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Abstract

Motivated by a wide range of assemble-to-order systems and systems of the collaborative

economy applications, we introduce a stochastic matching model on hypergraphs and multi-

graphs, extending the model introduced by Mairesse and Moyal 2016.

In this thesis, the stochastic matching model (S,Φ, µ) on general graph structures are

defined as follows: given a compatibility general graph structure S = (V ,S) which of a

set of nodes denoted by V that represent the classes of items and by a set of edges denoted

by S that allows matching between different classes of items. Items arrive at the system

at a random time, by a sequence (assumed to be i.i.d.) that consists of different classes of

V , and request to be matched due to their compatibility according to S. The compatibility

by groups of two or more (hypergraphical cases) and by groups of two with possibilities

of matching between the items of the same classes (multigraphical cases). The unmatched

items are stored in the system and wait for a future compatible item and as soon as they are

matched they leave it together. Upon arrival, an item may find several possible matches, the

items that leave the system depend on a matching policy Φ to be specified.

We study the stability of the stochastic matching model on hypergraphs, for different hy-

pergraphical topologies. Then, the stability of the stochastic matching model on multigraphs

using the maximal subgraph and minimal blow-up to distinguish the zone of stability.
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Résumé

Motivé par des applications à large éventail des systèmes d’assemblage à la commande et

des systèmes de l’économie collaborative, nous introduisons un modèle d’appariement aléa-

toire sur les hypergraphes et sur les multigraphes, étendant le modèle par Mairesse et Moyal

2016.

Dans cette thèse, le modèle d’appariement aléatoire (S,Φ, µ) sur les structures

graphiques générales est défini comme suit: étant donné une structure graphique générale

de compatibilité S = (V ,S) qui est constituée d’un ensemble de nœuds noté par V qui

représentent les classes d’éléments et par un ensemble d’arêtes noté par S qui permettent

d’apparier entre les différentes classes. Les éléments arrivent au système à un moment

aléatoire, par une séquence (supposée être i.i.d.) constituée de différentes classes de V , et

demandent d’être appariés selon leur compatibilité dans S. La compatibilité par groupe de

deux ou plus (cas hypergraphique) et par groupe de deux avec les possibilités d’apparier

entre les éléments de même classe (cas multigraphique). Les éléments, qui ne sont pas

appariés, sont stockés dans le système et en attente d’un futur élément compatible et dès

qu’ils sont appariés, ils quittent le système ensemble. À l’arrivée, un élément peut trouver

plusieurs d’appariements possibles, les éléments qui quittent le système dépendent d’une

politique d’appariement Φ à spécifier.

Nous étudions la stabilité du modèle d’appariement aléatoire sur l’hypergraphe, pour des

différentes topologies hypergraphiques puis, la stabilité du modèle d’appariement aléatoire

sur les multigraphes en utilisant son sous-graphe maximal et sur-graphe minimal étendu

pour distinguer la zone de stabilité.
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Introduction

1. Context and Motivation

Matching models have recently received a growing interest in the literature of queueing

models in which compatibilities between the requests need to be taken into account. This

is a natural enrichment of service systems in which the requests must be matched, or put

in relation, rather than being served. Among other fields of applications, this is a natural

representation of peer-to-peer networks, interfaces of the collaborative economy (such as

car and ride-sharing, dating websites, and so on), assemble-to-order systems, job search ap-

plications, and healthcare systems (blood banks and organ transplant networks). All of these

applications share the same common ground: elements/items/agents enter a system that is

just an interface to put them in relation, and relations are possible only if the “properties”

(whatever this means) of the elements make them compatible.

In [15] (see also [1]), a variant of such skill-based systems was introduced, which are

now commonly referred to as Bipartite Matching models (BM): couples customer/server

enter the system at each time point, and customers and servers play symmetrical roles: ex-

actly like customers, servers come and go into the system. Upon arrival, they wait for a

compatible customer, and as soon as they find one, leave the system together with it. Other-

wise, items remain in the system waiting for compatible arrivals (in particular, there are no

service times). These settings are suitable to various fields of applications, among which,

blood banks, organ transplants, housing allocation, job search, dating websites, and so on.

In both references, compatible customers and servers are matched according to the FCFS

‘First Come, First Served’ service discipline.

In [2], a subtle dynamic reversibility property is shown, entailing that the stationary state

of such systems under FCFS, can be obtained in a product form. Moreover, a sub-additivity

property is proved, allowing (under stability conditions) the construction of a unique station-

ary bi-infinite matching of the customers and servers, by a coupling-from-the-past (CFTP)

1



technique. Interestingly, the product form of the stationary state can then be adapted to

various skill-based queueing models as well, and in particular, those applying (various de-

clinations of) the so-called FCFS-ALIS (Assign the Longest Idling Server) service discipline

- see e.g. [4], and various extensions of BM models in [3, 9, 10].

In [11], the settings of [15, 1] are generalized to more general service disciplines (termed

‘matching policies’ in this context), and necessary and sufficient conditions for the stability

of the system are introduced. Moreover, the results in [11] do not assume the independence

between the types of the entering customer and the entering server. The system is then called

Extended Bipartite Matching model (EBM, for short), and suits applications in which inde-

pendence between the classes of the customers and servers entering simultaneously cannot

be assumed.

In [36], a CFTP result is obtained, showing the existence of a unique bi-infinite matching

in various cases for EBM models, and for a broader class of matching policies than FCFS,

thereby generalizing the results of [2].

2. Problem statement

To model concrete systems, the need then arose to extend these different models. Indeed,

in many applications, the assumption of pairwise arrivals may appear somewhat artificial,

and it is more realistic to assume that arrivals are simple. Also, all the aforementioned ref-

erences assume that the compatibility graph is bipartite, namely, there are easily identifiable

classes of servers and classes of customers. For instance, in dating websites, it is a priori

not possible to split items into two sets of classes (customers and servers) with no possible

matches within those sets. In particular, if one considers blood types as a primary compati-

bility criterion, the compatibility graph between couples is naturally non-bipartite.

Motivated by these observations, a variant model was introduced in [32], in which items ar-

rive one by one and the compatibility graph in general, i.e., not necessarily bipartite: specif-

ically, in this so-called General Matching model (GM for short), items enter one by one

in discrete-time in a buffer, and belong to determinate classes in a finite set V . Upon each

arrival, the class of the incoming item is drawn independently of everything else, from a

distribution µ having full support V . A connected graph G whose set of nodes is precise V
determines the compatibility among classes. Then, an incoming item is either immediately

matched, if there is a compatible item in the line, or else stored in a buffer. It is the role of

the matching policy Φ to determine the match of the incoming item in case of a multiple
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choice. Then, the two matched items immediately leave the system forever.

The stability region of the model, given G and Φ, is then defined as the set of measures

µ such that the model is positive recurrent. A necessary condition for the stability NCOND

of GM models are provided in [32]. Also, is proven that the matching policy ‘Match the

Longest’ has a maximal stability region, that is, the latter necessary condition NCOND is

also sufficient (we then say that the latter policy is maximal). Further, the model with a

complete p-partite (separable) graph is also stable for all matching policy Φ. However, the

study of a particular model on a non-separable graph (see [32], p.14) shows that NCOND is

not sufficient in general for non-separable graphs. This raises the question of whether the

sufficiency of NCOND is true only for separable graphs. In [37] was proved that, except

for a particular class of graphs, there always exists a matching policy rendering the stability

region strictly smaller than the set of arrival intensities satisfying the necessary condition

for stability NCOND.

3. Objectives and Contributions

The main purpose of this thesis is to study the long-run stability of stochastic matching

models, in the sense defined above, on hypergraphical and mutligraphical compatibility

matching structures, and to illustrate the potential applications of these results to concrete

settings.

3.1 Hypergraphical compatibility matching structures

Two closest references to the stochastic matching model on hypergraphs are [20] and [38]:

in both cases, a general matching model is addressed (in continuous time in the former, and

discrete-time - allowing batches of arrivals - in the latter) on an hypergraphical matching

structure (notice that [38] also allows matchings including several items of the same class).

In [20] a matching control is introduced, that asymptotically minimizes the holding cost of

items in an unstable system. [38] introduces an algorithm that is a variant of the “Primal-

dual algorithm”, allowing to essentially optimize a given objective function provided that

stability can be achieved. Then the objective function can incorporate stability (setting util-

ity 0), in a way that stability is achieved by the essentially optimal algorithm, whenever it

is achievable at all. Both references allow idling policies, i.e., scheduling algorithms allow-

ing to perform no matching at all despite the presence of matchable items in the system, to

wait for more profitable future matches. Allowing idling policy makes sense in applications

such as assemble-to-order systems, advertisement, or operations scheduling, but is much

less suitable to kidney transplant networks, in which case the practitioners always perform
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a transplant whenever one is possible. In this thesis, all the matching policies we consider

are non-idling, i.e. entering items are always matched right away if this is possible at all.

Thus, the model studied in the present thesis is a special case of the model studied in [38],

for simple arrivals, no same-class matchings, and non-idling matching policies.

Our approach see [45], is in fact, complementary to that in [38] and [20]: generalizing

the approach of [32] to hypergraphs instead of graphs, in this thesis we are mostly concerned

with the structural properties of the underlying hypergraph of the matching model, and de-

termine classes of hypergraph for which there does, or does not, exist non-idling policy that

can stabilize the system. In a sense, the present work addresses an upstream problem to that

of implementing a performant matching algorithm: we provide simple and comprehensive

criteria, based only on the structural properties of the considered hypergraph for the (non)-

existence of a stabilizing non-idling policy.

We address the problem of the existence of a steady-state for the system: we formally

define the stability region of the system as the set of measures on the set of nodes, ren-

dering the natural Markov chain of the system positive recurrent, for a given compatibility

hypergraph and a given matching policy. Also, we assess the form of the stability region of

specific stochastic matching models, as a function of the geometry of the underlying hyper-

graphs. In a nutshell, we show that such systems are not easily stabilizable, by exhibiting

wide classes of models having an empty stability region, whatever the non-idling matching

policy is. Finally, we provide or give bounds for, the stability region of particular stabilizable

systems.

3.2 Multigraphical compatibility matching structures

Motivated again by concrete applications, we present a further extension of the GM model.

Indeed, in various contexts, among which dating websites and peer-to-peer interfaces, it is

natural to assume that items of the same class can be matched together. Hence, the need

to generalize the previous line of research to the case where the matching architecture is

a multigraph (a graph admitting self-loops, that is, edges connecting nodes to themselves),

rather than just a graph.

This generalization is the core of Chapter 5 of the present thesis (see [13]). We show

how several stability results of [32, 35, 28] can be generalized to the case of a multigraphical

matching structure. As is easily seen, the buffer of a matching model on a multigraph is

hybrid by essence: nodes admitting self-loops (if any) admit at most one item in the line,

whereas nodes with no self-loops (if any) have unbounded queues. A matching model on a
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multigraph typically has a larger stability region than the corresponding model on a graph

on which all self-loops are erased (the maximal subgraph of the latter - see Definition 1.13),

but the interplay between self-looped nodes and their non-self-looped neighbors needs to

be clearly understood: intuitively, the arrival flows to self-looped nodes appear as auxiliary

flows helping their neighboring non-self-looped nodes to stabilize their queues - provided

that the arrivals to self-looped nodes don’t match too often with one another.

4. Thesis outline

This manuscript comprises two parts: the first lays prerequisites and background of the the-

sis while the second presents our main contributions. The hierarchy of the report is based

on seven chapters as indicated in what follows.

Part I is devoted to present basic knowledge related to our subject, the basic notions, and

the literature review.

Chapter 1 provides the scientific context for our work. Chapter 2 is devoted to present

the dynamic of the stochastic matching model on general graph structures, matching poli-

cies, and Markov representation of the model. Chapter 3 presents the state of arts that is

devoted to the related work to stochastic matching model. We end this chapter with the

positioning of our work compared to others.

Part II is organized into four chapters, that consist of the contributions of this thesis and

an application.

Chapter 4 provides the first contribution of this thesis, which is the study of the stochastic

matching model on hypergraphs, provide necessary conditions of stability then we identify

classes of hypergraphs that has an empty stability region. However, we show that stable

matching models on hypergraphs exist. To show how stability can be shown in concrete

examples, we provide two case studies of simple hypergraphs, that is, complete 3-uniform

hypergraphs, and sub-hypergraphs of the latter where several hyperedges are erased. We

finish with the discussion of the results of the chapter. Chapter 5 provides the second con-

tribution of this thesis which is the study of the stochastic matching model on multigraph

among which, the maximality and the explicit product form of the stationary probability for

FCFM policy, and the maximality of Max-Weight policies. Also, we provide a few exam-

ples to illustrate our main results. We finish with the discussion of the results of the chapter.
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Chapter 6 is devoted to developing the stability of particular cases for multigraph and hyper-

graph using the fluid limits techniques rather than the Lyapunov-Foster Theorem. Chapter 7

present an application that compare the models for organ transplantation concerned to com-

patibilities of blood types that illustrate the importance of studied the stability of the model

for complete 3-uniform hypergraphs instead of studied the stability of the complete 3-partite

graphs according to some distributions.

A general conclusion recapitulating the basic concepts and contributions of the thesis,

as well as future work and perspectives, are given at last.
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Part I

Background
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Chapter 1

Definitions and Fundamental Concepts

In this chapter, we introduce the main definitions and fundamental concepts used in this

work. First, we start with some preliminaries, we introduce the general graph structures.

Then, we present the definitions and specific properties of graph structures, hypergaph

structures and multigraph structures.

In this introductory chapter, we provide an intuitive background to the material that will

be used in the coming chapters.

1.1 Preliminaries

1.1.1 Classical notations

We adopt the usual R, Z, and N notation for the sets of real numbers, of integers and natural

integers, respectively. We let R+ and Z+ be the non-negative real numbers and non-negative

integers respectively. Also, we denote by R++ and Z++ (or N+) the strictly positive real

numbers and strictly positive integers, respectively. For y ∈ R, we denote by byc is the

integer part of y. For a and b in N, we denote by Ja, bK the integer interval [a, b] ∩N. We let

a∧b and a∨b denote the minimum and the maximum of two numbers a, b ∈ R respectively.

Let A be a finite set. The cardinality of A is denoted by |A| and for any k ∈ Z++, Ak

denotes the set of k-dimensional vectors with components in A. For any i ∈ J1, qK, let ei
denote the vector of Nq of components (ei)j = δij, j ∈ J1, qK. Let q ∈ N+. The null vector

of Nq is denoted by 0. The norm of any vector u ∈ Nq is denoted by ‖ u ‖=
∑q

i=1 ui.

For any subset J ⊂ J1, kK and x ∈ Rk, we use the notation xJ for the restriction of x to its

coordinates corresponding to the indices of J .
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1.1. PRELIMINARIES

1.1.2 Aphabet and words

An alphabet is a finite non-empty set denoted by A. A word form is writing the numer-

ical/number as you would say it in words. We let A∗ denote the free monoid associated

with A, i.e., the set of finite words over the alphabet A. The length of a word w ∈ A∗ is

denoted by |w|. We write any word w ∈ A∗ as w = w(1)w(2)...w(|w|). As a conven-

tion, let us denote by 0 the empty word. We denote, for any a ∈ A, |w|a the number of

occurrences of the letter a in the word w. Having set an ordering on A, and denoting by

1, 2, ..., |A| the elements of A in increasing order, the commutative image of a word w ∈ A
is the N|A|-valued vector [w] defined by [w] =

(
|w|1, ..., |w||A|

)
, i.e., the vector whose i-th

coordinate is the number of occurrences of the letter i in the word w. The concatenation of

k words w1, w2, . . . , wk of A∗, that is, the word w in which appear successively from left

to right, the words w1, w2, . . . , wk, is denoted by w = w1w2 . . . wk. Also, for any w ∈ A∗

of length |w| = q, (w = w1w2 · · ·wq), and any i, j, · · · , k ∈ J1, qK, we denote by w[i,j,...,k]

the word of length |w| − |{i, j, ..., k}| obtained from w by deleting its i-th, j-th, · · · , and

k-th letters. For any integer q, the vectors of Nq are denoted as x = (x(1), · · · , x(q)) , and

denoted w = (w(1), . . . , w(q)). Define for any subset B of V , x(B) to be the class-content

of elements of B as x(B) =
∑

i∈B x(i).

1.1.3 Probability

All the random variables (r.v.’s, for short) are defined on a common probability space

(Ω,F ,P). Given a finite set S, we denote by M (S) the set of probability measures on S

having S as exact support. Denote by S̄ the complement set of S (within a set of reference

that is fixed by the context).

For an interval I ⊂ [0,∞), let Dd(I) denote the space of Rd-valued functions on I that

are right continuous and have limits from the left everywhere denoted by ‘RCLL’, given with

the standard Skorohod J1 topology [4]. To simplify notation, we write, e.g., Dd(a, b) :=

Dd((a, b)), and D(I) := D1(I). However, for the convergence in Dd that holds over an

arbitrary compact subinterval of [0,∞) we omit the interval from the notation.

We write ⇒ to denote convergence in distribution and denote {Y n; n ∈ Z++} the se-

quence of real-valued random variables. For any M > 0, if P (Y n > M) → 1 as n → ∞,
then we write Y n ⇒∞. Denote by Ȳ n := Y n/n the fluid-scaled version of a sequence of

stochastic processes {Y n; n ∈ Z++}.

In section 1.2 below, we present the specific properties of general graph structures.
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1.2. GENERAL GRAPH STRUCTURES

1.2 General graph structures

We consider different types of general graph structures S defined as a couple of (V ,S),

where:

• The finite set V is the set of nodes (vertices) of S. We let q(S) be the cardinality of V ,

and the general graph structures are of order q(S).

• A finite set S :=
{
S1, ..., Sm(S)

}
of subsets of V such that

⋃m(S)
i=1 Si = V , whose

elements are called edges of S (in case of hypergraphical is called hyperedges).

Whenever no ambiguity is possible we denote the general graph structures by matching
structures, and we often write q := q(S), m := m(S). The degree of a node i ∈ V is the

number of edges i belongs to, i.e., d(i) =
∑m(S)

`=1 1lS`(i). If there exists a constant d such that

d(i) = d for any i ∈ V , then S is said d-regular.

For any set A ⊂ V , we denote

S(A) = {S ∈ S : S ∩ A 6= ∅} , (1.1)

i.e., the set of edges that intersects with A. With some abuse, for any node i ∈ V , we write

S(i) := S({i}).

Definition 1.1. We say that I ⊂ V is an independent set of S if I does not include any edge

of S, i.e, for any S ∈ S, S ∩ Ī 6= ∅. We also let I(S) be the set of all independent sets of S.

An independent set is said maximal if it is not strictly included in another independent

set.

Definition 1.2. A set T ⊂ V is a transversal of S if it meets all its edges, that is, T ∩ S 6=
∅, for any S ∈ S. The set of transversals of S is denoted by T (S). A transversal T is said

minimal if it is of minimal cardinality among all transversals of S. The transversal number

of the matching structures S is the cardinality of its minimal transversals. It is denoted τ(S).

Different kinds of matching structures such as a graph, hypergraph and multigraph in

which each of them has specific properties (see Figure 1.1).

1.3 Graphs

In this section, we consider that S be a graph under the formG = (V , E). For easy reference,

let us introduce the basics that will be used in this thesis.
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1.3. GRAPHS
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1 876
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Figure 1.1: Left: Graph. Middle: Hypergraph. Right: Multigraph.

A (simple) graph G is defined as a couple (V , E). Two vertices u, v ∈ V are said to be

adjacent, if there is an edge between u and v. We write u−v (or v−u) for {u, v} ∈ E and

u 6−v (or v 6−u) else. The neighborhood of a vertex v is the subgraph of G induced by all

vertices adjacent to v.

As the equation (1.1), and specifically for any graph G = (V , E) and any U ⊂ V , we

denote

E(U) := {v ∈ V : ∃u ∈ U, u−v} ,

the neighborhood of U , and for u ∈ V , we write for short E(u) = E({u}). The degree of a

vertex is the number of edges connecting it. A walks is a way of getting from one vertex to

another, and consists of a sequence of edges, one following after another. A walk in which

no vertex appears more than once is called a path. A cycle is a non-empty trail in which the

only repeated vertices are the first and last vertices. For example, given the graph depicted

in Figure 1.1 we have, 1 —> 2 —> 3 is a path of length 2 and 1 —> 2 —> 3 —> 4 —> 2 is

a walk of length 4. A walk of the form 2 —> 3 —> 4 —> 2 is called a cycle.

A chain is a sequence of vertices from one vertex to another using the edges. A chain is

closed if the first and last vertex are the same. A graph is called connected if there is a chain

between every pair of vertices in the graph.

Throughout the presentation of this thesis all considered graphs are simple and con-

nected.

Definition 1.3. A cycle or circular graph is a graph that consists of a single cycle, or in

other words, a number of vertices (at least 3) connected in a closed chain. The cycle graph

with q vertices is called Cq. The number of vertices in Cq equals the number of edges, and

every vertex has a degree 2; that is, every vertex has exactly two edges incident with it.

A cycle with an even number of vertices is called an even cycle; a cycle with an odd

number of vertices is called an odd cycle. For example, in Figure 1.2 the graph dedicated on

the left is an odd cycle C3.
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1.4. HYPERGRAPHS

Definition 1.4. A graph, in which each pair of distinct vertices is adjacent, is a complete

graph i.e., (∀i, j ∈ V , i−j). We denote the complete graph on q vertices by Kq and it has

q(q − 1)/2 edges.

Definition 1.5. A k-partite graph is a graph whose vertices are or can be partitioned into k

different independent sets. If k = 2, we say that the graph is a bipartite graph. A complete

k-partite graph (also its called separable graph in [32]) is a k-partite graph in which there

is an edge between every pair of vertices from different independent sets.

1

5

3

4

2

6

1

2 3

Figure 1.2: Complete 3-partite graphs.

Example 1.1. The two graphs depicted in Figure 1.2 are complete 3-partite graphs. The

graph on the left is K3 (i.e., for any two vertices i, j we have i−j). The independent sets are

I1 = {1}, I2 = {2} and I3 = {3}. However, the graph on the right is not a complete graph.

The independent sets are I1 = {1}, I2 = {2, 4, 6} and I3 = {3, 5}.

In the Figure 1.3, we present the famous types of bipartite graph, such as, ‘N’ graph,

‘NN’ graph and ‘W’ graph.

1′

1 2

2′

1

1′

2

2′

3

3′ 1′

1

2′

2

3′

Figure 1.3: Left: ‘N’ graph. Middle: ‘NN’ graph. Right: ‘W’ graph.

1.4 Hypergraphs

In this section we consider that S be a hypergraph under the form H = (V ,H). For easy

reference, let us first introduce the basics of hypergraph theory will be used in this thesis.
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1.4. HYPERGRAPHS

A throughout presentation of the topic can be found e.g., in [6].

A hypergraph H is defined as a couple (V ,H), where V is a finite set of nodes of H and

H :=
{
H1, ..., Hm(H)

}
is a finite set whose elements are called hyperedges of H.

We say that the hypergraph is simple (or a Sperner family) if Hi ⊂ Hj implies i = j for

all i, j ∈ J1,m(H)K, i.e., no hyperedge is included in another one (if not, say that the hyper-

graph is multiple hypergraphs) see Figure 1.4. We assume hereafter that all hypergraphs are

simple. A subhypergraph of H is a hypergraph H′ = (V,H′) such thatH′ ⊂ H.

Definition 1.6. Let H = (V ,H) be a hypergraph. The rank of H is the largest size of a

hyperedge, i.e., the integer r(H) = maxj∈J1,m(H)K |Hj|; the anti-rank of H is defined as

a(H) = minj∈J1,m(H)K |Hj|, i.e., the smallest size of a hyperedge. If there exists a constant r

such that r(H) = a(H) = r, then H is said r-uniform.

Remark 1.1. As is easily seen, any 2-uniform hypergraph is a graph whose edges are the

elements of H, and any simple, connected hypergraph contains no isolated node, i.e., has

anti-rank at least 2.

4

1

3

2

3 24
5

1

Figure 1.4: Left: Complete 3-uniform hypergraph of order 4. Right: multiple hypergraph.

Example 1.2. Consider the structure depicted in Figure 1.4 (left), it represents a hypergraph

H = (V ,H) with V = {1, 2, 3, 4} and H = {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}}. The

cardinal of V is equal to 4, then H is of order 4; it is simple because no hyperedges is

included in another one; it is 3-uniform since all hyperedges are of cardinality 3, and 3-

regular, because all nodes are of degree 3 (they all belong to exactly 3 hyperedges). As

all hyperedges of cardinality 3 appear in H, this hypergraph is said Complete 3-uniform of

order 4.
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1.4. HYPERGRAPHS

Definition 1.7. The representative graph of a hypergraph H = (V ,H) is the graph L(H) =

(H, E) whose nodes are the elements of H, and such that (Hi, Hj) ∈ E (i.e., Hi and Hj

share an edge in the graph) if and only if Hi ∩Hj 6= ∅. The hypergraphH is said connected

if L(H) is connected.

Figure 1.5: A 3-uniform 3-partite hypergraph.

Definition 1.8. An r-uniform (r ≥ 2) hypergraphH = (V ,H) is said to be r-partite if there

exists a partition V1, V2, · · · , Vr of V such that every hyperedge in H meets each of the Vi’s

at precisely one vertex, i.e., for any H ∈ H and any i ≤ r, |H ∩ Vi| = 1. A 3-uniform

3-partite hypergraph depicted on Figure 1.5. With some abuse, we say that an r-uniform

hypergraph H is r-uniform bipartite, if there exists a partition V1, V2 of V such that for any

H ∈ H, |H ∩ V1| = 1 and |H ∩ V2| = r − 1.

Remark 1.2. Notice, first, that in the case r = 2, H being 2-partite means exactly that it

is bipartite. Second, any 2-uniform bipartite hypergraph cannot be 2-partite unless it is a

bipartite graph.

Definition 1.9. A hypergraph H = (V ,H) satisfies Hall’s condition if |V2| ≥ |V1| for any

disjoint subsets V2 and V1 of V satisfying |H ∩ V2| ≥ |H ∩ V1| for all hyperedges H ∈ H.

Example 1.3. Consider a 4-uniform hypergraph H = (V ,H) such that V = {1, 2, 3, 4, 5}
and H = {{1, 2, 4, 5}, {1, 3, 4, 5}, {2, 3, 4, 5}} . There exists a partition of V into two dis-

joint sets V1 = {1, 2, 3} and V2 = {4, 5} such that |V2| < |V1| and for any H ∈ H, we have

|H ∩ V2| ≥ |H ∩ V1|. Then V1 and V2 violating Hall’s condition.

Definition 1.10. An r-uniform (r ≥ 2) hypergraph H is called an `-(Hamiltonian) cycle

(0 < ` < r), if there exists an ordering V =
(
v1, v2, · · · , vq(H)

)
of the nodes of V such that:
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1.4. HYPERGRAPHS

Figure 1.6: Left: A 3-uniform 2-cycle of order 12. Right: A 3-uniform 2-cycle of order 6.

• Every hyperedge ofH consists of r consecutive nodes modulo q(H);

• Any couple of consecutive hyperedges (in an obvious sense) intersects in exactly `

vertices.

In Figure 1.6 we have a 3-uniform 2-(hamiltonian) cycle of order 12 and a 3-uniform

2-cycle of order 6.

Definition 1.11. A 3-uniform hypergraph H = (V ,H) is said to be complete k-partite, if

there exists a partition of V into k independent sets I1, ..., Ik such that H contains exactly

all subsets of cardinality 3 of the form {v1, v2, v3}, where v1 ∈ Ii1 , v2 ∈ Ii2 , and v3 ∈ Ii3 ,

for three distinct independent sets Ii1 , Ii2 , and Ii3 .

Example 1.4. Consider a 3-uniform hypergraph H = (V ,H) such that V = {1, 2, 3, 4, 5}
and H = {{1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5}, {2, 3, 4}, {2, 3, 5}} . There exists

a partiton of V into four independent sets I1 = {1}, I2 = {2}, I3 = {3} and I4 = {4, 5}.
Then H is complete 3-uniform 4-partite hypergraph.

Summaries: Consider a hypergraph H = (V ,H). The rank (respectively anti-rank) of

H is the largest (respectively smallest) size of hyperedge. If the rank and anti-rank are equal

to k, we then say H is k-uniforme. A k-uniform hypergraph H = (V ,H) of order q is said,

• complete k-uniform if all hyperedges of cardinality k appear inH.
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1.5. MULTIGRAPHS

• k-uniform bipartite if there exists V1 and V2 a partition of V such that |H ∩ V1| = 1

and |H ∩ V2| = k − 1.

• k-uniform k-partite if there exists a partition V1, V2, · · · , Vk of V such that for any

H ∈ H and any i ≤ k, |H ∩ Vi| = 1.

Throughout this thesis, all considered hypergraphs are connected and simple.

1.5 Multigraphs

In this section consider that S be a multigraph under the form G = (V , E). For easy refer-

ence, let us introduce the basics that we will be used in this thesis.

Definition 1.12. A multigraph is a graph that given by a couple G = (V , E), where V is the

(finite) set of nodes, and E is the set of edges, which is permitted to have multiple edges (also

called parallel edges), else it is called simple edges and also a permitted to have self-loops,

that is, an edge which starts and ends at the same nodes. Elements of the form {v} ∈ E , are

called self-loops. We write u−v or v−u for {u, v} ∈ E , and u6−v (or v 6−u) else.

As the equation (1.1), and specifically for any multigraph G = (V , E) and any U ⊂ V ,

we denote

E(U) := {v ∈ V : ∃u ∈ U, u− v},

the set V can then be partitioned in V = V1 ∪ V2, where V1 := {u ∈ V : u−u} and

V2 := {u ∈ V : u 6−u}, i.e., V1 contains all nodes from which a self-loop emanates, if any,

and V2 is the complement set of V1 in V . Observe that, concerning the classical notion of

multigraphs, we assume hereafter that all edges are simple.

A multigraph having no self-loop, that is, a couple G = (V , E) such that V1 = ∅, is

simply a graph. A multigraph is connected if for any u, v ∈ V , there exists a subset

{v0 = u, v1, v2, . . . , vp = v} ⊂ V such that vi−vi+1, for any i ∈ J0, p− 1K.

For any multigraph G = (V = V1 ∪ V2, E) and any U ⊂ V , the subgraph induced by U in

G is the multigraph (U, E ∩ U). Observe that ∀ I ∈ I(G), we get I ∩ V1 = ∅, i.e., I ⊂ V2.

Remark 1.3. A multigraph is different from a hypergraph, which is a graph in which an

hyperedge can connect any number of nodes, not just two.

Throughout this thesis, all considered multigraphs are connected and without the possi-

bility of multiple edges.
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1.6. MAIN USEFUL PROBABILISTIC RESULTS

Definition 1.13. Let G = (V , E) be a multigraph. The maximal subgraph of G is the graph

Ǧ = (V , Ě) obtained by deleting all self-loops in G, that is

Ě = E \ {(i, i) : i ∈ V1} . (1.2)

See an example of a Figure 1.7.

Definition 1.14. Let G = (V1 ∪V2, E) be a multigraph. The minimal blow-up graph of G is

the graph Ĝ = (V̂ , Ê) defined as follows:

V̂ = V ∪ V1 and Ê = Ě ∪ E1, (1.3)

where V1 is an independent copy of V1, Ě is defined by (1.2) and

E1 = {(i, j) : (i, j) ∈ E , i ∈ V1, j ∈ V}.

In other words, Ĝ is obtained from G by duplicating each node having a self-loop by two

nodes having the same neighborhood and replacing each self-loop by an edge between the

node and its copy. See an example of a Figure 1.7.

The maximal subgraph Ǧ of G is then called reduced graph of Ĝ.

For any set A ⊂ V1, we denote by A the set of all copies of elements of A, that is

A = {i : i ∈ A} .

1

2

3 4

1

2

3 4

1

2

3 4

2

Figure 1.7: Middle: A multigraph G. Left: Its maximal subgraph Ǧ. Right: Its minimal

blow-up graph Ĝ.

1.6 Main useful probabilistic results

In Chapter 2, we will define the stochastic matching model and the corresponding Markov

chain representation, while in this Section we present two famous techniques (Lyapunov-

Foster Theorem and Fluid limits) that help us to find the stability of the model (i.e., its

Markov chain is positive recurrent).
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1.6.1 Lyapunov-Foster Theorem

This section is taken from ([8], §5.1):

The following Theorem provides an ergodicity criterion for countable Markov chain

valued in countable state space E,

Theorem 1.1. Let the transition matrix P = {pij}i,j∈E on the countable state space E be

irreducible and suppose that there exists a function h : E −→ R such that inf
i
h(i) > −∞

and ∑
k∈E

pikh(k) <∞ for all i ∈ F, (1.4)∑
k∈E

pikh(k) ≤ h(i)− ε for all i /∈ F, (1.5)

for some finite set F and some ε > 0. Then the corresponding Markov chain is positive

recurrent.

The stationary distribution criterion of positive recurrence of an irreducible chain re-

quires solving the balance equation, a too-often hopeless enterprise except in a few textbook

situations. The above sufficient condition is more tractable, and indeed quite powerful.

1.6.2 Classification of random walks in (Z+)2

This section is taken from ([19], §3.3):

Consider a discrete time homogeneous irreducible and aperiodic Markov chain L =

{En; n ≥ 0}. Its state space is the lattice in the positive quarter-plane (Z+)2 = {(i, j) :

i, j ≥ 0, integers} and it satisfies the recursive equation

En+1 = [En + θn+1]+,

where the distribution of θn+1 depends only on the position of En in the following way

(maximal space homogeneity):

p{θn+1 = (i, j)/En = (k, l)} =


pij, for k, l ≥ 1,

p′ij, for k ≥ 1, l = 0,

p′′ij, for k = 0, l ≥ 1,

p0
ij, for k, l = 0,

where pij, p′ij, p
′′
ij and p0

ij are probabilities belong to the interval [0, 1]. Moreover, for the

one-step transition probabilities, making the following assumptions:
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Condition A (Lower boundedness)
pij = 0, if i < −1 or j < −1,

p′ij = 0, if i < −1 or j < 0,

p′′ij = 0, if i < 0 or j < −1,

Condition B (First moment condition)

E [||θn+1||/En = (k, l)] ≤ C <∞, ∀(k, l) ∈ (Z+)2,

where ||z||, z ∈ (Z+)2, denotes the euclidean norm andC is an arbitrary but strictly positive

number.

