] Petitjean, F., Ketterlin, A., and Gançarski, P. (2011). A global
averaging method for dynamic time warping, with applications to clustering.
Pattern Recognition, 44(3):678–693.

[Piccolo, 1990] Piccolo, D. (1990). A Distance Measure for Classifying ARIMA
Models. Journal of Time Series Analysis, 11(2):153–164.

304 Bibliography

http://dl.acm.org/citation.cfm?id=2723372.2737793
http://arxiv.org/abs/1810.07291

[Plaut, 2018] Plaut, E. (2018). From Principal Subspaces to Principal Components
with Linear Autoencoders.

[Polzlbauer, 2004] Polzlbauer, G. (2004). Survey and comparison of quality mea-
sures for self-organizing maps. Workshop on Data Analysis (WDA), pages 67–82.

[Qiu and Joe, 2006] Qiu, W. and Joe, H. (2006). Generation of random clusters
with specified degree of separation. Journal of Classification, 23(2):315–334.

[Qu et al., 2019] Qu, Y., Zhang, Y., He, D., He, M., and Zhou, Z. (2019). A regular-
ized deep clustering method for fault trend analysis. Annual Conference of the
PHM Society, 11(1).

[Rand, 1971] Rand, W. M. (1971). Objective Criteria for the Evaluation of Cluster-
ing Methods. Journal of the American Statistical Association, 66(336):846–850.

[Randall, 2004] Randall, R. B. (2004). State of the art in monitoring rotating
machinery - Part 1. Sound and Vibration, pages 14–20.

[Randall, 2011] Randall, R. B. (2011). Vibration-based condition monitoring. Wiley.

[Ray and Turi, 1999] Ray, S. and Turi, R. (1999). Determination of number of
clusters in k-means clustering and application in colour image segmentation.
International conference on advances in pattern recognition and digital techniques,
pages 137–143.

[Ressom et al., 2003] Ressom, H., Wang, D., and Natarajan, P. (2003). Adaptive
double self-organizing maps for clustering gene expression profiles. Neural
Networks, 16(5-6):633–640.

[Rezende et al., 2014] Rezende, D. J., Mohamed, S., and Wierstra, D. (2014).
Stochastic backpropagation and approximate inference in deep generative models.
International Conference on Machine Learning (ICML), 4:3057–3070.

[Rifai et al., 2011] Rifai, S., Vincent, P., Muller, X., Glorot, X., and Bengio, Y. (2011).
Contractive auto-encoders: Explicit invariance during feature extraction. Interna-
tional Conference on Machine Learning (ICML), pages 833–840.

[Romano and Bailey, 2016] Romano, S. and Bailey, J. (2016). Adjusting for Chance
Clustering Comparison Measures. Journal of Machine Learning Research, 17.

[Rosenblatt, 1958] Rosenblatt, F. (1958). The Perceptron: A Probabilistic Model for
Information Storage and Organization in The Brain. Psychological Review, pages
65–386.

Bibliography 305

[Roth et al., 2002] Roth, V., Lange, T., Braun, M., and Buhmann, J. (2002). A
Resampling Approach to Cluster Validation. Compstat, pages 123–128.

[Rousseeuw, 1987] Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the
interpretation and validation of cluster analysis. Journal of Computational and
Applied Mathematics, 20(C):53–65.

[Safran, 2018] Safran (2018). Cassiopée. https://www.cassiopee.aero/.

[Sakoe and Chiba, 1978] Sakoe, H. and Chiba, S. (1978). Dynamic Programming
Algorithm Optimization for Spoken Word Recognition. IEEE Transactions on
Acoustics, Speech, and Signal Processing, 26(1):43–49.

[Sarazin, 2018] Sarazin, T. (2018). Massively distributed learning in a Big Data
environment (Apprentissage massivement distribué dans un environnement Big
Data). PhD thesis, Université Paris 13.