Notation: Using lower case greek letters α, β, · · · to denote arbitrary points of (Z+)2, and

then pαβ will mean the one-step transition probabilities of the Markov chain L, α > 0

means

αx > 0, αy > 0, for α = (αx, αy).

Also, from the homogeneity conditions, one can write

θn+1 = (θx, θy), given that En = (x, y).

Define the vector

M(α) = (Mx(α),My(α))

of the one-step mean jumps (drifts) from the point α. setting

α = (αx, αy), β = (βx, βy),

we have
Mx(α) =

∑
β

pαβ(βx − αx),

My(α) =
∑
β

pαβ(βy − αy).

Condition B ensures the existence of M(α), for all α ∈ (Z+)2. By the homogeneity condi-

tion A, only four drift vectors are different from zero:

M(α) =


M, for αx, αy > 0,

M ′, for α = (αx, 0), αx > 0;

M ′′, for α = (0, αy), αy > 0;

M0, for α = (0, 0).

Remark 1.4. (i) All our results remain valid if a finite number of transition probabilities

are arbitrarily modified.
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(ii) Given En = α, the components of θn+1 might be taken bounded from below not by

-1, but by some arbitrary number −K > −∞, provided that:

First, we keep the maximal homogeneity for the drift vectors M(α) introduced above

(i.e., four of them only different);

Secondly, the second moments and the covariance of the one-step jumps inside (Z+)2,

i.e., from any point α > 0, are kept constant.

These last fact will emerge more clearly in the course of the study.

Theorem 1.2. Assume conditions A and B are satisfied.

(a) If Mx < 0, My < 0, then the Markov chain L is

(i) ergodic if {
MxM

′
y −MyM

′
x < 0,

MyM
′′
x −MxM

′′
y < 0;

(ii) non-ergodic if either

MxM
′
y −MyM

′
x ≥ 0 or MyM

′′
x −MxM

′′
y ≥ 0.

(b) If Mx ≥ 0, My < 0, then the Markov chain L is

(i) ergodic if

MxM
′
y −MyM

′
x < 0;

(ii) transient if

MxM
′
y −MyM

′
x > 0.

(c) (Case symmetric to case (b)) If My ≥ 0, Mx < 0, then the Markov chain L is

(i) ergodic if

MyM
′′
x −MxM

′′
y < 0;

(ii) transient if

MyM
′′
x −MxM

′′
y > 0.

(d) If Mx ≥ 0, My ≥ 0, Mx +My > 0, then the Markov chain is transient.

Consider the following real functions on (Z+)2 :
Q(x, y) = ux2 + vy2 + ωxy,

f(x, y) = Q1/2(x, y),

∆f(x, y) = Q1/2(x+ θx, y + θy)−Q1/2(x, y),
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where (x, y) ∈ (Z+)2 and u, v, ω are unspecified constants, to be properly chosen later, but

subject to the constraints u, v > 0, 4uv > ω2, so that the quadratic form Q is positive

definite.

Lemma 1.1. We have

E [∆f(x, y)] =
x[2uE [θx] + ωE [θy]] + y[ωE [θx] + 2vE [θy]]

2f(x, y)
+ o(1),

where o(1)→ 0 as (x2 + y2)→∞.

Proof of Theorem 1.2 : First, we shall prove ergodicity in the case (a(i)). Lemma 1.1 shows

that, if there exists u, v > 0 and ω2 < 4uv, such that, for somme ε2 > 0 and all (x, y) ∈
(Z+)2\A, where A in a finite set,{

2uE [θx] + ωE [θy] < −ε2,

ωE [θx] + 2vE [θy] < −ε2,
(1.6)

then, for some D, there exists ε > 0 such that for all (x, y) with x2 + y2 > D2, we have

E [∆f(x, y)] < −ε. (1.7)

Therefore, when (1.7) holds, the random walk is ergodic, by using Lyapunov-Foster Theo-

rem. Let us rewirte inequalities (1.7) in terms of the drifts on the axes and in the internal

part of (Z+)2, 
2uMx + ωMy < −ε2,

2vMy + ωMx < −ε2,

2uM ′
x + ωM ′

y < −ε2,

2vM ′′
y + ωM ′′

x < −ε2.

(1.8)

It is easy to show that, if 
Mx < 0,

My < 0,

MxM
′
y −MyM

′
x < 0,

MyM
′′
x −MsM

′′
y < 0,

(1.9)

then there exists u = −Mx/2, v = −My/2 > 0 and max (Mx;My) < ω < min
(
MyM ′x
M ′y

;
MxM ′′y
M ′′x

)
then ω2 < 4uv, such that (1.8) is satisfied for some ε2 > 0, thus poving case a(i). The cases

(b(i)) and (c(i)) are analogus to (a( i)). Indeed, if
Mx ≥ 0,

My < 0,

MxM
′
y −MyM

′
x < 0,

or


Mx < 0,

My ≥ 0,

MyM
′′
x −MxM

′′
y < 0,
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we show that there exists u, v > 0 and ω2 < 4uv, such that (1.8) holds, so that the chain is

ergodic in both cases.

Now the prove of non-ergodicity in (a(ii)). Assume that
Mx < 0,

My < 0,

MxM
′
y −MyMx ≥ 0.

There exists a linear function f(x, y) = ax+by, such that, for all α = (x, y) with ax+by ≥
C, we have

f(α +M(α)) ≥ f(α) + ε, for some C, ε ≥ 0,

and the non-ergodicity is immediately deduced. The remain proof of the transience in (b(ii)),

(c(ii)) and (d) is more difficult and can be found in ([19], §3.3).

1.6.3 Rescaled Markov processes and Fluid Limits

This section is taken from [44, Chapters 5 and 9] :

In this section, limit results consist in speeding up time and scaling appropriately the

process itself with some parameter. The behavior of such rescaled stochastic processes

is analyzed when the scaling parameter goes to infinity. In the limit one gets a sort of

caricature of the initial stochastic process which is defined as a fluid limit. These ideas of

rescaling stochastic processes has emerged in the analysis of stochastic networks, to study

their ergodicity properties in particular, see [46]. In statistical physics, these methods are

quite classical, see [16].

In the following, (X(x, t)) denotes an irreducible ‘RCLL’ continuous-time Markov chain

on a countable state space U starting from x ∈ U , i.e., such that X(x, 0) = x ∈ U . Denotes

by Nε(ω, dx), ω ∈ Ω, a Poisson point process on R with parameter ε ∈ R+, all Poisson

processes used are assume to be a priori independent. The topology on the space of prob-

ability distributions induced by the Skorokhod topology on the space of ‘RCLL’ functions

D
(
[0, T ],Rd

)
is used.

Rescaled Markov Processes

Throughout this subsection, assumed that the state space U can be embedded in a subset of

some normed space Rd, ‖ . ‖ denotes the associated norm.

Definition 1.15. For x ∈ U ,
(
X̄(x, t)

)
denotes the process (X(x, t)) renormalized so that

for t ≥ 0,

X̄(x, t) =
1

‖ x ‖
X(x, ‖ x ‖ t).
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Only continuous-time Markov processes are considered in this section. In discrete-time,

if (Xn)n∈N is a Markov chain, the corresponding rescaled process can be also defined by

X̄(x, t) =
Xb‖x‖tc
‖ x ‖

,

where X0 = x ∈ U and t ∈ R+.

Fluid limits

Fluid limits are the results of a scaling of the number of customers of an M/M/1 queue. The

scaling considered here consists in speeding up the time scale with the size of its initial state

and in scaling the process with the same quantity. The procedure suppresses some random

fluctuations around what appears to be the main trajectory of the process. For the M/M/1

queue the behavior of the rescaled process is very simple.

Initially, there are xN customers in the queue and the sequence (xN) is such that

lim
N→+∞

xN
N

= x ∈ R+.

Suppose that L(t) is the number of customers of the queue at time t ≥ 0. Assumed that L(t)

be a stochastic process. The renormalized process
(
L̄N(t)

)
is defined by,

L̄N(t) =
L(Nt)

N
,

notice that L̄N lives on a very rapid time t → Nt, arrivals and services are sped up by a

factor N. The scaling by 1/N compensates the acceleration of time.

0

Figure 1.8: The renormalized process (L̄(t)) and the fluctuations of (L̄N(t)).
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Consider the scaling depicted on Figure 1.8, the stochastic process (L(t)) is reduced to

a deterministic drift (λ− µ)t.

If λ < µ, once the renormalized process hits 0, it remains at 0. This property is, in some

sense, characteristic of ergodic Markov processes. Intuitively, it can be argued as follows:

Once the process (L(t)) hits 0, with the coupling argument of [44, Proposition 5.8], it is

approximately at equilibrium and it is mainly living in bounded neighborhood of 0. The

time scale, linear with N , does not allow the visit of large values since an exponential time

scale is necessary for this purpose, of the order (µ/λ)Ny to reach the value Ny. The scaling

factor 1/N suppresses these small variations. This explains that the renormalized process is

stuck at 0.

Definition 1.16. A fluid limit associated with the Markov process (X(t)) is a stochastic

process which is one of the limits of the process(
X̄(x, t)

)
=

(
X(x, ‖ x ‖ t)
‖ x ‖

)
when ‖ x ‖ goes to infinity.

Strictly speaking, ifQx is the distribution of
(
X̄(x, t)

)
on the space of ‘RCLL’ functions

D (R+,U) , a fluid limit is a probability distribution Q̃ on D
(
R+,Rd

)
such that

Q̃ = lim
n
Qxn

for some sequence (xn) of U whose norm converges to infinity. By choosing an appropriate

probability space, it can be represented as a ‘RCLL’ stochastic process (W (t)) whose dis-

tribution is Q̃. A fluid limit is thus an asymptotic description of sample paths of a Markov

process with a large initial state.

Example 1.5. (Fluid limits of the M/M/1 queue). The arrival rate is λ and the service rate

µ, L(t) is the number of customers of the queue at time t ≥ 0. The renormalized process

(L̄N(t)) converges to a deterministic function, piecewise linear, i.e., if P-almost surely, the

convergence of processes associated with the uniform norm on compact sets holds

lim
N→+∞

(
L̄N(t)

)
= (x+ (λ− µ)t)+ .

In addition, for ε, δ > 0, there exists N0 ∈ N such that, if N ≥ N0 then

inf
|x/N−x|<δ/2

Px
(

sup
0≤x≤t

|L̄N(s)− (x+ (λ− µ)s)+| < δ

)
≥ 1− ε. (1.10)

The function (x+ (λ− µ)t)+ is therefore the unique fluid limit of this Markov process. If

we assume that λ < µ, this implies in particular that the Markov process L(t) is ergodic.





Chapter 2

Stochastic matching model

Stochastic matching techniques aim to study the dynamic systems resulting from group

matching of individuals or agents on a microscopic scale. Different applications of this

technique, in economics or finance, provide tools for studying over-the-counter contracts,

labor and housing markets, co-operative sites, peer-to-peer networks, and so on. These

applications stimulate the introduction of dynamic probabilistic modeling, at a discrete or

continuous-time representing the evolution of stochastic matching between agents. The

discrete-time models, initially introduced for healthcare systems (blood banks, organ allo-

cations) are also adapted with continuous-time to specific applications. For this class of

models, it is possible to describe the restrictive behavior of the size of a subset that meets

such or that criteria, as well as market price formations, approximating them through a re-

duced system of non-linear differential equations.

The objective of this chapter is to describe the stochastic matching model with the ap-

proach of the Markov chain in discrete and continuous-time. In Section 2.1 we present the

stochastic matching model on matching structures. In Section 2.2 we present further in-

formation for matching policies. In Section 2.3 we formulate a Markov representation of

the general model. In Section 2.4 we define the stability and the instability of the model.

Finally, in Section 2.5 we present the matching queue and the stability of the continuous

model which we will be used in Chapter 6.

2.1 Stochastic model on matching structures

A (discrete-time, matching structure) stochastic matching model is specified by a triple

(S,Φ, µ), such that:

• S = (V ,S) is a connected matching structure which can be a non-bipartite graph,
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hypergraph or multigraph;

• Φ is a matching policy, which defines the new buffer-content given the pair formed by

the old buffer-content and the arriving item, precisely defined in section 2.2 below;

• µ is an element of M (V), the common law of the independent and identically dis-

tributed (i.i.d.) classes of the arriving items.

2.1.1 The models

The matching model (S,Φ, µ) is then defined as follows. At each time point n ∈ N+,

1. An item enters the system. Its class Vn is drawn from the measure µ on V , in-

dependently of everything else.
(
Thus the sequence of classes of incoming items

{Vn; n ∈ N} is i.i.d. of common distribution µ
)
.

2. The incoming item then faces the following alternatives:

(i) If there exists in the buffer, at least one set of items whose respective set of

classes forms, together with Vn, an edge of S, then it is the role of the matching

policy Φ to select one of these sets of classes, say {i1, ..., im}, m ≥ 1
(
in the

cases of graph and multigraph (m = 1), and for hypergraph (m ≥ 1)
)
. Then the

m + 1 items of respective classes i1, ..., im, Vn are matched together and leave

the system right away. Denoting Sj := {i1, ..., im, Vn} ∈ S, for j ∈ [[1, |S|]]
(
in

the case of multigraph for the self-loop edges, we have the possibility of having

i1 and Vn coincides
)
, we then say that Vn completes a matching of type Sj at

time n, and we denote S(n) = Sj , the matching performed at n.

(ii) Else, the item is stored in the buffer of the system, waiting for a future match,

and we write S(n) = ∅.

2

234

3 4 1

123

1 2 3 3 4 2

134

2

... ...

Figure 2.1: The matching model in action, on the matching hypergraph of Figure 1.4 (left).

Example 2.1. Consider the complete 3-uniform hypergraph H = (V ,H) of size 4, with

V = {1, 2, 3, 4} and H = {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}}. The dynamic matchings
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of the realization {Vn(ω); n ∈ N} = 2, 3, 4, 1, 1, 2, 3, 3, 4, 2, 2, .... is represented in Figure

2.1.

2.1.2 State spaces

We reproduce here the state description of the model introduced in [32] for the stochastic

model on general graphs, and then [36] for the same model under the matching policy FCFM.

Fix a connected matching structure S = (V ,S), in the sense specified above, until the end

of this section. Fix an integer n0 ≥ 1, a realization v1, . . . , vn0 of V1, . . . , Vn0 , and define the

word z = v1 . . . vn0 ∈ V∗. Then, for any matching policy Φ, there exists a unique matching

of the word z, that is, a matching structure having a set of nodes {v1, . . . , vn0} and whose

edges represent the matches performed in the system until time n0, if the successive arrivals

are given by z. This matching is denoted by MΦ(z). The state of the system is then defined

as the word WΦ(z) ∈ V∗, whose letters are the classes of the unmatched items at time n0,

i.e., the isolated vertices in the matching MΦ(z), in their order of arrivals. The word WΦ(z)

is called queue detail at time n0. Then, any admissible queue detail belongs to the set

W =
{
w ∈ V∗ : ∀i 6= j 6= · · · 6= k s.t. {i, j, · · · , k} ∈ S, |w|i|w|j · · · |w|k = 0

}
. (2.1)

As will be seen below, depending on the service discipline Φ, we can also restrict the

available information on the state of the system at time n0, to a vector only keeping track of

the number of items of the various classes remaining unmatched at n0, that is, of the number

of occurrences of the various letters of the alphabet V in the word WΦ(z). This restricted

state thus equals the commutative image of WΦ(z) and is called class detail of the system.

It takes values in the set

X =
{
x ∈ N|V| : ∀i 6= j 6= · · · 6= k s.t. {i, j, · · · , k} ∈ S, x(i)x(j) · · ·x(k) = 0

}
=
{

[w] : w ∈W
}
. (2.2)

Remark 2.1. Denote, in case that S = (V ,S) be a multigraphs whose vertex divided into

two subsets V = V1 ∪ V2 such that V1 6= ∅, we must add the following restrictions:

• In equation (2.1) we have ∀i ∈ V1, |w|i ≤ 1;

• In equation (2.2) we have ∀i ∈ V1, x(i) ≤ 1.

Let us order the elements of V and identify them with J1, |V|K, in a way that the |V1|
first elements are those of V1 and the remaining |V2| elements are those of V2. We index the

elements of X accordingly: namely, for any x ∈ X and any i ∈ J1, |V|K, x(i) is the queue

size of node i. With these conventions, for instance, the coordinate x(|V1|+ 3) corresponds

to the queue size of the third node of V2.
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2.2 Matching policies

In this section, we present and formally define the set of matching policies that can be taken

into consideration.

Definition 2.1. A matching policy Φ is said admissible if the choice of the match of an

incoming item depends solely on the queue detail upon the arrival (and possibly on an

independent uniform draw, in case of a tie).

An admissible matching policy can be formally characterized by an action �Φ of V on

W, defined as follows: if w is the queue detail at a given time and the input is augmented by

the arrival of v ∈ V at that time, then the new queue detail w′ and w satisfies the relation

w′ = w �Φ v. (2.3)

Notice that the action �Φ is possibly random.

Matching policies that depend on the arrival times

In ‘First Come, First Matched’ (FCFM), the oldest item in line is chosen, so the map �FCFM

is given, for all w ∈W and all v ∈ V , by

w �FCFM v =


wv if for any S ∈ S(v) there exists i 6= v ∈ S s.t |w|i = 0,

w[Φ(w,v)] else, where Φ(w, v) = {i, j, · · · , k} such that

i = min{` ∈ [[1; |w|]] : there exists S ∈ S(v) s.t w` ∈ S},

where ties are broken from the minimum of the next term j as i whenever the above is non-

unique.

In ‘Last Come, First Matched’ (LCFM), the updating map �LCFM is analog to �FCFM, for

Φ(w, v) = {i, j, · · · , k} such that i = max{` ∈ [[1; |w|]] : there exists S ∈ S(v) s.t w` ∈
S}.

Class-admissible matching policies

A matching policy Φ is said to be class-admissible if it can be implemented upon the sole

knowledge of the class detail of the system. Let us define, for any x ∈ X, and any v ∈ V ,

P(x, v) =
{
S ∈ S(v) : ∀i ∈ S\{v}, x (i) > 0

}
,

the set of classes of available compatible items with the entering class v-item, if the class

detail of the system is given by x. Then, a class-admissible policy Φ is fully characterized
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by a mapping pΦ, such that pΦ(x, v) denotes the class of the match chosen by the entering

v-item under Φ, in a system of class detail x, such that P(x, v) is non-empty. Then, the

arrival of v entails the following action on the class detail:

x}Φ v =

{
x+ ev if P(x, v) = ∅,
x− epΦ(x,v) else.

(2.4)

Remark 2.2. As is easily seen, to any class-admissible policy Φ corresponds an admissible

policy, if one makes precise the rule of choice of a match for the incoming items within

the class that is chosen by Φ, in the case where more than one item of that class is present

in the system. In this thesis, we always assume that within classes, the item chosen is

always the oldest in the line, i.e., we always apply an FCFM policy within classes. Under

this convention, any class-admissible policy Φ is admissible, that is, the mapping }Φ from

X × V to X can be detailed into a map �Φ from W × V to W, as in (2.3), that is, such that

for any queue detail w and any v,

[w �Φ v] = [w] }Φ v.

Fixed priority policies In the context of fixed priorities, each vertex i ∈ V is assigned a

full ordering of the edges and chooses to be matched with the first matchable edge following

this order. Formally, to each node i is associated a permutation σi of the index set J1, d(i)K,

and if we denote S(i) =
{
Si1 , Si2 , ..., Sid(i)

}
, then at any time n,

pΦ(x, v) = Siσi(j) , where j = min
{
k ∈ J1, d(i)K : Siσi(k)

∈ P(x, v) > 0
}
. (2.5)

Random policies For this matching policy, the priority order defined above is not fixed

and is drawn uniformly at random upon each arrival, i.e., for any v, pΦ(x, v) is defined

as in equation (2.5), for a permutation σi that is drawn, independently of everything else,

uniformly at random among all permutations of J1, d(i)K.

Max-Weight policies The Max-Weight policies are an important class of class-admissible

policies, in which matches are based upon the queue length and a fixed reward that is asso-

ciated with each match. Formally, for any S ∈ S , we let wS be the reward associated to the

match of the items of S together, and fix a real parameter β.

Then, in a system of class detail x, the match of the incoming v-item is given by

pΦ(x, v) = argmax {βx(S) + wS : S ∈ P(x, v)} ,
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where ties are broken uniformly at random whenever the above is non-unique. In other

words, S maximizes a linear combination of the queues-size and the rewards. Several par-

ticular cases are to be mentioned:

(i) If β > 0 and the rewards are constant (i.e., wS = wS′ , for any S, S ′ ∈ S), then the

matching policy is ‘Match the Longest’ (ML), i.e., the incoming v-item is matched

upon the arrival with the items of the compatible classes having the longest queues

size (ties being broken uniformly at random).

(ii) If β < 0 and the rewards are constant, then the matching policy is ‘Match the Short-

est’ (MS), i.e., the incoming v-item is matched upon the arrival with the items of the

compatible classes having the shortest queues size (ties being broken uniformly at

random).

(iii) If β = 0 and wS 6= wS′ for any i ∈ V and any S 6= S ′ ∈ S(i) (implying that there

is a strict ordering of rewards for all possible matches of any given class), then the

matching policy is of a priority type, defined above.

2.3 Primary Markov representations

The Markov representations of the model are similar to general matching models on graphs.

Denote, for all w ∈ W and all n ≥ 1, by W {w}
n , the buffer-content at time n (i.e., just after

the arrival of the item Vn) if the buffer-content at time 0 was set to w. In other words,{
W
{w}
0 = 0,

W
{w}
n = WΦ (wV1 . . . Vn) , n ∈ N+.

It readily follows from (2.3) that the buffer-content sequence
{
W
{w}
n ; n ∈ N

}
is a Markov

chain. Indeed, for any w ∈W, we have

W
{w}
n+1 = W {w}

n �Φ Vn+1, ∀n ∈ N.

Secondly, we deduce from (2.4) that for any class-admissible matching policy Φ (e.g.,

Φ = U,ML or MS) and any initial condition as above, the X-valued sequence {Xn; n ∈ N}
of class details also is a Markov chain, as for any initial condition x ∈ X, we get

X
{x}
n+1 = X{x}n }Φ Vn+1, ∀n ∈ N.

For a fixed initial condition and all n ∈ N, we denote, for all B ⊂ V , by Wn(B), the number

of items in the line of classes in B at time n, and by |Wn|, the total number of items in the
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system at time n. In other words,
Wn(B) =

∑
i∈B

Wn(i),

|Wn| = Wn(V) =
∑
i∈V

Wn(i).

2.4 Stability of the matching model

We say that the matching model (S,Φ, µ) is stable if the Markov chain {Wn; n ∈ N}
(
and

thereby {Xn; n ∈ N}
)

is positive recurrent.

Consider a matching structure S = (V ,S) and a matching policy Φ, we define the stability
region associated to S and Φ as the set of probability measures on V rendering the model

(S,Φ, µ) stable, i.e.,

STAB(S,Φ) = {µ ∈M (V) : {Wn; n ∈ N} is positive recurrent} .

Remark 2.3. If the matching structure S = (V ,S) is a multigraph such that V = V1, i.e., all

nodes of the multigraph have a self-loop, we say, for obvious reasons, that the considered

matching models are finite. Then any matching model on S is necessarily stable, that is, for

any admissible Φ we have that

STAB(S,Φ) = M (V).

Indeed, the Markov chain {Wn; n ∈ N} is irreducible on the finite state spaceW, containing

only words having a size less or equal to the cardinality of the largest independent set of S.

Definition 2.2. A connected matching structure S is said to be,

• stabilizable if STAB(S,Φ) is non-empty for some matching policy Φ,

• non-stabilizable if STAB(S,Φ) is empty.

2.5 Continuous-Time Markov chain processes

Now, we present a stochastic matching model in continuous-time where each class of items

arrive at the system according to an independent Poisson process of intensity λ > 0.

A throughout presentation of this section can be found e.g. in [37].
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2.5.1 Matching Queues

The matching queue associated with a matching structure S = (V ,S), an arrival-rate vector

λ := (λ1, · · · , λ|V|) and the matching policy Φ, is defined as follows:

• Each node of V is associated with a class of items;

• Items of each class i ∈ V arrive to the system according to an independent Poisson

process Ni of intensity λi > 0;

• A class-i items can be matched with class-j, · · · , class-k items if and only if there is

an edge S = {i, j, · · · , k} ∈ S;

• Upon arrival at time t, a class-i item is either matched exactly with the classes j, · · · , k
such that S(t) = {i, j, · · · , k}, if any such items are available it leave the system

immediately, or are placed in an infinite buffer.

Let us define the following summation λ̄:

λ̄ :=
∑
i∈V

λi λ̄A :=
∑
i∈A

λi, A ⊂ V . (2.6)

Remark 2.4. The Poisson process can be obtained by evaluating the following assumptions

for arrivals during an infinitesimal short period of time δt :

• The probability that one arrival occurs between t and t + δt is t + o(t), independent

of the time t, and independent of arrivals in earlier intervals.

• The number of arrivals in non-overlapping intervals are statistically independent.

• The probability of two or more arrivals happening during [t, t+ δt] is negligible com-

pared to the probability of zero or one arrival, i.e., it is of the order o(t).

2.5.2 System dynamics

Each vertex i associated to a buffer content called class-i queue, and denote the associated

class-i queue process by Qi := {Qi(t) : t ≥ 0}. More precisely, for all t ≥ 0, Qi(t) is

the number of the class-i items in the queue at time t. The |V|-dimensional queue process

of the system denoted as follows:

Q = (Q1, · · · , QV). (2.7)

For t ≥ 0 and A ⊂ V , we let QA(t) be the restriction of Q(t) to its coordinates in A. Upon

arrival to the system, an element of the class-i can find several possible matches. A matching
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policy is a rule specifying how to match in such cases. We say that a matching policy Φ is

admissible if matches always occur when possible, and decisions are made only on the value

of the Q queue process at arrival times.

For a matching structure S, an arrival-rate vector λ and under the admissible matching

policy Φ, the queue process Q is as follows:

• Its a Continuous-Time Markov Chain denoted by ‘CTMC’;

• The initial queue length Q(0);

• For all t ≥ 0, Qi(t)Qj(t) · · ·Qk(t) = 0 where i, j, · · · , k ∈ V such that S(t) =

{i, j, · · · k} ∈ S .

We thus characterize the system by the triple (S,Φ, λ)C (where we append the subscript

C to denote a continuous-time model, as opposed to the one in discrete-time, which will

omit the subscript C).

Example 2.2. In [38] was shown an example of a matching system with 4 item types de-

picted on Figure 2.2. The items arrive as a random process, as individual items, or in batches.

The average arrival rate of type i items is αi. There exist three possible matchings; e.g., 〈1, 2〉
respectivily 〈2, 3〉 is a matching which matches one item of type 1 with one item of type 2

resp one item of type 2 with one item of type 3. 〈2, 3, 4〉 is another matching which matches

one item of types 2, 3 and 4.

A matching can only be applied if all contributing items are present in the system; and

if it is applied, the contributing items instantaneously leave the system.

2.5.3 Stability of a matching queue

The matching queue (S,Φ, λ)C is said to be stable if the corresponding CTMC Q is positive

recurrent, and unstable otherwise.

Definition 2.3. The stability region corresponding to the connected matching structures S
and the matching policy Φ is the set

STAB(S,Φ) =
{
λ ∈ (R++)|V| : (S,Φ, λ)C is stable

}
.

We also say that node i ∈ V is stable if, for some initial condition, the mean time for its

associated queue to empty is finite. Otherwise, the node is unstable.
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Figure 2.2: Matching Model (CTMC).

Indeed, the advantage of the fluid limit techniques in continuous-time is to facilitate

stability analysis. Thus, as was shown in [37, Theorem 2], the stability region of a discrete-

time stochastic model can be studied by embedding it in an appropriate continuous-time

mode. Then, the continuous-time counterparts of the results in [45, 32, 28] hold for our

matching queues and vice versa.
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Chapter 3

Literature review

Nowadays, the matching model is considered one of the major challenges that are of interest

in various sectors (healthcare systems, peer-to-peer networks, interfaces of the collaborative

economy, assemble-to-order systems, job search applications, and so on). Other references

address specific models for designated applications: [18] on organ transplantation, [7] on

kidney transplants, [48] on housing allocations systems, or [39] on ride-sharing models.

A more recent application for the matching model results in modeling sharing-economy

(collaborative consumption) platforms, with the most relevant examples being car-sharing

platforms, such as Uber and Lyft, lodging services, such as Airbnb, and virtual call centers

(namely call centers with home-based agents), as considered in, e.g., [21, 27]. Since a

platform operating in a sharing-economy market must match supply and demand at every

instance, possibly in a multi-region setting, matching queues can be used to model and

optimize such platforms; see [47] for an application in the car-sharing setting.

Before passing to part II which contains the main subject and the results of our con-

tributions, in this chapter, we present some of the related work for the matching models.

In Section 3.1, we present the first natural representation of service systems in which cus-

tomers and servers are of different classes called skill-based queueing systems. In Section

3.2 we start from [15] where they have introduced the matching model referred to the bi-

partite matching model and we present some of related works. In Section 3.3 we describe

the extended bipartite matching model (EBM). In Section 3.4 we represent all dedicated

studies for the general matching model (GM). In Section 3.5 we address a point of view

of stochastic optimization of the matching models. In Section 3.6 we present other exten-

sions of the matching model. Finally, in Section 3.7 we represent the related study with our

contributions.
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3.1 Skill-based service systems

Over the past decade, an increasing interest has been dedicated to stochastic systems in

which incoming elements are matched according to specified compatibility rules. This is,

first, a natural representation of service systems in which customers and servers are of dif-

ferent classes, and where designated classes of servers can serve designated classes of cus-

tomers. For this general class of queueing models, termed skill-based queueing systems, it

is then natural to investigate the conditions for the existence of a stationary state, and under

these conditions, to design and control the model at best, for given performance metrics

(end-to-end delay, matching rates, fairness, and so on.) Such models are classical queueing

systems, in the sense that there is a dissymmetry between customers and servers: customers

come and depart the system, whereas servers are part of the ‘hardware’, remain in the sys-

tem, and switch to the service of another customer when they have completed one (with

possible vacation times in-between services) see Figure 3.1 (a). In [5, 22] various types of

customers call are routed to various groups of skill-based servers.

Generally, these studies consist of analyzing the stability of the model under which

matching policy is optimal and the probability measures that makes it stable. It should

be noted that a lot of works have advanced research and have been developed within the

framework of stochastic matching model.

(a) Modelisation of call center ‘Skill-based’. (b) Bipartite matching model.

Figure 3.1: Left: A skill-based queueing system. Right: A bipartite matching model.

3.2 Bipartite Matching model (BM)

In [15, 1], a variant of such skill-based systems have introduced, which are now commonly

referred to as ‘Bipartite Matching models’ (BM): couples customer/server enter the system

at each time point, and customers and servers play symmetric roles: exactly like customers,

servers come and go into the system see Figure 3.1 (b). Upon arrival, they wait for a compat-

ible customer, and as soon as they find one, leave the system together with it. These settings
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are suitable to various fields of applications, among which, blood banks, organ transplants,

housing allocation, job search, dating websites, and so on.

The mathematical setting is the following: in the two aforementioned references, it is

assumed that the incoming customers are of various classes in the set C = {1, 2, · · · , I},
and that server are of classes in the set S = {1, 2, · · · , J}. It is assumed that a server of type

j ∈ S can serve a subset of customer types C(j) ⊂ C, and that a customer of type i ∈ C
can be served by a subset of server types S(i) ⊂ S.

Caldentey & al. [15] have considered the types of customers and servers if the infinite

sequences are random, independent identically distributed, and customers and servers are

matched according to their order in the sequence, on a First Come, First Matched (FCFS)

basis. This service system can be represented by a bipartite graph G = (C + S, E).

Consider the sequences (cn; sn)n≥1 ∈ C∞×S∞ have probability distribution P((cn; sn) =

(i, j)) = αiβj , for probability vectors,

α = (αi) ∈ (R+)I and β = (βj) ∈ (R+)J .

Define matching rates, by counting for each n the number of (ci; sj) matches created be-

tween c1; · · · ; cn and s1; · · · ; sn, and divide by n to get rnci;sj . For a given G, α, β, the

matching rates rci;sj = lim
n→+∞

rnci;sj if these limits exist almost surely.

The construction of the matching is to add one pair (independent) of a server and a cus-

tomer at a time and to match those to the earliest unmatched customer or server that they

find, or leave them unmatched, waiting for subsequent pairs.

They have proposed two following simplifications:

1. First simplification which leads to their model is that there are no service times.

2. Second simplification to the considered model, by ignoring the arrival times.

They said that the system has a balanced infinite matching: if the fraction of customers

of type i among the first n customers, which are matched by one of the first n servers,

converge almost surely to αi, and the fraction of servers of type j which are matched by one

of the first n customers, converge almost surely to βj as n −→ +∞.
They have found a necessary condition for the system to be balanced, that is:

α(C) ≤ β(S(C)), β(S) ≤ α(C(S)) ; C ⊆ C, S ⊆ S. (3.1)

Also, they provided the following conjecture that is, a sufficient condition for ergodicity

(existence of matching rates),

α(C) < β(S(C)), β(S) < α(C(S)) ; C ⊂ C, C 6= C, S ⊂ S, S 6= S. (3.2)
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They have studied specific models such as, ‘N’ model, (respectively ‘W’ model) (i.e., the

structure of the model is of the form ‘N’ (respectively ‘W’) graph) and an almost complete

graph case (in which each server type can be matched to all except at most one customer

type and vice versa). For these, they proved the Conjecture (3.2) above, solved the balance

equations and obtained the matching rates. However, they studied the ergodicity for the

‘NN’ model (i.e., the matching structure of the model is of the form ‘NN’ graph), and then

the Conjecture (3.2) holds for any bipartite graph in which every server type is connected to

all but at most 2 of the customer types and vice versa.

A dynamic representation of ‘W’ model is given in Figure 3.2.

(a) The bipartite graph for the ‘W’ model (b) The FCFS infinite matching for the ‘W’ model

Figure 3.2: The bipartite matching graph for the ‘W’ model.

Adan and Weiss [1] have considered a bipartite matching model in which multi-type

customer multi-type server models take into account the special needs of customers as well

as the aptitudes and capabilities of the servers. Through the overlap of the client and server

subsets, the main interest is in the ability of providing individually tailored service while

still allowing for cooperation and pooling of the servers. The Markovian model suggested

in [15] to describe the FCFS infinite matching turns out to be intractable in general, and could

therefore not be used to prove the conjecture in general or to calculate the rates. Also, they

have solved the balance conditions (3.1) by an explicit product form stationary distribution.

Further, they have given some examples and demonstrated the calculation of the matching

rates for some special system graphs.

Adan & al. [2] have proved the fundamental structure of the model in the following three

steps:

• Derive a Loynes’ scheme, which enables to get to stationarity through sample path

dynamics, and to prove the existence of a unique FCFS matching over Z and not solely

for N.
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• Define a pathwise transformation in which they interchanged the positions of the two

items in a matched pair, and they proved the dynamic “reversibility” of the model

under this transformation.

• Construct “primitive” Markov chains whose product form stationary distributions are

obtained directly from the dynamic reversibility. Using these as building blocks, they

have drived product form stationary distributions for multiple ‘natural’ Markov chains

associated with the model, and they computed various non-trivial performance mea-

sures as a by-product.

They illustrated these results for the ‘NN’ model that was described in [15], and that

couldn’t be fully analyzed.

They used the following reversibility result: starting from two independent i.i.d. sequences

over Z with FCFS matching between them, and performing the exchange transformation on

all the links, they obtained two sequences of exchanged customers and servers and match-

ing between them. It is then true that the sequences are again independent i.i.d., and the

matching between them is FCFS in the reversed time direction.

Adan and Weiss [4] have considered a queueing system with J parallel servers S =

{m1, · · · ,mJ} (fixed set of server), and with customer types C = {a, b, c, · · · }. A bipar-

tite graph G describes which pairs of server-customer types are compatible. Further, they

considered FCFS-ALIS policy: A server always picks the first, longest waiting compatible

customer, and a customer is always assigned to the longest idle compatible server. ALIS is

the best way to equalize the efforts of the servers, and thus it encourages diligent service.

Assume that arrivals are Poisson and service is exponential. Customers of type c arrive

at the system in independent Poisson streams with rates λc, c ∈ C. Service times of server

mj are independent and exponentially distributed with rate µmj , j ∈ S. Note that service

durations of customers depend on the server providing the service, and not on the customer

type.

Also, they calculated fluid limits of the system under overload, to show that a local

steady state exists. They distinguished the case of complete resource pooling when all the

customers are served at the same rate by the pooled servers, and the case when the system

has a unique decomposition into subsets of customer types, each of which is served at its

rate by a pooled subset of the servers.

Finally, they discussed the possible behavior of the system with generally distributed

abandonments, under many server scaling.
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3.3 Extended Bipartite Matching model (EBM)

In [11], the settings of [15, 1] are generalized to more general service disciplines (termed

‘matching policies’ in this context), and necessary and sufficient conditions for the stability

of the system are introduced, which are functions of the compatibility graph and of the

matching policy. Define the following condition on µ, see conditions (3.2) :{
µC(U) < µS(S(U)), ∀U ⊂ C

µS(V ) < µC(C(V )), ∀V ⊂ S.
(3.3)

The above conditions are then shown necessary and sufficient for the stability of the sys-

tem for various graph geometries and have a natural interpretation. Let µC and µS be the

marginals of the arrival probability µ. Customers from U need to be matched with servers

from S(U). The first line in (3.3) asks for strictly more servers in average from S(U) than

customers from U . The second line has a dual interpretation.

In other words, the measure µ is not of the form µC ⊗ µS . Instead, the arrival scenario

is characterized by a subset F ⊂ C × S representing the possible arrivals of couples, and

a measure µ on C × S having support F . The system is then called the Extended Bipartite

Matching model (EBM, for short), and suits applications in which independence between

the classes of the customers and servers entering simultaneously cannot be assumed. In the

applications to organ transplants and blood transfusions, this extension of the settings of the

BM is justified by the possible correlations between the blood types of the arriving couples,

who may be parents of one another. Also, in [11] the authors have proven the following

results:

• Sufficient conditions are obtained, under which any admissible matching policy can

make the system stable,

• For the ‘NN’ model, the MS policy and some priority policies do not have a maximal

stability region - in the sense that the conditions (3.3) are not sufficient for stability.

• For any bipartite graph, the ML policy has a maximal stability region.

However, the maximality of FCFS is left as an open problem.

Moyal & al. [36] have found an explicit construction of the stationary state of Extended

Bipartite Matching (EBM) models as defined in [11]. They used a Loynes-type backward

scheme allowing to show the existence and uniqueness of a bi-infinite perfect matching

under various conditions, for a large class of matching policies and of bipartite matching

structures.
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3.4 General Matching model (GM)

To model concrete systems, the need then arose to extend these different above models. In-

deed, in many applications, the assumption of pairwise arrivals may appear somewhat artifi-

cial, and it is more realistic to assume that arrivals are simple. Also, all the aforementioned

references assume that the compatibility graph is bipartite, namely, there are easily identi-

fiable classes of servers and classes of customers, whatever these mean: donors/receivers,

houses/applicants, jobs/applicants, and so on. However, in many cases, the context requires

that the compatibility graph take a general (i.e., not necessarily bipartite) form. For in-

stance, in dating websites, it is a priori not possible to split items into two sets of classes

(customers and servers) with no possible matches within those sets. Similarly, in kidney

exchange programs, intra-incompatible couples donor/receiver enters the system, looking

for a compatible couple to perform a ‘crossed’ transplant. Then, it is convenient to repre-

sent couples donor/receiver as single items, and compatibility between couples means that

a kidney exchange can be performed between the two couples (the donor of the first couple

can give to the receiver of the second, and the donor of the second can give to the receiver

of the first). In particular, if one considers blood types as a primary compatibility criterion,

the compatibility graph between couples is naturally non-bipartite.

Motivated by these above observations, a variant model was introduced in [32], in which

items arrive one by one and the compatibility graph is general, i.e., not necessarily bipar-

tite: specifically, in this so-called General Matching model (GM for short), its a particular

case of the extended matching model (EBM), it has a queueing model flavor, with the crucial

specificity that items play the roles of both customers and servers. Then, an incoming item

is either immediately matched, if there is a compatible item in the line, or else stored in a

buffer. It is the role of the matching policy Φ to determine the match of the incoming item

in case of a multiple choice. Then, the two matched items immediately leave the system

forever. Indeed, consider a matching model with a graph (V , E) and sequence of arriving

items (vn)n. Let Ṽ be a disjoint copy of V . Define a bipartite matching model with classes

V , server classes Ṽ , possible matches {(u, ṽ) | u−v}, and arriving sequence (vn, ṽn)n. If the

matching policies are the same, then at any time, the buffer-content of the bipartite matching

model (U, Ũ), if the buffer-content of the original matching model is U. Then several result

transferred from the (EBM) model to (GM) model.

Given a connected graph G = (V , E), and a matching policy Φ. Let µ be a probability

measure on V , they defined the following conditions on µ :

NCOND(G) : {µ ∈M (V) ; µ(U) < µ(E(U)), ∀U ⊂ V} . (3.4)
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These NCOND are necessary stability conditions. An analog result holds in (3.3). In par-

ticular, the latter condition is empty if and only the compatibility graph is bipartite (which

justifies why items enter by pairs in BM and EBM models - otherwise the model could not

be stabilizable).

The stability region of the model denoted by STAB(G,Φ), is then defined as the set of

measures µ such that the model is positive recurrent (see Section 2.4). Also, in [32] the

authors have proven that:

• the matching model may be stable if and only if the matching graph in non bipartite,

• G graph non bipartite then the model is always stable under Φ=ML, i.e.,

STAB(G,ML) = NCOND(G),

• G complete p-partite graph, p ≥ 3 (which is called in [32] separable graph of order

p), then for all Φ, µ ∈ NCOND(G), the model (G,Φ, µ) is stable, i.e.,

∀Φ, STAB(G,Φ) = NCOND(G).

However, [37] shows that, aside from a particular class of graphs, random policies are never

maximal, and that there always exists a strict priority policy that isn’t maximal either. Then,

by adapting the dynamic reversibility argument of [2] to the GM models, [35] shows that the

matching policy First Come, First Matched (FCFM) is maximal and derives the stationary

probability in a product form. More recently, following the work of [38], matching policies

of the broader Max-Weight type (including ‘Match the Longest’) are shown to be also max-

imal and drift inequalities allow to bound the speed of convergence to the equilibrium, and

the first two moments of the stationary state.

On another hand, since a matching queue is easily seen, the stability region of a discrete-

time stochastic model can be studied by embedding it in an appropriate continuous-time

model. Thus, the continuous-time counterparts of the results in [32] hold for matching

queues and vice versa. The advantage of the continuous-time setting is that powerful fluid-

limit techniques can be employed, which greatly facilitate the stability analysis.

Fluid models are arguably the most effective tool to prove that a queueing network is

stable, and can also be employed to prove the instability of such networks. Specifically,

following [46, 17] they have found that, under mild regularity conditions, if all the (sub-

sequential) fluid limits of the queues, for all possible initial conditions, converge to 0 in a

finite time w.p.1, then the system is stable, in the sense that the underlying queue process is
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positive recurrent.

Moyal and Perry [37] have studied the interesting feature of the fluid limits that is to

obtain their dynamics determined by the stationary distribution of a “fast” CTMC. Specifi-

cally, if the fluid queue associated with one of the nodes is positive, then the relevant time

scale for this queue is slower than the time scale for the fluid queues that are null. In the

limit, the effect of the “fast” (i.e., null) queues on the evolution of the positive fluid queues

are averaged-out instantaneously, a phenomenon known as a stochastic averaging principle

(AP) in the literature. See [42, 43] and the references therein, as well as [31, 50] for recent

examples of fast averaging in queueing networks.

Also, in [37] was shown a necessary condition for stability of a matching queue: for any

matching graph G,

NCONDC(G) :=
{
λ ∈ (R++)|V| : λ̄I < λ̄E(I) for all I ∈ I(G)

}
. (3.5)

That condition can be thought of as an analog to the usual traffic condition for traditional

queueing networks see equation (3.4), and it is thus natural to study whether it is also suffi-

cient.

Except for a particular class of graphs, there always exists a matching policy rendering

the stability region strictly smaller than the set of arrival intensities satisfying NCONDC

and they are showing explicitly, via fluid-limit arguments, that the stability regions of two

basic models pendant graph and 5-cycle graph depicted in Figure 3.3 is strictly included in

NCONDC . They generalized this result to any graph G that is not complete p-partite there

always exists a policy of the strict priority type that does not have a maximal stability region,

and that the ‘Uniform’ random policy (natural in the case where no information is available

to the entering items on the state of the system) never has a maximal stability region.

Definition 3.1. [37] A connected matching structure S is said to be,

• matching-stable if NCONDC(S) is non-empty and all admissible matching policies on

S are maximal;

• matching-utable nstable if the set NCONDC(S) is empty.

Let G7 denote the set of all connected graphs inducing an odd cycle of size 7 or more, but

no pendant graph and no 5-cycle, and let Gc7 denote its complement in the set of connected

graphs. Also, a result was proven in [37] that:
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3.5. OPTIMIZATIONS OF THE MATCHING MODEL

• the pendant and 5-cycle graphs depicted in Figure 3.3, it is shown that those graphs

are matching-unstable, (i.e., never maximal).

• The only matching-stable graphs in Gc7 are separable of order 3 or more.

1

2

3 4

1

2 5

3 4

Figure 3.3: Left: Pendant graph. Right: 5-cycle graph.

Variants of the GM model to the case of graphical systems with reneging are investi-

gated, respectively in [20, 38, 45] and [28] (see also [7]).

3.5 Optimizations of the matching model

In another line of research, such stochastic matching architectures are addressed from the

point of view of stochastic optimization in [10], [20] and [38], among others.

Buke and Chen [10] have focused on the infinite-horizon average-cost optimal control

problem. In which, they considered a control policy determines which are matched at each

time by considering a discrete-time bipartite matching model with random arrivals of units

of supply and demand that can wait in queues located at the nodes in the network. For

a parameterized family of models in which the network load approaches capacity, a new

matching policy for the relaxation admits a closed-form expression is shown to be approxi-

mately optimal, with bounded regret, even though the average cost grows without bound.

Gurvich and Ward [20] have considered a model in which each item arrive in a dedicated

queue, and wait to be matched with items that exist in other queues (possibly multiple). Once

a decision has been made to match, the match itself is instantaneous and the corresponding

items leave the system. Upon arrival, an item may find several possible matching, in this

cases, an exsisting controller must decide which matchings to execute given multiple op-

tions. They considered the problem of minimizing finite-horizon cumulative holding costs.

In principle, the controller may choose to wait until some “inventory” of items builds up to

facilitate more profitable matches in the future.
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3.5. OPTIMIZATIONS OF THE MATCHING MODEL

Figure 3.4: A queueing network view of a system with four input streams and two match-

ings.

In the example depicted in Figure 3.4, there are 4 classes of items, and items of class i

arrive according to a time-varying Poisson process Ai having instantaneous rate λi(t), i =

1, 2, 3, 4. Items of class 1 can be matched to items of class 2. Items of class 2 can be also

matched with items of classes 3 and 4. This matching structure is reflected in the graph in

Figure 3.4 where each rectangle corresponds to an item class and each of the circles A and

B to matching types. When a class 1 item is matched with a class 2 item they both leave the

system: matchings are instantaneous. An item of class 4 must be matched to both a class 3

and a class 2 item to depart.

Nazari and Stolyar [38] have introduced an algorithm that is a variant of the “Primal-

dual algorithm", allowing to achieve stability if this is feasible at all, for a very large class

of models. The proposed algorithm furthermore optimizes utility functions that are convex

functions of the average matching rates. [20] and [38] allow idling policies, i.e., scheduling

algorithms allowing to perform no matching at all despite the presence of matchable items in

the system, to wait for more profitable future matches. Allowing idling policy makes sense in

applications such as assemble-to-order systems, advertisement or operations scheduling, but

is much less suitable to kidney transplant networks, in which case the practitioners always

perform a transplant whenever one is possible.

47



3.6. OTHER EXTENSIONS OF MATCHING MODELS

3.6 Other extensions of matching models

Specific comparison results concerning single-server queueing systems with impatient cus-

tomers are also provided in [33] and [34]. Moreover, it is well known since the seminal

work of Propp and Wilson [41], that coupling from the past algorithms, which mostly use

backward coupling convergence, provides a powerful tool for simulating in many cases

(monotonicity, stochastic bounds of Markov chains) the steady state of the system.

Along these lines, the above is devoted to the explicit construction of a stationary queue

with Sr servers (Sr ≥ 1) and impatient customers, by a scheme à la Loynes. Models with

impatience (or abandonment, reneging) have been introduced in the queueing literature to

represent a strong real-time constraint on the system: the requests have a due date, before

which their treatment must be initiated, or completed. Specifically, assume hereafter that

any incoming customer is either served if a server becomes available before its deadline or

else eliminated forever once the deadline has elapsed. Observe that a loss system of Sr sys-

tems (i.e., there is no waiting room, so the incoming customers are either served provided

that a server is immediately available or immediately lost otherwise) is a particular case

of the present model, for identically null patience. There are Sr servers obeying the First

Come, First Served (FCFS) rule to serve impatient customers, and the sequences of inter-

arrival times, service times, and patience times of the customers are assumed stationary and

ergodic, but not necessarily independent.

Buke and Chen [9] have introduced a new queueing model, called probabilistic match-

ing system, to model the traffic in web portals. This queueing model consists of two user

classes, in which users wait in the system to match a candidate from the other class, in-

stead of accessing a resource. They have stabilized four admissible matching policies for

the probabilistic matching systems which are:

1- the simple threshold policy,

2- accept-the-shortest-queue policy,

3- functional threshold policy,

4- the one-sided threshold policy.

This study of [9] is followed by [10] which have proposed approximation methods and

analyzed its properties based on fluid and diffusion limits. They performed numerical ex-

periments to gain insight into probabilistic matching systems. Also, they showed that some
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performance measures are insensitive to the matching probability, agreeing with the existing

results.

Adan & al. [3] have considered three parallel service models in which customers of

several types are served by several types of servers subject to a bipartite graph, and the

service policy is First Come, First Served. Two of the models have a fixed set of servers.

• The first is a queueing model in which arriving customers are assigned to the longest

idling compatible server if available, or else queue up in a single queue, and servers

that become available pick the longest waiting compatible customer as studied in [4].

• The second is a redundancy service model where arriving customers split into copies

that queue up at all the compatible servers, and are served in each queue on FCFS

basis, and leave the system when the first copy completes service.

• The third model is a matching queueing model with a random stream of arriving

servers. Arriving customers queue in a single queue and arriving servers match with

the first compatible customer and leave immediately with the customer, or they leave

without a customer.

They studied the relations between these models, and showed that they are closely related

to the FCFS infinite bipartite matching model, in which two infinite sequences of customers

and servers of several types are matched FCFS according to a bipartite compatibility graph.

They also introduced a directed bipartite matching model in which they embed the queueing

systems. This leads to a generalization of Burke’s theorem to parallel service systems.

3.7 Problem statement and positioning

A stochastic matching model, as we said before, is a system of components and each of

these components could have more than one state of functioning.

The main purpose of this thesis is devoted to three contexts:

First, we study the long-run stability of stochastic matching models, in the sense defined

above, on a hypergraphical compatibility matching structure generalizing the approach of

[32] to hypergraphs instead of graphs. By doing so, the two closest references to the present

work are [20] and [38]: in both cases, a general matching model is addressed on a hyper-

graphical matching structure (notice that [38] also allows matchings including several items
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of the same class). The first reference addresses continuous-time models; the second con-

siders discrete-time models, however, most of the results therein can easily be extended to

the continuous-time settings. In [20] a matching control is introduced, that asymptotically

minimizes the holding cost of items in an unstable system (we justify the instability of such

systems under the assumptions of [20] in Remark 4.3). In the present thesis all the matching

policies we consider are non-idling, i.e., entering items are always matched right away if this

is possible at all. Thus, the model studied in Chapter 4 is a special case of the model studied

in [38], for simple arrivals, no same-class matchings, and non-idling matching policies.

Secondly, we showed how several stability results of [32, 35, 28] can be generalized to

the case of a multigraphical matching structure which is motivated again by concrete ap-

plications, among which dating websites and peer-to-peer interfaces, it is natural to assume

that items of the same class can be matched together. Hence, the need to generalize the pre-

vious line of research to the case where the matching architecture is a multigraph (a graph

admitting self-loops, that is, edges connecting nodes to themselves), rather than just a graph.

On other hand, we study in continuous-time different examples of multigraph G =

(V , E) and hypergraph H = (V ,H) corresponding respectively matching queues (G,Φ, λ)C

and (H,Φ, λ)C . We deduce the precise stability regions of the corresponding stochastic

matching models using the fluid limit techniques.

Finally, we present an application for organ transplantation of a stochastic model on

hypergraphs, in which we compare the behavior in the long-run stability of the model of

complete 3-uniform hypergraphs matching (three-by-three) with the model of complete 3-

partite graph matching (two-by-two). Then, according to the distribution of the items, we

deduce what is the best matching procedure between two-by-two and three-by-three match-

ings.



Part II

Contributions
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Chapter 4

Hypergraphs

Introduction

In the Stochastic Matching model (introduced in the bipartite case by Caldentey and al. in

[15] and generalized by Mairesse and Moyal in [32]), items enter the system randomly and

may be matched or not according to their classes. The compatibility between classes is given

by a fixed matching structure. In this chapter, we study the long-run stability of stochastic

matching models, in the sense defined above, on a hypergraphical compatibility matching

structure.

Several applications should naturally incorporate the possibility of matching items by

groups of more than two. Let us exemplify this on a concrete example: in organ transplants,

(in)-compatibility between givers and receivers are given by a variety of factors, and mostly

by blood types and immunological factors. In kidney exchange programs, items represent

intra-incompatible couples (A,B) (e.g., a patient A waiting for a transplant and B a parent

of his/hers, incompatible with A for a potential organ donation), entering a system to find

another intra-incompatible couple (A′, B′) that is compatible with it, in the sense that A can

receive an organ from B′ and A′ can receive from B. Then the ability of such a system to

accommodate all requests and to maximize the number of successful transplants and avoid

congestion, is translated into the positive recurrence of a stochastic process representing

the stochastic system over time. Then if we view the items as the couples, and translate

the “cross-compatibility” (i.e., A can receive from B′ and A′ can receive from B) into the

existence of an edge between node (A,B) and node (A′, B′), such a system is a typical

application of the GM introduced in [32].

Let us now consider the case where such exchanges (A,B) ↔ (A′, B′) and (A′, B′) ↔
(A′′, B′′) cannot be realized, but A can receive from B′, A′ can receive from B′′ and A′′ can
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receive from B. Then it is natural to consider the possibility of executing the three trans-

plants contemporarily, i.e., to match the triplet (A,B), (A′, B′) and (A′′, B′′) altogether. In

several countries including the U.S., such “exchanges” by groups of 3 (or more) are allowed,

which raises the issue of maximizing “matchings” that do not coincide with sets of edges,

but of sets of subsets of nodes of cardinality 3 or more. Hence the need to consider matching

models on compatibility matching structures that are hypergraphs rather than graphs, i.e., a

set of nodes V equipped with a set of subsets of V of cardinality 3 or more.

The hypergraphical stochastic matching model addressed in this chapter is formally de-

fined as follows: items enter the system by single arrivals and get matched by groups of 2

or more, following compatibilities that are represented by a given hypergraph. A matching

policy determines the matchings to be executed in the case of a multiple-choice, and the

unmatched items are stored in a buffer, waiting for a future match.

At the border between discrete mathematics and probability theory, the main scientific

aim of this chapter is to study this widely applicable class of models. In the first step, ad-

dressing the crucial question of stability of the system will lead us to study the structural

properties of hypergraphs (connectivity, independent sets, rank, anti-rank, degree, size of

the transversals, existence of cycles, and so on.) In a second step, we will address the weak

approximation of the natural Markov process of the model, to better apprehend its main

characteristics in steady state, its long-run simulation, and possibly, the estimation of its

parameters.

This chapter is organized as follows: we start in Section 4.1 by providing necessary con-

ditions of stability for the present class of systems: as will be developed therein, and unlike

the particular case of the GM on graphs (see [32]), for which a natural necessary condition

could be obtained, we introduce various necessary conditions that depend on distinct ge-

ometrical properties of the considered hypergraphs. We then deduce from this, classes of

hypergraphs for which the corresponding matching model cannot be stable, see Section 4.2.

Finally, in Section 4.3, we provide the precise stability region in the particular cases where

the compatibility hypergraph is complete 3-uniform, complete k-partite 3-uniform and then

complete up to a partition of its hyperedges (see the precise definitions of these objects be-

low). We conclude and discuss this chapter in Section 4.4.

Throughout this chapter, let us consider that the matching structure S be a hypergraph

H = (V ,H). Recall that Vn is an item which enters the system from the measure µ on V at

time n and H(k) is the realized matching at time k.
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4.1 Necessary conditions of stability

Fix a matching model (H,Φ, µ) on a hypergraph H = (V ,H). Denote for any n, B ⊂ V
and B ⊂ H, by An(B) the number of arrivals of elements in B and by Mn(B) the number

of matchings of hyperedges in B realized up to n, i.e.,

An(B) =
n∑
k=1

1l{Vk∈B};

Mn (B) =
n∑
k=1

1l{H(k)∈B};

and with some abuse, denote An(i) = An({i}) and Mn(H) = Mn({H}) for any i ∈ V and

H ∈ H. Observe that the following key relation holds for all B ⊂ V ,

Xn(B) = An(B)−
∑
H∈H

|H ∩B|Mn (H) ≥ 0, n ∈ N, (4.1)

since the number of items of classes in B at any time n is precisely the number of arrivals

of such items up to time n, minus the number of these items that leave the system upon each

matching of a hyperedge that intersects with B.

4.1.1 General conditions

We start by introducing several ‘universal’ stability conditions. Fix a hypergraph H =

(V ,H) throughout the section.

Definition 4.1. We say that I ⊂ V is an independent set of H if I does not include any

hyperedge of H, i.e, for any H ∈ H, H ∩ Ī 6= ∅. We recall that I(H) be the set of all

independent sets of H.

Let us define for any µ ∈M (V), and any B ⊂ V , the set

Lµ(B) = argmin {µ(j) : j ∈ B} , B ⊂ V . (4.2)

To clarify the exposition of the Lemma 4.1 (stated below), we need to introduce the follow-

ing notion,

Definition 4.2. For any µ ∈M (V) we say that the independent set I ∈ I(H) is µ-minimal

if the intersection of any hyperedge H ∈ H with I is either empty, or reduced to a singleton

{vH} that is such that:

• vH is of degree 1, i.e., H is the only hyperedge vH belongs to;
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• Lµ(H) = {vH}, i.e., vH is the only minimum of µ over the set H .

An independent set I ∈ I(H) that is not µ-minimal is said non-µ-minimal. We let Iµ(H) be

the set of µ-minimal independent sets of H, and I′µ(H) be the set of non-µ-minimal indepen-

dent sets of H, that is, the complement set of Iµ(H) in I(H).

In other words, a µ-minimal independent sets gathers nodes that are the only minimum

of µ over the only hyperedge they belong to. Notice that the collection Iµ(H) can be empty.

This is the case if and only if all nodes are of degree at least 2, or all nodes of degree 1 are

not the only minimum of µ on the single hyperedge they belong to. Observe the following

characterization,

Lemma 4.1. Let H = (V ,H) be a hypergraph, and denote H = {H1, ..., Hm}. An inde-

pendent set I = {v1, ..., vp} is µ-minimal if and only if for all n and all k1, ..., km such that

kj ∈ Lµ(Hj) for all j,

An(I) =
m∑
j=1

|Hj ∩ I|An(kj). (4.3)

Proof. First, it is clear that if I ∈ Iµ(H), then m ≥ p and the mapping

ϕ :

{
{j ∈ J1,mK : I ∩Hj 6= ∅} −→ J1, pK
j 7−→ i : Lµ(Hj) = Hj ∩ I = {vi}

(4.4)

is bijective. Thus we have a.s. for all n,

An(I) =
m∑
j=1

An(vϕ(j)) =
∑

j∈J1,mK:
Hj∩I 6=∅

|Hj ∩ I|An(vϕ(j)) =
m∑
j=1

|Hj ∩ I|An(kj).

Let us now assume that I ∈ I′µ(H). Then,

• If for some hyperedge Hj is such that |Hj ∩ I| ≥ 2, then upon each arrival of an

element of class kj , the right-hand side of (4.3) increases by |Hj ∩ I| while the left-

hand side increases by 1 if kj ∈ I , or 0 else;

• If for some hyperedge Hj intersecting with I , there exists kj ∈ Lµ(Hj) ∩ Ī , then

upon each arrival of a class kj-item the right-hand-side of (4.3) increases while the

left-hand side does not;

• Finally, if for all j ∈ J1,mK, |Hj ∩ I| ≤ 1 and for all j such that |Hj ∩ I| = 1,

Lµ(Hj) = {vϕ(j)} (defining again ϕ by (4.4)), then if ϕ(j) = ϕ(l) for some l 6= j,

upon each arrival of a class vϕ(j)-item, the right-hand side of (4.3) increases by 2 while

the left-hand side increases by 1.

56



4.1. NECESSARY CONDITIONS OF STABILITY

In all cases, (4.3) cannot hold for all n, which concludes the proof.

Now define the following set of measures,

N1(H) =

{
µ ∈M (V) : for all I ∈ I′µ(H), µ(I) <

∑
H∈H

|H ∩ I|min
k∈H

µ(k)

}
.

We have the following result,

Proposition 4.1. For any connected hypergraph H and any admissible matching policy Φ,

STAB(H,Φ) ⊂ N1(H).

Proof. Fix H = (V ,H) and an admissible policy Φ. Denote by H1, ..., Hm the hyperedges

of H. Suppose that µ ∈M (V) is such that there exists an independent set I ∈ I′µ(H) such

that

µ(I) >
∑
H∈H

|H ∩ I|min
k∈H

µ(k). (4.5)

For any i ∈ J1,mK and any ki ∈ Lµ(Hi) we have that

Mn(Hi) ≤ min
k∈Hi

An(k) ≤ An (ki) , n ≥ 0.

Thus, from the equality in (4.1), for any k1, ..., km such that ki ∈ Lµ(Hi) for all i, we have

that
Xn(I)

n
≥ An(I)

n
−

m∑
i=1

|Hi ∩ I|
An (ki)

n
, n ≥ 1. (4.6)

Applying the SLLN to the right-hand side of (4.6) implies that for any such k1, ..., km,

lim sup
n

Xn(I)

n
≥ µ(I)−

m∑
i=1

|Hi ∩ I|µ (ki) = µ(I)−
∑
H∈H

|H ∩ I|min
k∈H

µ (k) > 0,

implying thatXn(I) goes a.s. to infinity and thereby (asXn = [Wn] for all n), the transience

of {Wn; n ∈ N}.
Assume now that µ is such that for some independent set I ∈ I′µ(H), an equality holds

in (4.5). Then, for any k1, ..., km such that kj ∈ Lµ(Hj) for all j, the Markov chain

{Yn; n ∈ N} defined as

Yn = An(I) −
m∑
j=1

|Hj ∩B|An (kj) , n ∈ N,

is a random walk with drift 0 that is different from the identically null process, in view

of Lemma 4.1. Hence {Yn; n ∈ N} is null recurrent. Would the chain {Wn; n ∈ N} be

positive recurrent, the sequence {Xn; n ∈ N} would visit the state 0 infinitely often, with

inter-passage time at 0 of finite expectation. Thus from (4.6), the sequence {Yn; n ∈ N}
would be positive recurrent, an absurdity. This concludes the proof.
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Define the following sets of measures,

N +
1 (H) =

{
µ ∈M (V) : ∀I ∈ I(H), µ(I) <

∑
H∈H

|H ∩ I| min
k∈H∩Ī

µ(k)

}
;

N ++
1 (H) =

{
µ ∈M (V) : ∀B ⊂ V , µ(B) ≤

∑
H∈H

|H ∩B|min
k∈H

µ(k)

}
.

We have the following result,

Corollary 4.1. For any connected hypergraph H and any admissible matching policy Φ,

STAB(H,Φ) ⊂ N +
1 (H) ∩N ++

1 (H).

Proof. We just show that N1(H) is included in N +
1 (H) ∩ N ++

1 (H). Set again H =

{H1, ..., Hm} and fix µ ∈ N1(H). To show that µ ∈ N +
1 (H), first observe that for any

independent set I = {v1, ..., vp} ∈ Iµ(H), for any hyperedge Hj intersecting with I, we

have that mink∈Hj µ(k) = µ(vϕ(j)) < mink∈Hj∩Ī µ(k). Therefore,

µ(I) =

p∑
i=1

µ(vi) =
m∑
j=1

|Hj ∩ I|µ(vϕ(j)) <
∑
H∈H

|H ∩ I| min
k∈H∩Ī

µ(k),

whereas if I ∈ I′µ(H), as µ ∈ N1(H) we have that

µ(I) <
∑
H∈H

|H ∩ I|min
k∈H

µ(k) ≤
∑
H∈H

|H ∩ I| min
k∈H∩Ī

µ(k),

hence µ ∈ N +
1 (H).

It remains to show that µ ∈ N ++
1 (H), and for this, we first observe that

for all I ∈ I(H), µ(I) ≤
∑
H∈H

|H ∩ I|min
k∈H

µ(k). (4.7)

To see this, it suffices to observe that for any independent set I ∈ Iµ(H), recalling (4.4),

µ(I) =
m∑
j=1

µ(vϕ(j)) =
∑

j∈J1,mK:
Hj∩I 6=∅

|Hj∩I|µ(vϕ(j)) =
m∑
j=1

|Hj∩I|µ(kj) =
∑
H∈H

|H∩I|min
k∈H

µ(k),

hence (4.7). Now fixB, a subset of V that is not an independent set ofH. Then, we construct

by induction the family of setsB := B0 ⊃ B1 ⊃ B2 ⊃ ... ⊃ Br, where r is properly defined

below, as follows: for any i ≥ 0, if Bi is not an independent set of I(H), then we take an

arbitrary hyperedge Hji ∈ H such that Hji ⊂ Bi, and set Bi+1 = Bi \ {ki}, for an arbitrary
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ki ∈ Lµ(Hji). Then, there exists an integer r ≤ |B| − 1 such that Br is an independent set

of I(H), and we stop the construction at this point. Observe that for any i ∈ J0, r − 1K,

µ(Bi+1) ≤
∑
H∈H

|H ∩Bi+1|min
k∈H

µ(k) =⇒ µ(Bi) ≤
∑
H∈H

|H ∩Bi|min
k∈H

µ(k). (4.8)

To see this, fix i and suppose that the left-hand side of the above holds true. Then, we have

µ(Bi) = µ(Bi+1) + µ(ki), (4.9)

and on the other hand,

∑
H∈H

|H ∩Bi|min
k∈H

µ(k)

=
∑

H∈H(ki)

|H ∩Bi|min
k∈H

µ(k) +
∑

H∈H(ki)

|H ∩Bi|min
k∈H

µ(k)

=
∑

H∈H(ki)

|H ∩Bi+1|min
k∈H

µ(k) +
∑

H∈H(ki)

(|H ∩Bi+1|+ 1) min
k∈H

µ(k)

=
∑
H∈H

|H ∩Bi+1|min
k∈H

µ(k) +
∑

H∈H(ki)

µ(kH),

(4.10)

where for any H ∈ H(ki), kH is an arbitrary element of Lµ(H). But µ(ki) is less or

equal than the second term of the latter sum because µ(ki) = µ(kHi), and we assumed

that µ(Bi+1) is less than the first term
(
µ(Bi+1) ≤

∑
H∈H |H ∩Bi+1|mink∈H µ(k)

)
. This

completes the proof of (4.8) in view of (4.10). To conclude, as Br ∈ I(H) and in view of

(4.7), we have that µ(Br) ≤
∑

H∈H |H ∩Br|mink∈H µ(k), which implies by an immediate

induction using (4.8), that

µ(B) ≤
∑
H∈H

|H ∩B|min
k∈H

µ(k).

This completes the proof.