[Sarazin et al., 2014a] Sarazin, T., Azzag, H., and Lebbah, M. (2014a). SOM clus-
tering using spark-MapReduce. In International Parallel and Distributed Processing
Symposium Workshops (IPDPSW).

[Sarazin et al., 2014b] Sarazin, T., Lebbah, M., and Azzag, H. (2014b). Biclustering
using Spark-MapReduce. IEEE International Conference on Big Data, pages 58–60.

[Schäfer, 2015] Schäfer, P. (2015). The BOSS is concerned with time series classifi-
cation in the presence of noise. Data Mining and Knowledge Discovery, 29(6):1505–
1530.

[Schäfer and Leser, 2016] Schäfer, P. and Leser, U. (2016). Multivariate Time Series
Classification with WEASEL + MUSE. In ACM.

[Schulam and Arora, 2016] Schulam, P. and Arora, R. (2016). Disease Trajectory
Maps. In NIPS. http://arxiv.org/abs/1606.09184.

[Schwartz, 1978] Schwartz, G. (1978). Estimating the dimension of a model. The
Annals of statistics, 6(2):461–464.

[Scrucca and Raftery, 2015] Scrucca, L. and Raftery, A. E. (2015). Improved initiali-
sation of model-based clustering using Gaussian hierarchical partitions. Advances
in Data Analysis and Classification, 9(4):447–460.

[Sembiring et al., 2010] Sembiring, R. W., Mohamad Zain, J., and Embong, A.
(2010). Clustering High Dimensional Data Using Subspace and Projected Clus-
tering Algorithms. International Journal of Computer Science and Information
Technology, 2(4):162–170.

306 Bibliography

https://www.cassiopee.aero/
http://arxiv.org/abs/1606.09184

[Shah and Koltun, 2018] Shah, S. A. and Koltun, V. (2018). Deep Continuous
Clustering.

[Shaham et al., 2018] Shaham, U., Stanton, K., Li, H., Nadler, B., Basri, R., and
Kluger, Y. (2018). SpectralNet: Spectral clustering using deep neural networks.
In International Conference on Learning Representations (ICLR).

[Shalev-Shwartz and Ben-David, 2013] Shalev-Shwartz, S. and Ben-David, S.
(2013). Understanding machine learning: From theory to algorithms, volume
9781107057.

[Shlens, 2014] Shlens, J. (2014). A Tutorial on Principal Component Analysis.
http://arxiv.org/abs/1404.1100.

[Shorten and Khoshgoftaar, 2019] Shorten, C. and Khoshgoftaar, T. M. (2019). A
survey on Image Data Augmentation for Deep Learning. Journal of Big Data, 6(1).
https://doi.org/10.1186/s40537-019-0197-0.

[Smolkin and Ghosh, 2003] Smolkin, M. and Ghosh, D. (2003). Cluster Stability
Scores for Microarray Data in Cancer Studies. BMC bioinformatics.

[Sønderby et al., 2016] Sønderby, C. K., Raiko, T., Maaløe, L., Sønderby, S. K., and
Winther, O. (2016). Ladder variational autoencoders. In NIPS, pages 3745–3753.

[Song et al., 2014] Song, C., Huang, Y., Liu, F., Wang, Z., and Wang, L. (2014).
Deep auto-encoder based clustering. Intelligent Data Analysis, 18(6).

[Strauss et al., 1973] Strauss, J. S., Bartko, J. J., and Carpenter, W. T. (1973). The
use of clustering techniques for the classification of psychiatric patients. British
Journal of Psychiatry, 122(570):531–540.

[Strehl and Ghosh, 2003] Strehl, A. and Ghosh, J. (2003). Cluster ensembles -
A knowledge reuse framework for combining multiple partitions. Journal of
Machine Learning Research, 3(3):583–617.

[Su and Chang, 2001] Su, M. C. and Chang, H. T. (2001). A new model of self-
organizing neural networks and its application in data projection. IEEE Transac-
tions on Neural Networks, 12(1):153–158.