Remark 4.1. [Graphical case] Let us consider the special case where H = (V ,H) is a

graph. Then, it is shown in Proposition 2 of [32] that the stability region of the model is

included in the set

NCOND(H) = {µ ∈M (V) : ∀I ∈ I(H), µ(I) < µ(E(I))} ,

where for any set B ⊂ V , E(B) = {j ∈ V : (i, j) ∈ H for some i ∈ B} . It is then easy to

check by hand that NCOND(H) is included in N ++
1 (H). Indeed, if we let µ ∈ NCOND(H)

and I ∈ I(H) (meaning that I is an independent set of the graphH, in the usual sense), then,
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4.1. NECESSARY CONDITIONS OF STABILITY

for any edge H ∈ H, |H ∩ I| = 1 if I contains a vertex of the edge H , and 0 else, so we get

that ∑
H∈H

|H ∩ I| min
j∈H∩Ī

µ(j) =
∑

(i,j)∈H : i∈I

µ(j) ≥
∑
j∈E(I)

µ(j) = µ(E(I)),

where the inequality above is an equality whenever each element of E(I) shares an edge

with a single element of I , and else a strong inequality. Thus µ ∈ N ++
1 (H). In fact, it is

necessarily the case that NCOND(H) ⊂ N1(H) because if it was not true, there would exist

in particular a µ ∈ N1(H) ∩ NCOND(H), making the system (H,ML, µ) unstable (in view

of Proposition 4.1) despite the fact that µ ∈ NCOND(H), a contradiction to Theorem 2 in

[32]. Observe however that NCOND(H) 6= N1(H) in general. To see this, consider the case

where H is the cycle of size 5, 1− 2− 3− 4− 5− 1. For a small enough ε > 0, set
µ(1) = 1

2
− 3ε

4
;

µ(2) = µ(5) = 1
4
− ε

8
;

µ(3) = 4ε
5

;

µ(4) = ε
5
.

It is then easily checked that µ ∈ N1(H). However µ 6∈ NCOND(H), since the independent

set I = {1, 3} is such that

µ(I) =
1

2
+

ε

20
>

1

2
− ε

20
= µ({2, 4, 5}) = µ(E(I)).

As a conclusion, if H is a graph the necessary condition “µ ∈ NCOND(H)” is stronger
than the necessary condition “µ ∈ N1(H)”.

Let us now define the following set of measures,

N2(H) =

{
µ ∈M (V) : ∀T ∈ T (H) , µ(T ) >

1

r(H)

}
.

We also have that

Proposition 4.2. For any connected hypergraph H and any admissible matching policy Φ,

STAB(H,Φ) ⊂ N2(H).

Proof. Suppose that there exists a transversal T ∈ T (H) such that µ(T ) ≤ 1
r(H)

. As each

match contains at least one element whose class is an element of T , at any time the overall

number of completed matches cannot exceed the number of arrivals of elements whose class

belongs to T , in other words Mn(H) ≤ An(T ) for all n. Thus, for all n we have that

Xn(V)

n
≥ 1

n
(An(V)− r(H)Mn(H)) ≥ 1

n
(An(V)− r(H)An(T )) .
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4.1. NECESSARY CONDITIONS OF STABILITY

Taking n to infinity in the above yields

lim sup
n

Xn(V)

n
≥ 1− r(H)µ(T ),

and we conclude as in the previous proof.

Remark 4.2. As an immediate consequence of Proposition 4.2, if H = (V ,H) is of order

q, and such that τ(H) ≤ q
r(H)

, then STAB(H,Φ) does not contain the uniform measure

µU = (1/q, ..., 1/q) on V , in other words the model (H,Φ, µU) is unstable for any Φ. Indeed,

for any minimal transversal T of H we have that

µU(T ) =
τ(H)

q
≤ 1

r(H)
.

We now introduce two necessary conditions of stability based on the anti-rank of the

considered hypergraph. We first introduce the following sets of measures,

N +
3 (H) =

{
µ ∈M (V) : ∀i ∈ V , µ(i) ≤ 1

a(H)

}
; (4.11)

N −
3 (H) =

{
µ ∈M (V) : ∀i ∈ V , µ(i) <

1

a(H)

}
. (4.12)

We have the following,

Proposition 4.3. For any connected hypergraph H = (V ,H) and any admissible policy Φ,

STAB(H,Φ) ⊂ N +
3 (H). (4.13)

If the hypergraph H = (V ,H) is r-uniform (i.e., a(H) = r(H) = r) we have that

STAB(H,Φ) ⊂ N −
3 (H). (4.14)

in other words the model (H,Φ, µ) cannot be stable unless µ(i) < 1/r for any i ∈ V .

Proof. To prove the first statement, we argue again by contradiction. Suppose that µ(i0) >
1

a(H)
for some node i0. As the functionR+ −→ R+

x 7−→ r(H)−a(H)+x
xa(H)

strictly decreases to 1
a
, there exists x0 > 0 such that

µ(i0) >
r(H)− a(H) + x0

x0a(H)
. (4.15)
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4.1. NECESSARY CONDITIONS OF STABILITY

Then, applying the inequality in (4.1) to B ≡ V \ {i0}, we readily obtain that a.s. for all n,

r(H) + x0

a(H)
An (V \ {i0})

≥ r(H) + x0

a(H)

 ∑
H∈H(i0)

|H − 1|Mn (H) +
∑

H∈H(i0)

|H|Mn (H)


≥
(
r(H) + x0 −

r(H) + x0

a(H)

)
Mn (H(i0)) + (r(H) + x0)Mn

(
H(i0)

)
.

(4.16)

Likewise, applying the equality of (4.1) to {i0} and then V \ {i0} also yields to

Xn (V \ {i0}) +

(
x0 + 1− r(H) + x0

a(H)

)
Xn(i0)

= An (V \ {i0})−
∑

H∈H(i0)

|H − 1|Mn (H)−
∑

H∈H(i0)

|H|Mn (H)

+

(
x0 + 1− r(H) + x0

a(H)

)
(An(i0)−Mn (H(i0)))

> An (V \ {i0}) +

(
x0 + 1− r(H) + x0

a(H)

)
An(i0)

−
(
r(H) + x0 −

r(H) + x0

a(H)

)
Mn(H(i0))− (r(H) + x0)Mn

(
H(i0)

)
.

Combining this with (4.16), implies that a.s. for all n,

Xn (V) +

(
x0 −

r(H) + x0

a(H)

)
Xn(i0) >

(
1− r(H) + x0

a(H)

)
An (V) + x0An(i0).

Therefore we have that

lim sup
n

1

n

(
Xn (V) +

(
x0 −

r(H) + x0

a(H)

)
Xn(i0)

)
≥ 1− r(H) + x0

a(H)
+ x0µ(i0), (4.17)

hence the chain {Wn; n ∈ N} is transient since the right-hand side of the above is positive

from (4.15).

It remains to check that in the case where the hypergraph is r-uniform, the model cannot

be stable whenever µ(i0) ≥ 1
a(H)

= 1
r

for some i0 ∈ V . For this, notice that, as r(H) =

a(H) = r a weak inequality holds true in (4.15) for any x0 > 0. Then, it readily follows

from (4.17) that for any x0,

lim sup
n

1

n

(
Xn (V) +

(
x0 −

r(H) + x0

a(H)

)
Xn(i0)

)
≥ 0,

and we conclude, as in the proof of Proposition 4.1, that the chain {Wn; n ∈ N} is at best

null recurrent.
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4.2. NON-STABILIZABLE HYPERGRAPHS

4.2 Non-stabilizable hypergraphs

Having Corollary 4.1, and Propositions 4.1, 4.2 and 4.3 in hand, one can identify classes of

hypergraphs H such that (H,Φ, µ) has an empty stability region for any admissible Φ.

We start with the following elementary observation,

Proposition 4.4. If a hyperedge of H = (V ,H) contains two isolated nodes, i.e., there exist

H ∈ H and i, j ∈ H such that d(i) = d(j) = 1, then the model cannot be stable, i.e.,

STAB(H,Φ) = ∅ for any admissible Φ.

Proof. Let µ ∈ N +
1 (H). Then, considering successively the sets {i} and {j}, as j ∈ H∩{̄i}

and i ∈ H ∩ ¯{j} we obtain that µ(i) < µ(j) and µ(i) > µ(j), an absurdity.

i

j

H

Figure 4.1: Any hypergraph with two isolated nodes is non-stabilizable.

4.2.1 Stars

First recall that, as for any bipartite graph (see Theorem 2 in [32]), graphical matching

models on trees are always unstable. This is true in particular if the matching graph is a

“star”, i.e., a connected graph in which all but one vertices are of degree one. The following

two results can be seen as generalizations of this fact to hypergraphical models,

Proposition 4.5. If an r-uniform hypergraph H = (V ,H) has transversal number τ(H) =

1, then it is non-stabilizable.

Proof. Fix Φ and µ in STAB(H,Φ). Let T be a transversal of cardinality 1, i.e., T = {i0},
where the vertex i0 belongs to all hyperedges inH. Then from Proposition 4.3, we have that

µ(i0) < 1/a(H) = 1/r. However, Proposition 4.2 implies that µ(i0) > 1/r(H) = 1/r, an

absurdity.

In other words, any uniform hypergraph whose hyperedges all contain the same node i0
cannot make the corresponding system stable. Moreover,

Proposition 4.6. Suppose that there exists a subset B ⊂ V in the hypergraph H = (V ,H)

such that:
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4.2. NON-STABILIZABLE HYPERGRAPHS

• all hyperedges ofH(B) contain at least one node of degree 1;

• at least one of these nodes of degree 1 lies outside of B.

Then H is non-stabilizable.

Proof. Let k = |H(B)|, i.e., the number of hyperedges intersecting with B. Denote by

H1, ..., Hk these intersecting hyperedges, and for any l ∈ J1, kK, by il ∈ V , a node of degree

one belonging to Hl. Observe that the nodes i1, ..., ik are not necessarily distinct. On the

one hand, for any l ∈ J1, kK we have that

Xn(il) = An(il)−Mn(Hl).

Thus, applying again the inequality in (4.1) we get that for all n,

An(B) ≥
k∑
l=1

|Hl ∩B|Mn(Hl) =
k∑
l=1

|Hl ∩B|(An(il)−Xn(il)).

This entails that if µ ∈ N ++
1 (H),

lim sup
n→∞

1

n

k∑
l=1

|Hl ∩B|Xn(il) ≥
k∑
l=1

|Hl ∩B|µ(il)− µ(B) ≥ 0.

If the above inequality is strong, then the chain {Wn; n ∈ N} is transient. If the inequality

is weak, then as above we can stochastically lower-bound the chain by a zero-drift chain{
Ỹn; n ∈ N

}
, defined by

Ỹn =

(
An(B) −

k∑
l=1

|Hl ∩B|An(il)

)
, n ∈ N,

which is not identically null from the assumption that at least one of the nodes il, l = 1, ..., k

is not an element of B, which concludes the proof.

Example 4.1. Any hypergraphH = (V ,H) such that there exist two hyperedges H1 and H2

with H1 ∩ H2 6= ∅ and two nodes i1 ∈ H1 ∩ H2, i2 ∈ H2 ∩ H1 and d (i1) = d (i2) = 1 is

non-stabilizable (see Figure 4.2). To see this, take B = H1 ∩H2 in Proposition 4.6.

Remark 4.3 (About the DI condition in [20]). Most results of [20] hold under the As-

sumption 1 therein, stating that the Dedicated Item DI condition is satisfied; namely, each

hyperedge contains an isolated node. The above example shows that any matching model

(H,Φ, µ) on a hypergraph H satisfying the DI condition, is unstable for any admissible Φ

(the case where H contains a single hyperedge H is trivial).
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4.2. NON-STABILIZABLE HYPERGRAPHS

i1

i2
H2

H1

Figure 4.2: Two intersecting hyperedges containing each, an isolated node outside of their

intersection, make the system unstable.

4.2.2 r-partite hypergraphs

We now turn to hypergraphical generalizations of bipartite graphs.

Proposition 4.7. Any r-uniform bipartite hypergraph H = (V ,H) is non-stabilizable.

Proof. Applying (4.1) successively to V1 and V2 readily implies that for all n,

Xn(V1) = An(V1)−Mn(H) ≥ 0 and Xn(V2) = An(V2)− (r − 1)Mn(H) ≥ 0,

and thus

Xn(V1) ≥ An(V1)− 1

r − 1
An(V2).

Then, the usual SLLN-based argument implies that the model cannot be stable unless µ(V2) ≥
(r − 1)µ(V1). But as µ(V1) + µ(V2) = 1 we have that µ(V1) ≤ 1

r
, hence µ 6∈ N2(H) since

V1 is a transversal.

1

2

4
6

5

3

7

Figure 4.3: The Fano plane minus the hyperedge {4, 5, 7}.

Example 4.2. The so-called Fano plane is a well-known object in discrete geometry. It

is the smallest projective plane, namely, the smallest set of points and lines such that any
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4.2. NON-STABILIZABLE HYPERGRAPHS

two points share a line, any two lines intersect at a single point, and on every line lies the

same number of points. In the settings of hypergraphs (points being nodes and lines being

hyperedges), the Fano plane is thus the smallest uniform hypergraph H in which each pair

of nodes belongs to a single hyperedge, and each pair of hyperedges intersects at a single

node. It can be checked that H = (V ,H) is of order 7, for V = J1, 7K and e.g.

H = {{1, 2, 4}, {1, 5, 6}, {1, 3, 7}, {2, 3, 5}, {4, 5, 7}, {4, 3, 6}, {6, 2, 7}} .

Supported by simulations, we conjecture that Fano planes are stabilizable. However, ifH′ =
(V ,H′) is the subhypergraph defined by H′ = H\H , where H is an arbitrary hyperedge of

H, then it is easily seen that H′ is a 3-uniform bipartite hypergraph with V1 = H and

V2 = V\H . So we deduce from Proposition 4.7 that H′ is non-stabilizable. A Fano plane

minus the hyperedge {4, 5, 7} is represented in Figure 4.3.

We know from Theorem 2 in [32] that bipartite graphs are not stabilizable. The next

result shows that this can be generalized to r-partite hypergraphs (which generalize bipartite

graphs - see Remark 1.2),

Proposition 4.8. Any r-partite hypergraph H is non-stabilizable.

Proof. As in the above proof we get that for any i 6= j and any n,

Xn(Vj) = An(Vj)−Mn(H) ≥ 0 and Xn(Vi) = An(Vi)−Mn(H) ≥ 0,

implying thatXn(Vi) ≥ An(Vi)−An(Vj), and in turn, that the model cannot be stable unless

µ(Vi) ≤ µ(Vj). By symmetry, this implies that µ(Vi) = µ(Vj). As the Vi’s are disjoint, we

thus have that µ(Vi) = 1/r for all i. Thus, as any Vi is a transversal ofH, µ is not an element

of N2(H).

It is well known (see [24] for the particular case of graphs, and the general result in [23])

that Hall’s condition is necessary and sufficient for the existence of a perfect matching onH,

i.e., a spanning subhypergraph of H in which all nodes have degree 1, in the case where the

hypergraph is balanced, i.e., it does not contain any odd strong cycle. It is intuitively clear

that the construction of stable stochastic matching models on hypergraphs is somewhat rem-

iniscent of that of perfect matchings on a growing hypergraph that replicates the matching

hypergraph a large number of times in the long run (in the case of graphs, see the discussion

in Section 7 of [37]). This connexion has a simple illustration in the next Proposition, which

provides a family of probability measures, naturally including the uniform measure on V ,

that cannot stabilize a matching model on the hypergraph H unless the latter satisfies Hall’s

condition. In what follows we denote for any H = (V ,H) and any measure µ ∈M (V),

µmin = min {µ(i) : i ∈ V} and µmax = max {µ(i) : i ∈ V} . (4.18)
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Proposition 4.9. For any hypergraphH = (V ,H) that violates Hall’s condition, any match-

ing policy Φ and any µ ∈M (V) such that

µmin

µmax
>

⌊
q(H)+1

2

⌋
− 1⌊

q(H)+1
2

⌋ , (4.19)

the model (H,Φ, µ) is unstable. In particular, (H,Φ, µU) is unstable for µU the uniform

distribution on V .

Proof. Fix H, Φ, and a measure µ satisfying (4.19). We first show that µ is monotonic with

respect to the counting measure on V , i.e.,

∀E,F ⊂ V , |E| < |F | =⇒ µ(E) < µ(F ). (4.20)

Let E and F be such that |E| < |F |, and let k = |F |. Let also α be a bijection from

J1, q(H)K to V such that

µmin = µ(α(1)) ≤ µ(α(2)) ≤ ... ≤ µ(α(q(H))) = µmax, (4.21)

in other words (µ(α(1)), µ(α(2)), ..., µ(α(q(H)))) is an ordered (in increasing order) ver-

sion of the family {µ(i); i ∈ V}. As |E| ≤ k − 1 we clearly have

µ(F )− µ(E) ≥
k∑
i=1

µ(α(i))−
q∑

i=q−k+2

µ(α(i)). (4.22)

First, if k ≤
⌊
q(H)+1

2

⌋
, (4.19) entails that kµmin > (k − 1)µmax, whence

k∑
i=1

µ(α(i))−
q∑

i=q−k+2

µ(α(i)) ≥ kµmin − (k − 1)µmax > 0, (4.23)

If k >
⌊
q(H)+1

2

⌋
, then the index sets J1, kK and Jq− k+ 2, qK intersect precisely on Jq− k+

2, kK. Thus

k∑
i=1

µ(α(i))−
q∑

i=q−k+2

µ(α(i)) =

q−k+1∑
i=1

µ(α(i))−
q∑

i=k+1

µ(α(i))

≥ (q − k + 1)µmin − (q − k)µmax > 0, (4.24)

where the last inequality follows, as in (4.23), from the fact that q − k + 1 ≤
⌊
q(H)+1

2

⌋
.

Gathering (4.22) with (4.23-4.24) concludes the proof of (4.20) in all cases.
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Now fix V2 and V1 such that |H ∩ V2| ≥ |H ∩ V1| for any H ∈ H, and |V2| < |V1| which

from (4.20), implies that µ(V2) < µ(V1). Then, applying again (4.1) to V2 and V1 we get

that

Xn(V2) +Xn(V1) ≥ An(V2) + An(V1)− 2
∑
H∈H

|H ∩ V2|Mn(H)

≥ An(V2) + An(V1)− 2An(V2),

thus, from the usual argument, the model cannot be stable unless µ(V2) ≥ µ(V1), a contra-

diction.

4.2.3 Cycles

Proposition 4.10. Any r-uniform `-cycle of order q such that r divides q, is non-stabilizable.

Proof. The partition V1, V2, · · · , Vr of V defined by

Vi =
{
vi+(j−1)r ; j ∈ J1, q/rK

}
,

satisfies Proposition 4.8.

Figure 1.6 shows a 3-uniform 2-cycle of order 12 and 3-uniform 2-cycle of order 6.

4.3 Stable systems

We show hereafter that stable matching models on hypergraphs exist. With a view to show-

ing how stability can be shown in concrete examples, we provide hereafter two case studies

of simple hypergraphs, on which a stable stochastic matching model can be defined: com-

plete 3-uniform hypergraphs, and subhypergraphs of the latter where several hyperedges are

erased.

4.3.1 Complete 3-uniform hypergraphs

We first consider the case of a complete 3-uniform hypergraph H, an example of which

for q(H) = 4 is represented in Figure 1.4 (left). We show that, in this case, the necessary

condition given in Proposition 4.3 is also sufficient,

Theorem 4.1. Let H = (V ,H) be a complete 3-uniform hypergraph of order q(H) ≥ 4.

Then, for any admissible policy Φ we have,

STAB(H,Φ) = N −
3 (H),

that is, the model (H,Φ, µ) is stable if and only if µ(i) < 1/3 for any i ∈ V .
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Proof. Necessity of the condition being shown in Proposition 4.3, only the sufficiency

remains to be proven. Suppose that µ(i) < 1/3 for any i ∈ V , and fix α such that

maxi∈V µ(i) < α < 1/3. Define the planar Markov chain {Uα
n ; n ∈ N} having the fol-

lowing transitions on N2,

First axis: Pα
(x,0),(x+1,0) = α, x ∈ N+,

Pα
(x,0),(x,1) = 1− α, x ∈ N+,

Second axis: Pα
(0,y),(0,y+1) = α, y ∈ N+,

Pα
(0,y),(1,y) = 1− α, y ∈ N+,

Interior: Pα
(x,y),(x+1,y) = α, x, y ∈ N+,

Pα
(x,y),(x,y+1) = α, x, y ∈ N+,

Pα
(x,y),(x−1,y−1) = 1− 2α, x, y ∈ N+,

and arbitrary transitions from (0, 0) to any element of N2. (These transitions are represented

in Figure 4.4 below).

α

1− α

α

α

1− 2α
1− α

α

Figure 4.4: Auxiliary Markov chain of the complete 3-uniform hypergraph.

Denote by ∆ = (∆x,∆y), ∆′ = (∆′x,∆
′
y) and ∆′′ = (∆′′x,∆

′′
y), the mean (horizontal

and vertical) drifts of the chain {Uα
n ; n ∈ N}, respectively on the interior, on the first and on

the second axis, in a way that
First axis: ∆′x = α, ∆′y = 1− α;

Second axis: ∆′′x = 1− α, ∆′′y = α;

Interior: ∆x = 3α− 1, ∆y = 3α− 1.

Thus, ∆x < 0 and ∆y < 0. Also, we have that

∆x∆
′
y −∆y∆

′
x = ∆x∆

′′
y −∆y∆

′′
x = (3α− 1)(1− 2α) < 0,

so we can apply Theorem 1.2, part (a), to claim that the Markov chain {Uα
n } is positive

recurrent. Specifically, it can be checked that, setting u = 1−3α
2

> 0, for any w such that
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3α− 1 < w < (3α−1)α
1−α < 0 we have that



2u∆x + w∆y < 0,

2u∆y + w∆x < 0,

2u∆′x + w∆′y < 0,

2u∆′′y + w∆x < 0.

(4.25)

Second, as 4u2 > w2 the quadratic form Q : (x, y) 7→ ux2 + uy2 +wxy is positive definite.

Then, in view of Lemma 1.1, it follows from (4.25) that, defining the mapping

Lα :

N2 −→ R+

(x, y) 7−→
√
Q(x, y) =

√
ux2 + uy2 + wxy,

we have that for some compact set Kα ⊂ N2, for any (x, y) ∈ Kα,

E
[
Lα
(
Uα
n+1

)
− Lα(Uα

n ) | Uα
n = (x, y)

]
< 0. (4.26)

Now, as H is complete 3-uniform, the states of the Markov chain {Xn; n ∈ N} have at

most two non-zero coordinates, in other words, its state space is

E =
{

x = (x1, ..., xq) ∈ Nq : xixjxk = 0 for any distinct i, j, k ∈ J1, qK
}
.

Define the mapping

L :


E −→ R+

x 7−→


0 if x = 0,

Lα((x, 0)) if x = x.ei, for some x > 0, i ∈ V ,
Lα((x, y)) if x = x.ei + y.ej , for some x, y > 0, i 6= j,

where the above definition is unambiguous due to the fact that Lα is a symmetric form on

N2. Also define the compact set

K = {x := x.ei + y.ej ∈ E : (x, y) ∈ Kα} .

Then, first, if x ∈ K̄ ∩ E is such that x = x.ei + y.ej for some x, y > 0 and i, j ∈ V , i 6= j,
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we get that

E [L (Xn+1)− L(Xn) | Xn = x]

= (1− µ(i)− µ(j)) (L (x− ei − ej)− L(x))

+ µ(i) (L (x + ei)− L(x)) + µ(j) (L (x + ej)− L(x))

= (1− µ(i)− µ(j)) (Lα (x− 1, y − 1)− Lα(x, y))

+ µ(i) (Lα (x+ 1, y)− Lα(x, y)) + µ(j) (Lα (x, y + 1)− Lα(x, y))

< (1− 2α) (Lα (x− 1, y − 1)− Lα(x, y))

+ α (Lα (x+ 1, y)− Lα(x, y)) + α (Lα (x, y + 1)− Lα(x, y))

= E
[
Lα
(
Uα
n+1

)
− Lα(Uα

n ) | Uα
n = (x, y)

]
,

where, in the inequality above, we used the facts that Lα is non-decreasing in its first and

second variables, and such that Lα (x− 1, y − 1)<Lα(x, y). Likewise, if x ∈ K̄∩E is such

that x = x.ei for some x > 0 and i ∈ V , we have that

E [L (Xn+1)− L(Xn) | Xn = x]

=
∑
j 6=i

µ(j) (L (x + ej)− L(x)) + µ(i) (L (x + ei)− L(x))

= (1− µ(i)) (Lα (x, 1)− Lα(x, 0)) + µ(i) (Lα (x+ 1, 0)− Lα(x, 0))

< (1− α) (Lα (x, 1)− Lα(x, 0)) + α (Lα (x+ 1, 0)− Lα(x, 0))

= E
[
Lα
(
Uα
n+1

)
− Lα(Uα

n ) | Uα
n = (x, 0)

]
,

remarking that Lα(x, 1)<Lα(x, 0). Recalling that Xn = [Wn] for all n, using (4.26) in both

cases, we conclude using the Lyapunov-Foster Theorem 1.1 that the chain {Wn; n ∈ N} is

positive recurrent.

The complete 3-uniform k-partite hypergraphs generalize the complete k-partite graphs

introduced in p.4 of [35], also called separable graphs in [32] and [37] - or blow-ups of

the complete graph of order k in some other references. Roughly speaking, a complete 3-

uniform k-partite hypergraph is a version of the complete 3-uniform hypergraph of order

k, in which the k nodes are replicated into several replicas, each of the k sets of replicas

forming an independent set Ii, such that all replicas of the same set do not share any hy-

peredge with each other, but all share hyperedges of size 3 with all other pairs of replicas

belonging to two different other sets of replicas. Observe that in the particular case where

all the sets I1, ..., Ik are of cardinality 1 (i.e., there are no replica), the complete 3-uniform

k-partite hypergraph is just the complete 3-uniform hypergraph of order k. We can then

easily generalize the latter result,
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Corollary 4.2. For k ≥ 4, let H̃ be a complete 3-uniform k-partite hypergraph, and let

I1, ..., Ik be the corresponding partition into independent sets. Then, for any admissible

policy Φ, the model (H̃, Φ̃, µ̃) is stable if and only if µ̃(Ii) < 1/3 for any i ∈ J1, kK.

Proof. The system has macroscopically (i.e., if we do not distinguish between items of

classes that belong to the same independent set of the partition I1, ..., Ik) the same behavior

as the complete 3-uniform hypergraph. Specifically, let q be the order of the hypergraph H̃,

and define the mapping

Ψ :

{
Nq −→ Nk

x̃ = (x̃1, ..., x̃q) 7−→ x = (x1, ..., xk) : ∀i ∈ J1, kK, xi =
∑

j∈J1,qK; j∈Ii x̃i.

In words, Ψ maps the detailed class content of the model, onto a class content where one

puts altogether all the elements of classes belonging to the same independent set of the

partition I1, ..., Ik. Take L as the Lyapunov function introduced in the previous proof. Fix

an admissible policy Φ̃ and a probability measure µ̃ ∈ M (Ṽ), and let
{
X̃n; n ∈ N

}
be

the class-content process of the model (H̃, Φ̃, µ̃). On another hand, let {Xn; n ∈ N} be the

class-content process of the model (H,Φ, µ) defined onH = (V ,H) the complete 3-uniform

hypergraph of order k, for an arbitrary matching policy Φ and a probability measure µ ∈
M (V) such that µ(i) = µ̃(Ii) for any i ∈ J1, kK. Then, it is easily seen that

{
X̃n; n ∈ N

}
and {Xn; n ∈ N} are connected by the following relation: for all n and all x̃ ∈ Nq,

E
[
L ◦Ψ

(
X̃n+1

)
− L ◦Ψ(X̃n) | X̃n = x̃

]
= E [L (Xn+1)− L(Xn) | Xn = Ψ(x̃)] ,

and the argument in the proof of Theorem 4.1 shows that the Markov chain
{
X̃n; n ∈ N

}
is positive recurrent whenever µ̃(i) < 1/3, that is, µ(Ii) < 1/3, for all i ∈ J1, kK. This

concludes the proof.

4.3.2 Incomplete 3-uniform hypergraphs

As is shown in Theorem 4.1 and Corollary 4.2, complete 3-uniform hypergraphs and com-

plete 3-uniform k-partite hypergraphs are stabilizable for all matching policy Φ, for a large

class of measures. We show hereafter that incomplete hypergraphs (in the sense defined

hereafter) can also be stabilizable for a matching policy ML,

Theorem 4.2. Let H = (V ,H) be a complete 3-uniform hypergraph of order q ≥ 5, and

let H′ = (V ,H′) be the (3-uniform) subhypergraph of H obtained by setting H′ = H\J ,

where J is a subset ofH containing disjoint hyperedges. Let J be the union of the elements

of J . Then the model (H′,ML, µ) is stable for any µ in

S (H′) =

{
µ ∈M (V) :

(
max
i∈J

λi(µ) ∨max
i∈J̄

νi(µ)

)
< 0

}
∩N2(H′) ∩N −

3 (H′),
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where the λi(µ) : i ∈ J and νi(µ) : i ∈ J̄ are defined respectively by (4.28) and (4.29).

Proof. Fix Φ = ML, and let µ ∈ S (H′). For such H′ the study of {Yn; n ∈ N} does

not boil down to that of a planar Markov chain. Instead, we study the embedded chain

{Yn; n ∈ N} = {X4n; n ∈ N}, and consider the following quadratic Lyapunov function,

Q :

{
Nq −→ R+

x 7−→
∑q

i=1(xi)
2.

Fix n ∈ N. We have the following alternatives given the value of the embedded chain

{Yn; n ∈ N} at time n,

(i) First, for any i ∈ J , and any integer xi ≥ 2. It follows that for any j 6= k 6= ` 6= m 6=
i ∈ V , the chain {Yn; n ∈ N} makes the transitions that we will present in Appendix (7.10)

from state Yn = xi.ei, then we deduce that

∆i := E [Q (Yn+1)−Q (Yn) |Yn = xi.ei]

= (8xi + 16)µ(i)4 + 4(6xi + 10)µ(i)3
∑
j

µ(j) + 6(4xi + 8)µ(i)2
∑
j

µ(j)2

+ 4(2xi + 10)µ(i)
∑
j

µ(j)3 + 16
∑
j

µ(j)4 + 12(2xi + 1)µ(i)2
∑
j,k

µ(j)µ(k)

+ 12µ(i)
∑
j,k

µ(j)2µ(k)− 10(4xi + 4)
∑
j,k,`

µ(j)2µ(k)µ(`)

− 2(2xi + 5)
∑
j,k,`

µ(j)2µ(k)µ(`)− 6(4xi + 4)
∑
j,k

µ(j)2µ(k)2

− 4(2xi + 5)
∑
j,k

µ(j)3µ(k) + 24µ(i)
∑
j,k

µ(j)µ(k)µ(`)

− 24(4xi + 4)
∑
j,k,`,m

µ(j)µ(k)µ(`)µ(m) = λi(µ)xi + βi(µ),

(4.27)

for some bounded βi(µ), and for

λi(µ) = 8µ4(i) + 24µ3(i)
∑
j 6=i

µ(j) + 24µ2(i)
∑
j 6=i

µ2(j)

+ 8µ(i)
∑
j 6=i

µ3(j) + 24µ2(i)
∑
j,k 6=i

µ(j)µ(k)− 44
∑
j,k,` 6=i

µ2(j)µ(k)µ(`)

− 24
∑
j,k 6=i

µ2(j)µ2(k)− 8
∑
j,k 6=i

µ(j)µ3(k)− 96
∑

j,k,`,m 6=i

µ(j)µ(k)µ(`)µ(m). (4.28)

Consequently, as the above is negative, there exists a∗1 such that ∆i < 0 whenever xi ≥ a∗1.

(ii) For any i ∈ J , and any integer xi ≥ 2, the transitions of {Yn; n ∈ N} from the state

xi.ei can be retrieved in a similar fashion to (7.10). It follows that for any j 6= k 6= ` 6= m 6=
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p 6= s 6= i ∈ V . Set H = {i, j, k} ⊂ J , the transitions that will present in the Appendix

(7.11), then we deduce that ∆′i = νi(µ)xi + β′i(µ) for some bounded β′i(µ) (see Appendix

(7.12)), and setting H = {i, j, k} as the only element of J such that i ∈ H , we obtain that

νi(µ) = 8µ4(i) + 24µ3(i)
∑

`∈V\{i}

µ(`) + 24µ2(i)
∑

`∈V\{i}

µ2(`) + 8µ(i)
∑

`∈V\{i}

µ3(`)

− 8
∑
`∈H

µ(j)µ3(`)− 4
∑
`∈H:

ends with kk

µ(j)µ2(k)µ(`)− 20
∑
`∈H:

otherwise

µ(j)µ2(k)µ(`)

− 48µ(j)µ(k)
∑
`∈H

µ2(`)− 4
∑
`∈H:

ends with ``

µ(j)µ2(`)µ(m)− 40
∑
`∈H:

otherwise

µ(j)µ2(`)µ(m)

+ 48µ2(i)µ(j)µ(k)− 8µ(j)µ(k)
∑

`,m∈H:
ends with jk

µ(`)µ(m) − 80µ(j)µ(k)
∑

`,m∈H:
otherwise

µ(`)µ(m)

−96
∑
`,m∈H

µ(j)µ(`)µ(m)µ(p)+24µ2(i)
∑
`∈H

µ(j)µ(`)+24µ2(i)
∑
`,m∈H

µ(`)µ(m)

− 24
∑
`∈H

µ2(j)µ2(`)− 4
∑
`∈H:

ends with jj

µ2(j)µ(`)µ(m)− 40
∑
`∈H:

otherwise

µ2(j)µ(`)µ(m)

− 8
∑
`∈H

µ3(j)µ(`) + 24µ(i)
∑
j,k∈H

µ(j)µ2(k)− 8
∑
`,m∈H

µ3(`)µ(m)− 24
∑
`,m∈H

µ2(`)µ2(m)

−4
∑

`,m,p∈H:
ends with ``

µ2(`)µ(m)µ(p)−40
∑

`,m,p∈H:
otherwise

µ2(`)µ(m)µ(p)−96
∑

`,m,p,s∈H

µ(`)µ(m)µ(p)µ(s).

(4.29)

Thus, there exists a∗2 such that ∆′i < 0 whenever xi ≥ a∗2.

(iii) For any i 6= j such that {i, j} is not included in a hyperedge of the family J , for

any integers xi, xj > 0, we obtain that

∆ij := E [Q (Xn+1)−Q (Xn) |Xn = xi.ei + xj.ej] = λij(µ)xi + λji(µ)xj + βij(µ),

for a bounded βij(µ), and for

λij(µ) = 2
(
µ(i)−

∑
`∈V\{i,j}

µ(`)
)

and λji(µ) = 2
(
µ(j)−

∑
`∈V\{i,j}

µ(`)
)
. (4.30)

Now observe that V\{i, j} ∈ T (H), so
∑

`∈V\{i,j}
µ(`) >

1

3
, then λij(µ) < 0 and λji(µ) < 0.

Thus there exists a∗3 such that ∆ij < 0 whenever xi ∨ xj ≥ a∗3.

(iv) For any i, j such that i 6= j and {i, j} ⊂ H for some H ∈ J , for any integers

xi, xj > 0, we obtain that

∆′ij := E [Q (Xn+1)−Q (Xn) |Xn = xi.ei + xj.ej] = νij(µ)xi + νji(µ)xj + β′ij(µ)
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for a bounded β′ij(µ) and

νij(µ) = 2
(
µ(i)−

∑
`∈H

µ(`)
)

and νji(µ) = 2
(
µ(j)−

∑
`∈H

µ(`)
)
. (4.31)

As H ∈ T (H), so
∑
`∈H

µ(`) >
1

3
, then νij(µ) < 0 and νji(µ) < 0.

Again, there exists a∗4 such that ∆′ij < 0 whenever xi ∨ xj ≥ a∗4.

(v) We finally consider the case where Xn = xi.ei + xj.ej + xk.ek for H = {i, j, k}, for

some H ∈ J , and integers xi, xj and xk such that xi, xj ≥ xk > 0.

∆H := E [Q (Xn+1)−Q (Xn) |Xn = xi.ei + xj.ej + xk.ek]

= αi(µ)xi + αj(µ)xj + αk(µ)xk + βH(µ),

for a bounded βH(µ), and for

αi(µ) = 2
(
µ(i)−

∑
`∈H

µ(`)
)
, αj(µ) = 2

(
µ(j)−

∑
`∈H

µ(`)
)

and αk(µ) = 2µ(k). (4.32)

As H ∈ T (H), so αi(µ) < 0 and αj(µ) < 0. From this, we deduce as above the existence

of an integer a∗5 such that ∆H < 0 whenever xi ∨ xj ≥ a∗5.

To conclude, if we let K be the finite set

K =
{

x ∈ E : xi ≤ max
(
a∗1, ..., a

∗
5, 2
)

; i ∈ V
}
,

then if follows from the above arguments that for any x ∈ E ∩ K̄ and any n ∈ N,

E [Q (Yn+1)−Q (Yn) |Yn = x] < 0.

We deduce from Lyapunov-Foster Theorem 1.1 that the chain {Yn; n ∈ N} is positive re-

current. This is the case in turn for the chain {Xn; n ∈ N}.

Remark 4.4. Observe that the only incomplete (in the sense of Theorem 4.2) 3-uniform

hypergraph of order 4 would be obtained from the complete one by deleting only one hy-

peredge. However, as easily seen the transversal number of the resulting hypergraph is 1, so

the latter is non-stabilizable from Proposition 4.5.

In the following examples we show how the stability can be shown for various incom-

plete 3-uniform hypergraphs using Theorem 4.2,

Corollary 4.3. Consider an incomplete 3-uniform hypergraphH′ satisfying the assumptions

of Theorem 4.2. Recall (4.18), and define the sets

A (H′) :=

{
µ ∈M (V) :

µmax

µmin
<

(
2q4 − 9q3 + 12q2 − 13q + 12

6q2 + 10q + 24

)1/4}
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Figure 4.5: The curve of the function f(x) =

(
2x4 − 9x3 + 12x2 − 13x+ 12

6x2 + 10x+ 24

) 1
4

.

and

S1(H′) := A (H′) ∩ N2(H′) ∩N −
3 (H′).

Then the model (H′,ML, µ) is stable for any µ ∈ S1(H′).

Proof. Recalling (4.28) and (4.29), a simple algebra shows that

A (H′) ⊂
{
µ ∈M (V) :

(
max
i∈J

λi(µ) ∨max
i∈J̄

νi(µ)

)
< 0

}
,

thus S1(H′) ⊂ S (H′).

Example 4.3. Observe that for any such H′ = (V ,H′) satisfying the assumptions of Theo-

rem 4.2, the model (H′,ML, µU) is stable for µU the uniform distribution on V . Indeed, we

have µU ∈ S1(H′). To see this, first observe that ∀q ≥ 5, 2q4−9q3+12q2−13q+12
6q2+10q+24

> 1, see Fig-

ure 4.5. Moreover, it is immediate that µU ∈ N −
3 (H′). It remains to show that µU ∈ N2(H′).

We proceed in three steps. First, for q = 5 the only incomplete 3-uniform hypergraph in the

sense of Theorem 4.2 is the complete hypergraph on J1, 5K minus one vertex, say {1, 2, 3}.
It is then easily seen that {4, 5} is the only minimal transversal of H′. So τ(H′) = 2, in a

way that for all T ′ ∈ T (H′), µU(T ′) ≥ 2/5 > 1/3, showing that µU ∈ N2(H′).

Now, if q = 6 there are two incomplete 3-uniform hypergraph in the sense of Theorem

4.2: the complete 3-uniform hypergraph on J1, 6K minus one hyperedge, say {1, 2, 3}; and

the complete 3-uniform hypergraph on J1, 6K minus two disjoint hyperedges, say {1, 2, 3}
and {4, 5, 6}. In both cases, {4, 5, 6} is a minimal transversal of H′, thus τ(H′) = 3, and so

µU(T ′) ≥ 3/6 > 1/3, for all T ′ ∈ T (H), proving again that µU ∈ N2(H′).

We now address the case where q > 6. First observe that

q − 2−
⌊q

3

⌋
>
q

3
. (4.33)
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Then, let p = |J | (using the notation of Theorem 4.2), and denote J = {H1, ..., Hp}. It is

easily seen that a transversal of H can be constructed from any minimal transversal of H′,
by induction, as follows:

• Take a minimal transversal T ′ of H′, and setH0 := H′ and T0 := T ′.

• For any i = 1, ..., p, set Hi = Hi−1 ∪ {Hi} and set Ti, a transversal of (V ,Hi) of

minimal size among those including Ti−1. (Ti necessarily exists since Ti−1 ∪ {Hi} is

a transversal of (V ,Hi), as easily seen by induction.)

• We obtainH = Hp by construction, and T := Tp is a transversal of H.

We claim that

|T | ≤ |T ′|+ p. (4.34)

To see this, observe that for any i = 1, ..., p we have the following alternative: either Hi ∩
Ti−1 = ∅, in which case we can take Ti of the form Ti−1∪{k} for any k ∈ Hi, orHi∩Ti−1 6=
∅, in which case Ti = Ti−1. In all cases we have that |Ti| ≤ |Ti−1| + 1, and (4.34) follows

by induction. Observing that |T | ≥ τ(H) = q − 2, that, as the Hi’s are disjoint, p ≤ b q
3
c,

and using (4.33) and (4.34), we finally obtain that

µU(T ′) =
|T ′|
q
≥ |T | − p

q
>

1

3
,

hence, once again µU ∈ N2(H′).

To conclude, µU is in all cases, an element of S1(H′), implying that the model (H′,ML, µU)

is stable for all such H′.

4.4 Discussion of results and conclusion

In this chapter, we have studied a generalization of stochastic matching models on graphs,

by allowing the matching structure to be a hypergraph. This class of models appears to have

a wide range of applications in operations management, healthcare, and assemble-to-order

systems. After formally introducing the model, we have proposed a simple Markovian repre-

sentation, under IID assumptions. We have then addressed the general question of stochastic

stability, viewed as the positive recurrence of the underlying Markov chain. For this class of

systems, solving this elementary and central question turns out to be an intricate problem.

As the results of Sections 4.1 and 4.2 demonstrate, stochastic matching models on hyper-

graphs are in general, difficult to stabilize. Unlike the GM on graphs, the non-emptiness of

the stability region with matching models on hypergraphs depends on a collection of con-

ditions in the geometry of the compatibility hypergraph: rank, anti-rank, degree, size of the
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transversals, existence of cycles, and so on.

Nevertheless, we show in Section 4.3 that the “house” of stable systems is not empty, but

shelters models on various uniform hypergraphs that are complete, or complete up to a par-

tition of their nodes (which is a reasonable assumption regarding kidney exchange programs

with 3-cycles, in which case, according to the compatibility of blood types and immunolog-

ical characteristics, most but not all hyperedges of size 3 appear in the compatibility graph).

We provide the exact stability region of the system in the first case, and a lower bound in the

second. For this, we resort to ad-hoc multi-dimensional Lyapunov techniques.
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Chapter 5

Multigraphs

Introduction

In this chapter we provide a further extension of the previous chapter, we introduced a new

stochastic matching model on hypergraph, that generalizes the GM model, then we provide

the necessary conditions of stability for the present model, and we precise the stability region

in particular cases of GM model. Such as among dating websites and peer-to-peer interfaces

it is possible to assume that the items of the same class can be matched together. Hence the

need to consider matching models on compatibility matching structures that are multigraph

rather than just a graph or hypergraph, i.e., an architecture of graph admitting self-loops that

is, edges with permission to connect to themself. En route, by showing results for stochastic

matching models on multigraphs, we show various results that have their inner interest for

GM models on graphs - see in particular Propositions 5.1 and 5.3.

This stochastic matching model addressed in this chapter is formally defined as follows:

items enter the system by single arrivals, and get matched by groups of 2 or possibly matched

to itself in case that there exists self-loops, following compatibilities that are represented by a

given multigraph. A matching policy determines the matchings to be executed in the case of

a multiple-choice, and the unmatched items are stored in a buffer, waiting for a future match.

This chapter is organized as follows: In Section 5.1, we present our main results for

GM models on multigraphs, among which, the maximality and the explicit product form of

the stationary probability for the FCFM policy, and the maximality of Max-Weight policies.

To illustrate these results, several examples are presented in Section 5.2. The proofs of our

main results are then presented in Sections 5.3, 5.4 and 5.5.
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5.1 Main results

We now state the main results of this chapter. Similarly to [32], we will be led to consider

the set

NCOND(G) = {µ ∈M (V) : ∀ I ∈ I(G), µ (I) < µ (E (I))} . (5.1)

Let us immediately observe that

Lemma 5.1. For any connected multigraph G, we have that

NCOND
(
Ǧ
)
⊆ NCOND(G).

Where Ǧ = (V , Ě) is the maximal subgraph of G (see Definition 1.13).

Proof. The result simply follows from the obvious facts that I(G) ⊂ I
(
Ǧ
)

and that, for any

I ∈ I(G), E(I) = Ě(I), since I ⊂ V2.

It is stated in Theorem 1 of [32] that, if G is a graph, the set NCOND(G) is non-empty if

and only if G is not a bipartite graph. This result can be generalized to multigraphs:

Proposition 5.1. For any connected multigraph G, we have that

NCOND(G) = ∅ ⇐⇒ G is a bipartite graph.

Proposition 5.1 is proven in Section 5.3. From Proposition 2 in [32], whenever G is a graph

(i.e., V1 = ∅), the set STAB(G,Φ) is included in NCOND(G) for any admissible policy Φ.

In other words, for any measure µ, belonging to NCOND(G) is necessary for the stability of

the system (G,Φ, µ), for any Φ. A similar result holds for any multigraph G:

Proposition 5.2. For any connected multigraph G = (V , E) and any admissible matching

policy Φ, we have that

STAB(G,Φ) ⊂ NCOND(G).

Proof. The proof is analog to that of Proposition 2 in [32].

Hence, the notion of maximality of a matching policy is:

Definition 5.1. For any connected multigraph G that is not a bipartite graph, a matching

policy Φ is said maximal if the sets STAB(G,Φ) and NCOND(G) coincide.

Whenever G is a graph, Theorem 1 of [35] shows, first, that the policy ‘First Come,

First Matched’ (FCFM) is maximal, and second, that the stationary probability of the chain

{Wn; n ∈ N} can be expressed in a remarkable product form. We generalize this result to

multigraphs:
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Theorem 5.1. The matching policy ‘First Come, First Matched’ is maximal: for any con-

nected multigraphG that is not a bipartite graph, we have that STAB(G, FCFM) = NCOND(G).

Moreover, for any µ ∈ NCOND(G) the unique stationary probability ΠW of the chain

(Wn)n∈N is defined by
ΠW (ε) = α;

ΠW (w) = α

q∏
l=1

µ(wl)

µ(E({w1, . . . , wl}))
, for all w = w1 . . . wq ∈W \ {ε},

where

α−1 =1+
∑

I∈I(Ǧ)

∑
σ∈S|I|

|I|∏
i=1

µ
(
eσ(i)

)
µ(E({eσ(1), . . . , eσ(i)}))− µ({eσ(1), . . . , eσ(i)} ∩ V2)

, (5.2)

and where we denote I = {e1, . . . , e|I|} for any I ∈ I
(
Ǧ
)
.

Theorem 5.1 is proven in section 5.4.

Remark 5.1. If the model is finite, i.e., all nodes of G have self-loops or in other words,

V2 = ∅, then it readily follows from Theorem 5.1 that the unique stationary probability on

the finite state spaceW, is given by
ΠW (ε) = α;

ΠW

(
eσ(1) · · · eσ(|I|)

)
= α

|I|∏
i=1

µ
(
eσ(i)

)
µ(E({eσ(1), . . . , eσ(i)}))

, for all I ∈ I(Ǧ), σ ∈ S|I|,

with the normalizing constant

α =

1+
∑

I∈I(Ǧ)

∑
σ∈S|I|

|I|∏
i=1

µ
(
eσ(i)

)
µ(E({eσ(1), . . . , eσ(i)}))


−1

·

On another hand, as is shown in Theorem 5.3 of [28], all Max-Weight matching policies

such that β > 0 are maximal wheneverG is a graph. (In particular, the maximality of ‘Match

the Longest’ (ML) for GM models was first proven in Theorem 2 of [32], as a consequence

of the corresponding result for EBM models, (see Theorem 7.1 of [11]). This result can also

be generalized to multigraphs:

Theorem 5.2. Any Max-Weight policy Φ such that β > 0 is maximal: for any multigraph G

that is not a bipartite graph, we have that STAB(G,Φ) = NCOND(G).
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Aside from FCFM and Max-Weight policies, we can determine, or lower-bound, the sta-

bility region of the model for particular classes of multigraphs. Given a multigraph G =

(V1 ∪ V2, E), let us define an important class of matching policy that is called V2-favorable
policies and we will be taken in this chapter.

Definition 5.2. We say that an admissible matching policy Φ on G is V2-favorable if any

incoming item always prioritizes a match with a compatible item of class in V2 over a com-

patible item of class in V1, whenever it has the choice. Formally, if the class detail is given

by x ∈ X and the arrival is of class v, it never occurs that the incoming v-item is matched

with a j-item, for some j ∈ V1, while P(x, v) ∩ V2 6= ∅.

Definition 5.3. Let G be a connected multigraph. We say that G is complete p-partite,

p ≥ 2, if its maximal subgraph Ǧ is complete p-partite. Then, the minimal blow-up graph

Ĝ (see Definition 1.14) itself is called an extended complete p-partite graph.

Observe that an extended complete p-partite graph is not complete p-partite whenever

the construction above is non-trivial, i.e., the multigraph in the above definition is not a

graph, see an example in Figure 5.1.

1

4 5

2
3

1

4 5

2
3

1

4

2

5

3

5

Figure 5.1: Middle: A multigraph G. Left: Its maximal complete 3-partite subgraph Ǧ.

Right: Extended complete 3-partite graph Ĝ.

Theorem 5.3. Let G be a complete p-partite multigraph, p ≥ 2. Then,

(i) If p ≥ 3 or V1 6= ∅, then any V2-favorable matching policy Φ is maximal, that is,

STAB(G,Φ) = NCOND(G).

(ii) If p ≥ 3, then NCOND
(
Ǧ
)
⊂ STAB(G,Φ), for any admissible matching policy Φ.

With the above results in hands, we have the following panorama regarding the stability

region of a matching model on a connected multigraph G:

(i) Any measure µ that does not belong to the set NCOND(G) makes the system unstable;
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(ii) If G is a bipartite graph, then the model cannot be stable;

(iii) Otherwise, the region NCOND(G) is necessarily non-empty, and the models (G, FCFM, µ)

and (G,Φ, µ) for any Max-Weight policy Φ, are stable for any µ ∈ NCOND(G);

(iv) For any complete p-partite multigraph (p ≥ 2) that is not a bipartite graph and any µ ∈
NCOND (G), any model (G,Φ, µ) such that µ ∈ NCOND

(
Ǧ
)

or Φ is V2-favorable, is

stable.

As a by-product of Theorem 5.3 we can determine, or lower-bound, the stability region

of GM models on extended complete p-partite graphs.

Definition 5.4. For any measures µ ∈ M (V) and µ̂ ∈ M (V̂), we say that µ̂ extends µ on

Ĝ, and that µ reduces µ̂ on G, if{
µ̂(i) = µ(i), for all i ∈ V2 ;

µ̂(i) + µ̂(i) = µ(i), for all i ∈ V1.
(5.3)

Definition 5.5. Let Φ and Φ̂ be two admissible matching policies, respectively on G and Ĝ.

We say that Φ̂ extends Φ on Ĝ if, for any µ ∈M (V) and µ̂ ∈M (V̂), whenever both systems

(G,Φ, µ) and (Ĝ, Φ̂, µ̂) are in the same state w ∈W and welcome the same arrival, Φ and

Φ̂ induce the same choice of match, if any.

Proposition 5.3. Let Ĝ be an extended complete p-partite graph, p ≥ 2, and Ǧ be its

reduced graph.

(i) If p ≥ 3 or V1 6= ∅, then for any matching policy Φ̂ on Ĝ that extends a V2-favorable

policy on G, STAB(Ĝ, Φ̂) = NCOND(Ĝ).

(ii) If p ≥ 3, then for any measure µ̂ on Ĝ whose reduced measure µ is an element of

NCOND(Ǧ), and any matching policy Φ̂ on Ĝ, the model (Ĝ, Φ̂, µ̂) is stable.

The proofs of Theorem 5.2, Theorem 5.3 and Proposition 5.3 are given in section 5.5.

5.2 A few examples

In this section, we illustrate our main results by different examples.

Example 5.1. Consider the multigraph G of Figure 5.2, made of four nodes arranged in

a square, with a self-loop at each node. Since all nodes have a self-loop, it follows from

Remark 2.3 that any matching model on G is necessarily stable, that is, for any admissible
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1 2

34

Figure 5.2: Multigraph G of Example 5.1.

Φ, we have that STAB(G,Φ) = M (V). Let us focus on the FCFM policy. The set of admis-

sible queue details is given by W = {ε, 1, 2, 3, 4, 13, 24, 31, 42}, and as a consequence of

Remark 5.1, we can compute explicitly ΠW , obtaining the following values:

ΠW (ε) = α

ΠW (1) = α µ(1)
1−µ(3)

ΠW (2) = α µ(2)
1−µ(4)

ΠW (3) = α µ(3)
1−µ(1)

ΠW (4) = α µ(4)
1−µ(2)

ΠW (13) = α µ(1)
1−µ(3)

µ(3) ΠW (24) = α µ(2)
1−µ(4)

µ(4)

ΠW (31) = α µ(3)
1−µ(1)

µ(1) ΠW (42) = α µ(4)
1−µ(2)

µ(2),

with

α =

[
1 + µ(1)

1 + µ(3)

1− µ(3)
+ µ(2)

1 + µ(4)

1− µ(4)
+ µ(3)

1 + µ(1)

1− µ(1)
+ µ(4)

1 + µ(2)

1− µ(2)

]−1

,

using the fact that I
(
Ǧ
)

= {{1}, {2}, {3}, {4}, {1, 3}, {2, 4}}.

Example 5.2. Consider the multigraph G (at the middle) of Figure 1.7. From Theorems 5.1

and 5.2, both the stability region STAB(G, FCFM) under First Come, First Matched, and the

stability region STAB(G,MW) under any Max-Weight policy, coincide with the set

NCOND(G) =

{
µ ∈M (V) : µ(1) < µ(2), µ({1, 3}) ∨ µ({1, 4}) < 1

2

}
.

Second, recall that the maximal subgraph Ǧ is the pendant graph that studied in Lemma 3

of [32]. For η > 0, there exists a linear Lyapunov function Lη such that for any w ∈W, the

drift ∆̌Φ̌
µLη(w) < 0 then from Proposition 5.8, we have ∆̂Φ̂

µ̂Lη(w) < 0 and ∆Φ
µLη(w) < 0.

Then the model (G,Φ, µ) and
(
Ĝ, Φ̂, µ̂

)
are stable.

Example 5.3. Consider now a multigraph G whose maximal subgraph is a complete 2-

partite graph of order 3 (i.e., a string of 3 nodes), as represented in Figure 5.3,
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Figure 5.3: Left: A multigraph whose maximal subgraph is a complete 2-partite graph of

order 3. Right: Its minimal blow-up graph.

We easily obtain that

NCOND(G) =

{
µ ∈M (V) : µ(1) < µ(2) <

1

2

}
,

NCOND(Ĝ) =

{
µ̂ ∈M (V̂) : µ̂(1) < µ̂(2), µ̂(2) ∨ µ̂({1, 3}) ∨ µ̂({1, 3}) < 1

2

}
.

In view of Theorems 5.1 and 5.2, the respective stability regions STAB(G, FCFM) and STAB(G,MW)

under First Come, First Matched, or any Max-Weight policy, coincide with NCOND(G).

Let us first focus on the FCFM policy. The set of admissible queue details is given by:

W = {ε} ∪
{

1k : k ≥ 1
}
∪
{

2k : k ≥ 1
}
∪
{

1r31k−r : k ≥ 0, 0 ≤ r ≤ k
}
.

By Theorem 5.1, we have
ΠW (ε) = α

ΠW (1k) = α
(
µ(1)
µ(2)

)k
ΠW (2k) = α

(
µ(2)

1−µ(2)

)k
ΠW

(
1r31k−r

)
= α

(
µ(1)
µ(2)

)r
× µ(3)

1−µ(1)
×
(

µ(1)
1−µ(1)

)k−r
,

and since I
(
Ǧ
)

= {{1}, {2}, {3}, {1, 3}}, we can express α as follows,

α =

[
1 +

µ(1)

µ(2)− µ(1)
+

µ(2)

1− 2µ(2)
+

µ(3)

1− µ(1)

+
µ(1)

µ(2)− µ(1)

µ(3)

1− 2µ(1)
+

µ(3)

1− µ(1)

µ(1)

1− 2µ(1)

]−1

.

Second, consider a matching policy Φ̂ such that a 2-item always prioritizes a 1-item over

a 3 or a 3-item. Then Φ̂ extends a V2-favorable policy Φ on Ĝ. Thus, from Proposition 5.3

(i), the stability region of the system is NCOND(Ĝ), in other words Φ̂ is maximal on Ĝ. We

thereby generalize with a very simple proof, the result of Lemma 3 of [32] to the case where

µ(3) 6= µ(3). Last , in view of Theorem 5.3 (i), any V2-favorable matching policy on G (i.e.,

such that 2 prioritizes 1 over 3) is maximal, that is, has the stability region NCOND(G).
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5.3. PROOF OF PROPOSITION 5.1

Example 5.4. Last, consider the multigraph G represented in (the middle figure of) Figure

5.1. The maximal subgraph is complete 3-partite, and we readily obtain that

NCOND(Ǧ) =

{
µ ∈M (V) : µ(1) ∨ µ({2, 4}) ∨ µ({3, 5}) < 1

2

}
;

NCOND(G) =

{
µ ∈M (V) : µ(1) ∨ µ({2, 4}) < 1

2
, µ(3) < µ({1, 2, 4})

}
;

NCOND(Ĝ) =

{
µ̂ ∈M (V̂) : µ̂(1) ∨ µ̂({2, 4}) ∨ µ̂({3, 5}) ∨ µ̂({3, 5}) < 1

2

}
.

Then, from Theorems 5.1 and 5.2, the respective stability regions STAB(G, FCFM) and

STAB(G,MW) under First Come, First Matched, or any Max-Weight policy coincide with

the set NCOND(G). From Theorem 5.3 (i), for any policy Φ on G according to which all

items prioritize 3-items over 5 items is maximal, i.e., STAB(G,Φ) = NCOND(G). From

Theorem 5.3 (ii), any policy Φ on G is such that NCOND(Ǧ) ⊂ STAB(G,Φ). Last, from

Proposition 5.3, any policy Φ̂ on Ĝ giving priority to 3-items over 5 and 5-items is maxi-

mal, whereas for any matching policy Φ̂ and any measure µ̂ on V̂ extending a measure of

NCOND(Ǧ), the model (Ĝ, Φ̂, µ̂) is stable.

5.3 Proof of Proposition 5.1

Throughout this section, fix a connected multigraph G = (V , E), where V = V1 ∪ V2, and

denote its minimal blow-up graph by Ĝ = (V̂ , Ê), where V̂ = V ∪ V1. We first have the

following,

Lemma 5.2. For any µ ∈M (V) we have that

µ ∈ NCOND(G) ⇐⇒ µ̂1/2 ∈ NCOND(Ĝ),

where µ̂1/2 is the extended measure of µ such that

µ̂1/2(i) = µ̂1/2(i) =
1

2
µ(i) for all i ∈ V1. (5.4)

Proof. For any I ∈ I(G), set E1(I) = E(I) ∩ V1 and E2(I) = E(I) ∩ V2.

Let us prove first the implication⇐=: Let µ̂1/2 ∈ NCOND(Ĝ) and I ∈ I(G). As I ⊂ V2,

we get that

µ(I) = µ̂1/2(I) < µ̂1/2(Ê(I)) = µ̂1/2

(
E(I) ∪ E1(I)

)
= µ̂1/2(E1(I)) + µ̂1/2(E2(I)) + µ̂1/2

(
E1(I)

)
= µ(E1(I)) + µ(E2(I))

= µ(E(I)),
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where the second equality is due to the fact that Ê = E ∪ E1. The third follows from the fact

that E = E1∪E2. The fouth follows from the fact that the equations (5.3) and (5.4) holds true.

Let us prove now the opposite implication =⇒: Let us now fix µ ∈ NCOND(G) and

Î ∈ I(Ĝ). Clearly, Î can be written as the union Î = J2 ∪ J1 ∪ I1, where J1 ∪ I1 ⊂ V1,

J2 ⊂ V2 and J2∪J1∪I1 ∈ I
(
Ǧ
)
. First observe that J1 and I1 are necessarily disjoint, as any

element i ∈ J1 ∩ I1 would be such that i−i in Ĝ, a contradiction to the fact that Î ∈ I(Ĝ).

Thus,

µ̂1/2(Î) = µ̂1/2(J2 ∪ J1) + µ̂1/2(I1) = µ̂1/2(J2 ∪ J1) + µ̂1/2(I1) (5.5)

= µ̂1/2(J2 ∪ J1 ∪ I1) ≤ µ(J2 ∪ J1 ∪ I1).

Now, observe that

µ (E (J2 ∪ J1 ∪ I1))− µ (J2 ∪ J1 ∪ I1) = µ (E (J2 ∪ J1 ∪ I1))− µ (J1 ∪ I1)− µ (J2)

= µ (E (J2 ∪ J1 ∪ I1) ∩ (J1 ∪ I1)c)− µ (J2)

≥ µ (E (J2))− µ (J2) > 0,

where the second equality is due to the fact that J1∪I1 ⊂ E (J2 ∪ J1 ∪ I1), because J1∪I1 ⊂
V1. The weak inequality follows from the fact that E (J2) is disjoint from J1 ∪ I1 (because

Î is an independent set of Ĝ), and thereby, is included in E (J2 ∪ J1 ∪ I1) ∩ (J1 ∪ I1)c. The

last strict inequality follows from the fact that I2 is an independent set ofG (and of Ĝ). This,

together with (5.5), implies that

µ̂1/2(Î) < µ(E(J2 ∪ J1 ∪ I1))

= µ(E1(J2 ∪ J1 ∪ I1)) + µ(E2(J2 ∪ J1 ∪ I1))

= µ̂1/2(E1(J2 ∪ J1 ∪ I1)) + µ̂1/2

(
E1(J2 ∪ J1 ∪ I1)

)
+ µ̂1/2(E2(J2 ∪ J1 ∪ I1))

= µ̂1/2

(
E1(J2 ∪ J1 ∪ I1) ∪ E1(J2 ∪ J1 ∪ I1) ∪ E2(J2 ∪ J1 ∪ I1)

)
= µ̂1/2

(
E(J2 ∪ J1 ∪ I1) ∪ E1(J2 ∪ J1 ∪ I1)

)
= µ̂1/2

(
Ê(J2 ∪ J1 ∪ I1)

)
= µ̂1/2

(
Ê
(
J2 ∪ J1 ∪ I1

))
= µ̂1/2(Ê(Î)),

where the first equality is due to the fact that E = E1∪E2. The second equality follows from

the fact that the equations (5.3) and (5.4) holds true. The third follows from the disjoint sets.

The fourth equality follows from the fact that E = E1 ∪ E2. The fifth equality follows from

the fact that Ê = E ∪ E1.

Which completes the proof.
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We can now turn to the proof of Proposition 5.1:

Proof of Proposition 5.1. If G is a bipartite graph, then it follows from Theorem 1 in [32]

that NCOND(G) is empty. Regarding the converse, suppose that G is not a bipartite graph.

Then, Ĝ cannot be a bipartite graph neither. Indeed, there are two cases:

• If G is a graph (i.e., V1 = ∅), then Ĝ = G and so is not a bipartite graph.

• If G is not a graph (i.e., V1 6= ∅), then, for any i ∈ V1 and any j ∈ E(i) \ {i}, Ĝ
includes the triangle i−i−j−i. (Observe that j necessarily exists since G is supposed

connected with at least two nodes.) In particular, Ĝ is not a bipartite graph.

As a consequence, again from Theorem 1 in [32], NCOND(Ĝ) is non-empty and thus, from

Lemma 5.2, the set NCOND(G) is also non-empty.

5.4 Proof of Theorem 5.1

Let us recall that the multigraph G = (V , E) is connected but is not a bipartite graph,

with |V| ≥ 2. Then, in particular, NCOND(G) 6= ∅ (cf. Proposition 5.1). Our product

form result, Theorem 5.1, follows from a reversibility scheme that generalizes to the case

of multigraphs, the one constructed in [35]. In fact, we propose a proof that is simpler, at

some points, than the one in [35]. We reproduce hereafter the main steps of this construction

for easy reference, and only develop exhaustively the points that are specific to the present

context, or based on different arguments.

Hereafter, we denote by PW , the transition operator of the buffer-content Markov chain,

that is, for all w,w′ ∈W, we write PW (w,w′) = P [Wn+1 = w′ | Wn = w] , for any n ∈ N.

5.4.1 Two auxiliary chains

As in section 3.2 of [35], we first need to define two auxiliary Markov chains. For this, let us

denote by V an independent copy of V , i.e., a set with the same cardinal formed with copies

of elements of V . We set V = V ∪ V , and we define, for w ∈ V∗,

V(w) = {a ∈ V : |w|a > 0},

V(w) = {a ∈ V : |w|a > 0}.

For a ∈ V, we will use the notation a = a.

Definition 5.6. We define the backward detailed chain as the process (Bn)n∈N with values

in V∗ given by B0 = ε and, for any n ≥ 1,
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• if Wn = ε (i.e., all the items arrived up to time n are matched at time n), then Bn = ε,

• otherwise, let i(n) ∈ [[1, n]] be the arrival time of the oldest item still in the buffer, then,

the word Bn is the word of length n− i(n) + 1, defined, for any ` ∈ [[1, n− i(n) + 1]],

by

(Bn)` =


Vi(n)+`−1 if Vi(n)+`−1 has not been matched up to time n;

Vk if Vi(n)+`−1 is matched at or before time n, with item Vk

(where 1 ≤ k ≤ n).

In other words, the word Bn gathers the class indexes of all unmatched items entered up

to n, at the places corresponding to their arrival times, and the copies of the class indexes

of the items matched before n, but after the arrival of the oldest unmatched item at n, at the

place corresponding to the arrival time of their respective match.

Observe that by the construction of (Bn)n∈N, for all n ∈ N, the word Bn necessarily

contains all the letters of Wn. More precisely, for any n ∈ N, Wn is the restriction of the

word Bn to its letters in V . Furthermore, (Bn)n∈N is also a Markov chain since for any

n ≥ 0, the value of Bn+1 can be deduced from that of Bn and from the class Vn+1 of the

item entered at time n+ 1.

A state w ∈ V∗ is said to be admissible for (Bn)n∈N if it can be reached by the chain

(Bn)n∈N, under the FCFM policy. We set

B = {w ∈ V∗ : w is admissible for (Bn)n∈N}.

The following result can be proven exactly as Lemma 1 in [35].

Lemma 5.3. Let w = w1 . . .wq ∈ V∗. Then, w ∈ B if and only if w1 ∈ V and for

1 ≤ i < j ≤ q,

• if (wi,wj) ∈ V2, then wi 6−wj ,

• if (wi,wj) ∈ V × V , then wi 6−wj .

As a consequence of Lemma 5.3, any word w ∈ B can be written as

w = b1a11a12 . . . a1k1b2a21a22 . . . a2k2b3 . . . bqaq1 . . . aqkq ,

where q, k1, . . . , kq ∈ N, b1, . . . , bq ∈ V , aij ∈ V for 1 ≤ i ≤ q, 1 ≤ j ≤ ki, and
{b1, . . . , bq} = V(w) ∈ I

(
Ǧ
)
,

∀i ∈ [[1, q]], bi ∈ V1 ⇒ [∀j 6= i, bi 6= bj] ,

∀i ∈ [[1, q]], ∀j ∈ [[1, ki]], aij ∈ E({b1, . . . , bi})c.

The transition operator of the chain {Bn; n ∈ N} is denoted by PB, that is, for all w,w′ ∈ B,

we write PB(w,w′) = P [Bn+1 = w′ | Bn = w], for all n ∈ N.
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Definition 5.7. We define the forward detailed chain as the process (Fn)n∈N with values in

V∗ given by F0 = ε (the empty word) and, for any n ≥ 1,

• if Wn = ε (i.e., all the items arrived up to time n are matched at time n), then Fn = ε,

• otherwise, let Un be the set of items arrived before time n that are not matched at time

n (note that Un is non-empty since Wn 6= ε). Also, set

j(n) = sup {m ≥ n+ 1 : Vm is matched with an element of Un} .

Observe that j(n) is possibly infinite. Then, if j(n) is finite, Fn is the word of V∗ of

length j(n)− n (respectively of AN of length +∞, if j(n) = +∞), such that for any

` ∈ [[1, j(n)− n]] (respectively ` ∈ N+),

(Fn)` =

{
Vn+` if Vn+` is not matched with an item arrived up to n;

Vk if Vn+` is matched with item Vk, where 1 ≤ k ≤ n.