[Sun et al., 2012] Sun, W., Wang, J., and Fang, Y. (2012). Regularized k-means
clustering of high-dimensional data and its asymptotic consistency. Electronic
Journal of Statistics, 6(April 2011):148–167.

Bibliography 307

http://arxiv.org/abs/1404.1100
https://doi.org/10.1186/s40537-019-0197-0

[Sutskever et al., 2013] Sutskever, I., Martens, J., Dahl, G., and Hinton, G. (2013).
On the importance of initialization and momentum in deep learning. International
Conference on Machine Learning (ICML), pages 2176–2184.

[Svensen et al., 1997] Svensen, M., Bishop, C. M., and Williams, C. K. I. (1997).
GTM: The Generative Topographic Mapping. Neural Computation.

[Tavenard, 2017] Tavenard, R. (2017). tslearn: A machine learning toolkit dedi-
cated to time-series data. https://github.com/rtavenar/tslearn.

[Taşdemir, 2011] Taşdemir, K. (2011). Spectral clustering as an automated SOM
segmentation tool. In International Workshop on Self-Organizing Maps and Learn-
ing Vector Quantization, Clustering and Data Visualization (WSOM), pages 71–78.

[Taşdemir and Merényi, 2009] Taşdemir, K. and Merényi, E. (2009). Exploiting
Data Topology in Visualization and Clustering of Self-Organizing Maps. IEEE
Transactions on Neural Networks, 20(4):549–562.

[Taşdemir et al., 2011] Taşdemir, K., Milenov, P., and Tapsall, B. (2011). Topology-
based hierarchical clustering of self-organizing maps. IEEE Transactions on Neural
Networks, 22(3):474–485.

[TechAmerica Foundation, 2012] TechAmerica Foundation (2012). A Practical
Guide To Transforming The Business of Government. Technical report, TechAmer-
ica Foundation: Federal Big Data Commission.

[Tian et al., 2014] Tian, F., Gao, B., Cui, Q., Chen, E., and Liu, T. Y. (2014). Learn-
ing deep representations for graph clustering. In AAAI Conference on Artificial
Intelligence, volume 2, pages 1293–1299.

[Tian et al., 2017] Tian, K., Zhou, S., and Guan, J. (2017). DeepCluster: A General
Clustering Framework Based on Deep Learning. In ECML-PKDD.

[Tibshirani, 1996] Tibshirani, R. (1996). Regression Shrinkage and Selection via
the Lasso. Journal of the Royal Statistical Society Series B, pages 267–288.

[Tibshirani and Walther, 2005] Tibshirani, R. and Walther, G. (2005). Cluster vali-
dation by prediction strength. Journal of Computational and Graphical Statistics,
14(3):511–528.

[Tibshirani et al., 2001] Tibshirani, R., Walther, G., and Hastie, T. (2001). Estimat-
ing the number of clusters in a data set via the gap statistic. Journal of the Royal
Statistical Society Series B, 63:411–423.

308 Bibliography

https://github.com/rtavenar/tslearn

[Tino and Nabney, 2002] Tino, P. and Nabney, I. (2002). Hierarchical GTM: con-
structiong localized nonlinear projection manifolds in a principled way. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 24(5):639–656.

[Ullah et al., 2020] Ullah, A., Haydarov, K., Haq, I. U., Muhammad, K., Rho, S., Lee,
M., and Baik, S. W. (2020). Deep learning assisted buildings energy consumption
profiling using smart meter data. Sensors, 20(3).

[Ultsch, 1999] Ultsch, A. (1999). Data Mining and Knowledge Discovery with
Emergent Self-Organizing Feature Maps for Multivariate Time Series.

[Ultsch, 2003a] Ultsch, A. (2003a). Maps for the visualization of high-dimensional
data spaces. In International Workshop on Self-Organizing Maps and Learning
Vector Quantization, Clustering and Data Visualization (WSOM).

[Ultsch, 2003b] Ultsch, A. (2003b). U*-Matrix: a tool to visualize clusters in
high dimensional data. Technical report, University of Marburg, Department of
Computer Science.