In other words, the word Fn contains the copies of all the class indexes of the items

entered up to time n and matched after n, at the place corresponding to the arrival time of

their respective match, together with the class indexes of all items entered after n and before

the last item matched with an item entered up to n, and not matched with an element entered

before n, if any, at the place corresponding to their arrival time. Similarly to [35], we make

the three following simple observations:

• If Fn ∈ V∗ is finite, then (Fn)j(n)−n ∈ V;

• {Fn; n ∈ N} is a Markov chain;

• If Fn is a.s. an element of V∗ for all n ∈ N.

As for the backward chain, we say that a state w ∈ V∗ is admissible for (Fn)n∈N if it

can be reached by the chain (Fn)n∈N, under the FCFM policy. Then, we set

F = {w ∈ V∗ : w is admissible for (Fn)n∈N}

and we denote by PF the transition operator of the chain {Fn; n ∈ N} on F. For any word

w = w1 . . .wn ∈ V∗, let us define its reversed-copy by
←−
w = wn . . .w1 ∈ V∗. Note that

the map Ψ : V∗ → V∗,w 7→ ←−w satisfies Ψ ◦ Ψ = IdV∗ . Thus, Ψ is a bijection and its

inverse function is Ψ−1 = Ψ.

Lemma 5.4. The map

Φ :

B −→ F

w 7−→ Ψ(w) =
←−
w

is well-defined and bijective.
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Proof. Exactly as in Lemma 2 in [35], it can be proven that w ∈ F if and only if Ψ(w) ∈ B.

This guarantees that the mapping Φ is well-defined and surjective. It is injective because Ψ

clearly is so.

Let us define a measure ν on V∗ by ν(ε) = 1 and

∀w ∈ V∗ \ {ε}, ν(w) =

|V|∏
i=1

µ(i)|w|i+|w|i . (5.6)

We can use the measure ν defined above to establish the following link between the dy-

namics of the chains (Bn)n∈N and (Fn)n∈N. The following result can be established exactly

as Lemma 3 in [35],

Proposition 5.4. For any (w,w′) ∈ B2, we have that

ν(w)PB(w,w′) = ν
(←−
w′
)
PF
(←−
w′,
←−
w
)
.

5.4.2 Positive recurrence of (Bn)n∈N and (Fn)n∈N.

We will exploit the local balance equations of Proposition 5.4 to derive stationary distribu-

tions of these two Markov chains. To this end, the following technical lemma will simplify

the proofs.

Lemma 5.5. The measure ν defined by (5.6) satisfies the following properties:

1. For any A ⊂ V = V ∪ V , we have ν(A) = µ(V(A)) + µ
(
V(A)

)
.

2. For any A1, . . . ,An ⊂ V, ν(A1 . . .An) = ν(A1) . . . ν(An). In particular, ν(Ak) =

ν(A)k.

3. If A ⊂ V is such that ν(A) < 1, then ν(A∗) = 1
1−ν(A)

.

Proof. The first point follows from the definition of ν and the second point is a direct conse-

quence of its multiplicative structure. Regarding the third point, observe thatA∗ = ∪k∈NAk,
so that

ν(A∗) =
∑
k∈N

ν
(
Ak
)

=
∑
k∈N

ν(A)k.

We can now state the following result,
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Proposition 5.5. Suppose that µ ∈ NCOND(G). Then, the chains (Bn)n∈N and (Fn)n∈N

are positively recurrent and admit respectively the restrictions on B and on F of ν (that

is, νB(w) = νF (Φ(w)) = ν(w), for any w ∈ B) as unique stationary measure (up to a

multiplicative constant), respectively on B and F.

Proof. Let µ ∈ NCOND(G).

Step 1: we first prove that νB is a stationary measure for the chain (Bn)n∈N.

For this, let us fix w′ ∈ B. Then we have that

∑
w∈B

PB(w,w′)νB(w)

νB(w′)
=
∑
w∈B

PF
(←−
w′,
←−
w
)
νB

(←−
w′
)

νB(w′)

=
∑
w∈B

PF
(←−
w′,
←−
w
)

= 1,

where the first equality follows from Proposition 5.4, the second from the fact that νB
(←−
w′
)

=

νB(w′) and the last, from Lemma 5.4. Thus, for all w′ ∈ B, we have that

νB(w′) =
∑
w∈B

PB(w,w′)νB(w),

which means exactly that νB is a stationary measure for the chain (Bn)n∈N.

Step 2: we now prove that νB(B) <∞.

By Lemma 5.3, we know that w ∈ B \ {ε} if and only if w belongs to a set

b1A∗1 b2A∗2 . . . bqA∗q
=
{
w ∈ V∗ : w = b1w

1b2w
2 . . . bqw

q; wi ∈ A∗i , for all i ∈ J1, qK
}
, q ≥ 1, (5.7)

where b1, . . . , bq are elements of V such that {b1, . . . , bq} ∈ I
(
Ǧ
)

and such that for all

distinct i, j in J1, qK, bi ∈ V1 implies that bi 6= bj , and where we denote

Ai = E({b1, . . . , bi})c, i ∈ J1, qK.

Equivalently, by highlighting only the first occurrence of each letter of V appearing in

w and employing a similar notation to (5.7) we obtain that w ∈ B \ {ε} if and only if w

belongs to some set of the form

CI,σ = eσ(1) B∗σ(1) eσ(2) B∗σ(2) . . . eσ(|I|) B∗σ(|I|),

where I =
{
e1, ..., e|I|

}
∈ I
(
Ǧ
)
, σ ∈ S|I|, and where we denote

Bσ(i) = E({eσ(1), . . . , eσ(i)})c ∪ ({eσ(1), . . . , eσ(i)} ∩ V2), i ∈ J1, |I|K.
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In view of assertion (1) of Lemma 5.5, we have that for all i ∈ J1, kK,

νB(Bσ(i)) = µ(E({eσ(1), . . . , eσ(i)}c) + µ({eσ(1), . . . , eσ(i)} ∩ V2)

= 1− µ(E({eσ(1), . . . , eσ(i)})) + µ({eσ(1), . . . , eσ(i)} ∩ V2).

Since {eσ(1), . . . , eσ(i)} ∈ I(Ǧ), we have, by definition, that {eσ(1), . . . , eσ(i)} ∩ V2 ∈ I(G)

and since the measure µ satisfies NCOND(G), it follows that

µ
(
{eσ(1), . . . , eσ(i)} ∩ V2

)
< µ

(
E
(
{eσ(1), . . . , eσ(i)} ∩ V2

))
≤ µ

(
E
(
{eσ(1), . . . , eσ(i)}

))
and thereby, that νB(Bi) < 1. As a conclusion, applying successively all assertions of

Lemma 5.5, we obtain that for all such I and σ,

νB(CI,σ) =

|I|∏
i=1

µ(eσ(i))

µ(E({eσ(1), . . . , eσ(i)}))− µ({eσ(1), . . . , eσ(i)} ∩ V2)
.

The set B is the disjoint union of the sets CI,σ, for I in the finite set I
(
Ǧ
)
, and σ in the

finite set S|I|. It follows that νB(B) is finite, and given by

νB(B) = νB(ε) +
∑

I∈I(Ǧ)

∑
σ∈S|I|

νB(CI,σ)

= 1 +
∑

I∈I(Ǧ)

∑
σ∈S|I|

|I|∏
i=1

µ(eσ(i))

µ(E({eσ(1), . . . , eσ(i)}))− µ({eσ(1), . . . , eσ(i)} ∩ V2)
. (5.8)

Step 3: we conclude with the positive recurrence of the two chains.

By the results above, the chain (Bn)n∈N has a stationary probability distribution on B,

which is given by the measure νB normalized by νB(B).

Observe that the chain is irreducible on B. To see this, let w ∈ B and first observe that

the empty word ε leads to w with positive probability for the transitions of {Bn; n ∈ N}
(this is the constructive argument proving Lemma 5.3 - see the proof of Lemma 1 in [35]).

Conversely, denoting by b1, . . . , bq the elements of V(w), it is easy to see that the word

w leads to the empty word with positive probability for the transitions of {Bn; n ∈ N} :

indeed, by the definition of the policy FCFM, if the chain is in the state w, then it will

reach the empty state after exactly q steps, by seeing the successive arrivals of q elements of

respective classes in E(b1), E(b2), . . . , E(bq), which concludes the proof of irreducibility.

It then follows that the chain {Bn; n ∈ N} is positively recurrent on B and that its sta-

tionary probability distribution is unique. Consequently, νB is the unique stationary measure

(up to a multiplicative constant) of the chain (Bn)n∈N.

93



5.4. PROOF OF THEOREM 5.1

Now, as in step 1, we obtain that for all w′ ∈ B,

νF (Φ(w′)) =
∑
w∈B

PF (Φ(w),Φ(w′))νF (Φ(w)).

Using Lemma 5.4, we deduce that νF is a stationary measure for the chain (Fn)n∈N. Then,

step 2 shows equivalently that νF (F) <∞. So, the chain (Fn)n∈N has a stationary probabil-

ity distribution on F, which is given by the measure νF normalized by νF (F).

Similarly as above, we can check that the chain {Fn; n ∈ N} is irreducible on F. First,

the empty word leads with positive probability to any element w ∈ F, as can be checked

using the same constructive argument as in the proof of Lemma 5.3. Conversely, suppose

that the chain {Fn; n ∈ N} is at time n in a state

w = aqkq . . . aq1aq . . . a3a2k2 . . . a21a2a1k1 . . . a11a1 ∈ F

and let r = q+
∑q

i=1 ki be the length of w. Then, going forward in time, perform the FCFM

matching of the ‘unmatched’ elements of respective classes in V(w). Say there remains

in the system, at time n + r, ` unmatched elements denoted c1, c2, . . . , c` in their order of

arrivals. Then, the chain can return to the empty state in particular if the first ` arrivals after

time n + r (excluded) are of respective classes in E(c1), E(c2), . . . , E(c`). This concludes

the proof of irreducibility.

As a consequence, the chain {Fn; n ∈ N} is positively recurrent on F and its stationary

probability distribution is unique. Consequently, νF is the unique stationary measure (up to

a multiplicative constant) of the chain (Fn)n∈N, which concludes the proof.

5.4.3 Positive recurrence of (Wn)n∈N

The Markov chain (Wn)n∈N can be seen as the projection of the chain (Bn)n∈N on V∗. In

order to obtain the stationary probability distribution of (Wn)n∈N from the one of (Bn)n∈N,

we will use the following lemma:

Lemma 5.6. Let PY and PY ′ be the transition matrices of two homogeneous Markov chains

{Yn; n ∈ N} and {Y ′n; n ∈ N} with values in some countable sets S and S ′ respectively,

and consider a map p : S → S ′ satisfying

∀a′, b′ ∈ S ′, ∀a ∈ p−1({a′}),PY (a, p−1({b′})) = PY ′(a′, b′).

Then, if a measure µ is invariant for PY , the measure µ′ defined by µ′(a′) = µ(p−1({a′}))
for all a′ ∈ S ′, is an invariant measure for PY ′ on S ′.
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Proof. Let µ be an invariant measure for PY , and let b′ ∈ S ′. We have

∑
a′∈S′

µ′(a′)PY ′(a′, b′) =
∑
a′∈S′

 ∑
a∈p−1({a′})

µ(a)

PY ′(a′, b′)
=
∑
a′∈S′

∑
a∈p−1({a′})

µ(a)PY (a, p−1({b′}))

=
∑
s∈S

µ(s)PY (s, p−1({b′})) = µ(p−1({b′})) = µ′(b′),

meaning that µ′ is invariant for PY ′ .

For µ ∈ NCOND(G), let us denote by ΠB the unique stationary probability law associed

to the chain (Bn)n∈N (cf. Prop. 5.5). It is defined by

∀w ∈ B, ΠB(w) = ανB(w),

where α = (νB(B))−1 is given by (5.2) in view of (5.8). Let us now introduce the projection

p :

B −→W

w 7−→ w|V ,

which is well-defined from Lemma 5.3. We have the following result:

Proposition 5.6. Let µ ∈ NCOND(G). Then, the Markov chain (Wn)n∈N is positively re-

current, and its unique stationary probability distribution is the measure ΠW defined on W
by:

∀w ∈W, ΠW (w) = ΠB(p−1(w)) =
∑

w∈B : w|V=w

ΠB(w).

Proof. Let µ ∈ NCOND(G). We can apply Lemma 5.6 to PB and PW to prove that ΠW is

a stationary distribution for (Wn)n∈N. Indeed, using the fact that for any n ∈ N, Wn is the

restriction of the word Bn to its letters in V , we have that

∀w,w′ ∈W, ∀w ∈ p−1({w}), PB(w, p−1({w′})) = PW (w,w′).

The measure ΠW is a probability distribution on W, since ΠW (W) = ΠB(p−1(W)) =

ΠB(B) = 1. The chain (Wn)n∈N being irreducible on W, it follows that ΠW is its unique

stationary probability distribution.
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5.4.4 Concluding the proof

We first show that STAB(G, FCFM) = NCOND(G). First, we know from Proposition 5.2

that STAB(G, FCFM) ⊂ NCOND(G). Also, from Proposition 5.1, NCOND(G) 6= ∅, since

G is not a bipartite graph. Then, for all µ ∈ NCOND(G), by Proposition 5.6, the chain

(Wn)n∈N is positively recurrent on W. So, NCOND(G) ⊂ STAB(G, FCFM), and therefore

STAB(G, FCFM) = NCOND(G).

We now fix µ ∈ NCOND(G), and compute explicitly the unique stationary probability

distribution ΠW of the chain (Wn)n∈N. First, if w = ε, then p−1({w}) = ε and ΠW (ε) = α,

given by (5.2). Now, fix w 6= ε inW. By (5.7), we know that if w = w1 . . . wq ∈W, q ≥ 1,

then p−1({w}) = w1A∗1w2A∗2 . . . wqA∗q, with Ai = E({w1, . . . , wi})c, for all i ∈ J1, qK.

Applying Lemma 5.5 and observing that for all i, µ
(
Ai
)
< 1 since Ai  V , it follows that

ΠW (w) = ΠB(w1A∗1w2A∗2 . . . wqA∗q)

= ανB(w1A∗1w2A∗2 . . . wqA∗q)

= α

q∏
i=1

µ(wi)

1− µ
(
Ai
) = α

q∏
i=1

µ(wi)

µ(E({w1, . . . , wi}))
·

The proof is complete.

5.5 Remaining proofs

Throughout the section G is a connected multigraph, Ǧ is its maximal subgraph and Ĝ

denotes its minimal blow-up graph. To simply compare a (G,Φ, µ) system with the two

corresponding matching models on graphs (Ĝ, Φ̂, µ̂) and (Ǧ, Φ̌, µ), let us add a “hat” (resp.

a “check”) to all characteristics of the second (resp. the third) system: in particular, we

denote, for all n, by V̂n (resp. V̌n), the class of the item entering in the (Ĝ, Φ̂, µ̂)
(
resp.

(Ǧ, Φ̌, µ)
)

system at time n. The natural Markov chain of the system is then denoted by

(Ŵn)n∈N
(
resp. (W̌n)n∈N

)
and its state space, by Ŵ

(
resp. W̌

)
. Specifically,

Ŵ =
{
w ∈

(
V ∪ V1

)∗
: ∀i 6= j s.t. (i, j) ∈ Ê , |w|i|w|j = 0

}
;

W̌ =
{
w ∈ V∗ : ∀i 6= j s.t. (i, j) ∈ Ě , |w|i|w|j = 0

}
.

Observe that we haveW ⊂ W̌ ⊂ Ŵ.

For any measurable mapping F : W → R (resp. W̌ → R, Ŵ → R) and any given

w ∈W (resp. ŵ ∈ Ŵ, w̌ ∈ W̌), we denote by ∆FΦ
µ (w) (resp. ∆̂F Φ̂

µ̂ (ŵ), ∆̌F Φ̌
µ̌ (w̌)) the drift

of the chain {Wn; n ∈ N} (resp.
{
Ŵn; n ∈ N

}
,
{
W̌n; n ∈ N

}
) starting from w (resp. ŵ,
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w̌) for a (G,Φ, µ) (resp. (Ĝ, Φ̂, µ̂), (Ǧ, Φ̌, µ̌)) system. In other words, for any n ∈ N we

denote

∆Φ
µF (w) = E

[
F (Wn+1)− F (Wn)

∣∣Wn = w
]

;

∆̂Φ̂
µ̂F (ŵ) = E

[
F (Ŵn+1)− F (Ŵn)

∣∣ Ŵn = ŵ
]

;

∆̌Φ̌
µ̌F (w̌) = E

[
F (W̌n+1)− F (W̌n)

∣∣ W̌n = w̌
]
.

5.5.1 Drift inequalities

Consider the following mappings,

Q :


Ŵ −→ R+

ŵ 7−→
|V|∑
i=1

(|ŵ|i)2 +
|V1|∑
i=1

(|ŵ|i)2 ;
(5.9)

L :


Ŵ −→ R+

ŵ 7−→
|V|∑
i=1

αi|ŵ|i +
|V1|∑
i=1

αi|ŵ|i,
(5.10)

with αi, αi ∈ R+ and αi = αi for all i ∈ V1.

Where it follows from the observation above that Q and L are well defined also on W
and W̌.

Definition 5.8. Let Φ and Φ̂ be two admissible matching policies, respectively on G and Ĝ.

We say that Φ̂ extends Φ on Ĝ if, for any µ ∈M (V) and µ̂ ∈M (V̂), whenever both systems

(G,Φ, µ) and (Ĝ, Φ̂, µ̂) are in the same state w ∈W and welcome the same arrival, Φ and

Φ̂ induce the same choice of match, if any.

We have the following result,

Proposition 5.7. Let Φ be an admissible policy on G and µ ∈M (V). Let Φ̂ be a matching

policy extending Φ on Ĝ and µ̂ be a measure extending µ on V̂ . Then, for all w ∈ W we

have that ∆Φ
µQ(w) ≤ ∆̂Φ̂

µ̂Q(w).

Proof. Fix w ∈ W throughout the proof. Recall that for all i ∈ V1 (if any), we have that

|w|i ∈ {0, 1}, and let us set

Ow = {i ∈ V1 : |w|i = 1},

Zw = {i ∈ V1 : |w|i = 0 and |w|j = 0, for any j ∈ E(i)}.
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First, for any i ∈ V2, an incoming item of class i finding the system (G,Φ, µ) in a state

w finds the same possible matches (if any) as an incoming item of class i finding the system

(Ĝ, Φ̂, µ̂) in a state w. As Φ̂ extends Φ, the choice of the match (if any) of the incoming

item of class i is then the same, or follows the same distribution in case of a draw, in both

systems. Thus, for all n ∈ N, as |Ŵn+1|V1 = 0 the conditional distribution ofWn+11l{Vn+1=i}

given {Wn = w} equals the conditional distribution of Ŵn+11l{V̂n+1=i} given
{
Ŵn = w

}
.

Therefore, we obtain that for all n ∈ N,

E
[
(Q(Wn+1)−Q(Wn)) 1l{Vn+1∈V2}

∣∣Wn = w
]

=
∑
i∈V2

E
[
Q(Wn+1)1l{Vn+1=i}

∣∣Wn = w
]
−
∑
i∈V2

E
[
Q(Wn)1l{Vn+1=i}

∣∣Wn = w
]

=
∑
i∈V2

E
[
Q(Wn+1)1l{Vn+1=i}

∣∣Wn = w
]
− µ(V2)Q(w)

=
∑
i∈V2

E
[
Q
(
Ŵn+1

)
1l{V̂n+1=i}

∣∣ Ŵn = w
]
− µ̂(V2)Q(w)

= E
[(
Q
(
Ŵn+1

)
−Q

(
Ŵn

))
1l{V̂n+1∈V2}

∣∣ Ŵn = w
]
,

(5.11)

where the third equality due to the equality of the conditional distribution of Wn+11l{Vn+1=i}

given {Wn = w} and Ŵn+11l{V̂n+1=i} given
{
Ŵn = w

}
.

Likewise, if a system (G,Φ, µ) is in state w, then, for any i ∈ V1 ∩ (Ow)c ∩ (Zw)c, an

incoming of class i finds the same possible matches (if any) as an incoming item of class

i or of class i finding the system (Ĝ, Φ̂, µ̂) in the state w. Again, the choice of the match

of the latter is the same in both systems, or follows the same distribution in case of a draw.

Like in (5.11), we obtain that, for all n ∈ N,

E
[
(Q(Wn+1)−Q(Wn)) 1l{Vn+1∈V1∩(Ow)c∩(Zw)c}

∣∣Wn = w
]

= E

[(
Q
(
Ŵn+1

)
−Q

(
Ŵn

))
1l{V̂n+1∈(V1∩(Ow)c∩(Zw)c)∪(V1∩(Ow)c∩(Zw)c)}

∣∣ Ŵn = w

]
,

(5.12)

where we also use the fact that

µ̂
(

(V1 ∩ (Ow)c ∩ (Zw)c) ∪
(
V1 ∩ (Ow)c ∩ (Zw)c

))
= µ(V1 ∩ (Ow)c ∩ (Zw)c).

Now, if a system (G,Φ, µ) is in state w, then, for any i ∈ Zw, and incoming item of class

i finds no possible match. So, it is stored in line and the coordinate i of the chain increases

from 0 to 1. Consequently, for any n ∈ N, conditional on {Wn = w} and for any such i, we

get that

(Q(Wn+1)−Q(Wn)) 1l{Vn+1=i} = (Q(wi)−Q(w)) 1l{Vn+1=i} = 1l{Vn+1=i}. (5.13)
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Similarly, if the system (Ĝ, Φ̂, µ̂) is in the state w and the entering item is of class i ∈ Zw
or of class i ∈ Zw, then, in both cases, the entering item does not find any possible match

in (Ĝ, Φ̂, µ̂) and so the coordinate i or i of the Markov chain increases from 0 to 1. Thus,

given that
{
Ŵn = w

}
, we get that

(
Q
(
Ŵn+1

)
−Q

(
Ŵn

))
1l{V̂n+1∈{i,i}}

= (Q(wi)−Q(w)) 1l{V̂n+1=i} + (Q (wi)−Q(w)) 1l{V̂n+1=i} = 1l{V̂n+1=i} + 1l{V̂n+1=i}.

(5.14)

This, together with (5.13), entails that

E
[
(Q(Wn+1)−Q(Wn)) 1l{Vn+1∈Zw} |Wn = w

]
=
∑
i∈Zw

E
[
1l{Vn+1=i} |Wn = w

]
= µ(Zw)

= µ̂ (Zw) + µ̂
(
Zw
)

=
∑
i∈Zw

E
[
1l{V̂n+1=i} + 1l{V̂n+1=i} | Ŵn = w

]
= E

[(
Q(Ŵn+1)−Q(Ŵn)

)
1l{V̂n+1∈Zw∪Zw} | Ŵn = w

]
,

(5.15)

where the first equality due to the equation (5.13). The third equality follows from the equa-

tion (5.3) as Zw ⊂ V1. The fourth equality follows from the equation (5.14).

At last, if the system (G,Φ, µ) is in the state w, then, the arrival of a class i-item, for i ∈ Ow,

leads to the matching of two items of class i. Therefore, as |w|i = 1 we obtain

(Q(Wn+1)−Q(Wn)) 1l{Vn+1∈Ow} = −1l{Vn+1∈Ow}. (5.16)

Now, suppose that the system
(
Ĝ, Φ̂, µ̂

)
is in the state Ŵn = w. Then, if an item of class

i ∈ Ow enters in the system, the corresponding item is not matched and the number of

i-items in the system increases from 1 to 2. Therefore we get that(
Q
(
Ŵn+1

)
−Q

(
Ŵn

))
1l{V̂n+1∈Ow} = 31l{V̂n+1∈Ow}. (5.17)

If on the other hand, an item of class i ∈ Ow enters in the same system (Ĝ, Φ̂, µ̂), then, the

corresponding item match with the stored class i-item and so the coordinate i of the chain

decreases to 0. Thus,(
Q
(
Ŵn+1

)
−Q

(
Ŵn

))
1l{V̂n+1∈Ow} = −1l{V̂n+1∈Ow}.
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Gathering this with (5.16) and (5.17) and then taking expectations, we obtain that

E
[
(Q(Wn+1)−Q(Wn)) 1l{Vn+1∈Ow}

∣∣Wn = w
]

= E
[(
Q
(
Ŵn+1

)
−Q

(
Ŵn

))
1l{V̂n+1∈Ow∪Ow}

∣∣ Ŵn = w
]
− 4µ̂ (Ow) . (5.18)

Finally, (5.11) together with (5.12), (5.15) and (5.18) give that

∆Φ
µQ(w) = ∆̂Φ̂

µ̂Q(w)− 4µ̂ (Ow) , (5.19)

which concludes the proof.

Definition 5.9. Let G be a connected multigraph and Φ be an admissible matching policy

on G. We say that Φ̌ reduces Φ if, for any µ ∈M (V), whenever the two systems (Ǧ, Φ̌, µ)

and (G,Φ, µ) are in the same state w ∈ W and welcome the same arrival, then Φ̌ and Φ

induce the same choice of match, if any.

Proposition 5.8. Let G = (V , E) be a connected multigraph and Φ be a class admissible

policy on G and µ ∈ M (V). Let Φ̂ be a matching policy extending Φ on Ĝ, µ̂ a measure

extending µ on V̂ and Φ̌ be a policy that reduces Φ on Ǧ. Then the drift of the respective

Markov chains are such that for all w ∈W,

∆Φ
µL(w) ≤ ∆̂Φ̂

µ̂L(w) ≤ ∆̌Φ̌
µL(w). (5.20)

Proof. Fix w ∈ W. The only case in which the proof of the left inequality of (5.20) differs

from that of Proposition 5.7 is when an item of class i ∈ Ow enters the (Ĝ, Φ̂, µ̂) system in

a state w and we multiply each transition by it’s convenient αi. Then, we now get that for

all n, (
L(Ŵn+1)− L(Ŵn)

)
1l{V̂n+1∈Ow} =

∑
i∈Ow

αi1l{V̂n+1=i},

which, taking expectations and reasoning as in (5.19), leads to

∆Φ
µL(w) = ∆̂Φ̂

µ̂L(w)−
∑
i∈Ow

αiµ̂ (i) .

We now turn to the proof of the right inequality of (5.20). Denote

Pw = {i ∈ V1 : |w|i > 0}.

Fix also n ∈ N, and denote by V̌n, the class of the incoming item at time n in the (Ǧ, Φ̌, µ)

system. First, similarly to (5.11), (5.12) and (5.15) we clearly get that

E
[(
L(W̌n+1)− L(W̌n)

)
1l{V̌n+1∈V2∪(V1∩(Pw)c)} | W̌n = w

]
= E

[(
L(Ŵn+1)− L(Ŵn)

)
1l{V̂n+1∈V2∪(V1∩(Pw)c∪(V1∩(Pw)c))}|Ŵn = w

]
. (5.21)
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Now, we also clearly have that

E
[(
L(W̌n+1)− L(W̌n)

)
1l{V̌n+1∈Pw} | W̌n = w

]
=
∑
i∈Pw

αiµ (i) ;

E
[(
L(Ŵn+1)− L(Ŵn)

)
1l{V̂n+1∈Pw} | Ŵn = w

]
=
∑
i∈Pw

αiµ̂ (i) ;

E
[(
L(Ŵn+1)− L(Ŵn)

)
1l{V̂n+1∈Pw} | Ŵn = w

]
= −

∑
i∈Pw

αiµ̂ (i) ,

which, together with (5.21), implies that

∆̂Φ̂
µ̂L(w) = ∆̌Φ̌

µL(w)− 2
∑
i∈Pw

αiµ̂ (i) .

5.5.2 Proofs of the remaining main results

We are now in position to prove Theorem 5.2, Theorem 5.3 and Proposition 5.3.

Proof of Theorem 5.2. Let µ ∈ NCOND(G). From Lemma 5.2, the measure µ̂ belongs to

NCOND(Ĝ). Let Φ be a matching policy of the Max-Weight class onG, with β > 0. Clearly,

its extension Φ̂ is also of the Max-Weight class on Ĝ. Then, we know from Theorem 5.3

in [28] that the model (Ĝ, Φ̂, µ̂) is stable. In particular, we see in the proof of Theorem

5.3 in [28] that the Lyapunov-Foster Theorem 1.1 can be applied to the chain
(
Ŵn

)
n∈N

for

the quadratic function Q. Specifically, there exist η > 0 and a finite set K̂ ⊂ Ŵ such that

∆̂Φ̂
µ̂Q(ŵ) < −η for all ŵ 6∈ K̂. Thus, in view of Proposition 5.7, we have that ∆Φ

µQ(w) <

−η for any w that lies outside the finite subset K = K̂ ∩W. We conclude by applying the

Lyapunov-Foster Theorem to the mapping Q and the compact set K.

Proof of Theorem 5.3. (i) Fix µ ∈ NCOND(G). First, if G is a graph (V1 = ∅) and G = Ǧ

is complete p-partite for p ≥ 3, then the result follows from Theorem 2, Assertion (16) in

[32]: specifically, we have that for some η > 0, for any w ∈W \ {ε},

∆Φ
µL(w) < −η, (5.22)

and the Lyapunov-Foster criterion applies. Now, if G is not a graph, i.e. V1 6= ∅, then let

δ = min {µ(E(I))− µ(I) : I ∈ I(G)} ,

which is strictly positive since µ ∈ NCOND(G), and the mapping

Lδ :


W −→ R+

w 7−→
∑
i∈V1

δ

2µ(V1)
|w|i +

∑
i∈V2

|w|i.
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Then, for any w ∈ W the set Iw = {i ∈ V : |w|i > 0} is an independent set of Ǧ, so by

the very definition of a complete p-partite graph, there exists a unique maximal independent

set Ǐ of Ǧ such that Iw ⊂ Ǐ . Then, for all w ∈ W such that Iw ∩ V2 6= ∅, for any n, if

{Wn = w} the Markov chain can make two types of moves upon the arrival of Vn+1:

• either one coordinate of Wn decreases from 1 if Vn+1 is of a class in Ǐc = Ě
(
Ǐ
)
, or of

a class in Iw ∩ V1;

• or one coordinate of Wn increases from 1, if Vn+1 is of a class in Ǐ ∩ ((Iw)c ∪ V2).

Therefore, for any V2-favorable matching policy Φ we have that

∆Φ
µLδ(w)

= − δ

2µ(V1)
µ (V1 ∩ Iw) 1l{V1∩Iw 6=∅}+

δ

2µ(V1)
µ
(
V1 ∩ Ǐ ∩ (Iw)c

)
+ µ

(
Ǐ ∩ V2

)
− µ

(
Ǐc
)
.

(5.23)

Observe that Ǐ ∩ V2 is an independent set of G, and that Ǐc = E
(
Ǐ ∩ V2

)
. Hence (5.23)

implies that

∆Φ
µLδ(w) ≤ δ

2µ(V1)
µ
(
V1 ∩ Ǐ ∩ (Iw)c

)
+ µ

(
Ǐ ∩ V2

)
− µ

(
E
(
Ǐ ∩ V2

))
≤ δ

2
− δ = −δ

2
.

As this is true for any w outside the finite set {w ∈ W : Iw ∩ V2 = ∅}, we conclude again

using the Lyapunov-Foster Theorem that STAB(G,Φ) = NCOND(G).

(ii) Fix µ ∈ NCOND(Ǧ), and an admissible matching policy Φ. Applying (5.22) to

Ǧ, we obtain that for any Φ̌ that reduces Φ, for some η > 0 we have ∆̌Φ̌
µL(w̌) < −η for

all w̌ ∈ W̌ \ {ε}. Combining this with (5.20), and recalling that W ⊂ W̌ we obtain that

∆Φ
µL(w) < −η for all w ∈W \ {ε}, which concludes the proof.

Proof of Proposition 5.3. (i) Remark that for any ŵ ∈ Ŵ, the set {i ∈ V : |ŵ|i > 0} is

again an independent set of Ǧ. So we can apply, for any µ̂ ∈ NCOND(Ĝ), the exact same

argument as for assertion (i) in Theorem 5.3, by replacing V1 by V1 ∪ V1.

(ii) Let µ̂ be an element of M (V̂) whose reduced measure µ belongs to NCOND(Ǧ). Let

Φ̂ be an admissible policy on V̂ , Φ be a policy on V such that Φ̂ extends Φ, and Φ̌ be a policy

reducing Φ on Ǧ.

First, as in (5.22) there exists η > 0 such that ∆̌Φ̌
µL(w) < −η for any w ∈W \ {ε}.

Fix ŵ in Ŵ \ {ε}. Then define the permutation γ of V̂ byγ(i) = i and γ(i) = i if |ŵ|i > 0 and |ŵ|i = 0, i ∈ V1,

γ(j) = j else, for any j ∈ V̂ .
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Let us also denote by γ(ŵ), the word obtained from w by replacing the letters of ŵ by their

image through γ, in other words for all i ∈ J1, |ŵ|K, γ(ŵ)i = γ(ŵi). Observe that γ(ŵ) is

clearly an element ofW \ {ε}, so in view of the above observation we have that

∆̌Φ̌
µL(γ(ŵ)) < −η. (5.24)

Now, as i and i have the same connectivity in Ĝ for any i ∈ V1, for all n the conditional

distribution of Ŵn+1 given {Ŵn = ŵ} in the (Ĝ, Φ̂, µ̂) system equals that of Ŵn+1 given

{Ŵn = γ(ŵ)} in the (Ĝ, Φ̂, µ̂ ◦ γ) system. In particular, we have that

∆̂Φ̂
µ̂ (ŵ) = ∆̂Φ̂

µ̂◦γ(γ(ŵ)). (5.25)

On the other hand, as γ(ŵ) is an element of W and the measure µ̂ ◦ γ ∈ M (V̂) clearly

extends the measure µ, the right inequality of (5.20) implies that

∆̂Φ̂
µ̂◦γL(γ(ŵ)) ≤ ∆̌Φ̌

µL(γ(ŵ)),

and it follows from (5.24-5.25) that ∆̂Φ̂
µ̂ (ŵ) < −η. As this is true for any ŵ in Ŵ \ {ε}, the

proof is complete.

5.6 Discussion of results and conclusion

In this chapter, we have studied a generalization of stochastic matching models on graphs by

allowing the self-loops matching. Different applications appear to this class of models such

as dating sites or collaborative sites, that is, individuals of the same class can be married.

For a given multigraph G, we build its maximal subgraph Ǧ that is obtained by deleting

all self-loops in G, and its minimal blow-up graph Ĝ that is obtained by duplicating each

node having a self-loop by two nodes having the same neighborhood and replacing each

self-loop by an edge between the node and its copy. Taken into consideration the graphs Ǧ

and Ĝ which are built above, we can transmit and generalize different results to G.

The multigraph G under the matching policies FCFM and Max-Weight such that β > 0

are maximal. Also, if G is a complete p-partite multigraph, (p ≥ 2), then for p ≥ 3 or

V1 6= 0, any V2-favorable matching policy is maximal.





Chapter 6

Fluid limits techniques for stability

Introduction

In the previous chapters, we studied the stability of stochastic matching models using Lya-

punov techniques. In this chapter, we present a new approach that allows us to retrieve, and

complete these results in continuous-time settings. This technique consists of speeding up

time and scaling the process appropriately to obtain a deterministic and continuous approx-

imation of the original process, which allows, among other features, to study the ergodicity

properties of the process at hand. In the limit, one gets a sort of caricature of the initial

stochastic process which is defined as its fluid limit.

This chapter is organized as follows: In Section 6.1 we start by providing necessary

conditions of stability for graphical matching models in continuous time. In Section 6.2

we derive fluid approximations of matching models on multigraphs. In Section 6.3 we

present different case studies. Last, in Section 6.4 we elaborate the fluid limit technique

to study matching models on complete 3-uniform hypergraphs and complete 3-uniform k-

partite hypergraphs. We conclude and discuss this chapter in Section 6.5.

6.1 Necessary conditions of stability

The necessary condition of stability for discrete-time stochastic matching models on graphs

was recalled in Section 3.4. For all G = (V , E) it reads as follows,

NCOND(G) :=
{
µ with support V : µ(I) < µ(E(I)) for all I ∈ I(G)

}
. (6.1)

The first question that arises is to find an analog of (6.1) for continuous-time models, that

is, in the context of matching queues, as defined in section 2.5 (recall the notation therein).
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The following condition was introduced in [37]: for any matching graph G,

NCONDC(G) :=
{
λ ∈ (R++)|V| : λ̄I < λ̄E(I) for all I ∈ I(G)

}
. (6.2)

Fix a graph G = (V , E), a class-admissible matching policy Φ, and an arrival vector

λ := (λ1, · · · , λ|V|). Let for all i ∈ V ,

µλ(i) =
λi
λ̄

=
λi∑

i∈V
λi
·

Then, it is easily seen that µλ defines a probability measure on V . Further, if we denote

for all n ≥ 1, by A(n) := {An(i), i ∈ V} the vector tracking the number of items in the

buffers of all nodes up to time n in the discrete-time system associated to G, Φ and µλ. On

another hand, let N be the superposition of the arrival Poisson processes in the continuous-

time matching system associated with G, Φ and λ. Then, it is immediate that we have the

identity in distribution Qt = A(N(t)). As there are finitely many Poisson processes in the

continuous-time model, the sojourn time of the corresponding CTMC is of a rate that is

bounded away from zero. This implies that Q is positive recurrent if and only if A is so, see

[30, Theorem 6.18]. Consequently, relating (6.1) to (6.2) we get that the stability region of

the continuous-time model is included in NCONDC(G).

We now use fluid-limit technique to derive precisely the stability region of continuous-

time models. A throughout presentation of the following section can be found e.g. in [37].

6.2 Fluid Stability

Fix a multigraph G = (V1 ∪ V2, E), a matching policy Φ of the priority type and an arrival

vector λ. Observe that for all t ≥ 0, for all i ∈ V , Qi(t) increases by 1 for each class-i

arrivals such that Qj(t) = 0 for any j ∈ E(i). On another hand, Qi(t) decreases by 1

(when it is positive) for any class-j arrival with j ∈ E(i), such that Qk(t) are empty for any

k ∈ E(j) such that j gives a higher priority to k over i.

The state space in CTMC is then as follows:

E =

{
z ∈ (Z+)|V| : zizj = 0, for any i ∈ V ,

and j ∈ E(i) with |zk| ≤ 1 for any k ∈ V1

}
. (6.3)
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For each i ∈ V , we introduce the following sets,

Ni := {z ∈ E : zi > 0};
Oi := {z ∈ E : zj = 0 for all j ∈ E(i)};

Φj(i) := {k ∈ E(j); j gives priority to k over i according to Φ} ;

Pj(i) := {z ∈ E : zk = 0 for all k ∈ Φj(i)}, j ∈ E(i).

(6.4)

Marginal process corresponding to a particular node. Fix a matching node i0 of G. Let

R := Ri0 = V\
(
i0 ∪ E(i0)

)
=
{
i1, · · · , i|R|

}
.

For x, y ∈ E, denote by A(x, y) the infinitesimal generator of the queue process Q. For any

z ∈ E such that zi0 > 0, the only positive terms A(z, y), y ∈ E, are given by

A(z, z + ei0) = λi0 ;

A(z, z − ei0) =
∑

j∈E(i0)

(
λj1lP j(i0)(z)

)
;

A(z, z + ei`) = λi`1lOi`(z), ` ∈ J1, |R|K;

A(z, z − ei`) = 1lN i`(z)
∑

j∈E(i0)
i0 /∈Φj(i`)

(
λj1lP j(i0)(z)

)
, ` ∈ J1, |R|K.

(6.5)

Let R := Ri0 = {R(t) : t ≥ 0} denote the restriction of the process Q to the nodes of

R, i.e.,

R = (R1, R2, · · · , R|R|) :=
(
Qi1 , · · · , Qi|R|

)
. (6.6)

Define the set

ER =

{
z ∈ (Z+)|R| : zikzil = 0, for any ik ∈ R,

and il ∈ E(ik) with |zim| ≤ 1 for any im ∈ V1

}
. (6.7)

Conditionally on the i0-th coordinate ofQ being positive, the processR clearly coincides

in distribution with a Markov process X on ER. The latter will be termed marginal Markov

process associated to node i0. The idea is as follows: using a stochastic averaging principle,

as in [29], showing that the marginal process reaches its stationary state immediately at fluid

scale. The drifts of the fluid limit of Q will then be a function of this stationary measure.

The FWLLN. We consider the sequence of fluid-scaled processes {Q̄n : n ≥ 1},
defined via

Q̄n(t) =
Qn(t)

n
:=

Q(nt)

n
, t ≥ 0, n ≥ 1.
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We also denote by X n the n-th marginal process corresponding to i0, defined by

X n(t) = X (nt), t ≥ 0,

and define

X̄ n(t) =
X (nt)

n
, t ≥ 0, n ≥ 1.

For the fluid analysis, we make two assumptions below,

ASSUMPTION 1. Qn(0) ∈ E, for any n ≥ 1, and Q̄n(0) ⇒ Q̄(0) as n −→ ∞, where

Q̄(0) is a deterministic element of R|V|, with Q̄i0(0) > 0 and Q̄i(0) = 0, i ∈ V\{i0}.

ASSUMPTION 2. For all n ≥ 1, the ER−valued process X n is ergodic with stationary

probalility πn.

For n ≥ 1, let

ρn := ρn(Qn(0)) := inf{t ≥ 0 : Qn
i0

(t) = 0}, with inf ∅ :=∞. (6.8)

In the case where G is a graph, the following result was given as Theorem 4 of

[37]. Hereafter, for a sequence of random variables {ρn}, we write ρn ⇒ ρ whenever

P [ρn > M ] −→
n→∞

1 for any M ∈ R.

Theorem 6.1. (FWLLN) Let G be a graph, and (G,Φ, λ)C be a matching queue such that

Φ is class-admissible. If, for some node i0

λi0 −
∑
j∈E(i0)

λjπ
(
PRj (i0)

)
< 0, (6.9)

for π stationary probability and PRj (i0), j ∈ E(i0), then ρn ⇒ ρ in R as n −→ ∞, for ρn

in (6.8), where

ρ =
Q̄i0(0)∑

j∈E(i0) λjπ
(
PRj (i0)

)
− λi0

. (6.10)

Otherwise, ρn ⇒∞. In either case, Q̄n ⇒ Q̄ in D|V|[0, ρ) as n −→∞, where
Q̄i0(t) = Q̄i0(0) +

λi0 − ∑
j∈E(i0)

λjπ
(
PRj (i0)

) t,

Q̄i(t) = 0, i ∈ V\{i0}.

(6.11)

Notice that ρn going to infinity in the sense specified above readily entails that the pro-

cess Q cannot be positive recurrent, as is shown in Lemma 1 of [37], following Proposition

9.9 in [44]. In other words,

Corollary 6.1. If ρn ⇒∞, for ρn in (6.8), then (G,Φ, λ)C is unstable.
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Now, if G = (V1 ∪ V2, E) is a multigraph, for any i ∈ V1, Qi(0) is always zero or one,

so the i-th coordinate of the fluid limit Q̄ is necessarily null at all times. Moreover, it is

immediate to observe the following,

Corollary 6.2. For any class-admissible policy Φ, the conclusions of Theorem 6.1 and

Corollary 6.1 remain valid for a continuous-time model (G,Φ, λ)C on a multigraph G if

we assume that (6.9) holds for some i0 ∈ V2.

In the Section 6.3 below, we will study examples of multigraphs for which the stationary

probability of the marginal process can be explicitly computed, and so an explicit fluid limit

and an explicit necessary condition of stability can be derived, respectively using Theorem

6.1 and Corollary 6.2. Moreover, using fluid stability arguments as in [17] will also prove

that the latter conditions are also sufficient, thereby providing the exact stability region of

the models under consideration.

6.3 Multigraphical cases study

In this section we present different examples of multigraph G = (V = V1 ∪ V2, E) and the

corresponding matching queues (G,Φ, λ)C , for the arrival-rate vector λ := (λ1, · · · , λ|V|)
and a priority policy Φ that is depicted by the arrows on each dedicated figure. We de-

duce the precise stability regions of the corresponding stochastic matching models using the

above fluid limit results.

6.3.1 Pendant graphs with a self-loop

In the subsection below, we present various multigraphs that consist of a pendant graph with

a self-loop on a given vertex.

Pendant graph with a self-loop on the vertex 2

Consider the multigraph G depicted on Figure 6.1 such that V1 = {2}, V2 = {1, 3, 4} and

E = {{1, 2}, {2}, {2, 3}, {2, 4}, {3, 4}}.

Proposition 6.1. Let G be the pendant graph with a self-loop on the vertex 2 and Φ the

matching policy depicted on Figure 6.1. Consider an arrival-rate vector λ ∈ NCONDC(G),

i.e.,

λ1 < λ2, λ1 + λ3 < λ2 + λ4 and λ1 + λ4 < λ2 + λ3.
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1

2

3 4

Figure 6.1: Multigraph G with a self-loop on the vertex 2.

If Q̄n(0)⇒ xe1 in R4 for some x ∈ R++, then Q̄n ⇒ Q̄ in D4[0, ρ) as n→ +∞, where

Q̄(t) = (x+ (λ1 − λ2α)t, 0, 0, 0), 0 ≤ t < ρ,

for ρ := x/(λ2α− λ1) if α > λ1/λ2 and ρ :=∞ otherwise, and for

α :=

[
1 +

λ3

λ2 + λ4 − λ3

+
λ4

λ2 + λ3 − λ4

]−1

=
(λ2)2 − (λ3 − λ4)2

λ2(λ2 + λ3 + λ4)
. (6.12)

Proof. The result follows from Corollary 6.2 by considering i0 = 1. In that case the

marginal process X has the following infinitesimal generator AR, withR = {3, 4},

AR((i, 0), (i+ 1, 0)) = λ3;

AR((i, 0), (i− 1, 0)) = (λ2 + λ4)1l[1,+∞)(i);

AR((i, 0), (i, 0)) = −
(
λ3 + (λ2 + λ4)1l[1,+∞)(i)

)
;

AR((0, j), (0, j + 1)) = λ4;

AR((0, j), (0, j − 1)) = (λ2 + λ3)1l[1,+∞)(j);

AR((0, j), (0, j)) = −
(
λ4 + (λ2 + λ3)1l[1,+∞)(j)

)
;

then we get,
−λ3π(0, 0) + (λ2 + λ4)π(1, 0) = 0

λ3π(0, 0)− (λ2 + λ3 + λ4)π(1, 0) + (λ2 + λ4)π(2, 0) = 0

λ3π(1, 0)− (λ2 + λ3 + λ4)π(2, 0) + (λ2 + λ4)π(3, 0) = 0

. . . . . . . . . = 0

⇐⇒



π(1, 0) =

(
λ3

λ2 + λ4

)
π(0, 0)

π(2, 0) =

(
λ3

λ2 + λ4

)
π(1, 0)

π(3, 0) =

(
λ3

λ2 + λ4

)
π(2, 0)

...

⇐⇒ π(i, 0) =

(
λ3

λ2 + λ4

)
π(i− 1, 0) ; i ≥ 1.
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Set π(0, 0) = α, so, for any state x ∈ ER we have,

π(x) =


α

(
λ3

λ2 + λ4

)i
x = (i, 0), i ≥ 1

α

(
λ4

λ2 + λ3

)j
x = (0, j), j ≥ 1.

Then we have,

1 =
∑
i≥1

π(i, 0) +
∑
j≥1

π(0, j) + π(0, 0)

= π(0, 0)

[∑
i≥1

π(i, 0) +
∑
j≥1

π(0, j) + 1

]

= π(0, 0)

[
λ3

λ2 + λ4 − λ3

+
λ4

λ2 + λ3 − λ4

+ 1

]
.

The stationary distribution π of this reversible CTMC is unique, so Assumption 2 holds.

The stated convergence of Qn to the fluid limits follows from Corollary 6.2.

Proposition 6.2. The matching queue (G,Φ, λ)C corresponding to the pendant graph G

with a self-loop on the vertex 2 and the priority type Φ depicted on Figure 6.1, is stable if

and only if NCONDC(G) holds together with

λ1 < αλ2 for α in (6.12).

Proof. It follows from Proposition 6.1 that, for any initial condition of the form (x, 0, 0, 0), x >

0, the fluid limit Q̄ will hit the origin if and only if λ1 < αλ2.

Assume that Q̄1(0) > 0. Then at most one of Q̄3(0) or Q̄4(0) > 0. Say Q̄3(0) > 0.

According to the priority of 3 over 1, then

Q̄3(t) = Q̄3(0) + (λ3 − λ2 − λ4)t, 0 ≤ t ≤ Q̄3(0)

λ2 + λ4 − λ3

.

In particular, the fluid process Q̄3 will hit 0 in finite time, so that Q̄3 will hit the origin in

finite time by Proposition 6.1. A similar argument applies to the case where Q̄4(0) > 0.

Assume now that Q̄2(0) > 0, there exists t0 such that ∀t > t0, Q̄2(t) = 0 (self-loop on

vertex 2.) Now, since the prelimit processes Qi, i = 2, 3, 4 have drifts towards 0 whenever

any of them is strictly positive, the fluid limit must remain in state 0 after hitting this state,

and Proposition 6.1 shows that Q̄1 will also remain fixed at 0 after hitting that state. Thus,

the ergodicity of the system follows from [17, Theorem 4.2].
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Proposition 6.3. We have the strict inclusion

{λ1 < αλ2} ∩ NCONDC(G) ( NCONDC(G).

Proof. Fix ε ∈ (0, 2/5] and set
λ1 = ε/2;

λ2 = ε;

λ3 = λ4 = 1/2− 3ε/4.

Clearly, λ belong to the set NCONDC(G), but not to {λ1 < αλ2}, since

λ1 − αλ2 = ε/2− ε2

ε+ 1− 3ε/2
= ε/2− 2ε2

2− ε
≥ 0.

Pendant graph with a self-loop on the vertex 3

Consider the multigraph G depicted on Figure 6.2 such that V1 = {3}, V2 = {1, 2, 4} and

E = {{1, 2}, {2, 3}, {2, 4}, {3}, {3, 4}}.

1

2

3 4

Figure 6.2: Multigraph G with a self-loop on the vertex 3.

Proposition 6.4. Let G be the pendant graph with a self-loop on the vertex 3 and Φ the

matching policy depicted on Figure 6.2 above. Consider an arrival-rate vector λ ∈ NCONDC(G),

i.e.,

λ1 < λ2 < λ1 + λ3 + λ4, and λ1 + λ4 < λ2 + λ3.

If Q̄n(0)⇒ xe1 in R4 for some x ∈ R++, then Q̄n ⇒ Q̄ in D4[0, ρ) as n→ +∞, where

Q̄(t) = (x+ (λ1 − λ2α)t, 0, 0, 0), 0 ≤ t < ρ,

for ρ := x/(λ2α− λ1) if α > λ1/λ2 and ρ :=∞ otherwise, and for

α :=

[
1 +

λ3

λ2 + λ3 + λ4

+
λ4

λ2 + λ3 − λ4

]−1

=
(λ2 + λ3)2 − λ2

4

λ2
2 + 2λ2

3 + 3λ2λ3 + λ2λ4

. (6.13)
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Proof. We prove with the same argue for Proposition 6.1. Set π(0, 0) = α, we get that

π(x) =


αλ3

λ2 + λ3 + λ4

x = (1, 0);

α

(
λ4

λ2 + λ3

)j
x = (0, j), j ≥ 1.

Again, the stationary distribution π of this reversible CTMC is unique, so Assumption 2

holds. The stated convergence of Qn to the fluid limits follows from Corollary 6.2.

Proposition 6.5. The matching queue (G,Φ, λ)C corresponding to the pendant graph G

with a self-loop on the vertex 3 and the priority type Φ depicted on Figure 6.2, is stable if

and only if NCONDC(G) holds together with

λ1 < αλ2 for α in (6.13).

Proof. Assume that Q̄1(0) > 0. It follows from the Proposition 6.4 that, for any initial

condition of the form (x, 0, 0, 0), x > 0, the fluid limit Q̄ will hit the origin if and only if

λ1 < αλ2.

Assume now that Q̄2(0) > 0, then we have

Q̄2(t) = Q̄2(0) + (λ2 − λ1 − λ3 − λ4)t, 0 ≤ t ≤ Q̄2(0)

λ1 + λ3 + λ4 − λ2

.

According to λ ∈ NCONDC(G) the fluid queue hits the origin in finite time.

Assume that Q̄1(0) > 0, with at most one of Q̄3(0) or Q̄4(0) > 0. Set Q̄3(0) > 0 then it

is equal to 1. So there exists t0 > 0 such that

Q̄3(t) = 0, ∀t > t0.

Now assume that Q̄1(0) > 0, and Q̄4(0) > 0, then according to the priority of 4 over 1, then

Q̄4(t) = Q̄4(0) + (λ4 − λ2 − λ3)t, 0 ≤ t ≤ Q̄4(0)

λ2 + λ3 − λ4

.

According to λ ∈ NCONDC(G), in particular, the fluid process Q̄4 will hit 0 in finite time,

so that Q̄4 will hit the origin in finite time by Proposition 6.4.

Now, since the prelimit processes Qi, i = 2, 3, 4 have drifts towards 0 whenever any

of them is strictly positive, and Proposition 6.4 shows that Q̄1 will also remain fixed at 0

after hitting that state. Thus, the ergodicity of the system follows again from [17, Theorem

4.2].
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Proposition 6.6. We have the strict inclusion

{λ1 < αλ2} ∩ NCONDC(G) ( NCONDC(G).

Proof. Fix ε ∈ (0, 1/3] and set
λ1 = ε/2;

λ2 = ε.

λ3 = λ4 = 1/2− 3ε/4;

Clearly, λ belongs to NCONDC(G), but not to {λ1 < αλ2}, since

λ1−αλ2 = ε/2− (ε+ 1/2− 3ε/4)2 − (1/2− 3ε/4)2

ε2 + 2 (1/2− 3ε/4)2 + 4ε (1/2− 3ε/4)
(ε) = ε/2− 8ε2 − 4ε3

−7ε2 + 4ε+ 4
≥ 0.

6.3.2 Complete bipartite graphs with a self-loop

In this subsection, we present a different type of multigraphs of the form of complete bipar-

tite graph with a self-loop on a such vertex.

Complete bipartite graph of order 3 with a self-loop on the vertex 2

Consider the multigraph G depicted on Figure 6.3 such that V1 = {2}, V2 = {1, 3} and

E = {{1, 2}, {2, 3}, {2}}.

1

2

3

Figure 6.3: Complete bipartite graph of order 2 with a self-loop on the vertex 2.

Proposition 6.7. Let G be the bipartite graph with a self-loop on the vertex 2 and Φ the

matching policy depicted on Figure 6.3 above. Consider an arrival-rate vector

λ ∈ NCONDC(G) = {λ1 + λ3 < λ2}.

If Q̄n(0)⇒ xe1 in R3 for some x ∈ R++, then Q̄n ⇒ Q̄ in D3[0, ρ) as n→ +∞, where

Q̄(t) = (x+ (λ1 − αλ2)t, 0, 0), 0 ≤ t < ρ,
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for ρ := x/(λ2α− λ1) if α > λ1/λ2 and ρ :=∞ otherwise, and for

α :=

[
1 +

λ3

λ2 − λ3

]−1

=
λ2 − λ3

λ2

. (6.14)

Proof. We argue as above. Setting π(0) = α, for any i ≥ 1, we get that

π(i) = α

(
λ3

λ2

)i
,

and the result follows again from Corollary 6.2.

Proposition 6.8. The matching queue (G,Φ, λ)C corresponding to the complete bipartite

graph with a self-loop on the vertex 2 depicted on Figure 6.3 and for all matching policy Φ,

(G, FCFM, µ)C is stable if and only if µ belongs to the set NCONDC(G).

Proof. First, consider that the priority type policy that depicted on Figure 6.3, we have:

Assume that that Q̄1(0) > 0, and Q̄3(0) > 0, then according to the priority of 3 over 1,

then

Q̄3(t) = Q̄3(0) + (λ3 − λ2)t, 0 ≤ t ≤ Q̄3(0)

λ2 − λ3

.

According to λ ∈ NCONDC(G), in particular, the fluid process Q̄3 will hit 0 in finite time,

so that Q̄3 will hit the origin in finite time by Proposition 6.7.

Now assume that Q̄1(0) > 0, it follows from the proposition 6.7 that, for any initial

condition of the form (x, 0, 0), x > 0, the fluid limit Q̄ will hit the origin if and only if

λ1 < αλ2. Indeed, we have

λ1 < αλ2

⇐⇒ λ1 <

(
λ2 − λ3

λ2

)
λ2

⇐⇒ λ1 < λ2 − λ3.

For this, it suffices that λ ∈ NCONDC(G). However, by symmetry between the vertices 1

and 3, we conclude that for all class-admissible matching policy Φ,we have STABC(G,Φ) =

NCONDC(G). See Theorem 5.3 (i).

Complete bipartite graph of order q = 4 with a self-loop on the vertex 1

Consider the multigraph G depicted on Figure 6.4 such that V1 = {1}, V2 = {1, 2, 3} and

E = {{1}, {1, 2}, {1, 4}, {2, 3}, {3, 4}}.
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2

4

1

3

(a) Non V2-favorable policy.

2

4

1

3

(b) V2-favorable policy.

Figure 6.4: Complete bipartite graph of order 4 with a self-loop on the vertex 1.

Proposition 6.9. Let G be the bipartite graph with a self-loop on the vertex 1 and Φ the

matching policy depicted on Figure 6.4 (a). Consider an arrival-rate vector

λ ∈ NCONDC(G) = {λ2 + λ4 < λ1 + λ3, and λ3 < λ2 + λ4}.

If Q̄n(0)⇒ xe3 in R4 for some x ∈ R++, then Q̄n ⇒ Q̄ in D4[0, ρ) as n→ +∞, where

Q̄(t) = (0, 0, x+ (λ3 − α1(λ2 + λ4))t, 0), 0 ≤ t < ρ,

for ρ := x/((λ2 + λ4)α1 − λ3) if α1 > λ3/(λ2 + λ4) and ρ :=∞ otherwise, and for

α1 =

[
1 +

λ1

λ1 + λ2 + λ4

]−1

=
λ1 + λ2 + λ4

2λ1 + λ2 + λ4

. (6.15)

Proof. We argue as above, by computing explicitly the unique stationary distribution of the

reversible marginal process.

Proposition 6.10. The matching queue (G,Φ, λ)C corresponding to the complete bipartite

graph G with a self-loop on the vertex 1 and the priority type Φ depicted on Figure 6.4 (a),

is stable if and only if NCONDC(G) holds together with

λ3 < (λ2 + λ4)α1

for α1 in (6.15).

Proof. Assume that Q̄2(0) > 0, then according to the priority of 2 over 4, then

Q̄2(t) = Q̄2(0) + (λ2 − (λ1 + λ3))t 0 ≤ t <
Q̄2(0)

λ1 + λ3 − λ2

.

Now assume that Q̄4(0) > 0, so we have

Q̄4(t) = Q̄4(0) + (λ4 − (λ1 + λ3)α2)t 0 ≤ t <
Q̄4(0)

(λ1 + λ3)α2 − λ4

,
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for a simple calculs we get, α2 =
λ1 + λ3 − λ2

λ1 + λ3

.

Observe that λ4 − (λ1 + λ3)α2 = λ2 + λ4 − (λ1 + λ3), which is negative according to

NCONDC(G).

Now assume that Q̄3(0) > 0, so we have

Q̄3(t) = Q̄3(0) + (λ3 − (λ2 + λ4)α1)t 0 ≤ t <
Q̄3(0)

(λ2 + λ4)α1 − λ3

,

it follows from the Proposition 6.9 that, for any initial condition of the form (x, 0, 0, 0), x >

0, the fluid limit Q̄ will hit the origin if and only if λ3 < α1(λ2 + λ4).

Proposition 6.11. We have the strict inclusion

{λ3 < (λ2 + λ4)α1} ∩ NCONDC(G) ( NCONDC(G).

Proof. Fix ε ∈ (0, 4/7] and set 
λ1 = 1− 5ε/4;

λ2 = λ4 = ε/2;

λ3 = 3ε/4.

Clearly, λ belong to NCONDC(G), but not to the set {λ3 < (λ2 + λ4)α1}, since

λ3 − (λ2 + λ4)α1 =
3ε

4
− (ε)

1− 5ε/4 + ε

2− 5ε/2 + ε
=

3ε

4
− (ε)

4− ε
8− 6ε

≥ 0.

Remark 6.1. Obseve that the multigraph G = (V , E) mentioned above is formed by V1 =

{1} and V2 = {2, 3, 4}. Then, if the matching policy Φ is V2-favorable depicted on Figure

6.4 (b), we get that

Q̄3(t) = Q̄3(0) + (λ3 − λ2 − λ4)t 0 ≤ t <
Q̄3(0)

λ2 + λ4 − λ3

,

which satisfies the Theorem 5.3. Thus for all Φ = V2-favorable (G,V2 − favorable, µ)C is

stable if and only if µ belongs to the set NCONDC(G).

6.4 Hypergraphical cases study

In this section, we develop an example of a hypergraph in which we apply the fluid limits

technique presented in Section 6.2 with some adaptation for hypregraphs and we find the

results proved in Theorem 4.1 for complete 3-uniform hypergraph of order 4.
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6.4.1 Complete 3-uniform hypergraph of order 4

First of all, given a complete 3-unifom hypergraphH = (V ,H) of order q ≥ 4, then observe

that N−3 (H) =
{
µ(i) < 1

3
, ∀i ∈ V

}
=
{
µ(i) < 1

2

∑
j∈V\{i} µ(j), i ∈ V

}
.

Proposition 6.12. Let H = (V ,H) be a complete 3-uniform hypergraph of order 4 and for

all matching policy Φ. Consider an arrival-rate vector λ ∈
(
N −

3

)
C

(H) i.e.λi < 1

2

∑
j∈V\{i}

λ(j), i ∈ V

 .

1. If Q̄n(0) ⇒ xe1 in R4 for some x ∈ R++, then Q̄n ⇒ Q̄ in D4[0, ρ) as n → +∞,

where

Q̄(t) = (x+(λ1−α2(λ3 +λ4)−α3(λ2 +λ4)−α4(λ2 +λ3))t, 0, 0, 0), 0 ≤ t < ρ,

for ρ := x/(α2(λ3 + λ4) + α3(λ2 + λ4) + α4(λ2 + λ3)− λ1), with

α2 =
(λ3 − λ4)2 + λ2(λ3 + λ4)

λ2
2 − (λ3 − λ4)2

;

α3 =
(λ2 − λ4)2 + λ3(λ2 + λ4)

λ2
3 − (λ2 − λ4)2

;

α4 =
(λ2 − λ3)2 + λ4(λ2 + λ3)

λ2
4 − (λ2 − λ3)2

.

(6.16)

2. If Q̄n(0) ⇒ xe1 + ye2 in R4 for some x, y ∈ R++, then Q̄n ⇒ Q̄′ in D4[0, ρ) as

n→ +∞, where

Q̄′(t) = (x+ (λ1 − λ3 − λ4))t, y + (λ2 − λ3 − λ4))t, 0, 0), 0 ≤ t < ρ,

for ρ := min (x/(λ3 + λ4 − λ1), y/(λ3 + λ4 − λ2)) .

Proof. 1. The marginal process isR = {2, 3, 4}. Then, similarly to the above resolution,

we deduce that

π(x) =



π(0, 0, 0)

(
λ2

λ3 + λ4

)i
, x = (i, 0, 0) i ≥ 1;

π(0, 0, 0)

(
λ3

λ2 + λ4

)j
, x = (0, j, 0) j ≥ 1;

π(0, 0, 0)

(
λ4

λ2 + λ3

)k
, x = (0, 0, k) k ≥ 1.
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Set π(0, 0, 0) = π(0), and for any i, j, k ≥ 1, we set the following,

π(i, 0, 0) = π2(i), π(0, j, 0) = π3(j) and π(0, 0, k) = π3(k).

1 =
∑
i≥1

π1(i) +
∑
j≥1

π2(j) +
∑
k≥1

π3(k) + π(0)

= π(0)

[∑
i≥1

(
λ2

λ3 + λ4

)i
+
∑
j≥1

(
λ3

λ2 + λ4

)j
+
∑
k≥1

(
λ4

λ2 + λ3

)k
+ 1

]

= π(0)

[
λ2

λ3 + λ4 − λ2

+
λ3

λ2 + λ4 − λ3

+
λ4

λ2 + λ3 − λ4

+ 1

]
= π(0)

[
4λ2λ3λ4

(λ3 + λ4 − λ2)(λ2 + λ4 − λ3)(λ2 + λ3 − λ4)

]
.

Then we have,

π(0) =
(λ3 + λ4 − λ2)(λ2 + λ4 − λ3)(λ2 + λ3 − λ4)

4λ2λ3λ4

.

Then the queue Q̄1 be as follow,

Q̄1(t) = Q̄1(0) +

(
λ1 − λ2

(∑
j≥1

π3(j) +
∑
k≥1

π4(k)

)

−λ3

(∑
i≥1

π2(i) +
∑
k≥1

π4(k)

)
− λ4

(∑
i≥1

π2(i) +
∑
j≥1

π3(j)

))
t

= Q̄1(0) +

(
λ1 − π(0)

[
λ2

(
λ3

λ2 + λ4 − λ3

+
λ4

λ2 + λ3 − λ4

)
+ λ3

(
λ2

λ3 + λ4 − λ2

+
λ4

λ2 + λ3 − λ4

)
+ λ4

(
λ3

λ2 + λ4 − λ3

+
λ2

λ3 + λ4 − λ2

)])
t

= Q̄1(0) +

[
λ1 −

(λ3 + λ4 − λ2)(λ2 + λ4 − λ3)(λ2 + λ3 − λ4)

4λ2λ3λ4(
2λ2λ3λ4(λ2 + λ3 + λ4)

(λ3 + λ4 − λ2)(λ2 + λ4 − λ3)(λ2 + λ3 − λ4)

)]
t

= Q̄1(0) +

(
λ1 −

1

2
(λ2 + λ3 + λ4)

)
t, ∀t > 0.

Therefore, similarly we obtain that for any i ∈ V , ∃t0 > 0, any Q̄i(t) < 0, ∀t > t0.

2. Observe that, for any i, j ∈ V , we have V\{i, j} be a transversal ofH and
∑

k∈V\{i,j} µ(k) >

1/3, then
∑

k∈V\{i,j} µ(k) > µ(i) and
∑

k∈V\{i,j} µ(k) > µ(j). In other words, for any

i, j ∈ V , we have λV\{i,j} > λi and λV\{i,j} > λj.
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Now, for all t ≥ 0 we have, Q̄1(t) = Q̄1(0) + (λ1 − λ3 − λ4) t, ∀t > 0. Then, as a

result of the observation above, there exists t0 > 0 such that Q̄1(t) < 0 for all t ≥ t0.

Similarly, we deduce that there exists t1 > 0 such that Q̄2(t) < 0 for all t ≥ t1. We

conclude that there exists t ≥ t0 ∨ t1 the prelimit process Qi, i = 1, 2 have drifts

towards 0 whenever any them is striclty positive, then Q̄1 and Q̄2 will remain fixed

at 0 after hitting that state. Thus the ergodicity of the sytem follows again from [17,

Theorem 4.2].

Observe that, the complete 3-uniform k-partite hypergraph is just the complete 3-uniform

hypergraph of order k, where all the sets I1, ..., Ik are of cardinality 1 (i.e., there are no

replica). In particular case the complete 3-uniform 4-partite hypergraph is the complete

3-uniform hypergraph of order 4.

6.5 Discussion of results and conclusion

In this chapter, we have generalized stochastic matching models to the continuous-time set-

tings. Items of different classes arrive at the system according to an independent Poisson

process of intensity λ. We addressed a new technique that allows us to explicitly derive the

stability region of the models at hand, by using fluid limits techniques, to prove the existence

of a local steady-state, rather than applying Lyapunov techniques. The scaling consists of

speeding up time by the norm of the initial state. The behavior of such rescaled stochas-

tic processes is analyzed when the scaling parameter goes to infinity. In Corollary 6.2, we

generalized the [37, Theorem 4] to multigraphs. The main difference of graphs, that is, for

any i ∈ V , Qi(0) is always zero or one, so the i-th coordinate of the fluid limit Q̄, that is,

necessarily null at all times.

Moreover, we have studied several examples of multigraphs for which the stationary

probability of the marginal process can be explicitly computed. We have studied some cases

of pendant graph with a self-loop on a vertex and we distinguish that the stability region

is strictly included in the necessary condition NCONDC . However, we retrieve the results

of Theorem 5.3 dedicated to the exact stability of the model by considering the complete

bipartite graphs with a self-loop on a vertex with the V2-favorable matching policy.