[Ultsch, 2005] Ultsch, A. (2005). Clustering Wih SOM: U*C. In International
Workshop on Self-Organizing Maps and Learning Vector Quantization, Clustering
and Data Visualization (WSOM), pages 75–82, Paris.

[van den Oord et al., 2017] van den Oord, A., Vinyals, O., and Kavukcuoglu, K.
(2017). Neural Discrete Representation Learning. In NIPS. http://arxiv.org/
abs/1711.00937.

[Van Der Maaten, 2009] Van Der Maaten, L. (2009). Learning a Parametric Embed-
ding by Preserving Local Structure. In AISTATS, pages 384–391.

[Van Der Maaten and Hinton, 2008] Van Der Maaten, L. and Hinton, G. E. (2008).
Visualizing Data using t-SNE. Journal of Machine Learning Research, 9:2579–2605.
https://lvdmaaten.github.io/publications/papers/JMLR_2008.pdf.

[Vellido et al., 1999] Vellido, A., Lisboa, P. J., and Meehan, K. (1999). Segmentation
of the on-line shopping market using neural networks. Expert Systems with
Applications, 17(4):303–314.

[Venna and Kaski, 2001] Venna, J. and Kaski, S. (2001). Neighborhood preserva-
tion in nonlinear projection methods: An experimental study. Lecture Notes in
Computer Science, 2130.

[Verbeek et al., 2005] Verbeek, J., Vlassis, N., and Krose, B. (2005). Self-organizing
mixture models. Neurocomputing, 63:99–123.

Bibliography 309

http://arxiv.org/abs/1711.00937
http://arxiv.org/abs/1711.00937
https://lvdmaaten.github.io/publications/papers/JMLR_2008.pdf

[Verleysen and François, 2005] Verleysen, M. and François, D. (2005). The Curse
of Dimensionality in Data Mining. In IWANN. http://www.springerlink.com/
index/n65tna6vwt3b1pw6.pdf.

[Vesanto, 1999] Vesanto, J. (1999). SOM-based data visualization methods. Intelli-
gent Data Analysis, 3(2):111–126.

[Vesanto and Alhoniemi, 2000] Vesanto, J. and Alhoniemi, E. (2000). Clustering of
the Self-Organizing Map. IEEE Transactions on Neural Networks, 11(3):586–600.

[Vesanto and Sulkava, 2002] Vesanto, J. and Sulkava, M. (2002). Distance matrix
based clustering of the Self-Organizing Map. In ICANN, pages 951–956.

[Villmann et al., 1994] Villmann, T., Der, R., and Martinetz, T. (1994). A New
Quantitative Measure of Topology Preservation in Kohonen’s Feature Maps. In
IEEE International Conference on Neural Networks (ICNN), pages 645–648.

[Vincent et al., 2010] Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., and Man-
zagol, P.-A. (2010). Stacked Denoising Autoencoders: Learning Useful Represen-
tations in a Deep Network with a Local Denoising Criterion. Journal of Machine
Learning Research, 11:3371–3408.

[Vinh et al., 2010] Vinh, N. X., Epps, J., and Bailey, J. (2010). Information theoretic
measures for clusterings comparison: Variants, properties, normalization and
correction for chance. Journal of Machine Learning Research, 11:2837–2854.

[Von Luxburg, 2007] Von Luxburg, U. (2007). A tutorial on spectral clustering.
Statistics and Computing, 17(4):395–416.

[Von Luxburg, 2009] Von Luxburg, U. (2009). Clustering stability: An overview.
Foundations and Trends in Machine Learning, 2(3):129–168.

[Von Luxburg and Ben-David, 2005] Von Luxburg, U. and Ben-David, S. (2005).
Towards a statistical theory of clustering. Pascal workshop on statistics and
optimization of clustering, pages 20–26.

[von Luxburg et al., 2012] von Luxburg, U., Williamson, R. C., and Guyon, I.
(2012). Clustering: Science or Art? JMLR: Workshop and Conference Proceedings,
27:6579.

[Wang et al., 2019] Wang, F., Wang, Q., Nie, F., Li, Z., Yu, W., and Wang, R. (2019).
Unsupervised Linear Discriminant Analysis for Jointly Clustering and Subspace
Learning. IEEE Transactions on Knowledge and Data Engineering, 4347(c).

310 Bibliography

http://www.springerlink.com/index/n65tna6vwt3b1pw6.pdf
http://www.springerlink.com/index/n65tna6vwt3b1pw6.pdf

[Wang, 2010] Wang, J. (2010). Consistent selection of the number of clusters via
crossvalidation. Biometrika, 97(4):893–904.

[Wang and Jiang, 2018] Wang, J. and Jiang, J. (2018). An unsupervised deep
learning framework via integrated optimization of representation learning and
GMM-based modeling. In Asian Conference of Computer Vision. http://arxiv.
org/abs/2009.05234.

[Wang et al., 2001] Wang, W. Q., Ismail, F., and Farid Golnaraghi, M. (2001).
Assessment of gear damage monitoring techniques using vibration measurements.
Mechanical Systems and Signal Processing, 15(5):905–922.

[Wang and Gupta, 2015] Wang, X. and Gupta, A. (2015). Unsupervised Learning
of Visual Representations using Videos. In ICCV.

[Ward, 1963] Ward, J. H. (1963). Hierarchical Grouping to Optimize an Objective
Function. Journal of the American Statistical Association, 58(301):236–244.
https://www.jstor.org/stable/2282967.

[Warren Liao, 2005] Warren Liao, T. (2005). Clustering of time series data - A
survey. Pattern Recognition, 38(11):1857–1874.

[Witten and Tibshirani, 2010] Witten, D. M. and Tibshirani, R. (2010). A frame-
work for feature selection in clustering. Journal of the American Statistical
Association, 105(490):713–726.

[Xiao et al., 2017] Xiao, H., Rasul, K., and Vollgraf, R. (2017). Fashion-MNIST: a
Novel Image Dataset for Benchmarking Machine Learning Algorithms. http:
//arxiv.org/abs/1708.07747.

[Xie et al., 2016] Xie, J., Girshick, R., and Farhadi, A. (2016). Unsupervised Deep
Embedding for Clustering Analysis. In International Conference on Machine
Learning (ICML), volume 48. http://arxiv.org/abs/1511.06335.

[Xie and Beni, 1991] Xie, X. L. and Beni, G. (1991). A validity measure for
fuzzy clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence,
13(8):841–847.

[Yan and Yu, 2019] Yan, W. and Yu, L. (2019). On accurate and reliable anomaly
detection for gas turbine combustors: A deep learning approach. In Annual
Conference of the PHM Society.

Bibliography 311

http://arxiv.org/abs/2009.05234
http://arxiv.org/abs/2009.05234
https://www.jstor.org/stable/2282967
http://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1511.06335

[Yang et al., 2017a] Yang, B., Fu, X., and Sidiropoulos, N. D. (2017a). Learning
from Hidden Traits: Joint Factor Analysis and Latent Clustering. IEEE Transactions
on Signal Processing, 65(1):256–269.

[Yang et al., 2017b] Yang, B., Fu, X., Sidiropoulos, N. D., and Hong, M. (2017b).
Towards K-means-friendly Spaces: Simultaneous Deep Learning and Clustering.
In International Conference on Machine Learning (ICML). http://arxiv.org/
abs/1610.04794.

[Yang et al., 2003] Yang, H., Mathew, J., and Ma, L. (2003). Vibration Feature
Extraction Techniques for Fault Diagnosis of Rotating Machinery : A Literature
Survey. In Asia- Pacific Vibration Conference.

[Yang and Leskovec, 2011] Yang, J. and Leskovec, J. (2011). Patterns of Temporal
Variation in Online Media. In WSDM.