In Section 6.4, also by using fluid limit arguments, we provided the exact stability region

to the model for complete 3-uniform hypergraphs of order 4.



Chapter 7

Comparison of models for organ
transplant applications

7.1 Introduction

A blood type (also called a blood group) is defined as the classification of blood-based on

the presence or absence of inherited antigenic substances on the surface of red blood cells

(RBCs). A series of related blood types constitute a blood group ABO system, see [49].

We set the blood types as follows:

• Blood Type A - If the red blood cell contains only "A" molecules.

• Blood Type B - If the red blood cell contains only "B" molecules.

• Blood Type AB - If the red blood cell contains a mixture of molecules "A" and "B".

• Blood Type O - If the red blood cell has neither "A" nor "B" molecules.

Donating Blood by Compatible Type
Blood groups are very important when a transfusion is required. During the transfusion,

the patient must receive a blood that is compatible with his/her own. If the blood types do

not match, the red blood cells will clump together and form clots that can block blood ves-

sels and cause death.

If two different blood groups are mixed, the blood cells can clump together in the blood

vessels, causing potentially fatal diseases. Therefore, it is important to match blood types

before performing transfusions. In emergencies, blood group O may be given because all

blood groups will accept it. However, there is always a risk. See [25].
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The compatibilities of Blood Types Donors are described as follows:

Blood Type Donate Blood To Receive Blood From

A A, AB A, O

B B, AB B, O

AB AB A, B, AB, O

O A, B, AB, O O

Kidney Transplantation: Kidneys for transplantation come from two different sources:

a living donor or a deceased donor. See [26].

The Living Donor: In most cases, the donor is a family member. The donor must be

in excellent health, well informed about transplantation, and able to give informed consent.

Any healthy person can donate a kidney safely.

Deceased Donor: It is a person who has suffered brain death. The kidneys are removed

and stored until a recipient has been selected.

Regardless of the type of kidney transplant-living donor or deceased donor-special blood

tests are needed to find out what type of blood and tissue is present. These test results help

to match a donor kidney to the recipient.

In every two above cases, special blood tests and tissue are needed to find which help to

match a donor’s kidney. To receive a kidney where the recipient’s markers and the donor’s

markers all are the same is a "perfect match" kidney. Perfect match transplants have the best

chance of working for many years. Most perfectly matched kidney transplants come from

siblings.

Crossmatch: Throughout life, the body makes substances called antibodies that act to

destroy foreign materials. The crossmatch is done by mixing the recipient’s blood with cells

from the donor. If the crossmatch is positive, it means that there are antibodies against the

donor. The recipient should not receive this particular kidney unless special treatment is

done before transplantation to reduce the antibody levels. If the crossmatch is negative, it

means the recipient does not have antibodies to the donor and that they are eligible to receive

this kidney. See [40].

Cross matches are performed several times during preparation for a living donor transplant,

and a final crossmatch is performed within 48 hours before this type of transplant. The cross

matches is a particular organization of kidney transplant with living donors authorized by

the law of bioethics of July 7, 2011, and its decree of application published in September

2012. This donation is governed by three principles laid down by the law:

• The information of the donor,
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• anonymity between the two pairs,

• simultaneity of surgical interventions.

This solution can be considered when the loved one who wishes to donate is not com-

patible with the patient.

7.2 The models

In all the aforementioned applications, elements (donors, receivers, or couples donor/receiver)

arrive into the healthcare system at random times, and with various specificities. Compatibil-

ities between elements (donors with receiver, or couples donor/receiver with other couples)

need to be taken into account when performing the matches between them.

Thereafter, we will address the particular case of living donors: we assume that the

elements entering the system are couples of family members consisting of a giver and a re-

ceiver and that the giver and the receiver may not be compatible amongst them. This system

is modeled as a stochastic matching model in which items (i.e., couples) are gathered into

classes. Here, we say for instance that the class of a given item i is (A,B) if the giver of the

couple i has blood typeA and the receiver has blood typeB. Items of the various classes en-

ter the system following independent Poisson processes of designated intensities and using

a simple homogenization argument, we focus on the embedded chain of the corresponding

continuous-time system, namely, we work with a discrete-time stochastic matching model.

Three types of matching can be taken into account:

1. In the one by one matching model, elements can be matched within couples, if pos-

sible. This corresponds equivalently, to an extended bipartite matching model (EBM)

as defined in Chapter 3, in which items are single individuals rather than couples, and

couples of items (giver/receiver) enter the system simultaneously. Then, the compati-

bility graph is bipartite, between givers and receivers.

2. The two by two matching model corresponds to the cross-transplant system, namely,

couples of items, says of classes i and j, can be matched if and only if the giver

class of class i is compatible with the receiver class of class j, and the giver class of

class j is compatible with the receiver class of class i. Then the two transplants are

performed simultaneously. In our framework, this corresponds to a general stochastic

matching model (GM) in which the compatibility graph is general, and represents the
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compatibilities between couples, in the sense specified above. A matching between

two couples is made whenever the two matchings are performed together.

3. The three by three matching model allows couples to be matched by groups of three.

Then, a match between the three couples of respective classes i, j and k is possible

if and only if the giver of i is compatible with the receiver of j, the giver of j is

compatible with the receiver of k and the giver of k is compatible with the receiver of

i. Then, the three transplants can be performed simultaneously. These settings thus

correspond to a general stochastic model on a hypergraph that is 3-uniform, namely,

matches are performed between groups of three items (i.e., couples) only.

Figure 7.1: Paired and pooled organ donation - Cross matching Two-by-Two and Three-by-

Three [14].

To compare these three concurrent matching architectures, we consider a toy example in

which only four couple classes are present:

1 := (A,AB), 2 := (O,AB), 3 := (B,AB) and 4 := (A,B). (7.1)

This situation may occur if we address only a designated part of the whole transplant net-

work, or if we consider an access control, for instance. We then set V = {1, 2, 3, 4}, and

consider the various matching structure S = (V ,S), on V that correspond, respectively, to

the various types of matchings introduced above.

Remark 7.1. As will appear clearly below, similar matching models are obtained if, instead

of (7.1), we consider for instance arrivals of the following couples,

• 1 = (A,AB), 2 = (O,AB), 3 = (B,A) and 4 = (A,B);

• 1 = (A,AB), 2 = (O,A), 3 = (B,A) and 4 = (A,B);
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• 1 = (B,AB), 2 = (O,B), 3 = (A,B) and 4 = (B,A);

• 1 = (A,AB), 2 = (B,AB), 3 = (A,B) and 4 = (O,A);

• And so on....

7.3 Matching one by one

In the above case, the matching one-by-one is preferable for items of classes 1, 2, and 3,

since the transplants between the giver and the receiver of each of these compatible couples

can be made between family members. However, it is easily seen that, if incoming items

of classes 1, 2 and 3 are matched ‘with themselves’ in a systematic way, then the elements

of the couples of class 4, which are not compatible, will never be matched since a A-giver

cannot give to a B-receiver. Then the resulting system is unstable since class 4-items will

accumulate to infinity.

7.4 Matching two by two

Now, consider the case of the two by two matching. In this type of matching, the matching

structure S is a graph such that S = G = (V , E) and whose edges are defined as

E = {{1, 2}, {1, 3}, {2, 3}, {2, 4}, {3, 4}} ,

as is easily seen. The graph is thus a complete 3-partite graph of order 4, as depicted in

Figure 7.2 below. In other words, G is analog to separable graph of order 3 and I1 =

{2}, I2 = {3} and I3 = {1, 4} are the maximal independent sets partitionning V ,

1

2

3 4

Figure 7.2: The compatible complete 3-partite graph G of order 4.

From [32, Section 3], we get the following necessary condition of stability for any
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matching model on G,

NCOND(G) =


µ(2) < 1/2;

µ(3) < 1/2;

µ(1) + µ(4) < 1/2.

(7.2)

Proposition 7.1. Consider the graph G = (V , E). Then, for all matching policy Φ the

sets STAB(G,Φ) and NCOND(G) coincide, that is, the general stochastic matching model

(G,Φ, µ) is stable if and only if µ satisfies condition (7.2). In other words we have

STAB(G,Φ) =


µ(2) < 1/2;

µ(3) < 1/2;

µ(1) + µ(4) < 1/2.

(7.3)

Proof. As G is a separable graph of order 3, then from [32, Proposition 2], we get that

∀Φ, µ ∈ STAB(G,Φ) ⇐⇒ µ ∈ NCOND(G).

Proposition 7.2. Consider the graph G = (V , E), and any admissible matching policy Φ.

Then the stationary probability of the natural Markov chain (Xn)n∈N reads as follows: for

all x ∈ X,

π(x) =



α

(
µ(2)

1− µ(2)

)i
x = (0, i, 0, 0) ; i ≥ 1

α

(
µ(3)

1− µ(3)

)j
x = (0, 0, j, 0) ; j ≥ 1

α

(
µ(1) + µ(4)

1− (µ(1) + µ(4))

)k+`

x = (k, 0, 0, `) ; k ∨ ` ≥ 1

(7.4)

where the normalizing constant is given by

α = π(0, 0, 0, 0) =
(1− 2µ(2))(1− 2µ(3))(1− 2(µ(1) + µ(4)))

4µ(2)µ(3)(µ(1) + µ(4))
. (7.5)

Proof. Whatever Φ is, the transition matrix P of the class-content is defined as follows,
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P ((0, i, 0, 0), (0, i+ 1, 0, 0)) = µ(2);

P ((0, i, 0, 0), (0, i− 1, 0, 0)) = 1− µ(2);

P ((0, 0, j, 0), (0, 0, j + 1, 0)) = µ(3);

P ((0, 0, j, 0), (0, 0, j − 1, 0)) = 1− µ(3);

P ((k, 0, 0, `), (k + 1, 0, 0, `)) = µ(1);

P ((k, 0, 0, `), (k, 0, 0, `+ 1)) = µ(4);

P ((k, 0, 0, `), (k − 1, 0, 0, `)) = µ(2) + µ(3) choice 1;

P ((k, 0, 0, `), (k, 0, 0, `− 1)) = µ(2) + µ(3) choice 4.

Then, we get

π(x) =



π(0, 0, 0, 0)

(
µ(2)

1− µ(2)

)i
x = (0, i, 0, 0) ; i ≥ 1

π(0, 0, 0, 0)

(
µ(3)

1− µ(3)

)j
x = (0, 0, j, 0) ; j ≥ 1

π(0, 0, 0, 0)

(
µ(1) + µ(4)

1− (µ(1) + µ(4))

)k+`

x = (k, 0, 0, `) ; k ∨ ` ≥ 1.

Set π(0, 0, 0, 0) = π(0), and for any i, j, k ≥ 1 we set the following,

π(0, i, 0, 0) = π2(i), π(0, 0, j, 0) = π3(j) and π(k, 0, 0, `) = π1,4(k + `).

Then, we have

1 =
∑
i≥1

π2(i) +
∑
j≥1

π3(j) +
∑
k∨`≥1

π1,4(k + `) + π(0)

= π(0)

[∑
i≥1

(
µ(2)

1− µ(2)

)i
+
∑
j≥1

(
µ(3)

1− µ(3)

)j
+
∑
k∨`≥1

(
µ(1) + µ(4)

1− (µ(1) + µ(4))

)k+`

+ 1

]

= π(0)

[
µ(2)

1− 2µ(2)
+

µ(3)

1− 2µ(3)
+

µ(1) + µ(4)

1− 2(µ(1) + µ(4))
+ 1

]
= π(0)

[
4µ(2)µ(3)(µ(1) + µ(4))

(1− 2µ(2))(1− 2µ(3))(1− 2(µ(1) + µ(4)))

]
,

and we conclude that

π(0, 0, 0, 0) =
(1− 2µ(2))(1− 2µ(3))(1− 2(µ(1) + µ(4)))

4µ(2)µ(3)(µ(1) + µ(4))
. (7.6)
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Proposition 7.3. Consider the graph G. If Φ =FCFM, then we retrieve the results of [35,

Theorem 1].

Proof. The set of admissible queue detailsW is given by,

W ={ε} ∪
{

2k : k ≥ 1
}
∪
{

3k : k ≥ 1
}

∪
{

1r14`11r24`2 ... : k, k′ ≥ 0, 0 ≤ ri ≤ k, 0 ≤ `j ≤ k′, i = {1, 2, ...}, j = {1, 2, ...}
}
.

We compute explicitly ΠW , as the following values:

ΠW (ε) = α

ΠW (2k) = α
(

µ(2)
1−µ(2)

)k
ΠW (3k) = α

(
µ(3)

1−µ(3)

)k
ΠW (1r14`11r24`2 ...) = α

(
µ(1)

µ(2)+µ(3)

)r1
×
(

µ(4)
µ(2)+µ(3)

)`1
×
(

µ(1)
µ(2)+µ(3)

)r2
×
(

µ(4)
µ(2)+µ(3)

)`2
...

= α
(

µ(1)
µ(2)+µ(3)

)k
×
(

µ(4)
µ(2)+µ(3)

)k′
with

α =

[
1 +

µ(1)

µ(2) + µ(3)− µ(1)
+

µ(2)

1− 2µ(2)
+

µ(3)

1− 2µ(3)
+

µ(4)

µ(2) + µ(3)− µ(4)

+

(
µ(1)

µ(2) + µ(3)− µ(1)

)(
µ(4)

µ(2) + µ(3)− µ(1)− µ(4)

)
+

(
µ(4)

µ(2) + µ(3)− µ(4)

)(
µ(1)

µ(2) + µ(3)− µ(1)− µ(4)

)]−1

,

where we use the fact that the set of independent sets reads I (G) = {{1}, {2}, {3}, {4}, {1, 4}}.

7.5 Matching three by three

We now consider the three by three matching procedure: for any triplet of items of re-

spectives classes (X1, Y1), (X2, Y2) and (X3, Y3), then X1 donates to Y2, X2 donates to

Y3 and X3 donates to Y1. In this type of matching, the matching structure S is an hy-

pergraph. Specifically, we set S = H = (V ,H), where the hyperedges are defined as

H1 = {1, 2, 3}, H2 = {1, 4, 2}, H3 = {4, 3, 1}, and H4 = {4, 2, 3}. In other words, the

hypergraph is a complete 3-uniform hypergraph as depicted in Figure 1.4.

From Proposition 4.3 the necessary condition of stability for this matching model reads

N −
3 (H) = {µ ∈M (V) : µ(i) < 1/3, ∀i ∈ V} . (7.7)
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Proposition 7.4. Consider the hypergraph H = (V ,H) . Then, for all matching policy Φ

the sets STAB(H,Φ) and N −
3 (H) coincide, in other words the general stochastic matching

model (H,Φ, µ) is stable if and only if µ satisfies condition (7.7). In other words we have

STAB(H,Φ) = {µ ∈M (V) : µ(i) < 1/3, i ∈ V .} (7.8)

Proof. As H is a complete 3-uniform hypergraph of order 4, the result follows from Theo-

rem 4.1.

7.6 Comparaison between STAB(G,Φ) and STAB(H,Φ)

To summarize, we obtain that the stability region of the two-by-two matching system is

STAB(G,Φ) given by (7.3), whereas the stability region of the three-by-three matching sys-

tem is STAB(H,Φ), given by (7.8).

Let us observe that the two regions are not included in one another. Indeed, it is eas-

ily checked that the probability measure µ(1) = 0.25, µ(2) = 0.35, µ(3) = 0.2 and

µ(4) = 0.2, is an element STAB(G,Φ) but not of STAB(H,Φ). On the other hand, the prob-

ability measure µ(1) = 0.3, µ(2) = 0.2, µ(3) = 0.2 and µ(4) = 0.3 clearly belongs to

STAB(H,Φ), but is not an element of STAB(G,Φ).

Conclusion 1: Take the stability of the system as a primary performance criterion. Then,

the one-by-one matching is never stable. Second, it is preferable to perform matchings two-

by-two in some cases, and matchings three-by-three in other cases.

The intersection between the two stability regions is given by

STAB(G,Φ)
⋂

STAB(H,Φ) :=

{
µ(i) < 1/3 i ∈ V ;

µ(1) + µ(4) < 1/2.
(7.9)

The question arising now is the following: suppose that µ satisfies (7.9), that is, it be-

longs to both STAB(G,Φ) and STAB(H,Φ), implying that both systems are stable. Con-

sidering a secondary performance criterion, the frequency of construction points, that is, of

visits to the zero state, what is the best matching procedure between two by two and three

by three matchings?

We saw in Section 7.4 that the probability of finding an empty system in steady-state can

be given in closed form for the two-by-two matching system. However, such a result is, to

date, not available for the three-by-three system. We then resort to simulations to compare

the two procedures.
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We have simulated one thousand trajectories of the three-by-three system, each one start-

ing from an empty system and consisting of one million arrivals. Then,

Step 1: We count the total number of construction points over the million arrivals, and we get

the average over the thousand trajectories.

Step 2: We count the total number of empty buffers at the instance 999999 for each of one

million arrivals and get the average over the thousand trajectories.

In Table 7.1 hereafter we present our results for different distributions µ, applying for

each distribution the two aforementioned steps. We denote the first average by ‘Trajectorial

Average’ and the average of the empty buffers at time 999999 by ‘Av. EB.’ It is obvious

that the three-by-three matching system is 3-periodic. Thus, starting from the empty state,

it can be empty only at times that are multiples of three. So, it is only pertinent to compare

the average of construction points for the whole trajectories (fourth column) to the third of

the number of construction points seen at time 999999, a multiple of three (see the fifth

column).

µ(1) µ(2) µ(3) µ(4) Trajectorial Average Av. EB π(0, 0, 0, 0)

0.25 0.27 0.25 0.23 0.05137131 0.155 0.07098765

0.25 0.26 0.25 0.24 0.05348423 0.160 0.03767661

0.25 0.264 0.25 0.236 0.05279672 0.17 0.05150268

0.25 0.263 0.25 0.237 0.05294198 0.156 0.04811018

0.25 0.265 0.25 0.235 0.05260348 0.157 0.05485314

0.19 0.26 0.25 0.3 0.03445104 0.115 0.03767661

0.25 0.3 0.21 0.24 0.03740660 0.109 0.03757694

0.25 0.32 0.19 0.24 0.01779171 0.062 0.03745972

0.17 0.26 0.25 0.32 0.01639216 0.035 0.03767661

0.18 0.32 0.32 0.18 0.00542774 0.018 0.24609380

0.197 0.253 0.25 0.3 0.03558512 0.111 0.01178613

Table 7.1: The comparison of the stationary probability on G and the simulated results of

the matching model on H.

Conclusion 2: In Table 7.1 we emphasize, first, the speed of convergence to the steady-

state (approximated by the final state - column 5), as the results of columns 4 and 5 tend to

coincide. Second, when comparing the frequency of construction points for the three-by-

three system to the stationary probability of an empty two-by-two system, we see that the
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first one seems to perform better in some cases, while the second performs better for some

other values of µ.

7.7 Discussion of results and conclusion

In this chapter, we have proposed simple modeling of kidney transplant systems using

stochastic matching models. We have shown that models on various matching structures

(bipartite models, general models on graphs, and models on hypergraphs) are suitable to

various contexts. In the context of cross-transplants, a simple case study has shown that

there is no clear hierarchy between cross-transplants by pairs of couples (matchings two-by-

two) and cross-transplants by triplets of couples (matching three by three) when it comes to

comparing the stability regions. In some cases, one system is stable while the other is not.

Second, we show that the same remark holds if we compare the frequency of construction

points in simulated three-by-three systems to the (exact) value of the steady-state probability

of the two-by-two system being empty: the first performs better for some values of µ, while

the second performs better otherwise. Moreover, we do not understand which is the best

matching procedure.
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Conclusion and perspectives

In this thesis, we have studied a generalization of stochastic matching models on the graph,

by allowing the matching structure to be a hypergraph or multigraph. This class of mod-

els appears to have a wide range of applications in operations management, healthcare, and

assemble-to-order systems. After formally introducing the model, we have proposed a sim-

ple Markovian representation, under IID assumptions. We have then addressed the general

question of stochastic stability, viewed as the positive recurrence of the underlying Markov

chain. For this class of systems, solving this elementary and central question turns out to be

an intricate problem.

In this thesis, the stochastic matching model in discrete-time is formally defined as fol-

lows: items enter the system by a single. On other hand, in continuous-time items enter

the system according to an independent Poisson process of intensity λ > 0. The arrivals

get matched by groups of 2 or more (hypergraphical cases), following compatibilities that

are represented by a given hypergraph and by groups of 2 with possible compatibility with

itself (multigraphical cases). A matching policy determines the matchings to be executed in

the case of a multiple-choice, and the unmatched items are stored in a buffer, waiting for a

future match.

1. Conclusion

Stochastic matching models on hypergraphs are in general, difficult to stabilize. Unlike the

GM on graphs, the non-emptiness of the stability region on matching models on hypergraphs

depends on a collection of conditions on the geometry of the compatibility hypergraph: rank,

anti-rank, degree, size of the transversals, existence of cycles, and so on.

Nevertheless, we showed that the ‘house’ of stable systems is not empty, but shelters

models on various uniform hypergraphs that are complete, or complete up to a partition

of their nodes. We have provided the exact stability region of the system (H,Φ, µ) where

H = (V ,H) is a complete 3-uniform hypergraphs and for all admissible matching policy

Φ, i.e. STAB(H,Φ) = {µ ; µ(i) < 1/3, for all i ∈ V} . Also, we extended the exact sta-
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bility region for complete 3-uniform k-partite hypergraph. Moreover, we demonstrated a

lower bound for the stability region for the incomplete 3-uniform hypergraphs for a match-

ing policy ML. For this, we resorted to ad-hoc multi-dimensional Lyapunov techniques in

discrete-time (each step an item enters the system).

In this thesis, we have also studied a generalization of stochastic matching models on

graphs by allowing the self-loops matching, that is, a stochastic matching model on multi-

graphs. Given a multigraph G, its maximal subgraph Ǧ obtained by deleting all self-loops

in G and the minimal blow-up graph Ĝ obtained from G by duplicating each node having

a self-loop by two nodes having the same neighborhood and replacing each self-loop by an

edge between the node and its copy. From that, we transmit and generalize several results

that are known for Ǧ and Ĝ to their multigraphs.

Also, in this context, we have provided the exact stability region under FCFM and MW

policy such that β > 0.Given a multigraphG = (V1∪V2, E),we introduced a new matching

policy called V2-favorable, that is, for any arrival items always prioritizes to match with an

item in V2 over an item in V1.

In addition, we have proved that if Ǧ is a complete p-partite graph, (p ≥ 2), then for

p ≥ 3 or V1 6= 0, any V2-favorable matching policy is maximal.

In this thesis, we have also studied a new technique that allows us to find the stability

of the model by using the fluid limits in continuous-time (items of the various classes enter

the system following the independent Poisson process of designated intensities). This new

method consists of speeding up the time and rescaling the process to get a sort of caricature

of the initial stochastic process. We provide further results that are in agreement with the

previous results. The advantage of the continuous-time setting is that powerful fluid-limit

techniques can be employed, which greatly facilitate the stability analysis.

Indeed, we have also studied several cases of multigraphs such as pendant graphs with

a self-loop on such vertex, we proved a lower bound of stability region. In other words,

the model is stable if and only if the necessary condition for stability on continuous-time

NCONDC holds together with certain conditions. Moreover, we retrieved the results for

some specific complete bipartite graphs with a self-loop on such vertex for V2-favorable.

Further, using the fluid limits technique, we provided the exact stability region of the model

on complete 3-uniform hypergraphs of order 4.

To illustrate the practical relevance of our results, we also have studied an application

of the stochastic matching model that addressed particular cases of living donors in the

134



CONCLUSIONS AND PERSPECTIVES

context of cross-matching. In that case, the items enter the system by couples (X, Y ) of

family members, the first component X represents the ‘giver’ and the second component Y

represents the ‘receiver’. The problem consists of studied a special case in three types of

matching on various matching structures:

• bipartite graphs (matching one-by-one);

• general graphs (matching two-by-two);

• complete 3-uniform hypergraphs (matching three-by-three).

We studied the performance criterion between the two-by-two matching system and three-

by-three matching system of the frequency of visits to zero state, to distinguish what is the

best matching procedure. Motivated by a simulation of one thousand trajectories of three-

by-three, we see that the two-by-two seems to perform better in some cases, while three-by-

three performs better for some other values of µ. In this instance, we cannot conclude which

is the best.

2. Perspectives

All the results obtained in this thesis, are according to some hypotheses: stochastic matching

model on hypergraphs and multigraphs, stability region, steady-state, and so on. There is

still much to do regarding this class of systems. Let us give a few directions of research that

we are currently following, or aim to follow in a near future:

• Finding an explicit form of the stationary probability of the chain {Wn; n ∈ N} of

the model (H, FCFM,Φ).

• Comparing the necessary conditions of stability of the model (H, FCFM,Φ) between

them.

• Applying the proposed matching model on hypergraphs and multigraphs for several

domains of applications.

• Comparing the simple hypergraphs, of the optimal policy with those obtained by the

“Greedy Primal-Dual” optimization algorithms (Nazari and Stolyar, 2017), a dynamic

control strategy introduced to maximize the utility of queue networks waiting subject

to stability, which turns out to be (asymptotically) optimal in this case.

• Comparing the matching policies for the models on the hypergraphs and the determi-

nation of an optimal matching policy: MW? In which way?
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• Determining the exact zones of stability of the random pairing models on particular

cases of hypergraphs, in particular for small non-trivial hypergraphs such as the Fano

plane (the projective plane of size 7) or the models representing the networks of cross

kidney donation with loop.

• Generalizing the results of Theorem 4.1, to the complete k-uniform hypergraphs. In

that case, we conjecture that the stability region is equal to N −
3 (H) = {µ, µ(i) <

1/k, i ∈ V}.

We believe that the present thesis represents a good starting point for a fruitful avenue

for research on such systems.
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Appendix

The transitions for the proof of Theorem 4.1

(i) First, for any i ∈ J̄ , and any integer xi ≥ 2, the chain {Yn; n ∈ N} makes the following

transitions from state Yn = xi.ei,

Yn+1 =



Yn + 4ei w.p. µ(i)4;

Yn + 3ei + ej w.p. 4µ(i)3µ(j);

Yn + 2ei + 2ej w.p. 6µ(i)2µ(j)2;

Yn + ei + 3ej w.p. 4µ(i)µ(j)3;

Yn + 4ej w.p. µ(j)4;

Yn + ei w.p. 12µ(i)2µ(j)µ(k);

Yn + ej w.p. 12µ(i)µ(j)2µ(k);

Yn − 2ei w.p. 10µ(j)2µ(k)µ(`)

(the input has 2 j, 1 k and 1 `, but does not end in jj);

Yn − ei + 2ej w.p. 2µ(k)µ(`)µ(j)2

(the input is of the form ijjj);

Yn − 2ei w.p. 6µ(j)2µ(k)2;

Yn − ei + 2ej w.p. 4µ(j)3µ(k);

Yn + ej w.p. 24µ(i)µ(k)µ(`)µ(j);

Yn − 2ei w.p. 24µ(j)µ(k)µ(`)µ(m).

(7.10)

(ii) For any i ∈ J, and any integer xi ≥ 2, the transitions of {Yn; n ∈ N} from the state

xi.ei can be retrieved as a similar fashion to (7.10). Set H = {i, j, k} ⊂ J, we have the
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following transitions,

Yn+1 =



Yn + 4ei w.p. µ(i)4;

Yn + 3ei + e` w.p. 4µ(i)3µ(`) ` ∈ V\{i};
Yn + 2ei + 2e` w.p. 6µ(i)2µ(`)2 ` ∈ V\{i};
Yn + ei + 3e` w.p. 4µ(i)µ(`)3 ` ∈ V\{i};
Yn + 4e` w.p. µ(`)4 ` ∈ V\{i};
Yn + ej w.p. 12µ(i)µ(j)2µ(`) ` ∈ H;

Yn + e` w.p. 12µ(i)µ(j)µ(`)2 ` ∈ H;

Yn + e` w.p. 12µ(i)µ(`)2µ(m) ` 6= m ∈ H;

Yn + ej w.p. 6µ(i)µ(j)µ(`)µ(m) ` 6= m ∈ H ends with j;

Yn + e` w.p. 18µ(i)µ(j)µ(`)µ(m) ` 6= m ∈ H otherwise;

Yn + e` w.p. 24µ(i)µ(`)µ(m)µ(p) ` 6= m 6= p ∈ H;

Yn + ej + 3ek w.p. 4µ(j)µ(k)3;

Yn − ei + 2e` w.p. 4µ(j)µ(`)3 ` ∈ H;

Yn − ei + 2ek w.p. 2µ(j)µ(k)2µ(`) ` ∈ H ends with kk;

Yn − ei + ej + ek w.p. 10µ(j)µ(k)2µ(`) ` ∈ H otherwise;

Yn − 2ei w.p. 12µ(j)µ(k)µ(`)2 ` ∈ H;

Yn − ei + 2e` w.p. 2µ(j)µ(`)2µ(m) ` 6= m ∈ H ends with ``;

Yn − 2ei w.p. 10µ(j)µ(`)2µ(m) ` 6= m ∈ H otherwise;

Yn − ei + ej + ek w.p. 4µ(j)µ(k)µ(`)µ(m) ` 6= m ∈ H ends with jk;

Yn − 2ei w.p. 20µ(j)µ(k)µ(`)µ(m) ` 6= m ∈ H otherwise;

Yn − 2ei w.p. 24µ(j)µ(`)µ(m)µ(p) ` 6= m 6= p ∈ H;

Yn + 2ei + ej + ek w.p. 12µ(i)2µ(j)µ(k);

Yn + ei w.p. 12µ(i)2µ(j)µ(`) ` ∈ H;

Yn + ei w.p. 12µ(i)2µ(`)µ(m) ` 6= m ∈ H;

Yn + 2ej + 2ek w.p. 6µ(j)2µ(k)2;

Yn − 2ei w.p. 6µ(j)2µ(`)2 ` ∈ H;

Yn − ei + 2ej w.p. 2µ(j)2µ(`)µ(m) ` 6= m ∈ H ends with jj;

Yn − 2ei w.p. 10µ(j)2µ(`)µ(m) ` 6= m ∈ H otherwise;

Yn − ei + 2ej w.p. 4µ(j)3µ(`) ` ∈ H;

Yn + ei + ej + 2ek w.p. 12µ(i)µ(j)µ(k)2;

Yn + ej w.p. 24µ(i)µ(j)µ(k)µ(`) ` ∈ H;

Yn − ei + 2e` w.p. 4µ(`)3µ(m) ` 6= m ∈ H;

Yn − 2ei w.p. 6µ(`)2µ(m)2 ` 6= m ∈ H;

Yn − ei + 2e` w.p. 2µ(`)2µ(m)µ(p) ` 6= m 6= p ∈ H ends with ``;

Yn − 2ei w.p. 10µ(`)2µ(m)µ(p) ` 6= m 6= p ∈ H otherwise;

Yn − 2ei w.p. 24µ(`)µ(m)µ(p)µ(s) ` 6= m 6= p 6= s ∈ H.
(7.11)
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Then we decduce that,

∆′i := E [Q (Yn+1)−Q (Yn) |Yn = xi.ei] =

(8ai + 16)µ4(i) + 4(6ai + 10)µ3(i)
∑
`∈V

µ(`) + 6(4ai + 8)µ2(i)
∑
`∈V

µ2(`) + 4(2ai + 10)µ(i)
∑
`∈V

µ3(`)

+ 16
∑
`∈V

µ4(`) + 24µ(i)
∑
j∈H:
`∈H

µ2(j)µ(`) + 24µ(i)
∑
j∈H:
`∈H

µ(j)µ2(`) + 24µ(i)
∑
`,m∈H

µ2(`)µ(m)

+ 12µ(i)
∑
j∈H:
`,m∈H:

ends with j

µ(j)µ(`)µ(m) + 36µ(i)
∑
j∈H:
`,m∈H:
otherwise

µ(j)µ(`)µ(m) + 48µ(i)
∑

`,m,p∈H

µ(`)µ(m)µ(p)

+ 44
∑
j,k∈H

µ(j)µ3(k)− 4(2ai + 5)
∑
j∈H:
`∈H

µ(j)µ3(`)− 2(2ai + 5)
∑
j,k∈H:
`∈H:

ends with kk

µ(j)µ2(k)µ(`)

− 10(2ai + 3)
∑
j,k∈H:
`∈H:

otherwise

µ(j)µ2(k)µ(`)− 12(4ai + 4)µ(j)µ(k)
∑
`∈H

µ2(`)

− 2(2ai + 5)
∑
j∈H:
`∈H:

ends with ``

µ(j)µ2(`)µ(m)− 10(4ai + 4)
∑
j∈H:
`∈H:

otherwise

µ(j)µ2(`)µ(m)

− 4(2ai + 3)µ(j)µ(k)
∑

`,m∈H:
ends with jk

µ(`)µ(m)− 20(4ai + 4)µ(j)µ(k)
∑

`,m∈H:
otherwise

µ(`)µ(m)

− 24(4ai + 4)
∑
j∈H:
`,m∈H

µ(j)µ(`)µ(m)µ(p) + 12(4ai + 6)µ2(i)µ(j)µ(k)

+ 12(2ai + 1)µ2(i)
∑
j∈H:
`∈H

µ(j)µ(`) + 12(2ai + 1)µ2(i)
∑
`,m∈H

µ(`)µ(m) + 48µ2(j)µ2(k)

− 6(4ai + 4)
∑
j∈H:
`∈H

µ2(j)µ2(`)− 2(2ai + 5)
∑
j∈H:
`∈H:

ends with jj

µ2(j)µ(`)µ(m)

− 10(4ai + 4)
∑
j∈H:
`∈H:

otherwise

µ2(j)µ(`)µ(m)− 4(2ai + 5)
∑
j∈H:
`∈H

µ3(j)µ(`) + 12(2ai + 6)µ(i)
∑
j,k∈H

µ(j)µ2(k)

+ 48µ(i)µ(j)µ(k)
∑
`∈H

µ(`)− 4(2ai + 5)
∑
`,m∈H

µ3(`)µ(m)− 6(4ai + 4)
∑
`,m∈H

µ2(`)µ2(m)

− 2(2ai + 5)
∑

`,m,p∈H:
ends with ``

µ2(`)µ(m)µ(p)− 10(4ai + 4)
∑

`,m,p∈H:
otherwise

µ2(`)µ(m)µ(p)

− 24(4ai + 4)
∑

`,m,p,s∈H

µ(`)µ(m)µ(p)µ(s) = νi(µ)xi + β′i(µ),

(7.12)
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