[Yang et al., 2016] Yang, J., Parikh, D., and Batra, D. (2016). Joint Unsupervised
Learning of Deep Representations and Image Clusters. http://arxiv.org/abs/
1604.03628.

[Yang et al., 2020] Yang, X., Deng, C., Wei, K., Yan, J., and Liu, W. (2020). Adver-
sarial Learning for Robust Deep Clustering. In NeurIPS.

[Yang et al., 2019] Yang, X., Deng, C., Zheng, F., Yan, J., and Liu, W. (2019). Deep
spectral clustering using dual autoencoder network. In CVPR, pages 4061–4070.

[Ye, 2007] Ye, J. (2007). Discriminative K-means for Clustering. In NIPS.

[Yeung et al., 2001] Yeung, K. Y., Haynor, D. R., and Ruzzo, W. L. (2001). Validating
clustering for gene expression data. Bioinformatics, 17(4):309–318.

[Yuan and Lin, 2006] Yuan, M. and Lin, Y. (2006). Model selection and estimation
in regression with grouped variables. Journal of the Royal Statistical Society Series
B, 68(1):49–67.

[Zakaria et al., 2012] Zakaria, J., Mueen, A., and Keogh, E. (2012). Clustering time
series using unsupervised-shapelets. In International Conference on Data Mining
(ICDM), pages 785–794.

[Zhang et al., 2017a] Zhang, D., Sun, Y., Eriksson, B., and Balzano, L. (2017a).
Deep Unsupervised Clustering Using Mixture of Autoencoders. http://arxiv.
org/abs/1712.07788.

312 Bibliography

http://arxiv.org/abs/1610.04794
http://arxiv.org/abs/1610.04794
http://arxiv.org/abs/1604.03628
http://arxiv.org/abs/1604.03628
http://arxiv.org/abs/1712.07788
http://arxiv.org/abs/1712.07788

[Zhang et al., 2018] Zhang, Q., Wu, J., Zhang, P., Long, G., and Zhang, C. (2018).
Salient Subsequence Learning for Time Series Clustering. IEEE Transactions on
Pattern Analysis and Machine Intelligence.

[Zhang et al., 2016] Zhang, R., Isola, P., and Efros, A. A. (2016). Colorful image
colorization. In ECCV, pages 649–666.

[Zhang et al., 2017b] Zhang, W., Peng, G., Li, C., Chen, Y., and Zhang, Z. (2017b).
A new deep learning model for fault diagnosis with good anti-noise and domain
adaptation ability on raw vibration signals. Sensors, 17(2).

[Zhao et al., 2011] Zhao, Q., Xu, M., and Fränti, P. (2011). Extending external
validity measures for determining the number of clusters. International Conference
on Intelligent Systems Design and Applications, ISDA, pages 931–936.

[Zhao et al., 2019] Zhao, R., Yan, R., Chen, Z., Mao, K., Wang, P., and Gao,
R. X. (2019). Deep learning and its applications to machine health mon-
itoring. Mechanical Systems and Signal Processing, 115:213–237. https:
//doi.org/10.1016/j.ymssp.2018.05.050.

[Zhao et al., 2017] Zhao, S., Song, J., and Ermon, S. (2017). InfoVAE: Information
Maximizing Variational Autoencoders. http://arxiv.org/abs/1706.02262.

[Zhao et al., 2009] Zhao, W., Ma, H., and He, Q. (2009). Parallel K-Means Cluster-
ing Based on MapReduce. In CloudCom.

[Zhou and Zhou, 2019] Zhou, W. A. and Zhou, Q. (2019). Deep Embedded Clus-
tering With Adversarial Distribution Adaptation. IEEE Access, 7:113801–113809.

[Zhou et al., 2015] Zhou, Y., Arpit, D., Nwogu, I., and Govindaraju, V. (2015). Is
Joint Training Better for Deep Auto-Encoders ?

[Zhu et al., 2019] Zhu, D., Han, T., Zhou, L., Yang, X., and Wu, Y. N. (2019). Deep
unsupervised clustering with clustered generator model. http://arxiv.org/
abs/1911.08459.

Bibliography 313

https://doi.org/10.1016/j.ymssp.2018.05.050
https://doi.org/10.1016/j.ymssp.2018.05.050
http://arxiv.org/abs/1706.02262
http://arxiv.org/abs/1911.08459
http://arxiv.org/abs/1911.08459

314 Bibliography

	Titlepage
	Abstract
	Abstract
	Remerciements
	Remerciements
	Contents
	Introduction
	Introduction
	Context and motivations
	Challenges and objectives
	Overview
	Contributions

	Introduction
	Introduction
	Contexte et motivations
	Défis et objectifs
	Plan de la thèse

	Notations
	Notations
	I Clustering, self-organization and representation learning
	1 Clustering and self-organization
	1.1 Statistical learning: an overview
	1.2 Cluster analysis
	1.3 Self-organizing algorithms
	1.4 Conclusion

	2 Unsupervised representation learning for clustering
	2.1 Unsupervised learning of representations
	2.2 Learning representations for data clustering
	2.3 Deep clustering methods
	2.4 Deep self-organized models
	2.5 Conclusion

	3 Deep Embedded SOM (DESOM)
	3.1 Architecture
	3.2 Loss function
	3.3 Training procedure
	3.4 Training parameters
	3.5 Comparison with other deep SOM models
	3.6 Data sets
	3.7 Architecture and hyperparameter study
	3.8 Initialization and pretraining
	3.9 Training parameters and learning dynamics
	3.10 Prototype image sharpness
	3.11 Benchmark results
	3.12 Software implementations
	3.13 Conclusion

	II Model selection in clustering
	4 Model selection in clustering
	4.1 Introduction
	4.2 External clustering validation
	4.3 Internal clustering validation
	4.4 Validation of self-organized models
	4.5 Conclusion

	5 Selecting the number of clusters with a stability trade-off
	5.1 Cluster stability analysis
	5.2 Definitions and limitations
	5.3 Between-cluster and within-cluster stability
	5.4 Stadion: a novel stability-based validity index
	5.5 Pseudo-code
	5.6 Complexity study
	5.7 Some experiments and examples
	5.8 Selecting K in K-means, GMM and Ward clustering
	5.9 Hyperparameter study
	5.10 Software implementations
	5.11 Conclusion

	6 Validation of time series clustering with an invariance-guided criterion
	6.1 Introduction
	6.2 Invariances and time series clustering
	6.3 Invariance-guided stability by perturbing invariant latent factors
	6.4 Selecting the right distance with stability
	6.5 Selecting the number of clusters
	6.6 Software implementations
	6.7 Conclusion

	III Industrial applications and scalability
	7 Scaling to Big Data with distributed computing
	7.1 Introduction
	7.2 Hadoop and the Map-Reduce paradigm
	7.3 Efficient analytics with Apache Spark
	7.4 Distributed machine learning
	7.5 Conclusion

	8 Industrial applications
	8.1 Aircraft engine health monitoring
	8.2 Aircraft engine data sets
	8.3 Scalable and generic processing of aircraft engine data
	8.4 Engine state cartography using self-organized models
	8.5 Application to vibration monitoring
	8.6 Conclusion

	Conclusion and perspectives
	Conclusion and perspectives
	Future work

	A Appendix to chapter 3 — DESOM visualizations
	B Appendix to chapter 4 — SOMperf usage examples
	C Appendix to chapter ?? — Detailed benchmark results and experimental settings
	C.1 Results analysis
	C.2 Complete results on real-world and artificial data sets
	C.3 Algorithm initialization
	C.4 Preprocessing
	C.5 List of data sets

	D Appendix to chapter ?? — Hadoop cluster components
	D.1 Architecture of a cluster
	D.2 Hadoop storage formats

	E Appendix to chapter ?? — Vibration profiles SOM maps
	List of Figures
	List of Tables
	List of Algorithms and Program Code
	Glossary
	Glossary
	Bibliography

